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Preface

The next generation of genomic, sensing, and imaging technologies has generated 
a deluge of DNA sequencing, transcriptomes, epigenomic, metabolic, physiological 

(ECG, EEG, EMG, and MEG), image (CT, MRI, fMRI, DTI, PET), behavioral, and clini-
cal data with multiple phenotypes and millions of features. Analysis of increasingly larger, 
deeper, more complex, and more diverse genomic, epigenomic, molecular, and spatiotem-
poral physiological and anatomical imaging data provides invaluable information for the 
holistic discovery of the genetic and epigenetic structure of disease and has the potential 
to be translated into better understanding of basic biomedical mechanisms and to enhance 
diagnosis of disease, prediction of clinical outcomes, characterization of disease progres-
sion, management of health care, and development of treatments. Big data sparks machine 
learning and causal revolutions and rethinking the entire health and biomedical data analy-
sis process. The analysis of big data in genomics, epigenomics, and imaging that covers 
fundamental changes in these areas is organized into two books: (1) Big Data in Omics and 
Imaging: Association Analysis and (2) Big Data in Omics and Imaging: Integrated Analysis 
and Causal Inference.

The focus of this book is association analysis and machine learning. The standard 
approach to genomic association analysis is to perform analysis individually, one trait and 
one variant at a time. The traditional analytic tools were originally designed for analyzing 
homogeneous, single phenotype, and common variant data. They are not suitable to cope 
with big heterogeneous genomic data due to both methodological and performance issues. 
Deep analysis of high-dimensional and heterogeneous types of genomic data in the sequenc-
ing era demands a paradigm shift in association analysis from standard multivariate data 
analysis to functional data analysis, from low-dimensional data analysis to high-dimensional 
data analysis, and from individual PC to multicore cluster and cloud computing.

There has been rapid development of novel and advanced statistical methods and com-
putational algorithms for association analysis with next-generation sequencing (NGS) in the 
past several years. However, very few books have covered their current development. This 
book intends to bridge the gap between the traditional statistical methods and computational 
tools for small genetic data analysis and the modern, advanced statistical methods, computa-
tional algorithms, and cloud computing for sequencing-based association analysis. This book 
will bring technologies for statistical modeling, functional data analysis, convex optimization, 
high-dimensional data reduction, machine learning, and multiple phenotype data analysis 
together. This book also aims to discuss interesting real data analysis and applications.
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As shown in Figure P.1, this book is organized into eight chapters. The following is a 
description of each chapter.

Chapter 1, “Mathematical Foundation,” covers (1) sparsity-inducing norms, dual norms, 
and Fenchel conjugate, (2) subdifferential, (3) proximal methods, (4) matrix calculus, 
(5) principal component analysis, (6) functional principal component analysis, (6) canoni-
cal correlation analysis, and (7) functional canonical correlation analysis. Various norms, 
subdifferentials and subgradients, and matrix calculus are powerful tools for developing 
efficient statistical methods and computational algorithms in genomic, epigenomic, and 
imaging data analysis. Detailed descriptions of these topics are not included in the standard 
statistical and genetics books. The coverage of these materials in this book will facilitate 
the training of a new generation of statistical geneticists and computational biologists with 
modern mathematics. Proximal methods have recently been developed for convex optimi-
zation, which provide foundations for regularized statistical methods, low-rank models, 
machine learning, and causal inferences. Both multivariate and functional principal com-
ponent analysis and canonical correlation analysis are major high-dimension data reduc-
tion methods and offer powerful tools for big genomic data analysis.

Chapter 2, “Linkage Disequilibrium (LD),” includes the standard two-locus LD mea-
sures, composite LD measures, haplotype reconstruction, and multilocus LD measures. 
Chapter 2 also introduces mutual information for two-locus measures, multi-information 
for multilocus measures of LD, and interaction information measures of genetic varia-
tion. Particularly, Chapter 2 presents canonical correlation as a measure of LD between 
two genomic regions and establishes the relationship between canonical correlation and 
joint information measure of LD. The LD patterns across the genomes in three populations, 
Africa, Europe, and Asia, using the 1000 Genome Project data are presented in Chapter 2.

Chapter 3, “Association Studies for Qualitative Traits,” addresses the major issues for 
association analysis of qualitative traits. The Hardy–Weinberg equilibrium, odds ratio, and 
disease models are first discussed in this chapter. Then, after introducing the widely used 
statistics for testing the association of common variants with a disease, we focus on the 
paradigm shift of association analysis from single marker analysis to the joint analysis of 
multiple variants in a genomic region for coping with next-generation sequencing data. 
Chapter  3 covers (1) multivariate group tests, including collapsing method, combined 

Chapter 1: Mathematical Foundation
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FIGURE P.1  Outline of this book.
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multivariate and collapsing (CMC) method, weighted sum method, score test and logis-
tic regression, and sequencing kernel association test (SKAT), and (2) functional associa-
tion analysis, including function principal component analysis for association tests and 
smoothed functional principal component analysis for association tests.

Chapter 4, “Association Studies for Quantitative Traits,” moves association analysis for 
qualitative traits to association analysis to quantitative traits. Basic concepts, models, and 
theories for quantitative genetics, which are genetic additive and dominance effects, genetic 
variance, and linear regression as a major model for genetic studies of a quantitative trait 
are first introduced. Then the discussion progresses from a simple linear regression model 
with a single marker to a multiple regression model with multiple markers. Both simple 
and multiple regression models are used to test the association of common variants with a 
quantitative trait. We show that these classical quantitative genetic models are not suitable 
for rare variants. To cope with next-generation sequencing data, we shift our attention to 
gene-based quantitative trait association analysis. Three approaches to gene-based quan-
titative trait analysis, functional linear models, canonical correlation analysis, and kernel 
approach, are introduced. To develop a general framework for quantitative genetic studies, 
we formulate an association analysis problem as an independent test in a Hilbert space and 
use a dependence measure to quantify the level of association of the genetic variant with 
the quantitative trait.

Chapter 5, “Multiple Phenotype Association Studies,” focuses on an association analysis 
of multiple traits. Three major approaches are commonly used to explore the association 
of genetic variants with multiple correlated phenotypes: multiple regression methods, inte-
gration of P-values of univariate analysis, and dimension reduction methods. Chapter 5 
will cover pleiotropic additive and dominance genetic models of multiple traits, multi-
variate marginal regressions, multivariate analysis of variance, multivariate multiple linear 
regression models, multivariate functional linear models for gene-based genetic analysis 
of multiple traits, both multivariate and functional canonical correlation analysis for gene-
based genetic pleiotropic analysis, principal component analysis for phenotype dimension 
reduction, and dependence measures for association tests of multiple traits. Chapter 5 also 
presents two novel statistics: quadratically regularized canonical correlation analysis and 
quadratically regularized principal component analysis for genetic analysis of multiple 
traits. In Chapter 5, the connection among regression, canonical correlations, and kernel 
methods for association analysis of multiple traits are explained.

Chapter 6, “Family-Based Association Analysis,” considers family-based designs for 
association analysis. Population-based sample design is the current major study design for 
many association studies. However, many rare variants are from recent mutations in pedi-
grees. The inability of common variants to account for most of the supposed heritability 
and the low power of population-based tests for the association of rare variants have led 
to a renewed interest in family-based design with enrichment for risk alleles to detect the 
association of rare variants. It is increasingly recognized that analyzing samples from popu-
lations and pedigrees separately is highly inefficient. It is natural to unify population and 
family study designs for association studies. This chapter focuses on the statistical methods 
for a unified approach to the genetic analysis of both qualitative and quantitative traits. 
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Chapter 6 will cover (1) kinship coefficient, genome similarity matrix, and heritability; 
(2) mixed linear models for both single quantitative trait and multiple quantitative traits 
with common variants; (3) mixed functional linear models for both single and multiple 
quantitative traits with rare variants; (4) a unified general framework for sequence-based 
association studies with pedigree structure and unrelated individuals; and (5) family-based 
genome information content and functional principal component analysis statistics for 
pathway analysis.

Chapter 7, “Gene–Gene and Gene–Environment Interaction Analysis,” investigates 
statistical methods for the detection of gene–gene and gene–environment interaction. 
Disease development is a dynamic process of gene–gene and gene–environment interac-
tions within a complex biological system. Gene–gene and gene–environment interactions 
are ubiquitous. The interactions hold a key for dissecting the genetic structure of complex 
diseases and elucidating the biological and biochemical pathway underlying the diseases. 
The current paradigm for gene–gene and gene–environment interaction is to study pair-
wise interaction between two single markers and is designed for identifying interaction 
between common variants. Chapter 7 will first review the odds ratio, disequilibrium, and 
information measure of gene–gene and gene–environment interaction and introduce the 
relative risk, odds ratio, and disequilibrium and information measure–based statistics for 
testing the gene–gene and gene–environment interaction. The classical statistical methods 
for gene–gene and gene–environment interaction detection are designed for common vari-
ants; they are not suitable for rare variants and next-generation sequencing data. To deal 
with next-generation sequencing data, Chapter 7 will also cover the current development 
of gene-based gene–gene and gene–environment interaction analysis: function regression 
models for single quantitative trait, multivariate function regression models for multiple 
quantitative traits, canonical correlation analysis for both single and multiple quantitative 
traits, and functional logistic regression for qualitative traits.

Chapter 8, “Machine Learning, Low-Rank Models, and Their Application to Disease Risk 
Prediction and Precision Medicine,” covers the core part of data science and machine learn-
ing. It includes both discriminant analysis and penalized discriminant analysis, support 
vector machine, kernel support vector machine, sparse support vector machine, multitask 
and multiclass support vector machine, classical penalized and network-penalized logis-
tic regression, low rank models with both generalized cost functions and generalized 
constraints, generalized canonical correlation analysis, canonical correlation analysis for 
classification, unsupervised and supervised dimension reduction, and sufficient dimension 
reduction. Chapter 8 will also investigate the application of machine learning and feature 
selection to disease risk prediction and precision medicine.

Overall, this book introduces state-of-the-art studies and practice achievements in 
genomic and multiple phenotype data analysis. It sets the basis and analytical platforms for 
further research in this challenging and rapidly changing field. The expectation is that the 
presented concepts, statistical methods, computational algorithms, and analytic platforms 
will facilitate the training of next-generation statistical geneticists, bioinformaticians, and 
computational biologists.
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1

C h a p t e r  1

Mathematical Foundation

1.1 � SPARSITY-INDUCING NORMS, DUAL NORMS, 
AND FENCHEL CONJUGATE

In this section, we introduce several important concepts, including norms, dual norms, and 
Fenchel conjugate and its dual and subdifferential, which play an important role in optimi-
zation with sparsity-inducing penalties and genomic and epigenomic data analysis.

Definition 1.1  (Norm)

A norm ‖x‖ of an element x in a space is a mapping from the space to R with the following 
three properties:

	 (1)	‖x‖ > 0, if x ≠ 0; ‖x‖ = 0, if x = 0.
	 (2)	‖λx‖ = |λ|‖x‖, for any λ ∈ R.
	 (3)	‖x + y‖ ≤ ‖x‖ + ‖y‖ for any elements x, y in the space.

As examples, we introduce several widely used norms.

Example 1.1   L2 norm

Consider a vector, x = [x1, x2,  … , xn]T. The Euclidean norm (L2 norm) is defined as

	
x x x x

i

n

i
T

2

1

2= =
=
å .
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We can show

	 (1)	Positivity: ‖x‖2 ≥ 0, and when x ≠ 0, ‖x‖2 > 0.

	 (2)	Positive scalability: || || || ||l l l l l lx x x x x x x x
T T T

2
2

2= ( ) = = = .
	 (3)	Triangular inequality: Using the Cauchy–Schwarz inequality xTy ≤ ‖x‖2‖y‖2, 

we have

	 || || || || || || || ||x y x y x y x x x y y y x y x
T T T T+ = +( ) +( ) = + + £ +( ) = +2 2 2

2
22 ||| ||y 2 .

Example 1.2   L1 norm

An L1 norm of x is defined as
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We can show that L1 is a norm. In fact, we have

	 (1)	|| ||x xi
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Example 1.3   L∞ and LP norms

Other popular norms include the L∞ norm and LP norm. The L∞ norm and LP norm 
are respectively defined as

	
|| || , , and || ||x x x x xn p

i

n

i
p

p

¥

=

= ¼{ } =
æ

è
çç

ö

ø
÷÷åmax .1

1

1

We can similarly show that L∞ and LP satisfy the requirements of norm definition 
(Exercise 1.1).

Now we use a simple example to compare the magnitudes of the above defined norms.

Example 1.4

Let x = [3, 3,  … , 3]T. Then, we have

	 || ||x n1 3= ,
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	 || ||x n2 3= ,

	 || || andx np
p= 3
1

,

	 || ||x ¥ = 3.

Next we introduce the vector norm–induced matrix norm.

Definition 1.2  (Induced matrix norm)

The vector norm ‖⋅‖ induced matrix norm is defined as

	
|| ||

|| ||

|| ||
A

Ax

x
=

ì
í
î

ü
ý
þ

sup .
	

(1.1)

We first check that the induced matrix norm defined in Equation 1.1 is a norm:

	 (1)	‖A‖ > 0 if A ≠ 0.

	
(2)
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The induced matrix norm has very useful properties:

	 (1)	‖I‖ = 1.
	 (2)	‖Ax‖ ≤ ‖A‖‖x‖.
	 (3)	‖AB‖ ≤ ‖A‖‖B‖.

In fact, we can show that

	
(1)
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(2)	By definition, || ||
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Now we illustrate how to calculate the L1, L2, Lp, and L∞ induced matrix norms.
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Example 1.5 

	
(1)
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(2)
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where λj are the eigenvalues of the matrix ATA.
We first prove (1). By definition, we have
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|| ||

1

1

üü
ý
ï

þï
= åmax .

j
i

ija

Suppose that a aij
ji

ij
i

0 =å åmax . Take x0 = [0,  … , 1,  … , 0]T, where 1 is located 

at the j0 position. Then, we have || ||
|| ||

|| ||
A

Ax

x

a
a ai

ij

ij
j

ij
ii

1
0 1

0 1

0

01
³ = = =

å å å
� �

max .
 

Therefore, we have || ||A a
j

ij
i

1 = åmax .

Formula (2) can be similarly proved. Now we prove (3). By definition, ‖A‖2 is 
defined as

	
|| ||

|| ||

|| || || ||
A

Ax

x

x A Ax

x

T T

2
2

2 2

=
ì
í
î

ü
ý
þ
=

é

ë
ê
ê

ù

û
ú
ú
=sup sup sup

lxx x

x

T

|| ||2

ì
í
ï

îï

ü
ý
ï

þï
£ lmax .

Suppose that ATAxmax = λmaxxmax. Then, we have || ||
|| ||

|| || || ||
A

Ax

x

x A Ax

x

T T

2
2

2 2

³ = =max

max

max max

maxl
lmax max

max
max

|| ||

|| ||

x

x
2

2

= , which implies that

	 || ||A 2 = lmax .

Next we introduce other widely used matrix norms.

1.1.1 � “Entrywise” Norms

Entrywise norm of the matrix is defined as

	
|| ||A ap

i j

ij
p p= æ

è
ç

ö

ø
÷åå

1

.
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1.1.1.1 � L2,1 Norm
The L2,1 norm is defined as the sum of the Euclidean norm of the columns of the matrix

	
|| ||A a

j i

ij2 1
2

1

2

, .=
æ

è
çç

ö

ø
÷÷å å

The L2, 1 norm can be generalized to Lp, q norm.

1.1.1.2 � Lp, q Norm
The Lp, q norm of the matrix is defined as

	

|| ||A ap q

j i

ij
p

q p q

,

/

.=
æ

è
çç

ö

ø
÷÷

é

ë

ê
ê

ù

û

ú
úå å

1

1.1.2 � Frobenius Norm

The Frobenius norm of the matrix, a very useful norm in numerical analysis, is defined as

	
|| || TraceA a A AF

i j

ij
T= = ( )åå 2

.

	
(1.2)

1.1.2.1 � l1/l2 Norm
A gene consists of multiple SNPs and a pathway consists of multiple genes. The multiple 
SNPs or multiple genes can form groups. A gene or a pathway can be taken as a unit in the 
analysis. We can select or remove jointly all the variables in the group. To explicitly explore 
the group structure, we define a l1/l2 norm as a group norm. Let a set of indices, {1,  … , p}, be 
divided into a set if nonoverlapping groups G and (wg)g ∈ G be some strictly positive weights. 
An l1/l2 norm is defined as (Bach et al. 2011)

	
W x w x w x

g G

g g

g G

g

gj

gj( ) = =
Î Î
å å å|| ||2

2 .

	
(1.3)

We can show that the l1/l2 norm is a norm. In fact, it satisfies the following conditions:

	 (i)	 If x ≠ 0, then there exists at least one g0 ∈ G such that ‖xg0‖2 > 0. Thus, Ω(x) ≥ 
wg0‖xg0‖2 > 0.

	 (ii)	 Ω(λx) = ∑gwg‖λxg‖2 = |λ|∑gwg‖xg‖2 = |λ|Ω(x).

	(iii)	 Ω(x + y) = ∑gwg‖(x + y)g‖2 ≤ ∑gwg(‖xg‖2 + ‖yg‖2) = Ω(x) + Ω(y).
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The l1/l2 norm can be generalized to an l1/lq norm:

	
W x w x

g G

g g q( ) =
Î
å || || .

	
(1.4)

1.1.3 � Overlapping Groups

Rich structures exist in the data. In the previous section, we introduce nonoverlapping 
group structure. Now we consider overlapping group structure. Overlapping groups are 
defined as groups that share at least one variable. Figure 1.1 shows one-dimensional over-
lapping group, two-dimensional overlapping group, and hierarchical and directed acyclic 
graph (DAG) structures.

In Figure 1.1a, group 1 overlaps with group 2, group 2 overlaps with group 3, and group 
3 overlaps with groups 2 and 4. The data can be organized on a two-dimensional space. 
Figure 1.1b shows that group 3 covers groups 1 and 2, and group 2 covers group 1. In the 
tree and graph structure, the variables correspond to the nodes of the tree or graph. The 
node and its ancestors are overlapped.

The l1/l2 and l1/lq norms defined for nonoverlapping groups can also be used for overlap-
ping groups. When some of groups overlap, Equations 1.3 and 1.4 still define a norm because 
all covariates should be included in at least one group (Obozinski et al. 2011). The l1/l2 and 
l1/lq norms can be used for hierarchical variable selection and structure sparsity (Bach 2010; 
Jenatton et al. 2011). The precise effect of the penalty for group norm is to set the groups of 
variables to zero and not to select them. When groups are not overlapped, setting the norms of 
the subgroups to zero implies to leave the other full groups of variables to nonzero. However, in 
the presence of group overlapping, setting the norm of one group to zero shrinks all its variates 
in the group to zero, even if some variables belong to other groups. We plot Figure 1.2a with 
four overlapping groups of variables to illustrate this. We assume that the norms ‖XG1‖2 = 0 and 
‖XG3‖2 = 0. These penalties remove all variables in groups 1 and 3 and maintain the remaining 
variables in groups 2 and 4, which are neither in group 1 nor in group 3. In other words, we can-
not select entire groups of variables. We only can select the variables in the set

	 G G G G
c c c

1 3 1 3∪ ∩( ) = ( ) ( ) .

321

1 2 3 4
(a)

(b)
4 5

1

2 3

(d)

4 6

5

1

2

3
(c)

FIGURE 1.1  (a) One-dimensional overlapping sequences. (b) Two-dimensional overlapping struc-
ture. (c) Tree structure. (d) Directed acyclic graph structure.
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In practice, we often want to select entire groups of variables. For example, as Figure 1.2b 
shows, the variable x belongs to both groups G1 and G2. We want to remove the group G2 
and select the group G1; the variable x in the group G1 can still be selected, even if the group 
G2 is to be removed. To achieve this, we need to introduce latent variables to independently 
represent variables in the different groups. Let V v g

g G
= ( )

Î
 be a set of latent variables such 

that vg ∈ Rp and support of vg ⊂ g. In other words, we assume

	 " Î = Ïg G v j gj
G, , .0 if

We decompose the vector space X as a sum of latent variables whose support is included in 
each group:

	
X v

g G

g=
Î
å .

	
(1.5)

The formula (1.4) is then reduced to

	
W∪ x w v

g G

g
g

q( ) =
Î
å || || .

	
(1.6)

Unlike the penalty Ω(x) enforcing the group G2 of variables to be zero, the variable 
x belonging to the group G2 should be zero; for the penalty Ω∪(x) enforcing the group G2 of 
variables to be zero, the variable x in the group G1 can be nonzero (Figure 1.2). Since decom-
position (1.5) is not unique, we minimize the Ω∪(x) over V :

	
W∪ x w v X v

v R
g G

g
g

q

g G

g

p G
( ) = =

Î
Î Î

´ å åmin , . . .
� �

|| || s t

	
(1.7)

Ω∪(x) defined in Equation 1.7 is referred to as the latent group lasso norm.

G1

G2

G3 0
= + ++ +

0

0

0
0

0

G4

G1

G2

G3

G4

(a) (b)

||XG1|| = 0

0 V1

V2

V3

V4

0
||XG3|| = 0

FIGURE 1.2  (a) Effect of penalty for group norms. (b) Latent decomposition of the data.
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Next we prove that Ω∪(x) is a norm. Indeed, we can prove this through the following:

	 (i)	 If x ≠ 0, then there exists a g0 such that vg0 ≠ 0, which implies that Ω∪(x) ≥ wg0‖vg0‖q > 0.

	 (ii)	 W∪( ) min min
| | | |

l l lx v v
v R v X

g

qg G v R v X

g

qp G g
g G

p G g
g G

=
å

=
åÎ = Î Î =´

Î
´

Î
å gg G

x
Îå = l W∪( ).

	
(iii)

	
W∪( ) min min

| | | |
x y v v

v R v X
x
g

y
g

qg G v R v Xp G g
g G

p G g
g G

+ =
å

+ £
Î = Î Î =´

Î
´

Î
å åå

+

£ +

Îå v v

x y

x
g

q
y
g

qg G

UW W∪( ) ( ).

1.1.4 � Dual Norm

For a given norm ||.||, a dual norm, denoted by ‖⋅‖∗, is defined as

	
|| ||

|| ||
y

y x

x

T

* =max .

We can show that the dual norm satisfies three conditions of the norm:

	 (i)	 || ||
|| ||

y
y y

y

T

* ³ > 0, if y ≠ 0.

	 (ii)	 If λ > 0, then || ||
|| || || ||

|| ||l
l

l ly
y x

x

y x

x
y

T T

* *= = =max max .

	(iii)	 || ||
|| || || || || ||

y z
y z x

x

y x

x

z x

x

y x
T T T T

+ =
+( )

= +
æ

è
ç

ö

ø
÷ £* max max max

||| || || ||
|| || || ||

x

z x

x
y z

T

+ = +* *max .

By definition of dual norm, we have

	

y x

x

y x

x
y

T T

|| || || ||
|| ||£ = *max .

Multiplying both sides of the above inequality by ‖x‖, we obtain yTx ≤ ‖x‖‖y‖∗, which is a 
generalization of the Cauchy–Schwartz inequality.

Example 1.6 

	 (1)	The norm dual to the L2 norm is itself. In fact, by the traditional Cauchy–

Schwartz inequality, we have || ||
|| ||

|| || || ||

|| ||
|| ||y

y x

x

x y

x
y

T

* = £ =max
2

2 2

2
2. Taking x0 = y, 

we have || ||
|| ||

|| ||y
y y

y
y

T

* ³ =
2

2. Therefore, we obtain ‖y‖∗ = ‖y‖2.



Mathematical Foundation    ◾    9

	 (2)	The norm dual to the L∞ norm is the L1 norm. Similarly, we have yTx =  

∑jyjxj ≤ ∑j|xj||yj| ≤ max(|xj|)∑j|yj| ≤ ‖x‖∞‖y‖1, i.e., || ||
|| ||

|| ||y
y x

x
y

T

1 ³ =
¥

*max . 

Taking
 
x = sign(y), we obtain

 
|| ||

|| ||
|| ||y

y sign y

sign y

y
y

T
j j

*
¥

³
( )

( )
= =
å

1
1. Combining 

the above two inequalities, we have ‖y‖∗ = ‖y‖1.
	 (3)	The norm dual to the L1 norm is the L∞ norm. It is clear that yTx = ∑jyjxj ≤  

∑j∣xj‖yj‖ ≤ max(|yj|)∑j|xj| ≤ ‖x‖1‖y‖∞, which implies that ‖y‖∗ ≤ y∞. On the other 
hand, suppose that at j0, we have ‖y‖∞ = |yj0|. Taking x0 = [0,  … , yj0…, 0]T, we can 

obtain
 
|| ||

|| ||
y

y x

x

y

y
y y

T
j

j
j* ¥

³ = = =0

0 1

2
0

0

0 . Combining the above two inequalities,
 

we obtain ‖y‖∗ = ‖y‖∞.
	 (4)	The norm dual to Lp is the Lq norm. Now we prove this.

It is well known that yTx ≤ ‖x‖q‖y‖p, which implies that ‖y‖∗ ≤ ‖y‖p. On the other 

hand, taking x y j
q

j
= -å

1

1 , we obtain || ||
|| ||

|| ||y
y x

x

y

y

y y
T

q

j
j
p

j
j
p q

j
p

j

p
p* ³ =

æ
è
ç

ö
ø
÷

= æ
è
ç

ö
ø
÷ =

å
å

å1

1

.

 
Thus, combining the above two inequalities, we prove that the norm dual to Lp is the 
Lq norm.

1.1.4.1 � The Norm Dual to the Group Norm
Proposition 1.1

The dual norm Ω∗(y) of the group norm Ω(x) satisfies

	
W W*

Î

*( ) = ( )y
w

y
g G g

gmax ,
1

	
(1.8)

where Ω∗(yg) = ‖yg‖p if the group norm is defined by the l1//lq norm in Equation 1.4.
It is clear that

	

y x y x y x
y

w
w xT

g G

g
T

g

g G

g g

g G

g

g
g g

g

£ £ =

£

Î Î
*

Î

*å å å|| || || ||
|| ||

|| ||

max
ÎÎ

*

Î
Î

*

å =
( ) ( )

G

g

g g G

g g
g G

g

g

y

w
w x

y

w
x

|| ||
|| || max ,

W
W

which implies that W
W*

Î

*

( ) £ ( )
y

y

wg G

g

g

max .
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Let g0 denote
 

W
W

*

Î

*( )
= ( )y

w w
y

g

g g G g
g

0

0

1
max

 
and x = [0,  … , xg0

,  … , 0]T. Then, we have
 

W
W W

W
W*

Î

*( ) ³ ( ) = ( ) = ( )y
y x

x

y w x

w x w
y

xg
T

g

g

g
T

g g

g g g G g
g

g0 0

0

0 0 0

0 0

1
max 00

0

1( )
( ) = ( )

Î

*

W
W

x w
y

g g G g
gmax . Therefore, 

combining the above two inequalities, we obtain W W*

Î

*( ) = ( )y
w

y
g G g

gmax
1 .

The results can be extended to the latent group lasso norm. Similarly, we can prove 
Proposition 1.2.

Proposition 1.2

The dual norm Ω∗(y) of the latent group lasso norm Ω(x) satisfies (Exercise 1.3)

	
W W*

Î

*( ) = ( )y
w

y
g G g

gmax .
1

	
(1.9)

Proposition 1.3

Dual to the dual norm is the original norm. Let Ω(x) be the original norm, Ω∗(y) be 
the dual norm of the norm Ω(x), and Ω∗∗(x) be the dual to the dual norm Ω∗(y). Then, 
Ω∗∗(x) = Ω(x).

Proof.

We sketch the proof as follows. By def﻿inition of dual norm of the norm Ω(x), 
we have

	 x y x y y xT £ ( ) ( ) "*W W , , ,

which implies that

	
W

W
W**

*( ) = ( )
ì
í
ï

îï

ü
ý
ï

þï
£ ( )x

x y

y
x

y

T

sup .
	

(1.10)

On the other hand, suppose that W
W

* ( ) = ( )
y

x y

x

T
0

0

. Then, we have

	
W

W W
W**

*( ) ³ ( )
=

( )
= ( )x

x y

y

x y

x y x
x

T T

T0
0 0

0 0
0

/
.

1.1.5 � Fenchel Conjugate

A function is often represented as a locus of points (x, f(x)). However, in some cases, it 
is more convenient to represent the function as an envelope of tangents. A tangent is 
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parameterized by the slope z and the intercept f ∗(z), which is referred to as Fenchel conju-
gate. Formally, the Fenchel conjugate of a function is defined as

	
f z x z f x

x f

T*

Î
( ) = - ( ){ }sup .

dom 	
(1.11)

Example 1.7  Norm function

Let f(x) = ‖x‖. Then, f ∗(z) = I‖z‖∗ ≤ 1(z), where I is an indicator function. In fact, by defi-
nition, we have

	
f z x z x

x f

T*

Î
( ) = -{ }sup .

dom

|| ||

Consider two cases: (1) ‖z‖∗ ≤ 1 and (2) ‖z‖∗ > 1.
First, we consider ‖z‖∗ ≤ 1.
By Cauchy–Schwarz inequality, we have

	 x z z x x z z xT T£ { } =* *|| || || || and || || || ||sup .

Therefore, (1.11) can be reduced to 

	
f z x z

x f

*

Î
*( ) = -( ){ } £sup

dom

|| || || || 1 0

when ‖z‖∗ ≤ 1, which implies

	 f z z*
*( ) = £0 1, .when || || 	 (1.12)

Now we consider ‖z‖∗ > 1. By definition of dual norm, we have

	
|| ||

|| || || ||
z

z x

x

z x

xx

T T

* =
ì
í
î

ü
ý
þ
=sup .0

0

Let x = λx0. Then, we have

	

f z x z x

x
x z

x

x f

T

x f

T

*

Î

Î

( ) = -{ }

= -
æ

è
ç

sup

sup

dom

dom

|| ||

|| ||
|| ||

l 0
0

0

1
öö

ø
÷

ì
í
ï

îï

ü
ý
ï

þï

= -( ){ }®¥
Î

*sup .
x f

x z
dom

|| || || ||l 0 1
	

(1.13)
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Combining Equations 1.12 and 1.13, we obtain

	
f z

z* *( ) =
£

¥
ì
í
î

0 1|| ||

otherwise.	
(1.14)

Example 1.8

A general quadratic curve f x x AxT( ) = 1

2
 where A is a symmetric matrix and its 

inverse exists.

Let F z x x AxT T= - 1

2
. Then, differentiating F with respect to x, we obtain

	
¶
¶

= - =F

x
z Ax 0,

which implies that x = A−1z. Therefore, we have

	
f z z A z z A AA z z A zT T T* - - - -( ) = - =1 1 1 11

2

1

2
.

Example 1.9   lp Norms f x
p

x p( ) == 1
|| ||

Let F x z
p

xT p= - 1
|| || . Differentiating F with respect to x yields

	

¶
¶

= - =-F

x
z x

x

x
p|| ||

|| ||
1 0,

which implies that

	 z x x p= -|| || 2 .	 (1.15)

Taking ||.|| on both sides of the above equation, we obtain

	 || || || ||z x p= -1

or

	 || || || ||x z p= -
1

1 .	 (1.16)

Substituting Equation 1.16 into Equation 1.15 yields

	 x z z
p

p=
-

-
-|| ||

2

1 .
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Thus, we obtain

	

f z x z
p

x

z z
p

z

x

T p

p

p

p

p

*

-
-
- -

( ) = -
ì
í
î

ü
ý
þ

= -

sup
1

1
2

1 2

|| ||

|| || || || || || 11

1

1
1

1
1

1

= -
æ

è
ç

ö

ø
÷

=

-

p
z

q
z

p

q

|| ||

|| || ,
	

(1.17)

where q

p

=
-

1

1
1 .

1.1.6 � Fenchel Duality

In many cases, the Fenchel conjugate of the objective functions has closed forms and can be 
easily computed. The primal problems are often transformed to the dual problems that can 
be much easily solved.

Consider this primal problem:

	

minimize

subject to

f x f x

x X X

1 2

1 2

( ) - ( )
Î ∩ ,

where f1 : Rn → (−∞, ∞] and f2 : Rn → [−∞, ∞).
Suppose that y = u; the primal problem can be further transformed to

	

minimize

subject to

f y f u

y u

1 2( ) - ( )
= .

Multiplying the Lagrange multiplier to the constraint y = u and adding it to the objective 
function, we obtain

	

q z f y f u u y z

z u f u z y f

y u

T

u

T

y

T

( ) = ( ) - ( ) + -( ){ }
= - ( ){ }- -

min

min max

,
1 2

2 11

2 1

y

f z f z

( ){ }
= ( ) - ( )*

* .
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The dual problem is then defined as

	

f q z

f z f z

z

z

*

*
*

= ( )

= ( ) - ( ){ }
max

max .2 1

In general, by duality we have

	
max min .

z x
f z f z f x f x2 1 1 2*

*( ) - ( ){ } £ ( )- ( ){ }

Under an optimal condition that there is no duality gap, we have

	
max min .

z x
f z f z f x f x2 1 1 2*

*( ) - ( ){ } = ( )- ( ){ }

Let f1(x) = f(x) and f2(x) =  − λ‖x‖. By definition of Fenchel conjugate, we obtain

	

f z z x x

z
x x

T

x

T

2* ( ) = - -( ){ }

= -
-

æ
è
ç

ö
ø
÷ -

é

ë
ê
ê

ù

û
ú
ú

inf

inf

x
|| ||

|| ||

l

l
l

ìì
í
ï

îï

ü
ý
ï

þï

= -
-

æ
è
ç

ö
ø
÷ -

é

ë
ê
ê

ù

û
ú
ú

ì
í
ï

îï

ü
ý
ï

þï

= -

l
l

l
l

sup
x

T
z

x x

z

|| ||

**

*

*
=

£
-¥ >
ì
í
î

0 || ||

|| ||

z

z

l
l

which implies that

	
max } max min{ .

z z x
f z f z f z f x f x2 1 1 2*

*

£

*( ) - ( ) = - ( ) £ ( ) - ( ){ }
* l

We prove the following proposition.

Proposition 1.4  Fenchel Duality theorem

If f ∗(z) and ‖z‖∗ are the Fenchel conjugate of a convex and the differentiable function f(x) 
and the dual norm of ‖x‖, respectively, then we have

	
max min .
|| ||

|| ||
z x

f z f x x
*£

*- ( ) £ ( ) +{ }
l

l

Quality holds when the domain of function f(x) has a nonempty interior.
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The difference between the left and right terms in the above inequality is referred to as a 
duality gap. The duality gap denotes the difference between the value of the primal objec-
tive function f(x) + λ‖x‖ and a dual objective function −f ∗(z). Duality gaps are important 
in convex analysis. It offers an upper bound between the current value, a primal objective 
function, and the optimal value, which can be used as a criterion for stopping iteration.

Given a current iterative x, calculating a duality gap requires information on the value 
of dual variable z. Recall that f z x z f x

x

T* ( ) = - ( ){ }sup . z∗ = ∇f(x∗) is the unique solution 

to the dual problem. Making ‖z‖∗ to satisfy ‖z‖∗ ≤ λ, we set z
f x

f x=
Ñ ( )

æ

è
çç

ö

ø
÷÷Ñ ( )

*
min 1,

|| ||

l . 

Then, we calculate a duality gap:

	 Gap || ||= ( )+ + ( )*f x x f zl .

When a gap is less than a prespecified error ε, i.e., Gap ≤ ε, iteration stops.
The function f(f) often takes the form f(x) = φ(Wx), where φ : Rn → R and W is a design 

matrix. For example, the cost function for linear regression is of the form

	 j Wx Y Wx( ) = -|| ||2
2 ,

where Y and W are observations and Wx are predictions. The Fenchel conjugate of φ is easy 
to compute. In this case, the primal optimization problem can be rewritten as

	

min

. . .

,x R u Rp n
u x

u Wx

Î Î
( ) +

=

j l|| ||

s t

Similar to Proposition 1.4, Proposition 1.5 specifies the Fenchel dual problem for the above 
specific case.

Proposition 1.5

Let j a a j* ( ) = - ( ){ }sup
u

Tu u . The Fenchel dual of the above primal problem is

	

max

. . .
a

j la

a

- ( )
£

*

*s t || ||W T 1

Proof.

Adding the product of the Lagrangian multiplier and the constraint to the objective 
function can obtain the Lagrangian dual of the primal problem:

	
min max

,x R u R R

T

p n n
u x Wx u

Î Î Î
( ) + + -( )

a
j l la|| ||
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or

	
min max .

,x R u R R

T T

p n n
u u x Wx

Î Î Î
( ) - + +( )

a
j la l a|| ||

It is clear that

	

min max

max min

,x R u R R

T

R u R

T

p n n

n n

u u

u u

Î Î Î

Î Î

( ) -

= - ( ) - ( ){ }
=

a

a

j la

la j

mmax max

max .
a

a

la j

j la
Î Î

Î

*

- ( ) - ( ){ }
= - ( )

R u R

T

R

n n

n

u u

Next we consider min max
,x R u R R

T

p n n
x Wx

Î Î Î
+( )

a
l a|| || , which can be reduced to

	

max min

max min

,a

a

l a

l a

Î Î Î

Î Î

+( )
= ( ) - -

R x R u R

T

R x R

T

n p n

n p

x Wx

Wx

|| ||

||xx

Wx x
R x R

T

R x R

n p

n p

||

|| ||

( )( )
= - -( ) -{ }
= - -

Î Î

Î Î

max min

max max

a

a

l a

l WW x x

I z

T T

R
Wn

T

a

l
a a

( ) -{ }
= ( )

Î £*

|| ||

max ,
1

where
 
I z

W
W

T

T|| ||

|| ||

otherwisea

a
*£

*( ) = £
-¥

ì
í
ï

îï
1

0 1

.
Therefore, we obtain

	
min max max

,x R u R R

T T

Rp n n n
u u x Wx

Î Î Î Î

*( ) - + +( ) = - ( )
a a

j la l a j la|| ||

when ‖WTα‖∗ ≤ 1.

1.2 � SUBDIFFERENTIAL
The concept of subdifferential for nonsmooth convex functions was introduced and devel-
oped by Moreau and Rockafellar (Mordukhovich and Nam 2017). A subdifferential is an 
extension of the traditional differential of a smooth convex function to a nonsmooth convex 
function. The major difference between the standard derivative of a differentiable function 
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and the subdifferential of a convex function at a given point is that the subdifferential is a 
set of “derivatives,” which reduces to a standard derivative if the function is differentiable.

1.2.1 � Definition of Subgradient

A vector g ∈ Rn is a subgradient of function f : Rn → R at x if for all y (Figure 1.3)

	 f y f x g y xT( ) ³ ( ) + -( ).	 (1.18)

Figure 1.3 shows that the function at point x is not differentiable; there is more than 
one subgradient, g1, g2, …, at point x.

Subdifferential: The set of subgradients of f(x) at point x is referred to as the subdiffer-
ential of f(x) at x and is denoted by ∂f(x).

Example 1.10   Absolute value: f(x) = |x|

For x > 0, ∂f(x) = 1, and for x < 0, ∂f(x) =  − 1. At x = 0, for y > 0 and g ≤ 1, we have 
gy ≤ y = |y|, and for y ≤ 0 and g ≥  − 1, we have gy ≤  − y = |y|. Combining the above two 
inequalities yields |y| ≥ gy, where |g| ≤ 1. In other words, ∂f(0) = [−1, 1]. Summarizing 
the above results, we have

	

¶ =

>
-
-[ ]

<
=

ì

í
ï

î
ï

x

x

x

x

1 0

1

1 1

0

0, .	

(1.19)

g1

g2

x y

g1(y – x)f(x)

f(y)

y – x

g2(y – x)

FIGURE 1.3  Concept of a subdifferential of a nondifferential function.
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Example 1.11   L2 norm ‖x‖2

For x ≠ 0, by calculus, we have ¶
¶

=
|| ||

|| ||

x

x

x

x
2

2

. For x = 0, by Cauchy inequality, we have

	 g y g y y gt £ £ " £|| || || || || || || ||2 2 2 2 1, .

Therefore, the subdifferential of the L2 norm ‖x‖2 is given by

	

¶ =
¹

£{ } =

ì

í
ï

î
ï

|| || || ||

|| ||

x

x

x
x

g g x
2 2

2

0

1 0.	

(1.20)

Example 1.12

Maximum of functions f(x) = max(f1(x), f2(x)), where both f1(x) and f2(x) are convex 
and differentiable (Figure 1.4).

The subdifferential of function f(x) is given by

	

¶ ( ) =
( ) ( ) > ( )
( )

( ) ( )éë ùû

( ) < ( )

¢

¢

¢ ¢

f x

f x f x f x

f x

f x f x

f x f x

f

1 1 2

2

2 1

1 2

, 11 2x f x( ) = ( )

ì

í
ïï

î
ï
ï .

	

(1.21)

1.2.2 � Subgradients of Differentiable Functions

If f(x) is convex and differentiable at x, then ∂f(x) = ∇f(x). Conversely, if f(x) is convex and 
its subgradient is unique, i.e., ∂f(x) = {g}, then f(x) is differentiable at x and g(x) = ∇f(x).

1.2.3 � Calculus of Subgradients

Similar to the traditional calculus, we can develop calculus of subgradients that describe the 
rules for calculate subgradients.

f(x)

f2(x) f1(x)

z

FIGURE 1.4  Subdifferential of maximum of functions.
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1.2.3.1 � Nonnegative Scaling
For α > 0, we have αf(y) ≥ αf(x) + (αg(x))T(y − x), where g(x) ∈ ∂f(x). Therefore, ∂(αf(x)) = 
α∂f(x).

1.2.3.2 � Addition
Suppose that f(x) = f1(x) +  …  + fk(x), where f1(x),  …  , fk(x) are convex functions. Then, we 
have

	 ¶ ( ) = ¶ ( ) +¼+¶ ( )f x f x f xk1 .

1.2.3.3 � Affine Transformation of Variables
Suppose that f(x) is convex and h(x) = f(Ax + b). Then, ∂h(x) = AT∂f(Ax + b).

In fact, by definition of subgradient, we have

	

f Ay b f Ax b g Ay b Ax b

f Ax b A g A y x

T

T T

+( ) ³ +( )+ + - -( )
³ +( )+ ( ) -( )( ) ,

where g ∈ ∂f. Thus, we have ∂h(x) = AT∂f(Ax + b).

1.2.3.4 � Pointwise Maximum
Suppose that f1(x),  …  , fk(x) are convex functions. Define function f(x) = max {f1(x),  … , fk(x)}. 
Then, a subdifferential of function f(x) at x is given by

	 ¶ ( ) = ¶ ( ) ( ) = ( ){ }f x f x f x f xi iCo |∪ ,	 (1.22)

i.e., convex hull of union of subdifferentials of “active” functions where fi(x) = f(x) at x.
Assume that fm(x) = f(x) and g ∈ ∂fm(x). By definition of subgradient, we have

	 f y f y f x g y x f x g y xm m
T T( ) ³ ( ) ³ ( ) + -( ) = ( ) + -( ) ,	 (1.23)

i.e., g ∈ ∂f(x).
Suppose I = {i| fi(x) = f(x)}. Then, it follows from Equation 1.23 that

	

f y f y f y

f x g y x f x

i I

i

i I

i i

i I

i i i
T

( ) = ( ) ³ ( ) ³

= ( )+ -( )éë ùû = ( )
Î Î

Î

å å
å

l l

l ++ ( ) -( )
Î
å
i I

i i
T

g y xl .

Let g = ∑i ∈ Iλigi. Then, g is a subdifferential of the function f(x) at x. In other words, a con-
vex hull of union of subdifferentials of “active” functions is subdifferential of the function 
f(x) at x.
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Example 1.13  Maximum of differentiable functions

Suppose that f1(x),  …  , fk(x) are convex and differentiable functions and f(x) = max 
{f1(x),  … , fk(x)}. Then,

	 ¶ ( ) = Ñ ( ) ( ) = ( ){ }f x f x f x f xi iCo | .

Example 1.14   l1-norm

The l1-norm

	 || ||x x xk1 1= +¼+

is a nondifferentiable convex function. The function ‖x‖1 can be expressed as

	 || ||x S xT
1 = { }max ,

where S = [s1,  … , sk]T, si = {−1, 1}, i = 1,  …  ,k.
To find an active function STx = ‖x‖1, we can chose

	

s

x

x

x

i

i

i

i

=
>

-
-

<
=

ì

í
ï

î
ï

1 0

1

1 1

0

0, .

The function STx is differentiable. Its unique subgradient is S. Let g = [g1,  … , gk]T = S. 
The subdifferential that is the convex hull of all subgradients can be generated by

	 ¶ = £ ={ }¥|| || || || , || ||x g g g x xT
1 11 .

Figure 1.5 plots the subdifferential of the function f(x) = ‖x‖1 = |x1| + |x2| at three points 
(0, 0), (0, 1), and (2, 2).

1 1

1
1

(1,1)

–1

∂f (0,0) ∂f (0,1) ∂f (2,2)

f (x) = ||x||1= |x1| + |x2|

FIGURE 1.5  Subdifferential of function ‖x‖1.
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1.2.3.5 � Pointwise Supremum
The results in Section 1.2.3.4 can be extended to the supremum over an infinite number of 
convex functions. We consider

	
f x f x

A
( ) = ( ){ }

Î
sup ,
a

a

where the function fα(x) is subdifferentiable. Suppose that β ∈ A and fβ(x) = f(x). Let g ∈ ∂fβ(x). 
Then, g ∈ ∂f(x). The subdifferential of function f(x) can be represented by

	 ¶ ( ) = ¶ ( ) ( ) = ( ){ }f x f x f x f xCo |∪ a a .	 (1.24)

Example 1.15  Maximum eigenvalue of a symmetric matrix function

Consider a symmetric matrix function: A(x) = A0 + x1A1 +  …  + xkAk. Let f(x) = λmax(A(x)). 
The function f(x) can be expressed as the pointwise supremum of a convex function:

	
f x A x y A x y

y

T( ) = ( )( ) = ( )
=

lmax sup .
2

1

Now calculation of a subdifferential of the maximum eigenvalue of the symmetric matrix 
function is transformed as the calculation of the subdifferential for the pointwise supremum 
of the convex function. Define an index set A = {y‖y ∈ Rk, ‖y‖2 ≤ 1}. Function fy(x) = yTA(x)y 
can be expressed as

	 f x y A x y y A y x y A y x y A yy
T T T

k
T

k( ) = ( ) = + +¼+0 1 1 .	 (1.25)

The function fy(x) is differentiable with gradient

	 Ñ ( ) = ¼éë ùûx y
T T

k

T
f x y A y y A y1 , , .

To identify active function fy(x) = yTA(x)y, we compute an eigenvector y with the largest 
eigenvalue λmax(A(x)), normalized to have a unit norm. The subdifferential of the function 
f(x) = λmax(A(x)) is given by

	 ¶ ( ) = Ñ ( ) ( ) = ={ }f x f x A x y y yx yCo |, |, || ||lmax .2 1 	 (1.26)

1.2.3.6 � Expectation
Consider convex function f(x, z) and its expectation, f(x) = Ez[f(x, z)]. Let g(x, z) ∈ ∂f(x, z). 
Then, g(x) = Ez[g(x, z)] ∈ ∂f(x). To see this, by definition of subgradient of the function f(x, z) 
with respect to x, we have

	 f y z f x z g x z y x
T

, , , ( ) ³ ( ) + ( ) -( ).	 (1.27)
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Taking expectation on both sides of the inequality (1.27), we obtain

	 E f y z E f x z E g x z y xz z Z

T
, , , ( )éë ùû ³ ( )éë ùû + ( )éë ùû -( ).	 (1.28)

Let f(x) = Ez[f(y, z)], f(x) = Ez[f(x, z)], and g(x) = Ez[g(x, z)]. Then, inequality (1.28) is 
reduced to

	 f y f x g x y x
T( ) ³ ( ) + ( ) -( ) ,

which shows that g(x) ∈ ∂f(x).

1.2.3.7 � Chain Rule
Similar to calculus, chain rule is also an important tool in subdifferential calculus. We con-
sider the following composite function:

	

f t

f t t

f t t

k x

k x x

k

n

m n
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n

( ) =
¼( )

¼( )

é
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ê
ê
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û

ú
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ú
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¼( )1 1

1

1 1, ,

, ,

, ,

� �,

xx x

h x f k x

p1, ,
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¼( )

é

ë

ê
ê
ê

ù

û

ú
ú
ú

( ) = ( )( ), .

Then, the chain rule for subdifferential is given by

	 ¶ ( ) = ¶( ) ¶( )h x f k ,

where

	

¶ =
¶ ¼( )

¶ ¼( )

é

ë

ê
ê
ê

ù

û

ú
ú
ú

¶ =
¶ ¼( )

¶
f
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k

k x xn

m n

p1 1

1

1 1, ,

, ,
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� �
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ê
ê
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ù

û
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.

We briefly show the chain rule as follows. By definition of subgradient, we have

	

h y f k y f k x f k y k x

h x f k y x

( ) = ( )( ) ³ ( )( ) + ¶( ) ( ) - ( )( )
³ ( ) + ¶( ) ¶( ) -( ).

1.2.3.8 � Subdifferential of the Norm
Let Ω(w) be a norm. Then, its differential is given by

	
¶ ( ) =

Î ( ) £{ } =

Î ( ) = = ( )

*

*
W

W

W W
w

z R z w

z R z z w w

p

p T

; if

and otherwise

1 0

1

,

; ..

ì
í
ï

îï 	
(1.29)



Mathematical Foundation    ◾    23

Proof.

There are two cases: (i) w = 0 and (ii) w ≠ 0. We first consider (i) w = 0. Using 1 ≥ Ω∗(z) 
and Cauchy inequality, we obtain

	

W W W

W

u z u

z u

w z u w

T

T

( ) ³ ( ) ( )
³
³ ( )+ -( )

*

,

which implies {z| Ω∗(z) ≤ 1} ∈ ∂Ω(w).
Next consider case (ii) w ≠ 0. Let zTw = Ω(w) and Ω∗(z) = 1. By Cauchy inequality, 

we obtain

	

z u z u

u

T £ ( ) ( )
£ ( )

*W W
W ,

which implies that

	 W W Wu w z w z u w z u wT T T( ) ³ ( ) - + = ( )+ -( ).

Therefore, by definition of subdifferential, {z| Ω∗(z) = 1  and  zTw = Ω(w)} is the subdif-
ferential ∂Ω(w) of Ω(w).

1.2.3.9 � Optimality Conditions: Unconstrained
In standard calculus, it is well known that the necessary and sufficient condition for a dif-
ferentiable function f(x) to reach its optimal value at point x∗ is ∇f(x∗) = 0. This optimality 
condition can be extended to a nondifferentiable convex function. Let

	 f x f x
x

*( ) = ( )inf .

A necessary and sufficient optimality condition is

	 0Î¶ ( )*f x .	 (1.30)

Proof.

By definition of subdifferential, we have

	

f x f x g x x

f x x x

T

T

( ) ³ ( ) + -( )
= ( ) + -( )

* *

* *0 ,

which implies 0 ∈ ∂f(x∗).
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1.2.3.10 � Application to Sparse Regularized Convex Optimization Problems
We consider widely used convex optimization problems:

	
min ,
w R p

f w w
Î

( ) + ( )lW
	

(1.31)

where f : Rp → R is a convex differentiable function and Ω(w) : Rp → R is a sparsity-inducing 
norm such as ‖w‖1, ‖w‖2, ‖w‖p, and ‖w‖∞.

The optimality conditions discussed in Section 1.2.3.9 can be applied to solving the con-
vex optimization problem.

Proposition 1.6

Necessary and sufficient conditions for convex optimization problems (1.30) (Bach et al. 2012).

A vector w for problems (1.30) is optimal if and only if - Ñ ( )Î¶ ( )1

l
f w wW , where

	
¶ ( ) =

Î ( ) £{ } =

Î ( ) = = ( )

*

*
W

W

W W
w

z R z w

z R z z w w

p

p T

; if

and otherwise

1 0

1

,

; ..

ì
í
ï

îï 	
(1.32)

To apply optimality conditions (1.30), we first calculate the subdifferential of the func-
tion F(w) = f(w) + λΩ(w). Since we assume that the function f(w) is differentiable, we have 
∂f(w) = ∇f(w), which implies ∂F(w) = ∇f(w) + λ∂Ω(w), where ∂Ω(w) is given by Equation 
1.29. Using optimality condition (1.30), we obtain

	 0Î¶ ( ) = Ñ ( )+ ¶ ( )F w f w wl W ,

which leads to

	
- Ñ ( )Î¶ ( )1

l
f w wW .

	
(1.33)

Proposition 1.6 can be easily applied to the lasso for regression. Let X ∈ Rn × p be the observed 
predictor matrix such as an SNP matrix, or a gene expression matrix, and y ∈ Rn be a vec-
tor of phenotypes. The regression function for fitting the data X and Y is || ||y Xw- 2

2, where 
w ∈ Rp is a vector of regression coefficients. The lasso is to seek the vector of regression coef-
ficients w that minimizes

	
min .

w n
y Xw w

1

2
2
2

1|| || || ||- +l
	

(1.34)

Applying Proposition 1.6, we can obtain the optimality conditions for the lasso.
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Proposition 1.7  Optimality conditions for the lasso

A vector w is an optimal solution to the lasso (1.34) if and only if for every component wj 
of the vector w, j = 1,  …  , p,

	

X y Xw n w

X y Xw n w w

j
T

j

j
T

j j

-( ) £ =

-( ) = ( ) ¹

ì
í
ï

îï

l

l

if

if

0

0sgn ,	
(1.35)

where Xj is the jth column vector of the matrix X.

Proof.

Let f w
n

y Xw( ) = -1

2
2
2|| || . To apply Proposition 1.6, we first calculate Ñ ( ) =f w   

- -( )1

n
X y XwT . Recall that the dual norm of Ω(w) = ‖w‖1 is Ω∗(z) = ‖z‖∞ and
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£ =
= = ¹

ì
í
î

¥

¥
W w

z z w

z z z w w wT

,
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|| || if

|| || || || if
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1 01

Applying Proposition 1.6, we obtain

	
1

n
X y Xw wT

l
-( )Î¶ ( )W ,

or

	 (i)	 if wj = 0, X y Xw X y Xw nj
T T-( ) £ -( ) £¥|| || l and

	 (ii)	 if wj ≠ 0, then we have ‖XT(y − Xw)‖∞ = nλ and wTXT(y − Xw) = nλ‖w‖1.

Note that 
w

w
wj

j
j= ( )sgn . Thus, for (ii), we have X y Xw n wj

T
j-( ) = ( )l sgn .

It is well known that if a and b are nonnegative real numbers and p and q are positive 

real numbers such that 1 1
1

p q
+ = , then ab

a

p

b

q

p q

£ + . This inequality can be extended 

to a high-dimensional and functional space, which will be very useful for duality 
study (Borwein and Lewis, 2006).

Proposition 1.8  Fenchel–Young inequality

Let w ∈ Rp be a vector, f : Rp → R be a function, and z be a vector in the domain of f ∗. The 
following inequality holds:

	 f w f z w zT( ) + ( ) ³*
	 (1.36)
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To see this, by the definition of Fenchel conjugate, we have

	 f z w z f wT* ( ) ³ - ( ).

Moving f(w) from the right side of the above inequality to its left side yields f(w) + f ∗(z) ≥ wTz.

1.3 � PROXIMAL METHODS
1.3.1 � Introduction

In modern genomic and epigenomic analysis, we often need to consider convex optimiza-
tion problems of the forms

	 min ,
w

f w w( ) + ( )lW 	 (1.37)

where f(w) is a convex differentiable function of p-dimensional vector of variables w and 
Ω(w) is a nonsmooth function, typically a nonsmooth norm. The objective function is a 
sum of a generic convex differentiable function and a nonsmooth function. The traditional 
Newton’s method is an efficient tool for solving an unconstrained smooth optimization 
problem but is not suited for solving a large nonsmooth convex problem. Proximal meth-
ods can be viewed as an extension of Newton’s method from solving smooth optimization 
problems to nonsmooth optimization problems (Bach et al. 2012; Parikh and Boyd 2014). 
In this section, we briefly introduce the basic principle and algorithms of the proximal 
methods. For details, we refer the readers to the monographs (Bach et al. 2012; Parikh and 
Boyd 2014).

To solve the optimization problem (1.37), at each iteration, we often expand the function 
f(w) in a neighborhood of the current iterate wt by a Taylor expansion:

	
f w f w f w w w

L
w wt t T t t( ) = ( ) +Ñ ( ) -( ) + -

2
2
2|| || ,

	
(1.38)

where L is an upper bound on the Lipschitz constant of gradient ∇f. Substituting Equation 
1.38 into the optimization problem (1.37), we obtain the reduced optimization problem:

	
min .
w R

t t T t t

p
f w f w w w

L
w w w

Î
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(1.39)

The Taylor expansion f w f w w w
L

w wt t T t t( ) +Ñ ( ) -( ) + -
2

2
2|| ||  can be reformulated as
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Using Equation 1.40, the optimization problem (1.39) can be reduced to

	
min .
w R

t t

p
w w

L
f w

L
w

Î
- - Ñ ( )æ
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÷ + ( )1

2

1

2
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l W

	
(1.41)

In the absence of nonsmooth term Ω(w), the approximate solution to the optimization 

problem (1.37) is w w
L

f wt t= - Ñ ( )1 . In the presence of nonsmooth term Ω(w), we use the 

optimization problem (1.41) to approximate the optimization problem (1.37). For the sake 
of convenience, we name the solution to the problem (1.41) as a proximal operator.

1.3.2 � Basics of Proximate Methods
1.3.2.1 � Definition of Proximal Operator
The proximal operator ProxΩ(u) of the function Ω(w) is defined by

	
Prox || ||W Wu w w u

w R p
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Î
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2

	
(1.42)

We often need to consider the penalty parameter for the penalty function Ω(w). Therefore, 
we extend the definition of the proximal operator to the scale function λΩ(w):
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w
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(1.43)

The corresponding proximal operator for the optimization problem (1.41) is therefore 

denoted as Prox
L

l
W

w
L

f wt t- Ñ ( )æ
è
ç

ö
ø
÷

1 .

Consider an indicator function

	
WC w

w C

w C
( ) =

Î
+¥ Ï
ì
í
î

0

,

where C is a closed nonempty convex set. The proximal operator of ΩC(w) is

	
Prox || ||C

w C
Cu w u u( ) = - = ( )

Î
arg min ,

1

2
2
2 P

which is a Euclidean projection of point u onto C (Figure 1.6).
If we assume that Ω(w) is differentiable, then the proximal operator can be obtained by 

solving the following equation:

	
Ñ ( )+ -( ) =W u w u

1
0

l
,
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which implies that

	 w u u= - Ñ ( )l W .

This suggests that the proximal operator can be searched by gradient methods with λ as a 
role similar to step size in a gradient method.

1.3.3 � Properties of the Proximal Operator

We briefly introduce the major properties of proximal operators, which are useful for evalu-
ating the proximal operator of a given function (Parikh and Boyd 2014).

1.3.3.1 � Separable Sum
If Ω is separable across two sets of variables, i.e., Ω(x, y) = ϕ(x) + ψ(y), then

	 Prox , Prox , ProxW u v u v( ) = ( ) ( )éë ùûf y .	 (1.44a)

Proof.

To see this, by definition of the proximal operator of a function, we have
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FIGURE 1.6  Euclidean projection of point u onto the region C.
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In general, the formula (1.44) can be extended to a sum of n functions. Suppose that 

W Wx xi i
i

n

( ) = ( )
=å 1

. Then, we have

	 Prox ProxW Wu v
i

ii( )( ) = ( ).	 (1.44b)

If a complex function can be decomposed into a number of separable simple func-
tions, evaluating the proximal operator of a separable can be carried out by indepen-
dently and easily evaluating the proximal operators of each simple function.

1.3.3.1.1 � Postcomposition  If Ω(w) = αφ(w) + b and α > 0, then ProxλΩ(u) = Proxαλφ(u).
Indeed, by definition of proximal operator of function Ω(w), we have
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1.3.3.1.2 � Precomposition (1)  If Ω(w) = φ(αw + b) with α ≠ 0, then
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(1.46)

Proof.
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1.3.3.1.3 � Precomposition (2)  If Ω(w) = φ(Qw), where Q is orthogonal, then we have

	 Prox Proxl ljW u Q QuT( ) = ( ).	 (1.47)

Proof.

Let x = Qw, then w = QTx because Q is an orthogonal matrix. By definition of proximal 
operator, we have
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1.3.3.1.4 � Affine Addition  If Ω(w) = φ(w) + aTw + b, then

	 Prox Proxl lj lW u u a( ) = -( ).	 (1.48)

Proof.

It is clear that
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1.3.3.1.5 � Regularization  Let �l l
rl

=
+1

. If W w w w a( ) = ( ) + -j r
2

2
2|| || , then
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Proof.

By definition of the proximal operator of W w w w a( ) = ( ) + -j r
2

2
2|| || , we have
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Fixed point theory plays a fundamental role in devising algorithms for optimization. To 
employ fixed point theory for developing proximal operator-based algorithms for convex 
optimization, we need to explore the following property that connects the proximal opera-
tor with the fixed point.

1.3.3.1.6  Fixed Points  The necessary and sufficient conditions that the point w∗ minimizes 
the function Ω(w∗) are if and only if

	 w wf
* *= ( )Prox .	 (1.50)

Proof (Parikh and Boyd 2014).

We first show that if w∗ minimizes Ω(w), then w∗ = Proxf (w∗). Suppose that w∗ is the 
minimizer of the function Ω(w). Then, we have

	
W W W Ww w w w w w w w w( ) + - ³ ( )+ - ³ ( )+ - =* * * * * *1

2

1

2

1

2
2
2

2
2

2
2|| || || || || || ww*( ) ,

which implies w∗ minimizes Proxf (w∗), i.e., w∗ = Proxf (w∗).
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On the contrary, w∗ = Proxf (w∗), i.e., w∗ minimizes

	
W w w w( ) + - *1

2
2
2|| || .

	
(1.51)

Assume that Ω(w) is subdifferentiable. Then, w∗ minimizes Equation 1.51, which implies

	 0Î¶ ( )+ -( )* * *W w w w .

Therefore, we show that

	 0Î¶ ( )*W w .	 (1.52)

Equation 1.52 indicates that Ω(w) ≥ Ω(w∗) for all w. Therefore, w∗ minimizes Ω(w).

1.3.3.1.7  Moreau Decomposition  We introduce Moreau decomposition as a generaliza-
tion of orthogonal decomposition. Let Ω∗(z) be the Fenchel conjugate of the function 
Ω(x). We have

	 v v v= ( )+ ( )*Prox ProxW W .	 (1.53)

Proof.

Let

	 u v= ( )ProxW .	 (1.54)

In other words, u is the minimizer of the function

	
W w w v( ) + -1

2
2
2|| || .

Therefore, we obtain

	 0Î¶ ( )+ -W u u v

or

	 v u u- Î¶ ( )W .	 (1.55)
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Using Fenchel–Young inequality, we obtain the following equality:

	 W Wu v u v u u
T( ) + -( ) = -( )* .	 (1.56)

Taking a subdifferential on both sides of the equality (1.56), we obtain

	 u v uÎ¶ -( )*W .	 (1.57)

Recall that
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From Equation 1.57, we obtain the following equation:

	 0Î¶ -( )-*W v u u,

which implies that

	 v u v- = ( )*ProxW .	 (1.58)

Adding Equations 1.54 and 1.58 yields

	 v v v= ( )+ ( )*Prox ProxW W .

1.3.3.2 � Moreau–Yosida Regularization
A very useful tool for proximal operator analysis is the infimal convolution of closed con-
vex functions Ω(x) and Ψ(x) (Parikh and Boyd 2014). It is defined as
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x

inf .	 (1.59)

Infimal convolution can also be extended to a multiple-convex function:
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(1.60)

The Fenchel conjugate of infimal convolution satisfies the addition

	 W W W W W1 2 1Ä Ä¼Ä( ) = +¼+* * *
m m .	 (1.61)
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To see this, by definition of Fenchel conjugate, we have
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A quadratic function is an important function in convex optimization. Its convolution 
with other nonsmooth functions will smooth a nonsmooth function, and it plays an 
important role in convex optimization. Moreau–Yosida regularization or the Moreau 
envelope MλΩ of the function λΩ is defined as its informal convolution with the quadratic 

function 1
2

2
2||||× :
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(1.62)

When a function is nonsmooth, we can construct its Moreau envelope to transform the 
nonsmooth function Ω(x) to a smoothed form MλΩ(v).

It follows from Equation 1.62 that

	
M v v v vW W( ) = ( )( ) + ( ) -Prox ||Prox ||f f

1

2
2
2 ,

which states that the prox(v) gives the unique point reaching the infimum that defines the 
Moreau envelope.

Applying Equation 1.61 to the Moreau envelope MλΩ(v), we obtain
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Since M Ml lW W= ** , taking a Fenchel conjugate on both sides of Equation 1.63 yields
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(1.64)

In general, the conjugate function of a closed convex function is smooth; Equation 1.64 
shows that the Moreau envelope is smooth. Now we calculate the gradient of the Moreau 
envelope MλΩ(v).

Suppose that x y y v
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MλΩ(v), we have
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Therefore, taking a derivative of MλΩ(v) with respect to v yields

	

Ñ ( ) = -( )

= - ( )( )

v M v v x

v v

l

l

l

l

W

W

1

1
prox ,

	
(1.65)

or

	 proxl llW Wv v M vv( ) = - Ñ ( ).

A proximal operator is to seek points that minimize W x x v( ) + -1

2
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|| || , which can be 

obtained by taking the subdifferential
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which implies that

	 v I xÎ ¶ +( )( )l W ,

where variable x minimizes W x x v( ) + -1

2
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l
|| || , i.e., x = proxλΩ(v).
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Therefore, we obtain

	 proxl lW Wv x I v( ) = = ¶ +( ) ( )-1
.	 (1.66)

1.3.3.3 � Gradient Algorithms for the Calculation of the Proximal Operator
Using Equation 1.66, we can develop a gradient algorithm to calculate the proximal opera-
tor. When λ is small, by expansion, Equation 1.66 can be approximated by
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Taylor expansion is a useful tool for developing algorithms for the calculation of the proxi-
mal operator. The second-order Taylor expansion of the function Ω(v) is given by
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Then, the function W x x v( ) + -1
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(1.69)

To minimize W x x v( ) + -1

2
2
2

l
|| || , we take its gradient and set it equal to zero:
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(1.70)

Solving Equation 1.70 for x yields the proximal operator of the second-order approximation:
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(1.71)

The formula (1.71) is usually referred to as a Tikhonov-regularized Newton update. 
Equations 1.67 and 1.71 provide proximal operators of first- and second-order approxima-
tions of function Ω.

1.3.4 � Proximal Algorithms

Recall that we often need to solve the following optimization problem:

	 min ,
w

f w w( ) + ( )lW 	 (1.72)
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whose objective function is the sum of a differentiable function and a nondifferentiable func-
tion. In Section 1.3.1, we showed that the optimization problem (1.72) can be reduced to
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w R

t t
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w w
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which leads to introducing the proximal operator
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(1.73)

The corresponding proximal operator for the optimization problem (1.72) is therefore 

denoted as Prox
L

l
W

w
L

f wt t- Ñ ( )æ
è
ç

ö
ø
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1 . Now we introduce several algorithms, which solve 

the optimization problems via proximal operators (Parikh and Boyd 2014).

1.3.4.1 � Proximal Point Algorithm
The proximal point algorithm is defined as

	 u uk k+ = ( )1 proxlW ,	 (1.74)

where
k is the number of iterations
uk represents the kth iterate of the variable u

The proximal point algorithm can be simply viewed as a fixed point iteration algorithm or 
the standard gradient method that is applied to the Moreau envelope MΩ.

1.3.4.2 � Proximal Gradient Method
Consider a general optimization problem (1.72) in which the objective function can be split 
into one differentiable function f(w) and one nonsmooth function Ω(w). As we discussed 
before, the differentiable function f(w) can be expanded in a Taylor series around the cur-
rent solution. Then, the optimization problem (1.72) can be reduced to compute the follow-
ing proximal operator:
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This motivates the proximal gradient method:

	 u u f uk k k k
k

+ = - Ñ ( )( )1 proxl lW ,	 (1.75)

where λk > 0 is a step size.
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In theory, the step size can be chosen by Lipschitz constant. When ∇f is Lipschitz con-

tinuous with constant L, the fixed step size l lk

L
= Îæ

è
ç

ö
ø
÷0

1
,  is selected. But, in general, the 

Lipschitz constant L is unknown. In practice, the step size is selected by a “majorization-
minimization method” and a line search.

Majorization-minimization algorithms mean that we iteratively majorize the upper 
bound of the objective function and then minimize the majorization. Consider

	
ˆ .f u y f y f y u y u y

T
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l, || || with( ) = ( ) +Ñ ( ) -( ) + - >1

2
02

2

	
(1.76)

After some calculations, we know that

	
ˆ ˆ ˆ ˆ,f u u f u f u u f u u f u u I

T

l l l
l

, , and , , ( ) = ( ) Ñ ( ) = Ñ ( ) Ñ ( )( ) = -0
1

are a negative definite matrix, which implies f̂ u y f ul , ( ) ³ ( ) and the function f̂ u yl , ( ) is the 
upper bound of the function f(u).

The line search algorithm for selecting λ is given as (Parikh and Boyd 2014).

Algorithm 

Step 1: Given uk, λk − 1, and parameter α ∈ (0, 1), set λ = λk − 1.
Step 2: Repeat

	 (1)	Set proxz u f uk k= - Ñ ( )( )l lW .� (1.77)

	 (2)	Break if f z f z uk( ) £ ( )l̂ , .

	 (3)	Update λ = αλ.

Step 3: Return λk = λ, uk + 1 = z.

1.3.4.3 � Accelerated Proximal Gradient Method
To accelerate the proximal gradient algorithm, we can add an additional step to the algo-
rithm, which extrapolates the solution in the previous step. Specifically, we modify the 
proximal gradient algorithm as follows:

	

y u u u

u y f y

k k k k k

k k k k

+ -

+ + + +

= + -( )
= - Ñ ( )( )

1 1

1 1 1 1

w

llprox kW ,	

(1.78)
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where ωk(ω0 = 0) ∈ [0, 1] is an extrapolation parameter and λk is the step size, which can be 
similarly determined by algorithm (1.77). A simple choice for the extrapolation parameter is

	
wk k

k
=

+3
.

The software package TFOCS includes several implementations of the accelerated proximal 
gradient methods.

1.3.4.4 � Alternating Direction Method of Multipliers
The alternating direction method of multipliers (ADMM) attempts to split the objective 
function into two major parts: the differential objective function and the nondifferentiable 
objective function (Parikh and Boyd 2014). The ADMM is to combine dual decomposition 
and augmented Lagrangian methods for constrained optimization. Consider the optimiza-
tion problem (1.72):

	 min .
w

f w w( ) + ( )lW

To separate the differentiable objective function f(w) from the nonsmooth objective func-
tion Ω(w), we introduce new variables, z, and rewrite the unconstrained optimization prob-
lem (1.72) as a constrained optimization problem:

	

min

,

f w g z

w z

( ) + ( )
- =subject to 0 	

(1.79)

where g(z) = λΩ(z). In the problem (1.72), the variables are split into two sets of variables, w 
and z, and the consensus constraint that they must agree is introduced.

The augmented Lagrangian methods can be used to solve the problem (1.79):

	
L w z y f w g z y w z w zT
r

r
, , || ||( ) = ( ) + ( ) + -( ) + -

2
2
2 ,

	
(1.80)

where ρ > 0 is a penalty parameter and y ∈ Rn is a vector of dual variables associated with 
the constraint. The optimization problem (1.80) can be iteratively and separately solved as 
follows:

	
w L w z yk

w

k k+ = ( )1 arg min ,r , , 
	

(1.81a)

	
z L w z yk

z

k k+ += ( )1 1arg min ,r , , 
	

(1.81b)

	 y y w zk k k k+ + += + -( )1 1 1r .	 (1.81c)
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In (1.81a), Lρ is minimized over the primal variable w and is reduced to

	
w f w y w z w zk

w

k T k+ = ( ) + ( ) -( ) + -æ
è
ç

ö
ø
÷

1
2
2

2
arg min .

r
|| ||

	
(1.82a)

Similarly, the optimization problem (1.81b) can be reformulated as

	
z g z y w z w zk

z

k T k k+ + +( )= ( ) + ( ) -( ) + -æ
è
ç

ö
ø
÷

1 1 1
2
2

2
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r
|| ||

	
(1.82b)

Note that

	

y w z w z w z y w zk T k k k T( ) -( ) + - = - + ( ) -( )æ

è
ç

ö

ø
÷

=

r r
r
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2 2

2

2

2
2

2
2|| || || ||

ww z
y
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k

k- -
æ

è
çç

ö

ø
÷÷ -

( )
( )

r r
2

2

2
22

|| || .

Therefore, the optimization problems (1.82a) and (1.82b) can be reduced to

	
w f w w z

yk

w

k
k

+ = ( ) + - +
æ

è
ç
ç

ö

ø
÷
÷

1

2

2

2
arg min ,

r
r

	
(1.83a)

	
z g z w z
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è
ç
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arg min .
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(1.83b)

Let u y
=
r

 and t
r

= 1 . The optimization problems (1.81a), (1.81b), and (1.81c) will be reduced to

	
w f w w z uk

w

k k+ = ( ) + - +æ
è
ç

ö
ø
÷

1
2
21

2
arg min ,

t
|| ||

	
(1.84a)

	
z g z w z uk

z

k k+ +( )= ( ) + - +æ
è
ç

ö
ø
÷

1 1
2
21

2
arg min ,

t
|| ||

	
(1.84b)

	 u u w zk k k k+ + += + -1 1 1.	 (1.84c)

We use a proximal operator to rewrite algorithms (1.84a), (1.84b), and (1.84c) as

	 w z uk
f

k k+ = -( )1 prox t ,	 (1.85a)

	 z w uk
g

k k+ += +( )1 1prox t ,	 (1.85b)

	 u u w zk k k k+ + += + -1 1 1.	 (1.85c)
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1.3.4.5 � Linearized ADMM
Consider the problem

	

minimize

subject to

f w g z

Aw z

( ) + ( )
- = 0. 	

(1.86)

Again, we use the augmented Lagrangian to rewrite the problem (1.86) as

	
L w z y f w g z y Aw z Aw zT
r

r
, , || ||( ) = ( ) + ( ) + -( )+ -

2
2
2.

	
(1.87)

Linearizing the quadratic term, we obtain

	

r r

r

2
2
2|| ||Aw z Aw z Aw

A Aw z w

k k T

T k k
T

- » -( )
= -( )é

ë
ù
û .

	
(1.88)

Adding a new quadratic regularization term 1

2
2
2

m
|| ||w wk-  into Equation 1.88 yields

	
r

m
A Aw z w w wT k k

T
k-( )é

ë
ù
û + -1

2
2
2|| || .

	
(1.89)

Replacing r
2

2
2|| ||Aw z-  in Equation 1.87 by Equation 1.89, we obtain
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where u
y

=
r and l r

= 1 .

Therefore, we obtain

	
w w A Aw z uk k T k k k+ = - - +( )æ

è
ç

ö
ø
÷

1 prox fm
m
l

.
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Now we consider
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which implies

	 z Aw uk
g

k k+ += +( )1 1proxl .

In summary, the linearized ADMM is given by

	
w w A Aw z uk k T k k k+ = - - +( )æ

è
ç

ö
ø
÷

1 prox fm
m
l

,
	

(1.90a)

	 z Aw uk
g

k k+ += +( )1 1proxl ,	 (1.90b)

	 u u Aw zk k k k+ + += + -1 1 1.	 (1.90c)

1.3.5 � Computing the Proximal Operator

An essential step for proximal algorithms is to compute the proximal operators. Computing 
the proximal operators involves solving a convex optimization problem. We often can obtain 
the closed form for the solution to the convex optimization problem. However, even if the 
closed form for computing the proximal operator is not available, a generic optimization 
algorithm for the proximal operator computation is still useful (Parikh and Boyd 2014).

1.3.5.1 � Generic Function
In general, the problem we consider is

	

minimize || ||

subject to

W w w v

w C

( ) + -

Î

1

2
2
2

l
, 	

(1.91)

where w ∈ Rn and C is the set that defines the function Ω(w).
If C = Rn, then the problem (1.91) is unconstrained. The algorithms used for solving the 

problem (1.91) depend on the properties of the function Ω(w). If Ω(w) is differentiable, 
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then a wide range of methods such as gradient and Newton’s methods can be used. If Ω(w) 
is nonsmooth, then subgradient methods will be used to solve the problem.

If C is a set in a n-dimensional space and the problem (1.91) is constrained, the methods 
for unconstrained optimization can be adapted to projection methods. For example, if the 
function Ω(w) is differentiable, then the projected gradient methods can be used. For the 
nondifferentiable function Ω(w), the projected subgradient methods can be used. Next we 
briefly introduce methods for solving problem (1.91) with several specific functions.

1.3.5.1.1  Quadratic Functions  We assume a quadratic function W w w Aw w b cT T( ) = + +1

2
, 

with the nonnegative definite matrix A. To compute the proximal operator, we need to solve 
the problem

	
min .

w

T TF w w Aw w b c w v( ) = + + + -1

2

1

2
2
2

l

Taking gradient ∇wF(w) and setting it to zero yields

	
Aw b

w v+ + - =
l

0.
	

(1.92)

Solving Equation 1.92 for w, we obtain

	 w I A v b= +( ) -( )-l l1
.

Thus, the proximal operator is

	 proxl l lW v I A v b( ) = +( ) -( )-1
.	 (1.93)

We discuss three special cases:

	 (i)	 Assume A = 0. In this case, Equation 1.93 is reduced to

	 proxl lW v v b( ) = - .	 (1.94)

	 (ii)	 If Ω(w) = c, then we have

	 proxlW v v( ) = .	 (1.95)

	(iii)	 Consider W w w( ) = 1

2
2
2|| || . Its proximal operator is given by

	
proxl

l
W v v( ) =

+
1

1
.
	

(1.96)
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1.3.5.1.2  Smooth Functions  The optimization problems with smooth functions are easy to 
solve. We can use gradient or Newton’s methods to compute the proximal operators. The 
major step for Newton’s method to compute the proximal operators is to solve the following 
linear equation:

	 Hw g= - ,	 (1.97)

where H = ∇2Ω(w) and g = ∇Ω(w). The classical method for solving a system of linear 
equation (1.97) is to first factorize the Hessian matrix H into H = LLT and then transform 
Equation 1.97 to

	 LL w gT = - ,

which leads to the solution w =  − L−TL−1g.
Now we consider the specific structure of the matrix H:

	 H D zzT= + ,	 (1.98)

which is the sum of a diagonal matrix D ∈ Rn × n and a rank-one matrix zzT. We can easily 
compute the inverse of the matrix H:

	
H D

D zz D

z D z

T

T
- -

- -

-= -
+

1 1
1 1

11
.
	

(1.99)

Next we introduce a class of smooth functions whose Hessian matrix structure is the sum 
of a diagonal and a rank-one matrix:

	
W w f w b w
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(1.100)

Let
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Then, the gradient and the Hessian matrix of ∇wΩ(w) are respectively given by

	
Ñ ( ) = ( ) +

æ

è
çç

ö

ø
÷÷Ñ ( )+Ñ ( )¢

=
åw

i

k

i i w ww f w b w wW
1

a a b
	

(1.101)
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and
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(1.102)

Let

	
z f w b w D f w b
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Then, the Hessian matrix H can be expressed as

	 H D zzT= + .

Consider a fully separable function W Ww wi i
i

k

( ) = ( )
=å 1

. The proximal operator of the 
separable function Ω(w) is

	 prox prox , ,prox kl l lW W Wv v vk

T( ) = ( ) ¼ ( )éë ùû1 1 .

If Ωi(wi) =  − log(wi), then it is clear that

	
proxl

l
Wi v

v v
i

i i( ) = + +2 4

2
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(1.103)

For a nonsmooth function Ωi(wi) = |wi|, we have
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if
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l l

l
l
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(1.104)
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1.3.5.1.3 � Linear Constraints  Consider a quadratic problem:

	

minimize || ||

subject to

1

2
2
2x v

Ax b Cx d

-

= £, ,	

(1.105)

where A ∈ Rm × n, C ∈ Rp × n, and Ξ = {x ∈ Rn| Ax = b,Cx ≤ d}.
Dual method can be used to solve the quadratic problem (1.105). If we have a few con-

straints, the number of dual problems will be small. The dual method is to transform the 
high-dimensional primal problem to a low-dimensional problem with a few dual variables 
corresponding to the constraints in Ξ.

Dual method is to add the constraints in Ξ to the objective function, which leads to the 
following unconstrained optimization problem:

	
F x v Ax b Cx d

x

T T= - + -( ) + -( )min .
1

2
2|| || m h

	
(1.106)

Taking derivative ¶
¶
F

d
 and setting it to zero, we obtain

	
¶
¶

= - + + =F

x
x v A CT Tm h 0.

Solving this equation yields

	
x v

A

C

T

= -
é

ë
ê
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û
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(1.107)

Substituting x into Equation 1.106, we have

	
L A C Av b Cv dT T T Tm h m h m h, || ||( ) = - + + -( ) + -( )1

2
2
2 ,

where μ ∈ Rm and η ∈ Rp are dual variables. Then, the primal problem (1.105) is transformed 
to the dual problem:

	

maximize ,

subject to

L m h
h
( )
³ 0. 	

(1.108)

Let μ∗ and η∗ be the solution to the quadratic problem (1.108). The original solution x∗ in 
the problem (1.105) is given by

	 x v A CT T* = - * - *m h .	 (1.109)
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1.3.5.1.4  Equality Constraints  As a special case, we consider equality constraints. Assume 
Ξ = {x ∈ Rn| Ax = b}. In this case, the dual problem (1.108) is reduced to

	 maximize L m( ) ,	 (1.110)

where
 
L A Av bT Tm m m( ) = - + -( )1

2
2
2|| || .

Taking derivative 
¶ ( )
¶
L m
m

 and setting it to zero, we obtain

	 - = -AA Av bTm .	 (1.111)

If m < n and A has full rank, we can solve Equation 1.111:

	 m = -( ) -( )
-

AA Av bT 1
.

Equation 1.107 is then reduced to

	 PX v x v A AA Av bT T( ) = = - ( ) -( )
-1

.	 (1.112)

Next we introduce their applications to several special cases.
For the hyperplane, we only have one equality constraint:

	 X = ={ }w a w bT| .

Applying Equation 1.112 to the hyperplane, we obtain the projection onto the hyperplane:

	

PX = - ( ) -( )
= + -

-
v a a a a v b

v
b a v

a
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T T
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2
2|| ||

.
	

(1.113)

For the half space, we have one inequality constraint Ξ = {w| aTw ≤ b}. In this case, the 
Lagrangian function is

	
L w v a w b

w

Th h( ) = - + -( )min .
1

2
2
2|| ||

	
(1.114)

Taking a derivative of its objective function and setting it to zero, we obtain

	 w v a- + =h 0.	 (1.115)
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Solving Equation 1.115 for w yields

	 w v a= -h ,	 (1.116)

which leads to the Lagrangian function

	
L

a a
a v b

T
Th h h h( ) = - + ( )-

2
2 .

To solve the problem (1.108), we first take derive 
dL

d

h
h
( )  and set it to zero:
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d
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= + -( ) = 0.

The solution to the problem (1.108) is
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In other words, we have solution
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(1.117)

Thus, the solution follows from Equations 1.107 and 1.117:

	
PX v v

a v b

a
a

T

( ) = -
-( )

+

|| ||2
2

.
	

(1.118)

Finally, we consider the intervals Ξ = {w| l ≤ w ≤ u}. Its Lagrangian function is

	
L w v w u l w

w

T Th m h m, || ||( ) = - + -( )+ -( )min .
1

2
2
2

	
(1.119)

Solving this problem, we have

	 w v= - +h m,	 (1.120a)

	
L v u l vT Th m m h h m h m h m, || ||( ) = - + - + -( )+ - + -( )1

2
2
2 .

	
(1.120b)
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The dual problem is

	

maximize ,

subject to

L h m
h m

( )
³ ³0 0, .	

(1.121)

We calculate derivatives of the Lagrangian function with respect to η and μ:
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The conditions for the optimality include

	 h m h mi i i i i i i iw u l w-( ) = -( ) = ³ ³0 0 0 0, , , .	 (1.122)

The solutions to the problem (1.121) can be grouped into three cases:

	 (1)	vi ≤ li. If wi > li, which implies μi = 0 and wi = vi − ηi ≤ vi ≤ li, this leads to contra-
diction. Therefore, wi ≤ li. If wi < li, then ηi = 0, μi = 0, which implies wi = vi and 
¶ ( )
¶

<
¶ ( )
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<
L L

i i

h m
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h m
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, , 
0 0, . In this case, L(η, μ) will not reach maximum. If wi = li, then 

¶ ( )
¶

=
L

i

h m
m

,
0 and μi > 0. L(η, μ) will reach maximum. Therefore, the original solution 

is wi = li.

	 (2)	vi ≥ ui. If wi ≠ ui, then ηi = 0, 
¶ ( )
¶

¹
L

i

h m
h

, 
0, and wi = vi + μi ≥ vi ≥ ui > li. Thus, we have 

¶ ( )
¶

¹
L

i

h m
m

, 
0. Therefore, L(η, μ) will not reach maximum. wi = ui should hold.

	 (3)	li < vi < ui. If wi ≠ vi, from Equation 1.120a, we obtain that ηi ≠ μi, which implies that 
either ηi ≠ 0 or μi ≠ 0 or both ηi ≠ 0, μi ≠ 0. Suppose that ηi ≠ 0, then it follows from 
Equation 1.122 that wi = ui > vi > li. Thus, again from Equation 1.122, we obtain that 
μi = 0. Recall Equation 1.120a that wi = vi − ηi + μi = vi − ηi < vi < ui. This contradicts the 
assumption wi = ui. Therefore, we have wi = vi.

In summary, we prove that
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1.3.5.2 � Norms
The norm is a widely used class of function. Computing the proximal operator of the norm 
function is a key step for optimization with sparsity-inducing penalties. Suppose that 
Ω(w) = ‖w‖ is a general norm on Rn. In the Fenchel conjugate section, we showed that the 
Fenchel conjugate of ‖w‖ is an indicator function:

	
I

z
z|| ||

|| ||
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¥
ì
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î
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0 1

	
(1.124)

Before we compute the proximal operator of the norm function, we first extend Moreau 
decomposition (1.53) to a more general case:

	 prox prox /
/l l lW Wv v v( ) = - ( )* .	 (1.125)

Proof.

Now we give a brief proof.
Let

	 u v= ( )ProxlW .	 (1.126)

In other words, u is the minimizer of the function
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Using Fenchel–Young inequality, we obtain the following equality:
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Taking a subdifferential on both sides of the equality (1.128), we obtain
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It follows from Equations 1.127 and 1.128 that
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Recall that
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Let w v
0 =
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. Then, w0 must satisfy the equation
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From Equation 1.31, we obtain the following equation:
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Taking w v u
0 =

-
l

, Equation 1.132 is reduced to
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which implies Equation 1.133 ensures Equation 1.132 holds when we take w v u
0 =
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.
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Multiplying by λ on both sides of Equation 1.134 and adding Equation 1.126 results in
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Since Ω∗ is an indicator function, the proximal operator of Ω∗ is the projection of the 
point to the set

	 B w w= £{ }*
|| || 1 .
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Therefore, the proximal operator proxλΩ(v) is
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(1.136)

Equation 1.136 provides a tool to calculate the proximal operator of various norms.

1.3.5.2.1  l1-Norm  Recall that dual norm of the l1 norm is the l∞ norm. The l∞ norm is 
defined as ‖w‖∞ = max(|w1|,  … , |wp|). The unit ball is B = {wi‖wi‖ ≤ 1, ∀i ≤ p}, i.e., the unit 
ball of the l∞ norm is an n-dimensional hypercube of sidelength 2 [−1, 1]p. Using Equation 
1.123, we obtain the projection onto a hypercube:
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Using Equation 1.124, we obtain the proximal operator of the l1 norm:
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The proximal operator proxλ‖w‖1
(v) is an elementwise soft-thresholding operator.

1.3.5.2.2  l2-Norm  Consider the Euclidean norm in Rp. The Euclidean unit ball B is defined 
as B w w= £{ }|| ||

2

2
1 . The projection of point v onto the Euclidean unit ball B is given by
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To derive the Lagrangian function of the problem (1.138), we first minimize

	 min .
w

F w v w= - + -( )|| || || ||2
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Taking the derivative ¶
¶

F

w
 and setting it to zero, we obtain
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Solving Equation 1.140 for w, we obtain
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(1.141)

Consider two cases:

	 (i)	 ‖v‖2 ≤ 1. In this case
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		  We claim that η = 0. Otherwise, from the optimal condition for the problem (1.138) 
that h || ||w 2

2 1 0-( ) = , it must be ‖w‖2 = 1. However, from inequality (1.142), we con-
clude that when η > 0, we have ‖w‖2 < 1, which leads to the contradiction. Therefore, 
when ‖v‖2 ≤ 1, the solution is w = v.

	 (ii)	 ‖v‖2 > 1. In this case, the Lagrangian function of the problem (1.138) is
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		  The dual problem is

	
max .
h

h
³

( )
0

L

		  Taking derivative 
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 and setting it to zero yields
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(1.144)

		  Since 1 + η > 0, solving Equation 1.144, we obtain

	 1 2
2+ =h || ||v .	 (1.145)

		  Substituting Equation 1.145 into Equation 1.141, we obtain the projection
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In summary, the projection of point v onto the Euclidean unit ball B is
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Using Equation 1.136, we obtain the proximal operator of the Euclidean norm:
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The proximal operator of the Euclidean norm is often referred to as block soft thresholding.

1.3.5.2.3  l1 + l2-Norm  Consider a combination of the l1-norm and the Euclidean norm. 
It can be written as
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where γ > 0. Equation 1.148 is the elastic net regularization (Zou and Hastie 2005). Let 
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1.3.5.2.4  Group Lasso  Group lasso is a sum of l2-norm regularization. Let Φ be a partition 
of {1,  … , p}. Consider the function:
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Since the function Ω(w) is fully separable, using Equation 1.44b, we obtain

	

Prox Prox

Prox

|| ||

|| ||

l l

l

l

W Wu v

v

v

gi
g

w g

g

g

g

( )( ) = ( )
= ( )

= -
æ

è
ç

ö

ø

2

1
2
÷÷ ( )
+

vg by Equation 1 147. .
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1.4 � MATRIX CALCULUS
In many situations, it is necessary to obtain the partial derivatives of a function with respect 
to a vector or matrix of variables.

1.4.1 � Derivative of a Function with Respect to a Vector

Definition 1.3

Let f(x1,  … , xk) be a function of k real variables x1,  …  , xk. Define a vector:
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The derivative of the function f(x1,  … , xk) with respect to the vector x is defined as
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Example 1.16

Let f be a linear function of k real variables defined by f x a x a xi i
T( ) = =å i=

k

1
, where
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Then, we have
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Example 1.17

Let f be a quadratic form in the k real variables x1,  …  , xk defined by

	 f x x AxT( ) = ,
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Then, we have (1.153)
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1.4.2 � Derivative of a Function with Respect to a Matrix

Definition 1.4

Let f be a function of the m × n matrix defined by

	

X

x x

x x

n

m mn

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

11 1

1

�
� � �

�
.

We assume that each partial derivative 
¶
¶

f
xij  exists. The derivative of function f with respect 

to the matrix X, denoted by ∂f/∂X, is defined by
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Example 1.18

Consider the function f(X) = aTXb, where a is an m-dimensional vector of constants, b 
is an n-dimensional vector of constants, and X is an m × n dimensional matrix of the 
variables. Then, we have
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Proof.

The function f(X) can be rewritten as
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Example 1.19  (Exercise 1.5)

Let function f(X) be defined as f(X) = aTXa, where a is a k-dimensional vector of con-
stants and X is a k × k dimensional matrix of variables. Then
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1.4.3 � Derivative of a Matrix with Respect to a Scalar

Definition 1.5

Let Y be a k × k matrix with elements being a function of a scalar. The derivative of the 
matrix Y with respect to the scalar x is defined as
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Example 1.20

Let Y be a nonsingular k × k matrix of function of scalar β. Then, we have
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Proof.

Recall that

	 YY I- =1 .

Taking a derivative of matrix Y with respect to the scalar β on both sides of the above 
equation, we obtain
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Definition 1.6

Similarly, we can define the derivative of a vector function of a scalar as
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1.4.4 � Derivative of a Matrix with Respect to a Matrix or a Vector

Definition 1.7

Let
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The derivative of matrix Y with respect to X, denoted by ¶
¶

Y

X
, is defined as
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Example 1.21

Let Y
x x x x
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1.4.5 � Derivative of a Vector Function of a Vector

Let Y = [y1(x1,  … , xm),  … , yn(x1,  … , xm)]T. The derivative of a vector function with respect 
to a vector is defined as
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1.4.6 � Chain Rules

Next we introduce chain rules that are very useful in application of matrix calculus.

1.4.6.1 � Vector Function of Vectors
Define two vector functions of a vector:
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Then, we have
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1.4.6.2 � Scalar Function of Matrices
Let z = h(y) be a scalar function of matrix and y = f(x) be a matrix function of a scalar, where 
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The derivative dz

dx
 is given by
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1.4.7 � Widely Used Formulae

We extend some formulae from standard calculus to matrix calculus that are often used in 
practice. Let A, B, C, and  D be matrices and a, b, c, d, x, y, and  z be vectors.

1.4.7.1 � Determinants
Let |A| be the determinant of matrix A. Then,
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In fact, we can write
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where Aij is the cofactor of aij. By definition of the derivative of scale function with respect 
to matrix, we obtain
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Using Equation 1.159, we can easily obtain
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1.4.7.2 � Polynomial Functions

	 (1)	Linear functions
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	 (2)	Quadratic functions

		  Let F = (Ax + b)TC(Dx + e). Then
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1.4.7.3 � Trace
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(2)
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		  To see this, we first calculate F = Trace(ABC) = ∑i∑k∑jaikbkjcji. By definition of the 
derivative of a scale function with respect to a matrix, we obtain

	

¶
¶

=

¶
¶

¶
¶

¶
¶

¶
¶

é

ë

ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú

=

å

F

B

F

b

F

b

F

b

F

b

a c

n

n nn

i

i

11 1

1

1 1

�

� � �

�

ii

i

i ni

i

in i

i

in ni

T T

a c

a c a c

A C

�

� � �

�

å

å å

é

ë

ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú

=

1

1

.

	
(3)

		
¶
¶

( ) =
B

AB ATTrace .
�

(1.165)

Proof.
		  Let F = Trace(ABT) = ∑i∑jaijbij. Then, we have
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		  Similarly, we have
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		  Combining Equations 1.165 and 1.166, we obtain
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		  Now we introduce a formula involving inverse matrix.
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Let Δij be the matrix with 1 in the i, j position and zero elsewhere and W = A−1. By definition 
of the derivative of trace with respect to matrix, we have
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Specifically, we have
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1.5 � FUNCTIONAL PRINCIPAL COMPONENT ANALYSIS (FPCA)
Due to advances in sequencing technologies, sensing and communications, three major 
types of biological information—the digital information of the genomes, epigenomes, and 
environmental signals—are generated. Fast and cheaper next-generation sequencing (NGS) 
technologies will generate unprecedentedly massive (thousands or even tens of thousands of 
individuals) and high-dimensional (up to hundreds of millions) genomic and epigenomic 
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variation data. The application of mobile and new sensing technologies in health and well-
ness produces a deluge of physiological, imaging, and environmental data. Analyses of 
these extremely big and diverse types of datasets provide invaluable information for holistic 
discovery of the genetic and epigenetic structure of disease and for the prediction, preven-
tion, diagnosis, and treatment of disease but also pose great conceptual, analytical, and 
computational challenges.

Functional data analysis techniques can be used to meet these challenges. In this sec-
tion, we introduce FPCA for high-dimensional functional data reduction. We first review 
traditional multivariate principal component analysis (PCA) and functional principal com-
ponent analysis (FPCA). Then, we extend FPCA to smooth FPCA (SFPCA).

1.5.1 � Principal Component Analysis (PCA)
1.5.1.1 � Least Square Formulation of PCA
PCA is one of the oldest and most widely used tools for dimension reduction and visualiza-
tion. PCA intends to project high-dimensional data to a low-dimensional space with a few 
directions (axes) along which data variation is maximized. We consider p random vari-
ables X1 ,  …  , Xp. Assume that n samples are taken. The generated data matrix is denoted by 
X = [x1,  … , xn], where xi = [xi1, …xip]T and n is the number of samples. The goal of PCA is to 
seek the projection �V Rd nÎ ´  of the matrix X in a d-dimensional linear space with an ortho-
normal basis, �U R p dÎ ´ . In other words, we approximate the matrix X by L UV= � � , where 
�U  is called a matrix of principal component scores and �V  is called a matrix of principal 

components.
Let the rank of the matrix L be d and the rank of the matrix X be r. The singular 

value decomposition (SVD) of X is given by X = UΛVT, where U ∈ Rm × r, V ∈ Rn × r, and 
Λ = diag (σ1,  … , σr) with σ1 ≥  … σr > 0. Let Λ(d) = diag (σ1,  … , σd).

Theorem 1.1

L UV= � �  minimizes.

	 F X UV F= -|| ||� � 2
	 (1.170)

with rank of L = d, where �U U
d d= ( ) ( )L1 2/  and �V Vd

T

d
= ( )( )L1 2/  (Appendix 1A).

Theorem 1.1 shows that the matrix X can be best approximated by (U)dΛ(d)(VT)d under 
the Frobenius norm.

We define

	 x =U XT .

Then, its variance is given by

	 Var z( ) = L2 .
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This shows that the variance of the first principal component is the square of the largest 
single value of the matrix X, the variance of the second principal component is the square 
of the second largest single value of the matrix X, and so on, while all pairs of the principal 
components are uncorrelated.

1.5.1.2 � Variance-Maximization Formulation of PCA
PCA can also be interpreted as finding linear combinations of the variables called principal 
components, maximizing variance in the data. Consider the linear combinations
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where e e ei
T

i ip
T

= ¼éë ùû1, , , X = [X1,  … , Xp]T, and Yi = [yi1,  … , yin]. Since X1,  …  , Xp are random 
variables, Y1,  …  , Yp are also random variables.
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Equation 1.171 can be written in a matrix form:

	 Y EX= .	 (1.172)

Denote the variance–covariance matrix of the random vector X by
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The variance var(Yi) of the random variable Yi is then given by

	 var , , , .Y e e i pi i
T

i( ) = = ¼S 1

We want that the transformed variables y1,  …  , yp are uncorrelated, i.e.,

	 e ej
T

iS = 0.	 (1.173)
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The goal of the PCA is to seek e1,  …  , ep that maximize var(Y1),  …  , var(Yp) subject to the 
constraints:

	 e e e e j i i pi
T

i j
T

i= = < = ¼1 0 1, , , , , .	 (1.174)

The summation of the variances var(Y1),  …  , var(Yp) can be expressed as

	 i
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p
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i
TY e e E E

= =
å å( ) = = ( )

1 1

var .i TraceS S
	

(1.175)

The constraints (1.174) can be written in a matrix form:

	 E E IT = .	 (1.176)

Thus, the PCA can be mathematically formulated as the following optimization problem:

	

max

.
E

T

T

E E

EE I

Trace
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S( )
= 	

(1.177)

By Lagrange multiplier method, the constrained optimization problem (1.177) can be 
transformed into the following unconstrained optimization problem:

	 max ,
E

T TE E I EETrace TraceS L( )+ -( )( ) 	 (1.178)

Using formula (1.164), the optimal conditions for solving the optimization problem (1.178) are

	 S LE ET T= 	 (1.179)

or

	 Se e e e e e i pi i ii i ii i ii i ip p= +¼+ + + +¼+ = ¼- - + +l l l l l1 1 1 1 1 1 1, , , .	 (1.180)

Recall that

	 e ej
T

iS = 0,

which implies

	 lij j i= " ¹0, .

Therefore, the matrix Λ is diagonal and denoted by Λ = diag (λ1,  … , λp), and Equation 1.180 
is reduced to the following eigenequation:

	 Se e i pi i i= = ¼l , , , .1 	 (1.181)
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Equation 1.181 implies that

	 var , , , .Y e e i pi i
T

i i( ) = = = ¼S l 1 	 (1.182)

The above discussions show that the variance of the first principal component is the larg-
est eigenvalue value of the covariance matrix Σ of X, the variance of the second principal 
component is the second largest eigenvalue value of the covariance matrix Σ of, and so on, 
while all pairs of the principal components are uncorrelated.

It follows from Equation 1.175 that the total population variance is equal to the sum-
mation of eigenvalues of the covariance matrix Σ. A sample measure of how well the first 
k principal components represent the k original variable is given by

	

l l l
l l l

1 2

1 2

+ +¼+
+ +¼+

k

p

.

It is easy to see that the sampling variance–covariance matrices var(Y) and var(X) are 
given by

	 var and varˆ ˆ ˆ .Y YY X XXT T( ) = = ( ) =S

Therefore,

	 ˆ .S L=U UT2

For the sampling data, the matrix E is equal to U. The principal components Y defined 
in Equation 1.172 is the same as ξ defined as ξ = UTX in the least square formulation of 
the PCA.

Example 1.22  Real Example

To illustrate PCA, we apply it to the low coverage pilot dataset in the 1000 Genomes 
Project, which was released in July 2010 (ftp://ftp.1000genomes.ebi.ac.uk). The dataset 
included 179 unrelated individuals from four populations: Yoruba in Ibadan, Nigeria 
(YRI, 59 individuals); Utah residents with ancestry from Northern and Western 
Europe (CEU, 60 individuals); Han Chinese in Beijing, China (CHB, 30 individuals); 
and Japanese in Tokyo, Japan (JPT, 30 individuals). In this study, CHB and JPT popu-
lations were combined as one population (ASI). These samples were sequenced on an 
average cover rate of 4X. A total of 14,397,437 SNPs on the 22 autosomes were identi-
fied. We plot the first two PC scores for 179 individuals from four populations YRI, 
CEU, CHB, and JPT on 14,397,437 SNPs in Figure 1.7 to study the power of the popu-
lar PCA for detecting the population structure. Figure 1.7 shows that the individuals 
from CEU, YRI, and ASI were well separated, but individuals from the CHB and JPT 
populations were not separated very well by the PCA.

http://ftp://ftp.1000genomes.ebi.ac.uk
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1.5.2 � Basic Mathematical Tools for Functional Principal Component Analysis
1.5.2.1 � Calculus of Variation
Calculus of variation is a very useful mathematical tool that deals with maximizing or mini-
mizing functionals, which map a set of functions to the real numbers. Let y(x) be a function 
and J[y(x)] be its corresponding functional. The variation of the function δy(x) is defined as 
the difference between two functions (Figure 1.8)

	 dy x y x y x( ) = ( ) - ( )0 .

PC1

YRI
CEU
CHB
JPT

PC
2

FIGURE 1.7  Two-PC score plot for 179 individuals from four populations YRI, CEU, CHB, and JPT 
on 14,397,437 SNPs.

Y(x)

Y(x) + δy(x)y

x

FIGURE 1.8  Illustration of function variation.
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If the functional J(y(x)) for any function y(x) that is close to y∗(x) is larger than 
or  equal to J(y∗(x)), then J(y(x)) reaches its minimum J(y∗(x)) at the function y∗(x). 
Let ΔJ[h] = J[y + h] − J[y] be its change due to an increment h(x) of the “variable” y = y(x).

When y(x) is fixed, ΔJ[h] is a function of h(x).

Definition 1.8

δJ[h] is called the first variation of J[y] at y(x) = y0(x) if for t ∈ R we have that

	
dJ h

d

dt
J y x th x

t
[ ] = ( ) + ( )éë ùû =0

0	
(1.183)

exists for all h(x) ∈ a normal linear space S.

Definition 1.9

Let Ψ ⊂ S represent a space of competing functions. J[h] reaches its relative maximum at 
y0(x) ∈ Ψ if

	 J y J y[ ]- [ ] £0 0	 (1.184)

for all y ∈ Ψ for which ‖y − y0‖ < ε for some ε > 0.

A key issue for functional data analysis is to search the optimum of a functional. Next we 
introduce a tool for finding a maximum of a functional. Similar to the necessary condition 

for a relative optimal of a function that 
dy x

dx

( )
= 0, the necessary condition for reaching the 

optimum of a functional is δJ[h] = 0.

Theorem 1.2

First necessary condition for a relative maximum of a functional. If the functional J[y] is 
assumed to have a relative maximum at y(x) = y0(x), then it is necessary that

	 dJ h[ ] = 0.	 (1.185)

Intuitively, if δJ[h] ≠ 0, suppose δJ[h] > 0. Then, dJ h
d

dt
J y th

t[ ] = +[ ] >
=0 0

0, which implies 
that J[y0 + th] − J[y0] > 0 for small t. Thus, this violates the assumption that J[y] reaches its 
relative maximum at y0(x). If δJ[h] < 0, by the similar argument, we can lead to the contra-
diction that J[y] reaches its relative maximum at y0(x).

