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Introduction

Over the last fifteen years or so, there has emerged a satisfactory and coherent
theory of orthogonal polynomials in several variables, attached to root systems,
and depending on two or more parameters. At the present stage of its develop-
ment, it appears that an appropriate framework for its study is provided by the
notion of an affine root system: to each irreducible affine root system S there are
associated several families of orthogonal polynomials (denoted by E;, Py, O,
P}EE) in this book). For example, when S is the non-reduced affine root system
of rank 1 denoted here by (Cy, Cy), the polynomials P; are the Askey-Wilson
polynomials [A2] which, as is well-known, include as special or limiting cases
all the classical families of orthogonal polynomials in one variable.

I have surveyed elsewhere [M8] the various antecedents of this theory: sym-
metric functions, especially Schur functions and their generalizations such as
zonal polynomials and Hall-Littlewood functions [M6]; zonal spherical func-
tions on p-adic Lie groups [M1]; the Jacobi polynomials of Heckman and
Opdam attached to root systems [H2]; and the constant term conjectures of
Dyson, Andrews et al. ([D1], [A1], [M4], [M10]). The lectures of Kirillov [K2]
also provide valuable background and form an excellent introduction to the
subject.

The title of this monograph is the same as that of the lecture [M7]. That report,
for obvious reasons of time and space, gave only a cursory and incomplete
overview of the theory. The modest aim of the present volume is to fill in the
gaps in that report and to provide a unified foundation for the theory in its
present state.

The decision to treat all affine root systems, reduced or not, simultaneously
on the same footing has resulted in an unavoidably complex system of notation.
In order to formulate results uniformly it is necessary to associate to each affine
root system S another affine root system S’ (which may or may not coincide
with ), and to each labelling (§1.5) of S a dual labelling of S'.

vii



viii Introduction

The prospective reader is expected to be familiar with the algebra and
geometry of (crystallographic) root systems and Weyl groups, as expounded
for example by Bourbaki in [B1]. Beyond that, the book is pretty well
self-contained.

We shall now survey briefly the various chapters and their contents. The
first four chapters are preparatory to Chapter 5, which contains all the main
results. Chapter 1 covers the basic properties of affine root systems and their
classification. Chapter 2 is devoted to the extended affine Weyl group, and
collects various notions and results that will be needed later.

Chapter 3 introduces the (Artin) braid group of an extended affine Weyl
group, and the double braid group. The main result of this chapter is the duality
theorem (3.5.1); although it is fundamental to the theory, there is at this time of
writing no complete proof in the literature. I have to confess that the proof given
here of the duality theorem is the least satisfactory feature of the book, since it
consists in checking, in rather tedious detail, the necessary relations between
the generators. Fortunately, B. Ton [I1] has recently given a more conceptual
proof which avoids these calculations.

The subject of Chapter 4 is the affine Hecke algebra $, which is a deforma-
tion of the group algebra of the extended affine Weyl group. We construct the
basic representation of 9 in §4.3 and develop its properties in the subsequent
sections. Finally, in §4.7 we introduce the double affine Hecke algebra 9, and
show that the duality theorem for the double braid group gives rise to a duality
theorem for 9.

As stated above, Chapter 5, on orthogonal polynomials, is the heart of the
book. The scalar products are introduced in §5.1, the orthogonal polynomials
E, in §5.2, the symmetric orthogonal polynomials P, in §5.3, and their variants
0, and Pk(s) in §5.7. The main results of the chapter are the symmetry theorems
(5.2.4) and (5.3.5); the specialization theorems (5.2.14) and (5.3.12); and the
norm formulas (5.8.17) and (5.8.19), which include as special cases almost all
the constant term conjectures referred to earlier.

The final Chapter 6 deals with the case where the affine root system S has
rank 1. Here everything can be made completely explicit. When S is of type A,
the polynomials P; are the continuous g-ultraspherical (or Rogers) polynomials,
and when S is of type (C/, C;) they are the Askey-Wilson polynomials, as
mentioned above.

The subject of this monograph has many connections with other parts of
mathematics and theoretical physics, such as (in no particular order) alge-
braic combinatorics, harmonic analysis, integrable quantum systems, quan-
tum groups and symmetric spaces, quantum statistical mechanics, deformed
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Virasoro algebras, and string theory. I have made no attempt to survey these
various applications, partly from lack of competence, but also because an ade-
quate account would require a book of its own.

Finally, references to the history and the literature will be found in the Notes
and References at the end of each chapter.






Affine root systems

1.1 Notation and terminology

Let E be an affine space over a field K: that is to say, E is a set on which a
K -vector space V acts faithfully and transitively. The elements of V are called
translations of E, and the effect of a translation v € V on x € E is written
x+v.Ify=x+vwewritev=y—x.

Let E’ be another affine space over K, and let V'’ be its vector space of
translations. A mapping f : E — E’ is said to be affine-linear if there exists a
K -linear mapping Df : V — V', called the derivative of f, such that

(1.1.1) f&x4+v)= fx)+ (Df)(W).

forall x € E and v € V. In particular, a function f: E — K is affine-linear if
and only if there exists a linear form Df: V — K such that (1.1.1) holds.

If f,g: E — K are affine-linear and A, u € K, the function h = Af +
ug : x — Af(x)+ ng(x) is affine-linear, with derivative Dh = ADf + uDg.
Hence the set F of all affine-linear functions f: E — K isa K -vector space, and
D is a K -linear mapping of F onto the dual V* of the vector space V. The kernel
of D is the 1-dimensional subspace F° of F consisting of the constant functions.

Let F* be the dual of the vector space F. For each x € E, the evaluation
map &, : f — f(x)belongs to F*, and the mapping x > ¢, embeds E in F*
as an affine hyperplane. Likewise, for each v € V let ¢, € F* be the mapping
f = ((Df)w).Ifv=y—x,wherex,y € E, wehave e, = ¢, — &, by (1.1.1),
and the mapping v — ¢, embeds V in F* as the hyperplane through the origin
parallel to E.

From now on, K will be the field R of real numbers, and V will be areal vector
space of finite dimension n > 0, equipped with a positive definite symmetric
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scalar product <u, v>. We shall write
lv] = <v, v>1/?

for the length of a vector v € V. Then E is a Euclidean space of dimension n,
and is a metric space for the distance function d(x, y) = |x — y|.

We shall identify V with its dual space V* by means of the scalar product
<u, v>. For any affine-linear function f: £ — R, (1.1.1) now takes the form

(1.1.2) f(x +v) = f(x)+<Df, v>

and Df is the gradient of f, in the usual sense of calculus.
We define a scalar product on the space F as follows:

(1.1.3) <f,g>=<Df, Dg>.

This scalar product is positive semidefinite, with radical the one-dimensional
space F° of constant functions.
Foreachv £ 0in V let

vV =2v/|v)?
and for each non-constant f € F let

=217
Also let

Hy = f~'(0)

which is an affine hyperplane in E. The reflection in this hyperplane is the
isometry sy: E — E given by the formula

(1.1.4) spx)=x— f'(x)Df =x — f(x)Df".

By transposition, sy actson F: sp(g) = g o s;l = g o sy. Explicitly, we have
(1.1.5) sp@=g—<f'.g>f =g —<f.g>f"

forg e F.

For each u # 01in V, lets,: V — V denote the reflection in the hyperplane
orthogonal to u, so that

(1.1.6) s.(v) =v —<u, v>u”.
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Then it is easily checked that
(1.1.7) Dsy = spy

for any non constant f € F.

Let w: E — E be an isometry. Then w is affine-linear (because it pre-
serves parallelograms) and its derivative Dw is a linear isometry of V, i.e., we
have <(Dw)u, (Dw)v> = <u, v> for all u, v € V. The mapping w acts by
transposition on F: (wf)(x) = f(w~'x) for x € V, and we have

(1.1.8) D(wf) = (Dw)(Df).

For each v € V we shall denote by ¢(v) : E — E the translation by v, so
that #(v)x = x + v. The translations are the isometries of £ whose derivative
is the identity mapping of V. On F, t(v) acts as follows:

(1.1.9) tw)f = f —<Df, v>c
where c is the constant function equal to 1. For if x € E we have
(t) Hx) = flx —v) = f(x) — <Df, v>.
Let w: E — E be an isometry and let v € V. Then
(1.1.10) wt@)w™' = t((Dw)v).
For if x € E we have

(wt(v)w’l)(x) = w(w’lx +v) =x 4+ (Dw)v.

1.2 Affine root systems

Asin §1.1 let E be a real Euclidean space of dimension n > 0, and let V be its
vector space of translations. We give E the usual topology, defined by the metric
d(x,y) = |x — y|, so that E is locally compact. As before, let F' denote the
space (of dimension n + 1) of affine-linear functions on E.

An gffine root system on E [M2] is a subset S of F satisfying the following
axioms (AR1)-(AR4):

(AR 1) S spans F, and the elements of S are non-constant functions.
(AR 2) s,(b) € S foralla, b € S.
(AR 3) <aV,b> € Z foralla, b € S.
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The elements of § are called affine roots, or just roots. Let W be the group
of isometries of E generated by the reflections s, for all a € S. This group Wy
is the Weyl group of S. The fourth axiom is now

(AR 4) Ws (as a discrete group) acts properly on E.

In other words, if K and K, are compact subsets of E, the set of w € Wy such
that wK| N K, # @ is finite.

From (AR3) it follows, just as in the case of a finite root system, that if a and
Aa are proportional affine roots, then X is one of the numbers :l:%, +1, £2. If
a € Sand %a ¢ S, theroota is said to be indivisible. If each a € S is indivisible,
i.e., if the only roots proportional to @ € S are =%a, the root system S is said to
be reduced.

If S is an affine root system on E, then

SV ={a":aesS)

is also an affine root system on E, called the dual of S. Clearly S and SV have
the same Weyl group, and S¥¥ = §.

The rank of S is defined to be the dimension n of E (or V). If S’ is another
affine root system on a Euclidean space E’, an isomorphism of S onto S’ is
a bijection of S onto S’ that is induced by an isometry of E onto E". If §’ is
isomorphic to AS for some nonzero A € R, we say that S and S’ are similar.

We shall assume throughout that § is irreducible, i.e. that there exists no
partition of S into two non-empty subsets S, S, such that <a;, a,> = 0 for all
a; € S;and a; € S».

The following proposition ([M2], p. 98) provides examples of affine root
systems:

(1.2.1) Let R be an irreducible finite root system spanning a real finite-
dimensional vector space V, and let <u, v> be a positive-definite symmetric
bilinear form on 'V, invariant under the Weyl group of R. For each @ € R and
r € Z let ay, , denote the affine-linear function on V defined by

Ay r(X) = <a, x>+ 1.

Then the set S(R) of functions a, ,, where @ € R and r is any integer if%a ¢ R
(resp. any odd integer if %a € R) is a reduced irreducible affine root system
onV.
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Moreover, every reduced irreducible affine root system is similar to either
S(R) or S(R)Y, where R is a finite (but not necessarily reduced) irreducible root
system ([M2], §6).

Let S be an irreducible affine root system on a Euclidean space E. The set
{H,: a € S} of affine hyperplanes in E on which the affine roots vanish is locally
finite ((M2], §4). Hence the set E — | J,.¢ H, is open in E, and therefore so
also are the connected components of this set, since E is locally connected.
These components are called the alcoves of S, or of Wy, and it is a basic fact
(loc. cit.) that the Weyl group Wy acts faithfully and transitively on the set of
alcoves. Each alcove is an open rectilinear n-simplex, where n is the rank of S.

Choose an alcove C once and for all. Let x; (i€/) be the vertices of C,
so that C is the set of all points x = Y A;x; such that Y A; = 1 and each A;
is a positive real number. Let B = B(C) be the set of indivisible affine roots
a € S such that (i) H, is a wall of C, and (ii) a(x) > 0 for all x € C. Then B
consists of n + 1 roots, one for each wall of C, and B is a basis of the space F
of affine-linear functions on E. The set B is called a basis of S.

The elements of B will be denoted by a; (i€l), the notation being chosen
sothata;(x;) = 0if i # j. Since x; is in the closure of C, we have a;(x;) > 0.
Moreover, <a;, a;> < 0 wheneveri # j.

The alcove C having been chosen, an affine root a € S is said to be positive
(resp. negative) if a(x) > 0 (resp. a(x) < 0) for x € C. Let S* (resp. $7)
denote the set of positive (resp. negative) affine roots; then S = ST U S~ and
S~ = —S*. Moreover, each a € ST is a linear combination of the a; with
nonnegative integer coefficients, just as in the finite case ([M2], §4).

Leto; = Da; (iel). The n + 1 vectors «; € V are linearly dependent, since
dim V = n. There is a unique linear relation of the form

Zmiai =0

iel

where the m; are positive integers with no common factor, and at least one of
the m; is equal to 1. Hence the function

(12.2) c=3 ma

is constant on E (because its derivative is zero) and positive (because it is
positive on C).
Let

Y ={Da:a € S}
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Then X is an irreducible (finite) root system in V. A vertex x; of the alcove C is
said to be special for § if (i) m; = 1 and (ii) the vectors o; (€1, j # i) form
a basis of X. For each affine root system S there is at least one special vertex
(see the tables in §1.3). We shall choose a special vertex once and for all, and
denote it by x (so that O is a distinguished element of the index set /). Thus
mgy = 11in (1.2.2), and if we take x( as origin in E, thereby identifying E with
V, the affine root a; (i # 0) is identified with ;.

The Cartan matrix and the Dynkin diagram of an irreducible affine root
system S are defined exactly as in the finite case. The Cartan matrix of S is the
matrix N = (n;;); jer Where n;; = <a;’, a;>. It has n + 1 rows and columns,
and its rank is n. Its diagonal entries are all equal to 2, and its off-diagonal
entries are integers <0. If m = (m;);¢; is the column vector formed by the
coefficients in (1.2.2), we have Nm = 0.

The Dynkin diagram of S is the graph with vertex set /, in which each pair
of distinct vertices #, j is joined by d;; edges, where d;; = max(|n;;|, |n;;|). We
have d;; < 4 in all cases. For each pair of vertices i, j such that d;; > 0 and
la;| > |a;|, we insert an arrowhead (or inequality sign) pointing towards the
vertex j corresponding to the shorter root.

If S is reduced, the Dynkin diagram of SV is obtained from that of S by
reversing all arrowheads. If S = S(R) as in (1.2.1), where R is irreducible
and reduced, the Dynkin diagram of § is the ‘completed Dynkin diagram’ of
R([B1], ch. 6).

If S is reduced, the Cartan matrix and the Dynkin diagram each determine
S up to similarity. If S is not reduced, the Dynkin diagram still determines S,
provided that the vertices i € I such that 2g; € S are marked (e.g. with an
asterisk).

1.3 Classification of affine root systems

Let S be an irreducible affine root system. If S is reduced, then § is similar to
either S(R) or S(R)" (1.2.1), where R is anirreducible root system. If R is of type
X, where X is one of the symbols A,, B,, C,,, D,,, BCy, E¢, E7, Eg, Fy, G2,
we say that S(R) (resp. S(R)"Y) is of type X (resp. XV).

If S is not reduced, it determines two reduced affine root systems

Si={aeS:3a¢S), Ss={aeS:2a¢S)

with the same affine Weyl group, and S = S} U S,. We say that S is of type
(X, Y) where X, Y are the types of S;, S, respectively.
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The reduced and non-reduced irreducible affine root systems are listed below
((1.3.1)—(1.3.18)). In this list, €, €3, .. .1s a sequence of orthonormal vectors
in a real Hilbert space.

For each type we shall exhibit
(a) an affine root system S of that type;

(b) abasis of S;
(c) the Dynkin diagram of S. Here the numbers attached to the vertices of the
diagram are the coefficients m; in (1.2.2).

We shall first list the reduced systems ((1.3.1)—(1.3.14)) and then the non-
reduced systems ((1.3.15)—(1.3.18)).

(1.3.1) Type A, (n > 1).

@ £ —¢p)+rd<i<j=<n+1l;rel.

(b) ap=—e1+eur1+1, a=¢6—¢41(1=<i=<n).
1 1
(c) 1 1 1 1
o—o0
1 1
(n=1 (n=2)

(1.3.2) Type B, (n > 3).

@ xe+r(I<i<nrelZ), xgxe+r(1<i<j=<n;rel).

®d) ag=—e1—e+1, a=¢i—en1 (1 <i<n-1), a,=c¢,
1
(c) 2 2 2 2

(1.3.3) Type B) (n > 3).

(@) X2 +2r(1<i<nyreZ), xexej+r(1<i<j=<nrel).
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b)) ag=—e1—e+1, ag=¢—epn(1<i<n-1), a,=2¢,.
1
(© 2 2 2 1

(1.3.4) Type C, (n > 2).

(a) 2 +r(1<i<mreZ)y fetej+r(1<i<j=<nrelkl).
(b) ap=-2¢1+1, a=¢ -1 (1 =<i<n—-1), a,=2¢,.

(©) c—so—0— - —O0—0=<50

1 2 2 2 2 1

(1.3.5) Type C) (n = 2).

(@ *e+3r(1<i<nirel) xete+r(1<i<j=<nrel).
(b) ag=—¢e1+3, ai=g—ep(1<i<n—1), a,=¢,

©) o==—0o—0— —0—Ca—>0

1 1 1 1 1 1

(1.3.6) Type BC, (n > 1).

@ xei+r(l<i<snyre?)y, 2 +2r+1(0 <i<n;r ez,
e tej+r(I<i<j=<nyrel).
(b) ap=-2e1+1, as=¢ -1 (1<i<n-1), a,=c¢,

() = oc—==0—0— " —O0—0—=0
1 2 1 2 2 2 2 2

(n=1) n=2)

(1.3.7) Type D, (n > 4).

@ xexe;+r(I1<i<j=<nrel)
b) ap=—-e1—er+ 1, a=e—eip(I<i<n—1), ay=ér1+&n

© 1 1

1
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These are the “classical” reduced affine root systems. The next seven types
((1.3.8)—(1.3.14)) are the “exceptional” reduced affine root systems. In (1.3.8)—
(1.3.10) let

1
a)i=8i—§(81+"‘+89) (1<i<9).

(1.3.8) Type Eg.

@ *(wi—wj)+r(1=<i<j=<6;rel)
i towjto)+r(l<i<j<k=6rel)
H(w;i +wr+ -+ wg) +r (r €7).

(b) ap=—(w1+---+ws) +1, a=w; —wiy1 (1 <i<5),
ag = wyq + w5 + we.

(©) 1 2 3 2
¢}

O

(1.3.9) Type E.

@ *(wi—wp)+r(<i<j=<Trel)

o +tojto)+r(1<i<j<k=<T rek
o+ F o+ Fo)+r(A i <Tre?).
b) ag=—(w1+---+we)+1, a=w —wy1(1=<i=<6),

a7 = ws + we + w17.
© 1 2 3 4 3 2
o

|

2

O

(1.3.10) Type Es.

@ F(wi—w)+r(1<i<j=<9rel)y
o +tojtw)+r(1<i<j<k<9rek).
(b) ap=w1—wr+1, a=wi1—wip(1<i=<T),
ag = w7 + wg + wo.

1 2 3 4 5 6 4 2
© o o
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(1.3.11) Type Fi.

(@) e +r(1<i<4relZ) xexe+r(1<i<j=<4drel),
lxe ey teste) +r (el

(b) ap=—e1—e2+1, ar=6—¢3, ar=¢6 —¢&, a3==¢y,
as = %(81 — &) — &3 — &4).

© 1 2 3_4 2
O ———0—O

(1.3.12) Type F,.

() £26;+2r(1<i<4dreZ), xexej+r(1<i<j=<4rel)
:|:81 :|:82:f:83:|:84+2r (VEZ).

(b) ap=—e1—e2+1, ar =6 —¢&3, ar=¢e3—¢64, az=12e,
ay = &1 — &) — &3 — &4.

© 1 2 3 2 1
o : T o

(1.3.13) Type G».

@) (e — 31 +er+e)+r(l<i<3rely
e —e)+r(1<i<j=<3;rel).
(b) Cl()=81—82+1, ayp = & — &3, 612:83—%(814‘824‘83).
2 3

© é—(&)

(1.3.14) Type G;.

(@) *Be —(e1+e2+&3)+3r (1 <i <3;r €2,

T —e))+r(1<i<j<3;rel.
(b) ap=¢e1—e+1, ar=¢e —¢&3, a=3e—(e1+ & +¢&3).
© 1 2 _1

o=

We come now to the non-reduced affine root systems. In the Dynkin diagrams
below, an asterisk placed over a vertex indicates that if a; is the affine root
corresponding to that vertex in a basis of S, then 2a; € S.

(1.3.15) Type (BC,, C,) (n > 1).

@ xe+r, X24+r (1 <i<n,r €,
Tt +r(I1<i<j=<n;yrel).
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(b) ap=-2¢e1+1, a=¢ -1 (1<i<n—-1), a,=¢,.
(©) o==o 5
1 2 1 2 2 2 2 2

n=1) n=2)

(13.16) Type (CY, BC,) (n > 1).

(a) :i:si—i—%r, 2, +2r (1 <i <n;reZ,
teitej+r(1<i<j<nyrel).

(b) ap=—&1+ 3, a =& —&i1, Gy =&y

(c) * %

1 1 1 1 1 1 1 1

(1.3.17) Type (C2, CY), (By, BY) (n = 3).

(@) L& +r, X2¢;+2r(1 <i <n;r e,
teixej+r(1<i<j=<nre ).

b) ag=—¢1—ex+1, as=¢ - (1 <i<n-1) a, =¢,
© 1
% £
1 2 1 2 2 2 2 2
1
(n=2) (n=3)

(1.3.18) Type (C),C,) (n = 1).

(@) +e+1ir, £26+r(1<i<n;rel
teixej+r(1<i<j=<nyrel).
(b) (10=—81+%, a,-=8,-—8,~+1(1§i§n—1), a, = &,.

n=1) (n=2)

For each irreducible affine root system S, let o(S) denote the number of W -
orbits in S. If S is reduced, the list above shows that o(S) < 3, and that o(S) = 3
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only when S is of type C,,, C/ or BC,(n > 2).1f S is not reduced, the maximum
value of o(S) is 5, and is attained only when S is of type (C,/, C,,) (n > 2). The
five orbits are Oy, ..., Os where, in the notation of (1.3.18) above,

Or={xe+r:1<i<nreZ), 0,=20;, O3=0+3,
04 =20:=0,+1, Os={xeixe;+r:1<i<j=<n,rel.

Finally, the list above shows that all the non-reduced irreducible affine root
systems of rank n are subsystems of (1.3.18), obtained by deleting one or more
of the Ws-orbits; and so are the “classical” root systems (1.3.2)—(1.3.7).

1.4 Duality

In later chapters, in order to formulate conveniently certain dualities, we shall
need to consider not one but a pair (S, S”) of irreducible affine root systems, to-
gether with a pair (R, R’) of finite root systems and a pair (L, L’) of latticesin V.

Let R be a reduced finite irreducible root system in V, and let P (resp. PY)
denote the weight lattice of R (resp. RY), and Q (resp. Q") the root lattice of
R (resp. RY). Fix abasis (@;);cy, of R, and let ¢ be the highest root of R relative
to this basis. In (1.4.1) and (1.4.2) below we shall assume that the scalar product
on V is normalized so that |¢|> = 2 and therefore ¢ = ¢. (This conflicts with
standard usage, as in § 1.3, only when R is of type C,, (1.3.4).)

The pairs (S, S’), (R, R’), (L, L') to be considered are the following:

(141) S=SR), S =SR");, R=R"; L=P, L' =P,

Then S (resp. ) has a basis (a;);e; (resp. (a));e;) Where a; = o; (i # 0), ap =
—p+c oa =o' (i #0),a, = -y + c, where ¥ is the highest short
root of R.

(14.2) S=8=8SR)Y, R=R;, L=L =P".
Then S = §’ has a basis (a;)ie; = (a])ier, Where ; = a! = o if i # 0, and

ap=ay,=—¢+c.

(1.43) S=S"isoftype (C,),Cn);R=R isof type C,; L = L' = Q¥. We
shall assume that S is as given in (1.3.18),sothata; = «; = ¢; — ;11 (1 <i <
n—1)and o, = 2a, = 2¢,, and L = Z".

Foreach« € R,leto/(= « or «") be the corresponding element of R’. Then
<A/, a>and <\, > are integers, forall A € L, )’ € L' and @ € R.
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In each case let
(1.4.4) Q=L/0",
a finite abelian group. Also let
<L,L'>={<x,AMN>:reL, )V el).
Then we have
(1.4.5) <L, L'>=¢"'Z

where e is the exponent of €', except in case (1.4.2) when R is of type B, or
C,,, in which case e = 1.

Anticipating Chapter 2, let W = W(R, L’) be the group of displacements of
V generated by the Weyl group W, of R and the translations #(A'), A" € L', so
that W is the semidirect product of Wy and #(L’):

(1.4.6) W =W(R,L)= Wy x t(L).
Dually, let
(1.4.6") W = W(R',L) = Wy x t(L).

By transposition, both W and W’ act on F.
(1.4.7) W permutes S and W' permutes S'.

This follows from the fact, remarked above, that <A, > and <A, o’> are
integers, forallA € L, A" € L’ and @ € R.

Now let
(1.4.8) A =L & Zcy

where ¢y = e~!c. We shall regard elements of A as functions on V: if f € A,
say f = A +rcowhere L € L and r € Z, then

fx) =<A, x>+ e 'r

for x € V. Then A is a lattice in F.

(1.4.9) A is stable under the action of W.
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Proof Letw € W,say w = vt()') where v € Woand M € L. If f =
A+rcy€ Aand x € V, we have

wf(x) = fw™'x) = f 'x —1)
= <o x=A>+elr
= <vh,x>+e lr—<a, N>

so that
wf =vA+(F —e <A, M>)c

isin A, since e<i, A'> € Z by (1.4.5). O

1.5 Labels

Let S be an irreducible affine root system as in §1.4 and let W = W(R, L’). A
W-labelling k of S is a mapping k : S — R such that k(a) = k(b) if a, b are in
the same W-orbit in S.

If § = S(R) where R is simply-laced (types A, D, E), all the labels k(a)
are equal. If S = S(R) or S(R)Y where R # R, there are at most two labels,
one for short roots and one for long roots. Finally, if S is of type (C,, C,) as
in (1.4.3), there are five W-orbits Oy,..., Os in S, as observed in §1.3, and
correspondingly five labels k1, .. ., ks, where k; = k(a) fora € O;.

Given a labelling k of S as above, we define a dual labelling k' of §’, as
follows:

(a) if S=S(R),S =S(RY)(14.1)anda’ =a¥ +rc € S, then
k'(a) = k(o + ro).

(b)) fS=58=SR) (14.2), thenk’ =k.

(c) If S = S"isof type (C,/, C,) (1.4.3), the dual labels k; (1 <i < 5) are
defined by

ki = %(kl + ky + k3 + ka),
Ky = (ki + k2 — ks — k),

(15.1) Ky = Y(ky —ky + k3 — k),
ky = %(/ﬂ —ky — k3 + ky),
ks = ks,

and k'(a) =k} if a € O;.
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In all cases let

= % > K,

Pr
aERt
(1.5.2) |
S 3 Z k(™o
aERT

where R™ is the set of positive roots of R determined by the basis (c; ). Explicitly,
when S = S(R) (1.4.1) we have

1
po=5 D ke,

a€RT

1
=5 > k(@

aERT

when § = S(R)Y (1.4.2) we have

1
Pr = P = 3 Z k(¥ )ar;

aERT

and when S is of type (C,’, Cy,) (1.4.3), so that R is of type C,,
Ok = Z(kﬁ + (n —i)ks)e;,
i=1

pp =Y (ki + (n — i)ks)e;.
i=1
For each w € W,, we have

1
w o, = 3 Z o(wa)k(a™ e,
a€ERT

(1.5.3) |
w oy = 3 Z o(wa)k' (a")e,

a€ERT

where o (wa) = +1 or —1 according as wa € Rt or R™. In particular, ifi € 1,
i # 0 we have

SiPy = Py — k(alfv)a;,
(1.5.4) ,
sipr = pr — K (o).

(1.5.5) If the labels k(a;"), k'(a;") are all nonzero, then p, and py are fixed
only by the identity element of W,. O
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Notes and references

Affine root systems were introduced in [M2], which contains an account of
their basic properties and their classification. The list of Dynkin diagrams in
§1.3 will also be found in the article of Bruhat and Tits [B3] (except that
both [M2] and [B3] omit the diagram (1.3.17) when n = 2). The reduced
affine root systems (1.3.1)—(1.3.14) are in one-one correspondence with the
irreducible affine (or Euclidean) Kac-Moody Lie algebras, and correspondingly
their diagrams appear in Moody’s paper [M9] and Kac’s book [K1].
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The extended affine Weyl group

2.1 Definition and basic properties

Let S be an irreducible affine root system, and let (@;);c; be a basis of S, as
in §1.2. For each i € I lets; = s, be the reflection in the hyperplane H,, on
which a; vanishes. These reflections generate the Weyl group Wy of §, subject
to the relations s;> = 1 and

(sis;)" =1

fori, j € I such thati # j, whenever s;s; has finite order m;;. In other words,
Wy is a Coxeter group on the generators s;,i € I [B1].

Since Wy rather than S is the present object of study, we may assume that S
is reduced, and indeed that § = S(R) where R is a reduced irreducible finite
root system spanning a real vector space V of dimension #n, as in (1.2.1). We
shall say that Wy is of type R.

Let <u, v> be a positive-definite symmetric scalar product on V, invariant
under the Weyl group of R. We shall regard each root @ € R as a linear function
on V, by the rule o(x) = <a, x> for x € V. Then the elements of S are the
affine-linear functions ¢ = « + rc, where « € R and r € 7Z, and c is the
constant function equal to 1.

Let («;)ics, be a basis (or set of simple roots) of R, and let Rt (resp. R™)
denote the set of positive (resp. negative) roots of R determined by this basis.
Each @ € R' is a linear combination of the «; with non-negative integer
coefficients, and there is a unique ¢ € R™ (the highest root), say

Y= Zmiai

iEIO

for which the sum of the coefficients attains its maximum value. The affine

17
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roots a; = «;(i € Iy) and ay = —¢ + ¢ then form a basis of § = S(R), and
we have
.1.1) z:mmizc

iel

in conformity with (1.2.2), where I = Iy U {0}, and my = 1.
The alcove C consists of the points x € V such that <x, ;> > 0 for all
i #0,and <x, o> < 1. It follows that

2.1.2) St={a+rc:aeR,r>y)
where x is the characteristic function of R, i.e.,
2.13) @ 0 ifaeRT,
1. o) =
X 1 ifaeR.

Forany A € V,let#(A) : x — x + A denote translation by A. In particular, if
a € R we have

t(av) = Sq " Sa+c € Ws

where ' = 2a/|a|?. It follows that W contains a group of translations isomor-
phic to the lattice Q" spanned by R", and in fact Wy is the semi direct product

Ws = Wo x t(Q")
where W is the Weyl group of R, and is the subgroup of Wy that fixes the origin
inV.
As in §1.4, let PV be the weight lattice of RY and let L’ be either P as in
(1.4.1) and (1.4.2), or Q" if R is of type C,, as in (1.4.3). The group

(2.1.4) W =WR,L)= Wy x t(L)

is called the extended affine Weyl group. It coincides with Wg when R is of type
Eg, Fyor G, andinthe situation of (1.4.3); in all other cases W is larger than Wy.
It contains Ws as a normal subgroup, and the quotient W/ Ws = L'/ QY = Q'
(1.4.4) is a finite abelian group.

Dually we may define

(2.1.4") W = W(R', L) = Wy x t(L)

and everything in this chapter relating to W applies equally to W'.
Each w € W is of the form w = vt()'), where A’ € L'’ and v € W,. If
a=o-+rce S wehave

wa)x) =aw ') =a@w x =) =<, v x = A>+7r

= <vo,x>+r — <\, a>
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for x € V, so that
(2.1.5) vt(M)(a) = v(a) — <A, a>c

which lies in S because <)’, a> € Z. It follows that W permutes S.

Foreachi € I,i # 0, let
<L a;>={<M,a;>: A €L},

a subgroup of Z. Since «;” € L' it follows that 2 € <L’, &;>, and hence that
<L a;>=Zor2Z.1If <L, a;> = 27 then <onV, «; > is an even integer for
all j # 0, and a consideration of Dynkin diagrams shows that

(2.1.6) We have <L’, a;> = 27 only in the following situation: R is of type
C,, L' = QY, and a; is the unique long simple root of R (i.e., a; = 2¢, in the
notation of (1.3.4)). In all other cases, <L', a;> = Z.

2.2 The length function on W
For each w € W let
(2.2.1) Sw)=StTNnw's"

so that @ € S(w) if and only if a(x) > 0 and a(w~'x) < O for x € C, that is
to say if and only if the hyperplane H, separates the alcoves C and w='C. It
follows that S(w) is a finite set, and we define the length of w € W to be

I(w) = Card S(w).
From (2.2.1) it follows that
(2.2.2) Sw™H = —wS(w)

and hence that [(w™!) = I(w).
In particular, we have

(2.2.3) S(si) = {a;}

foralli € I, and hence I(s;) = 1.

