

Meshfree Approximation
Methods with MATLAB

INTERDISCIPLINARY MATHEMATICAL SCIENCES

Series Editor: Jinqiao Duan (Illinois Inst. of Tech., USA)

Editorial Board: Ludwig Arnold, Roberto Camassa, Peter Constantin,
Charles Doering, Paul Fischer, Andrei V. Fursikov, Fred R. McMorris,
Daniel Schertzer, Bjorn Schmalfuss, Xiangdong Ye, and
Jerzy Zabczyk

Published

Vol. 1: Global Attractors of Nonautonomous Dissipative Dynamical Systems
David N. Cheban

Vol. 2: Stochastic Differential Equations: Theory and Applications
A Volume in Honor of Professor Boris L. Rozovskii
eds. Peter H. Baxendale & Sergey V. Lototsky

Vol. 3: AmJ>.litude Equations for Stochastic Partial Differential Equations
Dirk B/Omker

Vol. 4: Mathematical Theory of Adaptive Control
Vladimir G. Sragovich

Vol. 5: The Hilbert-Huang Transform and Its Applications
Norden E. Huang & Samuel S. P. Shen

Vol. 6: Meshfree Approximation Methods with MATLAB
Gregory E. Fasshauer

Meshfree Approximation
Methods with MATLAB

Gregory E. Fasshauer
I llinois l n titute o Tethnology, USA

ti World Scientific
fE '(.JERSE • LO 0 . • SI GAP ORE- . I 11\11'; • • • ~JU r:" Q.J • HO I G 0 G • r 'IPE I • CHE Al

Published by

World Scientific Publishing Co. Pte. Ltd.

5 Toh Tuck Link, Singapore 596224

USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601

UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

MESHFREE APPROXIMATION METHODS WITH MATLAB

(With CD-ROM)
Interdisciplinary Mathematical Sciences - Vol. 6

Copyright © 2007 by World Scientific Publishing Co. Pte. Ltd.

'All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or
mechanical, including photocopying, recording or any information storage and retrieval system now known or to
be invented, without written permission from the Publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center,
Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from
the publisher.

ISBN-13 978-981-270-633-l
ISBN-10 981-270-633-X
ISBN-13 978-981-270-634-8 (pbk)
ISBN-10 981-270-634-8 (pbk)

Printed by Mainland Press Pte Ltd

This book is dedicated to
Inge, Conny, Marc and Patrick.

Preface

Traditional numerical methods, such as finite element, finite difference, or finite vol­
ume methods, were motivated mostly by early one- and two-dimensional simulations
of engineering problems via partial differential equations (PDEs). The discretiza­
tion involved in all of these methods requires some sort of underlying computational
mesh, e.g., a triangulation of the region of interest. Creation of these meshes (and
possible re-meshing) becomes a rather difficult task in three dimensions, and virtu­
ally impossible for higher-dimensional problems. This is where meshfree methods
enter the picture. Meshfree methods are often - but by no means have to be -
radially symmetric in nature. This is achieved by composing some univariate basic
function with a (Euclidean) norm, and therefore turning a problem involving many
space dimensions into one that is virtually one-dimensional. Such radial basis .func­
tions are at the heart of this book. Some people have argued that there are three
"big technologies" for the numerical solution of PDEs, namely finite difference, fi­
nite element, and spectral methods. While these technologies came into their own
right in successive decades, namely finite difference methods in the 1950s, finite el­
ement methods in the 1960s, and spectral methods in the 1970s, meshfree methods
started to appear in the mathematics literature in the 1980s, and they are now on
their way to becoming "big technology" number four. In fact, we will demonstrate
in later parts of this book how different types of meshfree methods can be viewed
as generalizations of the traditional "big three".

Multivariate meshfree approximation methods are being studied by many re­
searchers. They exist in many flavors and are known under many names, e.g.,
diffuse element method, ele'ment-free Galerkin method, generalized finite element
method, hp-clouds, meshless local Petrov-Galerkin method, moving least squares
method, partition of unity finite element method, radial basis function method,
reproducing kernel particle method, smooth particle hydrodynamics method.

In this book we are concerned mostly with the moving least squares (MLS) and
radial basis function (RBF) methods. We will consider all different kinds of aspects
of these meshfree approximation methods: How to construct them? Are these
constructions mathematicallj' justifiable? How accurate are they? Are there ways
to implement them efficiently with standard mathematical software-packages such

vii

viii Meshfree Approximation Methods with MATLAB

as MATLAB? How do they compare with traditional methods? How do the various
flavors of meshfree methods differ from one another, and how are they similar to one
another? Is there a general framework that captures all of these methods? What
sort of applications are they especially well suited for?

While we do present much of the underlying theory for RBF and MLS ap­
proximation methods, the emphasis in this book is not on proofs. For read­
ers who are interested in all the mathematical details and intricacies of the
theory we recommend the two excellent recent monographs [Buhmann (2003);
Wendland (2005a)]. Instead, our objective is to make the theory accessible to a
wide audience that includes graduate students and practitioners in all sorts of sci­
ence and engineering fields. We want to put the mathematical theory in the context
of applications and provide MATLAB implementations which give the reader an easy
entry into meshfree approximation methods. The skilled reader should then easily
be able to modify the programs provided here for his/her specific purposes.

In a certain sense the present book was inspired by the beautiful little book [Tre­
fethen (2000)]. While the present book is much more expansive (filling more than
five hundred pages with forty-seven MATLAB 1 programs, one Maple2 program, one
hundred figures, more than fifty tables, and more than five hundred references), it is
our aim to provide the reader with relatively simple MATLAB code that illustrates
just about every aspect discussed in the book.

All MATLAB programs printed in the text (as well as a few modifications dis­
cussed) are also included on the enclosed CD. The folder MATLAB contains M-files
and data files of type MAT that have been written and tested with MATLAB 7. For
those readers who do not have access to MATLAB 7, the folder MATLAB6 contains
versions of these files that are compatible with the older MATLAB release. The
main difference between the two versions is the use of anonymous functions in the
MATLAB 7 code as compared to inline functions in the MATLAB 6 version. Two
packages from the MATLAB Central File Exchange [MCFE] are used throughout the
book: the function hal tonseq written by Daniel Dougherty and used to generate
sequences of Halton points; the kd-tree library (given as a set of MATLAB MEX-files)
written by Guy Shechter and used to generate the kd-tree data structure underlying
our sparse matrices based on compactly supported basis functions. Both of these
packages are discussed in Appendix A and need to be downloaded separately. The
folder Maple on the CD contains the one Maple file mentioned above.

The manuscript for this book and some of its earlier incarnations have been
used in graduate level courses and seminars at Northwestern University, Vanderbilt
University, and the Illinois Institute of Technology. Special thanks are due to Jon

1 MATLAB® is a trademark of The MathWorks, Inc. and is used with permission. The Math­
Works does not warrant the accuracy of the text or exercises in this book. This book's use or
discussion of MATLAB software or related products does not constitute endorsement or sponsor­
ship by The MathWorks of a particular pedagogical approach or particular use of the MATLAB
software.

2 Maple™ is a registered trademark of Waterloo Maple Inc.

Preface ix

Cherrie, John Erickson, Paritosh Mokhasi, Larry Schumaker, and Jack Zhang for
reading various portions of the manuscript and/or MATLAB code and providing
helpful feedback. Finally, thanks are due to all the people at World Scientific
Publishing Co. who helped make this project a success: Rajesh Babu, Ying Oi
Chiew, Linda Kwan, Rok Ting Tan, and Yubing Zhai.

