
Lecture Notes in Computer Science 5124
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Joachim Gudmundsson (Ed.)

Algorithm Theory –
SWAT 2008

11th Scandinavian Workshop on Algorithm Theory
Gothenburg, Sweden, July 2-4, 2008
Proceedings

13

Volume Editor

Joachim Gudmundsson
NICTA
Locked Bag 9013
Alexandria NSW 1435, Australia
E-mail: joachim.gudmundsson@nicta.com.au

Library of Congress Control Number: Applied for

CR Subject Classification (1998): F.2, E.1, G.2, I.3.5, C.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-69900-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-69900-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12321810 06/3180 5 4 3 2 1 0

Preface

The Scandinavian Workshop on Algorithm Theory (SWAT) is a biennial inter-
national conference intended as a forum for researchers in the area of design and
analysis of algorithms and data structures. The first SWAT workshop was held in
Halmstad, Sweden, in 1988. Since then it has been held biennially, rotating be-
tween the five Nordic countries – Denmark, Finland, Iceland, Norway and Swe-
den, with the exception of 2006 when it was in Riga. Earlier SWATs were held
in Humlebæk, Denmark (2004), Turku, Finland (2002), Bergen, Norway (2000),
Stockholm, Sweden (1998), Reykjavik, Iceland (1996), Århus, Denmark (1994),
Helsinki, Finland (1992), Bergen, Norway (1990) and Halmstad, Sweden (1988).

This volume contains the contributed papers presented at the 11th Scan-
dinavian Workshop on Algorithm Theory (SWAT 2008), held in Gothenburg,
Sweden, July 2–4, 2008. In addition, the volume also includes abstracts of an
invited talk by Michael Mitzenmacher on “A Survey of Results for Deletion
Channels and Related Synchronization Channels” and by Vijay V. Vazirani on
“Nash Bargaining via Flexible Budget Markets.”

Papers were solicited for original research on algorithms and data structures
in all areas, including but not limited to: approximation algorithms, computa-
tional biology, computational geometry, distributed algorithms, external-memory
algorithms, graph algorithms, online algorithms, optimization algorithms, paral-
lel algorithms, randomized algorithms, string algorithms and algorithmic game
theory. The 36 contributed papers were chosen from 111 submissions. Revised
and expanded versions of selected papers will be considered for publication in
a special issue of Algorithmica. The best paper award was given to Yossi Azar,
Uriel Feige and Daniel Glasner for their paper “A Preemptive Algorithm for
Maximizing Disjoint Paths on Trees.”

Each paper was reviewed by at least three referees, and evaluated on the qual-
ity, originality and relevance to the symposium. The challenging task of selecting
the papers for presentation was performed by the members of our Program Com-
mittee and external reviewers. All of them deserve special thanks for their hard
work.

We thank all of those who submitted papers for contributing to an interesting
and diverse conference.

April 2008 Joachim Gudmundsson

Organization

Program Chair

Joachim Gudmundsson, NICTA, Australia

Program Committee

Mark de Berg, TU Eindhoven, The Netherlands
Michael Elkin, Ben-Gurion University, Israel
Leah Epstein, University of Haifa, Israel
Fedor Fomin, University of Bergen, Norway
Leszek G ↪asieniec, University of Liverpool, UK
Anupam Gupta, Carnegie Mellon University, USA
Thore Husfeldt, Lund University, Sweden
Johan H̊astad, Royal Institute of Technology, Sweden
Nicole Immorlica, Centrum voor Wiskunde en Informatica, The Netherlands
Mikko Koivisto, HIIT, University of Helsinki, Finland
Peter Bro Miltersen, University of Aarhus, Denmark
Pat Morin, Carleton University, Canada
Rasmus Pagh, IT University of Copenhagen, Denmark
Marina Papatriantafilou, Chalmers University of Technology, Sweden
Mihai Pǎtraşcu, MIT, USA
Kunihiko Sadakane, Kyushu University, Japan
Martin Skutella, TU Berlin, Germany
Christian Sohler, University of Paderborn, Germany

Local Organization

Ewa Cederheim-Wäingelin
Rebecca Cyrén
Georgios Georgiadis
Catharina Jerkbrant
Marina Papatriantafilou
Tiina Rankanen
Philippas Tsigas

Steering Committee

Lars Arge, University of Aarhus, Denmark
Magnús M. Halldórsson, University of Iceland, Iceland
Rolf Karlsson, Lund University, Sweden
Andrzej Lingas, Lund University, Sweden
Jan Arne Telle, University of Bergen, Norway
Esko Ukkonen, University of Helsinki, Finland

VIII Organization

Sponsoring Institutions

Security Arena
Lindholmen Science Park

External Reviewers

Marcel R. Ackermann
Dror Aiger
Mohammad Ali Abam
Nina Amenta
Daniel Andersson
Sunil Arya
Hideo Bannai
Amitabh Basu
Boaz Ben-Moshe
Michael Bender
Marcin Bienkowski
Philip Bille
Vincenzo Bonifaci
Peter Braß
Kevin Buchin
Maike Buchin
Jaroslaw Byrka
Daniel Cederman

Janka Chleb́ıková
Marek Chrobak
Sébastien Collette
Derek Corneil
Annalisa DeBonis
Brian Dean
Bastian Degener
Kedar Dhamdhere
Karim Doüıeb
Vida Dujmović
Lene M. Favrholdt
Fernando Mario Oliveira

Filho
Sorelle Friedler
Zhang Fu
Naveen Garg
Serge Gaspers
Giorgos Georgiadis

Anders Gidenstam
Inge Li Gørtz
Peter Golovach
Lee-Ad Gottlieb
Phuong Ha
Mikael Hammar
Sariel Har-Peled
Refael Hassin
Herman Haverkort
Meng He
Stefan Hougardy
John Iacono
Csanád Imreh
Klaus Jansen
Jesper Jansson
Juha Karkkainen
Petteri Kaski
Hyosil Kim

Organization IX

Ralf Klasing
Rolf Klein
Boris Koldehofe
Guy Kortsarz
Miros�law Korzeniowski
Marc van Kreveld
Danny Krizanc
Alexander Kröller
Sven O. Krumke
Marcin Kubica
Jochen Könemann
Christiane Lammersen
Stefan Langerman
Erik Jan van Leeuwen
Asaf Levin
Christian Liebchen
Andrzej Lingas
Tamás Lukovszki
Anil Maheshwari
Hamid Mahini
Azarakhsh Malekian
Nunkesser Marc
Dániel Marx
Daniel Meister
George Mertzios
Julian Mestre

Shuichi Miyazaki
Morteza Monemizadeh
Haiko Müller
Viswanath Nagarajan
Alfredo Navarra
Bengt Nilsson
Zeev Nutov
Joseph O’Rourke
Hirotaka Ono
Aris Pagourtzis
Seth Pettie
Igor Potapov
David Pritchard
Artem Pyatkin
Vijaya Ramachandran
R. Ravi
Dror Rawitz
Daniel Reichman
Romeo Rizzi
Geneviève Roberge
Liam Roditty
Aaron Roth
Milan Ružić
Harald Räcke
Peter Sanders
Saket Saurabh

Elad Michael Schiller
Jǐŕı Sgall
Anastasios Sidiropoulos
Shakhar Smorodinsky
Bettina Speckmann
Rob van Stee
Jukka Suomela
Maxim Sviridenko
Xuehou Tan
Orestis Telelis
Peter Tiedemann
Laura Toma
Ryuhei Uehara
Taso Viglas
Antoine Vigneron
Yngve Villanger
Berthold Vöcking
Renato Werneck
Alexander Wolff
Thomas Wolle
Maverick Woo
Koichi Yamazaki
Norbert Zeh
Pawe�l Żyliński

Table of Contents

Invited Lectures

A Survey of Results for Deletion Channels and Related Synchronization
Channels . 1

Michael Mitzenmacher

Nash Bargaining Via Flexible Budget Markets (Abstract) 4
Vijay V. Vazirani

Contributed Papers

Simplified Planar Coresets for Data Streams . 5
John Hershberger and Subhash Suri

Uniquely Represented Data Structures for Computational Geometry 17
Guy E. Blelloch, Daniel Golovin, and Virginia Vassilevska

I/O Efficient Dynamic Data Structures for Longest Prefix Queries 29
Moshe Hershcovitch and Haim Kaplan

Guarding Art Galleries: The Extra Cost for Sculptures Is Linear 41
Louigi Addario-Berry, Omid Amini, Jean-Sébastien Sereni, and
Stéphan Thomassé

Vision-Based Pursuit-Evasion in a Grid . 53
Adrian Dumitrescu, Howi Kok, Ichiro Suzuki, and Pawe�l Żyliński

Angle Optimization in Target Tracking . 65
Beat Gfeller, Matúš Mihalák, Subhash Suri, Elias Vicari, and
Peter Widmayer

Improved Bounds for Wireless Localization . 77
Tobias Christ, Michael Hoffmann, Yoshio Okamoto, and Takeaki Uno

Bicriteria Approximation Tradeoff for the Node-Cost Budget
Problem . 90

Yuval Rabani and Gabriel Scalosub

Integer Maximum Flow in Wireless Sensor Networks with Energy
Constraint . 102

Hans L. Bodlaender, Richard B. Tan, Thomas C. van Dijk, and
Jan van Leeuwen

XII Table of Contents

The Maximum Energy-Constrained Dynamic Flow Problem 114
Sándor P. Fekete, Alexander Hall, Ekkehard Köhler, and
Alexander Kröller

Bounded Unpopularity Matchings . 127
Chien-Chung Huang, Telikepalli Kavitha, Dimitrios Michail, and
Meghana Nasre

Data Structures with Local Update Operations . 138
Yakov Nekrich

On the Redundancy of Succinct Data Structures . 148
Alexander Golynski, Rajeev Raman, and S. Srinivasa Rao

Confluently Persistent Tries for Efficient Version Control 160
Erik D. Demaine, Stefan Langerman, and Eric Price

A Uniform Approach Towards Succinct Representation of Trees 173
Arash Farzan and J. Ian Munro

An O(n1.75) Algorithm for L(2, 1)-Labeling of Trees 185
Toru Hasunuma, Toshimasa Ishii, Hirotaka Ono, and Yushi Uno

Batch Coloring Flat Graphs and Thin . 198
Magnús M. Halldórsson and Hadas Shachnai

Approximating the Interval Constrained Coloring Problem 210
Ernst Althaus, Stefan Canzar, Khaled Elbassioni,
Andreas Karrenbauer, and Julián Mestre

A Path Cover Technique for LCAs in Dags . 222
Miros�law Kowaluk, Andrzej Lingas, and Johannes Nowak

Boundary Labeling with Octilinear Leaders . 234
Michael A. Bekos, Micheal Kaufmann, Martin Nöllenburg, and
Antonios Symvonis

Distributed Disaster Disclosure . 246
Bernard Mans, Stefan Schmid, and Roger Wattenhofer

Reoptimization of Steiner Trees . 258
Davide Bilò, Hans-Joachim Böckenhauer, Juraj Hromkovič,
Richard Královič, Tobias Mömke, Peter Widmayer, and Anna Zych

On the Locality of Extracting a 2-Manifold in IR3 . 270
Daniel Dumitriu, Stefan Funke, Martin Kutz, and
Nikola Milosavljević

On Metric Clustering to Minimize the Sum of Radii 282
Matt Gibson, Gaurav Kanade, Erik Krohn, Imran A. Pirwani, and
Kasturi Varadarajan

Table of Contents XIII

On Covering Problems of Rado . 294
Sergey Bereg, Adrian Dumitrescu, and Minghui Jiang

Packing Rectangles into 2 OPT Bins Using Rotations 306
Rolf Harren and Rob van Stee

A Preemptive Algorithm for Maximizing Disjoint Paths on Trees 319
Yossi Azar, Uriel Feige, and Daniel Glasner

Minimum Distortion Embeddings into a Path of Bipartite Permutation
and Threshold Graphs . 331

Pinar Heggernes, Daniel Meister, and Andrzej Proskurowski

On a Special Co-cycle Basis of Graphs . 343
Telikepalli Kavitha

A Simple Linear Time Algorithm for the Isomorphism Problem on
Proper Circular-Arc Graphs . 355

Min Chih Lin, Francisco J. Soulignac, and Jayme L. Szwarcfiter

Spanners of Additively Weighted Point Sets . 367
Prosenjit Bose, Paz Carmi, and Mathieu Couture

The Kinetic Facility Location Problem . 378
Bastian Degener, Joachim Gehweiler, and Christiane Lammersen

Computing the Greedy Spanner in Near-Quadratic Time 390
Prosenjit Bose, Paz Carmi, Mohammad Farshi,
Anil Maheshwari, and Michiel Smid

Parameterized Computational Complexity of Dodgson and Young
Elections . 402

Nadja Betzler, Jiong Guo, and Rolf Niedermeier

Online Compression Caching . 414
C. Greg Plaxton, Yu Sun, Mitul Tiwari, and Harrick Vin

On Trade-Offs in External-Memory Diameter-Approximation 426
Ulrich Meyer

Author Index . 437

A Survey of Results for Deletion Channels and Related
Synchronization Channels

Michael Mitzenmacher�

Harvard University
School of Engineering and Applied Sciences

michaelm@eecs.harvard.edu

The binary symmetric channel, where each bit is independently received in error with
probability p, and the binary erasure channel, where each bit is erased with probability
p, enjoy a long and rich history. Shannon developed the fundamental results on the ca-
pacity of such channels in the 1940’s [19], and in recent years, through the development
and analysis of low-density parity-check codes and related families of codes, we under-
stand how to achieve near-capacity performance for such channels extremely efficiently
[2,13,17].

Now consider the following channel: n bits are sent, but each bit is independently
deleted with fixed probability p. This is the binary i.i.d. deletion channel, which we
may refer to more succinctly as the binary deletion channel or just the deletion channel.
A deletion channel should not be confused with an erasure channel. With an erasure
channel, when n bits are sent, n symbols are received; a third symbol, often denoted by
’?’, is obtained at the receiver to denote an erasure. In contrast, with a deletion channel,
there is no sign that a bit is deleted. For example, if 10101010 was sent, the receiver
would obtain 10011 if the third, sixth, and eighth bits were deleted, and would obtain
10?01?1? if the bits were erased.

What is the capacity of this channel? Surprisingly, we do not know. Currently, we
have no closed-form expression for the capacity, nor do we have an efficient algorithmic
means to numerically compute this capacity. Not surprisingly, this lack of understand-
ing of channel capacity goes hand in hand with a lack of good codes for the deletion
channel.

More generally, channels with synchronization errors, including both insertions and
deletions and more general timing errors, are simply not adequately understood by cur-
rent theory. Given the near-complete knowledge we have channels with erasures and
errors, in terms of both the capacity and codes that can nearly achieve capacity, our lack
of understanding about channels with synchronization errors is truly remarkable.

On the other hand, substantial progress has been made in just the last few years. A
recent result that we will highlight is that the capacity for the binary deletion channel
is at least (1 − p)/9 for every value of p [8,16]. Another way of thinking about this
result is that the capacity of the deletion channel is always within a (relatively small)
constant factor of the corresponding erasure channel, even as the deletion probability p

� Supported in part by NSF grant CCF-0634923.

J. Gudmundsson (Ed.): SWAT 2008, LNCS 5124, pp. 1–3, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 M. Mitzenmacher

goes to 1! As the erasure channel gives a clear upper bound on the capacity, this result
represents a significant step forward; while in retrospect the fact that these capacities
are always within a constant factor seems obvious, the fact that this factor is so small
still appears somewhat surprising.

The purpose of this talk is to present recent progress along with a clear description
of open problems, with the hope of spurring further research in this area. The presen-
tation is necessarily somewhat biased, focusing on my own recent research in the area.
Background information can be found in, for example, [1,3,4,10,11,18,20]. Results to
be presented will include capacity lower bound arguments [6,7,8,16], capacity upper
bound arguments [5], codes and capacity bounds alternative channel models [12,14,15],
and related problems such as trace reconstruction [9].

Before beginning, it is worth asking why this class of problems is important. From
a strictly practical perspective, such channels are arguably harder to justify than chan-
nels with errors or erasures. While codes for synchronization have been suggested for
disk drives, watermarking, or general channels where timing errors may occur, imme-
diate applications are much less clear than for advances in erasure-correcting and error-
correcting codes. However, this may be changing. In the past, symbol synchronization
has been handled separately from coding, using timing recovery techniques that were
expensive but reasonable given overall system performance. With improvements in cod-
ing theory, specifically in iteratively decodable codes, it may become increasingly com-
mon that synchronization errors will prove a bottleneck for practical channels. More-
over, because we are currently so far away from having good coding schemes for even
the most basic synchronization channels, in practice coding is rarely if ever considered
as a viable solution to synchronization. If efficient codes for synchronization problems
can be found, it is likely that applications will follow. If such codes are even a fraction
as useful as codes for erasures or errors have been, they will have a significant impact.
The work on capacity lower bounds demonstrates that there is more potential here than
has perhaps been realized.

Of course, coding theory often has applications outside of engineering, and chan-
nels with deletions and insertions prove no exception, appearing naturally in biology.
Symbols from DNA and RNA are deleted and inserted (and transposed, and otherwise
changed) as errors in genetic processes. Understanding deletion channels and related
problems may therefore give us important insight into genetic processes.

But regardless of possible applications, scientific interest alone provides compelling
reasons to tackle these channels. As stated initially, while the deletion channel appears
almost as natural and simple as the binary erasure and error channels, it has eluded sim-
ilar understanding for decades, and appears to hide a great deal more complexity. The
fact that we know so little about something so apparently basic is quite simply disturb-
ing. Besides the standard questions of capacity and coding schemes for this and related
channels, there appear to be many further easily stated and natural related variations
worthy of study. Finally, the combinatorial nature of these channels brings together
information theory and computer science in ways that should lead to interesting cross-
fertilization of techniques and ideas between the two fields.

A Survey of Results for Deletion Channels 3

References
1. Batu, T., Kannan, S., Khanna, S., McGregor, A.: Reconstructing strings from random traces.

In: Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 910–918 (2004)

2. Chung, S.Y., Forney Jr., G.D., Richardson, T.J., Urbanke, R.: On the design of low-density
parity-check codes within 0.0045 dB of the Shannon limit. IEEE Communications Let-
ters 5(2), 58–60 (2001)

3. Davey, M.C., Mackay, D.J.C.: Reliable communication over channels with insertions, dele-
tions, and substitutions. IEEE Transactions on Information Theory 47(2), 687–698 (2001)

4. Diggavi, S., Grossglauser, M.: On information transmission over a finite buffer channel. IEEE
Transactions on Information Theory 52(3), 1226–1237 (2006)

5. Diggavi, S., Mitzenmacher, M., Pfister, H.: Capacity upper bounds for deletion channels. In:
Proceedings of the 2007 IEEE International Symposium on Information Theory (ISIT), pp.
1716–1720 (2007)

6. Drinea, E., Kirsch, A.: Directly lower bounding the information capacity for channels with
i.i.d. deletions and duplications. In: Proceedings of the 2007 IEEE International Symposium
on Information Theory (ISIT), pp. 1731–1735 (2007)

7. Drinea, E., Mitzenmacher, M.: On lower bounds for the capacity of deletion channels. IEEE
Transactions on Information Theory 52(10), 4648–4657 (2006)

8. Drinea, E., Mitzenmacher, M.: Improved lower bounds for the capacity of i.i.d. deletion and
duplication channels. IEEE Transactions on Information Theory 53(8), 2693–2714 (2007)

9. Holenstein, T., Mitzenmacher, M., Panigrahy, R., Wieder, U.: Trace reconstruction with con-
stant deletion probability and related results. In: Proceedings of the Nineteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, pp. 389–398 (2008)

10. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals.
Soviet Phys. -Dokl 10(8), 707–710 (1966), (English translation)

11. Levenshtein, V.I.: Efficient reconstruction of sequences. IEEE Transactions on Information
Theory 47(1), 2–22 (2001)

12. Liu, Z., Mitzenmacher, M.: Codes for deletion and insertion channels with segmented errors.
In: Proceedings of the 2007 IEEE International Symposium on Information Theory (ISIT),
pp. 846–850 (2007)

13. Luby, M.G., Mitzenmacher, M., Shokrollahi, M.A., Spielman, D.A.: Efficient erasure cor-
recting codes. IEEE Transactions on Information Theory 47(2), 569–584 (2001)

14. Mitzenmacher, M.: Polynomial time low-density parity-check codes with rates very close to
the capacity of the q-ary random deletion channel for large q. IEEE Transactions on Infor-
mation Theory 52(12), 5496–5501 (2006)

15. Mitzenmacher, M.: Capacity bounds for sticky channels. IEEE Transactions on Information
Theory 54(1), 72 (2008)

16. Mitzenmacher, M., Drinea, E.: A simple lower bound for the capacity of the deletion channel.
IEEE Transactions on Information Theory 52(10), 4657–4660 (2006)

17. Richardson, T.J., Shokrollahi, M.A., Urbanke, R.L.: Design of capacity-approaching irreg-
ular low-density parity-check codes. IEEE Transactions on Information Theory 47(2), 619–
637 (2001)

18. Schulman, L.J., Zuckerman, D.: Asymptotically good codes correcting insertions, deletions,
and transpositions. IEEE Transactions on Information Theory 45(7), 2552–2557 (1999)

19. Shannon, C.E.: A mathematical theory of communication. Bell Systems Technical Jour-
nal 27(3), 379–423 (1948)

20. Sloane, N.J.A.: On single-deletion-correcting codes. Codes and Designs. In: Proceedings
of a Conference Honoring Professor Dijen K. Ray-Chaudhuri on the Occasion of His 65th
Birthday, Ohio State University, May 18-21, 2000 (2002)

Nash Bargaining Via Flexible Budget Markets

Vijay V. Vazirani

College of Computing, Georgia Institute of Technology,
Atlanta, GA 30332–0280
vazirani@cc.gatech.edu

Abstract. In his seminal 1950 paper, John Nash defined the bargaining
problem; the ensuing theory of bargaining lies today at the heart of game
theory. In this work, we initiate an algorithmic study of Nash bargaining
problems.

We consider a class of Nash bargaining problems whose solution can
be stated as a convex program. For these problems, we show that there
corresponds a market whose equilibrium allocations yield the solution to
the convex program and hence the bargaining problem. For several of
these markets, we give combinatorial, polynomial time algorithms, using
the primal-dual paradigm.

Unlike the traditional Fisher market model, in which buyers spend a
fixed amount of money, in these markets, each buyer declares a lower
bound on the amount of utility she wishes to derive. The amount of
money she actually spends is a specific function of this bound and the
announced prices of goods.

Over the years, a fascinating theory has started forming around a
convex program given by Eisenberg and Gale in 1959. Besides market
equilibria, this theory touches on such disparate topics as TCP conges-
tion control and efficient solvability of nonlinear programs by combina-
torial means. Our work shows that the Nash bargaining problem fits
harmoniously in this collage of ideas.

J. Gudmundsson (Ed.): SWAT 2008, LNCS 5124, p. 4, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Simplified Planar Coresets for Data Streams

John Hershberger1 and Subhash Suri2,�

1 Mentor Graphics Corp.
8005 SW Boeckman Road, Wilsonville, OR 97070, USA

john hershberger@mentor.com
2 Computer Science Department

University of California, Santa Barbara, CA 93106, USA
suri@cs.ucsb.edu

Abstract. We propose a simple, optimal-space algorithm for maintain-
ing an extent coreset for a data stream of points in the plane. For a
given parameter r, the coreset consists of a sample of Θ(r) points from
the stream seen so far. The coreset property is that for any slab (defined
by two parallel lines) that encloses the sample, a (1 + ε) expansion of
the slab encloses all the stream points seen so far, for ε = O(1/r2). The
coreset can be maintained in O(log r) amortized time per point of the
stream.

1 Introduction

The data stream model of computation has received considerable attention re-
cently in the research communities of algorithms, databases, and networking.
This model assumes that the input to an algorithm is presented in a fixed (pos-
sibly adversarial) order x1, x2, . . . , xn, . . . , where x1 is the first (oldest) element
and xn is the most recent element seen so far. The algorithm has a limited
amount of memory r, which is considerably smaller than the stream size. Any
input value not explicitly stored by the algorithm is essentially lost, and the algo-
rithm uses its memory budget of r to construct a careful summary data structure,
the so-called “synopsis,” that attempts to capture application-dependent impor-
tant characteristics of the whole set. The algorithm uses this summary structure
to produce approximate query answers, and good summaries are those for which
the approximation quality improves with r. Well-known examples of such sum-
mary structures include sketches [6,7], histograms [12], order statistics [8], and
several others [10].

In computational geometry, coresets have been proposed as a versatile sum-
mary structure for low-dimensional queries that depend on the “shape” of the
underlying point stream. For instance, it has been shown that coresets provide
guaranteed-quality approximations for such spatial measures as diameter, mini-
mum enclosing ball, smallest enclosing box, width, and directional extent, among
others [1,5].
� The second author gratefully acknowledges the support of the National Science Foun-

dation through grants CCF-0514738 and CCF-0702798.

J. Gudmundsson (Ed.): SWAT 2008, LNCS 5124, pp. 5–16, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

6 J. Hershberger and S. Suri

The main contribution of our paper is a new, space-optimal streaming al-
gorithm for constructing an extent coreset of a two-dimensional set of points.
Specifically, for a given parameter r, our coreset (also called an ε-kernel in [3])
consists of a sample of Θ(r) points from the stream seen so far with the prop-
erty that for any slab (defined by two parallel lines) that encloses the sample,
a (1 + ε) expansion of the slab encloses all the stream points seen so far, for
ε = O(1/r2). This is known to be optimal in space, and we show that our al-
gorithm can maintain the coreset in O(log r) amortized time per point of the
stream.

Our algorithm combines and builds on ideas from several previous papers,
including our own adaptive convex hull [9], Agarwal, Har-Peled, and Varadara-
jan’s affine scaling [2], and the algorithmic structure proposed by Chan [5]. The
original scheme proposed by Agarwal, Har-Peled and Varadarajan [2] requires
O(r log2 n) space for two-dimensional extent coresets, with O(r3) per-point pro-
cessing. This was subsequently improved to O(r log2 r) space and O(r) per-point
processing by Chan [5]. Independently, Hershberger and Suri [9] obtained an
O(r)-space streaming scheme for approximate convex hulls, but it lacks the
strong properties of an extent coreset—the Hausdorff distance between the ap-
proximate convex hull and the true convex hull is O(D/r2), where D is the
diameter of the set. The existence of space-optimal coresets for planar streams
was only recently settled by Agarwal and Yu [3], who achieved an O(r) size
structure with O(1/r2) relative extent error and O(log r) per-point processing.

The Agarwal-Yu scheme is an adaptation of Chan’s original scheme. However,
it requires several clever ideas and fairly complex data structures to avoid the
logarithmic factors inherent in Chan’s construction. A possible downside of the
Agarwal-Yu scheme is that in its quest for space optimality, it loses the simplicity
(both conceptual and implementation) of Chan’s scheme. The main virtue of
our new algorithm is its simple structure, which lends itself to both an easier
implementation and simpler proofs.

The original adaptive convex hull [9] works by finding extreme vertices of the
stream in O(r) sample directions. These sample directions hierarchically refine
an initial set of r uniformly spaced directions. Our new algorithm chooses sam-
ple directions hierarchically, as in [9], but with the uniformly spaced directions
of that paper replaced by a variable distribution guided by the smallest enclos-
ing box of the stream. Our algorithm also simplifies the algorithm and data
structures of the original adaptive convex hull.

2 Preliminaries

Our coreset algorithm combines our adaptive convex hull [9] with the affine
scaling idea of Agarwal, Har-Peled, and Varadarajan [2] and the algorithmic
structure proposed by Chan [5]. In this section we review the last two of these;
Section 3 discusses the adaptive convex hull.

Simplified Planar Coresets for Data Streams 7

2.1 Extent Definitions

The extent of a point set in a direction θ is defined in terms of the set’s extrema
in directions θ and −θ. We use the notation maxθ(S) to denote an extremum of
a set S in direction θ. The inner product between two vectors u and v is denoted
〈u, v〉. Within an inner product, we often use the notation for a direction θ as
shorthand for the unit vector pointing in direction θ. Thus for two directions θ
and φ, 〈θ, φ〉 is the cosine of the angle between the directions. With this notation,
we can express the extent of a set S in direction θ as

E(S, θ) = 〈max
θ

(S) − max
−θ

(S), θ〉.

When the set S is clear from context, we use the simpler notation E(θ) instead
of E(S, θ). Note that E(θ) = E(−θ). The minimum and maximum extents of a
set are called the set’s width and diameter.

Our algorithm maintains a sample P drawn from a larger set S. The convex
hull of P is used as an approximation for that of S. The absolute error incurred
by this approximation for a particular direction θ is

err(P, S, θ) = 〈max
θ

(S) − max
θ

(P), θ〉,

that is, the distance in direction θ between the extrema of S and P in that
direction. When P and S are clear from context, we write err (θ) in place of
err(P, S, θ).

The extent error of a sample P is E(S, θ) − E(P, θ), which is the same as
err(P, S, θ) + err(P, S, −θ). The relative extent error of a sample, which is an
important measure of coreset quality, is E(S, θ)/E(P, θ) − 1.

2.2 Bounding Boxes

a b

c

Fig. 1. The bbox B contains a sim-
ilar rectangle of one-third size

A key insight of Agarwal, Har-Peled, and
Varadarajan [2] is that an approxima-
tion scheme whose extent error for any
direction θ is at most ε times the di-
ameter of the point set can be used to
produce an approximation with relative
extent error O(ε) for every direction; that
is, E(S, θ)/E(P, θ) = 1 + O(ε) for every θ.
The idea is to apply an affine transform
to the point set such that the resulting set has width and diameter within a
constant factor of each other.

We describe the transform for a static point set S first. Let ab be a diametral
pair chosen from S. Draw a minimal rectangle B that encloses S and whose sides
are parallel and perpendicular to ab. We call B the bbox, short for bounding box.
Let c ∈ S be a point on the side of B parallel to ab and farther from it. Observe
that a similar rectangle to B with side length at least one-third that of B can
be nested inside �abc, and hence inside the convex hull of S. See Figure 1.

8 J. Hershberger and S. Suri

Define an affine transform T that stretches B perpendicular to ab until B
becomes a square. Apply T to S, mapping each point from the bbox frame of
reference (untransformed space) into the square frame of reference. In the square
frame of reference, the convex hull of T (S) contains a square with one-third the
side length of T (B). Therefore the extent of T (S) in any direction is between
1
3 |ab| and

√
2|ab|.

Let P ⊆ S be a sample such that E(T (S), φ)/E(T (P), φ) is at most 1 + ε
for any direction φ in the square frame of reference. To see that P has good
relative extent error, consider the supporting lines �1, �2, �3, �4 that determine
E(S, θ) and E(P, θ) for some direction θ. See Figure 2. E(S, θ) is the distance
between �1 and �4, and E(P, θ) is the distance between �2 and �3. The trans-
form of the supporting lines from bbox space to square space changes their
slope, but it does not change their relative spacing. If d(·, ·) denotes distance,
then d(�1, �4)/d(�2, �3) = d(T (�1), T (�4))/d(T (�2), T (�3)). The first quantity is
E(S, θ)/E(P, θ), and the second is E(T (S), φ)/E(T (P), φ) for some φ. By the
choice of P , the latter quantity is at most 1 + ε, and hence so is the former.

l1

l2

l3
l4

T()l1

l3T()

l4T()

l2T()

Fig. 2. The relative separation of parallel lines is preserved by the bbox transform. The
lines support S and P ; S is represented by a convex polygon, and P by dots within it.

2.3 Streaming, Epochs, and Subepochs

When the points of S are not known a priori, but arrive one at a time in a
data stream, the bbox B described above is not fixed, but depends on the prefix
of the stream seen so far. Chan [5] proposed a scheme that adapts the static
bbox transform to a data stream setting; our formulation below follows that of
Agarwal and Yu [3].

Let the origin be the first point of the stream. Let the baseline be the line
segment from the origin to the farthest point seen so far within a constant factor
(more on this below). The bounding box B (bbox) is a rectangle aligned with the
baseline, centered on the origin, with length twice the length of the baseline and
height twice the distance from the origin to the point perpendicularly farthest
from the baseline. (We think of the baseline as horizontally oriented.) We define
the length of the bbox to be D, the height to be W , and the aspect ratio to be
A = D/W . Note that if the baseline connects the origin to the point farthest

Simplified Planar Coresets for Data Streams 9

from it, then S is contained in B. Once a bbox B is defined, we use it until a
point arrives that lies outside the box B′ twice as big as B and concentric with it.

origin
base

c

Fig. 3. The stream bbox B contains
a similar rectangle of one-sixth size

When a point arrives outside the dou-
bled bbox B′, we update the bbox. If the
distance from the point to the origin is
more than twice the length of the current
baseline, we reset the baseline to use the
new point and define the new bbox from
scratch, based on the points seen so far.
This starts a new epoch. Otherwise, we in-
crease the height of the bbox to contain the
new point, but keep its length and orientation unchanged. This starts a new sube-
poch. (Note that the bbox always remains centered on the origin, so the increase
in height is symmetric about the origin.) At every instant, the current set S is
contained in B′, and the convex hull of S contains a rectangle similar to B and
with at least one-sixth the side length. See Figure 3. Thus the affine transform
described above can be applied to S to get a good extent approximation.

Although the preceding description talks about updating a bbox by selecting
farthest vertices from all the points seen so far, the same scheme works, with
only a trivial error in the bbox parameters, if the farthest vertices are selected
from an extent coreset that approximates the stream seen so far.

3 The Adaptive Convex Hull: One Subepoch

The adaptive convex hull [9] is a convex hull approximation for streaming points
that has err(θ) = O(D/r2), where D is the diameter and r is the approximation
size, for any θ. As such, it could be plugged directly into the bbox transform
scheme described in Section 2.2. However, because we want to be able to update
the approximation when the bbox changes, we examine and modify some of the
details of the adaptive convex hull in this section.

The original adaptive convex hull selects sample points by maintaining ex-
trema of S in O(r) directions. There are r directions spaced uniformly 2π

r apart
in angle space, and up to r additional directions chosen adaptively to reduce
the approximation error. Each sample point is extreme in at least one sample
direction. If H is the convex hull of the sample points, then every edge e of
H has an uncertainty triangle above it. The uncertainty triangle of an edge e
of H is the triangle formed by e and the supporting lines (normal to sample
directions) at the left/right ends of e whose directions are closest to each other.
Any point of S outside H must lie in some uncertainty triangle.1 The height
of an uncertainty triangle over its base e is a measure of the adaptive convex
hull error. We define α(e) as the angle associated with an edge of H ; it is the
smallest difference between the directions associated with the two ends of e. The
uncertainty triangle angle opposite e has measure π − α(e). We define len(e) as
1 When S arrives as a stream, some points may lie outside uncertainty triangles, but

they always lie close to H .

10 J. Hershberger and S. Suri

the total length of the two uncertainty triangle edges opposite e. This is closely
related to the length of e itself, but a bit longer. (The closer α(e) is to zero, the
closer len(e) is to the length of e. Specifically, len(e) = |e|(1 + O(α(e))2).)

Whereas the original adaptive convex hull starts with r uniformly spaced
directions, in the present case we must use additional directions dependent on
the bbox. We want to achieve the effect of mapping uniformly-spaced directions
in the square frame of reference into normal space, but in a way that does not
change sample directions unnecessarily when the bbox changes. We use a bbox
distribution function, defined as

Φ(θ) = arctan
(

tan θ

A

)
,

where A is the aspect ratio of the bbox. This function maps directions in normal
space into the square frame of reference. Here we choose direction θ = 0 to be
aligned with the bbox baseline. To obtain this function, we consider directions φ
in the square frame of reference, with direction φ = 0 also aligned with the bbox
baseline. We associate each direction φ with its perpendicular φ + π/2, map the
perpendiculars from square space back to the original bbox space, and then take
the normals to those directions to get directions θ in the original space. (The
mapping from directions to their perpendiculars and back is necessary because
the affine transformation does not preserve right angles, and what we really care
about in the adaptive convex hull is the supporting lines, not the directions in
which points are extreme.) For any two directions θ1 and θ2 in normal space,
|Φ(θ1)−Φ(θ2)|× (r/2π) is approximately how many uniformly spaced directions
in square space lie between the images of θ1 and θ2.

In the bbox distribution, directions are bunched up on the top and bottom of
the bbox, centered on the direction of minimum extent, and spread out on the
left and right sides. Intuitively, in a distribution with large aspect ratio we need
more samples on the top and bottom to ensure that the width is approximated
well, and fewer at the left and right, because the diameter is easy to approximate.
See Figure 4.

We obtain a set of base sample directions as follows. First choose a set of r
uniformly spaced directions {θ1, . . . , θr}—these directions will be base sample
directions for the lifetime of the algorithm; they do not change when the bbox
changes. Second choose additional directions based on the bbox: so long as some
base direction interval (θi, θi+1) has |Φ(θi) − Φ(θi+1)| > 2π

r , choose a new base
direction that bisects the interval. (Here we assume wraparound of indices and
appropriate branch choices for the tangent and arctangent.)

Lemma 1. The number of base sample directions is O(r + log A).

Proof. (Sketch) We argue that if a base direction interval is not one of O(1)
intervals near θ = π/2 or 3π/2, then bisection splits the Φ “mass” in the interval
into two pieces differing by at most a constant factor. This means that bisections
happen O(r) times except near π/2 or 3π/2.

If an interval includes π/2 or 3π/2 (the worst cases), some algebra reveals
that the interval will be bisected unless 2π

rA ≥ |θ1 − θ2|. Therefore the number

Simplified Planar Coresets for Data Streams 11

Fig. 4. The bbox distribution. Note that the unit-slope normal in the square is mapped
to a normal with slope 1/A in the bbox.

of bisections to be applied to reach this width, starting from an initial interval
width of 2π/r, is O(log A). 	

If A > 2r, simple bisection gives too many base sample directions. There are
O(log A) intervals in which bisection is ineffective—it does not split the Φ mass
in a balanced way. In this case we use a more complicated scheme to find and
represent the ineffective bisections in O(r) time and space. A path of ineffective
bisections in the hierarchy of base direction interval splits is represented as a
single entity. The details of this scheme appear in the full paper.

Lemma 2. The number of base sample directions can be reduced to O(r).

In the remainder of this abstract, operations whose details are affected by the im-
plicit bisection described in the preceding lemma are flagged by a note [Lemma 2].

The choice of base sample directions ensures that uniform direction sam-
pling in the square frame of reference is simulated in normal space. If θ1 and θ2
are directions corresponding to neighboring uniformly-spaced directions in the
square frame of reference, then those transformed directions are φ1 = Φ(θ1) and
φ2 = Φ(θ2), and |φ1 − φ2| = 2π

r . The bisection rule for base sample directions
ensures that θ1 and θ2 do not lie inside the same base direction interval.

Let us define a conversion factor scale(θ) =
√

sin2 θ + A2 cos2 θ. The mapping
between the square and bbox frames of reference means that an edge e in bbox
space whose normal has direction θ (where the bbox baseline has direction θ =
0) maps to an edge in the square frame of reference with length |e| · scale(θ).
Mapping the property of uniform direction sampling in the square frame of
reference into the bbox frame of reference gives the following lemma.

Lemma 3. Let θ1 and θ2 be a pair of adjacent base sample directions, let v1
and v2 be extrema in those directions, and let θ ∈ [θ1, θ2] be the normal to v1v2.
Then there is a constant c such that E(θ) · scale(θ) > c · r · D · |θ1 − θ2|.

Although the lemma’s statement looks rather mysterious, it follows easily from
the transform between the square and bbox frames of reference. This lemma lets
us bound uncertainty triangle heights in terms of edge lengths. Consider a base

12 J. Hershberger and S. Suri

edge e with normal θ that is associated with a base sample interval (θ1, θ2). The
lemma says that if e has length proportional to D/(r · scale(θ)), then the height
of the uncertainty triangle of e is at most c · E(θ)/r2 for some constant c.

Lemma 4. Let θ1, θ2, v1, v2, and θ be as in Lemma 3. Let p be the third vertex
of the uncertainty triangle of v1v2. Define d(α) to be 〈u − maxα(v1, v2), α〉, the
directional distance from v1v2 to p. Then for every α ∈ [θ1, θ2], d(α)/E(α) =
O(d(θ)/E(θ)).

Proof. This is easy to see by mapping to the square frame of reference. The
analogue of d(α) is maximized for Φ(θ)—it is the height of the uncertainty tri-
angle, and the extent is proportional to D for any φ, including Φ(θ) and Φ(α).
The ratios of directional distances are preserved by the bbox transform, and this
completes the proof. 	

Given a set of base sample directions and the convex hull of the extrema in those
directions, the algorithm for computing an adaptive convex hull is essentially
the same as in our earlier paper [9]. Each convex hull edge e has an angle α(e)
and a length len(e), and the product of those two approximates the maximum
height of the edge’s uncertainty triangle. If the height is too great, we refine
the direction interval associated with e. That is, we add a new sample direction
θ midway between the sample directions bounding e and update the convex
hull by adding the extremum in direction θ, which may just be an endpoint of
e (but cf. Lemma 2). To express the refinement rule we define the depth of a
sample direction θ, depth(θ), as the number of refinements of a base direction
interval needed to produce θ. If an edge e has its uncertainty triangle defined
by directions θ1 and θ2, then depth(e) ≡ max(depth(θ1), depth(θ2)). Instead of
len(e) we use the scaled length scale len(e), equal to the total scaled length of
the two uncertainty triangle edges opposite e, where scaled length means the true
length of an edge times scale(θ) for its normal direction θ. The rule for adaptive
refinement is that we refine an angle (either a base angle or one produced by
prior refinement) when(r

D

)
scale len(e) − depth(e) > 1.

To produce an adaptive convex hull from the base convex hull, we refine edges
until the refinement rule no longer applies to any edge. Note that as in [9],
every sample direction is either a uniformly spaced direction or obtained by a
power-of-two refinement of a (2π

r)-width uniform interval.
Adaptive refinement does not asymptotically increase the size of the sample:

Lemma 5. The adaptive convex hull of a set of points has O(r) vertices.

Proof. The proof is essentially the same as in the original paper [9]. If we define
w(e) = (r/D)scale len(e)−depth(e), the sum of w(e) over all e such that w(e) >
1 is at most 8r (because the total edge length of a convex polygon inside a square
with side length 2D is at most 8D). Each refinement reduces this sum by at least
1, so the total number of directions (and extrema) added by refinement is O(r).

	

Simplified Planar Coresets for Data Streams 13

By mapping the original proofs for the adaptive convex hull from the square
frame of reference into the bbox frame of reference as in Lemma 3, we obtain
the following two theorems. (Lemma 2 affects the proofs slightly.)

Theorem 1. The adaptive convex hull of a static set of points has directional
error err(θ) = O(E(θ)/r2).

Theorem 2. Let Θ be the set of base directions associated with the bbox of
a single subepoch in a stream, and suppose that the extrema of the stream in
directions Θ are known exactly at the start of the subepoch. Then during the
subepoch the adaptive convex hull has directional error err(θ) = O(E(θ)/r2).

4 The Adaptive Convex Hull: Multiple Epochs and
Subepochs

The algorithm for applying the adaptive convex hull to a stream of points, in-
cluding updates to the bbox when required, is quite straightforward. We process
the stream in batches of r points in order to simplify maintenance of the adap-
tive convex hull. At any instant our coreset consists of an adaptive convex hull
plus the partial batch of points awaiting the next round of processing. This
means that our algorithm’s per-point time bounds are amortized, but they can
be converted to worst-case if desired, as discussed below. Here is the algorithm:

1. (Initialization)
– Collect the first r points of the stream.
– Define the bbox B, the bbox distribution Φ, and the base sample direc-

tions Θ.
– Build an adaptive convex hull for the r points using the base sample

directions Θ and the refinement rule given in Section 3.
2. (Maintenance)

– Collect the next r points of the stream.
– If none of the new points lies outside the doubled bbox B′ concentric

with B:
• Merge the new points into the current adaptive convex hull.

– Else (there is a new epoch or subepoch):
• Define the bbox, the bbox distribution, and the base sample direc-

tions based on the origin, the current hull vertices, and the k new
points. (The new bbox may be aligned with the old one, if this is a
new subepoch, or not, if this is a new epoch.)

• Build an adaptive convex hull for all the points using the new base
sample directions.

Given a set of O(r) points, with one designated as the origin, we can find the
bbox B with two linear scans over the data. The bbox distribution function Φ()
can then be defined in constant time. To compute the base sample directions, we
build a list of r uniformly spaced directions, then scan through the list evaluating

14 J. Hershberger and S. Suri

|Φ(θ1)−Φ(θ2)| on each interval between consecutive directions θ1 and θ2. For each
interval where this quantity is greater than 2π/r, we insert (θ1+θ2)/2 between θ1
and θ2, then back up the scan to consider the first of the subintervals produced
by bisection. This produces a set of base sample directions in O(r + log A) time,
by Lemma 1. If log A > r and we want to reduce the time complexity and the
size of Θ to O(r) as in Lemma 2, the processing is slightly more complicated.

Once the base sample directions are known, we can build an adaptive convex
hull for O(r) points in O(r log r) time. This holds whether the points come from
an unprocessed batch of r points, as in the initialization step, or from an existing
adaptive convex hull and a new batch of r points, as in the maintenance step.
In either case we build the new adaptive convex hull from scratch, rather than
trying to update an existing structure.

We can use any standard convex hull algorithm for the batch of r new points [4].
If there is an existing adaptive convex hull (we are in the maintenance step), we
merge the adaptive hull and the new hull with a linear scan over the two hulls in
slope order of their edges.

To compute the adaptive convex hull, we put all the convex hull vertices in
a circular list. We scan through the convex hull and the list of base sample
directions in tandem, marking each convex hull vertex that is extreme in a
base sample direction as belonging to the adaptive convex hull and storing its
directions of extremity with it. For every pair of consecutive marked vertices
(defining an edge of the base convex hull), we push the pair onto a stack of
edges to process. Then we repeatedly remove an edge e from the stack and check
whether the refinement rule of Section 3 applies; if so, we bisect e’s angle (or
do the more complicated partitioning of Lemma 2), find the extremum v in
the refining direction, mark v as a sample point, and push onto the stack each
nontrivial edge defined by v and the endpoints of e. The extremum v can be
found by a dovetailed pair of linear scans on the convex hull list, starting at the
ends of e and walking over the interval between them. We find the extremum
in time proportional to its distance in the list from the nearer endpoint, which
leads to an overall O(r log r) cost for extremum-finding. Once the stack of edges
to process is empty, we discard the unmarked vertices and retain the marked
ones as the new adaptive convex hull.

This completes the description of our coreset algorithm. It is clear that each
batch of r points takes O(r log r) time to process, so the amortized time per
point is O(log r). This bound can be made worst-case if necessary, at the cost of
a little more bookkeeping. Details appear in the full paper.

Error Analysis

We now show that the multi-bbox version of the adaptive convex hull achieves the
same error bounds as the version for a single bbox (Theorem 2). Our approach
extends the technique used in the original adaptive convex hull proof of error
bounds for data streams [9, Section 5.3]. For each active sample direction θ we
maintain a half-plane bounded by a line perpendicular to θ. The intersection of
all the half-planes is guaranteed to contain all points of S, and simultaneously is

Simplified Planar Coresets for Data Streams 15

not far from the convex hull of the sample points. Note that these half-planes do
not appear in the adaptive convex hull itself; they are used only in the analysis.

For every active sample direction θ we maintain two lines Lcurr(θ) and Lhist(θ),
both perpendicular to θ, and a third line L(θ) = maxθ(Lcurr(θ), Lhist(θ)). Each
line has a corresponding half-plane Hcurr(θ)/Hhist(θ)/H(θ) that lies on the side
opposite direction θ. For each set of half-planes there is a corresponding inter-
section region Icurr/Ihist/I, defined, for example, as

I =
⋂

θ is an active
sample direction

H(θ).

For any active θ, the current line Lcurr(θ) is the line used in the proof of
Theorem 2, which maps the bounding lines used in Section 5.3 of [9] from the
square frame of reference to normal (bbox) space. A sufficient characterization
for our purposes is that Lcurr(θ) is at most O(E(θ)/r2) in direction θ beyond
the current sample point (extremum) in direction θ. If Pstart is the set of sample
points active when the current bbox B was updated, and Scurr is the set of
stream points seen since that time, then each Hcurr(θ) contains Pstart ∪ Scurr,
and so (Pstart ∪ Scurr) ⊂ Icurr, as guaranteed by Theorem 2.

For any active θ, the historical line Lhist(θ) is chosen such that Hhist(θ) con-
tains all points of S that arrived before the current bbox was updated, a set
denoted Shist. Let us define Icurr(t) to be the current approximation boundary
at some time t, and define ti to be the time of the i’th bbox update (the end of a
subepoch). Then every point that arrived during the i’th subepoch is contained
in Icurr(ti). We choose Lhist(θ) to be tangent to

⋃
i Icurr(ti), where the union is

taken over all subepochs prior to the current one. (During the first subepoch
Lhist(θ) is chosen to pass through the origin vertex for all θ.)

Lemma 6. For every active direction θ, Hhist(θ) contains all points of Shist. If
v(θ) is the current extreme vertex (sample point) in direction θ, then 〈Lhist(θ)−
v(θ), θ〉 is either negative or is O(E(θ)/r2).

By Theorem 2, Scurr ⊂ Icurr, and by Lemma 6, Shist ⊂ Ihist; hence by definition
S ⊂ I. Because 〈L(θ) − v(θ), θ〉 = O(E(θ)/r2) for every active θ, we can use
the fact that the active sample directions define a valid adaptive convex hull,
plus an argument like that of Lemma 4, to show that if P is the current set
of sample points, err(P, I, θ) = O(E(θ)/r2) for any θ. This in turn implies
err(P, S, θ) = O(E(θ)/r2), since S ⊂ I. We have established our main theorem.

Theorem 3. Let S be a set of points in the plane that arrives as a data stream,
and let r be a given integer parameter. The adaptive convex hull algorithm de-
scribed above constructs and maintains an extent coreset for S of size O(r) in
O(log r) amortized time per point. At all times and for any direction θ, the rel-
ative extent error of the coreset is O(1/r2).

16 J. Hershberger and S. Suri

5 Conclusion

We have described a simple algorithm for maintaining an extent coreset of a data
stream of two-dimensional points. The algorithm uses optimal space and amor-
tized time. Although the proofs of correctness and error bounds are nontrivial,
the data structure itself is very easy to define and implement. In particular, it
consists of a single structure parameterized by the current bbox, rather than
multiple structures dependent on a polylogarithmic number of prior bboxes, as
is the case with previous coreset algorithms.

References

1. Agarwal, P., Har-Peled, S., Varadarajan, K.: Geometric approximations via core-
sets. Combinatorial and Computational Geometry – MSRI Pub. 52, 1–30 (2005)

2. Agarwal, P.K., Har-Peled, S., Varadarajan, K.R.: Approximating extent measures
of points. J. ACM 51(4), 606–635 (2004)

3. Agarwal, P.K., Yu, H.: A space-optimal data-stream algorithm for coresets in the
plane. In: Proc. 23rd Ann. Symp. Comput. Geometry, pp. 1–10. ACM, New York
(2007)

4. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational
Geometry: Algorithms and Applications, 2nd edn. Springer, Berlin (2000)

5. Chan, T.M.: Faster core-set constructions and data-stream algorithms in fixed
dimensions. Comput. Geom. Theory Appl. 35(1), 20–35 (2006)

6. Cormode, G., Muthukrishnan, S.: An improved data stream summary: The count-
min sketch and its applications. J. Algorithms 55(1), 58–75 (2005)

7. Flajolet, P., Martin, G.N.: Probabilistic counting algorithms for data base appli-
cations. Journal of Computer and System Sciences 31(2), 182–209 (1985)

8. Greenwald, M., Khanna, S.: Space-efficient online computation of quantile sum-
maries. In: Proc. ACM SIGMOD Intl. Conf. Mgmt. of Data, pp. 58–66. ACM
Press, New York (2001)

9. Hershberger, J., Suri, S.: Adaptive sampling for geometric problems over data
streams. In: Proc. 23rd ACM Symp. Principles of Database Syst., pp. 252–262
(2004)

10. Muthukrishnan, S.: Data Streams: Algorithms and Applications. In: Foundations
and Trends in Theoretical Computer Science, vol. 1(2), Now Publishers, Delft,
Netherlands (2005)

11. Preparata, F.P., Shamos, M.I.: Computational Geometry. Springer, Heidelberg
(1985)

12. Shrivastava, N., Buragohain, C., Agrawal, D., Suri, S.: Medians and beyond: New
aggregation techniques for sensor networks. In: SenSys 2004, pp. 239–249. ACM,
New York (2004)

Uniquely Represented Data Structures for
Computational Geometry

Guy E. Blelloch�, Daniel Golovin��, and Virginia Vassilevska���

Computer Science Department, Carnegie Mellon University, Pittsburgh, PA
{blelloch,dgolovin,virgi}@cs.cmu.edu

Abstract. We present new techniques for the construction of uniquely repre-
sented data structures in a RAM, and use them to construct efficient uniquely
represented data structures for orthogonal range queries, line intersection tests,
point location, and 2-D dynamic convex hull. Uniquely represented data struc-
tures represent each logical state with a unique machine state. Such data struc-
tures are strongly history-independent. This eliminates the possibility of privacy
violations caused by the leakage of information about the historical use of the
data structure. Uniquely represented data structures may also simplify the debug-
ging of complex parallel computations, by ensuring that two runs of a program
that reach the same logical state reach the same physical state, even if various
parallel processes executed in different orders during the two runs.

1 Introduction

Most computer applications store a significant amount of information that is hidden
from the application interface—sometimes intentionally but more often not. This infor-
mation might consist of data left behind in memory or disk, but can also consist of much
more subtle variations in the state of a structure due to previous actions or the ordering
of the actions. For example a simple and standard memory allocation scheme that allo-
cates blocks sequentially would reveal the order in which objects were allocated, or a
gap in the sequence could reveal that something was deleted even if the actual data is
cleared. Such location information could not only be derived by looking at the mem-
ory, but could even be inferred by timing the interface—memory blocks in the same
cache line (or disk page) have very different performance characteristics from blocks
in different lines (pages). Repeated queries could be used to gather information about
relative positions even if the cache is cleared ahead of time. As an example of where
this could be a serious issue consider the design of a voting machine. A careless design
might reveal the order of the cast votes, giving away the voters’ identities.

To address the concern of releasing historical and potentially private information var-
ious notions of history independence have been derived along with data structures that
support these notions [14,18,13,7,1]. Roughly, a data structure is history independent if

� Supported in part by NSF ITR grants CCR-0122581 (The Aladdin Center).
�� Supported in part by NSF ITR grants CCR-0122581 (The Aladdin Center) and IIS-0121678.

��� Supported in part by NSF ITR grants CCR-0122581 (The Aladdin Center) and a Computer
Science Department Ph.D. Scholarship.

J. Gudmundsson (Ed.): SWAT 2008, LNCS 5124, pp. 17–28, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

18 G.E. Blelloch, D. Golovin, and V. Vassilevska

someone with complete access to the memory layout of the data structure (henceforth
called the “observer”) can learn no more information than a legitimate user accessing
the data structure via its standard interface (e.g., what is visible on screen). The most
stringent form of history independence, strong history independence, requires that the
behavior of the data structure under its standard interface along with a collection of
randomly generated bits, which are revealed to the observer, uniquely determine its
memory representation. We say that such structures have a unique representation.

The idea of unique representations had also been studied earlier [24,25,2] largely as a
theoretical question to understand whether redundancy is required to efficiently support
updates in data structures. The results were mostly negative. Anderson and Ottmann [2]
showed, for example, that ordered dictionaries require Θ(n1/3) time, thus separating
unique representations from redundant representations (redundant representations sup-
port dictionaries in Θ(log n) time, of course). This is the case even when the representa-
tion is unique only with respect to the pointer structure and not necessarily with respect
to memory layout. The model considered, however, did not allow randomness or even
the inspection of secondary labels assigned to the keys.

Recently Blelloch and Golovin [4] described a uniquely represented hash table that
supports insertion, deletion and queries on a table with n items in O(1) expected time
per operation and using O(n) space. The structure only requires O(1)-wise indepen-
dence of the hash functions and can therefore be implemented using O(log n) random
bits. The approach makes use of recent results on the independence required for lin-
ear probing [20] and is quite simple and likely practical. They also showed a perfect
hashing scheme that allows for O(1) worst-case queries, it although requires more ran-
dom bits and is probably not practical. Using the hash tables they described efficient
uniquely represented data structures for ordered dictionaries and the order maintenance
problem [10]. This does not violate the Anderson and Ottmann bounds as it allows
random bits to be part of the input.

In this paper we use these and other results to develop various uniquely represented
structures in computational geometry. We show uniquely represented structures for
the well studied dynamic versions of orthogonal range searching, horizontal point lo-
cation, and orthogonal line intersection. All our bounds match the bounds achieved
using fractional cascading [8], except that our bounds are in expectation instead of
worst-case bounds. In particular for all problems the structures support updates in
O(log n log log n) expected time and queries in O(log n log log n + k) expected time,
where k is the size of the output. They use O(n log n) space and use O(1)-wise inde-
pendent hash functions. Although better redundant data structures for these problems
are known [15,17,3] (an O(log log n)-factor improvement), our data structures are the
first to be uniquely represented. Furthermore they are quite simple, arguably simpler
than previous redundant structures that match our bounds.

Instead of fractional cascading our results are based on a uniquely represented data
structure for the ordered subsets problem (OSP). This problem is to maintain subsets
of a totally ordered set under insertions and deletions to either the set or the subsets,
as well as predecessor queries on each subset. Our data structure supports updates or
comparisons on the totally ordered set in expected O(1) time, and updates or queries

Uniquely Represented Data Structures for Computational Geometry 19

to the subsets in expected O(log log m) time, where m is the total number of element
occurrences in subsets. This structure may be of independent interest.

We also describe a uniquely represented data structure for 2-D dynamic convex hull.
For n points it supports point insertions and deletions in O(log2 n) expected time, out-
puts the convex hull in time linear in the size of the hull, takes expected O(n) space,
and uses only O(log n) random bits. Although better results for planar convex hull are
known ([6]) , we give the first uniquely represented data structure. Due to space con-
siderations, the details of our results on horizontal point location and dynamic planar
convex hull appear in the full version of the paper [5].

Our results are of interest for a variety of reasons. From a theoretical point of view
they shed some light on whether redundancy is required to efficiently support dynamic
structures in geometry. From the privacy viewpoint range searching is an important
database operation for which there might be concern about revealing information about
the data insertion order, or whether certain data was deleted. Unique representations
also have potential applications to concurrent programming and digital signatures [4].

2 Preliminaries

Let R denote the real numbers, Z denote the integers, and N denote the naturals. Let [n]
for n ∈ Z denote {1, 2, . . . , n}.

Unique Representation. Formally, an abstract data type (ADT) is a set V of logical
states, a special starting state v0 ∈ V , a set of allowable operations O and outputs Y ,
a transition function t : V × O → V , and an output function y : V × O → Y . The
ADT is initialized to v0, and if operation O ∈ O is applied when the ADT is in state v,
the ADT outputs y(v, O) and transitions to state t(v, O). A machine model M is itself
an ADT, typically at a relatively low level of abstraction, endowed with a programming
language. Example machine models include the random access machine (RAM), the
Turing machine and various pointer machines. An implementation of an ADT A on a
machine model M is a mapping f from the operations of A to programs over the opera-
tions of M. Given a machine model M, an implementation f of some ADT (V, v0, t, y)
is said be uniquely represented (UR) if for each v ∈ V , there is a unique machine state
σ(v) of M that encodes it. Thus, if we run f(O) on M exactly when we run O on
(V, v0, t, y), then the machine is in state σ(v) iff the ADT is in logical state v.

Model of Computation & Memory allocation. Our model of computation is a unit cost
RAM with word size at least log |U |, where U is the universe of objects under consid-
eration. As in [4], we endow our machine with an infinite string of random bits. Thus,
the machine representation may depend on these random bits, but our strong history
independence results hold no matter what string is used. In other words, a computation-
ally unbounded observer with access to the machine state and the random bits it uses
can learn no more than if told what the current logical state is. We use randomization
solely to improve performance; in our performance guarantees we take probabilities
and expectations over these random bits.

Our data structures are based on the solutions of several standard problems. For some
of these problems UR data structures are already known. The most basic structure that

20 G.E. Blelloch, D. Golovin, and V. Vassilevska

is required throughout this paper is a hash table with insert, delete and search. The most
common use of hashing in this paper is for memory allocation. Traditional memory
allocation depends on the history since locations are allocated based on the ordering in
which they are requested. We maintain data structures as a set of blocks. Each block
has its own unique integer label which is used to hash the block into a unique memory
cell. It is not too hard to construct such block labels if the data structures and the basic
elements stored therein have them. For example, we can label points in R

d using their
coordinates and if a point p appears in multiple structures, we can label each copy using
a combination of p’s label, and the label of the data structure containing that copy. Such
a representation for memory contains no traditional “pointers” but instead uses labels
as pointers. For example for a tree node with label lp, and two children with labels l1
and l2, we store a cell containing (l1, l2) at label lp. This also allows us to focus on the
construction of data structures whose pointer structure is UR; such structures together
with this memory allocation scheme yield UR data structures in a RAM. Note that all of
the tree structures we use have pointer structures that are UR, and so the proofs that our
structures are UR are quite straightforward. We omit the details due to lack of space.

Trees. Throughout this paper we make significant use of tree-based data structures.
We note that none of the deterministic trees (e.g. red-black, AVL, splay-trees, weight-
balanced trees) have unique representations, even not accounting for memory layout.
We therefore use randomized treaps [22] throughout our presentation. We expect that
one could also make use of skip lists [21] but we can leverage the elegant results on
treaps with respect to limited randomness. For a tree T , let |T | be the number of nodes
in T , and for a node v ∈ T , let Tv denote the subtree rooted at v, and let depth(x)
denote the length of the path from x to the root of T .

Definition 1 (k-Wise Independence). Let k ∈ Z and k ≥ 2. A set of random variables
is k-wise independent if any k-subset of them is independent. A family H of hash func-
tions from set A to set B is k-wise independent if the random variables in {h(x)}x∈A

are k-wise independent and uniform on B when h is picked at random from H.

Unless otherwise stated, all treaps in this paper use 8-wise independent hash functions
to generate priorities. We use the following properties of treaps.

Theorem 1 (Selected Treap Properties [22]). Let T be a random treap on n nodes
with priorities generated by an 8-wise independent hash function from nodes to [p],
where p ≥ n3. Then for any x ∈ T ,

(1) E[depth(x)] ≤ 2 ln(n) + 1, so access and update times are expected O(log n)
(2) Pr[|Tx| = k] = O(1/k2) for all 1 ≤ k < n
(3) Given a predecessor handle, the expected insertion or deletion time is O(1)
(4) If the time to rotate a subtree of size k is f(k) for some f : N → R≥1, the total

time due to rotations to insert or delete an element is O
(

f(n)
n +

∑
0<k<n

f(k)
k2

)
in expectation. Thus even if the cost to rotate a subtree is linear in its size (e.g.,
f(k) = Θ(k)), updates take expected O(log n) time.

Uniquely Represented Data Structures for Computational Geometry 21

Dynamic Ordered Dictionaries. The dynamic ordered dictionary problem is to maintain
a set S ⊂ U for a totally ordered universe (U, <). In this paper we consider support-
ing insertion, deletion, predecessor (Pred(x, S) = max{e ∈ S|e < x}) and successor
(Succ(x, S) = min{e ∈ S|e > x}). Henceforth we will often skip successor since it
is a simple modification to predecessor. If the keys come from the universe of integers
U = [m] a simple variant of the Van Emde Boas et. al. structure [26] is UR and supports
all operations in O(log log m) expected time [4] and O(|S|) space. Under the compari-
son model we can use treaps to support all operations in O(log |S|) time and space. In
both cases O(1)-wise independence of the hash functions is sufficient. We sometimes
associate data with each element.

Order Maintenance. The Order-Maintenance problem [10] (OMP) is to maintain a
total ordering L on n elements while supporting the following operations:

• Insert(x, y): insert new element y right after x in L.
• Delete(x): delete element x from L.
• Compare(x, y): determine if x precedes y in L.

In previous work [4] the first two authors described a randomized UR data structure
for the problem that supports compare in O(1) worst-case time and updates in O(1)
expected time. It is based on a three level structure. The top two levels use treaps and
the bottom level uses state transitions. The bottom level contains only O(log log n)
elements per structure allowing an implementation based on table lookup. In this paper
we use this order maintenance structure to support ordered subsets.

Ordered Subsets. The Ordered-Subset problem (OSP) is to maintain a total ordering L
and a collection of subsets of L, denoted S = {S1, . . . , Sq} with m = |L| +

∑q
i=1 |Si|

while supporting the OMP operations on L and the following ordered dictionary oper-
ations on each Sk:

• Insert(x, Sk): insert x ∈ L into set Sk.
• Delete(x, Sk): delete x from Sk.
• Pred(x, Sk): For x ∈ L, return max{e ∈ Sk|e < x}.

Dietz [11] first describes this problem in the context of fully persistent arrays, and gives
a solution yielding O(log log m) expected amortized time operations. Mortensen [16]
describes a solution that supports updates to the subsets in expected O(log log m) time,
and all other operations in O(log log m) worst case time, where m is the total number
of element occurrences in subsets. In section 3 we describe a UR version.

3 Uniquely Represented Ordered Subsets

Here we describe a UR data structure for the ordered-subsets problem. It supports the
OMP operations on L in expected O(1) time and the dynamic ordered dictionary prob-
lems on the subsets in expected O(log log m) time, where m = |L| +

∑q
i=1 |Si|. We

use a somewhat different approach than Mortensen [16], which relied heavily on the
solution of some other problems which we do not know how to make UR. Our solution
is more self-contained and is therefore of independent interest beyond the fact that it is
UR. Furthermore, our results improve on Mortensen’s results by supporting insertion
into and deletion from L in O(1) instead of O(log log m) time.

22 G.E. Blelloch, D. Golovin, and V. Vassilevska

Theorem 2. Let m := |{(x, k) : x ∈ Sk}| + |L|. There exists a UR data structure
for the ordered subsets problem that uses O(m) space, supports all OMP operations in
expected O(1) time, and all other operations in expected O(log log m) time.

We devote the rest of this section to proving Theorem 2. To construct the data structure,
we start with a UR order maintenance data structure on L, which we will denote by D
(see Section 2). Whenever we are to compare two elements, we simply use D.

We recall an approach used in constructing D [4], treap partitioning: Given a treap
T and an element x ∈ T , let its weight w(x, T) be the number of descendants, including
itself. For a parameter s, let Ls[T] = {x ∈ T : w(x, T) ≥ s}∪{root(T)} be the weight
s partition leaders of T 1. For every x ∈ T let �(x, T) be the least (deepest) ancestor of
x in T that is a partition leader. Here, each node is considered an ancestor of itself. The
weight s partition leaders partition the treap into the sets {{y ∈ T : �(y, T) = x} : x ∈
Ls[T]}, each of which is a contiguous block of keys from T .

In the construction of D [4] the elements of the order are treap partitioned twice,
at weight s := Θ(log |L|) and again at weight Θ(log log |L|). The partition sets at the
finer level of granularity are then stored in UR hash tables. In the rest of the exposition
we will refer to the treap on all of L as T (D). The set of weight s partition leaders of
T (D) is denoted by L[T (D)], and the treap on these leaders by T (L[D]).

The other main structure that we use is a treap T containing all elements from the
set L̂ = {(x, k) : x ∈ Sk} ∪ {(x, 0) : x ∈ L[T (D)]}. Treap T is partitioned by weight
log m partition leaders. These leaders are labeled with the path from the root to their
node (0 for left, 1 for right), so that label of each v is the binary representation of the
root to v path. We keep a hash table H that maps labels to nodes, so that the subtreap of
T on L[T] forms a trie. It is important that only the leaders are labeled since otherwise
insertions and deletions would require O(log m) time. We maintain a pointer from each
node of T to its leader. In addition, we maintain pointers from each x ∈ L[T (D)] to
(x, 0) ∈ T .

We store each subset Sk in its own treap Tk, also partitioned by weight log m leaders.
When searching for the predecessor in Sk of some element x, we use T to find the
leader � in Tk of the predecessor of x in Sk. Once we have �, the predecessor of x can
easily be found by searching in the O(log m)-size subtree of Tk rooted at �. To guide
the search for �, we store at each node v of T the minimum and maximum Tk-leader
labels in the subtree rooted at v, if any. Since we have multiple subsets we need to
find predecessors in, we actually store at each v a mapping from each subset Sk to the
minimum and maximum leader of Sk in the subtree rooted at v. For efficiency, for each
leader v ∈ T we store a hash table Hv, mapping k ∈ [q] to the tuple (min{u : u ∈
L[Tk] and (u, k) ∈ Tv}, max{u : u ∈ L[Tk] and (u, k) ∈ Tv}), if it exists. Recall Tv

is the subtreap of T rooted at v. The high-level idea is to use the hash tables Hv to find
the right “neighborhood” of O(log m) elements in Tk which we will have to update (in
the event of an update to some Sk), or search (in the event of a predecessor or successor
query). Since these neighborhoods are stored as treaps, updating and searching them
takes expected O(log log m) time. We summarize these definitions, along with some
others, in Table 1.

We use the following Lemma to bound the number of changes on partition leaders.
1 For technical reasons we include root(T) in Ls[T] ensuring that Ls[T] is nonempty.

Uniquely Represented Data Structures for Computational Geometry 23

Table 1. Some useful notation and definitions of various structures we maintain

H hash table mapping label i ∈ {0, 1}m to a pointer to the leader of T with label i

Hv hash table mapping k ∈ [q] to the tuple (if it exists)
(min{u : u ∈ L[Tk] ∧ (u, k) ∈ Tv}, max{u : u ∈ L[Tk] ∧ (u, k) ∈ Tv})

w(x, T) number of descendants of node x of treap T

L[T] weight s = Θ(log m) partition leaders of treap T

�(x, T) the partition leader of x in T

Tk treap containing all elements of the ordered subset Sk, k ∈ [q]
T (D) the treap on L

T (L[D]) the subtreap of T (D) on the weight s = Θ(log m) leaders of T (D)
Jx for x ∈ L[T (D)], a treap containing {u ∈ L : �(u, T (D)) = x and ∃ i : u ∈ Si}
L̂ the set {(x, k) : x ∈ Sk} ∪ {(x, 0) : x ∈ L[T (D)]}
T a treap storing L̂

Ix for x ∈ L, a fast ordered dictionary [4] mapping each k ∈ {i : x ∈ Si} to (x, k) in T

Lemma 1. [4] Let s ∈ Z
+ and let T be a treap of size at least s. Let T ′ be the treap

induced on the weight s partition leaders in T . Then the probability that inserting a
new element into T or deleting an element from T alters the structure of T ′ is c/s for
some absolute constant c.

Note that each partition set has size at most O(log m). The treaps Tk, Jx and T , and
the dictionaries Ix from Table 1 are stored explicitly. We also store the minimum and
maximum element of each L[Tk] explicitly. We use a total ordering for L̂ as follows:
(x, k) < (x′, k′) if x < x′ or x = x′ and k < k′.

OMP Insert & Delete Operations: These operations remain largely the same as in the
order maintenance structure of [4]. We assume that when x ∈ L is deleted it is not in any
set Sk. The main difference is that if the set L[T (D)] changes we will need to update
the treaps {Jv : v ∈ L[T (D)]}, T , and the tables {Hv : v ∈ L[T]} appropriately.

Note that we can easily update Hv in time linear in |Tv| using in-order traversal of Tv ,
assuming we can test if x is in L[Tk] in O(1) time. To accomplish this, for each k we can
store L[Tk] in a hash table. Thus using Theorem 1 we can see that all necessary updates
to {Hv : v ∈ T } take expected O(log m) time. Clearly, updating T itself requires only
expected O(log m) time. Finally, we bound the time to update the treaps Jv by the total
cost to update T (L[D]) if the rotation of subtrees of size k costs k + log m, which is
O(log m) by Theorem 1. This bound holds because |Jv| = O(log m) for any v, and
any tree rotation on T (D) causes at most 3s elements of T (D) to change their weight s
leader. Therefore only O(log m) elements need to be added or deleted from the treaps
{Jv : v ∈ T (L[D])}, and we can batch these updates in such a way that each takes
expected amortized O(1) time. However, we need only make these updates if L[T (D)]
changes, which by Lemma 1 occurs with probability O(1/ logm). Hence the expected
overall cost is O(1).

Predecessor & Successor: Suppose we wish to find the predecessor of x in Sk. (Finding
the successor is analogous.) If x ∈ Sk we can test this in expected O(log log m) time

24 G.E. Blelloch, D. Golovin, and V. Vassilevska

using Ix. So suppose x /∈ Sk. We will first find the predecessor w of (x, k) in T as
follows. (We can handle the case that w does not exist by adding a special element
to L that is smaller than all other elements and is considered to be part of L[T (D)]).
First search Ix for the predecessor k2 of k in {i : x ∈ Si} in O(log log m) time. If k2
exists, then w = (x, k2). Otherwise, let y be the leader of x in T (D), and let y′ be the
predecessor of y in L[T (D)]. Then either w ∈ {(y′, 0), (y, 0)} or else w = (z, k3),
where z = max{u : u < x and u ∈ Jy ∪Jy′} and k3 = max{i : z ∈ Si}. Thus we can
find w in expected O(log log m) time using fast finger search for y′, treap search on the
O(log m) sized treaps in {Jv : v ∈ L[T (D)]}, and the fast dictionaries {Ix : x ∈ L}.

Once we have found the predecessor w of (x, k) in T , we search for the predecessor
w′ of x in L[Tk]. (If w′ does not exist, we simply use min{u ∈ L[Tk]}). To find w′,
we first use w to search for a node u′, defined as the leader (x, k) would have had in
T , had it been given a priority of −∞. Note that with priority −∞, (x, k) would be the
leftmost leaf of the right subtree of w in T . Hence its leader would either be the leader
of w, or the deepest leader on the leftmost path starting from the right child of w. Hence
u′ can be found in expected O(log log m) time, by binary searching on its label (i.e., if
the label of w is α, then find the maximum k such that α · 1 · 0k is an label in H).

Let P be the path from u′ to the root of T . We use the label of u′ and H to binary
search on P for the deepest node v ∈ P for which min{u : u ∈ L[Tk] and (u, k) ∈
Tv} < x. This takes O(log |P |) = O(log log m) time in expectation. If v 	= u′, then u′

is in the right subtree of v in T , and (w′, k) is in the left subtree of v. So let vl be the left
child of v and note that w′ = max{u : u ∈ L[Tk] and (u, k) ∈ Tvl

}, which we can
look up in O(1) time after finding v by using Hv. Otherwise v = u′. In this case, lookup
a := min{u : u ∈ L[Tk] and (u, k) ∈ Tv} and b := max{u : u ∈ L[Tk] and (u, k) ∈
Tv}, find the least common ancestor c of {a, b} in Tk, and starting from c search Tk for
w′. Since a and b are both descendants of u′, their distance (i.e., one plus the number
of nodes between them in the order) in L̂ is at most s = Θ(log m), and thus their
distance in Tk is at most O(log m). However, in random treaps the expected length
of a path between nodes at distance d is O(log(d)), even if priorities are generated
using only 8-wise independent hash functions [22]. Thus we can find c in expected
O(log log m) time. Note c has at most O(log2 m) descendants between a and b in Tk,
since there are at most O(log m) partition leaders between a and b and each has at most
O(log m) “followers” in its partition set, and we can find w′ in expected O(log log m)
time starting from c. Once we have found w′, the predecessor of x in L[Tk], we can
simply find the successor of w′ in L[Tk], say w′′, via fast finger search, and then search
the subtreaps rooted at w′ and w′′ for the actual predecessor of x in Sk in expected
O(log log m) time.

OSP-Insert and OSP-Delete: OSP-Delete is analogous to OSP-Insert, hence we focus
on OSP-Insert. Suppose we wish to add x to Sk. First, if x is not currently in any sets
{Si : i ∈ [q]}, then find the leader of x in T (D), say y, and insert x into Jy in expected
O(log log m) time. Next, insert x into Tk as follows. Find the predecessor w of x in Sk,
then insert x into Tk in expected O(1) time starting from w to speed up the insertion.

Find the predecessor w′ of (x, k) in T as in the predecessor operation, and insert
(x, k) into T using w′ as a starting point. If neither L[Tk] nor L[T] changes, then
no modifications to {Hv : v ∈ L[T]} need to be made. If L[Tk] does not change

Uniquely Represented Data Structures for Computational Geometry 25

but L[T] does, as happens with probability O(1/ log m), we can update T and {Hv :
v ∈ L[T]} appropriately in expected O(log m) time. If L[Tk] changes, we must be
careful when updating {Hv : v ∈ L[T]}. Let L[Tk] and L[Tk]′ be the leaders of
Tk immediately before and after the addition of x to Sk, and let Δk := (L[Tk] −
L[Tk]′) ∪ (L[Tk]′ − L[Tk]). Then we must update {Hv : v ∈ L[T]} appropriately for
all nodes v ∈ L[T] that are descendants of (x, k) as before, but must also update Hv

for any node v ∈ L[T] that is an ancestor of some node in {(u, k) : u ∈ Δk}. It is
not hard to see that these latter updates can be done in O(|Δk| log m) time. Moreover,
E
[
|Δk| | x ∈ L[Tk]′

]
= O(1), since |Δk| can be bounded by 2(R + 1), where R is

the number of rotations necessary to rotate x down to a leaf node in a treap on L[Tk]′.
Since it takes Θ(R) time to delete x given a handle to it, from Theorem 1 we easily infer
E[R] = O(1). Since the randomness for Tk is independent of the randomness used for
T , these expectations multiply, for a total expected time of O(log m), conditioning on
the fact that L[Tk] changes. Since L[Tk] only changes with probability O(1/ log m),
this part of the operation takes expected O(1) time. Finally, insert k into Ix in expected
O(log log m) time, with a pointer to (x, k) in T .

4 Uniquely Represented Range Trees

Let P = {p1, p2, . . . , pn} be a set of points in R
d. The well studied orthogonal range

reporting problem is to maintain a data structure for P while supporting queries which
given an axis aligned box B in R

d returns the points P ∩ B. The dynamic version
allows for the insertion and deletion of points. Chazelle and Guibas [8] showed how
to solve the two dimensional dynamic problem in O(log n log log n) update time and
O(log n log log n + k) query time, where k is the size of the output. Their approach
used fractional cascading. More recently Mortensen [17] showed how to solve it in
O(log n) update time and O(log n + k) query time using a sophisticated application
of Fredman and Willard’s q-heaps [12]. All of these techniques can be generalized to
higher dimensions at the cost of replacing the first log n term with a logd−1 n term [9].

Here we present a uniquely represented solution to the problem. It matches the
bounds of the Chazelle and Guibas version, except ours are in expectation instead of
worst-case bounds. Our solution does not use fractional cascading and is instead based
on ordered subsets. One could probably derive a UR version based on fractional cas-
cading, but making dynamic fractional cascading UR would require significant work2

and is unlikely to improve the bounds. Our solution is simple and avoids any explicit
discussion of weight balanced trees (the required properties fall directly out of known
properties of treaps).

Theorem 3. Let P be a set of n points in R
d. There exists a UR data structure for the

orthogonal range query problem that uses O(n logd−1 n) space and O(d log n) random
bits, supports point insertions or deletions in expected O(logd−1 n · log log n) time, and
queries in expected O(logd−1 n · log log n + k) time, where k is the size of the output.

If d = 1, simply use the dynamic ordered dictionaries solution [4] and have each ele-
ment store a pointer to its successor for fast reporting. For simplicity we describe the

2 We expect a variant of Sen’s approach [23] could work.

26 G.E. Blelloch, D. Golovin, and V. Vassilevska

two dimensional case. The remaining cases with d ≥ 3 can be implemented using
standard techniques [9] if treaps are used for the underlying hierarchical decomposi-
tion trees. The description will be deferred to the full paper. We will assume that the
points have distinct coordinate values; thus, if (x1, x2), (y1, y2) ∈ P , then xi 	= yi for
all i. (There are various ways to remove this assumption, e.g., the composite-numbers
scheme or symbolic perturbations [9].) We store P in a random treap T using the or-
dering on the first coordinate as our BST ordering. We additionally store P in a second
random treap T ′ using the ordering on the second coordinate as our BST ordering, and
also store P in an ordered subsets instance D using this same ordering. We cross link
these and use T ′ to find the position of any point we are given in D. The subsets of D
are {Tv : v ∈ T }, where Tv is the subtree of T rooted at v. We assign each Tv a unique
integer label k using the coordinates of v, so that Tv is Sk in D. The structure is UR as
long as all of its components (the treap and ordered subsets) are uniquely represented.

To insert a point p, we first insert it by the second coordinate in T ′ and using the pre-
decessor of p in T ′ insert a new element into the ordered subsets instance D. This takes
O(log n) expected time. We then insert p into T in the usual way using its x coordinate.
That is, search for where p would be located in T were it a leaf, then rotate it up to
its proper position given its priority. As we rotate it up, we can reconstruct the ordered
subset for a node v from scratch in time O(|Tv| log log n). Using Theorem 1, the over-
all time is O(log n log log n) in expectation. Finally, we must insert p into the subsets
{Tv : v ∈ T and v is an ancestor of p}. This requires expected O(log log n) time per
ancestor, and there are only O(log n) of them in expectation. Since these expectations
are computed over independent random bits, they multiply, for an overall time bound
of O(log n · log log n) in expectation. Deletion is similar.

To answer a query (p, q) ∈ R
2 × R

2, where p = (p1, p2) is the lower left and
q = (q1, q2) is the upper right corner of the box B in question, we first search for
the predecessor p′ of p and the successor q′ of q in T (i.e., with respect to the first
coordinate). We also find the predecessor p′′ of p and successor q′′ of q in T ′ (i.e., with
respect to the second coordinate). Let w be the least common ancestor of p′ and q′ in T ,
and let Ap′ and Aq′ be the paths from p′ and q′ (inclusive) to w (exclusive), respectively.
Let V be the union of right children of nodes in Ap′ and left children of nodes in Aq′ ,
and let S = {Tv : v ∈ V }. It is not hard to see that |V | = O(log n) in expectation, that
the sets in S are disjoint, and that all points in B are either in W := Ap′ ∪ {w} ∪ Aq′

or in ∪S∈SS. Compute W ’s contribution to the answer, W ∩ B, in O(|W |) time by
testing each point in turn. Since E[|W |] = O(log n), this requires O(log n) time in
expectation. For each subset S ∈ S, find S ∩ B by searching for the successor of p′′

in S, and doing an in-order traversal of the treap in D storing S until reaching a point
larger than q′′. This takes O(log log n + |S ∩ B|) time in expectation for each S ∈ S,
for a total of O(log n · log log n + k) expected time.

5 Horizontal Point Location and Orthogonal Segment Intersection

Let S = {(xi, x
′
i, yi) : i ∈ [n]} be a set of n horizontal line segments. In the horizon-

tal point location problem we are given a point (x̂, ŷ) and must find (x, x′, y) ∈ S
maximizing y subject to the constraints x ≤ x̂ ≤ x′ and y < ŷ. In the related

Uniquely Represented Data Structures for Computational Geometry 27

orthogonal segment intersection problem we are given a vertical line segment s =
(x, y, y′), and must report all segments in S intersecting it, namely {(xi, x

′
i, yi) : xi ≤

x ≤ x′
i and y ≤ yi ≤ y′}. In the dynamic version we must additionally support updates

to S. As with the orthogonal range reporting problem, both of these problems can be
solved using fractional cascading and in the same time bounds [8] (k = 1 for point lo-
cation and is the number of lines reported for segment intersection). Mortensen [15] im-
proved orthogonal segment intersection to O(log n) updates and O(log n + k) queries.

We extend our ordered subsets approach to obtain the following results for horizontal
point location and range reporting.

Theorem 4. Let S be a set of n horizontal line segments in R
2. There exists a uniquely

represented data structure for the point location and orthogonal segment intersection
problems that uses O(n log n) space, supports segment insertions and deletions in ex-
pected O(log n·log log n) time, and supports queries in expected O(log n·log log n+k)
time, where k is the size of the output. The data structure uses O(log n) random bits.

6 Uniquely Represented 2-D Dynamic Convex Hull

Using similar techniques we obtain a uniquely represented data structure for maintain-
ing the convex hull of a dynamic set of points S ⊂ R

2. Our approach builds upon
the work of Overmars & Van Leeuwen [19]. Overmars & Van Leeuwen use a standard
balanced BST T storing S to partition points along one axis, and likewise store the
convex hull of Tv for each v ∈ T in a balanced BST. In contrast, we use treaps in both
cases, together with the hash table in [4] for memory allocation. Our main contribution
is then to analyze the running times and space usage of this new uniquely represented
version, and to show that even using only O(log n) random bits to hash and generate
treap priorities, the expected time and space bounds match that of the original version
up to constant factors. Specifically, we prove the following.

Theorem 5. Let n = |S|. There exists a uniquely represented data structure for 2-D
dynamic convex hull that supports point insertions and deletions in O(log2 n) expected
time, outputs the convex hull in O(k) time, where k is the size of the convex hull, requires
O(n) space in expectation, and uses only O(log n) random bits.

7 Conclusions

We have introduced uniquely represented data structures for a variety of problems in
computational geometry. Such data structures represent every logical state by a unique
machine state and reveal no history of previous operations, thus protecting the privacy
of their users. For example, our uniquely represented range tree allows for efficient or-
thogonal range queries on a database containing sensitive information (e.g., viral load in
the blood of hospital patients) without revealing any information about what order the
current points were inserted into the database, whether points were previously deleted,
or what queries were previously executed. Uniquely represented data structures have
other benefits as well. They make equality testing particularly easy. They may also sim-
plify the debugging of parallel processes by eliminating the conventional dependencies
upon the specific sequence of operations that led to a particular logical state.

28 G.E. Blelloch, D. Golovin, and V. Vassilevska

References

1. Acar, U.A., Blelloch, G.E., Harper, R., Vittes, J.L., Woo, S.L.M.: Dynamizing static algo-
rithms, with applications to dynamic trees and history independence. In: Proc. SODA, pp.
531–540 (2004)

2. Andersson, A., Ottmann, T.: New tight bounds on uniquely represented dictionaries. SIAM
Journal of Computing 24(5), 1091–1103 (1995)

3. Blelloch, G.E.: Space-efficient dynamic orthogonal point location, segment intersection, and
range reporting. In: Proc. SODA (2008)

4. Blelloch, G.E., Golovin, D.: Strongly history-independent hashing with applications. In:
Proc. FOCS, pp. 272–282 (2007)

5. Blelloch, G.E., Golovin, D., Vassilevska, V.: Uniquely represented data structures for com-
putational geometry. Technical Report CMU-CS-08-115, Carnegie Mellon University (April
2008)

6. Brodal, G.S., Jacob, R.: Dynamic planar convex hull. In: Proc. FOCS, pp. 617–626 (2002)
7. Buchbinder, N., Petrank, E.: Lower and upper bounds on obtaining history independence. In:

Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 445–462. Springer, Heidelberg (2003)
8. Chazelle, B., Guibas, L.J.: Fractional cascading. Algorithmica 1, 133–196 (1986)
9. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational geometry:

algorithms and applications. Springer, New York (1997)
10. Dietz, P., Sleator, D.: Two algorithms for maintaining order in a list. In: Proc. STOC, pp.

365–372 (1987)
11. Dietz, P.F.: Fully persistent arrays. In: Dehne, F., Santoro, N., Sack, J.-R. (eds.) WADS 1989.

LNCS, vol. 382, pp. 67–74. Springer, Heidelberg (1989)
12. Fredman, M.L., Willard, D.E.: Trans-dichotomous algorithms for minimum spanning trees

and shortest paths. Journal of Computer and System Sciences 48(3), 533–551 (1994)
13. Hartline, J.D., Hong, E.S., Mohr, A.E., Pentney, W.R., Rocke, E.: Characterizing history

independent data structures. Algorithmica 42(1), 57–74 (2005)
14. Micciancio, D.: Oblivious data structures: applications to cryptography. In: Proc. STOC, pp.

456–464 (1997)
15. Mortensen, C.W.: Fully-dynamic two dimensional orthogonal range and line segment inter-

section reporting in logarithmic time. In: Proc. SODA, pp. 618–627 (2003)
16. Mortensen, C.W.: Fully-dynamic two dimensional orthogonal range and line segment inter-

section reporting in logarithmic time. In: Technical report TR-2003-22 IT University Tech-
nical Report Series (2003)

17. Mortensen, C.W.: Fully dynamic orthogonal range reporting on a RAM. SIAM J. Com-
put. 35(6), 1494–1525 (2006)

18. Naor, M., Teague, V.: Anti-presistence: history independent data structures. In: Proc. STOC,
pp. 492–501 (2001)

19. Overmars, M.H., van Leeuwen, J.: Maintenance of configurations in the plane. J. Comput.
Syst. Sci. 23(2), 166–204 (1981)

20. Pagh, A., Pagh, R., Ruzic, M.: Linear probing with constant independence. In: Proc. STOC,
pp. 318–327 (2007)

21. Pugh, W.: Skip lists: A probabilistic alternative to balanced trees. In: Dehne, F., Santoro, N.,
Sack, J.-R. (eds.) WADS 1989. LNCS, vol. 382, pp. 437–449. Springer, Heidelberg (1989)

22. Seidel, R., Aragon, C.R.: Randomized search trees. Algorithmica 16(4/5), 464–497 (1996)
23. Sen, S.: Fractional cascading revisited. Journal of Algorithms 19(2), 161–172 (1995)
24. Snyder, L.: On uniquely representable data structures. In: Proc. FOCS, pp. 142–146 (1977)
25. Sundar, R., Tarjan, R.E.: Unique binary search tree representations and equality-testing of

sets and sequences. In: Proc. STOC, pp. 18–25 (1990)
26. van Boas, P.E., Kaas, R., Zijlstra, E.: Design and implementation of an efficient priority

queue. Mathematical Systems Theory 10, 99–127 (1977)

I/O Efficient Dynamic Data Structures for
Longest Prefix Queries�

Moshe Hershcovitch1 and Haim Kaplan2

1 Faculty of Electrical Engineering
moshik1@gmail.com

2 School of Computer Science
haimk@cs.tau.ac.il

Tel Aviv University, Tel Aviv 69978, Israel

Abstract. We present an efficient data structure for finding the longest
prefix of a query string p in a dynamic database of strings. When the
strings are IP-addresses then this is the IP-lookup problem. Our data
structure is I/O efficient. It supports a query with a string p using
O(logB(n) + |p|

B
) I/O operations, where B is the size of a disk block.

It also supports an insertion and a deletion of a string p with the same
number of I/O’s. The size of the data structure is linear in the size of
the database and the running time of each operation is O(log(n) + |p|).

1 Introduction

We consider the longest prefix problem which is defined as follows. The input
consists of a set of strings S = {p1 . . . pn} which we shall refer to as prefixes . We
want to preprocess S into a data structure such that given a query string q we
can efficiently find the longest prefix in S which is a prefix of q or report that no
prefix in S is a prefix of q. We focus on the dynamic version of the problem where
we want to be able to insert and delete prefixes to and from S, respectively.

The main application of this problem is for packet forwarding in IP networks.
In this application a router maintains a set of prefixes of IP addresses according
to some routing protocol such as BGP (Border Gateway Protocol). When a
packet arrives, the router finds the longest prefix of the destination address of
the packet and sends the packet on the outgoing link associated with this longest
prefix. A longest prefix match query in this settings is often called IP-lookup.

The rapid growth of the Internet has brought the need for routers to maintain
large sets of prefixes, and to perform longest prefix match queries at high speeds
[7]. A main issue in the design of routers is the size of the expensive high speed
memory used by the router for packet forwarding. One can reduce the size of
this expensive memory by using external memory components. Therefore the I/O
efficiency of the algorithm we use is very important. In software implementations
the entire data structure may not fit into the cache and we may flip parts of it
� This work is partially supported by United states - Israel Binational Science Foun-

dation, project number 2006204.

J. Gudmundsson (Ed.): SWAT 2008, LNCS 5124, pp. 29–40, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

30 M. Hershcovitch and H. Kaplan

back and forth from the main memory or the disk. In hardware implementations
it may be too expensive to fit the entire data structure in the memory which is
integrated in the chip that implements the forwarding algorithm itself. So parts
of the data structure may reside in external memory devices (such as DRAM). In
such designs the communication between the main chip and the external memory
becomes the performance bottleneck of the system.

In addition to good I/O performance an efficient data structure for IP-lookup
should be able to perform queries at the line rate (which is about 40 Gbps and
more today). The data structure has to be scalable since the number of prefixes
a router has to maintain is growing rapidly as well as the length of these prefixes.
Finally, we need to support fast updates mainly due to instabilities in backbone
routing protocols and security issues.

Our computational model. Our algorithm works in the classical pointer ma-
chine model [19] using only comparisons to manipulate prefixes. This is in con-
trast with many other algorithms for IP-lookup that use bit manipulations on
IP addresses. See Section 1. This restriction which we obey does not come at
the cost of a complicated data structure. On the contrary, our data structure is
much simpler than previously known data structure with the same guarantees.

We develop our data structures in two steps. First we reduce the longest prefix
problem to the problem of finding the shortest segment containing a query point.
For this data structure we assume that each prefix fits into a constant number
of computer words so that we can compare two endpoints of segments in O(1)
time. In the second step we relax this assumption and deal with variable length
strings with no apriori upper bound on their length. We assume that the strings
are over an ordered alphabet Σ and that we can compare two characters of Σ
in O(1) time. We do not require direct access to the characters of each prefix.

To analyze I/O performance we use the standard external memory model
where memory is partitioned into blocks of size B, and we count the number of
blocks that we have to transfer from slow to fast memory in order to perform
the operation. This quantity is the number of I/O operations performed by the
operation [20].

Overview of our results. We first consider the problem of maintaining a
dynamic set of segments for point stabbing queries. Specifically, we consider
a dynamic nested family of segments where each pair of segments are either
disjoint or one contains the other. We develop a data structure that given a
point p can efficiently find the shortest segment containing p.

Our data structure for this problem which is based on a segment tree (with
large fan-out) is particularly simple. In a segment tree we map a segment s
to every node v, such that s contains1 v, and does not contain the parent of
v. Typically one maintains at each node v all the segments that map to v in
some secondary structure [18,13,12]. We make the crucial observation that for
our point stabbing query it is sufficient to maintain for each node v only the
shortest segment which maps to v.

1 A segment contains a node if it contains all points in its subtree.

I/O Efficient Dynamic Data Structures 31

Our data structure performs a query, and an insertion or a deletion of a
segment in O(log n) time and O(logB(n)) I/O operations. We manipulate the
segments only via comparisons of their endpoints.

We use this result to solve the longest prefix problem as follows. We associate
a segment [pL, pR] with each string p, where L and R are two new characters,
smaller and larger than all other characters, respectively. We then apply the
previous data structure to this set of segments. This gives the data structure for
the case where we assume that two prefixes can be compared in O(1) time.

To handle strings with no fixed bound on their lengths we combine this idea
with the powerful string B-tree of Ferragina and Grossi [9]. This data structure is
a B-tree carefully designed for storing strings. For efficient searches and updates
it uses a Patricia trie [14] in each node. We show how to maintain the information
which we need for longest prefix queries using the string B-tree.

Since our data structure is based on a B-tree it is also I/O efficient. If we
pick the size of a node so that it fits in a disk block of size B, we obtain that a
query or update with a string q performs O(logB(n)+|q|/B) I/O operations. The
data structure requires O(n/B) disk blocks in addition to the blocks required
to store the strings themselves. The time for query or update with a string q is
O(log(n) + |q|). (This is as efficient as with tries implemented carefully [16], but
tries cannot be implemented I/O efficiently [6]).

Previous related results. There has been a lot of work mainly in the network-
ing community on the IP-lookup problem. The different data structures can be
classified into three families: trie based structures (See for example [7] and the
references there), hash based structures (See for example [11] and the references
there), and tree based structures. In the rest of this section we focus on dynamic
tree based solutions with worst case guarantees that are related to our approach.

Sahni and Kim [15] describe a solution based on a collection of red-black trees
that requires linear space and logarithmic time per operation. Feldmann and
Muthukrishnan [8] proposed Fat Inverted Segment tree (FIS). This data struc-
ture supports queries in O(log log n + �) time, where � is the number of levels in
the segment tree. The space requirement is O(n1+1/�), and insert and delete take
O(n1/� log n) time, but there is an upper bound on the total number of insertions
and deletions allowed. Suri et al. [18] proposed a data structure which is similar to
ours in the sense that it is both a segment tree and a B-tree. But they store in each
node all the segments which are mapped to it and therefore achieve logarithmic
worst case time bound per operation and linear space only for IP-addresses. Lu
and Sahni [13] suggested an improvement of the segment tree of Suri that stores
each prefix only in one place. They maintain other bit vectors in internal nodes
and their update operations are quite complicated. Our structure, which can be
extended to general strings (and general segments) and uses only comparisons, is
simpler than all the solutions mentioned above. In particular it is much cleaner
than the latter two B-tree based implementations when applied to IP addresses.

Kaplan, Molad, and Tarjan [12] considered the problem of point stabbing a
dynamic nested set of segments. In their setting, which is more general than
ours, each segment has a priority associated with it and we want to find the

32 M. Hershcovitch and H. Kaplan

segment of minimum priority containing a query point. They present a data
structure performing query and update in O(log n) time that requires linear
space. It uses both a balanced search tree and a dynamic tree [17] and thereby
more complicated than ours (when applied to the special case where the priority
of an interval is its length).

In recent years, external memory data structures have been developed for a
wide range of applications [20]. A classical I/O efficient data structure is the
B-tree [2]. This is a search tree in which we choose the degree of a node so
that it occupies a single block. The string B-tree of Ferragina and Grossi [9] is
a fundamental extension of the B-tree for storing unbounded strings. The main
idea is to use a Patricia trie [14] in each node to direct the search. Unfortunately
this data structure by itself does not solve the longest prefix problem.

Agarwal, Arge, and Yi [1] improved a more general data structure of Kaplan,
Molad, and Tarjan [12] for stabbing-min queries against general segments (not
necessarily nested). This data structure is based on a B-tree and can be imple-
mented so that it is I/O efficient. Specifically, a data structure for n intervals
uses O(n/B) disk blocks and O(logB(n)) I/O operations for query and update.
This data structure is quite complicated and assumes that endpoints of intervals
can be compared in O(1) time. Therefore it is not directly applicable for longest
prefix queries in a collection of unbounded strings.

Brodal and Fagerberg [5] obtained a cache oblivious (see Section 4) data
structure for manipulating strings. This data structure, which is essentially a
trie can be used to obtain an I/O efficient (though complicated) solution for the
static version of the longest prefix problem.

The outline of the rest of the paper is as follows. In section 2 we present our
basic ideas using the assumption that strings are of constant size. In section 3
we combine our ideas with the string B-tree to obtain a general I/O efficient
solution. In section 4 we suggest a future research.

2 B Tree for Longest Prefix Queries

Our input is a set of prefixes S = {p1 . . . pn} which are strings over the alphabet
Σ. We think of each prefix p as a segment I(p) = [pL, pR], where L and R are two
special characters not in Σ, L is smaller than all characters in Σ and R is larger
than all characters in Σ. The longest prefix p of a query q corresponds to the
the shortest segment I(p) containing q. We describe a dynamic data structure
to maintain a set of nested segments such that we can find the smallest segment
containing a query point. Although we can apply our data structure to any set
of nested segments we present our result using the string terminology and the
set of segments {I(p) | p ∈ S}.

Let P = {piL, piR | pi ∈ S} be the set of endpoints of the prefixes in S. We
store P ordered lexicographically at the leaves of a B+ tree T . Each internal
node x of T has n(x) children, where b ≤ n(x) ≤ 2b. If x is a leaf then it stores
n(x) endpoints of P , where b ≤ n(x) ≤ 2b. (See Figure 1.)

I/O Efficient Dynamic Data Structures 33

∅A2A3 A4 A5 ∅ A6 ∅ ∅A8

A6

A4R A7L A7R

A3L A5L A6RA5R

A3L A6R

A4R A7R A8L A8R A3R A2R

A2R

A2 ∅

A1

A4R

A8RA3L A4L A5L A5R A6L A6R

A3A4 A3 ∅∅

A4

A1

A2

A3

A8L A2RA3R

∅ A7 ∅

A7 A8
A5

Fig. 1. A B+ tree with b = 2 storing the prefixes A1, . . . , A8. Rectangles correspond
to internal nodes and squares correspond to dummy leaves. In each height-1 node we
show the endpoints that it stores. In each internal node v of height > 1 we show the
spans of its children which are also used as the keys which direct the search. (Note that
when we use the spans as keys, a search can never reach the first dummy leaf in each
height-1 node. Therefore we do not need to keep longest prefixes of these nodes and
we do not show them in the figure.) The span of a child u of v is the closed interval
from the point depicted to the left of the edge from v to u to the point depicted to the
right of the edge from v to u. On each edge (p(v), v) we show the longest prefix of v.

To simplify the presentation we assume that a leaf x with n(x) endpoints
has n(x) + 1 “dummy” children. From now on when we say a leaf of T , we
refer to one of these dummy nodes, and we refer to x as a height-1 node. Each
endpoint in a height-1 node plays the role of a key separating two consecutive
dummy leaves. We associate each leaf with the open interval from the endpoint
preceding the leaf to the endpoint following the leaf. We call this interval the
span of the leaf. (Note that the last dummy leaf in a height-1 node and the first
dummy leaf in the next height-1 node have the same span.) We define the span
of an internal node v to be the smallest interval containing the endpoints which
are descendents of v.2 We denote the span of a node v by span(v). We think of
T as a segment tree and map each segment [pL, pR] to every node v such that
pL is to the left of span(v) and pR is to the right of span(v), and either pL or
pR are in span(p(v)). We define the longest prefix (or the shorter segment)of

2 This is the interval that starts at the leftmost endpoint in the subtree of v, and ends
at the rightmost endpoint in the subtree of v.

34 M. Hershcovitch and H. Kaplan

v and denote it LP (v) to be the shortest segment mapped to v.3 If there isn’t
any segment which is mapped to v we define LP (v) to be empty. (LP (v) is also
defined if v is a dummy leaf.)

We store span(v) and LP (v) with the pointer to node v. Note that when we
are at a node v we can use the span values of the children of v as the keys which
direct the search. We denote by B = O(b) the maximum size of a node. We pick
b so that B is the size of a disk block.

2.1 Finding the Longest Prefix

Assume we want to find the longest prefix of a query string q. We search the B+

tree with the string q4 in a standard way and traverse a path A to a leaf of T . We
return LP (w), where w is the last node on A, such that LP (w) is not empty.

The correctness of the query follows from the following observations. For each
prefix p of q, I(p) is mapped to some node u on A. Therefore p is LP (u) unless
some longer prefix is mapped to u. Furthermore, since for every v, LP (p(v)) is
a prefix of LP (v), it follows that the longest prefix of q must be LP (w), where
w is the last node on A for which LP (v) is not empty.

2.2 Inserting a New Prefix

To insert a new prefix p we have to insert I(p) into T . We insert pL and pR
into the appropriate height-1 nodes w and w′, respectively, according to the
lexicographic order of the endpoints. The endpoint pL is inserted into the span
of a leaf y and the endpoint pR is inserted into the span of a leaf z. Assume first
that z �= y. The span of y is now split between two new leaves: y′ that precedes
pL and y′′ that follows pL. We set the longest prefix of y′ to be the longest prefix
of y and the longest prefix of y′′ to be p. The span of z is now split between
two new leaves: z′ that precedes pR and z′′ that follows pR. We set the longest
prefixes of z′ to be p and the longest prefix of z′′ to be the longest prefix of z. If
y = z then the span of y is split between three new leaves y1, y2, and y3. We set
the longest prefixes of y1 and y3 to be the longest prefix of y, and the longest
prefix of y2 to be p.

There may be nodes v in T , such that after adding p, we have to update
LP (v) to be p. Let y be the leaf preceding pL and let z be the leaf following pR.
Let u be the lowest common ancestor of y and z. Let u′ be the child of u which
is an ancestor of y and let u′′ be the child of u which is an ancestor of z. We
may need to update LP (v) if either:

Case 1: v is a child of a node w on the path from u′ to y, which is right sibling
of the child w′ of w on this path.

Case 2: v is a child of a node w on the path from u′′ to z, which is left sibling
of the child w′ of w on this path.

3 Note that all segments mapped to v form a nested family of segments, so the shortest
among them is unique.

4 In fact we “pretend” to search with a string (not in the data structure) that immedi-
ately follows qL in the lexicographic order of the strings.

I/O Efficient Dynamic Data Structures 35

Case 3: v is a child of u which is a right sibling of u′ and left sibling of u′′.

For each such node v, we know that span(v) ⊂ I(p) so we change LP (v) to be
p, if p is longer than the current LP (v). Since the depth of T is O(logB(n)), we
update O(B logB(n)) longest prefixes which are stored at O(logB(n)) nodes.

After inserting pL and pR, if the height-1 node containing pL and the height-1
node containing pR have no more than 2b children, we finish the insert. Otherwise
we have to split at least one of these nodes. We split node v into two nodes v1
and v2. Node v1 is the parent of the first b (or b+1) children of v and node v2 is
the parent of the last b+1 children of v. Both v1 and v2 replace v as consecutive
children of p(v). We compute span(v1) from the span of its first child and the
span of its last child, and similarly for span(v2).

u1 u2 u3 u4 u5

v

∅

A3

A5

A1

A2

A3 A5A2 A2

A1

u1 u2 u3 u4 u5

A1

∅ ∅

A3

A5

A2

v1 v2

A3 A5

A2 A1

A2

Fig. 2. A node v at the left which is split into nodes v1 and v2 to the right. Since
span(v1) ⊆ I(A2) the prefix A2, which was the longest prefix of u2 before the split, is
the longest prefix of v1 after the split. The longest prefix of u2 after the split is empty.

Clearly we have to update LP (v1) and LP (v2). Furthermore, since a segment
that was mapped to a child u of v may now be mapped to v1 or v2, we may
also have to update LP (u) for children u of v1 and v2. Other longest prefixes do
not change. The following simple observations specify how to update the longest
prefixes. In the following if u is a child of v prior the split, then LP (u) refers to
the longest prefix of u before the split. Note that since v exists only before the
split then LP (v) is the longest prefix of v before the split. Similarly, LP (v1) and
LP (v2) are the longest prefix of v1 and v2, respectively, after the split.

Lemma 1. Let u be a child of v1 after the split. If span(v1) ⊂ I(LP (u)) then
after split LP (u) should be empty.

Proof. Let p = LP (u) since span(v1) ⊂ I(LP (u)) then the segment I(p) is
not mapped to u after the split. Since I(p) was the shortest segment that was
mapped to u no other segment is mapped to u after the split. ��

Lemma 2. Let u1 and u2 be children of v1. If span(v1) ⊂ I(LP (u1)) and
span(v1) ⊂ I(LP (u2)) then LP (u1) = LP (u2).

Proof. Since span(v1) ⊂ I(LP (u1)) then span(u2) ⊂ I(LP (u1)). So LP (u1) can-
not be longer than LP (u2) since this would contradict the fact that I(LP (u2))
is the shortest segment containing span(u2). Symmetrically, LP (u2) cannot be
longer than LP (u1), so they must be equal. ��

36 M. Hershcovitch and H. Kaplan

Lemma 3. If there exist child u of v1 such that span(v1) ⊂ I(LP (u)) then
LP (v1) is LP (u).

Proof. Obviously LP (u) is mapped to v1. Furthermore, LP (u) is the longest
prefix with this property, since if there is a longer prefix q with this property
then q should have been LP (u) before the split. ��

Lemma 4. If there isn’t a child u of v1 such that span(v1) ⊂ I(LP (u)) then
LP (v1) is equal LP (v).

Proof. We claim that there exists a child u of v1 that LP (u) is empty. From this
claim the lemma follows since if there is a prefix q longer than LP (v) such that
I(q) is mapped to v1, then q is mapped to u before the split and LP (u) couldn’t
have been empty.

We prove this claim as follows. Assume to the contrary that LP (u) is not
empty for every child u of v1. Let w be a child of v1 such that I(LP (w)) is not
contained in I(LP (w′)) for any other child w′ of v (w exists since segments do
not overlap). From our assumption follows that I(LP (w)) ⊆ span(v1). Therefore
at least one of the endpoints of I(LP (w)), say z is in the subtree of v1. Let w′′

be a child of v1 whose subtree contains z. It is easy to see now that I(LP (w′′))
and I(LP (w)) overlap which is a contradiction. ��

A symmetric version of Lemmas 1, 2, 3, and 4 hold for v2.
These observations imply the following straightforward algorithm to update

longest prefixes when we perform a split. If there is a child u of v1 such that
span(v1) ⊂ I(LP (u)) we set LP (v1) to be LP (u), otherwise we set LP (v1) to be
LP (v). In addition we set LP (u) to be empty for every child u of v1 such that
span(v1) ⊂ I(LP (u)). We update the span of v2 and its children analogously.
See Figure 2.

After splitting v we recursively check if p(v1) or p(v2) has more than 2b chil-
dren and if so we continue to split them until we reach a node that has no more
than 2b children.

2.3 Deleting a Prefix

To delete a prefix p we need to delete I(p) from T . We first find the longest
prefix of p in S denoted by w.5 Then we delete pL and pR from the height-1
nodes containing them.

We have to change the longest prefix of every node v for which LP (v) = p to
w. Nodes v for which LP (v) may be equal to p are of three kinds as specified in
Cases (1), (2) and (3) of Section 2.2

As a result of deleting pL and pR from the height-1 nodes containing them
we may create nodes with less than b children. To fix such node v we either
borrow a child from a sibling of v or merge v with one of its siblings. We omit

5 We do that by a query with a string (not in the data structure) that immediately
follows pR in the lexicographically order of strings.

I/O Efficient Dynamic Data Structures 37

the details of these rebalancing operations and their affect on longest prefixes
from this abstract. The following theorem summarizes the results of this section.

Theorem 1. Assuming each string occupies O(1) words, the B-tree data struc-
ture which we described supports longest prefix queries, insertions, and deletions
in O(log(n)) time. Furthermore, it performs O(logB(n)) I/Os per operation, and
requires linear space.

3 String B-Tree for Longest Prefix Queries

In a B-tree, we assume that Θ(b) keys that reside at a single node fit into one
disk block of size B. However if the keys are strings of variable sizes, which can
be arbitrarily long, there may not be enough space to store Θ(b) strings in a
single block. Instead, we can store Θ(b) pointers to strings in each node, but
accessing these strings during the search requires more than a constant number
of I/O operations per node. To reduce the number of I/Os, Ferragina and Grossi
[9] developed an elegant generalization of a B-tree called the string B-tree or
SB-tree for short.

76 7

5

8

0

76

3 4

6 6

4

c
b
c
a
b

b

b

a
a
b
a

a
b c

b

b
c
b
b
a

a
b
a
a
b
b

Correct
Position

b
c

b
b
a

b
c
b

leaf1

Common
prefix

mismatch

c

c
a
b
a

b

ba
b
a
c

a

a

b

b

c

b b

a

ba

a

a

P = bcbabcba

Fig. 3. A Patricia trie of a node in a string B-tree. The number in a node is its string
depth. The character on an edge is the branching character of the edge.

An individual node v of an SB-tree is shown in Figure 3. Instead of storing the
keys at a node v we store a Patricia trie [14] of the keys, denoted by PT (v). Using
this representation we can perform b-way branching using only Θ(b) characters
that are stored in a constant number of disk blocks of size B. Each internal node
ξ of the Patricia trie stores the length of the string corresponding the path from
the root to ξ. We call this the string depth of ξ. We store with each edge e the
first character of the string that corresponds to e. This character is called the
branching character of e.

As an example Figure 3 shows a Patricia trie of a node in a string B-tree.
The right child of the root has string depth 4 and it’s outgoing edges have the
branching characters “a” and “b”, respectively. This means that the node’s left

38 M. Hershcovitch and H. Kaplan

subtrie consists of strings whose fifth character is “a” , and its right subtrie
consists of strings whose fifth character is “b”. The first four characters in all
the strings in the right subtrie of the root are “bcbc”. Let ξ be a node of the
trie whose string depth is d(ξ). To make a branching decision at ξ, we compare
the d(ξ) + 1 character of the string that we search, to the characters on the
edges outgoing from ξ. For example, for the string “bcbabcba”, the search in the
trie in Figure 3 traverses the rightmost path of the Patricia trie, examining the
characters 1, 5, and 7 of the string which we search.

Unfortunately, the leaf of the Patricia trie that we reach (in our example, the
leaf at the far right, corresponding to “bcbcbbba”) is not in general the correct
branching point, from the node of the SB-tree represented by this trie, since
we did not compare all characters of the string which we search. We fix this by
sequentially comparing the string which we search with the key associated with
the leaf of the trie which we reached. If they differ, we find the position in which
they first differ. In the example the first character of the string “bcbabcba” that
is not equal to the corresponding character of the key “bcbcbbba”, is the fourth
character. Since the fourth character of “bcbabcba” is smaller we know that the
string which we search is lexicographically smaller than all keys in the right
subtree of the root. It thus fits in between the leaves “abac” and “bcbcaba”. For
more details see [9].

Searching each Patricia trie requires constant number of I/O to load it into
memory, plus additional I/Os to do the sequential scan of the key associated with
the leaf we reached. Therefore our structure as defined so far does not guarantee
that the total number of I/Os is O(logB n + �/B), where � is the length of the
string that we search.

To further reduce the number of I/Os Ferragina and Grossi [9] used the left-
most and the rightmost strings in the subtree of a node v as keys at p(v). Recall
that we in fact did the same in our B-tree when we use the spans of the children
of v as the keys at v. Having the keys defined this way, we can use information
from the search in the trie PT (v) of a node v to reduce the number of I/Os in
the followings search of the trie PT (u) of a child u of v. Specifically, let s be the
string which we search, and let � be the length of the longest common prefix of s
and the key at the leaf of PT (v), where the search ended. Then it is guaranteed
that the length of the longest common prefix of s and the key at the leaf of
PT (u), where the search of s ends is at least �. Thus, we can avoid the first �
comparisons and the I/Os associated with them. Ferragina and Grossi [9] also
showed how to insert and delete a string in O(logB n + �/B) time in the worst
case.

We now describe how to combine the SB-tree with our algorithm for longest
prefix queries so that our input prefixes S = {p1 . . . pn} can be arbitrarily long.
As Ferragina and Grossi [9], we use the endpoints of span(v) as keys at p(v),
and represent the keys of each node v in a Patricia trie PT (v). Each leaf of
the Patricia trie stores a pointer to the first block containing the key that it
corresponds to. We use the same definition of the longest prefix of a node v,
denoted by LP (v), as in Section 2. Recall that from these definitions follow that

I/O Efficient Dynamic Data Structures 39

if LP (v) is not empty then span(v) ⊂ I(LP (v)) and therefore LP (v) is a prefix
of every key in the subtree of v. Let span(v) = [KL(v), KR(v)]. That is KL(v)
be the leftmost string in the subtree of v and KR(v) is the rightmost string
in the subtree of v. Clearly LP (v) is a prefix of KL(v) and KR(v). The string
KL(v) is a key separating v from its sibling in p(v) and therefore corresponds to
a leaf in PT (v). So we represent LP (v) by storing its length, and pointer to it,
in the leaf of PT (v), that corresponds to KL(v). If LP (v) is empty we encode
this by storing zero at the associated leaf.

Finding the longest prefix. We search the SB-tree and traverse a path A to
a leaf of T . Let w be the last node on A for which LP (w) is not empty. Together
with the pointer to w in p(w), we find |LP (w)| and a pointer to LP (w).

Inserting a new prefix. Assume we want to insert a new prefix p ∈ S to
the data structure. We insert pL and pR into the SB-tree using the insertion
algorithm of the SB-tree. As in Section 2.2 there may be nodes v in T , such that
after adding p, we need to update LP (v) to be p. Nodes v for which LP (v) may
be equal to p are of three kinds as specified in Cases (1), (2) and (3) of Section
2.2. For each such node v we change |LP (v)| to be |p|, if |p| is longer than the
current value |LP (v)|. This is correct since for each of these nodes v, we know
that span(v) ⊂ I(p). Note that all these changes are located at O(logB(n)) nodes
of the SB-tree, and therefore we can perform them while doing O(logB(n)) I/O
operations.

After inserting a prefix p we may split node v into two nodes v1 and v2.
We split a node in the SB-tree using the algorithm of Ferragina and Grossi
[9]. Splitting may change the longest prefixes. To perform these changes we use
the same algorithm as in Section 2.2. To implement this algorithm we need to
determine if there is a child u of v1 such that span(v1) ⊂ I(LP (u)).

Let u be a child of v1. We decide if span(v1) ⊂ I(LP (u)) as follows. Since
LP (u) is a prefix of KL(u) and KR(u), and KL(u) and KR(u) are keys in
PT (v1) then there is a path in PT (v1) that corresponds to the string LP (u).
It follows that LP (u) is a prefix of all the keys in PT (v1), and in particular
of KL(v1) and KR(v2), if |LP (u)| is not larger than the string depth of the
root of PT (v1). We check if there is a child u of v2 that span(v2) ⊂ I(LP (u))
analogously.

Deletion of a prefix is similar, we omit the details from this abstract. The
following theorem summarizes the results of this section.

Theorem 2. The data structure which we described in this section supports
longest prefix queries, insertions, and deletions in O(log(n) + |q|) time where
q is the string which we perform the operation with. Furthermore, it performs
O(logB(n) + |q|/B) I/Os per operation, and requires linear space.

4 Future Research

The cache oblivious model [10] is a generalization of the I/O model. In this
model we seek I/O efficient algorithms which do not depend on the block size.

40 M. Hershcovitch and H. Kaplan

Among the state of the art in this model is a cache-oblivious B-tree [3], and
an almost efficient cache-oblivious string B-tree [4] whose query time is optimal
but updates are not. An obvious open question is to find a cache oblivious data
structure for longest prefix queries.

References

1. Agarwal, P.K., Arge, L., Yi, K.: An Optimal Dynamic Interval Stabbing-Max Data
Structure? In: Proceedings of SODA, pp. 803–812 (2005)

2. Bayer, R., McCreight, E.M.: Organization and Maintenance of Large Ordered In-
dexes. Acta Informtica 1(3), 173–189 (1972)

3. Bender, M.A., Demaine, E., Farach-Colton, M.: Cache-Oblivious B-Trees. SIAM
Journal on Computing 35(2), 341–358 (2005)

4. Bender, M.A., Farach-Colton, M., Kusznaul, B.C.: Cache-Oblivious String B-Trees.
In: Proceedings of PODS, pp. 233–242 (2006)

5. Brodal, G.S., Fagerberg, R.: Cache-oblivious string dictionaries. In: Proc. 17th
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 581–590 (2006)

6. Demaine, E.D., Iacono, J., Langerman, S.: Worst-case optimal tree layout in a
memory hierarchy (2004)

7. Eatherton, W., Dittia, Z., Varghese, G.: Tree Bitmap: Hardware/Software IP
Lookups with Incremental Updates. ACM SIGCOMM Computer Communications
Review 34(2), 97–122 (2004)

8. Feldmann, A., Muthukrishnan, S.: Tradeoffs for Packet Classification. In: Proceed-
ings of INFOCOM, pp. 1193–1202 (2000)

9. Ferragina, P., Grossi, R.: The String B-Tree: A New Data Structure for String
Search in External Memory and Its Applications. Journal of the ACM 46(2), 236–
280 (1999)

10. Frigo, M., Leiserson, C.E., Prokop, H., Ramachandran, S.: Cache-Oblivious Algo-
rithms. In: Proceedings of FOCS, pp. 285–297 (1999)

11. Hasan, J., Cadambi, S., Jakkula, V., Chakradhar, S.: Chisel: A Storage-Efficient,
Collision-Free Hash- Based Network Processing Architecture. In: Proceedings of
ISCA, May 2006, pp. 203–215 (2006)

12. Kaplan, H., Molad, E., Tarjan, R.E.: Dynamic Rectangular Intersection with Pri-
orities. In: Proceedings of STOC, pp. 639–648 (2003)

13. Lu, H., Sahni, S.: A B-Tree Dynamic Router-Table Design. IEEE Transactions on
Computers 54(7), 813–824 (2005)

14. Morrison, D.R.: Patricia: Practical Algorithm to Retrieve Information Coded in
Alphanumeric. Journal of the ACM 15(4), 514–534 (1968)

15. Sahni, S., Kim, K.: O(log n) Dynamic Packet Routing. In: Proceedings of ISCC,
pp. 443–448 (2002)

16. Sleator, D., Tarjan, R.E.: Self-adjusting binary search trees. Journal of the ACM 32,
652–686 (1985)

17. Sleator, D.D., Tarjan, R.E.: A Data Structure for Dynamic Trees. JCSS 26(3),
362–391 (1983)

18. Suri, S., Varghese, G., Warkhede, P.: Multiway Range Trees: Scalable IP Lookup
with Fast Updates. In: Proceedings of GLOBECOM, pp. 1610–1614 (2001)

19. Tarjan, R.E.: A Class of Algorithms which Require Nonlinear Time to Maintain
Disjoint Sets. Journal of Computing System Science 18, 110–127 (1979)

20. Vitter, J.S.: External Memory Algorithms and Data Structures: Dealing with Mas-
sive Data. ACM Computing Surveys 33(2), 209–271 (2001)

Guarding Art Galleries: The Extra Cost for
Sculptures Is Linear�

Louigi Addario-Berry1, Omid Amini2, Jean-Sébastien Sereni3,
and Stéphan Thomassé4

1 Department of Statistics, Oxford University, Oxford, UK
louigi@gmail.com

2 Max-Planck-Institut für Informatik, Saarbrücken, Germany
amini@mpi-inf.mpg.de

3 Institute for Theoretical Computer Science and Department of Applied
Mathematics, Charles University, Prague, Czech Republic

sereni@kam.mff.cuni.cz
4 LIRMM-Université Montpellier II, Montpellier, France

thomasse@lirmm.fr

Abstract. Art gallery problems have been extensively studied over the
last decade and have found different type of applications. Normally the
number of sides of a polygon or the general shape of the polygon is used
as a measure of the complexity of the problem. In this paper we explore
another measure of complexity, namely, the number of guards required to
guard the boundary, or the walls, of the gallery. We prove that if n guards
are necessary to guard the walls of an art gallery, then an additional
team of at most 4n−6 will guard the whole gallery. This result improves
a previously known quadratic bound, and is a step towards a possibly
optimal value of n − 2 additional guards. The proof is algorithmic, uses
ideas from graph theory, and is mainly based on the definition of a new
reduction operator which recursively eliminates the simple parts of the
polygon. We also prove that every gallery with c convex vertices can be
guarded by at most 2c − 4 guards, which is optimal.

Keywords: Art Gallery, Pseudo-triangulation.

1 Introduction

Art gallery problems are, broadly speaking, the study of the relation between
the shapes of regions in the plane and the number of points needed to guard
them. The problem of determining how many guards are sufficient to see every
point in the interior of an n-wall art gallery room was first posed by Klee [11].
Conceptually, the room is a simple polygon P with n vertices, and the guards
are stationary points in P that can see any point of P connected to them by
a straight line segment lying entirely within P . The first “art gallery theorem”

� This work was supported by the European project ist fet Aeolus.

J. Gudmundsson (Ed.): SWAT 2008, LNCS 5124, pp. 41–52, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

42 L. Addario-Berry et al.

was obtained by Chvátal [3], who demonstrated that given any simple poly-
gon with n sides, the interior of the polygon can be guarded with at most �n

3 �
guards and that this number of guards is sometimes necessary. Fisk [8] later
found a simpler proof which lends itself to an O(n log n)-time algorithm devel-
oped by Avis and Toussaint [2] for locating these �n

3 � stationary guards. With
some restriction on the shape of the polygon, for example if the polygon is rec-
tilinear, that is, the edges of the polygon are either horizontal or vertical, Kahn
et al. [12] have shown that �n

4 � guards are sufficient and sometimes necessary.
Sack [20] and Edelsbrunner et al. [6] have devised an O(n log n)-time algorithm
to locate these �n

4 � guards. These classical results in the theory of art galleries
have spawned a plethora of research (see the monograph by O’Rourke [18], and
the surveys [21,23,25] for overviews of previous work). In particular, since then
the art gallery problems have emerged as a research area that stresses com-
plexity and algorithmic aspects of visibility and illumination in configurations
comprising obstacles and guards.

In most of the reseach papers in the field, the number of sides of a polygon or
restriction on the shape of the polygon is used as a very natural measure of the
“complexity” of the polygon. The aim of this paper is to explore another measure
of complexity, namely the number of guards required to guard the boundary, or
the walls, of the gallery. As we will see in the next sections, this new complexity
measure can be regarded as a mixture of the two named ones: the shape and the
number of sides, but remains different and has its own characteristics. As shown
in Figure 1, a team of guards inside a gallery can see the walls (where paintings
are hung), without necessarily guarding the whole gallery (where sculptures are
displayed), showing that these two notions of complexity are in general different.
More precisely, the question we investigate in this paper is the following: given
that the interior walls of a polygon can be guarded with at most n guards,
how many additional guards may be needed to guard the whole interior? This
question has been first explored by Aloupis et all. in [1] in their study of fat
polygons. They proved that an additional number of at most 3n2/2 guards can
guard the whole gallery.

Main Results. We prove the following linear bound.

Theorem 1. Let M be a polygonal gallery. If the walls of M can be guarded by
at most n > 1 guards, an additional set of 4n − 6 guards is sufficient to guard
the interior of M .

Observe that when n = 1, the unique guard sees all the walls, hence sees the
whole gallery. Most likely, the previous bound is not sharp. We offer the following
conjecture.

Conjecture 1. If the walls of a gallery can be guarded by n > 1 guards, then
n − 2 additional guards are sufficient to guard the whole gallery.

If Conjecture 1 is true then the given value would be optimal, as is shown by the
example in Figure 2. In this example, there are n−2 “small rooms” attached by
narrow entrances to a main room. Guarding the walls requires at most n guards

Guarding Art Galleries 43

Fig. 1. Three guards are enough the
guard the paintings (on the walls), but
not the sculpture in the shaded area.
Dashed lines are lines of sight of the
guards.

. . .

Fig. 2. Black dots indicate guards. The
shaded areas indicate parts not seen by
any of the current n guards, and dashed
lines are lines of sight of the guards.

(as shown): one guard in each of the “small rooms” off the main room, and one
guard each of the two far corners of the main room. These latter two guards
each have a line of sight along one wall of each small room. However, with such
a set of guards the parts of the gallery’s interior shaded in dark grey are left
unguarded. To guard the whole gallery requires two guards in each of the “small
rooms”, and an additional two guards in the main room.

The proof of Theorem 1 uses the fact that every gallery with c convex ver-
tices can be guarded by at most 2c − 4 guards. This latter result is optimal. In
order to apply induction to bound the number of additional guards required to
guard M , we first reduce our gallery to another gallery with certain guaranteed
structural properties that make it easier to analyse. We do so by means of a new
transformation operator T (·, ·), which takes as an argument a gallery N and a
set of guards G that guards the walls of N , and returns another gallery N ′. The
operator T captures the complexity of the polygon by successfully deleting the
parts which do not contribute to the main complexity. It has a nice definition
and the general idea behind it may hopefully be applied to other contexts. On
the complexity side, using the reduction operator T and earlier results [16,7],
one can infer that the general problem of calculating the number of extra guards
needed is NP-complete and does not admit a PTAS, i.e. is APX-hard.

Related Work. As we mentioned before, the literature on the art gallery prob-
lems is huge and different type of strategies and situations have been considered.
Let us briefly review some of the works related to this paper. Laurentini [14] in-
vestigated the problem of covering the sides of the polygon and not necessarily
the interior—related complexity questions being studied in another paper [9].
Efrat et al. [5] introduced the link diagram of a polygon. As we will see later,
the last step in the proof of Theorem 1 is based on a certain kind of link dia-
gram between the guards. It is interesting to explore the relations between the
two notions. As the graph we use is based on the connectivity between guards,
another related subject is that of the guarded guard art gallery problem [15,17].
In particular, one could investigate the guarded guard version of our problem.

44 L. Addario-Berry et al.

Notations and Basic Definitions. Let us give some formal definitions. We let S
be the closure of the set S ⊂ R2. A simply connected, compact set M ⊂ R2

is polygonal if its boundary ∂M is a simple closed polygon with finitely many
vertices. The set M is nearly polygonal if M can be written as the union of
polygonal galleries M1, . . . , Mk such that

(i) for distinct i, j ∈ {1, . . . , k}, letting Ei,j = Mi ∩ Mj, either Ei,j = ∅ or Ei,j

contains a single point ei,j ; and
(ii) the connectivity graph with node set {v1, . . . , vk}, where vi represents the

polygonal gallery Mi and nodes vi and vj are adjacent whenever Mi∩Mj
= ∅,
is a tree.

We sometimes refer to the set ∂M as the walls of M , and to M1, . . . , Mk as the
rooms of M . A point p ∈ M is a cut-vertex of M if M \{p} is not connected—so
the cut-vertices of M are precisely the points ei,j defined above.

If M is a polygonal gallery, then we may describe M by simply listing the
vertices of the polygon ∂M in their cyclic order, which we always assume is
given in the “clockwise direction”. Similarly, we may describe a nearly polyg-
onal gallery M by listing the vertices of ∂M in cyclic order (again, in this
paper always clockwise). If M is the nearly polygonal gallery described by
P = (p1, . . . , pk, pk+1 = p1), then M is polygonal precisely if P has no repeated
points. Given points x and y of ∂M , by ∂M [x, y] we mean the subset of ∂M
starting at x and ending at y and following the cyclic order. These straightfor-
ward definitions and facts are depicted in Figures 3 and 4. We will also often
abuse notation and write P or P [x, y] in place of ∂M or ∂M [x, y], respectively.

p1

p2

p3

p4

p5

x

y

Fig. 3. (a) A polygonal gallery defined
by the sequence (p1, p2, p3, p4, p5, p1).
The set ∂M [x, y] is shown in bold.

p4

p5

p1

p2

p3

p6

Fig. 4. (b) A nearly polygonal
gallery defined by the sequence
(p1, p2, p3, p4, p5, p6, p1), with p6 = p3

A guard is a point of M . A guard g sees a point p of M if the line segment
[g, p] is included in M . Unless otherwise stated, G is always a set of guards in M .
We say that G guards M if every point of M is seen by a guard of G. Similarly, G
guards ∂M (or G guards the walls of M) if every point of ∂M is seen by a guard
of G. The guarding number of M is the minimum number of guards necessary
to guard M .

Guarding Art Galleries 45

2 Guards Versus Convex Vertices

Let P = (p1, . . . , pk, pk+1 = p1) describe a nearly polygonal gallery M . The goal
of this section is to prove that the guarding number of M is at most 2c − 4,
where c is the number of convex vertices of M . This bound is sharp: an example
is given in Figure 5. The polygon shown in Figure 5 contains five convex vertices.
To bound the number of guards required, consider the grey shaded region of the
polygon. Regardless of how guards are placed outside the shaded region, the dark
grey area remains unguarded, and no single guard can see all the dark grey area.
Thus, the grey shaded region of the polygon must contain two guards. Similarly,
the two other “concave triangular” areas must each contain two guards, for a
total of six guards. This example can easily be generalised to show that for every
c ≥ 5, there is a polygon with c convex vertices requiring 2c − 4 guards.

Fig. 5. A gallery with five convex vertices and guarding number six

We will use pseudo-triangulations of polygons to obtain our bound. A pseudo-
triangle is a simple polygon with exactly three convex vertices. Given a simple
polygon P , a pseudo-triangulation of P is a partition of the interior of P into
non-overlapping pseudo-triangles whose vertices are all among vertices of P .
We refer to the survey of Rote et al. [19] for further exposition about pseudo-
triangulations. In our considerations, we need the following result.

Theorem 2. Every simple polygon with k convex vertices admits a pseudo-
triangulation consisting of k − 2 pseudo-triangles.

It is easy to see that

Lemma 1. The guarding number of a pseudo-triangle is at most 2. Moreover,
it is one if the pseudo-triangle contains two consecutive convex vertices.

The next theorem is a direct consequence of Theorem 2 and Lemma 1.

Theorem 3. Let M be a polygonal gallery with c convex vertices for some in-
teger c ≥ 3. Then the guarding number of M is at most 2c − 4 − s, where s = 1
if M contains two consecutive convex vertices, and s = 0 otherwise.

46 L. Addario-Berry et al.

More generally, using pseudo-triangulations, one can show 1

Theorem 4. Let M be a polygonal gallery with c convex vertices for some in-
teger c ≥ 3 such that these vertices appear in t chains of consecutive convex
vertices. Then the guarding number of M is at most c + t − 4.

As we don’t use Theorem 4 in this full generality, we leave its proof to the full
version of this paper.

3 Sculpture Galleries

We now turn our attention to the proof of Theorem 1, which we will prove
inductively. For the purposes of our induction, we will in fact prove the following,
stronger result.

Theorem 5. Let M be a nearly polygonal gallery. If ∂M can be guarded with
at most n guards, an additional set of 4n − 6 guards is sufficient to guard M .

In order to apply induction to bound the number of additional guards required
to guard M , we first “reduce” M to another gallery M ′ with certain guaranteed
structural properties that make it easier to analyse. We do so by means of a
transformation operator T (·, ·), which takes as an argument a nearly polygonal
gallery N and a set of guards G that guards the walls of N , and returns another
nearly polygonal gallery N ′.

Roughly speaking, the effect of T is to “trim off” a section of the polygon N
that is unimportant to any of the lines of sight of the guards. Before defining T ,
then, we first formalise this notion of “importance”. Let U = U(N, G) be the
set of points of N not seen by any guard g ∈ G. We say that a point p of N is
important (with respect to N and G) if p ∈ G or if p ∈ U or if p is a cut-vertex
of N .

When there is no risk of confusion, we will write T (N) instead of T (N, G). We
also remark that the operator T will be such that T (N, G) is nearly polygonal,
U ⊂ T (N, G) ⊂ N , G ⊂ T (N, G), and G guards the walls of T (N, G). We ask the
reader to keep these properties in mind while reading the definition of T (N, G),
to which we now proceed.

3.1 The Definition of the Operator T (N, G)

Let N have rooms N1, . . . , Nk, and suppose that N is described by P =
(p1, . . . , pm, p1). We say Ni is a leaf if there is at most one j
= i such that
Nj ∩ Ni
= ∅. By N−

i we mean the set Ni \ ∪j �=iNj. Ni is empty if N−
i ∩ G = ∅.

(A) If there is 1 ≤ i ≤ k such that Ni is an empty leaf then set T (N) =
N \ N−

i = N \ Ni.
1 We are very gratefull to the first referee for pointing out that the proof of Theo-

rem 3 we presented in the first version of this paper, which didn’t use the pseudo-
triangulations, could be simplified and generalised to derive theorem 4 without using
the pseudo-triangulations.

Guarding Art Galleries 47

(B) Otherwise, if N contains a cut-vertex p such that p /∈ G and such that
for each simply connected component N∗ of N \ {p}, |G ∩ N∗| < |G| and
G ∩ N∗ guards N∗, then set T (N) = N .

(C) Otherwise, if every convex vertex of ∂N is important, set T (N) = N .

If none of (A),(B), or (C) occur, then ∂N contains a convex vertex pi that is
not important (and in particular is not a cut-vertex). Choose x ∈ [pi−1, pi[and
y ∈]pi, pi+1] such that �xpiy contains no important points except perhaps pi−1
and or pi+1, with x as close to pi−1 as possible subject to this, and with y as
close to pi+1 as possible subject to the previous constraints. We note that if
[x, y] ∩ ∂N contains an interval of positive length, then [x, y] must contain at
least one guard; for, letting [a, b] be some interval in [x, y] ∩ ∂N , no finite set of
guards lying outside �xpiy can see all of �apib. (This situation is depicted in
Figure 6.)

(D) If G∩]x, y[is non-empty choose points x′ ∈]x, pi[and y′ ∈]pi, y[
arbitrarily. Let g be some guard of G∩]x, y[and let T (N) =
(N \ �xpiy) ∪ �xx′g ∪ �y′yg. (This case is shown in Figure 7)

a bx y

pi

N

Fig. 6. No matter how guards are
placed outside of �xpiy, some part of
�apib close to [a, b] will not be seen by
any guard

x y

pi

N

x′ y′

g

Fig. 7. The situation in case (D). The
dark shaded region belongs to N but
not to T (N).

(E) Otherwise, suppose x ∈ G or y ∈ G – without loss of generality, we presume
x ∈ G. Choose z ∈ [x, y] ∩ ∂N such that [x, z] is not contained in ∂N ,
and as close to x as possible subject to this. Choose z′ ∈ ∂N very close
to z and after z in the cyclic order. Finally, choose x′ in [x, y] ∩ ∂N as
far from x as possible such that [x, x′] ⊂ ∂N (possibly x′ = x), and set
T (N) = N \ �x′zz′ . (This case is shown in Figure 8.)

If none of (A)-(E) occur then [x, y] ∩ G = ∅, so [x, y] ∩ ∂N contains no interval
of positive length.

(F) Otherwise, if x = pi−1, y = pi+1, or if]x, y[∩∂N
= ∅, then set T (N) =
(N \ �xpiy).

48 L. Addario-Berry et al.

If (F) does not occur then we may assume without loss of generality that x
=
pi−1. Since [x, y] ∩ G = ∅ and]x, y[∩∂M = ∅, by our choice of x and y there
must be z ∈ [x, y[∩U .

(G) Otherwise, if x ∈ U , then set T (N) = (N \ �xpiy).
(H) Otherwise, let z be the point of]x, y[that is closest to x such that z ∈ U .

Pick a point z′ /∈ �xpiy chosen close to z in order to guarantee that �xzz′

does not contain a guard and is disjoint from U and from ∂N . Finally, set
T (N) = N \ (�xpiy ∪ �x′zz′). (This case is shown in Figure 9.)

x
y

pi

N

x′
z

z′

Fig. 8. The situation in case (E). The
grey shaded region belongs to N but
not to T (N).

x
y

pi

N

z

z′

Fig. 9. The situation in case (H). The
grey shaded region belongs to N but
not to T (N), and the black shaded re-
gion belongs to U .

When applying T repeatedly, we will usually write T 2(N) in place of T (T (N)).
As mentioned at the start of Section 3.1, a key property of this (rather cum-
bersome) transformation is that if N and G satisfy the hypotheses of Theorem
5 then T (N) and G also satisfy the hypotheses of Theorem 5. Another impor-
tant property of T is that its repeated application is guaranteed to increase the
value of a certain bounded invariant that can be associated to gallery-guard set
pairs N, G, and so by applying T to any such pair N, G enough times, we are
guaranteed to reach a fixed point of the transformation T .

To define this invariant, we first introduce one additional piece of notation.
Let C denote the set of cut-vertices of N , and, for c ∈ C, let κ(c) be the number
of simply connected components of N \ {c}. The invariant, which we denote
Φ(N, G) (or Φ(N) when there is no risk of confusion), is equal to the number of
convex vertices which are guards, plus the number of convex vertices in U , plus∑

c∈C∩G(κ(c) − 1).
We hereafter refer to vertices that are also guards as occupied, and vertices

that are in U as critical. We observe that every occupied (resp. critical) convex
vertex of N is an occupied (resp. critical) convex vertex of T (N). It thus follows
from the definition of Φ that Φ(T (N), G) ≥ Φ(N, G). The main property that
makes this invariant useful is captured by the following lemma.

Guarding Art Galleries 49

Lemma 2. For any nearly polygonal gallery M with no set of empty leaves, and
any finite set of guards G that see all of ∂M , if T 2(M)
= T (M)
= M then either
Φ(T (M)) > Φ(M) or T (M) has strictly fewer vertices than M .

Let us postpone the proof of Lemma 2 to the end of the paper.

3.2 The Proof of Theorem 5

Let M and G be as in the statement of Theorem 5 and let g = |G|. If g = 1,
the unique guard sees the whole gallery M . Next suppose that g > 1 and that
the statement of Theorem 5 holds for all values n < g. As previously, we let
U = U(M, G) be the (open) set of points of the gallery M that are not seen by
any guard of G.

Let M0 = M ; for i ≥ 1 set Mi = T (Mi−1, G), It turns out that the number
of critical convex vertices in all of the galleries Mi can be bounded uniformly in
terms of g; this is the substance of the following lemma.

Lemma 3. For all i ≥ 0, there are at most g − 1 critical convex vertices in Mi.

We will prove this lemma along with Lemma 2, at the end of the paper.
We observe that M contains precisely 1+

∑
{c∈C:κ(c)>2}(κ(c)−1) leaves (this

can be seen by a straightforward induction). Since M contains no empty leaves,
it follows that

g − 1 ≥
∑

{c∈C:κ(c)>2}
(κ(c) − 1) ≥

∑
{c∈C∩G:κ(c)>2}

(κ(C) − 1) ,

so ∑
c∈C∩G

(κ(C) − 1) ≤ g +
∑

{c∈C∩G:κ(c)>2}
(κ(C) − 1) ≤ 2g − 1 .

Furthermore, there are at most g occupied convex vertices. It follows by Lemma
3, the above inequalities and the definition of Φ that Φ(Mi) ≤ 4g − 1 for all i. By
the observation immediately preceding Lemma 2, Φ(Mi+1) ≥ Φ(Mi) for all i, and
Lemma 2 then implies that there exists an integer j such that T (Mj) = Mj. In
this case, by the definition of the operator T (·), one of (B) or (C) occurs for Mj .

We now show that an additional set of atmost 4g−6 guards suffices to guardMj .
Since U ⊂ Mj, these guards also guard U in Mj; since Mj ⊆ M , these guards also
guardU in M ; so together with G, they guard all ofM , as claimed. We now assume,
purely for the ease of exposition, that j = 0, i.e., that Pj = P and Mj = M ; this
eases the notational burden without otherwise changing the proof.

If (B) occurs then we let p be a cut-vertex as described in (B). Let N−
1 , . . . , N−

r

be the simply connected components of M − {p}, and for i ∈ {1, . . . , r} let
N+

i = N−
i , let Gi = N+

i ∩G and let gi = |Gi|. Since p /∈ G, we have
∑r

i=1 gi = g.
Furthermore, since Gi guards N+

i and gi < g for all i ∈ {1, . . . , r}, the induction
hypothesis implies the existence of Hi ⊂ N+

i such that |Hi| ≤ 4gi−6 and Gi∪Hi

guards N+
i . In this case

⋃r
i=1(Gi ∪ Hi) guards M , and∣∣∣∣∣

r⋃
i=1

Hi

∣∣∣∣∣ ≤
r∑

i=1

(4gi − 6) ≤ 4
r∑

i=1

gi − 6r ≤ 4r − 8 < 4r − 4 .

50 L. Addario-Berry et al.

If (C) occurs then since the number of critical convex vertices is at most g −1
by Lemma 3, and the number of occupied vertices is at most g, the total number
of convex vertices of our gallery M is at most 2g − 1. It follows from Theorem 3
that there is a set H of at most 2(2g − 1) − 4 = 4g − 6 additional guards that
guard M , and hence guard U . �

3.3 Proofs of Lemmas 2 and 3

Having established Theorem 1 assuming that Lemmas 2 and 3 hold, we now turn
to the proofs of these lemmas.

Proof (of Lemma 2). Let M and G be as in the statement of the lemma, and
suppose that T (M)
= M . Let M1 = T (M) and let M2 = T 2(M). For any of the
conditions (A)-(H) in the description of T – say (E), for example – we will use the
shorthand “(E) holds for M (resp. M1, M2)” if, letting N = M (resp. M1, M2)
in the definition of T (·), the condition described in (E) holds and none of the
earlier conditions hold.

By the definition of T (·), if M1
= M , then one of (A) or (D)-(H) must hold
for M . We now show that in each case, either M1 has strictly fewer vertices than
P , Φ(M1) > Φ(M), or M2 = M1.

– If (A) holds for M then T (N) has strictly fewer vertices than N .
– If (D) holds for M then g is a cut-vertex in M1 and, more strongly, M1 \ {g}

has strictly more connected components than M \{g}. Thus Φ(M1) > Φ(M).
– If (E) holds for M then since int(�xpiy) ∩ G = ∅, x′ is a cutvertex in M1

and, more strongly, (B) holds for M1 (with p = x′). Thus M2 = M1.
– If (F) holds for M and x = pi−1, y = pi+1, then M1 contains strictly fewer

vertices than M . If (F) holds for M and]x, y[∩∂M
= ∅, we first observe
that since [x, y] ∩ G = ∅, no guard on the line through x and y can see
int(�xpiy). As every point in int(�xpiy) is guarded, it follows that every
point in [x, y] is seen by some guard g not on the line through [x, y]. Now
let z be a point in]x, y[∩∂M ; then z is a cut-vertex in M1. Furthermore, by
the above comments it must be the case that (B) holds for M1 (with p = z).
Thus M2 = M1.

– If (G) holds for M then x is a critical convex vertex in M1 but not in M , so
Φ(M1) > Φ(M).

– Finally, if (H) holds for M then z is a critical convex vertex in M1 but not
in M , so Φ(M1) > Φ(M).

This completes the proof of Lemma 2.

Proof (of Lemma 3). Let P = (p1, . . . , pk, p1) describe M . We form a graph G
whose vertex set is the set G of guards of M . For every critical convex vertex pj ,
we choose one guard gi that sees some non-empty interval]xj , pj [of [pj−1, pj],
and one guard g′j that sees some non-empty interval]pj , yj [of [pj , pj+1], and add
the edge gjg

′
j to G. By construction, the number of critical convex vertices of P

Guarding Art Galleries 51

is at most the number of edges of G. We shall show that G contains no cycles,
from which the conclusion immediately follows.

We first observe that if pj is a critical convex vertex of P , then the angle
pj−1pjpj+1 is strictly positive. Therefore, gj is different from gj+1, or else the
quadrilateral gjxjpjyj would be entirely seen by gj, contradicting the fact that
pj is in the closure of U . It follows that G contains no loops (cycles of length 1).

Next, suppose that G contains a cycle g1, g2, . . . , gk, gk+1 = g1 with k ≥ 2
(in which case gi+1 = g′i and gigi+1 is the edge corresponding to some critical
convex vertex pi, for i ∈ {1, . . . , k}). In this case, the polygonal line

PL = (g1, p1, g2, p2, . . . , gk, pk, g1) ,

which is not necessarily simple or even uncrossing, contains some simple, closed
polygonal line PL1 = (x, gi, pi, . . . , x) or PL2 = (x, pi, gi+1, . . . , x). We emphasise
that though a line segment [gi, gi+1] may not be contained within M , PL is fully
contained within M .

Given a critical convex vertex pj , as the angle at pj is convex, pj can only
appear in PL as the endpoint of a line segment. Furthermore, by definition there
is no guard, so no vertex of G, at position pj . It follows that PL contains each
of p1, . . . , pk exactly once, so the point x is not the point pi of PL1 or PL2.
Suppose first that PL contains a closed circuit such as PL1. Since x is not pi, pi

is proceeded by gi+1 = g′i in PL1. Since PL1 is simple, its interior (the bounded
component of R2 \ PL1) lies entirely within M . Since pi is convex, the guard
gi sees a non-empty interval]pi, y[for some y ∈]pi, g

′
i[. This means that the

triangle gipiy is entirely seen by gi, which contradicts the fact that pi is in the
closure of U . A similar contradiction occurs when considering PL2 instead of
PL1. Therefore, G contains no cycles of length at least 2, so no cycles at all, and
hence has at most g − 1 edges.

4 Conclusion

It would be interesting to consider the approxamibility of the problem. In par-
ticular, we do not know if the problem admits a constant factor approximation
(the best approximation algorithm [10,4] for the general art gallery problems has
ratio log(opt)). The generalisation of the problem to three dimensions is also
another natural question to investigate.