1.5.2.2 � Stochastic Calculus
Functional data analysis is to study variation in stochastic process. Similar to the standard 
calculus that is a powerful tool for multivariate analysis, stochastic calculus provides a use-
ful tool for stochastic process analysis.
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1.5.2.2.1  Definition of Stochastic Integrals  Let X(t) be a stochastic process and f(t) a func-
tion. We partition an integral, [a, b], into a number of subintervals: a = t0 < t1 <  …  < tn = b. Let 

Δtk = tk − tk − 1 and D Dn
k n

kt=
£ £

max
1

. Then, the integral f t X t dt
a

b
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Theorem 1.3

Let cov(X(s), X(t)) = R(s, t). We have
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Intuitively, by definition, we can observe
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1.5.3 � Unsmoothed Functional Principal Component Analysis

Similar to multivariate PCA where we consider a linear combination of variables to capture 
the variations contained in the entire dataset (see Equation 1.171), we can consider a linear 
combination of functional values (Ramsay and Silverman 2005):

	
f t X t dt= ( ) ( )ò

0

1

b ,

	
(1.188)

where
β(t) is a weight function
X(t) is a centered function

Mathematical representation of a linear combination of functional value in Equation 1.188 
is a limit of linear combination of variables in Equation 1.171. To capture the variation of 
process X(t), we chose weight function β(t) to maximize the variance of f. By the formula 
for the variance of stochastic integral (1.187), we have

	
Var f s R s t t dsdt( ) = ( ) ( ) ( )òò
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b b, ,

	
(1.189)

where R(s, t) is the covariance function of the process X(t). Since multiplying β(t) by a con-
stant will not change the maximizer of the variance Var(f), we impose a constraint to make 
the solution unique:
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(1.190)

Therefore, to find the weight function, we seek to solve the following optimization problem:
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By the Lagrange multiplier, we reformulate the constrained optimization problem (1.191) 
into the following nonconstrained optimization problem:
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(1.192)

where λ is a parameter.
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We define the functional
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which implies the following integral equation:
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(1.193a)

for an appropriate eigenvalue λ. The left side of the integral equation (1.192) defines an 
integral transform R of the weight function β. Therefore, the integral transform of the cova-
riance function R(s, t) is referred to as the covariance operator R. The integral equation 
(1.193a) can be rewritten as

	 Rb lb= ,	 (1.193b)

where β(t) is an eigenfunction and referred to as a principal component function. Equation 
1.193b is also referred to as an eigenequation. Clearly, the functional eigenequation (1.193b) 
looks the same as the eigenequation for the multivariate PCA if the covariance operator and 
eigenfunction are replaced by a covariance matrix and eigenvector.
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Since the number of function values is theoretically infinity, we may have an infinite 
number of eigenvalues. Provided the functions Xi and Yi are not linearly dependent, there 
will be only N − 1 nonzero eigenvalues, where N is the sample size. Eigenfunctions satis-
fying the eigenequation are orthonormal (Ramsay and Silverman 2005). In other words, 
Equation 1.193b generates a set of principal component functions

	 R k k kb l b l l= ³ ³, .with 1 2 �

These principal component functions satisfy

	 (1)	 bk t dt2

0

1

1( ) =ò  and

	 (2)	
b bk mt t dt( ) ( ) =ò 0

0

1   for all m < k.

The principal component function β1 with the largest eigenvalue is referred to as the first 
principal component function, the principal component function β2 with the second largest 
eigenvalue is referred to as the second principal component function, etc.

1.5.4 � Smoothed Principal Component Analysis

The observed genotype profiles and other functional data are often not smooth, which 
will lead to substantial variability in the estimated functional principal component curves. 
To improve the smoothness of the estimated functional principal component curves, we 
impose the roughness penalty on the functional principal component weight functions. 
We balance the goodness-of-fit and the roughness of the estimated functional principal 
component curves.

We often penalize the roughness of the functional principal component curve by its inte-
grated squared second derivative. The balance between the goodness-of-fit and the rough-
ness of the function is controlled by a smoothing parameter, μ. We implement roughness 
penalty by defining an extended inner product of two functions as follows:

	
f g f t g t dt D f t D g t dt,( ) = ( ) ( ) + ( ) ( )ò òm

m 2 2 ,
	

(1.194)

where D f t
d f t

dt
2

2

2( ) = ( ) . Similar to Equation 1.189, the penalized sample variance is 
defined as

	
F

Var x t t dt

t
=

( ) ( )æ

è
ç

ö

ø
÷

( )
ò 0

1

2

b

b m|| ||
,
	

(1.195)

where
 
|| ||b b m bmt t dt D t dt( ) = ( ) + ( )éë ùûòò2 2 2 2

0

1

0

1

.
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Therefore, to find the functional principal components, we seek to solve the following 
optimization problem:

	

max

. .

0

1

0

1

2

0

1

2

0

1

òò

ò ò

( ) ( ) ( )

( ) = ( ) +

b b

b b mm

s R s t t dsdt

t t dt

, 

s t || || DD t dt2 2
1b( )éë ùû = .

	

(1.196)

Replacing the norm of the function β(t), defined as its inner product || ||b bt t dt( ) = ( )ò2 2

0

1

 
by its new norm || ||b mt( ) 2 , Equation 1.191 is reduced to Equation 1.196. By the Lagrange 
multiplier, we reformulate the constrained optimization problem (1.196) into the following 
nonconstrained optimization problem:

	
max

b
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(1.197)

where λ and μ are parameters. Similar to the standard FPCA, its first variation is given by
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which implies the following integral function:

	 0

1

4ò ( ) ( ) = ( ) + ( )éë ùûR s t s ds t D t, b l b m b .

	
(1.198)

Note that when μ = 0, integral functional eigenequation (1.198) is reduced to Equation 
1.193a. In other words, the smoothed functional principal components analysis is reduced 
to unsmoothed functional principal component analysis when μ = 0. Unsmoothed FPCA is 
a special case of the smoothed FPCA.

1.5.5 � Computations for the Principal Component Function 
and the Principal Component Score

The eigenfunction is an integral function and difficult to solve in closed form. A general 
strategy for solving the eigenfunction problem in (1.198) is to convert the continuous eigen-
analysis problem to an appropriate discrete eigen-analysis task (Ramsay and Silverman 2005). 
A popular method is to use basis function expansion methods to achieve this conversion.

Let {ϕj(t)} be the series of Fourier functions. For each j, define ω2j − 1 = ω2j = 2πj. We expand 
each function or genetic variant profile Xi(t) as a linear combination of the basis function ϕj:

	
X t C ti

j

T

ij j( ) = ( )
=
å

1

f .

	
(1.199)

The expansion coefficients Cij are calculated by Fourier series analysis (Ramsay and 
Silverman 2005).

Define the vector-valued function X(t) = [X1(t),  ⋯ , XN(t)]T and the vector-valued func-
tion ϕ(t) = [ϕ1(t),  ⋯ , ϕT(t)]T. The joint expansion of all N functions or genetic variant 
profiles can be expressed as

	 X t C t( ) = ( )f ,	 (1.200)

where the matrix C is given by

	

C

C C

C C

T

N NT

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

11 1

1

,

.

�
� � �

�

In matrix form, we can express the sampling variance–covariance function of the genetic variant 
profiles, gene expression, methylation variation profiles, or other observed function curves as

	

R s t
N

X s X t

N
s C C t

T

T T

, ( ) = ( ) ( )

= ( ) ( )

1

1 f f .
	

(1.201)
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Similarly, the eigenfunction β(t) can be expanded as

	
b f b w ft b t D t b t

j

T

j j

j

T

j j j( ) = ( ) ( ) = ( )
= =
å å

1

4

1

4and

or

	 b f b ft t b D t t S b
T T( ) = ( ) ( ) = ( )and 4

0 ,	 (1.202)

where b b b ST
T

T= ¼[ ] = ¼( )1 0 1
4 4, , and diag , ,w w . Let diag , ,S T= +( ) ¼ +( )æ

è
çç

ö

ø
÷÷

- -
1 11

4
1

2 4
1

2mw mw . 
Then, we have

	 b m b ft D t t S b
T( ) + ( ) = ( ) -4 2 .	 (1.203)

Substituting expansions (1.201) and (1.203) of variance–covariance R(s, t) and eigenfunc-
tion β(t) into the functional eigenequation (1.188), we obtain

	
f lft

N
C Cb t S b

T T T( ) = ( ) -1 2 .
	

(1.204)

Since Equation 1.204 must hold for all t, we obtain the following eigenequation:

	
1 2

N
C Cb S bT = -l ,

	
(1.205)

which can be rewritten as
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N
C C S S b S bT1 1 1æ

è
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- -l ,

or

	
S

N
C C Su uT1æ

è
ç

ö
ø
÷ = l ,

	
(1.206)

where u = S−1b. Thus, b = Su and β(t) = φ(t)Tb is a solution to functional eigenequation 
(1.188). We can easily check (Exercise 1.17)

	 b b
mj k k j, for all= ¹0 .	 (1.207)
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The vector of functions β(t) forms a set of orthonormal functional principal components 
under the extended inner product. The set of orthonormal functional principal compo-
nents can be used as a set of new basis functions. We can expand any functions in terms of 
principal component functions. Let xi(t) be a function. We can expand xi(t) as

	
x t ti

j

T

ij j( ) = ( )
=
å

1

x b ,

	
(1.208)

where

	 x b
mij i jx t t= ( ) ( ), .	 (1.209)

1.6 � CANONICAL CORRELATION ANALYSIS
The goal of canonical correlation analysis is to seek linear combinations of two sets of vari-
ables, which maximize the correlation between two sets of variables. Specifically, it first 
identifies the pair of linear combinations that have the largest correlation. Next we identify 
the pair of linear combinations having the largest correlation among all pairs uncorrelated 
with the initially selected pair and so on. The pairs of linear combinations are called canoni-
cal variates, and their correlations are called canonical correlations (Anderson 1984).

1.6.1 � Mathematical Formulation of Canonical Correlation Analysis

First we quantify the measure of association between two groups of variables. Consider two 
groups of variables. The first group of p variables is denoted by X and the second group of 
q variables is denoted by Y. We assume that p + q variables X and Y jointly have the mean

	

m
m

x

y

é

ë
ê

ù

û
ú

and covariance matrix

	
S

S S
S S

=
é

ë
ê

ù

û
ú

xx xy

yx yy

.

Linear combinations are simple summary measures of a set of variables. Let

	 U a XT=

and

	 V b YT= ,
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where a  and  b are a pair of vectors of coefficients. The variances of the variables U  and  V 
and their covariance are given by

	 Var U a aT
xx( ) = S ,

	 Var V b bT
yy( ) = S ,

and

	 Cov , U V a bT
xy( ) = S .

We shall seek coefficient vectors a and b to make

	
Corr , U V

a b

a a b b

T
xy

T
xx

T
yy

( ) = S

S S 	
(1.210)

as large as possible.
We define the first pair of canonical variables as the pair of linear combinations U1, V1 

having unit variance, which maximizes correlation (1.210). We define the second pair of 
canonical variables as the pair of linear combinations U2, V2 having unit variance, which 
maximizes the correlation (1.210) among all linear combinations that are uncorrelated with 
the first pair of canonical variables and so on.

1.6.2 � Correlation Maximization Techniques for Canonical Correlation Analysis

For simplicity, we assume that the random variables U  and  V have unit variances:

	

a a

b b

T
xx

T
yy

S
S

=
=

1

1.	
(1.211)

The first step is to find the vectors of correlation coefficients a and b such that the random 
variables U  and  V have maximum correlation:

	 Corr , U V a bT
xy( ) = S .	 (1.212)

By a Lagrangian multiplier, to find a and b to maximize (1.212) under constraints (1.211), 
we set

	
f a b a b a a b bT

xy
T

xx
T

yy, ( ) = + -( )+ -( )S S Sl m
2

1
2

1 ,
	

(1.213)
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where λ  and  μ are Lagrangian multipliers. Taking derivatives of the objective function 
f(a, b) and setting it equal to zero

	

¶ ( )
¶

= - =

¶ ( )
¶

= - =

f a b

a
b a

f a b

b
a b

xy xx

yx yy

, 

, 

S S

S S

l

m

0

0.
	

(1.214)

Multiplying aT on the left side of the first equation in (1.214), we obtain

	 l = a bT
xyS .	 (1.215)

Multiplying bT on the left side of the second equation in (1.214), we obtain

	 m l= =b aT
yxS .	 (1.216)

Thus, Equation 1.214 can be rewritten as

	 S Sxy xxb a- =l 0,	 (1.217a)

	 S Syx yya b- =l 0.	 (1.217b)

Premultiplying Equation 1.217a by S Syx xx
-1, then substituting Equation 1.217b into the result 

yields

	 S S S Syx xx xy yyb b- =1 2l ,	 (1.218)

which implies that

	 S S S S Syy yx xx xy yy g g- - - =1 2 1 1 2 2/ / ,l 	 (1.219)

where g byy= S1 2/ .
Equation 1.219 implies that the maximum correlation between U and V can be achieved 

by taking the largest eigenvalue λ1 of matrix R:

	 R yy yx xx xy yy= - - -S S S S S1 2 1 1 2/ / .	 (1.220)

Let e1 be the eigenvector of the matrix R associated with the largest eigenvalue l1
2. Then, the 

vectors of coefficients a and b are given by

	 a e b exx xy yy yy1
1 1 2

1 1
1 2

1= =- - -S S S S/ / ,and 	 (1.221)
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and the first canonical correlation is

	
max .

,a b
Corr U V, ( ) = l1

Given U a XT
1 1=  and V b YT

1 1= . Let U = aTX  and  V = bTY be a second pair of linear projec-
tion with unit variances. We seek U and V to have a maximum correlation among all linear 
combinations with unit variances, which are also uncorrelated with U1  and  V1. In other 
words, it requires that

	 Cov U U a aT
xx, 1 1 0( ) = =S ,	 (1.222a)

	 Cov V V b bT
yy, 1 1 0( ) = =S ,	 (1.222b)

	 Cov U V a bT
xy, 1 1 0( ) = =S ,	 (1.222c)

	 Cov V U b aT
yx, 1 1 0( ) = =S .	 (1.222d)

Again, by Lagrangian multipliers, we set

	
f a b a b a a b b a a b bxy

T
xx

T
yy

T
xx

T
yy, ( ) = + -( )+ -( )+ +S S S S Sl m h x

2
1

2
1 1 1,

	
(1.223)

where λ, μ, η, and ξ are Lagrangian multipliers. Differentiate f(a, b) with respect to a and b, 
and set its derivatives equal to zero:

	
¶ ( )
¶

= - + =
f a b

a
b a axy xx xx

, 
S S Sl h 1 0,

	
(1.224a)

	
¶ ( )
¶

= - + =
f a b

b
a b byx yy yy

, 
S S Sm x 1 0.

	
(1.224b)

Multiplying aT  and  bT on the left sides of Equations 1.224a and 1.224b, respectively, 
we have

	 l m= = a bT
xyS .	 (1.225)

Multiplying a bT T
1 1and  on the left sides of Equations 1.224a and 1.224b, respectively, 

we obtain

	 h x= = 0.	 (1.226)
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Combining Equations 1.224a, 1.224b, 1.225, and 1.226 gives

	

- + =
- =

l
l

S S
S S

xx xy

yx yy

a b

a b

0

0 	
(1.227)

which is similar to Equations 1.217a and 1.217b. Using the second eigenvalue l2
2 of the 

matrix R (R yy yx xx xy yy= - - -S S S S S1 2 1 1 2/ / ) and associated eigenvector e2, we obtain the second pair 
of canonical variants:

	 a e b exx xy yy yy2
1 1 2

2 2
1 2

2= =- - -S S S S/ / .and 	 (1.228)

The second canonical correlation between U2 and V2 is given by λ2.
This procedure continues until all the canonical variants are found.

Example 1.23

Assume that the covariance matrix of  
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Y
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Thus,
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.

The eigenvalues and eigenvectors are given by
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a e b exx xy yy yy2
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Therefore, we have

	

U x x V y y

U x

1 1 2 1 1 2

2 1

0 6323 0 2052 0 5448 0 7367

0 0204 0 031

= + = +
= +

. . , . .

. . 88 0 8631 0 70642 2 1 2x V y y, . . .= +

1.6.3 � Single Value Decomposition for Canonical Correlation Analysis

Canonical correlation analysis can be performed by single value decomposition (SVD). 
Consider two data matrices: X ∈ Rn × p and Y ∈ Rn × q. Let A ∈ Rp × d and B ∈ Rq × d be the matri-
ces of coefficients of the linear combinations of the data matrices X and Y, respectively. We 
denote linear combinations of the matrices X and Y by

	 u XA v YB= =, .	 (1.229)

Suppose that the SVD of the data matrices X and Y are respectively given by

	 X u s v Y u s vT T= =1 1 1 2 2 2, .	 (1.230)

Next we calculate the SVD of the matrix u uT
1 2 as

	 u u U VT T
1 2 = L .	 (1.231)

To identify the matrices A and B, we impose uTv = Λ. Therefore, we require

	 u v A X YBT T T= = L.	 (1.232)

Substituting Equations 1.230 into Equation 1.232, we obtain

	 A X YB A v s u u s v BT T T T T= 1 1 1 2 2 2 .	 (1.233)

Again, substituting Equation 1.231 for uTv into Equation 1.232, we have

	 A X YB A v s U V s v BT T T T T= 1 1 2 2L .	 (1.234)

To make Equation 1.232 to hold, we must have

	 A v s U I V s v B IT T T
1 1 2 2= =, .	 (1.235)

Solving Equation 1.235 for the matrices A and B, we obtain

	 A v s U B v s V= =- -
1 1

1
2 2

1, .	 (1.236)
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Using Equations 1.231 and 1.236, we can confirm that

	 u vT = L.

From Equation 1.230, we can calculate the covariance matrices XTX and YTY:

	

X X v s u u s v v s v

Y Y v s u u s v v s v

T T T T

T T T T T

= =
= =

1 1 1 1 1 1 1 1
2

1

2 2 2 2 2 2 2 2 2

,

.	
(1.237)

Using Equations 1.236 and 1.237, we can easily check

	 u u A X XA U s v v s v v s U IT T T T T T= = =- -
1

1
1 1 1

2
1 1 1

1 .

Similarly, we can show VTV = I.
To establish the relationships between correlation-maximum techniques and SVD for 

canonical correlation analysis, we show that

	 Trace TraceL2( ) = ( )R .	 (1.238)

From Equation 1.220, it follows that
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1.6.4 � Test Statistics

To develop statistics for testing the null hypothesis that X and Y are independent, which is 
equivalent to testing the hypothesis that each variable in the set X is uncorrelated with each 
variable in the set Y, we need to first calculate the likelihood ratio (Anderson 1984). Let
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We assume that both X and Y are normally distributed with density functions:

	

L x ex xx p

xx

x xx
T

xx x

| , m
p

m m
S

S

S
( ) =

( )

- -( ) -( )-1

2 2

1

2

1

2
1

,

	

L y ey yy q

yy

y xy
T

yy y

| , m
p

m m
S

S

S( ) =
( )

- -( ) -( )-1

2 2

1

2

1

2
1

,



84    ◾    Big Data in Omics and Imaging: Association Analysis

and
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Under the normal assumption, the null hypothesis that X and Y are independent is equiva-
lent to the hypothesis H0 : Σxy = 0, which implies that Σ is of the form
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0
=
é

ë
ê

ù

û
ú

xx

yy

.

Given a sample {x1, y1,  … , xN, yN} of N observations, the likelihood functions are
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The likelihood ratio is defined as
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(1.239)

where L(z1,  … , zN| μ, Σ0) = L(x1,  … , xN| μx, Σxx)L(y1,  … , yN| μ, Σxx).
Let
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Then, the maximum likelihood estimates of the parameters Σxx, Σyy, and Σ are
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(1.240)
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Substituting Equation 1.240 into a likelihood function yields
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(1.241)

Thus, using Equation 1.241, we obtain
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The test statistics based on likelihood ratio is defined as
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Under the null hypothesis H0 : ∑xy = 0, TCCA is asymptotically distributed as a central cpq
2

 
distribution (Serfling 1980).

Now we show that we can use canonical correlation coefficients to calculate TCCA. Recall 
that the canonical variables are defined as

	 U a X V b Yi i
T

j j
T= =and .

We define the matrices

	

W

a

a

b

b

i
T

p
T

T

q
T

=

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=

é

ë

ê
ê
ê

ù

û

ú
ú
ú

� �, .G
1

Suppose that the data are centered. Then, the vectors of canonical variables can be 
expressed as
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Canonical variates should satisfy the following conditions:
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where Λ = diag(λ1,  … , λp).
Combining Equations 1.243, 1.244, and 1.245, we obtain

	

W A A

A A

W
I

I

I

xx xy

yx yy

T

T

p

p

q p

0

0

0

0

0

0

0 0
G G

L
L

é

ë
ê

ù

û
ú
é

ë
ê

ù

û
ú
é

ë
ê

ù

û
ú =

é

ë

ê

-

êê
ê

ù

û

ú
ú
ú

,

	

(1.246)
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Thus,
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(1.247)

Substituting Equation 1.247 into Equation 1.242 yields
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When the sample size is large, Bartlett (1939) suggests using the following statistic TCCA for 
hypothesis testing:
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(1.249)

1.6.5 � Functional Canonical Correlation Analysis

Multivariate CCA can be easily extended to functional canonical correlation analysis (FCCA). 
We consider two sets of functions, (xi(t), yi(t)), i = 1,  …  , N. Define the set of functions:
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The concept of canonical variables as a linear combination of the variables aTX (inner 
product between two vectors) can be extended as an inner product between two functions, 
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∫aT(t)X(t)dt, where a(t) = [a1(t),  … , aN(t)]T. Let U =  ∫aT(t)X(t)dt and V =  ∫bT(t)Y(t)dt. The 
correlation coefficient between U and V is given by

	
r =

( )
( ) ( )
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var var
.

U V

U V

,

	
(1.250)

Making the results of FCCA meaningful, we should ensure that the functions a(t) and b(t) 
are smooth. Our goal is to find functions a(t) and b(t) such that the correlation coefficient 
ρ is maximized, i.e.,
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(1.251)

We use FPCA to solve the problem (1.251). Using Equations 1.248 and 1.250, we expand 
the functions xi(t) and yi(t) as
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where

	 x b h b
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Define the matrices of functional principal component scores:
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(1.254)

The multivariate CCA is then applied to the matrices ξ and η.
Ramsay and Silverman (2005) take a slightly different approach. Equation 1.251 is 

replaced by
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We expand functions ai(t), bi(t), xi(t), and yi(t) in terms of basis functions as
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Then, we have
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Substituting Equation 1.257 into Equation 1.255, we obtain
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Let
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We can transform the optimal problem (1.258) into the following optimization problem:

	
max

,a b

Ta JV Jb12 	
(1.259)

subject to

	 a JV J K a b JV J K bT T
11 1 22 21 1+( ) = +( ) =l land .	 (1.260)

By Lagrangian multiplier, to find a and b to maximize (1.259) under constraints (1.260), 
we set
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where λ and μ are Lagrangian multipliers. Taking derivatives of the objective function f(a, b) 
and setting it equal to zero
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Let

	 S S S Sxy xx yx yyJV J JV J K JV J JV J K= = + = = +12 11 1 21 22 2, , , .l l

Equation 1.261 is reduced to Equation 1.214. The FCCA problem is then transformed to 
the standard CCA problem. The methods for CCA discussed in Section 1.6.2 can be used 
to solve Equation 1.261.

However, we should point out that the denominator in Equation 1.255 is no longer a 
pure variance. It involves the penalty terms. The quantity, which we want to maximize in 
Equation 1.255, is not exactly a canonical correlation coefficient. We suggest that we first 
use FPCA to obtain the functional principal scores and apply the multivariate CCA to the 
matrices of functional principal scores ξ and η defined in Equation 1.254.

APPENDIX 1A
Now we will prove Theorem 1.1.

Recall F X UV X UV= -( ) -( )( )Trace
T� � � � . The optimality conditions for minimizing 
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Let A X UV B U= -( ) =� � �, , and C V= � . Then, we have

	
¶
¶

=
-¶ ( )

¶
¶
¶

=
-¶ ( )

¶
F

U

A BC

B

F

V

A BC

C

T T

� �
Trace

and
Trace

.

Therefore, we have
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Equations 1A.1 and 1A.2 can be rewritten as
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Let U U
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and
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Note that

	 U V V U V V UT

d d d
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and
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Combining Equations 1A.5 through 1A.7, we show that U∗ and V∗ satisfy Equation 1A.3.
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EXERCISES

Exercise 1.1	 Show that L∞ and LP define a norm.

Exercise 1.2	 Find the dual norm of the matrix norm || || TraceA A AF
T= ( ) .

Exercise 1.3	 Show that the dual norm Ω∗(y) of the latent group lasso norm Ω(x) is 

W W*

Î

*( ) = ( )y
w

y
g G g

gmax
1 .

Exercise 1.4	 Prove Equation 1.153:

	
¶
¶

=
f

x
Ax2 .

Exercise 1.5	 Let function f(X) be defined as f(X) = aTXa, where a is a k-dimensional vector 
of constants and X is a k × k dimensional matrix of variables. Show

	
¶
¶

= - ¼( )f

X
aa a aT

k2 1
2 2diag , , .

Exercise 1.6	 Find the Fenchel conjugate of the nuclear norm of the matrix A: 

|| ||A i
i

k

*
=

=å l
1

, where λi is a singular value of the matrix A.
Exercise 1.7	 Find the Fenchel conjugate of exponential function ex.

Exercise 1.8	 Calculate the subdifferential ∂e|x|.

Exercise 1.9	 Define a point maximize function f(x) = max {|x|, |x|1/2}. Find a subdifferential 
∂f(x).

Exercise 1.10	 Define a composite function h(x) = f(k(x)) where f t
t t

t et( ) =
+
+

é

ë
ê

ù

û
ú

1 2

1
2

2
2
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2

1 2
2

1
2

2
2 1 2/ . Find a subdifferential ∂h(x).

Exercise 1.11	 Find an optimal of the function x2 + |x|.

Exercise 1.12	 Find a solution to the problem:

	
min .

w n
y Xw w

1

2
2
2

2|| || || ||- +l

Exercise 1.13	 Find the proximal operator ProxΩ(u) of the function Ω(w) = ‖w‖2.

Exercise 1.14	 Find the proximal operator ProxΩ(u) of the function W x xi
i

n

( ) =
=å 11

.
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Exercise 1.15	 Let V = σ2ATDA and A and D be constant matrices. Find a derivative of func-

tion Trace (V−1) with respect to σ2: ¶
¶

( )( )-

s2
1Trace V .

Exercise 1.16	 Let J h y x dx[ ] = + ( )ò 1 2

0

1

� . Calculate δJ[h] at y0 = ex.

Exercise 1.17	 Prove equality (1.207)

		  b b
mj k

k j, for all= ¹0 .

Exercise 1.18	 Let f(x) = x + ex. Find the Fourier series expansion of the function f(x).

Exercise 1.19	 Show that functional principal scores ξij are independent variables with the 
variances of var(ξij) = λj, j = 1, 2, ….

Exercise 1.20	 Let u = XA, v = YB as defined in Equation 1.229. Establish the relationship 
between uTv and canonical correlation analysis of the matrices X and Y.
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C h a p t e r  2

Linkage Disequilibrium

Genetic variants include single nucleotide polymorphisms (SNPs), indels, and struc-
tural variants such as copy number variants. The 1000 Genome Project has sequenced 

2504 individuals from 26 populations. In total, 88 million variants, of which 84.7 million 
are SNPs, 3.6 million short insertions/deletions (indels), and 60,000 structural variants, are 
observed (The 1000 Genome Project Consortium 2015). This provides rich resources for the 
investigation of LD across the genome and genome-wide association studies.

2.1 � CONCEPTS OF LINKAGE DISEQUILIBRIUM
Linkage disequilibrium (LD) refers to the nonrandom association of alleles at different 
marker loci, also called “allelic association” or “gametic disequilibrium.” LD is of fundamen-
tal importance in genetic studies of complex diseases (Horikawa et al. 2000; Vilhjálmsson 
et al. 2015). Linkage disequilibrium is due to evolutionary forces in the history of popu-
lations such as mutations, selection, population bottleneck, recombination, and random 
genetic drift.

As an example, we consider two loci: A and B. At locus A, there are two alleles A and a 
with frequencies PA = 0.6 and Pa = 0.4, respectively (Figure 2.1). At locus B, there is only one 
allele B. Consider a haplotype spanned by alleles A and B. The frequency of the haplotype 
AB is PAB = 0.6. If we view the frequencies of the alleles and haplotypes as the probability of 
observing alleles and haplotypes in the population, then PAPB = 0.6 ∗ 1 = PAB indicates that 
observing an allele at locus A is independent of observing allele at locus B. When mutation 
at B occurs, there are now two alleles B and b at locus B. Suppose that the frequencies of allele 
b and haplotype AB are Pb = 0.1 and PAB = 0.5, respectively. Now, PAPB = 0.6 ∗ 0.9 = 0.54 ≠ 
PAB = 0.5, which implies that the event of observing alleles at the loci A and B are no longer 
independent and that dynamics of the alleles at two loci are in linkage disequilibrium (LD).

One of major evolutionary forces for changing LD is recombination. Suppose that a new 
mutation arises on individual chromosomes. Over years of transmission of the mutation, 
through multiple meioses to successive generations, recombination separates the mutation 
from the original alleles at the loci that are unlinked to the mutations (Figure 2.2). At very 
closely linked loci, the likelihood of recombination with the disease mutation is low, and the 
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original alleles will remain in linkage with the mutation for many generations. By examin-
ing the haplotypes at many loci within a large region that does not exhibit recombination, it 
is sometimes possible to identify a smaller region that appears to be in “linkage disequilib-
rium” with the mutation because the same alleles are present in different families with the 
diseases. Linkage disequilibrium provides an indication of which part of the chromosome 
to study first.

2.2 � MEASURES OF TWO-LOCUS LINKAGE DISEQUILIBRIUM
Because of the important implications of LD in association studies of complex diseases 
and population genetics, several quantities have been proposed to measure the level of LD 
between loci, which quantifies the dependence of alleles at two loci. Here, we review several 
widely used measures of linkage disequilibrium.

2.2.1 � Linkage Disequilibrium Coefficient D

Consider two marker loci with two alleles D1 and d1 at the first locus and two alleles D2 
and d2 at the second locus. Let PD1, Pd1, PD2, and Pd2 be the frequencies of the alleles D1, 

A

A

a a

b 0.1

0.5

0.6

0.40.4 B

PAB = 0.6 PAB = 0.5

PAB = PA PB

Linkage equilibrium Linkage disequilibrium

PA= 0.6, PB = 1 PA= 0.6, PB = PAB + PaB = 0 .9

D = PAB– PA PB = 0.5–0.54 = –0.04PAB ≠ PA PB

B

B

A B

FIGURE 2.1  Linkage disequilibrium due to mutation.

FIGURE 2.2  Evolution of linkage disequilibrium.
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d1, D2, and d2, respectively. Assume the population is mating randomly. The disequi-
librium coefficient for alleles D1 and D2 at two loci is defined as the difference between 
the haplotype frequency and the product of allele frequencies: DD1D2 = PD1D2 − PD1PD2, 
where PD1D2 denotes the frequency of haplotype D1D2. The maximum likelihood esti-
mate (MLE) of DD1D2 is estimated by ˆ ˆ ˆ ˆ ,D P P PD D D D D D1 2 1 2 1 2= -  where P̂D1  and P̂D2  are the 
estimated frequency of allele D1 and D2, respectively. P̂D D1 2 is the estimated frequency of 
haplotype D1D2.

2.2.2 � Normalized Measure of Linkage Disequilibrium D′
The linkage disequilibrium coefficient DD1D2 depends on the frequencies of haplotype and 
alleles, making comparisons between two populations difficult. For the convenience of 
comparison, Lewontin (1964) normalized the above measure of LD by dividing the coef-
ficient D by its maximum value Dmax, which is given by (Exercise 2.2)
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This normalized LD measure D′ is therefore defined as
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(2.1)

The normalized LD measure lies between −1 and +1, achieving these values, −1 and +1, 
when two loci are in complete linkage disequilibrium.

2.2.3 � Correlation Coefficient r

Pearson’s correlation coefficient r2 between two loci is another commonly used measure of 
the LD. Consider two loci, D1 and D2. Define two indicator variables:
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(2.2)

Pearson’s correlation coefficient r between two loci can be defined in terms of two indicator 
variables as follows:
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X Y
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(2.3)
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where
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and

	

var

.
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( ) = éë ùû - [ ]( )
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2
2 2 2 2 	 (2.6)

Substituting Equations 2.4 through 2.6 into Equation 2.3 results in the square of correlation 
coefficient:
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(2.7)

r2 is often used to eliminate the arbitrary sign introduced. When two loci are in linkage 
equilibrium, r2 is reduced to zero. There is a simple inverse relationship between this mea-
sure and the sample size required to detect association (Jorde 2000).

Although LD levels quantified by three measures are different, when two loci are in link-
age equilibrium they are equal to zero, e.g.,
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Example 2.1  (Figure 2.3)

Denote “A” by allele A and “G” by allele a at the first locus and “T” by allele B and “C” 
by allele b. The frequencies of haplotype AB and alleles A and B, |D|max are respectively 
given by
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Three LD measures are then given by
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Example 2.2

Consider four genes: DEF6, KCNK5, MRPS18A, and PRDM13 that are located in 
chromosome 6 with physical distance between neighboring genes 1.87M, 6.5M, and 
56M, respectively, and are sampled from the NHLBI’s Exome Sequencing Project 
dataset. “Haploview,” a software that provides a comprehensive set of tools for haplo-
type analysis, LD level calculation, and LD pattern visualization (Barrett et al. 2005), 
is used to analyze and plot the pattern of LD. Figure 2.4 shows the map of LD between 
SNPs with MAF > 0.0005 within the above four genes where the red color indicates 
the strong magnitude of LD, and white and gray colors indicate the week LD.

Example 2.3

We analyze the low-coverage pilot with whole-genome sequencing of 179 individu-
als from four populations and the exon pilot with exon-targeted sequencing of 697 
individuals from seven populations in the 1000 Genomes Project to examine LD pat-
terns in humans. Large-scale surveys of genome-wide LD patterns using data gener-
ated in the 1000 Genomes Project will reveal the full complexity of empirical patterns 
of LD. The squared correlation coefficient between the two SNPs is used to measure 
the levels of pair-wise LD. If r2 between two SNPs is larger than or equal to 0.8, then 
the LD between two SNPs is viewed as strong. We used an intermarker distance of 
50kb to calculate LD between SNPs. The proportions of pair-wise SNPs with r2 in five 
intervals for the intermarker distance of 50kb based on a low-coverage pilot dataset 
and HapMap phase II (r22) dataset are shown in Figure 2.5. We observed that the LD 
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FIGURE 2.3  Figure for Example 2.1.
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between common and common SNPs is much stronger than that between low fre-
quency and low-frequency SNPs, and low frequency and common SNPs. In general, 
we observed only less than 10% of the pair-wise low-frequency SNPs have strong LD.

2.2.4 � Composite Measure of Linkage Disequilibrium

LD measures D, D′, and r; assume that individuals mate at random. Under the assumption 
of random mating, the frequency of the genotype is the product of frequencies of haplo-
types, and the previously discussed measures of LD can be calculated by estimations of 
frequencies of alleles and haplotypes, which are obtained by maximum likelihood esti-
mation. However, this assumption is not always satisfied. When only genotypic data are 
available and random mating cannot be assumed, the measures of gametic disequilibrium 
introduced previously cannot be calculated directly. Weir (1979) and Weir and Cockerham 
(1989) introduced the following composite measure of LD, which combines gametic and 
nongametic digenic disequilibrium coefficients and uses only genotype data:

	 DAB AB A B AB A B A BD D P P P P= + = + -/ / .2

0% 10% 20% 30% 40% 50%

LD pattern among low-frequency alleles and common alleles
(intermarker distance 50 kb)

IT_YRI

IT_CEU

IT_CHB+JPT

rc_YRI

rc_CEU

rc_CHB+JPT

cc_YRI
cc_CEU

cc_CHB+JPT

all_YRI
all_CEU

all_CHB+JPT
60% 70% 80% 90% 100%

r2 = 1.0 r2 ≥ 0.8 r2 < 0.8 r2 < 0.5 r2 < 0.2

FIGURE 2.5  LD pattern among low-frequency alleles and common alleles. The proportions of pair-
wise SNPs with r2 between common and common SNPs (cc), low frequency and common SNPs (rc), 
and low frequency and low-frequency SNPs (rr) in five intervals of r2 within each category of the 
MAF of SNPs (i.e., cc, rc, and rr categories) for low-coverage pilot dataset. We plotted graphs under 
three intermarker distances of 50 kb where r2 between the target SNP and all its nearby SNPs within 
the distance was calculated.
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This can be calculated as

	
DAB AABB AABb AaBB AaBb A B

n
n n n n P P= + + +æ
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ç
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2

1

2
2 ˆ ˆ ,

where
n is the number of individuals sampled
nAABB, nAABb, nAaBB, and nAaBb are the numbers of individuals carrying corresponding 

genotypes at two loci
P̂A and P̂B  are the sample frequencies for allele A and B, respectively

The composite measure of LD has the advantage of allowing its determination with geno-
typic data.

2.2.5 � Relationship Between the Measure of LD and Physical Distance

Let t denote the age of the mutation, which creates the linkage disequilibrium. Let θ be 
the recombination fraction between the two marker loci and Pij(t) be the frequency of 
the haplotype AiBj at t generations after the mutation causing linkage disequilibrium. The 
haplotype in the next generation is produced either by transmission without recombina-
tion or by transmission with recombination between two loci (Figure 2.6). Thus, we have 
on average

	 P t P t P Pij ij A Bi j+( ) = -( ) ( ) +1 1 q q .	 (2.8)

Recall that the LD coefficient at t generation is given by

	 D t P t P Pij ij A Bi j( ) = ( ) - .	 (2.9)

A A

A

B

B B

FIGURE 2.6  Scheme of haplotype evolution.



Linkage Disequilibrium    ◾    103

Combining Equations 2.8 and 2.9 yields the following recursive formula for the calculation 
of the expectation of the measure of the LD:

	 D t D tij ij+( ) = -( ) ( )1 1 q .	 (2.10)

Therefore, recursively, we have
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= -( ) -( )
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1 1

1 2

1

2

0

q

q

q

�

, 	 (2.11)

where D0 = Pij(0) − PAiPBj is an initial measure of LD. Equation 2.11 implies that the LD coef-
ficient is a function of mutation age, recombination fraction, and the initial measure of LD.

Example 2.4

Assume that the age of mutation is t = 20 generations and the initial LD coefficient D0 
is equal to 0.25. The LD coefficient curve D(t) as a function of recombination fraction 
is shown in Figure 2.7. The D(t) decreases exponentially to zero at θ = 0.05.

2.3 � HAPLOTYPE RECONSTRUCTION
Haplotypes are, in general, not directly observable. Phase-unknown multilocus genotype 
data are the primary data sources available. Although several experimental technologies 
for molecular haplotyping have been developed (Reich et al. 2003), these methods are labor 
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FIGURE 2.7  The LD coefficient decreases exponentially as a function of recombination.
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intensive, low throughput, and costly. Therefore, experimental haplotyping methods are 
not practically useful for large-scale population studies. Analyzing family data with many 
relatives is another method to infer haplotypes, but (1) collecting family data is costly and 
(2) ambiguity still exists, especially as the number of markers increases. Therefore, com-
putational methods for estimating haplotypes using phase-unknown genotype data offer 
practical and cost-effective solutions. Haplotype estimation is often one of the first stages 
in genetic studies.

2.3.1 � Clark’s Algorithm

Clark was the earliest to propose an algorithm based on maximum parsimony to reconstruct 
haplotypes among unrelated individuals using genotype data. This algorithm first deter-
mines the haplotypes from all individuals with no haplotype ambiguity, i.e., the individuals 
who are complete homozygotes and single-site heterozygotes, assuming Hardy–Weinberg 
equilibrium, the basic model of a stable frequency distribution among haplotypes in the 
presence of random mating. Then the remaining individuals with ambiguous haplotypes 
are sequentially screened for the possible occurrence of previously recognized haplotypes; 
the complementary haplotype was then added to the list of resolved haplotypes. Clark’s 
algorithm is straightforward but does not give unique solutions and does not explicitly 
assume Hardy–Weinberg equilibrium.

2.3.2 � EM algorithm

The expectation–maximization (EM) algorithm infers haplotypes based on maximum 
likelihood that optimizes the likelihood of occurrence of molecular haplotype frequencies 
from the observed data, assuming Hardy–Weinberg equilibrium (HWE). The advantages 
of the EM algorithm include its solid theory, good performance for large samples, and rela-
tive robustness to the departure from HWE. However, since the optimization method is 
greedy, its performance is sensitive to the initial solution. Inappropriate initial solutions 
may lead to a wrong local maximum, which is serious when there are many distinct hap-
lotypes. Therefore, to ensure finding the global maximum likelihood estimate of haplo-
type frequencies, the EM algorithms should start to multiply with several initial solutions. 
Further, a standard application of the EM algorithm may not be feasible when a large num-
ber of markers are analyzed simultaneously since the number of haplotypes and hence the 
computation time increase exponentially with the number of markers.

2.3.3 � Bayesian and Coalescence-Based Methods

Stephens et al. (2001) proposed to use a Bayesian approach, either using a simple Dirichlet-
prior distribution or a prior distribution, which approximates the coalescent, to reconstruct 
haplotypes from genotype data. The algorithm has been implemented in the program 
PHASE and its modified versions. This algorithm infers haplotypes based on the following 
logic: a haplotype that is more similar to the commonly observed haplotype patterns has a 
higher probability to be present in the population than the less similar haplotypes. The prin-
ciple for Bayesian haplotype reconstruction methods is to treat the unknown haplotypes as 
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random quantities and to calculate the posterior distribution of the unobserved haplotypes 
given the observed genotype data using prior information and the likelihood. The haplo-
types (or haplotype frequencies) can then be estimated from maximizing this posterior 
distribution. The prominent feature of this algorithm is the incorporation of coalescence 
theory into the algorithms and outperforms two previously introduced algorithms. The dis-
advantages include the lack of a measure of overall quality of the inferred haplotypes, slow 
computation, and unclear performance in admixed or rapidly expanding populations when 
the coalescent model does not hold.

Several other coalescence-based and Bayesian algorithms as well as the modified EM 
algorithms have also been developed to facilitate haplotype reconstruction for multiple 
markers.

2.4 � MULTILOCUS MEASURES OF LINKAGE DISEQUILIBRIUM
While pair-wise LD measure is widely used in association and evolution studies over the 
past several decades, there are several reasons where the joint study of multilocus LD may be 
helpful. First, using the multilocus measure of LD for association studies may improve the 
power to detect association. Multilocus LD will provide not only pair-wise LD information 
between the marker and the functional loci but also additional high-order LD informa-
tion involving functional sites. Second, complex diseases are often caused by the combined 
mutations at multiple sites. To capture the contributions of multiple mutations to the dis-
ease, we need to compare differences in the pattern of multilocus LD between affected and 
unaffected individuals. Developing commonly accepted high-order and global LD mea-
sures at multiple loci is a challenging but indispensable task when NGS is popular.

Motivated by equivalence of LD among markers and stochastic dependency of random 
variables, information theory can be used as a general framework for developing multilocus 
LD measures. We introduce three types of multilocus measure of LD: global measures of 
LD, high-order measures of LD, and the measure of LD between two sets of markers. The 
concept of entropy and mutual information that were proposed by Shannon (1948) can 
serve as a general measure of correlation between two systems. There are two directions to 
extend mutual information to a finite number of variables. One direction for extension of 
mutual information is to characterize high-order interaction information. Mutual informa-
tion can also be extended to measure the degree of stochastic dependence among multiple 
variables and will be called multi-information.

2.4.1 � Mutual Information Measure of LD

Mutual information is used to measure stochastic dependency of variables. Similar to LD 
where we use LD information to predict the status of other marker(s) from the status of the 
allele at one marker locus, the mutual information maximizes the amount of information 
about variables, which we can obtain from observing other variables. Therefore, the mutual 
information can be used to characterize the LD between markers (Liu and Lin 2005).

Consider two SNP markers, M1 and M2. The marker M1 has two alleles, A1 and A2, 
with frequencies PA1 and PA2, respectively. The marker M2 has two alleles, B1 and B2, with 
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frequencies PB1 and PB2, respectively. Let PAiBj be the frequency of the haplotype AiBj (i = 1, 2, 
j = 1, 2). The mutual information between two marker loci M1 and M2 is defined as
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which can be approximated under the assumption of weak LD between two markers by
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or

	
I M M r1 2

21

2
;( ) » ,

	
(2.14)
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= d  and δ = PA1B1 − PA1PB1.

Equation 2.14 shows that the mutual information I(M1; M2) is half of a square of the 
correlation coefficient between two markers and hence has close relationship with the tra-
ditional two-locus measure of LD.

The entropy of a marker (Zhao et al. 2005), which is a measure of uncertainty of the 
marker, is defined by
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The joint entropy between two markers is defined as
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The conditional entropy of marker M1 given marker M2 is defined as
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Thus, the mutual information can be rewritten as

	 I M M H M H M M1 2 1 1 2, |( ) = ( ) - ( ).
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This indicates that the mutual information I(M1, M2) is the reduction in the uncertainty of 
the marker M1 due to the information of marker M2.

It can be shown that (Cover and Thomas 1991)

	 0 1 2 1 2£ ( ) £ ( ) ( )( )I M M H M H M, ,min .

Mutual information between two markers is equal to zero if and only if two markers are in 
linkage equilibrium. The above inequality also shows that the mutual information can be 
normalized by the smallest entropy of two markers. The mutual information is a measure 
of dependency between two markers, which is equivalent to the standard measure of LD 
between two markers. Mutual information can clearly characterize the pattern of LD and 
has a close relationship with the traditional r2 measure of LD. Therefore, we define the 
mutual information between two markers as a measure of LD between them.

When the haplotype phase is unknown, the mutual information between two marker 
loci can be defined in terms of genotypes. Let the genotypes at the marker locus M1 be 
indexed by Gi and the genotypes at the marker locus M2 be indexed by Gj. Let Gij be the 
genotype Gi at the marker M1 and the genotype Gj at the marker M2. For example, G11 will 
be the genotype A1A2 at the marker M1 and the genotype B1B2 at the marker M2. The mutual 
information between two markers M1  and  M2 is then defined as
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where PGi and PGj are the frequencies of the genotype Gi at the marker M1 and the genotype 
Gj at the marker M2, respectively, and PGij the frequency of the genotype Gij.

The mutual information I(G1; G2) can also be approximated by
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In Appendix 2A, we have shown that assuming Hardy–Weinberg equilibrium (HWE), we 
have
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where r is defined as before.

2.4.2 � Multi-Information and Multilocus Measure of LD

The mutual information can be generalized to multiple marker loci for measuring sto-
chastic dependency among a finite number of markers. Consider a sequence of marker 
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loci M1 ⋯ Mk. Each locus Mi has two alleles, M1i and M2i, with frequencies P(M1) and P(M2), 
respectively. Each locus Mi also has three genotypes: M1iM1i, M1iM2i, and M2iM2i, labeled as 
G1i, G2i, and G3i, respectively. Let P(Gji) be the frequency of the genotype Gji (j = 1, 2, 3). Let 
P(Mj1 ⋯ Mjk) be the frequency of the haplotype Mj1 ⋯ Mjk (j = 1, 2), and P(Gj1 ⋯ Gjk) be the 
frequency of the sequence of the genotypes Gj1 ⋯ Gjk (j = 1, 2, 3). We first study haplotype 
multi-information among k marker loci, which is defined as
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Similar to the mutual information, multi-information MI(M1, … , Mk) is also bounded by

	 0 1 1£ ( ) £ ( ) + + ( )MI M M H M H Mk k, , ,… �

where H(Mi) is the entropy of marker Mi(i, …, k). The multi-information MI(M1, …, Mk) 
is equal to zero if and only if the set of markers M1,… , Mk are independent (or in link-
age equilibrium), i.e., P(Mj1 ⋯ Mjk) = P(Mj1) ⋯ P(Mjk). The multi-information measures the 
departure of a set of markers from equilibrium. Therefore, MI(M1, …, Mk) can be defined as 
a k-locus measure of LD at the marker loci M1, … , Mk.

By the same argument as that for mutual information, MI(M1, …, Mk) can be approxi-
mated under the assumption of weak dependency among the markers by
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In Appendix 2B, we show that
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where δM1M2M3 is a three-locus measure of LD and defined as
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(Weir 1990); δM1M2, δM1M3, and δM2M3 are pair-wise LD between the markers M1 and M2, 
M1 and M3, and M2 and M3, respectively. Let r12, r13, and r23 be the correlation coef-
ficients between the markers M1 and M2, M1 and M3, and M2 and M3, respectively, i.e., 
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correlation relations between two marker loci can be extended to multiple loci. Define
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which can be viewed as a multilocus generalization of the correlation coefficient r2. For the 
convenience of presentation, r123 is called a three-locus correlation coefficient.

Then Equation 2.20 can be rewritten as
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Equations 2.20 and 2.21 show that three-locus multi-information involves a three-locus 
high-order measure of LD and all pair-wise LD of three markers. Therefore, the multi-
information captures all pair-wise and three-order LD information. By the same arguments 
as that for Equation 2.20, the k-locus multi-information can be approximated by
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where dM Mk1

2
�  is a k-order measure of LD, and other high-order LD measures can be simi-

larly defined as r
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2.4.3 � Joint Mutual Information and a Measure of LD between a Marker 
and a Haplotype Block or between Two Haplotype Blocks

The two important concepts of mutual information are conditional mutual information and 
joint mutual information. For ease of understanding, we first consider three markers: M1, M2, 
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and M3. The joint mutual information between the marker M3 and the combination of mark-
ers M1 and M2 is defined as
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which can be approximated by
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(2.24)

Define a measure of LD between the allele Mj3 and the combination of the markers Mj1 and 
Mj2 (Xiong et al. 2003) as

	 d j j j j j j j j jP M M M P M M P M1 2 3 1 2 3 1 2 3, , .= ( )- ( ) ( ), , ,

Clearly, I(M1, M2; M3) is a monotonic function of δj1 j2, j3. We also can show that

	 I M M M1 2 3 0, ;( ) ³

with equality if and only if the marker M3 is independent of (or in linkage equilibrium 
with) the block formed by the markers M1 and M2, which satisfies the requirement that the 
measure of LD between a marker and a block be zero when the marker is in linkage equi-
librium with the block. Thus, we define the joint information I(M1, M2; M3) as a measure of 
LD between a marker and a block.

The conditional mutual information between markers M2 and M3, given marker M1 is 
given by
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(2.25)

The multi-information can be decomposed as the summation of mutual information and 
joint mutual information as the following chain rule of multi-information

	 MI M M M I M M I M M M1 2 3 1 2 1 2 3, , ; , ; ( ) = ( ) + ( ).	 (2.26)

Similarly, the joint mutual information can be decomposed as summation of the mutual 
information and conditional mutual information.

	 I M M M I M M I M M M1 2 3 1 3 2 3 1, ; ; ; |( ) = ( ) + ( ).	 (2.27)
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The concept of joint mutual information and conditional mutual information can be 
extended to more general cases. The joint mutual information between the two blocks, 
X1, … , Xl and Y1, … , Yk, can be defined as
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l k
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(2.28)

Similar to other information measures, it can be shown that

	 I X X Y Yl k1 1 0, , ; , ,… …( ) ³ ,

with equality if and only if two blocks of markers are independent (in linkage equilib-
rium), which can be interpreted that the joint frequencies of the two blocks of mark-
ers are equal to the product of the frequencies of each block of markers. It is natural 
to define the joint information I(X1, …, Xl; Y1, …, Yk) as a measure of LD between 
two blocks.

The conditional mutual information between two blocks, X1,  … , Xl and Y1,  … , Yk, given 
the third block, Z1, … , Zn, is given by
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(2.29)

The distribution of the markers in Equations 2.28 and 2.29 can be either haplotype/allele 
frequencies or genotype frequencies.

Now we are in a position to study a general chain rule of multi-information. By defini-
tion of multi-information, we have
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Next, we decompose the joint mutual information into a series of the conditional mutual 
information. By definition of the joint mutual information, we have
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Thus, MI(M1,  …, Mk) can be decomposed as
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Multi-information can also be expressed by the entropy of the markers:
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If k markers are in linkage equilibrium, then

	 S M M S M S Mk k1 1, ,… �( ) = ( ) + + ( ).

Let SE(M1, …, Mk) denote the entropy of the markers M1, … , Mk in the equilibrium. Then, 
Equation 2.33 is reduced to

	 MI M M S M M S M Mk E k k1 1 1, , , , , ,… … …( ) = ( ) - ( ).	 (2.34)

2.4.4 � Interaction Information

Interaction among loci (or genes) is a fundamental concept we often use in genetic epidemi-
ology but rarely specify with precision. Interaction can be interpreted as inseparable genetic 
effects of the multiple loci. It implies some sort of correlation and association with the phe-
notype. From the information point of view, the interaction can be understood as sharing 
common information causing disease among loci (or genes). The amount of information 
about causing disease shared among loci (genes) is defined as a measure of interaction.
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Mutual information is to quantify common information shared by two variables. Mutual 
information between two markers (variables) can be generalized to multiple markers to 
measure shared information among multiple markers, which will provide a powerful tool 
for the detection of interactions among markers (Matsuda 2000). Common information 
shared by k markers is defined as k-locus interaction information and calculated by
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Particularly,
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k-locus interaction information can also be calculated by multi-information (Appendix 2C):
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(2.36)

k-locus interaction information can be directly expressed by the frequencies of the haplo-
types and alleles. Matsuda (2000) showed that
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(2.37)

where P̂ M Mj jk1 , ,…( ) is the Kirkwood superposition (Matsuda 2000) and given by
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When k = 3, we have
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where
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It is interesting to note that when the haplotype frequency P M M P M Mj j j jk k1 1, , , , … …( )= ( )ˆ , 
k-locus interaction information Ik(M1, …, Mk) will be equal to zero. This implies that k-locus 
interaction information measures the intrinsic k-way correlation among k markers, which 
is not influenced by (k − 1)-way, …, 2-way correlation among the subset of k markers.

It follows from Equations 2.26 and 2.27 that
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(2.39)

where I2(Mi, Mj) = J(Mi, Mj).
Equation 2.39 implies that an approximation for the multi-information can be made by 

neglecting high-order interaction information.

2.4.5 � Conditional Interaction Information

The conditional (k − 1)-locus mutual information among markers M1, … , Mk − 1, given the 
marker Mk, is defined as
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It follows from Equation 2.40 that
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and
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2.4.6 � Normalized Multi-Information

To allow for comparisons in LD between different sets of marker loci, we normalize multi-
information as follows from Liu and Lin (2005)
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From Equation 2.43, we can see that

	 0 11£ ( ) £MI M MN k, , … .

Normalized MIN(M1, …, Mk) is equal to ε in Nothnagel et al. (2002), which is used to define 
haplotype blocks.

2.4.7 � Distribution of Estimated Mutual Information, Multi-Information,  
and Interaction Information

Since the allele and haplotype frequencies are unknown, the four information measures, mutual 
information, the joint mutual information, multi-information, and interaction information, need 
to be estimated from a number of observed samples. These information measures are nonlinear 
functions of allele and haplotype frequencies. Finding the exact distribution of the estimators of 
the information measures is a nontrivial problem. Fortunately, large sample theory can be used 
to derive asymptotical distribution of these information measures quantifying the LD.

In general, the four information measures can be written as the minimum discrimination 
information I(∗, H0) that minimizes the following Kullback Leibler distance (Kullback 1959):
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for a given f2(x)(H0) and all f1(x)(H) such that

	 q = ( )éë ùûE T xH ,

where
θ is a multidimensional parameter
T(x) a measurable statistic

Kullback (1959) showed that

	 2 20N I H� *( ) = -, log ,l

where
N is the number of observed samples
λ is the likelihood ratio
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Thus, 2 0NI Hˆ *( ),  is asymptotically distributed as a χ2 distribution with m−r degrees of 
freedom under the null hypothesis that the parameters lie on an r-dimensional hyperplane 
of m-dimensional space.

Using the results of distribution of the minimum discrimination information, we first study 
the asymptotic distribution of estimators of the multi-information statistic that includes a 
mutual information statistic as its special case. The multi-information MI M Mk

ˆ
1, , …( ) can 

be used to test the null hypothesis of independence (or linkage equilibrium) of the variables 
M1, … , Mk:
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hypothesis H0(R2) specifying the values of the P(Mj2), …, a hypothesis H0(Rk) specifying the 
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ˆ , ,…( ) is asymptotically distributed 
as a χ2 distribution with degrees of freedom 2k − k − 1. Under the alternative hypothesis of 
dependence (or linkage disequilibrium), 2N MI M Mk
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χ2 distribution with the noncentrality parameter 2N MI(M1, …, Mk). Therefore, the mean 
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The joint information statistic Î X X Y Yk l1 1, , , , ,… …( ) can be decomposed into additive 
components: H0(R1) specifying the values of the P(Xj1, …, Xjk), H0(R2) specifying the val-
ues of the P(Yj1, …, Yjl), and an independence hypothesis H0(R1 ∩ R2). There are (2k − 1) 
independent parameters P(Xj1, …, Xjk), (2l − 1) independent parameters P(Yj1, …, Yjl), 
and (2k − 1)(2l − 1) independent parameters P(Xj1, …, Xjk, Yj1, …, Yjl). Therefore, 2N 
Î X X Y Yk l1 1, , , , ,… …( ) is asymptotically distributed as a χ2 distribution with degrees of 
freedom (2k − 1)(2l − 1). Under the alternative hypothesis of dependence between two sets 
of variables (or LD between the blocks X1, …, Xk and Y1, …, Yl), 2N Î X X Y Yk l1 1, , , , ,… …( ) 
is asymptotically distributed as a noncentral c 2 1 2 1

2
k l-( ) -( ) distribution with the noncentrality 
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parameter 2N I(X1, …, Xk, Y1, …, Yl). The mean and variance of Î X X Y Yk l1 1, , , , ,… …( ) are 
given by
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By similar argument, 2N Î M Mk k1, ,…( ) is asymptotically distributed as a χ2 distribution 
with 1 degrees of freedom. Under the alternative hypothesis of k-order interaction (or 
k-order LD), 2N Î M Mk k1, ,…( ) is distributed as a noncentral c 1

2
( ) distribution with the non-

centrality parameter 2N Ik(M1,  …, Mk). Thus, the mean and variance of Î M Mk k1, ,…( ) are
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Example 2.5

Mutual information, interaction information, multi-information, and pair-wise r2 
and multilocus r2 for measuring LD were calculated using chromosome 22 HapMap 
phase II data (Altshuler and Clark 2005). The analysis was restricted to the common 
SNPs. To illustrate the utility of the proposed LD measures, we present Table 2.1 sum-
marizing the averaged pair-wise and multilocus r2, multilocus interaction informa-
tion, mutual information, and multi-information over chromosome 22. Table 2.1 
indicated that variation of LD across populations quantified by pair-wise and multilo-
cus LD measures was well matched with the “out of Africa” hypothesis of human evo-
lution. All these LD measures almost consistently showed that when modern human 
populations were out of Africa and moved to Europe and to Asia, the level of LD was 
clearly increased.

Figure 2.8 plotted the mutual information and half of two-locus r2 as a function of SNPs’ 
positions along chromosome 22. From these figures, we can see that all the mutual 
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information across the populations is very close to half of the two-locus r2. This strongly 
implied that information measure can be used to characterize the patterns of LD and to 
quantify the level of LD.

The patterns of mutual information, three-locus interaction information, and multi-
information characterizing pair-wise LD and joint multilocus LD across chromosome 22 
for CEU were shown in Figure 2.9. Figure 2.9 demonstrated that for the fixed number of 
loci, the MI is much larger than the mutual information. This suggested that ignoring high-
order LD will cause the loss of a large amount of information.
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FIGURE 2.8  Average mutual information and half of an average two-locus r2 with a window size 
700 kb as a function of SNPs’ positions along chromosome 22 in YRI.

TABLE 2.1  Averaged LD and Information Measures in Africa (YRI), 
North America (CEU), China (CHB), and Japan (JPT)

Average YRI CEU CHB + JPT

Pair-wise R2 0.3070 0.3796 0.4065
Three-locus R2 0.3201 0.4931 0.5812
Four-locus R2 0.5657 1.1576 1.6645
Mutual information 0.1649 0.2037 0.2163
Three-locus interaction information 0.0908 0.1333 0.1476
Four-locus interaction information 0.3778 0.3779 0.4236
Three-locus multi-information 0.4073 0.4886 0.5091
Four-locus multi-information 0.6950 0.8132 0.8386
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2.5 � CANONICAL CORRELATION ANALYSIS MEASURE 
FOR LD BETWEEN TWO GENOMIC REGIONS

Alternative to information measures of multilocus LD, canonical correlation analysis (CCA) 
is another tool for investigating dependent relationships or LD between two genomic 
regions. When a growing number of genetic variants becomes available, multi-information 
and interaction information are difficult to calculate for a large number of genetic variants. 
As we introduced in Section 1.6, CCA is a standard statistical tool for identifying linear 
relationships between two sets of variables and hence can be used to study LD between 
two sets of SNPs in two genomic regions.

2.5.1 � Association Measure between Two Genomic Regions Based on CCA

Consider two genomic regions (or genes). The first genomic region contains p SNPs, each 
having two alleles, Mj and mj, j = 1, … , p, and the second genomic region contains q SNPs, 
each SNP having alleles Gj and gj,   j = 1, … , q (Figure 2.10). For the convenience of discus-
sion, we assume p ≤ q. Indicator variables for SNPs can be defined for haplotype and geno-
type. For haplotype, the indicator variable for an SNP is defined as

	
x

M

m
y

G

g
j

j

j
j

j

j

=
ì
í
î

=
ì
í
î

1

0

1

0
and .

	
(2.44)

0.6

0.5

0.4

0.3

0.2

0.1

0
15 20 25 30 35

Position (mb)
40 45

Mutual information
Three-locus information
Three-locus interaction information 

In
fo

rm
at

io
n 

m
ea

su
re

FIGURE 2.9  Average mutual information, three-locus interaction information, and three-locus 
multi-information with a window size of 700 kb as a function of SNPs’ position along chromosome 22 
in CEU.
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For genotype, we define the indicator variable for an SNP as
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(2.45)

For the haplotype representation, the covariance matrix has simple biological interpretation:
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FIGURE 2.10  Schematic picture of CCA for LD between two genes.



Linkage Disequilibrium    ◾    121

where PMj, Pmj, PGk, and  Pgk are frequencies of alleles Mj, mj, Gk, and  gk, respectively, and 
D Djk

x
jk
y, , and Djk

xy are the LD coefficient between SNPs in the first genomic region, between 
SNPs in the second genomic region, and between the SNP in the first genomic region and 
the SNP in the second genomic region, respectively. It is clear that the elements in the cova-
riance matrix are the pair-wise LD coefficients between SNPs and allele frequencies.

CCA is to seek linear combinations of the original variable to construct a pair of canoni-
cal variables, U = aTX and V = bTY, which maximize

	
Corr ,U V

a b

a a b b

T
xy

T
xx

T
yy

( ) = S

S S
.

	
(2.46)

Using the method introduced in Section 1.6, we obtain p canonical correlations λ1, λ2,  … , λp. 
We expect that the measure derived from CCA can capture the LD or association relations 
between SNPs in the two genomic regions.

We define

	
RCCA

i

p

i= - -( )
=
å

1

21log ,l
	

(2.47)

where λj are the canonical correlations.
Genomic data analysis was traditionally dominated by the paradigm of multivariate 

statistics. This paradigm is less effective in the era of next-generation sequencing (NGS) 
because the SNPs generated by NGS are densely distributed and the position nature of the 
genomic data was not included in the analysis. To overcome the limitations of the tradi-
tional CCA, we employ the functional CCA that is discussed in Section 1.6.5. The widely 
used functional CCA is to solve the following optimization problem:

	

max
cov
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(2.48a)

However, the denominator in Equation 2.48a is no longer pure variance. It involves the 
penalty terms. The quantity, which we want to maximize in Equation 2.48a, is not exactly 
canonical correlation coefficient. We suggest that we first use FPCA to obtain the functional 
principal scores and apply the multivariate CCA to the matrices of functional principal 
scores ξ and η defined in Equation 1.254. Specifically, we define a new dataset that consists 
of the functional principal scores:

	
Z =

é

ë
ê
ù

û
ú
x
h

.
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Its covariance matrix is

	
S

S S
S Szz =
é

ë
ê

ù

û
ú

xx xh

hx hh
.

Now the functional CCA is transformed to the following multivariate CCA problem: 
seeking a pair of canonical variables, U = aTξ and V = bTη, which maximize

	
Corr ,U V

a b
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T T
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S S
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.

2.5.2 � Relationship between Canonical Correlation and Joint Information

In general, functional principal scores follow a normal distribution. Assume that the density 
functions for ξ, η, Z are
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Using Equation 2.28a, we obtain the joint information
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Using Equation 1.247, we obtain

	
log log .
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(2.49)

Substituting Equation 2.49 into Equation 2.48b yields

	
I

i

p

ix h l,( ) = - -( )
=
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2
1

1

2log .
	

(2.50)

Comparing Equations 2.47 and 2.50, we establish the following relationship between the 
CCA measure and joint information measure of LD between two genomic regions:

	 R ICCA = ( )2 x h, .	 (2.51)

In other words, CCA measure of LD between two genomic regions is twice the joint 
information measure of LD between two genomic regions. Canonical correlation 
between two genomic regions captures the information on DNA variation between two 
genomic  regions. Therefore, CCA measure is a well-defined measure of LD between 
two genomic regions.

SOFTWARE PACKAGE
PHASE and fast PHASE packages are developed for haplotype reconstruction and recombi-
nation rate estimation. Beagle 4.1, minimac, MACH, and IMPUTE2 are software packages 
that perform imputation of ungenotyped markers. Haploview is designed to simplify and 
expedite the process of haplotype analysis and LD visualization (Barrett et al. 2005); DISEQ 
is developed for multilocus LD estimation (http://linkage.rockefeller.edu/soft/diseq.html). 
CRAN estimates the entropy, mutual information, and other information measures (http://
strimmerlab.org/software/entropy/); CCA is an R package to extend canonical correlation 
Analysis (https://cran.r-project.org/).

BIBLIOGRAPHICAL NOTES
Composite measure of linkage disequilibrium was introduced by Weir (1979) and Weir 
and Cockerham (1989). Algorithms for haplotype estimation can be found in Clark (1990), 
Delaneau et  al. (2013), Qin et  al. (2002), Stephens et  al. (2001), and Lin et  al. (2002). 
Information theory and its application for measuring LD level can be found in Shannon 
(1948), Dawy et al. (2006), Cover and Thomas (1991), and Zhao et al. (2005), and Weir 
(1990) briefly introduces high-order LD. High-order information measure can be found 
in Matsuda (2000). Taking gene as information can be found in Sherwin (2015). Excellent 
theoretic treatment of CCA can be found in Anderson (1984), and its application to genom-
ics is investigated in Lin et al. (2013).

https://cran.r-project.org
http://strimmerlab.org
http://strimmerlab.org
http://linkage.rockefeller.edu
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APPENDIX 2A
There are nine genotypes at two loci. The marker M1 has three genotypes: G1⋅(A1A1), 
G2⋅(A1A2), and G3⋅(A2A2). The marker M2 has three genotypes: G⋅1(B1B1), G⋅2(B1B2), and 

G⋅3(B2B2). We first calculate 
P P P

P P
G G G

G G

11 1 1

1 1

1-( )× ×

× ×

.

Note that assuming HWE, we have
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where δ is the LD coefficient between the markers M1 and M2. Thus, we obtain
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Similarly, we have
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and
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Thus, substituting Equations 2A.1 through 2A.9 into Equation 2A.5, we obtain
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APPENDIX 2B
Consider three marker loci: M1, M2, and M3. From the definition of LD at three loci, it fol-
lows that
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We first calculate the coefficient of dM M M1 2 3

2  in MI(M1, M2, M3):
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We then calculate the coefficients of DM M2 3

2 :
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Similarly, we can obtain the coefficient of DM M1 3

2  and DM M1 2

2
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After lengthy calculations, we obtain that the other terms in MI(M1, M2, M3) are zero. Thus, 
putting above terms together, we have
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APPENDIX 2C
It follows from Equations 2.34 and 2.35 that
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However,
for n = 1
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for n = 2
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Therefore, we have
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EXERCISES

Exercise 2.1	 Consider two loci, A and B. At locus A, there are two alleles, A and a, with 
frequencies PA and Pa, respectively. At locus B, there are two alleles, B and 
b, with frequencies PB and Pb, respectively. Let PAB, PAb, PaB, and Pab be the 
frequencies of the haplotype AB, Ab, aB, and ab, respectively. Define linkage 
disequilibrium coefficients

	 D P P P D P P P D P P P D P P PAB AB A B Ab Ab A b aB aB a B ab ab a b= - = - = - = -, , , .and

Show that DAB = Dab, DAb = DaB =  − DAB.

Exercise 2.2	 Show

	 min ,P P P P DA B A B D Di j i j, if1 1 01 2-( ) -( )éë ùû <

	 min .P P P P DA B A B D Di j i j1 1 01 2-( ) -( )éë ùû >, if

Exercise 2.3	 Consider two loci, A and B, with haplotype frequencies:

	 P P P PAB Ab aB ab= = = =0 1240 0 7834 0 0011 0 0915. , . , . , . .and

Calculate three LD measures: D, D′, and r2.
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Exercise 2.4	 Show

	
I M M r1 2

21

2
; ( ) »

and

	
MI M M M r r r r1 2 3 123

2
12
2

13
2

23
21

2
, , ( ) » + + +( ).

Exercise 2.5	 Show

	 0 1 1£ ( ) £ ( ) + + ( )MI M M H M H Mk k, ,� � .

Exercise 2.6	 Show

	 M M M1 2 3 0, ;( ) ³ .

Exercise 2.7	 Show

	 I M M M I M M I M M M1 2 3 1 3 2 3 1, ; ; ; |( ) = ( ) + ( ).

Exercise 2.8	 Consider two loci, A and B, with haplotype frequencies

	 P P P PAB Ab aB ab= = = =0 1240 0 7834 0 0011 0 0915. , . , . , . .and

Calculate the mutual information between two loci.

Exercise 2.9	 Assume that X, Y, and Z = [X, Y]T follow normal distributions 

N Nx y0 02 2, , s s( ) ( ),  and N(0, Σ), where S =
é

ë
ê

ù

û
ú

s s s r
s s r s

x x y

x y y

2

2
. Calculate 

the mutual information I(X, Y).
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C h a p t e r  3

Association Studies for 
Qualitative Traits

3.1 � POPULATION-BASED ASSOCIATION ANALYSIS 
FOR COMMON VARIANTS

3.1.1 � Introduction

Most complex diseases including obesity, diabetes, cardiovascular disease, hypertension, 
asthma, bipolar, schizophrenia, Alzheimer’s disease, cancer, and inflammatory disease are 
common diseases and hence pose great public health concerns (Collins 2004). Health states 
of individuals are a complex, multidimensional phenomenon. Clinical manifestations arise 
from integrated actions of multiple genetic and environmental factors, through an epigen-
etic and regulatory mechanism (Sing et al. 2003). Therefore, clinical phenotypes can be 
thought of as a synthesis of genes, gene–gene interactions, and gene–environment inter-
actions (Carlson et al. 2004). A general disease model is represented in Figure 3.1. The 
general disease model assumes that multiple modules of phenotypes, a set of genes, and a 
set of environments contribute to the outcome of the disease. A module of phenotypes con-
sists of a number of phenotypes, which are influenced by the genes and environments. The 
genes and environments will be classified into four categories: (1) the genes and environ-
ments directly influencing a phenotype, (2) the genes and environments influencing several 
phenotypes in a module of phenotypes, (3) the genes and environments simultaneously 
influencing several modules of phenotypes, and (4) the genes and environments directly 
influencing the outcome of the disease. Therefore, the genes and environments will have 
direct and indirect effects on the disease. The genes and environments that affect the dis-
ease through influencing the phenotypes in the modules will have only indirect effects on 
the disease. Therefore, the proposed disease model is a hierarchically organized network of 
phenotypes, genes, and environments. In this chapter, we will introduce statistical methods 
for both testing the association of genetic variants with each trait separately and with mul-
tiple traits simultaneously.
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Resequencing of genomes will generate unprecedentedly high-dimensional genetic vari-
ation data that allow nearly complete evaluation of the genetic variation including dozens of 
millions of common (>5% population frequency), low-frequency (1%< and <5% population 
frequency), and rare variants (<1% population frequency) in the typical human genomes 
(http://www.1000genomes.org/). In the past decades, linkage analyses have been the pri-
mary method for genetic studies of diseases. Linkage analysis tests for the cosegregation 
of a genetic marker and a disease phenotype using family data. A significant linkage result 
implies that a marker and a susceptibility gene are genetically linked. Linkage analysis has 
been highly successful for many rare single-gene disorders (Jimenez-Sanchez et al. 2001).

However, the fact that many diseases are caused by multiple mutations and genes that 
individually contribute only modestly to disease risk limits the power of linkage studies. 
Furthermore, linkage analysis requires multiplex families with multiple affected relatives, 
which are not feasible for many occasions. An alternative method to linkage analysis for 
genetic studies of diseases is association studies, which examines the co-occurrence of a 
marker and disease at the population level and establish the functional and pathogenic sig-
nificance of genetic variants (Brookes and Robinson 2015; Pritchard and Cox 2002; Risch 
and Merikangas 1996). Association analysis has higher power than linkage studies to detect 
small effects.

This chapter begins with an introduction of the Hardy–Weinberg equilibrium and genetic 
models that are the basis of underlying test statistics. Then, we study statistical methods for sin-
gle marker and multimarker association analyses that are widely used to test the association of 
common variants with the diseases. Next-generation sequencing emerges as a major genotyp-
ing technique. The currently used statistical methods for testing the association of rare variants 
with the qualitative disease will be included in this chapter. Finally, statistical methods unifying 
both population-based and family-based genetic analysis are presented in this chapter.

Environment 1

Environment 2

Gene 3

Gene 2

Gene 1

Gene 4

Disease

Phenotype 2

Phenotype 4
Phenotype 1

Phenotype 3

FIGURE 3.1  Scheme of a general disease model.

http://www.1000genomes.org
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3.1.2 � The Hardy–Weinberg Equilibrium

The Hardy–Weinberg equilibrium predicts how gene frequencies will be transmitted from 
generation to generation given the assumptions of an infinitely large population, random 
mating, and absent outside evolutionary forces (immigration, mutation, and natural selec-
tion). Consider a locus with two alleles, A and a, that generate three genotypes AA, Aa, 
and aa. The frequencies of the genotypes AA, Aa, and aa are denoted by P, 2Q, and R, 
respectively, with P + 2Q + R = 1. The transition of three genotypes to the offspring is shown 
in Table 3.1.

The frequencies of three genotypes AA, Aa, and aa in the offspring are, respectively, given by

	

P P P P Q Q Q P PQ Q P Q

Q P Q

1
2 2 2

1

1 2 2
1

2
2 2

1
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2

2 2 2
1

2

= ´ ´ + ´ ´ ´ + ´ ´ = + + = +( )

= ´ ´ ´
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1

2
2 2

1

2
2

2 2
1

4
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P R Q Q Q R P Q Q R

R Q Q Q

,

RR R R Q R+ ´ ´ = +( )1
2

.
	

(3.1)

If we require that the genotype frequencies be the same from one generation to the next, the 
following equalities must hold:

	

P P P Q

Q Q P Q Q R

R R Q R

= = +( )
= = +( ) +( )
= = +( )

1
2

1

1
2

2 2 2

,

,

, 	

(3.2)

subject to P + 2Q + R = 1 = P1 + 2Q1 + R1.
To satisfy the equality (3.1), we must have

	 P Q Q R Q+( ) +( ) = ,	 (3.3)

which implies that

	 PQ PR Q QR Q+ + + =2 .	 (3.4)

TABLE 3.1  Illustration of the Hardy–Weinberg Equilibrium

Mating Type Frequency

Progeny

AA Aa aa

AA × AA P × P 1
AA × Aa 2 × P × 2Q 1/2 1/2
AA × aa 2 × P × R 1
Aa × Aa 2Q × 2Q 1/4 1/2 1/4
Aa × aa 2 ×2Q × R 1/2 1/2
aa × aa R × R 1
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Dividing both sides of the equality (3.4) by Q yields

	
P

PR

Q
Q R+ + + =1,

or

	
PR

Q
P Q R Q= - - - =1 .

	
(3.5)

Multiplying both sides of the equality (3.5) by Q, we obtain

	 Q PR2 = .	 (3.6)

Substituting Equation 3.6 into Equation 3.2 results in

	

P P PQ Q P PQ PR P P Q R P

Q PQ PR Q QR PQ

1
2 2 2

1
2

2 2 2

2 2 2

= + + = + + = + +( ) =
= + + +( ) = +

,

QQ Q QR Q P Q R Q

R Q QR R PR QR R R P Q R

2 2

1
2 2 2

2 2 2

2 2 2

+ +( ) = + +( ) =
= + + = + + = + +( )

,

== R, 	

(3.7)

which show that the frequencies of genotypes under condition (3.6) will not change from 
generation to generation. This equilibrium is referred to as the Hardy–Weinberg equilibrium.

The Hardy–Weinberg equilibrium states that allele and genotype frequencies in a pop-
ulation will remain constant from generation to generation in the absence of other evolu-
tionary influences.

Let p = P + Q and q = Q + R, then have

	 P p R q Q pq= = =2 2 2 2, , 	 (3.8)

and

	 p q+ =1.	 (3.9)

We define p and q as frequencies of alleles A and a, respectively. For the convenience of 
discussion, we let P = P(AA), 2Q = P(Aa), and R = P(aa). Equation 3.8 can be written as

	 P AA p P Aa pq P aa q( ) = ( ) = ( ) =2 22, , .	 (3.10)

Therefore, under the Hardy–Weinberg equilibrium, the genotype frequencies satisfy the 
equality (3.10). When the genotype frequencies are available, we can estimate the allele 
frequencies as follows:

	
p P AA P Aa= ( )+ ( )1

2 	
(3.11a)
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and

	
q P aa P Aa= ( )+ ( )1

2
.
	

(3.11b)

Deviation of genotype frequencies from their equilibrium is defined as the Hardy–Weinberg 
disequilibrium coefficient:

	 D P AA pA = ( )- 2 .	 (3.12)

We can show that

	

P Aa pq D

P aa q D

A

A

( ) - = -

( )- =
2 2

2

,

. 	
(3.13)

Evolutionary forces such as mutations, population substructure, and natural selec-
tion and genotype errors will change the Hardy–Weinberg equilibrium to disequilib-
rium. Deviations from the Hardy–Weinberg equilibrium (HWE) can be used to detect the 
presence of inbreeding, population stratification, and selection and genotype errors. In this 
section, we introduce the widely used goodness-of-fit χ2 test and likelihood ratio test for 
HWE. Formally, we test for the null hypothesis:

	 H D0 0: .= 	 (3.14)

We first study the goodness-of-fit test. The observed and expected genotype frequencies 
under HWE are listed in Table 3.2. The goodness-of-fit χ2 statistic is
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(3.15)

where

	
ˆ ,p

n n

n

n

n
n n nAA Aa A

A AA Aa= + = = +2

2 2
2

	
ˆ ,q

n n

n

n

n
n n naa Aa a

a aa Aa= + = = +2

2 2
2

Under the null hypothesis of HWE H0 : D = 0, cHW
2  is distributed as the central c 1

2
( ) distribution.

TABLE 3.2  Test for HWE

AA Aa aa Total

Observed nAA nAa naa n = nAA + nAa + naa

Expected np2 2npq nq2
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We observe that the expected values appear in the denominator of the test statistic; the 
small minor allele frequency will cause numerical instability. cHW

2  will not work well for 
the rare variants. In general, likelihood ratio test provides a general framework for testing 
the null hypothesis. The likelihood ratio test can also be used to test for HWE. It is clear that the 
observed counts of genotypes follow a multinomial distribution. The likelihood function 
for the observed counts of genotypes is

	
L

n

n n n

n n n

nAA Aa aa

AA
n

Aa
n

aa
n

n

AA Aa aa

=
( ) ( ) ( )!

! ! !
.
	

(3.16)

Under the null hypothesis of HWE, the likelihood function is

	
L

n

n n n
p pq q

AA Aa aa

n n nAA Aa aa

0
2 22= ( ) ( ) ( )!

! ! !
.ˆ ˆ ˆ ˆ
	

(3.17)

The likelihood ratio statistic for testing HWE is defined as
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n n

n n n
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n
aa

A a

Aa
n AA Aa
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22 ))naa
.

	
(3.18)

Under the null hypothesis of HWE, the test statistic THWE is asymptotically distributed as a 
central c 1

2
( ) distribution.

3.1.3 � Genetic Models

Genetic disease models specify the contributions of genotypes to phenotypes. We con-
sider a marker, typically an SNP, with two alleles D and d having frequencies p and q, 
respectively. We denote the genotypes G0 = DD, G1 = Dd, and G2 = dd. For the simplicity of 
discussion, we assume that disease is caused by a disease risk allele at one locus. The dis-
ease penetrance is associated with a given genotype. The penetrance is defined as the con-
ditional probability of an individual being affected, given a certain genotype. Specifically, 
we define

	 f P G0 0= ( )being affected ,

	 f P G1 1= ( )being affected ,

and

	 f P G2 2= ( )being affected .
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Let Kp be the population prevalence of the disease. Under the assumption of HWE, we have

	 K p f pqf q fp = + +2
0 1

2
22 .	 (3.19)

Genotype relative risk is defined as

	
R

f

K p
0

0= ,

	
R

f

K p
1

1= ,

and

	
R

f

K p
2

2= .

Disease genetic models imply a specific relationship between genotype and phenotype. 
It includes dominant, additive, recessive, and multiplicative models. Assuming a genetic 
penetrance parameter γ(γ > 1) and baseline penetrance parameter f0, four disease models 
are defined in Table 3.3. If either one or two copies of the risk allele D increases γ-fold for 
disease risk, the model is referred to as a dominant model; if the risk of disease increases 
γ-fold for the genotype DD and γ/2-fold for genotype Dd, the model is called an additive 
model; if the risk of disease increases γ-fold only for the genotype DD, the genetic model 
is referred to as a recessive model; and if the risk of the disease increases γ-fold with each 
additional disease allele D, the genetic model is referred to as a multiplicative model. The 
genetic model with complete penetrance is summarized in Table 3.4.

Penetrance and risk estimation can only be derived directly from prospective cohort 
studies. In association studies, we often use a case–control study design. Cases and controls 
are retrospectively sampled from disease and normal populations. In a case–control study, 
the genotype frequencies are calculated as follows. Let P(Gj), PA(Gj), and PN(Gj), j = 0, 1, 2, 
be the frequencies of the genotype Gj in the general population, disease population (cases), 

TABLE 3.3  Genetic Disease Models

Disease Model

Penetrance

DD Dd dd

Dominant f0γ f0γ f0

Additive f0γ 1/2f0γ f0

Recessive f0γ f0 f0

Multiplicative f0γ2 f0γ f0
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and normal population (controls), respectively. The frequencies of the genotypes in cases 
and controls are

	

P G P G
P G
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P G P G
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(3.20)

Example 3.1

Assume the HWE at the disease locus in the general population and that the disease 
allele frequency is p = 0.05 and the penetrance is f0 = 0.50, f1 = 0.12, and f2 = 0.03. The 
frequencies of the three genotypes in the general population are

	

P G p

P G pq

P G q

0
2

1

2
2

0 0025

2 0 095

0 9025

( ) = =

( ) = =

( ) = =

. ,

. ,

. .

Thus, the prevalence of the disease is

	 K p = * + * + * =0 50 0 0025 0 12 0 095 0 03 0 9025 0 0397. . . . . . . .

The genotype frequencies in cases are

	
P GA

0
0 0025 0 5

0 0397
0 03147( ) = * =. .

.
. ,

	
P GA

1
0 095 0 12

0 0397
0 2870( ) = * =. .

.
. ,

and

	
P GA

2
0 9025 0 03

0 0397
0 6815( ) = * =. .

.
. .

TABLE 3.4  Genetic Disease Models with Complete 
Penetrance

Disease Model

Penetrance

DD Dd dd

Dominant 1 1 0
Additive 1 1/2 0
Recessive 1 0 0
Multiplicative γ2 γ 1
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The genotype frequencies in controls are

	
P GN

0
0 0025 0 50

1 0 0397
0 001302( ) = *

-
=. .

.
. ,

	
P GN

1

0 095 1 0 12

1 0 0397
0 08028( ) = * -( )

-
=

. .

.
. ,

and

	
P GN

2

0 9025 1 0 03

1 0 0397
0 9116( ) = * -( )

-
=

. .

.
. .

This shows that genotype frequencies in the controls are close but not equal to that in 
the general population.

3.1.4 � Odds Ratio

An odds ratio (OR) is a measure of association between a genetic variant and a disease 
in a case–control study (Pagano and Gauvreau 1993). In individuals with a risk factor, 
the odds of disease are defined as the conditional probability of being affected on the 
risk factor compared with the probability of being unaffected on the risk factor. In other 
words, the odds of disease are defined as

	

P

P

disease risk factor

control risk factor

( )
( ) .

	
(3.21)

In individuals with no risk factor, the odds of disease are defined as the conditional prob-
ability of being affected compared with the probability of unaffected, given no risk factor:

	

P

P

disease no risk factor

control no risk factor

( )
( ) .

	
(3.22)

The OR of interest is thus defined as

	

OR

disease risk factor

control risk factor

disease no risk f
=

( )
( )

P

P

P aactor

control no risk factor

( )
( )P

.

	

(3.23)
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Suppose that D represents a disease status. D = 1 indicates a case and D = 0 indicates a con-
trol. Let R be the presence of a risk factor and R be the absence of the risk factor. The OR in 
Equation 3.23 can be expressed as (Table 3.5)
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=( )
=( )
=( )
=( )

P D R

P D R

P D R

P D R
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0
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(3.24)

Suppose that the data are arranged in the form of a 2 × 2 contingency table. Then, it is clear 
that
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(3.25)

Therefore, the OR is

	
OR =

-( )
-( )

=
p p
p p

1 2

2 1

1

1

ad

bc
.
	

(3.26)

The OR can be estimated from the observed data. The inference problem for the OR is that 
the distribution of the OR is skewed to the right. To overcome this problem, the natural loga-
rithm is used to transform the OR. Fortunately, the natural logarithm of the OR is asymptoti-
cally distributed as a normal. Let μOR = E[log(OR)]. Then, we have the following Theorem 3.1.

Theorem 3.1

The natural logarithm of the estimate OR̂ is asymptotically distributed as a normal distribu-

tion,
 
N

a b c d
ORm ,

1 1 1 1+ + +æ
è
ç

ö
ø
÷.

TABLE 3.5  A Contingency Table with Disease Status and a Risk Factor

R (Risk Factor) R (No Risk Factor) Total

D = 1 (cases) a b a + b
D = 0 (controls) c d c + d
Total a + c b + d n
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Intuitively, we can see that (a, c) follows a binomial distribution with variance
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Let h h h h h1
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p
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Since h is a nonlinear function of π, we need to use an approximate formula to calculate 
its variance. Recall from standard statistical theory and the Taylor expansion (Lehmann 
1983) that

	 var var , .f x f x E xx xˆ ˆ ˆ( )( ) = ( )éë ùû ( ) = [ ]¢ m m
2

where 	 (3.28)

Applying formula (3.28) to function log ,p̂( )  we have
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(3.29)

Similarly, we have

	
var .h

b d
2

1 1( ) = +
	

(3.30)

Since samples from cases and controls are independent, we have

	
var log var var var .OR( )( ) = ( ) = ( ) + ( ) = + + +h h h

a b c d
1 2

1 1 1 1

	
(3.31)
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Now it is easy to calculate 100(1 − α)% confidence interval of the OR. It follows from 
Equation 3.31 that the standard deviation of log (OR) is

	
SE = + + +1 1 1 1

a b c d
.

Thus, the 100(1 − α)% confidence interval of the log (OR) is

	 CI OR OR SE, OR SElog log log/ /( )( ) = ( ) - ( ) +( )- -z z1 2 1 2a a

and

	 CI OR OR ,SE SE( ) = ( )- - -e ez z1 2 1 2a a/ / .	 (3.32)

Another quantity for measuring the effect of the risk factor on the disease is relative risk. 
Relative risk is defined as the ratio of the probability of disease among individuals exposed 
to the risk factor over the probability of disease among individuals unexposed to the 
risk factor:

	
RR = =

+( )
+( )

p
p

1

2

a b d

b a c
.
	

(3.33)

Similarly to OR, we can also calculate the variance and confidence interval. The variance of 
the natural logarithm of relative risk RR is (Exercise 3.3)

	
var log .RR( ) =

+( )
+

+( )
c

a a c

d

b b d 	
(3.34)

Define the standard deviation:

	
SERR =

+( )
+

+( )
c

a a c

d

b b d
.
	

(3.35)

Then, the 100(1 − α)% of relative risk RR is

	 CI RR RR ,SE SERR RR( ) = ( )- - -e ez z1 2 1 2a a/ / .	 (3.36)

Example 3.2

Consider the data shown in Table 3.6. The OR is

	
OR = *

*
=1021 612

617 824
1 229. .
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The variance of log OR̂( )  is calculated using Equation 3.31:

	
var log . .OR̂( )( ) = + + + =1

1021

1

671

1

824

1

612
0 005448

Then, we obtain SE = =0 005448 0 0738. . . A 95% confidence interval for the odds 
ratio is (1.0635, 1.4203).

3.1.5 � Single Marker Association Analysis

Genome-wide association studies (GWAS) are emerging as a promising tool for genetic 
analysis of complex diseases (Korte and Farlow 2013). The traditional GWAS is a variant-by-
variant analysis. We test the association of the markers with the disease one marker at a time. 
The primary assumption for association studies is that a mutation (a disease allele) increases 
disease susceptibility. Under this assumption, one expects that the disease allele will occur 
more frequently in the affected individuals (cases) than in the unaffected (controls). The 
standard χ2 test for association studies is to identify the disease locus by comparing the dif-
ferences in allele/haplotype frequencies between the affected and unaffected individuals. 
More precisely, the χ2 statistic is a quadratic form of difference of allele/haplotype frequen-
cies between the affected and unaffected individuals (Akey et al. 2001). Similar to the χ2 test, 
a 2 × 2 contingency table is used to test for a pair of frequencies independent of disease status.

3.1.5.1 � Contingency Tables
Genetic data in cases and controls can be organized into a contingency table (Table 3.7) to 
examine the association of the genetic variant with the disease. We first study a 2 × 2 table 
for the allele-based test. Then, a 2 × 2 table is extended to a 2 × 3 table for the genotype-
based test.

TABLE 3.6  A Contingency Table with Disease 
Status and Two Alleles

Allele A a Total

Cases 1021 617 1638
Controls 824 612 1436
Total 1845 1229 3074

TABLE 3.7  Contingency Table for Allele-Based 
Association Test in Case–Control Analysis

Allele G g Total

Cases a b a + b
Controls c d c + d
Total a + c b + d n
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A two-dimensional contingency table generates counts for the joint distribution of two 
categorical variables: disease status and genetic variant. In our representation, the row vari-
able indicates the disease status of individuals (case and control categories) and column 
variables indicates the alleles carried by individuals. The observed counts for the four mutu-
ally exclusive categories follow a multinomial distribution. The null hypothesis of no associ-
ation of the allele with the disease is equivalent to the hypothesis of independence between 
the allele and disease, that is, H0: Genetic allele and disease are independent.

Let P11 = P(G, cases), P12 = P(g, cases), P21 = P(G, controls), and P22 = P(g, controls).
The marginal probabilities are
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Under the null hypothesis of independence between the allele and disease, the joint prob-
abilities are reduced to

	
P

a b

n

a c

n
P

a b

n

b d

n
p

c d

n

a c

n
P

c d

n

b d

n
11 12 21 22= + + = + + = + + = + +

, , , .and

Since the joint distribution of the observed counts is a multinomial distribution, the expec-
tation of counts is equal to
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The results are summarized in Table 3.8.
The test for association between alleles and disease in the contingency table is the 

χ2 test. It compares the observed counts in each category, denoted by O, with the expected 
counts under the null hypothesis of no association, denoted by E. In other words, we 
calculate the sum
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(3.37)

TABLE 3.8  Expected Counts

Allele G g Total

Cases E1 = (a + b)(a + c)/n E2 = (a + b)(b + d)/n a + b
Controls E3 = (c + d)(a + c)/n E4 = (c + d)(b + d)/n c + d
Total a + c b + d N



Association Studies for Qualitative Traits    ◾    145

where r and c are the numbers of rows and columns, respectively. Under the null hypothesis 
of no association of alleles with the disease, the χ2 test statistic is distributed as a central 
c r c-( ) -( )1 1

2  distribution.

Example 3.3

Data are shown in Table 3.6. The expected counts are listed in Table 3.9. The value of 
χ2 is 7.8149, and the P-value is less than 0.0052. A contingency table can also be used 
for testing the association of genotype with the disease. Consider a 2 × 3 contingency 
table for the genotype-based association test (Table 3.10). The data produced consist 
of six counts of the numbers of genotypes (GG, Gg, and gg) in cases and controls. The 
expected six counts are summarized in Table 3.11. The statistic defined in Equation 
3.37 can still be used for testing the association of genotype with disease, but here 
c = 3. The degrees of freedom of the test is now equal to (r − 1)(c − 1) = (2 − 1)(3 − 1) = 2. 
Under the null hypothesis of no association, the statistic χ2 is asymptotically distrib-
uted as a central c 2

2
( ) distribution. Similar to using a contingency table for allele and 

genotype-based association tests, a 2 × c contingency table can be used to test the asso-
ciation of multiple alleles or haplotypes with the disease. Suppose that the number of 
alleles, genotypes, or haplotypes is c. The χ2 statistic is then asymptotically distributed 
as a central c c-( )1

2  distribution under the null hypothesis of no association.

TABLE 3.9  Expected Counts for the Data 
in Table 3.6

Allele G g

Cases 983.1197 654.8803
Controls 861.8803 574.1197

TABLE 3.10  Contingency Table for Genotype-Based Association 
Test in Case–Control Analysis

Allele GG Gg gg Total

Cases 25 20 15 60
Controls 10 20 35 65
Total 35 40 50 125

TABLE 3.11  Contingency Table for Genotype-Based Association Test in Case–Control Analysis

Allele GG Gg gg Total

Cases E1 = (a + b + c)(a + d)/n E2 = (a + b + c)(b + e)/n E3 = (a + b + c)(c + f)/n a + b + c
Controls E4 = (d + e + f)(a + d)/n E5 = (d + e + f)(b + e)/n E6 = (d + e + f)(c + f)/n d + e + f
Total a + d b + e c + f n
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3.1.5.2 � Fisher’s Exact Test
Fisher’s exact test is often used for sparse contingency tables where the minor allele 
frequency (MAF) or sample size is small. Consider Table 3.7 where we assume that the 
two margins (a + b) and (a + c) are fixed. Suppose that a + c alleles of G are sampled. Among 
them, a samples are from cases. The total number of samples is n. The variables (n, a, a + c) 
under the assumption of no association follow a hypergeometric distribution:
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(3.38)

Define the indicator variable for the disease status:

	
Xi =

ì
í
î

1

0

cases

controls.

Define the variable summarizing Xi:
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Thus, we have
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and
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Combining Equations 3.39 through 3.41 yields the expectation and variance of the 
variable Y:
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(3.42)

We observed that E[a] calculated by the hypergeometric distribution is exactly the same as 
that calculated by the multinomial distribution. The  P-value for the two-sided Fisher’s exact 
test is calculated by summing all the probabilities that counts Y in the table are extreme or 
more extreme than the observed count y0:
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(3.43)

Example 3.4

Table 3.12 shows the five possible subtables for the observed marginal totals, 6, 6, 4, and 
8, and the observed data are subtable III in Table 3.12. For each subtable, we calculate 
its conditional probability, given the fixed marginal totals using Equation 3.38. The 
probability of each subtable is listed underneath. The subtables III and IV correspond 
to the extreme cases where in cases or controls the allele G is not observed (subtables 
with the red color in the first row). Therefore, the P-value of the test for association of 
the allele with the disease is the summation of the probability in III and IV:

	 P = + =0 0303 0 0303 0 0606. . . .

3.1.5.3 � The Traditional χ2 Test Statistic
An alternative to the contingency table for association testing, the traditional χ2 association 
test compares the differences in allele, or genotype, or haplotype frequencies between cases 
and controls. Some types of markers such as microsatellite markers at one locus have mul-
tiple alleles. Although haplotypes are spanned by markers at multiple loci, the statistical dis-
tributions of the haplotypes are the same as that of multiple alleles at one locus. Therefore, 
the statistical methods for testing the association of multiple alleles can be applied to testing 
the association of haplotypes. Let the number of alleles, or genotypes or haplotypes be m. 
Let n n nA A

m
A T

= ¼éë ùû1 , ,  and nG = [n1, …, nm]T be vectors of the number of alleles, or genotypes, 
or haplotypes in affected and unaffected individuals, respectively. Let nA and nG be the num-
ber of sampled affected and unaffected individuals, respectively. Let P P PA A

m
A T

= ¼éë ùû1 , ,  and 
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PG = [P1, …, Pm]T be vectors of allele, or genotype, or haplotype frequencies in the affected 
and unaffected individuals, respectively. Define

	
ˆ ˆ .P
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A i
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= =and

Let P P PA A
m
A T

= ¼éë ùû1 , ,  and ˆ ˆ ˆP P PG
m

T
= ¼éë ùû1, , . By the standard statistical theory (Lehmann 

1983), we know that the vectors nA and nG follow multinomial distributions with the follow-
ing variance–covariance matrix:
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and

	 P = ¼( )-éë ùûn P P PPG m
Tdiag , , respectively1 , .

TABLE 3.12  Set of Five Tables with Marginal Totals 6, 6, 4, and 8

Allele G g Total
I Cases 1 5 6

Controls 3 3 6
Total 4 8 12

Pr = 0.2424
Allele G g Total

II Cases 2 4 6
Controls 2 4 6
Total 4 8 11

Pr = 0.4545
Allele G g Total

III Cases 4 2 6
Controls 0 6 6
Total 4 8 12

Pr = 0.0303
Allele G g Total

IV Cases 0 6 6
Controls 4 2 6
Total 4 8 12

Pr = 0.0303
Allele G g Total

V Cases 3 3 6
Controls 1 5 6
Total 4 8 12

Pr = 0.2424
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Here diag , ,P PA
m
A

1 ¼( ) and diag(P1, …, Pm) denote diagonal matrices with the diagonal 
elements P PA

m
A

1 , ,¼  and P1, … , Pm, respectively. Let

	 S SA A
m
A A A T

m
G G T

P P P P P P P P= ¼( )- ( ) = ¼( )- ( )diag , , and diag , ,1 1 .

The allele or haplotype frequencies are asymptotically distributed as the following multi-
variate normal distribution:
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One form of the standard χ2 statistic for case–control association studies is given by

	 T P P P PA G
T

A G= -( ) -( )-ˆ ˆ ˆ ˆ ,L 	 (3.44)

where L S S= +1 1

n nA

A

G

 and Λ− is a generalized inverse of the matrix Λ.

Under the null hypothesis of no association of the marker with the disease, T is asymp-
totically distributed as a central c m-( )1

2  distribution.

If we ignore the terms -Pi
2 and −PiPj(i, j = 1, …, m) in the elements of the matrix Σ, the 

variance–covariance matrix Σ is reduced to
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Similarly, we have SA
i
AP» ( )diag  for the affected individuals. Thus, T can be reduced to
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(3.45)

If we assume that the numbers of affected and unaffected individuals are equal, i.e., 
nA = nG = n, then the χ2 test statistic T can be further reduced to
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(3.46)

which is exactly the formula of the standard χ2 test statistic in Chapman and Wijsman (1998).
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Example 3.5

Data are shown in Table 3.6. The vector of allele frequencies in cases and controls are 
ˆ . .P A T= [ ]0 6233 0 3767,  and ˆ . .PG T= [ ]0 5738 0 4262, .

The variance–covariance matrices of the vector of allele frequencies in cases and 
controls are respectively given by
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One can easily see that the covariance matrix Λ is singular. The test statistic T can be 
expressed as

	
T =

-( )
=

0 6233 0 5738

0 000336
7 8139

2
. .

.
. .

Thus, the P-value of the association test statistic T is

	 P - =value 0 0052. ,

which is the same as that calculated by the contingency table in Example 3.3.

3.1.6 � Multimarker Association Analysis

Although most researchers acknowledge that genetic variation provides valuable informa-
tion for the diagnosis, prevention, and treatment of complex diseases, there is no universally 
accepted consensus on how genetic variation contributes to the cause of complex disease. 
Two different basic views on the genetic architecture of complex diseases lead to two differ-
ent strategies for analyzing complex diseases.

The popular view on the mechanisms of the common diseases is to assume that 
a single marker acts independently and can explain the pathogenesis of the disease. 
A widely used strategy for unraveling the genetic structure of a common disease is 
single-locus analysis, testing the association of a single variant one by one. The strat-
egies focusing on the single marker with large marginal effects on disease risk have 
resulted in only limited success in genetic studies of complex diseases (Hartwell 2004). 
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The single marker paradigm for genetic analysis, which has proven successful in dis-
secting genetic structures of Mendelian diseases, may not lead to success in genetic 
studies of complex diseases.

An alternative approach is joint association analysis of multiple markers. An increasing 
number of genetic association studies demonstrate the limitations of the attempt to explain 
phenotype variation by a single variant. Accumulated evidence suggests that complex dis-
eases are due to multiple correlated genetic variants. There are an increasing number of 
researchers who advocate taking a systems-level approach to complex diseases. The new 
concept concerning complex disease is to assume that the development of disease should 
be considered as a dynamic process with joint effects of multiple loci. Consequently, the 
genetic effects on the phenotype can be observed only when multiple mutations hit the 
biological processes. Uncovering association of multiple loci and their nonadditive rela-
tionships with disease susceptibility require developing novel statistics, which aggregate 
information across multiple loci and jointly test their association with the disease. We first 
introduce the Hotelling T2 statistic to test the association of multiple common variants with 
the disease. The methods for testing the association of multiple rare variants will be studied 
in the next sections.

3.1.6.1 � Generalized T2 Test Statistic
Consider a design in which nA cases from an affected population and nG control subjects 
from a comparable unaffected population are sampled. Suppose that there are k markers 
typed in the samples. The jth marker has alleles Bj and bj with population frequencies PBj 
and Pbj, respectively. Define an indicator variable for the genotype of the jth marker for the 
ith individual from the affected population:
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Similarly, we define an indicator variable, Yij, for an individual from the unaffected popula-
tion. For each individual, we define a vector of genotype profiles Xi and Yi, respectively, in 
cases and controls: Xi = (Xi1,…, Xik)T, Yi = (Yi1,…, Yik)T.

For each marker, in cases and controls, we calculate the mean values X j  and Yj of the 
genotype indicator variables in cases and controls:
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Assembling all the mean values X j and Y j kj , , ,= ¼1  into vectors X and Y , X X Xk
T

= ¼( )1, , ,

Y Y Yk
T

= ¼( )1, , .
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We assume that the covariance matrices of the genotype profiles in cases and controls 
are equal. The pooled sample variance–covariance matrix of the indicator variables for the 
marker genotypes is defined as
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Hotelling’s (1931) T 2 statistic is then defined as
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(3.47)

Under the null hypothesis of no association of markers with the disease, the statistic T2 is 
asymptotically distributed as a central c k( )

2  distribution.

Example 3.6

Consider two SNPs: rs3094315 and rs2073813. Suppose that 101 individuals from 
cases and 111 individuals from controls are sampled. The mean vectors of the geno-
type profiles in cases and controls are
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The pooled sample covariance matrix is
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The value of the T2 statistic is T2 = 2.1234 and the P-value is 0.3459.
Two SNPs are not jointly associated with the disease.

3.1.6.2 � The Relationship between the Generalized T2 Test 
and Fisher’s Discriminant Analysis

The generalized T2 test can be derived from Fisher’s linear discriminant analysis. Consider 
two populations (cases and controls), which are to be separated. Let x be a vector of 
observations (observed genotype profiles) and y = aTx be a linear combination of the 
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observations (Figure 3.2). Let x1 and x2 be means of the observations in populations 1 
and 2, respectively. Denote the mean difference between cases and controls, d x x= -1 2. 
Let y a x y a xT T

1 1 2 2= =, .
The square of the distance between two points in the lines y = aTx projected by the origi-

nal means of observations in cases and controls is
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We assume that the covariance matrices of observations in populations 1 and 2 are equal 
and denoted by Σ. Then, the variance of y y1 2-  is given by
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The estimate of variance of y y1 2-  is given by n n
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a SaA G

A G

T+ , where S is the pooled estimate 

of the covariance matrix Σ. Our goal is to select the vector a achieving separation of the 
sample means with y1 and y2 as large as possible. To reach this goal, we maximize the fol-
lowing ratio:
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(3.48)

Since a constant will not affect the results of maximization in Equation 3.48, 
n n

n n
a SaT1 2

1 2

+  is 
replaced by aTSa.

Separation of populations

y=aTx

y2

y1

x2 x1

FIGURE 3.2  Scheme for linear discriminant analysis.
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To solve the optimization problem (3.48), we pose the following constraint to normalize 
the data:

	 a SaT =1.

Therefore, the optimization (3.48) can be reduced to the following optimization problem:

	

max

s t

a dd a

a Sa

T T

T. . .=1 	
(3.49)

The constrained optimization problem (3.49) can be reduced to the nonconstrained opti-
mization problem by the Lagrange multiplier method:

	 max F a dd a a SaT T T= + -( )l 1 .

Taking the derivative of F with respect to a yields

	 dd a SaT - =l 0.	 (3.50)

Multiplying aT on both sides of the equation, we have

	 l = ( )a dT 2
.

Thus, a
a d

S d
T

= -1 1 , which implies that aTddTa = dTS−1d. Therefore, y x x S x
T= -( ) -

1 2
1 .

The distance between two populations is defined as
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(3.51)

Replacing x1 by X and x2 by Y  in Equation 3.51, the square of distance between cases and 
controls is exactly the same as the T2 statistic.

3.2 � POPULATION-BASED MULTIVARIATE ASSOCIATION 
ANALYSIS FOR NEXT-GENERATION SEQUENCING

Resequencing of exomes and whole genomes will generate unprecedentedly massive, high-
dimensional genetic variation data that allows nearly a complete evaluation of the genetic 
variation including tens of millions of common (>5% population frequency), low-frequency 
(1%< the variance and <5% population frequency), and rare variants (<1% population fre-
quency) in the typical human genome and provides a powerful tool to comprehensively 
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catalogue human genetic variation. Despite their promise, next-generation sequencing 
(NGS) technologies suffer from three remarkable limitations: high error rates, enrichment 
of rare variants, and large proportion of missing values. Since an individual rare variant 
would have a relatively small impact on the common disease and the rare variants have very 
low frequencies in the populations, the power of the traditional variant-by-variant analyti-
cal tools that are mainly designed for the purpose of detecting common variants for testing 
the association of rare variants with disease will be limited. Developing new analytical tools 
for the analysis of the massive sequencing data poses a novel and great challenge to statisti-
cal analysis (Bacanu et al. 2011).