Greg Fasshauer
Chicago, IL, January 2007

Contents

Preface

1. Introduction

1.1 Motivation: Scattered Data Interpolation in lR.8
• • • •

1.1.1 The Scattered Data Interpolation Problem ...
1.1.2 Example: Interpolation with Distance Matrices

1.2 Some Historical Remarks

2. Radial Basis Function Interpolation in MATLAB

2 .1 Radial (Basis) Functions
2.2 Radial Basis Function Interpolation

3. Positive Definite Functions

3.1 Positive Definite Matrices and Functions
3.2 Integral Characterizations for (Strictly) Positive Definite

Functions
3.2.1 Bochner's Theorem
3.2.2 Extensions to Strictly Positive Definite Functions

3.3 Positive Definite Radial Functions

4. Examples of Strictly Positive Definite Radial Functions

4.1 Example 1: Gaussians
4.2 Example 2: Laguerre-Gaussians ...
4.3 Example 3: Poisson Radial Functions
4.4 Example 4: Matern Functions
4.5 Example 5: Generalized Inverse Multiquadrics
4.6 Example 6: Truncated Power Functions
4.7 Example 7: Potentials and Whittaker Radial Functions
4.8 Example 8: Integration Against Strictly Positive

Vll

1

2
2
4

13

17

17
19

27

..... 27

31
31
32
33

37

37
38
39
41
41
42
43

Definite Kernels . 45

xi

xii Meshfree Approximation Methods with MATLAB

4.9 Summary

5. Completely Monotone and Multiply Monotone Functions

5.1 Completely Monotone Functions
5.2 Multiply Monotone Functions .

6. Scattered Data Interpolation with Polynomial Precision

7.

8.

6.1 Interpolation with Multivariate Polynomials ...
6.2 Example: Reproduction of Linear Functions Using

Gaussian RBFs
6.3 Scattered Data Interpolation with More General

6.4
Polynomial Precision .
Conditionally Positive Definite Matrices and Reproduction
of Constant Functions

Conditionally Positive Definite Functions

7.1
7.2

Conditionally Positive Definite Functions Defined
Conditionally Positive Definite Functions and Generalized
Fourier Transforms

Examples of Conditionally Positive Definite Functions

8.1 Example 1: Generalized Multiquadrics
8.2 Example 2: Radial Powers . .
8.3 Example 3: Thin Plate Splines

45

47

47
49

53

53

55

57

59

63

63

65

67

67
69
70

9. Conditionally Positive Definite Radial Functions 73

9.1 Conditionally Positive Definite Radial Functions and Completely

9.2

9.3

Monotone Functions .
Conditionally Positive Definite Radial Functions and
Multiply Monotone Functions
Some Special Properties of Conditionally Positive Definite
Functions of Order One .

10. Miscellaneous Theory: Other Norms and Scattered Data Fitting
on Manifolds

10.1
10.2
10.3

Conditionally Positive Definite Functions and p-Norms
Scattered Data Fitting on Manifolds.
Remarks

11. Compactly Supported Radial Basis Functions

11.1 Operators for Radial Functions and Dimension Walks
11.2 Wendland's Compactly Supported Functions

73

75

76

79

79
83
83

85

85
87

Contents

11.3 Wu's Compactly Supported Functions
11.4 Oscillatory Compactly Supported Functions
11.5 Other Compactly Supported Radial Basis Functions .

12. Interpolation with Compactly Supported RBFs in MATLAB

12.1 Assembly of the Sparse Interpolation Matrix
12.2 Numerical Experiments with CSRBFs

13. Reproducing Kernel Hilbert Spaces and Native Spaces for
Strictly Positive Definite Functions

13.l
13.2
13.3

Reproducing Kernel Hilbert Spaces
Native Spaces for Strictly Positive Definite Functions
Examples of Native Spaces for Popular Radial Basic Functions

14. The Power Function and Native Space Error Estimates

14.l
14.2

Fill Distance and Approximation Orders
Lagrange Form of the Interpolant and Cardinal
Basis Functions

14.3 The Power Function
14.4 Generic Error Estimates for Functions in N<1>(r2)
14.5 Error Estimates in Terms of the Fill Distance

15. Refined and Improved Error Bounds

15.1

15.2
15.3
15.4
15.5
15.6

Native Space Error Bounds for Specific Basis Functions
15.1.1 Infinitely Smooth Basis Functions
15.1.2 Basis Functions with Finite Smoothness ...
Improvements for Native Space Error Bounds
Error Bounds for Functions Outside the Native Space
Error Bounds for Stationary Approximation
Convergence with Respect to the Shape Parameter
Polynomial Interpolation as the Limit of RBF Interpolation

16. Stability and Trade-Off Principles

xiii

88
90
92

95

95
99

103

103
105
108

111

Ill

112
115
117
119

125

125
125
126
127
128
130
132
133

135

16.1 Stability and Conditioning of Radial Basis Function Interpolants. 135
16.2 Trade-Off Principle I: Accuracy vs. Stability 138
16.3 Trade-Off Principle II: Accuracy and Stability vs. Problem Size 140
16.4 Trade-Off Principle III: Accuracy vs. Efficiency 140

17. Numerical Evidence for Approximation Order Results 141

17.1 Interpolation for E: ..- 0 . 141
17.1.1 Choosing a Good Shape Parameter via Trial and Error . 142

xiv Meshfree Approximation Methods with MATLAB

17.1.2 The Power Function as Indicator for a Good Shape
Parameter . 142

17.1.3 Choosing a Good Shape Parameter via Cross Validation 146
17.1.4 The Contour-Pade Algorithm 151

17.2
17.3

17.1.5 Summary
Non-stationary Interpolation
Stationary Interpolation

18. The Optimality of RBF Interpolation

18.1
18.2
18.3
18.4
18.5

The Connection to Optimal Recovery
Orthogonality in Reproducing Kernel Hilbert Spaces
Optimality Theorem I ..
Optimality Theorem II .
Optimality Theorem III .

19. Least Squares RBF Approximation with MATLAB

19.1
19.2
19.3

19.4

Optimal Recovery Revisited
Regularized Least Squares Approximation
Least Squares Approximation When RBF Centers Differ from
Data Sites
Least Squares Smoothing of Noisy Data.

20. Theory for Least Squares Approximation

20.1 Well-Posedness of RBF Least Squares Approximation
20.2 Error Bounds for Least Squares Approximation

21. Adaptive Least Squares Approximation

21.1 Adaptive Least Squares using Knot Insertion
21.2 Adaptive Least Squares using Knot Removal
21.3 Some Numerical Examples . . .

22. Moving Least Squares Approximation

152
153
155

159

159
160
162
163
164

165

165
166

168
170

177

177
179

181

181
184
188

191

22.1 Discrete Weighted Least Squares Approximation . 191
22.2 Standard Interpretation of MLS Approximation . 192
22.3 The Backus-Gilbert Approach to MLS Approximation. 194
22.4 Equivalence of the Two Formulations of MLS Approximation. 198
22.5 Duality and Bi-Orthogonal Bases 199
22.6 Standard MLS Approximation as a Constrained Quadratic

Optimization Problem 202
22.7 Remarks 202

23. Examples of MLS Generating Functions 205

Contents xv

23.1 Shepard's Method 205
23.2 MLS Approximation with Nontrivial Polynomial Reproduction . 207

24. MLS Approximation with MATLAB

24.1
24.2
24.3

Approximation with Shepard's Method
MLS Approximation with Linear Reproduction
Plots of Basis-Dual Basis Pairs

25. Error Bounds for Moving Least Squares Approximation

25.1 Approximation Order of Moving Least Squares.

211

211
216
222

225

225

26. Approximate Moving Least Squares Approximation 229

26.1 High-order Shepard Methods via Moment Conditions 229
26.2 Approximate Approximation 230
26.3 Construction of Generating Functions for Approximate MLS

Approximation . 232

27. Numerical Experiments for Approximate MLS Approximation 237

27.1
27.2

Univariate Experiments
Bivariate Experiments

28. Fast Fourier Transforms

28.1 NFFT
28.2 Approximate MLS Approximation via Non-uniform Fast Fourier

Transforms

29. Partition of Unity Methods

29.1 Theory
29.2 Partition of Unity Approximation with MATLAB

30. Approximation of Point Cloud Data in 3D

30.1
30.2
30.3

A General Approach via Implicit Surfaces
An Illustration in 2D
A Simplistic Implementation in 3D via Partition of Unity
Approximation in MATLAB

31. Fixed Level Residual Iteration

31.1
31.2
31.3
31.4
31.5

Iterative Refinement . . .
Fixed Level Iteration .
Modifications of the Basic Fixed Level Iteration Algorithm
Iterated Approximate MLS Approximation in MATLAB
Iterated Shepard Approximation

237
241

243

243

245

249

249
251

255

255
257

260

265

265
267
269
270
274

xvi Meshfree Approximation Methods with MATLAB

32. Multilevel Iteration

32.1
32.2

Stationary Multilevel Interpolation
A MATLAB Implementation of Stationary Multilevel
Interpolation .