Since W permutes S, it permutes the hyperplanes H,(a € S) and hence also
the alcoves. Hence for each w € W thereis aunique v € Wy such that we = ve,
and therefore u = v~'w stabilizes C and so permutes the a; (icI). We have
[(w) =1(v) and I(u) = 0.
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Let
Q={ueW:lu) =0}
From above it follows that W = Wg x €2, so that (1.4.4)
QE=W/ Weg=L'/Q" =
is a finite obelian group. Later (§2.5) we shall determine the elements of €2
explicitly.
22.4) Letv,w e W. Then
l(vw) < [(v) + [(w)
and the following conditions are equivalent:

) (V) + l(w) = l(vw),
(i) Sww) = w™lS(w) U S(w),
(iii) w='S(w) C S,
v) S(w) C S(vw),
W) wlS(w) C S(ww).
Proof Let

X=S"nw'stTnw v s,
Y=STnw s nwlv'st,
Z=STnwls nwlv's".

The four sets X, Y, —Y and Z are pairwise disjoint. (For example, X is contained
inw 'St and Y in w='S~.) We have

wlSW)=XU-Y, Sw)=YUZ, Shw)=XUZ.
Hence
() + I(w) —l(vw) =2Card Y > 0

and each of the conditions (i)—(v) is equivalent to ¥ = (. O

From (2.2.4) it follows in particular that
2.2.5) Sww) = S(w), S(wu) =u""'S(w)

ifwe Wandu € Q.
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(2.2.6) Letv,w € W. Then S(v) = S(w) if and only if vw™" € Q.

Proof 1If vw~! € Q, (2.2.5) shows that S(v) = S(w). Conversely, replacing
w by w~!, we have to show that S(v) = S(w™") implies vw € 2. From the
proof of (2.2.4) we have

XU-Y=w'SwH=-Sw)y=-Yu-2

so that X = —Z and therefore X = Z = {J, since both X and Z are subsets of

ST. Hence S(vw) =0, i.e., vw € Q. O
Fora € S, let
+1 ifaeST,
(2.27) o(a) = {—1 ifaesS .

22.8) Letw e W,i e l. Then

@ l(siw) =Il(w)+ow 'a),
1) l(ws;) =l(w) + o(wa;).

Proof (i) From (2.2.4) with v = s; we have /(s;w) = I[(w) + 1 if and only if
w=!S(s;) € S*,i.e. if and only if o(w™'a;) = 1. By replacing w by s;w, it
follows that /(w) = [(s;w) if and only if o(w™'a;) = —1.

(i) Since I(ws;) = I(s;w™") and I(w) = I(w™"), this follows from (i). O

Let/(w) = p > 0. Then w ¢ 2, hence wa; € S~ forsomei € I. By (2.2.8)
we have [(ws;) = p — 1. By induction on p it follows that w may be written in
the form

w = MSi] Sip

where iy,...,i, € I and u € Q. Such an expression (with p = [(w)) is called
a reduced expression for w.

(2.2.9) For w as above,
S(w) = {b1,...,by}
where

by =si,- - si..,(a,) (1=<r<p.
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Proof If p =0, then w € 2 and S(w) is empty. If p > 1 let v = ws; , then
as above /(v) = p — 1 and therefore

S(w) = s;,S(v) U {aiﬂ}

by (2.2.4). Hence the result follows by induction on p. O

2.3 The Bruhat order on W

Since Wy is a Coxeter group it possesses a Bruhat ordering, denoted by v < w
(see e.g. [B1] ch.5) We extend this partial ordering to the extended affine Weyl
group W as follows. If w = uv and w’ = u'v’ are elements of W, where
u,u’ € Qand v, v € Wy, then we define

2.3.1) w=<w ifandonlyifu=u andv <v'.
Thus the distinct cosets of Wy in W are incomparable for this ordering.
From standard properties of the Bruhat ordering on a Coxeter group (loc.

cit.) it follows that

(2.3.2) Letv,w € W and let w = us;, - - - 5;, be a reduced expression for w
(so that u € Q and p = l(w)). Then the following conditions are equivalent:

(@ v=<w;

(b) there exists a subsequence (ji, ..., jy) of the sequence (iy, ..., ip) such
thatv = us;, - - - i

(c) there exists a subsequence (ji, ..., j;) of the sequence (i1, ..., i,) such

thatv = us; ---s; is a reduced expression for v.
J1 Jq

(2.3.3) Letw € W,a € S*. Then the following are equivalent:
(@) ae S(w);, ) Il(ws,) <l(w), (c)ws, < w.

Proof Letw = us;,--- s;, be areduced expression. If wa € §7, thena = b,
for some r, in the notation of (2.2.9), so that s, = iyt SiyySiy iy Siys and
therefore

WSq = USiy = Sy Sipyy * i, < W.

It follows that (a) = (c) = (b). Conversely, if wa € S then (ws,)a = —wa €
S~, and hence I[(w) < l(ws,) by the previous argument applied to ws,. Hence
(b) = (a). O
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2.4 The elements u(\’), v(\')

We shall first compute the length of an arbitrary element of W. As before (2.1.3),
let x be the characteristic function of R™.

24.1) Let)M € L',w € Wy. Then
Q) L) = Y <V, a> + x(wa)l,

aERT

(i) 1ew) = Y [<V o> — x(w™ )],

aERT

Proof (i)Leta =oa +rc € S. From (2.1.5) we have
wt(M)a) = wo + (r — <A, a>)c,
so that by (2.1.2) a € S(wt())) if and only if
(1) x(@) <r < x(wa)+ <A, a>.
For each o € R, let
fla) =<V, a>+ x(wa) — x(a).

Then it follows from (1) that the number of roots a € S(w#(1")) with gradient o
isequal to f(«) if f(«) > 0, and is zero otherwise. Since f(«)+ f(—a) =0,
we have

1
Hwi) =5 Y If@l= ) 1f@)
a€R a€RT
= Z <A, a> + x(wa)l.
aERT
(ii) This follows from (i), since I(t(A)w) = [(w~'t(=1")) by (2.2.2). O

Foreach A € L', let )/, denote the unique dominant weight in the orbit WyA'.
Then it follows from (2.4.1) that

(2.4.2) 1) = 1t(\,) = Z <N, a>.
aeR*
Let wy be the longest element of Wy, andlet A’ = wo)J+ be the antidominant

weight in the orbit WyA'. Let v(1’) be the shortest element of W, such that
v(A)A = A, and define u(X) € W by u()’) = t(A)v(A')~!. Thus we have

(2.4.3) 1) = u W), tOL) = vt )wR) T = v u).
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We have
(2.4.4) S(w\)) ={a e Rt : <\, a> > 0}.

Proof Letv(A) =s;,---s;, be areduced expression. By (2.2.9), S(v(1")) =
{B1,..., By}, where B, =s;, - s;,, (o) for 1 <r < p.Let

/ — . .« .. . /— s e e e . /
A =Si., s,pk =i, Si A

for0 <r < p,sothat Ay = A" and )L;, =\
Suppose that A, = A, for some . Then

’ ’ ’ ’
A= Siyp e sir—l)\’rfl =S8 Sir—]}\’r = wA

where w = s;,---s;,_,8;,,, - s;, is shorter than v(}'). It follows that A #
A._y =si A, sothat <), a;, > # 0. But

/7 / /
<A, 0> = <A, S, 8, 0> = <A, B>

and <)/, B,> = <A ,v(A)B,>is > 0, because v())8, € R~. Hence
<M, B,>>0forl <r <p.

Conversely, if 8 € RT and <A/, 8> > 0, we have <A’ , v(A)8> > 0 and
therefore v(\)B € R™,i.e., B € s(v(A)). O

(2.4.5) u()') is the shortest element of the coset t(A )Wy, and

It = 1)) + I(v(}))
forall M € L.
Proof Tt follows from (2.4.1) (ii) that, for fixed A’ € L’ and varying w € W,
the length of #(A)w ™" will be least if, for each & € R*, x(wa) = 1 if and only
if <)/, a> > 0,1.e. (by (2.4.4)) if and only if S(w) = S(v(1")). By (2.2.6), this

forces w = v(1') and proves the first statement. It now follows from (2.4.1) (ii)
and (2.4.4) that

1) = 1) = Y 1<l a> — x (0 ))

a€ERT

=1t(\)) — I(v(L)). O
From (2.4.4) it follows that, for all @ € R

2.4.6) x(v(\)a) = 1ifand only if x(a) + <A/, a> > 0. O
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(247 Leta e R,B=v(\) 'a,r € Z. Then

(1) a+rce Su@))ifandonlyifa € R~ and 1 <r < x(B) + <V, B>.
() a+rce S Yifandonly if x(a) <r < —<M, a>.

Proof (i) Since u(A) = v(A)~'t(A") (2.4.3), it follows from (2.1.5) that
o+ rc € S(u())) if and only if

x(@) <r < x(B)+ <, B>,

since <A, a> = <)/, B>.Hence x(B8) + <}/, B> > 0and therefore y («) =
1 by (2.4.6).
(ii) We have u(A)~! = v())t(=1"), hence a + rc € S(u(r')~") if and only if

x(@) <r < x(v(\)a) — <A/, a>.

Hence x(«) + <A/, o> < 0 and therefore x (v(X)a) = 0 by (2.4.6). O
(24.8) Leta e S*. Thena e Su(\)™") ifand only ifa(\') < 0.
This is a restatement of (2.4.7) (ii).

24.9) Letw € Wy, ) € L'. Then

[wAWHw) = L)) + (w).

Proof By (2.2.4)itis enough to show that w='S(x(1)) C S, and this follows
from (2.4.7) (i). O

(2.4.10) Letw € W, w(0) = A'. Then w > u(}).

Proof We have u(A')(0) = A/, hence w > u(A)v for some v € Wy. Now
apply (2.4.9). O

(2.4.11) Let ¢ be the highest root of R. Then u(p") = so, and v(¢") = s,,.
Proof We have t(¢") = 50,, and I(s9) = 1. Hence s is the shortest element
of the coset #(¢"~ )W), hence is equal to u(¢") by (2.4.5). It then follows that

v(pY) = 5. O

(24.12) LetAM € L', v e @, ' = v)\. Then u(p') = vu()).
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Proof Since vu(A)(0) = ' we have u(u') < vu(d’) by (2.4.10), hence
I(u(u')) < I(u(X)) Replacing (A', v) by (u/, v™") gives the reverse inequality
[(u(\)) < I(u(u')). Hence u(p') = vu()). O

(2.4.13) Letw € W. Then S(w) N R = @ if and only if w = u()\'), where
A = w(0).

Proof We have w = u(A")v with v € wy. From (2.4.9) and (2.2.4) it follows
that S(w) = v~ 'Su(L)) U S(w). By (2.4.7) (i), S@(X)) N R = @; hence
S(w)N R =¢if and only if S(v) =@, ie.,v = 1. O

24.14) LetXN e L',iel, u =s;\.

1) Ifa;(A) # 0, then u(p') = s;u(X') and v(p') = v(X)sy,.

() If a;(M) < 0, then u(X) > u(p'), and v()") < v(u')if i # 0.

(iii) If a;(X") = 0O, then s;u(X') = u(X)s; for some j # 0, and v\ oy = ;.

Proof (i) By interchanging A" and u’ if necessary, we may assume thata; (\") <
0,sothatu(A)~'a; € S™by (2.4.8). If w = s;u()') we have I(w) = I(u(X'))—1,
hence I(u(X)™") = I(w™") + I(s;) and therefore s;S(w™") C Sm(X)™") by
(2.2.4) (v). It follows that for each b € S(w™') we have (s;b)(A') < 0 by
(2.4.8), that is to say b(u') < 0 and therefore b € S(u(u’)~"). Hence S(w™") C
S(u(u)™" and therefore I(w) < I(u(w')). But w(0) = s;A’ = ', so that
w = u(w') by (2.4.5), i.e. u(i') = s;u()’). Consequently

v(p) = u(u) 1) = u() " sit(V)s,
= u(M) 'tV )sg, = (V)5 -

(ii) From above we have u(\") = s;u(u’) and [(u(A)) = l(u(u')) + 1, so that
udy > u(w). If i # 0,1(t(u)) = I(t())) by (2.4.2), so that [(v())) =
[(v()) —1 and therefore v(1') < v(u').

@iii) If a;(A") = O then s;u(A)0) = s;A’ = A/, and therefore s;u(A') =
u(AM)w for some w € Wy. By (2.4.9), I(s;u())) = I(u())) + l[(w), hence
[(w) = 1 and therefore w = s; for some j € I,j # 0. It follows that
st~ = t(k/)v(k’)’lsj. Now s;1(A")se, = t(s;X") = t()'), and hence
s, v(A) 7 = v(X)71s;, so that v(M)e; = Fa;. But v(M)e; € RT by (2.4.4),
hence v(M)a; = ;. O
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2.5 The group (2
We shall now determine the elements of the finite group
Q={weW:l(w)=0}

For this purpose let /(i € Iy) be the fundamental weights of RY, defined by
the relations

(2.5.1) <nl o> =14

fori, j € Iy; also, to complete the notation, let n(’) = 0. We define

(2.5.2) u; = u(w)), v = v(m))

(so that in particular ug = vy = 1). Next, let J be the subset of / defined by
(2.5.3) jeJifandonlyifn; e L andm; =1,

where the positive integers m ; are those defined in (2.1.1), so that mo = 1 and
mj = <nj/-, @> for j # 0, where ¢ is the highest root of R. We have 0 € J in
all cases.

With this notation established, we have

2.5.4) Q={u;:jel)

Proof Letu € Q. Clearly u is the shortest element of its coset u Wy, so that
u = u()') where A’ = u(0). Hence u = t(1")v(1))~! and it follows from (2.4.1)
(ii) that <A’, > = x(v(A)a) for each « € RT. Hence A’ is dominant and of
the form A’ =}, ¢;7r/, where the coefficients ¢; are integers > 0. Hence

(D <N, o> = Zc,-mi.
i#0
On the other hand, <)/, o> = x(v(A)¢) = 0or 1. If <), o> = 0 it follows
from (1) that each ¢; = 0, hence A’ = 0 and u = 1; if <)/, o> = 1 it follows
that A" = n;. for some j # O such thatm; = 1. Hence u = u; for some j € J.
Conversely, let us show that u; € 2 for each j € J. Each root a € RTis of

the form
o= Zm; o

where 0 < m; < m;. Hence 0 < <m/, a> < </, ¢>. In particular, if j € J
(and j # 0) we have <71}, a> = 0or 1 for each @ € R™, and from (2.4.6) it
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follows that <JTJ/-, a> = x(vja)foreacha € R™. Hence by (2.4.1) (ii)

luy) = 1(t(x)v;") = Z |<7},a> — x(vje)| =0

a€RT

and therefore u; € . O
(2.5.5) LetjeJ. Thenuj(ap) = aj.

Proof  Since u; has length zero, it permutes the simple affine roots a;. Hence
uj(ap) = a, for some r € I, and therefore
(1 vj_'ao = t(n})’la, =a, + <7}, a,>c

(where g = —¢@ if r = 0).
Evaluating both sides of (1) at the origin gives

a,(0) + <7r},oe,> =1.
If r # 0 we have <7}, @,> = 1 and hence r = j. If r = 0 we obtain
<7r_;-, ap> = 0, hence j = 0. O
For j, k € J we define j + k and — j by requiring that

-1

(2.5.6) Ujrk = Ujllg, U—j=U;

thereby making J an abelian group with neutral element 0, isomorphic to 2.
Likewise, fori € I and j € J we define i + j € I by requiring that

(257) u_,'(a,') = ai+j.

(If i € J, the two definitions agree, by virtue of (2.5.5).) Thus J actson I as a
group of permutations.

(25.8) Letiel, jeJ. Thenvja; =a;_;.

Proof We have
— I _ /
ujvia; = t(nj)a,- =a; — <, T;>C
by (2.1.5). Hence
vija; = u_ja; — <aj, 7TJ,->C

=a;_; — <u, 71_;->c,

so that D(vja,-) = D(di_j), ie. Vi = ;. O
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From (2.5.6) it follows that if j, k € J

-1 -1 -1
t(n}+k)vj+k = t(rrj")vj 1(r)vy
/ —1_/\, —1, —1
= t(TL'j + v; nk)vj vy
and therefore

/ - —1_r _ _ —1_
(25.9) i =7, v, 0 =1 + v 75,

-1

(2.5.10) Vjk = UjUk = U0j, U = U

More generally, if i € I and j € J we have
(2.5.11) T =m+ vj_ln{.
Proof Thisisclearifi = Qor j = 0, so we may assume thati # 0 and j # 0.
Letk € I, k # 0. From (2.5.8) we have v;o; = a;_j, so that
<vj717tl-/, > = <ml,vjoy> = <7/, 0_;>
iszerounlessk = jork =i+ j.Ifk =i+ jitisequalto 1, andif k = j it
is equal to <7/, 9> = —m;. Hence

'nl =n! m;m’. O

vj i+j T

Finally, let wq be the longest element of Wy, and for each j € J let wy; be
the longest element of the isotropy subgroup Wy; of n;. in Wy. Then we have

(2512) Vj = WoWy; -

For wowy; is the shortest element of Wy that takes 7} to wor’.

2.6 Convexity

Let
0y =) Noy
i£0

denote the cone in Q" spanned by the simple coroots «;’, and let L, , denote
the set of dominant weights 1 € L', satisfying <A’, ;> > 0 for i # 0. As in
§2.4, for each A" € L’ let A/_ denote the unique dominant weight in the orbit
WoA'.

A subset X of L' is said to be saturated if for each )’ € X and each @ € R
we have A’ — ra¥ € X for all integers r between 0 and <A’, «> (inclusive). In
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other words, the segment [1, s,A'1N (A" + QV) is contained in X . In particular,
sqA’ € X, so that a saturated set is Wy-stable.

The intersection of any family of saturated sets is saturated. In particular,
given any subset of L’, there is a smallest saturated set containing it.

(2.6.1) Let X be a saturated subset of L', and let \' € X. If " € L'__is such
that ' — ' € QY, then i’ € X.

Proof Letv =X —pu =) ria;. We proceed by induction on r = r(v') =
> ri. Ifr = 0,then )’ = p’ and there is nothing to prove. Letr > 1,thenv’ # 0
and therefore ) r; <V, o:iv> = [v/|> > 0. Hence for some i # Owehaver; > 1
and <v’, @;> > 1. Since <u/, a;> > Oit follows that <A’, @; > > 1 and hence
that A{ = A" —o;” € X. Consequently i’ = 1} —v|, where vi =v' —«a;" € Q',
and r(v}) = r — 1. By the inductive hypothesis it follows that u’ € X. O

Let A" € L', and let X(1") denote the smallest saturated subset of L’ that
contains A’. Let C(1’) denote the convex hull in V of the orbit WyA’, and let

) =CcHNO +0Y),
) = (] w = Q).

weWy

Then we have
(2.6.2) T =2Z(\V) = ZL(\).

Proof (a) X(A) C X()). Since A" € X((1)), it is enough to show that 3;(1")
is saturated. Now both C(A’) and A + QV are W-stable, hence (1)) is Wy-
stable and therefore contains s, A’ foreach o € R. By convexity, X;(1') contains
the interval [\, s,A'1 N (A + QV), hence is saturated.

(b) Z1(A) C Zz(X). Each set w(A" — QY) is the intersection of A’ 4+ Q" with
a convex set, hence the some is true of X»()\"). Moreover, X,(A") contains the
orbit WoA/, since A" — wA’ € QY for all w € Wy. Hence X»(1’) contains
=)

(©) Zr(M) € ZW). If ' € (1)), let A/ be the dominant element of the
orbit Wou'. Then ', € A’ — QY, hence u/, € (') by (2.6.1). Since (1) is
Wy-stable, it follows that 4’ € Z()). Hence X,(1") C (1), and the proof is
complete. O

(2.6.3) Let M',u' € L', . Then the following conditions are equivalent:
(@2 —p e Qf;(b)u € ZQ); (¢) Z(n') C ZA).



2.7 The partial order on L’ 31

Proof (2.6.1) shows that (a) implies (b), and it is clear that (b) and (c) are
equivalent. Finally, if Z(u') € (1) then ' € X(A') = Xp(1), hence u’ €
A" — QY so that (c) implies (a). O

If A, u' € L' | satisty the equivalent conditions of (2.6.3) we write
(2.6.4) M=l

.. . . . /
This is the dominance partial ordering on L/_, .

2.7 The partial order on L’

Recall (§2.4) thatfor A" € L' the shortest w € Wy suchthat wA’ = A”_is denoted
by v(1"). Also let 1(1") denote the shortest w € W, such that wi!, = A’. Here
A/_is the dominant weight and A" = woA/_ the antidominant weight in the orbit
WoA/, and wy is the longest element of W,. We have

(2.7.1) v = wet()we = B(—1"), where i’ = wo).

Proof Since A" and " are in the same Wy-orbit we have u/, = A/ and u’_ =
A"_. Hence wot(p)wor = wod(u)u!y = wou’ = A, and wod(u')wy is the
shortest element of W, with this property. It follows that wo (i )we = v(A')~.

Next, let v’ = —A". Then —v/_ = A’_, and again by minimality it follows that
o(v) = v(A)~ L. O

(2.7.2) () S@wA) ={a € RT: <), a> > 0},
(i) SOA) H={ax e RT : <), a> < 0}.

Proof (i) is arestatement of (2.4.4), and (ii) follows from (i) and (2.7.1), since
(M)~ = v(=N). O

(2.7.3) Let ) € L'. Then v(A)v(X)) = v(A))).
Proof  Since v(1) v(1') sends A/, to A, it follows that v(A)D(A) > v(A,).
On the other hand, by (2.7.2) we have
I(v(2,)) = Card {« € R" : <)\/,,a> > 0}
=Card{e € RT : <), a> #£0)
= 1) +1(BQ)) = IR )DA)).

Hence v(A)v(1) = v(A))). O
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27.4) Let M, u' € L' be in the same Wy-orbit. Then v()') > v(u') if and
only if v(A') < v(u).

Proof Letw be the longest element of W, that fixes A’ , so that w = w!, and

v(A,) = wow. From (2.7.3) we have v(A")(X") = v(u)v(u') = wow. Since
(DA )HYw) = L(v()) + I(w), and likewise for p’, we have
v(A) = 1(n) = 1A)w = v(uHw
= v() 'wo = v(u) wo
= )" <o)
— v(M) < v(). O

We shall now extend the dominance partial ordering (2.6.4) on L/, | to a
partial ordering on L', as follows: for A', u' € L',

(2.7.5) A = p' if and only if either (i) A\, > !, or (i) A, = /. and
v(A) < v(u') (or equivalently (2.7.4) 5(\") = v(u)).

Observe that for this ordering, in a given Wy-orbit the antidominant weight
is highest.

(2.7.6) Letv,w e Wy. Ifv < w then v\’ — w)' € QY forallx € L' ,.

Proof 'We may assume that w = vs, where « € Rt and va € R*. Hence
VA —wA = v(d —s,)) = <A, a>va”

which is in QY because <1’, o> > 0. O
(2.7.7) Let )X, u' € L' lie in the same Wy-orbit. If \' > u/ then /' — 1" € QY.

Proof Wehave u' — " = v(u)A — v(A")A, . Hence the result follows from
(2.7.6). O

Remark The converse of (2.7.7) is in general false, if the rank of R is greater
than 2. (For example, if R is of type Az let A’ = —&y — 263 + 3e4, 4’ =
3e; —2&; — &3, in the notation of (1.3.1). Here A/, = u/, = 3e; — &3 —2g4 and
w — AN =36 — ey + &3 — 3e4 = 3oy + 202 + 33 € QY. But v()) = 51528
and v(u') = s3s,5; are incomparable for the Bruhat order.)
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(2.7.8) Let X, W lie in the same Wy-orbit. Then the following are equivalent:
@A =) —p' = =1 (c) wop' > wo'.

This follows from (2.7.1). O
(27.9) Let) € L',a € RY. Then <), a> > 0 if and only if s, > /.

Proof Let u' = suA'. if <V, a> > 0then o € s(v(1)) by (2.7.2), hence
v(M)se < v(A) by (2.3.3). Now v(L')s, takes u' to A = u/_, hence v(1')s, >
v(u) It follows that u(A") > u(), i.e., u' > .

If on the other hand <A/, > < 0, we have <u’, > > 0 and hence ' > u’
by the previous paragraph. Finally, if <A’, o> = 0 then /' = 1/, O

(2.7.10) (i) Let A € L', letv(X) = s;, - - - 5;, be a reduced expression, and let
A= Siviyeosi, (\), forO <r < p. Then

Ao=2o > A >e> 0 =00

(ii) Let ¥(X') = sj,---s; be a reduced expression, and let u, = s, ---
5j,(X), for 0 < r < q. Then

My =g < u) <-~-<,u; =\
Proof (i) Let B, = s;,---s;,,(e;,) for 1 < r < p, so that s(v(A)) =

{B1, ..., Bp} by (2.2.9). Hence <A/, ;> = <A', B,> > 0 by (2.7.2), and
therefore A/, = s;, A, > A, by (2.7.9).

(ii) Let y, = s, -+ -5;,,, () for 1 < r < g, so that s(0(X)") = {y1, ..., v}
by (2.2.9). Hence <), aj, > = <}/, y,> < 0by (2.7.2), and therefore . _, =
s 1. < w by (2.7.9). O

(2.7.11) Letv,w € W and let v(0) = A/, w(0) = u'. Then

v=w=ul)<up)=1 <.

Proof Wehave w = u(u)w’, where w’ € Wy and l[(w) = [(u(u')) +1(w’), by
(2.4.9). Since v < w, it follows that v = v,v,, where v; < u(u’) and v, < w’,
so that v, € Wy. Hence v1(0) = v(0) = A/, and so v; > u(A’) Consequently
u(d') < u(u).

We shall next show that v < w implies A’ < . For this purpose we may
assume that v = ws, where a € S(w), by (2.3.3). Let a = o + rc and let
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w = t(u)w’ where w' € Wy. From (2.1.4) we have
wa =B+ — <p, p>)c
where 8 = w'«, and
A =v(0) = t(u)ws,(0) = ' —rp”.
Since a € S(w) we must have
(1 x(@) =r<x@B)+<u,p>

from which it follows that <u’, B> > 0. If <u’, B> = 0 then r = 0 and
MN=u.If <u/,B> >0and 0 < r < <u’, B>, then )\’ lies in the interior
of the line segment [/, sgu’], so that X(A') is strictly contained in X (1) and
therefore A’ < u’ by (2.6.3). Finally, if r = <u/, B>, so that A’ = sgu’, we
must have x(8) = 1 by (1) above, hence B € R~ and therefore sgu’ < ' by
(2.7.9). Hence A’ < p/ in this case also.

Finally, by taking v = u(A’) and w = u(w’), it follows that u(A") < u(u’)
implies A" < /. O

(27.12) Letwe W, € L. If w < u(u') then w(0) < .

Proof Letw(0)=)".Then} < u' by (2.7.11),and A" # /, hence ' < u'.
O

(2.7.13) LetA' € L',i € I. Then s;)' > )\ if and only if a;(A) > 0.

Proof This follows from (2.7.9) if i # 0. If i = 0 and ap(\') = r > 0 let
wo=s0) =N —ag(\)ay =1 +re¥,ands,u’ = A" —¢Y, sothat A’ lies in the
interior of the segment [/, s, '] and therefore A’ < p'. Finally, if ag(A") < 0,
interchange A’ and p'. O

2.8 The functions ry/,r;

Let S, S’ be as in §1.4 and let k be a W-labelling of S as defined in §1.5, and &’
the dual labelling of S’. For each A’ € L’ let u(1") be the shortest element of the
coset (1YW, as in §2.4, and define

(2.8.1) re(A) = u)(—pp)

where oy is given by (1.5.2).
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Dually, if A € L let u’(A) € W’ be the shortest element of the coset 7(A) Wy,

and define
(2.8.1) reA) = u'()(—=py).
Then we have
1
(2.8.2) )y =1+ 3 Z n(<A, a>)k(@™),
aeRT
1
(2.8.2)) re(A) = A+ 5 Z n(<i, o' >)k' (@),
aeRt

where for x € R

1 ifx >0,

(2.8.3) n(x) = { —1 ifx <0.

Proof Since u(X') = t(A)v(M)~!, we have

i) = 2" =) )
=N - % > o)k )

aERT

by (1.5.3), and o0 (v(X)x) = —n(<A/, a>) by (2.4.4).

(2.84) Let) e L'
(i) Ifuj € Qthen ri(u;A) = u(ry(A)).
(ii) Ifi € I and )’ # s; ), then s;(r; (X)) = r;.(siA).

(iii) Ifi € I and )" = s; X, then s;(r, (X)) = ry(A) + k(]!

Proof (i) follows from (2.4.12), and (ii) from (2.4.14) (i).

(iil) From (2.4.14) (iii) we have s;u(A") = u(1’)s; and v(A)o; = «; for some

Jj # 0, so that

si(ry (W) = siu)(—=pp) = u@)sj(—pp)
= u(\)(—p; + k(e )er))
= u(W)(—pp) + k@ )
= ri (V) + k(@])a.

O

For the rest of this section we shall assume that k(o) > 0 for each ¢ € R.

(2.8.5) The mapping ri; L' — V is injective.
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Proof Let X', u be such that r; (1) = r; (). We have
V) () = v u)(=pp) = A — p;

by (2.4.3), where A’ is the antidominant element of the orbit WyA’. Hence (as
the labels are all >0) A" — p; is the antidominant element of the orbit Wor;(1').
Soif ri(A) = (1) we must have A’ — p, = u’” — p;, hence A = p’_ and
v(\) = v(u'), whence ' = . O

(2.8.6) Let)' € L' . If s;) = A for some i € I, then s;(r, (1)) & ri(L").

Proof  Suppose that s;(r; (1)) = r(u) for some ' € L'. Then as in (2.8.5)
we have

sivA) IO = pp) = v() T = pp)

from which we conclude that A’ = u/_ and s;v(A)~! = v(u’)~!. Consequently
w=v() 'u =siv(W) A = 5;1 = A/, But si(ry(A)) # r(A) by (2.8.4)
(iih). 0

Notes and references

The extended affine Weyl groups occur in [B1], p. 176, and probably earlier.
The elements u(1"), v(1’) were defined by Cherednik in [C2], and the partial
order on L’ was introduced by Heckman (see [O4], Def. 2.4).
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The braid group

3.1 Definition of the braid group

We retain the notation of Chapter 2. The braid group B of the extended affine
Weyl group W is the group with generators 7(w), w € W, and relations

3.1.1) TWT(w)=Tww) if I(v)+I(w)=Ivw).
There is an obvious surjective homomorphism
(3.1.2) f:B3—>W

such that f(T(w)) = w foreachw € W.
We shall write

T, =TGi), Uj=T(u;

forieland j € J.
Let i, j be distinct elements of I such that s;s; has finite order m;; in W.
Then we have

SiSjSi =SjSiSj

with m;; factors on either side. Since both sides are reduced expressions, it
follows from (3.1.1) that

(3.1.3) TT,T; - =TT, -

with m;; factors on either side.

These relations (3.1.3) are called the braid relations.

Next, let j, k € J. Thenuju; = u 4 (2.5.6), and all three terms have length
zero, so that

(3.1.4) UjUp = Uj.

37
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Finally,leti € I and j € J. Thenu (a;) = a;; (2.5.7),sothatu ;s; = s;yju;,
and therefore U;T; = T;;;U; by (3.1.1), i.e.,

-1
(3.1.5) UiTiU; =Ty

(3.1.6) The braid group B is generated by the T; (iel) and the U; (jeJ)
subject to the relations (3.1.3), (3.1.4), (3.1.5).

Proof Eachw € W may be written in the formw = us;, - - “Si,s where iy, ...,
ipel,jeJ and p = l(w). It follows from (3.1.1) that T(w) = U;T;, --- T;
and hence that the 7; and the U; generate 3.

Now let &' be a group with generators 7; (i € I) and U, (j€J) and relations
(3.1.3), (3.1.4), (3.1.5). For w as above, define

p’

T'(w)=U;T;, - T,

r

The braid relations (3.1.3) guarantee that this definition is unambiguous. Next,

if w' = wusj, - -5, is areduced expression (so that g = I(w’)) we have

q
T'(w') = UT;, -+ T;

Ja

and

/
ww = u;sj -- -Sl‘PI/tij] . ~qu
= UjkSiy—k " Sip—kSjy Sy
If now [(w) + [(w") = [(ww"), we have
7 !
T'(ww) =UjuuTy—k -+ Ti =k Tj, - - T

q

which is equal to 7'(w)T'(w’) by use of the relations (3.1.4) and (3.1.5). It
follows that the relations (3.1.1) are consequences of (3.1.3)—(3.1.5), and hence
P’ is isomorphic to B. O

(B.1.7) Letw e W,i € I.Then
T(wsi) = T(w)T7™,
T(siw) = 7T (w)

where (2.2.7) o0(a) = +1 or —1 according asa € ST ora € S™.

Proof This follows from (2.2.8). O
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(3.1.8) Letwe Wandi, j el Ifws; =s;wthen T(w)T; =T,;T(w).

Proof We have s, = ws;w!

