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Preface

End of August 2008 F.R. McMorris, Buck for his friends and colleagues, retired as

Dean of the College of Science and Letters at IIT, Illinois Institute of Technology,

Chicago. He also celebrated his 65-th birthday. To commemorate these events a two-

day conference was held early May 2008 at IIT. In addition this volume is written

in honor of his contributions to mathematics and its applications. The focus of the

volume is on areas to which he contributed most. The chapters show the broadness

of his interests and his influence on many co-authors and other mathematicians.

It has been a pleasure for all the contributors to this volume to participate in this

project. Not only to honor our esteemed colleague and good friend, but also because

of the fascinating mathematics and applications represented in this volume. It is

impossible to touch all topics in the areas of focus in one book, let alone to attempt

a survey the whole field. So choices had to be made, but we hope that the volume

at hand will invoke the interest of the reader for these topics that are so dear to the

authors, and that this will incite further interest for the rich literature, of which the

various chapters give a small but representative selection.

On the cover of this book one finds a figure with a 3-cube depicting a voting

situation. It is chosen from Chapter 10. Voting is way to reach consensus, which is

discussed in Chapter 7. A special case of reaching consensus is finding an optimal

location, location functions being the topic of Chapter 4. Here the 3-cube also

occurs in a figure as a crucial example. Within location theory centrality concepts

are a main point of focus, see Chapters 6 and 8. A major centrality concept is that

of median, and median graphs are discussed in depth in Chapter 5. Here again

the 3-cube occurs in a figure elucidating an important result. Consensus plays a

major role in mathematical biology, see Chapter 1, and in various other areas, such

as psychology, see Chapter 2. Problems in molecular biology involve intersection

graphs, see Chapter 3. We find applications of location theory to economics in

Chapter 5. Another problem of optimization in economics can be found in Chapter

9. All of the above problem areas appear in one way or another in the survey of

Buck McMorris’s work in Chapter 11. Thus the figure on the cover symbolizes the

unity underlying the various themes discussed in this book.

Hemanshu Kaul, Henry Martyn Mulder
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Introduction

Hemanshu Kaul, Henry Martyn Mulder

Department of Applied Mathematics, Illinois Institute of Technology
Chicago, IL, USA

kaul@iit.edu

Econometrisch Instituut, Erasmus Universiteit
P.O. Box 1738, 1066NK Rotterdam, Netherlands

hmmulder@ese.eur.nl

One of the fascinating features of mathematics is that the same ideas, concepts,

techniques, models, and structures find applications in diverse disciplines. Or that

results developed in one application find unexpected applications elsewhere. Within

mathematics itself one finds a similar phenomenon: the same structure occurs with

different guises in various mathematical problem areas.

This book focuses on these aspects of some discrete structures. In the past sixty

years, these structures have appeared in such diverse areas as consensus theory, vot-

ing theory, optimization, location theory, clustering, classification, representation,

and other areas of discrete mathematics. The ideas, techniques and concepts dis-

cussed here have found applications in different disciplines as Biology, Psychology,

Economics, Operations Research, Social Choice, Physics, and Chemistry.

A whole series of books could have been written on the topics in book. The

aim of a single volume necessarily has to be quite modest. What we would like to

achieve is to raise the interest of the reader for the discrete structures and techniques

discussed here and also for the many applications and future possibilities of the ideas

presented here. We hope that graduate students and researchers from one area will

get acquainted with other areas and be able to use these new ideas towards a

interdisciplinary approach to Discrete Applied Mathematics.

The design of the book is rather loose: we have asked twelve authors to con-

tribute a chapter on a topic of their own choice within the areas described above.

This has resulted in ten chapters that cover a wide range, from applications in biol-

ogy, economics, and logistics to discussions of areas in discrete mathematics such as

centrality in trees, intersection graphs, and median graphs, from surveys on specific

topics such as 2× 2 tables, the majority rule, and location functions to discussions

of future possibilities, but also new results such as generalized centrality in trees

1
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and axiomatic characterization of the median function on cube-free networks. The

idea of consensus in various forms reappears in several chapters, sometimes in the

guise of voting procedures or location problems. On closer inspection the common

features may become more apparent.

Another way by which the connections of the chapters in this book are defined is

that all authors have collaborated more or less closely with F.R. ‘Buck’ McMorris.

This may have been as co-author, as member of the same PhD-committee, or as

having a major common interest in some problems or theories. When we look at

the topics in the chapters of this book, then these are precisely the ones to which

McMorris has dedicated his mathematical career. The idea for this book arose at

the occasion of his retirement as dean of the College of Science and Letters at the

Illinois Institute of Technology, IIT, in Chicago. To highlight this unifying idea, a

chapter is added at the end of the book discussing the contributions of McMorris

to discrete mathematics and its applications.

In the remaining part of the introduction, we will give a short overview of the

individual chapters so as to help orient the reader in the technical landscape of the

research topics covered therein.

A phylogenetic tree in evolutionary biology is a tree showing the inferred evolu-

tionary relationships among various biological species based upon similarities and

differences in their genetic traits. Evolutionary systematics uses the similarities

and differences that can be observed among the species in a group under study to

estimate their ancestor relation. Such a basis for comparison is called a character,

and the groups that result are called its character states. The character states are

arranged into a character state tree to indicate where speciation events associated

with the observed changes are hypothesized to have occurred. These hypotheses

are expressed as an ancestor relation diagram in which the character states play the

role of individual species, and a change from one state to another represents a spe-

ciation event on the phylogenetic tree. By mid 20th century, some natural scientists

realized that some pairs of such hypotheses based on different bases for comparison

could be logically incompatible, i.e., they could not both be true, and they began

to develop tests for, and ways to resolve, incompatibilities to estimate the ancestor

relation from these hypotheses. In Chapter 1, G.F. Estabrook reviews the basic

concepts of character compatibility analysis, gives a survey of related work, espe-

cially McMorris’ contributions to character compatibility analyses, reviews some of

their applications, and presents ideas for future applications.

In biometrics, psychology, ecology, and various other fields of science, data is

often summarized in a 2 × 2 table. In general, such tables arise when two ob-

jects/outcomes are compared on the basis of the presence/absence of a set of at-

tributes. For example, in ecology two species could be compared on the basis of

genetic encodings, in psychology and biometrics the table could store the dichoto-

mous response of two observers, in epidemiology it could be the results of a clinical

trial of two variants of a vaccine, and so on. In many applications, there is a need
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to summarize such data by a single relational statistic. In Chapter 2, W.J. Heiser

and M.J. Warrens give a broad overview of such statistics, and how the different

statistics may be interpreted in the contexts of various other statistics. Their dis-

cussion should be of interest to practitioners in deciding what statistic to use, and

to theoreticians for studying properties of these statistics.

Graphs are ubiquitous in modern applied mathematics since they can model

any binary (pairwise) relationship. For example, protein interaction graphs, where

the two proteins are related if they interact in some specific biochemical process.

In Chapter 3, T.A. McKee discusses intersection graphs, a paradigm for deriving

graphs as intersection of a family of mathematical objects: vertices correspond to

the objects and edges corresponds to pairwise intersecting objects. In particular,

McKee surveys results related to spanning subgraphs of such intersection graphs

and their new applications in computational biology and in combinatorial probabil-

ity. Certain kinds of spanning trees of the protein interaction graph (represented

as a particular intersection graph) are applied to show how proteins enter and leave

cellular processes. At the other end of the spectrum of applications, construction

of spanning subgraphs for intersection graph representations of a family of sets are

applied to generalize the Inclusion-Exclusion formula or Bonferroni-type probabilis-

tic inequalities when cardinalities of only certain kinds of intersections of the sets

are known.

A common problem in any service-related organization is the decision on where

to locate their facilities, such as shipping centers, shopping malls, fire stations,

elementary schools, etc., so that they can optimally serve those who benefit from

them while minimizing costs. The location of such facilities is discussed in context of

certain networks - transportation, communication, etc. - that connect populations

centers, manufacturing sites, etc. In Chapter 4, F.R. McMorris, H.M. Mulder and

R.V. Vohra discuss the consensus theory, as opposed to optimization, approach to

solving this problem. A consensus function takes the potential locations as input

and outputs are the locations that satisfy the optimality criterion. Such a “rational”

function is built using a list of intuitively natural axioms. McMorris, Mulder and

Vohra survey three popular location functions - center, mean, and median, and also

include some new results on the median location function.

The graph structure underlying the discrete networks in the location theory

above have the property that for any three locations there must be a unique loca-

tion that lies on a shortest path between any pair of the three locations. Such graphs

are called median graphs. These graphs include the often-used graphs in applica-

tions - trees, hypercubes, and grids. In Chapter 5, H.M. Mulder surveys the rich

structural theory of median graphs and median-type structures, and their applica-

tions in Location Theory, Consensus functions, Chemistry, Biology and Psychology,

Literary history, Economics and Voting Theory.

The three locations functions discussed in Chapter 4 give a consensus-theoretic

generalization of a notion of “center” of a tree based on three distinct norms used for
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measuring distance. In Chapter 6, M.J. Pelsmajer and K.B. Reid introduce three

families of central substructures of trees that generalize these notions of “centrality”

- center, centroid, and median - in a tree in a graph-theoretic sense. Their new

results give a theoretical framework for each of these new concepts which naturally

generalize the previous classical results for center, centroid, and median of a tree as

well as their other generalizations, and algorithms for finding these substructures in

trees. In the closely related Chapter 8, K.B. Reid gives a thorough survey of various

concepts that have been defined and studied as a measure of “central” substructure

in a tree. This survey by Reid can be read as a prologue to the discussion in Chapter

6.

Consensus theory, last discussed in Chapter 4 in the context of location theory,

is also a natural framework for studying voting systems. In 1952, Kenneth May

showed that the simple majority rule is the only two-candidate election procedure

in which each candidate is treated equally, each voter is treated equally, and a

candidate is never hurt by receiving more votes - three very natural axioms or rules

for consensus. In Chapter 7, R.C. Powers discusses various generalizations of the

majority rule, as based on various natural axioms that should be satisfied by the

consensus function representing the voting procedure, that have been studied in the

sixty years since May’s seminal result.

In Chapter 9, F.S. Roberts describes and discusses many variants of an opti-

mization model for the problem of scheduling the unloading of waiting ships at a

port that takes into account the desired arrival times, quantities, and designated

priorities of goods on those ships, when the said port needs to be reopened after

closure due to a natural disaster or terrorist event or domestic dispute. Roberts dis-

cusses the subtleties involved in defining the objective function, and the algorithmic

challenges involved in the solution, and he surveys the related literature.

In Chapter 10, D.G. Saari takes us back to consensus theory as applied to voting

systems. Starting with the famous Arrow’s theorem that dictatorship is the only

voting rule that satisfies certain natural axioms, many important results in consen-

sus theory state that it is impossible to have reasonable consensus functions that

satisfy certain natural and innocuous properties (axioms). Saari gives an accessi-

ble discussion of what lies at the root of these obstacles to consensus, suggests a

way around such difficulties by defining appropriate compatibility conditions, and

illustrates his conclusions using simple examples from voting theory.

We conclude with Chapter 11, in which G.F. Estabrook, T.A. McKee, H.M. Mul-

der, R.C. Powers and F.S. Roberts give a survey of Buck McMorris’ work over the

past forty years in discrete mathematics, especially Evolutionary Biology, Intersec-

tion Graph, Theory, Competition Graphs and related phylogeny graphs, Location

Functions on Graphs, and Consensus Theory. This survey helps unify the themes

explored in the previous chapters of this book under the aegis of wide-ranging schol-

arship of Buck McMorris in Discrete Applied Mathematics.
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Chapter 1

Contributions of F.R. McMorris to Character Compatibility

Analysis

George F. Estabrook

Department of Ecology and Evolutionary Biology, University of Michigan
Ann Arbor MI 4809-1048 USA

gfe@umich.edu

Beginning in the mid 1970s, F.R. McMorris made significant contributions to
character compatibility analysis by using his considerable mathematical talent to
“prove” algorithms that I had previously conjectured, among them the so-called
potential compatibility algorithm for qualitative taxonomic characters. Since
then, this algorithm has become the basis for a wide variety of character com-
patibility analyses. Here I review the basic concepts of character compatibility
analysis, describe McMorris’ contributions to character compatibility analyses,
review some of their applications, and present some ideas for future applications.

Introduction

In the late 19th century, systematic biologists realized that similarities and differ-

ences with respect to a basis for comparison among a group of related species under

study could be the basis for an hypothesis about the relationships among species

and the ancestors from which they evolved, the so-called ancestor relation. Such

hypotheses are expressed as characters, which group species together into the same

character state if they are considered to be the same with respect to a basis for com-

parison, and then arrange the character states into a character state tree to indicate

where speciation events associated with the observed changes are hypothesized to

have occurred. By mid 20th century, some natural scientists also realized that some

pairs of such hypotheses based on different bases for comparison could be logically

incompatible, i.e., they could not both be true, and they began to develop tests

for, and ways to resolve, incompatibilities to estimate the ancestor relation from

these hypotheses. Wilson (1964) is among the earliest published works to present

an explicit test to the compatibility of (two state) characters.

Estabrook (2008) provides an in-depth discussion of biological concepts of char-

acter state change. Here, I will simply assume that relevant character state changes

are associated with speciation events. Changes associated with speciation inter-

rupt phyletic continuity over time (Estabrook 1972). This concept gives rise to a

historical-biological species concept in which a species evolves at a time in the past,

5
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usually in a somewhat restricted geographic area, persists through time possibly

dispersing to other geographic areas, and ultimately goes extinct (a few still ex-

tant species have not gone extinct yet). During the life of a species, a population

may become isolated and independently evolve enough genetic difference so that its

members can no longer breed with members of the species from which it was iso-

lated, as described above. In this way, one species becomes the immediate ancestor

of another that evolved from it. This process may happen repeatedly, so that one

species may come to be the immediate ancestor of several distinct species. In this

way, the study of evolutionary relationships among extant species implicates ances-

tral species that existed over past time, and has for one of it principal objectives an

estimate of the ancestor relation among related species, past and present. This view

of speciation and systematics has come to be called evolutionary systematics and

is represented by Simpson (1961), Mayr (1969) among many others over the past

40 years, including more recently Skelton (1993). To understand and appreciate

the context in which McMorris worked with me, I would like to make more explicit

some basic concepts.

1.1. Basic Concepts

We rarely know for sure the branching pattern of phyletic lines leading up through

time to the extant species under study, but to illustrate the concepts, we consider

a hypothetical case in which we do. Suppose that we are studying a group S of six

extant species {a, b, c, d, e, f} whose phyletic lines branch upward through time as

shown on the left in Figure 1.1.

 

Fig. 1.1.

Whenever a phyletic line branches, one branch represents a new species and the

other represents the continuation of the ancestral species. Arrows identify speciation

events and point to the branch created by changes that produced a new species.

The diagram on the right of Figure 1.1, shows the ancestor relation that results

from these speciation events; a line is drawn upward from an ancestral species to
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any immediate descendant species. Thus, each line in the diagram represents a

speciation event on the phylogenetic tree. We say that species x is an ancestor of

species y if there is a series of one or more upward lines leading from x to y. The

relation “is an ancestor of” is a tree partial order on species; its Hasse diagram is

shown on the right of Figure 1.1.

 

Fig. 1.2.

On the same hypothetically true branching pattern of phyletic lines, the speci-

ation events could have occurred at different times and places. Figure 1.2. shows

an example. You can see from the diagram of the resulting ancestor relation that

it is quite different from the ancestor relation of Figure 1.1. This example should

make it clear that there is not a one-to-one relationship between phyletic branching

patterns (phylogenetic trees) and ancestor relations, because the latter are a result

of the historical speciation events that created the species we study. Although it is

possible to have extinct species represented in S, some ancestral species may not

be represented in S because of extinction. Figure 1.3 shows the same speciation

events as Figure 1.2 together with an additional speciation, indicated with *, fol-

lowing which the ancestral species, x, goes extinct and is not represented among

the species in S; on the right is the diagram of the resulting ancestor relation.

You can imagine the variety of speciations and extinctions that could occur on

a phylogenetic tree and the resulting variety of ancestor relations.

One of the tasks of systematics is to use the similarities and differences that can

be observed among the species in a group under study to estimate their ancestor

relation. If one can observe a given structure for each species in a collection S

of species under study, and (using it as a basis for comparison) recognize distinct

variations, then the species can be placed into groups so that those in the same group

look the same with respect to that basis for comparison, but those in different groups

look different. Such a basis for comparison is called a character, and the groups

that result are called its character states. For a character to be relevant to the

ancestor relation, its states should be based on changes associated with some of the

speciation events that created the species in S, as discussed above. Of course, not all
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Fig. 1.3.

speciation events need be associated with a change in the structure defining a given

character, but when that structure did change, it should have been in association

with a speciation event. Such a character can be used as the basis for an hypothesis

about the ancestor relation. This hypothesis is expressed as an ancestor relation

diagram in which the character states play the role of individual species, and as

before, a line leading up from one state to another represents a speciation event on

the phylogenetic tree, as shown in Figure 1.4.

 

Fig. 1.4.

The character state tree (CST) shown on the right represents the two speciation

events indicated by arrows near the phylogenetic tree on the left. The speciation

indicated by the lower arrow changed a structure from the form exhibited by species

f and g to the form exhibited by species c, d and e; the speciation indicated by

the upper arrow changed that form to the one exhibited by species a and b. If

the phylogenetic tree and the speciation events shown on the left of Figure 1.4

are historically correct, then we would say that the hypothesis of the CST is true

(or simply that the CST is true) because it corresponds to speciations on the true

phylogenetic tree (Estabrook, et al. 1975).
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If two CSTs are true, then by considering all the speciation events that corre-

spond to one or the other or both of them, another true CST (called the sum of the

first two) is determined, as shown in Figure 1.5.

 

Fig. 1.5.

The “sum” CST is a refinement of either of the two CSTs that were added,

because it represents all the speciation events of either. In the same way, another

true CST could be added to this sum to create an even more refined CST, as

shown in Figure 1.6. The two changes distinguishing state {d, e} represented by

CSTs iii and iv may have been associated with the same speciation event, or with

different speciation events suggesting the possibility of an extinct ancestral species

represented by the dotted circle. However, the most ancestral state contains only

extinct ancestors because of speciation events on both branches of the phyletic lines

leading up to the extant taxa. A moment’s consideration should make it clear that

if enough true CSTs are added, then the sum CST becomes the diagram of the

ancestor relation itself, in which will be shown, in their historical places, ancestors

not represented in S. Thus, an ancestor relation is a CST sufficiently refined so

that each state has at most one species.

 

Fig. 1.6. Expansion
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Of course, not all CSTs are true; there are three basic ways in which they can

be false, as shown in Figure 1.7. On the right of Figure 1.7 we again see our

hypothetically true phylogeny, and on the left three false CSTs.

 

Fig. 1.7.

They are false because there is no possible way that speciations could have

occurred on this true phylogenetic tree so that they would correspond to the lines

in the CSTs. The leftmost misrepresents the direction (trend) of the changes,

because changing the direction of change so that state {f, g} is primitive does make

it possible to put speciation events on the phylogenetic tree so that this CST would

be true. The middle CST connects pairs of states that cannot all be next to each

other and still represent speciation events on the phylogenetic tree; redirecting these

proximity relations cannot make a CST whose speciation events can be placed on

the true phylogenetic tree. However, attaching state {c} to state {d, e} instead of

to state {a, b} does make this possible. For the rightmost CST, there is no way to

place a speciation on the phylogenetic tree so that even its states would result.

Two CSTs do not have to be both true for it to be possible to add them; they

can be added so long as there is some phylogenetic tree (true or not) on which all

their speciations can be simultaneously placed. Then from the placement of these

speciations on this phylogenetic tree the sum CST can be constructed. But how can

we find such a phylogenetic tree? Estabrook and McMorris (1980) demonstrated

that we do not need to. We showed that there is a one-to-one correspondence

between CSTs and trees of subsets of S. A collection of subsets of S is called a tree

of subsets of S if it satisfies two properties: S itself is one of the subsets, and any

two subsets either have no species in common or one contains all the species that

are in the other. Each character state in a CST has a subset in its tree of subsets

consisting of all the species in that state plus all the species in any descendant state.

Thus, the most primitive state has for its subset S, the entire study collection of

species. States with no descendant states have for their subset only the species that

they contain themselves. The correspondence is shown in Figure 1.8, where below

each CST is shown its tree of subsets, arranged so that derived states are above
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their ancestors. The sum is determined as the union of the subsets from both trees

of subsets; if the result is itself a tree of subsets, then the sum is the corresponding

CST. The process is illustrated in Figure 1.8, where the trees of subsets of the two

CSTs to be added are combined to make the tree of subsets in the lower right;

finally the CST above is constructed using the principles described above. This

CST is the sum of the first two.

 

Fig. 1.8.

Two CSTs do not have to be true for one to be a refinement of the other. We

can readily see from the sum of two CSTs that if the tree of subsets of one CST

contains all the subsets in the tree of subsets of another CST, then the first is a

refinement of the second. The diagram of the relation “is a refinement of” among

CSTs makes a semi-lattice. Meacham (1989) presents a figure of this semi-lattice for

the simple case in which S contains only 3 species. It is reproduced in Figure 1.9.

This refinement relation has been studied theoretically by Estabrook and McMorris

(1980), McMorris and Zaslavsky (1981), and Janowitz (1984).

Not every pair of CSTs can be added. When the union of their two trees

of subsets is NOT a tree of subsets, as shown in Figure 1.10, then there is no

phylogenetic tree on which to place speciations that correspond to the lines in both

CSTs. Typically we do not know the true phylogenetic tree so we cannot test a CST

to discover whether it is true or not. However, if two CSTs cannot be added, then

they cannot both be true; they are incompatible as hypotheses about the ancestor

relation among the species and their ancestors under study (Estabrook, 1984). Two

CSTs that can be added are compatible as hypotheses about the ancestor relation.

This concept of character compatibility forms the basis of a variety of compatibility

methods developed and used over the past 50 years.

Estabrook (2008) discusses the early history of compatibility concepts in some

detail. Here it will suffice to recall the reasons, illustrated in Figure 1.7, why a

character state tree might be false. These same reasons may explain the incompati-

bility of two characters: redirecting the characters state tree of one of the characters
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Fig. 1.9.

(trends); re-arranging the way in which the character states are connected (prox-

imities); or recognizing a different concept of “similar” and “different” (states) may

resolve the conflict. Estabrook and Meacham (1979) presented a test for undirected

multi-state CSTs, i.e., is the incompatibility a “trends” problem? They proved that

in a CST there is always a state that can be designated as the most primitive so that

the number of species in any state x immediately derived from it, plus the sum of

the number of species in all the states derived from state x, is never more than half

the number of species in S. A CST directed with such a state most primitive is said

to be directed “common equal primitive”. They then proved that if two common

equal primitive CSTs are incompatible, then they will remain so directed in any

other way. Thus if CSTs are directed “common equal primitive”, a compatibility

test by trees of subsets (Estabrook and McMorris 1980) will also test them as undi-
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Fig. 1.10.

rected hypotheses. Estabrook (1977) suggested that systematists might be tempted

to believe that common equal primitive because directing change that way elimi-

nates conflicts due to direction alone. Meacham (1984) made the then controversial

suggestion that the role of hypothesizing direction of evolutionary change before

estimating the ancestor relation among species under study could be reduced, or

even eliminated, by reasoning with undirected CSTs, especially in cases with little

or no a priori evidence to identify a primitive condition. Donoghue and Maddison

(1986) objected on philosophical grounds that were later shown to be irrelevant to

modern methods.

Proximity tests were independently suggested by Fitch (1975), Sneath et al.

(1975) and Estabrook and Landrum (1975). These determine whether incompatibil-

ities can be resolved by hypothesizing different proximities among character states.

With two-state CSTs, there are no incompatibilities that can be resolved by chang-

ing proximities of states in CSTs because there is only one proximity. However, for

two incompatible multi-state CSTs we can ask whether there is some other compat-

ible pair of CSTs with the same respective states, but different proximities. This is

especially relevant when the data source provides predominantly undirected, multi-

state characters. In the 1970s protein sequencing became more common. Species

could be compared based on which amino acid appeared in any given position of a

sequenced protein; Boulter et al. (1979) present an early example. The resulting

characters often had more than two states, and could have as many as 20 states.

Multi-state characters continued to be relevant through the 1980s and up until

present times, as DNA sequencing became more available. In many current data
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sets, nucleotide bases represent character states. A character consisting of just its

character states, with no hypothesized state proximities or direction of evolutionary

change, is called a qualitative taxonomic character (QTC). Without a tree ordering

for its states, a QTC does not represent an explicit hypothesis about speciation

events on the true phylogenetic tree. However, we can hypothesize that there are

speciation events on the true phylogenetic tree that produce a CST with the same

states as a QTC. In this way, a QTC represents an hypothesis about speciation

events; it is weaker than the hypothesis associated with a CST and asserts noth-

ing about direction of change. Two QTCs are potentially compatible if there are

two compatible CSTs with the same states respectively. Those CSTs realize that

potential. A character state is said to be convex (in the mathematical sense) in

the undirected tree of ancestor-descendant relations, if the unique path of (ances-

tor, immediate descendant) pairs connecting any two species in that state contains

only species in that state. A true QTC will have states that are “convex” on the

undirected tree diagram of the true ancestor relation. If two QTCs are potentially

compatible, then there exists some ancestor relation (not necessarily true) for which

all the states of both are convex. Thus, all true QTCs are necessarily potentially

compatible with each other. Often, when working within a context of only QTCs,

potentially compatible QTCs are called simply compatible. Estabrook and McMor-

ris (1977) mathematically proved the validity of the test algorithm of Estabrook and

Landrum (1975). The mathematical form of this proof is entirely the contribution of

McMorris. This has become a work-horse algorithm for many applications to follow.

What follows will explicate this algorithm, sketch McMorris’ proof, present several

published examples of its application, and suggest ideas for future applications.

1.2. Potential Compatibility Algorithm

To test the potential compatibility of two QTCs, EUs (evolutionary units) are

entered in the cells of a matrix: the states of the first character label the rows, and

the states of the second character label the columns. Each EU is placed in the cell

whose row and column labels are the states to which it belongs, as shown in Figure

1.11. Moving only from one occupied cell to another in a straight line horizontally

or vertically but never retracing a path already taken, if you can return to an

occupied cell you have already visited then the two characters are incompatible, as

for I and III, otherwise the two characters are potentially compatible, as for I and

II. In Figure 1.11, possible moves are shown with dashed lines. To discover two

CSTs that realize potential compatibility, first connect pairs of cells in the same

row or column to make a one-component graph with all the occupied cells included

among the vertices, in any way that does not close a loop, and then designate as

primitive any vertex (cell) in this graph. Direct the edges away from this primitive

cell. The CSTs for each character are inherited from this directed graph. Thus,

for QTCs I and II in Figure 1.11, in addition to the connections already shown,
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you could connect cell (IG IIT) containing {d, f} to the empty cell (IC IIT) on the

path between cell (IC IIA) containing {b} and cell (IC IIC) containing {e, g}; then

designate cell (IC IIT) primitive. The resulting CST for I has state C primitive

with states A and G separately derived from it. The resulting CST for II has state

T primitive with states C and A separately derived from it and state G derived

from state A.

          
 
          I   II  III 
 
            a    A    A    A                    
 
            b    C    A    A 
 
            c    A    G    C 
 
            d    G    T    C 
 
            e    C    C    T 
 
            f    G    T    G 
 
            g    C    C    G 
 
 
                 IA   IC   IG               IA   IC   IG 
 
            IIA   a -- b              IIIA   a -- b 
                  |    |                     |    | 
            IIT   |    |   d,f        IIIT   |    e 
                  |    |                     |    | 
            IIC   |    e,g            IIIC   c----+--- d 
                  |                               |    | 
            IIG   c                   IIIG        g -- f 
 

 

Fig. 1.11.

To implement this algorithm computationally, I conjectured (and McMorris

proved) that the matrix of a pair of potentially compatible QTCs would always

contain at least one row or column with only one cell occupied; if the EUs in this

cell were removed, in the context of the remaining EUs the two QTCs would continue

to be compatible, thus presenting a matrix with at least one row or column with

only one cell occupied, whose EUs could be removed, etc; two QTCs are potentially

compatible iff all EUs can be eventually removed from S in this way (Estabrook

and McMorris 1977).

1.3. Applications of Compatibility using McMorris’ Results

Some characters are inappropriate no matter what their compatibility relations are

with other characters because their character state changes are not associated with

speciation events, such as “random” within-population changes, or because changes

to a character state are associated with several speciation events (parallel or re-
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versed evolution), or because they are based on mistaken homology (A structure in

one species is homologous to a structure in another species if each structure evolved

from the same structure in the most recent common ancestor of those two species.

This is particularly problematic with DNA sequence data, in which alignment es-

timates homology). I have discussed in some detail the nature of inappropriate

characters (Estabrook 1998, 2008); the basic argument is that true characters are

always compatible, but inappropriate (false) characters are more prone to be in-

compatible with each other and with true characters. By the late 1970’s, all the

basic concepts for testing the compatibility of hypotheses of speciation events on a

phylogenetic tree, based on comparative observations of species in a group under

study, had been developed. Contemporary reviews are available from McMorris

(1975), Estabrook (1978, 1984), Cartmill (1981), LeQuesne (1982), and Meacham

and Estabrook (1985).

One goal of systematic biologists is to make specific estimates of the ancestor

relation for a group of species under study. Relatively few true characters are

sufficient for this task, but it is difficult to tell for sure which characters are true.

We know that pairs of true characters are always compatible and that at least

one member of a pair of incompatible characters must be false, but compatible

characters are not necessarily true characters. Early workers proposed three basic

approaches.

1) Make considerations of the development, adaptive functions, parasites, diseases,

biogeography, natural history, etc. of the species under study to modify one or both

of pairs of incompatible CSTs to resolve incompatibilities until enough CSTs could

be added together to produce an estimate of the ancestor relation for the species

under study. CSTs that were not resolved as part of this process are set aside, as

less reliable or problematic.

2) Leave characters as originally constructed, but apply some operational (often

quantitative) criterion to choose one character (or a compatible group) to make an

initial partial estimate. Then, within the context of subsets of S that are convex

on this partial estimate, apply the criterion again, until the ancestor relation is

resolved to the satisfaction of the investigator.

3) Use an automatic incompatibility resolving procedure. One such procedure is to

sub-divide character states without consideration of the development, form, adap-

tive functions, parasites, diseases, biogeography, natural history, etc. to create new

characters with more, smaller states, that are all mutually compatible. For any

two incompatible CSTs or QTCs, it is always possible to sub-divide states enough

to create two new compatible characters. In general, there are very many ways

to subdivide the states of characters to resolve all incompatibilities in a data set,

especially if S is large. For this reason, this approach imposes the additional cri-

terion (parsimony) that as few as possible new character states should be created

to resolve all the incompatibilities among the characters. Especially if S is large,

there may still be several, often disparate, ways to satisfy this criterion. Another
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procedure assumes that all state changes are actually “random” and chooses (from

a large family) the probability model of evolution that makes the evolution of the

states of all characters most likely (maximum likelihood). There are many other

automatic procedures.

Among practitioners of the first approach, one of the most influential in his time

was Hennig (1966). This book is a translation from German into English by R.

Zangerl of an unpublished MS composed by Hennig shortly before that date as a

major revision of a less well known book he had published 15 years earlier, also

in German. In his preface, Zangerl himself warns us of the linguistic difficulties of

making such a translation. Indeed, many of the terms in Hennig (1966) are taken

from evolutionary biologists writing in English, where their meanings have been

well understood for decades, and given different meanings, either by Hennig (or

by his translator). Unfortunately, this resulted in some serious misunderstandings

during the 1970’s and 1980’s, which are only now beginning to be resolved. Mayr

(1974) and Sokal (1975) provide a contemporary discussion of some of these issues.

These misunderstandings continued to confuse Hennig’s followers (of which there

were many) over the next three decades, and ramifications of this confusion are still

with us today.

Many others who did not consider themselves followers of Hennig also considered

natural, biological criteria to restructure CSTs to provide more consistent estimates.

Good examples of natural criteria for estimating CSTs are given by Voss and Voss

(1983). DeMarco et al (1985), which publication is in Italian, but their results are

presented in Table 2 of Estabrook (2001), Stein et al. (1984), Gardner and LaDuke

(1979), LaDuke and Crawford (1979), and more recently Strasser and Delson (1987).

Few investigators use this first approach today, in part because molecular data

have come to dominate as the basis for estimating relationships, and it is not yet

clear how to apply considerations from the natural world explicitly to restructure

QTCs arising from molecular data. This approach may become more useful again as

macromolecular data, e.g., chromosomal rearrangements or other large scale genetic

changes, become more widely implicated in the estimation of ancestor relations (Qui

et al 2006).

The second approach uses an operational criterion to select some of the CSTs or

QTCs to use compatibly to make a (possibly only partial) estimate of the ancestor

relation. LeQuesne (1969. 1974) was an early proponent of this approach. In

the case of CSTs, directed or undirected, I conjectured (and McMorris proved)

that if all pairs of CSTs in a collection of CSTs are compatible, then the entire

collection is compatible, i.e. there are ancestor relations (namely all refinements

of their sum) that are refinements of every CST in the collection (Estabrook et

al. 1976). Thus, a large collection of pairwise compatible CSTs could be chosen

as the basis for a first (perhaps only partial) estimate of the ancestor relation.

Discovering such a collection is equivalent to discovering the maximal cliques in an

undirected graph, a computationally difficult (NP complete) problem as S becomes
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large. Bron and Lerbosch (1973) published an algorithm to discover the largest

collections (cliques) of pairwise compatible CSTs, which has been used in computer

programs implementing this appraoch.

Many investigators were not comfortable hypothesizing CSTs. The observable

states of a QTC seemed to have more objective reality than a CST, which in-

cludes a (possibly questionable) hypothesis about how those states evolved from

one another. A collection of QTCs can also be tested for potential compatibility

and maximal groups of pairwise potentially compatible QTCs discovered, but there

may be no possible estimate of the ancestor relation on which all the states of the

QTCs are convex, i.e., these QTCs may not be group-wise potentially compatible

(Fitch, 1975). This poses an interesting problem whose mathematical analog has

been studied by Gavril (1974), who was not aware of the analog, and by McMorris

et al (1994), who were fully aware.

Of course, for a group of pairwise compatible QTCs there may be an ancestor

relation on which all or most of them have convex states. Boulter et al (1979) using

amino acid sequences of a protein from flowering plants were among the first to

apply compatibility of QTCs to a major study. Estabrook (1991) and Camacho

et al (1997) provide later examples, and recently Grupta and Sneath (2007) use a

maximal clique of compatible 2-state characters to estimate the ancestor relation

in a large molecular study.

With the advent of molecular data sets with multi-state characters, it became

unclear how to hypothesize CSTs, or how to take the first approach to resolve

incompatibilities. Especially in data sets with a large number of more distantly

related EUs, the second approach often resulted in typically only a small fraction

of the data participating in estimates of the ancestor relation. In molecular data

sets, high levels of incompatibility may result from a larger fraction of molecular

data evolved as random changes not associated with particular speciation events.

The third approach (use an automatic incompatibility resolving procedure such as

parsimony or maximum likelihood) has been commonly taken in these cases. When

levels of compatibility are very low, the vast majority of characters are false. Au-

tomatically resolving incompatibility among so many false characters may result in

weaker estimates of the ancestor relation. Recognition and elimination of characters

whose level of compatibility can not be distinguished from “random” may leave a

reduced data set with a higher fraction of true characters, from which a more reli-

able estimate could be made. To do this we need to define a reasonable concept of

“random”.

LeQuesne (1972) presented a formula to calculate the probability that two 2-

state characters would be potentially compatible; and used it to select characters for

further consideration. Meacham (1981) defined clearly the concept of “at random”

implicit in LeQuesne (1972) and generalized it to two (or a group) of CSTs (with any

number of states), and showed that CSTs with many large advanced states were less

likely to be compatible at random than those with fewer, smaller advanced states.
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This suggested an alternative to choosing the largest clique, which might have many

CSTs more likely to be compatible at random; instead choose the clique of CSTs

least likely to be compatible at random. The explicit approach of Meacham (1981)

to calculate exact probabilities, becomes computationally intractable with more

than just a few EUs, and was not applicable to QTCs. To address these problems,

Meacham (1994), using the same concept of “random” (any character with the same

numbers of EUs in its respective sates is equally likely) estimated probabilities of

compatibility by simulation. The algorithm of Estabrook and McMorris (1977) is

at the center of these simulations.

Especially in data sets with a large number of EUs, the number of characters

in the largest (or least likely) clique was often a very small fraction of the total

number of characters, which could result in an unsatisfactory estimate of the ances-

tor relation. Flagrantly false characters, whose states would have to be subdivided

many times to become convex on the true ancestor relation, might be as likely to be

compatible with other characters as a character to whose states EUs were assigned

at random. For a given character, the probabilities with which it would be com-

patible at random with each other character could be summed to give the number

of other characters with which it would be expected to be compatible at random.

This could be compared with the number with which it was actually compatible; If

this number were not more than would be expected at random, then the character

could be set aside as indistinguishable from random. Remaining characters could

be dealt with in any of the three approaches described above.

Meacham (1994) construed the number of other characters with which a given

character is compatible as a random variable, and undertook to estimate its distribu-

tion under the hypothesis that the given character was random. Because Meacham

(1994) used simulation to make close approximations to compatibility related prob-

abilities, he could estimate the probability that a given character (QTC or CST)

would be compatible with at least as many other characters as it actually was,

under the hypothesis that it was a random character. Meacham (1994) called this

probability Cf, the Frequency of Compatibility Attainment. Camacho et al (1997),

Qui and Estabrook (2008), Pisani (2004) used this approach to eliminate characters

with levels of compatibility whose random probability exceeded a given threshold,

and then took one of the three basic approaches above to estimate an ancestor

relation. Pisani (2004), using a large data set (866 DNA QTC characters and 47

species), suggested that removing characters with Cf > 0.5, i.e., a random charac-

ter would be expected to be compatible with more other characters than observed,

before using those remaining with a maximum likelihood method, may reduce the

effects of long branch attraction. Qiu and Estabrook (2008) observed increased

clarity of parsimony estimates of relationships among key groups of angiosperms

when all characters with Cf > 0.2 were removed. Day et al. (1998) used the number

of compatible pairs of characters in a whole data set as a random variable under

the hypothesis that all the characters in the data set were random in the sense of
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Meacham (1994). They analyzed 102 published data sets, of which 12 had fewer

compatible pairs than would be expected at random. In general, they observed

that inclusion of out groups increased the probability that compatibility levels are

random, sometimes substantially so.

Estabrook and McMorris (2006) was the last compatibility application on which

we collaborated, so called stratigraphic compatibility. Rock strata containing fossils

have been used to estimate the interval of time from the evolution to the extinction of

species (or other higher taxon). These estimates could place so-called stratigraphic

constraints on estimates of the ancestor relation: a species whose first appearance

in rock strata is more recent than the first appearance of another species cannot be

one of its ancestor in the true ancestor relation; and a species whose last appearance

is before the first appearance of another species cannot be its immediate ancestor.

These constraints can be expressed as a graph whose directed edges are the

stratigraphically possible ancestor - immediate descendant pairs. Estimates of the

ancestor relation must be a spanning directed tree subgraph. In the context of

stratigraphic constraints, a CST or QTC, or even a single character state, can be

incompatible with the stratigraphy, and a pair of otherwise compatible characters

(CST or QTC) can become incompatible. Sometimes stratigraphic constraints can

be quite severe, which make them unpopular with some investigators, especially

when they conflict with comparative data.

1.4. Possible Future Applications

Compatibility concepts have been applied to several other areas, beyond the scope

of this paper. Many of them are discussed in Estabrook (2008). But I want to

mention two applications, using variations of the test for the compatibility of two

QTCs (Estabrook and McMorris 1977), that are currently under development.

Sometimes one or a few EUs in a data set are anomalous: perhaps they do not

really belong to the study group; perhaps mistakes have been made in assigning

them to characters states (alignment problems); or perhaps they have evolved sub-

stantially more rapidly than the other EUs in S. Their inclusion in the data set

could confound estimates of the ancestor relation by generating incompatibilities

that would disappear if they were removed. After a good estimate of the ancestor

relation among the remaining EUs has been made, perhaps these EUs could be

added. To identify such anomalous EUs (if such there be) each EU (or small group)

is removed and compatibilities of all pairs of characters are tested again (using, of

course the algorithm of Estabrook and McMorris 1977); if removal of any EUs (or

small groups) results in a sharp increase in the number of compatible pairs of QTCs,

the EUs removed are candidates for consideration as anomalous EUs.

The second application under development uses a variation on the algorithm of

Estabrook and McMorris (1977). In DNA data sets with large numbers of EUs, there

are often many small errors that arise from the use of automatic sequencing tech-
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nology. These might result in the misplacement of one or a few EUs into the wrong

character state for some characters. In the contingency matrix of Estabrook and

McMorris (1977) this might result in a box occupied by a single EU (the misplaced

one). So-called “almost compatible” pairs of QTCs are those that pass the potential

compatibility test when boxes in their contingency matrix with only one EU are

considered empty. This concept could be simulated as easily as strict compatibility

to calculate the probability of almost compatibility, or the realized significance of

the number of other characters in a data set with which a given character is almost

compatible. Eliminating characters not sufficiently almost compatible with the rest

of the other characters might result in the retention of more characters useful in

parsimony, maximum likelihood, or other third approach automatic methods.
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2 × 2 Tables are frequently encountered in various fields of science, including
biometrics, psychology and ecology. To summarize the data in a 2 × 2 table it
is convenient to calculate a statistic that quantifies in some way the degree of
association or agreement between the rows and columns. The literature contains
a vast amount of such relational statistics for 2 × 2 tables, many of which are
just functions of the four cells a, b, c and d of the 2 × 2 table. In this paper
we review the important ones. Furthermore, we show how many of the functions
based on the four quantities a, b, c and d are related to one another by reviewing
families of relational statistics from the literature. A statistic must be considered
in the context of the data-analytic study of which it is a part. Studying families
of statistics provides insight into how one statistic can be interpreted and is
related to other statistics. The overview provides insights that may be helpful
to researchers from various fields of science in deciding what statistic to use in
applications or for studying theoretical properties.

Introduction

Data that can be summarized in a 2 × 2 table are encountered in many fields of

science. For example, in psychology and biometrics the data may be the result of

a reliability study where two observers classify a sample of objects using a dichoto-

mous response (Fleiss, Fleiss 1975; Mart́ın Andrés and Femia-Marzo, 2008). In

epidemiology, a 2 × 2 table can be the result of a randomized clinical trial with a

binary outcome of success (Kraemer, 2004). Furthermore, in ecology a 2× 2 table

may be the cross-classification of the presence/absence codings of two species types

in a number of locations (Janson and Vegelius, 1981; Warrens, 2008a,b). Finally, in

cluster analysis a 2×2 table may be the result of comparing partitions obtained from

two different clustering methods (Steinley, 2004; Albatineh, Niewiadomska-Bugaj

and Mihalko, 2006).

In many applications the researcher wants to further summarize the 2 × 2 ta-

ble by a single relational statistic. Sometimes reporting a single statistic concludes

the data-analytic part of a study. In other cases, multiple statistics or matrices of

25
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coefficients are used as input in techniques in data mining, cluster analysis, or infor-

mation retrieval. The frequent occurrence of binary data has led to the fact that the

literature contains a vast amount of relational statistics for 2× 2 tables (Cheetham

and Hazel, 1969; Janson and Vegelius, 1981; Hubálek, 1982; Gower and Legendre,

1986; Krippendorff, 1987; Baulieu, 1989, 1997; Albatineh et al., 2006; Deza and

Deza, 2006; Mart́ın Andrés and Femia-Marzo, 2008; Warrens, 2008a,b,c,d,e,f, 2009;

Lesot, Rifgi and Benhadda, 2009). Well-known examples are the phi coefficient, Co-

hen’s (1960) kappa and the simple matching coefficient. Relational statistics have

different names depending on the field of science or the analytic context. Exam-

ple are: similarity measures, association coefficients, agreement indices, reliability

statistics or presence/absence coefficients. All relational statistics can basically be

used to express in one number (quantify) the strength of the relationship between

two binary variables or the amount of agreement (similarity, resemblance) between

two objects.

In choosing a particular statistic to summarize the data in a 2 × 2 table, a

function has to be considered in the context of the data analysis of which it is a

part. Relational statistics can be distinguished according to the type of data they

apply to or how they may be interpreted. In this paper, we only review the most

important statistics. In Section 2.2, we distinguish three general types of statistics,

called type A, type B and type C. Furthermore, we show how many of the functions

for 2× 2 tables are related to one another by distinguishing a variety of parameter

families of statistics in Section 2.3. For some parameter families all special cases are

of the same type (A, B, C), while other families contain special cases of different

types.

The aim of this broad overview is to show how the different statistics may

be interpreted in the contexts of various other statistics. The overview provides

insights that may be beneficial to both practitioners in deciding what statistic to

use, and theorists for studying properties of these statistics. The paper is organized

as follows. In Section 2.1, we present definitions and we discuss three types of

relational statistics for 2× 2 tables. In Section 2.2, we present various examples of

relational statistics and fields of science where they are used. Parameter families of

statistics for 2× 2 tables are considered in Section 2.3. Some applications of these

families are discussed in Section 2.4.

2.1. Definitions

Relational statistics for 2 × 2 tables have been classified in a number of different

ways (Sokal and Sneath, 1963; Krippendorff, 1987; Baulieu, 1989; Lesot et al.,

2009). Here we distinguish three general types of statistics, called type A, type B

and type C, although many other classifications are possible. Before considering

the three types, we discuss some preliminaries.
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2.1.1. Preliminaries

In general, a 2 × 2 table is obtained if two objects are compared on the pres-

ence/absence of a set of attributes, or if a set of objects is cross-classified by two

binary variables. To simplify the presentation, we presuppose that the 2 × 2 table

is a cross-classification of two binary (1/0) variables X and Y . The table below is

an example of a 2 × 2 table. The four proportions a, b, c, and d characterize the

joint distribution of the variables X and Y . Quantities a and d are often called,

respectively, the positive and negative matches, whereas b and c are the mismatches.

The row and column totals are the marginal distributions that result from summing

the joint proportions. We denote these by p1 and q1 for variable X and by p2 and

q2 for variable Y . Instead of proportions, the 2× 2 may also be defined on counts

or frequencies; proportions are used here for notational convenience.

Proportions Y = 1 Y = 0 Totals

X = 1 a b p1

X = 0 c d q1

Totals p2 q2 1

Relational statistics for 2 × 2 tables are functions that quantify the extent to

which two binary variables are associated or the extent to which two objects resem-

ble one another. These functions take as arguments pairs of variables and return

numerical values that are higher if the variables are more associated. We will use

S as a general symbol for a relational statistic. Following Sokal and Sneath (1963,

p. 128), Albatineh et al. (2006), Warrens (2008a,b,c,d,f, 2009) and Lesot et al.

(2009), the convention is adopted of calling a measure by its originator or the first

we know to propose it. Moreover, we will study the formulas in this paper as sample

statistics and not as population parameters.

The term symmetry is usually associated with the mismatches b and c. A

statistic is called symmetric if the values of b and c can be interchanged without

changing the value of the statistic. Although the majority of statistics discussed

in this paper are symmetric in b and c, relational statistics are not required to be

symmetric (see, for example, Lesot et al., 2009). Asymmetric statistics have natural

interpretations if, for example, the variable X is a criterion against which variable

Y is evaluated (see Section 2.2.2).

Consider the statistic

SSM =
a+ d

a+ b+ c+ d
(Sokal and Michener, 1958; Rand, 1971).

Function SSM is also known as the simple matching coefficient or the proportion of

observed agreement. Statistic SSM is symmetric in b and c since we can interchange

the two quantities without effecting the value of SSM. The complement of the
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simple matching coefficient is a special case of the symmetric set difference (see, for

example, Boorman and Arabie, 1972; Margush and McMorris, 1981; Barthélémy

and McMorris, 1986). Function 1 − SSM can also been seen as a special case of

the Hamming distance between two profiles (see, for example, Day and McMorris,

1991). The Hamming distance is a count of the number of positions where two

profiles of the same length differ.

Consider the statistics a/(a+b) = a/p1 and a/(a+c) = a/p2. Statistic a/p2 can

be interpreted as measuring the extent to which X is included in Y , whereas a/p1

reciprocally measures the extent to which Y is included in X (Lesot et al., 2009).

The quantities a/(a+ b) = a/p1 and a/p2 are asymmetric statistics.

Sokal and Sneath (1963) made a classical distinction between functions that

include the positive matches a only and functions that include both the positive

and negative matches a and d (see also, Gower and Legendre, 1986; Baulieu, 1989;

Warrens, 2008a,b; Lesot et al., 2009). A binary variable can be an ordinal or a

nominal variable. If X is an ordinal variable, then X = 1 is more in some sense

than X = 0. For example, if a binary variable is a coding of the presence or absence

of a list of attributes or features, then d reflects the number of negative matches.

In the field of numerical taxonomy quantity d is generally felt not to contribute

to similarity, and hence should not be included in the definition of the relational

statistic.

We are now ready to discuss the three different types of relational statistics.

2.1.2. Type A statistics

Type A statistics satisfy the two requirements

(A1) S = 1 if b = c = 0,

(A2) S = 0⇔ a = 0.

Property (A1) states that S = 1 if there are no mismatches (two species types

always occur together), whereas (A2) states that S = 0 if and only if the proportion

a = 0 (two species types do not coexist). Type A statistics are typically functions

that are increasing in a, decreasing in b and c, and have a range [1, 0]. Type A

statistics are suitable for ordinal variables and are similar to what are called type

1 statistics in Lesot et al. (2009) (see also Janson and Vegelius, 1981).

Symmetric examples of type A statistics are

SJ =
a

a+ b+ c
(Jaccard, 1912),

SDK =
a

√
p1p2

(Driver and Kroeber, 1932; Ochiai, 1957),

SK =
1

2

(
a

p1
+

a

p2

)
(Kulczyński, 1927).

Asymmetric examples are a/p1 and a/p2 (Dice, 1945; Wallace, 1983). Statistics
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SDK and SK are the geometric and arithmetic means (see Section 2.3.3) of the

quantities a/p1 and a/p2.

Type A statistics can be functions that are increasing in d. An example is the

statistic

SBB =
a+
√
ad

a+
√
ad+ b+ c

(Baroni-Urbani and Buser, 1976).

The statistic SRR = a (Russel and Rao, 1940) is a hybrid type A statistic (Sokal and

Sneath, 1963), since it does not satisfy (A1). The statistic SRR does satisfy (A2),

one of the requirements of a type A statistic. Furthermore, statistic SRR satisfies

the requirement S = 1 if b = c = d = 0 ⇔ a = 1. The complement of SRR is a

special case of a distance used in Goddard, Kubicka, Kubicki and McMorris (1994)

that counts the number of leaves which have to be pruned from two trees to obtain

a common substructure.

Type A statistic

SSi =
a

min(p1, p2)
(Simpson, 1943)

satisfies the stronger condition

(A1)∗ S = 1 if b = 0 ∨ c = 0.

Statistic SSi = 1 if one species type only occurs in locations where a second species

type exists.

2.1.3. Type B statistics

Type B statistics satisfy the two requirements

(A1) S = 1 if b = c = 0,

(B2) S = 0 if a = d = 0.

Condition (B2) states that S = 0 if there are no positive and negative matches.

Type B statistics are typically functions that are increasing in a and d, decreasing in

b and c, and have a range [1, 0]. Type B statistics are suitable for nominal variables

and are similar to what are called type 2 statistics in Lesot et al. (2009).

Examples of type B statistics are SSM (Section 2.1.1) and

SSS1 =
1

4

(
a

p1
+

a

p2
+

d

q1
+

d

q2

)
(Sokal and Sneath, 1963),

SSS2 =
ad

√
p1p2q1q2

(Sokal and Sneath, 1963).

Sokal and Sneath (1963) proposed coefficients SSS1 and SSS2 as alternatives to type

A statistics SDK and SK for nominal variables. Statistic SK is the arithmetic mean

of conditional probabilities a/p1 and a/p2, whereas SSS1 is the arithmetic mean of

conditional probabilities a/p1, a/p2, d/q1 and d/q2. Statistic SDK is the geometric
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mean of a/p1 and a/p2, whereas SSS2 is the square root of the geometric mean of

a/p1, a/p2, d/q1 and d/q2 (Janson and Vegelius, 1981). Note that SSS2 actually

satisfies the stronger requirement S = 0 if a = 0 ∨ d = 0.

2.1.4. Type C statistics

Type C statistics satisfy the three conditions

(A1) S = 1 if b = c = 0,

(C2) S = 0 under statistical independence,

(C3) S = −1 if a = d = 0.

Requirement (C3) states that S = −1 if there are no matches. It expresses perfect

negative association, in which the categories of one variable must be reversed to

match the categories of the other variable. Furthermore, (C2) specifies that S = 0

if the variables X and Y are statistically independent, that is, ad = bc⇔ a = p1p2

(see Section 2.2.1). Type C statistics are functions that are increasing in a and d,

decreasing in b and c, and have a range [1,−1]. Type C statistics are suitable for

nominal variables.

Examples of type C statistics are

SY1 =
ad− bc
√
p1p2q1q2

(Yule, 1912),

SCoh =
2(ad− bc)
p1q2 + p2q1

(Cohen, 1960).

Function SY1 is also known as the phi coefficient (cf. Zysno, 1997). Function SCoh

is Cohen’s kappa for the case of two categories (Kraemer, 1979; Bloch and Kraemer,

1989; Guggenmoos-Holzmann, 1996).

Some type C statistics satisfy the stronger conditions

(A1)∗ S = 1 if b = 0 ∨ c = 0,

(C3)∗ S = −1 if a = 0 ∨ d = 0.

An example is the relational statistic

SY2 =
ad− bc
ad+ bc

(Yule, 1900)

which is also known as Yule’s Q.

2.2. Examples of relational statistics for 2× 2 tables

In this section we discuss some important relational statistics for 2×2 tables, namely,

the tetrachoric correlation and the odds ratio, statistics used in epidemiological

studies, measures of ecological association, measures for comparing two partitions,

and a measure for test homogeneity.
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2.2.1. Tetrachoric correlation and odds ratio

A traditional measure for the 2 × 2 table is the tetrachoric correlation (Pearson,

1900; Divgi, 1979). It is an important statistic because the tetrachoric correlation

is an estimate of the Pearson product-moment correlation coefficient between hypo-

thetical row and column variables with normal distributions, that would reproduce

the observed contingency table if they were divided into two categories in the ap-

propriate proportions. Because an approximate estimate of the Pearson correlation

may well be as adequate in many applications, particularly in small samples, various

authors have introduced approximations to the tetrachoric correlation (Digby, 1983;

Castellan, 1966; Pearson, 1900). The tetrachoric correlation cannot be expressed in

the proportions a, b, c and d.

Another classic statistic is the odds ratio or cross-product ad/bc. The odds

ratio is defined as the ratio of the odds of an event occurring in one group (a/b) to

the odds of it occurring in another group (c/d). These groups might be any other

dichotomous classification. An odds ratio of 1 indicates that the condition or event

under study is equally likely in both groups. An odds ratio greater than 1 indicates

that the event is more likely in the first group. Probability theory tells us that two

binary variables are statistically independent if the odds ratio is equal to unity, that

is, ad/bc = 1. Due to the simple formula of its standard error, the logarithm of the

odds ratio is sometimes preferred over the ordinary odds ratio. The value of the

odds ratio lies between zero and infinity.

Edwards (1963) discussed several relational statistics as a function of the cross-

product ad/bc. Functions that transform the odds ratio to a correlation-like range

[1,−1] are

SY2 =
ad
bc − 1
ad
bc + 1

=
ad− bc
ad+ bc

(Yule, 1900)

SDy =
(ad)3/4 − (bc)3/4

(ad)3/4 + (bc)3/4
(Digby, 1983)

SY3 =
(ad)1/2 − (bc)1/2

(ad)1/2 + (bc)1/2
(Yule, 1912).

Statistics SY2 and SY3 are also known as Yule’s Q and Yule’s Y . Statistics SY2,

SDy, and SY3 are nonlinear transformations of ad/bc. All three statistics have

been proposed as alternatives (approximations) to the tetrachoric correlation and

all three are type C statistics (Section 2.1.4) that satisfy (A1)∗ and (C3)∗. Some

properties of SY2 and SY3 are discussed in Castellan (1966). Digby (1983) uses the

symbol H for SDy and shows that the statistic performs better than SY2 and SY3

as an approximation to the tetrachoric correlation.

For 2× 2 tables, Yule (1912) also proposed the relational statistic

SY1 =
ad− bc
√
p1p2q1q2

(Yule, 1912).
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Function SY1 is also known as the phi coefficient (cf. Zysno, 1997). Statistic SY1 is

what Pearson’s product-moment correlation becomes when it is applied to binary

variables. The statistic

SDo =
(ad− bc)2

p1p2q1q2
(Doolittle, 1885)

is better known as the mean square contingency (Pearson, 1926; Goodman and

Kruskal, 1959, p. 126). Function SY1 is the square root of SDo. Statistics SY1 and

SDo are type C statistics (Section 2.1.4).

2.2.2. Epidemiological studies

The odds ratio is probably the most widely used relational statistic in epidemiology

(Kraemer, 2004). In addition, a variety of other statistics can be used. In general,

two cases can be distinguished in epidemiology. In the first case the variable X is a

criterion against which variable Y is evaluated (Kraemer, 2004). Examples are the

evaluation of a new medical test against a gold standard diagnosis, or a risk factor

against a disorder, or assessing the validity of a binary measure against a binary

criterion. In these cases a and d are the proportions of true positives and true

negatives, whereas b and c are the proportions of false positives and false negatives.

A researcher is interested in statistics like sensitivity (a/p1), specificity (d/q1), the

predictive value of a positive Y (a/p2) and the predictive value of a negative Y

(d/q2). These four functions are type A statistics (Section 2.1.2). Other examples

of asymmetric statistics are

SP1 =
ad− bc
p1q2

and

SP0 =
ad− bc
p2q1

(Peirce, 1884).

Statistics SP1 and SP0 were also proposed in Light (1971) and are generally known

as weighted kappas (Kraemer, 2004). Functions SP1 and SP0 are type C statistics

(Section 2.1.4).

In the second case the variables X and Y are equally important, for example,

in studies of inter-rater reliability or test-retest reliability. Suppose the variables

are observers and that the 2× 2 table is the cross classification of the judgments by

the raters on the presence or absence of a trait. An obvious measure of agreement

that has been proposed independently for this situation by various authors (Fleiss,

1975; Goodman and Kruskal, 1954) is the proportion of all subjects on whom the

two raters agree, that is a+ d. The observed proportion of agreement

SSM =
a+ d

a+ b+ c+ d
(Sokal and Michener, 1958)

is also known as the simple matching coefficient. Since in the present notation

a + b + c + d = 1, SSM = a + d. Statistic SSM is thus the sum of the positive and
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negative matches and can be interpreted as the number of 1s and 0s shared by the

variables in the same positions, divided by the total number of positions.

In reliability studies it is considered a necessity that a relational statistic mea-

sures agreement over and above chance agreement. Examples of statistics that

control for chance agreement are the phi coefficient SY1 and

SCoh =
2(ad− bc)
p1q2 + p2q1

(Cohen, 1960),

SMP =
2(ad− bc)
p1q1 + p2q2

(Maxwell & Pilliner, 1968).

Function SCoh is Cohen’s kappa for the case of two categories (Kraemer, 1979; Bloch

and Kraemer, 1989; Feinstein and Cicchetti, 1990). Warrens (2008e) proves that the

2×2 kappa SCoh is equivalent to the Hubert-Arabie (1985) adjusted Rand index for

cluster validation (cf. Steinley, 2004; Albatineh et al., 2006). Although statistics

SY1, SCoh, and SMP have a correlation-like range [1,−1] (type C statistics), the

measures are commonly used to distinguish between positive and zero association.

For recommendations and guidelines on what statistics to use under what cir-

cumstances in epidemiological studies, we refer to Kraemer (2004).

2.2.3. Ecological association

In ecological biology, one may distinguish several contexts where association co-

efficients can be used (Sokal and Sneath, 1963; Janson and Vegelius, 1981). One

such case deals with measuring the degree of coexistence between two species types

over different locations. A second situation is measuring association between two

locations over different species types. In the first situation a binary variable is a

coding of the presence or absence of a species type in a number of locations. The

joint proportion a then equals the proportion of locations where both species types

are found.

Dice (1945) discussed the asymmetric quantities a/p1 and a/p2 (see also Wallace,

1983; Post and Snijders, 1992). Statistic a/p1 is equal to the number of locations

where both species types are found divided by the number of locations where only

the first species type is found. Quantity a/p2 is then the number of locations where

both species types exist divided by the number of locations of the second species

type.

Popular statistics for ecological association are

SJ =
a

a+ b+ c
=

a

p1 + p2 − a
(Jaccard, 1912),

SDi =
2a

2a+ b+ c
=

2a

p1 + p2
(Dice, 1945),

SDK =
a

√
p1p2

(Driver and Kroeber, 1932).
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Coefficient SJ can be interpreted as the number of 1s shared by X and Y in the same

positions, divided by the total number of positions were 1s occur. Statistic SDi seems

to be independently proposed by both Dice (1945) and Sørenson (1948), but is often

contributed to the former. The statistic is a special case of statistics by Czekanowski

(1913, 1932) and Gleason (1920). With respect to SJ coefficient SDi gives twice as

much weight to a. The latter function is regularly used with presence/absence data

in the case that there are only a few positive matches relatively to the number of

mismatches. Statistic SDi is also derived in Nei and Li (1979). Coefficient SDK by

Driver and Kroeber (1932) is often attributed to Ochiai (1957). Coefficient SDK is

also proposed by Fowlkes and Mallows (1983) for the comparison of two clustering

algorithms. Functions a/p1 and a/p2, and SJ, SDi and SDK are type A statistics.

Statistics SJ, SDi and SDK are popular measures of ecological association, and

they have been empirically compared to other functions for 2×2 tables in numerous

studies. For example, Duarte, Santos and Melo (1999) evaluated association mea-

sures in clustering and ordination of common bean cultivars analyzed by RAPD

type molecular markers. The genetic distance measures obtained by taking the

complement of statistic SDi were considered the most adequate. Boyce and Ellison

(2001) studied similarity coefficients for 2 × 2 tables in the context of fuzzy set

ordination, and concluded that the statistics SJ, SDi and SDK, are the preferred

association measures.

2.2.4. Comparing two partitions

In many applications of cluster analysis, for example cluster validity, one is inter-

ested in comparing the partitions from two different clustering methods (Rand, 1971;

Popping, 1983; Fowlkes and Mallows, 1983; Wallace, 1983; Hubert and Arabie, 1985;

Steinley, 2004; Albatineh et al., 2006). An equivalent problem in psychology is that

of measuring agreement among judges in classifying answers to open-ended ques-

tions, or psychologists rating people on categories not defined in advance (Brennan

and Light, 1974; Janson and Vegelius, 1982; Popping, 1983, 1984).

Suppose we have two partitions of the same objects. The two clustering parti-

tions can be summarized by a 2× 2 table with quantities a, b, c, and d, by counting

the number of pairs of objects that were placed in the same cluster in both parti-

tions (a), in the same cluster in one partition but in different clusters in the other

partition (b and c), and in different clusters in both (d). A statistic for a 2×2 table

can then be used to quantify the amount of agreement between the two partitions

(Steinley, 2004; Albatineh et al., 2006; Warrens, 2008e).

For some time, the Rand index

SR =
a+ d

a+ b+ c+ d
(Rand, 1971)

was a popular measure for comparing two partitions. Coefficient SR is equivalent

to the simple matching coefficient SSM. Statistic SR was also proposed in Brennan
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and Light (1974) for measuring agreement among psychologists rating people on

categories not defined in advance. Nowadays, there seems to be considerable agree-

ment in the cluster community that the Hubert-Arabie (1985) adjusted Rand index

(cf. Steinley, 2004) is the preferred measure for comparing two partitions. Warrens

(2008e) showed that the Hubert-Arabie adjusted Rand index can be written as

SHA =
2(ad− bc)
p1q2 + p2q1

(Hubert and Arabie, 1985).

The adjusted Rand index SHA is thus equivalent to Cohen’s kappa for two categories,

where the categories are “same cluster” and “different cluster”.

Fowlkes and Mallows (1983) used the measure a/
√
p1p2 (SDK, Driver and Kroe-

ber, 1932) and Wallace (1983) discussed the quantities a/p1 and a/p2 for comparing

two partitions.

2.2.5. Test homogeneity

The statistic

SBe =
ad− bc

min(p1q2, p2q1)
(Benini, 1901)

is a central quantity in Mokken scale analysis (Sijtsma and Molenaar, 2002), a

methodology that may be used to select a subset of binary test items that are sensi-

tive to the same underlying dimension. Coefficient SBe was attributed to Loevinger

(1947, 1948) by Mokken (1971) and Sijtsma and Molenaar (2002). Goodman and

Kruskal (1959, p. 134; 1979) and Krippendorff (1987) reported that statistic SBe

was first proposed by Benini (1901). Goodman and Kruskal (1959, p. 134; 1979)

reported that the statistic is also proposed in Jordan (1941). Relational statistic

SBe was also considered in Johnson (1945).

Although coefficient SBe has a correlation-like range [1,−1] (type C statistic),

it is usual to assume that two items are at least positively dependent. The function

SBe is a type C statistic that satisfies the condition (A1)∗ (Section 2.1.4). We have

SBe = 1 if two items form a so-called Guttman pair. In this case, all subjects

that pass the first item also pass the second item, or vice versa. Using SBe we

may have perfect association with different marginal distributions, that is, the item

popularities or difficulties p1 and p2 may be different.