32.3 Stationary Multilevel Approximation
32.4 Multilevel Interpolation with Globally Supported RBFs .

33. Adaptive Iteration

33.l
33.2

A Greedy Adaptive Algorithm
The Faul-Powell Algorithm ..

34. Improving the Condition Number of the Interpolation Matrix

34.1
34.2

Preconditioning: Two Simple Examples
Early Preconditioners

277

277

279
283
287

291

291
298

303

304
305

34.3 Preconditioned GMRES via Approximate Cardinal Functions 309
34.4 Change of Basis . 311
34.5 Effect of the "Better" Basis on the Condition Number of the

Interpolation Matrix . 314
34.6 Effect of the "Better" Basis on the Accuracy of the Interpolant 316

35. Other Efficient Numerical Methods

35.1 The Fast Multipole Method
35.2 Fast Tree Codes
35.3 Domain Decomposition . . .

36. Generalized Hermite Interpolation

36.1 The Generalized Hermite Interpolation Problem
36.2 Motivation for the Symmetric Formulation

321

321
327
331

333

333
335

37. RBF Hermite Interpolation in MATLAB 339

38. Solving Elliptic Partial Differential Equations via RBF Collocation 345

38.1
38.2
38.3
38.4

Kansa's Approach
An Hermite-based Approach
Error Bounds for Symmetric Collocation
Other Issues

39. Non-Symmetric RBF Collocation in MATLAB

39.1 Kansa's Non-Symmetric Collocation Method

40. Symmetric RBF Collocation in MATLAB

345
348
349
350

353

353

365

40.1
40.2

Contents

Symmetric Collocation Method
Summarizing Remarks on the Symmetric and Non-Symmetric
Collocation Methods .

41. Collocation with CSRBFs in MATLAB

41.1 Collocation with Compactly Supported RBFs
41.2 Multilevel RBF Collocation

42. Using Radial Basis Functions in Pseudospectral Mode

XVll

365

372

375

375
380

387

42.1 Differentiation Matrices . 388
42.2 PDEs with Boundary Conditions via Pseudospectral Methods 390
42.3 A Non-Symmetric RBF-based Pseudospectral Method. 391
42.4 A Symmetric RBF-based Pseudospectral Method 394
42.5 A Unified Discussion 396
42.6 Summary 398

43. RBF-PS Methods in MATLAB 401

43.1 Computing the REF-Differentiation Matrix in MATLAB 401
43.1.1 Solution of a 1-D Transport Equation 403

43.2 Use of the Contour-Fade Algorithm with the PS Approach 405
43.2.1 Solution of the ID Transport Equation Revisited 405

43.3 Computation of Higher-Order Derivatives . . 407
43.3.1 Solution of the Allen-Cahn Equation 409

43.4 Solution of a 2D Helmholtz Equation 411
43.5 Solution of a 2D Laplace Equation with Piecewise Boundary

Conditions 415
43.6 Summary 416

44. RBF Galerkin Methods

44.1 An Elliptic PDE with Neumann Boundary Conditions.
44.2 A Convergence Estimate
44.3 A Multilevel RBF Galerkin Algorithm.

45. RBF Galerkin Methods in MATLAB

Appendix A Useful Facts from Discrete Mathematics

A.1 Halton Points
A.2 kd-Trees

Appendix B Useful Facts from Ari'alysis

B.1 Some Important Concepts from Measure Theory .
B.2 A Brief Summary of Integral Transforms

419

419
420
421

423

427

427
428

431

431
432

xviii Meshfree Approximation Methods with MATLAB

B.3 The Schwartz Space and the Generalized Fourier Transform 433

Appendix C Additional Computer Programs

C.l MATLAB Programs

435

435
440 C.2 Maple Programs

Appendix D Catalog of RBFs with Derivatives 443

D.1 Generic Derivatives . 443
D.2 Formulas for Specific Basic Functions 444

D.2.1 Globally Supported, Strictly Positive Definite Functions 444
D.2.2 Globally Supported, Strictly Conditionally Positive

Definite Functions of Order 1 445
D.2.3 Globally Supported, Strictly Conditionally Positive

Definite Functions of Order 2 446
D.2.4 Globally Supported, Strictly Conditionally Positive

Definite Functions of Order 3 446
D.2.5 Globally Supported, Strictly Conditionally Positive

Definite Functions of Order 4 44 7
D.2.6 Globally Supported, Strictly Positive Definite and

D.2.7
Oscillatory Functions
Compactly Supported, Strictly Positive Definite
Functions

447

448

Bibliography 451

491 Index

Chapter 1

Introduction

Meshfree methods have gained much attention in recent years, not only in the
mathematics but also in the engineering community. Thus, much of the work con­
cerned with meshfree approximation methods is interdisciplinary - at the interface
between mathematics and numerous application areas (see the partial list below).
Moreover, computation with high-dimensional data is an important issue in many
areas of science and engineering. Many traditional numerical methods can either
not handle such problems at all, or are limited to very special (regular) situations.
Meshfree methods are often better suited to cope with changes in the geometry
of the domain of interest (e.g., free surfaces and large deformations) than classical
discretization techniques such as finite differences, finite elements or finite volumes.
Another obvious advantage of meshfree discretizations is - of course - their in­
dependence from a mesh. Mesh generation is still the most time consuming part
of any mesh-based numerical simulation. Since meshfree discretization techniques
are based only on a set of independent points, these costs of mesh generation are
eliminated. Meshfree approximation methods can be seen to provide a new gen­
eration of numerical tools. Other traditional numerical methods such as the finite
element, finite difference or finite volume methods are usually limited to problems
involving two or three parameters (space dimensions). However, in many applica­
tions the number of parameters can easily range in the hundreds or even thousands.
Multivariate approximation methods present one way to address these issues.

Applications of meshfree methods can be found

• in many different areas of science and engineering via scattered data mod­
eling (e.g., fitting of potential energy surfaces in chemistry; coupling of
engineering models with sets of incompatible parameters; mapping prob­
lems in geodesy, geophysics, meteorology);

• in many different areas of science and engineering via solution of partial
differential equations (e.g., solution of gas dynamics equations, Boltzmann
and Fokker-Planck equations in six-dimensional phase space; problems in­
volving moving discontinuities such as cracks and shocks, multi-scale resolu­
tion, large material distortions; elasticity studies in plate and shell bending

1

2 Meshfree Approximation Methods with MATLAB

problems; applications in nanotechnology);
• in non-uniform sampling (e.g., medical imaging, tomographic reconstruc­

tion);
• in mathematical finance (e.g., option pricing);
• in computer graphics (e.g., representation of surfaces from point information

such as laser range scan data, image warping);
• in learning theory, neural networks and data mining (e.g., kernel approxi­

mation, support vector machines);
• in optimization.

Since many of these applications either come down to a function approximation
problem, or include function approximation as a fundamental component, we will
begin our discussion with - and in fact base a large part of the contents of this
book on - the multivariate scattered data interpolation problem.