Genetic studies of complex diseases are undergoing a paradigm shift from the single 
market analysis to the joint analysis of multiple variants in a genomic region that can be 
genes or other functional units, which are often referred to as gene or genome region-based 
association analysis. The principle behind gene-based association analysis is to aggregate 
information across multiple variants in an analysis unit in which all rare variants are col-
lapsed and treated as a single variable for analysis (Luo et al. 2011; Pan et al. 2014). Two 
types of statistical methods based on multivariate and functional analysis for joint testing 
the association of a group of variants with disease are developed. In the past several years, 
various versions of group association analysis for NGS data have been developed. It is dif-
ficult to cover all these methods. We will mainly focus on the basic ideas underlying gene-
based association tests with NGS data.

3.2.1 � Multivariate Group Tests
3.2.1.1 � Collapsing Method
An essential problem for rare variant association analysis is that frequencies of rare variants 
are low. The low frequencies of the variants will decrease the power and inflate the type 1 
errors. To overcome the limitation due to the low frequency of the rare variants, we col-
lapse all the rare variants across the gene or genomic region into a single variable (Li and 
Leal 2008). Assume that nA and nG individuals from cases and controls, respectively, are 
sampled. We define an indicator variable for the individual in cases as
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(3.52)

The indicator variable yi can be similarly defined for the controls. The data can be assembled 
into 2 × t tables. The contingency table analysis, exact test, and χ2 test discussed in Sections 
3.1.5.1 through 3.1.5.3 can be used to define the collapsed variable. For example, in the 
χ2 test, we calculate the average number of individuals carrying at least one rare variant in 
the gene in cases and controls:
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Define the test statistic:
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Under the null hypothesis of no association of a set of rare variants with the diseases, the 
statistic Tcol is asymptotically distributed as a central c 1

2
( ) distribution.

Example 3.7

As an illustration, the collapse method is applied to the published resequencing data-
set of ANGPTL4 in the Dallas Heart Study (Romeo et al. 2007). A total of 93 sequence 
variations were identified from 3553 samples. The individuals whose plasma triglyc-
eride levels were less than or equal to the 25th percentile are classified as the low tri-
glyceride group, and the individuals whose plasma triglyceride were greater than or 
equal to the 75th percentile are grouped as the high triglyceride group. We can also 
similarly select groups of high levels and low levels of high-density lipoprotein choles-
terol (HDL), cholesterol, low-density lipoprotein (LDL), and very low–density lipo-
protein (VLDL). The variants with frequencies less than or equal to 3% were defined 
as a rare variant for the easier comparison with the results in Romeo et al. (2007). 
P-values for testing association of rare variants in the gene ANGPTL4 with triglyc-
eride, cholesterol, HDL, LDL, and VLDL in the Dallas Heart Study are 3.82 × 10−6, 
0.9640, 3.59 × 10−5, and 0.3210, 2.01 × 10−5, respectively.

3.2.1.2 � Combined Multivariate and Collapsing Method
The combined multivariate and collapsing (CMC) method (Li and Leal 2008) partitions the 
variants into common and rare variants in a gene or genomic region. Then, all the rare vari-
ants are clustered into several groups. The rare variants in each group are collapsed into a 
single variable that is taken as a single pseudoindependent site. Finally, the generalized T2 
statistic is applied to all common variants and all pseudoindependent sites (rare variant sites). 
Suppose that there are m pseudoindependent sites and k common variants. In cases, indicator 
variables for each pseudoindependent site are defined in Section 3.2.1.1 and denoted by xij, 
j = 1,… , m, and indicator variables for the genotypes at the common variant loci are denoted 
by xij, j = m + 1,… , m + k. Similarly, indicator variables yij, j = 1,… , m + k are defined for con-
trols. Define two vectors of indicator variables, respectively, for cases and controls:

	 X x x x xi i im im im k
T= ¼ ¼[ ]+ +1 1, , , , ,
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and

	 Y y y y yi i im im im k
T= ¼ ¼[ ]+ +1 1, , , , , .

Define
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Hotelling’s (1931) T2 statistic defined in (3.47)
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n n

X Y S X Y

A G

T2 11
1 1

=
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-( ) -( )-

	

(3.54)

can be used to test the association of gene with disease. Under the null hypothesis of no 
association of any variant in the gene (genomic region) with the disease, T2 is asymptoti-
cally distributed as a central c m k+( )

2  distribution.

3.2.1.3 � Weighted Sum Method
A serious drawback of the CMC method is that the outcome of the test depends on the 
selection of threshold. How to determine a threshold on the frequencies for selection of 
rare variants is a difficult problem. Consider k loci. Let n be the total number of sampled 
individuals (affected and unaffected). We often observe that the frequency of mutation is 
low, and hence the mutation is a minor allele. Therefore, for the convenience of discussion, 
we assume that the mutant allele is a minor allele. For each variant i, the frequency of the 
minor allele is estimated as

	
q

m

n
i

i
U

U
= +

+( )
1

2 1
,

where
mi

U  is the number of minor alleles observed for variant i in controls
nU is the number of sampled individuals in the controls
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To avoid zero in the estimate of frequency of the minor allele, we add one to the numerator 
and two to the denominator of the frequency estimate. The standard deviation of the esti-
mate of the frequency of the minor allele is

	 w nq qi i i= -( )1 .	 (3.55)

Let Iij be the number of minor alleles in the variant i for individual j. Summation of Iij 
weighted by the standard deviation wi of the frequency of minor allele is defined as the risk 
score of individual j, which contributes to the risk of disease:

	
r

I

w
j nj
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k
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i

= = ¼
=
å

1

1, , , .
	

(3.56)

All rj are ranked. Similar to the Wilcoxon test, we summarize all ranks of the individuals in 
cases:

	
x r

j A

j= ( )
Î
årank .

	
(3.57)

To find the mean and standard variation of x, the affected/unaffected (case/control) is 
permutated among the individuals, and calculations in Equations 3.54 through 3.57 are 
repeated l times to produce x xl1

* *¼, ,  under the null hypothesis of no association. Calculate 
mean and standard deviation of the rank summation x in cases:

	

ˆ ˆ .m s m= = -( )
=

*

=

*å å
j

l

j

j

l

jx x
1 1

2
and

The z score is defined as

	
z

x= - ˆ

ˆ
.

m
s 	

(3.58)

Under the null hypothesis of no association of any variant in the gene with the disease, the 
z score is asymptotically distributed as a standard normal distribution, N(0, 1).

3.2.2 � Score Tests and Logistic Regression
3.2.2.1 � Score Function
Various rare variant association tests are based on the logistic regression model. Test sta-
tistics are the score tests or the modified score tests (Lee et al. 2014). Logistic regression 
models assume that n individuals are sampled. Consider p genetic variant sites in a genomic 
region and m covariates including intercept, age, environment variables, race, and top prin-
cipal components of genetic variation for controlling population structure. Let Gij be an 
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indicator variable for the genotype at the jth variant site of the ith individual, defined in 
the previous sections, and Xij be the jth covariate of the ith individual. Define the covariate 
matrix and genotype matrix:
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Consider a dichotomous phenotype (binary trait); let yi denote the phenotype of the ith individ-
ual and Y = [y1, …, yn]T be a vector of phenotypes. The logistic model for association analysis is
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(3.59a)

where πi = P(yi = 1).
Let
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Equation 3.59a can also be written as
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(3.59b)

Suppose that the responses y1,… , yn are observed values of independent random variables 
Y1,… , Yn following a binomial distribution with index 1 and parameter πi. The likelihood 

function is L y i
y

i
y

i

n
i ip p p,( ) = -( ) -

=Õ 1
1

1
, where the constant function of y not involving π 

has been omitted because it does not contradict to the estimation and inference. The 
log-likelihood is
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(3.60)

Define the score function
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and Fisher information matrix for γ
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Under the null hypothesis H0 : γ = 0, πi is given by pi =
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=1

1 1
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.

Therefore, the weigh matrix is
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(3.61)

We can show that the score function for β is given by
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and the Fisher information matrix for γ is (Appendix 3A)
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3.2.2.2 � Score Tests
Since under the null hypothesis H0 : γ = 0, we have E(U) = 0. The vector score U is a sum of 
terms corresponding to individual observations and hence is asymptotically normal with 
mean zero and covariance matrix I. We are interested in testing the association of genetic 
variation with the disease. Therefore, the null hypothesis of interest is

	 H0 0: ,b =

and the alternative hypothesis is

	 Ha : .b ¹ 0

We consider two scenarios for defining test statistics:

	 1.	Scenario 1: If the nuisance vector ξ is known, then the score test statistics of H0 is 
defined as

	 T U I Uscore
T

1 2
1

2= -
bb .	 (3.64)
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Under the null hypothesis H0 : β = 0, the score test statistic Tscore1 is asymptotically 
distributed as a central c p( )

2  distribution.

	 2.	Scenario 2: If the nuisance vector ξ is unknown and should be estimated, setting is 
equivalent to setting the score function U1 = 0. Given U1 = 0, the conditional distribu-
tion of U2 is normal with mean zero and the covariance matrix is (Exercise 3.12)

	 I U U I I I I2 1 2 1
10. cov .= =( ) = - -

bb bx xx xb 	 (3.65)

The score statistic for testing association of the genetic variants, given covariates are esti-
mated from data, is defined as

	 T U I Uscore
T

2 2 2 1
1

2= -
. .	 (3.66)

Again, under the null hypothesis H0 : β = 0, the score test statistic Tscore2 is asymptotically 
distributed as a central c p( )

2  distribution.

3.2.3 � Application of Score Tests for Association of Rare Variants

Two methods, weighted function methods and the adaptive association test, can be consid-
ered as applications of the logistic regression model and score tests to association analysis 
of rare variants. We first introduce weighted function methods.

3.2.3.1 � Weighted Function Method
Lin and Tang (2011) used the score test as a general framework for developing meth-
ods to detect the association of rare variants with disease. Since degrees of freedom of 
the score test statistics that depend on the number of genetic variants in the genomic 
region are often large, to improve the power of the tests, we need to reduce the degree 
of freedom of the test. One way to do this is to project high-dimensional data to one-
dimensional space by a linear transformation, β = τϕ, where τ is a scalar constant and 
ϕ is a weight function. Now the null hypothesis H0 : β = 0 is transformed to H0 : τ = 0. 
Equation 3.59a is reduced to
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where Si = Giϕ is a p × 1 vector of weights.
The score function is then reduced to
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Under the null hypothesis H0 : τ = 0, πi is
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which implies
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Recall that the Fisher information matrix is given by
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(3.71)
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and
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Using Equation 3.65, we obtain the conditional information matrix I, given ξ is estimated:
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The score test statistic

	 T U I Uscore
T

2 2 2 1
1

2= -
.

is asymptotically distributed as a central c 1
2
( ) under the null hypothesis H0 : τ = 0.

In the absence of covariates, i.e., α = 0, then the score function is reduced to
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where
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and the maximum likelihood estimate p̂ is
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Equation 3.76 can be rewritten as
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It is easy to see under α = 0 that

	 v Y Yi = -( )1 .	 (3.78)

After some algebra, we obtain
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Again, the test statistic is defined as

	 T U I Uscore
T

2 2 2 1
1

2= -
. ,	 (3.80)

where U2 and I2.1 are defined in Equations 3.77 and 3.79, respectively. The results were 
reported in Lin and Tang (2011).
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3.2.3.2 � Sum Test and Adaptive Association Test
The Sum tests and adaptive tests that are robust in the presence of no-risk variants and allow 
for both risk variants and protective variants are based on score functions (Pan et al. 2014). 
They assume that the probability of being affected is estimated and the covariates are absent. 
Under these assumptions, the data matrices H and G are respectively reduced to
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The estimate of the probability πi is p̂i Y= . The Fisher information matrix is
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which implies that the conditional information matrix, given the parameter α0 is 
estimated by
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The score function is
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It is interesting to note that the score function for an individual variant j is
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The score test statistic for the joint p variant analysis is

	 T U I Ujoint
T= -
2 2 1

1
2. .	 (3.84)

The score test statistic for the marginal single-variant analysis is

	
T

U

V
j

j

jj

=
2

,
	

(3.85)

where Vjj is the jth diagonal element of the conditional information matrix I2.1 in Equation 
3.81 and the minimum P-value test for the genomic region combining marginal score tests is
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3.2.3.3 � The Sum Test
The Sum test assumes that the p variants share a common association parameter:

	 b b b1 = = =� p c .

The null hypothesis is then defined as H0 : βc = 0.
The score function and conditional information matrix are respectively given by
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and
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Equation 3.87 defines the Sum test (Pan et al. 2014) as follows:
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If we assume that the variants are in linkage equilibrium, then asymptotically
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(3.90)

Using Equation 3.90, we can show that the score test under linkage equilibrium assumption is
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(3.91)

If the variance for each variant in Equation 3.91 is ignored, then TSE is reduced to the 
SSU test (Pan et al. 2014):
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The Sum test can be extended to a more general case:
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where ξj, j = 1,… , p are weights. Depending on the genetic variant data to assign various 
weights, a number of adaptive tests have been developed (Pan et al. 2014). Since the score 
provides rich information on the strength of genetic effect, we can use weight x j j

rU= -1 for 
an integer γ ≥ 1 to develop a new class of adaptive tests (Sum of Powered Score):
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Although the adaptive test in some scenarios can improve the power of detecting the 
association, the major drawback of the adaptive test is that, in general, the distributions of 
the adaptive tests are unknown and usually employ permutations to calculate their P-values. 
Permutations for genome-wide association tests require heavy computations.
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3.2.4 � Variance-Component Score Statistics and Logistic Mixed Effects Models

In the previous section, logistic fixed effects models and score tests are used to test the 
association of rare variants with disease. In this section, logistic fixed effects models 
are extended to logistic mixed effects models and variance-component score statistics 
will be explored for rare variant association analysis. For logistic mixed effects models, 
more mathematics is involved. For the self-sufficiency of this book, we will introduce 
necessary mathematics to help readers understand the principles underlying variance-
component score tests for association analysis with NGS data.

3.2.4.1 � Logistic Mixed Effects Models for Association Analysis
3.2.4.1.1  Model  To change the logistic fixed effects models (3.59a) to logistic mixed effects 
models, we simply assume that the genetic effects are random effects in the model (3.59a). In 
other words, we start with the conditional distribution of y, given random genetic effects β 
(McCulloch and Searle 2001):
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fY|β(y|β) can also be denoted by
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where

	
q p

p
=

-
log

1 	
(3.96)

and

	 b eq q( ) = +( )log .1 	 (3.97)

This gives

	
¶ ( )
¶

=
+

=
b e

e

q
q

p
q

q1
.
	

(3.98)

π is the mean of y, given β, i.e.,

	 E y b m péë ùû = = .
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It is important to model this mean as a linear model in both fixed and random factors:

	

g g X G

Z G

m p p
p

q a a b

g b

( ) = ( ) =
-

= = + +

= +

log

,
1

0

	 (3.99)
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, where g(.) is a logit function and is usually referred to as the 

link function that links the conditional mean of y and the linear form of genetic and non-
genetic predictors, β is a p dimensional vector of random variables with mean of zero and 
variance matrix τ2B, and other variables are defined as before.

To complete the model, we assign a distribution to the random genetic effects:
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It is well known (Exercise 3.10) that
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This equality implies that the variance function v(μ) is (Appendix 3B)

	 v v ym p p p( ) = ( ) = -( ) = ( )1 var .	 (3.102)

3.2.4.1.2  Likelihood and Its Score Functions  Suppose that n individuals with observations 
y1, … , yn, X1, … , Xn, G1, … , Gn are sampled. We can easily write down a likelihood function 
for the model (3.95) as
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Its log-likelihood function is then given by
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Similar to the logistic fixed effects model, the score function for the logistic mixed effects 
model is defined as
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Now we first calculate the score function Uγ for fixed effects.
It follows from Equation 3.104 that
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Since θ involves the random genetic effects β, to remove the impact of the random variables 
on the derivative, we consider the following transformation:
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Substituting Equation 3.106 into Equation 3.105, we obtain
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Using Equation 3.95, we obtain
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Substituting Equation 3.108 into Equation 3.107 yields
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We can similarly show that (Appendix 3C)
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3.2.4.1.3 � Penalized Quasi-Likelihood  Quasi-likelihood for the logistic model is defined as
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where v(t) is a variant function. The quasi-likelihood model behaves like a log-likelihood 
function. Indeed, using the derivative of integral gives
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It is clear that
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and
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This shows that quasi-likelihood behaves like a log-likelihood function and can be used as 
a log-likelihood. The quasi-likelihood for the logistic regression is
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where m p
q

q= =
+
e

e1
.

The quasi-likelihood can also be written as

	 Q y y em q q;( ) = - +( )log .1 	 (3.114)

Equation 3.114 is exactly the same as Equation 3.95. This demonstrates that the quasi-likelihood 
is the conditional distribution of y on the given β. This also shows that the quasi-likelihood 
Q(μ; y) does not include information on the distribution of the random vector β. To include 
the variance structure information into the quasi-likelihood, we incorporate a penalty func-
tion defined as a quadratic form of the random vector (3.100) into the quasi-likelihood:
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Substituting Equation 3.99 into Equation 3.115 gives
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where Zi and Gi are the ith row vectors of the matrices Z and G, respectively.
A score function of the PQL is defined as
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(3.117)

UPQL is often called the quasi-score function.
To find the score function of the PQL, we use Equation 3.116 to obtain
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The Fisher information matrix is (Appendix 3D)
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The fixed effects γ and random effects β should satisfy the equation

	 UPQL = 0.	 (3.221)

Equation 3.221 is a system of nonlinear equations. The standard Newton–Raphson 
algorithm or Fisher scoring algorithm is widely used for solving the system of nonlin-
ear equations (McCulloch and Searle 2001). The algorithm is summarized as follows 
(Appendix 3E).

Scoring Algorithm 3.1 

Step 1. Select initial values γ(0) and β(0).

Step 2. Iteratively solve the following normal equations using Gaussian or other 
algebraic methods until convergence:
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where
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Scoring Algorithm 3.1 only estimates the fixed effects and random effects; it does not 
estimate the covariance component τ. Therefore, this will not provide sufficient infor-
mation for rare-variant association tests under the logistic mixed effects models. Next 
we introduce a working variable and transform the quasi-likelihood solution to a linear 
mixed model. By iteratively solving the linear mixed models, we estimate the variance 
component.
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3.2.4.1.4  Working Variate and Linear Mixed Models  The linking function can be expanded 
around the mean of yi using a Taylor expansion:

	 g y g g yi i i i i( ) = ( ) + ( ) -( )¢m m mm ,	 (3.224)

where g im m¢ ( ) denotes 
¶ ( )
¶

g im
m

 evaluated at μi.

Substituting Equation 3.99 into Equation 3.224 gives

	 g y Z G g yi i i i i i( ) = + + ( ) -( )¢g b m mm .	 (3.225)

Let ti = g(yi) and t = [t1,…, tn]T. Equation 3.225 can be rewritten as

	 t Z G y= + + -( )g b mD ,	 (3.226)

where Δ = diag(gμ(μ1),…, gμ(μn)) and gμ(μi) is evaluated at β = 0.
We can show that iteratively solving the linear mixed model (3.226) is equivalent to itera-

tively solving the normal equation (3.222) (Appendix 3F). Therefore, we can use the linear 
mixed models to estimate the variance components. We assume that var(t) is given by

	 V t GD G WT= ( ) = + -var t2
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1
	 (3.227)

and t is distributed as N(Zγ, V).
The log-likelihood for t is
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Since our goal is to infer variance components, we want to remove the fixed effects from the 
model. To achieve this, it is necessary to transform the data such that

	 KZ = 0,	 (3.229)

where the rank of K is equal to N − r(Z).
Applying this transformation to the model (3.226) gives

	 t Kt KG K y* = = + -( )b mD .	 (3.230)

The log-likelihood for t∗, which is often called restricted maximum likelihood (REML) is
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Since - - ( )( ) ( )1

2
2n r Z log p  is a constant and is not involved in the variance components, it 

can be ignored. Equation 3.231 can be further reduced to (Appendix 3G)
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where ĝ = ( )- - -Z V Z Z V tT T1 1 1 .

3.2.4.1.5  Score Functions and Fisher Information Matrix  We start with the results of several 
derivatives. Recall that

	 V GD G WT= + -t2
0

1.

Therefore, we have
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Applying chain rule (Equation 1.158) and Equations 1.160 and 3.233, we obtain
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Applying Equations 1.156 and 3.233 gives
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By similar arguments, we have
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Using Equations 3.234, 3.235, and 3.236, we can derive the score function:
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The score function can be further reduced by transforming the estimator ĝ to the original 
data. Note that
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where

	 P V V Z Z V Z Z VT T= - ( )- - - - -1 1 1 1 1.	 (3.239)

Substituting Equations 3.238 and 3.239 into Equation 3.237, we obtain the reduced score 
function
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Now we calculate the second derivative of log-likelihood with respect to the variance com-
ponents. We can show that the formula of the derivative of P with respect to the variance 
component is given by (Exercise 3.15)
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Using chain rule and Equations 1.164 and 3.241, we obtain
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Similarly, we have
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Combining Equations 3.242 and 3.243, we obtain the second derivatives of log-likelihood 
with respect to the variance component:
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The Fisher information is then given by
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Fisher Scoring Algorithm 3.2

Step 1. Select initial value t0
2.

Step 2. Iteratively update t k( )
2  until convergence to a final solution by using
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(3.246)

where the score and Fisher information are evaluated using the current estimates.

3.2.4.2 � Sequencing Kernel Association Test
Sequencing kernel association test (SKAT) (Lee et al. 2012, 2014; Wu et al. 2011) that is 
based on a logistic mixed effects model can be used for rare variant association analysis. The 
SKAT assumes the following logistic model:

	 logit P y X Gi i i=( ) = + +1 0a a b,	 (3.247)

where variables are defined as before. One way to test the association of variants within a 
region with disease is to test the null hypothesis:

	 H0 0: .b =

Since the number of rare variants in a gene is often large and each variant makes small risk 
of the disease, the power of the standard likelihood ratio test is often low. To increase the 
power of the test, the SKAT aggregates the genetic variation across the gene and tests the 
variance component under the null hypothesis:

	 H0 0: .t =

To heuristically derive the SKAT, we consider only the quadratic term in the score func-
tion (3.237):

	 U t Z V V V t Z
T

t tg g» -( ) -( )- -ˆ ˆ .1 1

	 (3.248)

Recall that we have

	 WD =1

when we evaluate the matrices W and Δ under the null hypothesis.
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We can show that

	 V t Z y- -( ) = -( )1 ˆ .g m 	 (3.249)

Thus, Equation 3.248 can be reduced to
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 and D0 are a constant matrix involved in defining the variance–

covariance of the random genetic effects. Replacing D0 by W gives the SKAT statistic 
(Equation 3 in Wu et al. 2011)

	 Q y K y= -( ) -( )ˆ ˆ ,m m 	 (3.251)

where K = GWGT and W = diag (w1, …, wp) with each weight wi prespecified.
Wu et al. (2011) showed that under the null hypothesis,
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where λi are the eigenvalues of the matrix P KP0
1 2
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Wu et al. (2011) used the Davies (1980) exact method to obtain the distribution of Q.

3.3 � POPULATION-BASED FUNCTIONAL ASSOCIATION 
ANALYSIS FOR NEXT-GENERATION SEQUENCING

Genetic association analysis of complex diseases is undergoing a paradigm shift from 
the single marker analysis to the joint analysis of multiple variants in a genomic region 
(Neale and Sham 2004). In Section 3.2, we introduced a multivariate approach to associa-
tion analysis of groups of variants. Although multivariate group association tests have 
higher power than the individual marker tests, they also suffer limitations. First, group 
association tests do not leverage linkage disequilibrium (LD) in the data. And second, 
since sequence errors are cumulative when rare variants are grouped, group tests are sen-
sitive to the genotyping errors and missing data. All multivariate group association tests 
assume discrete genomic models. To utilize the advantages of both individual variant 
analysis and group tests and address the limitations inherent to individual variant analy-
sis and group tests, in this section, we introduce functional data analysis (FDA) as an 
alternative approach to association analysis with NGS data, which utilize a genome con-
tinuum model as a general principle, and stochastic calculus and functional data analysis 
as tools for developing statistical methods.
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3.3.1 � Introduction

It is increasingly recognized that the genome is transmitted not in points but rather in seg-
ments. Instead of modeling the genome as a few separated individual loci, modeling the 
genome as a whole will enrich information on genetic variation across the genome. It has 
been shown that the number of genetic variants in large samples is approximately distrib-
uted as a Poisson process with its intensity depending on the total mutation rate (Joyce 
and Tavare 1995). The intensity of the Poisson process within a genomic region can be 
interpreted as a function of the genomic location. A collection of genetic variants for each 
individual can be viewed as a realization of the Poisson process.

The traditional variant-by-variant association tests compare differences in allele frequen-
cies between cases and controls, and the multilocus association tests collectively compare 
differences in allele frequencies or haplotype frequencies between cases and controls across 
the gene (Lin et al. 2002). The FDA is an alternative approach to multivariate association 
analysis. Figure 3.3 presents the resequencing data for the gene ANGPTL4 in the Dallas 
Heart Study. As shown in Figure 3.3, in the FDA-based association analysis, the problem 
of collectively testing the association of multiple variants with the diseases can be trans-
formed to test the difference of the two underlying random functions or stochastic pro-
cesses between cases and controls.

There are several remarkable features of employing FDA techniques in developing statis-
tics to test the association of a genomic region of multiple variants with the diseases. First, 
the low frequency of rare variants can only be found in a small number of individuals at 
a specific locus, and FDA techniques can effectively pool the information of multiple rare 
variants at a region. Second, FDA approaches viewing the genotype profiles as a function 
of the genomic location can achieve an overall significance level in testing the association 
of multiple variants. Third, functional principal component analysis (FPCA) will compress 

The genotype profile for each individual

H0: X(t) =Y(t).

Y(t)

X(t)

Group: BMI > 34.6

Group: BMI < 25.4

FIGURE 3.3  Resequencing Data: ANGPTL4 in the Dallas Heart Study. Left: a red point represents 
a rare allele at a genomic position for an individual. Right: a red point represents the number of rare 
alleles at a genomic position and blue curves summarize the genotype files in cases and controls 
fitting the data.
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the data into a few top components, which will effectively remove noisy data, largely reduce 
the degree of freedom of the test, and eventually improve power for the test. Fourth, the 
FPCA approach can transform the original highly correlated genotype data into indepen-
dent principal component scores. Fifth, the FDA approach can take into account the link-
age disequilibrium information among the set of variants being tested, especially when we 
test haplotype differences between cases and controls. Recently developed functional data 
analyses techniques (Ramsay and Silverman 2005) are ideally suited for association tests 
using NGS data.

3.3.2 � Functional Principal Component Analysis for Association Test
3.3.2.1 � Model and Principal Component Functions
Consider two types of genetic variant profiles: genotype profiles and haplotype profiles. 
Let t be the position of a genetic variant along a chromosome or within a genomic region 
and T be the length of the genomic region being considered. For convenience, we rescale 
the region [0, T] to [0, 1]. Because the density of genetic variants is high, we can view t as a 
continuous variable in the interval [0, 1]. Assume that nA cases and nG controls are sampled 
and sequenced.

We first define the genotype of the ith case as
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where M is an allele at the genomic position t. Similarly, we can define a similar function 
Xi(t), (i = 1, …, nG) for the ith control. Next we define a haplotype profile. Assume that hap-
lotypes of an individual in the genomic region are available. We define a haplotype function 
Yi(t) of the ith case as
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(3.254)

We can similarly define a haplotype function Xi(t) for the ith control.
Similar to principal component analysis (PCA) for multivariate data where we consider 

a linear combination of variables to capture the variations contained in the entire data, we 
can consider a linear combination of functional values:

	
f t X t dt= ( ) ( )ò

0

1

b ,

	
(3.255)

where β(t) is a weight function and X(t) is a centered genotype or haplotype function defined 
in Equation 3.253 or Equation 3.254. To capture the genetic variations in the genotype or 
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haplotype functions, we chose weight function β(t) to maximize the variance of f. By the 
formula for the variance of stochastic integral (1.187), we have 

	
var , f s R s t t dsdt( ) = ( ) ( ) ( )òò

0

1

0

1

b b ,

	
(3.256)

where R(s, t) is the covariance function of the process X(t). Since multiplying β(t) by a con-
stant will not change the maximizer of the variance var(f), we impose a constraint to make 
the solution unique: 

	 0

1

2 1ò ( ) =b t dt .

	
(3.257)

Therefore, to find the weight function, we seek to solve the following optimization problem:

	

max

. . .
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0

1
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òò

ò
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( ) =

b b
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s R s t t dsdt
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s t

	

(3.258)

In Section 1.5.3, we show that the weight function β(t) that solves the problem (3.258) 
should satisfy the following integral equation

	 0

1

ò ( ) ( ) = ( )R s t t dt s, b lb .

	
(3.259)

for an appropriate eigenvalue λ. The left side of the integral equation (3.259) defines an 
integral transform R of the weight function β. Therefore, the integral transform of the cova-
riance function R(s, t) is referred to as the covariance operator R. The integral equation 
(3.259) can be rewritten as

	 Rb lb= ,	 (3.260)

where β(t) is an eigenfunction and referred to as a principal component function. Equation 
3.260 is also referred to as an eigenequation. Clearly, the eigenequation (3.260) looks the 
same as the eigenequation for the multivariate PCA if the covariance operator and eigen-
function are replaced by a covariance matrix and an eigenvector.

Provided the functions Xi and Yi are not linearly dependent, there will be only N − 1 
nonzero eigenvalues, where N is the total number of sampled individuals (N = nA + nG). 
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Eigenfunctions satisfying the eigenequation are orthonormal (Ramsay and Silverman 
2005). In other words, Equation 3.260 generates a set of principal component functions:

	 R k k kb l b l l= ³ ³, with 1 2 �

These principal component functions satisfy

	 1.	 bk t dt2

0

1

1( ) =ò  and

	 2.	 b bk mt t dt k m( ) ( ) = <ò 0
0

1

for all .

The principal component function β1 with the largest eigenvalue is referred to as the first 
principal component function, and the principal component function β2 with the second 
largest eigenvalue is referred to as the second principal component function, etc.

3.3.2.2 � Computations for the Principal Component Function 
and the Principal Component Score

The eigenfunction is an integral function and difficult to solve in closed form. A general 
strategy for solving the eigenfunction problem in (3.260) is to convert the continuous eigen-
analysis problem to an appropriate discrete eigen-analysis task (Luo et al. 2011; Ramsay 
and Silverman 2005). In this section, we introduce two methods: discretization and basis 
function expansion methods to achieve this conversion. As will be discussed later, these 
two methods are not the same, and one or the other may be more appropriate in specific 
situations.

3.3.2.2.1  Discretization Method  In practice, the available genetic variant profiles are a func-
tion of discrete genomic positions. Assume that in a genomic region there are K variable 
loci, which are indexed as t1, t2, … , tK. For the ith individual, the observed genetic variant 
profile can be expressed as Xi(t1), … , Xi(tK). The covariance function R(s, t) at these loci can 
be written as a matrix:

	

R

R s t R s t

R s t R s t
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(3.261)

Let w t t
k Kk

k k= - = ¼+ -1 1

2
1, , , . The principal component function β(t) at K loci is a vector 

and is written as β = [β(t1), …, β(tK)]T. By methods for numerical integration, the integral 
equation (3.260) can be converted to an ordinary matrix eigenequation. For each sk, we have

	
R s R s t t dt R s t t wk k

l

k l l lb b b( ) = ( ) ( ) » ( ) ( )ò å, , .
	

(3.262)
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Then, Equation 3.260 has the approximate discrete form

	 RWb lb= ,	 (3.263)

where W = diag(w1, …, wK).

Let u W=
1

2b. Then, Equation 3.261 can be reduced to

	 W RW u u
1

2

1

2 = l .	 (3.264)

Equation 3.262 is the usual eigenequation from multivariate analysis. Compute the eigenval-

ues λk and eigenvectors uk of W RW
1

2

1

2 . Then, bk kW u=
-

1

2  and λk are a pair of discrete eigen-
functions and eigenvalues, respectively, of the original functional eigenequation (3.260).

3.3.2.2.2  Basis Function Expansion Method  Another method for solving the functional 
eigenequation (3.260) is to expand each genetic variant profile Xi(t) as a linear combination 
of the basis function ϕj:

	
X t C ti

j

T

ij j( ) = ( )
=
å

1

f
	

(3.265)

Define the vector-valued function X(t) = [X1(t), …, XN(t)]T and the vector-valued func-
tion ϕ(t) = [ϕ1(t), …, ϕT(t)]T. The joint expansion of all N genetic variant profiles can be 
expressed as

	 X t C t( ) = ( )f 	 (3.266)

where the matrix C is given by
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In matrix form, we can express the variance–covariance function of the genetic variant 
profiles as

	

R s t
N

X s X t

N
s C C t

T

T T

,( ) = ( ) ( )

= ( ) ( )

1

1 f f .
	

(3.267)
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Similarly, the eigenfunction β(t) can be expanded as

	
b ft b t

j

T

j j( ) = ( )
=
å

1

or

	 b ft t b
T( ) = ( ) ,	 (3.268)

where b = [b1, …, bT]T. Substituting expansions (3.267) and (3.268) of variance–covariance 
R(s, t) and eigenfunction β(t) into the functional eigenequation (3.260), we obtain

	
1

N
C CWb bT = l ,

	
(3.269)

where

	
W t t dt

T

T= ( ) ( )òf f .

Normalization condition b2 1t dt
T

( ) =ò  implies that

	 b WbT =1.	 (3.270)

Let u W b=
1

2 . Then, the eigenequation (3.269) and normalization condition (3.270) can be 
reduced to

	
1

1
1

2

1

2

N
W C CW u u u uT T= =l , .

	
(3.271)

Solving the multivariate eigenvalue and eigenvector problems in Equation 3.271 will yield 
the eigenvalue λ and eigenvector u. Then, the eigenfunction β(t) is finally given by

	 b ft t W uT( ) = ( )
-

1

2 .	 (3.272)

If the basis functions ϕj(t) are orthonormal, then W = I, an identity matrix.

3.3.2.3 � Test Statistic
We use the pooled genetic variant profiles Xi(t) of cases and Yi(t) of controls to estimate the 
principal component function ϕj(t) using both discretizing and basis expansion methods. 
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The original genetic variant functions Xi(t) and Yi(t) can be expressed as a linear combina-
tion of eigenfunctions

	
X t ti

j

ij j( ) = ( )åx f

and

	
Y t ti

j

ij j( ) = ( )åh f ,

	
(3.273)

where ϕj(t), j = 1, 2, … are orthonormal functions. To find coefficients of expansions, multi-
plying eigenfunctions ϕj(t) on both sides of Equation 3.273 and using orthonormal proper-

ties f fj k
T

t t dt( ) ( ) =ò 0 and f j
T

t dt2 1( ) =ò , we obtain

	
x fij

T

i jX t t dt= ( ) ( )ò ,

	
(3.274)

	
h fij

T

i jY t t dt= ( ) ( )ò .

	
(3.275)

Since the genetic variant functions Xi(t) and Yi(t) are centered, the expectation of the expan-
sion coefficients is

	
E E X t t dt E E Y t tij

T

i j ij

T

i jx f h féë ùû = ( )éë ùû ( ) = éë ùû = ( )éë ùû (ò ò0 and )) =dt 0.

Using Equations 1.187 and 3.259, we obtain
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(3.276)

and
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Similarly, we can show cov(ηij, ηik) = 0,  ∀ j ≠ k and var(ηij) = λj, j = 1, 2, …. In other words, ξij 
and ηij are uncorrelated random variables with zero mean and variances λj with ∑jλj < ∞.

Define the averages x j and h j of the principal component scores ξij and ηij in the cases 
and controls:

	
x x h hj

A i

n

ij j
G i

n

ij
n n

A G

= =
= =
å å1 1

1 1

and .

Define vectors of average of the principal component scores in cases and controls, respec-
tively, by

	 x x x h h h= ¼éë ùû = ¼[ ]1 1, , and , ,k

T

k
T

.

When the genetic variant profiles are defined by a genotype function, then the FPCA-based 
statistic for testing the association of a genomic region with the disease is defined as

	 TFPC

T
= -( ) -( )-x h x hL 1 ,	 (3.278)

where
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If the genetic variant profiles are defined by a haplotype function, then the number of 
sampled individuals nA and nG in cases and controls in Equation 3.278 should be replaced 
by the number of sampled chromosomes 2nA and 2nG in cases and controls. Under the null 
hypothesis of no association of the genomic region, the test statistic TFPC is asymptotically 
distributed as a central c k( )

2 distribution.

3.3.3 � Smoothed Functional Principal Component Analysis for Association Test

FPCA can greatly enhance the power to detect association of variants. However, when the 
genetic variant functions in FPCA rapidly change within the genomic region, the basis 
expansion in the FPCA cannot approximate the genetic variation data well, which will 
decrease the power of FPCA. Figure 3.4 shows the original genotype data and fitted geno-
type curves by the FPCA and smoothed FPCA method. Figure 3.4 shows the genotype 
curve fitted by the FPCA rapidly varies, but the genotype curve fitted by the smoothed 
FPCA changes smoothly.
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The smoothed FPCA for testing the association of rare variants combines a measure of 
goodness-of-fit with a roughness penalty to retain the advantages of basis expansion but 
circumvent its limitation (Luo et al. 2013). Smoothing of the estimated principal compo-
nent curves can substantially reduce their variability and improve the approximation of 
genetic variation data by the smoothed functional principal components, which will finally 
lead to increasing the power of the tests.

3.3.3.1 � A General Framework for the Smoothed Functional 
Principal Component Analysis

The observed genetic variant profiles are often not smooth, which leads to substantial vari-
ability in the estimated functional principal component curves. To improve the smoothness 
of the estimated functional principal component curves, we impose the roughness penalty 
on the functional principal component weight functions. We balance the goodness-of-fit 
and the roughness of the estimated functional principal component curves.

We often penalize the roughness of the functional principal component curve by its inte-
grated squared second derivative. The balance between the goodness-of-fit and the rough-
ness of the function is controlled by a smoothing parameter μ. We define an extended inner 
product as

	
f g f t g t dt D f t D g t dt,( ) = ( ) ( ) + ( ) ( )ò òm

m 2 2 ,
	

(3.279)
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FIGURE 3.4  Resequencing data and fitted curves: MUC6 in Myocardial Infarction Studies. The 
green point represents the count of alleles in the mapped genomic position. The red dotted line 
represents the fitted genetic variation curve by the FPCA, and the blue solid line represents the fitted 
genetic variation curve by the smooth FPCA.
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where D f t
d f t

dt
2

2

2( ) = ( ) . The penalized sample variance is defined as
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where b b m b
m

t t dt D t dt( ) = ( ) + ( )éë ùûò ò
2 2

0

1
2 2

0

1

.

The smoothed functional principal components can be obtained by solving the following 
integral equation (for derivation, please read Section 1.5.4):

	 0

1

4ò ( ) ( ) = ( ) + ( )éë ùûR s t s ds t D t, b l b m b .

	
(3.281)

Note that when μ = 0, the smoothed functional principal components analysis (SFPCA) is 
reduced to an unsmoothed functional principal component analysis.

3.3.3.2 � Computations for the Smoothed Principal Component Function
The eigenfunction is an integral function and difficult to solve in closed form. A general 
strategy for solving the eigenfunction problem in (3.281) is to convert the continuous 
eigen-analysis problem to an appropriate discrete eigen-analysis task. We use basis func-
tion expansion methods to achieve this conversion.

Let {ϕj(t)} be the series of Fourier functions. For each j, define ω2j − 1 = ω2j = 2πj. We expand 
each genetic variant profile Xi(t) as a linear combination of the basis function ϕj:
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(3.282)

Define the vector-valued function X(t) = [X1(t), …, XN(t)]T and the vector-valued function 
ϕ(t) = [ϕ1(t), …, ϕT(t)]T. The joint expansion of all N genetic variant profiles can be 
expressed as

	 X t C t( ) = ( )f ,	 (3.283)

where the matrix C is given by
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In matrix form, we can express the variance–covariance function of the genetic variant 
profiles as
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Similarly, the eigenfunction β(t) can be expanded as
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where b = [b1, …, bT]T and S T0 1
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Then, we have

	 b m b ft D t t S b
T( ) + ( ) = ( ) -4 2 .	 (3.286)

Substituting expansions (3.284) and (3.286) of variance–covariance R(s, t) and eigenfunc-
tion β(t) into the functional eigenequation (3.281), we obtain

	
f lft
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(3.287)

Since Equation 3.287 must hold for all t, we obtain the following eigenequation:
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which can be rewritten as
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where u = S−1b. Thus, b = Su and β(t) = ϕ(t)Tb are solutions to eigenequation (3.281).
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Note that <uj, uj >  = 1  and < uj, uk >  = 0, for  k < j. Therefore, we obtain a set of orthonor-
mal eigenfunctions with an inner product of two functions defined in Equation 3.279, as 
shown in Equation 3.290:

	 b b b
m mj j

T
j j

T
j j k j

T
k j

T
kb S b u SS Su b S b u u

2 2 2 21 0= = = < > = = =- - -and , .	
(3.290)

3.3.3.3 � Test Statistic
We use the pooled genetic variant profiles Xi(t) of cases and Yi(t) of controls to estimate the 
set of orthonormal principal component function βj(t), j = 1, 2, … , k (eigenfunctions) using 
the basis expansion methods. Similar to the previous section, by the K-L decomposition, 
the smoothed functional principal component score can be obtained by

	 x b h bm mij i j ij i jx t t y t t j k=< ( ) ( ) > =< ( ) ( ) > = ¼, , , , , , .and 1 2
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where ξi = [ξi1, …, ξik]T, ηi = [ηi1, …, ηik]T.
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Then, the statistic is defined as

	 TSFPC

T
= -( ) -( )-x h x hL 1 .	 (3.291)

Under the null hypothesis of no association of the genomic region with a disease, the statis-
tic TSFPC is asymptotically distributed as a central c k( )

2  distribution.

3.3.3.4 � Power Comparisons
To evaluate the performance of the FPCA-based statistics and other association tests intro-
duced in the previous sections for testing the association of a set of variants with disease, 
we used simulated data to estimate their power to detect a true association. We considered 
four disease models: additive, dominant, recessive, and multiplicative. We used MS soft-
ware (Hudson 2002) to simulate 1,000,000 individuals with 240 variants (60 common and 
180 rare variants in a 30 kb region).

An individual’s disease status was determined based on the individual’s genotype and the 
penetrance for each locus. Let Ai be a rare risk allele at the ith locus. Let Gki(k = 0, 1, 2) be 
the genotypes aiai, Aiai, and AiAi, respectively, and fki be the penetrance of genotypes Gki at the 



Association Studies for Qualitative Traits    ◾    191

ith locus. The relative risk (RR) at the ith locus is defined as R f

f
i

i

i
1

1

0

=  and R f

f
i

i

i
2

2

0

= , where f0i 

is the baseline penetrance of the wild-type genotype at the ith variant site. We assume that 
for the additive disease model, R2i = 2R1i − 1; for the dominant disease model, R2i = R1i; for the 
recessive disease model, R1i = 1; and for the multiplicative disease model, R Ri i2 1

2= . The geno-
type relative risk was assumed to be inversely proportional to the MAF where the population 
attributable risk (PAR) of each group was assumed to be 0.005. We assumed that the relative 
risks across all variant sites are equal and that the variants influence disease susceptibility 
independently (i.e., no epistasis). Each individual was assigned to the group of cases or con-
trols depending on their disease status. The process for sampling individuals from the popu-
lation of 2,000,000 haplotypes was repeated until the desired samples were reached for each 
disease model.

Figures 3.5 and 3.6 plot the power curves of 12 statistics: smoothed FPCA, discretization 
(Luo et al. 2013); smoothed FPCA, Fourier expansion (Luo et al. 2013); FPCA, discretization 
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FIGURE 3.5  Power of 12 statistics for testing the association of rare variants as a function of propor-
tion of risk variants under the additive models.
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(Luo et al. 2011); FPCA, Fourier expansion (Luo et al. 2011); sequence kernel association test 
(SKAT) (Wu et al. 2011); weighted sum statistic (WSS) (Madsen and Browning 2009); vari-
able threshold (VT) (Price et al. 2010b); multivariate principal component (MPC)–based 
statistic; collapsing method (Li and Leal 2008); generalized T2 statistic (Xiong et al. 2002); 
single marker χ2 test where permutation was used to adjust for multiple testing; and the CMC 
method (variants with frequencies ≤0.005 were collapsed) as a function of the proportion of 
risk-increasing variants for testing the association of rare and both common and rare vari-
ants with disease at the significance level of 0.05 under additive disease models, assuming a 
baseline penetrance of 0.01 and that 2000 cases and 2000 controls were sampled. Figure 3.7 
shows the power curves of 12 statistics as a function of sample sizes at the significance level 
of 0.05 under the additive model, assuming 7.5% of risk variants and 7.5% of protective 
variants. We can observe several remarkable features from these figures. First, the power of 
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FIGURE 3.6  Power of 12 statistics for testing the association of both common and rare variants as a 
function of proportion of risk variants under the additive models.
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the FDA-based statistics is much higher than that of all multivariate statistics. Second, the 
power of the SFPCA-based statistics is higher than that of the standard FPCA-based statis-
tics. Third, the methods for genotype function expansion do not have much impact on the 
power of the tests. Fourth, among the multivariate rare variant association tests, the SKAT is 
the most powerful statistic.

3.3.3.5 � Application to Real Data Examples
To evaluate their performance, 12 statistics are applied to the ANGPTL3 sequence and 
phenotype data from the Dallas Heart Study with 3553 individuals (Romeo et al. 2007). 
Since the smoothed FPCA method requires that each individual should have at least 
two rare variants in the genomic region being tested, we excluded 98 individuals with 
only one rare variant. To examine the phenotypic effects of rare variants in ANGPTL3, 
we selected two groups of individuals with the lowest and highest quartiles of five traits 
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FIGURE 3.7  Power of 12 statistics for testing the association of 7.5% of risk rare variants and 7.5% 
of protection rare variants as a function of sample sizes.
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related to lipid metabolism. The individuals whose plasma triglyceride levels are less 
than or equal to the 25th percentile are classified as the lowest quartiles of the triglycer-
ide, and the individuals whose plasma triglyceride levels are greater than or equal to the 
75th percentile are grouped as the highest quartile of the triglyceride. We can similarly 
classify the individuals as the lowest and highest quartiles of high-density lipoprotein 
cholesterol (HDL), total cholesterol, very low–density lipoprotein cholesterol (VLDL), 
and body mass index (BMI). P-values from previous 12 statistics in power evaluations 
for testing the association of rare variants in ANGPTL3 with the five traits are summa-
rized in Table 3.13. For the CMC method, variants with an allele frequency below 0.005 
were collapsed. We observe that only FPCA-based statistics and SKAT detect significant 
association of ANGPTL3 with triglyceride and VLDL and P-values calculated using the 
FPCA-based statistics are smaller than that using SKAT.

To illustrate that many rare variant association tests can also be applied to variants of all 
frequencies, eight statistics, SFPCA, FPCA, SKAT, CMC, χ2 statistic, WSS, VT, and MPCA, 
are applied to a GWAS of schizophrenia data, which are downloaded from dbGaP to test 
the association of variants within a genomic region with schizophrenia. The samples are 
of European origin and included 1,135 individuals with schizophrenia and 1,362 controls 
with 727,479 typed SNPs. The total number of genes being tested is 13,804. The threshold 
for declaring genome-wide significance after the Bonferroni correction is 3.6 × 10−6. The 
results are summarized in Table 3.14. We observe that the SFPCA identifies 10 genes that 
are significantly associated with schizophrenia, and the P-values using SFPCA are much 
smaller than that using other statistics. Some results can be confirmed by the literature. 
For example, PDLIM5 was reported to be associated with schizophrenia and bipolar disor-
der (Zhao et al. 2009), CERKL was associated with narcolepsy (Shimada et al. 2010), and 
HAAO was associated with Parkinson’s disease (Kim et al. 2006).

TABLE 3.13  P-Values of 11 Statistics for Testing the Association of Rare Variants in ANGPTL3 
with Five Traits in the Dallas Heart Study

Statistical Method

Phenotype

BMI Cholesterol Triglyceride VLDL HDL

Smoothed FPCA (discrete) 1.72E−02 2.45E−02 4.39E−08 1.46E−08 4.54E−03
Smoothed FPCA (Fourier) 1.68E−02 2.42E−02 4.35E−08 1.23E−08 4.23E−03
FPCA (discretization) 2.96E−02 2.68E−02 9.82E−08 4.91E−08 5.86E−03
FPCA (Fourier) 2.48E−02 2.50E−02 9.55E−08 4.86E−08 5.70E−03
SKAT 4.96E−02 3.83E−02 7.68E−06 2.40E−07 2.60E−03
T2 2.16E−01 3.07E−01 1.40E−03 1.60E−03 1.85E−01
Collapsing 2.90E−01 9.57E−02 4.50E−01 1.90E−01 3.20E−01
Chi square (permutation) 1.28E−01 1.69E−01 4.80E−03 5.60E−03 2.16E−02
CMC 1.96E−01 5.40E−03 1.10E−01 1.13E−01 9.40E−01
WSS 1.34E−01 4.05E−01 4.00E−04 5.00E−04 2.37E−01
VT 2.12E−01 2.76E−01 2.00E−05 5.00E−05 9.95E−02
MPCA 3.98E−02 2.13E−01 1.56E−05 5.76E−04 1.38E−02
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SOFTWARE PACKAGE
Plink (http://pngu.mgh.harvard.edu/~purcell/plink/) is designed for genome-wide asso-
ciation studies with common variants. R-Package “AssotesteR” (https://cran.r-project.org/
web/packages/AssotesteR/AssotesteR.pdf) and R-package “aSPU” (https://cran.r-project.
org/web/packages/aSPU/aSPU.pdf) are software packages that perform score-based asso-
ciation tests with rare variants. Fitting the logistic mixed effects models using PQL can use 
R-package “glmmPQL” (http://www.inside-r.org/r-doc/mass/glmmPQL). SKAT (http://
www.hsph.harvard.edu/skat/) is a program for testing the association of a set of SNPs (gene 
or genomic region) with a continuous or binary trait. A program for implementing the 
FPCA and smoothed FPCA for association tests can be downloaded from our website, 
http://www.sph.uth.tmc.edu/hgc/faculty/xiong/index.htm.

APPENDIX 3A: FISHER INFORMATION MATRIX FOR γ
First we calculate U2. By definition of score function, we have
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Now we calculate ¶
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i . Let
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Taking derivative with respect to ηi on both sides of Equation 3A.2, we obtain
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Solving Equation 3A.3 for ¶
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Combining Equations 3.59a and 3A.2, we have
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Using chain rule and Equations 3A.4 and 3A.5, we obtain
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Substituting Equation 3A.6 into Equation 3A.1, we obtain the score function
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Similar to Equation 3A.6, we can obtain from Equation 3A.2 that
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The Fisher information for β is
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where

	 W i i= -( )( )diag p p1 .	 (3A.10)

Similarly, we have

	
U y H

i

n

i i i
T

1

1

= -( )
=
å p

	
(3A.11)

and

	 I H WHT
xx = .	 (3A.12)



198    ◾    Big Data in Omics and Imaging: Association Analysis

Now we calculate the Fisher information matrix Iξβ. By definition of information matrix, 
we have
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Now we calculate ¶
¶
p
x

i
T

. It follows from Equation 3.59b that
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Combining Equations 3A.3 and 3A.14 and using the chain rule, we obtain
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Substituting Equation 3A.15 into Equation 3A.13, we obtain
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APPENDIX 3B: VARIANCE FUNCTION v(μ)
Using Equation 3.95, we obtain
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which implies that
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Using Equations 3.98 and 3B.3 gives
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It follows from Equation 3B.2 that

	
var

log
var var .

¶ ( )
¶

æ

è
çç

ö

ø
÷÷ = -

¶ ( )
¶

æ

è
ç

ö

ø
÷ = ( )

f y
y

b
y

Y b

q
q
q 	

(3B.6)

Using Equations 3.98, 3B.3, 3B.5, and 3B.6 gives
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We denote
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where v(μ) is called the variance function.

APPENDIX 3C: DERIVATION OF SCORE FUNCTION FOR Uτ

By definition of Uτ, we have
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Recall that the conditional density function fβ|Y(β|Y) can be expressed as
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Substituting Equation 3C.2 into Equation 3C.1 gives
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When β is distributed as N(0, D(τ)) (3.100), we have
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Using Equations 1.158 and 1.160 gives
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Using formula for derivative of inverse matrix (Equation 1.156) and Equation 3C.5, we 
obtain
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Substituting Equation 3C.6 into Equation 3C.3 leads to
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APPENDIX 3D: FISHER INFORMATION MATRIX OF PQL
We first derive the score function. By definition, we have
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and
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To find the Fisher information matrix, we first calculate the second derivative of the PQL. 
Using Equation 3D.1 gives
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Using Equation 3.99 and the chain rule, we obtain
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Substituting Equation 3D.4 into Equation 3D.3 gives
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Thus, we have
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Similarly, we can prove
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APPENDIX 3E: SCORING ALGORITHM
The Fisher scoring algorithm for solving Equation 3.221 takes the form
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Multiplying I(k) on both sides of Equation 3E.1, we obtain
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(3E.2)

We expand the first term on the right side of Equation 3E.2 using the Fisher score 
(Equation 3.220)
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Combining Equation 3E.3 with the second term on the right side of Equation 3E.2 gives
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Now we expand the term on the left side of Equation 3E.2 using Equation 3.220:
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Combing Equations 3E.4 and 3E.5, we obtain (Liu et al. 2008)
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APPENDIX 3F: EQUIVALENCE BETWEEN ITERATIVELY SOLVING LINEAR 
MIXED MODEL AND ITERATIVELY SOLVING THE NORMAL EQUATION
The variance–covariance matrix of the working variate t is

	 var var .t GDG yT( ) = + * -( ) *D Dm 	 (3F.1)

Recall that

	 D* = -W 1.	 (3F.2)

Substituting Equation 3F.2 into Equation 3F.1 gives

	 y m= ( ) = + -( )- -var var .t GDG W y WT 1 1
	 (3F.3)

The least square estimates of the fixed and random effects are
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(3F.4)

To make Equation 3F.4 equivalent to Equation 3E.1, it requires
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(3F.5)

	 Z ZT Ty- * =1D ,	 (3F.6)

and

	 G y G y DT k T k ky m m b- ( ) ( ) - ( )* -( ) = -( ) -1 1D .	
(3F.7)
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When ψ−1 = W and μ(k) is evaluated at β = 0, Equations 3F.5 and 3F.6 hold. If we make an 
additional assumption of absence of penalization term, Equation 3F.7 will also hold. From 
Equation 3F.3, we can see that these assumptions require that the variance components of 
the random effects are weak. Under the null hypothesis of no association of the genetic 
variants with the disease, Equations 3F.5 and 3F.6 will hold and maximization of quasi-
likelihood problem can be transformed to iteratively solving a linear mixed effect problem 
using working variates.

APPENDIX 3G: EQUATION REDUCTION
We start derivation with selection of K (Wakefield 2008). Recall that the vector of residuals 
of least square estimate is

	

R t Z

t Z Z Z Z t

I Z Z Z Z t

I H t

T T

T T

= -

= - ( )
= - ( )( )
= -( )

-

-

ˆ

.

g
1

1

	 (3G.1)

Applying the model to the residuals, we obtain

	

R I H t

I H Z G

Z Z Z Z Z Z I H GT T

= -( )
= -( ) + +( )

= - ( )( )é
ëê

ù
ûú
+ -( ) +( )

-

g b e

g b e
1

== -( ) +( )I H Gb e . 	 (3G.2)

Although R is not dependent on γ, its rank is n − m − 1, and hence, its distribution will be 
degenerate. We need to augment R to full rank.

Consider the transformation

	 U K tT= ,

where K is an n × (n − m − 1) dimension matrix with

	 KK I HT = - 	 (3G.3)

and

	 K K IT = .	 (3G.4)

Then, using Equations 3G.3 and 3G.4 gives

	

U K t

K KK t

K I H t

T

T T

T

=
=
= -( ) .	 (3G.5)
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Substituting Equation 3G.2 into Equation 3G.5, we obtain

	 U K RT= .	 (3G.6)

Note that

	

K Z K KK Z

K I H Z

K Z Z

T T T

T

T

=
= -( )
= -( )
= 0, 	 (3G.7)

which implies

	

U K t
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T T

=
= +b e	 (3G.8)

and

	 E U[ ] = 0.

We make the following transformation:
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(3G.9)

where BT = (ZTV−1Z)−1ZTV−1 and F = ĝ .
We make changes of variables and derive distribution of the changed variables. The 

Jacobian matrix of the transformation (3G.9) is
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(3G.10)

Applying the matrix partition formula

	 A A A A A A= - -
11 22 21 11

1
12
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to Equation 3G.10, we obtain

	
J K K B B B K K K K BT T T T T= - ( )-1 2 1 1 2/ /

.
	

(3G.11)

Substituting Equations 3G.3 and 3G.4 into Equation 3G.11 gives
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T T
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= - +( )
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1 2 1 2

1 2

1 2

/ /

/

/
. 	 (3G.12)

Note that
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which implies
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Substituting Equation 3G.14 into Equation 3G.11 gives

	 J Z ZT=
-1 2/

.	 (3G.15)

By distribution theory for transformation of random vectors, we obtain
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(3G.16)

We can show that

	 cov .U F,( ) = 0 	 (3G.17)

Since both random variables U and F are normal, U and F are independent. Recall that

	 F Z V Z Z V tT T= ( )- - -1 1 1 .
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The variance of U is
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Thus, the density function of U is
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(3G.18)

Note that

	 Z I H Z Z Z Z Z ZT T T T T-( ) = - ( ) =
-1

0	 (3G.19)

and

	 t Z V t Z t Z V t Z Z V Z
T T T T-( ) -( ) = -( ) -( ) + -( ) ( ) -( )- - -g g g g g g g g1 1 1ˆ ˆ ˆ ˆ .	 (3G.20)

Therefore, using Equations 3G.15, 3G.16, 3G.18, and 3G.19, we can obtain the density 
function f(U):
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EXERCISES

Exercise 3.1	 Table E.1 gives results of MN blood genotyping of 6129 American Caucasians. 
Calculate the frequencies of two alleles.

Exercise 3.2	 Show the following equalities:

	

P Aa pq D

P aa q D

A

A

( ) - = -

( )- =
2 2

2 .
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Exercise 3.3	 The variance of natural logarithm of relative risk RR is

	
var log .RR

c

a a c

d

b b d
( ) =

+( )
+

+( )

Exercise 3.4	 Assume that the data are given in Table 3.6. Calculate the relative risk and its 
95% confidence interval.

Exercise 3.5	 Consider Table E.2. Calculate the P-value for testing the association of geno-
type with disease using the χ2 test defined in Equation 3.37.

Exercise 3.6	 Suppose that the observed number of alleles G and g are summarized in Table E.3. 
Calculate the P-value of exact test for the association of allele with disease.

Exercise 3.7	 Show

	
var n n n P P P PA A A

A
A

m
A A A T

, diag , ,( ) = = ¼( )- ( )é
ëê

ù
ûú

P 1

	 and

	 var .n n n P P PPG G
G m

T, diag , ,( ) = = ¼( )-éë ùûP 1

Exercise 3.8	 Calculate the variance–covariance matrix of ˆ ˆP PA G- .

TABLE E.1 

MM MN NN Total

1787 3037 1305 6129

TABLE E.2  Contingency Table for Genotype-Based Association 
Test in Case–Control Analysis

Allele GG Gg gg Total

Cases 25 20 15 60
Controls 10 20 35 65
Total 35 40 50 125

TABLE E.3  Contingency Table with Marginal 
Totals 9, 9, 5, and 13

Allele G g Total

Cases 1 8 9
Controls 4 5 9
Total 5 13 18
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Exercise 3.9	 Suppose that both the numbers of sampled individuals in cases and controls 
are equal to 1000. Haplotype frequencies in cases and controls are

	

P

P

A T

G

= [ ]

=

0 1425 0 7512 0 0000 0 1063

0 1240 0 7834 0 001

. . . .

. . .

, , , and

, , 11 0 0915, respectively. , .[ ]T

	� Calculate the P-value of the χ2 test for the association of haplotypes with the 
disease.

Exercise 3.10	 Show that covariance matrix of score function is equal to the Fisher informa-
tion matrix, i.e.,

	
cov .U U E

l
T

,( ) = - ¶
¶ ¶
æ

è
ç

ö

ø
÷

2

b b

Exercise 3.11	 Show Equation 3.74:

	
¶
¶

=h
x

i
iH .

Exercise 3.12	 Show that the conditional covariance matrix of U2, given U1, is

	 I U U I I I I2 1 2 1
10. cov .= =( ) = - -

bb bx xx xb

Exercise 3.13	 We assume that the p variants share a common association parameter:

	 b b b1 = = =� p c .

	� Show that the score function and conditional information matrix are respec-
tively given by
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Exercise 3.14	 Show that the score test under linkage equilibrium assumption is

	

T
U

G G
SE

j

p
j

i

n

ij j

=
-( )=

=

åå1

2

1

2

.

.

Exercise 3.15	 Prove the formula of the derivative of P with respect to the variance 
component:

	
¶
¶

= -P
PV P

t
t2

.

Exercise 3.16	 Show that under the null hypothesis H0 : τ = 0, we have

	 V t Z y- -( ) = -( )1 ˆ .g m

Exercise 3.17	 Show the correlation between U and F in Equation 3G.17 is zero, i.e.,

	 cov .U F,( ) = 0

Exercise 3.18	 Prove the following equation:

	 t Z V t Z t Z V t Z Z V Z
T T T T-( ) -( ) = -( ) -( ) + -( ) ( ) -( )- - -g g g g g g g g1 1 1ˆ ˆ ˆ ˆ .

Exercise 3.19	 Calculate the variance of summation of the functional principal components

	
var .

j
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=
å
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è
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ø
÷
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x

Exercise 3.20	 Show

	 b b b
m mj j k
2

1 0= < > =and , .
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C h a p t e r  4

Association Studies for 
Quantitative Traits

4.1 � FIXED EFFECT MODEL FOR A SINGLE TRAIT
4.1.1 � Introduction

Multifactorial traits that vary greatly among individuals may be considered as resulting from the 
combined effects of many genetic and environmental quantities. For this reason, they are often 
called quantitative traits. For example, crop yields, blood pressure, and body weight and height, 
among others, exhibit continuous variation (Figure 4.1). It is well documented that many traits 
that vary continuously are determined by a number of loci, each with small effects and working 
in concert with environmental factors. Quantitative genetics approaches have broad applica-
tions. Quantitative traits may be risk factors for diseases. Therefore, quantitative genetics can 
serve as a tool to unravel mechanisms of diseases. Quantitative genetics can also be used for ani-
mal and plant improvement. The purpose of quantitative genetics is to study how the quantita-
tive traits are determined by the genetic factors and their interaction with environmental factors.

4.1.2 � Genetic Effects
4.1.2.1 � Variation Partition
Analysis of variance will show that phenotype variation is due to genetics and environ-
ments (Falconer and Mackay 1996). The phenotypic value can be divided into two com-
ponents attributable to the influence of genotype and environment. A quantitative trait is 
influenced by genetic factors. It is important to study the relationship between phenotype 
and genotype. Consider a locus with k genotypes, denoted by G1, … , Gk. Assume that the 
genotypes G1, … , Gk have population frequencies f1, … , fk. We assume random mating and 
Hardy–Weinberg equilibrium. Let y denote the measured phenotype values and f(y| Gi) be 
the conditional density function of the phenotype y, given the individual with the genotype 
Gi. The mean phenotype value of the individuals with the genotype Gi is then

	
g E Y G yf y G dyi i i= [ ] = ( )ò| | .

	
(4.1)
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Define the genetic model:

	 Y E Y G= [ ]+| e,

where
E[Y| G] is the average of the phenotypic values due to genetics
ε is the variation due to environment and noise

The total variance sp
2  is defined as

	

sP E Y E Y

E Y E Y G E Y G E Y

E Y E Y G

2 2

2

2

= - [ ]( ){ }
= - [ ]+ [ ]- [ ]( ){ }
= - [ ]( ){ }

| |

| ++ [ ]- [ ]( ){ }
= +

E E Y G E Y

E G

|
2

2 2s s , 	 (4.2)

where
sG E E Y G E Y2 2

= [ ]- [ ]( ){ }|  is the genotypic variance

sE E Y E Y G2 2
= - [ ]( ){ }|  is the environmental variance
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FIGURE 4.1  Continuous distribution of blood pressure.
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The latter expression indicates that sP
2  is the sum of the between-genotype variance and 

the average within-genotype variance, which is entirely due to environmental effects. We 
have thus partitioned, for a given trait, the total phenotypic variability into two compo-
nents: (1) genetic variance sG

2  and (2) environmental variance sE
2 . The average phenotypic 

values of the traits in the population are given by

	
g E Y E E Y G f g

i

k

i i= [ ] = [ ]éë ùû =
=
å|

1

.
	

(4.3)

The sampling formula for the genetic variance sG
2  is

	
sG

i

k

i iE E Y G E Y f g g2 2

1

2= [ ]- [ ]( ){ } = -( )
=
å| .

	
(4.4)

Similarly, the sampling formula for the total variance is

	
sP

j

n

jE Y E Y
n

y y2 2

1

21= - [ ]( ){ } = -( )
=
å ,

	
(4.5)

where y n
y j

j

n

=
=å1

1
.

The environment variance sE
2  is then given by

	 s s sE P G
2 2 2= - .	 (4.6)

4.1.2.2 � Genetic Additive and Dominance Effects
Consider a single locus with two alleles, A1 and A2, with allele frequencies p and q, respec-
tively. We denote the genotypic value of one homozygote A1A1 by G11, the other homozygote 
A2A2 by G22, and the heterozygote A1A2 by G12. We can now see how the gene frequencies 
influence the mean of the trait in the population as a whole. Assuming the Hardy–Weinberg 
equilibrium, it follows from Equation 4.3 that the population mean μ is given by

	

m = [ ]
= + +

E Y

p G pqG q G2
11 12

2
222 .	 (4.7)

In order to deduce the properties of a population connected with its family structure, we 
have to deal with the transmission of values from parent to offspring, and this cannot be 
done by means of genotype values alone, because parents pass on their alleles and not their 
genotypes to the next generation, genotype being created afresh in each generation. A new 
measure of value is therefore needed, which will refer to alleles and not genotype. The new 
value associated with the allele as distinct from genotypes is known as the average allelic effect. 
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The average effect of a particular allele is the mean deviation from the population mean of 
individuals, which received an allele from one parent and another allele from the other par-
ent randomly chosen from the population.

Let α1 and α2 be the respective genic effects with overall population mean μ; the statistical 
model for the three genotypic values can be expressed as

	

G e

G e

G e

11 1 1

12 1 2 2

22 2 3

2

2

= + +
= + + +
= + +

m a
m a a
m a , 	

(4.8)

where e1, e2, and e3 are the respective deviations of the genotypic values from their expecta-
tions on the basis of a perfect fit of the model. We also assume that

	 p qa a1 2 0+ = .	 (4.9)

We then obtain μ, α1, and α2 by minimizing Q f ei i
i

=
=å 2

1

3

, i.e.,

	 Q p G pq G q G= - -( ) + - - -( ) + - -( )2
11 1

2
12 1 2

2 2
22 2

2
2 2 2m a m a a m a .	 (4.10)

Setting ¶
¶

= ¶
¶

=Q Q

m a
0 0

1

, , and ¶
¶

=Q

a2

0 and solving these equations, we obtain
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m

a
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= + +

= + -( ) -éë ùû
= -

p G pqG q G

q pG q p G qG

p pG
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11 12

2
22

1 11 12 22
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++ -( ) -éë ùûq p G qG12 22 .	

(4.11)

The substitution effect is defined as

	 a a a= - = + -( ) -1 2 11 12 22pG q p G qG .	 (4.12)

The deviations of genotypic values from the fitted values, known as dominance deviations 
or effects, are then

	

ˆ

ˆ

ˆ

e q G G G q

e pq G G G pq

e p G

1
2

11 12 22
2

2 11 12 22

3
2

1

2

2

= - +( ) =
= - - +( ) = -
=

d
d

11 12 22
22- +( ) =G G p d, 	

(4.13)

where δ = G11 − 2G12 + G22 is referred to as the genetic dominant effect. This gives ∑ fiei = 0, 
as expected.

There is another way to derive the genetic effects. Suppose that the allele A1 is transmitted 
from the father to the child. Another allele of the child is randomly transmitted from mother. 
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The allele A1 is transmitted from the mother with the probability p and the allele A2 trans-
mitted from the mother with the probability q. Then, the genic effect of the allele A1 is 
given by

	

ˆ

.

a m1 11 12

11 12 22

= + -

= + -( ) -éë ùû

pG qG

q pG q p G qG

â2 can be similarly derived.

4.1.2.3 � Genetic Variance
The amount of variation is often measured and expressed as the variance. The variance is 
simply the mean of the squared deviations of genotypic values from the population mean. 
Mathematically, the genetic variance is defined as

	

s m m m

a a a

G p G pq G q G

p e pq

2 2
11

2
12
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22
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2
1 1

2
1 2

2
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2 2
2 3

2
2a .	 (4.14)

Now we decompose the genetic variance into the genetic additive variance sa
2 and domi-

nance variance sd
2. Some algebra gives

	

4 4 4
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2
1 1 1 2 2

2
2 3

2 2

p e pq e q e

q q p p p q

a a a a
ad

+ +( ) +
= - + -[ ]
= . 	 (4.15)

Substituting Equation 4.15 into Equation 4.14 yields

	

s a a a a
s s

G

A D

p pq q p e pqe q e2 2
1
2

1 2
2 2

2
2 2

1
2

2
2 2

3
2

2 2

4 2 4 2= + +( ) + + + +
= + ,

where

	 s a a a aA p pq q2 2
1
2

1 2
2 2

2
24 2 4= + +( ) + 	 (4.16)

and

	 sD p e pqe q e2 2
1
2

2
2 2

3
22= + + .	 (4.17)

Substituting Equations 4.11 and 4.12 into Equation 4.16 gives

	

s a a a
a

A p q pq q p q p

pq

2 2 2 2 2 2 2 2 2

2

4 2 4

2

= + -( ) +
= . 	 (4.18)
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Similarly, we can show that

	 s dD p q2 2 2 2= .	 (4.19)

sA
2  involves only a substitution effect and hence is referred to as additive variance, and sD

2  
involves only the dominance effect and hence is referred to as dominance variance.

Example 4.1

We assume that 756 individuals were typed at the marker rs10838371 in gene HBG2. 
The frequency of the major allele Q was 0.92. The mean glucoses of three genotypes 
QQ, Qq, and qq were 4.98, 5.24, and 8.0, respectively. The population mean was 5.04. 
The substitution effect and dominance effect were, respectively,

	 a = * + -( )* - * = -0 92 4 98 0 08 0 92 5 24 0 08 8 0 0 46. . . . . . . . ,

	 d = - * + =4 98 2 5 24 8 00 2 50. . . . .

The genetic additive and dominance variances were, respectively,

	 sA
2 2

2 0 92 0 08 0 46 0 031= * * * -( ) =. . . .

and

	 sD
2 2 20 92 0 082 2 5 0 034= * * =. . . . .

4.1.3 � Linear Regression for a Quantitative Trait

Assume that n individuals are sampled. Let Yi be a phenotypic value of the ith individual. 
A simple linear regression model for a quantitative trait is given by

	 Y X Zi i i i= + + +m a d e ,	 (4.20)

where μ is an overall mean and εi are independent and identically distributed normal vari-
ables with zero mean and variance se

2:
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(4.21)

We add a constant −q + p into Xi. Then, the indicator variable will be transformed to
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which is a widely used indicator variable for additive effect in quantitative genetic analysis. 
Consider a marker locus with two alleles M and m having frequencies PM and Pm, respec-
tively. Let D be the disequilibrium coefficient of the linkage disequilibrium (LD) between 
the marker locus and the quantitative trait locus. The relationship between the phenotypic 
value Yi and the genotype at the marker locus is given by

	 Y X Zi m i
m

m i
m

m i= + + +m a d e ,	 (4.22)

where indicator variables Xi and Zi are given by
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(4.23)

Assuming the genetic model for the quantitative trait in Equation 4.20, it can be shown that
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which implies that the estimators âm and d̂m are consistent (Appendix 4A).
Assume that the marker is located at the genomic position t and the trait locus is at the 

genomic position s. Let D(t, s) be the disequilibrium coefficient between the marker and 
trait loci. Let â t( ) and d̂ t( ) be the estimated genetic additive and dominant effects at the 
marker locus, and α(t) and δ(t) be the true additive and dominant effects at the marker 
locus, respectively. Let PM(t) and Pm(t) be the frequencies of the marker alleles M and m at 
the genomic position t, respectively. Then, â t( ) and d̂ t( ) will be almost surely convergent to
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Suppose that there are K trait loci, which are located at the genomic positions s1, … , sK. 
The jth trait locus has the additive effect α(sj) and dominance effect δ(sj), respectively. 
Then, we have
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(4.25)

where D(t, sj) is the disequilibrium coefficient between the marker at the genomic position 
t and the trait locus at the genomic position sj.
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Equation 4.20 or 4.22 can be written in a matrix form:

	 Y W= +b e.	 (4.26)

The least square estimator of the regression coefficients β is given by

	
ˆ .b = ( )-W W W YT T1

	 (4.27)

The variance of the estimators b̂ is

	 var ,b sˆ( ) = ( )-e
TW W2 1

	 (4.28)

where
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Asymptotically, we have
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Statistics for testing the presence of genetic additive and dominance effects are
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Under the null hypothesis of no genetic additive or dominance effect, Ta or Td is asymptoti-
cally distributed as a central c 1

2
( ) distribution. We can also use them to test the presence of 

the quantitative trait locus (QTL). Under the null hypothesis of no QTL, Ta + Td is asymp-
totically distributed as a central c 2

2
( ) distribution.

In general, suppose that the hypothesis being tested is given by

	 H hb = ,	 (4.30)

where
H is a q × p matrix
h is a given q-dimensional vector

Then, we have

	 var .H H H H W W HT T Tb b sˆ ˆ ˆ( ) = ( ) = ( )-Var 2 1
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Define the test statistic as
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Under the null hypothesis (4.30), the test statistic T is asymptotically distributed as a central 
c q( )

2  distribution. Let β = [μ, α, δ]T and Λ be the matrix obtained by removing the first row 
and the first column of the covariance matrix Var b̂( ). The statistic for testing α = δ = 0 is 
then reduced to
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Then, under the null hypothesis H0 : α = 0, δ = 0, T is asymptotically distributed as a central 
c 2

2
( ) distribution. We can show (Appendix 4A) that the noncentrality parameter of the test 

asymptotically converges to
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Next we study the squared multiple correlation coefficient, denoted as R2. The squared 
multiple correlation coefficient is given by
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(4.33)

The squared multiple correlation coefficient R2 quantifies the proportion of the phenotypic 
variation explained by the genetic variation.

If we only consider the genetic additive effect model

	 y x= + +m a e,

then at the trait locus, we have
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(4.34)
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Similarly, we can show that at the marker locus, R2 is
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In other words, R2 is a function of the LD, frequencies at both marker and trait loci, and the 
ratio of the genetic additive variance over the total phenotypic variance.

4.1.4 � Multiple Linear Regression for a Quantitative Trait

Consider L marker loci, which are located at the genomic positions t1, … , tL. The multiple 
linear regression model for a quantitative trait is given by
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where indicator variables Xil and Zil are similarly defined as that in Equation 4.23. Let PMl 
and Pml be the frequencies of the alleles Ml and ml of the marker located at the genomic 
positions tl, respectively, and D(tl, tj) be the disequilibrium coefficient of the LD between the 
marker at the genomic position tl and the marker at the genomic position tj. Assume that 
there are K trait loci defined as before. Let D(tj, sk) be the disequilibrium coefficient of the 
LD between the marker at the genomic position tj and the trait locus at the genomic posi-
tion sk. By a similar argument as that in Appendix 4A, we have
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and
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If we assume that all markers are in linkage equilibrium, then Equation 4.37 is reduced to
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which is exactly the same as Equation 4.25. In other words, under the assumption of linkage 
equilibrium among markers, multiple linear regression can be decomposed into a number 
of simple regressions. Under this assumption and the genetic additive effect model with-
out interactions, the squared multiple correlation coefficient between the phenotype and 
marker located at the genomic position t is given by
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(4.40)

where
PQ(sj) and Pq(sj) are the frequencies of alleles Q and q of the trait locus at the genomic 

position sj, respectively
PMt and Pmt are the frequencies of the alleles M and m of the marker at the genomic posi-

tion t, respectively
sa js2 ( ) is the genetic additive variance of the trait locus at the genomic position sj

We can show that (Exercise 3.5)
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To test the association of multiple markers with the quantitative trait, we rewrite Equation 4.36 
in a matrix form:

	 Y W= +b e,

where Y
y

y

W

x x z z

x x z zn

L L

n nL n nL

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
é1 11 1 11 1

1 1

1

1

�
� �

� � � � � � �
� �

,

ëë

ê
ê
ê

ù

û

ú
ú
ú

, and β = [μ, α1, …, αL, δ1, …, δL]T.
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The least square estimator of the regression coefficients β is given by
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 and Λ be the 
matrix obtained by removing the first row and the first column of the covariance matrix 
Var b̂( ). Similar to the previous section, we can define the test statistic:
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Under the null hypothesis H0 : α1 = … = αL = 0, δ1 =  … , δL = 0, TQ is asymptotically distributed 
as a central c 2

2
L( ) distribution. To investigate what factors affect the power of the test for the 

detection of QTLs, we derive the formula for the calculation of the noncentral parameter. 
Asymptotically, the noncentrality parameter of the test in Equation 4.41 is (Appendix 4A)

	
T

n
D DQ

e j

L

k

L

jk j k

j

L

k

L

jk j k® +
é

ë
ê
ê

ù

û
ú
ú= = = =

åå åås
a a d d

2

1 1 1 1

22 ,

where
Dij is the coefficient of the LD between the ith marker and jth marker
PMj and Pmj are the frequencies of alleles Mj and mj at the jth marker, respectively

We consider three special scenarios:

	 1.	All markers are trait loci.
		  We define the genetic additive covariance and dominance covariance as follows:
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		  The noncentrality parameter of the test under this scenario asymptotically converges to
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	 2.	All markers are trait loci and are in linkage equilibrium.



Association Studies for Quantitative Traits    ◾    223

		  Under this scenario, the above equation is reduced to
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This formula shows that the noncentrality parameter or power of the test depends on the 
genetic additive variance, dominance variance, and the strength of the LD between 
the marker and trait loci, between the trait loci, and between markers. In other words, the 
power of the test depends on the genomic structure of the genes. Some genes are easier to 
detect associations than other genes.

4.2 � GENE-BASED QUANTITATIVE TRAIT ANALYSIS
Next-generation sequencing techniques will generate unprecedented massive, high-dimensional 
genetic variation data and provide a powerful tool for detecting the entire allelic spectrum of 
the causal genetic variations. Despite their promise, next-generation sequencing (NGS) plat-
forms also have three specific disadvantages: high error rates, enrichment of rare variants, and 
large proportion of missing values (Bansal et al. 2010). To meet challenges in QTL analysis raised 
by NGS, a simple and natural idea is group tests that combine multiple rare variants into a single 
variable to predict quantitative phenotype variation (Bacanu et al. 2011). The regression-type 
group tests that aggregate information across variants for prediction have a higher power than 
the individual variant tests.

However, regression-type group tests ignore differences in genetic effects among SNPs at 
different genomic locations and do not leverage LD in the data. Analysis from low-dimen-
sional data to high-dimensional genomic data demands changes in statistical methods from 
multivariate data analysis to functional data analysis. An alternative to group regression 
tests, the functional linear model (FLM) with scale response is a natural extension of the 
multivariate regression for quantitative genetic analysis. The FLM can collectively test for 
the association of genetic variants with quantitative traits, but it can also allow for heteroge-
neity of genetic effects. It can utilize the merit of both individual and group tests. In Chapter 3, 
we introduce SKAT as a statistical method for testing association of a set of variants with a 
dichotomous phenotype. In this chapter, we will also briefly investigate SKAT that can be 
used for testing the association of a set of rare variants with a quantitative trait.

4.2.1 � Functional Linear Model for a Quantitative Trait
4.2.1.1 � Model
The multiple linear regression model, which jointly uses multiple marker information, in 
general, might have a higher power to detect a QTL than the simple linear regression model. 
However, as the number of markers increase, the degree of freedom of the test statistics will 
also increase. As a typical example, in UK10K dataset, we observe that more than 1400 
genes have more than 500 SNPs. This will compromise the power of multiple regressions 
for identifying QTLs. To reduce the degrees of freedom in the model due to the presence 
of a large number of rare variants in the model, we consider a functional linear model with 
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scalar response for a quantitative trait where the genetic effects are defined as a function 
of genomic position, and the quantitative trait is predicted by the genotype score function 
(Fan et al. 2013; Luo et al. 2012).

Let t be a genomic position. Define a genotype function Xi(t) for an additive effect and 
genotype function Zi(t) for a dominance effect of the ith individual as
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(4.43)

where
M and m are two alleles of the marker at the genomic position t
PM(t) and Pm(t) are the frequencies of the alleles M and m, respectively

Let Yi be a phenotype value of the ith individual. A functional linear model for a quantita-
tive trait with genetic additive effect is defined as

	
Y X t t dt Z t t dti
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i
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where
εi are independent and identically distributed normal variables with mean of zero and 

variance se
2

T is the length of the genome region being considered
α(t) and δ(t) are the putative genetic additive effect and dominance functions of the 

marker at the genomic position t, respectively

For convenience, the genome region [0, T] is rescaled to [0, 1]. If the integrals in Equation 4.43 
are discretized, the functional linear model will be reduced to multiple linear regression 
models (4.36).

4.2.1.2 � Parameter Estimation
Three types of approaches have been developed for estimating regression coefficient functions 
in the functional linear models (Febrero-Bande et al. 2010). The first approach uses basis func-
tion expansion and penalized methods to estimate regression coefficient functions (Ramsay 
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and Silverman 2005). The second approach uses functional principal component expansions 
and least square to estimate regression coefficient functions (Cardot et al. 1999). The third 
approach uses nonparametric estimates based on kernels (Frank and Friedman 1993).

We explore to use restricted basis functions and functional principal component expan-
sions to estimate the additive and dominant effect functions. Since the genotype functions 
are nonperiodic functions, we use B-spline basis functions to expand the genotype func-
tions and additive and dominant effect functions.

Let the domain [0, 1] be subdivided into knot spans by a set of nondecreasing numbers, 
0 = u0 ≤ u1 ≤ u2 ≤  ⋯  ≤ um = 1. The ui

¢ s are called knots.
The ith B-spline basis function of degree p, written as Bi, p(t), is defined recursively as 

follows:
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B-spline basis functions have two important features:

	 1.	Basis function Bi, p(t) is nonzero only on p + 1 knot spans: [ui, ui + 1), [ui + 1, ui + 2), … ,  
[ui + p, ui + p + 1).

	 2.	Given any knot span [ui, ui + 1), there are at most p + 1 degree p basis functions that are 
nonzero, namely,

	 B t B t B t B t B ti p p i p p i p p i p i p- - + - + -( ) ( ) ( ) ¼ ( ) ( ), , , , ,, , , , .1 2 1 and

Let BK(t) be a B-spline basis function if we set p to be a specific integer (i.e., p = 3 yields 
cubic B-spline basis series). We expand the genotype functions Xi(t) and Zi(t) in terms of 
B-spline basis functions. Let B(t) be a vector of B-spline basis functions of length KG. Then, 
we have
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The coefficients of the expansion uik and vik can be obtained by minimizing the least square 
criterion:
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Let Xi = [Xi(t1), …, Xi(tT)]T, Zi = [Zi(t1), …, Zi(tT)]T, ui = [ui1, …, uiKG]T, vi = [vi1, …, viKG]T,
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The least square estimators of the expansion coefficients are then given by
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The expansion of the genetic effect functions can be similarly written as

	
a a q q a d d q q d

b b

t t t t
k

K

k k
T

k

K

k k
T( ) = ( ) = ( ) = ( ) =

= =
å å

1 1

and ,
	

(4.48)

where θ = [θ1(t), …, θKβ(t)]T, α = [α1, …, αKβ]T, and δ = [δ1, …, δKβ]T.
Let Y = [Y1, …, Yn]T, X = [X1, …, Xn]T, Z = [Z1, …, Zn]T, U = [u1, …, un]T, V = [v1, …, vn]T, 

B(t) = [B1(t), …, BKG(t)]T. Then, we have
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The functional linear model (4.44) can then be written as
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Let
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W = [1, UJBθ, VJBθ], and β = [μ, αT, δT]T. Then, Equation 4.49 can be rewritten as

	 Y W= b.	 (4.50)

The least square estimate of the parameter vector β is given by

	
ˆ .b = ( )-W W W YT T1

If we consider only the genetic additive effect function, Equation 4.49 is reduced to
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(4.51)

We can also expand genotype functions in terms of functional principal component scores 
discussed in Chapter 3:
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where
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Then, model (4.44) can be reduced to
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(4.54)

where a j ak k

T

t t dt= ( ) ( )ò0  and d j dk k

T

t t dt= ( ) ( )ò0 .
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Let
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Model (4.54) can be written in a matrix form:

	 Y W= +b e.	 (4.55)

Equation 4.54 indicates that after the functional principal component expansion, the func-
tional linear model (4.44) is reduced to the multiple linear model (4.36) where the expan-
sion coefficients of genotype functions replace the genotype indicator variables. Again, the 
least square estimate of the parameter vector β is given by

	
ˆ .b = ( )-W W W YT T1

	 (4.56)

The estimators of the genetic additive and dominance effect functions are
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We can show that the estimators of the expansion coefficients of the genetic additive and 
dominance effects asymptotically converge to (Appendix 4B)
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(4.59)

where the true QTL is located at the genomic position s and D(t, s) is the LD coefficient 
between the marker located at the genomic position t and the true QTL, λk and γk are 
eigenvalues of functional principal component expansions of the genotype functions for 
the additive effect and dominance effects, respectively.

We can also show that the variance of the estimators asymptotically converges to 
(Appendix 4B)
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Let

	 W UJr B r
T T

= [ ] = éë ùû1, andq b m a .

Then, Equation 4.50 is reduced to

	 Y Wr r= b .	 (4.61)

Therefore, the least square estimator of the parameter vector βr is

	
ˆ .br r

T
r r

TW W W Y= ( )-1

	 (4.62)

4.2.1.3 � Test Statistics
An essential problem in genetic studies of the quantitative trait is to test the association of 
a genomic region with the quantitative trait. Formally, we investigate the problem of testing 
the following hypothesis:

	 H t t t T0 0 0 0: ,a d( ) = ( ) = " Î[ ]and , 	 (4.63)

against

	 H t t t ta : .a d a d( ) ¹ ( ) ¹ ( ) ¹ ( ) ¹0 0 0 0or or and

If the genetic effect functions α(t) and β(t) are expanded in terms of the basis functions

	 a q a d q dt t t t
T T( ) = ( ) ( ) = ( )and ,

then testing the null hypothesis H0 in Equation 4.63 is equivalent to testing the hypothesis

	 H0 0 0: .a d= =and 	 (4.64)

Let b̂ T T T
= éë ùûa d,  and A be the matrix obtained by removing the first row of the matrix 

(WTW)−1WT. Then, we obtain from Equation 4.50 that

	 ˆ .b AY=

The covariance matrix of the estimator b̂ is then given by

	 L = ( ) = ( )var ,b AAT
e

ˆ ŝ 2
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where

	
ˆ .s

b
e

T T T

N K
Y I W W W W Y2 11

2 1
=

- -
- ( )é

ëê
ù
ûú

-

	
(4.65)

Statistics for testing the association of the genomic region with the quantitative trait can 
be constructed by estimators of the expansion coefficients of the genetic effect functions. 
Define the test statistic:

	 T b bQ
T= -ˆ ˆ.L 1

	 (4.66)

Then, under the null hypothesis H0 : α = 0 and δ = 0, TQ is asymptotically distributed as a 
central c

b2
2

K( ) distribution.
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The noncentrality parameter and power of the test depends on the sample size, variance of 
errors, frequencies of trait alleles, genetic additive and dominance variance, variance of the 
coefficients of the genotype function expansions, and coefficients of the measure of linkage 
disequilibrium FPCA expansion.

We also can use the F test for linear regression to test for association. Let the full model 
be given by

	 Y W= b	 (4.67)

and the reduced model be given by

	 Y I= m .	 (4.68)
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Then, the F statistic is
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(4.69)

Under the null hypothesis of no association, the statistic TF is distributed as F2Kβ, N − 2Kβ − 1 
distribution.

Next we consider a special case where only the genetic additive function α(t) is studied. 
Let Ar be the matrix that is obtained by removing the first row of the matrix W W Wr

T
r r

T( )-1
 

and br = [μ, αT]T. Then, it follows from Equation 4.62 that

	 ˆ .b A Yr r=

The covariance matrix of the estimator b̂r is
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Then, two statistics for testing the association of the genomic region are

	 T b brQ r
T

r r= -ˆ ˆL 1
	 (4.70)

and
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(4.71)

Under the null hypothesis of no association of the genomic region with quantitative trait 
H0 : α = 0, TrQ is asymptotically distributed as a central c

bK( )
2  distribution and TrF is asymp-

totically distributed as a FKβ, N − Kβ − 1 distribution.

4.2.2 � Canonical Correlation Analysis for Gene-Based Quantitative Trait Analysis
4.2.2.1 � Multivariate Canonical Correlation Analysis
Alternative to FLM, canonical correlation analysis (CCA) provides another statistical 
framework for testing the association of a gene or genomic region with a quantitative trait 
(Press 2011). The goal of CCA is to seek optimal correlation between a quantitative trait 
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and a linear combination of SNPs within a gene. The CCA measures the strength of asso-
ciation between the multiple SNPs and the trait.

Consider a quantitative trait y and L SNPs with indicator variables for the genetic addi-
tive and dominance effects x1, … , xL, z1, … , zL that are similarly defined in Equation 4.23. 
Let w = [x1, …, xL, z1, …, zL]. Define the variance and covariance matrices:
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Recall Equation 1.220 defined in Chapter 1:

	 R yy yg gg gy yy= - - -S S S S S1 2 1 1 2/ / .

Since Syy y= s2 is a number, the matrix R is reduced to
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Let ˆ , ,sy yg ggS S2 , and Sgy be sampling versions of sy yg gg
2 , ,S S , and Σgy. Then,
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The statistic for testing the association of the gene with the trait is defined as

	 T NCCA = - -( )log .1 2l̂ 	 (4.74)

Under the null hypothesis of no association of the gene with the trait, TCCA is a central c 2
2

L( ) 
distribution.
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The noncentrality parameter of the test TCCA is

	 T NCCA = - -( )log .1 2l 	 (4.75)

We can show that (Appendix 4C) asymptotically

	 T TCCA Q> ,

where TQ is defined in Equation 4.41. This indicates that the CCA has a higher power to 
detect trait locus than the test statistic defined in Equation 4.41 for multiple linear regres-
sion analysis. However, as we show in Chapter 5, in general, the tests defined in CCA are 
almost equivalent to the tests defined in linear regression analysis.

4.2.2.2 � Functional Canonical Correlation Analysis
Sequenced genes or genomic regions may contain more than thousands of SNPs. The 
degree of freedom of the test TCCA is the number of SNPs in the gene being tested and 
hence is very large. To reduce the degrees of freedom of the test, we can use functional data 
analysis techniques to reduce the dimensions of the data and extend the multivariate CCA 
to functional CCA (FCCA) for gene-based QTL analysis. Since functional CCA for a single 
trait genetic analysis is a special case of the functional CCA for genetic analysis of multiple 
traits, detailed discussion will be provided in Section 5.4.3.

4.3 � KERNEL APPROACH TO GENE-BASED 
QUANTITATIVE TRAIT ANALYSIS

Next-generation sequencing produces high-dimensional genomic data. Dimension reduc-
tion is a key to the success of the sequence-based association analysis. If the model for 
sequencing data is too highly parameterized, it will react too strongly to the data, which 
will come overfitting the sequencing data, and will fail to learn the underlying data generat-
ing process. The concept of “kernels” will provide a flexible and efficient method for data 
reduction. However, kernel algorithms and reproducing kernel Hilbert space (RKHS) are 
difficult to understand. We first review RKHS and some simple kernel algorithms (Shawe-
Taylor and Cristianini 2004) and then introduce kernel regression and kernel canonical 
correlation analysis. Finally, we will discuss the relationship between kernel algorithms and 
functional data analysis.

4.3.1 � Kernel and RKHS
4.3.1.1 � Kernel and Nonlinear Feature Mapping
Consider an example. We have two variables in one dimension arranged in an interval 
[−3, 3] as shown in Figure 4.2. We want to separate the red point + from the green point * 
by a linear classifier. In the original data space, it is clear that we are unable to separate two 
types of points by a linear classifier. However, if we make a nonlinear feature map,

	 f x x( ) = 2 .
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As Figure 4.2 shows, in the mapped feature space, a line can easily separate the red points 
from the green points.

This example shows that if we choose the map appropriately, complex relations in the 
original data space can be simplified in the mapped feature space. We start defining a fea-
ture map with a vector space. Let x ∈ Rm. Consider a feature map

	 f x R Rm N( ) ®: .

For example,
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Although a feature map ϕ(x) can efficiently transform the nonlinear relations in the original 
feature space into linear relations in the mapped new feature space, it is, in general, difficult 
to explicitly find such a nonlinear map. To avoid finding complicated nonlinear feature 
maps, we introduce the concept of a kernel. A kernel is a similarity measure. We use an 
inner product to measure similarity between two vectors x and y. In a vector space, an inner 
product is defined as

	
x y x y x yT

i
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i i, = =
=
å

1
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Recall that in Chapter 1, a Euclidean norm of x is defined as

	 x x x x xT
2 = < > =, .

–3 –2 –1 1 2 3

Φ(x) = x2

0

FIGURE 4.2  Pattern of feature map Φ(x) = x2.
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A linear space in which an inner product is defined is referred to as a Hilbert space that is 
denoted by H. Suppose that x and y are mapped to a new feature space via the map ϕ(x). 
Then, the inner product of new points, ϕ(x) and ϕ(y), in the new feature space is defined as

	
f f f f f fx y x y x yT
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i i( ) ( ) = ( ) ( ) = ( ) ( )
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(4.76)

Now we are ready to define a kernel.

Definition (Kernel).

A function k : χ × χ → R is called a kernel if there exists a map ϕ : χ → Η such that for 
all x, y ∈ χ,

	 k x y x y
H

, ,( ) = ( ) ( )f f .	 (4.77)

Example 4.2

Consider two points x = [x1, x2]T and y = [y1, y2]T in R2. Define a kernel function:
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where f x x x x x
T

( ) = éë ù
û1 1 2 22, ,  and f y y y y y

T

( ) = éë ù
û1 1 2 22, ,  are feature mapping from 

input space R2 to higher feature space R3. It is clear that we can directly compute the 
kernel function k(x, y) without knowing the feature map ϕ.

Example 4.3

Consider a linear kernel: k(x, y) = xTy.
Both feature maps
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Example 4.4   The Gaussian Kernel

The Gaussian kernel is defined as
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Recall that x y x x x y y yT T T- = - +
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2
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The Gaussian kernel can then be reduced to
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Define the feature map
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Therefore, the Gaussian function defines a kernel.

Example 4.5

Consider a nonempty set χ and a feature map:
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where ϕi(x) is in L2.

Define a kernel as K x y x y x yT
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4.3.1.2 � The Reproducing Kernel Hilbert Space
Now we study how to use kernels to define functions on a space. The space of such func-
tions is called a reproducing kernel Hilbert space (RKHS) (Gretton 2015a). As a motivating 
example, we consider a function:

	 f x a x a x a x x( ) = + +1 1 2 2 3 1 2 .	 (4.80)

We define two feature maps:
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and
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The function f(x) that is often referred to as the function evaluated at a particular point x 
can be expressed as an inner product in feature space:
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We can use the feature map ϕ(x) to define a kernel:
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We can denote

	 f fx k x y k y( ) = ( ) ( ) = ( ). . ., and ,

Then, function f(x) can be defined as

	 f x f k x
H

( ) = ( ). (. ) ,, , 	 (4.84)

and the kernel k(x, y) can be written as

	 k x y k x k y
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, , , ,( ) = ( ). (. ) .	 (4.85)
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Equation 4.84 shows that the evaluation of function f(.) at point x is an inner product of a 
kernel in a feature space. We can view ϕ(x) or k(., x) as a feature map from input space R2 to 
feature space R3 or as a function mapping from R2 to R. H is a space of function from R2 to R.

Now we consider an infinite-dimensional functional space. We define an inner product 
in the functional space as
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(4.86)

Consider a set of orthonormal basis functions: {ei(x), i = 1, 2, …} with
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Define an infinite-dimensional feature map ϕ(x):
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and a kernel k(x, y):
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Define a function f(.):
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Evaluation of function f at x is
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If we take k(., x) = ϕ(x), then Equation 4.89 is reduced to

	 f x f k x( ) = ( ). (. ) ., ,
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In the above example, the question is how to find fi. Next we study a general class of func-
tions and investigate a general procedure to define kernel functions. We consider a real 
function defined on the interval [−π, π] with periodic boundary conditions. It is well known 
that the function can be expanded in terms of the Fourier series:
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where eilx = cos(lx) + i sin(lx). When the function is real, its Fourier expansion coefficients 
are conjugate symmetric:

	 f fl l- = .

Suppose that a kernel is a function of a single argument:

	 k x y k x y,( ) = -( ) ,

where k(x) can be any function that can be expanded by the Fourier series.
Its Fourier series representation is
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Now we define the feature map
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Define function f(.) as
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Then, evaluation of function f(.) at x is

	

f x f k x

f

k
k e

f e

k

l

l

l
ilx

l
ilx

( ) = ( ) ( )

=

=

=-¥

¥

-¥

¥

å

å

. .

.

, ,

Definition 4.1

(Reproducing kernel Hilbert space)
Let H be a Hilbert space of real value functions defined on a nonempty set, χ. A function 

k(., .) : χ × χ → R is a reproducing kernel of a Hilbert space H, and H is a reproducing kernel 
Hilbert space, if for any function in the Hilbert space, we have

	 (1)	For all x ∈ χ, kernel function k(., x) ∈ H
	 (2)	As to the reproducing property, for all x ∈ χ and function f ∈ H, 〈f(.), k(., x)〉H = f(x)

In particular, for all x, y ∈ χ,

	 k x y k x k y
H

, , , ,( ) = ( ). (. ) .	 (4.91)

Equation 4.91 indicates that ϕ(x) = k(., x) is a valid feature map.
The operator of the function evaluation can give an equivalent definition of reproducing 

kernel Hilbert space.

Definition 4.2

(Evaluation operator)
Let H be a Hilbert space of functions, f : χ → R. For a fixed x ∈ R, the map δx : H → R is 

called the function evaluation operator and denoted by

	 dx f f x= ( ).

It is easy to show that the evaluation operator is linear. By definition, we have

	 d a b a b ad bdx x xf g f x g x f g+( ) = ( ) + ( ) = + .

Now we give another RKHS definition based on the evaluation operator.
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Definition 4.3

(Reproducing kernel Hilbert space based on the evaluation operator)
H is an RKHS if for all x ∈ χ, the evaluation operator δx is bounded. In other words, there 

exists a corresponding λx ≥ 0 such that for all f ∈ H,

	 d lx x H
f f x f= £( ) .	 (4.92)

The definition implies that when two functions have the same RKHS norms, two functions 
agree at every point:

	 f x g x f g f gx x H
( ) ( ) ( ) .- = - £ -d l

Now we show that two definitions are equivalent.

Theorem 4.1

RKHS equivalence theorem.
Evaluation operator δx is a bounded linear operator on a Hilbert space H if and only if H 

has a reproducing kernel.

Proof.

We first show that if H has a reproducing kernel, then the evaluation operator is 
bounded. By definition,

	

dx

H

H H

f f x

K x f

k x f

=

=

=£

( )

(., ), (.)

(. ) (by  Cauchy Schwarz inequali– tty)

=
/

K x k x f

f

H H

x H

(., ), (., )

,

( )
=

1 2

l

where λx = (〈k(., x), k(., x)〉H)1/2.
This shows that the evaluation operator is bounded.
Another direction can be shown by the Riesz theorem. Recall that the Riesz theo-

rem (Pavone 1994) stated that if δ is a bounded linear operator on a Hilbert space H, 
then there exists some g ∈ H such that for every f ∈ H, we have

	 d f f g
H( ) = , .	 (4.93)

Consider bounded linear evaluation operator δx. It follows from Equation 4.93 that

	 dx x H
f f g( ) = , .	 (4.94)
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Let gx(y) = k(y, x) for all y ∈ χ. It is clear that

	 k x g Hx. .,( ) = Î 	 (4.95)

Recall that

	 dx f f x( ) = ( ).	 (4.96)

Substituting Equations 4.95 and 4.96 into Equation 4.94 gives

	 f x f k x
H

( ) = ( ), ,. ,

which states that k is the reproducing kernel.
Assume that observations x1, x2, … are given. Feature maps k(x1, .), k(x2, .), … can be 

taken as a set of bases in the RKHS. Functions f(x) in RKHS can then be expressed as 
linear combinations of the bases k(x1, .), k(x2, …), …:

	
f k x

i

m

i i. . .( ) = ( )
=
å

1

a ,
	

(4.97)

Assume that the function g(.) can be expressed as

	
g k x

j

n

j j. . .( ) = ( )
=
å

1

b ,

Now the inner product 〈f(.), g(.)〉H is given by

	

f g k x k x

k x

H
i

m

j

n

i j i j
H

i

m

j

n

i j

. . . ( .)( ) ( ) = ( )

=

= =

= =

åå

åå

, , , ,
1 1

1 1

a b

a b ii j

T

x

K

,( )

= a b, 	 (4.98)

where

	

a
a

a
b
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b
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.

The matrix is referred to as a Gram matrix.
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Example 4.6   FPCA and Karhunen–Loeve Expansion

Recall that in functional principal component analysis (Section 1.5.3), covariant func-
tion is defined as R(s, t) = cov(X(s), X(t)), and functional principal components can be 
obtained by solving integral eigenfucntion (1.193a):

	 T

R s t s ds tò ( ) ( ) = ( ), b lb ,

	
(4.99)

where
β(s) is a functional principal component
λ is an eigenevalue

The covariance function induces the kernel operator:

	
R t R s t s ds

T

b b( )( ) = ( ) ( )ò , .

	
(4.100)

In Equations 1.193a and 1.193b, we show that

	 R t t jj j jb l b( )( ) = ( ) = ¼, , , .1 2 	 (4.101)

We can show that R(s, t) can be expressed as

	
R s t s t

j

j j j,( ) = ( ) ( )
=

¥

å
1

l b b .

	
(4.102)

In the functional RKHS, we can define a kernel by functional principal components:

	
k s t s t

j

j j,( ) = ( ) ( )
=

¥

å
1

b b .

	
(4.103)

In FPCA of genomic analysis, we take a genotypic profile as a genotype function, x(t), 
and expand it in terms of functional principal component (Equation 1.208):

	
x t t

j

j j( ) = ( )
=

¥

å
1

x b ,

	
(4.104)

where

	
x b bj j

T

jx t t x t t dt= ( ) ( ) = ( ) ( )ò, .
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It is clear that

	

x k t x s s t ds

x s s ds t

H

T j

j j

j T

j j

. (. )( ) = ( ) ( ) ( )

= ( ) ( )

ò å

åò
=

¥

=

¥

, ,
1

1

b b

b b (( )

= ( ) = ( )
=

¥

å
j

j j t x t
1

x b .

This shows that k(s, t) is a reproducing kernel.

4.3.2 � Covariance Operator and Dependence Measure

The covariance operator is an extension of the covariance matrix. It is a useful tool for 
assessing dependence between variables and hence forms a foundation for association anal-
ysis that is based on either multivariate analysis or functional data analysis.

However, the covariance operator involves an abstract concept and is difficult to under-
stand. Few statistical and genetic literatures cover covariance operator materials. To lay a 
foundation for modern association analysis, we introduce the basic theory of the covariance 
operator and dependence measure.

4.3.2.1 � Hilbert–Schmidt Operator and Norm
Consider two separable Hilbert spaces, Γ and H. Let T be an operator: T : H → Γ. If there 

exists an orthonormal basis, ei, i = 1, 2, …, in H such that Te j
i

n

=å <¥
1

2

, then T is called a 
Hilbert–Schmidt operator.

Let (ei)i ∈ I be an orthonormal basis in Γ and (hj)j ∈ J be the orthonormal basis in H. The 
Hilbert–Schmidt norm of the operator T is defined as

	
T Th

HS j

j J

2 2
=

Î
å G

.

	
(4.105)

However, Thj ∈ Γ and can be expressed as

	
Th Th e ej

i I

j i i=
Î
å ,

G
	

(4.106)

and

	
Th Th ej j i

i I
G G

2 2

=
Î
å , .

	
(4.107)
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Substituting Equations 4.106 and 4.107 into Equation 4.105 gives

	
T Th e

HS j i

j Jj J

2 2
=

ÎÎ
åå , .

G
	

(4.108)

Assume that i = 1, 2, … and j = 1, 2, …,. Denote aij 〈Thj, ei〉Γ. Then, T
HS

2  can be written as

	
T a

HS ij

ji

2 2

11

=
=

¥

=

¥

åå .

We can show that the Hilbert–Schmidt norm of the operator is independent of the choice 
of orthonormal basis (Exercise 4.11).

Example 4.7   Hilbert–Schmidt Integral Kernels

Let L2(Ω) be the space of square-integrable functions and k(x, y) ∈ L2(Ω × Ω) be a ker-
nel. Define integral operators with the Hilbert–Schmidt kernel:

	
T u x k x y u y dyK ( ) = ( ) ( )ò

W

, .