Hence, from (3.1.7),

= s;, hence wa; = ea; where ¢ = £1.

Tw)T = T(ws;) =T(sjw) = TfT(w)
and therefore T(w)T; = T, T (w). ]
(3.1.9) Letu, v e Wandletu'v = ujsi, -+ si, be a reduced expression
(so that [(u="v) = p). Let b, = wjsi -8, (a;) for1 <r < p. Then
T 'T@) =U;T - T,"

where g, = o(ub,)(1 <r < p).

Proof This is by induction on p. If p = 0 we have v = uu; and therefore
T(w)=TwU; by (2.2.5). If p > 1 we have

u_lvs,-p =UjSi - Si,

and hence by the inductive hypothesis

T~ 'T(vs;,) =U;T;" - T,"
with ey, ..., g, as above. Since

va;, = uus; -+ 5;,(a;,) = —uby,
it follows from (3.1.7) that T'(vs;,) = T(v)Tip_s". Hence

Tw) 'T()=U;T; -~T,.j”. 0
3.2 The elements Y~

Let A’ € L. If ' is dominant we define
(3.2.1) Y¥ =T@O))).

If A" and p’ are both dominant, we have [(t(X" + u')) = I[(t(A)) + I(z(1')) by
(2.4.2), and hence

(3.2.2) YVH =y yw = yry ¥,
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Now let A be any element of L’. We can write A’ = u'—v/, where /,v' € L’
are dominant, and we define

(3.2.3) YY =vy* Yy L.

This definition is unambiguous, because if also A’ = w| — v; with pu}, v;
dominant, we have y/ + vj = ) + V' and therefore Y"1Y* = Y™MY" by
(3.2.2). The relation (3.2.2) now holds for all A/, ©’ € L’, and the set

YV =" 1\ el

is a commutative subgroup of B, isormorphic to L’. For the homomorphism
f: B — W (3.1.2) maps Y~ onto r(L’).

(3.24) Let) € L' andi € Iy be such that <)/, a;> = 0 or 1. Then
I}Sy&,‘)u/jvi — Y}x/
where

+1 if <V, a;> =1,

—1 if <), a;>=0.

E =

When <}/, ;> = 0, so that s; . = 1/, (3.2.4) says that
(3.2.5) LYY =Y"T,.
When <A’, ;> = 1 we have s;A’ = A’ — o/, and (3.2.4) takes the form
(3.2.6) T.Y 4T, =Y.

Proof We begin with (3.2.5). We may write A’ = ' — v' with u’, v’ both
dominant and <u/,a;> = <V, ;> = 0. Then s; commutes with r(u’)
and 7(1'), hence by (3.1.8) T; commutes with both Y* and Y, hence also
with YV

Next, to prove (3.2.6), suppose first that A" is dominant. Then u’ = A/ +s;1" is
also dominant, and <u/, o;> = 0. Let w = t(A)s;t (X)) = s;0(u’). If 1t (1)) =
p we have

() =2p—2, lw)y=2p—1, ItA)s;)=p—1,
by use of the length formula (2.4.1). Hence

LYW = Ty = T(w) = TaOW)s)TCR) = Y17 'v"
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which gives (3.2.6) for A" dominant. If now 1’ is not dominant, let v/ = 1" — 7/,
so that <V, o;> = 0. Then we have

YA/ — YT(‘.'Yv’ — Y}Ysiﬂi/’rin, — 7"[')/5,'71;-"-1)/7'} — 'Tiys,')\'rri’
since 7; commutes with ¥’ by (3.2.5). a
(3.2.7) Remark 1If (3.2.6) is not vacuous, that is to say if there exists ' €

L' such that <A’, @;> = 1, then (3.2.5) is a consequence of (3.2.6). (For if
<u/,a;> = 0then <A + u', @;> = 1, and hence

IV I IV ’
Tiy)»-Hl. aiTl_ :Y)“-H}' :le)» DtiT‘iyl.L

giving Y¥'T; = T, Y™ )

However, there is one case in which (3.2.6) is vacuous, namely (2.1.6) when
R is of type C,, L’ = QY and ¢; is the long simple root of R. In that case
<M, ;> is an even integer for all A’ € L.

As in Chapter 2, let ¢ be the highest root of R and recall (2.5.2) that u; =
t(n})vj_' for j € J. We have then

(3.2.8) To=YYT(s,) "',
(3.2.9) Uj=YT(;)"
for j € J, where YJ/. =Y".(In particular, Uy = 1.)

Proof We have sos, = 1(¢"), and s,(ap) = ¢ + ¢ € S+, so that by (3.1.7)
Y¥" = TyT(s,), which gives (3.2.8).
Next, t(n;) =u;v; and I(u;) = 0, so that ij = U;T(v)), giving (3.2.9). O

(3.2.10) Let) € L' andletu()') = ujs;, - - - 5;, be a reduced expression. Then

Y)‘, = Uj T:] e T}?’T(U()L,))

where each exponent ¢, is £1.
Proof Let A’ = u' — v with u/,v' € L’ both dominant, and let v(A") =

Si . -+ - i, be a reduced expression. Take u = #(v') and v = #(u') in (3.1.9):
we have

u_lv = l()»/) = u(}J)v()J) =U;jSi S

P
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which is a reduced expression, since [(u(1")) + [(v(X")) = I(t()")) by (2.4.5).
Hence by (3.1.9)

Y}u _ T(I/l)ilT(v) — U]’T:l . T}";p
where &, = o(t(vV)b,) and b, = ujs; ---s;_ (a;). We have to show that
& = +1foreachr > ¢, i.e. that t(v")b, € S™.

If r > g then i, # 0, hence a;, = «;, and therefore
by = u(\)si,,, - - si,_ (a;,)
=t()si, -5 (@) = —t(A)Br,
where B, = s;, ---5i,,, (o) € S(w()) by (2.2.9), so that <1/, B,> > 0 by
(2.4.4). Hence
(b, = =t + V) = —t(1)B:
= -8B, + <, B>c

and <p’, B> = <M, B>+ <V, B> > 1,since B, € RT and V' € L' is
dominant. Hence t(v')b, € ST, as required. O

3.3 Another presentation of 5

Let By be the subgroup of B generated by the T;, i # 0. In this section we shall
show that

(3.3.1) B is generated by B, and Y, subject to the relations (3.2.4).

It follows from (3.1.6), (3.2.8) and (3.2.9) that B is generated by B, and YL,
Let Y’ denote the group generated by B, and Y’ subject to the relations (3.2.4).
In ¥’ we define elements Ty, U; (j€J) by means of (3.2.8) and (3.2.9). We
have then to show that with these definitions the relations (3.1.3)—(3.1.5) hold
in ®'. We remark that (3.1.7)—(3.1.9), restricted to elements of Wy, hold in &'
(because they hold in B).

(33.2) Let ) € L' and w € Wy be such that <) ,a> = 0 or 1 for all
a € S(w™Y). Then in B we have

TG TR )Y ™ T(w) =y ™" .

Proof We shall apply (3.1.9) with u = v(A)w and v = v(}'), so that w =

vy = si, - -+ 5;, and therefore T(w) = T;, - - - T}, . In this way we obtain

1) TO)W) ' TONY *T(w) =T TY VT, - T,

P
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where, in the notation of (3.1.9), &, = o(ub,) and
ub, = v Yws;, -+ si,_ () = v(d)s;, -5 (@)
= —v(M )y,
where y, = s, -+ -5;,,, (), so that {y1,...,y,} = Sw™hH by (2.2.9). If
<M,y,> = 1 then y, € S(w(})) by (2.4.4) and hence ¢, = 1. If on the

other hand <A’, y,> = O then y, ¢ S(v(1)) and so ¢, = —1.
Now let A, =s;,,, - -s;,(A) for0 <r < p,sothatd), = A" and A, = wn.

To complete the proof it is enough to show that T,”Y T, = Y -1 for
1 <r < p;now this follows from (3.2.4), since A, _, = s; A. and <A, a;,> =
<M, y,> = lor0according as &, = +1 or —1. O

We shall apply (3.3.2) when A" = rrJ’. (jeJ) and when A’ = @Y. We have

<7T]/~,Ol> =0orlforalla € R*,and <¢",a> =0or1foralla € R" except

o =¢@. When ' = n_;, we have v(1') = v; (2.5.2) and when 2’ = ¢¥, v(}) =
sy by (2.4.11). Hence (3.3.2) gives

(3.3.3) Uj=Tw)Y" “T@jw)!

for all w € W, and

(3.3.4) To=Tw)Y" ¢ T(s,w)”"

for all w € W, such that w—'¢ € R*. In particular,

(3.3.5) To=TW)Y% T, ' T(w)™!

if w € Wy is such that ¢ = we;, i # 0.

In (3.3.4) let v = s,w, so that v™'¢p = —w'p € R~. We have then
To = T(s,0)Y " ¢ T(v)™"
and therefore, for all w € W,
(3.3.6) ¢ =TW)Y" ¢ T(s,w)™"

where ¢ = o(w™ o).
In particular, let w = v; (je€J). Then w™l¢p = —v;lao = —a; by (2.5.8),
so that T (s,w) = T(ws;) = T(w)T]f1 by (3.1.7), and therefore

(3.3.7) Ty = T(vj)rjflyafT(vj)—l.

We shall now show that the relations (3.1.3)—(3.1.5) hold in &'.
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Proof of (3.1.3). 'We need only consider the braid relations that involve Ty,
which are

(a) T()T, = TlT() if <§0v,oli> = 0,
(b) To/T;To = i o Ti if <¢”, ;> = <@, o)/ > =1,
©) LT LT, = T,TIi T if <p¥,a;> =1, <p, 0> = 2.

(The list in §1.3 shows that <¢, o> = 3 does not occur.)

(a) If <¢V, ;> = 0 then 7; commutes with Y¢" by (3.2.5) and with T'(s,) by
(3.1.8), hence with Tj.

(b) If <¢¥, ;> = <@, a;> = 1, thens,(o;) = @;—¢ € R™,henceby (3.1.7)

(1 T(sis,) =T, ' T(s,) = T, ' T, Y7

Let w = ;5,8 = w~!. Since 5iSy(a;) = —¢ € R™, we have T(w) =
T(s,-sw)Tl._1 = Tl._lTO_IY“’v Tl._l, and hence by (3.2.6)

) T(w)=T'"T,'T,Y5?" .

Next, since wa; = ¢, (3.3.4) gives

(3) T(w) = ToT (s,w)Y %"

Since s,w = §;5, it follows from (1) and (3) that

4) T(w) =TT, T, 've —.

Comparison of (2) and (4) now shows that 7, ' 7, ' T; = TyT,"' T, ', hence that
ILhT;To = T, ToT:.

(c) Now suppose that <¢”, ;> = 1 and <@, o> = 2. The relations (1)—(3)
above still hold, since now s;s,(t;) = a; — ¢ € R™, and w g =¢ e RT.Let
v = s,w = (s5,5;)> = (5:5,)°. From (2) and (3) we have

—1p—1p—1 Vtsip¥
5) T =T, T 'T; ' T;Y? +5¢".
‘We need one more relation, which we obtain by taking w = s;s, in (3.3.4): this
is legitimate, since (s,»sg,)_lcp = s5;¢p € R*. We obtain
(6) T(s,5i5,) = Ty ' T(5i5,)Y5%".

Now va; = —o; and therefore T'(sysi5,) = T (s;v) = Ti_1 T (v), so that (1) and
(6) give

7 T() =TT, ' 1,7 7,y e +sv
Comparison of (5) and (7) now shows that ToT; Ty T; = T; Ty T; Tp. O
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Proof of (3.1.4). Let j, k € J. We may assume that j # 0 and k # 0, since

Uy = 1. Take w = vy in (3.3.3); since v;vy = v, and vk_]rrj" = 7T}+k —m;, by
(2.5.9) and (2.5.10), we obtain

Ui =T)Y, Y, Ti) ™ = U 'Ujix
and hence Uy U; = U 4. O
Proofof (3.1.5). 'We have to show that UJ-Tin_l =TiyjforielandjeJ.

As before, we may assume that j # 0.
(a) Suppose that i % 0 and i + j # 0. Then vj_loti = o4 (2.5.8) and
<rr]/., @;4j> = 0, hence by (3.1.8) and (3.2.5)

UiTiU7 =Y T@) ' TTw)Y; = YTy ;Y =Ty

(b) Suppose now that i = 0. By (3.3.7) we have
To=T)HT; 'Y T)™ =U;'YT;' v U,
=U;'T;U;

by (3.2.6), since <7'r}, a;> = 1. The proof of (3.3.1) is now complete. |

3.4 The double braid group

We have seen in the previous section that the braid group & is generated by its
subgroups B and Y, subject to the relations (3.2.4). We shall now iterate this
construction. For this purpose, let R’, L, and A = L ®Zc( be as definedin §1.4,
and for each & € R let &'(= « or «) be the corresponding element of R’. Let

XA ={X': feA
be a multiplicative group isomorphic to A, so that X/X¢ = X/*¢ and (X/)~! =
X~/ for f, g € A. )

The double braid group B is the group generated by B and X subject to
the relations
TinTis — x5/

foralli € I and f € A suchthat <f,a/> = 1 or 0, where ¢ = +1 or —1
according as < f, ;> = 1 or 0; and

U x'u;t = x!

forall j € J and f € A. (Asin §1.4, the elements of A are regarded as affine-
linear functions on V'.)
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Letgy = X and letg = X = ¢, where e is given by (1.4.5). The relations
above show that gy commutes with each 7; and each U}, and hence that g is
central in 3. Also let

Xt ={x"relL).

Then B is generated by the groups By, X©, Y and a central element g, subject
to the following relations (3.4.1)—(3.4.5):

(3.4.1) TEY VT, = Yy =5

fori € I,i # 0 and A € L’ such that either <A’,a;> = 1 and ¢ = 1, or
<M,a;>=0and ¢ = —1;

(3.4.2) T, X*Tf = X%

fori € I,i # 0 and A € L such that either <A,a;> = land ¢ = 1, or
<A a/>=0ande = —1;

(3.4.3) ToX Ty = g~ X%
where A € L is such that <A, ¢'> = —1;
(3.4.4) ToX* = X' Ty

where A € L is such that <A, ¢’'> = 0;
(3.4.5) Ui x'U;' = g hum> x v
forAe Landje J.

Here Ty and U are defined by
(3.4.6) To=Y?T(s,)",
(3.4.7) Uj=Y,T)™",

where Yj/. =Y.

If J = {0}, the relations (3.4.5) are absent. If J # {0}, the relations (3.4.3)
and (3.4.4) are consequences of (3.4.2) and (3.4.5). Forif j € J and j # 0, we
have Ty = Uj_' T;U; by (3.1.5), and therefore (3.4.3) and (3.4.4) come from
(3.4.2) by conjugating with Uj_l and using (3.4.5).

We observe next that (3.4.2) is obtained from (3.4.1) by replacing Y* by
X~* and reversing the order of multiplication. It follows that the results of
§3.3, being consequences of (3.4.1) and the braid relations not involving 7,
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have their counterparts, involving B, and the X*, in 3. Thus, corresponding to
(3.3.2) and (3.3.5) we have respectively

(3.4.8) Let ) € L and (as in §2.4) let v(\) be the shortest element in Wy such
that v(M)A is antidominant. Let w € Wy be such that <A, o'> = 0 or 1 for all
o € S(w). Then

X T(woW) ™ HT W)™ ™H' X = T(w).

(3.4.9) Let ' be the highest root of R'. If w € Wy is such that ' = w™ o],
where i # 0, then

T(sy) ' XV =TT, ' X T(w)™".

Let m; (iel,i# 0) be the fundamental coweights for R’, defined by

<m;, (x}> = §&;;. Also define my = 0. Let m; (i€I) be the integers attached to

the nodes of the Dynkin diagram of S(R’), as in §1.3. As in §2.5, define a subset
J' of I by

(3.4.10) ke J'ifandonlyif mi € L and m), = 1.
Let X, = X™ for k € J’, and recall that Y// =Y for j € J. Then we have
the commutator formula
Lo . _ _I\-1
(3.4.11) XX Y =q T (w )T (vywi")” Tw))
where v; = v(nj/-), wy = v(my), and r = <71}, T >.
Proof We have
Y XY, =T) U XU T(v))
=q'TW)) ' X"™T(v;) by (3.4.5)
, _ -1
= X T ()T (o) T ()

by (3.4.8) with w = v; and A = my. O
3.5 Duality
Let &' be the group obtained from & by interchanging L and L'.

(3.5.1) There is an anti-isomorphism w of B onto B in which X* (\el)),
Y* (LeL), T; (i # 0)and qo are mapped respectively to Y™, X" T; and qy.
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Let ¥ € R be such that ¢ is the highest root of R". Thus ¢y = ¢ if R = R,
and ¥ is the highest short root of R if R = RY # R. In ¥/, Tj is replaced by

YV T (sy)™!
and U; (j € J) by
YT (wy) ™"

where k € J' and w; = v(sm;). The images of these elements under @ are
respectively

(3.5.2) T¢ =T(sy) X7V,

(3.5.3) Vi = T(w;) "' x¢ "

Hence to prove (3.5.1) we have to show that in B we have
(3.5.4) oYX Ty = g~y

for A € L' such that <)/, > = 1;

(3.5.5) oYY =YX T3

for A’ € L’ such that <A/, ¥ > = 0; and

(3.5.6) ViYr v = gy

forA’ € L’and k € J'.

We remark that, as in the proof of (3.3.1), the defining relations (3.4.2) imply
that 7} satisfies the appropriate braid relations (for the affine Weyl group of
type R’) and that

(3.5.7) ViVie= "V
for j, k € J’, and

T; if i +k#0,
(35.8) oy, = | e e
Ty ifi+k=0

fori e lI,i #0andk € J'.
Finally, it follows from the commutator formula (3.4.11) that

(3.5.9) VYT =gy
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for j € Jand k € J', where r = <n]/., 7>, i.e. that (3.5.6) is true for A’ =
—71]’.. For

iy = T ) XY G ()
=" T(vjw; ) TY] T (w")
— qufw"”_;
by (3.3.2) with A’ = 7, and w = w; . O

In §3.6 we shall prove (3.5.1) in the case R" = R, and in §3.7 in the case
R # R.

3.6 Thecase R" = R

In this section we shall assume that R” = R, so that v = ¢. Then either
L=L =PV (142)orL =L = QY and R is of type C, (1.4.3).

(a) Proof of (3.5.4) and (3.5.5)

When J' # {0}, (3.5.4) and (3.5.5) are consequences of (3.5.6) and the defining
relations (3.4.1), since T can be conjugated into Ty, where k € J' and k # 0,
by use of (3.5.8). Hence we may assume that J = J’ = {0}, so that R = R’ is
of type Es, Fy, G, or C,. Assume for the present that R is not of type C, and
(as in §1.4) that |@|? = 2, so that

Ty =T(s,) ' X ¥ =Y PTX %,

The Dynkin diagrams in §1.3 show that in each case there is a unique long
simple root ¢} such that <¢, «;> 7 0and <¢, o;> = Oforalli # 0, 1. Hence
it is enough to show that

(3.6.1) YTy =q 'y,
(3.6.2) Toye =yu 13
foralli # 0, 1.

Proof of (3.6.1). From (3.4.1) and (3.4.2) we have
(a) T XT, = X9,

(b) X~ Ty=q ' X7,
(c) T\Y~°T) =y ¥tu,
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Hence
ToYI Ty = TEY Y ToX
=TT Y i ToX ¥
=TTy XYTy ' TiToX ™
= NIy T XY T T T XY

by use of (c) and the braid relations. This last expression is equal to g~ Y* ¢
by successive application of (a), (b), (a), and (c). O

Proofof (3.6.2).  Let D be the Dynkin diagram of S = S(R), with vertex set /.
Since D is a tree in the cases (Eg, Fy, G,) under consideration, there is a unique
path in D from O to any other vertex i. We proceed by induction on the length
d of this path. The induction starts at d = 2, where we have <¢, ;> = 0,
<@,a;> = 1 and <oy, o;> = —1. It follows that 7] and 7; commute, and
therefore

LT YO TS T, = TET,Y T, T; .

By evaluating either side by use of (3.6.1) and (3.4.1), we see that ;' commutes
with Y&,

Now letd > 2 and let j € I be the first vertex encountered on the path from
i to 0in D. We have <a;, o] > = —1, since either &; and «; are roots of the
same length, or «; is short and «; is long. Hence by (3.4.2) we have

(1 Y% T, = Yy +,

Since T;j' commutes with YJ‘."v by the inductive hypothesis, and with 7; by the
braid relations, it follows from (1) that 7;j commutes with Y o

There remains the case where R = R is of type C,, and L = L' = QY. In
this case the relations (3.5.4) are absent. In the notation of (1.3.4), we have to
show that 7] commutes with Y* for 2 <i < n. From (3.4.1) we have

(1) yor =T ye ! (I1<i<n-—1).
Now

t(e1) = S0S1 -+ Sy -+ - 828
is a reduced expression, so that

) Y =TT --- T, TrTy.
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From (1) and (2) we have
yé — T,':11"'T1_1T0T1 Ty T T,

Since T commutes with 73, T3, . . ., T}, it is enough to show that 7" commutes
with Tl_lToTl, or equivalently that 7o commutes with T 7§ Tl_l. But 7 =
Y 51 ToX %, hence

(MTT7) " = Txe Ty e,
=T\ X"T\Th---T, - T3
= X2y Ty - 3T

by (2) above and (3.4.2). Since X*?, T, T3, . . ., T, all commute with Ty, so also
does T T Tl_l. O

(b) Proof of (3.5.6)

Since L is generated by the 7; (j€J) and the coroots o’ (i€l,i # 0), it is
enough by (3.5.9) to show that

(3.6.3) VY vl = g sy e
Suppose first that i = k. By (3.3.7) we have
Y =TT ()™ ToT (we)
and
Vi =Vl = X4 T(w).
Since Vi T; V' = Ty by (3.5.8), it follows that
VY v = TP X 4 ToX~) = ¢ ' Ty XYT' Ty by (3.4.3)
=gy

which proves (3.6.3) in this case, since v = ap = —¢.

Now suppose thati # 0, k. As in the proof of (3.6.2) we proceed by induction
on the length of a shortest path from i to 0 in the Dynkin diagram D of S(R).
Let j be the first vertex encountered on this path. We have <q;, (xJY> = -1
(the only exception to this statement is when R is of type C,, and «; is the long
simple root; but in that case i = k, which is excluded). By (3.5.8) we have

ViLYS TV, = T iy v, ' T

On evaluating either side by use of (3.4.1) and the inductive hypothesis, we
obtain (3.6.3). O
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3.7 The case R’ # R

In this section R” = RY # R, so that R has two root lengths, and is of one
of the types B, C,, F4, G,. As in §1.4 we shall assume that L (resp L') is the
lattice of weights of R (resp. RY). As before, it is enough to verify (3.5.4) and
(3.5.5) when J’ = {0} (i.e., when R is of type F4 or G,) and (3.5.6) when R is
of type B, or C,.

Let ¢ be the highest root and ¥ the highest short root of R. We have
<y, a¥>=0or1forall o € R except o = v, so that <i/, 9¥> = O or 1.
Moreover,

¢’ =Y mio
where each m; is a positive integer (they are the labels for the affine root system
S(R)Y), and hence

<y, @'> = Zm;<w,o¢iv> > 0.
It follows that </, ¢*> = 1, and hence that 5,3 and s, ¢ are negative roots.
(3.7.1) Y T =g yy v

(i.e., (3.5.4) is true for A = @").

Proof In our present situation we have
Ty =T(sy) ' X7V,
From (3.3.6) with w = sy, we obtain
To = T(s,59)YV =9 T(sy)7",
and from (3.4.8) with w = 5,5y and © = v we have
Ty = T(s,) ' XV 79T (s.5).
Hence

YT =Y T(s,) ' XV 9T (s.5y)
= ToXV " *TyT(sy)Y* V"
=g "XV T(sy)v* "

by (3.4.3), and therefore

Y T =q vy V. 0
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(a) Proof of (3.5.4) and (3.5.5)

Let L), = {}" € L' :< A, > = O}. In view of (3.7.1) it is enough to prove
that 7; commutes with Y* for " € L.

(i) When R is of type G2, L, is generated by o’ = 2¢" — ¢ (1.3.13). From
(3.7.1) we have

T()*wiTO*YT//v*W =q ' = T()*y*//v*WTO*Y(ﬁv.

Hence T commutes with Y 200
(i) When R is of type Fy, L), is generated by ', &y’ and &3, in the notation
of (1.3.11). Since by (3.4.1)

\ Vv Vv \ Vv Vv
T2Y0l1 T2 — Y« +a, , T3 Y% T3 — Y% +o3

and since T commutes with 7, and 73, it is enough to verify that 7" commutes
with Y1, Let

Ar=¢ ' =¢e1+e&, n=¢ -y =—e1+e, v=uu=—3—2¢
in the notation of (1.3.11) Then by (3.7.1) we have
TEY Ty =q7'Y", TLY T, =Y"
and therefore
T3Y" = qTi Ty Y Ty Ty = qTuT Ty Y T Ty
= qTy Ty Y T LTS = YTy

by use of the braid relations and the fact that 74 commutes with Y*. Hence T}
commutes with Y. Finally, we have

T\Y'T, =Y ™,

and since 7;j commutes with Y" and 77, it follows that 7" commutes with Yo
O

(b) Proof of (3.5.6)

As remarked above, we need only consider the cases where R is of type B, or
C,(n=>2).

(i) When R is of type B, we have J' = {0, n} in the notation of the list in §1.3,
and it is enough to verify (3.5.6) when A = —¢; (1 <i < n), i.e. that

(3.7.2) VY ~Ey-l = g2yt (1<i<n)).
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When i = 1, this follows from (3.5.9), since m; = ¢;. Using T;Y 5T, =
Y78+ (1 <i <n—1),(3.7.2) now follows by induction on i.

(i) When R is of type C, we have J' = {0, 1} in the notation of §1.3. In view
of (3.5.9), it is enough to show that

(3.7.3) iy =¢7re,
(3.7.4) viysyh =y 2<i<n).
We have ¢ = ¢, hence
ToX ™ =Y"T(s,) ' X =YV ' =YV,

Hence

Y Vi)’ = (LX) =q"'
which proves (3.7.3). Finally, from (3.7.1) we have

TO*Ysl TO* — q—ly—e;z7
and since VT Vl_1 = T, it follows from (3.7.3) that
iy vl =Ty =y,

(3.7.4) now follows by induction on i, since 7;Y ~%T; = Y%+, O

The proof of (3.5.1) is now complete.

Notes and references

The braid group (also called the Artin group) associated to an arbitrary Coxeter
group was studied by Brieskorn and Saito in [B2], and in van der Lek’s
thesis [V1]. The double braid group was introduced by Cherednik [C1], and
the duality theorem (3.5.1) stated (in the case that B = QS). The commutator
formula (3.4.11) is also due to Cherednik (private communication).
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The affine Hecke algebra

4.1 The Hecke algebra of W

We retain the notation of the previous chapters: W = W(R, L') is an extended
affine Weyl group, and & is the braid group of W.

The objects to be studied in this and subsequent chapters will involve certain
parameters ¢, 7;, and rational functions in these parameters. It would be pos-
sible to regard these parameters abstractly as independent indeterminates over
Z, but we shall find it more convenient to regard them as real variables. So let
q be a real number such that 0 < ¢ < 1, and let 7; (i€l) be positive real
numbers such that 7; = 7; if 5; and s; are conjugate in W. Let K be a subfield
of R containing the 7; and gy = ¢'/¢, where e is the integer defined in (1.4.5).

The Hecke algebra  of W over K is the quotient of the group algebra KB
of the braid group & by the ideal generated by the elements

(T —o)(T: +7,7')
fori € I. Theimage of 7; (resp. 7 (w), U;) in  will be denoted by the same sym-
bol T; (resp. T'(w), U;). Thus 9 is generated over K by T; (iel) and U; (jeJ),
subject to the relations (3.1.3)—(3.1.5), together with the Hecke relations

4.1.1) (T —t)(Ti+17") =0 (el
or equivalently
(4.1.1) T,—=T"—¢".

l l

(4.12) Leti € I,w € W. Then in$ we have
T,T(w) = T(siw) + x(w™'a)(w — 1) T(w),

T(w)T; = T(ws;) + x(wa)(zi — 77 ") T(w),

where x is the characteristic function of S™.

55
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Proof Ifw™'a; € S* then T;T(w) = T(s;w) by (3.1.7). If w™'a; € S~ then
T(siw) =T T(w) = (i =t + 7 ') T(w)

by (3.1.7) and (4.1.1"). This proves the first of the relations above, and the
second is proved similarly. O

(4.1.3) The elements T(w), w € W, form a K-basis of 9.

Proof Let $; denote the K-subspace of $ spanned by the T(w), w € W.
From (4.1.2) it follows that 7;9; C $; for all i € I, and since U;T(w) =
T(ujw) € 9y, we have U;H; C 9, forall j € J. Hence HH; C Hy, and since
1 € 9, it follows that H = H4, i.e. the T(w) span H as a K-vector space.

To show that the T'(w) are linearly independent, we proceed as follows. Let
KW be the group algebra of W over K, and for each i € I define K-linear
maps L;, R; : KW — KW by

Liw=sw+ X(w_la,-)(ti — ti_l)w,
Riw = ws; + X(wa[)(t,- — rfl)w

l

for all w € W (compare (4.1.2)). Also, for each u € Q2 define L,, R, by

L,w=uw, R,w=wu.
4.1.4) Each L commutes with each R.

Proof 1tis clear that L, commutes with each R, and that R, commutes with
each L. It remains to verify that L; and R; commute (i, j € I). From the
definitions we calculate that
(LiRj — RjL,-)w = (X(waj) — X(Sl‘waj))(l’j — rj_l)siw
+(X(sjw_]a,-) - X(w_lai)(ti - rfl)wsj.

Suppose first that s;w # ws;. Then wa; # +a; and therefore x(wa;) =
x(siwa;) and x(w™'a;) = x(s;w™'a;). Hence (L;R; — R;L;)w = 0 in this
case.

Suppose now that s;w = ws;,sothat7; = 7; and wa; = €qa;, where ¢ = %1.
Then

x(way) — x(w™'a) = x(ea)) — x(ea;) =0

and
x(siwa;) — x(s;w™'a;) = x(—ea;) — x(—ea;) =0,

so that (L;R; — R;L;)w = 0 in this case also. O
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Next we have
(4.1.5) L= (u—t")Li+1

by a straightforward calculation.

Now let " denote the K -subalgebra of End(K W) generated by the L’s, and
let f: 9 — KW be the linear mapping defined by f(h) = h(1) forh € 9'.

(4.1.6) [ :9" — KW is an isomorphism (of K-vector spaces).

Proof Letw € W and let w = us;, --- si, be a reduced expression (so that
u € Qand p = l(w)). Since L;w = s;w if [(w) < [(s;w) it follows that

f(LuLil - Li,,) =usi S, =w

and hence that f is surjective.

Suppose now that 2 € Ker(f). Then 2(1) = 0, and we shall show by induction
on [(w) that h(w) = O for all w € W. Suppose first that [(w) = 0, i.e. that
w = u € Q. From (4.1.4), R, commutes with A4, so that h(u) = h(R,(1)) =
R,h(1) = 0.Now let/(w) = p > 0 and choose i € I so that/(ws;) < p. Since
R; commutes with &, we have

h(w) = h(R;(ws;)) = Rih(ws;) =0

by the inductive hypothesis. Hence # = 0 and f is an isomorphism. O

We can now complete the proof of (4.1.3). From (4.1.6) it follows that
L(w) := f~!(w) is well-defined for all w € W, and L(w) = L,L;, <Ly,
if w = us; ---s;, is a reduced expression. Hence L(v)L(w) = L(vw) if
[(v) + (w) = l(vw), i.e. the L(w) satisfy the defining relations (3.1.1) of
the braid group B. From (4.1.5) it follows that $’ is a homomorphic image of
9, i.e. that there is a surjective K -algebra homomorphism g : $ — 9’ such that
g(T(w)) = L(w) forallw € W.Hence fog :$9 — KW maps T(w) to w for
each w € W, and therefore the T'(w) are linearly independent over K. O

4.2 Lusztig’s relation

We introduce the following notation: let

t—t ' w—uNx

“4.2.1) b(x)=b(t,u;x) = 3 ,

1—x
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tx —t1x~! +u— u!

4.2.2) c(x) =c(t,u;x) = -
X —X
_ -1
_a t?(xl)(—l :-z)tu x) —c " u i xY.

where ¢, u are nonzero real numbers, and x is an indeterminate. When ¢t = u,
(4.2.1) and (4.2.2) take the simpler forms

r— tx —t7!
b(x) = , c(x)=———
1—x x —1

4.2.3) We have

(i) ex)=1t—bx)=1"+bx),
(i) e(x)+e(xH=r+17",
(i) bOx)+b(x—") =1 — 17,
(iv) e(@)e(x~H =1+bx)b(x").

Proof (i) is clear, and (ii), (iii) follow directly from (i). As to (iv), we have

c(x)e(x™) = (t —b(x)(t —b(x™"))
=22 —tt -t + b)Y
=14+bx)b(x™h

by use of (i) and (iii). O
The following relation, due to Lusztig [L1], is fundamental.