References

1. Aloupis, G., Bose, P., Dujmović, V., Gray, C., Langerman, S., Speckmann, B.:
Guarding Fat Polygons and Triangulating Guarded Polygons, September (preprint,
2007)

2. Avis, D., Toussaint, G.T.: An efficient algorithm for decomposing a polygon into
star-shaped polygons. Pattern Recognition 13(6), 395–398 (1981)

3. Chvatal, V.: A combinatorial theorem in plane geometry. J. Combin. Theory Ser.
B 18, 39–41 (1975)

52 L. Addario-Berry et al.

4. Deshpande, A., Taejung, K., Demaine, E.D., Sarma, S.E.: A Pseudopolynomial
Time O(log copt)-Approximation Algorithm for Art Gallery Problems. In: Dehne,
F., Sack, J.-R., Zeh, N. (eds.) WADS 2007. LNCS, vol. 4619, pp. 163–174. Springer,
Heidelberg (2007)

5. Efrat, A., Guibas, L.J., Har-Peled, S., Lin, D.C., Mitchell, J.S.B., Murali, T.M.:
Sweeping simple polygons with a chain of guards. In: Proc. 11th annual ACM-
SIAM symposium on Discrete algorithms, pp. 927–936 (2000)

6. Edelsbrunner, H., O’Rourke, J., Welzl, E.: Stationing guards in rectilinear art gal-
leries. Computer vision, graphics, and image processing 27(2), 167–176 (1984)

7. Eidenbenz, S., Stamm, C., Widmayer, P.: Inapproximability Results for Guarding
Polygons and Terrains. Algorithmica 31(1), 79–113 (2001)

8. Fisk, S.: A short proof of Chvatals watchman theorem. J. Combin. Theory Ser.
B 24(3), 374 (1978)

9. Fragoudakis, C., Markou, E., Zachos, S.: Maximizing the guarded boundary of an
Art Gallery is APX-complete. Comput. Geom. 38(3), 170–180 (2007)

10. Ghosh, S.: Approximation algorithms for art gallery problems. In: Proc. Canadian
Inform. Process. Soc. Congress, pp. 429–434 (1987)

11. Honsberger, R.: Mathematical Gems II. Dolciani Mathematical Expositions No. 2.
Mathematical Association of America, Washington, pp. 104–110 (1976)

12. Kahn, J., Klawe, M., Kleitman, D.: Traditional Galleries Require Fewer Watchmen.
SIAM J. Algebraic Discrete Methods 4, 194–206 (1983)

13. Kranakis, E., Pocchiola, M.: Camera placement in integer lattices. Discrete and
Comput. Geom. 12(1), 91–104 (1994)

14. Laurentini, A.: Guarding the walls of an art gallery. The Visual Computer 15(6),
265–278 (1999)

15. Liaw, B.C., Huang, N.F., Lee, R.C.T.: The minimum cooperative guards problem
on k-spiral polygons. In: Proc. of 5th Canadian Conference on Computational
Geometry, pp. 97–101 (1993)

16. Lee, D., Lin, A.: Computational complexity of art gallery problems. IEEE Trans.
Inform. Theory 32(2), 276–282 (1986)

17. Michael, T., Pinciu, V.: Art gallery theorems for guarded guards. Comput.
Geom. 26(3), 247–258 (2003)

18. O’Rourke, J.: Art gallery theorems and algorithms. Oxford University Press, New
York (1987)

19. Rote, G., Santos, F., Streinu, I.: Pseudo-triangulations: A survey, Arxiv preprint
math/0612672v1 (December 2006)

20. Sack, J.R.: An O(n log n) algorithm for decomposing simple rectilinear polygons
into convex quadrilaterals. In: Proc. 20th Conference on Communications, Control,
and Computing, pp. 64–74 (1982)

21. Shermer, T.C.: Recent results in art galleries [geometry]. Proc. IEEE 80(9), 1384–
1399 (1992)

22. Speckmann, B., Tóth, C.D.: Allocating Vertex p-Guards in Simple Polygons via
Pseudo-Triangulations. Discrete Comput. Geom. 33(2), 345–364 (2005)

23. Szabo, L.: Recent results on illumination problems. Bolyai Soc. Math. Stud. 6,
207–221 (1997)

24. Tóth, L.F.: Illumination of convex discs. Acta Math. Hungar. 29(3-4), 355–360
(1977)

25. Urrutia, J.: Art gallery and illumination problems. Handbook of Computational
Geometry, 973–1027 (2000)

Vision-Based Pursuit-Evasion in a Grid

Adrian Dumitrescu1,�, Howi Kok1, Ichiro Suzuki1, and Paweł Żyliński3,��

1 Department of Computer Science
University of Wisconsin-Milwaukee

WI 53201-0784, USA
{ad,suzuki}@cs.uwm.edu

2 Institute of Computer Science
University of Gdańsk

80-952 Gdańsk, Poland
pz@inf.univ.gda.pl

Abstract. We revisit the problem of pursuit-evasion in the grid intro-
duced by Sugihara and Suzuki in the line-of-sight vision model. Consider
an arbitrary evader Z with the maximum speed of 1 who moves (in a
continuous way) on the streets and avenues of an n×n grid Gn. The cun-
ning evader is to be captured by a group of pursuers, possibly only one.
The maximum speed of the pursuers is s ≥ 1 (s is a constant for each
pursuit-evasion problem considered, but several values for s are studied).
We prove several new results; no such algorithms were available for cap-
ture using one, two or three pursuers having a constant maximum speed
limit:
(i) A randomized algorithm through which one pursuer A with a max-

imum speed of s ≥ 3 can capture an arbitrary evader Z in Gn in
expected polynomial time. For instance, the expected capture time
is O(n1+log6/5 16) = O(n16.21) for s = 3, O(n1+log 12) = O(n4.59) for
s = 4, O(n1+log 60/13) = O(n3.21) for s = 6, and it approaches O(n3)
with the further increase of s.

(ii) A randomized algorithm for capturing an arbitrary evader in O(n3)
expected time using two pursuers who can move slightly faster than
the evader (s = 1 + ε, for any ε > 0).

(iii) Randomized algorithms for capturing a certain “passive” evader us-
ing either a single pursuer who can move slightly faster than the
evader (s = 1 + ε, for any ε > 0), or two pursuers having the same
maximum speed as the evader (s = 1).

(iv) A deterministic algorithm for capturing an arbitrary evader in O(n2)
time, using three pursuers having the same maximum speed as the
evader (s = 1).

1 Introduction

An n×n grid Gn, n ≥ 2, is the set of points with integer coordinates in [0, n−1]×
[0, n − 1] together with their connecting edges viewed as a connected planar set.
� Supported in part by NSF CAREER grant CCF-0444188.

�� Work by Paweł Żyliński was done while he was a visitor at UWM, and with support
from NSF grant CCF-0444188.

J. Gudmundsson (Ed.): SWAT 2008, LNCS 5124, pp. 53–64, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

54 A. Dumitrescu et al.

Alternatively, Gn can be viewed as the union of the following 2n line segments:
(a) the line segment between (i, 0) and (i, n − 1), called column i, 0 ≤ i ≤ n − 1,
and (b) the line segment between (0, j) and (n−1, j), called row j, 0 ≤ j ≤ n−1.
A point (x, y) in Gn is called a vertex if both x and y are integers.

We consider a vision-based pursuit-evasion problem in Gn in which a group of
pursuers (searchers) are required to search for and capture an evader (fugitive).
Both the pursuers and evader are represented by a (moving) point in Gn (two
players can be at the same point at one time). The vision of the players is limited
to a straight line of sight (i.e. a row or column): a player at a vertex can see
both the corresponding row and column, while one located in the interior of an
edge can see only the row or column containing that edge.1 A player is said to
have a direction detection capability if he can see in which direction an oppo-
nent moves (left or right) when disappearing from the line of sight. A distance
detection capability is one that allows a player to know either the exact or an
approximate distance between his current location and that of an opponent in
sight. Generally, we assume that the pursuers have no direction detection capa-
bility, and their distance detection capability is limited—a pursuer can tell only
whether or not an evader in sight is within distance 1 of his current position, or
they have an approximate distance detection capability with a constant relative
error.2 In contrast, the evader may have both direction detection and exact dis-
tance detection capabilities. The pursuers can communicate with one another in
real time (without delay). The players can also initiate and start executing any
movement without delay. The evader may know the algorithm of the pursuers,
but he does not get to know the outcomes of their random choices, in case they
use a randomized algorithm. The evader is considered captured if there exists a
time during the pursuit when his position coincides with the position of one of
the pursuers.

We discuss this problem in the continuous model: any move in Gn is allowed
within the speed limit constraint, which is 1 for the evader w.l.o.g., and some
constant s for the pursuers. In this paper we consider the case s ≥ 1, and present
algorithms for capturing the evader using a constant number of pursuers having
either s = 1 (the pursuers have the same maximum speed as the evader), s = 1+ε
for any small ε > 0 (the pursuers are slightly faster than the evader), s = 2 + ε
for any small ε > 0, or s ≥ 3.

The vision-based continuous pursuit-evasion problem in a grid described above
was first introduced by Sugihara and Suzuki [10] as a variant of the well-known
graph search problem [5,6,8], which is essentially the same problem except it is
played in an arbitrary connected graph by “blind” pursuers and an evader having
an unbounded speed. In [10] it is shown that it is possible to capture an arbitrary
evader using four pursuers having a maximum speed of s = 1. Subsequently,
Dawes [1] showed that a single pursuer having a speed of n can find (i.e., see)
in Gn an arbitrary evader having full knowledge about the pursuer’s move, and
later Neufeld [7] improved the speed bound to �2(n−1)/3�+2; no direction and

1 A player does not block the view of another.
2 Sections 3 and 4 present some results on pursuers capable of exact distance detection.

Vision-Based Pursuit-Evasion in a Grid 55

distance detection capabilities are needed for the pursuer, since the game ends
as soon as he finds the evader. A variant of the problem in which all players
have “full vision” and thus know the positions of the others at all times has
been considered in [9]. See [3] for a survey of other known results on the relation
between the pursuers’ maximum speed and the possibility of capturing an evader
in various graphs.

Table 1. Summary of the main results. EDD denotes the exact distance detection
capability, and s denotes the maximum speed of the pursuer(s). For 2nd row in the
table: p(s) = s2−4s+1

4(s−1)(s−3) .

Number of
pursuers s Evader Duration

of iterative step
Prob. of
capture

Expected time
to capture

1 (EDD) 4 arbitrary O(n) 1
nlog 12 O(n1+log 12)

1 (EDD) ≥ 4 arbitrary O(n) 1
nlog 1/p(s) O(n1+log 1/p(s))

1 1 + ε K-passive O(n + K) 2
5n−4 O(n2 + nK + 1

ε
)

1 (EDD) 2 + ε K-passive, K ≤ n
2 O(n) 1

5K O(nK + 1
ε
)

2 1 + ε arbitrary O(n2) 1
n−1 O(n3)

2 1 K-passive O(n + K) 4
9n−6 O(n2 + nK)

1 (EDD) 1 K-passive, K ≤ n
2 O(n) 2

9K+1 O(n2)

3 1 arbitrary O(n2) 1 O(n2)

Our results. We first present a randomized algorithm through which one pur-
suer A with a maximum speed of s ≥ 3 can capture an arbitrary evader Z
in Gn in expected polynomial time (Section 3). The expected capture time
is O(n1+log6/5 16) = O(n16.21) for s = 3, O(n1+log 12) = O(n4.59) for s = 4,
O(n1+log 60/13) = O(n3.21) for s = 6, and it approaches O(n3) with the further
increase of s. Next, we present a randomized algorithm through which two pur-
suers having a speed of s = 1 + ε can capture an arbitrary evader in O(n3)
expected time (i.e., we only require that the pursuers can move slightly faster
than the evader). We also present a three-pursuer deterministic algorithm for
capturing an arbitrary evader in Gn in O(n2) time, using three pursuers with a
maximum speed of s = 1. No such algorithms for capture were known using one,
two or three pursuers having a constant maximum speed limit. In particular,
the latter result improves upon the four-searcher algorithm of [10], by using only
three pursuers. It is worth noting that with arbitrary grids (i.e., connected sub-
graphs of Gn), it is easy to construct examples which require arbitrarily many
searchers for capturing a fugitive.

56 A. Dumitrescu et al.

Furthermore, under the additional assumption that the evader is K-passive
for some known K, that is, he will stop moving after not seeing any pursuer for
K time units, the expected capture time can be reduced, with even a smaller
maximum speed requirement for the pursuers. Namely, we show that it is possible
to capture a K-passive evader using a single pursuer having a maximum speed
of s = 1 + ε, in expected O(n2 + nK + 1

ε) time. With two pursuers, we only
need s = 1 for both, and the expected capture time becomes O(n2 + nK). If
K ≤ n

2 , further improvements are possible, provided that the pursuers have the
exact distance detection capability. See Table 1 for a summary of these results.
Due to space limits, most proofs are omitted. The missing proofs can be found
in the full version [2].

2 Preliminaries

In this section, we present useful schemes for pursuers to find and possibly cap-
ture the evader. We also introduce the concept of K-passiveness that determines
the length of period in which an evader can remain active after seeing a pursuer.
In the rest of the paper, we denote the pursuers by A, B, . . . and the evader by
Z. We use shortest path L1-distances in Gn in measuring distances between the
pursuer(s) and evader; e.g., the distance between (0, 2/3) and (1, 2/3) is 5/3. Let
B(p, r) be the ball of radius r centered at a point p in the L1 norm. We denote
by |I| the length of an interval I on the line.

2.1 Searching for Z

The first goal in the process of capturing Z is seeing Z. The algorithm used by
A is essentially a repeated walk in a random direction on the boundary of Gn,
and with random delays.

Lemma 1. Using a randomized algorithm, one pursuer A with a maximum
speed of s ≥ 1 can find (see) Z in O(n) expected time.

Proof (Sketch). A executes the following algorithm to search for Z:

Search algorithm. Parameter: s.

0. Set W := 2n.
1. A goes to (0, 0) from its current location at maximum speed s.
2. Time is reset to 0. A selects a waiting time w ∈ [0, W] uniformly at random,

and waits for time w at (0, 0).
3. Uniformly at random, A selects one of the two axis directions x+ or y+, and

starts moving from (0, 0) in that direction at maximum speed s (towards
(n − 1, 0) or resp. (0, n − 1)). If A has not seen Z, repeat the algorithm from
step 2 (by symmetry, the step can be iterated by starting at any of the four
corners of Gn instead of (0, 0)). ��

Vision-Based Pursuit-Evasion in a Grid 57

2.2 Chasing

We say that pursuer A with the maximum speed s ≥ 1 chases Z if he continu-
ously moves towards Z at a speed of s, after seeing Z within distance at most
s. Notice that chasing by a pursuer forces Z to continue to move forward to
avoid an immediate capture, and—because of the assumption of no direction-
detection—A may not know temporarily where Z is when Z turns left or right at
a vertex v during a chase. However, due to the initial distance of s assumption,
we ensure that A will see Z again within distance 1 when he reaches v, thus A
will always be able to continue to chase. If s > 1, or if s = 1 but there are at
least two pursuers, the chase always terminates with a capture.

Lemma 2

(i) If s = 1+ ε, then a single pursuer can capture Z within s
ε = O(1

ε) time after
he starts chasing Z.

(ii) If s = 1, then two pursuers can capture Z within O(n2) time after one of
them starts chasing Z.

2.3 K-Passiveness and Guessing

For any integer K ≥ 1, evader Z is said to be K-passive if he can move only for
K time units after seeing a pursuer; thereafter such Z becomes stationary, until
he sees a pursuer again. A 1-passive evader is analogous to a “reactive rabbit”
considered in [4] that can move (in a discrete model)3 only when a hunter is in
sight, that is, a hunter is adjacent to a rabbit (one-edge visibility). An arbitrary
evader may be thus considered as ∞-passive.

It sometimes happens that the pursuers have not seen a K-passive Z for K
time units, and hence they know that he is stationary. (Actually, we often let
the pursuers attempt to “hide” from a K-passive Z till he becomes stationary.)
Once this happens, the pursuers can guess the location of Z, approach and start
chasing him4 with a probability of success of Ω(1

n). Specifically, we have the
following lemma:

Lemma 3. Assume that the pursuer(s) (one, resp. two) having maximum speed
s ≥ 1, currently located in column 0, know(s) that a K-passive Z is stationary
(somewhere out of their sight in Gn). Then:

(i) With probability at least 2
5n−4 , a single pursuer can start chasing Z within

O(n) time.
(ii) With probability at least 4

9n−6 , two pursuers can start chasing Z within O(n)
time.

3 In the discrete model, the moves are restricted to the vertices of Gn and executed
at discrete time steps t = 0, 1, . . ., simultaneously, by each player. A move consists
of either moving to an adjacent vertex, or staying at the current vertex.

4 For convenience, we say “pursuers start chasing Z” to mean “one of the pursuers
starts chasing Z”.

58 A. Dumitrescu et al.

2.4 Hiding

In most of our randomized algorithms, pursuers use variations of the following
general scheme to “hide” in column i, so that they can start chasing Z with
probability Ω(1

n) if Z appears in column i later. The general idea is for a pursuer,
say A, to choose one of the n − 1 edges in column i uniformly at random, say
edge e, and hide in the interior of e without letting Z know which edge it is. If
subsequently Z reaches column i at some vertex v, then with a probability at
least 1

n−1 , v will be an endpoint of e, and thus A will be within distance 1 of Z,
which will allow A to start chasing Z at that moment.

Specifically, assume that a single pursuer A, with maximum speed s > 1, is at
vertex (0, 0) and sees Z in row 0 at time t at distance > 1. A uses the following
procedure H to hide in column 0. When it is finished, we say that column 0 is
guarded by A. An illustration is in Fig. 1.

Procedure H: A chooses one of the n−1 edges in column 0 uniformly at random,
and immediately starts moving from vertex (0, 0) straight to the midpoint of that
edge at speed s.

(a)

0 1 2 3 4 5 6
0

1

2

3

4

5

6

A
Z

×

0

...

j

j + 1

...

n − 1

0 · · · i · · · n − 1

(b)

0 1 2 3 4 5 6
0

1

2

3

4

5

6

A Z

×

0

...

j

j + 1

...

n − 1

0 · · · i · · · n − 1

Fig. 1. Procedure H: (a) A chooses a target position and (b) moves towards it at speed
s > 1

Lemma 4. Suppose pursuer A, whose maximum speed is s > 1, starts procedure
H at time t at vertex (0, 0) and hides in column 0. If Z (initially located in row
0) reaches column 0 for the first time after t (if any), A is within distance one
of Z with probability of at least 1

n−1 .

Note that the direction detection capability of Z does not help him to gain any
knowledge about the edge in which A hides in the above scenario, since A always
moves north from (0, 0). Clearly, by interchanging the rows and columns, we can
use procedure H to guard a column by hiding a pursuer in it.

3 One-Pursuer Randomized Algorithms

In the first part of this section, we show how to capture an arbitrary evader with
one pursuer A in expected polynomial time, provided the maximum speed s of

Vision-Based Pursuit-Evasion in a Grid 59

A is about three times the maximum speed of Z (which is 1). We present specific
results for s ≥ 3. The method essentially breaks down for s approaching s0 =
3+

√
5

2 ≈ 2.62, with the increase of the expected capture time, as this becomes
unbounded as a polynomial in n. In this section we assume the players (in
particular, A) have an exact distance detection capability. However, in the end,
we point out that similar results can be obtained under a weaker approximate
distance detection capability for the players. In fact, such results hold even if
Z has the exact distance detection capability, while A has only an approximate
one.

Theorem 1. Using a randomized algorithm, one pursuer A with a maximum
speed of s ≥ 3 and the exact distance detection capability can capture an arbitrary
Z in Gn in expected polynomial time. More precisely:

(i) Let p(s)= s2−4s+1
4(s−1)(s−3) . For s ≥ 4, the expected capture time is O(n1+log 1/p(s)).

Specifically, the expected capture time is O(n1+log 12) = O(n4.59) for s = 4,
O(n1+log 60/13) = O(n3.21) for s = 6, and it approaches O(n3) with the further
increase of s (s ≥ 6).

(ii) For s ∈ [3.2, 4), the expected capture time is O(n1+logs−2 4(s−1)2).
(iii) For s ∈ [3, 3.2), the expected capture time is O(n1+log6/5 16) = O(n16.21).

Proof. We only discuss the case s = 4. The algorithm for A is composed of
phases. A succeeds in capturing as soon as one phase is successful. Each phase
is composed of several (a logarithmic number) of rounds. If each round in the
current phase is successful, the current phase is declared successful. After each
successful round the distance between A and Z is reduced by a constant fac-
tor (this distance is measured on the line, since after each successful round, A
succeeds in seeing Z). We will impose the condition that the distance reduction
is bounded from below by a constant fraction larger than 1 (say, 2) after each
successful round. We will show that the probability that each round is successful
is bounded from below by another constant (say, 1/12). Putting these together
will ensure that A can capture Z in expected polynomial time.

One phase. Parameter: s = 4.

1. A executes the search algorithm (Lemma 1) until he sees Z; this takes O(n)
expected time.

2. A repeatedly executes one round (details below) until the current round
terminates in failure or the distance between A and Z is less than s = 4
(this latter case happens after at most O(log n) successful rounds, and this
makes current phase successful). If the current round terminates in failure,
A starts a new phase. If the current phase is successful, A captures Z.

One round. Parameters: s = 4, x = 2k.

0. Let d = x = 2k be the distance between A and Z at the start of the current
round (t = 0). W.l.o.g., assume that A and Z are on the same row. Let
W := k/4. Let o = (x0, y0) be the initial position of Z at t = 0. (Refer to
Fig 2.)

60 A. Dumitrescu et al.

1. A moves at maximum speed s towards o. As explained below, we can assume
that A does not see Z during this time interval, namely [0, k/2]. Note that
when A reaches o at t = k/2, Z is somewhere in B(o, k/2).

2. A selects a waiting time w ∈ [0, W] uniformly at random, and waits for time
w at o.

3. A selects one of the four axis directions x+, x−, y+, y−, and starts moving
from o in that direction at maximum speed s. If A hits the boundary of Gn

(when B(o, k) is not entirely contained in Gn), it stays there until time k.
Note that A reaches the boundary of the ball B(o, k) or that of Gn latest
at time t = k (by our choice of parameters); while Z is also confined to
the same ball B(o, k) on the time interval [0, k]. If A sees Z during this last
segment of his move, the current round is successful, and otherwise it is not.

0 1 2 3 4 5 6 7 8 9 10 11 12
0

1

2

3

4

5

6

7

8

9

10

11

12

A

Z

o� �

Fig. 2. One round of A’s algorithm for s = 4; here k = 8, x = 2k = 16, W = k/4 = 2.
The three concentric balls around o, B(o, k/2), B(o, 3k/4) and B(o, k), are shown.

We first observe that in a successful round, the distance reduction is at least
2: d′

d ≤ k
d = k

2k = 1
2 , as A and Z are within distance k when A sees Z in B(o, k).

For one round: let o be the last position of Z when A sees Z; w.l.o.g., o is a
grid point of Gn, because once A sees Z (say, along a row), A will force Z out
of this row, and this happens at an integer grid point of Gn. The time is reset
to 0 when o is chosen. Consider the ball B(o, k) of radius k centered at o (the
position of Z at time t = 0 when A sees Z). If it happens that A sees Z before
reaching o, the time is reset, a new origin is chosen, and the current round (not
a new one) is restarted from the smaller current distance between A and Z.

Consider the time interval I = [2k/3, 3k/4]. Note that I ⊂ [k/2, k/2+W]. Let
h+ (resp. h−) be the total time in I during which Z is visible along a horizontal
line (row) with y-coordinate ≥ y0 (resp. < y0). Similarly, let v+ (resp. v−) be
the total time in I during which Z is visible along a vertical line (column) with
x-coordinate ≥ x0 (resp. < x0). Obviously h+ + h− + v+ + v− ≥ |I| (when
Z is at integer grid points, he is visible along both a horizontal and a vertical
line). Recall that the current round is successful if A sees Z in the time interval
[k/2, k].

Assume that Z is visible along a vertical (resp. horizontal) line at coordinate
x = x0 + z (resp. y = y0 + z) at time t ∈ I. W. l. o. g., we can assume that

Vision-Based Pursuit-Evasion in a Grid 61

z ≥ 0. Note that if A starts its last segment (step 3 of the round) from o at
t0 = t−z/4 in the direction x+ (resp. y+), then A would see Z at t as indicated
above. We also need to argue that A can see Z at most one time during his
last segment of move; to put it differently, if Z is visible by A along the same
direction (vertical or horizontal) at two different moments t1 < t2, t1, t2 ∈ I,
the corresponding As must have different starting times. This translates in the
fact that disjoint intervals in which Z is seen during the time interval I generate
disjoint time intervals in [k/2, k/2 + W] in which corresponding As can start.
Specifically we prove the following two claims regarding the interval I we have
chosen. In general, we say that I ⊂ [k/2, k/2+W] is a good interval if it satisfies
these two claims.

Claim. If t ∈ I = [2k/3, 3k/4], then t0 := t−z/4 ∈ [k/2, 3k/4] = [k/2, k/2+W].

Proof. Upper bound: Since t ≤ 3k/4, we have t0 = t − z/4 ≤ t ≤ 3k/4. For the
lower bound:

t0 = t − z/4 =
t − z

4
+

3t

4
≥ 3

4
· 2k

3
=

k

2
,

where z ≤ t follows from the maximum unit speed assumption for Z. ��

Claim. Let Z be visible along a vertical (resp. horizontal) line at moments t1 ≤
t2, t1, t2 ∈ I, so that Z is at x = x0 + z1 (resp. y = y0 + z1) at t1, and Z is at
x = x0 + z2 (resp. y = y0 + z2) at t2. Then t1 = t2.

Proof. The corresponding starting time for A in his last segment of move would
be t1 − z1/4 = t2 − z2/4. This readily implies z2 − z1 = 4(t2 − t1), which leads to
a contradiction since |z2 − z1| ≤ t2 − t1, by the maximum unit speed assumption
for Z, unless t1 = t2 and z1 = z2. ��

We now show that the probability that any given round is successful is at least
1/12. By conditioning on the four possible choices (axis directions) followed by
A in his last segment, and by implicitly using the above claims, we get:

Prob(success in one round) ≥
1
4h+ + 1

4h− + 1
4v+ + 1

4v−

W
≥ |I |/4

W
=

|I |/4
k/4

=
|I |
k

=
1
12

.

Observe that the bound remains valid even if A hits the boundary of Gn during
the last segment of his move (step 3), since we can imagine that A continues
his move beyond this boundary. Since the initial distance between A and Z
(after step 1 of a phase) is x ≤ n, after at most log n successful rounds, the
distance between A and Z becomes less than 4 (recall, the distance reduction
after successful round is at least 2 : (d′/d ≤ 1/2). The current phase is then
successful since A can chase and then capture Z within another 4/3 time by
Lemma 2.

Prob(success in one phase) ≥
(

1
12

)log n

=
1

nlog 12 .

62 A. Dumitrescu et al.

The execution time for one phase is bounded by O(n) + 1
4

(
n + n

2 + n
4 + . . .

)
=

O(n). It follows that the expected number of phases until a successful one oc-
curs is O(nlog 12), and the expected capture time is consequently O(n1+log 12) =
O(n4.59), as claimed. This concludes the analysis for the case s = 4.

The extension of our result for both (constant) s ≥ 4 and the interval s ∈ [3, 4)
appears in the full version [2]. Our method can be further pushed for values s < 3
(provided s > 3+

√
5

2 ≈ 2.62), however, the bound on the expected capture time
becomes prohibitive already for s = 3. ��

Remark. The following assumption of approximate distance detection capability
for the players is a natural one. If the players (A and Z) are visible to each other
at some distance d, the distance d̃ observed by some player satisfies 1 − ρ ≤
d̃/d ≤ 1 + ρ, for a small constant ρ (e.g., ρ = 1/10 or ρ = 1/100). (Of course,
the distances observed by A and Z may differ). The same algorithm of A for
capturing Z can be used, so that similar results hold under this assumption
of approximate distance detection capability as well. Essentially, A proceeds
according to the estimated distance perceived, with the effect that the probability
of success per round is slightly reduced. We omit the calculations.

3.1 One-Pursuer Randomized Algorithm for a K-Passive Z

Here we show that for any K ≥ 1, a single pursuer A can capture a K-passive
Z in Gn in expected time O(n2 + nK + 1

ε), provided he can move slightly faster
than Z, i.e., s = 1 + ε for an arbitrary small ε > 0. We assume that A knows
the value of K.

The algorithm works as follows. A goes to (0, 0) and waits for Z to appear in
row 0 or column 0 for up to K time units. If Z appears in row 0 within K time
(w.l.o.g. at distance greater than 1; otherwise A immediately starts chasing Z),
then A immediately hides in column 0 using procedure H. Once this is done, if
Z appears in column 0 within the next K time, then A will be within distance 1
of Z with probability of at least 1

n−1 (by Lemma 4), and then can start chasing
Z if this happens. On the other hand, if Z does not appear in column 0 for K
time, either while A waits at (0, 0) in the beginning or after A hides in column
0, then A knows K is stationary. Then A guesses Z’s location, approaches him,
and starts chasing him if he is indeed there. The probability of success is at least

2
5n−4 by Lemma 3. The total time so far is O(n+K), and if A successfully starts
chasing Z, then a capture occurs in additional 1

ε time by Lemma 2. The case in
which Z appears in row 0 is handled in a similar manner. To summarize:

Theorem 2. Using the above approach, with probability at least 2
5n−4 , a single

pursuer with maximum speed of s = 1 + ε can start chasing a K-passive Z
within O(n + K) time. The expected time to capture Z by repeating this process
is O(n2 + nK + 1

ε).

Using a similar approach, for small values of K, namely, K ≤ n
2 , and with the

exact distance detection capability, we obtain the following theorem.

Vision-Based Pursuit-Evasion in a Grid 63

Theorem 3. With probability at least 1
5K , a single pursuer with maximum speed

of s = 2 + ε, ε > 0, and the exact distance detection capability can start chasing
a K-passive Z, K ≤ n

2 , within O(n) time. The expected time to capture Z is
O(nK + 1

ε).

4 Other Results and Concluding Remarks

Due to space limits, we mention here only briefly further results (see [2]).

Theorem 4. With probability at least 1
n−1 , two pursuers with a maximum speed

of s = 1 + ε can start chasing an arbitrary evader Z within O(n2) time. The
expected time to capture Z by repeating this process is O(n3).

Theorem 5. With probability at least 4
9n−6 , two pursuers with a maximum speed

of s = 1 can start chasing a K-passive Z within O(n + K) time. The expected
time to capture Z by repeating the process is O(n2 + nK).

Theorem 6. Using a deterministic algorithm, three pursuers with a maximum
speed of s = 1 can capture an arbitrary evader Z within O(n2) time.

In most of our results we have only assumed a limited distance detection capa-
bility for the pursuers—they can tell only whether or not Z in sight is within
distance 1 of their locations, or have an approximate distance detection capa-
bility with constant ratio. This feature is desirable in practical applications.
In addition, for some results requiring exact distance detection capability (the
one-pursuer randomized algorithm for capturing an arbitrary Z), we pointed out
that similar results hold under the assumption of approximate distance detection
capability. Our algorithms are applicable in many scenarios with autonomous
robots in locating and capturing a hostile or uncontrollable robot moving on the
ground in a grid-like city environment, or in a contaminated environment not
suitable for human intervention. A similar pursuit-evasion problem has recently
been considered in a 3D grid [11].

Some questions remain for future study. Most likely, the maximum speed
requirements and the capture times in our algorithms can be further reduced.
Particularly interesting are: Can a single pursuer with a maximum speed of
s = 1 + ε capture an arbitrary evader in Gn in a polynomial (in n) number of
steps? Is it possible to capture an arbitrary evader in polynomial time using two
pursuers with a maximum speed of s = 1? Under what conditions can a group
of searchers with a maximum speed s < 1 make a capture?

As a final remark, we show that two deterministic pursuers are indeed suffi-
cient in the discrete model, despite the fact that all players have the same “speed”
of one edge per step.5 It is obvious that one pursuer is not enough even in the
discrete model.
5 In the discrete model, the evader is considered captured if he and a pursuer are

either at the same grid point at a discrete time step, or if they traverse the same
edge from opposite directions in the interval between two consecutive time steps.

64 A. Dumitrescu et al.

Theorem 7. In the discrete model, with no direction and exact distance detec-
tion capabilities for pursuers, two pursuers can capture Z in O(n2) time steps
using a deterministic algorithm.

Proof. A and B always maintain a tandem formation in which A is exactly at
the adjacent vertex west of B. A and B start by moving in tandem along the
south boundary of the grid (row 0) eastward from the west end. When one of
them sees Z, they move north in tandem, and continue to do so until one of
them starts chasing Z or they lose sight of Z. In the latter case, Z must be in a
row to the north of A and B, and depending on whether Z was visible to A or
B in the previous step, he is either on the column immediately to the west A or
immediately to the east of B. Then A and B repeatedly move in the direction
of Z (either west or east) within their current row, until one of them sees Z
again. They then repeat the same procedure, by first moving north towards Z.
As a result, Z is forced to remain to the north of A and B, and chasing starts
in O(n2) time steps. The pursuers in the tandem formation can then capture Z
within O(n2) steps after chasing starts. ��

Acknowledgment. We wish to thank Amol Mali and Kazuo Sugihara for in-
teresting discussions on these topics.

References

1. Dawes, R.W.: Some pursuit-evasion problems on grids. Information Processing
Letters 43, 241–247 (1992)

2. Dumitrescu, A., Kok, H., Suzuki, I., Żyliński, P.: Vision-based pursuit-evasion in
a grid. Manuscript submitted for publication (2007)

3. Fomin, F.V., Thilikos, D.: An annotated bibliography on guaranteed graph search-
ing. Theoretical Computer Science (to appear, 2008)

4. Isler, V., Kannan, S., Khanna, S.: Randomized pursuit-evasion with local visibility.
SIAM Journal of Discrete Mathematics 20(1), 26–41 (2006)

5. Kirousis, L.M., Papadimitriou, C.H.: Searching and pebbling. Theoretical Com-
puter Science 47, 205–218 (1986)

6. Megiddo, N., Hakimi, S.L., Garey, M.R., Johnson, D.S., Papadimitriou, C.H.: The
complexity of searching a graph. Journal of the ACM 35(1), 18–44 (1986)

7. Neufeld, S.W.: A pursuit-evasion problem on a grid. Information Processing Let-
ters 58, 5–9 (1996)

8. Parsons, T.D.: Pursuit-evasion in a graph. Lecture Notes in Mathematics, vol. 642,
pp. 426–441. Springer, Heidelberg (1992)

9. Sugihara, K., Suzuki, I.: On a pursuit-evasion problem related to motion coordi-
nation of mobile robots. In: Proc. the 21st Hawaii Int. Conf. on System Sciences,
Kailua-Kona, Hawaii, pp. 218–226 (1988)

10. Sugihara, K., Suzuki, I.: Optimal algorithms for a pursuit-evasion problem in grids.
SIAM Jorunal of Discrete Mathematics 2(1), 126–143 (1989)

11. Suzuki, I., Żyliński, P.: Strategies for capturing an evader in a building by mobile
robots. IEEE Robotics and Automation Magazine (to appear, 2008)

Angle Optimization in Target Tracking

Beat Gfeller1,��, Matúš Mihalák1, Subhash Suri2,�,
Elias Vicari1,��, and Peter Widmayer1,��

1 Department of Computer Science, ETH Zurich, Zurich, Switzerland
{gfeller,mmihalak,vicariel,widmayer}@inf.ethz.ch

2 Department of Computer Science, University of California, Santa Barbara, USA
suri@cs.ucsb.edu

Abstract. We consider the problem of tracking n targets in the plane
using 2n cameras, where tracking each target requires two distinct cam-
eras. A single camera (modeled as a point) sees a target point in a cer-
tain direction, ideally with unlimited precision, and thus two cameras
(not collinear with the target) unambiguously determine the position of
the target. In reality, due to the imprecision of the cameras, instead of a
single viewing direction a target defines only a viewing cone, and so two
cameras localize a target only within the intersection of two such cones.
In general, the true localization error is a complicated function of the an-
gle subtended by the two cameras at the target (the tracking angle), but
a commonly accepted tenet is that an angle of 90◦ is close to the ideal.
In this paper, we consider several algorithmic problems related to this
so-called “focus of attention” problem. In particular, we show that the
problem of deciding whether each of n given targets can be tracked with
90◦ is NP-complete. For the special case where the cameras are placed
along a single line while the targets are located anywhere in the plane,
we show a 2-approximation both for the sum of tracking angles and the
bottleneck tracking angle (i.e., the smallest tracking angle) maximization
problems (which is a natural goal whenever targets and cameras are far
from each other). Lastly, for the uniform placement of cameras along the
line, we further improve the result to a PTAS.

1 Introduction

We study the problem of tracking targets by a set of cameras in the plane. The
position of a target can be estimated if two distinct cameras are dedicated to
tracking the target. We consider simple low-resolution cameras with very limited
� Work done while the author was a visiting professor at the Institute of Theoretical

Computer Science, ETH, Zurich. The author wishes to acknowledge the support
provided by the National Science Foundation under grants CNS-0626954 and CCF-
0514738.

�� Work partially supported by the National Competence Center in Research on Mobile
Information and Communication Systems NCCR-MICS, a center supported by the
Swiss NSF under grant number 5005 – 67322, and by the Swiss SBF under contract
no. C05.0047 within COST-295 (DYNAMO) of the European Union.

J. Gudmundsson (Ed.): SWAT 2008, LNCS 5124, pp. 65–76, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

66 B. Gfeller et al.

image processing capabilities. The quality of the estimated position of a target
depends mainly on the relative position of the target and the two cameras [1].
Fig. 1 depicts two different tracking situations of target t with two cameras to
illustrate this phenomenon. The field of view of a camera is a cone, a target
can be tracked by the camera if it lies in that cone, and therefore any target to
be tracked by two cameras needs to lie in the intersection of the two respective
cones. The geometry of the situation indicates that tracking accuracy is best if
the angle at the target is closest to 90◦.

c2

c7

t
θ

c2

c7
t
θ

Fig. 1. Two scenarios of tracking target t with tracking angle θ: less than 90◦ (left),
and exactly 90◦ (right)

The cameras in our setting cannot move, but can freely choose their viewing
direction. A pair of cameras can be dedicated to track one target. Thus, tracking
n targets requires 2n cameras. We assume for the moment that not only the
cameras, but also the targets are points in the plane in fixed positions. The Focus
of Attention problem (FoA) for n targets and 2n cameras is to find a pairing
of cameras and an assignment of camera pairs to targets that is optimum for
some measure of tracking quality. In such an assignment, where each camera is
assigned to exactly one target, and each target is assigned to two cameras, each
target forms a triangle with its two assigned cameras. We evaluate the quality
of the assignment as a function of the tracking angles, i.e., the angles that the
triangles form at the targets. We consider three specific problems which belong
to the following general family of combinatorial optimization problems:

Problem Family: Focus of Attention (FoA).

Input: A set T of n targets and a set C of 2n cameras, given as points in the
plane.

Feasible solution: A camera assignment where each target is assigned two
cameras, such that each camera is assigned to exactly one target.

Measure: A tracking angle for every triple consisting of a target and two as-
signed cameras.

Goal: Find a feasible solution which is optimal for one from a collection of
objective functions defined on the set of tracking angles.

In this paper we consider the following objectives for the Focus of Attention
problem. In the problem SumOfAngleDeviations the objective is to mini-
mize the sum of the deviations of tracking angles from ninety degrees (90◦);

Angle Optimization in Target Tracking 67

for SumOfAngles it is to maximize the sum of tracking angles, and for Bot-

tleneckAngle it is to maximize the minimum tracking angle. The latter two
problems are interesting whenever targets and cameras tend to form small track-
ing angles, e.g. because the targets are far from cameras.

Notice that we assume the algorithms to know the exact position of the tar-
gets. In reality this is not possible for all scenarios. Nonetheless, the assumption
is not a severe modeling simplification, if we assume that the targets are labeled
and every camera can recognize the label of the tracked target. In such a situa-
tion every camera can look around (rotate the viewing focus) and for each target
keep track of the angle under which the target is tracked. This information, to-
gether with the known positions of the cameras, allows to compute the tracking
angle of any target and two cameras.

Related Work. Object (or target) tracking is an important task for environment
surveillance and monitoring applications. It is a well established research subject
[2] in the field of computer vision and image processing. Currently, multi-camera
systems are being developed, where a certain depth information of objects needs
to be computed for a given scene, ideally at low cost.

Isler et al. [3] were the first to consider this task as a combinatorial opti-
mization problem. They defined the Focus of Attention problem as a theoretical
abstraction of the problem of lowering the computational costs of the depth es-
timation by assigning cameras to targets in an “optimal” way, and pointed out
that for a very general problem setting (not in the plane) this comprises the
classical NP-hard 3-Dimensional Matching (3DM) problem as a special case.
Therefore, the focus in [3] is on the problem version in which all cameras are
restricted to lie on a single line �. The objective is the aspect ratio zt/d(ci, cj),
where zt is the distance of target t from �, and d(ci, cj) is the distance between
the two cameras ci and cj that are assigned to t. They give a 2-approximation
for the problem of minimizing the sum of aspect ratios and for the problem of
minimizing the maximum aspect ratio. Also, if the cameras are placed equidis-
tantly on the line, they present a PTAS for the problem of maximizing the sum
of aspect ratios. They also consider cameras on a circle and targets inside the
circle with tracking cost being 1/ sin θ, where θ is the tracking angle, and deliver
a 1.42-approximation for the problem of minimizing the sum of tracking costs,
and for minimizing the maximum tracking cost.

Naturally, it is the powerful geometric structure that sets the Focus of At-
tention problems apart from more general assignment problems and makes it
particularly interesting. If we would abandon the constraints that geometry im-
poses, Focus of Attention would belong to the class of Multi-Index Assignment
Problems [4], where the well known NP-hard 3-Dimensional Matching problem
is a special problem in this class. Other NP-hard versions of multi-index assign-
ment problems also focus on geometry, such as those aiming at the circumference
or the area of a triangle formed by three assigned points in the plane [5]. An easy
modification of the NP-hardness proof of the latter problem implies NP-hardness
of SumOfAngles and BottleneckAngle [6].

68 B. Gfeller et al.

Our Contribution. While aspect ratios of rectangles as in [3] might capture
tracking quality very well in some cases, we believe that it will in general be more
useful to optimize the most influential component of tracking quality directly,
namely the tracking angles at the targets, even though this turns out to be
surprisingly complicated.

We first show that the problem of minimizing the sum of the deviations of track-
ing angles from 90◦ (SumOfAngleDeviations) is NP-hard, and that it admits
no (multiplicative) approximation. We then consider FoA that asks for a camera
assignment with maximum sum of tracking angles (SumOfAngles), and FoA

that asks for a camera assignment where the minimum tracking angle is max-
imized (BottleneckAngle). For cameras on a line, we present an algorithm
that is a 2-approximation for both SumOfAngles and BottleneckAngle at
the same time. This is the first constant approximation for the BottleneckAn-

gle on a line, and for the case on a line, it also improves upon the previous 2+1/t
approximation [7] (t is the size of the local neighborhood in the local-search algo-
rithm) for SumOfAngles. For the special case where the spacing of the cameras
on the line is totally regular, we present a PTAS for SumOfAngles.

2 NP-Hardness of SumOfAngleDeviations

In this section we consider the minimization FoA problem where the objective
is the deviation of the tracking angle from 90◦, and state that the problem is
NP-hard, by showing that the corresponding decision problem OrthogonalAs-

signment is NP-complete.
OrthogonalAssignment: For a FoA problem, where every point has inte-
ger coordinates, decide whether there exists a camera assignment where every
tracking angle is exactly 90◦.

We reduce the following NP-complete RestrictedThreeDM problem to our
OrthogonalAssignment problem.
RestrictedThreeDM: Given three disjoint sets X , Y , and Z, each with q
elements, and a set S ⊆ X × Y × Z such that every element of X ∪ Y ∪ Z
appears in at most three triples from S, decide whether there exists a subset
S′ ⊆ S of size q such that each element of X ∪ Y ∪ Z occurs in precisely one
triple from S′.

Our proof is in the tradition of an NP-hardness proof of Spieksma and Woeg-
inger [5] who showed that the following problem related to OrthogonalAs-

signment is NP-complete: Given sets of planar points A1, A2 and A3, does there
exist an assignment X ⊂ A1×A2×A3 such that for every x ∈ X , the three points
of x lie on a line? One can easily see that this result immediately implies that
a “degenerate tracking of targets”, where each target is collinear with the two
cameras that track it (creating an angle of 0◦ or 180◦) is NP-complete. However,
the problem of tracking with 90◦ angles that we consider does not follow easily,
but requires several new gadgets, constructions, and proof ideas. The complete
proof of the following statement can be found in [8].

Theorem 1. OrthogonalAssignment is NP-complete.

Angle Optimization in Target Tracking 69

Theorem 1 implies NP-hardness of all those FoA problems for which the objec-
tive function is optimum when the tracking angles equal 90◦. These include the
objectives of minimizing the sum/maximum of deviations of the tracking angles
from 90◦, or the goal of maximizing the sum/minimum of sin θt over all tracking
angles θt. Furthermore, the maximization FoA problem with the deviation of
the tracking angle from 90◦ as the objective cannot be approximated, unless
P = NP. We summarize this discussion:

Corollary 1. Every problem from the family FoA for which the only optimum
solution is a camera assignment with all tracking angles equal 90◦ is NP-hard.

3 Maximizing the Sum/Min of Tracking Angles

In this section we consider the maximization FoA problems, where the objec-
tive is to obtain large tracking angles. In SumOfAngles we ask for a camera
assignment such that the sum of the tracking angles is maximized. We also con-
sider a bottleneck variant of the problem, BottleneckAngle, which asks for
a camera assignment where the minimum tracking angle is maximized.

The approach to maximize tracking angles appears unreasonable whenever
these angles get close to 180 degrees. However, it makes sense whenever targets
are fairly far from cameras, i.e., for any assignment the tracking angle is always
at most 90◦ (in other words, each target lies outside the Thales circle formed by
any two cameras).

3.1 Cameras on a Line

We consider the scenario where the cameras are positioned on a horizontal line,
and the targets are placed freely in the plane. We may assume, without loss
of generality, that all targets lie above the line with cameras (otherwise we
mirror the targets from below to the part above the line, with no change in
the resulting assignment). An example of such a scenario is frontier monitoring,
where the shape of the border can be approximated by a line. We present a
2-approximation algorithm for both SumOfAngles and BottleneckAngle.
Note that the previous best approximation ratio for SumOfAngles was (2+ ε)
which was implied by the result of Arkin and Hassin [7], and nothing was known
about the bottleneck version.

In the following, we denote by ci both the i-th camera on the line, and its
position, and assume that c1 < c2 < . . . < c2n. Note that we assume that no two
cameras have the same position. This avoids complicated special cases, but our
results still hold without this assumption.

We call the interval between two paired cameras the baseline of these cameras.
Furthermore, we call a pairing of cameras all-overlapping if the baselines of any
two camera pairs (of the chosen pairing) intersect. Observe that there always
exists an optimum solution which uses an all-overlapping pairing – any two non-
intersecting pairs can exchange their closest endpoints to create two intersecting
pairs with larger baselines and thus larger tracking angles.

70 B. Gfeller et al.

Lemma 1. For both SumOfAngles and BottleneckAngle with cameras
on a line, there exists an optimal solution with an all-overlapping pairing.

Note that for the objective of maximizing the sum of tracking angles, every
optimal solution must have this property. We will make heavy use of the following
consequence:

Corollary 2. For both SumOfAngles and BottleneckAngle on a line,
there exists an optimal solution where every left camera of a camera pair is among
the leftmost n cameras, and every right camera of a camera pair is among the
rightmost n cameras. These two groups of cameras can be separated by some point
M on the line, such that c1 < c2 < . . . < cn < M < c1+n < c2+n < . . . < c2n.

Approximation Algorithm. Our approximation algorithm uses the structural
properties of Lemma 1. We first create a simple interleaved camera pairing that
proved its value in earlier work [3]: For i = 1, . . . , n, pair camera ci with camera
ci+n. Then we assign the interleaved camera pairs to the targets in an optimum
way.

For SumOfAngles an optimum assignment of the camera pairs to the targets
can be found by computing a maximum-weight perfect matching in a weighted
complete bipartite graph where the camera pairs and the targets are the two
vertex sets, and the weight of an edge between a pair and a target is the tracking
angle of the triangle formed by the target and the pair of cameras. This matching
can be computed in O(|V |(|E|+ |V | log |V)) time [9], which is O(n3) in our case,
as we have a complete bipartite graph.

For BottleneckAngle, we can find an optimum assignment by a binary
search for the maximum tracking angle (in the set of at most n2 different tracking
angles) for which a perfect matching exists. This means that for a tracking angle
θ considered by binary search, all edges with value less than θ are discarded from
the complete bipartite graph, and a maximum cardinality matching is computed.
If the computed cardinality is less than n, we know that there is no camera
assignment with interleaved cameras where the minimum tracking angle is at
least θ, and the binary search proceeds with an angle smaller than θ, otherwise
it proceeds with an angle larger than θ. The exact procedure is described in [8].

The aforementioned discussion shows that for any given camera pairing, we
are able to efficiently find the best assignment of camera pairs to targets. Our
algorithm, which we call Interleave, uses the interleaved pairing. In the fol-
lowing we analyze its approximation ratio.

Theorem 2. For any solution O using an all-overlapping pairing, there exists
a camera assignment with the interleaved pairing where each tracking angle is at
least half of the corresponding tracking angle of the solution O.

Proof. Let H denote the interleaved pairing, and let O be a target assignment
using an all-overlapping pairing. We will show that any solution which uses
an all-overlapping pairing can be transformed into a solution which uses the
interleaved pairing H by a sequence of at most n steps of a particular nature:

Angle Optimization in Target Tracking 71

M
c1 ci+n

ci

c1+n

P

c1+ncic1 ci+n

ck+n

cl

cl cj+n

⎫⎬
⎭ Pairing in O

Fig. 2. Comparing the camera pairings in O with those in H

In each step, two pairs of cameras are chosen to create two new pairs under the
following constraints: (1) One of the tracking angles may decrease by a factor
of at most two, but from then on it stays the same throughout the rest of the
transformation. (2) All other angles either stay the same or increase. The claim
then follows from the constraints of the transformation. We will now show that
for any solution O using an all-overlapping pairing, there exists a solution T
using the interleaved pairing H , such that each tracking angle in T at any target
is at least half of the corresponding tracking angle in O.

As O contains an all-overlapping pairing, there exists a point M on the line
which separates the left ends of all baselines from the right ends of all baselines in
O (see Fig. 2). We prove the existence of the transformation by induction on the
number k of targets in the instance. If k = 1, the claim is trivially true because
O’s pairing is equal to H (and thus no transformation is needed). For k ≥ 2,
let (c1, ci+n) be the baseline with leftmost starting point in O. If i = 1, then
this camera pair is present in both O’s pairing and in H , and by the induction
hypothesis the desired transformation exists for the k − 1 other targets and
camera pairs. In the following, assume that i �= 1. In H , c1 and ci will be paired
with c1+n and ci+n, respectively. Considering O, let cl be the camera paired with
c1+n, and let cj+n be the camera paired with ci.

Let P be the target which O assigns to the pair (c1, ci+n). We now distinguish
two cases:

(A) The angle c1, P, c1+n is at least half of the angle c1, P, ci+n. Let Q be the
target which O assigns to the pair (cl, c1+n). We create from O a new
camera assignment O′ by transforming the pairs (c1, ci+n), (cl, c1+n) into
pairs (c1, c1+n), (cl, ci+n) and assigning these pairs to targets P and Q,
respectively. Thus, the tracking angle at P in O′ is at most cut in half, and
the tracking angle at Q in O′ increases, as the baseline (cl, ci+n) extends to
the right (compared to (cl, c1+n)).

(B) The angle ci, P, ci+n is at least half of the angle c1, P, ci+n. Let Q be the
target which O assigns to the pair (ci, cj+n). We create from O a new cam-
era assignment O′ by transforming the pairs (c1, ci+n), (ci, cj+n) into pairs
(c1, cj+n), (ci, ci+n), and assigning them to targets Q and P , respectively.
The tracking angle at Q increases (as the baseline lengthens in the new
assignment), and the tracking angle at P is at most cut in half.

72 B. Gfeller et al.

As ci and c1+n both lie between c1 and ci+n, and ci is to the left of c1+n, at least
one of these cases applies. In both cases, one angle increased, and one angle de-
creased by a factor of at most 2, but this angle uses a pair from the interleaved
pairing. Thus, there remain k−1 camera pairs which are potentially not assigned
to a camera pair from the interleaved pairing. By the induction hypothesis (ap-
plied on the k − 1 targets and the cameras assigned to them) these targets can
be assigned to camera pairs from the interleaved pairing such that each of these
k − 1 other angles are at most cut in half during the transformation. �	

This theorem directly proves that our algorithm computes a 2-approximation
for both considered objectives.

Corollary 3. The algorithm Interleave computes a 2-approximation for both
SumOfAngles and BottleneckAngle.

It can be showed that the analysis of the approximation ratio of the algorithm
is tight. We refer to [8] for the missing details.

3.2 Equidistant Cameras on a Line

We consider the special setting where the cameras lie on a (horizontal) line �
and the distance between any two neighboring cameras on the line is the same.
Without loss of generality we assume unit distance. We consider the problem of
maximizing the sum of tracking angles and present a PTAS for this problem.

We consider the cameras in the order as they appear on the line � (from
left to right). According to Corollary 2 we know that in every optimum camera
assignment the first n cameras are paired with the last n cameras. Let L denote
the first n cameras and R the last n cameras. We denote the cameras as they
appear in the order on � as l1, l2, . . . , ln for cameras in L, and r1, r2, . . . , rn for
cameras in R. Hence, the distance between l1 and rn is 2n − 1.

The main idea of the algorithm is to partition L and R into k equally-sized sets
L1, L2, . . . , Lk and R1, R2, . . . , Rk, and to correctly guess what types of paired
cameras an optimum solution OPT contains with respect to the partition, i.e.,
we want to know for every s and t how many pairs of OPT have a camera from
Ls and a camera from Rt. Camera pair {li, rj} is called a pair of type (s, t)
(with respect to the partition), if li ∈ Ls and rj ∈ Rt. There are k2 different
types of pairs. We can characterize every camera assignment by its types of the
camera pairs – for each type (s, t) we know how many pairs are of this type.
Let ms,t denote this number. For these k2 numbers ms,t, each ms,t is in the
range {0, . . . , n

k }. According to this classification, there are at most (n
k)k2

dif-
ferent classes of camera pairings, which we call camera-pairing types. Thus, if k
is a constant, the algorithm can enumerate all camera-pairing types in polyno-
mial time. For each enumerated type of camera pairing the algorithm constructs
some camera pairing of that type (if that is possible, otherwise it reports that
no camera assignment using such a camera pairing type exists) and optimally
assigns the targets to the camera pairs. At the end the algorithm outputs the
best solution among all constructed camera assignments. The algorithm can

Angle Optimization in Target Tracking 73

create a camera pairing of a type specified by values ms,t in the following way:
for every camera-pair type (s, t) it creates ms,t pairs of type (s, t) by pairing ms,t

cameras from Ls with ms,t cameras from Rs. Clearly, if a camera pairing of the
considered camera-pairing type exists, the algorithm finds one, otherwise the al-
gorithm fails to create one, in which case it continues with the next enumerated
camera-pairing.

In the following, we concentrate on the situation where the algorithm considers
the same camera-pairing type as the OPT solution has. The algorithm creates
some camera pairing of that type, and assigns the camera pairs to the targets
in an optimum way by computing a maximum weight matching between the
pairs and the targets. Let A denote the resulting camera assignment. We show
that the sum of the tracking angles of A is a good approximation of the sum
of tracking angles of OPT. We say that a camera pair {li, rj} is a short pair, if
the distance between li and rj is at most n√

k
, otherwise we say it is a long pair.

Observe that in any camera assignment there are a lot more long pairs than short
ones, as there are at most n/

√
k short pairs (every short pair has to have its left

camera among the last n
√

k cameras in L), and thus at least n−n/
√

k long pairs.
We show that the algorithm guarantees good tracking angles at long pairs. We
further show that there exists a solution QOPT (quasi-optimum) which incurs
most of the tracking profit at the long pairs, and which is not much worse than
the optimum solution OPT. This then implies that the solution A computed
by the algorithm is a good approximation of QOPT, and therefore it is a good
approximation of OPT, too. In the following, if X is a camera assignment, we
use X |LONG to denote the subset of X which consists of long pairs only. By
w(X) we denote the weight of X , i.e., the sum of tracking angles arising in X .

Let OPT′ denote an optimum solution for the problem of assigning all pairs
of OPT to targets, and maximizing the sum of tracking angles at long pairs.
Thus, OPT′, OPT, and A use the same type of camera-pairing. Consider a long
pair {lO, rO} of type (i, j) from OPT′. Let t be the target to which that pair
is assigned, and let θOPT′ be the tracking angle of t in OPT′. See Fig. 3 for
illustration. Let {lA, rA} be a (long) pair of type (i, j) that is created by the
algorithm. In the camera assignment of A, {lA, rA} is assigned to some target
t′. We create a new camera assignment A′ that uses the pairing of A, and the
targets of long pairs of OPT′ in the following way: we match every long pair
{lA, rA} from A of type (i, j) with a long pair {lO, rO} from OPT′ of the same
type. Then, let {lO, rO} be assigned to target t. We create A′ by assigning the
matched pair {lA, rA} to t. Clearly, A′ is a camera assignment of the same type
as OPT’ and A. Clearly, as A and A′ are using the same pairs, the solution of
A is at least as good as A′, i.e., w(A) ≥ w(A′). We now show that A′ is a good
approximation for OPT’ on long pairs.

Let θA′ denote the tracking angle of t in A′. We show that θA′ is not much
smaller (if at all) than θOPT′ . Clearly, the worst case for the difference between
the two angles is when lO is the leftmost vertex in Li, rO is the rightmost vertex
in Rj , and lA is the rightmost vertex in Li and rA is the leftmost vertex in Rj .
The distance between lO and lA is at most n/k (the size of Li). Similarly for rO

74 B. Gfeller et al.

Li Rj

t

�

pair in OPT′

pair in A′

θOPT′

θA′

lO rOlA rA

ht

xn/k n/k
�t

d

Fig. 3. A long pair of type (i, j) in OPT′, and a long pair of type (i, j) in solution A′

and rA, the distance between these two cameras is at most n/k. On the other
hand, the distance between lA and rA is at least n/

√
k, because {lA, rA} is a

long pair. We can express the ratio θA′/θOPT′ in the following way. Let x express
the position of t on the line �t parallel to � through t. We assume that x = 0
when t is exactly above lA. Further, we denote by ht the distance between � and
�t and by d the distance between lA and rA (cf. Fig. 3). We can then express the
ratio θA′/θOPT as follows:

θA′

θOPT′
=

arctan
(

x
ht

)
+ arctan

(
d−x
ht

)

arctan
(

n/k+x
ht

)
+ arctan

(
d+n/k−x

ht

) (1)

The analysis of the first and second derivative with respect to x of the previous
function shows that θA′/θOPT′ is minimal for x = d/2, i.e., when the target lies
in the middle point of the segment (lA, rA). Hence, by setting x = d/2 in (1) we

get the following lower bound: θA′
θOPT′

≥ arctan(d
2ht

)
arctan(n

kht
+ d

2ht
) We now distinguish two

cases. First, if ht = o(n), then the two arguments inside the arctan functions of
the previous term are unbounded as n grows (remember that d ≥ n/

√
k). As

arctan is a bounded function, θA′/θOPT′ approaches 1 as n gets large. Therefore,
given any ε and k, we can find n large enough, such that θA′/θOPT′ ≥ 1 − ε, as
desired. Second, if ht = Ω(n), the arguments inside the arctan functions of the
previous term are bounded from above and may even approach zero as n goes
to infinity (remember that d ≤ 2n − 1), so we have to examine the behavior of
the term in this case, and, as we will see, we also have to involve k. We denote
α := d

2ht
, and thus obtain θA′/θOPT′ ≥ arctan(α)

arctan(n
kht

+α) . We express the term n
kht

in terms of α (remember that d ≥ n/
√

k): n
kht

= 2dn
2dkht

= 2n
dk α ≤ 2√

k
α. Thus

we have θA′/θOPT′ ≥ arctan(α)

arctan
(
(1+ 2√

k
)α

) . The derivative of the last fraction with

respect to α is positive for any α ≥ 0, and thus the last fraction is minimized
when α approaches zero. The limit of that fraction, when α approaches zero, is
1/(1 + 2√

k
) =

√
k√

k+2
, and thus, for any fixed ε, setting k appropriately, and for n

large enough, we get that θA′/θOPT′ ≥ 1 − ε.

Angle Optimization in Target Tracking 75

In the remaining we show that there exists a camera assignment QOPT with
the same camera-pairing type as OPT, which gains most of its profit (i.e., a
(1 − δ) fraction of the total profit, 0 < δ < 1) on long pairs, and which is a good
approximation to OPT. The optimum solution OPT has at most n/

√
k short

pairs. Let S denote the subset of OPT that contains the short pairs only. Let
us consider those long pairs of OPT, where every long pair, considered as an
interval on �, fully contains every short pair. Let G denote the subset of OPT
on such pairs. Observe that there are at least n − 2n/

√
k pairs in G (there are

at least n − n/
√

k long pairs that contain the left camera of any short pair –
the pairs formed by cameras l1, l2, . . . , n − n/

√
k; among those pairs, at most

n/
√

k can be formed by cameras r1, r2, . . . , rn/
√

k). We split G into subsets of

size |S|. Let G1, G2, . . . , Gz denote these sets, where z = |G|/|S| ≥
√

k − 2.
For simplicity we assume that |G| is divisible by |S|. As one can check, this
is not a crucial assumption in our analysis. Let us order the sets Gi such that
w(G1) ≥ w(G2) ≥ . . . w(Gz).

Observe first that if w(Gz) ≥ w(S), we get w(OPT) ≥
∑

i w(Gi) ≥ z · w(S),
and thus w(OPT)

z ≥ w(S). As w(OPT|LONG) denotes the contribution of all
long pairs to the total weight w(OPT), we obtain w(OPT|LONG) = w(OPT) −
w(S) ≥ w(OPT) − w(OPT)

z ≥ z−1
z w(OPT) ≥

√
k−3√
k−2

w(OPT). Hence, setting k

appropriately, OPT gains a (1 − δ) fraction of its profit on long pairs, and thus
we can set QOPT := OPT.

Assume now that w(S) > w(Gz). We create a new solution QOPT: we (arbi-
trarily) assign the pairs of Gz to targets of S and the pairs of S to targets of Gz .
Let S′ and G′

z denote the new assignments. Clearly, as w(QOPT) ≤ w(OPT), we
have w(G′

z) + w(S′) ≤ w(Gz) + w(S), as only pairs in Gz and S have possibly
been assigned to different targets. Observe now that w(G′

z) > w(S), because
in QOPT the pairs of Gz are assigned to the same targets as the pairs of S in
OPT, and every pair from Gz fully contains every pair from S (if imagined as
an interval), which makes every tracking angle of the respective target bigger
in QOPT. Thus, using the last two inequalities, w(S′) < w(Gz). Hence, we also
have that w(S′) < w(Gi), i = 1, . . . , z − 1, and thus w(S′) ≤ w(OPT)

z . Applying
the argumentation from above we get w(QOPT|LONG) = w(QOPT) − w(S′) ≥
z−1

z w(QOPT). Observe also that w(QOPT) ≥ w(OPT) − w(Gz). Thus, since
w(OPT)−w(Gz) ≥ z−2

z−1w(OPT), we obtain w(QOPT) ≥ z−2
z−1w(OPT), and hence

w(QOPT|LONG) ≥ z−2
z w(OPT).

Putting the previously derived inequalities together, we obtain w(A) ≥
w(A′) ≥ (1−ε)w(OPT′|LONG) ≥ (1−ε)w(QOPT|LONG) ≥ (1−ε) z−2

z w(OPT) ≥
(1 − ε)

√
k−4√
k−2

w(OPT). Hence, for any given ε∗, we can find ε and k such that

(1 − ε)
√

k−4√
k−2

≥ 1 − ε∗, and thus w(A) ≥ (1 − ε∗)OPT. This yields:

Theorem 3. There is a PTAS for SumOfAngles with equidistant cameras on
a line.

76 B. Gfeller et al.

4 Conclusions

We have considered different variants of the “focus of attention” problem, where
the objective function depends on the tracking angles. We have shown that
the natural goal of assigning targets under 90◦ is (in general) an NP-complete
problem. It remains an open problem whether the more restricted instances
where the cameras are placed on a line can be solved in polynomial time. The
hardness result shows that there is no approximation algorithm (unless P = NP)
for the problem of minimizing the sum of deviations of tracking angles from 90◦.
In this context it would be interesting to consider different optimization goals
which capture the optimality of tracking angles θi being 90◦ and which would
allow a good approximation. The first candidate for such an objective could be
sin θi. Any results for this or similar objective function would be interesting.
Also for the objective functions considered in this paper there are unresolved
questions. For example, we have only considered SumOfAngles on a line. For
the general case, a simple greedy algorithm achieves a 3-approximation [4], and
it remains open whether one could do better.

References

1. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn.
Cambridge University Press, Cambridge (2004)

2. Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. ACM Computing Sur-
veys 38(4) (December 2006)

3. Isler, V., Khanna, S., Spletzer, J., Taylor, C.J.: Target tracking with distributed
sensors: the focus of attention problem. Computer Vision and Image Understand-
ing 100(1-2), 225–247 (2005)

4. Spieksma, F.: Multi index assignment problems: complexity, approximation, appli-
cations. In: Nonlinear Assignment Problems, pp. 1–12. Kluwer, Dordrecht (2000)

5. Spieksma, F., Woeginger, G.J.: Geometric three-dimensional assignment problems.
European Journal of Operational Research 91, 611–618 (1996)

6. Goossens, D., Spieksma, F.: On the FOA-problem. Manuscript (January 2004)
7. Arkin, E.M., Hassin, R.: On local search for weighted k-set packing. Mathematics

of Operations Research 23(3), 640–648 (1998)
8. Gfeller, B., Mihalák, M., Suri, S., Vicari, E., Widmayer, P.: Angle optimization

in target tracking. Technical Report 592, Department of Computer Science, ETH
Zurich (2008), http://www.inf.ethz.ch/research/disstechreps/techreports

9. Galil, Z.: Efficient algorithms for finding maximum matching in graphs. ACM Com-
put. Surv. 18(1), 23–38 (1986)

http://www.inf.ethz.ch/research/disstechreps/techreports

Improved Bounds for Wireless Localization

Tobias Christ1, Michael Hoffmann1, Yoshio Okamoto2, and Takeaki Uno3

1 Institute for Theoretical Computer Science, ETH Zürich, Switzerland
2 Tokyo Institute of Technology, Japan

3 National Institute of Informatics, Tokyo, Japan

Abstract. We consider a novel class of art gallery problems inspired by
wireless localization. Given a simple polygon P , place and orient guards
each of which broadcasts a unique key within a fixed angular range.
Broadcasts are not blocked by the edges of P . The interior of the poly-
gon must be described by a monotone Boolean formula composed from
the keys. We improve both upper and lower bounds for the general setting
by showing that the maximum number of guards to describe any simple
polygon on n vertices is between roughly 3

5n and 4
5n. For the natural

setting where guards may be placed aligned to one edge or two consec-
utive edges of P only, we prove that n − 2 guards are always sufficient
and sometimes necessary.

1 Introduction

Art gallery problems are a classic topic in discrete and computational geometry,
dating back to the question posed by Victor Klee in 1973: “How many guards are
necessary, and how many are sufficient to patrol the paintings and works of art in
an art gallery with n walls?” Chvátal [2] was the first to show that �n/3� guards
are always sufficient and sometimes necessary, while the beautiful proof of Fisk [6]
made it into “the book” [1]. Nowadays there is a vast literature [12,14,16] about
variations of this problem, ranging from optimization questions (minimizing the
number of guards [10] or maximizing the guarded boundary [7]) over special
types of guards (mobile guards [11] or vertex pi-guards [15]) to special types of
galleries (orthogonal polygons [8] or curvilinear polygons [9]).

A completely different direction has recently been introduced by Eppstein,
Goodrich, and Sitchinava [5]. They propose to modify the concept of visibility
by not considering the edges of the polygon/gallery as blocking. The motiva-
tion for this model stems from communication in wireless networks where the
signals are not blocked by walls, either. For illustration, suppose you run a café
(modeled, say, as a simple polygon P) and you want to provide wireless Inter-
net access to your customers. But you do not want the whole neighborhood to
use your infrastructure. Instead, Internet access should be limited to those peo-
ple who are located within the café. To achieve this, you can install a certain
number of devices, let us call them guards, each of which broadcasts a unique
(secret) key in an arbitrary but fixed angular range. The goal is to place guards
and adjust their angles in such a way that everybody who is inside the café can

J. Gudmundsson (Ed.): SWAT 2008, LNCS 5124, pp. 77–89, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

78 T. Christ et al.

prove this fact just by naming the keys received and nobody who is outside the
café can provide such a proof. Formally this means that P can be described by
a monotone Boolean formula over the keys, that is, a formula using the oper-
ators And and Or only, negation is not allowed. It is convenient to model a
guard as a subset of the plane, namely the area where the broadcast from this
guard can be received. This area can be described as an intersection or union of
at most two halfplanes. Using this notation, the polygon P is to be described
by a combination of the operations union and intersection over the guards.

a b

cd

p

q

For example, the first polygon to the right can be de-
scribed by (a ∪ b) ∩ c ∩ d.

Natural guards. Natural locations for guards are the
vertices and edges of the polygon. A guard which is
placed at a vertex of P is called a vertex guard. A vertex
guard is natural if it covers exactly the interior angle of
its vertex. But natural vertex guards alone do not always
suffice [5], as the second polygon P shown to the right
illustrates: No natural vertex guard can distinguish the
point p inside P from the point q outside of P . A guard
placed anywhere on the line given by an edge of P and broadcasting within an
angle of π to the inner side of the edge is called a natural edge guard. Dobkin,
Guibas, Hershberger, and Snoeyink [4] showed that n natural edge guards are
sufficient for any simple polygon with n edges.

Vertex guards. Eppstein et al. [5] proved that any simple polygon with n edges
can be guarded using at most n − 2 (general, that is, not necessarily natural)
vertex guards. More generally, they show that n + 2(h − 1) vertex guards are
sufficient for any simple polygon with n edges and h holes. This bound is not
known to be tight. Damian, Flatland, O’Rourke, and Ramaswami [3] describe
simple polygons with n edges which require at least �2n/3� − 1 vertex guards.

General guards. In the most general setting, we do not have any restriction
on the placement and the angles of guards. So far the best upper bound known
has been the same as for vertex guards, that is, n − 2. On the other hand, if
the polygon does not have collinear edges then at least �n/2� guards are always
necessary [5]. The lower bound construction of Damian et al. [3] for vertex guards
does not provide an improvement in the general case, where these polygons can
be guarded using at most �n/2� + 1 guards. As O’Rourke wrote [13]: “The
considerable gap between the �n/2� and n − 2 bounds remains to be closed.”

Results. We provide a significant step in bringing the two bounds for general
guards closer together by improving both on the upper and on the lower side. On
one hand we show that for any simple polygon with n edges �(4n−2)/5� guards
are sufficient. The result generalizes to polygons combined in some way by the
operations intersection and/or union. Any simple polygon with h holes can be
guarded using at most �(4n − 2h − 2)/5� guards. On the other hand we describe
a family of polygons which require at least �(3n − 4)/5� guards. Furthermore,

Improved Bounds for Wireless Localization 79

Table 1. Number of guards needed for a simple polygon on n vertices. The mark ∗
indicates the results of this paper.

natural general
vertex guards guards vertex guards guards

upper bound does not exist [5] n − 2 [∗] n − 2 [5] �(4n − 2)/5� [∗]
lower bound does not exist [5] n − 2 [∗] �2n/3� − 1 [3] �(3n − 4)/5� [∗]

we extend the result of Dobkin et al. [4] to show that n − 2 natural (vertex or
edge) guards are always sufficient. It turns out that this bound is tight.

2 Notation and Basic Properties

We are given a simple polygon P ⊂ IR2. A guard g is a closed subset of the
plane, whose boundary ∂g is described by a vertex v and two rays emanating
from v. The ray that has the interior of the guard to its right is called the left
ray, the other one is called the right ray. The angle of a guard is the interior
angle formed by its rays. For a guard with angle π, the vertex is not unique.

A guard g covers an edge e of P completely if e ⊆ ∂g and their orientations
match, that is, the inner side of e is on the inner side of g. We say e is covered
partly by g if their orientations match and e ∩ ∂g is a proper sub-segment of e
that is not just a single point. We call a guard a k-guard if it covers exactly k
edges completely. As P is simple, a guard can cover at most one edge partly.
If a guard covers an edge partly and k edges completely, we call it a k′-guard.
Assuming there are no collinear edges, a guard can cover at most two edges; then
a natural vertex guard is a 2-guard and a natural edge guard is a 1-guard. A
guarding G(P) for P is a formula composed of a set of guards and the operators
union and intersection that defines P . The wireless localization problem is to
find a guarding with as few guards as possible. The same problem is sometimes
referred to as guard placement for point-in-polygon proofs or the sculpture garden
problem [5]. The following basic properties are restated without proof.

Observation 1. For any guarding G(P) and for any two points p ∈ P and
q /∈ P there is a g ∈ G(P) which distinguishes p and q, that is, p ∈ g and q /∈ g.

a

b

c

d
e

f
g

h

i

Fig. 1. (a) a 2-guard, (b) a 1-guard (and a natural edge guard), (c) a 2-guard (and a
natural vertex guard), (d) a 2-guard, (e) a 0-guard, (f) a 0-guard, (g) a 1-guard (not a
1′-guard), (h) a 1-guard (a non-natural vertex guard), (i) a 1′-guard.

80 T. Christ et al.

Lemma 1. [4] Every edge of P must be covered by at least one guard or it must
be covered partly by at least two guards

3 Upper Bounds

Following Dobkin et al. [4] we use the notion of a polygonal halfplane which is a
topological halfplane bounded by a simple bi-infinite polygonal chain with edges
(e1, . . . , en), for n ∈ IN. For n = 1, the only edge e1 is a line and the polygonal
halfplane is a halfplane. For n = 2, e1 and e2 are rays which share a common source
but are not collinear. For n ≥ 3, e1 and en are rays, ei is a line segment, for 1 < i <
n, and ei and ej , for 1 ≤ i < j ≤ n, do not intersect unless j = i + 1 in which case
they share an endpoint. For brevity we use the term chain in place of simple bi-
infinite polygonal chain in the following. For a polygonal halfplane H define γ(H)
to be the minimum integer k such that there exists a guarding G(H) for H using k
guards. Similarly, for a natural number n, denote by γ(n) the maximum number
γ(H) over all polygonal halfplanes H that are bounded by a chain with n edges.
Obviously γ(1) = γ(2) = 1. Dobkin et al. [4] show that γ(n) ≤ n.

Lemma 2. Any simple polygon P on n ≥ 4 vertices is an intersection of two
polygonal halfplanes each of which consists of at least two edges.

Proof. Let p− and p+ be the vertices of P with minimal and maximal x-coordi-
nate, respectively. If they are not adjacent along P , split the circular sequence of
edges of P at both p− and p+ to obtain two sequences of at least two segments
each. Transform each sequence into a chain by linearly extending the first and
the last segment beyond p− or p+ to obtain a ray. As p− and p+ are opposite
extremal vertices of P , the two chains intersect exactly at these two points. Thus,
the polygon P can be expressed as an intersection of two polygonal halfplanes
bounded by these chains. Now consider the case that p− and p+ are adjacent
along P . Without loss of generality assume that P lies above the edge from p−
to p+. Rotate clockwise until another point q has x-coordinate larger than p+.
If q and p− are not adjacent along P , then split P at these points. Otherwise
the convex hull of P is the triangle qp−p+. In particular, q and p+ are opposite
non-adjacent extremal vertices and we can split as described above.
�
Theorem 3. Any simple polygon P with n ≥ 4 edges can be guarded using at
most n − 2 natural (vertex or edge) guards.

Proof. Dobkin et al. [4] showed that for any chain there is a Peterson-style for-
mula, that is, a guarding using natural edge guards only in which each guard ap-
pears exactly once and guards appear in the same order as the corresponding edges
appear along the chain. Looking at the expression tree of this formula there is at
least one vertex both of whose children are leaves. In other words, there is an op-
eration (either union or intersection) that involves only two guards. As these two
guards belong to two consecutive edges of P , we can replace this operation in the
formula by the natural vertex guard of the common vertex, thereby saving one
guard. Doing this for both chains as provided by Lemma 2 yields a guarding for
P using n − 4 natural edge guards and two natural vertex guards.
�

Improved Bounds for Wireless Localization 81

The (closure of) the complement of a polygonal halfplane H , call it H , is a
polygonal halfplane as well.

Observation 2. Any guarding for H can be transformed into a guarding for H
using the same number of guards.

Proof. Use de Morgan’s rules and invert all guards (keep their location but flip
the angle to the complement with respect to 2π). Note that the resulting formula
is monotone. Only guards complementary to the original ones appear (in SAT
terminology: only negated literals); a formula is not monotone only if both a
guard and its complementary guard appear in it.

Corollary 4. Let P1, . . . , Pm be a collection of m ≥ 1 simple polygons t of
which are triangles, for 0 ≤ t ≤ m. Let R be a region that can be described as
a formula composed of the operations intersection, union, and complement over
the variables {P1, . . . , Pm} in which each Pi appears exactly once. Then R can
be guarded using at most n − 2m + t natural (vertex or edge) guards, where n is
the total number of edges of the polygons Pi, for 1 ≤ i ≤ m.
�

Corollary 5. Any simple polygon with n ≥ 4 edges and h non-triangular holes
can be guarded using at most n − 2(h + 1) natural (vertex or edge) guards.
�

Our guarding scheme for chains is based on a recursive decomposition in which at
each step the current chain is split into two or more subchains. At each split some
segments are extended to rays and we have to carefully control the way these
rays interact with the remaining chain(s). This is particularly easy if the split
vertex lies on the convex hull because then the ray resulting from the segment
extension cannot intersect the remainder of the chain at all. However, we have
to be careful what we mean by convex hull. Instead of looking at the convex hull
of a polygonal halfplane H we work with the convex hull of its bounding chain
C. The convex hull h(C) of a chain C = (e1, . . . , en), for n ≥ 2, is either the
convex hull of H or the convex hull of H , whichever of these two is not the whole
plane which solely depends on the direction of the two rays of C. The boundary
of h(C) is denoted by ∂h(C). There is one degenerate case, when the two rays
defining C are parallel and all vertices are contained in the strip between them;
in this case, h(C) is a strip bounded by the two parallel lines through the rays
and thus ∂h(C) is disconnected.

Theorem 6. Any polygonal halfplane bounded by a simple bi-infinite polygonal
chain with n ≥ 2 edges can be guarded using at most �(4n − 1)/5� guards.

Proof. The statement is easily checked for 2 ≤ n ≤ 3. We proceed by induction
on n. Let C be any chain with n ≥ 4 edges. Denote the sequence of edges along
C by (e1, . . . , en) and let vi, for 1 ≤ i < n, denote the vertex of C incident to ei

and ei+1. The underlying (oriented) line of ei, for 1 ≤ i ≤ n, is denoted by �i.
For 2 ≤ i ≤ n − 1, let e+

i be the ray obtained from ei by extending the segment
linearly beyond vi. Similarly e−i refers to the ray obtained from ei by extending
the segment linearly beyond vi−1. For convenience, let e+

1 = �1 and e−n = �n.

82 T. Christ et al.

Δ

v1

v2e1

e2

h(C)

vi∅

ei

ei+1

(a) Case 1.

Δ

v1

v2
e1

e2

h(C)

vn−1

∅

en

en−1
vn−2

Δ′

∅

vi

(b) Case 2.

Δ

v1

v2
v3e1

e−
2

h(C)

∅

e+
3

Δ”

(c) Case 3.

Fig. 2. The chain C can interact with the shaded region Δ in three possible ways. The
label ∅ marks an area which does not contain any vertex from C.

Without loss of generality (cf. Observation 2) suppose that v1 is reflex, that is,
the interior of the region bounded by C lies in the angle of C incident to v1 which
is larger than π. If there is any vertex vi on ∂h(C), for some 1 < i < n − 1, then
split C into two chains C1 = (e1, . . . , e

+
i) and C2 = (e−i+1, . . . , en). We obtain

a guarding for C as G(C1) ∪ G(C2) and thus γ(C) ≤ γ(i) + γ(n − i), for some
2 ≤ i ≤ n − 2. As both i ≥ 2 and n − i ≥ 2, we can bound by the inductive
hypothesis γ(C) ≤ �(4i−1)/5�+�(4n−4i−1)/5� ≤ �(4i−1)/5+(4n−4i−1)/5� ≤
�(4n − 1)/5�. Else, if both e1 and en are part of ∂h(C) and �1 intersects �n then
we place a guard g that covers both rays at the intersection of �1 and �n to obtain
a guarding g∪G(e−2 , . . . , e+

n−1) for C. Therefore, in this case γ(C) ≤ 1+γ(n−2).
Observe that this is subsumed by the inequality from the first case with i = 2.
Otherwise, either �1 does not intersect �n and thus v1 and vn−1 are the only
vertices of ∂h(C) (the degenerate case where ∂h(C) is disconnected) or without
loss of generality (reflect C if necessary) v1 is the only vertex of ∂h(C). Let Δ
denote the open wedge bounded by e1 and e+

2 . We distinguish three cases.

v1

v2e1

e2

vn−1 en

vi

e−
i+1e+

i

g . . .

. . . C1
C2

Case 1. There is a vertex of C in Δ and
among these, a vertex furthest from �2 is vi,
for some 3 ≤ i ≤ n − 2 (Fig. 2(a)). Split C
into three chains, C1 = (�1), C2 = (e−2 , . . . , e+

i),
and C3 = (e−i+1, . . . , en). By the choice of vi

there is no intersection between C2 and C3 other
than at vi. A guarding for C can be obtained
as G(C1) ∪ (G(C2) ∩ G(C3)). In this case γ(C) ≤
1 + γ(j) + γ(n − j − 1), for some 2 ≤ j ≤ n − 3.
Since j ≥ 2 and n − j − 1 ≥ n − (n − 3) − 1 = 2,
we can apply the inductive hypothesis to bound
γ(C) ≤ 1 + �(4j − 1)/5� + �(4n − 4j − 5)/5� ≤
�(4n − 1)/5�.
Case 2. There is a vertex of C in Δ and among these, the unique one furthest
from �2 is vn−1 (Fig. 2(b)). We may suppose that �1 intersects �n; otherwise
(in the degenerate case where ∂h(C) is disconnected), exchange the roles of v1
and vn−1. We cannot end up in Case 2 both ways. Let Δ′ denote the open
(convex) wedge bounded by en and e−n−1. If there is any vertex of C in Δ′,

Improved Bounds for Wireless Localization 83

let vi be such a vertex which is furthest from �n−1. Let C1 = (e1, . . . , e
+
i) and

C2 = (e−i+1, . . . , e
+
n−1). Both C1 and C2 are simple, except that their first and

their last ray may intersect (in that case split the resulting polygon into two
chains). Put a guard g at the intersection of �n with e1 such that g covers en

completely and e1 partially (see figure, the small stripes indicate the side to
be guarded). A guarding for C can be obtained as g ∩ (G(C1) ∪ G(C2)). Again
this yields γ(C) ≤ 1 + γ(i) + γ(n − i − 1), for some 2 ≤ i ≤ n − 3, and thus
γ(C) ≤ �(4n − 1)/5� as above in Case 1.

v1

v2e1

en

g1

...
en−1

g2

∅
∅

∅

e+
n−2

∅

e−
2

C′

Otherwise there is no vertex of C in Δ′. We
distinguish two sub-cases. If e+

n−1 intersects e1
then put two guards (see figure): a first guard
g1 at the intersection of �n with e1 such that
g1 covers en completely and e1 partially, and a
second guard g2 at the intersection of �n−1 with
e1 such that g2 covers en−1 completely and e1
partially. Together g1 and g2 cover e1 and g1 ∩
(g2∪G(C′)) provides a guarding for C, with C′ =
(e−2 , . . . , e+

n−2). In this case we obtain γ(C) ≤
2+γ(n−3) and thus by the inductive hypothesis
γ(C) ≤ 2 + �(4n − 13)/5� ≤ �(4n − 1)/5�.

v1

v2
e1

en

g
∅

∅
∅

e2

C ′

...

e+
n−1

∅

Finally, suppose that e+
n−1 does not intersect

e1. Then for the chain C′ = (e1, . . . , e
+
n−1) there

is some vertex other than v1 on the convex hull
boundary h(C′). Thus we can obtain a guarding
for C′ as described above for the case that there
is more than one vertex on the convex hull. Put
a guard g at the intersection of �n with e1 such
that g covers en completely and e1 partially (see
figure). This yields a guarding g ∩ G(C′) for C
with γ(C) ≤ 1 + γ(C′) ≤ 1 + γ(i)+ γ(n − i − 1),
for some 2 ≤ i ≤ n−3. As in Case 1 we conclude
that γ(C) ≤ �(4n − 1)/5�.
Case 3. There is no vertex of C in Δ (Fig. 2(c)). Let Δ′′ denote the open
(convex) wedge bounded by e−2 and e+

3 . If e−3 does not intersect e1 then put
a natural vertex guard g at v1 to obtain a guarding g ∩ G(C′) for C, where
C′ = (e−3 , . . . , en). This yields γ(C) ≤ 1 + γ(n − 2) and thus by the inductive
hypothesis γ(C) ≤ 1 + �(4n − 9)/5� ≤ �(4n − 1)/5�.

v1

v2

v3

e1

e2

∅

e−
3

∅

∅

g1

g2

Now suppose that e−3 intersects e1. We distinguish
two sub-cases. If there is no vertex of C in Δ′′, then
place two guards: a natural vertex guard g1 at v1 and a
guard g2 at the intersection of e−3 with e1 such that g1
covers e3 completely and e1 partially. A guarding for C
is provided by g1∩(g2∪G(C′)), with C′ = (e−4 , . . . , en).
In this case we obtain γ(C) ≤ 2 + γ(n − 3) and thus
in the same way as shown above γ(C) ≤ �(4n − 1)/5�.

84 T. Christ et al.

Otherwise there is a vertex of C in Δ′′. Let vi, for some 4 ≤ i ≤ n − 1, be a
vertex of C in Δ′′ which is furthest from �3. First suppose e−i+1 does not intersect
e2. Then neither does e+

i and hence we can split at vi in the same way as if vi

would be on ∂h(C). If i = n − 1, e−n must intersect e2 (otherwise, en would
be on ∂h(C)). Thus we have i < n − 1 and both chains consist of at least two
segments/rays.

v1

v2

vi

e∗
1 ∅

∅

g ∅e+
i

e∗
i+1

...

. . .

e−
3

C1

C2
v′

Now suppose that e−i+1 intersects e2 and thus e1,
and denote the point of intersection between e−i+1
and e1 by v′. Let e∗1 be the ray originating from v′ in
direction e1, and let e∗i+1 denote the segment or ray
(for i = n − 1) originating from v′ in direction e−i+1.
Place a natural vertex guard g at v1. Regardless of
whether or not e+

i intersects e2 and e1, a guarding
for C is provided by g ∩ (G(C1)∪G(C2)), with C1 =
(e−3 , . . . , e+

i) and C2 = (e∗1, e
∗
i+1 . . . , en) (if i = n− 1

then C2 = (e∗1, e
∗
n)). Observe that by the choice of

vi both C1 and C2 are simple and γ(C) ≤ 1 + γ(j) + γ(n − j − 1), for some
2 ≤ j ≤ n − 3. As above, this yields γ(C) ≤ �(4n − 1)/5�.

We have shown that in every case γ(C) ≤ �(4n−1)/5� and as C was arbitrary
it follows that γ(n) ≤ �(4n − 1)/5�.
�

Corollary 7. Any simple polygon P with n edges can be guarded using at most
�(4n − 2)/5� guards.

Corollary 8. Let P1, . . . , Pm be a collection of m ≥ 1 simple polygons with n
edges in total, and let R be a region that can be described as a formula com-
posed of the operations intersection, union, and complement over the variables
{P1, . . . , Pm} in which each Pi appears exactly once. Then R can be guarded
using at most �(4n − 2m)/5� guards.

Corollary 9. Let P be any simple polygon P with h holes such that P is bounded
by n edges in total. Then P can be guarded using at most �(4n−2h−2)/5� guards.

4 Lower Bounds

For any natural number m we construct a polygon Pm with 2m edges which
requires “many” guards. The polygon consists of spikes S1, S2, ..., Sm arranged
in such a way that the lines through both edges of a spike cut into every spike to
the left (see Fig. 3). Denote the apex of Si by wi and its left vertex by vi. The edge
from vi to wi is denoted by ei, the edge from wi to vi+1 by fi. We can construct
Pm as follows: Consider the two hyperbolas

{
(x, y) ∈ IR2 | x ≥ 1, y = 1

x

}
and{

(x, y) ∈ IR2 | x ≥ 1, y = − 1
x

}
. Let v1 := (1, 1) and w1 := (1, −1). Then choose

f1 tangential to the lower hyperbola. Let v2 be the point where the tangent of the
lower hyperbola intersects the upper hyperbola, that is, v2 = (1 +

√
2, 1

1+
√

2
).

Choose w2 to be the point where the tangent of the upper hyperbola in v2
intersects the lower hyperbola, and proceed in this way. When reaching wm,

Improved Bounds for Wireless Localization 85

S2
S3

S1

S4

v1

v2

v3
v4

w1

w2
w3 w4

e1 f1

e2 f2
e3

f3 e4

f4

Fig. 3. Example consisting of four spikes

draw the last edge fm from wm to v1 to close the polygon. Due to the convexity
of the hyperbolas, Pm has the claimed property.

No two edges of Pm are collinear. Consider the line arrangement defined by
the edges of Pm. No two lines intersect outside Pm, unless one of them is the
line through fm. This leads to the following observation.

Observation 3. In any guarding for Pm every 2-guard that does not cover fm

is a natural vertex guard.

Theorem 10. For any even natural number n there exists a simple polygon with
n edges which requires at least n − 2 natural guards.

fi−1

ei

fi

ei+1
fi+1

Si+1

Si−1

wi

vi+1

wi+1

Si

viWe say a guard belongs to a spike Si if it is a
natural edge guard on ei or fi or if it is a nat-
ural vertex guard on vi or wi. As only natu-
ral guards are allowed, every guard belongs to
exactly one spike. The basic idea is that most
spikes must have at least two guards. Obvi-
ously every spike Si has at least one guard,
since ei must be covered (Lemma 1).

Lemma 11. Consider a guarding G(Pm) us-
ing natural guards only, and let i ∈ {1, ..., m−
1}. If only one guard belongs to Si, then this
guard must be on vi or on ei. If neither the guard at wi nor the guard of fi appear
in G(Pm), then both the guard at vi+1 and the guard of ei+1 are in G(Pm).

Proof. Assume only one guard from G(Pm) belongs to Si. It cannot be the natural
edge guard of fi, because this would leave ei uncovered (Lemma 1). If we had a
guard on wi only, there would be no guard to distinguish a point near vi outside
Pm from a point near vi+1 located inside Pm and below the line through fi (see
the two circles in the figure). Now assume there are no guards at wi nor on fi.
Then to cover the edge fi there must be a vertex guard on vi+1. Furthermore,
the edge guard on ei+1 is the only remaining natural guard to distinguish a point

86 T. Christ et al.

at the apex of Si near wi from a point located to the right of the apex of Si+1
near wi+1 and above the line through ei+1 (depicted by two crosses).
�

This lemma immediately implies Theorem 10. Proceed through the spikes from
left to right. As long as a spike has at least two guards which belong to it, we
are fine. Whenever there appears a spike Si with only one guard, we know that
there must be at least two guards in Si+1 namely at vi+1 and on ei+1. Either
there is a third guard that belongs to Si+1, and thus both spikes together have
at least four guards; or again we know already two guards in Si+2. In this way,
we can go on until we either find a spike which at least three guards belong to
or we have gone through the whole polygon. So whenever there is a spike with
only one guard either there is a spike with at least three guards that makes up
for it, or every spike till the end has two guards. Hence there can be at most one
spike guarded by one guard only that is not made up for later. For the last spike
Sm the lemma does not hold and we only know that it has at least one guard.
So all in all there are at least 2(m − 2) + 1 + 1 = n − 2 guards.

If we allow general (vertex) guards, it is possible to find guardings for Pm

using roughly 2n/3 guards, which is in accord with the lower bound in [3]. c

Theorem 12. For any even natural number n there exists a simple polygon with
n edges which requires at least �(3n − 4)/5� guards.

Proof. Consider a polygon Pm as defined above, and let G(Pm) be a guarding for
Pm. Define a to be the number of 2-guards in G(Pm), and let b be the number
of other guards. All the n edges of P have to be covered somehow. An edge
can be covered completely by a 2-guard, a 1-guard, or a 1′-guard. If no guard
covers it completely, then the edge must be covered by at least two guards partly
(Lemma 1). Moreover, at least one of these guards, namely the one covering the
section towards the right end of the edge, is a 0′-guard, because the orientation
can not be correct to cover a second edge. So if an edge e is not covered by a
2-guard, then there is at least one guard that does not cover any edge other than
e. Therefore 2a + b ≥ n.

For any i ∈ {1, ..., m−2} let hi be the directed line segment from the intersec-
tion of the lines through ei+1 and ei+2 to vi+2 (see Fig. 4). Similarly, let h′

i be the
line segment from wi+1 to the intersection of the lines through fi and fi+1. As in
Lemma 11, consider pairs (p1, q1), ..., (pm−2, qm−2) and (p′1, q′1), ..., (p′m−2, q

′
m−2)

of points infinitesimally close to the starting point or the endpoint of the corre-
sponding line segment, located as follows: pi, p

′
i ∈ Pm for all i, qi, q

′
i /∈ Pm for all

i, pi is outside the natural vertex guard at wi+1, whereas qi is inside the natural
vertex guard at wi+2, and similarly, p′i is outside the natural vertex guard at
vi+2, whereas q′i is inside the natural vertex guard at vi+1. There are n − 4 such
pairs, and they need to be distinguished somehow (Observation 1). Any natural
vertex guard can distinguish at most one pair, and the same is true for any
(non-natural) 2-guard located along the line through fm. Thus any 2-guard in
G(Pm) distinguishes at most one of the pairs (Observation 3).

Improved Bounds for Wireless Localization 87

q1

p1
q2

p2
q3

p3
q4 p4

q5

p′
1

p′
2

p′
3

p′
4

p′
5

q′
1

q′
2

q′
3

q′
4

h1

h2

h3

h4

h′
1

h′
2

h′
3

h′
4

C

C′

Fig. 4. The pairs (pi, qi) and (p′
i, q

′
i) must be distinguished

We claim that every guard g in G(Pm) can distinguish at most three of these
pairs. Denote the vertex of g by vg, and let �g and rg denote the left and right
ray of g, respectively. Assume g distinguishes pi from qi. If vg is to the left
of hi, then—in order to distinguish pi from qi—the ray rg must intersect hi.
Symmetrically, if vg is to the right of hi, then �g must intersect hi. Finally, if
vg is on the line through hi then it must be on the line segment hi itself. To
distinguish pi from qi, the endpoint of hi (i.e. vi+2) must be inside g (possibly
on the boundary of g), hence �g must point to the left side of hi or in the same
direction as hi, and rg must point to the right side of hi or in the same direction.
Now assume g distinguishes p′i and q′i. If vg is to the right of h′

i, then �g must
intersect it, if it is to the left rg must intersect it. If vg lies on h′

i, �g leaves to
the left and rg to the right, or either or both rays lie on h′

i. In any case either �g

intersects hi (h′
i, respectively) coming from the right side of hi (h′

i) and leaving
to the left side, or rg intersects hi (h′

i) coming from the left side and leaving
to the right, or �g starts on hi (h′

i) itself leaving to the left or rg starts on the
line segment itself leaving to the right (see Fig. 5). If rg leaves an oriented line
segment to the right side of the segment or if �g leaves an oriented line segment
to the left side, we say the ray crosses the line segment with correct orientation.
So whenever a pair (pi, qi) or (p′i, q

′
i) is distinguished by g, then at least one of

the rays �g or rg has a correctly oriented crossing with hi (h′
i, respectively). The

line segments h1, ..., hm−2 lie on a oriented convex curve C, which we obtain
by prolonging every line segment until reaching the starting point of the next
one. Extend the first and last line segment to infinity vertically and horizontally,

88 T. Christ et al.

h

p

vg

rg

lg

hq

p
vg

rg

lg h
q

p

vg

lg

rg

Fig. 5. Different ways g can distinguish p and q. In every case �g intersects h leaving
to the left side or rg intersects h leaving to the right.

respectively. In the same way define a curve C′ for h′
1, ..., h

′
m−2 (see Fig. 4).

Any ray can cross a convex curve at most twice. Because of the way C and C′

are situated with respect to each other (a line that crosses C twice must have
negative slope, to cross C′ twice positive slope) a ray can intersect C∪C′ at most
three times. But we are only interested in crossings with correct orientation. If a
ray crosses a curve twice, exactly one of the crossings has the correct orientation.
If a ray crosses both C and C′ once, exactly one of the crossings has the correct
orientation. Therefore any ray can have at most two correctly oriented crossings.
If one of the rays has two correctly oriented crossings, the other ray has at most
one. Thus both rays together can have at most three correctly oriented crossings,
and therefore g can distinguish at most three pairs. This leads to the second
inequality a + 3b ≥ n − 4. Both inequalities together imply a + b ≥ 3n−4

5 .
�

References

1. Aigner, M., Ziegler, G.M.: Proofs from THE BOOK, 3rd edn. Springer, Berlin
(2003)

2. Chvátal, V.: A Combinatorial Theorem in Plane Geometry. J. Combin. Theory
Ser. B 18, 39–41 (1975)

3. Damian, M., Flatland, R., O’Rourke, J., Ramaswami, S.: A New Lower Bound
on Guard Placement for Wireless Localization. In: 17th Annual Fall Workshop on
Computational Geometry (2007)

4. Dobkin, D.P., Guibas, L., Hershberger, J., Snoeyink, J.: An Efficient Algorithm
for Finding the CSG Representation of a Simple Polygon. Algorithmica 10, 1–23
(1993)

5. Eppstein, D., Goodrich, M.T., Sitchinava, N.: Guard Placement for Efficient Point-
in-Polygon Proofs. In: Proc. 23rd Annu. Sympos. Comput. Geom. pp. 27–36 (2007)

6. Fisk, S.: A Short Proof of Chvátal’s Watchman Theorem. J. Combin. Theory Ser.
B 24, 374 (1978)

7. Fragoudakis, C., Markou, E., Zachos, S.: Maximizing the Guarded Boundary of an
Art Gallery is APX-complete. Comput. Geom. Theory Appl. 38(3), 170–180 (2007)

8. Kahn, J., Klawe, M.M., Kleitman, D.J.: Traditional Galleries Require Fewer Watch-
men. SIAM J. Algebraic Discrete Methods 4, 194–206 (1983)

9. Karavelas, M.I., Tsigaridas, E.P.: Guarding Curvilinear Art Galleries with Vertex
or Point Guards. Rapport de recherche 6132, INRIA (2007)

10. Lee, D.T., Lin, A.K.: Computational Complexity of Art Gallery Problems. IEEE
Trans. Inform. Theory 32(2), 276–282 (1986)

11. O’Rourke, J.: Galleries Need Fewer Mobile Guards: A Variation on Chvátal’s The-
orem. Geom. Dedicata 14, 273–283 (1983)

Improved Bounds for Wireless Localization 89

12. O’Rourke, J.: Visibility. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Dis-
crete and Computational Geometry, ch. 28, pp. 643–663. CRC Press LLC, Boca
Raton (2004)

13. O’Rourke, J.: Computational Geometry Column 48. ACM SIGACT News 37(3),
55–57 (2006)

14. Shermer, T.C.: Recent Results in Art Galleries. Proc. IEEE 80(9), 1384–1399
(1992)

15. Speckmann, B., Tóth, C.D.: Allocating Vertex Pi-guards in Simple Polygons via
Pseudo-triangulations. Discrete Comput. Geom. 33(2), 345–364 (2005)

16. Urrutia, J.: Art Gallery and Illumination Problems. In: Sack, J.-R., Urrutia, J.
(eds.) Handbook of Computational Geometry, pp. 973–1027. Elsevier Science Pub-
lishers B.V, Amsterdam (2000)

Bicriteria Approximation Tradeoff for the
Node-Cost Budget Problem

Yuval Rabani1,� and Gabriel Scalosub2,��

1 Computer Science Dept., Technion - Israel Institute of Technology, Haifa 32000, Israel
rabani@cs.technion.ac.il

2 School of Electrical Engineering, Tel Aviv University, Ramat Aviv 69978, Israel
gabriels@eng.tau.ac.il

Abstract. We consider an optimization problem consisting of an undirected
graph, with cost and profit functions defined on all vertices. The goal is to find a
connected subset of vertices with maximum total profit, whose total cost does
not exceed a given budget. The best result known prior to this work guaran-
teed a (2, O(log n)) bicriteria approximation, i.e. the solution’s profit is at least
a fraction of 1

O(log n) of an optimum solution respecting the budget, while its
cost is at most twice the given budget. We improve these results and present a
bicriteria tradeoff that, given any ε ∈ (0, 1], guarantees a (1 + ε, O(1

ε
log n))-

approximation.

1 Introduction

We consider the following problem: Given an undirected graph G = (V, E), a non
negative cost function c defined on V , a non negative profit function π defined on V ,
and a budget B, our aim is to find a connected set of vertices T ⊆ V such that their
overall cost does not exceed B, while maximizing the overall profit obtained from T .
We refer to this problem as the Node-Cost Budget Problem (or the Budget Problem
(BP) for short). This problem can also be cast as a rooted problem, where we specify
a special vertex r ∈ V as a root, and impose the restriction that r ∈ T . An algorithm
for solving the rooted problem can easily be transformed into one which solves the
unrooted problem by simply enumerating over all vertices in V as candidates for r, and
picking the best among the various solutions. We shall hereafter focus on the rooted
version of the problem. In what follows we denote the size of V by n. We note that
previous results for this problem all give bicriteria approximation guarantees, where
an (α, β)-approximate solution [1] is one which guarantees at least a β fraction of the
optimal profit possible using a given budget, while violating the budget restriction by a
factor of at most α.

� Work at the Technion supported by BSF grant number 99-00217, by ISF grant number 386/99,
by IST contract number 32007 (APPOL), and by the Fund for the Promotion of Research at
the Technion.

�� Supported in part by BSF grant number 99-00217. This work was done while the author was
with the Computer Science Dept. at the Technion, Israel.

J. Gudmundsson (Ed.): SWAT 2008, LNCS 5124, pp. 90–101, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Bicriteria Approximation Tradeoff for the Node-Cost Budget Problem 91

1.1 Our Results

We present, for every ε ∈ (0, 1], a (1 + ε, O(1
ε log n)) bicriteria approximation al-

gorithm for BP. This improves upon previous results discussed below. Our algorithm
consists of meticulously defining a collection of instances, and finding approximate so-
lutions to these instances using extensions of the methods described in [2]. Upon finding
a collection of approximate solutions to these instances, we show that these can be used
to find a collection of feasible solutions to our initial problem. We prove that all these
solutions violate the budget restriction by a factor of at most 1 + ε, while at least one
has sufficient profit.

1.2 Related Work

The budget problem was introduced by Guha, Moss, Naor, and Schieber [3]. They mo-
tivated the problem by its application to power-outage recovery. Guha et al. presented
a (2, O(log2 n)) bicriteria approximation algorithm for the problem. Their algorithm is
based on an O(log n)-approximation algorithm for the node weighted Steiner tree prob-
lem, devised by Klein and Ravi [4]. The node weighted Steiner tree problem consists of
an undirected graph with costs assigned to vertices, where given a subset T of V , one
seeks a connected subset of V which contains all the nodes in T such that its overall
cost is minimal.

Moss and Rabani [2] improved these results by presenting a (2, O(log n)) bicriteria
approximation. Their algorithm is based on a tree packing devised by using a primal-
dual algorithm for approximating the prize collecting problem. This problem consists of
an undirected graph with costs and profits defined over its set of vertices. The aim is to
find a connected subset S of V so as to minimize the sum of the costs of the vertices in
S (the cost) and the profits of the vertices not in S (the penalty). Given the tree packing,
an averaging argument then enables them to pick out a tree from the packing with good
features.

A closely related problem to BP is the node-cost quota problem. In this problem we
are given a graph with costs and profits defined over its set of vertices, and a quota Q.
The aim is to find a connected subset S of V whose profit is at least Q, and whose cost is
minimal. The best upper bound for this problem guarantees an O(log n)-approximation
(see [2]). Furthermore, assuming P �= NP this result is tight, up to a constant factor
because the problem is at least as hard as set cover [5].

There has also been a considerable amount of work concerning edge-costs versions
of similar problems, such as variants of the prize-collecting Steiner tree problem [6,7,8],
the k-MST problem [9], and the constrained minimum spanning tree problem [10].

The best approximation lower bound for BP is based on the tight lower bound for
the budgeted maximum coverage problem, where due to an approximation preserving
reduction from this problem to BP, one can obtain a lower bound of 1 − 1

e on the
approximation ratio of BP [11,5].

2 Notation and Preliminaries

Given a connected set of vertices T ⊆ V , we will speak in terms of any spanning tree
induced by T . We may assume without loss of generality that the cost and the profit

92 Y. Rabani and G. Scalosub

of the root of an instance is 0. Otherwise, we may solve an altered instance where we
assign cost 0 to the root, and strengthen the budget restriction to be at most the original
budget from which we subtract the cost of the root in the original problem. Any solution
to the altered problem induces a solution with the same value to the original problem and
vice-versa, up to re-adding the profit of the root. We begin by introducing the concept
of distance and reachability among vertices.

Given a graph G = (V, E) and a non-negative cost function c defined on V , we
define the cost-distance d(u, v) between vertices u and v to be the minimum total cost
of the inner vertices on any path connecting u and v, with respect to the cost function
c. Formally:

d(u, v) = min

{
�−1∑
i=2

c(vi)
∣∣∣∣{vi}�

i=1 is a u−v path
such that v1 =u and v� =v

}
.

If u = v or (u, v) ∈ E we define d(u, v) = 0. If there is no path connecting u and v we
define d(u, v) = ∞. We further denote by path(u, v) the set of inner vertices of a path
achieving minimal cost. Formally:

path(u, v) = argmin

{
�−1∑
i=2

c(vi)
∣∣∣∣{vi}�

i=1 is a u−v path
such that v1 =u and v� =v

}
\ {u, v}.

In addition, we say that a vertex v is reachable with cost at most p from u �= v if
d(u, v) + c(v) ≤ p, and any vertex v is reachable from itself with cost 0.

By the above definitions, for any instance of BP, we may assume without loss of
generality that all vertices in G are reachable from the root r with cost at most B, since
any vertex not reachable from r with cost at most B will not be part of any feasible
solution. In particular we may assume G is connected.

For any S ⊆ V we let c(S) =
∑

v∈S c(v) denote the cost of S and π(S) =∑
v∈S π(v) denote the profit obtained by S. We further denote the density of S by

γ(S) = π(S)
c(S) . For any subtree T of G and any v ∈ T , denote by CHT (v) the set

of children of v in T . We further denote by Tu the subtree of T rooted at vertex u ∈ T ,
i.e. Tu consists of all vertices in T such that the path connecting them to the root r,
contains u.

3 Finding Good Candidate Solutions

In finding a good approximate solution we make use of the notion of tree packing. This
enables us to find a connected set of vertices with some desirable properties.

Definition 1 (Tree Packing). Given a graph G = (V, E), a tree packing in G relative
to a function d : V �→ Q

+ is an assignment of weights λ to a set T of trees in G, which
satisfies

∑
T∈T |v∈T λT ≤ d(v), where λT is the weight of tree T in the packing.

Bicriteria Approximation Tradeoff for the Node-Cost Budget Problem 93

In what follows, for every S ⊆ V we let ∂S = {v ∈ V |∃u ∈ S s.t. (u, v) ∈ E}. Con-
sider the integer program for BP, denoted IP :

maximize
∑

i∈V π(i)di

subject to ∑
i∈V c(i)di ≤ B (1)

di ≤
∑

j∈∂S dj ∀S ⊆ V \ {r}, ∀i ∈ S (2)

dr = 1 (3)

di ∈ {0, 1} ∀i ∈ V \ {r}. (4)

In the above program, vertex i is part of the solution if and only if its associated variable
di satisfies di = 1. Constraint (2) ensures the connectivity of the output, i.e. that the
vertices for which di = 1 make up one connected component. Notice that assuming G
is not trivial (i.e. n > 1), considering constraint (2) for the case where S = V \ {r} we
have ∂S = {r} which implies di ≤ 1 for all i ∈ V \ {r}. Let us denote by OPTB the
value of an optimal solution for IP . If we replace constraints (4) by

di ≥ 0 ∀i ∈ V \ {r} (5)

we obtain a linear programming relaxation for BP which we denote by LP . This linear
program can be solved in polynomial time using the ellipsoid algorithm [12]. Let d
denote an optimal solution to LP . As shown in the following theorem, we can use such
a solution to find a tree packing such that every vertex is covered sufficiently by the
packing:

Theorem 1 ([2]). Let G = (V, E) be an undirected graph with non-negative node
weights d : V �→ Q

+, considered rooted at r ∈ V . Assume d satisfies inequalities (2)
and (3). Then, there exists a polynomial time algorithm that computes a tree packing in
G of trees containing r such that for every node v ∈ V

d(v)
c log n

≤
∑

T∈T |v∈T

λT ≤ d(v)

for some constant c independent of n.

Let T be the support of the tree packing guaranteed by Theorem 1, let L =
{T ∈ T |c(T) ≤ B} and H = {T ∈ T |c(T) > B}. The following lemma will serve
as a starting point in our quest for finding a good approximate solution.

Lemma 1 (A good tree exists in the packing [2]). Given the support T of the packing
guaranteed by Theorem 1, at least one of the following conditions holds:

1. ∃T ∈ L such that π(T) ≥ 1
2c log nOPTB;

2. ∃T ∈ H such that γ(T) = π(T)
c(T) ≥ 1

2c log n
OPTB

B .

Furthermore a tree T satisfying one of the above conditions can be found in time poly-
nomial in the size of the original input.

94 Y. Rabani and G. Scalosub

In what follows we focus our attention on the case where we have a tree T which
satisfies condition 2 in Lemma 1. Note that the cost of such a tree may very well exceed
the available budget. In the following section we show that under some conditions on
the underlying instance, one can trim such a high-density tree while guaranteeing that
the resulting tree is not too costly.

3.1 Candidate Solutions with High Density

Consider an instance of BP with graph G = (V, E) such that all vertices are reachable
from the root r ∈ V with cost at most d, and a budget restriction B, where d ≤ B.
In what follows we show that for any α > 0 and any subtree T of G rooted at r such
that γ(T) ≥ α · OPTB

B and c(T) > B, T can be trimmed into a tree T H satisfying
π(T H) ≥ α

4 · OPTB and c(T H) ≤ B + d.
Let T be any subtree of G rooted at r such that γ(T) ≥ α · OPTB

B and c(T) > B.
In order to obtain T H , we will accumulate subtrees of T , while making sure the overall
cost remains within a certain range. The following Lemma gives a sufficient condition
for the resulting tree having sufficient profit:

Lemma 2. Let T ⊆ G be a tree such that γ(T) ≥ α · OPTB

B and c(T) > B. For any
set of vertices U ⊆ T such that for every u ∈ U , γ(Tu) ≥ γ(T), if

∑
u∈U c(Tu) ≥ B

2
then

∑
u∈U π(Tu) ≥ α

2 · OPTB .

Proof. Since for every u ∈ U we have γ(Tu) ≥ γ(T), we are guaranteed that for every
u ∈ U we have π(Tu) ≥ c(Tu) · γ(T). By summing over all u ∈ U and using the
assumptions that γ(T) ≥ α · OPTB

B and
∑

u∈U c(Tu) ≥ B
2 we obtain

∑
u∈U π(Tu) ≥

∑
u∈U c(Tu) · γ(T)

≥ α · OPTB ·∑ u∈U c(Tu)
B

≥ α
2 · OPTB

�

The following corollary is an immediate consequence of Lemma 2:

Corollary 1. Let T ⊆ G be a tree such that γ(T) ≥ α · OPTB

B and c(T) > B. For any
v ∈ T , and any set of vertices U ⊆ CHT (v), if U satisfies B

2 ≤
∑

u∈U c(Tu) ≤ B and
for every u ∈ U , γ(Tu) ≥ γ(T), then the set T H =

⋃
u∈U Tu ∪{v} ∪path(r, v)∪{r}

is a tree which satisfies π(T H) ≥ α
2 · OPTB and c(T H) ≤ B + d.

Proof. Note that by the assumption that U ⊆ CHT (v) for some v ∈ T , we are
guaranteed to have for every u �= u′ in U , Tu ∩ Tu′ = ∅. It therefore follows that
c(

⋃
u∈U Tu) =

∑
u∈U c(Tu) and π(

⋃
u∈U Tu) =

∑
u∈U π(Tu). Furthermore, since

U ⊆ CHT (v), then clearly T H is a tree. Since
⋃

u∈U Tu ⊆ T H then by Lemma 2 we are
guaranteed to have π(T H) ≥ α

2 · OPTB . On the other hand, since every node is reach-
able from the root r ∈ V with cost at most d, the cost of the path {r}∪path(r, v)∪{v}
is at most d. It therefore follows that the overall cost of T H is at most B + d, as re-
quired. �

Bicriteria Approximation Tradeoff for the Node-Cost Budget Problem 95

The following lemma, whose proof is omitted due to space constraints, guarantees we
can trim a high density tree such that the resulting tree carries a sufficiently large profit,
while having a limited cost.

Lemma 3. If T = argmax {γ(T ′)|T ′ ∈ T \ L} satisfies γ(T) ≥ 1
2c log n

OPTB

B for
some constant c, then there exists a polynomial trimming algorithm TRIM, such that

T H = TRIM(T) satisfies π(T H) = Ω
(

1
log n

)
OPTB and c(T H) ≤ B + d.

3.2 An Algorithm for Finding a Good Candidate

Clearly any tree T satisfying condition 1 in Lemma 1, would suffice for our purpose,
since such a tree does not violate the budget constraint, while carrying at least an

Ω
(

1
log n

)
fraction of the optimal profit. On the other hand, by Lemma 3, we can trim

any tree T satisfying condition 2 in Lemma 1, so as to obtain a tree with cost at most
B + d, carrying at least an Ω(1

log n) fraction of the optimal profit. Algorithm EXTRACT

described in Algorithm 1 therefore summarizes the method for finding a subtree T ⊆ G

such that c(T) ≤ B + d and π(T) = Ω
(

1
log n

)
OPTB .

Algorithm 1. EXTRACT (tree packing T , budget B)
1: set L = {T ∈ T |c(T) ≤ B}
2: set H = T \ L
3: set T L = arg max {π(T)|T ∈ L}.
4: set T = arg max {π(T)/c(T)|T ∈ H}
5: set T H = TRIM(T)
6: return arg max

{
π(T L), π(T H)

}

The above proves the following lemma:

Lemma 4. Given any instance of BP with graph G = (V, E) such that all vertices
are reachable from the root r ∈ V with cost at most d, and a budget restriction B,
where d ≤ B, algorithm EXTRACT produces a solution T such that c(T) ≤ B + d and

π(T) = Ω
(

1
log n

)
OPTB .

4 Structure of an Optimal Solution

In this section, we study the structure of an optimal solution. We show that assuming
all optimal solutions have sufficiently large cost, there exists a decomposition of an
optimal solution into disjoint subtrees, such that at least one of them has sufficiently

small cost, while carrying at least an O
(

1
log n

)
fraction of the profit attained by the

optimal solution. Our study later motivates the definition of a sequence of instances of
BP, each corresponding to one of these subtrees, such that at least one of these instances
can be transformed into a (1 + ε, O(1

ε log n))-approximate solution.

96 Y. Rabani and G. Scalosub

First note that if there exists an optimal solution T ∗, such that c(T ∗) ≤ B
2 , then

by applying the algorithm of [2] over the same instance, with a budget restriction of
B′ = B

2 , we are guaranteed to obtain a (1, O(log n))-approximate solution. We can
therefore assume that for every optimal solution T ∗, c(T ∗) > B

2 .
Let T ∗ be any such optimal solution, and let ε ∈ (0, 1]. Define k = � 1+ε

2ε � = Θ
(1

ε

)
,

and let σ = σ(k) = (σ1, . . . , σk−1) be a sequence of proportions, σi ≤ 1 for all i =
1, . . . , k − 1, such that σ1 ≤ 1

2 . In what follows we let ρi =
∏i

j=1 σj , i = 1, . . . , k − 1
and define ρ0 = 1. We now describe a recursive partition of T ∗ into k disjoint connected
components {T ∗

i }k−1
i=0 according to σ. Let r0 = r and let G∗

0 = T ∗. Given G∗
i−1, let

ri ∈ G∗
i−1 be such that

c(T ∗
ri

) ≥ ρiB (6)

c(T ∗
u) ≤ ρiB ∀u ∈ CHT ∗(ri), (7)

and define G∗
i = T ∗

ri
.

First note that for every i = 1, . . . , k − 1, there exists a node ri ∈ G∗
i−1 which

satisfies conditions (6) and (7). To see this, note that by our assumption that σ1 ≤ 1
2

we have ρ1B ≤ B
2 . On the other hand, we have assumed that c(T ∗) > B

2 , hence
c(T ∗

r0
) = c(T ∗) ≥ ρ0B. Since ρi ≥ ρi+1, assuming we have found a node ri ∈ G∗

i−1
satisfying (6) and (7), we are guaranteed that ri also satisfies c(T ∗

ri
) ≥ ρi+1B. Consider

any maximal path of nodes ri = v0, . . . , v� in G∗
i , such that for every j = 0, . . . ,
,

c(T ∗
vj

) ≥ ρi+1B. Such a path necessarily exists since the tree is finite, and c(T ∗
v0

) ≥
ρi+1B. By maximality if follows that we can pick ri+1 = v�, which would satisfy both
condition (6) and condition (7).

After having defined subtrees G∗
0, . . . , G

∗
k−1 as described above, we can assume

without loss of generality that for all i = 0, . . . , k − 2, G∗
i �= G∗

i+1, and define T ∗
i =

G∗
i \ G∗

i+1 for all i = 0, . . . , k − 2 and T ∗
k−1 = G∗

k−1. We call such a partition a
σ-partition of T ∗. Note that such a partition can be identified by its corresponding
sequence of roots r0, . . . , rk−1. See Figure 1 for the schematics of a σ-partition for
k = 4.

We will first bound the reachability of vertices in a component T ∗
i from ri.

Lemma 5. For any k, given a σ-partition of T ∗, for every i = 1, . . . , k −1, all vertices
in G∗

i are reachable from ri with cost at most ρiB.

Proof. Let v be a vertex in G∗
i . If v = ri we are done. Otherwise, there exists a vertex

u ∈ CHT ∗(ri) such that v ∈ T ∗
u . In particular, path(ri, v) ∪ {v} ⊆ T ∗

u , which by the
definition of reachability and the choice of ri yields

d(ri, v) + c(v) = c(path(ri, v) ∪ {v}) ≤ c(T ∗
u) ≤ ρiB

�

Since T ∗
i is a subset of G∗

i we have the following corollary:

Corollary 2. Given a σ-partition of T ∗, for every i = 1, . . . , k − 1, all vertices in T ∗
i

are reachable from ri with cost at most ρiB.

Bicriteria Approximation Tradeoff for the Node-Cost Budget Problem 97

G∗
0 = T ∗

G∗
1

G∗
2

T ∗
1

T ∗
0

T ∗
2

G∗
3 = T ∗

3

r = r0

r1

r2

r3

Fig. 1. Schematic σ-partition for k = 4

We now turn to bound the cost of every component T ∗
i .

Lemma 6. For any k, given a σ-partition of T ∗, the following holds:

1. c(T ∗
0) ≤ (1 − ρ1)B

2. c(T ∗
i) ≤ B − d(r, ri) − ρi+1B for all i = 1, . . . , k − 2.

3. c(T ∗
k−1) ≤ B − d(r, rk−1)

Proof. To prove part 1 simply note that by the feasibility of T ∗, its cost is up-
per bounded by B, and since by the choice of r1, c(G∗

1) ≥ ρ1B, the result fol-
lows from the definition of T ∗

0 . In an even simpler manner, part 3 also follows from
the feasibility of T ∗ and the definition of T ∗

k−1 as its subtree. As for part 2, since
ρiB ≤ c(G∗

i) ≤ B − d(r, ri) then by the definition of T ∗
i we have

c(T ∗
i) = c(G∗

i \ G∗
i+1) ≤

≤ B − d(r, ri) − ρi+1B

which completes the proof. �

5 The Algorithm

5.1 Road Map

The structural analysis of an optimal solution presented in the previous section moti-
vates the definition of a sequence of instances of BP, each corresponding to a different
component in the decomposition.

98 Y. Rabani and G. Scalosub

Let T ∗ be an optimal solution to an instance I of BP, with budget restriction B, and
let k = Θ

(1
ε

)
, as defined in section 4. For every i = 0, . . . , k − 1 and v ∈ V we define

a new instance of BP, Ii,v . In instance Ii,v we actually ”guess” that v is the root of T ∗
i

(i.e. ri). We then consider all vertices with distance di from v, and a budget restriction
Bi. Using Lemma 4, we can conclude that we can find a tree T ′

i,v with cost at most
Bi + di. Our choices of Bi and di will be such that two conditions are met; First, for
every i and every v, T ′

i,v can be extended to a solution Ti,v to the original instance, with
overall cost at most (1 + ε)B. Second, for every i, T ∗

i is a feasible solution to at least
one of the new instances. It follows that at least one of solutions Ti,v carries a profit of

at least an Ω
(

ε
log n

)
fraction of the optimal profit.

5.2 Detailed Description

Let I be any instance of BP over a graph G = (V, E), with a budget restriction B.
Given any v ∈ V and i ∈ {0, . . . , k − 1}, every instance Ii,v will be determined by two
parameters, whose values are motivated by Corollary 2 and Lemma 6; di representing
a reachability radius around v, and a budget Bi. Specifically, we consider the subset
Vi,v ⊂ V consisting of all vertices with distance at most di from v, and let instance
Ii,v be the instance over the subgraph of G induced by Vi,v , with budget restriction Bi.
Table 1 shows the different values of di and Bi, depending on i.

Table 1. Values of reachability distance and budget of the new instances Ii,v

i di Bi Bi + di

0 (1 − ρ1)B (1 − ρ1)B 2(1 − ρ1)B

1, . . . , k − 2 ρiB B − d(r, v) − ρi+1B (1 + (1 − σi+1)ρi)B − d(r, v)

k − 1 ρk−1B B − d(r, v) (1 + ρk−1)B − d(r, v)

For every instance Ii,v , we solve the corresponding LP , compute the tree
packing Ti,v which corresponds to Ii,v implied by Theorem 1, and let T ′

i,v =
EXTRACT(Ti,v, Bi). Note that by Corollary 2 and Lemma 6, for every i = 0, . . . , k−1,
T ∗

i is a feasible solution for Ii,ri . The following lemma is an immediate consequence:

Lemma 7. Given the above notation, for every v ∈ V and i = 0, . . . , k − 1, c(T ′
i,v) ≤

Bi + di, as specified in Table 1. Furthermore, for every i = 1, . . . , k − 1, π(T ′
i,ri

) =

Ω
(

1
log n

)
π(T ∗

i).

For every v ∈ V and i = 0, . . . , k−1, let Ti,v = T ′
i,v ∪path(r, v)∪{r}. Note that every

Ti,v is a tree rooted at r. The following corollary follows immediately from Lemma 7:

Bicriteria Approximation Tradeoff for the Node-Cost Budget Problem 99

Corollary 3. Given the above notation

1. c(T0,v) ≤ 2 (1 − ρ1)B, for all v ∈ V
2. c(Ti,v) ≤ (1 + (1 − σi+1) ρi)B, for all i = 1, . . . , k − 2 and v ∈ V
3. c(Tk−1,v) ≤ (1 + ρk−1)B, for all v ∈ V

4. π(Ti,ri) = Ω
(

1
log n

)
π(T ∗

i) for all i = 0, . . . , k − 1

The following lemma ensures we can bound the cost of every Ti,v constructed above by
(1 + ε)B:

Lemma 8. For σ defined by

σi =

⎧⎪⎪⎨
⎪⎪⎩

k − i

k − i + 1
i = 2, . . . , k − 1

k − 1
2k − 1

i = 1,

(8)

we have c(Ti,v) ≤ (1 + ε)B for all i = 0, . . . , k − 1 and v ∈ V .1

Proof. Note that the upper bounds given on the cost of each tree Ti,v are independent of
v. We can therefore refer to a tree Ti regardless of v ∈ V , instead of Ti,v. We show that
for every i, c(Ti) ≤ (1 + 1

2k−1)B, which by the choice of k implies c(Ti) ≤ (1 + ε)B.
First note that by the choice of σi we have

ρi =
i∏

j=1

σj =
k − 1
2k − 1

· k − 2
k − 1

· k − 3
k − 2

· . . . · k − i

k − i + 1
=

k − i

2k − 1
.

We distinguish between several cases. For i = 0, we have

c(Ti) ≤ 2(1 − ρ1)B =
(

1 +
1

2k − 1

)
B,

as required. For the case where i ∈ {1, . . . , k − 2}, we have

(1 − σi+1)ρi =
(

1 − k − i − 1
k − i

)
k − i

2k − 1
=

1
2k − 1

,

hence

c(Ti) ≤ (1 + (1 − σi+1)ρi)B =
(

1 +
1

2k − 1

)
B,

as required. The last case to consider is the case where i = k − 1, in which

c(Ti) ≤ (1 + ρk−1)B =
(

1 +
1

2k − 1

)
B,

which completes the proof. �

1 Note that by our choice, we have σ1 ≤ 1
2 , which guarantees our solutions correspond to the

decomposition described in Section 4.

100 Y. Rabani and G. Scalosub

Algorithm 2. BPA (G = (V, E), costs c, profits π, budget B)

1: S1 ← MR(G, c, π, B
2) � Apply the algorithm appearing in [2] with half the budget

2: S2 ← ∅
3: for every i ∈ {0, . . . , k − 1} and v ∈ V do
4: let Ii,v be the appropriate instance
5: solve the LP corresponding to Ii,v

6: let Ti,v be its corresponding tree packing
7: T ′

i,v ← EXTRACT(Ti,v, Bi)
8: Ti,v ← T ′

i,v ∪ path(r, v) ∪ {r}
9: if π(Ti,v) > π(S2) then

10: S2 ← Ti,v

11: end if
12: end for
13: T ← arg max {π(S1), π(S2)}
14: return T

We can now prove our main result, as to the performance of algorithm BPA described
in Algorithm 2.

Theorem 2. For any ε ∈ (0, 1], algorithm BPA produces a (1 + ε, O(1
ε log n))-

approximate solution to BP.

Proof. The first candidate solution considered by the algorithm (line 1) is the solution
produced by applying the algorithm proposed by Moss and Rabani [2]. If there ex-
ists an optimal solution with cost at most B

2 , then this candidate is guaranteed to be a
(1, O(log n))-approximate solution. The remainder of the algorithm is designed to deal
with the case where every optimal solution has cost greater than B

2 .
By the analysis presented in Section 4 and the pigeonhole principle we are guaran-

teed to have at least one subtree T ∗
i contributing at least a 1

k fraction of the optimum’s
profit. Let m be the index of such a subtree. Consider the instance corresponding to
Im,rm , and let T ′

m,rm
be the candidate solution produced by the algorithm in the appro-

priate iteration.
By Lemma 4 and the fact that k = Θ(1

ε), the subtree T ′
m,rm

produced in line 7
satisfies

π(T ′
m,rm

) = Ω

(
1

log n

)
π(T ∗

m) = Ω

(
ε

log n

)
OPTB .

Since T ′
m,rm

⊆ Tm,rm , we are guaranteed to have π(Tm,rm) = Ω
(

ε
log n

)
OPTB .

Since by Lemma 8 the cost of every candidate solution produced by the algorithm in
line 8 is at most (1 + ε)B, and as shown above at least one of them has profit at least

Ω
(

ε
log n

)
OPTB , the result follows. �

6 Concluding Remarks

In this paper we have shown a (1 + ε, O(1
ε log n)) bicriteria approximation tradeoff

for the node-cost budget problem. One may consider several directions when aiming

Bicriteria Approximation Tradeoff for the Node-Cost Budget Problem 101

at improving our results. The first would be eliminating the budget violation entirely,
and ensuring an approximate solution in the usual sense. While still under the bicri-
teria formulation, one might hope for improving upon the approximation ratio with
regard to the profit guaranteed while still settling for budget violation of a certain ex-
tent. A substantial improvement in this direction however would necessitate a different
approach than the one introduced in [2]. This is due to the fact that their tree-packing
makes use of an approximation algorithm to the prize-collecting problem, to which
an asymptotically tight Ω(log n)-approximation lower bound is known under reason-
able NP-hardness assumptions. An additional point of great interest remains to try and
close the gap between the constant factor lower bound for the problem, and the current
O(log n) approximation techniques and their variants.

References

1. Marathe, M., Ravi, R., Sundaram, R., Ravi, S., Rosenkrantz, D. (III), H.H.: Bicriteria network
design problems. Journal of Algorithms 28(1), 142–171 (1998)

2. Moss, A., Rabani, Y.: Approximation algorithms for constrained node weighted steiner tree
problems. SIAM Journal on Computing 37(2), 460–481 (2007)

3. Guha, S., Moss, A., Naor, J., Schieber, B.: Efficient recovery from power outage. In: Pro-
ceedings of the 31st ACM Symposium on Theory of Computing, pp. 574–582 (1999)

4. Klein, P., Ravi, R.: A nearly best-possible approximation algorithm for node-weighted steiner
trees. Journal of Algorithms 19(1), 104–114 (1995)

5. Feige, U.: Threshold of ln n for approximating set cover. Journal of the ACM 45(4), 634–652
(1998)

6. Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest
problems. SIAM Journal on Computing 24(2), 296–317 (1995)

7. Johnson, D., Minkoff, M., Phillips, S.: The prize collecting steiner tree problem: theory and
practice. In: Proceedings of the 11th annual ACM-SIAM symposium on Discrete algorithms,
pp. 760–769 (2000)

8. Jain, K., Hajiaghayi, M.: The prize-collecting generalized steiner tree problem via a new ap-
proach of primal-dual schema. In: Proceedings of the 17th Annual ACM-SIAM Symposium
on Discrete Algorithms, pp. 631–640 (2006)

9. Garg, N.: Saving an epsilon: a 2-approximation for the k-mst problem in graphs. In: Proceed-
ings of the 37th Annual ACM Symposium on Theory of Computing, pp. 396–402 (2005)

10. Ravi, R., Goemans, M.: The constrained minimum spanning tree problem. In: Proceedings
of the 5th Scandinavian Workshop on Algorithmic Theory, pp. 66–75 (1996)

11. Khuller, S., Moss, A., Naor, S.: The budgeted maximum coverage problem. Information
Processing Letters 70(1), 39–45 (1999)

12. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Opti-
mization, 2nd edn. Springer, Heidelberg (1993)

Integer Maximum Flow in Wireless Sensor
Networks with Energy Constraint�

Hans L. Bodlaender1,��, Richard B. Tan1,2, Thomas C. van Dijk1,
and Jan van Leeuwen1

1 Department of Information and Computing Sciences
Utrecht University, Utrecht, The Netherlands

{hansb,rbtan,thomasd,jan}@cs.uu.nl
2 Department of Computer Science

University of Sciences & Arts of Oklahoma, Chickasha, OK, USA

Abstract. We study the integer maximum flow problem on wireless sen-
sor networks with energy constraint. In this problem, sensor nodes gather
data and then relay them to a base station, before they run out of battery
power. Packets are considered as integral units and not splittable. The
problem is to find the maximum data flow in the sensor network subject
to the energy constraint of the sensors. We show that this integral version
of the problem is strongly NP-complete and in fact APX-hard. It follows
that the problem is unlikely to have a polynomial time approximation
scheme. Even when restricted to graphs with concrete geometrically de-
fined connectivity and transmission costs, the problem is still strongly
NP-complete. We provide some interesting polynomial time algorithms
that give good approximations for the general case nonetheless. For net-
works of bounded treewidth greater than two, we show that the problem
is weakly NP-complete and provide pseudo-polynomial time algorithms.
For a special case of graphs with treewidth two, we give a polynomial
time algorithm.

1 Introduction

A wireless sensor (or smart dust) is a small physical device that contains a
microchip with a miniature battery, and a transmit/receive capability of limited
range. Sensors have been deployed in different environments to gather data,
perform surveillances and monitor situations in diverse areas such as military,
medical, traffic and natural environments. (See e.g. Zhao and Guibas [16].)

As the battery power of a sensor is limited and non-replaceable, it is crucial
to maximize the lifetime of the wireless sensor network to ensure the continuing
function of the whole network. We study the situation of a data-gathering sensor
network, where sensors are deployed in the field to gather data and then relay
the data packets via other sensors back to a base station. It is desirable to get
� This work was supported by BSIK grant 03018 (BRICKS: Basic Research in Infor-

matics for Creating the Knowledge Society).
�� Corresponding author.

J. Gudmundsson (Ed.): SWAT 2008, LNCS 5124, pp. 102–113, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Integer Maximum Flow in Wireless Sensor Networks 103

as many data packets as possible from the source sensors to the base station,
before some of the sensor batteries are depleted. This then becomes an instance
of the maximum flow problem, subject to the energy constraint of the lasting
battery power of each sensor.

Most of the research papers for the maximum flow problem with energy con-
straint on wireless sensor networks (e.g. [5,6,8,12,13,14,15]) cast the problem into
a Linear Programming (LP) form and assume fractional flows, i.e., splitting of
packets into fractional portions is allowed. The corresponding LP-formulations
then have polynomial time algorithms. These papers then present several heuris-
tics that speed up the algorithms and compare various simulation results. A few
papers [5,8,12,13] modified the Polynomial Time Approximation Scheme (PTAS)
of Garg and Könemann [10] to obtain fast approximation algorithms.

As data packets are usually quite small, there are situations where splitting of
packets into fractional ones is not desirable nor practical. We consider a model
where data packets are considered as units that cannot be split, i.e. the packet
flows are of integral values only. We call this the Integer Maximum Flow prob-
lem for Wireless Sensor Network with Energy Constraint: the Integer Max-Flow
WSNC problem. The corresponding LP formulation becomes Integer Program-
ming (IP) and may no longer have a polynomial time solution.

We show that the problem is in fact strongly NP-complete, and thus un-
likely to have a Fully Polynomial Time Approximation Scheme (FPTAS) or a
pseudo-polynomial time algorithm, unless P=NP. This result also holds for a
class of graphs with geometrically defined connectivity and transmission costs,
even when the nodes lie on a line. Furthermore, we show that even for a special
fixed range model, the problem is APX-hard, thus unlikely to have even a PTAS
(unless P=NP). We also provide some approximation algorithms for the problem
that do give good approximations nonetheless.

Many hard problems have polynomial time solutions when restricted to net-
works with bounded treewidth (see e.g. [3]). However, we show that for networks
with bounded treewidth greater than two, the Integer Max-Flow WSNC problem
is weakly NP-complete. We provide pseudo-polynomial time algorithms to com-
pute integer maximum flows in this case. For a special case of graphs that have
treewidth two, namely those graphs that have treewidth two when we add an
edge from the single source to the sink, we provide a polynomial time algorithm.

The paper is organized as follows. In Section 2, we describe the model and
the problem in detail. Section 3 covers the complexity issues. We show here the
various NP-completeness results and describe some approximation algorithms.
Section 4 contains the results for networks with bounded treewidth.

2 Preliminaries

In this section, we discuss the model we use and the precise formulation of the
Integer Max-Flow WSNC problem. We also discuss some variants of the problem.

104 H.L. Bodlaender et al.

2.1 The Model

Our model of a sensor is based on the first order radio model of Heinzelman
et al. [11]. A sensor node has limited battery power that is not replenishable.
It consumes an amount of energy εelec = 50nJ/bit to run the receiving and
transmitting circuitry and εamp = 100pJ/bit/m2 for the transmitter amplifier.
In order to receive a k-bit data packet, a sensor has to expend εelec·k energy, while
to transmit the same packet from sensor i to sensor j will cost εelec ·k+εamp·k·d2

ij

energy, where dij is the distance between sensors i and j.
We model a wireless sensor network as a directed graph G = (N, A), where

N = {1, 2, . . . , n} ∪ {t} are the n sensor nodes along with a special non-sensor
sink node t, and A is the set of directed arcs ij connecting node i to node
j, i, j ∈ N . A sensor node i has energy capacity Ei and each arc ij has cost
eij , the energy cost of receiving (possibly from some node) a packet and then
transmitting it from node i to node j. We assume that no data is held back in
intermediate nodes �= t, i.e., data that flows in will flow out again, subject to
the battery constraint of these nodes. All Ei’s and eij ’s are non-negative integer
values.

The general model assumes that each sensor can adjust its power range for
each transmission. We also consider in the next section the fixed range model,
where each sensor has only a few fixed power settings. All our graphs are assumed
to be connected. For each arc ij ∈ A, there is a directed path from a source node
to the sink node that uses this arc.

2.2 The Problem

Given a wireless sensor network G, there is a set S of source sensor nodes, used for
gathering data. The sink node t is a base station and is equipped with electricity
and thus has unlimited energy to receive all packets. The remaining nodes are
just relaying nodes, used to transfer data packets from the source nodes to the
sink node. One would like to transmit as many packets as possible from the
source nodes to the sink node. This is feasible as long as the battery power in
the network suffices to do so. The transmission process can be viewed as a flow of
packets from the sources to the sink. The problem is then to find the maximum
flow of data packets in the network subject to the battery power constraint.

We assume that the data packets are quite small, thus it is neither reasonable
nor practical to split them further into fractional portions. A flow fij is a function
that assigns to each arc ij a non-negative integer value. This corresponds to
the number of packets being sent via the arc ij. A flow is a feasible flow if∑

j fij · eij ≤ Ei for all nodes i ∈ N , where the sum is taken over all j with
ij ∈ A; i.e., the flow through a node cannot exceed the battery capacity of the
node.

We can now formulate the maximum flow problem for wireless sensor net-
works as the problem of determining the maximum number of packets that can
be received by the sink node. We call this problem the Integer Maximum Flow

Integer Maximum Flow in Wireless Sensor Networks 105

problem for Wireless Sensor Networks with energy Constraints or Integer Max-
Flow WSNC problem for short. The problem has the following Integer Linear
Programming formulation.

The Integer Max-Flow WSNC problem:
Objective: maximize F =

∑
j∈N fjt, t is the sink node,

subject to the following constraints:

fij integer, ∀ij ∈ A (1)
fij ≥ 0, ∀ij ∈ A (2)∑

j∈N

fij =
∑
j∈N

fji, ∀i ∈ N − S − {t} (3)

∑
j∈N

fij · eij ≤ Ei, ∀i ∈ N (4)

Condition (3) is the conservation of flow constraint. It simply states that
with the exception of the source and sink nodes, every node must send along
the packets that it has received. Condition (4) is the energy constraint for the
feasible flow: the energy needed to (receive and) transmit packets must be within
the capacity of the battery power of each node. This condition also distinguishes
the (integer) max-flow WSNC problem from the standard max-flow problem:
there, the constraint condition is just fij ≤ cij , where cij is the flow capacity of
arc ij.

We note that without loss of generality, we can augment the network with
a super source node s with unlimited energy to send and connect it to all the
source nodes with some fixed cost. We can then view the network as having a
single source and a single sink with a single commodity, subject to the battery
energy constraint. However, note this may affect the treewidth of the network;
the results for networks of bounded treewidth in Section 4 assume a single source.

We do not include a ‘fairness’ constraint: we maximize the number of packets
reaching the sink, but do not balance the load of the source nodes. Note that the
hardness proofs in Section 3 do exhibit fair flows, where all source nodes send
an equal number of packets.

2.3 Other Variants

Other variants of the problem formulation exist for wireless sensor networks with
energy constraint. See for example Floréen et al. [8] and Chang and Tassiulas [6].

3 Complexity

We will first look at the complexity of the problem on general graphs with
arbitrary costs at the arcs. We show the problem is NP-complete. Next we show
this proof carries over to a restriction of the problem to a class of graphs with

106 H.L. Bodlaender et al.

geometrically defined connectivity and energy consumption. Then we look at
another restriction of the problem, on general graphs again, but with only a fixed
amount of distinct energy costs. The problem is polynomial time solvable for
one energy level, but with more distinct power levels the problem is shown to be
APX-hard. Lastly, we demonstrate a polynomial time approximation algorithm
for the general case. Note however that this algorithm does not guarantee a
constant approximation ratio.

3.1 General Graphs

Since each data packet is a self-contained unit and cannot be split, the corre-
sponding LP formulation is an Integer Programming (IP) formulation and may
no longer have a polynomial time solution. In fact, we prove that the problem is
strongly NP-complete.

Theorem 1. The decision variant of the Integer Max-Flow WSNC problem is
strongly NP-complete.

Proof. We reduce the 3-Partition problem to the decision version of the Integer
Max-Flow WSNC problem.

3-Partition

Instance: Given a multiset S of n = 3m positive integers, where each
xi ∈ S is of size B/4 < xi < B/2, for a positive integer B.

Question: Can S be partitioned into m subsets (each necessarily con-
taining exactly three elements) such that the sum of each subset is
equal to B?

The 3-Partition Problem is strongly NP-complete [9].
For any instance I of the 3-Partition problem we create an instance I ′ of a

wireless sensor network as follows. Each number xi ∈ S corresponds to a sensor
relay node ri. Additionally, we have m source nodes s1, . . . , sm each having
exactly B energy. The source nodes play the role of the subsets. Now connect
each of the source nodes sj with all the relay nodes ri with arc cost eji = xi.
The intention is that it will cost each source node exactly xi energy to send one
packet to relay node ri. We further connect all the relay nodes to a sink node
t. Each relay node ri has energy Ei = B and arc cost eit = B, just sufficient
energy to send only one packet to the sink node.

Then our instance of the 3-Partition problem has a partition into m sub-
sets S1, . . . , Sm, each with sum equals B if and only if for each subset Si =
{xi1, xi2, xi3} the source node si sends three packets, one each to relay nodes
ri1, ri2, ri3 consuming the energies xi1, xi2, xi3, thus draining all of its battery
power of B =

∑3
j=1 xij . This will give a maximum flow of n = 3m packets

for the whole network. Thus, 3-Partition reduces to the question whether the
WSNC network can transmit at least 3m packets to the sink.

We have now given a pseudopolynomial reduction (see [9]), and thus we have
shown that the Integer Max-Flow WSNC problem is strongly NP-complete. �	

Integer Maximum Flow in Wireless Sensor Networks 107

Corollary 2. The Integer Max-Flow WSNC problem has no fully polynomial
time approximation scheme (FPTAS) and no pseudo-polynomial time algorithm,
unless P=NP.

Proof. This follows from the fact that a strongly NP-complete problem has no
FPTAS and no pseudo-polynomial time algorithm, unless P=NP. (See [9]). �	

We show later on that even in a restricted case, the problem is APX-hard, i.e.
the problem does not even have a PTAS unless P=NP.

3.2 The Geometric Model

We will now look at the geometric version of the problem in which the nodes
are concretely embedded in space. In this version, each node has a position, and
transmitting to a node at distance d costs d2 energy. This quadratic cost is a
typical model of radio transmitters.

Definition 3. A geometric configuration is a complete graph where each node
i ∈ N has a location p(i) and initial battery capacity Ei. The cost of the edge
between vertices i and j is eij = |p(i) − p(j)|2.

In this section we show that the WSNC-problem remains NP-complete when
restricted to geometric configurations where all nodes lie on a line. We will prove
this for the case where we allow variable battery capacities Ei (Theorem 4).
This can be extended to the case where all nodes have equal battery capacity
(Theorem 9), but we omit the more elaborate proof [4] for space reasons.

Theorem 4. The Integer Max-Flow WSNC-problem is strongly NP-complete on
geometric configurations on the real line.

Proof. Again, we give a pseudopolynomial reduction from 3-Partition. First we
describe how to construct a geometric configuration C on the real line, where
the WSNC-problem is equivalent to a given instance of 3-Partition. We then
construct an equivalent configuration CP that can be described in polynomial
size. These steps together show that the WSNC-problem is strongly NP-complete
on geometric configurations.

Like before, we have m source nodes s1, . . . , sm. Each starts with B =
∑

xi/m
energy. These source nodes again play the role of the subsets and we place them
all at the origin of our geometric configuration, i.e., p(si) = 0 for all i.

Corresponding to each xi ∈ S we have a ‘relay’ node ri that serves the same
purpose as before: to receive one packet from a source node, costing xi energy
for this source node, and relay the packet to the sink. By setting p(ri) =

√
xi we

achieve that a source node must use xi energy to send a packet to ri.
Finally, we place a sink node t with p(t) =

√
B. We want each relay node

to have just enough energy to send exactly one packet to the sink, so we set
Eri = (p(t) − p(ri))2 = B + x − 2

√
B

√
x.

This concludes the construction of our geometric configuration C. The con-
struction is illustrated in Figure 1.

108 H.L. Bodlaender et al.

s t

>
√

B/4

<
√

B/2

√
B

ri

Fig. 1. Configuration C

Lemma 5. Suppose we have a flow of value n in C. Then every relay node
receives exactly one packet from a source and sends it to the sink.

Proof. If n packets reach the sink, then n packets must have left the sources. By
the restriction on the values xi of the 3-Partition instance, each edge leaving the
sources costs strictly more than B/4 energy. Since the source nodes start with B
energy, no source node can send more than 3 packets. There are only m = n/3
source nodes, so every source node must send exactly 3 packets. In particular,
no packets are sent directly from a source node to the sink, as this would use
up all energy of the source node. Therefore, the sink node only receives packets
from relay nodes. No relay node can afford to send more than one packet to the
sink, so in fact every relay node sends exactly one packet to the sink. �	

Using Lemma 5, the following can now be shown in the same way as Theorem 1
for the case on arbitrary graphs.

Proposition 6. The configuration C has a solution of the WSNC-problem with
n packets if and only if the corresponding 3-Partition instance is Yes.

Note that this does not yet give an NP-hardness proof for the WSNC-problem on
geometric configurations on the line, as configuration C has nodes at real-valued
coordinates: the specification of the location of the points in C contains square
roots. We shall now construct a geometric configuration CP which is equivalent
to C, but whose positions are all polynomially representable rational numbers.

We do this by choosing the locations as integer multiples of some ε (value to be
determined later), rounding down. The initial power of the batteries also needs
to be quantized. We give the source nodes exactly B energy, which is already
integer. We give the relay nodes precisely enough energy to send one packet to
the sink; this amount can be calculated from the actual distance in CP.

Lemma 7. The value for ε can be chosen such that CP is equivalent to C and
can be represented in polynomial size.

We omit the proof that e.g. ε = (5�
√

B�)−1 satisfies the lemma [4]. The proof of
Theorem 4 now follows from Lemmata 5, 7 and Proposition 6: the WSNC-problem

Integer Maximum Flow in Wireless Sensor Networks 109

is strongly NP-complete on geometric configurations, even when restricted to a
line. �	

The nodes in CP have non-integer positions, but this not essential: scaling can
achieve the following.

Corollary 8. The Integer Max-Flow WSNC-problem is strongly NP-complete
on geometric configurations on a line, where each node has an integer coordinate.

The given results make essential use of the fact that battery capacities can vary.
A natural next question is whether the results still hold in case all sensors have
equal battery capacity. By a different construction and a non-trivial combinato-
rial argument one can show that this is indeed the case [4].

Theorem 9. The Integer Max-Flow WSNC-problem is strongly NP-complete on
geometric configurations on a line, even when all battery capacities are equal.

3.3 Fixed Range Model

Now we return to the case for arbitrary graphs. Suppose that every sensor node
has only a fixed number of power settings, i.e., only a fixed number of different
energy cost values at its outgoing edges. For example, there may be only one
setting, so that every node within the range is considered a neighbor; or perhaps
there are only two settings: short and long range power settings.

It turns out that for the case when there is only one power setting, there is
an easy solution. Since now the energy cost eij is the same for all neighbors j,
the maximum flow capacity fij =
Ei/eij� is also fixed for all outgoing arcs of
node i. We can then transform the sensor network into a regular flow network
by using the splitting technique in flow networks as follows. (See e.g. the book
by Ahuja, et al. [1].) Split each node i into two nodes i and i′ and connect them
with an arc with capacity cij =
Ei/eij�. The capacity of the original arcs ij
will also all be set to cij , for all ij ∈ A. We then have a new graph that is a flow
network with twice as many nodes and n additional arcs. Then it is easy to see
that this variant of the Max-Flow WSNC problem is just the standard Max-Flow
Min-Cut problem and has a polynomial time algorithm of O(n3), even in the
integer case. This fact has also been noted by Chang and Tassiulas [5]. For the
sake of completeness, we record this fact below.

Theorem 10. If there is only one power setting at each sensor node, then there
is a polynomial time algorithm to solve the Integer Max-Flow WSNC problem.

The situation changes when the number of fixed power settings is increased to
two.

Theorem 11. If there are two power settings at each sensor node, then there is
no PTAS for the Integer Max-Flow WSNC problem, unless P=NP.

Proof. We reduce a restricted version of the Generalized Assignment Problem
(GAP) by Chekuri and Khanna [7] to the Integer Max-Flow WSNC problem
with two power settings.

110 H.L. Bodlaender et al.

2-size 3-capacity generalized assignment problem (2GAP-3)

Instance: A set B of m bins and a set S of n items. Each bin j has
capacity c(j) = 3 and for each item i ∈ S and bin j ∈ B, we are
given a size s(i, j) = 1 or s(i, j) = 1 + δ (for some δ > 0) and a profit
p(i, j) = 1.