The three statistics of ecological association SJ, SDi and SDK (Section 2.2.3)

measure the degree to which two species types occur jointly in a number of loca-

tions. Several authors proposed coefficients of ecological association that measure

the degree to which the observed proportion of joint occurrences of two species

types exceeds or falls short of the proportion of joint occurrences expected on the

basis of chance alone (cf. Cole, 1949). A measure introduced in Cole (1949), can
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be written as

SCol =


(ad− bc)/min(p1q2, p2q1) if ad > bc

0 if ad = bc

(ad− bc)/min(p1p2, q1q2) if ad < bc.

The formula SCol can be found in Ratliff (1982) and Warrens (2008d). Statistic SCol

is equivalent to SBe if ad ≥ bc, that is, if the two binary variables are positively

dependent. Although SCol is less popular than measures SJ, SDi and SDK, the

coefficient has been used in various applications by animal and plant ecologists

(Hurlbert, 1969; Ratliff, 1982). A variant of SCol proposed in Hurlbert (1969), is

less influenced by the species’ frequencies. Hurlbert (1969) examined both SCol and

the variant as approximations to the tetrachoric correlation. Function SCol is a type

C statistic that satisfies the conditions (A1)∗ and (C3)∗.

2.3. Families of relational statistics for 2× 2 tables

In this section we consider various families that have been proposed in the litera-

ture. Many relational statistics are special cases of a one-parameter family. The

families specify how various statistics are related to one another and provide ways

for interpreting them.

2.3.1. Rational functions

Gower and Legendre (1986, p. 13) defined two parameter families of which all mem-

bers are rational functions, linear in both numerator and denominator. The families

are given by

SFG(θ) =
a

a+ θ(b+ c)
(Fichet, 1986; Gower, 1986),

SGL(θ) =
a+ d

a+ θ(b+ c) + d
(Gower and Legendre, 1986),

where θ is a positive real number to avoid negative values. According to Heiser

and Bennani (1997) function SFG(θ) was first studied by Fichet (1986) and Gower

(1986). Special cases of SFG(θ) are type A statistics (Section 2.1.2). Using θ =

2, 1, 1
2 in SFG(θ) we obtain the special cases

SSS3 =
a

a+ 2(b+ c)
(Sokal and Sneath, 1963),

SJ =
a

a+ b+ c
(Jaccard, 1912),

SDi =
2a

2a+ b+ c
(Dice, 1945; Sørenson, 1948).

Function SDi gives twice as much weight to proportion a compared to SJ, whereas

SSS3 gives twice as much weight to b+ c compared to SJ. Function SDi is regularly
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used if there are only a few positive matches relatively to the number of mismatches.

Lesot et al. (2009, p. 67) report the special cases of SFG(θ) for θ = 1
4 ,

1
8 .

Janson and Vegelius (1981) show an interesting relationship between the special

cases of SFG(θ) that can sometimes be useful when comparing two of them (see

also, Snijders et al., 1992; Lesot et al., 2009). Statistics SDi and SJ are related by

SJac = SDi/(2− SDi). In general it holds that

SFG(2θ) =
SFG(θ)

2− SFG(θ)
.

Let δ and ω be positive real numbers. Function SFG(θ) is a special case of the

contrast model

ST(δ, ω) =
a

a+ δb+ ωc

proposed by Tversky (1977). In contrast to SFG(θ) the function ST(δ, ω) does not

impose the symmetry property. Using δ = ω in ST(δ, ω) we obtain SFG(θ). Using

δ = 0, 1 and ω = 1− δ in ST(δ, ω) we obtain the conditional probabilities a/p1 and

a/p2.

The special cases of SGL(θ) include the negative matches d in the numerators

and denominators. Special cases of SGL(θ) are type B statistics (Section 2.1.3).

Using θ = 2, 1, 1
2 in SGL(θ) we obtain

SRT =
a+ d

a+ 2(b+ c) + d
(Rogers and Tanimoto, 1960),

SSM = a+ d (Sokal and Michener, 1958),

SSS4 =
2(a+ d)

2a+ b+ c+ 2d
(Sokal and Sneath, 1963).

Statistic SSM is the simple matching coefficient. It holds that

SGL(2θ) =
SGL(θ)

2− SGL(θ)
.

Function SGL(θ) is a special case of the complement of the dissimilarity function

DB(δ, ω) =
b+ c

δa+ b+ c+ ωd
,

derived in Baulieu (1989). Function DB(δ, ω) satisfies a variety of desiderata in a

formal framework considered in Baulieu (1989). Using 1/δ = 1/ω in 1 −DB(δ, ω)

we obtain SGL(θ).

Let ε be a real number. Warrens (2009) considered another type of family of

rational functions, linear in both numerators and denominators. This family is

given by

SW(ε) =
εa+ (2− εd)

εa+ b+ c+ (2− ε)d
.
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Using ε = 0, 1, 2 in function SW(ε) we obtain the special cases

SCF =
2d

b+ c+ 2d
(Cicchetti and Feinstein, 1990)

SSM = a+ d (Sokal and Michener, 1958)

SDi =
2a

2a+ b+ c
(Dice, 1945; Sørenson, 1948).

2.3.2. Chance-corrected statistics

Functions SY1, SY2, SY3 and SCoh from Sections 2.2.1 and 2.2.2 are examples of

statistics that have zero value if binary variables X and Y are statistically inde-

pendent. Warrens (2008a, 2009) considered a family of statistics that correct for

chance and that can be expressed in the form

G[E(a+ d)] =
a+ d− E(a+ d)

1− E(a+ d)
,

where 0 < E(a+ d) ≤ 1. In G[E(a+ d)], a+ d = SSM is the observed proportion of

agreement. The quantity E(a+ d) is called the expected proportion of agreement,

and is conditional on fixed marginal proportions of the 2× 2 table. The value 1 is

the maximum value of a+ d.

Four definitions of E(a+ d) from the literature are

E(a+ d)BAG = 1/2,

E(a+ d)GK =
max(p1 + p2, q1 + q2)

2
,

E(a+ d)Sc =

(
p1 + p2

2

)2

+

(
q1 + q2

2

)2

,

E(a+ d)Coh = p1p2 + q1q2.

Using E(a+d)BAG, E(a+d)GK, E(a+d)S and E(a+d)C in G[E(a+d)], we obtain,

respectively, Bennett, Alpert and Goldstein’s S, Goodman and Kruskal’s lambda,

Scott’s pi and Cohen’s kappa, given by

SBAG = 2(a+ d)− 1 (Bennett et al., 1954),

SGK =
2 min(a, d)− b− c
2 min(a, d) + b+ c

(Goodman and Kruskal, 1954),

SSc =
4ad− (b+ c)2

(p1 + p2)(q1 + q2)
(Scott, 1955),

SCoh =
2(ad− bc)
p1q2 + p2q1

(Cohen, 1960).

Statistic SBAG = 2(a + d) − 1 is actually a special case of the function proposed

in Bennett et al. (1954). The statistic for square agreement tables with two or

more categories is equivalent to the measure C proposed in Janson and Vegelius
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(1979, p. 260), the measure κn discussed in Brennan and Prediger (1981, p. 693)

and RE proposed in Janes (1979). The statistic SBAG for 2× 2 tables is equivalent

to statistics discussed or derived in Hamann (1961), Holley and Guilford (1964),

Maxwell (1977) and Byrt, Bishop and Carlin (1993).

Statistics SBAG, SGK, SSc and SCoh are based on different assumptions and

may therefore not be appropriate in all contexts. The assumptions are hidden in

the different definitions of E(a + d). Reviews of the rationales behind SBAG, SSc

and SCoh can be found in Zwick (1988), Hsu and Field (2003) and De Mast (2007).

Following Krippendorff (1987) and Warrens (2008c, 2009), we distinguish three ways

in which chance factors may operate: two, one or none underlying continua.

Suppose the data are a product of chance concerning two different frequency

distributions (Cohen, 1960; Krippendorf, 1987), one for each variable. E(a+ d)Coh

is the value of SSM = a + d under statistical independence. E(a + d)Coh can be

obtained by considering all permutations of the observations of one of the binary

variables, while preserving the order of the observations of the other variable. For

each permutation the value of SSM can be determined. The arithmetic mean of

these values is p1p2 + q1q2.

A second possibility is that there are no relevant underlying continua. E(a+d)GK

simply focuses on the most abundant category. Alternatively, if, for example, two

raters randomly allocate objects to categories, then, for each rater, the expected

marginal probability for each category is 1/2. The probability that two raters as-

sign, by chance, any object to the same category is (1/2)(1/2) = 1/4. Summing

these probabilities over the two categories, we obtain 2/4 = 1/2 = E(P )BAG. Fur-

thermore, in the case of two distributions of which one is the uniform distribution,

Brennan and Prediger (1981, p. 693) showed that the probability of chance agree-

ment is also given by E(a+ d)BAG = 1/2.

Finally, suppose it is assumed that the frequency distribution underlying the two

binary variables is the same for both variables (Scott, 1955; Krippendorf, 1987).

The expectation of proportion a must be estimated from the marginals p1 and

p2. Different functions may be used. Scott (1955) proposed the arithmetic mean

(p1 + p2)/2.

2.3.3. Power mean

There are several functions that may reflect the mean value of two real non-negative

(or two non-positive) numbers u and v. The harmonic, geometric and arithmetic

means, also known as the Pythagorean means, are given by respectively 2/(u−1 +

v−1),
√
uv and (u + v)/2 (Janson and Vegelius, 1981). Several coefficients can be

expressed in terms of these Pythagorean means.

Consider for example the quantities a/p1 and a/p2 (Dice, 1945; Post and Snij-

ders, 1993). Both are special cases of function ST(δ, ω). The quantity a/p2 can be

interpreted as the extent to which variable X is included in variable Y , whereas

a/p1 reciprocally measures the extent to which Y is included in variable X. The
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harmonic, geometric and arithmetic means of a/p1 and a/p2 are respectively

SDi =
2a

p1 + p2
(Dice, 1945; Sørenson, 1948),

SDK =
a

√
p1p2

(Driver and Kroeber, 1932; Ochiai, 1957),

SK =
1

2

(
a

p1
+

a

p2

)
(Kulczyński, 1927).

Different types of statistics can be obtained by considering abstractions of the

Pythagorean means. One type of so-called generalized means is the power mean,

sometimes referred to as the Hölder mean (see, for example, Bullen, 2003). Let ε

be a real number. The power mean Mε(u, v) of u and v is given by

Mε(u, v) =

(
uε + vε

2

)1/ε

.

Special cases of Mε(u, v) are the minimum (min(u, v)) and maximum (max(u, v))

and the Pythagorean means. A variety of statistics turn out to be special cases of a

power mean. The harmonic, geometric and arithmetic means of a/p1 and a/p2 are

SDi, SDK and SK. The minimum and maximum of a/p1 and a/p2 are given by

SBr =
a

max(p1, p2)
(Braun-Blanquet, 1932),

SSi =
a

min(p1, p2)
(Simpson, 1943).

As a second example of a power mean, consider the weighted kappas (Section

2.2.2)

SP1 =
ad− bc
p1q2

and

SP0 =
ad− bc
p2q1

(Peirce, 1884; Cole, 1949).

The quantity ad − bc is known as the covariance for two binary variables. If p1 ≤
p2 then p1q2 is the maximum value of the covariance ad − bc given the marginal

proportions. The harmonic and geometric means and the maximum of SP1 and SP0

are

SCoh =
2(ad− bc)
p1q2 + p2q1

(Cohen, 1960),

SY1 =
ad− bc
√
p1p2q1q2

(Yule, 1912),

SBe =
ad− bc

min(p1q2, p2q1)
(Benini, 1901).

Statistics SCoh and SY1 are Cohen’s (1960) kappa and the phi coefficient (cf. Zysno,

1997). Statistic SBe is discussed in Section 2.2.5.
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2.3.4. Linear transformations of SSM

Warrens (2008c,d, 2009) studied a family of statistics that are linear transformations

of SSM = a+d. Members in this family are of the form λ+µ(a+d) where λ and µ,

unique for each statistic, depend on fixed marginal proportions of the 2 × 2 table.

Since a = p2 − q1 + d, proportions a and d are also linear in (a+ d). Linear in SSM

is therefore equivalent to linear in a and linear in d.

Many relational statistics for 2 × 2 tables can be expressed in the form λ +

µ(a + d). We consider some examples. Statistic SDi can be expressed in the form

λDi + µDi(a+ d) where

λDi = − 1

p1 + p2
+ 1 and µDi =

1

p1 + p2
.

In fact, Warrens (2009) showed that all special cases of the parameter family

SW(ε) =
εa+ (2− εd)

εa+ b+ c+ (2− ε)d

are linear transformations of SSM given the marginal proportions. The quantities

λ and µ for family SW(ε) (Section 2.3.1) are given by

λW =
(ε− 1)(p2 − q1)

1 + (ε− 1)(p2 − q1)
,

µW =
1

1 + (ε− 1)(p2 − q1)
.

Statistic SCoh can be expressed in the form λCoh + µCoh(a+ d) where

λCoh = −p1p2 + q1q2

p1q2 + p2q1
and µCoh =

1

p1q2 + p2q1
.

In fact, all functions of the form G[E(a+d)] (Section 2.3.2) can be expressed in the

form λG + µG(a+ d) where

λG = − E(a+ d)

1− E(a+ d)
and µG =

1

1− E(a+ d)
.

The power mean of a/p1 and a/p2 and the power mean of the weighted kappas

SP1 and SP0 (Section 2.3.3) are also linear transformations of statistic SSM given

the marginal proportions. The power mean of a/p1 and a/p2 equals

Mε

(
a

p1
,
a

p2

)
=

a

p1p2

(
pε1 + pε2

2

)1/ε

,

and is thus linear in the quantity a. The power mean of the weighted kappas SP1

and SP0

Mε

(
ad− bc
p1q2

,
ad− bc
p2q1

)
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can be written as

a− p1p2

p1p2q1q2

[
(p1q2)ε + (p2q1)ε

2

]1/ε

and is thus also linear in the quantity a.

A statistic that cannot be expressed in the form λ+ µ(a+ d) is

SJ =
a

a+ b+ c
(Jaccard, 1912).

Furthermore, the statistics SY2, SDy and SY3 (Section 2.2.1) are special cases of the

family

SDy(β) =
(ad)β − (bc)β

(ad)β + (bc)β
(Digby, 1983)

where 0 < β ≤ 1. No special case of function SDy(β) can be expressed as a linear

transformations of the statistic SSM given the marginal proportions.

2.4. Discussion

In this section we consider properties of relational statistics for 2 × 2 tables that

follow from their membership of a particular family.

2.4.1. Order equivalence

The formulation of SFG(θ) and that of SGL(θ) (Section 2.3.1) is closely related to the

concept of order equivalence (Sibson, 1972; Gower, 1986; Baulieu, 1989; Batagelj

and Bren, 1995; Lesot et al., 2009). If two statistics are order equivalent, they are

interchangeable with respect to an analysis method that is invariant under ordinal

transformations. The relevant information for these analysis methods is in the

ranking induced by the relational statistics, not in the values themselves. Examples

are in image retrieval (Lesot et al., 2009) and monotone equivariant cluster analysis

(Janowitz, 1979). Any two special cases of SFG(θ) are order equivalent, and any

two special cases of SGL(θ) are order equivalent. Omhover, Rifqi and Detyniecki

(2006) showed that two special cases of ST(δ, ω) with parameters (δ, ω) and (δ′, ω′)

are order equivalent if δω′ = δ′ω. Similarly, Baulieu (1989) showed that two special

cases ofDB(δ, ω) with parameters (δ, ω) and (δ′, ω′) are order equivalent if δω′ = δ′ω.

2.4.2. Inequalities

Warrens (2008b) presented inequalities between a variety of statistics for 2×2 tables.

Several insights can be obtained from studying inequalities between statistics. For

example, if several functions defined on the same quantities have unconditional

inequalities between them it is likely that these statistics reflect the association or

agreement of the binary variables X and Y in a similar way, but to a different extent

(some have lower/higher values than others).
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Consider the function

SFG(θ) =
a

a+ θ(b+ c)
(Fichet, 1986; Gower, 1986)

(Section 2.3.1), with special cases

SSS3 =
a

a+ 2(b+ c)
(Sokal and Sneath, 1963),

SJ =
a

a+ b+ c
(Jaccard, 1912),

SDi =
2a

2a+ b+ c
(Dice, 1945; Sørenson, 1948).

Since SFG(θ) is decreasing in θ, the double inequality SSS3 ≤ SJ ≤ SDi is valid.

Furthermore, since SGL(θ) (Section 2.3.1) is decreasing in θ, the double inequality

SRT ≤ SSM ≤ SSS4 is valid.

Consider the function

G[E(a+ d)] =
a+ d− E(a+ d)

1− E(a+ d)

(Section 2.3.2), with special cases

SBAG = 2(a+ d)− 1 (Bennett et al., 1954),

SGK =
2 min(a, d)− b− c
2 min(a, d) + b+ c

(Goodman and Kruskal, 1954),

SSc =
4ad− (b+ c)2

(p1 + p2)(q1 + q2)
(Scott, 1955),

SCoh =
2(ad− bc)
p1q2 + p2q1

(Cohen, 1960).

Using the fact that G[E(a+d)] is decreasing in E(a+d) it can be shown (Warrens,

2008b,c) that SGK ≤ SSc ≤ SBAG, SCoh. Furthermore SBAG > SCoh if and only if

p1, p2 > 0.5 or q1, q2 > 0.5. Inequality SBAG ≤ SCoh otherwise.

Consider the power mean Mε (a/p1, a/p2) (Section 2.3.3) with special cases SDi

and

SBr =
a

max(p1, p2)
(Braun-Blanquet, 1932),

SDK =
a

√
p1p2

(Driver and Kroeber, 1932; Ochiai, 1957),

SK =
1

2

(
a

p1
+

a

p2

)
(Kulczyński, 1927),

SSi =
a

min(p1, p2)
(Simpson, 1943).

Since Mε (a/p1, a/p2) is increasing in ε the inequality SJ ≤ SBr ≤ SDi ≤ SDK ≤
SK ≤ SSi is valid. Using similar arguments, it holds that |SCoh| ≤ |SY1| ≤ |SBe|.
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Finally, consider the function

SDy(β) =
(ad)β − (bc)β

(ad)β + (bc)β
(Digby, 1983)

where 0 < β ≤ 1, with special cases

SY2 =
ad− bc
ad+ bc

(Yule, 1900),

SDy =
(ad)3/4 − (bc)3/4

(ad)3/4 + (bc)3/4
(Digby, 1983),

SY3 =
(ad)1/2 − (bc)1/2

(ad)1/2 + (bc)1/2
(Yule, 1912).

Since SDy(β) is increasing in β, the double inequality |SY3| ≤ |SDi| ≤ |SY2| is valid.

2.4.3. Correction for chance

It may be desirable that the theoretical value of a statistic is zero if the two binary

variables are statistically independent. In general we have the following requirement.

(D1) S = 0 if a+ d = E(a+ d) for some E(a+ d).

Four definitions of E(a + d) from the literature are discussed in Section 2.3.2. If

E(a + d)Coh = p1p2 + q1q2 is the appropriate expectation of SSM = a + d, then

(D1) requires that S = 0 under statistical independence (condition (C2) in Section

2.1.4).

In several domains of data analysis (D1) is a natural desideratum. In reliability

studies and when comparing partitions in cluster analysis, property (D1) is consid-

ered a necessity. For example, statistics SY1, SY2, SY3 and SCoh each have zero

value under statistical independence. Property (D1) is less important for statistics

of ecological association (Section 2.2.3), although some authors have argued to look

at agreement beyond chance (see statistic SCol in Section 2.2.5). For example, SJ,

SD, SK, SDK, SSM, and SRT do not have zero value under statistical independence.

If a statistic does not satisfy desideratum (D1), it may be corrected for agree-

ment due to chance (Fleiss, 1975; Krippendorff, 1987; Albatineh et al., 2006; War-

rens, 2008c,d, 2009). After correction for chance a similarity coefficient S has a

form

S − E(S)

1− E(S)
,

where expectation E(S) is conditional upon fixed marginal proportions of the 2× 2

table. Warrens (2009) showed that all special cases of the family

SW(ε) =
εa+ (2− εd)

εa+ b+ c+ (2− ε)d



November 3, 2010 17:26 World Scientific Review Volume - 9.75in x 6.5in ws-rv975x65

Families of Relational Statistics for 2× 2 Tables 45

have a form

G[E(a+ d)] =
a+ d− E(a+ d)

1− E(a+ d)
,

after correction [S−E(S)[/[1−E(S)]. Note that E(a+d) is unspecified in G[E(a+

d)]. Hence, all special cases of the function SW(ε) coincide after correction [S −
E(S)[/[1 − E(S)], irrespective of which E(a + d) is used. Using E(a + d)BAG,

E(a + d)GK, E(a + d)Sc or E(a + d)Coh (Section 2.3.2) in G[E(a + d)], we obtain,

respectively,

SBAG = 2(a+ d)− 1 (Bennett et al., 1954),

SGK =
2 min(a, d)− b− c
2 min(a, d) + b+ c

(Goodman and Kruskal, 1954),

SSc =
4ad− (b+ c)2

(p1 + p2)(q1 + q2)
(Scott, 1955),

SCoh =
2(ad− bc)
p1q2 + p2q1

(Cohen, 1960).

Thus, all special cases of the function SW(ε) become SCoh using linear transforma-

tion [S − E(S)[/[1− E(S)] and E(a+ d)Coh.

2.4.4. Correction for maximum value

In general we speak of positive association or positive agreement between two vari-

ables X and Y if the value of a relational statistic S ≥ 0. Furthermore, we have

perfect association or perfect agreement between the variables if S = 1. However,

we may require the stronger property

(A1)∗ S = 1 if b = 0 ∨ c = 0.

Functions that satisfy requirement (A1)∗ are statistics SY1, SDy, and SY2 (Section

2.2.1), SSi (Section 2.2.3) and SBe and SCol (Section 2.2.5).

For various statistics for 2× 2 tables the maximal attainable value depends on

the marginal distributions. For example, proportion a in Table 1 cannot exceed its

marginal probabilities p1 and p2. Statistics SJ or SDi (Section 2.2.3) for example,

can therefore only attain the maximum value of unity if p1 = p2, that is, in the

case of marginal symmetry. The maximum value of a, denoted by amax, equals

amax = min(p1, p2). The maximum value of SDi given the marginal distributions

equals 2 min(p1, p2)/(p1 + p2).

The maximum value of the covariance (ad − bc) between two binary variables,

given the marginal distributions, is equal to (ad − bc)max = min(p1q2, p2q1). The

maximum value of the phi coefficient SY1 and other statistics with the covariance

ad− bc in the numerator is thus also restricted by the marginal distributions (Cure-

ton, 1959; Guilford, 1965; Zysno, 1997). In the literature on this phenomenon, it

was suggested to use the ratio SY3 divided by the maximum value of SY1 given the
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marginal probabilities (cf. Davenport and El-Sanhurry, 1991). In general, for coef-

ficients of which the maximum value depends on the marginal probabilities, authors

from the phi/phimax literature suggest the linear transformation

S

Smax
,

where Smax is the maximum value of S given the marginal distributions.

Consider the power mean Mε(a/p1, a/p2) with special cases

SBr =
a

max(p1, p2)
(Braun-Blanquet, 1932),

SDi =
2a

p1 + p2
(Dice, 1945; Sørenson, 1948),

SDK =
a

√
p1p2

(Driver and Kroeber, 1932),

SK =
1

2

(
a

p1
+

a

p2

)
(Kulczyński, 1927).

Warrens (2008f) showed that all special cases of Mε(a/p1, a/p2) become

SSi =
a

min(p1, p2)
(Simpson, 1943)

after the linear transformation S/Smax.

Furthermore, consider the power mean Mθ(SP1, SP0) with special cases

SCoh =
2(ad− bc)
p1q2 + p2q1

(Cohen, 1960),

SY1 =
ad− bc
√
p1p2q1q2

(Yule, 1912),

where SCoh and SY1 are Cohen’s kappa and the phi coefficient, respectively. Vari-

ous authors (for example, Fleiss, 1975) have observed that phi/phimax is equal to

kappa/kappamax. Warrens (2008f) showed that all special cases of Mε(SP1, SP0)

become

SBe =
ad− bc

min(p1q2, p2q1)
(Benini, 1901).

after the linear transformation S/Smax.

We end this paper with some words on statistics that satisfy (A1)∗ and (C2).

Examples are SY2, SY3 and SDy (Section 2.2.1) and statistics SBe and SCol (Section

2.2.5). In Section 2.3.4 it is shown that the family of statistics of a form λ+µ(a+d)

has been given a lot of attention in the literature. Warrens (2008d) showed that

there is only one statistic of the form λ + µ(a + d) that has a maximum value of

unity independent of the marginals and zero value under statistical independence.

This statistic happens to be SBe.
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3. Barthélémy, J.-P., & McMorris, F. R. (1986). The median procedure for n-Trees.
Journal of Classification, 3, 329-334.

4. Batagelj, V. & Bren, M. (1995). Comparing resemblance measures. Journal of Clas-
sification, 12, 73-90.

5. Baulieu, F. B. (1989). A classification of presence/absence based dissimilarity coeffi-
cients. Journal of Classification, 6, 233246.

6. Baulieu, F. B. (1997). Two variant axiom systems for presence/absence based dis-
similarity coefficients. Journal of Classification, 14, 159170.

7. Benini, R. (1901). Principii di Demografia. G. Barbèra, Firenzi. No. 29 of Manuali
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66. Kulczyński, S. (1927). Die Pflanzenassociationen der Pienenen. Bulletin International

de LAcademie Polonaise des Sciences et des Letters, classe des sciences mathema-
tiques et naturelles, Serie B, Supplement II, 2, 57-203.

67. Lesot, M.-J., Rifgi, M., & Benhadda, H. (2009). Similarity measures for binary and
numerical data: a survey. International Journal of Knowledge Engineering and Soft
Data Paradigms, 1, 63-84.

68. Light, R. J. (1971). Measures of response agreement for qualitative data: Some
generalizations and alternatives. Psychological Bulletin, 76, 365-377.

69. Loevinger, J. A. (1947). A systematic approach to the construction and evaluation
of tests of ability. Psychometrika Monograph No. 4.

70. Loevinger, J. A. (1948). The technique of homogeneous tests compared with some
aspects of “scale analysis” and factor analysis. Psychological Bulletin, 45, 507530.

71. Margush, T., & McMorris, F. R. (1981). Consensus n-Trees. Bulletin of Mathematical



November 3, 2010 17:26 World Scientific Review Volume - 9.75in x 6.5in ws-rv975x65

50 W.J. Heiser and M.J. Warrens

Biology, 43, 239-244.
72. Mart́ın Andrés, A., & Femia-Marzo, P. (2008). Chance-corrected measures of relia-

bility and validity in 2×2 tables. Communications in Statistics, Theory and Methods,
37, 760-772.

73. Maxwell, A. E. (1977). Coefficients of agreement between observers and their inter-
pretation. British Journal of Psychiatry, 130, 79-83.

74. Maxwell, A. E., & Pilliner, A. E. G. (1968). Deriving coefficients of reliability and
agreement for ratings. British Journal of Mathematical and Statistical Psychology,
21, 105116.

75. Mokken, R. J. (1971). A theory and procedure of scale analysis. Hague: Mouton.
76. Nei, M., & Li, W.-H. (1979). Mathematical model for studying genetic variation in

terms of restriction endonucleases. Proceedings of the National Academy of Sciences,
76, 5269-5273.

77. Omhover, J.F., Rifqi, M., & Detyniecki, M. (2006). Ranking invariance based on sim-
ilarity measures in document retrieval. In M. Detyniecki, J.M. Jose, A. Nürnberger
and C.J.K. Rijsbergen (Eds.), Adaptive Multimedia Retrieval: User, Context and
Feedback. Third International Workshop, AMR 2005, Revised Selected Papers, 55-
64. LNCS, Springer.

78. Ochiai, A. (1957). Zoogeographic studies on the soleoid fishes found in Japan and its
neighboring regions. Bulletin of the Japanese Society for Fish Science, 22, 526530.

79. Pearson, K. (1900). Mathematical contributions to the theory of evolution. VII. On
the correlation of characters not quantitatively measurable. Philosophical Transac-
tions of the Royal Society of London, Series A, 195, 147.

80. Pearson, K. (1926). On the coefficient of racial likeness. Biometrika, 9, 105-117.
81. Peirce, C. S. (1884). The numerical measure of the success of prediction. Science, 4,

453-454.
82. Popping, R. (1983). Overeenstemmingsmaten Voor Nominale Data. Doctoral disser-

tation. Groningen: Rijksuniversiteit Groningen.
83. Popping, R. (1984). Traces of agreement. On some agreement indices for open-ended

questions. Quality and Quantity, 18, 147158.
84. Post, W. J., & Snijders, T. A. B. (1993). Nonparametric unfolding models for di-

chotomous data. Methodika, 7, 130-156.
85. Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods.

Journal of the American Statistical Association, 66, 846-850.
86. Ratliff, R.D. (1982). A correction of Coles C7 and Hurlberts C8 coefficients of inter-

specific association. Ecology, 50, 19.
87. Rogers, D. J., & Tanimoto, T. T. (1960). A computer program for classifying plants.

Science, 132, 1115-1118.
88. Russel, P. F., & Rao, T. R. (1940). On habitat and association of species of Anophe-

line larvae in South-Eastern Madras. Journal of Malaria Institute India, 3, 153-178.
89. Scott, W. A. (1955). Reliability of content analysis: The case of nominal scale coding.

Public Opinion Quarterly, 19, 321-325.
90. Sibson, R. (1972). Order invariant methods for data analysis. Journal of the Royal

Statistical Society, Series B, 34, 311-349.
91. Sijtsma, K., & Molenaar, I. W. (2002). Introduction to nonparametric item response

theory. Thousand Oaks: Sage.
92. Simpson, G. G. (1943). Mammals and the nature of continents. American Journal

of Science, 24, 1131.
93. Snijders, T. A. B., Dormaar, M., Van Schuur, W. H., Dijkman-Caes, C., & Driessen,

G. (1990). Distribution of some similarity coefficients for dyadic binary data in the



November 3, 2010 17:26 World Scientific Review Volume - 9.75in x 6.5in ws-rv975x65

Families of Relational Statistics for 2× 2 Tables 51

case of associated attributes. Journal of Classification, 7, 5-31.
94. Sokal, R. R., & Michener, C. D. (1958). A statistical method for evaluating systematic

relationships. University of Kansas Science Bulletin, 38, 1409-1438.
95. Sokal, R. R., & Sneath, P. H. A. (1963). Principles of numerical taxonomy. San

Francisco: Freeman.
96. Sørenson, T. (1948). A method of stabilizing groups of equivalent amplitude in plant

sociology based on the similarity of species content and its application to analyses
of the vegetation on Danish commons. Kongelige Danske Videnskabernes Selskab
Biologiske Skrifter, 5, 1-34.

97. Steinley, D. (2004). Properties of the Hubert-Arabie adjusted Rand index. Psycho-
logical Methods, 9, 386-396.

98. Tversky, A. (1977). Features of similarity. Psychological Review, 84, 327-352.
99. Wallace, D. L. (1983). A method for comparing two hierarchical clusterings: Com-

ment. Journal of the American Statistical Association, 78, 569-576.
100. Warrens, M. J. (2008a). On the indeterminacy of resemblance measures for (pres-

ence/absence) data. Journal of Classification, 25, 125-136.
101. Warrens, M. J. (2008b). Bounds of resemblance measures for binary (pres-

ence/absence) variables. Journal of Classification, 25, 195-208.
Warrens, M. J. (2008c). On similarity coefficients for 2× 2 tables and correction for
chance. Psychometrika, 73, 487-502.

102. Warrens, M. J. (2008d). On association coefficients for 2 × 2 tables and properties
that do not depend on the marginal distributions. Psychometrika, 73, 777-789.

103. Warrens, M. J. (2008e). On the equivalence of Cohen’s kappa and the Hubert-Arabie
adjusted Rand index. Journal of Classification, 25, 177-183.

104. Warrens, M. J. (2008f). On resemblance measures for binary data and correction for
maximum value. In K. Shigemasu, A. Okada, T. Imaizumi, and T. Hoshino (Eds.),
New Trends in Psychometrics, 543-548. Tokyo: University Academic Press.

105. Warrens, M. J. (2009). On a Family of Indices for 2 × 2 Tables and Correction for
Chance. Unpublished paper.

106. Yule, G. U. (1900). On the association of attributes in statistics. Philosophical Trans-
actions of the Royal Society A, 75, 257-319.

107. Yule, G. U. (1912). On the methods of measuring the association between two at-
tributes. Journal of the Royal Statistical Society, 75, 579-652.

108. Zwick, R. (1988). Another look at interrater agreement. Psychological Bulletin, 103,
374-378.

109. Zysno, P. V. (1997). The modification of the phi-coefficient reducing its dependence
on the marginal distributions. Methods of Psychological Research Online, 2, 41-52.



This page is intentionally left blank



September 14, 2010 14:52 World Scientific Review Volume - 9.75in x 6.5in ws-rv975x65

Chapter 3

Applications of Spanning Subgraphs of Intersection Graphs

Terry A. McKee

Department of Mathematics & Statistics, Wright State University
Dayton, Ohio 45435 USA

terry.mckee@wright.edu

Two applications of intersection graphs are presented—to protein interaction in
cellular processes, and to Bonferroni-type inequalities in probability theory. Each
application exploits appropriate spanning subgraphs of an intersection graph.

Introduction

A graph G with vertex set {v1, . . . , vn} is the intersection graph of a family F =

{S1, . . . , Sn} of subsets of some underlying set if vertices vi 6= vj are adjacent exactly

when Si ∩ Sj 6= ∅; in this case F is called an intersection representation of G. (A

family F will always mean a multiset F—in other words, Si = Sj will be allowed

in F when i 6= j.)

Intersection graphs have long been motivated by and studied alongside their

applications. For instance, the monograph [19] contains brief descriptions of ap-

plications to biology (compatibility analysis in numerical taxonomy and physical

mapping of DNA), to computing (database schemes and consecutive retrieval), to

matrix analysis (elimination schemes and determinantal formulas), and to statis-

tics (decomposable log linear models). Sections 3.1 and Sec. 3.2 will describe two

additional application-oriented topics.

In Section 3.1, the members of F will be all the induced subgraphs of a given

graph G that possess some selected inherent structure. Particular spanning trees of

the intersection graph of F can illuminate the organization of G in terms of those

subgraphs selected for F. Such spanning trees have been employed in computational

molecular biology.

In Section 3.2, the members of F will be arbitrary subsets covering an under-

lying set X. Particular spanning subgraphs of the intersection graph of F can give

bounds on the cardinality of X using only limited knowledge of the cardinalities

of intersections of sets in F. Such spanning subgraphs correspond to probabilistic

approximation formulas.

53
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3.1. A Family-Tree Approach to Graph Classes

One of the central themes in the monograph Topics in Intersection Theory [19] is

representing a graph class as the intersection graph G of a family of subgraphs of a

“host” graph H, where the nodes of H correspond to specific sorts of subgraphs of

G. (It is convenient to refer to the nodes of the host H to avoid confusing them with

the vertices of G.) The leading example for this is the representation of the class of

chordal graphs—the graphs in which triangles are the only induced cycles—as the

intersection graphs G of subtrees of a host tree T, where the nodes of T correspond

to the maxcliques—the inclusion-maximal complete subgraphs—of G.

This “family-tree” approach can start with families of subgraphs other than the

family of all maxcliques to produce representations for other graph classes. A 2006

application of graph theory to computational biochemistry by Zotenko, Guimarães,

Jothi, and Przytycka [23] contains a perceptive description of this approach:

“Given a graph, it is usually very useful to be able to represent it using
some kind of a tree. Such tree representation exposes a hierarchical
organization that a graph may have, allowing for a structured analysis.”

Section 3.1.5 will return to this biological application of trees.

3.1.1. Basic results on F-tree representations

Suppose F is any family of induced subgraphs of a graph G such that F covers V (G)

(for convenience, routinely identifying the subgraphs in F with their vertex sets from

V (G)). Let Ωw(F) denote the complete graph on the node set F = {S1, . . . , Sn},
where each edge SiSj has weight |Si ∩ Sj | ≥ 0; thus, the positive-weight edges

of Ωw(F) form the intersection graph of F (although Ωw(F) itself is sometimes

also referred to as the intersection graph when the weight-0 edges not drawn).

Figure 3.1 shows an artificial example in which F consists of the four induced

subgraphs 〈{a, b, c}〉, 〈{c, d, f}〉, 〈{a, c, d, f}〉, and 〈{d, e, f}〉 of G.

a

b

c
@
@
@@

d

e

f

〈{a, b, c}〉

〈{c, d, f}〉
�
�
�
��
〈{a, c, d, f}〉

〈{d, e, f}〉

Fig. 3.1. An example of a graph G and a weighted intersection graph based on G (where edge
weights are shown by cross-hatchings and the weight-0 edge of Ωw(F) is not drawn).

Suppose T is any spanning subtree of Ωw(F). For every v ∈ V (G), let Tv denote

the subgraph of T induced by those nodes that contain v. Call T an F-tree for G

if every Tv is connected (in other words, if every Tv is a tree).

For instance, Fig. 3.2 shows two spanning trees T of Ωw(F) from Fig. 3.1. In

each, Ta is a single edge of T ; Tb and Te are single nodes of T ; and Tc, Td, and
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Tf are length-2 subpaths of T . Both trees T are F-trees for G. Notice that if

F ′ = F ∪ {〈{b, d, f}〉} − {〈{c, d, f}〉}, then G would have no F ′-tree—not all of Ta,

Tb, and Td can be connected subgraphs of a spanning tree T of Ωw(F ′).

〈{a, b, c}〉

〈{c, d, f}〉
�
�
�
��
〈{a, c, d, f}〉

〈{d, e, f}〉

〈{a, b, c}〉

〈{c, d, f}〉
�
�
�
��
〈{a, c, d, f}〉

〈{d, e, f}〉

Fig. 3.2. Two F-trees T for the graph G in Fig. 3.1.

Theorems 3.1, 3.2, and 3.3 appear in [14].

Theorem 3.1. If T is a spanning tree of Ωw(F), then

|V (G)| ≤
∑

S∈V (T )

|S| −
∑

SS′∈E(T )

|S ∩ S′|, (3.1)

with T an F-tree for G if and only if equality holds in (3.1).

Proof. Suppose T is a spanning tree of Ωw(F). For each v ∈ V (G), the subgraph

Tv of T is a forest, and so 1 ≤ |V (Tv)| − |E(Tv)| holds, with equality if and only

if Tv is connected. Summing these inequalities over all v ∈ V (G) shows (3.1), with

equality if and only if every Tv is connected. �

The right side of (3.1) is the total number of vertices of G that occur in T ,

counting repetitions, minus the number of cross-hatchings on edges in T. For both

of the trees T in Fig 3.2, inequality (3.1) says that 6 ≤ (3+3+4+3)− (2+3+2) =

13 − 7 = 6. Theorem 3.1 shows that both the spanning trees T in Fig. 3.2 are

F-trees for G without needing to check each of the six subgraphs Tv.

Theorem 3.2. If G has at least one F-tree, then the F-trees for G are precisely

the maximum spanning trees of Ωw(F).

Proof. Since |V (G)| and
∑
S∈V (T ) |S| =

∑n
i=1 |Si| are both fixed for given G and

F , equality can only be achieved in (3.1) when
∑
SS′∈E(T ) |S ∩ S′|—which is the

sum of the edge weights of T in Ωw(F)—is maximized. �

Kruskal’s well-known greedy algorithm—repeatedly choose an edge of greatest

weight so long as no cycle is formed with the previously-chosen edges— will find all

the maximum spanning trees of Ωw(F) and so, using the numerical check in (3.1),

will find all the F-trees for a graph. (The two spanning trees in Fig. 3.2 are the only

maximum spanning trees of Ω(F) from Fig. 3.1, and so they are the only F-trees

for that G.)

In spite of the possibility that a graph G has more than one F-tree, Theorem 3.3

will show that all the F-trees T for G will have the same edge multiset E(T ) =
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{Si ∩ Sj : SiSj ∈ E(T )}. For instance, both the F-trees T in Fig. 3.2 have edge

multisets E(T ) = {{a, c}, {c, d, f}, {d, f}}.

Theorem 3.3. If T1 and T2 are F-trees for the same graph, then E(T1) = E(T2).

Proof. First suppose G has F-trees T and T̂ with edge multisets E(T ) and E(T̂ )

that differ on exactly one edge: say S∩S′ ∈ E(T )−E(T̂ ) and R̂∩ R̂′ ∈ E(T̂ )−E(T ).

Edges SS′ and R̂R̂′ will be in the unique cycle in the subgraph T ∪ T̂ . Thus, each

v ∈ S ∩ S′ will also be in R̂ ∩ R̂′ (since T̂v is connected), and so S ∩ S′ ⊆ R̂ ∩ R̂′.
Similarly R̂ ∩ R̂′ ⊆ S ∩ S′, and so S ∩ S′ = R̂ ∩ R̂′.

The theorem then follows from—as is true for any graph—spanning trees T and

T̂ always being linked by a sequence T = T1, . . . , Tk = T̂ of spanning trees such that

consecutive trees in the sequence differ by exactly one edge. [Specifically, pick any

edge R̂R̂′ with R̂∩R̂′ ∈ E(T̂ )−E(T ), then pick an edge SS′ with S∩S′ ∈ E(T )−E(T̂ )

from the unique cycle formed by E(T )∪{R̂R̂′}, and then define T1 to have edge set

E(T )− {SS′} ∪ {R̂R̂′}; continue in this way to define T2, and so on, until reaching

Tk with E(Tk) = E(T̂ ).] �

3.1.2. F-tree representations for chordal graphs

Recall that a graph is chordal if the only induced cycles are triangles; Figure 3.3

shows an example. A clique tree for a graph G is an F-tree for G where F is the set

of all the maxcliques of G. The positive-weight edges of Ωw(F) constitute the clique

graph of G. Theorem 3.4 contains two of the oldest of the many characterizations

of chordal graphs in [1; 19]. It is proved in [19], and it is worth noting that, in

proving (3.4.2)⇒ (3.4.3), the family of subtrees of a tree can always be taken to be

the family {Tv : v ∈ V (G)} from any clique tree T for G.

Theorem 3.4. The following are equivalent for any graph G:

(3.4.1) G is chordal.

(3.4.2) G has a clique tree.

(3.4.3) G is the intersection graph of a family of subtrees of a tree.

Figure 3.4 shows a maximum spanning tree T (which, in this case, is unique)

of the clique graph of the chordal graph G in Fig. 3.3. By Theorem 3.1 (with the

numerical check 15 = 29−14) and Theorem 3.2, T is the (unique) clique tree for G.

A clique tree T for a chordal graph G displays considerable information about

G. For instance, the members of the edge multiset E(T ) are precisely the minimal

vertex separators of G—the inclusion-minimal sets S ⊂ V (G) for which there exist

vertices v, w ∈ V (G) that are in a common component of G, but different compo-

nents of G − {v, w}; see [1; 19]. (The sets of vertices of a chordal graph G that

correspond to positive-weight edges of Ωw(F) that are edges of no clique tree of G

are precisely the minimal vertex weak separators of G as defined in Exercise 2.9 of

[19].) Reference [18] studies those chordal graphs in which minimal separators of,
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Fig. 3.3. A chordal graph.

{a, b, d} {b, c, d, f}

{e, h}

{f, g, i}

{g, h, j}

{g, i, j, k,m, n}

{g, i, j, l,m, n} {l, o}

Fig. 3.4. A clique tree for the chordal graph in Fig. 3.3.

simultaneously, three or more vertices correspond to certain substars of their clique

trees (where a star is a subgraph that is isomorphic to some K1,k).

3.1.3. F-tree representations for other graph classes

Many other graph classes can be characterized by having F-trees for particular

families F . As one example among those in [14], if F is the family of all closed

neighborhoods of vertices in a graph G, then G has an F-tree if and only if G is a

dually chordal graph (the clique graph of a chordal graph). Another example will

be discussed in Sec. 3.1.4.

It is important to emphasize that, as soon as F is taken to be something dif-

ferent from the family of all maxcliques, a graph G having an F-tree T might no

longer imply that G is the intersection graph of the Tv subtrees—v and w being in

a common member of F might no longer imply that v is adjacent to w in G. There-
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fore, unlike the special case in Theorem 3.4, having an F-tree representation does

not in general give a way of constructing an intersection representation. Yet, The-

orem 3.5 will show show—nonconstructively—that graph classes that have F-tree

representations in fact always do have intersection representations.

Scheinerman’s 1985 paper [21] defines a graph class C to be an intersection class

if there exists a family Σ of sets such that G is in C if and only if there is a subfamily

F ⊂ Σ and a bijection between the vertices of G and the sets in F such that

two vertices are adjacent in G exactly when the intersection of the corresponding

members of F is nonempty. Reference [21]—also see [19, Thm. 1.5]—characterizes

intersection classes and, in particular, notes that a graph class C is an intersection

class whenever it is closed under the following three operations:

• Taking induced subgraphs of graphs in C.
• Replacing a vertex v of a graph in C with two new adjacent vertices v′ and v′′

that have the same pre-existing neighbors as v did (and deleting v).

• Taking unions of vertex-disjoint members of C.

Scheinerman’s result in [21] then immediately implies Theorem 3.5.

Theorem 3.5. For every F, the class of graphs that have F-trees is an intersection

class.

3.1.4. F-tree representations for distance-hereditary graphs

A graph G is distance-hereditary if the distance between vertices in a connected

induced subgraph of G always equals the distance between them in G; see [1] for

many other characterizations. Figure 3.5 shows an example of a distance-hereditary

graph that is not chordal (because of the 4-cycle a, b, c, d, a), while the chordal graph

in Fig. 3.3 is not distance-hereditary (because the distance between vertices f and

h changes from two to three when vertex g is deleted).

A graph G is a cograph—short for complement-reducible graph—if G has no

induced path of length three; see [1; 19] for many other characterizations. A CC-

tree for G is a F-tree for G where F is the family of all induced subgraphs that are

inclusion-maximal connected cographs of G.

Theorem 3.6 is one of the characterizations of distance-hereditary graphs in [1],

based on Nicolai’s 1996 hypergraph characterization [1, Thm. 8.4.1].

Theorem 3.6. A graph is distance-hereditary if and only if it has a CC-tree.

Figure 3.6 shows a maximum spanning tree (which, in this case, is unique) of

Ωw(F) where F is the set of maximal connected cographs in the distance-hereditary

graph G shown in Fig. 3.5. By Theorem 3.1 (with the numerical check 15 = 33−18)

and Theorem 3.6, this tree is the (unique) CC-tree for G.

Theorem 3.5 shows that the class of distance-hereditary graphs is an intersection

class. Echoing Theorem 3.4, the class of distance-hereditary graphs has also been
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Fig. 3.5. A distance-hereditary graph.

{a, b, c, d, f}

{e, g, h, i, j}

{b, c, d, f, g, i, j}

{f, g, h, i, j, k, l,m, n} {g, i, j, l,m, n, o}

Fig. 3.6. A CC-tree for the distance-hereditary graph in Fig. 3.5.

characterized explicitly by intersection representations in Gioan and Paul’s 2007

paper [6]. Although the intersection representations in [6] are based on trees, they

are not closely related to CC-tree representations. (They are, instead, closely related

to the “one-vertex extensions” characterization of distance-hereditary graphs in [2].)

3.1.5. Returning to the molecular biology example

The biological application in [23]—also see the more general survey in [20]—involves

protein interaction graphs, where the vertices are proteins with two vertices adja-

cent if and only if the corresponding proteins interact in some specific biochemical

process (for instance, a cell signaling pathway). The goal is to represent protein in-

teraction graphs using F-trees where, ideally, F is the family of “functional groups”

of proteins. Two of the figures in [23]—labeled Complex overlap decomposition and

A hypothetical protein interaction network—show the resulting F-trees when F is

the set of all maxcliques (representing “protein complexes”). Two other figures
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in [23]—labeled TNFα/NF-χB signaling pathway and Pheromone signaling path-

way—show the resulting F-trees when F is a set of presumed functional groups.

Representing protein interaction graphs using F-trees is intended to display how

proteins enter and leave cellular processes. The spirit of the application is contained

in the following description in [23]:

“This [tree] representation shows a smooth transition between functional groups and
allows for tracking a protein’s path through a cascade of functional groups. There-
fore, depending on the nature of the network, the representation may be capable of
elucidating temporal relations between functional groups [and capturing] the manner
in which proteins enter and leave their enclosing functional groups.”

The procedures developed in [23] involve inserting edges into protein interaction

graphs so as to make them chordal, and then using clique trees. A tentative con-

jecture mentioned at the end of [23] is that the graphs that are susceptible to the

procedures

“are exactly those graphs that admit a clique tree representation, with the nodes
being maximal [connected] cographs rather than maximal cliques.”

In other words, these are exactly the graphs that have CC-trees. The authors of [23]

were unaware of Theorem 3.6—none of the graphs in their four examples is distance-

hereditary. This suggests that the functional groups in cellular processes correspond

to subgraphs that are more subtle than the maximal connected cographs.

3.1.6. More general F-graph representations

It should also be mentioned that the F-tree representations in Sec. 3.1 can be

generalized to F-graph representations. For instance, clique paths can be used

instead of clique trees, yielding interval graphs as in [19, Chap. 2]. Reference [15]

shows one way to use clique cycles instead of clique trees. Reference [16] does this

even more generally, using, for instance, weighted cycles and other subgraphs of

Ωw(F) in addition to edges. (Section 3.2.4 below will involve something similar.)

Studying F-graph representations with more general families F of subgraphs seems

to be virtually unexplored.

3.2. Hunter–Worsley/Bonferroni-Type Set Bounds

Suppose F = {S1, . . . , Sn} is a family of finite subsets of a given underlying set. Let

Ω = Ωw(F) denote the complete graph on the node set F, where each edge SiSj
has weight |Si ∩ Sj | ≥ 0. Let Q(Ω) denote the set of all the complete subgraphs of

Ω (equivalently, Q(Ω) consists of all the nonempty subsets of F).

Figure 3.7 shows an example with |F| = 6 where the cardinalities of the six

sets are shown by the numerals in the circles and the weight of each edge SiSj in

Ωw(F) is shown by the number of cross-hatchings. (The two weight-0 edges are not

drawn.)



September 14, 2010 14:52 World Scientific Review Volume - 9.75in x 6.5in ws-rv975x65

Applications of Spanning Subgraphs of Intersection Graphs 61

����
6

@
@
@
@
@
@
@
@@

H
HHH

HHH
HHH

HHH
HHH

HHH����
8
�
�
�
�
�
�
�
��

�
��
��
��

�
��

�
��
�
��
�
������

11

@
@
@
@
@
@
@
@@����

9
�
�
�
�
�
�
�
��

����
7

����
3

Fig. 3.7. An example of a family F of six sets (with cardinalities 3, 6, 7, 8, 9 and 11) and the
positive-weight edges of Ωw(F) (with their weights indicated by cross-hatchings).

The traditional inclusion-exclusion formula∣∣∣∣∣
n⋃
i=1

Si

∣∣∣∣∣ =
∑

Q∈Q(Ω)

(−1)|Q|+1

∣∣∣∣∣∣
⋂
Si∈Q

Si

∣∣∣∣∣∣ (3.2)

(called a “sieve” in some contexts) gives the exact size of |
⋃n
i=1 Si| if the cardinalities

of all the intersections of subsets of F are known. But in practice, often only the

cardinalities of the sets Si ∈ F and the cardinalities of some of their intersections

are known—perhaps only the pairwise intersections (as in Fig. 3.7). This section

will discusses modifications of (3.2) that only use limited intersection information.

3.2.1. Several classical set bounds

Theorem 3.7 will give the Hunter–Worsley bound from [10; 22], which uses only

n−1 of the pairwise intersections of members of F . This can be viewed as a special

case of Theorem 3.1, where G is the edgeless graph with vertex set S1 ∪ · · · ∪ Sn.

(It will also be a special case of Theorem 3.10.)

Theorem 3.7 ([10; 22]). If T is a spanning tree of Ωw(F), then∣∣∣∣∣
n⋃
i=1

Si

∣∣∣∣∣ ≤ ∑
Si∈V (T )

|Si| −
∑

SiSj∈E(T )

|Si ∩ Sj |, (3.3)

with the inequality strongest when T is a maximum spanning tree.

Figure 3.8 shows one of the maximum spanning trees T for Ωw(F) in Fig. 3.7.

Since
∑
Si∈V (T ) = 3+6+7+8+9+11 = 44 and

∑
SiSj∈E(T ) = 5+6+6+2+3 = 22,

inequality (3.3) says that |
⋃n
i=1 Si| ≤ 44− 22 = 22.

Inequality (3.3) is often stated in the probabilistic form [10; 22]

Pr

(
n⋃
i=1

Si

)
≤

∑
Si∈V (T )

Pr(Si) −
∑

SiSj∈E(T )

Pr(Si ∩ Sj),
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Fig. 3.8. A maximum-weight spanning tree of Ωw(F) from Fig. 3.7.

transforming “statements on proportions to probabilities with the uniform distribu-

tion on finite sets as the underlying probability space” [7]. In fact, such probabilistic

formulations are the real-life applications of all of the inequalities in this section.

Galambos and Simonelli’s 1996 book [7] is an excellent source of details on all these

“Bonferroni-type” probabilistic inequalities and on their many applications.

Replacing the spanning tree T in (3.3) with a spanning star gives a weaker

inequality, the Kounias bound [11]. Replacing the spanning tree of T in (3.3) with

the entire graph Ω = Ωw(F) gives the lower bound∣∣∣∣∣
n⋃
i=1

Si

∣∣∣∣∣ ≥ ∑
Si∈V (Ω)

|Si| −
∑

SiSj∈E(Ω)

|Si ∩ Sj |, (3.4)

corresponding to the terms in the inclusion-exclusion formula (3.2) that have |Q| ≤
2. Indeed, truncating the summation in (3.2) to the terms with |Q| ≤ k gives

an upper bound for |
⋃n
i=1 Si| when k is odd and a lower bound when k is even.

The very special k = 1 case gives the naive upper bound
∑n
i=1 |Si| that is often

attributed to Boole.

3.2.2. Two 2-tree versions of the Hunter–Worsley bound

The class of 2-trees [1; 19] is a well-studied generalization of the class of trees. Define

2-trees recursively—starting from K2 being a 2-tree—as follows:

If G is any 2-tree with e ∈ E(G) and if ∆ ∼= K3 is vertex-disjoint from G with
e′ ∈ E(∆), then the graph formed from G and ∆ by identifying edges e and e′ (along
with their endpoints) is another 2-tree.

A topological K4 is a graph H that is isomorphic to a subdivision of K4 (in

other words, H is homeomorphic to K4). Among several other characterizations [1],

a graph is series-parallel if and only if it contains no topological K4. A graph is

series-parallel if and only if it is a subgraph of a 2-tree [1].
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A simple modification of Kruskal’s algorithm— repeatedly choose an edge of

greatest weight so long as no topological K4 is formed with previously-chosen edges—

will produce all the maximum spanning 2-trees—the spanning 2-trees whose sum of

edge weights is maximum—of Ωw(F). This has the same proof of correctness as the

usual Kruskal algorithm, except that now topological K4 subgraphs are avoided,

instead of cycles (which are topological K3 subgraphs). The graph produced is

series-parallel; indeed, it is a spanning 2-tree. (Spanning 2-trees always exist in the

complete graph Ωw(F).)

One consequence of the recursive definition of 2-tree is that a series-parallel

graph G will satisfy 3 ≤ 2|V (G)| − |E(G)|, with equality if and only if G is a 2-

tree. This inequality underlies Theorem 3.8, from [17], which will give a bound on

|
⋃n
i=1 Si| in terms of the weights of the 2n− 3 edges of a spanning 2-tree of Ωw(F)

together with the number of elements that are in unique members of F—denote

that number by #smpl(F).

Theorem 3.8 ([17]). If 2T is a spanning 2-tree of Ωw(F), then∣∣∣∣∣
n⋃
i=1

Si

∣∣∣∣∣ ≤ 2

3

∑
Si∈V (2T )

|Si| −
1

3

∑
SiSj∈E(2T )

|Si ∩ Sj | +
#smpl(F)

3
, (3.5)

with the inequality strongest when 2T is a maximum spanning 2-tree.

Proof. Suppose 2T is a spanning 2-tree of Ωw(F). For each element x ∈ S1 · · ·Sn,

let 2Tx denote the subgraph of 2T that is induced by those nodes of Ωw(F) that,

as members of F , contain x. For each x that is in two or more of the subsets Si,

the subgraph 2Tx will be series-parallel and so will satisfy

1 ≤ 2

3
|V (2Tx)| − 1

3
|E(2Tx)|. (3.6)

For each element x that is in a unique subset Si, the subgraph 2Tx will be a single

node and so will satisfy

1 =
2

3
|V (2Tx)| − 1

3
|E(2Tx)|+ 1

3
. (3.7)

Summing (3.6) and (3.7) over all x ∈ S1 ∪ · · · ∪ Sn proves (3.5). �

Figure 3.9 shows one of the maximum spanning 2-trees 2T for the intersec-

tion data given in Fig. 3.7. Suppose you also know that #smpl(F) = 5. Since∑
Si∈V (2T ) = 44 and

∑
SiSj∈E(2T ) = 3 + 5 + 6 + 2 + 6 + 3 + 3 + 2 + 1 = 31, inequal-

ity (3.5) now says that |
⋃n
i=1 Si| ≤

2
3 ·44− 1

3 ·31+ 5
3 = 62

3 , and so |
⋃n
i=1 Si| ≤ 20.

Theorem 3.9 will give the Hoover bound from [9], another upper bound on

|
⋃n
i=1 Si| that is based on spanning 2-trees, except now the cardinalities of n − 2

triple intersections Si ∩ Sj ∩ Sk of members of F are also required. For any 2-tree
2T , let ∆(2T ) denote the set of all triangles of 2T .
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Fig. 3.9. A maximum spanning 2-tree of Ωw(F) from Fig. 3.7.

Theorem 3.9 ([9]). If 2T is a spanning 2-tree of Ωw(F), then∣∣∣∣∣
n⋃
i=1

Si

∣∣∣∣∣ ≤ ∑
Si∈V (2T )

|Si| −
∑

SiSj∈E(2T )

|Si ∩ Sj | +
∑

SiSjSk∈∆(2T )

|Si ∩ Sj ∩ Sk|. (3.8)

Theorem 3.9 has a direct, graph-based proof in [17] and will also be a special

case of Theorem 3.10 (proved below). In the case of the spanning 2-tree 2T shown

in Fig. 3.9 for the intersection data given in Fig. 3.7 with the additional information

that the four triangles in 2T have weights 1, 1, 2, and 3, inequality (3.8) now says

that |
⋃n
i=1 Si| ≤ 44−31+(1+1+2+3) = 20. Reference [17] explores the relationship

between inequalities (3.5) and (3.8)—each is sometimes better than the other.

Fig. 3.10 shows one complete data set that is consistent with Fig. 3.7 and the

other intersection data mentioned above. (These data are also consistent with

#smpl(F) = 5, as used with Theorem 3.8.) Here Ai denotes the unique set in F
of cardinality i ∈ {3, 6, 7, 8, 9, 11}, and all the nonempty intersections of three or

more sets Ai are shown. Using all the intersection data in Figs. 3.7 and 3.10, the

inclusion-exclusion formula (3.2) shows that, in fact, |
⋃n
i=1 Si| = 19.

|A3 ∩A6 ∩A9| = 1

|A3 ∩A9 ∩A11| = 1

|A6 ∩A8 ∩A9| = 1

|A3 ∩A6 ∩A9 ∩A11| = 1

|A7 ∩A9 ∩A11| = 1

|A3 ∩A6 ∩A11| = 2

|A6 ∩A9 ∩A11| = 2

|A6 ∩A8 ∩A9 ∩A11| = 1

|A7 ∩A8 ∩A11| = 2

|A8 ∩A9 ∩A11| = 2

|A6 ∩A8 ∩A11| = 3

Fig. 3.10. Cardinalities of the nonempty intersections of three or more sets for Fig. 3.7.

3.2.3. The chordal graph sieve

Theorem 3.10 will give an elegant modification of the traditional inclusion-exclusion

sieve (3.2); it is called the chordal graph sieve in Dohmen’s 2002 paper [3] (also see

the much more abstract setting in his book [4]). The chordal graph sieve uses a
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spanning chordal subgraph of Ω = Ωw(F), instead of using all of Ω. As an alterna-

tive to the proof given in [3]—and instead of a traditional inductive proof using the

“perfect elimination ordering” characterization [1,19] of chordal graphs—the proof

given below is an intersection graph argument using clique trees, somewhat-similar

in spirit to the proof of Theorem 3.1. Let Q(G) denote the set of all the complete

subgraphs of a graph G.

Theorem 3.10 ([3]). If G is a spanning chordal subgraph of Ωw(F), then∣∣∣∣∣
n⋃
i=1

Si

∣∣∣∣∣ ≤
∑

Q∈Q(G)

(−1)|Q|+1

∣∣∣∣∣∣
⋂
Si∈Q

Si

∣∣∣∣∣∣ . (3.9)

Proof. Suppose F = {S1, . . . , Sn} and G is a spanning chordal graph of Ωw(F).

Let T be a clique tree for G.

For each node F ′ ⊆ F of T, let G[F ′] denote the maxclique of G that is induced

by F ′. Applying the inclusion-exclusion formula to the complete graph G[F ′] gives∣∣∣∣∣ ⋃
Si∈F ′

Si

∣∣∣∣∣ =
∑

Q∈Q(G[F ′])

(−1)|Q|+1

∣∣∣∣∣∣
⋂
Si∈Q

Si

∣∣∣∣∣∣ . (3.10)

For each edge F ′F ′′ of T , let G[F ′F ′′] denote the complete subgraph of G that

is induced by F ′ ∩ F ′′. Applying the inclusion-exclusion formula to the complete

graph G[F ′F ′′] gives∣∣∣∣∣ ⋃
Si∈F ′∩F ′′

Si

∣∣∣∣∣ =
∑

Q∈Q(G[F ′F ′′])

(−1)|Q|+1

∣∣∣∣∣∣
⋂
Si∈Q

Si

∣∣∣∣∣∣ . (3.11)

For each x ∈ S1∪· · ·Sn, let T (x) denote the subgraph of T that consists of those

nodes F ′ of T such that x is an element of at least one Si ∈ F ′ and those edges

F ′F ′′ of T such that x is an element of at least one Si ∈ F ′ ∩ F ′′. (Note that T (x)

does not have to be an induced subgraph of T.) Each such T (x) is a forest, and so

1 ≤ |V (T (x))|−|E(T (x))| holds. Summing those inequalities over all x ∈ S1∪· · ·Sn
shows that ∣∣∣∣∣

n⋃
i=1

Si

∣∣∣∣∣ ≤ ∑
F ′∈
V (T )

∣∣∣∣∣ ⋃
Si∈F ′

Si

∣∣∣∣∣ − ∑
F ′F ′′∈
E(T )

∣∣∣∣∣ ⋃
Si∈F ′∩F ′′

Si

∣∣∣∣∣ . (3.12)

Next, combining inequality (3.12) with the equalities (3.10) and (3.11) gives∣∣∣∣∣
n⋃
i=1

Si

∣∣∣∣∣ ≤ ∑
F ′∈
V (T )

∑
Q∈
Q(G[F ′])

(−1)|Q|+1

∣∣∣∣∣∣
⋂
Si∈Q

Si

∣∣∣∣∣∣ −
∑

F ′F ′′∈
E(T )

∑
Q∈
Q(G[F ′F ′′])

(−1)|Q|+1

∣∣∣∣∣∣
⋂
Si∈Q

Si

∣∣∣∣∣∣ . (3.13)

For each Q ∈ Q(G), let TQ denote the subgraph of T that is induced by the

nodes of T that contain Q. Since T is a clique tree of G, each such TQ is connected
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and so |V (TQ)| − |E(TQ)| = 1 holds. Therefore, the right side of (3.13) equals the

right side of (3.9), which proves Theorem 3.10. �

For the intersection data given in Figs. 3.7 and 3.10, let G be the spanning

chordal subgraph of Ωw(F) that is shown in Fig. 3.11. In this example, inequality

(3.9) says that |
⋃n
i=1 Si| ≤ 44 − 30 + 6 = 20 (grouping together the 6 nodes,

then the 9 edges, and then the 4 triangles of G).
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Fig. 3.11. A spanning chordal subgraph of Fig. 3.7 to illustrate Theorem 3.10.

To illustrate the proof of Theorem 3.10, Fig. 3.12 shows the unique clique tree

T for the graph G in Figure 3.11. Inequality (3.12) in the proof of Theorem 3.10

says that |
⋃n
i=1 Si| < (14+16+16+14)− (13+14+13) = 60−40 = 20. (Since

the full inclusion-exclusion formula shows that |
⋃n
i=1 Si| = 19 < 20, this strict

inequality corresponds to the existence of an element x that is in the underlying

sets A7 ∩ A9 ∩ A11 and A3 ∩ A7 ∩ A9 of adjacent nodes of T without being in the

underlying set A7 ∩ A9 of the edge between them in T—this means that this T (x)

is not connected, and so has 1 < |V (T (x))| − |E(T (x))|.)

〈{A6, A8, A11}〉
A
A
A
A 〈{A8, A9, A11}〉 �

�
�
�
〈{A7, A9, A11}〉

A
A
A
A 〈{A3, A7, A9}〉

Fig. 3.12. The clique tree T for the graph in Fig. 3.11.

As mentioned above, Theorems 3.7 and 3.9 are special cases of Theorem 3.10.

Reference [3] discusses several other special cases of Theorem 3.10 that had previ-

ously appeared in the literature.