(4.24) LetA € L',i € Iy. Then
YHT, — Y = b(zi, v Y)Y — YY)

where v; = 1; or Ty according as <L', a;> = Z or 27 (2.1.6).

Proof If this formula (for fixed i € Iy) is true for A’ and for w’, then it is
immediate that it is true for A 4+ " and for —2'. Hence it is enough to prove it
for A’ belonging to a fixed set of generators of L'.

If <L, a;> = Z (resp. 27), there exists ' € L’ such that <u/, a;> = 1
(resp. 2), and L' is generated by this i” and the A" € L’ such that <)/, o;> = 0.

If <)/, ;> = 0, (4.2.4) reduces to Y*'T; = T;Y*, i.e. to (3.2.5).

If <), ;> =1, from (3.2.6) and (4.1.1") we have

Y-viYSi)\/ — Y)\/T‘i71 — YN(T[ -1 4 Tiil),
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so that
Y)\’T} _ T;'YSI)J — (fi _ _L,i—])Y}\”

which establishes (4.2.4) in this case, since s;A’ = 1" — «;".

Finally, suppose that <L’, ;> = 27Z. From above, it is enough to verify
(4.2.4) when 2’ = «;. By (2.1.6) «; is a long root, hence o; = w~ ' for some
w € Wy, where as usual ¢ is the highest root of R. From (3.3.5) we have

To = Tw)Y% T, ' T(w)™",
and hence Y%’ Ti_1 is conjugate to Tp. It follows that
YayTl;l STy =g — T(;l
by (4.1.1"), and hence

YOI, —TY™ = (to—15 ') + (z — 7, )Y
=b(w, w; Y )Y — Y

which completes the proof. O

(4.2.5) The right-hand side of the formula (4.2.4) is a linear combination of
the Y’s. Explicitly, if <A, ;> =r > 0itis

r—1
E yM e
u;Y
Jj=0
and if <), ;> = —r < Qitis
-
_E yM+jer
u;Y

j=1

-~ if jiseven,and u; = v; — vi_1 if j is odd.

where u; =7, — 7,

(4.2.6) Inview of (4.2.3)(i), the formula (4.2.4) can be written in the equivalent
forms
(T; = )Y = YT — 1) = e(m, v Y ) =¥,
(T + 5 )WY =Y (T 4+ 57') = e(m, v YO = Y,

(4.2.7) The elements T(w)Y* (resp. the elements Y* T(w)), where \' € L’
and w € Wy, form a K-basis of 9.
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Proof Suppose that there is a relation of linear dependence

r

> u T(w)Y* =0

i=l1

with distinct pairs (w;, ;) € Wy x L', and nonzero coefficients «;. By multi-
plying on the right by a suitable Y*', we may assume that each A; is dominant,
and then by (2.4.1) we have [(w;#(A})) = I(w;) + I(t(A})), so that the relation
above takes the form

> u T(wit(A) =0
i=1

contradicting (4.1.3). Hence the T (w)Y ¥ are linearly independent over K, and
a similar argument shows that the same is true of the ¥ YT (w).

Now let ), (resp. $,) be the vector subspace of $ spanned by the T (w)Y*
(resp. by the Y* T'(w)). By (4.2.4) and induction on /(w), we see that Y* T'(w) €
1 and T(w)Y* € H,, forall w € Wy and A’ € L. Hence H; = H,. Now 9,
is stable under left multiplication by each T'(w) and (since H; = $,) also by
each Y*'. But these elements generate B (3.3.1) and therefore also generate $
as K -algebra. Hence $9; C 91, andsince 1 € 9, itfollows thatH = H, = H,.

O

Let A” = KL’ be the group algebra of the lattice L’ over the field K. For
each 1’ € L’ we denote the corresponding element of A’ by ¢*', so that

. L . .
et = ()T =, =1

for A’, u’ € L', and the ¢ form a K -basis of A’. The finite Weyl group W, acts
on L' and hence on A”:

w(ek’) — ewk’

forw € Wopand A’ € L.

If f e A, say

f=Y fue
with coefficients fi» € K, almost all zero, let
f) =" fux*.

By (4.2.7) the Y*', A’ € L/, are linearly independent over K and span a com-
mutative K-subalgebra A’(Y) of 9, isomorphic to A’. In this notation we may
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restate (4.2.4) as follows: fori # 0 and f € A’ we have

428)  fONT = Ti(s: [HY) = b(x;, vi; YO (X) = (s )(Y)),

and the right-hand side is an element of A’(Y).
By replacing f by s; f in (4.2.8), we see that T; f(Y) is of the form

T f(Y) = (i fYXT; + g(Y)

for some ¢ € A’. By induction on I/(w), it follows that for each w € W, and
f e A, T(w)f()is of the form

(4.2.9) Tw)f(Y)=)Y_ f(T(v)

v<w

where f, € A’, and is particular f,, = wf.
Let Aj) = (A")" be the subalgebra of Wy-invariants in A’.
(4.2.10) The centre of H is Ay(Y).

Proof Letz € $ be a central element, say

2= ) fuT(w)

wEW()
with f,, € A’.Let ) € L' beregular (i.e., A’ # w’ for all w # 1 in W,). Since

z commutes with ¥* we have

(1) DY AT =Y fuNTw)Y™.

veW, weW,

Now by (4.2.9), T(w)Y* is of the form

©) Ty =3 gu()T()

vV=w

with gy, € A’ for each v < w, and g, = ¢**". From (1) and (2) we have

DYAMTO) = Y gu¥) fu(N)T )

veW, v,wEWU
and hence by (4.2.7)
(3) e)h/fv :ngwfw

w>v

for each v € W,,.
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The matrix G = (gyy), With rows and columns indexed by W), is triangular
relative to any total ordering of Wy that extends the Bruhat order. Its eigenval-
ues are therefore its diagonal elements, namely e (weWy). If f denotes
the column vector ( f,)yew,, the equation (3) shows that f is an eigenvector
of G for the eigenvector ¢*. Since the eigenvalues of G are all distinct (be-
cause A’ is regular), f is up to a scalar multiple the only eigenvector of G
for the eigenvalue ¢*". It follows that f, = 0 for all v # 1 in W), and hence
z= fi(Y)e A'(Y).

Since z commutes with T;, it follows from (4.2.8) that

T,(1(Y) = (i fO(Y)) = g(Y)

for some g € A’. Hence by (4.2.7) we have f; = s; f for each i # 0, and
therefore z € Ay(Y).

Conversely, if f € Aj it follows from (4.2.8) that f(¥) commutes with T;
for each i # 0, and hence f(Y) is central in 9. O

4.3 The basic representation of $

Let $¢ be the K-subalgebra of $ spanned by the elements T'(w), w € Wy (so
that 9 is the Hecke algebra of Wy). From (4.2.7) we have

@.3.1) H= A ®k H

as K-vector spaces, the isomorphism being Y*T(w) > ¥ @ T(w) Wel,
w € Wp).
If M is a left Ho-module, we may form the induced H-module

indgo(M) =9 ®p, M=AQxM

by (4.3.1), the isomorphism being
fNTw)@x+— f & T(w)x

for f € A/, w € Wy and x € M. From (4.2.8) it follows that the action of H,
on A’ ®k M is given by

(432) T(f®x)=sif @ Tix +(f — s, f)b(zi, vise™%) @ x.

In particular, let us take M to be the 1-dimensional $y-module K x for which
T;x = 7;x foreachi € Iy. Then A’ ® ¢ M may be identified with A’ (namely
f ® x — f)and from (4.3.2) the action of $y on A’ is given by

Ti(f) = tsi f + (f — s Ib(xi, vize™ ).
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Hence

(4.3.3) There is a representation B’ of H9 on A’ such that

B'(Ty) = wisi +b(z;, vis X% )(1 —s,)

o

foralli € Iy, where X% is the operator of multiplication by e =%, and v; =

or 1y according as <L', ;> = 7 or 2.

In other words, the linear operators 8'(T;) : A’ — A’ satisfy the braid rela-
tions (3.1.3) and the Hecke relations (4.1.1) that do not involve Tj. In fact, this
representation is faithful (see below).

From now on we shall assume that the conventions of §1.4 are in force, so
that we have affine root systems S and §’, finite root systems R and R’, and
lattices L and L', defined by (1.4.1)—(1.4.3). As in §1.4 the elements . € L are
to be regarded as linear functionson V : u(x) = <y, x>forx e V.fw e W
we shall denote the effect of w on u so regarded by w - . Thus if w = #(1)v,
where A’ € L' and v € W, then

(w-)x)=pw'x)=<u, v 'x —1)> = <vp, x> — <A, vu>
so that
(4.3.4) w-p=vu— <\,vu>c

is an affine-linear function on V.

Let A = KL be the group algebra of L over K, and for each u € L let
e denote the corresponding element of A. More generally, if f = u + rc we
define

(4.3.5) el =q"e"

(i.e. we define e tobe ¢). For f asabove,let X/ : A — A denote multiplication
by e’:

(4.3.6) X/g=elg (¢ € A).
The group W acts on A: if w = ¢(1)v as above then
(437) w(e#) — ew'ﬂ — q—<k/,vu>evﬂ

by (4.3.4).

(4.3.8) W acts faithfully on A.
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For if w = #(A")v fixes e for each u € L, then (4.3.7) shows that vu = u and
<M,vu>=0,sothatv=1and A’ =0. O

When S is of type (C,/, C,) (1.4.3), we shall require two extra parameters
7y, T,,. For uniformity of notation we define

/
Ti =T

for all i € I when S is reduced ((1.4.1), (1.4.2)) and when i # 0, n in case
(1.4.3).
Let

b, =b(v;, t{;¢%),
(4.3.9) ci — C(Ti, Ti/;eai)

and for ¢ = =£1 let b;(X?®) (resp. ¢;(X?)) denote the result of replacing e“ by
X®% in b; (resp. ¢;).

(4.3.10) There is a faithful representation B of © on A such that

B(T) = 7isi +bi(X)(1 —sy),
BWU;) =uj,

foralli € I and j € J, where as above X% is multiplication by e“.

Proof We saw above that the operators 8'(T;), i # 0, defined in (4.3.3) satisfy
the braid relations and the Hecke relations not involving Ty. Now 9y depends
only on Wy (and the parameters t;), not on the particular root system R with
Wy as Weyl group. We may therefore replace (R, L) in (4.3.3) by (R’, L), and
the basis («;) of R by the opposite basis (—«;) of R’. It follows that for i # 0
the operators B(T;) satisfy the braid relations and the Hecke relations.

Now the fact that B(T;) and B(T;) (where i, j # 0 and i # j) satisfy the
appropriate braid and Hecke relations is a statement about the root system of
rank 2 generated by a; and a;. It follows from this remark that the braid and
Hecke relations involving B(7Tj) will also be satisfied. Moreover, it is clear from
the definitions of B(7;) and B(U;) = u; that the relations (3.1.4) and (3.1.5)
are satisfied. Hence S is indeed a representation of 9, and it remains to show
that it is faithful. This will follow from O

(4.3.11) The linear operators X" B(T (w)) (resp. B(T (w))X*"), where u € L
and w € W, are linearly independent over K.
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Proof Letw € W andletw = ujs; --- s;, be areduced expression. Then

B(T(w) =u;B(T;,) - B(T;,)
and it follows from the definition (4.3.10) of S(T;) that B(T (w)) is of the form

1) BT (W) =" fuu(X)v
v=w
where f,, € P, the field of fractions of the integral domain A, and f,,(X) is
the operator of multiplication by f,,,. We have f,,, # 0 foreachw € W.
Now suppose that the operators X*B(T(w)) on A are linearly dependent.
Then there will be a relation of the form

) D gu(X)B(T(w) =0

weW
with g,, € A not all zero (but only finitely many nonzero). From (1) and (2) we
have

Z 8w (X) frw(X)v =0.

v,weW
v=w

Now the automorphisms v € W of A extend to automorphisms of the field ®,
and as such are linearly independent over @, since automorphisms of any field
are linearly independent over that field. Hence it follows from (4.3.8) that

3) Z Sowgw =0
foreach v € W.Now choose v to be a maximal element, for the Bruhat ordering,
of the (finite) set of w € W such that g,, # 0. Then (3) reduces to f,,g, = 0,
and since f,, # O it follows that g, = 0. This contradiction shows that the
operators X* B(T (w)) are linearly independent.

For the operators (T (w))X*, the proof is similar. O

In particular, taking © = 0 in (4.3.11), it follows that the operators (T (w))
(w € W) are linearly independent over K. Hence the representation g is faith-
ful, completing the proof of (4.3.10). O

This representation B is the basic representation of 9.

In view of (4.3.10), we may identify each i € $ with the linear operator S(h)
on A. Since by (4.3.10)

Ti = 7isi +b;(X)(1 —57)
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for each i € I, it follows from (4.2.3) that

(4.3.12) T — 7 = c;(X)(s;i — 1),
(4.3.13) Ti+17" = (s + Dei(Xh,
(4.3.14) TS = ebi(X?) + ci(X)s;,

where ¢ = £1.
From (4.3.14) it follows that

4.3.15) T, X" — X5"T; = b;(X) (X" — X51H)
for all u € L. In particular, we have
(4.3.16) ;X" =X"T,;
if <p,a!>=0,and
4.3.17) X' = X(T — 5 + 1 ") = X17!
if <p, a/> = 1 (which implies that r/ = 7;). Thus the X* satisfy the relations
(3.4.2)—(3.4.5) for the double braid group B.

Recall that Aj = (A")", and likewise let Ag = A0,
(4.3.18) Let f € Ay. Then f(Y) maps Ay into Ao.
Proof By (4.2.10), f(Y) commutes with 7; for eachi € I. Let g € Ap and
leth = f(Y)g. By (4.3.12) we have T;g = 1;g, and hence

Tih=T f(Y)g = f(¥)T;g = t;h

foralli # 0.By (4.3.12) it follows that s;is = h foralli # O,henceh € Ay. O

In the case (1.4.3), let
(4.3.19) T =X"“T ", Ty=X"“T;"
(where ag = —¢| + 3¢, so that X~® = g~!/2X*®). Then we have
@320 (T —t)(T +7") =Ty — )Ty + 55 ') =0,
Proof We calculate
T -7 ' = X7 ' — T, X%
=X"“(T,—w+71,")— T,X"
=b,(X)(X % — X — (1, — 7, )X

) —1
=T, T
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by (4.3.15) and (4.2.1); and likewise

Ty—T, =t —1 - g

(4.3.21) From (4.3.12) it follows that, for A € L and i # 0,
@) if <A, «}> =r > 0, then

T;e* —r_l Sid E uj eI

(i) if <A, a/> = —r < 0, then

r—1
T.e* = e’ + E ujet i,
Jj=0

where (as in (4.2.5))

T — rfl if j is even,
M/ = 12 7—1 . ..
T — T if j is odd.

We shall make use of the following terminology. If f € A is of the form

f= Zuue“

[

where the partial ordering is that defined in §2.7 (with L’ replaced by L), we
shall often write

f = uye* + lower terms.
With this terminology we have

(4322) LetieL,i#0.Then

T~ leh = rse" + lower terms,

where e = —1lif <A, a/> >0, ande = +1if <A, a}> <O.

Proof Since T,' = T; — ; + 7, ', it follows from (4.3.21) that

1

r—1
T e =T “lesit — E ujek_’“"

if <A, a;> =r > 0. In this case we have ;A > A, by (2.7.9).
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Next, if <A, a;> = —r < 0 we have, using (4.3.21) again,
T 'e* = e —}—Zu et

which gives the result in this case.
Finally, if <A, /> = O then s;A = A and T, 'e* = 7, e*. O

L

For the remainder of this section, we need to switch to additive notation. We
shall write
T =q"?
and for « € R we define
ke =k; if o€ Wya;.

With this notation we have

(4.3.23) Letw € Wy, A € L. Then
T(w ™ te* = g/ @Pe?* 4 lower terms,

where

fw, 1) = % Y=<k, @' >)x(wa )k,

a€RT

and x is the characteristic function of R~, and n is given by (2.8.3).

Proof Letw =s;,---s;, be areduced expression, so that
—1y—1 -1 ~1
T H ' =11 T

From (4.3.22) it follows that

P
Tw H et = (H ri”) e"* 4 lower terms,
r=1

where
er = N(=<Si,, - Si,h, 0‘1{,>)
= n(—<x, B.>)
and B = s;, - 'Si,HOl,{'_, so that g1, ..., ,B/p are the roots &’ € R’T such that

wa’ € R'~. It follows that

P
l_[Tl? f(w A)

i=1
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where

P
f(wa )") = % ;n(_<)\” ﬂ;>)Kﬂr

1
=3 Z n(—<A, a'>)x(wa)ky. O

a€RT

fweWandw=s; --- Si, is a reduced expression, as above, let
Ty =Tj, = Ti,-
This is independent of the reduced expression, and we have
(4.3.24) 7, = q¥™

where

gw) = % > x(wa.

a€RT

This follows from (4.3.23) when A is antidominant (so that <A, o’> < 0 for
alla € RT).
In particular:

(4.3.25) LetX € L. Then

g(v(V) = i Z (1 4+ n(<h, o' >)kg.

a€R*

For by (2.4.4) v(A)a’ € R~ if and only if <A, o’> > 0, so that x (v(M)a') =
1A+ n(<h, '>).

4.4 The basic representation, continued

We shall use the parameters t;, 7/ to define a labelling k of S as follows. Define
ki, k] (iel) by

(4.4.1) T, =q ", 1 =g
Recall (§1.3) that

Si={aeS:ta¢st=Wa

iel
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(so that §; = S if S is reduced, and S; = S(R)” where R is of type C, in the
situation of (1.4.3)). Then for a € S; we define

(4.4.2) k(a) = Yk +)),  k(2a) = L(k; — «))

if a € Wa;. Note that k(2a) = 0if 2a ¢ S.
Thus if S is reduced we have k(a) = k; for a € Wa;, and if S is of type
(CY, C,) the labels ki, . . ., ks are given by

(4.4.3) (k1, ko, k3, kq, ks)
= (30kn + ), 3w — k), (k0 + K0), 3(ko — k), k)
where Kk = k| = Kk, =--- = K,_;. Passing to the dual labelling (&}, ..., k)
(1.5.1) corresponds to interchanging «q and ;.
Foreacha € Sy, ifa = wa; (weW,i € I) we define
(4.4.4) T, =71,T, =1
and

by =by =b(t,, 75¢€%,
“4.4.5)
¢y =Cap = (T4, T, €%)

so that b, = wb; and ¢, = wc;. Also, for each w € W, let

(4.4.6) cw) =csiw)= [] eau-

aeS)(w)

Let A[c] denote the K -subalgebra of the field of fractions of A generated by
Aandthec,,a € S.

4.47) Letu,v € W. Then (as operators on A)

Tw ' T = Y fulXw

w<ulv

where f,, € Alc), and in particular
fu*'v = cS,k(U_lu)'

Proof Letu™'v=ujs;... s;, be areduced expression. From (3.1.9) we have

&p

T 'T)=u;T;' T,
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where each of &1, ..., &, is £ 1. By (4.3.14) it follows that
Tw)™'T(w) = u;j(e;,(X)si, + &b, (X)) -+ (¢1,(X)si, + £,b;, (X))
which on expansion is of the stated form, with leading term
ujc; (X)si i, (X)si, - -+ si,_,€:,(X)si,
so that

Jurv =CpChy* " Cp,

where b, = us; ---s;_,(a;)forl <r < p.From (2.2.2) and (2.2.9) it follows
that {by,...,b,} = Si(v'w). d

(4.48) LetA' € L'. Then (as operators on A)
) ¥¥ = c) HXuOHTM) + Y gu(Xw,

weW
w(0)<A

(i) Y™ = T ) e NXuG) ™" + Y g, (Xw™,
weW
w(0)<)/

where g, g., € Alcl, and u(X'), v()') are as defined in §2.4.

Proof (i) Letu(A') = ujs;, ---s;, be areduced expression. From (3.2.10) we
have

VY =T T T ()
where each exponent ¢, is £ 1, so that as in (4.4.7)

Ty T = ) fu(Xw

w<u(A")
with f,, € A[c], and leading term
FuXu@) = e@()~H(Xu@).

Hence

Y = ) HXOuTOA) + 3 fuX)wT ).
wuii‘(/‘)i/)
Now T'(v(1))) is of the form
TR = Y h(Xw

v<v(})
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with i, € A[c]. Hence

Y = e®) HOUONT ) + Y gu(X)w

weW

summed over w € W of the form w = w’v, where w’ < u(A’) and v < v(})
(so that v € Wy). For each such w we have w(0) = w'(0) < A’ by (2.7.12).
(ii)) We have

Y =TT T

and

—€ —&, —1 —1
L7 T = Y f(Ow

w=<u(}))
with f, € A[c], and leading term
FaonXOu)™ = @O NXu@) ™.

Hence

Y = T e@ONXu) " + Y T f,(X0w ™.

w<u(X')

Now T (v(1))~! is of the form

TO) ™ = Y Keov!

v<v(})

with i/, € A[c], and therefore

Y =T ) e@@NXu) ™ + Y g, (w™!
weW

summed over w € W of the form w = w’v, where w’ < u()') and v < v()\)).
For each such w we have w(0) = w’(0) < )/, as before. O

In particular:

(4.4.9) Let ) € L' be antidominant (i.e., wy)\" dominant). Then

YY = e NCOGH + Y gu(Xw
w(0)<A/

with g, € Alc].

For in this case v(A') = 1 and u()') = t(}). O
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For ' € L' antidominant, let X (") be the smallest saturated subset of L’
that contains A/, as in §2.6, and let

(4.4.10) 200) = =) — Wor.

Also let

4.4.11) m = Z e
weWor

By (4.3.18), m;,(Y) maps Ag into Ag. Let m;,(Y)y denote the restriction of
my (Y)to Ag. Then

44.12) mu(Vo= Y (wet(= MO WA+ Y gu(X)i()

wewy wWesO()
where g, € Alc], and W())V is a transversal of the isotropy group of A’ in Wj.

Proof Let u' € WoA'. If &/ # )\ then &/ < )\’ and therefore, by (4.4.8)
(1), t(1)) does not occur in Y* . Hence by (4.4.9) the only term in m; (Y) that
contains (1) is ¢(t(—=A)(X)t(\), and (4.4.12) therefore follows from (4.4.9).

O

There are two cases in which (4.4.12) leads to an explicit formula. The first
is when wg)” is a minuscule fundamental weight (i.e., A’ = woﬂ} for some
j € J,j #0),in which case £°(1') is empty. The second is when A’ = —¢",
in which case X°(1') = {0}. These two cases provide precisely the operators
used in [MS5] to construct orthogonal polynomials.

4.5 The basic representation, continued

We shall regard each element f of A (or of A’) as a function on V, as follows:
ifx € V and

f=) 5
with coefficients f; € K, we define
4.5.1) f&) =Y g™,

Likewise, if / is an element of the field of fractions of A (or A’), say h = f/g,
we define h(x) = f(x)/g(x) at all points x € V where g(x) # 0. Thus for
example ¢;(x) is well-defined at all points x € V such that a;(x) # 0.
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We shall assume until further notice that the labels k(a), a € S, are nonzero.
Recall (2.8.1) that for A" € L/,

re() = u(X)(—pp).
(452) Let)M eL')i el If) =s;), then c;(r, (1)) = 0.

Proof From (2.8.4) (iii) it follows that
ai(ry () + k(;) =0

and therefore c;(r; (1)) is well-defined.
If <L', 0;> = Z, then k(a}”) = k; (4.4.2) and

i =q (1 = ge™) /(1 —e%).
Hence ¢;(r; (1)) = 0.

If <L', a;> = 27, we are in the situation of (1.4.3), so that i = 0 or n and
L=L =7".1fi = n we have k(«)") = k;, and
(1= ghem)(1 + g e

Cc, =
n q(kl+k2)/2(1 — e2azx)

so that again ¢, (r; (1)) = 0. Finally, if i = 0 we have A # so)’ forall A" € L’
(since <A’, > is an even integer), so this case cannot arise. O

(4.5.3) Leth €9, say
h = Z By (X)w ™

weW

as an operator on A, where h,, € Alcl. If ' € L' is such that h,(r, (1)) # 0
Sfor some w € W, then w(r; (X)) = ri(wl).

Proof Since the T(w), w € W, form a K -basis of H, we have

(1) h = ZaUT(v)

veW

with coefficients a, € K. For each v € W, by (4.4.7) we can write
) Tw) =Y fu(Xw™
w

with f,,, € A[c]. From (1) and (2) we have

hy = Zavaw

v
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foreachw € W,by(4.3.8). Henceif h1,,(r;, (1)) # 0 we musthave f,,,(r, (1)) #
0 for some v € W, and therefore we may assume that # = T (v). We proceed
by induction on /(v).

If I(v) = 0, thenv € Qand f,, = 1 if w = v~!, and f,,, = O otherwise.
By (2.8.4) (i) we have v='(r{(1)) = r{(v~')"), which proves the result in this
case.

Ifi(v) > 0, let v = v's; where [(v') = [(v) — 1. Then

T(v) = T)T; = (Z fv/woowl) (€(X)s: + bi(X))

by (4.3.14), so that

FowX) = for 5w sie)(X) + forw(X)(w™'b:)(X)

and therefore

Fow @) = fo 5w GD)ei (siw(ry)) + forw (Db (w(r (W))).

Now suppose that f,,,(r;(1")) # 0. Then either f,,,(r; (1)) # 0, in which case
w(r (1)) = r(wl’) by the inductive hypothesis; or fy su(r (1)) # 0 and
ci(siw(r{ (1)) # 0.

Let ' = s;w)’. Then we have
3) siw(ry (X)) = r(n)

by the inductive hypothesis, and hence ¢;(r;(1')) # 0, so that by (4.5.2) u’ #
s; " and therefore

4) re(sin’) = si(rp(\)
by (2.8.4) (ii). From (3) and (4) it follows that w(r, (")) = r;(wA”) as required.

O

Letw € Wy and let w = s,,- - - 5;, be a reduced expression. Define

(4.5.4) o =TT

P

which is independent of the reduced expression chosen. Since T;(14) = 7,14
for each i, where 14 is the identity element of A, it follows that

4.5.5) Tw)(14) = T la.
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(4.5.6) Letw € Wy and let
Tw)=Y fiXp™

with f, € Alcl. Then f,(—p;) =0ifv # 1, and fi(—p;) = Tu.

Proof We shall apply (4.5.3) with .’ = 0, so that r,(A") = —p;. If f,(—pp) #
0, then

v(—pp) = r(w(0) = r;(0) = —p;

whence v = 1 by (1.5.5).
Now evaluate both sides at 1 4. By (4.5.5) we obtain

Tw = va

Evaluating at —p; now gives fi(—p;) = Ty. O

(4.5.7) Let f € A} and let F(Y~Yo denote the restriction of f(Y™1) to Ao.
Let

FO o= > fuXt(=p).

welL

Suppose that v/ € L' is antidominant (i.e., <V',a> < 0 for all « € R"), and
that f,u (V' — p;) # 0. Then ' + V' is antidominant.

Proof Let
FOH =" g Xi(=pHu!
wel
veWy
so that

fu’ = Z 8w v-

veWy

By (2.8.2), r,(v') = V' — p; since V' is antidominant. Hence f,/(r; (V")) # O
and therefore g,/ ,(r;(v")) # 0 for some v € Wy. By (4.5.3) we have

ey v () (V1) = rr(rn’).

Let " = v(u' 4+ v’). Then the left-hand side of (1) is equal to vt (" )(v' — p;) =
T’ — U,O,i, and the right-hand side is

i)y = u(@' ) (—pp) = @) (—p) = 7' —v@) oy
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Hence vp, = v(r')"!p; and so by (1.5.5) v = v(xr’)~!. Consequently ' +v' =

v 7’ = v(x")x’ is antidominant. O

(4.5.8) Let f € Alcl. If f(\ + p;) = O for all regular dominant ' € L' (i.e.,
such that <)',a> > 0 foralla € R"), then f = 0.

Proof By clearing denominators we may assume that f € A, say

f=) fet
i=1

where f; € K and u; € L. Let A’ € L’ be dominant regular and such that the
r numbers <}, ;> are all distinct (we have only to avoid a finite number of
hyperplanes <A, u; — ;> = 0). Then

-
Z fiq<m)\'+l7;i»lh> = f(m)»/ + 10]/() =0

i=1

for all integers m > 1, and hence the polynomial
r
F(x) — Z ﬁq<p,’(,/4,->x<)h’,u,->
i=1
vanishes for infinitely many values of x, namely x = ¢”, m > 1. Hence F(x)

is identically zeroand so f; =--- = f, =0, 1e., f =0. O

4.6 The operators Y
For each a € Sy, let
(4.6.1) Go=Ta+b.(X DN, — D =ca(X Y +b,(X Vs,
so that in particular G,, = s;T; by (4.3.14). Clearly we have

(4.6.2) wGw ™' = Gy
for all w € W, and
(4.6.3) G, ' =ca(X) — b (X s,
by use of (4.2.3) (iv).

Letw € W and let w = ujs;, - - - s;, be a reduced expression. As in (2.2.9)
let

by =si,---si,, (@)

for1 <r < p,sothat S;(w) = {by, ..., b,}. Then we have

(4.6.4) T(w) = wGy, - Gy, .

P



78 4 The affine Hecke algebra

Proof From (4.6.2) it follows that

Gb, = Sip e Si, 7;-’_5'1-’_4rl e Sip

and therefore
T(w)=u;T; - T;,, =wGp, - Gp,. |
Recall (2.8.3) thatforx € R, n(x) = 1ifx > 0and n(x) = —1ifx <O0.
(4.6.5) Leta € S| be such that « = Da is positive. Then for all u € L we

have

_ v
Gael = 1,11 >l | Jower terms.

Proof We have
(D G.e" = e’ +b(t,, 1)) (e — ).

If <p,a¥> =r > 0,thens, - u = u — ra, and the right-hand side of (1) is
equal to

r—1
el — E ujet e
—

where

t, — 7,71 if jis odd.

{ra — ta’l if j is even,
l/tj =
a

Since u — jo < pfor 1 < j <r — 1, it follows that the leading term of G e"
is ra’le“, which establishes (4.6.5) in this case.

If on the other hand <u, @¥> = —r < 0, the right-hand side of (1) is now

P
'L'aeﬂ + Z ujelH-ja.
j=1

We have u+ jo € %) forl < j <r—1land u+ro = s.pu < by (2.7.9),
since « is positive. Hence u + jo < p for 1 < j < r, and the leading term of

G, e™ is now et
Finally, it <@, @”> = O then s,e* = e/, and hence G, e* = 1,¢" by (4.6.1).
O

(4.6.6) Suppose that w € W is such that Da is positive for all a € S(w). Then

w I T(w)e* = t(w, w)e* + lower terms,
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where
(4.6.7) tw, )= ] =P
a€Ss) (w)
Proof This follows from (4.6.4) and (4.6.5). |
For each a € S define
Kg = K;

ifa € Wa;, so that 7, = ¢*/2. Then

(4.6.8) (w, n) = g/ @w
where

1 \Y
(4.6.9) flw,p) = _Eag(:w)"(<”’ Da" >,

(4.6.10) LetA' e L', € L. Then

Fa@A), w) = <), w—re(p)>.

Proof Suppose first that S = S(R) (1.4.1). Then for @ € R
MY a+ro)=a+ G — <), a>)c
so that
St ={a+rc:aeRT,0<r < <), a>)}

and therefore

F0D 0 = 5 3 < a’ =) < ak)

a€R*

=<\, pu—rp(p)>

by (2.8.2), since ¥ = &’ and k(a) = k' (a").
Next, suppose that S = S(R)Y (1.4.2). Then

SN ={a+re)Y i a e RT,0<r < <)\, a>)

and hence

AUCONDES —% Y n(<p, a>) <X, a>k(@")

a€R*

= <A, —rp(u)>

since now o’ = « and k'(«”) = k(a").
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Finally, suppose that S is of type (C,/, C,,) (1.4.3), so that S} = S(R)" where
R is of type C,,. If @ € R is a long root, then (¢ + rc)" is in the W-orbit of
a, = a, if r is even, and in the W-orbit of ay if r is odd; moreover, in this
case <A/, a> is an even integer. It follows that if @ € R™ is a long root, the
contribution to f(¢(1'), w) from the roots (o + rc)¥ in S;(¢())) is

1 1
—Zn(<u, a>) <), a>(k, + ko) = —517(<u, o'>) <N, a>k'(aY),
since k, + ko = ki + ko + k3 + ks = 2k} = 2k/'(a"). Hence again we have
fEON, W) = <A, —re(u)>. O

(4.6.11) Let) € L', u € L. Then
Y et = g~ =¥ ot 4 Jower terms.
Proof  Suppose first that A’ is dominant. Then Y* = T(z(1')) and 7(1') satisfies
the conditions of (4.6.6), and therefore
(1) 1) IYY et = g e ol 4 Jower terms
by virtue of (4.6.6), (4.6.8) and (4.6.10). Since
t\yet = q’<*/"‘>e",

it follows from (1) that (4.6.11) is true when A’ is dominant.
If now A’ is not dominant, then A’ = A} — 1, with 1/, A} both dominant.
Hence

Y¥elt = yrhi(y*)let
= g~P MW= el L Jower terms

= g~ >l 4 Jower terms. O

If we regard each f € A’ as a function on V as in (4.5.1), we may restate
(4.6.11) as follows:

(4.6.12) Let f € A'and u € L. Then

Ff(Vet = f(—rp(i))e” + lower terms.