Objective: Find a subset U ⊆ S of maximum profit such that U has a
feasible packing in B.

Chekuri and Khanna [7] show that the 2GAP-3 problem is APX-hard, hence
it does not have a PTAS (unless P=NP).

Given an instance I of 2GAP-3 we create an instance I ′ of the Integer Max-
Flow WSNC as follows. For each bin j ∈ B we have a source node j′ with energy
capacity Ej′ = 3. Corresponding to each item i ∈ S we have a relay node i′.
Each source node j′ is connected to each of the relay nodes i′ by an arc j′i′ with
energy cost ej′i′ = 1 if s(i, j) = 1 and ej′i′ = 1+ δ if s(i, j) = 1+ δ. We also have
one sink node t. Each of the sensor relay node i′ is further connected to the sink
node t and provided with just sufficient battery power to have the arc energy
cost to send only one packet to the sink node, i.e., we set Ei′ = 1 and ei′t = 1.

As each node i′ that represents an item can forward only one packet, each
arc of the form j′i′, j ∈ B, i ∈ S can also carry at most one packet. Thus,
there is a one-to-one correspondence between integer flows in I fulfilling energy
constraints, and feasible packings of sets of items U ⊆ S: an item i that is placed
in bin j corresponds to a unit of flow that is transmitted from j′ to i′ and then
from i′ to t. The value of the flow equals the total profit of the packed items.

Thus, we can observe that our reduction is an AP-reduction. As AP-reductions
preserve APX-hardness (see e.g., [2]), we can conclude the theorem. �	

3.4 Approximation Algorithms

As the Integer Max-Flow WSNC problem has no PTAS (unless P=NP), our
hope is to find some approximation algorithms. We first give a very simple ap-
proximation algorithm. Then we give a slightly more involved algorithm with a
better approximation performance.

Theorem 12. There is a ρ-approximation algorithm for the Integer Max-Flow
WSNC problem, where ρ = maxi∈N

maxij∈A eij

minij∈A eij
.

Proof. Convert the sensor network into a flow network as follows. We give the
edges unbounded capacity and we give each node i the capacity ci =
 Ei

max eij
�.

Then a standard Max-Flow Min-Cut algorithm with node capacities will yield a
polynomial time algorithm that is at worst a ρ-factor from the optimum. �	
Unfortunately the above approximation is not of constant ratio. Note that for
the fixed range model where each sensor has a constant number of fixed power
settings, the above algorithm does give a constant ratio approximation.

A better approximation algorithm is the following. The key idea is to first
solve the fractional LP-formulation in polynomial time, and then try to find a
large integer flow that is close to the optimum value.

Integer Maximum Flow in Wireless Sensor Networks 111

Theorem 13. There is a polynomial time approximation algorithm for the In-
teger Max-Flow WSNC problem, which computes an integer maximum flow with
value Fapprox ≥ Foptimum − m, where m is the number of arcs of the graph.

Proof. We give the proof for the case when there is only one source. It is a simple
exercise to generalize the proof to the case with multiple sources.

First, we solve the relaxation of the problem optimally, i.e., we allow flows to
be of real value. As this is an LP, the ellipsoid method gives us in polynomial
time an optimal solution F ∗, that can be realized within the energy constraints.

We now find a large integer flow inside F ∗ in the following way. We use an
integer flow function F , which invariantly will map each arc ij to a non-negative
integer fij with fij ≤ f∗

ij , and which has conservation of flows; i.e., F will
invariantly be a flow that fulfills the energy constraints. Initially, set F to be 0
on all arcs.

Now, repeat the following step while possible. Find a path P from s to t, such
that for each arc ij on the path, f∗

ij − fij ≥ 1. Let fP = minij∈P
f∗
ij − fij� be

the minimum over all arcs ij on the path P . Note that fP ≥ 1. Now add fP

to each fij for all arcs ij on the path P . Observe that the updated function F
fulfills the energy constraint conditions.

The process ends when each path from s to t contains an arc with f∗
ij−fij < 1.

We note that F ∗ −F is a flow, and standard flow techniques show that its value
is at most m, the number of arcs. (For let S be the set of nodes, reachable from
s by a path with all arcs fulfilling f∗

ij − fij ≥ 1. Since t �∈ S, (S, V − S) is a cut
and its capacity with respect to the flow F ∗ − F is at most the number of arcs
across the cut.) Since the value of F ∗ is at least Foptimum, and hence the value
of F is at least Foptimum − m.

In each step of the procedure given above, we obtain at least one new arc ij
with f∗

ij − fij < 1; this arc will no longer be chosen in a path in a later step.
Thus, we perform at most m steps. Each step can be done easily in linear time.
Hence, the algorithm is polynomial, using the time of solving one linear program
plus O(m(n + m)) time for computing the approximate flow. �	

This algorithm is still not of constant ratio but we conjecture that it is a step
toward a 2-approximation algorithm.

4 Graphs with Bounded Treewidth

Many hard graph problems have polynomial (sometimes even linear) time al-
gorithms when restricted to graphs of bounded treewidth. This however is not
the case for the Integer Max-Flow WSNC problem: the problem remains hard.
The treewidth parameter nicely delineates the classes of graphs for which the
Integer Max-Flow WSNC is of apparently increasing complexity in the following
manner.

Theorem 14. The Integer Max-Flow WSNC problem can be solved in linear
time for graphs of treewidth 1.

112 H.L. Bodlaender et al.

Proof. These are just forests and have a very simple linear time algorithm: re-
move all nodes that do not have a path to the sink t; compute in the resulting
tree in post-order for each node the number of packets it receives from its chil-
dren and then the number of packets it can send to its parent. �	
We show that if there is a single source, and the graph with an edge added
between this single source and the sink node has treewidth two, then there is
a polynomial time algorithm for the Integer Max-Flow WSNC problem. The
general case for treewidth two remains open.

Theorem 15. The Integer Max-Flow WSNC problem, with parallel arcs and arc
capacities and with a single source s and sink t, can be solved in O(m log Δ) time
on directed graphs G = (N, A), such that the graph (N, A ∪ {st}) has treewidth
at most two, where Δ is the maximum outdegree of a node in G, and m = |A|.
For larger treewidth we show that the problem is weakly NP-complete. We give
a pseudo-polynomial time algorithm for this class.

Theorem 16. The Integer Max-Flow WSNC problem is (weakly) NP-hard for
graphs of treewidth three.

The omitted proof of Theorems 15 and 16 can be found in [4].
As shown in the previous section, the case of unbounded treewidth is strongly

NP-complete and even APX-hard.

5 Conclusion

The Maximum Flow WSNC problem is an interesting and relevant problem, with
practical implications in the context of wireless ad hoc networks. In this paper, we
studied the integer variant of the problem. We obtained a good polynomial time
approximation algorithm for the problem, which is a step toward an algorithm of
constant performance ratio. We also studied how the complexity of the problem
depends on the treewidth of the network. We found that except for the case
where each sensor has one fixed power setting or when the underlying graph is
of treewidth two with an edge joining the source and sink nodes, the problem
is weakly NP-complete for bounded treewidth greater than two. It is strongly
NP-complete for networks of unbounded treewidth and in fact even APX-hard.
It is also strongly NP-complete on geometric configurations on a line.

Acknowledgements. We thank Alex Grigoriev, Han Hoogeveen, Arie Koster,
Erik van Ommeren and Gerhard Woeginger for fruitful discussions and helpful
comments.

References

1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and
Applications, Upper Saddle River. Prentice-Hall, Englewood Cliffs (1993)

2. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Pro-
tasi, M.: Complexity and Approximation: Combinatorial Optimization Problems
and Their Approximability Properties. Springer, Berlin (1999)

Integer Maximum Flow in Wireless Sensor Networks 113

3. Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybernetica 11, 1–23
(1993)

4. Bodlaender, H.L., Tan, R.B., van Dijk, T.C., van Leeuwen, J.: Integer maximum
flow in wireless sensor networks with energy constraint. Technical Report UU-CS-
2008-005, Department of Information and Computing Sciences, Utrecht University
(2008)

5. Chang, J., Tassiulas, L.: Fast approximate algorithms for maximum lifetime rout-
ing in wireless ad-hoc networks. In: Pujolle, G., Perros, H.G., Fdida, S., Körner,
U., Stavrakakis, I. (eds.) NETWORKING 2000. LNCS, vol. 1815, pp. 702–713.
Springer, Heidelberg (2000)

6. Chang, J., Tassiulas, L.: Maximum lifetime routing in wireless sensor networks.
IEEE/ACM Transaction on Networking 12(4), 609–619 (2004)

7. Chekuri, C., Khanna, S.: A polynomial time approximation scheme for the multiple
knapsack problem. SIAM J. Comput. 35(3), 713–728 (2005)

8. Floréen, P., Kaski, P., Kohonen, J., Orponen, P.: Exact and approximate balanced
data gathering in energy-constrained sensor networks. Theor. Comp. Sc. 344(1),
30–46 (2005)

9. Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the Theory
of NP-Completeness, W.H. Freeman and Company, New York (1979)

10. Garg, N., Könemann, J.: Faster and simpler algorithms for multi-commodity flow
and other fractional packing problems. In: Proceedings of the 39th Annual Sym-
posium on Foundations of Computer Science, pp. 300–309 (1998)

11. Heinzelman, W.R., Chandrakasan, A., Balakrishnan, H.: Energy-efficient commu-
nication protocol for wireless microsensor networks. In: Proceedings 33rd Hawaii
International Conference on System Sciences HICSS-33 (2000)

12. Hong, B., Prasanna, V.K.: Maximum lifetime data sensing and extraction in en-
ergy constrained networked sensor systems. J. Parallel and Distributed Comput-
ing 66(4), 566–577 (2006)

13. Kalpakis, K., Dasgupta, K., Namjoshi, P.: Efficient algorithms for maximum life-
time data gathering and aggregation in wireless sensor networks. Computer Net-
works 42(6), 697–716 (2003)

14. Ordonez, F., Krishnamachari, B.: Optimal information extraction in energy-
limited wireless sensor networks. IEEE Journal on Selected Areas in Communi-
cations 22(6), 1121–1129 (2004)

15. Xue, Y., Cui, Y., Nahrstedt, K.: Maximizing lifetime for data aggregation in wire-
less sensor networks. Mobile Networks and Applications 10, 853–864 (2005)

16. Zhao, F., Guibas, L.: Wireless Sensor Networks: An Information Processing Ap-
proach. Morgan Kaufmann, San Francisco (2004)

The Maximum Energy-Constrained Dynamic Flow
Problem

Sándor P. Fekete1, Alexander Hall2, Ekkehard Köhler3, and Alexander Kröller1

1 Algorithms Group, Braunschweig Institute of Technology, D-38106 Braunschweig, Germany
{s.fekete,a.kroeller}@tu-bs.de

2 EECS Department, UC Berkeley, CA 94720, USA
alex.hall@gmail.com

3 Mathematical Institute, Brandenburg University of Technology, D-03013 Cottbus, Germany
ekoehler@math.tu-cottbus.de

Abstract. We study a natural class of flow problems that occur in the context of
wireless networks; the objective is to maximize the flow from a set of sources to
one sink node within a given time limit, while satisfying a number of constraints.
These restrictions include capacities and transit times for edges; in addition, every
node has a bound on the amount of transmission it can perform, due to limited bat-
tery energy it carries. We show that this Maximum energy-constrained dynamic
flow problem (ECDF) is difficult in various ways: it is NP-hard for arbitrary tran-
sit times; a solution using flow paths can have exponential-size growth; a solution
using edge flow values may not exist; and finding an integral solution is NP-hard.
On the positive side, we show that the problem can be solved polynomially for
uniform transit times for a limited time limit; we give an FPTAS for finding a
fractional flow; and, most notably, there is a distributed FPTAS that can be run
directly on the network.

1 Introduction

Energy-Constrained Flows and Our Results: Optimizing the flow in a network is
one of the classical problems in the theory and practice of algorithms. Even in the early
days, more than 50 years ago, it was recognized by Ford and Fulkerson that flow has a
temporal dimension, as the flowing objects need time to get to their destination. This is
particularly relevant in many current real-world applications, like traffic or communi-
cation, where the aspect of time becomes highly important because there is significant
variance in the amount of flow over time, so that stationary flows fail to describe the
phenomena that are particularly relevant, like congestion. In recent years, a variety of
excellent papers has addressed these problems, making tremendous progress in theory,
and providing tools for dealing with the challenges of practical adaptive traffic control.

In this paper we describe an additional aspect that becomes important in the context
of another highly relevant topic that has attracted a large amount of attention: when
considering the flow of information in a distributed and wireless network, one of the
essential features is that nodes have limited energy supply. This limits the amount of in-
formation they can transmit to their neighbors before dying due to an exhausted battery;
as a consequence, routing algorithms do not just have to deal with edge capacities and
transit times, but also with limits on the capabilities of nodes to pass on information.

J. Gudmundsson (Ed.): SWAT 2008, LNCS 5124, pp. 114–126, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

The Maximum Energy-Constrained Dynamic Flow Problem 115

We give the first algorithmic study of the resulting Maximum energy-constrained
dynamic flow problem (ECDF). Our results are as follows.

– With arbitrary transit times, ECDF is NP-hard (Theorem 1). A solution using flow
paths can have exponential size growth (Theorem 2). A solution using edge flow
values does not seem to exist.

– Finding integral solutions is NP-hard (Theorem 3).
– For uniform transit times and a polynomially bounded time horizon, we show that

the problem can be solved in polynomial time (Lemma 1).
– The complexity of finding optimal fractional solutions is an open problem. The

problem admits a FPTAS (Theorem 4).
– There is a distributed FPTAS that can be run directly in the network (Theorem 6).

In the remainder of this section, we discuss related work, both on dynamic network
flows and on wireless sensor networks. Section 2 provides formal definitions, while
Section 3 shows complexity results. Section 4 focuses on the case of uniform transit
times; we show that for polynomially bounded time horizon, there is a polynomial-time
algorithm, and develop an FPTAS for general time horizon. In Section 5 we finally give
a distributed FPTAS, i.e., a class of algorithms that can be run directly on the network.

Flows over time: Already Ford and Fulkerson [11,12] proposed the dynamic flows
model (also referred to as flows over time), where the individual edges have transit
times, determined by the speed at which flow traverses them. Flow rates into edges may
vary over time and are bounded by the given capacities. Ford and Fulkerson show that
the maximum s-t-flow over time problem can be solved in polynomial time.

The quickest s-t-flow problem (here a demand is fixed and the goal is to minimize
the time horizon T) can be solved by performing a binary search with respect to T ,
solving a maximum s-t-flow over time problem in each step. For an integral demand
Fleischer and Tardos [10] show that the binary search can be stopped after a polyno-
mially bounded number of steps, yielding the optimal time horizon. A much quicker,
strongly polynomial algorithm was given by Burkard et al. [3].

In the quickest transshipment problem many sources and sinks with supplies and de-
mands are given. Flow can be routed from any source to any sink. This problem appears
to be considerably harder than the quickest s-t-flow problem. Nevertheless, Hoppe and
Tardos [15,16] manage to give a polynomial time algorithm, which, however, applies
submodular function minimization as a subroutine, rendering the algorithm impractical.

Klinz and Woeginger [17] show that computing a min-cost quickest s-t-flow in a
network with cost coefficients on the edges is already NP-hard for series-parallel graphs.
It is even strongly NP-hard to calculate an optimal temporally repeated flow in presence
of costs. For the multicommodity version of this problem Fleischer and Skutella [9]
propose a (2 + ε)-approximation algorithm.

For two variations of the multicommodity quickest flow over time problem (without
costs) Fleischer and Skutella [9] give an FPTAS which is based on condensed time-
expanded graphs. Proofs of NP-hardness and strong NP-hardness for these variations
are presented in [14]. The NP-hardness proof inspired our proof of Theorem 1.

The survey articles by Aronson [1] and Powell et al. [22] as well as the book pub-
lished by Ran and Boyce [23] contain examples and references pertinent to the area of
flows over time.

116 S.P. Fekete et al.

Wireless Sensor Networks: In a classical network setting, there is one central author-
ity that knows the full structure of the network, performs all necessary computations,
and makes sure that the results are applied throughout the network. It is clear that such
an approach is not without its problems; e.g., see [8] for a discussion in the context of
traffic. In recent years, there has been growing interest in distributed algorithms that
lack such a central authority; see [21] for an introduction.

A particular area that has lead to growing interest in distributed algorithms is the
field of wireless sensor networks: The nodes in the network have limited knowledge of
the environment, local communication in a limited neighborhood, no access to a central
authority, limited computing and storage capabilities, and limited energy supply, with-
out any chance of getting recharged. The objective is to allow the network to carry out
a variety of tasks, using self-organizing and distributed methods. For a current survey
of algorithmic models, see [25], and [26] for a discussion of challenges in distributed
computing with respect to sensor networks. For an overview of some of our own related
algorithmic work, see [6,7,18].

In the WSN context, a problem similar to ECDF has been studied. The Maximum
Lifetime Routing problem asks for a flow for given demands that maximizes the time
until the first node dies. The motivation is that certain nodes collect sensor data and
continuously stream them to one or more base stations. All work on this problem models
it as following: “maximize T such that there exists a static flow for given demands,
where the flow consumes no more than a 1/T fraction of each battery.”

Madan et al. consider flows with one sink [19,20], using localized subgradient algo-
rithms. Sankar and Liu [24] solve a multi-commodity flow variant using an exponential
penalty function. A combinatorial flow augmentation scheme was proposed by Chang
and Tassiulas [5]. Zussman and Segall [27] studied a variant with special relay stations
between network and data sink. A comparison of practical protocols can be found in
Busse et al. [4].

Simply considering static flows that consume just 1/T of each battery leaves a gap
of up to Θ(n) to dynamic flows: consider a network of n nodes, connected in a line,
with source and sink at the ends, and T = n − 1. Our dynamic flow approach exploits
the fact that the source-sink-path can be used exactly once, whereas repeating a static
flow would just allocate 1/(n − 1) of the available battery capacities.

Bodlaender et al. [2] consider the maximization of data flowing from the sensors to
the data sink, with battery constraints. They neither have an explicit notion of time, nor
do they employ fairness constraints that could turn static solutions into dynamic ones.

2 Problem and Definitions

An instance of the ECDF problem comprises the following: The network G = (V, E)
with designated source s ∈ V and sink t ∈ V \ {s} (For the multi-source case, see
Section 6). We assume that time is sliced into communication rounds. In each round,
a node can forward the data it received in the previous round. We believe this is a
sufficiently close approximation of the real timing characteristics of store-and-forward
wireless mesh networks. Nodes other than the sink can not store flow to be sent later—
sensor nodes are usually extremely limited in memory.

The Maximum Energy-Constrained Dynamic Flow Problem 117

Each edge e ∈ E models a communication link with bandwidth ue > 0, which
defines the maximum amount of data that can be sent over e in a single communication
round. Data can be sent in both directions in a round, the bandwidth applies to the sum.

Each node v ∈ V has a non-rechargeable battery with capacity Cv > 0. There
is an energy consumption model c = (cs, cr), with non-negative functions cs ∈ RE ,
cr ∈ RE . Sending one unit of flow over edge uv, from u to v, decreases u’s battery
capacity by cs

uv and v’s capacity by cr
uv . We allow for Cv = ∞, cs

e = 0, and cr
e = 0;

all situations where this leads to divisions by zero or the appearance of ∞ in linear
programs are trivial to resolve. The energy model with cs

e = 1, cr
e = 0 for all e ∈ E is

called the trivial model. In the trivial model, the battery capacities become upper bounds
for the total flow that can be routed through a node until it dies. The applicability of our
results for more realistic models is discussed in Section 6.

Each link has a transit time τe ∈ N. Data sent over e in round θ can be forwarded
from the destination in round θ + τe. For the WSN scenario, we assume uniform transit
times, i.e., τe = 1 for all e; we call this problem variant the 1-ECDF problem. We
believe the problem with non-uniform transit times is interesting in itself.

There is a given time horizon T ∈ N. A clarification is necessary to avoid “±1
confusions”: We follow the notation from [16], where there are rounds 0, . . . , T . Each
link e can be used in rounds 0, . . . , T −τe. This reflects our wireless network scenario: If
you have a time horizon of 1, you can send data over a link once. (There is an opposing
model stemming from continuous flows, e.g., water flowing through a tube. There, you
need a horizon of 2 for a unit-transit link: One round until the first drop of water reaches
the destination, another until all the water is through.)

ECDF problem definition: Putting it together, the problem we want to solve is: Send
as much flow as possible from s to t, such that the edge capacities are obeyed, the flow
is delivered within the time horizon T , and no node sends any data after its battery is
exhausted.

To give a concise problem definition, we need a little bit of notation: We denote by
Pst the set of all feasible, simple s-t-paths in G. Because we are only interested in s-t-
paths, we can safely treat paths as sequences of undirected edges. The length τ(P) of a
path is defined as

∑
e∈P τe, i.e., the number of edges in P with uniform transit times. A

path is feasible if τ(P) � T . Hence, the source can relay data over P in communication
rounds 0 to T − τ(P), �(P) := T − τ(P) + 1 � 1 denotes the number of times P
can be used. Now let P = (e1, e2, . . . , ek). We denote by τei(P) the delay after which
data travelling P reaches ei, i.e., τei(P) =

∑i−1
j=1 τej . For a node v ∈ V , c∗v,P denotes

the energy drained from v when 1 unit of flow is sent over P , i.e., c∗v,P = cr
ei

+ cs
ei+1

for inner nodes of the path, where v ∈ ei and v ∈ ei+1 for some i. For s resp. t, c∗v,P

equals cs
e1

resp. cr
ek

.
So, formally we state the ECDF problem as follows:

max
∑

P∈Pst

T−τ(P)∑
θ=0

xP (θ) (1)

s.t.
∑
P�e:

0�θ−τe(P)�T −τ(P)

xP (θ − τe(P)) � ue ∀e ∈ E, θ = 0, . . . , T (2)

118 S.P. Fekete et al.

∑
P�v

T−τ(P)∑
θ=0

c∗v,P xP (θ) � Cv∀v ∈ V (3)

xP (θ) � 0 ∀P ∈ Pst, θ = 0, . . . , T − τ(P) . (4)

In this LP, xP (θ) describes the amount of flow that starts traveling along P in round
θ. Inequalities (2) model edge capacities, and inequalities (3) describe node battery
constraints. Note that both T and |Pst| can be exponential in the problem’s encoding
size, and this LP consists of more than T |E| constraints and up to T |Pst| variables.

3 Variants and Complexities

In this section, we analyze the complexity structure of ECDF and some variants.

Theorem 1. ECDF with arbitrary transit times τe ∈ N is NP-hard.

s = v0

v+
1

1

1

v−
1

∞
v1

v+
2

1

v−
2

1

∞
v2

∞
vn−1

v+
n

1

v−
n

1 vn = t

0 0 0

0 0 00 0 0

a1 a2 an

τe

Cv

Fig. 1. ECDF instance for the reduction from PARTITION

Proof. Consider an instance of PARTITION: given n positive integers a1, . . . , an with∑n
i=1 ai = 2T for some T ∈ N, partition them into two sets of equal weight, i.e.,

find a S ⊂ {1, . . . , n} such that
∑

i∈S ai =
∑

i/∈S ai = T . We claim the PARTITION
instance is feasible iff the ECDF instance shown in Figure 1 has an optimal solution of
value 2, where the horizon is T , and the energy function is the trivial one; it is obvious
that more than 2 is impossible.

It is straightforward to see that a feasible solution S ⊂ {1, . . . , n} for the PAR-
TITION instance induces a feasible pair of paths. For the converse, suppose there is a
solution for the ECDF instance that delivers 2 flow units in time. Let P be the set of flow
paths used in the solution, and xP denote the total flow sent over path P ∈ P . Because
each {v+

i , v−i } defines a saturated node cut, P ⊆ {PS : S ⊂ {1, . . . , n}, τ(PS) � T }.
Because each v+

i is used by some flow paths with total flow 1, we get

∑
P∈P

xP τ(P) =
∑
P∈P

∑
i:v+

i ∈P

xP ai =
n∑

i=1

ai

∑
P∈P:v+

i ∈P

xP =
n∑

i=1

ai = 2T .

Because
∑

P∈P xP = 2 and τ(P) � T for all P ∈ P , this only holds for τ(P) = T ,
so every PS ∈ P induces a solution S for the PARTITION instance. �

An important property of static network flows is the existence of two popular encoding
schemes with polynomial size: First, edge-based, where there is a flow value for every

The Maximum Energy-Constrained Dynamic Flow Problem 119

s

v1

2
v2

2
v3

2

v4

∞

v5

2
v6

2
v7

2
t

1|1 1|1 1|1 1|1

1|1 1|1 1|1 1|1
1|1

1|1

fe|ue

Cv

Fig. 2. Network and edge flow values where the path decomposition matters

edge. Second, path-based, where there is a flow value for every path. This even holds
for the maximum dynamic flow problem [11]. Now we show that both schemes are
not applicable to ECDF with arbitrary transit times. For the edge-based encoding we
interpret edge flow values as the maximum flow that is sent over an edge. Consider the
network and flow in Figure 2. There are four s-t-paths in it: P∩∩ = (s, v1, v4, v2, v3, t),
P∩∪ = (s, v1, v4, v7, t), P∪∩ = (s, v5, v6, v4, v2, v3, t) and P∪∪ = (s, v5, v6, v4, v7, t).
We show that the given solution—with flow value 1 for every edge—has different values
depending on the path decomposition. Let T = 6. If we use P∩∩ and P∪∪, we can
use both paths twice, with a total flow of 4. On the other hand, if we use P∩∪ and
P∪∩, the paths may be used once resp. twice, giving a total flow of 3. The only edge-
based solution encoding that we are aware of assigns time-dependent flow functions
fe : {0, . . . , T} → R to the edges, which are not necessarily of polynomial size.

Unfortunately, the usual workaround of using path-based formulation does not help:

Theorem 2. There are instances for ECDF with arbitrary transit times that allow no
optimal solution consisting of a polynomial number of flow paths.

Proof sketch. The proof employs a sequence of k chained cycles. In each cycle, a
flow path can either use a path with transit time 2k−1, or another one with zero transit.
Both paths have a flow limit of 2k−1, enforced by batteries. The edge leading to t has a
capacity of 1. It can be shown that any optimal flow must deliver one flow unit to t in
every time slot from 0 to T = 2k − 1, and each must travel on a different flow path. �

Theorem 3. Finding an ECDF solution with integral flow values is NP-hard.

Proof. By reduction from the following strongly NP-hard 3-PARTITION variant: given
three sets of positive integers {a1, . . . , an}, {b1, . . . , bn}, and {c1, . . . , cn} with L :=∑n

i=1 ai =
∑n

i=1 bi =
∑n

i=1 ci, find a partition into n triples of equal weight, i.e., find
permutations α, β, γ ∈ Sn such that aα(i) + bβ(i) + cγ(i) = 3L/n for all i.

We construct an ECDF instance G = (V, E) as follows: For each of the 3n numbers,
say ai, there is a chain Ai consisting of ai nodes connected in line, of which a+

i is the
first and a−

i is the last. Additionally, there are the source s and sink t. The source is
connected to each entry node of the first set, that is, sa+

i ∈ E for all i. Each exit node of
the first set is connected to each entry of the second: a−

i b+
j ∈ E for all i, j. Analogously,

the exits from the second set are linked to the entries of the third, and all exits from the
third are linked to t. Each edge e ∈ E has unit capacity ue = 1. Furthermore, each
node v �= s, t has a battery capacity of Cv = 1, where the power consumption model is
the trivial one: cs

e = 1, cr
e = 0 for all e ∈ E. The time horizon is T = 3L/n + 1.

120 S.P. Fekete et al.

We claim that the 3-PARTITION instance is solvable iff the optimal integral ECDF
solution value is n. There cannot be a total flow of more than n because {a+

1 , . . . , a+
n }

forms a node cut with total energy n.
Assume there is a feasible, integral ECDF solution (xP (θ))P∈P,θ∈θ(P), where P ⊆

Pst, θ(P) ⊆ {0, . . . , T − τ(P)}, and xP (θ) ∈ N+ for all P ∈ P , θ ∈ θ(P). Assume it
has value n. Because each of the sets {a+

1 , . . . , a+
n }, {a−

1 , . . . , a−
n }, {b+

1 , . . . , b+
n }, . . . ,

{c−1 , . . . , c−n } is a saturated node cut, it cannot be crossed twice by any path. Hence,
each P ∈ P is one of the paths Pi,j,k = (s, Ai, Bj , Ck, t), i, j, k = 1, . . . , n. Because
the flow is integral and all battery capacities are 1, each xP (θ) = 1. Each of the chains
in the graph can be used by just one flow path due to its battery capacity, and because
the total flow is n, each chain is used by exactly one path. So P = {Pα(i),β(i),γ(i) : i =
1, . . . , n} for some α, β, γ ∈ Sn. We know that

n∑
i=1

τ (Pα(i),β(i),γ(i)) =
n∑

i=1

(aα(i) + bβ(i) + cγ(i) + 1) =
n∑

i=1

ai +
n∑

i=1

bi +
n∑

i=1

ci + n = nT,

and, because no path length can exceed T due to the feasibility of the solution, we con-
clude that each path length must equal T = 3L/n+1. Therefore aα(i) +bβ(i) +cγ(i) =
3L/n for each i = 1, . . . , n, proving that α, β, γ is feasible for the 3-PARTITION
instance. It is straighforward to see the converse. �

The proof does not carry over to the fractional ECDF problem: There is a trivial LP
formulation for the ECDF instance that uses the n3 possible flow paths explicitly.

4 Centralized Algorithms for 1-ECDF

In this section, we concentrate on ECDF with uniform transit times.

Lemma 1. 1-ECDF is polynomial-time solvable, if T is polynomially bounded in n.

Proof. The time-expanded graph G(T) has polynomial size and thus allows for a sim-
ple edge-based LP. �

A temporally repeated (“TR”) flow is a flow (xP (θ))P,θ where each path carries the
same amount of flow at all times, i.e., xP (θ) = xP (θ′) for all θ, θ′ ∈ {0, . . . , T−τ(P)}.
When T > 2n, the problem of finding a temporally repeated 1-ECDF solution can be
formulated as follows:

max
∑

P∈Pst

�(P)xP (5)

s.t.
∑
P�e

xP � ue ∀e ∈ E (6)

∑
P�v

�(P)c∗v,P xP � Cv ∀v ∈ V (7)

xP � 0 . (8)

The restriction T > 2n comes from inequality (6) which is only valid if all the paths
that use some edge e send their flow over e in at least one common point in time.

The Maximum Energy-Constrained Dynamic Flow Problem 121

s v1

∞
v2

∞
v3

∞

v4

1
t

1
1

1
1

1 1
ue

Cv

Fig. 3. Network with a gap between optimal and temporally repeated solutions

Lemma 2. Maximum temporally repeated solutions for 1-ECDF can be found in poly-
nomial time.

Proof. The dual LP of (5)–(8) is

min
∑
v∈V

Cvμv+
∑
e∈E

ueπe (9)

s.t.
∑
v∈P

�(P)c∗v,P μv+
∑
e∈P

πe � �(P) ∀P ∈ P (10)

μv � 0 ∀v, πe � 0 ∀e (11)

The separation problem for this LP is to find a violated inequality (10), given edge
weights (πe)e∈E and node weights (μv)v∈V : Find a path P ∈ Pst satisfying

∑
v∈P

c∗v,P μv +
∑
e∈P

1
�(P)

πe < 1 (12)

or prove that no such path exists. The left-hand-side of (12) can be rewritten as

∑
v∈P

c∗v,P μv +
∑
e∈P

1
�(P)

πe =
∑

e=uv∈P

(1
T−τ(P)+1πe + cs

eμu + cr
eμv) (13)

which is just the length of P according to some length-dependent edge weights. So the
separation problem reduces to the question whether the shortest path in Pst according
to this weight function has a length strictly less than 1.

Because τ(P) ∈ {1, . . . , n} for each P ∈ Pst, there are just n possible values for
1

T−τ(P)+1 . We can find the shortest path by enumerating over these values. In each step,
we seek the shortest path consisting of exactly k edges for some k ∈ {1, . . . , n}. This
can be done in polynomial time by searching for the shortest path from s(0) to t(k) in
the time-expanded graph G(k). �

Lemma 3. Temporally repeated 1-ECDF solutions are not always optimal.

Proof. Consider the network shown in Figure 3. The horizon is T = 4, communication
cost is the trivial one. There are two paths in this network: The “upper” one P =
(s, v1, v2, v3, t) that can be used exactly once, and the “lower” one Q = (s, v1, v4, t),
that can be used twice with a total flow of 1 due to the battery limitation at v4. An

122 S.P. Fekete et al.

optimal solution sends 1 flow unit along P at time 0 and another unit along Q at time 1,
with a total flow value of 2. Optimality holds because edge sv1 is saturated over time.

A temporally repeated solution sends xP along P at time 0 and xQ along Q at times
0 and 1. Because of the capacity of sv1, xP + xQ � 1 holds. Furthermore, 2xQ � 1
due to the battery capacity at v4. The total flow is xP + 2xQ, which is maximized by
xP = xQ = 1

2 with an objective value of 3
2 . �

Lemma 4. For T > λn, λ � 2 the value of a maximum temporally repeated solution
TR is greater than or equal to λ−1

λ OPT, where OPT be the value of an optimal 1-
ECDF solution.

Proof. Let x = (xP (θ))P,θ be an optimal solution. We construct a temporally repeated
solution y = (yP)P from it by averaging over all path flows.

So let yP := 1
�(P)

∑T−τ(P)
θ=0 xP (θ) for each P ∈ Pst. This flow satisfies all battery

capacity constraints, because each flow path carries the same total flow as in x, and it
delivers the same flow within the horizon. It may violate edge capacities though. So let
e ∈ E. Then the load on e at time θ is

∑
P�e:

0�θ−τe(P)

yP �
∑
P�e

yP � 1
T − n

∑
P�e

T−τ(P)∑
θ=0

xP (θ) � 1
T − n

Tue � λ

λ − 1
ue .

Hence λ−1
λ y is a feasible temporally repeated flow. �

Theorem 4. 1-ECDF admits a FPTAS.

Proof. Let ε > 0. If T � 1
εn or T � 2n, we can solve the problem by Lemma 1. Other-

wise, by Lemma 2 we can compute a maximum temporally repeated flow in polynomial
time and, by Lemma 4, its value is at least ((1

ε − 1)/ 1
ε)OPT = (1 − ε)OPT . �

5 Distributed Algorithm for 1-ECDF

In this section, we propose a distributed FPTAS for 1-ECDF. The core idea relies on the
approximation algorithm [13] for fractional packing problems by Garg and Könemann,
so we briefly review their algorithm: Consider a fractional packing LP of the type
max{cTx|Ax � b, x � 0} with a m̃ × ñ-matrix A, where all coefficients in A, b, and
c are nonnegative. Its dual is the covering LP min{yTb|yTA � cT, y � 0}. Initially,
x = 0 and yj = δ/bj for all j = 1, . . . , m̃, where δ := (1 + ε)((1 + ε)m̃)−1/ε.
The algorithm repeats the following iteration until yTb � 1: Let i∗ be the primal
variable (think “maximally violated” dual constraint) that minimizes (yT A)i/ci for
i ∈ {1, . . . , ñ|ci > 0}. Let j∗ be the primal constraint (think “minimum capacity
edge/node”) that minimizes bj/Ai∗j for j = 1, . . . , m̃ where Aij �= 0. Now increase
xi∗ by bj∗/Ai∗j∗ (corresponding to “sending flow over i∗”), and update the dual vari-
ables: yj := yj(1 + ε)(bj∗/Ai∗j∗)/(bj/Ai∗j) for all j = 1, . . . , m̃ with bj �= 0.

Finally, a feasible primal solution can be obtained by scaling down all variables
such that all primal constraints are obeyed; a scaling factor of 1/ log1+ε((1 + ε)/δ)
is sufficient. This can also be done during the increase of primal variables, i.e., during
routing of flow, if desired.

The Maximum Energy-Constrained Dynamic Flow Problem 123

Theorem 5 (Garg, Könemann [13]). Using an oracle that finds a Λ-approximation
for the maximally violated constraint, the G&K algorithm computes a Λ(1 − ε)−2-
approximation in m̃	 1

ε log1+ε m̃
 iterations.

Note that [13] only deals with optimal dual separation, i.e., Λ = 1. The extension for
arbitrary Λ > 1 is straightforward.

Similar to the previous section, we solve 1-ECDF by distinguishing two cases: T >
1
εn, where the TR gap is small, and T � 1

εn, where the horizon is polynomially
bounded. Actually, the G&K algorithm can easily be distributed, given a fast approxi-
mation for the dual separation. For this purpose, we show how to reduce the n shortest
path computations we needed in the proof of Lemma 2 to one:

Lemma 5. Let T > λn, λ � 2. Let πe � 0 for all e ∈ E and μv � 0 for all
v ∈ V . Then the dual separation problem (12) for temporally repeated flows can be

λ
λ−1 -approximated using a single shortest path computation.

Proof. The separation problem is to find a shortest path according to the length function

z(P) :=
∑

uv∈P

(1
�(P)πuv + cs

uvμu + cr
uvμv) . (14)

We define another function to approximate z:

y(P) :=
∑

uv∈P

(1
T πuv + λ−1

λ (cs
uvμu + cr

uvμv)) . (15)

Observe that for each P ∈ Pst, T � �(P) � T − n > T − 1
λT = λ−1

λ T holds; hence
1
T � 1

�(P) � λ
λ−1

1
T . This proves that y(P) � z(P) � λ

λ−1y(P) for every P ∈ Pst.

Therefore, the minimum-y path is a λ
λ−1 -approximation to the minimum-z path. Now

y(P) is just a sum of directed, non-negative edge weights. Then, the minimum-y path
can be found by a single run of any shortest path algorithm. �

G&K is turned into distributed algorithm for the large-T case as follows:

Algorithm 1. Distributed algorithm for T > 1
εn

Each node v ∈ V initializes and stores μv and πe for each e ∈ δ(v);
repeat

s initiates a distributed Bellman-Ford shortest path algorithm;
The network reports the approximate shortest path’s weight and capacity to s;
The network augments flow along this path, each nodes updates the dual weight, and
reports the dual objective increase back to s;

until s observes that the dual objective is at least 1 ;
Scale flow for feasibility, unless already done during augmentation.

Lemma 6. Let ε > 0 and T > 1
εn, 1

ε � 2. Then Algorithm 1 is a (1 − ε)−4-
approximation for the ECDF problem and runs in time O(n(n + m)1

ε log1+ε(n + m))

124 S.P. Fekete et al.

Proof. According to Lemma 5, the Bellman-Ford algorithm computes an approxima-
tion to the dual separation problem with ratio λ

λ−1 = (1−ε)−1. Hence, Algorithm 1 is a
(1− ε)−3-approximation to finding a temporally repeated ECDF solution (Theorem 5).
Because a maximum temporally repeated flow is a (1 − ε)−1-approximation to the
original ECDF problem (Lemma 4), the solution found by Algorithm 1 is a (1 − ε)−4-
approximation. The runtime results from the iteration bound of Theorem 5 and the O(n)
runtime of a distributed Bellman-Ford computation. �
The other case (small T) is mostly analogous, so we just give the result:

Lemma 7. Let ε > 0 and T � 1
εn. Then there is a distributed algorithm that finds a

(1 − ε)−2-approximation in time O(1
ε2 mn2 log1+ε(

1
εmn)).

Proof sketch. Run a distributed variant of G&K, similar to Algorithm 1 on the exact
LP formulation (1)-(4). �
Together, Lemmas 6 and 7 (and the special case ε � 1

2 , T > 1
ε , which is trivial to

resolve) allow us to state the main theorem of this section:

Theorem 6. ECDF admits a distributed FPTAS. Each node v ∈ V needs to store no
more than O(p(v) + 1) many variables, where p(v) denotes the number of flow paths
using v in the solution.

6 Extensions

Multi-terminal variants: ECDF problems where there is one source and many sinks
can be solved by our algorithms, both centralized and distributed, as well. It is suffi-
cient to alter Pst accordingly. The opposite case with one sink and many sources can
be solved by exchanging them and reversing time. This just applies to the objective of
maximizing the total flow though, as max-min objective variants are no longer frac-
tional packing problems. The situation is similar for multi-commodity settings with
many sources and sinks: Maximizing the total flow is possible by adjusting Pst—in
the distributed setting an additional syncing step between the sources is needed in each
iteration. The max-min multi-commodity case can not be solved using our algorithms.

Geometric communication cost functions: In wireless networks, it is a common as-
sumption that the sending cost for transmitting over a link e of length d is cs

e = Θ(dα)
for some constant α ∈ [2, 6]. The cost for receiving is often modelled as either 0 or
Θ(cs

e). Our constructive results work for any cost function. We have stated the nega-
tive results in Section 3 using the trivial cost function for clarity. Note that the problem
instances used in the proofs can be embedded such that every link has length 1 (actu-
ally, the figures show such embeddings), where the geometric cost function becomes
the trivial one. Hence these results apply as well.

7 Conclusion and Open Problems

In this paper, we introduced the novel ECDF problem, which has direct applications in
distributed networks, e.g., sensor and ad-hoc network. We proved various negative re-
sults and show that an FPTAS exists for the network-motivated 1-ECDF variant, which
can be turned into a distributed FPTAS.

The Maximum Energy-Constrained Dynamic Flow Problem 125

There are various related problems of interest. Essentially, we started out with a
well-studied problem (maximum dynamic flow) and added two features: firstly, the
battery constraints that make the problem much harder (Theorems 1 and 2); and sec-
ondly, uniform transit times, making it easier. Because both constraints are important
in sensor and ad-hoc networks, studying other dynamic flow problems like quickest
flow/transshipment with these extensions poses interesting new challenges.

A tantalizing open problem is the complexity of the fractional ECDF problem with
arbitrary transit times. We conjecture that this is in P: consider the path-based LP for-
mulation. Allowing flow changes only in the first and last n steps (i.e., adding xP (n) =
xP (n + 1) = . . . = xP (T − n − 1) for all P to the formulation) may not change
the problem. This new formulation is in P, because the dual separation problem can be
easily solved similar to Lemma 2. Alas, we lack a proof.

Another open problem is the existence of an encoding scheme for the solutions with
polynomial size (cf. Theorem 2) resp. whether the decision variant of ECDF with arbi-
trary (or uniform) transit time is in NP.

References

1. Aronson, J.E.: A survey of dynamic network flows. Annals of OR 20, 1–66 (1989)
2. Bodlaender, H., Tan, R., van Dijk, T., van Leeuwen, J.: Integer maximum flow in wireless

sensor networks with energy constraint. In: Proc. SWAT (2008)
3. Burkard, R.E., Dlaska, K., Klinz, B.: The quickest flow problem. ZOR — Methods and

Models of Operations Research 37, 31–58 (1993)
4. Busse, M., Haenselmann, T., Effelsberg, W.: A comparison of lifetime-efficient forwarding

strategies for wireless sensor networks. In: Proc. PE-WASUN, pp. 33–40 (2006)
5. Chang, J.-H., Tassiulas, L.: Maximum lifetime routing in wireless sensor networks.

IEEE/ACM Transactions on Networking 12(4), 609–619 (2004)
6. Fekete, S.P., Kröller, A.: Geometry-based reasoning for a large sensor network. In: Proc.

SoCG, pp. 475–476 (2006)
7. Fekete, S.P., Kröller, A., Pfisterer, D., Fischer, S.: Algorithmic aspects of large sensor net-

works. In: Proc MSWSN, pp. 141–152 (2006)
8. Fekete, S.P., Schmidt, C., Wegener, A., Fischer, S.: Hovering data clouds for recognizing

traffic jams. In: Proc. IEEE-ISOLA, pp. 213–218 (2006)
9. Fleischer, L., Skutella, M.: Quickest flows over time. SIAM Journal on Computing 36, 1600–

1630 (2007)
10. Fleischer, L.K., Tardos, É.: Efficient continuous-time dynamic network flow algorithms. Op-

erations Research Letters 23, 71–80 (1998)
11. Ford, L.R., Fulkerson, D.R.: Constructing maximal dynamic flows from static flows. Opera-

tions Research 6, 419–433 (1958)
12. Ford, L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press, Princeton

(1962)
13. Garg, N., Könemann, J.: Faster and simpler algorithms for multicommodity flow and other

fractional packing problems. In: Proc. FOCS, p. 300 (1998)
14. Hall, A., Hippler, S., Skutella, M.: Multicommodity flows over time: Efficient algorithms and

complexity. Theoretical Computer Science 379, 387–404 (2007)
15. Hoppe, B., Tardos, É.: The quickest transshipment problem. Mathematics of Operations Re-

search 25, 36–62 (2000)
16. Hoppe, B.E.: Efficient dynamic network flow algorithms. PhD thesis, Cornell (1995)

126 S.P. Fekete et al.

17. Klinz, B., Woeginger, G.J.: Minimum cost dynamic flows: The series-parallel case. In: Balas,
E., Clausen, J. (eds.) IPCO 1995. LNCS, vol. 920, pp. 329–343. Springer, Heidelberg (1995)

18. Kröller, A., Fekete, S.P., Pfisterer, D., Fischer, S.: Deterministic boundary recognition and
topology extraction for large sensor networks. In: Proc. SODA, pp. 1000–1009 (2006)

19. Madan, R., Lall, S.: Distributed algorithms for maximum lifetime routing in wireless sensor
networks. IEEE Transactions on Wireless Communications 5(8), 2185–2193 (2006)

20. Madan, R., Luo, Z.-Q., Lall, S.: A distributed algorithm with linear convergence for max-
imum lifetime routing in wireless networks. In: Proc. Allerton Conference, pp. 896–905
(2005)

21. Peleg, D.: Distributed computing: a locality-sensitive approach. SIAM, Philadelphia (2000)
22. Powell, W.B., Jaillet, P., Odoni, A.: Stochastic and dynamic networks and routing. In: Net-

work Routing, ch. 3. Handbooks in Operations Research and Management Science, vol. 8,
pp. 141–295. North–Holland, Amsterdam, The Netherlands (1995)

23. Ran, B., Boyce, D.E.: Modelling Dynamic Transportation Networks. Springer, Heidelberg
(1996)

24. Sankar, A., Liu, Z.: Maximum lifetime routing in wireless ad-hoc networks. In: Proc. INFO-
COM, pp. 1089–1097 (2004)

25. Schmid, S., Wattenhofer, R.: Algorithmic models for sensor networks. In: Proc. IPDPS
(2006)

26. Wattenhofer, R.: Sensor networks: Distributed algorithms reloaded - or revolutions? In: Floc-
chini, P., Ga̧sieniec, L. (eds.) SIROCCO 2006. LNCS, vol. 4056, pp. 24–28. Springer, Hei-
delberg (2006)

27. Zussman, G., Segall, A.: Energy efficient routing in ad hoc disaster recovery networks. In:
Proc. INFOCOM, pp. 682–691 (2003)

Bounded Unpopularity Matchings

Chien-Chung Huang1,�, Telikepalli Kavitha2,�, Dimitrios Michail3,�� ,
and Meghana Nasre2

1 Dartmouth College, USA
villars@cs.dartmouth.edu
2 Indian Institute of Science, India

{kavitha,meghana}@csa.iisc.ernet.in
3 INRIA Sophia Antipolis - Méditerranée, France

dmichail@sophia.inria.fr

Abstract. We investigate the following problem: given a set of jobs and a set of
people with preferences over the jobs, what is the optimal way of matching people
to jobs? Here we consider the notion of popularity. A matching M is popular if
there is no matching M′ such that more people prefer M′ to M than the other way
around. Determining whether a given instance admits a popular matching and, if
so, finding one, was studied in [2]. If there is no popular matching, a reasonable
substitute is a matching whose unpopularity is bounded. We consider two mea-
sures of unpopularity - unpopularity factor denoted by u(M) and unpopularity
margin denoted by g(M). McCutchen recently showed that computing a match-
ing M with the minimum value of u(M) or g(M) is NP-hard, and that if G does
not admit a popular matching, then we have u(M) ≥ 2 for all matchings M in G.

Here we show that a matching M that achieves u(M) = 2 can be computed
in O(m

√
n) time (where m is the number of edges in G and n is the number of

nodes) provided a certain graph H admits a matching that matches all people. We
also describe a sequence of graphs: H = H2,H3, . . . ,Hk such that if Hk admits
a matching that matches all people, then we can compute in O(km

√
n) time a

matching M such that u(M) ≤ k − 1 and g(M) ≤ n(1 − 2
k). Simulation results

suggest that our algorithm finds a matching with low unpopularity.

1 Introduction

The problem of assigning people to positions is a very common problem that arises in
many domains. The input here is a bipartite graph G = (A ∪ P ,E), where nodes on
one side of the bipartite graph rank edges incident on them in an order of preference,
possibly involving ties. That is, the edge set E is partitioned into E1 ∪̇ E2 . . . ∪̇ Er. We
call A the set of applicants, P the set of posts, and Ei the set of edges with rank i. If
(a, p) ∈ Ei and (a, p′) ∈ E j with i < j, we say that a prefers p to p′. If i = j, then a is
indifferent between p and p′. The ordering of posts adjacent to a is called a’s preference

� Part of this work was done when the author was visiting Max-Planck-Institut für Informatik,
Saarbrücken, Germany.

�� Part of this work was carried out during the tenure of an ERCIM ”Alain Bensoussan” Fellow-
ship Programme.

J. Gudmundsson (Ed.): SWAT 2008, LNCS 5124, pp. 127–137, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

128 C.-C. Huang et al.

list. The problem is to assign applicants to posts that is optimal with respect to these
preference lists.

This problem has been well-studied in economics literature, see for example [3, 15,
17]. It models some important real-world markets, including the allocation of graduates
to training positions [9], families to government-owned housing [16], mail-based DVD
rental systems such as NetFlix.

Various criteria have been proposed to measure the “goodness” of a matching. Ex-
amples include Pareto optimality [1, 3, 15], rank maximality [10], and maximum utility.
Most of these criteria use the actual values or numerical ranks expressed by applicants
in their preference lists. Such criteria are easily prone to manipulation by people ly-
ing about their preferences. Moreover, the preference lists only express the “relative”
ranking of the options. Measuring the optimality of a matching as a function of the ac-
tual numerical ranks may not be the correct approach. One criterion that does not use
numerical ranks is popularity. We define it below.

We say that an applicant a prefers matching M′ to M if (i) a is matched in M′ and
unmatched in M, or (ii) a is matched in both M′ and M, and a prefers M′(a) to M(a)
(where M(a),M′(a) are the posts that a is matched to in M and in M′, respectively).

Definition 1. M′ is more popular than M, denoted by M′ � M, if the number of appli-
cants that prefer M′ to M is greater than the number of applicants preferring M to M′.
A matching M is popular if there is no matching M′ that is more popular than M.

Note that popular matchings may not exist in the given instance. The problem is to
determine if a given instance admits a popular matching, and to find such a matching,
if one exists. The first polynomial-time algorithms for this problem were given in [2]:
when there are no ties in the preference lists, the problem can be solved in O(n + m)
time, where n = |A ∪ P | and m = |E|, and more generally, the problem can be solved
in O(m

√
n) time. The main drawback of the notion of popular matchings is that such

matchings may not exist in the given graph. In this situation, it would be desirable if we
can find some good substitutes of a popular matching. This motivates our paper.

1.1 Problem Definition

In this paper, we assume that the input instance G does not admit a popular matching.
Our goal is to compute a least unpopular matching. We use two criteria given by Mc-
Cutchen [13] to measure the unpopularity of a matching. We first need the following
definitions.

Given any two matchings X and Y in G, define φ(X ,Y) = number of applicants that
prefer X to Y . Let us define the following functions to compare two matchings X and Y :

Δ(X ,Y) =

⎧⎪⎨
⎪⎩

φ(Y,X)/φ(X ,Y) if φ(X ,Y) > 0

1 if φ(X ,Y) = 0 and φ(Y,X) = 0

∞ otherwise.

and δ(X ,Y) = φ(Y,X)− φ(X ,Y).

Bounded Unpopularity Matchings 129

Having the above functions, we can define the unpopularity factor of a matching M
as:

u(M) = max
M′

Δ(M,M′).

The unpopularity margin of a matching M is defined as:

g(M) = max
M′

δ(M,M′).

The functions u(·) and g(·) were first introduced by McCutchen, who also gave poly-
nomial time algorithms to compute u(M) and g(M) for any given matching M. A match-
ing M is popular if and only if u(M) = 1 and g(M) = 0. When G does not admit popular
matchings, we are interested in computing a matching M with a low value of u(M). Let
us now define a least unpopular matching.

Definition 2. A matching M which achieves the minimum value of u(M) among all the
matchings in G is defined as the least unpopularity factor matching in G. Similarly, a
matching that achieves the minimum value of g(M) among all matchings in G is defined
as the least unpopularity margin matching in G.

McCutchen recently showed that either computing a least unpopularity factor matching
or a least unpopularity margin matching is NP-hard. He also showed that the unpopular-
ity factor of any matching is always an integer. Thus when G does not admit a popular
matching, the best matching in terms of the unpopularity factor that one can hope for
in G is a matching M that satisfies u(M) = 2. Complementing McCutchen’s results, we
have the following new results here.

• A least unpopularity factor matching can be computed in O(m
√

n) time provided a
certain graph H admits an A-complete matching. An A-complete matching means
all nodes in A are matched. Such a matching M that we compute in H satisfies
u(M) = 2.

• We also show a more general result. We construct a sequence of graphs: H =
H2,H3, . . . ,Hk, . . . and show that if Hk admits an A-complete matching, then we
can compute in O(km

√
n) time a matching M such that u(M) ≤ k − 1 and g(M) ≤

n(1 − 2
k).

• We ran our algorithm on random graphs using a similar setup as in [2]. Our simu-
lation results suggest that when G is a random graph, then for values of k ≤ 4, we
see that Hk admits an A-complete matching. Thus in these graphs our algorithm
computes a matching M whose unpopularity factor is a number ≤ 3 and whose
unpopularity margin can be upper bounded by n/2.

1.2 Background and Related Results

The notion of popular matchings was first introduced by Gardenfors [6] in the context
of the stable marriage problem.

When only one side has preferences, Abraham et al. [2] gave polynomial time al-
gorithms to find a popular matching, or to report that none exists. Further variants of

130 C.-C. Huang et al.

popular matchings are studied by Manlove and Sng [12] and by Mestre [14]. As to the
existence of popular matchings, Mahdian [11] gave an probabilistic analysis.

Organization of the paper. In Section 2 we describe the popular matching algorithm
from [2], which is the starting point of our algorithm. We then describe McCutchen’s
algorithm to compute the unpopularity factor of a given matching. In Section 3 we
describe our algorithm and bound its unpopularity factor and unpopularity margin. In
Section 4 we report our experimental results. For a probabilistic analysis of our algo-
rithm, see [4] for details.

2 Preliminaries

In this section, we review the algorithmic characterization of popular matchings given
in [2] and the algorithm to compute the unpopularity index of a matching as given by
McCutchen.

For exposition purposes, we create a unique strictly-least-preferred post l(a) for each
applicant a. In this way, we can assume that every applicant is matched, since any
unmatched applicant a can be paired with l(a). From now on, matchings are always
A-complete. Also, without loss of generality, we assume that preference lists contain
no gaps, i.e., if a is incident to an edge of rank i, then a is incident to an edge of rank
i− 1, for all i > 1.

Let H1 = (A ∪ P ,E1) be the graph containing only rank-one edges. Then [2,
Lemma 3.1] shows that a matching M is popular in G only if M ∩ E1 is a maximum
matching of H1. Maximum matchings have the following important properties, which
we use throughout the rest of the paper.

M ∩ E1 defines a partition of A ∪ P into three disjoint sets: a node u ∈ A ∪ P is
even (resp. odd) if there is an even (resp. odd) length alternating path in H1 (w.r.t.
M ∩E1) from an unmatched node to u. Similarly, a node u is unreachable if there is no
alternating path from an unmatched node to u. Denote by N , O and U the sets of even,
odd, and unreachable nodes, respectively.

Lemma 1 (Gallai-Edmonds Decomposition). Let N , O and U be the sets of nodes
defined by H1 and M ∩E1 above. Then

(a) N , O and U are pairwise disjoint, and independent of the maximum matching
M ∩E1.

(b) In any maximum matching of H1, every node in O is matched with a node in N ,
and every node in U is matched with another node in U. The size of a maximum
matching is |O|+ |U|/2.

(c) No maximum matching of H1 contains an edge between a node in O and a node in
O ∪U. Also, H1 contains no edge between a node in N and a node in N ∪U.

Using this node partition, we make the following definitions: for each applicant a, f (a)
is the set odd/unreachable posts amongst a’s most-preferred posts. Also, s(a) is the set
of a’s most-preferred posts amongst all even posts. We refer to posts in ∪a∈A f (a) as
f -posts and posts in ∪a∈A s(a) as s-posts. Note that f -posts and s-posts are disjoint, and

Bounded Unpopularity Matchings 131

that s(a)
= /0 for any a, since l(a) is always even. Also note that there may be posts
in P that are neither f -posts nor s-posts. The next theorem characterizes the set of all
popular matchings.

Theorem 1 ([2]). A matching M is popular in G iff (i) M ∩E1 is a maximum matching
of H1 = (A ∪P ,E1), and (ii) for each applicant a, M(a) ∈ f (a)∪ s(a).

Figure 1 contains the algorithm from [2], based on Theorem 1, for solving the popular
matching problem.

Popular-Matching(G = (A ∪P ,E))
Construct the graph G′ = (A ∪P ,E ′), where E ′ = {(a, p) : a ∈ A and p ∈ f (a)∪ s(a)}.
Construct a maximum matching M of H1 = (A ∪P ,E1).

//Note that M is also a matching in G′.
Remove any edge in G′ between a node in O and a node in O ∪U.

//No maximum matching of H1 contains such an edge.
Augment M in G′ until it is a maximum matching of G′.
Return M if it is A-complete, otherwise return “no popular matching”.

Fig. 1. An O(
√

nm)-time algorithm for the popular matching problem (from [2])

2.1 McCutchen’s Algorithm

Here we outline the algorithm given by McCutchen for computing the unpopularity
factor of a matching. Given a matching M, the idea is to find a series of promotions
(of applicants) at the cost of demoting one applicant. The longest such promotion path
determines the unpopularity factor of the particular matching. Such a path can be dis-
covered by building a directed weighted graph on the set of posts. We will refer to this
graph as the Posts-Graph GP . The vertices of GP represent all the posts P in the orig-
inal graph. We add edges into GP based on the following rules: (let M(p) denote the
applicant to which post p is matched to in the matching M)

– an edge with weight −1 is directed from pi to p j if M(pi) prefers p j to pi.
– an edge with weight 0 is directed from pi to p j if M(pi) is indifferent between pi

and p j.

Note that there is no edge from pi to p j if M(pi) prefers pi to p j. The series of promo-
tions mentioned above is a negative weight path in this graph. To find the longest nega-
tive weight path in this graph, we add a dummy vertex s with 0 weight edges from s to
all posts. An algorithm which finds shortest paths from source s to all posts will give the
longest negative weight path in GP . Existence of a negative weight cycle implies that
there exists a promotion sequence without any demotion and hence the unpopularity
factor of the matching is ∞. Let us assume that no negative weight cycles exist. Then
all posts have a 0 or negative weight shortest path from the source. The post whose
distance from the source is the “most negative” determines the unpopularity index of
the matching M. For details of the proof of correctness, refer to [13].

132 C.-C. Huang et al.

3 Our Algorithm

In this section we describe a greedy strategy to compute a matching of G, whose un-
popularity can be bounded. Our algorithm is iterative and in every iteration it constructs
a graph Hi and a maximum matching Mi in Hi. We show that if Mi is an A-complete
matching, then u(Mi) ≤ i− 1 and g(Mi) ≤ n(1 − 2/i).

We will first give some intuition before we formally describe our algorithm. Recall
that the popular matching algorithm first finds a maximum cardinality matching M1 in
the graph H1 (whose edge set is the set of all rank 1 edges). The algorithm then identifies
all even applicants/posts using the Gallai-Edmonds decomposition and adds the edges
(a, p) where a is even and p ∈ s(a) to the pruned graph H1 (all rank 1 edges between an
odd node in H1 and a node that is odd or unreachable in H1 are removed from H1). Note
that each such edge (a, p) is new to H1, that is, such an edge is not already present in H1

since by Gallai-Edmonds decomposition (part (iii)), there is no edge between two even
vertices of H1, and here both a and p are even in H1. In this new graph, call it H2, M1 is
augmented to a maximum cardinality matching M2. In case M2 is A-complete, we declare
that the instance admits a popular matching. Otherwise no popular matching exists.

The idea of our algorithm here is an extension of the same strategy. Since we are
considering instances which do not admit a popular matching, M2 found above will not
be A-complete. In this case, we go further and find the Gallai-Edmonds decomposition
of nodes in H2 and identify nodes that are even in H1 and in H2. A node that is odd or
unreachable in either H1 or in H2 will always be matched by a maximum cardinality
matching in H2 that is obtained by augmenting a maximum cardinality matching in H1.
Hence the nodes that are not guaranteed to be matched by such a matching M2 are the
applicants and posts that are even in both H1 and H2.

So let us now add the edges (a, p) to H2 where a and p are nodes that are even
in both H1 and H2 and among all posts that are even in both H1 and H2, p is a most
preferred post of a. We would again like to point out that such an edge (a, p) did not
exist in either H1 or in H2, since a and p were even in H1 and in H2. We also prune H2

to remove edges that are contained in no maximum cardinality matching of H2 and call
the resulting graph H3. We then augment M2 to get M3 and continue the same procedure
till we finally get an A-complete matching Mi.

With the above intuition, we are now ready to formally define the algorithm.

3.1 The Algorithm

We start with H1 = (A ∪ P ,E1) where E1 is the set of rank 1 edges. Let M1 be any
maximum cardinality matching in H1. Fig. 2 contains our algorithm.

We note that once a post becomes odd or unreachable in any iteration, it gets marked
and hence it cannot get new edges incident upon it in the subsequent iterations. We use
this to show that the unpopularity factor of the matching that we produce is bounded
by k − 1 if we find an A-complete matching in Hk. The running time of our algorithm
is determined by the least k such that Hk admits an A-complete matching. Since each
iteration of our algorithm takes O(m

√
n) time by the Hopcroft-Karp algorithm [8], the

overall running time is O(km
√

n), where k is the least number such that Hk admits an
A-complete matching.

Bounded Unpopularity Matchings 133

Initialize i = 1 and let all nodes be unmarked.
While Mi is not A-complete do:

1. Partition the nodes of A ∪P into three disjoint sets: Ni,Oi,Ui.
– Ni and Oi consists of nodes that can be reached in Hi from an unmatched node
by an even/odd length alternating path with respect to Mi, respectively.
– Ui consists of nodes that are unreachable by an alternating path from any un-
matched node in Hi.

2. Mark all unmarked nodes in Oi ∪Ui.
3. Delete all edges of Hi between a node in Oi and a node in Oi ∪Ui

4. Add edges (a, p) to Hi where (i) a in unmarked, (ii) p is unmarked and (iii) p is a’s
most preferred post among all unmarked posts. Call the resulting graph Hi+1.

5. Augment Mi in Hi+1 to get a new matching Mi+1 which is a maximum cardinality
matching of Hi+1.

6. i = i+1.

Fig. 2. An O(km
√

n)-time algorithm for finding an A–complete matching

Before we prove our main theorems, we need the following definition that defines a
level j post for an applicant a. A level 1 post for each applicant is just its rank 1 post.
But from levels ≥ 2, a level j post for an applicant need not be its rank j post.

Definition 3. A level j post for an applicant a is a post p such that (i) p is an even post
in H1, . . . ,Hj−1 and (ii) p is the most preferred post for a amongst all such posts.

Theorem 2. If our algorithm finds an A-complete matching Mk in Hk, then u(Mk) ≤
k − 1.

Proof. Let Mk be the A-complete matching produced by our algorithm after k iterations.
We draw the posts graph GP corresponding to the matching Mk. The unpopularity index
of Mk is the “most negative” distance of a vertex (post) in GP from the dummy source
s as described in Section 2. We now show that the posts in GP can be partitioned into
k layers (corresponding to the k iterations) such that all negative weight edges always
go from higher numbered layers to lower numbered layers. If we show this, then it is
clear that since there are only k layers and all negative weight edges have weight −1,
the longest negative weight path can be of length at most k − 1.

Let us partition the posts of GP such that a post belongs to a layer t if it gets marked
for the first time in iteration t. Let p be a post that belongs to level i. Recall that in GP
there is a negative weight edge from p to q iff Mk(p) strictly prefers q to p. We now
show that any such post q should belong to a layer j such that j < i.

First, note that an edge (a, p) is added to the graph at the end of the (j−1)-th iteration
of our algorithm (for any j ≥ 1) only if p is a level j post for a. Next, note that since
p got marked in the i-th iteration, no new edges are ever added to p in any of the
subsequent iterations. Based on these two observations, we can conclude that since the
edge (Mk(p), p) exists in GP it has to be the case that p is a level � post for Mk(p) for
some � ≤ i.

That is, at the end of the (� − 1)-th iteration, p was the most preferred unmarked
post for Mk(p). Hence all the posts that Mk(p) strictly prefers to p were already marked

134 C.-C. Huang et al.

before/during the (�− 1)th iteration. That is, these posts belong to layers j, where j ≤
�− 1 ≤ i− 1. Thus if (p,q) is a negative weight edge out of p, then q belongs to layer
j, where j < i.

Hence we have shown that all negative weight edges must go from higher numbered
layers to lower numbered layers. This implies that the longest negative weight path in
the graph GP corresponding to Mk is at most k − 1. In other words, u(Mk) ≤ k − 1. ��

Theorem 3. If our algorithm finds an A-complete matching Mk in Hk, then g(Mk) ≤
n(1 − 2

k).

Proof. Let Mk be the A-complete matching produced by our algorithm after k iterations
and let M be any other A-complete matching in G. Now let us construct a weighted
directed graph HP similar to the posts graph GP . The vertices of HP are all posts p
such that Mk(p)
= M(p). For every applicant a we have a directed edge from Mk(a) to
M(a) with a weight of −1,0,+1 if a considers M(a) better than, the same as or worse
than Mk(a). Any post p that does not belong to HP is matched to the same applicant
in Mk as well as in M and hence the corresponding applicant does not contribute to the
unpopularity margin. Furthermore, it is clear that the sum of weights of all edges in HP
gives the negative of the unpopularity margin by which M dominates Mk.

First note that HP is a set of disjoint paths and cycles. This is because, HP can
equivalently be constructed from S = Mk ⊕ M by striking off applicants and giving
appropriate directions and weights to edges. Thus a path in S continues to be a path in
HP although it may no longer be of even length. The same is true for cycles also. If a
path or cycle consists of only 0 weight edges, then we can drop such a cycle/path from
the graph, since these edges do not contribute to the unpopularity margin. In addition,
note that any cycle or path cannot be composed of only negative and zero weight edges,
otherwise the unpopularity factor of Mk is ∞, a contradiction. Hence we can assume
that every cycle or path contains at least one positive edge.

Let ρ be any path or cycle in HP . Furthermore, let α and β be the numbers of −1’s
and +1’s in ρ respectively. We define the function:

frac-margin(ρ) =
α− β

number of edges in ρ

Let us try to bound frac-margin(ρ) for each ρ. For the sake of simplicity, let us
first assume that the preference lists are strict. So there are only ±1 weight edges in
HP . Thus frac-margin(ρ) = (α − β)/(α + β). Since the unpopularity factor of Mk is
bounded by k − 1, it is easy to see that the unpopularity factor of ρ is also bounded
by k − 1 (refer to [13] for a proof), implying α/β ≤ k − 1. Thus β/(α+ β) ≥ 1/k, and
α/(α+ β) ≤ 1 − 1/k. Hence frac-margin(ρ) for any path or cycle ρ is at most 1 − 2/k.
The contribution of ρ towards δ(Mk,M) is (number of edges in ρ)·(frac-margin(ρ)).
This is at most nρ(1 − 2/k) where nρ is the number of edges in ρ. Since a unique
applicant a is associated with each edge (Mk(a),M(a)) of HP , it follows that ∑nρ ≤ n.
Thus δ(Mk,M) ≤ n(1 − 2/k) where M is any matching.

The proof for the case with ties also follows from the above argument. Since 0 weight
edges in ρ do not affect the numerator of frac-margin(ρ) and only increase the denomi-
nator of frac-margin(ρ), it is easy to see that frac-margin(ρ) for a path or cycle ρ with 0

Bounded Unpopularity Matchings 135

weight edges is dominated by frac-margin(ρ′) where ρ′ is obtained from ρ by contract-
ing 0 weight edges. Thus frac-margin(ρ) ≤ 1 − 2/k and thus δ(Mk,M) ≤ n(1 − 2/k)
where M is any matching. Thus maxM′δ(Mk,M) ≤ n(1 − 2/k). ��

Corollary 1. Let G be a graph that does not admit a popular matching. If our algo-
rithm produces an A-complete matching M in H3, then M is a least unpopularity factor
matching in G.

Proof. It follows from Theorem 2 that if our algorithm produces an applicant complete
matching M in H3, then u(M) ≤ 2. McCutchen [13] showed that the unpopularity factor
of any matching is always an integer. Thus if G admits no popular matching, then the
lowest value of u(·) we can hope for is 2. Since u(M) ≤ 2, it follows that this is a least
unpopularity factor matching. ��

Starting with the above corollary, it is tempting to push the frontier further. Suppose
that the algorithm gets an A-complete matching M4 in the graph H4 (thus u(M4) ≤ 3).
Can we also argue that it is impossible to achieve a better matching? Unfortunately, this
is not the case. See the full version [4] for an example.

4 Experimental Results

In this section, we present simulation results showing that our algorithm is able to find
a matching with small unpopularity in random graphs.

We follow the setting used in [2] so that our experimental results are comparable to
those reported in [2]. The number of applicants and posts are equal (denoted by n) and
preference lists have the same length k. Existence of ties is characterized by a single
parameter t which denotes the probability of an entry in the preference list to be tied
with its predecessor.

Table 1 contains simulation results for random graphs with n = 100 and n = 500 for
different values of parameters k and t. The table shows the number of instances (out of
1000 instances) that finish in some particular round of the execution. Round 2 means
that the instance has a popular matching. It is easy to observe that the difficult cases are
the ones where we only have a few ties (t is small). For a fixed value of k as t decreases
the algorithm requires more rounds until it returns a solution. However, the good news
are that it never takes more than four rounds.

As Table 1 suggests, the difficult situation is when k is large and t is very small (the
preferences have few ties and these ties are of small length). We study this situation
further by varying the value of n in order to see whether our observations for n = 100
and n = 500 are valid for larger values of n. Table 1 shows the number of rounds (again
out of a 1000) that is required for different values of n when t = 0.05 and k = n. The table
suggests that as n increases the probability of terminating at the second or third round
decreases while the probability of terminating in the fourth round increases. However,
this is not accompanied with any increase in rounds larger than 4.

Our experimental results are promising. The algorithm behaves nicely in practice,
far away from a possible large approximation.

136 C.-C. Huang et al.

Table 1. The left and middle tables show the number of instances with n = 100 and 500 nodes
respectively (out of a 1000 instances) that finish in round number 2 (popular matching), 3 or 4 for
different values of the parameters k and t. The table on the right shows the number of instances
(out of a 1000 instances) that finish in round number 2 (popular matching), 3 or 4 for fixed
t = 0.05, k = n and different values of the parameter n.

n = 100
rounds

k t 2 3 4
0.05 4 996
0.2 28 972

10 0.5 471 529
0.8 729 271
1.0 1000

0.05 991 9
0.2 3 991 6

25 0.5 138 861 1
0.8 773 227
1.0 1000

0.05 948 52
0.2 1 978 21

50 0.5 158 832 10
0.8 793 207
1.0 1000

0.05 952 48
0.2 2 973 25

100 0.5 148 836 16
0.8 783 217
1.0 1000

n = 500
rounds

k t 2 3 4
0.05 1000
0.2 1000

10 0.5 176 824
0.8 62 938
1.0 1000

0.05 1000
0.2 1000

25 0.5 999 1
0.8 93 907
1.0 1000

0.05 967 33
0.2 994 6

50 0.5 997 3
0.8 104 896
1.0 1000

0.05 828 172
0.2 942 58

100 0.5 989 11
0.8 93 907
1.0 1000

n # rounds
2 3 4

10 585 413 2
25 141 844 15
50 6 962 32
100 952 48
250 896 104
500 820 180

1000 667 333
1500 541 459
2000 320 680

References

1. Abraham, D.J., Cechlárová, K., Manlove, D.F., Mehlhorn, K.: Pareto-optimality in house
allocation problems. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp.
3–15. Springer, Heidelberg (2004)

2. Abraham, D.J., Irving, R.W., Kavitha, T., Mehlhorn, K.: Popular matchings. SIAM Journal
on Computing 37(4), 1030–1045 (2007), Preliminary version. In: Proc. of 16th SODA, pp.
424-432, (2005)

3. Abdulkadiroǧlu, A., Sönmez, T.: Random serial dictatorship and the core from random en-
dowments in house allocation problems. Econometrica 66(3), 689–701 (1998)

4. Huang, C.-C., Kavitha, T., Michail, D., Nasre, M.: Bounded Unpopularity Matchings. Dart-
mouth Computer Science, Technical Report (2008)-616

5. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. American Mathe-
matical Monthly 69, 9–15 (1962)

6. Gardenfors, P.: Match making: assignments based on bilateral preferences. Behavioural Sci-
ences 20, 166–173 (1975)

7. Gusfield, D., Irving, R.W.: The Stable Marriage Problem: Structure and Algorithms. MIT
Press, Cambridge (1989)

Bounded Unpopularity Matchings 137

8. Hopcroft, J.E., Karp, R.M.: A n5/2 Algorithm for Maximum Matchings in Bipartite Graphs.
SIAM Journal on Computing 2, 225–231 (1973)

9. Hylland, A., Zeckhauser, R.: The efficient allocation of individuals to positions. Journal of
Political Economy 87(2), 293–314 (1979)

10. Irving, R.W., Kavitha, T., Mehlhorn, K., Michail, D., Paluch, K.: Rank-maximal matchings.
ACM Transactions on Algorithms 2(4), 602–610 (2006), Preliminary version. In: Proc. of
15th SODA, pp. 68-75 (2004)

11. Mahdian, M.: Random popular matchings. In: Proceedings of the 7th ACM Conference on
Electronic-Commerce, pp. 238–242 (2006)

12. Manlove, D.F., Sng, C.: Popular matchings in the capacitated house allocation problem. In:
Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 492–503. Springer, Heidelberg
(2006)

13. McCutchen, M.: The least-unpopularity-factor and least-unpopularity-margin criteria for
matching problems with one-sided preferences. In: Proceedings of LATIN 2008, the 8th
Latin American Theoretical Informatics Symposium, LNCS, vol. 4957, Springer, Heidelberg
(2008)

14. Mestre, J.: Weighted popular matchings. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener,
I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 715–726. Springer, Heidelberg (2006)

15. Roth, A.E., Postlewaite, A.: Weak versus strong domination in a market with indivisible
goods. Journal of Mathematical Economics 4, 131–137 (1977)

16. Yuan, Y.: Residence exchange wanted: a stable residence exchange problem. European Jour-
nal of Operational Research 90, 536–546 (1996)

17. Zhou, L.: On a conjecture by Gale about one-sided matching problems. Journal of Economic
Theory 52(1), 123–135 (1990)

Data Structures with Local Update Operations

Yakov Nekrich

Dept. of Computer Science, University of Bonn
yasha@cs.uni-bonn.de

Abstract. In this paper we describe dynamic data structures with re-
strictions on update operations. In the first part of the paper we consider
data structures that support operations insertΔ(x, y) or insertΔ(x) instead
of general insertions, where insertΔ(x, y) (insertΔ(x)) inserts a new ele-
ment x, such that |x−y| ≤ Δ for some element y already stored in the data
structure. We present a data structure that supports predecessor queries
in a universe of size U in O(log log U) time, uses O(n) words of space, and
supports operations insertΔ(x, y), and delete(x) in O(1) amortized time,

where Δ = 22O(
√

log log U)
. We present the dictionary data structure that

supports membership queries in O(log log n) time and insertΔ(x, y) and

delete(x) in O(1) amortized time, where Δ = 22O(
√

log log n)
We also present

a priority queue that supports delete(x), and FindMin in O(1) time and
insertΔ(x) in O(log log n) time, where Δ = logO(1) U . All above data struc-
tures also support incrementation and decrementation of element values
by the corresponding parameter Δ.

In the second part of this paper, we consider the data structure for
dominance emptiness queries in the case when an update changes the
relative order of two points or increments/decrements coordinates of a
point by a small parameter. We show that in this case dominance empti-
ness queries can be answered faster than the lower bound for the fully
dynamic data structure.

1 Introduction

In this paper we consider data structures that support update operations with
locality restriction: an update changes properties of the data structure D only in
the vicinity of some point x already stored in D. Examples of such update oper-
ations are: incrementing or decrementing an element value by a small parameter
Δ, deletions, change of the relative order of two elements (swapping), or insertion
of an element that is close to at least one element stored in the data structure.
We show that data structures with such restrictions can perform better than the
best known fully dynamic data structures. In one case we show that restriction
on updates allows us to surpass the lower bound for fully dynamic data struc-
tures. Although the repertoire of supported update operations differs, all data
structures described in this paper can support incrementation or decrementation
of element values (resp. point coordinates) by a small parameter Δ.

J. Gudmundsson (Ed.): SWAT 2008, LNCS 5124, pp. 138–147, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Data Structures with Local Update Operations 139

In the first part of the paper, we consider data structures that instead of
insertions support one or more of the following update operations:

– insertΔ(x) - insert an element x, if the data structure contains an element
y, such that |x − y| ≤ Δ. If there is no such y, the operation is undefined.

– insertΔ(x, y) - given a location of an element y that is the predecessor/
successor of x in the data structure, such that |x − y| ≤ Δ, insert x.

– incrementΔ(x, d) (decrementΔ(x, d)) - increase (decrease) the value of ele-
ment x by d ≤ Δ, given a location of x.

Clearly, operations incrementΔ(x, d) (decrementΔ(x, d)) can be implemented
with operations insertΔ(x, x+Δ) (resp. insertΔ(x, x−Δ)) and delete(x). Hence,
a data structure that supports insertΔ and delete also supports operations
incrementΔ and decrementΔ.

In section 2 we consider a O(n) space deterministic data structure that sup-
ports predecessor queries over the universe of size U in O(log log U) time and
delete(x)1, insertΔ(x, y), incrementΔ(x, d), and decrementΔ(x, d) in O(1) amor-
tized time for Δ = 22O(

√
log log U)

. The best known deterministic O(n) space data
structure that supports arbitrary updates is the exponential tree of Anders-
son and Thorup [2] with query time O(log log n · log log U). A semi-dynamic
data structure that supports only deletions can support predecessor queries in
O(log log U) time [7]. Our data structure supports both delete and insertΔ op-
erations. According to the lower bound of Pǎtraşcu and Thorup [6] any static
data structure that uses linear or pseudo-linear space needs Ω(log log U) time to
answer a predecessor query. Thus we demonstrate that the predecessor queries
in a universe of size U can be answered in our scenario as efficiently as in the
static case.

In section 3 we present a deterministic dictionary data structure that sup-
ports membership queries in O(log log n) time and operations insertΔ(x, y),
incrementΔ(x, d), decrementΔ(x, d), and delete(x) in O(1) amortized time,
where Δ = 22O(

√
log log n)

. This result is to be compared with the fully-
dynamic deterministic dictionary of Pagh [5] that supports membership
queries in O((log log n)2/ log log log n) time and insertions and deletions in
O((log n log log n)2) time.

In section 4 we describe a priority queue that supports operations delete(x),
incrementΔ(x), decrementΔ(x) in O(1) amortized time, FindMin in O(1) time
and insertΔ(x) in O(log log n) time for Δ = logO(1) U .

In section 5 we consider a different scenario. We describe a data structure
for dominance emptiness and one-reporting queries: a set of planar points P is
stored in a data structure, so that given a query Q = (−∞, a] × (−∞, b] we can
determine whether P ∩ Q �= ∅ and report one point from P ∩ Q if P ∩ Q �= ∅.
We present a data structure that supports such queries in O(log log n · log log U)
time and supports update operations x-move and y-move in O(1) time: If Px (Py)

1 Throughout this paper we assume that the location of the element x in the data
structure during operation delete(x) is known.

140 Y. Nekrich

is the set of x-coordinates (y-coordinates) of all points, then the operation x-
move (y-move) increases or decreases the x-coordinate (y-coordinate) of a point
p so that the ranks of at most two points in Px (Py) are changed. We also
describe a data structure that increases or decreases coordinates of a point p by a
parameter d < Δ and supports queries in O(log log n·log log U) time and updates
in O(Δ) time. As follows from the lower bound for orthogonal range reporting
queries proved in [1] and the reduction of orthogonal range reporting queries to
dominance queries, a fully dynamic data structure with poly-logarithmic update
time needs O(log n/ log log n) time to answer a dominance emptiness query.

The model of computation used in this paper is the unit-cost word RAM
model. We assume that word size w = log U where U is the size of the universe.
Unless stated otherwise, the space usage of data structures is measured in words.

2 Predecessor Queries in O(log log U) Time

The predecessor problem is to store a set A in the data structure, so that for an
arbitrary x the predecessor of x in A, pred(x, A) = max{e ∈ A ∪ {−∞}|e ≤ x},
can be found. In this section we describe a linear space data structure that
supports predecessor queries in O(log log U) time and insertΔ(x, y), delete(x) in
O(1) time. As mentioned in the Introduction, our data structure also supports
increments and decrements of elements by Δ.

We start by describing a data structure that supports updates in O(log U)
time for the case when Δ = 1. Later in this section we will show how our
method can be extended to larger values of Δ.

Theorem 1. There exists a linear space data structure that supports predecessor
queries in O(log log U) time, insertΔ(x, y) and delete(x) in O(log U) amortized
time, where U is the size of the universe and Δ = O(1).

Proof: The elements of the set A correspond to the leaves of a binary trie with
root r. Let b denote the height of the trie; hence, b is the key size – we need b
bits to specify an arbitrary element of the universe. We use the standard VEB
approach [4] to reduce the key size by a constant factor with one dictionary
look-up.

We denote by h(v) the height of a node v; we denote by rng(v) the difference
between the maximal and minimal elements that can be stored in v. If A contains
more than 2 elements, the predecessor data structure consists of the following
components: a dictionary Mr that contains all non-empty trie nodes on level
3h(r)/4 (node levels are counted from the bottom), a recursively defined data
structure D′ that contains all non-empty nodes on level 3h(r)/4. Besides that,
for each such non-empty node v all leaf descendants of v are also stored in a
recursively defined data structure Dv. To find the predecessor of an integer x,
we check whether the node v that must contain x is stored in Mv. If v does
not belong to Mv, then v is empty. In this case, we find the largest non-empty
node u that precedes v with help of D′, and the predecessor of x is the largest
leaf descendant of u. Otherwise, if v is not empty, we search for a predecessor

Data Structures with Local Update Operations 141

of x among all leaf descendants of the node v. Any element stored in D′ can be
specified with b/4 bits. All elements stored in a data structure Dv for some v
have the same prefixes of length b/4; hence, it suffices to store the last 3b/4 bits
in Dv. Thus, one dictionary look-up reduces the key size at least by a factor 4/3.
Hence after O(log log U) look-ups the key size is reduced to a constant and the
query can be answered in constant time. It remains to show how to implement
the dictionary Mv for each node v so that queries are answered in constant time
and fast update operations are supported.

Let m be the number of elements stored in a trie node v. We distinguish be-
tween two cases. If m4 ≥ rng(v), Mv is a dictionary in the universe of size O(m)
and can be implemented as a bit vector. If m4 ≤ rng(v), then we construct a
static dictionary Sv and rebuild it after a series of m3 updates. A static dictio-
nary Sv can be constructed in O(m2+ε) time for any ε > 0 [2] Sv contains all
descendants vi of v on level 3h(v)/4, such that vi �= ∅, or vi−1 �= ∅, or vi+1 �= ∅.
The number of nodes in Sv does not exceed 3m, and Sv can be constructed in
O(m2+ε) time for any ε > 0. We also maintain the count of elements stored in
vi, count(vi), for every vi ∈ Sv. Obviously, if vi ∈ Sv and count(vi) > 0, then
vi ∈ Mv.

Consider consecutive nodes vi−2, vi−1, vi, vi+1, vi+2 on level 3h(v)/4. Suppose
that nodes vi−1, vi, vi+1 are empty when Sv is constructed. For any element x
inserted into the data structure during the sequence of m3 operations, there
exists an element y, such that y was stored in the data structure when Sv was
constructed and |x− y| ≥ m3. Therefore, since rng(vi+1) > m3 and rng(vi−1) >
m3, the node vi will remain empty after m3 update operations. Hence, only nodes
stored in Sv can be non-empty during the sequence of m3 updates. To determine
whether vi is empty, it suffices to check whether vi ∈ Sv and count(vi) > 0.

When some elements appear in a previously empty node vi, we have to con-
struct a new dictionary Mvi . The dictionary for vi must contain all non-empty
descendants of vi+1 on level 3h(vi+1)/4. During the first 2(3/4)h(vi) updates only
the leftmost and the rightmost descendants of vi may be non-empty. If vi is
non-empty after a sequence of 2(3/4)h(vi) updates, we construct the dictionary
Mvi (either as a bit vector or with help of Svi) in O(2(3/4)h(vi)) time.

The total number of trie nodes stored in the data structure for all recursion
levels is O(n log U). Each element a ∈ A belongs to O(log U) trie nodes v that
are stored in O(log U) dictionaries. When an element a ∈ A is updated, those
dictionaries may also be updated. Hence, each update takes O(log U) time.

The space usage can be reduced to O(n) with a standard sub-sampling tech-
nique in the same way as in the case of the van Emde Boas data structure: the set
A is divided into consecutive groups of log U elements each, and the set A′ con-
tains one representative from each group. Since A′ contains n/ logU elements, the
above described data structure for A′ uses O(n) space. Elements of each group are
also stored in a binary tree. We can identify the group in which the predecessor is
stored and find the predecessor in the group in O(log log U) time.

We can extend the result of Theorem 1 to support insertΔ(x, y) for Δ = 2ρ(U),
where ρ(U) = 2O(

√
log log U), and reduce the update time to O(1). Let E = {e =

142 Y. Nekrich

a/δ|a ∈ A} and Ae = {a ∈ A|a/δ = e} for δ = Δ log U . We combine sets Ae into
groups G1, G2, . . . , Gm, such that each group Gi contains Θ(log U) non-empty
sets Ae. To be precise, each Gi contains between log U/2 and 2 log U sets; for
any Ae ∈ Gi and any Af ∈ Gi+1, e < f . All elements e, such that Ae ∈ Gi, are
stored in data structure Gi. Every set Ae is stored in the exponential tree Te of
Andersson and Thorup [2], so that finger updates are supported in O(1) time
and queries are supported in O((log log δ)2) = O(log log U) time. For each Gi,
elements gi = max{ e | Ae ∈ Gi } and g′i = min{ e | Ae ∈ Gi } are stored in a
data structure E implemented as described above.

To find the predecessor of some x, we identify the group Gi in which the
predecessor is stored using E , then identify the set Ae in which the predecessor
is stored using Gi. Finally, we search in Ae using Te. We can search in Gi in
O(log log U) time because Gi contains O(log U) elements. The search in E and
Te also takes O(log log U) time.

When an element e is inserted, we insert it into the corresponding set Ae. If Ae

is empty, we create a new data structure Te and insert e into the corresponding
group Gi. After log U/2 insertions we check the number of sets Ae in Gi; if
necessary, we split Gi into two groups and update the E accordingly. When an
element e is deleted, we delete it from Te and delete e from Gi if Ae becomes
empty. After log U/2 deletions we check the number of sets Ae in Gi; if necessary,
we merge Gi with one of its neighbor groups, split the resulting group into two
groups if it contains more than 2 log U sets, and update the E accordingly.

The results can be summed up in the following Theorem

Theorem 2. There exists a linear space data structure that supports predecessor
queries in O(log log U) time, insertΔ(x, y) and delete(x) in O(1) amortized time,
where U is the size of the universe and Δ = O(22O(

√
log log U)

).

As shown in the proof of Theorem 2, we can support queries in time
O(max(log log U, (log log Δ)2)) if the value of Δ is known. We can achieve query
time O((log log Δ)2) even if the value of Δ is not known. Let Δi = 2ρi and ρi =
22i√log log n for i = 1, 2, . . . , (log log log U)/2. Let Δe = max{ |e − a| | a ∈ A }.
We write Δmax = max(Δx1 , Δx2 , . . . , Δxk

), where x1, . . . , xk is the sequence of
elements inserted into the data structure so far. For each value of Δi we con-
struct the data structure Di that supports queries in O((log log Δi)2) time. We
assume that with each element stored in data structure Di we store a pointer
to the same element stored in data structure Di+1. Let jmin be an index, such
that Δi ≥ Δmax for i ≥ jmin. Predecessor searches are performed with help
of data structure Djmin in O((log log(Δjmin))2) = O((log log Δmax)2) time. We
maintain only data structures Di, i ≥ jmin. When a new element x is inserted,
we can identify pred(x, A) and compute Δx in O((log log Δmax)2) time using
data structure Djmin . We can find the minimal index j, such that Δj ≥ Δx, in
O(log log log U) time. Then, we set jmin = max(jmin, j) and insert x into data
structures Di, i ≥ jmin, in O(log log log U) time. When an element is deleted, we
delete it from all data structures Di, i ≥ jmin.

Data Structures with Local Update Operations 143

We have obtained a data structure D that supports queries in time
O(max(log log U, (log log Δmax)2)), but uses O(n log log log U) space and re-
quires O(log log log U) time for update operations. Again, we can reduce the
space usage to O(n) with standard sub-sampling techniques. We can reduce the
update time with the same method as in Theorem 2.

Theorem 3. There exists a linear space data structure that supports predecessor
queries in O(max(log log U, (log log Δmax)2)) time, insertΔ(x, y) and delete(x) in
O(1) amortized time. Here Δmax = max(Δx1 , Δx2 , . . . , Δxk

), where x1, . . . , xk

is the sequence of elements inserted into the data structure so far.

If the universe size U = nO(1), then the data structure of Theorem 3 supports
predecessor queries in O(log log n) time as long as Δmax = O(22

√
log log n

).

2.1 Space-Efficient Implementation

We can implement the predecessor data structure so that is uses O(n log U+n
n)

bits without changing the query and update times. This space usage is within the
constant factor of the information-theoretic lower bound. We use the following
result from [3]

Lemma 1. Elements of a set S ⊂ [1, U], U = nO(1), can be stored in a list
L in sorted order, so that L uses O((|S| log U+|S|

|S|)/ log U) words of log U bits.
Each element stored in a word of L can be accessed in O(1) time. Each word
of L contains O(log U) elements of S. For every word W of L, we can find the
number of elements stored in W and extract the k-th element from W in O(1)
time. Given a pointer to pred(x, L), we insert x into L in O(1) time. We can
delete an element from L in O(1) time.

All elements of the set A are stored in L implemented according to Lemma 1.
For a word W of L let minw denote the minimum element stored in W . The data
structure D contains elements minW for all words W of L; D is implemented as
described in section 2. Since the number of elements in D equals to the number
of words in L, D uses the same space as L (up to a constant factor).

To find the predecessor of some e, we first find m = pred(e, D). Then, we
search in the word W such that minW = m and find pred(e, A) in O(log log U)
time using binary search. To delete an element x, we delete it from L; if minW

for some W is deleted, we delete minw from D and insert the new minimal
element of W into D. If a word that contained x becomes empty, we delete the
corresponding element from D. When a new element x is inserted, we insert it
into L. If x is a minimal element in some word W or if W must be split into two
words, then D is updated accordingly.

3 Deterministic Dictionaries with O(log log n) Query
Time

Our approach is very similar to the approach in section 2. Elements of the set A
are associated with the leaves of the binary trie. If the size of the universe does

144 Y. Nekrich

not exceed n3, we can answer predecessor queries for A in O(log log n) time with
the data structure from section 2. Clearly, the answer to a predecessor query
yields an answer to a membership query because x ∈ A ⇔ pred(x, A) = x. If the
universe size exceeds n3, the height of the trie exceeds 3 logn. In this case we
store the static dictionary S that contains all nodes vi on level 3 logn, such that
vi �= ∅, or vi−1 �= ∅, or vi+1 �= ∅. In the same way as in section 2, S is re-built
after a sequence of n3 updates. Using S and counts of elements stored in each
vi ∈ S, we can determine whether a node vk on level 3 logn is empty in O(1)
time. For every non-empty node vi, a data structure Dvi that contains all leaf
descendants of vi is maintained. Again, Dvi can be implemented with help of
the predecessor data structure from section 2: since all elements of Dvi belong
to the universe of size n3, predecessor queries can be answered in O(log log n)
time. To determine whether x belongs to the set A, it suffices to check whether
x′ ∈ S and x′′ ∈ Dx′ , where x′′ is the suffix of x that consists of the last 3 logn
bits of x, and x′ is the prefix of x that is obtained from x by shifting it 3 log n
bits to the right.

The above data structure supports the operation insertΔ(x, y) for Δ = 1. We
can extend our result for the case Δ = O(22

√
log log n

) using the same method as
in the previous section.

Theorem 4. There exists a linear space data structure that supports member-
ship queries in O(log log n) time and operations insertΔ(x, y) and delete(x) in
O(1) amortized time for Δ = O(22

√
log log n

).

4 Priority Queues

The same approach also leads to a priority queue that supports operation insertΔ
in O(log log n) time and operations delete and FindMin in O(1) time for Δ =
logO(1) U . Let δ = Δ log n, A′ = { a/δ | a ∈ A } and Ae = { a ∈ A | a/δ = e }.
We store the elements of A′ in a sorted doubly-linked list L and in a dictionary
D implemented as described in Theorem 4. Elements of each set Ae are stored
in data structure De that will be described below.

When a new element x is inserted, we check whether x′ ∈ D or (x′ − 1) ∈ D,
or (x′ + 1) ∈ D, where x′ = x/δ. If x′ �∈ D , we insert x′ into D in O(1) time,
create the data structure Dx′ , put x into Dx′ , and insert x′ into L. Observe that
when x′ is inserted, x′ − 1 or x′ + 1 are already stored in L, therefore insertion
of x′ into L takes O(1) time. If x′ ∈ D, we put x into Dx′ . When an element
x is deleted, we delete it from Dx′ . If Dx′ becomes empty, the list L and the
dictionary D are updated in O(1) time. We can find the minimal element with
help of the data structure Dm, where m is the first element in the list L. Given
the location of some element x in the data structure, we can insert x + Δ or
x−Δ in constant time. Hence, operations incrementΔ(x, d) ad decrementΔ(x, d)
cn be supported in constant time.

Each data structure De can be implemented with help of tries with node
degree log U . Every trie node can be stored in one word of memory; for every

Data Structures with Local Update Operations 145

node we maintain the index of the lowest non-zero bit. When an element e stored
in the leaf node l is deleted, we set the bit of l corresponding to e to zero. If e
was the smallest element in l, we identify the new lowest non-zero bit. If e was
the only element stored in l, we delete l and update the parent of node l in the
same way. Since the height of the trie is O(1), we can update the trie in O(1)
time. Insertions of new elements into De can be processed in a similar way.

Theorem 5. There exists a linear space data structure that supports operations
FindMin in O(1) time, delete(x), insertΔ(x, y) in O(1) amortized time, and
operation insertΔ(x) in O(log log n) time for Δ = logO(1) U .

5 Dominance Queries

In the orthogonal range reporting problem the set of points P must be stored
efficiently, so that for an arbitrary axis-parallel query rectangle Q all points from
P ∩ Q can be reported. Emptiness queries and one-reporting queries are special
cases of the range reporting queries. In the case of emptiness queries, we must
determine whether P ∩ Q �= ∅; in the case of one-reporting queries, if P ∩ Q �= ∅
an arbitrary point of P ∩ Q must be output. We present the data structure that
supports emptiness and one-reporting dominance queries on a U × U grid: the
query range Q is a product of two half-open intervals and all point coordinates
are positive integers bounded by U .

In our scenario, the points in the set P can be updated with x-move and y-
move operations. Let Px (Py) be the set of projections of points from the set P
on the x-axis (y-axis). For a set S, we define prev(a, S) = max{ e ∈ S | e < a }
and fol(a, S) = min{ e ∈ S | e > a }. The operation x-move changes the x-
coordinate of the given point p, so that the rank of p.x in Px is incremented or
decremented by 1. Consider points q, q′, r, and r′, such that q.x = fol(p.x, Px),
q′.x = fol(q.x, Px), and r.x = prev(p.x, Px), r′.x = prev(r.x, Px). The operation
x-move increases or decreases the x-coordinates of p, so that q.x < p.x < q′.x or
r′.x < p.x < r.x. In the former case, we say that p is x-moved behind q; in the
latter case, we say that p is x-moved before r. The operation y-move changes the
y-coordinate of the given point p, so that the rank of p.y in Py is incremented or
decremented by 1. Consider points u, u′, v, and v′, such that u.y = fol(p.y, Py),
u′.y = fol(u.y, Py), and v.y = prev(p.y, Py), v′.y = prev(v.y, Py). The operation
y-move increases or decreases the y-coordinates of p, so that u.y < p < u′.y or
v′.y < p.y < v.y. In the former case, we say that p is y-moved above u; in the
latter case, we say that p is y-moved below v.

We demonstrate that in this scenario the dominance one-reporting queries
can be answered faster than the lower bound for the fully dynamic scenario [1].
We denote by miny(a) = min{ y | (a, y) ∈ P }, i.e., miny(a) is the minimum
y-coordinate of a point p ∈ P with x-coordinate a. Let next(a) = min{ b >
a | miny(b) < miny(a) }, i.e. next(a) is the minimum x-coordinate of a point p
whose x-coordinate is greater than a and y-coordinate is smaller than miny(a). If
miny(a) ≤ miny(b) for all b > a, then we assume that next(a) = +∞. The set L
contains elements x1 = 1, xi = next(xi−1) for all i, such that next(xi−1) �= +∞.

146 Y. Nekrich

y

x

Fig. 1. Example of the data structure: x-coordinates of bold points are stored in
array L

The y-coordinates of points with x-coordinates in L decrease monotonously.
The minimum y-coordinate of a point whose x-coordinate is at most a equals
to miny(m) for m = pred(a, L): for all points p with p.x < m, miny(p.x) >
miny(m); for all points p with p.x ∈ [m + 1, a] p.y ≥ miny(m) because otherwise
p.x for at least one such point p would be stored in L. Consider a query Q =
(−∞, a] × (−∞, b]. Q ∩ P is not empty if and only if miny(pred(b, L)) ≤ b.
If Q ∩ P �= ∅, then P ∩ Q contains the point p with p.x = pred(b, L) and
p.y = miny(pred(b, L)). Thus a one-reporting query is reduced to answering one
predecessor query on L.

Now we show how the set L can be maintained under x-moves and y-moves,
so that predecessor queries on L can be answered efficiently. For simplicity we
say that a point p belongs to L if p.x belongs to L and p.y = miny(p.x). We also
say that p = pred(a, L) if p.x = pred(a, L) and p.y = miny(p.x). When a point
p from L is x-moved behind a point r from P \ L, we check whether r.y < s.y,
where s = pred(r.x, L). If r.y < s.y, then r.x is inserted into L. When p is x-
moved behind a point r from L, we remove p from L. If p is x-moved before some
point q ∈ (P \ L), then p.y < q.y and no modifications of L are necessary. If p
is moved before q ∈ L, we remove q from L. If a point u ∈ (P \ L) is x-moved
before some v ∈ L and u.y < w.y for w = pred(v, L), then u is inserted into L. If
p ∈ L is y-moved above some point r ∈ (P \ L) and p.x > r.x, then r is inserted
into L and p is removed from L. If p is y-moved above some r ∈ L, then p is
removed from L. If p is y-moved below some q ∈ (P \ L), then q.x > p.x and
no modifications of L are necessary. If p is y-moved below some q ∈ L, then q is
removed from L. If u ∈ (P \ L) is moved below some v ∈ L and u.x < v.x, then
u is inserted into L and v is removed from L.

Data Structures with Local Update Operations 147

Predecessor queries on set L can be supported in O((log log U · log log n)) time
and finger updates on L can be supported in O(1) time with help of exponential
search trees [2]. When a new element p is inserted into or removed from L, we
always know the location of p (resp. the location of the predecessor of p) in L.
Hence, all updates on L are supported in O(1) time.

Thus we obtain the following result:

Theorem 6. There exists a linear space data structure that supports domi-
nance emptiness queries and dominance one-reporting queries on U × U grid
in O(log log U · log log n) time and operations x-move and y-move in O(1) time.

We can apply the result of Theorem 6 to the scenario when an update operation
may change the values of point coordinates at most by a additive parameter Δ.
If coordinates of a point p are changed by some d < Δ, then p is x-moved and
y-moved at most 2Δ times. Hence, we can update the data structure described
above in O(Δ) time.

Corollary 1. There exists a linear space data structure that supports domi-
nance emptiness queries and dominance one-reporting queries on U × U grid
in O(log log U · log log n) time and operations incrementΔ(p), decrementΔ(p)
in O(Δ) time, where the operation incrementΔ(p) (resp. decrementΔ(p)) in-
crements (decrements) coordinates of a point p by some d, for 0 ≤ d ≤ Δ.

Acknowledgment

The author would like to thank J. Ian Munro for a stimulating discussion and
comments on a preliminary version of this paper.

References

1. Alstrup, S., Husfeldt, T., Rauhe, T.: Marked Ancestor Problems. In: Proc. FOCS
1998, pp. 534–544 (1998)

2. Andersson, A., Thorup, M.: Dynamic Ordered Sets with Exponential Search Trees.
J. ACM 54(3), 13 (2007)

3. Blandford, D.K., Blelloch, G.E.: Compact Representations of Ordered Sets. In: Proc.
SODA 2004, pp. 11–19 (2004)

4. van Emde Boas, P.: Preserving Order in a Forest in Less Than Logarithmic Time
and Linear Space. Inf. Process. Lett. 6(3), 80–82 (1977)

5. Pagh, R.: A Trade-Off for Worst-Case Efficient Dictionaries. Nord. J. Comput. 7(3),
151–163 (2000)

6. Pǎtraşcu, M., Thorup, M.: Time-Space Trade-Offs for Predecessor Search. In: Proc.
STOC 2006, pp. 232–240 (2006)

7. Pǎtraşcu, M.: Personal Communication
8. Willard, D.E.: Log-Logarithmic Worst-Case Range Queries are Possible in Space

Theta(N). Inf. Process. Lett. 17(2), 81–84 (1983)

On the Redundancy of Succinct Data Structures

Alexander Golynski1, Rajeev Raman2, and S. Srinivasa Rao3

1 Google Inc.�
2 Department of Computer Science, University of Leicester, UK

3 MADALGO��, Department of Computer Science, University of Aarhus, Denmark

Abstract. The redundancy of a succinct data structure is the difference
between the space it uses and the appropriate information-theoretic lower
bound. We consider the problem of representing binary sequences and
strings succinctly using small redundancy. We improve the redundancy
required to support the important operations of rank and select efficiently
for binary sequences and for strings over small alphabets. We also show
optimal density-sensitive upper and lower bounds on the redundancy for
systematic encodings of binary sequences.

1 Introduction

Data structures for text indexing [13, 14, 6] and representing semi-structured
data [9, 4] often require the very space-efficient representation of a sequence S
of length m from the alphabet Σ = {0, . . . , σ − 1}, for some σ ≤ m. There are
several measures for the minimum space needed to represent such a sequence:

– The succinct bound: since there are σm such sequences, a given sequence
requires at least �m lg σ� bits1 in the worst case.

– If the multiplicities of the symbols are known to be n0, . . . , nσ−1, then
there are

(
m

n0,...,nσ−1

)
such sequences, so a given sequence requires at least

B(m, n0, . . . , nσ−1) =
⌈
lg

(
m

n0,...,nσ−1

)⌉
bits in the worst case.

– The zeroth-order empirical entropy of the sequence, H0(S) def= −
∑σ−1

i=0 pi lg pi,
where pi = ni/m, and 0 lg 0 = 0. Fix an integer k ≥ 1 and a given sequence w
of k symbols from Σ. Consider the multiset of symbols x that follow an occur-
rence of w in S (i.e. the multiset {x|wx is a contiguous subsequence of S}),
and let wS be this multiset viewed (arbitrarily) as a sequence. Then, Hk(S) =
(
∑

w∈Σk |wS |H0(wS))/m is the k-th order empirical entropy of S. mHk(S) is
a lower bound on how well S will be compressed by a k-th order compressor.

It can be shown that Hk+1(S) ≤ Hk(S) and mH0(S) ∼ B(m, n0, . . . , nσ−1) ≤
m lg σ. In other words, these space measures get increasingly more stringent.

For the aforementioned applications, it is not enough just to store S. One
would like to support the following operations on S, for any x ∈ Σ:
� Work done when AG was at the Cheriton School of Computer Science, U. Waterloo.

�� Center for Massive Data Algorithmics, a Center of the Danish National Research
Foundation.

1 lg denotes the logarithm base 2.

J. Gudmundsson (Ed.): SWAT 2008, LNCS 5124, pp. 148–159, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On the Redundancy of Succinct Data Structures 149

– rankx(S, i) returns the number of occurrences of x in the prefix S[1..i].
– selectx(S, i) returns the position of the ith occurrence of x in S.

Our focus will be on data structures that support these operations in constant
time on the RAM model with word size O(lg m) bits. In order to support such
operations, it appears to be necessary to use additional space, beyond the ap-
propriate bound for storing the sequence itself. This additional space is termed
the redundancy of the data structure, and this paper focusses on the redundancy
required to support the rank and select operations. The redundancy of a data
structure is a quantity of both theoretical and practical importance:

– for a string from a given family, the measures B and mHk can be very small,
in which case the redundancy can be the dominant part of the space usage.
One often needs to represent sequences that are “highly compressible” by
construction, such as binary sequences with few 1s [13, 9].

– if we wish to store S within the succinct bound for S, there are data struc-
tures whose redundancy is o(m lg σ), and hence with overall space usage
m lg σ + o(m lg σ). While this acceptable from an asymptotic viewpoint, the
functions hidden in the o() often grow only slightly slower than m lg σ, and
can dominate the “higher-order” term for practical values of m and σ.

The recent development of matching upper and lower bounds (particularly
for systematic data structures [8, 10, 11, 12, 16]) highlights the fundamental na-
ture of the trade-off between redundancy and speed of operations. We discuss
three important sub-cases of the problem, binary sequences, binary sequences
(systematic encodings) and sequences over small alphabets.

Binary Sequences. If Σ = {0, 1}, then a data structure that supports rank and
select is called a fully indexable dictionary (FID) [21]. FIDs have found numerous
uses in the literature. FIDs are quite powerful: if S is viewed as the characteristic
vector of a subset of {0, . . . , m − 1}, then the predecessor in S of a given integer
x can be found in O(1) time as select1(S, rank1(S, x)). For binary sequences, we
let n = n1 be the number of 1s and assume, wlog, that n ≤ m/2. We simplify
notation by letting B(m, n) = B(m, n0, n1). We also note that rank0(S, i) +
rank1(S, i) = i and refer to both as rank(S, i) if this is otherwise immaterial.

Our results are summarised in Table 1. The first concerns the redundancy of
FIDs that aim for the B() space bound. A redundancy of O(m lg lg m/ lg m) was
previously achieved by [21], and subsequently improved by a factor of Θ(lg m)
in [12]. However, this redundancy remains fixed independent of n and is a limiting
factor in some applications [12]. If only rank is to be supported, o(n) redundancy

Table 1. Redundancy of O(1)-time FIDs

Space for S Old redundancy New redundancy
B(m,n) O(n(lg lg n)2/ lg n) [19,12]

O(n lg lg n lg(m/n)/(lg n)2)
B(m,n) O(m lg lg m/(lg m)2) [12]
mHk O(m(k + lg lg m)/ lg m) [7,22] O(mk/ lg m)

150 A. Golynski, R. Raman, and S.S. Rao

was achieved by Pagh [19]. In [12] the same redundancy as Pagh’s was achieved
while supporting the full FID functionality. Here we improve Pagh’s redundancy
by a factor of Θ(lg n/ lg(m/n)). Our new data structure, just like [19, 12], only
supports O(1)-time operations if m = n(lg n)O(1) — the predecessor lower bound
of [20] rules out O(1)-time operations for smaller values of n — so the improve-
ment in redundancy is Ω(lg n/ lg lg n) in the most interesting range of n. Noting
that lg m = Θ(lg n) when m = n(lg n)O(1), the ratio of our redundancy to that
of [12] is O((lg(m/n))/(m/n)), which is always O(1). Thus, we subsume all ex-
isting results for FIDs that target the B() space measure.

Finally, we improve the redundancy for FIDs where the input sequence is
compressed to mHk(S). Here the improvement in redundancy is smaller — it
is, e.g., better by a factor of Θ(lg lg m) if k = O(1). Our ideas also provide a
similar improvement to the problem originally considered by [7,22], namely, that
of storing a binary sequence in mHk(S) space whilst allowing the constant-time
retrieval of a contiguous substring of O(lg m) bits. Both results make use of
informative encoding [12], and the first result also uses a new, instance-specific,
way to partition the input sequence S.

Binary Sequences (Systematic Encodings). For binary sequences S, a systematic
encoding stores S as given using m bits. This is augmented with an index, or a
data structure that contains pre-computed information specific to S, that aims to
support these operations rapidly; the redundancy is simply the size of the index.
A number of recent results give lower bounds on the redundancy of systematic
encodings [8,16,10]. In addition to making lower bounds a little easier to prove,
systematic encodings allow the representation of S to be de-coupled from the
set of operations that are being supported, which has many advantages [1].

We now consider the redundancy required for supporting rank and select1 on
binary sequences, but restricted to systematic encodings. It has been shown [16,
10] that Ω(m lg lg m/ lgm) redundancy is needed to support FID operations in
O(1) time, matched by upper bounds in [10, 21]. Hence, the redundancy of sys-
tematic FIDs appears to be a solved question. The lower and upper bounds,
however, are not sensitive to n, the number of 1s in the sequence. For exam-
ple, when n = 1, it is easy to see that redundancy of O(lg m) bits suffices to
support all operations in O(1) time. As already noted, one often has to support
rank/select1 operations on binary sequences that are constructed to have few 1s.
Thus, it is interesting to study the redundancy required to support rank/select1
operations as a function of both m and n. Our new results are shown in Table 2.
The lower bounds are shown in the bit-probe model, which only counts the num-
ber t, of bits of the data structure read by an algorithm to answer the queries. In
fact, the lower bound is a complete trade-off that specifies the minimum redun-
dancy required for any values of m, n and t. The matching upper bounds hold
in the RAM model as before, and O(1) time is achieved only if, additionally,
m/n = (lg n)O(1). Also note that we only support rank and select1. The lower
bound uses the general choices tree framework of [10]. The lower bounds of [10]
were optimal only for the case n = Θ(m), and Miltersen’s [16] work implicitly
contains an optimal lower bound for the case n = Θ(m/ lg m).

On the Redundancy of Succinct Data Structures 151

Table 2. Redundancy of systematic encodings of O(1)-time FIDs

Worst case (over all n) Θ(m lg lg m/ lg m) [16,10]
Density-sensitive [old] Ω(n lg lg m/lg m) [10]

Density-sensitive [new]

⎧⎨
⎩

Θ
(

m
lg m

lg
(

n lg m
m

))
, if n = ω(m/ lg m), and

Θ
(
n

(
1 + lg

(
m

n lg m

)))
if n = O(m/ lg m).

Sequences over Small Alphabets. The case σ = (lg m)O(1) is of interest in prac-
tice: e.g. XML documents have small alphabets relative to their size [3, 4]. It
is also theoretically significant, as rank/select on alphabets of this size (but no
larger alphabets) can be supported in O(1) time with reasonable redundancy [5].
The representation of Ferragina et al. [5] represents S using mH0(S) bits, and
has a redundancy of O(m/(lg m)1−ε) bits, for any constant 0 < ε < 1. We
improve the redundancy to O(m/(lg m)2−ε), for any constant 0 < ε < 1.

2 Preliminaries

We describe some notation and conventions that we will use throughout the
paper. For any integer x ≥ 1, we let [x] refer to the set {0, 1, . . . , x − 1}. For a
given input sequence S, we will often partition S into fixed-length substrings,
which we call blocks ; S may also be divided into variable-length chunks. We refer
to the length of a chunk (in bits) as its length, and the number of 1s it contains
as its weight. We use the following weak version of [12, Theorem 2]:2

Theorem 1. When m = n(lg n)O(1), we can store a binary sequence using
O(B(m, n)) bits and support FID operations in O(1) time.

We use informative encodings of an object in our upper bounds. Informative
encodings encode a given object (for our purposes, a block of symbols) using
space very close to a desired space measure, but allow some properties of the
object to be deduced by looking at a few consecutive bits of the encoding.

Lemma 1 ([12]). Given a finite universe U , and a partition of U into t sets
C1, . . . , Ct. For any probability distribution P over U such that for all i, and all
x, y ∈ Ci, P(x) = P(y) > 0, we can encode any x ∈ U such that the encoding
takes at most �lg(1/P(x))�+2 bits, and comprises the concatenation of two parts:

– a prefix code of lg t + O(1) bits encoding the index i such that x ∈ Ci, and
– an integer in the range [|Ci|] that specifies x.

Lemma 2 ([12]). Let t > 0 be an integer and let ū = (u1, . . . , ut) be a sequence
of positive integers. Given t and ū, and a positive integer parameter z < t, one
can represent any sequence of positive integers x̄ = (x1, . . . , xt), where xi ∈ [ui],
using

∑t
i=1 lg ui + O(1 + t/z) bits, so that xi can be accessed in O(1) time, for

2 A very simple data structure proves Theorem 1; its practicality is suggested by [18].

152 A. Golynski, R. Raman, and S.S. Rao

any i, on a RAM with word size O(t lg z + lg maxi{ui}) bits, using precomputed
tables of size O(t(zt lg z + lg(

∑t
i=1 lg ui))) bits that depend upon ū, t and z, but

not upon x̄.

3 Density-Sensitive Systematic Encodings

Recall that a systematic encoding of a binary sequence S stores S in raw form to-
gether with an index – a data structure that contains pre-computed information
specific to S – to support the operations rapidly.

3.1 Upper Bounds

Lemma 3. Provided that m = n(lg n)O(1), there is an index that supports rank
and select1 on S, whose size is:

⎧⎨
⎩

O
(

m
lg m lg

(
n lg m

m

))
, if n = ω(m/ lg m)

O
(
n

(
1 + lg

(
m

n lg m

)))
, if n = O(m/ lg m).

Proof. Divide the sequence into blocks of size (lg m)/2 each, and let bi ≥ 0 denote
the number of 1s in the i-th block. We represent the sequence OD = 1b101b20 . . .,
which has n 1s and at most 2m/ lgm 0s, as a FID using Theorem 1; the index
size is easily verified to be as claimed. Using FID operations on OD, one can
reduce rank and select1 operations on S to rank and select1 operations on an
individual block, which can be performed in O(1) time by table lookup using
tables of size O(m2/3) bits.

3.2 Density-Sensitive Lower Bounds

In this section, we develop new bounding techniques for binomial coefficients
and show the following theorem.

Theorem 2. The size of the index to support the operations rank1 or select1 on
bit vectors of length m and weight n satisfies

r =

⎧⎪⎨
⎪⎩

Ω
(

m
t lg

(
nt
m

))
, if nt

m = ω(1)
Ω(n) , if nt

m = Θ(1)
Ω

(
n lg

(
m
nt

))
, if nt

m = o(1)

Golynski [10] showed that r = Ω((n/t) lg t) for both rank1 and select1. This
bound is tight only in the case of constant density bit vectors, i.e. when n =
Θ(m). For sparse bit vectors, e.g. when n < m/t, the bound of [10] is smaller
than optimal by almost a factor of t.

In this section, we refine the techniques used in [10] and show tight bounds
on the index size for rank and select operations in systematic encodings. We
prove bounds for the rank problem, and defer the details of select to the full

On the Redundancy of Succinct Data Structures 153

version. Consider γ queries Q∗ = {“rank1(m/γ)”, “rank1(2m/γ)”, . . .}, where
γ is a parameter which will be chosen later such that γ divides m. Let I(B)
denote the index of size r that is used by the rank1 algorithm on B. Construct
the decision tree T for the following procedure: first probe all the r bits stored
in I, and then simulate the computation of Q∗ queries one by one. The nodes on
the first r levels of this tree are labeled by “I[p] = ?” for 1 ≤ p ≤ r, and the rest
of the nodes are labeled “B[p] = ?” for 1 ≤ p ≤ m. The edges are labeled by 0 or
1. Let x be a leaf of T . For simplicity of presentation, we perform arbitrary extra
probes, so that all the leaves of T are at the same depth r+tγ. Call B compatible
with x if I(B) corresponds to the first r edges on the path from the root to x,
and the probes performed on B by our computation correspond to the rest of the
edges on the path. The set of such vectors is denoted by C(x). We note that the
bit vectors B1, B2 ∈ C(x) share some common features, e.g. I(B1) = I(B2), the
locations and the contents of the probed bits by our computation are identical,
and the answers to the queries in Q∗ on B1 and B2 are also identical.

The idea of the lower bound proof is as follows. Consider the set H of
(
m
n

)
bit vectors of length m with n 1-bits. These bit vectors are distributed among
the leaves in some fashion. Imagine, that we have a bound |C(x)| ≤ C∗(x), and
let C∗ be the sum of C∗(x) across all the leaves. Being an upper bound on the
number of leaves, C∗ is at least |H|. The bounds derived in [10] are such that
C∗ = 2rD∗, where D∗ does not depend on r (intuitively, C∗ is proportional to
the number of leaves in T). Hence r should be at least lg(|H|/D∗).

The bound C∗(x) can be derived as follows. Let us split all the locations in
the bit vector into γ blocks, the first block spans positions 1, 2, . . . , m/γ, the
second block spans positions m/γ + 1, m/γ + 2, . . . , 2m/γ and so on. Let ui(x)
be the number of unprobed locations in the i-th block in the bit vectors that are
compatible with x, yi(x) be the number of 1-probes performed on the block (on
the root to leaf path), and vi(x) = rank1((i + 1)m/γ) − rank1(im/γ) − yi(x) be
the number of unprobed 1-bits in the block (their locations can be different for
different B ∈ C(x), however the number is fixed for a given leaf). From now on,
we omit parameter x and use just ui, vi, yi to denote these quantities, e.g. define
y :=

∑
i yi. We have,

|C(x)| ≤ C∗(x) =
(

u1

v1

)(
u2

v2

)
. . .

(
uγ

vγ

)
, (1)

where U :=
∑

ui = m − tγ (since exactly tγ positions are probed for each
leaf) and V :=

∑
vi = n − y (since y is the total number of probed 1-bits).

Let Ly be the group of leaves for which there are exactly y 1-probes. Note that
|Ly| = 2r

(
tγ
y

)
. Let xy be the leaf in Ly that maximizes the product (1). Hence,

we have

C∗ ≤ 2r

min{tγ,n}∑
y=0

(
tγ

y

)
C∗(xy) ≤ n2rX,

where X is the maximum of
(
tγ
y

)(
u1
v1

)(
u2
v2

)
. . .

(
uγ

vγ

)
over all possible choices of y,

ui’s and vi’s, such that tγ +
∑

i ui = m, y +
∑

i vi = n, 0 ≤ ui ≤ m/γ, and

154 A. Golynski, R. Raman, and S.S. Rao

0 ≤ vi ≤ ui. The bounding methods of [10] are too crude for our purposes, so
we first need to develop a better bounding techniques.

Lemma 4 (Proof omitted). For values u and v, such that 0 < v ≤ u/2, we
have

1
e

<

(
u
v

)
1√
v

(
u
v

)v
(

u
u−v

)u−v <
4
5
.

Let us define u∗ = min ui and v∗ = min vi. In the case where vi’s are of the same
order of magnitude, we can use the following lemma.

Lemma 5. If u∗ ≥ 2 and v∗ ≥ 1, then
∏

i

(
ui

vi

)
≤

(
U
V

)
2−(γ/2) lg v∗−0.3γ+(lg V)/2.

Proof. (sketch) To bound each individual multiplier, we apply the right part of
the inequality of Lemma 4. If vi ≤ ui/2, then

∏
i

(
ui

vi

)
≤

∏
i

(
4

5
√

vi

) (
ui

vi

)vi
(

ui

ui − vi

)ui−vi

.

The case where vi > ui/2 can be reduced to the case vi = ui/2 and is omitted for
brevity. Next, we apply the inequality between arithmetic and geometric means
for the values

u1

v1
, . . . ,

u1

v1
,

︸ ︷︷ ︸
v1 times

u2

v2
, . . . ,

u2

v2
,

︸ ︷︷ ︸
v2 times

. . .
uγ

vγ
, . . . ,

uγ

vγ︸ ︷︷ ︸
vγ times

, and obtain

∏
i

(
ui

vi

)vi

≤
(∑

i vi · ui

vi∑
i vi

)∑
i vi

=
(

U

V

)V

. Similarly, we obtain

∏
i

(
ui

ui − vi

)ui−vi

≤
(∑

i ui∑
i ui − vi

)∑
i ui−vi

=
(

U

U − V

)U−V

.

Finally, we apply the left part of the inequality of Lemma 4,

∏
i

(
ui

vi

)
< e

√
V

(
U

V

) ∏
i

4
5
√

vi
≤ 2−γ/2 lg v∗−0.3γ+(lg V)/2

(
U

V

)
.

Using ideas from [10, Lemma 10 and Corollary 1], we can show that

Lemma 6. If u∗V/U ≥ 3, then
∏

i

(
ui

vi

)
≤

(
U
V

)
2−(γ/2) lg(u∗V/U)−0.3γ+(lg V)/2.

The proof is based on the fact that
∏

i

(
ui

vi

)
achieves maximum when vi/ui are

roughly equal to V/U for all i (we omit the details in this extended abstract).

Density-Sensitive Rank Index. (Theorem 2 for the rank1 operation).

On the Redundancy of Succinct Data Structures 155

Proof. (sketch) Let us define k := m/γ to be the length of a block. We combine
consecutive blocks into larger superblocks, such that the number of unprobed
bits in the i-th superblock, u∗

i , is between k and 2k (except, possibly, for the last
superblock). This can be done in a greedy fashion, considering blocks from left
to right: we keep adding blocks to a superblock until the number of unprobed
bits in it reaches k, at which point we finalize it and start a new one. We will
never overshoot the value 2k, since all ui’s are at most k. It was shown in [10]
that the number of superblocks γs = Θ(γ), and

∏
i

(
ui

vi

)
≤

∏
i

(
u∗

i
v∗

i

)
, where v∗i is

the number of unprobed 1-bits in the i-th superblock.
First, consider the case tn ≥ m. Let us choose γ to be m/(3t). We can apply

Lemma 6 to
(
tγ
y

) ∏
i

(
u∗

i
v∗

i

)
, since n min{tγ, min{u∗

i }}/m = min{n/3, kn/m} =
min{n/3, 3tn/m} ≥ 3. We obtain

C∗ ≤ n2r

(
tγ

y

) γs∏
i=1

(
u∗

i

v∗i

)
≤ n2r2−(γs/2) lg(3tn/m)−0.3γs+(lg n)/2

(
m

n

)
. Hence,

r ≥ (γs/2) lg(3tn/m) + 0.3γs − 3(lg n)/2 = Ω((m/t) lg((nt)/m)).

If cm < tn < m for some positive constant c, then pick γ = n/3. We have,
n min{tγ, k}/m ≥ min{cn/3, 3} ≥ 3, and obtain

C∗ ≤ n2r

(
tγ

y

) γs∏
i=1

(
u∗

i

v∗i

)
≤ n2r2−(γs/2) lg 3−0.3γs+(lg n)/2

(
m

n

)
, and

r ≥ (γs/2) lg 3 + 0.3γs − 3(lg n)/2 = Ω(n).

Finally, if nt = o(m), then we pick γ =
√

nm/t (calculations are omitted).

4 FID with Reduced Redundancy

This section is devoted to proving the following theorem:

Theorem 3. When m = n(lg n)O(1), we can support the FID operations in O(1)
time using B(m, n) + O(n lg lg n lg(m/n)/(lg n)2) bits.

We first give a procedure that takes two positive parameters, u and b, and
partitions the given bit sequence S into chunks:

partition(u, b) Initialise the current chunk to be the empty string. Ap-
pend the next unread bit in S to the current chunk, and update the
length 	 and the weight w of the current chunk. End the chunk when-
ever either 	 ≥ b or

(
�
w

)
≥ u. Output the chunk, 	 and w.

We now choose b = m(lg n)2/n, u = m1/4, and t = c lg m/ lg lg m, for some
sufficiently small c > 0. Scanning S from left to right, we repeatedly call par-

tition(u, b) until all of S has been read and partitioned into chunks (ignoring,
for simplicity, the case where S ends inside a call to partition).

156 A. Golynski, R. Raman, and S.S. Rao

Lemma 7. The above procedure creates g = O(n lg(m/n)/ lg n) chunks.

Proof. We call a chunk of length 	 and weight w complete if
(

�
w

)
≥ u, and

incomplete otherwise. There are at most m/b = O(n/(lg n)2) incomplete chunks.
Let k be the number of complete chunks. Using [19, Lemma 4.1]:

k∑
i=1

lg
(

	i

wi

)
≤ lg

(
m

n

)
+k =⇒ k lg m1/4 ≤ lg

(
m

n

)
+k =⇒ k = O(n

lg(m/n)
lg m

).

Denote the set of all bit strings of length 	 and weight w that could be out-
put by partition(u, b) by π�,w,u,b (we omit u and b if they are clear from the
context). Note that |π�,w| ≤

(
�
w

)
, but π could be much smaller: e.g., consider

π6,2,10,10. Since
(5
2

)
= 10, the sixth bit in all chunks in π6,2,10,10 must be 1,

and |π6,2,10,10| = 5. We consider t consecutive chunks produced by the above
procedure as a superchunk. Let S denote all strings that could be output as a
superchunk; note that any string in S has length (and hence weight) at most bt.
We let SL,W denote the set of superchunks of total length L and total weight
W , for any 0 ≤ L, W ≤ bt (for some L, W , e.g. W > L, SL,W will be empty).

Letting p = n/m and q = 1−p, we define, for any x ∈ S, Pr[x] = pW qL−W , if
x ∈ SL,W . The procedure for creating superchunks ensures that S is prefix-free,
and that every infinite binary string has a prefix in S. From this it follows that∑

0≤L,W≤bt |SL,W |pW qL−W = 1. We can now use Lemma 1 to show:

Lemma 8. Given a superchunk x ∈ S, viewed as t contiguous chunks, there is
an encoding of this superchunk, which is a concatenation of the following parts:

1. a prefix code of at most O(lg lg m) bits specifying L and W where x ∈ SL,W ,
2. an encoding of x using lg |SL,W | + O(1) bits, itself comprising:

(a) a prefix code of at most (lg m)/2 bits, that specifies the number of 1s in
each chunk that constitutes x, and

(b) an encoding of the positions of the 1s in each chunk.

The encoding uses at most �W lg(1/p) + (L − W) lg(1/q)� + 4 bits.

Proof. By Lemma 1, there is an encoding of any x ∈ SL,W that takes at most
�W lg(1/p) + (L − W) lg(1/q)�+2 bits, where (L, W) is encoded by a prefix code
of length 2 lg(bt) + O(1) = O(lg lg m) bits (since S is partitioned into at most
(bt)2 sets). The remainder of the encoding specifies x using �lg |SL,W |� bits.

We now replace the latter by an encoding that uses �lg |SL,W |� + 2 bits, but
rapidly allows the sequence (1, w1), . . . , (t, wt) to be read, where (i, wi) is
the length/weight of the i-th chunk. For this, we consider the universe SL,W

and postulate a uniform distribution on SL,W . We partition SL,W into sets
S(�1,w1),...,(�t,wt)

L,W , over all combinations of non-negative integers (i, wi) that sum

up to L and W , respectively. A string x ∈ SL,W belongs to S(�1,w1),...,(�t,wt)
L,W

exactly if its t chunks have the specified lengths and weights (note that some
such sets may prove to be empty, e.g. those where wi > 	i for some i).

On the Redundancy of Succinct Data Structures 157

Note that |S(�1,w1),...,(�t,wt)
L,W | =

∏t
i=1 |π�i,wi |, and the number of sets into which

SL,W is partitioned is at most
(
L+t−1

t

)2 ≤ (L + t)2t ≤ (bt + t)2t <
√

m, if the
constant c used to define t is chosen small enough.
�

Finally, we group t consecutive superchunks into a megachunk (we ignore the last
megachunk, which is immaterial). We define the length/weight of a megachunk
to be the sum of the lengths/weights of all the superchunks comprising it. To
represent a megachunk, we concatenate the prefix codes of all the superchunks
in it to form a megachunk summary. The megachunk summary is still at most
(lg m)/2 bits for c sufficiently small. Thus, having read the megachunk summary,
one can determine the upper bound on the length of the encoding of a component
superchunk, as specified by Lemma 8. Assuming that superchunk encodings are
always padded out to their maximum length, we can now determine the start
and end of each superchunk encoding within the megachunk. A superchunk is
encoded as a prefix of at most (lg m)/2 bits, followed by a series of integers in
the range [|π�i,wi |], for i = 1, . . . , t, represented using Lemma 2.

The redundancy introduced so far is O(1) bits per superchunk (Lemma 8) plus
O(lg lg m/ lg m) bits per chunk (Lemma 2), which is also O(1) bits per super-
chunk. Summed over all O(g/t) superchunks, the total space used is n lg(1/p)+
(m − n) lg(1/q) + O(g/t) = B(m, n) + O(n lg lg m lg(m/n)/(lg m)2) bits, giving
the desired redundancy. However, we still need to support rank/select.

Let k = O(g/t2) be the number of megachunks, and let zi, oi and li denote
the number of 0s, the number of 1s and the length of the ith megachunk. We
store the following bitstrings, represented as FIDs using Theorem 1:

1. ZD (‘zeros distribution’) equals 0z11 . . .0zk1. ZD contains k 1s and m − n
0s, and occupies O(k lg(m/k)) = o(n/(lg n)2) bits.

2. OD (‘ones distribution’) equals 0o11 . . .0ok1. OD contains k 1s and n 0s,
and occupies O(k lg(n/k)) = o(n/(lg n)2) bits.

3. MCL (‘megachunk lengths’) equals 	i. MCL = 0�11 . . .0�k1. MCL contains
k 1s, and m 0s, and occupies O(k lg(m/k)) = o(n/(lg n)2) bits.

We thereby reduce rank/select on S to rank/select on a megachunk in O(1) time:

rank(i): select0 on MCL finds megachunk j in which position i lies. Note that
there are (j − 1)s 1s before megachunk j.

select1(i): select0 on OD finds the megachunk j in which ith 1 lies. select1(j) on
MCL then gives the starting position of megachunk j, as well as the number
of 1s in megachunks 1, . . . , j − 1.

select0(i): select0 on ZD finds the megachunk j in which ith 0 lies. select1(j) on
MCL then gives the starting position of megachunk j in X, as well as the
number of 0s in megachunks 1, . . . , j − 1.

To support rank and select within a megachunk, we first read the megachunk
summary, which stores the lengths and weights of all the constituent superchunks
(as a prefix code). Using this we can reduce the rank/select on the megachunk to
rank/select on a superchunk. This in turn can be reduced to rank/select within a

158 A. Golynski, R. Raman, and S.S. Rao

chunk, by reading the superchunk summary. Finally, rank/select within a chunk
are supported in constant time using precomputed tables.

5 Further Applications of Informative Encoding

We consider representing a sequence S of length m over [σ] to support the
rankx(S, i) and selectx(S, i) operations (aiming for the B() space bound), as well
as Hk-compressed FIDs for binary strings. We also consider random access to
the symbols in S. We first show:

Theorem 4. There is a representation of a string S of length m over the alpha-
bet [σ] that uses mH0(S)+O(m/(lg m)2−ε) bits, for any fixed constant 0 < ε < 1,
and supports rank, select and access in O(lg σ/ lg lg m) time.

Here, access(i) returns the i-th symbol of S. Theorem 4 uses the wavelet tree
method [13] to reduce the problem to the case where σ is (lg m)O(1):

Lemma 9. Given a string S of length m over an alphabet of size σ = O(lgα m),
for positive constant α < 1, one can support the operations rank, select and access
in O(1) time using mH0(S) + O(m(lg lg m)3/(lg m)2−2α) bits.

The proof of Lemma 9 follows [12, Theorem 3] and is omitted. Next, we show:

Theorem 5. A binary sequence S of length m can be stored using mHk(S) +
O(mk/ lg m) bits so that rank and select over S can be supported in constant
time, and any length-	 substring can be retrieved in O(1 + 	/ lgm) time.

Proof. As in [7], we divide S into blocks of length b = �(1/2) lg m
, and consider
it as a sequence Sb = x1x2 . . . xm/b of length m/b over the alphabet Σ = [2b]; [7,
Theorem 3] shows that H0(Sb) ≤ bHk(S) + O(k), for all k ≤ b.

For any x ∈ Σ that occurs mx times in Sb, we let Pr[x] = nx/(m/b). Using
these probabilities, construct a Huffman code h : Σ → {0, 1}+. We partition Σ
into subsets Σi,j , where x ∈ Σi,j iff the weight of x is i and |h(x)| = j. Note
that Pr[x] ≥ 1/m, for all x, so |h(x)| = O(lg m) for all x, and Σ is partitioned
into (lg m)O(1) classes. Letting Pr[x] = 2−j = 2−|h(x)| for any x ∈ Σi,j , we get
an informative encoding e of x, such that |e(x)| ≤ |h(x)| + O(1), and such that
a prefix of length O(lg lg m) of e(x) encodes both |e(x)| and the weight of x. We
store the string Se

b = e(x1)e(x2) . . . e(xm/b), together with data structures and
precomputed tables of negligible size, enabling us to retrieve e(xi) for any i in
O(1) time, and to support FID operations on S in O(1) time. However:

|Se
b | ≤

m/b∑
i=1

|h(xi)| + O(m/b) ≤ (m/b) · H0(Sb) + O(m/b)

≤ (m/b)(bHk(S) + O(k)) + O(m/b) ≤ mHk(S) + O(mk/b). �

Remark: If S is drawn from the alphabet [σ], the techniques above can be used
to show that S can be represented using mHk(S) + O(mk lg σ/ lgσ m) bits such
that any length-	 substring can be retrieved in O(1 + 	/ lgσ m) time.

On the Redundancy of Succinct Data Structures 159

References

1. Barbay, J., He, M., Munro, J.I., Rao, S.S.: Succinct indexes for strings, binary
relations and multi-labeled trees. In: Proc. 18th SODA, pp. 680–689 (2007)

2. Benoit, D., Demaine, E.D., Munro, J.I., Raman, R., Raman, V., Rao, S.S.: Repre-
senting trees of higher degree. Algorithmica 43, 275–292 (2005)

3. Delpratt, O., Raman, R., Rahman, N.: Engineering succinct DOM. In: Proc. 11th
EDBT, pp. 49–60 (2008)

4. Ferragina, P., Luccio, F., Manzini, G., Muthukrishnan, S.: Structuring labeled trees
for optimal succinctness, and beyond. In: Proc. 46th FOCS, pp. 184–196 (2005)

5. Ferragina, P., Manzini, G., Mäkinen, V., Navarro, G.: Compressed representations
of sequences and full-text indexes. ACM Trans. Algorithms 3, Article 20 (2007)

6. Ferragina, P., Manzini, G.: Indexing compressed text. J. ACM 52, 552–581 (2005)
7. Ferragina, P., Venturini, R.: A simple storage scheme for strings achieving entropy

bounds. Theor. Comput. Sci. 372, 115–121 (2007)
8. Gál, A., Bro Miltersen, P.: The cell probe complexity of succinct data structures.

Theor. Comput. Sci. 379, 405–417 (2007)
9. Geary, R.F., Raman, R., Raman, V.: Succinct ordinal trees with level-ancestor

queries. ACM Transactions on Algorithms 2, 510–534 (2006)
10. Golynski, A.: Optimal lower bounds for rank and select indexes. Theor. Comput.

Sci. 387, 348–359 (2007)
11. Golynski, A.: Upper and Lower Bounds for Text Indexing Data Structures. PhD

thesis, University of Waterloo (2007)
12. Golynski, A., Grossi, R., Gupta, A., Raman, R., Rao, S.S.: On the size of succinct

indices. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698,
pp. 371–382. Springer, Heidelberg (2007)

13. Grossi, R., Gupta, A., Vitter, J.S.: High-order entropy-compressed text indexes.
In: Proc. 14th SODA, pp. 841–850 (2003)

14. Grossi, R., Vitter, J.S.: Compressed suffix arrays and suffix trees with applications
to text indexing and string matching. SIAM J. Comput. 35, 378–407 (2005)

15. Jacobson, G.: Space efficient static trees and graphs. In: Proc. 30th FOCS, pp.
549–554 (1989)

16. Miltersen, P.B.: Lower bounds on the size of selection and rank indexes. In: Proc.
16th SODA, pp. 11–12 (2005)

17. Munro, J.I.: Tables. In: Chandru, V., Vinay, V. (eds.) FSTTCS 1996. LNCS,
vol. 1180, pp. 37–42. Springer, Heidelberg (1996)

18. Okanohara, D., Sadakane, K.: Practical entropy-compressed rank/select dictionary.
In: Proc. 9th ALENEX, pp. 59–70. SIAM, Philadelphia (2007)

19. Pagh, R.: Low redundancy in static dictionaries with constant query time. SIAM
J. Computing 31, 353–363 (2001)

20. Patrascu, M., Thorup, M.: Time-space trade-offs for predecessor search. In: Proc.
38th STOC, pp. 232–240 (2006)

21. Raman, R., Raman, V., Rao, S.S.: Succinct indexable dictionaries, with applica-
tions to representing k-ary trees, prefix sums and multisets. ACM Trans. Algo-
rithms 4, 26 (2007), Article 43

22. Sadakane, K., Grossi, R.: Squeezing succinct data structures into entropy-
compressed bounds. In: Proc. 17th SODA, pp. 1230–1239 (2006)

Confluently Persistent Tries
for Efficient Version Control

Erik D. Demaine1,�, Stefan Langerman2,��, and Eric Price1

1 MIT Computer Science and Artificial Intelligence Laboratory,
32 Vassar Street, Cambridge, MA 02139, USA

{edemaine,ecprice}@mit.edu
2 Computer Science Department, Université Libre de Bruxelles,

CP 212, Bvd. du Triomphe, 1050 Brussels, Belgium
stefan.langerman@ulb.ac.be

Abstract. We consider a data-structural problem motivated by version
control of a hierarchical directory structure in a system like Subversion.
The model is that directories and files can be moved and copied be-
tween two arbitrary versions in addition to being added or removed in
an arbitrary version. Equivalently, we wish to maintain a confluently per-
sistent trie (where internal nodes represent directories, leaves represent
files, and edge labels represent path names), subject to copying a subtree
between two arbitrary versions, adding a new child to an existing node,
and deleting an existing subtree in an arbitrary version.

Our first data structure represents an n-node degree-Δ trie with O(1)
“fingers” in each version while supporting finger movement (navigation)
and modifications near the fingers (including subtree copy) in O(lg Δ)
time and space per operation. This data structure is essentially a locality-
sensitive version of the standard practice—path copying—costing
O(d lg Δ) time and space for modification of a node at depth d, which is
expensive when performing many deep but nearby updates. Our sec-
ond data structure supporting finger movement in O(lg Δ) time and
no space, while modifications take O(lg n) time and space. This data
structure is substantially faster for deep updates, i.e., unbalanced tries.
Both of these data structures are functional, which is a stronger property
than confluent persistence. Without this stronger property, we show how
both data structures can be sped up to support movement in O(lg lg Δ),
which is essentially optimal. Along the way, we present a general tech-
nique for global rebuilding of fully persistent data structures, which is
nontrivial because amortization and persistence do not usually mix. In
particular, this technique improves the best previous result for fully
persistent arrays and obtains the first efficient fully persistent hash
table.

� Supported in part by MADALGO — Center for Massive Data Algorithmics — a
Center of the Danish National Research Foundation.

�� Chercheur qualifié du F.R.S.-FNRS.

J. Gudmundsson (Ed.): SWAT 2008, LNCS 5124, pp. 160–172, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Confluently Persistent Tries for Efficient Version Control 161

1 Introduction

This paper is about a problem in persistent data structures motivated by an
application in version control. We begin by describing the motivating application,
then our model of the underlying theoretical problem, followed by our results.

Version control. Increasingly many creative works on a computer are stored in
a version control system that maintains the history of all past versions. The
many motivations for such systems include the ability to undo any past mistake
(in the simplest form, never losing a file), and the ability for one or many peo-
ple to work on multiple parallel branches (versions) that can later be merged.
Source code has been the driving force behind such systems, ranging from old
centralized systems like RCS and CVS, to the increasingly popular centralized
system Subversion, to recent distributed systems like Bazaar, darcs, GNU arch,
Git, Monotone, and Mercurial. By now version control is nearly ubiquitous for
source code and its supporting documentation. We also observe a rise in the use
of the same systems in academic research for books, papers, figures, classes, etc.1

In more popular computer use, Microsoft Word supports an optional form of ver-
sion control (“change tracking”), Adobe Creative Suite (Photoshop, Illustrator,
etc.) supports optional version control (“Version Cue”), and most Computer
Aided Design software supports version control in what they call Product Data
Management (e.g., Autodesk Productstream for AutoCAD and PDMWorks for
SolidWorks). Entire modern file systems are also increasingly version controlled,
either by taking periodic global snapshots (as in AFS, Plan 9, and WAFL), or
by continuous change tracking (as in Apple’s new Time Machine in HFS+, and
in experimental systems CVFS, VersionFS, Wayback, and PersiFS [PCD05]). As
repositories get larger, even to the point of entire file systems, high-performance
version control is in increasing demand. For example, the Git system was built
simply because no other free system could effectively handle the Linux kernel.

Requirements for version control. Most version control systems mimic the struc-
ture of a typical file system: a tree hierarchy of directories, each containing any
number of linear files. Changes to an individual file can therefore be handled
purely locally to that file. Conceptually these changes form a tree of versions
of the file, though all systems represent versions implicitly by storing a delta
(“diff”) relative to the parent. In this paper, we do not consider such file version
tracking, because linear files are relatively easy to handle.

The more interesting data structural challenge is to track changes to the hi-
erarchical directory structure. All such systems support addition and removal
of files in a directory, and creation and deletion of empty subdirectories. In ad-
dition, every system since Subversion’s pioneering innovation supports moving
or copying an entire subdirectory from one location to another, possibly span-
ning two different versions. This operation is particularly important for merging
different version branches into a common version.

1 For example, this paper is maintained using Subversion.

162 E.D. Demaine, S. Langerman, and E. Price

Persistent trie model. Theoretically, we can model version control of a hierar-
chical directory structure as a confluently persistent trie, which we now define.

A trie is a rooted tree with labeled edges. In the version-control application,
internal nodes represent directories, leaves represent files, and edge labels repre-
sent file or directory names.2 The natural queries on tries are navigation: placing
a finger at the root, moving a finger along the edge with a specified label, and
moving a finger from a node to its parent. We assume that there are O(1) fingers
in any single version of the trie; in practice, two fingers usually suffice. Each node
has some constant amount of information which can be read or written via a
finger; for example, each leaf can store a pointer to the corresponding file data
structure. The structural changes supported by a trie are insertion and deletion
of leaves attached to a finger (corresponding to addition and removal of files),
copying the entire subtree rooted at one finger to become a new child subtree of
another finger (corresponding to copying subdirectories), and deleting an entire
subtree rooted at one finger (enabling moving of subdirectories). Subtree copy-
ing propagates any desired subset of the fingers of the old subtree into the new
subtree, provided the total number of fingers in the resulting trie remains O(1).

The trie data structure must also be “confluently persistent”. In general, per-
sistent data structures preserve old versions of themselves as modifications pro-
ceed. A data structure is partially persistent if the user can query old versions
of the structure, but can modify only the most recent version; in this case, the
versions are linearly ordered. A data structure is fully persistent if the user can
both query and modify past versions, creating new branches in a tree of ver-
sions. The strongest form of persistence in confluent persistence, which includes
full persistence but also supports certain “meld” operations that take multiple
versions of the and produce a new version; then the version dependency graph
becomes a directed acyclic graph (DAG). The version-control application de-
mands confluent persistence because branch merging requires the ability to copy
subdirectories (subtrees) from one version into another.

Related work in persistence. Partial and full persistence were mostly solved in
the 1980’s. In 1986, Driscoll et al. [DSST89] developed a technique that converts
any pointer-based data structure with bounded in-degree into an equivalent fully
persistent data structure with only constant-factor overhead in time and space
for every operation. In 1989, Dietz [Die89] developed a fully persistent array
supporting random access in O(lg lg m) time, where m is the number of updates
made to any version. This data structure enables simulation of an arbitrary RAM
data structure with a log-logarithmic slowdown. Furthermore, this slowdown
is essentially optimal, because fully persistent arrays have a lower bound of
Ω(lg lg n) time per operation in the powerful cell-probe model.3

More relevant is the work on confluent persistence. The idea was first posed as
an open problem by [DSST89]. In 1994, Driscoll et al. [DST94] defined confluence
2 We assume here that edge labels can be compared in constant time; in practice, this

property is achieved by hashing the file and directory name strings.
3 Personal communication with Mihai Pǎtraşcu, 2008. The proof is based on the pre-

decessor lower bounds of [PT07].

Confluently Persistent Tries for Efficient Version Control 163

and gave a specific data structure for confluently persistent catenable lists. In
2003, Fiat and Kaplan [FK03] developed the first and only general methods for
making a pointer-based data structure confluently persistent, but the slowdown
is often suboptimal. In particular, their best deterministic result has a linear
worst-case slowdown. Although their randomized result has a polylogarithmic
amortized slowdown, it can take a linear factor more space per modification,
and furthermore the answers are correct only with high probability; they do not
have enough time to check the correctness of their random choices.

Fig. 1. This version
DAG has exponentially
many paths from top to
bottom, and can result
in a structure with an
exponential data

Fiat and Kaplan [FK03] also prove a lower bound
on confluent persistence. They essentially prove that
most interesting confluently persistent data structures
require Ω(lg p) space per operation in the worst case,
even with randomization, where p is the number of
paths in the version DAG from the root version to the
current version. Note that p can be exponential in the
number m of versions, as in Figure 1, resulting in a lower
bound of Ω(m) space per operation. The lower bound
follows from the possibility of having around p address-
able nodes in the data structure; in particular, it is easy
to build an exponential amount of data (albeit with sig-
nificant repetition) using a linear number of confluent
operations. However, their Ω(lg p) lower bound requires
a crucial and unreasonable assumption: that all nodes
of the structure can be addressed at any time. From
the perspective of actually using a data structure, it is
much more natural for the user to have to locate the
data of interest using a sequence of queries. For this
reason, our use of trie traversals by a constant number
of fingers is both natural and critical to our success.

Functional data structures. Given the current lack of general transformations
into confluently persistent data structures, efficient such structures seem to re-
quire exploiting the specific problem. One way to attain confluent persistence
is to design a functional data structure, that is, a read-only (pointer-based)
data structure. Such a data structure can create new cells with new initial
contents, but cannot modify the contents of old cells. Each modifying opera-
tion requires a pointer to the new version of the data structure, described by a
newly created cell. Functional data structures have many useful properties other
than confluent persistence; for example, multiple threads can use functional data
structures without locking. Pippenger [Pip97] proved a logarithmic-factor sep-
aration between the best pointer-based data structure and the best functional
data structure for some problems. On the other hand, many common data struc-
tures can be implemented functionally with only a constant-factor overhead; see
Okasaki [Oka98]. One example we use frequently is a functional catenable deque,
supporting insertion and deletion at either end and concatenation of two deques
in constant time per operation [Oka98].

164 E.D. Demaine, S. Langerman, and E. Price

Path copying. Perhaps the simplest technique for designing functional data struc-
tures is path copying [Oka98]. This approach applies to any tree data structure
where each node modification depends on only the node’s subtree. Whenever we
would modify a node v in the ephemeral (nonpersistent) structure, we instead
create new copies of v and all ancestors of v. Because nodes depend on only their
subtrees and the data structure becomes functional (read only), we can safely re-

v1

insert 6

v1 v2

3

5

1

2

3

5

4 1

2

4

3

5

6

Fig. 2. Path copying in a binary search tree.
The old version (v1) consists of white and
grey nodes; the new version (v2) consists of
black and grey nodes.

use all other nodes. Figure 2 shows
an example of path copying in a bi-
nary search tree (which achieves log-
arithmic worst-case performance).

Version control systems includ-
ing Subversion effectively implement
path copying. As a result, modifica-
tions to the tree have a factor-Θ(d)
overhead, where d is the depth of
the modified node. More precisely,
for a pointer-based data structure,
we must split each node of degree Δ
into a binary tree of height O(lg Δ),
costing O(d lg Δ) time and space per
update.