The space L2(Ω) has a countable orthonormal basis, {ϕi(x), i = 1, 2, …}, and hence 
{ϕi(x)ϕj(y), i = 1, 2, …, j = 1, 2, …} is an orthonormal basis of L2(Ω × Ω). The kernel 
function k(x, y) can be expanded as

	
k x y k x y

i j

ij i j,( ) = ( ) ( )
=

¥

=

¥

åå
1 1

f f ,

where kij = ∫Ω∫Ωk(x, y)ϕi(x)ϕj(y)dxdy.
By definition of the Hilbert–Schmidt norm of the operator TK, we have

	

T T

k x y x y dxdy

K HS K j i
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i j
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2 2

11

2
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=
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òòå

f f

f f

,
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.
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The Hilbert–Schmidt norm of the operator forms a Hilbert space, written as 
HS(H, Γ). Let S : H → Γ and T : H → Γ be two compact linear operators. Define the inner 
product

	
S T Sh ThHS

j J

j j, ,=
Î
å G

.

	
(4.109)

Recall that {ei, i = 1, 2, …} is an orthonormal basis in Γ. The elements Shj and Thj in Γ 
can be expanded as

	
Sh Sh e ej

i I

j i i=
Î
å ,

G
	

(4.110)

and

	
Th Th e ej

i I

j i i=
Î
å ,

G
.
	

(4.111)

Therefore,

	
Sh Th Sh e Th ej j

i I

j i j i, , ,
G G G
=

Î
å .

	
(4.112)

Substituting Equation 4.112 into Equation 4.109 gives

	
S T Sh e Th eHS

i I j J

j i j i, , ,=
Î Î
åå G G

.

Result 4.1

The inner product 〈S, T〉HS can be calculated by

	
S T Sh e Th eHS

i I j J

j i j i, , ,=
Î Î
åå G G

.

	
(4.113)

4.3.2.2 � Tensor Product Space and Rank-One Operator
The tensor product is a useful concept for functional analysis but less present in statistical 
and genetic literature. Here, we intuitively and briefly introduce a tensor product and rank-
one operator in a Hilbert space (Gretton 2015).

4.3.2.2.1  Tensor Product for Vectors and Matrices  Tensor product is a generalization of the 
ordinary product of scalar numbers. Let a and b be two numbers. Their product is simply 
ab. Now suppose that a and b are two vectors. What does a product of two vectors mean? 
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In Chapter 1, we define an inner product of two vectors as a linear map of two vectors to a 
real number. Can we define a linear map: T : (u, v) → w? The tensor product of two vectors, 
denoted by ⊗, is such a product. The tensor product is also called a Kronecker product or 
direct product.

Consider an example. Let
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The tensor product u ⊗ v is defined as
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(4.114)

Now we define the tensor product of two matrices. Let
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The tensor product of two matrices, denoted as A ⊗ B, is defined as

	

A B

a B a B

a B a B

m

n nm

Ä =
é

ë

ê
ê
ê

ù

û

ú
ú
ú

11 1

1

�
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�
.

	

(4.115)

4.3.2.2.2  Rank-One Operator and Tensor Product in Hilbert Space  There are two ways to 
define a tensor product in a Hilbert space. One way is to define the tensor product via axi-
oms. Another way is to define the tensor product via rank-one operator on a Hilbert space. 
We take a second approach to define the tensor product in a Hilbert space.

Recall that one-rank matrix T can be formed by two vectors:

	 T uv u vT= = Ä .	 (4.116)

Viewing the one-rank matrix T as an operator on a linear space for any vector f in the linear 
space, we have

	 Tf u v f uv f v f uT T= Ä( ) = = ( ) .	 (4.117)
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Using Equation 4.113, we can define the rank-one operator and tensor product in a Hilbert 
space. Let H1 and H2 be two Hilbert spaces and u ∈ H1, v ∈ H2. An operator T : H1 → H2 is of 
rank one if and only if

	 Tf v f u
H

= ,
2

.	 (4.118)

The tensor product u ⊗ v in the Hilbert space is then defined as a rank-one operator:

	 u v f v f u
H

Ä( ) = ,
2

.	 (4.119)

Now we show the result.

Result 4.2

The tensor product u ⊗ v is a Hilbert–Schmidt operator.

Proof.

Let {ej}j ∈ J be the orthonormal bases in the Hilbert space H1. From Equation 4.101, we 
can compute the norm:

	

v u v u e

u e v

v u e
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2 1

2
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,

,

HH1

2
.

We assume that u and v are bounded. Therefore, the Hilbert–Schmidt norm of the 
tensor product u ⊗ v is bounded, which indicates that the tensor product or rank-one 
operator u ⊗ v is a Hilbert–Schmidt operator.

Next we study how to define the inner product in a tensor product space. Let 
L ∈ HS(H1, H2). We first compute

	 L v u
HS

, Ä .

From Equation 4.105, we have

	

L v u Le v u e

Le u e v
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1 2

1
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.

	
(4.120)
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Next we compute

	 v Lu
H

,
2

.

Suppose that the expansion of u in terms of the orthonormal basis is

	
u u e e

j J

j H j=
Î
å ,

1
,

	
(4.121)

which gives

	

v Lu v L u e e

u e v Le

H
j J

j H j
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j J

j H j H
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2
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(4.122)

Comparing Equations 4.116 and 4.118 gives

	 L v u v Lu
HS H

, ,Ä =
2

.	 (4.123)

Equation 4.119 allows defining the inner product between two rank-one operators. 
Let L = b ⊗ a. Using Equation 4.119, we obtain

	

b a v u L v u

v Lu
HS HS

H

Ä Ä = Ä
=

, ,

,
2

. 	 (4.124)

It follows from Equation 4.115 that

	

Lu b a u

a u b
H

= Ä( )
= ,

1
.	 (4.125)

Substituting Equation 4.121 into Equation 4.120 gives

	 v Lu b v a u
H H H

, , ,
2 2 1
= .

Therefore, we obtain Result 4.3.

Result 4.3

The inner product of two tensor products in the Hilbert–Schmidt operator space can 
be computed by

	 b a v u b v a u
HS H H

Ä Ä =, , , .
2 1 	 (4.126)
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4.3.2.3 � Cross-Covariance Operator
The covariance matrix between two random vectors in the multivariate analysis investi
gates the linear relationships between random variables. However, in many cases, we need 
to consider the nonlinear relationships between the variables via the kernel approach. 
The cross-covariance operator is a generalization of the covariance matrix to infinite-
dimensional feature space.

For the convenience of presentation, we assume that all random variables are centered. 

Recall the covariance matrix �SXY
TE XY= [ ] and f g E f x g yT

XY
T T T�S = ( )( )é

ë
ù
û, where
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Similar to Equation 4.116, we have

	 �SXY E X Y= Ä[ ].	 (4.127)

We often use the covariance matrix to measure linear dependence. If two variables or two 
vectors of variables are nonlinearly related, the nonlinear dependence measure should be 
developed. Let f(X) and g(Y) be nonlinear functions of random variables; we extend lin-
ear covariance to nonlinear covariance to measure nonlinear dependence between two 
variables:

	 cov .f X g Y E f X g Y E f X E g Y( ) ( )( ) = ( ) ( )éë ùû - ( )éë ùû ( )éë ùû, 	 (4.128)

Taking f(X) = IA(X) and g(Y) = IB(Y) as indicator functions for the sets A and B gives

	

cov f X g Y E I X I Y E I X E I Y

P X A Y

A B A B( ) ( )( ) = ( ) ( )éë ùû - ( )éë ùû ( )éë ùû
= Î

,

, ÎÎ( )- Î( ) Î( )B P X A P Y B . 	 (4.129)

Equation 2.33 indicates that nonlinear covariance cov(IA(X), IB(Y)) is equal to zero if and 
only if the random variables X and Y are independent. We do not need to make normal 
distribution assumptions of the random variables X and Y to ensure that cov(f(X), g(Y)) = 0 
implies the independence between the random variables X and Y. Therefore, the maximum 
of nonlinear covariance over all possible nonlinear functions

	
sup cov

,f g

f X g Y( ) ( )( ),
	

(4.130)

can be used to measure the dependence between random variables.
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RKHS is a powerful tool for functional analysis. We restrict functions in the RKHS. 
Assume that H1 and H2 are reproducing kernel Hilbert spaces with respective reproducing 
kernels k and l. We consider two feature maps, ϕ and ψ. After nonlinear mapping from input 
spaces to feature spaces nonlinear relationships between the original variables become lin-
ear in the feature space. In the feature space, Equation 4.123 is transformed to

	
�SXY X YE X Y= ( )Ä ( )éë ùû, ,f f 	 (4.131)

where ϕ(X) and ϕ(Y) are the feature maps from the original input space to the feature space. 
The cross product or tensor product ϕ(X) ⊗ ϕ(Y) is a random variable in HS(H1, H2). First 
we show that the expectation operator of the cross product EX, Y[ϕ(X) ⊗ ϕ(Y)] in the Hilbert 
space exists. In other words, we show that for any operator or element, A ∈ HS(H1, H2), the 
linear functional EX, Y〈ϕ(X) ⊗ ϕ(Y), A〉HS can be written uniquely as the inner product:

	 g A E X Y A g HS H H
HS X Y

HS
, , ,= ( )Ä ( ) Î ( ), , .f f 1 2 	 (4.132)

We denote g by �SXY . Therefore, Equation 4.128 can be written as

	 E X Y A E X Y AX Y
HS

X Y
HS

, ,[ .f f f f( )Ä ( ) = ( )Ä ( ), , 	 (4.133)

Now we show the results of the existence of the cross-covariance operator.

Results 4.4

If we assume EXY[‖ϕ(X) ⊗ ϕ(Y)‖HS] < ∞, then there exists a unique element in the HS space, 
denoted by �SXY , such that

	
�SXY HS XY

HS
A E X Y A, ,= ( )Ä ( )é

ë
ù
ûf f .	 (4.134)

We can write �SXY X YE X Y= ( ) ( )éë ùû, f f .

Proof.

Assume A ∈ HS. The inner product 〈ϕ(X) ⊗ ϕ(Y), A〉HS is a functional of A. The expec-
tation EXY[〈ϕ(X) ⊗ ϕ(Y), A〉HS] is a function of 〈ϕ(X) ⊗ ϕ(Y), A〉HS. Therefore, we can 
view EXY[〈ϕ(X) ⊗ ϕ(Y), A〉HS] as a linear functional of A ∈ HS. If we can show that the 
linear functional EXY[〈ϕ(X) ⊗ ϕ(Y), A〉>HS] is bounded, then by the Riesz representa-
tion theorem, there is a unique element, g ∈ HS, such that

	 g A E X Y A
HS XY

HS
, ,= < ( )Ä ( )éë ùûf f .

We denote g by �SXY . Equation 4.130 is then proved.
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Now we show that EX, Y is the bounded linear functional. Using Jensen’s inequality 
gives

	
E X Y A E X Y AX Y

HS
X Y HS, , .f f f f( )Ä ( )é

ë
ù
û £ ( )Ä ( ) >é

ë
ù
û, ,

	 (4.135)

Applying the Cauchy–Schwartz inequality, the inner product should be less than the 
product of the norms of their components, i.e.,

	 f f f f( ) ( ), ( ) ( ) ,X Y A A X Y
HS HS HS

Ä £ Ä

which implies

	

E X Y A E A X YX Y X Y HS HS, ,( ) ( ), ( ) ( )

.

f f f fÄéë ùû £ Äéë ùû

< ¥ (by assumption)) 	 (4.136)

This shows that the linear functional EX, Y[〈ϕ(X) ⊗ ϕ(Y), A〉HS] is bounded.
Before we solve the optimization problem (4.130) for assessing independence, we 

need to compute cov(f(X), g(X)).
Recall from Equation 4.78 that

	 f X f X g Y g Y
H H

( ) = ( ) ( ) = ( ), and ,f f
1 2

.	 (4.137)

The cross-covariance operator is a useful tool for achieving this. For the noncentered 
nonlinear covariance, we have

	 cov .,f X g X E f X g YX Y( ) ( )( ) = ( ) ( )éë ùû, 	 (4.138)

Substituting Equation 4.133 into Equation 4.134 gives

	
cov .,f X g X E f X g YX Y

H H
( ) ( )( ) = ( ) ( )é

ë
ù
û, , ,j j

1 2 	 (4.139)

It follows from Equation 4.122 that

	 f X g Y f g X Y
H H HS

, , ,f f f f( ) ( ) = Ä ( )Ä ( )
1 2

.	 (4.140)

Substituting Equation 4.136 into Equation 4.135, we obtain

	 cov .,f X g X E f g X YX Y
HS

( ) ( )( ) = Ä ( )Ä ( )é
ë

ù
û, ,f f 	 (4.141)

Let A = f ⊗ g. Using Equation 4.130 gives

	 E f g X Y f gX Y
HS

XY HS, .Ä ( )Ä ( )é
ë

ù
û = Ä, ,f f �S 	 (4.142)
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It follows from Equation 4.119 that

	
� �S SXY HS HS

f g f g, ,Ä = .

This proves Result 4.5.

Result 4.5

	 cov .f X g X f g
HS( ) ( )( ) =, , �S 	 (4.143)

This result indicates that the nonlinear covariance can be calculated by the cross-covariance 
operator. Now we define the centered cross-covariance operator as

	

S SXY XY X Y

X Y X

E X E Y
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= ( )Ä ( )éë ùû - (
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f f f, ))éë ùû( )Ä ( )éë ùû( )E YY f .	 (4.144)

Applying the traditional sampling techniques gives the following sampling formula for the 
centered cross-covariance operator:
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Using Equation 4.112, we can write ϕ(xi) ⊗ ϕ(yi) as ϕ(xi)ϕT(yi). Then, Equation 4.111 can 
be reduced to
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(4.146)

where Φ(x) = [ϕ(x1), …, ϕ(xn)], Φ(y) = [ϕ(y1), …, ϕ(yn)], 1n = [1, 1, …, 1]T, H I
n

n n
T= - 1

1 1n , 
and In is an identity matrix.

It is clear that
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n
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(4.147)
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4.3.2.4 � Dependence Measure and Covariance Operator
Magnitude of dependence can be quantified by the covariance operator. We study two 
dependence measures. One measure is derived from kernel canonical correlation analysis. 
Another measure is the norm of the Hilbert–Schmidt norm of the cross-covariance operator.

4.3.2.4.1  Dependence Measure and Kernel Canonical Correlation Analysis  Recall from 
Equation 4.126 that assessing independence is equivalent to solving the following optimi-
zation problem:
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To solve it, the optimization problem is first rewritten in terms of kernel functions.
Consider the function f(x) ∈ RKHS. The function f(x) can be expressed as
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Similarly, we have

	 g y y H( ) = ( )F b.	 (4.150)

Using Equations 4.142, 4.145, and 4.146, we write the objective function in the optimization 
problem (4.148) as
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(4.151)

where
K̂ H x x Hxx

T= ( ) ( )F F  is a centered Gram matrix for variable X
K̂ H y y Hyy

T= ( ) ( )F F  is a centered Gram matrix for variable Y
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Similarly, we have

	 f K
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	 (4.152)

and
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Equation 4.144 is then reduced to

	

max

. . .

,a b
a b

a a
b b

1

1

1

n
s t

T K K

K

K

xx yy

T
xx

T
yy

ˆ ˆ

ˆ

ˆ
=
=

The optimization problem (4.148) can be solved by the Lagrange multiplier method:
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Maximizing the Lagrangian L(α, β, λ, γ) with respect to α and β gives the generalized eigen-
equation (Appendix 4D):
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(4.154)

Solving eigenequation (4.150), we can obtain the following dependence measure (Appendix 4D).

Result 4.6

Let R K Kxy xx yy= ˆ ˆ/ /1 2 1 2 and ρ be the largest singular value of the matrix Rxy. Dependence measure 
is defined as either ρ/n or

	
1

2n
K Kxx yyTrace ˆ ˆ .( ) 	

(4.155)

4.3.2.5 � Dependence Measure and Hilbert–Schmidt Norm of Covariance Operator
The covariance operator characterizes nonlinear dependence between two sets of variables. 
We can expect that the magnitude of the covariance operator can quantify the degrees 
of dependence. Therefore, we use the Hilbert–Schmidt norm of covariance operator as a 
dependence measure between two sets of variables.
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Recall from Equation 4.142 that the centered sampling covariance operator is given by

	
ˆ .S F FXY
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n
x H y= ( ) ( )1

The covariance operator is expressed as a matrix. The Hilbert–Schmidt norm of the opera-
tor can be computed as an inner product of its representation matrix. The inner product 
between two matrices, A and B, denoted by 〈A, B〉 is defined as (Liu et al. 2013)

	 A B A BT, Trace= ( ).
Therefore, the HS norm of the covariance operator ŜXY  is
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Recall that the centered Gram matrices are

	
ˆ ,K H x x Hxx

T= ( ) ( )F F 	 (4.157)

	
ˆ .K H y y Hyy

T= ( ) ( )F F 	 (4.158)

Substituting Equations 4.153 and 4.154 into Equation 4.152 gives the estimate of the depen-
dence measure.

Result 4.7
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which is called a Hilbert–Schmidt dependence measure.
We can see that Equation 4.155 is exactly the same as that in Equation 4.151.

As a special case, we consider a linear final dimensional case. Consider a sampled dataset 
{(x1y1), …, (xn, yn)}. Let Σxx = cov(X, X), Σxy = cov(X, Y) and Σyy = cov(Y, Y). We want to find α 
and β such that
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Let u xx= S1 2/ a and v yy= S1 2/ b, and Equation 4.156 can be transformed to
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(4.161)

Comparing Equation 4.157 with Equation 4D.7, we obtain
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It follows from Equation 4.158 that
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Therefore, we have the result.

Result 4.8

The linear dependence measure is given by

	 Trace S S S S Syy yx xx xy yy
- - -( )1 2 1 1 2/ / .	 (4.164)

It follows from Equations 1.220 and 4.160 that the linear dependence measure can be com-
puted by linear canonical correlation analysis.

4.3.2.6 � Kernel-Based Association Tests
4.3.2.6.1  Kernel Measure of Independence as a General Tool for Developing Association 
Tests  Many statistical methods such as regressions, correlation analysis, and canoni-
cal correlation analysis are developed for testing the association of genetic variants 
with phenotypes. Although these test statistics are different, the principal for various 
association tests is to assess the independence between two sets of variables. In other 
words, we assess that knowing information on a set of variables provides no additional 
information about another set of variables. The traditional genetic association tests 
often assume the linear relations between genetic variants and phenotypes and normal 
error distribution. However, in practice, the assumptions of linear relations and normal 
errors are often violated. Dependence measures studied in the previous section do not 
make such assumptions. Therefore, the dependence measure provides a general frame-
work for developing general association tests without linear and normal distribution 
assumptions.
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Independence can be characterized by the cross-covariance operator ŜXY  on RKHS. 
The statistics for testing independence between X and Y are based on the Hilbert–Schmidt 

norm of the cross-covariance operator ŜXY
HS

2
 (Equation 4.155). Let λx, 1 ≥ λx, 2 ≥  …  ≥ λx, n 

be the eigenvalues of the centered kernel matrix K̂ xx and λy, 1 ≥ λy, 2 ≥  …  ≥ λy, n be the eigen-
values of the centered kernel matrix K̂ yy. The statistics for testing independence between 
X and Y are defined as

	
T

n
K KI xx yy= ( )1

Trace ˆ ˆ .
	

(4.165)

Zhang et  al. (2012) derived the asymptotic distribution of the test statistic TI under the 
null hypothesis.

Theorem 4.2

(Independence test).
Under the null hypothesis that two sets of random variables X and Y are independent, 

the statistic TI defined in Equation 4.161 is asymptotically distributed as
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(4.166)

where zij
2 is independently and identically distributed as a central c 1

2
( ) distribution.

Using statistics TI to test association of genetic variants with the phenotype, we first select 
kernel functions for the genetic variants and phenotype. Then, we compute the centered 
kernel matrices K̂ xx and K̂ yy. We use a single value decomposition method to calculate the 
eigenvalues of the kernel matrices. Distribution is computed by simulations. We draw i.i.d. 
random samples from each zij

2 according to a central c 1
2
( ) distribution. We compute values 

using Equation 4.162 and repeat simulations multiple times. Finally, the distribution of the 
test TI will be obtained.

Using simulations to find the null distribution of the test is time consuming. The null 
distribution of the test can also be approximated. Below, we introduce approximating the 
null distribution by a two-parameter Gamma distribution (Zhang et al 2012).

Theorem 4.3

Gamma distribution approximation to independence measure–based test.
The null distribution of the independence test statistic TI can be approximated by the 

Γ(τ, θ) distribution:
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where
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4.3.2.6.2  Sequencing Kernel Association Test (SKAT)  SKAT (Wu et al. 2011) can be viewed 
as a special case of the modified kernel independence test. Consider a gene or a genomic 
region and a phenotype. We want to test the association of a gene or genomic region with 
the phenotype. For the ith individual, the phenotype variable is denoted by yi, a vector of 
covariates such as age, sex, and environments, among others, is denoted by Xi = [xi1, …, xiq], 
and a vector of genotype indicator variables at p loci is denoted by Gi = [Gi1, …, Gip]. Let
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Define a kernel matrix for the genotypes as K = GWGT, where W = diag(w1, …, wp) is a weight 
matrix. The SKAT test is defined as

	 Q y K y
T= -( ) -( )ˆ ˆ .m m 	 (4.168)

To see the relationship between the SKAT and the dependence measure–based indepen-
dence test, the SKAT statistic Q can be transformed to

	 Q K y y
T= -( ) -( )( )Trace m mˆ ˆ .	 (4.169)

If the outer product, y y
T-( ) -( )ˆ ˆm m , is replaced by a distance measure, D = (dij)n × n, 

d y yij i j= -
2

2, the SKAT statistic is equivalent to the dependence measure–based indepen-
dence test.

The kernel matrix measures the genetic similarity between individuals. Weight is 
often set to w MAFj j= ( )Beta , ,a b , where Beta represents the beta distribution density 
function and MAF is the frequency of the minor allele at the jth locus. When α = β = 0.5, 

w
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Under the null hypothesis of no association, the SKAT statistic Q follows a mixture of chi-
square distributions (Wu et al. 2011). Let P0 = V − VX(XTVX)−1XTV and V I= ŝ0

2 , where ŝ0
2 is 

the estimator of σ2 under the null model, y = Xα + ε. Then, Q is asymptotically distributed as
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where
λi, i = 1, 2, … , n are eigenvalues of the matrix P KP0

1 2
0
1 2/ /

c1
2
,i are independent c1

2 random variables

4.4 � SIMULATIONS AND REAL DATA ANALYSIS
4.4.1 � Power Evaluation

To illustrate the simulations for evaluating the performance of statistics for testing the asso-
ciation of the genetic variants with a single trait, we introduce the procedures for power 
simulations with next-generation sequencing data.

A true quantitative genetic model is given as follows. Consider L trait loci, which are 
located at the genomic positions t1, … , tL. Let Al be a risk allele at the lth trait locus. The 
following multiple linear regression is used as an additive genetic model for a quantitative 
trait:

	
Y Xi m

l

L

il l i= + +
=
åm a e

1

,

where

	

X

P A A

P A a

P a a

il

l l l

l l l

l l

=
-( )

-
-

ì

í
ï

î
ï

2 1

1 2

2

,

,

al l
l

l
l

l
lPG P G P G= + -( ) - -( )11 12 221 2 1 , G Gl l

11 12,  and Gl
22 are genotypic values of the genotypes 

A1A1, A1a1 and a1a1, respectively, and εi is distributed as a standard normal distribution 
N(0, 1).

We considered four disease models: additive, dominant, recessive, and multiplicative. The 
relative risks across all variant sites are assumed to be equal, and the variants are assumed 
to influence the trait independently (i.e., no epistasis). Let f0 = 1 be a baseline penetrance 
that is defined as the contribution of the wild genotype to the trait variation and r be a risk 
parameter. For the dominant model, we assume G rf G rf G fl l l

11 0 12 0 22 0= = =, and . Thus, the 
genetic additive effect is defined as αl = (1 − Pl)(r − 1)f0. Similarly, the genetic additive effects 
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are defined as αl = (r − 1)f0, αl = (rPl + 1 − Pl)(r − 1)f0, and αl = (r − 1)Plf0 for additive, multipli-
cative, and recessive disease models, respectively.

In our sequenced 1000 individuals with European origin (data have not been published), 
the average number of SNPs per kb is 8 SNPs. However, the average number of SNPs per 
kb will rapidly increase as the number of sequenced individuals increases. It was recently 
reported that the average number of SNPs per kb in 202 drug target genes sequenced in 
12,514 European subjects is about 48 SNPs (Nelson et  al. 2012). Due to the expense of 
whole-genome sequencing, in most genetic studies, only thousands of individuals are often 
sequenced. In the simulations for power studies, 30 SNPs per kb is assumed. For simplicity, 
25%, 15%, and 60%, respectively, of the SNPs are often taken as common, low-frequency, 
and rare SNPs. Consider a 30 kb region (average length of a gene). Since the average num-
ber of SNPs per kb is 30 SNPs, the number of SNPs in a gene is assumed to be 900 SNPs in 
the simulations.

The MS software (Hudson 2002) can be used to generate a population of 2,000,000 
chromosomes with the above variants. Two haplotypes were randomly sampled from 
the population and assigned to an individual, and 10% of the rare variants are ran-
domly selected as causal variants. A total of 5000 simulations were repeated for power 
calculation.

Figures 4.3 and 4.4 plot the power curves of ten statistics: the FLM; the smoothed FLM; 
the SKAT; two collapsing-based regression tests, RVT1 and RVT2 (Morris and Zeggini 
2010); simple regression where permutation was used to adjust for multiple testing; mul-
tiple regression; regression on principal components (PCA); and WSS and VT for testing 
association of rare variants in the genomic region under additive model with 2000 indi-
viduals in the presence of 18 risk variants and 9 risk variants and 9 protective rare variants, 
respectively. These power curves are a function of the risk parameter at the significance 
level α = 0.05. These two figures show that the functional linear model for quantitative trait 
analysis had the highest power.

4.4.2 � Application to Real Data Examples

To illustrate how to apply the introduced statistical methods to real data analysis, we pres-
ent three examples. The first example is an application of nine statistics to the ANGPTL4 
sequence and phenotype data from the Dallas Heart Study (Romeo et al. 2007). A total 
of 93 variants were identified from 3553 individuals. The total number of rare variants 
with a minor allele frequency below 0.03 in the dataset was 71. The study included six 
quantitative traits: plasma triglyceride levels (Trig), high-density lipoprotein cholesterol 
(HDL), total cholesterol, very low–density lipoprotein cholesterol (VLDL), and body mass 
index (BMI). P-values from the FLM, SKAT, two collapsing-based regression tests, sim-
ple regression, multiple regression, regression on principal components, WSS, and VT 
for testing the association of rare variants in ANGPTL4 with the six quantitative traits 
are summarized in Table 4.1 where P-values for WSS, VT, and simple regression were 
obtained by permutations.
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The second example is the application of nine statistics to rare expression quantitative 
trait loci (eQTLs) analysis. Genetic variation in the low-coverage resequencing data of 
the 1000 Genomes Project (released March 2010) and the 15 gene expressions acquired 
by RNA sequencing (RNA-seq) in the lymphoblastoid cell lines (LCLs) from 60 individu-
als of European origin (CEU) are analyzed (Montgomery et al. 2010). The expression of 
a gene is measured by a normalized overall expression level of the gene. We take a gene 
as a unit of rare eQTL association analysis. A total of 2533 genes that consisted of SNPs 
with MAF < 5% were included in the analysis. A P-value for declaring significant asso-
ciation after the Bonferroni correction for multiple tests was 1.97 × 10−5. Nine statistics, 
the FLM, SKAT, two collapsing-based regression tests, simple regression (SRG), multiple 
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FIGURE 4.3  Power of the 10 statistics for testing association with a quantitative trait under the addi-
tive model with rare risk variants only.
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regression (MRG), regression on principal components (PCA), WSS, and VT, are used 
to test for the association of rare variants in 2533 genes with 15 RNA-seq expressions. 
The FLM identified 13 genes; the SKAT identified three genes; and SRG, MRG, PCA, 
WSS, and VT identified one gene with rare SNPs, which were significantly associated 
with the expressions of 13 genes after the Bonferroni correction for multiple tests. It was 
reported that one SNP (rs7639979) in the gene PRSS50 was significantly associated with 
the expression of PRSS46 with P-value < 1.76 × 10−6. The P-values of 14 genes calculated 
by the FLM and other 8 statistics for testing their association with the whole-gene expres-
sions were summarized in Table 4.2.
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FIGURE 4.4  Power of the 10 statistics for testing association with a quantitative trait under the addi-
tive model with both rare risk variants and protective variants.
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The third example is the application of five statistics, FLM, SLM (SRG), MLM (MRG), 
PCA, and SKAT, to the CHARGE-S studies, which generated low-coverage whole-genome 
sequencing data of 955 individuals from the ARIC (Atherosclerosis Risk in Communities) 
study, Framingham Heart Study, and Cardiovascular Health Study (CHS) longitudinal 
cohorts after quality control with rich phenotypes including HDL and LDL levels (Zhang 
et al. 2014). Figure 4.5 presents a Manhattan plot showing P-values of five statistics for test-
ing the association of genes in Chromosome 2 with HDL. Figure 4.6 presents a Manhattan 
plot showing P-values of five statistics for testing the association of genes in Chromosome 
10 with LDL. The results again show that the FLM continues to outperform the other four 
statistics.

SOFTWARE PACKAGE
The code with MATLAB® implementation of a kernel-based statistical hypothesis test for 
independence can be downloaded from the website http://www.kyb.mpg.de/bs/people/
arthur/indep.htm. SKAT (http://www.hsph.harvard.edu/skat/) is a software for testing 
the association of a set of SNPs (gene or genomic region) with continuous or binary 
traits. A program for implementing the functional linear model for testing the association 
of a gene or a genomic region can be downloaded from the website http://www.sph.uth.
tmc.edu/hgc/faculty/xiong/index.htm. The R package “candisc” for canonical correlation 
analysis can be downloaded from the website https://cran.r-project.org/web/packages/
candisc/index.html.

TABLE 4.1  P-Values of Statistics for Testing Association of Rare Variants in ANGPTL4 with Six 
Traits in the Dallas Heart Study

Phenotypes

Statistical Methods BMI Cholesterol Triglycerides VLDL LDL HDL

FLM 3.72E−06 4.81E−02 5.48E−07 3.67E−06 1.77E−07 4.27E−06
RVT1 4.18E−06 7.74E−01 2.21E−03 2.13E−03 7.29E−01 2.13E−03
RVT2 6.93E−05 7.18E−01 1.82E−04 1.89E−04 8.93E−01 6.84E−04
PCA 3.93E−05 7.55E−01 2.58E−06 4.59E−06 5.86E−01 4.49E−03
Multiple 
regression

9.25E−03 1.93E−01 3.19E−03 3.36E−03 2.54E−07 1.02E−02

Simple regression 1.10E−02 7.10E−01 5.50E−02 1.60E−01 1.60E−01 5.00E−03
VT 1.20E−05 2.65E−01 4.95E−01 7.25E−01 3.10E−01 3.80E−01
WSS 5.39E−02 3.55E−01 3.00E−01 8.00E−02 4.60E−01 2.50E−01
SKAT 1.03E−03 7.49E−01 1.57E−01 1.88E−01 2.34E−01 1.05E−01

https://cran.r-project.org
https://cran.r-project.org
http://www.sph.uth.tmc.edu
http://www.sph.uth.tmc.edu
http://www.hsph.harvard.edu
http://www.kyb.mpg.de
http://www.kyb.mpg.de
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APPENDIX 4A: CONVERGENCE OF THE LEAST SQUARE 
ESTIMATOR OF THE REGRESSION COEFFICIENTS

Assume that n individuals are sampled. Let Y = [Y1, …, Yn]T, X X Xm m
n
m T

= ¼éë ùû1 , , , 
Z Z Zm m

n
m T

1 , ,¼éë ùû , β = [μm, αm, δm]T, ε = [ε1, ε2, …εn]T, W = [1, Xm, Zm]T, 1 = [1, 1, …, 1]T. Then, 
Equation 4.22 can be written in a matrix form:

	 Y W= +b e.	 (4A.1)

The least square estimator of the regression coefficients β is given by

	
ˆ .b = ( )-W W W YT T1

	 (4A.2)

The true genetic model in Equation 4.20 is

	 Y X Zi i i i= + + +m a d e .	 (4A.3)

It follows from Equation 4.23 that
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by large number theory, we have
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It follows from Equations 4.20 and 4.21 that

	 E Y1[ ] = m,
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We can similarly show that
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By the large number theory and Equation 4A.3,
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Combining Equations 4A.4 and 4A.5, we obtain
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When the marker is at the trait locus, we have

	 D P P P PM M M m= - =2 ,

which leads to
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The estimators of the genetic additive and dominance variance at the marker locus are
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It follows from Equations 4A.2 that the variance of the estimators of the parameters in the 
model is

	 L = ( ) = ( )-var .b sˆ
e

TW W2 1

	 (4A.8)

The noncentrality parameter of the test in Equation 4.32 is
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Next we study the noncentrality parameter of the test in Equation 4.41 for multiple linear 
regression models. Let
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By large number theory, we have
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Dij is the coefficient of the LD between the ith marker and jth marker
PMj and Pmj are the frequencies of alleles Mj and mj at the jth marker, respectively
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Then, the noncentrality parameter of the test defined in Equation 4.41 almost surely con-
verges to
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where Djj = PMjPmj.
We consider three special scenarios:

	 1.	All markers are trait loci.
		  We define the genetic additive covariance and dominance covariance as follows:
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		  When j = k, we have
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		  Under this scenario, Equation 4A.11 is reduced to
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	 2.	All markers are trait loci and are in linkage equilibrium.
		  Under this scenario, Djk = 0, for all j ≠ k and Djj = PQjPqj. Equation 4A.11 is reduced to
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	 3.	There is the presence of a trait locus that is in linkage disequilibrium with the markers.
		  We denote the coefficient of LD between the jth marker and the trait locus by Dj and 

genetic additive variance and dominance variance, respectively, by

	 s a s dA Q q D Q qP P P P2 2 2 2 2 22= =and .

Using Equation 4A.6, we obtain
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Substituting Equation 4A.15 into Equation 4A.11, we obtain
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APPENDIX 4B: CONVERGENCE OF REGRESSION COEFFICIENTS  
IN THE FUNCTIONAL LINEAR MODEL
Recall that
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By large number theory and Exercise 3.6, we have

	

1 1
0

1

1

2 2

1 1
n

E
n n

i

n

ik
a s

ik k

i

n

ik il
a s

i= = =
å å¾ ®¾ éë ùû = ¾ ®¾x x l x x. . . ., ,

nn

ik il
a s

i

n

ik
a s

ik k

i

n

i
n

E
n

å

å å

¾ ®¾

¾ ®¾ éë ùû =
= =

x h

h h g h

. .

. .

,

,

0

1 1

1

2 2

1

kk il

i

n

ik
a s

i

n

ik
a s

n n
h x h= ¾ ®¾ ¾ ®¾

= =
å å0

1
0

1
0

1 1

, , ,. . . .

	
(4B.1)

which implies
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Thus, we have
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Recall that

	 var .b sˆ( ) = ( )-e
TW W2 1

	 (4B.4)
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Combining Equations 4B.3 and 4B.4 gives
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Assume that the true genetic model is

	 Y x s z si i i i= + ( ) + ( ) +m a d e ,	 (4B.6)

where xi(s) and zi(s) are genotype functions for the genetic additive and dominance effect 
at the trait locus s.

Similarly, by Equations 4.53 and 4.57 and large number theory, we obtain
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(4B.7)

where D(t, s) is the coefficient of LD between the marker located in the genomic position t 
and trait locus at the genomic position s.

Similarly, we have
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Combining Equations 4B.3, 4B.7, and 4B.8 gives
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In other words, we obtain
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Under this model, it follows from Equations 4.66 and 4B.2 that the noncentrality parameter 
of the test is
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It follows from Equations 4B.10 and 4B.11 that
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Substituting Equation 4B.13 into Equation 4B.12 gives
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APPENDIX 4C: NONCENTRALITY PARAMETER OF THE CCA TEST
Let G X Z= [ ].

Then, the least square estimators and their variance in the multiple regression model 
(4.36) are
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We can show that (Exercise 4.7)

	 - -( ) >log .1 x x 	 (4C.2)

Equation 4C.1 gives
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APPENDIX 4D: SOLUTION TO THE CONSTRAINED NONLINEAR 
COVARIANCE OPTIMIZATION PROBLEM AND DEPENDENCE MEASURE
Taking the derivative of the Lagrangian with respect to the vectors α and β gives
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Recall that
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Multiplying by αT on both sides of Equation 4D.1 and by βT on both sides of Equation 4D.2 
and applying Equation 4D.3, we obtain
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It follows from Equations 4D.4 and 4D.5 that
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Then, the eigenequations (4D.1) and (4D.2) can be written as
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Let u K xx= ˆ /1 2a and v K yy= ˆ /1 2b. The optimization problem (4.148) is transformed to
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Similarly, using the Lagrange multiplier approach to solve the optimization problem, we 
can obtain the eigenequation
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Substituting Equation 4D.9 into Equation 4D.8 gives the eigenequation
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Assume that the single value decomposition of ˆ ˆ/ /K Kxx yy
1 2 1 2 is
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Then, it follows from Equation 4D.11 that
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It is clear from Equations 4D.10 and 4D.12 that
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Therefore, 1
2n

K Kxx yyTrace ˆ ˆ( ) can also be taken as a dependence measure.
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EXERCISES

Exercise 4.1	 Show that under which conditions, we obtain
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Exercise 4.2	 Considering a single locus with two alleles, A1 and A2, we call the genotypic 
value of one homozygote +a, that of the other homozygote –a, and that of the 
heterozygote d. Show that

	 (1)	 The substitution effect is α = α1 − α2 = a + (q − p)d

	 (2)	� The genetic additive variance and dominance variance are, respec-
tively, given by
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Exercise 4.3	 Show
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Exercise 4.4	 Prove
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Exercise 4.5	 Show
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Exercise 4.6	 Suppose that the functional principal component expansions of the genotype 
functions for the genetic additive and dominance effects, respectively, are
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		  Show that

	 (i)	 E[ξik] = 0, E[ηik] = 0;

	 (ii)	 var(ξik) = λk,  var(ηik) = γk ; and

	 (iii)	 E[ξikξil] = 0, E[ηikηil] = 0, l ≠ k, E[ξikηil] = 0.

Exercise 4.7	 Show for x > 0 we have − log(1 − x) > x.

Exercise 4.8	 Show that the squared multiple correlation coefficient in the multiple regres-
sion model is given by
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Exercise 4.9	 Consider a function
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.

		  Calculate the coefficient of its Fourier series expansion.

Exercise 4.10	 Show that if ‖f‖H = ‖g‖H, then ‖f − g‖H = 0.

Exercise 4.11	 Show that the Hilbert–Schmidt norm of the operator is independent of the 
choice of orthonormal basis.

Exercise 4.12	 Let
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		  Calculate the tensor product A ⊗ B.

Exercise 4.13	 Let f(X) ∈ Ηx and g(Y) ∈ Hy, where Ηx and Ηy are RKHS with kernel func-
tions kx(X, X) and ky(Y, Y) for random variables X and Y, respectively. Σyx is a 
cross-covariance operator between X and Y. Show that

	
g f f X g yyx H y

, ,S = ( ) ( )( )cov .
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C h a p t e r  5

Multiple Phenotype 
Association Studies

On December 18, 2014, a Catalog of Published Genome-Wide Association Studies (GWAS) 
reported significant association of 15,177 SNPs with more than 700 traits in 2087 publica-

tions (National Human Genome Research Institute 2015). It is reported that more than 4.6% of 
the SNPs and 16.9% of the genes were significantly associated with more than one trait (Solovieff 
et al. 2013). These results demonstrate that genetic pleiotropic effects, which refer to the effects 
of a genetic variant affecting multiple traits, play a crucial role in uncovering genetic structures 
of correlated phenotypes (Chen et al. 2015; Hill and Zhang 2012; Wagner and Zhang 2011). 
Most genetic analyses of quantitative traits have focused on a single trait association analysis, 
analyzing each phenotype independently (Stephens 2013). However, multiple phenotypes are 
correlated. The integrative analysis of correlated phenotypes, which test for the association of a 
genetic variant with multiple traits, often increases statistical power to identify genetic associa-
tions and increases the precision of genetic effect estimation (Aschard et al. 2014).

Three major approaches are commonly used to explore the association of genetic variants 
with multiple correlated phenotypes: multiple regression methods, integration of P-values of 
univariate analysis, and dimension reduction methods (Ray et al. 2016). The methods for multi-
ple phenotype association studies can be classified into three categories: designed for only com-
mon variants, designed for only rare variants, and designed for both common and rare variants. 
This chapter will cover all three categories of multiple phenotype association analysis methods.

As the number of phenotypes increases, the proportion of subjects missing at least one 
observation increases exponentially (Dahl et al. 2016). Imputing missing phenotypes is an 
essential for multiple phenotype association analysis.

5.1 � PLEIOTROPIC ADDITIVE AND DOMINANCE EFFECTS
To rigorously investigate multiple phenotype association analysis, we need to formally 
define pleiotropic genetic additive and dominance effects. Consider a single locus with 
two alleles: A1 and A2 with allele frequencies, respectively, and K traits. For the jth trait, 
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we denote its genotypic values for the homozygote A1A1, the other homozygote A2A2, and 
the heterozygote A1A2 by G Gj j

11 22
( ) ( ), , and G j

12
( ), respectively. Similar to Section 4.1.2.2, we can 

derive the genetic additive and dominance effects for the jth trait:

	 a j j j jpG q p G qG( ) ( ) ( ) ( )= + -( ) -11 12 22 ,	 (5.1)

	 d j j j jG G G( ) ( ) ( ) ( )= - +11 12 222 .	 (5.2)

Thus, the genotypic values for the jth trait can be expressed in terms of genetic additive and 
dominance effects:
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Then, we have

	 G X Z= + +1m a d.	 (5.4)

Let G X Z= [ ] and B =
é

ë
ê
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û
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a
d

. Then, Equation 5.4 can be further written as

	 G GB= +1m .	 (5.5)

Next we define the genetic additive and dominance covariance. Similar to Section 4.1.2.3, 
we define a genetic covariance between two traits:

	

s m m mG
j k j j k k j j jp G G pq G G, = -( ) -( ) + -( ) -( ) ( ) ( ) ( ) ( ) ( ) ( )2

11 11 12 122 mm m m

a a

j j j k k

j j k

q G G

p e

( ) ( ) ( ) ( ) ( )

( ) ( ) (

( ) + -( ) -( )
= +( )

2
22 22

2
1 1 12 2 )) ( ) ( ) ( ) ( ) ( ) ( ) ( )+( ) + + +( ) + +( )

+

e pq e e

q

k j j j j j j
1 1 2 2 1 2 2

2
2

2

2

a a a a

a jj j k ke e( ) ( ) ( ) ( )+( ) +( )3 2 32a .
	

(5.6)



Multiple Phenotype Association Studies    ◾    283

Substituting Equation 5.3 into Equation 5.6 gives
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where
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The genetic additive covariance and dominance covariance matrices are defined as

	 S Sa
T

d
Tpq p q= =2 2 2aa ddand ,	 (5.10)

respectively.
Formula (5.10) is similar to Equations 4.18 and 4.19. Replacing scalars α and δ in 

Equations 4.18 and 4.19 by vectors α and δ gives formula (5.10).

5.2 � MULTIVARIATE MARGINAL REGRESSION
5.2.1 � Models

Assume that n individuals with K correlated traits, Y1 , Y2 , …, YK, are sampled. Let Xil and 
Zil be the indicator variables for the genotypes associated with the genetic additive and 
dominance effects of the ith individual at the lth SNP. Let μj be an overall mean of the jth 
trait, αlj and δlj be the genetic additive and dominance effect of the lth SNP associated with 
the jth trait, εi = [εi1, …, εik]T be a vector of errors distributed as a normal distribution with 
a mean vector of zeros and a K × K variance–covariance matrix Σ, and ε1 , …, εn assumed to 
be independent.
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Consider the multivariate regression model for association analysis of multiple phenotypes:
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(5.11)

Equation 5.11 can be written in a compact form:

	 Y W X Z= + + +h a d e,	 (5.12)

where
Y is a phenotype matrix
W is a covariate matrix
X is a genotype indicator vector for the genetic additive effect
Z is a genotype indicator vector for the genetic dominance effect
η is a coefficient matrix associated with W
α is a row vector of genetic additive effects
δ is a row vector of genetic dominance effects
ε is an error matrix

We assume that εi = [εi1, …, εiK] is normally distributed with mean zero and covariance 
matrix Σ and ε1 , …, εn are independent. Covariates include age, sex, race, and PCA for 
population structure correction.

For the convenience of discussion, the model (5.12) can be further rewritten as

	 Y HB= + e,	 (5.13)
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.

5.2.2 � Estimation of Genetic Effects
5.2.2.1 � Least Square Estimation
The widely used method for estimation of the parameters in the model (5.12) is the least 
square estimation. Let

	 Y Y Y B B BK K K= [ ] = [ ] = [ ]1 1 1� � �, , .and e e e
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Then, the model (5.13) can be reduced to

	 Y HB j Kj j j= + = ¼e , , , .1 	 (5.14)

The least square estimate for B is to minimize the residual sum of squares:

	
F Y HB Y HB

j

K

j j
T

j j= -( ) -( )
=
å

1

.

	
(5.15)

Define the residual sum of squares and cross products matrix:

	

Y HB Y HB

Y HB Y HB Y HB Y HB

Y HB

T

T T
K K

K K

-( ) -( ) =
-( ) -( ) -( ) -( )

-

1 1 1 1 1 1�
� � �

(( ) -( ) -( ) -( )

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

T
K K

T
K KY HB Y HB Y HB1 1 �

.

	

(5.16)

It is clear that F in Equation 5.15 is equal to the trace of the residual sum of squares and 
cross products matrix:

	
F Y HB Y HB

T= -( ) -( )( )Trace .
	

(5.17)

Using the formula for the derivative of the trace function with respect to the matrix in 
Equation 1.166 gives

	
¶
¶

= - -( )F

B
H Y HBT2 .

Setting ¶
¶

=F

B
0 and solving the resulting equation, we obtain

	
ˆ ,B H H H YT T= ( )-1

	 (5.18)

or

	
ˆ ˆ .B B H H H Y YK

T T
K1

1

1, , , ,¼é
ë

ù
û = ( ) ¼[ ]

-

	
(5.19)

In conformity with the univariate least square estimate for the single phenotype, we take

	
ˆ .B H H H Yj

T T
j= ( )-1

	 (5.20)



286    ◾    Big Data in Omics and Imaging: Association Analysis

After the estimated regression coefficients are available, we can use them to calculate the 
matrix of predicted values:

	
ˆ ˆ .Y HB H H H H YT T= = ( )-1

	 (5.21)

The residual matrix is given by

	
ˆ ˆ ,e = - = - ( )é

ëê
ù
ûú

-
Y Y I H H H H YT T1

	
(5.22)

which implies the following residual sum of squares and cross products matrix:

	
ˆ ˆ .e eT T T TY I H H H H Y= - ( )( )-1

	
(5.23)

Next we study the properties of the estimators. First, we show that the estimator is unbiased. 
It follows from Equations 5.13 and 5.18 that

	
E B E H H H HB BT T[ ] = ( ) +( )é

ëê
ù
ûú
=

-1
e .

To calculate the covariance matrix of the estimator B̂ , we use a vector operation. In distribu-
tion theory, it is generally easier to work with a vector than a matrix. The vector of a matrix 
A, denoted by A = [a1, …, ak], is defined as

	

vec A

a

ak

( ) =
é

ë

ê
ê
ê

ù

û

ú
ú
ú

1

� .

It is well known that (Graybill 1983)

	 vec vecABC C A BT( ) = Ä( ) ( ) ,	 (5.24)

where ⊗ denotes the Kronecker product.
Using Equations 5.18 and 5.24 gives

	
vec vecˆ ( .B I H H H YT T( ) = Ä ( )( ) ( )

-1

	
(5.25)

Recall that

	

vec Y

Y

YK

( ) =
é

ë

ê
ê
ê

ù

û

ú
ú
ú

1

�
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and

	 cov .vec Y I( )( ) = ÄS 	 (5.26)

Using Equations 5.25 and 5.26, we obtain the covariance matrix of the estimators vec B̂( ):

	

cov [vec B I H H H I I H H H

H H

T T T T

T

ˆ( )( ) = Ä ( )( )é
ëê

ù
ûú

Ä[ ] Ä ( )( )
= Ä(

- -1 1
S

S ))-1
. 	 (5.27)

It follows from Equation 5.27 that

	 cov .B B H Hj k jk
Tˆ ˆ,( ) = ( )-s

1

	
(5.28)

Next we study the covariance matrix of the residuals ê. Equation 5.22 gives

	
ê j

T T
jI H H H H Y= - ( )é

ëê
ù
ûú

-1

	
(5.29)

and

	

E I H H H H E Y

I H H H H HB

j
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T T
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êéë ùû = - ( )é
ëê

ù
ûú

éë ùû
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ù
ûú

=

-

-

1

1
0..

	
(5.30)

This implies that

	

E E

E Y I H H H H

j
T

k j
T
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j
T T T

ˆ ˆ ˆ ˆe e e eéë ùû = ( )é
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Y Y

I H H H H E Y Y

k j
T

T T
k j

TTrace
1

øø
÷

= - ( )é
ëê

ù
ûú

æ
è
ç

ö
ø
÷

= -( )

-
Trace I H H H H I

n r

T T
jk

jk

1
s

s , 	 (5.31)

where r = rank(H).
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Equation 5.31 indicates that the unbiased estimator of σjk is

	
ˆ ˆ ˆ .s e ejk j

T
k

n r
=

-
1

	
(5.32)

Recall that

	
ˆ ˆ ˆ ˆ ,e e e ej

T
k

i

n

ij ik=
=
å

1

which implies that

	
ˆ ˆ ˆ .s e ejk

i

n

ij ik
n r

=
-

=
å1

1 	
(5.33)

Equation 5.32 gives

	
ˆ ˆ ˆ.S =

-
1

n r
Te e

	
(5.34)

In summary, we obtain the following result.

Result 5.1

The least square estimator for the regression coefficients is

	
ˆ ,B H H H YT T= ( )-1

and the covariance matrix of the estimators is

	 cov ,vec B H HTˆ( )( ) = Ä( )-S
1

where Σ is estimated by

	
ˆ ˆ ˆ, ˆ .S =

-
= - ( )é
ëê

ù
ûú

-1 1

n r
I H H H H YT T Te e e

Similar to Appendix 4A, we can obtain the asymptotic results.
Along the line in Appendix 4A, we can easily show that
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and

	

1 1

1

2
2n

H Y
n

W Y

X Y

Z Y

n
W Y

D

D

T

T

T

T

a s
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ê
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ê
ê
ê
ê
ê
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û
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ú. . a

d
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,

where a a am m m
K= éë
ù
û

( ) ( )1 �  and d d dm m m
K= éë
ù
û

( ) ( )1 � .

Therefore, we obtain the following result.

Result 5.2

Asymptotically, the vectors of the estimated genetic additive and dominance effects at the 
marker converge to

	
a a d dm

a s

M m
m

a s

M m

D

P P

D

P P
. . . . .¾ ®¾ ¾ ®¾and

2

2 2
	

(5.35)

When the marker locus is a trait locus, Equation 5.35 is reduced to

	 a a d dm
a s

m
a s. . . . .¾ ®¾ ¾ ®¾and

The estimated genetic additive covariance and dominance covariance matrices converge to

	
ˆ ,. .S Sq M m m m

T a s

M m Q q
aP P

D

P P P P
= ¾ ®¾2

2

a a
	

(5.36)

	
ˆ .. .S Sd M m m m

T a s

M m Q q
dP P

D

P P P P
= ¾ ®¾2 2

4

2 2 2 2
d d

	
(5.37)

5.2.2.2 � Maximum Likelihood Estimator
We begin with a log-likelihood function (Johnson and Wichern 2002). Let the phenotype 
data matrix be organized in terms of individual samples:
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where Yj is assumed to be normally distributed as N(BTHj, Σ). We can write

	

H

H

H

T

T

n
T

=

é

ë

ê
ê
ê

ù

û

ú
ú
ú

1

� .

Thus, we have
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Equation 5.38 implies
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Trace ééë

ù
û . 	 (5.39)

The log-likelihood function can be written as

	
l B

nK n
Y HB Y HB

T
, TraceS S S( ) = - ( )- - -( ) -( )é

ë
ù
û

-

2
2

2

1

2
1log log .p

	
(5.40)

To find the matrix B that maximizes the log-likelihood function, we set

	
¶ ( )
¶

=
l B

B

, S
0

	
(5.41)
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and

	
¶ ( )
¶

=
l B, S
S

0.
	

(5.42)

Using the formula for the derivative of the trace function with respect to the matrix (1.164), 
Equation 5.41 is reduced to

	
¶ ( )
¶

= -( ) =-l B

B
H Y HBT, S

S 1 0.
	

(5.43)

Multiplying Σ from the right side of Equation 5.43 gives

	 H Y HBT -( ) = 0.	 (5.44)

Solving Equation 5.44 for the matrix B, we obtain the maximum likelihood estimator of 
the matrix B:

	
ˆ ,B H H H YT T= ( )-1

	 (5.45)

if the matrix H is of full rank.
Equation 5.45 is exactly the same as Equation 5.18. This indicates that both the least 

square and maximum likelihood estimators are equivalent.
Next we solve Equation 5.42. Using Equations 1.160 and 1.168, we obtain

	
¶ ( )
¶

= - + -( ) -( ) =- - -l B n
Y HB Y HB

T,S
S

S S S
2

1

2
01 1 1 .

	
(5.46)

Solving Equation 5.46 gives

	
ˆ ˆ ˆ .S = -( ) -( )1

n
Y HB Y HB

T

	
(5.47)

Recall that

	

ˆ ˆe = - = - ( )
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(5.48)
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Note that the trace of [I − H(HTH)−1HT] is

	
Trace I H H H H n rT T- ( )é

ëê
ù
ûú
= -

-1
,
	

(5.49)

where r is the rank of the matrix H. Therefore, the eigenvalue decomposition of 
[I − H(HTH)−1HT] is

	
I H H H H U U u uT T T

j
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j j j
T- ( )é

ëê
ù
ûú
= =
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=

-
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(5.50)

Since

	

I H H H H I H H H H
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T T T T

T
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ù
ûú
= - ( )é
ëê

ù
ûú

=

- -1 1 2

2L ,

we have

	 L L2 = ,

which implies

	 L = ¼ ¼( )diag , , , , , ,1 1 1 0 0 .

Therefore, Equation 5.50 is reduced to

	
I H H H H u uT T
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T- ( )é
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ù
ûú
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-
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(5.51)

It follows from Equations 5.47 and 5.48 that
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(5.52)

Using Equations 5.51 and 5.52 gives
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e e
	

(5.53)
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Now we derive the distribution of the linear combination εTuj. Recall that
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(5.54)

It is clear that

	 E u E uT
j

T
je eéë ùû = éë ùû = 0,	 (5.55)
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,

eT
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i

n

ju u( ) =
æ

è
çç
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ø
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=
=
å

1

2 S

S 	 (5.56)

and

	 cov .e eT
j

T
k j

T
ku u u u,( ) = ( ) =S 0 	 (5.57)

Let Vj = εTuj. Equations 5.55 through 5.57 indicate that the variables Vj , j = 1 , …, n − r are 
independent and normally distributed variables, N(0, Σ). Therefore, by definition of Wishart 

distribution, n V Vj j
T

j

n r

Ŝ =
=

-å 1
 has the Wishart distribution WK , n − r(Σ).

In summary, we have the following result.

Result 5.3

Let r be the rank of the matrix H and K be the number of traits. Assume that the errors 
εi, i = 1 , …, n are independently and normally distributed as N(0, Σ). The maximum likeli-
hood estimators of the regression coefficient matrix B and covariance matrix Σ are given, 
respectively, by

	 B̂ H H H YT T= ( )-1

and

	
ˆ ˆ ˆ .S = -( ) -( )1

n
Y HB Y HB

T

nŜ is distributed as WK , n − r(Σ).
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5.2.3 � Test Statistics
5.2.3.1 � Classical Null Hypothesis
Assume
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,

where

	
B 2( ) =

é

ë
ê
ù

û
ú

a
d

.

The null hypothesis for no association is

	 H0 0 0:a d= =and

or

	 B 2 0( ) = .

The regression model can be written as

	 Y H B H B= + +1 1 2 2 e,

where

	 H H Hn r n= éë ùû´ -( ) ´1 2 2 2, , .

5.2.3.1.1  Likelihood Ratio Test  Likelihood ratio statistics can be used to test the presence of 
genetic effects. Under the null hypothesis H0 : B2 = 0, the regression model is

	 Y H B= +1 1 1e .	 (5.58)

The likelihood ratio is
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or

	
- = - = -

+ -( )
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1 1

log log logL S
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(5.59)

	
-n log

S
S

ˆ

ˆ
1

or

	
- - - +æ
è
ç

ö
ø
÷n r

K 1

2 1

log .
S

S

ˆ

ˆ 	
(5.60)

The likelihood ratio statistic is asymptotically distributed as a central c 2
2

K( ) distribution.

5.2.3.2 � The Multivariate General Linear Hypothesis
The single variate general linear hypothesis has the form

	 Cb q- = 0,

where
C is a q × r-dimensional matrix
β is an r-dimensional vector
θ and 0 are q-dimensional vectors

The hypothesis assesses the contribution of the genetic variants to a trait. The parameter β is 
a column of the vector. However, for the multivariate regression, the B matrix has multiple 
columns involving multiple traits. We need to consider differences in the contributions 
of the genetic variants to the multiple traits and test linear hypothesis about the multiple 
columns of the matrix B. Therefore, we should consider both the rows and columns of the 
matrix B. The multivariate general linear hypothesis has the form

	 CBM - =q 0,	 (5.61)

where
C is a q × r-dimensional matrix
B is an r × K-dimensional matrix
M is a K × l-dimensional matrix
θ is a q × l-dimensional matrix
0 is a q × l-dimensional matrix

We assume that the rank of the matrix C = q ≤ r and the rank of the matrix M = l ≤ K.
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Example 5.1

Consider a sex and a race variable as covariates in the model and two traits. We want 
to test the association of a genetic variant with two traits. The general linear hypoth-
esis for this problem has the form
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5.2.3.3 � Estimation of the Parameter Matrix under Constraints
Before we introduce additional statistics for testing association, we first estimate the param-
eters in the model under the constraint of Equation 5.61. We attempt to find the matrix B 
that minimizes (Izenman 2008)

	
Trace Y HB Y HB

T-( ) -( )é
ë

ù
û	

(5.62)

	 Subject to CBM - =q 0.

Using Lagrange multipliers, the constrained optimization problem (5.62) can be trans-
formed into the following unconstrained optimization problem:

	
F Y HB Y HB CBM

T= -( ) -( )é
ë

ù
û + -( )éë ùûTrace Trace L q ,

	
(5.63)

where Λ is a matrix of the Langrage multipliers.
Using formula (1.164), we obtain

	
¶
¶

= - -( )+F

B
H Y HB C MT T TL .

Setting ¶
¶

=F

B
0 gives

	 H HB C M H YT T T T+ =L .	 (5.64)
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Solving Equation 5.64 for the matrix B, we obtain

	

B H H H Y H H C M

B H H C M

T T T T T

T T T

* - -

-

= ( ) - ( )
= -( )

1 1

1

L

Lˆ . 	 (5.65)

where B̂ H H H YT T= ( )-1
 is the estimator of the parameter matrix B in the multivari-

ate linear regression without constraints. Equation 5.65 implies that the estimator of the 
parameter matrix B consists of two parts. The first part in Equation 5.65 is the estimator of 
the parameter matrix B without constraints and the second part in Equation 5.65 is due to 
constraints.

Next we estimate the matrix Λ. Substituting Equation 5.65 into Equation 5.61 gives

	 C H H C M M CBMT T T( ) = -
-1

L ˆ .q 	 (5.66)

Solving Equation 5.66 for the matrix Λ, we obtain
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(5.67)

Substituting Equation 5.67 into Equation 5.65 gives
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q
	

(5.68)

We can easily check that the matrix B∗ satisfies the constraint Equation 5.61.

5.2.3.4 � Multivariate Analysis of Variance (MANOVA)
Analysis of variance is an important tool for the analysis in the single variate linear regres-
sion. Next we extend the single analysis of variance to multivariate analysis of variance. 
Consider the residual under the constrained model
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where e�  is the residual for the original unconstrained model. Recall that
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(5.70)
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It follows from Equations 5.69 and 5.70 that the residual sum of squares Σ∗ under the con-
strained model is

	

n

B B H H B B
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where n B B H H B BH

T
Tˆ ˆ ˆS = -( ) -( )* *  is the sum of squares due to constraints.

Using Equation 5.68, the matrix ŜH  can be reduced to
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(5.72)

Under the null hypothesis H0 : CB − θ = 0, where M = I, as a special case of Equation 5.72, 
we have
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(5.73)

Result 5.4

The matrix version of the residual sum of squares, nŜ, for the unconstrained model is 
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ëê

ù
ûú

-
e e

1
, and the extra sum of squares and cross products due 

to the hypothesis, n HŜ , is

	
n n n M M M CBM C H H C CBM MH

T
T

T T Tˆ ˆ ˆ ˆS S S= - = ( ) -( ) ( )é
ëê

ù
ûú

-( )* - - -1 1 1

q q MM MT( )-1
.

5.2.3.5 � Other Multivariate Test Statistics
In the univariate linear regression analysis, we often use F statistics to test the null hypoth-
esis. Let SSE be the sum of squares for the error and SSH be the sum of squares for the 
hypothesis. The F statistics is defined as

	
F

q

n r

n r

q
=

-( )
= --SSH

SSE
SSE SSH

/

/
.1
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To extend the F statistics to the multivariate case, we let the degrees of freedom be absorbed 
into the corresponding multivariate sum of squares. Define the l × l residual sum of squares 
and cross products matrix as

	
E M Y I H H H H YMT T T T= - ( )é

ëê
ù
ûú

-1
,
	

(5.74)

and l × l hypothesis sum of squares and cross products matrix as

	
G CBM C H H C CBM

T
T T= -( ) ( )é

ëê
ù
ûú

-( )- -
ˆ ˆ .q q

1 1

	
(5.75)

The extension of F statistics to the multivariate case is realized through a function (determi-
nant, trace, or largest eigenvalue) of the quantity E−1G (Izenman 2008).

Let s = min(q, l) be the rank of the matrix E−1G, λ1 ≥ λ2 ≥ ⋯ ≥ λs be the eigenvalues of 
the matrix E−1G, and ρ1 ≥ ρ2 ≥  ⋯  ≥ ρs be the eigenvalues of the matrix G(G + E)−1. We can 
show that

	
r l

l
i

i

i

=
+1

.
	

(5.76)

In fact, by definition of eigenvalues of the matrix G(G + E)−1, ρi satisfies the equation

	
rI G G E- +( ) =-1

0.
	

(5.77)

Equation 5.77 can be reduced to

	
r G E G G E+( )- +( ) =-1

0,

which implies

	 r G E G+( )- = 0

or

	
r r r

r
-( ) + =

-
- =- -1

1
01 1G E I GE E

or

	

r
r1

01

-
- =-I GE .

	
(5.78)
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If follows from Equation 5.78 that

	
r
r

li

i
i

1-
=

or

	
r l

l
i

i

i

=
+1

.
	

(5.79)

We can also show that

	

E

E G
i

s

i+
=

+
=
Õ

1

1

1 l
.
	

(5.80)

It is easy to see that

	

E

E G I E G
i

s

i+
=

+
=

-
=
Õ1 1

1
1
g

,

	
(5.81)

where γi are eigenvalues of the matrix I + E−1G. By definition of eigenvalues of the matrix 
I + E−1G, we have

	 g gI I E G I E G- +( ) = -( ) - =- -1 11 0,

which implies

	 g li i- =1

or

	 g li i= +1 .	 (5.82)

Substituting Equation 5.82 into Equation 5.81 gives

	

E

E G
i

s

i+
=

+
=
Õ

1

1

1 l
.
	

(5.83)

Now we give four related test statistics.
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Result 5.5

Four other tests are defined as

	
Wilks lambda’ =

+
=

+
=
ÕE

E G
i

s

i1

1

1 l
,

	
Pillai s trace Trace’ = +( )é

ë
ù
û = +

-

=
åG G E

i

s
i

i

1

1
1

l
l

,

	
Hotelling Lawley trace Trace- = éë ùû =

-

=
åGE

i

s

i
1

1

l ,

and

	
Roy s largest root’ =

+
l
l
1

11
.

Next we study the distributions of the four statistics. In general, exact formulas for easy 
distribution calculations are not available for any of the four test statistics (Muller and 
Peterson 1984). Efficient approximate distributions for the four test statistics are usually 
used for testing the association.

5.2.3.5.1 � Wilks’ Lambda  We first consider Wilks’ lambda Λ. The statistic is defined as

	
L =

+
E

E G
,
	

(5.84)

which can be reduced to

	

L S
S S

S S

S

=
+

=
*-
*

ˆ

ˆ ˆ

ˆ ˆ

ˆ
.

H

H

	
(5.85)

If we assume that the matrix M is nonsingular, let ˆ , ˆS Se ee e* *= * = *( )H
T

H
T

H H  and 
ŜHH

TH H= . Then, ˆ ˆ ˆ ˆS S S SH H HH H= *
-

*e e
1 . Equation 5.85 can be further reduced to

	 L S S S S S= - *( ) *( )-
*

-
*

-
I H HH H

ˆ ˆ ˆ ˆ ˆ .
/ /1 2

1
1 2

e e
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Consider the canonical correlation between two sets of variables: ε∗ and H. Let 

r r r1
2

2
2 2³ ³ ³� s  be the eigenvalues of the matrix ˆ ˆ ˆ ˆ ˆ/ /

S S S S S*( ) *( )-
*

-
*

-1 2 1 1 2

e eH HH H . Then, eigen-

values of the matrix I H HH H- *( ) *( )-
*

-
*

-ˆ ˆ ˆ ˆ ˆ/ /
S S S S S

1 2 1 1 2

e e  can be found by solving the equation

	 m e eI I H HH H- - *( ) *( )( ) =-
*

-
*

-ˆ ˆ ˆ ˆ ˆ ,
/ /

S S S S S
1 2 1 1 2

0

which implies

	 1 0
1 2 1 1 2

-( ) - *( ) ( ) =
-

*
-

*
* -

m e eI H HH H
ˆ ˆ ˆ ˆ ˆ .

/ /
S S S S S 	 (5.86)

Solving Equation 5.86 for μ yields

	 m ri i i s= - = ¼1 12 , , , .

Therefore, we have

	
L = -( )

=
Õ

i

s

i

1

21 r .
	

(5.87)

If we define E = Σ = YT[I − H(HTH)−1HT]Y and G = ΣYY − Σ, then, ri
2 are the eigenvalues of the 

matrix S S S S SYY YH HH HY YY
- - -1 2 1 1 2/ / , which are canonical correlations between the variables.

It is well known that Λ1/s is a geometric mean of the 1 2-( )ri ’s. The approximation uses 
Λ1/s as a key quantity for distribution calculations.

Define the F approximation as

	
F

mt u

lq

t

tL
L
L

= - -1 21

1

/

/
,
	

(5.88)

where

u
lq

m n r
l q

=
-

= - -
- +2

4

1

2
,

t

l q

l q
l q

l q

=
-

+ -
+ - >

+ - £

ì

í
ï

î
ï

2 2

2 2
2 2

2 2

4

5
5 0

1 5 0
n is the sample size
r is the number of columns of the matrix H
q is the number of rows of the matrix C
l is the number of columns of M
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For the univariate model, l = 1, t = 1, FΛ is reduced to the classical F statistic:

	
F =

-( )
r
r

2

21

/d f model

/d f error

. .

. .
.

Comparing Equation 5.87 with Wilks’ lambda, we obtain

	
l r

r
i

i

i

=
-

2

21
.
	

(5.89)

Using Equation 5.89, we can express the four statistics in terms of canonical correlations.

Result 5.6

Four other tests are defined as

	
Wilks lambda’ =

+
= -( )

=
ÕE

E G
i

s

i

1

21 r ,
	

(5.90)

	
Pillai s trace PB Trace’ = = +( )é

ë
ù
û =

-

=
åG G E

i

s

i
1

1

2r ,
	

(5.91)

	
Hotelling Lawley trace HLT Trace- = = éë ùû = -

-

=
åGE

i

s
i

i

1

1

1

21

r
r

,
	

(5.92)

and

	 Roy s largest root RLR’ = = r1
2 .	 (5.93)

We can also have an F approximation to the distribution of the other three statistics.

Result 5.7

F Approximation to the Distribution of Three Test Statistics

	

F

s

ql

s n l

HLT =

- -( )+

HLT/

1

1 2
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with Fql , s(n − l − 1) + 2 distribution, where s is the rank of G;

	

F
ql

s

s n s l

PB = -( )
+ -( )

PB

PB

with Fql , s(n + s − l) distribution; and

	

F
q

n H

RLR = -
- ( )

RLR

RLR

rank

1

with Fq , n − rank(H) distribution.

5.3 � LINEAR MODELS FOR MULTIPLE PHENOTYPES 
AND MULTIPLE MARKERS

5.3.1 � Multivariate Multiple Linear Regression Models

A multiple marginal regression quantitative trait model for a single marker can be easily 
extended to multiple markers. Consider p marker loci, which are located at the genomic 
positions t1 , … , tp. The genotype matrices X and Z and genetic effects α and δ in Equations 
5.11 and 5.12 are changed to

	

X

x x
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z z

z z

p
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ù

û
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.

After the genotype matrices X and Z and genetic effects α and δ are expanded, Equation 5.12 
can be used for a multivariate multiple linear regression genetic model of the multiple 
phenotypes:

	 Y W X Z= + + +h a d e

or

	 Y HB= + e.	 (5.94)
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The formula for the estimation of the genetic effects and test statistics studied in Section 
5.2 can be extended to multiple markers without changes. What we need to change are the 
theoretic asymptotic results. Let PMl and Pml be the frequencies of the alleles Ml and ml of 
the marker located at the genomic position tl, respectively, and D(tl, tj) be the disequilib-
rium coefficient of the LD between the marker at the genomic position tl and the marker at 
the genomic position tj. Assume that there are L trait loci defined as before. Let D(tj, sl) be 
the disequilibrium coefficient of the linkage disequilibrium (LD) between the marker at the 
genomic position tj and the trait locus at the genomic position sl. By a similar argument as 
that in Appendix 4A, we have the following result.

Result 5.8

	 ˆ ˆ ,. . . .a a d dm a s
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m a s
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are the potential genetic additive and dominance effect matrices at the marker loci, 
respectively;
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are the true genetic additive and dominance effect matrices, respectively; and
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and

	 a a d d0 1 0 22= =D Dand .

Other asymptotic results can be similarly changed.

5.3.2 � Multivariate Functional Linear Models for Gene-Based 
Genetic Analysis of Multiple Phenotypes

When data are generated by next-generation sequencing, gene-based association analysis 
of rare variants should be developed. In this section, we extend the functional linear model 
for association analysis of a single trait, studied in Chapter 4, to multiple traits. Again, we 
consider K correlated traits. Let yik be the kth phenotype value of the ith individual. A func-
tional linear model for multiple quantitative traits with a genetic additive effect is defined as

	
y h X t t dt Z t t dtik k i

T
k

T

i k

T

i k ik= + + ( ) ( ) + ( ) ( ) +ò òm h a d e ,

	
(5.96)

where hi = [hi1, …, him]T and ηk = [η1k, …, ηmk]T, Xi(t) and Zi(t) are as defined in Equations 4.42 
and 4.43, αk(t) and δk(t) are the kth putative genetic additive effect and dominance functions 
of the marker at the genomic position t affecting the kth trait, respectively, εi = [εi1, … , εik]T 
is a vector of errors distributed as a normal distribution with a mean vector of zeros and a 
K × K variance–covariance matrix Σ, and ε1 , … , εn is assumed to be independent.

We expand the genotype functions Xi(t) and Zi(t) in terms of eigenfunctions (functional 
principal components):

	
X t ti
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J

ij j( ) = ( )
=
å

1

x j ,
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ij j( ) = ( )
=
å

1

g j ,

	
(5.97)

where ξij = ∫TXi(t)φj(t)dt and γij = ∫TZi(t)φj(t)dt.
Substituting Equation 5.97 into Equation 5.96 gives
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(5.98)
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Let
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Then, Equation 5.98 can be written in a matrix form:

	 Y W= + + +h xa gd e,	 (5.99)

or

	 Y HB= + e,	 (5.100)

where H W= [ ]x g  and B =
é

ë

ê
ê
ê

ù

û

ú
ú
ú

h
a
d

.

Then, the multivariate functional linear model is reduced to the traditional multivariate 
multiple linear model. All estimation methods and statistics studied in Section 5.2 can be 
used for solving the problem (5.99) or (5.100).

5.3.2.1 � Parameter Estimation
The least square estimator for the regression coefficients is

	
ˆ ,B H H H YT T= ( )-1

and the covariance matrix of the estimators is

	 cov ,vec B H HTˆ( )( ) = Ä( )-S
1

where Σ is estimated by

	
ˆ ˆ ˆ, ˆ .S =

-
= - ( )é
ëê

ù
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-1 1
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5.3.2.2 � Null Hypothesis and Test Statistics
Assume

	

B
B

B
=
é

ë

ê
ê
ê

ù

û

ú
ú
ú
=
é

ë
ê

ù

û
ú

( )

( )

h
a
d

1

2

,

where

	
B 2( ) =

é

ë
ê
ù

û
ú

a
d

.

The null hypothesis for no association is

	 H0 0 0:a d= =and

or

	 B 2 0( ) = .

The regression model can be written as
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Then, the test statistic is defined as
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(5.101)
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or

	
T n J l

K J
F = - - - - - - +æ
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ˆ 	
(5.102)

Under the null hypothesis of no association, the statistic TF is asymptotically distributed as 
a central c 2

2
KJ( ) distribution.

5.3.2.3 � Other Multivariate Test Statistics
The results in Section 5.2.3.5 can also be extended to the multivariate functional linear 
model.

Define

	 E n G n= = -( )ˆ ˆ ˆ .S S Sand 1

Other ways to define the four other tests are
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,

where λ1 ≥ λ2 ≥  ⋯  ≥ λs are the eigenvalues of the matrix E−1G.
Let ρ1 ≥ ρ2 ≥  ⋯  ≥ ρs be the eigenvalues of the matrix G(G + E)−1. The F approximation to 

the null distributions of the four statistics are given in Equation 5.103, and Results 5.6 and 
5.7 can be adopted here.
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5.3.2.4 � Wilks’ Lambda
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=Õ 1 2

1
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i

s

.
Define F approximation as
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5.3.2.5 � F Approximation to the Distribution of Three Test Statistics
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with Fql , s(n − l − 1) + 2 distribution, where s is the rank of G;
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5.4 � CANONICAL CORRELATION ANALYSIS FOR 
GENE-BASED GENETIC PLEIOTROPIC ANALYSIS

5.4.1 � Multivariate Canonical Correlation Analysis (CCA)

Multivariate CCA for quantitative trait analysis of a single trait studied in Section 4.2.2 can 
be directly extended to multiple traits. We only need to extend a single trait, y, to multiple 
traits, Y. In other words, we consider multiple trait Y = [y1, … , yK] and L SNPs with indica-
tor variables for the genetic additive and dominance effects x1 , … , xL , z1 , … , zL that are 
similarly defined in Equation 4.23. Let w = [x1, … , xL, z1, … , zL] and define the variance and 
covariance matrices:

	

S S S Syy

y y y y

y y y y

yg yx yz

K

K K K

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

= éë ùû

s s

s s

1 2 1

1

�
� � �

�
, , and SS

S S
S Sgg

xx xz

zx zz

=
é

ë
ê

ù

û
ú ,

where

	

S S Syx

y x y x

y x y x

yx
T

yz

y z yL

K K L

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú
= =

s s

s s

s s1 1 1

1

1 1 1�
� � �

�

�
,

zz

y z y z

zy
T

xx

x x x x

x x

L

K K L

L

L

� � �
�

�
� � �

�

s s

s s

s s

1

1 1 1

1

é

ë

ê
ê
ê

ù

û

ú
ú
ú
=

=

S

S

,

xx x

xz

x z x z

x z x zL L

L

L L L

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

, ,S
s s

s s

1 1 1

1

�
� � �

�
andd Szz

z z z z

z z z z

L

L L L

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

s s

s s

1 1 1

1

�
� � �

�
.

Define

	 R yy yg gg gy yy= - - -S S S S S1 2 1 1 2/ / .	 (5.104)

Assume that the eigendecomposition of the matrix R is

	 R U UT= L ,	 (5.105)

where Λ = diag(λ1, … , λK).
From Equation 1.248, we can define the test statistic for testing the association of the 

gene or genomic region with the multiple traits as
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(5.106)
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or
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(5.107)

where p = min(2L, K).
Under the null hypothesis of no association of the gene with the trait, TCCA is a central 

c 2
2

KL( ) distribution.

5.4.2 � Kernel CCA

Kernel CCA is a nonlinear extension of canonical correlation analysis with positive definite 
kernels (Fukumizu et al. 2007; Larson et al. 2014). Let f(X) ∈ Hx and g(Y) ∈ Hy, where Hx 
and Hy are RKHS with kernel functions kx(X, X) and ky(Y, Y) for random variables X and 
Y, respectively. Similar to the linear CCA, the goal of the kernel CCA is to seek nonlinear 
functions f(X) and g(Y) such that they have a maximum correlation. In other words, we 
want to solve the following optimization problem:

	
max

cov

var var
.

,f g

f X g Y

f X g Y

( ) ( )( )
( )( ) ( )( )

,

	

(5.108)

Since f(X) ∈ Hx and g(Y) ∈ Hy and Hx and Hy are RKHS, Equation 4.84 gives a general rep-
resentation of functions f(X) and g(Y):

	 f X f k X Hx( ) =< ( ) ( ) >. , ., 	 (5.109)

and

	 g Y g k Y H y( ) =< ( ) ( ) >. , . ., 	 (5.110)

By kernel theory we can show that the optimization problem can be transformed to 
(Appendix 5A)
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where
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In is an n × n-dimensional identity matrix
α = [α1, α2, … , αn]T

β = [β1, β2, … , βn]T

Using the Lagrangian multiplier method to solve the optimization problem, we obtain 
the following eigenequation:
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(5.112)

However, the eigenequation problem (5.112) is ill-defined. The optimization problem 
should be regularized. The Lagrangian can be written as
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(5.113)

Solving the optimization problem, we set the derivative of the Lagrangian with respect to 
α and β equal to zero:
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or
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(5.115a)

Equation 5.115a can be further reduced to the eigenequation

	 Ru u= l2 ,	 (5.115b)

where
R = (KxHKx + ηI)−1/2KxHKy(KyHKy + ηI)−1KyHKx(KxHKx + ηI)−1/2

u = (KxHKx + ηI)1/2α
β = (KyHKy + ηI)−1(KyHKx)(KxHKx + ηI)−1/2u
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5.4.3 � Functional CCA

In the traditional functional canonical correlation analysis (CCA), we study correlations 
between pairs of observed random curves. However, in the genetic analysis of multiple 
traits, the genotype files in a gene or a genomic region with NGS data can be taken as an 
observed curve, but multiple phenotypes cannot be taken as a curve. Multiple phenotypes 
are multiple variables. Therefore, in this section, we investigate correlations between the 
observed genotype profile curve and multiple variables.

Let t be a genomic position. A genotype function, X(t), for an additive effect and a geno-
type function, Z(t), for a dominance effect of the ith individual are defined as in Equations 
4.42 and 4.43. Consider K multiple traits: Y = [Y1, Y2, … , YK].

A general tool for functional CCA is functional principal component analysis (FPCA). 
The observed genetic variant profiles are often not smooth, which leads to substantial vari-
ability in the estimated functional principal component curves. To improve the smoothness 
of the estimated functional principal component curves, we impose the roughness penalty 
on the functional principal component weight functions. We balance the goodness of fit 
and the roughness of the estimated functional principal component curves.

We often penalize the roughness of the functional principal component curve by its inte-
grated squared second derivative. The balance between the goodness of fit and the rough-
ness of the function is controlled by a smoothing parameter, μ (Luo et al. 2013). We define 
an extended inner product as
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where b b m b
m

t t dt D t dt( ) = ( ) + ( )éë ùûò ò2 2
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The smoothed functional principal components can be obtained by solving the following 
integral equation:

	 0

1

4ò ( ) ( ) = ( ) + ( )éë ùûR s t s ds t D t, b l b m b .

	
(5.118)

Note that when μ = 0, the smoothed functional principal component analysis is reduced to 
an unsmoothed functional principal component analysis.
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The eigenfunction is an integral function and difficult to solve in closed form. A general 
strategy for solving the eigenfunction problem in Equation 5.118 is to convert the continu-
ous eigen-analysis problem to an appropriate discrete eigen-analysis task. Details of this 
process can be found in Luo et al. (2013).

We expand the genotype profiles X(t) and Z(t) in terms of orthonormal eigenfunctions 
(functional principal components) {φj(t), j = 1, 2, … , J} and {ψl(t), l = 1, 2, … , L}:
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where
ξj =  < X(t) , φj(t)>μ

ηj =  < Z(t) , ψjt)>μ

The concept of canonical variables as a linear combination of the variables a X a ZT T
1 2+  

(inner product between two vectors) can be extended as an inner product between two 
functions:
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Substituting Equations 5.119 and 5.120 into Equation 5.121 gives
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It is well known that the expansion coefficients are random variables (Tran 2008). 
Therefore, the covariance between the canonical variables of X , Z, and Y is
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Similarly, we have var(G) = aT cov(θ, θ)a, where
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Let Σθθ = cov(θ, θ), ΣθY = cov(θ, Y), and ΣYY = cov(Y, Y).
The functional CCA seeks coefficient vectors a and b such that
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For the convenience of presentation, we assume that J + L ≤ K. Otherwise, switch the order 
of the data between the FPC score matrices θ and phenotypes Y.
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Standard CCA studied in Section 1.62 can be used to solve the problem (5.124). Similar 
to Equation 1.220, we obtain

	 R YY Y Y YY= - - -S S S S S1 2 1 1 2/ / .q qq q 	 (5.126)

The matrix R can be eigendecomposed into

	 R U UT= L ,	 (5.127)

where Λ = diag(λ1,  … , λp) and p = min(J + L, K). Let q = max(J + L, K). The statistic for testing 
the association of the gene or genomic region with the K phenotypes is
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where n is a sampled number of individuals.
Under the null hypothesis of no association of the gene with the trait, TCCA is a central 

c J L K+( )( )
2  distribution.

5.4.4 � Quadratically Regularized Functional CCA

To further reduce the dimension of the data, we present a novel powerful quadratically 
regularized functional CCA for pleiotropic genetic analysis. Assume that n individuals are 
sampled. We expand the genotype profiles xi(t) and zi(t) of each individual in terms of 
orthonormal eigenfunctions:
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where

	 x j h ym mij i j ij jx t t Z t t=< ( ) ( ) > =< ( ) >, , ) .and

The quantities ξij and ηij are called functional principal component scores of the genotype 
profiles of the ith individual.
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Let yij be the jth trait value of the ith individual. Define the data matrices
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We seek the following quadratically recognized matrix factorization (Udell et al. 2016):
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where
A ∈ Rn × l and B ∈ Rl × (J + L) are two factor matrices
γ ≥ 0 is the regularization parameter

Since we restrict A F
2 £ a and B F

2 £ a, we can expect that the single values of the product 
matrix AB will be reduced.

Assume that the single value decomposition (SVD) of G is given by
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(5.133)

where U ∈ Rm × r and V ∈ Rn × r have orthonormal columns, λ1 ≥ λ2 ≥  ⋯  ≥ λr > 0, r = Rank(G), 
U and V are referred to as the left and right singular vectors of the matrix G, respectively, and 
λ1 ,  …  , λr are the singular values of G. Using matrix calculus, we can find the solution to the 
optimization problem (5.132) (Udell et al. 2016) (this will also be shown in Appendix 8D, 
Chapter 8):

	 A U I B I V T= -( ) = -( )W W W WL Lg g1 2 1 2/ /
,and 	 (5.134)

where UΩ and VΩ denote the submatrix of U , V with columns indexed by Ω, respectively; 
∣Ω∣ ≤ l with λi ≥ γ for i ∈ Ω; and similarly, we denote ΛΩ. For example, if Ω = {i : 1, 2, 3}, then 
we have UΩ = [u1, u2, u3], Λ(3) = diag  (λ1 − γ, λ2 − γ, λ3 − γ), and VΩ = [v1, v2, v3]. In general, 
Equation 5.134 can also be written as

	 A U B Vl l l l
T= =� �L L1 2 1 2/ /, ,	 (5.135)

where Ul = [u1,  … , ul], Vl = [v1, … , vl], �Ll l= -( ) ¼ -( )( )+ +
diag , ,l g l g1 , (a)+ = max(a, 0). 

Finally, the matrix G will be approximated by a low-rank model:

	 �G AB= .	 (5.136)
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Similarly, we can obtain the low-rank model approximation �Y  of the matrix Y. We assume 
that the ranks of the matrices �G and �Y  are p1 and p2, respectively. We assume that p1 ≤ p2. 
Denote p = min(p1, p2).

We use the low-rank model approximation of the original functional principal compo-
nent scores of the genotype profiles and the phenotype data to define the sampling covari-
ance matrices. Define

	 S S S S� � � � � � � � �GG
T

GY
T

YG
T

YY
TG G G Y Y Y= = = =, , ,

and matrix

	 � � � � � �R YY YG GG GY YY= - - -S S S S S1 2 1 1 2/ / .	 (5.137)

Again, using Equation 5.127 gives the eigenvector decomposition of the matrix R with 
eigenvalues λ1 ≥ λ2 ≥  ⋯  ≥ λp.

Similar to test statistics in Equations 5.128 and 5.129, the statistic for testing the associa-
tion of the gene or genomic region with the K phenotypes using quadratically recognized 
functional CCA is
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(5.139)

Under the null hypothesis of no association of the gene with the trait, TQFCCA is a central 
c p p1 2

2
( ) distribution. In general, p1p2 is much less than (J + L)K. Therefore, the statistic TQFCCA 

has a higher power to detect association than the FCCA-based statistic TFCCA.

5.5 � DEPENDENCE MEASURE AND ASSOCIATION 
TESTS OF MULTIPLE TRAITS

Kernel-based statistics for single trait association tests studied in Section 4.3.2.6 can be 
directly extended to the association test of multiple traits. We only need to replace the 
single phenotype by multiple phenotypes in calculating the kernel matrix Kyy. Such a typi-
cal test is called Gene Association with Multiple Traits (GAMuT) (Broadaway et al. 2016). 
The  GAMuT uses the dependence measure–based test for independence between two 
sets of multivariate variables: multiple phenotypes and multilocus genotypes. Recall in 
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Equations 4.157 and 4.158 that we define the centered kernel matrix K̂ yy for the pheno-
types and centered matrix for the genotypes K̂ xx. Consider two vectors, X and X′. Typical 
kernels are

	 1.	Polynomial kernel: K(X, X′) = (<X, X′>  + c)d, where d ≥ 1 and c ≥ 0.

	 2.	Taylor series kernel: Assume an ≥ 0 for all n ≥ 0 and define kernel
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For the genotypes, we can define additional kernels:

	 1.	IBS kernel: K G G
G G

L
i j

li

L

il jl

,( ) =
- -( )

=å 1
2

2
.

	 2.	Kxx = GWGT, where

	

G X Z

x x z z

x x z z

W

p p

n np n np

= [ ] =
é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
11 1 11 1

1 1

� �
� � � � � �

� �
, diag(( , , , , , .)w w w wp p11 1 21 2¼ ¼

If the genetic dominance effects are ignored, then
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The statistic TI in Equation 4.165 is
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(5.140)

Theorem 4.2 stated that under the null hypothesis that two sets of random variables X and 
Y are independent, the statistic TI is asymptotically distributed as
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(5.141)

where zij
2 are independently and identically distributed as a central c 1

2
( ) distribution.
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5.6 � PRINCIPAL COMPONENT FOR PHENOTYPE 
DIMENSION REDUCTION

5.6.1 � Principal Component Analysis

Principal component analysis (PCA) is one of the oldest and most widely used tools for 
dimension reduction and visualization and is applied to pleiotropic genetic analysis of 
multiple traits (Aschard et al. 2014; Gao et al. 2015; Zhou et al. 2015). PCA seeks a linear 
combination of multiple traits such that it projects high-dimensional phenotype data to a 
low-dimensional space with a few directions (axes) along which data variation is maximized.

PCA studied in Section 1.5.1 can be applied to dimension reduction of multiple pheno-
types. Recall that the original phenotype matrix is defined as

	 Y Y YK= [ ]1 � .

The K new variables that are linear combinations of the original phenotypes Y can be 
expressed as

	 Y YE* = ,	 (5.142)
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The transformed variables Yk
* are called pseudophenotypes. PCA is to find e1 , … , eK such 

that the variance of independent Yk
* is maximized. In other words, PCA seeks to solve the 

following optimization problem:

	

max

,
E

T

T
K

E E

E E I

Trace

Subject to

S( )
= 	

(5.143)

where Σ = var(Y).

The sampling estimation of the covariance matrix S = 1

n
Y HYT , where H I

n
n

T= - 1
11 ; 

1 is an n-dimensional vector of ones.
By the Lagrange multiplier method, the constrained optimization problem (5.143) can 

be transformed into the following unconstrained optimization problem:

	 max .
E

T TE E I E ETrace TraceS L( )+ -( )( ) 	 (5.144)
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Using formula (1.164), the optimal conditions for solving the optimization problem (5.144) 
are to solve the following eigenequation problem:

	 S LE E= ,	 (5.145)

where Λ = diag(λ1, λ2, … , λK).
After the eigenequation problem is solved, we can use Equation 5.142 to obtain the pseu-

dophenotypes Y∗. All or partial pseudophenotypes can be used as phenotypes for pleiotro-
pic analysis using multivariate linear models, multivariate functional linear models, CCA, 
FCCA, and quadratically regularized FCCA.

5.6.2 � Kernel Principal Component Analysis

As Figure 5.1 shows, two classes are linearly inseparable in the input space. However, if we 
use nonlinear mapping to map the data from the input space to feature space, it is clear that 
two classes can be linearly separated in the feature space. PCA attempts to efficiently rep-
resent the data by finding orthonormal axes, which maximally capture the data variation. 
However, when the data are linearly inseparable in the original input space, principal com-
ponents cannot maximally capture the data variation. To overcome the limitation of linear 
PCA, a nonlinear PCA is introduced. As Figure 5.2 shows, the kernel PCA can effectively 
account for data variation in the feature space.

Suppose that the phenotypes Y are mapped to a feature space via a nonlinear function 
(Schölkopf et al. 1997), Φ(Yi), i = 1 , 2 , … , n, where Φ(Yi) is a K-dimensional vector in the 
feature space.

Let
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and

	 Y Y V* = ( )�F ,	 (5.146)

where V is a K-dimensional vector in the feature space.

Input space Feature space

Φ(x)

FIGURE 5.1  Power of seven statistics for testing the association of a gene with eight phenotypes.
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Similar to Equation 5.145, in the feature space, PCA seeks to solve the following 
eigenequation:

	 SV V= l ,	 (5.147)

where

	
S F F= ( ) ( )

=
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1
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(5.148)
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(5.149)

and �F FY H Yi i( ) = ( ) is the centered feature mapping. Let � � �K Y Y Y Yi j i
T

j, ( ) = ( ) ( )F F .
Substituting Equations 5.148 and 5.149 into Equation 5.147 gives
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(5.150)

Linear PCA Kernel PCA

FIGURE 5.2  Scheme of feature mapping.
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Multiplying by �F Yl
T( )  on both sides of Equation 5.150, we obtain
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(5.151)

Let
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Then, Equation 5.151 can be reduced to
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(5.152)

Equation 5.152 can be written in a matrix form:

	 � �K n K2a l a= ,

or equivalently

	 �K na la= .	 (5.153)

From Equations 5.146 and 5.149, we obtain the mapped phenotype values or pseudophe-
notype values:
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The procedure of kernel PCA for generating pseudophenotypes is shown in Figure 5.3. 
Specifically,

	 1.	Select a kernel function.

	 2.	Calculate kernel Gram matrix.

	 3.	Perform eigendecomposition of the kernel matrix �K :

	 �K U UT= L .

	 4.	Select q ≤ min(K, n) eigenvectors from the matrix U = [Uq, Un − q] and calculate the 
pseudophenotype matrix: Y KUq

* = �  or Y∗ = YUq.

Output of the kernel PCA is the pseudophenotype values. We use Y∗ as phenotypes for fur-
ther genetic analysis of phenotypes.

5.6.3 � Quadratically Regularized PCA or Kernel PCA

In Section 1.5.1.2, we showed that the variance of the first principal component is the larg-
est eigenvalue value of the covariance matrix Σ of X and the proportion of the total variance 
due to the first principal component is

	
l

l l l
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1 2+ + +� k

.

To increase the proportion of the first principal component in total variation of the low-
dimensional space, we reduce every eigenvalue by a constant γ. We can show that

	
l g

l g l g l g
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l l l
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1 2

1

1 2

-
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>
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.

To achieve this goal, we extend the PCA to a quadratically regularized PCA.

Input phenotypesYn

KKK

α1

α2

αn

Y*Y*Y*

Y2Y1

FIGURE 5.3  Linear PCA and kernel PCA.
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Let Z = Y or Z = Y∗. Assume Z ∈ Rn × K. Similar to the quadratically regularized FCCA, 
we factorize the matrix Z to the product of two factor matrices, A ∈ Rn × l and B ∈ Rl × K. The 
quadratically regularized PCA problem is mathematically formulated as

	
min ,

,A B
F F FZ AB A B- + +2 2 2g g

	
(5.155)

where γ ≥ 0 is the regularization parameter and ‖.‖F is the Frobenius norm of a matrix, 
i.e., the square root of the sum of the squares of the entries. Since we restrict A F

2 £ a and 
B F

2 £ a, we can expect that the single values of the product matrix AB will be reduced. 
When γ = 0, the quadratically regularized PCA problem is reduced to the traditional PCA.

Assume that the single value decomposition (SVD) of Z is given by
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(5.156)

where U ∈ Rn × r and V ∈ RK × r have orthonormal columns, λ1 ≥ λ2 ≥  ⋯  ≥ λr > 0, r = Rank(Z), 
U and V are referred to as the left and right singular vectors of the matrix Z, respectively, 
and λ1 , … , λr are the singular values of Z.

Using matrix calculus, we can find the solution to the optimization problem (5.155) 
(Udell et al. 2016):

	 A U I B I V T= -( ) = -( )W W W WL Lg g1 2 1 2/ /
,and 	 (5.157)

where UΩ, VΩ denote the submatrix of U , V with columns indexed by Ω, respectively, ∣Ω∣ ≤ l 
with λi ≥ γ for i ∈ Ω, and similarly, we denote ΛΩ. For example, if Ω = {i : 1, 2, 3}, then we have 
UΩ = [u1, u2, u3], Λ(3) = diag(λ1 − γ, λ2 − γ, λ3 − γ), and VΩ = [v1, v2, v3]. In general, Equation 
5.157 can also be written as

	 A U B Vl l l l
T= =� �L L1 2 1 2/ /, ,	 (5.158)

where Ul = [u1, … , ul], Vl = [v1, … , vl], �Ll l= -( ) ¼ -( )( )+ +
diag , ,l g l g1 , (a)+ = max(a, 0).

Finally, we take Z∗ = AB as the matrix of pseudophenotype values for pleiotropic genetic 
analysis.

5.7 � OTHER STATISTICS FOR PLEIOTROPIC GENETIC ANALYSIS
5.7.1 � Sum of Squared Score Test

The sum of squared score test (SSU) originally developed for testing the association of 
multiple SNPs with a single trait (Pan et al. 2014) can be extended to test multiple traits 
(Ray et al. 2016). It follows from Equations 5.40 and 1.164 that under the global null 
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hypothesis of no association, the derivative of the log-likelihood function with respect 
to the coefficient matrix B is

	
¶
¶

= -l

B
H YT S 1,

	
(5.159)

where H X Z= [ ].
Under the null hypothesis of no association, B = 0, the vector of marginal scores is
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If we do not consider the correlation structure of the multiple phenotypes, then the covari-
ance matrix is given by

	 S = s0
2IK ,	 (5.161)

where
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Substituting Equation 5.161 into Equation 5.160 gives the 2K-dimensional vector of 
marginal scores:

	

U

H

H

Y

Y

H Y

H Y

M

T

T
K

T

T
K

=

é

ë

ê
ê
ê

ù

û

ú
ú
ú

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=

é

1
0

0

1

0
2

1

0
2

1

s

s

�
� � �

�
�

�

ëë

ê
ê
ê

ù

û

ú
ú
ú

=

Ä( )

Ä

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

= Ä( )

1

1

0
2

2 1

2

0
2 2

s

s

I Y H

I Y H

I Y H

T

K
T

T

�
)

..
	

(5.162)

The SSU test statistic for the association of multiple SNPs with the multiple traits is defined as

	 T U US M
T

M= .	 (5.163)

Under H0, the distribution of the SSU test statistic Ts can be approximated by a mixed χ2 
distribution, a bdc( ) +

2  (Ray et al. 2016; Zhang 2005). Let λ1 ≥ λ2 ≥  ⋯  ≥ λ2K be eigenvalues 
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of the matrix 1

0
2 2

n
H H I Y YT T

s
Ä( ). Let m = 2K. The parameters a , b, and d in the mixed 

χ2 distribution can be calculated by
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(5.164)

When we only consider genetic additive effects, the vector of marginal scores is reduced to

	
U Y XM

T= 1

0
2s

.
	

(5.165)

The eigenvalues λ1 ≥ λ2 ≥  ⋯  ≥ λK of the matrix 1

0
2n

H HY YT T

s
 will be used to calculate the 

parameters a , b, and d in Equation 5.165.

5.7.2 � Unified Score-Based Association Test (USAT)

A limitation for the SSU test is that the SSU does not explicitly explore correlation struc-
tures of the multiple traits in the test statistic. Although MANOVA can incorporate the cor-
relation structure of the traits, it also suffers from lack of power when the genetic effects for 
each trait are similar and are in the same direction as the correlation. To utilize the merit of 
both the SSU test and MANOVA and overcome their limitations, a score-based association 
test (USAT) that combines the USAT and MANOVA for a single marker was proposed (Ray 
et al. 2016).

Let TM be a test statistic, for example, likelihood ration test statistic or Wilks’ lambda in 
MANOVA. Define a weighted statistic:

	 T T TM Sw w w= + -( )1 ,	 (5.166)

where ω ∈ [0, 1] is the weight as a USAT statistic. When ω = 0, the statistic Tω is reduced to 
the SSU statistic TS, and ω = 1, the statistic Tω is reduced the MANOVA test TM. The power 
of the USAT statistic depends on the weight we chose. Since the weight is unknown, the 
optimal weight can be determined by

	 T PUSAT =
£ £

min ,
0 1w

w 	 (5.167)

where Pω is the P-value of the test statistic Tω.
The distribution of the USAT can be found in Ray et al. (2016). Since the USAT can only 

consider one SNP at a time and is difficult to apply to the next-generation sequencing data, 
its application to pleiotropic genetic analysis is limited.
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5.7.3 � Combining Marginal Tests

Assume that the traits are uncorrelated. Then, we can test a trait at a time. Let Pk be a P-value 
for testing the association of genetic variants with the kth trait. Then, Fisher’s method can 
be used to combine K P-values into a global P-value for testing the association with the 
K traits. Define the statistic:

	
T Pa

k

K

k= -
=
å2

1

log .

Then, under the null hypothesis of no association and assumption of independence tests, 
asymptotically, Ta is distributed as a central c 2

2
K( ) distribution. If the correlation is present, 

Fisher’s method of combining P-values will inflate the type 1 error rates.
We may also use the Bonferroni correction to combine P-values. Define the statistic:

	 T KPkmin min .= ( )

Under the assumption of no association and independence tests, Tmin is distributed as the 
minimum of independent U(0, 1) variables (Ray et al. 2016).

5.7.4 � FPCA-Based Kernel Measure Test of Independence

All SKAT, GAMuT, and other kernel measure tests of independence use the original geno-
type data. However, in many scenarios, particularly for next-generation sequencing data, 
the FPCA provides a powerful tool for data dimension reduction. Using FPC scores will 
improve the power of the tests. For all kernel measure–based tests, we can use FPC scores 
to replace the original genotype data.

Let ξij and ηij be functional principal component scores of the genotype profiles of the ith 
individual calculated in Equations 5.130 and 5.131. Define the data matrices:
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G = [ ]x h , and λ1 , … , λJ and γ1 ,  …  , γL are the eigenvalues associated with the FPC scores 
ξ of the genotype indicators for the additive effects and the FPC score η of the genotype 
indicators for the dominance effects, respectively.
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. Define the kernel matrix for the FPC scores: Kxx = GWGT and K̂ HK Hxx xx= .

 
Let K̂ yy be defined as before.
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Then, the statistic defined in Equation 5.140

	
T

n
K KI xx yy= ( )1

Trace ˆ ˆ
	

(5.168)

can be used to test association of the gene or genomic region with the multiple traits.

5.8 � CONNECTION BETWEEN STATISTICS
For the simplicity of discussion, here we only consider genetic additive effects. The conclu-
sions can be easily extended to genetic dominance effects. In the multivariate linear model, 
we can show that the matrix of regression coefficients can be estimated by

	 ˆ .B XX XY= -S S1 	 (5.169)

The contribution of the genetic additive effects to the phenotypic variation is

	 Sreg YX XX XY= -S S S1 .	 (5.170)

Similar to a single trait, the matrix of the proportions of genetic additive effect to the varia-
tion of the multiple traits is defined as

	 Hher YY YX XX XY YY= - - -S S S S S1 2 1 1 2/ / .	 (5.171)

This is exactly the same as the R matrix in Equation 5.104. This shows the equivalence 
between linear models and CCA.

Next we study the connection among PCA, linear models, and CCA. Suppose that the 
singular value decomposition (SVD) of the phenotype matrix Y is

	 Y U V T= L ,	 (5.172)

which implies that

	 Y Y V VT T= L2 .	 (5.173)

Assume that the covariance matrices are approximated by their sampling formulas:

	 ˆ , ˆ ˆ , ˆ .S S S SYY
T

YX
T

XY
T

XX
TY Y Y X X X= = = =and

We rewrite Equation 5.145 as

	 Ŝ LSYY E E=
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or

	 Y Y E ET T= LS .	 (5.174)

Comparing Equations 5.173 and 5.62 gives

	 E V= =, .L LS
2

	 (5.175)

Thus, the pseudophenotypes are

	 Y YV* = .	 (5.176)

Using Equation 5.176, we obtain the variance matrix of the pseudophenotypes and cova-
riance matrices between pseudophenotypes and genotypes:

	
ˆ ˆ ,S S

Y Y

T T T T
YYY Y V Y YV V V* * = ( ) = =* *

	 (5.177)

	
ˆ ˆ ˆ .S S S

Y X

T T T T
YX XY

T
Y X V Y X V* *= ( ) = = = ( )*

	 (5.178)

The coefficient matrix B∗ regressing the pseudophenotypes on the genotypes in the mul-
tivariate linear model is

	 B V BVXX XY XX XY
* - -= = =*

ˆ ˆ ˆ ˆ .S S S S1 1
	 (5.179)

Therefore, the sum of squares due to regression in the pseudophenotype linear models is
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1

	 (5.180)

Next we study how the PCA for phenotypes affects the CCA. It is well known that the 
eigenvalues of the matrix

	 RY YY YX XX XY= - -ˆ ˆ ˆ ˆS S S S1 1 	 (5.181)

equal to the eigenvalues of the matrix R in Equation 5.89.
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Now we calculate the RY
∗ matrix for the pseudophenotypes. Substituting Equations 5.177 

and 5.178 into Equation 5.181 gives
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We define the total heritability of the multiple phenotypes as
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(5.183)

which indicates that if we use a full-rank matrix, V, to transform the phenotypes, then such 
transformation will not change the total heritability of the multiple phenotypes and the 
sum of squares of all the canonical correlations.

Now assume that

	 Y YVr
* = ,	 (5.184)

where r < K.
Then, it is easy to see that

	 B BVr
* = ,	 (5.185)

and

	 S V S Vreg r
T

reg r
* = .	 (5.186)

Expressing RY
2  in terms of singular values of the SVD of the phenotype matrix Y, it follows 

from Equation 5.172 that

	 ˆ ,S LYY
TV V= 2 	 (5.187)

and

	
ˆ ˆ .S L SYX

T
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T
V U X= = ( ) 	 (5.188)
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Thus, RY
2  can be written as

	 R V U X X X X U VY
T T T T2 1 1

= ( )- -
L L .	 (5.189)

From Equation 4.168, it follows that

	 R V V V V V V U X X X X U V V
Y r

T T
r r

T T T T T
r* = ( ) ( )- -

L L L2 1 1
.	 (5.190)

Suppose that

	
Y U U

V

V
r K r

r

K r

r
T

K r
T

= [ ]é
ë
ê

ù

û
ú
é

ë
ê

ù

û
ú-

- -

L
L

0

0
.
	