The following example will show the necessity of requiring the spanning subgraph

G in Theorem 3.10 to be chordal. Take F to consist of S1 = {a, b, z}, S2 =

{b, c, z}, S3 = {c, d, z}, and S4 = {a, d, z}, and then take G to be the 4-cycle

S1, S2, S3, S4, S1 of weight-2 edges of Ωw(F). This nonchordal G has exactly eight
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complete subgraphs (four nodes and four edges), making (3.9) the false inequality

5 ≤ 12− 8 = 4.

3.2.4. Economical inclusion-exclusion

Recall that applying the traditional inclusion-exclusion formula (3.2) to the inter-

section data given in Figs. 3.7 and 3.10 gives the actual cardinality |A3 ∪A6 ∪A7 ∪
A8 ∪ A9 ∪ A11| = 44 − 38 + 15 − 2 = 19 (grouping together the 6 vertices, then

the 13 edges, then the 12 triangles, and then the 4 tetrahedra—meaning the four

subgraphs isomorphic to K4—of the graph in Fig. 3.7). Expanding that grouping,

this inclusion-exclusion calculation involves 27 nonzero terms (out of 26 − 1 = 31

possible terms). Many of those nonzero terms end up canceling with each other,

and so were not needed in the first place.

References [12; 13] contain additional upper and lower bounds on |
⋃n
i=1 Si|,

as well as a truly economical version of inclusion-exclusion—Theorem 3.11 below,

proved in [12]—that will avoid unnecessary canceling of terms. This will involve

a “graph structure” based on Ωw(F) that consists of a graph G = 〈V (G), E(G)〉
together with a distinguished set C(G) of cycles of G—each a set of edges such that

each node of G is in an even number of those edges—a distinguished set P (G) of

polyhedra (3-polyhedra)—each a set of cycles in C(G) such that each edge of G is in

an even number of those cycles—and so on, as described more carefully below.

The graph structure 〈V (G), E(G), C(G), P (G), . . .〉 is defined from the complete

graph Ωw(F). Note that each edge E, cycle C, polyhedron P , and so on of Ωw(F)—

whether or not it is chosen for 〈V (G), E(G), C(G), P (G), . . .〉—will have its node

set correspond to a subset of F = {S1, . . . , Sn}; define weights |E|, |C|, |P |, and

so on to be the cardinalities of the intersections of all of the Si’s in each of those

subsets. The specific steps in the construction are listed below. Note that the sets

E(G), C(G), P (G), and so on might not be uniquely determined; any of the possible

choices can be taken for the graph structure.

• The nodes in V (G) are precisely S1, . . . , Sn.

• Choose edges for E(G) from the edges of Ωw(F) by:

first, for each i ≥ 0 in decreasing order, sequentially choosing edges E with |E| = i

such that E does not form a cycle with previously-chosen edges E1, E2, . . . (this

is Kruskal’s Algorithm, giving a maximum spanning tree of Ωw(F));

then, for each i ≥ 0 in decreasing order, sequentially choosing edges E with

|E| = i such that E does not form a cycle C with previously-chosen edges that

have |E| = |C| (thus every cycle C of G = 〈V (G), E(G)〉 has |C| < |E| for each

of its edges E).

• Choose cycles for C(G) from the cycles of G = 〈V (G), E(G)〉 by:

first, for each i ≥ 0 in decreasing order, sequentially choosing cycles C with

|C| = i such that C does not form a polyhedron with previously-chosen cycles

C1, C2, . . . ;
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then, for each i ≥ 0 in decreasing order, sequentially choosing cycles C with |C| =
i such that C does not form a polyhedron P with previously-chosen cycles that

have |C| = |P | (thus every polyhedron P of 〈V (G), E(G), C(G)〉 has |P | < |C|
for each of its cycles C).

• And so on—next choosing (3-)polyhedra, being careful with 4-polyhedra (sets of

3-polyhedra with each cycle in an even number of those 3-polyhedra).

Theorem 3.11 ([12]). If 〈V (G), E(G), C(G), P (G), . . .〉 is a graph structure for

F = {S1, . . . , Sn}, then∣∣∣∣∣
n⋃
i=1

Si

∣∣∣∣∣ =
∑

X∈V (G)

|X| −
∑

X∈E(G)

|X| +
∑

X∈C(G)

|X| −
∑

X∈P (G)

|X| + · · · . (3.14)

For instance, applying this to the intersection data given in Figs. 3.7 and 3.10

might produce the graph structure shown in Fig. 3.13.
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Fig. 3.13. A graph structure from Ωw(F) for the example from Figs. 3.7 and 3.10 (including the

weight-0 triangle A3A7A11 and the weight-1 triangle A7A9A11).

The economical inclusion-exclusion calculation from formula (3.14) for Fig. 3.13

says that |
⋃n
i=1 Si| = 44− 26 + 1− 0 + · · · = 19. This calculation requires only 15

nonzero terms, as compared to the 27 nonzero terms required in the traditional in-

clusion-exclusion formula (3.2). (Reference [12] gives another example; also see [16].)
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The general problem in location theory deals with functions that find sites on a
graph (discrete case) or network (continuous case) in such a way as to minimize
some cost (or maximize some benefit) to a given set of clients represented by
vertices on the graph or points on the network. The axiomatic approach seeks to
uniquely distinguish, by using a list of intuitively pleasing axioms, certain specific
location functions among all the arbitrary functions that address this problem.
In this chapter we survey results for three popular location functions (center,
mean, median) in both the discrete and continuous cases. Some new results are
presented for the median function on median networks.

Introduction

A problem often encountered in the provision of a service is how best to locate

a service facility so as to optimize efficiency and accessibility. This problem has

received a great deal of attention, as indicated by the reference lists of [6; 17; 22].

Typically, the problem is formulated as an optimization problem in which a facility

has to be optimally located at some point on a network of roads. Optimality is

defined in terms of the utility of clients. Client utility (or more precisely disutility)

is modelled as some monotone function of the distance the client has to travel to

reach the facility.

Another way to formulate location problems is to use the perspective of consen-

sus functions. A consensus function is a model to describe a rational way to obtain

71
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consensus among a group of agents or clients. The input of the function consists

of certain information about the agents, and the output concerns the issue about

which consensus should be reached. The rationality of the process is guaranteed by

the fact that the consensus function satisfies certain “rational” rules or “consensus

axioms” (see e.g. Powers, this volume, for another discussion of consensus). For

a location function the input is the location of the clients and the output are the

locations that satisfy the optimality criterion. Following Arrow [1], cf. [4], we char-

acterize various location functions in terms of axioms they satisfy. Holzman [7] was

the first to study location problems from this persective. In this chapter we survey

the axiomatic approach as is stands in the literature as well as describe some new

steps.

The possibility or impossibility of axiomatic characterization depends on three

factors. First of course the optimality criterion, that is, the specific location function

under study. Secondly, the structure of the network on which the clients are situated

and the location is to be found. Trees and median structures play a major role here.

Finally, it depends on whether the structure is continuous or discrete, or unordered

versus ordered. For instance, in the continuous case the edges of the tree are line

segments and clients as well as the service facility may be located on interior points.

In the discrete case, the tree is just a graph, and clients and facilities are required to

be located at vertices only. Finally, in the ordered case, the tree may be considered

to be a meet-semilattice with a universal lower bound form which the tree “grows

upward” only.

The location functions, for which an axiomatic characterization has been ob-

tained, are the center function, the median function, and the mean function. The

first chooses a location so as to minimize the maximum distance any client is from

the location. The paradigm for the center function is the Fire Station Problem

FSP: how to find a location such that (in)flammable objects can be reached in

short enough time. The median function chooses a location that minimizes the sum

of client distances to itself. The mean function minimizes the sum of squared dis-

tances. The paradigm for the median and mean function is the Distribution Center

Problem DCP: how to find a location for a distribution center that minimizes the

cost for stocking up the warehouses located at given points in the network.

This chapter is organized as follows. First we discuss the center function, then

the median function, and finally the mean function. Note that this is not in chrono-

logical order. For each function we present first the discrete case, then the contin-

uous case, and finally, when available, the ordered case. Trees appear in all cases.

For the median function results on a broader class are available: median graphs in

the discrete case, median semilattices in the discrete ordered case. In the case of

the median function we extend existing results on continuous trees to the new case

of continuous cube-free median networks.
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4.1. The model

Our terminology is chosen so at to best the purposes of this chapter. For the

terminology and notation on graphs we refer the reader to Mulder (this volume).

Here we give only the essentials. In this chapter G = (V,E) denotes a finite,

connected, simple, loopless graph. The length of a path is the number of edges on

the path. For any two vertices u and v of G, the distance dG(u, v) between u and

v is the length of a shortest u, v-path, or a u, v-geodesic. If no confusion arises, we

will just write d(u, v) instead of dG(u, v). The interval between u and v is the set

IG(u, v) = { w | d(u,w) + d(w, v) = d(u, v) }.

So IG(u, v) consists of all vertices “between” u and v. Again, we write I(u, v) if no

confusion will arise. Recall that a tree T = (V,E) is a connected, cycle-free graph.

A median graph is a graph G such that |I(u, v) ∩ I(v, w) ∩ I(w, v)| = 1, for any

three vertices u, v, w of G. Trees, hypercubes, and grid graphs are typical examples

of median graphs. These are the models for the discrete case. For all necessary

notations and results we refer to Mulder (this volume).

For the continuous case we choose our terminology such that it stresses the

similarities and dissimilarities with the discrete case. So we start with a graph

and edges are treated as continuous arcs with a length, and interior points are also

possible locations. A network N = (G,λ) = (V,E, λ) consists of a graph G = (V,E)

and a mapping λ that turns edge uv into an arc of length λ(uv). It follows from this

definition that there is at most one arc between any two vertices. Formally, λ maps

the vertices onto distinct points of some euclidian m-space, and maps edge uv onto

a curve of length λ(uv) with extremities u and v. We require that the curves do

not intersect in interior points. We call the elements of an arc points. So there are

points of two types: points in V are vertices, and points on the interior of an arc

are interior points. For any two points p and q on the same arc, the length λ(pq) of

the subarc between p and q is just the length of the part of the curve between p and

q. A path R joining two points p on arc uv1 and q on arc vkw is either a subarc or

a sequence p → v1 → v2 . . . → vk → q with vertices v1, v2, . . . , vk, where vivi+1

is a arc, for i = 1, . . . , k, such that each vertex occurs at most once in the sequence.

Since there is at most one arc between any two vertices, this definition of a path

uniquely determines the arcs that are used to get from p to q. The length of the

path is

λ(pv1) + λ(v1v2) + . . . λ(vk−1vk) + λ(vkq).

A shortest path is a path of minimum length. The distance δ(p, q) between two

points p and q is the length of a shortest p, q-path. We assume that there are no

redundant arcs, that is, each arc uv is the unique shortest path between u and

v. This implies the absence of multiple arcs (which were excluded anyway by our

definition). Moreover, for each arc uv, any other path between u and v has length

greater than λ(uv). This assumption is a necessary condition for some results
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below, but we shall see that it is not a serious restriction of our model. The graph

G = (V,E) is the underlying graph of the network. In general there is no relation

between δ(u, v) and d(u, v), except that, because of the irredundancy of arcs, we

have δ(u, v) = λ(uv) if and only if d(u, v) = 1. The segment between two points p

and q in N is the set

S(p, q) = { r | δ(p, r) + δ(r, q) = δ(p, q)}.

Since there are no redundant arcs, S(p, q) is the subnetwork of N consisting of all

shortest paths between p and q.

In the discrete case vertices of degree 2, incident with exactly two edges may

occur and cannot be ignored. In the continuous case vertices of degree 2 do not

play a special role, so we may just turn it into an interior point, thus merging the

two arcs involved into one arc. Hence we may assume that in a tree network the

vertices have either degree 1 or degree at least 3.

A profile on a set X is a finite sequence π = x1, x2, . . . , xk of elements in X,

with |π| = k the length of the profile. Note that, a profile being a sequence, multiple

occurrences of the same element are allowed. For the location functions considered

here, the order of the sequence is irrelevant. When k is odd, we call π an odd profile,

and when k is even, we call π an even profile. Denote by X∗ the set of all profiles

on X. A consensus function on a set X is a function L : X∗ → 2X −∅ that returns

a nonempty subset of X for each profile on X. Because multiple occurrences in π

are allowed, more than one client may be at the same point, or, if the clients are

weighted, we can replace a client of weight j by j copies of this client in π. In the

discrete case the set X is the set of vertices V of graph G. In the continuous case

X is the set of all points of network N . A location function is a consensus function,

for which the defining criterion is phrased in terms of the distances to the elements

of the profile.

4.2. Basic Axioms

Let us first consider obvious and natural axioms that one would want in any rational

consensus procedure on graphs or networks. Let L : X∗ → 2X − ∅ be a location

function on a graph G = (V,E), in which case X = V , or a network N = (V,E, λ),

in which case X is the set of all points of N . The first axiom is Anonymity: the

order of the profile does not play a role. There are simple consensus functions that

are not anonymous. For example, if there is a dictator amongst the clients in the

profile, then he can not hide his identity. All the location functions considered here

are anonymous.

(A) Anonymity: for any profile π = x1, x2, . . . , xk on X and any permutation

σ of {1, 2, . . . , k}, we have L(π) = L(πσ), where πσ = xσ(1), xσ(2), . . . , xσ(k).
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Another natural axiom, again violated by dictatorship, is that, if all clients are

located at the same point, then that point should be selected.

(U) Unanimity: L(x, x, . . . , x) = {x}. for all x ∈ X.

Sometimes a weaker but equally natural axiom is sufficient.

(F) Faithfulness: L(x) = {x}, for all x ∈ X.

The next axioms are specifications of the following idea. If profile π agrees on

output x and profile ρ does as well, then the concatenation πρ of the two profiles

should agree on x as well. The idea for this type of consistency appears in a paper

of Young [25], where it is used to axiomatize Borda’s rule for voting procedures.

We need two types of consistency here.

(C) Consistency: If L(π) ∩ L(ρ) 6= ∅ for profiles π and ρ, then

L(πρ) = L(π) ∩ L(ρ).

(QC) Quasi-consistency: If L(π) = L(ρ) for profiles π and ρ, then

L(πρ) = L(π).

Because L(π) 6= ∅, for any π, it follows that (C) implies (QC) trivially. It is an easy

exercise to prove that (QC) and (F ) imply (U).

No combination of (F), (U) or (C) (or (QC)) is sufficient to pin down a particular

consensus function. Hence we consider axioms that specify how a consensus function

must behave on profiles of length 2. We present two: Middleness and Betweenness,

for FSP and DCP , respectively. Since both axioms involve distances, we need

to distinguish between the discrete and the continuous case. So L is a consensus

function of a graph G, discrete case, or a network N , continuous case.

(Mid) Middleness: [Discrete] Let u, v be two not necessarily distinct vertices in

V . If d(u, v) is even, then L(u, v) is the set of all vertices z with d(u, z) =

d(z, v) = 1
2d(u, v). If d(u, v) is odd, then L(u, v) is the set of all vertices z with

d(u, z) = d(v, z) + 1 or d(u, z) = d(v, z)− 1.

(Mid) Middleness: [Continuous] Let x, y be two not necessarily distinct points

in X. Then L(x, y) is the set of all points v with δ(x, v) = δ(v, y) = 1
2δ(x, y).

Note that if there is a unique shortest path between x and y, as is the case in trees,

then L(x, y) is a single point in the continuous case, and L(u, v) is a single vertex

or an edge in the discrete case. The next axiom fits DCP : any point between x

and y minimizes the sum of the distances to x and y.

(B) Betweenness: [Discrete] L(u, v) = I(u, v), for all u, v ∈ V .
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(B) Betweenness: [Continuous] L(x, y) = S(x, y), for all x, y ∈ X.

Note that betweenness implies that L(x, x) = {x}. From this it follows that (B)

and (C) imply (F ), and hence (U). Similarly, (Mid) and (C) imply (F ), and hence

(U). In both cases we may replace (C) by (QC). We will see below that for specific

cases additional axioms are needed.

4.3. The Center Function

Let π = x1, x2, . . . , xk be a profile on a graph G = (V,E). A central vertex of π is

a vertex x minimizing

max{ d(x, xi) | 1 ≤ i ≤ k }.

The center of π is the set consisting of all central vertices of π. If π consists of all

vertices exactly once, then we call the center of π the center of G.

A classical result is that the center of a tree consists of one vertex or two adjacent

vertices. This result dates back to 1869 and was proved by C. Jordan [8], although

at that time the notion of graph did not exist. In the 1860’s Jordan studied auto-

morphisms of mathematical structures. As an example he discussed “assemblages

of lines” in the plane with a tree-like structure, and proved that each automorphism

fixes substructures, which we now would call the center and the centroid of the tree.

The concept of graph was introduced only in 1878 by James Joseph Sylvester in

a letter to Nature [23], see [19; 20] for a discussion of the origins of graph theory.

Sylvester envisaged a great future for graph theory as a universal science, being a

common basis for such diverse sciences as logic, chemistry, kinematics, and algebra.

His vision did not come true, but we still owe him for the concept. He did not prove

anything worthwhile on graphs. That he left to others.

Let π = x1, x2, . . . , xk be a profile on a network N = (V,E, λ). A central vertex

of π is a point x minimizing

max{ δ(x, xi) | 1 ≤ i ≤ k }.

The center of π is the set consisting of all central points of π.

The Center Function Cen : X∗ → 2X − ∅ on X is defined by Cen(π) being

the center of π. McMorris, Roberts, and Wang [16], see also [21] give an axiomatic

characterization of the center function in the discrete case. If we examine the proof

in [21] closely, we see that the same proof holds for the continuous case.

It is easy to see that the center function satisfies (A), (Mid), and (QC), but

these are not sufficient to characterize the center function. So we need some specific

axioms for this case. Observe that in the definition of a central vertex, multiple

occurrences of a vertex in a profile do not influence the outcome. Define the support

{π} of profile π to be the set of all points that occur at least once in π. The center

function obviously satisfies
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(PI) Population Invariance: If {π} = {ρ} then L(π) = L(ρ).

The next axiom applies on trees (tree networks) only. For a profile π on a tree

(network) T , we define T (π) to be the smallest subtree (network) of T containing

{π}. Note that all pendant vertices (endpoints) of T (π) occur in π. For an element

x we denote by π \ x the profile obtained by removing all occurrences of x from π.

Note that, if x is not in π, then π \x = π. The next axiom obviously is also satisfied

by the center function.

(R) Redundancy: Let L be a consensus function on a tree (network) T .

If x ∈ T (π \ x) then L(π \ x) = L(π).

The discrete case, proved in [16], is then:

Theorem 4.1. Let L be a consensus function on a tree T = (V,E). Then L is the

center function Cen if and only if L satisfies (Mid), (PI), (R), and (QC).

Adapting the proof of Theorem 4.1 in [21] to the continuous case we get:

Theorem 4.2. Let L be a consensus function on a tree network T = (V,E, λ).

Then L is the center function Cen if and only if L satisfies (Mid), (PI), (R), and

(QC).

Extending these characterizations beyond trees is difficult. To see why, let H

be any graph. Add to H four new vertices ul, vl, vr, ur. Make vl and vr adjacent

to all vertices of H and ul adjacent to vl and ur adjacent to vr. The resulting

graph G has as its center the subgraph H. Since the center can be arbitrary we

cannot expect a clean characterization on arbitrary graphs or networks. Developing

a characterization for special classes of graphs or networks might be more promising.

4.4. The median Function

For the Distribution Center Problem, the simplest solution is to find a location that

minimizes the sum of the distances to the clients. This is known as the absolute

median, or median for short. A median vertex of a tree minimizes the sum of the

distances to the trivial profile, so to all vertices in the tree. It is easily seen that

a median vertex is just a centroidal vertex. So the characterization of the median

of a tree as one vertex or two adjacent vertices is, with hindsight, also due to C.

Jordan, see [8].

Let π = x1, x2, . . . , xk be a profile on a graph G = (V,E). A median vertex of

π is a vertex x minimizing D(x, π) =
∑

1≤i≤k d(x, xi). The median set of π is the

set of all median vertices of π.

Let π = x1, x2, . . . , xk be a profile on a network N = (V,E, λ). A median point

of π is a point x minimizing ∆(x, π) =
∑

1≤i≤k δ(x, xi). The median set of π is the

set of all median points of π.
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The Median Function Med : X∗ → X on a graph G or a network N is defined

by Med(π) being the median set of profile π. Clearly, the median function satisfies

Anonymity and Betweenness. The next Lemma probably belongs to folklore.

Lemma 4.1. The Median Function Med on a graph satisfies (C).

Proof. Let π and ρ be profiles such that Med(π) ∩Med(ρ) 6= ∅. Choose any

element x in Med(π) ∩Med(ρ) and any element y in Med(πρ). Then we have

D(x, πρ) = D(x, π) +D(x, ρ) ≤ D(y, π) +D(y, ρ) = D(y, πρ) ≤ D(x, πρ),

where the first ≤ follows from x ∈ Med(π) ∩Med(ρ), and the second ≤ follows

from y ∈ Med(πρ). This implies that we have equality throughout, which means

that x ∈Med(πρ) and y ∈Med(π) ∩Med(ρ). This proves Consistency. �

The analogue for the continuous case is proved in the same way. So the median

function satisfies three of the basic axioms: (A), (B), and (C). What makes the

median function exceptional in our story is that these axioms characterize the me-

dian function in some important instances. The first result of this nature is the

characterization on tree networks due to Vohra [24]. In that paper the following

axiom was used.

(Ca) Cancellation: Let π be a profile with support {x, y} such that x and y occur

an equal number of times in π. Then L(π) = S(x, y).

Note that Betweenness is a special instance of Cancellation. It follows immediately

that (A), (B) and (C) imply (Ca). So we may rephrase the characterization in [24]

as:

Theorem 4.3. Let L be a consensus function on a tree network N . Then L = Med

if and only if L satisfies (A), (B), and (C).

In Subsection 4.4.3 we will extend this result to cube-free median networks. For an

easier understanding we present the discrete case first.

4.4.1. The Median Function on Median Graphs

In Mulder (this volume) median graphs were introduced as an important gener-

alization of trees and hypercubes. This suggests that one might try to general-

ize results on trees to median graphs. A median graph is a graph G such that

|I(u, v) ∩ I(v, w) ∩ I(w, u)| = 1, for any triple of vertices u, v, w. Clearly trees (as

well as hypercubes) are median graphs. The following characterization of median

graphs suggests strongly that any result on the median function for trees might

extend to median graphs.

Theorem 4.4. A graph G is a median graph if and only if |Med(u, v, w)| = 1, for

any three vertices u, v, w of G.
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It follows from results in Mulder (this volume) that all odd profiles have a single

median vertex in a median graph. We now review some important results on median

graphs from [14]. For a profile π = x1, x2, . . . , xk, we denote by π− xi the vertex-

deleted profile with just the i-th element deleted from π.

Theorem 4.5. Let G be a median graph, and let π = x1, x2, . . . , xk be an odd

profile. Then Med(π) = ∩1≤i≤kMed(π − xi).

A subset W of V in a graph G = (V,E) is convex if I(u, v) ⊆ W , for any two

vertices u, v in W . Note that the intersection of convex sets is again convex. The

convex closure Con[U ] of a subset U of V is the smallest convex set containing U .

Theorem 4.6. Let G be a median graph, and let π = x1, x2, . . . , xk be an even

profile. Then Med(π) = Con[∪1≤i≤kMed(π − xi)].

 

Fig. 4.1. The 3-cube Q3 with a profile

Theorem 4.5 and induction on the length of the profiles suffice to characterize

Med(π) on median graphs when π is odd in terms of (A), (B) and (C). This

argument does not extend to even profiles. The difficulty is that consistency may

have no bite. To see why, consider Fig. 4.1. The black vertices represent a profile

π of length 4 on the cube Q3. Clearly, M(π) = V . However, we cannot find any

combination of subprofiles of π that give intersecting median sets. Surprisingly, this

example constitutes the bottleneck to easy extensions the characterization.

Call a median graph cube-free if Q3 does not occur in the median graph. In [14]

the following strong theorem is obtained, by which we can circumvent induction in

the case of even profiles.

Theorem 4.7. Let G be a cube-free median graph, and let π be an even profile

of length 2k. Then there exists a permutation σ of {1, 2, . . . , 2k} with πσ =

x1, x2, . . . , x2k such that

Med(π) =
⋂

1≤i≤k

I(x2i−1, x2i).
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Given these theorems, one can now easily prove that on cube-free median graphs

the obvious axioms (A), (B), (C) suffice to characterize Med.

Theorem 4.8. Let G be a cube-free median graph and let L be a consensus function

on G. Then L = Med if and only if L satisfies (A), (B), and (C).

For arbitrary median graphs the example in Fig. 4.1 forms an obstacle for similar

easy results. Hence some ‘heavy-duty’ axioms were introduced to do the job, see

[14] for the first one.

(K) Convexity: Let π = x1, x2, . . . , xk be a profile of length k > 1 on G. If⋂
1≤i≤k L(π − xi) = ∅ then L(π) = Con[

⋃
1≤i≤k L(π − xi)].

Theorem 4.9. Let L be a consensus function on a median graph G. Then L = Med

if and only if L satisfies (A), (B), (C), and (K).

An important feature of median graphs is the following. Let uv be an edge in a

median graph G. Let Guvu be the subgraph induced by all vertices closer to u than

to v, and let Guvv be the subgraph induced by all vertices closer to v than to u.

It turns out that these two subgraphs partition the vertex set of G in a very nice

way. We call such a partition a split with split halves Guvv , Guvv . Both subgraphs

are convex, the edges between the two subgraphs form a matching Fuv, and for

any edge xy in Fuv with x in Guvu the edge xy defines the same split as uv, that

is, Gxyx = Guvu , and Gxyy = Guvv . For a profile π, we denote by πuvu the subprofile

of π consisting of all elements in Guvu . For even profiles the median set Med(π)

satisfies the following property, see [14]: if |πuvu | = |πuvv |, then u ∈ Med(π) if and

only if v ∈ Med(π). If we turn this into an axiom, see [11], then we get another

characterization of the median function on median graphs.

( 1
2 -Co) 1

2 -Condorcet Let uv be an edge of a graph G, and let π be a profile with

|πuvu | = |πuvv |. Then u ∈ L(π) if and only if v ∈ L(π).

Theorem 4.10. Let L be a consensus function on a median graph G. Then L =

Med if and only if L satisfies (F ), (C), and ( 1
2 -Co).

Note the omission of anonymity and betweenness. These axioms do not follow from

(F ), (C), and (1
2 -Co) in general, yet in median graphs they are implied by (F ), (C),

and ( 1
2 -Co).

4.4.2. The t-Median Function on Median Semilattices

The ordered case displays some significant and unexpected differences with the

ordered case. A full discussion exceeds the scope of this chapter. Instead, we give

only the essential details and use graphs to explain what is going on.

The 1
2 -Condorcet property of median graphs is a consequence of the following

characterization of median sets in median graphs. Recall that a split in a median
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graph does not depend on the edge chosen between the two sides of the split. So

we may refer to a split in a median graph G as a pair of subgraphs G1, G2. For

a profile π on G, we denote by πi the subprofile of all elements in Gi. Then the

median set of π is always on the side of the split where the majority of π is located,

see [14]:

Theorem 4.11. Let G be a median graph, and let M be the median function on G.

Then Med(π) =
⋂
{ G1 | G1 is a splithalve with |π1| > |π2| }, for any profile π on

V .

Barthélémy and Janowitz [3] introduced a stronger criterion for being a median.

We reformulate this for median graphs: instead of requiring a simple majority on

the side of the split, one requires a larger portion of π to be on the side where the

median is to be found. Let t be a rational number with 1
2 ≤ t < 1. Then the

t-Median Function Mt : V ∗ → 2V − ∅ on a median graph G = (V,E) is defined by

Mt(π) =
⋂
{ G1 | G1 is a splithalve with |π1| > t|π|}.

The analogue of the (1
2 -Co) axiom of the previous subsection for t-medians is then

(t-Co) t-Condorcet: [Discrete] u is in L(π) if and only if v is in L(π), for each

profile π and each split Guvu , Guvv with |πuvu | = t|π|.

An isometric subgraph of a hypercube is called a partial cube. Median graphs

are partial cubes. So are all even cycles, whereas only the 4-cycle is a median

graph. It was proved in [13] that the t-median function Mt is t-Condorcet on a

partial cube G. Thus, one might conjecture that a consensus function on a median

graph that is faithful, consistent, and t-Condorcet should be the t-median function

Mt. Surprisingly, this is not the case, as the following impossibility result from [13]

shows.

Theorem 4.12. Let G = (V,E) be a median graph with |V | ≥ 3, and let t be a

rational number with 1
2 < t < 1. Then there does not exist a consensus function

L : V ∗ → 2V − {∅} on G satisfying (F ), (C), and (t-Co).

The reason for this surprise is that Mt is not consistent. However it does satisfy

two weaker types of consistency: subconsistent and subquasi-consistent.

(SC) Subconsistency: If L(π) ∩ L(ρ) 6= ∅ for profiles π and ρ, then

L(πρ) ⊆ L(π) ∩ L(ρ).

(SQC) Subquasi-consistency: If L(π) = L(ρ) for profiles π and ρ, then

L(π) ⊆ L(πρ).

Now we turn to the ordered case. Let G = (V,E) be a median graph, and let z

be any vertex of G. We define the partial order ≤z on V by u ≤z v if u ∈ I(z, v).
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Loosely speaking, we take z as the bottom and let G ‘grow upwards’. Then the

ordered set (V,≤z) is a median semilattice. This is a distributive meet semilattice

with the coronation property, that is, if the pairwise joins u∨v, v∨w, w∨u exist for

u, v, w then the join u∨ v ∨w exists. Median semilattices have been studied widely

in the literature. Given a finite semilattice (V,≤), the covering graph G = (V,E)

is defined by uv being an edge if v covers u, that is, u < v but there is no element

w with u < w < v. From our viewpoint it is important to know that the covering

graph of a median semilattice (V,≤) is a median graph, see e.g. [18].

The following notions are rather technical. One might speed-read these techni-

calities. We will clarify what the axiom and the theorems mean in terms of graphs.

Let (V,≤) be a finite semilattice with universal lower bound z. An element x is

an atom if it covers the universal lower bound z. Atoms are precisely the neighbors

of z in the covering graph.

An element s if join-irreducible if s = x ∨ y implies that s = x or s = y. We

can find the join-irreducible elements in a median semilattice (V,≤) as follows. Let

z be the universal lower bound, and let G1, G2 be a split of the underlying median

graph G with z in G1. Then the vertex in G2 closest to x is a join-irreducible. This

induces a one-to-one correspondence between the join-irreducibles in (V,≤) and the

splits in G.

Let (V,≤) be a finite distributive semilattice, S be the set the join-irreducible

elements of (V,≤), and π = x1, x2, . . . , xk be a profile on V . Then the index of a

join-irreducible element s ∈ V with respect to π is

γ(s, π) =
|{ i | s ≤ xi }|

k
.

In terms of the underlying median graph let G1, G2 be the split of s, that is, z is in

G1 and s is the vertex in G2 closest to z. Then γ(s, π) is π2, that is, the elements

of π on the side of s. Note that G2 consists of all elements w in (V,≤) with s ≤ w.

Now let

αt(π) =
∨
{ s | s ∈ S with γ(s, π) > t }.

In graph terms the element αt(π) is the vertex in Mt(π) closest to z. The other

elements of Mt(π) we get by taking the meets of αt(π) with the join-irreducible

elements with index exactly t. Thus the t-Median Function, Mt, on (V,≤) is defined

by

Mt(π) = {αt(π)}∪
∪{αt(π) ∨ s1 ∨ . . . ∨ sk | γ(si, π) = t, i = 1, . . . , k, provided the join exists}.

The t-Condorcet axiom for a consensus function L on the semilattice (V,≤) is

phrased as follows.

(t-Co) t-Condorcet: [Ordered] If s is join-irreducible element in (V,≤) covering

ws and γ(s, π) = t, then x∨ s is in L(π) if and only if x∨ws is in L(π), provided
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x ∨ s exists.

In [15] the following characterization of the t-Median Function is given.

Theorem 4.13. Let (V,≤) be a distributive meet semilattice in which all join-

irreducibles are atoms, and let t be a rational number with 1
2 ≤ t < 1. Let L be a

consensus function on (V,≤). Then L = Mt if and only if L satisfies (F ), (C), and

(t-Co).

In [13] a similar result was proved for the case of median semilattices.

Theorem 4.14. Let (V,≤) be a finite median semilattice, and let t be a rational

number with 1
2 ≤ t < 1. Let L be a consensus function on (V,≤). Then L = Mt if

and only if L satisfies (F ), (C), and (t-Co).

4.4.3. The Median Function on Cube-free Median Networks

It is natural to ask if the results in Subsection 4.4.1 extend to the network case.

For the cube-free case this can be done under certain conditions. Our discussion

will underscore this fact. We use the relation between median graphs and median

networks from [2]. While cube-free median networks are still rather special, the

class is rich enough to encompass one category of real world network structure: the

grid equipped with the Manhattan metric (or city-block norm). However, as we will

see, we have to sacrifice something: client locations must be confined to vertices of

the network.

We need some additional concepts. Let W be a subset of V . Then 〈W 〉G denotes

the subgraph of G induced by W , that is, the subgraph with W as its vertex set

and all edges with both ends in W as its edge set. Furthermore 〈W 〉N denotes the

subnetwork of N induced by W , that is, the subnetwork with W as its vertex set

and all arcs with both ends in W as its set of arcs. Note that I(u, v) is a subset of

V , so we may consider the subgraph 〈I(u, v)〉G of G or the subnetwork 〈I(u, v)〉N
of N induced by I(u, v). The subgraph 〈I(u, v)〉G may consist of more than the

geodesics between u and v, viz. if there exists some edge between vertices, say x

and y, in I(u, v) with d(u, x) = d(u, y), so that we also have d(x, v) = d(y, v). Such

an edge will be called a horizontal edge in I(u, v). Note that, if G is bipartite, then

such horizontal edges do not exist.

A m-cycle in N , with m ≥ 3, is a closed path with m arcs, or more precisely,

a sequence v1 → v2 → . . . → vm → vm+1 with v1, v2, . . . , vm distinct vertices

and v1 = vm+1, such that vivi+1 is a arc, for i = 1, 2, . . . ,m. A rectangle in N is a

4-cycle such that non-adjacent (i.e. opposite) arcs have equal length.

A network N is a median network if

|S(u, v) ∩ S(v, w) ∩ S(w, u)| = 1,

for any three vertices u, v, w in N . A characterization of median networks was given

in [2]:
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Theorem 4.15. A network N is a median network if and only if its underlying

graph G is a median graph and all 4-cycles in N are rectangles.

The usefulness of this theorem lies in the fact that we can make use of the rich

structure theory for median graphs, see e.g. [18; 9; 14] and Mulder (this volume).

The cube network is the network whose underlying graph is the cube Q3, see Fig.

4.1, in which all 4-cycles are rectangles. This means that in the figure parallel arcs

have the same length. Our main result holds for cube-free median networks. For this

case we consider a slightly different type of consensus function: L : V ∗ → 2X − ∅,
where V is the set of vertices of network N and X is the set of all points of N . So

client positions are restricted to vertices, whereas the facility may still be located

at any point. We will see below that we need this restriction is necessary to get

results.

Tree networks have the characterizing property that, for any two points p and

q, there exists a unique path connecting them. Trivially, this unique path is the

shortest p, q-path. For any three points p, q, r in a tree network, the three paths

between the pairs of p, q, r have a unique common point, which is necessarily a

vertex (unless one of the three points is an interior point on the path between the

other two). A striking difference between networks and graphs arises with respect

to this property.

Theorem 4.16. Let N be a network. Then N is a tree network if and only if

S(p, q) ∩ S(q, r) ∩ S(r, p) 6= ∅,

for any three points p, q, r in N .

Proof. Let N be a tree. Then S(p, q) ∩ S(q, r) ∩ S(r, p) consists of the unique

point (vertex) lying simultaneously on the shortest paths between the three pairs

of p, q, and r.

Assume that N is not a tree. If N is disconnected, we choose p and q in different

components, whence S(p, q) = ∅, so that, for any r, we have three points for which

the corresponding segments have empty intersection. Now suppose that N contains

cycles. Let C be a cycle of minimal length t. Minimality of t implies that C is an

isometric cycle in N , i.e., the distance along the cycle between any two points p and

q on C equals their distance δ(p, q) in N . Now choose two distinct points q and r on

C such that δ(q, r) < 1
2 t. Then δ(q, r) is the length of the shortest of the two arcs on

C between q and r. Let p be the point on the other arc with equal distance to q and

r. Then δ(p, q) is the length of the shorter arc on C between p and q, and δ(p, r)

is the length of the shorter arc on C between p and r. Now, if S(p, q) ∩ S(q, r)

contained a point x different from q, then a shortest p, x-path together with a

shortest x, r-path and the shorter arc of C between r and p would contain a cycle

shorter than C, which contradicts the minimality of C. So S(p, q) ∩ S(q, r) = {q}.
Similarly, any two of the segments intersect only in their common endpoint. Since
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p, q, r are distinct points on C, the intersection of all three segments is empty. This

settles the proof of the Theorem. �

In the discrete case we get even more than the median graphs when we require

I(p, q) ∩ I(q, r) ∩ I(r, p) 6= ∅. Because of the uniqueness of the point on the three

paths between the pairs of p, q, r, we may refine the property in Theorem 4.16 to

obtain the following characterization.

Corollary 4.1. Let N be a network. Then N is a tree if and only if only if S(p, q)∩
S(q, r) ∩ S(r, p) is a unique point, for any three points p, q, r in N .

If S(p, q) ∩ S(q, r) ∩ S(r, p) 6= ∅, for some points p, q, r, then, by (C) and (B),

we have Med(p, q, r) = S(p, q) ∩ S(q, r) ∩ S(r, p). If N is a network with cycles,

then let C be any cycle of minimal length, and let p, q, r be points as in the proof of

Theorem 4.16. Now S(p, q)∩S(q, r)∩S(r, p) = ∅, whereas Med(p, q, r) = {q, r}. So

we cannot determine Med(p, q, r) from the three segments using consistency. This

is the main reason forcing us to restrict ourselves to profiles consisting of vertices

only. As we know, in the graph case the situation is quite different: we consider

vertices only anyway, and median graphs come in view.

In a median network, we have the following property: For any arc vw and any

vertex u, either v ∈ S(u,w) or w ∈ S(u, v). This follows from the median property

and the irredundancy of arcs (whence S(v, w) ∩ V = {v, w}). This property was

called the bottleneck property in [2], where the following Lemma was proved.

Lemma 4.2. Let N = (V,E, λ) be a network with the bottleneck property. Then

I(u, v) = S(u, v) ∩ V,

for any two vertices u, v in V .

The proof in [2] contains a minor but repairable gap. An examination of the proof

reveals that one can prove more. First we need some notation: I1(u, v) is the set of

all neighbors of u in I(u, v). Clearly,

I(u, v) = {u} ∪ [
⋃

x∈I1(u,v)

I(x, v) ].

Lemma 4.2 can be strengthened. Instead of giving a full proof here by extending

the one in [2], we just use Lemma 4.2 as a starting-point, and restrict ourselves to

completing the proof.

Lemma 4.3. Let N = (V,E, λ) be a network with the bottleneck property. Then

S(u, v) is the subnetwork of N induced by I(u, v), for any two vertices u and v in

V .

Proof. We use induction on the length n = d(u, v) of the intervals I(u, v) in G. If

d(u, v) = 0, then u = v, so that S(u, u) = {u} = I(u, u). If d(u, v) = 1, then uv is an

edge in G and a arc in N , and we have I(u, v) = {u, v} and S(u, v) is the arc uv. So
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assume that n ≥ 2. First we observe that there are no horizontal edges in I(u, v).

For otherwise, suppose xy is a horizontal edge in the interval, so that d(u, x) =

d(u, y) < n. Then, by induction, S(u, x) = 〈I(u, x)〉N and S(u, y) = 〈I(u, y)〉N . So

we have x /∈ S(u, y) and y /∈ S(u, x), which contradicts the bottleneck property. So

all edges in 〈I(u, v)〉G are on u, v-geodesics. By Lemma 4.2, any shortest u, v-path

in N starts with a arc ux with x in I(u, v). So it starts with an edge ux, where x

is a neighbor of u in I(u, v). Hence we have

S(u, v) =
⋃

x∈I1(u,v)

[S(u, x) ∪ S(x, v)],

which, by induction is equal to⋃
x∈I1(u,v)

[S(u, x) ∪ 〈I(x, v)〉N ].

Since there are no horizontal edges in I(u, v), the assertion now follows. �

In fact we have proved more. In networks satisfying the bottleneck property, for

any two vertices u, v, each u, v-geodesic in G can be obtained from a shortest u, v-

path in N by ignoring the lengths of the arcs. Conversely, each shortest u, v-path

in N can be obtained from the corresponding u, v-geodesic in G by assigning the

appropriate lengths to the arcs. This more informal version of Lemma 4.3 is the

one we will use.

A consequence of Lemma 4.3 involves the notion of convexity. Let W be a subset

of vertices. Then 〈W 〉N is convex in N if S(u, v) ⊆ 〈W 〉N , for any two vertices u, v

in W . Similarly, 〈W 〉G is convex in G if I(u, v) ⊆ W , for any two vertices u, v in

W . In a network N with the bottleneck property 〈W 〉N is convex in N if and only

if 〈W 〉G is convex in the underlying graph G. Moreover, 〈W 〉N can be obtained

from 〈W 〉G by assigning the appropriate lengths, and, vice versa, 〈W 〉G can be

obtained from 〈W 〉N by ignoring lengths of arcs. These observations imply that

all results for median graphs that can be proved using the concepts of distance,

geodesic, and convexity have their counterparts for median networks provided we

restrict ourselves to profiles consisting of vertices only. So, in the sequel the median

function on a network N = (V,E, λ) is a consensus function with profiles on V and

with the set of all points X as set of possible outcomes:

MedN : V ∗ → 2X − {∅}.

Let N be a median network, and let uv be an arbitrary arc in N . Let G be the

underlying median graph of N . Denote by Wuv
u the set of vertices strictly closer

to u than to v. By Lemma 4.3, we can use the same notation for the underlying

median graph. Hence Wuv
u is the vertex set of Guvu . It follows from the structure

theory for median graphs in [18] that the sets Wuv
u and Wuv

v are convex. Moreover,

for any other arc xy between the two sets with x ∈Wuv
u and y ∈Wuv

v , it turns out

that W xy
x = Wuv

u and W xy
y = Wuv

v . So arc xy defines the same sides as arc uv.

Finally, for any shortest u, x-path u → u1 → . . . → uk → x in the u-side there
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exists a shortest v, y-path v → v1 → . . . → vk → y in the v-side such that uivi is

a arc, for i = 1, . . . , k. From the rectangle property we deduce that all these arcs

have the same lengths, in particular uv and xy have the same length. This property

is typical of the Manhattan metric.

Recall that MG(π) consists of all vertices u such that a majority (not necessarily

strict) of the profile is closer to u than any of its neighbors. Note also that the sets

MG(π) are convex in median graphs.

Theorem 4.17. Let N = (V,E, λ) be a median network, let G = (V,E) be its

underlying median graph, and let π be a profile on V . Then

MN (π) = 〈MG(π)〉N .

Proof. By Lemma 4.3, we know that MN (π) ∩ V = MG(π). So we only have to

check interior points. Let uv be any arc of N , and let p be an interior point of uv.

By the definition of Wuv
u , and the bottleneck property, the distance from v to any

vertex in Wuv
u can be measured via u. Hence the distance from p to any vertex in

Wuv
u can also be measured via u. The same holds if we interchange the roles of u

and v. This implies

∆(p, π) = ∆(p, πu) + ∆(p, πv) =

= |πu|λ(pu) + ∆(u, πu) + |πv|λ(pv) + ∆(v, πv).

From this equality we deduce that if uv is a arc with |πu| = |πv| = 1
2 |π|, then

∆(p, π) = ∆(u, π) = ∆(v, π). Hence, either the entire arc uv is in MN (π) or none

of it is in MN (π). Finally, if |πu| > |πv|, then ∆(p, π) > ∆(u, π). Hence p is

not in MN (π). These observations and the facts on median sets in median graphs

preceding the theorem complete the proof. �

By Lemma 4.3, we get an analogue of Theorem 4.7 for networks.

Theorem 4.18. Let N be a cube-free median network, and let π be a profile on V

of even length 2m. Then there exists a permutation y1, y2, . . . , y2m−1, y2m, such

that

MN (π) =
m⋂
i=1

S(y2i−1, y2i).

Now we are ready to prove the main result of this section.

Theorem 4.19. Let N be a cube-free median network, and let L : V ∗ → 2X − ∅ be

a consensus function on N where X is the set of all points in N . Then L = MedN
if and only if L satisfies (A), (B) and (C).

Proof. Let L be a consensus function on N satisfying (A), (B), and (C). We

use induction on the length of the profiles to prove that L(π) = MedN (π), for all

profiles π on V .
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By (C) and (B), we have L(x) = L(x) ∩ L(x) = L(x, x) = S(x, x) = {x} =

MedN (x). Now let π = x1, x2, . . . , xk be a profile of length k > 1. If k is even,

then, by Theorem 4.18, we can write π = y1, y2, . . . , y2m such that MedN (π) =⋂m
i=1 S(y2i−1, y2i). By (B) and (C), we conclude that L(π) = MedN (π).

If k is odd, then, by Theorem 4.5, we have MedN (π) =
⋂k
i=1MedN (π −

xi). Hence, by the induction hypothesis, we have MedN (π) =
⋂k
i=1 f(π − xi).

Since MedN (π) 6= ∅, axiom (A) and repeated use of (C) gives MedN (π) =

f(x1, . . . , x1, x2, . . . , x2, . . . , xk, . . . , xk) with the i-th element xi appearing exactly

k − 1 times in f . Using (A), we have MedN (π) = L(π, . . . , π) with π appearing

exactly k − 1 times in L. Hence, by (C), we deduce that L(π) = MedN (π). �

At first glance it might be thought that one could just “lift” Theorem 4.3 up

to median networks. This is true in the case that the range X of the consensus

function L is V as well. Then Theorem 4.18 would suffice to prove this result. But

in Theorem 4.19 we include interior points in the range of L as well.

As noted above, we excluded redundant arcs to ensure that the unique shortest

path between a pair of adjacent vertices was the arc connecting them. Here we

outline why this entails no great loss.

First we give a precise definition of redundant arcs. Let N be a connected

network. Consider two vertices u and v. If there exists a shortest u, v-path with

more than one arc, then any arc with ends u and v is a redundant arc. If there is no

such shortest path, then each shortest u, v-path is an arc with ends u and v. Take

one such arc, and call this arc the irredundant arc between u and v. All other arcs

between u and v are redundant arcs. The reduced network N̄ is the network obtained

from N by deleting all redundant arcs. We will argue that MedN̄ (π) ⊆MedN (π).

Observe first that the distance between any pair of points in N̄ is the same as

their distance in N . Therefore, if MedN (π) contains no point interior to a redundant

arc, then MedN (π) = MedN̄ (π).

Now let p be an interior point of a redundant arc e incident to the vertices

u and v, say, with δ(u, p) ≤ δ(p, v). Take a shortest u, v-path P in N̄ , and let

p′ be the point on P with δ(u, p) = δ(u, p′). Then it is straightforward to check

that ∆(p, π) ≥ ∆(p′, π). This implies that, if p lies in MedN (π), then p′ lies in

MedN̄ (π) as well as MedN (π). It is again straightforward to deduce from this fact

that MedN̄ (π) ⊆MedN (π).

4.5. The Mean Function on Trees

The third function we consider is the mean function. Instead of the sum of distances

as optimality criterion a euclidian measure is used: the square-root of the sum of

the squares of the distances. Because we minimize, we may omit taking the square-

root. So let N be a network and let π = x1, x2, . . . , xk be a profile on N . A mean
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point of π is a point x minimizing ∑
1≤i≤k

[δ(x, xi)]
2.

The mean of π is the set of mean points of π. The Mean Function Mean on N is

the function Mean : X∗ :→ 2X−∅ with Mean(π) being the mean of π. Historically

this was the first location function to be characterized axiomatically, see Holzman

[7]

If N is a tree network, then any profile has a unique mean point, so Mean

is single-valued. Holzman introduced two axioms for the tree case. Both involve

specifying how the selected location changes as one of the clients moves to another

position. So we introduce the following notation. Let π = x1, x2, . . . , xk be a

profile on N , and let yi be some point. Denote by π[xi → yi] the profile obtained

from π by replacing xi by yi, that is, client i moves the new position yi.

(Li) Lipschitz: Let π = x1, x2, . . . , xk be a profile of length k. Then

δ(L(π), L(π[xi → yi]) ≤ 1
k δ(xi, yi).

(Inv) Invariance: Let π = x1, x2, . . . , xk be a profile. Let yi be a point in the

branch of L(π) that contains xi with δ(yi, L(π)) = δ(xi, L(π)). Then L(π[xi →
yi]) = L(π).

Theorem 4.20. Let L be a single-valued consensus function on a tree network N .

Then L = Mean if and only if L satisfies (U),(Inv), and (Li).

In [24] the invariance axiom was replaced by consistency.

Theorem 4.21. Let L be a single-valued consensus function on a tree network N .

Then L = Mean if and only if L satisfies (U),(C), and (Li).

Again, the discrete case is quite different from the continuous case. As in the

case of the center function, the discrete case is not single-valued.

4.6. Concluding Remarks

In [5] another interesting instance of axiomatic characterization is discussed. It in-

volves a nondecreasing, nonnegative, differentiable, strictly convex function f , which

is used to ‘weigh’ the distances. Define Medf (π) to be the set of vertices x minimiz-

ing
∑

1≤i≤k f(δ(x, xi)), for profile π = x1, x2, . . . , xk. Medf (π) is characterized by

the axioms (A), (C), plus three axioms called Continuity, Tree Independence, and

Population Monotonicity. These three additional axioms do not imply our axioms

above.

So far axiomatic characterizations have been successful on trees and tree net-

works, and in the case of the Median Function also on median graphs and cube-free

median networks. The discrete case for the Mean Function is in preparation, see
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[10]. But there are still many open questions. For instance, on which graphs is the

Median Function characterized by the three basic axioms (A), (B), and (C) only?

Or, given a class of graphs, what are the location functions satisfying (A), (B), (C),

or what extra axioms do we need to characterize Med?

References

1. K.J. Arrow, Social Choice and Individual Values, no. 12 in Cowles Commission for
Research in Economics:Monographs, Wiley, New York, first ed. 1951.

2. H.J. Bandelt, Networks with Condorcet solutions, European J. Operational Research
20 (1985) 314–326.
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Median graphs are a common generalization of trees and hypercubes in the fol-
lowing sense: for any three vertices u, v, w there exists a unique x lying on a
shortest path between any pair of u, v, w. The origins of median graphs have to
be found within pure mathematics: they arose from semilattices, ternary algebras,
and Helly hypergraphs. Form the view point of mathematics they form a very
interesting class: a rich structure theory has been developed, and there is still
much more to come. Another interesting feature is that median graphs appear
in different guises in many other mathematical areas. But equally important is
that median graphs and median-type structures have many applications in such
diverse fields as: mathematical biology, psychology, chemistry, economics, liter-
ary history, location theory, voting theory, and the like. This chapter provides
an introduction into the structure theory of median graphs. It surveys median
structures within mathematics and presents a concise overview of the many ap-
plications.

Introduction

Two well-known classes of graphs are that of the trees and that of the hypercubes.

Recall that the n-dimensional hypercube Qn, n-cube for short, has the 0,1-vectors

of length n as its vertices, and two vertices are joined by an edge if, as 0,1-vectors,

they differ in exactly one coordinate. When we add an ordering ≤ on the vertices of

the n-cube, with u ≤ v whenever the 0,1-vector of v has a one in every coordinate

where the 0,1-vector of u has a one, then this ordered graph is precisely the Hasse

diagram of the n-dimensional Boolean lattice. Papers on both classes are abundant

in the literature.

At first sight these classes seem to be quite different. But appearances are de-

ceptive. There is a striking feature that both trees and hypercubes have in common:

if we take any three vertices u, v, w, then there exists a unique vertex x, called the

median of u, v, w, that lies simultaneously on a shortest path between each pair of
∗This chapter is dedicated to my good friend and colleague Buck McMorris on the occasion of his
65-th birthday.
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the three. In a tree this is obvious, because there is only one path between any two

vertices. In the hypercube vertex x is determined as follows: each coordinate of x

takes the value of the majority amongst the values of the corresponding coordinate

of u, v, w.

Then the question arises: what are the graphs that share this property with

trees and hypercubes. The graphs defined by this property are the median graphs.

These graphs where introduced independently by various authors. First by Avann

under the name of unique ternary distance graphs, see [1; 2]. The focus here was on

distributive semi-lattices, and the graphs basically went almost unnoticed. Second

by Nebeský, see [66], where the focus was on the relation with median algebras.

Finally by Schrijver and the author, see [64], where the focus was on the relation

with Helly hypergraphs. The first paper on median graphs with a focus only on

the graphs is [56], where the Expansion Theorem was proved, see Section 5.2. The

results on median graphs below are presented from a perspective that was devel-

oped much later. It is based on the idea mentioned above where median graphs

arise as a common generalization of trees and hypercubes. In [60] the following

“Metaconjecture” was proposed, which may be utilized as a guiding principle for

finding nice problems on median graphs.

Metaconjecture. Let P be a property that makes sense, which is shared by the

trees and the hypercubes. Then P is shared by all median graphs.

The point here, of course, is that the property should make sense. First, it does not

make sense to observe such trivialities as: all trees and hypercubes are connected,

hence all median graphs are connected; they are connected by definition. An ex-

ample that does not work is: the center of a tree is a vertex or an edge, hence a

hypercube, the center of a hypercube is the hypercube itself, therefore the center of

a median graph should always be a hypercube. This is not true: take the 2 by 1 grid

and attach a vertex at two opposite ends of the grid. Now the center consists of the

path on the four vertices of the original 2 by 1 grid that are not involved in these at-

tachments. A stronger version of this “conjecture”, the Strong Metaconjecture, asks

for properties P shared by trees and hypercubes that actually characterize median

graphs. Both the Metaconjecture and the Strong Metaconjecture have produced

new interesting results on median graphs. Below we present many examples where

the (Strong) Metaconjecture does work, although some of these results precede the

actual formulation of the Metaconjecture.

Median graphs allow a rich structure theory as is shown in the literature. But

equally important, there are many interesting generalizations of median graphs.

Also median structures are abundant in many other mathematical disciplines. And

last but not least, median graphs and median structures have many applications in

such diverse areas as evolutionary theory, chemistry, literary history, location theory,

consensus theory, and computer science. This chapter serves as an introduction

into the theory of median structures and their applications with a focus on median

graphs.
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5.1. Definitions and Preliminaries

In this Chapter G = (V,E) denotes a finite, connected, simple, loopless graph. For

any two vertices u and v of G, the distance dG(u, v) between u and v is the length

of a shortest u, v-path, or a u, v-geodesic. If no confusion arises, we will just write

d(u, v) instead of dG(u, v). The interval between u and v is the set

IG(u, v) = { w | d(u,w) + d(w, v) = d(u, v) }.

So it consists of all vertices “between” u and v. Again, we write I(u, v) if no

confusion will arise. A subset W of V is convex if I(x, y) is contained in W , for any

x, y in W . A subgraph H of G is convex if it is induced by a convex set in G. For

a set W ⊆ V , the convex closure Con[W ] is the smallest convex set containing W .

Because of finiteness, it can also be obtained by applying the following extension

on W until no new set is found: the extension of a subset S of V is ext(S) =⋃
x,y∈S I(x, y). A basic property of convex sets is that the family of convex sets is

closed under taking arbitrary intersections. Loosely speaking, this is the defining

property of a convexity in abstract convexity theory. In the infinite case a second

defining property is that the union of a nested family of convex sets is again convex.

In the sequel we will not distinguish between a subset W of V and the subgraph

of G induced by W . The notions of interval and convexity in a graph probably

are already part of folklore for a couple of decades. Notation and terminology were

fixed in [58], where they were studied systematically for the first time.

For u, v, w in G, we write

I(u, v, w) = I(u, v) ∩ I(v, w) ∩ I(w, v).

The sets I(u, v, w) can be empty: Take any isometric odd cycle C in G of length

2k + 1, let v, w be adjacent vertices on C and let u be the vertex on C with

d(u, v) = d(u,w) = k. Then I(u, v, w) = ∅. See 5.1 for examples. If I(u, v, w) 6= ∅
for all triples u, v, w in G, then G is called a modular graph. Clearly, modular graphs

are bipartite. A median graph G is a special instance of a modular graph. It has

the defining property that |I(u, v, w)| = 1, for all triples of vertices u, v, w in G.

Obviously, a convex subgraph of a median graph is again a median graph.

Let W be a subset of V in the graph G = (V,E), and let u be a vertex of G. A

gate for u in W is a vertex x in W such that x ∈ I(u,w), for every vertex w in W .

A set W is gated if every vertex has a unique gate in W . Note that the gate for u

in the gated set W is the vertex x in W closest to u. A nice property of median

graphs is that the gated sets are precisely the convex sets. For a set W we denote

by 〈W 〉 the gated closure of W being the smallest gated set containing W .

A profile on G is a sequence π = x1, x2, . . . , xk of vertices of G. The length of

the profile is |π| = k. Note that, a profile being a sequence, multiple occurrences of

vertices are allowed. We call π an odd profile when k is odd, and even when k is
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even. The distance of a vertex v to the profile π is

D(v, π) =
k∑
i=1

d(v, xi).

The ordering in the profile can be ignored when only the distance to the profile

matters. A median or median vertex of π is a vertex x minimizing the distance

D(x, π) to the profile, and the median set M(π) of π is the set of all medians of

π. Since G is connected, a median set is always non-empty. The profile consisting

of all vertices of V just once is called the trivial profile, and is denoted by V . We

write D(x) for D(x, V ). The median set M(G) of G is just the set M(V ) of vertices

x minimizing D(x). Clearly we have M(u) = {u} and M(u, v) = I(u, v) in any

connected graph G. Note that, if I(u, v, w) 6= ∅, then M(u, v, w) = I(u, v, w). Hence

in a median graph profiles of length 3 have a singleton as median set. Actually, this

characterizes median graphs, see [26]. It is also an immediate consequence of results

in [58].

Theorem 5.1. A graph G is a median graph if and only if |M(u, v, w)| = 1, for

any triple of vertices u, v, w of G.

For two graphs G1 = (V1, E1) and G2 = (V2, E2), the Cartesian product G1�G2

is the graph with vertex set V1×V2, where two vertices (u1, u2), (v1, v2) are adjacent

whenever they have equality in one coordinate and adjacency in the other. The

Cartesian product of more graphs is defined likewise. We write G2 for G�G, and

Gk for the product of k copies of G. With this notation we have Qn = Kn
2 . A

Hamming graph is the Cartesian product of complete graphs, see [58; 59], whence

the hypercube is a special instance of a Hamming graph. For a beautiful, in-depth

treatise on the theory of various important types of graph products including the

Cartesian product see [40].
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For two graphs G1 = (V1, E1) and G2 = (V2, E2), the union G1∪G2 is the graph

with vertex set V1 ∪ V2 and edge set E1 ∪ E2, and the intersection G1 ∩ G2 is the

graph with vertex set V1 ∩ V2 and edge set E1 ∩ E2. We write G1 ∩ G2 6= ∅ when

V1 ∩ V2 6= ∅. The graph G1 − G2 is the subgraph of G1 induced by the vertices in

G1 but not in G2. A proper cover of a connected graph G consists of two subgraphs

G1 and G2 such that G1 ∩ G2 6= ∅ and G = G1 ∪ G2. Note that this implies that

there are no edges between G1 −G2 and G2 −G1. If both G1 and G2 are convex,

we say that G1, G2 is a convex cover. Every graph admits the trivial cover G1, G2

with G1 = G2 = G. This cover trivially is convex. On the other hand a cycle of

length at least four does not have a convex cover with two proper subgraphs.

5.2. The Expansion Theorem

Any tree can be constructed from smaller trees in various ways. First we consider

the following construction. Let T ′ be a tree, and let T ′1 and T ′2 be two proper

subtrees sharing one vertex u′ that cover T ′. Loosely speaking, we now pull the

two subtrees apart, by which vertex u′ is doubled, and then we insert a new edge

between the two copies of u′. Thus we obtain a larger tree T , which we say is the

expansion of T ′ with respect to the proper cover T ′1, T
′
2. Clearly, any tree can be

obtained from the one-vertex graph K1 by a succession of such expansions. Next we

construct the hypercube Qn by an expansion from a smaller hypercube. Take the

hypercube H ′ = Qn−1 and the trivial cover H ′1, H
′
2 with H ′1 = H ′2 = H ′. Now we

pull the two hypercubes H ′1 and H ′2 apart obtaining two disjoint copies of Qn−1 and

insert an edge between each pair of corresponding vertices, thus getting H = Qn.

Again it is clear that we can obtain any hypercube from K1 by a sequence of such

expansions. In view of the Metaconjecture, what is the property P that we are

tracking here? It turns out that we need convex covers for our expansion. We give

the precise definitions. For an illustration of the definitions and notations see Figure

5.2.

Let G′ be a connected graph and let G′1, G
′
2 be a convex cover of G′ with G′0 =

G′1 ∩ G′2. For i = 1, 2, let Gi be an isomorphic copy of G′i, and let λi be an

isomorphism from G′i to Gi. We write G0i = λi[G
′
0] and ui = λi(u

′), for u′ in G′0.

The convex expansion of G′ with respect to the convex cover G′1, G
′
2 is the graph G

obtained from the disjoint union of G1 and G2 by inserting an edge between u1 in

G01 and u2 in G02, for each u′ in G′0. We denote the set of edges between G01 and

G02 by F12. Note that F12 induces an isomorphism between G01 and G02. We say

that λi lifts G′i up to Gi. For any subgraph H ′ of G′ we abuse notation and write

λi[H
′] for λi[H

′ ∩ G′i]. So λi lifts the part of H ′ lying in G′i up to Gi. The proof

of the next Proposition is straightforward. The key in the proof is the following

Lemma.

Lemma 5.1. Let G be the expansion of G′ with respect to the convex cover

G′1, G
′
2 with lift maps λ1, λ2. Then the intervals in Gi are obtained by lifting
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up the corresponding interval in G′i, and, for v in G1 and w in G2, the in-

terval IG(v, w) is obtained as follows: let v = λ1(v′) and w = λ2(w′), then

IG(v, w) = λ1[IG′(v
′, w′)] ∪ λ2[IG′(v

′, w′)].

Proposition 5.1. A graph G obtained by successive convex expansions from K1 is

a median graph.

The Strong Metaconjecture now asks whether we get all median graphs in this

way, so that we have a characterization. We need some more notation, see Figure

5.2 for an illustration. Let G be a median graph, and let v1v2 be an edge in G. Let

G1 be the subgraph induced by all vertices closer to v1 than to v2 and let G2 be

the subgraph induced by all vertices closer to v2 than to v1. Since G is bipartite,

it follows that G1, G2 vertex-partition G. Let F12 be the set of edges between G1

and G2, and let G0i be the subgraph induced by the ends of F12 in Gi, for i = 1, 2.

Then it is proved in [56] (although not exactly in that order) that the following

facts hold:

(i) F12 is a matching as well as a cutset (minimal disconnecting edge set),

(ii) the subgraphs G1, G2, G01, G02 are convex subgraphs of G,

(iii) the obvious mapping of G01 onto G02 defined by F12 (i.e. u1 → u2, for any

edge u1u2 in F12 with u0i in G0i) is an isomorphism,

(iv) for every edge u1u2 in F12 with ui in G0i, the subgraph G1 consists of all

vertices of G closer to u1 than u2, and the subgraph G2 consists of all vertices
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of G closer to u2 than u1.

We call such a partition G1, G2 of G a split. Note that any edge in F12 defines

the same split. The subgraphs G1 and G2 are the sides of the split. If we are in

u1 of an edge u1u2 of F12, then G1 is the side of u1 and G2 is the opposide of

u1. We use this neologism as an homage to the guide at a boat trip that Buck

McMorris and my family took on the river Zaan north of Amsterdam along the

many windmills there. The guide did not speak any foreign language, but for the

English speaking tourists he had a leaflet, in which ‘opposide’ was used to point at

interesting features on the other side of the river.

Using the above notation it is clear that a convex expansion of a median graph

G′ with respect to the convex cover G′1, G
′
2 results in a median graph G with split

G1, G2. But now we also have the converse operation: by contracting the edges

in F12, that is, identifying the ends of each edge in F12 and then delete the edges

of F12, we obtain the contraction G′ of G with respect to the split G1, G2. To

illustrate this, just go from right to left in Figure 5.2. The contraction map κ is

defined as follows: restricted to Gi it is precisely λ−1
i , for i = 1, 2. When this far, it

is straightforward to prove that, if G is a median graph, then G′ is again a median

graph. Thus we get the following characterization of median graphs, see [56; 58].

Theorem 5.2 (Expansion Theorem). A graph G is a median graph if and only

if it can be obtained from K1 by successive convex expansions.

Because it allows induction on the number of vertices, but also on the number of

splits, this theorem is a very powerful tool in understanding the structure of median

graphs. We present a number of such structural features in the next section.