Imbalance. The O(d lg Δ) cost of path copying is potentially very large because
the trie may be extremely unbalanced. For example, if the trie is a path of length
n, and we repeatedly insert n leaves at the bottommost node, then path copying
requires Ω(n2) time and space.

Douceur and Bolosky [DB99] studied over 10,000 file systems from nearly
5,000 Windows PCs in a commercial environment, totaling 140 million files and
10.5 terabytes. They found that d roughly follows a Poisson distribution, with
15% of all directories having depth at least eight. Mitzenmacher [Mit03] studies
a variety of theoretical models for file-system creation which all imply that d is
usually logarithmic in n.

Our results. We develop four trie data structures, two of which are functional
and two of which are efficient but only confluently persistent; see Table 1. All
four structures effectively break through the lower bound of Fiat and Kaplan.

Table 1. Time and space complexity of data structures described in this paper. Op-
erations are on an n-node trie at a node of depth d and degree Δ.

Method Finger movement Modifications
Time Space Time Space

Path copying lg Δ 0 d d
Locality-sensitive (functional) lg Δ lg Δ lg Δ lg Δ
Locality-sensitive (fully persistent) lg lg Δ lg lg Δ lg lg Δ lg lg Δ
Globally balanced (functional) lg Δ 0 lg n lg n
Globally balanced (fully persistent) lg lg Δ 0 lg n lg n

Confluently Persistent Tries for Efficient Version Control 165

Our first functional trie enables exploiting locality of reference among any
constant number of fingers. Both finger movement (navigation) and modifica-
tions around the fingers (including subtree copy) cost O(lg Δ) time and space
per operation, where Δ is the average degree of the nodes directly involved. Note
that navigation operations require space as well, though the space is permanent
only if the navigation leads to a modification; stated differently, the space cost
of a modification is effectively O(t lg Δ) where t is the distance of the finger from
its last modification. This data structure is always at least as efficient as path
copying, and much more efficient in the case of many deep but nearby modifica-
tions. In particular, the quadratic example of inserting n leaves at the bottom
of a length-n path now costs only O(n lg Δ) time and space.

Our second functional trie guarantees O(lg n) time and space per modifica-
tion, with no space required by navigation, while preserving O(lg Δ) time per
navigation. This data structure is substantially more space-efficient than the first
data structure whenever modifications are deep and dispersed. For example, if
we insert n leaves alternately at the top and at the bottom of a length-n path,
then the time cost from navigation is Θ(n2), but the space cost is only O(n lg n).
The only disadvantage is that nearby modifications still cost Θ(lg n) time and
space, whereas the O(t lg Δ) cost of the first data structure can be a bit smaller.

Our two confluently persistent trie data structures are based on the functional
data structures, replacing each height-O(lg Δ) binary tree representation of a
degree-Δ trie node with a new log-logarithmic fully persistent hash table. For
the first structure, we obtain an exponentially improved bound of O(lg lg Δ) time
and space per operation. For the second structure, we improve the movement cost
to O(lg lg Δ) time (and no space). These operations have matching Ω(lg lg Δ)
time lower bounds because in particular they implement fully persistent arrays.

To our knowledge, efficient fully persistent hash tables have not been obtained
before. The obvious approach is to use standard hash tables while replacing
the table with the fully persistent array of Dietz [Die89]. There are two main
problems with this approach. First, the time bound for fully persistent arrays is
O(lg lg m), where m is the number of updates to the array, but this bound can be
substantially larger than even the size Δ of the hash table. Second, hash tables
need to dynamically resize, and amortization does not mix well with persistence:
the hash table could be put in a state where it is about to pay a huge cost, and
then the user modifies that version repeatedly, each time paying the huge cost.

The solution to both problems is given by a new general technique for global
rebuilding of a fully persistent data structure. The classic global rebuilding tech-
nique from ephemeral data structures, where the data structure rebuilds itself
from scratch whenever its size changes by a constant factor, does not apply in the
persistent context. Like the second problem above, we cannot charge the linear
rebuild cost to the elements that changed the size, because such elements might
get charged many times, even with de-amortized global rebuilding. Nonetheless,
we show that clever choreography of specific global rebuilds works in the fully
persistent context. As a result, we improve fully persistent arrays to support
operations in O(lg lg Δ) time and space, where Δ is the current size of the array,

166 E.D. Demaine, S. Langerman, and E. Price

matching the Ω(lg lg Δ) lower bound. We also surmount the amortization and
randomization issues with this global rebuilding technique.

2 Locality-Sensitive Functional Data Structure

Our first functional data structure represents a trie T with a set F of O(1) fingers
f1, f2, . . . , fk while supporting finger movements, leaf insertion and deletion, and
subtree copies and removals in O(lg Δ) time and space per operation.

Let T ′ be the Steiner tree with terminals fi, that is, the union of shortest paths
between all pairs of fingers. Let PF be the set of nodes with degree at least 3 in
T ′ that are not in F . The elements of PF are called prosthetic fingers and will
be maintained dynamically. Let F ′ = F ∪ PF . Note that |F ′| ≤ 2k = O(1). Let
T ′′ be the compressed Steiner tree obtained from T ′ by contracting every vertex
not in F ′ (each of degree 2). For any two fingers in F ′ that are adjacent in T ′′,
the shortest path in T ′ connecting them is called a tendon. A subtree of T that
does not contain any finger of F ′ is called a knuckle.

We represent a tendon by a deque, where each element of the deque corre-
sponds to a vertex of T and is represented by a balanced tree of depth O(lg Δ)
containing the neighbors of that vertex in T other than those in the deque. Each
of the nodes in that tree contains a knuckle. The tendon also contains the labels
of the two fingers to which it is attached. We represent a knuckle either by a
vertex containing a balanced tree of depth O(lg Δ), where each node of the tree
represents a neighbor of that vertex in T ′, or by a deque representing a path
starting at the root, whose structure is identical to that of the tendon.

The functional data structure stores all fingers in F ′ in a balanced binary
search tree called the hand, where all fingers are ordered by the label of the
corresponding node. Every finger stores a balanced tree of depth O(1) for the
tendons attached to this finger, and another balanced tree of depth O(lg Δ) for
the knuckles attached to this finger.

To complete this description, it remains to show how to perform update op-
erations and how to move fingers. When performing an update at a finger, we
modify the balanced tree attached to that finger: adding a neighbor for a leaf
insertion or subtree copy, and deleting a neighbor for a leaf deletion or subtree
removal. Then we use the path-copying technique on both that tree and the
hand. To move a finger, we essentially transfer vertices between its neighboring
nodes, knuckles, and tendons:

1. If a finger enters a neighboring knuckle (stored in a node of its balanced tree),
we will move the finger to its new position. This might involve extracting
the new finger from a deque and modifying a constant number of neighbors
in its balanced tree. We have two cases:
(a) If the finger has degree 1 in T ′′, then it is attached to exactly one ten-

don τ . We insert into τ the vertex at the previous position of the finger.
(b) If the finger has degree 2 or more in T ′′, then after the move that ver-

tex has degree at least 3 and we create a new prosthetic finger at that

Confluently Persistent Tries for Efficient Version Control 167

position. The hand must then be modified so that the tendons that were
adjacent to the finger now point to the prosthetic finger. This costs O(1).

2. If a finger moves along a tendon, we proceed similarly, but now, the previous
finger is either transferred to a neighboring knuckle or tendon, or becomes
a new prosthetic finger. The new vertex for the finger is extracted from the
tendon, or if the tendon is empty, two fingers become equal.

The operations change only O(1) nodes from the balanced trees or the deques
outside the hand, for a cost of O(lg Δ), and modify the hand, which has size
O(1).

3 Globally Balanced Functional Data Structure

Our second functional data structure represents the trie as a balanced binary
tree, then makes this tree functional via path copying. Specifically, we will use
a balanced representation of tries similar to link-cut trees of Sleator and Tar-
jan [ST83]. This representation is natural because the link and cut operations are
essentially subtree copy and delete.4 Sleator and Tarjan’s original formulation
of link-cut trees cannot be directly implemented functionally via path copying,
and we explain how to address these issues in Section 3.1. In addition to being
able to modify the trie, we need to be able to navigate this representation as we
would the original trie. We discuss how to navigate in Section 3.2.

A key element of our approach is the finger. In addition to the core data struc-
ture representing a trie, we also maintain a constant number of locations in the
trie called fingers. A finger is a data structure in itself, storing more than just a
pointer to a node. Roughly speaking, a finger consists of pointers to all ances-
tors of that node in the balanced tree, organized to support several operations
for computing nearby fingers. These pointers contrast nodes in the balanced
tree representation, which do not even store parent pointers. Modifications to
our data structure must preserve fingers to point to the same location in the
new structure, but fortunately there are only finitely many fingers to maintain.
Section 3.4 details the implementation of fingers.

3.1 Functional Link-Cut Trees

In the original link-cut trees [ST83], nodes store pointers to other nodes outside
of their subtree, which prevents us from applying path copying. We show how
to modify link-cut trees to avoid such pointers and thereby obtain functional
link-cut trees via path copying.

There are multiple kinds of link-cut trees; we follow the worst-case logarithmic
link-cut trees of [ST83, Section 5]. These link-cut trees decompose the trie into a
set of “heavy” paths, and represent each heavy path by a globally biased binary
tree [BST85], tied together into one big tree which we call the representation

4 Euler-tour trees are simpler, but linking multiple occurrences of a node in the Eule-
rian tour makes path copying infeasible.

168 E.D. Demaine, S. Langerman, and E. Price

tree. An edge is heavy if more than half of the descendants of the parent are also
descendants of the child. A heavy path is a contiguous sequence of heavy edges.
Because any node has at most one heavy child, we can decompose the trie into a
set of heavy paths, connected by light (nonheavy) edges. Following a light edge
decreases the number of nodes in the subtree by at least a factor of two, so any
root-to-leaf path intersects at most lg n heavy paths. The weight wv of a node v
is 1 plus the number of descendants of v through a light child of v. The depth of
a node v in its globally biased search tree T is at most lg

[(∑
u∈T wu

)
/wv

]
. If

the root-to-leaf path to a node v intersects k heavy paths and wi is the weight
of the last ancestor of v in the ith heavy path down to v, then the total depth
of v is �lg(n/w1)� + �lg(w1/w2)� + · · · + �lg(wk−1/wk)�, or O(lg n).

Link-cut trees augment each node in a globally biased search tree to store sub-
stantial extra information. Most of this information depends only on the subtree
of the node, which fits the path-copying framework. The one exception is the
parent of the node, which we cannot afford to store. Instead, we require a parent
operation on fingers, which returns a finger pointing to the parent node in the
representation tree. For this operation to suffice, we must always manipulate
fingers, not just pointers to nodes. This restriction requires one other change to
the augmentation in a link-cut tree. Namely, instead of storing pointers to the
minimum (leftmost) and maximum (rightmost) descendants in the subtree, each
node stores relative fingers to these nodes. Roughly speaking, such a relative
finger consists of the nodes along the path from the node to the minimum (max-
imum). We require the ability to concatenate partial fingers, in this case, the
finger of the node with a relative finger to the minimum or maximum, resulting
in a (complete) finger to the latter.

To tie together the globally biased search trees for different heavy paths, the
link-cut tree stores, for each node, an auxiliary globally biased tree of its light
children. More precisely, leaves of the auxiliary tree point to (the root of) the
globally biased search tree representing the heavy path starting at such light
children. In addition, the top node in a heavy path stores a pointer to its parent
in the trie, or equivalently, the root of the tree of light children of that parent.
We cannot afford to store this parent pointer, so instead we define the finger
to ignore the intermediate nodes of the auxiliary tree, so that the parent of the
current finger gives us the desired root. Nodes in an auxiliary tree also contain
pointers to their maximum-weight leaf descendents; we replace these pointers
with relative fingers. Sleator and Tarjan’s link-cut trees order auxiliary trees by
decreasing weight; this detail is unnecessary, so we instead order the children by
key value to speed up navigation.

With these modifications, the link-cut trees of Sleator and Tarjan can be
implemented functionally with path copying. To see that path copying induces
no slowdown, note that although the finger makes jumps down, the finger is
shortened only one node at a time. Each time we take the parent of a finger,
the node at the end can be rebuilt from the old node and the nodes below it
in constant time. Furthermore, because the maximum finger length is O(lg n),
at the end of the operation, one can repeatedly take the parent of the finger to

Confluently Persistent Tries for Efficient Version Control 169

get the new root. Another way to see that path copying induces no slowdown is
that the link-cut trees in the original paper also involved augmentation, so every
ancestor of a modified node was already being rebuilt.

These functional link-cut trees let us support modification operations in
O(lg n) time given fingers to the relevant nodes in our trie. It remains to see
how to navigate a finger, the topic of Section 3.2, and how to maintain other
fingers as the structure changes, the topic of Section 3.3.

3.2 Finger Movement

In this section, we describe three basic finger-movement operations: finding the
root, navigating to the parent, and navigating to the child with a given label.
In all cases, we aim simply to determine the operations required of our finger
representation.

The root of the trie is simply the minimum element in the topmost heavy
path, a finger for which is already stored at the root of the representation tree.
Thus we can find the root of the trie in constant time.

The parent of a node in the trie is the parent of the node within its heavy
path, unless it is the top of its heavy path, in which case it is the node for which
this node is a light child. Equivalently, the parent of a node in the trie is the
predecessor leaf in the globally biased search tree, if such a predecessor exists,
or else it is the root of the auxiliary tree containing the node. We also defined
the parent operation on fingers to solve the latter case. For the former case, we
require a predecessor operation on a finger that finds the predecessor of the node
among all ancestors of the node. If this operation takes constant time, then we
can find the predecessor leaf within the globally biased search tree by taking the
maximum descendant of the predecessor ancestor found by the finger.

A child of a node is either the node immediately below in the heavy path or
one of its light children. The first case corresponds to finding the successor of the
node within its globally biased search tree. Again we can support this operation
in constant time by requiring a successor operation on a finger that finds the
successor of the node among all ancestors of the node. Thus, if a child stores the
label of the edge above it in the trie, we can test whether the desired child is
the heavy child. Otherwise, we binary search in the auxiliary search tree of light
children in O(lg Δ) worst-case time. Because the total depth of a node among
all trees of light children is O(lg n), the total time to walk to a node at depth d
can be bounded by O(d + lg n) as well as O(d lg Δ).

3.3 Multiple Fingers

This section describes how to migrate the constant number of fingers to the
new version of the data structure created by an update, in O(lg n) time. We
distinguish the finger at which the update takes place as active, and call the
other fingers passive. Just before performing the update, we decompose each
passive finger into two relative fingers: the longest common subpath with the
active finger, and the remainder of the passive finger. This decomposition can

170 E.D. Demaine, S. Langerman, and E. Price

be obtained in O(lg n) time given constant-time operation to remove the topmost
or bottommost node from a relative finger. First, repeatedly remove the topmost
nodes from both the active and passive fingers until the removed nodes differ,
resulting in the remainder part of the passive finger. Next, repeatedly remove the
bottommost node of (say) the active finger until reaching this branching point,
resulting in the common part of the passive finger. Now perform the update,
and modify the nodes along the active finger according to path copying. We can
find the replacement top part of the passive finger again by repeatedly removing
the bottommost node of the active finger; the remainder part does not need
to change. Then we use the concatenate operation to join these two relative
fingers to restore a valid passive finger. Of course, we perform this partition,
replacement, and rejoin trick for each relative finger.

3.4 Finger Representation

Recall that each finger to a node must be a list of the ancestors in the repre-
sentation tree of that node supporting: push and pop (to move up and down);
concatenate (to follow relative fingers); inject (to augment relative fingers based
on a node’s children); eject (to allow for multiple fingers); parent outside path
(for faster parent query); and predecessor and successor among the ancestors
of the node (to support parent and child in the trie). Our finger must also be
functional, because nodes store relative fingers.

A

B

C

D

E

F

G

Fig. 3. A finger to
G is represented
by G and a deque
of (outlined) de-
ques of ancestors
of G

As a building block, catenable deques support all the oper-
ations we want except for predecessor or successor. Moreover,
functional catenable deques have been well researched, with
Okasaki giving a fairly simple O(1) method [Oka98] that is
amortized, but in a way that permits confluent usage if one
allows memoization. Furthermore, Kaplan and Tarjan have
shown a complicated O(1) worst case purely functional im-
plementation of catenable deques [KT95].

In order to implement predecessor and successor queries,
decompose the path in the representation tree into a sequence
of right paths (sequence of nodes where the next element
on the path is the right child) and left paths (sequence of
nodes where the next element on the path is the left child).
Then, the predecessor of a node among its ancestors is the
last element of the last right path. The successor of a node
among its ancestors is the last element of the last left path.

Instead of maintaining the finger as one catenable deque,
we represent the finger as a deque of catenable deques, alter-
nating right and left paths; see Figure 3. Then, because the
last right path (or left path, respectively) is either the ulti-
mate or penultimate deque in the sequence, its last element
can be retrieved in O(1) time. All other operations of the standard catenable
deque can be simulated on the deque of deques with only O(1) overhead. We

Confluently Persistent Tries for Efficient Version Control 171

thus obtain a structure that supports all of the operations of normal catenable
deques of nodes, predecessor and successor in O(1) time.

This suffices to describe the basic data structure for functional tries. Their
query time is O(lg Δ) for navigation downward, O(1) for navigation up, and
O(lg n) for updates.

4 Adding Hash Tables

Our data structures above take O(lg Δ) to move a finger to a child node. We can
improve this bound to O(lg lg Δ) by introducing fully persistent hash tables. The
resulting data structures are confluently persistent, but no longer functional.

For our first structure (Section 2), we show in the full paper how to construct
a fully persistent hash table on n elements that performs insertions, deletions,
and searches in O(lg lg n) expected amortized time. Using this structure instead
of the balanced trees of neighboring vertices at every vertex, the time and space
cost of updates and finger movements improves to O(lg lg Δ) expected amortized.

We can also use this method to improve our second structure (Section 3.1).
Given a set of elements with weights w1, . . . , wn, we develop in the full paper a
weight-balanced fully persistent hash table with O(lg

∑
j wj

we
) expected amortized

time modification, O(lg lg n) find, and O(lg n) insert and delete, where n is the
number of elements in the version of the hash table being accessed or modified
and we is the weight of the element being accessed.

To use a hash table to move a finger down the trie, we modify each node of
our data structure to include a hash table of relative fingers to light children in
addition to the binary tree of light children. The binary tree of light children
is necessary to support quickly recomputing the heavy child on an update; this
would be hard with just a hash table. Except for inserts and deletes, the hash
table achieves at least as good time bounds as the weight-balance tree, and each
trie operation involves at most O(1) inserts or deletes, so we can maintain both
the table and tree in parallel without overhead. As a result, updates still take
O(lg n), moving the finger up still takes O(1), and moving it down now takes
O(lg lg Δ), where Δ is the degree of the node being moved from. The hash tables
depend on fully persistent arrays, which are expected amortized, so updates and
moving a finger down become expected amortized.

5 Open Problems

It would be interesting to combine our two functional data structures into one
that achieves the minimum of both performances. In particular, it would be nice
to be able to modify a node at depth d in O(min{d lg Δ, lg n}) time and space.
One approach is to develop modified globally biased binary tree where the depth
of the ith smallest node is O(min{i, wi}) and supporting fast splits and joins.

Acknowledgments. We thank Patrick Havelange for initial analysis of and
experiments with version control systems such as Subversion.

172 E.D. Demaine, S. Langerman, and E. Price

References

[BST85] Bent, S.W., Sleator, D.D., Tarjan, R.E.: Biased search trees. SIAM J. Com-
put. 14(3), 545–568 (1985)

[DB99] Douceur, J.R., Bolosky, W.J.: A large-scale study of file-system contents.
SIGMETRICS Perform. Eval. Rev. 27(1), 59–70 (1999)

[Die89] Dietz, P.F.: Fully persistent arrays. In: Dehne, F., Santoro, N., Sack, J.-R.
(eds.) WADS 1989. LNCS, vol. 382, pp. 67–74. Springer, Heidelberg (1989)

[DSST89] Driscoll, J.R., Sarnak, N., Sleator, D.D., Tarjan, R.E.: Making data struc-
tures persistent. J. Comput. Syst. Sci. 38(1), 86–124 (1989)

[DST94] Driscoll, J.R., Sleator, D.D.K., Tarjan, R.E.: Fully persistent lists with cate-
nation. J. ACM 41(5), 943–959 (1994)

[FK03] Fiat, A., Kaplan, H.: Making data structures confluently persistent. J. Al-
gorithms 48(1), 16–58 (2003)

[KT95] Kaplan, H., Tarjan, R.E.: Persistent lists with catenation via recursive slow-
down. In: STOC 1995, pp. 93–102 (1995)

[Mit03] Mitzenmacher, M.: Dynamic models for file sizes and double Pareto distri-
butions. Internet Math. 1(3), 305–333 (2003)

[Oka98] Okasaki, C.: Purely Functional Data Structures. Cambridge University
Press, Cambridge (1998)

[PCD05] Ports, D.R.K., Clements, A.T., Demaine, E.D.: PersiFS: A versioned file
system with an efficient representation. In: SoSP (2005)

[Pip97] Pippenger, N.: Pure versus impure lisp. ACM Trans. Program. Lang.
Syst. 19(2), 223–238 (1997)

[PT07] Pǎtraşcu, M., Thorup, M.: Randomization does not help searching prede-
cessors. In: SODA 2007, pp. 555–564 (2007)

[ST83] Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. J. Comput.
Syst. Sci. 26(3), 362–391 (1983)

A Uniform Approach Towards Succinct
Representation of Trees

Arash Farzan and J. Ian Munro

School of Computer Science,
University of Waterloo,

Waterloo, Ontario, Canada
{afarzan,imunro}@cs.uwaterloo.ca

Abstract. We propose a uniform approach for succinct representation
of various families of trees. The method is based on two recursive decom-
position of trees into subtrees. Recursive decomposition of a structure
into substructures is a common technique in succinct data structures and
has been shown fruitful in succinct representation of ordinal trees [7,10]
and dynamic binary trees [16,21]. We take an approach that simplifies
the existing representation of ordinal trees while allowing the full set of
navigational operations. The approach applied to cardinal (i.e. k-ary)
trees yields a space-optimal succinct representation allowing cardinal-
type operations (e.g. determining child labeled i) as well as the full set
of ordinal-type operations (e.g. reporting the number of siblings to the
left of a node). Existing space-optimal succinct representations had not
been able to support both types of operations [2,19].

We demonstrate how the approach can be applied to obtain a space-
optimal succinct representation for the family of free trees where the
order of children is insignificant. Furthermore, we show that our approach
can be used to obtain entropy-based succinct representations. We show
that our approach matches the degree-distribution entropy suggested by
Jansson et al. [13]. We discuss that our approach can be made adaptive
to various other entropy measures.

1 Introduction

With the ever increasing size of data sets, an important aspect in handling infor-
mation is their storage requirement. A succinct representation of a combinatorial
object is an encoding which supports a reasonable set of operations on the object
in constant time and has a storage requirement matching the information theo-
retic lower bound, to within lower order terms. Succinct data structures perform
under the uniform-time word RAM-model with Θ (lg n)1 word size.

Trees are fundamental data structures in computer science and as a result a
great deal of research has been done on their succinct representation. Succinct
representation of two major families of trees have been well studied: ordinal
and cardinal. In ordinal trees the order of children of nodes is significant and
1 lg n denotes log2 n.

J. Gudmundsson (Ed.): SWAT 2008, LNCS 5124, pp. 173–184, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

174 A. Farzan and J.I. Munro

Table 1. Space lower bounds in bits to represent families of trees with n nodes and
references to succinct representations

Tree family Space lower bound
(Highest order term) Succinct representation

Ordinal trees 2n [14] [11,5,15,2,7,10]
Ordinal trees with a given
degree distribution

∑
i ni lg n

ni
[20] [13]

Cardinal trees (k lg k − (k − 1) lg(k − 1)) n [8] [2,19]

Binary trees 2n [8] [11,12,4,5,15]

Free trees 1.56n [18] this paper

Free binary trees 1.31n [6,22] this paper

preserved. However, in cardinal trees (also known as k-ary trees), each node has
k-slots for edges to children which can be independently occupied or not. Binary
trees are a subclass of cardinal trees for value k = 2. Here we also study the
succinct encoding of another family of trees: free trees, in which the order of
children of a node is not significant.

Certain subfamilies of these major families of trees have been studied in the
context of succinct representations. Binary trees (k = 2) or DNA trees (k = 4)
form two of the best known subfamilies of cardinal trees. Ordered trees with a
given degree distribution where a list of numbers ni (i ≥ 0) is given and the
tree is guaranteed to have exactly ni nodes with i children form a subfamily
of ordinal trees studied recently by Jansson et al. [13]. We also investigate free
binary trees which are free trees with maximum two children per node.

Space lower bounds on the required number of bits to represent each class
of trees is obtained via information theory by counting the number of trees in
the class. Table 1 illustrates the space lower bounds for these classes along with
existing references to succinct representations which achieve the optimal space
within lower order terms and support a variety of operations.

1.1 Contribution

We propose a uniform approach for representing trees succinctly that encom-
passes the families of trees in table 1. The method is based on two-level de-
composition of a tree into subtrees. The recursive decomposition method is a
common technique in succinct representations of various data structures [5,19,1]
and has been used to represent trees [16,7,10].

In the case of ordinal trees, our approach supports a wide range of operations
proposed by He et al. [10] and simplifies implementation of the supported opera-
tions. In the case of cardinal trees, there is no known succinct representation that
supports a wide range of navigational operations. Raman et al. [19] state that
their succinct representation for cardinal trees cannot support subtree size. Our
succinct representation of cardinal trees can support all ordinal-tree-type oper-
ations listed by He et al. [10] (such as subtree size) as well as cardinal-tree-type
operations suggested by Raman et al. [19] (such as following the edge labeled i
from a node where 1 ≤ i ≤ k).

A Uniform Approach Towards Succinct Representation of Trees 175

To show the power of our method, we consider free trees which are trees with
no order imposed on children of nodes and show that we can have a succinct
representation taking the optimal (1.56 . . .)n bits supporting all navigational
operations. Similarly, free binary trees, which are free trees with maximum two
children per node, can be represented in the optimal (1.31 . . .)n number of bits.

Existing succinct encodings of trees assume a uniform distribution over the
family of trees and therefore give worst case space guarantees. In practice how-
ever, there might be many reasons to have trees with certain property that are
more likely than others, and therefore an entropy-based succinct representation
is necessary. Jansson et al. [13] considered this case when the distribution is
based on degrees of nodes and gave a representation that matches the degree-
distribution entropy. Our succinct tree representation not only can match the
degree-distribution entropy, but can be made adaptive to a variety of other en-
tropy measures: e.g. trees with a particular probability distribution of number
of children (a node has i children with probability pi).

2 Tree Decomposition

At the heart of our method is the tree decomposition technique. Vaguely speak-
ing, we aim to decompose the tree into subtrees of roughly the same size.
Geary et al. [7] and He et al. [10] use the same decomposition algorithm to
match the decomposition algorithm of Munro et al. [16] in the binary tree case.
Given the subtree size L, the algorithm decomposes a tree into subtrees with size
between L and 3L (with possible exception of the root subtree). Furthermore,
these subtrees are disjoint other than their roots.

The drawback with their algorithms is that the number of child subtrees of
a component can grow arbitrarily large (roughly as large as the size of com-
ponents). With our decomposition technique, the number of child subtrees of a
subtree does not exceed the original node degrees. We guarantee this by allowing
(a small number of) undersized subtrees.

Theorem 1. A tree with n nodes can be decomposed into Θ (n/L) subtrees of
size at most 2L. These are pairwise disjoint aside from the subtree roots. Fur-
thermore, aside from edges stemming from the component root nodes, there is
at most one edge per component leaving a node of a component to its child in
another component.

Figure 1 depicts the result of our decomposition algorithm. We start the proof
by considering the nodes that have many descendants:

Definition 1. For a fixed parameter L, a node is heavy if it has at least L
descendants (including itself). Ancestors of a heavy node are heavy by the defi-
nition. Therefore, heavy nodes form a subtree on the original tree. We call this
tree as the heavy-subtree. A branching node is a node which has at least
two heavy children. Branching edges are the edges between a branching node
and its heavy children.

176 A. Farzan and J.I. Munro

a

r s t u v w zy

x

po

l

h k

g nmji

fedcb

q

Fig. 1. A tree decomposed into component subtrees for value L = 5

For instance, in the tree of figure 1, heavy nodes are a, b, d, n, o, p. Branching
nodes are a, n and branching edges are ab, ad, no, np. A crucial observation is
that the number of branching edges is bounded (we omit the proof):

Lemma 1. The number of branching nodes and edges in a tree with n nodes
and parameter L is O (n/L). ��

As with previous decomposition methods [5,16,7], we use a recursive bottom-up
approach. To decompose a tree rooted at a node v, we first recursively decompose
the trees rooted at its children u1, . . . , uk. Each recursive call decomposes a tree
rooted at a node and returns the component subtrees. Component subtrees that
do not contain any of u1, . . . , uk are permanent and remain intact. The root
components that contain one of u1, . . . uk are exception: they can be declared
temporary. The temporary components and the parent v can possibly be merged
together. The merging of the temporary components depends on the number of
heavy children of v:

1. if v has no heavy children (e.g. node b in figure 1), entire children subtrees are
temporary components to be merged together. We create a new component
initially containing only v. We scan the list of children u1, . . . , uk from left
to right adding the entire tree rooted at the current child to the component.
If the component size exceeds L, we finalize that component and create a
new component containing v only and continue in this manner. Since none
of the children is heavy, the size of components does not exceed 2L. The last
such component can have size less than L. If we had created at least another
component aside from the last component, we finalize the last component
(charging its small size to its neighbor component which has the right size).

A Uniform Approach Towards Succinct Representation of Trees 177

Otherwise if there is only one component, we have put all descendants of v
together in a component which we declare as temporary and send up to the
parent of v .

2. if v has only one heavy child ui (e.g. node d in figure 1 as n is heavy), we
put children of v into components analogously to the previous case. The only
difference occurs where the component containing ui has been declared per-
manent as opposed to temporary. In this case, we simply ignore ui, skipping
from ui−1 to ui+1 during the scan.

3. If v is a branching node–i.e. with two or more heavy children (e.g. nodes
a, n in figure 1)– then among children u1, . . . , uk, there are h ≥ 2 heavy
nodes ui1 , . . . , uih

. We first declare permanent the components containing
these heavy nodes. If the component containing uij for some j is undersized,
we charge it to the branching edge vuij .

If all left children are heavy, v by itself is a permanent single-node com-
ponent (we charge this undersized component to branching node v itself).
Otherwise, the remaining children of v are broken by the heavy nodes into in-
tervals of consecutive non-heavy nodes. We consider the intervals separately,
treating each as in the first case. The difference is we charge the possible un-
dersized component at the end of each such interval l to one of the interval’s
end edges vuil−1 or vuil

(note that vuil−1 , vuil
are branching edges) .

One can verify that the manner the components are constructed guarantees that
the number of nodes within a subtree does not exceed 2L and moreover, aside
from the components’ root nodes there is at most one edge stemming out of a
node of a component to a child in another component. Furthermore, to bound the
number of components, one only has to account for the undersized components.
One can charge undersized components to branching edges and nodes which
we know by lemma 1, there are Θ (n/L) of them. Therefore, the number of
undersized components is O (n/L) and thus the total number of components is
Θ (n/L).

3 Ordinal Trees

In this section, we outline our succinct representation for ordinal trees. The rep-
resentation is analogous to Munro et al. [16] and the simple representation of
Geary et al. [7] in that it is a two-level recursive decomposition of a given tree. In
the first level of recursion, the tree with n nodes is first decomposed into subtrees
using value L =

⌈
lg2 n

⌉
, and subsequently these subtrees are, in turn, decom-

posed into yet smaller subtrees using value L = �lg n/4� to obtain the subtrees
on the second level of recursion. Using the terminology of Geary et al. [7], we
refer to as the subtrees on the first level by mini-trees and the second level by
micro-trees.

Micro-trees which have size less than �lg n/2� are small enough to be repre-
sented by a look-up table. The table requires o(n) bits and stores encodings of all
trees with sizes up to �lg n/2� along with answers to variety of types of queries for
each of those trees. The representation of a micro-tree with k nodes consists of

178 A. Farzan and J.I. Munro

two fields: the first field simply is the size of the micro-tree (O (log k) = O (lg lg n)
bits) and the second field is an index to the look-up table (2k bits). These indices
sum up to 2n bits over all micro trees and are the dominant space term; other
auxiliary data amounts to o (n) bits.

Mini-trees consist of micro-trees and links between them. Links between dif-
ferent micro-trees can be either in form of a common root node or an edge from a
non-root node from a micro-tree to the root of another micro-tree. We represent
such an edge vr by introducing a dummy node on it. we introduce a dummy node
d on the edge between the micro-tree root r and node v and replace vr by vd
and dr. Edge vd is accounted for the micro-tree representation, and edge dr is
explicitly stored as a O (log log n)-bit pointer. We refer to edges with a dummy
parent such as dr as dummy edges. It is easy to see that these pointers require
o (n) space overall mini-trees.

To represent the common roots among micro-trees, we use the fully indexable
dictionary (FID) of Raman et al. [19]. They showed that given a set S a subset of
a universe U , there is a FID on S that requires lg

(|U|
|S|

)
+O (|U | log log |U | / log |U |)

bits and supports rank/select on elements and non-elements of S in constant
time. Given a root node v with children u1, . . . , uk in p different micro-trees, if
i1, . . . , ip are the indices of children that belong to a different micro-tree than
their immediate left siblings, we form set I = {i1, i2, . . . , ip} over the universe
of [k]. We represent this set as a FID to navigate on children of v. The required
space for this FID is lg

(
k
p

)
+O (k log log k/ log k) bits. We omit the details of the

proof that the collective space of these structures contributes only to o (n).
The tree consists of mini-trees and links between them. The tree over mini-

trees is represented analogously to the manner a mini-tree is represented over
micro-trees: i.e. explicit pointers for edges coming out of mini-trees from non-
root nodes and a FID to represent edges out of a common mini-tree root. One
can assess the space analogously to o (n).

Operations. We demonstrate that various operations on ordinal trees can be
implemented trivially using our representation. Table 2 defines a comprehensive
list of operations suggested by He et al. [10] for ordinal trees. We show an imple-
mentation for the subtree size operation as an example of how straightforward
the support of operations becomes in our representation.

To compute the subtree size of node v, we explicitly store the subtree size at
mini-tree roots and we store the subtree size at micro-tree roots within mini-
trees, and the look-up table contains the subtree size within a micro-tree for
each node of the micro-tree.

If v is a mini-tree root then the value is explicitly stored. Otherwise, if v is a
micro-tree root, we have the subtree size within the mini-tree stored. If v is not a
micro-tree root then we determine the subtree size within the micro-tree from the
look-up table to get the first value. Thus far, we have counted the descendants
within the mini-tree; We determine if v is an ancestor of the dummy node of the
mini-tree (the ancestor query is easy to support) and if so we add the subtree
size value of the mini-tree stemming off the dummy node.

A Uniform Approach Towards Succinct Representation of Trees 179

Table 2. Comprehensive list of operations on an ordinal tree suggested by [10]

Operations Definition
child(v,i), child rank(v) ith child of node v, Number of left siblings of node v

degree(v), subtree size(v) number of children of v, Number of descendants of v

depth(v), height(v) the depth/height of node v

leftmost(rightmost) leaf(v), leaf size(v) v’s leftmost/rightmost descendant leaf , number of
descendant leaves

leaf rank(v), leaf select(v) number of leaves before v in preorder, ith leaf of the
tree in preorder

node rankpre(i), node selectpre(v) position of v in preorder, ith node in pre order
node rankpost(i), node selectpost(v) position of v in post order, ith node in post order

level anc(v, i), LCA(x, y), distance(x, y) ancestor of v at level i, lowest common ancestor and
distance of x, y

level left/rightmost(i),
level succ/pred(v)

left/right most node at level i, successor or predeces-
sor of v on its level

4 Cardinal Trees

In this section, we show the uniform approach can be applied to represent cardi-
nal (k-ary) trees. This representation is the first succinct structure that supports,
in constant time, cardinal-type queries such as “find the child labeled j” as well
as all ordinal-type queries such as subtree size, degree, or the i-th child.

The number of k-ary trees is C(n, k) = 1
kn+1

(
kn+1

n

)
[8] which suggests that a

space-optimal representation requires lg C(n, k) = (k lg k − (k − 1) lg(k − 1))n−
O(lg(kn)) bits. We assume a RAM model with word size w = max {lg n, lg k}.

The representation is a two-level recursive decomposition of the tree analogous
to the representation for ordinal trees in section 3. We decompose the tree with
value L = lg2 w into mini-trees and then recursively decompose each mini-tree
into micro-trees with value L = max

{
lg w
4 lg k , 1

}
. Without loss of generality, we

assume n ≥ k and thus w = lg n. All the arguments go through analogously
where k > n which causes w = lg k and mini-trees with L = lg2 k and micro-
trees with L = 1. Hence, we can assume L = lg2 n for mini-trees and L =
max

{
lg n
4 lg k , 1

}
for micro-trees.

The representation only differs from that of ordinal trees in how we form
the look-up table and represent the roots of mini/micro-trees. We single out
nodes that are roots of a micro or a mini tree and represent them separately.
The representation we use is the indexable dictionary (ID) of Raman et al. [19]
(as opposed to their fully indexable dictionary (FID)). They showed that given
a set S a subset of a universe U , there is an ID on S that requires lg

(|U|
|S|

)
+

o (|S|)+ O (log log |U |) bits and supports rank/select on elements S (In contrast
to a FID, we cannot perform rank on non-elements). Here, the universe is k-
slots U = {1, 2, . . . , k} and our subset S is the set of present edges. In contrast
to ordinal trees, in a root of a micro-tree, we do not confine ourselves within
the framework of the containing mini-tree and use the ID on all edges of the
root. We note that all ordinal-tree structures are included in our representation

180 A. Farzan and J.I. Munro

such as the FID on roots of micro-trees built over the universe of present edges
(confined to the containing mini-tree). The ID and FID will help us answer the
cardinal-type queries as well as ordinal-type queries on a root node.

The look-up table must contain all possible micro-trees. Since we keep root
nodes’ information separately, the trees in the look-up table are such that all
nodes are k-ary except for the roots whose children are only ordered. We refer
to such trees as root-relaxed cardinal trees. We enumerate all root-relaxed tree
of size less than lg n

4 lg k and list them in the lookup table.
The rest of the representation is the same as the ordinal representation: for

instance, dummy nodes and edges are introduced and represented in the same
manner. Now we argue that the representation is space optimal within lower
order terms.

Space optimality: All auxiliary data pertinent to the ordinal tree can be proved
to sum to o (n lg k) bits analogously to the proof in section 3. Thus, we only
have to account for the new structures we have introduced: IDs on the root
nodes and the sum of indices to the look-up table. An ID on a root node v with
dv children requires lg

(
k
dv

)
+ o (dv) + O (log log k) from which the first term is

dominant. Hence, the contribution of IDs to the space over the entire tree is∑
v: root lg

(
k
dv

)
.

The space required to represent a micro-tree is the size of the index to the look-
up table. Consider a root-relaxed tree T with root r and root children r1, . . . , rd.
We define Ti as the subtree rooted at child ri and refer to its size as ni = |Ti|. We
use enumeration to encode root-relaxed trees and thus we obtain the shortest
code. Thus the encoding requires fewer than

∑d
i=1 (lg ni + lg C(ni, k)) bits which

sum as follows:

d∑
i=1

(lg ni + lg C(ni, k)) = lg
d∏

i=1

niC(ni, k) = lg
d∏

i=1

(
kni

ni − 1

)
≤ lg

(
k(|T | − 1)

|T | − 1 − dv

)
.

Over all micro-trees these terms together with space for IDs which is lg
(

k
dv

)
for each root v sum to:

∑
Ti

(
lg

(
k(|Ti| − 1)

|Ti| − 1 − droot

)
+ lg

(
k

droot

))
= lg

⎛
⎝∏

Ti

(
k(|Ti| − 1)

|Ti| − 1 − droot

)(
k

droot

)⎞
⎠ ,

which is less than lg
(
kn
n

)
. Thus, the space requirement of our representation

matches the lower bound, to within lower order terms: lg C(n, k) + o (n log k).

Operations in constant time: We can support all ordinal-type operations listed
in table 2 analogously to ordinal trees. To determine the child labeled i of a node
v, if v is not a micro-tree root, then the answer is looked-up from the table. If
v is a root node, then we use its ID to see if there is a child at that label. If
it exists, we perform rank(i) to know how many siblings to the left there are.
Then we can use select on the FID to actually find the mini-tree and then the
micro-tree and finally the child labeled i.

A Uniform Approach Towards Succinct Representation of Trees 181

5 Free Trees

A free tree as a tree with no particular order among children of nodes. We are
interested in succinct encodings of such trees allowing navigation in the tree in
constant time. A free binary tree is a free tree such that nodes have at most two
children, or alternatively a binary tree in which ignore the distinction between
left and right branches. To show the power of the uniform approach we explain
how these families of trees can be encoded succinctly.

Lower bounds. The lower bounds for binary and general free trees come directly
from counting by information theory. Define FB(n) and F (n) as the number of
free binary trees, and general free trees with n nodes, respectively.

There is no known explicit closed form formula for FB(n) or F (n). Nev-
ertheless, asymptotic behavior of either series is well-studied [9,18,6,22]. The
sequence (FB(n)), n = 1, 2, . . . is known as Etherington-Wedderburn [6,22] se-
quence and from its asymptotic behavior one can infer that asymptotically
lg FB(n) = (1.3122 . . .)n+o (n). Otter [18] described the asymptotic behavior for
F (n) from which one obtains that asymptotically lg F (n) = (1.5639 . . . n)+o (n).
This implies that free trees can potentially be represented more space-efficiently
than ordinal trees which require 2n + o (n) bits.

Theorem 2. The information-theoretic lower bound on the number of bits re-
quired to represent free binary trees and free general trees with n nodes is
(1.3122 . . .)n + o (n) and (1.5639 . . .)n + o (n) respectively. ��

Upper bounds. The representation differs from that of ordinal trees in section 3
in the look-up table. In the case of free binary trees, all free binary trees of size
up to 1

4 lg n are enumerated modulo isomorphisms and listed in the look-up table
in increasing order of their sizes. To represent a micro-tree we use a pair (k, i)
index to the table. k is the size of the micro-tree and i is the index to the look-up
table which is an offset from the start location of trees with size k. All auxiliary
data are carried forward from ordinal trees as they only take o (n) space. One
can easily argue that the total bits required by the first fields of pairs (k) is also
o (n). Therefore, the dominant field is the sum of the bits of the second fields
of pairs (i). Theorem 2 suggest that the size of this field for a tree of size t is
(1.31 . . .)t+o (t) bits. The second term o (t) term adds up to o (n) over the entire
tree. The first term is the dominant term which adds up to (1.31 . . .)n + o (n)
over the entire tree when n is the number of nodes. The (1.56 . . .)n + o (n) bit
representation for free general trees is analogous; the look-up table lists free
general trees as opposed to free binary trees:

Theorem 3. The succinct representation for free binary trees and free general
trees with n nodes requires (1.3122 . . .)n + o (n) and (1.5639 . . .)n + o (n) bits
respectively and supports all navigational operations listed in table 2 in constant
time. ��

182 A. Farzan and J.I. Munro

6 Entropy-Based Succinct Encodings

Thus far, we have assumed a uniform distribution among trees belonging to a
certain family of trees. However, there might be many applications so that some
trees are biased against other trees within the tree family, and therefore the dis-
tribution is non-uniform. Thus, entropy-based succinct encodings are necessary.
Jansson et al. [13] were the first to give entropy-based succinct encodings for
the degree-distribution entropy. In this section, we show how our method can
be used to match the degree-distribution entropy as well as a variety of other
entropy measures.

6.1 Succinct Encoding Based on Degree-Distribution Entropy

The degree-distribution of an ordinal tree with n nodes is a series of numbers
(n0, n1, . . .) such that the tree has ni nodes with exactly i children (

∑
i ni = n

and
∑

i i ni = n − 1). Rote [20] showed that the number of trees with a given
degree-distribution is 1

n

(
n

n0,...,nn−1

)
, the logarithm of which is L(T) =

∑
i ni lg n

ni

to within lower order terms. L(T) is therefore a lower bound on the required
number of bits to represent the tree.

Jansson et al. [13] gave a representation that requires L(T)+ O
(

n(log log n)2

log n

)
number of bits and supports a variety of operations in constant time. Using our
approach we obtain another space-optimal succinct representation with L(T) +
O (n log log log n/ log log n) number of bits supporting all operations in table 2
in constant time. They did not assume that the degree-distribution is explicitly
given. We observe that we can make explicit the assumption that the degree-
distribution is given as it takes negligible space to encode the sequence and have
it explicitly stored. Thus we can accompany it with the succinct representation.

Our succinct representation sensitive to degree-distribution entropy is the
same as that of the ordinal trees with the difference in the look-up table. The
look-up table contains all trees with less than 1

4 lg n as in ordinal trees; How-
ever, the trees are ordered based on their degree-distribution sequence in the
lexicographical order and listed in the table accordingly. In order to encode a
micro-tree T , we use an index to the table. The index to the table is a pair
(N , k) where N is the degree-distribution encoding of the tree and k is an offset
in the table from where the trees with degree-distribution N start to the actual
position of tree T we reference to.

One can easily verify that the total number of bits required by the first fields
of indices (i.e. N) is negligible. The second field k is the dominant term. The
size of this field for a micro-tree Tt, by a counting argument, is �L(Tt)� =⌈
lg

(
1

|Tt|
(|Tt|
nt,0...nt,|Tt|

))⌉
where nt,i is the number of nodes with i children in

tree Tt. A node with more than log n children in the original tree is a micro-
tree root and its children are split among different micro-trees. Since there are
Θ (n logn) of these roots and each micro-tree root contributes at most log logn

A Uniform Approach Towards Succinct Representation of Trees 183

bits to the space, the sum of these terms is O (n log log n/ logn) and within our
space bound. The sum over all micro-trees T1, . . . , Tm modulo their roots can be
assessed as follows:

m∑
t=1

lg
(

1
|Tt|

(
|Tt| − 1

nt,0, . . . , nt,|Tt|

))
= lg

∏
t

1
|Tt|

(
|Tt| − 1

nt,0 . . . nt,|Tt|

)

≤ lg
(

1
n

(
n

n0, . . . , nn−1

))
≈ L(T).

Hence, the representation has the optimal space within lower order terms and
clearly we can perform all operations listed in table 2 in constant time as in an
ordinal tree.

6.2 Other Entropy Measures

Similar to the manner in which we represented trees adaptive to their degree-
distribution entropy, we can use the approach to obtain succinct representations
adaptive to various other combinatorial properties and entropy measures. For
instance, consider the family of ordinal trees such that internal nodes have at
least two children. The number of such trees with n nodes is known as Rior-
dan number [3]. The logarithm based two of Riordan numbers is asymptotically
lg(3)n+o (n) ≈ 1.58n+o (n). One can use our approach to encode this family of
trees. Similarly, The family of ordinal trees with a fixed constant upper bound d
on the number children of a node can be represented in the same manner. More
generally, where there is a probability distribution for the number of children of
a node, our representation can match the entropy bound.

Another interesting family of trees is AVL trees which consists of binary
trees such that the height of left and right subtrees differ by at most one.
Odlyzko [17] showed that if an is the number of AVL trees with n nodes,
lg a(n) ≈ (0.9381 . . .)n, our representation matches this entropy bound and thus
can represent AVL trees in optimal number of bits to within lower order terms.

7 Conclusion

In this paper, we proposed a uniform approach towards succinct representation of
trees. We showed that all families of trees with an existing succinct representation
can be represented using our framework. Our representation improves on the
existing ones on cardinal trees as we are able to answer ordinal-type queries such
as subtree size as well as cardinal-type queries. We introduce a new family of
trees: free trees. We demonstrated how easily our approach can represent these
trees succinctly We argued that our approach can represent trees succinctly
adaptive to the degree-distribution entropy. We discussed that a variety of other
entropy measures can be dealt with similarly.

184 A. Farzan and J.I. Munro

References

1. Barbay, J., He, M., Munro, J.I., Rao, S.S.: Succinct indexes for strings, binary rela-
tions and multi-labeled trees. In: Proceedings of the 18th ACM-SIAM Symposium
on Discrete Algorithms (SODA), pp. 680–689. ACM-SIAM, New York (2007)

2. Benoit, D., Demaine, E.D., Munro, J.I., Raman, R., Raman, V., Rao, S.S.: Repre-
senting trees of higher degree. Algorithmica 43(4), 275–292 (2005)

3. Bernhart, F.R.: Catalan, motzkin, and riordan numbers. Discrete Mathematics 204,
72–112 (1999)

4. Clark, D.R.: Compact pat trees. PhD thesis, Waterloo, Ontario. Canada (1998)
5. Clark, D.R., Munro, J.I.: Efficient suffix trees on secondary storage (extended ab-

stract). In: SODA, pp. 383–391 (1996)
6. Etherington, I.M.H.: Non-associate powers and a functional equation. The Math-

ematical Gazette 21(242), 36–39 (1937)
7. Geary, R.F., Raman, R., Raman, V.: Succinct ordinal trees with level-ancestor

queries. ACM Transactions on Algorithms 2(4), 510–534 (2006)
8. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics: A Foundation

for Computer Science. Addison-Wesley Longman Publishing Co. Inc. Boston (1994)
9. Harary, F., Palmer, E.M.: Graphical Enuemration. Academic Press, New York

(1973)
10. He, M., Munro, J.I., Rao, S.S.: Succinct ordinal trees based on tree covering.

In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS,
vol. 4596, pp. 509–520. Springer, Heidelberg (2007)

11. Jacobson, G.: Space-efficient static trees and graphs. In: Foundations of Computer
Science. 30th Annual Symposium on (30 October-1 November 1989), pp. 549–554
(1989)

12. Jacobson, G.J. Succinct static data structures. PhD thesis, Pittsburgh, PA, USA
(1988)

13. Jansson, J., Sadakane, K., Sung, W.-K.: Ultra-succinct representation of ordered
trees. In: Bansal, N., Pruhs, K., Stein, C. (eds.) SODA, pp. 575–584. SIAM,
Philadelphia (2007)

14. Knuth, D.E.: The Art of Computer Programming, 3rd edn. vol. 1. Addison-Wesley,
Reading (1997)

15. Munro, J.I., Raman, V.: Succinct representation of balanced parentheses, static
trees and planar graphs. In: IEEE Symposium on Foundations of Computer Sci-
ence, pp. 118–126 (1997)

16. Munro, J.I., Raman, V., Storm, A.J.: Representing dynamic binary trees succinctly.
In: SODA, pp. 529–536 (2001)

17. Odlyzko, A.M.: Some new methods and results in tree enumeration, (May 04, 1984)
18. Otter, R.: The number of trees. The Annals of Mathematics, 2nd Ser. 49(3), 583–

599 (1948)
19. Raman, R., Raman, V., Rao, S.S.: Succinct indexable dictionaries with applications

to encoding k-ary trees and multisets. In: SODA, pp. 233–242 (2002)
20. Rote, G.: Binary trees having a given number of nodes with 0,1, and 2 children.

Séminaire Lotharingien de Combinatoire 38 (1997)
21. Storm, A.J. Representing dynamic binary trees succinctly. Master’s thesis, School

of Computer Science, University of Waterloo, Waterloo, Ontario, Canada (2000)
22. Wedderburn, J.H.M.: The Functional Equation g(x2) = 2ax + [g(x)]2. The Annals

of Mathematics, 2nd Ser. 24(2), 121–140 (1922)

An O(n1�75) Algorithm for L(2� 1)-Labeling of Trees�

Toru Hasunuma1, Toshimasa Ishii2, Hirotaka Ono3, and Yushi Uno4

1 Department of Mathematical and Natural Sciences, The University of Tokushima,
Tokushima 770–8502 Japan

������������	
��������
�	��	��
2 Department of Information and Management Science, Otaru University of Commerce,

Otaru 047-8501, Japan
���������	�
���
��	��	��

3 Department of Computer Science and Communication Engineering, Kyushu University,
Fukuoka 812-8581, Japan

��������	������
�	��	��
4 Department of Mathematics and Information Sciences, Graduate School of Science,

Osaka Prefecture University, Sakai 599-8531, Japan
������	�	�������
�	��	��

Abstract. An L(2� 1)-labeling of a graph G is an assignment f from the vertex
set V(G) to the set of nonnegative integers such that � f (x) � f (y)� � 2 if x and
y are adjacent and � f (x) � f (y)� � 1 if x and y are at distance 2 for all x and y
in V(G). A k-L(2� 1)-labeling is an assignment f : V(G) � �0� � � � � k�, and the
L(2� 1)-labeling problem asks the minimum k, which we denote by �(G), among
all possible assignments. It is known that this problem is NP-hard even for graphs
of treewidth 2. Tree is one of a few classes for which the problem is polynomially
solvable, but still only an O(�4�5n) time algorithm for a tree T has been known so
far, where � is the maximum degree of T and n � �V(T)�. In this paper, we first
show that an existent necessary condition for �(T) � � � 1 is also suÆcient for a
tree T with � � �(

�
n), which leads a linear time algorithm for computing �(T)

under this condition. We then show that �(T) can be computed in O(�1�5n) time
for any tree T . Combining these, we finally obtain an O(n1�75) time algorithm,
which substantially improves upon previously known results.

Keywords: frequency�channel assignment, graph algorithm, L(2� 1)-labeling, ver-
tex coloring.

1 Introduction

Let G be an undirected graph. An L(2� 1)-labeling of a graph G is an assignment f from
the vertex set V(G) to the set of nonnegative integers such that � f (x)� f (y)� � 2 if x and
y are adjacent and � f (x) � f (y)� � 1 if x and y are at distance 2 for all x and y in V(G).
A k-L(2� 1)-labeling is an assignment f : V(G) � �0� � � � � k�, and the L(2� 1)-labeling
problem asks the minimum k among all possible assignments. We call this invariant,
the minimum value k, the L(2� 1)-labeling number and is denoted by �(G). Notice that

� This research is partly supported by INAMORI FOUNDATION and Grant-in-Aid for Scien-
tific Research (KAKENHI), No. 18300004, 18700014, 19500016 and 20700002.

J. Gudmundsson (Ed.): SWAT 2008, LNCS 5124, pp. 185–197, 2008.
c� Springer-Verlag Berlin Heidelberg 2008

186 T. Hasunuma et al.

we can use k � 1 di�erent labels when �(G) � k since we can use 0 as a label for
conventional reasons.

The original notion of L(2� 1)-labeling can be seen in Hale [8] and Roberts [10]
in the context of frequency�channel assignment, where ‘close’ transmitters must re-
ceive di�erent frequencies and ‘very close’ transmitters must receive frequencies that
are at least two frequencies apart so that they can avoid interference. Due to its prac-
tical importance, the L(2� 1)-labeling problem has been widely studied. On the other
hand, this problem is also attractive from the graph theoretical point of view since it
is a kind of vertex coloring problem. In this context, L(2� 1)-labeling is generalized
into L(h� k)-labeling for arbitrary nonnegative integers h and k, and in fact, we can
see that L(1� 0)-labeling (L(h� 0)-labeling, actually) is equivalent to the classical vertex
coloring.

Related Work: There are also a number of studies about the L(2� 1)-labeling problem
from the algorithmic point of view. It is known to be NP-hard for general graphs [7],
and it still remains NP-hard for some restricted classes of graphs, such as planar, bi-
partite, chordal graphs [1], and recently it turned out to be NP-hard even for graphs of
treewidth 2 [5]. In contrast, only a few graph classes are known to have polynomial
time algorithms for this problem. Among those, Chang and Kuo [4] established a poly-
nomial time algorithm for the L(2� 1)-labeling problem for trees. Their polynomial time
algorithm fully exploits the fact that �(T) is either � � 1 or � � 2 for any tree T . It is
based on dynamic programming, and runs in O(�4�5n) time, where � is the maximum
degree of a tree T and n � �V(T)�.

Our Contributions: In this paper, we first show that an existent necessary condition
for �(T) � � � 1 for a tree T is also suÆcient for trees with � � �(

�
n), which leads a

linear time algorithm for computing �(T) under this condition. Then we show that the
L(2� 1)-labeling problem can be solved in O(�1�5n) time for any input tree. Our approach
is based on dynamic programming similar to Chang and Kuo’s O(�4�5n)-time algorithm
[4], where its �2�5-factor comes from the complexity of solving the bipartite matching
problem of a graph with order �, and its �2n-factor from the number of iterations for
solving bipartite matchings. In spite that our algorithm is also under the same frame-
work, the running time O(�1�5n) is attained by reducing the number of the matching
problems to be solved, together with detailed analyses of the algorithm. As a result, our
algorithm achieves O(n1�75) running time, and greatly improves the best known result
O(�4�5n) time, which could be O(n5�5) in its worst case.

Organization of this Paper: The rest of this paper is organized as follows. Section 2
gives basic definitions and related results. Section 3 shows that a necessary condition
that �(T) � � � 1 for a tree T is also suÆcient for trees with � � �(

�
n). In Section 4,

after introducing fundamental ideas of dynamic programming for solving this problem,
then we show that �(T) can be computed in O(�1�5n) time for a tree T . Combining the
results in Sections 3 and 4, Section 5 presents the overall O(n1�75) time algorithm for
any input tree. Finally, Section 6 gives some concluding remarks.

An O(n1�75) Algorithm for L(2� 1)-Labeling of Trees 187

2 Preliminaries

2.1 Definitions and Notations

A graph G is an ordered set of its vertex set V(G) and edge set E(G) and is denoted
by G � (V(G)� E(G)). We assume throughout this paper that all graphs are undirected,
simple and connected, unless otherwise stated. Therefore, an edge e � E(G) is an un-
ordered pair of vertices u and v, which are end vertices of e, and we often denote it by
e � (u� v). Two vertices u and v are adjacent if (u� v) � E(G), and two edges are adjacent
if they share one of their end vertices. A graph G � (V(G)� E(G)) is called bipartite if
the vertex set V(G) can be divided into two disjoint sets V1 and V2 such that every edge
in E(G) connects a vertex in V1 and one in V2; such G is denoted by (V1�V2� E).

For a graph G, the (open) neighborhood of a vertex v � V(G) is the set NG(v) � �u �
V(G) � (u� v) � E(G)�, and the closed neighborhood of v is the set NG[v] � NG(v) 	 �v�.
The degree of a vertex v is �NG(v)�, and is denoted by dG(v). We use �(G) to denote
the maximum degree of a graph G. A vertex whose degree is �(G) is called major.
We often drop G in these notations if there are no confusions. A vertex whose degree
is 1 is called a leaf vertex, or simply a leaf. A path in G is a sequence v1� v2� � � � � v�

of vertices such that (vi� vi�1) � E for i � 1� 2� � � � � � � 1, or equivalently, a sequence
(v1� v2)� (v2� v3)� � � � � (v��1� v�) of edges (vi� vi�1) for i � 1� 2� � � � � � � 1. The length of a
path is the number of edges on it. The distance between two vertices u and v is the
minimum length of paths connecting u and v. A path v1� v2� � � � � v� is a cycle if v1 � v�.
A graph is a tree if it is connected and has no cycle.

For describing algorithms, it is convenient to regard the input tree to be rooted at
an arbitrary vertex r of degree 1. Then we can define the parent-child relationship on
vertices in the usual way. For any vertex v, the sets of its children and grandchildren are
denoted by C(v) and C2(v), respectively. For a vertex v, define d�(v) � �C(v)�.

2.2 Related Results and Basic Properties

In general, L(h� k)-labelings of a graph G are defined for arbitrary nonnegative integers
h and k, as an assignment of nonnegative integers to V(G) such that adjacent vertices
receive labels at least h apart and vertices connected by a 2-length path receive labels
at least k apart. This problem is one of the generalizations of the vertex coloring prob-
lem since L(h� 0)-labeling problem is equivalent to it. Therefore, we can hardly expect
that the L(h� k)-labeling problem is tractable, and in fact, L(0� 1)- and L(1� 1)-labeling
problems are known to be NP-hard, for example. We can find a lot of related results on
L(h� k)-labelings in comprehensive surveys by Calamoneri [2] and Yeh [12].

As for the L(2� 1)-labeling problem, it is also known to be NP-hard for general graphs
[7]. It remains NP-hard for planar graphs, bipartite graphs, chordal graphs [1], and even
for graphs of treewidth 2 [5]. In contrast, very few aÆrmative results are known, e.g.,
we can decide the L(2� 1)-labeling number of paths, cycles, wheels [7] and trees [4]
within polynomial time.

We here review some significant results on L(2� 1)-labeling of graphs or trees that
will become relevant later in this paper. We can see that �(G) � � � 1 holds for any
graph G. Griggs and Yeh [7] showed a necessary condition for �(G) � � � 1 on any

188 T. Hasunuma et al.

graph G, by observing that any major vertex in G must be labeled 0 or � � 1 when
�(G) � � � 1.

Lemma 1. [7] If �(G) � � � 1, then for any v � V(G), NG[v] contains at most two
major vertices.

Lemma 2. [7] For any tree T , �(T) is either � � 1 or � � 2.

Concerning the latter lemma, they also conjectured the problem of determining if �(T)
is ��1 or ��2 is NP-hard. Chang and Kuo [4] disproved this by presenting a polynomial
time algorithm for computing �(T), whose running time is O(�4�5n). Since tree is one
of the most basic graph classes, this yields several aÆrmative results for more general
graph classes, e.g., p-almost trees, for which �(G) is computed in O(�2p�4�5n) time [6].

3 A Linear Time Algorithm for Trees with � � � (
�

n)

From now on, we focus on the L(2� 1)-labeling problem on trees. Obviously, Chang and
Kuo’s algorithm [4] runs in linear time if � � O(1). In this section, we show that the
L(2� 1)-labeling problem for trees can be also solved in linear time if � �

�
n � 3 � 3.

Let T be a tree. As shown in Lemmas 1 and 2, we have a necessary condition for �(T) �
�� 1 (or a suÆcient condition for �(T) � �� 2), but no simple necessary and suÆcient
condition is known although some research such as [11] gave a suÆcient condition for
�(T) � � � 1. Here, we present another suÆcient condition for �(T) � � � 1, which
implies that the necessary condition for �(T) � � � 1 of Lemma 1 is also suÆcient for
large �. Let N3[v] denote the set of vertices whose distance from v is at most three.

Theorem 1. If for any v � V(T), N3[v] contains at most � � 6 major vertices and N[v]
contains at most two major vertices, then �(T) � � � 1.

Proof. Suppose that for any v � V(T), N3[v] contains at most � � 6 major vertices
and N[v] contains at most two major vertices. At first, label every major vertex with
0 or � � 1 so that two major vertices within distance two do not have the same label.
Since for any v � V(T), N[v] contains at most two major vertices, this labeling can
be correctly done. Next, regard T as a rooted tree by choosing one vertex as the root.
Following the definition of the L(2� 1)-labeling, we will label each vertex in the rooted
tree in the breadth-first-search order. Suppose that a vertex v is labeled b and the parent
of v is labeled a, where �a� b� � 2. Divide the set C(v) of children of v into C�(v)�C��(v)
and R(v) as follows:

– C�(v) � �w � C(v) � w is not a major vertex and has a major vertex in C(w)	C2(w)�,
– C��(v) � �w � C(v) � w is a major vertex �,
– R(v) � C(v) �C�(v) �C��(v).

Note that �C�(v)�
 ��6, �C��(v)�
 2, and if d(v) � � then �C�(v)�
 ��7 and �C��(v)�
 1.

Case 1: d(v) � �. Let U(a� b) � �a� b � 1� b� b � 1� 	 �0� 1� �� � � 1�, and Ū(a� b) �
�0� 1� � � � � � � 1� � U(a� b). Assign injectively labels in Ū(a� b) to vertices in C�(v).
Since �C�(v)�
 � � 6 and �Ū(a� b)� � � � 2 � �U(a� b)� � � � 6, such a labeling is
possible. Let L(v) be the set of labels in Ū(a� b) which are not used in the labeling
of C�(v).

An O(n1�75) Algorithm for L(2� 1)-Labeling of Trees 189

Case 1-1: �C��(v)� � 0. Assign injectively labels in L(v) 	 (�0� 1� �� � � 1� � �a� b �
1� b� b � 1�) to vertices in R(v).

Case 1-2: �C��(v)� � 1. Assign injectively labels in L(v) 	 (�1� �� � � 1� � �a� b �
1� b� b � 1�) (resp., L(v) 	 (�0� 1� �� � �a� b � 1� b� b � 1�)) to vertices in R(v), if
the major vertex in C(v) is labeled 0 (resp., � � 1).

Case 1-3: �C��(v)� � 2. Assign injectively labels in L(v)	 (�1� ����b� a�1� a� a�1�)
to vertices in R(v).

Here, �L(v)� � �Ū(a� b)� � �C�(v)� � � � 2 � �U(a� b)� � �C�(v)�. Also,
– ��0� 1� �� � � 1� � �a� b � 1� b� b � 1�� � �U(a� b)� � 4,
– ��1� �� � � 1� � �a� b � 1� b� b � 1�� � �U(a� b)� � 5,
– ��0� 1� �� � �a� b � 1� b� b � 1�� � �U(a� b)� � 5,
– ��1� �� � �a� b � 1� b� b � 1�� � �U(a� b)� � 6.

Since �R(v)�
 � � 2 � �C�(v)� � �C��(v)�, each labeling in Case 1 is possible.
Case 2: d(v) � �. Let U(a) � �a� 	 �0� 1� �� �� 1� and Ū(a) � �0� 1� � � � � � � 1� � U(a).

Assign injectively labels in Ū(a) to vertices in C�(v). Since �C�(v)�
 � � 7 and
�Ū(a)� � � � 2 � �U(a)� � � � 3, such a labeling is possible. Let L(v) be the set of
labels in Ū(a) which are not used in the labeling of C�(v).

Case 2-1: �C��(v)� � 0. Assign injectively labels in L(v) 	 (��� � � 1� � �a�) (resp.,
L(v) 	 (�0� 1� � �a�)) to vertices in R(v), if v is labeled 0 (resp., � � 1).

Case 2-2: �C��(v)� � 1. Assign injectively labels in L(v) 	 (��� � �a�) (resp., L(v) 	
(�1� � �a�)) to vertices in R(v), if v is labeled 0 (resp., � � 1).

Here, �L(v)� � �Ū(a)� � �C�(v)� � � � 2 � �U(a)� � �C�(v)�. Also,
– ���� � � 1� � �a�� � �U(a)� � 3,
– ��0� 1� � �a�� � �U(a)� � 3,
– ���� � �a�� � �U(a)� � 4,
– ��1� � �a�� � �U(a)� � 4.

Since �R(v)� � ��1��C�(v)���C��(v)�, each labeling in Cases 2-1 and 2-2 is possible.

It can easily be checked that the labeling of C(v) is valid. Therefore, �(T) � � � 1. ��

From Theorem 1, we can see that the necessary condition for �(T) � �� 1 in Lemma 1
is also suÆcient if the number of major vertices is at most � � 6.

Corollary 1. If the number of major vertices is at most � � 6, then �(T) � � � 1 if and
only if for any v � V(T), N[v] contains at most two major vertices. ��

Corollary 2. If � �
�

n � 3� 3, then �(T) � �� 1 if and only if for any v � V(T), N[v]
contains at most two major vertices.1

Proof. Suppose that for any v � V(T), N[v] contains at most two major vertices. Assume
that there are ��5 major vertices. They have at least ��2 non-major children for each,
and they are all distinct; the number of vertices is bounded by (��5)(��2)�(��5)�1.
Thus we have n � (� � 5)(� � 1) � 1, which yields �

�
n � 3 � 3. Therefore, if

� �
�

n � 3 � 3, then the number of major vertices is at most � � 6. Hence, from
Corollary 1, this corollary follows. ��

1 We can also obtain a better bound � �
�

n � 65�16 � 11�4 by another analysis.

190 T. Hasunuma et al.

Clearly, the condition of Corollary 2 can be checked in linear time. Thus, when � ��
n � 3�3, we can decide �(T) in linear time, and if �(T) � ��1, then a (��1)-L(2� 1)-

labeling of T can be obtained by an algorithm based on the proof of Theorem 1, which
runs in linear time. Otherwise, we can obtain (� � 2)-L(2� 1)-labeling by Algorithm
G�����: traverse T in the breadth first order, and if reached vertex v where f (v) � a and
f (u) � b for its parent u, label vertices in C(v) from �0� 1� � � � � ��2�� �b� a�1� a� a�1�.
This is always possible since �C(v)�
 ��0� 1� � � � � � � 2� � �b� a � 1� a� a � 1�� for any v,
and it gives (� � 2)-L(2� 1)-labeling.

4 An O(�1�5n)-Time Algorithm

4.1 Chang and Kuo’s Algorithm

In this subsection, we review a dynamic programming algorithm for the L(2� 1)-labeling
problem of trees, which is proposed by Chang and Kuo [4], since our algorithm also
utilizes the same formula of the principle of optimality. For a tree T with maximum
degree�, Griggs and Yeh [7] proved that �(T) � ��1 or ��2. The algorithm determines
if �(T) � � � 1, and if so, we can easily construct the labeling with �(T) � � � 1.

Before describing the algorithm, we introduce some notations. We assume that T is
rooted at some leaf vertex r for explanation. Given a vertex v, we denote the subtree
of T rooted at v by T (v). Let T (u� v) be a tree rooted at u that forms T (u� v) � (�u� 	
V(T (v))� �(u� v)� 	 E(T (v))). Note that this u is just a virtual vertex for explanation and
T (u� v) is uniquely decided for T (v) in a sense. For a rooted tree, we call the length of
the longest path from the root to a leaf its height. For T (u� v), we define

Æ((u� v)� (a� b)) �

�
1 if �(T (u� v) � f (u) � a� f (v) � b)
 � � 1�
0 otherwise,

where �(T (u� v) � f (u) � a� f (v) � b) denotes the L(2� 1)-labeling number on T (u� v)
under the assumption that f (u) � a and f (v) � b, that is, the minimum k of k-L(2� 1)-
labeling on T (u� v) satisfying f (u) � a and f (v) � b. This Æ function satisfies the
following:

Æ((u� v)� (a� b))�

���������������

1 if there is a distinct assignment c1� c2� � � � � cd�(v) on
w1�w2� � � � �wd�(v)� where ci is di�erent from a� b�
b � 1� b � 1� and Æ((v�wi)� (b� ci)) � 1 for each i�

0 otherwise,

(1)

where w1�w2� � � � �wd�(v) are the children of v. The existence of an assignment c1� c2� � � � �

cd�(v) on w1�w2� � � � �wd�(v) as above is formalized as the maximum bipartite matching
problem; we consider a bipartite graph G(u� v� a� b) � (V(v)� X� E(u� v� a� b)), where
V(v) � �w1�w2� � � � �wd�(v) � C(v)�, X � �0� 1� � � � � �� � � 1� and E(u� v� a� b) � �(w� c) �
Æ((v�w)� (b� c)) � 1� c � X � �a��w � V(v)�. (Analogously, we also define G(u� v��� b)
by E(u� v��� b) � �(w� c) � Æ((v�w)� (b� c)) � 1� c � X�w � V(v)�, which will be used
in Subsection 4.3.) We can see that an assignment c1� c2� � � � � cd�(v) on w1�w2� � � � �wd�(v)

An O(n1�75) Algorithm for L(2� 1)-Labeling of Trees 191

is feasible if there exists a matching with size d�(v) of G(u� v� a� b). Namely, for T (u� v)
and two labels a and b, we can easily (i.e., in polynomial time) determine the value of
Æ((u� v)� (a� b)) if the values of Æ function for T (v�wi) and any two pairs of labels are
given. According to these observations, Chang and Kuo proposed a dynamic program-
ming algorithm as shown in Table 1.

Table 1. Algorithm CK

Step 0. Let Æ((u� v)� (�� �)) :� 1 for all T (u� v) of height 1, where (�� �) means all pairs of labels
a and b, where �a � b� � 2. Let h :� 2.

Step 1. For all T (u� v) of height h, compute Æ((u� v)� (�� �)).
Step 2. If h � h� where h� is the height of root r of T , then goto Step 3. Otherwise let h :�h � 1

and goto Step 1.
Step 3. If Æ((r� v)� (a� b)) � 1 for some (a� b), then output “Yes”. Otherwise output “No”. Halt.

Since Steps 0, 2 and 3 can be done just by looking up the table of Æ, the running time
is dominated by Step 1; the total running time of the algorithm is O(

�
v�V t(v)), where

t(v) denotes the time for calculating Æ((u� v)� (
�
)). Each calculation of Æ((u� v)� (a� b))
in Step 1 can be executed in O(�V(v) 	 X�2�5) � O(�2�5) time, because an O(n2�5) time
algorithm is known for the maximum matching of a bipartite graph with n vertices [9].
Since the number of pairs (a� b) is at most (� � 2)� (�� 2), we obtain t(v)
 (�� 2)2 �
O(�2�5) � O(�4�5). Thus the total running time of the algorithm is

�
v�V t(v) � O(�4�5n) 2.

In Section 5, we propose another algorithm. It is also based on the formula (1)
but it computes Æ((u� v)� (
�
)) more eÆciently by techniques shown in the following
subsections.

4.2 Preprocessing Operations for Input Trees

In this subsection, we introduce preprocessing operations in our algorithm. Let T be an
original input tree. These preprocessing operations are carried out for the purpose that
(1) remove inessential vertices from T , where “inessential” means that they do not a�ect
the L(2� 1)-labeling number of T , and (2) divide T into several subtrees that preserves
the L(2� 1)-labeling number of T . Obviously, these operations enable to reduce the input
size to solve and we may expect some speedup. However, the e�ect for reducing the size
is not important actually, because the preprocessing operations may do nothing for some
instances. Instead, a more important e�ect is that we can restrict the shape of input trees,
which enables the amortized analysis of the running time of our algorithm shown later.

First, we describe how to remove inessential vertices.

1. Check if there is a leaf v whose unique neighbor u has degree less than �. If so,
remove v and edge (u� v) from T until such a leaf does not exist.

This operation does not a�ect the L(2� 1)-labeling number of T , that is, �(T) � �(T �)
where T is the original tree and T � is the resulting tree. This is because, in T , such
leaf vertex v can be properly labeled by some number in �0� 1� � � � � � � 1� if u and any

2 By a careful analysis, this running time is reduced to O(�3�5n).

192 T. Hasunuma et al.

other neighbor vertices of u are properly labeled by numbers among �0� 1� � � � � � � 1�.
Also, the operation does not change the maximum degree �. Since this can be done in
linear time, the labeling problem for T is equivalent to the one for T � in terms of linear
time computation. Thus, from now on, we assume that an input tree T has the following
property.

Property 1. All vertices connected to a leaf vertex are major vertices.

We define VL as the set of all leaf vertices in T . Also we define VQ as the set of major
vertices whose children are all leaves.

Next, we explain how to divide T into subtrees. We call a sequence of consecutive
vertices v1� � � � � v� a path component if (vi� vi�1) � E for all i � 1� � � � � � � 1 and d(vi) �
2 for all i � 1� 2� � � � � �, and we call � the size of the path component. For example,
consider vertices v1� v2� v3 and v4 of T where each vi is connected to vi�1 for i � 1� 2� 3.
If d(v1) � � � � � d(v4) � 2 holds, then v1� � � � � v4 is a path component with size 4.

2. Check if there is a path component whose size is at least 4, say v1� v2� � � � � v�, and
let v0 and v��1 be the unique adjacent vertices of v1 and v� other than v2 and v��1,
respectively. If it exists, assume T is rooted at v1, divide T into T1 :� T (v1� v0) and
T2 :� T (v4� v5), and remove v2 and v3. Continue this operation until such a path
component does not exist.

We assume � � 7, because otherwise the original algorithm CK is already a linear time
algorithm. Here, we show that �(T) � � � 1 if and only if �(T1) � �(T2) � � � 1. The
only-if part is obvious, and we show the if part. Suppose that f (v1) � a and f (v0) � b
in a (� � 1)-L(2� 1)-labeling of T1, and f (v4) � a� and f (v5) � b� in a (� � 1)-L(2� 1)-
labeling of T2. Then set f (v2) � c where �c � a� � 2 and c is neither b nor a�, and set
f (v3) � c� where �c� � c� � 2, �c� � a�� � 2 and c� is neither a nor b�. This gives a
(� � 1)-L(2� 1)-labeling of T and is always possible since � � 7. Namely, we can find
an L(2� 1)-labeling of T by finding L(2� 1)-labelings of T1 and T2 independently, which
guarantees that this preprocessing preserves (� � 1)-L(2� 1)-labeling of T if it exists.
Clearly, this operation can be done in linear time. Thus, from now on, we assume that
an input tree T has the following property.

Property 2. The size of any path component of T is at most 3.

4.3 EÆcient Search for Augmenting Paths

As observed in Subsection 4.1, the running time of algorithm CK is dominated by Step
1. Step 1 of algorithm CK computes the maximum bipartite matching O(�2) times for
calculating Æ((u� v)� (
�
)) for T (u� v), which takes O(�4�5) time. In this subsection, we
show that for T (u� v), Æ((u� v)� (
�
)) can be calculated more eÆciently; for a fixed label
b, �Æ((u� v)� (i� b)) � i � �0� 1� ���� ��1�� can be obtained in O(�1�5d�(v)) time by computing
a single maximum bipartite matching and a single graph search, where d�(v) is the
number of children of v. This shows that t(v) � O(�2�5d�(v)).

Let G(u� v��� b) � (V(v)� X� E(u� v��� b)) be the bipartite graph defined in Subsec-
tion 4.1, where V(v) � �w1�w2� � � � �wd�(v)� and X � �0� 1� � � � � � � 1�. In this subsection,
we may refer to i � X as a label i. Then the following property holds.

An O(n1�75) Algorithm for L(2� 1)-Labeling of Trees 193

Lemma 3. If G(u� v��� b) has no matching of size d�(v), then Æ((u� v)� (i� b))� 0 for any
label i. ��
Below, consider the case where G(u� v��� b) has a matching of size d�(v); without loss
of generality, let M � �(wi�1� i) � i � �0� 1� � � � � d�(v) � 1�� be such a matching in
G(u� v��� b) (note that by d�(v)
 �, each vertex in V(v) is matched). Recall, as men-
tioned in Subsection 4.1, that for each label i � �0� 1� � � � � � � 1�, Æ((u� v)� (i� b)) � 1 if
and only if G(u� v� i� b) has a matching of size d�(v). Clearly, Æ((u� v)� (i� b)) � 1 for each
i � �d�(v)� d�(v) � 1� � � � � � � 1�.

Next consider the value of Æ((u� v)� (i� b)) for i � �0� 1� � � � � d�(v) �1�. Let i � �0� 1� � � � �
d�(v) �1�. Note that G(u� v� i� b) has the matching M � �(wi�1� i)� of size d�(v)� 1. Given
a matching M�, a path is called M�-alternating if its edges are alternately in and not in
M�. In particular, an M�-alternating path is called M�-augmenting if the end vertices of
the path are both unmatched by M�. It is well-known that M� is a maximum matching
if and only if there is no M�-augmenting path.

Hence, G(u� v� i� b) has a matching of size d�(v) if and only if G(u� v� i� b) has an
(M� �(wi�1� i)�)-augmenting path; G(u� v��� b) has an (M� �(wi�1� i)�)-augmenting path
not passing through vertex i. It follows that for each label i � �0� � � � � d�(v) � 1�, we can
decide the value of Æ((u� v)� (i� b)) by checking whether there exists an (M � �(wi�1� i)�)-
augmenting path not passing through vertex i in G(u� v��� b). Notice that for any label i,
if such an augmenting path P exists, then one of two end vertices of P is always included
in X�, where X� � �d�(v)� d�(v) � 1� � � � � � � 1� � X (note that the other end vertex is
wi�1). Moreover, by the following Lemma 4, we can decide the value of Æ((u� v)� (i� b)),
i � �0� 1� � � � � � � 1� simultaneously by traversing all vertices which can be reached by
an M-alternating path from some vertex in X� in G(u� v��� b).

Lemma 4. Æ((u� v)� (i� b)) � 1 if and only if vertex i can be reached by an M-alternating
path from some vertex in X� in G(u� v��� b).

Proof. Assume that Æ((u� v)� (i� b)) � 1. Then, there exists an (M��(wi�1� i)�)-augmenting
path P not passing through vertex i. Note that two end vertices of P are wi�1 and some
vertex u � X�. Hence, it follows that vertex i can be reached by the M-alternating path
P 	 �(wi�1� i)� from u � X�.

Assume that vertex i can be reached by an M-alternating path from some vertex in X�

in G(u� v��� b). Let P be such an M-alternating path in which vertex i appears exactly
once. Since P starts from a vertex in X�, we can observe that the edge which appears
immediately before reaching vertex i in P is (wi�1� i) � M. Hence, the path P��(wi�1� i)�
is an (M � �(wi�1� i)�)-augmenting path not passing through vertex i, and it follows that
Æ((u� v)� (i� b)) � 1. ��
All vertices that can be reached by an M-alternating path from some vertex in X� in
G(u� v��� b) can be computed in O(�E(u� v��� b)� � �X��) � O(�d�(v)) time, by using
the depth first search from vertex s in Gs, where Gs denotes the graph obtained from
G(u� v��� b) by adding a new vertex s and new edges between s and each vertex in X�.

Consequently, �Æ((u� v)� (i� b)) � i � �0� 1� ���� � � 1�� can be obtained by computing a
single bipartite matching and a single depth first search.

194 T. Hasunuma et al.

4.4 EÆcient Computation of Æ-Values Near Leaves

In Subsections 4.1 and 4.3, we have observed that algorithm CK runs in O(
�

v�V t(v)) �
O(�2�5 �

v�V d�(v)) time. In this subsection, we show that algorithm CK can be im-
plemented to run in O(�2�5 �

v�V�VL�VQ
d��(v)) time by avoiding unnecessary bipartite

matching computations for vertices incident to leaves, where VL and VQ are defined in
Subsection 4.2 and d��(v) � �C(v) � VL�.

For a vertex v � VL 	 VQ, we can easily obtain Æ((u� v)� (
�
)) without computing
the bipartite matching. Actually, for a leaf v � VL, Æ((u� v)� (a� b)) � 1 if and only if
�a � b� � 2. For a vertex v � VQ, we have Æ((u� v)� (a� b)) � 1 if and only if b � �0� � � 1�
and �a � b� � 2 (notice that each vertex in VQ is major). Thus, the running time of
algorithm CK is dominated by Step 1 for vertices v � V � VL � VQ; O(

�
v�V t(v)) �

O(
�

v�V�VL�VQ
t(v)).

Also for a vertex v � V � VL � VQ incident to some leaf, we can gain some saving of
time for computing Æ((u� v)� (
�
)); for a label b, the calculation of Æ((u� v)� (
� b)) can be
done in O(�1�5d��(v)) time, instead of O(�1�5d�(v)) time. Let v be a vertex in V �VL �VQ

incident to some leaf; C(v) � VL � �. Note that v is major by Property 1, and that
Æ((u� v)� (
� b)) � 0 for each b � �0� � � 1�. Thus, we have only to decide the value of
Æ((u� v)� (
� b)) for b � �0� � � 1�.

Then, we can observe that for computing Æ((u� v)� (
� b)), it suÆces to check whether
there exists a feasible assignment only on C(v) � VL, instead of C(v). Actually, if b � 0
and there exists a feasible assignment on C(v) � VL, then the number of the remaining
labels is � � 2 � �C(v) � VL� � ��a� 0� 1�� � �C(v) � VL� and we can assign to each leaf in
C(v) � VL distinct labels among the remaining labels (note that �C(v)� � � � 1 since v
is major). The case of b � � � 1 can also be treated similarly. Therefore, it follows that
the calculation of Æ((u� v)� (
� b)) is dominated by the maximum matching computation
in the subgraph of G(u� v��� b) induced by (V(v) � VL) 	 X; its time complexity is
O(�1�5�V(v) � VL�)) � O(�1�5d��(v)).

Consequently, algorithm CK can be implemented to run in O(
�

v�V�VL�VQ
t(v)) �

O(�2�5 �
v�V�VL�VQ

d��(v)) (note that d��(v) � d�(v) for each vertex v with C(v)�VL � �).

4.5 Amortized Analysis

In Subsections 4.2–4.4, we have observed that by an eÆcient implementation of al-
gorithm CK, �(T) can be decided in O(

�
v�V�VL�VQ

t(v)) � O(�2�5 �
v�V�VL�VQ

d��(v))
time. Below, we show that O(�2�5 �

v�V�VL�VQ
d��(v)) � O(�1�5n) by amortized analysis;

namely, we show the following lemma.

Lemma 5. Algorithm CK can be implemented to run in O(�1�5n) time. ��

Let VB be the set of vertices v � V � VL � VQ with d��(v) � 2, VP be the set of vertices
v � V � VL � VQ with d�(v) � 1, and V �

P � V � (VL 	 VQ 	 VB 	 VP). Note that each
vertex in VP belongs to a certain path component. Also each v � V �

P satisfies d��(v) � 1
and C(v) � VL � �, and hence by Property 1, it is incident to exactly � � 2 leaves.

Now by Property 2, for each vertex v � VP, there exist the root r or a vertex in
VB 	 V �

P among its ancestors which are at most at distance 3 from v. Hence, we have

An O(n1�75) Algorithm for L(2� 1)-Labeling of Trees 195

�VP�
 3
�

v�VB�V �

P
d��(v) � 3. By

�
v�VP

d��(v) � �VP�, it follows that

�2�5 �
v�V�VL�VQ

d��(v) � �2�5 �
v�VB�V �

P�VP
d��(v)

� �2�5 �
v�VB�V �

P
d��(v) � �2�5�VP�

 �2�5(
�

v�VB�V �

P
4d��(v) � 3)

� O(�2�5(
�

v�VB�V �

P
d��(v) � 1))�

Thus, in order to prove O(�2�5 �
v�V�VL�VQ

d��(v)) � O(�1�5n), it suÆces to show that�
v�VB�V �

P
d��(v) � O(n	�).

Lemma 6.
�

v�VB�V �

P
d��(v) � O(n	�)�

Proof. Let E� be the set of all edges connecting a vertex in VB	V �

P and its non-leaf child.
Note that �E�� � �

v�VB�V �

P
d��(v). Let EL denote the set of all edges incident to a leaf,

and EP denote the set of all edges connecting a vertex in VP and its unique child. Also
note that �EL� � �VL�, �EP� � �VP�, EL � EP � �, and (EL 	 EP)� E� � �. Hence, we have
�E��
 �E�� �EL�� �EP� � n�1��VL�� �VP�. Now, by V � VL	VQ	VB	VP	V �

P and that
VL�VQ�VB�VP and V �

P are disjoint each other, we have n � �V � � �VL�� �VQ�� �VB�� �VP��
�V �

P�. Therefore, it follows that �E��
 n�1� (n��VB�� �V �

P�� �VQ�) � �VB�� �V �

P�� �VQ��1.
Now since each vertex u � VB has at least two non-leaf children and each leaf not

incident to VB 	 V �

P is incident to a vertex in VQ, we can observe that �VQ� � �VB� � 1
holds. Since each vertex in V �

P (resp., VQ) is incident to exactly ��2 (resp., ��1) leaves,
we have �VL� � �V �

P�(��2)� �VQ�(��1). Consequently, we have
�

v�VB�V �

P
d��(v) � �E��

�VB� � �V �

P� � �VQ� � 1
 2�VQ� � �V �

P� � 2
 2�VL�	(� � 2) � 2. ��

5 An O(n1�75)-Time Algorithm

Summarizing the arguments given in Sections 3 and 4, we give a description of the over-
all algorithm named L����-T��� in Table 2, for determining in O(n1�75) time whether
�(T) � � � 1 or not for any input tree T . We show that algorithm L����-T��� can be
implemented to run in O(n1�75) time. Clearly, all of the preprocessing, Steps 0 and 1 can
be executed in linear time. As observed in Subsection 4.5, Steps 2–5 can be executed in

Table 2. Algorithm L����-T���

Preprocessing. Execute the preprocessing described in Subsection 4.2.
Step 0. If N[v] contains at least three major vertices for some vertex v 	 V , output “No”. Halt.
Step 1. If the number of major vertices is at most � � 6, output “Yes”. Halt.
Step 2. For T (u� v) with v 	 VQ (its height is 2), let Æ((u� v)� (a� 0)) :� 1 for each label a � 0� 1,

Æ((u� v)� (a� � � 1)) :� 1 for each label a � �� � � 1, and Æ((u� v)� (�� �)) :� 0 for any
other pair of labels. Let h :� 3.

Step 3. For all T (u� v) of height h, compute Æ((u� v)� (�� �)) by fixing f (v) :� b and applying the
method described in Subsections 4.3 and 4.4 for each label b.

Step 4. If h � h� where h� is the height of root r of T , then goto Step 5.
Otherwise let h :� h � 1 and goto Step 3.

Step 5. If Æ((r� v)� (a� b)) � 1 for some (a� b), then output “Yes”. Otherwise output “No”. Halt.

196 T. Hasunuma et al.

O(�1�5n) time. Moreover, as shown in the proof of Corollary 2, if N[v] contains at most
two major vertices for any vertex v � V and the total number of major vertices is at least
� � 5, we have � � O(

�
n). Thus, Steps 2–5 take O(n1�75) time, and it follows that the

running time of algorithm L����-T��� is O(n1�75).
Moreover, we remark that in both cases of �(T) � ��1� ��2, we can easily construct

a �(T)-L(2� 1)-labeling in the same complexity. Actually, if �(T) � � � 2, then a �(T)-
L(2� 1)-labeling can be obtained by Algorithm G����� in Section 3. If �(T) � � � 1
is determined as a result of Step 1, then according to the proof of Theorem 1, a �(T)-
L(2� 1)-labeling can be obtained in linear time. Also if �(T) � � � 1 is determined
as a result of Step 5, then we can obtain the �(T)-L(2� 1)-labeling in O(�1�5n) time,
following the dynamic programming based procedure of Steps 2–5. Namely we have
the following result.

Theorem 2. For trees, the L(2� 1)-labeling problem can be solved in
O(min�n1�75� �1�5n�) time. ��

6 Concluding Remarks

Finally, we remark that our results can be extended to apply to some wider variations
of labeling problems, as well as the L(2� 1)-labeling problem on trees.

It is known that Chang and Kuo’s algorithm [4] can be extended to solve the L(h� 1)-
labeling problem on trees [3] and p-almost trees [6], where a p-almost tree is a con-
nected graph with n�p�1 edges. By extending the original Chang and Kuo’s algorithm,
the L(h� 1)-labeling problem on trees can be solved in O((h � �)5�5n) � O(�5�5n) time,
and L(2� 1)-labeling on p-almost trees can be solved in O(�2p�4�5n) time for � given as
an input. Our techniques in Subsection 4.3 can also be applied to speed up those al-
gorithms. In fact, it is easy to show that our techniques can solve the L(h� 1)-labeling
problem on trees in O(�3�5n) time, and the L(2� 1)-labeling problem on p-almost trees in
O(�2p�2�5n) time. Moreover, if some properties such as Theorem 1 hold, then we may
expect some more improvement on these problems.

References

1. Bodlaender, H.L., Kloks, T., Tan, R.B., van Leeuwen, J.: Approximations for �-coloring of
graphs. The Computer Journal 47, 193–204 (2004)

2. Calamoneri, T.: The L(h� k)-labelling problem: A survey and annotated bibliography. The
Computer Journal 5, 585–608 (2006)

3. Chang, G.J., Ke, W.-T., Kuo, D., Liu, D.D.-F., Yeh, R.K.: On L(d� 1)-labeling of graphs.
Discrete Mathematics 220, 57–66 (2000)

4. Chang, G.J., Kuo, D.: The L(2� 1)-labeling problem on graphs. SIAM J. Disc. Math. 9, 309–
316 (1996)

5. Fiala, J., Golovach, P.A., Kratochvı́l, J.: Distance constrained labelings of graphs of bounded
treewidth. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP
2005. LNCS, vol. 3580, pp. 360–372. Springer, Heidelberg (2005)

6. Fiala, J., Kloks, T., Kratochvı́l, J.: Fixed-parameter complexity of �-labelings. Discrete Ap-
plied Mathematics 113, 59–72 (2001)

An O(n1�75) Algorithm for L(2� 1)-Labeling of Trees 197

7. Griggs, J.R., Yeh, R.K.: Labelling graphs with a condition at distance 2. SIAM J. Disc.
Math. 5, 586–595 (1992)

8. Hale, W.K.: Frequency assignment: theory and applications. Proc. IEEE 68, 1497–1514
(1980)

9. Hopcroft, J.E., Karp, R.M.: An n5�2 algorithm for maximum matchings in bipartite graphs.
SIAM J. Comput. 2(4), 225–231 (1973)

10. Roberts, F.S.: T-colorings of graphs: recent results and open problems. Discrete Mathemat-
ics 93, 229–245 (1991)

11. Wang, W.-F.: The L(2� 1)-labelling of trees. Discrete Applied Mathematics 154, 598–603
(2006)

12. Yeh, R.K.: A survey on labeling graphs with a condition at distance two. Discrete Mathemat-
ics 306, 1217–1231 (2006)

Batch Coloring Flat Graphs and Thin

Magnús M. Halldórsson1 and Hadas Shachnai2

1 School of Computer Science, Reykjavik University, 103 Reykjavik, Iceland
mmh@ru.is

2 Department of Computer Science, The Technion, Haifa 32000, Israel
hadas@cs.technion.ac.il

Abstract. A batch is a set of jobs that start execution at the same time;
only when the last job is completed can the next batch be started. When
there are constraints or conflicts between the jobs, we need to ensure that
jobs in the same batch be non-conflicting. That is, we seek a coloring of
the conflict graph. The two most common objectives of schedules and
colorings are the makespan, or the maximum job completion time, and
the sum of job completion times. This gives rise to two types of batch
coloring problems: max-coloring and batch sum coloring, respectively.

We give the first polynomial time approximation schemes for batch sum
coloring on several classes of “non-thick” graphs that arise in applications.
This includes paths, trees, partial k-trees, and planar graphs. Also, we
give an improved O(n log n) exact algorithm for the max-coloring problem
on paths.

1 Introduction

In the classic (unbounded) p-batch scheduling problem [6], we are given a set of
n jobs where job Jj has processing time, or length, pj . We need to partition the
jobs into batches. All jobs in a batch start at the same time, and the batch is
completed when its last job finishes. The length of a batch is then the length of
the longest job in the batch.

Real-life scenarios frequently impose restrictions on the subsets of jobs that
can be processed simultaneously. Such conflicts among the jobs are often modeled
by an undirected conflict graph G = (V, E), with V = {1, 2, . . . , n} where the
length of vertex j is the processing time of Jj , and there is an edge (i, j) ∈ E if
the pair of jobs Ji and Jj cannot be processed in the same batch. Each batch
forms an independent set in G, hence a valid schedule is a proper coloring of the
graph.

We consider the above problems of batch scheduling with conflicts under three
different measures. In the max-coloring (Max-Col) problem we minimize the
makespan of the batch schedule, or the sum of the batch lengths. In the mini-
mum sum of job completion times problem (Sjc), we minimize the sum of the
completion times of the jobs, and in the minimum sum of batch completion times
problem (Sbc), we minimize the sum, over all the jobs Jj , of the completion time
of the batch that contains Jj . Let Bsc refer to either of the batch scheduling
problems under the sum measure: Sjc or Sbc.

J. Gudmundsson (Ed.): SWAT 2008, LNCS 5124, pp. 198–209, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Batch Coloring Flat Graphs and Thin 199

In this paper we give the first polynomial time approximation schemes
(PTAS), as well as exact algorithms, for Bsc on several classes of graphs that
arise in applications. We focus on “thin” graphs, namely, graphs with bounded
treewidth, and “flat” graphs, i.e., graphs that can (almost) be embedded on flat
surface.1 In particular, we consider paths, trees and partial k-trees (which are
“thin”), as well as planar and other “flat” graphs.

We say that an algorithm A yields an approximation ratio of r, for some
r ≥ 1, if for any instance I of our problems A(I) ≤ r · OPT (I), where OPT (I)
is the value of an optimal solution. A problem admits a PTAS if it can be
approximated in polynomial time within factor 1 + ε, for any constant ε > 0.
When the complexity of the scheme is of the form f(ε)nc, where c > 0 is some
constant, we get an efficient PTAS (EPTAS).

Our problems naturally arise in the following applications.

Metropolitan Networks: Transmission of real-time messages in metropolitan
networks is done by assigning to each sender node a set of fixed length slots, in
which the message content is filled and transmitted in sequence to the receiver.
To improve transmission times, the same slots can be assigned to messages with
non-intersecting paths [15]. A group of messages using the same set of slots can
be viewed as a batch. The number of slots in the set is the maximum length of
any message transmitted in these slots. The problem of minimizing the number
of slots used to transmit all messages then yields an instance of Max-Col.

Distributed Computation: In distributed operating systems (see, e.g., [21,
16]) the scheduler identifies subsets of non-conflicting, or cooperating processes,
that can benefit from running at the same time interval (e.g., since these pro-
cesses do not use the same resources, or communicate frequently with each
other); then, each subset is executed simultaneously on several processors, until
all the processes in the subset complete. When the objective is to minimize the
sum of job completion times, we get an instance of Sjc; when we want to mini-
mize the total completion time of the schedule, we get an instance of Max-Col.

Other applications include, e.g., batch production [14], dynamic storage allo-
cation and memory management in wireless protocol stack (see, e.g., [12, 19].)
The graph classes that we study here arise in these applications from tree-like
(or planar) network topologies [17] ([18]), conflict graphs of processes gener-
ated for computer programs [21], and scheduling jobs with bounded resource
requirements (which yield pebbly graphs; see in Section 3.4).

1.1 Related Work

There is a wide literature on batch scheduling, namely, our problems with empty
conflict graph; see a a comprehensive survey in [6]. In the following we mention
known results for our problems on various classes of conflict graphs.

Batch sum coloring: The problem of batch coloring so as to minimize the sum
of job completion times was introduced in [3]. Constant factor approximations
1 Formal definitions can be found, e.g., in [22].

200 M.M. Halldórsson and H. Shachnai

for Sjc were given in [2] for, e.g., various classes of perfect graphs, with im-
proved constant factor obtained in [9]. The Sbc variant was introduced in [9]
and approximated on various graph classes. The common special case where all
jobs are of unit length is known as the sum coloring problem. This implies that
Bsc is hard to approximate within factor n1−ε, for any ε > 0 [2].

Max-coloring: The max-coloring problem was first considered in [12], where an
O(n4)-time algorithm was given for paths. A quadratic algorithm was presented
more recently in [10]. A PTAS is known for trees [19, 10] and for partial k-
trees [10]. Constant factor approximation and NP-hardness results are known
for various classes of perfect graphs (see the recent work of [8] for details).

Multicoloring problems: Batch coloring problems relate to certain multicol-
oring problems where vertices must be assigned a given number of contiguous
colors, corresponding to a non-preemptive schedule. The difference is that in
these problems, jobs are not restricted to start in batches. We shall be using
some of the ideas developed for the non-preemptive sum multicoloring problem,
npSMC, defined as follows. Given a graph G with a length x(v) for each vertex
v, find an assignment f of starting times for the vertices such that no neighbor of
v starts in the interval [f(v), . . . , f(v)+x(v)−1]. For a comprehensive survey of
known results for multicoloring problems with minsum objectives see, e.g., [11].

1.2 Our Results

In this paper we focus on batch coloring of several amenable classes of graphs
that we could term either ”flat” or ”thin” (see in Section 3). Given the hardness
of these problems on general graphs, it is natural to seek out classes of graphs
where effective solutions can be obtained efficiently.

Batch coloring with minsum objective: In Section 2 we describe our main
approximation technique. In Section 3 we develop EPTASs for Bsc on partial
k-trees and later for planar graphs. The complexity of these schemes are of the
form 2ε−O(1)

n, when guaranteeing a (1 + ε)-approximation. By a result of [4, 7],
this implies that Bsc is fixed parameter tractable on these classes of graphs. Our
scheme for planar graphs improves the running time of a PTAS proposed in [13]
for the special case of the sum coloring problem to a linear time EPTAS, more
precisely 2ε−1 log ε−1

n time. In Section 3.3 we show how our results for planar
graphs can be extended to other “flat” graphs. To the best of our knowledge,
we give here the first approximation schemes for batch sum coloring on partial
k-trees and planar (or more generally, “flat”) graphs.

Max-coloring: In Section 4 we give an O(n log n) exact algorithm for Max-Col

on paths. This improves upon the O(n2) algorithm of [10].

Contribution: Our main approximation technique combines technical tools
developed in [13] for approximating npSMC with efficient enumeration of batch
length sequences. A key component in our technique is truncation of the number

Batch Coloring Flat Graphs and Thin 201

of batches in the schedule, so that all possible batch length sequences can be
enumerated in polynomial time. This defines a general framework for solving
batch coloring problems with minsum objective, for any graph class for which
(a) the number of batches can be truncated with small harm to the objective
function, and (b) given a sequence of batch lengths, a proper batch coloring with
minimum total cost can be found efficiently.

A framework proposed earlier, for approximately solving the max-coloring
problem on certain classes of graphs, shares some similarities with ours (see
[12,19]); however, Bsc differs from Max-Col in two ways. (i) For many classes of
graphs, we can bound the total number of batches used in a Max-Col schedule
using structural properties of the graph (e.g., the maximum degree of any vertex),
while for batch coloring with minsum objective this number may depend on the
distinct number of job lengths (see Lemma 1). (ii) Given a batch length sequence,
the problem of finding a Max-Col schedule reduces to finding a feasible batch
coloring, while solving Bsc involves optimizing over the set of feasible schedules.
Thus, our Bsc problems require the usage of different machinery.

We expect that our framework for solving Bsc will find more uses for batch
coloring with other (more general) minsum objective functions, as well as for
solving Bsc on other classes of graphs. In fact, as we show in Section 3, the
approximation technique that we use for planar graphs is general enough to be
applicable to graph classes that contain planar graphs as a subclass (such as
bounded-genus graphs).

Notation: Let p(G) =
∑

j∈V pj be the sum of the job lengths. Let pmax =
pmax(G) = maxj∈V pj be the maximum job length, pmin = minj∈V pj be the
minimum job length, and τ = τ(G) = pmax/pmin be the maximum ratio between
two job lengths. We omit G when clear from context.

The size or weight of a set of vertices is the sum of the vertex lengths. A
batch is an independent set that is to be scheduled starting at the same time.
The length of a batch is the largest length of a vertex in the batch. The density
of a batch B of length � is |B|/�, or the number of jobs in B per length unit. A
(batch) schedule is a partition of the vertices into a sequence of batches.

The completion time of a batch B in a schedule is the sum of lengths of the
batches up to and including B. The completion time of a job Jj in batch B is
the sum of the lengths of batches prior to B, plus the length of Jj .

The makespan of a schedule is the completion time of the last job, or the sum
of the lengths of all batches in the schedule. Let μ(G) be the minimum makespan
of a batch schedule of G. Let d denote the number of distinct vertex lengths and
Δ the maximum degree of the graph.

Due to space constraints, some of the proofs and implementation details are
omitted. The detailed results appear in [14].

2 Techniques

Batch coloring problems introduce new difficulties to the classic multicoloring
and batch scheduling problems, which are known to be hard when solved alone.

202 M.M. Halldórsson and H. Shachnai

The fact that all jobs in the same batch must start at the same time limits
the number of different starting times in a schedule, and thus can simplify the
search for good schedules. However, as opposed to ordinary multicoloring, batch
coloring introduces non-locality: the allowable starting times of a job depend not
only on this job and its neighbors, but also implicitly on the jobs elsewhere in the
graph that have been assigned to earlier batches. This implies, for example, that
there are almost no non-trivial results known for the sum of completion times
problems, even on paths, nor is there a known exact polynomial time algorithm
for the max-coloring problem on trees.

Two difficult features are inherited from related multicoloring problems. One
is that a large number of batches may be needed even on low-chromatic number
graphs. In fact, as we show in the next result, Ω(n) batches may be required for
optimal Sbc coloring of paths.2

Proposition 1. There are Sjc instances on paths and Sbc instances on empty
graphs for which the only optimal solution uses n batches.

Proof. Consider a path of n vertices where the length of vertex j is pj = nj . We
claim that the only optimal solution is given by the shortest processing time first
(SPTF) rule; namely, batch i contains only vertex i, for i = 1, 2, . . . , n.

Suppose there is a non-SPFT optimal Sjc schedule S, and let j be the smallest
number such that vertex j is not assigned alone in batch j. Consider now the
following change to S, where we create a new batch, number it j (increasing
the index of later batches) and reassign vj to batch j. This may increase the
completion times of vs, for s = j + 1, . . . , n, by a total of (n − j) · nj < nj+1.
It will, however, decrease the completion time of vj by the length of some later
vertex, or at least pj+1 = nj+1. Thus, this new schedule improves upon S, which
is a contradiction.

The same set of lengths yields the same argument for Sbc, even if the graph
contains no edges.

The way to get around the large number of batches is to analyze the cost of
truncating the coloring early, and show that there are approximate colorings
that use moderately many colors. Alternatively, we can use standard rounding
of job lengths to powers of 1+ε and bound the number of batches of each length.

Another difficulty has to do with the large range of job lengths. An essential
ingredient in any strategy for these problems is a method to break the instance
into sub-instances of similar-length jobs. For max-coloring, it suffices to use a
fixed geometric sequence to reduce the problem to the ordinary coloring problem,
within a constant factor [19]. For our batch coloring problems with minsum
objective, Bsc, the situation is not as easy, and it is necessary to partition
according to the actual length distribution.

We observe that a result of [13], originally stated for sum multicoloring, holds
also for Bsc. It shows that we can focus on the case where the ratio between
the longest and the shortest job is small, if we also bound the makespan of the
algorithm.
2 The paper [19] gives a similar result for the max coloring problem of bipartite graphs.

Batch Coloring Flat Graphs and Thin 203

Theorem 1. Let n, q = q(n) and σ be given. Suppose that for any G = (V, E)
in a hereditary class G with n vertices and τ(G) ≤ q, we can approximate Bsc

within a factor 1 + ε(n) and with makespan of σ · pmax(G) in time t(n). Then,
we can approximate Bsc on any graph in G within factor 1+ ε(n)+σ/

√
ln q with

makespan 2σ · pmax(G) in O(t(n)) time.

This is based on finding a partition of the instance into length classes that
depends on the actual distribution of the lengths. Then, the solutions produced
on each length class by the assumed algorithm are simply concatenated in length
order. Thus, if the solution produced on each length class is a batch schedule,
so is the combined solution.

The techniques that we use for Bsc build on a technique developed in [13]
for non-preemptive sum multicoloring (npSMC) of partial k-trees and planar
graphs. For the batch problems studied here, we have modified and replaced
some of the parts, including the bounds on the number of batches needed. Most
crucially, the central subroutines for handling subproblems with a limited num-
ber of job lengths were completely changed. The strategy here is to decide first
the length sequence of the batches to be used, and then assign the jobs near
optimally to those batches. By rounding the job lengths, we limit the number
of possible batch lengths and at the same time reduce the number of batches
needed.

3 Batch Sum Coloring

In this section we give EPTASs for Bsc on both “thin” graphs (trees, partial
k-trees) and “flat” graphs (planar and bounded-genus graphs). First, we argue
some general properties of exact and approximate solutions. Recall that p(G) is
the sum of vertex length, pmax the length of the longest job, μ(G) the minimum
makespan of a batch schedule, and χ the chromatic number of the graph.

3.1 Properties and Tools

Observation 2. Any optimal Bsc schedule satisfies the following properties.
(i) (Non-increasing density) Batch densities are monotone non-increasing.
(ii) (Density reduction) After i(2μ(G) + pmax) steps, the total length of the
remaining graph is at most p(G)/2i.
(iii) (Restricted batch length sequences) Each batch is preceded by at most Δ
longer batches.

Proof sketch. (i) The claim holds since, otherwise, batches can be swapped to
decrease the cost of the schedule (also known as Smith’s rule; see in [20,6]). (ii)
Density must go down by half each 2μ(G) + pmax steps; otherwise, we could
schedule the whole remaining graph in the latter μ(G) steps, at lesser cost. (iii)
This is true since, otherwise, the vertices in that batch can all be recolored with
earlier batches.

We now give two lemmas regarding batch coloring of χ-colorable graphs.

204 M.M. Halldórsson and H. Shachnai

Lemma 1. If G is χ-colorable, then Sbc(G) ≤ Sjc(G) ≤ 3χ · p(G).

Proof. Recall that τ is the maximal ratio between the processing times of any
two vertices. Use a batch sequence with χ batches of each length 2ipmin, for
i = 1, 2, . . . , �log τ�, in non-decreasing order. Order the batches of the same
length in non-increasing order of size. The length of a job is at least half the
length of its batch. Each job waits for all batches shorter than it; also, averaged
over the jobs in batches of the same length, it waits for (χ − 1)/2 batches of
length equal to its batch length. Then, on average, the completion time of v is at
most p(v)+χ

∑
j=0 p(v)/2j +(χ−1)/2 ·2p(v) = 3χp(v). Thus, the total schedule

cost is at most 3χp(G).

The following lemma, which extends a result of [13], helps rein in the total length
of our approximate schedule.

Lemma 2. Let G be a χ-colorable graph, and let ε > 0. Then, there exists a
(1 + ε)-approximate Bsc schedule of G satisfying the following constraints:

1. Batch lengths are powers of 1 + ε,
2. There are at most t = tχ,ε batches of each length, where t = χ(1+ ε)ε−1, and
3. The makespan of the schedule is at most (2μ(G)+pmax) · log(χ/ε)+2χ ·pmax

Proof. First, we consider the effect of rounding all job lengths to powers of 1+ε.
This increases the size of each batch by at most a factor of 1+ε, which delays the
starting time of each job by factor at most 1 + ε. Thus, the extra cost incurred
for the optimal schedule is at most ε · (OPT (G) − p(G)).

Next, consider the optimal schedule S∗ for the rounded instance. Suppose
that more than χ · (1 + ε)ε−1 batches are used for some batch length �. Then,
following batch χ · ε−1 of length �, we introduce χ batches of length �, shifting
all later batches by χ · �. We color all jobs that occurred in later batches of
length � using the χ new batches, and delete those later batches. Each batch in
the resulting coloring is delayed by χ · �, by the new batches of length �, only
if it was already preceded by ε−1 times that many batches. Thus, each batch in
the resulting coloring is delay by at most an ε-fraction of what previously came
before it, or at most ε · (OPTJ (G) − p(G)).

Finally, we analyze the effect of cutting a schedule short. By the density reduc-
tion property, the total size remaining is at most εp(G)/χ after i(2μ(G)+ pmax)
rounds with i = log(χ/ε). By Lemma 1, there is a schedule of the remainder of
cost at most 3χ · εp(G)/χ ≤ 3εp(G). The makespan of that coloring is at most
2χ · pmax.

3.2 Thin graphs

We give here algorithms for the class of partial k-trees. For formal definition of
this class, and that of the related tree decompositions, please refer to, e.g., [5].

We round the job lengths, obtaining an instance with only a limited number
of distinct lengths. There are d possible lengths for each of the b batches, for a

Batch Coloring Flat Graphs and Thin 205

total of db distinct batch length sequences. We solve the problem optimally for
each such length sequence, using standard dynamic programming. We sketch it
briefly.

Lemma 3. Given a partial k-tree G and a sequence of b batch lengths, there
is an O(bk+1n)-time algorithm to find an optimal Bsc coloring of G into those
batches, or determine that no such coloring exists.

Proof sketch. For each bag in the tree decomposition of G, form a table of bk

k-tuples, where a given k-tuple represents a particular batch assignment of the
jobs in the given bag, and the entry corresponds to the minimum cost schedule
constrained to assign the k-tuple in this given way. By having the children update
the entries of the parents, and using that adjacent bags need only differ in only
a single element, each entry is needed for a constant-time update of at most b
entries in its parent bag. Hence, the complexity is O(bk+1n).

We first argue a PTAS for instances of restricted job lengths.

Proposition 2. There is a (1 + ε)-approximate algorithm for Bsc on partial
k-trees, with time complexity 2Θ((log χ+log ε−1)·(k+χ·ε−2·log τ))n and makespan of
O(χ log ε−1pmax).

Proof. We use Lemma 3 to search for restricted (1 + ε)-colorings guaranteed by
Lemma 2. The time complexity of the algorithm of Lemma 3 is O(bb+kn). The
number d of different batch lengths is log1+ε τ = Θ(ε−1 log τ). The number t
of batches of each length is Θ(χε−1). Thus, the number b of batches is at most
t·d = Θ(χ·ε−2 log τ). The time complexity is therefore bounded by O(2log b·bn) =
2Θ((log χ+log ε−1)·χ·ε−2·log τ)n. The makespan is as promised by Lemma 2, using
that μ(G) ≤ χ · pmax.

We now combine Proposition 2 with Theorem 1.

Theorem 3. There is an EPTAS for Bsc on partial k-trees, for any fixed k.

Proof. We set σ = χ · (log(χ/ε) + 2) and q = e(2σ·ε−1)2 , giving σ/
√

ln q = ε/2.
We use Lemma 3 to search for restricted (1+ ε)-colorings guaranteed by Lemma
2 with these parameters. Theorem 1 then yields a (1 + ε)-approximate schedule
of G.

Let us evaluate the parameters according to this scheme. Since we may assume
ε−1 ≥ χ, we have σ = Θ(χ · log ε−1). Thus, log τ = log q = (2σ · ε−1)2 =
Θ(χ2 · ε−2 · log2 ε−1). Hence, the time complexity of the algorithm of Proposition
2 is bounded by 2O((log χ+log ε−1)·(k+χ3·ε−4·log2 ε−1))n. Since the chromatic number
of a partial k-tree is at most k + 1, the time complexity is singly exponential in
1/ε and k. The makespan is at most 2σpmax = O(k · log ε−1pmax).

Parametrization: While the existence of an exact polynomial time algorithm
for Bsc on trees remains open, it appears unlikely. We consider instead parame-
terizations that lead to efficient exact solutions. We treat the parameters d, the
number of distinct job lengths, and Δ, the maximum degree.

206 M.M. Halldórsson and H. Shachnai

Consider graphs of maximum degree Δ. Since there can be at most Δ batches
of the same length in an optimal schedule, there are at most dΔd different batch
length sequences. However, this does not take the property of restricted batch
length sequences (property (iii) in Observation 2) into account. Thus, for ex-
ample, in a batch length sequence for a path, each batch can be preceded by at
most two longer batches. We can capitalize on this to obtain improved bounds.
The proof of the following lemma is given in [14].

Lemma 4. The number of possible batch length sequences with d distinct lengths
is at most 2(Δ+1)d.

By applying standard dynamic programming, we can therefore solve Bsc effi-
ciently on thin graphs of bounded-degree when the number of different lengths
is bounded.

Theorem 4. There is a 2O(Δ·k·d)n-time algorithm for Bsc in partial k-trees of
maximum degree Δ and d different weights.

3.3 Flat graphs

We first treat planar graphs, and then indicate how the approach can be gener-
alized to other “flat” graphs.

We use a classical partitioning technique due to Baker [1]. See [13] for details
on the following specific version. A t-outerplanar graph has treewidth at most
3t − 1 [5].

Lemma 5. Let G be a planar graph and f be a positive integer. Then, there is
a vertex-disjoint partitioning of G into graphs G1, which is f -outerplanar, and
G2, which is outerplanar with at most 2n/f vertices and a total vertex length of
2p(G)/t.

In view of Theorem 1, we focus on giving an efficient approximation in the case
when the vertex lengths are within a limited range. Our method is similar to that
of [13], but somewhat simpler. We can particularly take advantage of the feature
of batch schedules that it is easy to insert color classes in between batches of a
given schedule, which is not so easily done in non-preemptive multicoloring. The
result is an EPTAS, as opposed to a PTAS of [13] for npSMC, whose running
time is of the form (log n)εO(1)

n.

Lemma 6. There is a (1+ε)-approximation algorithm for Bsc on planar graphs,
that runs in time 2O(log ε−1·ε−2·log τ)n. The makespan of the schedule found is
O(ε−1 · pmax).

Proof. The algorithm proceeds as follows. Let f be to be determined. We first
apply Lemma 5 to partition G into a partial 3f -tree G1 and a partial 2-tree
G2, where G2 has at most 2n/f vertices and 2p(G)/f weight. We then find a
(1 + ε)-approximate schedule S of G1 using Proposition 2, and find a schedule

Batch Coloring Flat Graphs and Thin 207

S2 of G2 using Lemma 1. The issue that remains is how to insert the batches of
S2 into S so as to limit the cost of the resulting schedule.

Let z = d · ε−1, where d = lg τ is the number of distinct batch lengths in S2.
Recall that there are at most 4 batches of each length in S2. We shall fit the
batches of each length � in S2 into the schedule S as follows: Before the batch
that starts execution at or right before step i · z · �, insert a batch of length �,
for i = 1, 2, 3, 4. Then, each job in S is delayed at most i� by batches of length
� if its completion time in S is at least i · z · �, or at most a 1/z-fraction. Thus,
summing over the different lengths, each job is delayed by at most a d/z = ε-
fraction by jobs from S. Now, each job in S2 is delayed by at most a z factor.
So, the cost of scheduling the jobs of G2 within the new schedule is at most
z · p(G2) ≤ z · p(G)/f, which is at most εp(G) if we choose f to be z/ε = ε−2d.

The combined cost of the coloring is then at most 1+3ε times optimal. We scale
ε to suit the claim. The makespan of the schedule is the sum of O(ε−1 · pmax)
for scheduling G1 and O(pmax) for G2, as argued in Lemma 1, for a total of
O(ε−1pmax).

The time complexity is dominated by the time used by the algorithm of Propo-
sition 2 for G1. Here, χ ≤ 4, but k = O(f) = O(ε−2 log τ), which is asymptoti-
cally equivalent to the number b of batches. Hence, the combined time complexity
is 2O(log ε−1·ε−2·log τ)n.

The following theorem now follows straightforwardly by combining Lemma 6
with Theorem 1. The time complexity is 2Θ(ε−4·log3 ε−1)n.

Theorem 5. There is an EPTAS for Bsc on planar graphs.

Recall that sum coloring (Sc) is the common special case of Sbc and Sjc when
all vertices have the same length. It was shown in [13] that Sc is strongly NP-
hard for planar graphs. This implies that our results are best possible, in that
no FPTAS is possible.

We can obtain a more efficient scheme in the case of small values of pmax,
and in particular for the sum coloring problem. This improves on the algorithm
of [13] that has time complexity exp(O(ln lnn · ε−1 log ε−1)) · n.

Theorem 6. There is an EPTAS for Sc on planar graphs with running time
(log ε−1)O(ε−1)n.

In the full version [14], we indicate how the result of Theorem 5 can be extended,
e.g., to the larger class of bounded-genus graphs.

3.4 Pebbly graphs

As implied by Proposition 1, Sbc is non-trivial for arbitrary job lengths, even
when the jobs are independent (i.e., when the graph contains no edges). We
give here a strongly polynomial time algorithm for a meaningful simple class of
graphs: those consisting of disjoint cliques of bounded size. This class is neither
thin nor flat; instead, we can say it is pebbly. Disjoint cliques correspond naturally

208 M.M. Halldórsson and H. Shachnai

to the case of single-resource constraints, namely, each job needs to use a single
resource to be processed; thus, all jobs that compete for the same resource form
a clique.

Proposition 3. There is an algorithm for Bsc on disjoint collection of cliques,
that runs in time min(hO(d), 2O(h))n, where h is the size of the largest clique and
d is the number of distinct lengths.

Proof sketch. We give a dynamic programming formulation. For each (multi)set
S of possible job lengths, we compute the minimum cost of coloring a certain
subgraph. Namely, we assume that a part of the graph has already been col-
ored, and that S contains the lengths of the longest batches already colored.
We therefore compute, for each such S, the minimum cost of batch coloring the
best possible remaining graph. Given such a set S, it is easy to tell which nodes
must have been already colored to leave the best possible remainder; the greedy
choice of assigning to each batch the longest vertex that fits in the batch is an
optimal strategy.

Hence, we have a table indexed by h-bounded multisets (sets of size at most h).
We can fill into this table, bottom up, by trying all possible values for extending
the given set S, namely values whose addition (with the possible deletion of the
smallest value) yields an h-bounded sequence dominating S.

The number of h-bounded length sets is bounded by the number of subsets of
the cliques in the graphs, or

∑
C∈G 2|C| ≤ 2hn/h. When the number of lengths

d is fixed, we can also bound this number by hd, by counting how many times
each length � occurs in the set. To compute each entry of the table we need to
consult at most all dominated entries, for a total time complexity at most square
of the table size.

4 Max Coloring Paths

We sketch below an improved exact algorithm for the max-coloring problem on
paths. It uses the observation that any non-trivial solution for Max-Col on
paths uses at most three batches (see, e.g., [6]).

Theorem 7. There is an O(n log n) algorithm for Max-Col on paths.

Let xs be the height of the s-th batch in some optimal solution, 1 ≤ s ≤ 3 (note
that x1 = pmax). For each s, t ∈ {1, 2, 3} and 1 ≤ i ≤ j ≤ n, where j − i is
a power of 2 dividing both i and j, we compute a vector h(i, s, j, t) of length
(j − i + 1) which gives the minimum value of the third length (x3), for each
possible value of the second length (x2), for vertices on the subpath between i
and j, when i is scheduled in batch s and j in batch t. The possible values of x2
are the lengths of the vertices on this subpath, that is, x2 ∈ {pi, pi+1, . . . , pj};
the entries of the vector h are sorted in non-increasing order by the value of x2.
The vector h(i, s, j, t) can be calculated recursively.

Batch Coloring Flat Graphs and Thin 209

We find an optimal solution for max-coloring by calculating h(1, s, n, t) for all
1 ≤ s, t ≤ 3, and selecting (within these 9 vectors) the entry which gives the
minimum makespan.

References

1. Baker, B.S.: Approximation algorithms for NP-hard problems on Planar Graphs.
J. of the ACM 41, 153–180 (1994)

2. Bar-Noy, A., Bellare, M., Halldórsson, M.M., Shachnai, H., Tamir, T.: On chromatic
sums and distributed resource allocation. Inf. Comput. 140(2), 183–202 (1998)

3. Bar-Noy, A., Halldórsson, M.M., Kortsarz, G., Salman, R., Shachnai, H.: Sum
multicoloring of graphs. J. of Algorithms 37(2), 422–450 (2000)

4. Bazgan, C.: Approximation schemes and parameterized complexity. PhD thesis,
INRIA, Orsay, France (1995)

5. Bodlaender, H.L., Koster, A.M.: Combinatorial Optimization on Graphs of
Bounded Treewidth. The Computer Journal (2007), doi:10.1093/comjnl/bxm037

6. Brucker, P.: Scheduling Algorithms, 4th edn. Springer, Heidelberg (2004)
7. Cesati, M., Trevisan, L.: On the Efficiency of Polynomial Time Approximation

Schemes. Information Processing Letters 64, 165–171 (1997)
8. Epstein, L., Levin, A.: On the max coloring problem. In: Proc. of WAOA (2007)
9. Epstein, L., Halldórsson, M.M., Levin, A., Shachnai, H.: Weighted Sum Coloring

in Batch Scheduling of Conflicting Jobs. Algorithmica (to appear)
10. Escoffier, B., Monnot, J., Paschos, V.T.: Weighted Coloring: Further complexity

and approximability results. Inf. Process. Lett. 97(3), 98–103 (2006)
11. Gandhi, R., Halldórsson, M.M., Kortsarz, G., Shachnai, H.: Improved Bounds for

Sum Multicoloring and Scheduling Dependent Jobs with Minsum Criteria. ACM
Transactions on Algorithms (to appear)

12. Guan, D.J., Zhu, X.: A Coloring Problem for Weighted Graphs. Inf. Process.
Lett. 61(2), 77–81 (1997)

13. Halldórsson, M.M., Kortsarz, G.: Tools for Multicoloring with Applications to Pla-
nar Graphs and Partial k-Trees. J. Algorithms 42(2), 334–366 (2002)

14. Halldórsson, M. M., Shachnai, H.: Batch Coloring Flat Graphs and Thin. full
version. http://www.cs.technion.ac.il/∼hadas/PUB/batch col.pdf

15. Han, C.-C., Hou, C.-J., Shin, K.J.: On slot reuse for isochronous services in DQDB
networks. In: Proc. of 16th IEEE Real-Time Systems Symposium, pp. 222–231
(1995)

16. Liu, H., Beck, M., Huang, J.: Dynamic Co-Scheduling of Distributed Computation
and Replication. In: Proc. of CCGRID, pp. 592–600 (2006)

17. Mihail, M., Kaklamanis, C., Rao, S.: Efficient Access to Optical Bandwidth. In:
Proc. of FOCS 1995, pp. 548–557 (1995)

18. Peek, B.R.: High performance optical network architecture. In: All-Optical Net-
working: Existing and Emerging Architecture and Applications (2002)

19. Pemmaraju, S.V., Raman, R.: Approximation Algorithms for the Max-coloring
Problem. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M.
(eds.) ICALP 2005. LNCS, vol. 3580, pp. 1064–1075. Springer, Heidelberg (2005)

20. Smith, W.E.: Various optimizers for single-stage production. Naval Research Lo-
gistics Quarterly 3, 59–66 (1956)

21. Tanenbaum, A.S.: Distributed Operating Systems. Prentice-Hall, Englewood Cliffs
(1995)

22. West, D.B.: Graph Theory, 2nd edn. Prentice-Hall, Englewood Cliffs (2001)

http://www.cs.technion.ac.il/~hadas/PUB/batch_col.pdf

Approximating the Interval Constrained
Coloring Problem

Ernst Althaus, Stefan Canzar, Khaled Elbassioni,
Andreas Karrenbauer, and Julián Mestre�

Max-Planck-Institute for Informatics, Saarbrücken, Germany
{althaus,scanzar,elbassio,karrenba,jmestre}@mpi-inf.mpg.de

Abstract. We consider the interval constrained coloring problem, which
appears in the interpretation of experimental data in biochemistry. Moni-
toring hydrogen-deuterium exchange rates via mass spectroscopy exper-
iments is a method used to obtain information about protein tertiary
structure. The output of these experiments provides data about the ex-
change rate of residues in overlapping segments of the protein backbone.
These segments must be re-assembled in order to obtain a global picture
of the protein structure. The interval constrained coloring problem is the
mathematical abstraction of this re-assembly process.

The objective of the interval constrained coloring problem is to assign
a color (exchange rate) to a set of integers (protein residues) such that a
set of constraints is satisfied. Each constraint is made up of a closed inter-
val (protein segment) and requirements on the number of elements that
belong to each color class (exchange rates observed in the experiments).

We show that the problem is NP-complete for arbitrary number of
colors and we provide algorithms that given a feasible instance find a
coloring that satisfies all the coloring requirements within ±1 of the pre-
scribed value. In light of our first result, this is essentially the best one can
hope for. Our approach is based on polyhedral theory and randomized
rounding techniques. Furthermore, we develop a quasi-polynomial-time
approximation scheme for a variant of our problem where we are asked
to find a coloring satisfying as many fragments as possible.

1 Introduction

Our motivation for the interval constrained coloring problem comes from an ap-
plication in biochemistry. The problem has been introduced recently by Althaus
et al. [1]. To be self-contained, we restrict ourselves to a very brief and infor-
mal description in this paper and refer the interested reader to the publication
mentioned above.

A challenging and important problem in biochemistry is to determine the ter-
tiary structure of a protein, i.e. the spatial arrangement, which is indispensable
for its function. There are various approaches each with advantages and draw-
backs. One method for this task is the so-called hydrogen-deuterium exchange,
� Research supported by an Alexander von Humboldt fellowship.

J. Gudmundsson (Ed.): SWAT 2008, LNCS 5124, pp. 210–221, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Approximating the Interval Constrained Coloring Problem 211

abbreviated by HDX. This is a chemical reaction where a hydrogen atom of the
protein is replaced by a deuterium atom, or vice versa. To this end, the protein
solution is diluted by D2O. Intuitively, the exchange process happens at a higher
rate at amino acids, or residues, that are more exposed to the solvent. Put dif-
ferently, the exchange rates for residues at the outside of the complex are higher
than inside. Note that though deuterium is heavier than hydrogen, they are al-
most identical from a chemical point of view. Hence, the exchange rate may be
monitored by mass spectroscopy while the tertiary structure remains unaffected
by the process. However, this method does not deliver that fine grained infor-
mation such that the exchange rate for each residue can be determined directly.
Rather, we get bulk information for fragments of the protein. For example, we
get the number of slow, medium, and fast residues for each of several overlapping
fragments covering the whole protein. That is, the experimental data only tells us
how many residues of a fragment react at low, medium, and high exchange rate,
respectively. Moreover, we know the exact location and size of each fragment
in the protein. It remains to find a valid assignment of all residues to exchange
rates that matches the experimentally found bulk information. If the solution is
not unique, we want to enumerate all feasible of them or a representative subset
thereof as a basis for further chemical considerations.

The problem can be rephrased in mathematical terms as follows. We are given
a protein of n residues and a set of fragments, which correspond to intervals of
[n]. The fragments cover the whole protein and may overlap. Furthermore, there
are k possible exchange rates to which we refer as colors in the following. The
goal is to produce a coloring of the set [n] using k colors such that a given set of
requirements is satisfied. Each requirement is made up of a closed interval I ⊆ [n]
and a complete specification of how many elements in I should be colored with
each color class. We refer to this problem as the interval constrained coloring
problem.

More formally, let I be a set of intervals defined on the set V = [n], let [k]
be a set of color classes, and let r : I × [k] → Z+ be a requirement function
such that

∑
c∈[k] r(I, c) = |I| for all I ∈ I. A coloring χ : V → [k] is said to be

feasible if for every I ∈ I we have

|{i ∈ I | χ(i) = c}| = r(I, c) for all c ∈ [k] (1)

Given this information, we would like to determine whether or not a feasible
coloring exists, and if so, to produce one.

The problem is captured by the integer program given below. The binary
variable xi,c indicates whether i is colored c or not. Constraint (2) enforces
that each residue gets exactly one color and constraint (3) enforces that every
requirement is satisfied.

∑
c∈[k] xi,c = 1 ∀ i ∈ [n] (2)∑

i∈I xi,c = r(I, c) ∀ I ∈ I, c ∈ [k] (3)
xi,c ∈ {0, 1} ∀ i ∈ [n], c ∈ [k] (4)

212 E. Althaus et al.

Let P be the polytope obtained by relaxing the integrality constraint (4) in
the above integral problem. That is P is the set of values of x obeying (2), (3)
and 0 ≤ xi,c ≤ 1 for all i and c.

1.1 Previous and Related Work

The polyhedral description has already been introduced in [1] and has served
there as a basis to attack the problem by integer programming methods and
tools, which perform well in practice. Moreover, the authors established the
polynomial-time solvability of the two-color case by the integrality of the poly-
tope P and provided also a combinatorial algorithm for this case. However, the
complexity of the general problem has been left open.

A closely related problem is broadcast scheduling, where a server must decide
which data item to broadcast at each time step in order to satisfy client requests.
The literature in broadcast scheduling is vast and many variations of the prob-
lem have been studied (see [2,4] and references therein). In the variant we are
concerned with here, a client request is specified by a time window I and a data
type A. The request is satisfied if A is broadcast at least once in I. The similari-
ties between the two problems should be clear with time steps, time windows and
data types in broadcast scheduling playing the respective roles of positions, in-
tervals and colors in interval constrained coloring. There are, however, important
differences. First, whereas in broadcast scheduling it does not hurt to broadcast
an item more times than the prescribed number, in our problem it does. Second,
an interval is satisfied only if all the requirements for that interval are satisfied
exactly, which, undoubtedly, makes our problem significantly harder.

1.2 Contributions of This Paper

As mentioned above, the complexity status for the interval constrained coloring
problem has been open. In Section 4 we partly settle this by showing that de-
ciding whether a feasible coloring exists is NP-complete when k is part of the
input.

Although the polytope P is integral for k = 2, it need not be for k > 3.
Nevertheless, we can check in polynomial time whether P = ∅. If that is the
case then we know that there is no feasible coloring. Otherwise we can find a
feasible fractional solution. In Section 2 we will show how to round this fractional
solution to produce a coloring where all the requirements are satisfied within a
mere additive error of one.

In practice, the data emanating from the experiments is noisy, which normally
causes the instance to be infeasible and in some case even forces P to be empty.
To deal with this problem in Section 3 we study a variant of the problem in which
we want to maximize the number of requirements that are satisfied. Another way
to deal with noisy data is to model the noise in the linear programming relaxation
to get a new set of requirements on which to run the algorithm from Section 2.
The latter approach was explored by Althaus et al. [1]; the reader is referred to
their paper for details.

Approximating the Interval Constrained Coloring Problem 213

2 A ±1 Guarantee

Let x be a fractional solution in P . We use the scheme of Gandhi et al. [4] to
round x to an integral solution x̂ with the following properties:

Theorem 1. Given a fractional solution x ∈ P we can construct in polynomial
time an integral solution x̂ with the following properties

(P1) For every i ∈ [n] there exists c ∈ [k] such that x̂i,c = 1 and x̂i,d = 0 for
all d �= c.

(P2) For every I ∈ I and c ∈ [k] we have |
∑

i∈I x̂i,c − r(I, c)| ≤ 1.
(P3) Every I ∈ I is satisfied with probability at least γk = k(k+1−Hk−1)

(k+1)! .

In other words, each position gets exactly one color (P1), every coloring re-
quirement is off by at most one from the prescribed number (P2), and all the
requirements for a given interval I are satisfied exactly (

∑
i∈I x̂i,c = r(I, c) for

all c ∈ [k]) with probability at least γk. An interesting corollary of this theorem
is that if P is non-empty then there exists always a coloring satisfying at least
γk|I| intervals, and such coloring can be found in polynomial time.

The high level idea is to simplify the polytope P into another integral polytope
with basic solutions satisfying (P1) and (P2). Then we show how to select a basic
solution satisfying (P3). This is done by defining a set of blocks and then setting
up an assignment problem instance between [n] and the set of blocks, whose
polytope is integral.

For each color class c ∈ [k] we choose a real number αc ∈ [0, 1], to be specified
shortly. Let us define blocks Bc

1, B
c
2, . . . , B

c
bc

: For color c and j = 2, . . . , bc − 1

Bc
j =

[
min{t |

∑
i≤t xi,c > j − 2 + αc}, min{t |

∑
i≤t xi,c ≥ j − 1 + αc}

]
. (5)

The first and last blocks, Bc
1 and Bc

bc
, are defined similarly, but starting at 1

and ending at n respectively.
For each i ∈ Bc

j we define a variable yi,(c,j). If i belongs to a single block Bc
j

of color c then we set yi,(c,j) = xi,c. Otherwise, i belongs to two adjacent blocks
Bc

j+1 and Bc
j , in which case we set yi,(c,j+1) =

∑
t≤i xt,c − (j − 1 + αc) and

yi,(c,j) = xi,c − yi,(c,j+1). See Figure 1 for an example of how the blocks and the
solution y are constructed. Another, equivalent, way to define y is to ask that
xi,c =

∑
j yi,(c,j),

∑
i∈Bc

1
yi,(c,1) = αc and

∑
i∈Bc

j
yi,(c,j) = 1 for every 1 < j < bc.

Thus y defines a feasible fractional assignment between [n] and the set of blocks.
Let Q be the polytope of this assignment problem, namely,

∑
Bc

j�i yi,(c,j) = 1 ∀ i ∈ [n] (6)∑
i∈Bc

j
yi,(c,j) = 1 ∀ c ∈ [k] and 1 < j < bc (7)∑

i∈Bc
j
yi,(c,j) ≤ 1 ∀ c ∈ [k] and j ∈ {1, bc} (8)

yi,(c,t) ≥ 0 ∀ i ∈ [n], c ∈ [k], t ∈ [bc] (9)

214 E. Althaus et al.

Bc
1 Bc

2 Bc
3 Bc

4

0.2

0.2

0.1

0.1

0.4 0.1

0.5

0.3

0.3

0.6

0.6

0.3

0.3

0.7 0.1

0.8

0.2

0.2

0.4

0.4

Fig. 1. How the blocks Bc
j are constructed. The xi,c values appear on top and the yi,(c,j)

values appear on the edges. Note that a block can only overlap with its predecessor or
successor. In this case αc = 0.7.

Because Q is integral, any fractional solution y ∈ Q can be turned into an
integral solution ŷ ∈ Q; this can even be done in polynomial time. Notice that
an integral solution ŷ to Q induces an integral solution x̂ by setting x̂i,c = 1 if
and only if yi,(c,j) = 1. Constraint (6) implies that x̂ satisfies (P1). Furthermore,
x̂ also satisfies (P2).

Lemma 1. Let ŷ be an integral solution for Q and let x̂ be the coloring induced
by ŷ. Then |

∑
i∈I x̂i,c − r(I, c)| ≤ 1 for all I ∈ I and c ∈ [k].

Proof. Since
∑

i∈I xi,c = r(I, c), the number of blocks of color c that intersect
I is either r(I, c) or r(I, c) + 1. Furthermore, at least r(I, c) − 1 of these blocks
lie entirely within I and at most two blocks intersecting I partially. Due to
constraints (6) and (7), each internal block will force a different position in I to
be colored c. One the other hand, the fringe blocks, if any, can force at most two
additional positions in I to be colored c. Hence, the lemma follows.
�

It only remains to prove that x̂ obeys (P3). To do so, we need to introduce
some randomization in our construction. First, we will choose the offset αc of
each color c ∈ [k] independently and uniformly at random. Second, instead of
choosing any extreme point of Q, we choose one using a randomized rounding
procedure.

Gandhi et al. [4] showed that any fractional solution y ∈ Q can be rounded to
an integral solution ŷ ∈ Q s.t. the probability that ŷi,(c,j) = 1 is exactly yi,(c,j).
It is important to note that these events are not independent of each other.

Lemma 2. Let ŷ be the solution output by the randomized rounding procedure
and x̂ the coloring induced by it. For any interval I ∈ I, the probability that∑

i∈I x̂i,c = r(I, c) for all c ∈ [k] is at least k(k+1−Hk−1)
(k+1)! .

Proof. Let I be an arbitrary, but fixed, interval throughout the proof and for
time being let us concentrate on a fixed, but arbitrary, color c ∈ [k]. Let f and
l be the indices of the first and last blocks of color class c that intersect I and
define βc =

∑
i∈I∩Bc

f
yi,(c,f), or, equivalently,

∑
i∈I∩Bc

l
yi,(c,l) = 1 − βc.

Approximating the Interval Constrained Coloring Problem 215

Intuitively, the probability that
∑

i∈I x̂i,c = r(I, c) should be greater when
the blocks of c are aligned with I (when βc is close to 0 or 1) and it should be
low when they are not (when βc is around 0.5). By choosing αc uniformly at
random, βc also becomes a random variable uniformly distributed in [0, 1]. Thus,
we have a decent chance of getting a “good value” of βc.

Let us formalize and make more precise the above idea. Denote with ξf and ξ l

the events
∑

i∈I∩Bc
f
ŷi,(c,f) = 1 and

∑
i∈I∩Bc

l
ŷi,(c,l) = 1 respectively. Let β =

(β1, . . . , βk) be the vector offset for the color classes. For brevity’s sake we denote
Pr [ξ | β] with Prβ [ξ].

Prβ

[∑
i∈I x̂i,c �= r(I, c)

]
= Prβ

[
ξfξ l ∨ ξf ξ l

]
= Prβ [ξfξ l] + Prβ

[
ξf ξ l

]
≤ min{Prβ [ξf] , Prβ [ξ l]} + min{Prβ

[
ξf

]
, Prβ

[
ξ l

]
}

Since Prβ [ξf] = βc and Prβ [ξ l] = 1 − βc, it follows that

Prβ

[∑
i∈I x̂i,c �= r(I, c)

]
≤ 2 min {βc, 1 − βc} (10)

As a warm-up we first show that the probability that all requirements for I
are fulfilled is at least 1

(k+1)! . Denote with τ the event ∀c :
∑

i∈I x̂i,c = r(I, c).
Recall that the vector β is distributed uniformly over the domain D = [0, 1]k.
Conditioning on β and averaging over D gives the desired result.

Pr [τ] =
∫

D

Prβ

[
∀c :

∑
i∈I x̂i,c = r(I, c)

]
dβ1 · · · dβk

≥
∫

D

1 −
∑

c∈[k] Prβ

[∑
i∈I x̂i,c �= r(I, c)

]
dβ1 · · · dβk

≥
∫

D

max
{
0, 1 − 2

∑
c∈[k] min {βc, 1 − βc}

}
dβ1 · · ·dβk

= 2
∫

D

max
{
0, 1

2 −
∑

c∈[k] min {βc, 1 − βc}
}

dβ1 · · · dβk

The second inequality follows from the union bound and the third from (10). A
moment’s thought reveals that the function inside the integral is symmetrical in
the 2k orthants around the point (1

2 , . . . , 1
2) ∈ D. Therefore, setting D′ = [0, 1

2]k

we get

Pr [τ] ≥ 2k+1
∫

D′
max

{
0, 1

2 −
∑

c∈[k] βc

}
dβ1 · · · dβk.

The right hand side of the above inequality can be interpreted as the volume of
a (k + 1)-dimensional simplex.

Pr [τ] ≥ 2k+1 Vol
(
λ ∈ Rk+1

+

∣∣∣ ∑
i∈[k+1] λi ≤ 1

2

)
= 2k+1 (1

2)k+1

(k + 1)!
=

1
(k + 1)!

In order to get the stronger bound in the statement of the lemma we need
two more ideas. First, we claim that we only need to condition on fulfilling k −1
requirements: Because

∑
c∈[k] r(I, c) = |I|, once we get k − 1 colors right, the

216 E. Althaus et al.

kth requirement must be satisfied as well. Second, since we can condition on any
k − 1 colors, we had better condition on the ones with smallest offset, that is,
those that are close to 0 or 1.

Pr [τ] =
∫

D

Prβ

[
∀c :

∑
i∈I x̂i,c = r(I, c)

]
dβ1 · · ·dβk

≥
∫

D

max
d∈[k]

{
1 −

∑
c �=d Prβ

[∑
i∈I x̂i,c �= r(I, c)

]}
dβ1 · · ·dβk

≥
∫

D

max
d∈[k]

{
max

{
0, 1 − 2

∑
c �=d min {βc, 1 − βc}

}}
dβ1 · · · dβk

= 2k

∫
D′

max
d∈[k]

{
max

{
0, 1 − 2

∑
c �=d βc

}}
dβ1 · · · dβk

= 2k+1
∫

D′
max

{
0, 1

2 −
∑

c∈[k] βc + maxd∈[k] βd

}
dβ1 · · · dβk

The last integral can be simplified by assuming that the maximum βd is attained
by the last variable. Of course, the maximum can be any of the k variables, thus
these two quantities are related by a factor of k.

Pr [τ] ≥ k 2k+1
∫ 1

2

0

[∫
[0,z]k−1

max
{
0, 1

2 −
∑

c∈[k−1] βc

}
dβ1 · · · dβk−1

]
dz

Let T (z) denote Vol
(
λ ∈ Rk

+

∣∣∣ ∑k
i=1 λi ≤ 1

2 and λ1, . . . , λk−1 ≤ z
)
. Then we

can rewrite the above integral as

Pr [τ] ≥ k 2k+1
∫ 1

2

0
T (z) dz (11)

The volume computed by T (z) is not a simplex, but it can be reduced to a
summation involving only the volume of simplices using the principle of inclu-
sion/exclusion.

Let V (ρ) denote the volume Vol
(
λ ∈ Rk

+

∣∣∣ ∑k
i=1 λi ≤ ρ

)
and recall that V (ρ) =

ρk

k! . Consider what happens when z ∈
[1
4 , 1

2

)
; clearly T (z) < V (1

2) since V (1
2)

includes points λ ∈ Rk
+ such that λi > z for exactly one coordinate i ∈ [k − 1]

(since z ≥ 1
4). Notice that

Vol
(
λ ∈ Rk

+

∣∣∣∑k
i=1 λi ≤ 1

2 and λi > z
)

= V (1
2 − z)

Thus T (z) = V (1
2) − (k − 1)V (1

2 − z) for z ∈ [14 , 1
2], but T (z) > V (1

2) − (k −
1)V (1

2 −z) for z ∈ [0, 1
4) since the volume of points y such the constraint λi ≤ z is

violated for two coordinates is subtracted twice. To avoid cumbersome notation,
assume V (ρ) = 0 if ρ ≤ 0. A simple inclusion/exclusion argument yields

T (z) =
k−1∑
i=0

(
k − 1

i

)
(−1)i V (1

2 − iz) (12)

Approximating the Interval Constrained Coloring Problem 217

Plugging (12) into (11) we get

Pr [τ] ≥ 2k+1k

(∫ 1
2

0
V (1

2) dz +
k−1∑
i=1

(
k − 1

i

)
(−1)i

∫ 1
2i

0
V (1

2 − iz) dz

)

=
k

(k + 1)!

(
k + 1 +

k−1∑
i=1

(
k − 1

i

)
(−1)i

i

)

The intermediate steps of this last derivation can be found in the full version.
Using induction on k, it is straightforward to show that the sum in the last line
adds up exactly to −Hk−1, which gives us the desired bound of γk.
�

Remark. In our application domain the goal usually is not to find a single
solution, but to generate a number of candidate solutions and let the user choose
the one that he finds most interesting or relevant for the specific application. Our
framework is amenable to this task since there are very efficient algorithms to
enumerate all the integral solutions of Q [6].

3 Maximum Coloring

In this section we study a variant of the interval constrained coloring to deal
with instances that do not admit a feasible coloring. For these instances we
consider the problem of finding a coloring that maximizes the number of intervals
satisfying (1). More generally, we assume a non-negative weight w(I), associated
with each interval I ∈ I, and seek a subset I ′ ⊆ I, maximizing w(I ′) def=∑

I∈I′ w(I), such that there exists a coloring of V satisfying (1) for each I ∈ I′.
We call this problem MaxColoring. Let Opt ⊆ I be a subset achieving this
maximum. For α ∈ (0, 1] and β ≥ 1, an (α, β)-approximation of the problem is
given by a pair (χ, I′) of a subset I ′ ⊆ I, and a coloring χ : V �→ [k], such that∑

I∈I′ w(I) ≥ α · w(Opt), and 1
β r(I, c) ≤ Nχ(I, c) ≤ βr(I, c), where Nχ(I, c) is

the number of positions in I colored c by χ.

Theorem 2. Consider an instance (V, I) of MaxColoring with |V | = n and
|I| = m. Then we can find a (1, 1 + ε)-approximation in quasi-polynomial time
nO(k2

ε log n log m), for any ε > 0.

Note that the above bound is quasi-polynomial for k = polylog(n, m). To prove
Theorem 2 we use a similar technique as in [3]. Our approach can be divided
into two parts: (i) Reducing the search space, and (ii) developing a dynamic
program. We explain these two steps in more details in the next subsections.

3.1 Reducing the Search Space

Let ε > 0 be a given constant. For a vertex u ∈ V and a set of intervals I on V ,
denote respectively by IL(u), IR(u), and I[u] the subsets of intervals of I that

218 E. Althaus et al.

lie to the left of u, lie to the right of u, and span u, that is

IL(u) = {[s, t] ∈ I : t ≤ u − 1}, IR(u) = {[s, t] ∈ I : s ≥ u + 1} and
I[u] = {[s, t] ∈ I : s ≤ u ≤ t}.

Denote by VL(u) and VR(u) the sets of vertices that lie to the left and right
of u ∈ V , respectively: VL(u) = {i ∈ V : i < u} and VR(u) = {i ∈ V : i ≥ u}.

Definition 1. (Assignments) Let V = {p, p + 1, . . . , q}. An assignment on V
is a pair A = (IA, rA) of intervals IA on V and a function rA : IA × [k] �→
{0, 1, . . . , |V |} such that rA(I) ≤ rA(I ′) for all I, I ′ ∈ IA, with I ⊆ I ′. A is called
a left-assignment (respectively, right-assignment) if all intervals in IA start at p
(respectively, end at q).

Definition 2. (ε-Partial assignments) Let u∗ ∈ V be a given vertex of V = {p, p+
1, . . . , q}. A set of h1 + h2 + 4 intervals IP = IPl

∪ IPr , IPl
= {I0, I1, . . . , Ih1 ,

Ih1+1} and IPr = {I ′0, I
′
1, . . . , I

′
h2

, I ′h2+1}, and an rP : IP × [k] �→ {0, 1, . . . , |V |},
such that

(R1) all intervals start or end at u∗: Ij = [uj , u
∗] for j ∈ {0, 1, . . . , h1}, Ih1+1 =

[p, u∗], I ′j = [u∗, u′
j] for j ∈ {0, 1, . . . , h2}, and I ′h2+1 = [u∗, q], where uh1 <

uh1−1 < · · · < u1 < u0 < u∗ < u′
0 < u′

1 < u′
2 < · · · < u′

h2

(R2) rP (I, c) ≤ rP (J, c) for every I, J ∈ IP , with I ⊆ J , and every c ∈ [k],
(R3)

∑
c∈[k] rP (I, c) = |I| for every I ∈ IP ,

(R4) for every I ∈ IP , there exist c ∈ [k] and i ∈ Z+ such that rP (I, c) =⌈
(1 + ε)i

⌉
, and

(R5) for every c ∈ [k] and i ∈ Z+ with i ≤ �(log rP (Ih1+1, c)/ log(1 + ε)�, there
exists I ∈ IPl

such that rP (I, c) =
⌈
(1 + ε)i

⌉
; similarly, for every c ∈ [k] and

i ∈ Z+ with i ≤
⌊
(log rP (I ′h2+1, c)/ log(1 + ε)

⌋
, there exists I ′ ∈ IPr such that

rP (I ′, c) =
⌈
(1 + ε)i

⌉
.

will be called an ε-partial assignment w.r.t. u∗, denoted by P = (u∗, IP , rP).