1.1 Motivation: Scattered Data Interpolation in R 8

We will now describe the general process of scattered data fitting, which is one of
the fundamental problems in approximation theory and data modeling in general.
Our desire to have a well-posed problem formulation will naturally lead to an in­
troductory example based on the use of so-called distance matrices. In the next
chapters we will generalize this approach by introducing the concept of a radial
basis function.

1.1.1 The Scattered Data Interpolation Problem

In many scientific disciplines one faces the following problem: We are given a set of
data (measurements, and locations at which these measurements were obtained),
and we want to find a rule which allows us to deduce information about the process
we are studying also at locations different from those at which we obtained our
measurements. Thus, we are trying to find a function Pf which is a "good" fit to
the given data. There are many ways to decide what we mean by "good", and the
only criterion we will consider now is that we want the function Pf to exactly match
the given measurements at the corresponding locations. This approach is called
interpolation, and if the locations at which the measurements are taken do not lie
on a uniform or regular grid, then the process is called scattered data interpolation.

To give a precise definition we assume that the measurement locations (or data
sites) are labeled xi, j = 1, ... , N, and the corresponding measurements (or data
values) are called Yi. We will use X to denote the set of data sites and assume
that x c n for some region n in JRS. Throughout this book we will restrict our
discussion to scalar-valued data, i.e., Yi E R. However, much of the following can
be generalized easily to problems with vector-valued data. In many of our later

1. Introduction 3

discussions we will assume that the data are obtained by sampling some (unknown)
function fat the data sites, i.e., Yi = f(xi), j = 1, ... , N. Our notation Pt for the
interpolating function emphasizes the connection between the interpolant and the
data function f. We are now ready for a precise formulation of the scattered data
interpolation problem.

Problem 1.1 (Scattered Data Interpolation). Given data (xi, Yi), J
1, ... , N, with xi E IRS, Yi E IR, find a {continuous) function Pt such that
Pt(xi) =Yi, j = 1, ... ,N.

The fact that we allow xi to lie in an arbitrary s-dimensional space IRs means
that the formulation of Problem 1.1 allows us to cover many different types of ap­
plications. If s = 1 the data could, e.g., be a series of measurements taken over
a certain time period, thus the "data sites" xi would correspond to certain time
instances. For s = 2 we can think of the data being obtained over a planar region,
and so xi corresponds to the two coordinates in the plane. For instance, we might
want to produce a map that shows the rainfall in the state we live in based on the
data collected at weather stations located throughout the state. For s = 3 we might
think of a similar situation in space. One possibility is that we could be interested
in the temperature distribution inside some solid body. Higher-dimensional exam­
ples might not be that intuitive, but a multitude of them exist, e.g., in finance,
optimization, economics or statistics, but also in artificial intelligence or learning
theory.

A convenient and common approach to solving the scattered data problem is to
make the assumption that the function Pt is a linear combination of certain basis
functions Bk, i.e.,

N

Pt(x) = L ckBk(x), (1.1)
k=l

Solving the interpolation problem under this assumption leads to a system of
linear equations of the form

Ac=y,
where the entries of the interpolation matrix A are given by Aik = Bk(xi), j, k =

1, ... , N, c = [c1, ... , CN]T, and y = [y1, ... , YN]T.
Problem 1.1 will be well-posed, i.e., a solution to the problem will exist and be

unique, if and only if the matrix A is non-singular.
In the univariate setting it is well known that one can interpolate to arbitrary

data at N distinct data sites using a polynomial of degree N -1. For the multivariate
setting, however, there is the following negative result (see [Mairhuber (1956); Curtis
(1959)]).

Theorem 1.1 (Mairhuber-Curtis). lf f! c IRS, s > 2, contains an interior
point, then there exist no Haar spaces of continuous functions except for one­
dimensional ones.

4 Meshfree Approximation Methods with MATLAB

In order to understand this theorem we need

Definition 1.1. Let the finite-dimensional linear function space B ~ C(n) have a
basis {B1, ... ' BN }. Then Bis a Haar space on n if

det A=/. 0

for any set of distinct x 1 , ... , XN in n. Here A is the matrix with entries Ajk

Bk(XJ)·

Note that existence of a Haar space guarantees invertibility of the interpolation
matrix A, i.e., existence and uniqueness of an interpolant of the form (1.1) to
data specified at x 1 , ... , XN from the space B. As mentioned above, univariate
polynomials of degree N - 1 form an N-dimensional Haar space for data given at
X1, ... ,XN.

The Mairhuber-Curtis theorem tells us that if we want to have a well-posed
multivariate scattered data interpolation problem we can no longer fix in advance
the set of basis functions we plan to use for interpolation of arbitrary scattered data.
For example, it is not possible to perform unique interpolation with (multivariate)
polynomials of degree N to data given at arbitrary locations in IR2 . Instead, the
basis should depend on the data locations. We will give a simple example of such
an interpolation scheme in the next subsection.

Proof. [of Theorem 1.1] Let s > 2 and assume that Bis a Haar space with basis
{B1 , ... , BN} with N > 2. We need to show that this leads to a contradiction.

We let x 1 , ... , XN be a set of distinct points inn c JR 5 and A the matrix with
entries Ajk = Bk(XJ), j, k = 1, ... , N. Then, by the definition of a Haar space, we
have

detA =/. 0. (1.2)
Now, consider a closed path Pinn connecting only x 1 and x 2 . This is possible

since - by assumption - n contains an interior point. We can exchange the
positions of x 1 and x 2 by moving them continuously along the path P (without
interfering with any of the other Xj)· This means, however, that rows 1 and 2 of
the determinant (1.2) have been exchanged, and so the determinant has changed
sign.

Since the determinant is a continuous function of x 1 and x 2 we must have had
det = 0 at some point along P. This contradicts (1.2). D

1.1.2 Example: Interpolation with Distance Matrices

In order to obtain data dependent approximation spaces. as suggested by the
Mairhuber-Curtis theorem we now consider a simple example. As a "testfunction"
we employ the function

s

f 8 (x) = 4s IT Xd(l - xd),
d=l

1. Introduction 5

This function is zero on the boundary of the unit cube in JR.s and has a maximum
value of one at the center of the cube. A simple MATLAB script defining ls is given
as Program C.l in Appendix C.

We will use a set of uniformly scattered data sites in the unit cube at which

we sample our testfunction ls· This will be accomplished here (and in many other
examples later on) by resorting to the so-called Halton points. These are uniformly
distributed random points in (0, 1)s. A set of 289 Halton points in the unit square
in JR.2 is shown in Figure 1.1. More details on Halton points are presented in
Appendix A. In our computational experiments we generate Halton points using
the program hal tonseq. m written by Daniel Dougherty. This function can be
downloaded from the MATLAB Central File Exchange (see [MCFE]).

o oo ooo oo o oo Oooooo o
0 0 0 0 00 0 0 0

0 0 0 0 Co 0 0 0 0 0 0
0 0 000000 000

0.8 0 0 0 0 0 0 0 0 0 00 0

0 0 0 0 0 0 0 0 00
00 0 00 0 00 0 0

oo o a., o o o o o a o o o o o o
0.6 0 0 0 0 0 0 0 0 0 tP 0 0 0

0 0 0 00 0 0 0 0 0 00 0

Y ooo o o Oooo o ooo
O o O O 00 00 00 Oo oO

0 0 0 00 0 0 0 0 0
0.4 0 0 0 0 0 0 0 0 0 0 0

o ooo o ooo ooo Coo
o o oo Oo Oooo

0 "° 0 0 0 00 0
0 0 0 0 0 0 0 00 0

0.2 Go 0 0 0 0 0 0 0 0 0
0 0 00 0 00 0 00

0 0 gO 0 0 0 O 0
00 0 0 0 0 0 0 0 0 0

00 0 00 0 0 0 0 00 0

00 0.2 0.4 0.6 0.8
x

Fig. 1.1 289 Halton points in the unit square in IR 2 •

As explained in the previous subsection we are interested in constructing a (con­
tinuous) function P1 that interpolates the samples obtained from ls at the set of
Halton points, i.e., such that

P1(xJ) = ls(xj), Xj a Halton point.
As pointed out above, ifs = 1, then this problem is often solved using univariate
polynomials or splines. For a small number of data sites polynomials may work
satisfactorily. However, if the number of points increases, i.e., the polynomial degree
grows, then it is well known that one should use splines (or piecewise polynomials)
to avoid oscillations. The simplest solution is to use a continuous piecewise linear
spline, i.e., to "connect the dots". It is also well known that one possible basis for
the space of piecewise linear splines interpolating data at a given set of points in
[O, 1] consists of the shifts of the absolute value function to the data sites. In other
words, we can construct the piecewise linear spline interpolant by assuming Pf is
of the form

N

P1(x) = L cklx - xkl, xE[O,l],
k=l

6 Meshfree Approximation Methods with MATLAB

and then determine the coefficients ck by satisfying the interpolation conditions

j = l, ... ,N.