First we have another look at how to obtain larger trees from smaller ones, and

hence from K1. A simpler way to achieve this is: adding a pendant vertex. How can

we reformulate this property such that we can use the (Strong) Metaconjecture? It

must be such that we can apply the same procedure on hypercubes. Well, adding

a pendant vertex to a tree T ′ by making the new vertex adjacent to v in T ′ can be

achieved by expansion with respect to the convex cover T ′, {v}, where the one cov-

ering subgraph is the whole tree and the other is a ‘subtree’, in this case consisting

of a single vertex. The expansion for the hypercubes is of a similar type, the one

covering subgraph is the whole hypercube, the other is a convex subgraph (being

the whole hypercube again). We call a convex expansion of G a peripheral expansion

if it is performed with respect to the convex cover G1, G2, where G = G1 and G2

is a convex subgraph of G. For the peripheral contraction we define a peripheral

subgraph of a median graph G to be a subgraph G2 such that it is part of a split

G1, G2 with G2 = G02. Using the Expansion Theorem we can prove that a median

graph always contains a peripheral subgraph, see [60]. Note that this is not trivial.

Then we have another instance of the possibilities of the Strong Metaconjecture.
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Theorem 5.2 (Peripheral Expansion Theorem). A graph G is a median

graph if and only if it can be obtained from K1 by successive peripheral expansions.

The Expansion Theorem is a trivial corollary of the Peripheral Expansion The-

orem. But to find a peripheral subgraph in a median graph one has to start with

an arbitrary split G1, G2 and then prove that there exists a split H1, H2 such that

G1 is a proper subgraph of H1 and H2 a proper subgraph of G2, see [60]. This is

the reason that we did not start with the simple case of adding pendant vertices in

the tree case, but with the case of arbitrary expansion with respect to two proper

subtrees sharing one vertex.

A basic proof technique when using the Expansion Theorem is as follows. One

or more contractions on the median graph G are performed to obtain a smaller

median graph G′, on which we apply the appropriate induction hypothesis. Then

we perform the corresponding expansions in reverse order on G′ so that we regain

G. During this process a vertex v is contracted to a unique vertex v′ in G′. When

we recover G from G′ by expansions, then v′ is lifted up in each expansion to the

appropriate side until we regain v. The sequence of vertices and expansions that

we obtain in this way from v′ to v is called the history of v (with respect to the

expansions involved). Similarly, if π = x1, x2, . . . , xk is a profile on G, then π

is contracted to a profile π′ = x′1, x
′
2, . . . , x

′
k on G′, where x′i is the contraction

of xi , for i = 1, 2, . . . , k. Thus we define the history of π in the obvious way,

and, similarly, we define the history of a subset of V or a subgraph of G. If v′ is a

vertex of G′ and we lift v′ up to a vertex z in an expansion of G′, then we call z a

descendant of v′. Hence, if we know which lifts are applied on v′ in the expansions

to regain G from G′, then we know the history of all descendants of v′.

5.3. The Armchair

In Economics (and Philosophy) the concept of Armchair Theorizing exists: by only

sitting in their armchair and looking at the world economists can come up with new

theories and insights, see [80]. Buck McMorris introduced me to this concept in

mathematics: now sitting in our armchair after proving some heavy duty theorems,

we let these do the work and come up with nice and new results. This approach

is much more solid than that within Economics. The results below are an example

of the use of the Armchair. We use the Expansion Theorem and the ideas and

notations developed in its proof.

A feature that follows immediately from the structure described above is the

following. A cutset coloring of a connected graph is a proper coloring of the edges

(adjacent edges have different colors) such that each color class is a cutset (a minimal

disconnecting edge-set). Of course, most graphs will not have a cutset coloring,

whereas even cycles of length at least six have more than one. If we want to cutset

color the edges of a graph, then, in an induced 4-cycle u → v → w → x → u,

opposite edges must have the same color. For, if the edge uv gets a color, then vw
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and ux must get another color. So u, x are on one side and v, w are on the other

side of the cutset color of uv, and thus wx must get the same color as uv. We call

this the 4-cycle property of cutset colorings. It follows from (i) to (iv) above that,

in any cutset coloring of the median graph G, the set F12 must be a color class. By

induction on the number of colors we get the next corollary [56; 58].

Corollary 5.1. A median graph is uniquely cutset colorable, up to the labelling of

the colors.

Note that, using the 4-cycle property, we find a split and its sides in a median graph

without computing any distances. The Strong Metaconjecture does not apply here.

Take the 3-cube Q3 and delete one vertex x. Now the three neighbors of the deleted

vertex do not have a unique median. On the other hand, the 4-cycle property gives

a unique cutset coloring. The 4-cycle property and the facts (i), (ii), (iii), (iv)

given in the previous section have been the basis for various recognition algorithms

for median graphs, see for instance [43; 41].

Let G1, G2 be a proper cover of a graph G. Then we say that G is the amalga-

mation of G1 and G2 along the subgraph G1 ∩G2. If the cover is convex, then we

say that it is a convex amalgamation. Note that in this case we amalgamate along a

convex subgraph of the two covering subgraphs. A tree is the convex amalgamation

of two smaller trees along a vertex. A hypercube is the ‘amalgamation’ with respect

to the trivial cover of itself. The following application of the Strong Metaconjecture

follows easily from the structural characterizations above.

Theorem 5.3. Let G be a graph that is not a hypercube. Then G is a median

graph if and only if it can be obtained from two smaller median graphs by convex

amalgamation.

A tree can be considered as built from 1-dimensional hypercubes, the edges,

glued together along 0-dimensional hypercubes, i.e. vertices. A hypercube has only

one hypercube as building stone. Thus we get the following characterization, see

[14], which is easily deduced from the previous theorem, but also from the Expansion

Theorem.

Theorem 5.4. A graph G is a median graph if and only if it can be obtained from

a set of hypercubes by convex amalgamations.

One should read this theorem carefully. It does not state that in each step

we amalgamate a new hypercube from our initial set of hypercubes to the graph

constructed so far. It may be necessary to construct two graphs by amalgamations,

and then amalgamate these two to obtain a larger median graph. For example, take

the 2 by 2 grid (the Cartesian product of two copies of the path of length 2). The

initial set of hypercubes consists of four 4-cycles. First we construct two 2 by 1

grids by amalgamating two 4-cycles along an edge. Then we amalgamate these 2

by 1 grids along a path of length 2, see 5.3. Thus we amalgamate always along a
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convex subgraph. If we would have added a 4-cycle in each step, then we can only

amalgamate along a convex subgraph up to three of the four 4-cycles. To add the

fourth one we have to amalgamate along a path of length 2, which is not convex in

the 4-cycle.

 

Fig. 5.3. Amalgamation

Another early result on median graphs is the following characterization, see [57;

58]. An isometric subgraph H of G is a such that distances in H equal those in G:

dH(u, v) = dG(u, v) for any u, v in H.

Theorem 5.5. A graph G is a median graph if and only if it can be isometrically

embedded in a hypercube Q such that the median in Q of any three vertices in G

lies also in G.

A simple corollary is that the hypercubes are the only regular median graphs.

A less easy consequence of the Armchair is the following result, see [14], which

again can be explained using the Metaconjecture. Every automorphism of a tree

fixes its center and its centroid, that is, the center is mapped onto the center and

the centroid is mapped onto the centroid. This is a classical result of C. Jordan [44].

He studied trees, or actually, tree-like line structures in the plane, precisely for this

purpose: the behavior of the automorphisms on these structures. A consequence

of these results is that each automorphism fixes an edge, that is a subcube. Each

automorphism of a hypercube fixes the whole hypercube, hence again a subcube.

Theorem 5.6. Each automorphism of a median graph fixes some subcube, i.e. some

regular median subgraph.

5.4. Median Sets in Median Graphs

In [36] Goldman proved the classical result on how to find the median set of a profile

on a tree using majority rule, see [37; 82] for origins of this idea. Rephrased in our

terminology: if π is a profile on a tree T and T1, T2 is a split of T , then M(π) is on

the side where the majority of the elements of the profile are located. In the case of
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an even profile something else might happen: if half of the profile is in T1 and the

other half is in T2, then both ends of the edge between T1 and T2 are in the median

set of the profile. Note that in case the profile is even, the median set might induce

a path. A similar result holds for hypercubes. Now in the even case the median set

might be a subcube. These facts may be considered as inspiration for this section.

We need some extra notation. Let G be a median graph with split G1, G2, and let

π be a profile on G. Then πi is the subprofile of π consisting of all elements of π

contained in Gi, for i = 1, 2. The majority rule for median graphs reads as follows

and was proved first in [53].

Theorem 5.7. Let G be a median graph with split G1, G2, and let G′ be the

contraction with respect to this split. Let π be a profile on G. If |π1| > |π2|,
then M(π′) ⊆ G′1 and M(π) = λ1[M(π′)] ⊆ G1. If |π1| = |π2|, then M(π) =

λ1[M(π′)]∪λ2[M(π′)], and u1 is in M(π) if and only if u2 is in M(π), for any edge

u1u2 in F12.

An easy consequence of this theorem is the following result, which implies immedi-

ately that median sets are convex.

Theorem 5.8. Let G be a median graph and let π be a profile on G. Then

M(π) =
⋂

G1,G2 split with |π1|>|π2| G1.

The majority rule can also be formulated in a different form, see [61], which

then is called the Majority Strategy. If we are at a vertex u in a tree T and uv is

an edge, then we move to v if at least half of the profile is at the side of v. Note

that, if half of the profile is at the side of u and the other half at the side of v, then

we can move back and forth between u and v. We park and erect a sign at a vertex

where we get stuck, in case there is always a majority on one side, or we find a path,

of which all vertices are visited at least twice and all other vertices at most once.

In the latter case we park and erect a sign at each vertex visited at least twice. It

turns out that the median set is the set of vertices with a sign. Again such a move

to majority also works in hypercubes. The Strong Metaconjecture suggests the

Majority Strategy on graphs given below. This idea arose in Louisville, Kentucky,

while the author was visiting F.R. McMorris. We were driving to the University of

Louisville along Eastern Parkway. At some stretch there is a beautiful median on

Eastern Parkway, with green grass and large trees. Along this median there were

traffic signs that read: “Tow away zone. No parking on the median at any time”.

We use the notation πwv: it is the subprofile consisting of all elements of π closer

to w than to v.

Majority Strategy

Input: A connected graph G, a profile π on G, and an initial vertex in V .

Output: The set of vertices where signs have been erected.

• Start at the initial vertex.
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• If we are in v and w is a neighbor of v with |πwv| ≥ 1
2 |π|, then we move to w.

• We move only to a vertex already visited if there is no alternative.

• We stop when

(i) we are stuck at a vertex v or

(ii) we have visited vertices at least twice, and, for each vertex v visited at least

twice and each neighbor w of v, either |πwv| < 1
2 |π| or w is also visited at

least twice.

•We park and erect a sign at the vertex where we get stuck or at each vertex visited

at least twice.

Do we always find the median set using the Majority Strategy? The answer is

no, a simple example suffices. Take the complete graph K3 with vertices u, v, w

and let π = u, v, w. Now, for each edge xy there is only one vertex closer to y

than to x, viz. y itself. So we do not move from x to y. This means that, being

at x we are stuck at x, and only find x, whereas M(π) is the whole vertex set.

We find one median vertex but not all. Having applied the Strong Metaconjecture

already a couple of times the first equivalence in following theorem does not come

as a surprise, the main result in [61].

Theorem 5.9. Let G be a graph. Then the following statements are equivalent:

(i) G is a median graph.

(ii) The Majority Strategy produces M(π) in G, for each profile π.

(iii) The Majority Strategy produces the same set from any initial position v in G,

for each profile.

Statement (iii) in the theorem came as a bonus and was not foreseen in any way.

We conclude with another interesting feature of median sets in median graphs,

in which the median set of π is related to the vertex-deleted profiles: if π =

x1, x2, . . . , xk, then π − xi is the profile obtained from π by deleting xi.
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Fig. 5.4.
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Theorem 5.10. Let G be a median graph, and let π = x1, x2, . . . , xk be a profile

on G. If π is odd, then M(π) =
⋂k
i=1M(π − xi). If π is even, then M(π) =

Con[
⋃k
i=1M(π − xi)].

In Fig. 5.4 the profile π = x1, x2, x3, x4 is given as the black vertices. We have

M(π − xi) = {yi}, and M(π) = Con[∪4
i=1M(π − xi)] = Con[{y1, y2, y3, y4} = V .

5.5. Median Graphs in the Mathematical Universe

Although median graphs are a very nice common generalization of trees and hy-

percubes, they have a very special structure. So it seems that the class of median

graphs is quite esoteric and resides just somewhere in a remote corner of the uni-

verse of all graphs. But again appearances may be deceptive, as we shall see in this

section.

Let G = (V,E) be a (connected) graph. The subdivision Ĝ of G is obtained by

inserting a new vertex on each edge of G, thus subdividing each edge into two new

edges. Otherwise stated, the vertex set of Ĝ is V ∪E, and for any edge e = uv in G,

the vertex e in Ĝ is joined to the vertices u and v of Ĝ. The graph G∗ is obtained

from Ĝ by adding a new vertex z and making it adjacent to each vertex in V of Ĝ.

Note that, if G is a triangle, then G∗ is precisely Q3 minus a vertex. This graph is

not a median graph. So if G contains triangle, then G∗ cannot be a median graph.

On the other hand, if G is triangle-free, then it is a simple exercise to prove that G∗

is a median graph. Just identify in G∗ a vertex e = uv with the set {u, v}, identify

a vertex u in V with the set {u}, and identify z with ∅. Then the unique median of

the sets A,B,C is the set (A∩B)∪ (B ∩C)∪ (C ∩A). Thus we have the following

theorem, see [41].

Theorem 5.11. A connected graph G is triangle-free if and only if G∗ is a median

graph.

Let O be the class of connected, triangle-free graphs. Let M∗2 be the class of

median graph just constructed from the connected, triangle-free graphs. We call a

median graph cube-free if it does not contain a Q3. LetM2 be the class of cube-free

median graphs. This class plays a prominent role in McMorris, Mulder & Vohra

(this volume). Finally let M be the class of all median graphs. From the proof of

Theorem 5.11 in [41], it also followed that the mapping φ defined by G → G∗ is a

one-to-one correspondence between the class O and the class M∗2. Then we have

O 7−→M∗2 (M2 (M ( O.

So, essentially, there are as many connected triangle-free graphs as there are median

graphs in the Universe of All Graphs. Surely, we cannot consider triangle-free graphs

esoteric. Theorem 5.11 was used in [41] to show that the complexity of recognizing

median graphs is related to that of triangle-free graphs. This implies that the

algorithm in [35] seems to be best possible.
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5.6. Median Structures

Median structures can be found in many different guises. Here we present the main

ones: in various algebraic terms, in terms of set functions, in terms of hypergraphs,

in terms of convexities, in terms of geometries, and in terms of conflict models. In

the case of trees and hypercubes appropriate axioms can be found in the literature,

we do not review these here. A rich literature can be found on each of these median

structures and their respective contexts. We restrict ourselves to the references

pertaining to the origins and some recent exemplary ones.

5.6.1. Ternary algebras

A ternary algebra (V,m) consists of a set V and a ternary operator

m : V × V × V → V .

The underlying graph Gm = (V,Em) of (V,m) is defined by

uv ∈ Em ⇐⇒ u 6= v and m(u, x, v) ∈ {u, v} for all x ∈ V .

A ternary algebra (V,M) is a median algebra if it satisfies a certain set of algebraic

axioms. They were first introduced as ternary distributive semilattices by Avann

[1]. Median algebras were discovered independently a couple of times. The second

discovery of median algebras was by Sholander [75], named by him median semi-

lattice. In 76; 77] Sholander proved the equivalence of these median algebras with

the structures given below in Sections 5.6.2 - 5.6.3. The third independent discovery

of median algebras was by Nebeský in [65] under the name of normal graphic algebra

(or simple graphic algebra in [66]). Each of these authors had a different set of

axioms to characterize median algebras . We present here only those of Nebeský.

Let u, v, w be arbitrary elements of V .

(n1) m(u, u, v) = u;

(n2) m(u, v, w) = m(w, v, u) = m(v, u, w);

(n3) m(m(u, v, w), w, x) = m(u,m(v, w, x), w).

It turns out that (V,m) is a median algebra if and only if its graph Gm is a

median graph. Conversely, let G = (V,E) be a median graph, and define m(u, v, w)

to be the median of the triple u, v, w. Then (V,m) is a median algebra. Using

different terminology, this was first proved by Avann [2], and later independently

by Nebeský [66].

The term median algebra seems to be independently introduced by Evans [34],

Isbell [42] and Mulder [58]. Many other axiom systems for median algebras can be

found in the literature. Some more recent references are [32; 45].
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5.6.2. Betweenness

A betweenness structure (V,B) consists of a set V and a betweenness relation

B ⊆ V × V × V

satisfying at least the following conditions:

(b1) (u, u, v) ∈ B, for any u and v,

(b2) if (u, v, w) ∈ B then (w, v, u) ∈ B,

In such a broad sense betweenness structures were introduced in [48]. Various types

of betweenness structures with additional axioms exist in the literature, see e.g.

[74; 55]. If (u, v, w) ∈ B, then we say that “v is between u and w”. The graph

GB = (V,EB) of (V,B) is given by

uv ∈ EB ⇐⇒ u 6= v and (u, x, v) ∈ B only if x ∈ {u, v},

so there is nothing strictly between u and v.

A betweenness structure (V,B) is a median betweenness structure if it satisfies

the extra axioms:

(mb1) for all u, v, w ∈ V , there exists x such that (u, x, v), (v, x, w), (w, x, u) ∈ B,

(mb2) if (u, v, u) ∈ B, then v = u,

(mb3) if (u, v, w), (u, v, x), (w, y, x) ∈ B, then (y, v, u) ∈ B.

Then (V,B) is a median betweenness structure if and only if its graphGB is a median

graph. Conversely, let G = (V,E) be a median graph with interval function I, and

let B be the betweenness relation on V defined by (u, v, w) ∈ B if v ∈ I(u,w). Then

(V,B) is a median betweenness structure. This gives a one-to-one correspondence

between the median betweenness structures (V,B) and the median graphs with

vertex set V . The median betweenness structures were introduced by Sholander

[76] and proven to be equivalent with his median algebras from Section 5.6.1.

5.6.3. Semilattices

A semilattice is a partially ordered set (V,≤) in which any two elements u, v have

a meet (greatest lower bound) u ∧ v. If u and v have a join (least upper bound),

then we denote it by u ∨ v. For u ≤ v, we define the order interval to be [u, v] =

{w | u ≤ w ≤ v}. As usual, the covering graph G≤ = (V,E≤) of (V,≤) is given by

uv ∈ E≤ ⇐⇒ u 6= v and u ≤ w ≤ v if and only if w ∈ {u, v}.

A semilattice (V,≤) is a median semilattice if satisfies the following axioms:

(`1) every order interval is a distributive lattice,

(`2) if u ∨ v, v ∨ w and w ∨ u exist, then u ∨ v ∨ w exists for any u, v, w ∈ V .
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Then (V,≤) is a median semilattice if and only if its covering graph G≤ is a median

graph. Note that two different median semilattices can have the same median graph

as covering graph. Conversely, let G = (V,E) be a median graph with interval

function I and let z be a fixed vertex in G. We define the ordering ≤z on V by

u ≤z v if u ∈ I(z, v). Then (V,≤z) is a median semilattice with universal lower

bound z. This yields a one-to-one correspondence between the median semilattices

and the pairs (G, z), where G is a median graph and z is a vertex of G.

Median semilattices were introduced by Sholander [77] and proven to be equiva-

lent with his median algebras, median betweenness structures and median segments

(see Section 5.6.7). The equivalence with median graphs follows from the result of

Avann [2] on median algebras and median graphs. A direct proof of the above result

is given in Mulder [58]. For a recent reference see [52].

5.6.4. Hypergraphs and convexities

A copair hypergraph (V, E) consists of a set V and a family E of nonempty subsets

of V such that A ∈ E implies V −A ∈ E . As usual, its graph GE = (V,EE) is given

by

uv ∈ EE ⇐⇒ u 6= v and ∩{A ∈ E | u, v ∈ A} = {u, v}.

A copair hypergraph (V, E) is a maximal Helly copair hypergraph if it satisfies the

conditions:

(h1) E has the Helly property,

(h2) if A /∈ E , then E ∪ {A, V −A} does not have the Helly property.

Then a copair hypergraph (V, E) is maximal Helly if and only if its graph GE is a

median graph. Conversely, let G = (V,E) be a median graph, and let E consists

of the vertex sets of the split sides in G. Then (V, E) is a maximal Helly copair

hypergraph. This result was proven by Mulder and Schrijver in [64] using the

Expansion Theorem, see also [58]. Note that, if we take the closure E∗ of E by

taking all intersections and add V , then E∗ consists precisely of the convex sets of

GE . Thus we get an alternative formulation of the above result as follows.

A convexity (V, C) consists of a set V and a family C of subsets of V that is

closed under taking intersections. Its graph GC = (V,EC) is given by

uv ∈ EC ⇐⇒ u 6= v and
⋂
{A ∈ C | u, v ∈ A} = {u, v}.

The above result reads then: in a convexity (V, C) the family of convex sets C has

the Helly property and the separation property S2 if and only if its graph GC is a

median graph (cf. [79]).
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5.6.5. Join geometries

A join geometry (V, ◦) consists of a set V and a join operator ◦ : V × V → P(V )

satisfying

(j1) u ◦ u = {u},
(j2) u ∈ u ◦ v,

(j3) u ◦ v = v ◦ u,

(j4) u ◦ (v ◦ w) = (u ◦ v) ◦ w, for all u, v, w ∈ V .

Its graph G◦ = (V,E◦) is given by

uv ∈ E◦ ⇐⇒ u 6= v and u ◦ v = {u, v}.

For subsets U,W of V , we write U ◦W for the union of all u ◦ w with u ∈ U and

w ∈ W . If U = {u}, we write u ◦W instead of U ◦W . A set C in a join geometry

(V, ◦) is convex if C ◦ C = C. Join geometries were introduced and extensively

studied by Prenowitz and Jantosciak [72]. A join geometry (V, ◦) is a join space if

it satisfies the following conditions:

(S4) (Kakutani separation property) if C,D are disjoint convex sets in (V, ◦),
then there is a convex set H ⊂ V such that C ⊆ H and D ⊆ −H and

V −H is also convex,

(JHC) (Join-hull commutativity) if C is a convex set then Con({u} ∪C) = u ◦C,

for u in V .

Then the convex sets in a join space (V, ◦) have the Helly property if and only if

its graph G◦ is a median graph. Conversely, let G = (V,E) be a median graph

with interval function I, and define the join operator ◦ on V by u ◦ v = I(u, v).

Then (V, ◦) is a join space with convex sets having the Helly property. This result

is essentially due to Van de Vel [78], see also [68; 12; 79]. For a recent reference see

[28].

5.6.6. Conflict models

A conflict model (X,≤, A) consists of a set X, a partial ordering ≤ of X and a

set of edges A such that (X,A) is a graph. As usual, a subset Y of X is an ideal

whenever x ∈ Y and y ≤ x implies y ∈ Y , and Y is independent whenever there are

no edges in (X,A) between vertices of Y . One can construct a graph G = (V,E)

from a conflict model (X,≤, A) as follows: the vertex-set V of G consists of all

independent ideals of (X,≤, A), and we connect two vertices Y and Z by an edge

whenever they differ in one element (i.e. have symmetric difference of size 1). This

graph is a median graph, see [18].

Now the problem arises how to construct a conflict model (X,≤, A) from a

median graph G = (V,E) such that G can be reconstructed as above from (X,≤, A).
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Barthélémy and Constantin [18] gave a nice construction, which amounts to the

following. Let G = (V,E) be a median graph, and let z be a fixed vertex of G. For

a split G1, G2 defined by the edge uv with u in G1, we write Wuv for the vertex

set of G1 and Wvu for the vertex set of G2, and call Wuv,Wvu a split as well. The

elements of X are the splits Wuv,Wvu. We say that two different splits {Wuv,Wvu}
and {Wab,Wba} cross if the four intersections Wp ∩Wq, where p ∈ {uv, vu} and

q ∈ {ab, ba} are nonempty. Now let x = {Wuv,Wvu} and y = {Wab,Wba} be two

distinct non-crossing elements of X. We put

x ≤ y if, say, z ∈Wuv ∩Wab, and Wuv ⊆Wab,

xy ∈ A if x and y are incomparable with respect to ≤.

Note that crossing elements of X are incomparable as well as non-adjacent.

Barthélémy and Constantin [18] proved that the so obtained conflict model (X,≤, A)

reproduces G by the above construction. These conflict models (X,≤, A) con-

structed from median graphs have the following additional property

(p1) if xy ∈ A and x ≤ u, y ≤ v, then uv ∈ A.

Barthélémy and Constantin [18] named conflict models satisfying (p1) sites. In

computer science, they are known as conflict event structures, cf. [30]. The main

result of [18] reads then as follows: there is a one-to-one correspondence between

the sites and the pairs (G, z), where G is a median graph and z a vertex of G.

5.6.7. Transit Functions

For the purpose of this Section a transit function on a set V is a set-valued function

R : V × V → 2V − ∅ satisfying the two axioms:

(t1) u ∈ R(u, v), for any u, v,

(t2) R(u, v) = R(v, u), for any u, v,

See Section 5.7.5 for more information on this concept. The graph GR = (V,ER)

of the transit function is defined by

uv ∈ ER ⇐⇒ u 6= v and R(u, v) = {u, v}.

A transit function R on V is a median transit function if it satisfies the extra axioms:

(s1) there exists z such that R(u, v) ∩R(u,w) = R(u, z), for all u, v, w ∈ V ;

(s2) if R(u, v)∩R(u,w) = R(u, v), then R(x, u)∩R(x,w) ⊆ R(v, x), for any x ∈ V ;

(s3) if R(u, v) ∩R(u,w) = R(u, u), then R(u, u) ∩R(v, w) = {u}.

Then R is a median transit function if and only if its graph GR is a median graph.

Conversely, let G = (V,E) be a median graph with interval function I. Then I
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is a median transit function. This gives a one-to-one correspondence between the

median transit functions I on V and the median graphs with vertex set V .

Median transit functions R with the axioms (s1), (s2) and (s3) were introduced

by Sholander [76], which he called median segments, and were proven to be equiv-

alent to his median semilattices from Section 5.6.3. The equivalence with median

graphs follows from Avann [2]. In Mulder and Schrijver [64] a different set of ax-

ioms and direct proofs of the relation between median graphs and median transit

functions were given. There they were called median interval structures, cf. Mulder

[58].

In [79] a function satisfying (t1) and (t2) was called an interval operator. The

perspective in this book is that of convexities and separation properties similar to

those in topology. The reason why they are called transit function here is explained

in Section 5.7.5.

5.7. Generalizations

From early on, see [58], generalizations of median graphs have been considered. We

have encountered a couple in the previous section, in the form of various discrete

structures. But here the focus is on the generalizations of the graphs.

5.7.1. Quasi-median Graphs

The first generalization was already developed along with the first in-depth study

of median graphs in [58]. It is easiest to explain using the idea of expansion. In

Section 5.2 the expansion is performed with respect to a proper cover with two

convex subgraphs. We extend the definition of proper cover to k subgraphs. Let

G = (V,E) be a connected graph, and let G0 = (V0, E0) and G1 = (V1, E1), G2 =

(V2, E2), . . . , Gk = (Vk, Ek) be subgraphs of G. We say that G1 = (V1, E1), G2 =

(V2, E2), . . . , Gk = (Vk, Ek) is a proper k-cover of G if

G = ∪ki=1Gi and Gi ∩Gj = G0, for 1 ≤ i <≤ j.

The cover is called convex if all subgraphs involved are convex. The quasi-median

expansion with respect to this cover is obtained in the obvious way. Loosely speak-

ing: take disjoint copies of G1, G2, . . . , Gk and join the k copies of u by edges, for

each u in G0. So in the expansion each vertex u in G0 is replaced by a k-clique, and

G0 is replaced by a graph isomorphic to G0�Kk. Clearly, for k ≥ 3, the resulting

graphs is not bipartite. For k = 2, we call the expansion binary. With this new

terminology, a graph is a median graph if and only if it can be obtained from K1

by a succession of binary convex expansions. If we do not restrict the value of k,

then we call the resulting graph a quasi-median graph. This was not the definition

in [58]. There the search was for a generalization in terms of the defining property

of median graphs.
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The thing that worked was to replace the unique median for a triple of vertices

u, v, w by a triangular structure. A triple x, y, z is called triangular if

I(x, y) ∩ I(y, z) = {y}, I(y, z) ∩ I(z, x) = {z}, I(z, x) ∩ I(x, y) = {x}.

It is an equilateral triangle if d(x, y) = d(y, z) = d(z, x). The size of the equilat-

eral triangle is the value d(u, v). An equilateral triangle of size 0 is just a triple

x, x, x, which may be taken as a unique vertex x. A quasi-median for u, v, w is an

equilateral triangle x, y, z of minimal size such that x, y lie on a shortest u, v-path,

y, z lie on a shortest v, w-path, and z, u lie on a shortest w, u-path. Note that the

ordering of u, v, w and x, y, w is relevant. If we want to make this explicit, we could

write (x, y, z) being a quasi-median of (u, v, w). Then a quasi-median graph is a

graph in which any three vertices have a unique quasi-median with two extra con-

ditions. These are rather technical but necessary. We state these here for the sake

of completeness. The first one is as follows. Let K4 − e denote the graph obtained

from K4 by deleting an edge. Then K4 − e is forbidden as induced subgraph in

a quasi-median graph. Clearly, every triple in K4 − e has a unique quasi-median,

but this graph cannot be obtained from K1 by expansions. The second condition is

that an induced C6 in a quasi-median graph has as convex closure either Q3 = K3
2

of K2
3 . If we use this as definition, then one of the mains results in [58] reads as

follows.

Theorem 5.12. A graph G is a quasi-median graph if and only if it can be obtained

from K1 by a succession of quasi-median expansions.

Again, these graphs may look quite exotic, but we shall see in Section 5.8.4 that

there are non-trivial applications of these graphs. Note that a quasi-median (x, x, x)

of size 0 basically is just a single vertex. In this sense a quasi-median graph is rightly

a non-bipartite generalization of median graphs. It was the first such class to be

discovered, but not the simplest. For a simpler one we refer to Section 5.7.4.

Having a closer look at quasi-median graphs we see that the role of convex

subgraphs in median graphs is now played by gated subgraphs. Then the Armchair

provides us with two expected results: a quasi-median graph can be obtained from

smaller ones by amalgamation along a common gated subgraph, and a quasi-median

graph can be built from Hamming graphs as building stones by amalgamation along

gated subgraphs.

Given a quasi-median graph G = (V,E), we can define a ternary algebra in

the following way: if (x, y, z) is the quasi-median of (u, v, w), then for the ternary

operator q we define

(u, v, w) = x, (v, w, u) = y, (w, u, v) = z.

As in Section 5.6.1 we can characterize a ternary algebra coming from a quasi-

median graph by a set of axioms. There are many different sets of axioms available,

see e.g. [58; 13]. Brešar had a different nice approach using the imprint function.
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Let u, v, w be vertices of G, then the imprint i(u, v, w) of u on v, w is the gate of

u in 〈{u, v}〉. It turns out that in a quasi-median graph i(u, v, w) is precisely x

in the quasi-median (x, y, z) of (u, v, w). The idea of imprint function provides is

with possibilities for different generalizations, see [19]. For recent results and uses

of quasi-median graphs see [20; 38].

5.7.2. Expansions

In [60] the idea of expansion was generalized as follows. We start with a proper

cover G1 = (V1, E1), G2 = (V2, E2), . . . , Gk = (Vk, Ek) of a connected graph G

with G0 as common subgraph of any of the two covering subgraphs. Let P be some

property shared by G1 = (V1, E1), G2 = (V2, E2), . . . , Gk = (Vk, Ek). Note that

we might also require a condition Q on G0. If P is the property convex, then

Q is automatically the property convex as well. Now we take disjoint copies of

G1 = (V1, E1), G2 = (V2, E2), . . . , Gk = (Vk, Ek) and insert edges between the

respective copies of G0 according to some rule ρ. The resulting graph is then the

P, ρ-expansion of G with respect to the given cover. If k = 2, then we call the

expansion binary. Now a graph is a median graph if and only if it can be obtained

from K1 by successive binary, convex, convex, Cartesian expansion, where Cartesian

means that the rule ρ is that the new edges make a Cartesian product G0�K2.

Another important example is when we take property P to be isometric, that

is, distances in the subgraphs are equal to those in the whole graph. A partial cube

is an isometric subgraph of a hypercube. Note that any even cycle is a partial cube.

Median graphs are another instance. Partial cubes were first studied by Djokovic

[31], but not yet under the name partial cube. His characterization involved the

relation Θ on the edges of G: let e = uv and f = xy be two edges, then eΘf if

d(u, x) + d(v, y) 6= d(u, y) + d(x, v).

Note that in an induced 4-cycle opposite edges are in relation Θ. This relation

is reflexive and symmetric. By Θ∗ we denote the transitive closure of Θ. The

characterization by Djokovic of partial cubes was:

Theorem 5.13. A connected graph G is a partial cube if and only if G is bipartite

and Θ∗ = Θ.

A characterization involving expansions is due to Chepoi [25]

Theorem 5.14. A graph G is a partial cube if and only if it can be obtained from

K1 by successive binary, isometric, Cartesian expansions.

Note that the common subgraph G0 does not need to be isometric, because the

intersection of two isometric subgraphs can still be anything.

Partial cubes have been extensively studied in the last decade, notably by Imrich,

Klavžar, Brešar and their co-authors, and by Polat, see e.g. [46; 70; 71]. Several

papers on partial cubes were inspired by properties of median graphs, see e.g. [49].



September 14, 2010 14:52 World Scientific Review Volume - 9.75in x 6.5in ws-rv975x65

114 H.M. Mulder

In [39] two other interesting generalizations of median graphs are characterized

with special instances of expansion: almost median graphs and semi-median graphs.

We omit details.

5.7.3. Retracts

A subgraph H of a subgraphG is a retract of G if there exists a mapping r : V (G)→
V (H) such that each edge of G is mapped either onto an edge or a vertex of H. So

it fixes every vertex of H, and it may shrink distances. Using peripheral expansions

one can prove the following characterization of median graphs due to Bandelt [5].

Theorem 5.15. A graph G is a median graph if and only if it is a retract of a

hypercube.

Not surprisingly, quasi-median graphs also have a retract characterization, due to

Wilkeit [81]:

Theorem 5.16. A graph G is a quasi-median graphs if and only if it is the retract

of a Hamming graph.

Retracts form an interesting area in graph theory, but retracts can also be defined

for other structures than graphs, for instance (partially) ordered sets.

5.7.4. Median-type Graphs

By now there is an abundance of generalizations of median graphs, each with its

own merits. First we concentrate on those where the condition is a generalization of

the idea of a median vertex of a triple of vertices. The simplest non-bipartite case

is that of pseudo-median graphs. A pseudo-median of a triple of vertices (u, v, w) is

a triangle, i.e. a K3, on x, y, z such that edge xy is on a shortest u, v-path, edge uz

is on a shortest v, w-path, and edge zx is on a shortest w, u-path. A pseudo-median

graph is a graph G, in which each triple of vertices has a unique median or a unique

pseudo-median. These graphs share nice properties with median graphs, see [11;

12]. For instance, there is an amalgamation characterization. The regular ones

are characterized. And each automorphism of a pseudo-median graph has a fixed

regular pseudo-median subgraph.

Another generalization is dropping the uniqueness of medians and the like. A

modular graph is a graph in which any three vertices have at least one median.

They occur for instance when considering retracts of bipartite graphs, see [9]. A

pseudo-modular graph is a graph in which any three vertices have either a median

or a pseudo-median (so not necessarily unique). Again these graphs may seem

rather exotic, but surprisingly they are a common generalization of two seemingly

unrelated classes: that of the median graphs and that of the distance hereditary

graphs, see [10]. But also retracts of reflexive graphs are pseudo-modular, see [9].
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A quite broad generalization is that of weakly median graphs, see [7; 8; 24]. It

involves three conditions that one or another play a role in many characterizations

of median graphs, see [48]. Therefore they are given here in full. A connected

graph is a weakly median graph if it satisfies the following three conditions. These

conditions were already present in [58], although only implicitly.

(T ) Triangle condition: for any three vertices u, v, w with 1 = d(v, w) < d(u, v) =

d(u,w) there exists a unique common neighbor x of v and w such that

d(u, x) = d(u, v)− 1.

(Q) Quadrangle condition: for any four vertices u, v, w, z with d(v, z) = d(w, z) =

1 and 2 = d(v, w) ≤ d(u, v) = d(u,w) = d(u, z) − 1, there exists a unique

common neighbor x of v and w such that d(u, x) = d(u, v)− 1.

(TQ) Meshed condition: for any three vertices u, v, w such that v and w are at

distance 2 and have some common neighbor z with 2d(u, z) > d(u, v)+d(u,w),

there exists a unique common neighbor x of v and w with 2d(u, x) < d(u, v)+

d(u,w).

If we drop uniqueness in the above conditions then of course we get the weakly

modular graphs. There is a host of graph classes that are a superclass of the median

graphs and a subclass of the weakly median (modular) graphs. Moreover, one may

drop one or two of the above conditions to get even broader classes. It seems that

a lot is still to be done here. And nice results still might be obtained. We let these

things stand here.

5.7.5. Transit Functions

The idea of transit function was already proposed by the author in 1998 at the

Cochin Conference on “Graph Connections”, but it was published only in 2008,

see [62], see also Section 5.6.7 for more information on transit functions. Transit

functions are a way to have a broad perspective on how to move around in a graph,

or another discrete structure, say (partially) ordered sets. As we will see, the interval

function I of a graph G is a special instance of a transit function.

A discrete structure (V, σ) consists of a finite set V and a ‘structure’ σ on V .

Prime examples of discrete structures on V are a graph G = (V,E), where σ = E

is the edge set of the graph, and a partially ordered set (V,≤), where σ = ≤ is a

partial ordering on V . We denote the power set of V by 2V .

A transit function on a discrete structure (V, σ) is a function R : V × V → 2V

satisfying the three transit axioms

(t1) u ∈ R(u, v), for any u, v,

(t2) R(u, v) = R(v, u), for any u, v,

(t3) R(u, u) = {u}, for any u.

Axioms as these, which are phrased in terms of the function only, will be called

transit axioms. In Section 5.6.7 axiom (t3) was not included because it followed
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from axiom (s3). One might drop this axiom altogether, but then some uninteresting

degenerate cases evolve. Note that the structure σ is not involved in the definition of

a transit function. But, of course, the focus of our interest will be on the interplay

between the function R and the structure σ. Usually, R will just be defined in

terms of σ. Here we restrict ourselves to graphs. Then we are interested in the

interrelations between the two structures E andR on V . Basically, a transit function

on a graph G describes how we can get from vertex u to vertex v: via vertices in

R(u, v). The underlying graph GR = (V,ER) of transit function R is defined by

uv ∈ ER ⇐⇒ u 6= v and R(u, v) = {u, v}.

The idea behind the introduction of this concept was the following. Having a transit

function of one type, for instance the interval function I, what can we say about

another transit function R if we carry over specific properties of I to R. The

following example might clarify this approach. To characterize the median graphs

one considers I(u, v, w) = I(u, v) ∩ I(v, w) ∩ I(w, u) and puts a condition on this

set. Now take the induced path function J defined by

J(u, v) = { w | w lies on some induced u, v-path }.

What happens if we impose conditions on J(u, v, w) = J(u, v) ∩ J(v, w) ∩ J(w, u)?

In the case of I, the set I(u, v, w) is empty more often than not. But for J(u, v, w) it

is the opposite: in most cases it will be a large chunk of vertices. A first observation

is that J(u, v, w) is empty for any triple of distinct vertices if and only if the graph

is complete. A second observation is that |J(u, v, w)| = 1 for any triple of vertices

u, v, w if and only if each block (i.e. maximal 2-connected subgraph) is a K2 or

C4. The interesting case arises when we require |J(u, v, w)| ≤ 1. Then we get

a non-trivial class of graphs called the svelte graphs, see [55]. Another example

is provided in [22]. For a systematic approach and many ideas and possibilities

for future research see [62]. See also [23] for interesting cases. Changat and his

co-authors and students have studied various transit functions inspired by [62]: for

instance, the induced path function, the longest path function, and the triangle-path

function. A recent example is [63].

5.8. Applications

In the previous section an application of median graphs in computer science in the

guise of conflict models was already given. By now there are many and diverse

applications of median graphs. Not surprisingly, these are often generalizations of

existing applications of trees or hypercubes. We shortly survey the most important

ones.
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5.8.1. Location Theory

By definition, median graphs are interesting from the viewpoint of finding optimal

locations. From Theorem 5.8 it follows that odd profiles always have a single median.

The converse is also true: given any odd number 2k + 1, if all profiles of length

2k + 1 have a unique median, then the graph is a median graph. Slackening the

conditions in the Majority Strategy we get other interesting strategies, for instance

the Plurality Strategy: we may move from v to its neighbor w if there are at least

as many elements in the profile closer to w than to v. For this strategy see [4]. The

center in a tree is an edge, the center of the hypercube is the whole cube. What is

the center in a median graph? We have not yet come up with the correct property

P to apply the Metaconjecture. Hence this problem is still open: it seems to be

non-trivial. For a generalization of the centroid of a tree that applies to median

graphs see [69].

We present only one other use of median graphs in finding optimal locations.

In [26] Chung, Graham and Saks formulated a dynamic search problem on graphs.

Let G = (V,E) be a connected graph, and assume that there is some specific

information located at every vertex. An operator is located at a vertex u in the

graph and handles quests for information. For the sake of simplicity, we assume

that a quest for information at vertex v just comes in as a quest for vertex v. The

operator can do two things, both of which have costs attached to it:

(a) retrieve vertex v from position u, which costs d(u, v),

(b) move from position u to position w, which costs d(u,w).

The aim of the operator is, given a sequence of quests, to find a sequence of po-

sitions in the graph from which he retrieves the requested information such that

the total costs of moving and retrieving is minimized. Otherwise formulated, let

Q = q1, q2, . . . , qn be a quest sequence, and let P = p0, p1, p2, . . . , pn be a po-

sition sequence with initial position p0 , both consisting of vertices of G, then the

i-th step consists of moving from position pi−1 to position pi , with cost d(pi−1, pi),

and retrieving quest qi from position pi , with cost d(pi, qi). Hence the total costs of

the i-th step are d(pi−1, pi) + d(pi, qi). With this terminology the Dynamic Search

Problem reads: given initial position p0 and quest sequence Q = q1, q2, . . . , qn
in a connected graph G, find a position sequence P = p0, p1, p2, . . . , pn minimiz-

ing
∑

1≤i≤n [d(pi−1, pi) + d(pi, qi)]. A position sequence attaining this minimum is

called an optimal position sequence. In practice, the operator can not just wait until

all quests have come in, so at any time he will only have partial knowledge of the

quest sequence. If he only knows one quest at a time, then nothing smarter can be

done than just retrieving the information. So theory will not be of any help. If the

operator has foreknowledge of the next k quests in position pi , then the situation is

different. Now the best thing to do is to choose pi+1 fromM(pi, qi+1, qi+2, . . . , qi+k).

For, if no other quests come in, the operator will minimize the costs of retrieving
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the remaining information by staying in pi+1. We will call this strategy the median

strategy. Now there might be a problem: with hindsight after having dealt with

all the quests, it may turn out that the median strategy, although being optimal

during short stretches of time, does not produce an optimal position sequence with

respect to the entire sequence Q. This raises the question on which graphs the

median strategy for the short term is also optimal for the long term. In [26] the

following interesting theorem was proved.

Theorem 5.17. Let G be a connected graph. Then the median strategy with fore-

knowledge of the next two quests in each step yields an optimal position sequence

for any initial position and any quest sequence if and only if G is a median graph.

In [27] it was proven that the quasi-median graphs are the graphs where dynamic

search with foreknowledge of k quests is always optimal. Then the maximum num-

ber of subgraphs in the covers used should be k.

5.8.2. Consensus Functions

A consensus function is a model to describe a rational way to obtain consensus

among a group of agents or clients. The input of the function consists of certain

information about the agents, and the output concerns the issue about which con-

sensus should be reached. The rationality of the process is guaranteed by the fact

that the consensus function satisfies certain “rational” rules or “consensus axioms”.

More formally, let V be a set, and let V ∗ be the set of all profiles on V . A consensus

function is a function f : V ∗ → 2V − ∅. The problem of the rationality is then to

characterize f in terms of axioms on f . For more information on consensus theory,

see Powers (this volume), and also [29].

A typical instance of a consensus function is the median function M : V ∗ →
2V − ∅ on a graph or a partially ordered set, where M(π) is just the median set

of π. The input is the location of the agents in the graph or ordered set, and the

output are the vertices (or points) that minimize the distance sum to the location

of the agents. For axiomatic characterizations of location functions see McMorris,

Mulder & Vohra (this volume). We omit further treatment of this topic here.

5.8.3. Chemistry

In recent years a rather unexpected occurrence of median graphs in nature was

discovered, e.g. in chemical substances, see [73; 51]. The benzene molecule consists

of six carbon atoms and six hydrogen atoms. There bonds are depicted in Figure 5.5.

Each H-atom is singly bonded to a unique C-atom. The six C-atoms are bonded

in a hexagon. This accounts for three bonds per C-atom. A C-atom is 4-valent.

The six remaining free bonds are realized by three pairwise bonds as in Figure

5.5. These extra bonds are then a perfect matching of the six C-atoms. There are

two possibilities for the perfect matching, which produce two states. In the case
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Fig. 5.5. Benzene: its two states

of benzene, these states are identical. Usually the benzene molecule is depicted

without the letters signifying the atoms. This structure is called the benzene ring

and was discovered by Kekulé in 1865.

 

(A) 

(B) 

Fig. 5.6. The three naphthalene states and their graph

A benzenoid is a chemical substance, of which the molecule consists of benzene

rings formed as a hexagonal substructure of the hexagonal grid in the plane, see

Figure 5.6 for the example of naphthalene . The H-atoms attached to the perimeter

of the structure are not depicted. Again the free bonds are grouped together to form

a perfect matching. Note that we restrict ourselves here to the case that such a

perfect matching is possible. Such structures are known in the chemical literature as

Kekulean. As we can see in the figure, there are several perfect matchings possible.

These are the states of the molecule. A chemical question now is how can we analyze

the states of the molecule? For this purpose the resonance graph was introduced:

its vertices are the perfect matchings, and two vertices are adjacent if, as perfect

matchings, they differ in exactly one hexagon. Then these graphs are studied. It

turns out that the resonance graphs of Kekulean structures are median graphs with

some specific extra properties. This was first observed in [73] due to a remark of

Tomaž Pisanski, and proven in [50; 51].
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5.8.4. Biology and Psychology

In evolutionary theory one wants to reconstruct the history of the evolution of

species. This can be done by constructing a genealogical tree for a family of species.

How closely two species are related is determined by the dissimilarities. The vertices

in the tree are the species, two vertices being adjacent if one of the corresponding

species is assumed to be a direct mutant of the other. It turns out that it is not

possible to explain the full history with the species found sofar. So we hope to find

new species in the future that fill in the gaps. To make the tree as complete as

possible so-called missing links are introduced: species to be found, these will then

be presented by virtual or latent vertices. What we want to avoid is to introduce

a new missing link for every unexplained gap. So we would like to construct a

family tree with as few latent vertices as possible. In [21] Buneman developed a

method how to construct such trees given the available data. Classification based

on similarities/dissimilarities plays an important role in biomathematics, see [29],

and in psychology as well. This is a well-developed area, see also Estabrook (this

volume) for the use of other mathematical disciplines in biomathematics. See for

instance [33] for the use of trees and median graphs in taxonomy.

In the context of this chapter one other example should be mentioned. It is

a generalization of the Buneman graph given above. Now the object of study is

the analysis of data based in information of DNA. The graphs that arise are now

quasi-median graphs, see [38]. So, surprisingly, such exotic graphs as quasi-median

graphs have a ‘manifestation’ in nature.

An example of the occurrence of median graphs in psychology is [17].

5.8.5. Literary History

One of the applications that appeals to me the most is the following. As we have

seen above, in evolutionary theory there exist missing links that need to be in-

cluded to get a full picture of evolutionary history. In literary history a similar

phenomenon exists. To get a copy of a medieval manuscript one had to transcribe

the manuscript. This was done mostly in monasteries. So one gets a transcription

history for each text. Because sometimes manuscripts were partially destroyed or

unreliable it happened quite often that two or more manuscripts of the same text

were used to make a new transcription of the text. So instead of a genealogical tree

one gets a structure that has cycles in it. Due to various reasons, quite often fires,

complete manuscripts have been lost. So a complete transcription history cannot

be reconstructed. Because of the cycles Buneman’s theory of the previous section

does not apply anymore. In [16] Barthélémy proved a very nice result. The median

graphs provided precisely the graphs for this problem.
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5.8.6. Economics and Voting Theory

In Economics voting strategies have been a point of focus already for many decades.

One such voting procedure is the following. Take a connected graph G = (V,E),

and take two vertices u and v. Let π = x1, x2, . . . , xk be a profile of clients on G,

who have to chose between u and v. Now each client xi casts a vote: the vertex

closest to it. If d(xi, u) = d(xi, v), then xi abstains. Question: what vertices win

over all other vertices? For instance, on what graphs do we find the median set of

π? Take the profile π = x1, x1, x2, x3, x4 in Fig. 5.4, where vertex x1 occurs twice.

Now y1 wins over x1, but Med(π) = {x1}. So on a 3-cube the voting procedure

does not produce the median set. But Bandelt [6] proved that a graph is a cube-free

median graph if and only if this voting procedure always finds the median set for

any profile. He also considered some related voting procedures.

An important feature of a voting procedure is whether it can be manipulated or

not by one or more of the voters. A way to manipulate the voting is to not cast your

true preference in voting. A voting procedure is called strategy-proof if no one voter

can manipulate the outcome by not casting his/her true preference. We focus here

on voting relevant for optimal location. A voting procedure on a graph G = (V,E)

is a function L : V k → V that assigns a single value to each profile of length k on

G. By π[xj → w] we denote the profile obtained from π = (x1, . . . , xj , . . . , xk) by

replacing xj by w. So π[xj → w] = (x1, . . . , xj−1, w, xj+1, . . . , xk), for 1 < j < k,

and π[x1 → w] = (w, x2, . . . , xk), and π[xk → w] = (x1, . . . , xk−1, w). A single-

valued location function L on G is strategy-proof if, for each π = (x1, . . . , xk) and

for each j with 1 ≤ j ≤ k, we have

d(xj , L(π)) ≤ d(xj , L(π[xj → w]))

for all w in V . Thus, voter i will never be able to improve (from her/his point-of-

view) the result of applying the location function by reporting anything other than

his/ger true preference xi.

Now the question is, what functions L are strategy-proof onG given the structure

of G. Clearly the answer depends on L as well as G. So far in economics the focus

has been on the continuous analogue. In this case, the interior points on edges

are also taken into account: such interior points can be profile elements as well as

outcomes of L. A path is then just a segment of the real line. When familiar with

median structures, one is not surprised that these arise in the study of strategy-

proofness of voting procedures. We give two relevant references, viz. [67; 15]. The

discrete case will be studied more extensively in [54].

There exists a rich literature in Economics on this concept of strategy-proofness.

Note that this is by no means an instance of Armchair Theorizing: real, hard work

has been done.
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5.9. Concluding Remarks

In the scope of this chapter we could only give an idea of the richness of the struc-

ture of median graphs. We could only touch many topics, generalizations, and

applications. Also the bibliography necessarily is just a small selection of the exist-

ing literature. There is still much to be done on median graphs, median structures,

their generalizations and applications. Recently especially Klavžar, Brešar, Imrich,

and their respective co-authors have been very productive in this area, see e.g. [3;

47]. For a more in-depth treatment of a specific problem area in median graph

theory we refer the reader to McMorris, Mulder & Vohra (this volume).
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9. H.J. Bandelt, A. Dählmann, H. Schtte, Absolute retracts of bipartite graphs, Discrete
Appl. Math. 16 (1987) 191–215.

10. H.J. Bandelt, H.M. Mulder, Distance-hereditary graphs, J. Combin. Theory Ser. B
41 (1986) 182–208.

11. H.J. Bandelt, H.M. Mulder, Regular pseudo-median graphs. J. Graph Theory 12
(1988) 533–549.

12. H.J. Bandelt, H.M. Mulder, Pseudo-median graphs: decomposition via amalgamation
and Cartesian multiplication, Discrete Math. 94 (1992) 161–180.

13. H.J. Bandelt, H.M. Mulder, E. Wilkeit, Quasi-median graphs and algebras, J. Graph
Theory 18 (1994) 681–703.

14. H.J. Bandelt and M. van de Vel, A fixed cube theorem for median graphs, Discrete
Math. 67 (1987) 129–137.
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In 1982, Slater defined and studied path subgraph analogues to the center, me-
dian, and branch weight centroid of a tree. We define three families of central
substructures of trees, including three types of central subtrees of degree at most
D, which yield the center, median, and centroid vertices for D = 0 and Slater’s
path analogues for D = 2. We generalize these results for several types of sub-
structures in trees, each yielding three families of subtrees suggested by the three
centrality measures involved with the center (eccentricity), the median (distance),
and the branch weight centroid (branch weight). We present a theoretical frame-
work in which several previous results sit. We prove that, in a tree, each type of
generalized center and generalized centroid is unique and discuss algorithms for
finding them. We also discuss the non-uniqueness of our generalized median and
an algorithm to find one.

Dedicated to F.R. Buck McMorris on the occasion of his 65th birthday

Introduction

For many purposes one is interested in determining the “middle” of the graph. For

instance, already in 1869 Jordan [1] used one concept of the middle in the case of

trees in order to determine the automorphism group of a tree. From the viewpoint

of applications, an interesting example is the placing of one or more facilities on a

network: given a set of clients that has to be serviced by the facilities, the aim is

to find a location for the facilities that optimizes certain criteria. Even in the case

of trees and only one facility, there is no uniquely determined “middle” of a tree; it

very much depends on the problem at hand and the criteria employed. For example,

if the facility is a fire station, then a criterion is likely to be: minimize the maximum

distance from the facility to the flammable objects. Whereas, if the facility is a dis-

127
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tribution center for a set of warehouses or outlet stores, then a criterion is likely

to be: minimize the sum of the distances from the facility to all of the warehouses,

as that is a determining factor in the cost of servicing the warehouses. Or, if the

managers of a distribution center are interested in economizing deliveries, then a cri-

terion might be: minimize the maximum possible number of deliveries to customers

from the facility with a single delivery truck before the truck returns to the facility

for re-supplying. To date, an abundance of all kinds of centrality notions for trees

occur in the literature (see Reid [2]), and many have natural generalizations for arbi-

trary connected graphs. The two classical examples, the center and centroid, are due

to Jordan [1]. The center of a tree T is the set of all vertices of T that minimize the

maximum distance to all other vertices, i.e., {x ∈ V (T ) : e(x) ≤ e(y), y ∈ V (T )},
where, for u ∈ V (T ), e(u) = max{d(u, v) : v ∈ V (T )}. The branch weight centroid

of a tree T (or merely centroid) is the set of vertices x of T that minimize the max-

imum order of a connected component of the subforest of T resulting by deleting x

(and all of its incident edges), i.e., {x ∈ V (T ) : bw(x) ≤ bw(y), y ∈ V (T )}, where,

for u ∈ V (T ), bw(u) = max{|V (W )| : W is a connected component of T − u}. A

third, fundamental middle set is the median of a tree (apparently first mentioned

by Ore [3] in 1962). The median of a tree T is the set of vertices of T that min-

imize the sum of the distances — or, equivalently, the average distance — to all

other vertices, i.e., {x ∈ V (T ) : D(x) ≤ D(y), y ∈ V (T )}, where, for u ∈ V (T ),

D(u) =
∑
{d(u, v) : v ∈ V (T )}. The center and the median have natural gener-

alizations to arbitrary connected graphs; generalizations of centroids to arbitrary

connected graphs have been given by Slater [4; 5].

Slater [6] generalized these notions, although in a different sense; he considered

paths in a tree that minimize appropriate criteria. In this case, the notions of

center, centroid, and median lead to three different optimal paths: central path,

spine, and core, respectively, in the terminology of [6]. A path in a tree is a subtree

of maximum degree at most 2, so a natural next step is to consider subtrees of

maximum degree at most D. In Section 2 we define the TD-center, TD-centroid,

and TD-median, which generalize centers, centroids, medians, central paths, spines,

and cores—and our results generalize known results for these six as well.

Slater’s work on path centers and spines stems from Jordan’s classic algorithm

for finding the center of a tree: delete all leaves, and repeat. In Section 3 we

develop a general framework for central substructures that are amenable to this

type of approach. This includes TD-centers, TD-centroids, work by McMorris and

Reid [7] (following Minieka [8]) on subtrees of order k that minimize eccentricity,

and the notion of a central caterpillar, suggested by McMorris [9]. Although there

have been many papers on generalizations of the center and centroid of a tree (see

Reid [2]), none directly generalize central paths or spines, and it seems that the

common aspect of centrality measures of this type that we describe has not been

explored — or even noticed. Indeed, we present a theoretical framework for many

centrality concepts in trees using eccentricity, branch weight, and distance.
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In Section 4 we consider the TD-median. There have been many interesting

generalizations of a core [10; 11; 12; 13; 14]. In particular, the k-tree core is like

our TD-median, except that instead of bounding the maximum degree, this concept

considers subtrees with at most k leaves. Both the 2-tree core and the T2-median

are equivalent to a core. There are linear time algorithms for finding a k-tree core of

a tree when k is fixed [10; 11], and we provide the analogous results for TD-medians.

To summarize our results: We will give linear time algorithms for finding the

unique TD-center, the unique TD-centroid, and a TD-median, for any tree when D is

fixed. We will also show how to obtain all of the TD-medians in time that is linear

in the sum of the order of T and the number of TD-medians. Also, for any tree

T , there is a small family of subtrees for the center measure and a small family of

subtrees for the branch weight measure, such that each generalization of a center

and centroid is realized in T by a unique member of the appropriate small family;

these families can be produced in linear time. Section 5 includes open questions

and possible extensions. There are also linear time algorithms for many of our

generalizations, but ultimately the running time depends on the ease of recognizing

which of a small family of subtrees is in a desired class of trees.

There are many generalizations that we do not discuss, most importantly where

vertices may have weights, edges may have lengths, and/or where edges are treated

as continuums on which central substructures may be located arbitrarily. A good

source for references to early work concerning these ideas is [15]. More recently,

variations have been studied extensively (see, for example, [16]).

6.1. Preliminaries

Let G = (V,E) be a connected graph with vertex set V and edge set E. For any

subgraph H of G, we denote its vertex set by V (H). The order of a (sub)graph

is the number of vertices in the (sub)graph. The degree d(v) of a vertex v in G is

the number of vertices of G adjacent to V , i.e., |{u ∈ V : vu ∈ E}|. As usual, Kn

denotes the complete graph of order n, i.e., every two distinct vertices are joined by

an edge. The subgraph of G induced by a subset W of V has vertex set W and edge

set consisting of all edges of G with both ends in W ; it is denoted by G[W ]. If G is

a tree and W ⊆ V , the smallest connected subgraph of G whose vertex set contains

W is denoted by G〈W 〉. Of course, G[W ] is a subgraph of G〈W 〉, and the inclusion

can be proper (e.g., when W is a subset of order at least 2 of the leaves of a tree T of

order at least 3, T [W ] has no edges, while the edge set of T 〈W 〉 is the union of the

edge sets of all paths between pairs of distinct vertices in W ). If W ⊆ V , then G−W
denotes the subgraph G[V −W ]. When W = {x}, G− {x} will be abbreviated as

G− x. The length l(P ) of a path P in G is the number of edges in P . The distance

d(u, v) between vertices u and v in connected graph G is the length of a shortest

path in G between u and v, i.e., d(u, v) = min{l(P ) : P is a path between u and v}.
The diameter dia(G) of G is max{d(u, v) : u, v ∈ V }. The eccentricity e(v) of a
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vertex v in G is the maximum of the distances from v to all the other vertices in

G, i.e., e(v) = max{d(v, u) : u ∈ V }. The center C(G) of G is the set of vertices

of G with smallest eccentricity, i.e., {x ∈ V : e(x) ≤ e(y), y ∈ V }. The distance

D(v) of a vertex v is the sum of the distances from v to all other vertices in G,

i.e.,
∑
{d(u, v) : u ∈ V }. The median M(G) of G is the set of vertices of smallest

distance, i.e, {x ∈ V : D(x) ≤ D(y), y ∈V}. A vertex in M(G) is a median vertex.

Note that D(v)
|V |−1 is the average distance from v to all other vertices of G, so M(G)

is the set of vertices of smallest average distance to the other vertices.

In the case that G is a tree, the branch weight bw(v) of a vertex

v in G is the order of a largest connected component of G − v, i.e.,

max{|V (W )| : W a connected component of G − v}. The branch weight centroid

B(G) (or merely centroid) of G is the set of all vertices of smallest branch weight,

i.e., {x ∈ V : bw(x) ≤ bw(y), y ∈ V }. More than 140 years ago, Jordan [1] proved

that for a tree G, C(G) and B(G) each consist of either one vertex or two ad-

jacent vertices. A particularly nice proof was given by Graham, Entringer, and

Székely [17]. Linear time algorithms can be found in [18; 19; 20; 21]. Zelinka [22]

showed that for a tree G, M(G) = B(G). However, for every positive integer k there

is a tree G so that d(x, y) ≥ k for every x ∈M(G) = B(G) and y ∈ C(G). In fact,

as shown in [23], given any two graphs H1 and H2 and any positive integer k, there

exists a connected graph H so that H1 and H2 are induced subgraphs of H with

C(H) = V (H1), M(H) = V (H2), and min{d(x, y) : x ∈ V (H1), y ∈ V (H2)} = k.

Slater [6] generalized each of these notions to path subgraphs. Suppose X and Y

are subgraphs or subsets of vertices of a connected graph G. The distance d(X,Y )

between X and Y is the smallest of the distances between vertices of X and vertices

of Y , i.e., d(X,Y ) = min{d(X,Y ) : x ∈ X, y ∈ Y }. When Y = {y} we abbreviate

d(X, {y}) by d(X, y). So, d(X,Y ) = 0 if and only if X∩Y 6= ∅ (or V (X)∩V (Y ) 6= ∅
if X,Y are subgraphs). The eccentricity e(X) is the maximum of the distances

between X and each of the other vertices of G, i.e., e(X) = max{d(X, y) : y ∈
V (G)}. A path center (or central path) of G is a path of shortest length among all

paths in G of minimum eccentricity, i.e., a shortest path P in G so that e(P ) ≤ e(P ′)
for all paths P ′ of G. The distance D(X) of X is the sum of the distances from X

to all other vertices of G, i.e.,
∑
{d(X, y) : y ∈ V (G)}. A path median (or core) of G

is a path P of minimum distance, i.e., a path P of G so that D(P ) ≤ D(P ′) for all

paths P ′ of G. In case T is a tree, the branch weight bw(X) of X is the the order of

a largest connected component of G−X (or G−V (X), if X is a subgraph). A path

centroid (or spine) of G is a path of shortest length among all paths of minimum

branch weight, i.e., a shortest path P in G so that bw(P ) ≤ bw(P ′) for all paths P ′

of G. It is possible in a tree for a path center, a spine, and a core to be distinct [6].

For trees, the path center and spine are unique [18; 6], contain C(G) and M(G)

respectively, and there are linear time algorithms for computing each [6]. However,

there may be many cores of a tree, and a core need not contain the median, but

there are linear time algorithms for finding a core of a tree and the set of vertices

that are contained in cores [24].
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In this paper, we generalize these central paths of a tree to several other types

of central subtrees of a tree.

Definition 6.1. Suppose that G is a tree and TD is the set of subtrees of G with

maximum degree at most D.

A TD-center of G is a tree of least order in the set {T ∈ TD : e(T ) ≤ e(T ′), T ′ ∈ TD}.
A TD-median of G is a tree in the set {T ∈ TD : D(T ) ≤ D(T ′), T ′ ∈ TD}.
A TD-centroid of G is a tree of least order in the set {T ∈ TD : bw(T ) ≤ bw(T ′), T ′ ∈
TD}.

Note that for D = 0, each TD-center is a single vertex in C(G), and each TD-

median and each TD-centroid is a single vertex in M(G) = B(G); hence, these are

not unique when |C(G)| = 2 or |M(G)| = 2. The T1-center is the subtree induced

by the center, G[C(G)], and the T1-centroid is the subtree G[B(G)]. If |M(G)| = 2

or if |V (G)| = 1, then the T1-median is G[M(G)]; otherwise, a T1-median is the

subgraph induced by the unique median vertex x and a vertex adjacent to x in

a largest connected component of G − x. Since paths are the trees of maximum

degree 2, when D = 2 the above definitions become the path center, core, and spine

of a tree. When D ≥ max{d(x) : x ∈ V (G)}, each of the subtrees is simply G itself.

6.2. Generalized path centers and path centroids

The following theorem is key to understanding our generalizations of the path center

such as the TD-center. To say that a subtree T of a tree G is minimal with respect

to some property P means that T has property P and no proper subtree of T has

property P .

Theorem 6.1. If G is a tree and k is an integer, 0 ≤ k ≤ e(C(G)), then G has a

unique minimal subtree with eccentricity at most k.

Proof. Suppose that G is the tree of order n and k is an integer, 0 ≤ k ≤
e(C(G)). For simplicity, denote e(C(G)) by e. The conclusion clearly holds for

n ≤ 3, so assume n ≥ 4 and e ≥ 1. We describe a “pruning” process, often used

to prove that |C(G)| = 1 or 2. For a tree T , let L(T ) denote the leaves of T ,

i.e., {x ∈ V (T ) : d(x) = 1}. Inductively define a nested family of subtrees of G as

follows: G0 = G, and, for 1 ≤ k ≤ e, Gk = Gk−1 − L(Gk−1). Note that e(Gk) = k

and Ge = G[C(G)].