(4.6.13) Let f € Ajand pn € Lyy. Then

fF¥m, = f(—u — p)m, + lower terms.

For —rp(won) = —wou + prr = —wo(it + o). O



4.7 The double affine Hecke algebra 81

4.7 The double affine Hecke algebra

Suppose first that S is reduced ((1.4.1), (1.4.2)). Then the double affine Hecke
algebra 9 is the quotient of the group algebra KB of the double braid group
B by the ideal generated by the elements

(T — )T +1,7") (i el.

Thus 9 is generated over K by  and X- = {X* : A € L}, subject to the
relations (3.4.2)—(3.4.5).
Suppose now that S is of type (CY, C,) (1.4.3). Let

n?
(4.7.1) T =X"T7', Ty=X""T;"

asin (fl.3. 19). Then in this case the double affine Hecke algebra é is the quotient
of KB by the ideal generated by the elements

(T — )T +77") 0 <i <n), (Ty— )Ty +157"), (T, — )T, +1,7").

Thus 5:) is generated over K by $ and X’ subject to the relations (3.4.2)—~(3.4.5)
and

@72 @ -+ ) =T —o)(T + 1) =0.
Let f € A = L @ Zco (1.4.8). Then in  we have
(4.7.3) T, X5 — X5 T; = bi(X) (X' — X5

foralli € I,

Proof If <L, a;> = Z, this follows from the relations (3.4.2)—(3.4.4) in the
same way that (4.2.4) was a consequence of (3.2.4).

If <L,a;> = 2Z, so that we are in the situation of (1.4.3) and i = 0 or
n, then just as in the proof of (4.2.4) it is enough to verify (4.7.3) for a single
f € Asuchthat <f,a’> =2. Wetake f = a; (i =0 or n) and calculate

TiXui _ X_aiT} — TiXai _xa (7}71 +1— ‘C-ﬁl)

l

— Ti/—l _ Ti/ _ (Ti _ ri—l)Xfa,-

— _(Ti/ _ _L,i/fl) _ (Ti _ _L,ifl)X—ai
= b(O(X" = X~)

by use of (4.7.1) and (4.7.2). O
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From (4.7.3) and (4.3.15) it follows that the representation 8 of $ on A
(4.3.10) extends to a representation (also denoted by 8) of $ on A, such that
B(X*) is multiplication by e* for u € L.

(4.7.4) (i) The representation 3 0f~§) on A is faithful
(i) The elements T(w)X"~ (resp. the elements X" T (w)), where w € W and
u € L, form a K-basis of 9.

Proof As in the proof of (4.2.7), it follows from (4.7.3) that the elements
T(w)X* (resp. X*T(w)) span ~§) as a K-vector space. On the other hand, by
(4.3.11), their images under § are linearly independent as linear operators on
A. This proves both parts of (4.7.4). O

(4.7.5) The elements Y* T (w)X* (resp. the elements XHT (w)Y") where ) €
L', u e Landw € Wy, from a K -basis of .

This follows from (4.2.7) and (4.7.4). O

Now 1et§) be the algebra defined as follows. If S is reduced ((1.4.1), (1.4.2)),
$' is obtained from 9 by interchanging R and R', L and L'. If S is of type
(CY,Cy) (1.43), A;)’ is obtained from §) by interchanging the parameters 7, and
7, (which affects only the relations (4.7.2)).

(4.7.6) The K-linear mapping w: 3;3’ — 35 defined by
oX* T(w)Y") = X *T(w Hy >

M el,uelL,we Wy)is an anti-isomorphism of K -algebras.

Proof In view of the duality theorem (3.5.1) we have only to verify that @
respects the Hecke relations in ~§)’ and ~f)

(a) In the case where S is reduced ((1.4.1), (1.4.2)) we have to show that T;f
defined by (3.5.2) satisfies

(Ty — )Ty + 10—1) =0.

From (3.4.9) it follows that 7 is conjugate in B to T;lX“"' for some i # 0
such that 7; = 73. Hence it is enough to show that

T7'X % — X4, =1 — 7, !
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or equivalently that
TX ™ —XT = (v — 17" )1+ X™).

But this is the case f = —a; of (4.7.3).
(b) When S is of type (C,’, Cy) (1.4.3) we have to show that

1) (@(Ty) — ) ((Ty) + 7,7 ') = 0,
2 (@(Ty) — ) ((Ty) + 75 7') = 0,
3) (@(T) — 1) ((T)) + 75") = 0,

By (3.4.9), w(Ty) = Ty is conjugate in Bto T, ' X~ hencealsoto X T ! =
T, which proves (1). Next, we have

o(Ty) = w(qil/zXE‘TO_l) =q ()l
— q71/2(Y751T0X761)71Y7£1 — q71/2X£1 To—l — TO,’
which proves (2). Finally, by (3.3.7), o(T,)) = T,,‘1 Y?® is conjugate to T, which
gives (3). O

By (4.7.4) we may identify ~f) with its image under B, and regard each i € ~f)
as a linear operator on A. We define a K -linear map 6: § — K as follows:

4.7.7) 0(h) = h(1,)(—pp),
where 1, is the identity element of A. Dually, we define ' : »f)’ — K by
4.7.7) 0'(h") = h'(La)(—pr).

Suppose that h = FXOT(w)g(Y™"), where feA ge A andw e Wy. By
(4.6.12) we have

(D (Y1) = g(—pe)la.
Ifw=ws;--si,lett, =17, -7, Since T;(14) = 7;14, it follows that
2 T(w)lp =1tyla.

From (1) and (2) we have

(4.7.3) O(f)Tw)g(Y™) = f(—p)Twg(—pr).
Since

FXOTw)g¥Y ™ =aw@X)Tw H )
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it follows from (4.7.5) and (4.7.8) that
(4.7.9) ' =0ow.
Next, if h € 55 and i’ € 55’, we define
(4.7.10) [h, h'] = 600~ (W),
(4.7.10) [7, h] = O(w(h)h).
From (4.7.9) it follows that
(4.7.11) (W', h] = [h, h'].
Also, if h; € 35) we have
(4.7.12) hih, W] = [h, @ ' (h1)R']
because 8’ (0~ ' (h W)K) = 6" (0~ ' (W~ (h)I).
In particular, if f € A and f' € A" we define
@.7.13) If, 1= X, X1 =0'(f) X)) = (XD )(=px)
and dually
(4.7.13) L, F1=1F' X, FOO1 = (f' D ) (=pp).

From (4.7.11), this pairing between A and A’ is symmetric:

(4.7.14) Lf' =11 1

Notes and references

The fundamental relation (4.2.4) is Lusztig’s Prop. 3.6 of [L1]. The basic repre-
sentation B of the affine Hecke algebra $ and its properties are due to Cherednik
[C2], as is the double affine Hecke algebraif). The mappings 6, 6’ and the pairing
(4.7.10) are also due to Cherednik [C4].
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Orthogonal polynomials

5.1 The scalar product

Let S be an irreducible affine root system, as in Chapter 1. Fix a basis (a;);cs
of S, and let ST be the set of positive affine roots determined by this basis. Let

Si={aeS:la¢s}

2

asin §1.3, so that §; = S if § is reduced, and in any case S| is a reduced affine
root system with the same basis (a;) as S.
As in §1.2 there is a unique relation of the form

E m;a; = ¢

iel

where the m; are positive integers with no common factor, and c is a positive
constant function. Fix an index 0 € [ as in §1.2 (so that mg = 1).

We shall in fact assume that S is as in (1.4.1), (1.4.2) or (1.4.3). This as-
sumption excludes the reduced affine root systems of type BC, (1.3.6) and the
non-reduced systems other than (C,’, C,,). The reason for this exclusion will
become apparent later (5.1.7).

Asin §1.4, let
A =L & Zcy
and let
At = L & Ne.
The affine roots a € S lie in A, and the positive affine roots in AT. If f € A,

85
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say f =+ rco, where u € L and r € Z, let
el = gt = qr/eeu

as in §4.3 (where gy = ¢'/¢).

For each a € § let ¢, be a positive real number such that #, = 1, if a, b are in
the same W-orbit in S, where W is the extended affine Weyl group of S. The #,
determine a labelling k of S as follows: if a € Sy,

1/2 1/2
(5.1.1) " =17, ¢*®0 =)/

where t2 %is the positive square root, and f,, = 1 (so thatk(2a) = 0)if2a & S.
Foreacha € § let

172
1 -1,

172 a

(5.1.2) Ag=Agp=—28_"_
1 — 1,1,

If a € S| we have

(1= 1,)%e7)(1 — )

A(IA2H =
(1 — tay)%e9) (1 — tzaez")
_ 1 — eZa
= (1 —qk(“)ea)(l +qk(2”)€“)
so that
(5.1.3) (DaDoa)™" = 1a(ta, T)5€%)

in the notation of (4.2.2), where

(5.1.4) Ty = (tat2a)'* = %, T, =1}/* = g~/
(sothat 7, = 7/ if 2a ¢ S), and

(5.1.5) ka = k(a) + k(2a), «, = k(a) — k(2a)
as in §4.4. Let

(5.1.6) G =q" =1, T=q¢""= Ty

foreachi € I, so that k; = «/ for all i € I except when S is of type (C}/, Cy,)
andi =0 orn.
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We now define the weight function

o= —2¢
(5.1.7) A=Agi= ] Au=T] —2 .
aesSt ’ aeS+ 1- tﬂt;ézea

We may remark that if SO is a subsystem of S, then Ao ;. is obtained from A ;
by setting 7, = 1 foralla € S — S°. Thus if S is of type (C,/, C,) and S is one
of the non-reduced systems (1.3.15)—(1.3.17), or one of the “classical” reduced
systems (1.3.2)-(1.3.7), Ao 4 is obtained from Ay by setting some of the ¢,
equal to 1.

On expansion, A is a formal power series in the exponentials e“ (i € I), with

coefficients in the ring of polynomials in the 7, and t21 ‘{ 2 say

A= E ubeb = E u)»-‘rrcqre)h'

beA+t reL
r>0

If f eA,say

f=)_hre,

rel

the constant term of f A is defined to be

(5.1.8) ct(fA) = Z (Z Mx+rcf—x> q",

r>0 \AeL

a formal power series in q.
Let

(5.1.9) Ay = A/ (A) =) vu(g. t)e"

nel

so that vo(q, ) = 1.
(5.1.10) (i) The coefficientsv,(q, t) are rational functions of g andthe t,, tzl(fz.
(i) vu(g,t) =v_, (@', t7") forall u € L.

Proof We shall give the proof when S is reduced. As in §1.4 we shall assume
that |¢|> = 2, where ¢ is the highest root of R. Foreachi € I, since s; permutes
St — {a;}, we have

siA I—e™ 1 —fie" 1—1re

(5.1.11) = =
Ay 1 —tie=4 1 — e 5 —e%
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where f; = t,,. Hence
@))] (1 —tieaf)(z vuell«) = ( _ea;)zvues[u'

Suppose first that i # 0. Then by comparing coefficients of e#*% on either side
of (1) we obtain

(2) Vpta; — LV = liVsp—a; — Usipe-

Suppose next that i = 0. Since a9 = —¢ + ¢ (because |¢|> = 2) we have
S0+ 1 = Spi + <u, ¢>c and therefore

S0t — —<iL@> 1
E vett = E q vg, e
u 1

Hence by equating coefficients of e#~% on either side of (1) we obtain

(€)) Vp—p — qloVy = qi<M’W>+2tOUswu+<p - q7<ﬂ'¢>+lvxw

Let @ denote the field of rational functions in ¢ and the ¢#;. We proceed by
induction on u, and assume that v, € @ for all v in a lower Wy-orbit than .
Let A be the dominant element of the orbit Wy, and suppose first that u # A.
Then for some i # 0 we have <u,a;’> = —r < 0,sothats;u = p+ra; < p
by (2.7.9). From (2) we obtain

-1
vy — 1

i Usip SR

and hence by iteration, for all © € WyA,
4) v, — 1,0 € D,

where w € W, is the shortest element such that ww = A, and 1, = f;,- - - f;, if
w =s; -5, is areduced expression.

Next, we have <A, ¢> = r’ > 1 since A is dominant. Hence from (3) applied
to A we obtain

) vy — to’lq"/vsw,\ e .

From (4) (with u = s,A) and (5) it follows that v, € ® and hence that v, € ®
for all u € WyA.

This proves (5.1.10) (i) and shows that A is uniquely determined by the
relations (5.1.11), together with the fact that the constant term of Aj is 1. Now
these relations are unaltered by replacing #; and e“ by tfl and e~ . Hence the
same is true of Ay, which establishes (5.1.10) (ii).
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Finally, when S is not reduced, the argument is essentially the same: (5.1.11)
is replaced by
sifdy (1 —te)(1 +t/e™)
Al — et + o)

where 1; = 1, tzlf and t/ = tzlf, and the recurrence relations (2) and (3) are

correspondingly more complicated. O
(5.1.12) When § = S(R) with R reduced, we have

I (e";9)oo(ge™; q)oo
wei (4595 q) (¢ leeq)

where we have made use of the standard notation

A =

(:q)eo = [ J(1 = xg").
i=0

Since (x;¢)oo/(@*X;q)oe — (1 —x)  as g — 1, forall k € R (see e.g. [G1],
Chapter 1), it follows that

A— J]a—e e
aeR

asqg — 1.
Next, if the labels k(o) are non-negative integers, A is a finite product, namely

A= T] € Duw@e ™ D

aERT
where
k—1
i =[]0 —xg)
i=0

for k € N. Equivalently,

A= J]a-e)

aeS(k)

where
Sk)={a € S :ax) e (0, k(a)) forx € C}
and C is the fundamental alcove (§1.2) for W.

(5.1.13) Suppose next that S = S(R)Y, where R is reduced and RY # R. As
in §1.4, we assume that |@|> = 2 if @ € R is a long root. Let u, = 2/|a|? for
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o € R; then u, = 1 if @ is long and u, = d if « is short, where d (= 2 or 3)
is the maximum bond-strength in the Dynkin diagram of R. Let g, = g"~ for
each o € R, and let k() = u;, 'k(a"). Then we have

I (¢ :40) o (que™ 3 40)
weRH (qgv(d)eav; qa)oo(qgv(dﬂ’le—av : qa)oo ’
and A — [[,cp(1 — e ) @asg — 1.

If each k¥ («) is a non-negative integer,

A= ]_[ (€3 kv @(qae ™™ s Gk

a€RT

=JJa-e

aeS(k)

A =

with S(k) as defined in the previous paragraph (5.1.12).

(5.1.14) When Sis of type (C}/, C,) and W = Wy is the affine Weyl group of
type C,, the orbits Oy, ..., Os of W in S were described in §1.3. In the notation
of (1.3.18) let

Ry ={%e1,...,£&,}, Ry={£e *g;:1<i<j=<n}
R = {e1,..., e}, Rf ={ete;:1<i<j<n}
and let
1 1
(ul,...,u4) — (qk‘,—qkz,qk3+2,—qk4+2),

k41 ko1 ka1 kat+3
(u’,,...,ug)=(q‘+,—q2+,q3+2,—q4+2)

where k; = k(a) fora € 0;, as in §1.5. Then A = ADADP where

)

AD — l—[ (eza;Q)oo(qe_za;Q)oo
4

@Ry [T(uie®; @)oo (uie™; @)oo
i=1

and

AP =T] ("3 Px(ge™; P
weis @5 D(g e Qoo
When ¢ — 1 we have

A(l) N H(l _ ea)k1+k3(1 +€a)k2+k4,

a€ER;

A? — TTa—enk.

O(ERZ
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If each of k1, ..., k4 is a non-negative integer, then
4
A = TT [Twie: o wie ™ g,
aeRy i=1
where
(Ula ey U4) = (17 _17 ql/za _41/2),

Wi, ... v = (9. —q9.49"* —q'?).

Let K be the field generated over Q by the 7,, 7/ (a € S) and gy = ¢'/¢, and
asin Chapter 4 let A = KL and A’ = K L’ denote the group algebras of L and
L’ over K. We define an involution f + f* on A and on A’ as follows: if

f=> fie
x
with coefficients f; € K, then
(5.1.15) =Y fret
i

where f;" is obtained from f; by replacing qo, 7., 7, by their inverses g, L T, L

/7! respectively. Thus for example

(@a)* — €7a
foralla € S.
If the labels k(«) in (5.1.12), k¥ () in (5.1.13) and k; in (5.1.14) are non-

negative integers, so that A is a finite product and hence an element of A,
then

(5.1.16) A* =g NOA,
where
Y k@) if § = S(R),
aeRt
Nk =1 > uak (@) if § = S(R)Y,
aeRT

n(kf+---+k3) +nn—Dk2 if S=(Cy,Cy).
Proof This is a matter of simple calculation. For example, if S = S(R), then
by (5.1.12)

k(a)—1

A= [Ta-gena—g+e

a€R*T i=0
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so that
k(a)_l . . .
A* — l—[ 1_[ q72171(1 _qleol)(l _ ql+1€7a)
aeR* i=0
— q*N(k)A’
where
k(@)—1
Nky= > > Qi+1)= ) ki
aeRt i=0 a€ERT
Similarly in the other cases. O

We now define a scalar product on A as follows:

(5.1.17) (f, 8) =ct(fg*A)

where f,g € A and A = Agy, and as before ct means constant term. This
scalar product is sesquilinear, i.e.

for £ € K. We shall also define the normalized scalar product

(5.1.18) (f. o1 =ct(fg"A) = (f. &)/, 1).
This normalized scalar product is K-valued and Hermitian, i.e.,

(5.1.19) (& =0

for f, g € A. For if

F=) 5 g=) gue, A=) e

then v, = v*, € K by (5.1.10), and

(gv f)l = Zf)\*gﬂv)»*ll = (Z fkgzvuk>
A A

= (f, 97 O
Dually, we define a scalar product on A’ by
(5.1.17) (f.8) =ct(fg"A)

where f, g € A’ and A’ = Ay, and ', k" are as defined in §1.4 and §1.5.
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(5.1.20) Let f € A, f # 0. Then (f, f) is not identically zero.

Proof Let

=" fulg, ner.
"

As functions of g, each coefficient f, has only finitely many zeros and poles.
Hence we can choose labels k(a) € N for which f is well-defined and nonzero.
By multiplying f by a suitable power of 1 — go, we may further assume that
f is well-defined and nonzero at go = 1. The coefficients f,, are now rational
numbers. Now when gy = 1 it follows from (5.1.12)—(5.1.14) that A = FF*,
where F is the product of a finite number of factors of the form 1 + ¢*, « € R.
Let

g=Ff= ngex
with coefficients g, € Q. Then
(f. f)=ct(ggN = g >0

and so (f, f) is not identically zero as a function of g( and the #’s. O
From (5.1.20) it follows that

(5.1.21) The restriction of the scalar product ( f, g) to every nonzero subspace
of A is nondegenerate.

If F: A — Ais alinear operator, we denote by F* the adjoint of F (when
it exists), so that

(Ff,g)=(f F*g)

forall f, g € A.

Let  be the double affine Hecke algebra (§4.7), identified via the repre-
sentation 8 (4.7.4) with a ring of operators on A. We recall that the elements
T(w) f(X) (weW, f € A) form a K -basis of D.

(5.122) Each F € § has an adjoint F*. If F = T(w)f(X) then F* =
ST (w)~ "

Proof 1t is clear from the definitions that the adjoint of f(X) is f*(X), and
that the adjoint of U; (= u;) is u;l (jeJ). Hence it is enough to show that
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TF = Tl.’1 foreachi € I.If f, g € A we have

(si f, 8) = ct((s; /)g*A)
= ct(f(s;g)"siA)

and by (5.1.3)

¢i(X)
Si =
ci(X7h
where ¢;(X*") = ¢;(1;, T/; X*4i), It follows that the adjoint of s; is
. ¢i(X)
(5.1.23) st = S;.
ci(X~1)

Since (4.3.12)
Ti =7 +ci(X)(si — 1)
it follows that 7; has an adjoint and that (since ¢} = ¢;)

TF =17+ (sf — De(X)

1

=+ ( a - 1) (%)

ci(X7)
=t ' teaX) (s —)=T1"". O
In particular:
(5.1.24) If f € A, the adjoint of f(Y)is f*(Y). O

Later we shall require a symmetric variant of the scalar product (5.1.17). Let
So ={a € §:a(0) =0},

which is a finite root system, let S(}L = So N ST, and define

(5.1.25) A= AS =[] A-a-
aeSy
(5.1.26) V = Vs = AsiAY.

Ifi € I,i # 0, we have

siA® Ay Ao, A
AV A LA L, siA

and hence
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(5.1.27) V is Wy-symmetric. a

(5.1.28) (i) When S = S(R) with R reduced, we have
(e* Q)oo
V= l_[ k(ot)eot
OO
(i) When S = S(R)Y we have
(e 1 9a)
V= &
01:1[? (qk @e ;qo‘)oo

in the notation of (5.1.13).

(iii) When S is of type (C,/, C,) we have
vV = vhy®

where, in the notation of (5.1.14),

v — (eza;q)oo
=l
I3 1_[,'=1(ui€ 3 q)oo

vO — 1—[ (€”;q)oo
aER, (qkSga;q)oo

For f, g € A we define

(5.1.29) <f,g>= |Vl|ct(ng)

where g > g is the involution on A defined as follows: if g = > g, e/ then

(5.1.30) 2= guet.
Since V =V, it follows that the scalar product (5.1.29) is symmetric:
(5.1.31) <f,g>=<g, f>.

The restrictions to Ag = A" of the two scalar products are closely related.
For each w € W, let

(5.1.32) k(w) = Z k(a)

aeS(w)

where, as in Chapter 2, S(w) = ST N w~'S~, and let

(5.1.33) Wolg") =Y ¢"™.

weW,
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(In multiplicative notation,
k
q W) — 1_[ I, =1ty
aeS(w)

since t,ty, = M@+ CD) by (5.1.1).)
Forg =) gue" € A, let

(5.1.34) g'=) gt =g
Then for f, g € Ap we have
(5.1.35) (f, 8) = WolgM)<f. g">.

Proof We have
(f, g) =ct(fg"A)
1
= ——-ct| fg* Z wA)
|W0| < weW,

and

Z wA =V Z w(A%7!,

weW, weW,

since V.= AA? is Wy-symmetric (5.1.27). Hence (5.1.35) follows from the
identity

(5.1.36) Z w(AY ™ = Wo (g
wEWO
which is a well-known result ([M3], or (5.5.16) below). O

Finally, for f, g € A we define
(5.1.37) <f,g>1=<f,g>/<1,1>.
Then it follows from (5.1.35) that for f, g € Ay we have
(5.1.38) (f 9 =<f.8">
and hence by (5.1.19)
(5.1.39) <f% g>1=<f.g">].
We conclude this section with two results relating to the polynomial Wy(g*):

(5.1.40) Wolg") = (A% (—pp) ™

(5.1.41) Wo(g") = Wo(g").
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Proof  (5.1.40) follows from (5.1.36) by evaluating the left-hand side at —p;,
which kills all the terms in the sum except that corresponding to w = 1 [M3].

Asto (5.1.41), we may assume that S is of type (C)Y, C,,) (1.4.3), since k' = k
in all other cases. In that case,

k(w) = Li(w)(ky + ko) + L (w)ks
where, in the notation of (5.1.14),
li(w)= Card {« € R : wa € R;}.

Since k| + k), = ki + k» and ki = ks, it follows that k'(w) = k(w) for all
w € Wy, which gives (5.1.41). a

5.2 The polynomials E ),

(5.2.1) Foreach A € L there is a unique element E; € A such that

(i) E, = e* + lower terms,

(1) (Ex,e*)=0forall u < A,

where “lower terms” means a K-linear combination of the e, u € L, such
that u < A.

Proof Let A, denote the finite-dimensional subspace of A spanned by the e*
such that © < A. By (5.1.21) the scalar product remains non-degenerate on
restriction to A,. Hence the space of f € A, orthogonal to e* for each u© < A
is one-dimensional, i.e. the condition (ii) determines E; up to a scalar factor.
Condition (i) then determines E; uniquely. O

Let f € A’. Then we have

(f(V)Ex, ") = (Ey, f(Y)e") =0

if w < X, by (5.1.24) and (4.6.12). It follows that f(Y)E, is a scalar multiple
of E;, namely

(522 JE, = f(=re(M)E;

by (4.6.12) again. Hence the E; form a K -basis of A that diagonalizes the action
of A/(Y) on A.
Moreover, the E; are pairwise orthogonal:

(5.2.3) (E;, E,) =0

if A # .
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Proof LetVv' € L'. Then
g~V W(E E) = (Y VE;, Ey) = (Ey, YVE))
=g~V W>(E,, E,),

by (5.2.2) and (5.1.24). Assume first that k'(@”) > 0 for each « € R; if
A # u we have rp(A) # rp(u) by (2.8.5), hence we can choose V' so that
<V, re(A)> # <V, rp(n)>, and we conclude that (E,, E,) = 0 if all the
labels k’(«") are positive.

Now the normalized scalar product (E;, E,,); (5.1.18) is an element of K,
that is to say a rational function in say  variables over QQ (where r < 6). By the
previous paragraph it vanishes on a non-empty open subset of R”, and hence
identically. O

Dually, we have polynomials Ej, € A’ for each 1 € L', satisfying

(5.2.1) EL = e 4 lower terms,

(5.2.2) JE, = f(=ri(W)E,
for each f € A, and
(5.2.3) (E;’L, E)Y =0

if u,v e L and u # v.
Next we have

(5.2.4) (Symmetry). Leti € L, € L. Then
Ey(r{GOE L (—pr) = Ex(=p)E.(re L),
Proof From (4.7.13) we have
[Es. E|] = (E;(Y " )E))(—pr)
= E(r(W)E; (—pr)
by (5.2.2"). Hence the result follows from (4.7.14). O
We shall exploit (5.2.4) to calculate E; (—p;,) and the normalized scalar prod-
uct (E;, E;);. Whent, = 1 foralla € S, we have A = 1, so that E, = e* for

each & € L; also p; = 0, so that E; (—p;) = 1. It follows that E, (—p;) is not
identically zero, so that we may define

(5.2.5) E, = E;/E;(—p})
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for A € L, and dually

(5.2.5)) E, =E,/E (—pr)
for u € L’. Then (5.2.4) takes the form
(5.2.6) E(ry(w)) = E (re().

(5.2.7) Let) € L. Then
Q) Y= fuXw,

w

(i) Y* = weu(X)

as operators on A’, where f,,, g, € A'[c] and the summations are over w € W’
such that w < t()L).

Proof Leti =m — o where m,0 € L., sothat Y* = T(t(c))"'T(¢(n)).
Both (i) and (ii) now follow from (4.4.7). O

(5.2.8) Leth,u € L. Then
(1) EAEM = Z fw(rk’(ﬂ))Ewu.
with f,, as in (5.2.7) (i); the summation is now over w € W' such that w < t(1)
and w(rp(pn)) = ry(ww).
i) e Ey =" guw 're(u)Ey 1,
with g, as in (5.2.7) (ii); the summation is now over w € W’ such that w < t())
and w™ (rp (1)) = r(w="p).
Proof Letv e L'. Since
Y*AE:} — q<)\,r,f,(v)>E:)
by (5.2.2'), it follows from (5.2.7) (i) that

q<k,rk(v)>E~vL — Z fwwilE:}.
w<r(A)

Now evaluate both sides at r;/(4) and use (5.2.6). We shall obtain
g E (i) = Y fulrie (W) E(ry(v)

summed over w € W’ as stated above, since w(ry(un)) = rp(ww) if
Sfw(rr(p)) # 0 by (4.5.3). Hence the two sides of (5.2.8) (i) agree at all points
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r(v)where v € L’, and therefore they are equal, by (4.5.8). The proof of (5.2.8)
(ii) is similar. O

When pu = 0, so that Eﬂ =E,=1,(52.8) () gives
¢t = Z Fu(=pe) E o)
summed over w € W’ such that w < t(A) and w(—pp) = rv(w(0)). Let us
assume provisionally that the labelling &’ is such that
(%) pp is not fixed by any element w # 1 of W'.

If w(0) = w then rp(w(0)) = u'(u)(—pp) and it follows that w = u’(w), so
that

(5.2.9) =" fuuw(—p)E,.

HSA
Hence, considering the coefficient of ¢* on the right-hand side, we have
(5.2.10) Ex(—p}) = fuo(—pi).
Next, when o = A, (5.2.8) (ii) gives

e Ex = guw reONE 1z,
w

summed over w € W’ such that w < #(A) and w™'(rp (L)) = r(w™'1). In
particular, if w™!'A = 0 we have w™'(rp(})) = rv(0) = —pp, so that w =
u'(X). Hence the coefficient of Eg = 1 in e *E; is equal to g,)(—px), and
therefore by (5.2.9)

(Es, Ex)i = fuoy(—pe) (", Ex)
= fuo(—p) "1, e E;),
so that
(5.2.11) (Ex, Ex) = 8uoo(—poe)* ) fuoy(— o)
It remains to calculate f and g explicitly. From (5.2.7) and (4.4.8) we have
i) TM) Y fuw™ = ey W)X/ ()™

weW’
w(0)=x1
and
i) Y weu(X) = eyl (M) )XW WT ().
weW’

w(0)=A
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Since §'(w™") = —wS'(w) (2.2.2), it follows that

w es pw™h) = e —p(w)
(since ¢(t, u;x~ ") = ¢(t7", u!; x)), so that
(5.2.12) cs (™) = wles p(w)).
Hence (ii) above may be rewritten as

(iii) § wgw(X) = u'(Mes @' AT (v(R)).
weWw’
WwO)=A

Now let

TMW)= ) hu(Xw.

w=<v(A)

By (4.5.6) we have h,,(—pr) = 0if w # 1, and h(—pr) = Tyn). Hence we
obtain from (i)

Fuo(=pir) = Ty €0 10 Q) (—pi)
and from (iii)
8uwoy(—pr) = TooyCs,—k (' (W) (—pi).
Let
¢ = es '),
By (2.4.8) we have
(5.2.13) o= [ casr

a'est
a'(L)<0

and from (5.2.12) we have
cs o' (V) =u' W) of
so that

Fuon(=pe) = Tyoy @ (re(L),
Suwin(—pr) = Toy @y (re(V),

and hence finally

(5.2.14) Ey(—pp) = Tyo@s (e (W),

(5.2.15) (Ex, Ex)1 = @) (re(W)e; (re (D).
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These relations have been derived under the restriction (x) on the labelling
k’. Since each of them asserts that two elements of K are equal, they are true
identically.

5.3 The symmetric polynomials P,

Foreach A € L let

m, = E e,

neWor

the orbit-sum corresponding to A.

(5.3.1) Foreach ) € Ly there is a unique element P, € Ay such that
(i) P, = my + lower terms,
(i) <Py,my> =0 forall p € Ly suchthat p < A.

Here “lower terms” means a K -linear combination of the orbit-sums m,, such
that w € Lo, and u < A.
The proof is the same as that of (5.2.1).

Next, recall (5.1.33) that if f € A, say
f= Z fre*
A

with coefficients f; € K, then

(532) PY?=P, foreachreL,,.

Proof By (5.1.37),
<Pl m,> = <P,m,>F =0

if © < A. Hence P)? satisfies conditions (i) and (ii) of (5.3.1), and is therefore
equal to P;. O

Let f € Aj. Then f(Y)P, € Ap,by(4.3.18). Hence, by (5.1.24) and (5.1.37),

<f(V)Py,m,>1 = <Py, (f*(¥)m,)">.
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By (4.6.13), (f*(Y)mM)0 is a linear combination of the m, such thatv € L,
and v < p. It follows that < f(Y)P,,m,> = 0if u < A, and hence that
f(Y)P, is a scalar multiple of P,. By (4.6.13) again, the scalar multiple is

F(=A = pr):
(5.33) JX)Py = f(=A = pi) Py

forall f € Ajand A € L.
From (5.3.3) it follows that

(5.3.4) <P, P,>=0
if L # w. The proof is the same as that of (5.2.3).

Dually, we have symmetric polynomials P, € A for u’ € L', |, satisfying

the counterparts of (5.3.1)—(5.3.4).

Next, corresponding to (5.2.4), we have

(5.3.5) (Symmetry) Let A € Ly, ' € L', . Then
P+ PP pw) = PP PG+ puo).
Proof From (4.7.13) we have

[P.. P,] = (P(Y )P )(—pi)
= P( + o) P (—pp)

by (5.3.3),

= Pu(u' + pp) P (ox)
since —pr = wopr, Where wy is the longest element of Wy. Hence (5.3.5)
follows from (4.7.14). 0

As in §5.2, we shall exploit (5.3.5) to calculate P;(p;) and the normalized
scalar product <P, P,>. The same argument as before shows that P;(p;) is
not identically zero, so that we may define

Py = P,/ P.(p})
for A € L, and dually

P, =P,/P, (o)
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for u’ € L', . Then (5.3.5) takes the form
(5.3.6) P + pp) = P, (k4 pro).