The total number μ(n) of possible ε-partial assignments with respect to a given
vertex u∗ ∈ V with |V | = n can be bounded as follows:

μ(n) ≤
(

ln k + 1
k − 1

· n

)2k2 log n
log(1+ε) +6k

, (13)

which is npolylog(n) for every fixed ε > 0 and k = polylog(n).

Let χ : V �→ [k] be a coloring of V and u∗ ∈ V be an arbitrary vertex. We say
that an assignment A = (IA, rA) is consistent with χ if Nχ(I, c) = rA(I, c) for
all c ∈ [k] and I ∈ IA. Two assignments P1 and P2 are said to be consistent if
there exists a coloring χ with which both are consistent. The next lemma follows
immediately from the definition of ε-partial assignments.

Lemma 3. Let χ be a coloring of V and u∗ ∈ V be an arbitrary vertex. Then
there exists an ε-partial assignment P on V w.r.t. u∗, that is consistent with χ.

Approximating the Interval Constrained Coloring Problem 219

3.2 The Dynamic Program

The algorithm shown below is parameterized with two assignments PL and PR,
both initially empty. It is based on a divide-and-conquer approach where a point
u∗ in the middle of V is picked and all intervals containing u∗ are evaluated to
see if they should be taken into the solution. To do this evaluation conservatively,
the procedure iterates over all ε-partial assignments P , consistent with PL and
PR, w.r.t. to the middle vertex u∗, then recurses on the subsets of intervals to
the left and right of u∗.

Algorithm MaxColoringApx(I, V, PL, PR)
Input: An instance (I, V) of MaxColoring, and consistent left- and right-

assignments PL and PR on V
Output: A (1, 1 + ε) approximation (χ, J)

1. if |I| = 0, then
2. χ ← MaxColoringSpecial(PL, PR)
3. return (χ, ∅)
4. let u∗ ∈ V be such that |IL(u∗)| ≤ m/2 and |IR(u∗)| ≤ m/2
5. for every ε-partial assignment P w.r.t. u∗ do
6. if P is consistent with PL and PR then
7. (χ1, J1) ← MaxColoringApx(IL(u∗), VL(u∗),Reduce(VL(u∗), P, PL, PR))
8. (χ2, J2) ← MaxColoringApx(IR(u∗), VR(u∗),Reduce(VR(u∗), P, PL, PR))
9. let χ ← χ1 ∪ χ2

10. K ← {I ∈ I[u∗] : r(I,c)
(1+ε) ≤ rP (I�(I,P), c) + rP (Ij(I,P), c) ≤ r(I, c)}

11. J ← K ∪ J1 ∪ J2

12. store (χ, J)
13. return the recorded solution with largest w(J) value

Algorithm MaxColoringApx uses two subroutines: MaxColoringSpecial

checks if a pair of a left- and right-assignments are consistent, and if so, returns
a feasible coloring; Reduce(VL(u∗), P, PL, PR) (Reduce(VR(u∗), P, PL, PR))
combines the assignments P, PL, PR into a left- and right assignments P ′

L, P ′
R on

VL(u∗) (respectively, on VR(u∗)).
When the procedure returns, we get two independent colorings χ1 : VL(u∗) �→

[k] and χ2 : VR(u∗) �→ [k], which are combined into a coloring χ = χ1 ∪ χ2
defined in the obvious way: χ(u) = χ1(u) if u ∈ VL(u∗) and χ(u) = χ2(u) if
u ∈ VR(u∗).

Lemma 4. Let ω = (n, I, k, r) be an instance of MaxColoring. If set I can
be partitioned into two sets I1 and I2, such that for x ∈ {1, 2} it holds

(a) Ii ∩ Ij = ∅, ∀Ii, Ij ∈ Ix, i.e. intervals are disjoint
(b)

⋃
Ij∈Ix

Ij = [s, t], i.e. the union of intervals is an interval again

then the feasibility problem for ω can be solved in time O
(
nk |I|

)
.

Proof (sketch). We construct an instance ω′ = (n, I ′, k, r′), where set I ′ itself
satisfies conditions (a) and (b) from Lemma 4. In particular, intervals in I ′ are

220 E. Althaus et al.

disjoint (condition (a)) and therefore feasibility of instance ω′ can be determined
by verifying for every interval [a, b] ∈ I′ that

∑
c∈[k] r

′([a, b], c) = b − a + 1.
We define I ′ to be the partition of {1, . . . , n} into a minimal number of in-

tervals, such that for each interval I ′ ∈ I′ and each element I ∈ I either I ′ ⊆ I
or I ′ ∩ I = ∅. If we represent I ′ by sequence ([a′

1, b
′
1], [a

′
2, b

′
2], . . . , [a

′
p, b

′
p]) it can

be shown by induction, that the definition of r′([a′
1, b

′
1], c) uniquely determines

r′([a′
i, b

′
i], c), for 2 ≤ i ≤ p.
�

Corollary 1. The feasibility problem for given left assignment PL = (IPL , rPL)
and right assignment PR = (IPR , rPR) on a set of vertices V = {1, 2, . . . , n} can
be solved in time O

(
nk(|IPL | + |IPR |)

)
.

Let P = (u∗, IP , rP) be an ε-partial assignment w.r.t. u∗. Given an interval
I = [s, t] ∈ I, with u∗ ∈ I, we let j(I, P), �(I, P) be respectively the smallest
and largest indices such that [uj(I,P), u

′
�(I,P)] ⊆ I, i.e. j(I, P) = min{i : ui ≥ s}

and �(I, P) = max{i : u′
i ≤ t}. If either of these indices does not exist, we set

the corresponding rP (I�(I,P), c) or rP (Ij(I,P), c) to 0. Note that by (R5)

rP (I�(I,P), c) + rP (Ij(I,P), c) ≤ Nχ′(I, c) ≤ (1 + ε)(rP (I�(I,P), c) + rP (Ij(I,P), c)),
(14)

holds for any χ′ : V �→ [k] and ε-partial assignment P consistent with χ′.

Lemma 5. For |V | = n and |I| = m, algorithm MaxColoringApx runs in
time T (n, m) = nO(k2

ε log n log m).

Lemma 6. Algorithm MaxColoringApx returns a coloring χ : V �→ [k] and
a subset of intervals J ⊆ I such that w(J) ≥ w(Opt) and r(I, c)/(1 + ε) ≤
Nχ(I, c) ≤ (1 + ε)r(I, c) for all I ∈ J and c ∈ [k].

Proof. Let (χ∗,Opt) be an optimal solution. By Lemma 3, there is an ε-partial
assignment P consistent with χ∗, which will be eventually considered by the
algorithm in Step 5. If I ∈ Opt[u∗], then Nχ∗(I, c) = r(I, c) and thus (14)
implies, for χ′ = χ∗ that I belongs to the set K selected by the algorithm in
Step 10, i.e., Opt[u∗] ⊆ K, and hence w(K) ≥ w(Opt[u∗]). Since the returned
coloring χ is consistent with P , we also know by using χ′ = χ in (14) that
r(I, c)/(1 + ε) ≤ Nχ(I, c) ≤ (1 + ε)r(I, c) for I ∈ K. By induction, we have
w(K1) ≥ w(OptL(u∗)), w(K2) ≥ w(OptR(u∗)), r(I, c)/(1 + ε) ≤ Nχ1(I, c) ≤
(1+ε)r(I, c) for I ∈ J1, and r(I, c)/(1+ε) ≤ Nχ2(I, c) ≤ (1+ε)r(I, c) for I ∈ J2.
The lemma follows.
�

4 Hardness

In this section we show that, in general, deciding whether a feasible coloring
exists is NP-hard.

Theorem 3. The problem of testing the feasibility of an instance of the interval
constrained coloring problem is NP-complete when the number of colors is part
of the input.

Approximating the Interval Constrained Coloring Problem 221

Proof. Clearly, the problem belongs to NP. To prove the problem is NP-hard we
reduce a known NP-hard problem to it using the approach of Chang et al. [2].
In the exact coverage problem we are given a ground set U and a collection S of
subsets of U and we want to know whether there exists a sub-collection C ⊆ S
of size t, which forms a partition of U ; that is, ∪S∈CS = U and for any R, S ∈ C
if R �= S then R ∩ S = ∅. It is well known that exact coverage is NP-complete
[5] even when the cardinality of sets in S is 3.

Let u = |U| and s = |S|. For the instance of the coloring problem we divide
V = [n] into u blocks B1, . . . , Bu each of length s; thus, n = us and Bi =
[(i − 1)s + 1, . . . , i s]. Each color c ∈ [k] is associated with a specific set Sc in S;
thus, k = s. Let U = {x1, . . . , xu} and suppose that xi is contained ri in sets.
For every i ∈ [u] we have

Ii = [s (i − 1) + 1, . . . , s i] and r(Ii, c) = 1 for all c ∈ [k]
I ′i = [s i − t + 1, . . . , s (i + 1) − t] and r(I ′i , c) = 1 for all c ∈ [k]
I ′′i = [s i − t − ri, . . . , s i − t + 1] and r(I ′′i , c) = 1 if and only if xi ∈ Sc

Realize that any coloring satisfying all the Ii and I ′i intervals must use the
same set of t colors for the last t positions of every block and the remaining s− t
colors for the first s − t position of every block. We therefore encode the cover C
with the last t colors of each block. To enforce that C is a partition, we ask that
for every element x ∈ U exactly one set in C contains x in S, then we include
the interval I ′′i = [s i − t − ri, s i − t + 1] and require r(I ′′i , c) = 1 if and only
if xi ∈ Sc. Clearly, a feasible coloring encodes a solution for the exact coverage
and vice-versa. It follows that the testing feasibility is NP-hard.
�

Acknowledgments. Thanks to Hubert Chan for useful discussions.

References

1. Althaus, E., Canzar, S., Emmett, M.R., Karrenbauer, A., Marshall, A.G., Meyer-
Basese, A., Zhang, H.: Computing H/D-exchange speeds of single residues from
data of peptic fragments. In: 23rd Annual ACM Symposium on Applied Computing
(2008)

2. Chang, J., Erlebach, T., Gailis, R., Khuller, S.: Broadcast scheduling: Algorithms
and complexity. In: Proceedings of the 19th Annual ACM-SIAM Symposium on
Discrete Algorithms (2008)

3. Elbassioni, K.M., Sitters, R., Zhang, Y.: A quasi-PTAS for profit-maximizing pric-
ing on line graphs. In: Proceedings of the 15th Annual European Symposium on
Algorithms, pp. 451–462 (2007)

4. Gandhi, R., Khuller, S., Parthasarathy, S., Srinivasan, A.: Dependent rounding and
its applications to approximation algorithms. J. ACM 53(3), 324–360 (2006)

5. Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the Theory
of NP-Completeness, W.H. Freeman and Company, New York (1979)

6. Uno, T.: A fast algorithm for enumerating bipartite perfect matchings. In: Eades, P.,
Takaoka, T. (eds.) ISAAC 2001. LNCS, vol. 2223, pp. 367–379. Springer, Heidelberg
(2001)

A Path Cover Technique for LCAs in Dags

Mirosław Kowaluk1,�, Andrzej Lingas2,��, and Johannes Nowak3,� � �

1 Institute of Informatics, Warsaw University, Warsaw, Poland
kowaluk@mimuw.edu.pl

2 Department of Computer Science, Lund University, 22100 Lund, Sweden
Andrzej.Lingas@cs.lth.se

3 Fakultät für Informatik, Technische Universität München, München, Germany
nowakj@in.tum.de

Abstract. We develop a path cover technique to solve lowest common ancestor
(LCA for short) problems in a directed acyclic graph (dag).

Our method yields improved upper bounds for two recently studied problem
variants, computing one (representative) LCA for all pairs of vertices and com-
puting all LCAs for all pairs of vertices. The bounds are expressed in terms of the
number n of vertices and the so called width w(G) of the input dag G. For the first
problem we achieve Õ(n2w(G)) time which improves the upper bound of [18] for
dags with w(G) = O(n0.376−δ) for a constant δ > 0. For the second problem our
Õ(n2w(G)2) upper time bound subsumes the O(n3.334) bound established in [11]
for w(G) = O(n0.667−δ).

As a second major result we show how to combine the path cover technique
with LCA solutions for dags with small depth [9]. Our algorithm attains the best
known upper time bound for this problem of O(n2.575). However, most notably,
the algorithm performs better on a vast amount of input dags, i.e., dags that do
not have an almost linear-sized subdag of extremely regular structure.

Finally, we apply our technique to improve the general upper time bounds on
the worst case time complexity for the problem of reporting LCAs for each triple
of vertices recently established by Yuster[26].

1 Introduction

A lowest common ancestor (LCA) of vertices u and v in a directed acyclic graph (dag)
is an ancestor of both u and v that has no descendant which is an ancestor of u and v. Fast
algorithms for finding lowest common ancestors (LCAs) in trees and – more generally
– directed acyclic graphs (dags) are indispensable computational primitives. Whereas
LCA computations in trees are well studied, see, e.g., [14,22,5], the case of dags has
been found an independent subject of research only recently, initiated by the paper of
Bender et al. [5]. Due to the limited expressive power of trees they are often applicable
only in restrictive or over-simplified settings. There are numerous applications for LCA

� Research supported by the grant of the Polish Ministry of Science and Higher Education
N20600432/0806.

�� Research supported in part by VR grant 621-2005-4806.
��� Research supported in part by DFG (Deutsche Forschungsgemeinschaft), grant MA 870/8-1

(SPP 1307 Algorithm Engineering).

J. Gudmundsson (Ed.): SWAT 2008, LNCS 5124, pp. 222–233, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Path Cover Technique for LCAs in Dags 223

queries in dags, e.g., object inheritance in programming languages, lattice operations
for complex systems, lowest common ancestor queries in phylogenetic networks, or
queries concerning customer-provider relationships in the Internet. For a more detailed
description of possible applications, we refer to [5,4].

Known results on LCAs in dags. LCA algorithms have been extensively studied in
the context of trees with most of the research rooted in [2,25]. The first asymptotically
optimal algorithm for the all-pairs LCA problem in trees, with linear preprocessing time
and constant query time, was given in [14]. The same asymptotics was reached using
a simpler and parallelizable algorithm in [22]. Recently, a reduction to range minimum
queries has been used to obtain a further simplification [5].

In the more general case of dags, a pair of nodes may have more than one LCA,
which leads to the distinction of representative versus all LCA problems. In early re-
search both versions still coincide by considering dags with each pair having at most
one LCA. Extending the work on LCAs in trees, in [21], an algorithm was described
with linear preprocessing and constant query time for the LCA problem on arbitrarily
directed trees (or, causal polytrees). Another solution was given in [1], where the repre-
sentative problem in the context of object inheritance lattices was studied. The approach
based on poset embeddings into Boolean lattices [1] yielded O(n3) preprocessing and
O(logn) query time on lower semi-lattices.

The ALL-PAIRS REPRESENTATIVE LCA problem on general dags has been stud-
ied recently in [5,17,9,4]. The works rely on fast matrix multiplications (currently
the fastest known algorithm needs O(nω) operations, with ω < 2.376 [7]) to achieve

Õ(n
ω+3

2) [5] 1 and Õ(n2+ 1
4−ω) [17] upper bounds on the running time. The technique

developed in [17] was slightly improved in [9] by applying rectangular matrix multipli-
cation2 [6] to achieve an upper bound for the representative LCA problem of O(n2+µ).

More efficient solutions have been developed for special classes of dags. For sparse
dags, algorithms with running time O(nm) given in [17,4], where m is the number of
edges in the input dag, improve the general upper bound. In [11] it was shown that this
can be improved to O(nmred), where mred is the number of edges in the the transitive
reduction of the input dag. In [9] a more efficient solution is described for the ALL-
PAIRS REPRESENTATIVE LCA problem in dags of small depth h. More specifically,
the algorithm is shown to improve upon the general upper bound whenever h ≤ n0.42.
Lately, in [18], it is shown that the problem can also be solved in time Õ(n2w(G)+nω),
where w(G) is the width of the dag G, see Definition 2.

The authors of [4] study variants of the representative LCA problem, namely (L)CA
computations in weighted dags and the ALL-PAIRS ALL LCA problem. For the latter
problem, an upper bound of O(w(G)n2+µ) is established which is O(n3+µ) in the worst
case. The solution makes use of a minimum path cover of the vertices. The general
upper bound for ALL-PAIRS ALL LCA was improved to O(nω(2,1,1)) in [11]. In the
same work it is shown that ALL-PAIRS REPRESENTATIVE LCA and ALL-PAIRS ALL

1 Throughout this work, we use Õ(f (n)) for O(f (n) ·polylog(n))
2 Throughout this work, ω(x,y,z) is the exponent of the algebraic matrix multiplication of a

nx × ny with a ny × nz matrix. Let µ be such that ω(1,µ,1) = 1 + 2µ is satisfied. The fastest
known algorithms for rectangular matrix multiplication imply µ < 0.575 and ω(2,1,1) < 3.334.

224 M. Kowaluk, A. Lingas, and J. Nowak

LCA can be solved with running times of O(n2 logn) and O(n3 loglogn) respectively
in the average case. For the average case analysis it is assumed that the input space
is distributed according to the Gn,p model for random dags which was introduced by
Barak and Erdős [3]. In [18] the problem of finding unique lowest common ancestors
is shown to be solvable in time O(nω logn).

Our contributions.3 We elaborate in-depth on using path cover techniques for the so-
lution of LCA problems in dags. To this end, we present a multi-purpose decomposition
technique that can be applied to a variety of LCA problems.

We apply our technique to the ALL-PAIRS REPRESENTATIVE LCA problem im-
proving recently developed solutions for dags of small width [18]. Our result implies
an upper bound of Õ(n2w(G)) and improves the result in [18] for dags with width w(G)
bounded by O(nω−2−δ) for a constant δ > 0. Similarly, the application of our approach
to the ALL-PAIRS ALL LCA problem yields an upper time bound of Õ(n2w(G)2). This

improves the general upper bound of O(nω(2,1,1)) ([11]) for w(G) = O(n
ω(2,1,1)−2

2 −δ) as
well as the upper bound of O(nmred min{κ2,n}) [4], where κ is the maximum size of an
LCA set, if the size of the transitive reduction cannot be bounded by O(n · polylog(n)).

We show that it is possible to combine the path cover approach with the efficient
method for low depth dags given in [9]. Our algorithm has the same asymptotic worst-
case time complexity as the fastest up to now algorithm for this problem, i.e., O(n2+µ)
[9]. However, the class of dags for which the algorithm needs Ω(n2+µ) time is consid-
erably limited.

Finally, we describe how our approach can be used to improve the general upper
bound for the ALL-K-SUBSETS REPRESENTATIVE LCA problem (i.e., compute rep-
resentative LCAs for each vertex subset of size k) for k = 3, which was recently estab-
lished by Yuster [26].

2 Preliminaries

Let G = (V,E) be a directed acyclic graph (dag). Throughout this work we denote by n
the number of vertices and by m the number of edges in G. Let Gclo denote the reflexive
transitive closure of G, i.e., the graph having an edge (u,v) if and only if u � v, i.e.,
v is reachable from u over some directed path in G. Gclo is in one-to-one correspon-
dence with a partial order (poset) P = (V,≤) on the ground set V where the relation
of the poset corresponds to the edges of Gclo. In this sense, by slight abuse of nota-
tion, we refer to Gclo also as a poset. We consider dags equipped with some topological
ordering [8].

For a dag G = (V,E) and x,y,z ∈ V , the vertex z is a common ancestor (CA) of a
pair {x,y} if both x and y are reachable from z. By CA{x,y}, we denote the set of all
CAs of x and y. A vertex z is a lowest common ancestor (LCA) of x and y if and only if
z ∈ CA{x,y} and no other vertex z′ ∈ CA{x,y} is reachable from z, that is, there exists
no witness for z and {x,y}.

3 Some of the proofs are omitted due to space limitations and can be found in [19].

A Path Cover Technique for LCAs in Dags 225

Definition 1 (Witness). A witness for z and {x,y} such that z ∈ CA{x,y} is a vertex
w ∈ V such that w ∈ CA{x,y} and z � w.

We denote the set of all LCAs of a pair {x,y} by LCA{x,y}. If it is not clear from the
context we use a subscript to indicate the graph under consideration, e.g., LCAG{x,y}.

An arbitrary lowest common ancestor z of {x,y} is also called a representative LCA
of x and y. It is a well known and used fact, first observed by Bender et al. [5], that the
vertex with the maximum topological number among all vertices in the set CA{x,y}
is an LCA of x and y. We denote this special representative LCA by maximum LCA.
(L)CA problems on dags come in various favors, i.e., computing one (representative)
LCA vs. computing all LCAs or computing LCAs for all pairs vs. computing LCAs
only for special pairs.

The width of G, denoted by w(G), is of particular interest in this work.

Definition 2 (Width). The width w(G) of a dag G is defined as the cardinality of a
maximum antichain, i.e., incomparable vertices with respect to Gclo, in G.

Note that LCA{x,y} is an antichain by definition and hence |LCA{x,y}| is upper
bounded by w(G).

For a dag G = (V,E), a path cover P of G is a set of directed paths in G such for
every v ∈ V there exists at least one path P ∈ P including v. A minimum path cover
is a path cover P such that |P | is minimized. The sizes of a maximal antichain and a
minimum path cover of G are related by the famous Dilworth Theorem [10]:

Theorem 3 (Dilworth ’50). Let G be a dag. Then, w(G) equals the size of a minimum
path cover of G.

In the context of posets one considers usually chain covers instead of path covers. The
paths in a chain cover are required to be vertex disjoint. However, it is easy to see that
each chain cover in Gclo corresponds to a path cover in G and vice versa.

3 Path Cover Technique

In this section we present a natural approach to computing LCAs in dags based on
decomposing the dag G = (V,E) into a set of paths covering G. The efficiency of this
technique depends mainly on the width (w(G)) of the underlying dag.

We start by giving an intuitive description of our approach. Let {x,y} be any vertex
pair of G and let z ∈ LCAG{x,y}. Suppose now that we start a depth first search (DFS)
in G at vertex z. Let Tz be the corresponding DFS tree [8]. Then, it is not difficult
to verify that LCATz{x,y} = z. Observe that the partial order induced by the tree is a
suborder of Gclo. Moreover, for all vertices w ∈ Tz it holds that w is reachable from z.
Since z ∈ LCA{x,y}, the only common ancestor of x and y in Tz is z. Recall again, that
the vertex with the highest topological number among CA{x,y} is a lowest common
ancestor. This leads to a first naive decomposition solution for computing representative
LCAs: For all v ∈ V , compute DFS trees Tv and preprocess these trees for LCA queries.
In order to determine a representative LCA for {x,y}, compute Z =

⋃
v∈V LCATv{x,y}

and return the maximum vertex in Z.

226 M. Kowaluk, A. Lingas, and J. Nowak

The correctness of the above approach follows from the fact that the maximum LCA
z is returned at least once by the O(n) LCA queries in the trees, i.e., by the query
LCATz{x,y}. The preprocessing time is O(nm). Subsequent queries for LCA in G can
be answered in time O(n) implying the trivial deterministic upper bound of O(n3) for
the ALL-PAIRS REPRESENTATIVE LCA problem. However, we show below that in
fact only w(G) DFS trees have to be considered.

Definition 4. For a directed path P = {v1, . . . ,vl} in G, TP is a special DFS tree ob-
tained by starting the DFS at vertex v1 and first exploring the edges along the
path P.

In the following we denote by TP(vi) the subtree of TP rooted at vertex vi ∈ P.

Lemma 5. For a directed path P = {v1, . . . ,vl} in G, TP(vi) corresponds to some DFS
tree Tvi for all 1 ≤ i ≤ l.

The above lemma implies that given a path cover P of G, only |P | DFS trees have to be
considered.

Lemma 6. Let P = {P1, . . . ,Pr} be a path cover of G. Next, let Z =
⋃

zi, where zi =
LCATPi

{x,y} for 1 ≤ i ≤ r. Then, the following chain of inclusion holds: LCA{x,y} ⊆
Z ⊆ CA{x,y}.

Remark 7. By Lemma 6 both answers to representative LCA queries and all LCA
queries can be derived from the set Z. For representative LCAs, we simply have to
find the vertex with the maximum number in Z in time O(|Z|). In order to find all
LCAs, it is necessary to identify the set of vertices without outgoing edges in the sub-
dag induced by Z. This can be achieved in time O(|Z|2). To this end, we assume that we
have a mapping from V to P such that for each v a path Pi including v is known. With
this mapping reachability queries of two vertices z1,z2 ∈ Z can be answered in constant
time by querying the LCA of {z1,z2} in the corresponding trees. Observe that z1 � z2

implies LCAPi{z1,z2} = z1 if z1 ∈ Pi.

The following lemma follows immediately from the previously established facts.

Lemma 8. Let TPC(G,r) be the time needed to compute a path cover P = {P1, . . . ,Pr}
of G. Then, ALL-PAIRS REPRESENTATIVE LCA can be solved in time O(TPC(G,r)+
rm+ rn2).

In [18] Kowaluk and Lingas show that the ALL-PAIRS REPRESENTATIVE LCA prob-
lem can be solved in time Õ(nω + w(G)n2). Furthermore, this bound is improved to
Õ(w(G)n2) [18] by using randomization. In the following we show that our path cover
technique can be applied to obtain a simple algorithm for ALL-PAIRS REPRESENTA-
TIVE LCA running in time Õ(w(G)n2).

For a given minimum path cover of size r = w(G), the above lemma immediately
yields the claimed time bounds. However, it is not known how to compute a minimum
path cover within time O(n2w(G)). Nonetheless, we show how to compute a path cover

A Path Cover Technique for LCAs in Dags 227

P of Gclo of size O(w(G) logn) in time Õ(n2w(G)), i.e., P is minimal up to a loga-
rithmic factor. We apply the technique to improve the upper bound of the ALL-PAIRS

REPRESENTATIVE LCA and ALL-PAIRS ALL LCA problems on dags of small width.
The standard solution for computing a minimum chain cover of a dag reduces the

problem to finding a maximum matching in a bipartite graph [13]. The number of
edges in the bipartite graph corresponds to the number of edges in Gclo. In the de-
terministic setting, the best algorithm for solving the bipartite matching problem is still
the O(m

√
n) solution given by Hopcroft and Karp [15]. Recently, Mucha et al. [20]

have shown that a maximum matching in a bipartite graph can be found in O(nω) using
randomization. On the other hand, Felsner et al. [12] showed that it is possible to rec-
ognize a poset P of width at most k in time O(n2k). In their approach, the parameter k is
given beforehand and – in the case that the width of P is bounded by k – their algorithm
can be extended to output a chain cover of size k.

Definition 9 (Greedy Path Cover). Let G = (V,E) be a dag. A greedy path cover
of G is obtained by recursively finding paths P1, . . . ,Pr such that for all Pi, the value
|Pi \

⋃
k≤i−1 Pk|, i.e., the number of vertices on Pi that are not covered by any of the

paths P1, . . . ,Pi−1, is maximized.

That is, we reduce the dag into paths by recursively finding paths containing as much
uncovered vertices as possible. In Felsner et al. [12], a similar approach is used to
decompose a partial order P in a greedy manner. In their approach, all covered vertices
are removed from the partial order. Since we do not want to construct the poset Gclo, we
cannot discard vertices. However, it is possible to establish a one-to-one correspondence
between decomposing G and Gclo. Extending the ideas in [12] yields the following
lemma.

Lemma 10. A greedy path cover P1, . . . ,Pr of G with r ≤ w(G) logn can be computed
in time O(mr).

Proof. In Felsner et al. [12], it is shown that the size of a greedy chain cover of a partial
order P is at most w(P) logn. It is not difficult to see that a greedy path cover of a dag
is in one-to-one correspondence with a greedy chain cover of the respective induced
partial order.

The (weighted) single source longest path problem can be solved in time O(n+m) by
using standard algorithms for solving the single source shortest path problem in dags,
see, e.g., [8]. Observe that arbitrary edge weights are possible. We assume without loss
of generality that G is equipped with a single source s, otherwise we simply add a super
source. We initialize each edge in G with weight 1. Then, we recursively solve the single
source longest path problem for the source s. After the ith iteration we set the weight
of each edge e = (v,w) such that w ∈ Pi to 0. It is easy to check that the weight of Pi is
equal to the number of uncovered vertices on Pi. Hence, we obtain a greedy path cover.
It is also easy to see that each step can be implemented in time O(m). ��
Lemma 10 implies the following theorem.

Theorem 11. For a dag G with n vertices and width w(G), ALL-PAIRS REPRESENTA-
TIVE LCA can be solved in time Õ(w(G)n2) and ALL-PAIRS ALL LCA can be solved
in time Õ(w(G)2n2).

228 M. Kowaluk, A. Lingas, and J. Nowak

This result improves the upper bound of ALL-PAIRS REPRESENTATIVE LCA ([18]) for
dags with w(G) = O(nω−2−δ) and the general upper time bound for ALL-PAIRS ALL

LCA ([11]) for dags with w(G) = O(n
ω(2,1,1)−2

2 −δ) for a constant δ > 0. Using results on
the expected value of the width of Gn,p random dags [3] we get the following corollary.
The respective average case complexities match results previously established in [11].

Corollary 12. Using the path cover technique ALL-PAIRS REPRESENTATIVE LCA
and ALL-PAIRS ALL LCA can be solved in time Õ(n2) on a dag with n vertices in the
average case under the assumption that the input space is distributed according to the
Gn,p model for random dags with edge probability p = O(1).

4 Combining Small Width and Low Depth

The path cover technique described in the previous chapter can be naturally used to-
gether with the solution for dags of low depth given in [9]. The depth of a vertex v
denoted by dp(v) is defined as the length of longest path to v in G. The depth of G,
dp(G) is given by dp(G) = maxv∈V{dp(v)}.

Theorem 13. For a dag G with depth dp(G) = nq, ALL-PAIRS REPRESENTATIVE

LCA can be solved in Õ(nq+ω(1,1−q,1)).

This result is achieved by exploiting the fact that common ancestor of maximum depth
in a dag G is a lowest common ancestor. Observe that a possible witness would have
greater depth by definition. The following lemma can be derived from the above propo-
sition.

Lemma 14. For a dag G = (V,E) with n vertices and depth dp(G) = nq, the ALL-
PAIRS REPRESENTATIVE LCA problem can be solved in time Õ(n2+µ−δ) if q ≤ 1 −
µ − δ for an arbitrary small constant δ > 0.

Proof. ALL-PAIRS REPRESENTATIVE LCA in G can be solved in time Õ(nq+ω(1,1−q,1))
(Thm. 13). We make use of Proposition 16. Let β = ω−2

1−α . Then we want to solve the
following inequality q + ω(1,1 − q,1) ≤ 2 + µ − δ (i) for q. Recall that µ satisfies
ω(1,µ,1) = 1 + 2µ. By Proposition 16 we get: µ = 1−βα

2−β (ii). Now we plug (ii) into
(i) and solve for q to get q ≤ 1 − µ − δ. ��

Assume first that we have already computed Gclo. On a high level, the combination of
the above result with our path cover technique works as follows:

1. Construct a partial chain cover C1, . . . ,Cr of Gclo greedily. That is, search for chains
of maximum size until a termination criterion (to be specified below) is satisfied.
Note that we do not require that the chains cover all vertices of Gclo. Note further
that in general r 	= w(G).

2. Construct the special DFS trees associated with the chains as described in the pre-
vious chapter and prepare them for constant time LCA queries.

3. Reduce Gclo along the chains. That is, let VC =
⋃

1≤i≤r Ci. Then we remove all edges
(v,w) such that v ∈ VC. Observe that all edges (v,w) where v /∈ VC are retained. The
resulting graph is called the reduced dag denoted by GR = (V,ER).

A Path Cover Technique for LCAs in Dags 229

4. For all x,y ∈ V , compute maximum depth common ancestors in GR. The maximum
depth CAs are either lowest common ancestors in G or all of their witnesses are
in the set VC. Thus, in a second step we search for possible witnesses by querying
the special DFS trees for vertices in VC. If witnesses exist, i.e., common ancestors
that are successors of the maximum depth CAs, we output the witness with highest
label which is a lowest common ancestor.

The reasoning behind this approach is as follows. By decomposing the graph along
the longest chains we reduce successively the depth of Gclo. As soon as we reach a
certain threshold depth we can apply the algorithm given in [9] to efficiently compute
maximum depth CAs in the reduced dag. Moreover, if a maximum depth CA in the
reduced dag GR is not a lowest common ancestor in the original dag, we know that all
its witnesses are covered by the chains. Observe that outgoing edges of non-covered
vertices are not removed. Hence, if z′ is a witness of z and {x,y} and we suppose z′ /∈
VC, we have z � z′ and z′ � x,y in the reduced dag contradicting the fact that z is a
maximum depth CA in GR.

In the following we refer to the algorithm described in this section as the combined
algorithm. Before proving the key properties of the approach we give a formal descrip-
tion of the decomposition:

Lemma 15. Let zh be a maximum depth common ancestor in GR of a pair {x,y}. Then
either zh ∈ LCAG{x,y} or all witnesses of zh and {x,y} in G are in the set VC.

Proof. Suppose that zh is not an LCA of {x,y} in G. In that case there exists a witness z′

such that z′ ∈ LCAG{x,y} and z′ is a successor of zh. This immediately implies z′ ∈ VC.
Indeed, suppose that z′ /∈ VC. This implies (i) dp(z′) > dp(zh) since z′ is a successor of
z and (zh,z′) is not removed by the decomposition and (ii) z′ ∈ CAGR{x,y}. But, (i) and
(ii) contradict the fact that zh is the maximum depth CA of {x,y} in GR. ��

Observe that we have constructed special DFS trees for the chains in Gclo. However,
in general it is also possible to use an approach that allows constructing the trees in G.
This involves computing a greedy path cover of G instead of the greedy chain cover of
Gclo. In any case, the reduced dag GR results from Gclo.

We specify the full algorithm for finding representative LCAs for each vertex pair
with respect to G.

The correctness of Algorithm 1 is a consequence of Lemma 15 and the results of
Section 3. We turn our attention to the complexity of this approach. Obviously, the
running time depends on (i) the cardinality r of the partial chain cover and (ii) dp(GR).
Our goal is an algorithm that does not exceed the worst case complexity for the general
problem of O(n2+µ) but performs better in as many cases as possible. To this end,
one can specify an implementation of the termination criterion for the preprocessing
algorithm as follows: Pick threshold parameters W and H and terminate whenever r ≥
W or dp(GR) ≤ H. Any reasonable choice of H should satisfy H ≤ n1−µ according to
Lemma 14. Observe that any choice of W such that W ≤ nµ is sufficient to guarantee a
worst case upper bound of O(n2+µ). Simply modify the combined algorithm such that it
uses the general solution whenever r ≥ W (which implies dp(GR) > H). However, there
is a more elegant way to find the optimal decomposition. The idea is to look for the

230 M. Kowaluk, A. Lingas, and J. Nowak

Algorithm 1. Algorithm for representative LCA

Input: The reduced dag GR = (V,ER) and special DFS trees TC1 , . . . ,TCr that are prepared
for constant LCA queries (output of the preprocessing algorithm)

Output: All-pairs representative LCA matrix
begin1

Compute maximum depth CAs on for all vertex pairs in GR using the algorithm2

described in [9].
foreach Vertex pair {x,y} do3

Let zh be the maximum depth CA of {x,y} with respect to GR.4

Initialize an empty result set Z.5

foreach chain Ci, 1 ≤ i ≤ r do6

Query LCA{x,y} in TCi and add the result to Z.7

end8

Remove all vertices from Z that are not successors of zh.9

Return the maximum vertex in Z and zh if Z is empty.10

end11

end12

intersection point of the functions nq+ω(1,1−q,1) and rn2, i.e., the functions that describe
the asymptotic behavior of the two approaches. The respective termination criterion
becomes (neglecting polylogarithmic factors)

rn2 > nlogn(dp(GR))+ω(1,1−logn(dp(GR)),1). (1)

In order to prove the following theorem, we make use of the following proposition
which is due to Huang and Pan [16]. Recall that ω(a,b,c) denotes the exponent of the
multiplication of an na × nb by an nb × nc matrix.

Proposition 16 (Rectangular Matrix Multiplication). Let ω = ω(1,1,1)< 2.376 and
let α = sup{0 ≤ r ≤ 1 : ω(1,r,1) = 2 + o(1)}. Then

ω(1,r,1) ≤
{

2 + o(1) if 0 ≤ r ≤ α
2 + ω−2

1−α (r − α)+ o(1) if α ≤ r ≤ 1.
(2)

The current best bound for α is α ≤ 0.294 and is due to Coppersmith [6].

Theorem 17. The time complexity of the combined algorithm is bounded by O(n2+µ)
where µ satisfies ω(1,µ,1) = 1 + 2µ.

Proof. Let in the following β = ω−2
1−α . Let r be the cardinality of the path cover pro-

duced by the preprocessing algorithm and let dp(GR) = nq be the depth of the reduced
graph GR. By Equation (1) we have nq+ω(1,1−q,1) < rn2 < nq+ω(1,1−q,1) + 1 and from
this we can conclude r ≤ nq+ω(1,1−q,1)−2+o(1). Moreover, Õ(n2r) is obviously an upper
time bound for the combined algorithm. We can safely assume that q ≤ 1/2. To see
this, suppose first that q > 1/2. Since every path covers at least nq vertices, we have
r ≤ n1−q. On the other, r > nq+o(1) by Equation (1) and thus n1−q > nq+o(1), a contra-
diction for q > 1/2. We apply Proposition 16 and get r ≤ nq+2+β(1−q−α)−2+o(1). This

A Path Cover Technique for LCAs in Dags 231

simplifies to r ≤ nq(1−β)+β(1−α)+o(1).Since we know that each path in the path cover
covers at least h vertices we have q ≤ logn

n
r . Combining the above two inequalities

yields r ≤ nlogn
n
r (1−β)+β(1−α)+o(1). Since we have nlogn

n
r (1−β)+β(1−α) =

(
n
r

)1−β ·nβ(1−α),

this simplifies to r ≤ n
1−βα
2−β +o(1). On the other hand, recall that the parameter µ satisfies

ω(1,µ,1) = 1+2µ. Again, we use Proposition 16 to obtain µ = 1−βα
2−β , which concludes

the proof. ��

As an immediate consequence of the above lemma and the current best bounds for ω
and α we get the following corollary.

Corollary 18. The time complexity of the algorithm for solving ALL-PAIRS REPRE-
SENTATIVE LCA is O(n2.575).

Observe that the average case bound of Õ(n2) is still valid under the assumption that the
input space is distributed according to the Gn,p model with constant edge probability p.
To see this, observe that the transitive closure of a random dag in the Gn,p model for
arbitrary values of p can be computed in average case time Õ(n2) using the algorithm
given by [24].

The combination of these two techniques narrows down the classes of dags for which
no solution faster than O(n2+µ) is known considerably. Indeed, recall that for dags G of
depth dp(G) ≤ n1−µ−δ the ALL-PAIRS REPRESENTATIVE LCA problem can be solved
in time Õ(n2+µ−δ) by Lemma 14.

Theorem 19. For a dag G with n vertices and an arbitrary constant µ ≥ δ > 0 ALL-
PAIRS REPRESENTATIVE LCA can be solved in time Õ(n2+µ−δ) if G does not contain a
subgraph H that contains at least nµ−δ (vertex-disjoint) maximum size (w.r.t. the greedy
approach) chains of length at least n1−µ−δ.

Observe that this is a significant restriction for bad dag classes, namely an almost linear-
sized, i.e., n1−2δ for an arbitrary small constant δ, subdag of extremely regular structure.

The ALL-K-SUBSETS REPRESENTATIVE LCA problem is an extension of the ALL-
PAIRS REPRESENTATIVE LCA problem. Given a constant k ≥ 2, compute a represen-
tative LCA for each k-subset of vertices in G. The problem has been considered recently
by Yuster [26]. He shows that the ALL-K-SUBSETS REPRESENTATIVE LCA problem
can be solved in time O(n3.575) for k = 3 and O(nk+1/2) for k ≥ 4. We improve slightly
upon the bound for k = 3 by using our combined approach.

Theorem 20. The ALL-K-SUBSETS REPRESENTATIVE LCA problem can be solved
in time O(n3.5214) for k = 3 and Õ(nk+ 1

2) for k ≥ 4.

Proof. Let G = (V,E) be a dag of depth dp(G) = nq. Combining the ideas in [26] and
[9] for computing LCAs in dags of small depth, ALL-K-SUBSETS REPRESENTATIVE

LCA can be solved by computing (arbitrary) witnesses for Boolean matrix products
MMT for each level of the dag. More specifically, let li be the number of vertices on

level Li, then the matrix M corresponding to level Li is an n(n
k/2) × nli matrix. Further,

by Jensen’s inequality, the time complexity of the algorithm is maximized if the lev-
els of G are of equal size. That is, the running time of this approach can be bounded

232 M. Kowaluk, A. Lingas, and J. Nowak

by Õ(nq+ω(1,
2(1−q)

k ,1) k
2). The additional polylogarithmic factor results from the witness

computations.
On the other hand, we note that the LCA of a k-subset of vertices in a preprocessed

tree can be computed in O(1) since we assume that k is a constant. This implies that
ALL-K-SUBSETS REPRESENTATIVE LCA can be solved in time O(nkw(G)) by ex-
tending the ideas in Section 3.

Now we combine these two approaches in an analogous way as described above.

We get an algorithm with time complexity Õ(rnk +nq+ω(1,
2(1−q)

k ,1) k
2) for 2(1−q)

k > 0.294

and Õ(rnk +nq+k) for 2(1−q)
k ≤ 0.294, where q ≤ logn

n
r . Observe first that for k ≥ 4 the

respective function is minimized for q = 1
2 , which implies a time bound of Õ(nk+ 1

2).
Let now k = 3 and assume first that 2(1−q)

3 ≤ 0.294. This implies q ≥ 0.559 and

hence an upper bound of Õ(nk+0.559). Suppose now that 2(1−q)
3 > 0.294. We solve the

equality rnk = nq+ω(1,
2(1−q)

k ,1) k
2 . By using q ≤ logn

n
r and β = ω−2

1−α we find the bound

for r ≤ n1− 3
2 βα in a similar way as in the proof of Theorem 11. The claim follows now

since 0.5214 < 1 − 3
2 βα. ��

Note that Theorem 20 slightly subsumes Yuster’s upper time bound for k = 3 and
matches his remaining upper bounds for k ≥ 4 [26] ignoring polylogarithmic factors.
Again, we observe that if the input dags are distributed according to the Gn,p model for
random dags such that p is a constant, ALL-K-SUBSETS REPRESENTATIVE LCA can
be solved in time Õ(nk) in the average case. Nonetheless, we can even state the follow-
ing corollary which is valid for all choices of the edge probability p. This result is based
on a dynamic programming algorithm analogous to algorithms described in [4].

Corollary 21. ALL-K-SUBSETS REPRESENTATIVE LCA can be solved in time Õ(nk)
in the average case.

We note that our path cover approach can be further applied to develop space-efficient
solutions for LCA problems in dags. For details on this application we refer to the full
version of this paper [19].

References

1. Aı̈t-Kaci, H., Boyer, R., Lincoln, P., Nasr, R.: Efficient Implementation of Lattice Operations.
ACM Transactions on Programming Languages 11(1), 115–146 (1989)

2. Aho, A., Hopcroft, J., Ullman, J.: On Finding Lowest Common Ancestors in Trees. SIAM
Journal on Computing 5(1), 115–132 (1976)

3. Barak, A., Erdös, P.: On the maximal number of strongly independent vertices in a random
acyclic directed graph. SIAM J. Algebraic Discrete Methods 5, 508–514 (1984)

4. Baumgart, M., Eckhardt, S., Griebsch, J., Kosub, S., Nowak, J.: All-Pairs Common Ancestor
Problems in Weighted Directed Acyclic Graphs. In: Chen, B., Paterson, M., Zhang, G. (eds.)
ESCAPE 2007. LNCS, vol. 4614, pp. 282–293. Springer, Heidelberg (2007)

5. Bender, M.A., Farach-Colton, M., Pemmasani, G., Skiena, S., Sumazin, P.: Lowest common
ancestors in trees and directed acyclic graphs. Journal of Algorithms 57(2), 75–94 (2005); A
preliminary version. In: Proc. SODA 2001, pp. 845–853 (2001)

A Path Cover Technique for LCAs in Dags 233

6. Coppersmith, D.: Rectangular matrix multiplication revisited. Journal of Symbolic Compu-
tation 13, 42–49 (1997)

7. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progression. Journal of
Symbolic Computation 9, 251–290 (1990)

8. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn.
McGraw-Hill Book Company, Boston (2001)

9. Czumaj, A., Kowaluk, M., Lingas, A.: Faster algorithms for finding lowest common ances-
tors in directed acyclic graphs. In: The special ICALP 2005, Theoretical Computer Science,
vol. 380(1-2), pp. 37–46 (2007)

10. Dilworth, R.: A decomposition theorem for partially ordered sets. Annals of Mathemat-
ics 51(1), 161–166 (1950)

11. Eckhardt, S., Mühling, A., Nowak, J.: Fast Lowest Common Ancestor Computations in Dags.
In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 705–716.
Springer, Heidelberg (2007)

12. Felsner, S., Raghavan, V., Spinrad, J.: Recognition Algorithms for Orders of Small Width
and Graphs of Small Dilworth Number. Order 20(4), 351–364 (2003)

13. Ford, L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press, Princeton
(1962)

14. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors. SIAM Journal
on Computing 13(2), 338–355 (1984)

15. Hopcroft, J.E., Karp, R.M.: An n5/2 algorithm for maximum matchings in bipartite graphs.
SIAM J.Comput. 2(4), 225–231 (1973)

16. Huang, X., Pan, V.Y.: Fast rectangular matrix multiplications and applications. Journal of
Complexity 14, 257–299 (1998)

17. Kowaluk, M., Lingas, A.: LCA queries in directed acyclic graphs. In: Caires, L., Italiano,
G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp.
241–248. Springer, Heidelberg (2005)

18. Kowaluk, M., Lingas, A.: Unique Lowest Common Ancestors in Dags Are Almost as Easy
as Matrix Multiplication. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS,
vol. 4698, pp. 265–274. Springer, Heidelberg (2007)

19. Kowaluk, M., Lingas, A., Nowak, J.: A Path Cover Technique for LCAs in Dags. Technical
Report TUM-I0809, Technische Universität München (2008)

20. Mucha, M., Sankowski, P.: Maximum Matchings via Gaussian Elimination. In: Proc. FOCS
2004, pp. 248–255 (2004)

21. Nykänen, M., Ukkonen, E.: Finding lowest common ancestors in arbitrarily directed trees.
Information Processing Letters 50(6), 307–310 (1994)

22. Schieber, B., Vishkin, U.: On Finding Lowest Common Ancestors: Simplification and Paral-
lelization. SIAM Journal on Computing 17(6), 1253–1262 (1988)

23. Shäffer, A.A., Gupta, S.K., Shriram, K., Cottingham Jr., R.W.: Avoiding recomputation in
linkage analysis. Human Heredity 44, 225–237 (1994)

24. Simon, K.: An Improved Algorithm for Transitive Closure on Acyclic Digraphs. Theor. Com-
put. Sci. 58, 325–346 (1988)

25. Tarjan, R.E.: Applications of path compression on balanced trees. Journal of the ACM 26(4),
690–715 (1979)

26. Yuster, R.: All-pairs disjoint paths from a common ancestor in Õ(nω) time. Theoretical Com-
puter Science 396(1-3), 145–150 (2008)

Boundary Labeling with Octilinear Leaders�,��

M.A. Bekos1, M. Kaufmann2, M. Nöllenburg3, and A. Symvonis1

1 School of Applied Mathematical & Physical Sciences,
National Technical University of Athens, Greece

2 Institute for Informatics, University of Tübingen, Germany
3 Faculty of Informatics, Karlsruhe University, Germany

Abstract. A major factor affecting the readability of an illustration that
contains textual labels is the degree to which the labels obscure graphi-
cal features of the illustration as a result of spatial overlaps. Boundary
labeling addresses this problem by attaching the labels to the boundary
of a rectangle that contains all features. Then, each feature should be
connected to its associated label through a polygonal line, called leader,
such that no two leaders intersect.

In this paper we study the boundary labeling problem along a new line
of research, according to which different pairs of type leaders (i.e. do and
pd, od and pd) are combined to produce boundary labelings. Thus, we are
able to overcome the problem that there might be no feasible solution
when labels are placed on different sides and only one type of leaders
is allowed. Our main contribution is a new algorithm for solving the
total leader length minimization problem (i.e., the problem of finding
a crossing free boundary labeling, such that the total leader length is
minimized) assuming labels of uniform size. We also present an NP-
completeness result for the case where the labels are of arbitrary size.

1 Introduction

Placing extra information—usually in the form of textual labels—next to fea-
tures of interest within an illustration, constitutes an important task in the
process of information visualization. The interest in algorithms that automate
this task has increased, due to the large number of applications that stem from
diverse areas such as cartography, geographical information systems etc.

Current research on map labeling has been devoted to labeling point-features,
so that each label is placed next to the point that it describes (an extensive
bibliography about map labeling is maintained by Strijk and Wolff [14]). In
this case, the basic requirement is that the labels should be pairwise disjoint.
However, this is not always possible, e.g., in the case where the labels are too

� The work of M. Bekos and A. Symvonis is funded by the project PENED-2003.
PENED-2003 is co - funded by the European Social Fund (75%) and Greek National
Resources (25%).

�� The work of M. Nöllenburg is supported by the German Research Foundation (DFG)
under grant WO 758/4-3.

J. Gudmundsson (Ed.): SWAT 2008, LNCS 5124, pp. 234–245, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Boundary Labeling with Octilinear Leaders 235

large or the feature set is too dense. In practice, large labels are quite usual,
e.g., in technical drawings, where it is common to explain certain features of the
drawing with blocks of text, arranged on its boundary. As a response to this
problem, Bekos et al. [4] proposed boundary labeling. In boundary labeling, the
labels are attached to the boundary of a rectangle R enclosing all features and
each feature is connected with its label by using polygonal lines, called leaders.

Several authors have proposed algorithms to produce boundary labelings in
different settings [2,3,4,5,6,11]. Recently, Benkert et al. [5,6] studied the bound-
ary labeling problem along a new line of research, according to which the leaders
are of type do, i.e., polygonal lines consisting of two line segments, where the
first one is “diagonal” to the side of R containing the label it leads to, whereas
the second one is orthogonal to that side (see Figure 1c). Leaders of type do
maintain a uniform shape and result in simple and easy-to-read labelings. How-
ever, in the work reported in [5] and [6], Benkert et al. study the case where the
labels can be attached only to one side of R and they state that the production
of a boundary labeling with such leaders is not always feasible. Extending their
work, we examine the case of four-sided boundary labeling. We also introduce
two new types of leaders and we show that by combining them, the boundary
labeling problem is always feasible. To the best of our knowledge, this is the first
attempt, where different types of leaders are combined to produce boundary
labelings.

2 Problem Definition

The input of a boundary labeling problem consists of a set P of n points (referred
to as sites) si = (xi, yi), i = 1, 2, . . . n. The site set P is enclosed in an axis-
parallel rectangle R = [0, W] × [0, H], which is called enclosing rectangle. Each
site si is associated with an axis-parallel, wi × hi rectangular label li.

The output of a boundary labeling problem is a placement of the labels at
distinct positions on the boundary of R and a set of leaders connecting each site
with its associated label, so that i) the labels do not overlap with each other
and ii) the leaders do not intersect or overlap with each other. Such labelings
are referred to as legal boundary labelings (or simply as legal labelings).

Following the naming scheme of Bekos et al. [4], we focus on three different
types of leaders, each of which consists of two line segments:

Type-od leaders: The first line segment of a leader of type od is orthogonal
(o) to the side of R containing the label it leads to. Its second line segment
is “diagonal” (d) to that side (see Figure 1a).

Type-pd leaders: The first line segment of a leader of type pd is parallel (p)
to the side of R containing the label it leads to. Its second line segment is
“diagonal” (d) to that side (see Figure 1b).

Type-do leaders: The first line segment of a leader of type do is “diagonal” (d)
to the side of R containing the label it leads to. Its second line segment is
orthogonal (o) to that side (see Figure 1c).

236 M.A. Bekos et al.

R

(a) od-leaders

R

(b) pd-leaders

R

(c) do-leaders

Fig. 1. Different types of leaders

In general, the labels are of arbitrary size (non-uniform labels ; see Figure 1b).
We separately consider the case, where the labels are of the same width and
height (uniform labels; see Figures 1a and 1c). We further assume that the point
where each leader touches its associated label (referred to as port) is fixed, e.g.,
the middle point of the label’s side that faces the enclosing rectangle R (see
Figures 1a, 1b and 1c). Also, the labels are usually attached to one, two or all
four sides of the enclosing rectangle and are either placed at predefined locations
(fixed labels) along the sides or can slide (sliding labels).

Keeping in mind that we want to obtain simple and easy-to-read labelings, we
consider the leader length minimization problem, i.e., the problem of determining
a legal labeling, such that the total leader length is minimized.

2.1 Preliminaries

We denote the number of sites (and consequently the number of labels) by n.
We also denote by ci the leader of site si. A set of sites is considered to be in
general position if i) no three sites are collinear, ii) no two sites share the same
x- or y-coordinate, iii) no two sites lie on the same diagonal line and iv) the
horizontal, vertical and diagonal lines that pass through the ports of the labels
do not coincide with the sites. In order to avoid leader overlaps, we usually
assume that the input site set P is in general position. We also assume that the
sites, the leader bends and the label corners have integer coordinates. Consider
a leader ci which originates from site si and is connected to a label li on the
right side AB of R. The horizontal line which coincides with si divides the plane
into two half-planes (see the dashed line l of Figure 2). We say that leader ci

is oriented towards corner A if both A and the port of label li are on the same
half-plane, otherwise, we say that leader ci is oriented away from corner A.

Consider a site si that has to be connected to a label li on the right side AB
of R. The lines that pass through the port of label li and form 45o, 90o and
135o angles with the left side of label li, partition R into four regions Ri,1, Ri,2,
Ri,3 and Ri,4, as in Figure 3. If the site si lies within a region incident to A or
B (i.e., Ri,1 or Ri,4; refer to the light-gray colored regions of Figure 3), then it
can only be connected to label li using a leader of type pd. Otherwise (i.e., site
si lies within Ri,2 or Ri,3; refer to the dark-gray colored regions of Figure 3), it
can be connected to li using either a leader of type do or od. Also, observe that
connecting a site to its label with a leader of type do, requires the same leader
length as with a leader of type od. So, depending on the location of site si, one
has to use an appropriate leader to connect it to its label li.

Boundary Labeling with Octilinear Leaders 237

R
A

B
l

si

ci
li

Fig. 2. ci is oriented towards corner A

A

B

li

Ri,4Ri,3

Ri,2 Ri,1

Fig. 3. Connecting site si to label li

This paper is structured as follows: In Section 3 we prove that the problem
of determining a legal boundary labeling of minimum total leader length with
leaders of type do and pd and non-uniform labels is NP -complete. In Sections 4
and 5, we present polynomial time algorithms for obtaining either optimal (in
terms of total leader length) or simply legal boundary labelings with labels of
uniform size. We conclude in Section 6 with open problems and future work.

3 Boundary Labeling with Non-uniform Labels

In this section, we consider the boundary labeling problem with labels of non-
uniform size. We are given a set P of n sites si, i = 1, 2, . . . n, each associated
with axis-parallel, rectangular label li of height hi. The labels are allowed to be
placed on the right side of the enclosing rectangle R. We further assume fixed
label ports, i.e., each leader is connected to its corresponding label using the
middle point of the label side that faces the enclosing rectangle. For the case
where the sites can be placed in arbitrary position, i.e., the general position
restriction is relaxed, we can prove:

Theorem 1. Given a set P of n sites, a label li of height hi for each site si

and an integer k ∈ Z
+, it is NP -complete to decide whether there exists a legal

boundary labeling of total leader length no more than k assuming type do and pd
leaders.

Proof. Membership in NP follows from the fact that a nondeterministic algo-
rithm needs only guess a positioning of the labels on the boundary of R, a set
of leaders connecting each site with its associated label and check in polynomial
time that i) the labels do not overlap with each other, ii) the leaders do not
intersect with each other and iii) the sum of the lengths of all leaders is no more
than k.

We will reduce the following single machine scheduling problem (known as
total discrepancy problem [8]) to our problem: We are given a set J of 2n+1 jobs
J0, J1, J2, . . . , J2n, which are to be executed on one machine nonpreemptively
and a single preferred midtime M ∈ Z

+, which corresponds to the time at
which we would like the first half of each job to be completed. Each job Ji is
also associated with a known deterministic processing time pi. Without loss of
generality, we assume that M is large (e.g. M >

∑2n
i=0 pi) and the jobs are

ordered so that pi < pj, ∀i < j. Given a schedule σ, we denote the starting

238 M.A. Bekos et al.

(completion) time of job Ji in σ by Si(σ) (Ci(σ)) and we use Mi(σ) to denote
its midtime, i.e., Mi(σ) = Si(σ) + pi/2, or equivalently, Mi(σ) = Ci(σ) − pi/2.
Under a schedule σ, a job Ji is considered to be on-time if its midtime Mi(σ) is
equal to the preferred midtime M and in this case, it incurs no penalty. On the
other hand, if the midtime Mi(σ) of Ji commences prior to M (exceeds M), an
earliness (tardiness) penalty Ei(σ) = M − Mi(σ) (Ti(σ) = Mi(σ) − M) incurs.
The objective is to determine a schedule σ, so that the total earliness-tardiness
penalty

∑2n
i=0(Ei(σ)+Ti(σ)) =

∑2n
i=0 |M −Mi(σ)| is minimized1. Let σopt be an

optimal schedule of the total discrepancy problem. Then, the following hold [8]:

1) σopt does not have any gaps between the jobs.
2) M0(σopt) = M .
3) If A(σopt) = {Ji : Mi(S) < M} and B(σopt) = {Ji : Mi(S) > M}, then

|A(σopt)| = |B(σopt)| = n.
4) σopt = [An, An−1, . . . , A1, J0, B1, B2, . . . , Bn], where {Ai, Bi} = {J2i, J2i−1},

i.e., if Ai = J2i then Bi = J2i−1 otherwise Ai = J2i−1 and Bi = J2i.
5) The minimum total earliness-tardiness penalty is equal to

ETP =
n∑

i=1

(p2i + p2i−1)(n − i + 1/2) + np0.

The reduction we propose, can be achieved in linear time. Let IS be an instance
of the total discrepancy problem mentioned above. We proceed to construct an
instance IL of our problem as follows: For each job Ji, we introduce a site si

placed at point (2n + 1 − i, M), i.e., the sites are collinear, lie on the horizontal
line y = M and the horizontal distance between two consecutive sites is one unit.
The label li associated with site si has height hi equal to the processing time
pi of job Ji. The bottom left corner of the enclosing rectangle R is (0, 0). The
height H of R is equal to 2M , which ensures that all labels can be placed at the
right side of R, since M >

∑2n
i=0 pi. We seek to exclude the case where a site can

be connected to its label through a leader of type pd. So, the enclosing rectangle
should be of appropriate width. We set its width W to be equal to

√
2

2 H +2n+1
(see Figure 4). This ensures that the gray-colored triangular area contains no
sites and therefore, all sites can be connected to their associated labels through
leaders of type do only.

Then, we can show that we can derive a schedule σ of IS with total earliness-
tardiness penalty ETP if and only if we can determine a legal labeling L of IL

with total leader length at most (
√

2 − 1)ETP + (2n + 1)(W − n − 1). ��

Note. The NP-completeness result of Theorem 1 also holds in the case of bound-
ary labelings with po leaders. The proof is almost identical. Instead of measuring
the length of each leader using the Euclidean metric, we have to use the Man-
hattan metric.

1 Surveys on the most important aspects of scheduling research are given at [1,9].

Boundary Labeling with Octilinear Leaders 239

R

(0, 0)

s0s1

s2s3
s4

y = M H = 2M

√
2

2 H2n + 1

Fig. 4. For each job Jj , we introduce a site si placed at (2n + 1 − i, M)

4 Boundary Labeling with Uniform Labels

Theorem 1 implies that, unless P = NP , we cannot efficiently determine an opti-
mal solution of the boundary labeling problem with non-uniform labels. There-
fore, we proceed to consider the case of uniform labels, which is a reasonable
assumption, since in real applications the labels usually contain single line texts
(for example a place name or an integer used as a legend).

Let P = {s1, s2, . . . sn} and L = {l1, l2, . . . ln} be the sets of sites and labels,
respectively. We assume that the sites are in general position and the labels are
placed in fixed positions on the boundary of R. Since the labels are of uniform
size, each site si can be connected to any label lj . We seek to connect each site
si to a label lj , so that the total leader length is minimized.

Initially, we construct a complete weighted bipartite graph G = (P ∪L, E, w)
between all sites si ∈ P and all labels lj ∈ L, where E = {(si, lj); si ∈ P, lj ∈ L}
and w : E → R is a cost function (see step A of Algorithm 1). Each edge
eij = (si, lj) ∈ E of G is assigned a weight w(eij) = dij , where dij is equal to the
length of the leader which connects site si with label lj . Recall that the type of
the leader that will be used to connect site si to label lj depends on their relative
positions, as stated in Section 2.1. Also, recall that if a site can be connected
to its associated label with a leader of type do, it can also be connected using
an od leader. However, in both cases the total length required is the same and,
consequently, the edge eij is assigned the same weight, regardless the type of the
leader that will eventually used (i.e., do or od). Observe that G is regular.

We proceed by computing a minimum-cost bipartite matching on G, i.e., a
matching between the sites and the labels that minimizes the total weight of the
matched pairs (see step B of Algorithm 1). Since G is regular and bipartite, by
Hall’s theorem a perfect matching exists [10]. Then, we obtain a labeling M of
minimum total leader length as follows: If an edge eij = (si, lj) ∈ E is selected
in the matching, then we connect site si with label lj using a leader of length
w(eij) (see step C of Algorithm 1). However, labeling M may contain crossings,
which have to be eliminated while keeping the total leader length unchanged,
i.e., equal to that of M (see step D of Algorithm 1). The crossing elimination
procedure is described in the remainder of this section and depends on i) the
location of the labels and ii) the type of the leaders that are used to produce M .

240 M.A. Bekos et al.

Algorithm 1. Generic Algorithm
input : A set P = {s1, . . . , sn} of n sites and a set L = {l1, . . . , ln} of n uniform

labels placed on the boundary of R.
output : A crossing free boundary labeling of minimum total leader length.

Step A: Construct a complete weighted bipartite graph.
Construct a complete weighted bipartite graph G = (P ∪ L, E, w) between all
sites si ∈ P and all labels lj ∈ L. The weight w(eij) of an edge eij = (si, lj) ∈ E
is the length of the leader, say dij , which connects si with lj .

Step B: Compute a Minimum Cost Bipartite Matching.
Compute a minimum-cost perfect bipartite matching M of G, i.e., compute a
matching between sites and labels that minimizes the total distance of the
matched pairs.

Step C: Obtain an optimal boundary labeling M .
foreach (edge eij = (si, lj) ∈ E) do

if eij = (si, lj) ∈ M then connect site si to label lj s.t. length(ci) = w(eij)
Step D: Eliminate crossings.

Eliminate all crossings among pairs of leaders and obtain a legal boundary
labeling M ′, keeping the total leader length unchanged, i.e., equal to that of M.

4.1 One-Sided Boundary Labeling

We first describe how to eliminate all crossings of labeling M (obtained in Step
C of Algorithm 1), assuming that the labels are allowed to be attached to one
side of the enclosing rectangle R, say the right side AB. Note that labeling M
is of minimum total leader length and the leaders, we have used to produce it in
Step C of Algorithm 1, are i) either of type do and pd or ii) of type od and pd.
Our aim is to eliminate all crossings and obtain a legal labeling M ′ that keeps
the total leader length unchanged.

Lemma 1. Let M be an optimal one-sided boundary labeling either with type
do and pd leaders or with type od and pd leaders (which may contain crossings)
obtained in Step C of Algorithm 1. Let ci and cj be a pair of intersecting leaders
originating from sites si and sj, respectively. Then the following hold:

i) Leaders ci and cj are of the same type.
ii) Leaders ci and cj are oriented towards the same corner, say A, of the en-

closing rectangle R.
iii) Leaders ci and cj can be rerouted so that they do not cross each other, the

sum of their leader length remains unchanged, their type remains unchanged
and they remain oriented towards corner A of R.

Sketch of proof. Due to space constraints, the detailed proof is omitted. It is
based on an exhaustive case analysis on a) the types of the two leaders, b) the
orientation of the two leaders (towards the same or different corners) and c) the
different regions the two sites may reside. It also makes use of several geometric

Boundary Labeling with Octilinear Leaders 241

properties (e.g. triangle inequality, properties of isosceles triangles, orthogonal
triangles etc.). Another important property that is heavily used is the assumption
that the sites are in general position. ��

Lemma 2. Let M be an optimal one-sided boundary labeling either with type
do and pd leaders or with type od and pd leaders (which may contain crossings)
obtained in Step C of Algorithm 1. We can always determine a crossing-free
labeling M ′ with total leader length equal to that of M (step D of Algorithm 1).
Moreover, labeling M ′ can be obtained in O(n2) time.

Proof. By Lemma 1, it follows that leaders involved in a crossing are of the same
type and oriented towards the same corner of R. We show how to eliminate all
crossings of labeling M by rerouting the crossing leaders. Our method performs
four passes over the sites. In the first and second pass, we eliminate all crossings
among the leaders of type pd, which are oriented towards the top right and
bottom right corner of R, respectively. In the third and fourth pass, we eliminate
all crossings among the remaining leaders (i.e. either leaders of type do or of
type od), which are oriented towards the top right and bottom right corner of R,
respectively. Due to space constraints, we describe in detail the first pass only.

We examine these sites from right to left. We are interested only in those sites,
that have crossing leaders. Let si be the first such site and let ci be the leader
that connects it to its corresponding label on the right side AB of R (see the left
part of Figure 5). By Lemma 1.(i) and Lemma 1.(ii), all leaders that intersect ci

are also, of type pd, oriented towards corner A. Let sk be the site whose leader ck

intersects ci and its label is placed bottommost. From Lemma 1.(iii), it follows
that we can reroute leaders ci and ck so that the total leader length remains
unchanged (see the right part of Figure 5). Note that the rerouting possibly
eliminates more than one crossing but, in general, it may also introduce new
crossings with other type pd leaders, oriented towards corner A. However, the
crossings are now, located to the left of the vertical line that coincides with si

(within the gray-colored region of Figure 5). Continuing in the same manner,
the line which forms the region containing the crossings in the right-to-left pass
is pushed to the left (i.e., the area of this region is reduced at each iteration, in
the right-to-left pass), which guarantees that all crossings among leaders of type
pd that are oriented towards corner A, are eventually eliminated.

When the four independent passes over the site set are completed, we have
eliminated all crossings, resulting in a labeling M ′ without any crossings and of
total leader length equal to that of M , i.e., of minimum total leader length. To
complete the proof of the lemma, it remains to explain how to obtain in O(n2)
time the new labeling M ′. At each pass, we sort appropriately the site set. This
can be done in O(n log n) time. At each iteration over the sorted sets of sites, we
are interested in finding a specific site, which crosses the leader of the site that
we currently consider. In a straight-forward manner, this can be computed in
O(n) time. This results in a total of O(n2) time for each pass and, consequently,
for the elimination of all crossings. ��

242 M.A. Bekos et al.

R
A

B

reroute(ci, ck)

sisk

ci

ck

R
A

B
sisk

c′
i

c′
k

Fig. 5. Rerouting the crossing pd-leaders ci and ck

Theorem 2. Given a set P of n sites and a set L of n labels of uniform size
placed at fixed positions on one side of the enclosing rectangle R, we can compute
in O(n3) total time a legal boundary labeling of minimum total leader length with
type do and pd leaders.

Proof. In Step A of Algorithm 1, we construct a complete weighted bipartite
graph G = (P ∪L, E, w) between all sites si ∈ P and all labels lj ∈ L, where the
weight of an edge eij = (si, lj) ∈ E is the length of the leader connecting site si

to label li. The computation of each edge weight requires constant time. Hence,
the construction of G can be done in O(n2) time. In Step B of Algorithm 1, we
compute a minimum cost bipartite matching on the graph G, which can be done
by means of the Hungarian method in O(n3) time [12]. Note that we cannot
use Vaidya’s algorithm [13] to reduce the time complexity of Step B, since the
leaders are neither straight lines (Euclidean metric) nor rectilinear (Manhattan
metric). The solution obtained in Step C of Algorithm 1 is optimal. However, it
may contain crossings. In Step D of Algorithm 1, the crossings are eliminated
in O(n2) time. Thus, the total time complexity of Algorithm 1 for the case of
one-sided boundary labeling with type do and pd leaders is O(n3). ��

4.2 Two-Sided Boundary Labeling

In this subsection, we consider the case where the labels are allowed to be at-
tached to two opposite sides of R. Again, we use Algorithm 1 to obtain a bound-
ary labeling M (not necessarily crossing-free) of minimum total leader length.
This can be done in O(n3) time. We can observe that a possible crossing, between
two leaders that lead to labels located at opposite sides of R, cannot occur, since
the rerouting of the leaders ci and cj results in a solution with smaller total
leader length. This result is summarized in the following lemma.

Lemma 3. In an optimal two-sided boundary labeling, crossings between leaders
that connect labels located at opposite sides of the enclosing rectangle, cannot
occur.

From Lemma 3, it follows that we can independently eliminate the crossings
along the two opposite sides of R. The following theorem summarizes our result.

Theorem 3. Given a set P of n sites and a set L of n labels of uniform size,
placed at fixed positions, on two opposite sides of the enclosing rectangle R, we
can compute in O(n3) total time a legal boundary labeling of minimum total
leader length with either type do and pd leaders or with od and pd leaders.

Boundary Labeling with Octilinear Leaders 243

4.3 Four-Sided Boundary Labeling

In this subsection, we consider the general case of determining a legal boundary
labeling of minimum total leader length with type od and pd leaders, where the
labels are allowed to be attached to all four sides of R. Again, we use Algorithm 1,
to obtain a labeling M of minimum total leader length. By Lemma 1, it follows
that crossing leaders that connect labels placed at the same side of R, are of the
same type, oriented towards the same corner of R. Crossings between leaders that
connect labels placed at opposite sides of R cannot occur, because of Lemma 3.
For the case, where the leaders which cross each other connect labels placed on
two adjacent sides of R, we can show that the following lemma holds.

Lemma 4. Let M be an optimal four-sided boundary labeling with type od and
pd leaders (which may contain crossings) obtained in Step C of Algorithm 1.
Let ci and cj be a pair of intersecting leaders originating from sites si and sj,
respectively. Let also li and lj be their associated labels, which lie on two adjacent
sides of the enclosing rectangle R. Then the following hold:

i) Leaders ci and cj are of different type.
ii) Leaders ci and cj are oriented towards their incident corner, say corner A.
iii) Leaders ci and cj can be rerouted so that they do not cross each other, the

sum of their leader length remains unchanged, their type remains unchanged
and they remain oriented towards corner A of R.

Lemma 5. Let M be an optimal four-sided boundary labeling with type od and
pd leaders (which may contain crossings) obtained in Step C of Algorithm 1.
We can determine a legal labeling M ′ with total leader length equal to that of M
(step D of Algorithm 1). Moreover, labeling M ′ can be obtained in O(n2) time.

Proof. We partition the site set into four disjoint sets STR, STL, SBR and SBL,
each of those contains the sites whose leaders are oriented towards the top-right,
top-left, bottom-right and bottom-left corner of R, respectively (see Figure 6).
From Lemma 1 (one side case), Lemma 3 (two opposite sides case) and Lemma 4
(two adjacent sides case), it follows that possible crossings can only occur be-
tween leaders that are oriented towards the same corner of R. Thus, we can
independently eliminate the crossings at each of the sets STR, STL, SBR, SBL.

We describe in detail how to eliminate the crossings of STR. The remaining
are treated similarly. We further partition STR into two disjoint subsets S1,TR

and S2,TR as follows: S1,TR (S2,TR) contains the sites of STR whose leaders are
either i) of type od leading to a label placed at the right (top) side of R or ii) of
type pd leading to a label placed at the top (right) side of R. In Figure 6, the
sites that constitute S1,TR are the ones whose leaders are drawn as solid lines.

From Lemma 4.(i), it follows that the leaders, which are involved in a crossing
and lead to labels placed at two adjacent sides of R, should be of different type.
Furthermore, crossing leaders that connect labels placed at the same side of R,
should be of the same type. This directly follows from Lemma 1.(i). Hence, we
can independently eliminate the crossings at each of the sets S1,TR and S2,TR.

244 M.A. Bekos et al.

SBL

STL

SBR

STR

Fig. 6. Sets STR, STL, SBR and SBL

S1,TR

R

Fig. 7. Extending a pd leader

Let s ∈ S1,TR be a site whose leader c is of type pd. Leader c leads to a label
at the top side of R. By extending its d-segment, leader c can be viewed as an od
leader leading to a label at the right side of R (see Figure 7). This implies that we
can make use of the algorithm described in the proof of Lemma 2 to eliminate all
crossings of S1,TR. Since all leaders of the sites of S1,TR have the same orientation
(this holds because S1,TR ⊆ STR), their d-segments are parallel to each other,
which guarantees that all crossings will occur within R. This ensures that our
approach will find a legal labeling. Similarly, we eliminate the crossings of the set
S2,TR. The total time needed to eliminate the crossings at each of the sets STR,
STL, SBR and SRL, is O(n2). Thus, labeling M ′ can be obtained in O(n2). ��

Theorem 4. Given a set P of n sites and a set L of n labels of uniform size
placed at fixed positions on all four sides of the enclosing rectangle R, we can
compute in O(n3) total time a legal boundary labeling of minimum total leader
length with type od and pd leaders.

5 An Algorithm for Obtaining Legal Boundary Labelings

In this section, we consider the problem of determining a legal boundary labeling
with type od and pd leaders, i.e., we relax the optimality constraint on the
resulting labeling. Our aim is to obtain a more efficient algorithm in terms of
time complexity.

Theorem 5. Given a set P of n sites and a set L of n labels of uniform size
placed at fixed positions on all four sides of the enclosing rectangle R, we can
compute in O(n2) total time a legal boundary labeling with type od and pd leaders.

Sketch of proof. Our basic idea is simple: We first develop an algorithm which
determines a legal labeling in the case where the labels are attached to one side
of R. Its time complexity is O(n2). Then, using standard plane sweep algorithms
[7], we can in O(n log n) time partition R into four disjoint regions such that the
previous algorithm can be applied to each region separately. To achieve this,
we have two requirements for a region A in the partition of R: (a) A must be
adjacent to a specific side sA of R and (b) each site in A can be connected to
any label attached to sA either through a leader of type do or of type pd. ��

Boundary Labeling with Octilinear Leaders 245

6 Conclusions

In this paper, we studied boundary labelings with do, od and pd leaders. The
focus of our work was on the leader length minimization problem. The O(n3)
time complexity of the proposed algorithms is dominated by the computation
of a minimum-cost bipartite matching. Unfortunately, we cannot use Vaidya’s
algorithm [13] to reduce it, since the leaders are neither straight lines (Euclidean
metric) nor rectilinear (Manhattan metric). It is worth trying to derive a more
efficient matching algorithm for this metric. The evaluation of different opti-
mization criteria would also be of particular interest.

References

1. Baker, K.R., Scudder, G.D.: Sequencing with earliness and tardiness penalties: a
review. Operations Research 38, 22–36 (1989)

2. Bekos, M.A., Kaufmann, M., Potika, K., Symvonis, A.: Polygons labelling of min-
imum leader length. In: Kazuo, M., Kozo, S., Jiro, T. (eds.) Proc. Asia Pacific
Symposium on Information Visualisation, CRPIT 1960, pp. 15–21 (2006)

3. Bekos, M.A., Kaufmann, M., Symvonis, A., Wolff, A.: Boundary labeling: Models
and efficient algorithms for rectangular maps. In: Pach, J. (ed.) GD 2004. LNCS,
vol. 3383, pp. 49–59. Springer, New York (2005)

4. Bekos, M.A., Kaufmann, M., Symvonis, A., Wolff, A.: Boundary labeling: Models
and efficient algorithms for rectangular maps. Computational Geometry: Theory
and Applications 36, 215–236 (2007)

5. Benkert, M., Haverkort, H., Kroll, M., Nöllenburg, M.: Algorithms for multi-criteria
one-sided boundary labeling. In: Proc. 15th Int. Symposium on Graph Drawing
(GD 2007). LNCS, vol. 4875, pp. 243–254. Springer, Heidelberg (2007)

6. Benkert, M., Nöllenburg, M.: Improved algorithms for length-minimal one-sided
boundary labeling. In: 23rd European Workshop on Computational Geometry
(EWCG 2007), pp. 190–193 (2007)

7. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational
Geometry: Algorithms and Applications. Springer, Heidelberg (2000)

8. Garey, M., Tarjan, R., Wilfong, G.: One-processor scheduling with symmetric ear-
liness and tardiness penalties. Mathematics of Operations Research 13, 330–348
(1988)

9. Gordon, V., Proth, J.-M., Chu, C.: A survey of the state-of-the-art of common
due date assignment and scheduling research. European Journal of Operational
Research 139(1), 1–25 (2002)

10. Hall, P.: On representation of subsets. Journal of the London Mathematical Soci-
ety 10, 26–30 (1935)

11. Kao, H.-J., Lin, C.-C., Yen, H.-C.: Many-to-one boundary labeling. In: Proc. Asia
Pacific Symposium on Information Visualisation (APVIS 2007), pp. 65–72. IEEE,
Los Alamitos (2007)

12. Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Research
Logistic Quarterly 2, 83–97 (1955)

13. Vaidya, P.M.: Geometry helps in matching. SIAM J. Comput. 18, 1201–1225 (1989)
14. Wolff, A., Strijk, T.: The Map-Labeling Bibliography (1996),

http://i11www.ira.uka.de/map-labeling/bibliography

http://i11www.ira.uka.de/map-labeling/bibliography

Distributed Disaster Disclosure

Bernard Mans1, Stefan Schmid2, and Roger Wattenhofer3

1 Department of Computing, Macquarie University, Sydney, NSW 2109, Australia
bmans@ics.mq.edu.au

2 Institut für Informatik, Technische Universität München, 85748 Garching, Germany
schmiste@in.tum.de

3 Computer Engineering and Networks Laboratory (TIK), ETH Zurich,
8092 Zurich, Switzerland

wattenhofer@tik.ee.ethz.ch

Abstract. Assume a set of distributed nodes which are equipped with
a sensor device. When nodes sense an event, they want to know (the
size of) the connected component consisting of nodes which have also
sensed the event, in order to raise—if necessary—a disaster alarm. This
paper presents distributed algorithms for this problem. Concretely, our
algorithms aim at minimizing both the response time as well as the
message complexity.

1 Introduction

Governments and organizations around the world provide billions of dollars each
year in aid to regions impacted by disasters such as tornadoes, flooding, vol-
canos, earthquakes, bush-fires, etc. In order to recognize disasters early and in
order to limit the damage, endangered environments are often monitored by
a large number of distributed sensor devices. The idea is that when these de-
vices sense an event, an alarm should be raised, e.g., to inform helpers in the
local community. Unfortunately, in practice, the sensor devices may sometimes
wrongfully sense events, and of course false alarms can be quite costly as well.
Therefore, nodes sensing an event should make sure that there are other nodes
in their vicinity which have sensed the same event. Clearly, as sensor nodes
may only be equipped with a limited energy-source (e.g., a small battery), the
number of messages transmitted by a distributed alarming protocol should be
minimized. As a second objective, the algorithm should have a small latency: If
there is a disaster, it is of prime importance that the alarm is raised as soon as
possible.

This paper investigates protocols for distributed disaster detection and alarm-
ing. We speak of a disaster when more than a given number of nodes is involved,
and assume that the more nodes sensing an event the more severe the potential
damage. For example, in a sensor network application, an alarm should be raised
when more than a given number of sensor nodes detects a certain event, and the
alarm message should include the magnitude of the disaster.

Apart from wireless systems, the disclosure of disasters is important in wired
systems as well, for instance, to respond fast to worm propagations through the

J. Gudmundsson (Ed.): SWAT 2008, LNCS 5124, pp. 246–257, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Distributed Disaster Disclosure 247

Internet and trigger appropriate defense mechanisms when many machines show
signs of infection. Disasters with a large impact do not necessarily have to be
globally distributed, but are often local in nature. For example, a bush-fire, or
the emission of toxic chemicals, or even a computer virus, may mostly impact a
certain region of the world.

In this paper we tackle the disclosure of such disasters from a viewpoint of
distributed computing. Our goal is to minimize the communication overhead for
computing the disaster’s dimension, and the time until detection. Concretely, we
consider a network G = (V, E) of n sensor nodes. There may be several events
going on simultaneously in the network. However, although our algorithms allow
to detect them individually, for ease of presentation we will assume here that
there is just one event which affects an arbitrary set of nodes V ′ ⊆ V .

When a node senses an event (event-node), it seeks to find out how many of the
nodes in its vicinity sensed it as well; more concretely: a node aims at aggregating
information about the connected component of event-nodes it is in, e.g., at com-
puting the component’s size. If the component’s size exceeds a certain threshold,
at least one node of the component should raise a disaster alarm and report the
component’s magnitude. In this paper, we assess the quality of a distributed al-
gorithm using the classic quality measures time and message complexity, that is,
the running time of the algorithm, and the total number of messages transmitted.

There are twomajor algorithmic challenges.The first challengewe call theneigh-
borhood problem: After a node has sensed an event, it has no clue which of its neigh-
bors (if any) are also event-nodes. Distributed algorithms where event-nodes sim-
ply ask all their neighbors already leads to a costly solution: If G is the star graph
Sn and the star’s center node is the only node in V ′, the message complexity is Θ(n)
while the size of the disaster component is one. Observe that the simple trick to let
nodes only ask the neighbors of higher degree does not work either: While it would
clearly be a solution for the star graph, it already fails for dense graphs such as the
clique graph Kn. Indeed, it may at first sight seem that Θ(n) is a lower bound for
any algorithm for Kn, as an event-node has no information about its neighbors!
We will show, however, that this (naive) intuition is incorrect.

The second challenge concerns the coordination of the nodes during the ex-
ploration of the component. In a distributed algorithm where all nodes start
exploring the component independently at the same time, a lot of redundant
information is collected, resulting in a too high message complexity. As a lower
bound, we know that the time required to compute the disaster component’s size
is at least linear in the component’s diameter d, and the number of messages
needed by any distributed algorithm is linear in the component’s size s. We are
hence striving for distributed algorithms which are output-sensitive and thus
competitive to these lower bounds.

2 Model

We consider arbitrary undirected graphs G = (V, E) where the nodes V have
unique identifiers. We assume that an arbitrary subset of nodes V ′ ⊆ V senses

248 B. Mans, S. Schmid, and R. Wattenhofer

an event. The nodes V ′ are called event-nodes, and the nodes V \ V ′ are called
non-event nodes. We are interested in the subgraph induced by the nodes in V ′,
that is, in the subgraph H = (V ′, E′) with E′ := {{u, v}|u, v ∈ V ′, {u, v} ∈ E}.
The subgraph H consists of one or more connected components Ci. The total
number of nodes in component Ci will be referred to by size(Ci). When the
component is clear from the context, we will simply use s for size(Ci). Note
that in the following, for ease of presentation, we will often assume that there is
only one type of event. However, all our algorithms can also handle concurrent
events of different types.

After an event has hit a subset of nodes V ′, at least one node in each event
component Ci is required to determine size(Ci). This paper studies distributed
algorithms which try to minimize the message and time complexities. Thereby,
we allow the algorithm designer to preprocess the graph, e.g., to decompose
the network into clusters with desired properties, i.e., to pre-compute network
decompositions [12] (or, more specifically, sparse neighborhood-covers) of the
graph. Note, however, that in this preprocessing phase, it is not clear yet which
nodes will be affected by an event, i.e., V ′ is unknown. Also note that this
preprocessing is done offline and its resulting structure can be reused for all
future events.

During the runtime phase, an arbitrary number of events will hit the nodes,
and each node v ∈ V ′ first has to figure out which of its neighbors also belong
to V ′ (neighborhood problem). In Section 3, we will allow non-event nodes to
participate in the distributed algorithm as well. We will refer to this model as
the on-duty model. It is suited for larger sensor nodes which are attached to
a constant (infinite) energy supply. For smaller (wireless) nodes which rely on
a limited battery, this model may not be appropriate: Typically, in order to
save energy, such nodes are in a parsimonious sleeping mode. Only an event will
trigger these nodes to wake up and participate in the distributed computation.
We will refer to the latter model as the off-duty model. It will be discussed quickly
in Section 4.

This paper assumes a synchronous environment in the sense that events are
sensed by all nodes simultaneously and that there is an upper bound (known by
all nodes) on the time needed to transmit a message between two nodes. The
algorithms are presented in terms of communication rounds.

3 The On-Duty Model

In this section, the model is investigated where the non-event nodes are also
allowed to participate in the distributed computations during runtime.

3.1 A Simple Solution for the Tree

Before discussing the general problem, we quickly review a simple special graph
to acquaint the reader with our problem. Concretely, we look at undirected trees.

Consider an event component Ci of (unknown) size in a tree. If we let all s
nodes start exploring the component, the message complexity grows quickly and

Distributed Disaster Disclosure 249

the overhead is large. In contrast, the following ALGTREE algorithm helps to
organize the nodes in a simple preprocessing phase, such that component detec-
tion at runtime is efficient. Concretely, in the preprocessing phase, ALGTREE

makes the entire tree graph directed and rooted, i.e., each node (except the root)
is assigned a parent node. See Figure 1 (left).

During runtime, when a node senses an event, it will immediately notify its
parent using a dummy packet. This is necessary in order to ensure fast termi-
nation. The computation of the component’s size then works by an aggregation
algorithm on the tree: Leaf nodes—nodes which have not received a notification
from their children—inform their parents that they are the only event-node in
the corresponding subtrees. Inner nodes wait until the sizes of all their children’s
subtrees are known, and then propagate this result to their parent node. After
O(d) many rounds, the root of the component knows the exact value.

Obviously, Algorithm ALGTREE is asymptotically optimal for trees both in
terms of time and message complexity: The time and message complexities for
exploring an event component are O(d) and O(s), respectively, where d is the
diameter of the (event) component, and s is the component’s size.

3.2 The Neighborhood Problem

The neighborhood problem is a first key challenge in distributed disaster disclo-
sure. While for special graphs, e.g., trees, the solution can be straight-forward,
the situation for general graphs is less clear. In this section, we present a network
decomposition approach [1] for the neighborhood problem.

Broadly speaking, the idea of our decomposition is to divide the nodes into
different, overlapping sets or clusters with corresponding cluster heads (e.g., the
node with the largest ID in the cluster). These cluster heads provide a local
coordination point, where nodes can learn which of their neighbors sensed the
event as well.

Before defining our decomposition more formally, we need to introduce the fol-
lowing definition. Two different types of diameters of node sets are distinguished:
the weak and the strong diameters.

Definition 1 (Weak and Strong Diameters). Given a set S of nodes S ⊆ V
of a graph G = (V, E), we call the maximum length of a path between any two
nodes v, u ∈ S the weak diameter diam(S) := maxu,v∈S(distG(u, v)), if the path
is allowed to include nodes from the entire node set V . On the other hand, for the
strong diameter Diam(S) of a set S, Diam(S) := maxu,v∈S(distS(u, v)), paths
are allowed to use nodes from S only. It thus holds that diam(S) ≤ Diam(S).
Henceforth, when the set or cluster S is clear from the context, we will just write
d and D for diam(S) and Diam(S), respectively.

We can now define the notion of a (k,t)-neighborhood cover—a special form of a
network decomposition [12]. In such a cover, each node belongs to at least one,
but at most to k sets or clusters. The overlap of the clusters guarantees that
there is at least one cluster containing the entire t-neighborhood of a node.

250 B. Mans, S. Schmid, and R. Wattenhofer

Definition 2 (Sparse (k,t)-neighborhood Cover). [1] A (k,t)-neighborhood
cover is a collection of sets (or clusters) of nodes S1, ..., Sr with the following
properties: (1) ∀ v, ∃ i such that Nt(v) ⊆ Si, where Nt(v) = {u|distG(u, v) ≤ t},
and (2) ∀i, Diam(Si) ≤ O(kt).

A (k,t)-neighborhood cover is said to be sparse if each node is in at most
kn1/k sets. Finally, we will refer to the node with the largest ID in a given set
S as the cluster head of S. In the following, we will sometimes denote a sparse
(k,t)-neighborhood cover by (k,t)-NC.

We will propose a solution to the neighborhood problem which—in the pre-
processing phase—decomposes the network with such a neighborhood cover.
Thereby, we will make use of the following result.

Theorem 1. [1] Given a graph G = (V, E), |V | = n, and integers k, t ≥ 1, there
is a deterministic (and distributed) algorithm which constructs a t-neighborhood
cover in G where each node is in at most O(kn1/k) clusters and the maximum
cluster diameter is O(kt).

The idea for solving the neighborhood problem is to compute a (log n,1)-NC
in the preprocessing phase. At runtime, in the first round, each event-node v
sends a message to all cluster heads of the clusters it belongs to. The cluster
head of one of those clusters will then reply in the second round with the set
of v’s neighbors which are also event-nodes. This algorithm has the following
properties.

Theorem 2. The (log n,1)-NC algorithm solves the neighborhood problem for
any component in time O(log n) and requires O(s log n) many messages, where
n is the total number of nodes in the network, and s is the event component’s
size.

Proof. The time complexity is due to the fact that messages have to be routed
to the cluster heads and back, and that—according to Theorem 1—the diameter
of clusters in the (log n,1)-NC is bounded by O(kt) = O(log n).

As for the message complexity, observe that each of the s nodes in the compo-
nent sends a message to at most O(kn1/k) = O(log n ·n1/ log n) = O(log n) cluster
heads (Theorem 1). The cluster head’s replies add at most a constant factor to
the complexity, and hence we have O(s log n) message transmissions. �

3.3 Hierarchical Network Decomposition

In this section we propose the distributed algorithm ALGDC for exploring the
event components. ALGDC ’s running time is linear in the diameter of the com-
ponent, and the message complexity is linear in the component’s size (both up to
polylogarithmic factors). Obviously, this is asymptotically optimal up to poly-
logarithmic factors, since the exploration of a graph requires at least d time and
requires s messages.

ALGDC makes again use of the sparse (k,t)-NC of Definition 2. However,
instead of using just one decomposition as in the neighborhood problem, we

Distributed Disaster Disclosure 251

build a hierarchical structure for exponentially increasing neighborhood sizes,
i.e., for t = 1, 2, 4, 8, etc.

The detailed preprocessing and runtime phases are now described in turn (see
also Algorithm 1).

ALGDC Preprocessing Phase. In the preprocessing phase, ALGDC con-
structs a hierarchy of sparse (log n,t)-NCs (Definition 2) for exponentially in-
creasing neighborhood sizes, that is, the decompositions D0 := (log n, 1)-NC,
D1 := (log n, 2)-NC, D2 := (log n, 4)-NC, D3 := (log n, 8)-NC, ..., Di :=
(log n, 2i)-NC, ..., Dlog Δ := (log n, Δ)-NC, are constructed, where Δ is the di-
ameter of the graph G.1 Moreover, each node computes the shortest paths to its
cluster heads (e.g., using Dijkstra’s single-source shortest path algorithm [4]).
These paths are allowed to include nodes outside the clusters.

ALGDC Runtime Phase. At runtime, initially, all event-nodes are in the
active state. The event-nodes then contact their cluster heads to learn about
their neighbors which are also event-nodes.

ALGDC then starts with decomposition D0, switches to the level D1 after-
wards, then to level D2, and so on, until level Dlog d. On a general level i, ALGDC

does the following: All event-nodes which are still active inform their cluster
heads in the Di decomposition about the parts of their component which they
already know. Each cluster head h of the clusters C in Di then looks at each
event component it hears about and performs the checks described next: If a
component K is completely contained in C, h computes K’s size and informs
all nodes in K about s. Thereafter, all corresponding nodes are told to change
to the passive state. If, on the other hand, the component K hits the boundary
of C, h determines the node vmax with the largest ID it sees in the component,
and tests whether vmax’s entire 2i-neighborhood is contained in C. If this is the
case, h tells vmax to remain active and provides it with all the event-nodes in
vmax’s component which h knows. If not, vmax does not need to be notified by
this cluster head. All other nodes are told to become passive. Figure 1 (right)
depicts the situation. This scheme is applied recursively for increasingly larger
neighborhood covers.

Theorem 3. ALGDC always terminates with the correct solution.

Proof. In the (log n,d)-NC (the weak diameter is used as clusters may include
nodes outside the disaster component), there are definitively no active event-
nodes left, and ALGDC terminates. It remains to prove that there will always
be at least one active event-node in each component K until a cluster contains the
component completely. To see this, consider the (globally) largest ID node v in
K. According to Theorem 1, there is always a cluster which completely contains
v’s neighborhood. This cluster will instruct v to continue, unless K is covered
completely. �

1 Note that log Δ does not have to be integer. However, in this paper, we simplify the
description by omitting corresponding �·� and �·� operations.

252 B. Mans, S. Schmid, and R. Wattenhofer

Fig. 1. Left: In the preprocessing phase, ALGTREE makes the tree rooted and directed.
Information about the event component (shaded) can then efficiently be aggregated at
runtime. Right: Visualization for ALGDC : Components K1 and K3 have nodes which
are outside C, while K2 is completely contained in C. The cluster head of C informs
all nodes in K2 about the component’s size and deactivates them. In K1, the N2i -
neighborhood of the maximal node is completely contained, so v1

max is told to remain
active. In K3, the cluster head instructs all nodes in K3 ∩ C to deactivate, as v3

max is
too close to the boundary.

Theorem 4. ALGDC has a total running time of O(d log n), and requires at
most O(s log d log n) many messages, where n is the size of the network, s is the
number of nodes in the component and d is the component’s weak diameter.

Proof. Time complexity. The execution of ALGDC proceeds through the hier-
archy levels up to level d for exponentially increasing decompositions. For each
level, the active event-nodes are involved in a constant number of message ex-
changes with their cluster heads. On level i, according to Theorem 1, the cluster
diameter is O(2i log n), and hence the time required is O(2i log n) as well. As∑log d

i=0 2i = O(d), we have a total execution time of O(d · log n).
Message complexity. Consider again the O(log d) many phases through which

ALGDC proceeds on the decomposition hierarchy. First, we show that the num-
ber of active nodes is at least cut in half after each phase. To see this, recall
that according to ALGDC , a node v with maximal identifier can only continue
if it its 2i-neighborhood is completely contained in a cluster, while the entire
component v is in is not yet seen by any cluster head (e.g., component K1 in
Figure 1). This implies that for each node which remains active, at least 2i nodes
have to be passive. Consequently, the maximal number of active nodes is divided
by two after each phase.

Now observe that in the first phase, all s nodes are active, sending O(s log n)
many messages to their cluster heads. The cluster head’s replies are asymptoti-
cally of the same order. In the second phase, the diameters of the clusters have
doubled, but the number of active nodes is divided by two. Thus, again O(s log n)
many messages are sent by ALGDC . Generally, in phase i, the cluster’s diameter

Distributed Disaster Disclosure 253

Algorithm 1 ALGDC

1: (* Global Preprocessing *)
2: for i from 0 to log d:
3: Di := (log n, 2i)-NC;
4: (* Runtime *)
5: i := 1;
6: ∀v ∈ V ′: v.active := true;
7: while (∃v : v.active = true)
8: ∀ active v: notify v’s cluster heads in Di;
9: for all clusters C

10: let K := {K1, ..., Kr} be C’s components;
11: ∀K ∈ K:
12: if (K ⊆ C): output(size(K));
13: else
14: vmax := max{i|i ∈ (K ∩ C)};
15: ∀v ∈ K: v.active := false;
16: if (N2i(vmax) ⊆ C)
17: vmax.active := true;
18: i + +;

is O(2i log n), but only a fraction of O(s/2i) many nodes are active. Therefore,
the message complexity is bounded by O(log d · s log n). �

While ALGDC is asymptotically optimal up to polylogarithmic factors, the main
term contains a factor which is a function of n. The subsequent section presents
a different approach which aims at being more competitive in this respect. More-
over, ALGDC needs large messages up to the size of the component; the message
sizes of the algorithm of Section 3.4 are logarithmic in the number of nodes only.

3.4 Forests and Pointer Jumping

This section presents an alternative distributed algorithm ALGFOREST for dis-
aster detection. It is based on the merging forests paradigm (e.g., [8,10]), and
makes use of pointer jumping techniques [2] in order to improve performance—
both techniques are known, e.g., from union-find data structures [4].

ALGF OREST Preprocessing Phase. ALGFOREST solves the neighborhood
problem by a sparse (log n,1)-NC. No additional decompositions are required for
ALGFOREST .

ALGF OREST Runtime Phase. First, event-nodes perform a lookup operation
at the cluster heads of the (log n, 1)-NC in order to find out their neighbors which
are also event-nodes. Then, each node v selects the node with the largest ID
among its neighbors to become its parent ; in case this ID is smaller than the ID
of v itself, no parent is chosen. As cycles are impossible in parental relationships,
the relationships define a forest among the event-nodes.

The idea of ALGFOREST is to merge these trees efficiently to form one single
tree on which all information about the component can be aggregated. However,
before merging the trees, each tree is transformed to a logical star graph, that is,
each node in the tree will learn about the tree’s root (i.e., the star’s center). This
is achieved by the following randomized pointer jumping technique (cf. Algorithm
2): First, each node in the tree tosses a fair coin resulting in a bit 0 or 1 with
probability 1/2 each. Parents then inform their children about their bit. Let IS

254 B. Mans, S. Schmid, and R. Wattenhofer

be the set of nodes consisting of all children having a 0-bit and whose parent
has a 1-bit. The set IS of nodes forms a random independent set on the tree.
The nodes in the IS will then establish a (logical) link to their parent’s parent.
This procedure is repeated until all nodes in the tree have a logical link to the
root. Termination follows immediately from the fact that nodes arriving at the
root will stop.

By this pointer jumping technique, trees become rooted stars. From now on,
the roots then become the coordinators of the tree: First, they perform a con-
verge cast operation [12] to learn the size of the tree. Then a root informs its
children about its ID and the tree size. Subsequently, the root tells its children
to determine in which trees their neighboring nodes are by performing a lookup
in the (log n, 1)-NC. Information about the sizes and root IDs of the neighboring
trees is then aggregated to the root. A tree seeks to join the largest neighboring
tree, where “large” is defined with respect to the number of nodes in the tree,
and in case of a tie, with respect to the roots’ IDs. If a tree has no larger tree in
its neighborhood, it will not send any join requests.

Basically, the rooted stars then become the virtual nodes of the new graph,
where the corresponding roots are their coordinators, and the pointer jumping
and merging techniques are applied recursively (cf. Algorithm 3; for simplicity,
although the algorithm is of course distributed as described in the text, it is
here presented in global pseudo-code). The algorithm terminates when stars do
not have any neighboring stars anymore. Moreover, note that the phases of the
trees need not to be synchronized, that is, some trees can be performing pointer
jumping operations while other trees are in a converge cast phase.

Algorithm 2 describes the pointer jumping sub-routine for a tree T .

Algorithm 2 ALGPJ

1: while (∃v s.t. v.parent �= root)
2: ∀v ∈ T :
3: with prob = 1/2 v.bit := 0, else v.bit := 1;
4: ∀v ∈ T :
5: if (v.bit = 0 ∧ v.parent.bit = 1)
6: IS := IS ∪ {v};
7: ∀v ∈ IS:
8: v.parent = v.parent.parent;

Algorithm 3 ALGFOREST

1: ∀v ∈ V : define v.parent;
2: let T := {T1, ..., Tf} be set of resulting trees;
3: while (|T | > 1) do
4: ∀T ∈ T : ALGPJ(T);
5: ∀T ∈ T :
6: Tm := max{X|X ∈ T , adjacent(X, T)};
7: if (T < Tm): merge T � Tm;
8: update T : set of resulting trees;

Lemma 1. Let T be a tree, let h be its height, s its size, and d the weak diameter
of the underlying graph. Applying ALGPJ to T requires expected time O(d log h),
and O(sd log h) many messages on average.

Proof. Time Complexity. Consider an arbitrary node v, and consider its path
to the root. In each round, the length of this path is reduced by a factor 3/4 in
expectation. From this it follows that O(log h) many iterations are enough to find
the root. Moreover, as the virtual links span at most d hops in the underlying
graph, the claim follows.

Message Complexity. The message complexity follows immediately from the
time complexity, as there are at most O(d · log h) many rounds and at most s
nodes. �

Distributed Disaster Disclosure 255

From the description of ALGFOREST it follows that there will never be cycles
in the pointer structure, and that all trees of a given component will eventually
merge. In the following, the algorithm’s performance is analyzed in detail.

Theorem 5. ALGFOREST has an expected total running time of O(d log s +
log s log n), and requires at most O(s log s(d+log n)) many messages on average,
where n is the network’s size, s is the component’s size, and d is the component’s
weak diameter.

Proof. Time Complexity. The time to solve the neighborhood problem using
the network decomposition is of course again O(log n).

By the description of ALGFOREST it follows that a tree always joins a neigh-
boring tree which is of the same size or larger. By a simple induction argument it
can be seen that in phase i, the size of the minimal tree is at least 2i: For i = 0, all
trees have at least one node, and the claim follows. Now, by the induction hypoth-
esis, assume that in phase i, indeed all trees are of size at least 2i. Clearly, each tree
will either join a neighbor, or will be joined by at least one neighbor, or both. In
both cases, the new tree’s size at least doubles. Consequently, ALGFOREST will
form a single tree after at most log s many such phases. In each phase, the tree
has to be converted to a star by ALGPJ , which—according to Lemma 1—requires
expected time O(d · log s). However, due to the exponentially growing tree sizes,
a geometrically declining number of roots performing the pointer jumping oper-
ations exists, and hence the overall costs are O(d · log s) as well. There are two
more operations to be taken into account: First, in each phase, a constant num-
ber of aggregations or converge cast operations have to be performed in the tree,
requiring time at most O(d) per phase. This does not increase the execution time
asymptotically. Second, according to ALGFOREST , in each phase the root asks
its children about the trees of their neighbors. This is done by a lookup operation
in (log n, 1)-NC, which requires time O(log n) in each of the log s many phases.
This gives the second summand in the formula: O(log s log n).

Message Complexity. According to Lemma 1, the pointer jumping algorithm
requires O(s ·d · log d) many messages. Since the tree sizes at least double in each
phase, the amortized amount of messages for the entire execution is O(s ·d·log d)
as well. The total cost for the (log n, 1)-NC lookups are O(s log n) for each of the
log s many phases. Finally, the aggregation costs are in O(s ·d log s). Since s ≥ d,
this supersedes the message cost of the pointer jumping. The claim follows. �	

4 The Off-Duty Model

So far, we have assumed that both event and non-event nodes can participate in
the component’s exploration. While this assumption may be justified in certain
systems, e.g., in wired networks, it may not be realistic for wireless networks
where only the nodes which have sensed an event wake up from energy-saving
mode. In the following, we will briefly discuss this off-duty model.

Clearly, if the number of messages does not matter, the event component can
be explored in optimal time by using a simple flooding algorithm where each
event-node floods the entire graph.

256 B. Mans, S. Schmid, and R. Wattenhofer

If we ignore the time complexity and only seek to minimize the total number
of messages, the situation is different: Consider the clique Kn and assume that
there are two event-nodes. Clearly, in order to find out about each other, at least
Ω(n) messages need to be sent: Nodes cannot agree on local coordinators in the
preprocessing phase, as these coordinators may be sleeping at runtime. On the
other hand, for an optimal “offline” algorithm a constant number of messages
is sufficient. Consequently, the message complexity of any distributed algorithm
must be worse by a factor of at least Ω(n).

In contrast to the difficulty of the neighborhood detection, the component
exploration is well understood. Depending on whether time or communication
costs should be optimized, an appropriate distributed leader election algorithm
can be applied to the resulting graph (e.g., [11] for time-optimality).

5 Related Work

Motivated by the at times tragic consequences of nature’s moods, disaster dis-
closure is subject to a huge body of research, and it is impossible to provide
a complete overview of all the proposed approaches. While many systems are
based on (or complemented by) satellite techniques, e.g., for damage estimation
of landslides in the Shihmen Reservoir in Thailand caused by heavy rainfalls,
or for post-earthquake damage detection [6], there are also approaches which
directly deploy sensor nodes in the region, e.g., for detecting the boundaries of a
toxic leach [5]. Distributed event detection also appears in wired environments,
e.g., in the defense against Internet worms [9]. Early warning systems are not
only useful to react to natural catastrophes, but are also employed in interna-
tional politics. Techniques to implement such indicators include expected utility
models, artificial intelligence methods, or hidden Markov models [13].

This paper assumes an interesting position between local and global dis-
tributed computations, as our algorithms aim at being as local as possible and as
global as necessary. While in the active field of local algorithms [12], algorithms
are bound to perform their computations based only on the states of their imme-
diate neighbors, many problems are inherently global, e.g., leader election. Only
recently, there is a trend to look for local solutions for global problems, where
the runtime depends on the concrete problem input [3,7], rather than considering
the worst-case over all possible inputs: if in a special instance of a problem the
input behaves well, a solution can be computed quickly. Similar concepts have
already been studied outside the field of distributed computing, e.g., for sorting
algorithms. Our paper is a new incarnation of this philosophy as performance
mostly depends on the output only.

6 Conclusion

This paper has addressed the problem of distributed alarming and efficient dis-
aster detection. We have presented first solutions for this problem by providing
competitive distributed algorithms. We believe that there remain many inter-
esting problems for future research. For instance, the question of fault-tolerance

Distributed Disaster Disclosure 257

has to be addressed: How can our algorithms be adapted for the case that nodes
may be faulty, yielding disconnected components? Moreover, it would be inter-
esting to investigate asynchronous environments. Finally, our model could also
be extended to incorporate wireless aspects, such as interference.

References

1. Awerbuch, B., Berger, B., Cowen, L., Peleg, D.: Fast Network Decomposition. In:
Proc. ACM PODC (1992)

2. Blelloch, G.E., Maggs, B.M.: Parallel Algorithms. In: Atallah, M.J. (ed.) Handbook
of Algrorithms and Theory of Comptuation, CRC Press, Boca Raton (1998)

3. Birk, Y., Keidar, I., Liss, L., Schuster, A., Wolff, R.: Veracity Radius: Capturing
the Locality of Distributed Computations. In: Proc. ACM PODC (2006)

4. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn. MIT Press and McGraw-Hill (2001)

5. Dong, C.J.G., Wang, B.: Detection and Tracking of Region-Based Evolving Targets
in Sensor Networks. In: Proc. 14th ICCCN (2005)

6. Eguchi, R.T., Huyck, C.K., Adams, B.J., Mansouri, B., Houhmand, B., Shinozuka,
M.: Resilient Disaster Response: Using Remote Sensing Technologies for Post-
Earthquake Damage Detection. In: Earthquake Engineering to Extreme Events
(MCEER), Research Progress and Accomplishments 2001-2003 (2003)

7. Elkin, M.: A Faster Distributed Protocol for Constructing a Minimum Spanning
Tree. In: Proc. 15th SODA (2004)

8. Gallager, R.G., Humblet, P.A., Spira, P.M.: A Distributed Algorithm for Minimum-
Weight Spanning Trees. In: ACM TOPLAS (1983)

9. Kim, H.-A., Karp, B.: Autograph: Toward Automated, Distributed Worm Signa-
ture Detection. In: Proc. 13th Usenix Security Symposium (2004)

10. Lotker, Z., Patt-Shamir, B., Peleg, D.: Distributed MST for Constant Diameter
Graphs. J. of Dist. Comp. (2006)

11. Peleg, D.: Time-optimal Leader Election in General Networks. J. Parallel Distrib.
Comput. 8(1), 96–99 (1990)

12. Peleg, D.: Distributed Computing: A Locality-sensitive Approach. SIAM, Philadel-
phia (2000)

13. Schrodt, P.A.: Early Warning of Conflict in Southern Lebanon Using Hidden
Markov Models. In: American Political Science Association (1997)

Reoptimization of Steiner Trees�

Davide Bilò, Hans-Joachim Böckenhauer, Juraj Hromkovič, Richard Královič,
Tobias Mömke, Peter Widmayer, and Anna Zych

Department of Computer Science, ETH Zurich, Switzerland
{dbilo,hjb,juraj.hromkovic,richard.kralovic,

tobias.moemke,peter.widmayer,anna.zych}@inf.ethz.ch

Abstract. In this paper we study the problem of finding a minimum
Steiner Tree given a minimum Steiner Tree for similar problem instance.
We consider scenarios of altering an instance by locally changing the
terminal set or the weight of an edge. For all modification scenarios we
provide approximation algorithms that improve best currently known
corresponding approximation ratios.

1 Introduction

Traditional optimization theory focuses on searching for solutions when noth-
ing or very little is known a’priori about the problem instance. In reality, prior
knowledge is often at our disposal, because a problem instance can arise from
a small modification of a previous problem instance. As an example, imagine
that we are given a set of nodes (points in some metric space), and the network
graph of shortest length interconnecting them, where the length is the sum of
the distances between adjacent nodes. Now imagine one node is excluded from
the network. It is intuitively obvious that we should profit from the old network
when we try to find a new one. The general idea we pursue is: given a problem
instance with an optimal solution, and a variation of the problem instance ob-
tained through a local modification, what can we learn about the new solution?
We believe that looking at NP-hard problems from this perspective will allow to
explore them deeper and learn more about the nature of their complexity.

The problem we deal with in this paper is reoptimization of the Minimum
Steiner Tree (ST) problem. Given an edge-weighted graph and a set of terminal
vertices, the ST problem asks for a minimum tree spanning the terminal set.
The ST problem is a very prominent optimization problem with many practical
applications, especially in network design, see for example [6,7]. The best up to
date approximation ratio for non-reoptimization case is ≈ 1.55 [8]. The problem
of reoptimizing ST where the local modification consists of adding/deleting one
vertex to/from the input graph was considered in [5]. For the local modifica-
tion of adding/removing a vertex to/from the terminal set a 1.5-approximation
algorithms have been provided in [2]. We improve over these results, providing

� This work was partially supported by SBF grant C 06.0108 as part of the COST 293
(GRAAL) project funded by the European Union.

J. Gudmundsson (Ed.): SWAT 2008, LNCS 5124, pp. 258–269, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Reoptimization of Steiner Trees 259

1.344-approximation algorithm for adding a terminal vertex, and 1.408 for re-
moving a terminal vertex, while for the scenarios of increasing and decreasing
the weight of an edge we obtain 4/3 and 1.302 approximation ratio respectively.

The paper is organized as follows. In Section 2 we provide basic notation,
definitions and facts used throughout the paper. In Section 3 we describe the
basic techniques used in Section 4, Section 5, Section 6 and Section 7 where we
provide our results for the four local modification scenarios we consider.

2 Preliminaries

Let us begin with a formal definition of the Minimum Steiner Tree Problem
(ST). We call a complete graph G = (V, E, c) with edge weight function c : E →
R

+ metric, if the edge weights satisfy the triangle inequality, i.e., c((u, v)) ≤
c((u, w)) + c((w, v)) for all u, v, w ∈ V.

The Minimum Steiner Tree Problem (ST) is defined as follows:
Instance: A metric graph G = (V, E, c) and a terminal set S ⊆ V
Solution: A Steiner tree, i.e., a subtree T of G containing S
Objective: Minimize the sum of the weights of the edges in the subtree T .

The ST problem is APX-complete even when the edge weights are restricted to
the set {1, 2} [1]. The best up to date approximation ratio is σ = 1+ log 3

2 ≈ 1.55
for general edge costs and 1.28 for edge costs from {1, 2} [8]. We denote the best
up to date approximation algorithm for ST as ApprST(G, S) and view it as a
function from the instance space to the solution space. The ST problem can be
solved optimally in time exponential in the size of S with an algorithm proposed
by Dreyfus and Wagner [4]. We denote this algorithm as OptST(G, S).

Below we define the reoptimization problems we investigate in this paper. The
objective for all of them is to minimize the cost of Steiner tree T .

1. Minimum Steiner Tree Terminal Addition (ST-S+)
Instance: Metric graph G = (V, E, c), terminal set SO ⊆ V , an optimal
Steiner tree TO for (G, SO), and terminal set SN = SO ∪ {t} for some t ∈ V
Solution: Steiner tree T for (G, SN).

2. Minimum Steiner Tree Terminal Removal (ST-S−)
Instance: Metric graph G = (V, E, c), terminal set SO ⊆ V , an optimal
Steiner tree TO for (G, SO), and terminal set SN = SO \ {t} for some t ∈ V
Solution: Steiner tree T for (G, SN).

3. Minimum Steiner Tree Edge Cost Increase (ST-E+)
Instance: Metric graph GO = (V, E, co), terminal set S ⊆ V , an optimal
Steiner tree TO for (G, SO), and metric graph GN = (V, E, cn), where cn = co

on all but one edge e ∈ E for which cn(e) ≥ co(e)1

Solution: Steiner tree T for (GN , S).
4. Minimum Steiner Tree Edge Cost Decrease (ST-E−)

Instance: Metric graph GO = (V, E, co), terminal set S ⊆ V , an optimal
Steiner tree TO for (G, SO), and metric graph GN = (V, E, cn), where cn = co

1 Whenever co and cn coincide on some edge f , we drop the subscripts and write c(f).

260 D. Bilò et al.

on all but one edge e ∈ E for which cn(e) ≤ co(e)1

Solution: Steiner tree T for (GN , S).

Lemma 1 ([2,3]). The aforementioned problems are strongly NP-hard. 	

Let us adopt the following notation. With TN we denote an optimal Steiner
tree for the modified instance (G, SN) or (GN , S). Given a simple graph G, we
denote its set of vertices with V (G) and its set of edges with E(G). An edge
(u, v) ∈ E(G) can be seen as a subgraph H of G with V (H) = {u, v} and
E(H) = {(u, v)}. A vertex v ∈ V (G) can be seen as a subgraph H of G with
V (H) = {v} and E(H) = ∅. The degree of a vertex v ∈ V (G) is degG(v). If H
is a subgraph of G, we write H ⊆ G. The notation c(G) denotes the cost of G,
i.e. the sum of all its edge costs. With G − v we denote graph G after removing
node v ∈ V (G) and incident edges. For two subgraphs of G: H1, H2 ⊆ G (Hi can
be a single edge) we introduce the following notation. With H1 − H2 we denote
a graph such that V (H1 − H2) = V (H1) and E(H1 − H2) = E(H1) \ E(H2).
With H1 + H2 we denote a graph such that V (H1 + H2) = V (H1) ∪ V (H2)
and E(H1 + H2) = E(H1) ∪ E(H2). We denote with CheapestEdge(H1, H2) the
cheapest edge in G connecting H1 and H2. Expression min{H1, . . . , Hi} returns a
cheaper graph among H1, . . . , Hi w.r.t. their cost. A forest F is a graph composed
of node-disjoint trees T1, . . . , Ti. Such tree decomposition of F is denoted as
F = T1+ · · ·+Ti. For a connected subgraph H ⊆ G of G, with Contract(G, H, h)
we denote a weighted graph G′ = (V ′, E′, c′) obtained from G by contracting H
into node h, where if after contraction multiedges occur between h and any node
v ∈ V (G) \V (H), then we set c′((v, h)) = c(CheapestEdge(v, H)). We describe a
path in a graph as a sequence of its vertices. The length of a path is its number of
edges. The cost of a path is the sum of costs of its edges. In a shortest path, the
length of the path is minimized whereas in a cheapest path its cost is minimized.

For a complete graph G = (V, E, c) with an arbitrary edge weight function
c : E → R

+, we define the metric closure of G as the graph G̃ = (V, E, c̃) where
c̃((u, v)) is defined as the cost of the cheapest path in G from u to v. It is well
known (see for example [7]) that a tree T is a minimum Steiner tree for (G, S)
if and only if it is also a minimum Steiner tree for (G̃, S) where G̃ is the metric
closure of G. Because of this fact, for ST-S+ and ST-S−, we can assume w.l.o.g.
that the given graph G is metric. For problems ST-E+ and ST-E− we assume
as well that the local modification preserves metricity, however in this case this
assumption is a restriction as changing the weight of one edge in a metric graph
G can result in altering the cost of many edges in its metric closure. Finally, we
can assume without loss of generality that the given minimum Steiner tree TO

has no non-terminal vertex of degree two; due to the metricity these vertices can
be removed using the direct edge between the two adjacent vertices instead.

3 Techniques

In this section we present standard procedures used further in reoptimization
algorithms. Algorithm 1 is based on the assumption, that we know a large part

Reoptimization of Steiner Trees 261

Ts of an optimal solution TN for (G, SN) or (GN , S). Provided that knowledge,
we contract Ts to a single node, make it a terminal, and use σ-approximation
algorithm ApprST to obtain the solution for the remaining part of the graph.

Algorithm 1. Shrink(G, S, Ts)

Input: A metric graph G, a terminal set S ⊆ V (G), and a tree Ts ⊆ G
1: G′ := Contract(G, Ts, ts)
2: T ′ := ApprST (G′,

(
S ∩ V (G′)

)
∪ {ts})

3: Obtain T : Expand T ′ by substituting ts with Ts

Output: T

Lemma 2. Let Topt be an optimal solution for (G, S). Given that Ts ⊆ Topt,
and c(Ts) ≥ αc(Topt), Algorithm 1 applied to (G, S, Ts) returns

(
σ − α(σ − 1)

)
-

approximation of Topt.

Proof. Let G′ := Contract(G, Ts, ts), S′ =
(
S ∩ V (G′)

)
∪ {ts}, and T ′ be as de-

fined in Algorithm 1. Note, that given Ts ⊆ Topt, solution Contract(Topt, Ts, ts)
with cost c(Topt)−c(Ts) is optimal for (G′, S′). Thus c(T ′) ≤ σ(c(Topt)−c(Ts)).
Since σ ≥ 1, then the cost of solution tree T returned by Shrink(G, S, Ts) is:

c(T) ≤ σ(c(Topt) − c(Ts)) + c(Ts) ≤
(
σ − α(σ − 1)

)
c(Topt).

	

The other technique, shown in Algorithm 2 is used for connecting optimally
a given forest F . Provided that the number of trees in F = T1 + · · · + Ti is
logarithmic in the input size, we can connect F optimally in polynomial time.

Algorithm 2. Connect(G, F)
Input: A metric graph G, a forest F = T1 + · · · + Ti, where Ti ⊂ G and T1 . . . Ti are

pairwise node-disjoint
1: G1 := Contract(G, T1, t1)
2: For j = 2, . . . , i do Gj := Contract(Gj−1, Tj , tj)
3: S := {t1, . . . , ti}
4: T ′ := OptST(Gi, S)
5: Obtain tree T by substituting each ti with Ti and keeping the edges of T ′ for

connecting Ti with the rest of graph G
Output: T

Lemma 3. If i = O(log |V (G)|), then Algorithm 2 runs in polynomial time.

Proof. The running time of Dreyfus-Wagner algorithm OptST() is exponential
in size of terminal set [4]. Since we apply OptST to S of size O(log |V (G)|), the
overall running time of Algorithm 2 is polynomial. 	

262 D. Bilò et al.

Remark 1. Let (G, S) be an instance of ST and Topt be an optimal solution for
that instance. If F = T1 + · · · + Ti ⊆ G and Tj=1...i ∩ S
= ∅, then solution T
returned by Algorithm 2 satisfies c(T) ≤ c(F) + c(Topt).

4 Removing One Terminal

In this section we present a 1.408-approximation algorithm for ST-S−, thus im-
proving the result in [2]. The algorithm we propose computes several feasible
solutions and chooses the one of minimal cost. Let f1, . . . , fk be the edges adja-
cent in TO to the terminal t that is supposed to be removed. We distinguish 4
cases depending on the value of k. We remark here, that Algorithm 3 improves
the worst case of k = 2. The other cases are dealt with in the same manner as
in algorithm provided in [2]. For the sake of completeness however, we provide
here the full analysis.

Algorithm 3. MinSTP-S-
Input: A metric graph G, a terminal set SO ⊆ V (G), an optimal Steiner tree TO ⊆ G

for (G, SO), and SN = SO \ {t} for some terminal t ∈ SO

1: Let f1, . . . , fk be the list of edges adjacent to t in TO

2: if k = 3 then
3: Compute shortest paths p1, p2, p3 connecting t with SN , such that fi ∈ E(pi) for

i = 1, . . . , 3
4: F := TO − (p1 + p2 + p3) − t
5: return Connect(G, F)
6: end if
7: if k = 2 then
8: T1 := minf∈E(G){Shrink(G, SN , f)}
9: Compute shortest paths p1, p2, p3, p4 connecting t with SN , such that f1 ∈

E(p1), E(p2) and f2 ∈ E(p2), E(p3)
10: F := TO − (p1 + p2 + p3 + p4) − t
11: T2 := Connect(G, F)
12: return min{T1, T2}
13: end if
14: if k = 1 then
15: Let f1 = (t, v). if v ∈ SN then return T := TO − t
16: else return MinSTP-S-(G, SN ∪ {v}, TO − t, SN)
17: end if
Output: TO

Theorem 1. Algorithm 3 is a 1.408-approximation algorithm for ST-S−.

Proof. Let p be a cheapest path connecting t with SN . Let α ≥ 0 be a parameter
that shall be fixed later. We want to compute the smallest α, for which Algorithm 3
returns (1+α)-approximation of TN . If c(p) ≤ αc(TN), then TO ≤ c(TN)+ c(p) ≤
(1+α)c(TN), thereforeweassume fromnowon, that c(p) > αc(TN).Wedistinguish
four cases depending on the degree of t in TO.

Reoptimization of Steiner Trees 263

Case 1. Assume degTO
(t) > 3 or equivalently k > 3, and note that c(TN) ≤

c(TO). Since degTO
(t) ≥ 4, there exist four edge-disjoint paths from t to terminals

in TO and thus c(TO) ≥ 4 · c(p). On the other hand, since TN + p is a solution
for (G, SO), we know c(TN)+ c(p) ≥ c(TO). Therefore, c(TN) ≥ 3 · c(p) and thus
c(TO) ≤ c(TN) + c(p) ≤ 4

3c(TN).

Case 2. Assume degTO
(t) = 3 or equivalently k = 3. Let p1, p2, p3 be as in the

Algorithm 3 in case k = 3 (see Figure 1). Since p1, p2, p3 are paths minimal in
the number of nodes ending in a terminal, and each non-terminal is branching
(degTO(v) > 2 for v /∈ S), thus |pi| ≤ log |V (G)|. Therefore the number of
trees in F is bounded by 3 log |V (G)|, and thus by Lemma 3 Connect(G, F)
runs in polynomial time. For connecting the forest F optimally we pay at most
c(TN), because each tree of F contains a terminal from SN . Therefore for tree T2
computed by the algorithm we have that c(T2) ≤ c(TO)− c(p1)− c(p2)− c(p3)+
c(TN) ≤ c(TN) + c(p) − 3c(p) + c(TN) ≤ 2c(TN)(1 − α). This value is bounded
from above by (1 + α)c(TN) for any α ≥ 1

3 .

Case 2

t
TO

f1 f2 f3

p1 p2 p3

t
TO

f1 f2

g

T ′ T ′′TN

Case 3

CheapestEdge(T ′, T ′′)

Fig. 1. Illustration for Case 2 and first case of Case 3 (A)

Case 3. Assume degTO
(t) = 2 or equivalently k = 2. Let now β be a parameter

that shall be fixed later. We distinguish two cases: c(f1) + c(f2) ≤ βc(p) and
c(f1) + c(f2) > βc(p).

Assume (A) c(f1) + c(f2) > βc(p). Let μ be a parameter which we will fix
later. Let T ′ and T ′′ be the trees attached to t in TO with f1 and f2 respectively,
as shown in Figure 1. Let p′ be the cheapest path in TN connecting T ′ with
T ′′. Note, that T ′ + T ′′ + p′ is a feasible solution in (G, SN) and that c(T ′ +
T ′′ + p′) ≥ c(T2). If there exists an edge g contained in all paths in TN from
T ′ to T ′′, then such an edge is unique. Otherwise let g be an imaginary edge
of cost 0. By minimality of p′ and due to the fact, that TN is branching on
each endpoint of g into disjoint paths to T ′ or T ′′, we have c(p′) ≤ c(TN)−c(g)

2 +
c(g) = 1

2 (c(TN) + c(g)). If c(g) > μc(TN), then by Lemma 2 Shrink(G, SN , g)
returns solution T1 of cost c(T1) ≤ (σ − μ(σ − 1))c(TN). This value is bounded
from above by (1 + α)c(TN) for α ≥ (σ − 1)(1 − μ). If c(g) ≤ μc(TN), then
c(T2) ≤ c(TO) − c(f1) − c(f2) + c(p′) ≤ c(TN) + c(p) − βc(p) + 1

2 (c(TN) − c(g)),
therefore c(T2) ≤ (3

2 + α(1 − β) + μ
2)c(TN). This in turn is bounded from above

by (1 + α)c(TN) for α ≥ 1+μ
2β . Setting 1+μ

2β = (σ − 1)(1 − μ) to obtain later

minimal α satisfying both inequalities gives μ = 2β(σ−1)−1
2β(σ−1)+1 and α ≥ 2(σ−1)

2β(σ−1)+1 .

264 D. Bilò et al.

Now assume (B) c(f1)+ c(f2) ≤ βc(p). Let p1, p2, p3, p4 be the shortest paths
p1, p2, p3, p4 connecting t with SN , such that p1 ∩ p2 = f1 and p2 ∩ p3 = f2. If
f1 = (t, v1) and v1 is a terminal, then p1 = p2 = f1 (same holds for f2), otherwise
there must be two edge disjoint paths from v1 to SN not passing trough t. The
same argument as in Case 2 shows that after removing these paths from TO we
can reconnect obtained forest F in polynomial time. The cost of T2 is bounded
from above by c(T2) ≤ c(TO)−c(p1)−c(p2)−c(p3)−c(p4)+c(f1)+c(f2)+c(TN),
because for reconnecting the obtained forrest optimally we again pay at most
c(TN). Thus c(T2) ≤ c(TN) + c(p) − 4c(p) + βc(p) + c(TN), what gives c(T2) ≤
2c(TN)−(3−β)αc(TN) (assuming β < 3). This is upper bounded by (1+α)c(TN)
when α ≥ 1

4−β . To compute the minimal α for which this inequality and the

inequality obtained for Case (A) are satisfied, we set 1
4−β = 2(σ−1)

2β(σ−1)+1 . That

gives β = 2 − 1
4(σ−1) and the minimum value of α is 4(σ−1)

8(σ−1)+1 . Plugging in

σ = 1 + log 3
2 guarantees 1.408 approximation ratio for Case 3.

Case 4. Assume degTO
(t) = 1 or equivalently k = 1. In this case, there is

exactly one v ∈ V (G) such that f1 = (t, v) ∈ E(G) is incident to t. Tree TO − t
is an optimal Steiner tree for (G, (S ∪{v})\{t}). Therefore we get a new, smaller
problem instance. Since we exclude non-terminals of degree two, either v is a
terminal or degTO

(v) ≥ 3. If v is a terminal, the algorithm yields a solution that
costs at most c(TO − t), which is the optimum. Otherwise, degTO−t(v) ≥ 2 and
we have to continue with one of the other three cases. 	

5 Adding One Terminal

In this section we present a 1.344-approximation algorithm for the scenario of
adding a vertex to the terminal set S, thus improving the result in [5,2].

Algorithm 4. MinSTP-S+
Input: A metric graph G, a terminal set SO ⊆ V (G), an optimal Steiner tree TO ⊆ G

for (G, SO) and a new terminal set SN := SO ∪ {t} for some non-terminal t.
1: T1 := TO + CheapestEdge(TO, t)
2: Let T2 be any spanning tree in G
3: for t′ ∈ V (G) \ V (TO), u ∈ V (G) \ {t, t′}, v ∈ V (G) \ {t, t′, u} do
4: Let T ′ be a tree on V (T ′) = {t, t′, u, v} with edges E(T ′) = {(t, t′), (t′, u), (t′, v)}

5: T2 := min{T2,Shrink(G, SN , T ′)}
6: end for

Output: min{T1, T2}

Theorem 2. Algorithm 4 is a 1.344-approximation algorithm for ST-S+.

Proof. Let α > 1
3 be a parameter which we fix later. Because TN is a feasible

solution for the old instance, there holds c(TO) ≤ c(TN). If t ∈ TO then T1 = TO

Reoptimization of Steiner Trees 265

is optimal. Otherwise, let fmin = (w, t) be a cheapest edge connecting TO with t.
We can assume that c(fmin) > αc(TN), otherwise c(T1) ≤ c(TO) + c(fmin) ≤
(1 + α)c(TN) gives (1 + α)-approximation. Let f1, . . . , fk be the edges that are
adjacent to t in TN . There must be k edge disjoint paths in TN from t to SO, and
by metricity the cost of each of them is greater then c(fmin) > αc(TN) > 1

3c(TN).
Therefore c(TN) > k

3 c(TN) implies k ≤ 2. We distinguish two cases.

Case 1 Case 2

t

p2 p4

TO

TN

u v
t′

f

t

p2 p4

TO

u v

p1 p3 p1 p3

f2f1
f2f1

TN

Fig. 2. Pattern for adding a terminal

Case 1: k = 2. Let f1 = (t, u) and f2 = (t, v). Algorithm 4 exhaustively
searches trough all triples of nodes that are candidates for t, u and v. When it
hits the triple t, u, v with t′ = t, it applies Shrink(G, SN , T ′) for tree T ′ ⊆ TN

which contains only edges f1 and f2. It looks for minimum T2 over all triples,
thus c(T2) ≤ Shrink(G, SN , T ′) for that particular T ′. Let p1 and p2 be two
edge disjoint paths in TN connecting u with TO. If u /∈ TO, its degree in TN is
at least 2 and therefore such paths exist. If u ∈ TO, then let p1 = p2 = {u} and
c(p1) = c(p2) = 0. We define p3 and p4 analogically with respect to vertex v.
The situation is shown in Figure 2. By metricity the following inequalities hold:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

c(f1) + c(p1) > αc(TN)
c(f1) + c(p2) > αc(TN)
c(f2) + c(p3) > αc(TN)
c(f2) + c(p4) > αc(TN)

(1)

Summing all the inequalities in (1) gives c(f1) + c(f2) + c(TN) ≥ c(f1) + c(f2) +
c(f1) + c(f2) +

∑4
i=1 c(pi) > 4αc(TN) and thus c(f1) + c(f2) > (4α − 1)c(TN).

Therefore by Lemma 2 we get c(T2) ≤ c(Shrink(G, SN , T ′)) ≤ (σ− (4α−1)(σ−
1))c(TN). This is bounded by (1 + α)c(TN) for any α satisfying α ≥ 2(σ−1)

4(σ−1)+1 .

Plugging in σ = 1 + log 3
2 ensures 1.344 approximation ratio in this case.

Case 2: k = 1. The situation is shown in Figure 2. Let f = (t, t′) be the
only edge adjacent to t in TN . In this case TN − t is a feasible solution for the
old instance, and thus c(TO) ≤ c(TN) − c(f). Let fmin be the cheapest edge
connecting t′ with TO. If c(fmin) ≤ αc(TN) we have c(T1) ≤ c(TO) + c(fmin) +
c(f) ≤ (1+α)c(TN). Assume c(fmin) > αc(TN). If t′ ∈ TO, then T1 is an optimal
solution. Otherwise t′ is non terminal and there must be two edges f1 = (t′, u)
and f2 = (t′, v) adjacent to t′ in TN . Further analysis is identical as in Case 1,
taking t′ instead of t, and gives 1.344 approximation ratio. 	

266 D. Bilò et al.

6 Increasing the Weight of One Edge

Throughout this and the next section we will assume that a modification of
edge weights do not affect the metricity of the graph, as already discussed in
Section 2. In this section we consider the local modification where the cost of
one edge e ∈ E(G) increases: cn(e) > co(e). As a consequence c(TN) ≥ c(TO).

Algorithm 5. MinSTP-E+
Input: A metric graph GO = (V, E, co), a terminal set S ⊆ V (G), an optimal Stainer

Tree TO for (GO, S), and a new metric graph GN = (V, E, cn), where cn = co on
all but one edge e for which co(e) ≤ cn(e).

1: Let TO
′ and TO

′′ be the subtrees obtained from TO by removing e.
2: T1 := TO − e + CheapestEdge(TO

′, TO
′′)

3: Let e = (u, v) and f1, . . . , fk be the edges adjacent to e in TO

4: F := TO − u − v
5: if k < 3 then T3 := Connect(GN , F)
6: T4 := minx∈V (G)\{u,v},y∈V (G)\{x,u}{Shrink(GN , S, T(u,x,y))}

T5 := minx∈V (G)\{u,v},y∈V (G)\{x,v}{Shrink(GN , S, T(v,x,y))}
where T(w,x,y) denotes tree on vertices {u, v, x, y} spanning edges
{(u, x), (x, v)(w, y)}

Output: min{TO , T1, T3, T4, T5}

Theorem 3. Algorithm 5 is a 4
3 -approximation algorithm for ST-E+.

Proof. Let α = 1
3 . If e /∈ E(TO) or e ∈ E(TN), then TO is an optimal solution

for the new instance. Therefore we consider the only non trivial case when e =
(u, v) ∈ E(TO) and e /∈ E(TN). Let f1, . . . , fk be the edges adjacent to e in TO.
Assume there is an edge fi = (u, w) ∈ E(TO), such that c(fi) ≤ αc(TN). Let
g = (w, v). Then c(T1) ≤ c(TO)−cO(e)+c(g), thus by metricity we have c(T1) ≤
c(TN) + c(fi) ≤ (1 + α)c(TN). Therefore we can assume that c(fi) > αc(TN) ≥
1
3c(TN). Hence degTN (u) + degTN (v) ≤ 3. Moreover, since c(TN) ≥ c(TO), there
are at most two such edges in TO. We can also assume

cn(e) − co(e) > αc(TN) (2)

otherwise c(TO) ≤ (1 + α)c(TN). Observe that for each fi adjacent to e holds:1

c(fi) ≥ cn(e) − co(e)
2

. (3)

If k = 2, then c(T3) ≤ c(TO)−c(f1)−c(f2)−co(e)+c(TN) ≤ 2c(TN)− 2
3c(TN) =

4
3c(TN). The remaining case is when there is only one edge f adjacent to e in
TO. In this particular case both u and v are terminal vertices. We distinguish
further cases regarding the number of edges in TN adjacent to e.
1 Let h be an edge that forms a triangle with e and f3. By metricity: cn(e) + c(f3) ≥

c(h) ≥ co(e) − c(f3) which gives the inequality we use.

Reoptimization of Steiner Trees 267

Case 1: degTN (u) + degTN (v) = 3. Let puv be the path from u to v in TN . If
(A) there are two nodes x, y ∈ V (puv) other than u and v (see Figure 3, Case
1A), then there must edge disjoint paths from x and y to terminals. Moreover
there must be another path edge disjoint with these two from u or v to a ter-
minal, since degTN (u) + degTN (v) = 3. This gives three paths of cost greater
than 1

3c(TN) which can not be the case. Assume (B) there is only one node
x ∈ V (puv) other then u and v. This situation is shown in Figure 3, Case 1B.
Let f1 = (u, x), f2 = (x, v) and w.l.o.g let f3 = (v, y), f1, f2, f3 ∈ E(TN).
When computing T4, the algorithm exhaustively searches trough all candidates
for x and y, therefore c(T4) ≤ c(Shrink(GN , S, T(v,x,y))), where T(v,x,y) spans
f1, f2, f3. By metricity and (2) we get c(f1) + c(f2) > αc(TN). By (3) and (2),
we get c(f3) ≥ cn(e)−co(e)

2 ≥ α
2 c(TN). Therefore c(f1 + f2 + f3) > 3α

2 c(TN) and
Lemma 2 gives the following bound: c(T4) ≤ σc(TN) − 3α

2 (σ − 1)c(TN). This
guarantees (1 + α)-approximation for any α ≥ 2(σ−1)

3(σ−1)+2 . Plugging in best up to
date σ ensures in this case 4/3-approximation ratio.

> αc(TN)> αc(TN)

> αc(TN)

e
v

TN

u

Case 1: deg(u) + deg(v) = 3

A

f1

e
vu

e
vu

f1 f2

TO TO

T ′

f2
TN

T ′′

TN

A B

pmin

Case 2: deg(u) + deg(v) = 2

f1
f3

e
vu

f2

B

TN

Fig. 3. Pattern for increasing the cost of edge e

Case 2: degTN
(u)+degTN

(v) = 2. In this case we distinguish two subcases (see
Figure 3 Case 2), mainly (A) when there is only one node on the path puv ⊆ TN

from u to v, and when (B) there are at least two nodes on this path. For both
cases, let w.l.o.g. f = (u, w) be the only edge in TO adjacent to e.

Assume that (A) x ∈ V (puv) is the only node on the path other than u and
v. This implies that v is a leaf in TO. Let f1 = (u, x), f2 = (v, y) be the edges
adjacent to e in TN . Since degTN

(u) + degTN
(v) = 2, both u and v are leaves in

TN . Thus, tree T ′ = TO − v is an optimal solution for (GN , S \ {v}) (otherwise
we could improve TO in (GO, S)). Since v is a leaf in TN , tree T ′′ = TN − v is
a feasible solution for (GN , S \ {v}), and therefore c(T ′) ≤ c(T ′′). The situation
is presented in Figure 3 Case 2A. This gives c(TO) − co(e) + c(f2) ≤ c(TN). But
c(T1) ≤ c(TO)−co(e)+c(f1)+c(f2) ≤ c(TN)+c(f1). It follows immediately, that
if c(f1) ≤ αc(TN), then T1 is (1+α) - approximation. Otherwise c(f1) > αc(TN).
From (3) and (2) holds c(f2) > α

2 c(TN), what together with the above inequality
implies c(f1) + c(f2) > 3

2αc(TN), and applying Shrink(GN , S, T(u,x,v)) when
y = v guarantees by Lemma 2 that c(T4) ≤ (1 + α)c(TN) for any α ≥ 2(σ−1)

3(σ−1)+2 .
Plugging in best up to date σ ensures also in this case 4/3 approximation ratio.

Now assume (B) f1 = (u, x), f2 = (v, y) ∈ E(puv) ⊆ TN , and x
= y. We
may assume y /∈ TO, otherwise T1 is optimal. Since α ≥ 1

3 , there must be

268 D. Bilò et al.

c(TN) ≤ 3αc(TN). By (3) and (2) holds c(f1) ≥ α
2 c(TN) and c(f2) ≥ α

2 c(TN),
what implies c(TN) − c(f1) − c(f2) ≤ 2αc(TN). Because y is a non terminal, we
have degTN (y) ≥ 3, thus there must be two edge disjoint paths in TN−f1−f2 from
y to S\{u, v}. Minimal such path pmin must satisfy c(pmin) ≤ c(TN)−c(f1)−c(f2)

2 ≤
αc(TN). Therefore c(T1) ≤ c(TO) − co(e) + c(f2) + c(pmin) ≤ c(TN) + c(pmin) ≤
(1 + α)c(TN) gives the desired bound. 	

7 Decreasing the Weight of One Edge

In this subsection, we present a 1.302-approximation algorithm for ST-E−. The
local modification is the decrease of the cost of one edge: cn(e) ≤ co(e).

Algorithm 6. MinSTP-E-
Input: A metric graph GO = (V, E, co), a terminal set S ⊆ V (G), an optimal Stainer

Tree TO for (GO, S), and a new metric graph GN = (V, E, cn), where cn = co on
all but one edge e = (u, v) for which co(e) ≥ cn(e).

1: if u ∈ S and v ∈ S then
2: Let fmax be the most expensive edge on the path from u to v in TO

3: TA := TO − fmax + e
4: end if
5: TS := mint,w∈{u,v},x,y∈V (G),x �=y{Shrink(GN , S, T(x,t,w,y)} where T(x,t,w,y) is a tree

on {x, t, w, y} spanning edges {(t, x), (w, y), e}
Output: min{TO , TA, TS}

Theorem 4. Algorithm 6 for ST-E− achieves an approximation ratio of 1.302.

Proof. Let α = 22
73 . Clearly c(TN) ≤ c(TO). If e /∈ E(TN), then TN is a feasible

solution for (G, S, co), and thus TO is optimal for the new instance. If e ∈ E(TN)
and e ∈ E(TO), then cn(TN) − cn(e) + co(e) ≥ co(TO) because TN is feasible
in GO. But that implies cn(TO) ≤ cn(TN) and thus TO is optimal for (GN , S).
Further we analyze the only non trivial case when e /∈ E(TO) and e ∈ E(TN).

Let f1, . . . , fk ∈ E(TN) be the edges adjacent to e in TN . W.l.o.g. let fi =
(u, xi). Let gi = (xi, v). A feasible solution for (GO, S) is TN − e + gi, thus
c(TO) ≤ c(TN) − cn(e) + c(gi). By metricity c(gi) ≤ c(fi) + cn(e), and therefore
for each edge fi adjacent to e in TN holds

c(TO) ≤ c(TN) + c(fi). (4)

For the remaining part of the proof we can assume that

c(fi) > αc(TN) (5)

co(e) − cn(e) > αc(TN), (6)

otherwise, from (4) and from the fact that c(TO) ≤ c(TN) − cn(e) + co(e) we
have that TO is a (1 + α)-approximation. We distinguish two cases.

Reoptimization of Steiner Trees 269

Case 1: k > 1 or (k = 1 and c(f1)+ cn(e) > 3
2αc(TN)). If there are at least two

edges f1, f2 ∈ E(TN) adjacent to e, Shrink(GN , S, T(u,v,x,y)) must be called at
some step for T(u,v,x,y) spanning e, f1, f2. Note, that by (5) we get at this step
c(T(u,v,x,y)) ≥ c(f1) + c(f2) ≥ 2αc(TN) ≥ 3

2αc(TN). If there is only one edge f1
adjacent to e in TN , Shrink(GN , S, T(u,v,x,y)) is called at some step for T(u,v,x,y)

spanning e, f1. Then, c(T(u,v,x,y)) ≥ c(f1) + cn(e) > 3
2αc(TN). Thus, in both

cases from Lemma 2 after calculations and plugging in best up to date σ, we
obtain (1 + α)-approximation for any α ≥ 22

73 .

Case 2: k = 1 and c(f1) + cn(e) ≤ 3
2αc(TN). In this case both u and v are

terminals, thus Algorithm 6 computes solution TA. For any edge f adjacent to
e in G, by (3), there must hold c(f) ≥ co(e)−cn(e)

2 . Since on the path from u
to v in TO there are two edges adjacent to e, we are guaranteed c(fmax) ≥
co(e)−cn(e)

2 ≥(6) α
2 c(TN). Therefore

c(TA)=c(TO)−c(fmax)+cn(e) ≤(4) c(TN)+c(f1)+cn(e)−c(fmax) ≤ (1+α)c(TN).

	

References

1. Bern, M.W., Plassmann, P.E.: The Steiner problem with edge lengths 1 and 2. Inf.
Process. Lett. 32(4), 171–176 (1989)

2. Böckenhauer, H.-J., Hromkovič, J., Královič, R., Mömke, T., Rossmanith, P.: Reop-
timization of steiner trees: Changing the terminal set. Theoretical Computer Science
(to appear)

3. Böckenhauer, H.-J., Hromkovič, J., Mömke, T., Widmayer, P.: On the hardness of
reoptimization. In: 34th International Conference on Current Trends in Theory and
Practice of Computer Science, SOFSEM 2008, pp. 50–65 (2008)

4. Dreyfus, S.E., Wagner, R.A.: The Steiner problem in graphs. Networks 1, 195–207
(1971/1972)

5. Escoffier, B., Milanic, M., Paschos, V.T.: Simple and fast reoptimizations for the
Steiner tree problem. Technical Report 2007-01, DIMACS (2007)

6. Hwang, F., Richards, D., Winter, P.: The Steiner Tree Problems. Annals of Discrete
Mathematics, vol. 53. North-Holland, Amsterdam (1992)

7. Prömel, H.J., Steger, A.: The Steiner Tree Problem. Advanced Lectures in Mathe-
matics. Friedr. Vieweg & Sohn, Braunschweig (2002)

8. Robins, G., Zelikovsky, A.: Improved Steiner tree approximation in graphs. In: Pro-
ceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2000, pp. 770–779. ACM Press, New York (2000)

On the Locality of Extracting a 2-Manifold in IR3

Daniel Dumitriu1, Stefan Funke2, Martin Kutz3, and Nikola Milosavljević3

1 Max-Planck-Institut für Informatik
Campus E 1.4, 66123 Saarbrücken, Germany

dumitriu@mpi-inf.mpg.de
2 Ernst-Moritz-Arndt-Universität

Jahnstr. 15a, 17487 Greifswald, Germany
stefan.funke@uni-greifswald.de

3 Stanford University, Stanford CA 94305, USA
nikolam@stanford.edu

Abstract. Algorithms for reconstructing a 2-manifold from a point sam-
ple in IR3 based on Voronoi-filtering like CRUST [1] or CoCone [2] still re-
quire – after identifying a set of candidate triangles – a so-called manifold
extraction step which identifies a subset of the candidate triangles to form
the final reconstruction surface. Non-locality of the latter step is caused by
so-called slivers – configurations of four almost cocircular points having
an empty circumsphere with center close to the manifold surface.

We prove that under a certain mild condition – local uniformity –
which typically holds in practice but can also be enforced theoretically,
one can compute a reconstruction using an algorithm whose decisions
about the adjacencies of a point only depend on nearby points.

While the theoretical proof requires an extremely high sampling den-
sity, our prototype implementation, described in a companion paper [3],
preforms well on typical sample sets. Due to its local mode of computa-
tion, it might be particularly suited for parallel computing or external
memory scenarios.

1 Introduction

Reconstructing a surface Γ in IR3 from a finite point sample V has attracted a lot
of attention both in the computer graphics community and in the computational
geometry community. While in the former the emphasis is mostly on algorithms
that work “well in practice”, the latter has focused on algorithms that come
with a theoretical guarantee: if the point sample V satisfies a certain sampling
condition, the output of the respective algorithm is guaranteed to be “close” to
the original surface.

In [1], Amenta and Bern proposed a framework for rigorously analyzing algo-
rithms reconstructing smooth closed surfaces. They define for every point p ∈ Γ
on the surface the local feature size lfs(p) as the distance of p to the medial
axis1 of Γ . A set of points V ⊂ Γ is called a ε-sample of Γ if ∀p ∈ Γ ∃s ∈ V :
1 The medial axis of Γ is defined as the set of points which have at least two closest

points on Γ .

J. Gudmundsson (Ed.): SWAT 2008, LNCS 5124, pp. 270–281, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On the Locality of Extracting a 2-Manifold in IR3 271

|sp| ≤ ε · lfs(p). For sufficiently small ε, Amenta and Bern define a canonical
correct reconstruction of V with respect to Γ as the set of Delaunay triangles
whose dual Voronoi edges in the Voronoi diagram of V intersected the surface Γ .
Unfortunately, due to certain point configurations called slivers – four (almost)
cocircular points that are nearby on the surface and have an empty, (almost)
diametral circumsphere – it is not possible to algorithmically determine the
canonical correct reconstruction of V with respect to Γ without knowing Γ , no
matter how dense the sampling V is. However, there are algorithms that can
determine a collection of Delaunay triangles which form a piecewise linear sur-
face that is topologically equivalent to the canonical correct reconstruction, and
converges to the latter, both point-wise and in terms of the surface normals, as
the sampling density goes to infinity (ε → 0). The CoCone algorithm [2] is one
example; it proceeds in four stages: 1) The Voronoi diagram of V is computed.
2) For every point p ∈ V the surface normal −→np at p is estimated as a vector
pointing from p to the furthest point in p’s Voronoi cell. 3) A set of candidate
triangles T is determined by selecting all Delaunay triangles whose dual Voronoi
edge intersects the CoCones2 of all three respective sample points. 4) From the
set of candidate triangles that form a “thickened” layer near the real surface,
the final piecewise-linear surface approximating Γ is extracted.