Clearly, the basis functions Bk= l·-xkl are dependent on the data sites as suggested
by the Mairhuber-Curtis theorem. The points Xk to which the basic function B(x) =
lxl is shifted are usually referred to as centers. While there may be circumstances
that suggest choosing these centers different from the data sites one generally picks
the centers to coincide with the data sites. This simplifies the analysis of the
method, and is sufficient for many applications. Since the functions Bk are (radially)
symmetric about their centers Xk this constitutes the first example of radial basis
functions. We will formally introduce the notion of a radial function in the next
chapter.

Of course, one can imagine many other ways to construct an N-dimensional
data-dependent basis for the purpose of scattered data interpolation. However, the
use of shifts of one single basic function makes the radial basis function approach
particularly elegant.

Note that we distinguish between basis functions Bk and the basic function B.
We use this terminology to emphasize that there is one basic function B which
generates the basis via shifts to the various centers.

Coming back to the scattered data problem, we find the coefficients Ck by solving
the linear system

lx1 - x1 I lx1 - x2 I
lx2 - xii lx2 - x2I

(1.3)

As mentioned earlier, for higher space dimensions s such a data dependent basis
is required. Thus, even though the construction of piecewise linear splines in higher
space dimensions is a different one (they are closely associated with an underlying
computational mesh), the idea just presented suggests a very simple generalization
of univariate piecewise linear splines that works for any space dimension.

The matrix in (1.3) above is an example of a distance matrix. Such matrices have
been studied in geometry and analysis in the context of isometric embeddings of
metric spaces for a long time (see, e.g., [Baxter (1991); Blumenthal (1938); Bochner
(1941); Micchelli (1986); Schoenberg (1938a); Wells and Williams (1975)] and also
Chapter 10). It is known that the distance matrix based on the Euclidean distance
between a set of distinct points in lR8 is always non-singular (see Section 9.3 for
more details). Therefore, we can solve the scattered data interpolation problem we
posed on [O, 1] 8 by assuming

N

P1(x) = L:ckllx - xkll2, (1.4)
k=l

1. Introduction

and then determine the coefficients Ck by solving the linear system

l1x1 - xii12 llx1 - x2l12
llx2 - xii12 l1x2 - ~2112

l1x1 - XNjb
llx2 - XNll2

7

This is precisely the interpolation method we will choose to illustrate with our first
MATLAB script DistanceMatrixFi t .m (see Program 1.2 below) and the supporting
figures and tables. A typical basis function for the Euclidean distance matrix fit,
Bk(x) = llx - xkl12, is shown in Figure 1.2 for the case Xk = 0 ands= 2.

z

1.5

0.5

0
1

y x

Fig. 1.2 A typical basis function for the Euclidean distance matrix centered at the origin in JR2 .

Before we discuss the actual interpolation program we first list a subroutine
used in many of our later examples. It is called DistanceMatrix .m and we use it
to compute the matrix of pairwise Euclidean distances of two (possibly different)
sets of points in ~s. In the code these two sets are denoted by dsi tes and ctrs. In
most of our examples both of these sets will coincide with the set X of data sites.

Program 1.1. DistanceMatrix. m

% DM = DistanceMatrix(dsites,ctrs)
% Forms the distance matrix of two sets of points in R-s,
% i.e., DM(i,j) = I I datasite_i - center_j I 1_2.
% Input
% dsites: Mxs matrix representing a set of M data sites in R~s
% (i.e., each row contains ones-dimensional point)
% ctrs: Nxs matrix representing a set of N centers in R-s

%
% Output
% DM:
%

(one center per row)

MxN matrix whose i,j position contains the Euclidean
distance between the i-th data site and j-th center

8 Meshfree Approximation Methods with MATLAB

1 function DM = DistanceMatrix(dsites,ctrs)
2 [M,s] = size(dsites); [N,s] = size(ctrs);
3 DM = zeros(M,N);

!. Accumulate sum of squares of coordinate differences
!. The ndgrid command produces two MxN matrices:
% dr, consisting of N identical columns (each containing
!. the d-th coordinate of the M data sites)
!. cc, consisting of M identical rows (each containing
!. the d-th coordinate of the N centers)

4 for d=l:s
5 [dr,cc] = ndgrid(dsites(:,d),ctrs(:,d));
6 DM = DM + (dr-cc).-2;

7 end
8 DM = sqrt(DM);

Note that this subroutine can easily be modified to produce a p-norm distance
matrix by making the obvious changes to lines 6 and 8 of the code in Program 1.1.
We will come back to this idea in Chapter 10.

Our first main script is Program 1.2. This script can be used to compute the
distance matrix interpolant to data sampled from the test function f s provided by
Program C.l. We use Halton points and are able to select the space dimension
s and number of points N by editing lines 1 and 2 of the code. The subrou­
tine MakeSDGrid.m which we use to compute the equally spaced points in the s­
dimensional unit cube on line 6 ofDistanceMatrixFit .mis provided in Appendix C.
These equally spaced points are used as evaluation points and to compute errors.
Note that since the distance matrix interpolant is of the form (1.4) its simultaneous
evaluation at the entire set of evaluation points amounts to a matrix-vector product
of the evaluation matrix EM and the coefficients c. Here the evaluation matrix has
the same structure as the interpolation matrix and can also be computed using the
subroutine Distancematrix.m (only using evaluation points in place of the data
sites, see line 9 of DistanceMatrixFit .m). The coefficient vector c is supplied di­
rectly as solution of the linear system Ac = f (see (1.3) and the MATLAB expression
IM\rhs on line 10 of the program). The evaluation points are subsequently used
for the error computation in lines 11-13 and are also used for plotting purposes in
the last part of the program (lines 16-35). Note that for this example we know the
function f s that generated the data, and therefore are able to compute the error in
our reconstruction. The subroutines that produce the 2D and 3D plots on lines 24-
32 are provided in Appendix C. Note that the use of reshape on lines 22-23 and
27-29 corresponds to the use of meshgrid for plotting purposes.