Let A € L. By (4.4.12) the restriction to A, of the operator m; (Y1) is of
the form

m(Y o= g (X)i(—m)

TEXT(N)
in which
(5.3.7) Gur = w(c))

for w € Wy, where ¢} = cg 1 (1(1)).
Letv' € L', .. Then m; (Y1) P!, = my(v' + p}) P!, by (5.3.3), so that

m; (V' + p)P, = Z g t(—m)P!,.
T
We shall evaluate both sides at wo(u + pr) = wot — pr, where u € L. We
shall assume provisionally that
(%) kK'(@)#0 foralla € S

so that we can apply (4.5.7), which shows that g,(wou — pr) = O unless
T 4+ wou is antidominant, i.e. unless wom + w is dominant. We have then

(t(—m) P, ) (wopr — pr) = P, (T + wop — pr)
= Pl (worr + 1+ pi)
= ﬁwon-&-u(‘), + :0]2)

by (5.3.6), and therefore

ma ' + P PLO + 0p) = 3 grwort — o) Puyin ' + )
T

for all dominant v’ € L’. Hence by (4.5.8) we have

(5.3.8) my P =" gx(wort — p) P ity

summed over 7 € X(A) such that u 4+ wom is dominant.
In particular, when u = 0, (5.3.8) expresses m; as a linear combination of
the P, m < A:

m) = Zgwoﬂ(_lok/)ﬁﬂ

T<X
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in which the coefficient of P; is

Guor(—pr) = (woc} )(—pr) = ¢, (pi)
by (5.3.7). It follows that
(5.3.9) P.(pp) = ¢ (pr)-

Next, let A = —wgA, and replace (A, 1) in (5.3.8) by (X, A). Since mj = i,
it follows that

ﬁl)\pk = Zgn(_)_‘ - pk’)ﬁk+wgn
[

in which the coefficient of Py = 1 is
gi(—=& — pp) = €5(—=h — pr) = €5 (=1 — pr)
since Py = pr. Hence

<P, P> =ci(pp) ' <my, Pr>y
=cl (o) <1, m; P>,

= ¢\ (=1 — o)/} (o)
and therefore, by (5.3.9),
(5.3.10) <P, P> = ¢ (=1 — pr) ¢, (pr).

We have derived (5.3.9) and (5.3.10) under the restriction () on the labelling
k'. For the same reason as in §5.2, they are identically true.

The formulas (5.3.9) and (5.3.10) can be restated, as follows.
Let

(5.3.11) A= T1 2w A5=TT A
aeS™ aeS™
Da>0 Da<0

and define A, ,,, analogously. Then

(53.12) Pulpd) = =7 NG O+ o)/ A o (or),

Ag,]y()\ + /Ok/)AE/,_kf(_)L - Pr)

(5313) <P)L,P;L>1 —
A:qh,kf(Pk/)AS/,_kf(_pk/)
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Proof We shall verify these formulas when S = S(R) (1.4.1); the other cases
are similar. We have S’ = S(RY) and k'(«") = k(«), so that

e“v;
A;k’ = l—[ ((k(a) Zv)oo
weir (@ @e*5q)
Since A is dominant, we have

St ={a¥ +rc:ae R and0 <r < <A, a”>).

Hence
<ro¥>—1 _ k(a)Jrr oV
k@2 1 e
¢, =csp(t(h) = l_[ l_[ g~ )/21—,0,v
weR+  r=0 —qc¢
and therefore by (5.3.9)

(qk(a)+<pk/ N >,q)

<A,aV>

Pipp) =q % []

<pi/ oV >
a€R* (q ’q)<X,aV>

which gives (5.3.12).
Next, we have

<AaV>-—1 " )/21 _ qk(a)+r—<?»+/0k/,a\/>
—k(a
C)L( A — )Ok) = 1_[ 1_[ 1— qr—<x+pk/,av>

a€RT r=
<ia¥>-—1 )L+pkr,av>fr7k(a)
RIS
— q<k+pk/.av>—r
a€R* r=

<haV>-—1 oY >+14r" —k(a)

1—[ l—[ k(a)/21 —q"
q q<pkr,av>+l+r’

aeRt  1r'=0

(where r' = <A, @¥> — 1 — r in the last product above). Since

_ (qeiav;Q)oo
Ay v=1]] a
S aERT (ql—k(ot)e—a ;q)oo

it follows that
(A —pp) =g P AG o (=h — pr)/ Ay o (—pr)

which together with (5.3.12) gives (5.3.13). O
To conclude this section we shall consider some special cases.

(5.3.14) Whenk(a) =0foralla € S, wehave V = 1 and P, is the orbit-sum
m;,forallk € L.
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(5.3.15) Suppose that § = S(R), with R reduced, and that k(o) = 1 for all
o € R. Then

v=[Ja-e)=]] (/> -e?) =ss.

a€R a€ER
where

§ =68 = 1_[ (eoz/Z _ e—a/2) — Z (_1)l(w)ewp

a€R* weWy
by Weyl’s denominator formula, where
P>
o= 3 o.
a€R*
ForA e L, let

X0 = Xgr=18"" Z (=1)/Wew0+r) ¢ Ag.

weW,
Then
X, = m; + lower terms,

and

<Xa> Xp> = ﬁ ct (X0 - Xud)
is zero if A # u, and is equal to 1 if A = p. It follows that P, = xz,, in this
case.
When S = S(R)Y and kV(«) = 1 for all « € R, in the notation of (5.1.13),
the conclusion is the same: P, = xgv.,.
Finally, when S is of type (C/, C,) and ky = ka = ks = 1, ks = kg = 0, we
have V = 8z8z where R is of type C,, and consequently P, = xg.;.

(5.3.16) Consider next the case where g — 0, the #, being arbitrary. Then

12
1—1/"¢"

_ 2a
V= H 1 12 ,
acSy - tatza 4

where So = {a € S : a(0) = 0}. In this case there is an explicit formula for P,
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namely
12 _
1 —t,t,, e
~1 Z A 1—[ aly
P, = Wy (1) w|e 1/3 . s
weWo aeSy I—1"e

where Wy, is the subgroup of W, that fixes A, and

Won (1) = Z Ly

weW,,
with ¢, as defined in §5.1. Moreover
<P,, P> = Wo.(t)™

in this case. (For details see [M5], §10.)

(5.3.17) Finally, when S = S(R) with R of type A,_1, the P, are essentially
the symmetric polynomials P;(x;q, t) of [M6], Ch. 5.

When S is of type (C,/, C,), the P, are Koornwinder’s orthogonal polyno-
mials [K3]. In particular, when n = 1 they are the orthogonal polynomials (in
one variable) of Askey and Wilson [A2].

5.4 The H-modules Ay

As in §5.3, we shall assume provisionally that

(*) Kk'(a')#O0foralla €5'.

(5.4.1) Let f € A, f # 0 be a simultaneous eigenfunction of the operators
YYW e L), sothat Y f = gy f forall ' € L' and scalars g;,. Then f is a
scalar multiple of E,, for some ju € L, and gy = q~<*""*W=> forall . € L.

Proof  Since the E,, form a K-basis of A we have

f= quEu

nel

with coefficients f,, € K. Hence

Y)uf _ Z f-Mq7<)\',r,\,/(M)> E/L
m
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by (5.2.2). But also

Y)»’f = Zg)‘,f‘/‘*El’«
0
and therefore

il = 7) =0

forall A’ € L' and € L. Since f # 0 we have f,, # 0 for some . € L, and
therefore g, = ¢~ <*"*W> forall A’ € L. If v # p then rp(v) # ri () by
(2.8.5), and therefore f, = 0; consequently f is a scalar multiple of £,,. O

(5.42) LetheL,iel,i+#0,andlet
b, = b(z;, v;; ")
where (as in (4.2.4)) v; = 1; or 19 according as <L, «;’> = 7 or 27. Then
E = T,E; — bj(re(M)E;,

is a scalar multiple of Es,,, and is zero if A = s;\.

Proof Let
Fi=T—-bj(Y™"

as operator on A, so that E = F; E; by (5.2.2). By (4.2.4) we have

YXF = Ry
for A € L', hence

YYE =YY FE;, = FYS"E; = q " S"v®W>E,

If A # s; A then s;rp (L) = rp(s; ) by (2.8.4), and hence E is a scalar multiple of
E;; by (5.4.1). If A = s; A then s5;(rp (X)) & ri(L) by (2.8.6), and hence E = 0
by (5.4.1). |
(543) LetheL,i#0.If <A, a;> > 0 then

T,E, =1 "Es) +bi(rv(L)E;.

L

Proof Since <A, alf > > 0, we have s;A > A (2.7.9) and hence it follows from
(4.3.21) that

(1) Tie* = 17 'e"* 4 lower terms.
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On the other hand, by (5.4.2),
T,E; = uE; +b.(re(1)E;

for some u € K, and u is the coefficient of e** in T;E,. If & < A then T;e*
contains only e and e*# from the Wy-orbit of e/, and since s;A > A > u we
have u # s;A and s; 0 # s;A. Hence it follows from (1) that u = r[_'. O

54.4) Ifr=s;A then E, = s;E,.

Proof If A = s;1 we have b;(ri:(1)) = T;, by (4.2.3) (i) and (4.5.2). Hence
T,E, = 1, E, by (5.4.2) and therefore E, = s; E; by (4.3.12). O

Let A € Ly, and let A, denote the K-span of the E,, for u € WyA.

(5.4.5) (i) Ay is an irreducible -submodule of A.
(i) Ay = D E;.

Proof (i) By (5.2.2) and (5.4.2), A;, is stable under the operators Y* (\'€L’)
and T; (iel, i # 0), hence is an H-submodule of A.
Let M be a nonzero $-submodule of A; and let

E = Xr:aiEm
i=l

be a nonzero element of M, in which the u; are distinct elements of the orbit
WoA, the coefficients a; are # 0, and r is as small as possible. Then

,
YVE = Zaiq<}"s’k’(#,)>Ew eM

i=1

forall A’ € L', and hence if r > 1

-
q<)\’,rk/(/4])>E _ Yf)L’E — Zai (q<k’,rkr(u1)> _ q<A/,rk/(;Li)>)EM
i=2

i

is anonzero element of M, contradicting our choice of r. We therefore conclude
thatr = 1,1i.e.that E,, € M for some . € WyA. But then it follows from (5.4.2)
that E;,, € M for all i # 0, and hence that E, € M for all v € WyA, so that
M = A,.Hence A; is irreducible as an $-module.
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(i) Let w € W, and let © = wA. It follows from (5.4.2) and (5.4.3) that
T (w)E, is of the form

TW)E, =Y auE,

v=p

with a,, = ;! # 0. Hence the T (w)E;, w € Wy, span A;. O

(5.4.6) Ifir € Ly isregular, then A, is afree o-module of rank 1, generated
by E)L.

This follows from (5.4.5) (ii), since dim A; = |Wy| = dim D, d

Now let w € Wy, let w = s;, - - - 5;, be a reduced expression, and let 8, =
si, +Si, (@) (1 < r < p),sothat {B,..., By} = S(w). Also, for each
o € R, leth, = wb; if « = wa;.

5.4.7) Letw e Wy, x € riz(L). Then
Fy(x) = (Tll - b;sl ()C)) T (Ti,, - b}sl,(x))

is independent of the reduced expression s;, - - - s;, of w.

Proof LetA € Lberegulardominantandletd, =s;,_, ---s5;,Afor0 <r < p.
Then <A, O‘X> = <A, 8> > 0 and therefore by (5.4.3)

1 E;,_, = (Ti, = b, (re(M,))) Ey,
(1) = (T;, = by (W) Ey,

since
<reOe), @) > = <si 50, (reW), o > = <rp(h), B>
Let
Fiyi, () = (T;, = by (x)) - - (T3, — b, (x)).
Then it follows from (1) that
Fiyi,(rie W) Ey = 7, Eyy.
If w =sj, ---s;, is another reduced expression, then likewise

Fj..j,(reOQ)E;, = 1, Eyy
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and therefore Fj,...;, (rv(A)) = Fj,...j,(re(A)) by (5.4.6). So (5.4.7) is true when-
ever x = rpy(A) = A + pp with A € L regular dominant, and hence for all
x € rp(L) by (4.5.8). O

Finally, the results in this section have been obtained under the restriction
(*) on the labelling k’. For the same reason as before, this restriction can now
be lifted.

5.5 Symmetrizers

From (5.1.23), the adjoint of s; is

(5.5.1) . (C.O
LX)

Let ¢ be a linear character of Wy, so that e(s;) = =£1 for each i # 0, and
e(s;) = &(s;) if s; and s; are conjugate in Wy. (If R is simply-laced, there are
just two possibilities for €, namely the trivial character and the sign character.
In the other cases there are four possibilities for ¢.) Define

S

. Si if S(Si) = 1,
s ife(s) = —1.
(5.52) Letw € Wy and let w = s;, - -+ 5;, be a reduced expression for w.
Then

(&) _ © (&)
w® =, s
depends only on w (and ¢) and not on the reduced expression chosen. Hence

w — w'® is an isomorphism of Wy onto a subgroup Wég) of Aut (A).

Proof This is a matter of checking the braid relations for the sl.(g). Hence we
may assume that R has rank 2, with basis {«;, o;}. One checks easily, using
(5.5.1), that

(S;S)S;?))m — (S[Sj)m — 1’
wherem = Card(R™). (Here the nature of the factors ¢; (X)/c;(X ") in (5.5.1) is

immaterial: they could be replaced by any f;(X)suchthat f;(X)s; = s; f;(X)~'.)
O
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Since s; X* = X**s; and hence also s X" = X*#s7, it follows that

(5.5.3) wOXH = XWHy®
forallw € Wopand u € L.

Next, let
(5.5.4) N

and for w € Wy let
(5.5.5) & = @& @

where as above w = s;, - - - 5;, is a reduced expression. From (5.5.2) it follows
that ) is independent of the reduced expression chosen.
We now define the e-symmetrizer U, by

(5.5.6) t®)” Z tOT (w),

weWo

where as usual wy is the longest element of Wj. When ¢ is the trivial character,
we write U™ for U,, so that

(5.5.7) Ut =10 > 1, T(w),

weWo
and when ¢ is the sign character we write U~ for U,, so that

(5.5.8) U™ = (=1, Z (=D)'® ¢ T (w).

weW,
(5.5.9) We have
(Ti - fi(s)) Ue = Ue(Ti - Ti(g)) =0
foralli € I,i #0.
Proof Letw € Wy. If I(s;w) > [(w) then
(T; - ri(g))rl(lf)T(w) =T (s;w) — rs(fJJT(w).
If on the other hand I(s;w) < [(w), then

T(sw) = T, T(w) = (T — 7@ + (¢) ) T(w)
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so that again

(T; — 1)t T (w) = T (s;w) — ) T (w).
Hence
(T =7 U = (&) Y (0T (sw) — ) T(w)) =0
weW,
Likewise U, (T; — 7)) = 0. O
Conversely:

(5.5.10) (i) Let h € A(X) D be such that h(T; — t'”) = 0 forall i # 0in I.
Then h = f(X)U, for some f € A.

(ii) Let h € A(X) $o be such that (T, — t/)h = 0 for all i # 0. Then
h = U, f(X) for some f € A.

Proof We shall prove (i); the proof of (ii) is analogous. We have T(w)T; =
T (ws;) if l(ws;) > [(w), and

Tw)T; = T(ws;) + (1) — (£19) ") T(w)

if l(ws;) <l(w).Leth = > f,(X)T(w). Then

wEWo

W= fuOTws) + (12 = (1) wa(X)T(u»

weWO

where the second sum is over w € W such that [(ws;) < [(w). Since hT; =
rl.(g)h it follows that rl.(a) fuw = fus, if l(ws;) > I(w), and hence that f,, = & f;
for all w € W.

Consequently 2 = tlgfn)fl(X)Ug. O
Now let
1
(5.5.11) P = 5 > ek (@)
aE€R*

Then we have
(5512) Us = Fwo(psk’)‘

where F,, is defined by (5.4.7).



5.5 Symmetrizers 115

Proof Leti € I,i # 0. Then there exists a reduced expression for wy ending
with s;. From (4.5.2) we have ¢;(—p;) = 0 and hence, by (4.2.3) (i), b;(p;) =
— ri_l . Dually, therefore,

b;(psk’) = _(T,'(S))71 ,

Hence F,,,(pek) is divisible on the right by 7; 4 (rl.(g))’l , and therefore F,,(0qr)
(T; — ri(s)) = 0. It now follows from (5.5.10) that F,,,(p.r ) is a scalar multiple
of U,. Since the coefficient of T (wy) in each of U, and F,, is equal to 1, the

result follows, ]
Next, let
(5.5.13) Ve =e(wo) Y _ e(wyw®.
weW

Then we have

(5514) Ug — V£C+(X_£)

where

(5.5.15) c_'_(X_"‘?) — 1_[ . (X—S(Sa))
aESO+

in which Sy is the reduced root system with basis {a; : i € Iy}.

Proof From (4.3.12), (4.3.13) and (5.5.1) we have, for i € I,
T+ (1) = (51 + e(s))er (X 7°0)
(which is precisely (5.5.15) in rank 1). Hence

Vsc+(X_E)(T} + (T[(E))_l) = VgC+(X_S)(Sl»(8) + E(S,'))C,‘ (X_S(Si))
— e(s)Vee s (X ) (X700) 4 Vis®e (X 6)e; (X°0)
= e(s)Veer (X ) (i + ti_l),

by (4.2.3) (i), since V,s." = &(s;)Ve. It follows that
Ve (XN - 7)) =0
for all i € Iy, and hence by (5.5.10) that

Vee  (X7°) = fF(OU,
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for some f € A. It remains to show that f = 1, which we do by considering
the coefficient of w(()s) on either side. Since by (4.3.14)

) T = bi(X) + 5" (X)),
the coefficient of w(()g) in U, comes only from T (wy); also from (1) it follows
that
T (wo) = w((f)c+(X’5) + lower terms.
Hence f = 1 as required. O

In particular, let us take ¢ to be the trivial character of W, and evaluate both
sides of (5.5.14) at 14, the identity element of A. We shall obtain

(5.5.16) Wo(t) = Y w(a™

weW,

in the notation of §5.1.

(5.517) () T(w)U: = U.T(w) = 12U, forall w € W,.
(i) U2 = (I,E)f)))_l Wo(t©)U,, where Wo(t®) = > (T{)
(iii) U = U,.

iv) Uy = e (X75)V/.

(V) Let f, g € A. Then

U, f, Ueg) = (t&) " Wo(t®) (U, £, ).

weWo

Proof (i) follows from (5.5.9), by induction on /(w).
(i1) follows from (i).
(iii) By (5.1.22) we have

&

Ur =12 3% () Tw)”!

weWo
and since T'(wo) = T (wow )T (w), we have

T(w)™ = T(wo)”' T(wow™")
giving

U =Two)™' Y ) [\ T(wow™")

wow ™!
weW

=T (wo)"'Us = U,
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by (i) above.
(iv) follows from (5.5.14) and (iii), since ¢, (X ~°) is self-adjoint.
(v) follows from (ii) and (iii). O

5.6 Intertwiners

(5.6.1) Leti € I. Then T; — b;(X) is self-adjoint.

Proof Since b; = 1; — ¢; (4.2.2) we have
T =b;(X) =T — 7 +ci(X)

and by (5.1.22) both T; — 7; and ¢;(X) are self-adjoint (since ¢} = ¢;). a

Dually, if i € Iy,
Ti — bi(X)

as operator on A’, is self-adjoint for the scalar product (5.1.17").
By (4.3.14),

T, — bj(X) = ¢;(X)si = sicj(X™)
(where ¢; = 7; — b}), so that
si = €;(X)"'(T; = bj(X)
= (T; = bj(X)c; (X~ "'
as operators on A’, and hence the adjoint of s; for this scalar product is
s = (T; = bj(X)) cj(X)™"
= ¢;(X~H7NT; — bj(X)).
As in §5.5, let ¢ be a linear character of Wy, and define

s(g), _ {S,‘ lf 8(5‘,‘) = l,

! s if e(s;) = —L.

Then we have
s = (T, —b(X)) e} (X)),

(5.6.2) »
= ¢ (X)) U(T; — bi(X)).
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Let ’71@ = a)(sl.(s)/), where w: § — § is the anti-isomorphism defined in
(4.7.6). From (5.6.2) we have

/ e(s)\ L / —
0 = e (YO T(T —bl(Y )

(563) — (Tl _ b;(Yfl)) C; (Y*S(Si))71
fori € I.
It follows from (5.5.2) thatif w € Wpand w = s;, - - - 5;, is areduced expres-

sion, then w'®’ = S,-(lg)/ s and

(&) _ ,© (&)
(5.6.4) N = M
are independent of the reduced expression chosen; and from (5.5.3) that
(5.6.5) npYr =y

forw € Wopand A’ € L.

The 1) are the Y-intertwiners. Whereas the elements w'® act as linear oper-
ators on all of A, the same is not true of the n®; since by (4.5.4) ci(rpv(1)) =0

if A = s;, it follows that r;l@ acts only on the subspace of A spanned by the
E; such that s;A #£ A.

(5.6.6) Let ) € L,i € Iy and suppose that <A, ;> =r # 0. Then

el (e(s)re (W) Y Eg L if r > 0,
(E)E _ i i i
ng Ly= )
‘L’,'C;(—E(S,')rk/()n))Esi)u if r <O.

Proof Suppose first that » > 0. Then

0B = (T = b ) el (Y ) E;
= ¢} (e(s)r(W) (T — bl(ri)M))Es,
=7 'ej(e(s)re (W) Eg A
by (5.2.2) and (5.4.3).

If now r < 0 then <s;A, ;> > 0 and hence from above
0 Es =17 cj(e(s)ri(sin) T E;.
Since rp(s; L) = s;(r (X)) by (2.8.4), it follows that

0 Ey = tiej(—e(s)re () Eg. H
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(5.6.7) Leth € L. Then
-1
ﬂfj‘s(;\)E,\ = ( ,{8)) E;_
where

£ = s (0O )

Proof Letv(A) =y, -- “Si, be a reduced expression, so that

(€) (&) (&)
Moy =My Mg, -

Let
Br=si, i, (@), A =si, -8, (})
for 0 <r < p, so that S{(v(A)) = {By, ..., ,B[f} and
<A f>=<i,B/>>0
by (2.4.4). Hence by (5.6.6)
77,](,\) =t7'E,_

where

g_l_[TI, , sl, rk’()L ))
and since ry(A,) = s;,, - - - 5i, 7w (A) by (2.8.4), we have

c; (e(si,)re(n) = e(m,, vi,;qs(si")<rk’(k')'aiv’>)
_ c(l_a(m,)’ Ul«”r(?/,) q<rk/()») B’ )

= cgv.er (T (1)).

Hence

& =yl er (VA))(Fr(A)). O

Finally, let
V! = &(wo) Z e(w)w®,

LUEW[)

(5.6.8)
7= (V) = e(wo) ) e,

weW,
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As in (5.5.14) we have

(5.6.9) Us = Ve (X7,

where

(5.6.10) c/Jr(X_S) = l_[ Cav,k/(X_s(S“‘)).
aERT

Applying o to (5.6.9) gives

(5.6.11) U =c' (Y) I, = 77 (Y®)

since w(U;) = U, and U} = U, by (5.5.17). From (5.6.3) we have
()" = (1 = By e (re) ™

since both 7; — b;(Y ") and ¢/(Y*“") are self adjoint. Thus

(5.6.12) () =n™?

where —e¢ is the character w — (—1)"™g(w) of Wy. Hence

(5.6.13) 7= e(wo) Y e(wn .

LUGW()
The operators c;(Ys)nl@ are well-defined as operators on A. We have
(5.6.14) ¢ (YT E, =1 (Y)E, =0

if & = s;A. For ¢/ (Y*)n\" E, is of the form f(Y)(T; — bi(Y~"))E; which is
zero by (5.4.2).

5.7 The polynomials P.°
As before, let € be a linear character of W,y. For each A € L we define

F® = U,E,.
(5.7.1) Leti € Iy. Ife(s;) = —1 and A = s;}, then F\*) = 0.

Proof By (5.4.4) and (5.5.9) we have

4 F® = qU.E, = U.TE; = TU.E, = -7, ' F°. 0
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(5.72) If <), a;> > 0then

F) = e(s)ne(e(s)re W) FLE.

Proof By (5.4.3) and (5.5.9) we have

1F" = U, T,E;
= Ue(t; Eg +bi(re (V) E;)
=1, 5 + bl (e (W)F®,

so that

F = (" = bjre ) FY
= e(s;)ic; (e (s e (W) .

by (4.2.3). O

In view of (5.7.2), we may assume that A € L is dominant, since F If) for

€ WyA is a scalar multiple of F. f‘) and hence U, A, has dimension at most 1.
Also, in view of (5.7.1), we shall assume henceforth that

(5.7.3) e(w) =1 forallw € Wy,

where Wy, is the subgroup of W, that fixes A.
When ¢ is the trivial character, this is no restriction. On the other hand, when
¢ is the sign character, (5.7.3) requires that X is regular dominant.

6.7.4) @ Fk(g) is Wop-symmetric.
(ii) When ¢ is the trivial character, F. )fs) is Wo-symmetric.

Proof 1Ife(s;) = 1 we have (T; — 7)) F\" = 0 by (5.5.9), and hence s; F\*) =
F? by (4.3.12). O

Each coset w W, has a unique element of minimal length, namely v(u) in
the notation of §2.7, where u = wA. Let

Wi = {0(u) : € WoArl.
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Then every element of W is uniquely of the form vw, where v € W and
w € Wy, and [(vw) = I(v) + [(w). Hence

U, = (7)) Z T (v) ( > th(w)>,

veW’\ weWyr

and since T(w)E; = 1, E, for w € Wy, it follows that

(5.7.5) F = () Wo(t) Y tOT)E,,
veWw}
where
(5.7.6) Wor(t) = > 1o
weWo,

The only term on the right-hand side of (5.7.5) that contains e*°* is that
corresponding to v = v(}), the shortest element of W), that takes A to woA. By
(5.4.3) the coefficient of e*** in T'(v(X))E, is rv_(;), and hence the coefficient of

o in F{ is 7, Wo(¢?), since by (5.7.3) rlfa)/rv(,\) =1/ Tu,-
Accordingly we define (always for A € L dominant)
(5.7.7) PP = 1, Wor(tH) ' F®

wo)\

= """ + lower terms.

In terms of the E,, we have

(57.8) P = Z e((u) ETVE,

neWor

where Sl(;g) is given by (5.6.7) (with —¢ replacing ¢).

Proof From (5.7.2) it follows that P’ is proportional to

UeEug. = £(wo) Y s’ V¢! (Y¥)Eyy

U)EWO

by (5.6.11) and (5.6.13). By (5.6.14), only the elements of W, of the form
v(n)~!, where . € WA, contribute to this sum. Since c;(YE)EwU;\ is a scalar
multiple of E,,,, it follows that PX(S) is proportional to

> e (n55) " Eun
neWor
which by (5.6.7) is equal to
D ek E,.

neWor
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Since the coefficient of E,,, in this sum is equal to 1 (because v() = 1 when
n = woA), (5.7.8) is proved. a
(5.79) Let f € A. Then

P = f(=h— pe) P
Proof Since f(Y) commutes with T(w) for each w € W, by (4.2.10), it

commutes with U,. Hence

f(Y)UszOA = Usf(Y)Ewok
= f(_)‘ - Pk’) UeEwo)L

by (5.2.2). Since U, E\,,, is proportional to Pf), the result follows. a

From (5.7.9) and (5.7.4) it follows that when ¢ is the trivial character of W,
(5.7.10) P =p,

as defined in §5.3. Also from (5.7.9) it follows, exactly as in §5.2 and §5.3, that
the P)fg) are pairwise orthogonal:

(5.7.11) (P, P®) =0

if A # .

(5.7.12) LetX € Lyy. Then
(PO, PO) (P P =E77 /570

where —1 denotes the sign character of W,.

Proof From (5.7.7) and (5.5.17) (v) we have

) - B,
_ Wo((x))WUeEs, En)
T4 Wor (12 Wos (172)
_ Wo((z9))) (R, )
Tuy Ta) Wor (T72)
e Wo((r©)))es (E;., E;)

Tuy Tat) Wor (T72)
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by (5.7.8) and orthogonality of the E,. Hence

(P, PY) _ e@OWo((x9) )ty &

(P, Py) Wo(z2)r) }(\_])'

Let
R ={a € R : &(sy) = +1},
R_j={x e R:e(sy)=—1},

and let W, (resp. W_y) be the subgroup of W, generated by the s; such that
e(s;) = +1 (resp. —1). Then the kernel of ¢ is the Weyl group of R, and is the
normal closure W of W, in Wy; and Wy is the semidirect product

Wo =W, x W_;.
Hence
(1) Wo((r®)%) = WirHW_i(z72)

in an obvious notation; also wy = w;w—_; where w; (resp. w_;) is the longest
element of W, (resp. W_1) so that

(&) _ -1
2) T, = e(Wo)Tw, T,y -

0

Finally, v(X) = wowo; , where wy, is the longest element of Wy, . Since e(w) = 1
for w € Wy, (5.7.3), it follows that

(3) e(v(r)) = e(wo).
From (1), (2) and (3) it follows that

e)Wo((9)) 1y
Wo(r2)rss)

completing the proof of (5.7.12). O

=1,

Suppose in particular that ¢ is the sign character of Wy. In that case we write
(5.7.13) 0, =P®

for . € L regular dominant. Then we obtain from (5.7.12) and the definition
(5.6.7) of £

(01 Q) 17 CavwOt pp)

(5.7.14) _
(P, P) weR+ Cav,_k/()\ + o)

since v(A) = wp and r(A) = A + pyp, by (2.8.2").
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5.8 Norms

As before, S is an irreducible affine root system as in (1.4.1)—(1.4.3). Recall
that

So={a€S:a0)=0}, S ={aeS:ia¢S5}.
Let ¢ be a linear character of Wy, and let [ be the labelling of S such that
l(a) = 1 if s, is conjugate in W to s;, where i # 0 and e(s;) = —1; and
l(a) = 0 otherwise. Let k + [ denote the labelling a + k(a) + l(a), and as
before let (ek)(a) = e(s,)k(a) fora € .
For eacha € S, let
(581) (Sa — 81,1 = qk([l)/ze[l/z _ q—k(a)/ze—a/z
— (ea/Z - €7a/2)(/‘

a,k
if2a ¢ S, and
(582) 6(1 — 8a,k — (qk(a)/zea/z _ qfk(a)/zefa/Z)
x (qk(Zu)/Zeu/Z +q—k(2a)/2e—a/2)
= (" —e “ea
if 2a € S.
Let
(5.8.3) Sk =[] Sax

aeS&j
l(a)=1

where Sg; = So N'S; N ST. Then we have
(5.8.4) 8ek8r k Ask = Vs it/ AY i
Proof Suppose that S = S(R) as in (1.4.1). Then

As i1/ Asy = 1_[ (1— qk(“)e"‘)(l _ qk(a)+le—a)

aeRT
l(a)=1

8 5* 1_[ l_qk(a)+l —a
= Cek 7k(a)e o

aeRT
l(a)=1

k(a)-H(ot)e o
1 — q(a )(a)e_a

aERT

- 5 k8£ kAsk/Ak-H

Likewise in the other two cases (1.4.2), (1.4.3). a
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If k is any labelling of S and 1; (i €l) are defined as in (5.1.6), and 1, (we Wj)
as in (4.5.4), we shall write

(5.8.5) Wolg") = )" .

U)EWO

We shall also denote the scalar product (5.1.17) by (f, g)«:

(f, &k = ct(fg" As i)

since from now on several labellings will be in play.

(5.8.6) Let f, g € Ag. Then

Wo(g* ™)

(f, @y = Wol@™)

(Ss,k f’ 6sA,1<g)l< .

Proof We have
(Be i f, 8e k8 = U f8"8: k87 1 As k)
* —1
= ct(fg* Vsar(AL,) )

= Wo(@*™) <f. 8" >1ni

Wo(g®)
= W(ﬁ i+l

by (5.8.4) and (5.1.34). O

(5.8.7) Foreachi € Iywe have
() (T; — 78 x(X) = (5:8: 1) X)(Ti — ),
(i) (T — )8 x(X 1) = (5:8 )X VT — 7).

Proof (i) By (4.3.15) we have

;86 1k (X) = (5i06,,)(X)T; = bi(X)(86 k(X)) — (5:86,6)(X)).
If e(s;) = 1 this is zero, since s; permutes the a € Sarl such that /(a) = 1 and
hence fixes d, ;. If on the other hand e(s;) = —1, then by (4.2.3)
Ti8e k(X) = (5186, )COT;
= (e (X7 = 7 )Ben(X) + (€i(X) = ) (5:8:.6)(X)
= =7 18 (X) = Ti(s:8e,0)(X)

because 8¢ x/Si0ck = 04, k/8—a; k = —Ci/Ci.
The proof of (ii) is similar. O
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Next we have
(5.8.8) U.A =6, 1 Ao.