The last step of the CoCone algorithm first removes triangles with “free”
edges, and then determines the final reconstruction as the outside surface of the
largest connected component of the remaining triangles. Observe that this is a
highly non-local operation. There have been attempts to locally decide for each
sample p which of the candidate triangles to keep for the final reconstruction;
such local decisions might disagree, though, and hence the selected triangles
do not patch up to a closed manifold. Again, the reason why local decisions
might disagree is the presence of slivers which induce a Voronoi vertex inside
the CoCone region of the involved sample points. Each involved sample point has
to decide whether in “its opinion” the true surface Γ intersects above or below
the Voronoi vertex, and create the respective dual Delaunay triangles. If these
decisions are not coordinated contradictions arise. Not only in theory, but even
in practice, the manifold extraction step is still quite challenging and requires
nontrivial engineering to actually work as desired.

One potential way of obtaining a local manifold extraction step is to decide
on triangles/adjacencies in a conservative manner by only creating those trian-
gles/adjacencies which are “safe”, i.e. where the respective dual Voronoi edge/face
essentially completely pierces the CoCone region and hence are certainly part of
the canonical reconstruction as well as any good approximation to it. It is unclear,
though, how much connectivity is lost — whether the resulting graph is connected
at all and how big potential holes/faces are. The main contribution of this paper
is to show that it is actually possible to make local decisions but still guarantee
that the resulting graph exhibits topological equivalence to the original surface.
That is, it is connected, locally planar, and contains no large holes.

2 The CoCone region of a point p with estimated surface normal −→np is the part of p’s
Voronoi cell that makes an angle close to π/2 with −→np at p.

272 D. Dumitriu et al.

We want to point out that the CoCone algorithm (like many other algorithms
in that area) has an inherent (theoretical) quadratic worst-case running time since
it computes a Voronoi diagram/Delaunay triangulation of a point set in IR3 – the
algorithm by Funke and Ramos [4] is an exception since it runs in near-linear time
by enforcing the relevant Voronoi computations to take place locally; nevertheless,
this algorithm also requires a non-local manifold extraction step.

We borrow two ingredients of [4]. In a first step, the algorithm by Funke
and Ramos computes a function φ(p) ∀p ∈ V such that φ is Lipschitz3 and
φ(p) ≤ ε lfs(p). They use this function to “prune” the original point set V to
obtain a set S which has certain nice properties. For our theoretical analysis we
assume that this function φ has been computed in the same manner and use it
to construct a local neighborhood graph on which our algorithm operates. For
S, the algorithm in [4] then locally computes candidate triangles (which due to
the nice properties of S can be done locally in near-linear time), and uses the
standard (non-local!) manifold extraction step to obtain a reconstruction of S
with respect to Γ . Finally, all samples in V − S are reinserted to produce the
final reconstruction; this can be done very elegantly using the reconstruction
of S as a “reference surface” with respect to which the restricted Voronoi Dia-
gram/Delaunay triangulation of V −S is considered. The restricted VD/DT can
easily be computed locally and efficiently via a 2D weighted Delaunay triangu-
lation on planes supporting the faces of the reconstruction of S. We borrow this
last step for our algorithm as we also compute an intermediate reconstruction
for a subset of sample points.

In [5] Funke and Milosavljević present an algorithm for computing virtual coor-
dinates for the nodes of a wireless sensor network which are themselves unaware
of their location. Their approach crucially depends on a subroutine to identify
a provably planar subgraph of a communication graph that is a quasi-unit-disk
graph. The same subroutine will also be used in our surface reconstruction al-
gorithm presented in this paper.

While we deal with the problem of slivers in some sense by avoiding or ignor-
ing them, another approach called sliver pumping has been proposed by Cheng
et al. in [6]. Their approach works for smooth k-manifolds in arbitrary dimen-
sion, though its practicality seems uncertain. There are, of course, other non-
Voronoi-filtering-based algorithms for manifold reconstruction which do not have
a manifold extraction step; they are not in the focus of this paper, though.

1.1 Our Contribution

We propose a novel method for extracting a 2-manifold from a point sample
in IR3. Our approach fundamentally differs from previous approaches in two
respects: first it mainly operates combinatorially, on a graph structure derived
from the original geometry; secondly, the created adjacencies/edges are “conser-
vative” in a sense that two samples are only connected if there is a safe, sliver-free

3 More precisely their algorithm computes a δ-approximate ω-Lipschitz function φ,
that is for x, y we have φ(x) ≤ (1 + δ)(φ(y) + ω|xy|).

On the Locality of Extracting a 2-Manifold in IR3 273

region around the two samples. Interestingly, we can show that conservative edge
creation only leads to small, constant-size faces in the corresponding reconstruc-
tion. Hence completion to a triangulated piecewise linear surface can easily be
accomplished using known techniques. The most notable advantage compared to
previous Voronoi-filtering-based approaches is that the manifold extraction step
can be performed locally, i.e. at any point relying only on adjacency information
of points that are geometrically close to the part of the manifold being extracted.

While the theoretical analysis requires an absurdly high sampling density – like
most of the above mentioned algorithms do – our prototype implementation of
the novel local manifold extraction step (see companion paper [3]) suggests that
the approach is viable even for practical use. The results are quite promising, and
there is potential for considerable speedup e.g. in parallel computing or external
memory scenarios due to the local nature of computation in our new method.

From a technical point of view, two insights are novel in this paper (and not
a result of the mere combination of the two previous results): first, we show
that the neighborhood graph that our algorithms constructs is locally a quasi-
unit-disk graph; it is this property that allows us to actually make use of the
machinery developed in [5]. Second, we provide a more elegant and much stronger
result about the density of the extracted planar graph based on a connection
between the β-skeleton and a power-spanner property; this insight also improves
the overall result in [5].

2 Graph-Based, Conservative Adjacencies

In this section we present an algorithm that, given a ε-sample V from a closed
smooth 2-manifold Γ in IR3, computes a faithful reconstruction of V with respect
to Γ , as a subcomplex of the Delaunay tetrahedralization of V . The outline of
our method is as follows:

1. Determine a Lipschitz function φ(v) for every v ∈ V which lower-bounds
ε lfs(v) (as in [4])

2. Construct a local neighborhood graph G(V) by creating an edge from every
point v to all other points v′ with |vv′| ≤ O(φ(v))

3. Compute a subsample S of (V)
4. Identify adjacencies between elements in S based on the connectivity of G(V)

(as in [5])
5. Use geometric positions of the points in S to identify faces of the graph

induced by certified adjacencies when embedded on the manifold
6. Triangulate all non-triangular faces
7. Reinsert points in V −S by computing the weighted Delaunay triangulations

on the respective faces (as in [4])

The core components of the correctness proof of this approach are:
– We show that the local neighborhood graph corresponds locally to a quasi-

unit-disk graph for a set of points in the plane.
– The identified adjacencies locally form a planar graph.
– This locally planar graph has faces of bounded size.

274 D. Dumitriu et al.

Essentially this means that we cover Γ by a mesh with vertex set S consisting
of small enough cells that the topology of Γ is faithfully captured. Note that the
first and last item from above are original and novel to this paper and do not
follow from our previous results in [4] and [5] (the last item makes the theoretical
result in [5] much stronger).

We first discuss the 2-dimensional case, where we are given a uniform ε-
sampling (i.e. the local feature size is 1 everywhere) of a disk and show that
steps 2. to 5. yield a planar graph with “small” faces. Then we show how the
same reasoning can be applied to the 3-dimensional case. The main rationale
of our approach is the “conservative” creation of adjacencies; that is, we only
create an edge between two samples if in any good reconstruction the two points
are adjacent, which can be interpreted as creating edges only in the absence of
slivers in the vicinity.

2.1 Conservative Adjacencies in IR2

Let V be a set of n points that form a ε-sampling of the disk of radius R around
the origin o, that is, ∀p ∈ IR2 with |po| ≤ R, ∃v ∈ V : |vp| ≤ ε.

Definition 1. A graph G(V, E) on V is called a α-quasi-unit-disk-graph (α-
qUDG) for α ∈ [0, 1] if for p, q ∈ V

– if |pq| ≤ α then (p, q) ∈ E
– if |pq| > 1 then (p, q) /∈ E

That is, in G all nodes at distance at most α have to be adjacent, while all nodes
at distance more than 1 cannot be adjacent. For nodes with distances in between,
either is possible.

Within G we consider the distance function dG defined by the (unweighted)
graph distances in G(V, E). Let k ≥ 1, we call a set S ⊆ V a tight k-subsample
of V if

– ∀s1, s2 ∈ S: dG(s1, s2) > k
– ∀v ∈ V : ∃s ∈ S with dG(v, s) ≤ k.

A tight k-subsample of V can easily obtained by a greedy algorithm which
iteratively selects a so far unremoved node v into S and removes all nodes at
distance at most k from consideration.

The following algorithm determines adjacencies between nodes in S based on
a Graph Voronoi diagram such that the induced graph on S remains planar.

Graph-Based Conservative Adjacencies. The idea for construction and the
planarity property of our construction are largely derived from the geometric in-
tuition. To be specific, the planarity follows from the fact that our constructed
graph – we call it combinatorial Delaunay map of S, short CDM(S) – is the dual
graph of a suitably defined partition of the plane into simply connected disjoint
regions. In the following we use the method for identifying adjacencies between

On the Locality of Extracting a 2-Manifold in IR3 275

nodes in S purely based on the graph connectivity as described in [5]. The reason-
ing relies on the fact that our graph instance is not an arbitrary graph but reflects
the geometry of the underlying domain by being a quasi-unit-disk graph.

First we introduce a labeling of G(V, E) for a given set S ⊆ V assuming that
all elements in V (and hence in S) have unique IDs that are totally ordered.

Definition 2. Consider a vertex a ∈ S and a vertex v ∈ V − S. We say that
v is an a-vertex (or: labeled with a) if a is one of the elements in S which is
closest to v (in graph distance), and a has the smallest ID among such.

Clearly, this rule assigns unique labels to each vertex due to the uniqueness of
nodes’ IDs. Also note that any a ∈ S is an a-vertex. Next we present a criterion
for creating adjacencies between vertices in S.

Definition 3. a, b ∈ S are adjacent in CDM(S) iff there exists a path from a
to b whose 1-hop neighborhood (including the path itself) consists only of a and
b vertices, and such that in the ordering of the nodes on the path (starting with
a and ending with b) all a-nodes precede all b-nodes.

We have the following result of [5].

Theorem 1. If G is an α-qUDG with α ≥ 1√
2

and S is a tight k-subsample of
G, then CDM(S) is a planar graph.

Of course, just planarity as such is not too hard to guarantee – one could simply
return a graph with no edges. But we will show in the following that this is
not the case; in particular we show that the respective graph is connected and
all its faces are bounded by a constant number of edges. The following lemmas
and proofs are not taken from [5], but also apply there, improving the (weaker)
statements about the density of CDM(S) in [5].

CDM(S) is Dense(!). Let us consider the β-skeleton [7] of the points corre-
sponding to the node set S. The β-skeleton of a point set has an edge between
two points p, q iff any ball of radius β|pq|/2 touching p and q is empty of other
points. For β = 1 we obtain the well-known Gabriel graph (there is exactly one
ball touching p and q with radius |pq|/2). For β > 1 we get a subgraph thereof
(there are always two balls of radius > |pq|/2 touching p and q).

First we will show that the graph obtained via the β-skeleton is connected4 and
all internal faces of this graph (when using the obvious straight-line embedding in
the plane) have constant complexity. Then we argue that for suitable parameters
k and ε, every β-skeleton edge is also present in CDM(S).

β-skeleton is dense. We establish both connectivity as well as bounded face com-
plexity by showing that the β-skeleton for the point set S is a σ-power-spanner,
more precisely we show that all power distance optimal paths only use edges of
the β-skeleton. For the point set S, the σ-power distance dσ(p, q) between two
4 In general the β-skeleton need not be connected; in our case it is due to our choice

of β and the local uniformity of S.

276 D. Dumitriu et al.

points p, q ∈ S is determined by a sequence of points p = p0p1 . . . pl = q such
that dσ(p, q) =

∑l−1
i=0 |pipi+1|σ is minimal, where pi ∈ S. Intuitively, the power

distance between two points is the minimum amount of energy required to trans-
mit a message between the two points (potentially using intermediate points as
relays) assuming that direct communication between two points at distance d
has cost dσ.

Observation 2. For σ ≥ 2 every pipi+1 is a Gabriel edge.

What we want to show is that for a suitable choice of σ dependent on β, all links
pipi+1 in a power-minimal path are even edges of the β-skeleton. We start with
a simple observation about the distribution of S.

Lemma 1. For any pair s1, s2 ∈ S we have |s1s2| ≥ (α − ε)k.

Proof. Follows from the fact that V is an ε-sampling and S being a tight k-
sample in a α-qUDG.

The fact that V is an ε-sampling of a disk also implies that all Gabriel (and
hence β-skeleton) edges cannot be too long.

Lemma 2. For any s1, s2 ∈ S such that |s1s2| > 2(k + ε), s1s2 cannot be a
Gabriel edge.

Proof. Assume otherwise. Consider the Gabriel ball of s1s2, with center c and
radius r > k + ε; due to convexity of a disk and V being a ε-sampling thereof,
there must be a point p ∈ V at distance at most ε from c. But for this p there
must exist a s ∈ S at distance at most k, violating the Gabriel ball property.

Let us now consider one potential edge between nodes p and q which is not part
of the β-skeleton and show that this edge cannot be part of any power minimal
path.

Lemma 3. Let p, q ∈ S but pq not an edge in the β-skeleton. Then if σ ≥
4 ln 2(k+ε)

(α−ε)k and β ≤ (1+ (α−ε)k
4(k+ε))

2

2
√

(1+ (α−ε)k
4(k+ε))

2−1
, pq cannot be part of any power minimal

path.

Proof. Due to space restrictions we can only provide a very rough sketch. See the
authors’ homepages for a long version. Due to Observation 2 and Lemma 2, pq
cannot be too long. On the other hand, because pq is not part of the β-skeleton,
there must be other landmarks inside the two balls of radius β|pq|/2 touching p
and q. Then σ can be chosen such that any power minimal path would rather
go via those other landmarks than taking the direct hop pq.

It follows that for the respective choice of σ and β, all power-efficient paths
use only edges of the β-skeleton and that the β-skeleton-graph is connected.
It remains to show that the graph is somewhat dense, more precisely we want
to show that the induced faces (when embedding using the original geometric
coordinates) are of constant size.

On the Locality of Extracting a 2-Manifold in IR3 277

Lemma 4. Any bounded face of the β-skeleton is of size O

((
2(k+ε)
(α−ε)k

)2(σ+1)
)

.

Proof. Again, we only give a sketch, due to limited space. Fix any bounded
face f . Observe that some Delaunay edge e = (u, v) cuts f in a balanced way.
Lemmas 1, 2 (a version for Delaunay edges), and 3 upper-bound the hop-distance
between u and v in the β-skeleton. A shortest uv-path p need not go along the
face boundary, but p and e “enclose” a path p′ that does. A packing argument
(involving Lemma 1 again) shows that p′ cannot be too long either.

At this point we have shown that the β-skeleton of S induces a connected planar
graph which has constant-size faces only. It remains to show that all edges of
the β-skeleton of S are also identified as adjacencies in CDM(S). To achieve
that, observe that any value β > 1 implies that points s1, s2 ∈ S adjacent in the
β-skeleton of S share a “relatively long” Voronoi edge in the Voronoi diagram of
S; more precisely s1 and s2 share a Voronoi edge of length |s1s2|

√
β2 − 1. Hence

it suffices to show that this long Voronoi edge is also reflected in the α-qUDG by
respective witness paths. This can be easily achieved by choosing a large enough
k (dependent on β). The following corollary follows immediately:

Corollary 1. The graph induced by S and the adjacencies identified by our al-
gorithm is planar, connected and has (internal) faces of size O(1).

2.2 Conservative Adjacencies in IR3

All the reasoning so far has been concentrating on a flat, planar setting. Let
us now consider the actual setting in IR3. Let V be an ε-sampling of a smooth
closed 2-manifold Γ in IR3.

Here the steps of our algorithm are as follows: in step (1) we have to compute
a Lipschitz5 function φ with φ(p) ≤ ε lfs(p) for all p ∈ V . This can be done
using the procedure given in [4] in near-linear time. Then in step (2) the graph
G(V, E) is constructed by creating edges between samples p1, p2 iff |p1p2| ≤
6 · φ(p1) or |p1p2| ≤ 6 · φ(p2) (Note that the constant 6 is somewhat arbitrary
and only chosen to make every sample connected to its neighbors in the canonical
correct reconstruction). The following steps (3) to (5) are exactly the same as
in the 2-dimensional case. We now want to argue that locally around a sample
point p the constructed graph looks like an α-quasi-unit-disk graph. To keep the
representation simple, we assume that φ(p) = ε lfs(p). Although the procedure
in [4] yields a φ which is a pointwise lower bound for the latter, the argumentation
remains the same. The following basic observations are easy to derive (think of
ε
 γ
 1):

Lemma 5. Let p ∈ Γ be a point on the surface, Tp the tangent plane at p, q ∈ Γ
some point on the surface with |pq| ≤ γ lfs(p), γ < 1, q′ its orthogonal projection
on Tp. Then we have |qq′| < γ2 lfs(p).

5 In fact one computes a δ-approximate ω-Lipschitz function.

278 D. Dumitriu et al.

p q

q’

q

q’

p

c

m

Fig. 1. Sandwiching balls

Proof. Consider the two balls of radius lfs(p) tangent at p. By definition of the
local feature size, no point of Γ is contained in the interior of either of the
two balls. Let q, q′ and Tp be defined as above, see Fig. 1, left. In the worst
case, q ∈ Γ lies on one of the two balls tangent at p as in Fig. 1, right. The
angle at p in triangle Δpqq′ is equal to the angle at c in the triangle Δcmp
– call this angle θ. Since both these triangles are right-angled, we have that
sin θ = |pm|/|pc|| = |qq′|/|pq|, or in other words |qq′| = |pm||pq|/|pc|. But
since |pm| = |pq|/2 ≤ γ lfs(p)/2, |pc| = lfs(p), and |pq| ≤ γ lfs(p), we obtain
|qq′| ≤ γ2 lfs(p)/2.

Observation 3. Let p ∈ Γ be a point on the surface, Tp the tangent plane at
p, q1, q2 ∈ Γ two points on the surface with |pqi| ≤ γ lfs(p), γ < 1, q′i their
orthogonal projections on Tp. Then we have |q1q2| − |q′1q′2| ≤ 2γ2 lfs(p).

The latter observation means that when projecting into the tangent plane at
p, distances are shortened by at most an additive amount of 2γ2 lfs(p). We are
interested in the largest distance between any two samples s1, s2 with |psi| ≤
γ lfs(p) and the smallest (projected!) distance of a non-adjacent pair. If the
ratio of these two distances is at most 1/α we know that locally in a γ lfs(p)-
neighborhood of p the constructed graph is an α-quasi-unit-disk graph.

Lemma 6. For γ ≤ 1/16 the γ lfs(p)-neighborhood of p in the constructed graph
is an α-quasi-unit-disk graph with α > 1/

√
2.

Proof. Within a distance of γ lfs(p) from p on the surface the local feature size
can increase by at most 2γ2 lfs(p) (again a sandwiching argument, as in the pre-
vious Lemma). Hence the distance of samples identified as adjacent can increase
by a factor of (1 + 2γ2). On the other hand, the local feature size can actually
decrease by γ lfs(p), hence the smallest distance of a non-adjacent pair (taking
into account the projection) can be as little as 6ε lfs(p)(1 − γ − 2γ2). Therefore
the ratio between these two distances is 1+2γ2

1−γ−2γ2 . Choosing e.g. γ = 1/16 makes
this ratio less than

√
2.

On the Locality of Extracting a 2-Manifold in IR3 279

Fig. 2. Main steps of our algorithm: Point
cloud, Graph Voronoi Diagram, CDM(S),
identified faces

Now we can invoke Corollary 1
which implies that locally for any
p ∈ S the graph constructed by our
algorithm is planar, connected and
has internal faces of constant size.

Note: The faces, or more precisely,
the local embedding can be simply
obtained by reusing the geometry
again and locally projecting the ad-
jacent points si of a point s ∈ S
into an (almost) tangent plane, then
reading off the cyclic order around s.
Global connectivity is ensured by
choosing γ large enough (compared
to ε) such that large faces are com-
pletely contained in the γ lfs(p)-
neighborhood of any node bounding
the face.

What does this mean? The graph
that we constructed on the subsam-
ple of points S is a mesh that is locally planar and covers the whole 2-manifold.
The mesh has the nice property that all its cells (aka faces) have constant size
(number of bounding vertices). The edge lengths of the created adjacencies be-
tween S are proportional to the respective local feature sizes. Therefore its con-
nectivity structure faithfully reflects the topology of the underlying 2-manifold.

Algorithm Epilog. We did not talk about steps (6) and (7) of our approach
since they follow exactly the description in [4] and are not novel to this work; we
nevertheless give a brief summary here. Essentially, in step (6) we triangulate
non-triangular faces by projecting them into a nearby (almost) tangent plane and
computing the Delaunay triangulation. The resulting triangulated faces behave
nicely since all faces have small size (and hence their vertices are almost coplanar)
and because S is a locally uniform sampling of the surface. In step (7) the
points pruned in step (3) are reinserted by computing a weighted Delaunay
triangulation on the supporting planes of the respective faces. The resulting
triangulations are guaranteed to patch up.

The proofs for convergence both point-wise as well as with respect to triangle
normals can be carried over from [4] since S can be made an arbitrarily good,
locally uniform ε′-sampling (the original ε-sampling V has to be accordingly
denser, i.e. ε
 ε′). Therefore, the same theorem holds for the result of our
algorithm:

Theorem 4. There exists ε∗ such that for all ε < ε∗, smooth surfaces Γ in
IR3 and ε-samplings V ⊂ Γ , the triangulated surface Γ̃ output by our algorithm
satisfies the following conditions:

280 D. Dumitriu et al.

1. Bijection: μ : Γ̃ → Γ , determined by closest point, is a bijection
2. Pointwise Approximation: For all x ∈ Γ̃ , d(x, μ(x)) = O(ε2 lfs(μ(x)))
3. Normal Approximation: For all x ∈ Γ̃ , ∠nΓ̃ (x)nΓ (μ(x)) = O(ε) where

nF (y) denotes the (outside) normal of F at y.6

4. Topological Correctness: Γ and Γ̃ have the same topological type.

3 Implementation and Experimental Evaluation

We have prototyped the novel steps of our algorithm in C++. This implementation
is the topic of the companion paper [3]. This companion paper also highlights
another novelty of our approach, namely that most of our computation does not
use any geometry information: after establishing neighborhood relations between
nearby points, the main steps of our algorithm operate combinatorially on a
graph structure. As such, they are by far less susceptible to robustness problems
due to round-off errors in floating-point arithmetic.

Fig. 3. Output of our implementation for the standard “Dragon” model. Non-
triangular faces are denoted in light color.

In Fig. 2 we have visualized the main steps of our algorithms: starting with a
point cloud we compute a Graph Voronoi diagram, based on that the CDM(S)
and finally we inspect the CDM(S) to identify faces, some of which might be
non-triangular (here in light color) due to the conservative edge creation. In
Fig. 3 we give a picture of the reconstruction for a complete object (the standard
“Dragon” dataset).

6 For Γ̃ the normal is well-defined in the interior of triangles; at edges and vertices it
can be defined as an interpolation from that at the incident triangles.

On the Locality of Extracting a 2-Manifold in IR3 281

4 Outlook

Theoretically, our approach has the potential to work for reconstructing 2-man-
ifolds even in higher dimensions. It does not extend to non-2-manifolds, though,
as the “local planarity property” of a graph that our algorithm crucially depends
upon, has no equivalent for non-2-manifolds.

A more in-depth discussion on the advantages and disadvantages of dropping
geometry information early-on can be found in the companion paper to this
submission [3]; further studies are required, though, whether this can be extended
to a general paradigm when designing geometric algorithms.

In parallel computing or external memory scenarios, it is much easier to ob-
tain efficient algorithms if the performed operations require only local access to
data. In the former, making non-local data available typically incurs a runtime
penalty for the data transfer or more complicated access control mechanisms,
in the latter, local data can be cached in internal memory, while non-local data
has to be read from external memory again incurring considerable latency. The
manifold extraction step as for example employed by the CoCone algorithm is a
global, highly non-local operation. It remains to be seen whether the localization
property exhibited in this paper leads to practically more efficient algorithms in
the parallel computing or external memory scenario.

Acknowledgment

In memory of our dear friend and colleague Martin Kutz.

References

1. Amenta, N., Bern, M.: Surface reconstruction by Voronoi filtering. In: Proc. 14th
ACM SoCG. (1998)

2. Amenta, N., Choi, S., Dey, T.K., Leekha, N.: A simple algorithm for homeomorphic
surface reconstruction. In: Proc. 16th SoCG (2000)

3. Dumitriu, D., Funke, S., Kutz, M., Milosavljević, N.: How much Geometry it takes
to Reconstruct a 2-Manifold in R

3. In: Proc. 10th ACM-SIAM ALENEX, pp. 65–74
(2008)

4. Funke, S., Ramos, E.: Smooth-surface reconstruction in near-linear time. In: Proc.
ACM-SIAM SODA (2002)

5. Funke, S., Milosavljević, N.: Network Sketching or: ”How Much Geometry Hides in
Connectivity? – Part II”. In: Proc. ACM-SIAM SODA, pp. 958–967 (2007)

6. Cheng, S.W., Dey, T., Ramos, E.: Manifold reconstruction from point samples. In:
ACM-SIAM SODA, pp. 1018–1027 (2005)

7. Kirkpatrick, D.G., Radke, J.D.: A framework for computational morphology. In:
Toussaint, G.T. (ed.) Computational Geometry, pp. 217–248. North-Holland, Ams-
terdam (1985)

On Metric Clustering to Minimize the Sum of
Radii�

Matt Gibson, Gaurav Kanade, Erik Krohn, Imran A. Pirwani,
and Kasturi Varadarajan��

Department of Computer Science,
University of Iowa, Iowa City, IA 52242-1419, USA

{mrgibson,gkanade,eakrohn,pirwani,kvaradar}@cs.uiowa.edu

Abstract. Given an n-point metric (P, d) and an integer k > 0, we
consider the problem of covering P by k balls so as to minimize the
sum of the radii of the balls. We present a randomized algorithm that
runs in nO(log n·log Δ) time and returns with high probability the optimal
solution. Here, Δ is the ratio between the maximum and minimum in-
terpoint distances in the metric space. We also show that the problem
is NP-hard, even in metrics induced by weighted planar graphs and in
metrics of constant doubling dimension.

Keywords: k-clustering, k-cover, clustering, metric clustering, planar
metric, doubling metric.

1 Introduction

Given a metric d defined on a set P of n points, we define the ball B(v, r)
centered at v ∈ P and having radius r ≥ 0 to be the set {q ∈ P |d(v, q) ≤ r}.
In this work, we consider the problem of computing a minimum cost k-cover for
the given point set P , where k > 0 is some given integer which is also part of
the input. For κ > 0, a κ-cover for subset Q ⊆ P is a set of at most κ balls, each
centered at a point in P , whose union covers (contains) Q. The cost of a set D
of balls, denoted cost(D), is the sum of the radii of those balls.

This problem and its variants have been well examined, motivated by appli-
cations in clustering and base-station coverage [6,4,13,3,1].

Doddi et al. [6] consider the metric min-cost k-cover problem and the closely
related problem of partitioning P into a set of k clusters so as to minimize
the sum of the cluster diameters. Following their terminology, we will call the
latter problem clustering to minimize the sum of diameters. They present a
bicriteria poly-time algorithm that returns O(k) clusters whose cost is within
a multiplicative factor O(log(n/k)) of the optimal. For clustering to minimize
the sum of diameters, they also show that the existence of a polynomial time
� Work by the first, second, third, and fifth authors was partially supported by NSF

CAREER award CCR 0237431.
�� Part of this work was done while the author was visiting the Institute for Mathe-

matical Sciences, Chennai, India.

J. Gudmundsson (Ed.): SWAT 2008, LNCS 5124, pp. 282–293, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On Metric Clustering to Minimize the Sum of Radii 283

algorithm that returns k clusters whose cost is strictly within 2 of the optimal
would imply that P = NP . Notice that this hardness result does not imply the
NP-hardness of the k-cover problem. Charikar and Panigrahy [4] give a poly-
time algorithm based on the primal-dual method that gives a constant factor
approximation – around 3.504 – for the k-cover problem, and thus also a constant
factor approximation for clustering to minimize the sum of diameters.

The well known k-center problem is a variant of the k-cover problem where
the cost of a set of balls is defined to be the maximum radius of any ball in
the set. The problem is NP-hard and admits a polynomial time algorithm that
yields a 2-approximation [10]. Several other formulations of clustering such as
k-median and min-sum k-clustering are NP-hard as well [11,5].

Recently, Gibson et al. [9] consider the geometric version of the k-cover prob-
lem where P ⊂ �l for some constant l. When the L1 or L∞ norm is used to
define the metric, they obtain a polynomial time algorithm for the k-cover prob-
lem. With the L2 norm, they give an algorithm that runs in time polynomial
in n, the number of points, and in log(1/ε) and returns a k-cover whose cost is
within (1 + ε) of the optimal, for any 0 < ε < 1.

1.1 Our Results

Our first result generalizes the algorithmic approach of Gibson et al. [9] to the
metric case. For the k-cover problem in the general metric setting, we obtain an
exact algorithm whose running time is nO(log n·log Δ), where Δ is the aspect ratio
of the metric space, the ratio between the maximum interpoint distance and the
minimum interpoint distance. The algorithm is randomized and succeeds with
high probability. Thus when Δ is bounded by a polynomial in n, the running time
of the algorithm is quasi-polynomial. This result for the k-cover problem should
be contrasted with the NP-hardness results for problems such as k-center, k-
median, and min-sum k-clustering, which hold when the aspect ratio is bounded
by a polynomial in n.

The main idea that underlies this result is that if we probabilistically partition
the metric into sets with at most half the original diameter [2,7], then with high
probability only O(log n) balls in the optimal k-cover of P are “cut” by the
partition. A recursive approach is then used to compute the optimal k-cover.

This algorithmic result raises the question of whether an algorithm whose
running time is quasi-polynomial in n is possible even when the aspect ratio
is not polynomially bounded. Our second result shows that this is unlikely by
establishing the NP-hardness of the k-cover problem. The aspect ratio in the NP-
hardness construction is about 2n. The metrics obtained are induced by weighted
planar graphs, thus establishing the NP-hardness of the k-cover problem for this
special case.

Our final result is that the k-cover problem is NP-hard in metrics of con-
stant doubling dimension for a large enough constant. This result is somewhat
surprising given the positive results of [9] for fixed dimensional geometric spaces.

Before concluding this section, we point out that our algorithmic result for
the metric k-cover problem readily yields a randomized approximation algorithm

284 M. Gibson et al.

that runs in time 2polylog(n/ε) and returns with high probability a k-cover whose
cost is at most (1+ ε) times the cost of the optimal k-cover. This approximation
algorithm is obtained by applying a simple transformation (involving discretiza-
tion) that reduces the approximate problem to several instances of the exact
metric κ-cover problem with aspect ratio bounded by poly(n/ε).

The rest of this article is organized as follows. In Section 2, we present our
algorithm for the k-cover problem. In Section 3, we establish the NP-hardness of
the k-cover problem for metrics induced by weighted planar graphs. In Section 4,
we establish NP-hardness for metrics of constant doubling dimension.

2 Algorithm for General Metrics

We consider the k-cover problem whose input is a metric (P, d), where P is
a set of n points and d is a function giving the interpoint distances, and an
integer k > 0. We assume without loss of generality that the minimum interpoint
distance is 1. Let Δ denote diam(P), the maximum interpoint distance. We
present a randomized algorithm that runs in nO(log n log Δ) time and with high
probability returns the best k-cover for P . We will assume below that k ≤ n.

The main idea for handling the metric case is that probabilistic partitions [2,7]
can play a role analogous to the line separators were used in the geometric case
[9]. To formalize this, let Q denote some subset of P such that diam(Q) ≥ 50,
and consider the following randomized algorithm (taken from [7]) that partitions
Q into sets of diameter at most diam(Q)/2:

Algorithm 1. Partition(Q)
1: Let π denote a random permutation of the points in Q.
2: Let β denote a random number in the range [diam(Q)/8, diam(Q)/4].
3: Let R ← Q.
4: for all i ← 1 to |Q| do
5: Let Qi ← {p ∈ R|d(p, π(i)) ≤ β}.
6: Let R ← R \ Qi.

Since each Qi is contained in a ball of radius at most diam(Q)/4, we have
that diam(Qi) ≤ diam(Q)/2. Clearly, the Qi also partition Q. Let us say that a
ball B ⊆ P is cut by this partition of Q if there are two distinct indices i and
j such that (B ∩ Q) ∩ Qi 	= ∅ and (B ∩ Q) ∩ Qj 	= ∅. The main property that
the probabilistic partition enjoys is encapsulated by the following lemma, whose
proof follows via the methods of Fakcharoenphol et al. [7].

Lemma 1. Let B ⊆ P be some ball of radius r. The probability that B is cut
by the partition of Q output by Partition(Q) is at most r

diam(Q)
O(log |Q|).

Proof. Let q1, . . . q|Q| denote the ordering of the points in Q according to increas-
ing order of distance from B′ = B∩Q, with ties broken arbitrarily. We may assume

On Metric Clustering to Minimize the Sum of Radii 285

that B′ 	= ∅ for otherwise the lemma trivially holds. For each qj let aj (resp. bj)
denote the distance to the closest (resp. furthest) point in B′. By the triangle in-
equality it follows that bj − aj ≤ 2r. We say that π(i) settles B if i is the first
index for which some point in B′ belongs to Qi. Note that exactly one point in Q
settles B. We say that π(i) cuts B if π(i) settles B and at least one point in B′ is
not assigned to Qi. The probability that B is cut by the partition equals∑

i

Pr[π(i) cuts B] =
∑

j

Pr[qj cuts B].

The event that qj cuts B requires the occurrence of two events: E1, the event
that β lands in the interval [aj , bj), and E2, the event that qj appears before
q1, . . . , qj−1 in the ordering π. Using independence,

Pr[qj cuts B] ≤ Pr[E1] ∗ Pr[E2|E1] = Pr[E1] ∗ Pr[E2]

≤ 2r

diam(Q)/8
· 1
j

=
16r

diam(Q)
· 1
j
.

So the probability that B is cut by the partition is bounded above by

16r

diam(Q)

∑
j

1
j

=
r

diam(Q)
O(log |Q|).

�

Let S denote the optimal κ-cover for Q some κ > 0. The following states the
main structural property that S enjoys.

Lemma 2. The expected number of balls in S that are cut by Partition(Q) is
O(log |Q|). Consequently, the probability is at least 1/2 that the number of balls
in S that are cut by Partition(Q) is at most c log n, where c > 0 is some constant.

Proof. The expected number of balls in S cut is equal to
∑
B∈S

Pr[B is cut] = O(log |Q|)
∑
B∈S

radius(B)
diam(Q)

= O(log |Q|) cost(S)
diam(Q)

.

The Lemma follows by observing that cost(S) ≤ diam(Q) since Q can be covered
by a single ball of radius diam(Q). �

2.1 The Randomized Algorithm

We describe a recursive algorithm BC-Compute that takes as arguments a set
Q ⊆ P and an integer 0 ≤ κ ≤ n and returns with high probability an opti-
mal κ-cover for Q. We begin by noting that we may restrict our attention to
balls B(x, r) whose radius r equals d(x, q) for some q ∈ P . Henceforth in this
section we only refer to this set of balls. For easing the description of the algo-
rithm, it is convenient to add to this set of balls an element I whose cost is ∞.
Any subset of this enlarged set of balls that includes I will also have a cost of ∞.

286 M. Gibson et al.

Algorithm 2. BC-Compute(Q, κ)
1: If |Q| = 0, return the empty set.
2: Otherwise, if κ = 0, return {I} (not possible to cover).
3: Otherwise, if diam(Q) ≤ 50, directly compute the optimal solution in polynomial

time. In this case, the optimal solution has cost at most 50, so it consists of a set S
of at most 50 balls of non-zero radius plus zero or more singleton balls. The number
of such solutions is polynomial, and our algorithm checks them all.

4: for all 2 log2 n iterations do
5: Call Partition(Q) to obtain a partition of Q into two or more sets. Let

Q1, . . . , Qτ denote the nonempty sets in this collection.
6: for all sets C of at most c log n balls, where c is the constant in Lemma 2 do
7: Let Q′

i be the points in Qi not covered by C. For each 1 ≤ i ≤ τ and 0 ≤
κ1 ≤ κ, recursively call BC-Compute(Q′

i, κ1) and store the set returned in the
local variable best(Q′

i, κ1).
8: For 0 ≤ i ≤ τ − 1, let Ri = ∪τ

j=i+1Q
′
j . Note that Rτ−1 = Q′

τ and Ri =
Q′

i+1 ∪ Ri+1 for 0 ≤ i ≤ τ − 2.
9: for all i ← τ − 2 down to 0 and 0 ≤ κ1 ≤ κ, do

10: set local variable best(Ri, κ1) to be the lowest cost solution among
{best(Q′

i+1, κ
′) ∪ best(Ri+1, κ1 − κ′)|0 ≤ κ′ ≤ κ1}.

11: Let S denote the lowest cost solution best(R0, κ − |C|) ∪ C over all choices
of C tried above with |C| ≤ κ.

12: Return the lowest cost solution S obtained over the Θ(log n) trials.

Running time. To solve an instance (Q, κ) of the problem with diam(Q) ≥ 50,
the algorithm makes nO(log n) recursive calls to instances with diameter at most
diam(Q)/2. The additional book keeping takes nO(log n) time. It follows that
the running time of the algorithm invoked on the original instance (P, k) is
nO(log n·log Δ).

Correctness. We will show that BC-Compute(P, k) computes an optimal k-cover
for P with high probability. We begin by noting that the base case instances
(Q, κ) are solved correctly with a probability of 1. We will show by induction on
|Q| that any instance (Q, κ) with |Q| ≥ 2 is optimally solved with a probability
of at least 1 − |Q|−1

n2 .
If the (Q, κ) instance happens to fit in one of the base cases, we are done.

Otherwise, consider an optimal κ-cover OPT for Q. It is enough to show that
BC-Compute(Q, κ) returns a κ-cover of cost at most cost(OPT) with a probability
of at least 1 − |Q|−1

n2 .
By Lemma 2, the probability is at least 1 − 1

n2 that one of the 2 log2 n calls to
Partition(Q) returns a partition (Q1, . . . , Qτ) of Q into τ ≥ 2 sets such that no
more than c log n balls in OPT are cut by the partition. Assuming this good event
happens, fix such a partition (Q1, . . . , Qτ) of Q and consider the choice of C that
exactly equals the balls in OPT that are cut by the partition. The balls in OPT \C
are not cut by the partition and can be partitioned into subsets (OPT1, . . . , OPTτ)
(some of these can be empty) such that for anyballB ∈ OPTi, we have B∩Q ⊆ Qi.
It is easy to see thatOPTi mustbeanoptimal |OPTi|-cover forQ′

i.By the induction

On Metric Clustering to Minimize the Sum of Radii 287

hypothesis, BC-Compute(Q′
i, |OPTi|) returns an |OPTi|-cover for Q′

i with a prob-
ability of at least 1 − |Q′

i|−1
n2 if |Q′

i| ≥ 2 and with a probability of 1 otherwise. The
probability that BC-Compute(Q′

i, |OPTi|) returns an |OPTi|-cover for Q′
i for every

i is at least

∏
i:|Q′

i|≥2

1 − |Q′
i| − 1
n2 ≥

∏
i

1 − |Qi| − 1
n2 ≥ 1 − |Q| − 2

n2 .

Assuming this second good event also happens, it follows from an easy backwards
induction on i that best(Ri,

∑
j>i |OPTj |) is a (

∑
j>i |OPT|j)-cover for Ri with

cost at most
∑

j>i cost(OPTj). Thus best(R0, κ − |C|) is an (κ − |C|)-cover for
R0 =

∑τ
i=1 Q′

i with cost at most
∑τ

i=1 cost(OPTi). Thus best(R0, κ−|C|)∪C is a
κ-cover of Q with cost at most cost(OPT). The probability of this happening is at
least the product of the probabilities of the two good events we assumed, which is
at least (1− |Q|−1

n2). This completes the inductive step, because BC-Compute(Q, κ)
returns the lowest cost κ-cover among the 2 log2 n κ-covers that it sees.

Theorem 1. There is a randomized algorithm that, given a set P of n points
in a metric space and an integer k, runs in nO(log n·log Δ) time and returns, with
probability at least 1/2, an optimal k-cover for P . Here Δ is an upper bound on
the ratio between the maximum and minimum interpoint distances within P .

3 NP-Hardness of Min-Cost k-Cover

A natural question is whether there is a quasipolynomial time algorithm in n
for the case where the input metric has unbounded aspect ratio. This is unlikely
to be the case because, as we show in this section, the general problem is NP-
hard even in case of a planar metric. We give a reduction from a version of the
planar 3-SAT problem - the pn-planar 3-SAT problem. This problem was shown
to be NP-complete in [14]. Planar 3-SAT is defined as follows: Let Φ = (X, C)
be an instance of 3SAT, with variable set X = {x0, . . . , xn−1} and clauses C =
{c1, . . . , cm} such that each clause consists of exactly 3 literals. Define a formula
graph GΦ = (V, E) with vertex set V = X

⋃
C and edges E = E1

⋃
E2 where

E1 = {(xi, xi+1)|0 ≤ i ≤ n−1}1 and E2 = {(xi, cj)|cj contains xi or xi}. A 3SAT
formula Φ is called planar if the corresponding formula graph GΦ is planar. The
edge set E1 defines a cycle on the vertices X , and thus divides the plane into
exactly 2 faces. Each node cj ∈ C lies in exactly one of those two faces. In the
pn-planar 3SAT problem, we have the additional restriction that there exists a
planar drawing of GΦ such that if cj and cj′ contain opposite occurrences of the
same variable xi, then they lie in opposite faces. In other words, all clauses with
the literals xi lie in one of the two faces and all clauses with xi lie in the other
face. We have to determine whether there exists an assignment of truth values
to the variables in X that satisfies all the clauses in C.
1 Here we assume that the arithmetic wraps around i.e. (n − 1) + 1 = 0.

288 M. Gibson et al.

We describe a simple transformation, easily seen to be effected by a polynomial
time algorithm, from such a pn-planar 3SAT instance to an instance of finding
an optimal k-cover in a metric induced by a weighted planar graph G = (V, E).
The transformation has the property that there is a k-cover in the metric of cost
at most 2k − 1 if and only if the original pn-planar 3SAT instance is satisfiable.

We set k = n. The vertex set V of the graph is a union of k + 2 sets: (a) a
set X = {x0, x0, . . . , xk−1, xk−1} that can be identified with the set of variables
of the pn-planar 3SAT instance with each variable occurring twice - once as a
positive literal and once as a negative literal, (b) a set C = {c1, . . . , cm} that can
be identified with the set of clauses of the pn-planar 3SAT instance, and (c) sets
W 0, . . . , W k−1, where each W l consists of k+1 vertices. To obtain the edge set E,
we add an edge between each vertex xl and xl in X with weight 2l for 0 ≤ l ≤ k−1.
For each vertex xl ∈ X we add an edge between xl and every vertex in W l of weight
2l for 0 ≤ l ≤ k−1. Analogously, we add an edge between each vertex xl and every
vertex in W l again of weight 2l. In addition we add edges between every vertex
ci ∈ C and every variable vertex xl or its negation xl whichever appears in it of
weight 2l. Note that this graph G is planar – this follows from the pn-planarity of
the 3SAT instance. See Figure 1 for an illustration.

l
x

2
l

1

l
w

2

l
w

3

l
w

1

l

k
w

+

lx

2
l

2
l

2
l

2
l

2
l

2
l

2
l

2
l

0x 0
x

2
x

2x

4x 4
x

3x 3
x

1
x

1x

5
x

5x

1
C

0
x

3
x

1
x

4
C

2
C

3
C

1
C

2
C

3
C

4
C

0
2

0
2

0
2

1
2

1
2

2
2

3
2

3
2

3
2

4
2

4
25

2

5
x

4
x

2
x

(a) (b)

Fig. 1. (a) The gadget for variable xl in Φ. (b) A planar embedding for Φ and construc-
tion of the corresponding instance of k-clustering problem. All “clause-literal” edges
have weight 2l for the variable xl. The optimal cover is highlighted with grey “blobs”.
Φ = (¬x0 ∨ x3 ∨ x4) ∧ (x0 ∨ ¬x4 ∨ ¬x5) ∧ (x0 ∨ ¬x1 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨ x3). Satisfying
assignment X = (0, 1, 1, 0, 0, 1). Weight of the covering is exactly 26 − 1.

Claim. Any k-cover of V whose cost is at most 2k − 1 includes, for each 0 ≤ l ≤
k − 1, a ball centered at either xl or xl with radius at least 2l.

Proof. Consider any k-cover of V and let t be the largest index such that there
is no ball in the k-cover centered at either xt or xt and having radius at least
2t. So for each t + 1 ≤ l ≤ k − 1, there is a ball Bl in the k-cover centered at
either xl or xl and having radius at least 2l. Since W t has k + 1 points in it,
there is point a ∈ W t that is not the center of any ball in the k-cover. Let B be

On Metric Clustering to Minimize the Sum of Radii 289

some ball in the k-cover that covers a. If B = Bl for some t + 1 ≤ l ≤ k − 1,
then Bl has radius at least 2l + 2 · 2t. In this case the k-cover has cost at least
2k−1 + 2k−2 · · · 2t+1 + 2 · 2t = 2k. If B 	= Bl for any t + 1 ≤ l ≤ k − 1, then the
radius of B is at least 2 · 2t, since the distance of a from any point other than
xt and xt is at least 2 · 2t. Thus in this case too the k-cover has cost at least
2k−1 + 2k−2 · · · 2t+1 + 2 · 2t = 2k. �

Now suppose the original pn-planar 3SAT instance is a yes instance. So there
is an assignment of truth values to x0, · · · , xk−1 such that all clauses in C are
satisfied. Consider the set of k balls B0, . . . , Bk−1, where Bl is centered at xl

or xl (whichever is satisfied by the assignment) and has radius 2l. It is easily
checked that these balls form a k-cover of V of cost 20 + 21 + · · · 2k−1 = 2k − 1.

Now suppose the original pn-planar 3SAT instance is a no instance. We claim
that any k-cover of V has cost strictly greater than 2k − 1 in this case. Suppose
this is not the case and consider a k-cover of cost at most 2k−1. As a consequence
of the claim, such a k-cover must consist of balls B0, . . . , Bk−1 where Bl is
centered at either xl or xl and has radius precisely 2l. Since these balls must
cover each vertex in C, it follows that the assignment of truth values to variables
in X which comprises of xl being true if the ball Bl is centered at xl and false
if it is centered at xl satisfies all clauses in C. This contradicts the supposition
that the original pn-planar 3SAT instance is a no instance.

Theorem 2. The (decision version of the) problem of computing an optimal
k-cover for an n-point planar metric (P, d) is NP-hard.

4 The Doubling Metric Case

We now consider the k-cover problem when the input metric (P, d) has doubling
dimension bounded by some constant ρ ≥ 0. The doubling dimension of the
metric (P, d) is said to be bounded by ρ if any ball B(x, r) in (P, d) can be
covered by 2ρ balls of radius r/2 [12]. In this section, we show that for a large
enough constant ρ, the k-cover problem for metrics of doubling dimension at
most ρ is NP-hard.

The proof is by a reduction from a restricted version of 3SAT where each
variable appears in at most 5 clauses [8]. Let Φ be such a 3-CNF formula with
variables x0, . . . , xn−1 and clauses c1, . . . , cm. We describe a simple transforma-
tion, easily seen to be effected by a polynomial time algorithm, from such a 3SAT
instance Φ to an instance of finding an optimal k-cover in a metric induced by a
weighted graph G = (V, E). The metric will have doubling dimension bounded
by some constant. The transformation has the property that there is a k-cover
in the metric of cost at most 2k − 1 if and only if the original 3SAT instance is
satisfiable.

The transformation is similar to the one in the previous section with some
modifications to ensure the doubling dimension property.

We set k = n. The vertex set V of the graph is a union of k + 2 sets: (a) a
set X = {x0, x0, . . . , xk−1, xk−1} that can be identified with the set of literals in

290 M. Gibson et al.

Φ, (b) a set C = {c1, . . . , cm} that can be identified with the set of clauses of Φ,
and (c) sets W 0, . . . , W k−1, where each W l consists of nl = 8(l+1)2 +1 vertices
wl

1, . . . , w
l
nl

. To obtain the edge set E, we add an edge between xl and xl with
weight 2l for 0 ≤ l ≤ k − 1. We add an edge between xl and every vertex in W l

of weight 2l for 0 ≤ l ≤ k−1. Analogously, we add an edge between xl and every
vertex in W l again of weight 2l. In addition we add edges between every vertex
ci ∈ C and every literal that appears in the clause ci. If the literal is either xl

or xl, the weight of the corresponding edge is 2l. Finally for each 0 ≤ l ≤ n − 1
and each 1 ≤ i ≤ nl − 1, we add an edge of weight 2l/(l + 1)2 between wl

i and
wl

i+1. See Figure 2 for an illustration of the transformation.

l
x2

l

1
l

l

n
w

−

l
x

2
l

2
l

2
l

2
l

2
l

2
l

2
l

2
l

l

l

n
w

1

l
w

2

l
w

2

2

(1)

l

l +

2

2

(1)

l

l +

0x 0
x

2
x

2x

4x 4
x

3x 3
x

1
x

1x

5
x

5x

1
C

2
C

3
C

4
C

0
2

0
2

0
2

1
2

1
2

2
2

3
2

3
2

3
2

4
2

4
25

2

(a) (b)

Fig. 2. (a) The gadget for the variable xl in Φ. Each edge between wl
i and wl

i+1 has
weight exactly 2l/(l+1)2 and the number of wl

i’s is 8(l+1)2+1. (b) A representation of
an instance of k-clustering on a doubling metric constructed from an instance of Φ. All
“clause-literal” edges have weight 2l for variable xl. The optimal cover is highlighted
with grey“blobs”. Φ = (¬x0∨x3∨x4)∧(x0∨¬x4∨¬x5)∧(x0∨¬x1∨¬x3)∧(x1∨¬x2∨x3).
Satisfying assignment X = (0, 1, 1, 0, 0, 1). Weight of the covering is exactly 26 − 1.

Lemma 3. There is a constant ρ ≥ 0 so that the doubling dimension of the
metric induced by the graph G = (V, E) is bounded by ρ.

Proof. Let B(x, r) be some ball in the metric. If r < 1, then either (a) the ball
consists of a singleton vertex, or (b) B(x, r) ⊆ W l for some l and the subgraph
of G induced by B(x, r) is a path. In either case, it is easily verified that O(1)
balls centered within B(x, r) and having radius r/2 cover B(x, r).

We therefore consider the case r ≥ 1. Let t be the largest integer that is at
most n − 1 such that 2t ≤ r. For each s ∈ {t − 3, t − 2, t − 1, t}, we place balls
of radius r/2 centered at (i) {xs, xs} ∩ B(x, r), (ii) clause vertices incident to
xs or xs that are in B(x, r), and (iii) O(1) points of B(x, r) ∩ W s so that these
balls cover B(x, r) ∩ W s (this is possible because B(x, r) ∩ W s induces a path
of length at most 2s+3.) In addition, if x ∈ W l for some l, we place O(1) balls

On Metric Clustering to Minimize the Sum of Radii 291

of radius r/2 at points of B(x, r) ∩ W l so that these balls cover B(x, r) ∩ W l.
Finally, we place a ball of radius r/2 at x. Clearly, we have placed O(1) balls
and we will show that these cover B(x, r). Let C denote the set of centers at
which we have placed balls.

Let y ∈ B(x, r) be a point that is not in C or in W s for s ∈ {t−3, t−2, t−1, t}
or in W l (if x ∈ W l). Fix a shortest path from x to y and let x′ be the last vertex
on this path that is in C. We first observe that none of the internal vertices on
the path from x to y is in W q for any q. Furthermore, if x ∈ W l for some l, then
by assumption y 	∈ W l. Thus all edges of the subpath from x′ to y have weight
2q for some 0 ≤ q ≤ n−1. No such edge can have weight 2t+1 or greater because
2t+1 > r if t ≤ n−2. No such edge can have weight 2s for s ∈ {t−3, t−2, t−1, t}
because otherwise the endpoint of the edge closer to y would be in C. Thus every
edge on the subpath from x′ to y has weight at most 2t−4. It is easy to see that
the subpath contains at most 3 edges of weight 2q for any q ≤ t − 4. Thus the
weight of the subpath from x′ to y is at most

3(2t−4 + 2t−5 + · · · + 20) < 3 · 2t−3 < 2t−1 < r/2.

So y is in the ball of radius r/2 centered at x′. �

Claim. Any k-cover of V whose cost is at most 2k − 1 includes, for each 0 ≤ l ≤
k − 1, a ball centered at either xl or xl with radius at least 2l.

Proof. Consider any k-cover of V and let t be the largest index such that there
is no ball in the k-cover centered at either xt or xt and having radius at least 2t.
So for each t + 1 ≤ l ≤ k − 1, there is a ball Bl in the k-cover centered at either
xl or xl and having radius at least 2l.

If some point in W t is covered by some Bl for t + 1 ≤ l ≤ k − 1, then Bl

has radius at least 2l + 2 · 2t. In this case the k-cover has cost at least 2k−1 +
2k−2 · · · 2t+1 + 2 · 2t = 2k. If some point in W t is covered by a ball B different
from the Bl’s and not centered at any of the points in W t, then the radius of B is
at least 2 · 2t. (Note that by assumpion B can’t be centered at xt or xt.) Thus in
this case too the k-cover has cost at least 2k−1 + 2k−2 · · · 2t+1 + 2 · 2t = 2k.

The only remaining case is when each point in W t is covered by some ball
centered at a point in W t. Since there can be at most t + 1 balls in the k-cover
centered within W t, the sum of the radii of these balls is at least

1
2

(
(nt − 1)

2t

(t + 1)2
− (t + 1)

2t

(t + 1)2

)
> 2 · 2t.

The k-cover has cost at least 2k−1 + 2k−2 · · · 2t+1 + 2 · 2t = 2k. �

We now argue that the transformation has the property that there is a k-cover
in the metric of cost at most 2k − 1 if and only if the original 3SAT instance Φ
is satisfiable.

Suppose that Φ is satisfiable. Then we can choose for each 0 ≤ l ≤ k−1 exactly
one of xl or xl such that within each clause of Φ there is a chosen literal. Consider

292 M. Gibson et al.

the set of k balls B0, . . . , Bk−1 where Bl has radius 2l and is centered at xl or xl,
whichever was chosen. These balls form a k-cover of V with cost 2k − 1.

For the reverse direction, consider a k-cover of the target metric space of cost
at most 2k − 1. It follows from Claim 4 that the k-cover must consist of balls
B0, . . . , Bk−1, where Bl is centered at either xl or xl and has radius precisely 2l.
Let us choose the literals corresponding to the centers of these balls. For each l,
we clearly choose exactly one of xl of xl. Consider any clause vertex c. It must
be covered by at least one of the balls Bl. Given the radii of the balls, the only
balls that can cover c are the ones centered at literals contained in the clause. It
follows that our set of chosen literals contains, for each clause in Φ, at least one
of the literals contained in the clause. Thus Φ is satisfiable.

Theorem 3. For a large enough constant ρ ≥ 0, the (decision version of the)
k-cover problem for metrics of doubling dimension at most ρ is NP-hard.

Acknowledgements

We thank Chandra Chekuri for his suggestion to study the problem.

References

1. Alt, H., Arkin, E.M., Brönnimann, H., Erickson, J., Fekete, S.P., Knauer, C.,
Lenchner, J., Mitchell, J.S.B., Whittlesey, K.: Minimum-cost coverage of point
sets by disks. In: Amenta, N., Cheong, O. (eds.) Symposium on Computational
Geometry, pp. 449–458. ACM, New York (2006)

2. Bartal, Y.: Probabilistic approximations of metric spaces and its algorithmic ap-
plications. In: FOCS, pp. 184–193 (1996)

3. Bilò, V., Caragiannis, I., Kaklamanis, C., Kanellopoulos, P.: Geometric clustering
to minimize the sum of cluster sizes. In: Brodal, G.S., Leonardi, S. (eds.) ESA
2005. LNCS, vol. 3669, pp. 460–471. Springer, Heidelberg (2005)

4. Charikar, M., Panigrahy, R.: Clustering to minimize the sum of cluster diameters.
J. Comput. Syst. Sci. 68(2), 417–441 (2004)

5. de la Vega, W.F., Kenyon, C.: A randomized approximation scheme for metric
max-cut. J. Comput. Syst. Sci. 63(4), 531–541 (2001)

6. Doddi, S., Marathe, M.V., Ravi, S.S., Taylor, D.S., Widmayer, P.: Approximation
algorithms for clustering to minimize the sum of diameters. Nord. J. Comput. 7(3),
185–203 (2000)

7. Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximating arbitrary
metrics by tree metrics. In: STOC, pp. 448–455. ACM, New York (2003)

8. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, New York (1979)

9. Gibson, M., Kanade, G., Krohn, E., Pirwani, I.A., Varadarajan, K.: On clustering
to minimize the sum of radii. In: SODA, pp. 819–825. SIAM, Philadelphia (2008)

10. Hochbaum, D.S., Shmoys, D.B.: A best possible approximation algorithm for the
k-center problem. Math. Oper. Res. 10, 180–184 (1985)

On Metric Clustering to Minimize the Sum of Radii 293

11. Kariv, O., Hakimi, S.L.: An algorithmic approach to network location problems.
part II: The p-medians. SIAM J. Appl. Math. 37, 539–560 (1982)

12. Krauthgamer, R., Lee, J.R.: Navigating nets: simple algorithms for proximity
search. In: SODA, pp. 798–807. SIAM, Philadelphia (2004)

13. Lev-Tov, N., Peleg, D.: Polynomial time approximation schemes for base station
coverage with minimum total radii. Computer Networks 47(4), 489–501 (2005)

14. Lichtenstein, D.: Planar formulae and their uses. SIAM Journal on Comput-
ing 11(2), 329–343 (1982)

On Covering Problems of Rado

Sergey Bereg1, Adrian Dumitrescu2,�, and Minghui Jiang3,��

1 Department of Computer Science, University of Texas at Dallas, Box 830688, Richardson,
TX 75083, USA

besp@utdallas.edu
2 Department of Computer Science, University of Wisconsin–Milwaukee, WI 53201-0784, USA

ad@cs.uwm.edu
3 Department of Computer Science, Utah State University, Logan, UT 84322-4205, USA

mjiang@cc.usu.edu

Abstract. T. Rado conjectured in 1928 that if S is a finite set of axis-parallel
squares in the plane, then there exists an independent subset I ⊆ S of pairwise
disjoint squares, such that I covers at least 1/4 of the area covered by S . He also
showed that the greedy algorithm (repeatedly choose the largest square disjoint
from those previously selected) finds an independent set of area at least 1/9 of
the area covered by S . The analogous question for other shapes and many similar
problems have been considered by R. Rado in his three papers (1949, 1951 and
1968) on this subject. After 45 years (in 1973), Ajtai came up with a surprising
example disproving T. Rado’s conjecture. We revisit Rado’s problem and present
improved upper and lower bounds for squares, disks, convex sets, centrally sym-
metric convex sets, and others, as well as algorithmic solutions to these variants
of the problem.

1 Introduction

Rado’s problem on selecting disjoint squares is a famous unsolved problem in geometry
[4, Problem D6]: What is the smallest number c such that, for any finite set S of axis-
parallel squares in the plane, there exists an independent subset I ⊆ S of pairwise
disjoint squares with total area at least c times the union area of the squares in S?
T. Rado [12] observed that a greedy algorithm, which repeatedly selects the largest
square disjoint from those previously selected, can find an independent subset I of
disjoint squares with total area at least 1/9 of the area of the union of all squares in
S. This lower bound was improved by R. Rado [9] to 1/8.75 in 1949, and improved
further by Zalgaller [15] to 1/8.6 in 1960. On the other hand, an upper bound of 1/4
for the area ratio is obvious: take four unit squares sharing a common vertex, then only
one of them may be selected.

T. Rado conjectured that, for any finite set of axis-parallel squares, at least 1/4 of
the union area can be covered by a subset of disjoint squares. For congruent squares,
the conjecture was confirmed by Norlander [8], Sokolin [13], and Zalgaller [15]. For
the general case, Ajtai [1] came up with an ingenious construction with several hundred

� Partially supported by NSF CAREER grant CCF-0444188.
�� Partially supported by NSF grant DBI-0743670 and USU grant A13501.

J. Gudmundsson (Ed.): SWAT 2008, LNCS 5124, pp. 294–305, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On Covering Problems of Rado 295

squares and disproved T. Rado’s conjecture in 1973! The problem of selecting disjoint
squares has also been considered by R. Rado in a more general setting for various
classes of convex sets, in his three papers entitled “Some covering theorems” [9,10,11].

We introduce some definitions. Throughout the paper, the term “convex set” refers
to a closed compact convex set with nonempty interior. Denote by |C| the Lebesgue
measure of a convex set C in R

d, i.e., the area in the plane, or the volume in the 3-
space. For a finite set S of convex sets in R

d, define its union volume (or union area
when d = 2) as |S| = | ∪C∈S C|. For a convex set S in R

d, define

F (S) = inf
S

sup
I

|I|
|S| ,

where S ranges over all finite sets of convex sets in R
d that are homothetic to S, and I

ranges over all independent subsets of S. Also define

f(S) = inf
S1

sup
I

|I|
|S1|

,

where S1 ranges over all finite sets of convex sets in R
d that are homothetic and con-

gruent to S, and I ranges over all independent subsets of S1.
The results of Zalgaller [15] and Ajtai [1], respectively, give lower and upper bounds

of 1/8.6 ≤ F (S) ≤ 1/4 − 1/1728, for a square S. In Section 2, we present a very
simple algorithm A1 that improves the now 48 years old lower bound by Zalgaller
[15]. Our algorithm is based on a novel idea that can be easily generalized to obtain
improved lower bounds for hypercubes in any dimension d ≥ 2. Let λd be the solution
to the equation

3d − (λ1/d
d − 2)d/2 = λd. (1)

For d = 2, λ2 = (
√

46 + 2)2/9 = 8.5699

Theorem 1. Let S be a set of n axis-parallel hypercubes in R
d. There exists an O(dn2)

time algorithm A1 that computes an independent set I ⊆ S such that |I|/|S| ≥ 1/λd.
That is, F (S) ≥ λd for a hypercube S in R

d.

In Section 3, we show that the algorithmic idea of A1 can be generalized to obtain an
improved lower bound of F (S) ≥ 1/λ2 > 1/8.5699, for any centrally symmetric con-
vex set S in the plane. The previous best lower bound of F (S) ≥ (1 + 1/200704)/9 =
1/8.999955 . . . was obtained by R. Rado [9, Theorem 8] in 1949.

Theorem 2. For any centrally symmetric convex set S in the plane, F (S) ≥ 1/λ2 >
1/8.5699. In particular, for a disk S, F (S) ≥ 1/λdisk, where λdisk = 8.3539

In Section 4, we present another algorithm A2 that achieves an even better lower bound
for squares. The algorithm Z implicit in Zalgaller’s lower bound [15] computes an inde-
pendent set by repeatedly adding at most four disjoint squares at a time; our algorithm
A2 adds at most three squares at a time.

Theorem 3. Let S be a set of n axis-parallel squares in the plane. Then there is an
O(n2) time algorithm A2 that computes an independent set I ⊆ S such that |I|/|S| ≥
1/λsquare, where λsquare = 8.4797 That is, F (S) ≥ 1/λsquare for a square S.

296 S. Bereg, A. Dumitrescu, and M. Jiang

In Section 5, we present an improved upper bound for squares. Our construction refines
Ajtai’s idea [1] and consists of an infinite number of squares tiling the plane.

Theorem 4. For a square S, F (S) ≤ 1
4 − 1

384 .

We know much more about f(S) than about F (S). For example, f(S) = 1/4 for a
square S [4]. R. Rado [9] showed that f(S) = 1/6 for a triangle S, f(S) = 1/4 for a
centrally symmetric hexagon S, f(S) ≥ π

8
√

3
> 1/4.4106 for a disk S, f(S) ≥ 1/16

for any convex set S in the plane, and f(S) ≥ 1/7 for any centrally symmetric convex
set S in the plane. We improve the lower bounds on f(S) for the two latter cases.

Theorem 5. For any convex set S in the plane, f(S) ≥ 1/6. This inequality cannot be
improved. For any centrally symmetric convex set S in the plane, f(S) ≥ δ(S)/4 where
δ(S) is the packing density of S; in particular, f(S) > 1/4.4810.

We summarize our results for convex sets in R
2, Theorems 2, 3, 4, and 5, in the follow-

ing table.

Convex Set S in R
2 Old Bound New Bound

square F (S) < 1/4 − 1/1728 [1] F (S) ≤ 1/4 − 1/384
square F (S) ≥ 1/8.6 [15] F (S) > 1/8.4797
disk F (S) > 1/8.4898 [2] F (S) > 1/8.3539
centrally symmetric F (S) > 1/8.999955 [9] F (S) > 1/8.5699
centrally symmetric f(S) ≥ 1/7 [9] f(S) > 1/4.4810
arbitrary f(S) ≥ 1/16 [9] f(S) ≥ 1/6

The problem of finding a maximum area independent set in a set of (axis-parallel)
squares is NP-hard since the problem of finding a maximum independent set in a set
of unit squares is already NP-hard [6]. On the other hand, maximum weight indepen-
dent set admits polynomial-time approximation schemes [3,5,7] in square intersection
graphs. Our algorithms come with a different guarantee: while they bound the weight of
an independent set in terms of the maximum weight of any independent set, we bound
the total area of an independent set in terms of the union area. Some proofs are omitted
in this extended abstract.

2 Algorithm A1 and Lower Bounds for Squares and Hypercubes

In this section we prove Theorem 1. We first consider the planar case. Let
S = {S1, . . . , Sn} be a set of n axis-parallel squares. For each square Si in S, de-
note by Ti the smallest axis-parallel square that contains all squares in S that intersect
Si (Ti contains Si but is not necessarily concentric with Si). Denote by xi the side
length of Si. Denote by yi the side length of Ti. Put zi = yi − xi.

Let λ = λ2. Recall that λ2 = (
√

46+2)2/9 = 8.5699 . . . > (5/2)2. To construct an
independent set I, our algorithm A1 initializes I to be empty, then repeats the following
selection round until S is empty:

On Covering Problems of Rado 297

1. Find the largest square Sl in S. Assume without loss of generality1 that xl = 1.
2. If yl ≤

√
λ, add Sl to I, delete from S the squares that intersect Sl, then return.

Otherwise, set k ← l and continue with the next step.
3. Let Si and Sj be two squares that intersect Sk and touch two opposite sides of Tk.

(We will prove later that Si and Sj exist, are disjoint, and are different from Sk.) If
both zi and zj are at most zk, add Si and Sj to I, delete from S the squares that
intersect Si or Sj , then return. Otherwise, set k ← i or j such that zk increases,
then repeat this step.

Analysis. In each selection round, step 3 is repeated at most n times since zk is strictly
increasing. So the algorithm terminates in O(n2) steps. Later in this section we will
describe an efficient implementation of the algorithm and analyze its running time in
more detail. We next prove that the algorithm achieves a lower bound of 1/λ. Consider
a selection round. If yl ≤

√
λ in step 2, then

|Sl|/|Tl| = x2
l /y2

l ≥ 1/λ. (2)

Now suppose that yl >
√

λ. Then the algorithm proceeds to step 3. The two squares Si

and Sj clearly exist: even if no other squares in S intersect Sk, in which case Tk = Sk,
we can still take Si = Sj = Sk.

In every iteration of step 3, our choice of Si and Sj implies that xi +xj +xk ≥ yk =
xk + zk. Therefore,

xi + xj ≥ zk. (3)

Since xi ≤ xl, xj ≤ xl, and xl = 1, we have zk ≤ 2. In the first iteration, zk =
yl − xl >

√
λ − 1. The value zk is strictly increasing. It follows that, in every iteration

of step 3, √
λ − 1 < zk ≤ 2. (4)

Either Si or Sj becomes Sk for the next iteration. It then follows from (3) and (4)
that, in every iteration, √

λ − 2 < xk ≤ 1. (5)

Si and Sj are disjoint (hence are both different from Sk) in every iteration because

yk = xk + zk > (
√

λ− 2)+ (
√

λ − 1) = 2
√

λ − 3 ≥ 2(5/2)− 3 = 2 ≥ xi + xj . (6)

When the selection round ends, we have zi ≤ zk and zj ≤ zk. Therefore,

|Ti| = y2
i = (xi + zi)2 ≤ (xi + zk)2, |Tj| = y2

j = (xj + zj)2 ≤ (xj + zk)2. (7)

Since Sk ⊆ Ti and Sk ⊆ Tj , we also have

|Ti ∩ Tj| ≥ |Sk| = x2
k. (8)

1 This assumption mainly simplifies the analysis, and is not implemented in the algorithm.

298 S. Bereg, A. Dumitrescu, and M. Jiang

Then,

|Ti ∪ Tj|
|Si| + |Sj |

=
|Ti| + |Tj | − |Ti ∩ Tj|

|Si| + |Sj |

≤ (xi + zk)2 + (xj + zk)2

x2
i + x2

j

− x2
k

x2
i + x2

j

= 1 +
2zk(xi + xj) + 2z2

k

x2
i + x2

j

− x2
k

x2
i + x2

j

(9)

≤ 1 +
2zk(xi + xj) + 2z2

k

(xi + xj)2/2
− (

√
λ − 2)2

2

= 1 +
4zk

xi + xj
+

4z2
k

(xi + xj)2
− (

√
λ − 2)2

2

≤ 9 − (
√

λ − 2)2/2,

where the last inequality follows from (3). Recall that λ = λ2 is the solution to the
equation 9 − (

√
λ − 2)2/2 = λ. So we have

|Si| + |Sj |
|Ti ∪ Tj|

≥ 1/λ. (10)

From the two inequalities (2) and (10), it follows by induction that |I|/|S| ≥ 1/λ2 >
1/8.5699. Note that this bound already improves the previous best bound of 1/8.6 by
Zalgaller [15].

Generalization to higher dimensions. The algorithm can be easily generalized to any
dimension d ≥ 2 to achieve a bound of 1/λd, where λd is the solution to (1). We omit
the running time analysis. Note that λd ≥ (5/2)d. Set the threshold for yl in the two
cases to λ

1/d
d . Then the inequality yk > xi + xj in (6) still holds, and (9) becomes

|Ti ∪ Tj |
|Si| + |Sj |

≤ (xi + zk)d + (xj + zk)d

xd
i + xd

j

− xd
k

xd
i + xd

j

≤ 2(zk/2 + zk)d

2(zk/2)d
− (λ1/d − 2)d

2

= 3d − (λ1/d
d − 2)d/2.

3 Lower Bounds for Centrally Symmetric Convex Sets in the
Plane

We prove Theorem 2 in this section. Note that Theorem 1 implies a bound of F (S) ≥
1/λ2 > 1/8.5699 for a square S. We extend this bound for any centrally symmetric
convex set S in the plane. Let S = {S1, . . . , Sn} be a set of n homothetic copies of S.
We make two changes to algorithm A1, and call the modified algorithm Â1.

On Covering Problems of Rado 299

The first change is in the definitions of Ti, xi, and yi. For each convex set Si in S,
define Ti as the convex hull of the union of the convex sets in S that intersect Si (Ti

contains Si). Define the width of a convex set S along a line � as the distance between
the pair of supporting lines of S perpendicular to �. For each line � through the center of
Si, denote by wi(�) the width of Si along �, and denote by w′

i(�) the width of Ti along
�. Define ai = max� w′

i(�)/wi(�), xi =
√

|Si|, and yi = ai · xi.
The second change is in step 3 of the selection round. We refer to Fig. 1. Let � be a

line through the center of Sk such that w′
k(�)/wk(�) = ak. Then, among the convex sets

in S that intersect Sk, let Si and Sj be any two convex sets that are tangent, respectively,
to the two supporting lines of Tk perpendicular to �.

Sk

Sj

Si

ti tjsi sj

Fig. 1. Algorithm Â1 for centrally symmetric convex sets in the plane. The line � is horizontal,
and the four supporting lines are vertical in this example.

The analysis remains largely the same as that for squares. The following lemma is
analogous to (3).

Lemma 1. In each iteration of step 3 of the selection round, xi + xj ≥ zk.

Proof. We refer back to Fig. 1. The two supporting lines of Sk perpendicular to the line
� intersect � at the two points si and sj . The two supporting lines of Tk perpendicular to
the line � intersect � at the two points ti and tj . The supporting line through ti is tangent
to Si. The supporting line through si, which is tangent to Sk, must also intersect Si

because otherwise Si would be disjoint from Sk. Now Si intersects the two supporting
lines through ti and si. On the other hand, Sk is tangent to the two supporting lines
through si and sj . It follows by similarity that xi/xk ≥ |tisi|/|sisj |. A symmetric
argument also shows that Sj intersects the two supporting lines through sj and tj , and
satisfies xj/xk ≥ |sjtj |/|sisj|. Therefore,

xi+xj ≥ |tisi| + |sjtj |
|sisj|

xk =
w′

k(�) − wk(�)
wk(�)

xk = (ak−1)xk = yk−xk = zk. 	

The following lemma is analogous to the equality |Ti| = y2
i for squares, and maintains

the inequalities in (2) and (7).

Lemma 2. For each Si in S, |Ti| ≤ y2
i .

Proof. Let T ∗
i be the Steiner symmetrization of Ti with respect to the center of Si. Then

|Ti| ≤ |T ∗
i | [14, Exercise 6-9]. Let S′

i be the concentric homothetic copy of Si scaled
by ai. Then S′

i contains T ∗
i . Therefore |Ti| ≤ |T ∗

i | ≤ |S′
i| = (ai · xi)2 = y2

i . 	

300 S. Bereg, A. Dumitrescu, and M. Jiang

Following the same chain of reasoning from (2) to (10), we obtain a bound of F (S) ≥
1/λ2 > 1/8.5699 for any centrally symmetric convex set S in the plane. For the special
case that S is a disk, we can derive a better bound of F (S) ≥ 1/λdisk > 1/8.3539 by a
tighter analysis.

4 Algorithm A2 and a New Lower Bound for Squares

We present a simple greedy algorithm for axis-parallel squares and prove Theorem 3.
Let S = {S1, . . . , Sn} be a set of n axis-parallel squares. Denote by xi the side length
of Si. For a square Si = [x, x + l] × [y, y + l], we denote by S′

i the square [x − 1, x +
l + 1] × [y − 1, y + l + 1], which contains all possible squares of side length at most 1
that intersect Si. Note that S′

i is concentric with Si.
Let s be a real number to be chosen later, 3/4 < s ≤ 1. To construct an independent

set I, our algorithm A2 initializes I to be empty, then repeats the following selection
round until S is empty:

1. Let S0 be the largest square in S. Assume without loss of generality that S0 is a
unit square. Let S0 ⊆ S \ {S0} be the set of squares of side length at least s that
intersect S0.

2. If S0 contains three disjoint squares S1, S2, and S3, then add S1, S2, and S3 to I.
Otherwise add S0 to I.

3. For each square Si added to I, remove from S the squares that intersect Si.

In a selection round, let J be the set of selected squares, and let T be the set of squares
in S that intersect the selected squares.

Lemma 3. Suppose that the algorithm selects three squares S1, S2, and S3, in a selec-
tion round. Then

|T |/|J | ≤ (8 + 3s2 + 10s)/(3s2).

Proof. It can be shown that the ratio of the area of the region R = S′
1 ∪S′

2 ∪S′
3 over the

total area of the three squares S1, S2, and S3 is maximized when each square intersects
S0 at a distinct corner as shown in Fig. 2(a) (possibly with a different correspondence
between the squares and the corners), and when the three squares have equal side length
x1 = x2 = x3 = s. In this case the region is the union of 8 unit squares, 3 squares of
side length s, and 10 rectangles of side lengths 1 and s. 	

Lemma 4. Suppose that the algorithm selects one square, S0, in a selection round.
Then

|T |/|J | ≤ 7 + 2s2.

Proof. It can be shown that the maximum covered area in S′
0 is the shaded area shown

in Fig. 2(b), which contains 7 unit squares and 2 squares of side length s. 	

Balancing the two bounds in Lemmas 3 and 4, we obtain a quartic equation 3s4 +9s2 −
5s − 4 = 0, which has only one positive root s0 = 0.8601 Choose s = s0, and we
have (8 + 3s2 + 10s)/(3s2) = 7 + 2s2 = λsquare = 8.4797

On Covering Problems of Rado 301

S0

S3 S2

S1

1 1

1

1 1
1

1
S0

(b)(a)

Fig. 2. (a) Maximum area of R = S′
1 ∪ S′

2 ∪ S′
3. (b) Maximum covered area in S′

0.

(b)(a) (c)

S4

S1

S3

S2 R2

R4

R1

R3

Fig. 3. (a) Starting point: a system of four congruent squares. (b) Ajtai’s idea: an ambiguous
system Q of 13 squares of sides 1 and 2. (c) Ajtai’s construction shown schematically. Ri, i = 1,
2, 3, 4, are rotated copies of a system of 66 squares.

5 A New Upper Bound for Squares: Proof of Theorem 4

We first describe briefly Ajtai’s ingenious idea for the construction in [1]. The starting
point is a system of 4 non-overlapping squares shown in Fig. 3(a). Now slightly enlarge
each square with respect to its center by a small ε > 0. All constructions we discuss will
be obtained in the same way, by starting from a system of non-overlapping (i.e., interior
disjoint) squares and then applying the above transformation; the effect is that any pair
of touching squares results in a pair of squares intersecting in their interior. Finally by
letting ε tend to zero, one recovers the same upper bound for systems of intersecting
squares. Alternatively, one can consider the squares as closed sets, to start with, and use
non-overlapping squares in the construction.

The second step is to consider a system Q of 13 squares of side 1 and 2 such as that in
Fig. 3(b), which can be also viewed as a system of four squares A1, A2, A3, and A4, the
vertices of which are drawn as circles; these squares are only used in the analysis. Q has
the nice property that any independent set can cover at most one quarter of (the area of)

302 S. Bereg, A. Dumitrescu, and M. Jiang

each Ai. Although Q by itself does not appear to be useful in reducing the conjectured
1/4 upper bound, Ajtai found a more complicated system of 66 squares of sides 1 and
2 (see [1]) that does so, if used in combination with four larger squares arranged as in
Fig. 3(a). His construction is shown schematically in Fig. 3(c). A calculation done for
the original construction (where the length of the attached four blocks equals the side
length of the large squares), yields an upper bound of 1

4 − 1
1728 . By using all eight outer

sides of the four squares and eight blocks (an obvious optimization) yields a further
improvement to 1

4 − 1
1080 .

Here we refine Ajtai’s idea in several ways to obtain a better bound. First, we find
a system R that serves the same purpose but uses fewer squares. Finally, we construct
a tiling2 of the plane, whose blocks (tiles) are made up from the previous pieces. To
this end we first construct a variant R∗ of R that admits a symmetry axis, which allows
adjacent blocks in the tiling to share common parts in the original system R. To im-
plement the tiling idea, consider the new system R shown in Fig. 4(a), which borders
two adjacent sides of a large square S. R consists of 38 unit squares and 16 squares of
side 2. By replicating copies of R, rotated by 0◦, 90◦, 180◦, and 270◦, we construct a
tiling of the plane, see Fig. 5. We say that a square Ai is not covered, if 0% of its area
is covered by I.

Lemma 5. Let I be an independent set of squares in the system R ∪ {S} in Fig. 4(a).
Assume that S ∈ I, and consider the 10 × 4 rectangle Z1 which borders S from above.
Then |I ∩ Z1| ≤ 9.

Proof. Observe that R has the property that any independent set can cover at most one
quarter of (the area of) each Ai, conform with Fig. 4(b) and 4(d). By the assumption,
the 10 unit squares in the bottom row of squares A7 through A11 cannot be in I. It is
enough to show that at least one of the squares Ai (i ∈ {1, 2, 3, 4, 5} ∪ {7, 8, 9, 10, 11}
is not covered. Observe that either B2 ∈ I or B3 ∈ I (otherwise A9 is not covered
and we are done). Since R ∩ Z1 admits a vertical symmetry axis, we can assume that
B2 ∈ I.

It follows that e ∈ I (otherwise A10 is not covered), and that B4 ∈ I (else A11 is
not covered). But then A4 is not covered, since f, B3, C3, C4 /∈ I. This completes the
proof. 	

Obviously, the property in the lemma holds also for Z2 in place of Z1. We now move
to the final step—the tiling—which completes our construction. Take four squares S1,
S2, S3, and S4, each of side 10, and arrange them as in Fig. 5(a). Place four rotated
copies of R bordering the outer 8 sides of S1 ∪ S2 ∪ S3 ∪ S4 as in Fig. 5(b), and obtain
a block (cell) of the tiling. All the 92 2 × 2 squares shown in Fig. 4(d), for each of the
four copies of R are assigned to the unique block containing the four large squares. It
is important to notice that some of the 2 × 2 squares are shared among adjacent blocks
in the tiling, however the 2 × 2 squares Ai used in the analysis are not shared, i.e., they
are contained entirely in different blocks.

Let T be the infinite set of squares obtained by replicating the block in Fig. 5(b), as
in Fig. 5(c). Let I be an independent set of squares in T . Fix any given block σ in the

2 Here we use this term in a broader sense, where the tile can have holes.

On Covering Problems of Rado 303

(a)

Z1

Z2

R
b

a

c

d

f g

e h

C4C3C2C1

B1 B4B3B2

A1 A2 A3 A4 A5 A6

A7 A13A12A11A10A9A8

A14 A15

A17A16

A19A18

A20 A21

A22 A23

SS

S S

(b)

(d)(c)

Fig. 4. (a) Preliminaries for the tiling: the new system R bordering two sides of a large square S.
(b) The labeling of the squares used in the proof of the upper bound in Lemma 5. (c) Two rect-
angles Z1 and Z2 superimposed on R. (d) A system of 23 squares of side 2, Ai, i = 1, . . . , 23,
superimposed on R (some of the squares in R are only partially covered by the squares Ai).

tiling. Observe that at most one of the Si can be in I, so at most one quarter of the area
of S1 ∪ S2 ∪ S3 ∪ S4 is covered by I. Similarly I covers at most one quarter of the
area in each of the 92 2 × 2 squares assigned to σ. Observe that if one of the four large
squares, say S2, is selected in an independent set I, it forces the 10 unit squares in both,
the bottom row of R ∩ Z1 and the leftmost column of R ∩ Z2 to be out of I.

For the analysis, we can argue independently for each block. Fix any block σ in the
tiling. The area covered by T in σ is

|T ∩ σ| = 4 × 100 + 4 × 92 = 768.

In the (easy) case that none of the Si is in I, the area covered by I in σ is

304 S. Bereg, A. Dumitrescu, and M. Jiang

(a)

(c)

(b)

S1 S2

S3S4

Fig. 5. (a) A large square of side 10 bordered by the system R. (b) S1 ∪ S2 ∪ S3 ∪ S4 bordered
by 4 rotated copies of R (some squares are shared among adjacent copies). The block σ is the
large dashed square containing S1 ∪ S2 ∪ S3 ∪ S4. (c) Tiling of the plane with blocks composed
of 4 large squares of side 10 bordered by 4 rotated copies of R (some squares are shared among
adjacent blocks). The shaded rectangles in the figure represent holes in the tiling, and are not part
of the square system.

On Covering Problems of Rado 305

|I ∩ σ| ≤ 4 × 23 = 92, thus
|I ∩ σ|
|T ∩ σ| ≤ 92

768
=

1
4

− 50
384

,

i.e., much smaller than required.
Assume now that one of the Si, say S2, belongs to I. Observe that the 20 unit squares

adjacent to top and right sides of S2 do not belong to I (the same holds for the unit
square in the corner, but this is irrelevant here). By Lemma 5,

|I ∩ σ| ≤ 100 + 4 × 23 − 2 = 190, thus
|I ∩ σ|
|T ∩ σ| ≤ 190

768
=

1
4

− 1
384

,

as desired. Of course, one can get arbitrarily close to this bound, by using a suitably
large (square) section of the tiling instead—since the boundary effects are negligible.

References

1. Ajtai, M.: The solution of a problem of T. Rado. Bulletin de l’Académie Polonaise des Sci-
ences, Série des Sciences Math. Astr. et Phys. 21, 61–63 (1973)

2. Bereg, S., Dumitrescu, A., Jiang, M.: Maximum area independent set in disk intersection
graphs. International Journal of Computational Geometry & Applications (to appear)

3. Chan, T.: Polynomial-time approximation schemes for packing and piercing fat objects. Jour-
nal of Algorithms 46, 178–189 (2003)

4. Croft, H.T., Falconer, K.J., Guy, R.K.: Unsolved Problems in Geometry. Springer, New York
(1991)

5. Erlebach, T., Jansen, K., Seidel, E.: Polynomial-time approximation schemes for geometric
intersection graphs. SIAM Journal on Computing 34, 1302–1323 (2005)

6. Fowler, R.J., Paterson, M.S., Tanimoto, S.L.: Optimal packing and covering in the plane are
NP-complete. Information Processing Letters 12, 133–137 (1981)

7. Hochbaum, D.S., Maass, W.: Approximation schemes for covering and packing problems in
image processing and VLSI. Journal of ACM 32, 130–136 (1985)

8. Norlander, G.: A covering problem. Nordisk Mat. Tidskr. 6, 29–31 (1958)
9. Rado, R.: Some covering theorems (I). Proceedings of the London Mathematical Society 51,

241–264 (1949)
10. Rado, R.: Some covering theorems (II). Proceedings of the London Mathematical Society 53,

243–267 (1951)
11. Rado, R.: Some covering theorems (III). Journal of the London Mathematical Society 42,

127–130 (1968)
12. Rado, T.: Sur un problème relatif à un théorème de Vitali. Fund. Math. 11, 228–229 (1928)
13. Sokolin, A.: Concerning a problem of Rado. C.R. Acad. Sci. U.R.S.S (N.S.) 26, 871–872

(1940)
14. Yaglom, I.M., Boltyanskiĭ, V. G.: Convex Figures. Holt, Rinehart and Winston, New York

(1961)
15. Zalgaller, V.A.: Remarks on a problem of Rado. Matem. Prosveskcheric 5, 141–148 (1960)

Packing Rectangles into
2 OPT Bins Using Rotations

Rolf Harren and Rob van Stee�

Max-Planck Institute for Computer Science (MPII),
Campus E1 4, D-66123 Saarbrücken, Germany

{rharren,vanstee}@mpi-inf.mpg.de

Abstract. We consider the problem of packing rectangles into bins that
are unit squares, where the goal is to minimize the number of bins used.
All rectangles can be rotated by 90 degrees and have to be packed non-
overlapping and orthogonal, i.e., axis-parallel. We present an algorithm
for this problem with an absolute worst-case ratio of 2, which is optimal
provided P �= NP .

Keywords: bin packing, rectangle packing, approximation algorithm,
absolute worst-case ratio.

1 Introduction

In the rectangle packing problem, a list I = {r1, . . . , rn} of rectangles of width
wi ≤ 1 and height hi ≤ 1 is given. An unlimited supply of unit sized bins
is available to pack all items from I such that no two items overlap and all
items are packed axis-parallel into the bins. The goal is to minimize the number
of bins used. The problem is also known as two-dimensional orthogonal bin
packing problem and has many applications, for instance in stock-cutting or
scheduling on partitionable resources. In many applications, rotations are not
allowed because of the pattern of the cloth or the grain of the wood. However,
in other applications, it might be possible to rotate the items. In the current
paper, we consider the problem with rotations, i.e., items might be rotated by
90 degrees.

Most of the previous work on rectangle packing has focused on the asymp-
totic approximation ratio, i.e., the long term behavior of the algorithm, and on
packing without rotations. Caprara was the first to present an algorithm with
an asymptotic approximation ratio less than 2 for rectangle packing without
rotations. Indeed, he considered 2-stage packing, in which the items must first
be packed into shelves that are then packed into bins, and showed that the
asymptotic worst case ratio between rectangle packing and 2-stage packing is
T∞ = 1.691 Therefore the asymptotic FPTAS for 2-stage packing from
Caprara, Lodi and Monaci [3] achieves an approximation guarantee arbitrary
close to T∞.
� Research supported by German Research Foundation (DFG). Work done while this

author was at the University of Karlsruhe.

J. Gudmundsson (Ed.): SWAT 2008, LNCS 5124, pp. 306–318, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Packing Rectangles into 2OPT Bins Using Rotations 307

Recently, Bansal, Caprara & Sviridenko [1] presented a general framework
to improve subset oblivious algorithms and obtained asymptotic approximation
guarantees arbitrarily close to 1.525 . . . for packing with or without rotations.
These are the currently best-known approximation ratios for these problems.
For packing squares into square bins, Bansal, Correa, Kenyon & Sviridenko [2]
gave an asymptotic PTAS. On the other hand, the same paper showed the APX -
hardness of rectangle packing without rotations, thus no asymptotic PTAS exists
unless P = NP . Chleb́ık & Chleb́ıková [4] were the first to give explicit lower
bounds of 1 + 1/3792 and 1 + 1/2196 on the asymptotic approximability of
rectangle packing with and without rotations, respectively.

In the current paper we consider the absolute worst-case ratio. Attaining a
good absolute worst-case ratio is more difficult than attaining a good asymptotic
worst-case ratio, because in the second case an algorithm is allowed to waste a
constant number of bins, which allows e.g. the classification of items followed
by a packing where each class is packed separately. Zhang [15] presented an ap-
proximation algorithm with an absolute approximation ratio of 3 for the problem
without rotations. For the special case of packing squares, van Stee [14] showed
that an absolute 2-approximation is possible.

A related two-dimensional packing problem is the strip packing problem,
where the items have to be packed into a strip of unit basis and unlimited
height such that the height is minimized. Steinberg [13] and Schiermeyer [12]
presented absolute 2-approximation algorithms for strip packing without rota-
tions. Kenyon & Rémila [9] and Jansen & van Stee [7] gave asymptotic FPTAS’s
for the problem without rotations and with rotations, respectively. The additive
constant of these algorithms was recently improved from O(1/ε2) to 1 by Jansen
& Solis-Oba [6]. Thus, most versions of the strip packing problem are now closed.

Our contribution. We present an approximation algorithm for rectangle packing
with rotations with an absolute approximation ratio of 2. As Leung et al. [10]
showed that it is strongly NP-complete to decide wether a set of squares can be
packed into a given square, this is best possible unless P = NP. The algorithm is
based on a separation of large and small items according to their area. It is very
efficient for inputs consisting of small items but uses a less efficient subroutine
to deal with large items. Our main lemma on the packability of certain sets of
small items is of independent interest.

We started our investigation on the problem with an algorithm of Jansen &
Solis-Oba [6] that finds a packing of profit (1−δ)OPT into a bin of size (1, 1+δ),
where OPT denotes the optimum for packing into a unit bin. Using the area of
the items as their profit gives an algorithm that packs almost everything into an
δ-augmented bin. The algorithm can easily be generalized to a constant number
of bins.

An immediate idea to transform such a packing into a packing into 2OPT
bins is to remove all items that intersect a strip of height δ at the top or bottom
of each bin. These items and the items that were not packed by the algorithm
would have to be packed separately. In Figure 1 we present an instance where it
is not immediately clear how the removed items can be packed separately.

308 R. Harren and R. van Stee

y = 1

y = δ

AbottomAtop

1 + δ

R

Fig. 1. Packing of Jansen & Solis-Oba’s algorithm where it is not immediately clear
how to derive a packing into 2 unit bins. The blocks in the packing might consist of
several items and might contain small free spaces or items that are not in Atop or
Abottom. The items of Atop and the items of Abottom have total area close to 1/2. Thus
adding the additional items R and packing everything with Steinberg’s algorithm is
not possible. Furthermore, it is not obvious how to rearrange Atop or Abottom such that
there is suitable free space to pack R.

Organisation. The remainder of this article is organized as follows. In Section 2
we introduce notations and two algorithms for strip packing that we will use
as subroutines for our rectangle packing algorithm: the algorithm of Steinberg
and Next Fit Decreasing Height. We show that Steinberg’s algorithm [13] yields
an absolute 2-approximation for strip packing with rotations and an absolute
4-approximation for rectangle packing with rotations. Our main result is pre-
sented in Section 3. The algorithm is based on our main lemma that we prove
in Section 4.

2 Steinberg’s Algorithm and NFDH

We assume that all items are rotated such that wi ≥ hi. Denote the total area
of a given set T of items by A(T) =

∑
i∈T wihi and let wmax := maxri∈T wi and

hmax := maxri∈T hi. Steinberg [13] showed the following theorem.

Theorem 1 (Steinberg’s algorithm [13]). If the following inequalities hold,

wmax ≤ a, hmax ≤ b, and 2A(T) ≤ ab − (2wmax − a)+(2hmax − b)+

where x+ = max(x, 0), then it is possible to pack all items from T into R = (a, b)
in time O((n log2 n)/ log log n).

In our algorithm, we will repeatedly use the following direct corollary of this
theorem.

Packing Rectangles into 2OPT Bins Using Rotations 309

Corollary 1. If wmax ≤ a/2 and A(T) ≤ ab/2, then it is possible to pack all
items from T into R = (a, b) in time O((n log2 n)/ log log n).

The following theorem was already mentioned in [6].

Theorem 2. Steinberg’s algorithm gives an absolute 2-approximation for strip
packing with rotations.

Proof. Rotate all items ri ∈ I such that wi ≥ hi and let b := max(2hmax, 2A(I)).
Use Steinberg’s algorithm to pack I into the rectangle (1, b). This is possible since
2A(I) ≤ b and (2hmax − b)+ = 0. The claim on the approximation ratio follows
from OPT ≥ max(hmax, A(I)) = b/2. ��

It is well-known that a strip packing algorithm with an approximation ratio
of δ directly yields a rectangle packing algorithm with an approximation ratio
of 2δ. To see this, cut the strip packing of height h into slices of height 1 so
as to get �h� bins of the required size. The rectangles that are split between
two bins can be packed into 	h
 additional bins. The strip packing gives a lower
bound for rectangle packing. Thus if h ≤ δOPTstrip, then �h�+	h
 ≤ 2δOPTbin.
Accordingly, we get the following theorem.

Theorem 3. Steinberg’s algorithm yields an absolute 4-approximation algorithm
for rectangle packing with rotations.

Jansen & Zhang [8] showed a corollary of Steinberg’s theorem which reads as
follows if wi ≥ hi for all items.

Corollary 2 ([8]). If the total area of a set T of items is at most 1/2 and there
is at most one item of height hi > 1/2, then the items of T can be packed into a
bin of unit size in time O((n log2 n)/ log log n).

Thenext-fit-decreasing-height algorithm(nfdh)was introduced for squares
by Meir & Moser [11] and generalized to rectangles by Coffman, Garey, Johnson &
Tarjan [5]. It is given as follows. Sort the items by non-increasing order of height.
Pack the items one by one into shelfs. The height of a shelf is defined by its first
item, further items are added left-aligned until an item does not fit. In this case
this item opens a new shelf. The algorithm stops if it runs out of items or a new
shelf does not fit into the designated area. The running time of the algorithm is
O(n log n). The following lemma is an easy generalization of the result from Meir
& Moser.

Lemma 1. If a given set T of items is packed into a rectangle R = (a, b) by
nfdh, then either a total area of at least (a − wmax)(b − hmax) is packed or the
algorithm runs out of items, i.e., all items are packed.

3 Our Algorithm: Overview

As the asymptotic approximation ratio of the algorithm from Bansal et al. [1]
is less than 2, there exists a constant k such that for any instance with optimal

310 R. Harren and R. van Stee

value larger than k, the asymptotic algorithm gives a solution of value at most
2OPT. We address the problem of approximating rectangle packing with rota-
tions within an absolute factor of 2, provided that the optimal value of the given
instance is less than k. Combined with the algorithm from [1] we get an overall
algorithm with an absolute approximation ratio of 2.

We begin by applying the asymptotic algorithm from [1]. If OPT > k, then
the algorithm outputs a solution of value k′ ≤ 2OPT. Otherwise OPT ≤ k and
we apply the following algorithm.

Let ε := 1/68. We separate the given input according to the area of the items,
so we get a set of large items L = {ri ∈ I | wihi ≥ ε} and a set of small items
S = {ri ∈ I | wihi < ε}. Since the number of large items in each bin is bounded
by 1/ε and their total area is at most k, we can enumerate all possible packings
of the large items. Take an arbitrary packing of the large items into a minimum
number � ≤ k of bins.

If there are bins that contain items with a total area less than 1/2 − ε, we
greedily add small items such that the total area of items assigned to each
of these bins is in (1/2 − ε, 1/2]. We use Corollary 2 to repack these bins in-
cluding the newly assigned small items. There is at most one item of height
hi > 1/2 since otherwise the total area exceeds 1/2, because wi ≥ hi. If we
run out of items in this step, we found an optimal solution. Assume that there
are still small items left and each bin used so far contains items of a total area
of at least 1/2 − ε. The following crucial lemma shows that we can pack the
remaining small items well enough to achieve an absolute approximation ratio
of 2.

Lemma 2. Let 0 < ε ≤ 1/68. Given a set T of items that all have area at most
ε such that for all r ∈ T the total area of T \ {r} is less than 1/2 + ε. We can
find a packing of T into a unit bin in time O((n log2 n)/ log log n).

The lemma is proved in the next section. To apply Lemma 2 we consider the
following partition of the remaining items.

Let r1, . . . , rm be the list of remaining small items, sorted by non-increasing
order of size. Partition these small items into sets S1 = {rt1 , . . . , rt2−1}, S2 =
{rt2 , . . . , rt3−1}, . . . , Ss = {rts , . . . , rts+1−1} with t1 = 1 and ts+1 = m + 1 such
that

A(Sj \ {rtj+1−1}) <
1
2

+ ε and A(Sj) ≥ 1
2

+ ε

for j = 1, . . . , s− 1. Obviously, each set Si satisfies the precondition of Lemma 2
and can therefore be packed into a single bin. Only Ss might have a total area
of less than 1/2 + ε. The overall algorithm is given in Algorithm 1.

Note that if no packing of L into at most k bins exists, then OPT ≥ k and
thus k′ ≤ 2OPT by definition of k.

Packing Rectangles into 2OPT Bins Using Rotations 311

Algorithm 1. Approximate rectangle packing with rotations
1: apply the asymptotic algorithm from [1] to derive a packing P ′ into k′ bins
2: if k′ ≥ 2k then
3: return P ′

4: else
5: let ε := 1/68
6: partition I into L = {ri ∈ I | wihi ≥ ε} and S = {ri ∈ I | wihi < ε}
7: if L cannot be packed in k or less bins then
8: return P ′

9: else
10: let P� be a packing of L into � ≤ k bins.
11: while there exists a bin containing items of total area < 1/2 − ε do
12: assign small items to this bin until the total area exceeds 1/2 − ε
13: use Steinberg’s algorithm (Corollary 2) to repack the bin
14: order the remaining small items by non-increasing size
15: greedily partition the remaining items into sets S1, . . . , Ss such that

A(Sj \ {rtj+1−1}) <
1
2

+ ε and A(Sj) ≥ 1
2

+ ε for j = 1, . . . , s − 1

16: use the method described in the proof of Lemma 2 to pack each set Si

into a bin
17: let P be the resulting packing into � + s bins
18: return the packing from P, P ′ that uses the least amount of bins

4 Packing Sets of Small Items

In this section we prove Lemma 2. We will use the following partition of a set T
of items of area at most ε in the remainder of this section. Let

T1 := {ri ∈ T | 2/3 < wi} T2 := {ri ∈ T | 1/2 < wi ≤ 2/3}
T3 := {ri ∈ T | 1/3 < wi ≤ 1/2} T4 := {ri ∈ T | wi ≤ 1/3}.

Since wihi ≤ ε and wi ≥ hi, the heights of the items in each set are bounded as
follows.

hi ≤ 3/2 · ε for ri ∈ T1, hi ≤ 2 · ε for ri ∈ T2,
hi ≤ 3 · ε for ri ∈ T3 and hi ≤

√
ε for ri ∈ T4.

It turns out that packing the items in T2 involves the most difficulties. We will
therefore consider different cases for packing items in T2, according to the total
height of these items. For all cases we need to pack T1 ∪T3 ∪T4 afterwards, using
the following lemma.

Lemma 3. Given a rectangle R = (1, h) and a set T of items that all have area
at most ε such that T2 = ∅. We can find a packing of a selection T ′ ⊆ T into R
in time O(n log n) such that T ′ = T or

A(T ′) ≥ 2
3
(h −

√
ε) − ε.

312 R. Harren and R. van Stee

2
3

1
2

h

1
3

d

h4 T4

T3

T1

T3

NFDH

h1

h3

Fig. 2. Packing the sets T1, T3 and T4 into a bin of width 1 and height h. The difference
in height between the stacks of T3 is denoted by d.

Proof. See Figure 2 for an illustration of the following packing. Stack the items
of T1 left-justified into the lower left corner of R. Stop if there is not sufficient
space to accomodate the next item. In this case a total area of at least A(T ′

1) ≥
2/3 (h − 3/2 · ε) is packed since wi > 2/3 and hi ≤ 3/2 · ε for items in T1.

Thus assume all items from T1 are packed. Denote the height of the stack by
h1. Obviously, A(T1) ≥ 2/3 · h1.

Create two stacks of items from T3 next to each other directly above the
stack for T1 by repeatedly assigning each item to the lower stack. Stop if an
item does not fit into the rectangle. In this case both stacks have a height of
at least h − h1 − 3ε as otherwise a further item could be packed. Therefore
A(T1 ∪ T ′

3) ≥ 2/3(h − 3ε) ≥ 2/3 · (h −
√

ε) since 3ε ≤
√

ε for ε ≤ 1/18.
Otherwise denote the height of the higher stack by h3 and the height difference

by d. The total area of T3 is at least A(T3) ≥ 2/3(h3 − d) + 1/3 · d ≥ 2/3 · h3 −
1/3 · d ≥ 2/3 · h3 − ε since wi ≥ 1/3 and hi ≤ 3ε for ri ∈ T3.

Finally, let h4 := h − h1 − h3 and add the items of T4 by nfdh into the
remaining rectangle of size (1, h4). Lemma 1 yields that either all items are
packed, i.e., T ′ = T , or items T ′

4 ⊆ T4 of total area at least A(T ′
4) ≥ 2/3(h4−

√
ε)

are packed. Thus the total area of the packed items T ′ is A(T ′) ≥ 2/3 ·h1 +2/3 ·
h3 − ε + 2/3(h4 −

√
ε) ≥ 2/3 (h −

√
ε) − ε.

The running time is dominated by the application of nfdh. ��
If T4 = ∅ then the last packing step is obsolete and the analysis above yields the
following corollary.

Corollary 3. Given a rectangle R = (1, h) and a set T of items that all have
area at most ε such that T2∪T4 = ∅. We can find a packing of a selection T ′ ⊆ T
into R in time O(n) such that T ′ = T or

A(T ′) ≥ 2
3
h − 2ε.

The above packings are very efficient if there are no items of width within 1/2
and 2/3 as they essentially yield a width guarantee of 2/3 for the whole height,

Packing Rectangles into 2OPT Bins Using Rotations 313

except for some wasted height that is suitably bounded. In order to pack items
of T2, we have to consider both possible orientations to achieve a total area of
more than 1/2 in a packing. The following main lemma shows how sets of items
including items of width within 1/2 and 2/3 are being processed.

Lemma 2. Let 0 < ε ≤ 1/68. Given a set T of items that all have area at most
ε such that for all r ∈ T the total area of T \ {r} is less than 1/2 + ε. We can
find a packing of T into a unit bin in time O((n log2 n)/ log log n).

Proof. Let h2 be the total height of items in T2. We present three methods for
packing T depending on h2. For each method we give a lower bound on the total
area of items that are packed. Afterwards we show that there cannot be any
items that remain unpacked. Throughout the proof, we assume that we do not
run out of items while packing the items in T . This will eventually lead to a
contradiction in all three cases.

Case 1: h2 ≤ 1/3
Stack the items of T2 left-justified into the lower left corner of the bin. Use
Lemma 3 to pack T1 ∪ T3 ∪ T4 into the rectangle (1, 1 − h2) above the stack–see
Figure 3. We get an overall packed area of

A ≥ h2

2
+

2
3

(
1 − h2 −

√
ε
)

− ε =
2
3

− h2

6
− ε − 2

3
√

ε

≥ 11
18

− ε − 2
3
√

ε (since h2 ≤ 1
3
).

Case 2: h2 ∈ (1/3, 2/3]

Stack the items of T2 left-justified into the lower left corner of the bin. Let
B = (1/3, h2) be the free space to the right of the stack. We are going to pack
items from X = {ri ∈ T3 ∪ T4 | wi ≤ h2} into B. Take an item from X and add
it to X ′ as long as X is nonempty and A(X ′) ≤ h2/6−ε. Rotate the items in X ′

and use Steinberg’s algorithm (Corollary 1) to pack them into B. This is possible
since the area of B is h2/3, A(X ′) ≤ h2/6, and hi ≤ h2 and wi ≤

√
ε ≤ 1/6

for ri ∈ X ′ (wi and hi are the rotated lengths of ri). Use Lemma 3 to pack
(T1 ∪ T3 ∪ T4) \ X ′ into the rectangle (1, 1 − h2) above the stack–see Figure 3.
We distinguish two cases. If A(X ′) ≥ h2/6 − ε, then

A ≥

T2︷︸︸︷
h2

2
+

X′︷ ︸︸ ︷
h2

6
− ε +

(T1∪T3∪T4)\X′︷ ︸︸ ︷
2
3

(
1 − h2 −

√
ε
)

− ε =
2
3

− 2ε − 2
3
√

ε.

Otherwise A(X ′) < h2/6− ε and since no further item was added to X ′ we have
X ′ = X . As h2 > 1/3 we have T4 ⊆ X and we can apply Corollary 3 to get a
total area of

A ≥ h2

2
+

2
3

(1 − h2) − 2ε =
2
3

− h2

6
− 2ε

≥ 5
9

− 2ε (since h2 ≤ 2
3
).

314 R. Harren and R. van Stee

2
3

2
3

h2

empty
T2

T1 ∪ T3 ∪ T4

1
3

2
3

h2

2
3

(T1 ∪ T3 ∪ T4) \ X ′

T2 X ′
1
3

Fig. 3. Packing in Case 1 (h2 ≤ 1/3) and Case 2 (1/3 < h2 ≤ 2/3)

Case 3: h2 ∈ (2/3, 1 + 4ε]
See Figure 4 for an illustration of the following packing and the notations. Order
the items of T2 by non-increasing order of width. Stack the items left-justified
into the lower left corner of the bin while the current height h is less or equal to
the width of the last item that was packed. In other words, the top right corner of
the last item of this stack is above the line from (1/2, 1/2) to (2/3, 2/3), whereas
the top right corners of all other items in the stack are below this line. Denote
the height of the stack by h and the set of items that is packed into this stack
by X1. Let r′ = (w′, h′) be the last item on the stack. Clearly, wi ≤ h for all
items ri ∈ T2 \ X1.

Consider the free space B = (1/3, h) to the right of the stack. Rotate the
items in T2 \ X1 and stack them horizontally, bottom-aligned into B. Stop if an
item does not fit. We denote the items that are packed into B by X2. Rotate
the remaining items T2 \ (X1 ∪X2) back into their original orientation and stack
them on top of the first stack X1. Let this set of items be X3 and the total height
of the stack X1 ∪ X3 be ĥ. Use Lemma 3 to pack T1 ∪ T3 ∪ T4 into the rectangle
(1, 1 − ĥ) above the stack X1 ∪ X3.

Since wi ≥ (h−h′) for ri ∈ X1 \{r′} we have A(X1) ≥ (h−h′)2 +h′/2. Again
we distinguish two cases for the analysis. If X3 = ∅ (or equivalently ĥ = h), then
A(X2) ≥ (h2 − h)/2 and therefore

A ≥

X1︷ ︸︸ ︷
(h − h′)2 +

h′

2
+

X2︷ ︸︸ ︷
h2 − h

2
+

T1∪T3∪T4︷ ︸︸ ︷
2
3

(
1 − h −

√
ε
)

− ε

> (h − h′)2 +
h′

2
+

1
3

− h

2
+

2
3

(
1 − h −

√
ε
)

− ε =: A1 (since h2 >
2
3
).

To find a lower bound for the total packed area we consider the partial derivative
of A1 to h′, which is ∂A1

∂h′ = 2h′ − 2h + 1/2. Since 2h′ − 2h + 1/2 < 0 for

Packing Rectangles into 2OPT Bins Using Rotations 315

2
3

2
3

X1

T1 ∪ T3 ∪ T4

X2

X3

h

h′
r′

ĥ
�

1
3

Fig. 4. Packing in Case 3 (2/3 < h2 ≤ 1 + 4ε). Item r′ of height h′ is dipicted larger
than ε ≤ 1/68 for the sake of visibility. The diagonal line � shows the threshold at
which the stack X1 is discontinued.

h′ ≤ 2ε and h ≥ 1/2, the total packed area is minimized for the maximal
value h′ = 2ε for any h in the domain. After inserting this value for h′ we get
A1 = (h − 2ε)2 + ε + 1/3 − h/2 + 2/3(1 − h −

√
ε) − ε and ∂A1

∂h = 2h − 7/6 − 4ε.
Thus the minimum is acquired for h = 7/12 + 2ε. We get

A1 ≥
(

7
12

)2

+ ε +
1
3

− 7
24

− ε +
2
3

(
5
12

− 2ε −
√

ε

)
− ε

=
95
144

− 7
3
ε − 2

3
√

ε.

Otherwise X3 �= ∅ (or equivalently ĥ > h) and thus A(X2) ≥ 1/2(1/3−2ε) as the
stack X2 leaves at most a width of 2ε of B unpacked. Furthermore, ĥ ≤ 2/3+6ε
since h2 ≤ 1 + 4ε and a width of at least 1/3 − 2ε is packed into B. Since
A(X3) ≥ (ĥ − h)/2 and ĥ ≤ 2/3 + 6ε we get

A ≥

X1︷ ︸︸ ︷
(h − h′)2 +

h′

2
+

X2︷ ︸︸ ︷
1
2

(
1
3

− 2ε

)
+

X3︷ ︸︸ ︷
ĥ − h

2
+

T1∪T3∪T4︷ ︸︸ ︷
2
3

(
1 − ĥ −

√
ε
)

− ε

≥ (h − h′)2 +
h′

2
+

1
2

(
1
3

− 2ε

)
− 1

9
− ε − h

2
+

2
3

(
1 −

√
ε
)

− ε := A2.

With an analysis similar to before we see that A2 is minimal for h = 1/2 and
h′ = 2ε. We get

316 R. Harren and R. van Stee

A2 ≥
(

1
2

− 2ε

)2

+ ε +
1
6

− ε − 1
9

− ε − 1
4

+
2
3

(
1 −

√
ε
)

− ε

≥ 13
18

+ 4ε2 − 4ε − 2
3
√

ε.

If h2 > 1 + 4ε then A(T2) ≥ 1/2 · h2 > 1/2 + 2ε, which is a contradiction to the
assumption of the lemma.Therefore the three cases cover all possibilities.

It is easy to verify that for 0 < ε ≤ 1/68 the following inequalities hold.

11/18 − ε − 2/3
√

ε ≥ 1/2 + ε 2/3 − 2ε − 2/3
√

ε ≥ 1/2 + ε

5/9 − 2ε ≥ 1/2 + ε 95/144 − 7/3ε − 2/3
√

ε ≥ 1/2 + ε

13/18 + 4ε2 − 4ε − 2/3
√

ε ≥ 1/2 + ε

Now let us assume that we do not run out of items while packing a set T with
the appropriate method above. Then the packed area is at least 1/2 + ε as the
inequalities above show. The contradiction follows from the precondition that
removing an arbitrary item form T yields a remaining total area of less than
1/2 + ε. Thus all items are packed. ��

5 The Approximation Ratio

Theorem 4. There is an approximation algorithm for rectangle packing with
rotations with an absolute worst case ratio of 2.

Proof. Recall that we denote the number of bins used for an optimal packing
of the large items by �. Obviously � ≤ OPT. Let s be the number of bins
used for packing only small items. If s ≤ �, then the total number of bins is
� + s ≤ 2� ≤ 2OPT. If s > �, then at least one bin is used for small items and
thus all bins for large items contain items with a total area of at least 1/2 − ε.
According to the partition of the remaining small items, all but the last bin for
the small items contain items with a total area of at least 1/2 + ε. Let A be the
total area of all items and let f > 0 be the area of the items contained in the
last bin. Then

OPT ≥ A ≥ � ·
(

1
2

− ε

)
+ (s − 1) ·

(
1
2

+ ε

)
+ f > (s + � − 1) · 1

2
.

Thus s+ � < 2OPT+1 and we get s+ � ≤ 2OPT which proves the theorem. ��

6 Conclusion and Future Work

The algorithm we presented depends on the asymptotic approximation algorithm
from [1], in particular, the constant k that follows from this algorithm. It would
be interesting to design an approximation algorithm for rectangle packing with
rotations with asymptotic approximation ratio strictly less than 2 and small
additive term. This could also improve the efficiency of our algorithm.

Packing Rectangles into 2OPT Bins Using Rotations 317

We conjecture that every set of items of height at most 1/2 and total area at
most 5/9 can be packed into a unit bin using rotations. This would again improve
the efficiency of our algorithm and might be useful for other packing problems
as well. Other interesting open questions for further investigation include the
following.

1. Does an approximation algorithm for rectangle packing without rotations
with an absolute worst case ratio of 2 exist? As we pointed out in the intro-
duction, the best-known approximation ratio for this problem is 3 [15].

2. Does an approximation algorithm for strip packing with or without rotations
with an absolute worst case ratio less than 2 exist? An answer to this ques-
tion for strip packing without rotations would narrow the gap between the
lower bound of 3/2 (as strip packing without rotations is a generalization
of one-dimensional bin packing) and the upper bound of 2 from Steinberg’s
algorithm [13].

References

1. Bansal, N., Caprara, A., Sviridenko, M.: Improved approximation algorithms for
multidimensional bin packing problems. In: FOCS: Proc. 47th IEEE Symposium
on Foundations of Computer Science, pp. 697–708 (2006)

2. Bansal, N., Correa, J.R., Kenyon, C., Sviridenko, M.: Bin packing in multiple
dimensions - inapproximability results and approximation schemes. Mathematics
of Operations Research 31(1), 31–49 (2006)

3. Caprara, A., Lodi, A., Monaci, M.: Fast approximation schemes for two-stage,
two-dimensional bin packing. Mathematics of Operations Research 30(1), 150–172
(2005)

4. Chleb́ık, M., Chleb́ıková, J.: Inapproximability results for orthogonal rectangle
packing problems with rotations. In: CIAC: Proc. 6th Conference on Algorithms
and Complexity, pp. 199–210 (2006)

5. Coffman Jr., E.G., Garey, M.R., Johnson, D.S., Tarjan, R.E.: Performance bounds
for level-oriented two-dimensional packing algorithms. SIAM Journal on Comput-
ing 9(4), 808–826 (1980)

6. Jansen, K., Solis-Oba, R.: New approximability results for 2-dimensional pack-
ing problems. In: MFCS: Proc. 32nd International Symposium on Mathematical
Foundations of Computer Science, pp. 103–114 (2007)

7. Jansen, K., van Stee, R.: On strip packing with rotations. In: STOC: Proc. 37th
ACM Symposium on Theory of Computing, pp. 755–761 (2005)

8. Jansen, K., Zhang, G.: Maximizing the total profit of rectangles packed into a
rectangle. Algorithmica 47(3), 323–342 (2007)

9. Kenyon, C., Rémila, E.: A near optimal solution to a two-dimensional cutting stock
problem. Mathematics of Operations Research 25(4), 645–656 (2000)

10. Leung, J.Y.-T., Tam, T.W., Wong, C.S., Young, G.H., Chin, F.Y.: Packing squares
into a square. Journal of Parallel and Distributed Computing 10(3), 271–275 (1990)

11. Meir, A., Moser, L.: On packing of squares and cubes. Journal of Combinatorial
Theory 5, 126–134 (1968)

318 R. Harren and R. van Stee

12. Schiermeyer, I.: Reverse-fit: A 2-optimal algorithm for packing rectangles. In: van
Leeuwen, J. (ed.) ESA 1994. LNCS, vol. 855, pp. 290–299. Springer, Heidelberg
(1994)

13. Steinberg, A.: A strip-packing algorithm with absolute performance bound 2. SIAM
Journal on Computing 26(2), 401–409 (1997)

14. van Stee, R.: An approximation algorithm for square packing. Operations Research
Letters 32(6), 535–539 (2004)

15. Zhang, G.: A 3-approximation algorithm for two-dimensional bin packing. Opera-
tions Research Letters 33(2), 121–126 (2005)

A Preemptive Algorithm for Maximizing
Disjoint Paths on Trees

Yossi Azar1,2,�, Uriel Feige3, and Daniel Glasner1

1 Tel Aviv University, Tel Aviv, 69978, Israel
2 Microsoft Research, Redmond WA, 98052-6399, USA

3 Weizmann Institute, Rehovot 76100, Israel
azar@tau.ac.il, uriel.feige@weizmann.ac.il, dglasner@gmail.com

Abstract. We consider the online version of the maximum vertex dis-
joint path problem when the underlying network is a tree. In this prob-
lem, a sequence of requests arrives in an online fashion, where every
request is a path in the tree. The online algorithm may accept a request
only if it does not share a vertex with a previously accepted request. The
goal is to maximize the number of accepted requests. It is known that
no online algorithm can have a competitive ratio better than Ω(log n)
for this problem, even if the algorithm is randomized and the tree is
simply a line. Obviously, it is desirable to beat the logarithmic lower
bound. Adler and Azar [SODA 1999] showed that if preemption is al-
lowed (namely, previously accepted requests may be discarded, but once
a request is discarded it can no longer be accepted), then there is a ran-
domized online algorithm that achieves constant competitive ratio on
the line. In the current work we present a randomized online algorithm
with preemption that has constant competitive ratio on any tree. Our
results carry over to the related problem of maximizing the number of ac-
cepted paths subject to a capacity constraint on vertices (in the disjoint
path problem this capacity is 1). Moreover, if the available capacity is at
least 4, randomization is not needed and our online algorithm becomes
deterministic.

1 Introduction

We consider the online version of the maximum vertex disjoint paths problem,
and of paths selection subject to congestion (a.k.a. capacity) constraints. Given a
communication network which is a connected graph G = (V, E) (where |V | = n),
the on-line algorithm processes a sequence of call requests. Each request specifies
a pair of vertices (v, w) ∈ V × V . When a request arrives the algorithm can
accept it by allocating a path connecting v and w in G, or reject it. The goal is
to maximize the number of accepted calls in such a way that the allocated paths
conform with the congestion constraints.

The performance of an on-line algorithm is measured by its competitive ratio.
A deterministic or randomized on-line algorithm is ρ-competitive if for any input
� Research supported in part by the Israel Science Foundation.

J. Gudmundsson (Ed.): SWAT 2008, LNCS 5124, pp. 319–330, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

320 Y. Azar, U. Feige, and D. Glasner

sequence its (expected) benefit is not less than 1/ρ times the benefit of an optimal
off-line solution.

A preemptive algorithm is an algorithm which is allowed to preempt accepted
calls. Such an algorithm may decide at any point to discard any number of calls
which it has already accepted. These calls may not be recalled at a later time
and do not count towards the algorithm’s benefit.

Versions of this problem and its generalization, the call control problem, in
which call requests also have varying bandwidth and benefit specifications, have
been extensively studied. See for example [4,6,8], for surveys of the problem see
[10] and [15].

Our results: We present a randomized preemptive algorithm for the on-line
maximum vertex disjoint paths problem on trees, and show that it has constant
competitive ratio. Our result is best possible in the sense that if one disallows
either randomization or preemption, then every online algorithm cannot be bet-
ter than Ω(log n) competitive, even on line networks [12,7,17]. We also extend
our result to maximizing the number of paths subject to a congestion bound of
b for all b > 1. When b ≥ 4, our algorithm can be made deterministic. For any b,
preemption is still provably required if one is to achieve a constant competitive
ratio.

Previously, Θ(log D) competitive algorithms were known for trees where D is
the diameter of the tree (see [8] and [16]). Those algorithms are non-preemptive.
A constant competitive algorithm was known only for the line network [1], and
as noted above, it is unavoidable that the online algorithm achieving this is
preemptive and randomized. That algorithm can be made deterministic when a
congestion bound of b ≥ 2 is given.

Related work: There are numerous versions of the disjoint path problem, de-
pending on whether graphs are directed or undirected (we consider undirected
graphs), capacity constraints are on edges or vertices (we assume that they are
on vertices), requests arrive as paths or as source-destination pairs and the algo-
rithm may choose the path (for trees this does not matter, and for general graphs
we assume that requests are source-destination pairs), algorithms are online or
off-line (we consider the online case), algorithms are randomized or deterministic
(we allow randomization), whether preemption is allowed in online settings (we
allow preemption), and whether the underlying graph can be arbitrary or has
some special structure (we consider trees). For lack of space, we shall mention
only those results that we find most informative to our current setting.

Off-line setting: For small capacity bound b on edges, there is no polynomial
time constant approximation [3] (unless NP has quasi-polynomial time algo-
rithms) for a general network. In contrast, if the capacity bound is more than
logarithmic then randomized rounding of a linear programming relaxation gives
a (1+ ε) approximation for maximizing the number of paths [18], and this holds
regardless of whether capacity constraints are placed on edges or vertices.

On trees the maximum edge disjoint paths is solvable in polynomial time,
and becomes NP-hard when edges have a capacity bound b ≥ 2 [13]. We observe

A Preemptive Algorithm for Maximizing Disjoint Paths on Trees 321

here that the maximum paths problem in trees with vertex capacity bound b
is solvable using dynamic programming in time nb+O(1), and becomes NP-hard
only when b grows as a function of n.

Online setting: When the capacity bound is b ≥ log n, the deterministic non-
preemptive algorithm of [6] is O(log n) competitive on a general network. This
is the best possible even among randomized algorithms, in the sense that there
is a lower bound of Ω(log n) for non-preemptive algorithms for any allowed con-
gestion even for a line network. For the disjoint paths problem (i.e. congestion is
b = 1) on a general network, an Ω(nε) lower bound was shown in [9] even for ran-
domized preemptive algorithms. This lower bound is not known to extend to the
case where b ≥ 2. When the requests are paths rather than source-destination
pairs and the capacity constraint is b−1, there is an Ω(n1/b/b) lower bound on the
competitive ratio of deterministic preemptive and randomized non-preemptive
algorithms, and an Ω(n1/(2b)/b) lower bound for randomized preemptive algo-
rithms [2]. (Lower bounds for the case when requests are paths involve requests
that need not resemble shortest paths.)

For some specific networks such as trees, meshes and classes of planar graphs
(see [7,8,14]) there are known non-preemptive algorithms with O(log n) compet-
itive ratios for the disjoint paths problem.

It still remains open whether a sub-logarithmic (randomized or deterministic)
preemptive algorithm exists for general networks when we allow high congestion.
Our result shows that this is possible for trees even when the congestion is low.

Overview of the paper: This paper is an abbreviated version, the full version
can be found on the world wide web. In section 2 we introduce some definitions
and notation. In section 3, which is the main section, we present a deterministic
preemptive algorithm with constant competitive ratio. However, this algorithm
assumes that the vertices have a capacity of 4 rather than 1. In section 4 we use
randomization in order to remove the assumption on capacity, and thus derive a
randomized preemptive algorithm for the disjoint paths problem. The extension
of our results to the capacity b case is discussed in 5.

Our techniques: The approach followed in Section 3 is to decompose the tree
problem to a sum of independent subproblems on line networks, and then on each
subproblem to use the algorithm from [1] that has a constant competitive ratio
on the line. Namely, in an online fashion our algorithm attempts to partition
the requests into subsequences. With each subsequence it associates one path
(hence, a line network) in the tree, and the subsequences have the property that
all requests for the same subsequence intersect the path that is associated with
the subsequence, and do not intersect any request from any other subsequence.
Achieving a partition with the above property is in general impossible, so our
online algorithm will need to drop some of the requests, so as to be able to
partition the remaining sequence of requests into subsequences. Our analysis
will show that the approximation ratio does not suffer much because of these
dropped requests. An additional source of difficulty is that the line algorithm
from [1] cannot be applied as is to a subsequence. The reason for this is that the

322 Y. Azar, U. Feige, and D. Glasner

partition to subsequences is dynamic and is not known in advance, and hence the
path associated with a subsequence is also not fixed in advance. We overcome
this problem by partitioning each subsequence into two groups. In one group,
corresponding to the part of the path that is already fixed, we apply the line
algorithm of [1]. In the other group, corresponding to the part of the path that
may still grow dynamically, we apply a new on-line algorithm which follows the
behavior of the off-line algorithm for the activity selection problem.

2 Preliminaries

We consider a network T which is a tree. By choosing an arbitrary vertex r we
root the tree. A call request is characterized by two distinct nodes, since the
underlying network is a tree a call request defines a single path. We denote the
input sequence of call requests by σ and will refer to the call requests as paths.

Without loss of generality we can assume that all call requests are from a leaf
to a leaf. This can be achieved by adding a new node for each internal node of
T and connecting it to its corresponding node.

The depth of a node is the length of the path connecting it to the root. We
define the least depth node of a path P , denoted by ldn(P), as the node with the
least depth in P . A monotonic path, is a path whose sequence of node depths
is monotonic. Any non-monotonic path P is comprised of two monotonic paths
which intersect at ldn(P). Having fixed some arbitrary orientation, we call them
left(P) and right(P). We define the maximal depth node of a monotonic path
P , denoted by mdn(P), as the node with the maximal depth in P . The notation
[v, w) will be used for the path connecting nodes v and w, excluding w.

The congestion created by a set of calls C ⊆ σ on a node v is the number of
calls in C which intersect v. The congestion on a subgraph H ⊆ T is the maximal
congestion on the nodes of H . The congestion created by an on-line algorithm A
is the maximal congestion created by A(σ) on T for all input sequences σ, where
A(σ) ⊆ σ are the calls accepted by A. We say that an algorithm or a subset
of calls is b-congested if the maximal congestion created by it on T is bounded
by b.

The performance of a b-congested randomized on-line algorithm A, is mea-
sured in terms of its competitive ratio, defined as follows. Let OPT σ ⊆ σ be a
maximal size b-congested subset. We say that randomized A is ρ-competitive if
for all request sequences σ we have E(|A(σ)|) ≥ 1

ρ |OPT σ|. During the analysis
we will compare the performance of deterministic b-congested on-line algorithms
on an input sequence σ to a maximal size 1-congested subset (that is, a subset
of disjoint calls). We denote such a selection by OPT (1)

σ ⊆ σ and say that A is
ρ-competitive against a 1-congested optimal selection if for all request sequences
σ we have |A(σ)| ≥ 1

ρ |OPT (1)
σ |.

Some of the objects we will discuss evolve as a function of the input requests.
We will use the notation O∗ for such an object O, to denote its final state.

A Preemptive Algorithm for Maximizing Disjoint Paths on Trees 323

3 A 4-Congested Deterministic Algorithm

In this section we present a deterministic on-line algorithm whose maximal con-
gestion does not exceed 4. We will also show that it is 6 competitive against a
1-congested optimal solution on the same request sequence.

Overview: The algorithm dynamically partitions the incoming calls into sub-
sequences σi for i = 1, . . . , k. The number of subsequences k, is not known in
advance and increases over time. This partitioning is described in subsection 3.1.
An algorithm for processing the calls in a single subsequence is given in subsec-
tion 3.2. The algorithm for combining the selections made on each subsequence
into a global selection is discussed in subsection 3.3.

3.1 Partitioning σ into Subsequences

Definition 1. Let S ⊆ T be the subtree connecting the least depth nodes of the
calls in σ and r, where r is the root of T . A stem structure for σ is a partition of
S into node disjoint monotonic paths such that the maximal depth node in each
path is a leaf of S. Each path (with one exception) is half open, i.e., it contains
its maximal depth node but does not contain its least depth node. One path that
contains the root r is closed, i.e., it contains both its maximal depth node and
least depth node.

Given a stem structure for σ we denote the closed path that contains r, by stem1.
We number the half open paths 2, . . . , k and refer to the i’th such path as stemi.
The node incident in stemi’s open edge which does not belong to stemi is called
the root node of stemi.

The stem structure has a tree hierarchy. Specifically, stem1 is the root stem
and for all other stems, a stem’s parent is the stem that contains its root node.

Using a stem structure we can partition the calls in σ into subsequences. The
calls whose least depth node lies in stemi are the calls in σi. Note that stemi

is a monotonic path that connects the least depth nodes of the calls in σi, thus
providing a line network structure.

We will use the procedure StemStructure described in figure 1 to create and
maintain a stem structure for σ and partition the calls accordingly in an online
fashion.

We can show (proof in the full version) that the procedure StemStructure
maintains a stem structure for σ. In fact, the procedure generates a sequence of
stem structures as a function of σ. We note that when further calls arrive the
stem structure never “shrinks”. In particular, for all i and for each arriving call,
stemi before the arrival of the call is contained in stemi as modified by the call.
This implies that depth(mdn(stemi)) is a non decreasing sequence. Furthermore,
existing stems are never removed, only new stems may be added. A stem’s root
node is fixed and does not change once the stem has been created. The stem’s
parent and ancestor stems are fixed at the moment of its creation but descendent
stems may be created later on.

324 Y. Azar, U. Feige, and D. Glasner

Procedure: StemStructure
Initialize: i ← 1, σ1 ← ∅, stem1 ← r
for each incoming call P ∈ σ

Starting at ldn(P) traverse the path to r until reaching a node v
belonging to stemj for some j
if stemj ∪ [ldn(P), v) is a monotonic path

then σj ← σj ∪ P , stemj ← stemj ∪ [ldn(P), v)
else

σi+1 ← P , stemi+1 ← [ldn(P), v), i ← i + 1

Fig. 1. Algorithm for partitioning the calls and maintaining the stems

3.2 An Algorithm for Subsequence σi

In this subsection we consider the processing of the calls in a single subsequence
σi competing against a 1-congested optimal selection on these calls only.

In an off-line setting, by considering the intersection of the calls in σ∗i (the
final state of σi) with the appropriate stem, stem∗i (the final state of stemi) we
can reduce the problem to a line network.

Lemma 1. Let C ⊆ σ∗i, if all calls in C have a common (non-empty) intersec-
tion and ldn(P) is of maximal depth in {ldn(Q)|Q ∈ C} then ldn(P) ∈

⋂
Q∈C Q.

Proof. Whenever two paths P and Q intersect ldn(P∩Q)=max(ldn(P), ldn(Q)).
Since ldn(P) is maximal in {ldn(Q)|Q ∈ C}, all calls in C intersect ldn(P). ��

Corollary 1. A bound on the maximal congestion created by σi on stemi is also
a bound on the congestion created by the calls in σi anywhere on T .

We assume that we are given an algorithm Line for maximizing vertex disjoint
paths on a line network. Specifically, a 2-congested algorithm for maximizing
edge disjoint paths on a line was shown in [1]. It is 2 competitive against a
1-congested optimal selection.

The natural approach would be to reduce the tree problem to several line
problems and apply the line algorithm on each one separately using the above
corollary. A difficulty which arises in the on-line setting is that stem∗i is not
known in advance. Specifically, even after a call has been assigned to a subse-
quence its intersection with stem∗i is not always known. This uncertainty rules
out a straightforward reduction to an on-line algorithm for a line network.

For example, the known algorithm for the line has the property that it pre-
empts a containing call in favor of the contained call. However, in reducing the
tree to lines the containment relationship may become uncertain when the calls
intersect mdn(stemi). We illustrate this difficulty in figure 2. Consider the calls P
and Q, if mdn(right(Q)∩stem∗i) ≤ mdn(right(P)) then Q∩stem∗i ⊆ P∩stem∗i

and P should be preempted. Otherwise it should not be preempted.
To overcome this problem we make a further distinction between the calls.

After a new call P has been assigned to a subsequence σi and the stem structure

A Preemptive Algorithm for Maximizing Disjoint Paths on Trees 325

Fig. 2. An example illustrating the difficulty of determining containment relations of
the intersections of the calls with the stem in an online setting

has been updated, we classify it as determined or undetermined depending on
its relation to the stem structure. If P ∩ mdn(stemi) = ∅ we classify it as a
determined call, otherwise it is an undetermined call. We denote by D the set
of determined calls and by U the set of undetermined calls. Note that if P is
classified as determined (i.e. P ∩mdn(stemi) = ∅) then P ∩(stem∗i \stemi) = ∅.
Hence, the intersection of each determined call is determined upon arrival. In
contrast, the intersection of each undetermined call with its stem may change as
further calls arrive.

Processing the Determined Calls: The procedure Determined described in
figure 3 processes the determined calls by reducing the problem to a line network.
It is applied to a call in P ∈ σi ∩ D after the stem structure has been updated
and P has been assigned to subsequence i.

Procedure: Determined
for each incoming call P ∈ σi ∩ D

Process P ∩ stemi with Line
Accept P if P ∩ stemi was accepted by Line
Preempt calls which were preempted by Line

Fig. 3. Algorithm for processing determined calls

Recall that Line is a 2-congested algorithm for maximizing edge disjoint paths
on a line [1]. It is 2 competitive against a 1-congested optimal selection. To use
this algorithm we reduce vertex disjointness to edge disjointness on a line by
splitting each vertex into two vertices connected by an edge.

Lemma 2. For all σ and i, the maximal congestion created by Determined(σi∩
D) on T is 2. Furthermore, Determined is 2 competitive on σi ∩ D against a
1-congested optimal selection.

The proof which can be found in the full version follows from the properties of
Line and corollary 1.

326 Y. Azar, U. Feige, and D. Glasner

Processing the undetermined calls: The undetermined calls will be processed
by an on-line algorithm UnDetermined which follows the behavior of the optimal
off-line algorithm for interval scheduling also called the activity-selection problem
(see [11] chapter 17). In the off-line setting, optimal maximization of disjoint calls
on a line can be achieved as follows. Sort the calls in ascending order by the depth
of their maximal depth nodes. Accept the first call, discard all calls which intersect
it and repeat for the remaining calls.

In the on-line setting the stem provides the line structure. The ordering of the
calls is limited to lower bounds given by the current mdn(stemi). When an un-
determined call P arrives, we can only say that mdn(P ∩stem∗i) ≥ mdn(stemi).
The on-line algorithm resolves this uncertainty by relaxing the congestion limi-
tation for calls whose intersection with the final stem in still undetermined. We
show that keeping three options is enough to ensure the correct selection.

Procedure UnDetermined described in figure 4 is applied to a call in P ∈
σi ∩ U after the stem structure and specifically stemi have been updated and P
has been assigned to subsequence i.

Procedure: UnDetermined
Initialize: unfixed ← ∅, fixed ← ∅
for each incoming call P ∈ σi ∩ U
(following the update of the stem and assignment of P to σi)
(1) if P ∩ fixed �= ∅ then reject P
(2) elseif ∃Q ∈ unfixed, Q ∩ mdn(stemi) = ∅

(note: this happens only if P extended stemi)
Let F ∈ unfixed such that depth(mdn(F ∩ stemi)) is minimal,
fixed ← fixed ∪ F
Preempt all calls in unfixed
unfixed ← P
(P intersects stemi only at mdn(stemi) and hence does not intersect F)

(3) elseif P ∪ unfixed creates a congestion of 4 on mdn(stemi)
Let Q1 ∈ unfixed ∪ P such that ldn(Q1) = mdn(stemi)
and let Q2, Q3 ∈ unfixed ∪ P such that
depth(mdn(Q2 ∩ left(Q1))), depth(mdn(Q3 ∩ right(Q1))) are minimal
(breaking ties arbitrarily)
unfixed ← {Q1, Q2, Q3} (possibly Q2 = Q3)
Discard the remaining call (or calls)

(4) else unfixed ← unfixed ∪ P

Fig. 4. Algorithm for processing undetermined calls

Lemma 3. For all σ and i, the maximal congestion created by UnDetermined
(σi ∩ U) on T is 3. Furthermore, UnDetermined is 1-competitive on σi ∩ U
against a 1-congested optimal selection

A detailed proof of this claim can be found in the full version. There we show
that UnDetermined is able, without exceeding the congestion bound of 3, to
imitate the behavior of the optimal algorithm for interval scheduling. We show

A Preemptive Algorithm for Maximizing Disjoint Paths on Trees 327

that no matter how the stem structure will evolve, one of the three “optional
calls” which UnDetermined keeps in unfixed is in fact the disjoint call with a
minimal maximal depth node which the off-line algorithm would have chosen.

Processing the Calls in σi: The procedure SubSeq (figure 5) is applied to a
call P after it has been assigned to subsequence i and stemi has been updated.

Procedure: SubSeq
for each incoming call P ∈ σi

if (P ∩ mdn(stemi) = ∅), then Process P with Determined
else Process P with UnDetermined
Accept P if it was accepted by the algorithm it was assigned to
Preempt calls which were preempted by that algorithm

Fig. 5. Algorithm for processing calls in σi

Lemma 4. For all σ and i, the maximal congestion created by SubSeq(σi) on
T is 4. Furthermore,

|OPT
(1)
σi | ≤ 2|SubSeq(σi) ∩ D)| + |SubSeq(σi) ∩ U|

For the proof see the full version.

3.3 Combining the Calls from Subsequences

So far we have shown an algorithm for processing calls in each subsequence.
Accepting the union of the selections made on each subsequence will result in
a globally competitive algorithm. However, since calls in distinct subsequences
may intersect, locally bounding the congestion created by σi on stemi does not
ensure a global bound.

To attain the global bound we introduce the procedure Global. This procedure
uses procedure StemStructure to partition σ and maintain the stem structure.
It then simulates SubSeq on each subsequence σi. Global follows the decisions
made by each instance of SubSeq but preempts any calls which intersect more
than one stem. Note that a call may intersect two stems at the moment of its
arrival, or it may come to intersect two stems after it has been accepted, when a
new stem is created. In both cases these calls are discarded by Global, however
the corresponding SubSeq algorithm is unaware of these changes and continues
to behave as if the calls are there.

An incoming request P is handled by Procedure Global described in figure 6.

Lemma 5. Let k be the number of subsequences, then k ≤ |Global(σ) ∩ U|.

A detailed proof can be found in the full version. There we show that there is
at least one call in each subsequence. Namely, for all i there is an undetermined
call P ∈ unfixed such that ldn(P) = mdn(stemi) which is not preempted by
Global.

328 Y. Azar, U. Feige, and D. Glasner

Procedure: Global
for each incoming call P ∈ σ

Use procedure StemStructure to add P to a subsequence σi and update stemi

Simulate SubSeq on σi and accept / discard calls
which were accepted / discarded by SubSeq
Preempt any calls which intersect two stems (do not update simulations)

Fig. 6. Global algorithm

Lemma 6. The procedure Global discards at most 3(k − 1) calls which were
accepted by the instances of SubSeq, of which at most 2(k − 1) are determined
calls and k − 1 are undetermined calls.

Proof. For all i = 2, . . . , k, stemi has a root node vi. The set {vi}k
i=2 includes

at most k − 1 distinct vertices. We recall that a stem’s root node is fixed at the
moment of its creation and does not change.

Any call accepted by SubSeq running on σi, which is preempted by Global
must intersect some root node vj ∈ stemi such that stemi is the parent of stemj .
The selection made by SubSeq on σi may include at most two determined calls
and one undetermined call that intersect some root node vj ∈ stemi.

Thus the total amount of calls which are discarded is bounded by 3(k − 1) of
which at most 2(k − 1) are determined and k − 1 are undetermined. ��

Theorem 1. For all σ, the maximal congestion created by Global(σ) on T is 4.
Furthermore, Global is 6 competitive on σ against a 1-congested optimal selection
(recall that Global is 4-congested).

Proof. For all σ,

|OPT (1)
σ | = |OPT

(1)
∪k

i=1σi | ≤
∑k

i=1 |OPT
(1)
σi |

≤
∑k

i=1 2|SubSeq(σi) ∩ D| + |SubSeq(σi) ∩ U|
≤ 2|Global(σ) ∩ D| + 4(k − 1) + |Global(σ) ∩ U| + (k − 1)
≤ 2|Global(σ) ∩ D| + 6|Global(σ) ∩ U| ≤ 6|Global(σ)|.

For the bound on the congestion see the full version. The second inequality
follows from lemma 4. The third inequality is due to lemma 6. The fourth follows
from lemma 5 and the last is because σ = D ∪ U . ��

4 A Constant Competitive Randomized Algorithm for
Disjoint Paths

In this section we present a 1-congested, randomized 24-competitive algorithm.
We show that the calls accepted by Global can be assigned in an online manner
into a small number of 1-congested sets. The randomized algorithm randomly
chooses one of these sets and simulates Global. It accepts only the calls which
are assigned to the chosen set and discards the rest.

A Preemptive Algorithm for Maximizing Disjoint Paths on Trees 329

Definition 2. Let A be an on-line algorithm running on input σ. An on-line d-
coloring of A(σ) is an on-line assignment χ : A(σ) �→ {1, . . . , d}. When a call P
is accepted the on-line coloring assigns it to some color class χ(P) ∈ {1, . . . , d}.
The coloring is valid if intersecting calls have different colors.

We note that whenever a determined call is accepted it intersects at most two
other determined calls. The same is true for undetermined calls. Hence, allocating
3 colors for determined and 3 for undetermined calls we can define a valid on-line
6-coloring for the calls maintained by Global. This is shown formally in the full
version.

Using the on-line coloring we construct a randomized 1-congested, algorithm
Rand as described in figure 7.

Procedure: Rand
Make a random selection i ∈ {1, . . . , 6} with probability
Pr[i] = 1

12 for i ∈ {1, 2, 3} and Pr[i] = 1
4 for i ∈ {4, 5, 6}

for each incoming call P ∈ σ
Simulate Global on P
if P is accepted by Global and χ(P) = i, then Accept P
else Reject P
Preempt calls which were preempted by Global

Fig. 7. Disjoint path algorithm

Theorem 2. Rand is a 24 competitive algorithm for the disjoint paths problem.

The proof can be found in the full version.

5 A Constant Competitive Randomized Algorithm for
Congestion b

In the full version of this paper we extend the setting and allow a bounded
maximal congestion of b > 1. We use the general method of [5] for benefit
problems. We also take advantage of its adaptation to handle preemption as
presented in [1]. The following theorem is proved there

Theorem 3. For all b > 1, There exists a b-congested, randomized, preemptive
25-competitive algorithm for the maximal vertex b-congested paths problem on
trees. For b ≥ 4 there is a deterministic constant competitive algorithm.

References

1. Adler, R., Azar, Y.: Beating the logarithmic lower bound: randomized preemp-
tive disjoint paths and call control algorithms. In: Proc. of the 10th ACM-SIAM
Symposium on Discrete Algorithms, pp. 1–10 (1999)

2. Alon, N., Arad, U., Azar, Y.: Independent sets in hypergraphs with applications to
routing via fixed paths. In: Hochbaum, D.S., Jansen, K., Rolim, J.D.P., Sinclair, A.
(eds.) RANDOM 1999 and APPROX 1999. LNCS, vol. 1671, pp. 16–27. Springer,
Heidelberg (1999)

330 Y. Azar, U. Feige, and D. Glasner

3. Andrews, M., Chuzhoy, J., Khanna, S., Zhang, L.: Hardness of the undirected
edge-disjoint paths problem with congestion. In: Proceedings 46th Annual IEEE
Symposium on Foundations of Computer Science, pp. 226–244 (2005)

4. Aspnes, J., Azar, Y., Fiat, A., Plotkin, S., Waarts, O.: On-line routing of virtual
circuits with applications to load balancing and machine scheduling. Journal of the
ACM 44(3), 486–504 (1997); also in Proc. 25th ACM STOC, pp. 623-631 (1993)

5. Awerbuch, B., Azar, Y., Fiat, A., Leonardi, S., Rosen, A.: On-line competitive
algorithms for call admission in optical networks. In: Proc. 4th Annual European
Symposium on Algorithms, pp. 431–444 (1996)

6. Awerbuch, B., Azar, Y., Plotkin, S.: Throughput-competitive online routing. In:
34th IEEE Symposium on Foundations of Computer Science, pp. 32–40 (1993)

7. Awerbuch, B., Bartal, Y., Fiat, A., Rosén, A.: Competitive non-preemptive call
control. In: Proc. of 5th ACM-SIAM Symposium on Discrete Algorithms, pp. 312–
320 (1994)

8. Awerbuch, B., Gawlick, R., Leighton, T., Rabani, Y.: On-line admission control
and circuit routing for high performance computation and communication. In:
Proc. 35th IEEE Symp. on Found. of Comp. Science, pp. 412–423 (1994)

9. Bartal, Y., Fiat, A., Leonardi, S.: Lower bounds for on-line graph problems with
application to on-line circuit and optical routing. In: Proc. 28th ACM Symp. on
Theory of Computing, pp. 531–540 (1996)

10. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press, Cambridge (1998)

11. Cormen, T.T., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. MIT
Press, Cambridge (1990)

12. Garay, J., Gopal, I., Kutten, S., Mansour, Y., Yung, M.: Efficient on-line call control
algorithms. Journal of Algorithms 23, 180–194 (1993); In: Proc. 2’nd Annual Israel
Conference on Theory of Computing and Systems (1993)

13. Garg, N., Vazirani, V.V., Yannakakis, M.: Primal-Dual Approximation Algorithms
for Integral Flow and Multicut in Trees. ALGORITHMICA 18, 3–20 (1997)

14. Kleinberg, J., Tardos, E.: Disjoint paths in densely embedded graphs. In: Proc.
36th IEEE Symp. on Found. of Comp. Science, pp. 52–61 (1995)

15. Leonardi, S.: On-line network routing. In: Fiat, A., Woeginger, G. (eds.) Online
Algorithms - The State of the Art, ch. 11, pp. 242–267. Springer, Heidelberg (1998)

16. Leonardi, S., Marchetti-Spaccamela, A., Presciutti, A., Rosén, A.: On-line random-
ized call control revisited. In: Proc. 9th ACM-SIAM Symp. on Discrete Algorithms,
pp. 323–332 (1998)

17. Lipton, R.J., Tomkins, A.: Online interval scheduling. In: Proc. of the 5th ACM-
SIAM Symposium on Discrete Algorithms, pp. 302–311 (1994)

18. Raghavan, P., Thompson, C.D.: Randomized rounding: a technique for provably
good algorithms and algorithmic proofs. Combinatorica 7(4), 365–374 (1987)

Minimum Distortion Embeddings into a Path of
Bipartite Permutation and Threshold Graphs�

Pinar Heggernes1, Daniel Meister1, and Andrzej Proskurowski2

1 Department of Informatics, University of Bergen, Norway
Pinar.Heggernes@ii.uib.no, Daniel.Meister@ii.uib.no

2 Department of Information and Computer Science, University of Oregon, USA
andrzej@cs.uoregon.edu

Abstract. The problem of computing minimum distortion embeddings
of a given graph into a line (path) was introduced in 2004 and has quickly
attracted significant attention with subsequent results appearing in re-
cent stoc and soda conferences. So far all such results concern approx-
imation algorithms or exponential-time exact algorithms. We give the
first polynomial-time algorithms for computing minimum distortion em-
beddings of graphs into a path when the input graphs belong to specific
graph classes. In particular, we solve this problem in polynomial time for
bipartite permutation graphs and threshold graphs.

1 Introduction

A metric space is defined by a set of points and a distance function between
pairs of points. Given two metric spaces (U, d) and (U ′, d′), an embedding of the
first into the second is a mapping f : U → U ′. The embedding has distortion c if
for all x, y ∈ U , d(x, y) ≤ d′(f(x), f(y)) ≤ c · d(x, y). Low distortion embeddings
between metric spaces are well-studied and have a long history. Embeddings of
finite metric spaces into low dimensional geometric spaces have applications in
various areas of computer science, like computer vision [18] and computational
chemistry (see [9,10] for an introduction and a list of applications).

Minimum distortion embeddings are difficult to compute. It is NP-hard even
to approximate by a ratio better than 3 a minimum distortion embedding be-
tween two given finite 3-dimensional metric spaces [15].

Every finite metric space can be represented by a matrix whose entries are
the distances between pairs of points, and hence corresponds to a graph. Kenyon
et al. [11] initiated the study of computing a minimum distortion embedding
of a given graph onto1 another given graph, and they gave a parameterized
algorithm for computing a minimum distortion embedding between an arbitrary
unweighted graph and a bounded-degree tree. Subsequently, Badoiu et al. [3] gave
a constant-factor approximation algorithm for computing minimum distortion
embeddings of arbitrary unweighted graphs into trees.
� This work is supported by the Research Council of Norway.
1 They study a more restricted version of the problem where both graphs have the

same number of vertices.