Program 1.2. DistanceMatrixFit .m

!. DistanceMatrixFit
!. Script that uses Euclidean distance matrices to perform

1. Introduction

% scattered data interpolation for arbitrary space dimensions
% Calls on: DistanceMatrix, MakeSDGrid, testfunction
% Uses: haltonseq (written by Daniel Dougherty from MATLAB
% Central File Exchange)

1 s = 3;
2 k = 2; N = (2-k+1)-s;

3 neval = 10; M = neval-s;

% Use Halton points as data sites and centers
4 dsites = haltonseq(N,s);
5 ctrs = dsites;

% Create neval-s equally spaced evaluation locations in the
% s-dimensional unit cube

6 epoints = MakeSDGrid(s,neval);
% Create right-hand side vector,
% i.e., evaluate the test function at the data sites

7 rhs = testfunction(s,dsites);
% Compute distance matrix for the data sites and centers

8 IM= DistanceMatrix(dsites,ctrs);
% Compute distance matrix for evaluation points and centers

9 EM= DistanceMatrix(epoints,ctrs);
% Evaluate the interpolant on evaluation points
% (evaluation matrix * solution of interpolation system)

10 Pf= EM* (IM\rhs);
% Compute exact solution,
% i.e., evaluate test function on evaluation points

11 exact= testfunction(s,epoints);
% Compute maximum and RMS errors on evaluation grid

12 maxerr = norm(Pf-exact,inf);
13 rms_err = norm(Pf-exact)/sqrt(M);
14 fprintf('RMS error: %e\n', rms_err)
15 fprintf('Maximum error: %e\n', maxerr)
16 switch s
17 case 1
18 plot(epoints, Pf)
19 figure; plot(epoints, abs(Pf-exact))
20 case 2
21 fview = [-30,30];
22 xe = reshape(epoints(:,2),neval,neval);
23 ye= reshape(epoints(:,1),neval,neval);
24 PlotSurf(xe,ye,Pf,neval,exact,maxerr,fview);
25 PlotError2D(xe,ye,Pf,exact,maxerr,neval,fview);
26 case 3

9

10 Meshfree Approximation Methods with MATLAB

27 xe = reshape(epoints(:,2),neval,neval,neval);
38 ye= reshape(epoints(:,l),neval,neval,neval);
29 ze = reshape(epoints(:,3),neval,neval,neval);
30 xslice = .25:.25:1; yslice = 1; zslice = [0,0.5];
31 PlotSlices(xe,ye,ze,Pf ,neval,xslice,yslice,zslice);
32a PlotErrorSlices(xe,ye,ze,Pf,exact,neval, ...
32b xslice,yslice,zslice);
33 otherwise
34 disp('Cannot display plots for s>3')
35 end

In Tables 1.1 and 1.2 as well as Figures 1.3 and 1.4 we present some examples
computed with Program 1.2. The number M of evaluation points (determined by
neval on line 3 of the code) we used for the cases s = 1, 2, ... , 6, was 1000, 1600,
1000, 256, 1024, and 4096, respectively (i.e., neval = 1000, 40, 10, 4, 4, and 4,
respectively). Note that, as the space dimensions increases, more and more of the
evaluation points lie on the boundary of the domain, while the data sites (which are
given as Halton points) are located in the interior of the domain. The value k listed
in Tables 1.1 and 1.2 is the same as the kin line 2 of Program 1.2. The formula for
the root-mean-square error (RMS-error) is given by

RMS-error=
1 M 1

M ~ [Pt(ej) - J(ej)J2
= v:MllPt - 1112, (1.5)

where the ej, j = 1, ... , M are the evaluation points. Formula (1.5) is used on
line 13 of Program 1.2.

The basic MATLAB code for the solution of any kind of RBF interpolation prob­
lem will be very similar to Program 1.2. Note in particular that the data used -
even for the distance matrix interpolation considered here - can also be "real"
data. In that case one simply needs to replace lines 4 and 7 of the program by
appropriate code that generates the data sites and data values for the right-hand
side.

The plots on the left of Figures 1.3 and 1.4 display the graphs of the distance
matrix fits for space dimensions s = 1, 2, and 3, respectively, while those on the
right depict the corresponding errors. For the lD plots (in Figure 1.3) we used
5 Halton points to interpolate the testfunction Ji. The piecewise linear nature of
the interpolant is clearly visible at this resolution. If we use more points then the
fit becomes more accurate - see Table 1.1 - but then it is no longer possible to
distinguish the piecewise linear nature of the interpolant. The 2D plot (top left of
Figure 1.4) interpolates the testfunction f2 at 289 Halton points. The graph of Pt is
false-colored according to the absolute error (indicated by the color bar at the right
of the plot). The bottom plot in Figure 1.4 shows a slice plot of the distance matrix
interpolant to f3 based on 729 Halton points. For this plot the colors represent
function values (again indicated by the color bar on the right).

1. Introduction 11

Table 1.1 Distance matrix fit to N Halton points in (0, 1]"', s = 1, 2, 3.

lD 2D 3D

k N RMS-error N RMS-error N RMS-error

1 3 5.896957e-001 9 l.937341e-001 27 9.721476e-002
2 5 3.638027e-001 25 6.336315e-002 125 6.277141e-002
3 9 l.158328e-001 81 2. 349093e-002 729 2. 759452e-002
4 17 3.981270e-002 289 1.045010e-002
5 33 l.406188e-002 1089 4.326940e-003
6 65 5.068541e-003 4225 1. 797 430e-003
7 129 l .877013e-003
8 257 7.264159e-004
9 513 3.016376e-004
10 1025 l.381896e-004
11 2049 6.907386e-005
12 4097 3.4531 79e-005

1.4.-----...-----.------------. 1.4-----.----.-----------

1.2

y

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
x x

Fig. 1.3 Fit (left) and absolute error (right) for 5 point distance matrix interpolation in lD.

In the right half of Figures 1.3 and 1.4 we show absolute errors for the distance
matrix interpolants displayed in the left column. We use analogous color schemes,
i.e., the 2D plot (top part of Figure 1.4) is false-colored according to the absolute
error, and so is the 3D plot (bottom) since now the "function value" corresponds
to the absolute error. We can see clearly that most of the error is concentrated
near the boundary of the domain. In fact, the absolute error is about one order of
magnitude larger near the boundary than it is in the interior of the domain. This
is no surprise since the data sites are located in the interior. However, even for
uniformly spaced data sites (including points on the boundary) the main error in
radial basis function interpolation is usually located near the boundary.

From this first simple example we can observe a number of other features. Most
of them are characteristic for the radial basis function interpolants we will be study­
ing later on. First, the basis functions employed, Bk = II· -Xk 112, are radially sym-

12

11 ···· .

o.5~ .. · · ·
' z

0

-0.5
1

zo.5

0
1

y 0 0

y 0 0

Meshfree Approximation Methods with MATLAB

0.25

0.2

0.15 ~
g
w

0.1

0.05

0
x

Q)
:::J
(ij

0.4
>
c
0

t5
c

0.2 :::J
LL

0

-0.2

x

0.4

0.3

Z0.2

0.1

zo.5

0
1

y 0 0

y 0 0

x

x

0.2

0.15 ~
g
w

0.1

0.05

0

0.2

0.15

e
0.1 w

0.05

0

Fig. 1.4 Fits (left) and errors (right) for distance matrix interpolation with 289 points in 2D
(top), and 729 points in 3D (bottom).

Table 1.2 Distance matrix fit to N Halton points in (0, 1] 8
, s = 4, 5, 6.

4D 5D 6D

k N RMS-error N RMS-error N RMS-error

1 81 l.339581e-001 243 9. 558350e-002 729 5.097600e-002
2 625 6.817 424e-002 3125 3.118905e-002

metric. Second, as the MATLAB scripts show, the method is extremely simple to
implement for any space dimension s. For example, no underlying computational
mesh is required to compute the interpolant. The process of mesh generation is
a major factor when working in higher space dimensions with polynomial-based
methods such as splines or finite elements. All that is required for our method is
the pairwise distance between the data sites. Therefore, we have what. is known as
a meshfree (or meshless) method.

Third, the accuracy of the method improves if we add more data sites. In fact,
it seems that the RMS-error in Tables 1.1 and 1.2 is reduced by a factor of about
two from one row to the next. Since we use (2k + 1) 8 uniformly distributed random

1. Introduction 13

data points in row k this indicates a convergence rate of roughly O(h), where h can
be viewed as something like the average distance or meshsize of the set X of data
sites (we will be more precise later on).

Another thing to note is that the simple distance function interpolant used here
(as well as many other radial basis function interpolants used later) requires the
solution of a system of linear equations with a dense N x N matrix. This makes
it very costly to apply the method in its simple form to large data sets. Moreover,
as we will see later, these matrices also tend to be rather ill-conditioned. These are
the reasons why we can only present results for relatively small data sets in higher
space dimensions using this simple approach.