Proof Let f € U,A. By (5.5.9), (T, — ") f = O foralli # 0. Hence (5.8.7)
(i) shows that g = 88_11 f is killed by T; — t; for each i # 0, and hence is
Wo-symmetric. Consequently wo(ég,i = 8;,1f, ie.,

S xwo( f) = wo(de ) f-

Now 8, x and wq (8, ;) are coprime elements of A. Hence &, ; divides f in A,
sothat g € Ag and f € 8, x Ao.

Conversely, if f € 8,4 Ao, then (T; — 7)) f = 0 for all i # 0 by (5.8.7) (i),
and therefore f € U, A by (5.5.10) (ii). a

(5.89) Leth e L,,. Then

P(F)p, i = e(wo)g" D28k Py s,
where
nk, 1) = Z k(@)l(a)
aeS0
and

Z l(@)uya

-
uESUl

whereu, = 1if2a &€ S, andu, =2 if2a € S.

Proof  Since P(S)p, « € U:A, it follows from (5.8.8) that P)\(i)pl L =018
for some g € Ap. The leading term in P wor—pr

ok 15 €
e(wq)g "*D/2¢=r Hence

, and in 8. is

n(k,0)/2

(1) g = e(wop)gq m, + lower terms.

Let w € Ly, u < A. The highest exponential that occurs in §; ;m,, is
eWota) - Since Px( ok is a linear combination of the E 40, w € W, it
follows that

(B6,k&, Bk =0
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and hence by (5.8.6) that

2) (g mu)k-ﬁ-l =0
for all 4 € Lo, such that u < A. From (1) and (2) we conclude that g =
e(wo)g"“D2 P . o

In particular, when A = 0 we have

(5.8.10) P = e(wo)g"* "5, 4
and therefore, forany A € L.,

() (€]
(5.8.11) Pisit = P5p i/ Py

Thus when ¢ is the sign character of W, we have

(5.8.12) Py k1 = Q)»+p,k/Qp,k
where k + 1 is the labelling a — k(a) + 1 of S, and

1
(5.8.13) p=3 Z Ugd.
aeSy,
(In the cases (1.4.1) and (1.4.3), p = %Zaem «; in the case (1.4.2), p =

1 \Y
2 ZozeRJr o )

Remark (5.8.12) may be regarded as a generalization of Weyl’s character
formula, which is the case k = 0 : for then E, = ¢* for all A € L, and

Qitp.0 = eWo) X ew, e(w)e ),

From (5.8.6) and (5.8.9) we have

(&) (&)
(P i P i) = Gk Prsts Sk Prisi)k

Wo(g™)
= L (Poius, P

Wo(qu)( noketls Poier iyt
and therefore, by (5.7.12),

(—¢)
(Pri+ts Pkt WO(‘IHZ)&HZ/

(Ptors Prop i Wolgehgh

Equivalently, by (5.1.34) and (5.3.2),

2 kyg (=€)

|Pririliy _ Wol@Dg,
2 = N

[Pitpilc  Wolg )E)E+p3

(5.8.14)
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where

If1; = </, >
for f € A.

The right-hand side of (5.8.14) can be reformulated, as follows. Let u =
A + p;. Then we have, in the notation of (5.3.11),

Wo(@“ g Ag (i + p) Ay oy (=i — pr)

(5.8.15) - = T =
Wo(qSk)%',,_ Asgkf(ﬂ + Pk’)ASfﬁk'(_:U« — Px)

Proof We shall verify (5.8.15) when S = S(R) (1.4.1); the other cases are
analogous. Consider first the right-hand side. From (5.1.12) we have

A:S'F’,k’Jrl’/A;,k/ = 1_[ (1 _ qk(a)ea )
aeRT
l(a)=1
and
_ B ) o
AS/,_k,_l//AS’,—k/ = 1_[ (l —q k(a)e o ) ’
aERT
l()=1
so that the right-hand side of (5.8.15) is equal to

1— qk(a)+<u+pk,av>

(1) l_[ 1 — q—k(a)+<p_+pk,ozv>'
acR*
l(a)=1

Next, consider the left-hand side of (5.8.15). From (2.4.4) we have
') =fa" € (R)*: <p,a’> >0},
so that by (5.6.7)

g5 Cav —ek (ri(i))

P werr Cavk(rnm)

<p,a¥>>0
Since u is dominant,
ri(pu) = wou (1 + o)

by (2.8.7), where wy,, is the longest element of the isotropy group Wy, of  in
Wo. Since <, wo,a”'> = <u, a” >, it follows that wg, permutes the roots
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o such that <u, V> > 0. Hence

£ I Cav ek (L + pr)

CO e Cav )

<p,a¥>>0
The terms in this product corresponding to roots « € R™ such that e(s,) = 1
(i-e., [() = 0) are equal to 1. Hence we may assume that /(o) = 1, which by
(5.7.3) implies that <u, @”> > 0. Hence finally we have

(—¢) k(o) +<p+pe,a”
@) = T a2 e
,i—l) - 4q 1— q—k((x)+<ﬂ+pk,av> .

a€RT
l(a)=1

As in §5.7 we have
Wo(g™) = Wig"W_1(g™),
Wolg") = Wi(g"HW_1(¢"),
so that
Wo(g")/ Wo(g™) = W_1(g")/ W_1(g™")

3) =[] 4"

aeRT
la)=1

From (2) and (3) we see that the left-hand side of (5.8.15) isequal to (1). O

From (5.8.14) and (5.8.15) we have

+ -
(5.8.16) |Pitilins A sy prsi) Ay oy (=2 — Pk’+l/).

N O VN G Sy )
This provides the inductive step in the proof of the norm formula:
(5.8.17) |Piklt = AL O+ o)Ay (= — pi).

Proof (a) Suppose firstthat S = S(R) (1.4.1). If k(a) = 1 forall« € R, then
Py = xr. and |P,\,k|,% = 1forall A € Ly by (5.3.15). On the other hand, it
follows from the definitions that
Ao pBs = [Ja—e)a—e )
aERT

so that A;r,yk,()» + o)Ay (=2 — pp) = 1.

Hence (5.8.17) is true when all the labels k(«) are equal to 1. But now (5.8.16)
shows that the norm formula is true for (A, k) if it is true for (A + p;, k — ).
Hence it is true whenever the labels k(«) are positive integers.
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(b) Suppose next that S = S(R)Y (1.4.2). If k¥(«) = 1 for all @ € R, in the
notation of (5.1.13), then again P, ; = xgv, and |Px,k|i =1forallr e L,
(5.3.15), and the conclusion is the same as before: (5.8.17) is true whenever the
kY («) are positive integers.

(c) Finally, suppose that Sis of type (C,’, C,) (1.4.3), and that the labels k() are
positive integers. By (5.1.28) (iii), Vs (and therefore also P, ;) is symmetrical
inuy,...,us, where

(uy, uz, uz, ug) = (g", —¢*, qith, —CI%HQ‘)-

Let!/ = (1, 1, 0, 0). Then (5.8.16) shows that the norm formula is true for the pa-
rameters (i, U, Uz, uy)if and only if it is true for the parameters (¢ ~'u;, ¢ 'us,
us, ug). Hence by symmetry it is true for (uy, u,, us, ug) if and only if it is true
when any two of the u; are replaced by ¢~ 'u;. In terms of the labelling k, this
means that the norm formula is true for k if and only if it is true for k — m,
where m € 7’ is an element of the group M generated by the six vectors
in which two of the first four components are equal to 1 and the remaining
three are zero. This group M consists of the vectors (m, m,, m3, my, 0) € VA
such that m; 4+ ---+ my4 is even. Hence we reduce to the situation where
ky = k3 = k4 = 0, i.e. to the case of § = S(R) with R of type B,, already dealt
with in (a) above.

(d) We have now established the norm formula (5.8.17) for all affine root
systems S, under the restriction that the labels k(a) are integers > 0. To remove
this restriction we may argue as follows. First, in view of (5.3.13), we may
assume that A = 0, so that we are required to prove that

(5.8.18) <1, 1>, = A;r,yk,(pkr)Ag,ﬁk,(—pkr)
for arbitrary k. Both sides of (5.8.18) are meromorphic functions of g, where
lg] < 1, and r < 5 other variables 7y, ..., t,, say (where {t;, ..., 1} = {qk(") :

a € S}). As we have seen, the two sides of (5.8.18) are equal whenever each ¢;
is a positive integral power of g. Hence to complete the proof it is enough to
show that they are equal when#; = --- =1, = 0, i.e. when k(a) — oo for all
aes.

From (5.1.35) we have in this situation

<, 1>0 = (1, Do = ct(Ag,00)
and by (5.1.7)
Asoo= [0 —e.

aesSt
2a¢S
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From [M2], Theorem (8.1) (namely the denominator formula for affine Lie
algebras), it follows that the constant term of Ag o, when S = S(R) is (g;¢)o)
(where n is the rank of R). On the other hand, it is easily seen that the right-hand
side of (5.8.18) reduces to (¢;¢q);) when k = oo. Hence when § = S(R), the

two sides of (5.8.18) areequal at¢; = - - - =, = 0. Likewise, when S = S(R)",
both sides of (5.8.18) are equal to ]_[ieln(qo,,.;qo(,.)’1 whent; =--- =1t = 0.
This completes the proof of the norm formula (5.8.17). O

Finally, we shall calculate (E,, E;) for A € L. The result is

(5.8.19) (Er. En) =[] (Awwla o))

a’es’ ()
where
S\ ={a € 8§ : x(Da')+ <i, Da’'> > 0}.
In particular, when A = 0:

(5.8.20) (1, 1) = (A5 o Ay ) (—pe).

Proof First of all, (5.8.20) follows from (5.8.18) by use of (5.1.35), (5.1.40)
and (5.1.41):

(1, 1) = Wo(gh)<1, 1>
= Agf,kf(—/)k')_lAf&,k,(pk/)Ag,,_k,(—pk,)
= Ag 1 (=p) Dy 1 (—=pr).
Next, from (5.2.15) we have

M EnEn= ] (AwiwBa )G

a’eS' Wy
Letd = —u'(M)"'a’ € §'F. Then a’(rp (L)) = —b'(—pp), so that (1) becomes

@) (B, EDir= [] (Apady ) =pe))"
b'eS'(u' (L))

(since A_p Ay 1 = Ap i Ay, 1)
If ' € §’'(u'(A)) then Db’ < 0 by (2.4.7) (i). Hence from (2) and (5.8.20) we
obtain

(Ex, Ey) = (Ey, Ex1(1, 1)
3) = [ [(Avw i —e)(=pr)
b/



5.8 Norms 133

where the product is over b’ € §'* such that u’(A)b’ € S’ and Db’ < 0. Equiv-
alently, with @’ = u'(A)b/,

) (Es. E3) = [ [(Aw i Aw—i)(re(V)
"
where the product is now over a’ € S such that &' = u'(A)"'a’ € S+ and
Db < 0.Ifa’ = o’ + rc then
bV =u'OW)7'd =v)a + (<h, o'> +r)c.

Now by (2.4.6) v(A)e’ < Oifand onlyif <A, o’> + x(a) > 0.Henceifa’ € §'"
and v(A)a’ < 0 then

<A o'>4r><h o>+ @) >0

so that b € S'*. Hence the set of a’ in the product (4) is precisely S'(1). O

Suppose in particular that § = S(R) (1.4.1) and the labels k(o) are positive
integers. Then §' = S(RY) and «” + rc € S’(A) if and only if r > x(«) and
<A, a¥>+ x(a@) > 0.Ifa € RT and <A, a¥> > 0 we get a contribution

k(a)—1 1_q<rk(k),av>+i

1 — q <re(A),av>—i—1

i=0

to (Ey, E;). If on the other hand @ € R™ and <A, oV> < Othen —a¥ +rc €
S’'(A) for r > 1, and we get a contribution

k(a)—1 1— q7<rk()t),0tv>+i+l

1— q—<rk()\),ozv>—i .

i=0
Hence in terms of

[s1=gq"%—q™"

we obtain

k(a)—1 v . n(<ir,a¥>)
A
(5.821) (E,, Ey) = gV ®/2 H ( 1—[ [<ri(X), a@¥> + i] )

werr \izg [<re@), V> —i—1]

(where N(k) = )", cp+ k(er)? as in (5.1.16)), in agreement with [M7], (7.5).
(Note that Cy, as defined in [M7] is equal to g NBIZAL)

Finally, we shall indicate another method of calculating (E;, E;) where A €
L. This method uses results from §5.5-§5.7 to express (E,, E;) in terms of
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<P,, P,>, where © = Ay is the dominant weight in the orbit WyA. (When A
itself is dominant we have already done this, in the proof of (5.7.12).)

Recall from Chapter 2 that v(A) (resp. v(A)) is the shortest element w € W,
such that wi = wou (resp. wu = X). Thus v(A)v(A) takes u to wou, and
wo = v(A)(A)wy,, where wy, is the longest element of W, that fixes . We
have

l(wo) = 1(v(A) + 1(V(A)) + [(wop)
and therefore
(5.8.22) Twy = To(1) To(h) Tugy, -
Let

F, =U"E;,
which by (5.7.2) is a scalar multiple of F),. In fact

F. = @i F),
where

(5.8.23) o1 = [ Aww ()

and the product is over a’ € S;~ such that <A, a’> > 0.
Proof Leti € Iy. From (5.7.2), if <A, o/> < 0 we have
Fy = tic_o w(riv(M)) Fy.

Now by (2.7.2) (ii), if ' is positive then (L) ~'o/ is a negative root if and only
if <A, o’> < 0. By taking a reduced expression for 5(A)~', it follows that

F, = (Ta(x) 1_[ Ca',k'(rk/()»))) F,

which by (5.1.2) gives the stated value for ¢; . O

Next we have

(5.8.24) (Ey, E) = 12 Wou(t ) <Py, Pu>/p;& "
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where

(5.8.25) V=1 [ AeweeO)™
a’ES(/{*'
<A, a>>0

Proof From (5.7.7) and (5.7.10) we have
P, = T, W (t?)'F,
and hence

0.0 (UYE,,UTE,;)
Wo, (t2)Wo,(t72)

_ Wo@")epi(UTE,, E»)
Twg WO;J.(Tz)WOM(T_z)

_ Wo(g")e; (P, E;)
11%0 Wo(t72)

(P/L7P/L):

by (5.5.17),

Now by (5.7.8)

=Y &5

reWon

where (5.6.7)

£V =1y €5 (WO (1))

which agrees with the value of & ;_') stated above. Hence we obtain

WolgMeres V(Ex, Ex)

(P, Py) =
o 72 Wou(t=%)
Since
<P;,u Pu> = WO(qk)il(P;u Pu)
by (5.1.35) and (5.3.2), we obtain (E,, E;) as stated. a

It remains to recast the right-hand side of (5.8.24) in the form of (5.8.19).
Consider first <P, P,>: by (5.8.17),

<Py, P,> = l_[ Ay (i + pxr) l_[ Ay (= — pr).
a'eS't aeS™t
Dad’>0 Da’ <0

This is unaltered by replacing © by —wopu, since —wy permutes the factors in
each of the two products. We have

wopt — pr = r(wop) = ry (VL) = v(A)rp(A).
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Hence, putting @’ = o’ + rc and ¥’ = B’ + rc, where g/ = —v(A)~ '’ in the
first product, and 8’ = v(A)~'a’ in the second product, we shall obtain

M <Py, P> =[] Aww@e0) [] Ay sete)

beXy b'ex;

where

Yo={b'=B+rceS:v)p €S8, andr > 0},
== +rceS:vn)p €S8, andr > 0}.

By (2.4.6), v(A)B" € S if and only if x(B') + <A, B’> > 0. Hence

So=SMUB €S <i f'> >0},
T =80 —{B €Syt <, p>> 0},

so that (1) above becomes

2) <Py, P,> = cicac3 1_[ (A A~k )i (X)),
a’eS'(h)
where
3) c = l_[ Ap p(re(A) = @ = Ti,%)‘ﬂ;
Bes,
<\, pB'>>0
by (5.8.23),
4) = 1_[ Aﬂ/,—k/(rk/()t))_l = 71;)%) /{71)
Besyt
<A,B'>>0

by (5.8.25), and

3= l_[ Ag g (e (X)).
Bes,
<\, pB'>=0
Now if g’ € S~ and <A, f'> = 0, we have
<reQ), B> = <i— o) pp, B> = <pp, o>

where o' = —v(1)B’ € S;". Also

<p, —woa'> = <v(MA, —a'> = <A, /> =0
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so that
(5) a= ] Awwlo)= W)™
oz'GS{;r
<p,a'>=0
by (5.1.40).

If we now substitute (2)—(5) into the right-hand side of (5.8.24) and make
use of (5.8.22), we shall finally obtain

(Ev. ED) =[] (AwwBa ()
a'eS'(h)

as desired. a

5.9 Shift operators

In this section we shall give another proof of the relation (5.8.16), using shift
operators. Unlike the previous proof, it makes essential use of duality (§4.7).
We retain the notation of the previous sections.

For each indivisible a’ € §’, let
("* —e )y if2a' ¢S,
(5.9.1) S0 =S = , , .
(e" —e “egr if 2a" € §',

(so that 6}, = —8,), and let

(5.9.2) Sip= ] baw-
a'eSyr

I'(ah=1

where S;f = {a’ € S :a’(0) =0and Ja’ ¢ S'}.
(5.9.3) Foreachi € Iy we have

() (T — )8 (Y~ = (58, )Y ~NT; — ),
(i) (T; — )8, (V) = (5:8, DXV )(Ti — 7).

Proof These follow from (5.8.7) by taking adjoints (5.1.22) and then applying
duality (4.7.6). O
Now let
Ge = 8eu(X)78, (Y7,
Ge = 8, (V)3:4(X).
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(5.9.4) G, and G, each map A to Ay.

Proof Let f € Ag. Then (T; —1;)f = Oforalli # 0, and hence by (5.9.3)(i)
8. (Y~1)f is killed by T; — 7, and hence lies in U;A = 8, xAo (5.8.8).
Consequently G, f € Ay.

Next, 8, f € U, A, hence is killed by T; — 7/, so that by (5.9.3)(ii) we have
(T; — 7:)G. f =0foralli # 0, and therefore G, f € A,. O

Next we have
(5.9.5) 8, (Y HUT = U8, (V).
Proof By duality it is enough to show that
S8ex(X U, = Ut 8, 1(X).

By (5.8.7) we have (T; — 7). x(X~")U. = 0 for all i # 0, and hence by
(5.5.10)(i1)

8ex (X HU. = U f(X)

for some f € A.Now U, and U™ are both of the form T (wg) + lower terms,
i.e. of the form

c+(X)wy + lower terms,
hence
8e k(X e (X) = e (X)(wo £)(X)

giving f(X) = 8. x(X) as required. O
(5.9.6) Let f,g € Ag. Then
<G.f, "> = 4" < £, (G:9)" >t
where k - | = Zaes& k(a)l(a).
Proof By (5.1.34) and (5.8.6) we have

<G.f, 8> 11 = (Ge f, @rt/ Wolg* ™)
(1) = (8, v (Y, 8e k(X)) Wolg™).



5.9 Shift operators 139

Since f € Ag we have
Utf =1, Wog")f

and therefore

T,
SLp(Y O f = 28 (Y HU* f
. Wo(gk) *
= U8 () f
Wo(gh) &
by (5.9.5). Since U, is self-adjoint ((5.5.17)(iii)), it follows that (1) is equal to
) Tuy 8L (V) f, UpSe k(X)) / Wo(g") Wo(g™).

Now &, «(X)g € U.A by (5.8.8), hence by (5.5.17)(ii)
U:8: k(08 = (22) 7 Wo(g™)8e 1(X)g.
Since 7y, /7. = e(wo)g*”, it follows that (2) is equal to
e(wo)g"! (8] 1 (V) f. 8ex(X))k/ Wo(q*)
which in turn is equal to
q“'(f. Geg/ Wolq") = 4" < £, (G.8)">
since the adjoint of & ;,(Y) is e(wo)3; ,(¥) by (5.1.24). O

(59.7) Leti € Li. Then
G Prypk = di j(M) Py k11,
GePryy = Cik,l()»)Ple,k,
where
di /() = q""28, O + pra),
dia(0) = e(wolg 28] 1 (h + prrir).

Proof Letw e Ly, < A By (5.9.6) we have

k-l A 0
<G8PA+p1,ka mM>k+[ =q <PA+p1,ka (Gsmu) >k

Now the leading monomial in 8, ;m,, is e”*“+#), and therefore (G.m,,)" is a
scalar multiple of m,, ,, + lower terms. It follows that <G, Py 1, x, M, >k = 0
for all u € L,y such that u < A, and hence that G, Py, x is a scalar multiple
of Pk,k-&-l, say

GePrip i = di (M) Py g4
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Hence

(M 8, (Y DPi gk = dii(0)8e i Pr k-

Since Pyypx = Eyotp).k + lower terms, it follows from (5.2.2) that the
coefficient of e®0®*) in the left-hand side of (1) is

8¢ 1 (r(wo(h + 1) = 8, 1 (wo(A + pr41)
= e(wo)8, _p (A + prr1)

(note that [’ = [ in all cases); whereas on the right-hand side of (1) the coeffi-
cient is

dii(We(wo)g ™,
This gives the stated value for dy ;(1). For G, the proof is analogous and is left

to the reader. O

In view of (5.9.7), the operators G, and G, are called shift operators: G,
shifts the labelling k upwards to k + [, and (A;g shifts down from k + [ to k.
From (5.9.6) and (5.9.7) we deduce

|Py syt |7 S 8L+ o)
(5.9.8) L
| Prvor ki 8 1w+ pryrr)

Proof Take f = Py4,x and g = P; 44, 1n (5.9.6). By (5.9.7) we have

<G f, 8> 41 = dii (VI Py syl

and
A0 _ 3 0 2
<fi(Geg) >k = di (M)’ | Pryp il
Hence
|Ps kil Y dii(M)°
| Potprkli dr1(A)
which gives (5.9.8). O

To reconcile (5.9.8) with (5.8.16), suppose for example that S = S(R) (1.4.1);
then S’ = S(RY) and kK’ = k, so that

+ + _ k(@) "
Ag i/ Dg i = 1_[ (1 —q" " )
aeRt
l@)=1
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and

_ _ k@) —a¥\—1
Ay -t/ Dy = 1_[ (1—g™@e™) .
aeR™T
l(@)=1
Hence the right-hand side of (5.8.16) is equal to

1 — qk(a)+<)\+/’k+l~°‘v >

(0 1_[ 1 — g—k@+<rtpii,a¥>"
aeRt q
On the other hand,
k 2 ,av/2 —k 2 —av/2
gk1sl 18 = g 1—[ gl @P2en 12 — g KR/
ek’ Ye,~k e q,k(a)/zeav/z _ qk(ut)/Ze—av/Z
I(a)=1
B 1_[ 1 — qk(a)eav
aeR* 1- qik(a)eav

l(a)=1

and therefore the right-hand side of (5.9.8) is equal to (1). Similarly in the other
cases (1.4.2), (1.4.3).

5.10 Creation operators

The group W acts on V as a group of displacements, and by transposition acts
also on F, the space of affine-linear functionson V : (wf)(x) = f (w™'x) for
we W, f e Fandx € V. Since we identify A € L with the function x
<A, x> on V, we have to distinguish wA € Vandw - A : x = <A, w x>,
When w € Wy we have wA = w - A, but for example spX and sg - A are not the

same: we have

Soh =& 4 seA,

5.10.1
( ) S0 A =8gA+ <A, E>c

where £ = ¢ (the highest root of R) in cases (1.4.1) and (1.4.2), and £ = ¢; in
case (1.4.3).
From (4.7.3) we have

(5.10.2) (T; = bi(X“NX* = XM(T; — bi(X))
foralli € I and A € L, where

bi(X") = b(zi, 7; X“)
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and in particular
X0 =g"Xx*

where m = % in case (1.4.3), and m = 1 otherwise.

By applying @' : § — §' t0 (5.10.2) we shall obtain
YT = bi(Y ™) = (T; = bi(¥ )Y~
when i # 0, and
Y Mo (T) = bo(q" Y¥)) = ™ (07! (To) = bo(q" Y)Y .

Hence if we define

(5.10.3) o; =T —b;(Y™™)
fori # 0, and
(5.10.4) ay = o (Ty) — bo(q" Y*¥)

as operators on A’, we shall have

(5.10.5) Y'a; = o Y5

fori #0and X € L, and

(5.10.6) Yy = g~ o Y.
Suppose first that i # 0, and let u € L'. Then we have

. — . /
Y)Lai El,l. — aiYsl)»El/L =q <S,)»Jk(lt)>aiEl/L

by (5.2.2). Suppose thats; it > u, thens; (r; (1)) = r (s; ) by (2.8.4), and hence
o E /; is a scalar multiple of £ ;,- e To obtain the scalar, we need the coefficient
of ¢ in o, E;,. Now b;(Y ~“)E], is a scalar multiple of E , hence does not
contain e**. Since s; 0 > u we have <u, o;> > 0 by (2.7.9) and hence

Tie" = 1,7 'e%" + lower terms
by (4.3.21). It follows that
(5.10.7) o E!

1l
L= E

Si
ifi #0and s;u > .
Next, consider the case i = 0. Then we have, using (5.10.6),

Y*aE), =g~ 7 oY E),
—<AE>—<SeA,r, l
=gq <A E>—<sg rk(u)>a0EM

— q—<)\$x0(réu)> E;/L
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by (5.10.1). Suppose that sou > p, then so(r ) = ri(sop) by (2.7.13), and
hence o £, is a scalar multiple of E{ . We shall show that in fact

(5.10.8) QE,), = Tysom T E

I
Sop "
Proof  Sincesgs; = t(&)wehave TyT (s;) = Y* and therefore T (s¢)w ™1 (Tp) =
X%, so that
o N (To) = T(se) ' X5,

As before, we require the coefficient of e in T'(sg) "' X S et = T(sg) let 5,
which by (4.3.23) is g/ ¥, where

f(w) 12 (<€ )X (sge)

= - <& — -

2% > n M, a>) X (St )K
aeRt

Now if « € RT, we have sea € R™ unless <&, o> = 0. Hence

1
(1) Fw=5 D <k = o=,

aeR™
<€,a>>0

On the other hand, by (4.3.25),

To(u) = qg(u)

where

1
g =7 3 (1 n(<p, a>)ke.

aeRt
Now if <&, > = 0 we have <sou, o> = <u, a>. Hence
1
8(w) — glsop) = 7 > ((<p.a>) = n(<sopt, a>))kq.
aeR*

<€,a>>0

In this sum we may replace <sou, o> by
—<SoM, Sga> = <& — u, a>

and hence using (1) we obtain

1
PO+ = gow) = 7 Y (1(<E =, 0>) +n(<pt, @)k
aeR™
<€,0>>0

In this sum, if & # &£V then <&, o> = 1, and

n(l — <wu,a>) +n(<p,a>)=0.



144 5 Orthogonal polynomials

Finally, since sou > p we have ag() > 0 and hence <u, §> < 0, so that
n(<E —p, §7>)+n(<p, §7>) =02 — <p, §'>) +n(<p, §'>)
=1-1=0.
It follows that

fu) = glsopn) — g(w)

which completes the proof. O

Next, let j € J and let

(5.10.9) B;=w ' (U).

Let A € L. Then by (3.4.5) we have
UyXhU; = x4
where u; = u(n}) = t(nj/.)vj_', so that
uh=m +v7'A,
(5.10.10) ) R
u; A =UVjA+ <A,nj>c.
Hence
Ujle)L — q<)\,7r/’.>ij)\Uj71
and therefore (with A replaced by —X)
(5.10.11) Y’\ﬁj = q‘“*”?ﬁj.va\
Now let & € L'. Then
Y)\,ﬁjEl/l — q—<k.ﬂ}>ﬂjyvj)LE;L
_ q—<)»,7'r‘;+u;lrli(p_)>16j E,;
— = <Muj(r(p) /
=gq <A,uj(rp(pn >ﬂjEM‘

Since u j(r; (1)) = r;(ujp) by (2.8.4), it follows that 3, E/, is a scalar multiple
of E, . In fact we have

(5.10.12) BiE), = T ToguEi i

Proof We have U;l = U;, where i = —j in the notation of §2.5. Since
u;v; = (1)), it follows that

Uy =T(u)=Y"T(v)™'
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and therefore

=0 W) =T(") X

1
so that
B N
Byet = T(v") en .
Since v; (1 — 7)) = u; ' = u;p, it follows from (4.3.23) that
Bje" = g7 Me"i* + lower terms

where now

fw) = % > n(<a] =, a>)x (Vi)

aERT

By (4.2.4), x(vie) = 1 if and only if <x/, «>>0. Now 7z is a minuscule
fundamental weight, so that <7/, > = 0 or 1 for each « € R*. Hence

1
(1 fay==5 D n(<p o)k,
<7T?,EO};:=1
since n(<w! — pu, a>) =n(l — <p, a>) = —n(<p, a>).

On the other hand, by (4.3.25), we have

Ty = qg(u)

where

1

gy == Y (L +n(<p, a>)Ka

4 aE€R*
so that

1
) g = glujp) = 7 3 (1(<p, @) = n(<uju, @>)a.

aeRT

If <71;-,a >=01let § =vja € R". Then
<ujp, o> = <7tj/- + v]fl,u,a> = <u, B>

and

P a>=—<m,a>=0

/
<m;, B> = <v i

by (2.5.9).
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If on the other hand <71}, a>=1,letf =—vja € R*. Then
<ujp,a>=1-<u, >

so that n(<u;u, a>) = —n(<p, B>), and <x}, B> = 1.
Hence if we define

- 1 if <n/,p>=0
F= =1 if </, f>=1

we have

3) Y on(<ujp, ax), = Y epn(<p, B>)Kp.

a€RT BERT

From (1), (2) and (3) it follows that

) + 8 — gujm) = Y (e — D)+ 1 — £a)(<pt, @>)a
aeRT

=0.

This completes the proof of (5.10.12). O

(5.10.13) Let u € L’ and let
u(u) = ujsi - Si,
be a reduced expression. Then
Ej, = T8, - e, (D).

Proof Foreachi € I,ifa;(i) > Othens;u(w) = u(s;u) > u(u), by (2.4.14).
Also, if i # 0, we have v(i)s; = v(s;it) < v(1), 50 that Ty = T, ' Ty
Hence (5.10.13) follows from (5.10.7), (5.10.8) and (5.10.12). O

For this reason the operators «; (i € I) and ,Bj (j € J) are called ‘creation
operators’: they enable us to construct each Ej from E; = 1. Dually, by
interchanging S and §', k and k', we may define operators o';, ,B’j on A which
enable us to construct each E; (A € L) from Ey = 1.

Notes and references

The symmetric scalar product (5.1.29) was introduced in [M5], and the non-
symmetric scalar product (5.1.17) (which is more appropriate in the context of
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the action of the double affine Hecke algebra) by Cherednik [C2]. The poly-
nomials E; were first defined by Opdam [O4] in the limiting case ¢ — 1, and
then for arbitrary g in [M7] (for the affine root systems S(R) with R reduced),
and in greater generality by Cherednik in [C3]. The proofs of the symmetry and
evaluation theorems in §5.2 and §5.3 are due to Cherednik ([C4], [C5]), as is
indeed the greater part of the material in this chapter.

To go back in time a bit, the symmetric polynomials P, were first developed
for the root systems of type A, in the 1980’s, as a common generalization of the
Hall-Littlewood and Jack symmetric functions [M6]. The symmetry theorem
(5.3.5) in this case was discovered by Koornwinder, and his proof is reproduced
in [M6], Chapter 6, which also contains the evaluation theorem (5.3.12) and the
norm formula (5.8.17) for S of type A,,, without any overt use of Hecke algebras.
(Earlier, Stanley [S3] had done this in the limiting case ¢ — 1, i.e. for the Jack
symmetric functions.) What is special to the root systems of type A is that all
the fundamental weights are minuscule, so that the corresponding Y -operators
(4.4.12) can be written down explicitly; and these are precisely the operators
used in [M6].

From the nature of these formulas in type A it was clear what to expect should
happen for other root systems — all the more because the formula for | P, |> when
A = 0 delivers the constant term of V, which had been the subject of earlier
conjectures ([D1], [A1], [M4], [M11]). The preprint [M5] contained a construc-
tion of the polynomials P, for reduced affine root systems, and conjectured the
values of |P,\|2 and P, (p;). Again, in the limiting case ¢ — 1, Heckman and
Opdam ([H1], [H2], [O1], [O2]) had earlier constructed the P, (which they
called Jacobi polynomials); and then Opdam [O3] saw how to exploit the shift
operator techniques that he and Heckman had developed, to establish the norm
and evaluation formulas in this limiting case.

Cherednik [C2] now brought the double affine Hecke algebra into the picture,
as a ring of operators on A, as described in Chapter 4. He constructed g-
analogues of the shift operators, and used them to evaluate |P;|* for reduced
affine root systems. His proof is reproduced in §5.9. The alternative proof of
the norm formula in §5.8 is essentially that of [M7], which in turn was inspired
by [O4].