First we observe that for each pair of distinct indices i and j, 0 ≤ i < j ≤ e,

and for each x ∈ L(Gj) there is y ∈ L(Gi) and a path of length j − i given by

x = vj , vj−1, . . . , vi = y such that vm ∈ L(Gm) for i ≤ m ≤ j. We also recall that

if subtree B of a tree A is such that L(A) ⊆ B, then A = B.

We show that no proper subtree of Gk has eccentricity at most k. This is

certainly true for k = 0, so assume k > 0. Suppose not, i.e., suppose that W is a

proper subtree of Gk with e(W ) ≤ k. So, there is x ∈ L(Gk) so that x 6∈ V (W ).
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By the observation above, there is y ∈ L(G0) and a path of length k given by x =

xk, xk−1, . . . , v0 = y such that vm ∈ L(Gm) for 0 ≤ m ≤ k. If vm ∈ V (W ) for some

m, 0 ≤ m ≤ k, then vm ∈ V (Gk) (as W is a subtree of Gk), so vm = vk = x since

none of vk−1, vk−2, . . . , v0 is in V (Gk). That implies x ∈ V (W ), a contradiction.

So, vm 6∈ V (W ) for all m, 0 ≤ m ≤ k. As d(x,W ) > 0 and the path of length

k given above contains no vertex of W , d(y,W ) = k + d(x,W ) > k. This implies

e(W ) > k, contrary to e(W ) ≤ k. So, Gk is a minimal subtree with eccentricity at

most k.

To complete the proof, we prove uniqueness. Suppose W is a subtree of G so that

(i) e(W ) ≤ k and (ii) no proper subtree of W has eccentricity at most k. We claim

that either Gk is a subtree of W or W is a subtree of Gk. Suppose not, i.e., suppose

thatGk is not a subtree ofW andW is not a subtree ofGk. Then there is x ∈ L(Gk),

x 6∈ V (W ), and there is w ∈ L(W ), w 6∈ V (Gk). Now, every vertex of G not in Gk,

such as w, is a leaf of some Gj , 0 ≤ j ≤ k − 1. By the observation above, there is

a path P of length k − j given by x = xk, xk−1, . . . , xj = w where vm ∈ L(Gm),

j ≤ m ≤ k. So, none of xk−1, xk−2, . . . , xj is in V (Gk). If W and Gk contain a

common vertex, say w′ ∈ V (W )∩V (Gk), there is a path Q in Gk between w′ and x

(as both x and w′ are in V (Gk)). Note that Q uses none of xk−1, xk−2, . . . , xj . The

path Q followed by path P is a path in G between two vertices w′ and w in V (W ).

Thus, this is the path between w′ and w, and consequently, every vertex on that

path is in V (W ). In particular, x ∈ V (W ), a contradiction to the choice of x. We

deduce that subgraphs W and Gk are vertex disjoint. but, C(G) ⊆ V (Gk); so W is

completely contained in a connected component R of G−C(G) and d(C(G),W ) > 0.

And, there exist at least two distinct leaves a 6= b in G in distinct component of

G − C(G) so that d(a,C(G)) = d(b, C(G)) = e(C(G)) = e. At least one, say a,

is not in R. Then e(W ) ≥ d(a,C(G)) + d(C(G),W ) = e + d(C(G),W ) > e, a

contradiction to the choice of E (i.e., (i)). We deduce that either Gk is a subtree

of W or W is a subtree of Gk. In the former case, the inclusion cannot be proper

by assumption (ii) and the fact that e(Gk) ≤ k. In the latter case, the inclusion

cannot be proper by assumption (i) and the first part of this proof concerning Gk.

In any case, W = Gk. That is, Gk is the unique minimal subtree of eccentricity at

most k. �

Throughout this section, we will use Xk to denote V (Gk), where Gk is the unique

minimal subtree of tree G with eccentricity at most k, 0 ≤ k ≤ e(C(G)), given in

the previous proof.

Remark 6.1. Observe that the “pruning” process given in the proof gives rise to a

linear time algorithm for finding Xk for all k, 0 ≤ k ≤ e(C(G)), as described below

in Theorem 6.5.

Next we develop a theorem that applies to a much more general class of central

structures than merely TD-centers. For this we introduce a couple of definitions.
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Definition 6.2. T is a hereditary class of trees if T is a nonempty set of trees such

that for each T ∈ T , every subtree of T is in T .

Observe that this resembles the definition of a hereditary class of graphs except

that “set of trees” and “subtree” replaces “set of graphs” and “subgraph”. However,

it is not a special type of hereditary class of graphs because the subtrees of a tree

are its connected subgraphs.

We first note a few easily checked facts.

Theorem 6.2. Let T be a hereditary class of trees. Then

(1) K1 ∈ T ,

(2) K2 ∈ T unless T = {K1},
(3) all subtrees of a fixed tree form a hereditary class of trees,

(4) unions and intersections of hereditary classes of trees yield new hereditary

classes of trees, and

(5) if T is finite and M = {T ∈ T : T maximal in T }, then T =

{W : W is a subtree of some T ∈M}.

Many other observations can be easily generated. For example: If |T | ≥ 2,

then K2 ∈ T . If |T | ≥ 3, then T also contains K1,2. If |T | = 4, then T contains

K1,K2,K1,2, and either K1,3 or P4 (the path of order 4).

Definition 6.3. Let T be a hereditary class of trees, let G be a tree, and let T ′ be

the subtrees of G that are in T . A T -center of G is an element of smallest order in

the set { T ∈ T ′ : e(T ) ≤ e(T ′), T ′ ∈ T ′}.

Note that this directly generalizes the TD-center from Definition 6.1, since TD
is the family of trees of maximum degree at most D, and TD is clearly a hereditary

class of trees.

Other examples include trees of order at most k, trees of diameter at most d

(for d = 2 these are stars), trees with at most ` leaves, caterpillars (including all

paths), lobsters (a lobster is a tree that contains a path of eccentricity at most 2),

subdivisions of stars, and all the subtrees of any fixed set of trees. The following

theorem applies to each of these classes.

Theorem 6.3. For a tree G and a hereditary class of trees T , the T -center of G is

unique unless both T = {K1} and |C(G)| = 2.

Proof. Clearly there is a T -center of G. Let T be a T -center of G. If e(C(G)) <

e(T ), then the subtree G[C(G)] is not in T , and by Theorem 6.2(1), |C(G)| 6= 1.

Hence |C(G)| = 2 and G[C(G)] = K2, so by Theorem 6.2(2), T = {K1}.
On the other hand, if e(C(G)) ≥ e(T ), then using k = e(T ) in Theorem 6.1, we

see that G[Xk] is the unique minimal subtree of G with eccentricity at most e(T ).

Given any subtree W of G with e(W ) ≤ k = e(T ), W contains a minimal subtree

W ′ of eccentricity at most k. But, by the uniqueness of G[Xk], G[Xk] = W ′, so we
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deduce that G[Xk] is a subtree of W . Using T in place of W , G[Xk] is a subtree of

T ; in particular, |Xk| ≤ |V (T )|. Since T is a hereditary class of trees, G[Xk] ∈ T .

For every T ′ ∈ T ′, e(G[Xk]) ≤ k = e(T ) ≤ e(T ′). So, G[Xk] ∈ T ′. As T is an

element of smallest order in the set {T ∈ T ′ : e(T ) ≤ e(T ′), T ′ ∈ T ′}, T = G[Xk].

That is, T is unique unless T = {K1} and |C(G)| = 2. �

Theorem 6.4. Let G be a tree, and let D be a positive integer. The TD-center of

G is unique, and, for each integer D′, 1 ≤ D′ ≤ D, the TD-center of G contains

the TD′-center of G.

Proof. Let D and D′ be integers, 1 ≤ D′ ≤ D. By Theorem 6.3, the TD-

center T is unique and the TD′ -center T ′ is unique. As TD′ ⊆ TD, it follows that

e(T ) ≤ e(T ′). The proof of Theorem 6.3 shows that T ′ is the unique minimal

subtree with eccentricity at most e(T ′). As every subtree of G with eccentricity at

most e(T ′) contains a minimal subtree with eccentricity at most e(T ′) and T is a

subtree of G of eccentricity at most e(T ′), we deduce that T contains T ′. �

Similar results can be obtained for other hereditary classes of trees. For example,

let C denote the set of caterpillars (including all paths), let G be a tree, and let

C′ be the subtrees of G that are in C. A caterpillar center of G is an element of

smallest order in {T ∈ C′ : e(T ) ≤ e(T ′), T ′ ∈ C′}. Since C is a hereditary class of

trees, each tree G has a unique caterpillar center. Of course, if G is a caterpillar

then the caterpillar center of G is G itself.

Remark 6.2. The caterpillar center of the tree G is not a path unless G is a

path. To see this, again note that the proof of Theorem 6.3 shows that the unique

caterpillar center is G[Xk], for some integer k, 0 ≤ k ≤ e(C(G)). So, G[Xk] is

a caterpillar contained in G of smallest order among all caterpillars of G with

smallest eccentricity. As e(C[Xk]) = k, any caterpillar contained in G of smallest

eccentricity has eccentricity k. If k > 0 and G[Xk] is a path, then by definition of

Xk−1 in the proof of Theorem 6.1, G[Xk−1] is a path or a caterpillar contained in

G and e(G[Xk−1]) = k − 1 < k, a contradiction. So, if k > 0, then G[Xk] is not

a path. If k = 0, G[X0] = G, so the caterpillar center is not a path unless G is a

path.

Similar results hold for other hereditary classes of trees, such as those mentioned

above following Definition 6.3. Moreover, recall that McMorris and Reid [7] defined

a central k-tree of a tree G to be an element of the set {T ∈ Ak : e(T ) ≤ e(T ′), T ′ ∈
Ak}, where Ak = {T : T a subtree of G order k}. Subtrees of order k do not form

a hereditary class of subtrees; indeed, a tree need not have a unique central k-

tree. However, the class T of trees of order at most k is a hereditary class. Then

the treatment by McMorris and Reid for finding central k-trees amounts to adding

arbitrary, new vertices adjacent to the T -center until trees of order exactly k are

obtained.
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Remark 6.3. In general, the T -center of a tree G can be found by finding each Xk

as k decreases from e(C(G)) to 0 and stopping at the largest index k so that G[Xk]

is not in T . Then G[Xk+1] is the T -center. As indicated in Remark 6.1, finding the

sets Xk can be accomplished in linear time. In certain instances we can also test

quickly whether G[Xk] is in T as we see next.

Theorem 6.5. Let G be a tree and let G[Xk] be its unique minimal subtree with

eccentricity at most k, for 0 ≤ k ≤ e(C(G)). There is a linear time algorithm that

finds all Xk for 0 ≤ k ≤ e(C(G)).

Proof. First, C(G) can be found in linear time (successively remove all leaves

until K1 or K2 remains). If C(G) = {x}, we let x be the root of G, and if C(G) =

{x, y} we contract y to x and let x be the root of the “adjusted” tree (and we still

refer to the adjusted tree as G). In the resulting rooted tree each non-root vertex v

is itself the root of a unique maximal tree Gv induced by all vertices reachable from

x via v. Let e′(v) be the eccentricity of v in Gv. We determine e′(v) for each v in V

by a depth-first search (DFS) from the root x as follows. Begin with e′(v) set to 0

for all v in V . When we arrive at a vertex v from its child u, update e′(v) to be the

maximum of e′(u) + 1 and the current value of e′(v). Observe that when the DFS

is done, all e′(v) are correctly computed in linear time. Note that e′(x) = e(C(G)).

For each 0 ≤ k ≤ e(C(G)) we create a list, and place a vertex v ∈ V in the list with

k = e′(v) (in linear time). Now let Xe(C(G)) = C(G), and for each k < e(C(G)), let

Xk = Xk+1 ∪ {v : e′(v) = k}. This can be done in linear time using the lists we set

up. Thus all Xk are found in linear time, as desired. �

Theorem 6.6. Let G be a tree and let D be a positive integer. There is a linear time

algorithm for finding the TD-center of G. There are similar linear time algorithms

for finding the T -center if T is the family of all of any of the following: any finite

hereditary class of trees (such as trees of order at most n), stars (including K1 and

K2), spiders (subdivisions of stars, including all stars), trees of diameter at most D,

trees with at most ` leaves, caterpillars (and paths), and lobsters (and caterpillars

and paths).

Proof. To find the TD-center in linear time, we modify the last step of Theo-

rem 6.5 so that each time we add a vertex of Xk − Xk+1 to Xk, we check to see

whether a vertex of degree greater than D has been created in G[Xk]. When that

happens, we stop and G[Xk+1] is the TD-center. If T is the family of trees with

at most ` leaves, and there are more than ` leaves in G, then we keep track of the

number of leaves in the current subtree G[Xk] by incrementing a counter (initial-

ized appropriately) each time a leaf is added which is incident to a current non-leaf.

When the counter exceeds ` as a leaf is added to G[Xk], we stop and G[Xk+1] is

the T -center. When T is the family of trees of order at most n, for some n ≥ 1,

the T -center can be found in linear time (much like the algorithm in [7]), since it

is trivial to recognize the minimum n such that |Xk+1| > n. (If n = 1, then C(G)
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is the set of T -centers, which can also be found in linear time.) Moreover, since

it takes constant time to check whether a tree is isomorphic to a given fixed tree,

whenever T is a finite hereditary class of trees, the T -center can be found in linear

time. (As above, T = {K1} is a special case.) If T represents stars (or spiders),

one simply chooses the minimum k such that G[Xk+1] has more than one vertex

of degree greater than 1 (degree greater than 2 for spiders). Thus the T -center is

found in linear time. Note that the diameter of G[Xk] is 2 plus the diameter of

G[Xk+1] if k ≥ 0, and the diameter of G[Xe(C(G))] is 0 or 1 when |C(G)| is 1 or 2,

respectively. Then it is easy to see that if T is the family of trees of diameter at

most D (with D ≥ 1), then, since dia(G[Xk]) = 2(e(C(G)) − k) + b |C(G)|
2 c, G[Xk]

is the T -center for k = max{0, e(C(G))− d(D − |C(G)|)/2e}.
To find the central caterpillar in linear time, we begin by finding k such that

G[Xk] is the T2-center (i.e., path center), as above. Note that this is very similar to

the algorithm for finding a path center given in [6]. As noted earlier, unless G is itself

a path, G[Xk−1] is not a path, in which case it is a caterpillar. Note that no vertex

of Xk−1 − Xk is a leaf in G[Xk−2] unless G[Xk−1] = G (and k = 1). Therefore,

G[Xk−2] is not a caterpillar when k ≥ 2, so G[Xk−1] is the central caterpillar unless

G is a path. Similarly, G[Xk−2] is the lobster center unless G is a caterpillar or a

path, and thus the lobster center can be found in linear time. �

For an arbitrary hereditary class of trees T , the running time for finding the

T -center ultimately depends on how easy it is to recognize whether each G[Xk] is

in T .

Similar results can be obtained when the branch weight function bw(·) is used

in place of eccentricity e(·). The analogous, fundamental result is given next.

Theorem 6.7. If G is a tree and k is an integer, 0 ≤ k ≤ bw(B(G)), then G

contains a unique minimal subtree with branch weight at most k.

Proof. Let G be a tree, and let k be an integer, 0 ≤ k ≤ bw(B(G)). Clearly the

conclusion follows if k = 0. So, assume k > 0 and |V (G)| ≥ 3. For simplicity, let

b = bw(B(G)). For a tree H, again let L(H) = {x ∈ V (H) : d(x) = 1}, the set

of leaves of H. For each v ∈ V (G) − B(G), define G to be the unique maximal

subtree of G with vertex set consisting of all vertices reachable from B(G) via v,

i.e., {u ∈ V (G) : d(B(G), u) = d(B(G), v) + d(v, u)}. We determine Gv for all

v ∈ V (G) − B(G). If v ∈ L(G), Gv is the subtree consisting of v alone. Note that

for v ∈ V (G) − (L(G) ∪ B(G)), vu is an edge of Gv (so, u ∈ V (Gv)) if and only if

d(B(G), u) = d(B(G), v)+1. Recursively, we see that for v ∈ V (G)−(L(G)∪B(G)),

subtree Gv is the subtree of G induced by v and
⋃
{V (Gv) : u ∈ V (G), d(B(G), u) =

d(B(G), v) + 1}. So, |V (Gv)| is determined for all v ∈ V (G) − B(G). Define the

nested family of sets Yk, 0 ≤ k ≤ b, as follows: Yb = B(G), and, for each k,

0 ≤ k < b, let Yk = Yk+1∪{v : |V (Gv)| = k+1}. So, if Vj = {v ∈ V : |V (Gv)| = j},
then Yb = B(G) and Yk = B(G) ∪

⋃b
j=k+1 Vj , for 0 ≤ k < b. In particular, for
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0 ≤ k ≤ b, any vertex v ∈ V with |V (Gv)| = k is not in Yk (and, hence, not in any

of Yb, Yb−1, . . . , Yk+1), but is in Yk−1 (and, hence also in Yk−2, Yk−3, . . . , Y0). And,

Yk is exactly the set of vertices of a subtree of G.

First, note that bw(Yk) ≤ k. For otherwise, there is a connected component W

of order at least k + 1 in G − Yk. Let uv denote the edge of G with u ∈ Yk and

v ∈ V (W ). As V (W ) ⊆ V (Gv), |V (Gv)| ≥ |W | ≥ k + 1. By the comments above,

this implies that v ∈ Yk, a contradiction to Yk ∩ V (W ) = ∅.
Second, no proper subtree of G[Yk] has branch weight at most k. For, suppose

W is a proper subtree of G[Yk] so that bw(W ) ≤ k. Let uv be any edge of G[Yk]

so that u ∈ V (W ) and v ∈ Yk − V (W ). Since B(G) ⊆ V (W ), V (Gv) ∩ V (W ) = ∅.
By the comments above, every vertex x ∈ Yk − B(G) has |V (Gk)| ≥ k + 1, so

|V (Gv)| ≥ k + 1. Then Gv is a connected component of G −W of order at least

k + 1. This implies bw(W ) ≥ k + 1, a contradiction. Hence, G[Yk] is a minimal

subtree of G of branch weight at most k.

Finally, G[Yk] is the unique minimal subtree of G of branch weight at most k.

For, suppose not, i.e., suppose that W is a subtree of G so that (1) bw(W ) ≤ k and

(ii) no proper subtree of W has branch weight at most k. We claim that either W

is a subtree of G[Yk], or G[Yk] is a subtree of W . Suppose not, i.e., suppose that

there is a vertex w ∈ V (W ), w 6∈ Yk and Yk is not a subset of V (W ). At this point

we invoke the following lemma, the proof of which is given below:

Lemma 6.1. Let G be a tree and let b = bw(B(G)). For each integer k, 0 ≤ k ≤ b,
and for each subtree W of G with bw(W ) ≤ k, B(G) ⊆ V (W ).

By Lemma 6.1, Yb = B(G) ⊆ V (W ). Let h be the index so that Yb ⊆ Yb−1 ⊆
. . . ⊆ Yh ⊆ V (W ), but Yh−1 6⊆ V (W ). Such an index exists since Yk 6⊆ V (W ),

and, thus, k ≤ h − 1. These set inclusions imply that there is a vertex v ∈ Yh−1,

v 6∈ V (W ), and as Yh ⊆ Yk, W 6∈ Yh. Since v ∈ Yh−1, |Gv| ≥ h. If any vertex,

say z, of V (Gv) − {v} is in V (W ), then the path in W from z to w must include

v, and, thus, v ∈ V (W ), a contradiction. So, V (W ) ∩ V (Gv) = ∅. That is, Gv
is a subtree of a connected component of G −W . This implies, bw(W ) ≥ |Gv| ≥
h ≥ k + 1 > k, contrary to the choice of W . That is, either W is a subtree of

G[Yk], or G[Yk] is a subtree of W . In the former case, by the first part of this

proof and assumption (1) above, we deduce W = G[Yk]. In the latter case, as

bw(G[Yk]) ≤ k and assumption (2) above, we deduce G[Yk] = W . Consequently,

G[Yk] is the unique minimal subtree of G of branch weight at most k. �

Proof. [Proof of Lemma 6.1] Assume G is a tree, b = bw(B(G)), k is an integer,

0 ≤ k ≤ b, and W is a subtree of G with bw(W ) ≤ k. Suppose B(G) is not a

subset of V (W ). If |B(G)| = 1, say B(G) = {x}, let x = x0, x1, . . . , xd = w be

the shortest path from x to a vertex w ∈ V (W ). Since bw(W ) ≤ k, the connected

component of G −W containing x (and x1, . . . , xd−1) has order at most k. And,

since bw(x) = bw(B(G)) = b, this implies that the connected component of G − x
containing W (and x1, x2, . . . , xd−1) is exactly b. Consequently if k < b, then
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each connected component of G − w has order less than b, i.e., bw(w) < b =

bw(B(G)) = min{b(v) : v ∈ V (G)}, a contradiction. Suppose k = b. If d > 1,

then bw(x1) ≤ b − 1 < b, again a contradiction. And, if d = 1, then bw(w) = b,

so that w ∈ B(G), a contradiction. We conclude |B(G)| 6= 1. If |B(G)| = 2, say

B(G) = {x, y}, either x or y is not in W . Without loss of generality, we may assume

that x 6∈ V (W ) and both y and W are in the same connected component of G− x.

Since bw(x) = bw(y), it is easy to see that y is in a connected component Y inG−x of

order bw(x) and x is in a connected component X in G−y of order bw(y). As x and y

are adjacent this implies |V (G)| = |V (X)|+|V (Y )| and |V (X)| = |V (Y )|. G−{x, y}
contains a connected component of order b. No such component is adjacent to x,

for otherwise, by our conventions for x and y, bw(W ) ≥ b+ 1 > b ≥ k, contrary to

the choice of W . So, all connected components of G−{x, y} of order b are adjacent

to y. We claim there is exactly one, and it contains W . Suppose that there are at

least two such components of G−{x, y} of order b. If there are vertices of W in two

or more of these components (so, y ∈ V (W ) as well), then connected components of

G−W are X and subtrees of the components of G− y that are adjacent to y. The

former component, X, has order |V (X)| = |V (Y )| ≥ 2b+ 1 > b, and components of

the latter type have order at most b, so bw(W ) = |V (X)| > b ≥ k, contrary to the

choice of W . So, there are vertices of W in at most one component in G − {x, y}
of order b, and there is at least one other component, say D, in G− {x, y} of order

b adjacent to y. If y ∈ V (W ), then as before, bw(W ) ≥ |V (X)| > b ≥ k, contrary

to the choice of W . If y 6∈ V (W ), then G[V (D) ∪ {y}] is a connected subtree

of order b + 1 contained in G − W , so bw(W ) > b ≥ k, again a contradiction.

So, there is no such other component D; that is, there is only one component of

G − {x, y} of order b. Suppose no vertices of W are in the unique component of

G − {x, y} of order b. Then bw(W ) ≥ |V (X)| = |V (Y )| ≥ b + 1 ≥ k + 1 > k,

again a contradiction. In summary, the unique component F of G−{x, y} of order

b contains W . Consequently, G− V (F ) is a subtree of G− V (W ), so that b ≥ k ≥
bw(W ) ≥ |V (G)|−|V (F )| = |V (X)|+|V (Y )|+b = 2|V (Y )|−b ≥ 2(b+1)−b = b+2,

a contradiction.

In conclusion, it is impossible for B(G) not to be a subset of V (W ). �

We now give the promised definition.

Definition 6.4. Let T be a hereditary class of trees, let G be a tree, and let T ′ be

the subtrees of G that are in T . A T -centroid of G is a tree of smallest order in the

set {T ∈ T ′ : bw(T ) ≤ bw(T ′), T ′ ∈ T ′}.

When T is TD, the hereditary family of trees of maximum degree D, we obtain

the TD-centroid of Definition 6.1. So, Definition 6.4 is a further generalization of

the centroid of a tree.

The proofs of the next two results are quite similar to their eccentricity ana-

logues, Theorems 6.3 and 6.4, so we leave the proofs to the reader.
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Theorem 6.8. For a tree G and a hereditary class of trees T , the T -centroid of G

is unique unless both T = {K1} and |M(G)| = 2.

Theorem 6.9. Let G be a tree, and let D be a positive integer. The TD-centroid of

G is unique and, for each integer D′, 1 ≤ D′ ≤ D, the TD-centroid of G contains

the TD′-centroid of G.

Remark 6.4. For a tree G, B(G) can be found in linear time [19]. The procedure

for finding |V (Gv)| for every v ∈ V (G) given in the proof of Theorem 6.7 can

be implemented in linear time. For each 1 ≤ k ≤ bw(B(G)) create a list and

place each v ∈ V (G) − B(G) in the list provided |V (Gv)| = k. As in the proof

of Theorem 6.7, Ybw(B(G)) = B(G), and for each 0 ≤ k < bw(B(G)), set Yk =

Yk+1∪{v ∈ V (G) : |V (Gv)| = k+1}. This can be done in linear time using the lists.

Thus, the sets Yk, 0 ≤ k ≤ bw(B(G)), so that G[Yk] is the unique minimal subtree

with branch weight at most k, can be found in linear time. This has implications

for T -centroids. In the remainder of this section we continue to utilize the sets Yk.

Theorem 6.10. Let G be a tree and let D be a positive integer. There is a linear

time algorithm for finding the TD-centroid of G. There are similar linear time

algorithms for finding the T -centroid if T is the family of all of any of the following:

any finite hereditary class of trees (such as trees of order at most n), stars (including

K1 and K2), spiders (subdivisions of stars, including all stars), trees with at most

` leaves, caterpillars (and paths), and lobsters (and caterpillars and paths).

Proof. The TD-centroid can be found in linear time for the same reasons that the

TD-center can be found in linear time, and the D = 2 case resembles the algorithm

for finding the path centroid given in [6]. Likewise, we can find the T -centroid in

linear time if T represents any finite hereditary class of tree (such as the trees of

order at most n), the stars, the spiders, or the trees with at most ` leaves.

Let C be the hereditary class of all caterpillars (including all paths). The cater-

pillar centroid (i.e., C-centroid) of a tree G is a bit harder to find than the caterpillar

center, since a vertex of Yk − Yk+1 may remain a leaf in Yk−1 (indeed, Yk = Yk−1

is a possibility). Suppose 0 ≤ k < b(B(G)). For two vertices x and y in Yk−1 − Yk,

|V (Gx)| = |V (Gy)| = k. If x and y are adjacent in G, then, since B(G) ⊆ Yk,

d(x,B(G)) and d(y,B(G)) are positive and |d(x,B(G)) − d(y,B(G))| = 1, say

d(x,B(G)) = 1+d(y,B(G)). Then V (Gx)∪{y} ⊆ V (Gy) so |V (Gy)| ≥ |V (Gx)|+1,

a contradiction. So, no two vertices in Yk−1−Yk are adjacent, i.e., Yk−1−Yk is either

empty or an independent set. This implies that any vertex in Yk−1 − Yk is a leaf in

G[Yk−1]. To find the caterpillar centroid, begin with the path centroid G[Yk]. Then,

by the comments above, G[Yk−1] is a caterpillar, denoted C. Label the vertices of

the path P obtained by deleteing the leaves of C from C by vm, vm+1, . . . , vm+p in

the order encountered in a traverse of P from one end to the other end, where m is

any integer (e.g., m > |V (G)| will insure no negative indices will be produced later

in this process) and p = l(P ). If any vertex of Yk−2 − Yk−1 is adjacent to a leaf of
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C that, in turn, is adjacent to some vi, with m < i < m + p, then stop: C is the

caterpillar centroid of G. Otherwise, any vertex of the independent set Yk−2−Yk−1

is either adjacent to one of vm, vm+1, . . . , vm+p or adjacent to one of the leaves u

of C that, in turn, is adjacent to vm or vm+p. The set of vertices of Yk−2 − Yk−1

of the former type is denoted A and the set of vertices of Yk−2 − Yk−1 of the latter

type is denoted D. If D 6= 0, label the vertices in D by z1, z2, . . . , zq. For 1 ≤ i ≤ q,
define ui as follows: zi is adjacent the leaf ui of C that, in turn, is adjacent to vm or

vm+p. If there exist distinct vertices ui and uj , i 6= j, both adjacent to either vm or

vm+p, then stop: C is the caterpillar centroid of G. Otherwise, by the pigeonhole

principle, there are at most two distinct ui’s, one adjacent to vm and/or one adja-

cent to vm+p. So, adjoining every vertex of Yk−2 − Yk−1 to C yields the caterpillar

G[Yk−2]. Now, update C to be G[Yk−2] and repeat the process on this (possibly)

new caterpillar. Eventually, we obtain the caterpillar centroid, and it will be of the

form G[Yk] for some k. This process can be carried out in linear time.

The process for the T -centroid, where T is the set of lobsters, is quite similar

with suitable adjustments on the stopping rules and will be left to the reader. �

The family T of trees with diameter at mostD is not mentioned in Theorem 6.10,

because the formula for k so that G[Xk] is the T -center given in the proof of

Theorem 6.6 does not extend to an analogous result for a formula for k so that

G[Yk] is the T -centroid.

6.3. Generalized path medians

Now we turn to the TD-medians. Recall that Slater’s path median (the T2-median)

need not be unique. The following theorem constructs a tree for each D ≥ 0 in

which the TD-median is not unique. These examples also show something stronger,

with an immediate consequence that for any fixed D ≥ 3, one cannot hope for a

polynomial-time algorithm that finds all TD-medians of a tree.

The proof of the following theorem motivates and serves as a simpler version of

the subsequent proof.

Theorem 6.11. For any integer D ≥ 0, there exists a tree G that has more than

one TD-median. If D ≥ 2, then there is a tree G that has two non-isomorphic

TD-medians. If D ≥ 3, then there is a tree G with a superpolynomial number of

TD-medians.

Proof. Recall that in a tree G, a T0-median is simply a median vertex, and M(G)

contains either one vertex or two adjacent vertices. In the latter case, the T0-median

is not unique, but the T1-median is the unique subgraph with one edge induced by

M(G).

If there is only one median vertex x and |V | > 1, then a T1-median of G is

induced by any set {x, y} where y is a neighbor of x that lies in a largest component
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of G− x. For example, a k-star (a tree of order k + 1 with k leaves, all adjacent to

one vertex of degree k) has k distinct T1-medians.

A T2-median is a path median; there are examples in [24] and [6] that show

that the path median is not unique (and that the path median of a tree does not

necessarily contain the the median). However this does not suffice for the case

D = 2, as we also seek a tree with non-isomorphic T2-medians.

Fig. 6.1. An example with D = 4, k = 6, and j = 1, focused on T1 and T2.

Let D, k, j be integers such that D ≥ 2, k ≥ D+1, and 1 ≤ j ≤ k. For 1 ≤ i ≤ j,
let Ti be a (D+ 3)-star with a leaf labeled x. For j+ 1 ≤ i ≤ k, let Ti be a 4-vertex

path with a leaf labeled x, and an additional D− 2 leaves attached to the neighbor

of x. Let G be the tree formed by identifying all the vertices labeled x. (See Fig. 6.1

for an example.)

Let T be a TD-median of G. Then T must be a maximal subgraph of maximum

degree at most D. Therefore T cannot be contained in Ti − x for i ≥ j + 1. If T

were contained in Ti−x for i ≤ j, then T would be a D-star and replacing any leaf

of T by x would clearly decrease its distance in G; a contradiction. Therefore T

must contain x.

T must intersect exactly D components of G − x. For 1 ≤ i ≤ j, either T

intersects Ti − x in a (D − 1)-star, in which case the vertices of Ti − x contribute

3 to the distance of T , or T does not intersect Ti − x, in which case the vertices of

Ti − x contribute 2D + 5 to the distance of T . For j + 1 ≤ i ≤ k, either T contains

Ti − x, in which case the vertices of Ti − x contribute 0 to the distance of T , or T

does not intersect Ti − x, in which case the vertices of Ti − x contribute 2D + 2 to

the distance of T . Thus, the “relative cost” of not intersecting any Ti is 2D+ 2, for

all 1 ≤ i ≤ k. Therefore, G has at least one distinct TD-median for each D-subset

of the components of G− x, for a total of at least
(
k
D

)
distinct TD-medians.

The intersection of T and Ti − x is in a different isomorphism class depending

on whether 1 ≤ i ≤ j or j + 1 ≤ i ≤ k. (For example, with D = 2 the intersection

can be a 2-vertex path or a 3-vertex path.) When j 6= 0 and j 6= k, G− x has both

types of components. Since k ≥ D+1, there are TD-medians that intersect different

numbers of the first (and second) type of component of G−x. Therefore, there are

non-isomorphic TD-medians of G (when 0 < j < k, which is always possible since

k − 1 ≥ D ≥ 2).
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In the case that k = 2D and D ≥ 3,
(
k
D

)
∼ 22D/

√
πD (using Stirling’s approx-

imation) and |V (G)| ∼ 2D2, so the number of TD-medians is superpolynomial in

|V (G)|. �

Even though there can be a superpolynomial number of TD-medians, of different

isomorphism classes, the following theorem produces all TD-medians quickly, rela-

tive to the number of TD-medians sought. The ideas are similar to those in [24] for

path medians and in [3; 2] for k-tree cores.

We need the following definition for the next proof.

Definition 6.5. Let G be a tree, let D be a nonnegative integer, let x be a vertex

of G, and let TD be the set of subtrees of G with maximum degree at most D. A

subtree T of G is a (D,G, x)-core if T minimizes distance among all subtrees of G

in TD that contain x. Let D(D,G, x) be the distance of a (D,G, x)-core T , i.e.,

D(D,G, x) =
∑
{d(y, T ) : y ∈ V (G)}.

A (0, G, x)-core is the single-vertex tree on {x}. Thus, D(0, G, x) is the distance

of x in G. (Although D(0, G, x) is more simply D(x) when the graph G is clear, this

notation allows us to denote distance of x in any subgraph H of G, by D(0, H, x).)

Theorem 6.12. Let G be a tree, and let D a positive integer, and let TD be the set

of subtrees of G with maximum degree at most D. There is a recursive algorithm

that finds all TD-medians in time that is linear in the order of G plus the number

of TD-medians. There is an algorithm that finds a single TD-median in linear time.

Proof. Let x1, . . . , xn be an ordering of the vertices of G such that xi is a leaf in

G[{xi, . . . , xn}] for each 1 ≤ i < n. Considering G as a rooted tree with root xn,

let Gi be the subtree rooted at xi, let Ni be the set of neighbors of xi in Gi (its

children), and let Ii = {j : xj ∈ Ni}, for 1 ≤ i ≤ n. Each vertex xi with 1 ≤ i < n

has exactly one neighbor xj that is not in Ni (its parent); let p(i) = j be its index.

(Equivalently, for every edge xixj in G with i < j: xj ∈ Ni, j ∈ Ii, and p(i) = j.)

Note that for 1 ≤ i < n, Gi is the component of G − xixp(i) that contains xi. For

1 ≤ i < n, let G′i be the subtree of G that contains Gi, xp(i), and xixp(i). For

1 ≤ i ≤ n, let G′′i = G− (V (Gi)− xi) = G \
⋃
j∈Ii V (Gj). For 1 ≤ i < n, G′′i is the

component of G − xixp(i) that contains xp(i), with xi and xixp(i) added. If i 6= n

then xi is a leaf in G′′i ; xn is the only vertex of G′′n. For any subtree T of G and

any vertex xi ∈ V (T ), let NT
i = Ni ∩ V (T ) and let ITi = {j : xj ∈ NT

i }.
For reasons we will see later, for any 1 ≤ j ≤ n − 1, let mj = D(0, G′j , xp(j)) −

D(D,G′j , xp(j)). As part of the solution, we will define four subsets of Ni for all

1 ≤ i ≤ n: RDi , S
D
i , R

D−1
i , SD−1

i with RDi ⊆ SDi , RD−1
i ⊆ SD−1

i , RD−1
i ⊆ RDi , and

SD−1
i ⊆ SDi . This will also be explained later.

Suppose that T is a TD-median of G. Let i be the largest index such that xi is

in T , or equivalently, let i be smallest such that T ⊆ Gi. Since T is a subtree of Gi
that contains xi and T is a TD-median, T has minimum distance in G among all
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subtrees of Gi in TD that contain xi. For any subtree T ′ of Gi in TD that contains

xi, the distance of T ′ in G equals the distance of T ′ in Gi plus D(0, G′′i , xi) (the

distance of xi in G′′i ) if 1 ≤ i ≤ n−1; if i = n then Gi = G so replacing D(0, G′′i , xi)

by zero makes it true. Therefore T has minimum distance in Gi among all subtrees

of Gi in TD that contain xi; that is, T is a (D,Gi, xi)-core.

Suppose that T is a (D,Gi, xi)-core for any integer i with 1 ≤ i ≤ n. Clearly,

|NT
i | = |ITi | = min(D, |Ni|). For each j ∈ ITi , let Tj be any subtree of G′j in TD

that contains xi; T ∩G′j is one such subtree. The union of subtrees Tj taken over all

j ∈ ITi forms a subtree of Gi in TD that contains xi; its distance in Gi is equal to the

sum of the distances of Tj in G′j , taken over j ∈ ITi . Since T is a (D,Gi, xi)-core, it

has minimum distance in Gi among all subtrees of Gi in TD that contain xi, such

as the union of subtrees Tj . Therefore, T ∩G′j must have minimum distance among

all subtrees of G′j in TD that contain xi, for each j ∈ ITi . That is, T ∩ G′j is a

(D,G′j , xi)-core for all j ∈ ITi .

For any 1 ≤ i ≤ n, let T be a subtree of Gi in TD that contains xi, such that

|NT
i | = min(D, |Ni|), and such that T ∩G′j is a (D,G′j , xi)-core for each j ∈ ITi ; for

example, T could be any (D,Gi, xi)-core. The distance of T in Gi equals the sum

of D(D,G′j , xi) over all j ∈ ITi , plus the sum of D(0, G′j , xi) over all j ∈ Ii \ ITi .

This equals the sum of D(0, G′j , xi) over all j ∈ Ii, minus the sum of D(0, G′j , xi)−
D(D,G′j , xi) taken over all j ∈ ITi . Let mj = D(0, G′j , xi)−D(D,G′j , xi) represent

this relative benefit of having xj in T . The distance of T in Gi is minimized precisely

when NT
i is chosen among size min(D, |Ni|) subsets of Ni such that

∑
j∈ITi

mj is

maximized.

If |Ni| > D, let m∗i be the minimum m such that |{xj ∈ Ni : mj > m}| ≤ D,

let RDi = {xj ∈ Ni : mj > m∗i }, and let SDi = {xj ∈ Ni : mj ≥ m∗i }. If |Ni| ≤ D,

let RDi = SDi = Ni (m∗i is not defined in this case). A subtree T of Gi is a

(D,Gi, xi)-core if and only if |NT
i | = min(D, |Ni|), RDi ⊆ NT

i ⊆ SDi , and T ∩G′j is

a (D,G′j , xi)-core for all j ∈ Ii.
Note that a (D,G′j , xi)-core with xj ∈ Ni and 1 ≤ i ≤ n is the same as a

(D,G′j , xp(j))-core with 1 ≤ j ≤ n−1. Consider any integer i such that 1 ≤ i ≤ n−1.

If T is a (D,G′i, xp(i))-core, then clearly |NT
i | = min(D − 1, |Ni|), and the distance

of T in G′i equals the distance of T − xp(i) in Gi. Then a similar argument shows

that a subtree T of G′i is a (D,G′i, xp(i))-core if and only if |NT
i | = min(D−1, |Ni|),

RD−1
i ⊆ NT

i ⊆ SD−1
i , T ∩ G′j is a (D,G′j , xi)-core for all j ∈ Ii, and T contains

xp(i).

Now, we will be able to find desired subtrees and distance values recursively.

We describe the algorithm for the computations next.

If xi is a leaf and 1 ≤ i ≤ n − 1 then |V (Gi)| = 1, otherwise (for all 1 ≤
i ≤ n) |V (Gi)| = 1 +

∑
j∈Ii |V (Gj)|; thusly we compute |V (Gi)| as i increases

from 1 to n. For 1 ≤ i ≤ n − 1, if xi is a leaf then D(0, G′i, xp(i)) = 1, otherwise

D(0, G′i, xp(i)) = |V (Gi)|+D(0, Gi, xi) = |V (Gi)|+
∑
j∈Ii D(0, G′j , xi). Therefore,

after having found |V (Gi)| for 1 ≤ i ≤ n, we may compute D(0, G′i, xp(i)) as i
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increases from 1 to n − 1. For i = n, D(0, G′′i , xi) = 0 since V (G′′n) = {xn}. For

1 ≤ i ≤ n−1, D(0, G′′i , xi) = |V (G)−V (Gi)|+D(0, G−V (Gi), xp(i)), which equals

|V (G)| − |V (Gi)|+D(0, G′′p(i), xp(i)) +
∑

j∈Ip(i),j 6=i

D(0, G′j , xp(i)).

Therefore, after having found |V (Gi)| for 1 ≤ i ≤ n and D(0, G′i, xp(i)) for 1 ≤ i ≤
n− 1, we can compute D(0, G′′i , xi) as i decreases from n to 1. Clearly, this can all

be done in linear time with respect to |V (G)|.
Since mi = D(0, G′i, xp(i)) − D(D,G′i, xp(i)) and D(0, G′i, xp(i)) has already

been found (for 1 ≤ i ≤ n − 1), we can immediately compute mi as soon as

D(D,G′i, xp(i)) is found (for 1 ≤ i ≤ n − 1). In the following, we show how to

compute D(D,G′i, xp(i)) and mi (1 ≤ i ≤ n−1) and compute D(D,Gi, xi) and find

RDi , SDi , RD−1
i , and SD−1

i (1 ≤ i ≤ n). All values are computed for fixed i, then

i is increased by one; thus, we can assume that values have been determined for

indices less than the current i.

If Ni = ∅ (or equivalently, if xi is a leaf and 1 ≤ i ≤ n−1), then D(D,G′i, xp(i)) =

0, D(D,Gi, xi) = 0, and RDi = SDi = RD−1
i = SD−1

i = ∅. Thus we may assume

that Ni 6= ∅.
If 1 ≤ |Ni| ≤ D, let RDi = SDi = Ni. Suppose that |Ni| > D. Sort all j ∈ Ii

so that the corresponding mj are non-increasing, then initialize RDi = SDi = ∅,
and repeat the following: Let m∗ = max{mj : xj ∈ Ni \ RDi } and let N∗ = {xj ∈
Ni\RDi : mj = m∗}. If |RDi ∪N∗| ≤ D, let RDi := RDi ∪N∗ (and repeat). Otherwise

(if |RDi ∪N∗| > D), let SDi = RDi ∪N∗, let m∗i = m∗, and stop repeating.

Note that this correctly computes RDi and SDi (and m∗i if |Ni| > D), which

allows us to compute D(D,Gi, xi) =
∑
xj∈RD

i
D(D− 1, G′j , xi) + (D− |RDi |)m∗i , for

all 1 ≤ i ≤ n. We can similarly compute RD−1
i , SD−1

i , and D(D,G′i, xp(i)) for any

1 ≤ i ≤ n − 1. These computations depend only on knowing D(D − 1, G′j , xi) for

j ∈ Ii, so as i increases from 1 to n or n − 1, the computations can be performed.

Since the values are clearly all between 0 and n2, sorting |Ni| values with radix sort

takes O(|Ni|) time. Aside from the sorting, this process takes O(|Ni|) time as well,

so overall running time is linear in |V (G)|.
Now we can compute the distance of a (D,Gi, xi)-core Ti with respect to G (for

1 ≤ i ≤ n), since D(Ti) = D(D,Gi, xi)+D(0, G′′i , xi) for 1 ≤ i ≤ n. TD-medians are

precisely the (D,Gi, xi)-cores Ti with values of i for which D(Ti) is smallest, and we

can find miniD(Ti) and then the set of i that minimize D(Ti) in O(|V (G)|)-time.

Finally, we will show how to obtain every TD-median of G. By the previous

remark, there can be a superpolynomial number of TD-medians, which is why we

have thus far not attempted to actually produce TD-medians. However, we can find

any one in linear time, and we can find them all quickly in an appropriate sense:

Begin with any xi ∈ V for which D(Ti) = miniD(Ti). Add RDi and add

min{D, |Ni|}− |RDi | vertices of SDi . Now, as i decreases from n− 1, if xi is already

selected then add RD−1
j and add min{D− 1, |Ni|} − |RD−1

i | vertices of SD−1
i . The
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choices made determine which of the TD-medians of G is obtained, and this TD-

median is obtained in linear time. By branching the procedure to follow through

with all possible choices, we obtain all TD-medians. Each TD-median is found in a

unique way, since if xi is its vertex of maximum index, then it is a (D,Gi, xi)-core

but not a (D,Gj , xj)-core for all j 6= i.

Finally, if we instead add all of SDi in the first step, and add all of SD−1
j in later

steps, then we obtain the set of all vertices that are are contained in TD-medians of

G. �

Remark 6.5. If we knew in advance that some vertex of G is in every TD-median,

then we could order the vertices so that xn is that vertex. Then every TD-median

would actually be a (D,Gn, xn)-core in G, which would somewhat simplify the last

procedure. The most obvious candidate would be a median vertex, except that

Morgan and Slater [24] showed that sometimes the path median of a tree does not

contain a median vertex. Slater [25] has found a different sort of vertex which

is contained in every path median, called a pit vertex. Michael Lenzen [26] (an

undergraduate student at IIT) showed that there is a vertex contained in every

TD-median of a fixed tree T if D ≥ 1. Unfortunately, the natural algorithm to find

such a vertex is no simpler than the algorithm of Theorem 6.12.

6.4. Conclusions

This paper unifies many types of central substructures of trees under the definitions

of T -center and T -centroid, subsuming previous definitions and algorithms. It also

deals with many other potential generalizations, since our work immediately applies

whenever T is a hereditary class of trees. For many choices of T , one can follow

our model and show how to find the T -center and T -centroid in linear time. This

leads to the question: are there linear time algorithms for finding the T -center

and T -centroid for any hereditary class of trees T , and, if so, can the algorithms

be described in a unified manner? The answer to the first part of the question

would be ‘Yes’ if, for every hereditary class of trees T , there is a sufficiently fast

recognition algorithm to test whether a subtree T of an arbitrary tree G is in T . It

might help to have a nice alternative characterization of a hereditary class of trees.

Another direction to pursue would be to study T -medians: for any hereditary class

of trees T and any graph G, define a T -median of G to be an element in the set

{ T ∈ T ′ : D(T ) ≤ D(T ′), T ′ ∈ T ′}, where T ′ is the set of subtrees of G that are

in T . Then one might seek fast algorithms for finding one or all T -medians in a

tree G, for any hereditary class of trees T , or merely for special hereditary classes

of trees T .

Yet another possibility is to explore the relationship between our definitions

and disconnected central substructures. For example, a p-center [27; 28] and p-

median [29; 27; 30] are sets of p vertices that minimize maximum distance and

distance, respectively, among all sets of p vertices in a given tree G, and a p-



October 18, 2010 10:18 World Scientific Review Volume - 9.75in x 6.5in ws-rv975x65

146 M.J. Pelsmajer and K.B. Reid

core [31; 13] is a set of p paths with minimum distance among such sets. Is there a

function f(p) such that a p-center (or p-median or p-core) must always be contained

in a TD-center (or TD-median) for D ≥ f(p), and if so then can the disconnected

substructure be found quickly within a given central subtree? Lenzen, Pelsmajer,

and Pierce [32] have carried this out for p-centers and TD-centers, which yields a

relatively simple linear time algorithm for finding a p-center of a tree G, when p

is a constant. (Fredrickson [28] already gave a linear time algorithm for finding

the p-center of a tree.) The same strategy has also yielded a linear time algorithm

(for fixed p) that finds a p-path center in a tree [32]: a forest consisting of at most

p disjoint paths, with smallest maximum distance. One might hope for analogous

results with TD-medians, p-medians, and p-cores. (See [13] for a quick survey on the

best-known algorithms for finding a p-median and p-core.) It seems to be harder

in general to work with disconnected central substructures of trees than with the

connected varieties, and the strategy of approaching them via the definitions in this

paper has not been fully explored.

Acknowledgements

We thank Buck McMorris for organizing the 2003 DIMACS Reconnect Workshop

at Illinois Institute of Technology that initiated this study, and for his suggestion

to investigate caterpillar centers, which eventually led us to hereditary classes of

trees. And, we thank Martyn Mulder for participating in many of our discussions

of these topics.

References

1. C. Jordan, Sur les assemblages de lignes. J. Reine Agnew. Math. 70 (1869) 185–190.
2. K.B. Reid, Centrality Measures in Trees, this volume.
3. O. Ore, Theory of Graphs, American Mathematical Society, Colloquium Publications

XXXVIII, Providence, R.I., 1962.
4. P.J. Slater, Maximum facility location, J. Res. Natl. Bur. Stand B 79 (1975) 107–115.
5. P.J. Slater, Accretion centers: a generaliztion of branch weight centroids, Discrete

Appl. Math. 3 (1981) 187–192.
6. P.J. Slater, Locating central paths in a graph, Transportation Sci. 16 (1982) 1–18.
7. F.R. McMorris, K.B. Reid, Central k-trees in Trees, Congress. Numer. 124, 139–143,

(1997).
8. E. Minieka, The optimal location of a path or tree in a tree network, Networks 15,

309–321, (1985).
9. F.R. McMorris, Personal Communication, 2003.

10. S. Peng, A.B. Stephens, Y. Yesha, Algorithms for a core and k-tree core of a tree, J.
Algorithms 15 (1993) 143–159.

11. A. Shioura and T. Uno, A linear time algorithm for finding a k-tree core, J. Algorithms
23 (1997) 281–290.

12. S. Srivastava , R.K. Ghosh, Distributed algorithms for finding and maintaining a
k-tree core in a dynamic network, Inform. Process. Lett. 88 (2003) 187–194.



September 14, 2010 14:52 World Scientific Review Volume - 9.75in x 6.5in ws-rv975x65

Generalized Centrality in Trees 147

13. B.-F. Wang, Finding a 2-core of a tree in linear time, SIAM J. Discrete Math. 15
(2002) 193–210.

14. R. I. Becker, Y.I. Chang, I. Lari, A. Scozzari, G. Storchi, Finding the l-core of a tree,
Third ALIO-EURO Meeting on Applied Combinatorial Optimization (Erice, 1999),
Discrete Appl. Math. 118 (2002) 25–42.

15. B. Mirchandani and R.L. Francis (Eds.), Discrete Location Theory, Wiley Interscience,
New York, 1990.

16. B. Bhattacharya, Y. Hu, Q. Shi, A. Tamir, Optimal algorithms for the path/tree
shaped facility location problems in trees, Proc. ISAAC 2006, LNCS 4288 (2006)
379–388.

17. N. Graham, R.C. Entringer, A. Székely, New tricks for old trees: Maps and the
pigeonhole principle, Amer. Math. Monthly 101 (1994) 664–667.

18. S.M. Hedetniemi, E.J. Cockayne, S.T. Hedetniemi, Linear Algorithms for Finding the
Jordan Center and Path Center of a Tree, Trans. Sci. 15 (1981) 98–114.

19. A.J. Goldman, Optimal center location in simple networks, Trans. Sci. 5 (1971) 212–
221.

20. A.J. Goldman, Minimax location of a facility on a network, Trans. Sci. 6 (1972)
407–418.

21. G.Y. Handler, Minimax Location of a Facility in an Undirected Tree Graph, Trans.
Sci. 7 (1973) 287–293.

22. B. Zelinka, Medians and Peripherians of Trees, Arch. Math. (Brno) 4 (1968) 87–95.
23. K.S. Holbert, A note on graphs with distant center and median, In: ed. V. R. Kulli,

Recent Studies in Graph Theory, Vishna, Gulbarza, India, 1989, pp. 155–158.
24. C.A. Morgan, P.J. Slater, A Linear Algorithm for the Core of a Tree, J. Algorithms

1 (1980) 247–258.
25. P. J. Slater, Centrality of paths and vertices in a graph: cores and pits. In: The

theory and applications of graphs (Kalamazoo, Mich., 1980), Wiley, New York, 1981,
pp. 529–542.

26. M. Lenzen, manuscript, 2006.
27. S.L. Hakimi, Optimum locations of switching centers and absolute centers in a com-

munication network and some related graph-theoretic problems, Operations Res. 13
(1965) 462–475.

28. G.N. Frederickson, Parametric Search and Locating Supply Centers in Trees, (Al-
gorithms and Data Structures, 2nd Workshop, WADS ’91, Ottawa, Canada, August
1991), LNCS 519, Springer-Verlag, pp. 299–319.

29. S.L. Hakimi, Optimum locations of switching centers and absolute centers and medians
of a graph, Operations Res. 12 (1964) 450–459.

30. S.L. Hakimi, O. Kariv, An algorithmic approach to network location problems. II:
The p-medians, Siam. J. Appl. Math. 37 (3) (1979) 539–560.

31. R.I. Becker, Y. Perl, Finding the two-core of a tree, Discrete Appl. Math. 11 (2) (1985)
103–113.

32. M. Lenzen, M.J. Pelsmajer, J.J. Pierce, manuscript, 2006.



This page is intentionally left blank



September 14, 2010 14:52 World Scientific Review Volume - 9.75in x 6.5in ws-rv975x65

Chapter 7

Consensus Centered at Majority Rule

Robert C. Powers

Department of Mathematics, University of Louisville
Louisville, KY 40292 USA

rcpowe01@louisville.edu

Consider an election where there are two alternatives and n ≥ 3 voters. For any
integer q such that n

2
< q ≤ n + 1, the winner of the election with respect to

absolute q-majority rule is the alternative that receives at least q votes. In this
chapter, various generalizations of absolute q-majority rule are presented from an
axiomatic point of view.

Introduction

One of the most influential results in the theory of social choice is Kenneth May’s

characterization of simple majority rule [13]. May models the voting situation where

there are two alternatives and a fixed number of voters. Each individual votes for

one of the alternatives or abstains and the winner of the election under simple

majority rule is the alternative with the most votes. If both alternatives receive the

same number of votes, then simple majority rule declares a tie. Notice that this

version of majority is based on a relative notion of majority where it is possible for

the winner to receive less than half of the total number of votes. For example, out

of a voting population of 100 individuals, alternative x with two votes would beat

alternative y with one vote where 97 voters decided to abstain. If this is bothersome,

then it may seem more reasonable to require that the winner of an election receive

more than half the total number of votes. This version of majority rule is based on

an absolute notion of majority and it plays a central role in this chapter.

A well cited paper in the area of systematic biology is Margush and McMorris’

paper on the majority consensus rule for hierarchies [11]. A hierarchy on a finite set

S is a collection H of nonempty subsets of S such that {{x}, S : x ∈ S} ⊆ H and

A∩B ∈ {A,B, ∅} for all A,B ∈ H. A hierarchy arises when a hierarchical clustering

method is applied to the data set S. Suppose several hierarchical clustering methods

are applied to S, then we get several hierarchies on S. A consensus method would

take these hierarchies as input and would output a single consensus hierarchy. In

particular, the output for majority rule consists of all the subsets of S that appear

149
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in more than half of the input hierarchies. A simple generalization of this idea is

to output subsets of S which appear in more than t > 1
2 of the input heirarchies.

This gives the class of counting rules. A nice characterization of the counting rules,

similar in spirit to May’s characterization of simple majority rule, was given by

McMorris and Neumann in [15].

McMorris and Neumann’s characterization of the counting consensus rules for

hierarchies is a consequence of a very general result proved by Bernard Monjardet in

[12]. Monjardet gives an order theoretic model of consensus where join irreducible

elements are the basic units of information and the output of a consensus function

is an element of a meet semilattice. Details on the Monjardet model of consensus

are given in the next section.

For background reading on consensus the reader is referred to Day and McMorris

[8].

7.1. The Monjardet Model of Consensus

A good portion of the notation and terminology given in this section follows from

Monjardet’s paper entitled Arrowian Characterizations of Latticial Federation Con-

sensus Functions [12].

Let X be a finite partially ordered set (poset), i.e., X is equipped with a reflexive,

antisymmetric, transemilatticetion ≤. The join of a subset A of X, denoted by
∨
A,

is the least upper bound of A when it exists. Dually, the meet of A is denoted by
∧
A

and it is the greatest lower bound of A when it exists. If A = {x1, x2, . . . , xn}, then∨
A and

∧
A are written as x1∨x2∨ . . .∨xn and x1∧x2∧ . . .∧xn, respectively. The

poset X is a meet semilattice if x∧y exists for all x, y ∈ X. In this case,
∧
X =

∨
∅ is

the least element of X and is denoted by 0. Dually, the poset X is a join semilattice

if x ∨ y exists for all x, y ∈ X and
∨
X =

∧
∅ is the greatest element of X and it

is denoted by 1. The poset X is a lattice if it is both a meet and join semilattice.

A lattice X is distributive if, for all x, y, z ∈ X, x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) and

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z). More generally, a meet semilattice X is distributive

if, for all x in X, the set {y ∈ X|y ≤ x} is a distributive lattice.

A meet semilattice X satisfies the join-Helly property if, for all x, y, z ∈ X, x∨y,

x∨z, and y∨z exist, then x∨y∨z exists. By an induction argument, for any subset

A of X, if x ∨ y exists for all x, y ∈ A, then
∨
A exists. A meet semilattice X is a

median semilattice if it is distributive and satisfies the join-Helly property. For the

remainder of this section, X is assumed to be a finite median semilattice containing

at least three elements. A simple example is shown below where X = {0, x−1, x1}
and x−1 ∨ x1 does not exist.

An element s in X is join irreducible if s =
∨
A implies s ∈ A. In other words,

a join irreducible element is not equal to the join of the elements strictly below

it. Let J be the set of all join irreducible elements of X. Notice that 0 6∈ J and

x =
∨
{s ∈ J |s ≤ x} for all x ∈ X. Since X is a distributive semilattice it can be



September 14, 2010 14:52 World Scientific Review Volume - 9.75in x 6.5in ws-rv975x65

Consensus Centered at Majority Rule 151 

1
x

1−x

0 

shown that for any s ∈ J and for any nonempty subset A of X, s ≤
∨
A implies

that there exists a ∈ A such that s ≤ a.

The notation N = {1, 2, . . . n} with n ≥ 2 represents the set of individuals or

voters. A function of the form C : Xn → X is called a consensus function. An

element π = (x1, . . . , xn) ∈ Xn is called a profile. For any profile π and any element

s in X, let

Ns(π) = {i ∈ N : s ≤ xi}.

For any integer q such that n
2 < q ≤ n + 1 and for any π ∈ Xn, we define the

consensus rule Cq on X by

Cq(π) =
∨
{s ∈ J : |Ns(π)| ≥ q}.

In particular, if q∗ is the least integer strictly greater than n
2 , then we get the

majority consensus rule Cq∗ .

An attractive feature of median semilattices is the close connection between the

majority consensus rule Cq∗ and the median function M . We now briefly explain

this connection and refer the reader to [16] for more details.

Let X be a finite median semilattice and let x and y be distinct elements of X.

Then y covers x if x ≤ y and for all z ∈ X such that x ≤ z ≤ y, either z = x or

z = y. So if y covers x, then there is no element of X that lies strictly between x

and y. The covering graph G of X has the elements of X as vertices and xy is an

edge of G if and only if either y covers x or x covers y. (The covering graph of a

median semilattice is a well known type of graph called a median graph.) Let d be

the minimum path length metric on the covering graph of X. The median function

on X is the function M :
⋃
k≥1X

k → 2X \ {∅} where, for any (x1, . . . , xk) ∈ Xk,

M((x1, . . . , xk)) is the set of all elements x ∈ X such that

k∑
i=1

d(x, xi) ≤
k∑
i=1

d(y, xi)

for all y ∈ X. It turns out that Cq∗(π) ∈ M(π) for any profile π. Moreover, if n

is odd, then M(π) = {Cq∗(π)}. Finally, if n is even and π = (x1, . . . , xn), then

M((x1, . . . , xn, 0)) = {Cq∗(π)}.
A subset F of the power set 2N is called a federation if for all I ∈ F and for

all J ⊆ N , I ⊆ J implies that J ∈ F . A subset F of the power set 2N is called
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transversal if for all I, J ∈ F , I ∩ J 6= ∅. For any transversal federation F of 2N ,

we define the consensus function CF on X by

CF (π) =
∨
{s ∈ J : Ns(π) ∈ F}.

We will call CF a federation rule. It is possible to have F = ∅ in which case

CF (π) =
∨
∅ = 0 for all π.

Let C : Xn → X be a consensus function. We will say that C satisfies

DN: Decisive Neutrality if for all s, s′ ∈ J and for all profiles π, π′ ∈ Xn,

Ns(π) = Ns′(π
′), s ≤ C(π) ⇒ s′ ≤ C(π′).

The statement defining DN can also be written as

s ≤ C(π) ⇔ s′ ≤ C(π′) whenever Ns(π) = Ns′(π
′).

The intent behind decisive neutrality is that all the join irreducible elements should

be treated equally when determining the consensus output.

We will say that C satisfies

DM: Decisive Monotonicity if for all s ∈ J and for all profiles π, π′ ∈ Xn,

Ns(π) ⊆ Ns(π′), s ≤ C(π) ⇒ s ≤ C(π′).

Decisive monotonicity implies that if a consensus output is above a join irreducible

s and one or more individuals change their vote favorable to s, then the updated

consensus output should still be above s.

A consensus function C satisfies

MN: Monotonic Neutrality if for all s, s′ ∈ J and for all profiles π, π′ ∈ Xn,

Ns(π) ⊆ Ns′(π′), s ≤ C(π) ⇒ s′ ≤ C(π′).

It is not hard to show that C satisfies DN and DM if and only if C satisfies MN.

Let C : Xn → X be a consensus function. For any s ∈ J , we will say that

a subset A of N is s-decisive if there exists a profile π such that Ns(π) = A and

s ≤ C(π). Let Fs be the set of all s-decisive sets. If C satisfies decisive neutrality,

then

s ≤ C(π) ⇔ Ns(π) ∈ Fs

for any s ∈ J and π ∈ Xn. Moreover, decisive neutrality implies that Fs = Fs′ for

all s, s′ ∈ J . In this case, we let F = Fs and call the elements of F decisive sets.

Observe that

C(π) =
∨
{s ∈ J : Ns(π) ∈ F}.

Finally, notice that the family of decisive sets F is a federation if and only if C

satisfies decisive monotonicity.
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We will continue to assume that C : Xn → X satisfies DN and DM. Suppose

there exists x, y ∈ X such that x∨y does not exist in X. Then the family of decisive

sets has the property: A ∈ F ⇒ Ac 6∈ F where Ac is the complement of A with

respect to the set N . To see this, assume A,Ac ∈ F . Define π = (x1, . . . , xn) by

xi = x for all i ∈ A and xi = y for all i ∈ Ac. Then π ∈ Xn and for every join

irreducible s ≤ x, Ns(π) ⊇ A. Since F is a federation it follows that Ns(π) ∈ F and

so s ≤ C(π). Since s ≤ x was arbitrary we get that x ≤ C(π). A similar argument

shows that y ≤ C(π). Since x ∨ y does not exist in X, C(π) cannot be an upper

bound for x and y. This contradiction shows that A ∈ F ⇒ Ac 6∈ F . Since F is

a federation it follows that A ∩ B 6= ∅ for all A,B ∈ F . This means that F is a

transversal federation.

It is straightforward to verify that the consensus function CF , where F is a

transversal federation, satisfies decisive neutrality and decisive monotonicity.

The preceding remarks lead to the following characterization of federation rules

(see Proposition 2.4 in [12]).

Theorem 7.1. (Monjardet 1990) Assume X is a finite median semilattice such

that X is not a lattice. A consensus function C : Xn → X satisfies DN and DM if

and only if there exists a transversal federation F of 2N such that C = CF .

To see Theorem 7.1 in action, let i ∈ N and let F = {A ⊆ N : i ∈ A}. Then

C(π) = xi for all π = (x1, . . . , xn) ∈ Xn. In this case, C is called a dictatorial con-

sensus function. To avoid such functions, we introduce another axiom. A consensus

function C on X satisfies A: Anonymity if for any profile π = (x1, . . . , xn) ∈ Xn

and for any permutation σ of N ,

C(x1, . . . , xn) = C(xσ(1), . . . , xσ(n)).

If F is a transversal federation and CF satisfies anonymity, then B ∈ F ↔ |B| ≥ q
where q = min{|A| : A ∈ F}. The fact that F is transversal implies that q > n

2 .

The next result follows from the previous remark and Theorem 7.1.

Corollary 7.1. Assume X is a finite median semilattice such that X is not a lattice.

A consensus function C : Xn → X satisfies DN, DM, and A if and only if there

exists an integer q such that n
2 < q ≤ n+ 1 and C = Cq.

If L is a lattice with largest element 1, then the constant function C(π) = 1

for all π satisfies DN, DM, and A. So the assumption that X is not a lattice is a

necessary assumption in Corollary 7.1.

It is possible to weaken DN in the statement of Corollary 7.1 and still conclude

that C = Cq. We will say that a consensus function C on X satisfies

0DN: Zero Decisive Neutrality if for all s, s′ ∈ J and for all profiles π, π′ ∈ Xn,

N0(π) = N0(π′), Ns(π) = Ns′(π
′), and s ≤ C(π) ⇒ s′ ≤ C(π′).



September 14, 2010 14:52 World Scientific Review Volume - 9.75in x 6.5in ws-rv975x65

154 R.C. Powers

The idea behind 0DN is to apply decisive neutrality under the restriction that xi = 0

in profile π exactly when x′i = 0 in profile π′.

We now come to an improvement of Corollary 7.1.

Theorem 7.2. Assume X is a finite median semilattice such that X is not a lattice.

A consensus function C : Xn → X satisfies 0DN, DM, and A if and only if there

exists an integer q such that n
2 < q ≤ n+ 1 and C = Cq.

Proof. Assume that C : Xn → X satisfies 0DN and DM. We will show that C

satisfies DN.