(5.191)

Using Equation 5.191, we can show

	 V V V Vr
T T

r rL L2 2= ,	 (5.192)

	 L L Lr r
T T

r r
TV V U U- -=2 1 ,	 (5.193)

and

	 U V V UT
r r rL L= .	 (5.194)

Substituting Equations 5.192, 5.193, and 5.194 into Equation 5.190, we obtain

	 R U X X X X U
Y r r

T T
r r* = ( )- -

L L1 1
.	 (5.195)

It follows from Equation 5.189 that

	 X X X X U V R V UT T T
Y

T( ) =
- -1 2 1L L .	 (5.196)

Substituting Equation 5.196 into Equation 5.195 gives

	 R U U V R V U U
Y r r

T
Y

T
r r* = - -L L L L1 2 1 .	 (5.197)

We can show that

	 L Lr r
T

r
TU U V V- =1 	 (5.198)
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and

	 V U U VT
r r rL L- =1 .	 (5.199)

Substituting Equations 5.198 and 5.199 into Equation 5.197, we obtain the following inter-
esting relations between RY∗ and RY:

	 R V R V
Y r

T
Y r* = 2 .	 (5.200)

Similarly, for kernel PCA, we have

	 B BUKPCA q= ,	 (5.201)

	 S U S Ureg
KPCA

q
T

reg q= ,	 (5.202)

	 R U R UKPCA q
T

Y q= 2 .

Now we investigate replacing the original genotype data by their FPC scores in the func-
tional linear models and FCCA. For simplicity, we only consider genetic additive effects. 
First, we consider regression coefficients in the functional linear model. We can show 
that the regression coefficient matrix in the functional linear mode, sum of squares due to 
regression, and RFCCA matrix are, respectively, given by (Appendix 5B)

	
ˆ ,B X X X YFLM

T T T T= ( )-F F F
1

	 (5.203)

	 S Y Y Y X X X X Yreg
FLM T T T T T T= ( ) ( )- -1 1

F F F F ,	 (5.204)

and

	
ˆ .R Y Y Y X X X X YFCCA

T T T T T T= ( ) ( )- -1 1
F F F F 	 (5.205)

Four approaches can be used for testing the association of genetic variation with the mul-
tiple phenotypes: P-value combination of single trait analysis, regression, CCA, and depen-
dence measure–based tests (kernel methods). Since the power of single trait analysis is 
limited, we mainly focus on the remaining three methods. The methods can be classified 
into two categories: original data and dimension-reduced data. Figure 5.4 lists the current 
and near-future methods for genetic pleiotropic analysis. Many of them can be applied to 
next-generation sequencing data. These methods have their merits and limitations. Large-
scale simulations and real data analysis are needed to evaluate their performance.
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5.9 � SIMULATIONS AND REAL DATA ANALYSIS
5.9.1 � Type 1 Error Rate and Power Evaluation

To verify the feasibility of the several statistics for testing associations of genes with mul-
tiple phenotypes, we will perform large-scale simulations to validate the null distribution 
of the test statistics and calculate their type 1 error rates. We used the coalescent software 
MS (Hudson 2002) to generate a population of 2,000,000 chromosomes with 400 loci under 
the neutrality model. Correlations ranging from 0.01 to 0.5 were randomly assigned to the 
eight phenotypes, and 5000 simulations were conducted. Table 5.1 shows type 1 error rates 
for the nominal level of seven statistics where QRFCCA denotes a quadratically regularized 
functional canonical analysis test; FCCA is a functional canonical correlation test; PCA is 
a multivariate principal component analysis test; “Min P-value” denotes the minimum of 
P-values calculated by MANOVA(multivariate ANOVA), a SNP at a time, adjusted by false 
discovery rate (FDR); USAT is a Unified Score-Based Association Test (Ray et al. 2016); and 
GAMuT is a Gene Association with Multiple Traits. Table 5.1 shows that type 1 error rates 
of the statistics QRFCCA, FCCA, PCA, and USAT were not appreciably different from the 
nominal levels, while Min P-value and MANOVA were conservative.

To further evaluate the performance of the statistics for testing the association of genetic 
variants with multiple traits, a large simulation to make power comparisons should be 
conducted. The power evaluation of various methods for detecting association with mul-
tiple phenotypes is complicated. It depends on the correlation structure of the multiple 
phenotypes and pattern of linkage disequilibrium and allelic spectrum. Here we present a 
simple simulation for illustration purpose. We use data as in type 1 error simulations, but 
we assumed that each phenotype had five associating SNPs, i.e., SNP1–5 were associated 
with phenotype 1, SNP6–10 associated with phenotype 2, etc. SNPs explain 20% of total 
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phenotype variance. As shown in Figure 5.5, the power of the QRFCCA was the highest, 
followed by the FCCA. The power of the MANOVA was the lowest.

5.9.2 � Application to Real Data Example

Genetic pleiotropic analysis of multiple traits has recently been intensively investigated. 
Six recently developed statistics, QRFCCA, CCA, PCA, MANOVA, GAMuT, and USAT, 
are applied to testing association with 20 traits including seven cognitive functions, seven 
lipid metabolisms, and five environmental traits in the Rush Alzheimer Disease dataset. 
It included 1,707 individuals and 53,295 genes. The P-value for declaring significance is 
9.38E−07. The total number of significant genes discovered using QRFCCA, CCA, PCA, 
MANOVA, GAMuT, and USAT are 114, 31, 27, 13, 4, and 0, respectively. APOC1, TOMM40, 
and CSMD1 are included in the set of 114 genes. They are associated with AD or AD mark-
ers. Manhattan plots of the results are shown in Figure 5.6. The results demonstrated that 
QRFCCA substantially outperforms other statistics and has a high power to identify genes 
associated with multiple traits.

TABLE 5.1  Type 1 Error Rates of Six Statistics for Testing the Association of a Gene 
with Eight Phenotypes

Sample Size 500 1000 1500 2000

Min P-value 0.031 0.031 0.030 0.031
MANOVA 0.041 0.041 0.040 0.040
USAT 0.055 0.053 0.050 0.050
GAMuT 0.056 0.051 0.042 0.047
PCA 0.053 0.053 0.050 0.053
FCCA 0.054 0.054 0.052 0.055
QRFCCA 0.051 0.054 0.055 0.051
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FIGURE 5.5  Methods for genetic analysis of multiple phenotypes.
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SOFTWARE PACKAGE
The code with MATLAB® implementation of a kernel-based statistical hypothesis test for 
independence can be downloaded from http://www.kyb.mpg.de/bs/people/arthur/indep.
htm. An R package “candisc” for canonical correlation analysis can be downloaded from 
the website https://cran.r-project.org/web/packages/candisc/index.html. Alternatively, we 
can use the package from the website (https://cran.r-project.org/web/packages/CCA/index.
html) for CCA. The R package “MultiPhen” (https://cran.r-project.org/web/packages/
MultiPhen/index.html) uses a proportional odds regression model for pleiotropic genetic 
analysis. An R package for MANOVA can be downloaded from the website https://stat.
ethz.ch/R-manual/R-patched/library/stats/html/summary.manova.html. GAMuT-based 
kernel regression can be downloaded from the website http://www.genetics.emory.edu/
labs/epstein/software. A software for implementing QRFCCA and FCCA is in the website 
http://www.sph.uth.tmc.edu/hgc/faculty/xiong/index.htm.

APPENDIX 5A OPTIMIZATION FORMULATION OF KERNEL CCA
Equation 5.109 gives the sampling formula for the expectation E[f(X)]:
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Function f(.) can be expressed as
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FIGURE 5.6  Manhattan plot showing P-values of six statistics for testing the association of genes 
across the genome with 20 traits.
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Substituting Equation 5A.2 into Equation 5A.1 gives
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Similarly, we have
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and
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It follows from Equations 5A.2 and 5A.3 that

	
f X E f X k X x

n
K x

i

n

i x i
T

x i( ) - ( ) = ( ) -é
ëê

ù
ûú=

å[ } , ,
1

1a 1 (. ) ,
	

(5A.6)
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Thus, the sampling covariance between f(X) and f(Y) is
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Similarly, we can show that

	 var var .f X K HK g y K HKT
x x

T
y y( )( ) = ( )( ) =a a band 	 (5A.9)

The optimization problem (5.108) can be transformed to the following optimization 
problem:
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. . var
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,f g
f X g X

f X
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Using Equations 5A.8, 5A.9, and 5A.10 gives
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APPENDIX 5B DERIVATION OF THE REGRESSION COEFFICIENT 
MATRIX IN THE FUNCTIONAL LINEAR MODE, SUM OF 
SQUARES DUE TO REGRESSION, AND RFCCA MATRIX
Assume that the genotype function xi(t) is expanded in terms of eigenfunctions:
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where ϕj(t) is the jth eigenfunction and
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Denote xi(t1) by xi1. Then, we have
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where tj is the genomic position of the jth SNP.
Equation 5B.3 can be written in a matrix form:
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or

	 x = XF.	 (5B.4)

Using Equation 5B.4, we can obtain the regression coefficient matrix in the functional linear 
model

	

ˆ

.

B Y

X X X Y

FLM
T T

T T T T

= ( )
= ( )

-

-

x x x
1

1
F F F 	 (5B.5)

The sum of squares due to regression Sreg
FLM  is

	 S Y Y Y X X X X Yreg
FLM T T T T T T= ( ) ( )- -1 1

F F F F .	 (5B.6)

By the similar argument, RFCCA in the FCCA is
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.

R Y Y Y Y

Y Y Y X X X X Y
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T T T T
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= ( ) ( )
= ( ) ( )

- -
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1 1

1 1

x x x x

F F F F 	 (5B.7)

EXERCISES

Exercise 5.1	 Prove Equation 5.7:

	 s s sG
j k

a
j k

d
j k, , , .= +

Exercise 5.2	 Show that the least square estimator B̂ H H H YT T= ( )-1
 minimizes the gener-

alized variance |(Y − HB)T(Y − HB)|.

Exercise 5.3	 We assume that εi = [εi1, … , εiK] is normally distributed with mean zero and 
covariance matrix Σ and ε1 , … , εK are independent. Show that

	 cov .vec Y I( )( ) = ÄS

Exercise 5.4	 Show Result 5.8.

Exercise 5.5	 Extend the multivariate linear model

	 Y H B H B= + +1 1 2 2 e

		  for the one marker to the p markers.
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Exercise 5.6	 Extend the test statistic in Equation 5.60 and its null distribution to the 
p markers.

Exercise 5.7	 Verify
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Exercise 5.8	 Show that using the Lagrangian multiplier method to solve the optimization 
problem (5.111), we obtain the following eigenequation:
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Exercise 5.9	 Show in Equation 5.114 that λ = μ.

Exercise 5.10	 Show that eigenequation (5.115b) can be further reduced to

	 K HK I K HK K HK I K HK K HK I u ux x x y y y y x x x+( ) +( ) +( ) =- - -h h h l1 2 1 1 2 2/ /
,

		  where

	 u K HK Ix x= +( )h a1 2/
,

	 b h h= +( ) ( ) +( )- -
K HK I K HK K HK I uy y y x x x

1 1 2/
.

Exercise 5.11	 It is known that the proportion of total variance due to the first principal 
component is

	
l

l l l
1

1 2+ + +� k

.

		�  Please show that to increase the proportion of the first principal component 
in the total variation of the low-dimensional space, we can reduce every 
eigenvalue by a constant, γ. In other words, we have
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Exercise 5.12	 Compare the summation of the canonical correlations of the FCCA and 
QFCCA: Trace and TraceR R( ) ( )� .
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Exercise 5.13	 Assume an ≥ 0 for all n ≥ 0. Show
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		  defines a kernel.

Exercise 5.14	 Let Y∗ = YVr . Show S V S Vreg r
T

reg r
* = .

Exercise 5.15	 Let Y = UΛVT. Show that
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Exercise 5.16	 Suppose that
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T T

r rL L2 2= ,
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		  and

	 U V V UT
r r rL L= .

Exercise 5.17	 Show
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		  and
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c h a p t e r  6

Family-Based 
Association Analysis

Population-based sample design is the current major study design for associa-
tion studies. However, many rare variants are from recent mutations in pedigrees 

(Chakravarti 2011; Lupski et al. 2011; Najmabadi et al. 2011). The inability of common 
variants to account for most of the supposed heritability and the low power of population-
based analysis tests for the association of rare variants have led to a renewed interest in 
family-based design with enrichment for risk alleles to detect the association of rare vari-
ants. It is hypothesized that an individual’s disease risk is likely to come from the collected 
action of common variants segregating in the population and rare variants recently arising 
in extended pedigrees.

Family-based designs have several remarkable features over the population-based asso-
ciation studies (Wijsman 2016). Family data convey more information than case–control 
data. Family data not only include genetic information across the genome but also contain 
correlation between individuals. The segregation of rare variants in families offers infor-
mation on multiple copies of the segregated rare variants. Family data provide rich infor-
mation on the transmission of genetic variants from generation to generation, which will 
improve accuracy for imputation of rare variants.

The classical method for genetic analysis in the pedigree-based designs is linkage analy-
sis that analyzes cosegregation of the traits and genetic variants within pedigrees. Linkage 
analysis utilizes linkage segregation information on the pedigree but ignores linkage dis-
equilibrium information in the populations. There is increasing consensus that for com-
mon variants, association analyses are more powerful than linkage analysis to detect risk 
alleles (Ott et al. 2015). However, both cosegregation of traits and markers in pedigrees 
and association between trait and genetic variants in populations carry complementary but 
useful information (Wijsman 2016). It is increasingly recognized that analyzing samples 
from populations and pedigrees separately is highly inefficient. It is natural to unify popu-
lation and family study designs for association studies. The unified approach can correct 
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for unknown population stratification, family structure, and cryptic relatedness while 
maintaining high power in the sequence-based association studies. In this chapter, we will 
mainly focus on the statistical methods for a unified approach to the genetic analysis, which 
can utilize both linkage and linkage disequilibrium information and can be applied to both 
population-based and family-based designs.

6.1 � GENETIC SIMILARITY AND KINSHIP COEFFICIENTS
6.1.1 � Kinship Coefficients

An individual receives at any given locus a copy of a randomly chosen one of the two alleles 
from his father and (independently) a copy of a randomly chosen one of the two alleles from 
his mother. Therefore, two individuals may receive alleles that are from the same ances-
tral origin. Sharing ancestral genetic materials is characterized via a concept of identity by 
descent (IBD). The concept of IBD is originally designed for measuring the shared genetic 
materials. The shared genetic materials can be an allele in an SNP or can be a segment of 
a genome. Two alleles are IBD if one is a copy of the other or if they are both copies of the 
same allele present in some remote ancestor. In Figure 6.1, father transmits allele 1 to both 
sons, but mother transmits allele 3 to one son and allele 4 to another son. Two sons share 
allele 1 transmitted from father, and hence they have one allele IBD. Alleles that are IBD 
will have the same base sequences; however, the alleles with the same base sequences may 
not be IBD.

The first quantity for measuring IBD is the inbreeding coefficient. The inbreeding coef-
ficient studies IBD of two alleles of a single individual. The individuals that contain pairs 
of IBD alleles are called inbred. The inbreeding coefficient is defined as the probability 
that his or her two alleles at any autosomal locus are IBD. The inbreeding coefficient of an 
individual, i, is denoted by fi. Let PA and Pa be frequencies of alleles A and a, respectively, 
and PAA be the frequency of the genotype AA. Then, the genotype frequency PAA can be 
written as

	 P f P fP P fP PAA A A A A A= -( ) + = + -( )1 12 2 .	 (6.1)

Father

Son 1 Son 2
IBD=1

Mother

1

1 1

2 4

4

3

3

FIGURE 6.1  IBD sharing.
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The second quantity for measuring IBD is a kinship coefficient. The kinship coef-
ficient studies IBD of two alleles of two individuals. The kinship coefficient Φij between 
two individuals, i and j, is defined as the probability that an allele selected randomly 
from individual i and an allele selected randomly from the same autosomal locus of 
individual j are IBD.

The inbreeding coefficient and kinship coefficient have the following relation:

	
Fii if= +( )1

2
1

	
(6.2)

and

	 fi kl= F ,	 (6.3)

where k and l are parents of individual i.

Example 6.1  Parent and Offspring

The kinship coefficient between the parent and offspring is Fij =
1

4
.

Example 6.2  Full Sibs

Consider parents, 1 and 2, and their children, 3 and 4, as shown in Figure 6.2. Suppose 

that allele A is randomly selected from child 4 with probability 1
2

 and the probability 

of randomly selecting allele A from child 3 and allele A from the father is the kinship 

coefficient Φ31. Therefore, the probability of sharing allele A between two sibs is 1
2

31F . 

Father
1

Son
4

Son
3

A: 1/2

C: 1/2 ×

× Φ31 = 1/4

Φ32 = 1/4

Mother
2

A

A A

B D

D

C

C

FIGURE 6.2  Scheme for calculation of kinship coefficient.
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Similarly, the probability of sharing allele C between two sibs is 1

2
32F . The kinship 

coefficient between two sibs is

	
F F F34 31 32

1

2

1

2

1

4
= + = .

Example 6.3  Half Sibs

Consider half sibs (Figure 6.3). Take paternal allele A in child 4. The probability of shar-

ing allele A between two children, 4 and 5, should be equal to 1
2

51F . Similarly, consider 

maternal allele B in child 4. The probability of sharing allele B between two children, 

4 and 5, should be equal to 1
2

52F . The kinship coefficient between two half sibs is

	
F F F45 51 52
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4

1

8
= + = ´ + ´ = .

Example 6.4  First Cousins

We can show that the kinship coefficient of the first cousins is 
1

16
 (Exercise 6.2).

The general procedure for calculating kinship coefficients between members of a 
pedigree is given below:

	 1.	Order members in the pedigree such that every parent precedes his or her children.
	 2.	The kinship coefficients are calculated from the left top downwards recursively.
	 3.	The recursive calculation formulas are given by
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FIGURE 6.3  A three-generation pedigree.
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Example 6.5  A Three-Generation Pedigree (Figure 6.3)

Applying the general procedure for computing kinship coefficients to pedigree in 
Figure 6.3, we obtain the following kinship coefficient matrix:
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6.1.2 � Identity Coefficients

Consider a single locus with two alleles in two individuals, i and j. There are 
C C C C4

4
4
3

4
2

4
03 15+ + + + =  possible configurations of identity by descent for four alleles as 

shown in Figure 6.4. The identity of two alleles can exist within an individual or between 
individuals. For example, in S1, the identity of two alleles exists within an individual and 
between individuals. Figure 6.4 describes the relationships between the identity states and 
the condensed identity states. Now we define the condensed coefficients of identity and the 
probability of the condensed identity states:
D D D D D D1 1 2 6 3 2 3 4 7 5 4 5 6 8= ( ) = ( ) = ( ) = ( ) = ( ) = (P S P S P S S P S P S S P S, , , , ,∪ ∪ ))
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FIGURE 6.4  Fifteen possible configurations of identity by descent for four alleles in two individuals.
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The condensed coefficient of identity depends on the genetic relationships between two 
individuals. For example, consider noninbred full sibs. Since the probability of inheriting 
the same paternal allele is 0.5, the probability of inheriting the same maternal allele is 0.5, 
and they are independent, then we have P(S9) = 0.5 ∗ 0.5 = 0.25. Also, it is impossible for 
the noninbred full sibs to inherit the same paternal and maternal allele. Thus, P(S12) = 0 
and Δ7 = P(S9) + P(S12) = 0.25. By the same arguments, we have P(S10) = P(S11) = 0.25 and 
P(S13) = P(S14) = 0. Thus, we have Δ8 = P(S10 ⋃ S11 ⋃ S13 ⋃ S14) = 0.25 + 0.25 + 0 + 0 = 0.50. 
We note that the probabilities of not inheriting paternal alleles and not inheriting mater-
nal alleles are 0.5 and 0.5, respectively. Two events are independent. Therefore, we have 
Δ9 = P(S15) = 0.5 ∗ 0.5 = 0.25.

6.1.3 � Relation between Identity Coefficients and Kinship Coefficients

It is easy to see that Δ2 = Δ4 = Δ6 = Δ9 = 0. Kinship coefficient can be calculated by condition-
ing on the identity states. For example, conditioning on S2 ⋃ S3, the probability that two 

alleles that are drawn randomly from individuals i and j are IBD is 1
2

. Similar arguments can 

be applied to S4 ⋃ S5 and S9 ⋃ S12. Conditioning on S10 ⋃ S11 ⋃ S13 ⋃ S14 and S1, the probabil-

ities that two alleles that are drawn randomly from individuals i and j are IBD are 1
4

 and 1,  
respectively. Therefore, the kinship coefficient is given by (Lynch and Walsh 1998)

	
F D D D D Dij = + + +( )+1 3 5 7 8

1

2

1

4
.
	

(6.4)

Next we calculate Φii (Figure 6.5). The kinship coefficient Φii is the probability that two ran-
domly drawn alleles from individual i are IBD. We assume that individual i has two alleles, 
A1 and A2, at the locus. We randomly draw an allele from the locus, replace it, and then ran-
domly draw another allele. The four possibilities are shown in Figure 6.5. Suppose that we 

first draw allele A1 with the probability 1
2

. Then, we replace A1 and randomly draw the second 

allele. There are two possibilities. We may still draw allele A1 with probability 1
2

, or we draw 

allele A2 with probability 1
2

. The probability that two alleles A1 and A2 are IBD is equal to 1. 
Let fi be the inbreeding coefficient of individual i. The probability that alleles A1 and A2 is fi. 

A1A2

A2

A2
A2

A1
A1

A1

1/21/2

1/2f
1/2f

FIGURE 6.5  Scheme for calculation of substitution effect.
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Therefore, the probability along the left paths in Figure 6.5 is 1
4

1

4
+ fi. By similar arguments, 

the probability along the right path in Figure 6.5 is also 1
4

1

4
+ fi. The kinship Φii is

	
Fii i i if f f= + + + = +1

4

1

4

1

4

1

4

1

2

1

2
.
	

(6.5)

Next we calculate Φij. In the following calculations, we assume no inbreeding. Therefore, 
we have Δi = 0 ,   i = 1 , … , 6. We first consider the kinship Φpo between a parent and its off-
spring. Their identity states are characterized by S10 ⋃ S11 ⋃ S13 ⋃ S14. If we assume that the 
parent is the mother, the identity states are S10 and S14. To form the identity state S10, we need 

to draw a maternal allele from the mother with probability 1

2
 and randomly draw a mater-

nal allele from its offspring with probability 1

2
, and thus the probability P S10

1

2

1

2

1

4
( ) = ´ = . 

Similarly, we obtain P S14
1

4
( ) = . Next we assume that the parent is the father. By a similar 

argument, P S11
1

4
( ) =  and P S13

1

4
( ) = . Therefore, we obtain Δ8 = P(S10 ⋃ S11 ⋃ S13 ⋃ S14) = 1 

and Δ1 = Δ3 = Δ5 = Δ7 = 0. Substituting these quantities into Equation 6.4 gives F p0
1

8
= .

We then calculate the kinship Φhs between half sibs. The identity states of the half sibs are 
S10 and S14. Suppose that the mother is shared between two half sibs. We randomly draw a 

maternal allele from one half sib with probability 1
2

. The probability that the allele randomly 

drawn from another half sib is IBD with the first drawn allele is 1
2

. Thus, P S10
1

2

1

2

1

4
( ) = ´ = . 

If we assume that the father is shared by two half sibs, then by a similar argument, we obtain 

P S14
1

4
( ) = . As a consequence, we have D8 10 14

1

2
= ( )+ ( ) =P S P S . Other identity coefficients 

are equal to zero. Therefore, using Equation 6.4, we obtain the kinship coefficient between 

half sibs: F Dhs = =1

4

1

8
8 .

By the similar arguments, we calculate the kinship coefficients for other simple pedigrees, 
which are summarized in Table 6.1.

TABLE 6.1  Identity Coefficients for Simple Pedigrees 
under the Assumption of No Inbreeding

Relationship Δ7 Δ8 Δ9 Φ Δ

Parent–offspring 0 1 0 1/4 0
Full siblings 1/4 1/2 1/4 1/4 1/4
Half siblings 0 1/2 1/2 1/8 0
First cousins 0 1/4 3/4 1/16 0
Double first cousins 1/16 6/16 9/16 1/8 1/16
Second cousins 0 1/16 15/16 1/64 0
Uncle–nephew 0 1/2 1/2 1/8 0
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6.1.4 � Estimation of Genetic Relations from the Data

Genetic relation information includes both recent genetic relation information such as 
pedigree information and distant genetic relations such as population structure (Conomos 
et al. 2016). Theoretic estimation of kinship coefficients in the presence of population struc-
ture has a limitation. Therefore, we study the direct estimation of recent genetic relatedness 
from the data.

6.1.4.1 � A General Framework for Identity by Descent
To reveal the genetic relations, we first introduce indicator variables for measuring genetic 
information (Weir and Hill 2002; Zheng and Weir 2016). Consider two alleles at each locus. 
Define xijkl as an allele indicator variable for the kth allele, k = 1 , 2, at the lth locus in the jth 
individual sampled from the ith population, j = 1 ,  …  , ni ; i = 1 ,  …  , n, i.e.,

	
x

k l j i
ijkl =

1

0

th allele th locus th individual th population

othe

, , ,

rrwise.

ì
í
î

Let gijl be the genotype of the jth individual from the ith population at the lth locus. We have 
gijl = xij1l + xij2l. The expectations of the indicator variables are given by

	 E x pijkl léë ùû = ,	 (6.6)

where pl is the overall or ancestral frequency of the reference allele k in the single reference 
population.

Similarly, we obtain

	 E x E x pijkl ijkl l
2éë ùû = éë ùû = 	 (6.7)

and a variance of xijkl:

	 var .x E x E x p p p pijkl ijkl ijkl l l l l( ) = éë ùû - éë ùû( ) = - = -( )2 2 2 1 	 (6.8)

Now we calculate the covariance between indicator variables of the alleles. Let Fij be the 
total inbreeding coefficient of the jth individual in the ith population, Φi or Φii be the within 
kinship coefficient, and Fii¢ be the kinship coefficient between the ith population and i′th 
population. Then, we have

	 E x x F p F p p p p Fijkl ijk l ij l ij l l l l ij¢é
ë

ù
û = -( ) + = + -( )1 12 2

	 (6.9)

and

	

cov x x E x x E x E x

p

ijkl ijk l ijkl ijk l ijkl ijk l
, ¢ ¢ ¢( ) = é

ë
ù
û - éë ùû é

ë
ù
û

= ll l l ij l l l ijp p F p p p F2 21 1+ -( ) - = -( ) .	 (6.10)
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Next we consider the covariance of the indicator variables for the alleles from the different 
populations. By similar arguments, we have

	
E x x p p p p pijkl ij k l i l i l l l l i¢ ¢é
ë

ù
û = -( ) + = + -( )1 12 2F F F ,

	
(6.11)

and

	

cov x x E x x E x E xijkl ij k l ijkl ij k l ijkl ij k l
, ¢ ¢ ¢ ¢ ¢ ¢( ) = é

ë
ù
û - éë ùû é

ë
ù
ûû

= + -( ) - = -( )p p p p p pl l l i l l l i
2 21 1F F .	 (6.12)

	 E x x p p pijkl i j k l l l l ii¢ ¢ ¢ ¢é
ë

ù
û = + -( )2 1 F ,	 (6.13)

and

	 cov .x x p pijkl i j k l l l ii
, ¢ ¢ ¢ ¢( ) = -( )1 F 	 (6.14)

Next we investigate the expectation and variance of allele frequencies in the population. 
For the simplicity of discussion, we assume that each population has only one sampled 
individual. In this case, we denote Fij = Φi. Define the average frequency the alleles at the lth 
locus in the ith population as

	
p x xil ij l ij l= +( )1

2
1 2

	
(6.15)

and the average allele frequency at the lth locus as

	
p

n
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il=
=
å1
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.
	

(6.16)

Then, it is clear that

	
E p

n
E p pl

i

n

il l[ ] = [ ] =
=
å1

1

.
	

(6.17)

Using Equations 6.8, 6.10, and 6.15 gives

	

var var var cov ,p x x x xil ij l ij l ijj l ij l( ) = ( ) + ( ) + ( )éë ùû

=

1

4
2

1

4

1 2 1 2

22 1 2 1
1

2
1 1p p p p p pl l l l i l l i-( )+ -( )éë ùû = -( ) +( )F F .

	
(6.18)
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(6.19)

Now we are ready to calculate the variance of the average frequency pl. By definition, 
we have
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(6.20)

Substituting Equations 6.18 and 6.19 into Equation 6.20, we obtain
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(6.21)

where F FI i
i

n

n
=

=å1
1

 is the average inbreeding coefficient and F FT iii i i

n

i

n

n n
=

-
¢¢ ¢= ¹= åå1

1 11( ) ,
 

the average kinship coefficient.
Using Equation 6.21, we can easily calculate E p pl l1-( )éë ùû:
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(6.22)

6.1.4.2 � Kinship Matrix or Genetic Relationship Matrix in the Homogeneous Population
Although the genealogy relationship between individuals in the same pedigrees can be 
directly specified, the relationships between individuals in different pedigrees are usually 
unknown. In the presence of hidden population substructures and cryptic relatedness in the 
samples, the genealogy relationships between individuals in the different pedigrees cannot 
be ignored. The kinship matrix or genetic relationship matrix includes both the pedigree 
relationships of the related individuals and population structures. In general, the kinship 
matrix or genetic relationship matrix is unknown and can be estimated by the genetic vari-
ants in the data.
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Let G be an empirical genetic relationship matrix (GRM):
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(6.23)

where ni and nk are the respective numbers of individuals sampled from the ith and kth 
populations.

The expectation of F̂ik  is given by
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(6.24)

We can show that (Appendix 6A)
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where yi
ik

ii i
k

n

n
= =

=å F F F,
1

.

When the number of sampled individuals is large, Equations 6.25 and 6.26 can be 
reduced to
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6.1.4.3 � Kinship Matrix or Genetic Relationship Matrix in the General Population
6.1.4.3.1  Genetic Models and Estimation of Recent and Distant Genetic Relatedness  To study 
the variance and covariance of the genotype frequencies in the general population, we first 
need to specify genetic models in the general population (Conomos et al. 2016). The gen-
eral population consists of the current population, which the individuals are sampled from; 
the recent ancestral population; and the common ancestral population (Figure 6.6). Assume 
that n individuals are sampled at time tnow from a current structured population descended 
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from N distinct subpopulations at tN. We further assume that these N subpopulations came 
from a common ancestral population at t0. The genetic background for n sampled individ-
uals is that the genome of the ith individual in the current population was inherited from 

the N subpopulations with proportions a a ai i i
N T

= ¼éë ùû
1 , , , ai

k ³ 0, and ai
k

k

N

=
=å 1

1
. Consider 

L loci. Let p l L k Nl
k , , , , , ,= ¼ = ¼1 1  be the reference allele frequency at the l locus in the kth 

population, and Pl = ¼éë ùûp pl l
N T1, ,  be the vector of subpopulation-specific allele frequencies. 

Suppose that pl
k are random variables. Since the N subpopulations descended from a common 

ancestral population, using Equations 6.6 and 6.14, we obtain the mean and covariance of the 
population-specific allele frequencies:

	 E plP 1l[ ] =

and

	 var ,Pl( ) = -( )p pl l N1 F 	 (6.29)

where
1 is a N dimensional column vector of 1
ΦN is a N × N matrix that defines the within and between subpopulation correlations of 

alleles

The GRM can be used to estimate the population structure (distant genetic relatedness) 
and the kinship coefficients (recent genetic relatedness). Now we study its asymptotic prop-
erties under the general genetic models. The entries Ĝik in the GRM measure the genotype 
correlations for a pair of individuals, i , j.

We can show that (Appendix 6B)
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(6.30)
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FIGURE 6.6  Population structure.
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where
ϕij is the kinship coefficient between individuals i and j
qij i

T
N ja a= F  is the coancestry coefficient between individuals i , j due to population 

structure
Aij is the set of most recent common ancestors of individuals i and j

fij m

n n

m

mi mj

f� = æ
è
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ö
ø
÷ +( )
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1

2
1

1

 is the kinship coefficient of the allele of the individuals i and j 

tracing back to the common ancestor m
qmm m

T
N ma a= F  is the coancestry coefficient between individual m with itself due to 

population structure

As Equation 6.31 indicates, in the general genetic models, the elements of the GRM 
measure both kinship coefficients ϕij due to recent genetic similarity and the coancestry 
coefficients θij and θmm due to the distant genetic similarity in the population. If we consider 
a homogeneous population, then Ĝik ij® 2f , the GRM will only estimate the kinship coef-
ficients. In general, recent and distant genetic correlations are confounded, the estimators 
of the kinships coefficients and coancestry coefficient due to population structure cannot 
be separately estimated. Below we will introduce new statistics to estimate the kinship coef-
ficients and coancestry coefficients in the presence of population structure separately.

6.1.4.3.2  Estimation of Recent Kinships  To remove the impact of population structure on the 
estimation of the recent kinship coefficients, we can use individual allele frequencies pil and pjl to 
replace population allele frequency ps in calculation of the GRM. In other words, the kinship coef-
ficient ϕij will be estimated by
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In Appendix 6C, we show that
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(6.33)

where dϕ(i, j) is defined in Equation 6C.8.
The estimator of the kinship coefficients, which uses genotype values centered and scaled 

by individual-specific allele frequencies, measures the genetic correlation due to alleles 
shared IBD between individuals i , j from recent common ancestors and removes the popu-
lation structure from the kinship estimation.
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To use Equation 6.32 for kinship estimation, we need to estimate the individual-specific 
allele frequencies. Regression of the genotypes on the principal components (PCs) can be 
used to estimate the individual-specific allele frequencies (Conomos et al. 2016). The PCs 
contain information on population structure. Let V = [V1,  … , VD] be an n × D matrix with 
column vectors being the top D PCs. Let gl be a vector of the genotype values of n individu-
als at SNP: l. Define the linear regression model

	 g Vl = +1b b0 ,	 (6.34)

where
β = [β1,  … , βD]T is a vector of regression coefficients for each of the PCs
1 is a n-dimensional vector of 1s

Regression of gl on the PCs is equivalent to the regression of gl on the true ancestries of the 
sampled individuals. Therefore, the regression model (6.34) can be used to estimate the 
individual-specific allele frequencies:
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(6.35)

where Vi
d  is the PC score of individual i. Since for each d, the average of PC score Vd is zero, 

1

2
0b̂  is equal to the sample average allele frequency or population allele frequency pl. The 

regression coefficients b̂d measures deviation in allele frequency from the population allele 
frequency due to the ancestry components. We substitute the estimation of individual-
specific allele frequencies p̂il  and p̂jl into Equation 6.32 to give the PC-based estimation of 
kinship coefficient:
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(6.36)

From the analysis in Appendix 6C, we can see that for unrelated pairs of individuals, the 
estimated kinship coefficients will be close to zero, no matter whether the population struc-
ture is presented in the samples or not. In the presence of population structure but with no 
admixture among the N subpopulations, the estimated kinship coefficients are still close to 
the true kinship coefficients: f̂ fij ij® .

6.1.4.3.3  Estimation of Inbreeding Coefficient in the Presence of Population Structure  The GRM 
defined in Equation 6.23 can also be used to estimate the inbreeding coefficient when we take j = i:
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(6.37)
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If the true Pl is known when the number of SNPs is large, then we have (Exercise 6.6)

	
ˆ ,G fii i M i P i M i P i- ® -éë ùû +( ) ( ) ( ) ( )1 1 q q 	 (6.38)

where M(i) and P(i) denote the mother and father of individual i, respectively. Equation 6.38 
shows that the estimator of the inbreeding coefficient converges to the true inbreeding coef-
ficient only when the population is homogeneous. Otherwise, the estimator is not consis-
tent then the population structure is present.

Similar to the estimation of the kinship coefficient, to remove the impact of the popula-
tion structure on the estimation of inbreeding coefficient, we can use the individual-specific 
allele frequency to replace the population allele frequency in Equation 6.37. We can use 
the PC score–based linear regression to estimate the individual-specific allele frequency. 
Therefore, the PC-based estimator of the inbreeding coefficient fi of individual i is given by
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where the individual-specific allele frequency p̂il  is estimated by Equation 6.35.
We can show that (Exercise 6.7)
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where qii i
T

N ia a= F .
In the presence of discrete population substructure, θM(i)P(i) = θii implies that f̂ fi i® . Even 

in the presence of general population structure, the bias, asymptotically, is small.

6.1.4.4 � Coefficient of Fraternity
We have studied the identity of a single allele by descent. Now we extend the identity of 
a single allele by descent to the identity of genotype by descent. There are scenarios that 
lead to the identity of genotype by descent (Figure 6.7). Let mx and fx be the maternal and 
paternal allele of individual x, respectively. The first scenario is that both maternal allele 
of two individuals are identical by descent and both paternal allele of two individuals are 
identical by descent with probability f fm m f fx y x y . The second scenario is that the maternal 
allele of individual x and paternal allele of individual y and the paternal allele of individual 
x and maternal allele of individual y are identical by descent with probability f fm f f mx y x y . Let 
Δxy denote the coefficient of fraternity. The coefficient of fraternity, which is defined as the 
probability of the genotypes (two alleles) of individuals x and y are identical by descent, 
is given by

	 Dxy m m f f m f f mx y x y x y x y= +f f f f .	 (6.41)
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If inbreeding is not present, Equation 6.41 can be reduced to

	 D Dxy = 7	 (6.42)

Example 6.6  Full Sibs

For full sibs, both sibs share a mother (mx = my = m) and father (fx = fy = f). Therefore, 
Equation 6.41 is reduced to

	 Dxy mm ff mf= +f f f2 .	 (6.43)

If the parents of two individuals are unrelated and parents are not inbred, then 

f fmm ff= = 1

2
 and ϕmf = 0. Thus, we have

	
Dxy = ´ =1

2

1

2

1

4
.

6.2 � GENETIC COVARIANCE BETWEEN RELATIVES
Genetic inheritance occurs between relatives and have a crucial impact on the trait covari-
ance between relatives. In this section, we study genetic additive covariance, dominance 
covariance, and gene–gene interaction covariance between relatives and effects of lineage 
and linkage disequilibrium on the genetic covariance between relatives.

6.2.1 � Assumptions and Genetic Models

We first make the following assumptions for the genetic models (Lynch and Walsh 1998):

	 1.	All of the genetic variation is caused in autosomal loci.

	 2.	Mating is random.

	 3.	Without linkage between loci.

fx mx myfy
x y

φfxmy

φfx fy

φmx fy

φmx my

FIGURE 6.7  Genotypes of two individuals are identical by descent.
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	 4.	No maternal effects.

	 5.	Ignore gene–environment interaction.

	 6.	No selection.

Before we study the genetic covariance between relatives, we introduce the genetic models 
that are the basis for investigating the genetic covariance. Let x and y be a pair of individu-
als. Consider two loci, A with alleles Ai and Aj and B with alleles Ak and Al. Let p1 , q1 , p2 , 
and  q2 be frequencies of alleles Ai , Aj , Ak, and Al, respectively. Let Gijkl(x) and Gijkl(y) be the 
genotypic values of the genotypes AiAj and AkAl of the individuals x and y, respectively. 
Consider the following genetic model:
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where
μG represents an overall mean
α represents additive effect
δ represents dominance effect
(αα) represents additive × additive interaction effect

For simplicity, in the genetic model, we do not include additive × dominance interaction 
effect, dominance × additive interaction effect, and dominance × dominance interaction 
effect. Extension to including three additional interaction effects is straightforward.

6.2.2 � Analysis for Genetic Covariance between Relatives

After the genetic models are assumed, we can calculate the genetic covariance between rela-
tives using identical by descent and quantitative genetic theory. Based on the genetic model 
(6.44), the general formula for calculation of the genetic covariance between two individu-
als, x and y, is given by

	 V G x G y V x y V x y V x yG ijkl ijkl A D AA= ( ) ( )( ) = ( ) + ( ) + ( )cov ,, , , , 	 (6.45)

where VA(x, y) , VD(x, y), and VAA(x, y) are the genetic additive, dominance, and dominance × 
dominance interaction covariances between individuals x and y, respectively.

We start with the calculation of VA(x, y). Since the means of all genetic effects are zero, 
it follows from Equation 6.45 that
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Next we calculate E a1
2éë ùû. It follows from Equations 4.11 and 4.12 that α1 can take either 

q1α with probability p1 or p1α with probability q1 where α is a substitution effect. Therefore, 
we have

	
E p q q p p q Vi Aa a a a2

1 1
2 2

1 1
2 2

1 1
2 1

2
éë ùû = + = = ,

	
(6.47)

where VA is the genetic additive variance. Substituting Equation 6.47 into Equation 6.46 
gives

	 V x y VA xy A,( ) = 2f .	 (6.48)

Now we consider the dominant genetic covariance between relatives. Considering 
locus 1 and using the genetic model (6.44), we obtain the dominant covariance between 
individuals x and y:

	 V x y ED ij
x

ij
y,( ) = éë ùûd d .	 (6.49)

Since the probability that the genotypes (two alleles) of two individuals are identical by 
descent is equal to the coefficient of fraternity Δxy, the dominant covariance between two 
individuals are given by

	 V x y ED xy ij,( ) = éë ùûD d2 .	 (6.50)

Using Equation 4.13, we obtain
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Substituting Equation 6.51 into Equation 6.50 gives the dominant covariance at locus 1 
between individuals x and y:

	 V x y VD xy D,( ) = D 1 .	 (6.52)

Since Equation 6.52 holds for every locus, summing over all loci, we obtain the dominance 
genetic covariance between individuals x and y:

	 V x y VD xy D,( ) = D .	 (6.53)



Family-Based Association Analysis    ◾    361

Finally, we calculate the genetic interaction covariance between individuals x and y. 
Similarly, from the genetic model (6.44), the genetic interaction covariance is given by
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� (6.54)

If a random allele drawn from the first locus in individual x is identical by descent with one 
drawn from individual y and a random allele drawn from the second locus in individual x 
is identical by descent with one drawn from individual y, then we have
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(6.55)

But we can show (Exercise 6.8) that
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(6.56)

where VAA is additive × additive interaction variance.
Substituting Equations 6.55 and 6.56 into Equation 6.54 gives

	 V x y VAA xy AA,( ) = 4 2f .	 (6.57)

We observe that the additive, dominant, and additive × additive covariances between 
relatives consist of (1) identity coefficients and (2) a component of genetic variance. This 
rule can be extended to higher-order interaction covariance (Lynch and Walsh 1998). Since 
we assume that allele frequencies at different loci are independent, the high-order interac-
tion covariance is equal to the product of the probability of identity for each component 
additive effect, the probability of identity for each component dominance effect, and the 
corresponding variance component. For example, the additive × dominance interaction 
covariance VAD(x, y) is equal to 2ϕxyΔxyVAD, and the dominance × dominance interaction 
covariance VDD(x, y) is equal to Dxy DDV2 . In general, the genetic covariance between relatives 
can be computed by

	

V x y V V V V VG xy A xy D xy AA xy xy AD xy DD xy,( ) = + + ( ) + + + ( )2 2 2 2
2 2 3

f f f fD D D VV

V

AAA

xy xy AAD+ ( ) +2
2

f D � 	 (6.58)

Genetic covariance for a few relative pairs, which is calculated using identity coefficients in 
Table 6.1, is summarized in Table 6.2.



362    ◾    Big Data in Omics and Imaging: Association Analysis

6.3 � MIXED LINEAR MODEL FOR A SINGLE TRAIT
The presence of population structure often causes spurious association. Mixed linear 
models incorporating genetic correlation information among the sampled individuals 
into them are often used for genetic association analysis of quantitative traits to avoid 
spurious association (Yang et al. 2010, 2014). Mixed linear models serve (1) association 
analysis of quantitative traits, (2) estimation of heritability, and (3) complex phenotype 
prediction.

Genetic random effect models that are based on the genetic relationship matrix (GRM) 
discussed in Section 6.2 is a key component for mixed linear models. Therefore, we start 
with introducing single genetic random effect model that is accurate when kinship coef-
ficients from pedigrees are available. However, when whole-genome sequencing or exome 
sequencing are used to measure the GRM, the single random effect models assume that all 
SNPs including both common and rare variants have the same effect size distribution are 
not appropriate. We then extend the single random effect models to multiple random effect 
models with different effect size random variables, which divide the whole genome into 
several regions and then group SNPs in close proximity together.

6.3.1 � Genetic Random Effect
6.3.1.1 � Single Random Variable
We begin to study the genetic random effect model with a single random variable (Lee et al. 
2011; Speed and Balding 2014). Assume that n individuals are sampled. Let yi be the pheno-
typic value of individual i. Consider the genetic random effect model

	 Y g e= + ,	 (6.59)

where Y = [y1,  … , yn]T, g = [g1,  … , gn]T, and e = [e1,  … , en]T with e N e~ 0 I, s2( ). We assume 
that gi , i = 1 ,  …  , n are random variables. The correlation coefficient between gi and gk is 
denoted by
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g g

g g
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(6.60)

TABLE 6.2  Coefficients for the Components of Genetic 
Covariance between Relatives

Relationship VA VD VAA VAD VDD

Parent–offspring 1/2 1/4
Full siblings 1/2 1/4 1/4 1/8 1/16
Half siblings 1/4 1/16
First cousins 1/8 1/64
Double first cousins 1/4 1/16 1/16 1/64 1/256
Second cousins 1/32 1/1024
Uncle–nephew 1/4 1/16
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There are two ways to define the genetic additive effect for the individual. Consider a 
locus with two alleles, D and d. The frequencies of alleles D and d are denoted by p and q, 
respectively. The genotypic values of the genotypes DD , Dd, and dd are denoted by G11 , 
G12, and G22, respectively. Let α1 and α2 be the respective genic effects of the alleles D and d, 
respectively. The substitution effect is defined as α = α1 − α2.

Using Equations 4.11 and 4.12, we define the genetic additive effect gi as

	

g

DD

Dd

dd

i =
ì

í
ï

î
ï

2

0

a
a

. 	

(6.61)

The genetic additive effect gi can also be defined as
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(6.62)

Define an indicator variable for the genotypes as
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or
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We then can denote gi = xiα. It is easy to see that if xi is defined in Equation 6.63, then 
(Exercise 6.9)

	 E x p x pqi i[ ] = ( ) =2 2and var .	 (6.65)

Similarly, we can show (Exercise 6.10) that if xi is defined in Equation 6.64, then we have

	 E x x pqi i[ ] = ( ) =0 2and var .	 (6.66)
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Covariance between gi and gk is given by

	 cov ,g g E x E x x E xi k i i k k, ( ) = - ( )( ) - ( )( )éë ùûa2

	 (6.67)

where E[xi] = E[xk] = μ for a particular SNP.
Similarly, we can calculate the correlation between gi and gk by

	
corr , g g

E x x

pq
i k

i k( ) =
-( ) -( )éë ùûv m a2

2
.
	

(6.68)

Since individuals xi and xk cannot be replicated, we use L SNPs to approximate the correla-
tion corr(gi, gk) as follows:
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(6.69)

where pj is the frequency of the reference allele at the SNP j, qj = 1 − pj and μj = 2pj if the indi-
cator variable for the genotype at the SNP j is defined by Equation 6.63 or μj = 0 if the 
indicator variable for the genotype at the SNP j is defined by Equation 6.64.

If we make two assumptions, (1) that each SNP independently affects the phenotype 
variation and (2) that the distribution of the random contribution of all SNPs is identical 
(Krishna Kumar et al. 2016), then E Vj Aa2éë ùû = , where VA is a genetic additive variance. 
Thus, Equation 6.69 can be reduced to
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(6.70)

Inspired by Equation 6.70, we can further define the genetic random effect model as 
(Yang et al. 2010)
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where

gi is the total genetic random effect of individual i, g z ui ij j
j
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=
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uj is an independent random genetic effect with mean zero and variance su

2 for SNP j
ei is the residual effect and distributed as a normal distribution, e Ni e~ 0 2,s( ) with se

2 
being the residual variance

Equation 6.71 can be written in a matrix form:

	 Y Zu e= + ,	 (6.72)



Family-Based Association Analysis    ◾    365

where zi = [zi1,  … , ziL]T , Z = [z1,  … , zn]T, and u = [u1,  … , uL]T. We assume that

	 Su u Lu u I= ( ) =cov ,, s2
	 (6.73)

where IL is an L-dimensional identity matrix. Then, the covariance matrix of the vector of 
phenotypes Y is
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where
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m m
 is the GRM

V LA u= s2 is the total genetic additive variance
In is an n-dimensional identity matrix

As we discussed in Section 6.2, the GRM includes both recent genetic relatedness such 
as family relationships and distant genetic relatedness such as population substructure. 
If the mixed model is used for association analysis, both recent and distant genetic 
relatedness should be considered in the analysis. Originally, in deriving genetic ran-
dom effect models, we assume that all variants are causal. However, the causal variants 
are unknown; we use all SNPs across the autosome chromosomes in the calculation of 
the GRM.

6.3.1.2 � Multiple Genetic Random Effects
In the single genetic random effect model, we assume that all SNPs have the homogeneous 
distribution of variant effect size across the genome (Speed and Balding 2014; Weissbrod 
et al. 2016). However, different SNP classes may have different effect size distributions. We 
can divide SNPs into different groups. The SNPs in each group have similar effect sizes. We 
assign a random effect for each group.

Consider M groups. We define M random effects g1 ,  …  , gM with the genetic relation-
ship matrix specified by G1 ,  …  , GM and the corresponding genetic additive variances 
V VA AM1 ,..., . Consider multiple genetic random effect model
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(6.75)

where g N G Vm
m Am~ ( , )0  and e N~ 0 2

2, Ins( ).
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For each group of SNPs, similar to Equation 6.72, we define the normalized genotype 
indicator variable matrix Zm. Let the number of SNPs in group m be Lm. The multiple genetic 
random effect model (6.75) can be further specified as
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where um is a vector of genetic random effects with distribution N V
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6.3.2 � Mixed Linear Model for Quantitative Trait Association Analysis
6.3.2.1 � Mixed Linear Model
The random effect model can be extended to a mixed linear model including covari-
ates such as gender, race, age, principal components, biomarkers, and clinical variables, 
among others. The effects of these covariates on the phenotype variation are fixed. Let 
w w wi i iq

T=[ ,..., ]1  be a vector of covariates of individual i and α = [α1,  … , αq]T be a vector 
of fixed effects associated with covariates. A mixed linear model for relating genotypes to 
phenotypes is defined as
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where Z z zi
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i
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= ¼éë ùû1 , , .

If we take the genetic additive effects of the SNPs as fixed effects and the genetic 
background and population structure components as random effects, the model (6.77) can 
be extended to the more general mixed linear model
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(6.78)

where
πi = [πi1,  … , πip]T is a vector of the indicator variables for the genotypes of p SNPs
β1 = [β1,  … , βp]T is a vector of the genetic additive effects

The mixed linear model (6.78) can be written in a matrix form:

	 Y W Zu e= + + +a bP ,	 (6.79)
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The conditional mean of Y, given u, is

	 E Y u W Zu|[ ] = + +a bP .	 (6.80)

We assume that the vector of random effects follows distribution

	 u N D~ ,0, ( ) 	 (6.81)
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Therefore, the vector of the phenotype Y is distributed as

	 Y N W V~ ,a b+( )P , 	 (6.82)

where V ZDZ IT
n e= + s2.

Equation 6.82 shows that the fixed effects enter only the mean, whereas the variance of 
the random effects enter only the variance of Y.

6.3.2.2 � Estimating Fixed and Random Effects
6.3.2.2.1 � Estimating Fixed Effects for Known Variance  Let
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Then, distribution (6.82) can be written as

	 Y N H V~ .g, ( ) 	 (6.83)
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The log-likelihood is
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(6.84)

To estimate the fixed effects, taking derivative of the log-likelihood with respect to the fixed 
effect γ and setting it equal to zero gives

	 H V Y HT - -( ) =1 0g ,

which leads to

	
ˆ .g = ( )- - -H V H H V YT T1 1 1

	 (6.85)

The variance of the estimator ĝ is

	 var .g�( ) = ( ) ( ) = ( )- - - - - - - -
H V H H V VV H H V H H V HT T T T1 1 1 1 1 1 1 1

	 (6.86)

The last p components in ĝ are the estimators b̂ of the genetic additive effects of p SNPs, 
and the last p rows and p columns of the variance matrix var( )ĝ  form the variance matrix 
var( )b̂ .

The null hypothesis for testing the association of the p SNPs with a trait is

	 H0 0: .b =

A widely used χ2 statistic is defined as

	 T T= -ˆ ˆ ,b bL 1
	 (6.87)

where L = var( )b̂ .
Under the null hypothesis of no association of p SNPs with the trait, the statistic T will 

asymptotically be distributed as a central c p( )
2  distribution.

6.3.2.2.2  Estimating Fixed Effects for Unknown Variance  When variance V is unknown, we 
need to simultaneously estimate the fixed effects and variance. If we do not use GRM infor-
mation and directly estimate the variance from the samples, we set both derivatives of the log-
likelihood with respect to the fixed effects and variance matrix equal to zero (Exercise 6.11):

	 H V Y HT - -( ) =1 0g ,	 (6.88)

	
- + -( ) -( ) =- - -1

2

1

2
01 1 1V V Y H Y H V

Tg g .
	

(6.89)



Family-Based Association Analysis    ◾    369

Equations 6.88 and 6.89 can be further reduced to

	 g = ( )- - -H V H H V YT T1 1 1 ,	 (6.90)

	 V Y H Y H
T= -( ) -( )g g .	 (6.91)

Iteratively solving Equations 6.90 and 6.91 gives the estimators of γ and V.

6.3.2.2.3  Predicting Random Effects  Genetic effects can also be modeled as random effects. 
A fixed effect is assumed to be a constant. However, a random effect is assumed to come from 
a population of effects. The observed random effects are a random selection from population 
of effects and are a realization of population effects. They are determined by the observed 
phenotypes Y. Therefore, the random effects can be predicted by E[u| Y]. To calculate E[u| Y], 
we start a joint distribution of u and Y. We assume that u and Y are jointly distributed as
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(6.92)

The conditional mean E[u| Y] is given by

	

E u Y E u u Y Y Y E Y

DZ V Y HT

| ,[ ] = [ ]+ ( ) ( )éë ùû - [ ]( )
= -( )

-

-

cov var

.

1

1 g 	 (6.93)

Therefore, û DZ V Y HT= -( )-1 g  can be taken as a prediction of a random effect. The 
variance of the predictor of the random effects is

	 var .û DZ V ZDT( )= -1

	 (6.94)

It is well known that

	

var var var

var var

var

u E u Y E u Y

u E u Y

( ) = [ ]( ) + ( )éë ùû
= ( )+ ( )éë ùû
³

| |

|ˆ

ˆ̂ .u( ) 	 (6.95)

Equation 6.95 shows that the variance of the predictor of the genetic random effects is less 
than the variance of the estimator of taking random effects as fixed effects.
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6.3.3 � Estimating Variance Components

In the estimation of both fixed and random effects, we assume that the variance matrix V 
is known. However, in general, the variance matrix is unknown and needs to be estimated. 
Consider a general mixed linear model:

	 Y H g e= + +g ,	 (6.96)

where g gi
i

m

=
=å 1

, g Z ui i
m

m= , V G VA m Am
m

M

=
=å 1

, V V Vp A e= = + Ins2, VA denotes the total 
genetic additive variance, and Vp denotes the total phenotypic variance. The total pheno-
typic variance is partitioned into the genetic additive variance explained by M groups of 
SNPs and residual variance due to environments and other nongenetic factors.

Maximum likelihood (ML) and residual maximum likelihood (REML), also known as 
restricted maximum likelihood, are widely used classical methods for estimating variance 
parameters (Gumedze and Dunne 2011; Lynch and Walsh 1998). Since the ML estima-
tors do not consider the degrees of freedom lost in the estimation of the fixed and random 
effects, they are biased. REML for variance component estimation can overcome this limita-
tion. Therefore, in general, the REML estimators of the variance component may be better 
than the ML estimators.

6.3.3.1 � ML Estimation of Variance Components
Due to its simplicity, we start with ML estimation of variance components. The marginal 
distribution of the phenotypes Y in the mixed linear model (6.96) is given by N(Hγ, V). The 
log-likelihood function of Y is

	
l V H Y

n
V Y H V Y H

Tg p g g, ,( ) = - ( ) - - -( ) -( )-

2
2

1

2

1

2
1log log .

	
(6.97)

The variance components VAm and se
2 are embedded within the matrix V. Since both the 

fixed effects γ and variance components are unknown, we will use the ML to simultaneously 
estimate them.

We can show (Appendix 6D) that
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(6.98)

Setting the derivative equal to zero gives

	 Tr V V Y H V V V Y Hj
T

j
- - -( ) = -( ) -( )1 1 1g g ,	 (6.99)

where
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Let

	 P V V H H V H H VT T= - ( )- - - - -1 1 1 1 1.	 (6.100)

Equation 6.99 will be reduced to

	 Tr V V Y PV PYj
T

j
-( ) =1 .	 (6.101)

In the previous section, we show that the ML estimator of the fixed effects is given by

	
ˆ .g = ( )- - -H V H H V YT T1 1 1

	 (6.102)

Iteratively solving Equations 6.101 and 6.102, finally, we can obtain the ML estimators of 
both fixed effects and variance components:

	
ˆ ˆ ˆ ,g = ( )-

-
-H V H H V YT T1

1
1

	 (6.103)

	 Tr whenˆ ˆ ˆ ,,V Y PPYT
j e

-( ) = =1 2 2s s 	 (6.104)

	 Tr whenˆ ˆ ˆ , , , , ,V G Y PG PY m M Vm
T

m j Am
-( ) = = ¼ =1 21 s 	 (6.105)

where P̂  is estimated by using
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and
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1

	 (6.106)

6.3.3.1.1  Covariance Matrix of the ML Estimators  Let s s s s= ¼éë ùû1
2 2 2, , ,M e . The Fisher infor-

mation matrix is defined as
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(6.107)
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Define the matrix:
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In Appendix 6E, we show
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(6.108)

Equation 6.108 demonstrates that the ML estimators of the fixed effects are uncorrelated 
with the ML estimators of the variance components.

Let ˆ ˆ ˆq g s= éë ùû
T T T

, . The covariance matrix of the ML estimators q̂ is the inverse of the 
Fisher matrix:
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1 1

1

0

0 L 	
(6.109)

Example 6.7  Consider the model

	 y z u ei i i= + .

Assume that u is distributed as a normal variable, u N u~ 0 2,s( ), and ei is the residual 
effect and distributed as a normal distribution, e Ni e~ 0 2,s( ), with se

2 being the resid-
ual variance.

Then, H = 0, which implies

	 ˆ ˆ ˆ .g = = -0 1and P V

Applying Equations 6.104 and 6.105 gives

	 Tr ˆ ˆV Y V YT- -( ) =1 2

and

	 Tr ˆ ˆ ˆ ,V ZZ Y V ZZ V YT T T- - -( ) =1 1 1

where Z = [z1,  … , zn]T and ˆ ˆ ˆV ZZT
u e= +s s2 2In .
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The Fisher information matrix is
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,

where
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6.3.3.2 � Restricted Maximum Likelihood Estimation
In spite of its very useful properties, the ML estimate of the variance components has its 
limitations (Hartville 1974). First, the ML estimation requires numerical solution to the 
constrained nonlinear optimization problem. Second, the ML estimation ignores the loss 
of degrees of freedom resulting from the estimation of fixed effects in the model. Third, 
the ML estimation requires the assumption of normal distribution of the phenotypes. 
Restricted maximum likelihood (REML) method for estimation of variance components 
has been developed to overcome these limitations.

REML considers a linear transformation of the observation vector Y to remove the fixed 
effects from the model (Gumedze and Dunne 2011; Lynch and Walsh 1998). Specifically, 
REML selects a linear combination of KTY so that KTY is of maximal rank but contains no 
information on the fixed effects. To achieve this, the matrix K should satisfy

	 K HT = 0.	 (6.110)

It can be shown that the solution to Equation 6.110 is (Appendix 6F)

	
K I H H cT T= -( )é

ëê
ù
ûú

-
,
	

(6.111)

where c is any vector.
From the distribution theory, KTY is distributed as N(0, KTVK). The log-likelihood of 

KTY is given by

	
l V H K Y
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K VK Y K K VK K YT T T T Tg p, ,( ) = - ( ) - - ( )-
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1
log log .

	
(6.112)

The REML equation can be obtained from Equation 6.99 by replacing Y with KTY, replacing V 
with KTVK, and replacing Vj with KTVjK. The transformed Equation 6.99 becomes

	
Tr K VK K V K Y K K VK K V K K VK K YT T

j
T T T

j
T T( )( ) = ( ) ( )- - -1 1 1

.
	

(6.113)
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In Appendix 6F, we show that

	 K K VK K PT T( ) =
-1

.	 (6.114)

Substituting Equation 6.114 into Equation 6.113 gives the REML equation

	 Tr PV Y PV PY j Mj
T

j( ) = = ¼ +, , , .1 1 	 (6.115)

6.3.3.3 � Numerical Solutions to the ML/REML Equations
The ML/REML equations are high-dimensional nonlinear equations. In general, there are 
no analytic solutions to the ML/REML equations generated by the ML/REML estimations. 
In this section, we review the numerical solutions to the ML/REML equations.

The Newton–Raphson (NR) and Fisher scoring algorithms are widely used methods for 
solving the ML/REML equations (Hartville 1977; Searle et al. 1992).

6.3.3.3.1  Newton–Raphson (NR) Methods  The Newton–Raphson algorithm is a powerful 
method for solving a system of nonlinear equations (Beck 2014). It is based on the simple 
idea of linear approximation. Let θ be parameters in the mixed linear model. For the ML 
estimators, the parameters are defined as θ = [γT, σT]T, while for the REML estimators, the 

parameters are defined as θ = γ, which include only variance components. Let F lq
q

( ) = ¶
¶

, 
a column vector of the partial derivatives of the log-likelihood function with respect to the 
parameters. Both ML and REML estimators should satisfy the following equation:

	 F q( ) = 0,

which is a system of high-dimensional nonlinear equations. To solve the system of nonlin-
ear equations, we expand the function F(θ) in terms of a Taylor series:
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q q
q

q q
q

( ) = ( ) + ¶
¶

-( ) =( ) ( )
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0,
	

(6.116)

where ¶
¶

F
Tq

 is called the Hessian matrix and denoted by H(θ).

Solving Equation 6.116 gives the estimators of the parameters for the next iteration:

	
q q q ql l l lH F+( ) ( ) ( )

-
( )= - ( )( ) ( )1

1

.
	

(6.117)

Equation 6.117 can be used iteratively to refine the estimators of the maximum on the 
(l + 1)th iteration. To implement the iterative procedure (6.117), we need to calculate the 
score function F(θ) and the Hessian matrix H(θ). Since the score function and the Hessian 
matrix for the ML and REML estimators are different, below we will separately derive them.
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6.3.3.3.2 � Iteration Procedures for the ML  Recall that the score function for the ML is given by
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(6.118)

Now we calculate the Hessian matrix for the ML.
From Equation 6.118, we obtain the second partial derivatives of the log-likelihood 

function with the parameters of the fixed effects γ:
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(6.119)

Using Equation 6H.4, we obtain the second partial derivatives of the log-likelihood func-
tion with the parameters γ and σ:
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and
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Again, using Equation 6H.4, we obtain
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and
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Combining Equations 6.119 through 6.123, we obtain the Hessian matrix for the ML:
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6.3.3.3.3  Iteration Procedures for REML  Equation 6.115 implies that the score function for 
REML is
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(6.125)

To calculate the Hessian matrix for REML, we start to compute ¶
¶

P

js
. It follows from 

Equations 6.114 and 6D.4 that
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Substituting Equation 6.114 into Equation 6.125 gives
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Recall in Equation 6.126 that
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From Equations 6.127 and 6.128a, it follows that
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which implies
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6.3.3.3.4  Fisher Scoring Algorithm  To reduce the computation of the NR method, we 
replace the Hessian matrix by its expectation in the NR algorithm. In the previous section, 
we define the Fisher information matrix as
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Equation 6.117 is then replaced by

	
q q q ql l l lF F+( ) ( ) ( )

-
( )= - ( )( ) ( )1

1

.
	

(6.131)

Now we calculate the Fisher information matrix for the ML and REML estimators.

6.3.3.4 � Fisher Information Matrix for the ML Estimators
The Fisher information matrix for the ML estimators is given in Equation 6.108. We can 
rewrite it as
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(6.132)

6.3.3.4.1  Fisher Information Matrix for the REML Estimators  In Equation 6.112 we showed 
that KTY is distributed as N(0, KTVK) distribution. Therefore,

	 PY K K VK K Y N PT T= ( ) ( )
-1

0~ ., 	 (6.133)

Using Theorem 4.6.1 in the book (Graybill 1976), we obtain

	 E Y PV PV PY V PV P PV PVT
i j i j i jéë ùû = ( ) = ( )Tr Tr .	 (6.134)
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Using Equations 6.128b and 6.134, we obtain the element of the Fisher information matrix 
for the REML estimators:
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(6.135)

Therefore, the Fisher information matrix for the REML estimators is given by
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6.3.3.5 � Expectation/Maximization (EM) Algorithm for ML Estimation
The ML/REML methods require solving a system of high-dimensional nonlinear equa-
tions, which are due to unobserved random effects. If the random effects are known, it 
is much easier to find the ML/REML estimators. The EM algorithm attempts to augment 
the data in which we treat unobserved random effects as the known variables. The aug-
mented dataset including Y and random variables u is referred to as the complete data. 
The dataset including only the observed Y is referred to as incomplete data. After data 
are augmented into complete data, the maximization procedures are then applied to the 
complete data.

We use the conditional expectation of the random variable u, given the observed Y to 
augment the data. Therefore, we first need to derive the joint distribution of the variables Y 
and u. Again, consider the linear mixed model

	 Y H Zu e= + +g .	 (6.137)

Recall that Equation 6.92 specifies the joint distribution of Y and U:
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From standard multivariate statistic theory (Anderson 1984), we can obtain the conditional 
mean of the variables u, given the observed phenotypic values Y
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and conditional covariance matrix of variables u, given the observed phenotypic values Y
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Next we consider the joint distribution of Y and e:
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where
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which implies that the conditional mean of errors e, given the observed phenotypic values Y
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and the conditional covariance matrix errors e, given the observed phenotypic values Y

	 Se Y e n eI V� = - -s s2 4 1.	 (6.143)

If we assume that the random variables u are known, we can use quadratic forms of the 
variables u to estimate the variance components. Assume that a vector of variables, x, is 
distributed as a normal distribution with mean μ and covariance matrix Λ. The expectation 
of a quadratic form xTAx can be calculated by

	 E x Ax A AT Téë ùû = ( ) +Tr L m m.	 (6.144)

Recall that in Equation 6.78 we defined
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and
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(6.146)

where
VAm is the genetic additive variance of the mth random effect group
Lm is the number of SNPs in the mth random effect group

Therefore, the conditional mean E[um|Y] and conditional covariance matrix 
S

u Y
m m

m u u Y= ( )cov ,  are given by
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respectively.
Therefore, using Equations 6.144 and 6.146, we have
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Equation 6.149 showed that the genetic additive variance can be estimated by the estimated 
random effects: E[(um)Tum|Y]. Using Equations 6.144, 6.147, and 6.148, we obtain
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Similarly, we have
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By similar arguments, the fixed effects can be estimated by
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Therefore, we have
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Now we summarize the EM algorithm for the ML methods:

Step 0: Initialization.

Select initial values V
V

M
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Step 1: E-step.
Compute expected values of quadratic forms for the estimation of variance 

components:
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and
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Compute the expected fixed effects at the current iteration:
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Step 2 (M-step). ML estimate of the complete data
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Step 3. Convergence.

Let ε1 , ε2, and ε3 be prespecified errors. If V VAm
l

Am
l
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and ˆ ˆg g el l+( ) ( )- <1
3, then iterations are convergent; set
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Otherwise, increase l by 1 and return to step 1.

6.3.3.6 � Expectation/Maximization (EM) Algorithm for REML Estimation
In Equations 6.152 and 6.154, replacing y by KTy, H by KTH = 0, Z by KTZ, and V by KTVK, 
we obtain the EM algorithm for the REML estimation:

Step 0. Initialization.

Let sp
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Step 1: E-step.

Computer expected values of quadratic forms for the estimation of variance 
components:
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and
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Step 2: M-step.
Set

	 ˆ ˆ , , , ,V A m MAm
l

m
l+( ) ( )= = ¼1 1 	 (6.161)

	 ˆ ˆ .se

l lB2 1( ) =
+( ) ( )



Family-Based Association Analysis    ◾    383

Step 3. Convergence
Let ε1 and ε2 be prespecified errors. If V VAm
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then iterations are convergent; set
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Otherwise, increase l by 1 and return to step 1.

6.3.3.7 � Average Information Algorithms
The average information algorithm is to replace the Fisher information matrix in the Fisher 
scoring algorithm by the average of the observed and expected information matrices called 
the average information matrix (Gilmour et al. 1995). Using Equations 6.129 and 6.136, 
we obtain the average information matrix for REML:
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The EM algorithm is often used to compute the initial values for the REML algorithm.

6.3.4 � Hypothesis Test in Mixed Linear Models

We consider the problem of testing null hypotheses that include both fixed effects and ran-
dom effects in the mixed linear model. The general null hypothesis for the fixed effects is

	 H L0 0: g = 	 (6.163)

versus

	 H La : ,g ¹ 0

where L is a k × (p + q) dimensional matrix.
The widely used statistic for testing the null hypothesis (6.163) is the Wald statistic. It is 

defined as

	
T L L H V H L LT T T T
g g g= ( )( )- - -

ˆ ˆ.1 1 1

	
(6.164)

Under the null hypothesis H0 : Lγ = 0, the test statistic Tγ is asymptotically distributed as a 
central c rank L( )( )

2  with rank (L) degrees of freedom.
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In general, we are interested in testing the null hypothesis involving fixed effects β of 
genetic variants. Define the matrix L as

	 L L= [ ]0 b ,

where Lβ is a k × q dimensional matrix.
Let
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where Eββ is a q × q dimensional matrix corresponding to the vector β.
To test the null hypothesis for the β

	 H L H La0 0 0: : ,b bb b= ¹versus

we define the statistic
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	 (6.165)

Under the null hypothesis H0 : Lββ = 0, the test statistic Tβ is asymptotically distributed as a 
central c brank L( )( )

2  distribution with rank (Lβ) degrees of freedom.
Next we discuss the test for the variance components. We consider three statistics: likeli-

hood ratio statistic, the score statistic, and the Wald statistic for testing the variance compo-
nents (Molenberghs and Verbeke 2007). To illustrate the basic idea behind the distribution 
of the test statistics, we first assume m = 1. The null hypothesis is defined as

	 H V H VA A0 00 0: : .= =versus 	 (6.166)

Let l(VA) be the log-likelihood function for the mixed linear model. The likelihood ratio test 
statistic is defined as

	

T
l V

l V
LR

H
A

H
A

a=
( )
( )

æ

è

ç
ç

ö

ø

÷
÷

2

0

log
max

max
.

	

(6.167)

Let V̂A be the maximum likelihood estimate of VA under the unconstrained parameteriza-
tion, i.e., VA < 0 is allowed. As Figure 6.8 showed, there are two scenarios to consider: case 1 
where V̂A is located in the alternative hypothesis area and case 2 where V̂A is located outside 
the alternative hypothesis area. In case 2, we have

	
max max , .

H
A

H
A LR

a

l V l V T( ) = ( ) =
0

0which implies



Family-Based Association Analysis    ◾    385

In case 1, max max
H

A
H

A
a

l V l V( ) > ( )
0

, the distribution theory of the likelihood ratio test statistic 

applies and TLR is asymptotically distributed as a central c 1
2
( ) distribution. Therefore, we have
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where P V H P V HA A
ˆ ³( ) = <( ) =0 0

1

2
0 0  and c0

2 denotes the distribution with all probabil-
ity mass at zero.

Now we consider the vector case. Suppose that all parameters γ and ψ = [VA1,  … , VAm]T 
are denoted by θ = [γT, ψT]T. The null hypothesis is defined as

	 H H Ca0 0: : ,y y= Îversus 	 (6.169)

where C is a closed and convex cone in the Euclidean space, with the vertex at the origin.
Set the score function
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Case 2: MLE estimate located outside alternative
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FIGURE 6.8  Maximum likelihood estimator and null hypothesis.
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Let
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where ĝ is the maximum likelihood estimate of γ under the null hypothesis H0. Define 
SN = N−1/2Sψ. Then, three statistics, the likelihood ratio statistic, the score statistic, and the 
Wald statistic are respectively defined as
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The null hypothesis (6.166) and decision rule (6.168) can be taken as a special case. When 
ˆ ˆ ˆq yu AV= = > 0, the score test and Wald test at zero are nonnegative, and hence, the infimum 
in (6.171) and (6.172) becomes zero. Then, we have

	 T S H SS N
T

H N= ( )-
yy q1 ˆ

and

	 T VW
T= -ˆ ˆ .y yyy

1

When ˆ ˆ ˆq yu AV= = < 0, the score test and Wald test at zero are negative. The infimum is 
reached for b = 0, which leads to TS = 0 and TW = 0.

The null distributions of three test statistics equal a weighted sum of chi-squared distri-
butions. The weights are often difficult to determine. However, for some important cases, 
the null distributions can be analytically determined (Stram and Lee 1994).
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Consider the null hypothesis y
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6.3.5 � Mixed Linear Models for Quantitative Trait Analysis with Sequencing Data

Similar to association analysis for a quantitative trait in Chapter 4, two approaches, mixed 
multivariate linear models and mixed functional models, can also be applied to family-
based quantitative trait analysis or quantitative trait analysis in the presence of population 
substructures with next-generation sequencing data. The sequence kernel association test 
(SKAT) is a typical mixed multivariate model that can be used for association testing for 
both qualitative and quantitative trait analyses. In Chapters 3 and 4, we have already intro-
duced the SKAT for population-based association analysis. In this chapter, we briefly discuss 
that the SKAT can also be used for family-based or population-based but with population 
structure and association analysis.

To model family structures and population structures, the functional models with fixed 
effects can be extended to mixed functional models for association analysis where either 
fixed genetic effects or random effects can be modeled as functional curves. Two types of 
mixed functional models for quantitative trait association analysis in the presence of both 
family structures and population structures will be investigated.

6.3.5.1 � Sequence Kernel Association Test (SKAT)
SKAT (Wu et al. 2011) comprises modified mixed models for testing the association of 
multiple variants in a genomic region or a gene with a phenotype in the presence of fam-
ily or population structures. Assume that n individuals are sequenced in the genomic 
region with p SNPs. Covariates such as age, sex, race, and principal components of 
genetic variation for controlling population structures as fixed effects can be included 
in the model. These covariates for the ith individual is denoted as Xi = [xi1,  … , xiq]. The 
genotypes for the p SNPs are denoted as Zi = [zi1,  … , zip]. Let yi be the phenotype of the 
ith individual.
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Consider a linear model

	 y X Zi i i i= + + +a a b e0 ,	 (6.174)

where
α0 is an intercept term
α = [α1,  … , αq]T is the vector of regression coefficients for the covariates
β = [β1,  … , βp] is the vector of regression coefficients for the SNPs
εi is an error with a mean of zero and a variance of se
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Equation 6.174 can be written in a matrix form:

	 Y X Z= + + +a a b e01 .	 (6.175)

The score function for the genetic effects β is given by
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Taking a partial derivative with respect to βT on both sides of Equation 6.176 gives
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The null hypothesis is H0 : β = 0 against the alternative hypothesis Ha : β ≠ 0.
Under the null hypothesis, the score function is reduced to
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The score test is then defined as

	 T S H S Z Z Z Z Y XS
T T T= = ( ) - -( )- -

bb a a1 1

0ˆ ˆ .1 	 (6.179)

For simple computation, (ZTZ)−1 is replaced by the weight matrix W = diag(w1,  … , wp). 
Then, Equation 6.179 is reduced to

	 T Y X ZWZ Y Xs
T T= - -( ) - -( )ˆ ˆ ˆ ˆ ,a a a a0 01 1 	 (6.180)



Family-Based Association Analysis    ◾    389
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The matrix K is referred to as a kernel matrix. Its (i, j)th element, K i j w z zl il kl
l

p

,( ) =
=å 1

, 
measures the genetic similarity between individuals i and j by p SNPs.

SKAT can also be derived from variance component analysis. To increase the power, 
each regression coefficient βj is assumed a random variable that follows an arbitrary distri-
bution with a mean of zero and a variance of wjτ where wj is a prespecified weight for the 
jth SNP and τ is a variance component. The null hypothesis is

	 H Ha0 0 0: : .t t= >against 	 (6.181)

The variance component score test can be defined as

	 T Y X K Y XS
T

= - -( ) - -( )a a a a0 01 1ˆ ˆ ,	 (6.182)

where K = ZWZT. It is clear that the TS defined in Equation 6.182 is exactly the same as that 
defined in Equation 6.180.

The power of the test depends on the choice of weights. Weights reflect the contribu-
tion of the SNPs to the phenotype variation. If the lth SNP makes a small contribution 
to the phenotype variation, a small weight, Wl, should be selected. In contrast, if the lth 
SNP makes a big contribution to the phenotype variation, a large weight, Wl, should be 
selected. However, in practice, it is unknown which variants make big contributions. It is 
often assumed that the genetic effect of the rare variant is inversely proportional to the 
frequency of the rare variants. Therefore, it is suggested to use beta function to model 
the  distribution of the weights: w j j= ( )beta MAF , ,a b , where MAF denotes the minor 
allele frequency that are estimated using total samples and α and β are two specified 
parameters. Wu et al. (2011) recommended to set α = 1 and β = 25.

The distribution of the test statistic TS under the null hypothesis is a mixture of chi-squared

	
TS

i

n

i i~ ,,

=
å

1

1
2l c

where P V VX X VX X VT T
0

1
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6.4 � MIXED FUNCTIONAL LINEAR MODELS FOR SEQUENCE-BASED 
QUANTITATIVE TRAIT ANALYSIS

Mixed linear models are widely used for quantitative trait association studies (Kang et al. 
2010; Lippert et al. 2011; Listgarten et al. 2010; Price et al. 2010a; Yu et al. 2006; Zhang et al.  
2010; Zhou and Stephens 2012). Mixed linear models for quantitative trait association studies 
have two remarkable features. First, mixed linear models unify family and population study 
designs and can be applied to samples with arbitrary combinations of related and unrelated 
individuals. Second, mixed linear models are able to correct for confounding arising from 
population stratification, family structure, and cryptic relatedness. However, mixed linear 
models are designed for testing the association of common variants with quantitative traits. 
They are typically carried out by testing the association of single loci, one locus at a time.

It is now well documented that NGS can generate several millions or even dozens of mil-
lions of genetic variation data. As a consequence, these genetic variation data are so densely 
distributed across the genome that the genetic variation can be modeled as a function of 
genomic location. But, standard multivariate statistical analysis often fails with functional 
data. The emergence of NGS demands alternative approaches to the analytic methods for 
quantitative trait analysis. In this section, we introduce mixed functional linear models 
for sequence-based quantitative trait association studies to unify population and family 
study designs in which a continuous phenotype is taken as a scalar response, genetic vari-
ants across the genomic regions as functional predictors, and additive genetic background 
effects due to population and family structure and cryptic relatedness as random effects.

6.4.1 � Mixed Functional Linear Models (Type 1)

Since it jointly uses multiple marker information, the multiple linear regression model, in 
general, might have more power to detect a quantitative trait locus (QTL) than the simple 
linear regression model. However, as the number of markers increases, the degree of free-
dom of the test statistics will also increase. This will compromise the power of multiple 
regressions for identifying QTLs. In addition, when the frequencies of the genetic variant 
become smaller and smaller, the variances of the estimators of the genetic effects will be 
larger and larger. To reduce the degrees of freedom in the model and variances of the esti-
mators due to the presence of rare variants in the model, we consider a functional linear 
model for a quantitative trait.

Consider a genomic region, [a, b]. Let t be a genomic position in the genomic region 
[a, b]. Define a genotype profile, Xi(t), of the ith individual as
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(6.183)

where
M and m are two alleles of the marker at the genomic position t
PM(t) and Pm(t) are the frequencies of the alleles M and m, respectively



Family-Based Association Analysis    ◾    391

For the convenience of discussion, the function in the genomic region [a, b] can be mapped 
to the region [0, T]; T is the length of the genome region being considered.

Let Yi be a phenotype value of the ith individual. A functional linear model for a quan-
titative trait is defined as

	
Y W X t t dt ui i

T

i i i= + ( ) ( ) + +òa b e
0

,

	
(6.184)

where
w w wi i iq

T=[ ,..., ]1  is a vector of covariates of individual i including sex, age, race, environ-
mental variables, and the top principal components of the genetic variants

α = [α1,  … , αq]T is a vector of regression coefficients associated with covariates
εi are independent and identically distributed normal variables with a mean of zero and 

a variance of se
2

ui are random effects with a mean of zero that measures the genetic relationship among 
individuals

β(t) is the genetic additive effect of the marker at the genomic position t

Let u = [u1,  … , un]T. Then, the variance–covariance matrix is given by G = VAA, where the 
additive genetic relationship matrix A has elements Aij = 2ϕij; ϕij is the coefficient of coan-
cestry (Lynch and Walsh 1998). The matrix A can also be taken as a function of the geneal-
ogy of the sampled individuals, including both the pedigree relationships and population 
structure. If the matrix A is unknown, it can be estimated by the genetic variants in the data. 
Consider m markers outside the genomic region being tested. Let zik be the indicator vari-
able taking the values of the copy of the reference allele for the kth SNP of the ith individual 
and pk be its frequency of the reference allele. The GRM matrix can be estimated by
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z p z p

p p
ij

k

m
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=
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å1 2 2

2 1
1

.
	

(6.185)

For convenience, the genome region [0,T] is rescaled to [0,1]. If the integrals in Equation 
6.184 are discretized, the functional mixed linear model will be reduced to multiple linear 
regression models.

Similar to Equation 4.52, genotype function Xi(t) can be expanded in terms of functional 
principal components (eigenfunctions):

	
x t ti

k

p

ik k( ) = ( )
=
å

1

x j ,
	

(6.186)

where
φk(t) are functional principal components (eigenfunctions)

x jik i k

T

x t t= ( ) ( )ò0  are functional principal component scores
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Substituting Equation 6.186 into Equation 6.184 gives
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, 	 (6.187)

where ξi = [ξi1,  … , ξip], b = [b,  … , bp]T.
Therefore, the mixed functional linear model (6.184) is transformed to a standard mixed 

linear model (6.78). We can use the ML to jointly estimate the genetic effects b and variances 
VA and se

2. An essential problem in genetic studies of the quantitative trait is to test the asso-
ciation of a genomic region with the quantitative trait. Formally, we investigate the problem 
of testing the following hypothesis:

	 H t t T0 0 0: ,b( ) = " Î[ ], 	 (6.188)

against

	 H ta : .b( ) ¹ 0

If the genetic effect function β(t) is expanded in terms of the eigenfunctions

	 b jt t b
T( ) = ( ) ,

where φ(t) = [φ1(t),  … , φp(t)]T, then testing the null hypothesis H0 in Equation 6.188 is 
equivalent to testing the hypothesis

	 H b0 0: .= 	 (6.189)

Rewrite Equation 6.187 in a matrix form:

	 Y H u= + +g e,	 (6.190)

where
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The parameters γ can be estimated by

	
ˆ ˆ ˆ ,g = ( )-

-
-H V H H V YT T1

1
1

	 (6.191)

where ˆ ˆ ˆV V A IA e= +s2 .
Recall that the covariance matrix of the ML estimators ĝ is given by

	 Var ˆ ˆ .g( ) = ( )-
-

H V HT 1
1

	 (6.192)

Let Λ be the matrix obtained by removing the first q row and the first q column of the cova-
riance matrix Var ĝ( ). Define the test statistic

	 T b bQ
T= -ˆ ˆ.L 1

	 (6.193)

Then, under the null hypothesis H0 : b = 0, TQ is asymptotically distributed as a central c p( )
2

distribution.

6.4.2 � Mixed Functional Linear Models (Type 2: Functional 
Variance Component Models)

Similar to the type 1 mixed functional linear model in Section 6.4.1 where the genetic effects 
are modeled as a function of genomic position, we can model the genetic random effects 
as a function of genomic position. In this section, we introduce type 2 mixed functional 
linear models: functional variance component models. Let u(t) be a random effect function 
of genomic position t with a mean of zero and covariance of zero between two genomic 
positions. The variance of u(t) is denoted by var u t tA( )( ) = ( )s2 . A functional variance com-
ponent model is defined as

	
Y W X t u t dt gi i

T

i Ai i= + ( ) ( ) + +òa e
0

,

	
(6.194)

where g N V AA Ai ~ ( , )0  as ui in Equation 6.184 models the genetic relationships among indi-
viduals, A is defined in Equation 6.185, and other parameters are defined in the model (6.184).

Again, using the genotype function expansion (6.186), the model (6.194) can be trans-
formed to

	

Y W t u t dt g

W t u

i i

T

m

p

im m Ai i

i

m

p

im

T

m

= + ( ) ( ) + +

= + ( )

òå

å ò

=

=

a x j e

a x j

0 1

1 0

tt dt g

W u g

Ai i

i

m

p

im m Ai i

( ) + +

= + + +
=
å

e

a x e
1

,
	

(6.195)
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where u t u t dtm m

T

= ( ) ( )ò j
0

 is a random variable. By stochastic integral theory, we have
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(6.196)

Similarly, we can calculate the variance of um:

	
var .u t t dt Vm

T

m A Am( ) = ( ) ( ) =ò
0

2 2j s
	

(6.197)

If we assume that s tA t2 ( ) = , then we have

	 cov ,u u k lk l,( ) = ¹0

and

	 var .um( ) = t 	 (6.198)

In general, we assume s tA t2 ( ) ¹ , but

	 cov , .u u k lk l,( ) = ¹0 	 (6.199)

In this case, um are independent with a mean of zero and a variance of VAm. If we assume 
VAm = τψm and consider the model
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(6.200)

then its eigenfunction expansion
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or its matrix form

	 Y W u= + +a x e

is reduced to SKAT with

	 cov ,x x tx xu u T,( ) = Y 	 (6.202)

where Ψ = diag(ψ1,  … , ψm).
In general, we consider the mixed linear model
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(6.203)

or its matrix form

	 Y W Zu e= + +a ,	 (6.204)

where
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	 V B V A I B V VT
A e A Ap= + + = ¼( )x x s2

1, .and diag , ,

If in Equation 6.79 we set X = 0, then the model (6.204) is reduced to the mixed linear model 
(6.79). All techniques in solving the mixed linear model (6.79) can be applied to solving the 
model (6.204).

6.5 � MULTIVARIATE MIXED LINEAR MODEL FOR MULTIPLE TRAITS
The tools for association analysis of multiple traits in the presence of pedigree data and 
population structures are multivariate mixed linear models (Furlotte and Eskin 2015).

6.5.1 � Multivariate Mixed Linear Model

Assume that n individuals with K correlated traits Y1 , Y2 ,  …  , YK are sampled. Let wil be 
the lth covariate of the ith individual; αlk be the regression coefficient associated with the 
lth covariate and the kth trait; μk be an overall mean of the kth trait; xij be the indicator 
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variable, taking values of copies of the reference allele for the jth SNP of the ith individual, 
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; ujk be an independent random genetic effect with mean zero and 

variance s jk
2  for SNP j and trait k; and εi = [εi1,  … , εik]T be a vector of errors distributed as a 

normal distribution with a mean vector of zeros and a K × K variance–covariance matrix Σ, 
and ε1 ,  …  , εn are assumed to be independent.

Consider the multivariate regression model for association analysis of multiple 
phenotypes:
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� (6.205)

Equation 6.205 can be written in a compact form:

	 Y W Zu= + +a e,	 (6.206)

where
Y is a phenotype matrix
W is an n × (L + 1) dimensional covariate matrix
Z is an n × m dimensional indicator matrix for the genotypes
α is an (L + 1) × K dimensional coefficient matrix associated with W
u is an m × K dimensional matrix of random effects
ε is an n × K dimensional error matrix

We assume that n rows of the error matrix ε are independent and identically distributed 
as N(0, Σ) and random genetic effect matrix u has distribution vec(uT) ~ N(0, Φ), where

	 F j j j j j jK
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Applying a vector of a matrix operation to Equation 6.206 gives

	 vec vec vec vecY W I Z I uT
K

T
K

T T( ) = Ä( ) ( ) + Ä( ) ( ) + ( )a e .	 (6.207)

Using Equation 6.207 and assumptions of distributions of the random genetic effects and 
errors, we obtain the distribution of the phenotypes Y:

	 vec vec ,Y N W I Z I Z I IT
K

T
K

T
K n( ) Ä( ) ( ) Ä( ) Ä( )+ Ä( )~ .a F S 	 (6.208)

Let V = var(vec(YT)) = (Z ⊗ IK)Φ(ZT ⊗ IK) + In ⊗ Σ. The log-likelihood function is
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To estimate the fixed effects, taking the derivative of the log-likelihood with respect to the 
fixed effect vec(αT) and setting it equal to zero gives the solution
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Next we estimate the random effects. We assume that u and Y are jointly distributed as

	

vec

vec vec

u

Y
N

W I

T

T
K

T

( )
( )

é

ë

ê
ê

ù

û

ú
ú Ä( ) ( )

æ

è
ç
ç

ö

ø
÷
÷

æ

è
ç
ç

ö

ø
÷
÷

~ ,
0

a
L

	

(6.210)

where L
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The conditional mean E[vec(uT)|vec(YT)] is given by
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Therefore, vec vec vecû Z I V Y W IT T
K

T
K

T( ) = Ä( ) ( ) - Ä( ) ( )( )-F 1 a  can be taken as a pre-
diction of a random effect. The variance of predictor of the random effects is

	 var .vec ( )û Z I V Z IT T
K K( ) = Ä( ) Ä( )-F F1

	 (6.212)
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In Equation 6.209, we assume that the covariance matrix V is known. In practice, 
the covariance matrix V is, in general, unknown. It can also be estimated by maximizing the 

log-likelihood. Taking derivatives 
¶ ( )

¶
L W V

V

,
 and setting it to be zero gives (Exercise 6.13)
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The algorithms for estimation of the fixed effects and covariance matrix V are as follows:

Step 0: Initialization. Set
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Step 1: For l = 1 , 2 , …
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Repeat step 1 until convergence.

6.5.2 � Maximum Likelihood Estimate of Variance Components

Variance components are embedded within the matrix V. Similar to the single variate mixed 
linear model, we can show (Appendix 6H) that the estimators of the variance components 
can be obtained by solving the following equation:

	 Tr vec vec vec vecV V Y H V V V Y Hil
u T T

T

j
T T- - -( ) = ( ) - ( )( ) ( ) - ( )( )1 1 1a a 	 (6.214a)

or

	 Tr vec vecV V Y PV P Yil
u T

T

il
u T-( ) = ( )( ) ( )1 ,	 (6.214b)
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 are defined in Equations 6H.5 and 6H.6, respectively.

6.5.3 � REML Estimate of Variance Components

Similar to the REML of variance components, we can find a matrix KM such that

	 K HM
T = 0,	 (6.215)

where H = W ⊗ IK.
Therefore, K YM

T Tvec ( ) is distributed as N K VKM
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M0,( ). Its log-likelihood is given by
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The REML equation can be obtained from Equation 6.214a by replacing vec(YT) with 
K YM

T Tvec ( ), replacing V with K VKM
T

M , and replacing Vil
u with K V KM

T
il
u

M  and using the 
following equality:

	 K K VK K PM M
T

M M
T( ) =

-1
.	 (6.217)

Indeed, the left side of Equation 6.214a is replaced by
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and the right side of Equation 6.214a is replaced by

vec vec vecY K K VK K V K K VK K Y YT
T

M M
T

M M
T

il
u

M M
T

M M
T T T( )( ) ( ) ( ) ( )= (- -1 1 ))( ) ( )T

il
u TPV P Yvec .

� (6.219)



400    ◾    Big Data in Omics and Imaging: Association Analysis

Combing Equations 6.214a, 6.218, and 6.219 gives

	 Tr vec vecPV Y PV P Yil
u T

T

il
u T( ) = ( )( ) ( ).	 (6.220)

Numerical techniques for solving Equation 6.101 in single variate mixed linear models can 
be extended to solving Equation 6.220 with more complex and intensive computations. The 
hypothesis testing for single variate mixed linear models can also be extended to multi-
variate mixed linear models. Because their extensions are straightforward, we do not repeat 
them here again.

6.6 � HERITABILITY
Heritability quantifies how much of the phenotypic variation is due to genetic varia-
tion. Two types of heritability are explored to measure the proportion of the phenotype 
variance explained by the genetic variance: broad-sense heritability, which measure the 
contribution of the total genetic variation to the phenotype variation, and narrow-sense 
heritability, which quantifies the contribution of the genetic additive effect to the pheno-
type variation (Golan et al. 2014). Although heritability estimation is an essential issue 
for genetic studies of complex traits, there has been debate on how to estimate heritabil-
ity in the past decades (Krishna Kumar et al. 2016). GWASs have identified tens of thou-
sands of genetic variants significantly associated with hundreds of diseases. However, 
the significantly associated genetic variants explain only a small fraction of heritabil-
ity. The heritability in the GWAS is missing. A number of approaches are proposed to 
solve heritability problems (Bonnet et al. 2015; Heckerman et al. 2016; Yang et al. 2010; 
Zaitlen and Kraft 2012).

In this section, we will introduce the definition of heritability. Since whole-genome 
sequencing data are widely available, we will mainly introduce heritability estimation meth-
ods in high-dimensional linear mixed models with GWAS and whole-genome sequencing 
data. The traditional approach to heritability estimation has focused on single trait heri-
tability. Fewer methods for the estimation of multiple trait heritability have been devel-
oped. To fill this gap, we will investigate the estimation of the heritability of multiple traits. 
Genetic causal inference emerged as a novel powerful tool for genetic studies of complex 
diseases. Since it uses a mixed structural equation model as a general framework for causal 
heritability analysis, causal inference for the heritability of multiple traits will be introduced 
in Big Data in Omics and Imaging: Integrated Analysis and Causal Inference, Chapter 1.

6.6.1 � Heritability Estimation for a Single Trait
6.6.1.1 � Definition of Narrow-Sense Heritability
There are two ways to define the heritability: broad definition and narrow definition of heri-
tability. The phenotype variance Vp is the sum of genetic variance VG and environmental 
variance VE (Zaitlen and Kraft 2012):

	 V V VP G E= + .
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Broad-sense heritability is defined as the ratio of total genetic variance to phenotypic 
variance:

	
H

V

V
G

P

2 = .
	

(6.221)

The genetic variance includes the genetic additive variance VA, dominance variance VD, and 
genetic interaction variance VI, i.e., VG = VA + VD + VI. The broad-sense heritability covers 
the contribution of the allele–allele interactions and gene–gene interactions to the pheno-
typic variation.

The narrow-sense heritability can be defined as the ratio of the genetic additive variance 
to phenotypic variance to capture the genetic “additive” contribution:
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(6.222)

In this section, we focus on narrow-sense heritability.

6.6.1.2 � Mixed Linear Model for Heritability Estimation
Consider m SNPs genotyped on n individuals. Let xij be the number of copies of the refer-
ence allele for the jth SNP of the ith individual and pj be the frequency of the reference 
allele. The standardized genotype is defined as
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(6.223)

Let yi be the phenotype of the ith individual and Y = [y1,  … , yn]T be a vector of phenotypes. 
Consider a general mixed linear model (Yang et al. 2011)

	 Y H Zu= + +g e,	 (6.224)

where
H is an n × q dimensional matrix of covariates
γ is a q-dimensional vector of regression coefficients associated with covariates
Z is an n × m dimensional matrix of standardized genotypes defined in Equation 6.223
u is an m-dimensional vector of random genetic effects with u N n u~ 0 2, I s( )
ε is a n-dimensional vector of residual effects with e s~ N e0 2, I( )

The variance of the phenotypes is then given by

	 V Y ZZu
T

n e= ( ) = +var .s s2 2I 	 (6.225)
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Define V mA u= s2  and G
ZZ

m

T

= , where G is the genetic relationship matrix (GRM). Then, 

the phenotypic variance matrix can be expressed as

	 V V GA n e= + I s2 .	 (6.226)

The model in (6.224) is then equivalent to

	 Y H g= + +g e,	 (6.227)

where g is an n-dimensional vector of the genetic random effects with g ~ N(0, VAG). 
Parameter estimation methods for the mixed linear models introduced in Section 6.3 can 
be used to estimate the genetic additive variance VA. Then, using Equation 6.222, we can 
estimate the heritability.

In the model (6.227), we consider only one genetic factor. In general, we can extend the 
model (6.227) to l genetic factors:

	
Y H g

j

l

j= + +
=
åg e

1

,

	
(6.228)

where gj is an n-dimensional vector of the random genetic effects with gj ~ N(0, VAjGj), where 
VAj is the additive genetic variance of the jth genomic region and Gj is its corresponding 
GRM. The phenotypic variance is then equal to

	
V V G I

j

l

A j ej= +
=
å

1

2s .

	
(6.229)

The heritability can then be estimated by
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(6.230)

The genetic additive variances and variance due to residuals are often estimated by the 
REML methods discussed in Section 6.3. Let θ be a vector of variance components 
V VA A e

T

l1

2, , ,¼éë ùûs . For the completeness, we briefly describe the algorithms for estimation 
of variance components as follows (Yang et al. 2011).
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Algorithms for Variance Component Estimation

Step 0: Initialization.
The EM algorithm will be used to find the initial values of the variance components.

	 (i)	 q j
pV

l
0

1
( ) =

+
, which is the initial values for he EM algorithm.
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j j j j
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Average information algorithm will be used to implement the REML algorithm for 
estimation of variance components.
Step 1: Newton–Raphson iteration is updated (6.117):
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(6.233)

	 P V V H H V H H VT T= - ( )- - - - -1 1 1 1 1.	 (6.234)

Step 2: Calculate the log-likelihood function.
The log-likelihood function for REML can be rewritten as (Appendix 6G)

	
l V H V H Y H V Y HT T= - - - -( ) -( )- -1

2

1

2

1

2
1 1log log l gˆ ˆ

	
(6.235)

or

	
l V H V H Y PYT T= - - --1

2

1

2

1

2
1log log .

	
(6.236)

Calculate
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where ˆ ˆ , , ,V j lA
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Calculate

	
l V H V H Y P Yt t T t T t+( ) +( ) +( ) - +( )= - - ( ) -1 1 1
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log log .ˆ ˆ ˆ

	
(6.239)

Step 3: Convergence assessment.
If |l(t + 1) − l(t)| < 10−4, then stop. Otherwise if t ← t + 1, go to step 1.

6.6.2 � Heritability Estimation for Multiple Traits
6.6.2.1 � Definition of Heritability Matrix for Multiple Traits
Let A denote what can be transmitted from a parent, i.e., breeding value, and P denote the 
phenotypic value of a parent. Then, for a single trait, an individual’s estimated breeding 
value is the product of the phenotypic value and the heritability

	 A h P= 2 .	 (6.240)

Equation 6.240 can be extended to multiple traits. Consider K traits. Let A be a K-dimensional 
vector of breeding values for the K traits, P be a K-dimensional vector of phenotypic values, 
and H be a K × K dimensional heritability matrix:
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(6.241)

Then, Equation 6.240 can be extended to the prediction of breeding values for the K traits:
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(6.242)

or

	 A HP= .

Denote the covariance matrix between breeding values and phenotypic values by ΣAP and 
covariance matrix of the phenotypic values by Σp.
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Recall that

	 P A D E= + + ,	 (6.243)

where
D is a K-dimensional vector of dominance deviation
E is a K-dimensional vector of environments

If we assume that the covariance between the breeding value and dominance deviation 
and the variance between the environment and genetic values are zero, then it follows from 
equation (6.243) that

	 cov cov ,A P A A A, ,( ) = ( ) = S 	 (6.244)

where
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Using Equations 6.242 and 6.244 gives

	 S SA PH= .	 (6.245)

Therefore, we define the heritability matrix as

	 H A P= -S S 1.	 (6.246)

6.6.2.2 � Connection between Heritability Matrix 
and Multivariate Mixed Linear Models

If we consider a SNP (m = 1), then the matrix Φ in Equation 6.208 is equal to

	 F S= A .	 (6.247)

Recall that the multivariate mixed linear model (6.175) is

	 Y W Zu= + +a e.	 (6.248)

We assume that

	 u N I N IT
m A n e~ ~ .0 0, and , Ä( ) Ä( )S Se 	 (6.249)
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Then, Equation 6.208 becomes

	 vec vec ,Y N W I Z I I Z I IT
K

T
K m A

T
K n e( ) Ä( ) ( ) Ä( ) Ä( ) Ä( )+ Ä( )~ .a S S 	 (6.250)

Let

	 V Z I I Z I IK m A
T

K n e= Ä( ) Ä( ) Ä( )+ ÄS S ).	 (6.251)

We can show that

	

Z I I Z I ZZ
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K m A
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K
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A

Ä( ) Ä( ) Ä( ) = ( )Ä
= Ä

S S

S , 	 (6.252)

where G = ZZT is a GRM. Equation 6.251 is then reduced to

	 V G IA n e= Ä + ÄS S .	 (6.253)

The heritability matrix can then be estimated by

	 ˆ ˆ ˆ ,H A P= -S S 1 	 (6.254)

where ˆ ˆ ˆS S SP A e= + .
Estimation methods for the multivariate mixed linear models studied in Section 6.4 can 

be used to estimate variance component matrices ŜA  and Ŝe .

6.6.2.3 � Another Interpretation of Heritability
Heritability can also be interpreted proportions of phenotype variance explained by the 
genetic variance. Consider the fixed linear model for a single trait:

	 Y X= +g e,	 (6.255)

where
H is genotype matrix
γ is the regression coefficients

The regression coefficient is estimated by

	 ˆ var cov .g = ( )éë ùû ( )-
X X Y

1
, 	 (6.256)

The variance due to regression contribution is var( )X ĝ . The proportion of the phenotype 
variance explained by genetic variance is defined as
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(6.257)

which is the squared multiple correlation coefficient.
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Recall (Mitteroecker et al. 2016) that the genetic additive effect is
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(6.258)

Therefore, the heritability is
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Now we extend Equation 6.259 to multiple traits. Consider a multivariate linear model:

	 Y XB= + e.	 (6.260)

The matrix of regression coefficients is

	 ˆ .B xx XY= -S S1 	 (6.261)

The breeding values are given by

	 A XB= .	 (6.262)

The covariance matrix of breeding values is

	

V XB XB

B B

A

T
xxx

YX xx XY

= ( )
=
= -

cov

.

,

S
S S S1 	 (6.263)

Substituting Equation 6.263 to Equation 6.254 gives

	 H YX XX XY YY= - -S S S S1 1 ,	 (6.264)

which is equivalent to the R matrix in Equation 1.220 or extension of the squared multiple 
correlation coefficient.
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6.6.2.4 � Maximizing Heritability
Next we show that maximizing heritability (Mitteroecker et al. 2016) is equivalent to canon-
ical correlation analysis. We consider a linear combination of multiple phenotypes, Yb, and 
a linear combination of genotypes at multiple loci, Xa, to transform the association analysis 
of multiple traits to the association analysis of a single trait. Define the linear genetic model 
for Yb and Xa:

	 Yb Xa= ( ) +a e.	 (6.265)

The total genetic effect of the multiple genotypes on the multiple traits can be estimated by
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=
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(6.266)

Using Equations 6.258, we obtain the genetic additive variance of Xa and heritability of Yb:
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and
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respectively.
It is clear that the squared multiple correlation coefficient is given by
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Next we seek the optimal combinations of the genotypes at multiple loci and the multiple 
traits to maximize the genetic additive effect, genetic additive variance, and heritability. We 
first find the maximum genetic additive effect.

Using Equation 6.266 and the Lagrangian multiplier method, we can solve the following 
optimization problem to obtain the maximum genetic additive effect:

	
L a b a b a aT

xy
T

xx, , l l( ) = + -( )S S
2

1 ,
	

(6.269)

where λ is a multiplier.
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Setting 
¶ ( )

¶
= - =

L a b

a
b axy xx

, , l
lS S 0 gives

	 S Sxy xxb a= l

or

	 S Sxx xyb a- =1 l .	 (6.270)

Suppose that the SVD of the matrix S Sxx xy
-1  is given by

	 S S Lxx xy e e e
TU V- =1 .	 (6.271)

Then, it follows from Equation 6.271 that a, b and the optimal genetic effect are the left and 
right singular vectors, and singular value of S Sxx xy

-1 , respectively. Similarly, we can show that 
the genetic additive variance sAl

2  is the square of the singular value of  S Sxx xy
-1 . The maximum 

heritability can be obtained by setting the Lagrange function
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(6.272)

Let K xx xy yy= - -S S S1 2 1 2/ /  and SVD of K be

	 S S S Lxx xy yy K K K
TU V- - =1 2 1 2/ / .	 (6.273)

Solving Equation 6.272, we obtain
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(6.274)

where uk, vk, and τK are the left and right singular vectors and singular value of the matrix K, 
respectively. Substituting Equation 6.274 into Equations 6.266 and 6.267 gives
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Note that tK
2  is the eigenvalue of the matrix

	 K KT
yy yx xx xy yy= - - -S S S S S1 2 1 1 2/ / .	 (6.276)

It follows from Equation 6.276 and 1.220 that

	 K K RT = .

This shows that the maximum heritability analysis is equivalent to CCA. This also shows 
that the maximum heritability is the largest eigenvalue of the heritability matrix.

6.7 � FAMILY-BASED ASSOCIATION ANALYSIS FOR QUALITATIVE TRAIT
This section introduces a general strategy to analyze multiple common and rare variants across 
family- and population-based samples to unify family and population designs. Population-
based sample design is the current major study design for association studies. However, many 
rare variants are from recent mutations in pedigrees (Lupski et al. 2011). The inability of com-
mon variants to account for most of the supposed heritability and the low power of popula-
tion-based analysis tests for the association of rare variants have led to a renewed interest in 
family-based design with enrichment for risk alleles to detect the association of rare variants 
(Ott et al. 2011). It is hypothesized that an individual’s disease risk is likely to come from the 
collected action of common variants segregating in the population and rare variants recently 
arising in extended pedigrees. It is increasingly recognized that analyzing samples from popu-
lations and pedigrees separately is highly inefficient (Liu and Thalamuthu 2011). It is natural 
to unify population and family study designs for association studies. The unified approach can 
correct for unknown population stratification, family structure, and cryptic relatedness while 
maintaining high power in the sequence-based association studies.