J. Gudmundsson (Ed.): SWAT 2008, LNCS 5124, pp. 331–342, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

332 P. Heggernes, D. Meister, and A. Proskurowski

Since then, computing a minimum distortion embedding of a given graph on
n vertices into a path was identified as a fundamental problem. This is exactly
the problem that we study in this paper. Badoiu et al. [2] gave an exponential-
time exact algorithm and a polynomial-time O(n1/2)-approximation algorithm
for arbitrary unweighted input graphs, along with a polynomial-time O(n1/3)-
approximation algorithm for unweighted trees. They also showed that the prob-
lem is hard to approximate within a constant factor. In another paper Badoiu et
al. [1] showed that the problem is hard to approximate by a factor polynomial
in n, even for weighted trees. They also gave a better polynomial-time approx-
imation algorithm for general weighted graphs, along with a polynomial-time
algorithm that approximates the minimum distortion embedding of a weighted
tree into a path by a factor that is polynomial in the distortion.

We initiate the study of designing polynomial-time algorithms for exact compu-
tation of minimum distortion embeddings into a path for input graphs of specific
graph classes. In particular we give polynomial-time algorithms for the solution
of this problem on bipartite permutation graphs and on threshold graphs. These
are widely studied graph classes with important theoretical applications, and they
can both be recognized in linear time [5,6,13]. Minimum distortion into a path is
very closely related to the widely known and extensively studied graph parameter
bandwidth. The only difference between the two parameters is that a minimum
distortion embedding has to be non-contractive, meaning that the distance in the
embedding between two vertices of the input graph has to be at least their original
distance, whereas there is no such restriction for bandwidth. Bandwidth is known
to be one of the hardest graph problems; it is NP-hard even for very simple graphs
like caterpillars of hair-length at most 3 [14], and it is hard to approximate by a
constant factor even for trees [4]. Polynomial-time algorithms for the exact com-
putation of bandwidth are known for very few graph classes, including bipartite
permutation graphs [7] and threshold graphs (they are interval graphs) [12,17].
However, simple examples exist to show that these bandwidth algorithms cannot
be used to generate minimum distortion embeddings into a path for these graph
classes. In fact, there exist very simple bipartite permutation graphs, like K3,4,
for which no optimal bandwidth layout corresponds to a minimum distortion em-
bedding into a path. It should be noted that the bandwidth and the minimum
distortion into a path of a graph can be very different. For example, it is com-
mon knowledge that a cycle of length n has bandwidth 2, whereas its minimum
distortion into a path is Ω(n).

The running times of the algorithms that we present are O(n2) for bipartite
permutation graphs and O(n) for threshold graphs, where n is the number of
vertices of the input graph. As opposed to all non-trivial bandwidth algorithms,
both of our algorithms compute the distortion into a path of the given graph
directly, and not by deciding whether it is at most a given integer. In addition,
we give a complete characterization of the distortion into a path of bipartite
permutation graphs through their induced subgraphs. No such result is known
for bandwidth, even for very small graph classes.

Minimum Distortion Embeddings into a Path 333

In this extended abstract most proofs and some intermediate technical results
needed for those proofs are omitted. In addition to the results appearing in
the main part, we report below on our following findings. A full version of this
extended abstract with all details and formal proofs exists [8].

• The distortion into a path of a connected proper interval graph is equal to
its bandwidth.

• The distortion into a path of a cycle on n vertices is n − 1.
• The distortion into a path of a complete bipartite graph Kn,m with 1 ≤ n ≤

m is n + m − 2 if n + m is odd, and n + m − 1 if n + m is even.
• The distortion into a path of a split graph where each of the n vertices of

the clique is adjacent to each of the m vertices of the independent set is
n + m − 2, for n, m ≥ 2.

2 Preliminaries

A graph is denoted by G = (V, E), where V is the vertex set and E is the
edge set of G. The set of neighbors of a vertex v is denoted by NG(v). The
degree of a vertex v is dG(v) = |NG(v)|. (We will omit the subscripts when the
graph is clear from the context.) The subgraph of G induced by the vertices in
S ⊆ V is denoted by G[S]. For any v ∈ V , G−v denotes G[V \ {v}]. We study
unweighted and connected input graphs. A u, v-path is a path between (and
including) u and v. The distance dG(u, v) between two vertices u and v in G is
the number of edges in a shortest u, v-path in G. We say that a subgraph H of
G is distance-preserving if dH(u, v) ≤ dG(u, v) for all u, v ∈ V . It follows directly
that distances in H and G are then equal, since every path in H is a path in
G. In particular, distance-preserving subgraphs are induced subgraphs. For any
mapping f from V to (a subset of) Z, the distance df (u, v) between u and v in
f is |f(u)−f(v)|. We write u ≺f v when f(u) < f(v). For a vertex v in G, every
vertex u with u ≺f v is to the left of v, and every vertex w with v ≺f w is to
the right of v in f . We will also informally write leftmost and rightmost vertices
accordingly.

An embedding into a path (line) of a graph G = (V, E) is a mapping E : V → Z.
In the rest of this paper we use simply embedding to mean an embedding into
a path. An embedding E is non-contractive if dE(u, v) ≥ dG(u, v) for every pair
of vertices u, v ∈ V . The distortion D(G, E) of a non-contractive embedding is
defined to be the smallest integer c such that dE(u, v) ≤ c · dG(u, v) for every
pair of vertices u, v ∈ V . Since we consider only unweighted graphs, it is easy to
see that D(G, E) is the smallest c such that dE(u, v) ≤ c for every edge uv of G
(see also [11]). A minimum distortion embedding is a non-contractive embedding
for G of smallest possible distortion. In this paper, the distortion of G, denoted
by D(G), is the distortion of a minimum distortion embedding for G. Hence,
our purpose is to compute D(G) when G is a bipartite permutation graph or a
threshold graph.

Each integer (position) in an embedding will be called a slot. Exactly n slots of
a non-contractive embedding are occupied by the vertices of G, and the rest are

334 P. Heggernes, D. Meister, and A. Proskurowski

called empty slots. For a given vertex v, we refer to the rightmost vertex to the
left of v of a certain property by the close vertex to the left of v and specifying the
property (close vertex to the right is defined symmetrically). The vertex ordering
underlying E , ord(E), is an ordered list of the n vertices occupying the non-
empty slots of E in increasing order of positions. In general, a vertex ordering for
G = (V, E) is a mapping σ : V → {1, 2, . . . , |V |}, thus a restricted embedding.
Since every ordering can be considered as a permutation of V , we will also give
an ordering as an ordered list of vertices σ = 〈x1, x2, . . . , xn〉. The following two
results are of importance throughout the paper.

Lemma 1. Let G = (V, E) be a connected graph, and let E be an embedding for
G with ord(E) = 〈x1, . . . , xn〉. If dE(xi, xi+1) ≥ dG(xi, xi+1) for every 1 ≤ i < n
then E is non-contractive.

Note in particular that there is never a need for empty slots between consecutive
vertices of E that are adjacent in G. We say that an embedding does not contain
unnecessary empty slots if consecutive vertices in the embedding are at distance
exactly their distance in the graph.

Lemma 2. Let G = (V, E) be a graph and let H be a subgraph of G. If H is a
distance-preserving subgraph of G, then D(G) ≥ D(H).

3 Distortion of Threshold Graphs

A graph is a threshold graph if and only if its vertex set can be partitioned into a
clique X and an independent set I such that the vertices of I, and equivalently
the vertices of X , can can be ordered by neighborhood inclusion [13]. Hence,
for any partition V = X ∪ I of a threshold graph G = (V, E) = (X, I, E), the
I-vertices can be ordered as a1, a2, . . . , am such that N(a1) ⊆ N(a2) ⊆ · · · ⊆
N(am), and the X-vertices can be ordered as b1, b2, . . . , bn such that N(b1) ⊇
N(b2) ⊇ · · · ⊇ N(bn). Consequently, the given orderings correspond to a non-
decreasing degree order for the I-vertices and a non-increasing degree order for
the X-vertices. For simplicity, we will say decreasing instead of non-increasing,
and increasing instead of non-decreasing. Every connected threshold graph has
a universal vertex. Hence, every pair of vertices in a connected threshold graph
is at distance at most 2. In G = (X, I, E), if there is no X-vertex without a
neighbor in I, there is an I-vertex a that is adjacent to all X-vertices. Then,
(X ∪{a}, I \ {a}) is also a threshold partition for G. In the following, we assume
that an X-vertex of smallest degree has no neighbors outside X .

In this section, we give an efficient algorithm for computing the distortion of
threshold graphs.

Lemma 3. Let G = (X, I, E) be a connected threshold graph. There is a min-
imum distortion embedding for G without empty slots between X-vertices such
that the X-vertices are ordered decreasingly by degree.

Minimum Distortion Embeddings into a Path 335

With Lemma 3 we are ready to give an algorithm that computes the distortion
of threshold graphs. Let E be a non-contractive embedding of the input graph G
where the X-vertices are ordered by decreasing degree and let u be the leftmost
universal vertex in E . We define R(E) to be the distance between u and the
rightmost vertex in E , and L(E) to be the maximum taken over all distances
between a vertex to the left of u and its rightmost neighbor in E . Then, D(G, E) =
max{L(E), R(E)}.

Algorithm. thrg-distortion
Input threshold graph G = (X, I, E) with I = {y1, . . . , y|I|} and

d(y1) ≤ · · · ≤ d(y|I|)

begin
let E0 be the start embedding;
let u be the leftmost vertex in E0;
set i = 0;
while R(Ei) ≥ L(Ei) + 2 and i < |I| do

set i = i + 1;
let Ei be obtained from Ei−1 by moving yi to the left of u

end while;
let E be obtained from Ei by moving the close I-vertex to the right of u

to the right end;
return min{D(G, E), D(G, Ei)} and the corresponding embedding

end.

For completing the algorithm we have to explain three operations. The start
embedding is obtained by the following procedure. We only explain the under-
lying vertex ordering; the embedding then is obtained by adding the necessary
empty slots. The X-vertices are ordered decreasingly by degree. The I-vertices
are treated separately and in reverse given order, i.e., as y|I|, . . . , y1, and are
placed rightmost between two neighbors as long as possible, and when an I-
vertex cannot be placed between two neighbors it is placed at the right end,
particularly to the right of the rightmost X-vertex. Note that this embedding
has no empty slots between X-vertices.

The second operation is the definition of embedding Ei inside the while loop.
If yi is between X-vertices then yi is removed, all vertices between u and po-
sition Ei−1(yi) are moved one position to the right, all vertices to the left are
moved one position to the left and yi is placed in the slot previously occupied
by u. Note that Ei is a proper non-contractive embedding for G without unnec-
essary empty slots and without empty slots between X-vertices. If yi is to the
right of the rightmost X-vertex in Ei−1 then yi is removed, all vertices between
u and position Ei−1(yi) are moved two positions to the right and yi is placed in
the slot at position Ei−1(u) + 1.

The third operation defines E after the while loop as follows. If the close
I-vertex v to the right of u in Ei is to the left of the rightmost X-vertex, then
remove v, move all vertices to the left of position Ei(v) one position to the right

336 P. Heggernes, D. Meister, and A. Proskurowski

and place v at the right end at distance 2 to the close vertex to the left. If v is
to the right of the rightmost X-vertex, the embedding remains unchanged.

Theorem 1. There is an O(n)-time algorithm that computes the distortion of a
connected threshold graph on n vertices and outputs a corresponding embedding.

Proof. We briefly sketch the proof. Let G = (X, I, E) be a connected threshold
graph and apply thrg-distortion to G. Let r be the number of iterations of
the while loop. We show that E or Er has smallest distortion among all non-
contractive embeddings for G with the X-vertices ordered decreasingly by degree.
Correctness then follows directly from Lemma 3. For each i ∈ {1, . . . , r}, observe
that R(Ei−1) − 2 ≤ R(Ei) ≤ R(Ei−1) − 1 and L(Ei−1) + 1 ≤ L(Ei) ≤ R(Ei−1).
Hence, D(G, Ei) ≤ D(G, Ei−1) and L(Ei) − R(Ei) ≤ 2. Note in particular that
R(Ei) ≤ R(F) for any non-contractive embedding F for G with u the leftmost
X-vertex and at least |I| − i I-vertices to the right of u. Thus the algorithm
stops with an embedding where L and R parameters are balanced and the R
parameter is smallest possible. The full proof of correctness then analyzes the
few possible differences between these parameters of the output embedding and
shows that any change results in the same or larger distortion.

For an implementation of Algorithm thrg-distortion in O(n) time, observe
that threshold graphs can be represented in O(n) space where each I-vertex keeps
pointers to its leftmost and rightmost neighbor in the decreasingly sorted degree
order of the X-vertices. Hence deciding adjacencies can be done in constant time.
We can also in constant time find the position of yi since it is either at the right
end or it is the leftmost of the I-vertices between X-vertices. Hence with an
O(n)-time preprocessing we can gather enough information about positions to
be able to implement each of the described operations in constant time.

4 Distortion of Bipartite Permutation Graphs

In this section, we show two main results about distortion of bipartite permuta-
tion graphs. We give a fast algorithm for computing the distortion of bipartite
permutation graphs and we give a complete characterization of bipartite permu-
tation graphs of bounded distortion by forbidden induced subgraphs.

A bipartite graph is a graph whose vertex set can be partitioned into two
independent sets. We denote such a graph by G = (A, B, E) where A ∪ B is the
vertex set of G, and A and B are independent sets, also called color classes. The
partition into color classes is unique for connected bipartite graphs. For each
vertex v in a bipartite graph, we let cc(v) denote the color class of vertex v and
cc(v) denote the other color class.

Bipartite permutation graphs are permutation graphs that are bipartite. For
the definition and properties of permutation graphs, we refer to [5]. Let G =
(A, B, E) be a bipartite graph. A strong ordering for G is a pair of orderings
(σA, σB) on respectively A and B such that for every pair of edges ab and a′b′ in G
with a, a′ ∈ A and b, b′ ∈ B, a ≺σA a′ and b′ ≺σB b implies that ab′ ∈ E and a′b ∈
E. A bipartite graph is a bipartite permutation graph if and only if it has a strong

Minimum Distortion Embeddings into a Path 337

ordering [16]. Spinrad et al. give a linear-time recognition algorithm for bipartite
permutation graphs, that even produces a strong ordering [16]. It follows from
the definition of a strong ordering that if G = (A, B, E) is a connected bipartite
permutation graph then any strong ordering (σA, σB) satisfies the following. For
every vertex a ∈ A, the neighbors of a appear consecutively in σB.

We begin by defining and analyzing a special kind of bipartite permutation
graphs that we will need for proving lower distortion bounds. A clawpath is a
tree such that the set of its vertices that are not leaves induce a path, and each
vertex of the path is adjacent to exactly one leaf. Hence, every vertex of the path
has degree 3, except the end vertices of the path that have degree 2. The number
of edges on this path is called the length of the clawpath. (Clawpaths are thus
caterpillars where every vertex that is not a leaf has exactly one neighbor that is
a leaf.) We define a clawpath-like graph to be a graph obtained from a clawpath
by replacing each vertex by a (non-empty) independent set of new vertices. When
replacing a vertex v with a set of new vertices v1, . . . , v� with � ≥ 1, we give each
vi the same neighborhood as v had. (Thus, we can view this process as iteratively
adding to the graph new false twins of chosen vertices.) The underlying clawpath
of a clawpath-like graph is the clawpath from which the graph was obtained
according to the definition. The length of a clawpath-like graph is the length of its
underlying clawpath. Clawpath-like graphs are both bipartite and permutation.
Hence, they are a subset of bipartite permutation graphs. Furthermore, they are
connected and contain at least one edge. It can be shown, through a tedious but
not difficult case analysis, that for a bipartite permutation graph, every induced
subgraph that is a clawpath-like graph is distance-preserving. A second result
gives a lower bound on the distortion of clawpath-like graphs.

Lemma 4. Let G = (V, E) be a clawpath-like graph of length r. Let k ≥ 1 be an
odd integer. If |V | ≥ 1

2 (rk + r + 2k + 6) then D(G) ≥ k + 2.

By Lemmas 4 and 2 we can conclude that a connected bipartite permutation
graph that contains a clawpath-like graph of length r on at least 1

2 (rk+r+2k+6)
vertices as induced subgraph has distortion at least k + 2. The main structural
theorem of this section extends this result to an equivalence.

Theorem 2. Let k ≥ 1 be an odd integer. Then, a connected bipartite per-
mutation graph G has distortion at most k if and only if G does not contain a
clawpath-like graph of length r on 1

2 (rk+r+2k+6) vertices as induced subgraph.

The remaining part of the proof of Theorem 2 will be given through a series
of structural and algorithmic results. The proof will be finalized through an
algorithm that, on input a connected bipartite permutation graph, an embedding
of restricted structure, and an odd integer k, decides whether the graph has
distortion at most k or finds a clawpath-like graph. The algorithm will be fast,
and it will even produce certificates for its decision. It will work on embeddings
of restricted structure. Let G = (A, B, E) be a bipartite permutation graph with
strong ordering (σA, σB). We say that an embedding E for G is normalized (with
respect to (σA, σB)) if it satisfies the following three conditions, where c denotes
the leftmost A-vertex with respect to σA:

338 P. Heggernes, D. Meister, and A. Proskurowski

(C1) for every pair a, a′ of vertices from A, a ≺σA a′ implies a ≺E a′; and
for every pair b, b′ of vertices from B, b ≺σB b′ implies b ≺E b′

(C2) for every triple u, v, w of vertices of G where u ≺E v ≺E w and uw ∈ E:
uv ∈ E or vw ∈ E

(C3) for every A-vertex x, dE(c, x) is even; and
for every B-vertex x, dE(c, x) is odd.

Thus, in a normalized embedding the slots (containing vertices or empty) are
partitioned into “A-slots” and “B-slots”: only A-slots can contain A-vertices, and
only B-slots can contain B-vertices. We will show that every connected bipartite
permutation graph has a minimum distortion embedding that is normalized with
respect to a given strong ordering. From here on, embeddings are always assumed
to be normalized.

Our algorithm is based on one single type of operations in embeddings: mov-
ing vertices. Vertex moving will appear in two different forms, depending on
which vertices are moved in which direction. The two operations are denoted as
RightMove and DeleteTwo. The latter operation, DeleteTwo, receives an em-
bedding E and a position p as input and “deletes” the slots at position p and
p + 1 in E , by moving all vertices to the right of position p two positions to the
left. Note that the result is a proper embedding if the slots at position p and
p + 1 are empty. When we apply DeleteTwo, these two positions are empty.

The definition of operation RightMove is given as a small program. For the
definition, we introduce the following notation. For an embedding E , a vertex u
and a position p, E − u denotes the embedding obtained from E by removing u
(which leaves an empty slot), and E +(u → p) is the embedding obtained from E
by placing vertex u in the slot at position p (to obtain a proper embedding, we
assume that u is not placed in E and that the slot at position p in E is empty).
Operation RightMove mainly executes a right-shift for vertices of a single color
class. It receives an embedding E and a vertex u as input and is defined as

Procedure RightMove
begin

let p = E(u) + 2; set E = E − u;
while position p in E is occupied do

let x be the vertex at position p in E ; set E = (E − x) + (u → p);
set u = x; set p = p + 2

end while;
return E + (u → p)

end.

It can be verified that when we apply RightMove and DeleteTwo to nor-
malized non-contractive embeddings, they produce normalized embeddings. For
DeleteTwo, the non-contractiveness condition might be violated; however, when-
ever we apply this operation a violation does not occur. Hence, RightMove and
DeleteTwo always produce normalized non-contractive embeddings.

To give a first outline, the mentioned algorithm iteratively takes a minimum
distortion embedding for a connected induced subgraph, adds a new vertex to

Minimum Distortion Embeddings into a Path 339

this embedding and determines on that basis the distortion of the extended
graph. The new vertex is not an arbitrary vertex, but one with special properties.
This incremental process defines a vertex ordering for the given graph. Let G =
(A, B, E) be a connected bipartite permutation graph on at least two vertices
with strong ordering (σA, σB). We say that a vertex ordering σ = 〈x1, . . . , xn〉
for G is competitive if it has the following properties:

– σ satisfies condition (C1)
– x1 is the leftmost A-vertex in σA, and x2 is the leftmost B-vertex in σB

– for every i ∈ {3, . . . , n}, NG(xi) ∩ {x1, . . . , xi−1} ⊆ NG(w) where w is the
cc(xi)-vertex preceding xi in σA or σB .

Observe that competitive vertex orderings exist for all connected bipartite graphs
and given strong orderings: if the rightmost A-vertex has a neighbor that is not a
neighbor of the preceding A-vertex then the last B-vertex has degree 1, and since
G is connected the last A-vertex is adjacent to the last two B-vertices. It follows
that all neighbors of the last B-vertex are neighbors of the previous B-vertex. It-
eration proves existence of a competitive ordering. It is important to note that
G[{x1, . . . , xi}] is connected for 2 ≤ i ≤ n and 〈x1, . . . , xn〉 a competitive ordering.

We give the first step of our algorithm. We take an induced subgraph and
a minimum distortion embedding and extend both by adding a new vertex,
which is chosen according to a competitive ordering. For a graph G = (V, E),
an embedding E and an integer k ≥ 0 we say that a vertex x is (G, E , k)-bad if
x has a neighbor y in G where y ≺E x such that dE(x, y) > k. In particular, if x
is a (G, E , k)-bad vertex then its leftmost neighbor in E is at distance more than
k in E . If the context is clear we will write (E , k)-bad or simply k-bad.

Lemma 5. Let G = (A, B, E) be a connected bipartite permutation graph on at
least three vertices with competitive ordering σ. Let x be the rightmost vertex in
σ. Let c be the cc(x)-vertex preceding x in σ, and let d be the leftmost neighbor
of x in σ. Let E be a normalized minimum distortion embedding for G−x, and
let k =def D(G−x, E).

1. Let c ≺E d and F =def E + (x → E(d) + 1).
Then, F is a normalized minimum distortion embedding for G of distor-
tion k.

2. Let d ≺E c and F =def E + (x → E(c) + 2).
Then, F is a normalized non-contractive embedding for G of distortion k or
k + 2, and if there is an (F , k)-bad vertex then it is x.

For computing the distortion of G, it suffices to solve the question that is raised
by the second case of Lemma 5, namely to decide whether the distortion of the
graph in this case is k or k + 2. The main subroutine of our algorithm will do
exactly this but requires an input embedding of a special form. Let G = (A, B, E)
be a connected bipartite permutation graph, k ≥ 1 an integer and E a normalized
non-contractive embedding for G. Denote the leftmost and rightmost (G, E , k)-
bad vertex in E as respectively bl and br, and let ar be the leftmost neighbor of br.
We say that E has a nice beginning if all (G, E , k)-bad vertices are cc(br)-vertices,

340 P. Heggernes, D. Meister, and A. Proskurowski

dE(bl, br) ≤ k − 1, there is no empty cc(br)-slot between ar and br and there is
an empty cc(br)-slot between ar and bl in E . Note that bl is to the right of ar by
the distance conditions. It can be shown that a nice beginning can be achieved
by few modifications or it is easy to decide the distortion question already by
looking at a small part of the given embedding. Furthermore, let d and x be
vertices of G from different color classes where d ≺E x. We call a pair (v, w)
of vertices for v a cc(x)-vertex and w a cc(x)-vertex a blocking pair if v ≺E w,
dE(v, w) = 3 and vw
∈ E. We call vertex w for d ≺E w ≺E x a breakpoint vertex
between d and x if (v, w) is a blocking pair for some vertex v, there is no empty
cc(x)-slot between d and v and no empty cc(x)-slot between w and x in E . The
algorithm is then the following.

Algorithm. bpg-distortion
Input An embedding E and an integer k
begin

while there is an (E , k)-bad vertex do
let x be the rightmost (E , k)-bad vertex in E ;
let d be the leftmost neighbor of x in E ;

if there is no empty cc(x)-slot between d and x in E then reject;

let F = RightMove(E , d);
if slot at position F(d) − 1 is not occupied in F then accept;
if there is no breakpoint vertex between d and x in F and

there is an empty cc(x)-slot between d and x in F then accept;
set E = F

end while;
accept

end.

The next lemma shows the main property of bpg-distortion, that it can be
used for deciding the question of Lemma 5.

Lemma 6. Let G = (A, B, E) be a connected bipartite permutation graph on
at least three vertices. Let k ≥ 1 be an odd integer. Let E be a normalized non-
contractive embedding for G of distortion k + 2 with a nice beginning. Then,
D(G) ≤ k or G contains a clawpath-like graph of length r on 1

2 (rk + r + 2k + 6)
vertices as induced subgraph.

We can now complete the proof of the main structural theorem, Theorem 2. We
prove the missing direction by induction. If G contains at most two vertices,
then D(G) ≤ 1. So, let G have n ≥ 3 vertices. Assume that the claim holds
for all graphs on at most n − 1 vertices. Let σ be a competitive ordering for
G, and let x be the last vertex in σ. If D(G−x) ≥ k + 2, then G−x contains a
clawpath-like graph of length r on 1

2 (rk+r+2k+6) vertices as induced subgraph,
and thus G. Now, let D(G−x) ≤ k, and let F be the embedding obtained as in
Lemma 5 on input E , σ and x. Assume that D(F) = k + 2. Lemma 6 completes
the proof of Theorem 2. In addition, this gives a simple algorithm for computing
the distortion of a bipartite permutation graph.

Minimum Distortion Embeddings into a Path 341

Theorem 3. There is an O(n2)-time algorithm that computes the distortion of
a connected bipartite permutation graph on n vertices. The algorithm certifies
the computed distortion by a normalized non-contractive embedding as an upper
bound and an induced clawpath-like subgraph as a lower bound.

Proof. Let G = (A, B, E) be a bipartite permutation graph with competitive
ordering σ = 〈x1, . . . , xn〉. Let Gi =def G[{x1, . . . , xi}] for 1 ≤ i ≤ n. Iteratively,
normalized minimum distortion embeddings for G1, . . . , Gn are computed apply-
ing the algorithm of Lemma 5 and the computation of an embedding with nice
beginning as preprocessing and bpg-distortion as the main procedure. If the
distortion of Gi+1 is larger than the distortion of Gi then the algorithms even
output an induced clawpath-like graph as certificate. The computed minimum
distortion embedding for Gi serves as input for computing the distortion of Gi+1.
For the running time, it mainly suffices to observe that bpg-distortion does
not move a vertex twice. Storing the information about the number of vertices
to the right of a position, it can be checked in constant time whether there are
empty slots between two vertices. Consecutive vertices in the embeddings are at
distance at most 3, so that at most 3n slots are used. Hence, bpg-distortion
has an O(n)-time implementation. The two preprocessing algorithms require
only O(n) time, and a competitive ordering is obtained in linear time. Since the
main algorithm has O(n) iterations, the O(n2) running time follows.

5 Final Remarks

We gave an O(n2)-time implementation of the algorithm for computing the dis-
tortion of connected bipartite permutation graphs. The input embedding to
bpg-distortion in our implementation can be very arbitrary. However, the
actual input embedding is of specific form. Is it possible to give a linear-time
implementation of our distortion algorithm using information about the embed-
ding gained during computation for the smaller graphs? We leave this question
as a task for future work.

Acknowledgments

The authors thank Fedor V. Fomin for suggesting the study of minimum dis-
tortion embeddings of specific graph classes, and Dieter Kratsch for preliminary
discussions on the topic.

References

1. Badoiu, M., Chuzhoy, J., Indyk, P., Sidiropoulos, A.: Low-distortion embeddings
of general metrics into the line. In: Proceedings of STOC 2005, pp. 225–233. ACM
Press, New York (2005)

2. Badoiu, M., Dhamdhere, K., Gupta, A., Rabinovich, Y., Räcke, H., Ravi, R.,
Sidiropoulos, A.: Approximation algorithms for low-distortion embeddings into
low-dimensional spaces. In: Proceedings of SODA 2005, pp. 119–128. ACM and
SIAM (2005)

342 P. Heggernes, D. Meister, and A. Proskurowski

3. Badoiu, M., Indyk, P., Sidiropoulos, A.: A constant-factor approximation algorithm
for embedding unweighted graphs into trees. In: AI Lab Technical Memo AIM-2004-
015, MIT Press, Cambridge (2004)

4. Blache, G., Karpinski, M., Wirtgen, J.: On approximation intractability of the
bandwidth problem. Technical report TR98-014, University of Bonn (1997)

5. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. SIAM Monog.
Disc. Math. Appl. (1999)

6. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs, 2nd edn. Ann.
Disc. Math. vol. 57. Elsevier, Amsterdam (2004)

7. Heggernes, P., Kratsch, D., Meister, D.: Bandwidth of bipartite permutation graphs
in polynomial time. In: Proceedings of LATIN 2008. LNCS, vol. 4957, pp. 216–227.
Springer, Heidelberg (2008)

8. Heggernes, P., Meister, D., Proskurowski, A.: Computing minimum distortion em-
beddings into a path for bipartite permutation graphs and threshold graphs. In:
Reports in Informatics, University of Bergen, Norway, vol. 369 (2008)

9. Indyk, P.: Algorithmic applications of low-distortion geometric embeddings. In:
Proceedings of FOCS 2001, pp. 10–35. IEEE, Los Alamitos (2005)

10. Indyk, P., Matousek, J.: Low-distortion embeddings of finite metric spaces. In:
Handbook of Discrete and Computational Geometry, 2nd edn. pp. 177–196. CRC
Press, Boca Raton (2004)

11. Kenyon, C., Rabani, Y., Sinclair, A.: Low distortion maps between point sets. In:
Proceedings of STOC 2004, pp. 272–280. ACM Press, New York (2004)

12. Kleitman, D.J., Vohra, R.V.: Computing the bandwidth of interval graphs. SIAM
J. Disc. Math. 3, 373–375 (1990)

13. Mahadev, N., Peled, U.: Threshold graphs and related topics. In: Ann. Disc. Math.
vol. 56, North-Holland, Amsterdam (1995)

14. Monien, B.: The Bandwidth-Minimization Problem for Caterpillars with Hair
Length 3 is NP-Complete. SIAM J. Alg. Disc. Meth. 7, 505–512 (1986)

15. Papadimitriou, C., Safra, S.: The complexity of low-distortion embeddings between
point sets. In: Proceedings of SODA 2005, pp. 112–118. ACM and SIAM (2005)

16. Spinrad, J., Brandstädt, A., Stewart, L.: Bipartite permutation graphs. Disc. Appl.
Math. 18, 279–292 (1987)

17. Sprague, A.P.: An O(n log n) algorithm for bandwidth of interval graphs. SIAM J.
Disc. Math. 7, 213–220 (1994)

18. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for
nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)

On a Special Co-cycle Basis of Graphs

Telikepalli Kavitha

Indian Institute of Science, Bangalore, India
kavitha@csa.iisc.ernet.in

Abstract. In this paper we consider the problems of computing a min-
imum co-cycle basis and a minimum weakly fundamental co-cycle basis
of a directed graph G. A co-cycle in G corresponds to a vertex parti-
tion (S, V \ S) and a {−1, 0, 1} edge incidence vector is associated with
each co-cycle. The vector space over Q generated by these vectors is the
co-cycle space of G. Alternately, the co-cycle space is the orthogonal com-
plement of the cycle space of G. The minimum co-cycle basis problem
asks for a set of co-cycles that span the co-cycle space of G and whose
sum of weights is minimum. Weakly fundamental co-cycle bases are a
special class of co-cycle bases, these form a natural superclass of strictly
fundamental co-cycle bases and it is known that computing a minimum
weight strictly fundamental co-cycle basis is NP-hard. We show that the
co-cycle basis corresponding to the cuts of a Gomory-Hu tree of the un-
derlying undirected graph of G is a minimum co-cycle basis of G and it
is also weakly fundamental.

1 Introduction

Let G = (V, E) be a directed graph with m edges, n vertices, and weight function
w : E → R

+. A co-cycle in G is a set of edges of the form E∩[(S×Sc)∪(Sc ×S)],
where S is a nontrivial subset of V and Sc = V \S; that is, a co-cycle is a cut in
the underlying undirected graph. The edge directions are captured by assigning
a {−1, 0, 1} edge incidence vector to a co-cycle. The vector C assigned to the
co-cycle E ∩ [(S × Sc) ∪ (Sc × S)] is defined as follows. For each e ∈ E, we have

C(e) =

⎧⎪⎨
⎪⎩

1 if e is from S to Sc,

−1 if e is from Sc to S,

0 otherwise.

Note that the incidence vector C is only determined up to a factor ±1 as the
definition of a co-cycle is symmetric in S and Sc. For ease of exposition, we
often refer to the partition (S, Sc) as the above co-cycle C rather than the
vector associated with this partition. The weight of a co-cycle C is the sum of
the weights of those edges e such that C(e) = ±1. The vector space over Q

spanned by the {−1, 0, 1} vectors of its co-cycles is the co-cycle space of G.

Definition 1. A co-cycle basis of G is a set of linearly independent co-cycles
that span the co-cycle space.

J. Gudmundsson (Ed.): SWAT 2008, LNCS 5124, pp. 343–354, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

344 T. Kavitha

We can assume without loss of generality that the underlying undirected graph
of G is connected; then the co-cycle space of G has dimension n − 1. It is easy
to see that the set of n − 1 co-cycles {Ce, e ∈ T }, where T is a spanning tree
of the underlying undirected graph and Ce is the co-cycle corresponding to the
partition of V created by deleting edge e from T , forms a co-cycle basis of G.

Problem Definition. The first problem that we consider in this paper is to
compute a co-cycle basis such that the sum of the weights of the co-cycles in
this basis is minimum. The minimum co-cycle basis problem has already been
studied in undirected graphs [3]. In undirected graphs, a {0, 1} edge incidence
vector C is assigned to a co-cycle; C(e) = 1 for edges e crossing the partition
corresponding to this co-cycle and C(e) = 0 for the remaining edges e. Thus a
co-cycle is a cut in an undirected graph. De Pina [3] showed that the n − 1 cuts
of a Gomory-Hu tree yield a minimum cut basis of an undirected graph.

The main problem that we consider in this paper is that of computing a
minimum weight co-cycle basis of G that is weakly fundamental.

Definition 2. A co-cycle basis C is called weakly fundamental if the co-cycles
in C can be labeled as C1, . . . , Cn−1 so that for every 1 ≤ i ≤ n − 2 we have:
Ci \ (Ci+1 ∪ · · · ∪ Cn−1) �= ∅, where Ci here is the set of edges e such that
Ci(e) = ±1.

That is, each Ci has an edge ei such that Ci(ei) = ±1 while Cj(ei) = 0 for j > i.
A related class of co-cycle bases is the class of strictly fundamental co-cycle
bases. A co-cycle basis C of G is strictly fundamental if the co-cycles in C can be
labeled as C1, . . . , Cn−1 so that we have an edge ei corresponding to each Ci such
that Ci(ei) = ±1 while Cj(ei) = 0 for j �= i. Equivalently, a strictly fundamental
co-cycle basis C is a set of n − 1 co-cycles corresponding to a spanning tree T ,
where each co-cycle corresponds to the partition of V created by deleting an edge
from T . It is known that the problem of computing a minimum weight strictly
fundamental co-cycle basis is NP-hard (see [2]).

Weakly fundamental co-cycle bases form a natural superclass of strictly fun-
damental co-cycle bases. Here we consider the problem of computing a minimum
weight weakly fundamental co-cycle basis of a given directed/undirected graph.
Other interesting classes of co-cycle bases are integral co-cycle bases and totally
unimodular co-cycle bases (refer to Section 4 for the definitions).

Background. The co-cycle space of G is also the orthogonal complement of the
cycle space of G. A cycle B in G is actually a cycle in the underlying undirected
graph, i.e., edges in B are traversable in both directions. Associated with each
cycle is a {−1, 0, 1} edge incidence vector and the vector space over Q generated
by these vectors is the cycle space C of G. The cycle space C has dimension
m − n + 1 when the underlying undirected graph of G is connected. We have
〈B, C〉 = 0 for every cycle B and co-cycle C, where 〈x, y〉 denotes the dot product
of the vectors x and y in Q

m. The orthogonality between a cycle B and a co-cycle
C is due to the fact that any cycle vector B has to traverse an even cardinality
subset of the edges that cross the vertex partition (S, Sc) corresponding to C.
For half of the edges e in B ∩ C, we have B(e) = C(e) and for the remaining

On a Special Co-cycle Basis of Graphs 345

half we have B(e) = −C(e). Thus 〈B, C〉 = 0. We have Q
m = C ⊕ C⊥ where C⊥

is the co-cycle space of G.

Minimum Cycle Bases. The problem of computing a set of linearly indepen-
dent cycles that span the cycle space and whose sum of weights is minimum is
the minimum cycle basis problem. The minimum cycle basis problem has been
well-studied and there are many polynomial time algorithms for this problem in
undirected and directed graphs[10,3,6,1,13,12,11,17,9]. While there are polyno-
mial time algorithms to compute a minimum cycle basis in a given graph, it has
recently been shown that the problem of computing a minimum weight weakly
fundamental cycle basis (this definition is analogous to Definition 2) is APX-hard
[19]. Weakly fundamental cycle bases were first investigated in 1935 by Whitney
[21] and recent interest in weakly fundamental cycle bases is due to the practical
relevance of low weight weakly fundamental cycle bases in applications like the
periodic event scheduling problem [16,15].

Liebchen and Rizzi [18] studied various classes of cycle bases for general
graphs; this refined classification of cycle bases was of strong relevance for prac-
tical applications and they identified several new variants of the minimum cycle
basis problem. More precisely, they showed that for general graphs, computing
a minimum cycle basis for each class of cycle bases is different from computing
a minimum cycle basis among any of the other classes. In this paper, we explore
this question for minimum co-cycle basis problems.

Our results. We show that the minimum cycle basis and the minimum co-cycle
basis problems exhibit marked dissimilarities. We show that the co-cycle basis
corresponding to the cuts of a Gomory-Hu tree of the underlying undirected
graph of G is a “special co-cycle basis”. We first extend de Pina’s argument
to show that this co-cycle basis is a minimum co-cycle basis of the directed
graph G. Our main result, which is based on an interesting structural property
of a Gomory-Hu tree, is that this co-cycle basis is also weakly fundamental.
This implies that this co-cycle basis is also integral and using known facts, it
can be easily shown that this co-cycle basis is also totally unimodular. This is
a surprising result when contrasted with the analogous minimum cycle basis
problems since there is no such special cycle basis.

Regarding bounds on the weights of cycle bases and co-cycle bases, it has
recently been shown in [4] that any weighted 2-connected undirected graph G
admits a cycle basis (in fact, a weakly fundamental cycle basis) of weight O(W ·
log n log log n) where W is the sum of edge weights in G and n is the number
of vertices in G. Our results on co-cycle bases show that any weighted graph G
admits a weakly fundamental co-cycle basis, that is also totally unimodular, of
weight at most 2W , since it can be shown that the sum of edge weights of a
Gomory-Hu tree of G is at most 2W , where W is the sum of edge weights in G.

Organization of the paper. Section 2 contains preliminaries and Section 3 con-
tains our main results. Section 4 discusses several classes of co-cycle bases.

346 T. Kavitha

2 Preliminaries

For a directed graph, we obtain the underlying undirected graph by removing
the directions from the edges of the given directed graph. In undirected graphs,
cycles and co-cycles are 0-1 vectors and the cycle space and co-cycle space are
vector spaces over Z2. There are examples of co-cycle bases in directed graphs
which do not project on to co-cycle bases in the underlying undirected graph.
Note that every co-cycle basis of the underlying undirected graph is always a
co-cycle basis of the directed graph, when the 0-1 vectors of the co-cycles in
the undirected graph are interpreted appropriately as {−1, 0, 1} vectors in the
directed graph.

2.1 Gomory-Hu Tree

A classical result in graph connectivity, due to Gomory and Hu [7], states that
the edge connectivity between all pairs of vertices in an undirected graph can be
computed using n − 1 (rather than the näıve

(
n
2

)
) max-flow computations. The

Gomory-Hu algorithm computes a weighted tree T , known as the Gomory-Hu
tree, on V , with the following property:

The edge connectivity of any two vertices s and t in the graph exactly equals
the weight on the lightest edge in the unique s-t path in T . Further, the partition
of the vertices produced by removing this edge from T is a minimum s-t cut in
the graph.

The following theorem is used in the Gomory-Hu algorithm.

Theorem 1. If (X, V \X) is a minimum s-t cut in G and u, v ∈ X, then there
exists a minimum u-v cut (X∗, V \ X∗) such that X∗ ⊂ X.

The Gomory-Hu tree construction algorithm [7] initializes the tree T to a single
node that contains the entire vertex set. At any step of the algorithm, pick a
node X of T containing more than one vertex and choose any two vertices s
and t in X . Contract the entire subtree subtended at each neighbor of X into a
single node and perform a max flow computation from s to t in the new graph.
Theorem 1 ensures that the minimum s-t cut thus obtained (we call it C) is also
a minimum s-t cut in the original graph. Now, in T , the node X is split into X1
and X2 according to C and the two nodes thus formed are joined by an edge of
weight equal to the size of C. Further, all the neighboring subtrees of X become
neighboring subtrees of X1 or X2 depending upon which side of C they lie on.
The algorithm terminates when all the nodes of T become singleton sets. Thus
T is a weighted tree whose nodes are the vertices of V . It can be shown that T
captures all-pairs minimum cuts.

Note that the Gomory-Hu tree T need not be a spanning tree of G. That is,
the edges of T need not be edges of G. Fig. 1 illustrates such a graph and a
Gomory-Hu tree of this graph. The a-b minimum cut is 3 and the s-t minimum
cut for s ∈ {x, y, z} and t ∈ {a, b} is 2. Thus a and b, which are non-adjacent in
G, have to be adjacent (with an edge of weight 3) in any Gomory-Hu tree of G.

On a Special Co-cycle Basis of Graphs 347

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

a

a

b

b

x

x yy

z

z

2

2
23

Fig. 1. An example of a graph with unit edge weights and a Gomory-Hu tree of that
graph. Note that (a, b) is an edge of the Gomory-Hu tree although (a, b) is not an edge
in the given graph.

3 Minimum Co-cycle Bases and Algorithms

In this section we first present a proof from [3] by de Pina that for any undirected
graph G, the n−1 cuts defined by a Gomory-Hu tree form a minimum cut basis.
We then extend this proof to show that for any directed graph, the n− 1 cuts of
a Gomory-Hu tree of the underlying undirected graph form a minimum co-cycle
basis. We then show that this co-cycle basis is also weakly fundamental.

We will assume without loss of generality that the underlying undirected
graph of the given graph is connected (note that the co-cycle space of any graph
is the direct sum of the co-cycle spaces of its connected components). Then the
co-cycle space has dimension n − 1.

Lemma 1. For any undirected graph G, the n−1 cuts defined by a Gomory-Hu
tree form a minimum cut basis.

Proof (from [3]). Let T be a Gomory-Hu tree of G. Let B = {Be1 , . . . , Ben−1}
be the n − 1 cuts defined by the n − 1 edges e1, . . . , en of T . We will first show
that these cuts are linearly independent over Z2.

Consider an edge ei = (u, v) of T . First, note that Bei is the only cut in B
that separates u and v. Let Pi be any u-v path in G; encode Pi as a 0-1 edge
incidence vector. For any cut B and path P , 〈B, P 〉 is the number of edges that
belong to both B and P and 〈B, P 〉 is an odd number if and only if B separates
the endpoints of P . Since Bei is the only cut in B that separates u and v, we
have 〈Bei , Pi〉 = 1 (mod 2) while 〈Bej , Pi〉 = 0 (mod 2) for all j �= i. So the n−1
cuts in B are linearly independent over Z2. Thus B forms a cut basis.

Suppose B is not a minimum cut basis. Let B′ be a minimum cut basis of G
that has the maximum intersection with B among all minimum cut bases of G.
That is, |B′ ∩ B| is maximum for B′ among all minimum cut bases of G. Let Bei

be a cut of B that is not present in B′. Since B′ is a cut basis, there are cuts
A1, . . . , At in B′ such that

Bei = A1 + A2 + · · · + At (mod2).

348 T. Kavitha

Since 〈Bei , Pi〉 = 1 (mod 2), there must exist a k ∈ {1, . . . , t} such that
〈Ak, Pi〉 = 1 (mod 2), that is, Ak separates u and v. This implies that weight(Ak)
≥ weight(Bei) since Bei is a minimum u-v cut (recall the Gomory-Hu tree prop-
erty that for any pair of vertices s, t the partition of V produced by removing
the lightest edge on the s-t path from T is a minimum s-t cut in the graph).

Note thatAk cannot be a cut inB since all the cutsBej inB other thanBei satisfy
〈Bej , Pi〉 = 0 (mod2). It is easy to see that B′′ = B′ \ {Ak} ∪ {Bei} is a minimum
cut basis such that |B′′ ∩ B| > |B′ ∩ B|, contradicting the definition of B′. ��

We now generalize the above result to directed graphs.

Lemma 2. Let G = (V, E) be the given directed graph with n vertices and m
edges. The set of n − 1 co-cycles corresponding to the n − 1 cuts (interpreted as
{−1, 0, 1}m vectors) of a Gomory-Hu tree of the underlying undirected graph of
G forms a minimum co-cycle basis of G.

Proof. Let C1, . . . , Cn−1 be the co-cycles corresponding to the n − 1 cuts of the
Gomory-Hu tree of the underlying undirected graph of G. It follows from the
proof of Lemma 1 that the {−1, 0, 1}m incidence vectors of these co-cycles are
linearly independent over Q (since their residues modulo 2 are linearly indepen-
dent over Z2). Thus C = {C1, . . . , Cn−1} forms a co-cycle basis of G.

We now need to show that C is a minimum co-cycle basis of G. Suppose not.
Let B be a minimum co-cycle basis such that |B ∩ C| is maximum. Let Ci be
a co-cycle such that Ci ∈ C \ B. Since B = {B1, . . . , Bn−1} is a co-cycle basis,
there exist rational numbers α1, . . . , αn−1 such that

Ci = α1B1 + α2B2 + · · · + αn−1Bn−1. (1)

The co-cycle Ci corresponds to the vertex partition (S, V \S) determined by an
edge (u, v) of the Gomory-Hu tree of the underlying undirected graph. So, in the
underlying undirected graph, the edges of Ci form a minimum u-v cut. Let Pi be
a u-v path in the underlying undirected graph and interpret Pi as a {−1, 0, 1}m

incidence vector in the given directed graph G. We make the following claim
which is easy to show.

Claim. Let C and P be elements of {−1, 0, 1}m such that C is a co-cycle and P
is a path in the underlying undirected graph. Then the dot product 〈C, P 〉 can
take only one of three values: 0, 1, or −1. If the co-cycle C corresponds to the
vertex partition (Y, Y c) (recall that Y c = V \Y) and if a and b are the endpoints
of P , then

〈C, P 〉 =

⎧⎪⎨
⎪⎩

1 if a ∈ Y and b ∈ Y c,

−1 if a ∈ Y c and b ∈ Y ,

0 otherwise.

Since the edges of Ci form a u-v cut in the underlying undirected graph and
u, v are the endpoints of Pi, we have 〈Ci, Pi〉 = 1 by the above claim. Now,
using Equation (1), it follows that there is some Bk ∈ B with αk �= 0 such that
〈Bk, Pi〉 �= 0. However this implies by our above claim that 〈Bk, Pi〉 = ±1. In

On a Special Co-cycle Basis of Graphs 349

other words, the edges of Bk form a u-v cut in the underlying undirected graph.
But we already know that Ci is a minimum u-v cut in the underlying undirected
graph. Thus the weight of Ci is at most the weight of Bk. Since αk �= 0, Bk can
be written as a linear combination of Ci and the other co-cycles in B (refer to
Equation (1)). Hence D = B \ {Bk} ∪ {Ci} is a minimum co-cycle basis.

Also, each of the co-cycles C ∈ {C1, . . . , Cn−1} \ {Ci} satisfies: 〈C, Pi〉 = 0
by the above claim since none of the partitions corresponding to these co-cycles
separates u and v (the endpoints of Pi). Hence Bk is not any of the co-cycles
in {C1, . . . , Cn−1}. Thus |D ∩ C| > |B ∩ C| and D is a minimum co-cycle basis -
contradicting the definition of B. ��

Since the Gomory-Hu co-cycle basis, which is a minimum co-cycle basis of the
underlying undirected graph (by Lemma 1), is also a minimum co-cycle basis
of the given directed graph (by Lemma 2), we can now conclude the following
theorem.

Theorem 2. For any directed graph G, a minimum cut basis of the underly-
ing undirected graph of G, with cuts interpreted as {−1, 0, 1}m vectors, forms a
minimum co-cycle basis of G.

Lemma 2 also gives us the following efficient algorithm to compute a minimum
co-cycle basis of a given directed graph G: compute a Gomory-Hu tree T of the
underlying undirected graph of G. Each edge ei in T defines a partition of the
vertex set (Si, V \Si). Let Ci ∈ {−1, 0, 1}m be the co-cycle corresponding to the
partition (Si, V \ Si). Return the co-cycles C1, . . . , Cn−1.

Since a Gomory-Hu tree can be computed using n − 1 max-flows computa-
tions [7,8] in the underlying undirected graph, it follows that a minimum co-
cycle basis in a directed graph on n vertices and m edges can be computed in
time Õ(mn2) where |E| = m, |V | = n. When the edge weights are integers in
the range [1, . . . , U], then a minimum co-cycle basis can be computed in time
O(mn ·min(

√
m, n2/3) log(n2/m) log U), using the Goldberg-Rao max-flow algo-

rithm [5].

3.1 Computing a Minimum Weakly Fundamental Co-cycle Basis

We will next show our result on computing a minimum weakly fundamental co-
cycle basis. Let G = (V, E) be an undirected connected graph on n ≥ 2 vertices.
We will assume here that all edge weights in G are positive1. Let T be a Gomory-
Hu tree of G. We will show an ordering X1, X2 . . . , Xn−1 of the n − 1 cuts of T
and edges {e1, . . . , en−1} ⊆ E such that ei ∈ Xi and ei /∈ Xi+1 ∪ · · · ∪ Xn−1.
This shows that X1, . . . , Xn−1 is weakly fundamental (see Definition 2).

1 Edges with weight 0 can as well be deleted from G since they do not contribute to
the weight of any cut, but deleting such edges may leave the graph disconnected.
However this problem can be easily circumvented by working on each connected
component with positive edge weights and connecting the Gomory-Hu trees of these
components with the 0 weight edges.

350 T. Kavitha

Refer to Fig. 1, where some edges in the Gomory-Hu tree were not edges of
the given graph. However, there were some edges of the Gomory-Hu tree (for
instance, (a, x), (a, y), (a, z)) which were edges of the given graph. The following
lemma shows that there is always at least one real edge in a Gomory-Hu tree.

Lemma 3. Let G = (V, E) be an undirected connected graph on n ≥ 2 vertices
with positive edge weights and let T be a Gomory-Hu tree of G. Then there exists
an edge (x, y) in T where x is a leaf in T , that is a real edge, that is (x, y) ∈ E.

Proof. Root the Gomory-Hu tree T at any arbitrary vertex r. Let y be a vertex
such that all its children, call them x1, . . . , xk, are leaves in T . We claim that
at least one of the edges (xi, y), where 1 ≤ i ≤ k, is in E. Suppose not. We will
consider two cases here.

Case (1). The vertex y is not the root r. Let z be the parent of y. The
Gomory-Hu tree T tells us that the vertex partition (S, V \S) caused by deleting
(y, z) from T is a minimum y-z cut in G. The vertex y and its children x1, . . . , xk

are on one side of this bipartition, call this S, and the vertex z and the remaining
vertices constitute V \ S (see Fig. 2).

��
��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

�
�
�

�
�
�

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������

S

x1 x2 x3 x4

y

z

r

Fig. 2. The vertices x1, . . . , xk are leaves in T

Since we assumed that none of x1, . . . , xk is adjacent to y, some of the vertices
in {x1, . . . , xk} have to be adjacent to vertices of V \ S since the given graph G
is connected. The weight of the cut (S, V \ S) is α + β, where α is the sum of
weights of edges between y and V \S and β is the sum of weights of edges between
{x1, . . . , xk} and V \ S. Now consider the partition ({y}, V \ {y}) obtained by
moving the vertices x1, . . . , xk from the side of y to the side of V \ S. This cut
has weight only α, that is, the sum of weights of edges between y and V \ S,
since we assumed that there are no edges between {x1, . . . , xk} and y. Since all
edge weights are positive, this is a y-z cut whose weight is strictly smaller than
(S, V \ S), contradicting that (S, V \ S) is a minimum y-z cut.

Case (2). The vertex y is the root r. Since x1, . . . , xk are leaves in T , this
implies that the Gomory-Hu tree T is a tree of depth 1, the vertex y is the root
and y’s children x1, . . . , xk are all the remaining vertices in V \ {y}. If none of
the vertices of V \ {y} is adjacent to y in G, then y is an isolated vertex in G,
contradicting that G is connected. Hence there is at least one xi that is adjacent
to y in G. ��

On a Special Co-cycle Basis of Graphs 351

We now need to have a method to use the above lemma repeatedly and our
next lemma gives us such a method. Note that contracting an edge (u, v) im-
plies identifying the vertices u and v into a single vertex {u, v} and this vertex
{u, v} retains all edges incident on u, all edges incident on v, and self-loops are
discarded.
Lemma 4. Let Ti be a Gomory-Hu tree of the undirected connected graph Gi =
(Vi, Ei). Let (ui, vi) be an edge that is present in both Ti and Gi, where ui is a
leaf vertex in Ti and vi is ui’s neighbor in Ti (Lemma 3 tells us there is such a
ui). The tree Ti+1 obtained by contracting the edge (ui, vi) in Ti, is a Gomory-Hu
tree of the graph Gi+1 which is obtained by contracting the edge (ui, vi) in Gi.

Proof. The tree Ti is a Gomory-Hu tree of Gi and ui is a leaf in Ti and vi is
the (only) neighbor of ui in Ti. Thus except for the pair ui-vi, the edge (ui, vi)
cannot be an intermediate edge in the path in Ti between any other pair of
vertices. This means that there is a minimum x-y cut for every pair of vertices
x, y ∈ Vi \ {ui} that has both ui and vi on the same side of the cut. Thus
contracting the edge (ui, vi) in Ti preserves the minimum cuts between all the
pairs of vertices in Vi \ {ui}. Hence the edges of Ti+1 capture minimum x-y cuts
for all pairs of vertices in Vi \ {ui}.
The vertex set of Ti+1 is the same as the vertex set of the graph Gi+1. We claim
that each of the edges (x, y) in Ti+1 defines a minimum x-y cut in Gi+1. This is
because the value of a minimum x-y cut in Gi+1, for any two vertices in Gi+1,
is at least the value of the minimum x-y cut in Gi and we saw that the edges of
Ti+1 capture minimum x-y cuts in Gi for all pairs of vertices x, y in Vi \ {ui}.
Thus the edges of Ti+1 capture minimum x-y cuts for all pairs of vertices x, y in
Gi+1. Thus Ti+1 is a Gomory-Hu tree of the graph Gi+1. ��
Let G = (V, E) be the input graph. Lemmas 3 and 4 indicate an obvious strategy
to construct a weakly fundamental co-cycle basis of G. However we have to be
careful of the following: at any stage when we choose an edge ei in the Gomory-
Hu tree Ti of graph Gi, which is obtained by contracting several edges in G, it
is not enough for us to claim that ei ∈ Ti is a real edge in Gi. We need ei to be
a real edge in G. However this is easily done.

Each vertex of Gi is a subset of vertices of G. The vertex set V of G is
partitioned into disjoint subsets which form the vertices of Gi and (xi, yi) is an
edge in Gi only if there is an edge (ui, vi) in E between some vertex ui ∈ xi and
some vertex vi ∈ yi. Thus if (xi, yi) is a real edge in Ti, then there is an original
edge (ui, vi) in G between some ui ∈ xi and vi ∈ yi. The edge ei is always such
an original edge (ui, vi) in G. The partition in Ti created by deleting the edge
(xi, yi) from Ti is the partition corresponding to co-cycle Ci. Note that this co-
cycle Ci corresponds to some edge (a, b) in the original Gomory-Hu tree, where
the vertex a got identified with several other vertices to form the set xi and
similarly, b got identified with several other vertices to form the set yi. Initially,
(a, b) need not be a real edge, however after these identifications, due to some
ui ∈ xi and vi ∈ yi being adjacent in G, we get (xi, yi) as a real edge in Ti.

An efficient algorithm to compute a minimum weight weakly fundamental
co-cycle basis in a given directed/undirected graph now follows easily. If the

352 T. Kavitha

input graph is directed, then work with the underlying undirected graph, call
this G = (V, E), and we will finally interpret the cuts returned by the algorithm
as {−1, 0, 1}m vectors.

The algorithm constructs a Gomory-Hu tree T of G and initializes T1 to T .
Then the following steps are run for i = 1 to n−1 and the co-cycles X1, . . . , Xn−1
are returned.

1. Find an edge ei = (ui, vi) that is present in G which is between a leaf xi ∈ Ti

and its neighbor yi in Ti.
2. Let Xi be the cut in G defined by the partition of V caused by removing the

edge (xi, yi) from Ti.
3. Contract the edge (xi, yi) in Ti and call the resulting tree Ti+1.

Lemma 5, which is easy to show, proves the correctness of our algorithm.

Lemma 5. Let X1, . . . , Xn−1 be the cuts returned by the above algorithm. For
each 1 ≤ i ≤ n − 2 we have:

Xi \ (Xi+1 ∪ · · · ∪ Xn−1) �= ∅.

The bottleneck in the above algorithm is the time taken to build a Gomory-Hu
tree. We conclude the following theorem.

Theorem 3. The co-cycle basis corresponding to the n− 1 cuts of the Gomory-
Hu tree T of an undirected connected graph G = (V, E) on n vertices is weakly
fundamental. The ordered set {X1, . . . , Xn−1} of weakly fundamental co-cycles
corresponding to the n − 1 edges of T can be computed in time in time O(mn ·
min(

√
m, n2/3) log(n2/m) log U), where |E| = m and the edge weights are inte-

gers in the range [1, . . . , U].

4 Classes of Co-cycle Bases

Liebchen and Rizzi [18] studied various classes of cycle bases for general graphs.
We consider the analogous classes of co-cycle bases now and discuss the min-
imum co-cycle basis problems in these classes. Recall that we defined strictly
fundamental co-cycle bases in Section 1 and it is known that the problem of
computing a minimum weight strictly fundamental co-cycle basis is NP-hard [2].
So here we will consider the minimum co-cycle basis problem in the five classes:
directed co-cycle bases, undirected co-cycle bases, integral co-cycle bases, weakly
fundamental co-cycle bases, and totally unimodular co-cycle bases.

Let G = (V, E) be a directed graph on n vertices whose underlying undirected
graph is connected. We have already discussed directed co-cycle bases, undirected
co-cycle bases, and weakly fundamental co-cycle bases in G. It is easy to see that
any weakly fundamental co-cycle basis is also an undirected co-cycle basis and
any undirected co-cycle basis is also a directed co-cycle basis. We have seen so
far (Lemma 1, Theorem 2, and Theorem 3) that the co-cycle basis corresponding
to a Gomory-Hu tree of the underlying undirected graph answers the minimum

On a Special Co-cycle Basis of Graphs 353

co-cycle basis question in these three classes. Let us define the other two classes
below.
• integral co-cycle bases: a set of co-cycles C = {C1, . . . , Cn−1} of G is an inte-
gral co-cycle basis if any co-cycle X of G can be written as an integral linear
combination of the co-cycles in C.

It is easy to show that any weakly fundamental co-cycle basis is integral. Thus
the Gomory-Hu co-cycle basis is also a minimum weight integral co-cycle basis.
• totally unimodular co-cycle bases: a directed co-cycle basis C = {C1, . . . , Cn−1}
of G forms a totally unimodular co-cycle basis if the m × (n − 1) edge co-cycle
incidence matrix M of C is totally unimodular.

Let C1, . . . , Cn−1 be the co-cycles corresponding to the n − 1 edges of a
Gomory-Hu tree of the underlying undirected graph. Let (Si, V \ Si) be the
partition corresponding to the co-cycle Ci, for each i. It is easy to see that the
family of sets Si for i = 1, . . . , n − 1 is cross-free (a family F of subsets of V is
called cross-free if S, T ∈ F , then S ⊆ T , or T ⊆ S, or S ∩T = ∅, or S ∪T = V).
Given a directed graph G = (V, E) and a cross-free family of subsets F of the
vertex set V , the {−1, 0, 1} edge incidence matrix M of these subsets is totally
unimodular (see Schrijver [20], Section 19.3, Example 5). Hence the m × (n − 1)
edge co-cycle incidence matrix M of C1, . . . , Cn−1 is totally unimodular. Thus
the Gomory-Hu co-cycle basis is a totally unimodular co-cycle basis, in particu-
lar a minimum weight totally unimodular co-cycle basis. We can now conclude
the following theorem.

Theorem 4. Let G be a directed graph. The co-cycle basis C corresponding to a
Gomory-Hu tree of the underlying undirected graph of G is a minimum directed
co-cycle basis, a minimum undirected co-cycle basis, a minimum integral co-cycle
basis, a minimum weakly fundamental co-cycle basis, and a minimum totally
unimodular co-cycle basis of G.

Remark. The above theorem immediately implies results for certain minimum
cycle basis problems in planar graphs. It is known that X = {X1, . . . , Xd} is a
cycle basis in a planar graph G = (V, E) if and only if X ′ = {X ′

1, . . . , X
′
d} is a

co-cycle basis in the planar dual graph G′ = (F, E′) where for each i, 1 ≤ i ≤ d,
the vectors Xi ∈ {−1, 0, 1}|E| and X ′

i ∈ {−1, 0, 1}|E′| are the same. It is easy
to show that X is an integral/weakly fundamental/totally unimodular cycle
basis iff X ′ is an integral/weakly fundamental/totally unimodular co-cycle basis.
Thus Theorem 4 implies that the minimum integral/weakly fundamental/totally
unimodular cycle basis problems in planar graphs can be solved in polynomial
time. However, the polynomial time solvability of the minimum integral/weakly
fundamental cycle basis problems in planar graphs was already shown in [18]
using the results of Leydold and Stadler in [14].

Acknowledgments. I thank Alex Golynski for asking me about minimum co-cycle
bases and the referees for their helpful comments.

354 T. Kavitha

References

1. Berger, F., Gritzmann, P., de Vries, S.: Minimum Cycle Bases for Network Graphs.
Algorithmica 40(1), 51–62 (2004)

2. Bunke, F., Hamacher, H.W., Maffioli, F., Schwahn, A.M.: Minimum cut bases
in undirected networks Report in Wirtschaftsmathematik 56, Fachbereich Mathe-
matik, TU Kaiserslautern (2007)

3. de Pina, J.C.: Applications of Shortest Path Methods. PhD thesis, University of
Amsterdam, Netherlands (1995)

4. Elkin, M., Liebchen, C., Rizzi, R.: New length bounds for cycle bases. Information
Processing Letters, 104(5): 186-193 (2007)

5. Goldberg, A.V., Rao, S.: Beyond the flow decomposition barrier. Journal of the
ACM, 45(5): 783-797 (1998)

6. Golynski, A., Horton, J.D.: A polynomial time algorithm to find the minimum
cycle basis of a regular matroid. In: Penttonen, M., Schmidt, E.M. (eds.) SWAT
2002. LNCS, vol. 2368, pp. 200–209. Springer, Heidelberg (2002)

7. Gomory, R., Hu, T.C.: Multi-terminal network flows. SIAM Journal on Comput-
ing 9, 551–570 (1961)

8. Gusfield, D.: Very simple methods for all pairs network flow analysis. SIAM Journal
on Computing 19(1), 143–155 (1990)

9. Hariharan, R., Kavitha, T., Mehlhorn, K.: A Faster Deterministic Algorithm for
Minimum Cycle Bases in Directed Graphs. In: Bugliesi, M., Preneel, B., Sassone,
V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 273–284. Springer, Hei-
delberg (2006)

10. Horton, J.D.: A polynomial-time algorithm to find a shortest cycle basis of a graph.
SIAM Journal on Computing 16, 359–366 (1987)

11. Kavitha, T.: An Õ(m2n) Randomized Algorithm to compute a Minimum Cycle Basis
ofaDirectedGraph. In:Caires,L., Italiano,G.F.,Monteiro,L.,Palamidessi,C.,Yung,
M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 273–284. Springer, Heidelberg (2005)

12. Kavitha, T., Mehlhorn, K.: Algorithms to compute Minimum Cycle Bases in Di-
rected Graphs. Theory of Computing Systems 40, 485–505 (2007)

13. Kavitha, T., Mehlhorn, K., Michail, D., Paluch, K.: A faster algorithm for Minimum
Cycle Bases of graphs. In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.)
ICALP 2004. LNCS, vol. 3142, pp. 846–857. Springer, Heidelberg (2004)

14. Leydold, J., Stadler, P.F.: Minimum cycle bases of outerplanar graphs. Electronic
Journal of Combinatorics 5 (1998)

15. Liebchen, C.: Finding Short Integral Cycle Bases for Cyclic Timetabling. In: Di
Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 715–726. Springer,
Heidelberg (2003)

16. Liebchen, C., Peeters, L.: On Cyclic Timetabling and Cycles in Graphs. Technical
Report 761/2002, TU Berlin (2002)

17. Liebchen, C., Rizzi, R.: A Greedy Approach to compute a Minimum Cycle Basis
of a Directed Graph. Information Processing Letters 94(3), 107–112 (2005)

18. Liebchen, C., Rizzi, R.: Classes of Cycle Bases. Discrete Applied Mathemat-
ics 155(3), 337–355 (2007)

19. Rizzi, R.: Minimum Weakly Fundamental Cycle Bases are hard to find. Algorith-
mica (published online October 2007)

20. Schrijver, A.: Theory of Linear and Integer Programming, 2nd edn. Wiley, Chich-
ester (1998)

21. Whitney, H.: On the abstract properties of linear dependence. American Journal
of Mathematics 57, 509–533 (1935)

A Simple Linear Time Algorithm for the
Isomorphism Problem on Proper Circular-Arc

Graphs

Min Chih Lin1,�, Francisco J. Soulignac1,��,
and Jayme L. Szwarcfiter2,� � �

1 Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales,
Departamento de Computación, Buenos Aires, Argentina

2 Universidade Federal do Rio de Janeiro, Instituto de Matemática, NCE and
COPPE, Caixa Postal 2324, 20001-970 Rio de Janeiro, RJ, Brasil

{oscarlin,fsoulign}@dc.uba.ar, jayme@nce.ufrj.br

Abstract. A circular-arc model M = (C, A) is a circle C together with
a collection A of arcs of C. If no arc is contained in any other then M
is a proper circular-arc model, and if some point of C is not covered
by any arc then M is an interval model. A (proper) (interval) circular-
arc graph is the intersection graph of a (proper) (interval) circular-arc
model. Circular-arc graphs and their subclasses have been the object of
a great deal of attention in the literature. Linear time recognition algo-
rithms have been described both for the general class and for some of
its subclasses. For the isomorphism problem, there exists a polynomial
time algorithm for the general case, and a linear time algorithm for in-
terval graphs. In this work we develop a linear time algorithm for the
isomorphism problem in proper circular-arc graphs, based on uniquely
encoding a proper circular-arc model. Our method relies on results about
uniqueness of certain PCA models, developed by Deng, Hell and Huang
in [6]. The algorithm is easy to code and uses only basic tools available
in almost every programming language.

Keywords: isomorphism problems, proper circular-arc graphs, proper
circular-arc canonization.

1 Introduction

Interval graphs, circular-arc graphs and its subclasses are interesting families
of graphs that have been receiving much attention recently. Proper interval

� Partially supported by UBACyT Grants X184 and X212 and by PICT ANPCyT
Grant 1562.

�� Partially supported by UBACyT Grant X184, PICT ANPCyT Grant 1562 and by
a grant of the YPF Foundation.

� � � Partially supported by the Conselho Nacional de Desenvolvimento Cient́ıfico e
Tecnológico, CNPq, and Fundação de Amparo à Pesquisa do Estado do Rio de
Janeiro, FAPERJ, Brasil.

J. Gudmundsson (Ed.): SWAT 2008, LNCS 5124, pp. 355–366, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

356 M.C. Lin, F.J. Soulignac, and J.L. Szwarcfiter

and proper circular-arc graphs are two of the most studied subclasses of in-
terval and circular-arc graphs [4,8,21]. Booth and Lueker found the first linear
time algorithm for recognizing interval graphs using a data structure called PQ-
trees [3]. Since then a lot of effort has been put into simplifying this algorithm
and avoiding the use of PQ-trees [5,9,10,14]. For circular-arc graphs there is also
a great amount of work focused into finding a simple linear time recognition
algorithm [12]. The first linear time algorithm is due to McConnell [18] and is
not simple to implement.

Algorithms for proper circular-arc recognition in linear time are also known,
and they were always much easier to implement than those for the general
case [6,13]. Deng, Hell and Huang exploit their proper interval graph recogni-
tion algorithm to develop a linear time algorithm for proper circular-arc graphs,
based on local tournaments [6]. They also described results about the uniqueness
of connected proper circular-arc graphs and proper circular-arc models, that we
use to build our isomorphism testing algorithm.

The isomorphism problem is a hard to solve NP problem, although it is not
known whether it is NP-hard. Nevertheless, this problem is known to be poly-
nomial or even linear for several classes of graphs [7]. For interval graphs, la-
beled PQ-trees can be used to test for isomorphism in linear time [17], while for
circular-arc graph the best known algorithm runs in O(mn) time [11].

In this work we present a simple algorithm for the isomorphism problem re-
stricted to proper circular-arc graphs. This algorithm runs in O(n) time, when a
proper circular-arc model is given. The objective is to uniquely encode a “canon-
ical” proper circular-arc model of the graph. This canonical model is obtained
by rotating, reflecting and sorting each (co-)component of the input model.

Let G = (V (G), E(G)) be a graph, n = |V (G)| and m = |E(G)|. Denote
by G the complement of G. Graph G is co-connected when G is connected.
A (co-)component is a maximal (co-)connected subgraph of G. For v ∈ V (G),
denote by N(v) the set of vertices adjacent to v, and write N [v] = N(v) ∪ {v}
and N(v) = V (G) \ N [v]. A vertex v of G is universal if N [v] = V (G).

A circular-arc (CA) model M is a pair (C, A), where C is a circle and A is a
collection of arcs of C. When traversing the circle C, we will always choose the
clockwise direction, unless explicitly stated. If s, t are points of C, write (s, t)
to mean the arc of C defined by traversing the circle from s to t. Call s, t the
extremes of (s, t), while s is the start point and t the end point of the arc. The
extremes of A are those of all arcs A ∈ A. The reverse model of M is denoted
by M−1, i.e. M−1 is the reflection of M with respect to some chord of the
circle. Unless otherwise stated, we always assume that A = {A1, . . . , An} where
Ai = (si, ti). Moreover, in a traversal of C the order in which the start points
appear is s1, . . . , sn. The set si, . . . , sj (ti, . . . , tj), 1 ≤ i < j ≤ n, is called an
s-range (t-range) with ∅ being the empty s-range (t-range). Similarly, a set of
contiguous extremes is an st-range, and Ai, . . . , Aj is a range. Without loss of
generality, all arcs of C are considered as open arcs, no two extremes of distinct
arcs of A coincide and no single arc entirely covers C.

A Simple Linear Time Algorithm 357

When no arc of A contains any other, (C, A) is a proper circular-arc (PCA)
model. A (proper) interval model is a (proper) CA model where

⋃
A∈A A �= C.

A CA (PCA) graph is the intersection graph of a CA (PCA) model. A (proper)
interval graph is the intersection graph of a (proper) interval model. We may
use the same terminology used for vertices when talking about arcs (intervals).
For example, we say an arc in a CA model is universal when its corresponding
vertex in the intersection graph is universal. Similarly, a connected model is one
whose intersection graph is connected.

Let Σ be an alphabet. A string S (over Σ) is a sequence S(1), . . . , S(|S|)
where |S| is the length of S. The set {1, . . . , |S|} is the set of positions of S. For
positions i < j we denote by S[i; j] the substring S(i), . . . , S(j). If < is a total
order over Σ, then <lex denotes the lexicographical order of strings, i.e. S <lex T
if and only if there exists k < |T | such that S(i) = T (i) for all 1 ≤ i ≤ k and
either k = |S| or S(k + 1) < T (k + 1). The rotation S � i is the string S[i; |S|]
followed by string S[1; i − 1]. Position i is canonical if S � i ≤lex S � j for
every 1 ≤ j ≤ |S|. Observe that since < is a total order, then S � i = S � j
for every pair i, j of canonical positions.

2 PCA Representations

Let M = (C, A) be a PCA model of a graph G and fix some arc Ai = (si, ti) ∈ A.
The arc representation Ri(M) of M is a string obtained by transversing C from
si and writing the character ‘aj+1’ (‘bj+1’) when si+j (ti+j) is reached. Thus, the
j-th start (end) point that appears after si (ti) is designated with the character
‘aj+1’ (‘bj+1’). Observe that we consider the order s1, . . . , sn to be fixed for M,
but in a computer program we do not have access to this order. What we have
is an arc representation that allows us to gain access to that order.

It is clear that there are at most n different arc representations of M, one
for each arc Ai. Algorithms on (proper) CA graphs usually perform a linear
time preprocessing on its input, given as an arc representation. For instance, by
simply transversing the representation it is possible to build a data structure
where ti can be found in O(1) time, given si.

Arc representations have a lot of redundant information for encoding PCA
models. Fix some arc Ai ∈ M. The extreme sequence (of M) from si is the
string Ei(M) that is obtained by replacing ‘aj’ (‘bj’) with ‘a’ (‘b’) in Ri(M) for
every 1 ≤ j ≤ n. In other words, Ei(M) is the string obtained by transversing
C from si and writing the character ‘a’ (‘b’) when a start point (an end-point)
is reached. The mark point (of M) from si is the position ti(M) where ‘b1’
appears in Ri(M). Define the function r, such that r(Ei(M), ti(M)) is the
string obtained from Ei(M) by replacing the j-th character ‘a’ with ‘aj’ and the
j-th character ‘b’ that appears from position ti(M) with character ‘bj’.

Remark 1. Function r is a bijection between r(Ei(M), ti(M)) and Ri(M).
Moreover, r and r−1 can both be computed in O(n) time.

Remark 2. For 1 ≤ i, j ≤ n, Ri(M) = Rj(M) if and only if Ei(M) = Ej(M)
and ti(M) = tj(M).

358 M.C. Lin, F.J. Soulignac, and J.L. Szwarcfiter

From now on we may not write the superscripts if we want to refer to any
representation of M. Also, when M is understood, we do not write it explicitly
as a parameter. Let M be a PCA model. Extreme representation (E, t) uses
only O(n) bits while R uses O(n log n) bits. However, some operations, as taking
the end point of some arc when the start point is given, are not (a-priori) fast
enough when using (E, t). This is why in this work and others (see e.g. [1,16])
arc representations are taken as the input of the algorithms. When we say that
these algorithms run in O(n) time when an arc representation is given what we
mean is that they run in O(n) time where n is the length of codification R.
But if we instead use (E, t) as input, we have to build R first, so the algorithms
take O(n log n) time where n is the length of (E, t). With this in mind, when
we say that M is given as input, we mean that an arc representation (or some
linear-time preprocessing of it) is given as input.

Let M, N be two PCA models with n arcs. We write M =M N (M is
equal to N) if Ri(M) = Rj(N) for some 1 ≤ i, j ≤ n. This is what one would
intuitively assume as equality of models, i.e., do they have the extremes in the
same order? Clearly, if two PCA models are equal then their intersection graphs
are isomorphic, but the converse is not always true. Testing if two PCA models
are equal can be trivially done in O(n2) time by fixing some 1 ≤ i ≤ n and then
testing whether Ri(M) = Rj(N) for every 1 ≤ j ≤ n. However this can also be
verified in O(n) time.

3 Basic Algorithms

In this section we describe linear-time algorithms that we use several times in
the paper. Below is the list of problems we need to solve throughout the paper:

– Is a PCA graph co-bipartite? If so, give a unique co-bipartition of its co-
components.

– Compute the components of a PCA graph.
– Is the intersection graph of a PCA model an interval graph? If so, output a

proper interval model [15].
– Find all canonical positions of a circular string [2,20].

In the next subsections, we show how to solve each of the above problems and
discuss the complexities of the corresponding algorithms. The proposed solutions
are easy to implement. Furthermore, we believe they are of interest on their own.

3.1 Co-bipartitions of the Co-components of a PCA Graph

The first problem we need to solve is to determine whether a PCA graph is
co-bipartite and, if so, output the co-bipartitions of its co-components. The fol-
lowing algorithm determines the co-component of a graph G, containing a given
vertex v ∈ V (G).

Algorithm 1. Co-component containing v in a graph G

A Simple Linear Time Algorithm 359

1. Unmark all vertices and define V 0
1 := {v}, V 0

2 := ∅ and k = 0.
2. While there exists an unmarked vertex w ∈ V k

1 ∪ V k
2 , perform the following

operation. Let i, j ∈ {1, 2}, such that v ∈ V k
i and j �= i. Mark v and compute

V k+1
i := V k

i , V k+1
j := V k

j ∪ N(w) and k := k + 1.

3. Output V1 := V k
1 , V2 := V k

2

Lemma 1. V1 ∪ V2 is the co-component containing v in G. Moreover, V1, V2 is
a co-bipartition if and only if V1 ∩ V2 = ∅.

For the general case this algorithm can be implemented in O(n2) time. Next, we
consider that G is a PCA graph given by a PCA model M. Define a subset of
V (G) to be a range whenever their corresponding arcs in M form a range. The
following lemma is relevant to our purposes.

Lemma 2. At every step k, V k
1 and V k

2 are ranges.

Proof. Clearly V 0
1 and V 0

2 are ranges. Now consider the k-th iteration and let
i, j and w ∈ V k

i be as in Step 2. Since G is a PCA graph, N(w) is a range.
If N(w) ∩ V k

j = ∅, then w = v and k = 0, thus V 1
j = N(w) corresponds to a

range. If N(w) ∩ V k
j �= ∅ then it follows that k > 0 and V k

j is a range by the
inductive hypothesis. Hence N(w)∪V k

j is also a range, because the union of two
intersecting ranges is a range. 	

Now we consider the complexity of the algorithm when a PCA ordering of the
vertices is given. Let i, j and k be as in Step 2, Vi = V k

i and Vj = V k
j . By Lemma

2, Vi is a range. The invariant we use is that Vi is partitioned into three ranges
Li, Ci and Ri, where Li, Ci, and Ri appear in this order. The set Vj has an
analogous partition Lj , Cj and Rj . The set of marked vertices of Vi is Ci, while
Li ∪ Ri is the set of unmarked vertices. To maintain the invariant, vertex w can
be selected from Vi if and only if Ci ∪{w} is also a range, thus there are at most
four unmarked vertices that could be selected at each step. Suppose w is chosen
from Li. For the next iteration we have to modify each of the ranges to reflect
the inclusion of N(w).

For the implementation, each range in the algorithm can be represented by
a pair of integers, the low index and the high index, corresponding to the first
and the last vertices of the range. Before applying the algorithm, range N(v)
can be found for every vertex v in O(n) time. Hence, Vj ∪ N(w) in Step 2 can
be computed in constant time. For this, the low index of Lj is updated to the
smallest of the low indices of Lj and N(w). Similarly, for the high index of Rj

we would choose the greatest of the two high indices. Finally, the mark of w is
done by decreasing by one the high index of Li and increasing by one the low
index of Ci when w ∈ Li. The case when w ∈ Ri is analogous. With such an
implementation, each iteration of Step 2 takes O(1) time, thus each component
C can be found in O(|C|) time. That is in overall O(n) time the algorithm finds
the co-bipartitions of all co-components.

360 M.C. Lin, F.J. Soulignac, and J.L. Szwarcfiter

3.2 Components of a PCA Graph

The second problem we solve is how to find the components of a PCA graph,
when the input is a PCA model M. A leftmost arc is an arc whose start point
is not contained in any arc. When the graph is not connected, every model has
at least two leftmost arcs. It is easy to find every leftmost arc in O(n) time
by traversing twice the circle. In the first traversal mark Ai when si is crossed,
and then unmark Ai when ti is crossed. In the second traversal, the start points
having no marks when crossed correspond to leftmost arcs. Conversely, the start
points that are crossed when there are marks are not from leftmost arcs. Now, if
Ai and Aj are leftmost arcs with no leftmost arc between them then Ai, . . . , Aj−1
is the range corresponding to the component of Ai. To sum up, the components
of a PCA graph can be found in O(n) time.

3.3 PCA Representation of Interval Graphs [15]

The third problem is to determine whether the intersection graph G of a PCA
model M = (C, A) is an interval graph. If affirmative, then we need to construct
a proper interval model. We can check if M is an interval model in O(n) time by
checking if it contains any leftmost arc. In this case the output is M. But if G
is an interval graph and M is not an interval model, we can transform it into an
interval model in O(n) time, employing the algorithm described in [15]. There,
it is shown that M must have three arcs covering the circle. Moreover, one of
these arcs, say (s, t), must be universal. Then M′ = (C, (A \ {(s, t)}) ∪ {(t, s)})
is a proper interval model of G.

3.4 Minimum Circular String [2,20]

Finally we need to find the minimum of a circular string. The minimum circular
string problem is to find every canonical position of S. For this it is enough to
find one canonical position i and a period w such that i + kw is canonical for
every k ≥ 0. This problem can be solved in O(n) comparisons over the alphabet
Σ [2,20].

4 Canonical Representation of PCA Models

In this section we describe how to canonize a representation of a PCA model, so
that equality of models can be tested by equality of representations. What we
want is a function C from models to arc representations, so that C(M) = C(N)
if and only if M =M N . The idea is to take the “minimum” arc representation as
the canonical representation. Fix a PCA model M and let ‘a’ < ‘b’. Define ≺ as
the order over the arcs, where Ai ≺ Aj if and only if Ei <lex Ej . Define also, <R

as the total order over arc representations where Ri(M) <R Rj(N) if and only
if either Ei(M) <lex Ej(N) or Ei(M) = Ej(N) and ti(M) < tj(N). Arc Ai is
canonical if Ai is minimum with respect to ≺ and Ri is a canonical representation
when Ri is minimum with respect to <R. Since Ri can be uniquely determined

A Simple Linear Time Algorithm 361

from (Ei, ti) then <R is a total order and therefore the canonical representation
of M is unique. That is, if Ri and Rj are canonical representations then Ri = Rj .

Proposition 1. Let M be a PCA model and 1 ≤ i, i + j ≤ n. Then Ei+j =
Ei � j and tj = bj − aj + 1, where aj (bj) is the position of the j-th ‘a’ (‘b’) in
Ri.

Theorem 1. Let M be a PCA model. Then Ai is a canonical arc if and only if
Ri is a canonical representation of M.

Proof. If Ai is not a canonical arc, then there exists Aj ≺ Ai. Consequently
Ej <lex Ei which implies that Rj <R Ri, so Ri is not a canonical representation.

Now suppose that Ai is a canonical arc, and let Ri+j be a canonical represen-
tation of M. Then both Ei and Ei+j are minimum sequences with respect to
<lex, so Ei = Ei+j . By Remark 2, it is enough to see that ti = ti+j . Let ak be
the position of ‘ak’ in Ri and bk be the position of ‘bk’ in Ri for every 1 ≤ k ≤ n.
By Proposition 1, Ei+j = Ei � aj and ti+j = bj − aj + 1.

Since Ei = Ei+j = Ei � aj and there is the same quantity of symbols ‘a’
and ‘b’ in Ei, then in Ei[1 + k; aj + k − 1] there is also the same quantity of ‘a’
and ‘b’ for every 1 ≤ k ≤ 2n − aj + 1. Moreover, this quantity must be j − 1
because in Ei[1; aj − 1] there are j − 1 characters ‘a’. Then, in E[b1; aj + b1 − 2]
there are j − 1 characters ‘b’ and Ei(aj + b1 − 1) is also a ‘b’. Consequently
bj = aj + b1 − 1, because bj is the position of the j-th character ‘b’ after b1.
Hence ti+j = bj − aj + 1 = b1 = ti as required. 	

From now on, we denote by C(M) the unique canonical representation of M.
The algorithm we present below finds C(M) for a PCA model M using some
arc representation Ri as input.

Algorithm 2. Canonical representation of model M
1. Compute Ei and ti.
2. Find some canonical position ac of Ei that corresponds to some character

‘ac’ in Ri, and let bc be the position of character ‘bc’ in Ri.
3. Output r(Ei � ac, ac − bc + 1).

The algorithm finds C(M) by Remark 1, Proposition 1 and Theorem 1. With
respect to its time complexity, Step 1 can be done in O(n) time by Remark 1,
Step 2 takes O(n) time as shown in Subsection 3.4, and Step 3 takes O(n) time
by Remark 1. Thus the time complexity is O(n).

In the next section we show how to find a unique canonical model M(G) of
a PCA graph G, so that C(M(G)) is the unique canonical representation of a
PCA graph.

5 Canonical Models of PCA Graphs

We divide the canonization of PCA graphs in three non-disjoint cases. These
are the connected PCA graphs which are co-connected or non co-bipartite, the
proper interval graphs, and the co-bipartite PCA graphs.

362 M.C. Lin, F.J. Soulignac, and J.L. Szwarcfiter

In this section we need to sort models according to their canonical represen-
tations. Define <M as the total order between models where M1 <M M2 if and
only if C(M1) <R C(M2). Note that M1 =M M2 if and only if M1 �<M M2
and M2 �<M M1 because C(M1) is unique. Although <M corresponds to a
natural way to compare models, it does not behave so well for the sorting. Nev-
ertheless, all the information in C(M) can be encoded nicely into a somehow
compressed string by combining E(M) and t(M). Let (E(M), t(M)) be the
extreme representation r−1(C(M)) for a model M. Define S(M) as the string
that is obtained from E(M) by replacing the character ‘b’ at position t(M) with
a character ‘m’. Extend < so that ‘a’ < ‘m’ < ‘b’.

Proposition 2. M1 <M M2 if and only if S(M1) <lex S(M2).

Now, if {M1, . . . , Mk} is a multiset of models, we can lexicographically sort it
in O(

∑k
i=1 |Mi|) time using the well known most significant digit (MSD) radix

sort algorithm.

5.1 Connected PCA Graphs Which Are Co-connected or Non
Co-bipartite

We start first with the connected PCA graphs which are co-connected or non
co-bipartite. The motivation for considering this case is the following theorem.

Theorem 2 ([6]). Connected PCA graphs which are co-connected or non co-
bipartite have at most two non-equal models, one being the reverse of the other.

Let M be a PCA model of a connected PCA graph which is co-connected or
non co-bipartite G. Define M(G) as the minimum of M and M−1 with respect
to <M ; M(G) can be computed in O(n) time.

Corollary 1. Let G1, G2 be two connected PCA graphs which are co-connected
or non co-bipartite. Then G1 is isomorphic to G2 if and only if M(G1) =M

M(G2)

5.2 Proper Interval Graphs

The second class is that of proper interval graphs. As for PCA graphs, we employ
a basic theorem.

Theorem 3 ([6,19]). Connected proper interval graphs have at most two non-
equal proper interval models, one being the reverse of the other.

Extend M(G) to connected proper interval graphs, i.e. if M is a proper interval
model of a connected graph G, define M(G) as the minimum between M and
M−1.

Corollary 2. Let G1, G2 be two connected proper interval graphs. Then G1 is
isomorphic to G2 if and only if M(G1) =M M(G2).

A Simple Linear Time Algorithm 363

Now, let G be a proper interval graph and G1, . . . , Gk be its components, where
M(Gi) ≤M M(Gi+1). Extend M(G) to the model where the circle is parti-
tioned into k consecutive segments S1, . . . , Sk and M(Gi) is contained in the
i-th segment that appears in a traversal of the circle (see Figure 5.2). Clearly,
M(G) is a proper interval model of G and is uniquely defined.

. . .

M(G1) M(G2) M(Gk) M(G)

Fig. 1. The figures, except the last one, show the k segments whose corresponding
models lie in M(G), whereas the last figure depicts M(G) itself

Theorem 4. Let G1, G2 be two proper interval graphs. Then G1 is isomorphic
to G2 if and only if M(G1) =M M(G2).

We describe below the algorithm to find M(G) for proper interval graphs when
the input is (any arc representation of) M.

Algorithm 3. Canonical model of a proper interval graph G.

1. Let M be some proper interval model of G
2. Find the components M1, . . . , Mk of M.
3. Define M(i) as the minimum of Mi and M−1

i for 1 ≤ i ≤ k.
4. Sort the multiset {M(1), . . . , M(k)} so that M(i) ≤M M(i + 1) for every

1 ≤ i < k.
5. Output the model with k segments where M(i) is contained in the i-th

segment.

We now consider the complexity of the algorithm when M is given as in Step
1. Step 2 can be solved in O(n) time as in Subsection 3.2, where we obtain a
range representing each component. Step 3 is done by reversing Mi and then
comparing Mi and M−1

i . Both the reversal and the comparison can be computed
in O(|Mi|) for 1 ≤ i ≤ k. Step 4 can done as explained at the beginning of this
section in O(n) time. For Step 5 traverse the range corresponding to Mi that
was obtained in Step 1 and insert it into the new circle. The algorithm then runs
in O(n) time.

5.3 Canonization of Co-bipartite PCA Graphs

Finally we consider co-bipartite PCA graphs. The algorithm for this class of
graphs is quite similar in its concept to the one for proper interval graphs. For
co-connected PCA graphs M(G) has already been defined in Subsection 5.1.

364 M.C. Lin, F.J. Soulignac, and J.L. Szwarcfiter

Consider a co-connected co-bipartite PCA graph G and denote by A1, A2
the co-bipartition of M(G). By Lemma 2, both A1 and A2 are ranges. Assume
w.l.o.g. that A1 is the first arc of range A1 and Ai is the first arc of range A2.
Moreover, assume that s1 is represented by ‘a1’ in C(M(G)). In the segment
(si−1, t1) there is no start point of arcs in A2, because otherwise every arc of A1
would contain these start points. Consequently, (si−1, t1) is a segment contained
by all the arcs of A1 that is not crossed by any arcs of A2. Moreover, (si−1, t1)
is the unique maximal segment in these conditions. The same argument can be
applied interchanging A1 with A2. But in the case where A2 is empty and A1
has only one universal arc A1, then (t1, s1) is the required segment. This means
that X = {ti, . . . , tn} ∪ {s1, . . . , si−1} and Y = {t1, . . . , ti−1} ∪ {si, . . . , sn} are
two st-ranges that define M(G) (see Figure 2(a)). We call these two st-ranges
as co-bipartition ranges, where X is the low co-bipartition range and Y is the
high co-bipartition range. Observe that low and high are well defined for M(G),
because X contains ‘a1’ in C(M(G)).

Now we show a unique way to accommodate the co-components when the
PCA graph is not co-connected (see also [6]). This is rather similar to what we
did in the previous section. Let G be a non interval co-bipartite PCA graph and
G1, . . . , Gk be its co-components where M(Gi) ≤M M(Gi+1) for 1 ≤ i ≤ k.
Let Xi, Yi be the respective low and high co-bipartitions ranges of M(Gi) for
1 ≤ i < k. Define M(G) as the model where the circle is partitioned into 2k
consecutive segments. The i-th segment in a traversal of the circle contains Xi

and the i + k segment contains Yi for 1 ≤ i ≤ k (see Figure 2). It is not hard
to see that M(G) is a PCA model of G, because the model induced by the arcs
in segments i and i + k is precisely M(Gi) and every arc with one extreme in
segment i intersects every arc with one extreme in segment j for 1 ≤ i < j ≤ k.

. . .

(a) M(H) (b) M(G1) (c) M(Gk) (d) M(G)

Fig. 2. Figure (a) shows the high co-bipartition range {ti, . . . , tn} ∪ {s1, . . . , si−1} and
the low co-bipartition range {t1, . . . , ti−1} ∪ {si, . . . , sn} of a co-connected co-bipartite
graph. Figures (b) and (c) show the co-bipartition ranges of the co-components of G
in their corresponding segments. In (d) the whole picture of M(G) is shown.

Theorem 5. Let G1, G2 be two non interval co-bipartite PCA graphs. Then G1
is isomorphic to G2 if and only if M(G1) =M M(G2).

The algorithm to find a canonical representation of a co-bipartite PCA graph is
very similar to the one for a proper interval graph. The two main changes are
that components are replaced by co-components in Steps 2-5, and that the circle

A Simple Linear Time Algorithm 365

is partitioned into 2k segments, where segments from 1 to k contain the low co-
bipartition ranges and segments from k+1 to 2k contain the high co-bipartition
ranges (Step 6). Since both the co-components and the co-bipartition ranges can
be found in O(n) time, as in Section 3.1, the whole algorithm for this case takes
O(n) time.

6 Putting It All Together

Function M as defined in the previous section maps every PCA graph to a PCA
model. However, it should be mentioned that if G is both proper interval and co-
bipartite, then M(G) is computed as in Subsection 5.2. The complete algorithm
is depicted below.

Algorithm 4. Canonical representation of a PCA graph G

1. If G is an interval graph, then compute M(G) as in Subsection 5.2.
2. Else if G is a co-bipartite model then compute M(G) as in Subsection 5.3.
3. Otherwise, compute M(G) as in Subsection 5.1.

Finally we discuss the complexity of the entire algorithm. The input of the
algorithm is a PCA model as in Step 1. This model is encoded as an arc repre-
sentation, which is obtained as the output of the recognition algorithm for PCA
graphs [6]. We can check if G is an interval graph as in Subsection 3.3 in O(n)
time. If so, we obtain a proper interval model that we can use in Step 1 to find
M(G) in O(n) time. The rest of the algorithm takes O(n) time as explained in
the previous section. When the input is G instead of M, the algorithm takes
O(n + m) time by first computing a PCA model [6].

Theorem 6. Let G and H be two PCA graphs. Then the following are equiva-
lent:

1. G and H are isomorphic,
2. M(G) =M M(H),
3. C(M(G)) = C(M(G)).

Proof. It is a direct consequence of Corollary 1 and Theorems 4 and 5, and the
fact that M is a well defined function. 	

Corollary 3. The isomorphism problem for PCA graphs can be solved in O(n)
time when a PCA models model is given as input, or in O(n + m) time when
the input is a graph given by its sets of vertices and edges.

References

1. Bhattacharya, B., Hell, P., Huang, J.: A linear algorithm for maximum weight
cliques in proper circular arc graphs. SIAM J. Discrete Math. 9(2), 274–289 (1996)

2. Booth, K.S.: Lexicographically least circular substrings. Inform. Process. Lett. 10(4-
5), 240–242 (1980)

3. Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, inter-
val graphs, and graph planarity using PQ-tree algorithms. J. Comput. System
Sci. 13(3), 335–379 (1976)

366 M.C. Lin, F.J. Soulignac, and J.L. Szwarcfiter

4. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph classes: a survey. SIAM, Philadel-
phia (1999)

5. Corneil, D.G., Olariu, S., Stewart, L.: The ultimate interval graph recognition
algorithm (extended abstract). In: 9th Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 175–180. ACM, New York (1998)

6. Deng, X., Hell, P., Huang, J.: Linear-time representation algorithms for proper
circular-arc graphs and proper interval graphs. SIAM J. Comput. 25(2), 390–403
(1996)

7. Garey, M.R., Johnson, D.S.: Computers and intractability. W. H. Freeman and
Co., San Francisco (1979)

8. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs, 2nd edn. North–
Holland Publishing Co, Amsterdam (2004)

9. Habib, M., McConnell, R.M., Paul, C., Viennot, L.: Lex-BFS and partition refine-
ment, with applications to transitive orientation, interval graph recognition and
consecutive ones testing. Theoret. Comput. Sci. 234(1-2), 59–84 (2000)

10. Hsu, W.: A simple test for interval graphs. In: Mayr, E.W. (ed.) WG 1992. LNCS,
vol. 657, pp. 11–16. Springer, Heidelberg (1993)

11. Hsu, W.: O(m.n) algorithms for the recognition and isomorphism problems on
circular-arc graphs. SIAM J. Comput. 24(3), 411–439 (1995)

12. Kaplan, H., Nussbaum, Y.: A simpler linear-time recognition of circular-arc graphs.
In: Arge, L., Freivalds, R. (eds.) SWAT 2006. LNCS, vol. 4059, pp. 41–52. Springer,
Heidelberg (2006)

13. Kaplan, H., Nussbaum, Y.: Certifying algorithms for recognizing proper circular-
arc graphs and unit circular-arc graphs. In: Fomin, F.V. (ed.) WG 2006. LNCS,
vol. 4271, pp. 289–300. Springer, Heidelberg (2006)

14. Korte, N., Möhring, R.H.: An incremental linear-time algorithm for recognizing
interval graphs. SIAM J. Comput. 18(1), 68–81 (1989)

15. Lin, M.C., Soulignac, F.J., Szwarcfiter, J.L.: Proper Helly circular-arc graphs. In:
Brandstädt, A., Kratsch, D., Müller, H. (eds.) WG 2007. LNCS, pp. 248–257.
Springer, Heidelberg (2007)

16. Lin, M.C., Szwarcfiter, J.L.: Unit Circular-Arc Graph Representations and Feasible
Circulations. SIAM J. Discrete Math. 22(1), 409–423 (2008)

17. Lueker, G.S., Booth, K.S.: A linear time algorithm for deciding interval graph
isomorphism. J. Assoc. Comput. Mach. 26(2), 183–195 (1979)

18. McConnell, R.M.: Linear-time recognition of circular-arc graphs. Algorith-
mica 37(2), 93–147 (2003)

19. Roberts, F.S.: Indifference graphs. In: Proof Techniques in Graph Theory (2nd
Ann Arbor Graph Theory Conf.), pp. 139–146. Academic Press, New York (1969)

20. Shiloach, Y.: Fast canonization of circular strings. J. Algorithms 2(2), 107–121
(1981)

21. Spinrad, J.P.: Efficient graph representations. American Mathematical Society,
Providence (2003)

Spanners of Additively Weighted Point Sets�

Prosenjit Bose, Paz Carmi, and Mathieu Couture

School of Computer Science, Carleton University, Herzberg Building
1125 Colonel By Drive, Ottawa, Ontario, Canada

Abstract. We study the problem of computing geometric spanners for
(additively) weighted point sets. A weighted point set is a set of pairs
(p, r) where p is a point in the plane and r is a real number. The distance
between two points (pi, ri) and (pj , rj) is defined as |pipj | − ri − rj . We
show that in the case where all ri are positive numbers and |pipj | ≥ ri+rj

for all i, j (in which case the points can be seen as non-intersecting disks
in the plane), a variant of the Yao graph is a (1 + ε)-spanner that has
a linear number of edges. We also show that the Additively Weighted
Delaunay graph (the face-dual of the Additively Weighted Voronoi dia-
gram) has constant spanning ratio. The straight line embedding of the
Additively Weighted Delaunay graph may not be a plane graph. Given
the Additively Weighted Delaunay graph, we show how to compute a
plane embedding with a constant spanning ratio in O(n log n) time.1

1 Introduction

Let G be a complete weighted graph where edges have positive weight. Given
two vertices u, v of G, we denote by δG(u, v) the length of a shortest path in G
between u and v. A spanning subgraph H of G is a t-spanner of G if δH(u, v) ≤
tδG(u, v) for all pair of vertices u and v. The smallest t having this property
is called the spanning ratio of the graph H with respect to G. Thus, a graph
with spanning ratio t approximates the

(
n
2

)
distances between the vertices of G

within a factor of t. Let P be a set of n points in the plane. A geometric graph
with vertex set P is an undirected graph whose edges are line segments that are
weighted by their length. The problem of constructing t-spanners of geometric
graphs with O(n) edges for any given point set has been studied extensively; see
the book by Narasimhan and Smid [2] for an overview.

In this paper, we address the problem of computing geometric spanners with
additive constraints on the points. More precisely, we define a weighted point set
as a set of pairs (p, r) where p is a point in the plane and r is a real number. The
distance between two points (pi, ri) and (pj , rj) is defined as |pipj|− ri − rj . The
problem we address is to compute a spanner of a complete graph on a weighted
point set. To the best of our knowledge, the problem of constructing a geometric
spanner in this context has not been previously addressed. We show how the Yao
� Research partially supported by NSERC, MRI, CFI, and MITACS.
1 Due to space constraints, some proofs have been omitted. All missing proofs can be

found in the technical report version of this paper [1].

J. Gudmundsson (Ed.): SWAT 2008, LNCS 5124, pp. 367–377, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

368 P. Bose, P. Carmi, and M. Couture

graph can be adapted to compute a (1 + ε)-spanner in the case where all ri are
positive real numbers and |pipj | ≥ ri +rj for all i, j (in which case the points can
be seen as non-intersecting disks in the plane). In the same case, we also show
how the Additively Weighted Delaunay graph (the face-dual of the Additively
Weighted Voronoi diagram) provides a plane spanner that has the same spanning
ratio as the Delaunay graph of a set of points. Since |pipj | < ri + rj implies
that the distance is negative, we believe that the restriction |pipj | ≥ ri + rj is
reasonable because the t-spanner problem does not make sense when there are
negative distances.

2 Related Work

Well known examples of geometric t-spanners include the Yao graph [3], θ-
graphs [4], the Delaunay graph [5], and the Well-Separated Pair Decomposition
[6]. Let θ < π/4 be an angle such that 2π/θ = k, where k is an integer. The Yao
graph with angle θ is defined as follows. For every point p, partition the plane
into k cones Cp,1, . . . , Cp,k of angle θ and apex p. Then, there is an oriented
edge from p to q if and only if q is the closest point to p in some cone Cp,i.
For Yao graphs [3], the spanning ratio is at most 1/(cos θ − sin θ) provided that
θ < π/4. For θ-graphs, the spanning ratio is at most 1/(1 − 2 sin θ

2) provided
that θ < π/3 [4].

Given a set of points in the plane, there is an edge between p and q in the
Delaunay graph if and only if there is an empty circle with p and q on its bound-
ary [5]. The spanning ratio of the Delaunay triangulation is at most 2.42 [5]. The
Voronoi diagram [7] of a finite set of points P is a partition of the plane into
|P | regions such that each region contains exactly those points having the same
nearest neighbor in P . The points in P are also called sites. It is well known that
the Voronoi diagram of a set of points is the face dual of the Delaunay graph of
that set of points [7], i.e. two points have adjacent Voronoi regions if and only if
they share an edge in the Delaunay graph.

3 Definitions and Notation

Definition 1. A set P = {(p1, r1), . . . , (pn, rn)} of ordered pairs, where each pi

is a point in the plane and each ri is a real number, is called a weighted point
set. The notation pi ∈ P means that there exists an ordered pair (pi, ri) such
that (pi, ri) ∈ P . The additive distance from a point p �∈ P in the plane to a
point pi ∈ P , noted d(p, pi), is defined as |ppi| − ri, where |ppi| is the Euclidean
distance from p to pi. The additive distance between two points pi, pj ∈ P , noted
d(pi, pj), is defined as |pipj|−ri −rj, where |pipj | is the Euclidean distance from
pi to pj.

The problem we address in this paper is the following:

Problem 1. Let P be a weighted point set and let K(P) be the complete weighted
graph with vertex set P and edges weighted by the additive distance between

Spanners of Additively Weighted Point Sets 369

Fig. 1. A straightforward generalization of the Yao graph

their endpoints. Compute a t-spanner with O(n) edges of K(P) for a fixed con-
stant t > 1.

Notice that in the case where all ri are positive numbers, the pairs (pi, ri)
can be viewed as disks Di in the plane. If, for all i, j we also have d(pi, pj) ≥ 0,
then the disks are disjoint. In that case, the distance d(Di, Dj) = d(pi, pj) =
|pipj | − ri − rj is also equal to min{|qiqj | : qi ∈ Di and qj ∈ Dj}, where the
notation qi ∈ Di means |piqi| ≤ ri. To compute a spanner of an additively
weighted point set is then equivalent to computing a spanner of a set of disks in
the plane. From now to the end of this paper, it is assumed that all ri

are positive numbers and d(pi, pj) ≥ 0 for all i, j. If D is a set of disks in
the plane, then a spanner of D is a spanner of the complete graph whose vertex
set is D and whose edges (Di, Dj) are given weights equal to d(Di, Dj).

Notice also that the additive distance may not be a metric since the triangle
inequality does not necessarily hold. Although this may seem counter-intuitive,
this makes sense in some networks, since a direct communication is not always
easier than routing through a common neighbor. For example, in wireless net-
works, the amount of energy that is needed to transmit a message is a power
of the Euclidean distance between the sender and the receiver. Therefore, using
several small hops can be more energy efficient than a direct communication over
one long-distance link.

ε

ε
2

Fig. 2. The straightforward generalization of the Yao graph does not have constant
spanning ratio

370 P. Bose, P. Carmi, and M. Couture

Figure 1 shows how the Yao graph can be generalized using the additive dis-
tance: every node keeps an outgoing edge with the closest disk that intersects
each cone. However, this graph is not a spanner. Figure 2 shows how to con-
struct an example with four disks that has an arbitrarily large spanning ratio.
Nonetheless, in Section 4, we see that a minor adjustment to the Yao graph can
be made in order to compute a (1 + ε)-spanner of a set of disjoint disks that has
O(n) edges.

The Delaunay graph in the additively weighted setting is computable in time
O(n log n) [8]. To the best of our knowledge, its spanning properties have not
been previously studied. In Section 6, we show that it is a spanner and that its
spanning ratio is the same as that of the standard Delaunay graph.

4 The Additively Weighted Yao Graph

As we saw in the previous section, a straightforward generalization of the Yao
graph fails to provide a graph with bounded spanning ratio. In this section, we
show how a few subtle modifications to the construction, provide an approach
to build a (1 + ε)-spanner. We define the modified Yao construction below.

Definition 2. Let D be a finite set of disjoint disks and θ ≤ 0.228 be an angle
such that 2π/θ = k, where k is an integer. The Yao(θ, D) graph is defined as
follows. For every disk D = (p, r), partition the plane into k cones Cp,1, . . . , Cp,k

of angle θ and apex p. A disk blocks a cone Cp,i provided that the disk intersects
both rays of Cp,i. Let F ∈ D be a disk different from D with center in Cp,j.
Add an edge from D to F in Yao(θ, D) if and only if one of the two following
conditions is met:

1. among all blocking disks that have their center in Cp,j , F is the one that is
the closest to D;

2. among all disks that have their center in Cp,j and are at a distance of at
least r from D, F is the one that is the closest to D.

Notice that there are two main changes. Within each cone, we now add poten-
tially two edges as opposed to only one edge in the case of unweighted points.
Next, in the second condition to add an edge, we do not add an edge to the
closest disk within a cone but to the closest disk whose distance is at least r
from the disk centered at the apex with radius r. We now prove that these two
modifications imply that the resulting graph is a (1 + ε)-spanner.

Lemma 1. Let p1, p2, p3 such that the angle ∠p3p1p2 = α ≤ θ < π/4 and
|p1p3| ≤ |p1p2|. Then |p2p3| ≤ |p1p2| − (cos θ − sin θ)|p1p3|.

Theorem 1. Let D be a finite set of disjoint disks and θ ≤ 0.228. Then Y (θ, D)
is a t-spanner of D, where t = 1/(cos 2θ − sin 2θ − 2 sin(θ/2)).

Proof: We proceed by induction on the rank of the weighted distances between
the pairs of disks D1 and D2.

Spanners of Additively Weighted Point Sets 371

Base case: The disks D1 and D2 form a closest pair. In that case, the edge
(D1, D2) is in Yao(θ, D). To see this, let r1 ≤ r2. If D2 is blocking the cone
centered at p1 that contains it, then it is in Yao(θ, D) by Case 1 of Defini-
tion 2. Otherwise, then it is at distance at least r1 from D1 and therefore it is
in Yao(θ, D) by Case 2 of Definition 2.

Induction case: Let D1 = (p1, r1) and D2 = (p2, r2). Without loss of generality,
r1 ≤ r2. If the edge (D1, D2) is in Yao(θ, D), then there is nothing to prove.
Otherwise, there are two cases to consider depending on whether or not the
shortest path from D1 to D2 in the complete graph on D is the edge (D1, D2).
If the shortest path is not the edge (D1, D2), then all edges on the shortest path
must have length less than d(D1, D2). By applying the induction hypothesis on
each of those edges, we conclude that the distance from D1 to D2 in Yao(θ, D) is
at most t times the length of the shortest path D1 to D2 in the complete graph
on D, as required.

We now consider the case when the edge (D1, D2) 1) is not in Yao(θ, D) and
2) is the shortest path from D1 to D2 in the complete graph. Observe that the
conjunction of those two facts imply that the disk D2 does not block the cone
whose apex is p1 and contains p2: If D2 was blocking the cone, then since (D1, D2)
is not an edge in Yao(θ, D), there must be a disk D3 that is also blocking the
cone and is closer to D1 than D2. However, this implies that the shortest path
from D1 to D2 in the complete graph is not the edge (D1, D2) (see Figure 3).

The conjunction of the following three facts:

1. r1 ≤ r2;
2. θ ≤ 0.228 < sin−1(1/3) and
3. D2 does not block the cone,

imply that d(D1, D2) > r1. Since (D1, D2) is not an edge, there is another
disk whose distance is at least r that is closer to D1. Let D3 = (p3, r3) be the
closest disk to D1 such that p3 is in the same θ-cone with apex at p1 as p2 and
d(D1, D3) ≥ r1. By definition, the edge (D1, D3) is in Yao(θ, D). Observe that
d(D2, D3) < d(D1, D2). To see this, let a := d(D1, D2) − r1. We have that

d(D2, D3) ≤ a + 4r1 sin(θ/2) ≤ a + 4r1 sin(0.114) < a + r1 = d(D1, D2).

Let p′1 be the point of D1 that is the closest to D3, p′′1 be the point of D1 that is

θ

D1

D2

D3

Fig. 3. If D2 blocks the cone but the edge (D1, D2) is not in Yao(θ, D), then there
exists D3 such that d(D1, D3) + d(D3, D2) < d(D1, D2)

372 P. Bose, P. Carmi, and M. Couture

p1

p2

θ

p3

a

p′1 p′3

p′2p′′1

Fig. 4. Illustration of the proof of Theorem 1

the closest to D2, p′2 be the point of D2 that is the closest to D1, and p′3 be the
point of D3 that is the closest to D1 (see Figure 4). Notice that |p′1p′3| ≤ |p′1p′2|
and that since d(D1, D2) ≥ d(D1, D3) ≥ r1, then the angle ∠p′2p

′
1p

′
3 is at most

2θ < π/4. Therefore, we can apply Lemma 1 to conclude that

|p′2p′3| ≤ |p′1p′2| − (cos 2θ − sin 2θ)|p′1p′3|,

which implies that

d(D2, D3) ≤ d(D1, D2) + |p′1p′′1 | − (cos 2θ − sin 2θ)d(D1, D3).

Also, since |p′1p′′1 | ≤ 2 sin(θ/2)r1 ≤ 2 sin(θ/2)d(D1, D3), we have

d(D2, D3) ≤ d(D1, D2) − (cos 2θ − sin 2θ − 2 sin(θ/2))d(D1, D3).

Finally, since d(D2, D3) < d(D1, D2), the induction hypothesis tells us that
Yao(θ, D) contains a path from D2 to D3 whose length is at most td(D2, D3).
This means that the distance from D1 to D2 in Yao(θ, D) is at most

d(D1, D3) + td(D2, D3) ≤ d(D1, D3) + t(d(D1, D2) − 1
t
d(D1, D3)) = td(D1, D2).

Using Maple, we verified that the value 0.228 is an upper bound on the values
of θ such that t > 0. �

Corollary 1. For any ε > 0 and any set D of n disjoint disks, it is possible to
compute a (1 + ε)-spanner of D that has O(n) edges.

Proof: The bound on the number of edges comes from the fact that each cone
contains at most two edges, and the stretch factor of 1 + ε comes from the fact
that lim

θ→0
1/(cos 2θ − sin 2θ − 2 sin(θ/2)) = 1. �

Spanners of Additively Weighted Point Sets 373

5 Quotient Graphs and Quotient Spanners

The main idea in the remainder of this paper is the following: we show how to
compute a set of points from each Di such that the (standard) Delaunay graph
of those points is equivalent to the Additively Weighted Delaunay graph. By
choosing the appropriate equivalence relation as well as the appropriate point set,
we can then show that the spanning ratio of the Additively Weighted Delaunay
graph is bounded by the spanning ratio of the standard Delaunay graph. The
reduction of one graph to another is done by means of a quotient:

Definition 3. Let P1 and P2 be non-empty sets of points in the plane. The
distance between P1 and P2, denoted by |P1P2|, is defined as the minimum |p1p2|
over all pairs of points such that p1 ∈ P1 and p2 ∈ P2.

Definition 4. Let G = (V, E) be a geometric graph and V be a partition of V .
The quotient graph of G by V, denoted G/V, is the graph having V as vertices
and there is an edge (U, W) (where U and W are in V) if and only if there exists
an edge (u, w) ∈ E with u ∈ U and w ∈ W . The weight of the edge (U, W) is
equal to |UW |.

If P is a (non-weighted) point set and P is a partition of P , then the notation
P/P designates the quotient of the complete Euclidean graph on P by P . If S
is a set of pairwise disjoint sets of points in the plane such that P ⊆

⋃
S, then

the notation P/S designates the quotient of the complete Euclidean graph on P
by the partition of P induced by S.

Lemma 2. Let G = (V, E) be a complete geometric graph, V be a partition of
V and S be a t-spanner of G. Then S/V is a t-spanner of G/V.

6 The Additively Weighted Delaunay Graph

Lee and Drysdale [9] studied a variant of the Voronoi diagram called the Addi-
tively Weighted Voronoi diagram, which is defined as follows: Let P be a weighted
point set. The Additively Weighted Voronoi diagram of P is a partition of the
plane into |P | regions such that each region contains exactly the points in the
plane having the same closest neighbor in P according to the additive distance.
In other words, the Voronoi cell of a pair (pi, ri) contains the points p such that
d(p, pi) is minimum over all other pairs in P . The Additively Weighted Delau-
nay graph (AW-Delaunay graph) is defined as the face-dual of the Additively
Weighted Voronoi diagram.

Alternatively, if all ri are positive and for all i, j, we have |pipj | ≥ ri + rj ,
then the pairs (pi, ri) can be seen as disks Di of radius ri centered at pi and
d(p, Di) is the minimum |pq| over all q ∈ Di. For a set D of disks in the plane, we
denote the AW-Delaunay graph computed from D as Del(D). When no two disks
intersect, the AW-Delaunay graph is a natural generalization of the Delaunay
graph of a set of points. We say that two intersecting disks A and B properly
intersect if |A ∩ B| > 1 (i.e. they are not tangent).

374 P. Bose, P. Carmi, and M. Couture

Proposition 1. Let D be a set of disjoint disks in the plane, and A, B ∈ D.
The edge (A, B) is in Del(D) if and only if there is a disk C that is tangent to
both A and B and does not properly intersect any other disk in D.

Proof: Suppose (A, B) is in Del(D), and let c be a point on the boundary of the
Voronoi cells of A and B and r be the distance from c to A. Since c is equidis-
tant from A and B, it is also at distance r from B. This means that the disk C
centered at c is tangent to both A and B. This disk cannot properly intersect
any other disk of D, since this would contradict the fact that c is in the Voronoi
cells of A and B. Similarly, if there is a disk that is tangent to both A and B
but does not properly intersect any other disk of D, then A and B are Voronoi
neighbors. �

Note that the Additively Weighted Delaunay graph is not necessarily isomorphic
to the Delaunay graph of the centers of the disks. When all radii are equal,
however, the two graphs coincide. We now show that if D is a set of disks in
the plane, then Del(D) is a spanner of D. The intuition behind the proof is the
following: we show the existence of a finite set of points P such that K(P)/D
(where K(P) is the complete graph with vertex set P) is isomorphic (i.e. there is
a one-to-one relation between the nodes that preserves the lengths of the edges)
to the complete graph on D and Del(P)/D is a subgraph of Del(D). Then, we
use Lemma 2 to prove that Del(P)/D is a spanner of D, which implies that
Del(D) is a spanner of D.

Definition 5. Let A, B be disjoint disks and S a set of points such that A∩S = ∅
and B ∩ S = ∅. A set of points R represents S with respect to A and B if for
every disk F that is tangent to both A and B, we have F ∩ S �= ∅ ⇒ F ∩ R �= ∅.
If D is a set of disjoint disks, then a set of points R represents D if for all
A, B, C ∈ D, there is a subset of R that represents C with respect to A and B.

Lemma 3. Let D be a set of n disjoint disks. There exists a set of at most 2
(
n
3

)
points that represents D.

Lemma 4. Let A and B be two disjoint disks and C be a disk intersecting both
of them. Then there exists a disk G inside C that is tangent to both A and B.

Proof: We show how to construct G. Let a, b, c and rA, rB , rC respectively
be the centers and radii of A, B and C. Without loss of generality, assume
|ac| − rC ≤ |bc| − rB . Let F be the disk centered at c and having radius
rF = |bc| − rB . The disk F is tangent to B. If F is also tangent to A, then
let G = F and we are done. Otherwise, F is properly intersecting A. In that
case, let p be the tangency point of F and B, l be the line through b and c, and
G be the disk through p having its center on l and tangent to A. The result
follows from the fact that G is tangent to B and inside C. �

Definition 6. Let A and B be two disks in the plane. The distance points of A
and B are the two ends of the shortest line segment between A and B.If D is a
set of disjoint disks, then the set of distance points of D is the set containing
the distance points of every pair of disks in D.

Spanners of Additively Weighted Point Sets 375

A
B

a

b

C

G

F

r

Fig. 5. Illustration of the proof of Theorem 2

Theorem 2. Let D be a set of n disjoint disks. Then Del(D) is a t-spanner of
D, where t is the spanning ratio of the Delaunay triangulation of a set of points.

Proof: By Lemma 3, let R be a set of size at most 2
(
n
3

)
that represents D, let S

be the set of distance points of D, and let P = R∪S. Since Del(P) is a t-spanner
of P , by Lemma 2, we have Del(P)/D is a t-spanner of K(P)/D, where K(P)
is the complete graph with vertex set P . Since P contains the distance points
of D, K(P)/D is isomorphic to the complete graph defined on D. We show that
each edge (A, B) of Del(P)/D is in Del(D). Let (A, B) be an edge of Del(P)/D.
This means that in P , there are two points a and b with a ∈ A, b ∈ B such that
there is an empty circle C through a and b. By Lemma 4, C contains a disk
G that is tangent to both A and B. The disk G is a witness of the presence of
the edge (A, B) in Del(D). If that was not the case, this would mean that there
exists a disk F ∈ D such that G ∩ F �= ∅. By definition of R, this implies that
G ∩ R �= ∅ and thus C ∩ P �= ∅, which contradicts the fact that C is an empty
circle. Therefore, the edge (A, B) is in Del(D). Since Del(P)/D is a t-spanner of
D and a subgraph of Del(D), Del(D) is a t-spanner of D. �

7 Computing a Plane Embedding

Note that the embedding of the AW-Delaunay graph that consists of straight
line segments between the centers of the disks is not necessarily a plane graph.
However, the Voronoi diagram of a set of disks D, denoted Vor(D), is planar [10].
Since Del(D) is the face-dual of Vor(D), it is also planar. An important charac-
teristic of the Delaunay graph of a set of points regarded as a spanner is that
it is a plane graph. Therefore, a natural question is whether Del(D) has a plane
embedding that is also a spanner.

The proof of Theorem 2 suggests the existence of an algorithm allowing to
compute such an embedding: compute the Delaunay triangulation of the set P
that contains the distance points and the representative of D. The graph Del(P)
can be regarded as a multigraph whose vertex set is D. Then, for each pair of
disks that share one or more edges, just keep the shortest of those edges. This
simple algorithm allows us to compute a plane embedding of Del(D) that is also
a spanner of D. However, its running time is O(n3 log n).

376 P. Bose, P. Carmi, and M. Couture

On the other hand, it is also possible to compute in time O(n log n) a plane
spanner of D whose spanning ratio is t2, where t is the spanning ratio of the
Delaunay graph of a set of points. Here is how to do this: First, compute Del(D).
Then, let P be the set of distance points of all pairs of disks that share an edge
in Del(D). Compute Del(P). Since P has size O(n), this can be done in time
O(n log n). Also, Del(P) is a plane graph. As in the above paragraph, the graph
Del(P) can be regarded as a multigraph whose vertex set is D. Again, for each
pair of disks that share one or more edges, just keep the shortest of those edges.
All that remains to explain is why the resulting graph is a t2-spanner of D. Let
D1, D2 ∈ D. The straight line embedding of Del(D) contains a t-spanning path
between D1 and D2. The endpoints of the edges of that path are the distance
points between the disks. In Del(P), each of those edges is approximated within a
factor of t, leading to a spanning ratio of t2. Therefore, we showed the following:

Theorem 3. Let D be a set of n disjoint disks and t be the spanning ratio of the
Delaunay triangulation of a set of points. In time O(n3 log n), it is possible to
compute a plane t-spanner of D, and in time O(n log n), it is possible to compute
a plane t2-spanner of D.

8 Conclusion

In this paper, we showed how, given a weighted point set where weights are
positive and |pipj | ≥ ri + rj for all i �= j, it is possible to compute a (1 + ε)-
spanner of that point set that has a linear number of edges. We also showed that
the Additively Weighted Delaunay graph is a t-spanner of an additively weighted
point set in the same case. The constant t is the same as for the Delaunay
triangulation of a point set (the best current value is 2.42 [5]). We could not see
how the Well-Separated Pair Decomposition (WSPD) can be adapted to solve
that problem. The first difficulty resides in the fact that it is not even clear
that, given a weighted point set, a WSPD of that point set always exists. Other
obvious open questions are whether our results still hold when some weights are
negative or |pipj | < ri + rj for some i �= j. Also, we did not verify whether our
variant of the Yao graph can be computed in time O(n log n). Finally, whether
or not it is possible to compute a plane embedding of Del(D) that has the same
spanning ratio than the Delaunay graph of a set of points in time O(n log n)
remains a open question.

References

1. Bose, P., Carmi, P., Couture, M.: Spanners of additively weighted point sets.
CoRR abs/0801.4013 (2008)

2. Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cambridge University
Press, New York (2007)

3. Yao, A.C.C.: On constructing minimum spanning trees in k-dimensional spaces
and related problems. SIAM J. Comput. 11(4), 721–736 (1982)

Spanners of Additively Weighted Point Sets 377

4. Ruppert, J., Seidel, R.: Approximating the d-dimensional complete euclidean
graph. In: CCCG 1991: Proceedings of the 3rd Canadian Conference on Com-
putational Geometry, pp. 207–210 (1991)

5. Keil, J.M., Gutwin, C.A.: Classes of graphs which approximate the complete Eu-
clidean graph. Discrete Comput. Geom. 7(1), 13–28 (1992)

6. Callahan, P.B., Kosaraju, S.R.: A decomposition of multidimensional point sets
with applications to k-nearest-neighbors and n-body potential fields. Journal of
the ACM 42, 67–90 (1995)

7. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational
Geometry: Algorithms and Applications. Springer, Heidelberg (1997)

8. Fortune, S.: A sweepline algorithm for voronoi diagrams. Algorithmica 2, 153–174
(1987)

9. Lee, D.T., Drysdale, R.L.: Generalization of voronoi diagrams in the plane. SIAM
Journal on Computing 10(1), 73–87 (1981)

10. Okabe, A., Boots, B., Sugihara, K.: Spatial tessellations: concepts and applications
of Voronoi diagrams, 2nd edn. John Wiley & Sons, Inc. New York (2000)

The Kinetic Facility Location Problem�

Bastian Degener1,2, Joachim Gehweiler2, and Christiane Lammersen2

1 International Graduate School Dynamic Intelligent Systems,
2 Heinz Nixdorf Institute, Computer Science Department

Paderborn University, 33095 Paderborn, Germany
{bastian.degener,joge,christiane.lammersen}@upb.de

Abstract. We present a deterministic kinetic data structure for the fa-
cility location problem that maintains a subset of the moving points
as facilities such that, at any point of time, the accumulated cost for
the whole point set is at most a constant factor larger than the opti-
mal cost. Each point can change its status between client and facility
and moves continuously along a known trajectory in a d-dimensional
Euclidean space, where d is a constant.

Our kinetic data structure requires O(n(logd(n) + log(nR))) space,
where R :=

maxpi∈P fi · maxpi∈P di

minpi∈P fi · minpi∈P di
, P = {p1, p2, . . . , pn} is the set of

given points, and fi, di are the maintenance cost and the demand of a
point pi, respectively. In case that each trajectory can be described by
a bounded degree polynomial, we process O(n2 log2(nR)) events, each
requiring O(logd+1(n) · log(nR)) time and O(log(nR)) status changes.
To the best of our knowledge, this is the first kinetic data structure for
the facility location problem.

Keywords: facility location, kinetic data structure, approximation.

1 Introduction

The facility location problem is a fundamental combinatorial problem in com-
puter science. In its classical interpretation, the goal is to find an optimal place-
ment of industrial facilities, such that the combined cost for the maintenance of
the facilities and the transportation cost for the customers are minimized.

We consider a scenario of continuously moving objects. Each object can either
be a facility or a client. Applications for this scenario are for example in sensor
networks and mobile ad-hoc networks. In these networks, nodes move continu-
ously and interact with each other. Often they are organized in a hierarchical
way, where the upper layer offers the lower layer a certain service, such as a
routing infrastructure. Each node can act as a server, but, at any time, cost
arises for each node that is set up or maintained as a server. This additional
overhead for a server is caused by a higher energy consumption due to message
� Partially supported by the EU within FP7-ICT-2007-1 under contract no. 215270

(FRONTS), DFG-project “Smart Teams” within the SPP 1183 “Organic Computing”,
and DFG grant Me 872/8-3.

J. Gudmundsson (Ed.): SWAT 2008, LNCS 5124, pp. 378–389, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

The Kinetic Facility Location Problem 379

passing, storing of routing tables etc. Since each node should be able to access a
service as fast as possible, there is also a cost for each client, namely the delay
time which depends on the distance to the nearest server. Now imagine that, to
decrease the total cost for the system, nodes are allowed to change their status
from server to client or vice versa. This is the kinetic facility location problem.

Kinetic Data Structures. The kinetic data structure (KDS) framework is well-
suited to maintain a combinatorial structure of continuously moving objects and
common in the field of computational geometry [2,4,12]. In this framework, we
are given a set of objects and a flight plan, i.e., each object moves continuously
along a known trajectory. It is possible to change the flight plan by performing a
flight plan update, which means that one object changes its trajectory. The main
idea is now that the continuous motion of the objects is utilized in a way that
updates take place only at discrete points of time and can be processed fast. As a
result, a lot of computational effort can be saved maintaining the KDS compared
to handling just a series of instances of the corresponding static problem. To
guarantee that the required properties of the combinatorial structure are satisfied
at any point of time, a KDS ensures that certain certificates are always hold up.
Whenever a certificate fails, we call this an event, and an update is required.

There are four important properties to measure the quality of a KDS. The
worst-case amount of time to process an update is called responsiveness. The
compactness is given by the ratio between the maximum size of the event queue
and the complexity of the moving objects. The locality addresses the maximum
number of events in the queue, in which one object can be involved in. The fourth
property, the efficiency of a KDS, is the ratio between the number of total events
processed by the KDS and the minimum number of events that would have been
sufficient to maintain a solution for the given kinetic problem. We call a KDS
responsive, compact, local, and efficient, respectively, if the associated value is
at most poly-logarithmic in the complexity of the moving objects.

Our Contribution. We present a KDS for the facility location problem that gets
as input a set of n points in Rd, where d is a constant, and for each given point a
trajectory. At any point of time, each point is either a facility or a client. The cost
that arises for a facility persist during the entire time it is open. Analogously,
a client has to pay some cost for its connection to a facility permanently. Our
KDS maintains a subset of the moving points as facilities such that, at any time,
the sum of the maintenance cost for the facilities and the connection cost for the
clients is at most a constant factor larger than the current optimal cost.

The challenge is to construct a KDS whose underlying combinatorial structure
is stable. To be able to ensure this, we keep up the invariant that, on the one
hand, for each client there exists a facility in a certain local neighborhood and,
on the other hand, no facility has another facility in a certain local neighborhood.
The problem is now that restoring the invariant at one point (by changing the
status of the point from open to close or vice versa) can lead to a violation of the
invariant at many other points. Our main technical contribution is a technique
that allows us to restore the invariant in poly-logarithmic time.

380 B. Degener, J. Gehweiler, and C. Lammersen

Related Work. The facility location problem has been extensively studied in
combinatorial optimization and operations research [16,17,19]. In general, the
problem is known to be NP-complete. For the Euclidean case, there exists a
randomized PTAS [18]. However, the problem has been investigated in different
settings, for instance, in distributed [11] and dynamic settings [15], but so far
no algorithm is known for the kinetic setting. Unfortunately, it does not seem
that the only known (1+ε)-approximation given in [18] can be translated to this
setting, since the authors use the Arora-scheme including dynamic programming
techniques, which does not well comply with kinetization.

The KDS framework was introduced and applied on the convex hull prob-
lem by Basch et al. [4]. Later KDSs for measuring various descriptors of the
extent of point sets have been designed [1,2]. Several further problems have been
considered in the KDS framework, but only some results are known for prob-
lems related to clustering, which the facility location problem belongs to. For
instance, Gao et al. [10] provided a KDS to maintain an expected constant factor
approximation for the minimal number of centers to cover all points for a given
radius. Bespamyatnikh et al. [6] studied k-center problems for k = 1 in the KDS
framework, where the centers are not necessarily located at the moving points.
Another algorithm for the kinetic k-center problem can be found in [9]. Har-
Peled [13] considered the k-center problem in a mobile setting different from the
KDS framework. Hershberger [14] proposed a kinetic algorithm for maintaining
a covering of the moving points in Rd by unit boxes such that the number of
boxes is always within a factor of 3d of the optimal static covering at any in-
stance. Recently, Czumaj et al. [7] presented a KDS for the Euclidean MaxCut
problem. For other work on KDSs, we refer to the survey by Guibas [12].

2 Preliminaries

We define the kinetic facility location problem as follows. Let P = {p1, p2, . . . , pn}
be a set of n independently moving points in Rd, where d is a constant. Let pi(t)
denote the position of pi at time t and let P(t) = {p1(t), p2(t), . . . , pn(t)}. At any
point of time t, the set P(t) is divided into the current set of facilities F(t) and
the current set of clients G(t) = P(t)\F(t). For each point pi(t) ∈ P(t), there
exists a non-negative maintenance cost fi, that has to be paid at time t if pi(t)
is a facility, and a non-negative demand di. Note that both the maintenance
cost and the demand of a point do not change over time. The problem is now to
maintain, at each point of time t, a subset F(t) ⊆ P(t), such that

cost(F(t)) :=
∑

pi(t)∈F(t)

fi +
∑

pj(t)∈G(t)

dj · D(pj(t), F(t))

is minimized. Here, D(pj(t), F(t)) is the minimum Euclidean distance from pj(t)
to a facility in F(t). We let FOpt(t) denote an optimal set of facilities at time t.

In the following, we introduce some basics required for our approach. The
main idea is to use a set of nested cubes around each point and to update the
KDS each time a point enters or leaves a cube of another point.

The Kinetic Facility Location Problem 381

Cubes. For a point pi(t) ∈ P(t) and a non-negative value r, we define C(pi(t), r)
to be the axis-parallel cube whose center is the point pi(t) and whose side length
is 2r. Given such a cube C(pi(t), r), we let weight(C(pi(t), r)) denote the sum
of the demands of all the points in P(t) that are located in the cube C(pi(t), r),
i.e., we define

weight(C(pi(t), r)) :=
∑

pj(t)∈P(t)∩C(pi(t),r)

dj .

Radius Associated with a Point. For each point pi(t) ∈ P(t), we calculate a
special radius r∗i (t) which is an approximation for the radius ri(t) of the ball
with center pi(t) that is used in [19] and satisfies

∑
pj(t)∈P(t)|D(pi(t),pj(t))≤ri(t)

dj · (ri(t) − D(pi(t), pj(t))) = fi .

Due to this definition, ri(t) ranges from
minpj∈P fj

n·maxpj∈P dj
to

maxpj∈P fj

minpj∈P dj
. To obtain a

constant factor approximation for ri(t), we define r∗i (t) to be the value 2k∗
, such

that k∗ = k0 + �log(4
√

d)� and k0 is the minimum integer k, log(
minpj∈P fj

n·maxpj∈P dj
) ≤

k ≤ log(
maxpj∈P fj

minpj∈P dj
), for which weight(C(pi(t), 2k0)) ≥ fi ·2−k0 holds. The choice

of k∗ is explained in Section 4. Hence, due to our definition, we have to consider
only O(log(nR)) possible values for the radii, where R := maxpi∈P fi ·maxpi∈P di

minpi∈P fi ·minpi∈P di
.

Walls around a Point. We consider a set of O(log(nR)) nested cubes for each
point pi(t) ∈ P(t). In particular, there is the cube C(pi(t), 2k) with radius
2k for each k ∈ {�log(

minpj∈P fj

n·maxpj∈P dj
)� + �log(4

√
d)�, �log(

minpj∈P fj

n·maxpj∈P dj
)� + 1 +

�log(4
√

d)�, . . . , 	log(
maxpj∈P fj

minpj∈P dj
)
 + �log(4

√
d)�}. The side faces of the cube de-

fined by C(pi(t), 2k) form a wall around pi(t), which we call Wi,k(t). Hence, there
exists a set of O(log(nR)) walls for pi(t). We use this set of walls to determine
the points of time when an update of pi in our KDS is required. In general, an
event occurs each time when any point crosses any wall of another point.

Range Trees. We maintain two (d+1)-dimensional dynamic range trees denoted
by T1 and T2. At any time, T1 is used to manage the current set of facilities
(which we call open points), and T2 stores the current set of clients (which we
call closed points). Apart from the fact that the two data structures contain
different point sets, they are constructed in the same way. In the first d levels,
the points are handled according to their coordinates and in the (d + 1)-st level
according to their special radii. Additionally, with each node v in every binary
search tree of the (d + 1)-st level, we store the sum of the demands of all the
points contained in the subtree of v. Beside the two range trees, we maintain a
binary search tree T that contains, for each point in P , a pair consisting of the
point’s index and its current status. T is sorted according to the indices.

382 B. Degener, J. Gehweiler, and C. Lammersen

The dynamic data structure described in [5] supports all required properties
of T1 and T2 efficiently. For a set of n points in Rd+1, it has size O(n logd(n)),
can be built in O(n logd+1(n)) time, and can be maintained in O(logd+1(n))
worst case time per insertion and deletion. Given any orthogonal range in Rd+1,
we can output the points inside this range in O(logd+1(n) + N) time, where N
is the output size. Due to the additional information, we can also compute the
sum of the demands of all the points in a certain range in O(logd+1(n)) time.
Finally, we can output the status of a point in O(log(n)) time by querying T .

The movement of the points is reflected by insertion and deletion operations
on T1 and T2 upon an event. That means that the actual position of any point
pi is represented by its coordinates at the latest event it was involved in.

Initialization. To get an initial set of facilities, we apply the algorithm of Mettu
and Plaxton [19] on the input points. Unfortunately, we cannot use this greedy
approach to obtain a KDS with poly-logarithmic update time. The reason is that
keeping up the solution provided by the Mettu-Plaxton algorithm is not stable,
so that a slight perturbation of the input might result in Ω(n) status changes.

3 The Kinetic Data Structure

3.1 Event Queue

We perform an update each time a point pj(t) crosses a wall Wi,k(t), where
�log(

minpj∈P fj

n·maxpj∈P dj
)� + �log(4

√
d)� ≤ k ≤ 	log(

maxpj∈P fj

minpj∈P dj
)
 + �log(4

√
d)�, of an-

other point pi(t). In order to keep track of these events, we need another data
structure beside the two range trees: For each dimension �, 1 ≤ � ≤ d, we store
all n points and all O(n · log(nR)) wall faces that are orthogonal to the �-th
coordinate axis in a list sorted by the �-coordinate. For each consecutive pair
in each of the d lists, we keep up one certificate to certify the sorted order of
the lists. We define the failure time of the certificate for any pair of consecutive
objects to be the first future time when these objects swap their places in their
sorted list. The failure times of all certificates are maintained in one event queue.

For simplicity we assume that the points are in general position. Then at most
two events occur at the same time, which are handled in an arbitrary order. The
event queue has the following complexity (for details cf. [8]):

Lemma 1. The event queue for the kinetic facility location problem has size
O(n log(nR)), can be initialized in time O(n log2(nR)), and updated in time
O(log(nR)). Provided that each trajectory can be described by a bounded degree
polynomial, the total number of events is O(n2 log2(nR)). A flight plan update
involves O(log(nR)) certificates and requires O(log2(nR)) time.

3.2 Handling an Update

Now we describe how an event, occurring at any point of time t, is handled. As
the first step, the event queue is updated. All further steps are performed to
keep up one invariant consisting of the following conditions:

The Kinetic Facility Location Problem 383

a) for each closed point pi(t) ∈ G(t) there is an open point pj(t) ∈ F(t) with
r∗j (t) ≤ r∗i (t) in C(pi(t), 4 · r∗i (t)) and

b) for each open point pi(t) ∈ F(t) there is no other open point pj(t) ∈ F(t)
with r∗j (t) ≤ r∗i (t) in C(pi(t), 2 · r∗i (t)).

We say that a point pi(t) violates the invariant in the following case: Either
pi(t) is closed and condition a) does not hold for pi(t) or pi(t) is open and
condition b) does not hold for pi(t). We will show that, if the invariant is satisfied,
then cost(F(t)) is at most a constant factor larger than cost(FOpt(t)). Moreover,
the asymmetric choice of condition a) and b) enables our KDS to be stable.

Now, let us assume that the invariant is satisfied by the time when an event e
occurs. Then the only way that the invariant can be violated is that e indicates
that one point crosses a wall of another point. If this is not the case, handling e
is finished after updating the event queue. To detect wall crossings, we check if
one of the involved objects is a point and if the other one is the face of a wall.
Then we update both associated points, the point that might cross the wall and
the point whose wall might be crossed, in the range trees and check if the first
point really crosses a wall of the second point.

In case that any point pj(t) crosses a wall of any other point pi(t) at any time
t, we first update the radius r∗i (t) = 2k∗

, such that k∗ = k0 + �log(4
√

d)� and
k0 is the minimum integer k with log(

minpj∈P fj

n·maxpj∈P dj
) ≤ k ≤ log(

maxpj∈P fj

minpj∈P dj
), for

which weight(C(pi(t), 2k0)) ≥ fi ·2−k0 holds. Note that the new value of k0 differs
from its value before e by at most 1. Thus there are three possible values for k0,
where each value can be tested by running one range query on both T1 and T2.
Afterwards, we test if pi(t) violates the invariant by using a range query on T1.
If this is the case, we change the status of pi(t). For simplicity of description,
we assume that the range trees are always up to date. We will show in Section 4
that our KDS works as desired, although the position of a point in the range
tree can slightly deviate from its real current position. As an effect of changing
the radius or the status of one point, the invariant may be violated by many
other points (e.g., their facility has been closed). In the following, we will show
how to deal with this problem.

Algorithm Restore. Suppose that, due to an event at any point of time t, the
radius or the status of a point pe(t) changed and its new radius is r∗e(t) = 2k∗

.
First, we restore the invariant at all points with radius 2k∗−1, to ensure that
no point with radius less than or equal to 2k∗−1 violates the invariant. Then we
handle the points with radius 2k∗

, then the ones with radius 2k∗+1, . . . , up to
the biggest possible radius. Now, we describe the procedure in general for any
radius 2k.

We define two cubes S1 := C(pe(t), 4 · 2k+1) and S2 := C(pe(t), 6 · 2k+1) and
divide them into equally sized cubelets with radius 2k. Figure 1 (a) illustrates
this decomposition in the plane for k and the next iteration k + 1. To guarantee
that no open point with radius 2k violates the invariant, we perform the following
test for each cubelet in S1: Let m be the center point of the considered cubelet. If

384 B. Degener, J. Gehweiler, and C. Lammersen

Algorithm 3.1. Restore(pe(t), k∗)

1: for k ← k∗ − 1 to �log(
maxpj∈P fj

minpj∈P dj
)� + �log(4

√
d)� do

2: define cubes S1 := C(pe(t), 4 · 2k+1) and S2 := C(pe(t), 6 · 2k+1)
3: for each cubelet C with center mC and radius 2k in S1 do
4: if ∃ facility with radius < 2k in C(mC, 3 · 2k) then
5: close all facilities with radius 2k in C
6: for each cubelet C with center mC and radius 2k in S2 do
7: if � facility with radius ≤ 2k in C(mC, 3 · 2k) then
8: open one point with radius 2k in C (if existing)

there is a facility with radius less than 2k in C(m, 3 · 2k), then close all facilities
with radius 2k in C(m, 2k). Note that there is at most one such facility. The
considered area around a cubelet is illustrated in Figure 1 (b). Then, we perform
a similar test for each cubelet in S2 (cf. Algorithm 3.1, line 6 ff), to guarantee
that the certificate of every closed point with radius 2k holds.

W (t)
i,k+2

W (t)
i,k+3

W (t)
i,k+4

2
k+1

m

2
k

3 2
. k

(a) (b)

Fig. 1. (a) Decomposition into cubelets. (b) Tested area.

4 Quality and Complexity of the Kinetic Data Structure

At first, we prove that the invariant is satisfied each time our KDS has handled
an update. Then, this fact is used to show that, at any point of time t, we have
cost(F(t)) = O(cost(FOpt(t))). Finally, we analyze the complexity of our KDS.

Maintenance of the Invariant. The difficulty in proving the correctness of main-
taining the invariant is that both range trees contain out-dated information. It

The Kinetic Facility Location Problem 385

is guaranteed that the radius of each point stored in the range trees is equal to
its current special radius, but this is not true for the position. For any point of
time t and any pi(t) ∈ P(t), let pT

i (t) be the position of pi stored in the range
trees at time t. The following proposition shows that, at any time, every point
is stored in the correct range with respect to the walls of all other points.

Proposition 1. Let pi and pj be any two points in P, let k be an integer
in {�log(

minpj∈P fj

n·maxpj∈P dj
)� + �log(4

√
d)�, �log(

minpj∈P fj

n·maxpj∈P dj
)� + 1 + �log(4

√
d)�, . . . ,

	log(
maxpj∈P fj

minpj∈P dj
)
 + �log(4

√
d)�}, and let t be any point of time between two suc-

cessive events which involve pi and pj. If and only if we have pT
j (t) ∈ C(pT

i (t), 2k),
then pj(t) ∈ C(pi(t), 2k) is true as well.

Proof. Let t1 < t be the latest point of time when pi and pj have been involved
in one event. Furthermore, pT

j (t) ∈ C(pT
i (t), 2k) implies that we have updated

pi and pj at time t1, such that pj(t1) ∈ C(pi(t1), 2k) and pT
j (t1) ∈ C(pT

i (t1), 2k).
Now let us assume that we have pT

j (t) ∈ C(pT
i (t), 2k) but pj(t) /∈ C(pi(t), 2k).

Thus, there must be a point of time t2 with t1 < t2 < t when the point pj(t2)
crosses the wall Wi,k(t2). Then t1 could not be the latest point of time when pi

and pj have been involved in one event, a contradiction. Analogously, we can
show that pT

j (t) /∈ C(pT
i (t), 2k) implies pj(t) /∈ C(pi(t), 2k). ��

We can easily obtain the following result.

Proposition 2. The invariant is satisfied as long as the KDS does not call
algorithm Restore.

The proof of Proposition 2 as well as further omitted proofs can be found in [8].
The following propositions show that the invariant is restored after each call of
algorithm Restore.

Proposition 3. Let pe(t) be a point whose radius or status changed due to an
event e. Let r∗e(t) = 2k∗

be the updated radius of pe(t). If no point with radius
less than or equal to 2k∗−2 violates the invariant before e, then this holds after
e as well.

Proof. Due to the definition of the special radii and the fact that only one point
has crossed one wall of pe(t), the radius of pe has been at least 2k∗−1 before e.
Now, the proposition follows due to the fact that we only change the status of
points with radius larger than or equal to 2k∗−1 while processing event e. ��

Proposition 4. Let pe(t) be a point whose radius or status changed due to an
event e. Let r∗e(t) = 2k∗

be the updated radius of pe(t). If the invariant is satisfied
before e and no open point with radius less than or equal to 2�−1 violates the
invariant before running the outer for-loop of algorithm Restore for k = �,
where k∗ − 1 ≤ � ≤ 	log(

maxpj∈P fj

minpj∈P dj
)
 + �log(4

√
d)�, then, after running this

for-loop, no open point with radius 2� violates the invariant.

386 B. Degener, J. Gehweiler, and C. Lammersen

Proof. The proof is by contradiction. Let us assume that after running the outer
for-loop of algorithm Restore for k = � there is an open point pi(t) with
radius r∗i (t) = 2� that has another open point pj(t) with radius r∗j (t) ≤ r∗i (t) in
C(pi(t), 2 · r∗i (t)). We have to consider the cases i) pT

i (t) ∈ S2 and ii) pT
i (t) /∈ S2.

Case i). Subcase r∗j (t) < r∗i (t): Due to the fact that r∗j (t) < 2�, we have opened pj

before running the outer for-loop for k = �. It follows that pT
i (t) ∈ C(m, 2�) and

pT
j (t) /∈ C(m, 3·2�) for one center m of a considered cubelet, because otherwise we

either would have closed pi(t) or would not have opened pi(t). As a consequence,
pT

j (t) /∈ C(pT
i (t), 2�+1) = C(pT

i (t), 2 · r∗i (t)). Now, due to Proposition 1, we have
pj(t) /∈ C(pi(t), 2 · r∗i (t)), which is a contradiction.

Subcase r∗j (t) = r∗i (t): We have to consider the case that neither pi nor pj is
opened while running the outer for-loop for k = � and the case that at least
one of pi and pj is opened during this for-loop. In the first case, it follows that
pi and pj must have been open before running the outer for-loop for k = �. As
a consequence, both points have been open before e or one point is pe. Then
either the invariant was violated before e or changing the status of pe violated
the invariant, a contradiction. In the latter case, we have opened pi or pj or both
while running the outer for-loop for k = �. W.l.o.g., let us assume that we have
opened pi before we have opened pj. Then we must have that pT

j (t) ∈ C(m, 2�)
and pT

i (t) /∈ C(m, 3 · 2�) for one center m of a considered cubelet. It follows
that pT

j (t) /∈ C(pT
i (t), 2�+1) = C(pT

i (t), 2 · r∗i (t)). Due to Proposition 1, we have
pj(t) /∈ C(pi(t), 2 · r∗i (t)), which is a contradiction.

Case ii). Subcase r∗j (t) < r∗i (t): Due to the fact that r∗j (t) < 2�, we have opened
pj before running the outer for-loop for k = �. Furthermore, it follows from
pT

i (t) /∈ S2 that we must have opened pi before running the outer for-loop for
k = � as well. Hence, we have that both pi and pj have been open before running
this for-loop. Thus, the invariant must have been violated at point pj(t) with
r∗j (t) ≤ 2�−1 before running the outer for-loop for k = �, a contradiction.

Subcase r∗j (t) = r∗i (t): We can use the same argumentation as for case i) in
subcase r∗j (t) = r∗i (t) with the modification that we know that pi has been opened
before running the outer for-loop for k = �. The reason is that pT

i (t) /∈ S2, so
that we do not change its status while running this for-loop. ��

In a similar way, we can get the following result for the closed points:

Proposition 5. Let pe(t) be a point whose radius or status changed due to an
event e. Let r∗e(t) = 2k∗

be the updated radius of pe(t). If the invariant is satisfied
before e and no closed point with radius less than or equal to 2�−1 violates the
invariant before running the outer for-loop of algorithm Restore for k = �,
where k∗ − 1 ≤ � ≤ 	log(

maxpj∈P fj

minpj∈P dj
)
 + �log(4

√
d)�, then, after running this

for-loop, no closed point with radius 2� violates the invariant.

Now, we can combine the obtained results to the following lemma:

The Kinetic Facility Location Problem 387

Lemma 2. The invariant is satisfied after the KDS has handled an event.

Proof. Due to Proposition 2, the invariant is satisfied as long as we do not call
algorithm Restore. Let pe(t) be the point whose radius or status changed due to
an event e, and let r∗e(t) = 2k∗

be its updated radius. Because of the precondition
given above and Proposition 3 the lemma is true for all points pi(t) with radius
ri(t)∗ = 2� where � ≤ k∗ − 2. Due to Propositions 4 and 5 it also follows for
� ≥ k∗ − 2. Hence, it is true for all points. ��

The Special Radii. For any point pi(t) ∈ P(t), we define B(pi(t), r) to be
the ball with center pi(t) and radius r. Given such a ball B(pi(t), r), we let
weight(B(pi(t), r)) denote the sum of the demands of all the points in P(t) that
lie inside the ball B(pi(t), r). Now, we can prove that, at any point of time t, the
special radius r∗i (t) is a constant factor approximation for the value ri(t).