Suppose Ns(π) = Ns′(π
′) where s, s′ ∈ J and π, π′ ∈ Xn. Choose a profile π′′

such that N0(π′′) = N0(π′) and Ns(π
′′) = Ns′(π

′). By 0DN, s ≤ C(π′′) ⇔ s′ ≤
C(π′). Since Ns(π

′′) = Ns(π) it follows from DM that s ≤ C(π′′) ⇔ s ≤ C(π).

Thus, s ≤ C(π) ⇔ s′ ≤ C(π′) and so C satisfies DN.

Our result now follows from Corollary 7.1. �

Let H(S) be the set of all hierarchies on the set S and assume |S| ≥ 4. Then

H(S) is a median semilattice with set containment as the partial order and set

intersection as the meet operation. The zero element of H(S) is the trivial hierarchy

H∅ = {{x}, S : x ∈ S}. The set of join irreducible elements of H(S) is given by

J = {H∅ ∪ {A} : A ⊆ S,A 6= ∅, and A 6= S}.

See Figure 5.4 in [8] for a picture of the median semilattice H(S) with |S| = 4.

Since the median semilattice H(S) is not a lattice we have the following conse-

quence of Theorem 7.2.

Corollary 7.2. A consensus function C : H(S)n → H(S) satisfies 0DN, DM, and

A if and only if there exists an integer q such that n
2 < q ≤ n+ 1 and C = Cq.

The previous result is the McMorris and Neumann characterization of the count-

ing consensus rules for hierarchies with decisive neutrality replaced by zero decisive

neutrality.

In the next section we will apply Theorem 7.2 to the case of voting and obtain

a characterization of absolute majority voting rules.

7.2. Absolute Majority Rules

In this section we consider the class of voting rules where there are two alternatives

and the winner of an election receives more than half of the total number of votes.

To distinguish this voting situation with the Monjardet model of consensus, we will

use some notation and terminology from [2].

As above, the set of individuals or voters is given by N = {1, 2, . . . n} with

n ≥ 2. Each individual votes for one out of two alternatives or they abstain. The

two alternatives can be identified with 1 and −1. The abstention vote is denoted
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by 0. In this setting, a function of the form

F : {−1, 0, 1}n → {−1, 0, 1}

is called an aggregation rule and an n-tuple R = (R1, . . . , Rn) ∈ {−1, 0, 1}n in the

domain of F is called a profile. The output F (R) = 0 represents a tie, i.e., neither

alternative is chosen. For any profile R = (R1, . . . , Rn), we let

n+(R) = |{i ∈ N : Ri = 1}| and n−(R) = |{i ∈ N : Ri = −1}|

n0(R) = |{i ∈ N : Ri = 0}|. So n+(R) is the number of individuals who voted for

1, n−(R) is the number of individuals who voted for −1, and n0(R) is the number

of individuals who abstained.

Using the notation from the previous paragraph, we can now give a key defini-

tion.

Definition 7.1. An aggregation rule F : {−1, 0, 1}n → {−1, 0, 1} is called absolute

q-majority rule if there exists an integer q such that n
2 < q ≤ n+1 such that F = Fq

where

Fq(R) = 1 if n+(R) ≥ q and Fq(R) = −1 if n−(R) ≥ q

for any R ∈ {−1, 0, 1}n. We will say that F is an absolute majority rule if it is an

absolute q-majority rule for some integer q such that n
2 < q ≤ n+ 1.

Observe that Fn+1(R) = 0 for all R since max{n+(R), n−(R)} ≤ n for all R. So

the rule Fn+1 always declares a tie. Even though the trivial rule Fn+1 is technically

an absolute majority rule, the more interesting and important case is when q = q∗

where q∗ is the least integer strictly greater than n
2 .

Let F : {−1, 0, 1}n → {−1, 0, 1} be a fixed aggregation rule. Then F may or

may not satisfy the following conditions.

Anonymity (A) Given any R ∈ {−1, 0, 1}n and any permutation Π : N → N , we

have F (R1, . . . , Rn) = F (RΠ(1), . . . , RΠ(n)).

Neutrality (N) F (−R) = −F (R) for all R ∈ {−1, 0, 1}n.

Anonymity implies that the identities of individual voters are not used in deter-

mining the social outcome and neutrality is the requirement that both alternatives

should be treated equally. There are many different types of aggregation rules

satisfying anonymity and neutrality (see [21]).

Asan and Sanver [2] characterized absolute majority aggregation rules using (A),

(N), and the following monotonicity condition.

Maskin Monotonicity (MM) For any R,R′ ∈ {−1, 0, 1}n such that Ri ≥ 0 ⇒
R′i ≥ 0 for each i ∈ N , we have F (R) ≥ 0 ⇒ F (R′) ≥ 0. Similarly, for any
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R,R′ ∈ {−1, 0, 1}n such that Ri ≤ 0 ⇒ R′i ≤ 0 for each i ∈ N , we have F (R) ≤
0⇒ F (R′) ≤ 0.

It is not hard to show that (MM) is equivalent to the following statement.

(MM) For any R,R′ ∈ {−1, 0, 1}n and for any s ∈ {−1, 1}, if {i : Ri = s} ⊆ {i :

R′i = s}, then F (R) = s⇒ F (R′) = s.

We now show how to derive Asan and Sanver’s result as a corollary of Theorem

7.2. The set {−1, 0, 1} can be thought of as a median semilattice X = {−1, 0, 1}
where the number 0 is the smallest element of X, the set of join irreducibles is

J = {−1, 1}, and 1 ∧ −1 = 0. This is a bit confusing since the ordering on X does

not correspond to the usual ordering of the integers.

Using the fact that X = {−1, 0, 1} is a median semilattice we have the following

interesting observation.

Proposition 7.1. The aggregation rule F : Xn → X satisfies (N) if and only if F

satisfies 0DN.

Proof. Keeping in mind that J = {−1, 1}, observe that for any s ∈ J and for

any π ∈ Xn, s ≤ F (π) ⇔ F (π) = s.

Suppose F satisfies 0DN and π ∈ Xn. Let π′ = −π. Then N1(π) = N−1(π′)

and N0(π) = N0(π′). By 0DN, F (π) = 1 ⇔ F (π′) = −1. A similar argument

shows that F (π) = −1 ⇔ F (π′) = 1. Hence F (−π) = −F (π) for all π.

Conversely, assume F satisfies (N). Suppose N0(π) = N0(π′) and Ns(π) =

Ns′(π
′) where s, s′ ∈ J and π, π′ ∈ Xn. Then either s = s′ and π = π′ or s = −s′

and π = −π′. In either case, it follows that s ≤ F (π) ⇔ s′ ≤ F (π′). �

The previous proposition is not true if we replace 0DN with DN. For example,

define F : {−1, 0, 1}n → {−1, 0, 1} as follows: F (π) = Fq∗(π) for any profile π such

that n0(π) = 0 and F (π) = 0 for any profile π such that n0(π) 6= 0. Then F does

not satisfies DN but it does satisfy (N).

Observe that for any R ∈ {−1, 0, 1}n and for any s ∈ {−1, 1}, Ns(R) = {i :

Ri = s}. Therefore, DM is equivalent to (MM). Since A and (A) are easily seen to

be identical we now have the following consequence of Theorem 7.2.

Theorem 7.3. (Asan and Sanver 2006) An aggregation rule F satisfies (MM),

(N), and (A) if and only if F = Fq where q is an integer satisfying the inequality
n
2 < q ≤ n+ 1.

We should point out that there are other characterizations of absolute majority

aggregation rules. For example, see [3] and [10].

What happens if we drop one of the conditions in Theorem 7.3? For example, if

(MM) is dropped, then we are lead to the class of aggregation rules satisfying (A)

and (N). One of the most important aggregation rules in this class is the following.
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Definition 7.2. The aggregation rule Fs : {−1, 0, 1}n → {−1, 0, 1} is called simple

majority rule if

Fs(R) = 1 iff n+(R) > n−(R) and Fs(R) = −1 iff n−(R) > n+(R)

for all R ∈ {−1, 0, 1}n.

Observe that Fs requires only a relative majority to determine the winning

alternative. Consequently, if many voters abstain, then it is possible for the winner

to receive less than half of the total number votes.

Kenneth May in 1952 proved a theorem characterizing simple majority rule using

(A), (N), and the following condition.

Positive Responsiveness (PR) An aggregation function F satisfies positive re-

sponsiveness if R ≤ R′ implies F (R) ≤ F (R′) for all R,R′ ∈ {−1, 0, 1}n and, for all

R > R′ in {−1, 0, 1}n, F (R′) = 0 implies F (R) = 1 and F (R) = 0 implies F (R′) =

−1.

Theorem 7.4. (May 1952) An aggregation rule F : {−1, 0, 1}n → {−1, 0, 1} satis-

fies (PR), (N), and (A) if and only if F = FS.

As mentioned in the introduction to this chapter, May’s theorem is a fundamen-

tal result in the area of social choice and it has inspired many extensions. See [2],

[4], [5], [7], [12], [18], [19], [28], [29], and [30] for a sample of these results.

Returning to Theorem 7.3, if we drop (A), then we get the class of aggregation

rules satisfying (MM) and (N).

Theorem 7.5. An aggregation rule F : {−1, 0, 1}n → {−1, 0, 1} satisfies (MM)

and (N) if and only if there exists a transversal federation F such that for any

R ∈ {−1, 0, 1}n and for any s ∈ {−1, 1}, F (R) = s if and only if Ns(R) ∈ F .

If we drop (N), then we get the class of aggregation rules satisfying (A) and

(MM).

Theorem 7.6. An aggregation rule F : {−1, 0, 1}n → {−1, 0, 1} satisfies (MM) and

(A) if and only if there exists nonnegative integers q and ` such that q + ` ≥ n+ 1

and for any R ∈ {−1, 0, 1}n,

F (R) = 1 iff n+(R) ≥ q and F (R) = −1 iff n−(R) ≥ `.

We now explain why the previous theorems are true. Suppose F : {−1, 0, 1}n →
{−1, 0, 1} satisfies (MM). Then, as a consensus rule, F satisfies decisive mono-

tonicity. Therefore, by Propositions 1.4 and 2.3(1) in [12], for each s ∈ {−1, 0, 1}
there exists a federation Fs such that F (R) = s if and only if Ns(R) ∈ Fs for

any profile R. Moreover, since the median semilattice X = {−1, 0, 1} is not a

lattice, A ∩ B 6= ∅ for all A ∈ F1 and all B ∈ F−1. Since N1(R) = N−1(−R)

for any profile R it follows that F satisfies (N) if and only if F1 = F−1. In this
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case, if we let F = F1 = F−1, then we get Theorem 7.5. On the other hand, if

q = min{|N1(R)| : R ∈ {−1, 0, 1} and F (R) = 1} and ` = min{|N−1(R)| : R ∈
{−1, 0, 1} and F (R) = −1}, then F satisfies anonymity exactly when the following

conditions hold: A ∈ F1 if and only if |A| ≥ q and B ∈ F−1 if and only if |B| ≥ `.

Since the median semilattice X = {−1, 0, 1} is not a lattice, we must have q+` > n.

Thus, Theorem 7.6 is true.

Instead of dropping one of (MM), (N), and (A) in Theorem 7.3, we consider

cases where one of the axioms is weakened. To illustrate this point, we start with

the following weak version of anonymity.

Partial Anonymity (PA) For any R ∈ {−1, 0, 1}n and any permutation Π : N →
N satisfying Π(1) = 1, F (R1, . . . , Rn) = F (RΠ(1), . . . , RΠ(n)).

The idea behind partial anonymity is to incorporate some degree of anonymity

and still allow voter 1 not to be anonymous. To make this axiom nontrivial we will

assume that n ≥ 3. The proof of the next result is given in [22].

Theorem 7.7. If n ≥ 3 and F : {−1, 0, 1}n → {−1, 0, 1} satisfies (MM), (N),

and (PA), then there exist nonnegative integers q0 and q satisfying the inequalities

q0 + q ≥ n and max{n−1
2 , q − 1} < q0 ≤ n such that

F (R) = 1 ⇔ n+(R) ≥ q0 +
R1(R1 + 1)

2
(q + 1− q0)

for all R = (R1, . . . , Rn) ∈ {−1, 0, 1}n. Conversely, if q0 and q are nonnegative

integers satisfying the above inequalities and F : {−1, 0, 1}n → {−1, 0, 1} is defined

by

F (R) = 1 ⇔ n+(R) ≥ q0 +
R1(R1 + 1)

2
(q + 1− q0)

and

F (R) = −1 ⇔ n−(R) ≥ q0 +
R1(R1 − 1)

2
(q + 1− q0)

for all R = (R1, . . . , Rn) ∈ {−1, 0, 1}n, then F satisfies (MM), (N), and (PA).

It should be pointed out that the bound q0 + R1(R1+1)
2 (q + 1 − q0) for n+(R)

shows a close connection to absolute qualified majority rules. In fact, the previous

result incorporates absolute qualified majority rules when q0 = q + 1. On the

other hand, if q0 = n and q = 0, then we get the dictatorship F (R) = R1 for all

R = (R1, . . . , Rn) ∈ {−1, 0, 1}n
The next step is to weaken neutrality. We will say that an aggregation rule F

is balanced if

|{R ∈ {−1, 0, 1}n : F (R) = 1}| = |{R ∈ {−1, 0, 1}n : F (R) = −1}|.

If f satisfies neutrality, then it is clear that f is balanced. The converse is not

true. Let Y and Z be two disjoint subsets of {−1, 0, 1}n \ {(0, . . . , 0)} such that
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{(1, 0, . . . , 0), (−1, 0, . . . , 0)} ⊂ Y and |Y | = |Z| = 3n−1
2 . Notice that X ∪ Y =

{−1, 0, 1}n \ {(0, . . . , 0)}. Define an aggregation rule G by G(R) = 1 if and only

if R ∈ Y and G(R) = −1 if and only if R ∈ Z. So G(R) = 0 if and only if

R = (0, . . . , 0). Notice that G is balanced and that G does not satisfy neutrality.

Even though balanced is less restrictive than neutrality it is still strong enough

to give the following result.

Theorem 7.8. An aggregation rule F : {−1, 0, 1}n → {−1, 0, 1} is balanced and

satisfies (MM) and (A) if and only if F is a q majority rule where the integer q

satisfies the inequality n
2 < q ≤ n+ 1.

Proof. Assume F : {−1, 0, 1}n → {−1, 0, 1} is balanced, satisfies (MM) and (A).

By Theorem 7.6, there exists nonnegative integers q and ` such that q + ` ≥ n+ 1

and for any R ∈ {−1, 0, 1}n,

F (R) = 1 iff n+(R) ≥ q and F (R) = −1 iff n−(R) ≥ `.

Assume without loss of generality that q ≤ ` and note that ` > n
2 . Let Y =

{R : n−(R) ≥ `} and let Z = {R : n+(R) ≥ q}. Observe that R ∈ Y implies that

−R ∈ Z. Thus the mapping β : Y → Z defined by β(R) = −R for all R ∈ Y is well

defined. The balanced condition implies that |Y | = |Z|. It follows that q = ` and

we’re done. �

Finally, consider a less restrictive version of Maskin Monotonicity. Here is a

simple example.

Zero Maskin Monotonicity (0MM) For any R,R′ ∈ {−1, 0, 1}n and for any

s ∈ {−1, 1}, if N0(R) = N0(R′), {i : Ri = s} ⊆ {i : R′i = s}, and F (R) = s, then

F (R′) = s.

Suppose F : {−1, 0, 1}n → {−1, 0, 1} is an aggregation rule satisfying (0MM),

(A), and (N). For each integer k ∈ {0, . . . , n− 1}, let

qk = min{n+(R) : R ∈ {−1, 0, 1}n, F (R) = 1, and n0(R) = k}

with the convention that qk = n − k + 1 if {n+(R) : R ∈ {−1, 0, 1}n, F (R) =

1, and n0(R) = k} = ∅. It follows from (0MM) and (A) that F (R) = 1 if and only

if n+(R) ≥ qk where k = n0(R). Therefore, n−k
2 < qk ≤ n− k + 1. It follows from

neutrality that F (R) = −1 if and only if n−(R) ≥ qk where k = n0(R). If R is

the profile where n0(R) = n, then F (−R) = F (R) and so −F (R) = F (R). Thus,

F (0, . . . , 0) = 0. These comments give us the following result.

Theorem 7.9. An aggregation rule F : {−1, 0, 1}n → {−1, 0, 1} satisfies (0MM),

(A), and (N) if and only if there exists a sequence q0, q1, . . . , qn−1 of integers such

that n−k
2 < qk ≤ n − k + 1 for all k and F (R) = s iff ns(R) ≥ qn0(R) for all

R ∈ {−1, 0, 1}n and s ∈ {−1, 1}.
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It is interesting to compare Theorem 7.9 with Theorem 7.7. In both theorems,

F (R) = 1 exactly when n+(R) is greater than or equal to some bound. This bound

may depend on the first voter as in Theorem 7.7 or it may depend on the number

of zeros in the profile R as in Theorem 7.9. Therefore, the nature of the bound is

based on the type of condition we are assuming.

We now introduce another condition.

Bi-idempotent: An aggregation function F : {−1, 0, 1}n → {−1, 0, 1} is bi-

idempotent if F (R) 6= 0 for any profile R such that n+(R) + n−(R) = n and

n+(R) 6= n−(R).

Notice that n+(R) + n−(R) = n is equivalent to n0(R) = 0. A quick example

of an aggregation rule that is bi-idempotent is simple majority rule Fs. In fact,

Fs(R) 6= 0 whenever n+(R) 6= n−(R).

The requirements n+(R) + n−(R) = n and n+(R) 6= n−(R) imply that either

n+(R) > n
2 or n−(R) > n

2 . Therefore, if q∗ is the smallest integer strictly greater

than n
2 , then the absolute majority aggregation rule Fq∗ is bi-idempotent. Moreover,

Fq is not bi-idempotent for all integers q > q∗. The following result now follows

directly from Theorem 7.3.

Theorem 7.10. a An aggregation rule F : {−1, 0, 1}n → {−1, 0, 1} satisfies (MM),

(N), and (A), and is bi-idempotent if and only if it is the absolute majority rule Fq∗

where q∗ is the smallest integer strictly greater than n
2 .

The goal of this section was to work with aggregation functions based on a set

with two alternatives. In the next section we will work with voting rules where the

set of alternatives is not restricted to just two elements. In this context, a voting

rule is called a social welfare function.

7.3. Social Welfare Functions

Let X be a finite set of alternatives and assume that |X| ≥ 2. A binary relation

ρ on X is asymmetric if (x, y) ∈ ρ implies that (y, x) 6∈ ρ for all x, y ∈ X. The

binary relation ρ is complete if (x, y) 6∈ ρ implies that (y, x) ∈ ρ for all x 6= y in

X. Next, ρ is transitive if (x, y) ∈ ρ and (y, z) ∈ ρ implies that (x, z) ∈ ρ for all

x, y, z ∈ X. On the other hand, ρ is negatively transitive if (x, y) 6∈ ρ and (y, z) 6∈ ρ
implies that (x, z) 6∈ ρ for all x, y, z ∈ X. An asymmetric, complete, and transitive

binary relation on X is called a linear order on X. An asymmetric and negatively

transitive binary relation on X is called a weak order. Let L(X) be the set of all

linear orders on X and letW(X) be the set of all weak orders on X. Also, let A(X)

be the set of all asymmetric binary relations on X. Then L(X) ⊆ W(X) ⊆ A(X).

In this context, a social welfare function is a function of the form f : Dn → A(X)
aA characterization of the majority consensus rule for hierarchies, using a bi-idempotent condition
as part of the axiom list, is given in [17].
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where D = W(X) or D = L(X) and n ≥ 2 is the number of voters. A profile

R ∈ Dn is either an n-tuple of weak orders on X or an n-tuple of linear orders

on X and the social output f(R) is an asymmetric binary relation on X. For any

x, y ∈ X and for any profile R = (R1, . . . , Rn) ∈ Dn, let

nR(x, y) = |{i : (x, y) ∈ Ri}|.

So nR(x, y) is the number of voters in the profile R that prefer x over y.

For any integer q > n
2 , define the social welfare function fq : Dn → A(X) by

fq(R) = {(x, y) ∈ X ×X : nR(x, y) ≥ q}

for all R ∈ Dn. The rule fq is well defined since q > n
2 and fq(R) = ∅ for all R

whenever q ≥ n + 1. In the sequel, the social welfare function fq∗ where q∗ is the

least integer strictly greater than n
2 will be called majority rule. In fact, for any

integer q > n
2 the social welfare function fq with D = W(X) is a generalization

of the absolute q-majority aggregation rule Fq. To see this, assume X = {x, y}.
Then W(X) = A(X) = {∅, {(x, y)}, {(y, x)}}. Now identify the binary relations ∅,
{(x, y)}, and {(y, x)} with 0, 1, and −1, respectively and notice that nR(x, y) =

n+(R) and nR(y, x) = n−(R) for any profile R. It now follows that the social welfare

function fq is equivalent to the aggregation rule Fq when |X| = 2 and D =W(X).

Observe that A(X) is a median semilattice with set containment as the partial

order and set intersection as the meet operation. The semilattice A(X) is not a

lattice and the empty relation ∅ is the zero of A(X). The set of join irreducible

elements is given by

J(X) = {{(x, y)} : x, y ∈ X and x 6= y}.

For convenience we will write (x, y) ∈ J(X) instead of {(x, y)} ∈ J(X). For any

relation Ri ∈ A(X) and for any (x, y) ∈ J(X), (x, y) ≤ Ri if and only if (x, y) ∈ Ri.
In addition, for any profile R = (R1, . . . , Rn) ∈ Dn and for any (x, y) ∈ J(X),

N(x,y)(R) = {i ∈ N : (x, y) ∈ Ri} and N∅(R) = {i ∈ N : Ri = ∅}.

So nR(x, y) = |N(x,y)(R)|. Note that ∅ 6∈ L(X) and so N∅(R) = ∅ any profile

R = (R1, . . . , Rn) ∈ L(X)n.

Using the above notation, the axioms DN, DM, and A defined for consensus

functions can easily be translated to conditions DN, DM, and A for social welfare

functions. For example, f : Dn → A(X) satisfies DN if for all (x, y), (u, v) ∈ J(X)

and for all R,R′ ∈ Dn, N(x,y)(R) = N(u,v)(R
′) and (x, y) ∈ f(R) implies that

(u, v) ∈ f(R′). Next, f satisfies DM if for all (x, y) ∈ J(X) and for all R,R′ ∈ Dn,

N(x,y)(R) ⊆ N(x,y)(R
′) and (x, y) ∈ f(R) implies that (x, y) ∈ f(R′). Finally, f

satisfies A if for any profile R = (R1, . . . , Rn) ∈ Dn and for any permutation Π of

N , f(R1, . . . , Rn) = f(RΠ(1), . . . , RΠ(n)).

The next result is equivalent to Theorem 3.7 in [3].
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Theorem 7.11. Let f :Wn → A(X) be a social welfare function such that |X| ≥ 3.

Then f satisfies DN, DM, and A if and only if there exists an integer q such that
n
2 < q ≤ n+ 1 and f = fq.

It may seem more reasonable to require that the range of a social welfare function

f : Dn → A(X) to be D. This restriction does not work well for majority rule fq∗ .

McGarvey [14] showed that if D = L(X) and the number n is large compared to the

number |X| of alternatives, then the range of fq∗ is the entire set A(X). Stearns

[26] improved McGarvey’s result by showing that fq∗ : L(X)n → A(X) is onto if

n ≥ |X|+ 1 when |X| is odd or n ≥ |X|+ 2 when |X| is even.

There is a rich literature in the theory of social choice which identifies conditions

on a profile R = (R1, . . . , Rn) in Dn such that the image fq∗(R) belongs to D. For

example, a profile R = (R1, . . . , Rn) in L(X)n is value resticted if for every 3-element

subset {x, y, z} of X there is one element of {x, y, z} that is not below the other two

in any Ri, or is not above the other two in any Ri, or is not between the other two

in any Ri. Ward [27] and Sen [24] proved that if n is odd and R in L(X) is value

restricted, then fq∗(R) ∈ L(X). An even more restrictive condition on a profile R

of linear orders is the requirement that for every 3-element subset {x, y, z} there is

some alternative in {x, y, z} that is not ranked below the other two in any Ri. In

this case, the profile R is said to be single-peaked.b

Following Campbell and Kelly [5] we will say that a social welfare function

f : L(X)n → A(X) satisfies

LT: Limited Transitivity if f(R) ∈ W(X) whenever R = (R1, . . . , Rn) ∈ L(X)n

is single-peaked and {Ri : i ∈ N} has at most three members.

It is not hard to verify that a weak order on X is a transitive binary relation and

that majority rule fq∗ satisfies limited transitivity. We now outline Campbell and

Kelly’s simple and elegant characterization of majority rule. This characterization

of majority rule is an extension of a result due to Eric Maskin [12].

First, we need to list some conditions a given social welfare function f : L(X)n →
A(X) may or may not satisfy. We will say that f satisfies

IIA: Independence of Irrelevant Alternatives if for any (x, y) ∈ J(X) and for

any profiles R,R′ ∈ L(X)n, (x, y) ∈ f(R) if and only if (x, y) ∈ f(R′) whenever

N(x,y)(R) = N(x,y)(R
′).

Since we are working with linear orders, N(x,y)(R) = N(x,y)(R
′) implies that

N(y,x)(R) = N(y,x)(R
′) and so IAA implies that f(R) ∩ {(x, y), (y, x)} = f(R′) ∩

{(x, y), (y, x)}. Next, f satisfies

Pareto if, for any (x, y) ∈ J(X) and for any profile R, (x, y) ∈ f(R) whenever

N(x,y)(R) = N .

bSee Chapter 9 in Fishburn [9] for a complete discussion of single-peaked preferences.
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We will say that a subset I of N is decisive if, for any (x, y) ∈ J(X) and for any

profile R, (x, y) ∈ f(R) whenever N(x,y)(R) = I. The Pareto condition implies that

N is decisive.

The next result is due to Campbell and Kelly [5].

Theorem 7.12. Let f : L(X)n → A(X) be a social welfare function and assume

that |X| ≥ 3. Then f satisfies Limited Transitivity, IIA, and Pareto if and only if

the collection D of decisive sets of f satisfies:

1)I, J ∈ D implies I ∩ J 6= ∅

and

2)I ⊆ N implies I ∈ D or N \ I ∈ D.

We give a brief and incomplete argument to show that property 2) holds when

f satisfies Limited Transitivity, IIA, and Pareto. Let I be a nonempty subset of N .

Choose a profile R = (R1, . . . , Rn) in L(X)n such that |{Ri : i ∈ N}| = 2 and Ri
restricted to the 3-element subset {x, y, z} has the following pattern:

i ∈ I i∈ N \ I
x y

y z

z x

It follows from Pareto that (y, z) ∈ f(R). Observe that profile R is single-peaked

and so, by Limited Transitivity, f(R) belongs to W(X). Since f(R) is negatively

transitive it follows that either (x, z) ∈ f(R) or (y, x) ∈ f(R). Thus either I is a

decisive set for (x, z) or N \ I is a decisive set for (y, x). Using the previous fact

and the assumptions on f it can be shown that either I or N \ I is decisive for any

order pair of distinct alternatives, i.e, either I ∈ D or N \ I ∈ D. This establishes

property 2).

Now suppose f : L(X)n → A(X) satisfies properties 1) and 2). If I ∈ D and

I ⊆ J ⊆ N , then N \ J 6∈ D since I ∩N \ J = ∅. Therefore, by property 2), J ∈ D.

Hence the set D of decisive sets is a transversal federation. The next result follows

from the previous observation and Theorem 7.12.

Theorem 7.13. (Campbell & Kelly 2000) Let f : L(X)n → A(X) be a social wel-

fare function such that |X| ≥ 3 and n is odd. Then f satisfies Limited Transitivity,

IIA, Pareto, and Anonymity if and only if f = fq∗ .

One of the most interesting aspects of the previous result is that there is no

monotonicity assumption. Moreover, we can view IIA as a very weak version of

neutrality. If we think of Limited Transitivity and Pareto as a replacement for

decisive monotonicity, then we can view Theorem 7.13 in the same light as Corollary

7.1.
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The fact that majority rule produces a large selection of asymmetric outcomes

does not preclude the possibility that another social welfare function f : Dn →
A(X) has range a subset of D. There is still a problem. If |X| ≥ 3 and f : Dn → D

satisfies Pareto and IIA, then K. Arrow [1] proved that f is dictatorial, i.e., there

exists i ∈ N such that Ri ⊆ F (R) for all R = (R1, . . . , Rn) ∈ Dn. See [6] for a

thorough discussion on Arrow’s Theorem and its various generalizations.

To state the next result, we need some more terminology. Let Ω be a subset of

L(X). We will say that Ωn is without Condorcet triples if each profile R in Ωn is

value restricted. If we restrict majority rule fq∗ to Ωn and n is odd, then we get

a well defined mapping fq∗ : Ωn → L(X). On the other hand, if n is even, then

fq∗(R) need not be a complete relation. To bypass this problem, we can work with

a more general version of majority rule.

Definition 7.3. Let Ω be a subset of L(X). A function f : Ωn → L(X) is called a

generalized majority rule (GMR) if there exists n−1 linear orders `1, ..., `n−1

on X such that

f(R) = fq∗(R1, . . . , Rn, `1, . . . , `n−1)

for all R = (R1, . . . , Rn) ∈ Ωn.

The n − 1 additional voters having the fixed preference orders `1, ..., `n−1 are

called dummy agents. Observe that the alternative x ranks above the alternative y

in f(R) if and only if the majority of real voters and dummy agents prefer x over

y.

To state the next result we need one more piece of terminology. For any linear

order q onX, the inverse of q is denoted by q−1 and is defined as follows: (x, y) ∈ q−1

if and only if (y, x) ∈ q.

Theorem 7.14. (Sethuraman et al. 2006 [25]) Let Ω be a subset of L(X) containing

an ordering q and its inverse q−1 such that Ωn is without Condorcet triples. If

|X| ≥ 3 and f : Ωn → L(X) satisfies Pareto, IIA, DM, and anonymity, then f is a

generalized majority rule.

The previous result extends and generalizes an earlier result due to H. Moulin

[20] where the domain of f is assumed to be single-peaked.

A comparison between Theorems 7.13 and 7.14 show that if there is an appro-

priate assumption about the domain or range of the function f and f satisfies some

reasonable conditions, then it has to be a majority type rule.

7.4. Conclusion

In this chapter we considered consensus functions on median semilattices, aggrega-

tion rules based on a set with two alternatives, and social welfare functions based

on a set with two or more alternatives. Roughly, we observed that if one of these
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functions is anonymous and satisfies certain conditions like neutrality and mono-

tonicity, then it has to be an absolute majority rule. This observation is confirmed

by looking at Theorems 7.2, 7.3, 7.11, and 7.13. On the other hand, once we devi-

ate (even slightly) from the conditions of anonymity, neutrality, and monotonicity,

then a lot can happen. The work on understanding majority type rules in various

situations is of current interest as demonstrated by Theorems 7.13 and 7.14 (see

also [23]). It has been close to sixty years since May’s paper on simple majority

rule appeared in print and we still continue to learn new things about the majority

rule consensus function.
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The classical measures of the “middle” of a tree include the center and the median.
It is well known that another seemingly different measure, the branch weight
centroid of a tree, yields the same middle as the median. Many other descriptions
of “middleness” of a tree are not so well known, some of which also yield the same
set of vertices as the median. In this survey we gather together many descriptions
of middle sets in trees, some of which yield the same set of vertices as the median,
and others that are distinct from the center and the median. We discuss, in turn,
the center, the median, the branch weight centroid, the absolute p-center, the
vertex p-center, the absolute p-median, the vertex p-center, the security center,
the accretion center, the telephone center, the weight balance center, the latency
center, the pairing center, the processing center, the leaf weight median, the leaf
branch weight centroid, the n-th power center of gravity, the distance balance
center, the k-nucleus, the k-branch weight centroid, the R-center, the k-centrum,
the k-ball branch weight centroid, the k-ball l-path branch weight centroid, the k-
processing center, the centdian (or cendian), the R-median, the R-branch weight
centroid, the k-broadcast center, the distance balanced edge center, the weight
balanced edge center, the Steiner k-center, the Steiner k-median, a central k-tree,
the subtree center, the majorization center, the cutting center, the centrix, the
security centroid, the harmonic center, the path center, a path median (core),
and the path centroid (spine). We also mention some general central subtrees
of maximum degree D that generalize some of the previous concepts, and we
conclude with a further generalization involving hereditary class centrality. We
also reference some work on tree networks.

Introduction

If G is a graph, V (G) denotes its vertex set and E(G) denotes its edge set. The

number of edges of G incident with vertex x of G is the degree of x, denoted d(x).

A vertex x in a tree T with d(x) = 1 is called a leaf of T . The set of all leaves of

a tree T is denoted Lf(T ), i.e., Lf(T ) = {x ∈ V (T ) : d(x) = 1}. If S ⊆ V (G),

then the subgraph of G induced by S, denoted G[S], is the subgraph of G with

∗Dedicated to F.R. “Buck” McMorris on his 65th birthday
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vertex set S and edge set given by all edges in G with both ends in S. If G is

connected and S ⊆ V (G), the smallest, connected subgraph of G with vertex set S

is denoted G〈S〉; of course, G[S] is a subgraph of G〈S〉. If S is either a subgraph

of G or a set of vertices of G, then G − S denotes the subgraph of G induced

by the vertices of G that are not vertices of S, i.e., G − S = G[V (G) − S] (or,

G[V (G)−V (S)], if S is a subgraph). Kn denotes the complete graph on n vertices,

and Km,n denotes the complete bipartite graph with partite sets of order m and

n. If e is an edge of a graph G with ends x and y, then we will denote e by xy

or yx. The length P in G, denoted l(P ), is the number of edges in P . If x and y

are two vertices in a connected graph G, dG(x, y) (or simply d(x, y), if there is no

confusion as to the underlying graph G) denotes the length of a shortest path in G

with ends x and y, i.e., d(x, y) = min{l(P ) : P a path in G with ends x and y}. If

x, y ∈ V (G), then V (x, y) denotes all vertices in G that are closer to x than to y,

i.e., V (x, y) = {z ∈ V (G) : d(x, z) < d(y, z)}.
We now define some middle sets. If R and S are subsets of vertices of G or

subgraphs of G, then the distance between R and S, denoted d(R,S), is the smallest

distance between a vertex of R and a vertex of S, i.e., d(R,S) = min{d(r, s) :

r ∈ R, s ∈ S}. If |R| = 1, say R = {r}, then d(R,S) will be abbreviated d(r, S).

The eccentricity of S, denoted e(S), is the largest of the distances between S and

all vertices of V (G), i.e., e(S) = max{d(v, S) : v ∈ V (G)}. If |S| = 1, say S =

{x}, then e(S) is abbreviated e(x). So, e(x) = max{d(x, y) : y ∈ V (G)}. The

radius of G, denoted r(G), is the smallest eccentricity of the vertices of G, i.e.,

r(G) = min{e(x) : x ∈ V (G)}, and the diameter of G, denoted dia(G), is the

largest eccentricity of all of the vertices of G, i.e., dia(G) = max{e(x) : x ∈ V (G)}.
The center of G, denoted C(G), consists of all vertices of G of smallest eccentricity,

i.e., C(G) = {x ∈ V (G) : e(x) = r(G)}. The total distance of S (or simply

the distance of S) denoted D(S), is the sum of the distances between S and all

vertices of V (G), i.e., D(S) =
∑
{d(v, S) : v ∈ V (G)}. If |S| = 1, say S =

{x}, then D(S) is abbreviated D(x). So, D(x) =
∑
{d(x, y) : y ∈ V (G)}. The

median of G, denoted M(G), consists of all vertices of G with smallest distance,

i.e., M(G) = {x ∈ V (G) : D(x) ≤ D(y), y ∈ V (G)}. If G is a tree T , then the

branch weight of S, denoted bw(S), is the number of vertices in a largest component

of T − S, i.e., bw(S) = max{|V (C)| : C a connected component of T − S}. If

|S| = 1, say S = {x}, then bw(S) is abbreviated bw(x). So, bw(x) = max{|V (C)| :
C a connected component of T − x}. Equivalently, bw(x) is the maximum number

of edges in a maximal subtree of T having x as a leaf. The branch weight centroid of

T (or simply centroid of T ), denoted Bw(T ), is the set of vertices of T with smallest

branch weight, i.e., Bw(T ) = {x ∈ V (T ) : bw(x) ≤ bw(y), y ∈ V (T )}. There have

been some generalizations of centroids to general, connected graphs (e.g., see Slater

[53], [58] and Piotrowski [44]).

In the language of location of facility theory, the central set C(G) is central with

respect to minimizing the worst response time for an emergency facility, and the
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central set M(G) is central with respect to minimizing the total delivery distance

for a supply location. We elaborate a bit on this at the end of this section.

The two central sets C(G) and M(G) might be the same set, as can be seen,

for example, by a cycle or by a path of odd length. Or, they may be arbitrarily far

apart as can be seen by the tree T with 4m+ 3 vertices obtained from K1,2m+2, by

subdividing one edge with 2m new internal vertices. The vertex of degree 2m + 2

is the only vertex in M(T ), and the vertex of distance m from the vertex of degree

2m+ 2 is the only vertex in C(T ). However, if a tree T contains n vertices, n ≥ 3,

then Entringer, Jackson, Snyder [14] showed that the maximum distance between

the center and the median is at most bn4 c.
Jordan [29] introduced the branch weight centroid and the center of a tree in

1869; he showed

Theorem 8.1. The center of a tree consists of a single vertex or two adjacent

vertices, and the branch weight centroid of a tree consists of a single vertex or two

adjacent vertices.

Modern proofs of these two facts can be found in many textbooks, often as

exercises (e.g. Bondy, and Murty [4] or Chartrand and Oellermann [7]). A “pruning

procedure” is usually employed for the case of the center. A particular attractive

proof of both facts was given by Graham, Entringer, Székely [17].

In 1877 Cayley [6] was under the impression that Sylvester had discovered cen-

ters, but Sylvester stated in 1873 [65] and again in 1882 [66] that centers were

discovered by Jordan. In 1962 Ore [40] presented, without comment, the concept

of the median. In 1966 Sabidussi [50] showed, in a discussion of axiomatic consid-

erations of centrality, that the median consists of a single vertex or two adjacent

vertices (although he referred to this central set as the center). In 1968 Zelinka [73]

proved

Theorem 8.2. In a tree, the branch weight centroid and the median are the same

set of vertices.

Theorems 8.1 and 8.2 form the motivating results for most of the remainder of

this survey. These two measures of centrality are but the tip of the iceberg in the

sea of studies done on centrality in graphs, particularly trees, and networks. Many

of these studies are motivated by the study of the location of one or more facilities

on networks. So, the underlying structure of the network, a graph, is a fundamental

structure in which to study centrality. Trees have been the subject of a host of such

studies, and provide a rich context for fundamental results. However, there is much

more to the issue of location of facilities for real applications, issues that often

necessitate cycles in the underlying graph. Even in tree networks complications

arise, because edge weights (called lengths), and in some cases vertex weights, are

also factored in. Additional complications arise if locations of facilities are to be

considered along edges as well as at vertices, so the terms absolute centers and
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absolute medians are employed. Continuous mathematics enters the picture, and

the subject also becomes a branch of combinatorial optimization. Accordingly,

algorithmic considerations make up a large part of general facility location theory.

Before embarking on this survey, we include, for completeness, the definition of a

network, the context for most work in facility location theory, and the definitions

of an absolute p-center and an absolute p-median, the centrality concepts most

frequently encountered in facility location theory. And, we make some remarks

about axiomatics.

Let R, R+, and R− denote the set of real numbers, the set of positive real

numbers and the set of negative real numbers, respectively. A network is a con-

nected, undirected graph G together with functions w : V (G) → R − R− and

l : E(G) → R+. For v ∈ V (G), the nonnegative real number w(v) is called the

weight of v, and for e ∈ E(G), the positive number l(e) is called the length of

e. Formally, G is embedded into some space, such as R2 or R3. A point on G

is any point along any edge and may or may not be a vertex. The length of a

path P connecting two points x and y, denoted l(P ), is the sum of the lengths of

the edges (and perhaps partial edges) that make up P and the distance between

x and y, denoted d(x, y), is the length of a shortest path between x and y, i.e.,

d(x, y) = min{l(P ) : P a path connecting x and y}. For a set Vp of p points on

G and a vertex x, the distance between x and Vp, denoted d(x, Vp), is the smallest

distance between x and the points of Vp, i.e., d(x, Vp) = min{d(x, v) : v ∈ Vp}. The

weighted eccentricity of Vp, denoted e(Vp), is the maximum value of w(x)×d(x, Vp) as

x ranges over all vertices x ∈ V (G), i.e., e(Vp) = max{w(x)× d(x, Vp) : x ∈ V (G)}.
A set of p points V ∗p is an absolute p-center if its weighted eccentricity is the min-

imum weighted eccentricity among all sets of p points, i.e., e(V ∗p ) ≤ e(Vp), for all

sets of p points Vp on G. If the points in Vp are restricted to be vertices of G, then

V ∗p is called a vertex p-center. The weighted distance of Vp, denoted D(Vp), is the

sum of all the terms of the form w(v) × d(v, Vp) as v ranges over all vertices of G,

i.e., D(V p) =
∑
{w(v) × d(v, Vp) : v ∈ V (G)}. A set of p points V ∗p is an absolute

p-median provided its weighted distance is the minimum weighted distance of all

sets of p points on G, i.e., D(V ∗p ) ≤ D(Vp) for all sets of p points Vp on G. If the

points in Vp are restricted to be vertices of G, then V ∗p is called a vertex p-median.

If both the weight function w(·) and the length function l(·) are constant functions,

then the definitions of vertex p-center and vertex p-median are basically concepts

for ordinary graphs, and, if in addition p = 1, then a vertex 1-center is just the

ordinary center of the underlying undirected graph G, and the vertex 1-median is

just the ordinary median of G. If p = 1, the terms absolute 1-center and absolute

1-median are shortened to absolute center and absolute median, respectively. There

is a unique point in a tree network that is the absolute center, and it need not be a

vertex. There might be many points in a tree network that are absolute medians,

but at least one must be at a vertex as was shown in an important early result in

1965 by Hakimi [19].
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Theorem 8.3. In a tree network there is always a vertex p-median that is also an

absolute p-median.

Since Hakimi’s seminal work [18], [19], the field of location theory has blossomed.

In the early years it was particularly focused on algorithmic work aimed at finding

absolute p-centers, absolute p-medians, and various generalizations (some of which

serve all the points of the network, not merely the vertices), including combinations

of centers and medians. See the 1979 text by Handler and Mirchandani [22] and

the 1983 two-part survey by Tansel, Francis, and Lowe [68], [69]. An example of

early work on central structures is the paper by Minieka [34]. A 1990 reference

book edited by Mirchandani and Francis [33] and a 1995 text by M. Daskin [12]

illustrate the growth of the subject, including new directions such as voting and

competitive location problem. More recent collections of articles edited by Drezner

and Hamacher [13] and recent papers, such as those by Tamir, Puerto, Mesa, and

Rodŕıguez-Ch́ıa [67] and Bhattacharya, Hu, Shi, and Tamir [3] illustrate the current

depth and breath of the subject.

We make only some quick comments about axiomatics, see also McMorris, Mul-

der and Vohra (this volume). In 1966 Sabidussi [50] undertook an axiomatic ap-

proach of centrality in graphs in order to explain why several previously suggested

sociological centrality functions in graphs are not very satisfactory. In 1990 Holzman

[28] gave axioms that characterize the centrality measure in a tree that minimizes

the sum of the squares of the distances from a vertex to the other vertices. An

axiomatic characterization of the median function on a tree was given by Vohra

[70] in 1996 and more generally by McMorris, Mulder, and Roberts [31] in 1998.

In 1998 Foster and Vohra [15] give an axiomatic characterization of general cen-

trality functions on trees that includes the weighted absolute center, the absolute

center, and more. In 2001 McMorris, Roberts and Wang [33] gave an axiomatic

characterization of the center function on trees. Subsequently, Mulder, Pelsmajer,

and Reid [39] gave a short proof of that characterization in 2008. In 2004 Monsuur

and Storcken [37] gave axiomatic characterizations of some centrality concepts on

graphs, including examples from sociology, game theory, and business.

In this restricted survey we concentrate on trees; edge and vertex weights will

rarely be mentioned or can be taken to be constant. Many of the concepts described

were originally defined for all connected graphs, but in most instances we give the

definition for trees only. The primary focus will be on the graph theory of centrality

in trees (so, any facilities and customers will be assumed to be located at vertices).

We will present descriptions of middle vertices in trees given by many different

criteria, present the basic results about each concept, and give references for further

study. Sections 8.1-8.4 deal with small connected central sets, Section 8.5 treats

central sets that can possibly induce large subtrees, Section 8.6 deals with central

sets that can possibly induce disconnected subgraphs, and Section 8.7 deals with

central subtrees of specific types and concludes with some generalizations. Many

of these measures of centrality are related in ways to be revealed, but most of the
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relations between these measures have yet to be completely determined and await

additional research. This survey contains descriptions of many more central sets in

trees than earlier surveys (e.g., see [5], [30], [61], [62]) but surely there are more

examples of central sets in trees. However, we trust that most readers will become

acquainted with at least one new central set.

8.1. The Center

The center is perhaps the most obvious candidate for being the middle of a graph.

Ádám [1] introduced five centrality functions for trees, two of which yield the center

(one function is essentially the eccentricity function), one that yields the centroid

(in essentially the same way as in the definition in the Introduction), and two that

yield the same distinct set that is different from the center and the centroid. We

describe his alternative description of the center and discuss the later two functions

at the end of Section 8.2.

Definition 8.1. If xy is an edge of a tree T , then define m(x, xy) = max{d(x, z) :

z a vertex in the component of T −x that contains y}. Label the d = d(x) vertices

adjacent to x as y1, y2, . . . , yd so that m(x, xy1) ≥ m(x, xy2) ≥ . . . ≥ m(x, xyd).

Define the function on V (T ) as follows: f(x) = 0 if x is a leaf, and f(x) = m(x, xy2)

otherwise.

Note that the condition in the set defining m(x, xy) is equivalent to d(x, z) =

1 + d(y, z) which is equivalent to z ∈ V (y, x) (since xy ∈ E(T )). And, in the

definition of f(x), if x is not a leaf of T , then f(x) is the second term in the string

of inequalities involving the m(x, xyi) given above. The vertices that maximize the

function f(·) are of interest. Ádám [1] proved the following theorem.

Theorem 8.4. Suppose that T is a tree. Then C(T ) = {x ∈ V (T ) : f(x) ≥
f(y), y ∈ V (T )}.

8.2. The Median

We briefly introduce several measures of centrality in trees before stating the main

result of this section.

Definition 8.2. For a vertex x in a tree T , the security number of x, denoted sec(x),

is defined to be the smallest value of |V (x, v)| − |V (v, x)| over all v ∈ V (T )− {x},
i.e., sec(x) = min{|V (x, v)| − |V (v, x)| : v ∈ V (T ) − {x}}. The security center of

T , denoted Sec(T ), consists of all vertices of T with largest security number, i.e.,

Sec(T ) = {x ∈ V (T ) : sec(x) ≥ sec(y), y ∈ V (T )}.

The security center was introduced and studied by Slater [53] as a model for the

competitive location of one facility by two competitors.
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Definition 8.3. Suppose that T is a tree of order n. An ordered n-tuple

(x1, x2, . . . , xn) of the n vertices of T is called a sequential labeling provided the

subgraph T [{x1, x2, . . . , xj}] induced by {x1, x2, . . . , xj} is connected, for all j,

1 ≤ j ≤ n. The sequential number of a vertex x, denoted seq(x), is the number

of sequential labeling of T with x as first entry, i.e., seq(x) = |{(x1, x2, . . . , xn) :

(x1, x2, . . . , xn) is a sequential labeling of V (T ), x = x1}|. The accretion center of

T , denoted Acc(T ), is the set of all vertices of T with largest sequential number,

i.e., Acc(T ) = {x ∈ V (T ) : seq(x) ≥ seq(y), y ∈ V (T )}.

The accretion center was introduced and studied by Slater [58] as a model of

sequencing the establishment of facilities, one at each vertex of a tree network.

Definition 8.4. Define two paths in a tree T to be distinct if all four of their ends

are distinct. The switchboard number of a vertex x ∈ V (T ), denoted sb(x), is the

maximum number of distinct paths having x as an interior vertex. The telephone

center of T , denoted Tel(T ), is the set of all vertices of T with largest switchboard

number, i.e. Tel(T ) = {x ∈ V (T ) : sb(x) ≥ sb(y), y ∈ V (T )}.

Mitchell [36] introduced and studied the telephone center in 1978 as a model for

certain efficiency in communication networks.

Definition 8.5. The weight balance of a vertex x in a tree T , denoted wb(x), is

defined to be the integer min{|n1 − n2|}, where the minimum is taken over all

subtrees T1 and T2 of T such that V (T ) = V (T1) ∪ V (T2), V (T1) ∩ V (T2) = {x},
|V (T1)| = n1, and |V (T2)| = n2. The weight balance center of T, denoted Wb(T ), is

the set of all vertices of T with smallest weight balance, i.e., Wb(T ) = {x ∈ V (T ) :

wb(x) ≤ wb(y), y ∈ V (T )}.

The weight balance center was introduced and studied by Reid and DePalma

[49] as a “best” balance vertex x of a tree so that there are a nearly equal number

of vertices on “either side” of x, i.e., nearly equal number of vertices in two subtrees

such that x is the only vertex contained in both, but together the two subtrees

contain all vertices of T .

Definition 8.6. Let W denote the walk resulting from a depth-first-search through

all of the vertices of T starting with x and ending exactly at that vertex that is

the first vertex so that all vertices occur in W . For each vertex y ∈ V (T ), let

ix(y,W ) denote the length of that part of W from the first occurrence of x to the

first occurrence of y.

Lemma 8.1. If Q and R are any two such depth-first walks in a tree T , each

starting at x ∈ V (T ), then
∑
ix(y,Q) =

∑
ix(y,R), where both sums are over all

vertices y ∈ V (T ).

Definition 8.7. The latency of x, denoted l(x), is defined to be the unique value∑
{ix(y,W ) : y ∈ V (T )} (by Lemma 8.1), where W is any depth-first walk as
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described above. The latency center, denoted L(T ), consists of all vertices of T

with largest latency number, i.e., L(T ) = {x ∈ V (T ) : l(x) ≥ l(y), y ∈ V (T )}.

The latency center was suggested by Hedetniemi [27] and studied by Reid [48].

Definition 8.8. A pairing of a tree T of order n, denoted P (T ), is a partition

of V (T ) into 2-sets (and one singleton, called a free vertex, if n is odd). If

P (T ) = {{ai, bi} : 1 ≤ i ≤ dn2 e}, where adn2 e = bdn2 e is the free vertex if n

is odd, let Pi denote the unique path in T with ends ai and bi. Note that if

n is odd, then l(Pdn2 e) is zero. Let G(P (T )) =
∑
{l(Pi) : 1 ≤ i ≤ dn2 e}, and

define G(T ) to be the largest possible value of G(P (T )) over all pairings P (T )

of T , i.e., G(T ) = max{G(P (T )) : P (T ) a pairing of T}. A pairing P0(T ) of

T such that G(T ) = G(P0(T )) is called a maximum pairing of T . The pair-

ing center of T , denoted PC(T ), is defined separately for n even and n odd. If

n is even, PC(T ) consists of all vertices x of T so that there is a maximum

pairing of T with x on all of the paths Pi, 1 ≤ i ≤ n
2 , i.e., PC(T ) = {x ∈

V (T ) : there is a maximum pairing of T with x on all n
2 paths of the pairing}. If

n is odd, then PC(T ) consists of all vertices x of T so that there is a max-

imum pairing P0(T ) of T with x free in P0(T ), i.e., PC(T ) = {x ∈ V (T ) :

there is a maximum pairing of T with x free}.

The pairing center was introduced and studied by Gerstel and Zaks [16] to

discuss lower bounds on the message complexity of the distributed sorting problem.

Definition 8.9. A processing sequence for a tree T of order n is a permuta-

tion x1, x2, . . . , xn of its vertices so that x1 is a leaf of T , and for each i,

2 ≤ i ≤ n, xi is a leaf of the subtree T − {x1, . . . , xi−1}. The process-

ing number of a vertex x, denoted proc(x), is the index of the earliest possi-

ble position for x over all processing sequences, i.e., proc(x) = min{i : x =

xi in some processing sequence x1, x2, . . . , xn}. The processing center of T ,

denoted Proc(T ), consists of all vertices with largest processing number, i.e.,

Proc(T ) = {x ∈ V (T ) : proc(x) ≥ proc(y), y ∈ V (T )}.

The processing center was introduced and studied by Cikanek and Slater [10]

as a model for a multiprocessor job-scheduling problem. We now give a result

pertinent to each of the centrality measures described thus far in this section. For a

tree T , let X(T ) denote any one of the central sets discussed thus far in this section.

Each of the references corresponding to the choice for X(T ) essentially contains the

following two theorems, among other things. The second of these results can be

thought of as a “Zelinka-type” theorem (see Theorem 8.2)

Theorem 8.5. If T is a tree, then X(T ) consists of either a single vertex or two

adjacent vertices.

Theorem 8.6. If T is a tree, then X(T ) = M(T ) = Bw(T ).
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Consequently, we see that the median can be expressed in many different ways,

and we can restate Theorem 8.6 as

Theorem 8.7. Let T be a tree. Then the branch weight centroid of T = the median

of T = the security center of T = the accretion center of T = the telephone center

of T = the weight balance center of T = the latency center of T = the pairing center

of T = the processing center of T .

If x is a vertex in a tree T , then max{d(x, y) : y ∈ V (T )} = max{d(x, y) : y ∈
Lf(T )}. So, taking the maximum over the leaves of T in the definition of e(x)

results in no new value. This is not necessarily the case if such a change is made

in the definitions of branch weight of a vertex and distance of a vertex. Ádám [1]

obtained some possibly different central sets by making this change. These sets are

also linked by a Zelinka-type result (as in Theorem 8.2). Recall that for two distinct

vertices x and y in a graph, V (x, y) ∩ V (y, x) = ∅, and if xy is an edge of a tree,

then V (T ) = V (x, y) ∪ V (y, x).

Definition 8.10. The leaf branch weight of vertex x, denoted lbw(x), is the

maximum number of leaves of T in any connected component of T − x, i.e.,

lbw(x) = max{|V (y, x) ∩ Lf(T )| : yx ∈ E(T )}. The leaf branch weight centroid

of T , denoted lbw(T ), is the set of all vertices of T with smallest leaf weight,

i.e., lbw(T ) = {x ∈ V (T ) : lbw(x) ≤ lbw(y), y ∈ V (T )}. The leaf distance of

x, denoted lD(x), is the sum of the distances from x to all the leaves of T , i.e.,

lD(x) =
∑
{d(x, z) : z ∈ Lf(T )}. The leaf median of T , denoted lM(T ), is the set

of all vertices of T with smallest leaf distance, i.e., lM(T ) = {x ∈ V (T ) : lD(x) ≤
lD(y), y ∈ V (T )}.

Ádam [1] proved the following theorem, part (a) of which is a Zelinka-type

theorem (see Theorem 8.2).

Theorem 8.8. Suppose that T is a tree.

(a) lbw(T ) = lM(T ). That is, the leaf branch weight centroid of T is equal to the

leaf median of T.

(b) If T is not a path, then the leaf branch weight centroid of T consists either of

the vertices of some K1,m, for some m ≥ 0, or of all the vertices of some path

P of one or more edges such that P contains no leaf of T , all internal vertices

of P are of degree 2 in T , and the ends of P have degree at least 3 in T . (Here,

K1,0 means K1.)

Subsequently, Slater [54] considered the possible location for the leaf median

and independently proved

Theorem 8.9. For each positive integer k there is a tree T for which C(T ), M(T ),

and lM(T ) are pairwise separated by distances greater than k, and no path of T

contains a vertex of each of these sets.
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Other central sets can be obtained by replacing Lf(T ) in the above considera-

tions with other subsets of V (T ), as was done by Slater [55] in 1978. In fact, instead

of merely one subset, Slater [56] subsequently studied the extension of these ideas

to a family of subsets, as we shall see in Section 8.5.

8.3. Two more central sets that induce K1 or K2

In this section we see some more central sets consisting of a single vertex or two

adjacent vertices. The first such concept is a natural generalization of the median.

Definition 8.11. Let n be a positive integer, and let x be a vertex in a tree T .

The n-th power distance of x, denoted Dn(x), is the sum of the n-th power of the

distances to all other vertices, i.e., Dn(x) =
∑
{(d(x, y))n : y ∈ V (T )}. The n-th

power center of gravity of T , denoted Mn(T ), is the set of vertices of T of least

n-th power-distance, i.e., Mn(T ) = {x ∈ V (T ) : Dn(x) ≤ Dn(y), y ∈ V (T )}. When

n = 1, M1(T ) is just the median of T . Since Dn(x)
(|V (T )|−1) is the average of the n-th

power of the distances from x to the other vertices, a vertex in Mn(T ) minimizes

this average.

In 1970 Zelinka [74] proved

Theorem 8.10.

(a) If T is a tree and n is a positive integer, then Mn(T ) consists of either a single

vertex or two adjacent vertices.

(b) For any two positive integers k and n there exists a tree T so that

d(Mn(T ), C(T )) > k. That is, the n-th power center of gravity and the center

can be arbitrarily far apart.

The next concept is more analogous to the center of gravity of a physical body

than was the previous concept. The pairs of subtrees described next were encoun-

tered in Definition 8.5 of the weight balance of a vertex.

Definition 8.12. For each vertex x in a tree T , let P (x) denote the set of all pairs

of subtrees of T such that x is the only vertex in common to the pair and the union

of the vertex sets of the pair is V (T ). Of course, (T1, T2) ∈ P (x) if and only if

(T2, T1) ∈ P (x), and in either case, V (T1)−{x} and V (T2)−{x} yield a bipartition

of V (T )−{x}. For (T1, T2) ∈ P (x), define the distance balance of x with respect to

(T1, T2), denoted dbal(x; (T1, T2)), to be the absolute value of the difference of the

sum of the distances between x and all vertices in T1 and the sum of the distances

between x and all vertices in T2, i.e.,

dbal(x; (T1, T2)) = |
∑
{d(x, y) : y ∈ V (T1)} −

∑
{d(x, z) : z ∈ V (T2)}|.

Define the distance balance (in T ) at the vertex x, denoted dbal(x), to be the integer

given by min{bal(x; (T1, T2)) : (T1, T2) ∈ P (x)}. The distance balance center of T ,
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denoted DB(T ), consists of all vertices of T with smallest distance balance, i.e.,

DB(T ) = {x : x ∈ V (T ), dbal(x) ≤ dbal(y), y ∈ V (T )}. Vertices in DB(T ) are

called distance balanced vertices.

The term “distance balance” in these definitions is simply called “balance” in

references [47] and [51], but Reid and DePalma [49] adopted the term “distance

balance” to distinguish this concept from the weight balanced vertices discussed in

Section 3. Distance balanced vertices in trees can be considered as a discrete version

of the continuous notion of the “center of gravity” of a physical body. For example,

consider a vertex-weighted tree T in which each vertex has the same weight h. Let

(T1, T2) ∈ P (x). Then for a vertex z in V (T1), h× (d(x, z)) can be thought of as the

moment of z about x in the direction of T1, and for a vertex y in V (T2), h×(d(x, y))

can be thought of as the moment of y about x in the direction of T2. A vertex x in

DB(T ) is one for which the absolute value of the differences of the total moment

about x in the direction of T1 and the total moment about x in the direction of

T2 is as small as possible. If there is a vertex x with dbal(x) = 0, then x is the

“center of gravity” of T ; in general, a vertex in DB(T ) is a “best approximation”

to a vertex center of gravity of T . Reid [47] introduced this concept and obtained

the next two results. Subsequently, Shan and Kang [51] gave a shorter proof of the

first result, and Reid and DePalma [49] gave, among other things, another shorter,

independent proof. The reader may not be surprised with the first result, given the

results from the previous section.

Theorem 8.11. The distance balance center of a tree consists of a single vertex or

two adjacent vertices.

However, there may be a bit of a surprise by the fact that the distance balance

center might be far from center vertices or median vertices, as the next theorem

states.

Theorem 8.12. There exist trees in which a median vertex, a balance vertex, and

a distance balanced vertex can be arbitrarily far apart.

8.4. Families of central sets inducing K1 or K2

In this section we describe several families of central sets, where each member of

the family induces K1 or K2.

Definition 8.13. Let k be an integer, 0 ≤ k ≤ dia(T ). The ball of radius k about

the vertex x of a tree T , denoted B(x; k) and abbreviated as the k-ball about x, is

the set of vertices of distance no more than k from x, i.e. B(x; k) = {y ∈ V (T ) :

d(x, y) ≤ k}. The k-ball about a set S of vertices of a tree T is the union of the

k-balls about each vertex in S, i.e., ∪{B(x; k) : x ∈ S}. The k-distance of x,

denoted D(x, k), is equal to the sum of the distances between the k-ball about x
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and other vertices of T , i.e., D(x, k) =
∑
{d(y,B(x; k)) : y ∈ V (T )}. The k-nucleus

of T , denoted M(T, k), consists of all vertices of T with smallest k-distance, i.e.,

M(T, k) = {x ∈ V (T ) : D(x, k) ≤ D(y, k), y ∈ V (T )}.

In 1981 Slater [57] introduced this one-parameter family of central sets and

studied some of its properties. Note that M(T, 0) is the median of T (and the

branch weight centroid) and M(T, r(T )) is the center of T . So, this is a family of

central sets that moves along T from the one or two adjacent vertices in the median

to the one or two adjacent vertices in the center as k increases from 0 to r(T ). Slater

showed that

Theorem 8.13. Suppose that T is a tree.

(a) For 0 ≤ k ≤ r(T ), M(T, k) consists of a single vertex or two adjacent vertices.

This is no longer true for k in the range r(T ) + 1 ≤ k ≤ dia(T ); in particular,

M(T, dia(T )) = V (T ).

(b) ∪{M(T, k) : 0 ≤ k ≤ r(T )} induces a subtree of T that contains the center of

T and the median of T .

A short proof of part (a) can be found in Reid [46]. The next family of central

sets involves minimizing the largest number of certain vertices outside of a k-ball.

Definition 8.14. For an edge ab of a tree T , let S(a, b; k) denote the vertices of

V (a, b) that are outside of the k-ball about b, i.e., S(a, b; k) = V (a, b) ∩ (V (T ) −
B(b; k)). Equivalently, S(a, b; k) consists of all vertices of T that are in the compo-

nent of T − b that contains a, and are at least distance k + 1 from b. The k-branch

weight of x, denoted b(x, k), is the integer given by max{|S(y, x; k)| : yx ∈ E(T )},
and the k-branch weight centroid of T , denoted Bw(T, k), is the set of all ver-

tices of T with smallest k-branch weight, i.e., Bw(T, k) = {x ∈ V (T ) : b(x, k) ≤
b(y, k), y ∈ V (T )}.

Note that Bw(T, 0) is the ordinary branch weight centroid of T (and the median

of T ), and Bw(T, r(T )) is the center of T . In 1996 Zaw Win [71] introduced this one-

parameter family of central sets that moves from the one or two adjacent vertices

in the centroid to the one or two adjacent vertices in the center as k increases from

0 to r(T ), and he proved

Theorem 8.14. Suppose that T is a tree. Then for 0 ≤ k ≤ r(T ), Bw(T, k) =

M(T, k). That is, the k-branch weight centroid of T is the same as the k-nucleus.

The importance of this result is that it shows that the k-branch weight centroid

is the proper way to generalize the ordinary branch weight centroid so that Zelinka’s

Theorem 8.2 holds when the k-nucleus is taken as the generalization of the median.

As a result we deduce

Corollary 8.1. Suppose that T is a tree. Then for 0 ≤ k ≤ r(T ), Bw(T, k) is a

single vertex or two adjacent vertices.
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The motivating idea for the p-center of a tree was the placement of p facilities to

“best” serve customers at all of the vertices. Now, instead, we consider a fixed set of

customers, one customer at each vertex of the subset, and we wish to locate a single

facility to “best” serve these customers. If there is a customer at every vertex of

T , then we simply obtain the (ordinary) center. So, we now consider other subsets

of the vertices, and even families of subtrees, at which customers are located and

define the corresponding concept of center.

Definition 8.15. If R = {R1, R2, . . . , Rm} is a collection m vertex sets of m

subtrees of a tree T and x ∈ V (T ), then the R-eccentricity of x, denoted eR(x), is

the largest distance to the m subtrees, i.e., eR(x) = max{d(x,Ri) : 1 ≤ i ≤ m}. The

R-center of T , denoted CR(T ), consists of all vertices of T of smallest R-eccentricity,

i. e., CR(T ) = {x ∈ V (T ) : eR(x) ≤ eR(v), v ∈ V (T )}.

When m = 1, eR(x) = d(x,R1), so CR(T ) = R1. When |V (Ri)| = 1, for all i,

1 ≤ i ≤ m, set S = ∪{V (Ri) : 1 ≤ i ≤ m}. Then the R-eccentricity of x is just the

largest distance between x and all vertices of S, i.e., eR(x) = max{d(x, s) : s ∈ S}.
Note that if either S = V (T ) or S = Lf(T ), then the R-center of T is just the

ordinary center of T . In 1978 [55] Slater gave the versions of Definition 8.15 for

other subsets S = ∪{V (Ri) : 1 ≤ i ≤ m} when |V (Ri)| = 1, for all i, 1 ≤ i ≤ m,

and proved

Theorem 8.15. If R = {R1, R2, . . . , Rm} is a collection m singleton sets of

vertices of a tree T (i.e., |Ri| = 1, for all i, 1 ≤ i ≤ m) and S = ∪{Ri : 1 ≤ i ≤ m},
then the R-center of T is the center of T 〈S〉. Consequently, the R-center of T

consists of either one vertex or two adjacent vertices.