Functional data analysis methods combined with high-dimensional data reduction tech-
niques will be taken as a general framework to unify population-based and family-based 
association analysis with the next-generation sequencing (NGS) data. Family-based func-
tional principal component analysis (FPCA) with or without smoothing, generalized T 2, 
collapsing, weighted sum of square (WSS) and variable-threshold (VT) tests, and CMC and 
single marker association test statistics will be introduced. Most materials are based on our 
two papers (Shugart et al. 2012; Zhu and Xiong 2012).

6.7.1 � The Generalized T 2 Test with Families and Additional Population Structures

Consider n sampled individuals from multiple families or unrelated individuals with 
unknown population structures. Assume that each individual has T genetic variants. 
Suppose that the genotypes of the ith individual at the tth genetic variant site are denoted 
by atat , atAt, and AtAt, respectively. Assume that At is a risk allele. Define an indicator vari-
able for the genotype as (Zhu and Xiong 2012)

	

Z

A A

A a

a a

i n t Ti
t

t t

t t

t t

=
ì

í
ï

î
ï

= ¼ = ¼
2

1

0

1 2 1 2, , , , , , , , .



Family-Based Association Analysis    ◾    411
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(6.277)

where
nc is the number of affected individuals
I(T) is a T-dimensional identity matrix
⊗ denotes the Kronecker product of two matrices

The generalized T2 statistic with pedigree structures is defined as

	 T HZ HZF
T2 1= ( ) -G ,	 (6.278)

where Γ = cov(HZ, HZ).
Let
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(6.279)

where sij
i jZ Z= ( )cov 1 1, .
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The generalized T2 statistic was originally developed for unrelated individuals. A key issue 
for its extension to the family data is how to take account of the dependence relationships 
among individuals in the calculation of the covariance matrix of markers at multiple loci. 
The concept of IBD discussed in Section 6.1 is the basis for the calculation of the covariance 
matrix of the family genetic data.

It can be shown that (Appendix 6I)

	 L S Fz zZ Z= ( ) = Äcov ,, 	 (6.280)

where Φ is the kinship matrix and defined as
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(6.281)

where
hi is the inbreeding coefficient of individual i
ϕij is the kinship coefficient between individuals i and j

The matrix Σz can be estimated by
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Using Equations 6.277 and 6.280, we can calculate the covariance matrix Γ:
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To establish the relationship between the test statistic TF
2 for general pedigrees and the 

T2 statistic for the population-based association test, we need to simplify HZ. It is easy to 
see that
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(6.284)

where Z ZA
t

G
tand  are averages of the indicator variables for the genotypes at the tth variant 

site in cases and controls, respectively.
From Equation 6.284, it follows that
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Therefore, the test statistic TF
2 can be simplified to
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(6.286)

where T2 is the generalized T2 statistic for the population-based association tests and 
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the generalized T2 statistic to have a valid test in the presence of pedigree and population 
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structures. The correction factor depends on kinship coefficients and the number of indi-
viduals in cases and controls. Under the null hypothesis of no association of the genomic 
region with the disease, TF

2 is distributed as a central c T( )
2  distribution with T degrees of 

freedom.

6.7.2 � Collapsing Method

The population-based collapsing test can be extended to the families with known or 
unknown population structure. Consider n sampled individuals in the pedigrees. An indi-
cator variable for the ith individual in the pedigrees is defined as

	
xi =

ì
í
î

1

0

presence of rare variants in the region

otherwise.

Let X = [x1, x2,  … , xn]T. Then, the expectation of the vector of indicator variables under 
the null hypothesis of no association of the genomic region with the disease is given by 
E0[X] = [p, p,  … , p]T, where p = P (presence of rare variants in the genomic region). Under 
the alternative model of association of the genomic region with the disease, we assume that

	 E x p u ri i i[ ] = = +m ,

where 0 1 0 1
1

0
< < < + < =

ì
í
î

p p r u
i

i, , and
if is case

otherwise.

Define μ = [μ1, μ2,  … , μn]T. The derivative of μ with respect to p is given by

	
D

p
p

T= ¶
¶

= ¼[ ]m
1 1 1, , , .

Similarly, we have

	
D

r
u u u u ur n

T= ¶
¶

= = ¼[ ]m
, .where , , , 1 2

We then calculate the covariance matrix of the vector X. Let hi be the inbreeding coefficient 
of individual i and ϕij be the kinship coefficient between individual i and j. Let σ2 = p(1 − p). 
Computing the expectation by conditioning, we have (Exercise 6.17)

	 Cov ,x xi j ij( ) = 2 2f s .	 (6.287)

By the same token, we have

	 Var x hi i( ) = +( )1 2s .	 (6.288)
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We assume that the kinship coefficient matrix is given by
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(6.289)

Combining Equations 6.287, 6.288, and 6.289, we can obtain the following covariance 
matrix of the vector X:

	 S F= ( ) =Var , X X s2 .	 (6.290)

Let

	
H D
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÷ ,

where nc is the number of cases.
The covariance matrix of HC is given by
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The statistic for testing the association of a genomic region with the disease can be defined as
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H
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2

G
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(6.291)

However,
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(6.292)

where
nG is the number of controls
X XA Gand  are the averages of the indicator variables in cases and controls, respectively
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The test statistic can then be rewritten as (Exercise 6.18)
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P
CF
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corr

= ,
	

(6.293)

where
TC is the population-based collapsing test statistic

P
n

n n
D

n

n
D D

n

n
Dcorr

c G
r

c
p

T

r
c

p= -æ
è
ç

ö
ø
÷ -æ

è
ç

ö
ø
÷F  is a correction factor

Under the null hypothesis of no association, TCF is distributed as a central c 1
2
( ) distribution.

6.7.3 � CMC with Families

Now we extend the population-based CMC test to the families with known or unknown 
population structure. We previously extended the population-based generalized T2 test and 
collapse test to the families. Combining the collapsing test and the generalized T2 test with 
families, we can obtain the CMC test with families in the samples. Specifically, suppose that 
T variants can be classified as k groups of rare variants and m individual variant sites.

Define indicator variables for the k group of rare variants:

	
v

s i
i
s =

1 presence of rare variants in the th group of the th individual

00 otherwise

ì
í
î

and

	 P P ss = ( )presence of the rare variants in the th group .

The variance of the indicator variable can be estimated by

	 ss s sP P s k2 1 1 2= -( ) = ¼, , , , .
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and ,

where the parameters in the above equations are defined as before. The vector η consists of 
two parts: one is for collapsed variants and the other is for uncollapsed variants.
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We define a diagonal matrix:

	 Sv k= ¼( )diag , , , s s s1
2

2
2 2 .	 (6.294)

The covariance matrix is given by

	 L S Fv vV V= ( ) = Äcov ., 	 (6.295)

Thus, the covariance matrix of η is given by
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(6.296)

where
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Then, by a similar argument as before, the covariance matrix of HCMCη is given by
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(6.297)

Thus, the family-based CMC statistic can be defined as
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(6.298)

where
V VA G and  are the averages of the indicator variables in cases and controls, respectively
TCMC is the CMC statistic for the population-based association test
Pcorr is the correction factor defined as before

The test statistic TCMCF follows a c k m+( )
2  distribution with (k + m) degrees of freedom, asymp-

totically, under the null hypothesis of no association of the genomic region being tested.
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6.7.4 � The Functional Principal Component Analysis and Smoothed 
Functional Principal Component Analysis with Families

The FPCA and smoothed FPCA can be applied to the population-based association studies. 
Now we extend them to a general case where multiple families and additional population 
structures are presented in the samples. Let βj(t) , j = 1 , 2 ,  …  , k be a set of eigenfunctions 
that are formed from the genotype data of the sampled individuals under the SFPCA model. 
Let xi(t) , i = 1 , 2 ,  …  , n be a genotypic function of the ith individual, where t is the genomic 
position, and defined as

	

x t

A A

A a

a a
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t t

t t

t t

( ) =
ì
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ï

î
ï

2

1

0 . 	

(6.299)

Suppose that the genotypic function xi(t) is expanded in terms of eigenfunctions that are 
formed by the SFPCA as

	
x t ti
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ij j( ) = ( )
=
å

1

x b ,

	
(6.300)

where

	
< > = ( ) ( ) + ( ) ( ) =ò òb b b b l b blj l
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j l
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j lt t dt t t dt, �� �� 0

and the FPCA scores ξij are

	
x b b l blij i j

T

i j

T

i jx x t t dt x t t dt=< > = ( ) ( ) + ( ) ( )ò ò, ,�� ��

where λ is a penalty parameter. When λ is equal to zero, expansion of Equation 6.300 will 
be reduced to the FPCA expansion.

Our purpose is to use the functional principal component scores to develop test statistics 
that can be applied to pedigrees. To achieve this, we first calculate the covariance matrix of 
the functional principal component scores. Let

	 x x x x x x x x x x. . ., ,j j j nj
T

i i i ik
T= ¼éë ùû = ¼[ ] =1 2 1 2 1, , , , , , and ,, , , x x. . .2 ¼[ ]k

T

Define

	 s x xx
jk j k= ( )cov 1 1, 
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and
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The matrix Σξ can be estimated by
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(6.301)

Then, it can be shown that (Appendix 6J)
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and

	 GSFPCA FPCAF FPCAFH H= ( )cov .x x, 

It follows from Equation 6.302 that
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(6.304)

The family-based SFPCA statistic is then defined as

	 T H HSFPCAF FPCA
T

SFPCA FPCA= ( ) -x xG 1 .	 (6.305)

When λ = 0, the family-based smoothed FPCA statistic TSFPCAF in Equation 6.305 is 
reduced to the family-based FPCA statistic without smoothing.
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Let x xA Gand  be the vector of averages of the functional principal component scores in 
cases and controls, respectively. It can be shown that the statistic TSFPCAF can be simplified 
to (Appendix 6J)
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(6.306)

where
TSFPCA is the population-based smoothed FPCA statistic
Pcorr is the correction factor as defined previously

When penalty parameter λ is equal to zero, the family-based smoothed FPCA TSFPCAF is 
reduced to the family-based FPCA statistic

	
T

T

P
FPCAF

FPCA

corr

= .
	

(6.307)

Under the null hypothesis of no association of the genomic region with disease, the test 
statistics TSFPCAF and TFPCAF will be asymptotically distributed as a central c k( )

2  distribution 
where k is the number of functional principal components in the eigenequation expansion 
of genotypic functions.

SOFTWARE PACKAGE
R package “kinship2” for kinship coefficient and IBD computing can be found in http://r-forge. 
r-project.org. Software for heritability calculation can be found in http://cnsgenomics.com/soft-
ware/gcta/. The software for the family-based association analysis with next-generation sequence 
data can be downloaded from https://sph.uth.edu/hgc/faculty/xiong/software-D.html.

APPENDIX 6A: GENETIC RELATIONSHIP MATRIX
We show that Equations 6.25 and 6.26 hold. We first calculate the variance of the indicator 
variable for the genotype. It is clear that

	 E g E x x E x E x pijl ij l ij l ij l ij l léë ùû = +éë ùû = éë ùû + éë ùû =1 2 1 2 2 	 (6A.1)

and
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https://sph.uth.edu
http://cnsgenomics.com
http://cnsgenomics.com
http://r-forge.r-project.org
http://r-forge.r-project.org
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Next we calculate E g pi l l1
2

2-( )é
ë

ù
û . We can expand it as follows:
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Using Equation 6.8, we obtain
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It follows from Equation 6.10 that
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Similarly, using Equation 6.14 gives
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Substituting Equations 6A.5, 6A.6, and 6A.7 into Equation 6A.4, we obtain
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Substituting Equations 6A.2, 6A.8, and 6.21 into Equation 6A.3 gives

	

E g p p p p p
n

i l l l l i l l i i1
2

2 2 1 1 4 1
1

1 2-( )é
ë

ù
û = -( ) +( ) - -( ) -( ) +é

ëê
ùF F y
ûûú

+ -( ) +( ) + - -( )é
ëê

ù
ûú

= -( ) +(

4
1

2
1 1

1
1

2 1 1

n
p p

n

n
p p

p p

l l I l l T

l l i

F F

F ))+ - -æ
è
ç

ö
ø
÷ + -( ) + -( )2

1
4

2
1 2 1

n

n n
p pT i l l I iF F Fy .

This shows that Equation 6.25 holds.
By similar arguments, we have
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We can show that (Exercise 6.4)

	 cov .g g p pi l k l l l ik1 1 4 1, ( ) = -( )F 	 (6A.10)

Substituting  6A.10, 6A.8, and 6.21 into Equation 6A.9 yields
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APPENDIX 6B: DERIVATION OF EQUATION 6.30
For the self-contained, following the approach in Conomos et al. (2016), we summarize the 
proof as follows. We assume that the individual j descended from the N subpopulations. 
The average frequency of the allele at the l locus of the individual j is a linear combination 
of the N subpopulation-specific allele frequencies p ajl j

T= Pl, where Pl is a vector of random 
population-specific allele frequencies. Since the N subpopulation descended from an ances-
tral population, we have E p pl

k
léë ùû =  and E[Pl] = pl1, where pl is an ancestral frequency of the 

reference allele in the ancestral population. Using Equations 6.18 and 6.19, we obtain
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(6B.1)

and

	 cov ,p p p pl
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l
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l l km, ( ) = -( )1 F 	 (6B.2)

where Fk
kF= +1

2
.

Equations 6.26 and 6.1 can be written in a matrix form:

	 cov ,Pl( ) = -( )p pl l N1 F 	 (6B.3)

where ΦN = (Φkm)N × N is an N-dimensional matrix.
The above discussions lead to

	 E p a E p a pjl j
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l j
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léë ùû = [ ] = =P 1l ,	 (6B.4)
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1 1F q 	 (6B.5)

where qij i
T

N ja a= F , which can be viewed as the coancestry coefficient for a pair of individu-
als, i and j, in the presence of population structure.

Next we consider the impact of the pedigree on the covariance of the random genotype 
indicator variables. Let Aij be the set of the most recent common ancestors of individuals i 
and j. The set Aij may include individuals i or j. For example, if i directly descended from j 
then Aij = {j}. For the sib pair i and j, the set Aij is their two parents; for the half sib pair i and 
j, Aij is their shared parent. The path diagram can be used to calculate the kinship coefficient 
ϕij (Lynch and Walsh 1998). Suppose that the alleles of the individuals i and j can be traced 
the most recent common ancestor m ∈ Aij. Let nmi be the number of individuals in the path 
leading from ancestor m to individual i. If individuals m and i are the same individual, then 
nmi = 1. If the individual m is the grandfather of the individual i, then nmi = 3. Using the path 
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diagram to trace back alleles of individuals i and j to their most recent common ancestors, 
we obtain the kinship coefficient between individuals i and j:
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 is referred to as the kinship coefficient of the allele of the 

individuals i and j tracing back to the common ancestor m.
We define gil = xi11l + xi12l as the indicator variable for the genotype at locus l in the ith 

population. Let pml be the average frequency of the allele at the l locus of individual m. Using 
Equation 6A.7, the conditional covariance between gil and gjl, given the common ancestor m 
and population-specific allele frequencies Pl, is

	 cov .g g m p pil jl ij m ml ml, , Pl( ) = -( )4 1f � 	 (6B.7)

Therefore, summarizing all the common ancestors in the set Aij, we obtain the conditional 
covariance, given the population-specific allele frequencies Pl:
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It follows that
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where θmm is referred to as the coancestry coefficient between individual m with itself due 
to population structure.

Note that
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Thus, using Equations 6.93 and 6.12, we obtain
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. 	

(6B.12)

Taking expectation over the distribution of population-specific allele frequencies Pl on both 
sides of Equation 6.74, we obtain
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(6B.13)

Substituting Equation 6.18 into Equation 6.19 gives
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(6B.14)

Next we calculate var(gil). By definition of genotype indicator variables, we have

	

var var

var var cov

g x x

x x x

il i l i l

i l i l i

P P

P P

l l

l l

( ) = +( )
= ( ) + ( ) +

1 2

1 2 2 11 2l i lx, Pl( ).	 (6B.15)

Similar to Equation 6.8, we can easily show that

	 var .x f p f p pi l i M i l i il l1
21Pl( ) = -( ) + -( )

Thus,

	 var var .x E x p pi l i l l l1 1 1( ) = ( )éë ùû = -( )Pl 	 (6B.16)
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Similarly, we have

	 var .x p pi l l l2 1( ) = -( ) 	 (6B.17)

Let M(i) and P(i) be the mother allele and father allele of individual i, respectively. Then, 
we can show that (Exercise 6.5)

	 cov ,x x f p p f p pi l i l i l l i l l M i P i1 2 1 1 1, ( ) = -( ) + -( ) -( ) ( ) ( )q 	 (6B.18)

where qM i P I M i
T

N P ia a( ) ( ) ( ) ( )= F .
Therefore, using Equations 6.3, 6.115, and 6.120, we obtain
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i M i P i

l l i

1

2 1 1

q

, 	 (6B.19)

where Fi = fi(1 − θM(i)P(i)) + θM(i)P(i).

APPENDIX 6C: DERIVATION OF EQUATION 6.33
Recall that
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(6C.1)

and

	 E p p p p pil jl l l l ijéë ùû = + -( )2 1 q .	 (6C.2)

From the above equations, we can clearly observe that using the product of genotypes 
of individuals i , j to estimate the kinship coefficients will have two bias terms, θij and 
∑m ∈ Aijϕij∣mθmm, due to population structure. Equation 6.19 shows that E[pilpjl] involves θij. 
To remove the bias term θij, we can use individual allele frequencies pil and pjl to replace 
population allele frequency ps in calculation of the GRM. In other words, the kinship coef-
ficient ϕij will be estimated by

	

ˆ .fij
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il il jl jl

g p g p

p p p p
=

-( ) -( )
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(6C.3)
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Now we show that the estimator f̂ij will asymptotically converge to ϕij or it asymptotically 
has small bias.

Using the rule of computing the expectation by conditioning, we can show that
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E p E g
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jl il

jl il

éë ùû = éë ùûé
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ù
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l

2 ééë ùû . 	 (6C.4)

Equation 6.12 implies that
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Therefore, it follows from Equations 6.21 and 6.18 that asymptotically, we have
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(6C.6)

Using Equation 6B.13 and 6.2 gives
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Define
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(6C.8)

Substituting Equation 6.1 into Equation 6.22 yields
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APPENDIX 6D: ML ESTIMATION OF VARIANCE COMPONENTS
Recall that the variance matrix V is

	
V G V

m

M

m Am e= +
=
å

1

2Ins .
	

(6D.1)

Then, the matrix derivative with respect to the variance component is given by
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Using Equations 1.158 and 1.160, we obtain
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Using Equation 1.156 gives
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s
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(6D.4)

Using Equations 6D.3 and 6D.4, we can directly derive the derivative of the log-likelihood 
function with respect to the variance components:
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(6D.5)

Setting the derivative equal to zero gives

	 Tr V V Y H V V V Y Hj
T

j
- - -( ) = -( ) -( )1 1 1g g .	 (6D.6)

Recall that the ML estimator of the fixed effects is given by

	 H V Y HT - -( ) =1 0g .	 (6D.7)

Iteratively solving Equations 6D.7 and 6D.6, the solutions will converge the ML estimators of 
both fixed effects and variance components. Assume that V̂  is the solution to Equation 6D.6 
in the previous iteration. Then, in the current iteration, substituting V̂  into Equation 6D.7 
and solving it, we obtain the ML estimator of the fixed effect:

	
ˆ .g = ( )- - -H V H H V YT T1 1 1

	 (6D.8)
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Now we calculate

	

V Y H V Y H H V H H V Y

PY

T T- - - - --( ) = - ( )( )
=

1 1 1 1 1ˆ

,

g

	 (6D.9)

where P = V−1 − V−1H(HTV−1H)−1HTV−1.
Substituting Equation 6D.9 into Equation 6D.6, we obtain

	 Tr V V Y PV PYj
T

j
-( ) =1 .	 (6D.10)

Specifically, using Equation 6D.2 gives

	 Tr whenˆ ˆ ˆ ,,V Y PPYT
j e

-( ) = =1 2 2s s 	 (6D.11)

	 Tr whenˆ ˆ ˆ ,, , , ,V G Y PG PY m M Vm
T

m j Am
-( ) = = ¼ =1 21 s 	 (6D.12)

where P̂  is estimated by using
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APPENDIX 6E: COVARIANCE MATRIX OF THE ML ESTIMATORS
In Section 6.3.2.2.1, we showed
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(6E.1)

Therefore, we have
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(6E.2)

Define the matrix

	 V G GJ M= ¼[ ]1, , ,In .	 (6E.3)

It follows from Equation 6D.4 that
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Using Equations 6E.1 and 6E.4, we obtain
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In Equation 6E.5, we showed that
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Using Equation 6E.4 and taking a partial derivative of ¶
¶

l

js2
 with respect to sk

2, we obtain
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Since E[Y] = Hγ, taking expectation on both sides of Equation 6E.5, we obtain
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Recall that in Equation 6.83, we assume that
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Define the matrix
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Combining Equations 6E.2, 6E.8, and 6E.9, we obtain the Fisher matrix:
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APPENDIX 6F: SELECTION OF THE MATRIX K IN THE REML
For the self-contained, following the lines of Searle et al. (1992), we give a brief introduction 
for the selection of the matrix K. Assume that matrix K satisfies the equation

	 K H H KT T= =0 0or .	 (6F.1)

Suppose that a general solution to Equation 6F.1 can be represented by

	 K c a= - ,	 (6F.2)

where c and a are any two vectors. Substituting Equation 6F.2 into Equation 6F.1 gives

	 H a H cT T= .	 (6F.3)

Solving Equation 6F.3 for the vector a, we obtain

	 a H H cT T= ( )- ,	 (6F.4)

where (HT)− is a generalized inverse of the matrix HT.
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Substituting Equation 6F.4 into Equation 6F.2 leads to a solution matrix

	
K I H H cT T= -( )é

ëê
ù
ûú

-
.
	

(6F.5)

Let K+ be the Moore–Penrose inverse of matrix K. It is clear that KK+ = K(KTK)−1KT 
and HH+ = H(HTH)−HT are symmetric and idempotent. KTH = 0 and HTK = 0 imply 
KK+H = K(KTK)−1KTH = 0 and HH+K = H(HTH)−HTK = 0. Define T = I − HH+ − KK+.

After some algebra, we have

	

TT I HH KK I HH KK
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0 0

,
	

� (6F.6)

which shows that T is symmetric and idempotent.
It is well known that r(HH+) ≤ r(H). Note that r(H) = r(HH+H) ≤ r(HH+). Thus, 

r(HH+) = r(H). r(K) = Tr(I − (HT)−HT) = n − r(H). Next we show that Tr(TTT) = 0. In fact,

	

Tr Tr

Tr HH Tr

TT I HH KK

n KK

n r H r K

n r H

T( ) = - -( )
= - ( ) - ( )
= - ( )- ( )
= - ( )
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+ +

-- - ( )( ) =n r H 0,	 (6F.7)

which implies T = 0. This shows

	 I HH KK- =+ + .	 (6F.8)

Since covariance matrix V is positive definite, matrix V can be decomposed into V = (V1/2)2. 
Thus, KTH = 0 implies

	 V K V H K H
T T1 2 1 2 0/ / .( ) = =-

	 (6F.9)

Equation 6F.9 shows that we can replace K by V1/2K and replace H by V−1/2H in Equation 6F.8 
and obtain

	 V K K VK K V I V H H V H H VT T T T1 2 1 2 1 2 1 1 2/ / / / .( ) = - ( )- - - - -

	 (6F.10)



Family-Based Association Analysis    ◾    433

Multiplying both sides of Equation 6F.10 by V−/2V−1/2, we obtain

	

K K VK K V V H H V H H V
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T T T T( ) = - ( )
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. 	 (6F.11)

APPENDIX 6G: ALTERNATIVE FORM OF LOG-LIKELIHOOD 
FUNCTION FOR THE REML
Define the transformation of Y:
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(6G.1)

where BT = (HTV−1H)−1HTV−1.
The Jacobian matrix of the transformation is
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(6G.2)

Note that

	 A AAT= .	 (6G.3)

Thus, the determinant of the Jacobian matrix is equal to
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Recall that
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(6G.5)

and

	 K K IT = .	 (6G.6)
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Substituting Equation 6G.5 into Equation 6G.4 gives

	 J I B B B KK BT T T= -( )1 2/

.	 (6G.7)

Recall that

	 KK I H H H HT T T= - ( )-1
.	 (6G.8)

Substituting Equation 6G.8 into Equation 6G.7 yields
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Using Equation 6G.1, we have
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Substituting Equation 6G.10 into Equation 6G.9 gives

	 J H HT=
-1 2/

.	 (6G.11)

The density function P(U, Φ) of the transformed random variables U and Φ is given by
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(6G.12)

Note that

	 E F[ ] = g

and
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Thus, Φ ~ N(γ, (HTV−1V)−1). The density function P(Φ) is given by
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(6G.13)

Now we show that random vectors U and Φ are independent where U = KT(Zu + e) and 
Φ = γ + BT(Zu + e). First, we calculate the covariance matrix between U and Φ:

	

cov

[

U E U

E K Zu e Zu e B

K E Zu e Zu e

T

T T

T

,F F( ) = -( )é
ë

ù
û

= +( ) +( )é
ë

ù
û

= +( ) +

g

(( )
=

= ( )
= ( )
=

- - -

- -

T

T

T T

T T

B

K VB

K VV H H V H

K H H V H

1 1 1

1 1

0.

Since both random variables U and Φ are normal, uncorrelated variables U and Φ are 
independent.

Now we are ready to calculate the density function P(U). Using Equations 6G.12 and 
6G.13, we obtain
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Therefore, the log-likelihood function of the transformed variables KTY, ignoring constants, 
is given by
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(6G.14)
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Using Equation 6.102, we can show that Equation 6G.14 can be rewritten as (Exercise 6.12)
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(6G.15)

APPENDIX 6H: ML ESTIMATE OF VARIANCE COMPONENTS 
IN THE MULTIVARIATE MIXED LINEAR MODELS
Let
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Using Definition 1.5 (derivative of a matrix with respect to a scalar) gives
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i.e., the (i, l)th element of matrix Vil
j is 1 and all other elements in matrix Vil

j are zero.
Therefore, we have
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Similarly, we have

	

Vil
e

il
e

= ¶
¶

=

é

ë

ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú

S
s

0 0

0 1 0

0 0

� � �
� � � � �
� �

� �
�

�
�

� �
�

,

	

(6H.3)

where the (i, l)th element of matrix Vil
e is 1 and all other elements in the matrix Vil

e are zero.
Recall that

	 V Z I Z I IK
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Then, using Equations 6H.2 and 6H.4, we obtain
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For K = 1, we have ¶
¶

=V
Z Z

A
j j j
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 (Exercise 6.14), which is the same as that in Equation 6H.2.

Again, using Equations 6H.3 and 6H.4 gives
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The matrix derivative with respect to the variance component is then denoted by
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Using Equations 1.158 and 1.160, we obtain
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Using Equation 1.156 gives

	
¶
¶

= -
-

- -V
V V V

il
u il

u
1

1 1

s
.
	

(6H.9)

Using Equations 6H.8 and 6H.9, we can directly derive the derivative of the log-likelihood 
function with respect to the variance components:
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Let

	 H W IK= Ä .
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Using Equation 6.208, we obtain

	 vec vecˆ .aT T T TH V H H V Y( ) = ( ) ( )- - -1 1 1

	 (6H.11)

Then, we have
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where

	 P V V H H V H H VT T= - ( )- - - - -1 1 1 1 1.	 (6H.13)

Setting ¶
¶

=l

il
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0 and using Equation 6H.12 leads to

	 Tr vec vecV V Y PV P Yil
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APPENDIX 6I: COVARIANCE MATRIX FOR FAMILY-BASED T2 STATISTIC
A key for deriving a covariance matrix for multiple markers of family members or 
population-sampled individuals in the presence of population structures is the concept of 
identical by descent (IBD).

Let
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Let hi be the inbreeding coefficient of individual i and ϕij be the kinship coefficient between 
individuals i and j. Using computing expectation by conditioning, we have
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Similarly, we have 
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By definition of the covariance between variables z zi
t

j
tand , we obtain
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Substituting Equations 6I.1 and 6I.2 into Equation 6I.3, we obtain
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Similarly, we have
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Combining Equations 6I.4 and 6I.5, we obtain
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By a similar argument as that for Equation 6I.4, we have
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Combining Equations 6I.6 and 6I.8 leads to
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APPENDIX 6J: FAMILY-BASED FUNCTIONAL 
PRINCIPAL COMPONENT ANALYSIS
First, we calculate cov(xi(s), xk(t)). Using computing expectation by conditioning and IBD 
concept, we obtain
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where R(s, t) is a covariance function of the genotype indicator variables between genomic 
positions s and t.
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and
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From stochastic calculus (Henderson and Plaschko 2006), we can obtain
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Combining Equations 6J.5a through 6J.5d, we obtain the covariance between functional 
principal component scores for the same individual without inbreeding:
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Using Equations 6J.1 through 6J.4 and 6J.6, we can obtain the covariance of the functional 
principal component scores between a pair of individuals:
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Similarly, considering inbreeding, we can prove that

	 var .x sx
ij i jjh( ) = +( )1 	 (6J.8)

Define the covariance matrix of the vector of functional principal component score ξ as
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But, we have
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j jj( ) = F 	 (6J.9)

	 cov .. , .x x sx
j k jk( ) = F 	 (6J.10)
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Then, by combining Equations 6J.9 and 6J.10, we obtain

	 L S FSFPCA SFPCA= Ä .	 (6J.11)
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Therefore, we have
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Using Equation 6J.12, we obtain the simple family-based FPCA test statistic:
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EXERCISE

Exercise 6.1	 Show that the inbreeding coefficient and kinship coefficient have the 
following relation:

	
Fii if= +( )1

2
1

		  and

	 fi kl= F ,

		  where k and l are parent of the individual i.
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Exercise 6.2	 Consider noninbred half sibs. Calculate the condensed coefficient of 
identity Δ8.

Exercise 6.3	 Calculate the kinship coefficient for the first cousins.

Exercise 6.4	 Show that

	 cov .g g p pi l k l l l ik1 1 4 1,( ) = -( )F

Exercise 6.5	 Show that

	 cov ,x x f p p f p pi l i l i l l i l l M i P i1 2 1 1 1,( ) = -( ) + -( ) -( ) ( ) ( )q

		  where qM i P I M i
T

N P ia a( ) ( ) ( ) ( )= F .

Exercise 6.6	 Let ˆ ˆf G
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E g p
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i ii
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L
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. Show that
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		  where M(i) and P(i) denote the mother and father of individual i, respectively.

Exercise 6.7	 Let ˆ
ˆ

ˆ ˆ
f

L

E g p

p p
i

il il

il ill

L

=
-( )é

ëê
ù
ûú

-( )=å1 2

2 1

2

1
, where the individual-specific allele 

frequency p̂il  is estimated by Equation 6.35. Show that
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T
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Exercise 6.8	 Show

	
E VAAaa( )é
ë

ù
û =

2 1

4
,

		  where VAA is an additive × additive interaction variance.

Exercise 6.9	 If xi is defined in Equation 6.63, then show

	 E x p x pqi i[ ] = ( ) =2 2and var .
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Exercise 6.10	 If xi is defined in Equation 6.64 then show

	 E x x pqi i[ ] = ( ) =0 2and var .

Exercise 6.11	 Assume that log-likelihood is given by
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Exercise 6.12	 Show that
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Exercise 6.14	 Let K = 1; show
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Exercise 6.15	 Show Equation 6.252:
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Exercise 6.17	 Show

	 Cov x x p pi j ij, where( ) = = -( )2 12 2f s s, .

Exercise 6.18	 Show that the test statistic can then be rewritten as
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C h a p t e r  7

Interaction Analysis

A published catalog of Genome-Wide Association Studies (GWAS) reported signifi-
cant association of 26,791 SNPs with more than 1,704 traits in 2,337 publication on 

February 6, 2017 (https://www.genome.gov/page.cfm?pageid=26525384&clearquery=1#re
sult_table). These results provide substantial information for understanding the mecha-
nisms of the diseases. Although great progress in GWAS has been made, the significant 
SNP associations identified by GWAS account for only a few percent of the genetic variance 
(Altshuler et al. 2008; Frazer et al. 2009). Searching for the remaining genetic variance is a 
great challenge (Wang 2008).

One way to discover the remaining genetic variance or “missing heritability” is to study 
gene–gene and gene–environment interactions. Complex diseases are the consequence of 
the interplay of genetic and environmental factors. Modern complex theory assumes that 
the complexity is attributed to the interactions among the components of the system; 
therefore, interaction has been considered as a sensible measure of complexity of the 
biological systems. The interactions hold a key for dissecting the genetic structure of 
complex diseases and elucidating the biological and biochemical pathways underlying 
the diseases (Cordell 2009).

Over the past several decades, geneticists have debated intensely about how to define and 
measure interaction in epidemiologic studies (Ottman 1996). Many researchers indicated 
the importance of distinguishing biological interaction and statistical interaction (Liberman 
et al. 2007). Biological interaction between gene and gene or gene and environment is often 
defined as the interdependent operation of genetic and environmental factors that cause 
diseases. In contrast, statistical gene–gene or gene–environment interaction is defined as the 
interdependence between the effects of genetic and environmental risk factors in the context 
of a statistical model. The effects of disease risk factors are often measured by relative risks 
and odds ratios, and interaction is defined as departure from additive or multiplicative joint 
effects (Khoury and Wacholder 2009). Alternative to the classical definition of the statistical 
interaction, various new definitions of interaction that are based on interdependence among 
the risk factors causing disease have been proposed. Gene–gene and gene–environment 
interactions can generally be defined as a stochastic dependence between genetic and 

https://www.genome.gov
https://www.genome.gov
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environmental risk factors in causing phenotypic variation among individuals. This defini-
tion does not require specifying the statistical models of the risks and is similar, although not 
exactly identical, to the definition of biological interaction.

In this chapter, we will cover odds ratio calculations, regression, and logistic regression analy-
sis, which are some of the existing methods available to evaluate the gene–gene and gene–envi-
ronment interactions (Xiong and Wu 2010). Functional data analysis techniques are a powerful 
tool for sequence-based genetic studies. We will introduce the single- and multiple-variate 
functional regressions and functional logistic regression for interaction analysis of quantitative 
and qualitative traits with next-generation sequencing (NGS) data. In Sections 4.2.2 and 5.4, 
we introduced canonical correlation analysis (CCA) as a statistical framework for association 
analysis. In this chapter, we will extend CCA from association analysis to interaction analy-
sis and formulate CCA as a unified framework for testing gene–gene and gene–environment 
interactions for both quantitative and qualitative traits with both common and rare variants. As 
we previously pointed out, linear regression analysis can be viewed as specific CCA.

7.1 � MEASURES OF GENE–GENE AND GENE–ENVIRONMENT 
INTERACTIONS FOR A QUALITATIVE TRAIT

7.1.1 � Binary Measure of Gene–Gene and Gene–Environment Interactions

In this section, we take a common approach to gene–gene and gene–environment interactions. 
We consider both binary genetic and environment measures. In this case, both statistical for-
mulations of gene–gene and gene–environment interaction measures are the same. Throughout 
this section, we introduce only gene–gene interaction. However, all studies of gene–gene inter-
actions can be applied to gene–environment interaction unless otherwise stated.

Consider two binary genetic factors, G1 and G2. The genetic factor G1 is coded as G1 = 1 
(G1 = 0) if an individual carries risk-increasing genotypes (AA or Aa if A is a risk-increasing 
allele) (or no-risk genotypes). Similarly, we can define G2. Let D be an indicator of disease. Two 
study designs, cohort study and case–control study, are often used in investigating gene–gene 
interaction. In the cohort study, the measures of gene–gene interaction are usually defined 
by relative risk, and in the case–control study, they are often defined by odds ratio. There are 
two types of binary measure of gene–gene interaction: additive and multiplicative measures.

7.1.1.1 � The Binary Measure of Gene–Gene Interaction for the Cohort Study Design
We first introduce the measure of gene–gene interaction for the cohort study design. Define 
the disease risk as the conditional probability of being affected, given two particular genetic 
factors for each of the four possible combinations of the two genetic risk factors:
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The relative risks are defined as the ratio of disease risk over baseline risk:
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(7.1)
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Definition 7.1

Additive and multiplicative measures of gene–gene interaction are respectively defined as

	 I RR RR RRadd = - - +11 12 21 1	 (7.2)

and

	
I

RR

RR RR
multiple = 11

12 21

.
	

(7.3)

Figure 7.1 shows the gene–gene interaction where two disease risk lines are crossed and 
h11 − h12 ≠ h21 − h22. In other words, the disease risk of the genotypes at the first locus depends 
on the genotype at the second locus. In the absence of interaction, i.e., Iadd = 0 and Imultiple = 1, 
we have

	 RR RR RR11 12 21 1- = - 	 (7.4)

and

	 RR RR RR11 12 21= * .	 (7.5)

Equations 7.4 and 7.5 can be reexpressed in terms of haplotype frequencies. We define 
the joint probability of the individual with the specified genetic factors in the general and 
disease populations:

	

P P G G P P G G P P G G

P

11 1 2 12 1 2 21 1 2

22

1 1 1 0 0 1= = =( ) = = =( ) = = =( )
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b

H11-h12

H21-h22

FIGURE 7.1  Illustration of gene–gene interaction.
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and
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Disease risk can be expressed in terms of Pij and Pij
A:
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(7.6)

Then, from Equations 7.4 through 7.6, we can obtain the following result.

Result 7.1

In the absence of interaction,
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(7.7)

and
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(7.8)

hold.

To gain understanding of the measure of gene–gene interaction, we study several special 
cases:

Case 1

One locus is not the disease locus. If we assume that G1 is only a marker and will not cause 
disease, then we have
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Similarly, we have

	

P

P

P G D

P G

P

P

P G D

P G

P

P

P GA A A
12

12

2

2

21

21

2

2

22

22

0

0

1

1
=

=( )
=( )

=
=( )
=( )

=, ,
22

2

0

0

=( )
=( )

D

P G
,



Interaction Analysis    ◾    451

which implies that
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Thus, we obtain Iadd = 0 and Imultiple = 1. In other words, if one locus is a marker, there is inter-
action between a marker and causal locus or between two markers. Hence, both additive 
and multiplicative measures of gene–gene interaction correctly characterize the marker case.

The additive and multiplicative measures of gene–gene interaction have close relations 
with log-linear models. Consider the following log-linear model:

	 log ,P D G G G G G GG G G G=( )( ) = + + +1 1 2 1 2 1 21 2 1 2, a b b b 	 (7.9)

where
βG1 is a genetic effect at the first locus
βG2 is a genetic effect at the second locus
βG1G2 is a gene–gene interaction effect

From this model, it follows that

	 RR e RR e RR eG G G G G G
11 12 21

1 2 1 2 1 2= = =+ +b b b b b, , .and 	 (7.10)

The additive and multiplicative measures of gene–gene interaction are respectively given by

	 I e e eadd
G G G G G G= - - ++ +b b b b b1 2 1 2 1 2 1

and

	 I emuliple
G G= b 1 2.	 (7.11)

The regression coefficient βG1G2 in the log-linear model is equal to a logarithm of the multi-
plicative measure of gene–gene interaction.

The additive measure and multiplicative measures are not completely overlapped. The 
question of which measure should be used to detect interaction has long been debated. 
What measure should be used to study interaction depends on the purpose of investigation 
(Ottman 1996).
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7.1.1.2 � The Binary Measure of Gene–Gene Interaction 
for the Case–Control Study Design

Next we study the measure of gene–gene interaction for the case–control study design. The 
gene–gene interaction for the case–control study design is usually measured by odds ratio. 
The genotype at the first locus, the second locus, and interaction odds ratios are defined, 
respectively, by
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(7.12)

Definition 7.2

Using odds ratios, we can define the additive and multiplicative measures of gene–gene 
interaction, respectively, as

	 IOadd G G G G= - - +OR OR OR1 2 1 2 1	 (7.13)

and

	
IOmultiple
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OR OR
1 2

1 2
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(7.14)

Without gene–gene interaction, Equations 7.13 and 7.14 can be simplified as

	 OR OR ORG G G G1 2 1 2 1 0- - + =

and

	 OR OR ORG G G G1 2 1 2= * .

Define haplotype frequencies in controls as
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Similar to Equations 7.7 and 7.8, we have the following result.

Result 7.2

In the absence of interaction,
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(7.15)
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and
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(7.16)

hold.
It is interesting to know that replacing population haplotype frequencies in Equations 7.7 

and 7.8 by haplotype frequencies in controls will lead to Equations 7.15 and 7.16.
Consider the following logistic model:
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which gives the genotypes at the first locus, second locus, and interaction odds ratios 
(Exercise 7.5)

	 OR OR and ORG G G Ge e eG G G G G G
1 2

2
1 2

1 2 1 21= = = + +b b b b b, , .

Using these expressions for the genotypes at the first locus, second locus, and interaction 
odds ratios, we can obtain the following representation for the additive and multiplicative 
measures of gene–gene interaction:

	 I e e eadd
G G G G G G= - - ++ +b b b b b1 2 1 2 1 2 1

and

	 I emultiple
G G= b 1 2 ,	 (7.17)

which is similar to Equation 7.11.

7.1.2 � Disequilibrium Measure of Gene–Gene and Gene–Environment Interactions

The concept of linkage disequilibrium (LD) and measuring its value play an essential role 
in genetic studies of complex diseases. We can define LD as a measure for quantifying the 
magnitude of gene–gene and gene–environment interactions, which allow us to borrow 
tools from LD studies, and it is referred to as a disequilibrium measure of gene–gene or 
gene–environment interaction hereafter. Let D be an indicator of the disease status and PD 
be the population prevalence of disease. Treating the environmental variable as a locus, the 
interaction between the gene and environment can be viewed as the interaction between two 
loci. Similar to the measure of LD, we can also define a disequilibrium measure (covariance) 
between the gene and environment in the general population as follows: δ = P11P22 − P12P21. 
This mathematical form is precisely the same as the form of the measure of LD. The disequi-
librium measure characterizes the dependence between the gene and gene or between gene 
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and environment. If two genetic and environmental variables are independent, the disequi-
librium measure between the gene and environment will be equal to zero.

To investigate whether the interaction between genes create the disequilibrium between 
them, we derived the disequilibrium measure in the disease population. Recall that the 
probability P A

11  can be expressed in terms of P11 and disease risk h11:
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Similarly, we have
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and
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Now we can establish the LD relationship between the cases and controls. Combining 
Equations 7.18 through 7.21 gives
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(7.22)

Definition 7.3

The above equation motivates us to define the following disequilibrium measure of 
gene–gene interaction as

	 I h h h hd = -11 22 12 21.	 (7.23)
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If hij in Equation 7.23 is replaced by Pij, it becomes a measure of disequilibrium. Therefore, 
Iδ is referred to as the disequilibrium measure of gene–gene interaction. Surprisingly, we 
can show from Equations 7.8 and 7.23 that the disequilibrium measure Iδ is equal to zero if 
and only if the multiplicative measure of gene–gene interaction for the cohort study Imultiple 
is equal to one. In other words, the absence of gene–gene interaction, which is detected by 
the disequilibrium measure of gene–gene interaction, can also be detected by multiplicative 
measure of gene–gene interaction.

With the aid of Equation 7.23, the measure of disequilibrium in the disease population 
can be expressed as
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Equation 7.24 shows that the disequilibrium between two genes in the disease population 
comes from two parts. One part is from the disequilibrium between two genes in the gen-
eral population. Another is from the gene–gene interaction. Rewrite Equation 7.24 as
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which shows that the difference in the disequilibrium between the disease population and 
general population is proportional to the disequilibrium measure of gene–gene interaction. 
This forms the basis for formal testing for the gene–gene interaction.

7.1.3 � Information Measure of Gene–Gene and Gene–Environment Interactions

In studying the information measure of gene–gene interaction, the loci G1 and G2 can be 
either coded as 0 and 1 as before or coded as 0, 1, and 2, indicating three genotypes. The 
environmental exposure is coded as before. Mutual information is to measure dependence 
between two random variables. The mutual information between two genes in the general 
population is defined as
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(7.25)

Information theory (Cover et al. 1991) shows that mutual information I(G1; G2) is equal to 
zero if and only if

	 P G i G j P G i P G j i j1 2 1 2 0 1 2 0 1 2= =( ) = =( ) =( ) = =( ), , , ; , ,, ,

i.e., two gene variables are independent.
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The mutual information between two genes in the disease population is given by
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which can be reduced to
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(7.27)

where PD = P(D = 1) is the prevalence of the disease.
Equation 7.27 shows that mutual information I(G1; G2|D) has two components. The first 

term in Equation 7.27 is due to dependence between two genes in the general population. 
The second term in Equation 7.27 is due to interaction.

Definition 7.4

Thus, we define information measure of interaction between two genes as
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or
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(7.29)

which implies that IG1G2 = 0 if and only if
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or

	 h P h h i jij D i j= = =( ), ,0 1 2 0 1 2, , , , , 	 (7.31)

where
hij is the disease risk of an individual carrying genotype G1 = i and genotype G2 = j
hi is the marginal disease risk of an individual carrying genotype G1 = i
hj is the marginal disease risk of an individual carrying genotype G2 = j

Information measure of interaction has two remarkable features. First, it is defined in terms 
of penetrance and hence related to the cause of the disease. Second, the interaction is mea-
sured by the interdependent operation of two genes in causing disease. The absence of 
gene–gene interaction indicates that Equation 7.30 should hold. If G is coded as 0 or 1, then 
Equation 7.30 is equivalent to

	 h h h h11 22 12 21=

or Equation 7.5, RR11 = RR12 ∗ RR21.
Equation 7.27 can be rewritten as
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(7.32)

The second term in the left side of Equation 7.32 is the mutual information between two genes 
in the general population if the probabilities P(G1 = i, G2 = j|D) are replaced by P(G1 = i, G2 = j). 
Equation 7.32 shows that the modified difference in mutual information between cases and 
the general population is proportional to the information measure of gene–gene interaction.

If we assume that two genotype variables in the general population are independent, then

	 I G G D IG G1 2 1 2, ( ) = .

In this case, the mutual information between two genes in the disease population is equal 
to the information measure of the gene–gene interaction. This provides an easy way to cal-
culate the information measure of gene–gene interaction.

To gain an understanding of information measure of gene–gene interaction, we study 
several special cases.

Case 1

A locus, for example, G1, is not the disease locus. If we assume that G1 is only a marker and 
will not cause disease, then we have

	 P D G i G j P D G j P D G i PD= = =( ) = = =( ) = =( ) =1 1 11 2 2 1, and ,
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which implies that
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Thus, we obtain IG1G2 = 0. In other words, if the locus G1 is a marker, there is no interaction 
between the loci G1 and G2. The interaction measure IG1G2 between two loci should be equal 
to zero. Hence, our information measure of gene–gene interaction correctly characterizes 
the marker case.

7.1.4 � Measure of Interaction between a Gene and a Continuous Environment

Many environmental variables, for example, ages, incomes, and gene expressions, are con-
tinuous variables. Generally, there is more information when a risk factor is represented by 
a continuous variable than a categorical variable. A dichotomization of a continuous vari-
able will lose information. Therefore, developing measures of interaction between a gene 
and the environment that can be applied to continuous environmental variables is indis-
pensable in the studies of gene–environment interaction.

7.1.4.1 � Multiplicative Measure of Interaction between a Gene 
and a Continuous Environment

To extend multiplicative measure of gene–environment interaction for binary environment 
to continuous environment, we first introduce point-wise risk and relative risk. We take a 
noncarrier of the susceptible genotype and average environment as the baseline. Denote the 
continuous environmental variable by e and its expectation by μ. Let the point-wise risk be 
defined as
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Definition 7.5

Then, the point-wise relative risk can be defined as
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(7.33)

Point-wise multiplicative measure of interaction between a gene and a continuous environ-
ment is then defined by
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If we assume that E is an environmental variable with a normal density function of mean 
μ and variance σ2 and that environmental variable E conditional on G = i follows a nor-
mal density with mean μi and variance si

2 and their corresponding densities in the disease 
population are a normal density function with means μD , μDi and variances s sD Di

2 2, , then 
Equation 7.34 can be reduced to
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We define the expectation of point-wise multiplicative measure of gene–environment inter-
action IPMGE as the multiplicative measure of interaction between a gene and a continuous 
environment:
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Under the assumption of normal distribution of environmental variable, the multiplica-
tive measure of interaction between a gene and a continuous environment is simplified to

	
IMGE

D

D

D

D

= +log log .
m m
m m

s s
s s

0 1

1 0

0
2

1
2

1
2

0
2

1

2 	
(7.37)

In the absence of gene–environment interaction, the interaction measure IMGE is equal to zero.

7.1.4.2 � Disequilibrium Measure of Interaction between a Gene 
and a Continuous Environment

Definition 7.6

Disequilibrium measure of interaction between a binary genetic factor and a continuous 
environmental factor can be defined as

	 I e h h h he ed m m( ) = -1 2 1 2 .	 (7.38)

Iδ(e) is a function of the environmental factor. Let P(G = 1, E = μ), P(G = 0, E = μ), 
P(G = 1, E = e), and P(G = 0, E = e) be the joint probability density functions. The concept of 
disequilibrium measure between two random variables can be extended to measure depen-
dence between a random variable and a random function. We first define a point-wise dis-
equilibrium measure between the coded binary genotype and the continuous environment 
in the general population as

	 d m me P G E e P G E P G E P G E e( ) = = =( ) = =( ) - = =( ) = =( )1 0 1 0, , , , .
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Note that
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The point-wise disequilibrium measure between the coded binary genotype and the con-
tinuous environment in the disease population is
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The point-wise disequilibrium measure in the disease population is then given by
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7.1.4.3 � Mutual Information Measure of Interaction between 
a Gene and a Continuous Environment

Mutual information between a gene and a continuous environmental factor E is defined as 
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where
P(G = i, e) is the joint probability density function of G = i and e
P(e) is a density function of environmental variable
P(G = i) is a probability mass function of the genotype
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Definition 7.7

We define the mutual information measure of the interaction between the binary genetic 
factor and continuous environment as
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The mutual information between the binary genetic factor and continuous environment in 
the disease population is given by (Exercise 7.8)

	
I G E D P G i E e D

P G i E e

P G i P E e
de I

i

G; ,
,( ) = = = =( ) = =( )

=( ) =( )
+

=
åò

0

1

1 log CCE .
	

(7.43)

Equation 7.43 shows that the mutual information in the disease population consists of two 
terms. The first term in the right side of equation is involved in mutual information between 
gene and environment in the general population, and the second term is the mutual infor-
mation measure of the interaction between the gene and the continuous environment.

Unlike mutual information between two discrete variables, which is easy to calculate, the 
mutual information between the discrete variable and continuous variable requires the cal-
culation of an integral that may involve intensive numerical computation. However, when 
an environmental variable has a normal distribution with mean μD and variance sD

2  and 
conditional on the genotype G = i and has a normal distribution with mean μDi and variance 
sDi

2  in the disease population, we can show that (Exercise 7.9)
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Similarly, for the general population, if we assume that the environmental variable has a 
normal distribution with mean μ and variance σ2 and also has normal distributions with the 
conditional mean μi and variance si

2, given the genotype G = i, we have
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Then, the mutual information measure of interaction between the binary genetic factor and 
continuous environmental variable with normal distributions is given by
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7.2 � STATISTICS FOR TESTING GENE–GENE AND  
GENE–ENVIRONMENT INTERACTIONS FOR A 
QUALITATIVE TRAIT WITH COMMON VARIANTS

In the previous section, we presented four types of measures of gene–gene and gene–
environment interactions that provide the basis for developing statistics to formally test for 
gene–gene and gene–environment interactions. In this section, we will study statistics for 
testing gene–gene and gene–environment interactions based on the measure of gene–gene 
and gene–environment interactions.

7.2.1 � Relative Risk and Odds-Ratio-Based Statistics for Testing 
Interaction between a Gene and a Discrete Environment

Gene–gene and gene–environment interactions can be identified by a formal test. The test 
statistics can be developed parallel to the measure of gene–gene and gene–environment 
interactions. We first study statistics for testing gene–gene and gene–environment interac-
tions in the cohort study design. The test statistics depend on the scale of the measurement 
of the gene–gene and gene–environment interactions. Since statistics for testing gene–envi-
ronment interaction are similar to the statistics for testing gene–gene interaction, again in 
the following discussion, we will focus on statistics for testing the gene–gene interactions 
unless otherwise stated. However, statistics for testing gene–gene interactions can be easily 
extended to testing for gene–environment interactions.

Recall that the additive measure of gene–gene interaction is defined as
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Let n1 , n2 , n3, and n4 be the number of individuals carrying genotypes G1 = 1 and G2 = 1; 
G1 = 1 and G2 = 0, G1 = 0; and G2 = 1, G1 = 0, and G2 = 0, respectively. It can be shown that 
the variance of estimate of the additive interaction measure is given by (Lehmann 1983) 
(Exercise 7.10)
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Define the statistic to test for gene–gene interaction for the additive scale of measurement as

	
T

I

V
Radd

add

Radd

=
2

.
	

(7.46)

Then, under the null hypothesis of no gene–gene interaction, the statistic TRadd is asymptoti-
cally distributed as a central c 1

2
( ) distribution.

In a case–control study design, we use odds ratio to measure gene–gene interaction. 
Similar to relative risk measure of gene–gene interaction in the cohort study design, there 
are also two odds ratio measures of gene–gene interaction in the case–control study design: 
additive and multiplicative measures.

The odds ratio additive measure of gene–gene interaction can be rewritten as
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Similar to Appendix 7A, the variance of TOadd is given by
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Therefore, for the additive measure, we define the statistic for testing gene–gene interaction as
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which is asymptotically distributed as a central c 1
2
( ) distribution under the null hypothesis 

of no gene–gene interaction.
The logarithm of odds-ratio multiplicative measure of gene–gene interaction can be 

expressed as
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The variance of the estimate of the logarithm of odds ratio is given by (Appendix 7A)
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The statistics for testing gene–gene interaction, which is based on the odds-ratio multiplica-
tive measure, can defined as
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which is again asymptotically distributed as a central c 1
2
( ) distribution under the null hypoth-

esis of no gene–gene interaction.

7.2.2 � Disequilibrium-Based Statistics for Testing Gene–Gene Interaction
7.2.2.1 � Standard Disequilibrium Measure–Based Statistics
To investigate the LD pattern generated by gene–gene interaction, we assume that two dis-
ease susceptibility loci are in Hardy–Weinberg equilibrium. Two loci can be either unlinked 
or linked. Let D1 and d1 be the two alleles at the first disease locus with frequencies PD1 and 
Pd1, respectively. Let D2 and d2 be the two alleles at the second disease locus with frequencies 
PD2 and Pd2, respectively. Alleles D1 and d1 can be indexed by 1 and 2, respectively. At the first 
disease locus, let D1D1 be genotype 11, D1d1 be genotype 12, and d1d1 be genotype 22. The 
genotypes at the second disease locus are similarly defined. Two-locus genotypes are simply 
denoted by ijkl for individuals carrying the haplotypes ik and jl arranged from the left to 
the right. Let fijkl be the penetrance of the haplotypes ik and jl arranged from the left to the 
right. Let P11, P12, P21, and P22 be the frequencies of the haplotypes HD1D2, HD1d2, Hd1D2, and 
Hd1d2 in the general population, respectively. Let P A

11 , P A
12 , P A

21, and P A
22 be their corresponding 

haplotype frequencies in the disease population. Let PD
A
1 , Pd

A
1 , PD

A
2, and Pd

A
2  be the frequencies 

of alleles D1, d1, D2, and d2 in the disease population, respectively.
For ease of discussion, we introduce a concept of haplotype penetrance. Consider a hap-

lotype with allele i at the first disease locus and allele k at the second disease locus. Then, the 
penetrance of haplotype hik is defined as

	 h P P f P P f P P f P P fik D D i k D d i k d D i k d d i k= + + +1 2 1 2 1 2 1 21 1 1 2 2 1 2 2 .

Let δ = P11 − PD1PD2 be the measure of LD in the general population. The frequencies of the 
haplotypes in the disease population are given by
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where PA is the prevalence of disease.
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An interaction between two linked loci is defined in terms of penetrance of haplotype. 
Specifically, we define a measure of interaction between two loci, which quantifies the mag-
nitude of interaction as

	 I h h h h= -11 22 12 21.

The measure of the LD in the disease population is defined as dA A A A AP P P P= -11 22 12 21. In 
Equation 7.24, we can show that
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Note that
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Substituting Equation 7.51 into Equation 7.50 gives
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It is known that the variances of δA and δ are (Equation 3.8 in Weir 1990)
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where nA and nG are the number of sampled individuals in the cases and controls, respectively.
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Motivated by Equation 7.52, we define the test statistic:
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TI will be asymptotically distributed as a central c 1
2
( ) distribution under the null hypothesis 

of no interaction.

7.2.2.2 � Composite Measure of Linkage Disequilibrium 
for Testing Interaction between Unlinked Loci

Statistical interaction models essentially treated the interaction effect as a residual term in 
genetic analysis and hence are likely to limit the power to detect interaction. Alternative to 
statistical interaction models, interactions between two loci (or genes) can be understood 
as the irreducible dependencies between loci causing disease (Akulin and Bratko 2003). 
Although LD-based statistics have demonstrated high power to detect interaction between 
two loci (Zhao et al. 2006), in general, linkage phase information of marker loci for unre-
lated individuals is unknown; only genotype data are available. Experiments for the genera-
tion of haplotype data are expensive and time consuming. Estimation of haplotypes based 
on genotype data inevitably incurs the errors, which in turn will lead to increasing false 
positives in the detection of interactions between two loci. In this section, we introduce 
the composite measure of LD for testing interaction between two unlinked loci when only 
genotype data are available (Wu et al. 2008).

Let P1/1, P1/2, P2/1, and P2/2 be the frequencies of HD1/D2 , HD1/d2 , Hd1/D2, and Hd1/d2, respec-
tively, where the slash denotes that the two chromosomes in the individual, which are 
from different parents. Let P A

1 1/ , P A
1 2/ , P A

2 1/ , and P A
2 2/  be their corresponding frequencies of 

HD1/D2 , HD1/d2 , Hd1/D2, and Hd1/d2 in the disease population.
The nongametic frequency can be calculated by genotype frequencies (Figure 7.1). For 

example,
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In Section 7.2.2.1, the penetrance of haplotype HD1D2 is defined as the probability that an 
individual with the haplotype HD1D2 is affected. It is a weighted sum of the penetrance that 
contains haplotype HD1D2. The penetrance h12 , h21, and h22 is similarly defined.

The penetrance of two alleles at different loci on different chromosomes, HD1/D2, can be 
similarly defined as
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It is a weighted sum of genotypic penetrance. Similarly, we can define the penetrance h1/2 , h2/1, 
and h2/2. If we assume Hardy–Weinberg equilibrium and genotypic equilibrium in general 
population, then we have h11 = h1/1 , h12 = h1/2, h21 = h2/1, and h22 = h2/2. Let δD1D2 = P11 − PD1PD2 
be the measure of intragametic LD that measures the association of alleles from different 
loci on the same haplotype (Schaid 2004) and δD1/D2 = P1/1 − PD1PD2 be the measure of inter-
gametic LD that measures the association of two alleles from different loci on different hap-
lotypes (Schaid 2004) in the general population. We can show that haplotype frequencies in 
disease population can be expressed as
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and
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where PA denotes disease prevalence.
Now we calculate the measures of intragametic LD and intergametic LD in the disease 

population under a general two-locus disease model. The measure of intragametic LD and 
the measure of intergametic LD in the disease population are denoted by dD D

A
1 2  and dD D

A
1 2/ , 

respectively.
Similar to Equation 7.50, we can show
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and
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where hD1 = P(Affected|D1) and hD2 = P(Affected|D2).
We define a measure of intragametic interaction that measures the interaction of two 

alleles from different loci on the same haplotype as I h
h h

P
intra

D D

A

= -11
1 2  and a measure of 

intergametic interaction that measures the interaction of two alleles from different alleles on 

the different haplotypes as I h
h h

P
inter

D D

A

= -1 1
1 2

/ . Then a measure of total interaction between 

two loci, which consists of intragametic interaction and intergametic interaction is given by

	 I I Iintra inter= + .	 (7.60)
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Equation 7.60 clearly shows that the interaction between two loci is defined by the pen-
etrance of the two loci. Although the penetrance of the risks is not directly related to bio-
logical process, it is related to the causes of the disease. Therefore, the above definition of 
interaction is related to biological interaction. It follows from Equations 7.58 through 7.60 
that the composite measure of LD, DD D

A
1 2

 (Weir 1996), in the disease population is given by
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(7.61)

The absence of interaction between two loci is then defined as
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(7.62)

Equation 7.62 indicates that similar to linkage equilibrium where the frequency of a hap-
lotype is equal to the product of the frequencies of the component alleles of the haplotype, 
the absence of interaction between two loci implies that the proportion of individuals 
carrying two alleles (either in the same chromosome or in the different chromosome) in 
the disease population is equal to the product of proportions of individuals carrying a 
single allele in the disease population if we assume that the disease is caused by only two 
investigated disease loci. In other words, interaction between two disease susceptibility 
loci occurs when the contribution of one locus to the disease depends on another locus. 
In contrast to the additive model for interaction, which was introduced by Fisher, the 
interaction model defined by Equations 7.60 and 7.62 are referred as to a multiplicative 
interaction model.

In the previous discussion, we showed that under the multiplicative disease model, 
interaction between unlinked loci will create LD. Intuitively, we can test for interaction by 
comparing the difference in the composite genotypic disequilibrium between two unlinked 
loci between cases and controls. Precisely, if we denote the estimators of the composite LD 
measures in cases and controls by D̂A and D̂N , respectively, then the test statistic can be 
defined as
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formula for calculations of the composite measure of LD in cases and controls is given in 
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and P̂D

N
2 are their estimators, nA and nG denote the number of sampled individuals in cases 

and controls, respectively. The variance of the composite LD measure was the large-sample 
variance.15 Under the null hypothesis and assumption of Hardy–Weinberg equilibrium, the 

variance of the composite measure of LD in cases and controls becomes Var ˆ ˆ ˆ
DA

D
A

D
A

An
( ) = p p1 2  

and Var ˆ ˆ ˆ
DN

D
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D
N

Gn
( ) = p p1 2 . When the sample size is large enough to ensure application of large 

sample theory, test statistic TI is asymptotically distributed as a central c 1
2
( ) distribution 

under the null hypothesis of no interaction (both intragametic interaction and intergametic 
interaction) between two unlinked loci and assumption of Hardy–Weinberg equilibrium.

In theory, we can use case-only design to study interaction between two loci. However, 
in practice, background LD between two unlinked loci may exist in the population due to 
many unknown factors. Therefore, the test statistic based on case–control design is more 
robust than the statistic based on case-only design.

7.2.3 � Information-Based Statistics for Testing Gene–Gene Interaction

In Section 7.1.3, we discussed mutual information measure of interaction. Now we study 
statistics for testing gene–gene interaction using mutual information measure of interac-
tion. Consider two loci G1 and G2. Define
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and
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Let f = [f00, f01,  … , f22]T, fD = [fD00, fD01,  … , fD22]T, Pij = P(G1 = i, G2 = j), and PDij = P(G1 = i, 
G2 = j|D = 1). Define P = [P00, P01, …P22]T and PD = [PD00, PD01,  … , PD22]T. The joint probabili-
ties of the genotype variables in both the general population and disease population follow 
multinomial distributions with the following covariance matrices:
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(7.64)

where P Pi ij
j

. =
=å 0

2

 and P Pj ij
i

. =
=å 0

2

. The partial derivatives of the function fDij with 

respect to PDkl can be similarly defined. Let nA be the number of sampled individuals in the 
cases and nG be the number of sampled individuals in the controls. Define
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= +B B
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n
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.

The statistic for testing the gene–gene interactions is then defined as

	 T f f f fMIS D

T

D= -( ) -( )-ˆ ˆ ˆ ˆ ˆ ,L 	
(7.65)

where
f̂ , f̂D

, and L̂ are the estimators of f, fD, and Λ
L̂- is a generalized inverse of matrix L̂

When the sample size is sufficiently large to ensure application of large sample theory, 
the test statistic TMIS is asymptotically distributed as a central c 2

2
( ) distribution under the null 

hypothesis of no gene–gene interaction if we assume that two loci in the general population 
are in linkage equilibrium.

In many cases, two loci in the general population may not be in linkage equilibrium. 
Therefore, in these cases, using the statistic TMIS to test gene–gene interaction is inappropri-
ate. We extend the information-based statistic for testing gene–gene interaction to a general 
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case where two loci may be in linkage disequilibrium. Information measure of gene–gene 
interaction can be rewritten as
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(7.66)

To calculate the variance of the estimate of IG1G2, we first calculate its partial derivatives:
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Then, similar to Appendix 7A, using the delta method, we can obtain the approximate 
variance of IG1G2:
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An information-based statistic for testing gene–gene interaction can then be defined as
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(7.67)

which is asymptotically distributed as a central c 1
2
( ) distribution under the null hypothesis 

of no gene–gene interaction.
If we assume that two loci in the general population are in linkage equilibrium, then 

under the null hypothesis of no gene–gene interaction, the variance VMI will become zero. 
In this case, the test statistic TMI will become undefined. We either use the statistic TMIS 
defined in Equation 7.65 for testing gene–gene interaction or use the following statistic to 
test for gene–gene interaction:
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which is asymptotically distributed as a central c 1
2
( ) distribution (Brillinger 2004). In prac-

tice, it is not convenient to test linkage equilibrium in the general population. Therefore, we 
need to develop statistics for testing gene–gene interaction, which can be applied to both 
linkage equilibrium and LD cases.

Let
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Then, its partial derivatives with respect to PDij and Pij are given by
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Assume that the vectors PD and P and the matrices Σ and ΣD are defined as before. Let
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Then, the covariance matrix of X is given by

	
L S S

I
I D I

T

A

I I
T

G

B B

n

C C

n
= + .

Define the statistic for testing gene–gene interaction as

	 T X XMIB
T

I= -ˆ ˆ ˆ .L 1 	 (7.69)

We can show that under null hypothesis of no gene–gene interaction, the statistic TMIB is 
asymptotically distributed as a central c 2

2
( ) distribution regardless of whether two loci in the 

general population are linkage equilibrium or not. Therefore, the statistic TMIB can be used 
to test for gene–gene interaction in any cases.

7.2.4 � Haplotype Odds Ratio and Tests for Gene–Gene Interaction

Over the last several decades, epidemiologists have debated intensely about how to define 
and measure interaction in epidemiologic studies. The concept of gene–gene interac-
tions is often used but rarely specified with precision (Jakulin 2005). In general, statistical 
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gene–gene interaction is defined as departure from additive or multiplicative joint effects 
of the genetic risk factors. It is increasingly recognized that statistical interactions are 
scale dependent (An et al. 2009). In other words, how to define the effects of a risk factor 
and how to measure departure from the independence of effects will greatly affect the 
assessment of gene–gene interaction. The most popular scale upon which risk factors 
are measured in case–control studies is odds-ratio. The traditional odds-ratio is defined 
in terms of genotypes at two loci. Similar to two-locus association analysis where only 
genotype information at two loci is used, odds-ratio defined by genotypes for testing 
interaction will not employ allelic association information. However, it is known that 
interaction between two loci will generate allelic associations in some cases (Zhao et al. 
2006). Since they do not use allelic association information between two loci, the statisti-
cal methods based on the odds-ratio that is defined in terms of genotypes will have less 
power to detect interaction. To overcome this limitation, we can define odds-ratio in 
terms of a pseudohaplotype (which is defined as two alleles located on the same paternal 
or maternal chromosomes) for measuring interaction and develop a statistic based on 
a pseudohaplotype-defined odds-ratio for testing interaction between two loci (either 
linked or unlinked).

We begin with defining genotype-based, allele-based, and haplotype-based odds ratios 
and then define their three types of statistics for testing gene–gene interactions. Most mate-
rials are from Wu et al. (2010).

7.2.4.1 � Genotype-Based Odds Ratio Multiplicative Interaction Measure
Consider two loci: G1 and G2. Assume that the codes G1 = 1(G1 = 0) and G2 = 1(G2 = 0) denote 
whether an individual is a carrier (or noncarrier) of the susceptible genotype at the loci G1 
and G2, respectively. Let D denote the disease status where D = 1(D = 0) indicates an affected 
(or unaffected) individual. Consider the following logistic model:
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(7.70)

The odds-ratio associated with G1 for a nonsusceptible genotype at locus G2. (G2 = 0) is 
defined as
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The odds-ratio associated with G2 is similarly defined as
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The odds-ratio associated with G1 and G2 compared to the baseline category G1 = 0 and 
G2 = 0 is then defined as
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The odds for baseline category G1 = 0 and G2 = 0 are defined as
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From Equation 7.70, we clearly have
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Define a multiplicative interaction measure between two loci, G1 and G2, as
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It is clear that

	 bG G G GI1 2 1 2= .	 (7.72)

If ORG1G2 = ORG1ORG2, i.e., there is no interaction between loci G1 and G2, then IGH = 0. This 
shows that the logistic regression coefficient for interaction term βG1G2 is equivalent to the 
interaction measure defined as log odds-ratio. The interaction measure IG1G2 can also be 
written as
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The values of odds-ratio defined in terms of genotypes depends on how to code indicator 
variables G1 and G2.

7.2.4.2 � Allele-Based Odds Ratio Multiplicative Interaction Measure
Similar to the odds ratio for genotypes, we can define odds-ratio in terms of alleles. 
Let P D G Gi j=( )1 1 2,  be the probability of an individual with alleles Gi

1 and G j
2 being affected. 
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We can similarly define P D G Gi j=( )0 1 2, . We then can determine the odds-ratio associated 

with allele G1
1 at the G1 locus and allele G2

1 at the G2 locus compared to the baseline G G1
2

2
2/  as
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Similarly, we measure the odds-ratio associated with alleles G G1
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2
2/  and G2/H1, respectively, as
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Similar to genotype, we can define a multiplicative interaction measure in terms of log 
odds-ratio for an allele as
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The “fast-epistasis” test statistics in PLINK (http://pngu.mgh.harvard.edu/~purcell/
plink/index.shtml) is defined as
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where SE(R) and SE(S) denote the standard deviation of R and S, respectively. Absence of 
interaction is if and only if
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This is the basis of the “fast-epistasis” test in PLINK.

7.2.4.3 � Haplotype-Based Odds Ratio Multiplicative Interaction Measure
Suppose that locus G1 has two alleles, G1

1 and G1
2, and the locus G2 has two alleles, G2

1 and G2
2. 
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the cases and controls, respectively. For the convenience of discussion, we introduce a ter-
minology of “pseudohaplotype.” When two loci are linked, a pseudohaplotype is defined as 
the regular haplotype. When two loci are unlinked, a pseudohaplotype is defined as a set of 
alleles that are located in the same paternal or maternal chromosomes. The frequencies of a 
pseudohaplotype can be estimated by the classical methods for the estimation of haplotype 
frequencies such as expectation–maximization (EM) algorithms. For simplicity, hereafter 
we will not make distinction between the haplotype and pseudohaplotype. When two loci 
are unlinked, a haplotype is understood as a pseudohaplotype. Let P P PA A A
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cases and controls, respectively. We define a penetrance of the haplotype as the probability 
of an individual with a haplotype being affected. Therefore, the penetrance of the haplotype 
is a weighted summation of the penetrance of all four genotypes with each genotype includ-
ing the haplotype being considered. As in the previous section, h11 , h12 , h21, and h22 are 
defined as the penetrance of the haplotypes G G G G G G1
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and G2 = j represent a genotype coding scheme. Their represented genotypes depend on the 
specific genotype coding scheme. It should be noted that the haplotype G Gi j

1 2 and G1 = i and 
G2 = j have different meanings. By the same idea in defining genotype-based odds ratio in 
terms of penetrance of combinations of genotypes, we can define the odds-ratio associated 
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1 compared to the baseline haplotype G G1
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of the haplotypes as
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Similarly, we calculate the odds-ratio associated with the haplotypes G G1
1

2
2 and G G1

2
2
1, 

respectively, as
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Again, similar to genotypes, we can compute a multiplicative interaction measure in terms 
of log odds-ratio for haplotypes as
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In the absence of interaction, we have
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The multiplicative odds-ratio interaction measure in Equation 7.73 is defined by the pene-
trance of the haplotypes. From case–control data, it is difficult to calculate the penetrance of 
the haplotypes. However, we can show that the multiplicative odds-ratio interaction mea-
sure in Equation 7.73 can be reduced to (Appendix 7B)
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(7.74)

There are many algorithms and software to infer the haplotype frequencies in cases and 
controls. Therefore, we can easily calculate the multiplicative odds-ratio interaction mea-
sure by Equation 7.74. It can be seen from Equation 7.74 that the absence of interaction 

between two loci occurs if and only if the ratio of haplotypes frequencies
 
P P

P P

A A

A A
11 22

12 21
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and the ratio of haplotypes frequencies
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 in the controls are equal.
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To gain an understanding of the multiplicative odds-ratio interaction measure, we study 
several special cases:

Case 1

One of two loci is a marker. If we assume that locus G2 is a marker and is not associated with 
disease, then we have

	 P P G D P G G P P G D P Gij
A i j i

ij
N i j i= =( ) ( ) = =( ) ( )1 2 1 1 2 11 0and G ,

which implies that
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Thus, we obtain IG G
H

1 2 0= . In other words, if the locus G2 is a marker, there is no interaction 
between two loci, G1 and G2. The interaction measure IG G

H
1 2  between two loci should be equal 

to zero. Hence, our multiplicative odds-ratio interaction measure correctly characterizes 
the marker case.

Case 2

Logistic regression interpretation.
We define two indicator variables:
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(7.75)

Then four haplotypes at two loci can be coded as follows:
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It follows from the logistic regression model in Equation 7.70 that
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where odds-ratios ORG1 and ORG2 are defined in terms of alleles, i.e.,
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Therefore, the haplotype multiplicative odds-ratio interaction measure IG G
H

1 2  is equal to 
IG G

H
G G1 2 1 2= b , which has the same form as that in Equation 7.72. This indicates that if the 

coding for the genotypes in the genotype multiplicative odds-ratio interaction measure 
IG1G2 is replaced by the coding for the haplotypes in Equation 7.75, then we can obtain the 
haplotype multiplicative odds-ratio interaction measure.

7.2.4.4 � Haplotype-Based Odds Ratio Multiplicative 
Interaction Measure–Based Test Statistics

In the previous section, we defined the haplotype multiplicative odds-ratio interaction 
measure, which can be estimated by haplotype frequencies in cases and controls. Similar 
to Appendix 7A, by the delta method, we can obtain the variance of the estimator of the 
haplotype odds-ratio interaction measure (Exercise 7.13):
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where nA and nG are the number of sampled individuals in cases and controls. By the stan-
dard asymptotic theory, we can define the haplotype odds-ratio interaction measure–based 
statistic for testing the interaction between two loci:
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(7.76)

where ˆ , ˆ , ˆ , ˆP P P PA A A A
11 12 21 22 and ˆ , ˆ , ˆ , ˆP P P PN N N N

11 12 21 22  are the estimators of the corresponding haplo-
type frequencies in cases and controls, respectively. When sample sizes are large enough 
to ensure application of large sample theory, TIH is asymptotically distributed as a central 
c 1

2
( ) distribution under the null hypothesis of no interaction between two loci. Under an 
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alternative hypothesis of interaction between two loci being present, the statistic TIH is 
asymptotically distributed as a noncentral c 1

2
( ) distribution with noncentrality parameter 

proportional to the haplotype multiplicative odds-ratio interaction measure. This statistic 
can be applied to both linked and unlinked loci. For the unlinked loci, we can use the case-
only design to study the interaction between two loci in which the equation is reduced to
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(7.77)

7.2.5 � Multiplicative Measure-Based Statistics for Testing Interaction 
between a Gene and a Continuous Environment

Under the assumption of normal distribution of the continuous environment, the average 
multiplicative measure of gene–environment interaction is defined as
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To develop a statistic for testing interaction between a discrete genotype and a continu-
ous environment, we first should study the distributions of the estimates of the means and 
variances of the environments in cases and the general population. Let n0 , n1 , nD0, and nD1 
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the asymptotic theory of functions of asymptotically normal statistics (Lehmann 1983), we 
can show that under the null hypothesis of no gene–environment interaction, the estimate 
of the multiplicative interaction measure of gene–environment interaction is distributed as 
a normal distribution with a mean of zero and variance
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Therefore, we can define the following statistic for testing interaction between a gene and a 
continuous environment:
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(7.78)

Under the null hypothesis of no gene–environment interaction, the statistic TGCE is asymp-
totically distributed as a central c 1

2
( ) distribution.
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7.2.6 � Information Measure–Based Statistics for Testing Interaction 
between a Gene and a Continuous Environment

Similar to Section 7.2.5, we can also use asymptotic theory of nonlinear transformation of 
given statistics to develop an information measure–based statistic to test for interaction 
between a gene and a continuous variable. Let n = n0 + n1 and nD = nD0 + nD1. Other quanti-
ties are defined as before. Recall that the information measure of interaction between a gene 
and a continuous environment is defined as
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Then, the variance of the estimate of IGCE is given by
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After we calculate the variance of the estimate of IGCE, we can define the following informa-
tion-based statistic to test for interaction between a gene and a continuous environment:
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(7.79)

which will be asymptotically distributed as a central c 1
2
( ) distribution under the null hypoth-

esis of no gene–environment interaction.

7.2.7 � Real Example

To illustrate its application, the haplotype odds-ratio interaction measure–based statistic TIH 
was applied to the coronary heart disease cohort study dataset with 469,612 SNPs typed in 
1,926 cases and 2,938 controls from Wellcome Trust Case Control Consortium (WTCCC). 
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After qualitative control (QC), a total of 469,612 SNPs were left for analysis. Since testing 
for all possible pair-wise interactions between 469,612 SNPs is infeasible, 53,394 SNPs from 
501 known pathways including adhesion, apoptosis, cell activation, cell cycle regulation, 
cell signaling, cytokines/chemokines, developmental biology, expression, hematopoiesis, 
immunology, metabolism, and neuroscience were used to test gene–gene interaction. The 
pathway information is from BioCarta and Kyoto Encyclopedia of Genes and Genomes 
database (BioCarta pathways; KEGG PATHWAY database). After Bonferroni correction, 
the P-value for a significant interaction between SNPs is 3.5 × 10−11.

There are a total of 8664 interactions that were found to be significant with P < 3.5 × 10−11. 
Among the 8644 significant interactions, 111 contain at least one SNP that is in the pre-
viously identified cardiovascular disease susceptibility genes. Figure 7.2 presents the 111 
interactions between SNPs, where a red dot indicates that the SNP is in a gene, which has 
been suggested to be associated with cardiovascular disease in previous literatures. The SNP 
with the largest number of interactions is rs3785579, which is in the CACNG1 (calcium 
channel, voltage-dependent, gamma subunit 1) gene and has 57 interactions with known 
cardiovascular disease susceptibility genes. This SNP is also found to be significant from 
the single-SNP association test. The SNP with the second largest number of interactions is 
rs642298, which is in the IL3RA (interleukin 3 receptor, alpha) gene and has 16 interactions 
with known cardiovascular disease susceptibility genes. This SNP shows marginal signifi-
cance in the single-SNP association test (P = 1.84 × 10−6).

FIGURE 7.2  Interactions with known cardiovascular disease susceptibility genes shown by SNPs 
(a red dot indicates a previously identified cardiovascular disease susceptibility gene).
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There are a total of 30 known cardiovascular disease susceptibility genes found to have 
significant pair-wise interactions (Figure 7.3). As noted earlier, most of these cardiovascular 
disease susceptibility genes do not have an interaction with each other. Instead, they often 
interact with genes, which have not been previously reported to be related to cardiovas-
cular disease risks. The only significant interaction between two susceptibility genes is the 
interaction between PON2 (paraoxonase 2) and PPARG (peroxisome proliferator-activated 
receptor gamma). Three SNPs in the PPARG gene (rs10510418, rs7620165, and rs12490265) 
are interacted with one SNP in the PON2 gene (rs1639). The PON2 gene is expressed in a 
variety of tissues. The PON2 gene retards cellular oxidative stress and prevents apoptosis in 
vascular endothelial cells, while the physiological roles of its protein product, an intracel-
lular enzyme, are still not very clear (Horke et al. 2007). The PON2 gene has been shown 
to have a significant association with coronary heart disease (Sanghera et al. 1998). The 
protein encoded by the PPARG gene is a regulator of adipocyte differentiation. PPARG has 
been shown to associate with obesity, a condition closely related to coronary artery disease 
(Masud et al. 2003). Its interaction with apolipoportein E has also been shown to have an 
association with risk of coronary heart disease (Peng et al. 2003). Although both PON2 
and PPARG genes have been recognized for obesity and coronary artery disease risk, their 
interaction has never been explored.

Of the 8664 significant interactions from the pair-wise interaction analysis, almost half of 
them (4327 interactions) are interactions with the CACNG1 gene. Although the CACNG1 
gene has not been suggested with cardiovascular disease risk before, the pathway, which 

FIGURE 7.3  A total of 30 known cardiovascular disease susceptibility genes found to have signifi-
cant pair-wise interactions.
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the CACNG1 gene is involved in, the MAPK (mitogen-activated protein kinase) signaling 
pathway, has been shown to play an important role in the pathogenesis of cardiovascu-
lar disease (Muslin 2008). MAPK represents a group of serine/threonine kinases that are 
believed to act downstream from protein kinase C in the smooth muscle cell regulatory 
cascade. Figures 7.4 and 7.5 show the interactions between the CACNG1 gene and genes 
that are involved in the MAPK signaling pathway.

Within the MAPK signaling pathway, the CACNG1 gene has the most interactions 
with the RPS6KA2 (ribosomal protein S6 kinase, 90 kDa, polypeptide 2) gene. There are 
22 different SNPs in the RPS6KA2 gene interacting with the SNP in the CACNG1 gene. 
RPS6KA2 gene has been implicated in controlling cell growth and differentiation. In the 
MAPK signaling pathway, the CACNG1 gene is indirectly connected with the RPS6KA2 
gene through the activation of Ras and ERK (extracellular signal–regulated kinase). Ras 
is a master regulator of intracellular signaling cascades, and it promotes the activation of 
MAPK and other signaling pathways (Muslin 2008). Study has shown that cardiac-specific 
overexpression of an activated form of some genes from the Ras family in transgenic mice 

FIGURE 7.4  The CACNG1 gene interacted with genes from the MAPK signaling pathway (a yellow 
dot indicates the gene is involved in the MAPK signaling pathway, a red dot indicates a previously 
identified cardiovascular disease susceptibility gene, and the thickness of the blue line indicates the 
number of interactions between the two genes).
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can lead to cardiac hypertrophy and diastolic dysfunction (Hunter et al. 1995). Activation 
of ERK has been demonstrated in animal model systems as well as in humans with heart 
failure (Haq et al. 2001). Although there is no significant interaction between genes in Ras 
and ERK, since CACNG1 gene and RPS6K2 gene are connected through the Ras–ERK 
signaling cascade, the interactions between these two genes may have a substantial role in 
cardiovascular disease.

In the MAPK signaling pathway, in addition to Ras–ERK cascade, the JNK (c-Jun 
N-terminal kinase) cascade also plays an important role in the regulation of cell physiol-
ogy. Overexpression studies in mice suggest that while Ras-mediated ERK activation pro-
motes cardiac hypertrophy, JNK activation promotes cardiac dysfunction (Muslin 2008). 
In the pathway, the MAP3K10 (mitogen-activated protein kinase kinase kinase 10) and 
the MAP3K1 (mitogen-activated protein kinase kinase kinase 1) gene can indirectly acti-
vate JNK by activating mitogen-activated protein kinase kinase. One SNP in the MAP3K10 
gene has a significant interaction with one SNP in the CACNG1 gene. The MAP3K1 gene 
has a total of 10 significant interactions: 1 with the CACNG1 gene, 1 with IL3RA gene, 
and 8 with the PTPRZ1 (protein tyrosine phosphatase, receptor-type, Z polypeptide 1) 
gene. The PTPRZ1 gene is a member of the receptor-type protein tyrosine phosphatase 
family. Although this gene is not in the MAPK signaling pathway, other genes from its 

FIGURE 7.5  Gene–gene interactions in MAPK pathway.
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family are found to have important functions in the MAPK signaling pathway, especially 
for the ERK and JNK cascades. The MAP3K1 gene can be activated by MAP4K4 (mitogen-
activated protein kinase kinase kinase kinase 4), CDC42 (cell division cycle 42), and RAC2 
(Ras-related C3 botulinum toxin substrate 2) genes in the MAPK signaling pathway. The 
MAP4K4 gene has a total of seven significant interactions: one with the CAMKK1 (cal-
cium/calmodulin-dependent protein kinase kinase 1, alpha) gene, two with the ALOX12 
(arachidonate 12-lipoxygenase) gene, and four with the CACNG1 gene. The CDC42 gene 
has one interaction with the CACNG1 gene and two interactions with the IL3RA gene. And 
RAC2 gene has just one interaction with the CACNG1 gene. Overall, the CACNG1 gene has 
significant interactions with genes that can indirectly activate the JNK cascade. Moreover, 
the CACNG1 gene also has one interaction with the MAPK10 (mitogen-activated protein 
kinase 10) gene, a gene that encodes the JNK family members JNK3. These results suggest 
that although the CACNG1 gene is not directly involved in the JNK cascade, it interacts 
with some key genes in the JNK cascade.

7.3 � STATISTICS FOR TESTING GENE–GENE AND  
GENE–ENVIRONMENT INTERACTION FOR A QUALITATIVE 
TRAIT WITH NEXT-GENERATION SEQUENCING DATA

The critical barrier in interaction analysis for next-generation sequencing (NGS) data is 
that the traditional pair-wise interaction analysis that is suitable for common variants is 
difficult to apply to rare variants because of their prohibitive computational time, large 
number of tests, and low power. The great challenges for successful detection of inter-
actions with NGS data are (1) the demands in the paradigm of changes in interaction 
analysis, (2) severe multiple testing, and (3) heavy computations.

The current paradigm of pair-wise interaction analysis is the lack of power to detect 
interaction between rare variants in a population due to the low frequencies of the rare 
variants. Interactions may be present in only a few samples, or even no sampled individu-
als at all will display the interaction effects. Although we can observe a large effect from a 
few pairs of interactions in a few samples, the interaction effects of the rare variants in the 
population are small due to their low frequencies. Large discrepancies in the number of 
observations between different combinations of rare variants will cause serious problems in 
identifying interactions in the population.

The development of novel concepts and statistics for testing interaction between rare 
variants and between rare and common variants, which can reduce the dimensionality 
of the data, the number of tests, and the time of computations and improve the power to 
detect interaction, are needed. To meet this challenge, we first introduce a strategy that 
changes a basic unit of interaction analysis from a pair of SNPs to a pair of genes (or 
genomic regions) (Peng et al. 2010). We take a gene as a basic unit of the interaction analy-
sis and collectively test for interaction between all possible pairs of SNPs within two genes. 
This new paradigm of interaction analysis has two remarkable features. First, it uses all 
information in the gene to collectively test for interaction between multiple SNPs within 
the gene. Therefore, it not only can increase the power but also can reduce false-positive 
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rates due to sampling variance caused by the low frequency of the rare variants. Second, it 
will largely reduce the number of tests and will alleviate multiple testing problems, which 
are more severe in interaction analysis than in association studies.

Functional data analysis techniques are then introduced as a major tool for developing 
statistics to implement this new paradigm for interaction analysis with NGS data. A test 
for interaction between two genes is formulated as an interaction test in the functional 
logistic regression model. In the functional logistic regression model, the genotype score 
functions (genetic variant profiles) are defined as a function of the genomic position of the 
genetic variants rather than a set of discrete genotype values, and the logit transform of the 
probability of an individual being affected is predicted by genotype score functions with 
their interaction terms. Functional logistic regression is a natural extension of the standard 
logistic regression for traditional interaction analysis (Zhao et al. 2016).

7.3.1 � Multiple Logistic Regression Model for Gene–Gene Interaction Analysis

Recall the genotype-odds-ratio-based model for testing interaction between two SNPs. 
Consider two loci: G and H. Assume that the codes G = 1(G = 0) and H = 1(H = 0) denote 
whether an individual is a carrier (or noncarrier) of the susceptible genotype at the loci 
G and H, respectively. Let D denote disease status where D = 1(D = 0) indicates an affected 
(or unaffected) individual. Recall the logistic model (7.70)
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The model (7.80) for testing interaction between two loci can be extended to a multilocus 
interaction model. Consider two genomic regions, [a1, b1]  and  [a2, b2]. Let xij be the indica-
tor for the genotype at the jth SNP of the ith individual. The multilocus interaction model is
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(7.81)

where
μ is an overall mean
wim is the covariate
ηm is the coefficient associated with the covariate
αj is the main genetic additive effect of the jth SNP
γjl is an interaction effect between the jth SNP and lth SNP
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The right side of Equation 7.81 can be written in a vector form:
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The logistic model (7.83) has the form (8.6). The fast parameter estimation using proximal 
methods will be discussed in Chapter 8.

7.3.2 � Functional Logistic Regression Model for Gene–Gene Interaction Analysis

As in previous chapters, we use genetic variant profiles that will recognize information 
contained in the physical location of the SNP as a major data form. The densely distributed 
genetic variants across the genomes in large samples can be viewed as realizations of a 
Poisson process. The densely typed genetic variants in a genomic region for each individual 
are so close that these genetic variant profiles can be treated as observed data taken from 
curves. The genetic variant profiles are called functional.

We first define the genotypic function. Consider two genomic regions, [a1, b1] and [a2, b2]. 
Let xi(t) and xi(s) be genotypic functions of the ith individual defined in the regions [a1, b1] 
and [a2, b2], respectively. Let t and s be a genomic position in the first and second genomic 
regions, respectively. Define a genotype profile, xi(t), of the ith individual as
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(7.84)

which is a widely used indicator variable for a genotype at an SNP. The logistic regres-
sion model (7.81) for modeling main effects and interaction effects at multiple loci can be 
adapted for testing interaction between two regions:
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where μ , wim, and ηm are defined as before, αj is the main genetic additive effect of the jth SNP 
in the first genomic region, βl is the main genetic additive effect of the lth SNP in the second 
genomic region, γjl is an interaction effect between the jth SNP in the first genomic region 
and the lth SNP in the second genomic region, and xi(tj) and zi(sl) are indicator variables for 
the genotypes at the jth SNP and the lth SNP as defined in Equation 7.84, respectively.

Next we extend the logistic regression model (7.85) to the functional logistic regression 
for modeling main and interaction effects. We begin with reviewing some functional data 
analysis results. By Karhunen–Loeve expansion (Ash and Gardner 1975), we have
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(7.86)

where ϕj(t) and ψk(s) are sequences of orthonormal basis functions. The functional princi-
pal scores are defined by
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We extend the traditional logistic regression model (7.81) to the following functional logis-
tic regression model for gene–gene interaction analysis:
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(7.87)

where
α(t) and β(s) are the putative genetic additive effects of two SNPs located at the genomic 

positions t and s, respectively
γ(t, s) is the putative interaction effect between two SNPs located at the genomic posi-

tions t and s

Thus, πi is given by
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Substituting Equation 7.86 into Equation 7.87, we obtain
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Let a a fj j
T

t t dt= ( ) ( )ò , b b yk k
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Equation 7.88 can be reduced to
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Then, we have
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The traditional odds-ratio concept defined for a locus can also be extended to the 
genomic region. We assume that the code G = 0 denotes that an individual is a noncarrier 
of the susceptible genotypes across the first genomic region and that G = 1 indicates that 
an individual carries at least one susceptible genotype in the first genomic region. We can 
similarly define H = 1 (H = 0) for the second genomic region. Let D denote disease status 
where D = 1 (D = 0) indicates an affected (unaffected) individual. For the convenience of 
discussion, the genotype function x(t) is also coded as a binary function indicating pres-
ence (x(t) = 1) or absence x(t) = 0) of the risk genotype at the genomic position t. Thus, G = 0 
represents that x(t) = 0, ∀ t ∈ [a1, b1] and G = 1 represents that x(t0) = 1 at least at one genomic 
position, t0. We can similarly interpret H for the second genomic region. The odds-ratio 
associated with the first genome region is defined as
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(7.91)

Similarly, the odds-ratio associated with the second genomic region is defined as
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The odds-ratio associated with susceptibility in both the first and second genomic regions 
is then computed as
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Define a multiplicative interaction measure between two genomic regions as
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If we assume that each genomic region has only one SNP, then Equations 7.91 through 7.93 
are reduced to
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which are consistent with the standard results for traditional analysis of interaction between 
two SNPs.
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7.3.3 � Statistics for Testing Interaction between Two Genomic Regions

Assume that the total number of individuals in cases and controls is n. Let yi , i = 1 , 2 ,  …  , n 
denote the disease status of the ith individual. A value of 1 (yi = 1) is used to indicate 
“disease” and a value of 0 (yi = 0) to indicate “normal.” From Equation 7.90, it follows that
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The likelihood function is given by
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The maximum likelihood method will be used to estimate parameters b. Let 
W W Wn

T= [ ]1 � . The variance–covariance matrix of the estimate b̂ is given by

	 Var ˆ ,b W DWT( ) = ( )-1

	 (7.97)

where D = diag(π1,  … , πn).
Now we study to test for interaction between two genomic regions (or genes). Formally, 

we investigate the problem of testing the following hypothesis:

	 g t s t a b s a b, , ,( ) = " Î[ ] Î[ ]0 1 1 2 2, , ,

which is equivalent to testing the hypothesis in Equation 7.90:

	 g = 0.

Let Λ be the matrix corresponding to the parameter γ of the variance matrix Var b̂( ) in 
Equation 7.97. Define the test statistic for testing the interaction between two genomic 
regions, [a1, b1] and [a2, b2], as

	 TI
T= -ˆ ˆ.g gL 1

	 (7.98)

Then, under the null hypothesis H0 : γ = 0, TI is asymptotically distributed as a central c JK( )
2

distribution.

7.4 � STATISTICS FOR TESTING GENE–GENE AND GENE–ENVIRONMENT  
INTERACTION FOR QUANTITATIVE TRAITS

Epistasis is a biologically important component of genetic architecture of quantitative traits 
(Mackay 2014). Epistasis analysis raises great challenges in statistics and computations. The 
statistical challenge for genome-wide interaction analysis arises from the multiple statistical 
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tests. The computational challenge is to require a prohibitive amount of computational time. 
It was recently reported that the average number of SNPs per kb in the 202 drug target genes 
sequenced in 12,514 European subjects is about 48 SNPs (Nelson et al. 2012). The total 
number of all possible pairs of SNPs across the genome for large sample sizes can reach as 
many as 1016. The dimension of whole-genome sequencing is extremely high. Suppose that 
5000 pair-wise tests can be finished in 1 s. All possible pair-wise interaction tests would take 

about 1 04 10

5000 60 60 24 365
6580

16. ´
* * * *( )

=  years to finish.

Although many statistical methods for epistasis analysis of quantitative traits have been 
developed, regression-type methods are the core methods for detecting epistasis in quanti-
tative genetic analysis (Cordell 2009). In this section, we will first introduce the Kempthorne 
model for quantifying genetic additive × additive, additive × dominance, dominance × 
additive, and dominance × dominance epistasis effects, assuming both unlinked and linked 
loci. Then, we will study the single-variate and multivariate regression models for epistasis 
analysis of single and multiple quantitative traits.

The multivariate regression methods were originally designed to detect epistasis for 
common variants (Steen 2011) and are difficult to be applied to rare variants for their 
high type 1 error rates and low power to detect interaction between rare variants. To 
address a critical barrier in the detection of gene–gene interactions with NGS data, 
similar to interaction analysis for qualitative traits, we take a genome region (or gene) 
as a basic unit of interaction analysis and use all the information that can be accessed 
to collectively test for interaction between all possible pairs of SNPs within two genome 
regions (or genes). This will shift the paradigm of interaction studies from pair-wise 
interaction analysis to region–region (gene–gene) interaction analysis where we col-
lectively test for interaction between two sets of loci within genomic regions or genes. 
The gene-based epistasis analysis methods were then mainly formulated as functional 
regression models (FRG) (Ramsay and Silverman 2005) with scalar response where 
the genotype score functions (genetic variant profiles) are defined as a function of the 
genomic position of the genetic variants rather than a set of discrete genotype values, 
and the quantitative trait is predicted by genotype score functions with their interac-
tion terms.

7.4.1 � Genetic Models for Epistasis Effects of Quantitative Traits

Consider two alleles at each SNP locus. Epistasis effects between two loci are typically mod-
eled by a linear partition of the nine genotypic values in quantitative genetics (Mao et al. 
2006). Assume that locus 1 has alleles A and a, denoted by i and j, and locus 2 has alleles 
B and b, denoted by k and l. Let Gijkl and Pijkl be the genotypic value and probability of the 
individual carrying genotype ij at locus 1 and kl at locus 2, respectively. The Kempthorne 
model of a genotypic value for two loci is

	

Gijkl i j k l ij kl ik il jk jl
= + + + + + + + ( ) + ( ) + ( ) + ( ) +m a a a a d d aa aa aa aa ad(( )
+ ( ) + ( ) + ( ) + ( )

ikl

jkl ijk ijl ijkl
ad da da dd . 	 (7.99)
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Let μ be the mean genotypic value in the population, which can be estimated by

	
m =å

ijkl

ijkl ijklP G .

	
(7.100)

Similarly, we define the marginal mean of genotypic values for individuals carrying specific 
alleles. Let μi be the mean of genotypic values for individuals carrying allele i(i = A, a) and 
μk be the marginal mean of genotypic values for individuals carrying allele k(k = B, b).They 
can be estimated by

	
mi i
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(7.101)
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(7.102)

Next we define μij as the marginal mean of genotypic values for individuals carrying geno-
type ij at locus 1 (j = AA, Aa, aa), μik as the marginal mean of genotypic values for individuals 
carrying allele i at locus 1 and allele k at locus 2 (i = A, a, j = B, b), μikl as the marginal mean of 
genotypic values for individuals carrying allele i at locus 1 and genotype kl at locus 2 (i = A, a, 
kl = BB, Bb, bb), and μijk as the mean of genotypic value for individuals carrying genotype ij at 
locus 1 and allele k at locus 2 (ij = AA, Aa, aa; k = B, b). These quantities can be estimated as
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(7.106)

The Kempthorne model defines genetic additive, dominance, and epistasis effects as devia-
tions from the overall mean. Similar to ANOVA, these variations should satisfy constraints. 
For example, the following constraints should be imposed:
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(7.107)
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where Pi , Pij , Pjk , and Pikl are frequencies of allele i, genotype ij, allele i at locus 1, allele k at locus 
2, allele i at locus 1, and genotype kl at locus 2, respectively. Under these constraints, we 
can use least square methods or simply multiply some relevant frequencies and summarize 
them to solve the problem (7.99).

For example, multiplying the frequencies Pijkl on both sides of Equation 7.99 and sum-
marizing the resulting equations, we obtain

	 ijkl

ijkl ijklP G Gå = =¼. .m
	

(7.108)

By similar arguments, we obtain

	 PG P Pi i i i i¼ = +m a ,

which implies

	 a mi iG= -¼ .	 (7.109)

Similarly, we can obtain

	 a m mk k= - ,	 (7.110)

	 d m m a aij ij i j= - - - ,	 (7.111)

	 d m m a akl kl k l= - - - ,	 (7.112)

	 aa m m a a( ) = - - -
ik ik i k ,	 (7.113)

	 ad m m a a a d aa aa( ) = - - - - - -( ) - ( )ikl ikl i k l kl ik il
,	 (7.114)

	 da m m a a a d aa aa( ) = - - - - - -( ) - ( )ijk ijk i j k ij ik jk
,	 (7.115)
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If we assume Hardy–Weinberg equilibrium (HWE) and linkage equilibrium, we have 
Pij = PiPj , Pkl = PKPl , Pik = PiPk , Pil = PiPl , Pjl = PjPl , and Pjk = PjPk. Under HWE, Equation 7.109 
is reduced to
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where

	 a m m m1 = + -( ) -P P P PA AA a A Aa a aa 	 (7.118)

is often referred to as a substitution effect or additive effect.
By a similar calculation, we have

	 a aa AP= - 1.	 (7.119)

Equations 7.117 through 7.119 can be extended to the second locus:
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By the similar argument, we can show that
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Now we calculate the additive × additive interaction effects.
It follows from Equation 7.113 that

	 aa m m a a( ) = - - -
AB AB A B .	 (7.122)

Note that we can have
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Similarly, we have
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(7.124)

The overall mean μ can be calculated by
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Substituting Equations 7.117, 7.120, 7.123 through 7.125 into Equation 7.122 gives

	 aa g( ) =
AB a b AAP P ,	 (7.126)

where

	

g m m m mAA A B AABB A b B AABb A b AAbb a A B AaBB a bP P P P P P P P P P P P= + -( ) - + -( ) + mm
m m m

aabb

a A b B AaBb a A b Aabb a B aaBB a bP P P P P P P P P P P P+ -( ) -( ) - -( ) - - - BB aaBb( )m .	 (7.127)

The measure γAA is often referred to as an additive × additive interaction effect.
Similarly, we have
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We can show that additive × dominance interaction effects are (Exercise 7.15)
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(7.129)

where γAD is referred to as an additive × dominance interaction effect.
Similarly, dominance × additive interaction effects are given by
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(7.130)

where γDA is called a dominance × additive interaction effect. Finally, we give the formula 
for the calculation of dominance × dominance interaction effects:
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(7.131)

where γDD is called a dominance × dominance interaction effect.
These formulas lay foundation for regression model for interaction analysis.
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7.4.2 � Regression Model for Interaction Analysis with Quantitative Traits

We can extend the regression model in Section 4.1.3 to include the interaction term to 
implement the interaction models for a quantitative trait investigated in the previous sec-
tion. Consider two loci, A with two alleles, A and a, and B with two alleles, B and b. Let 
PA , Pa , PB, and Pb be frequencies of alleles A , a , B, and b, respectively. Assume that n indi-
viduals are sampled. Let Yi be a phenotypic value of the ith individual. A simple regression 
model for a quantitative trait is given by
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g g
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++ +Z Zi i DD i1 2g e , 	 (7.132)

where μ is an overall mean, εi are independent and identically distributed normal variables 
with zero mean and variance se
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(7.133)

We add a constant −Pa + PA into Xi1. Then, the indicator variable will be transformed to
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which is a widely used indicator variable for additive effect in quantitative genetic analysis.
To show that the models (7.132) and (7.133) implement the genetic main and interaction 

effect models investigated in Section 7.4.1, we check (αα)AABB. In the model (7.132), when 
the genotypes are AA and BB at locus 1 and locus 2, respectively, the coefficient before γAA 
is Xi1Xi2 = 4PaPb and the additive × additive interaction effect for these genotypes is 4PaPb. 
From Equation 7.126, it follows that the additive × additive interaction effect for these gen-
otypes is 4(αα)AB = 4PaPbγAA. They are exactly the same.

Next we study to use regression to model interactions between two genomic regions. 
Consider two genomic regions, [a1, b1]  and  [a2, b2]. Assume that there are k1 SNPs 
(A1,  … , Ak1) in the first genomic region and k2 SNPs (B1,  … , Bk2) in the second genomic 
region. Let PAj and Paj be the frequencies of alleles Aj and aj at the SNP Aj in the first genomic 
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region, respectively. Similarly, let PBj and Pbj be the frequencies of alleles Bj and bj at the SNP 
Bj in the second genomic region, respectively. Define indicator variables
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A regression model for interaction analysis is defined as
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(7.134)

where μ is an overall mean, a j
1 is the main genetic additive effect of the jth SNP in the 

first genomic region, al
2 is the main genetic additive effect of the jth SNP in the sec-

ond genomic region, b j
1 is the main genetic dominance effect of the jth SNP in the first 

genomic region, bl
2 is the main genetic dominance effect of the lth SNP in the second 

genomic region, gAA
jl  is an additive × additive interaction effect between the jth SNP in 

the first genomic region and the lth SNP in the second genomic region, gAD
jl  is the additive × 

dominance interaction effect between the jth SNP in the first genomic region and the lth 
SNP in the second genomic region, gDA

jl  is the dominance × additive interaction effect 
between the jth SNP in the first genomic region and the lth SNP in the second genomic 
region, gDD

jl  is the genetic dominance × dominance interaction effect between the jth SNP 
in the first genomic region and the lth SNP in the second genomic region, and εi are inde-
pendent and identically distributed normal variables with a mean of zero and variance σ2. 
Test statistics for testing the gene–gene interaction for the multiple regression model will 
be discussed in next section.

7.4.3 � Functional Regression Model for Interaction Analysis 
with a Quantitative Trait

7.4.3.1 � Model
Consider two genomic regions, [a1, b1] and [a2, b2]. Let xi(t) and xi(s) be genotypic func-
tions of the ith individual defined in the regions [a1, b1] and [a2, b2], respectively. Let yi be 
the phenotypic value of a quantitative trait measured on the ith individual. Let t and s be 
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a genomic position in the first genomic region and second genomic regions, respectively. 
Define a genotype profile xi(tj) and zi(tj) of the ith individual as
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where PAj and Paj are the frequencies of alleles Aj and aj at the SNP Aj located in tj of the first 
genomic region, respectively. We can similarly define xi(sl) and zi(sl) for the SNP Bl located 
in sl of the second genomic region.

A functional regression model for a quantitative trait can be defined as

	

y t x t dt s x s ds t z t dt s zi

T

i

S

i

T

i

S

i= + ( ) ( ) + ( ) ( ) + ( ) ( ) + ( )ò ò ò òa a b d d0
1 2 ss ds

t s x t x s dtds t s x t z s dt

T S

AA i i

T S

AD i i

( )

+ ( ) ( ) ( ) + ( ) ( ) ( )òò òòg g, , dds

t s z t x s dtds t s z t z s dtds

T S

DA i i

T S

DD i i+ ( ) ( ) ( ) + ( ) ( ) ( ) +òò òòg g, , eei ,

	
(7.135)

where α0 is an overall mean; α(t) and β(s) are genetic additive effects of two putative QTLs 
located at the genomic positions t and s, respectively; δ1(t) and δ2(s) are genetic domi-
nance effects of two putative QTLs located at the genomic positions t and s, respectively; 
γAA(t, s) is the additive × additive interaction effect between two putative QTLs located at 
the genomic positions t and s; γAD(t, s), γDA(t, s), and γDD(t, s) are the additive × dominance, 
dominance × additive, dominance × dominance interaction effects between two putative 
QTLs located at the genomic positions t and s, respectively; xi(t), xi(s), zi(t), and zi(s) are 
genotype profiles; and εi are independent and identically distributed normal variables with 
a mean of zero and variance se

2.