For the uniform facility location problem, the authors in [3] showed how to
approximate ri(t) by counting the number of points in a certain ball with center
pi(t). We generalize their result to the non-uniform case (for details cf. [8]):

Lemma 3. For any point of time t, let k1 be the minimum integer k with
�log(

minpj∈P fj

n·maxpj∈P dj
)� ≤ k ≤ 	log(

maxpj∈P fj

minpj∈P dj
)
, such that weight(B(pi(t), 2k)) ≥

fi · 2−k. Then 1
2 · ri(t) ≤ 2k1 ≤ 2 · ri(t) holds.

Our algorithm uses the approach of [3], but we approximate the sum of the
demands of all the points in a distance 2k by a cube with radius 2k:

Lemma 4. For any point of time t, let k0 be the minimum integer k with
�log(

minpj∈P fj

n·maxpj∈P dj
)� ≤ k ≤ 	log(

maxpj∈P fj

minpj∈P dj
)
, such that weight(C(pi(t), 2k)) ≥

fi · 2−k. Then 1
4
√

d
· ri(t) ≤ 2k0 ≤ 2 · ri(t) holds.

Proof. Let k1 be defined as in Lemma 3. Then the radius of C(pi(t), 2k0) is
at most 2k1 , since each point in P(t), that is located in B(pi(t), 2k1), is also
located in C(pi(t), 2k1), so that weight(C(pi(t), 2k1)) ≥ fi ·2−k1 . Furthermore, the
radius of C(pi(t), 2k0) is larger than 1√

d
· 2k1−1 since weight(B(pi(t), 2k1−1)) <

fi · 2−(k1−1) and weight(C(pi(t), 1√
d
2k1−1)) ≤ weight(B(pi(t), 2k1−1)), so that

weight(C(pi(t), 1√
d

· 2k1−1)) < fi · 2−(k1−1) < fi · 2−(k1−1−log(
√

d)). Now, the
lemma follows due to 2k0 > 1√

d
· 2k1−1 and Lemma 3. ��

Due to Lemma 4 and by setting r∗i (t) = 2k∗
= 2k0+�log(4

√
d)), we get ri(t) ≤

r∗i (t) ≤ 23+�log(
√

d)	 · ri(t).

Lemma 5. The KDS for the facility location problem for an arbitrary but fixed
dimension d maintains, at any point of time t, a subset F(t) ⊆ P(t) such that
cost(F(t)) ≤ (64d + 1) · cost(FOpt(t)).

388 B. Degener, J. Gehweiler, and C. Lammersen

Proof. For each point pi(t) ∈ P(t), there is a facility pj(t) ∈ F(t) with radius
r∗j (t) ≤ r∗i (t) in C(pi(t), 4 · r∗i (t)). Furthermore, we know that ri(t) ≤ r∗i (t) ≤
23+�log(

√
d)	 · ri(t). It follows that we have D(pi(t), pj(t)) ≤

√
d · 4 · r∗i (t) ≤√

d · 4 · 23+�log(√d)	 · ri(t) ≤ 64d · ri(t). Now, the lemma follows from the analysis
in [19]. Details can be found in [8]. ��

Complexity. Due to Lemma 1, we have already proven that our KDS is compact
and local. Now we show that the requirement for responsiveness is also fulfilled.

Lemma 6. Each update operation requires O(logd+1(n) · log(nR)) time and
O(log(nR)) status changes.

Proof. Due to Lemma 1, the time to update the event queue is O(log(nR)).
Except for algorithm Restore, all further steps to handle an event require
O(logd+1(n)) time. Next we examine the time that algorithm Restore needs
to restore the invariant at points with radius 2k. The number of cubelets with
radius 2k in S2 is 12d. The query of open or closed points for one cubelet can be
answered by T1 and T2 in time O(logd+1(n)). Afterwards, there has to be at most
one point inserted and deleted in T1 and T2. This requires O(logd+1(n)) time.
Summation over all radii leads to a total running time of O(logd+1(n) · log(nR)).

There is at most one facility with radius 2k in a cubelet with radius 2k,
otherwise the invariant is violated. Hence, algorithm Restore closes a constant
number of facilities with radius 2k. Obviously, the number of opened facilities
with radius 2k is also constant. Due to the fact that we handle O(log(nR)) radii,
there are O(log(nR)) status changes per event. ��

Due to Lemmas 1 and 6, the total processing time is O(n2 logd+1(n) · log3(nR)).
Thus, we get the following result:

Theorem 1. Let P be a set of n independently moving points in Rd, where d is
a constant. Then there is a KDS for the facility location problem that maintains,
at any point of time t, a set F(t) ⊆ P(t), such that cost(F(t)) ≤ (64d + 1) ·
cost(FOpt(t)). The KDS has a space requirement of O(n(logd(n) + log(nR))),
where R = maxpi∈P fi ·maxpi∈P di

minpi∈P fi ·minpi∈P di
. Each update operation requires O(log(nR)) sta-

tus changes and O(logd+1(n) · log(nR)) time. In case each trajectory can be de-
scribed by a bounded degree polynomial, the number of updates is O(n2 log2(nR)),
which results in a total processing time of O(n2 logd+1(n) · log3(nR)). A flight
plan update involves O(log(nR)) certificates and requires O(log2(nR)) time.

5 Conclusion

In this paper, we initiated the study on the kinetic facility location problem.
In particular, we proposed a KDS that maintains a subset of the moving input
points as facilities such that, at any point of time, the associated total cost is
at most a constant factor larger than the current optimal cost. We showed that

The Kinetic Facility Location Problem 389

our KDS is compact, local, and responsive. We also consider our algorithm to
be efficient, although we cannot prove this in the formal sense of KDSs, because
it is hard to lower bound the number of mandatory events in a non-trivial way.

References

1. Agarwal, P., Guibas, L., Hershberger, J., Veach, E.: Maintaining the Extent of a
Moving Point Set. Discrete & Computational Geometry 26(3), 353–374 (2001)

2. Agarwal, P., Har-Peled, S., Varadarajan, K.: Approximating Extent Measures of
Points. Journal of the ACM 51(4), 606–635 (2004)

3. Bădoiu, M., Czumaj, A., Indyk, P., Sohler, C.: Facility Location in Sublinear Time.
In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP
2005. LNCS, vol. 3580, pp. 866–877. Springer, Heidelberg (2005)

4. Basch, J., Guibas, L., Hershberger, J.: Data Structures for Mobile Data. Journal
of Algorithms 31(1), 1–28 (1999)

5. Basch, J., Guibas, L., Zhang, L.: Proximity Problems on Moving Points. In: Proc.
13th Symposium on Computational Geometry, pp. 344–351 (1997)

6. Bespamyatnikh, S., Bhattacharya, B., Kirkpatrick, D., Segal, M.: Mobile Facility
Location. In: Proc 4th International Workshop on Discrete Algorithms and Meth-
ods for Mobile Computing and Communications, pp. 46–53 (2000)

7. Czumaj, A., Frahling, G., Sohler, C.: Efficient Kinetic Data Structures for MaxCut.
In: Proc. 19th Canadian Conference on Computational Geometry, pp. 157–160
(2007)

8. Degener, B., Gehweiler, J., Lammersen, C.: The Kinetic Facility Location Problem.
Technical Report tr-ri-08-2880, University of Paderborn (2008)

9. Gao, J., Guibas, L., Nguyen, A.: Deformable Spanners and Applications. In: Proc.
20th Symposium on Computational Geometry, pp. 190–199 (2004)

10. Gao, J., Guibas, L., Hershberger, J., Zhang, L., Zhu, A.: Discrete Mobile Centers.
Journal of Discrete and Computational Geometry 30(1), 45–63 (2003)

11. Gehweiler, J., Lammersen, C., Sohler, C.: A Distributed O(1)-Approximation Algo-
rithm for the Uniform Facility Location Problem. In: Proc. 18th ACM Symposium
on Parallelism in Algorithms and Architectures, pp. 237–243 (2006)

12. Guibas, L.: Kinetic Data Structures: A State of the Art Report. In: Proc. 3rd
Workshop on Algorithmic Foundations of Robotics, pp. 191–209 (1998)

13. Har-Peled, S.: Clustering Motion. In: Proc. 42nd IEEE Symposium on Foundations
of Computer Science, pp. 84–93 (2001)

14. Hershberger, J.: Smooth Kinetic Maintenance of Clusters. In: Proc. Symposium on
Computational Geometry, pp. 48–57 (2003)

15. Indyk, P.: Algorithms for Dynamic Geometric Problems over Data Streams. In:
Proc. 36th ACM Symposium on Theory of Computing, pp. 373–380 (2004)

16. Jain, K., Mahdian, M., Saberi, A.: A New Greedy Approach for Facility Location
Problems. In: Proc. 34th ACM Symposium on Theory of Computing, pp. 731–740
(2002)

17. Jain, K., Vazirani, V.: Approximation Algorithms for Metric Facility Location and
k-Median Problems Using the Primal-Dual Schema and Lagrangian Relaxation.
Journal of the ACM 48(2), 274–296 (2001)

18. Kolliopoulos, S., Rao, S.: A Nearly Linear-Time Approximation Scheme for the
Euclidean k-Median Problem. SIAM Journal on Computing 37(3), 757–782 (2007)

19. Mettu, R.R., Plaxton, C.G.: The Online Median Problem. SIAM J. Comput. 32(3),
816–832 (2003)

Computing the Greedy Spanner in
Near-Quadratic Time

Prosenjit Bose, Paz Carmi, Mohammad Farshi, Anil Maheshwari,
and Michiel Smid

School of Computer Science, Carleton University, Ottawa, ON, K1S 5B6, Canada
jit@scs.carleton.ca, {paz,mfarshi}@cg.scs.carleton.ca,

{anil,michiel}@scs.carleton.ca

Abstract. It is well-known that the greedy algorithm produces high
quality spanners and therefore is used in several applications. However,
for points in d-dimensional Euclidean space, the greedy algorithm has
cubic running time. In this paper we present an algorithm that computes
the greedy spanner (spanner computed by the greedy algorithm) for a
set of n points from a metric space with bounded doubling dimension in
O(n2 log n) time using O(n2) space. Since the lower bound for computing
such spanners is Ω(n2), the time complexity of our algorithm is optimal
to within a logarithmic factor.

1 Introduction

A network on a point set V is a connected graph G(V, E). When designing a
network several criteria are taken into account. In particular, in many applica-
tions it is important to ensure a fast connection between every pair of points.
For this it would be ideal to have a direct connection between every pair of
points—the network would then be a complete graph—but in most applications
this is unacceptable due to the very high costs associated with constructing such
networks. This leads to the concept of spanners, as defined below.

Let (V , d) be a metric space and G(V, E) be a network on V such that the
weight of each edge e ∈ E is equal to the distance between its endpoints. We say
that G is a t-spanner of V , for some constant t > 1, if for each pair of points
u, v ∈ V , there exists a path in G between u and v of length at most t · d(u, v).
The dilation or stretch factor of G is the minimum t for which G is a t-spanner
of V . Spanners were introduced by Peleg and Schäffer [12] in the context of
distributed computing and by Chew [3] in the geometric context. Since then
spanners have received a lot of attention, see [10, 11].

A classical algorithm for computing a geometric spanner for any set V of n
points in R

d, where d is the Euclidean metric, and for any fixed t > 1, is the
greedy algorithm, proposed independently by Bern in 1989 and Althöfer et al. [1].
The main steps of this algorithm are the following: first sort all the pairs of points
in V with respect to their distances in increasing order and initialize the greedy
graph G(V, E) so that its edge set is empty. Next, the pairs are processed in

J. Gudmundsson (Ed.): SWAT 2008, LNCS 5124, pp. 390–401, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Computing the Greedy Spanner in Near-Quadratic Time 391

sorted order. Processing a pair (u, v) entails a shortest path query in G between
u and v. If there is no t-path between u and v (a path of length at most t·d(u, v))
in G then (u, v) is added to G, otherwise it is discarded. We will refer to the
graph G generated by the greedy algorithm as the greedy spanner.

The greedy algorithm as stated above performs
(
n
2

)
single-source shortest path

queries. By employing Dijkstra’s single-source shortest path algorithm, the time
complexity is O(mn2 + n3 log n) using O(n2) space, where n is the number of
points and m is the number of edges in the spanner. It has been shown that for
any set V of n points in R

d and for any fixed t > 1 in the Euclidean metric,
the greedy spanner has O(n) edges, bounded degree, and its total weight is
O(wt(MST (V))), where wt(MST (V)) is the weight of the minimum spanning
tree of V [4, 10]. Unfortunately, the näıve implementation of the greedy algorithm
runs in cubic time.

Due to the high time complexity of computing the greedy spanner, researchers
have proposed algorithms for computing other types of sparse t-spanners, see
[10]. But it turns out that in practice the greedy algorithm produces t-spanners
of high quality in comparison to other spanners [5, 6]. For example, they have
been used for protein visualization as a low-weight data structure, which is used
as a contact map, that allows approximate reconstruction of the full distance
matrix [13].

For points in the plane under the Euclidean metric, Farshi and Gudmunds-
son [5, 6] introduced a speed-up strategy that generates the greedy spanner much
faster in practice. They conjectured that their algorithm runs in O(n2 log n) time.
However, as we will show in this paper, this conjecture is incorrect. They also
showed that the greedy algorithm produces graphs whose size, weight, maximum
degree and number of crossings are superior to the graphs produced from the
other approaches which have near linear time complexity. For t = 2, t = 1.1 and
t = 1.05 the number of edges in the greedy t-spanner is approximately 2n, 4n
and 6n respectively, which is surprisingly small. For comparison it is interesting
to note that the Delaunay triangulation has approximately 3n edges and dila-
tion bounded by 2.42 [9]. Also the maximum degree of the greedy 1.1-spanner,
generated on a uniformly distributed set, of 8000 points is 14 and its weight is 11
times the weight of the minimum spanning tree of the point set. To have a rough
comparison, the Θ-graph algorithm, which runs in O(n log n) time, generated a
graph containing 370K edges, the maximum degree was 144 and the weight was
327 times the weight of the minimum spanning tree.

For general metric spaces, there are cases where the complete graph is the
only t-spanner of a point set. For example, assume V is a set of points from a
metric space where the distance between any two distinct points is equal to 1.
For any 1 < t < 2, the complete graph is the only t-spanner of V . Therefore, in
general metric spaces, we can not guarantee that the generated graph is sparse.
The doubling dimension is defined as follows. Let λ be the smallest integer
such that for each real number r, any ball of radius r can be covered by at
most λ balls of radius r/2. The doubling dimension of V is defined to be log λ.

392 P. Bose et al.

The doubling dimension is a generalization of the Euclidean dimension, as the
doubling dimension of d-dimension Euclidean space is Θ(d).

1.1 Main Results and Organization of the Paper

The main result of this paper is that for any metric space V of bounded doubling
dimension, the greedy spanner of V has linear size and can be computed in
O(n2 log n) time, where n = |V |. The organization of the remainder of this
paper is as follows. In Sect. 2, we review the improved greedy algorithm of [5, 6]
and give a counterexample to the conjecture that this algorithm only performs
O(n) shortest path queries. In Sect. 3, we present an algorithm that generates
the greedy spanner in near-quadratic time for some special cases. These results
are generalized to metric spaces of bounded doubling dimension in Sect. 4.

2 The FG-Greedy Algorithm

As mentioned above the running time of a näıve implementation of the greedy
algorithm is O(mn2 + n3 log n). Farshi and Gudmundsson [5, 6] introduced an
improved version of the algorithm and showed that it improves the running time
for constructing the greedy spanner considerably in practice on point sets in the
plane with the Euclidean metric. We call this algorithm as the FG-greedy algo-
rithm. The FG-greedy algorithm is the same as the original greedy algorithm
except that it uses a matrix to save the length of the shortest path between every
two points and updates the matrix only when it is required. Thus the matrix
is not always up to date. Instead of computing a shortest path for each pair, it
first checks the matrix to see if there is a t-path; if the answer is no, then it per-
forms a shortest path query and updates the matrix which enables us to answer
the distance queries correctly. They conjectured that the FG-greedy algorithm
performs only O(n) shortest path queries, which would imply a running time
of O(n2 log n).

2.1 A Counterexample

We give an example which shows that the FG-greedy algorithm may perform
Θ(n2) shortest path queries. Consider a set S = {p0, p1, . . . , pn−1} of n points
on the real line such that pi = 2i. The algorithm sorts all pairs of points based
on their distance. We also assume that for each pair (pi, pj) the index of the first
point in the pair is less than the index of the second point, i.e. i < j. It is easy
to see that the algorithm performs a shortest path query for each pair of points.

Note that if we change the algorithm such that when a new edge is added
to the greedy spanner, it performs a shortest path query for both endpoints of
the new edge and updates the weight matrix then the new algorithm performs
only O(n) shortest path queries on the above counterexample. However, in the
full version of this paper, we give an example where we still need to perform
Ω(n log n) shortest path queries.

Computing the Greedy Spanner in Near-Quadratic Time 393

3 A Preliminary Algorithm

Let V be a set of n points in a metric space with distance function d. As men-
tioned before, for generating the greedy t-spanner, we start with a graph G(V, E)
with no edges and we go through all the pairs of points in V (in increasing order
based on their distances). For each pair we check if there exists a t-path between
them in G, if not we add the edge between them in G.

In the new algorithm we basically do the same thing as the FG-greedy algo-
rithm in the sense that we use the weight matrix to answer the shortest path
queries. The differences are the following:

– We process the pairs whose distance is less than L, for a real number L,
exactly in the way as in the original (or FG-) greedy algorithm.

– We divide the remaining pairs into buckets such that the ith bucket contains
all the pairs whose distance is between 2i−1L and 2iL.

– During the processing of each bucket, we keep the shortest path between
the pairs in the bucket up to date. To do this we update the shortest path
between all pairs in the bucket before processing the pairs in the bucket and
during the process we update it when we add an edge to the graph. Note
that we keep the shortest path length between pairs in a weight matrix.

Without loss of generality we assume that the diameter of the point set is one.
Let 0 < L < 1 be a real number to be specified later. We split the pairs of points
into k = O(log(1

L)) buckets such that the ith bucket, i.e. Ei, contains all the
pairs with distance in [2(i−1)L, 2iL). Let E0 contain all the pairs with distance
less than L.

The algorithm starts with the pairs in E0. It process all the pairs in the set E0
in the same manner as the original (or FG-) greedy algorithm does. Therefore,
if E0 contains O(nβ) pairs then processing it takes O(nβ+1 log n) time. Let G
denote the current greedy spanner after processing E0.

Now we show how to process the remaining buckets. Assume that we have
processed buckets E1, E2, . . . , Ei−1 and we need to process bucket Ei. Before
processing the edges in this bucket, we compute the single-source shortest path
with source at each point p of V and update the weight matrix. Then we make
“local” updates when we add an edge to the graph. By “local” update, we mean
we update the weight matrix for all points nearby each of the endpoints of the
new edge. Since the weight matrix is up to date for all pairs in the current bucket
we can answer the t-path queries in constant time using the weight matrix. For
details see Algorithm 3.1.

Theorem 1. Algorithm 3.1 generates the greedy spanner of the input point set.

Proof. To prove the correctness of the algorithm, we need to prove that the
t-path queries (line 17 of Algorithm 3.1) are answered correctly.

Let (p, q) be an arbitrary pair in Ei with d(p, q) ∈ [Li, 2Li) which is about to
be processed in the algorithm. If there is no t-path between p and q in G then
the algorithm answers the t-path query correctly since the entry in the weight

394 P. Bose et al.

matrix corresponding to the pair is at least equal to the shortest path length
between p and q in G. Assume that there is a t-path between p and q in G. We
have two cases:

Case 1: The shortest path between p and q in G does not pass through any
edges that were added during processing of pairs in Ei. In this case we are done
because before processing the pairs in Ei, we updated all-pair shortest paths
and adding new edges to the graph does not change the shortest path length
between p and q.
Case 2: The shortest path π in G between p and q passes through some edges
of Ei. Among all edges of Ei ∩ π, let (u, v) be the one that was added last by
the algorithm. We may assume without loss of generality that, starting at p, the
path π goes to u, then traverses (u, v), and then continues to q. We define

S(u,v) = {x ∈ V : d(x, u) < (t − 1/2)Li or d(x, v) < (t − 1/2)Li}.

We claim (and show below) that p or q belongs to S(u,v). This will imply that,
in the iteration in which (u, v) is added to the graph, the algorithm computes
the exact shortest-path length between p and all vertices of V , or between q and
all vertices of V . Therefore, at the moment when (p, q) is processed, the value of
weight(p, q) is equal to the shortest-path length in G between p and q.

It remains to prove the claim. Assume that neither p nor q is contained
in S(u,v). Then d(p, u) ≥ (t − 1

2)Li and d(q, v) ≥ (t − 1
2)Li. Thus, if we de-

note the shortest-path length between p and q by dG(p, q), then

dG(p, q) ≥ d(p, u) + d(u, v) + d(v, q) ≥ 2(t − 1/2)Li + Li = 2tLi > t · d(p, q),

which contradicts the fact that there is a t-path in G between p and q. ��

Algorithm 3.1. New-Greedy(V, t,L)

Input: V , t > 1 and L > 0.
Output: t-spanner G = (V, E′).
foreach (u, v) ∈ V 2 do weight(u, v) := ∞;1
E := sorted list of all the pairs in V 2 by increasing distance; /*ties are broken arbitrarily*/2
E0 := all the point pairs in E with distance in [0, L);3
j := 1;4
while E \ (

⋃ j−1
k=1 Ek) �= ∅ do5

Ej := all the point pairs in E \ (
⋃j−1

k=1 Ek) with distance in [2j−1L, 2jL);6
j := j + 1;7

l := j − 1;8
E′ := ∅;9
G := (V, E′);10
Process pairs in E0 in the same way as the original (or FG-) greedy algorithm;11
for i := 1, . . . , l do12

Li := 2i−1L;13
foreach u ∈ V do14

Compute single-source shortest paths with source at u and update weight;15
foreach (u, v) ∈ Ei ; /* in sorted order */16
do if weight(u, v) > t · d(u, v) then E′ := E′ ∪ {(u, v)};17
foreach p ∈ V do18

if d(p, u) < (t − 1
2)Li or d(p, v) < (t − 1

2)Li then19
Compute single-source shortest paths with source at p and update weight;20

return G(V, E′);21

Computing the Greedy Spanner in Near-Quadratic Time 395

Now we show that the algorithm runs in near quadratic time in some special
cases. First we need to recall the well-separated pair decomposition developed
by Callahan and Kosaraju [2] in d-dimensional Euclidean space.

Definition 1. Let s > 0 be a real number, referred to as the separation constant.
We say that two point sets A and B in R

d are well-separated with respect to s,
if there are two disjoint balls DA and DB of the same radius, r, such that

(i) DA contains A and DB contains B,
(ii) the distance between DA and DB is at least s · r.

Lemma 1 ([2]). Let A and B be two finite sets of points that are well-separated
with respect to s, let x and p be points of A, and let y and q be points of B. Then
(i) |xy| ≤ (1 + 4/s) · |pq| and (ii) |px| ≤ (2/s) · |pq|.

Definition 2. Let V be a set of n points in R
d and let s > 0 be a real number. A

well-separated pair decomposition (WSPD) for V with respect to s is a collection
W := {(A1, B1), ..., (Am, Bm)} of pairs of non-empty subsets of V such that

1. Ai and Bi are well-separated with respect to s, for all i = 1, . . . , m.
2. for any two distinct points p and q of V , there is exactly one pair (Ai, Bi)

in the collection, such that (i) p ∈ Ai and q ∈ Bi or (ii) q ∈ Ai and p ∈ Bi.

The number of pairs, m, is called the size of the WSPD. Callahan and Kosaraju[2]
have shown that any set V ⊆ R

d admits a WSPD of size m = O(sdn). Har-
Peled and Mendel [8] generalized the results to metric spaces with doubling
dimension λ. They showed that any set of n points from a metric space with
doubling dimension λ admits a WSPD with respect to s > 1, of size O(sO(λ)n).
In the rest of the paper, we assume that V is a set of n points from a metric
space with doubling dimension λ.

Observation 1. If {(Ai, Bi)}i is a WSPD of a point set V with respect to
s = 4(t+1)

t−1 , then for each i, there is at most one greedy edge between Ai and
Bi in the t-spanner generated by the greedy algorithm.

Proof. Assume that we have a pair (A, B) in the WSPD such that there exist
two edges (a1, b1) and (a2, b2) in the greedy t-spanner where a1, a2 ∈ A and
b1, b2 ∈ B. Without loss of generality assume the greedy algorithm process the
pair (a1, b1) before the pair (a2, b2).

Because A and B are s-well-separated pair, by Lemma 1, we have d(a1, a2) ≤
2
s d(a2, b2) < d(a2, b2). By the same argument d(b1, b2) < d(a1, b1). Therefore,
there exists a t-path between a1 and a2 and a t-path between b1 and b2 when
the greedy algorithm processes the pair (a2, b2). Let G′ be the graph just before
processing (a2, b2) and let P be a path in G′ between a2 and b2 generated by
concatenating a t-path between a2 and a1, the edge (a1, b1) and a t-path between
b1 and b2. If |P | denotes the length of the path P , then

396 P. Bose et al.

|P | = dG′(a2, a1) + d(a1, b1) + dG′(b1, b2)
≤ t · d(a2, a1) + d(a1, b1) + t · d(b1, b2)

≤ t · 2
s

d(a2, b2) + (1 +
4
s
)d(a2, b2) + t · 2

s
d(a2, b2) (by Lemma 1)

= (
4t

s
+ 1 +

4
s
)d(a2, b2)

= t · d(a2, b2).

This means that the greedy algorithm does not add (a2, b2) to the spanner since
there already exist a t-path between them in G′. ��

As a corollary, since there exists a linear size WSPD for any point set in a metric
space with bounded doubling dimension, the size of a greedy t-spanner on such
a point set is linear.

Lemma 2. While processing the pairs in Ei, for each point p, line 20 in Algo-
rithm 3.1 is executed O(1

(t−1)O(λ)) times.

Proof. For simplicity, we first prove the lemma in the 2-dimensional Euclidean
case. Assume the distance between the pairs in Ei is in [L, 2L). Algorithm 3.1
performs a single-source shortest path computation with source at p, after adding
an edge (u, v) to the graph, if d(p, u) < (t − 1

2)L or d(p, v) < (t − 1
2)L. So if we

draw a ball C with center at p and radius (2t + 1)L, then all the edges which
affect p lies inside the ball C. So the number of times we need to execute line 20
for p is at most the number of edges in the greedy spanner with length between
L and 2L which lie inside C. Now we show that the number of such edges is at
most O(1

(t−1)2).
To show this, assume B is a square with side length 2(2t + 1)L which in-

cludes C. We cover the square B with cells of side length � = L√
2(s+4)

where s =
4(t+1)

t−1 . The number of such cells inside B is
(
2
√

2(2t + 1)(s + 4)
)2

= O(1
(t−1)2).

Let (u, v) be a greedy edge with distance in the interval [L, 2L). First we show
that the grid cells which contains u and v are s-well-separated. Assume C1 and
C2 are balls with radius

√
2� which contain the grid cell of u and the grid cell of

v, respectively— see Fig. 1. Since d(u, v) ≥ L and the radius of the circles are√
2�, the distance between C1 and C2 is at least L − 4

√
2�. Therefore

d(C1, C2) ≥ L − 4
√

2� = L − 4
√

2
L√

2(s + 4)
= L(

s

s + 4
) = s(

L

s + 4
) = s ×

√
2�

which means the cells are s-well-separated.
Therefore, by Observation 1, we have at most one greedy edge between grid

cells which are well-separated. This means that the number of the greedy edges
with distance in [L, 2L) inside the circle C is bounded by the number of cell
pairs which is O(1

(t−1)4).
For the general case, the same argument works. In this case we use the prop-

erty of doubling dimension which guarantees that each ball of radius r > 0 can
be covered by 2λ balls of radius r/2. This means that the number of balls with
radius

√
2� inside the ball C centered at p is O(1

(t−1)O(λ)). ��

Computing the Greedy Spanner in Near-Quadratic Time 397

�

�
u

v

≥ L

C1

C2

p

2(
2t

+
1)

L

(2t + 1)L

Fig. 1. Illustration for the proof of Lemma 2

Nowweare ready to compute the time complexity ofAlgorithm3.1.Clearly lines 1–
11 of the algorithm take O(n2 log n) time. For line 12, if the size of E0 is β then it
takes O(β(m + n log n)) since for each pair it performs a shortest path query.

For each interval, computing all-pairs shortest path, lines 15–17, takes
O(mn + n2 log n) time, and by Lemma 2, the update procedure takes at most
O(1

(t−1)O(λ) (mn + n2 log n)). Since the number of intervals is O(log(1/L)), pro-

cessing all intervals takes O
(

log(1/L)
(t−1)O(λ) (mn + n2 log n)

)
time. For a metric space

with doubling dimension λ, the size of the generated graph is O(n
(t−1)O(λ)), the

total running time of Algorithm 3.1 is O
(

βn+log(1/L)n2 log n
(t−1)O(λ)

)
. Therefore for a

point set V with the property that there exists a real number L such that
1
L = O(nc) (c is a constant) and β = O(n log2 n), the greedy spanner can be
computed in O(n2 log2 n) time.

Points Sets with Polynomial Aspect Ratio. If the input point set has
aspect ratio less than nc, for some constant c, then by scaling the point set such
that the longest distance is 1 and setting L = 1

nc , we have no pair of points in
the scaled point set with distance less than L. Therefore the running time of
Algorithm 3.1 in this case is O(n2 log2 n

(t−1)O(λ)).

Uniformly Distributed Point Set. Assume we have a set of n points uni-
formly distributed inside the unit square and let L = 1√

n
. Since the points are

uniformly distributed, for each point p, the expected number of points inside the
ball with center at p and radius L is L2n. So the expected number of pairs with
distance less than L is L2n2/2 = O(n). Therefore, the expected running time of
Algorithm 3.1 in this case is O(n2 log2 n

(t−1)O(λ)).

4 An Improved Algorithm

To generalize the results of the previous section to bounded doubling dimension,
we have to overcome obstacles. First, we need to speedup processing the pairs
in the first set (i.e. the set E0). The second problem is that if we decrease the

398 P. Bose et al.

number L to bound the number of pairs in the first interval, it increases the
number of buckets which causes higher time complexity. We overcome these
difficulties by modifying the previous algorithm in the following way.

– we partition the
(
n
2

)
pairs into a linear number of buckets,

– we maintain a data structure for each point during the algorithm. When we
need to update a point, instead of doing a single-shortest path computation
from scratch, we use the data structure to update just the necessary part
and use it to update the weight matrix.

First we claim that for updating the shortest path lengths with source at a point
p, performing a length-bounded Dijkstra’s algorithm is sufficient. More precisely,
if we are working on point pairs in a bucket with distances in [L, 2L) and we need
to update the shortest path lengths with source at p, it is sufficient to update
the distance between p and all the points q such that dG(p, q) < 2tL, where G
is the current graph. The reason is that if dG(p, q) ≥ 2tL then either the pair
(p, q) is outside the current bucket or there is no t-path between p and q in G.

So, in the new algorithm, we maintain a data structure for each point, which
is the same as the data structure used in the Dijkstra’s single-source shortest
paths algorithm. When we perform a shortest path query with bound U , we
execute Dijkstra’s algorithm but stop when the key of the element on the top
of the priority queue (heap) is bigger than U . We also maintain a stack storing
all changes that are made to the heap in this process, so that we can undo the
procedure, if required.

Note that our graph is dynamic and we add edge(s) to the graph, in increasing
order of length. We use the “undo facility” to fix the part of the execution of
Dijkstra’s algorithm that is affected by the insertion of an edge. For the details
of the algorithm, see Algorithm 4.1.

To complete the correctness proof, we show that in the algorithm, the shortest
path queries are answered correctly. To do this, we show that the length-bounded
Dijkstra’s algorithm on a subgraph of the greedy spanner works exactly same as
Dijkstra’s algorithm on the greedy spanner.

Lemma 3. Let Ge be the subgraph of the greedy spanner G that contains all the
edges added to the graph up to the processing of the pair e = (p, q) in the greedy
algorithm. Let u be an arbitrary vertex of G. As long as the key of the element
on the top of the heap in Dijkstra’s algorithm with source at u is less than d(p, q)
the algorithm works the same on G and Ge.

Proof. Let x be a vertex of the graph G and assume the shortest path between
u and x passes through at least one edge in E \Ee. Since the length of each edge
in E \Ee is at least d(p, q), the key of the point x in the heap is at least d(p, q).
This completes the proof. ��

4.1 Running Time

Now, we show that Algorithm 4.1 runs in O(n2 log n) time. To this end, we
show that for each point p ∈ V the overall time spent is proportional to running
Dijkstra’s single-source shortest paths algorithm with source p.

Computing the Greedy Spanner in Near-Quadratic Time 399

Algorithm 4.1. Quad. Greedy(V, t)
Input: V and t > 1.
Output: t-spanner G = (V, E′).
foreach (u, v) ∈ V 2 do weight(u, v) := ∞;1
E := sorted list of all the pairs in V 2 by increasing distance; /*ties are broken arbitrarily*/2
L1 := the distance between the closest pair in E;3
E1 := all the pairs in E with distance in [L1, 2L1);4
j := 2;5
while E \ (

⋃ j−1
k=1 Ek) �= ∅ do6

Lj := the distance between the closest pair in E \ (
⋃j−1

k=1 Ek);7
Ej := all the pairs in E \ (

⋃ j−1
k=1 Ek) with distance in [Lj, 2Lj);8

j := j + 1;9
l := j − 1;10
E′ := ∅; G := (V, E′);11
foreach u ∈ V do12

Initialize PQu required for executing Dijkstra’s algorithm with source at u;13
for i := 1, . . . , l do14

foreach u ∈ V ;15
do16

τu := ∅;17
Dijkstra-Bounded(G, u, 2tLi, PQu, τu);18

foreach (u, v) ∈ Ei; /* in sorted order */19
do20

if weight(u, v) > t · d(u, v) then21
E′ := E′ ∪ {(u, v)};22
foreach p ∈ V do if d(p, u) < (t − 1

2)Li or d(p, v) < (t − 1
2)Li then23

Update(G, p, u, v, 2tLi, PQp, τp);24
return G(V, E′);25

Algorithm 4.2. Update(G, s, u, v, L, PQ, τ)
if weight(s, v) < weight(s, u) + d(u, v) and weight(s, u) < weight(s, v) + d(u, v) ; /* This1
means adding (u, v) does not change any shortest path with source at s */
then2

return ;3
else4

if weight(s, v) < weight(s, u) + d(u, v) then5
Swap u and v;6

Dijkstra-Undo(τ, PQ, weight(s, u) + d(u, v));7
Decrease the key of v to weight(s, u) + d(u, v) in PQ;8
Dijkstra-Bounded(G, s, L, PQ, τ)9

Algorithm 4.1 basically performs Dijkstra’s algorithm with source at each
point of the graph. The only differences are

– it performs bounded Dijkstra’s algorithm and
– it fixes the process after adding edge(s) to the graph by undoing some parts

and redoing it.

The following lemma follows from [7]:

Lemma 4. The value of l computed in line 10 of Algorithm 4.1 is O(n).

Now we show that for any point p, the time we spend to update p in the whole
process is proportional to the time for running Dijkstra’s algorithm with source
at p. Assume we are processing the point pairs in Ei and let G be the current
graph. As one can see in Algorithm 4.1, when we process the pairs in Ei, for

400 P. Bose et al.

Algorithm 4.3. Dijkstra-Bounded(G, s, L, PQ, τ)
Input: Graph G, a vertex s, a real number L and a priority queue PQ.
Output: Shortest path length between s and all other vertices in G which has length at most

L.
while The key of the element on the top of PQ is at most L do1

u := pop the element with minimum key from PQ;2
weight(s, u) := weight(u, s) := the key of u;3
foreach node v adjacent to u in G do4

if weight(s, u) + wt(u, v) < weight(s, v) then5
Decrease the key of v in PQ to weight(s, u) + wt(u, v) and add all the changes6
in PQ to the stack τ ; /* To be used in the undo procedure. */

Algorithm 4.4. Dijkstra-Undo(τ, PQ, L)
Input: a stack τ , a priority queue PQ and a real number L.
while the key of the element on the top of τ is at most L do1

Pop the top element from τ ;2
Undo the changes on PQ based on the information in the element;3

updating followed by adding an edge, we undo the execution of Dijkstra’s algo-
rithm until the key of the points on the top of the heap is less than the length
of the new edge and redo the execution until the key of the point on the top
of the heap is more than 2tLi. But the length of the new edge is at least Li

which means that the undo process never goes further when the key on the top
of the heap is less than Li. We say that a vertex q is in the undo area of Ei if
Li ≤ dG(p, q) ≤ 2tLi. The claim is that each point q appears in the undo area
for a constant number of sets. To prove this let q be in the undo area of Ei.
This means

Li ≤ dG(p, q) ≤ 2tLi. (1)

We show that q can not be in the undo area of Ej if j > i + log t. Let G′ be
the graph when we process the pairs in Ej . Since we add edge(s) to the graph,
we know that for each pair (p, q) of points dG′(p, q) ≤ dG(p, q). Since for each i,
Li+1 > 2Li we have Li+k > 2kLi, for each k > 0. Using Equation (1), we have

dG′(p, q) ≤ dG(p, q) ≤ 2tLi <
2t

2log t
Lj ≤ Lj,

which means q is not in the undo area of Ej .
On the other hand, by Lemma 2, we update the shortest paths with source

p at most O(1
(t−1)O(λ)) times in each set Ei. This means in total we need to

recompute the shortest path between p and any point q at most O(log t
(t−1)O(λ))

times. Therefore, the whole process for a fixed point p takes O(log t
(t−1)O(λ) n log n)

time. So we have the following theorem.

Theorem 2. For each point set V of n points from a metric space with doubling
dimension λ, we can compute the greedy t-spanner of V in O(log t

(t−1)O(λ) n
2 log n)

time using O(n2) space.

Computing the Greedy Spanner in Near-Quadratic Time 401

5 Conclusion

In this paper we presented an algorithm which, given a set of n points from a
metric space with bounded doubling dimension, computes the greedy spanner of
the point set in O(n2 log n) time. In the greedy spanner, every point is connected
to its nearest neighbor. Therefore, we can compute all nearest neighbors of the
input point set using the greedy spanner in O(n) time. Har-Peled and Mendel [8]
showed that the all nearest neighbor problem has an Ω(n2) lower bound for
metric spaces with bounded doubling dimension. This implies that computing
the greedy t-spanner also has an Ω(n2) lower bound. There is a logarithmic gap
between the running time of the greedy algorithm presented in this paper and the
lower bound. Another interesting problem is finding a o(mn2) time algorithm for
constructing the greedy graph on a set of n points from a metric space, where m
is the number of edges in the greedy graph. In the special case where the points
are a subset of R

2, is there a o(n2) algorithm for constructing the greedy graph?

References

[1] Althöfer, I., Das, G., Dobkin, D.P., Joseph, D., Soares, J.: On sparse spanners of
weighted graphs. Discrete and Computational Geometry 9(1), 81–100 (1993)

[2] Callahan, P.B., Kosaraju, S.R.: A decomposition of multidimensional point sets
with applications to k-nearest-neighbors and n-body potential fields. Journal of
the ACM 42, 67–90 (1995)

[3] Chew, L.P.: There is a planar graph almost as good as the complete graph. In:
SCG 1986: Proceedings of the 2nd Annual ACM Symposium on Computational
Geometry, pp. 169–177 (1986)

[4] Das, G., Narasimhan, G.: A fast algorithm for constructing sparse Euclidean span-
ners. Int. J. of Computational Geometry & Applications 7, 297–315 (1997)

[5] Farshi, M., Gudmundsson, J.: Experimental study of geometric t-spanners. In:
Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 556–567.
Springer, Heidelberg (2005)

[6] Farshi, M., Gudmundsson, J.: Experimental study of geometric t-spanners: A
running time comparison. In: Demetrescu, C. (ed.) WEA 2007. LNCS, vol. 4525,
pp. 270–284. Springer, Heidelberg (2007)

[7] Har-Peled, S.: A simple proof? (2006), http://valis.cs.uiuc.edu/blog/?p=362
[8] Har-Peled, S., Mendel, M.: Fast construction of nets in low-dimensional metrics

and their applications. SIAM Journal on Computing 35(5), 1148–1184 (2006)
[9] Keil, J.M., Gutwin, C.A.: Classes of graphs which approximate the complete Eu-

clidean graph. Discrete and Computational Geometry 7, 13–28 (1992)
[10] Narasimhan, G., Smid, M.: Geometric spanner networks. Cambridge University

Press, Cambridge (2007)
[11] Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM,

Philadelphia (2000)
[12] Peleg, D., Schäffer, A.: Graph spanners. Journal of Graph Theory 13, 99–116

(1989)
[13] Russel, D., Guibas, L.J.: Exploring protein folding trajectories using geometric

spanners. In: Pacific Symposium on Biocomputing, pp. 40–51 (2005)

http://valis.cs.uiuc.edu/blog/?p=362

Parameterized Computational Complexity
of Dodgson and Young Elections

Nadja Betzler�, Jiong Guo��, and Rolf Niedermeier

Institut für Informatik, Friedrich-Schiller-Universität Jena, Ernst-Abbe-Platz 2,
D-07743 Jena, Germany

{betzler,guo,niedermr}@minet.uni-jena.de

Abstract. We show that, other than for standard complexity theory
with known NP-completeness results, the computational complexity of
the Dodgson and Young election systems is completely different from a
parameterized complexity point of view. That is, on the one hand, we
present an efficient fixed-parameter algorithm for determining a Con-
dorcet winner in Dodgson elections by a minimum number of switches in
the votes. On the other hand, we prove that the corresponding problem
for Young elections, where one has to delete votes instead of performing
switches, is W[2]-complete. In addition, we study Dodgson elections that
allow ties between the candidates and give fixed-parameter tractabil-
ity as well as W[2]-hardness results depending on the cost model for
switching ties.

1 Introduction

Computational social choice and, more specifically, the computational complex-
ity of election systems has become an increasingly important field of interdisci-
plinary research [3,7]. Besides the obvious application in computational politics
where the fact that people have varying preferences concerning whom to elect
leads to preference aggregation demands via some election system, it also has
become very important in multiagent systems: In groups of software agents often
a common decision has to be found, again taking into account different prefer-
ences about which decision is to be made. Thus, election systems for instance
play a central role in planning (artificial intelligence in general) or page ranking
systems for Internet search engines.

We study the following classic scenario for election systems: There is a set of
candidates and a set of vote(r)s and each voter chooses an order of preference
(total order) among the candidates. The well-known Condorcet principle from
1785 then requires that a winner of an election is the candidate who is preferred
to each other candidate in more than half of the votes. Unfortunately, a Con-
dorcet winner does not always exist. Hence, several voting systems have been
proposed which always choose the Condorcet winner if it exists, and, otherwise,
� Supported by the DFG, research project DARE, GU 1023/1.

�� Supported by the DFG, Emmy Noether research group PIAF, NI 369/4.

J. Gudmundsson (Ed.): SWAT 2008, LNCS 5124, pp. 402–413, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Parameterized Computational Complexity of Dodgson and Young Elections 403

pick a candidate that is in some sense closest to being a Condorcet winner. In
other words, these election systems deal with certain “editing problems”. In this
work, we focus on two classic editing problems from social choice theory [15],
that is, the one due to C. L. Dodgson1 from 1876 and the one due to H. P. Young
from 1977. In Dodgson elections, the editing operation is to switch neighboring
candidates in the voters’ preference lists and the goal is to minimize the overall
number of switches needed in order to end up with a Condorcet winner. In Young
elections, the editing operation is to remove a vote, again trying to minimize the
number of removals in order to end up with a Condorcet winner.

In their seminal work, Bartholdi et al. [1] initiated the study of the compu-
tational complexity of election systems. They showed that to decide whether a
distinguished candidate can be made a Condorcet winner by performing no more
than a given number of editing operations is NP-complete for both Dodgson and
Young elections. In a further breakthrough, for Dodgson elections Hemaspaan-
dra et al. [11] and later for Young elections Rothe et al. [18] showed that the
corresponding winner and ranking problems are even complete for Θp

2 , the class
of problems that can be solved via parallel access to NP. Thus, Faliszewski et al.
[7] concluded that “since checking whether a given candidate has won should
be in polynomial time in any system to be put into actual use, these results
show that Dodgson and Young elections are unlikely to be useful in practice”.
This is the point of view of classical, “one-dimensional” computational complex-
ity analysis.2 By way of contrast, we propose the framework of parameterized
computational complexity theory [6,9,16] for studying election systems.3

For Dodgson and Young elections, we consider the question whether the NP-
hard problems become fixed-parameter tractable with respect to the parameter
number of editing operations. We choose this standard parameterization4 as a
natural first step towards a systematic (future) study using further parameter-
izations. As we can show, other than in the classical context, the parameter-
ized complexity of Dodgson and Young elections completely differs. For n votes
and m candidates, for Dodgson elections we can determine in O(2k · nk + nm)
time whether a distinguished candidate can be made a Condorcet winner by
performing at most k switches, that is, the problem is fixed-parameter tractable
with respect to the parameter k. In contrast, for Young elections the correspond-
ing problem with the parameter denoting either the number of deleted votes or
the number of remaining votes becomes W[2]-complete. Our results imply that
Dodgson elections can be put in actual use whenever the input instances are close
to having a Condorcet winner. This answers an open question of Christian et al.
[4]5 and refutes a parameterized hardness conjecture of McCabe-Dansted [13].

1 Also known as the writer Lewis Carroll.
2 For more classical complexity results w.r.t. election systems we refer to [5,10].
3 In companion work [2], we also do so for Kemeny elections.
4 In parameterized algorithmics [6,9,16] the solution size typically is the “standard

parameter”.
5 In the meantime, Fellows et al. independently showed that Dodgson Score is fixed-

parameter tractable with a worse running time [8].

404 N. Betzler, J. Guo, and R. Niedermeier

Moreover, this complements recent work on a simple greedy heuristic for finding
Dodgson winners with a guaranteed frequency of success [12] and some work
on the approximability of Dodgson and Young elections [14,17]. In particular,
Procaccia et al. [17] gave (randomized) approximation algorithms for Dodgson
elections and show that it is hard to approximate Young elections by any factor.
Moreover, for Dodgson elections we can show that allowing ties (that is, votes
may remain undecided between certain candidates), depending on the choice be-
tween two switching mechanisms, we either obtain fixed-parameter tractability
or W[2]-completeness.

Due to lack of space, several details had to be deferred to the full version of
this paper.

2 Preliminaries

Throughout this work, an election (V, C) consists of a set V of n votes and a
set C of m candidates.6 A vote is a preference list of the candidates, that is,
for each voter the candidates are ordered by preference. For instance, in case
of three candidates a, b, c, the ordering a < b < c would mean that candidate c
is the best liked one and candidate a is the least liked one for this voter. We
also consider the case where ties are allowed in the votes, that is, instead that a
vote consists of a totally ordered list of candidates it then may only be partially
ordered. In an election (V, C), a candidate c ∈ C is called Condorcet winner
if c wins against every other candidate from C, that is, for each d ∈ C\{c},
candidate c is better liked than d in at least �n/2�+ 1 votes, or, having ties, the
number of votes in which c is better liked than d is higher than the number of
votes in which d is better liked than c. Observe that a Condorcet winner does
not always exist. As a consequence, several specific election systems have been
introduced to remedy this situation. Here, we study two popular ones, that is,
Dodgson and Young elections. To this end, define as a switch the swapping of
the two positions of two neighboring candidates in a vote. Based on this, we now
can introduce the basic computational problems of this work:

Dodgson Score:
Given: An election (V, C), a distinguished candidate c ∈ C, and an
integer k ≥ 0.
Question: Can c be made a Condorcet winner by at most k switches?

In other words, for Dodgson Score, we ask whether the Dodgson score of c is
at most k. The Young score is defined by the number of remaining votes:

Young Score:
Given: An election (V, C), a distinguished candidate c ∈ C, and an
integer l ≥ 0.
Question: Is there a subset V ′ ⊆ V of size at least l such that (V ′, C)
has the Condorcet winner c?

6 Note that we identify votes and voters.

Parameterized Computational Complexity of Dodgson and Young Elections 405

The dual Young score is defined by the number of removed votes:

Dual Young Score:
Given: An election (V, C), a distinguished candidate c ∈ C, and an
integer k ≥ 0.
Question: Is there a subset V ′ ⊆ V of size at most k such that (V \V ′, C)
has the Condorcet winner c?

Note that all three problems are NP-complete [1,18].
To present our results, an important concept is the one of the deficit of a

candidate d ∈ C\{c} against the distinguished candidate c: Let Nd denote the
number of votes from V in which d defeats c, that is, in which d is better posi-
tioned than c. Then, the Dodgson deficit of d is �(Nd − (n−Nd))/2�+1, that is,
the minimum number of votes in which the relative order of c and d has to be re-
versed such that c defeats d in strictly more than half of the votes. Analogously,
the Young deficit is defined as Nd − (n−Nd). Moreover, we call a candidate with
a positive Dodgson deficit dirty.

Finally, we briefly introduce the relevant notions of parameterized complex-
ity theory [6,9,16]. Parameterized algorithmics aims at a multivariate (at least
two-dimensional) complexity analysis of problems. This is done by studying rel-
evant problem parameters and their influence on the computational complexity
of problems. The hope lies in accepting the seemingly inevitable combinatorial
explosion for NP-hard problems, but to confine it to the parameter. Hence, the
decisive question is whether a given parameterized problem is fixed-parameter
tractable (FPT) with respect to the parameter, say k. In other words, here we ask
for the existence of a solving algorithm with running time f(k) · poly(n, m) for
some computable function f . Unfortunately, not all parameterized problems are
fixed-parameter tractable. Downey and Fellows [6] developed a theory of param-
eterized intractability by means of devising a completeness program with com-
plexity classes. The first two levels of (presumable) parameterized intractability
are captured by the complexity classes W[1] and W[2]. We will show several
W[2]-completeness results. There is good reason to believe that the correspond-
ing problems thus are not fixed-parameter tractable. To this end, a reduction
concept is needed. A parameterized reduction reduces a problem instance (I, k)
in f(k) · poly(|I|) time to an instance (I ′, k′) such that (I, k) is a yes-instance iff
(I ′, k′) is a yes-instance and k′ only depends on k but not on |I|.

3 Dodgson Score

In this section, we describe an efficient fixed-parameter algorithm based on dy-
namic programming for the Dodgson Score problem with respect to the pa-
rameter score, answering an open question of Christian et al. [4]. The algorithm
can not only decide whether a given Dodgson Score instance is a “yes”-
instance, but for a “yes”-instance also constructs a set of at most k switches
which lead to a modified input instance where the distinguished candidate c
becomes a Condorcet winner. The following two observations are used for the
design of the algorithm:

406 N. Betzler, J. Guo, and R. Niedermeier

First, it is easy to see (McCabe-Dansted [13, Lemma 2.19]) that there is always
an optimal solution that considers only switches that move c in a vote to bet-
ter positions (Observation 1). Making use of this, our algorithm only considers
switches of such kind. Second, since a switch never increases any deficit, we only
consider candidates with positive deficit (dirty candidates). With one switch, we
can decrease the deficit of exactly one candidate by one. Therefore, with at most k
switches allowed, in a yes-instance, the sum of the deficits of the dirty candidates
is upper-bounded by k (Observation 2). This fact is crucial for the analysis of the
algorithm when bounding the size of the dynamic programming table.

The basic idea of the algorithm is that a solution can be decomposed into sub-
solutions. In each subsolution the deficit of each dirty candidate is decreased by
a certain amount, the partial decrement. More precisely, our dynamic program-
ming considers a linear number of subsets of votes, beginning with the subset
that contains only one vote and then extending it by adding the other votes one
by one. For each of these vote subsets, we consider all possible combinations of
partial decrements of deficits.

Definitions for the Algorithm. Let c be the distinguished candidate and let Cd =
(c1, c2, . . . , cp) denote the list of candidates with positive deficit in an arbitrary
but fixed order. Let D = (d1, d2, . . . , dp) be the corresponding deficit list.

The dynamic programming table is denoted by T , each row correspond-
ing to a vote vi for i = 1, . . . , n and each column corresponding to a par-
tial deficit list (d′1, d

′
2, . . . , d

′
p) with 0 ≤ d′j ≤ dj for 1 ≤ j ≤ p. The entry

T (vi, (d′1, d
′
2, . . . , d

′
p)) stores the minimum number of switches within the votes

{vj | 1 ≤ j ≤ i} that result in a new instance where the deficits of the p dirty
candidates are at most d′1, d

′
2, . . . , d

′
p, respectively.7 If a deficit list (d′1, d

′
2, . . . , d

′
p)

cannot be achieved by switching within the set of votes {vj | 0 ≤ j ≤ i}, we set
T (vi, (d′1, d

′
2, . . . , d

′
p)) := +∞.

Let switch(vi, cj) denote the minimum number of switches needed such that
in vote vi candidate c defeats candidate cj . If c already defeats cj in vi, then
switch(vi, cj) := 0. For a deficit list D′ = (d′1, d

′
2, . . . , d

′
p) and a subset of indices

S ⊆ {1, . . . , p}, we use D′+S to denote a deficit list (e1, . . . , ep) where ei := d′i+1
for i ∈ S and d′i < di, and ei := d′i, otherwise. Analogously, for the original deficit
list D = (d1, . . . , dp), D − S denotes the list (f1, . . . , fp) where fi := di − 1 if
i ∈ S and fi := di, otherwise. Let best(S, i) denote the candidate cj with j ∈ S
that is best in vote vi.

Algorithm. The dynamic programming algorithm for Dodgson Score is given
in Figure 1. We assume that we already have the deficits of the candidates
and the sum of the deficits of the dirty candidates is at most k as argued in
Observation 2. In the initialization of the first row of the dynamic programming
table (Figure 1, lines 4–6), the algorithm considers all possible combinations of
deficit decrements that can be achieved by switches within the first vote, and

7 Note that with this definition of table entries, we do not have to consider deficit lists
(d′

1, . . . , d
′
p) where d′

i < 0 for some i. In this way, the case that an optimal solution
may decrease the deficit of a dirty candidate to a negative value is also covered.

Parameterized Computational Complexity of Dodgson and Young Elections 407

Algorithm. DodScore
Input: Set of votes V = {v1, . . . , vn}, set of candidates C, set of dirty candidates
Cd = {c1, . . . , cp} ⊆ C, distinguished candidate c, positive integer k with p ≤ k, deficit
list D = (d1, . . . , dp) of dirty candidates
Output: Yes, if c can become a Condorcet winner with at most k switches

Initialization:
01 for all D′ = (d′

1, . . . , d
′
p) with 0 ≤ d′

j ≤ dj for 0 ≤ j ≤ p
02 for i = 1, . . . , n
03 T (vi, D

′) := +∞
04 for all S ⊆ {1, . . . , p}
05 if cj defeats c in v1 for all j ∈ S then
06 T (v1, D − S) := switch(v1, best(S, 1))
Recursion:
07 for i = 2, . . . , n
08 for all D′ = (d′

1, . . . , d
′
p) with 0 ≤ d′

j ≤ dj for 0 ≤ j ≤ p
09 for all S ⊆ {1, . . . , p}
10 if cj defeats c in vi for all j ∈ S then
11 T (vi, D

′) := min{T (vi, D
′), T (vi−1, D

′ + S) + switch(vi, best(S, i))}

Output:
12 if T (vn, (0, 0, . . . , 0)) ≤ k then
13 return “Yes”

Fig. 1. Algorithm for Dodgson Score

stores the minimum number of switches needed for each of them. In the recursion
(lines 7–11), the subset of votes is extended by a new vote vi and for the new
subset {v1, . . . , vi} a solution for all partial deficit lists is computed by combining
a number of switches within the new vote vi with information already stored in
the table.

Lemma 1. The algorithm DodScore (Figure 1) is correct.

Lemma 2. The algorithm DodScore (Figure 1) runs in O(4k · nk + nm) time.

Proof. (Sketch) It is easy to see that the deficit list D can be computed in O(nm)
time by iterating over all votes and counting the deficits for all candidates. Now,
we consider the size of the dynamic programming table.

A deficit d′i can have values ranging from 0 to di. Hence, the number of partial
deficit lists, that is, the number of columns in the table, is

∏p
i=1(di +1). Clearly,

for a potential “yes”-instance, we have the constraints p ≤ k and
∑p

i=1 di ≤ k
(see Observations 1 and 2). It is not hard to see that 2k is a tight upper bound
on

∏p
i=1(di + 1). Thus, the overall table size is n · 2k.

For computing an entry T (vi, D
′), the algorithm iterates over all 2p subsets

of {1, . . . , p}. For each such subset S, it computes the “distance” in vi between
the best of the dirty candidates with indices in S and c, that is, the number of
switches needed to make c better than this best dirty candidate. This distance
can be computed in O(k) time and, hence, the computation of T (vi, D

′) can be

408 N. Betzler, J. Guo, and R. Niedermeier

done in O(2k · k) time. The initialization clearly needs O(2k · n) time. Hence,
table T can be computed in O(2k · n · 2k · k + 2k · n) = O(4k · nk) time. 	

By making use of a “monotonicity property” of the table, we can improve the
running time of DodScore as shown in the following theorem.

Theorem 1. Dodgson Score can be solved in O(2k · nk + nm) time.

Proof. The improvement is achieved by replacing the innermost for-loop (lines 9–
11) of the recursion which computes a table entry and needs O(2k · k) time as
shown in Lemma 2 by an instruction running in time linear in k.

Let Si(d) denote the set of the dirty candidates that are better than the
distinguished candidate c but not better than the candidate d in vote vi. This
set is empty if d is worse than c in vi. We replace lines 9–11 in Figure 1 by the
following recurrence:

T (vi, D
′) := min

1≤r≤p
{T (vi−1, D

′ + Si(cr)) + switch(vi, cr)}.

To prove the correctness of the recurrence, on the one hand, observe that,
for every r with 1 ≤ r ≤ p, there exists a subset S ⊆ {1, . . . , p} satisfying the
if-condition in line 10 of DodScore such that S = Si(cr) and best(S, i) = cr.
Thus,

min
S⊆{1,...,p}

{T (vi−1, D
′ + S) + switch(vi, best(S, i))}

≤ min
1≤r≤p

{T (vi−1, D
′ + Si(cr)) + switch(vi, cr)}.

On the other hand, for every S ⊆ {1, . . . , p} satisfying the if-condition in
line 10, there exists an r with 1 ≤ r ≤ p such that S ⊆ Si(cr). For instance, let r
be the index of the candidate in S that is the best in vi; we then have best(S, i) =
cr and, thus, switch(vi, best(S, i)) = switch(vi, cr). Moreover, from the definition
of table entries, the following monotonicity of the table is easy to verify:

T (vi, (d1, . . . , di, . . . , dp)) ≥ T (vi, (d1, . . . , di + 1, . . . , dp))

Thus, from S ⊆ Si(cr), we conclude that T (vi, D
′ + S) ≥ T (vi, D

′ + Si(cr)).
Since Si(cr) ⊆ {1, . . . , p} and, by the definition of Si(cr), this subset satisfies the
if-condition in line 10, we then have

min
1≤r≤p

{T (vi−1, D
′ + Si(cr)) + switch(vi, cr)}

≤ min
S⊆{1,...,p}

{T (vi−1, D
′ + S) + switch(vi, best(S, i))}.

The time for computing a table entry in the improved version is clearly O(k):
Before looking for the minimum, we can compute Si(cr) for all 1 ≤ r ≤ p by
iterating one time over vi. Then, based on Lemma 2, the overall running time
becomes O(2k · nk + nm). 	

Parameterized Computational Complexity of Dodgson and Young Elections 409

Allowing Ties. As noted by Hemaspaandra et al. [11], there are two natural ways
going from total to partial orders. In the first model, transforming c < a = b
into a = b < c costs one switch and in the second model it costs two switches.
We denote the problem based on the first model by Dodgson Tie Score 1

(DTS1) and the problem based on the second one by Dodgson Tie Score 2

(DTS2). In the second model we allow c to improve upon an arbitrary subset
of equally ranked candidates in order to prevent for “paying” for all equally
ranked candidates in a vote even if some of the candidates have already negative
deficits.8 Note that, in the case with ties, the deficit of a candidate d �= c is
defined as �(Nd − Nd)/2� + 1, where Nd is the number of votes in which d
defeats c and Nd is the number of votes in which c defeats d. Further, one can
choose upon which candidate one likes to improve c with the first switch. Then,
the order within a set of equally ranked candidates including c does matter, for
example, starting with c < a = b < d, by one switch we can either achieve
a < c < b < d or b < c < a < d. To improve c upon d, we need two additional
switches in both cases. Moreover, with ties, we have now two sorts of switches:
The first sort swaps the positions of c and other candidates, as in the case without
ties, and the second sort breaks and builds ties between c and other candidates.
Since these two sorts of switches decrease the deficits of candidates by different
values, we introduce the notion of “switch cost”. We associate a switch of the
first sort with cost 2, while a switch of the second sort has cost 1. For example,
given c < a < b, by one switch between c and a, we can get c = a < b or a < c < b.
However, the switch in the first case has cost 1 but the second case needs a cost-2
switch. Finally, the parameter we consider in the following is the total cost of
the switches needed to make c a Condorcet winner.

Whereas the both variants DTS1 and DTS2 remain NP-complete (which eas-
ily follows from the NP-completeness of the case without ties [1]), their param-
eterized complexity differs. The problem DTS2 is fixed-parameter tractable, but
DTS1 becomes W[2]-complete.9 Note that compared to Theorem 1 (without ties)
we obtain a slightly worse running time for DTS2. More precisely, due to a slight
modification of algorithm DodScore from Figure 1 we can state the following.

Theorem 2. Dodgson Tie Score 2 can be solved in O(4k · nk + nm) time.

Theorem 3. Dodgson Tie Score 1 is W [2]-complete with respect to the
parameter k.

4 Young Score

In this section, we show that Young Score and Dual Young Score are
W[2]-complete with respect to their corresponding solution size bounds l and k,
8 If we only allow to improve upon whole sets of equally ranked candidates, we can

use the improved version of the algorithm DodScore by treating the whole set as one
possibility. In this way, we achieve a running time of O(2k · nk + nm).

9 Interestingly, Hemaspaandra et al. [11] have shown that the ranking and the winner
versions remain Θp

2 -complete in both cases considering ties—no differentiation in the
classical complexity can be observed.

410 N. Betzler, J. Guo, and R. Niedermeier

respectively. We start with the proof of the W[2]-hardness of Dual Young

Score where two parameterized reductions are given, the first from the W[2]-
hard Red Blue Dominating Set (RBDS) [6] to an intermediate problem,
a variant of Red Blue Dominating Set, and then the second one from the
intermediate problem to Dual Young Score. Red Blue Dominating Set

(RBDS) is defined as follows: Given a bipartite graph G = (R ∪ B, E) with R
and B being the two disjoint vertex sets, E ⊆ R × B and an integer k ≥ 0, the
question is whether there is a subset D ⊆ R of size at most k such that every
vertex in B has at least one neighbor in D. The k/2-Red Blue Dominating

Set (k/2-RBDS) problem has a bipartite graph G = (R ∪ B, E) with R and B
being the two disjoint vertex sets, E ⊆ R × B, and an integer k ≥ 0 as input,
and asks whether there is a subset D ⊆ R of size at most k such that every
vertex in B has at least �k/2� + 1 neighbors in D.

Lemma 3. k/2-RBDS is W[2]-hard.

Next, we give a parameterized reduction from k/2-RBDS to Dual Young

Score.

Lemma 4. Dual Young Score is W[2]-hard.

Proof. Given a k/2-RBDS-instance (G = (B ∪ R, E), k) with B = {b1, ..., bm}
and R = {r1, ..., rn}, we first consider the case that k is odd. The corresponding
Dual Young Score instance is constructed as follows. For each blue vertex we
add a candidate to the candidate set C. After that, three additional candidates a,
b, and c are added to C, where c is the distinguished candidate of the Dual

Young Score instance. Thus, C = {ci | bi ∈ B} ∪ {a, b, c}.
Let NC(ri) := {cj ∈ C | {ri, bj} ∈ E} and NC(ri) := C \ ({a, b, c} ∪ NC(ri)),

that is, the elements in NC(ri) correspond to the neighbors of ri in G and NC(ri)
corresponds to the rest of the vertices in B. We construct three disjoint subsets
of votes, V1, V2, and V3.

– The votes in V1 correspond to the red vertices in R. For every red vertex ri,
we add a vote vi to V1 by placing the candidates in NC(ri) ∪ {a, b} better
than c and the candidates in NC(ri) worse than c, that is,

V1 := {NC(ri) < c < NC(ri) < a < b | i = 1, . . . , n}.

Note that, here and in the following, if we write a set in a vote, then the
order of the elements in the set is irrelevant and can be fixed arbitrarily.

– The set V2 also contains n votes which guarantee that the total deficit of
each candidate is zero in V1∪V2. However, there is an exception with b which
has deficit 2k − 2 in V1 ∪ V2.

V2 := {a < b < NC(ri) < c < NC(ri) | i = 1, . . . , n − k + 1}
∪ {a < NC(ri) < c < NC(ri) < b | i = n − k + 2, . . . , n}.

Parameterized Computational Complexity of Dodgson and Young Elections 411

Later, it will become clear that the (2k − 2)-deficit of b will be used to argue
that all votes in a solution of a Dual Young Score instance have to come
from V1.

– The set V3 consists of k − 1 votes to adjust the deficits of a and b so that
in V1 ∪ V2 ∪ V3 both a and b have a deficit of k − 1 and all other candidates
have a deficit of 0. Let CR := C \ {a, b, c}. The set V3 consists of �k/2� votes
with b < c < CR < a and �k/2� votes with b < CR < c < a.

Finally, the set V of votes is set to V1 ∪ V2 ∪ V3 and the upper bound for the
solution size of the Dual Young Score instance is equal to k. The key idea
behind the above construction is that, to reduce the (k − 1)-deficits of a and b
by deleting at most k votes, all solutions of the Dual Young Score instance
actually contain exactly k votes from V1.

In the following, we show that the candidate c can become a Condorcet winner
by deleting at most k votes iff there is a solution of size at most k for the k/2-
RBDS-instance.

“⇒”: We know that every solution V ′ of Dual Young Score contains ex-
actly k votes in V1 and, by the above construction, each vote in V1 corresponds to
a vertex in R. Denote the corresponding subset of R as D. Since V ′ is a solution,
it must hold that every candidate ci ∈ (C \ {a, b, c}) must be better than c in
at least �k/2� + 1 of the votes in V ′. Therefore, choosing the corresponding red
vertices to form a dominating set achieves that every blue vertex is dominated
at least �k/2� + 1 times.

“⇐”: Since every dominating set D ⊆ R of size at most k dominates each
blue vertex at least �k/2� + 1 times, we can easily extend D to a dominating
set D′ of size exactly k by adding k−|D| arbitrary red vertices to D. Since every
red vertex corresponds to a vote in V1, we thus obtain a size-k subset V ′ of V
corresponding to D′. According to the above construction of V1, the removal
of V ′ results in a new vote set where the deficits of a and b are both −1 and
the deficits of all other candidates are at most −1. Therefore, c can become
Condorcet winner by deleting exactly k votes.

Finally, we consider the case that k is even and give a reduction from Dual

Young Score with an odd k to Dual Young Score with an even k. Given a
Dual Young Score instance (V, C, c, k) with k being odd, we add a new vote v
to V that has the form: c < C\{c} to get the new vote set V ′. Then (V ′, C, c, k′ :=
k+1) is a Dual Young Score instance with k′ being even. The correspondence
between the solutions is easy to achieve. 	

Next, we show that Dual Young Score is in W[2]. To this end, we can
construct a parameterized reduction from Dual Young Score to the W[2]-
complete Optimal Lobbying problem [4] also arising in the context of election
systems, which is defined as follows: Given an n × m 0/1-matrix M , a length-m
0/1-vector x, and an integer k ≥ 0, the question is whether there is a choice of
at most k rows from the rows of M such that the selected rows can be edited
such that, if x has a 0 in its ith entry, then there are more 0’s than 1’s in
the ith column of the matrix resulting after editing the selected rows; otherwise,

412 N. Betzler, J. Guo, and R. Niedermeier

there are more 1’s than 0’s in the ith column. By editing a row, we mean to
change some 1’s in the row to 0’s and/or to change some 0’s to 1’s. We call x
the target vector.

Lemma 5. Dual Young Score is in W[2].

Combining Lemmas 4 and 5, we arrive at the main result of this section.

Theorem 4. Dual Young Score is W[2]-complete.

Using a similar reduction as the one in the proof of Lemma 5 (containment in
W[2]) and a slightly modified version of the reduction from the W[2]-hard Set

Packing problem presented by Rothe et al. [18, Theorem 2.3] (W[2]-hardness),
we can also show the following theorem.

Theorem 5. Young Score is W[2]-complete.

5 Conclusion and Outlook

Probably the most important general observation deriving from our work is that
Dodgson and Young elections behave differently with respect to the parame-
ter “number of editing operations”. Whereas for Dodgson elections we achieve
fixed-parameter tractability, we experience parameterized intractability in case
of Young elections. This stands in sharp contrast to traditional complexity anal-
ysis, where both election systems appear as equally hard [1,11,18] and comple-
ments the results on polynomial-time approximability of Procaccia et al. [17].
Furthermore, we found that the complexities of Dodgson elections allowing ties
between the candidates are much different (fixed-parameter tractability vs W[2]-
hardness) depending on the cost model for switching ties. Again, in the standard
complexity framework these two cases cannot be differentiated because both lead
to NP-completeness.

We conclude with few specific open questions. Bartholdi et al. [1] gave an in-
teger linear program which implies the fixed-parameter tractability of Dodgson

Score with respect to the number of candidates (also see [13] for further results
in this direction). Unfortunately, the corresponding running times are extremely
high and an efficient combinatorial algorithm would be desirable. The param-
eterized complexity with respect to the parameter “number of votes” remains
open. By way of contrast, there is a trivial O(2n · poly(m, n))-time algorithm
for Young elections with n := |V | and m := |C|. For the parameter “number
of candidates”, however, only an integer linear program implying (presumably
impractical) fixed-parameter tractability is known [19].

Acknowledgement. We thank Jörg Vogel for various valuable pointers to the
literature and inspiring discussions.

Parameterized Computational Complexity of Dodgson and Young Elections 413

References

1. Bartholdi III, J., Tovey, C.A., Trick, M.A.: Voting schemes for which it can be
difficult to tell who won the election. Social Choice and Welfare 6, 157–165 (1989)

2. Betzler, N., Fellows, M.R., Guo, J., Niedermeier, R., Rosamond, F.A.: Fixed-
parameter algorithms for Kemeny scores. In: Proc. of 4th AAIM. LNCS, vol. 5034,
pp. 60–71. Springer, Heidelberg (2008)

3. Chevaleyre, Y., Endriss, U., Lang, J., Maudet, N.: A short introduction to compu-
tational social choice (invited paper). In: van Leeuwen, J., Italiano, G.F., van der
Hoek, W., Meinel, C., Sack, H., Plášil, F. (eds.) SOFSEM 2007. LNCS, vol. 4362,
pp. 51–69. Springer, Heidelberg (2007)

4. Christian, R., Fellows, M.R., Rosamond, F.A., Slinko, A.M.: On complexity of
lobbying in multiple referenda. Review of Economic Design 11(3), 217–224 (2007)

5. Conitzer, V., Sandholm, T., Lang, J.: When are elections with few candidates hard
to manipulate? Journal of the ACM 54(3), 1–33 (2007)

6. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg
(1999)

7. Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.A., Rothe, J.: A richer un-
derstanding of the complexity of election systems. In: Ravi, S., Shukla, S. (eds.)
Fundamental Problems in Computing: Essays in Honor of Professor Daniel J.
Rosenkrantz. Springer, Heidelberg (2008)

8. Fellows, M.R.: Personal communication (October 2007)
9. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg

(2006)
10. Hemaspaandra, E., Hemaspaandra, L.A.: Dichotomy for voting systems. Journal

of Computer and System Sciences 73(1), 73–83 (2007)
11. Hemaspaandra, E., Hemaspaandra, L.A., Rothe, J.: Exact analysis of Dodgson

elections: Lewis Caroll’s 1876 voting system is complete for parallel access to NP.
Journal of the ACM 44(6), 806–825 (1997)

12. Homan, C.M., Hemaspaandra, L.A.: Guarantees for the success frequency of an
algorithm for finding Dodgson-election winners. Journal of Heuristics (2007)

13. McCabe-Dansted, J.C.: Approximability and computational feasibility of Dodg-
son’s rule. Master’s thesis, University of Auckland (2006)

14. McCabe-Dansted, J.C., Pritchard, G., Slinko, A.: Approximability of Dodgson’s
rule. Social Choice and Welfare (2007)

15. McLean, I., Urken, A.: Classics of Social Choice. University of Michigan Press, Ann
Arbor, Michigan (1995)

16. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University
Press, Oxford (2006)

17. Procaccia, A.D., Feldman, M., Rosenschein, J.S.: Approximability and inapprox-
imability of Dodgson and Young elections. Technical Report Discussion paper 466,
Center for the Study of Rationality, Hebrew University (October 2007)

18. Rothe, J., Spakowski, H., Vogel, J.: Exact complexity of the winner problem for
Young elections. Theory of Computing Systems 36, 375–386 (2003)

19. Young, H.P.: Extending Condorcet’s rule. Journal of Economic Theory 16, 335–353
(1977)

Online Compression Caching

C. Greg Plaxton�, Yu Sun��, Mitul Tiwari��, and Harrick Vin��

� � �Department of Computer Science
University of Texas at Austin

plaxton@cs.utexas.edu, asun@vmware.com, mitul@kosmix.com,
vin@cs.utexas.edu

Abstract. Motivated by the possibility of storing a file in a compressed
format, we formulate the following class of compression caching problems.
We are given a cache with a specified capacity, a certain number of com-
pression/uncompression algorithms, and a set of files, each of which can
be cached as it is or by applying one of the compression algorithms. Each
compressed format of a file is specified by three parameters: encode cost,
decode cost, and size. The miss penalty of a file is the cost of accessing the
file if the file or any compressed format of the file is not present in the cache.
The goal of a compression caching algorithm is to minimize the total cost of
executing a given sequence of requests for files. We say an online algorithm
is resource competitive if the algorithm is constant competitive with a con-
stant factor resource advantage. A well-known result in the framework of
competitive analysis states that the least-recently used (LRU) algorithm
is resource competitive for the traditional paging problem. Since compres-
sion caching generalizes the traditional paging problem, it is natural to
ask whether a resource competitive online algorithm exists or not for com-
pression caching. In this work, we address three problems in the class of
compression caching. The first problem assumes that the encode cost and
decode cost associated with any format of a file are equal. For this prob-
lem we present a resource competitive online algorithm. To explore the ex-
istence of resource competitive online algorithms for compression caching
with arbitrary encode costs and decode costs, we address two other natural
problems in the aforementioned class, and for each of these problems, we
show that there exists a non-constant lower bound on the competitive ratio
of any online algorithm, even if the algorithm is given an arbitrary factor
capacity blowup. Thus, we establish that there is no resource competitive
algorithm for compression caching in its full generality.

1 Introduction

Recently we have seen an explosion in the amount of data distributed over hand-
held devices, personal computers, and local and wide area networks. There is a

� Supported by NSF Grants CNS–0326001 and CCF–0635203.
�� Supported by NSF Grant CNS–0326001 and Texas Advanced Technology Program

003658-0608-2003.
� � � Most of the work was done while Yu Sun and Mitul Tiwari were Ph.D. students

at UT Austin.

J. Gudmundsson (Ed.): SWAT 2008, LNCS 5124, pp. 414–425, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Online Compression Caching 415

growing need for self-tuning data management techniques that can operate under
a wide range of conditions, and optimize various resources such as storage space,
processing, and network bandwidth. There is a large body of work addressing
different aspects of this domain of self-tuning data management.

An important aspect of this domain that merits further attention is that data
can be stored in different formats. For example, one can compress a text file
using different traditional compression techniques such as gzip and bzip. Various
studies [1,2,6] have experimentally demonstrated the advantages of compression
in caching. A compressed file takes up less space, effectively increasing the size of
the memory. However, this increase in size comes at the cost of extra processing
needed for compression and uncompression. Consequently, it may be desirable
to keep frequently accessed files uncompressed in the memory.

As another example, consider the option of storing only a TEX file or the
corresponding pdf file along with the TEX file. One can save space by storing
only the TEX file, but one has to run a utility (such as pdflatex) to generate the
pdf file when needed. On the other hand, storing the pdf file may require an order
of magnitude more storage space than the TEX file, but the pdf file is readily
accessible when needed. In general, many files are automatically generated using
some utility such as a compiler or other translator. If the utility generates a large
output compared to the input, then by storing only the input one achieves a form
of “compression”, not in the traditional sense, but with analogous consequences.
In this paper, when we refer to compression, we have in mind this broader notion
of compression where one can have a wide separation between storage space and
processing costs associated with different formats of a file.

In this work, we address the notion of compression and uncompression of files,
while contemplating the possibility of a richer variety of separation between the
sizes and processing costs associated with the different formats of a file. We focus
primarily on the single machine setting, however one of our upper bound results
(see Section 3.2) is applicable to a simple, but well-motivated, special case of a
distributed storage problem.

Problem Formulation. We define a class of compression caching problems in
which a file can be cached in multiple compressed formats with varying sizes,
and costs for compression and uncompression (see Section 2 for a formal de-
scription). We are given a cache with a specified capacity. Also assume that for
each file, there are multiple associated formats. Each format is specified by three
parameters: encode cost, decode cost, and size. The encode cost of a particular
format is defined as the cost of creating that format from the uncompressed
format of the file. The decode cost of a format is defined as the cost of creating
the uncompressed format. The miss penalty of a file is defined as the cost of
accessing the file if no format of the file is present in the cache. To execute a
request for a file, the file is required to be loaded into the cache in the uncom-
pressed format. The goal of a compression caching algorithm is to minimize the
total cost of executing a given request sequence.

The main challenge is to design algorithms that determine — in an online
manner — which files to keep in the fast memory, and of these, which to keep

416 C.G. Plaxton et al.

in compressed form. The problem is further complicated by the multiple com-
pression formats for a file, with varying sizes and encode/decode costs. Since
compression caching has the potential to be useful in many different scenarios, a
desirable property of an online algorithm is to provide a good competitive ratio,
which is defined as the maximum ratio of the cost of the online algorithm and
that of the offline algorithm over any request sequence (see [4] for more details).
We refer to an online algorithm that achieves a constant competitive ratio when
given a constant factor resource advantage as a resource competitive algorithm.

In a seminal work, Sleator and Tarjan [7] show that the competitive ratio
of any deterministic online paging algorithm without any capacity blowup is
the size of the cache, and they also show that LRU is resource competitive for
the disk paging problem. Since compression caching generalizes the disk paging
problem, it is natural to ask whether similar resource competitive results can be
obtained for compression caching.

Contributions. In this paper, we address three problems in the class of the
compression caching. Our contributions for each of these problems are as follows.

– The first problem assumes that the encode cost and decode cost associated
with any format of a file are equal. For this problem we generalize the Land-
lord algorithm [9] to obtain an online algorithm that is resource competitive.
We find that this problem also corresponds to a special case of the distributed
storage problem, and hence, our algorithm is applicable to this special case.

– The second problem assumes that the decode costs associated with different
formats of a file are the same. For this problem, we show that any deter-
ministic online algorithm (even with an arbitrary factor capacity blowup)
is Ω(m)-competitive, where m is the number of possible formats of a file.
The proof of this lower bound result is the most technically challenging part
of the paper. Further, we give an online algorithm for this problem that
is O(m)-competitive with O(m) factor capacity blowup. Thus, we tightly
characterize the competitive ratio achievable for this problem.

– The third problem assumes that the encode costs associated with different
formats of a file are the same. For this problem we show that any deter-
ministic online algorithm (even with an arbitrary factor capacity blowup)
has competitive ratio Ω(log m). We also present an online algorithm for this
problem that is O(m)-competitive with O(m) factor capacity blowup.

Related Work. The competitive analysis framework was pioneered by Sleator
and Tarjan [7]. For the disk paging problem, it has been shown that LRU is

k
k−h+1 -competitive, where k is the cache capacity of LRU and h is the cache
capacity of any offline algorithm [7]. In the same paper, it has been shown
that k

k−h+1 is the best possible competitive ratio for any deterministic online
paging algorithm. For the variable size file caching problem, which is useful in the
context of web-caching, Young [9] proposes the Landlord algorithm, and shows
that Landlord is k

k−h+1 -competitive. For the variable size file caching problem,
Cao and Irani [5] independently propose the greedy-dual-size algorithm and show
that it is k-competitive against any offline algorithm, where k is cache capacity

Online Compression Caching 417

of both greedy-dual-size and the offline algorithm. For the distributed paging
problem, Awerbuch et al. [3] give an algorithm that is polylog(n, Δ)-competitive
with polylog(n, Δ) factor capacity blowup, where n is the number of nodes and
Δ is the diameter of the network.

Various studies [1,2,6] have shown experimentally that compression effectively
increases on-chip and off-chip chip cache capacity, as well as off-chip bandwidth,
since the compressed data is smaller in size. Further, these studies show that
compression in caching increases the overall performance of the system.

Outline. The rest of this paper is organized as follows. In Section 2 we provide
some definitions. In Section 3 we present our results for the compression caching
problem with equal encode and decode costs. In Section 4 we describe our results
for the compression caching problem with varying encode costs and uniform
decode costs. In Section 5 we discuss our results for the compression caching
problem with uniform encode costs and varying decode costs.

2 Preliminaries

Assume that we are given a cache with a specified capacity and m different
functions for encoding and decoding any file, denoted hi and h−1

i , where 0 ≤
i < m. Without loss of generality, we assume that h0 and h−1

0 are the identity
functions. We define index i as an integer i such that 0 ≤ i < m. For any index
i, we obtain the i-encoding of any file f by evaluating hi(f), and we obtain
the file f from the i-encoding μ of f by evaluating h−1

i (μ). For any file f , we
refer to the 0-encoding of f as the trivial encoding, and for i > 0, we refer to
the i-encoding of f as a nontrivial encoding. For any file f and index i, the
i-encoding of f is also referred to as an encoding of f , and we say f is present in
the cache if any encoding of f is present in the cache. For any file f and index i,
the i-encoding of f is characterized by three parameters: encode cost, denoted
encode(i, f); decode cost, denoted decode(i, f); and size, denoted size(i, f). The
encode cost encode(i, f) is defined as the cost of evaluating hi(f), and the decode
cost decode(i, f) is defined as the cost of evaluating h−1

i (μ), where μ is the i-
encoding of f . For any file f , encode(0, f) and decode(0, f) are 0.

For any file f , the access cost of f is defined as follows: if for some index i,
the i-encoding of f is present in the cache (break ties by picking minimum such
i), then the access cost is decode(i, f); if none of the encodings of f is present
in the cache, then the access cost is defined as the miss penalty p(f). Without
loss of generality, we assume that the miss penalty for any file f is at least the
decode cost of any of the encodings of f . The cost of deleting any encoding of
any file from the cache is 0. For any file f and index i, the i-encoding of f can
be added to the cache if there is enough free space to store the i-encoding of f .
For any file f and index i, the cost of adding the i-encoding of f to the cache is
the sum of the access cost of f and encode(i, f).

To execute a request for a file f , an algorithm A is allowed to modify its cache
content by adding/deleting encodings of files, and then incurs the access cost

418 C.G. Plaxton et al.

for f . The goal of the compression caching problem is to minimize the total cost of
executing a given request sequence. An online compression caching algorithm A
is c-competitive if for all request sequences τ and compression caching algorithms
B, the cost of executing τ by A is at most c times that of executing τ by B.

Any instance I of the compression caching problem is represented by a triple
(σ, m, k), where σ is the sequence of request for the instance I, m is the number
of possible encodings for files in σ, and k is the cache capacity. For any instance
I = (σ, m, k), we define reqseq(I) = σ, numindex(I) = m, and space(I) = k.

We define a configuration as a set of encodings of files. For any configuration
S, we define the size of S as the sum, over all encodings μ in S, of size of μ.
We define a trace as a sequence of pairs, where the first element of the pair is a
request for a file and the second element of the pair is a configuration. For any
configuration S and any integer k, S is k-feasible if the size of S is at most k.
For any trace T and integer k, T is k-feasible if and only if any configuration in
T is k-feasible. For any two sequences τ and τ ′, we define τ ◦ τ ′ as the sequence
obtained by appending τ ′ to τ . For any trace T , we define requests(T) as the
sequence of requests present in T , in the same order as in T .

For any file f , any trace T , and any configuration S, we define costf (T, S)
inductively as follows. If T is empty, then costf (T, S) is zero. If T is equal to
〈(f ′, S′)〉◦T ′, then costf (T, S) is costf (T ′, S′) plus the sum, over all i-encodings
μ of f such that μ is present in S′ and μ is not present in S, of encode(i, f),
plus the access cost of f in S if f = f ′. For any file f and any trace T , we define
costf (T) as costf (T, ∅). For any trace T and any configuration S, we define
cost(T, S) as the sum, over all files f , of costf (T, S). For any trace T , we define
cost(T) as cost(T, ∅).

3 Equal Encode and Decode Costs

In this section, we consider a symmetric instance of the compression caching
problem which assumes that the encode cost and decode cost associated with
any encoding of a file are equal. We present an online algorithm for this problem,
and show that the algorithm is resource competitive. Interestingly, this problem
also corresponds to a multilevel storage scenario, as discussed in Section 3.2.

For the restricted version of the compression caching problem considered in
this section, we have encode(i, f) = decode(i, f) for any file f and index i. At
the expense of a small constant factor in the competitive ratio, we can assume
that, for any file f , the miss penalty p(f) is at least q · encode(m − 1, f), where
q > 1; and by preprocessing, we can arrange encodings of files in geometrically
decreasing sizes and geometrically increasing encode-decode costs. The basic idea
behind the preprocessing phase is as follows. First, consider any two encodings
with sizes (resp., similar encode-decode costs) within a constant factor. Second,
from these two encodings, select the one with smaller encode-decode cost (resp.,
smaller size), and eliminate the other. While an encoding can be eliminated by

Online Compression Caching 419

one of the above preprocessing steps, we do so. After the above preprocessing
phase, we can arrange the encodings of files in geometrically decreasing sizes and
geometrically increasing encode-decode costs.

For ease of presentation, we assume that m encodings are selected for each
file in the preprocessing phase. More precisely, after the preprocessing phase,
for any file f and index i < m − 1, we have size(i + 1, f) ≤ 1

r · size(i, f) and
encode(i+1, f) ≥ q ·encode(i, f), where r > 1. Also, we assume that the capacity
of the cache given to an online algorithm is b times that given to an offline
algorithm.

3.1 Algorithm

In Figure 1, we present our online algorithm ON. At a high level, ON is a
credit-rental algorithm. Algorithm ON maintains a containment property on
the encodings in the cache, defined as follows: If ON has the i-encoding of some
file f in the cache, then ON also has all the j-encodings of f for any index j ≥ i
in the cache. A credit is associated with each encoding present in the cache.
For any file f and index i, the i-encoding of f is created with an initial credit
decode(i+1, f), for i < m− 1, and credit p(f), for i = m− 1. On a request for a
file f , if the 0-encoding of f is not present in the cache, then ON creates space for
the 0-encoding of f , and for other i-encodings of f that are necessary to maintain
the containment property. Then, ON creates the 0-encoding of f , and any other
i-encodings of f that are necessary to maintain the containment property, with
an initial credit as described above. In order to create space, for each file present
in the cache, ON charges rent from the credit of the largest encoding of the file,
where rent charged is proportional to the size of the encoding, and deletes any
encoding with 0 credit. The credit-rental algorithm described here can be viewed
as a generalization of Young’s Landlord algorithm [9].

We use a potential function argument similar to that of Young to show that
ON is resource competitive. See [8, Section 3.3.2] for the complete proof of the
following theorem.

Theorem 1. Algorithm ON is resource competitive for any symmetric instance
of the compression caching problem.

3.2 Multilevel Storage

Consider an outsourced storage service scenario (for simplicity, here we describe
the problem for a single user) where we have multiple levels of storage. Each
storage space is specified by two parameters: storage cost and access latency to
the user. The user specifies a fixed overall budget to buy storage space at the
various levels, and generates requests for files. The goal is to manage the user
budget and minimize the total latency incurred in processing a given request
sequence. Our credit-rental algorithm for the compression caching problem with
equal encode and decode costs can be easily generalized to this scenario, and
we can show (using a similar analysis as above) that the generalized algorithm

420 C.G. Plaxton et al.

1 {Initially, for any encoding μ of any file, credit(μ) = 0}
2 On a request for a file f
3 if f is not present in the cache then
4 createspace(f, m − 1)
5 for all indices i, add the i-encoding μ of f , with credit(μ) := decode(i + 1, f), if i < m − 1,

and with credit(μ) := p(f), if i = m − 1
6 else if the i-encoding μ of f is present in the cache (break ties by picking the minimum such i) then
7 evaluate h−1

i (μ)
8 credit(μ) := decode(i + 1, f)
9 if i > 0 then

10 createspace(f, i − 1)
11 for all indices j < i, add the j-encoding ν of f , with credit(ν) := decode(j + 1, f)
12 fi
13 fi

14 createspace(f, i)
15 sz :=

∑ i
j=0 size(f, j)

16 while free space in the cache < sz do
17 δ := minμ∈X

credit(μ)
size(j,f′) , where μ is the j-encoding of f ′

18 for each file f ′ such that there is an encoding of f ′ in the cache do
19 let μ be the largest (in size) encoding of f ′ in the cache
20 let j be the index of μ
21 credit(μ) := credit(μ) − δ · size(j, f ′)
22 if credit(μ) = 0 then
23 delete μ
24 fi
25 od
26 od

Fig. 1. The online algorithm ON for any symmetric instance of the compression caching
problem. Here, X is the cache content of ON.

is constant competitive with a constant factor advantage in the budget for the
aforementioned multilevel storage problem.

4 Varying Encode Costs and Uniform Decode Costs

We say that an instance I = (σ, m, k) of the compression caching problem is a
uniform-decode instance if any file in σ satisfies the following properties. First,
we consider that the decode cost associated with different encodings of any file
in σ are the same; for any file f and any index i > 0, we abbreviate decode(i, f)
to decode . Second, we consider that for any index i, any file f and f ′ in σ,
size(i, f) = size(i, f ′), p(f) = p(f ′), and encode(i, f) = encode(i, f ′). For the
sake of brevity, we write encode(i, f) as encode(i).

We formulate this problem to explore the existence of resource competitive
algorithms for the problems in the class of compression caching. This problem
is also motivated by the existence of multiple formats of a multimedia file with
varying sizes and encode costs, and with roughly similar decode costs.

One might hope to generalize existing algorithms like Landlord for this prob-
lem, and to achieve resource competitiveness. However, in this section we show
that any deterministic online algorithm (even with an arbitrary factor capacity
blowup) for this problem is Ω(m)-competitive, where m is the number of possi-
ble encodings of each file. We also give an online algorithm for this problem that
is O(m)-competitive with O(m) factor capacity blowup.

Online Compression Caching 421

4.1 The Lower Bound

In this section we show that any deterministic online algorithm (even with an
arbitrary factor capacity blowup) for any uniform-decode instance of the com-
pression caching problem is Ω(m)-competitive.

For any algorithm A, any request sequence σ, and any real number k, we
define config(A, σ, k) as the configuration of A after executing σ with a cache of
size k, starting with an empty configuration.

Informal overview. At a high level, the adversarial request generating algo-
rithm Adversary works recursively as follows. For a given online algorithm ON,
a given number of encodings for a file m, a given cache capacity of the offline
algorithm k, and a blowup b, the algorithm Adversary(ON, m, k, b) picks a set
of files X such that any file in X is not in ON’s cache, and invokes a recursive
request generating procedure AdversaryHelper (X, i, σ, ON, k, b), where initially
|X | is the number of (m−1)-encodings that can fit in a cache of size k, i = m−1,
and σ is empty. This procedure returns a trace of the offline algorithm OFF. (See
Section 4.1 for formal definitions and a description of the algorithm.)

Consider an invocation of procedure AdversaryHelper (X, i, σ, ON, k, b). The
adversary picks a subset of the files Y from X such that any file f in Y satis-
fies certain conditions. For i > 1, if Y contains sufficiently many files, then the
adversary invokes AdversaryHelper (Y, i− 1, σ′, ON, k, b), where σ′ is the request
sequence generated; otherwise, AdversaryHelper (X, i, σ, ON, k, b) is terminated.
For i = 1, the adversary picks a file f in Y , and repeatedly generates requests for
f until either ON adds an encoding of f to its cache, or a certain number of re-
quests for f are generated. Finally, AdversaryHelper (X, 1, σ, ON, k, b) terminates
when Y is empty.

At a high level, the offline algorithm OFF works as follows. Algorithm OFF
decides the encodings for the files in X when AdversaryHelper (X, i, σ, ON, k, b)
terminates. For any index j ≥ i, if ON adds the j-encodings of less than a
certain fraction of files in X any time during the execution of the request
sequence generated by AdversaryHelper (X, i, σ, ON, k, b), then OFF adds the
i-encodings of all the files in X , and incurs no miss penalties in executing
the request sequence generated by AdversaryHelper (X, i, σ, ON, k, b). Otherwise,
OFF returns the concatenation of the traces generated during the execution of
AdversaryHelper (X, i, σ, ON, k, b). By adding the j-encodings of a certain frac-
tion of files in X , ON incurs much higher cost than OFF in executing the request
sequence generated by AdversaryHelper (X, i, σ, ON, k, b).

Using an inductive argument, we show that ON is Ω(m)-competitive for the
compression caching problem with varying encode and uniform decode costs.

Adversarial request generating algorithm. Some key notations used in the
adversarial request generating algorithm are as follows.

For any file f and any real number b, eligible(f, m, b) holds if the following con-
ditions hold: (1) for any index i, size(i, f) = rm−i−1, where r = 8b; (2) p(f) = p;

422 C.G. Plaxton et al.

(3) for any index i, encode(i, f) = p · qi, where q = m
20 ; and (4) decode = 0.

The number of i-encodings of files that can fit in a cache of size k is denoted
num(k, i). Note that, for eligible files, num(k, i) is equal to r · num(k, i − 1).

For any algorithm A, any request sequence σ, any real number k, any file f ,
and any index i, we define a predicate aggressive(A, σ, k, f, i) as follows. If σ is
empty, then aggressive(A, σ, k, f, i) does not hold. If σ is equal to σ′ ◦ 〈f ′〉, then
aggressive(A, σ, k, f, i) holds if either aggressive(A, σ′, k, f, i) holds or, for some
index j ≥ i, the j-encoding of f is present in config(ON, σ, k).

For any request sequence σ, and any index i, any set of files X , we define
trace(σ, i, X) as follows. If σ is empty, then trace(σ, i, X) is empty. If σ is equal
to σ′ ◦ 〈f〉, then trace(σ, i, X) is trace(σ′, i, X) ◦ 〈(f, Y)〉, where Y is the set of
the i-encodings of files in X .

In Figure 2 we describe the adversarial request generating algorithmAdversary .
The caching decisions of the offline algorithm OFF are given by the trace T
generated during the execution of Adversary (Figure 2). See [8, Section 3.4.1.3]
for the proof of the following theorem.

1 Adversary(ON, m, k, b)
2 T := ∅
3 while |T | < N do
4 X := set of num(k, m − 1) files f such that (1) eligible(f, m, b) holds; and

(2) f is not present in config(ON, requests(T), bk)
5 T := T ◦ AdversaryHelper(X, m − 1, requests(T), ON, k, b)
6 od
7 return T

8 AdversaryHelper(X, i, σ, ON, k, b)
9 T, σ′ := ∅, ∅

10 Y := X
11 repeat
12 if i = 1 then
13 Let f be an arbitrary file in Y
14 count := 0
15 repeat
16 σ′ := σ′ ◦ 〈f〉
17 S := config(ON, σ ◦ requests(T) ◦ σ′, bk)
18 count := count + 1
19 until f is not present in S or count ≥ 8
20 T := T ◦ trace(σ′, 0, {f})
21 σ′ := ∅
22 else
23 X′ := arbitrary subset of num(k, i − 1) files in Y
24 T ′ := AdversaryHelper(X′, i − 1, σ ◦ requests(T), ON, k, b)
25 T := T ◦ T ′

26 fi
27 reassign Y as follows: for any file f, f is in Y if and only if (1) f is in X

(2) f is not present in config(ON, σ ◦ requests(T), bk);
(3) costf (T) < (8 · ei − 8 · ei−1); and
(4) aggressive(ON, requests(T), bk, f, i) does not hold

28 until (i = 1 and |Y | = ∅) or (|Y | < num(k, i − 1))
29 if |{f ∈ X|aggressive(ON, requests(T), bk, f, i)}| < 2b · num(k, i − 1) then
30 T := trace(requests(T), i, X)
31 fi
32 return T

Fig. 2. The adversarial request generating algorithm for the compression caching prob-
lem with varying encode and uniform decode costs. Here, N is the number of requests
to be generated.

Online Compression Caching 423

Theorem 2. Any deterministic online algorithm with an arbitrary factor capac-
ity blowup is Ω(m)-competitive for any uniform-decode instance I of the com-
pression caching problem, where m = numindex(I).

4.2 An Upper Bound

In this section we present an online algorithm that is O(m)-competitive with
O(m) factor capacity blowup for any uniform-decode instance I of the compres-
sion caching problem, where m = numindex (I). As in Section 3, by prepro-
cessing, we can arrange the encodings of files in decreasing sizes and increasing
encode costs; that is, after preprocessing, for any file f and any index i < m−1,
size(i+1, f) ≤ 1

r size(i, f), and encode(i+1, f) ≥ q ·encode(i, f), where r = 1+ε,
q = 1 + ε′, ε > 0, and ε′ > 0.

Algorithm ON divides its cache into m blocks. For any index i, block i keeps
only the i-encodings of files. For any integer k and index i, let num(k, i) be the
maximum number of i-encodings of files that can fit in any block of size k.

Roughly speaking, ON works as follows. For any index i, ON adds the i-
encoding of a file f after the miss penalties incurred by ON on f sum to at least
encode(i, f). We use a standard marking algorithm as an eviction procedure for
each block. The complete description of ON is presented in [8, Figure 3.3].

See [8, Section 3.4.2.2] for the proof of the following theorem.

Theorem 3. For any uniform-decode instance I of the compression caching
problem, there exists an online algorithm that is is O(m)-competitive with O(m)
factor capacity blowup, where m = numindex (I).

5 Uniform Encode Costs and Varying Decode Costs

We say that an instance I(σ, m, k) of the compression caching problem is a
uniform-encode instance if any file in σ satisfies the following properties. First,
we consider that the encode costs of all the nontrivial encodings of any file f in σ
are the same; for any index i > 0, we abbreviate encode(i, f) to encode. Second,
we consider that for any index i, any file f and f ′ in σ, size(i, f) = size(i, f ′),
p(f) = p(f ′), and decode(i, f) = decode(i, f ′). For the sake of brevity, for any
file f in σ, we write decode(i, f) as decode(i).

In this section we show that any deterministic online algorithm (even with
an arbitrary factor capacity blowup) for any uniform-encode instance of the
compression caching problem is Ω(log m)-competitive, where m is the number
of possible encodings for each file. Further, we present an online algorithm for
this problem that is O(m)-competitive with O(m) factor capacity blowup.

5.1 The Lower Bound

In this section, we show that any deterministic online algorithm (even with an
arbitrary capacity blowup) for any uniform-encode instance of the compression
caching problem is Ω(log m)-competitive.

424 C.G. Plaxton et al.

For any given online algorithm ON with a capacity blowup b, we construct
a uniform-encode instance of the compression caching problem. For any file f
and index i < m − 1, we consider that size(i + 1, f) ≤ 1

r · size(i, f), where
r > b. For any file f and index i such that 0 < i < m − 1, we consider that
decode(i + 1, f) ≥ decode(i, f) · log m. We also set the miss penalty p(f) to be
encode, and encode ≥ decode(m − 1, f) · log m.

Adversarial request generating algorithm. Our adversarial request gen-
erating algorithm ADV takes ON as input, and generates a request sequence
σ and an offline algorithm OFF such that ON incurs at least log m times the
cost incurred by OFF in executing σ. For any file f , ADV maintains two indices
denoted wu(f) and w�(f); initially, wu(f) = m and w�(f) = 0. The complete
description of ADV is presented in [8, Figure 3.5].

Roughly, ADV operates as follows. Algorithm ADV forces ON to do a search
over the encodings of a file to find the encoding that OFF has chosen for that
file. Before any request is generated, ADV ensures that for any f , there is no
i-encoding of f in ON’s cache such that w�(f) ≤ i < wu(f). On a request for any
file f , if ON adds the i-encoding of f such that w�(f) ≤ i < wu(f), then ADV
readjusts w�(f) and wu(f) to ensure that the above condition is satisfied. If ON
does not keep the i-encoding of f such that i < wu(f), then ADV continues to
generate requests for f . Finally, when wu(f) = w�(f), OFF claims that OFF
has kept the i-encoding of f , where i = w�(f), throughout this process, and has
executed the requests for f . Then, ADV resets the variables wu(f) and w�(f) to
m and 0, respectively, and OFF deletes the encoding of f from its cache. In this
process, OFF incurs encoding cost of adding only one encoding of file f . On the
other hand ON incurs much higher cost than OFF because of adding multiple
encodings of f . See [8, Section 3.5.1.2] for the proof of the following theorem.

Theorem 4. Any deterministic online algorithm with an arbitrary factor ca-
pacity blowup is Ω(log m)-competitive for any uniform-encode instance of the
compression caching problem.

5.2 An Upper Bound

In this section we present an O(m)-competitive online algorithm ON with O(m)
factor capacity blowup for any uniform-encode instance I of the compression
caching problem, where m = numindex (I).

As in Section 3.1, by preprocessing, we can arrange the encodings of the
files in such a way that sizes are decreasing and decode costs are increasing. In
other words, after preprocessing, for any file f and index i < m − 1, size(i +
1, f) < size(i, f), and decode(i + 1, f) > decode(i, f). Recall that for any file f ,
decode(m − 1, f) < p(f).

For any uniform-encode instance I = (σ, m, k), the online algorithm ON is
given a 2bm factor capacity blowup, where b is at least 1 + ε for some con-
stant ε > 0. We divide ON’s cache into 2m blocks, denoted i-left and i-right ,
0 ≤ i < m, such that the capacity of each block is bk. For any index i, i-left keeps

Online Compression Caching 425

only the i-encodings of files, and i-right keeps only the 0-encodings of files. For
any file f and index i, we maintain an associated value charge(f, i). Roughly,
whenever the cost incurred in miss penalties or decode costs on a file f exceeds
encode, then ON adds an encoding of the file that is cheaper in terms of the
access cost than the current encoding (if any) of f . The complete description of
algorithm ON is given in [8, Figure 3.6].

See [8, Section 3.5.2.2] for the proof of the following theorem.

Theorem 5. For any uniform-encode instance I of the compression caching
problem, there exists an online algorithm that is O(m)-competitive with O(m)
factor capacity blowup, where m = numindex (I).

References

1. Abali, B., Banikazemi, M., Shen, X., Franke, H., Poff, D.E., Smith, T.B.: Hardware
compressed main memory: Operating system support and performance evaluation.
IEEE Transactions on Computers 50, 1219–1233 (2001)

2. Alameldeen, A.R., Wood, D.A.: Adaptive cache compression for high-performance
processors. In: Proceedings of the 31st Annual International Symposium on Com-
puter Architecture, June 2004, pp. 212–223 (2004)

3. Awerbuch, B., Bartal, Y., Fiat, A.: Distributed paging for general networks. Journal
of Algorithms 28, 67–104 (1998)

4. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press, Cambridge (1998)

5. Cao, P., Irani, S.: Cost-aware WWW proxy caching algorithms. In: Proceedings of
the 1st Usenix Symposium on Internet Technologies and Systems, December 1997,
pp. 193–206 (1997)

6. Hallnor, E.G., Reinhardt, S.K.: A unified compressed memory hierarchy. In: Pro-
ceedings of the 11th International Symposium on High-Performance Computer Ar-
chitecture, February 2005, pp. 201–212 (2005)

7. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.
Communications of the ACM 28, 202–208 (1985)

8. Tiwari, M.: Algorithms for distributed caching and aggregation (2007),
http://www.cs.utexas.edu/users/plaxton/pubs/dissertations/mitul.pdf

9. Young, N.E.: On-line file caching. Algorithmica 33, 371–383 (2002)

http://www.cs.utexas.edu/users/plaxton/pubs/dissertations/mitul.pdf

On Trade-Offs in External-Memory
Diameter-Approximation

Ulrich Meyer�

Institute for Computer Science,
J.W. Goethe University,

60325 Frankfurt/Main, Germany
umeyer@cs.uni-frankfurt.de
http://www.uli-meyer.de

Abstract. Computing diameters of huge graphs is a key challenge in
complex network analysis. However, since exact diameter computation
is computationally too costly, one typically relies on approximations.
In fact, already a single BFS run rooted at an arbitrary vertex yields
a factor two approximation. Unfortunately, in external-memory, even
a simple graph traversal like BFS may cause an unacceptable amount
of I/O-operations. Therefore, we investigate alternative approaches with
worst-case guarantees on both I/O-complexity and approximation factor.

1 Introduction

We concentrate on connected undirected unweighted sparse graphs G = (V, E)
of n nodes and m = O(n) edges. Let d(u, v) be the distance between vertices u
and v in G, i.e., the number of edges on a shortest path between u and v. The
diameter of G is given by D = maxu,v d(u, v).

Breadth first search (BFS) is a fundamental graph traversal strategy. It de-
composes the input graph into at most n levels where level i comprises all nodes
that can be reached from a designated source s via a path of i edges, but cannot
be reached using less than i edges.

In principle, the diameter D can be easily computed using n BFS runs (one
for each graph vertex as a root) and keeping track of the furthest level found
in this process. Unfortunately, for huge sparse graphs with millions or even bil-
lions of vertices, the resulting computational complexity of Θ(n · m) = Θ(n2) is
prohibitive. Hence, it is common practice to restrict to approximations. Already
the maximum depth obtained in a single BFS-run rooted at an arbitrary vertex
v ∈ V yields a lower bound DBFS(v) satisfying DBFS(v) ≤ D ≤ 2 · DBFS(v). The
approximation can be improved by performing k BFS explorations from k care-
fully chosen starting points [6]: in that case the additive error drops to O(n/k)
at the cost of increased running time.

� Partially supported by the DFG grant ME 3250/1-1, and by MADALGO - Center for
Massive Data Algorithmics, a Center of the Danish National Research Foundation.

J. Gudmundsson (Ed.): SWAT 2008, LNCS 5124, pp. 426–436, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On Trade-Offs in External-Memory Diameter-Approximation 427

All these approaches assume that the input graphs fit into main memory. If
this assumption is violated then already one single BFS exploration may take
too long1.

1.1 Computation Model

We consider the commonly accepted external-memory (EM) model of Aggarwal
and Vitter [2]. It assumes a two level memory hierarchy with faster internal
memory having a capacity to store M vertices/edges. In an I/O operation, one
block of data, which can store B vertices/edges is transferred between disk and
internal memory. The measure of performance of an algorithm is the number
of I/Os it performs. The number of I/Os needed to read N contiguous items
from disk is scan(N) = Θ(N/B). The number of I/Os required to sort N items
is sort(N) = Θ((N/B) logM/B(N/B)). For all realistic values of N , B, and M ,
scan(N) < sort(N) � N .

1.2 Previous Results

There has been a significant number of publications on external-memory graph
algorithms; see [13,16] for recent overviews. Exact computation of the diameter
on unweighted undirected graphs (via All-Pairs Shortest-Paths, APSP) has been
addressed in [4,9]: both approaches require Θ(n · sort(n)) I/Os for sparse graphs.
Taking into account that current machines easily feature several gigabytes of
RAM, in the external-memory setting where n > M � B, an algorithm spending
Θ(n · n/B) = Ω(n2/B) I/Os is practically useless.

Chowdhury and Ramachandran [9] also gave an algorithm for computing ap-
proximate all-pairs shortest-paths with additive error. However, their approach
only takes less I/O than exact EM APSP when m ≥ n log n, which is not the
sparse graph case we are interested in. Of course, a constant multiplicative factor
approximation of the diameter can be obtained using EM BFS. Still, this takes
Ω(n/

√
B) I/Os in the worst-case [12]. We are not aware of any faster EM diam-

eter approximation algorithm for general sparse graphs, even if we are willing
to accept larger worst-case approximation errors, for example a multiplicative
error of O(B).

1.3 Results and Ideas in a Nutshell

We provide the first non-trivial results on approximate diameter computation
for sparse graphs in external-memory with I/O complexity better than that of
BFS.

While EM graph algorithms are usually hard on general sparse graphs they
tend to be easy on trees. Therefore, it would be tempting to extract some kind of
spanning tree T from the connected input graph G using just O(sort(n)) I/Os [1]

1 Even if k BFS explorations could be afforded then the approach in [6] would still
have to be modified in order to find the k starting points more efficiently, e.g., by
selecting each 2 ·n/k-th vertex on an Euler tour around a spanning tree of the graph.

428 U. Meyer

and then derive the diameter DG of G from DT , the diameter of T , spending an-
other O(sort(n)) I/Os. In fact, a recent experimental paper for internal-memory
diameter estimation [11] proposes a heuristic along these lines. Unfortunately,
since T is not necessarily a BFS tree the ratio DT /DG may be as high as Ω(n)
in the worst case. Hence, drawing conclusions from DT is potentially dangerous.

Therefore, our first idea (Section 3) is as follows: instead of trying to guess
DG directly from DT we only use T to contract G by Euler-Tour techniques in
some controlled way resulting in a graph G′ with n/B vertices and O(n) edges.
Then a subsequent BFS run on an arbitrary vertex of G′ only takes O(sort(n))
I/Os. If it identifies L ≥ 1 BFS levels then L ≤ DG′ ≤ 2 ·L and by our controlled
reduction we can conclude that L ≤ DG ≤ 2 · B · L.

If we choose to contract G to only n/k vertices with 1 < k ≤ B then the
approximation error is reduced to a multiplicative factor of O(k). However, the
respective I/O bound becomes O(n/

√
k · B + sort(n)) I/Os. For k � B the

first term usually dominates. For example, if only about O(n/B2/3) I/Os can be
tolerated, multiplicative errors of O(B1/3) may occur.

Using a different randomized contraction scheme (Section 4) with subse-
quent EM Single-Source Shortest-Paths (SSSP) computation (instead of BFS) we
achieve another interesting trade-off: O(n/

√
k · B/ log k+k·sort(n)) I/Os and ex-

pected multiplicative errors of only O(
√

k) instead of O(k). This time, if we strive
for about O(n/B2/3) I/Os, we expect multiplicative errors of O(B1/6 ·

√
log B).

With block sizes in EM implementations steadily increasing over the last years
(currently B � 106 for fast hard disks), B1/6 ·

√
log2 B has already dropped

below B1/3, thus making the second approach not only theoretically interesting.

1.4 Organization of the Paper

In Section 2 we will first review known BFS algorithms for undirected graphs.
Then in Sections 3 and 4 we appropriately modify external-memory graph clus-
tering approaches to support efficient graph contraction and investigate the ef-
fect on the respective diameters. Finally, in Section 5 we give some concluding
remarks.

2 Review of BFS Algorithms

Internal-Memory. BFS is well-understood in the RAM model. There exists
a simple linear time algorithm [10] (hereafter referred as IM BFS) for the BFS
traversal in a graph. IM BFS keeps a set of appropriate candidate nodes for the
next vertex to be visited in a FIFO queue Q. Furthermore, in order to identify
the unvisited neighbors of a node from its adjacency list, it marks the nodes
as either visited or unvisited in a global array. When run on external-memory
IM BFS requires Θ(n + m) I/Os: (1) remembering visited nodes needs Θ(m)
I/Os in the worst case and (2) unstructured indexed accesses to adjacency lists
may result in Θ(n + m/B) I/Os.

On Trade-Offs in External-Memory Diameter-Approximation 429

EM-BFS for dense undirected graphs. The algorithm by Munagala and
Ranade [15] (referred as MR BFS) ignores the second problem but addresses
the first one by exploiting the fact that the neighbors of a node in BFS level
t−1 are all in BFS levels t−2, t−1 or t. Let L(t) denote the set of nodes in BFS
level t, and let A(t) be the multi-set of neighbors of nodes in L(t − 1). Given
L(t − 1) and L(t − 2), MR BFS builds L(t) as follows: Firstly, A(t) is created
by |L(t − 1)| random accesses to get hold of the adjacency lists of all nodes in
L(t − 1). Thereafter, duplicates are removed from A(t) to get a sorted set A′(t).
This is done by sorting A(t) according to node indices, followed by a scan and
compaction phase. The set L(t) := A′(t) \ {L(t − 1) ∪ L(t − 2)} is computed
by scanning “in parallel” the sorted sets of A′(t), L(t − 1), and L(t − 2) to filter
out the nodes already present in L(t − 1) or L(t − 2). The resulting worst-case
I/O-bound is O (

∑
t L(t) +

∑
t sort(A(t))) = O (n + sort(n + m)).

Somewhat better bounds can be shown for graphs with very small diameter D:
due to the intermediate sorting steps accessing the adjacency-lists for all the
nodes in a BFS level actually takes at most O(scan(n+m)) I/Os. Thus, MR BFS
requires at most O(min{n, D · scan(n + m)} + sort(n + m)) I/Os.

The algorithm outputs a BFS-level decomposition of the vertices, which can
be easily transformed into a BFS tree using O(sort(n + m)) I/Os [7].

EM-BFS for sparse undirected graphs. Mehlhorn and Meyer suggested an-
other approach [12] (MM BFS) which involves a preprocessing phase to restruc-
ture the adjacency lists of the graph representation. It groups the vertices of the
input graph into disjoint clusters of small diameter in G and stores the adjacency
lists of the nodes in a cluster contiguously on the disk. Thereafter, an appropriately
modified version of MR BFS is run. MM BFS exploits the fact that whenever the
first node of a cluster is visited then the remaining nodes of this cluster will be
reached soon after. By spending only one random access (and possibly, some se-
quential accesses depending on cluster size) in order to load the whole cluster and
then keeping the cluster data in some efficiently accessible data structure (pool)
until it is all processed, on sparse graphs the total amount of I/O can be reduced
by a factor of up to

√
B: the neighboring nodes of a BFS level can be computed

simply by scanning the pool and not the whole graph. Though some edges may
be scanned more often in the pool, unstructured I/O in order to fetch adjacency
lists is considerably reduced, thereby reducing the total number of I/Os.

The concrete I/O bounds for MM BFS depend on the kind of preprocessing.
Mehlhorn and Meyer [12] proposed two variants (MM BFS R based on parallel
cluster growing and MM BFS D based on Euler-tours), which we will review and
modify toward our goal to compute approximate diameters in the subsequent
sections.

3 Simple Euler Tour Approach

3.1 Traditional Preprocessing within MM BFS D

The MM BFS D variant first builds a spanning tree Ts for the connected com-
ponent of G that contains the source node. Arge et al. [3] show an upper bound

430 U. Meyer

of O((1 + log log (B · n/m)) · sort(n + m)) I/Os for computing such a spanning
tree deterministically. Using randomization the spanning tree I/O bound even
drops to O(sort(n + m)) with high probability [1].

Each undirected edge of Ts is then replaced by two oppositely directed edges.
Note that a bi-directed tree always has at least one Euler tour. In order to
construct the Euler tour around this bi-directed tree, each node chooses a cyclic
order [5] of its neighbors. The successor of an incoming edge is defined to be the
outgoing edge to the next node in the cyclic order. The tour is then broken at the
source node and the elements of the resulting list are then stored in consecutive
order using an external memory list-ranking algorithm; Chiang et al. [8] showed
how to do this in sorting complexity.

Thereafter, we chop the Euler tour into chunks of μ = max{1,
√

n·B
n+m} nodes

(chunk size) and remove duplicates such that each node only remains in the
first chunk it originally occurs; again this requires a couple of sorting steps.
The adjacency lists are then re-ordered based on the position of their corre-
sponding nodes in the chopped duplicate-free Euler tour: all adjacency lists
for nodes in the same chunks form a cluster and the distance in G between
any two vertices whose adjacency-lists belong to the same cluster is bounded
by μ. On the other hand, there are at most O(n/μ) non-empty clusters, which

MM BFS D has to access using random I/Os. With μ = max{1,
√

n·B
n+m} the re-

sulting I/O bound for MM BFS D is O

(√
n·(n+m)

B + sort(n + m) + ST(n, m)
)

where ST(n, m) denotes the I/O bound for the spanning tree computation. Thus,
for sparse graphs, BFS can be solved using O(n/

√
B + sort(n)) I/Os when ap-

plying the randomized spanning tree subroutine.

3.2 Extracting a Compacted Graph

In principle the preprocessing method of MM BFS D described above can be run
for any chunk size 1 < k < 2·n. Therefore, we will use it to produce a compressed
graph G′

k of G in O(sort(n + m)) I/Os: The vertices of G′
k are the non-empty

clusters for G using chunk size k. As for the edges of G′
k, let C(u) denote the

cluster to which a vertex u ∈ G has been mapped in the preprocessing; if {u, v}
with u
= v is an edge in G and C(u)
= C(v), then {C(u), C(v)} will be an edge
in G′

k. This may create parallel edges between C(u) and C(v), which can easily
be eliminated in sorting complexity.

Obviously, G′
k has n′ = O(n/k) nodes and m′ = O(m) edges. Thus, a

subsequent BFS run on G′
k using MM BFS D with randomized spanning tree

computation requires only O(
√

n′ · (n′ + m′)/B + sort(n′ + m′)) I/Os, which is
O(

√
n/k · n/B + sort(n)) = O(n/

√
k · B + sort(n)) I/Os for sparse graphs G.

Note that for k = B, both producing G′
B and running BFS on it can be done in

O(sort(n)) I/Os if G is sparse.

On Trade-Offs in External-Memory Diameter-Approximation 431

3.3 Approximation Bound

Now we have to convince ourselves that a BFS run on G′
k yields a reasonable

bound on the diameter of G.

Lemma 1. Let dG(u, v) be the length of a shortest path between two nodes u and
v in an unweighted and undirected graph G. Then it holds that �dG(u, v)/k� ≤
dG′

k
(C(u), C(v)) ≤ dG(u, v).

Proof. Let P = 〈u = w1, . . . , wl = v〉 be a shortest path in G. Hence, wi
= wj for
all 1 ≤ i < j ≤ l. Since by construction at most k different vertices of G have been
mapped to each cluster C(·), each node on a shortest path P ′

k = 〈C(u), . . . , C(v)〉
in G′

k represents at most k original vertices of P . Furthermore, any two vertices
vi and vj of G mapped to the same cluster satisfy d(vi, vj) ≤ k − 1, making it
impossible to hurdle original distances larger or equal to k within any node C(·).
Thus, �dG(u, v)/k� ≤ dG′

k
(C(u), C(v)).

On the other hand a shortest path between C(u) and C(v) in the unweighted
graph G′

k cannot have more vertices than P : in the worst-case each vertex wi ∈ P
is mapped to a different cluster. However, then C(wi) and C(wi+1) are connected
by an edge in G′

k, implying dG′
k
(C(u), C(v)) ≤ dG(u, v). If C(wi) = C(wj) for

some i < j then the sub-path 〈C(i), . . . , C(j)〉 represents a detour on the shortest
path between C(u) and C(v). Thus, dG′

k
(C(u), C(v)) ≤ dG(u, v) still holds. ��

Hence, if DG denotes the diameter of G then, by Lemma 1, G′
k features a shortest

path of length l where �DG/k� ≤ l ≤ DG and no shortest path in G′
k is longer

than DG. Therefore, the maximum depth DBFS(v) obtained in a single BFS-run
rooted at an arbitrary vertex v ∈ G′

k is bounded by �DG/(2·k)� ≤ DBFS(v) ≤ DG

allowing us to infer DG up to a multiplicative factor of O(k).
As already mentioned earlier producing G′

k out of G takes O(sort(n + m))
I/Os and running BFS on G′

k using MM BFS D requires

O

(√
n/k · (n/k + m)

B
+ sort(n/k + m) + ST(n/k, m)

)
I/Os.

Combining the bounds and using m = O(n) we obtain:

Theorem 1. For sparse unweighted and undirected graphs a multiplicative
O(k)-approximation of the diameter can be computed using O(n/

√
k · B +

sort(n)) I/Os.

4 Parallel Cluster Growing Approach

In this chapter we provide another trade-off between approximation guarantee
and I/O bound. While our first approach transformed the input graph G into
a smaller unweighted graph G′

k, now we shall produce a weighted graph G′′
k

of about O(n/k) vertices. Unfortunately, the larger the parameter k the more
I/Os it takes to generate G′′

k . Furthermore, subsequently, we need a single-source

432 U. Meyer

shortest-paths computation on G′′
k instead of an easier and somewhat faster

BFS computation on G′
k. In return, for sufficiently small k, we obtain better

approximation bounds.

4.1 Modified Preprocessing

The weighted graph G′′
k will be obtained by a parallel cluster growing method

partially based on the randomized clustering in [12]. The main idea inherited
from there is to choose master nodes independently and uniformly at random
with probability 1/k and running a local BFS from all master nodes “in parallel”:
in each round, each master node ci tries to capture all unvisited neighbors of its
current cluster Ci; this is done by first sorting the nodes of the active fringes of all
Ci (the nodes that have been captured in the previous round) and then scanning
the adjacency-lists representation of the yet unexplored graph. If several master
nodes want to include a certain node v into their cluster then an arbitrary master
node among them succeeds. The selection can be done by sorting and scanning
the created set of neighbor nodes.

However, this kind of preprocessing will not suffice for our purposes. The new
ingredients in the clustering phase are following ones:

1. After choosing master nodes at random, O(n/k) non-chosen vertices may
additionally become masters using a deterministic selection procedure based
on an Euler-tour for an arbitrary spanning tree of G. By turning each k-th
vertex on the tour into a master (in case it has not yet been selected) we
make sure that eventually each non-selected vertex in G is at distance at
most k − 1 to a least one master.

2. While growing the clusters we keep track of the distances dC(u, v) in G
between captured vertices u and their respective masters v.

The graph G′′
k is created as follows: its vertices are the clusters of G, that is an

expected number of O(n/k) clusters for the randomly chosen master vertices plus
at most O(n/k) further clusters for the Euler-tour based extra master nodes. An
edge {u, v} ∈ G will result in an edge {C(u), C(v)} for G′′

k if u and v belong
to different clusters C(u) = Cu′
= C(v) = Cv′ with master nodes u′ and v′,
respectively. The weight of the created edge {Cu′ , Cv′} will be dC(u, u′) + 1 +
dC(v, v′). Note that this approach may create parallel edges between Cu′ and Cv′ ,
potentially having different weights. However, using standard sorting routines
only a lightest edge between Cu′ and Cv′ will be kept.

Lemma 2. Creating graph G′′
k out of G(n, m) takes O(k ·scan(n+m)+sort(n+

m) + ST(n, m)) I/Os.

Proof. By construction, each non-master vertex in G is at distance k−1 or less to
at least one of the O(n/k) master vertices on the Euler-Tour around a spanning
tree. The randomly chosen master vertices not on the tour do not spoil this
property. Thus, each non-master vertex is captured after at most k − 1 rounds.
Consequently, the resulting edge weights for G′′

k range in {1, . . . , 2 · k − 1}.

On Trade-Offs in External-Memory Diameter-Approximation 433

The total amount of data being scanned from the adjacency-lists representa-
tion during the “parallel cluster growing” is bounded by

X := O(
∑
v∈V

k · (1 + degree(v))) = O(k · (n + m)).

The total number of fringe nodes and neighbor nodes sorted and scanned during
the partitioning is at most Y := O(n+m). Therefore, the cluster growing requires

O(scan(X) + sort(Y)) = O(k · scan(n + m) + sort(n + m)) I/Os.

After that each node knows the (index of the) cluster it belongs to and the
distance to its master. With a constant number of sort and scan operations G′′

k

can be written in the adjacency lists graph format required for the subsequent
SSSP computation.

4.2 Improved Approximation Bound

We aim to prove an expected multiplicative error of at most O(
√

k) when infer-
ring the diameter of G from a SSSP run on G′′

k . We will distinguish two cases:
(a) when the diameter of G, DG, is at most 2 ·

√
k, and (b) when DG > 2 ·

√
k. In

the following we will assume that
√

k is an integer in order to simplify notation.

The case DG ≤ 2 ·
√

k. During the parallel cluster growing, each master node
performs a limited BFS traversal in G. However, since each shortest path in the
unweighted graph G has at most 2 ·

√
k edges, the resulting weights for G′′

k range
in {1, . . . , min{4 ·

√
k − 1, 2 · k − 1}}. We have to consider how the total weight

of a shortest path P = 〈u = w0, . . . , wDG = v〉 in G compares to the weight
of a shortest path in G′′

k between C(u) and C(v). Using similar arguments as
in the proof of Lemma 1 it turns out that in the worst-case each vertex on P
in G is mapped to a different cluster while producing G′′

k and furthermore the
respective master nodes of these clusters are as far away from P as possible
(while still capturing one node of P). Hence, the resulting weight for a shortest
path P ′′ between C(u) and C(v) in G′′

k is bounded from above by 4 ·
√

k · DG.
On the other hand, unless C(u) = C(v), the weight of P ′′ will also not be

smaller than that of P . This is because the weights of sub-paths in G running
within clusters contribute to the weights of the edges connecting the nodes corre-
sponding to these clusters in G′′

k . Thus, in our SSSP computation on G′′
k in order

to estimate DG the only problematic scenario would be if we performed SSSP
on an isolated vertex. But since G is connected and we produce Ω(n/k) ≥ 2
clusters this cannot happen.

The case DG > 2·
√

k. Like in the previous case we consider a shortest path P
in G defining DG. However, this time we split P into sub-paths P ′

i , each of which
comprises between

√
k and 2 ·

√
k edges and consider them separately. So, let us

fix a concrete sub-path P ′ = 〈u = w0, . . . , wp′ = v〉 of P with
√

k ≤ p′ ≤ 2 ·
√

k
edges. Furthermore, let x be a master node with shortest distance in G to any

434 U. Meyer

node on P ′ and let wx ∈ P ′ be a node that is captured earliest among all nodes
on P ′ during the parallel cluster growing – by either x or another master being
equally close. W.l.o.g. let us assume that x is the successful master node. Note
that this capturing happens in the t := dG(x, wx)-th round of the parallel cluster
growing and t ≤ k because of the Euler-Tour based extra master nodes, which
make sure that each non-master node can be captured fast. Also note that then
there is a path Px = 〈x, . . . , wx〉 of length t where all vertices of Px have been
captured by x.

In the absence of other nearby master nodes, after wx has been captured by x
all other nodes of P ′ would be captured within at most another p′ ≤ 2 ·

√
k

rounds by x as well.
Thus, if another master node y
= x is to capture a vertex wy
= wx on P ′,

too, then a second path Py = 〈y, . . . , wy〉 of length between t = dG(x, wx) and
t + p′ is needed and Py must be node-disjoint from Px. The number of different
master nodes that manage to capture nodes on P ′ is limited by (a) the number
of non-master nodes on P ′ (at most p′ + 1) and (b) the number of non-master
nodes in the neighborhood of P ′ to accommodate the paths Px, Py , . . . (these
are all graph nodes at distance less than t from P ′, let us call this quantity At).

Combining (a) and (b) we see that the nodes on P ′ will be captured by at most
min{At/t, p′+1} different masters within rounds t, . . . , t+p′. Thus, in the worst
case P ′ in G is replaced by a path in G′′

k consisting of min{At/t−1, p′} edges each
of which having weight at most 2 · (t + p′)+ 1. Hence, when switching from G to
G′′

k , the detour for P ′ is bounded from above by O(min{At/t, p′}·(t+p′)). It is an
easy exercise to verify the inequality min{At/t, p′}·(t+p′) ≤ At+(p′)2 ≤ At+4·k.

Keeping in mind that each vertex of G has been chosen to be a master in-
dependently with uniform probability 1/k, we can conclude that E[At] ≤ k: we
consider larger and larger neighborhoods around P ′ until we find the first level
with at least one master: vertex x at distance t = dG(x, wx). The expected num-
ber of vertices we have to check till then is given by 1/(1/k) = k but At may
contain even less vertices since it only accounts for distance levels 1, . . . , t − 1
around P ′ in G. Hence, the expected detour for sub-path P ′ is bounded from
above by O(k).

Now the final step is to use linearity of expectation in order to combine the
partial results for the sub-paths of the diameter-defining path P in G and thus
eventually obtain an upper bound on the expected approximation ratio for the
case DG ≥ 2 ·

√
k: we have to consider Θ(DG/

√
k) sub-paths of length Θ(

√
k) in

G each. By our discussion above each such sub-path accounts for an expected
detour of O(k) in G′′

k , resulting in a total detour of O(
√

k · DG) for the diameter
in G′′

k.

I/O complexity. In Lemma 2 we have already investigated the I/O complexity
to produce G′′

k out of G. Now we still have to consider the I/O costs to run SSSP
on G′′

k : we use the EM SSSP algorithm of Meyer and Zeh [14]. On undirected
graphs with n nodes and m edges it takes O(

√
(n · m/B) log2(cmax/cmin) +

sort(n + m) + MST(n, m)) I/Os where cmax and cmin are the minimal and max-
imal edge weights in the graph, respectively. MST(n, m) is the I/O-complexity

On Trade-Offs in External-Memory Diameter-Approximation 435

to solve Minimum Spanning Trees, the currently fastest approach [1] is random-
ized and requires O(sort(n + m)) I/Os. As for G′′

k we expect n′′ = O(n/k),
m′′ = O(m), cmin = 1, and cmax = O(k). Additionally, since we concen-
trate on sparse graphs G, m = O(n) and m′′ = O(n). Thus, we can solve
SSSP on G′′

k using O(n ·
√

log(k)/(k · B) + sort(n)) I/Os. Together with the
O(k · scan(n) + sort(n))) I/Os to generate G′′

k , the total I/O requirements are
O(n ·

√
log(k)/(k · B) + k · scan(n) + sort(n)) I/Os.

Theorem 2. An expected O(
√

k)-approximation for the diameter of a sparse
undirected and unweighted graph with n nodes and m = O(n) edges can be ob-
tained using O(n ·

√
log(k)/(k · B) + k · scan(n) + sort(n)) I/Os.

5 Conclusions

We have considered two approaches for fast external-memory approximation of
diameters in sparse unweighted and undirected graphs. Both are parameterized
and allow nice trade-offs between approximation guarantees and I/O require-
ments. Still, it is an open problem whether these trade-offs can be improved.
For example, it would be tempting to try a multi-stage parallel cluster grow-
ing approach. Unfortunately, already after the first stage the shrunken graph
becomes weighted and from then on the shrinking procedure will have to deal
with weights, too, thus making efficient and distance-aware node reduction much
more complicated.

References

1. Abello, J., Buchsbaum, A., Westbrook, J.: A functional approach to external graph
algorithms. Algorithmica 32(3), 437–458 (2002)

2. Aggarwal, A., Vitter, J.S.: The input/output complexity of sorting and related
problems. Communications of the ACM 31(9), 1116–1127 (1988)

3. Arge, L., Brodal, G., Toma, L.: On external-memory MST, SSSP and multi-way
planar graph separation. In: Halldórsson, M.M. (ed.) SWAT 2000. LNCS, vol. 1851,
pp. 433–447. Springer, Heidelberg (2000)

4. Arge, L., Meyer, U., Toma, L.: External memory algorithms for diameter and all-
pairs shortest-paths on sparse graphs. In: Dı́az, J., Karhumäki, J., Lepistö, A.,
Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 146–157. Springer, Heidel-
berg (2004)

5. Atallah, M., Vishkin, U.: Finding Euler tours in parallel. Journal of Computer and
System Sciences 29(30), 330–337 (1984)

6. Boitmanis, K., Freivalds, K., Ledins, P., Opmanis, R.: Fast and simple approxi-
mation of the diameter and radius of a graph. In: Àlvarez, C., Serna, M.J. (eds.)
WEA 2006. LNCS, vol. 4007, pp. 98–108. Springer, Heidelberg (2006)

7. Buchsbaum, A., Goldwasser, M., Venkatasubramanian, S., Westbrook, J.: On ex-
ternal memory graph traversal. In: Proc. 11th Ann. Symposium on Discrete Algo-
rithms (SODA), pp. 859–860. ACM-SIAM (2000)

8. Chiang, Y.J., Goodrich, M.T., Grove, E.F., Tamasia, R., Vengroff, D.E., Vitter,
J.S.: External memory graph algorithms. In: Proc. 6th Ann.Symposium on Discrete
Algorithms (SODA), pp. 139–149. ACM-SIAM (1995)

436 U. Meyer

9. Chowdury, R., Ramachandran, V.: External-memory exact and approximate all-
pairs shortest-paths in undirected graphs. In: Proc. 16th Ann. Symposium on Dis-
crete Algorithms (SODA), pp. 735–744. ACM-SIAM (2005)

10. Cormen, T.H., Leiserson, C., Rivest, R.: Introduction to Algorithms. McGraw-Hill,
New York (1990)

11. Magnien, C., Latapy, M., Habib, M.: Fast computation of empirically tight bounds
for the diameter of massive graphs (2007),
http://www-rp.lip6.fr/∼latapy/Diameter/

12. Mehlhorn, K., Meyer, U.: External-memory breadth-first search with sublinear
I/O. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 723–
735. Springer, Heidelberg (2002)

13. Meyer, U., Sanders, P., Sibeyn, J. (eds.): Algorithms for Memory Hierarchies.
LNCS, vol. 2625. Springer, Heidelberg (2003)

14. Meyer, U., Zeh, N.: I/O-efficient undirected shortest paths. In: Di Battista, G.,
Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 434–445. Springer, Heidelberg
(2003)

15. Munagala, K., Ranade, A.: I/O-complexity of graph algorithms. In: Proc. 10th
Ann. Symposium on Discrete Algorithms (SODA), pp. 687–694. ACM-SIAM
(1999)

16. Vitter, J.S.: External memory algorithms and data structures: Dealing with mas-
sive data. ACM computing Surveys 33, 209–271 (2001),
http://www.cs.purdue.edu/homes/∼jsv/Papers/Vit.IO survey.pdf

http://www-rp.lip6.fr/~latapy/Diameter/
http://www.cs.purdue.edu/homes/~jsv/Papers/Vit.IO_survey.pdf

Author Index

Addario-Berry, Louigi 41
Althaus, Ernst 210
Amini, Omid 41
Azar, Yossi 319

Bekos, Michael A. 234
Bereg, Sergey 294
Betzler, Nadja 402
Bilò, Davide 258
Blelloch, Guy E. 17
Böckenhauer, Hans-Joachim 258
Bodlaender, Hans L. 102
Bose, Prosenjit 367, 390

Canzar, Stefan 210
Carmi, Paz 367, 390
Christ, Tobias 77
Couture, Mathieu 367

Degener, Bastian 378
Demaine, Erik D. 160
Dijk, Thomas C. van 102
Dumitrescu, Adrian 53, 294
Dumitriu, Daniel 270

Elbassioni, Khaled 210

Farshi, Mohammad 390
Farzan, Arash 173
Feige, Uriel 319
Fekete, Sándor P. 114
Funke, Stefan 270

Gehweiler, Joachim 378
Gfeller, Beat 65
Gibson, Matt 282
Glasner, Daniel 319
Golovin, Daniel 17
Golynski, Alexander 148
Guo, Jiong 402

Hall, Alexander 114
Halldórsson, Magnús M. 198
Harren, Rolf 306
Hasunuma, Toru 185

Heggernes, Pinar 331
Hershberger, John 5
Hershcovitch, Moshe 29
Hoffmann, Michael 77
Hromkovič, Juraj 258
Huang, Chien-Chung 127

Ishii, Toshimasa 185

Jiang, Minghui 294

Kanade, Gaurav 282
Kaplan, Haim 29
Karrenbauer, Andreas 210
Kaufmann, Micheal 234
Kavitha, Telikepalli 127, 343
Köhler, Ekkehard 114
Kok, Howi 53
Kowaluk, Miros�law 222
Královič, Richard 258
Krohn, Erik 282
Kröller, Alexander 114
Kutz, Martin 270

Lammersen, Christiane 378
Langerman, Stefan 160
Leeuwen, Jan van 102
Lin, Min Chih 355
Lingas, Andrzej 222

Maheshwari, Anil 390
Mans, Bernard 246
Meister, Daniel 331
Mestre, Julián 210
Meyer, Ulrich 426
Michail, Dimitrios 127
Mihalák, Matúš 65
Milosavljević, Nikola 270
Mitzenmacher, Michael 1
Mömke, Tobias 258
Munro, J. Ian 173

Nasre, Meghana 127
Nekrich, Yakov 138
Niedermeier, Rolf 402

438 Author Index

Nöllenburg, Martin 234
Nowak, Johannes 222

Okamoto, Yoshio 77
Ono, Hirotaka 185

Pirwani, Imran A. 282
Plaxton, C. Greg 414
Price, Eric 160
Proskurowski, Andrzej 331

Rabani, Yuval 90
Raman, Rajeev 148
Rao, S. Srinivasa 148

Scalosub, Gabriel 90
Schmid, Stefan 246
Sereni, Jean-Sébastien 41
Shachnai, Hadas 198
Smid, Michiel 390
Soulignac, Francisco J. 355
Stee, Rob van 306
Sun, Yu 414

Suri, Subhash 5, 65
Suzuki, Ichiro 53
Symvonis, Antonios 234
Szwarcfiter, Jayme L. 355

Tan, Richard B. 102
Thomassé, Stéphan 41
Tiwari, Mitul 414

Uno, Takeaki 77
Uno, Yushi 185

Varadarajan, Kasturi 282
Vassilevska, Virginia 17
Vazirani, Vijay V. 4
Vicari, Elias 65
Vin, Harrick 414

Wattenhofer, Roger 246
Widmayer, Peter 65, 258

Zych, Anna 258
Żyliński, Pawe�l 53

	front-matter
	fulltext
	A Survey of Results for Deletion Channels and Related Synchronization Channels
	References

	fulltext_001
	Nash Bargaining Via Flexible Budget Markets

	fulltext_002
	Simplified Planar Coresets for Data Streams
	Introduction
	Preliminaries
	Extent Definitions
	Bounding Boxes
	Streaming, Epochs, and Subepochs

	The Adaptive Convex Hull: One Subepoch
	The Adaptive Convex Hull: Multiple Epochs and Subepochs
	Conclusion

	fulltext_003
	Uniquely Represented Data Structures for Computational Geometry
	Introduction
	Preliminaries
	Uniquely Represented Ordered Subsets
	Uniquely Represented Range Trees
	Horizontal Point Location and Orthogonal Segment Intersection
	Uniquely Represented 2-D Dynamic Convex Hull
	Conclusions

	fulltext_004
	I/O Efficient Dynamic Data Structures for Longest Prefix Queries
	Introduction
	B Tree for Longest Prefix Queries
	Finding the Longest Prefix
	Inserting a New Prefix
	Deleting a Prefix

	String B-Tree for Longest Prefix Queries
	Future Research

	fulltext_005
	Guarding Art Galleries: The Extra Cost for Sculptures Is Linear
	Introduction
	Guards Versus Convex Vertices
	Sculpture Galleries
	The Definition of the Operator T(N,G)
	The Proof of Theorem 5
	Proofs of Lemmas 2 and 3

	Conclusion

	fulltext_006
	Vision-Based Pursuit-Evasion in a Grid
	Introduction
	Preliminaries
	Searching for Z
	Chasing
	K-Passiveness and Guessing
	Hiding

	One-Pursuer Randomized Algorithms
	One-Pursuer Randomized Algorithm for a K-Passive Z

	Other Results and Concluding Remarks

	fulltext_007
	Angle Optimization in Target Tracking
	Introduction
	NP-Hardness of SumOfAngleDeviations
	Maximizing the Sum/Min of Tracking Angles
	Cameras on a Line
	Equidistant Cameras on a Line

	Conclusions

	fulltext_008
	Improved Bounds for Wireless Localization
	Introduction
	Notation and Basic Properties
	Upper Bounds
	Lower Bounds

	fulltext_009
	Bicriteria Approximation Tradeoff for the Node-Cost Budget Problem
	Introduction
	Our Results
	Related Work

	Notation and Preliminaries
	Finding Good Candidate Solutions
	Candidate Solutions with High Density
	An Algorithm for Finding a Good Candidate

	Structure of an Optimal Solution
	The Algorithm
	Road Map
	Detailed Description

	Concluding Remarks

	fulltext_010
	Integer Maximum Flow in Wireless Sensor Networks with Energy Constraint
	Introduction
	Preliminaries
	The Model
	The Problem
	Other Variants

	Complexity
	General Graphs
	The Geometric Model
	Fixed Range Model
	Approximation Algorithms

	Graphs with Bounded Treewidth
	Conclusion

	fulltext_011
	The Maximum Energy-Constrained Dynamic Flow Problem
	Introduction
	Problem and Definitions
	Variants and Complexities
	Centralized Algorithms for 1-ECDF
	Distributed Algorithm for 1-ECDF
	Extensions
	Conclusion and Open Problems

	fulltext_012
	Bounded Unpopularity Matchings
	Introduction
	Problem Definition
	Background and Related Results

	Preliminaries
	McCutchen's Algorithm

	Our Algorithm
	The Algorithm

	Experimental Results

	fulltext_013
	Data Structures with Local Update Operations
	Introduction
	Predecessor Queries in O(loglogU) Time
	Space-Efficient Implementation

	Deterministic Dictionaries with O(loglogn) Query Time
	Priority Queues
	Dominance Queries

	fulltext_014
	On the Redundancy of Succinct Data Structures
	Introduction
	Preliminaries
	Density-Sensitive Systematic Encodings
	Upper Bounds
	Density-Sensitive Lower Bounds

	FID with Reduced Redundancy
	Further Applications of Informative Encoding

	fulltext_015
	Confluently Persistent Tries for Efficient Version Control
	Introduction
	Locality-Sensitive Functional Data Structure
	Globally Balanced Functional Data Structure
	Functional Link-Cut Trees
	Finger Movement
	Multiple Fingers
	Finger Representation

	Adding Hash Tables
	Open Problems

	fulltext_016
	A Uniform Approach Towards Succinct Representation of Trees
	Introduction
	Contribution

	Tree Decomposition
	Ordinal Trees
	Cardinal Trees
	Free Trees
	Entropy-Based Succinct Encodings
	Succinct Encoding Based on Degree-Distribution Entropy
	Other Entropy Measures

	Conclusion

	fulltext_017
	An O(n^{1.75}) Algorithm for L(2, 1)-Labeling of Trees
	Introduction
	Preliminaries
	Definitions and Notations
	Related Results and Basic Properties

	A Linear Time Algorithm for Trees with \delta = \Omega (\sqrt{n})
	An O(\Delta^{1.5}n)-Time Algorithm
	Chang and Kuo's Algorithm
	Preprocessing Operations for Input Trees
	Efficient Search for Augmenting Paths
	Efficient Computation of \delta -Values Near Leaves
	Amortized Analysis

	An O(n1.75)-Time Algorithm
	Concluding Remarks

	fulltext_018
	Batch Coloring Flat Graphs and Thin
	Introduction
	Related Work
	Our Results

	Techniques
	Batch Sum Coloring
	Properties and Tools
	Thin graphs
	Flat graphs
	Pebbly graphs

	Max Coloring Paths

	fulltext_019
	Approximating the Interval Constrained Coloring Problem
	Introduction
	Previous and Related Work
	Contributions of This Paper

	A \pm1 Guarantee
	Maximum Coloring
	Reducing the Search Space
	The Dynamic Program

	Hardness

	fulltext_020
	A Path Cover Technique for LCAs in Dags
	Introduction
	Preliminaries
	Path Cover Technique
	Combining Small Width and Low Depth

	fulltext_021
	Boundary Labeling with Octilinear Leaders
	Introduction
	Problem Definition
	Preliminaries

	Boundary Labeling with Non-uniform Labels
	Boundary Labeling with Uniform Labels
	One-Sided Boundary Labeling
	Two-Sided Boundary Labeling
	Four-Sided Boundary Labeling

	An Algorithm for Obtaining Legal Boundary Labelings
	Conclusions

	fulltext_022
	Distributed Disaster Disclosure
	Introduction
	Model
	The On-Duty Model
	A Simple Solution for the Tree
	The Neighborhood Problem
	Hierarchical Network Decomposition
	Forests and Pointer Jumping

	The Off-Duty Model
	Related Work
	Conclusion

	fulltext_023
	Reoptimization of Steiner Trees
	Introduction
	Preliminaries
	Techniques
	Removing One Terminal
	Adding One Terminal
	Increasing the Weight of One Edge
	Decreasing the Weight of One Edge

	fulltext_024
	On the Locality of Extracting a 2-Manifold in IR^{3}
	Introduction
	Our Contribution

	Graph-Based, Conservative Adjacencies
	Conservative Adjacencies in IR^{2}
	Conservative Adjacencies in IR^{3}

	Implementation and Experimental Evaluation
	Outlook

	fulltext_025
	On Metric Clustering to Minimize the Sum of Radii
	Introduction
	Our Results

	Algorithm for General Metrics
	The Randomized Algorithm

	NP-Hardness of Min-Cost k-Cover
	The Doubling Metric Case

	fulltext_026
	On Covering Problems of Rado
	Introduction
	Algorithm A1 and Lower Bounds for Squares and Hypercubes
	Lower Bounds for Centrally Symmetric Convex Sets in the Plane
	Algorithm A2 and a New Lower Bound for Squares
	A New Upper Bound for Squares: Proof of Theorem 4

	fulltext_027
	Packing Rectangles into 2OPT Bins Using Rotations
	Introduction
	Steinberg's Algorithm and NFDH
	Our Algorithm: Overview
	Packing Sets of Small Items
	The Approximation Ratio
	Conclusion and Future Work

	fulltext_028
	A Preemptive Algorithm for Maximizing Disjoint Paths on Trees
	Introduction
	Preliminaries
	A 4-Congested Deterministic Algorithm
	Partitioning \sigma into Subsequences
	An Algorithm for Subsequence \sigmsa^ {i}
	Combining the Calls from Subsequences

	A Constant Competitive Randomized Algorithm for Disjoint Paths
	A Constant Competitive Randomized Algorithm for Congestion b

	fulltext_029
	Minimum Distortion Embeddings into a Path of Bipartite Permutation and Threshold Graphs
	Introduction
	Preliminaries
	Distortion of Threshold Graphs
	Distortion of Bipartite Permutation Graphs
	Final Remarks

	fulltext_030
	On a Special Co-cycle Basis of Graphs
	Introduction
	Preliminaries
	Gomory-Hu Tree

	Minimum Co-cycle Bases and Algorithms
	Computing a Minimum Weakly Fundamental Co-cycle Basis

	Classes of Co-cycle Bases

	fulltext_031
	A Simple Linear Time Algorithm for the Isomorphism Problem on Proper Circular-Arc Graphs
	Introduction
	PCA Representations
	Basic Algorithms
	Co-bipartitions of the Co-components of a PCA Graph
	Components of a PCA Graph
	PCA Representation of Interval Graphs L-S-S-PHCA
	Minimum Circular String Booth-LLCS,Shiloach81-canonization

	Canonical Representation of PCA Models
	Canonical Models of PCA Graphs
	Connected PCA Graphs Which Are Co-connected or Non Co-bipartite
	Proper Interval Graphs
	Canonization of Co-bipartite PCA Graphs

	Putting It All Together

	fulltext_032
	Spanners of Additively Weighted Point Sets
	Introduction
	Related Work
	Definitions and Notation
	The Additively Weighted Yao Graph
	Quotient Graphs and Quotient Spanners
	The Additively Weighted Delaunay Graph
	Computing a Plane Embedding
	Conclusion

	fulltext_033
	The Kinetic Facility Location Problem
	Introduction
	Preliminaries
	The Kinetic Data Structure
	Event Queue
	Handling an Update

	Quality and Complexity of the Kinetic Data Structure
	Conclusion

	fulltext_034
	Computing the Greedy Spanner in Near-Quadratic Time
	Introduction
	Main Results and Organization of the Paper

	The FG-Greedy Algorithm
	A Counterexample

	A Preliminary Algorithm
	An Improved Algorithm
	Running Time

	Conclusion

	fulltext_035
	Parameterized Computational Complexity of Dodgson and Young Elections
	Introduction
	Preliminaries
	Dodgson Score
	Young Score
	Conclusion and Outlook

	fulltext_036
	Online Compression Caching
	Introduction
	Preliminaries
	Equal Encode and Decode Costs
	Algorithm
	Multilevel Storage

	Varying Encode Costs and Uniform Decode Costs
	The Lower Bound
	An Upper Bound

	Uniform Encode Costs and Varying Decode Costs
	The Lower Bound
	An Upper Bound

	fulltext_037
	On Trade-Offs in External-Memory Diameter-Approximation
	Introduction
	Computation Model
	Previous Results
	Results and Ideas in a Nutshell
	Organization of the Paper

	Review of BFS Algorithms
	Simple Euler Tour Approach
	Traditional Preprocessing within MM_BFS_D
	Extracting a Compacted Graph
	Approximation Bound

	Parallel Cluster Growing Approach
	Modified Preprocessing
	Improved Approximation Bound

	Conclusions

	back-matter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