Finally, the case where the affine root system is of type (C,Y, C,,) was worked
out by van Diejen [V2] in the self-dual situation (i.e., k¥’ = k in our notation),
and then in general by Noumi [N1], Sahi ([S1], [S2]), and Stokman [S4]. The
constant term of Vg (i.e., the case A = 0 of the norm formula) had been
calculated earlier by Gustafson [G2].
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The rank 1 case

When the affine root system $ has rank 1, everything can be made completely
explicit, and we are dealing with orthogonal polynomials in one variable. There
are two cases to consider:

(a) S=Sisoftype Ay, and L = L' is the weight lattice;
(b) S = S"isoftype (C),Cy),and L = L’ is the root lattice.

We consider (a) first.

6.1 Braid group and Hecke algebra (type A)

Here R = R’ = {4oa}, where |¢|> = 2, and L = L' = Za/2. We have
ay =1 — o and a; = «, acting on V = R as follows: ayp(§) = 1 — & and
a;(§) = & for &€ € R. Thus the simplex C is the interval (0, 1), and Wy is
the infinite dihedral group, freely generated by so and s;, where s (resp. s1) is
reflection in 1 (resp. 0). The extended affine Weyl group W is the extension of
Wy by a group 2 = {1, u} of order 2, where u is reflection in the point %, so that
u interchanges 0 and 1, ay and a;. We have sy = usu, so that W is generated
by s; and u with the relations s7 = u* = 1.
The braid group B has generators Ty, Ty, U with relations

(6.1.1) Uvl=1, UTU-=T,
(there are no braid relations). Let Y = Y%/2, then
Y=TyU =UT,

so that B is generated by 7y and Y subject to the relation T;Y~'T; = Y.
Alternatively, B is generated by 7; and U with the single relation U? = 1.

148
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The double braid group B is generated by 77, X, Y and a central element

g'/?, with the relations

612 TXTi=X"', TiY'Ti=y, UXUT' =¢'?x""

where U = YT[1 = T,Y~!. The duality antiautomorphism « maps
Ty, X, Y, q'/? respectively to Ty, Y~!, X~!, ¢'/2. Thus it interchanges the first
two of the relations (6.1.2); and since UX = T,Y~'X we have o(UX) =
Y7'XT, = 17" (UX)Ty, so that o(UX)?) = T, "(UX)*Ty = q'/*. Thus
duality is directly verified.

Next, the affine Hecke algebra 9 is the K-algebra generated by T} and U
subject to the relations U? = 1 and

(6.1.3) (M —t) T+t H=0
where K is the field Q(g'/?, v). We shall write
T =gt

and we shall assume when convenient that k is a non-negative integer (in which
case K = Q(gq'/?)).

The double affine Hecke algebra 9 is the K -algebra generated by 77, X, Y
subject to the relations (6.1.2) and (6.1.3), i.e. it is the quotient of the group
algebra of B over K by the ideal generated by (7} — 7)(T; + t~'). Since w
fixes T1, it extends to an antiautomorphism of 55

Let x = ¢®/? and let A = K[x, x~!]. Also let

(6.1.4) b= T2 = X
o T aox2 YT x4

Then 35 acts on A as follows: if f € A,
(6.1.5) Xf=xf, Uf=uf, Tvf =®X)+cX)s1)f
where (s; f)(x) = f(x7") and (uf)(x) = f(g"*x7).

We have s, X = X 's;, and
s1=¢(X)"(T1 = b(X)
as operators on A. Applying w, we obtain
YT = b ™) e ™)™ = (T = b)) e )Y
so that if we put

(6.1.6) a=T —-byY "H=UY —b(yY ™",
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we have
(6.1.7) Y 'a=aY.

Again, we have UX = ¢'?X~'U and U = T, Y !, so that

(6.1.8) B=wU)=XT, =XUY
and
(6.1.9) Y~!8 =q'23Y.

6.2 The polynomials E,,

As in §5.1, the scalar product on A is

(f. 8) =ct(fg"Ay)

where
Ar = (P qlqx gk
We shall assume that & is a non-negative integer. Then
Ap = (= Dk gRe+D2y =2k (ki 2. 0y
which by the g-binomial theorem is equal to
d 2k
r;k(_ 1y g r=Dr |:k N r}xy

where

[ﬂ =D/ (G (q59)n—r

is the g-binomial coefficient, for 0 < r < n. In particular, the constant term of
Aris [, e,

2k
(6.2.1) 1, 1= |:k:|

For eachm € Z,let E,, = E,q/> in the notation of §5.2. We have pp = %koz
and hence
Lm+ka ifm >0,

1 .
>(m — k) ifm <0,

ri(3ma) = {
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so that by (5.2.2) the E,, are elements of A characterized by the facts that the
coefficient of x in E,, is 1, and that

g MR E. ifm >0,

6.2.2) YE, = {q<—m+k>/2Em b

The adjoint of Y (for the scalar product ( f, g))is Y ~!, from which it follows that
the E,, are pairwise orthogonal. If m > 0, E,, is a linear combination of x”
for0 <i <m—1,and E_,, is a linear combination of x"~% for0 <i < m.

(6.2.3) Ifm = 0 we have
E—m—l = LIk/ZOlEmH,
Em+l = qik/zﬁE—m

where o, 3 are given by (6.1.6) and (6.1.8).

Proof By (6.1.7),
YaE, i =aY 'E, = qm D 20E, |,
so that by (6.2.2) aE,,+ is a scalar multiple of E_,,_;. But
QEys1 =UYEup —b(Y DE, 4,

in which b(Y "")E,,; is a scalar multiple of E,,, hence does not contain
x7" 1 Alsoin

UYEup =q "™ V2E, (¢ 2x7)

the coefficient of x ! is ¢ =%/ Tt follows that «E,, | = g */*E_,,_,, which
gives the first of the relations (6.2.3).
Next, by (6.1.9),

YBE_, =q \?BY'E_, = g~ "D28E
so that by (6.2.2) BE_,, is a scalar multiple of E,,,. But
BE_, =XUYE_,, =q"™2xE_,(¢"*x™"),
in which the coefficient of x”*! is ¢*/>. Hence BE_,, = ¢"/*E,.11. O
The operators o and 3 are ‘creation operators’: from (6.2.3) we have, for
m >0,

(6.2.4) E_n = (@B)"(1), En1=q *BaB)y"(),

since Eg = 1.
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We shall now calculate the polynomials E,, explicitly. For this purpose we
introduce

fe ) = 1augx ™ sgkn =Y fu0)",

m=>0

g(x,2) = x/(cz O (gx ' g =Y gm0

m=>0

By the g-binomial theorem we have

fU;@::E:[k+§—1}[kfj]ﬂfkwa

i.j=0 J
s s
g(x,z) = Z [ +l i| |: "._]ilqzx—l-‘rj-i—lzz-‘r]’
i,j=0 ! J
so that
(62.5) f= Y [’”’.‘1“"”}%-&
itj=m ! J

626)  gu0= Y. [’”’:”H"*J}qz‘xiﬂﬂ.

i+7=m ! J
Since T} = b(X) + ¢(X)s; (6.1.5), a brief calculation gives
Tif(x,2) =q"f(¢"*x7", q'%2),
Tig(x,2) = q—(k+l)/2g(q]/2x—1’ ql/ZZ)‘
Since Y = UT, it follows that

Yf(x.2) =q"*f(x.q'%z),

—(k+1)/2

Yg(x,2) = ¢ g(x.q'*z)

and therefore
Yfm = q(k+m)/2fm s ng = q_(k+m+1)/2gm .

for all integers m > 0.

From (6.2.2) it follows that f,, (resp. g ) is a scalar multiple of E_,, (resp.
E,.+1). Since the coefficients of x " in f,, and of x™+!
[k;m ], it follows from (6.2.5) and (6.2.6) that

-1
[k+m k+i—17Tk+j7 i
(6.2.7) E_m_|: . } Z[ ; H ; ]x i,

i+j=m

in g,, are each equal to
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71 . )
(6.2.8) Em+1=[k+m] Z |:k+l._1:||:k—ijji|qixi+j+1
m i j

i+j=m

for all m > 0.

We shall now calculate E,,(g /%), m € Z. We have

fa™?.2) =1/(az9), (¢*2:0), 4,
= 1/(‘]_k/22261)2k+1
_ Zq_mk/z |:2k +mi| st
m=>0 "

and likewise

g(q_k/z, Z) _ q_k/z/(q_k/21§CI)k+1 (q“‘*')/zz;q)k
=" /(a72:q) 5,
_ _ 2k +m
_ k/2 mk/2 m

from which it follows that

(6.2.9) E_(q™?) = g2 [2k + m} / [k + mi| ’

m m

_ —m 2k +m k+m
Busala ™) = g [ 20 ] fTkm],

Asin §5.2, we can express x E,, and x~'E,, as linear combinations of the E,.
The formulas are

q"(1 -4

e Eton (m = 1),

(6.2.10) XEp = Epy1 —

(1 _ qm)(l _ q2k+m)

(6.2.11) xE_,, = (1= gy Ei_n
1— qk
+ 1_—(]k+mEm+1 (m = 0),
1-— qk

6212 x'E_,=E_, — (m > 1),

1_qm+k m
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(1 —g™(1 —g**™)

—1 _
(6.2.13) X Enu = (1= gy m
mel — k
+ ql(_—q,jn)E_m (m > 0),

Proof These may be derived as in §5.2, or proved directly. To prove (6.2.13),
for example, we observe that (x 'E,,41, " %) = (E41, x™17%) = 0 for
1 <i < m,sothat x~'E,,_ is orthogonal to E,,_» for 1 <i < m — 1. But
xVE,41 is a linear combination of E,,_»; for 0 < i < m, and since they are
pairwise orthogonal it follows that

(1 X 'Epy1 = AEy + nE_y,

for scalars A, u to be determined. Here  is the coefficient of x! ™ in E,, 11,
which by (6.2.8) is ¢" (1 — ¢*)/(1 — g¥*™); and A is determined by considering
the coefficient of x™ on either side of (1), which gives

=21+ ud—4g5/0 -4

and hence the stated value for A. O

From (6.2.13) we obtain
(Ent1s Emt1) = (Epg1, ™) = T Epyr, x™)

(I —g™( —g?m)
- (11— qk+m)2

form > 1, since (E_,,, E,,) = 0. Hence

(Em. Ew) 17 (1= g))(1 — g**7)
(1, 1) _,U (1 —g+iy

(Emv Em)

and hence by (6.2.1)

(6.2.14) (Em,Em)z[ZkJr]’{"_l}/[kjL’Z_l}

form > 1.
Now E, +; and E_,, are related by

(6.2.15) Epi = xE*,,

for m > 0; this follows from comparison of (6.2.7) and (6.2.8), or by simple
considerations of orthogonality. Hence from (6.2.14)

(6.2.16) (E_p. E_p) = [Zk:m]/["zm}
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6.3 The symmetric polynomials P,
Let
Ag=1{feA: f)=fa D) =Kx+x].
As in §5.1, the symmetric scalar product on Ay is
(63.1) <85 = <f,8>1 = 5efgV0)
where f, g € Ay and
Vi = (5 (x5 gk

We shall assume as before that k is a non-negative integer when convenient.
From (5.1.40) we have

<, 1> =1 +4¢5"'1, 1)k
so that by (6.2.1)

2k — 1
(6.3.2) <1, 1> = |: 1 ]

For each integer m > 0, let
Pm = Imk — Pma/Z,k

in the notation of §5.3. By (5.3.3) the P,, are elements of A, pairwise orthogonal
for the scalar product (6.3.1), and characterised by the facts that the coefficient
of x™ in P,, is equal to 1, and that

(6.3.3) (Y + Y HP, = (¢"H2 4 g~ p,.

Let Z=(Y +Y!)| Ap.Since T} f = tf for f € Ay, we have

Z=(+17"YU=T+"HU
= ®BX)+t Hu+c(X)su

(6.3.4) =c(X u +c(X)su.

To calculate the P,,, let z be an indeterminate and let

F(x,2) = Fi(x,2) = 1/(xz5 @ (x " 259 ).

By the g-binomial theorem, the coefficient of 7™ in F(x, z) is

63.5) Fo = Fyp = Z |:k+;_l:||:k+§_li|xi_j‘

i+j=m
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We now have
(6.3.6) ZF(x,2) = tF(x, ql/zz) + le(x’ q71/2z)_
Proof From (6.3.4),
(x — x’l)ZF(x, z)=(tx — r’lx’I)F(ql/zx, z)
+( ' — rx’l)F(q’l/zx, z)

On multiplying both sides by ¢*~/2z(¢g™2x2; @)k s1(¢ 2 x ' 2; @)k 115 (6.3.6)
is equivalent to

(1) =)+ (B —a)yd=(B—y)ad+ (6 —a)py,
where o = (1 — ¢ '"%x2), 8 = (1 — ¢ "2x712),y = (1 — ¢"%x2),
§=(1-— qk_l/zx_lz). Both sides of (1) are manifestly equal. O

From (6.3.6) it follows that
ZFm — (q(k+m)/2 + q—(k+m)/2)Fm

for each m > 0, and hence that F,, is a scalar multiple of P,. Hence, from
(6.3.5), we have

-1 . .
63.7) P =[k+m_4] z:[k+f_l}[k+1_l]ﬂﬂ.
m e 1 J
i+j=m
Next, we have
F(q"?,2) = 1/(a7**z:9),,

so that

_ 2k +m — 1
k/2\ _ . —mk)2
Fu(d"?) =q [ . }

and therefore

_ 2k+m —1 k+m—1
k/2\ _ —mk/2
638 Pu(d?) =g [ ” }/[ " }

2k+1

g~
l_[ 1 — qk+1 :

The polynomials F,, are the continuous g-ultraspherical polynomials,
in the terminology of [G1]. They were first introduced by L. J. Rogers in
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the 1890’s [R1,2,3]. Precisely,
Cn(cos0:4" | ) = Fu(e")

in the notation of [G1], p. 169.

The norm formula (5.8.17) in the present case takes the form

k—1
1
(6.3.9) <Pu Pu>=]]

i=1

-

In terms of the E’s, we have

_ qm+k+i
1 — qm+k—i

q* (1 —q™)

(6.3.10) Py = Eoy ot e

Eﬂl .

Finally, we shall consider the shift operator (§5.9) in the present situation.
Let

() =tx —t 'x7 .
Then 8(Y~") = ¢ T, 'U — t~'UTy, so that for f € A
S NHf = (17 = 1)Uf
= t¢(X)(s; — Duf.
The shift operator is
G =5(X)"s(Y™h)
so that

Gf =1(x —x Y '(syu—us)f

for f € Ap. Apart from the factor T = ¢*/2, this is independent of k, so we
define
(6.3.11) G =17'G=x—xH"siu—us)

as an operator on Ag. Explicitly,
(G’ NHx) =@ =x"H7(f(g7"2x) = fg7%x))
for f € Ap. We calculate that

G'Fi(x,2) = q "*(1 — ¢")zFiy1 (x, ¢7%2)
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so that
G'Fu=q "1 — ¢")Fp_1 4
and therefore
(6.3.12) G Py = (g7 = q"*) Puci i1
It follows from (6.3.12) that
(6.3.13) <G'Puis Po1hs1>141 =0

for m # n.
Let

0 =siu—us;, Pppr=x—x")""Viu.
Then (6.3.13) takes the form
(O (P, k) Pr+1 Po1,4+1) =0
or equivalently
Ct( P k0(Piy1 Po—1k41)) =0
for n # m. This shows that P, ; is a scalar multiple of
Ve 0(@pht Puctier) = O3 G/ (Pt Pt kr)-

Consideration of the coefficient of x”*% in V, Py and in 0(Dpi1 Pr—1k+1)
now shows that

qm/2

(6314) Pm,k = l—q—2k+m

' G (Ppr1 Pt i)
(and hence that ®;(X)~! 0 G’ 0 @ (X) is a scalar multiple of the shift operator
G = 8, (Y)3k(X)).

Iterating (6.3.14) m times, we obtain

(6.3.15) Pk = cni®; ' G (Dpym),
where
(6.3.16) Cok = qm(m+1)/4/(q2k+m;q)m

(“Rodrigues formula™).
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6.4 Braid group and Hecke algebra (type (C,’', C1))

Suppose now that S = §’ is of type (C, Cy), so that R = R’ = {£«}, where
la|> = 2,and L = L’ = Za. The simple affine roots are ay = % — o and
a; = o, actingon R : qy(§) = % —&and a (&) = & for & € R. The simplex C
is now the interval (0, %), and W = Wy is the infinite dihedral group, generated
by so and s; where 5o(§) =1 — & and s5;(§) = —§.

The braid group B is now the free group on two generators Ty, 7. Let
Y = Y%, so that

Y =ToTh,

and B is freely generated by T} and Y.

The double braid group B is generated by 77, X, Y, and a central element
g'?, where X = X°. Since <L, a> = 27 the relations (3.4.1)—(3.4.5) are
absent, i.e., there are no relations between 77, X, Y, and B 7% F; where F3 is
afree group on three generators. The antiautomorphism w : B — Bisdefined by

w(ql/z’ Tla X, Y) — (ql/z’ Tlv Y_l, X_l).
Let
(6.4.1) To=q '?XT; ' =q¢7 ' xTiy™", T/ =Xx"'17".

Then we have

(6.4.2) T, 0T\ Ty = g~ '/,
and
(6.4.3) o(To, T), T, T)) = (XT|X ', Ty, Ty, Y ' T, Y).

Let k = (ky, k2, k3, k4) be a labelling of S, as in §1.5, and let k' = (k], k5,
k%, k) be the dual labelling. Let

K1=k1+k2=k/1+k/, Ki=k1—k2=ké+k/,

(6.4.4)
Ko=k3+k4=k§ —ké, K6=k3—k4=ké—ké/1,

and let

(6.4.5) T =q""? 1 =q"? (i=0,1).

Thus replacing k by k" amounts to interchanging to and ;.
Let K = Q(¢'? 10,7}, 71, 7)) and let A = K[x,x'], where x = e“.
The affine Hecke algebra 9 is the K-algebra generated by T, and T
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subject to the relations
(6.4.6) (T — )T +77') =0 (i =0,1).
Asin §4.2, let

-1 (-t
1—x2

bi(x) =b(t;, t/3x) =

’

X — ti_lx’l +1/— rl.’_l

1

ci(x) =c(t;, t/3x) = —
X — X

fori =0, 1. Then $ acts on A as follows:
(6.4.7) T f = bi(X)) +ci(X)si) f
for f € A, where X; = X and X = ¢'/?X~!, and
Xf=xf, (0f)x)=flgx™"), 1 )Hx)=fxh,

The double affine Hecke algebra {5 is generated over K by 71, X, Y subject
to the relations (6.4.6) and

(6.4.8) (T) —t/(T/ +7H=0 (i=0,1)

where T, T| are given by (6.4.1). More symmetrically, ~§> is generated over K
by Ty, Ty, T, T{ subject to the relations (6.4.2), (6.4.6) and (6.4.8).

Dually, é,;)’ has generators 77, X, Y subjectto the relations derived from (6.4.6)
and (6.4.8) by interchanging 7 and 7{. Since by (6.4.3) w(Tp) (resp. w(T})) is
conjugate in B to T| (resp. Tp), it follows that w extends to an anti-isomorphism
of é’ onto 9.

6.5 The symmetric polynomials P,

In the present case it is more convenient to consider the symmetric polynomi-
als P; before the non-symmetric E;. As in §6.3, let Ag = K[x + x~!1. The
symmetric scalar product on A is now

1
(6.5.1) <fig>=<fg>= ECt(fgvk)
where now, as in (5.1.25),

v, — (% @oo(X 2 @)oo

4
[TCix; @)oouix ™" ¢)oo
i=1
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and
(652) (M]a Us, U3, u4) — (qk]’ _qkz’ q1/2+k37 _q1/2+k4).
For each integer m > 0, let
Pm = Imk = Pmoz,k

in the notation of §5.3. The polynomials P,, are elements of A, pairwise or-
thogonal for the scalar product (6.5.1), and are characterized by the facts that
P,, is a linear combination of x” + x~" for 0 < r < m, and that the coefficient
of x™ + x~™ is equal to 1. We have

(6.5.3) Y +Y P, = (@"h + g )P,
Let Z=(Y + Y1) | Ap.Since T\ f = 7. f for f € Ay, we have
Z=ul+17'1;"
=0T+ (I — 1+ Tfl)(To — T+ T(;l)
1

= (Tl =+ Tfl)(To —179) + 10Ty + ‘L'(;I‘Cf
= (s1 + Der (X7 ")eo(Xo)so — 1) + ¢ +g78.

Now
nel(X7') =1 —g"x H +4¢%x 7D/ - X7
and
0c0(Xo) = (1 — qk3+1/2X_1)(1 + gt X /A - g X7,
so that
(6.5.4) Z =g"Z =@+ DFX o= 1) +1+¢*H
where

4
(6.5.5) f(x) = (H(l - u,-x)) / (1 —x3)(1 — gx?).
i=1

To calculate the polynomials P, explicitly, we shall use the symmetric
polynomials

gn(x) = (151X~ q)m (m = 0)
as building blocks. They form a K -basis of Ay.
We have

(656) Z/gm = )\mgm + Mm8Em—1,
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where

)\'m — q—m +qm+2ki’

pm = (1 = g™ = ¢" "uu)(1 — g™ 'uguz)(1 — "™ uyug).

1

Proof Since spx = gx~" we calculate that

(so — Dgm(x) |

1 _ qx_2 = q7 ulx(qm - 1)(u1x;q)m—](ql/‘]x71;q)m—l

and hence that
FX™D(s0 — Dgm(x) = ¢~ (@" — Durh(x)gm—1(x),
where
h(x) = x2(1 = ¢" upx ™D = upx ™D — uaxH( = ugx 7N /(x = x7h.
Now we have
h(x)+h(x™") = ¢""u A = ¢ uun)(1 — g™ uguz)(L — g7 wgug)
—q'"up (1 =g = " ) — g T,
1

For both sides are linear in x + x~' and agree when x = ¢ 'u,, hence are
proportional; moreover the coefficients of x + x~! on either side are equal to

1 —g®i+™ since ujuauzuy = g*i+.
Hence
Z'gn =0 =g —q" uu)1 — ¢" uiuz)(1 — q" urua)gm—1
+(1+ g% — (1= g™ - g*™)g,,
= )ngm + Um&m—1- O

Since the g, form a K-basis of Ay, P,, is of the form

m
Pm = Zargr-
r=0

Hence by (6.5.3)

m
(1) Z/Pm = Aum = Z)‘-margr’
r=0

and by (6.5.6)

m

(2) Z/Pm = Zar()\rgr + Mrgr—l)
r=0
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(where g_; = 0). From (1) and (2) we obtain
)\mar = )‘-rar + Mr+10r41,

so that

ar+1/ar = Am — )‘«r)///l'rJrl
_ (1 —q "1 — g
T (=g = gruu)(1 — g uwuz)(1 — g ugug)’
from which it follows that P, ; is a scalar multiple of the g-hypergeometric
series

m r(,—m. 2k} +m. . —1.
657)  omx = Z q" (g7 9)(q 5@ (uix;q)r(uix™ 5 q),
r=0

(q;q)r(uiuz; q)r(uius; q)-(uiua; q),

and more precisely that

(658) Pm,k = Cm,k Pm .k

where

2k +m .
b

Cmk = ul_m(MIMZ; q)m(ulu.’); q)m(ulu4; q)m/(q q)m

The polynomials P,, ; are (up to a scalar factor) the Askey-Wilson polynomials
[A2]. Since V; is symmetric in u, U, U3, U4, so are the P, ;.
From (6.5.7) we have

wm,k(qkl) = §0m,k(lzt|) =1

so that

(6.5.9) Pk = Poi

in the notation of §5.3. Also from (6.5.7) we have

0 7 @™ @G )0 (g
(pm,k(q +kl) = Z

= (@@ q)(uiuz; q)r(uins; q),

2k} .
! tm ’ Q)r

= wn,k’(qm+k§)
since k| + k; = k| + k/ fori = 2,3, 4. Hence
(6.5.10) f’m,k(q"““) — ﬁn’k,(qm+k;)

which is the symmetry law (5.3.5) in the present context.
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The norm formula (5.8.17) in the present case, when expressed in terms of

ui,...,us and qzki = q’1u1u2u3u4, takes the form
2m+2k; . 2m~+-2k{+1.
(6.5.11) <P, Py> = l(q ’fz)k","(q e
@™ @)oo(@" 45 @)oo [T (@™ it 3 @)oo
i<j

Let G’ be the operator on A defined by (6.3.11). Then we have

(6.5.12) G Pui=(q "™ = q""Pu_1 4312

Proof We calculate that

G'g =uq '*(q" — 1)(141611/2x;q)r_1(ulql/zx_l;q)

r—1

from which and (6.5.7) it follows that G’¢,,, « is a scalar multiple of ¢, —1 x+1/2,
and hence that G’ P,, x is a scalar multiple of P,,_; 1,2, Where

k+i=t+3ibo+ik+iktd.

Since
G+ = (g7 = ") )

we have (6.5.12). O

Let

@ = Vi/(x —x71).

Then
(6.5.13) Puic = cna®; G (@41 Py 4y1)
where

Cmie = —¢" /(1= g+,
Proof From (6.5.12) it follows that

<GPy i, Pn—l,k+% Zptl = 0
whenever m # n, or equivalently
(1) ct(e(P,,,,k)ch% P,,,m%) =0
where

@) = f(g7"x) = f(q"x).
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We may replace (1) by
t( P kO (Prs1/2Pa-r1k+1/2)) =0
ie., by
<Py, d>1:1Gl(cbk+1/2pn—l,k+1/2)>k =0

whenever m # n. Hence CI>,:1 G’ (D172 Pn—1,k+1/2) is a scalar multiple of P, ;.
Now

4
Dr1/2(g"2x)/r(x) = =g VAP [ (1 — uix) = —¢"ucx),
i=1

say; and since ®;(x ') = —®;(x) we have
Dyp12(g7"2x)/ Pp(x) = —g Pux"),
so that

2) ;' G (Prr1/2Pu—1h+172) = ¢ (p(x) — p(x™)/(x —x7h,

where
px) = M(X)Pm_1,k+1/2(q1/2x).
Since
u(x) =g*i x4 x72
we have
p(x) = q2ki+<m+1)/2xm+1 fo g g2y
and therefore the coefficient of x” 4+ x " in (2) is ¢ ~"/2(g%i*" — 1). 0

From (6.5.13) it follows that
(6.5.14) Poi = dp @ G (Prymp2),
where
di = (=1)"q" "V /(G gom,

(since when £ is replaced by k + %, k| is replaced by &} + 1).
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6.6 The polynomials E,,

To calculate the polynomials E,, = E,,, (n€Z) we proceed as follows. The
symmetric polynomials P, were defined with reference to xo = 0 as origin;
they are stable under s; (so that 71 P,, = 11 P,,) and are eigenfunctions of the
operator Z = ToT) + Tl’1 To’l, with eigenvalues ¢"**1 4+ g ="~k Equally, they
are eigenfunctions of the operator

Z'=TZT ' =TTy + T, ' 1!

on A with the same eigenvalues. If we now take x; = % as origin, the effect is to
interchange ay and a,, Ty and T, k| and k3, and k, and k4, so that the labelling

k is replaced by

(6.6.1) k' = (ks, ka, k1, ko).

We obtain polynomials

(6.6.2) P i) = Poii(q'7x7") = Pusi(a7"x),

stable under s¢ (so that T; P,i, =1 P,L) which are eigenfunctions of Z T and of
Z with eigenvalues g1 + gk,
In P,il, (uy, ..., uy)is replaced by

_1/2 _
(g us, g7 Pug, ¢"ur, q"*us),

or equivalently, since P,, is symmetric in these four arguments, by

(ql/zul,ql/zug,q_l/zug,q_l/zw).
Hence by (6.5.7) and (6.5.8) we have
(6.6.3) Py =choh,

where

6.64) o —Zm q" (™" ) (g™ @) (1x;9) (quix "5 ),
o mk —
r=0

(q; @) (quiuz; ) (uiuz; q) (uius; q),
and

g Pu" (quuns @)m (U us; @m(Urtta; @

P
063 ems= (@5 q)n
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Now for each m > 0 the space
Vo={fea:zr =@t +q 0y

is two-dimensional, spanned by E,, and E_,,. From above, V,, is also spanned
by P,and P,L. Hence each of E,,, E_,, is a linear combination of P,, and PJ,.
Since

Pm = x" +x_m+"', P;IL :q—m/me _i_qm/Zx—m_i_.“’
and since E,, does not contain x ™, it follows that

Pm - qu/z PVI!
(6.6.6) E,=————
1—gm
Next, we have by (5.7.8)
P,=AE,+E_,
where
»=ne(n, ;g ")

_ (=g g7

1— q72m72ki
(= g™y — g )
- 1 — g2tk
From this and (6.6.6) we obtain
6.6.7 E _ 1 —q"uuy q"*(uyuy — qm+2k/‘)PT
(6.6.7) T gtk 1 — g¥+2K m

for m > 0. These two formulas (6.6.6) and (6.6.7) give E,, and E_,, explicitly
as linear combinations of the two g-hypergeometric series w;, i (6.6.4) and @, &
(6.5.7). Namely:

(6.6.8) Forallm € Z, E,, is a scalar multiple of
(I — uyu2)@ym i + (Wiuz — Clki_m)fﬂﬁ,m,k,

where

m+ki ifm >0,

—m —k; ifm <0.

m =

This follows from (6.6.5), (6.6.6) and (6.6.7). O
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Finally, we consider creation operators for the E,,. From §5.2, the E,, are the
eigenfunctions of the operator Y on A = K [x, x~ 1

g "™ ME, ifm >0,

(6.6.9) YE, = SEE,  ifm <0,
From (4.7.3) we have
(T; = b;(X)X;" = Xi(T; — (X)) (i=0,1)
in ', where X, = X, Xo = ¢'/2X"", and
by(X) = b(7], 75;¢'*X71),
b(X) = b(t1, 105 X).
Applying w: 55’—> ~f) gives
Y(Ty = bz, ;Y ™) = (T = b(t1, t: Y~ )Y ™!
and (since w(Tp) = T, 'X71)
q_l/zY_l(Tle_1 — b(rl/, ré;ql/zY) = ql/z(Tle_1 — b(‘[l/, ré;ql/zY).
So if we define
ag=T7"' X" —b(7, 75:¢'*Y),
a; =T —b(t;, ;Y )
we have
(6.6.10) Yoo =g oY, Yoy = V7L
The operators oy, a; on A are ‘creation operators’: namely
(6.6.11) We have
oE_y = 11 Epti (m > 0),
E, =1 "E_, (m > 0).
Proof Consider o E,,. Since
Yo E, =Y 'E, =q¢" Moy E,,

it follows from (6.6.9) that | E,, is a scalar multiple of E,,. To find the scalar
multiple, consider the coefficient of x™" in o} E,,. Now b(zy, 70; Y~HE, isa
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scalar multiple of E,,, hence does not contain x ~; also

1

Tix™ =1 x™ + (rlx -1 x4 — ro_l)(x"" —x™)/(x —x7h

—m

in which the coefficient of x
Next,

is rl_l. Hence o E,, = rl_lE_m.

1 —(m+1+k})

YaoE ,, =q 'Y 'E_, =¢q aoE_y,

so that by (6.6.9) oo E_,, is a scalar multiple of E,,, 1. As before, b(z], 7}; q 172y

E_,, is a scalar multiple of E_,,, hence does not contain x™*1 and

Tl—lelem — rl_lx*”‘*l
+(t1x - rflx_l + 19 — r(;l)(x””“] —x "N/ —x7h

in which the coefficient of x”*! is 7;. Hence aoE_,, = T Eppy1. O

From (6.6.11) it follows that
(6.6.12) E_, = (ajap)"(1)
form > 0, and
(6.6.13) E, =1, 'aplaog)" (1)

form > 1.
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Askey-Wilson polynomials: 6.5

basic representation: 4.3—4.5
basis of an affine root system: 1.2
braid group: 3.1

braid relations: 3.1

Bruhat order: 2.3

Cartan matrix: 1.2

classification of affine root systems: 1.3
constant term: 5.1

continuous g-ultraspherical polynomials: 6.3
creation operators: 5.10, 6.2, 6.6.

derivative: 1.1

dominance partial order: 2.6
double affine Hecke algebra: 4.7
double braid group: 3.4

dual affine root system: 1.2

dual labelling: 1.5

duality: 3.5,4.7

Dynkin diagram: 1.2
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gradient: 1.1

Hecke relations: 4.1
highest root: 1.4
highest short root: 1.4

indivisible root: 1.2
intertwiners: 5.7
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irreducible affine root system: 1.2

Koornwinder’s polynomials: 5.3

labelling: 1.5
length: 2.2

negative affine root: 1.2
norm formulas: 5.8, 5.9
normalized scalar products: 5.1

orthogonal polynomials Ej: 5.2

partial order on L': 2.7
positive affine root: 1.2

rank: 1.2

reduced affine root system: 1.2
reduced expression: 2.2
reflection: 1.1

Rodrigues formula: 6.3

root lattice: 1.4

saturated subset: 2.6

scalar product: 1.1, 5.1

shift operators: 5.9

special vertex: 1.2

symmetric orthogonal polynomials Pj: 5.3
symmetric scalar product: 5.1
symmetrizers: 5.6

symmetry: 5.2

translation: 1.1

weight function: 5.1
weight lattice: 1.4
Weyl group: 1.2
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