In the remainder of this book it is our goal to present alternatives to this basic
interpolation method that address the problems mentioned above such as limitation
to small data sets, ill-conditioning, limited accuracy and limited smoothness of the
interpolant.

1.2 Some Historical Remarks

Originally, the motivation for the basic meshfree approximation methods (ra­
dial basis function and moving least squares methods) came from applications in
geodesy, geophysics, mapping, or meteorology. Later, applications were found in
many other areas such as in the numerical solution of PDEs, computer graph­
ics, artificial intelligence, statistical learning theory, neural networks, signal and
image processing, sampling theory, statistics (kriging), finance, and optimiza­
tion. It should be pointed out that meshfree local regression methods have been
used independently in statistics for well over 100 years (see, e.g., [Cleveland and
Loader (1996)] and the references therein). In fact, the basic moving least squares
method (known also as local regression in the statistics literature) can be traced
back at least to the work of [Gram (1883); Woolhouse (1870); De Forest (1873);
De Forest (1874)].

In the literature on approximation theory and related applications areas some
historical landmark contributions have come from

• Donald Shepard, who as an undergraduate student at Harvard University,
suggested the use of what are now called Shepard functions in the late
1960s (see Chapter 22). The publication [Shepard (1968)] discusses the
basic inverse distance weighted Shepard method and some modifications
thereof. The method was at the time incorporated into a computer pro­
gram, SYMAP, for map making.

• Rolland Hardy, who was a geodesist at Iowa State University. He intro­
duced the so-called multiquadrics (MQs) in the early 1970s (see, e.g., [Hardy
(1971)] or Chapter 8). Hardy's work was primarily concerned with appli­
cations in geodesy and mapping.

14 Meshfree Approximation Methods with MATLAB

• Robert L. Harder and Robert N. Desmarais, who were aerospace engineers
at MacNeal-Schwendler Corporation (MSC Software), and NASA's Langley
Research Center. They introduced the so-called thin plate splines (TPSs)
in 1972 (see, e.g., [Harder and Desmarais (1972)] or Chapter 8). Their work
was concerned mostly with aircraft design.

• Jean Duchon, a mathematician at the Universite Joseph Fourier in Greno­
ble, France. Duchon suggested a variational approach minimizing the
integral of 9 2 f in IR2 which also leads to the thin plate splines. This
work was done in the mid 1970s and is considered to be the foundation
of the variational approach to radial basis functions (see [Duchon (1976);
Duchon (1977); Duchon (1978); Duchon (1980)]) or Chapter 13).

• Jean Meinguet, a mathematican at Universite Catholique de Louvain in
Louvain, Belgium. Meinguet introduced what he called surface splines in
the late 1970s. Surface splines and thin plate splines fall under what we
will refer to as polyharmonic splines (see, e.g., [Meinguet (1979a); Meinguet
(1979b); Meinguet (1979c); Meinguet (1984)] or Chapter 8).

• Peter Lancaster and Kes Salkauskas, mathematicians at the University of
Calgary, Canada. They published [Lancaster and Salkauskas (1981)] in­
troducing the moving least squares method (a generalization of Shepard
functions).

• Richard Franke, a mathematician at the Naval Postgraduate School in Mon­
terey, California. In [Franke (1982a)] he compared various scattered data
interpolation methods, and concluded MQs and TPSs were the best. Franke
also conjectured that the interpolation matrix for MQs is invertible.

• Wolodymyr (Wally) Madych, a mathematician at the University of Con­
necticut, and Stuart Alan Nelson, a mathematician from Iowa State Univer­
sity. In 1983 they completed their manuscript [Madych and Nelson (1983)]
in which they proved Franke's conjecture (and much more) based on a varia­
tional approach. However, this manuscript was never published. Other fun­
damental papers by these two authors are, e.g., [Madych and Nelson (1988);
Madych and Nelson (1990a); Madych and Nelson (1992)].

• Charles Micchelli, a mathematician at the IBM Watson Research Center.
Micchelli published the paper [Micchelli (1986)]. He also proved Franke's
conjecture. His proofs are rooted in the work of [Bochner (1932); Bochner
(1933)] and [Schoenberg (1937); Schoenberg (1938a); Schoenberg (1938b)]
on positive definite and completely monotone functions. This is also the
approach we will follow throughout much of this book.

• Grace Wahba, a statistician at the University of Wisconsin. She studied the
use of thin plate splines for statistical purposes in the context of smoothing
noisy data and data on spheres, and introduced the ANOVA and cross
validation approaches to the radial basis function setting(see, e.g., [Wahba

1. Introduction 15

(1979); Wahba (1981); Wahba and Wendelberger (1980)]). One of the first
monographs on the subject is [Wahba (1990b)].

• Robert Schaback, a mathematician at the University of Gottingen, Ger­
many. Compactly supported radial basis functions (CSRBFs) were intro­
duced in [Schaback (1995a)], and a very popular family of CSRBFs was
presented by Holger Wendland (also a mathematician in Gottingen) in his
Ph.D. thesis (see also [Wendland (1995)] and Chapter 11). Both of these
authors have contributed extensively to the field of radial basis functions.
We mention particularly the recent monograph [Wendland (2005a)].

Chapter 2

Radial Basis Function Interpolation
in MATLAB

Before we discuss any of the theoretical foundation of radial basis functions we want
to get a feel for what they are all about. We saw in the introductory chapter that
it is easy to use Euclidean distance matrices to compute a solution to the scattered
data interpolation problem. However, we also pointed out a number of limitations
to that approach such as the limited accuracy and limited smoothness. It turns out
that we can maintain the underlying structure presented by the distance matrix
approach and address these limitations by composing the distance function with
certain "good" univariate functions.

2.1 Radial (Basis) Functions

As a first example we pick a function well-represented in many branches of mathe­
matics, namely the Gaussian

<p(r) = e-(cr)2' r E IR.

Our shape parameter E is related to the variance <J2 of the normal distribution
function by c 2 = l/(2<J2). If we compose the Gaussian with the Euclidean distance
function II · 112 we obtain for any fixed center Xk E IR8 a multivariate function

x E IR 8
•

Obviously, the connection between <I>k and <p is given by

It is this connection that gives rise to the name radial basis function (RBF). The
following is a formal definition of a radial function.

Definition 2.1. A function <I> : IR 8 ----+ IR is called radial provided there exists a
univariate function (p : [O, oo) ----+ IR such that

<I>(x) = <p(r), where r = llxll,

and II· 11 is some norm on IR 8
- usually the Euclidean norm.

17

18 Meshfree Approximation Methods with MATLAB

Definition 2.1 says that for a radial function <I>

llxill = llx2 II ===? <I>(xi) = <I>(x2),

In other words, the value of <I> at any point at a certain fixed distance from the origin
(or any other fixed center point) is constant. Thus, <I> is radially (or spherically)
symmetric about its center. Definition 2.1 shows that the Euclidean distance func­
tion we used in the introduction is just a special case of a radial (basis) function.
Namely, with cp(r) = r.

Figure 2.1 shows the graphs of two Gaussian radial basis functions, one with
shape parameter c = 1 (left) and one with c = 3 (right) (both centered at the origin
in 1R2). A smaller value of c (i.e., larger variance) causes the function to become
"flatter", while increasing c leads to a more peaked RBF, and therefore localizes its
influence. We will see soon that the choice of c has a profound influence on both
the accuracy and numerical stability of the solution to our interpolation problem.

y x

zo.5

0
1

y x

Fig. 2.1 Gaussian withe= 1 (left) and e = 3 (right) centered at the origin in JR.2 .

Definition 2.1 and the discussion leading up to it show again why it makes sense
to call cp the basic function, and <I> k (II · II 2) (centered at Xk) a radial basis function.
One single basic function generates all of the basis functions that are used in the
expansion (1.1).