7.4.3.2 � Parameter Estimation
We assume that both phenotypes and genotype profiles are centered. The genotype profiles 
xi(t) and xi(s) are expanded in terms of orthonormal basis function as
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(7.136)
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where ϕj(t), ψk(s), φl(t), and θm(s) are sequences of orthonormal eigenfunction functions. 
The expansion coefficients ξij and ηik are estimated by
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(7.137)

In practice, numerical methods for integrals will be used to calculate the expansion 
coefficients.

Substituting Equation 7.136 into Equation 7.135, we obtain
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(7.138)

After some algebra, Equation 7.138 can be reduced to
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where
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The parameters a b d dj k, , ,l l
1 2, g g gjk

AA
jm
AD

lk
DA, , , and g lm

DD are referred to as genetic additive, 
dominance effects at the first and second genomic regions and additive × additive, additive × 
dominance, and dominance × dominance interaction effect scores. These scores can also be 
viewed as the expansion coefficients of the genetic effect functions with respect to ortho-
normal basis functions:
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Define vectors for phenotypes and genetic effects:
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Define regression coefficient matrices:
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If we take the final terms in the model (7.139), Equation 7.139 can be reduced to
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Therefore, the interaction models with integrals are transformed to the traditional multi-
variate regression models (7.140) for interaction analysis. The standard least square estima-
tor of b is given by
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	 (7.142)

and its variance is
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Substituting the estimated genetic effect scores ˆ , ˆa bj k, ˆ , ˆd dl m
1 2 , ĝ jk

AA, ˆ , ˆg gjm
AD

lk
DA, and ĝ lm

DD into 
Equation 7.140 yields the estimated genetic additive effect and additive × additive interac-
tion effect functions ˆ , ˆa bt s( ) ( ) , ˆ , ˆ ,d d1 2t s( ) ( )  ĝAA t s,( ), ˆ , ˆg gAD DAt s t s, ,( ) ( ), and ĝDD t s,( ).

7.4.3.3 � Test Statistics
An essential problem in genetic interaction studies of the quantitative trait is to test the 
interaction between two genomic regions (or genes). Formally, we investigate the problem 
of testing the following hypothesis:
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which is equivalent to testing the hypothesis

	 g g g g gAA AD DA DD= = = = =0 0 0 0 0, , , , ,and or

where γ is defined as in Equation 7.141.
Let Λ be the matrix corresponding to the parameter γ of the variance matrix Var b̂( ) in 

Equation 7.143. Define the test statistic for testing the interaction (including additive × 
additive, additive × dominance, dominance × additive, and dominance × dominance inter-
action effects) between two genomic regions, [a1, b1] and [a2, b2], as

	 TI
T= -ˆ ˆ.g gL 1

	 (7.144)

Then, under the null hypothesis H0 : γ = 0, TI is asymptotically distributed as a central 
c JK JM LK LM+ + +( )

2  distribution if JK + JM + LK + LM components are taken in the expansion 
Equation 7.139.

7.4.3.4 � Simulations and Applications to Real Example
For simplicity, throughout this section, we consider only the additive effect and the additive × 
additive interaction effect (Zhang et al. 2014).

7.4.3.4.1  Null Distribution of Test Statistics  In the previous section, we have shown that the 
test statistics TI is asymptotically distributed as a central c JK( )

2  distribution when we consider 
only the additive × additive interaction effect. To examine the null distribution of test statis-
tics, we performed a series of simulation studies to compare their empirical levels with the 
nominal ones (Zhang et al. 2014).

We calculated the type 1 error rates for rare variants and both common and rare variants. 
We assumed the model to generate a phenotype.

Model (with marginal effects of two genes):
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(7.145)

where
xij and zil are indicator variables for the genotype at the jth SNP in the first gene and at the 

l the SNP in the second gene, respectively
αj = (1 − pj)(r1 − 1)
βl = (1 − pl)(r2 − 1)
pj and pl are the frequencies of minor allele at the jth SNP in the first gene and at the lth 

SNP in the second gene, respectively
r1 and r2 are risk parameters and are equal to 1.2 and 1.4, respectively

We assume 20% of variants to be risk variants.
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A total of 1,000,000 chromosomes by resampling from 1911 individuals with variants in four 
genes selected from the NHLBI’s Exome Sequencing Project (ESP), of which the descriptions of 
the four genes are summarized in Table 7.1, were generated. The number of sampled individuals 
range from 500 to 5000, and 5000 simulations were repeated. Table 7.2 summarized the average 
type 1 error rates of the statistics for testing interaction between two genes with rare variants and 
marginal effects at both genes over six pairs of genes at the nominal levels α = 0.05, α = 0.01, and 
α = 0.001. Table 7.2 showed that the type 1 error rates of the test statistics for testing for interac-
tion between two genes with marginal effects were not appreciably different from the nominal 
α levels. These results are also true for the genes without marginal effects (Zhang et al. 2014).

7.4.3.4.2  Power Simulations  Simulations can also be used to evaluate the power of the func-
tional regression models for testing the interaction between two genes or genomic regions 
for a quantitative trait. A true quantitative genetic model is given as follows. Consider H 
pairs of quantitative trait loci (QTL) from two genes (genomic regions). Let Qh1 and qh1 
be two alleles at the first QTL and Qh2 and qh2 be two alleles at the second QTL for the H 
pair of QTLs. Let uijkl be the genotypes of the uth individual with ij = Qh1Qh1, Qh1qh1, qh1qh1 
and kl = Qh2Qh2, Qh2qh2, qh2qh2 and guijkl be its genotypic value. The following multiple linear 
regression is used as a genetic model for a quantitative trait:

	
y g u nu

h

H

u
h

uijkl= + = ¼
=
å

1

1 2e , , , , ,

where
gu

h
ijkl

 is a genotypic value of the hth pair of QTLs
εu is distributed as a standard normal distribution N(0, 1)

TABLE 7.1  Description of the Four Genes

Total Number 
of SNPs

Number of 
Rare Variants Median MAF Coding Length

PLCH2 129 114 2.62E−04 29,212
PANK4 101 94 2.62E−04 18,062
TNFRSF14 25 23 2.62E−04 7,462
KANK4 69 55 2.62E−04 83,247

TABLE 7.2  Average Type 1 Error Rates of the Statistics for 
Testing for Interaction between Two Genes with Rare Variants 
and Marginal Effects at Both Genes over Six Pairs of Genes

Sample Size 0.001 0.01 0.05

  500 0.0012 0.0093 0.0450
1000 0.0011 0.0102 0.0474
2000 0.0010 0.0105 0.0505
3000 0.0010 0.0094 0.0465
4000 0.0010 0.0114 0.0492
5000 0.0010 0.0092 0.0499
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Here the result is presented for the Dominant or Dominant (Dom ∪ Dom) interaction 
model. Readers who are interested in other interaction models such as Dominant and 
Dominant (Dom ∩ Dom), Recessive or Recessive (Rec ∪ Rec), and Threshold model 
are referred to the paper (Zhang et al. 2014). We assume that the parameter r varies 
from 0 to 1.

Figure 7.6 showed power curves of three statistics: the function regression, the regres-
sion on PCA, and the pair-wise interaction tests where permutations were used to adjust 
for multiple testing for testing interaction between two genomic regions that consist of 
rare variants for a quantitative trait as a function of the relative risk parameter r at the 
significance level α = 0.05 under the Dom ∪ Dom model, assuming sample sizes of 2000. 
Figure 7.6 showed that the functional regression model had more power to detect interac-
tion than the regression on PCA and traditional pair-wise interaction tests.

7.4.3.4.3  Real Example  To illustrate the application of functional regression for testing 
the interaction, we present a real example. The dataset that included 2225 individuals of 
European origin was from the NHLBI’s Exome Sequencing Project. The trait we consid-
ered was high-density lipoprotein (HDL). The logarithm of HDL was taken as a trait value. 
The total number of genes being tested for interactions, which included both common and 
rare variants, was 14,503. A P-value for declaring significant interaction after applying the 
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FIGURE 7.6  Power curves of three statistics: the function regression, the regression on PCA, and 
the pair-wise interaction tests.
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Bonferroni correction for multiple tests was 4.75 × 10−10. We identified 27 pairs of genes 
showed significant evidence of interaction with P-values <4.58 × 10−10 by the functional 
regression additive × additive interaction model (Zhang et al. 2014). We also identified 130 
pairs of genes with P-values <9.87 × 10−9. The pair-wise interactions between rare and rare 
variants and between rare and common variants were often observed, but the significant 
pair-wise interactions between common and common variants were less observed. We also 
observed interacting genes formed an interaction network. A total of 31 genes—GALNT2, 
RPA2, GALNT2, PCSK9, GALNT3, APOB, GCKR, HMGCR, MLXIPL, BAZ1B, TBL2, LPL, 
ABCA1, APOA5, APOA4, APOA1, FADS2, FADS3, MADD, FOLH1, MVK, MMAB, LIPC, 
CETP, CTCF, PRMT7, GALNT1, LIPG, LDLR, DNAH11, and APOE—that were associated 
with serum lipid levels in recent GWAS (Aulchenko et al. 2009) were tested for additive 
× additive interactions. All 31 genes showed mild interaction with more than one gene 
(P-value range from 7.81 × 10−8 to 9.97 × 10−5). The interacting genes formed networks 
(Figure 7.7) (Zhang et al. 2014).

7.4.4 � Functional Regression Model for Interaction Analysis 
with Multiple Quantitative Traits

7.4.4.1 � Model
Assume that n individuals are sampled. Let yik, k = 1 , 2 ,  …  , K, be the kth trait values of the 
ith individual. Consider two genomic regions [a1, b1] and [a2, b2]. Let xi(t), zi(t), xi(s), and 
zi(s) be genotypic functions for additive and dominance effects of the ith individual defined 
in the regions [a1, b1] and [a2, b2], respectively, and defined as that in Section 7.4.3.1. Let 
yi = [yi1,  … , yiK]T be the vector of the trait values measured on the ith individual. Let t and s 
be a genomic position in the first and second genomic regions, respectively.

The functional regression model for a quantitative trait can be defined as (Zhang et al. 2016)

	

y t x t dt s x s ds tik k
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where α0k is an overall mean; υih is a covariate; λkh is the regression coefficient associated 
with the covariate; αk(t) and βk(s) are genetic additive effects of two putative QTLs located at 
the genomic positions t and s, respectively; dk t1 ( ) and dk s2 ( ) are genetic dominance effects of  
two putative QTLs located at the genomic positions t and s, respectively; γAAk(t, s), γADk(t, s), 
γDAk(t, s), and λDDk(t, s) are the additive × additive, additive × dominance, dominance  × 
additive, and dominance × dominance interaction effects between two putative QTLs 
located at the genomic positions t and s for the kth trait, k = 1 ,  …  , K, respectively; and εik 
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are independent and identically distributed normal variables with a mean of zero and cova-
riance matrix Σ. Consider that covariates in the model (7.146) allow incorporating PCA 
scores for population stratification, sex, age, BMI, and other biomarkers into the model.

7.4.4.2 � Parameter Estimation
We assume that both phenotypes and genotype profiles are centered. The genotype profiles 
xi(t), xi(s), zi(t), and zi(s) are expanded in terms of the orthonormal basis function as that 
in Equation 7.136. The larger the number of variants in the genes, the more accurate the 
eigenfunction expansion. If the number of variants is less than three, the eigenfunction 
expansion of the genotypic profiles is impossible. The multivariate functional regression 
(MFRG) can only be used for a gene with more than three variants.

Substituting an expansion into Equation 7.136 gives
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After some algebra, Equation 7.147 can be further reduced to
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(7.148)

where
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The parameters a b d d g g gkj kl ku km kjl
AA

kjm
AD

kul
DA, , , , , ,1 2 , and gkum

DD  are referred to as genetic additive, 
dominance, and additive × additive, additive × dominance, dominance × additive, and 
dominance × dominance interaction effect scores for the kth trait. These scores can also be 
viewed as the expansion coefficients of the genetic effect functions with respect to ortho-
normal basis functions:
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Equation 7.148 can be approximated by (Appendix 7C)
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Therefore, we transform the original functional regression interaction model into the clas-
sical multivariate regression interaction model by eigenfunction expansions. Multivariate 
regression analysis can directly be used for solving problem (7.149). The standard least 
square estimators of B and the variance covariance matrix Σ are respectively given by

	
ˆ ,B W W W YT T= ( )-1

	 (7.150)

	
ˆ .S = -( ) -( )1

n
Y WB Y WB

T

	
(7.151)

Denote the last (J + U)(L + M) row of the matrix (WTW)−1WT by A. Then, the estimator of 
the parameter γ is given by

	 ˆ .g = AY 	 (7.152)
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The vector of matrix γ can be written as

	 vec vecˆ .g( ) = Ä( ) ( )I A Y 	 (7.153)

By the assumption of the variance matrix of Y, we obtain the variance matrix of vec(Y):

	 var .vec Y In( )( ) = ÄS 	 (7.154)

Thus, it follows from Equations 7.153 and 7.154 that
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	 (7.155)

7.4.4.3 � Test Statistics
An essential problem in genetic interaction studies of the quantitative traits is to test the 
interaction between two genomic regions (or genes). Formally, we investigate the problem 
of testing the following hypothesis:
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which is equivalent to testing the null hypothesis:

	 H0 0: .g =

Define the test statistic for testing the interaction between two genomic regions, [a1, b1] and 
[a2, b2], with K quantitative traits as

	 TI
T= ( ) ( )-( .vec vecg gˆ ˆL 1

Then, under the null hypothesis H0 : γ = 0, TI is asymptotically distributed as a cen-
tral c K J U L M+( ) +( )( )

2  distribution if (J + U)(L + M) components are taken in the expansion 
Equation 7.136.

Other test statistics for multivariate regression analysis introduced in Chapter 5 can be 
applied here. For example, we can also develop likelihood-ratio-based statistics for testing 
interaction.

Setting W W W= [ ]1 2 , we can write the model as
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Under H0 : γ = 0, we have the model:
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The likelihood for the full model and reduced model are, respectively, given by
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The likelihood-ratio-based statistic for testing interaction between two genomic regions 
with multivariate traits is defined as
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Again, under the null hypothesis H0 : γ = 0, TIΛ is asymptotically distributed as a cen-
tral c K J U L M+( ) +( )( )

2  distribution if (J + U)(L + M) components are taken in the expansion 
Equation 7.136.

By similar arguments, we can also test individual additive × additive, additive × domi-
nance, dominance × additive, and dominance × dominance interactions.

7.4.4.4 � Simulations and Real Example Applications
For simplicity, throughout this section, we consider only additive effect and additive × addi-
tive interaction effect with multiple traits (Zhang et al. 2016).
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7.4.4.4.1  Type 1 Error Rates  To validate the null distribution of test statistics, we calculated 
the type 1 error rates for rare alleles. We assume the null model with marginal genetic 
effects (additive model) at both genes:
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Pj and ql are frequencies of alleles Aj and Bl, respectively; rpk and rqk are risk parameters of 
the kth trait for the SNPs in the first and second genes, respectively, and randomly selected 
from 1.1 to 1.6; f0 is a baseline penetrance and set to 1; and ε are defined as before, εi is dis-
tributed as
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A total of 1,000,000 chromosomes by resampling from 2018 individuals with variants in five 
genes (TNFRSF14, GBP3, KANK4, IQGAP3, GALNT2) selected from the NHLBI’s Exome 
Sequencing Project (ESP) were generated. We randomly selected 20% of SNPs as causal 
variants. The number of sampled individuals from populations of 1,000,000 chromosomes 
ranged from 1000 to 5000. A total of 5000 simulations were repeated. Table 7.3 presented 
average type 1 error rates of the test statistics for testing the interaction between two genes 

TABLE 7.3  Average Type 1 Error Rates of the Statistic 
for Testing Interaction between Two Genes with Marginal 
Effects at Two Genes Consisting of Only Rare Variants with 
10 Traits over 10 Pairs of Genes

Sample Size 0.05 0.01 0.001

1000 0.0604 0.0125 0.0158
2000 0.0512 0.0105 0.0114
3000 0.0486 0.0101 0.0011
4000 0.0477 0.0098 0.0011
5000 0.0458 0.0093 0.0009
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with marginal effect at both genes consisting of only rare variants with 10 traits over 10 pairs 
of genes selected from the above five genes at the nominal levels α = 0.05, α = 0.01, and 
α = 0.001. The statistics for testing interaction between two genomic regions have the simi-
lar type 1 error rates in the other two scenarios: with marginal genetic effect at one gene or 
without marginal genetic effects at two genes (data not shown). These results clearly showed 
that the type 1 error rates of the MFRG-based test statistics for testing interaction between 
two genes with multiple traits with or without marginal effects were not appreciably differ-
ent from the nominal α levels.

7.4.4.4.2  Power Simulations  To provide some guidance for interaction analysis with mul-
tiple traits, we used simulated data to estimate the power of the test statistics for detecting 
the interaction between two genes for two quantitative traits (Zhang et al. 2016). Consider 
H pairs of quantitative trait loci (QTL) from two genes (genomic regions). Let Qh1 and qh1 be 
two alleles at the first QTL and Qh2 and qh2 be two alleles at the second QTL for the H pair 
of QTLs. Let uijkl be the genotypes of the uth individual with ij = Qh1Qh1 , Qh1qh1 , qh1qh1 and 
kl = Qh2Qh2 , Qh2qh2 , qh2qh2 and gmuijkl

 be its genotypic value for the mth trait. The following 
multiple regression is used as a genetic model for the mth quantitative trait:
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Consider interactions model: (1) Dominant or Dominant (Table 7.4). Power simulations 
results for the other three models, (2) Dominant and Dominant, (3) Recessive or Recessive, 
and (4) Threshold model, were given in Zhang et al. (2016). A total of 1,000,000 individu-
als by resampling from 2,018 individuals of European origin with variants in two genes, 
IQGAP3 and ACTN2, selected from the ESP dataset were generated. Twenty percent of the 
variants were selected as causal variants. A total of 2000 individuals were sampled from the 
generated dataset. A total of 1000 simulations were repeated for the power calculation.

The power of the proposed MFRG model is compared with the single trait functional 
regression (SFRG) model, the multivariate pair-wise interaction test, and the regression on 
principal components (PCs). Figure 7.8 presented the power of three statistics for testing 
the interaction between two genomic regions (or genes) with only rare variants as a func-
tion of sample sizes under the Dominant or Dominant model, assuming 20% of the risk is 
due to rare variants and the risk parameter r = 0.05 (Zhang et al. 2016). The results showed 
that (1) the functional regression model had more power than the multivariate point-wise 
regression model and (2) the power of tests with multiple traits was higher than that of 
single trait.
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7.4.4.4.3  Real Example Application  To further illustrate its applications, the multivariate 
functional regression models for testing additive × additive interaction were applied to data 
from the NHLBI’s ESP Project. We consider five phenotypes: HDL, LDL, total cholesterol, 
SBP, and DBP. A total of 2018 individuals of European origin from 15 different cohorts in 
the ESP Project was used in analysis. The rank-based inverse normal transformation of 
the phenotypes was taken as trait values. The total number of genes tested for interactions, 

TABLE 7.4  The Interaction Models

Models First Locus

Second Locus

Qh2
Qh2

Qh2
qh2

qh2
qh2

Dominant or Dominant Qh1
Qh1

r r r
Qh1

qh1
r r r

qh1
qh1

r r 0
Dominant and Dominant Qh1

Qh1
r r 0

Qh1
qh1

r r 0
qh1

qh1
0 0 0

Recessive or Recessive Qh1
Qh1

r r r
Qh1

qh1
r 0 0

qh1
qh1

r 0 0
Threshold Qh1

Qh1
r r 0

Qh1
qh1

r 0 0
qh1

qh1
0 0 0

60005000
Sample sizes

Two-trait FRG
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Two-trait PCA

Dominant or Dominant

Po
w

er

4000300020001000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FIGURE 7.8  Power curves of three statistics for testing interaction of two genes with only rare vari-
ants under Dominant or Dominant as a function of sample sizes.



516    ◾    Big Data in Omics and Imaging: Association Analysis

which included both common and rare variants, was 18,498. Therefore, a P-value for declar-
ing significant interaction after applying the Bonferroni correction for multiple tests was 
2.92 × 10−10. A total of 267 pairs of genes, which were derived from 160 genes, showed sig-
nificant evidence of epistasis influencing five traits with P-values <1.96 × 10−10 and formed 
a large interaction network (Zhang et al. 2016). Among 267 significantly interacted genes 
identified by joint analysis with five traits, we observed only one pair of genes: ST20 and 
SHPK showed epistasis influencing LDL at the genome-wide significance level by univari-
ate analysis of epistasis with the LDL individually (P-value <6.48 × 10−11). However, if we 
release the significance level to P < 5.0 × 10−8, we observed seven pairs of genes showing 
pleiotropic epistasis effects by univariate of epistasis analysis individually (Figure 7.9). This 
demonstrated that although by each individual trait analysis they only showed mild evi-
dence of epistasis, by simultaneous epistasis analysis of multiple correlated traits, the genes 
showed strong evidence of epistasis influencing multiple traits. The results imply that the 
genetic analysis of multiple traits can reveal the complicated genetic structures of the com-
plex traits, which may be missed by univariate genetic analysis.

7.5 � MULTIVARIATE AND FUNCTIONAL CANONICAL CORRELATION 
AS A UNIFIED FRAMEWORK FOR TESTING FOR  
GENE–GENE AND GENE–ENVIRONMENT INTERACTION 
FOR BOTH QUALITATIVE AND QUANTITATIVE TRAITS

In Sections 4.2.2 and 5.4, we introduced canonical correlation analysis (CCA) as a statistical 
framework for testing the association of a gene or genomic region with a quantitative trait 
or multiple quantitative traits. In this section, we will extend CCA from association analysis 
to interaction analysis. We will introduce CCA as a unified framework for testing gene–
gene and gene–environment interaction for both quantitative and qualitative traits with 
both common and rare variants. As we previously pointed out, linear regression analysis 
can be viewed as specific CCA.

C5orf64

HDL

ST20

PAIP2B
CSMD1

GRSF1

IGH

LDL

AGRN

SHPK

SBP DBPTOTCHOL

BANF2

FIGURE 7.9  Observed 7 pairs of genes showing pleiotropic epistasis effects by univariate of epistasis 
analysis individually.
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7.5.1 � Data Structure of CCA for Interaction Analysis

Consider two genomic regions. There are p SNPs and q SNPs in the first and second 
genomic regions, respectively. Assume that n individuals are sampled. For the ith indi-
vidual, two vectors of the genetic variation data (genotypes or functional principal com-
ponent scores) for the first and second genomic regions are denoted by xi = [xi1,  … , xip] and 
zi = [zi1,  … , ziq], respectively. Let ξi = [xi1zi1,  … , xi1ziq,  … , xipzi1,  … , xipziq]. The single-variate 
regression (for a single quantitative trait), multivariate regression (for multiple quantita-
tive traits), and logistic regression (for a qualitative trait) will be used to preprocess the 
genotype data for removing the genetic main effects of two genomic regions before taking 
their residuals for interaction analysis. We start with interaction analysis of a single quan-
titative trait.

7.5.1.1 � Single Quantitative Trait
Before performing single quantitative trait interaction analysis, we first regress the single 
trait on the genotypes of two genomic regions. Let yi be a trait value of the ith individual. 
Consider a regression model:
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(7.156)

where
μ is an overall mean
τim are covariates such as age, sex, and principal component (PC) scores for removing the 

impact of population structure
θm are their corresponding regression coefficients
αj and βl are genetic main effects for the first and second genomic regions, respectively

After the model fits the data, we calculate the residual for each individual:

	
h m t q a bi i

m

M

im m

j

p

ij j

l

q

il ly x z= - - - -
= = =
å å åˆ ˆ ˆ ˆ .

1 1 1 	
(7.157)

Define a vector of a residual and a genetic data matrix:
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7.5.1.2 � Multiple Quantitative Trait
Consider K traits. Let yik be the kth trait values of the ith individual. The multivariate regres-
sion model is
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(7.159)

where
μk is an overall mean of the kth trait
θmk is the regression coefficient associated with the covariate τim

αkj is the main genetic additive effect of the jth genetic variant in the first genomic region 
for the kth trait

βkl is the main genetic additive effect of the lth genetic variant in the second genomic 
region for the kth trait

Let ŷik be the predicted value by the fitted model:
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The residual is defined as

	 hik ik iky y= - ˆ .

Define the residual matrix:
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Data matrix ξ is defined as before.

7.5.1.3 � A Qualitative Trait
To investigate the interaction analysis for a qualitative trait using CCA, we will use logistic 
regression to preprocess data. Consider a logistic regression model:
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(7.160)

where πi is the probability of the ith individual being affected and other parameters are 
defined as in Equation 7.156.
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After we fit the data to the logistic regression model (7.160), we define the residual:

	
h p

p
m t q a bi

i

i m

M

im m

j

p

ij j

l

q

il lx z=
-

- - - -
= = =
å å ålog .

1
1 1 1

ˆ ˆ ˆ ˆ

	
(7.161)

Finally, we define the vector of residuals:
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The genetic data matrix ξ is defined as before.

7.5.2 � CCA and Functional CCA

For the convenience, we assume that K ≤ pq. Define the covariance matrix:
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The solution to CCA starts with defining the R2 matrix (Equation 1.221):

	 R2 1 2 1 1 2= - - -ˆ ˆ ˆ ˆ ˆ ./ /S S S S Shh hx xx xh hh 	 (7.163)

Let

	 W = - -ˆ ˆ ˆ ./ /S S Sxx xh hh
1 2 1 2

	 (7.164)

Suppose that the singular value decomposition (SVD) of the matrix is given by

	 W U V T= L ,	 (7.165)

where Λ = diag(λ1,  … , λd) and d = min(K, pq). It is clear that

	 W W R V VT T= =2 2L .	 (7.166)
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The matrices of canonical covariates are defined as
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The vector of canonical correlations is

	 CC , ,= ¼[ ]l l1 d
T

.	 (7.168)

Canonical correlations between the interaction terms and phenotypes measure the strength 
of the interaction. The CCA produces multiple canonical correlations. But we wish to use a 
single number to measure the interaction. We propose to use the summation of the square 
of the singular values as a measure to quantify the interaction:
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To test the interaction between two genomic regions is equivalent to testing independence 
between ξ and η or testing the hypothesis that each variable in the set ξ is uncorrelated with 
each variable in the set η. The null hypothesis of no interaction can be formulated as

	 H0 0: .Sxh =

The likelihood ratio for testing H0 : Σξη = 0 is

	
L

S
S S

r

i

d

i= = -( )
=
Õ

xx hh
l

1

21 ,
	

(7.170)

which is equal to the Wilks’ lambda Λ defined in the multivariate linear regression model 
in Chapter 5.

This demonstrates that testing for interaction using multivariate linear regression can be 
treated as special case of CCA.

We usually define the likelihood ratio test statistic for testing the interaction as
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For small li
2, TCCA can be approximated by N Nri

i

d

l2

1
=

=å , where r is the measure of inter-
action between two genomic regions. The stronger the interaction, the higher the power 
with which the test statistic can test the interaction.
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Under the null hypothesis H0 : Σξη = 0, TCCA is asymptotically distributed as a cen-
tral cKpq

2 . When the sample size is large, Bartlett (1939) suggests using the following statistic 
for hypothesis testing:

	
T N

d
CCA

i

d

i= - -
+( )é

ë
ê

ù

û
ú -( )

=
å3

2
1

1

2log .l
	

(7.172)

If the functional principal component scores are taken as genetic variants in matrix ξ, then 
the multivariate CCA becomes functional CCA. All previous discussion for the multivari-
ate CCA can be applied to functional CCA.

7.5.3 � Kernel CCA

Kernel CCA is a nonlinear extension of canonical correlation analysis with positive definite 
kernels (Fukumizu et al. 2007). In Section 5.4.2, we study the kernel CCA. Here, we adapt it 
to the interaction analysis. Define two kernels, K(., η) and K(., ξ), and two kernel matrices:
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Let H I
n

n= - 1
11T, 1 = [1, 1,  … , 1]T, In be an n × n dimensional identity matrix. Define the 

centralized kernel matrices:
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Define the corresponding kernel matrix of Σ:
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Define the R2 matrix:

	 R K K K K K K K K K K2 1 2 1 1 2
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Let

	 W K K K K K K= ( ) ( )( )- -� � � � � �
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1 2 1 2/ /
.	 (7.175)

The SVD of the matrix

	 W U V T= L ,	 (7.176)

where Λ = diag(λ1,  … , λd) and d = min(K, pq).
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Then, the above discussion in Section 7.5.2 can be applied here. The test statistic is 
defined as
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or
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Under the null hypothesis of no interaction, the statistic TCCA is asymptotically distributed 
as a central cKpq

2 .

SOFTWARE PACKAGE
The paper (Koo et al. 2015) listed a number of software package for gene–gene and gene–
environment interaction analysis. Software based on functional regression models for a 
single trait and multiple traits can be found in the website https://sph.uth.edu/hgc/faculty/
xiong/software-A.html.

APPENDIX 7A: VARIANCE OF LOGARITHM OF ODDS RATIO

We first consider individuals in controls. Let q = éë ùûP P P PN N N N T

11 12 21 22, , , . Using multinomial 
distribution, we can obtain the variance–covariance matrix of θ:
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Note that
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According to the delta method, the variance of h(θ) can be approximated by
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Similarly, we have
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Therefore, combining the above two equations, we obtain
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APPENDIX 7B: HAPLOTYPE ODDS-RATIO INTERACTION MEASURE
Note that
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Similarly, we have
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Combining Equations 7B.1 through 7B.4, the odds-ratio OR
G G1

1
2
1 is reduced to
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By the similar arguments, we obtain
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Substituting Equations 7B.5 through 7B.7 into Equation 7.73, finally we have
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APPENDIX 7C: PARAMETER ESTIMATION FOR 
MULTIVARIATE FUNCTIONAL REGRESSION MODEL
Substituting expansion into Equation 7.136 gives
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After some algebra, Equation 7C.1 can be further reduced to

	

yik k

h

H

ih kh

j

ij kj

l

il kl

u

iu ku

m

= + + + + +
= =

¥

=

¥

=

¥

å å å åa u l x a h b z d0

1 1 1 1

1

==

¥

=

¥

=

¥

=

¥

=

¥

å

åå åå+ +

1

2

1 1 1 1

t d

x h g x t g

im km

j l

ij il kjl
AA

j m

ij im kjm
AD ++ + +

=

¥

=

¥

=

¥

=

¥

åå åå
u l

iu il kul
DA

u m

iu im kum
DD

ik

1 1 1 1

z h g z t g e ,

	
(7C.2)
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dominance interaction effect scores for the kth trait. These scores can also be viewed as the 
expansion coefficients of the genetic effect functions with respect to orthonormal basis functions:
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Let

	

Y Y Y

Y Y

Y Y

eK

K

n nK

= =
é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

[ , , ] , ,1

11 1

1

0

1

1

…
�

� � �
�

� a == =
é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
é

ë

ê
ê

[ , , ], ,a a u
u u

u u

l
l

l

01 0

11 1

1

1

…
�

� � �
�

�

K

M

n nM

k

k

kMêê

ù

û

ú
ú
ú

= =
é

ë

ê
ê
ê

ù

û

ú
ú
ú

=, [ , , ], ,l l l x
x x

x x
h

h h

1

11 1

1

11 1

…
�

� � �
�

�

K

J

n nJ

LL

n nL

i

i

iJ

U

n

� � �
�

�

�
� �

h h
x

x

x

z
z z

z

1

1

11 1

1

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

=

, ,

��

�
� � �
�

�
z

t
t t

t t
z

z

znU

M

n nM

i

i

iU

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
é

ë

, ,

11 1

1

1

êê
ê
ê

ù

û

ú
ú
ú

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

=

, , ,t
t

t
h

h

h

x

i

i

iM

i

i

iL

AA

1 1

1

� �

G

TT T

n
T

n
T

L J J LÄ

Ä

é

ë

ê
ê
ê

ù

û

ú
ú
ú
=

h

x h

x h x h x h x h1 11 11 11 1 1 11 1 1

�
� � �

� � � � � � ��
� � �

�
x h x h x h x h

x t

x tn n n nL nJ n nJ nL

AD

T T

n
T

n1 1 1 1

1 1é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
Ä

Ä
, G

TT

DA

T T

n
T

n
T

DD

T T

n
T

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
Ä

Ä

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
Ä

,

,G G
z h

z h

z t

z

1 1 1 1

� �
ÄÄ

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=

=

t

g g g

n
T

AA AD DA DD

AAk k
AA

k L
AA

, [ , , , ],

[ , , ,

G G G G G

11 1… …… … … … …, , , ] , [ , , , , , ,g g g g g g gkJ
AA

kJL
AA T

ADk k
AD

k M
AD

kJ
AD

kJM1 11 1 1= AAD T

DAk k
DA

k L
DA

kU
DA

kUL
DA T

DDk k

] ,

[ , , , , , , ] , [g g g g g g g= =11 1 1 11… … … DDD
k M
DD

kU
DD

kUM
DD T

k AAk
T

ADk
T

DAk
T

DD

, , , , , , ] ,

[ , , ,

… … …g g g

g g g g g

1 1

= kk
T T

K k

k

kU

K

k

] , , , [ , , ],g g g d
d

d
d d d

a

= [ ] =

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=

=

1
1

1
1

1

1
1
1 1� � …

aa

a
a a a b

b

b
b b

k

kJ

K k

k

kL

1

1

1

1� … �
é

ë

ê
ê
ê

ù

û

ú
ú
ú

= =
é

ë

ê
ê
ê

ù

û

ú
ú
ú

=, [ , , ], , [ ,…… � …

�
� � �

, ], , [ , ],b d
d

d
d d d

e
e e

e

K k

k

kM

K

K

2

1
2

2

2
1
2 2

11 1

=

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=

=

nn nK1 � e

é

ë

ê
ê
ê

ù

û

ú
ú
ú

.



Interaction Analysis    ◾    527

Equation 7C.2 can be written in a matrix form:
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EXERCISE

Exercise 7.1	 Consider two loci, G1 and G2. Define the disease risk due to genetics as 
hij = P(D|G1 = i, G2 = j), the quasi-haplotype frequencies in the general and 
disease populations as

	 P P G i G j P P G i G j Dij ij
A= = =( ) = = = =( )1 2 1 2 1, and , .

Show that in the absence of interaction

	
P P

P P

P P

P P

A A A A
11 22

11 22

12 21

12 21

=

holds.

Exercise 7.2	 Show that if an SNP is a marker, then both additive and multiplicative inter-
action measures between a marker and causal variant will be zero.

Exercise 7.3	 Show that

	 RR RR and RR11 12 21= = =+ +e e eG E GE G Eb b b b b, .,

Exercise 7.4	 Extend Equation 7.9 to two genetic loci. Show that

	 I emuliple
GE= b .

Exercise 7.5	 Show that

	 OR OR and ORG E GEe e eg e g e ge= = = + +b b b b b, , .
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Exercise 7.6	 Show that the disequilibrium measure Iδ is equal to zero if and only if the 
multiplicative measure of gene–environment interaction for the cohort study 
Imultiple is equal to one.

Exercise 7.7	 Show that IGE = 0 is equivalent to h11h22 = h12h21.

Exercise 7.8	 Show that the mutual information between the binary genetic factor and 
continuous environment in disease population is given by
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Exercise 7.9	 When an environmental variable has a normal distribution with mean μD 
and variance sD

2  and conditional on the genotype G = i, it has normal distri-
bution with mean μDi and variance sDi

2  in the disease population. Show that
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Exercise 7.10	 Show that
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Exercise 7.11	 Show that
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Exercise 7.12	 Show that
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Exercise 7.13	 Show that
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Exercise 7.14	 Show that dominance effects can be expressed as
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Exercise 7.15	 Show that additive × dominance interaction effects are

	 ad g( ) =
ABB b a ADP P2 ,

where γAD = PAμAABB − 2PAμAABb + PAμAAbb + (Pa − PA)μAaBB − 2(Pa − PA)μAaBb.
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C h a p t e r  8

Machine Learning, Low-Rank 
Models, and Their Application 
to Disease Risk Prediction 
and Precision Medicine

Supervised learning attempts to learn from already labeled data how to predict the 
class of unlabeled data. There are two general data types: labeled data and unlabeled data. 

Unlabeled data are often called predictors, or features. In a typical supervised learning task, 
data are represented as a table of examples. Each example is described by a fixed number of 
measurements or features along with a label that denotes its class. Features are typically SNPs, 
gene expression levels, sex, age, and environmental variables such as drug dosages. Status of 
the disease and classes of the subject are labeled data. We usually use X to denote unlabeled 
data and Y to denote labeled data. In supervised learning, we divide datasets into a training 
dataset and test dataset. Suppose that in the training dataset, N individuals are sampled. We 
assume that in the training dataset, both unlabeled data and labeled data are known. From 
given data, {xn ∈ Rd, yn ∈ (1,  …, k)}, n = 1,  … , N, in the training dataset, we learn a predict 
model, y = f(x) (Figure 8.1). We use the trained model to classify a new feature vector, x, into 
one of the existing classes, y. This new data is often referred to as the testing dataset.

Machine learning is a core area in big data analysis. Machine learning has been widely 
used in robotics, driverless cars, space exploration, web search, E-commerce, and finance. 
Machine learning is also a powerful tool for disease risk prediction, diagnosis, manage-
ment, treatment selection, and precision medicine.

Many algorithms have been developed for supervised learning. Widely used algorithms 
include logistic regression, discriminant analysis, support vector machine, deep learning, 
and decision tree, among others. This chapter focuses on logistic regression, discriminant 
analysis, and support vector machines.
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8.1 � LOGISTIC REGRESSION
8.1.1 � Two-Class Logistic Regression

Consider the binary output variable Y that can take values {1, 0}. For example, Y = 1 indi-
cates a disease status of an individual and Y = 0 indicates a healthy status of an individual. 
Let X ∈ RP be a d-dimensional vector of predictors or features. Given a vector of predictors 
X, we want to calculate the conditional expectation E[Y|X] = P(Y = 1|X] of Y on the pre-
dictors. We assume that we observe pairs of predictors and binary output values {(xi, yi), 
i = 1,  …, N} and that binary output values follow a Bernoulli distribution. The likelihood for 
observing the binary output values yi is (McCullagh and Nelder 1989)
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(8.1)

The maximum likelihood estimator of p is p̂ n
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=
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1  (Exercise 8.1).
In many scenarios, each trial has its own success probability, pi. The likelihood in 

Equation 8.1 becomes
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(8.2)

The maximum likelihood estimator of the parameter is p̂ yi i= . The parameter estimator 
does not provide any useful information. Only when we link the success probability pi with 
observed predictors will the model and estimator become useful. In other words, the inter-
esting quantity is a conditional probability, P(Y = 1|X = x). We make the logistic transforma-

tion log
p Y X

p Y X

=( )
- =( )

1

1 1  
as a linear function of predictors X. In other words, model logistic 

transformation of the conditional probability as
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(8.3)

where xi = [1, xi2,  …, xid]T,   β = [β1, β2,  …, βd]T.

xn

x1

Predict model

y1

y2

yn

x2

FIGURE 8.1  A generic system for supervised learning.
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For the convenience of presentation, denote p(Yi = 1|xi) as p(yi|xi, β). Then, Equation 8.3 
is reduced to

	
log .
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(8.4)

In genetic studies, we will include covariates, indicator variables for genetic additive, and 
dominance effects into the model. Consider k SNPs and l − 1 covariates. The model (8.4) 
can be expanded as
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(8.5)

where
wi = [wi1 = 1, wi2,  …, wil] is a vector of covariates
η = [η1, η2,  …, ηl]T is a vector of coefficients associated with the covariates
xi = [xi1, xi2,  …, xik] is a vector of genotype indicator variables
α = [α1, α2,  …, αk]T is a vector of genetic additive effects
zi = [zi1, zi2,  …, zik] is a vector of genotype indicator variables for the genetic dominance effects
δ = [δ1, δ2,  …, δk]T is a vector of genetic dominance effects

Let Hi = [wi  xi  zi] and b
h
a
d

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú
. Equation 8.5 can be further reduced to
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Solving Equation 8.6 for the conditional probability gives
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(8.7)

The binary output values or class labels are predicted by conditional probability. We should 
predict y = 1 when p ≥ 0.5 and predict y = 0 when p < 0.5. It is clear from Equation 8.7 that 
when Hβ ≥ 0, we have p ≥ 0.5 or y = 1 and when Hβ < 0, we have p < 0.5 or y = 0. The decision 
boundary that separates two classes is the solution of Hβ = 0.

Example 8.1  (Figure 8.2)

Consider h= -éë ùû3 1 1 . The decision boundary is a line, w1 + w2 = 3. When 
w1 + w2 ≥ 3, P ≥ 0.5 and y = 1; when w1 + w2 < 3, p < 0.5 and y = 0. The line β1 + β2 = 3 sep-
arates the points with a triangle and points with circle in the plane.
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Example 8.2  (Figure 8.3)

Consider the model H w wb = - + +2 1
2

2
2. The decision boundary is a circle, w w1

2
2
2 2+ = . 

When w w1
2

2
2 2+ ³ , then y = 1; when w w1

2
2
2 2+ < , we predict y = 0. The circle w w1

2
2
2 2+ =  

separates two classes of data.

For each training point, we have a vector of observed covariates and genotypes, Hi, and 
an observed class, yi. The class variable yi follows a Bernoulli distribution with the condi-
tional probability p(yi|Hi, β) as its parameter. Similar to Equation 8.2, the likelihood and 
log-likelihood are, respectively, given by
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and
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(8.9)

8.1.2 � Multiclass Logistic Regression

It is often observed that the number of classes is more than two. For example, in medical 
diagnosis, the results of diagnosis can be type 2 diabetes, hypertension, heart disease, lung 
cancer, healthy individual, and others. As shown in Figure 8.4, multiclass logistic regres-
sion attempts to find a boundary to separate three classes. Suppose that we have C classes. 

2

3

1 Y= 0

Y= 1

3210

FIGURE 8.2  Boundary line.
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The output variable Y can take one of the set of values, {0, 1,  …, C − 1}. We can assume that 
the variable Y follows a multinomial distribution. The predicted conditional probability 
P(yi = c|Hi, β) is defined as
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(8.10)

where
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= ¼ -, , , , .1 2 1

FIGURE 8.3  Boundary circle.

w1

w 2

FIGURE 8.4  Multiclass classification.
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The log-likelihood is defined as

	

l I y c
e

ei

n

c

C

i

H

c

C
H

i
c

i
c

b
b

b
( ) = =( )

+

é

ë

ê
ê
ê

ù

û

ú

= =

-

=

-åå å
( )

( )
1 1

1

1

1

1
log úú

ú

= =( ) - +
æ

è
çç

ö

ø
÷÷

æ

= =

-
( )

=

-

åå å ( )

i

n

c

C

i i
c

c

C
HI y c H e i

c

1 1

1

1

1

1b blog
èè
ç
ç

ö

ø
÷
÷

é

ë

ê
ê

ù

û

ú
ú

,

	
(8.11)

where
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After a vector of new predictors, H∗, is available, the “maximum of a posteriori” decision 
rule is used to assign the subject to the class c∗ with the highest conditional probability, e.g.,
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8.1.3 � Parameter Estimation

The log-likelihood functions (8.9) and (8.59) are a nonlinear function of the parameters. 
Closed forms for the maximum likelihood estimators of the parameters are not available. 
Numerical optimization methods are used to search the maximum likelihood estima-
tors. A typical optimization method is the Newton–Raphson method. Newton–Raphson 
approximates the likelihood function by a second-order Taylor series and optimizes 
that  approximation. We first discuss the parameter estimation for a two-class logis-
tic regression. The  maximum likelihood estimators of the parameters must satisfy the 
equation
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The gradient of the log-likelihood function 
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 can be approximated by
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Substituting Equation 8.13 into Equation 8.12, we obtain
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Matrix 
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T

b
b b  is often called the Hessian matrix of the function l(β). Solving Equation 8.14 

for the vector of parameters β gives an approximate solution to Equation 8.12:
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Let ξi = Hiβ. Then, Equation 8.9 can be written as
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Using Equation 8.16, we can obtain the gradient of the log-likelihood function

	

¶ ( )
¶

= ¶
¶

-
+

¶
¶

é

ë
ê

ù

û
ú

= -( ) ¶
¶

=

=

å

å

l
y

e

e

y

i

n

i
i i

i

n

i i
i

i

i

b
b

x
b

x
b

p x
b

x

x
1

1

1

== -( )
=
å

i

n

i i i
Ty H

1

p ,
	

(8.17)

where p b
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Then, Equation 8.17 can be written in a matrix form:
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Now calculate the Hessian matrix. Note that
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and
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(8.19)

where Π = diag(π1(1 − π1),  …, πn(1 − πn)).
Therefore, taking the partial derivatives with respect to βT on both sides of Equation 8.18 

gives the Hessian matrix of the log-likelihood:
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Result 8.1

The Newton–Raphson algorithm is summarized as follows.

Step 1. Initialization. Compute the initial value:
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Step 2. Compute the conditional probabilities:
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Step 3. Compute the gradient of the log-likelihood:
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Step 4. Compute the Hessian matrix of the log-likelihood:
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Step 5. Update the parameters β:

	 b b pt t T t T tH H H Y+( ) ( ) ( ) - ( )= + éë
ù
û -( )1

1

P .

Step 6. Check convergence:
If ‖β(t + 1) − β(t)‖2 ≤ ε, stop. Otherwise, if β(t) ← β(t + 1), go to step 2.
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Now we study the parameter estimation in multiclass logistic regression. Recall that the 
log-likelihood function for multiclass logistic regression is
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The partial derivative 
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When j ≠ c, similarly, we obtain
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Combining Equations 8.22 and 8.23 gives
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Now compute 
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When j ≠ c, we obtain
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Combining Equations 8.25 and 8.26, we have
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Define
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Define the matrix for the output class label variables:
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The algorithm for the parameter estimation is summarized as follows.

Result 8.2

The Newton–Raphson algorithm for estimation of parameters in the multiclass logistic 
regression is given below.

Step 1. Initialization. Compute the initial value:

	 B H H H Yt T0 1( ) -
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Step 2. Compute the conditional probabilities:
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Step 3. Compute the gradient of the log-likelihood:
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Step 4. Compute the Hessian matrix of the log-likelihood:
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Step 5. Update the parameters β:
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Step 6. Check convergence:

If ‖B(t + 1) − B(t)‖F ≤ ε, stop. Otherwise, if B(t) ← B(t + 1), go to step 2.
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8.1.4 � Test Statistics

First consider association tests for two-class logistic regression. Suppose that there are 
K loci. The null hypothesis for no association is

	 H K
T

K
T

0 1 10 0: .a a a d d d= ¼[ ] = = ¼[ ] =, , and , ,

The alternative hypothesis is

	 Ha : .a d¹ ¹0 0and

Let l(β0) denote the log-likelihood of the logistic model under the null hypothesis of no 
association: let β0 = η and l(β) be the log-likelihood of the logistic model under the full 
model. Define the statistic

	 T l llog .= - ( )- ( )( )2 0b b 	 (8.28)

Then, under the null hypothesis of no association, Tlog is asymptotically distributed as a 
central c 2

2
K( ) distribution.

Next consider the multiclass logistic regression model. The null hypothesis of no associa-
tion for multiclass logistic regression model is given by
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The parameter β0 is now given by
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Let lm(β0) denote the log-likelihood of the multiclass logistic model under the null hypoth-
esis of no association: let β0 = η and lm(β) be the log-likelihood of the multiclass logistic 
model under the full model.

Define the statistic

	 T l lm m mlog .= - ( )- ( )( )2 0b b 	 (8.29)

Then, under the null hypothesis of no association, Tmlog is asymptotically distributed as a 
central c 2 1

2
C K-( )( ) distribution.
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8.1.5 � Network-Penalized Two-Class Logistic Regression
8.1.5.1 � Model
Logistic regression is used for disease and drug response prediction. The next generation 
of genomic, sensing, and imaging technologies will produce a deluge of DNA sequenc-
ing, transcriptomic, imaging, behavioral, and clinical multiple phenotypic data with mil-
lions of features. An essential issue for the success of prediction is feature selection. When 
the number of predictors exceeds the number of samples, the traditional logistic analysis 
breaks down. Parameter penalization is a popular technique for feature selection and high 
dimension reduction in fitting the logit models (Huang et al. 2015; Min et al. 2016; Wu et 
al. 2016). We consider three types of penalization. The first one is L1-norm penalization on 
the covariates. The second one is group LASSO for genes that consists of multiple SNPs or 
number of principal components or functional principal components, in which case all the 
genetic effects of the SNPs associated with a gene are required to shrink to zero simultane-
ously. The third one is network-based penalization. Regulatory relationships between genes 
exist. Genes form gene regulatory networks. Multiple phenotypes are highly correlated and 
may form causal networks. Many SNPs are in linkage disequilibrium. The dependence rela-
tionships between SNPs can be modeled by undirected graphs. Incorporation of such struc-
ture information underlying data generation can improve the smoothness of the estimated 
parameters over the network and improve the accuracy of prediction.

For simplicity, we only consider genetic additive effects. Predictors consist of three parts: 
covariates including environments, genotypes, and phenotypes (or gene expressions). 
Assume L covariates including 1, G genes, and K phenotypes. Recall that the logistic model 
is given by
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We can simply write α = [α1, α2,  …, αm]T. The covariates wi and the vector of their logistic 
regression coefficients η are defined as before.
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Now we consider the first type of penalty on the phenotype coefficients δ and covariate 
coefficients η. The L1-norm regularization on δ and η is defined as
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The second type of penalty is group LASSO and is defined as
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The third type of penalty is a network penalty in which constraints are posed on graphs 
(Figure 8.5). Consider a graph, G̔ = (V, E), where V is the node set and E is the set of edges. We 
assume that the graph G̔ consists of three subnetworks: phenotype subnetworks G1 = (V1, E1), 
genotype–phenotype connect subnetworks G2 = (V2, E2), and environment–phenotype con-
nect subnetworks G3 = (V3, E3). In the phenotype subnetwork, the node denotes the pheno-
type variable and |V1| = K. The environment–phenotype subnetwork has edges connecting a 
covariate and a phenotype. The total number of nodes is |V2| = L + K − 1. Similarly, the geno-
type–phenotype subnetwork G3 is characterized by edges. An edge connects two nodes: an 
SNP (or functional principal component) and a phenotype node. The total number of nodes 
is |V3| = m + K. For the subnetwork, we use edge penalty as a way to penalize the network. We 
penalize the difference between the variables at adjacent nodes. First, we consider the edges in 
the phenotype subnetwork. Consider the edge between nodes u and v with weight suv. The con-
straint posed on the edge is suv u vd d- 2

2. Thus, the penalty for the phenotype subnetwork is

	 u v E

uv u vs
,( )Î
å -

1

2
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(8.33)

Disease

Covariates
W

Genotype
X

Gene

Ph
en

ot
yp

e Z

FIGURE 8.5  Genotype–environment–phenotype–disease networks
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Then, consider the penalty for the environment–phenotype subnetwork. The penalty for 
the edge connecting a covariate, ηl, and a phenotype, δu, is sul l uh d-

2

2. The penalty for

	
sul l u

l u E

h d-
Î
å 2

2

2( , )

.

	
(8.34)

Finally, consider the penalty for the genotype–phenotype connect subnetwork. The penalty 
for the edge connecting an SNP, αj, and a phenotype, δu, is suj j ua d-

2

2. The penalty for the 
genotype–phenotype connect subnetwork is

	 j u E

uj j us
,

|| ||
( )Î
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3

2
2a d .

	
(8.35)

Combining Equations 8.33 through 8.35 gives the penalty for the whole network:
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(8.36)

We construct an adjacency matrix for the whole network as follows. First define the ele-
ments of the adjacency matrix:
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Then, we define the adjacency matrix:
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Let 1 be a (K + L + m)-dimensional vector with all the elements of one. Define a (K + L + m)-
dimensional degree vector, d = S1, and a degree matrix, D = diag(d1, d2,  …, d(K + L + m)). The 
Laplacian matrix associated with the whole network is D − S. We can use the Laplacian 
matrix to rewrite Equation 8.36 in a matrix form:

	 J D ST
3 b b b( ) = -( ) .	 (8.37)
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Therefore, the penalized log-likelihood function is defined as
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Now we decompose the penalized log-likelihood function into a differential part and a 
nondifferential part:

	 l fp b b b( ) = ( ) + ( )W ,	 (8.39)
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The nonsmooth penalty Ω(β) can be further written as
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where
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For easy implementation, Ω(β) can be replaced by
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However, since all predictors are penalized to the same degree, this will lead to estimation 
bias. To overcome this limitation, we can use an adaptive group LASSO. First, we solve the 
optimization problem
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Then, taking f
a

g
g

= 1

2
�

, we define

	
W b l d l h l

a
a( ) = + ]+

= = =
å å å1

1

1 2

2

1 3

1 2

1

u

K

u

l

L

l

g

G

g
g|| || || ||

|| ||
|| ||

� 22

	
(8.40)

and solve the optimization problem (8.39).

8.1.5.2 � Proximal Method for Parameter Estimation
An optimization problem (8.39) is a nonlinear and nonsmooth optimization problem 
and is difficult to solve. Recently, proximal methods have been developed as powerful 
tools for solving nonsmooth convex optimization problems (Parikh and Boyd 2013 and 
Chapter 1). We adapt the proximal method to solve the problem (8.39). The proximal 
point algorithms for solving network-penalized logistic regression are summarized as 
follows (see Appendix 8A).

Result 8.3

Step 1. Given S, D, v, λ1, λ2, λ3, and ϕg, g = 1, 2,  … , G. Initial values β(0) are obtained by the 
ordinary logistic regression without parameter penalization.
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Step 3. Update
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Step 4. Check convergence:

If ‖δt + 1 − δt‖2 + ‖ηt + 1 − ηt‖2 + ‖αt + 1 − αt‖2 < ε, stop. Otherwise, if δt ← δt + 1, ηt ← ηt + 1, αt ← αt + 1, 
go to step 2.

8.1.6 � Network-Penalized Multiclass Logistic Regression
8.1.6.1 � Model
Now we study the network-penalized multiclass logistic regression. Again, for simplicity, 
we only consider genetic additive effect. Predictors consist of three parts: covariates includ-
ing environments, genotypes, and phenotypes (or gene expressions). Assume L covariates 
including 1, G genes, and K phenotypes. The multiclass logistic regression is given by (Tian 
et al. 2015)
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(8.41)

where ξi = Hiβ, H z w xi i i i= [ ], and
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The log-likelihood is defined as
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We can rewrite the parameters corresponding to their associated variables:
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The parameters for all classes should be shrunk to zero if a variable is not selected in the 
model. To achieve this, a group LASSO penalty should be used to penalize the parameters. 
Specifically, we define three group LASSO penalties Ω1(δ), Ω2(η), and Ω3(α) as follows.

We first impose constraints Ω1(δ) for the parameters associated with phenotypes:
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Then, penalize the parameters associated with covariates Ω2(η):
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Now consider the penalization on the genetic additive effects. We should penalize the 
genetic effects contributed with C classes of all SNPs with a gene. The penalty Ω3(α) for the 
genetic effects is defined as
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Now we consider the network penalty. For each fixed c class, similar to Equation 8.37, 
the network-constrained penalty is (β(c))(D − S)β(c). The network-constrained penalty for all 
classes is defined as
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C
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(8.46)

where D and S are defined as before.
Therefore, the penalized log-likelihood function is defined as
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 and Ω(β) = Ω1(δ) + Ω2(η) + Ω3(α). The goal is 
to minimize
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8.1.6.2 � Proximal Method for Parameter Estimation in Multiclass Logistic Regression
Similar to Section 8.1.5.2, we can use the proximal method (Parikh and Boyd 2014) to solve 
the optimization problem (8.48). The proximal point algorithms for network-penalized 
multiclass logistic regression are summarized as Result 8.4.

Result 8.4 Proximal Point Algorithm

Step 1: Given S, D, v, λ1, λ2, λ3, ϕ1k, k = 1, 2,  … , K, ϕ2l, l = 1, 2,  … , L, and ϕ3g, g = 1, 2,  … , G. 
Initial values (β(c))(0), c = 1, 2,  … , C − 1 are obtained by the ordinary multiclass logis-
tic regression without parameter penalization.
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Calculate the gradient of the log-likelihood:
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Step 4: Update
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Step 5: Check convergence:

If ‖δt + 1 − δt‖2 + ‖ηt + 1 − ηt‖2 + ‖αt + 1 − αt‖2 < ε, stop. Otherwise, if δt ← δt + 1, ηt ← ηt + 1, αt ← αt + 1, 
go to step 3.

The penalties ϕ1k,   ϕ2l, and ϕ3g can be determined by two steps. At the first step, assume 
that they are all equal to 1 and then use proximal methods to solve the problem. At the 

second step, we define f d
f

h
1

2
2

2

1 1
k

k
l

l

= =
|| || || ||� �

, , and f
a

3
2

1
g

g

=
|| ||�

, where � �d h, , and �a are the 

solutions at the first step.

8.2 � FISHER’S LINEAR DISCRIMINANT ANALYSIS
8.2.1 � Fisher’s Linear Discriminant Analysis for Two Classes

Fisher’s linear discriminant analysis (LDA) has been a widely used tool for classification in 
machine learning. Due to its simplicity and high computational speed, LDA was our first 
choice for classification. Fisher’s linear discriminant is a classification method that proj-
ects high-dimensional data onto a line and performs classification in this one-dimensional 
space (Figure 8.6). The projection maximizes the distance between the means of the two 
classes while minimizing the variance within each class.

Consider two populations, which are to be separated. Let x be a vector of observations 
and y = aTx be a linear combination of the observations, which is usually referred to as a 
discriminant direction. Let x1 and x2 be the means of the observations in populations 1 and 
2, respectively. Thus, the projection of the means x1 and x2 to the discriminant direction is 
(Figure 8.6)

	 y a x y a xT T
1 1 2 2= =, .
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The square of the difference between y1 and y2 is given by

	

y y a x x x x a

a dd a

T T

T T

1 2
2

1 2 1 2-( ) = -( ) -( )
= ,

where d x x= -1 2 is the difference between the two centers of the populations.
Assume that the covariance matrices of populations 1 and 2 are equal and denoted by Σ. 

Then, the variance of y y1 2-  is given by

	

Var y y a x x a

a
n n

a

n n

n n
a a

T

T

T

1 2 1 2

1 2

1 2

1 2

1 1

-( ) = -( )

= +æ
è
ç

ö
ø
÷

= +

cov

,

S S

S

where n1 and n2 are the number of individuals sampled from populations 1 and 2.

The estimate of variance of y y1 2-  is given by n n

n n
a SaT1 2

1 2

+ , where S is the pooled estimate 

of the covariance matrix Σ. Our goal is to select the vector a to achieve separation of the 
sample means y1 and y2. To reach this goal, maximize the ratio of the square of the differ-
ence between y1 and y2 to its variance:

	
Max

y y

y y

a dd a

a Sa

T T

T

1 2
2

1 2

-
-( )

=
var

,
	

(8.49)

where d x x= -1 2.

y = aTx

x2

y2

y1

x1

m

FIGURE 8.6  Scheme of linear discriminant analysis.
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Since a constant will not affect the results of maximization in Equation 8.49, n n

n n
a SaT1 2

1 2

+  
is replaced by aTSa.

To solve the optimization problem (8.49), we pose the following constraint to normalize 
the data:

	 a SaT =1.	 (8.50)

Therefore, the optimization problem (8.49) can be reduced to the following optimization 
problem:

	

Max

s t

a dd a

a Sa

T T

T. . .=1 	
(8.51)

The constrained optimization problem (8.51) can be reduced to the unconstrained optimi-
zation problem by the Lagrange multiplier method:

	 Max F a dd a a SaT T T= + -( )l 1 .

Taking the derivative of F with respect to yields

	 dd a SaT - =l 0	 (8.52)

and multiplying aT on both sides of the equation and applying Equation 8.50, we have

	 l = ( )a dT 2
.	 (8.53)

Substituting Equation 8.53 into Equation 8.52 gives

	
a

a d
S d

T
= -1 1 .

	
(8.54)

Multiplying aTddT on both sides of Equation 8.54, we obtain

	 a dd a d S dT T T= -1 .	 (8.55)

Therefore, the projection of point x on the discriminant direction is

	 y x x S x
T= -( ) -

1 2
1 .	 (8.56)

The square of the distance between two populations, D2, is defined as y y1 2
2-( ) . Recall that

	 y y a dd aT T
1 2

2-( ) = .	 (8.57)
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Substituting Equation 8.55 into Equation 8.57 yields

	 D d S dT2 1= - .	 (8.58)

Let X1 and X2 denote observations from populations 1 and 2, respectively. Fisher’s idea is 
to project the high-dimensional multivariate observations x1 and x2 on the discriminant 
direction such that their projections, y1 and y2, are separated as much as possible. Fisher 
suggested taking linear combinations of the x ’s to generate y ’s, which can be easily manipu-
lated mathematically. The midpoint �m between the two projections of the sample means on 
the discriminant direction, y x x S x

T
1 1 2

1
1= -( ) -  and y x x S x

T
2 1 2

1
2= -( ) - , is given by

	
ˆ .m x x S x x

T= -( ) +( )-1

2
1 2

1
1 2

Allocation Rule

The classification rule based on Fisher’s linear discrimination function for an unknown 
sample, x0, is as follows:

Assign x0 to population 1, if x x S x m
T

1 2
1

0-( ) ³- ˆ .
Assign x0 to population 2, if x x S x m

T
1 2

1
0-( ) £- ˆ .

Example 8.3

Suppose that the mean values in normal and disease populations are, respectively, 
given by

	
X X1 2

0 0150
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0 300

0 0400
=

-
-

é

ë
ê

ù

û
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-é

ë
ê

ù

û
ú

.

.
,

.

.

and the inverse of the sampling matrix is given by

	
Spooled
- =

-
-
é

ë
ê

ù

û
ú

1 131 158 90 423

90 423 108 147

. .

. .
.

The discriminant direction a is

	
a S x x= -( ) =

-
é

ë
ê

ù

û
ú

-1
1 2

48 2308

38 7482

.

.
.

The midpoint m̂ is

	
ˆ . .m x x S x x

T= -( ) +( ) = --1

2
6 82141 2

1
1 2
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Assume that a new observation is

	
x0

0 210

0 44
=

-
-

é

ë
ê

ù

û
ú

.

.
.

Since

	 x x S x m
T

1 2
1

0 6 9207 6 8214-( ) = > = -- . . ,ˆ

then the new observation x0 is from population 1.

8.2.2 � Multiclass Fisher’s Linear Discriminant Analysis

Fisher’s discriminant analysis can be extended to multiple classes. Its primary purpose is to 
separate populations. It can, however, also be used to classify the subjects. It does not need 
to specify a normal distribution, but it indeed needs to assume that population covariance 
matrices are equal and of full rank. Linear discriminant analysis seeks projections such that 
high-dimensional data can be mapped into the most discriminative low-dimensional sub-
space (Johnson and Wichern 2002).

Consider K classes and the p-dimensional observation vector x. Let μi and m be the means 
of the ith population (i = 1, 2,  …, K) and combined populations, respectively.

Define between-class scatter matrix:

	
B

i

K

i i
T

m m m m m= -( ) -( )
=
å

1

.
	

(8.59)

Instead of one discriminant direction in a two-class linear discriminant analysis, the multi-
class discriminant analysis will seek multiple discriminant directions.

Consider the projection of the observation x from the ith population on a discriminant 
direction

	 y a xi
T

i= ,

and calculate the expected values:

	 m myi i
T

iE y a= [ ] = .	 (8.60)

If population covariance matrices are equal, then we have

	 var var cov ,y y a x a a ai
T T( ) = ( ) = ( ) = S 	 (8.61)

where cov(x) = Σ.
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The overall mean is defined as

	 m mY
Ta= .

Then, the sum of squared distances from populations to the overall mean of Y is

	 i

K

yi y
Ta B a

=
å -( ) =

1

2
m m m .

	
(8.62)

The first discriminant direction, a1, is obtained by maximizing the ratio of the between-
class scatter matrix to the variance of Y:

	
max .

a

T

T

a B a

a a
m

S 	
(8.63)

Set

	 a aTS =1.

Then, the optimization problem (8.63) is reduced to solving the following optimization 
problem:

	

max

. . .
a

T

T

a B a

a a

m

s t S =1 	
(8.64)

Using the Lagrange multiplier, the constrained optimization problem (8.64) is reduced to 
the following unconstrained optimization problem:

	 F a B a a aT T= + -( )m l 1 S .

Setting the partial derivative ¶
¶

=F

a
0, we obtain

	 B a am l- =S 0,

which implies

	 S- =1B a am l .	 (8.65)

The vector a1 is the eigenvector of the matrix Σ−1Bμ and the ratio is equal to

	
l m

1
2 1 1

1 1

= =D
a B a

a a

T

TS
.
	

(8.66)
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The ith discriminant direction maximizes the ratio (8.63) subject to being orthogonal 
to all previous i − 1 directions. In general, the number of discriminant directions will be 
min(p, K − 1).

Now we study how to classify objects. Let A be the matrix consisting of eigenvectors with 
nonzero eigenvalues:

	 A a as
T= [ ]1 � ,

where s is the number of the nonzero eigenvalues.
Assume that x0 is a new observation. The projection of the new observations and means 

of the populations to the discriminant directions are equal to

	 y Ax y Ax y Axk K0 0 1 1= = ¼ =, , , .

Define the distance between the new observation and populations as

	 d y y i Ki i= - = ¼|| ||0
2 1, , , .

Find a j such that

	 j di= ( )arg min .

Then, the new observation is classified to the class j.

8.2.3 � Connections between Linear Discriminant Analysis, Optimal 
Scoring, and Canonical Correlation Analysis (CCA)

8.2.3.1 � Matrix Formulation of Linear Discriminant Analysis
Now we consider a general formulation of LDA. Consider an n × p design matrix:

	

X

x x

x x

p

n np

=
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ë
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ú
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11 1

1
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.

	

(8.67)

For convenience, assume that each column of the matrix X is centered to have zero mean 
unit variance.

Define an n × K matrix of dummy variables for the K classes:
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y y

y y

K

n nK

=
é

ë
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û

ú
ú
ú

11 1

1
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,

	

(8.68)
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where yik is an indicator variable for whether the ith observation xi = [xi1,  …, xip] belongs to 
the kth class.

Let Ωk = {i|yik = 1},   k = 1,  … , K. The total sample covariance matrices Σ can be parti-
tioned into the sum of the between-class covariance Σb and within-class covariance Σw:

	

S

W

W

=

=

=

= - +

=

= Î

= Î

å

åå

åå

1

1

1

1

1

1

1

n
X X

n
x x

n
x x

n
x x x

T

i

n

i
T

i

k

K

i

i
T

i

k

K

i

i k

k

k

kk
T

i k k

k

K

i

i k
T

i k

k

K

k k
T

k

x x x

n
x x x x

n
n x x

k

( ) - +( )

= -( ) -( ) +
= Î =
åå å1 1

1 1W

== +S Sw b , 	 (8.69)

where S
W

w i k
T

i k
ik

K

n
x x x x

k

= -( ) -( )
Î= åå1

1
, Sb k k

T
k

k

K

n
n x x=

=å1
1

, x
n

xk
k

i
i k

=
Îå1
W

, 
and nk is the sample size of the kth class.

The diagonal matrix of the sample sizes can be expressed in terms of Y:
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(8.70)

Similarly, the between-class covariance matrix and within-class covariance matrix can be 
expressed in terms of the matrices X and Y:
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(8.71)
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(8.72)

and

	

S S Sw b

T
Y

n
X P X

= -

= -( )1
1 ,

	
(8.73)

where PY = Y(YTY)−1YT.
Let A = [a1,  …, as] be the matrix of discriminant vectors (directions) and be referred to 

as the discriminant matrix. The LDA problem can be formulated as solving the following 
constrained optimization problem (Wu et al. 2015):

	

max

. . .
A

T
b

T
w

A A

A A I

Tr

s t

S

S

( )
= 	

(8.74)

The Lagrangian function for solving the optimization problem (8.74) is

	 L A A I A AT
b

T
wA, Tr TrL S L S( ) = ( ) + -( )( ).	 (8.75)

Using Equation 1.164, we obtain

	
¶ ( )
¶

= -( ) =L A

A
A Ab w

,L
S S L2 0,

which implies the eigenequation

	 S S Lb wA A= .	 (8.76)

Eigenequation (8.76) can be transformed to

	 S S S Lw b w B B- - =1 2 1 2/ / ,	 (8.77)

where B Aw= S1 2/ .
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8.2.3.2 � Optimal Scoring and Its Connection with Linear Discriminant Analysis
Optimal scoring is another formulation of the LDA (Clemmensen et al. 2011; Hastie 
et  al. 1994). We can formulate the discriminant analysis problem as a regression with 
categorical response Y. Let θ1,  … , θK be the scores for the categories 1, 2,  … , K. Taking Yθ 
as response, we can regress Yθ on the observations X. The regression coefficients are the 
discriminant vectors. In other words, the LDA can be formulated as the following optimal 
scoring problem:

	

min

. . ,

,B
F

T T

Y XB

n
Y Y I

q
q

q q

|| ||

s t

-

=

2

1

	

(8.78)

where ‖.‖F denotes the Frobenius norm. We can show that the optimal scoring problem is 
equivalent to the LDA (Appendix 8A). The scoring θ = [θ1, …, θL], L ≤ K − 1 is referred to as 
the scoring matrix and B = [B1, …, BL] is referred to as the discriminant direction matrix. As 
a consequence, LDA can be reformulated as a multioutput regression problem. All regres-
sion techniques can be applied to LDA.

8.2.3.3 � Connection between LDA and CCA
In this section, we show the equivalence of CCA and LDA. Consider two datasets: the 
observation matrix X and categorical response matrix Y. In a matrix form, CCA can be 
formulated as

	

max

. . , .
,q

q

q q
A

T T

T T T T

Y XA

Y Y I A X XA I

Tr

s t

( )
= = 	

(8.79)

The Lagrangian multiplier algorithm for solving a constrained optimization problem (8.79) 
gives

	
max
, , ,q

q q q
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û + -( )Tr Tr Tr

1

2

1

2
éé
ë

ù
û .

Taking a derivative of function, F, with respect to the matrices θ and A, and using Equation 
1.164, we obtain

	
¶
¶

= - =F
Y XA Y YT T

q
qL 0,

	
(8.80)

	
¶
¶

= - =F

A
X Y X XAT Tq P 0.

	
(8.81)
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Multiplying Equation 8.80 by θT and Equation 8.81 by AT and using Equation 8.79 gives

	 L P= = =q qT T T TY XA A X Y .

Consequently, Equations 8.80 and 8.81 are reduced to

	 Y XA Y YT T- =qL 0,	 (8.82)

	 X Y X XAT Tq- =L 0.	 (8.83)

Solving Equation 8.82 for θ gives

	 q = ( )- -Y Y Y XAT T1 1L .	 (8.84)

Substituting Equation 8.84 into Equation 8.83, we obtain

	 X Y Y Y Y XA X XAT T T T( ) - =
- -1 1 0L L .	 (8.85)

Substituting Equations 8.69 and 8.72 into Equation 8.85 yields

	 S S S Lb b wA A= +( ) 2 .	 (8.86)

Recall that LDA in (8.74) can also be formulated as
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Tr
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S S
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(8.87)

Solving the optimization problem (8.87) leads to the following eigenequation:

	 S S S Lb b wA A= +( ) 0 .	 (8.88)

Taking Λ0 = Λ2, Equations 8.86 and 8.88 are equivalent. The canonical directions and the 
discriminant directions are the same. The R2 matrix is given by

	 R xx b xx
2 1 2 1 2= - -S S S/ / .

8.3 � SUPPORT VECTOR MACHINE
Support vector machines (SVMs) are a set of related supervised learning methods used for 
classification and regression and are perhaps one of the most popular algorithms in machine 
learning (Burges 1998; Christianini and Shawe-Taylor 2000; Vapnik 1998). The basic idea 
that drives the initial development of SVMs is that for a given learning task, with a given 
finite amount of training data, the best generalization performance will be achieved by the 
balance between the accuracy attained on any dataset and the ability of the machine to learn 
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the particular training set without error. In this section, the basic SVM learning algorithms 
will be introduced and their recent development, penalized SVMs to make the material self-
contained, will be presented.

8.3.1 � Introduction

The SVMs are theoretically motivated by statistical learning theory and are successfully 
applied in many fields. We start the introduction with the binary-class SVMs. Recall that 
in geometry, each data point can be represented by a p-dimensional vector (a list of p num-
bers) and belongs to only one of two classes. Classify binary-class points by assigning them 
to one of two disjoint half spaces either in the original input space of the problem for lin-
ear classifiers or in a higher-dimensional feature space for nonlinear classifiers (Fung and 
Mangasarian 2004). Similar to linear discriminant analysis, the question is whether we can 
separate them with a p − 1 dimensional hyperplane. There are many hyperplanes that might 
satisfy this property (Figure 8.7). However, our task is to find out if we can achieve maxi-
mum separation (margin) between the two classes. In other words, we attempt to find the 
hyperplane so that the distance from the hyperplane to the nearest data point is maximized. 
Define such hyperplanes as the maximum-margin hyperplane and such a linear classifier is 
known as a maximum-margin classifier (Figure 8.8).

8.3.2 � Linear Support Vector Machines
8.3.2.1 � Separable Case
Begin with the simplest case: linear SVMs trained on separable data. Given a training set 
x yi i i

n
,{ } =1

 with input feature patterns xi and output values yi ∈ {−1, +1} for class labels, a 
hyperplane can be mathematically represented by an algebra equation (Figure 8.9):

	 w x bT + = 0,	 (8.89)

where w is the normal vector perpendicular to the separating hyperplane. Adding the offset 
parameter b allows the margin to be increased. In its absence, the hyperplane is forced to 

Margin
Margin

FIGURE 8.7  Multiple planes that can separate two classes of observations.
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pass through the origin. Let ‖w‖ be the Euclidean norm of w. Then, 
b

w|| ||  
is the perpendicu-

lar distance from the hyperplane to the origin. Let x0 be a point in the space. We can show 
that the distance from x0 to the plane is equal to (Appendix 8C)

	

w x b

w

T
0 +

|| ||
.
	

(8.90)

FIGURE 8.8  Maximum-margin hyperplane.

w

wTxi+b= –1
yi= 1

yi= –1

H2

H1

– b
||||w

wTxi+b= 0

wTxi+b= 1

FIGURE 8.9  Linear separating hyperplane.
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In the linear separable case, the purpose of the SVMs is to seek the separating hyperplane 
with largest margin. Suppose that all training data satisfy the following constraints:

	 w x b yT
i i+ ³ =1 1for

	 w x b yT
i i+ £ - = -1 1for ,

which can be combined as 

	 y w x bi
T

i +( )- ³1 0.	 (8.91)

When the points lie on the hyperplane H1, we have wTxi + b =  − 1, and when the points lie on 
the hyperplane H2, the constraint wTxi + b = 1 holds. The perpendicular distances from the 

origin to the hyperplane H1 and the hyperplane H2 are - -1 b

w|| ||  
and 1-b

w|| ||
, respectively. Thus, 

the distance between two hyperplanes, H1 and H2, is 2

|| ||w
.

The hyperplane H1 and the hyperplane H2 are parallel and parallel to the separating 
plane, and there are no training points between them. The margin of the separating hyper-
plane is defined as the distance between the hyperplane H1 and the hyperplane H2, which is 
equal to

 
2

|| ||w
. The goal is to find a hyperplane (defined by w and b) with the largest margin. 

Mathematically, attempt to find a normal vector w of a separating hyperplane maximizing 
2

|| ||w  
or minimizing ‖w‖. Formally, to find a separating hyperplane with the largest margin 

can be expressed as
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(8.92)

Using the Lagrangian multiplier, the optimization problem (8.92) can be reformulated as
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(8.93)

where αi ≥ 0,  ∀ i.
Problem (8.93) is a convex quadratic programming problem. The problem (8.93) is 

referred to as the primary problem. We can equivalently solve the following dual problem:
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To minimize LP, set partial derivatives of Lp with respect to w and b to be equal to zero, 
which leads to
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(8.95)

Substituting Equation 8.95 into Equation 8.93 yields
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(8.96)

Note that we give the Lagrangian different labels: P for primal and D for dual. The problem 
(8.94) is then transformed to
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(8.97)

Next we need to develop an algorithm to solve the dual problem. The sequential minimal 
optimization algorithm can be used to solve the dual problem and will be introduced in 
Section 8.3.2.4.

8.3.2.2 � Nonseparable Case
In many cases, as shown in Figure 8.10, the data from different classes are nonseparable. The 
above algorithm for separable cases cannot be applied to a nonseparable case. However, we 
can modify the above algorithms to include a nonseparable case by relaxing the constraints 
(8.91). By introducing the positive slack variable ξi in constraints (8.91) (Figure  8.11), 
we obtain
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(8.98)

where ξi is used to measure errors. The constraints (8.98) can be rewritten as

	 y w x bi
T

i i+( ) ³ -1 x .	 (8.99)
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Taking the errors into consideration, an extra cost for errors needs to be added into the objective 
function for the separable case. Thus, for a nonseparable case, the objective function becomes

	

1

2
w w cT

i

i+ åx ,
	

(8.100)

where c is a positive number and chosen by users for penalty of the errors. A large c cor-
responds to a high penalty to errors. Again, this is also a convex quadratic programming 

Class 1
Class 2

FIGURE 8.10  Nonseparable case.
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i ≥ 0, i

wT xi + b ≥ 1 – i

WT xi + b = 0

FIGURE 8.11  Constraints for the nonseparable case.
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problem. By the same argument as before, using the Lagrange multipliers, the following 
primal Lagrange is

	

L w w c y w x bp
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(8.101)

Here, the αis and μis are Lagrange multipliers and are constrained to be nonnegative. The 
dual Lagrange function is obtained by setting the partial derivatives of Lp with respect to 
w, b, ξi to be equal to zero:
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In other words, we obtain

	
w y x y c
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Substituting the above equalities into Equation 8.101 results in the following dual problem 
of SVMs for a nonseparable case:
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8.3.2.3 � The Karush–Kuhn–Tucker (KKT) Conditions
The Karush–Kuhn–Tucker (KKT) conditions are necessary conditions for an optimal point 
of the optimization problem (8.102) and play an important role in the constrained optimi-
zation theory and algorithm development. Consider a general constrained optimization 
problem:
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Let u be the Lagrange multipliers. The KKT conditions for the nonlinear optimization prob-
lem (8.103) are

	 1.	 f x u g x f x ug xT

x
( ) + ( ) = ( ) + ( ){ }min

	 2.	Primal feasibility: g x i m( ) £ = ¼0 1, , ,

	 3.	Dual feasibility: u ³ 0

	 4.	Complementary slackness: u g x i mi i ( ) = = ¼0 1, , ,

The KKT dual-complementarity conditions can be used to test for the convergence of the 
SMO algorithms. Now we study the KKT dual-complementary conditions for the SVMs. 
The constraints for the primal feasibility for the SVMs are

	 y w x bi
T

i i+( )- + ³1 0x ,	 (8.104)

	 xi i m³ = ¼0 1, , , .	 (8.105)

Let u = [αT, μT]T. Then, their dual-complementarity conditions are

	 a xi i
T

i iy w x b+( )- +é
ë

ù
û =1 0,	 (8.106)

	 m xi i i m= = ¼0 1, , , .	 (8.107)

Now consider three cases: (1) αi = 0, (2) 0 < αi < c, and (3) αi = c (ftp://www.ai.mit.edu).

	 1.	If αi = 0, then μi = c. It follows from Equation 8.107 that ξi = 0. Therefore, from Equation 
8.104, we obtain

	 y w x bi
T

i +( )- ³1 0.	 (8.108)

	 2.	If 0 < αi < c, then from Equation 8.106, we have

	 y w x bi
T

i i+( )- + =1 0x .	 (8.109)

		  However, μi = c − αi > 0, which implies ξi = 0. Therefore, from Equation 8.109, we have

	 y w x bi
T

i +( )- =1 0.	 (8.110)

	 3.	If αi = c, again from Equation 8.106, we have

	 y w x bi
T

i i+( )- + =1 0x .	 (8.111)

http://ftp://www.ai.mit.edu
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		  But μi = c − αi = 0, which implies ξi ≥ 0. Thus, we have

	 y w x bi
T

i +( )- £1 0.	 (8.112)

From the above discussion, observe that the KKT conditions depend on a key quantity, 
yi(wTxi + b) − 1. Define
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,	 (8.113)

where Ei = (wTxi + b) − yi is defined as the prediction error. In summary, the KKT dual-
complementary conditions are

	 ai iR= Þ ³0 0,	 (8.114)

	 ai ic R= Þ £ 0,	 (8.115)

	 0 0< < Þ =ai ic R .	 (8.116)

8.3.2.4 � Sequential Minimal Optimization (SMO) Algorithm
The SMO is a popular algorithm for solving the dual problem (8.102) (Platt 1998). The SMO 
is motivated by the coordinate ascent algorithm. The original coordinate ascent algorithm is 
to optimize function LD(α1,  …, αm) with respect to just one selected variable, αi, while hold-
ing all the other variables, αj, j = 1,  … , m,   j ≠ i, fixed. However, since all the dual variables 
must satisfy the constraint

	 j

j jyå =a 0,

	
(8.117)

it implies that

	
a ai i

j i

j jy y= -
¹
å .

	
(8.118)

When all the other variables, αj, j = 1,  … , m, j ≠ i, are fixed, it follows from Equation 8.118 that 
the selected variable αi is also fixed. Therefore, no changes can be made to αi without violat-
ing the constraint (8.117). This indicates that if we want to update the dual variables αi, we 
must update at least two variables simultaneously in order to satisfy the constraint (8.117). 
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The SMO algorithm optimizes two dual variables (coordinates) at a time. A simple version 
of the SMO algorithm iterates over all αi, i = 1,  … , m. If αi does not fulfill the KKT condi-
tions, an αj is randomly selected from the remaining m − 1 αs. The SMO algorithm then 
jointly optimizes αi and αj. If none of the αs are changed after a few iterations over all the 
αs, then the algorithm stops.

Without loss of generality, suppose we are optimizing α1, α2 while holding α3,  … , αm fixed. 
To maximize the dual function LD(α1, α2, α3,  …, αm) in (8.102), first write the dual function 
LD in terms of the dual variable α2 while keeping the constraint (8.118) satisfied. Let
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=
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j jy
3

.

	
(8.119)

Then,

	 y y y y1 1 2 2 1 1
0

2 2
0a a a a g+ = + =( ) ( ) .	 (8.120)

Let K x x K x x K x xT T T
11 1 1 12 1 2 22 2 2= = =, , , and η = 2K12 − K11 − K12. After a lengthy calcula-

tion, we can show that
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(8.121)

where E w x b y
T

1
0 0

1 1
( ) ( )= ( ) + -  and E w x b y

T

2
0 0

2 2
( ) ( )= ( ) + - .

To find α2 that maximizes the objective function LD, set the first derivative of LD with 
respect to α2 equal to zero:

	
dL

d
y E ED

a
ha ha

2
2 2 1

0
2

0
2
0 0= + -( )-( ) =( ) ( ) ( ) .

	
(8.122)

Solving Equation 8.122 for α2 gives
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(8.123)

To assess whether α2 reaches maximum of the function LD, take the second derivative of 
LD with respect to α2:
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(8.124)
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Since η = 2K12 − K11 − K22 =  − (x2 − x1)T(x2 − x1) ≤ 0, the LD is a convex function and hence 
α2 reaches maximum of the function LD.

Next check whether the estimated optimal value α2 is in the feasible region. Let s = y1y2 
and g a a= +( ) ( )

1
0

2
0s . Consider two cases:

	 1.	s = 1. Then, we have α1 + α2 = γ.
		  If γ > c, from Figure 8.12, we clearly observe γ − c ≤ α2 ≤ c.
		  If γ < c, then Figure 8.13 shows 0 ≤ α2 ≤ γ.

Similarly, we have

	 2.	s =  − 1. Then, we have α1 − α2 = γ.
		  If γ > 0, then 0 ≤ α2 ≤ c − γ.
		  If γ < 0, then −γ ≤ α2 ≤ c.

c

c

γγ– c

γ– c

γ> c

α1

α2

FIGURE 8.12  Range of the variables α1 and α2 for γ > c.

α1cγ

γ< c

α2

c

γ

FIGURE 8.13  Range of the variables α1 and α2 for γ < c.
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Let L be the lower bound and H be upper bound, i.e., L ≤ α2 ≤ H. In summary, if yi = yj, 
then L = max(0, γ − c) and H = min(c, γ); if yi ≠ yj, then L = max(0, − γ) and H = min(c, c − γ). 
Therefore, if η < 0, the solutions to the dual problem are
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(8.125)

and
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(8.126)

If η = 0, then LD is a linear function of α2. We evaluate the objective function LD at the two 
endpoints, 0 and c, and set α2 to be the one with the larger objective function value LD.

Finally, update the threshold b using the KKT dual-complementarity conditions. Let

	 b b E y x x y x xT T
1

0
1

0
1 1

0
1 1 1 2 2

0
2 2 1= - - -( ) - -( )( ) ( ) ( ) ( )a a a a 	 (8.127)

and

	 b b E y x x y x xT T
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0
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0
1 1

0
1 1 2 2 2

0
2 2 2= - - -( ) - -( )( ) ( ) ( ) ( )a a a a ,	 (8.128)

where b(0) is the threshold in the previous iteration.

Let E x y y x x b yj j j
T

i
j

m

,( ) = + -
=å a

1
. Then, the change in E(x, y) due to changes in αi is

	 D D D DE x y y x x y x x bT T,( ) = + +a a1 1 1 2 2 2 .	 (8.129)

Now consider three scenarios:

	 1.	If 0 < α1 < c, it follows from Equation 8.116 that

	 0 1 1 1= =R y E ,
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		  which implies that

	 E E y x x y x x bT T
1 1

0
1 1 1 1 2 2 2 1 0= + + + =( ) D D Da a .	 (8.130)

		  Combining Equations 8.127 and 8.130 gives

	 b b= 1.

		  Similarly, if 0 < α2 < c, then b = b2 and b1 = b2 (Exercise 8.6).
	 2.	If α1 = 0, then it follows from Equation 8.114 that

	 y E1 1 0³ .	 (8.131)

		  If y1 > 0, then E1 ≥ 0. It follows from Equation 8.129 that

	 E E E x y E y x x y x x bT T
1 1

0
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1 1 1 1 2 2 2 1 0= + ( ) = + + + ³( ) ( )D D D D, a a ,

		  or
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0 0( ) ( )+ + + - ³D Da a ,	 (8.132)

		  which gives

	 b b E y x x y x x bT T³ - - -( ) - -( ) =( ) ( ) ( ) ( )0
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0
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0
1 1 1 2 2

0
2 2 1 1a a a a .	 (8.133)

		  By similar arguments, we can show that if α2 = 0 and y2 > 0, then b ≥ b2.
If y1 < 0 and y2 < 0 similarly, show that

	 b b b b£ £1 2and .	 (8.134)

	 3.	If αi = c, then it follows from Equation 8.115 that

	 y E1 1 0£ .

		  If y1 > 0, similarly, show that

	 b b£ 1.	 (8.135)

		  If y1 < 0, then E1 > 0.Therefore, we obtain

	 b b> 1.
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Similarly, show that if y2 > 0, then b ≤ b2 and if y2 < 0, then b > b2. Assume that γ ≠ 0 and if 
both α1 and α2 are at the bounds, then one will be 0 and the other one will be c. Therefore, 
when both α1 and α2 are at the bounds, all the thresholds between b1 and b2 satisfy the KKT 
conditions. Therefore, the threshold is
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(8.136)

8.3.3 � Nonlinear SVM

Nonlinear SVM formulations start from the assumption that all the training data satisfy the 
following constraints: 
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Here, the nonlinear mapping ϕ(⋅) maps the input data into a higher-dimensional space, 
and w is a normal to the hyperplane. Note that the dimension of w is not specified (it can be 
infinite dimensional). Suppose we have some hyperplane that separates the positive from 
the negative examples (a “separating hyperplane”). Define the “margin” of a separating 
hyperplane to be the summation of shortest distance from the separating hyperplane to the 
closest positive and negative examples. It can be shown that the margin is simply 2/ w wT . 
Our goal is to find the pair of hyperplanes, which gives the maximum margin. This can be 
accomplished by minimizing wTw, subject to the above constraints.

8.3.4 � Penalized SVMs

The original linear SVMs that were discussed in the previous sections attempt to find a 
hyperplane separating the two classes of data points:
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(8.138)

However, a major limitation for the traditional formulation of the SVMs is that the SVM 
cannot perform the automatic feature selection. To overcome this limitation, introduce 
hinge loss SVMs including the squared hinge loss function and huberized hinge loss func-
tion (Wang et al. 2008; Xu et al. 2015; Yang and Zou 2015). Begin with the squared hinge 
SVMs. It is clear that the optimization problem (8.138) can also be formulated as
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where L(t) = (1 − t)+ is the hinge loss. When 1 − t ≤ 0, i.e., yi(wTxi + b) ≥ 1, the constraints 
yi(wTxi + b) ≥ 1 − ξi,   ξi ≥ 0 are satisfied, we do not need to change the parameters for 
enforcing constraints. When the constraints are violated, i.e., yi(wTxi + b) < 1 or 1 − t > 0, 
minimization of the hinge loss aims to reduce the overlap between the two classes. 
Similar to the squared hinge loss, we can also introduce the huberized hinge loss SVMs. 
The huberized hinge loss function measures misclassification. The huberized hinge loss 
is defined as

	

FH t
t

t

t

t t

( ) =
-( )

>
- < £

- - £ -

ì

í

ï
ïï

î

ï
ï
ï

ü

ý

ï
ïï

þ

ï
ï
ï

0

1

2

1

1 1

1
2

1

2

d
d

d d

.

	

(8.140)

The huberized hinge SVM is then formulated as
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The unified formulation of the squared hinge SVMs and the huberized hinge SVMs is
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where
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In Section 8.1.5, we introduced a general form of penalty functions including network, 
L1, and group penalties:
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A general form for the penalized SVMs is defined as
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For convenience, write Equation 8.144 as
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where
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Now we derive the Lipschitz constant. It follows from Equation 8.147 that
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Let û u u uk k
k

k k- -
-

- -= + -( )1 1
1

1 2w . Then, it follows from Equations 8.145 through 8.148 that
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A general form for the accelerated proximal gradient method for solving the optimization 
problem (8.145) is
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where g u b( ) = + ( )l b5 2

2
W .

Specifically, the algorithm is given below (Fung and Mangasarian 2004; Parikh and Boyd 
2014).

Accelerated Proximal Gradient Algorithm

	 1.	 Input data (xi, yi),   i = 1,  … , n, penalty parameters λ1, λ2, λ3, λ4, λ5, and δ for the huber-
ized SVM.

	 2.	Initialization: choose u0 = [b0, (β0)T]T,   u−1 = u0, compute L using Equation 8.149, and 

select l
L

0 0
1Îæ

è
ç

ö
ø
÷, . Set k = 1.

	 3.	While not converged do

	 4.	Let û u u uk k
k

k k- -
-

- -= + -( )1 1
1

1 2w  for some ωk − 1 ≤ 1.



Machine Learning, Low-Rank Models, and Their Application    ◾    579

	 5.	Compute
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	 7.	Update for lk.

		  Given ˆ ,u lk
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1 and τ ∈ (0, 1),
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	 c.	 Update λ ≔ τλ.

		  Return l uuk
k: , := =l ˆ .

	 8.	Let k = k + 1.

	 9.	End while.

8.4 � LOW-RANK APPROXIMATION
In genomic and epigenomic analysis, data are often highly dimensional and complex and 
consist of various heterogeneous data types, with noise and many missing entries. We need 
to dissect complex data structures, remove noisy data points, and fill in missing entries. For 
the numerical dataset, PCA that finds a low-rank matrix to minimize the approximation 
error to the original dataset under the Euclidean distance measure is a widely used tool for 
dimension reduction and exploratory data analysis.

Our data include multiple data types; we can extend PCA to the generalized low-rank 
models in which the Euclidean distance measure is replaced by other loss functions and 
regularization is added on the low-dimensional factors. In other words, we extend the PCA 
to the generalized low-rank model (GLRM) that projects high-dimensional data into low-
dimensional space to minimize a loss function on the approximation error subject to regu-
larization of the low-dimensional factors (Udell et al. 2016). The GLRM emerges as a useful 
tool for dimension reduction and integration of heterogeneous data.

8.4.1 � Quadratically Regularized PCA
8.4.1.1 � Formulation
In Section 1.5.1.2, we show that the variance of the first principal component is the largest 
eigenvalue of the covariance matrix Σ of X. Therefore, the proportion of the variance of the 
first principal component over the total variance is

	
l

l l l
1

1 2+ + +� k

.
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To increase the proportion of the first principal component in the total variation of the 
low-dimensional space, we reduce every eigenvalue by a constant, γ. We can show that

	
l g

l g l g l g
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l l l
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1 2

1

1 2

-
- + - + + -

>
+ + +� �k k

.

To achieve this goal, we extend the PCA to quadratically regularized PCA. In Section 1.5.1.1, 
we introduced the traditional PCA. Now we add quadratic regularization on two  factor 
matrices, U and V, to the objective.

Consider the data matrix A ∈ Rm × n and two matrix factors: X ∈ Rm × k and Y ∈ Rk × n. The 
quadratically regularized PCA problem is mathematically formulated as

	
min ,

,X Y
F F FA XY X Y|| || || || || ||- + +2 2 2g g

	
(8.155)

where γ ≥ 0 is the regularization parameter. Since we restrict || ||X F
2 £ a and || ||Y F

2 £ a, we 
can expect that the single values of the product matrix XY will be reduced. When γ = 0, the 
quadratically regularized PCA problem is reduced to the traditional PCA.

Assume that the single value decomposition (SVD) of A is given by
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(8.156)

where U ∈ Rm × r and V ∈ Rn × r have orthonormal columns, λ1 ≥ λ2 ≥  ⋯  ≥ λr > 0, r = Rank(A), 
U and V are referred to as the left and right singular vectors of the matrix A, respectively, 
and λ1,  … , λr are the singular values of A. Using matrix calculus, find the solution to the 
optimization problem (8.155) (Udell et al. 2016) (Appendix 8D),

	 X U I= -( )W WL g 1 2/
,	 (8.157)

where UΩ and VΩ denote the submatrix of U, V with columns indexed by Ω, respectively, 
|Ω| ≤ k with λi ≥ γ for i ∈ Ω, and similarly, denote ΛΩ. For example, if Ω = {i : 1, 2, 3}, then 
we  have UΩ = [u1, u2, u3], ΛΞ = diag (λ1 − γ, λ2 − γ, λ3 − γ), and VΩ = [v1, v2, v3]. In general, 
Equation 8.51 can also be written as

	 X U Y Vk k k k
T= =� �L L1 2 1 2/ /, ,	 (8.158)

where U u u V v vk k k k k k= ¼[ ] = ¼[ ] = -( ) ¼ -( )( )+ +1 1 1, , , , diag , ,, , �L l g l g , (a)+ = max(a, 0).
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8.4.1.2 � Interpretation
The PCA for high-dimensional data identifies a new set of orthogonal basis in the low-
dimensional space in which the original dataset is re-expressed. From Equation 8.52, it can 
be easily seen that matrix Y of the principal components can be expressed as
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which implies that

	 Y Y i j Yi j
T

i i= ¹ = -( )+0 2, .and || || l g

In other words, the principal components are orthogonal. The principal components 
Yi, i = 1,  … , k form a new set of basis. In PCA, the data A can be approximated by
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where

	 A a a X x x Y y yi i in i i in j j jn= [ ] = [ ] = éë ùû1 1 1� � �, , .

Therefore, from Equation 8.160, we can express the data of the ith sample Ai as

	
A x Yi

j

k

ij j=
=
å

1

.

	
(8.161)

Equation 8.161 indicates that the original data can be expressed as a linear combination of 
new basis vectors.

Multiplying Yl
T  on both sides of Equation 8.161, we obtain

	 x A Yij i j
T= .

The coefficient xij is called the principal score or loading of sample i on the principal 
component j.
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The original data with n features can be compressed to k < n new features. The row vector 
Xi is associated with sample i and can be viewed as a feature vector for the sample i using 
the compressed set of k < n features. The vector Xi is the representation of sample i in terms 
of the principal components Yj, e.g., new bases (axes). The principal component scores xij 
can also be viewed as the coordinates in the new system of axes. Therefore, Equation 8.161 
implies that the original data Ai for sample i can be projected into the low-dimensional 
space that is defined by the principal components as a system of bases, and its coordinates 
are the principal scores xij. We often use a score plot to represent the original data.

8.4.2 � Generalized Regularization
8.4.2.1 � Formulation
A serious limitation of the PCA is that each principal component uses a linear combination 
of all features. This will increase the cost of measuring additional features and difficulty to 
interpret the results. The interpretation of the principal components would be facilitated 
if the principal components involve very few nonzero features. It is desirable to select the 
most informative subset of the features for defining principal components to eliminate the 
cost of measuring the additional less informative features and facilitate the interpretation of 
the results. To achieve this, we can extend the PCA to allow arbitrary regularization on the 
rows xi of principal component score matrix X and columns yj of the principal component 
matrix Y.

Mathematically form the generally regularized PCA problem as (Udell et al. 2016)
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where ri(xi) and �r yj j( ) are regularizers. When r x x r y yi i i j j j( ) = ( ) =g g|| || || ||2
2

2
2, � , regularized 

PCA (8.56) reduces to the quadratically regularized PCA.
Regularized PCA problem (8.56) can also be written in a matrix form:

	
min ,

,X Y
FA XY r X r Y|| ||- + ( )+ ( )2 �

	
(8.163)

where r X r xi
i

m

( ) = ( )
=å 1

 and � �r Y r rj
j

n

( ) = ( )
=å 1

.

8.4.2.2 � Sparse PCA
Sparse PCA is an important specific case of the regularized PCA. We can easily interpret 
and understand each basis and each sample if a small number of features and small number 
of bases are used. Recall that

	 A XY= ,	 (8.164)
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and

	 X U Y Vk k k k
T= =L L1 2 1 2/ /, .	 (8.165)

The matrix of principal components Y can be approximated by

	

Y

Y

Y

U A

U A

U Ak

k k
T

T

k

k
T

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú
= =

é

ë

ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú

-
1

1 2

1

1
1

1

� �L /

l

l
úú
ú

,

	

(8.166)

which implies that the principal component basis Yk can be expressed as a linear combina-
tion of all n features, Y U Ai

i

i
T= 1

l
, regarding features are informative or not. To remove 

noninformative features, we impose L1-norm on the matrix of principal components 

Y:  �r Y Y Yj
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=å1 11

, where Y Yj ji
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1 1
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=å . We then formulate the sparse PCA as 

follows:
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The sparse PCA problem (8.167) can have alternative formulation. If we impose the ortho-
normality constraint YYT = I, then from Equation 8.164, we obtain X = AYT. A PCA problem 
can be formulated as a regression:
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where Y Y YT
k= [ ]1 �  and its columns form an orthonormal basis. Each principal 

component is derived from a linear combination of all feature variables. Let B = YT. The 
PCA problem (8.168) can be rewritten as
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(8.169)

where B = [β1, β2,  …, βk], and the columns of B, which minimize (8.168), define the PCA 
basis V. In order to make the PCA basis sparse, a regularization constraint should be posed 
in the PCA regression formulation (8.169). Incorporation of a sparse penalty in the PCA 
regression formulation reduces the number of features.
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8.5 � GENERALIZED CANONICAL CORRELATION ANALYSIS (CCA)
CCA is a commonly used supervised dimension reduction tool. CCA finds the correlations 
between two sets of multidimensional variables including multiple phenotypes and multi-
locus genotypes. Generalization techniques developed for unsupervised dimension reduc-
tion in Section 8.2 can also be extended to CCA. The generalized CCA will increase the 
power for genomic, epigenomic, and imaging data analysis. Similar to Section 8.2, exten-
sion from the traditional CCA to generalized CCA consists of two categories: (1) imposing 
constraints and (2) enlarging types of cost function.

8.5.1 � Quadratically Regularized Canonical Correlation Analysis

We first extend the unregularized traditional CCA to quadratically regularized CCA. The 
easiest way for CCA extension is to first approximate the original data using quadratically 
regularized PCA and then apply the CCA algorithm to the approximated dataset. Consider 
two matrices, X ∈ Rn × p and Y ∈ Rn × q. We assume p ≤ q. Suppose that the SVD of matrices X 
and Y are, respectively, given by

	 X u s v Y u s vT T= =1 1 1 2 2 2, ,	 (8.170)
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(λ1,  …, λp), s2 = diag(ρ1,  …, ρq), λ1 ≥  ⋯  ≥ λp > 0, and ρ1 ≥  ⋯  ≥ ρq > 0 are the single values of 
matrices X and Y, rank (X) = p, and rank (Y) = q.

To derive quadratically regularized CCA, we apply the quadratically regularized PCA to 
the data matrices X and Y separately. Matrices X and Y can then be approximated by their 
quadratically regularized PCA as follows:
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diag , ,r g r g , γ1, γ2 are penalty parameters.
Next the standard CCA techniques discussed in Section 1.6.3 are applied to the dataset:
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We denote linear combinations of the matrices �X and �Y  by

	 � � � � � �u XA v YB= =, .	 (8.172)

We calculate the SVD of the matrix � �u uT
1 2 as

	 � � � � �u u U VT T
1 2 = L .	 (8.173)
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Using Equation 1.236, we obtain the transformation matrices:

	 � � � � � � � �A v s U B v s V= =- -
1 1

1
2 2

1, .	 (8.174)

Substituting Equation 8.174 into Equation 8.172, we obtain the matrices of canonical 
covariates �u and �v.

To derive the canonical correlations, we calculate
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8.5.2 � Sparse Canonical Correlation Analysis

The standard CCA assumes that the sample size is larger than the number of variables. 
However, the genomic and epigenomic data are often high dimensional where the number 
of variables exceeds the sample size. The standard CCA is difficult to apply to large genomic 
and epigenomic problems. Sparse CCA produces linear combinations of only a small num-
ber of variables from each dataset, which is much smaller than the sample size, thereby 
making the standard CCA appropriate (Wilms and Croux 2015). In addition, the sparse 
CCA facilitates the interpretability of the results.

8.5.2.1 � Least Square Formulation of CCA
Regression is a well-studied technique for wide-range application. The least square for-
mulation of the CCA allows easy extension of the standard CCA to sparse CCA using 
well-developed penalized regression techniques. It also serves the purpose of applying 
the CCA to large-scale multiclass classification and disease risk prediction problems (Sun 
et al. 2011).

8.5.2.1.1  Reduced Rank Regression  Regression formulation of CCA often uses reduced rank 
regression techniques (Izenman 2008). Before we study reduced rank regression, we introduce 
two theorems, the Eckart–Young Theorem for matrix approximation and the Poincare Separation 
Theorem for estimating the low bound of eigenvalues of the symmetric matrix.

The Eckart–Young Theorem (Appendix 8E). Consider two matrices: A ∈ Rn × p and 
B ∈ Rn × p. Let r = min   (n, p). Assume that the SVD of matrix A is A = UΛVT, where
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For any matrix of rank at most k,

	 || || || ||A A A Bk- £ - ,	 (8.176)

where A U Vk k k k
T= L , ‖.‖ is either the Frobenius norm ‖.‖F or the Euclidean norm ‖.‖2 of 

the matrix.
Poincare Separation Theorem (Appendix 8F). Let A ∈ Rn × n be a symmetric matrix and 

let G ∈ Rn × k be a semiorthonormal matrix such that GTG = Ik. The eigenvalues of matrices 
A and GTAG are denoted by σ1(A) ≥ σ2(A) ≥  ⋯  ≥ σn(A) and σ1(GTAG) ≥ σ2(GTAG) ≥  ⋯  ≥ 
σk(GTAG), respectively. Then,

	 s sj j
TA G AG j k( ) ³ ( ) = ¼, , , ,1 	 (8.177)

with equality if matrix G is formed by the first k eigenvectors of A.
Difference between the standard regression and the reduced rank regression is that in the 

standard regression model, we assume the full rank of the regression coefficient matrix, but 
in the reduced rank regression, we allow that the rank of the regression coefficient matrix is 
not full. Consider the following reduced rank regression model:

	 Y CX= + +m e,	 (8.178)

where Y ∈ Rk, μ ∈ Rk, C ∈ Rk × r, X ∈ Rr, ε ∈ Rk. We assume that the error ε has mean E[ε] = 0 
and covariance matrix cov(ε) = Σεε and is uncorrelated with X. We assume that

	 rank ,C l k r( ) = £ ( )min .	 (8.179)

When the rank of the regression coefficient matrix is deficient, some rows or columns are 
dependent. In other words, some constraints among regression coefficients exist. The sta-
tistical methods for the full-rank regression coefficient matrix cannot be applied since the 
ordinary derivatives of the objective function minimizing the square of difference between 
the observed response phenotypes and predicted responses with respect to the regression 
coefficients will not consider constraints.

The reduced rank regression coefficients can be estimated by the least square estimation 
methods. For the generality, we consider the weighted least square estimates. For the con-
venience of discussion, we assume that both Y and X are centered. To estimate matrix C, 
we consider a weighted sum of square of errors:
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Let

	S G G G S G G S G S GYY
T

YY XY XYE YY C C E XY* * *= éë ùû = = = [ ] =
1

2

1

2

1

2

1

2

1

2

1

2

1

2, , ,, .S SYX XY

T* *= ( )

Using these notations, Equation 8.180 can be reduced to

	
W l C C C CYY XY

T

YX XX

T

( ) = - -( ) + ( )( )* * * * * * *Trace S S S S .
	