Now we return to the general case where m > 1 and there is no restriction on

the numbers |V (Ri)|. In 1981, Slater [59] presented the definitions in Definition

8.15 and proved the following extension of Theorem 8.15. Part (b) is an interloper

in this Section since, under the conditions given, it is possible for CR(T ) to induce

a subtree different from K1 and K2.

Theorem 8.16.

(a) Suppose that T is a tree and R = {R1, R2, . . . , Rm} is a collection of m

subtrees of T such that ∩{V (Ri) : 1 ≤ i ≤ m} = ∅. Then CR(T ) is equal to the

center of some subtree of T , and hence CR(T ) consists of either one vertex or

two adjacent vertices.

(b) Suppose that T is a tree and R = {R1, R2, . . . , Rm} is a collection m subtrees

of T such that I = ∩{V (Ri) : 1 ≤ i ≤ m} 6= ∅. Then CR(T ) = I.

Central sets analogous to the R-center, but using the distance function D(·)
(obtaining the R-median) and the branch weight function bw(·) (obtaining the R-

branch weight centroid) are described in Section 8.5. Next we introduce a family of

central sets involving minimizing the largest total distance to any k customers.
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Definition 8.16. Suppose that T is a tree. For 1 ≤ k ≤ |V (T )| and x ∈ V (T ),

define the integer rk(x) to be the largest possible sum of k distances from x, i.e.,

rk(x) = max{
∑
d(x, s) : s ∈ S, S ⊆ V (T ), |S| = k}. The k-centrum of T , denoted

C(T, k), consists of all vertices of T that minimize the function rk(·), i.e., C(T, k) =

{x ∈ V (T ) : rk(x) ≤ rk(y), y ∈ V (T )}.

Observe that C(T, 1) is the center of T and C(T, |V (T )|) is the median of T ,

which is also the branch-weight centroid of T . So, as the parameter k increases

from 1 to |V (T )|, this central set moves from the one or two vertices in the center

to the one or two vertices in the branch weight centroid, as suggested in the title of

Slater’s 1978 paper [55] in which he proved (a) - (d) of the following theorem. Part

(e) occurs in his paper on the k-nucleus [57].

Theorem 8.17. Suppose that T is a tree and k is an integer, 1 ≤ k ≤ |V (T )|.

(a) C(T, k) consists of either one vertex or two adjacent vertices.

(b) For 2 ≤ k ≤ |V (T )|, C(T, k) ∩ C(T, k − 1) 6= ∅.
(c) If S = ∪{C(T, k) : 1 ≤ k ≤ |V (T )|}, u is in the center of T , and v is in the

centroid of T , then T [S] is a subtree of T containing the path between u and v.

(d) There exist trees T so that if S is as in (c), then T [S] is not a path.

(e) ∪{C(T, k) : 1 ∈ k ∈ |V (T )|} = ∪{M(T, k) : 0 ≤ k ≤ r(T )} (recall, from above,

that M(T, k) denotes the k-nucleus of T ).

A short proof of part (a), based on the recommended proof of Theorem 8.1, can

be found in Reid [46]. Next, we present a family minimizing the largest connected

set of customers, all at more than distance k.

Definition 8.17. If x is a vertex of a tree T , and k is a non-negative integer,

the k-ball branch weight of x, denoted b(x, k), is the order of a largest subtree in

the forest of trees obtained by removing from T the k-ball about x, i.e., b(x, k) =

{|V (C)| : C a component of T − B(x; k)}. The k-ball branch weight centroid of T ,

denoted W (T, k), is the set of all vertices with smallest k-ball branch weight, i.e.,

W (T, k) = {x ∈ V (T ) : b(x, k) ≤ b(y, k), y ∈ V (T )}.

Observe that W (T, 0) is the ordinary branch weight centroid of T (which is

the median of T ), and W (T, r(T )) is the center of T . In 1991, Reid [45] intro-

duced this one-parameter family of central sets that moves along T from the branch

weight centroid to the center as k increases, as suggested in the title of his 1991

paper. These sets are certainly reminiscent of the k-nucleus M(T, k) (which is the

k-branch weight centroid Bw(T, k) by Theorem 8.14) or the k-centrum C(T, k). In-

deed, W (T, 0) = M(T, 0) = Bw(T, 0) and W (T, r(T )) = M(T, r(T )) = B(T, r(T )).

However, Reid [45] showed
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Theorem 8.18.

(a) There exists trees T so that ∪{W (T, k) : 1 ≤ k ≤ r(T ) − 1} and ∪{M(T, k) :

1 ≤ k ≤ r(T )− 1} are disjoint.

(b) There exists trees T so that each of the two sets ∪{W (T, k) : 0 ≤ k ≤ r(T )} and

∪{C(T, k) : 1 ≤ k ≤ |V (T )|}(= ∪{M(T, k) : 0 ≤ k ≤ r(T )} = ∪{B(T, k) : 0 ≤
k ≤ r(T )}, by Theorems 8.14 and 8.17(e)) contains a vertex not in the other.

(c) Let T be a tree. For each k, 0 ≤ k ≤ r(T ), W (T, k) consists of a single vertex

or two adjacent vertices.

(d) Let T be a tree. If S = ∪{W (T, k) : 0 ≤ k ≤ r(T )}, then T [S] is a subtree of T

containing the centroid of T and the center of T .

Subsequently, Reid [46] proved

Theorem 8.19. For each k ≥ 0, there is a tree T so that the k-ball branch weight

centroid and the k-branch weight centroid (= the k-nucleus) are distance k apart.

Another way to describe b(x; k), the k-ball branch weight of a vertex x in a tree,

is that it is the largest number of vertices of T outside of B(x; k), the k-ball about

x, that are reachable in T −B(x; k) from exactly one vertex of distance k+ 1 from

x. This suggests a second parameter for consideration, namely, path lengths.

Definition 8.18. A vertex y in a tree T is reachable from a vertex x via a path P

that has one end at x if the unique path from x to y contains the path P . For 0 ≤ l ≤
dia(T ), let P(x, l) denote the set {P : P a path in T of length l with one end at x},
and for P ∈ P(x, l), let βP (x, k) = |{y ∈ V (T ) : y is reachable from x via P} ∩
(V (T )− B(x; k))|. That is, βP (x, k) is the number of vertices that are outside the

k-ball about x and that are reachable from x via path P . The k-ball l-path branch

weight of x, denoted βl(x, k), is the integer max{βP (x, k) : P ∈ P(x, l)}, and the k-

ball l-path branch weight centroid of T , denoted Bl(T, k), is the set of all vertices of

T with smallest k-ball l-path branch weight, i.e., Bl(T, k) = {x ∈ V (T ) : βl(x, k) ≤
βl(y, k), y ∈ V (T )}.

For special values of the parameters k and l no new central sets are obtained.

When k = 0 and l = 0, the 0-ball 0-path branch weight centroid is V (T ). The 1-ball

0-path branch weight centroid consists of all vertices of maximum degree. When

l = 1, the k-ball 1-path branch weight centroid of T is just the k-branch weight

centroid which is also the k-nucleus. In particular, when k = 0 and l = 1, the 0-ball

1-path branch weight centroid of T is the (ordinary) branch weight centroid which

is also the (ordinary) median. When l = k+1, the k-ball (k+1)-path branch weight

centroid of T is just the k-ball branch weight centroid. When either k = r(T ) and

0 ≤ l ≤ r(T ) + 1, or 0 ≤ k ≤ r(T ) and l = r(T ) + 1, the k-ball l-path branch weight

centroid of T is the (ordinary) center. For appropriate values of the parameters k

and l, Reid [46] showed that these central sets, once again, consist of a single vertex

or two adjacent vertices. That is, he proved
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Theorem 8.20. For 0 ≤ k ≤ r(T ) and 0 < l ≤ r(T ) + 1, the k-ball l-path branch

weight centroid of T consists of a single vertex or two adjacent vertices.

The next family of central sets is an extension of the processing center encoun-

tered in Section 8.2.

Definition 8.19. Let T be a tree and let k be a positive integer. A subset S of

leaves of T is a k-processable set in T provided |S| ≤ k. A sequence (S1, S2, . . . , Sm)

is a k-processable sequence of T if S1 is a k-processable set in T , and, for each j,

2 ≤ j ≤ m, Sj is a k-processable set in T − ∪{Si : 1 ≤ i ≤ j − 1}. Let x ∈ V (T ).

The k-processing number of x, denoted pk(x), is the smallest possible index m so

that there exists a k-processable sequence (S1, S2, . . . , Sm) of T with x ∈ Sm, i.e.,

pk(x) = min{m : there exists a k-processable sequence(S1, S2, . . . , Sm), x ∈ Sm}.
The k-processing center of T , denoted Pk(T ), consists of all vertices of T with largest

k-processing number, i.e., Pk(T ) = {v ∈ V (T ) : pk(x) ≤ pk(v), x ∈ V (T )}.

Cikanek and Slater [10] introduced this family of central sets as part of a multi-

processor job scheduling problem. If k = 1, P1(T ) = Proc(T ), the processing center

from Section 8.2, which is the median. If k is at least the number of leaves of T ,

then Pk(T ) = C(T ). They showed

Theorem 8.21.

(a) For all trees T and for all positive integers k, Pk(T ) consists of either a single

vertex or two adjacent vertices.

(b) There exists a tree T and a positive integer k so that Pk(T ) ∩ Pk+1(T ) = ∅.
(c) There exists a tree T of order n so that T [∪{Pk(T ) : 1 ≤ k ≤ n}] is not

connected.

(d) There exists a tree T of order n so that ∪{Pk(T ) : 1 ≤ k ≤ n} is not contained

in any path of T .

Condition (c) in Theorem 8.21 is sufficient to show that the collection of k-

processing centers is not the same as the collection of k-nuclei or the collection of

k-branch weight centroids or the collection of k-centra or the collection of k-ball

branch weight centroids.

In some applications both the minimax response distance and the minimax total

travel distance need to be considered. One way to do this is to consider combinations

of the eccentricity function e(·) and the total distance function D(·).

Definition 8.20. Let T be a tree and let λ be a real number, 0 ≤ λ ≤ 1. For

x ∈ V (T ) define gλ(x) = λD(x) + (1− λ)e(x). The cent-dian of T , denoted Cλ(T ),

consists of all vertices of T that minimize the function gλ(·), i.e., Cλ(T ) = { x ∈
V (T ) : gλ(x) ≤ gλ(y), y ∈ V (T )}. A vertex in Cλ(T ) is called a cent-dian.

Note that C0(T ) = C(T ) and C1(T ) = M(T ). Consequently, if C(T ) = M(T ),

then Cλ(T ) = C(T ) = M(T ), for all λ, 0 ≤ λ ≤ 1. Halpern [21] introduced this
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concept for tree networks in 1976, where gλ(·) is defined for all points of the tree

network, not just for vertices of T , and Cλ(T ) consists of all points minimizing

gλ(·). So, a centdian in a tree network T might be located at a point that is not

a vertex. It will be convenient to describe Halpern’s result for tree networks, then

interpret it for ordinary trees. Recall that the absolute center of T is unique, but

either there is a unique absolute median located at a vertex or the set of absolute

medians consists of all points located on an edge, including the two end vertices of

that edge. So, either there is a unique absolute vertex median that is closest to the

absolute center or the absolute center is contained on the edge on which all absolute

medians are located and it is equidistant from the two end vertex medians of that

edge. Halpern proved

Theorem 8.22. Let c denote the absolute center of a tree network T and let λ be

a real number, 0 ≤ λ ≤ 1.

(a) If there is a unique absolute median (located at a vertex) m that is closest to

c, then Cλ(T ) contains a vertex, is contained in the path P (m, c) of T from m

to c, and consists of either a single vertex, or one complete edge, or (if c is

not a vertex) a partial edge containing a vertex and c. Moreover, each of these

possibilities occurs for suitable λ.

(b) If the vertex weights are all integers, then for every λ in the range 1
2 ≤ λ ≤ 1,

Cλ(T ) is equal to the set of absolute medians of T .

Halpern described which possibility in part (a) occurs based on the value of

λ−1− 1. Moreover, when the absolute center is on an edge xy, but different from x

and y, he showed that by subdividing the edge xy by making the point c a vertex

with weight λ−1 − 1, then the absolute median of the new tree network and the

centdian of the original tree network are the same points. This reduces the search

for a centdian to the search for an absolute median.

Once again we see that when these comments are restricted to ordinary trees,

rather than tree networks, this central set Cλ(T ) consists of a single vertex or two

adjacent vertices. In 2002 Win and Myint [69] independently discovered most of

the tree network version of Theorem 8.22 by using the definitions explicitly given in

Definition 8.20 (instead of using continuity arguments as in [21]), but they named

Cλ(T ) the λ-cendian of T . They proved, among other things, that for any vertex u

on the path P (m, c) (given in part (a) of Theorem 8.22) there exist infinitely many

λ, where 0 < λ < 1, so that Cλ(T ) = {u}, and for any two adjacent vertices u and

v on P (m, c) there exists a λ, where 0 < λ < 1, so that Cλ(T ) = {u, v}.

8.5. Central subtrees

We now turn our attention to central sets that might induce a subtree different

from K1 or K2. We present these concepts in increasing complexity of the induced
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subtree. As was the case for p-centers, the motivating idea for p-medians was to

place p facilities to “best” serve customers at all of the vertices. As was done in

Section 8.4 for R-centers, we now consider other subsets of the vertices at which

customers are located and define the corresponding concepts of median and branch

weight centroid.

Definition 8.21. Suppose R = {R1, R2, . . . , Rm} is a collection of m subtrees

of T and x ∈ V (T ). The R-distance of x, denoted DR(x), is the sum of the

shortest distances to all Ri, i.e., DR(x) =
∑
{d(x,Ri) : 1 ≤ i ≤ m}. The R-

branch weight of x, denoted bwR(x), is the largest number of members of R en-

tirely contained in one connected component of T − x, i.e., bwR(x) = max{k :

some k of the subtrees in Rare completely contained in one component ofT − x}.
The R-median of T , denoted MR(T ), consists of all vertices of T of smallest R-

distance, i.e., MR(T ) = {x ∈ V (T ) : DR(x) ≤ DR(v), v ∈ V (T )}, and the R-branch

weight centroid, denoted BwR(T ), consists of all vertices of T with smallest R-

branch weight, i.e., BwR(T ) = {x ∈ V (T ) : bwR(x) ≤ bwR(v), v ∈ V (T )}.

We consider some special cases. If m = 1, then DR(x) = d(x,R1), and, for

all x ∈ R1, bwR(x) = 0, while for all x /∈ R1, bwR(x) > 0. That is, for m =

1, MR(T ) = BwR(T ) = R1. When |V (Ri)| = 1, for all i, 1 ≤ i ≤ m, define

S to be the union of all of the Ri’s, i.e., S = ∪{V (Ri) : 1 ≤ i ≤ m}. Then

the R-distance of x is just the sum of the distances between x and all vertices

of S, i.e., DR(x) =
∑
{d(x, s) : s ∈ S}. And, the R-branch weight of x is the

maximum number of vertices of S in any connected component of T − x, i.e.,

bwR(x) = max{|S ∩ V (C)| : C a connected component of T − x}. This implies

that if |V (Ri)| = 1, for all i, 1 ≤ i ≤ m, and S = V (T ), then the R-median of T

is just the ordinary median of T and the R-branch weight centroid of T is just the

ordinary branch weight centroid of T . And, if S = Lf(T ), the set of leaves of T ,

then we obtain the leaf median and the leaf branch weight centroid of Section 8.2.

For other subsets S, new central sets are possible. In 1978 [55] Slater proved

Theorem 8.23. Suppose that T is a tree and R = {R1, R2, . . . , Rm} is a collection

of m subtrees of T such that |V (Ri)| = 1, for all i, 1 ≤ i ≤ m,

(a) MR(T ) consists of the vertices of a path.

(b) If |MR(T )| ≥ 2, then |∪{V (Ri) : 1 ≤ i ≤ m}| is even; if |∪{V (Ri) : 1 ≤ i ≤ m}|
is odd, then MR(T ) consists of a single vertex.

(c) BwR(T ) = MR(T ).

Again, part (c) is a Zelinka type result for R-centrality. A bit more is possible

when R does not consist of a collection of singletons, as was shown by Slater [59]

who proved the following theorem.

Theorem 8.24. Suppose that T is a tree and R = {R1, R2, . . . , Rm} is a collection

of m subtrees of T .
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(a) If ∩{V (Ri) : 1 ≤ i ≤ m} = ∅, then MR(T ) consists of the vertices of a path.

(b) If I = ∩{V (Ri) : 1 ≤ i ≤ m} 6= ∅, then MR(T ) = I (which is also equal to

CR(T ) by Theorem 8.16(b)).

(c) MR(T ) ⊆ BwR(T ), and (as in Theorem 8.23) if |V (Ri)| = 1, 1 ≤ i ≤ m, or if

m = 1, then MR(T ) = BwR(T ).

Broadcasting in a communications network is a process of message dissemination

whereby a message, originated by one member (or site), is spread to all members

of the network. This gives rise to the concept of a broadcasting center.

Definition 8.22. If k is a positive integer, then k-broadcasting in a tree T is ac-

complished by placing a series of calls (or transmissions) over the communication

lines of the network, i.e., the edges. This is to be done as quickly as possible subject

to two conditions:

1) each call involves one caller at a vertex who sends one message to each of k (or

fewer) of its vertex neighbors in one unit of time,

2) each vertex receiving a call can participate in at most one call per unit of time.

The k-broadcast time of a vertex x in a tree T , denoted bck(x), is the minimum

possible number of units of time required to transmit a message from x to all

vertices of T via k-broadcasting. The k-broadcast center of T , denoted BCk(T ),

consists all vertices of T with smallest k-broadcast number, i.e., BCk(T ) = {x ∈
V (T ) : bck(x) ≤ bck(y), y ∈ V (T )}.

Of course, if the tree T has order n, then bck(v) ≥ dlogk+1 ne, since during each

time unit the number of informed vertices can at most be multiplied by k + 1. In

2003 Harutyunyan and Shao [25] proved

Theorem 8.25. Let T be a tree, and let k be a positive integer.

(a) BCk(T ) induces either K1 or a star K1,m with m ≥ 1.

(b) If v ∈ V (T ) − BCk(T ), then bk(v) = bk(u) + d(v, u), where u is the vertex of

BCk(T ) nearest to v.

Subsequently, in 2009 Harutyunyan, Liestman, and Shao [24] published a linear

algorithm for finding BCk(T ) for a tree T . Much earlier, Slater, Cockayne, and

Hedetniemi [63] obtained Theorem 8.25 in the case k = 1 and gave a linear al-

gorithm for finding BC1(T ). Work has been reported on determining those trees

(and graphs) of order n in which there is a root v with bk(v) = dlogk+1 ne (see

the references in [24]). These sources contain other references for work on another

fascinating topic on information dissemination in trees and graphs, the topic of gos-

siping, a topic spawned by the “gossip problem”. The gossip problem can be stated

as follows. At each vertex of Kn there is a caller who knows a piece of information

that is unknown to any of the other callers. They communicate by telephone, and

whenever a call is made between two callers, they pass on to each other as much
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information as they know at the time. What is the minimum possible number of

calls required so that all callers know all n pieces of information?

Next we consider what might be called edge centrality. One way to do this is

to consider an edge xy as two singleton sets and employ R-centrality with R =

{{x}, {y}} as in Section 8.4 for the R-center and as in this section above for the

R-median and the R-branch weight centroid. Another approach is to generalize

Steiner k-centrality of this section below to sets S of size k that contain both x and

y. Or, find a central 2-tree as described below in this section. The approach that

we describe here is to look for an edge that is most “balanced.”

Definition 8.23. If xy is an edge of a tree T , the distance-edge difference of xy,

denoted s(xy), is the absolute value of the difference of the sum of the distances

between x and all vertices that are closer to x than to y and the sum of the distances

between y and all vertices that are closer to y than to x, i.e.,

s(xy) = |(
∑
{d(x, z) : z ∈ V (x, y)})− (

∑
{d(y, w) : w ∈ V (y, x)})|.

Of course, s(xy) = s(yx). The distance balanced edge center of T , denoted

DBE(T ), consists of all edges of T which have smallest distance-edge difference, i.e.,

DBE(T ) = {xy ∈ E(T ) : s(xy) ≤ s(uv), uv ∈ E(T )}. The weight-edge difference

of the edge xy, denoted r(xy), is the absolute value of the difference between the

number of vertices that are closer to x than to y and the number of vertices that are

closer to y than to x, i.e., r(xy) = ||V (x, y)| − |V (y, x)||. The weight balanced edge

center of T , denoted WBE(T ), consists of all edges of T which have the smallest

weight-edge difference, i.e., WBE(T ) = {xy ∈ E(T ) : r(xy) ≤ r(uv), uv ∈ E(T )}.

These definitions were introduced and studied by Reid and DePalma [49]. Anal-

ogous to the motivation for the distance balance of a vertex, consider attempting

to balance a tree T at an edge. Given an edge xy, a vertex z ∈ V (T ) − {x, y}
is considered as a unit weight on the lever arm whose length is given by the dis-

tance d(z, {x, y}). The total moment of xy with respect to V (x, y) is
∑
{d(x, z) : z ∈

V (x, y)}, and the moment of xy with respect to V (y, x) is
∑
{d(y, w) : w ∈ V (y, x)}.

So, s(xy) is a measure of how balanced the edge xy is in T . The edges in DBE(T )

are the most balanced edges in T . In considering the weight-edge difference of an

edge xy, we disregard the distance of the vertices from xy and consider only the

total weights of the two subtrees, T [V (x, y)] and T [V (y, x)] on “either side” of xy.

This type of balance will be best for edges in WBE(T ). Reid and DePalma [49]

described DBE(T ) in terms of the vertices in the distance balance center DB(T ) of

Section 8.3, and similarly described WBE(T ) in terms of the vertices in the weight

balance center Wb(T ) of Section 8.2.

Theorem 8.26. Let T be a tree.

(a) If DBE(T ) consists of a single edge, say DBE(T ) = {xy}, then DB(T ) is

either {x}, {y}, or {x, y}.



September 14, 2010 14:52 World Scientific Review Volume - 9.75in x 6.5in ws-rv975x65

Centrality Measures in Trees 187

(b) If DBE(T ) consists of more than one edge, then DB(T ) consists of a single

vertex x incident with each edge in DBE(T ), i.e., DBE(T ) induces a star

K1,m, for some m ≥ 2, with x the vertex of degree m in the star.

(c) If Wb(T ) consists of two adjacent vertices, say Wb(T ) = {x, y}, then

WBE(T ) = {xy}.
(d) If Wb(T ) consists of a single vertex, say Wb(T ) = {x}, then every edge in

WBE(T ) is incident with x, i.e., WBE(T ) induces a star K1,m, for some

m ≥ 1, with x the vertex of degree m in the star.

Next, we describe a generalization of distance between two vertices that has

applications to multiprocessor communications.

Definition 8.24. Suppose that S is a set of k vertices in a tree T . The Steiner

distance of S in T , denoted sd(S), is the number of edges in T 〈S〉, the smallest

subtree of T that contains every vertex of S. For 2 ≤ k ≤ |V (T )|, and x ∈ V (T ),

the Steiner k-eccentricity of x in T , denoted sek(x, T ) (or simply sek(x)) is the

largest possible Steiner distance of all k-sets of vertices in T that contain x, i.e.,

sek(x) = max{sd(S) : S ⊆ V (T ), |S| = k, x ∈ S}. The Steiner k-center of T ,

denoted SCk(T ), consists of all vertices with smallest Steiner k-eccentricity, i.e.,

SCk(T ) = {x ∈ V (T ) : sek(x, T ) ≤ sek(y, T ), y ∈ V (T )}. The Steiner k-distance

of x, denoted sDk(x), is the sum of all Steiner distances of sets of k vertices that

include x, i. e., sDk(x) =
∑
{sd(S) : S ⊆ V (T ), |S| = k, x ∈ S}. The Steiner

k-median of T , denoted SMk(T ), consists of all vertices of T with smallest Steiner

k-distance, i.e., SMk(T ) = {x ∈ V (T ) : sDk(x) ∈ sDk(y), y ∈ V (T )}.

If |S| = 2, then sd(S) is the distance between the two vertices of S. This implies

that the Steiner 2-eccentricity of a vertex x is simply the ordinary eccentricity of

x, and the Steiner 2-distance of x is the ordinary distance of x. So, the Steiner

2-center of T is the center of T , and the Steiner 2-median of T is the median of T .

Consequently, each of the Steiner 2-center and Steiner 2-median is either a single

vertex or two adjacent vertices. For k ≥ 3, the structure of the subgraph induced

by the Steiner k-center can be quite different from K1 or K2. Oellermann and Tian

[41] gave a linear algorithm for finding the Steiner k-center of a tree and proved

Theorem 8.27. Suppose that T is a tree and 3 ≤ k ≤ |V (T )|.

(a) The vertices of SCk(T ) are exactly the vertices of a subtree of T .

(b) T is the Steiner k-center of some tree if and only if the number of leaves of T

is at most k − 1.

Later, Beineke, Oellermann, and Pippert [2] gave a linear algorithm for finding

the Steiner k-median of a tree and proved

Theorem 8.28.

(a) The k-median of any tree is connected, for all k ≥ 2.
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(b) The vertex set of a tree H of order n is the Steiner k-median of some tree if

and only if one of the following holds:

(i) H = K1,

(ii) H = K2,

(iii) n = k, or

(iv) H has at most k − n+ 1 leaves.

Next we consider subtrees of a tree that are central.

Definition 8.25. A subtree W of order k of a tree T of order n, 1 ≤ k ≤ n, is

called a central k-tree if W has minimum eccentricity among all subtrees of T of

order k, i.e., e(W ) = min{e(W ′) : W ′ a subtree of T of order k}.

Of course, when either k = 1 and |C(T )| = 1 or k = 2 and |C(T )| = 2, then

C(T ) induces the unique central k-tree. On a tree network, a central k-tree is

a subtree of the network of total length k and minimum eccentricity among all

subtrees of total length k, where a subtree is allowed to have its leaves at points

of the network that are not vertices. In 1985 Minieka [34] gave a O(n2) algorithm

for obtaining such a subtree in a tree network; it starts at the absolute center and

grows outward. In 1993, Hakimi, Schmeichel, and Labbé [20] adapted, without

proof, Minieka’s approach in order to find a central k-tree that has all of its leaves

at vertices. Subsequently, Shioura and Shigeno [52] gave an O(n) algorithm for this

by using relations to the bottleneck knapsack problem. McMorris and Reid [32]

took a slightly different approach for ordinary trees. They proved

Theorem 8.29.

(a) There is a linear time, tree-pruning procedure that yields a central k-tree of a

tree, but generally such a subtree is not unique.

(b) Fix integers n and k, 1 ≤ k ≤ n. Every tree of order k is a central k-tree for

some tree of order n.

There have been many algorithmic developments of this topic for networks,

particularly for tree networks, including recent instances in which new path or tree

shaped facilities are added to networks in which perhaps some path or tree shaped

facilities are already located (see, for example, Bhattacharya, Hu, Shi, and Tamir

[3] as well as Tamir, Puerto, Mesa, and Rodŕıguez-Ch́ıa [67] and the references

therein).

Next we discuss a centrality concept in a tree T due to Nieminen and Peltola

[40] that involves a subsidiary algebraic structure in determining a central set in a

tree T . In this discussion care must be taken to distinguish distance in the tree T

and distance in the associated algebraic structure.

Definition 8.26. For two subtrees S1 and S2 of a tree T , the meet of S1 and S2,

denoted S1 ∧ S2, is the intersection of the two subtrees whenever the intersection
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is nonempty, and the join of S1 and S2, denoted S1 ∨ S2, denotes the least subtree

of T that contains both S1 and S2. Here we do not consider the empty graph to

be a subtree of T . So, the subtrees of T form a join-semilattice R(T ) of subtrees

of T in which, in general, there is no least element. The distance in R(T ) between

S1 and S2 through S1 ∧ S2 (when defined) is the distance through S1 ∨ S2. So,

distance in R(T ) is the same as the distance in the (undirected) graph distance in

the (undirected) Hasse diagram graph GR of R(T ). The distance between S1 and

S2 in R(T ), or the R-distance between S1 and S2, denoted dR(S1, S2), is defined

to mean the usual graphical distance in GR. The R-eccentricity of a subtree S of

T , denoted eR(S), is the largest R-distance from S to the other subtrees of T , i.e.,

eR(S) = max{dR(S, S′) : S′ ∈ R(T )}. A least central subtree of T is a smallest

subtree among all those subtrees of T with least R-eccentricity, i.e., a subtree of

smallest order in the set {S ∈ R(T ) : eR(S) ≤ eR(S′), S′ ∈ R(T )}. The subtree

center of T is the union of all of the least central subtrees of T .

Note that the R-eccentricity of a subtree S is not the same as e(S), the ec-

centricity of S, since e(S) involves distance in the tree T , while the R-eccentricity

involves distance in the Hasse diagram graph GR. A least central subtree of T

need not be unique, but the subtree center of T is unique. Of course, if the subtree

center is a single vertex, then that is the unique least central tree. In 1999 Nieminen

and Peltola [40] introduced these concepts and described properties of least central

subtrees as a way to describe the subtree center. They proved

Theorem 8.30. Suppose that T is a tree.

(a) Any two least central subtrees of T have a nonempty intersection. Thus, the

subtree center of T is a subtree of T .

(b) The least central subtree of T is a single vertex if and only if T is either a path

with an odd number of vertices or a star (i.e., K1,m, for some m ≥ 2).

(c) There is at least one least central subtree of T containing at least one vertex of

the branch weight centroid of T .

(d) The (ordinary) center of T intersects at least one least central subtree of T .

A recent addition to the library of central sets in trees is due to Dahl [11].

Definition 8.27. Let x be a vertex in a tree T of order n ≥ 2. Let < x > denote the

n-vector whose terms are the n distances between x and all vertices of T , arranged

in non-increasing order (so, the n-th entry in < x > has the value d(x, x) = 0, and

the first entry in < x > has the value e(x)). If v1 and v2 are vertices in T with

< v1 >= (r1, r2, . . . , rn) and < v2 >= (s1, s2, . . . , sn), write v1 ≺ v2 to mean that

the sum of the first k terms in < v1 > is less than or equal to the sum of the first

k terms in < v2 > for all k, 1 ≤ k ≤ n, i.e.,
∑
{ri : 1 ≤ i ≤ k} ≤

∑
{si : 1 ≤ i ≤ k},

for all k, 1 ≤ k ≤ n. Vertices v1, v2 ∈ V (T ) are majorization-equivalent if v1 ≺ v2

and v2 ≺ v1.
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Lemma 8.2. A tree contains at most one pair of distinct majorization-equivalent

vertices.

Definition 8.28. The majorization center of a tree T , denoted MT , is the subset

of V (T ) defined as follows: MT = {v1, v2} if v1 and v2 are majorization-equivalent,

and MT = ∩{V (v1, v2) : v1v2 ∈ E(T ), v1 ≺ v2} otherwise.

Dahl [11] proved, among other things, that the subtree induced by the majoriza-

tion center could have any tree structure.

Theorem 8.31. Suppose that T is a tree of order n.

(a) MT induces a subtree of T that contains no leaf of T , except when n = 2.

(b) The center C(T ) of T , the median M(T ) of T, and the distance balance center

DB(T ) of T are all contained in MT .

(c) There is a tree W so that T = MW .

Dahl also described a way to produce other tree centers. The set of vectors in

Rn with terms in R+ is denoted Rn+ . Start with a function f : Rn+ :→ R that is

Shur-convex (i.e., f(x) ≤ f(y) whenever x, y ∈ Rn+ and x ≺ y) and nondecreasing

(i.e., f(x) ≤ f(y) whenever x, y ∈ Rn+ and x ≤ y, componentwise). Here, x ≺ y is

defined on n-tuples and means that the sum of the first k terms in x is less than or

equal to the sum of the first k terms in y for all k, 1 ≤ k ≤ n. Define F : V (T )→ R
by F (v) = f(< v >) for v ∈ V (T ). Declare that an F -center consists of all vertices

that minimize the function F (·). Dahl showed that each vertex in this F -center is

in MT , and he gave specific examples of appropriate functions F (·).

8.6. Disconnected central sets

In this section we discuss central sets that induce disconnected subgraphs of a tree

T .

Definition 8.29. The cutting number of a vertex in a tree T , denoted c(x), is

the number of (unordered) pairs of distinct vertices {u, v} so that u and v are in

distinct components of T − x. The cutting center of T , denoted Cut(T ), consists

of all vertices of T with largest cutting number, i.e., Cut(T ) = {x ∈ V (T ) : c(x) ≥
c(y), y ∈ V (T )}.

This measure was introduced and studied by Harary and Ostrand in 1971 [23].

In some respects this set is reminiscent of the previously discussed telephone center

of Section 8.2 that turned out to be the median. In each middle set discussed in

Sections 8.1-8.5, the vertices of the middle set induce a connected subtree. That is

not the case for the cutting center. Harary and Ostrand proved



September 14, 2010 14:52 World Scientific Review Volume - 9.75in x 6.5in ws-rv975x65

Centrality Measures in Trees 191

Theorem 8.32.

(a) For each tree T there is a path that contains all of the vertices in Cut(T ).

(b) Given a path and any non-empty subset C of its vertices, the path can be ex-

tended to a tree T with Cut(T ) = C.

In particular, Cut(T ) need not induce a subtree of T . In fact, connected com-

ponents induced by Cut(T ) can be arbitrarily far apart, and, indeed, the sub-

graph induced by Cut(T ) might have no edges at all. In 2004 Chaudhuri and

Thompson [8] described a quadratic algorithm for finding the cutting center of

a tree. In 1978 Chinn [9] independently rediscovered this concept. She defined

the path number of a vertex x in a tree T , denoted p(x), as the number of

paths of T that contain x as an interior vertex, and defined the path centrix of

T , denoted Cx(T ), to be all vertices in T that maximize the function p(.), i.e.,

Cx(T ) = {x ∈ V (T ) : p(x) ≥ p(y), y ∈ V (T )}. Of course, Cut(T ) = Cx(T ).

In 1975 Slater [53] introduced another middle set of a tree T that might induce

a structure more akin to the possibilities encountered by the cutting center than

the possibilities of many previously discussed middle sets. At first glance, the terms

involved in the definition suggest that this is a “median” version of the security

center discussed in Section 8.2.

Definition 8.30. The security index of a vertex x in a tree T , denoted si(x), is

the integer si(x) =
∑
{(|V (x, v)| − |V (v, x)|) : v ∈ V (T ) − {x}}. The security

centroid of T , denoted Si(T ), consists of all vertices of with largest security index,

i.e., Si(T ) = {x ∈ V (T ) : si(x) ≥ si(y), y ∈ V (T )}.

Slater [53] proved that the subgraph induced by this central set might be far

from being connected, and in fact, might contain no edges at all. He proved the

following theorem

Theorem 8.33. For any positive integer n there is a tree T such that Si(T ) consists

of n independent vertices (i.e., no two adjacent), and if n ≥ 3, T can be chosen so

that no three vertices in Si(T ) lie on the same path.

Another central set for trees that need not induce a connected subgraph is the

harmonic center. Suppose, because of the weight of fuel, for example, that a delivery

vehicle can only carry a partial load of goods to a customer. That is, the greater the

distance to a customer, the smaller the load that can be delivered. Suppose that

only ( 1
d )-th of a load can be delivered from vertex site x to a customer at vertex

y, where d = d(x, y). A desirable site at which to place a warehouse of the goods

might be a vertex site from which the greatest total sum of (full or partial) loads

can be delivered to customers at all the other vertices.

Definition 8.31. The harmonic weight of a vertex x in a tree T , denoted h(x), is

the sum of the reciprocals of the distances from x to the other vertices in T , i.e.,
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h(x) =
∑
{ 1
d(x,y) : y ∈ V (T ) − {x}}. The harmonic center of T , denoted H(T ),

consists of all vertices of T of maximum harmonic weight, i.e., H(T ) = {x ∈ V (T ) :

h(y) ≤ h(x), y ∈ V (G)}.

This concept was suggested by Reid and studied by Laskar and McAdoo [30]

who proved that the harmonic center has some similarities to the cutting center and

the security centroid.

Theorem 8.34.

(a) The harmonic center of a tree T contains no leaf of T , unless |V (T )| ≤ 2.

(b) The tree that is a path has harmonic center consisting of either a single vertex

or two adjacent vertices.

(c) For any positive integer p, there is a tree T so that, for some integer c, the

vertex set of H(T ) can be partitioned into p sets, each containing c vertices,

and T contains no edge between any two of the sets.

8.7. Connected central structures

In some of the central sets described above, we could just as well have couched the

discussion in terms of central substructures induced by those central sets. In fact,

many of the authors referenced above did just that in their original articles. In this

section we will shift the focus to specific types of central substructures of a tree T .

If S is a subforest of T or a subset of V (T ) and if there is no other restriction on

the set S, then, proceeding as in the definitions of the ordinary center, median, and

branch weight centroid, we see that the S that minimizes e(S), D(S) and bw(S)

is S = T or S = V (T ). For |V (T )| ≥ 3, the whole tree is usually not considered

very central in itself. However, specific structural restrictions on S make for some

interesting central structures. In particular, by restricting S to be a path we obtain

path-centrality.

Definition 8.32. Suppose that T is a tree. A path center of T , denoted PC(T ), is

a path P in T of shortest length so that e(P ) ≤ e(P ′) for every path P ′ in T . A core

(or path median) of T , denoted Co(T ), is a path P in T so that D(P ) ≤ D(P ′) for

every path P ′ in T . A spine (or path branch weight centroid) of T , denoted Sp(T ),

is a path P of shortest length so that bw(P ) ≤ bw(P ′), for every path P ′ in T .

The path center concept seems to have originated independently in 1977 by S.

M. Hedetniemi, Cockayne, and S. T. Hedetniemi [26] and by Slater [60]. The former

authors gave linear algorithms for finding the path center of a tree and proved the

following theorem

Theorem 8.35. If T is a tree, then PC(T ) is a unique subpath of T and its vertex

set contains the center of T .
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Subsequently, Slater [60] showed that there are trees in which a core (path

median) is not necessarily unique, and there are trees in which no core contains any

median vertex. That is, there are trees in which the vertices of minimum distance

may not be contained in any path of minimum distance. Morgan and Slater [1980]

presented a linear algorithm for finding a core of a tree that also outputs a list of all

vertices that are in some core. See also Slater [56]. On the other hand, analogous

to the situation with path centers, Slater [60] proved

Theorem 8.36. For a tree T , Sp(T ) is a unique subpath of T , and its vertex set

contains both the median (and branch weight centroid) of T and the cutting center

of T .

As mentioned in Section 8.5, in the context of networks, there have been many

algorithmic developments of this topic, particularly for cores, as well as for other

median-like central structures (see the references in [3], [20], [38], [52], [67]).

A generalization of some of the concepts above is what might be called “degree

constraint” centrality introduced recently by Pelsmajer and Reid [43].

Definition 8.33. Suppose that T is a tree and I is a non-negative integer. Let TI
denote the set of all subtrees of T with maximum degree at most I. A TI-center of T

is a tree of least order in the set {W ∈ TI : e(W ) ≤ e(W ′),W ′ ∈ TI}. A TI-centroid

of T is a tree of least order in the set {W ∈ TI : bw(W ) ≤ bw(W ′),W ′ ∈ TI}. A

TI-median of T is a tree in the set {W ∈ TI : D(W ) ≤ D(W ′),W ′ ∈ TI}.

When I = 0 we obtain singleton sets that are center vertices, branch-weight

centroid vertices, and median vertices, respectively, so may not be unique when the

center, centroid, or median contain two vertices. The T1-center and the T1-centroid

are the subtrees induced by the center and median respectively. When there are two

vertices in the median (equal to the centroid) or if the mother tree is a single vertex,

then the T1-median is the subtree induced by the median. Otherwise, the T1-median

is the subtree induced by the unique median x and one neighbor of x in a connected

component of largest order of T − x. And, when I = 2, these generalizations are

the path-center, path-centroid (core), and path-median (spine), respectively. As a

core need not be unique, a T2-median of T need not be unique. So, this concept

generalizes path centers, cores, and spines. And, when I is at least the maximum

degree of T , each of the central subtrees in Definition 8.33 yields T .

We present a further generalization, also introduced by Pelsmajer and Reid [43],

that includes the concepts in Definition 8.33. The results and proofs in [43] describe

a theoretical framework into which several previous results fit. The basis for this

depends on the concept in the next definition.

Definition 8.34. The set T is a hereditary class of trees if T is a non-empty set

of trees such that for each T ∈ T , every subtree of T is also in T .
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Examples of hereditary class of trees include trees of maximum degree at most

I, trees of order at most k, trees with at most k leaves, trees of diameter at most

d (for d = 2, these are stars, i.e., K1,n, n ≥ 1), caterpillars (including all paths

and stars), lobsters (trees with a path of eccentricity at most 2), subdivisions of

stars (including lobsters), all subtrees of a fixed set of trees, and the union and

intersection of two hereditary classes of trees.

Definition 8.35. Suppose that T is a hereditary class of trees and T is a fixed

tree. Denote by T ′ the set of subtrees of T that are in T , i.e., T ′ = {W ∈ T :

W is a subtree of T}. A TI -center of T is a subtree of smallest order in the set

{W ∈ T ′ : e(W ) ≤ e(W ′),W ′ ∈ T ′}. A TI -centroid of T is a subtree of smallest

order in the set {W ∈ T ′ : bw(W ) ≤ bw(W ′),W ′ ∈ T ′}. A T -median of T is a

subtree in the set {W ∈ T ′ : D(W ) ≤ D(W ′),W ′ ∈ T ′}.

Pelsmajer and Reid [43] discussed linear algorithms for finding a T -center, a

T -centroid and a T -median.

Theorem 8.37. Suppose that T is a tree and that T is a hereditary class of trees.

(a) The T -center of T is unique, unless T = {K1} and |C(T )| = 2.

(b) If I is a positive integer, then the TI-center of T is unique and contains the

T ′I -center for all integers I ′, 1 ≤ I ′ ≤ I.

(c) The T -centroid of T is unique unless T = {K1} and |Bw(T )| = 2.

(d) If I is a positive integer, then the TI-centroid of T is unique and contains the

T ′I -centroid for all integers I ′, 1 ≤ I ′ ≤ I.

(e) If I is a positive integer, then a TI-median need not be unique and need not

contain the median.

In conclusion, many of the definitions of central sets mentioned in this survey

involved a minimax procedure, but there were instances of maximax, maximin, and

minimin procedures (e.g., the telephone center, the security center, and the weight

balance center, respectively). Other interesting sets arise when more than one of

these procedures is used in the same context, e.g., peripheral vertices, vertices of

maximum eccentricity. But they will have to await another survey. And, surely

there are more concepts of central sets in trees waiting to be discovered.
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Chapter 9

The Port Reopening Scheduling Problem
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When a port needs to be reopened after closure due to a natural disaster or
terrorist event or domestic dispute, certain goods on incoming ships might be
in short supply. This paper formulates the problem of scheduling the unloading
of waiting ships to take into account the desired arrival times, quantities, and
designated priorities of goods on those ships. Several objective functions are
defined, special cases are discussed, and the relevant literature is surveyed.

Introduction

Global trade is critical to economic well-being. Over 90% of international trade

is by sea. An efficient, effective, secure system of ports is crucial to international

trade. Ports are also crucial to the national supply chain of critical products: fuel,

food, medical supplies, etc. This paper is concerned with ports being shut down in

part or entirely, by natural disasters like hurricanes or ice storms, terrorist attacks,

strikes or other domestic disputes. How do we aid port operators and government

officials to reschedule port operations in case of a shutdown? Shutting down ports

due to hurricanes is not unusual and so provides insight into current methods for

reopening them. Unfortunately, scheduling and prioritizing in reopening the port

after a hurricane is typically done very informally. This paper seeks to formalize

an approach to reopening a port in an efficient way that responds to a variety of

priorities. If a port is damaged, we envision a number of vessels waiting to dock and

be unloaded. In what order should the unloading take place? The decision of how

to reopen a damaged port is rather complex. There are multiple goals, including

minimizing economic and security impacts of delays in delivery of critical supplies.

∗This paper is dedicated to Buck McMorris. Our collaborations over the years have been a source
of pleasure and inspiration to me. Not only is he a colleague, but I am pleased to call him a

friend. This work was supported by the US Department of Homeland Security under a grant to
Rutgers University. Many of the ideas in this paper come from joint work with N.V.R. Mahadev
and Aleksandar Pekeč, in joint papers [37; 38]. These ideas are modified here to apply to the port

reopening scheduling problem.
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These problems can be subtle. For example, if an ice storm shuts down a port,

perhaps the priority is to unload salt to de-ice. It wasn’t a priority before. These

subtleties call for the kind of formal approach that is outlined here.

9.1. Formalizing the Problem

Let us suppose that we are interested in a set G of n goods. We can think of G as

consisting of items labeled i = 1, 2, . . . , n. Each ship will have various quantities of

these goods, usually packed in containers. For simplicity, let us disregard the fact

that different goods are in different containers – that complication can be added

later – and then think of a ship as corresponding to a vector x = (x1, x2, . . . , xn),

where xi is the quantity of good i on the ship. Again for simplicity, we assume that

xi is an integer for each i. Real data describing the contents of all containers on a

ship is on the ship’s manifest and is collected by (in the US) Customs and Border

Protection before the ship’s arrival. Unfortunately, there is a large amount of such

data, there is inconsistency in the units used to describe the contents (e.g., 1000

bottles of water vs. 1000 cases of bottles of water), the descriptions of contents are

often imprecise or vague (e.g., “fruit” or “household goods”), and so it is not easy

to get a vector like x.

Let us also assume that once a ship docks, we proceed to unload all of its cargo

so it can leave the port and open a spot for another ship. For simplicity, the

unloading time is assumed to be the same for each ship, though a realistic problem

will consider unloading times. (In the literature, we distinguish between common

and noncommon processing times.) Thus, we can consider integer time slots for

unloading. We can think of a schedule Σ that assigns to each ship a time slot, the

first, second, third, etc., during which it will dock and be unloaded. Thus, Σ can

be thought of as a vector (σ1, σ2, . . . , σk) where σi gives the time slot during which

ship i will be unloaded. Let us also assume that as we are aiming to reopen a port,

we have enough berths for c ships at once. A schedule is capacity-acceptable if no

timeslot gets more than c ships. Next, assume that ships are ready to dock and

there is no delay after they are chosen. We just have to choose which ships to unload

in which order, taking account of the capacity c of the port. The problem becomes

more complicated (and more realistic) if we assume that some ships are not yet

nearby and so each ship has a delay time before it could arrive and be unloaded.

Because some goods can rapidly become in short supply, we assume that there

is a desired quantity di of good i (which we assume to be an integer) and that

it is required no later than time ti, i.e., the tthi unloading time slot. Let d =

(d1, d2, . . . , dn) and t = (t1, t2, . . . , tn). The problem gets more realistic if we have

vectors giving the desired quantity at time 1, the desired quantity at time 2, etc.,

but we shall disregard this complication here. Different goods also have different

priorities pi, with p = (p1, p2, . . . , pn). For example, not having enough fuel or

medicine or food may be much more critical than not having enough cookware,
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which is reflected in a higher pi. We will have more to say about the priorities in

Section 9.5.

In what follows, we will discuss a special case, namely where each di is 1. That

allows us to concentrate on whether or not all the desired goods arrive in time,

i.e., before desired arrival times. It also allows us to think of a schedule Σ for ship

arrivals as corresponding to a schedule S that gives the arrival time Si of the first

item i for each i.

What makes one (capacity-acceptable) schedule better than another? We can

assume that there is some objective function that takes into account demands for

goods that are not met by the schedule either in terms of quantity or in terms of

arrival time. Let F (S, t, p) be the penalty assigned to schedule S given the desired

arrival time and priority vectors t, p. (Recall that we are disregarding the vector

d since we assume each component is 1. Also, the port capacity c is part of the

problem, but not part of the penalty function.) Suppose we seek to minimize F .

We shall discuss different potential penalty functions below.

The problem is similar to a number of problems that have been considered in

the literature. For example, Mahadev, Pekeč, and Roberts [37; 38; 49] considered a

problem posed by the Air Mobility Command (AMC) of the US Air Force. Suppose

that we wish to move a number of items such as equipment or people by vehicles

such as planes, trucks, etc. from an origin to a destination. Each item has a desired

arrival time, we are penalized for missing the desired time, and penalty is applied

not only to late (tardy) arrival but also early arrival. In our port problem, while

the emphasis is on tardy arrivals, early arrivals of goods could be a problem if we

add a complication of port capacity for storing goods until they are picked up. We

will consider early arrival penalties, though we will not consider the details of port

capacity for storing goods. In the AMC problem, it is assumed that each trip from

origin to destination takes the same amount of time (though this assumption can

be weakened) and there are only a limited number of spots for people or goods on

the vehicles. The items have different priorities. For example, transporting a VIP

may be more important than transporting an ordinary person and transporting fuel

may be more important than transporting cookware. The penalty for tardy or early

arrival depends on the priority.

Another similar problem arises in the workplace if we have a number of tasks to

perform, a number of processors on which to perform them, each task has a desired

completion time and we are penalized for missing that time. We assume that once

started, a task cannot be interrupted (non-preemption) and that, for simplicity, each

task takes the same amount of time. We have only a limited number of processors,

so are only able to schedule a number of tasks each time period. Assume that the

tasks can have different priorities. We seek to assign tasks to processors each time

period so that the total penalty is minimized. This problem without the priorities

is a well-studied problem in the machine scheduling literature. Some examples of

papers on machine scheduling with earliness and tardiness penalties are [11; 15; 44;
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8; 6; 3; 25; 26; 42; 4; 9; 39; 21; 16; 14; 55; 31]. Some survey papers on scheduling

with objective functions are [2; 7; 29]. A general reference on scheduling, which

includes a considerable amount of material on earliness/tardiness penalties, is [43].

Also, [22; 32; 58] are extensive surveys on scheduling with earliness and tardiness

penalties.

9.2. Penalty Functions

We shall consider summable penalty functions, those where

F (S, t, p) =
n∑
i=1

g(Si, ti, pi). (9.1)

Simple cases of summable penalty functions are those that are separable in the sense

that

g(Si, ti, pi) =

{
hT (pi)f(Si, ti) if Si > ti
hE(pi)f(Si, ti) if Si ≤ ti

(9.2)

where hT and hE are functions reflecting the tardiness and earliness contributions

to the penalties of the priorities of the goods. A simple example of a summable,

separable penalty function is given by

F (S, t, p) =
n∑
i=1

pi|Si − ti|.

This penalty function arises in the literature of single machine scheduling with

earliness and tardiness penalties and noncommon weights. (See [11; 15; 44; 8; 6;

3; 25; 26].) Here, hT (pi) = hE(pi) = pi. If f(Si, ti) = |Si − ti|, it is sometimes

convenient to rewrite the penalty function (9.1) resulting from (9.2) as follows. Let

Ti(S) = Ti = max{0, Si−ti}, Ei(S) = Ei = max{0, ti−Si}. Then (9.1) is equivalent

to

F (S, t, p) = FsumE/T (S, t, p) =
n∑
i=1

hT (pi)Ti +
n∑
i=1

hE(pi)Ei. (9.3)

If we replace hT (pi) and hE(pi) by constants αi and βi respectively, then we simply

have a weighted sum of earliness and tardiness.

A variant of the function (9.3) arises if we change to hE(pi) = 0, so we only

penalize tardiness, i.e.,

F (S, t, p) =
n∑
i=1

hT (pi)|Si − ti|δ(Si, ti),
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where

δ(Si, ti) =

{
1 if Si > ti
0 if Si ≤ ti

or, equivalently,

F (S, t, p) = FsumT (S, t, p) =
n∑
i=1

hT (pi)Ti.

Another case that disregards the priorities or, alternatively, has constant but

different hT and hE is:

F (S, t, p) =
n∑
i=1

α|Si − ti|δ(Si, ti) +
n∑
i=1

β|Si − ti|γ(Si, ti),

where

γ(Si, ti) =

{
1 if Si ≤ ti
0 if Si > ti

In the case where we disregard priorities and the α and β correspond to differ-

ent weighting factors for tardiness and earliness, respectively, this penalty function

arises in single machine schedule with nonsymmetric earliness and tardiness penal-

ties and common weights (see [42; 4; 15]. The case α = β is equivalent to the

penalty function studied by [27; 54; 5; 23; 15; 57; 24].

The function FsumE/T (S, t, p) is considered for the case where all ti are the same

in [3; 11; 15; 44; 8; 6; 25; 26]. The more general function allowing differing ti is

considered in [12; 18; 19; 20; 10; 1; 40; 41].

Still other penalty functions are only concerned with minimizing the maximum

deviation from desired arrival time, rather than a weighted sum of deviations. Of

interest, for example, is the function

F (S, t, p) = FmaxE/T (S, t, p)

= max{hT (p1)T1, hT (p2)T2, . . . , hT (pn)Tn, hE(p1)E1, hE(p2)E2, . . . , hE(pn)En}

where we maximize the weighted maximum deviation, including consideration of

earliness deviations. If we are only interested in tardiness, we would consider instead

F (S, t, p) = FmaxT (S, t, p) = max{hT (p1)T1, hT (p2)T2, . . . , hT (pn)Tn}.

The objective function FmaxE/T (S, t, p) is considered in [52; 17], for example, while

FmaxT (S, t, p) is considered by many authors. Two survey papers describing work
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with these functions are [29; 2], with the former emphasizing constant weighted

tardiness.

Since there are so many potential criteria for a good solution to the port reopen-

ing scheduling problem, it is surely useful to look at it as a multi-criteria problem.

For a survey from this point of view, see [58].

9.3. The Case of Common Desired Arrival Times

The most trivial case of the problem we have formulated is where all the desired

arrival times ti are the same time τ (this is sometimes called in the scheduling

literature the case of common due dates). Let us assume that the penalty function

is summable and separable, that f > 0, that hE(pi) = 0 (there are no earliness

penalties), and that hT (pi) is an increasing function of pi. Let us also assume that

c = 1, i.e., we can only unload one ship at a time and, moreover, assume that

there is only one kind of good on each ship. In this case, a simple greedy algorithm

suffices to find a schedule that minimizes the penalty.

To explain this, suppose we rank the goods in order of decreasing priority, choos-

ing arbitrarily in case of ties. The greedy algorithm proceeds as follows. Schedule

the first good on the list at time 1, the next on the list at time 2, and so on until the

last is scheduled at time n. To see that the resulting greedy schedule SG minimizes

the penalty, suppose that we have a schedule and the set of goods scheduled up to

time τ is A and the set scheduled after time τ is B. Switching any two goods within

A does not change the penalty. The order of elements in B that will minimize the

penalty given the split of goods into A and B is clearly to put those of higher pri-

ority close to τ . Now consider the possibility of switching a good i in the set AG
associated with greedy schedule SG with a good j in the set BG associated with

SG, to obtain a schedule SG(i, j). Then if j is given time slot τ + r in SG, we have

F (SG, t, p)− F (SG(i, j), t, p) = hT (pj)f(SGj
, tj)− hT (pi)f(SG(i,j)i , ti)

= hT (pj)f(τ + r, τ)− hT (pi)f(τ + r, τ)

= [hT (pj)− hT (pi)]f(τ + r, τ) ≤ 0,

since pj ≤ pi, hT (u) is increasing, and f > 0. We conclude that a switch cannot

decrease the penalty.

Things get more complicated if c > 1 or ships can have more than one good.

Consider for example the case where we use the penalty function FsumT (S, t, p), we

take c = 1, and there are two ships, ship 1 with goods vector (1, 0, 0, 1) and ship 2

with goods vector (0, 1, 1, 0), and assume that p1 > p2 > p3 > p4. What is a greedy
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algorithm? One natural idea here is to choose first the ship that has the item of

highest priority and schedule that as close to desired arrival time as possible, and

first if all ti are the same as we are assuming in this section. Let us say the desired

arrival times are given by t = (1, 1, 1, 1). Then we would schedule ship 1 first, at

time 1, then ship 2 at time 2, obtaining a goods arrival schedule S = (1, 2, 2, 1) and

penalty F (S, t, p) = hT (p2) + hT (p3). However, if we schedule ship 2 first, we get a

goods arrival schedule S∗ = (2, 1, 1, 2) with penalty F (S∗, t, p) = hT (p1) + hT (p4),

which might be lower than F (S, t, p), depending on the function hT and the values

of the pi.

To show how complicated things get very quickly, consider another simple sit-

uation where we use the penalty function FsumT (S, t, p), we take c = 1, and there

are three ships, ships 1, 2, 3 with goods vectors (1,0,0,0), (0,1,0,0), and (0,0,1,1),

respectively, with t = (2, 2, 2, 2), p1 > p2 > p3 > p4. A natural greedy algorithm

would say choose ship 1 first since it has the highest priority good, and put it at

time 1, then ship 2 next since it has the second highest priority good, and put it at

time 2, and finally ship 3 at time 3. This gives rise to a penalty of hT (p3) +hT (p4).

Scheduling ship 3 at time 2, ship 1 at time 1, ship 2 at time 3 gives a penalty of

hT (p2), which might be smaller. Thus, even with constant desired arrival times

and only one ship per time slot, finding an algorithm that would minimize penalty

presents intriguing challenges.

9.4. Nonconstant Desired Arrival Times

It is interesting to observe that in the case of nonconstant arrival times, our intuition

about the problem is not always very good. It seems reasonable to expect that if the

priorities change, but the ratios of priorities pi/pj do not change, then an optimal

schedule won’t change. For example, consider the penalty function FsumE/T (S, t, p).

One example of an increasing function hT is given by hT (u) = 2u−1. Now consider

the case where each ship has only one kind of good, c = 1, and we have t =

(1, 2, 2, 2), p = (1, 2, 2, 2). An optimal schedule is given by S = (1, 2, 3, 4). Yet, if we

multiply each priority by 2, getting p∗ = (2, 4, 4, 4), then the schedule S is no longer

optimal, since it has a penalty of 24 while the schedule S∗ = (2, 3, 4, 1) has penalty

22. (This example is taken from [37].)

9.5. Meaningful Conclusions

The truth or falsity of a conclusion about optimality of a schedule can sometimes

depend on properties of the scales used to measure the variables. Discussions of this

point in the literature of scheduling have concentrated on the scales used to measure

the priority of a good. Mahadev, Pekeč, and Roberts [37; 38] point out that the

conclusion that a particular schedule is optimal in one of the senses defined in Sec-

tion 9.2 can be meaningless in a very precise sense of the theory of measurement.
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Thus, one needs to be very careful in drawing the conclusion of optimality of a

schedule. To explain what this means, we note that in using scales of measurement,

we often make arbitrary choices such as choosing a unit or a zero point. In mea-

suring mass, for example, we can use, grams, kilograms, pounds, etc. In measuring

temperature, we can use, for example, Fahrenheit or Centigrade. An admissible

transformation of scale transforms one acceptable scale into another. For example,

in changing from kilograms to pounds, it multiplies all values by 2.2, and in chang-

ing from degrees Centigrade to degrees Fahrenheit, it multiplies by 9/5 and then

adds 32. In measurement theory, a statement involving scales is called meaningful

if its truth or falsity is unchanged after applying admissible transformations to all

of the scales in question. For an introduction to the theory of measurement, see [30;

36; 56; 45]. For further information about the theory of meaningfulness, see [36; 45;

46; 48; 50; 51]. For applications of the concept of meaningfulness to combinatorial

optimization, see [47; 48; 51; 13].

What properties does the priority scale have? Specifically, what transformations

of the priority scale are reasonable to allow? Quaddus [44] thinks of the priorities

as “costs” but suggests that techniques of preference and value theory as in the

classic work of Keeney and Raiffa [28] might be relevant, suggesting that priorities

are more like utility measures. In the literature of utility theory, various kinds of

admissible transformations of utility values are considered, including those where

we change just the unit and those where we change both unit and zero point. Let us

first consider the case where the priorities pi are unique up to choice of unit. In this

case, we talk about a ratio scale and the admissible transformations are functions of

the form φ(u) = αu. Consider the claim that schedule S is optimal under penalty

function FsumE/T (S, t, p). This means that for any other schedule S∗,

FsumE/T (S, t, p) ≤ FsumE/T (S∗, t, p). (9.4)

Consider the case where hT (u) = u, hE(v) = v for all u, v. Then we con-

sider Equation (9.4) meaningful if its truth is unchanged if we replace any pi
by φ(pi) = αpi. Clearly (9.4) is meaningful in this sense. It is even mean-

ingful with nonconstant functions hT , hE if these functions satisfy the equations

hT (αu) = αhT (u), hE(αv) = αhE(v). Thus, under these conditions, the state-

ment (9.4) is meaningful in the sense of measurement theory. Similar conclusions

hold if we replace the penalty function with FsumT (S, t, p), FmaxE/T (S, t, p), or

FmaxT (S, t, p).

However, consider the situation where priorities are only determined up to

change of both unit and zero point. Here we say that priorities are measured on an

interval scale and admissible transformations take the form φ(u) = αu+ β. In this

case, the truth of the statement (9.4) can depend on the choice of unit and zero point.

Consider for example the case of n = 4 goods, with t = (2, 2, 2, 1), p = (9, 9, 9, 1).

Consider the penalty function FsumE/T (S, t, p) with hT (u) = u, hE(v) = v for all

u, v. It is easy to see that the schedule S = (1, 2, 3, 4) is optimal. However, consider
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the admissible transformation φ(u) = αu + β, where α = 1/8 and β = 7/8. After

this admissible transformation, we change p to p∗ = (2, 2, 2, 1). Then F (S, p∗, t) = 7

while F (S∗, p∗, t) = 6 for S∗ = (4, 1, 2, 3). This shows that the conclusion that S is

optimal in this case is meaningless. (This example is due to [37].)

An extensive analysis of the meaningfulness of conclusions for scheduling prob-

lems under a variety of penalty functions and a variety of assumptions about ad-

missible transformations of priorities is given in [37; 38].

9.6. Closing Comments

This paper has set out the port reopening scheduling problem. We have seen that

even a very simplified version leads to rather subtle issues. Among the special

assumptions we have considered are:

• all desired amounts are one unit, i.e., di = 1 for all i;

• in reopening, the port has limited capacity of one ship at a time, i.e., c = 1;

• all goods have the same desired arrival time ti;

• all goods have only one desired arrival time ti, rather than specifying a minimum

amount desired per time;

• all ships have the same unloading time;

• all ships are ready to dock without delay;

• there is no problem storing unloaded but undemanded goods at the port;

• each ship has only one kind of good.

Even making all or most of these special assumptions leaves a complex scheduling

problem. Removing these special assumptions leads to a wide variety of challenging

problems, as we noted when we removed the last one.

We have also considered a variety of penalty functions. Certainly there are others

that should be considered. Moreover, we have not tried to formulate a multi-criteria

optimization problem that might also be appropriate.

We have also not discussed the problem of how one determines priorities and

desired arrival times of the goods in question. We can envision a number of ap-

proaches to this, for example having each stakeholder (government, port operators,

shippers) providing these priorities and times and then using some sort of consen-

sus procedure. We could also create a bidding procedure for obtaining them†. The

measurement-theoretic properties of the priorities (the kinds of scales they define

or admissible transformations they allow) also need to be understood better.

†Thanks to Paul Kantor for suggesting this idea; the details present another interesting research
challenge.
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Several results in consensus theory indicate that it is impossible to obtain conclu-
sions should the rules satisfy certain seemingly innocuous but desired properties.
As these conclusions create a barrier for progress, it is important to find ways
to circumvent the difficulties. In this paper, a source of these complications is
identified, and ways to combat the problem are indicated.

10.1. The problem

Fred McMorris with coauthors such as Barthélémy [2], Day [3], and Powers [2; 4;

5] have proved that all sorts of roadblocks and obstacles clutter the landscape of

consensus theory. As an illustration and motivated by the seminal Arrow’s The-

orem [1], McMorris and Powers [5] proved it is impossible to use rules based on

seemingly innocuous and reasonable conditions to carry out the seemingly simple

task of assembling into a consensus the divergent views about the structure of a

simple tree such as in Fig. 10.1.
 

a b c d 

r 

Fig. 10.1. Simple tree

What makes these results troubling is that they erect barriers; barriers that

frustrate attempts toward making progress. Something must be done, and it is

clear what it should be: the requirements imposed on the aggregation rules must

211
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be modified. The mystery, of course, is to understand in what ways this change can

and should be accomplished.

A way to obtain insight into this puzzle is to carefully reexamine Arrow’s The-

orem and the negative assertions in consensus theory. In doing so, my goal is to

go beyond the formal proofs to determine “why” the various conclusions hold. By

answering the “why” question, information is obtained about how to circumvent

the negative conclusions. Basic ideas are developed and discussed in this paper; a

more extensive report will appear elsewhere.

10.2. Arrow’s Theorem and surprising extensions

Arrow’s result is among the most influential theorems in the areas of social choice

and consensus theory. The statement of his theorem is simple; each voter has a

complete transitive ranking of the alternatives; there are no other restrictions. The

societal outcome also must be a complete transitive ranking.

Only two conditions are imposed upon the rule:

(1) Pareto: If everyone ranks some pair in the same manner, then that unanimous

choice is the pair’s societal ranking.

(2) Independence: The ranking of each pair is strictly determined by the voters’

relative rankings of that pair. Specifically, if p1 and p2 are any two profiles

where each voter ranks a specified pair in the same manner, then the societal

ranking for the pair is the same for both profiles.

Arrow’s striking conclusion is that with three or more alternatives, only one rule

always satisfies these condition: a dictatorship. In other words, the rule is equivalent

to identifying a particular person (or, in the context of a decision problem where

voters are replaced with criteria, a specific criterion) so that for all possible profiles

the rule’s ranking always agrees with the preferences of the identified person. The

dictatorial assertion underscores the true conclusion that no reasonable decision

rule can always satisfy these conditions.

To analyze Arrow’s result, notice how the conditions imposed on the rule require

it to concentrate on what happens with each pair. Thus, differing from standard in-

terpretations, I prefer to treat Arrow’s theorem as describing a “divide-and-conquer”

methodology. Namely, to handle the complexity of finding a societal ranking, an

Arrovian rule divides the problem into pairs. After finding appropriate conclusions

for each pair, the whole (the societal ranking) is an assembly of these pairwise

rankings.
To carry this line of thought another step, it is reasonable to expect for each

profile that an appropriate societal ranking does exist. Arrow’s result asserts that:

Suppose a complete, transitive societal ranking exists for each profile. There exist
settings where this ranking, which is based on the complete transitive inputs from
two or more voters (or, for a decision problem with complete, transitive inputs
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from two or more criteria) cannot be found by independently determining the
outcomes for each of the pairs.

The whole need not resemble the assembly of the parts; there always exist settings

where this divide-and-conquer technique fails.

A way to better understand this theorem is to explore the mathematical role

played by each of Arrow’s conditions. It is well understood that “independence” is

the crucial condition. Indeed, independence is the provision that, de facto, creates a

divide-and-conquer method by requiring the approach to separately find an outcome

for each pair independent of what is being done for any other pair. This condition

is extensively discussed throughout this article.

The second condition is Pareto; it is a particular case of independence in that

it specifies the societal outcome for the special setting where there is unanimity

about the ranking of a pair. Mathematically, this condition serves two roles. The

first function is to guarantee that each pair has at least two different societal out-

comes; e.g., for n ≥ 3 candidates, the Pareto condition ensures there are at least n!

attainable societal outcomes. (An unanimous selection of each of the n! transitive

rankings requires it to be a societal ranking.)

The full power of this aspect of the Pareto condition — the full set of n! societal

rankings — is not needed to prove Arrow’s result. As shown in [6; 7], the negative

aspect of Arrow’s theorem holds even after replacing Pareto with what I called

“involvement.” This is where for each of at least two pairs that share an alternative,

there are attainable societal outcomes (i.e., with supporting profiles) that rank this

pair in at least two of the three possible ways.

Involvement includes Pareto and negative Pareto (where the ranking is the op-

posite of what voters want (Wilson [12])) as special cases. But “involvement” is

significantly more flexible because it can be satisfied even with only two attainable

societal rankings! With four alternatives {A,B,C,D}, for instance, suppose that a

rule allows only the two societal rankings A � B � C � D and B � C � A � D.

This rule fails to satisfy Pareto, but it does satisfy the involvement condition for

the pairs {A,B} and {A,C}. For another example, replace B � C � A � D with

B ∼ C ∼ A � D.

The second role of Pareto is to impose a “direction” on the societal outcome; e.g.,

should all voters rank a pair in the same way, that is the pair’s societal ranking. But

for our purposes, the directional component of the Pareto condition can be ignored;

rather than Pareto, the more inclusive “involvement” suffices. By replacing Pareto

with “involvement” (Sect. 4) a negative conclusion follows (i.e., either the rule fixes

an outcome for all profiles, or the outcome is determined by a single individual –

a dictator or a negative dictator where the societal ranking is the opposite of what

he wants).

The connection of Arrow’s Theorem with divide-and-conquer methodologies sug-

gests that it may be possible to extend these ideas in all sorts of new directions that

involve various disciplines. This I have done in a manner general enough to have ap-
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plications in economics, organizational design, engineering design, nano-technology,

problems of dark matter in astronomy, etc. The approach is to find appropriate

compatibility conditions that include issues coming from these different host areas.

Ways in which this has been done are described in my papers Saari [9; 10]; other

papers are in preparation. The point is that in all of these areas, problems are

encountered. Stated loosely, my assertion is that

with any divide-and-conquer methodology, where the complexity is addressed by
dividing the problem into component parts from which answers are independently
determined, where information comes from at least two sources, and where there
are compatibility conditions on both the inputs and the outcome, there exist setting
where this approach cannot succeed.

In other words, inefficiencies and errors must be expected even if division-of-labor

approaches are carried out with the best of intent.

These results raise the stakes because divide-and-conquer approaches are central

to almost everything we do. It is what we do in universities in the pursuit of

knowledge where the division-of-labor defines various schools and then different

departments. It is the approach used in organizational design where the structure

specifies who does what and who sends what to whom. It is what a company does

to handle products by dividing the labor into units of design, manufacturing, and

sales. Without question, there is a need to find how to obtain positive assertions.

That is the topic of the next section.

10.3. Still another vote

An argument that captures the source of the problem comes from my recent book

[8]. To introduce the ideas, consider the following common experience of still an-

other ballot. To pose a specific instance, suppose a committee of three is charged

with assembling a three-person scientific board that must have a member from the

physical sciences, the social sciences, and mathematics. The candidates are

Phys. Sciences Soc. Sciences Mathematics

Antti Katrina Erkki

Bob Dave Fred

(10.1)

Each committee member votes for one person from each of the three lists. Suppose

each of Antti, Katrina, and Erkki wins with a 2:1 vote. Will the selection committee

be happy with the outcome?
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A way to analyze this conclusion is to adopt a reverse engineering perspective

by listing all possible supporting profiles. Then, check each profile to determine

whether the outcome is appropriate. The five different profiles are:

Voter 1 Voter 2 Voter 3

Antti, Katrina, Erkki Bob, Dave, Fred Antti, Katrina, Erkki

Bob, Katrina, Erkki Antti, Dave, Fred Antti, Katrina, Erkki

Antti, Dave, Erkki Bob, Katrina, Fred Antti, Katrina, Erkki

Antti, Katrina, Fred Bob, Dave, Erkki Antti, Katrina, Erkki

Antti, Katrina, Fred Bob, Katrina, Erkki Antti, Dave, Erkki

(10.2)

The outcome appears to be reasonable for the first four profiles. After all, for

each of these profiles, the first two voters have directly opposing views. Thus their

complete tie is broken by the last voter. The last profile is more problematic; about

the best we can state is that each winning candidate won by 2:1.

Whatever conclusion is reached about the last profile, a comforting observation

is that the outcome is appropriate for at least 80% of the supporting profiles; i.e.,

in general the conclusion is reasonable. Even stronger, as Katri Sieberg and I

proved [11], the outcome for paired comparison voting rules never reflects the actual,

specified profile; it reflects an outcome that is appropriate for the largest set of the

supporting profiles. If the actual profile happens to be in this set, the outcome is

appropriate; if the actual profile is an outlier with respect to this set, there may be

difficulties.

This comment about the outlier suggests examining more carefully the fifth

profile. To do so, suppose that this profile, the outlier, is the actual profile. Sup-

pose that instead of having all three winners coming from Finland, and all three

losers coming from the US, each voter wanted to have a mixed-cultural board.

This comment accurately reflects how they voted; each voter voted for at least one

representative from each country.

A natural objection to this comment is that nothing is built into the rule that

would allow it to capture added and hidden conditions such as this mixed-cultural

intent, or maybe a mixed-gender objective, or a mixed-race goal, or . . . Without

including in the rule the intent to respect these conditions, it is understandable

why the rule ignores, even severs, the voters’ objective to coordinate among the

component parts. To ensure an outcome that respects these conditions, use more

appropriate rules.

To reach the main message of this section, first convert the Eq. 10.1 example into

an example that is equivalent because only the names are changed. Change Antti

and Bob to, respectively, A � B and B � A; Katrina and Dave to, respectively,

B � C and C � B, and Erkki and Fred to, respectively C � A and A � C. Doing

so converts Eq. 10.2 into
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Voter 1 Voter 2 Voter 3

A � B,B � C,C � A B � A,C � B,A � C A � B,B � C,C � A
B � C � A A � C � B A � B,B � C,C � A
C � A � B B � A � C A � B,B � C,C � A
A � B � C C � B � A A � B,B � C,C � A
A � B � C B � C � A C � A � B

(10.3)

A comparison of Eqs. 10.2 and 10.3 shows that a “same-culture” ranking in

Eq. 10.2 becomes a cyclic ranking in Eq. 10.3. The societal outcome of “Antti,

Katrina, Erkki”, for instance, is converted into the societal cyclic ranking of A �
B,B � C, C � A. Each of the six multi-cultural rankings, however, is equated with

a transitive ranking.

Of importance is that the outlier choice of Eq. 10.2 (the last profile) is the

Condorcet triplet

A � B � C, B � C � A, C � A � B. (10.4)

This profile creates the so-called “paradox of voting” where even though each voter

has a complete, transitive ranking of the three alternatives, the societal outcome is

a cycle.

The reason for the “paradox of voting” now is clear. The majority vote over

pairs severs the voters’ intent to have a multi-cultural board; it severs the voters’

connecting conditions of transitivity in the translated problem. Because the voting

rule cannot capture the intent of the multi-cultural voters, or the individual ratio-

nality condition that the voters have transitive preferences, the actual domain for

the pairwise vote differs from what is intended. Our intended domain consists of

the six transitive rankings while the actual domain includes the two cyclic rankings

of the three pairs. With the actual domain, the Eq. 10.3 cyclic conclusion for the

paradox of voting is highly appropriate because it accurately represents the natural

conclusion for a full 80% of the supporting profiles. Even though we want to avoid

certain profiles by requiring the voters to have transitive preferences, the rule is

incapable of capturing this intent.

This severing, this dropping of crucial information, extends from the majority

vote over pairs to become a property of Arrow’s independence condition, and this is

the theme of the next section. The important take-away message from this section

is that for the kinds of negative conclusions that are discussed here, compatibility

conditions on inputs are imposed to reflect our intent. The conditions may involve

transitivity, or ternary relations (from [5]), or the compatibility conditions in my

divide-and-conquer results. But unless these conditions are built into the rule, the

rule will ignore them.

As described in the next section, these problems are consequences of the in-

dependence conditions. Indeed, all of the independence conditions that I have

investigated, the independence condition causes the rule to ignore the carefully
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constructed compatibility conditions. Namely, the independence conditions force

the desired and the actual domains for a rule to differ significantly. Whenever this

occurs, the only way information from the parts can always be assembled into a

whole is by restricting which agents are allowed to play an active role. This leads

to conclusions asserting the rule is equivalent to a dictator, or an oligopoly, or some

other undesired setting.

10.4. Finding the actual space of inputs

The main message of Sect. 3 is that independence conditions can introduce unex-

pected domains and ranges. The desired domain and range, which are defined by

compatibility conditions, tend to be proper subsets of the actual domain and range

over which the consensus rule acts. It is this difference between the desired and the

actual spaces that creates puzzling problems in consensus theory.

To introduce the approach used in this section, let me confess that, as a mathe-

matician, I am attracted to the standard approach of using filters and ultrafilters to

prove Arrovian type theorems. Unfortunately, this elegant technique disguises what

actually is happening. So, to answer my “why” concerns, my approach is based on

geometry.
 

A 

1 

2 

B 
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3 5 
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A 

B 

C 
8 

Fig. 10.2. Representation cube

To show how this happens, consider the three alternative case where decisions

are made via Arrow’s independence conditions. The three pairs are depicted in Fig.

10.2 where the x, y, and z directions indicate, respectively, the A,B, the B,C and

the C,A rankings. For each axis, the arrows indicate the preferred alternative. For

instance, all vertices on the vertical face on the left represent rankings where A � B,

while the vertices on the back opposite face represent rankings where B � A. The

numbering of the vertices define the rankings according to Eq. 10.5; the hidden
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vertex 8 is diametrically opposite vertex 7.

Number Ranking Number Ranking

1 A � B � C 4 C � B � A
2 A � C � B 5 B � D � A
3 C � A � B 6 B � A � C
7 A � B,B � C,C � A 8 A � C,C � B,B � A

(10.5)

Arrow’s compatibility condition of transitivity asserts that the domain and range

consist of vertices 1 to 6. As we will see, the independence condition forces all eight

vertices to be in the actual domain and range.

10.4.1. Outline of Arrow’s result where “involvement” replaces

Pareto

“Involvement” ensures there are at least two pairs where each has at least two

different societal outcomes. For simplicity, assume that all rankings are strict. For

each pair with different societal outcomes, each ranking is supported by a profile.

In some order, change each voter’s ranking from what it is the first profile to what

it is in the second. Clearly, at some point, a particular voter’s change in preferences

changes the pair’s societal outcome. Collect the information accompanying this

setting; i.e., note the name of the agent who caused the societal change and the

preferences of all other voters. (Because of the independence conditions, we only

need to register each voter’s ranking of the pair being considered.) Do so for all

possible paths from one profile to the other, and from all possible supporting profiles

for each ranking. Do so for each pair that has different outcomes.

If for all possible scenarios it is the same voter who changes the outcome, then

this captures Arrow’s assertion that one voter dictates the outcome. (By not using

Pareto, this voter need not be a dictator; e.g., the societal outcome can be the

opposite of his preferences.) Otherwise, for each of two pairs, there exist scenarios

where, say, Ann determines the {A,B} outcome and Bob determines the {B,C}
outcome.

Notice that for this to occur, certain scenarios must occur. Thus, all voters other

than Ann and Bob might need to have specified preferences over the two pairs. But

there always exists a transitive ranking that has a specified ranking for each of two

pairs, so for each voter other than Ann and Bob, assign the voter a ranking that

is consistent with these conditions, and then fix this ranking for the rest of the

discussion.

Bob might also have to have a specific {A,B} ranking to allow Ann to change

{A,B} outcomes. If it is A � B, then restrict Bob to the preferences on the front

left face of the Fig. 2 cube — the face defined by the vertices {1, 2, 3, 7}. If Bob

must have a B � A ranking, then restrict Bob to the opposite back face consisting

of vertices {4, 5, 6, 8}. In this construction, further require Bob’s preferences to a

fixed {A,C} ranking; e.g., select either the bottom or top edge for each of the two
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faces. That is, Bob’s moves are between the {1, 2} and the {6, 8} edges to keep

the A � C ranking, or between the {3, 7} and {4, 5} edges to keep the C � A

ranking. According to the independence condition, the rule only knows which edge

is adopted; it cannot differentiate between the two defining vertices.

Similarly, to unleash Bob’s power, Ann may need to have a particular {B,C}
ranking, so capture her preferences either with those on the front right face (vertices

{1, 5, 6, 7}) or the back face (vertices {2, 3, 4, 8}). Again, so she always has the same

{A,C} ranking, select her preference rankings to both come either from the bottom

edge or the top edge.

With these choices, Ann and Bob are free to independently change the societal

rankings of these two pairs. In particular, Ann can force the outcome to be on

the front left face representing an A � B ranking (with vertices {1, 2, 3, 7}) while

Bob can force the outcome to be on the front right face of a B � C ranking (with

vertices {1, 5, 6, 7}). Thus, on the Fig. 10.2 cube, the outcome is defined by the

intersection of these two faces; it is the front vertical edge defined by vertices {1, 7}.
Similarly, Ann can force the outcome to be on the back face with a B � A ranking

defined by vertices {4, 5, 6, 8} while Bob can force the outcome to be on the face

with a C � B ranking defined by {2, 3, 4, 8}. In this setting, the societal outcome

is on the back vertical edge {4, 8}.
Herein lies the contradiction. No voter changes his or her {AC} ranking, so,

according to the independence condition, the {A,C} outcome remains fixed. Thus,

all outcomes are either on the top or on the bottom face. If the outcomes must

be on the top face, they vary between 4 and 7; if on the bottom face, the societal

outcomes vary between 1 and 8. But with either face, one of the outcomes must

be a cyclic ranking given by either vertex 7 or 8. As these outcomes do not satisfy

the compatibility condition, it follows that the scenario involving two voters cannot

occur; the societal ranking must be determined by only one voter.

10.4.2. Finding the problem

The problem, of course, is that the actual set of outcomes defined by the rule differs

from what we want; the rule’s de facto set includes cyclic rankings. Namely, the

rule nicely satisfies the independence conditions by introducing a cyclic ranking.

The problem is not that of the rule, it is that we reject this choice.

A way to address my “why” concerns is to establish a connection with Eq. 10.3.

So suppose the rule also satisfies some monotonicity condition whereby voting for

a candidate helps her. Also assume (without loss of generality) that Ann and Bob

select their preferences from the top face. This means that the vertex 7 cyclic

ranking occurs if Ann selects a ranking given by either vertex 3 or vertex 7, while

Bob selects either vertex 5 or vertex 7. In the spirit of Eqs. 10.2, 10.3, the full

space of indistinguishable (by the independence condition) supporting profiles for
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this cyclic outcome is given by the four pairs

(3, 5), (3, 7), (7, 5), (7, 7)

where the first listed preference in a pair is Ann’s.

As true with Eq. 10.3 and consistent with my result with Sieberg [11], the largest

number (here 75%) of supporting profiles involve cyclic preferences! The cyclic

outcome, in other words, is an appropriate conclusion for most of the supporting

profiles in the actual domain – the domain that is defined and used by the rule.

Stated in another manner, while we require the voters to have transitive preferences,

the independence condition forces the rule to ignore this intent by creating its

own domain to determine conclusions. (Without a monotonicity condition, these

comments apply to another outcome from the top face.)

10.4.3. Other compatibility and independence conditions

A similar effect occurs with other independence conditions. An illustration comes

from the earlier mentioned nice paper by McMorris and Powers [5]. Precise defini-

tions can be found in their paper, but, by using Fig. 1, a ternary relationship over

four items S = {a, b, c, d} can be loosely viewed as a listing of all triplets (u, v, w)

where the path from u to v does not intersect the path from w to r. Thus different

labelings of the Fig. 1 vertices define different sets of paths, i.e., different ternary

relationships. The set of all possible ternary relationships for a set S is denoted by

T (S), so, with N agents, a profile is π ∈ (T (S))N . A consensus function is given by

C : (T (S))N → T (S). (10.6)

The ternary independence condition is the obvious one. Namely, if each agent’s

listing for a triplet is the same for two profiles π and π′, then outcome for that triplet

is the same for both profiles. The result is that when the independence condition is

accompanied with a condition such as Pareto, or involvement, and a finite number

of agents, the consensus function is equivalent to a dictatorship.

To connect this result with the above discussion, notice that the desired domain

consists of graphs of the Fig. 1 type with all possible different permutations of

{a, b, c, d} in the vertices. (For simplicity, consider only triplets representing distinct

end vertices.) As such, an example of an inadmissible quadruple is given by the

four triplets (a, b, c), (b, c, d) (these two triplets are consistent with Fig. 1), (d, a, b)

(which is not consistent as the path from d to a intersects the path from b to r), and

(d, a, c). The independence condition, however, ensures that this set of four triplets

belongs to the actual domain of any consensus function that satisfies the ternary

independence condition.

A question is whether the undesired can accompany the approved; namely, for

a specified profile, will the compatibility requirements keep out the unwashed? To

see that the undesired can join (and distort) the analysis, consider the four-agent
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profile representing the four ways to label Fig. 1, going from left to right, as

[a, b, c, d], [b, c, d, a], [c, d, a, b], [d, a, b, c]. (10.7)

Accompanying the ternary relationships of these four choicesa are indistinguishable

settings (because of the independence condition) where an agent has the four triplets

(a, b, c), (b, c, d), (c, d, a), (d, a, b), which clearly are inconsistent. But because of the

independence condition, the rule cannot recognize this inconsistency, so it becomes

part of the rule’s actual, de facto domain. This actual set of indistinguishable

triplets accompanying Eq. 10.7, then, has features similar to that of Eq. 10.3 where

most of the choices are undesired.

In other words, the intended domain of T (S) has 4! = 24 ternary relationships.

(This can be reduced to 12.) The actual domain that is being used by the consensus

function includes products of all of the parts, so it has (3!)4 = 1296 relationships!

The consensus function acts over the actual domain rather than over the intended

one. An argument similar to that used above with Arrow’s theorem shows that this

explains the dictatorship conclusion.b

10.4.4. Positive conclusions?

The way to find positive conclusions is to redesign the independence conditions (the

divide-and-conquer methodologies) to permit an appropriate level of agreement be-

tween the actual and the desired domains. In terms of the above comments and

recognizing that the independence conditions partly define the acceptable rules, the

goal is to design appropriate independence conditions that allow the rules to more

accurately reflect the desired compatibility conditions. As an example using tran-

sitive rankings, I show in my book [8] how Arrow’s theorem, and other problematic

conclusions, can be converted into positive statements just by forcing the rule to

respect the specified compatibility conditions.

The way this is done is to replace the usual information about the relative

ranking of a pair to one that also specifies how many alternatives separate the two

specified alternatives. With the A � B � C � D ranking, for instance, instead of

just using the A � D relative ranking information, I use the (A � D, 2) “intensity

information” where the “2” indicates that A and D are separated by two other

alternatives.

Arrow’s independence condition uses the relative ranking of a pair; my IIIA

condition for a pair is that if each voter in the two profiles has the same intensity

information for this pair, then the pair has the same relative societal ranking for

both profiles.

The actual domain defined by my condition remains larger than the desired

one, but it suffices to obtain positive conclusions. The mathematical reason is that

aThe central role played by this kind of configuration will be discussed elsewhere.
bDifferences are minor and expected; e.g., in the transition from (a, b, c) to (c, b, a), the first change
may be (a, c, b).
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the restriction to transitive preferences now becomes a meaningful condition by

imposing a useful restriction on the actual domain. To illustrate with the Eq. 10.4

profile, the associated set of supporting profiles for Arrow’s independence condition

is given by Eq. 10.3; with my independence condition, all Eq. 10.3 rankings that

include a cycle are expelled to leave only the actual profile.

This change significantly alters the conclusion: My independence condition,

which imposes a minimal coordination among what happens with each of the parts,

replaces Arrow’s dictator with the Borda Count (where an N -candidate ballot is

tallied by assigningN−j points to the jth positioned candidate). Preliminary results

(to be reported elsewhere) indicate that a positive conclusion also is obtained for

the Fig. 1 tree problem by modifying the ternary conditions so that they respect a

similar intensity condition.

10.5. Summary

Problems similar to that described above accompany other independence condi-

tions. The reason is that standard independence conditions define the “parts” of

a structure. By separating the analysis into the parts, which in effect divorces any

intended connection among the parts, this independence condition requires the ac-

tual domain for the rule to be the product of all of the defined parts. In contrast,

the compatibility conditions define the desired domain that is only a proper subset

of this product space. The rule respects and is making its computations based on

the actual domain, not on the desired one. As such, problems must be anticipated.

While the problems need not be dictatorial kinds of conclusions, to deal with the

differences between the actual and desired domains, the consensus rule must have

distorted properties.

Solutions include altering the independence conditions to provide some level of

coordination about what is happening in other parts when determining the outcome

for a specific part. More about this will be discussed elsewhere.
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In this chapter we discuss the contributions of F.R. McMorris to discrete mathe-
matics and its applications on the occasion of his retirement in 2008.

Introduction

End of August 2008 F.R. McMorris, Buck for his friends and colleagues, retired as

Dean of the College of Science and Letters at IIT, Illinois Institute of Technology,

Chicago. He also celebrated his 65-th birthday. To commemorate these events a two-

day conference was held early May 2008 at IIT. In addition this volume is written

in honor of his contributions to mathematics and its applications. The focus of the

volume is on areas to which he contributed most. The chapters show the broadness

of his interests and his influence on many co-authors and other mathematicians.

Here we survey his work.

225
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First some basic facts. At the moment of finishing this volume Math. Reviews

lists 2 books, the editorship of 3 conference proceedings, and 108 published papers

of Buck McMorris, and there are still many to come. There are 53 co-authors listed,

and again there are more to come. Of course, the papers and co-authors listed in

Math. Reviews are not all. The areas to which he has contributed, by number of

publications, are: Combinatorics; Group theory and generalizations; Biology and

other natural sciences; Game theory, economics, social and behavioral sciences;

Operations research and mathematical programming; Order, lattices and ordered

algebraic structures; Statistics; Computer science.

Below we will highlight many of his contributions. Some characteristics of his

way of working are: an open mind, keen on fundamental mathematics with a rele-

vance for applications, always taking a broad view: try to formulate a ‘master plan’

that may be a guide for creating many specific questions and open problems. What

seems to be equally important is that Buck has become a dear friend for many

of his co-authors. That fact was fundamental for the success, mathematically and

socially, of the above mentioned celebration conference.

Many of his co-authors are mentioned below, some are contributors of this vol-

ume. Much to our regret, because of the focus chosen, not all of his important

co-authors are represented as author in this volume. Therefore we mention them

here by number of their collaborations with Buck McMorris, according to Math-

SciNet: C.S. Johnson Jr., Bill Day, Frank Harary, Mike Jacobson, John Luedeman,

Ewa Kubicka, Grzegorz Kubicki, Jean-Pierre Barthélémy, Robert Brigham, Hans-

Hermann Bock, Jerald Kabell, and Chi Wang.

McMorris started his mathematical career in semi-groups. But even in his early

work we can already discern some of his future interests in discrete mathematics

and its applications: mathematical biology, intersection graphs, voting theory, con-

sensus theory. In the early eighties his focus shifted from semigroups to discrete

mathematics, with an emphasis on graph theory, while his early interests remained.

In the sections below we highlight these. Of course, not all of his publications can

be discussed. We hope that the choices made provide a clear picture of his work

and interests.

11.1. Mathematics of Evolutionary Biology

McMorris published 10 papers motivated by a concept from evolutionary systematic

biology called character compatibility. Seven were between 1975 and 1981, the early

days of his involvement with this concept: four of these included Estabrook as a

coauthor [16; 17; 18; 19], two were entirely his own [41; 42] and one more with

Zaslavsky [56]. McMorris et al. [55] addresses an abstract issue in graph theory

related to an unresolved question from character compatibility, and Day et al. [13]

apply McMorris’ potential compatibility test to look for randomness in about 100

published data sets. For his last publication on character compatibility [20], he
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worked again with his original coauthor to examine the relationship between geologic

stratigraphic data and compatibility.

To understand the relevance of McMorris’ contributions to character compat-

ibility analysis, it is useful to understand some of the concepts of evolutionary

systematic biology. This subfield of biology seeks to estimate the tree of ancestor-

descendant relationships among species, consequent of their evolution, and then

use these evolutionary relationships to recognize higher taxa (groups of species in

genera, families, etc). In the late 19th century, systematic biologists realized that

similarities and differences with respect to a basis for comparison among a group

of related species under study could be the basis for an hypothesis about the rela-

tionships among species and the ancestors from which they evolved, their so-called

ancestor relation. Such hypotheses are expressed as characters, which group species

together into the same character state if they are considered to be the same with

respect to a basis for comparison, and then arrange these character states into a

character state tree to indicate where speciation events associated with the observed

changes are hypothesized to have occurred. By mid 20th century, some natural sci-

entists also realized that some pairs of such hypotheses based on different bases for

comparison could be logically incompatible, i.e., they could not both be true. At

that time, scientists began to develop tests for, and ways to resolve, incompatibili-

ties to estimate the ancestor relation from these hypotheses. Wilson (1965) [66] is

among the earliest published works to present an explicit test for the compatibility

of (two state) characters. Estabrook (2008) [21] provides an in-depth discussion of

biological concepts of character state change, and the nature of compatibilities and

incompatibilities among characters that arise from them. Estabrook (this volume)

provides explicit explanations of McMorris’ contributions motivated by this con-

cept. Here we will summarize briefly what we consider to be his most significant

contributions.

McMorris recognized a bi-unique correspondence between character state trees

for a collection of related species and trees of subsets (ordered by inclusion) of that

collection, which enabled a simple test for compatibility that identified the states

involved with contradictions when the test failed. He realized that character state

trees themselves enjoy a lower semi lattice order under the relation “is a refinement

of ”, and described a simple test to recognize when a pair of character state trees

were in that relation. Qualitative taxonomic characters are characters with their

character states, but no explicitly hypothesized character state tree. Two qualitative

taxonomic characters are potentially compatible if there exists character state trees

for each that are compatible with each other. Estabrook had conjectured a simple

test for potential compatibility, see [16; 6], which McMorris proved to be correct.

Potential compatibility raises an unresolved issue: Several qualitative taxonomic

characters can be pairwise potentially compatible but in some cases character state

trees for each do not exist so that they remain pairwise compatible as character

state trees. Simple criteria to recognize such cases have not yet been discovered.
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This is related to chordal graphs [24; 55]. McMorris’ last publication addresses

stratigraphic compatibility [20] and raises questions related to functional graphs.

For an in-depth treatment of the papers discussed here, the reader is referred to

Estabrook (this volume).

11.2. Contributions to Intersection Graph Theory

As in many parts of discrete mathematics, McMorris introduced or popularized

significant new ideas in intersection graph theory, sometimes with a conference talk

proclaiming a “master plan” for developing the idea. Six of these contributions

are described below, with further discussion of each available in the 1999 SIAM

monograph Topics in Intersection Graph Theory [40].

Upper bound graphs [40, §4.4]. The 1982 McMorris & Zaslavsky paper [57]

combines McMorris’s interests in partially ordered sets and graph representations.

The upper bound graph G of a partial ordering (P,<) has vertex set P , with dis-

tinct vertices adjacent in G if and only if the corresponding elements of P have a

common upper bound in P . Reference [57] characterizes upper bound graphs by

the existence of complete subgraphs Q1, . . . , Qk that cover E(G) such that, for each

j ≤ k, there exists a vertex vj in G where vj ∈ Qj but vj 6∈ Qi for i 6= j; more-

over, each Qi can be assumed to be an inclusion-maximal complete subgraph of G.

This characterization has spawned many related results, often coupled to applicable

topics such as competition graphs.

Bipartite intersection graphs [40, §7.2]. The 1982 Harary, Kabell & Mc-

Morris paper [26] generalizes classical intersection graphs, and interval graphs in

particular. A bipartite intersection graph G has V (G) partitioned into sets X and

Y, with each x ∈ X and y ∈ Y assigned sets Sx and Ty such that vertices x and y

are adjacent in G if and only if Sx ∩ Ty 6= ∅; furthermore, G is a bipartite interval

graph if each Sx and Ty is an interval of the real line. Others have subsequently in-

troduced concepts of directed intersection and interval graphs that are structurally

interconnected with their bipartite counterparts.

p-Intersection graphs [40, §6.1]. The 1991 Jacobson, McMorris & Scheiner-

man paper [33] generalizes standard (1-)intersection graphs, significantly generaliz-

ing traditional intersection graph theory. The p-intersection graph G of a multiset

{S1, . . . , Sk} of subsets of an underlying finite set X has vertices v1, . . . , vk, with

distinct vertices vi and vj adjacent in G if and only if |Si ∩ Sj | ≥ p. In particu-

lar, this extends the well-studied (but notoriously hard) concept of the intersection

number of a graph—the minimum cardinality of X such that G is an intersection

graph of subsets of X—to p-intersection numbers.

Tolerance intersection graphs [40, §6.3]. The 1991 papers by Jacobson,

McMorris & Mulder [32] and Jacobson, McMorris & Scheinerman [33] introduce this
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very general concept. The φ-tolerance intersection graph G of a family {S1, . . . , Sk}
of subsets of an underlying finite set X has each subset of S assigned a measure

µ(S), has each Si assigned a tolerance ti, and has a binary function φ(x, y) that

is often min{x, y}, with distinct vertices vi and vj adjacent in G if and only if

µ(Si ∩ Sj) ≥ φ(ti, tj). Tolerance intersection graphs generalize both p-intersection

graphs and the previously-studied “tolerance graphs,” which can now be described

as interval graphs with µ the length of an interval and φ(x, y) = min{x, y}.

Sphere-of-influence graphs [40, §7.11]. The 1993 Harary, Jacobson, Lipman

& McMorris paper [25] promotes ideas that were motivated by pattern recognition

and computer vision problems. Suppose X is any finite set of points in the plane

and each x ∈ X is associated with the open disc centered at x with radius equal to

the minimum distance from x to the other points of X . A sphere-of-influence graph

G has vertices that correspond to such open discs, with distinct vertices adjacent

in G if and only if the corresponding open discs have nonempty intersection. One

basic question from [25] is which complete graphs are sphere-of-influence graphs—

K8 is; K9 is conjectured to be; K12 is not. Closed sphere-of-influence graphs and

φ-tolerance sphere-of-influence graphs have also been studied.

Probe interval graphs [40, §3.4.1] The 1998 McMorris, Wang & Zhang paper

[54] developed tools that were directly motivated by work in physical mapping of

DNA. A graph G is a probe interval graph if V (G) contains a subset P and each

vertex corresponds to an interval of the real line, with distinct vertices adjacent

in G if and only if at least one of them is in P and their corresponding intervals

have nonempty intersection. Reference [54] contributes structural information about

probe interval graphs and has led to considerable recent work in this active research

area.

11.3. Competition Graphs and their Generalizations

Buck McMorris has made some very interesting contributions to the study of compe-

tition graphs and the related phylogeny graphs. These topics combine his interests

in graph theory with his interests in biology. This work was done in collaboration

with Roberts (3 papers) and others.

11.3.1. Competition Graph Definitions and Applications

The study of competition graphs has given rise to a very large literature, some of

which is surveyed in the articles [34; 37; 63]. Suppose D = (V,A) is a digraph.

Its competition graph C(D) is the graph G = (V,E) with the same vertex set and

an edge {x, y} in E for x 6= y if and only if there is a vertex a in V so that arcs

(x, a) and (y, a) are in D. Competition graphs were introduced by Cohen [9] in

connection with a problem of ecology. The vertices of D represent species in an

ecosystem and there is an arc from u to v if u preys on v. We call such a digraph
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a food web. There is an edge between species x and y in C(D) if and only if x and

y have a common prey a in D, i.e., if and only if x and y compete for a. In the

literature of competition graphs, it is very common to study the special case where

D is an acyclic digraph without loops, as is commonly the case for food webs.

A variant of the competition graph idea is called the phylogeny graph because

it was motivated by a problem in phylogenetic tree reconstruction. We say that

G is the phylogeny graph P (D) of D = (V,A) if G = (V,E) and there is an edge

between x 6= y in E if and only if either (x, a) and (y, a) are in A for some a in

V , or (x, y) is in A or (y, x) is in A. If D is a digraph without loops and D′ is the

corresponding digraph with a loop added to each vertex, then it is easy to see that

the phylogeny graph of D is the competition graph of D′. This observation was

first made by Buck McMorris in a personal communication to Roberts. Roberts and

Sheng [64] introduced the term phylogeny graph because of a possible connection

of this concept to the problem of phylogenetic tree reconstruction. It is appropriate

that Buck should have played a role in this notion of phylogeny graph because

of his longstanding interest and many contributions to the theory and practice of

phylogenetic tree reconstruction.

The notion of competition graph also arises in a variety of other non-biological

contexts. (See [61].) Suppose the vertex set of D can be divided into two classes, A

and B, and all arcs are from vertices of A to vertices of B. (We do not assume that

A and B are disjoint.) Then we sometimes seek the restriction of the competition

graph to the set A. This idea arises for instance in communications where A is a

set of transmitters, B is a set of receivers, and there is an arc from u in A to v in

B if a message sent at u can be received at v. We then note that x and y in A

interfere if signals sent at x and y can be received at the same place, i.e., if and only

if x and y are adjacent in the competition graph (restricted to A). The problem of

channel assignment in communications can be looked at as the problem of coloring

the interference graph.

The idea also arises in coding. Suppose A is a transmission alphabet, B is

a receiving alphabet, and there is an arc from u in A to v in B if when symbol

u is sent, symbol v can be received. Then symbols x and y in the transmission

alphabet are confusable if they can be received as the same letter, i.e., if and only

if x and y are adjacent in the competition graph (restricted to A). We often seek

a minimum set of mutually non-confusable symbols in a transmission alphabet –

this is the problem of finding a maximum independent set in the competition graph

(restricted to A).

Competition graphs arise in scheduling in situations where we have conflicting

requests. Suppose that A is the set of users of a facility and B the set of facilities,

and an arc from u in A to v in B means that user u wishes to use facility v.

Then users x and y conflict if they both wish to use the same facility. In another

scheduling application, A is a set of users of a fixed facility and B the set of times

that facility might be used, and an arc from u in A to v in B means that user u
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wishes to use the facility at time v. Users x and y conflict if they both wish to

use the facility at the same time. The competition graph is sometimes called the

conflict graph.

Competition graphs arise in studies of the structure of models of complex sys-

tems arising in modeling of energy and economic systems. In such models, we often

use matrices and set up linear programs. Let A be the set of rows of a matrix M and

B the set of columns, and take an arc from u to v if the u, v entry of M is nonzero.

Then in a corresponding linear program, the constraints corresponding to rows x

and y involve a common variable with nonzero coefficients if and only if x and y

are adjacent in the competition graph. In the literature, the competition graph is

called the row graph of matrix M . The row graph is useful in understanding the

structure of linear programs.

11.3.2. Competition Numbers and Phylogeny Numbers

As noted earlier, Buck McMorris has made extensive contributions to the theory and

applications of interval graphs. Interval graphs have played a central role at the

interface between mathematics and biology, and the connection between interval

graphs and competition graphs has been a primary force in leading to the great

interest in competition graphs. In ecology, a species’ normal healthy environment is

characterized by allowable ranges of different important factors such as temperature,

humidity, pH, etc. If there are p factors and each is taken to be a dimension in

Euclidean p-space, then if the ranges on the different factors are independent (a

simplifying assumption), the species can be represented by a box in p-space. This

box is called the species’ ecological niche. An old ecological principle says that two

species compete if and only if their ecological niches overlap. (That is why the

competition graph is sometimes called the niche overlap graph.) Cohen [9; 10; 11]

asked if, given an independent notion of competition, we could assign each species in

an ecosystem to an ecological niche in such a way that competition between species

corresponds to overlap of niches. In particular, he started with a food web or digraph

with an arc from u to v if u preys on v, defined the corresponding competition graph,

and asked if the competition graph could be represented as the intersection graph of

boxes in p-space. More specifically, he asked for the smallest such p, which is known

as the boxicity of the competition graph. Cohen [9] made the remarkable observation

that in a large number of examples of food webs, the boxicity of the competition

graph always turned out to be 1, i.e., that the competition graph was always an

interval graph. In other words, only one ecological dimension sufficed to account for

competition. The interpretation of this dimension was (and is) unclear. Although

later examples were found by Cohen and others to show that not every competition

graph had boxicity 1, Cohen’s original observation and the continued preponderance

of examples with boxicity 1 led to a large literature devoted to attempts to explain

the observation and to study the properties of competition graphs.
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In attempting to explain the observation that most real world food webs have

competition graphs that are interval graphs, Roberts [62] asked whether this was

just a property of the construction, i.e., whether most acyclic digraphs have com-

petition graphs that are interval graphs. He noted that if G is any graph, then G

plus sufficiently many isolated vertices is a competition graph of an acyclic digraph.

Roberts then defined the competition number k(G) of a graph G as the smallest

r so that G plus r isolated vertices is a competition graph of an acyclic digraph.

Thus, any algorithm for recognizing competition graphs of acyclic digraphs will also

compute the competition number, and conversely.

11.3.3. p-Competition Graphs

A large number of variations of the notion of competition graph have given rise

to interesting problems and questions. To define one such variation, suppose D =

(V,A) is a digraph. The p-competition graph of D has vertex set V and an edge

between x and y in V if there are distinct vertices a1, a2, ..., ap in V so that (x, ai)

and (y, ai) are arcs in D for i = 1, 2, ..., p. In terms of the ecological motivation,

x and y compete if and only if they have at least p common prey. This idea was

studied by Buck McMorris and collaborators in a series of three papers: [30; 35;

36]. A variety of results analogous to those about ordinary competition graphs

are known. Paper [36] by McMorris and coauthors gave necessary and sufficient

conditions for a graph with n vertices to be the p-competition graph of some acyclic

digraph.

It also provides similar results for arbitrary digraphs (loops allowed) and arbi-

trary digraphs (loops not allowed). Graph-theoretically, the most interesting results

arise if one studies p-competition graphs of arbitrary digraphs. So far, most of the

interesting results are about the case p = 2. Paper [36] showed that every triangu-

lated graph is a 2-competition graph of an arbitrary digraph. So is every unicyclic

graph except the 4-cycle.

The question of what complete bipartite graphs K(m,x) are 2-competition

graphs of arbitrary digraphs leads to some very interesting (and difficult) com-

binatorial questions. In paper [30], McMorris and colleagues showed that K(2, x)

is a 2-competition graph of an arbitrary digraph if and only if x = 1 or x ≥ 9 and

that K(3, x) is not a 2-competition graph of an arbitrary digraph if x = 3, 4, 5,

7, 8, 11. Then, Jacobson [31] showed that K(3, x) is a 2-competition graph of an

arbitrary digraph for x ≥ 38. The situation for K(3, 6) and K(3, 37) remains open,

to our knowledge.

Also of interest is a concept analogous to competition number. The

p−competition number kp(G) is the smallest r so that G together with r isolated

vertices is a p-competition graph of some acyclic digraph. McMorris and his col-

leagues [35] showed that this is well-defined. In this same paper, they showed the

surprising result that for every m, there is a graph G with kp(G) ≤ k(G)−m.
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11.3.4. Tolerance Competition Graphs

As noted above in Section 11.2, the 1991 papers by Jacobson, McMorris and Mulder

[32] and Jacobson, McMorris and Scheinerman [33] introduced a very general con-

cept called a φ-tolerance intersection graph. An analogous notion for competition

graphs was introduced by Brigham, McMorris, and Vitray [7; 8]. Let φ be a sym-

metric function assigning to each ordered pair of natural numbers another natural

number. We say that G = (V,E) is a φ-tolerance competition graph if there is a

directed graph D = (V,A) and an assignment of a nonnegative integer ti to each

vertex vi in V such that, for i 6= j,

{vi, vj} ∈ E(G)↔ |{a : (vi, a) ∈ A} ∩ {a : (vj , a) ∈ A}| ≥ φ(ti, tj).

A 2-φ-tolerance competition graph is a φ-tolerance competition graph in which all

the ti are selected from a 2-element set. Characterizations of such graphs, and

relationships between them, are presented for φ equal to the minimum, maximum,

and sum functions, with emphasis on the situation in which the 2-element set is

{0, q}.

11.4. Location Functions on Graphs

As mentioned in Section 11.2 Buck McMorris used the idea of a “master plan” to

generate all kinds of interesting questions and problems. This inspired his coauthor

Mulder to use this meta-concept as well. The first instance was Mulder’s “Meta-

conjecture” mentioned in Mulder (this volume). Trees and hypercubes share being

median graphs. In a sense they are the extreme cases within this class, in the class

of all median graphs with n vertices, the trees realize the minimum number of edges:

n− 1, and the n-cube Qn realizes the maximum number of edges 2n. The following

has served as a “master plan” in the sense of McMorris.

Metaconjecture. Let P be a property that makes sense, which is shared by the

trees and the hypercubes. Then P is shared by all median graphs.

The reader is referred to Mulder (this volume) for the incentive this Metaconjecture

has given. In the spirit of this Metaconjecture one also tries to generalize results

on trees to median graphs whenever possible. This was the motivation for Buck

McMorris to study the axiomatic characterization of locations functions on median

graphs. Location functions are are a specific instance of consensus functions. A con-

sensus function is a model to describe a rational way to obtain consensus among a

group of agents or clients. The input of the function consists of certain information

about the agents, and the output concerns the issue about which consensus should

be reached. The rationality of the process is guaranteed by the fact that the consen-

sus function satisfies certain “rational” rules or “consensus axioms”. For a location

function on a network the input is the position of the clients in the network, and
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the output is the set of preferred locations. For a full discussion of the axiomatic

characterizations of three important location functions see McMorris, Mulder, and

Vohra (this volume), where the details of the results discussed below can be found.

A central problem in location theory and consensus theory is to find those points

in a set X that are “closest” to any given profile π = (x1, x2, . . . , xk). Most of the

work done in this area focuses on developing algorithms to find these points [12; 58].

In recent years, there have been axiomatic studies of the procedures themselves and

these have resulted in a much better understanding of the process of location and

consensus [4; 5; 23; 27; 28]. Without any conditions imposed, a location function

(consensus function) on X is simply a mapping L : X∗ → 2X − ∅, where X∗ is the

set of all profiles of all finite lengths and 2X − ∅ denotes the set of all nonempty

subsets of X.

Let δ : X × X∗ → R be a function such that δ(x, π) represents a measure of

“remoteness” of x to the profile π. An attractive class of location functions on

(X, δ) is defined by letting L(π) = {x ∈ X : δ(x, π) is minimum}. Two important

location functions in this class are the median function Med, defined by letting

δ(x, π) =
k∑
i=1

δ(x, xi), where π = x1, x2, . . . , xk, and the center function Cen, defined

by letting δ(x, π) = max{δ(x, x1), δ(x, x2), . . . , δ(x, xk)}.
In the continuous case we consider connected networks N = (V,A) with vertex

set V and set of arcs A. Think of N as being embedded in n-space. The arcs are

curves with a length. The set X is the set of all vertices and all interiors points on

the arcs. In the discrete case we consider connected graphs G = (V,E) with vertex

set V and edge set E. Now the set X is the set of vertices V . Note that there might

be big differences between the continuous and the discrete case. For instance, the

center function Cen is single-valued in the continuous case but not in the discrete

case. Also proof techniques may be quite different.

In 1996 Vohra [65] characterized the median function on tree networks axiomat-

ically, where only three simple axioms were needed. In a tree network the set X

is the set of all vertices and interior points on the arcs, where arcs can have any

length. This is the “continuous case”. Rephrased Vohra’s axioms are as follows.

the segment S(x, y) between x and y in a tree network is the set of all point on the

path between points x and y. For two profiles π and ρ we denote the concatenation

of these by π, ρ.

(A) Anonymity: for any profile π = x1, x2, . . . , xk on X and any permutation

σ of {1, 2, . . . , k}, we have L(π) = L(πσ), where πσ = xσ(1), xσ(2), . . . , xσ(p).

(B) Betweenness: [Continuous] L(x, y) = S(x, y), for all x, y ∈ X.

(C) Consistency: If L(π) ∩ L(ρ) 6= ∅ for profiles π and ρ, then

L(π, ρ) = L(π) ∩ L(ρ).
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Note that it is easy to show that Med satisfies these three axioms. But Vohra

proved the ‘converse’ as well: any consensus function on a tree network satisfying

(A), (B), and (C) necessarily is the median function on the tree network.

When McMorris started to work on the discrete case for Med he realized that it

should be done on median graphs. Now the betweenness axiom has to be adapted

to the discrete case. The interval I(u, v) between vertices x and y in a graph

G = (V,E) is the set of vertices lying on the shortest paths between x and y.

(B) Betweenness: [Discrete] L(u, v) = I(u, v), for all u, v ∈ V .

In [46] it was proved that the median function Med on cube-free median graphs is

characterized by the three obvious axioms (A), (B), and (C). A median graph G is

cube-free if G does not contain a 3-cube Q3. Such graphs are a nice generalization

of trees. They seem to be quite esoteric, but there is a one-to-one correspondence

between the class of connected triangle-free graphs and a subclass of the cube-free

median graphs, see [29]. For the class of all median graphs McMorris, Mulder and

Roberts [46] needed an extra ‘heavy duty’ axiom. These results were extended in

[43; 44], where also the ordered case, viz. distributive and median semilattices, is

discussed. Another interesting case initiated by McMorris is the t-Median Function,

see [45]. We omit details.

There is not as much known for Cen on graphs. Foster and Vohra [22] studied the

center function on tree networks. A breakthrough occurred when Buck McMorris

and coauthors [53] succeeded in characterizing the center function on trees as we

have defined it. The result is that a location function L on a tree T is the center

function Cen if and only if L satisfies the following four axioms. For a profile π

we denote the set of vertices in π by {π}. For a vertex x we denote by π \ x the

subprofile of π by deleting all occurrences of x from π. For a profile π on a tree T

we denote by T (π) the smallest subtree of T containing all of π.

(Mid) Middleness: [Discrete] Let u, v be two not necessarily distinct vertices of

a tree T . Then L(u, v) is the middle of the unique path joining u and v in T .

(QC) Quasi-consistency: If L(π) = L(ρ) for profiles π and ρ, then

L(π, ρ) = L(π).

(R) Redundancy: Let L be a location function on a tree T . If x ∈ T (π \ x) then

L(π \ x) = L(π).

(PI) Population Invariance: If {π} = {ρ} then L(π) = L(ρ).

A shorter proof if this result can be found in [60]. A closer look at that proof yields

that an analogous result holds for the continuous case, i.e., for tree networks.

McMorris and his coworkers are still continuing research on these location func-

tions, but also other nice instances as the Mean Function. A mean vertex of π is a



November 3, 2010 17:26 World Scientific Review Volume - 9.75in x 6.5in ws-rv975x65

236 G.F. Estabrook, T.A. McKee, H.M. Mulder, R.C. Powers and F.S. Roberts

vertex v minimizing ∑
1≤i≤k

[d(v, xi)]
2.

The mean of π is the set of mean vertices of π. The Mean Function Mean on G is

the function Mean : V X∗ :→ 2V − ∅ with Mean(π) being the mean of π.

11.5. Contributions to Bioconsensus: An Axiomatic Approach

Buck McMorris has made many contributions to the area of mathematical consensus

and a few of these contributions will be mentioned in this section. We first describe

what is meant by a consensus function and then we introduce two well known axioms

a given consensus function may or may not satisfy.

Let D be the set of all (finite) discrete structures of a particular type. (e.g., D
could be a set of specialized labelled graphs, unlabelled graphs, digraphs, partially

ordered sets, acyclic digraphs, hypergraphs, partitions, networks, etc.) A consensus

function on D is a map C : Dk −→ D, where k ≥ 2 is a positive integer. A

major aspect of the consensus problem for D is to find “good” consensus functions

that can capture the common agreement of an input profile P = (D1, . . . , Dk) of

members of D , i.e. C(P ) should consist of the element (or elements) of D that

best represents whatever similarity that all of the Di’s share. If possible, a good

function C should not only have this “consensus” aspect, but additionally should

satisfy mathematical properties that enable it to be understood in order that it can

be effectively computed exactly or with approximating algorithms. The consensus

problem for discrete structures has been a very active area of research with much of

it stimulated by the axiomatic approach to social choice (voting theory) pioneered

by K. Arrow in the 1950’s. In the classical theory developed by Arrow and others, D
is usually taken to be the set of all weak or linear orders on a given set of alternatives

S. Many of the axioms are given in terms of the “units of information” (building

blocks) of members of D, which in the case for partial orders, are the ordered

pairs of S making up the order relation. (Other discrete structures obviously have

other types of building blocks.) For example, in generic terms, a property that

is universally accepted as being desirable for data aggregation is the following: A

consensus function C : Dk −→ D is Pareto (P) if whenever P = (D1, . . . , Dk) is a

profile and ‘unit of information’ x is in every Di, then x is in C(P ). The Pareto

condition simply requires the preservation of the unanimous agreement portion of

the input data profile. Another seemingly reasonable property is the following:

A consensus function C is independent (of irrelevant alternatives) (I) if whenever

profiles P and P ′ agree on a subset X ⊆ S, then C(P ) and C(P ′) agree on X.

This independence condition also seems to be a good one and captures an aspect

of a “stable” consensus function. Of course, what it means to “agree” must be

carefully defined. When D is the set of all weak orders on S (reflexive, transitive

and complete relations on S), agreement of two weak orders simply means that they
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are equal as sets of ordered pairs when restricted to elements in X. Profiles then

are said to agree on X if they agree term by term on X. The famous Impossibility

Theorem of Arrow essentially says that the only consensus functions on weak orders

(where |S| ≥ 3) satisfying both (P) and (I) are the dictatorships, i.e., there is an

index j such that for any profile P , if x is strictly preferred to y in Dj , then x is

strictly preferred to y in C(P ) [1].

Buck McMorris , along with his coauthors, has extended Arrow’s Impossibil-

ity Theorem in many different directions. For example, in 1983, McMorris and

Neumann proved an analog of Arrow’s Theorem for tree quasi-orders [47]. A tree

quasi-order is a binary relation ρ on a finite set S such that ρ is reflexive, transitive,

and (z, x), (z, y) ∈ ρ implies that (x, y) ∈ ρ or (y, x) ∈ ρ for all x, y, z ∈ S. The

last condition is called the tree condition and it is a generalization of completeness.

In 2004, McMorris and Powers extended the tree quasi-order version of Arrow’s

Theorem by dropping the Pareto condition and replacing it with two profile condi-

tions [49]. In this case, it was shown that the resulting class of consensus functions

are quasi-oligarchic. In 1991, Barthélémy, McMorris and Powers, using a carefully

constructed independence axiom, established a version of Arrow’s Theorem for con-

sensus functions defined on the set H(S) of all hierarchies of S [2]. A hierarchy on

S is a collection H of subsets of S such that S, {x} ∈ H for all x ∈ S; ∅ 6∈ H; and

A ∩ B ∈ {A,B, ∅} for all A,B ∈ H. In 1995, Barthelemy, McMorris and Powers

investigated eight different versions of independence conditions for consensus func-

tions on H(S) and the complete relationships among these eight conditions were

determined [3]. In 2003, a deeper connection was made between consensus func-

tions on weak orders and consensus functions on H(S) with the possibility of having

an infinite number of voters. A key to this connection is to view a hierarchy as a

special type of ternary relation. Using this viewpoint, it was shown how to embed

and extend Arrow’s Theorem for weak orders to a result involving ternary relations

[48].

In 1952, Kenneth May gave an elegant characterization of simple majority deci-

sion based on a set with exactly two alternatives [39]. This work is a model of the

classical voting situation where there are two candidates and the candidate with

the most votes is declared the winner. May’s theorem is a fundamental result in the

area of social choice and it has inspired many extensions. In particular, in 2008, Mc-

Morris and Powers generalized May’s Theorem to the case of three alternatives, but

where the voters’ preference relations are required to be trees with the alternatives

at the leaves [51].

A popular consensus function on the set of hierarchies H(S) is majority rule.

Majority rule outputs the set of clusters that appear in more than half of the

input profile. The fact that the output is a hierarchy was first noted in 1981 by

Margush and McMorris [38]. Although this result is easy to prove, it stands in stark

contrast to the situation in classical voting theory where the majority outcome could

produce what is called a voting paradox. In 2008, McMorris and Powers proved that
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the majority consensus rule on hierarchies is the only consensus function satisfying

four natural and easily stated axioms [50]. The majority consensus rule is part

of a larger class of consensus rules where the output is determined by a family

of overlapping sets, often called decisive sets. Axiomatic characterizations of this

class of consensus rules can be found in [47] and [52]. Finally, for a more thorough

discussion of axiomatic consensus theory we refer the reader to the book by Day

and McMorris [14].
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4. J.P. Barthélémy, B. Monjardet, The median procedure in cluster analysis and social

choice theory, Math. Social. Sci. 1 (1981) 235–268.
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Ádám, A., 172, 175

Albatineh, A.N., 25–27, 33, 34, 44

Alpert, R., 38

Arabie, P., 28, 34, 35

Arrow, K.J., 72, 164, 212, 236

Arrows, K.J., 6

Asan, G., 155, 156

Avann, S.P., 94, 106, 108, 111

Bandelt, H.J., 114, 121

Baroni-Urbani, C., 29
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phylogenetic tree, 2, 7, 10, 16

pit vertex, 145

Plurality Strategy, 117

point, 73

population invariance, 77, 235

positive match, 27

positive responsiveness, 157

poset, 150

potentially compatible QTCs, 14

power mean, 40

probe interval graph, 229

processing center, 174

processing number, 174

processing sequence, 174

processing time, 200

profile, 74, 151, 236

profile on a graph, 95

proper cover, 97

proper k-cover, 111

protein interaction graph, 3, 59, 60

pseudo-median, 114

pseudo-median graph, 114

pseudo-modular graph, 114

psychology, 1–3, 25, 34, 93, 120

Pythagorean means, 39

φ-tolerance competition graph, 233

qualitative taxonomic character,

14–21

quasi-consistency, 75, 235
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quasi-median, 112

quasi-median expansion, 111

quasi-median graph, 112

R-branch weight centroid, 184

R-branch weight, 184

R-center, 179

R-distance, 184

R-eccentricity, 179

R-median, 184

radius, 168

random character, 19

ratio scale, 206

reachable, 83, 181

reduced network, 88

redundancy, 77, 235

redundant arc, 88, 73

relational statistics, 27

resonance graph, 119

row graph, 231

s-decisive, 152

security center, 172

security centroid, 191

security index, 191

security number, 172

segment, 74

semilattice, 107

semi-median graph, 114

sequential labeling, 173

sequential number, 173

series-parallel, 62

scheduling problem, 4, 173, 182, 199,

207

separable, 202

separation property, 108

side, 99

simple majority rule, 157

simple matching coefficient, 27

simply compatible QTC, 14

site, 110

social welfare function, 160

spanning subgraph, 3, 53

spanning tree, 3, 53

sphere-of-influence graph, 229

spine, 128, 130, 192

split, 99, 110

split half, 80

star, 57

statistics, 3

stratigraphic compatibility, 20

stratigraphic constraint, 20

Strong Metaconjecture, 99, 101, 103,

104

Steiner k-center, 187

Steiner k-distance, 187

Steiner k-eccentricity, 187

Steiner k-median, 187

Steiner distance, 187

strategy-proof, 121

subconsistency, 81

subdivision, 105

subquasi-consistency, 81

summable penalty function, 202

support of a profile, 76

svelte graph, 116

symmetric statistic, 27

T -center, 133, 194

T -median, 145, 194

TD-center, 128, 131

TD-centroid, 128, 131

TD-median, 128, 131

TI -center, 193, 194
TI -centroid, 138, 193, 194
TI -median, 193, 194

t-Condorcet, 81, 82

t-median function, 81, 82, 235

telephone center, 173

ternary algebra, 106

ternary distributive semilattice, 106

tetrachoric correlation, 31

time slot, 200

topological K4, 62
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total distance, 168

total moment, 186

transit axiom, 115

transit function, 110, 115

transitive relation, 160

transversal, 152

tree, 1, 3, 54, 73, 97, 128, 167

tree condition, 237

triangle-free, 105

triangular triple, 112

trivial cover, 97

trivial profile, 96

Type A statistics, 28

Type B statistics, 29

Type C statistics, 30

2× 2 table, 1, 2, 27

2-tree, 62

unanimity, 75

underlying graph, 74, 116

underlying graph of a ternary graph,

106

union of two graphs, 97

unique ternary distance graph, 94

Universe of All Graphs, 105

upper bound graph, 228

value resticted, 162

vertex p-center, 170

vertex p-median, 170

voting procedure, 121

voting theory, 1, 3, 4, 121, 226, 236

weak order, 160

weakly median graph, 115

weakly modular graph, 115

weight balance center, 173

weight balance, 173

weight balanced edge center, 186

weighted distance, 170

weighted eccentricity, 170

weight-edge difference, 186

without Condorcet triples, 164

Zaan, 99

zero decisive neutrality, 153

zero Maskin monotonicity, 159



This page is intentionally left blank



November 2, 2010 11:27 World Scientific Review Volume - 9.75in x 6.5in ws-rv975x65

Symbol Index

(A) anonymity axiom, 74, 155, 234

A(X) set of all asymmetric binary relations on X, 160

(B) betweenness axiom, 75, 234, 235

B(G) (branch weight) centroid of G, 130

Bw(T ) centroid of T , 168

bw(S) branch weight of set S, 168

bw(X) branch weight of subset X, 130

bw(v) branch weight of v, 130, 168

(C) consistency axiom, 75, 234

C(G) center of G, 130, 168

(Ca) cancellation axiom, 78

Cen center function, 76, 234

Cen(π) center of π, 76

CF federation rule, 152

Cf frequency of compatibility attainment, 19

Con[W ] convex closure of W , 79, 95

CST character state tree, 8

Cq consensus rule, 151

Cq∗ majority consensus rule, 151

DCP Distribution Center Problem, 72

DM decisive monotonicity axiom, 152

DN decisive neutrality rule, 152

D(S) sum of distances of vertices of G to set S, 130, 168

D(x) sum of distances of x to all other vertices, 96, 130, 168

D(x, π) distance of x to profile π in a graph, 77, 96

D(x, π) distance of x to profile π in a network, 77

d(X,Y ) distance between sets X and Y , 130, 168

dia(G) diameter of G, 129, 168

dG(u, v) distance between u and v in G, 73, 95, 168

δ(p, q) distance in network, 73
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d(u, v) distance between u and v, 73, 95, 129, 168

d(v) degree of a vertex, 129, 167

E(G) edge set of graph G, 167

E(T ) edge multiset, 56

e(X) eccentricity of subset X, 130

EU evolutionary unit, 14

e(S) eccentricity of S, 168

e(v) eccentricity of v, 129, 168

ext(S) extension of S, 95

(F) faithfulness axiom, 75

F = {S1, . . . , Sn} family or multiset of subsets, 53

F subset of powers set of N , 151

F12 set of edges between sides of split G1, G2, 98

FSP Fire Station Problem, 72

G graph, 73, 95, 129, 167

G[W ] subgraph of G induced by W , 129, 167

G = (V,E) simple, loopless graph with vertex set V and edge set E, 73, 95, 129

Gk Cartesian product of k copies of G, 96

G0i subgraph induced by the ends of F12 in Gi, 98

G1, G2 split, 99

G1¤G2 Cartesian product of graphs G1 and G2, 96

G1 ∩G2 intersection of graphs G1 and G2, 97

G1 ∪G2 union of graph, G1 and G2, 97

G1 −G2 subgraph induced by vertices in G1 not in G2, 97

G〈W 〉 smallest connected subgraph of G containing W , 129, 168

Guv
u subgraph of vertices closer to u than to v, 80

G−X subgraph of G induced by vertices not in X, 130, 168

G− x vertex deleted subgraph, 129

H(S) set of all hierarchies on S, 154

IIA independence of irrelevant alternatives axiom, 162

I(u, v) interval between u and v, 73, 95

I(u, v, w) intersection of the intervals I(u, v), I(v, w) and I(w, u), 95

IG(u, v) interval between u and v in G, 73, 95

(Inv) invariance axiom, 89

J(u, v) induced path interval, 116
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(K) convexity axiom, 80

κ contraction map, 99

k(G) competition number, 232

Km,n complete bipartite graph, 168

Kn complete graph on n vertices, 129, 168

kp(G) p-competition number, 232

K1 one-vertex graph, 97

K1,k star, 57

K4 − e complete graph on four vertices minus an edge, 112

Lf(T ) set of leaves in tree T , 167

LT limited transitivity axiom, 162

(Li) Lipschitz axiom, 89

L(X) set of all linear orders on X, 160

λ(uv) length of arc uv, 73

λi lift map, 97

l(P ) length of path P in a graph, 129, 168

l(P ) lenght of path P in network, 170

l(e) length of e in network, 170

M median function, 151

Mean mean function, 89

Mean(π) mean set of profile π, 89

Med median function, 78, 151, 234

Med(π) median set of π, 78

M(G) median set of graph G, 96, 130, 168

(Mid) middleness axiom, 75, 235

MM Maskin monotonicity axiom, 155

MN monotonic neutrality axiom, 152

M(π) median set of profile π, 96

Mt t-median function, 81

Mt(π) t-median set of profile π, 81

(N) neutrality axiom, 155

N = (G,λ) network on graph G with length function λ, 73

Ns(π) indices of the profile elements above s, 151

n+(R) set of indices for which Ri = 1, 155

n−(R) set of indices for which Ri = −1, 155

n0(R) set of indices for which Ri = 0, 155

Ωw(F) complete graph on F with non-negative weight function w, 54
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(PA) partial anonymity axiom, 158

(PI) population invariance axiom, 77, 235

(PR) positive responsiveness axiom, 157

{π} support of π, 76

π profile, 95, 151

|π| length of profile, 95

π \ x all occurrences of x deleted from π, 77

πi subprofile of π in Gi, 103

πuvu subprofile of elements closer to u than to v, 80

π − xi vertex-deleted profile, 79

(QC) quasi-consistency axiom, 75, 235

(SQC) subquasi-consistency axiom, 81

QTC qualitative taxonomic character, 14

Qn n-cube, n-dimensional hypercube, 93

Q3 cube, 3-cube, 79

(R) redundancy axiom, 77, 235

r(G) radius of G, 168

(SC) subconsistency axiom, 81

S(p, q) segment in network, 74

T tree, 73, 129, 167

T = (V,E) tree with vertex set V and edge set E, 73

T hereditary class of trees, 133

TD set of all subtrees of maximum degree D, 131

Tv subgraph of T induced by all nodes of T containing v, 54

(t-Co) t-condorcet axiom, 81

(t-Co) t-condorcet axiom, ordered, 82

(U) unanimity axiom, 75

(V,E, λ) network with vertex set V and edge set E and length

function λ, 73

V (G) vertex set of a graph G, 54, 167

V (H) vertex set of subgraph H, 129

V (x, y) subset of vertices closer to x than to y, 168

〈W 〉G subgraph of G induced by W , 83

〈W 〉N subnetwork of N induced by W , 83

W(X) set of all weak orders on X, 160
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Wuv set of vertices closer to u than to v, 110

Wuv
u set of vertices closer to u than to v, 86

w(v) weight of v, 170

Xk vertex set of unique minimal subtree with eccentricity at

most k, 132

x ∧ y meet of x and y, 150

x ∨ y join of x and y, 150

0DN zero decisive neutrality axiom, 153

(0MM) zero maskin monotonicity axiom, 159

( 1
2 -Co) 1

2 -Condorcet axiom, 80

2N power set of N , 151

≤ partial order, 150

#smpl(F) number of unique members of F , 63∨
A join of subset A, 150∧
A meet of subset A, 150
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