(8.181)

Our goal is to find C∗ that minimizes W(l). However, the rank-deficient matrix C∗ implies 
that elements in C∗ are constrained. This prevents application of the traditional calculus to 
searching minimum of W(l). Alternative algebra methods can be used to solve minimiza-
tion problem (8.180). After some algebra, Equation 8.181 can be reduced to

	
W l C CXX YX XX XX YX XX

T

Y( ) = -( ) -( ) +* * - * * -Trace S S S S S S S1 2 1 2 1 2 1 2/ / / /
YY YX XX XY
* * - *-( )S S S1 .

	
(8.182)

Since only the first term in Equation 8.182 involves the unknown regression coefficient 
matrix C∗, minimizing W(l) is equivalent to minimizing the following objective function:

	 F C CXX YX XX XX YX XX

T
= -( ) -( )* * - * * -S S S S S S1 2 1 2 1 2 1 2/ / / / .	 (8.183)

Let A YX XX= * -S S 1 2/  and B C XX= *S1 2/ . Minimizing F in Equation 8.183 again is reduced to the 
problem (8.176).

Let m = min(k, r). The SVD of matrix A is given by

	 A U V T= L ,	 (8.184)

where U U U V V Vl m l
l

m l
l m l= [ ] =

é

ë
ê

ù

û
ú = [ ]-

-
-, ,L

L
L

0

0
, Ul ∈ Rk × l, Ur − l ∈ Rk × (r − l), 

Vl ∈ Rr × l, Vm − l ∈ Rr × (m − l).
We can use the Eckart–Young Theorem to solve the optimization problem (8.183). In 

other words, the optimization problem (8.183) can be solved by

	 C U VXX l l l
T* =S L1 2/ .	 (8.185)

Solving Equation 8.185, we obtain

	 C U Vl l l
T

XX= - -G L S1 2 1 2/ / .	 (8.186)

Next show that we can only use the left singular vector Ul to express C. It follows from 
Equation 8.184 that

	 A U V U Vl l l
T

m l m l m l
T= + - - -L L .	 (8.187)
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Using Equation 8.187, we obtain
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(8.188)

However, UTA can also be expressed as
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(8.189)

Comparing Equations 8.188 and 8.189 yields

	 U A Vl
T

l l
T= L .	 (8.190)

It follows from Equations 8.185 and 8.190 that

	 C U U AXX l l
T* =S1 2/

or
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-
	 (8.191)

Multiplying Γ−1/2 from the left and multiplying SXX
-1 2/  from the right on both sides of the 

Equation 8.191, we obtain

	 C U Ul l
T

YX XX= - -G G S S1 2 1 2 1/ / .	 (8.192)

Matrix C is referred to as the reduced rank regression coefficient matrix with rank l, and 
matrix Γ is referred to as the weight matrix.

Matrix Ul is also the matrix of eigenvectors associated with the matrix

	 AAT
YX XX XY= -G S S S G1 2 1 1 2/ / .	 (8.193)

Define

	 H Ul= -G 1 2/ ,	 (8.194)

	 B Ul
T

YX XX= å å-G1 2 1/ .	 (8.195)
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It is clear that C = HB. The reduced rank regression model (8.178) can be rewritten as

	 Y HBX= + +m e,	 (8.196)

where μ is estimated by

	 m̂ = -Y HBX 	 (8.197)

where H and B are estimated by Equations 8.194 and 8.195.
Now we calculate the mean square of errors Wmin(l). From Equation 8.180, we know that
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Using Equations 8.184 and 8.193, we can easily see that

	 G G L1 2 1 1 2 2/ / .å å å =-
YX XX XX

TU U 	 (8.199)

Combining Equations 8.192 and 8.199 yields
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	 (8.200)

It is clear that
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Substituting Equation 8.201 into Equation 8.200, we obtain

	 C U UXY l l l
Tå = - -G L G1 2 2 1 2/ / .	 (8.202)
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Similarly, we can obtain

	 å = - -
YX

T
l l l

TC U UG L G1 2 2 1 2/ / ,	 (8.203)

	 C C U UXX
T

l l l
Tå = - -G L G1 2 2 1 2/ / .	 (8.204)

Combing Equations 8.202 through 8.204, we have

	 - å -å + å = - - -C C C C U UXY YX
T

XX
T

l l l
TG L G1 2 2 1 2/ / .	 (8.205)

Substituting Equation 8.205 into Equation 8.198 results in

	

W l U UYY l l l
T

YY

min
/ /( ) = å -( )( )

= å( )-

- -Trace

Trace Trace

G L G G

G

1 2 2 1 2

UU Ul l l
T

YY j
l

j

L

G

2

1
2

( )
= å( )-å =Trace s . 	 (8.206)

From Equation 8.206, when the rank of the reduced rank regression coefficient matrix 
increases, the mean square of errors decreases.

8.5.2.1.2  Least Square Formulation  Recall that in Section 1.6.1, we consider vectors X ∈ Rp and 
Y ∈ Rq. Let
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(8.207)

where
G is a p × p dimensional matrix
H is a p × q dimensional matrix

Two vectors of the canonical variables are given by

	 x w= =GX HY, .	 (8.208)

From Equations 1.220, 1.221, and 1.228, we know that G,   H are given by

	 G V H VT
YY YX XX

T
YY= å å å = å- - -1 2 1 1 2/ /, ,	 (8.209)

where
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L 	 (8.210)
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and

	 å å å =- -
XX XY YY

TU V1 2 1 2/ / .L 	 (8.211)

Now we show that CCA defined by Equations 8.208 through 8.211 can be formulated by 
regression (Izenman 2008):

	 HY GX= + +n e.	 (8.212)

Proof

To estimate the parameters ν, H, and G in the regression model (8.212), least square 
methods are used to find ν, H, and G to minimize the p × p matrix:

	
F E HY GX HY GX

T= - -( ) - -( )é
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ù
ûn n ,

	
(8.213)

where we assume that the covariance matrix of ω is

	 å = å =ww H H IYY
T

p .	 (8.214)

For the convenience of discussion, the data are first centered. Let ωc = ω − μx and 
Xc = X − μx. Then, Equation 8.213 is transformed to
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T= -( ) -( )é
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ù
ûww ww .

	
(8.215)

Equation 8.215 can be further reduced to
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The least square method is used to minimize the average sum of square of errors:
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(8.217)
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Taking G X XX= å å-
ww

1 , Equation 8.217 is reduced to
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(8.218)

Using Equations 8.209 and 8.214, we obtain
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(8.219)

Substituting Equation 8.219 into Equation 8.218, we obtain
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To use the Poincare Separation Theorem for maximizing the second term in the inequal-
ity (8.219), we define D HYY

T= åå1 2/ . Then, the matrix product H HYX XX XY
Tåå åå åå-1  is 

reduced to

	 H H D DYX XX XY
T T

YY YX XX XY YYåå åå åå åå åå åå- - - -= å å1 1 2 1 1 2/ / .	 (8.221)

Using Equation 8.211, we can reduce Equation 8.221 to

	 H H D RDYX XX XY
T Tåå åå åå- =1 .	 (8.222)

The Poincare Separation Theorem ensures that
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When D = V, we have
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Recall that

	 D HYY
T= åå1 2/ .	 (8.225)

When D = V, solving Equation 8.225 for the matrix H, we obtain

	 D V T
YY= -åå 1 2/ ,	 (8.226)

	 G V T
YY YY XX= å- -åå åå1 2 1/ .	 (8.227)

Matrices H, G in Equations 8.226 and 8.227 are exactly the same as that in Equation 
8.128. This shows that the CCA can be transformed into regression analysis.

Substituting Equations 8.226 and 8.227 into Equation 8.208 leads to

	 x = å = å- - -V X V YT
YY YX XX

T
YY

1 2 1 1 2/ /, .åå åå ww 	 (8.228)

The covariance matrix cov(ξ, ω) is given by
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Similarly, we have Var(ξ) = Λ2, var(ω) = I. Then, the canonical correlation coefficient 
matrix is
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If we assume G is an l × p matrix and H is an l × q matrix, then we have
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8.5.2.2 � CCA for Multiclass Classification
One widely used application of CCA is supervised learning. CCA projects the data onto a 
low-dimensional space directed by class label information (Sun et al. 2011). However, CCA 
and sparse CCA involve a computationally expensive generalized eigenvalue problem. To 
directly design sparse CCA algorithms poses a great challenge. In Section 8.2.3, we showed 
that CCA is equivalent to optimal scoring. Optimal scoring is a biregression problem and 
needs to iteratively solve two regression problems. To overcome the computational diffi-
culty of CCA and sparse CCA for multiclass classification, in this section, we show that 
finding canonical directions can be formulated as a single regression problem without itera-
tion. This will save large computations.

8.5.2.2.1  Least Squares for Regression and Classification  Suppose that the observation data matrix 
X ∈ Rn × p and categorical response matrix Y ∈ Rn × K are as defined in (8.67) and (8.68), respectively. 
Recall that the optimization problem (8.79) for CCA can be reduced to
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(8.233)

where A is called a canonical direction matrix.
Using the Lagrangian multiplier method, we obtain the eigenequation
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(8.234)

where

	 B X X AT= ( )1 2/
.	 (8.235)
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Let the SVD of Y be

	 Y U Vy y y
T= åå ,	 (8.236)

where Uy ∈ Rn × K and Vy ∈ RK × K are orthogonal matrices and ∑y is a diagonal matrix. Define 
the regression

	 U XWy = + e,	 (8.237)

where Uy = [u1,  …, uK], uk ∈ Rn and W = [W1,  …, WK], Wk ∈ RP.
Then, we can show Result 8.5.

Result 8.5

The regression coefficient matrix W is equal to the canonical direction matrix A 
(Appendix 8G).

Therefore, a canonical direction matrix can be found by solving the regression (8.238):

	
min .

W
y F

k

K

k kU XW u XW|| || || ||- = -
=
å2

1

2

	
(8.238)

8.5.3 � Sparse Canonical Correlation Analysis via a Penalized Matrix Decomposition

The CCA is a powerful tool for genomic and epigenomic analysis. However, in genomic 
data analysis, the number of variables under consideration is much larger than the number 
of samples. When the number of SNPs is larger than the number of samples, the CCA is not 
well defined. A solution is sparse CCA (Witten and Tibshirani 2009) that identifies sparse 
linear combinations of two sets of highly correlated variables.

8.5.3.1 � Sparse Singular Value Decomposition via Penalized Matrix Decomposition
The sparse CCA can be formulated as a penalized matrix decomposition problem or can 
be recasted a regression framework (Wilms and Croux 2015). Here, we mainly introduce 
the sparse CCA via a penalized matrix decomposition. Recall that the algorithm for CCA is 
implemented by solving the eigenvalue problem of the following matrix:

	 R yy yx xx xy yy= å å- - -1 2 1 1 2/ / .åå åå åå 	 (8.239)

Define the matrix

	 K xx xy yy= å- -åå åå1 2 1 2/ / .	 (8.240)
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Then, the right eigenvector of the singular value decomposition (SVD) of the matrix K is 
the solution of eigenequation (8.239). In fact, suppose that the SVD of matrix K is given by

	 K UDV T= .	 (8.241)

Thus,

	 K K R VDU UDV VD VT T T T= = = 2 .	 (8.242)

Equation 8.242 shows that the right eigenvector of the SVD of the matrix K is the eigen-
vector of the matrix R. Let

	 U u u V v vq q= ¼éë ùû = ¼éë ùû1 1, , and , , .	 (8.243)

Then,

	 åå ååxx xy yy V UD- -å =1 2 1 2/ / ,	 (8.244)

which implies that

	 d u vxx xy yy1 1
1 2 1 2

1= å- -åå åå/ / .	 (8.245)

Therefore, the canonical vectors are given by

	 b v a v uyy xx xy yy xx= å = å =- - - -1 2
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1 1 2
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1 2
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/ / / .and åå åå åå 	 (8.246)

The SVD of matrix K problem can be formulated as the following optimization problem:
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where ‖⋅‖F is the Frobenius norm of the matrix.
However, by expanding out the squared Frobenius norm (Witten et al. 2009), we have
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It follows from Equation 8.248 that minimizing || ||K UDV T
F- 2  is equivalent to maximizing 

li i
T

i
i

q

u Kv
=å 1

. Therefore, to make the left and right eigenvectors u and v of the SVD of 
matrix K sparse, we formulate the following optimization problem:
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(8.249)

The objective function in (8.249) is bilinear. When v is fixed, it is linear in u and when u is 
fixed, it is linear in v. Therefore, we can iteratively solve the optimization problem (8.249). 
With v fixed, the optimization problem becomes
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(8.250)

Using the Lagrange multiplier, we have
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Setting a derivative of the Lagrangian function L(u, λ, μ) with respect to μ to 0, we obtain
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(8.251)
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Consider two scenarios:

	 1.	l > 0

		  The Karush–Kuhn–Tucker (KKT) conditions: l || ||u 2
2 1 0-( ) =  implies that || ||u 2

2 1=  
holds. Thus, from Equation 8.251, we obtain
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		  Solving Equation 8.252 for u gives

	
u

S Kv

S Kv
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|| , ||

m
m(

,
2 	

(8.253)

		  where S(Kv, μ) = sgn(Kv)(|Kv| − μ)+ is the soft threshold operator and (x)+ = max(0, x).
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		  Now we determine μ. By the KKT condition, μ(c1 − ‖u‖1) = 0, we obtain that

	 i.	 Select μ = 0 if ‖u‖1 ≤ c1.

	 ii.	 Otherwise, we choose μ such that ‖u‖1 = c1.

	 2.	l = 0

		  Set u = S(Kv, μ). Again, we have

	 iii.	 Select μ = 0 if ||u||1 ≤ c1.

	 iv.	 Otherwise, we choose μ such that ||u||1 = c1.

In summary, the algorithm for the sparse SVD of matrix K is given by

	 1.	Select sparseness parameters λu  and  λv.

	 2.	Let K1 ← K.

	 3.	For j = 1,  … , q

	 a.	 Initialize vj and normalize v
v

v
j

j

j

¬
|| ||2

.

	 b.	 Iterate until convergence:

	
i.

	
u

S K v

S K v
j

j
j u

j
j u

¬
( )
( )

,

|| , ||

l

l 2

, where λu = 0 if this results in ‖uj‖1 ≤ c1; otherwise, λu is 

chosen to be a positive constant such that ‖uj‖1 = c1.

	
ii.

	
v

S K u

S K u
j

j
j v

j
j v

¬
=( )

( )
,

|| , ||

l

l

0

2

,
 
where λv = 0 if this results in ‖vj‖1 ≤ c2; otherwise, λv is 

chosen to be a positive constant such that ‖vj‖1 = c2.

	 c.	 d u K vj j
T j

j¬ .

	 d.	 K K d u vj j
j j j

T+ ¬ -1 .

Finally, we set

	 b v a v uj yy j j xx xy yy j xx j= = =- - - -S S S S S1 2 1 2/ / / .and 1 1 2

8.5.3.2 � Sparse CCA via Direct Regularization Formulation
The problem in the penalized matrix decomposition for the sparse CCA is that although 
eigenvectors u and v are sparse, the canonical vectors a and b may not be sparse. To over-
come this limitation, we introduce another algorithm for the sparse CCA (Wilms and 
Croux 2016; Witten et al. 2009).
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By directly employing L1-norm regularization, we can formulate sparse CCA as

	

max

, ,

,w

subject to || || || || || || |

1 2
1 2

1 2
2

2 2
2

1 1 11 1

w

T

xy

w w

w w w c

å
£ £ £ || ||w c2 1 2£ .	

(8.254)

Following similar arguments as in the previous sections, single-factor sparse CCA algo-
rithms for solving problem (8.254) is given by the following:

	 1.	Initialize w2 to have L2 norm 1.

	 2.	Iterate the following two steps until convergence:

	
a.

	
w

S w

S w

xy

xy

1
2 1

2 1
2

1 0¬
( )
( )

=
S

S

,

,

l

l
l, , if this results in‖w1‖1 ≤ c1; otherwise, λ1 > 0 is chosen

 
so that

	 || ||w c1 1 1= .	 (8.255a)

	
b.

	
w

S w

S w

xy

xy
2

1 2

1 2 2

¬
( )S
S

,

|| , ||

l
l(

,
 
λ2 = 0, if this results in‖w2‖1 ≤ c2; otherwise, λ2 > 0is chosen 

so that

	 || ||w c2 1 2= .	 (8.255b)

The single-factor sparse CCA algorithm can be easily extended to obtain multiple canonical 
vectors.

Algorithm for Obtaining Sparse CCA Factors

	 1.	Let Z1 ← XTY.
	 2.	For j = 1, 2,  … , J
	 i.	 Initialize w j

2 to have L2 norm 1.
	 ii.	 Iterate the following two steps until convergence:

	
a.

	
w

S Z w

S Z w
j

j j

j j1

2 1

2 1 2
1 0¬

( )
=

,

|| , ||

l

l
l

(
, , if this results in || ||w cj

1 1 1£ ; otherwise, λ1 > 0 is 

chosen so that || ||w cj
1 1 1£ .

	
b.

	
w

S Z w

S Z w
j

j j

j j2

1 2

1 2 2

¬
( ),

|| , ||

l

l(
,
 
λ2 > 0, if this results in || ||w cj

2 1 2£ ; otherwise, λ2 > 0 is cho-

sen so that || ||w cj
2 1 2£ .

	 iii.	 Z Z w Z w w wj j j T j j j j T+ ¬ - ( )é
ëê

ù
ûú ( )1

1 2 1 2 , where w wj j
1 2and  are the jth canonical vectors.
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8.6 � INVERSE REGRESSION (IR) AND SUFFICIENT 
DIMENSION REDUCTION

8.6.1 � Sufficient Dimension Reduction (SDR) and Sliced Inverse Regression (SIR)

A large number of variables in genomic, epigenomic, physiological, and imaging datasets, 
the well-known “curse of dimensionality” poses a great challenge to regression, classification, 
and cluster analysis. Dimension reduction is an essential tool for reducing the impact of noise 
and irrelevant predictors on regression and risk prediction. Dimension reduction is used to 
identify a linear or nonlinear combination of the original set of variables while preserv-
ing relevant information (Nileson et al. 2007). We have two classes of dimension reduction: 
unsupervised dimension reduction and supervised dimension reduction. Principal compo-
nent analysis (PCA) is a typical method for unsupervised dimension reduction, which proj-
ects predictor data onto a linear space without response variable information. Supervised 
dimension reduction is to discover the best subspace that maximally reduces the dimension 
of the input while preserving the information necessary to predict the response variable. Let 
Y be a univariate response variable (phenotype), which can be a continuous or discrete vari-
able, and X a p-dimensional vector of predictors (genotypes, functional principal component 
scores, and other feature variables). The current popular supervised dimension reduction 
method is SDR, which aims to find a linear subspace S such that the response Y is condition-
ally independent of the covariate vector X, given the projection of X on S (Cook 2004):

	 Y X P XS^ ,	 (8.256)

where
⊥ indicates independence
PS represents a projection operator in the standard inner product on S

In other words, all the information of X about Y is contained in the space S. The subspace S 
is referred to as a dimension reduction subspace. The projection PSX can be expressed as a 
linear combination of the original predictors, b b1

T
k
TX X, ,¼ , where [β1,  …, βk] form a basis 

for the dimension reduction subspace S. Using the projections on to the dimension reduc-
tion subspace S, we can regress the response variable Y on the predictors through their 
predictions on the dimension reduction subspace without loss of information:

	 y f X XT
k
T= ¼( )b b e1 , , , ,	 (8.257)

where
f is an unknown function
ε is a random error independent of X

After the dimension reduction subspace is estimated, we can plot Y versus the new predictors 
b b1

T
k
TX X, ,¼ . The model (8.156) implies that most of relevant information in X about Y is 

included in b b1
T

k
TX X, ,¼{ }.
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The subspace S may not be unique. To uniquely describe dimension reduction subspace, 
we introduce central subspace (CS) that is defined as the intersections of all dimension 
reduction subspaces S, if it is also a dimension reduction subspace (Cook 1994). The CS is 
denoted by SY|X. The dimension k of the central subspace Sy|x is far less than the number of 
available variants p. Let B = [β1,  …, βk] form a basis of central subspace Sy|x.

For the convenience of discussion, we often standardize the predictors. Let Σx be a cova-
riance matrix of X. We define the standardized predictors as

	 Z X E Xx= - ( )( )-S 1 2/ .	 (8.258)

It is clear from Equation 8.258 that var(Z) = 1. Working on the standardized predictors Z, 
we can easily show that the central subspace SY|Z is equal to Sx Y XS1 2/  (Exercise 8.14). Let 
H = [η1,  …, ηk] form a basis of SY|Z, then h bk x k= S1 2/ .

Many methods have been developed for identifying CS. These methods are based on 
inversion regression (Li 1991). Intuitively, if in the forward regression (8.257), data in the 
central space predict the response and contain all information of predictors X involving 
the response variable Y, then the conditional mean E[Z|Y] must lie in the central space. 
To further reduce the dimension of the data, we perform PCA on the central space. The 
principal component can be found by maximizing the variance of the following variable: 
g = ηTE[Z|Y]. In other words, we maximize

	 var cov .g E Z YT( ) = éë ùû( )h h 	 (8.259)

If we normalize the vector in the central space by imposing the constraints

	 h hT =1,	 (8.260)

then our goal is to solve the following constrained optimization problem:

	

max cov

, , , ,

h
h h

h h h h
k

pR
k
T

k

k
T

k k
T

l

E Z Y

l k

Î
éë ùû( )
= = = ¼ -subject to 1 0 1 11.	

(8.261)

Substituting h bk x k= S1 2/  into Equation 8.261, we obtain

	

max cov ]

, , ,

b

b b

b b b b
k

pR
k
T

k

k
T

x x k
T

k l

E X Y

l

Î
( )

= = = ¼

[ |

Subject to S S1 0 1 ,, .k -1 	
(8.262)

The solutions to the optimization problem (8.262) give the orthogonal directions such that 
the central inverse regression function has the largest variations.
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To make a mathematically rigorous presentation and to use the generalized eigenequa-
tions to estimate the CS, we make the following assumptions (Cook 2004):

	 1.	Linearity condition: E(Z|PSY|ZZ) = PSY|ZZ. Let a p × k dimensional matrix γ = [γ1,  …, γk] 
form the basis matrix of the CS SY|Z. Then, assumption (1) requires that E(Z|γTZ) be a 
linear function of γTZ. The linearity condition holds for the elliptically symmetric dis-
tribution including the normal distribution (Li 1991). We can show that under the lin-
earity condition and model (8.156), the inverse regression curve E[Z|Y] is contained 
in the linear subspace spanned by the vectors ηl, l = 1,  … , k. In fact, assume that a vec-
tor, b, is in the orthogonal complement of the space spanned by the basis {η1,  …, ηk}, 
which implies that hl

T b l k= = ¼0 1, , , . To show that E[Z|Y] is contained in the linear 
subspace spanned by the vectors ηl, l = 1,  … , k, we only need to show that bTE[Z|Y] = 0. 
However, using conditioning on expression, we have b E Z Y E E b Z Z YT T

l
Téë ùû = é

ë
ù
û

é
ë

ù
ûh . 

It suffices to show that E b Z ZT
l
Thé

ë
ù
û = 0 or E E b Z ZT

l
T+éë ùû( )é

ëê
ù
ûú
=h

2

0.
 
By condition-

ing, E E b Z Z E E b Z Z Z bT
l
T T

l
T Th hé

ë
ù
û( )é

ëê
ù
ûú
= é

ë
ù
û

é
ë

ù
û

2

, and linearity condition, we have 

E b Z Z c c ZT
l
T

l l
T

l

k

h hé
ë

ù
û = +

=å0
1

. Therefore, we obtain E E b Z Z Z b c E ZT
l
T Thé

ë
ù
û

é
ë

ù
û = [ ]+0

c E ZZ b c bl l
T T

l l
T

l

k

l

k

h héë ùû = =
== åå 0

11
, i.e., bTE[Z|Y] = 0. This implies that E[Z|Y] lies 

in the CS.

	 2.	Coverage condition: Span {E(Z|Y = y)|y = 1, …h} = SY|Z, where we assume that Y is 
discretized into h slices. In other words, the space spanned by the inverse condi-
tional mean defines the CS. Therefore, for each y of Y, the inverse conditional mean 
E(Z|Y = y) is a linear combination of bases of SY|X:

	 E Z Y y y=( ) = gr ,	 (8.263)

		  where γ is the basis matrix for SY|Z and ρy ∈ Rk is a k-dimensional vector.

	 3.	Constant covariance condition: Var(Z|PSY|ZZ) = QSY|Z, where QSY|Z = Ip − PSY|Z. In other 
words, Var(Z|PSY|ZZ) should be a nonrandom matrix.

To characterize the basis in the CS for Z, we define a linear combination of variables in 
E(Z|Y) as g0

T E Z Y( ). To maximally employ information in the SY|Z, CS, we maximize the 
variance of g0

T E Z Y( ):

	 cov cov ,g g g0 0 0
T TE Z Y E Z Y( )( ) = ( )( ) 	 (8.262a)
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under the constraints g g0 0 1T =  or

	

cov cov

cov
/

g g g

g

0 0 0

1 2

0

T T

T

E Z Y E Z Y

E X E X Y

( )( ) = ( )( )

=
æ

è
çç

ö

ø
÷÷ - ( )(

-

å ))( )
= - ( )( )( )

-

å
1 2

0

/

cov ,

g

b bT E X E X Y 	 (8.262b)

under the constraints

	 g g b b0 0 1T T= =åor 1,

where β1,  … , βk is the basis for SY|X. Solving the optimization problem (8.262a) or (8.262b) 
leads to the following eigenequation:

	 cov ,E Z Y z( )( ) =g l g 	 (8.263a)

or

	 cov ( )E X E X Y x x-( )( ) = åb l b,	 (8.263b)

where λz  and  λx are eigenvalues and γ and β are eigenvectors, respectively. Solutions to 
eigenequation (8.263a) and (8.263b) yield the basis matrices η = [γ1,  …, γd] for SY|Z and 
B = [β1,  …, βk] for SY|X, respectively.

Eigenequation problem (8.263) can be efficiently solved by the sliced inverse regression 
(SIR) method (Li 1991). Suppose that the response variable y is discretized and partitioned 
into J slices. Let ∑E(X|YJ) be the between-slice sample covariance matrix defined by

	

^

,å å( )
=

= -( ) -( )
E X Y

j

J

j j j
T

J n
n m m m m

1

1

ˆ ˆ ˆ ˆ

	
(8.264)

where
m̂ is the sample overall mean

m̂
n

xj
j

j
i Sj

=
Îå1

 is the sample mean for the jth slice

Sj is the index set for the jth slice

Assume that ∑x is estimated by sampling matrix ˆ .å = -( ) -( )
=åx i i

T

i

n

n
X m X m

1
1

ˆ ˆ
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Equation 8.263b is then reduced to

	
ˆ ˆ .å = å( )E X Y x xJ

b l b 	 (8.265)

8.6.2 � Sparse SDR
8.6.2.1 � Coordinate Hypothesis
Although it is a powerful tool for dimension reduction, SDR also has serious limita-
tions. SDR uses all of the original predictors to estimate the CS. The results are difficult 
to interpret and cannot be used for the discovery of predictive variants. To overcome 
these limitations, we can remove irrelevant predictors while preserving all information 
about the response variable. This idea can be formulated by introducing the concept 
of coordinate hypothesis, which assumes that some coordinate variables (components) 
in the basis vectors for the CS are zero, i.e., their corresponding original variables will 
make no contribution to the projection of the original predictors on the CS. Let H be a 
selected r-dimensional subspace of the predictor space that specifies the hypothesis of 
a set of components on the basis vectors being zero. We test the coordinate hypothesis 
of the form

	 P S OH Y X p= ,	 (8.266)

where Op represents the origin in Rp. For example, by arranging the order of variables in 
the dataset, we can always partition the predictor dataset X into two parts: X X XT T T

= éë ùû1 2, . 
The corresponding basis matrix for CS can also be partitioned as B T T T

= éë ùûb b1 2, . Let 
H = Span((0, Ir)T). Equation 8.266 implies

	
P S IH Y X r= ( ) é

ë
ê

ù

û
ú = =0 0

1

2
2,

b
b

b .

Equation 8.266 provides a general framework for SDR-based variable selection. Since the 
number of variables involved in genome-based disease risk prediction may reach as high as 
millions or ten millions of variables, in practice, it is difficult to solve such large SDR-based 
variable selection problems. Fortunately, we can use a split-and-conquer approach to solve 
this problem. We can show that SDR for a whole genome can be partitioned into a number 
of small sub-SDR problems defined for divided small genomic regions (see Supplemental 
Note B). The combined sub-SDR solutions for genomic regions will globally solve the SDR 
for a whole genome.
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8.6.2.2 � Reformulation of SIR for SDR as an Optimization Problem
The SIR for estimation of the CS can be formulated as an eigenvalue problem as shown in 
Equation 8.265. The eigenvalue problem can also be formulated as a constrained optimiza-
tion problem (Chen and Li 1998; Wang and Zhu 2013):

	

min

. . var

,T b
i i

T

i

i

i i

E T Y E T Y X E X b

T Y

( ) - ( )( ) - - [ ]( )( )é

ëê
ù

ûú

( )( )

2

s t == ( ) ( )( ) = = ¼ - = ¼1 0 1 1 1, cov , , , , , , ,T Y T Y j i i di j, 	

(8.267)

where Ti(y) is a set of transformation function of the response variable y. The transforma-
tion function can be expanded in terms of basis functions:

	
T y E T y y y i di i

k

K

ik k i
T( ) - ( )( ) = ( ) = ( ) = ¼

=
å

1

1x f x f , , , ,
	

(8.268)

where ϕk(y) are known basis functions, ξik are coefficients of expansion, 
ϕ(y) = [ϕ1(y),  …, ϕK(y)]T, and ξi = [ξi1, …ξik]T. For convenience, we assume that ϕ1(y) ≡ 1. 
Assume that the predictors are centered. We then denote x = X − E(X). The optimization 
problem (8.267) can be written in terms of expansion coefficients:

	

min

. . cov , cov

,x
x f

x f x x f
i b

i
T T

i

i
T

i i
T

E y x b

y y

( ) -( )é
ëê

ù
ûú

( )( ) =

2

1s t (( )( ) = = ¼ - = ¼x j j i i d0 1 1 1, , , , , .	

(8.269)

Assume that (X1, Z1),  … , (Xn, Zn) are sampled and that predictors Xj are centered. Let 
Z = [ϕ(z1),  …, ϕ(zn)]T and X = [x1,  …, xn]T.

Then, the sampling formulas for the expectation and covariance in problem (8.269) are 
given by

	
E z x b

n
Z Xb z

n
Z Zi

T T
i i i

Tx f x f( )-( )é
ëê

ù
ûú
» - ( )( ) »2

2
21 1

|| || and cov .

Therefore, the problem (8.269) can be approximated by
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q b

q q q q
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s t

2

1 0 1 1 ii d= ¼1, , ,	
(8.270)

where D Z Z

n

T

= , θi = ξi, and bi i
n

b= 1 .

In other words, the SIR is reformulated as a biconvex optimization problem, or an opti-
mal scoring problem (Clemmensen et al. 2011; Wang and Zhu 2013).
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8.6.2.3 � Solve Sparse SDR by Alternative Direction Method of Multipliers
To systematically search the genetic variants of prediction value across the genome based 
on SDR, penalized techniques should be used to solve the optimal scoring problem (8.270). 
Furthermore, in the genome-based disease risk prediction, the number of genetic variants 
is much larger than the number of sampled individuals. As a consequence, the sample cova-
riance of matrix of genetic variants is singular and its inverse does not exist. Finding solu-
tions to the optimal scoring is problematic. The sparse optimal scoring or SDR algorithms 
are needed.

Let B i di p

T
= ¼[ ] = ¼éë ùû = ¼* *b b b b1 1 1, , , , , , ,  be a p × i matrix, which forms the basis 

matrix of the CS. For a simplified discussion, βij, i = 1, 2,  … , d is referred to as the jth coor-
dinate in the CS. In the sparse optimal scoring formulation of SDR by Wang and Zhu, the 
penalty is imposed separately for each vector in the CS. Consequently, a coordinate in some 
vectors in the CS will be penalized toward zero, but the same coordinate in other vectors 
in the CS may not be penalized to zero. Therefore, it is difficult to use their sparse optimal 
scoring formulation of SDR for variable screening. To overcome this limitation and develop 
a sparse SDR that can simultaneously reduce the dimension and the number of predic-
tors, we introduce a coordinate-independent penalty function. We introduce a coordinate-
independent penalty function to penalize the coordinate in all reduction directions (vectors 
forming the CS) toward zero (Chen et al. 2010):
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For simplicity of computation, we define l l bl l
r= * -|| ||2  and r ≥ 0 is a prespecified parameter. 

Thus, the penalty function can be simplified to
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(8.271)

where λ is a penalty parameter.
After introducing the penalty function, the sparse version of optimal scoring problem 

(8.270) for penalizing the variable can be defined as
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(8.272)

The problem (8.272) is a biconvex problem. It is convex in θ for each β and convex in β for 
each θ. It can be solved by a simple iterative algorithm. The iterative process consists of 
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two steps: (1) for fixed θi we optimize with respect to βi and for fixed βi we optimize with 
respect to θi. The algorithms are given below.

		  Step 1: Initialization.

		  Let D Z Z

n

T

=  and Q1 = [1, 1,  …, 1]T. We first initialize for qi i d0 1( ) = ¼, , ,
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		  where θ∗ is a random k vector.

		  Step 2: Iterate between θ(s)  and  β(s) until convergence or until a specified maximum 
number of iterations (s = 1, 2,…) is reached:

		  Step A: For fixed qi
s i d-( ) = ¼1 1, , , , we solve the following minimization problem:
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(8.273a)

		  where B s s
d
s s

p
s

T( ) ( ) ( ) *( ) *( )= ¼é
ë

ù
û = ¼é

ë
ù
ûb b b b1 1, , , , .

		  Step B: For fixed bi
s( ), i = 1,  … , d, we seek qi

s( ), i = 1,  … , d, which solve the following 
unconstrained optimization problem:
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(8.273b)

		  A solution to the above optimization leads to a nonlinear equation (Appendix 8H):
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(8.274)

		  where Q Q Q s T
1

0
1

1
1 11 1( ) ( ) ( )= = = = ¼[ ]� , , , .

By Newton’s method or simple iteration, we obtain a solution, �qi
s( ), to Equation 8.273b. Set
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If || ||q q ei
s

i
s+( ) ( )- <1

2 , || ||b b ei
s

i
s+( ) ( )- <1

2 , i = 1,  … , d, then stop; otherwise, s ≔ s + 1, in which 
case, go to step A.

Now we study how to use ADMM to solve the optimization problem (8.273a). 
The algorithm for ADMM to solve optimization problem (8.273a) is given below 
(Appendix 8H).

Initial value (m = 0):
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(8.275)

For fixed q j
s j i( ) = ¼, , ,1 , iterate with m until convergence:

		  Step (i): m ≔ m + 1.

		  Step (ii):

	
b r q r aj

s m T T
j
s

j
m

j
mX X I X Z u j( ) +( )

-
( ) ( ) ( )= +æ

è
ç

ö
ø
÷ + -( )é

ëê
ù
ûú

1
1

2 2
, == ¼1, , .d

	
(8.276a)
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and
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		  Step (iv):

	 u uj
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j
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j
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j
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s m

j
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2 1|| e, , , , stop  
and go to step B; otherwise, go to step (i).

Since the number of SNPs selected for risk prediction by the sparse SDR method is 
usually less than 50,000 SNPs, a split-and-conquer algorithm is used to search clinically 
valuable SNPs for disease risk prediction. Briefly, we first divide the whole genome into 
K subgenomic regions. The sparse SDR method is then applied to each subgenomic region 
to search SNPs with some optimal criterion in the training dataset. Then, we collect all 
selected SNPs in each subgenomic region to generate a new dataset for final classification. 
The sparse SDR method is again applied to the new generated dataset to search SNPs and 
predict disease. In the previous section, we proved that the proposed split-and-conquer 
algorithm can reach global optimal classification or disease risk prediction.

8.6.2.4 � Application to Real Data Examples
The first clinical use of genetic variants is disease risk prediction that can discriminate 
between individuals who will develop the disease of interest and those who will not. To 
examine whether it can systematically search clinically valuable genetic variants for disease 
prediction, the proposed sparse SDR method was first applied to the GWAS data of the 
Wellcome Trust Case Control Consortium (WTCCC) for coronary artery disease (CAD) 
study where 1,929 cases and 2,938 controls were sampled and the total number of SNP 
markers is 393,473 (Frayling et al. 2007).

To reduce bias in the genotypes, we removed all SNPs that were excluded in the original 
WTCCC CAD study (Frayling et al. 2007). To unbiasedly evaluate the performance of the 
sparse SDR method for disease risk prediction, a 5-fold cross-validation (CV) was first used 
to select SNPs for disease risk prediction. Specifically, the original sample was randomly 
partitioned into five equal-size subsamples. Of the five subsamples, a single subsample was 
retained as the test dataset, another single sample was used as the validation dataset, and 
the remaining three subsamples were used as a training dataset. The cross-validation pro-
cess is then repeated five times (the folds), with each of the five subsamples used exactly 
once as the test dataset. The five results from the folds can then be averaged to produce 
a single estimation of sensitivity, specificity, and class. The whole genome was first parti-
tioned into 20 subgenomic regions; each subgenomic region included 20,000 SNPs except 
for the 20th subgenomic region that included 13,473 SNPs. To evaluate its performance for 
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disease risk prediction without bias, the sparse SDR was applied to each subgenomic region 
in the training dataset. After convergence of the iteration process in the optimal scoring 
algorithm, the top 2000 SNPs with the largest contribution to the classification (the largest 
absolution values of β in Equation 8.273a) were selected for first variable screening. The 
results from each of the 20 subgenomic regions were then combined. We totally selected 
40,000 SNPs that were used for the second variable screening. We then split the 40,000 
SNPs into four equal numbers of SNP subdatasets. Again, the sparse SDR was applied to 
each of the four subdatasets. The top 1500 SNPs with the largest contribution to the classifi-
cation were then selected for the third (final) variable screening and classification accuracy 
calculation. Variable screening was performed by the sparse SDR method for each of the 
five sets of training datasets. Finally, the selected SNPs were then used to learn a predictive 
discriminative model on training individuals, which was in turn used to classify CAD on 
the validation dataset. We finally selected the SNPs with the best classification accuracy 
that was evaluated in the validation dataset. The selected SNPs and the trained model in 
the validation dataset were finally used to evaluate sensitivity, specificity, and classification 
accuracy in the test dataset.

The final classification performance results of the sparse SDR method were compared 
with the software implementing sparse logistic regression (Friedman et al. 2010) and the 
SNP ranking method based on the GWAS P-values of the χ2 association test and logistic 
regression. The P-value of the SNPs was calculated in the training dataset. The SNP rank-
ing method did not need to split the genome region into subgenomic regions. The P-value 
of each SNP was calculated once in the training dataset. For the SNP ranking method, we 
selected the SNPs with the best classification accuracy that was evaluated in the validation 
dataset. The selected SNPs and the trained model in the validation dataset were then used 
to evaluate sensitivity, specificity, and accuracy. The results were summarized in Tables 8.1 
through 8.3 where CV1–CV5 represent five partitioned datasets in 5-fold cross-validations. 
We observed that accuracy of classifying CAD using the proposed sparse SDR method in 
the test dataset was much higher than that from using the sparse logistic regression and 
SNP ranking method. Using the sparse SDR method compared to the sparse logistic regres-
sion and SNP ranking significantly increased classification accuracy at least by ~15%.

SOFTWARE PACKAGE
R package for discriminant analysis can be found in “Quick-R: Discriminant Function 
Analysis.” A good package for network-penalized logistic regression is package “penal-
ized” (https://cran.r-project.org/web/packages/penalized/penalized.pdf). A widely used 
software for implementing SVM is LIBSVM in package e1071 (https://cran.r-project.org/
web/packages/e1071/vignettes/svmdoc.pdf). Package “PMA” (https://cran.r-project.org/
web/packages/PMA/PMA.pdf) implements sparse CCA. Software for sparse SDR that is 
designed to select features can be downloaded from our website (http://www.sph.uth.tmc.
edu/hgc/faculty/xiong/index.htm).

http://www.sph.uth.tmc.edu
http://www.sph.uth.tmc.edu
https://cran.r-project.org
https://cran.r-project.org
https://cran.r-project.org
https://cran.r-project.org
https://cran.r-project.org
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APPENDIX 8A: PROXIMAL METHOD FOR PARAMETER ESTIMATION 
IN NETWORK-PENALIZED TWO-CLASS LOGISTIC REGRESSION
We aim at solving the optimization problem:

	 l fp b b b( ) = ( ) + ( )W .	 (8A.1)

Function f(β) can be expanded in terms of a Taylor expansion (Equation 1.38):
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Substituting Equation 8A.2 into the optimization problem (8A.1), we obtain the reduced 
optimization problem:
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Equation 8A.4 can be reformulated as
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Recall that the proximal operator for function vΩ(β) is defined as (see Equation 1.43)
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and
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Now we first calculate
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Equation 1.137 gives
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where (x)+ = max(0, x).
Combining Equations 8A.7, 8A.9, and 8A.10, we obtain
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We also can directly derive formula (8A.11). Our goal is to find solution
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t
d  have the same sign. Otherwise, if u k

t
d > 0, then δk < 0. But this 

implies Γk < 0 and u vk

t
d l- >1 0G . This leads to violation of condition (8A.14). Therefore, it 

must be that δk > 0, i.e.,

	

d l

l

d

d d

k
t

t t

u v

u u v

k

k k

= -( )
= ( ) -( )

+

max

.

0 1

1

,

sign 	 (8A.15)

Similarly, we can show that if u k

t
d < 0, then δk < 0, i.e.,

	

d l

l

l

l

d

d

d

d d

k
t

t

t

t t

u v

u v

u v

u u v

k

k

k

k k

= +

= - +

= - -( )
= ( ) -(

1

1

1

10sign max , ))
= ( ) -( )

+
sign u u vk k

t t
d d l1 .

	
(8A.16)

If u k

t
d = 0, then δk = 0. Otherwise, if δk > 0, then u v vk

t
kd l l- = - <1 1 0G , which violates the 

condition (8A.14). Similarly, we can show that δk < 0 is also impossible. In this case,

	
u v vk

t
kd l l d-( ) = -( ) = =

+ +1 1 0 .
	

(8A.17)



Machine Learning, Low-Rank Models, and Their Application    ◾    619

Combining Equations 8A.15 through 8A.17 gives

	
d ld dk

t tu u v k Kk k= ( ) -( ) = ¼
+

sign 1 1, , , .

Similarly, we can obtain

	

h
l

l

h

h h

h h

t

t

t t

t t

u

u u v

u u vL L

+ +

+

=
( ) -( )

( ) -( )

é
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ê
ê
ê
ê

1
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2

1

2 2sign

sign

�
êê
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ù

û

ú
ú
ú
ú
ú
ú

.

	

(8A.18)

Finally, we calculate Proxv
tuW3 a( ) using group LASSO. Recall that

	

Prox

Prox

Prox

v
t

v
t

v
t

u

u

uG G

W3

3 1 1

3

a

l f a

l f a

( ) =
( )
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ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

� .

	

(8A.19)

Using Equation 1.151 gives

	

Proxv
t g

t

t
g g

g
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v

u
u g Gl f a

a
a

l f
3 1 1 23

2

( ) = -æ

è
çç

ö

ø
÷÷

=

+

, , , , .…

	
(8A.20)

Therefore, the update formula for αt + 1 is
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a
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a
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ê
ê
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(8A.21)

Group LASSO can also be directly solved. Specifically, we want to obtain the solution to

	
min .
a

aa
l f

a
g

gg
g

g
t

v
u

2
3

2

21

2
+ -

	
(8A.22)
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Let F
v

ug
g

g
t

g= + -|| || || ||a
l f

a a2
3

2
21

2
. Then, when αg ≠ 0, we set ¶

¶
=F

ga
0:

	

¶
¶

=
¶

+ -( ) =F

v
u

g

g

g g
g

t
ga

a
l f

a a

2 3

1
0,

	
(8A.23)

which implies

	
1 3

2

+
é

ë
ê
ê

ù

û
ú
ú

=
v

ug

g
g

t
g

l f
a

a a .

	
(8A.24)

Taking an L2 norm on both sides of Equation 8A.24 gives

	
1 3

2
2 2

+
æ

è
çç

ö

ø
÷÷ =

v
ug

g
g

t
g

l f
a

a a .

	
(8A.25)

Solving Equation 8A.25 for ‖αg‖2, we obtain

	 a l fag
t

gu vg2 2
3= - .	 (8A.26)

Substituting Equation 8A.26 into Equation 8A.24 yields

	
a

l f

a
ag t

tv

u
ug

g

g= -
æ

è
çç

ö

ø
÷÷

1
3

2

.

	
(8A.27)

Now we investigate αg = 0. Denote the subgradient of αg at αg = 0 by sg. Then, we have

	 sg 2
1£ .	 (8A.28)

From Equation 8A.23, we obtain that

	
s

u

v
g

t

g

g= a

l f3

,
	

(8A.29)

which implies

	

|| ||u

v
g

t

g

a

l f
2

3

1£

or it must be

	
1 03

2

- £
v

u

g

t
g

l f

a

.

	
(8A.30)
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In other words, when u g

t
a = 0, if 1 03

2

- £
v

u
g

t
g

l f

a|| ||
, then we must set αg = 0, and Equation 8A.27 

becomes

	
a

l f

a
ag t

tv

u
ug

g

g= -
æ

è
ç
ç

ö

ø
÷
÷
+

1
3

2

.

	
(8A.31)

APPENDIX 8B: EQUIVALENCE OF OPTIMAL SCORING AND LDA
We use a Lagrangian multiplier to solve the optimal scoring problem (8.78):

	
min .

, ,B

T T TF Y XB Y XB I
n

Y
q l

q q q q= -[ ) -( ) + -æ
è
ç

ö
ø
÷

é

ë
ê

ù

û
úTr Tr L 1

	
(8B.1)

Using Equation 1.164, we obtain

	

¶
¶

= - -( ) =

¶
¶

= - -( )- =

F

B
X Y XB

F
Y Y XB

n
Y Y

T

T T

2 0

2 2
1

0

q

q
q qL ,

which can be reduced to

	 X Y X XBT Tq- = 0,	 (8B.2)

	
Y Y I

n
Y XBT Tq -æ

è
ç

ö
ø
÷ - =1

0L .
	

(8B.3)

Solving Equation 8B.3 for θ gives

	
q = ( ) -æ

è
ç

ö
ø
÷

-
-

Y Y Y XB I
n

T T1
1

1 L .
	

(8B.4)

Recall that

	
I

n
I

n n
I-æ

è
ç

ö
ø
÷ = + -æ

è
ç

ö
ø
÷

-
-

-
1 1 1

1
1

1

L L .
	

(8B.5)

Substituting Equation 8B.5 into Equation 8B.4, we obtain

	
q = ( ) + ( ) -æ

è
ç

ö
ø
÷

- - -
-

Y Y Y XB
n

Y Y Y XB
n

IT T T T1 1 1
1

1 1L .
	

(8B.6)
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It follows from Equations 8.69 and 8.72 that

	 X Y Y Y Y X nT T T
b( ) ,- =1 åå 	 (8B.7)

and

	 X X n nT
b w= +åå åå .	 (8B.8)

Substituting Equations 8B.6 through 8B.8 into Equation 8B.2 gives

	
X Y Y Y Y XB

n
X Y Y Y Y XB

n
I X XBT T T T T T T( ) + ( ) -æ

è
ç

ö
ø
÷ - =

- - -
-

1 1 1
1

1 1
0L ,

which will be reduced to

	
n B B

n
I n B n Bb b b wåå åå åå åå+ -æ

è
ç

ö
ø
÷ - - =-
-

L 1
1

1
0

or

	 åå ååb wB B n I= --( ).L 1 	 (8B.9)

Let Λ0 = nΛ−1 − I. Then, Equation 8B.9 can be written as

	 åå ååb wB B= L0 .	 (8B.10)

Equation 8B.10 is equivalent to Equation 8.76. This shows that the optimal score is equiva-
lent to LDA.

APPENDIX 8C: A DISTANCE FROM A POINT TO THE HYPERPLANE
Assume that x0 is a point in the space and x is its projection to the plane, wTx + b = 0. 
Figure 8C.1 shows that the vector x0 − x is parallel to w. So we have

	 x x kw0 - = ,	 (8C.1)

where the point x is in the plane. We normalize the normal vector in Equation 8.89. Thus, 
the point x satisfies the following equation:

	

w x b

w

T + =
|| ||

0.
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Multiplying both sides of Equation 8C.1 by w, we obtain

	 w x w x kw wT T T
0 - = .	 (8C.2)

However, it follows from Equation 8.89 that

	 - =w x bT ,

which implies that

	 w x b kw w k wT T
0

2+ = = .	 (8C.3)

From Equation 8C.1, we know that the distance between point x0 and the plane is equal to 

	 x x k w0 - = .	 (8C.4)

Combining Equations 8C.3 and 8C.4 yields

	
|| || || ||

|| ||
x x k w

w x b

w

T

0

0
- = =

+

Thus, the distance from point x0 to the hyperplane is

	

wx b

w

0 +
|| ||

.

w

|| x0 – x ||=| k ||| w ||=

x

x0
|WTX + b|/|w||

|wT x0 + b|

–wT x = b

wT x0 – wT x = kwTw

x0 – x = kw

|| x0 – x ||=| k ||| w ||

|| w ||

wT x0 + b = kwT w = k || w ||2

FIGURE 8C.1  Distance from a point to the hyperplane.
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APPENDIX 8D: SOLVING A QUADRATICALLY REGULARIZED 
PCA PROBLEM
Let

	

F A XY Y

A XY A XY X X Y Y

F F

T T T

= - +

= -( ) -( )( ) + ( ) + ( )
|| || || ||

Tr Tr Tr

2 2g

g g .

The optimal conditions for the problem (8.155) are

	
¶
¶

= ¶
¶

=F

X

F

Y
0 0and .

	
(8D.1)

Using formula (1.164) for calculation of the derivative of the trace with respect to matrices, 
we obtain

	
¶
¶

= - -( ) + =F

X
A XY Y XT2 2 0g

or

	 - -( ) + =A XY Y XT g 0	 (8D.2)

and

	
¶
¶

= - -( )+ =F

Y
X A XY YT2 2 0g

or

	 - -( )+ =X A XY YT g 0.	 (8D.3)

Taking transpose on both sides of Equation 8D.3, we obtain

	 - -( ) + =A XY X Y
T Tg 0.	 (8D.4)

Now we show that the solutions

	 X U Y Vk k k k
T= =� �L L1 2 1 2/ /and 	 (8D.5)

satisfy Equations 8D.2 and 8D.4.
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Recall

	 A U V T= L 	 (8D.6)

and

	

�Lk k

l

= -( ) ¼ -( ) ¼ -( )( )
= - ¼ - ¼

+ + +
diag , , , ,

diag , , , , ,

l g l g l g

l l l g

1 1

1 0 00

0

0 0

( )

=
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ë
ê

ù

û
ú

�Ll .
	

(8D.7)

Therefore, using Equations 8D.5 and 8D.6, we obtain

	 - -( ) + = - -( ) +A XY Y X U V U V V UT T
k k k

T
k k k kg gL L L L� � �1 2 1 2/ / .	

(8D.8)

Note that
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(8D.9)

and
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(8D.10)

It follows from Equations 8D.7 and 8D.8 that
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(8D.11)

Similarly, from Equations 8D.7 and 8D.10, we obtain

	
U V V U Uk k k

T
k k l l

l
l l k
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�

� �L L L
L

L L1 2
1 2

1 20
0

0 0
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/
/= éë ùû
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ù

û
ú = éë ùûû .

	
(8D.12)

It is easy to see that

	 U Uk k l l
� �L L1 2 1 2 0/ / .= éë ùû 	 (8D.13)
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Combining Equations 8D.8, 8D.11 through 8D.13, we obtain

	

- -( ) + = - + +éë ùû

= - -

A XY Y X U U U
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T
l l l l l l l l

l l

g gL L L L L
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0
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/ /

ûû
= 0. 	 (8D.14)

APPENDIX 8E: THE ECKART–YOUNG THEOREM
For the self-containment of this book, we give the proof here, following the directions in 
https://www.cs.princeton.edu/courses/archive/spring12/cos598C/svdchapter.pdf. The cel-
ebrated Eckart–Young Theorem discovered the best. The goal is to find matrix Ak with the 
rank at most k, which is a solution to the optimization problem

	

min

.
B

A B

B k

-

( ) £subject to rank 	
(8E.1)

A tool for deriving the best k rank approximation of a matrix is the SVD. The SVD provides 
a set of basis vector for matrix and vector representation. We first prove the Frobenius norm 
case. Assume that the SVD of the matrix A is A = UΛVT, where

	

U U U V V V U R U Rk r k
k

r k
k r k k

n k
r k

n r k= [ ] é

ë
ê

ù

û
ú = [ ] Î Î-

-
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´
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´ -(, , , ,L
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L
0

0
))

- +
´

-
´= ¼( ) = ¼( ) Î Î

,

, , ,L Lk k r k k r k
p k

r k
p rV R V Rdiag , , diag , ,s s s s1 1

--( ) <k k r, .

Let A U Vk k k k
T= L . We can show that the rows of Ak are the projections of the rows of A onto 

the subspace Sk spanned by the first k right singular vectors of A. Indeed, suppose that a is a 
row vector of the matrix A and vi,   i = 1,  … , k are the basis vectors of the subspace Sk. Then, 
the projection of the vector a can be expressed as

	
a v

i

k

i i
T»

=
å

1

x .
	

(8E.2)

Multiplying vj from the left on both sides of Equation 8E.2 and using the orthonormality 
v vi

T
j = 0 of the vectors vi, we obtain

	 xi iav= .	 (8E.3)

Substituting Equation 8E.3 into Equation 8E.2 yields

	
a av v

i

k

i i
T» ( )

=
å

1 	
(8E.4)

https://www.cs.princeton.edu
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Therefore, the set of projections of matrix A onto subspace Sk is

	

A

a

a

a v

a v

v Av v
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k i

n i

i
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1

� � TT .

	

(8E.5)

Recall that the SVD of A is given by

	 AV U V T= L ,

which implies

	 AV U= L,

or

	 Av ui i i= s .	 (8E.6)

Substituting Equation 8E.6 into Equation 8E.5, we obtain

	
A u v U V A

i

k

i i i
T

k k k
T

k» = =
=
å

1

s L .
	

(8E.7)

Next we prove that for any matrix B of rank at most k, we have

	 A A A Bk F F
- £ - .	 (8E.8)

Let B be any matrix of rank at most k. The dimension of B is at most k. Let V v vk k= [ ]1 �  
be the space with dimension k. The matrix B can be represented by

	
B Bv v

i

k

i i
T= ( )

=
å

1

.
	

(8E.9)

The Frobenius norm of the difference matrix A − B can be calculated as follows. The SVD 
of A is
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(8E.10)
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Combining Equations 8E.9 and 8E.10, we have

	

A B Av Bv v u v

Av Bv v

F i i i
T

i

k

j j j
T

j k

n

F

i i i
T

i

k

- = - +

= -

= = +

=

å å

å

2

1 1

2

1

( )

( )

s

FF

j j j
T

j k

n

F

u v

2

1

2

+
= +
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(8E.11)

where the second equality is due to v vi
T

j = 0.
Recall that
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(8E.12)

where U u u V v vn k k n n k k n n k k n- + - + - += [ ] = ¼( ) = [ ]1 1 1� �, , .L diag , ,s s

Since ( )Av Bv vi i i
T

i

k

F

T

- ³
=å 1

0, it is clear from Equations 8E.11 and 8E.12 that

	
|| || || || || ||A A U V u v A Bk F n k n k n k

T
F

j k

n

j j j
T

F- = = £ -- - -

= +
å2 2

1

2L s ,

where equality occurs when Bvi = Avi,   i = 1,  … , k, i.e.,

	
B Bv v Av v u v A

i

k

i i
T

i

k

i i
T

i

k

i i i
T

k= ( ) = ( ) = =
= = =
å å å

1 1 1

s .

Next we study the Euclidean norm case. By contradiction, we will show that

	 || || || ||A A A Bk- £ -2 2 .



Machine Learning, Low-Rank Models, and Their Application    ◾    629

Suppose that there is some matrix B of rank at most k such that

	 A B A Ak- £ -
2 2

.	 (8E.13)

Since the rank of the matrix B is at most k, the null space of B, denoted by Null (B), has a 
dimension of at least n − k. Consider space Vk + 1, spanned by the first k + 1 right singular 
vectors v1,  … , vk + 1. The intersection between Null (B) and Vk + 1 is not empty. Let z ≠ 0 with 
‖z‖2 = 1 be in the intersection space:

	 Null B Vk( ) +∩ 1.

By definition of Euclidean norm of the matrix, we have

	 A B A B z- ³ -
2

2

2

2
( ) .	 (8E.14)

Since z lies in the Null (B) and Null (B) ⊥ B, we have Bz = 0, which implies

	 A B z Az-( ) = .	 (8E.15)

Since by assumption z is in the space Vk + 1, z is orthogonal to the vectors vk + 2,  … , vn, i.e.,

	 v z i k ni
T = = + ¼0 2, , , .	 (8E.16)

Combining Equations 8E.14 through 8E.16 we obtain
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(8E.17)

Since z is in the space Vk + 1 and ‖z‖2 = 1, we have

	
z v z v v zi

T
i

i

k

i
T

i

k

2

2

1

1

2

2

2

1

1

1= = =
=

+

=

+

å å( ) ( ) .

	
(8E.18)

Substituting Equation 8E.17 into Equation 8E.16, we obtain

	 ( ) .A B z k- ³ +2

2
1

2s 	 (8E.19)
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Therefore, it follows from Equations 8.183 and 8E.18 that

	 A B k- ³ +2

2
1

2s .	 (8E.20)

Using (3) in Example 1.5, we have || ||U Vn k n k n k
T

k- - - +=L 2 1s .

Thus,

	 || || || || || ||A A U V A Bk n k n k n k
T

k- = = £ -- - - +2 2 1 2L s ,

which contradicts with assumption (8E.13):

	 || || || ||A B A Ak- £ -2 2 .

Therefore, we prove that

	 || || || ||A A A Bk- £ -2 2

and equality occurs when B = Ak.

APPENDIX 8F: POINCARE SEPARATION THEOREM
Let A ∈ Rn × n be a symmetric matrix with eigenvalues σ1 ≥  ⋯  ≥ σn and associated eigen-
vectors v1,  … , vn. The subspace spanned by v1,  … , vk is denoted by Sk, and its orthogonal 
complement is denoted by Sk-

^
1. We first show that
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(8F.1)

Let A = VΛVT be the eigendecomposition of A, where Λ = diag(σ1,  …, σn). The quadratic 
form xTAx is xTVΛVTx = yTΛy, where y = VTx and ‖y‖2 = ‖x‖2. If x SkÎ -

^
1, then y SkÎ -

^
1. In 

fact, the vector x can be expressed in terms of basis vectors {v1,  …, vn}:
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(8F.2)
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The assumption of x SkÎ -
^

1 implies that
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(8F.3)

Since A is a symmetric matrix, we have VT = V. Thus,
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But, from Equation 8F.3, we know that xj = 0, which implies that v y j kj
T = = ¼ -0 1 1, , , , or 

y SkÎ -
^

1.
If we express y in terms of {v1,  …, vn}, then we have

	

y

y

y

y

y

V
k

k

n

=

é

ë

ê
ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú

=-

1

1

�

�

b.

Similar to Equation 8F.3, we can show that y1 =  ⋯  = yk − 1 = 0. Therefore,
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which implies that
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(8F.4)

where we use the factor y y xi
i k

n
2

2
2

2
2 1= = =

=å || || || || .
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Taking yk = 1, yj = 0, ∀j ≠ k, or x∗ = vk, we obtain

	 x AxT
k* * = s .

This shows that

	

s j
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x S
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x Ax=
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max .
2

1

1

	

(8F.5)

Let μ1 ≥ μ2 ≥  ⋯ μk be the eigenvalues of the matrix GTAG. Since A = VΛVT, we have 
GTAG = GTVΛVTG. The eigenvectors of the matrix GTAG are GTV. Let Wj be a subspace spanned 
by the eigenvectors {GTvi,  …, GTvj}. Let x = Gy. Then, we have ‖x‖2 = ‖y‖2. Let Sj = {v1,  …, Vj}. 
If x SjÎ -

^
1, then v x i ji

T = = ¼ -0 1 1, , , . Thus, v x v Gy G v y i ji
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i
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T
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which implies that y WjÎ -
^

1.
Therefore,
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(8F.6)

When G = Vk, the first k eigenvectors of A, then we have
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This shows that the eigenvalues of matrix GTAG are the first k eigenvalues of A.

APPENDIX 8G: REGRESSION FOR CCA
Now we show that the regression coefficient matrix W in Equation 8.237 is equal to the 
canonical direction matrix A. We first use the SVD of the matrices X and Y to compute 
the canonical direction matrix A.

Let the SVD of the matrix X be

	 X U Vx x x
T= S .	 (8G.1)

Then, we have

	 X X V VT
x x x

T( ) =
- -1 2S 	 (8G.2)
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and

	 X X V VT
x x x

T( ) =
- -1 2 1/

.S 	 (8G.3)

Let the SVD of the matrix Y be

	 Y U Vy y y
T= S .	 (8G.4)

Then, again we have

	 Y Y V VT
y y y

T( ) =
- -1 2S 	 (8G.5)

and

	 Y Y V VT
y y y

T( ) =
- -1 2 1/

.S 	 (8G.6)

Therefore, using the above SVD, we obtain the decomposing of the between-class covari-
ance matrix:
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Using Equations 8G.3 and 8G.7 gives
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where

	 B V U Ux x
T

y= .	 (8G.9)

Using Equations 8G.9, 8G.3, and 8.237, we obtain
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The least square estimator of the regression (8.237) is
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x x
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S S
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This shows that A = W.

APPENDIX 8H: PARTITION OF GLOBAL SDR FOR A WHOLE 
GENOME INTO A NUMBER OF SMALL REGIONS
Suppose that genome is divided into d genomic regions. For the jth genomic region, we 
assume that some components of the basis vector are zero. The basis vector in the jth genomic 
region can be denoted by
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x
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.

From Equation 8.263, we have
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(8H.1)

By arranging the order of variables, the vector Z  and  γ can be written as
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(8H.2)

where
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Combining Equations 8H.1 and 8H.2, we obtain

	

E Z Y y

E Z Y y
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2 0
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(8H.3)

But
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It follows from Equation 8H.4 that

	 cov ,E Z Y z1( )( ) =x l x 	 (8H.5)

which implies that zero components can be removed by solving an eigenequation for each 
genomic region.

Recall that

	 Z X E X= - ( )( )-S 1 2/

and

	 E Z Y y y=( ) = gr ,

which implies that

	 E X E X Y x y- ( )( ) = S br .	 (8H.6)

For the jth genomic region, we assume that some components of the basis vector for SY|X are 
zero. The basis vector in the jth genomic region can be denoted by
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.

From Equation 8H.6, we have
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By arranging the order of variables, the vector X and β can be written as
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(8H.7)
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Combining Equations 8H.6 and 8H.7, we obtain
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(8H.8)

From Equation 8H.8, we can obtain the following covariance matrix:
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Then, we have

	 cov .E X E X Y BE By y
T T

1 1 11 11- ( )( )( ) = ( )S Sr r

Let b =
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0
. The eigenequation for the vector of variable X1 is given by
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which implies that
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It follows from Equation 8H.9 that
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(8H.12)

Combining Equations 8H.10 through 8H.12 leads to
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which implies that a solution to the eigenequation for subvector of predictors X1 also satis-
fies the eigenequation (8H.13) for the whole vector of predictors X.

APPENDIX 8I: OPTIMAL SCORING AND ALTERNATIVE DIRECTION 
METHODS OF MULTIPLIERS (ADMM) ALGORITHMS
We first introduce alternative direction methods of multipliers (ADMM) for solving the 
constrained convex optimization problem (Boyd et al. 2011). We consider the following 
general optimization problem:
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( ) + ( )
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(8I.1)

We form the augmented Lagrangian
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The ADMM algorithm is given by
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(8I.3)

Combining the linear and quadratic terms in the augmented Lagrangian and scaling the 
dual variable yields

	
y Ax Bz c Ax Bz c r u uT ( ) ,+ - + + - = +r r r
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(8I.4)

where r Ax Bz c u y= + - =,
1

r  is the scaled dual variable.

The scaled form of ADMM in algorithm (8I.3) can be expressed as
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The scaled ADMM for solving problem (8I.6) is given by
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(8I.8)
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Now we study how to solve the nonsmooth optimization problem (8I.8).
First, we assume that || ||a1 2 0 1*( ) ¹ = ¼s i p, , , . By definition, we have
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Minimization problem (8I.8) can be solved by the following equation:
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Changing column vectors in Equation 8I.11 to row vector, we obtain
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Dividing Equation 8I.12 by ρ, we obtain
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Taking norm ‖⋅‖2 on both sides of Equation 8I.13, we have
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By approximation, we have
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Substituting the above equation into Equation 8I.14, we obtain
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Therefore, we have
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Substituting Equation 8I.16 into Equation 8I.14 results in
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Substituting Equation 8I.17 into Equation 8I.13, we obtain
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Let
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Substituting Equation 8I.19 into Equation 8I.9, we can obtain u j di
s m( ) +( ) = ¼1 1, , , .

Next we briefly discuss how to obtain solution (12b) (Clemmensen et al. 2011). By the 
Lagrangian multiplier method, the constrained optimization problem (8.273b) can be for-
mulated as the following unconstrained optimization problem:
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Differential L(θi, λθ, μ) with respect to qi
s( ) and setting it to be equal to zero, we obtain
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which implies that
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and

	 m q bj j
s T

i
sZ X j i= - = ¼ -( ) ( ) , , , .1 1 	 (8I.23)

Substituting Equations 8I.22 and 8I.23 into Equation 8I.21, we obtain
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Let Q s s
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The solution to equation (8I.24) is given by
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Equation 8I.25 is a nonlinear equation. We can use Newton’s method to solve it.
The recursive formula for solving it is given by
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We can also use iterative algorithm to Equation 8I.25. Just iteratively,
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Finally, we set
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EXERCISES

Exercise 8.1	 Assume that the likelihood for observing the binary output values yi is

	
L p y p p

i

n
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=
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1 .

		  Find the maximum likelihood estimator of the parameter p.
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Exercise 8.2	 Derive the formula
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Exercise 8.3	 Show that Equation 8.36 can be rewritten as Equation 8.37:
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Exercise 8.4	 Show that
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Exercise 8.5	 Show that
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Exercise 8.6	 Show that

		  If 0 < α1 < c and 0 < α2 < c, then b1 = b2.

Exercise 8.7	 Let Σx be a covariance matrix of X. We define the standardized predictors as 
Z X E Xx= - ( )( )-S 1 2/ . Prove that var(Z) = 1.

Exercise 8.8	 Show that S SY Z x Y Z= -S 1 2/ .

Exercise 8.9	 Show that
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S Z w

j

j j
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2 1
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l

l
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		  λ1 = 0, if this results in || ||w cj
1 1 1£ ; otherwise, λ1 > 0 is chosen so that || ||w cj

1 1 1= .
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Exercise 8.10	 Let f(x) = ‖x‖1. Derive the formula Proxλf(v).

Exercise 8.11	 Show that C U Vl l l
T

XX= - -G L S1 2 1 2/ /  in Equation 8.186.

Exercise 8.12	 Show that A U V U Vl l l
T

m l m l m l
T= + - - -L L .

Exercise 8.13	 Show that the matrix Ul is also the matrix of eigenvectors associated with the 
matrix AAT

YX XX XY= -G S S S G1 2 1 1 2/ / .

Exercise 8.14	 Let Σx be a covariance matrix of X. We define the standardized predictors as 
Z X E Xx= - ( )( )-S 1 2/ . Prove that var(Z) = 1.

Exercise 8.15	 Show that S SY Z x Y X� �= -S 1 2/ .
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Index

A

Accelerated proximal gradient method, 578–580
Adaptive tests, 164–166
Additive model, 137, 191–192, 261–263, 468, 513
Allelic association, 95, 473
Alternative direction method of multipliers (ADMM)

algorithm, 637–641
differential objective function, 39
Lagrangian methods, 39
linearized ADMM, 41–42
nondifferentiable objective function, 39
optimization problem, 39–40
sparse SDR method, 607–610

Augmented Lagrangian methods, 39
Average allelic effect, 213

B

Bayesian and coalescence-based methods, 104–105
Bernoulli distribution, 532, 534
Binary measures

case–control study design, 452–453
gene-gene and gene-environment interaction, 

448–451
BioCarta Encyclopedia of Genes and Genomes 

database, 482
Block soft thresholding, 54
Bonferroni correction, 194, 262, 329, 482
Boundary circle, 534–535
Boundary line, 533–534
Broad-sense heritability, 401
B-spline basis functions, 225

C

Calcium channel, voltage-dependent, gamma 
subunit 1 (CACNG1) gene

MAPK signaling pathway, 484
pair-wise interaction analysis, 483
RPS6KA2 gene, 484
SNP, 482, 485

Canonical correlation analysis (CCA)
correlation maximization techniques, 78–82
data structure, interaction analysis

multiple quantitative trait, 518
qualitative trait, 518–519
single quantitative trait, 517

functional CCA, 87–90
and functional CCA, 519–521
gene-based quantitative trait analysis

functional CCA, 233
multivariate CCA, 231–233

genetic pleiotropic analysis
functional CCA, 314–317
kernel CCA, 312–313
multivariate CCA, 311–312
quadratically regularized functional CCA, 

317–319
and joint information, 122–123
kernel CCA, 521–522
and LDA, 561–562
mathematical formulation, 77–78
quadratically regularized, 585–586
sparse CCA

least square formulation, 586–595
multiclass classification, 595–596
penalized matrix decomposition, 596–600

SVD, 82–83
test statistics, 83–87
two genomic regions, 119–122

Cauchy–Schwarz inequality, 2, 8, 11, 23, 241, 252
Chain rules

calculus of subgradients, 22
matrix calculus

scalar function of matrices, 60
vector function of vectors, 59–60

of multi-information, 111
Clark’s algorithm, 104
Classical null hypothesis, 294–295
Coancestry coefficient, 424
Collapsing method, 414–416
Combined multivariate and collapsing (CMC) 

method, 156–157
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Conditional entropy, 106
Conditional information matrix, 162, 164
Contingency tables, 143–145
Continuous distribution, blood pressure, 212
Continuous environmental variables

disequilibrium measure of interaction, 459–460
multiplicative measure of interaction, 458–459
mutual information measure of interaction, 

460–462
Convex analysis, 15
Covariance operator, dependence measure and

association tests, 257–259
cross-covariance operator, 250–253
Hilbert–Schmidt norm, 244–246, 255–257
Hilbert–Schmidt operator, 244–246
kernel canonical correlation analysis, 254–255
SKAT, 259–260
tensor product space and rank-one operator, 

246–249
Cross-validation (CV) process, 610

D

Diagonal matrix, 44, 149, 417, 559
Dimension reduction

supervised dimension reduction, 601; see also 
Sufficient dimension reduction

unsupervised dimension reduction, 601
Directed acyclic graph (DAG), 6
Disequilibrium-based statistics

standard disequilibrium measure–based statistics, 
464–466

unlinked loci, LD composite measure, 466–469
Dominance covariance matrices, 281–283
Dominant model, 137, 260, 514
Duality gaps, 14–15
Dual norms

Cauchy–Schwartz inequality, 8
conditions, 8
definition, 8
group norm, 9–10
latent group lasso norm, 10

E

Eckart–Young theorem, 586–589, 626–630
EM algorithms, see Expectation–maximization (EM) 

algorithms
Entrywise norms, 4–5
Euclidean norm (L2 norm), 1–2, 52, 54
Exome Sequencing Project (ESP), 505, 513–515
Expectation–maximization (EM) algorithms, 104, 

378–382, 476

Exponential kernel, 320
Expression quantitative trait loci (eQTLs) 

analysis, 262
Extrapolation parameter, 39

F

Family-based association analysis
coancestry coefficient, 424
covariance matrix

family-based T2 statistic, 438–440
ML estimators, 429–431

genetic covariance between relatives
analysis, 359–362
assumptions and genetic models, 358–359

genetic similarity
genetic relations from data, 350–358
identity coefficients, 347–349
kinship coefficients, 344–349

genotype indicator variables, 425
heritability

multiple traits, 404–410
single trait, 400–404

indicator variable variance for genotype, 420–422
kinship coefficients, 426–427
log-likelihood function, REML, 433–436
matrix K, REML, 431–433
mixed functional linear models

type 1, 390–393
type 2, functional variance component 

models, 393–395
mixed linear model, single trait

genetic random effect, 362–366
hypothesis test, 383–387
quantitative trait association analysis, 366–369
sequencing data, quantitative trait association 

analysis, 387–389
variance components estimation, 370–383

ML estimation, variance components, 428–429
multiple traits

maximum likelihood estimate of variance 
components, 398–399

multivariate mixed linear models, 395–398
REML estimate of variance components, 

399–400
multivariate mixed linear models

covariance matrix, 398
log-likelihood function, 397
ML estimation, variance components, 

398–399, 436–438
multivariate regression model, 396
random genetic effects and errors, 397
REML, variance components, 399–400
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population-specific allele frequencies, 423–425
principal component analysis, 440–443
qualitative traits

CMC test with families, 416–417
collapsing method, 414–416
FPCA and smoothed FPCA, 418–420
generalized T 2 test with families and 

additional population structures, 410–414
software for, 420

“Fast-epistasis” test statistics, 476
FCCA, see Functional canonical correlation 

analysis
FDA, see Functional data analysis
Feature map, 234, 323
Fenchel conjugate, 10–11
Fenchel duality

duality gap, 14–15
Lagrange multiplier, 13
objective functions, 13
primal problem, 13, 15–16
theorem, 14–15

Fenchel dual problem, 14–16
Fenchel–Young inequality, 25–26, 33, 50
Fisher information matrix, 162, 164, 172, 198, 201
Fisher scoring algorithm, 173
Fisher’s discriminant analysis, 152–154
Fisher’s exact test, 146–147
Fisher’s linear discriminant analysis, see Linear 

discriminant analysis
Fisher’s method, 329
Fixed effect model, single trait

genetic effects
genetic additive and dominance effects, 

213–215
genetic variance, 215–216
variation partition, 211–213

linear regression
genetic additive effect model, 219
indicator variable, 216
marker locus, 217, 220
null hypothesis, 218–219
phenotypic variance, 219–220
quantitative trait locus, 217–218
squared multiple correlation coefficient, 219
test statistic, 219

multifactorial traits, 211
multiple linear regression, 220–223
quantitative genetics, 211

Fixed point theory, 31–32
FLM, see Functional linear model
Fourier series analysis, 75
FPCA, see Functional principal component analysis
FRG, see Functional regression model

Frobenius norm, 5–6, 64
Functional canonical correlation analysis (FCCA), 

87–90
canonical variables, 315–316
coefficient vectors, 316
FPCA, 314
gene-based quantitative trait analysis, 233
NGS data, 314
null hypothesis, 317
orthonormal eigenfunctions, 315

Functional data analysis (FDA), 178–180
Functional linear model (FLM)

multiple linear regression model, 223
parameter estimation, 224–229
QTL, 223
test statistics, 229–231

Functional principal component analysis 
(FPCA), 314

mathematical tools
calculus of variation, 68–69
stochastic calculus, 69–70

model and principal component functions, 
180–182

PCA
least square formulation, 64–65
variance-maximization formulation, 65–68

principal component function and principal 
component score, 75–77

basis function expansion method, 183–184
discretization method, 182–183
test statistic, 184–186

smoothed PCA, 73–75
unsmoothed FPCA, 71–73

Functional regression model (FRG)
interaction analysis, quantitative traits

NHLBI’s Exome Sequencing Project, 507
null distribution, test statistics, 504–505
parameter estimation, 500–503
power simulations, 505–506
QTLs, 500
test statistics, 503–504

multiple quantitative traits
Bonferroni correction, 516
epistasis analysis, 516
NHLBI’s ESP Project, 515
parameter estimation, 509–511
phenotypes rank-based inverse normal 

transformation, 515
power simulations, 514–515
QTLs, 507
test statistics, 511–512
trait values, 507
type I error rates, 513–514
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G

Gametic disequilibrium, 95
Gamma distribution approximation, 258
Gaussian kernel, 236, 320
Gene Association with Multiple Traits (GAMuT), 

319, 329
Gene-based genetic pleiotropic analysis

functional CCA, 314–317
kernel CCA, 312–313
multivariate CCA, 311–312
quadratically regularized functional CCA, 317–319

Gene-based quantitative trait analysis
functional CCA, 233
multivariate CCA, 231–233

Gene expression matrix, 24
Gene-gene and gene-environment interaction

biological interaction, 447
CCA, quantitative and qualitative traits, 516–522
common variants

CACNG1 gene, 483–486
cardiovascular disease susceptibility genes, 

482–483
continuous environment, 480
coronary heart disease cohort study dataset, 481
disequilibrium-based statistics, 464–469
haplotype odds ratio, 472–480
information-based statistics, 469–472
information measure–based statistics, 481
JNK cascade, 485–486
MAPK signaling pathway, 484–486
pair-wise interaction analysis, 483
PON2 gene, 483
PPARG gene, 483
PTPRZ1 gene, 485
Ras–ERK signaling cascade, 485–486
relative risk and odds-ratio-based statistics, 

462–464
RPS6KA2 gene, 484
single-SNP association test, 482

measures, qualitative traits
binary measures, 448–453
continuous environmental variables, 458–462
disequilibrium measure, 453–455
information measure, 455–458

NGS data
functional data analysis techniques, 487
functional logistic regression model, 488–491
multiple logistic regression model, 487–488
multiple SNPs, 486
pair-wise interaction analysis, 486
statistics for testing, two genomic 

regions, 492

quantitative traits, statistics for testing
epistasis effects, genetic models for, 493–499
functional regression model, 499–516

software for, 522
Generalized low-rank model (GLRM), 580
Genetic additive covariance matrices, 281–283
Genetic random effect

multiple genetic random effects, 365–366
single random variable, 362–365

Genetic relation information
coefficient of fraternity, 357–358
IBD, 350–352
kinship matrix/genetic relationship matrix

genetic models, 353–354
homogeneous population, 352–353
inbreeding coefficient, population structure, 

356–357
recent kinship coefficients estimation, 355–356

Genetic relationship matrix (GRM), 362, 365, 391, 402
Genome-wide association studies (GWAS), 143, 447
Genotype-based association test, 145
Goodness-of-fit test, 73, 135, 187, 314
Gram matrix, 242
GRM, see Genetic relationship matrix
Group norms, 5–7, 9

H

Haplotype odds ratio
allelic associations, 473
genetic risk factors, 473
multiplicative interaction measure

allele-based odds ratio, 474–476
case–control data, 477
expectation–maximization (EM) algorithms, 476
genotype-based odds ratio, 473–474
genotype coding scheme, 476
logistic regression interpretation, 478–479
log odds-ratio, 477
pseudohaplotype, 476
test statistics, 479–480

two-locus association analysis, 473
Haplotype reconstruction

Bayesian and coalescence-based methods, 104–105
Clark’s algorithm, 104
EM algorithm, 104

Haploview software, 99
Hardy–Weinberg equilibrium (HWE), 104, 107, 

133–136, 211, 213, 495
HBG2 gene, 216
Heritability

multiple traits
definition of, 404–405
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maximization, 408–410
multivariate mixed linear model, 405–406
phenotype variance, 406

single trait
mixed linear model, 401–404
narrow-sense heritability, 400–401

Hessian matrix, 44–45, 537–538, 541
High-density lipoprotein (HDL), 156, 507
Hilbert–Schmidt integral kernels, 245–246
Hilbert–Schmidt operator and norm, 244–245
Hotelling T2 statistic, 151–152, 157
HWE, see Hardy–Weinberg equilibrium
Hypergeometric distribution, 146–147
Hypothesis test

likelihood ratio statistic, 384–385
maximum likelihood estimator, 385
null hypothesis, 383–387
score test, 385–386
Wald statistic, 383, 386

I

IBS kernel, 320
Identical by descent (IBD), 344–345, 348, 438
Identity coefficients, 347–349
Inbreeding coefficient, 344–345, 348, 350, 352, 356–357
Induced matrix norm, 3–4
Infimal convolution, 33
Interaction analysis, see Gene-gene and 

gene-environment interaction
CCA, quantitative and qualitative traits, 516–522
GWAS, 447
haplotype odds-ratio interaction measure, 524
logarithm of odds ratio, variance of, 522–523
measures, qualitative traits

binary measures, 448–453
continuous environmental variables, 458–462
disequilibrium measure, 453–455
information measure, 455–458

multivariate functional regression model, 
parameter estimation for, 525–527

software for, 522
statistics for testing

common variants, qualitative traits, 462–486
NGS data, 486–492
quantitative traits, 492–516

J

Jacobian matrix, 205, 470
Jensen’s inequality, 252
Joint entropy, 106

K

Karhunen–Loeve expansion, 489
Karush–Kuhn–Tucker (KKT) conditions

constrained optimization problem, 568–569
dual-complementarity conditions, 569–570
Lagrange multipliers, 569
nonlinear optimization problem, 569
sparse SVD, penalized matrix decomposition, 

598–599
Kempthorne model, 494
Kernel approach, gene-based quantitative trait 

analysis
covariance operator and dependence measure

association tests, 257–259
cross-covariance operator, 250–253
Hilbert–Schmidt norm, 244–246, 255–257
Hilbert–Schmidt operator, 244–246
kernel canonical correlation analysis, 254–255
SKAT, 259–260
tensor product space and rank-one operator, 

246–249
RKHS

equivalence theorem, 241–242
Fourier series, 239
FPCA and Karhunen–Loeve expansion, 

243–244
functional space, 237–238
function evaluation operator, 240
infinite dimensional feature map, 238
kernel and nonlinear feature mapping, 

233–236
orthonormal basis functions, 238

Kernel theory, 337–339
Kinship coefficients, 344–347, 426–427
Kinship matrix/genetic relationship matrix

genetic models and recent and distant genetic 
relatedness estimation, 353–354

homogeneous population, 352–353
inbreeding coefficient, population structure, 

356–357
recent kinship coefficients estimation, 355–356

Kronecker product, 247, 286, 411
Kullback Leibler distance, 115
Kyoto Encyclopedia of Genes and Genomes 

database, 482

L

Labeled data, supervised learning, 531
Lagrangian multiplier method, 13, 15–16, 66, 71, 74, 

79–80, 90, 154, 296, 313, 321, 408
Laplacian matrix, 545
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Latent group lasso norm, 7, 10
LD, see Linkage disequilibrium
LDA, see Linear discriminant analysis
Least square estimation

covariance matrix, 287–288
cross products matrix, 285–286
genetic additive and dominance covariance 

matrices, 289
Kronecker product, 286
regression coefficients, 286, 288
residual sum of squares, 285–286
trace function, 285
vector operation, 286

Linear discriminant analysis (LDA)
and canonical correlation analysis, 561–562
for classification, 552
matrix formulation, 558–560
multiple classes, 556–558
optimal scoring, 561, 621–622
for two classes

allocation rule, 555–556
constrained optimization problem, 554
discriminant direction, projections, 552–555
estimate of variance, 553
Lagrange multiplier method, 554
optimization problem, 554
population covariance matrices, 553
unconstrained optimization problem, 554

Linear models
multivariate functional linear models

eigenfunctions (functional principal 
components), 306

F approximation, 310
null hypothesis and test statistics, 308–309
parameter estimation, 307
Wilks’ Lambda, 310

multivariate multiple linear regression models, 
304–306

Linear support vector machines
KKT conditions, 568–570
nonseparable case

constraints for, 566–567
convex quadratic programming problem, 

567–568
dual Lagrange function, 568
dual problem, 568
Lagrange multipliers, 568
objective function, 567

separable case, 563–566, 622–623
SMO algorithm, 570–575

Line search algorithm, 38
Linkage disequilibrium (LD)

alleles and haplotypes, 95

bibliographical notes, 123
CCA measure

canonical correlation and joint information, 
122–123

two genomic regions, 119–122
coefficient D, 95–97
composite measure, 101–102
correlation coefficient r, 97–101
evolutionary forces, 95–96
genotypes, 124–125
haplotype reconstruction

Bayesian and coalescence-based methods, 
104–105

Clark’s algorithm, 104
EM algorithm, 104

k-locus interaction information, 126–128
marker loci, 125–126
multilocus measures

conditional interaction information, 114
interaction information, 112–114
joint mutual information, 109–112
multi-information and multilocus measure, 

107–109
mutual information, 105–107
mutual, multi-and interaction information, 

115–119
normalized multi-information, 115

mutation, 96
normalized measure, 97
and physical distance, 102–103
software for, 123

Lipschitz constant, 26, 38, 577
Logistic mixed effects models

likelihood and score functions, 168–170
linear model, 168
logistic fixed effects models, 167
penalized quasi-likelihood, 170–173
random genetic effects, 167–168
score functions and fisher information matrix, 

175–177
variance function, 168
working variate and linear mixed models, 

174–175
Logistic regression

for disease and drug response prediction, 543
feature selection, 543
group lass for genes, 543–544
L1 norm penalization on covariates, 543–544
multiclass logistic regression

conditional probability, 535–536
log-likelihood, 536
“maximum of a posteriori” decision rule, 536
medical diagnosis, 534
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multiclass classification, 534–535
multinomial distribution, 535
network-based penalization, see Network 

penalty
null hypothesis of no association, 542
parameter estimation for, 539–541

two-class logistic regression
Bernoulli distribution, 532, 534
binary output variable, 532–533
boundary circle, 534–535
boundary line, 533–534
conditional probability, model logistic 

transformation of, 532–533
genetic studies, 533
maximum likelihood estimator of 

parameter, 532
network-based penalization, see Network 

penalty
null hypothesis of no association, 542
parameter estimation for, 536–538

Low-density lipoprotein (LDL), 156

M

Machine learning, 531
Majorization-minimization algorithms, 38
MANOVA, see Multivariate analysis of variance
Marginal single-variant analysis, 165
MATLAB®, 337
Matrix calculus, 90–91, 326

chain rules
scalar function of matrices, 60
vector function of vectors, 59–60

formulae
determinants, 60–61
polynomial functions, 61
trace, 61–63

function derivatives
to matrix, 56–57
scalar, 57–58
to vector, 55–56

matrix/vector derivatives, 58–59
vector function of vector, 59

Matrix partition formula, 205–206
Maximum likelihood (ML)

covariance matrix, 371–372
EM algorithm, 378–382
Fisher information matrix, 371, 373
iteration procedures, 375–376
Newton–Raphson algorithm, 374

Maximum likelihood estimator (MLE), 97, 532, 536
eigenvalue decomposition, 292
linear combination distribution, 293

log-likelihood function, 289–290
phenotype data matrix, 289
trace function, 291
Wishart distribution, 293

“Maximum of a posteriori” decision rule, 536
Microsatellite markers, 147
Minor allele frequency (MAF), 146
Mixed linear model, single trait

genetic random effect
multiple genetic random effects, 365–366
single random variable, 362–365

hypothesis test
likelihood ratio statistic, 384–385
null hypothesis, 383–384
score statistic, 385–386
Wald statistic, 386

quantitative trait association analysis, 366–369
sequencing data, quantitative trait association 

analysis, 387–389
variance components estimation

average information algorithm, 383
EM algorithm, 378–383
Fisher information matrix, 377–378
ML estimation, 370–373
numerical solutions, ML/REML equations, 

374–377
REML, 373–374

MLE, see Maximum likelihood estimator
Moreau decomposition, 32–33
Moreau envelope, 33–36
Moreau–Yosida regularization, 33–36
Multiclass Fisher’s linear discriminant analysis, 

556–558
Multiclass logistic regression

conditional probability, 535–536
log-likelihood, 536
“maximum of a posteriori” decision rule, 536
medical diagnosis, 534
multiclass classification, 534–535
multinomial distribution, 535
network-based penalization

genetic additive effect, 548–549
group lasso penalty, 549
log-likelihood, 549
network-constrained penalty, 550
penalized log-likelihood function, 550
proximal point algorithms for, 550–552

null hypothesis of no association, 542
parameter estimation for, 539–541

Multilocus LD measures
conditional interaction information, 114
interaction information, 112–114
joint mutual information, 109–112
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multi-information and, 107–109
mutual information, 105–107
mutual, multi-and interaction information, 

115–119
normalized multi-information, 115

Multimarker association analysis
generalized T2 test and Fisher’s discriminant 

analysis, 152–154
generalized T2 test statistic, 151–152
genetic variation, 150
joint association analysis, multiple markers, 151
single-locus analysis, 150

Multinomial distribution, 147, 535
Multiple phenotype association

connection between statistics
genetic additive effects, 330
kernel PCA, 335
multiple traits, 330
next-generation sequencing data, 334
pseudophenotypes, 331–332
regression coefficients, 334
single trait analysis, 334
SVD, 330, 332

dependence measure and association tests, 
multiple traits, 319–320

gene-based genetic pleiotropic analysis
functional CCA, 314–317
kernel CCA, 312–313
multivariate CCA, 311–312
quadratically regularized functional CCA, 

317–319
kernel theory, optimization problem, 337–339
linear models

multivariate functional linear models, 306–310
multivariate multiple linear regression models, 

304–306
multivariate marginal regression

genetic effects, 284–293
models, 283–284
test statistics, 294–304

phenotype dimension reduction
Kernel PCA, 322–325
PCA, 321–322
quadratically regularized PCA/Kernel PCA, 

325–326
pleiotropic additive and dominance effects, 

281–283
pleiotropic genetics analysis

combining marginal tests, 329
FPCA-based kernel measure test of 

independence, 329–330
SSU, 326–328
USAT, 328

regression coefficient matrix, 339–340
simulations and real data analysis

Manhattan plots, 336
P-values, Manhattan plots, 336–337
Rush Alzheimer Disease dataset, 336
type 1 error rate and power evaluation, 

335–336
software for, 337

Multiple traits
dependence measure and association tests, 319–320
heritability, 404–410

definition of, 404–405
maximization, 408–410
multivariate mixed linear model, 405–406
phenotype variance, 406

maximum likelihood estimate of variance 
components, 398–399

multivariate mixed linear models, 395–398
phenotype association, 330
variance components, REML estimate of, 399–400

Multiplicative interaction measure
allele-based odds ratio, 474–476
case–control data, 477
expectation–maximization (EM) algorithms, 476
genotype-based odds ratio, 473–474
genotype coding scheme, 476
logistic regression interpretation, 478–479
log odds-ratio, 477
pseudohaplotype, 476
test statistics, 479–480

Multiplicative model, 137
Multivariate analysis of variance (MANOVA), 

297–298, 328
Multivariate functional regression (MFRG), 509
Multivariate general linear hypothesis, 295–296
Multivariate marginal regression

genetic effects
least square estimation, 284–288
maximum likelihood estimator, 289–293

models, 283–284
test statistics, 294–304

Multivariate test statistics
classical null hypothesis, 294–295
eigenvalues of matrix, 299–300
F statistics, 298–299
Hotelling Lawley Trace, 301–304
MANOVA, 297–298
multivariate general linear hypothesis, 295–296
parameter matrix under constraints, 296–297
Pillai’s Trace, 301–304
Roy’s Largest Root, 301–304
univariate linear regression analysis, 298
Wilks’ Lambda, 301–304
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N

Narrow-sense heritability, 400–401
Network penalty

multiclass logistic regression
genetic additive effect, 548–549
group lasso penalty, 549
log-likelihood, 549
network-constrained penalty, 550
penalized log-likelihood function, 550
proximal point algorithms for, 550–552

two-class logistic regression, 543
adaptive group lasso, 546
environment–phenotype connect 

subnetworks, 544–545
estimation bias, 546
genotype–phenotype connect subnetworks, 

544–545
Laplacian matrix, 545
nonsmooth penalty, 546
optimization problem, 546–547
parameter estimation, proximal method for, 

547–548, 615–620
penalized log-likelihood function, 546
phenotype subnetworks, 544
whole network, adjacency matrix for, 545

Newton–Raphson algorithm, 173, 536
multiclass logistic regression, 540–541
two-class logistic regression, 538

Next-generation sequencing (NGS) data, 121, 410
association of rare variants, score tests

adaptive association test, 164–165
Sum test, 164–166
weighted function method, 161–163

gene–gene and gene–environment interaction
functional data analysis techniques, 487
functional logistic regression model, 

488–491
multiple logistic regression model, 487–488
multiple SNPs, 486
pair-wise interaction analysis, 486
statistics for testing, two genomic 

regions, 492
multivariate group tests

CMC method, 156–157
collapsing method, 155–156
weighted sum method, 157–158

population-based functional association
FDA, 178–179
FPCA, 180–186
linkage disequilibrium, 178
Poisson process, 179
resequencing data, 179

smoothed FPCA, 186–195
variant-by-variant association tests, 179

score tests and logistic regression
null hypothesis, 160–161
score function, 158–160
test statistics, 160–161

variance-component score statistics
logistic mixed effects models, 167–177
SKAT, 177–178

Nonoverlapping groups, 5
Norms

dual norm
Cauchy–Schwartz inequality, 8
conditions, 8
definition, 8
group norm, 9–10
latent group lasso norm, 10

entrywise norms
L2,1 norm, 5
Lp, q norm, 5

Fenchel conjugate
function, 11
tangents, 10

Fenchel duality
duality gap, 14–15
Lagrange multiplier, 13
objective functions, 13
primal problem, 13, 15–16
theorem, 14–15

Frobenius norm, 5–6
function, 11–12
L1 norm, 2
L2 norm, 1–2
L∞ norm and LP norm, 2
lp norms, 12–13
overlapping groups, 6–8
properties, 1
vector norm–induced matrix norm, 3–4

O

Odds ratio
binomial distribution, 141
case–control study, 139
confidence interval, 142–143
disease status

and risk factor, 140
two alleles, 143

natural logarithm, 140
relative risk, 142
standard statistical theory, 141
Taylor expansion, 141
variance of log, 143
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Optimal scoring
ADMM algorithm, 637–641
and LDA, 561, 621–622

Orthogonal matrix, 30
“Out of Africa” hypothesis, 117
Overlapping groups, 6–8

P

Parameter matrix, 296–297
PCA, see Principal component analysis
Penalized matrix decomposition, sparse CCA

direct regularization formulation, 599–600
sparse singular value decomposition, 596–599

Penalized quasi-likelihood, 170–173
Phenotype dimension reduction

Kernel PCA, 322–325
PCA, 321–322
quadratically regularized PCA/Kernel PCA, 

325–326
Pleiotropic genetics analysis

combining marginal tests, 329
FPCA-based kernel measure test of independence, 

329–330
SSU, 326–328
USAT, 328

Poincare Separation Theorem, 586–587, 593–594, 
630–632

Point-wise disequilibrium measure, 459–460
Poisson process, 179, 488
Polynomial kernel, 320
Population attributable risk (PAR), 191
Population-based association analysis, common 

variants
genetic models, 136–139
Hardy–Weinberg equilibrium, 133–136
multimarker association analysis, 150–154
odds ratio, 139–143
single marker association analysis, 

143–150
Positive scalability, 2
Principal component analysis (PCA), 180, 321–322, 

440–443
generalized regularization

formulation, 583
sparse PCA, 583–584

GLRM, 580
quadratically regularized, 624–626

formulation, 580–581
interpretation, 582–583
quadratically regularized CCA, 585

unsupervised dimension reduction, 601
Proximal gradient method, 37–38

Proximal methods
consider convex optimization problems, 26–27
generic function

equality constraints, 47–49
linear constraints, 46
quadratic functions, 43
smooth functions, 44–45

genomic and epigenomic analysis, 26
norms

Fenchel–Young inequality, 50
group lasso, 55
l1-norm, 52
l2-norm, 52–54
sparsity-inducing penalties, 50

proximal algorithms
accelerated proximal gradient method, 38–39
ADMM, 39–40
linearized ADMM, 41–42
proximal gradient method, 37–38
proximal point algorithm, 37

proximal operator
definition of, 27–28
properties, 28–36

Taylor expansion, 26
Proximal operator

definition of, 27–28
gradient algorithms, 36
Moreau–Yosida regularization, 33–36
separable sum

affine addition, 30
fixed points, 31–32
Moreau decomposition, 32–33
postcomposition, 29
precomposition (1), 29
precomposition (2), 30
regularization, 31

Proximal point algorithm
Moreau envelope, 37
network penalty

multiclass logistic regression, 550–552
two-class logistic regression, 547–548, 615–620

Pseudohaplotype, 473, 476
Pseudophenotypes, 321–322, 325, 331–332

Q

Qualitative traits
chain rule, 201
common variants, population-based association 

analysis
genetic models, 136–139
Hardy–Weinberg equilibrium, 133–136
multimarker association analysis, 150–154
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odds ratio, 139–143
single marker association analysis, 143–150

density function, 207
family-based association analysis

CMC test with families, 416–417
collapsing method, 414–416
FPCA and smoothed FPCA, 418–420
generalized T 2 test with families and 

additional population structures, 
410–414

Fisher scoring algorithm, 202–203
interaction analysis

binary measures, 448–453
continuous environmental variables, 458–462
disequilibrium measure, 453–455
information measure, 455–458

inverse matrix, derivative of, 200
log-likelihood function, 198–199
population-based functional association, NGS, 

178–195
population-based multivariate association, NGS

association of rare variants, score tests, 
161–166

multivariate group tests, 155–158
score tests and logistic regression, 158–161
variance-component score statistics and 

logistic mixed effects models, 167–178
random vectors transformation, distribution 

theory, 206
score function, 196–197, 200–201
software for, 196
variance–covariance matrix, 203–204

Quantitative trait locus (QTL), 217–218, 390, 505, 
507, 514

Quantitative traits
constrained nonlinear covariance optimization 

problem and dependence measure, 
275–277

epistasis effects, genetic models for
constraints, 494
genotypic values, 493–494
HWE and linkage equilibrium, 495
Kempthorne model, 493–494
least square methods, 495
substitution/additive effect, 496

fixed effect model, single trait
genetic effects, 211–216
linear regression, 216–220
multifactorial traits, 211
multiple linear regression, 220–223
quantitative genetics, 211

functional linear model, regression coefficients, 
272–275

functional regression model
genomic regions, 499–500
interaction network, 507
NHLBI’s Exome Sequencing Project, 507
null distribution, test statistics, 504–505
parameter estimation, 500–503
power simulations, 505–506
QTLs, 500
test statistics, 503–504

gene-based quantitative trait analysis
CCA, 231–233
functional linear model, 223–231

kernel approach, gene-based quantitative trait 
analysis

covariance operator and dependence measure, 
244–260

and RKHS, 233–244
least square estimator, regression coefficients, 

267–271
mixed linear model

fixed and random effects, 367–369
phenotype variation, 366
random effect model, 366

noncentrality parameter, CCA test, 275
regression model, interaction analysis, 498–499
simulations and real data analysis

power evaluation, 260–261
real data analysis, 261–264

software for, 264

R

Recessive model, 137
Reduced rank regression model

canonical correlation coefficient matrix, 594–595
canonical variables, 591–592
covariance matrix, 592, 594
Eckart–Young Theorem, 586–589, 626–630
least square method, 592–593
mean square of errors, 590–591
minimization problem, 588
Poincare Separation Theorem, 586–587, 593–594, 

630–632
regression coefficient matrix, 587
vs. standard regression, 587
weighted least square estimates, 587–588
weight matrix, 589

Regression coefficient matrix, 339–340
Reproducing kernel Hilbert space (RKHS), Kernel 

approach
equivalence theorem, 241–242
Fourier series, 239
FPCA and Karhunen–Loeve Expansion, 243–244
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functional space, 237–238
function evaluation operator, 240
infinite dimensional feature map, 238
kernel and nonlinear feature mapping, 233–236
orthonormal basis functions, 238

Restricted maximum likelihood (REML), 174
average information matrix, 383
EM algorithm, 382–383
Fisher information matrix, 377–378
iteration procedures, 376–377
log-likelihood function, 433–436
matrix K, 431–433
Newton–Raphson algorithm, 374
variance components, multiple traits, 399–400

Riesz theorem, 241, 251

S

SDR, see Sufficient dimension reduction
Sequence kernel association test (SKAT), 177–178, 

192, 387–389
Sequential minimal optimization (SMO) algorithm, 

570–575
SFPCA, see Smoothed functional principal 

component analysis
Simulations and real data analysis

power evaluation, 260–261
real data analysis

ANGPTL4 sequence, 261
Bonferroni correction, 263
CHARGE-S studies, 264
Manhattan plot, 266
P-values, 263–266
rare eQTL association analysis, 262

real data example, 336–337
type 1 error rate and power evaluation, 335–336

Single marker association analysis
contingency tables, 143–145
Fisher’s exact test, 146–147
GWAS, 143
traditional x2 test statistic, 147–150

Single trait, fixed effect model
genetic effects

genetic additive and dominance effects, 
213–215

genetic variance, 215–216
variation partition, 211–213

linear regression
genetic additive effect model, 219
indicator variable, 216
marker locus, 217, 220
null hypothesis, 218–219
phenotypic variance, 219–220

quantitative trait locus, 217–218
squared multiple correlation coefficient, 219
test statistic, 219

multifactorial traits, 211
multiple linear regression, 220–223
quantitative genetics, 211

Single value decomposition (SVD), 64, 82–83, 318, 
326, 330, 581, 596–599

SKAT, see Sequence kernel association test
Sliced inverse regression (SIR), 604–606
Smoothed functional principal component analysis 

(SFPCA)
ANGPTL3 sequence, 193–194
Bonferroni correction, 194
computations, 188–190
Dallas Heart Study, 193
goodness-of-fit, 187
GWAS, schizophrenia data, 194–195
integral equation, 188
penalized sample variance, 188
power comparisons, 190–193
P-values, 194–195
resequencing data and fitted curves, 187
roughness penalty, 187
test statistic, 190
VLDL, 194

Sparse canonical correlation analysis
least square formulation, 586–595
multiclass classification, 595–596
penalized matrix decomposition

direct regularization formulation, 599–600
sparse singular value decomposition, 596–599

regression for, 595–596, 632–634
Sparse sufficient dimension reduction method

ADMM algorithm, 607–610, 634–641
CAD classification accuracy, 611–614
coordinate hypothesis, 605
5-fold cross-validation, 610
SIR reformulation, optimization problem, 606
software for, 611
variable screening, 611

Sparsity-inducing penalties
canonical correlation analysis, 77–90
FPCA, 63–77
matrix calculus, 55–63, 90–91
norm, 1–16
proximal methods, 26–55
subdifferential, 16–26

Split-and-conquer approach, 605, 610
Stochastic integrals, 70–71, 181, 394
Subdifferentials

derivatives, 17
nonsmooth convex functions, 16
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subgradient
absolute value, 17
calculus of, 18–26
differentiable functions, 18
functions, 18
L2 norm, 18

Subgradients
addition, 19
chain rule, 22
definition

absolute value, 17
L2 norm, 18
maximum of functions, 18

differentiable functions, 18
expectation, 21–22
nonnegative scaling, 19
optimality conditions, 23
pointwise maximum

“active” functions, 19
convex functions, 19
l1-norm, 20
maximum of differentiable functions, 20

pointwise supremum, 21
sparse regularized convex optimization problems

Fenchel–Young inequality, 25–26
optimality conditions, 24–25
regression function, 24

subdifferential of the norm, 22–23
variables, affine transformation of, 19

Substitution effect, 214, 216
Sufficient dimension reduction (SDR)

central subspace
constant covariance condition, 603–604
constrained optimization problem, 602
coverage condition, 603
definition, 602
forward regression, 602
linearity condition, 603
principal component, 602
standardized predictors, 602

dimension reduction subspace, 601–602
limitations, 605
sliced inverse regression, 604–605
sparse SDR method

ADMM algorithm, 607–610, 634–641
CAD classification accuracy, 611–614
coordinate hypothesis, 605
5-fold cross-validation, 610
SIR reformulation, optimization 

problem, 606
software for, 611
variable screening, 611

Sum of squared score test (SSU), 166, 326–328

Supervised dimension reduction, 601; see also 
Sufficient dimension reduction (SDR)

Supervised learning
generic system for, 531–532
labeled and unlabeled data, 531
training and test dataset, 531

Support vector machines (SVMs), 562–563
binary-class SVMs, 563
definition, 562
limitation for, 575
linear SVMs

KKT conditions, 568–570
nonseparable case, 566–568
separable case, 563–566
SMO algorithm, 570–575

maximum-margin hyperplane, 563–564
nonlinear SVM, 575
p-1 dimensional hyperplane, 563
penalized SVMs, 575–580
software for, 611
statistical learning theory, 563

SVD, see Single value decomposition

T

Taylor expansion, 26, 36, 174
Tensor product space and rank-one operator

Hilbert space, 247–250
vectors and matrices, 246–247

Test dataset, supervised learning, 531
TFOCS software, 39
Tikhonov-regularized Newton update, 36
Training dataset, supervised learning, 531
Two-class linear discriminant analysis, 553–556
Two-class logistic regression

Bernoulli distribution, 532, 534
binary output variable, 532–533
boundary circle, 534–535
boundary line, 533–534
conditional probability, model logistic 

transformation of, 532–533
genetic studies, 533
maximum likelihood estimator of parameter, 532
network penalty, 543

adaptive group lasso, 546
environment–phenotype connect 

subnetworks, 544–545
estimation bias, 546
genotype–phenotype connect subnetworks, 

544–545
Laplacian matrix, 545
nonsmooth penalty, 546
optimization problem, 546–547
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parameter estimation, proximal method for, 
547–548, 615–620

penalized log-likelihood function, 546
phenotype subnetworks, 544
whole network, adjacency matrix for, 545

null hypothesis of no association, 542
parameter estimation for, 536–538

U

Unified Score-Based Association Test (USAT), 328, 335
Univariate linear regression analysis, 298
Unlabeled data, supervised learning, 531

V

Variable-threshold (VT) tests, 192, 194, 261, 410
Vector norm–induced matrix norm, 2–3
Very low–density lipoprotein (VLDL), 156, 194, 261

W

Weighted sum-square (WSS), 192, 194, 
261–263, 410

Wellcome Trust Case Control Consortium 
(WTCCC), 481

Wilks’ Lambda, 301–304
Wishart distribution, 293
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