Radial function interpolants have the nice property of being invariant under all
Euclidean transformations (i.e., translations, rotations, and reflections). By this
we mean that it does not matter whether we first compute the RBF interpolant
and then apply a Euclidean transformation, or if we first transform the data and
then compute the interpolant. This is an immediate consequence of the fact that
Euclidean transformations are characterized by orthogonal transformation matri­
ces and are therefore 2-norm-invariant. Invariance under translation, rotation and
reflection is often desirable in applications.

Moreover, the application of radial functions to the solution of the scattered data
interpolation problem (as well as many other multivariate approximation problems)
benefits from the fact that the interpolation problem becomes insensitive to the

2. Radial Basis Function Interpolation in MATLAB 19

dimension s of the space in which the data sites lie. Instead of having to deal with
a multivariate function <I> (whose complexity will increase with increasing space
dimension s) we can work with the same univariate function cp for all choices of s.

2.2 Radial Basis Function Interpolation

Instead of using simple distance matrices as we did earlier, we now use a radial
basis function expansion to solve the scattered data interpolation problem in Rs by
assuming

N

PJ(x) = I.::ckcp(llx - xkll2), (2.1)
k=l

The coefficients Ck are found by enforcing the interpolation conditions, and thus
solving the linear system

cp(llx1 - xil12) cp(llx1 - x2ll2)
cp(llx2 - x1ll2) cp(llx2 - x2ll2)

'P (llx1 - XNll2)
'P (llx2 - XNll2)

As the solution of the scattered data interpolation problem hinges entirely on the
solution of this system of linear equations we will devote the next chapter to the
question of when (i.e., for what type of basic functions cp) the system matrix is
non-singular.

For the numerical example presented below we restrict ourselves to the two­
dimensional case s = 2. As basic function cp we will use both Gaussians and the
linear function cp(r) = r which gives rise to the Euclidean distance matrix approach
used ear lier.

The code of the MATLAB script RBFinterpolation2D.m (see Program 2.1)
we use to perform RBF interpolation in 2D is very similar to the earlier script
DistanceMatrixFi t .m. It also makes use of the subroutine DistanceMatrix .m.
While it is easy to write a version of the interpolation script that works for any
space dimension s (just as we did in DistanceMatrixFit .m) we will stick with a
basic 2D version here.

In line 1 we define the Gaussian RBF as a MATLAB anonymous function that
accepts a matrix argument (namely the output from DistanceMatrix) along with
its shape parameter. Note that this feature is only available since MATLAB Re­
lease 7. For older MATLAB versions we suggest using an inline function instead
(see the programs in the folder Matlab6 of the enclosed CD). If execution speed
is important, then one should explicitly provide the function (either hardcoded di­
rectly where needed, or as an M-f ile). This latter approach will always be more
efficient than the i.nline or even anonymous function approach. However, then the
interpolation program is no longer as generic.

20 Meshfree Approximation Methods with MATLAB

We can replace the definition of the Gaussian on line 1 by the definition of the
linear function <p(r) = r or any other admissible RBF we will encounter later. In
lines 2-6 we define a test function that we will sample similarly to the function
fs used in the introductory example. Here (and in many later examples) we use
Franke 's function

f(x, y) = ~e-1/4((9x-2) 2 +(9y-2) 2) + ~e-(1/49)(9x+1) 2 -(1/10)(9y+1) 2

+~e-1/4((9x-7) 2+(9y-3) 2) _ ~e-(9x-4) 2 -(9y-7) 2
(2.2)

2 5

which is a standard test function for 2D scattered data fitting. Note that we used
(x, y) to denote the two components of x E 1R2 . The graph of Franke's function
over the unit square is shown in Figure 2.2.

0.8

0.6
z

0.4

0.2 .

0

-0.2
0

0.5

1 1
y

Fig. 2.2

x

Franke's test function.

0.8

0.6~
~
c:

0.4.Q
0
c:
:J

0.2 u..

For many of our examples we use data locations that have been saved in files
named Data2D_%d%s where the number of points (%d) is taken from the progression
{(2k + 1)2 } = { 9, 25, 81, 289, 1089, 4225, ... }. The characters u or h (in place of
%s) are used to denote either uniformly spaced points, or Halton points in the unit
square. The set of data points is defined and loaded in lines 7 and 8. As in the earlier
example we consider here only the case where the centers for the RBFs coincide
with the data locations (line 9).

A grid of evaluation points used to evaluate our interpolant for the purposes
of rendering and error computation is defined in lines 10 and 11. The test data
(right-hand side of the interpolation equations) are computed on line 12 where the
test function is sampled at the data sites.

The main part of the code is given by lines 13-17. Note that this part is very
similar to the corresponding segment (lines 7-9) in DistanceMatrixFi t .m. The
only difference is that we now apply the basic function <p to the entire distance
matrices in order to obtain the interpolation and evaluation matrices.

2. Radial Basis Function Interpolation in MATLAB

Program 2.1. RBFinterpolation2D.m

% RBFinterpolation2D
% Script that performs basic 2D RBF interpolation
% Calls on: DistanceMatrix

% Define the Gaussian RBF and shape parameter
1 rbf = ©(e,r) exp(-(e*r).-2); ep = 21.1;

% Define Franke's function as testfunction
2 f1 = ©(x,y) 0.75*exp(-((9*x-2).-2+(9*y-2).-2)/4);
3 f2 = ©(x,y) 0.75*exp(-((9*x+l).-2/49+(9*y+l).-2/10));
4 f3 = ©(x,y) 0.5*exp(-((9*x-7).-2+(9*y-3).-2)/4);
5 f4 = ©(x,y) 0.2*exp(-((9*x-4).-2+(9*y-7).-2));
6 testfunction = ©(x,y) fl(x,y)+f2(x,y)+f3(x,y)-f4(x,y);
7 N = 1089; gridtype = 'h';

% Load data points
8 name= sprintf('Data2D_%d%s',N,gridtype); load(name)
9 ctrs = dsites;

10 neval = 40; grid= linspace(0,1,neval);
11 [xe,ye] = meshgrid(grid); epoints = [xe(:) ye(:)];

% Evaluate the test function at the data points
12 rhs = testfunction(dsites(:,1),dsites(:,2));

% Compute distance matrix between the data sites and centers
13 DM_data = DistanceMatrix(dsites,ctrs);

% Compute interpolation matrix
14 IM= rbf(ep,DM_data);

% Compute distance matrix between evaluation points and centers
15 DM_eval = DistanceMatrix(epoints,ctrs);

% Compute evaluation matrix
16 EM= rbf(ep,DM_eval);

% Compute RBF interpolant
% (evaluation matrix * solution of interpolation system)

17 Pf= EM* (IM\rhs);
% Compute exact solution, i.e.,
% evaluate test function on evaluation points

18 exact= testfunction(epoints(:,1),epoints(:,2));
% Compute errors on evaluation grid

19 maxerr = norm(Pf-exact,inf);
20 rms_err = norm(Pf-exact)/neval;
21 fprintf('RMS error: %e\n', rms_err)
22 fprintf('Maximum error: %e\n', maxerr)
23 fview = [160,20]; % for Franke's function
24 PlotSurf(xe,ye,Pf,neval,exact,maxerr,fview);
25 PlotError2D(xe,ye,Pf ,exact,maxerr,neval,fview);

21

22 Meshfre,e Approximation Methods with MATLAB

In Table 2.1 we report the results of a series of experiments in which we compute
Gaussian RBF and distance matrix interpolants to increasingly larger sets of data.
We use one fixed value of c for all of the experiments with the Gaussians. This
type of approximation is known as non-stationary approximation. Its counterpart
is known as stationary approximation.

Even though we do not perform stationary interpolation in this experiment we
take a minute to explain the essential difference between the two approaches. In the
stationary setting we would scale the shape parameter c according to the fill distance
(or meshsize) h so that we end up using "peaked" basis functions for densely spaced
data and "flat" basis functions for coarsely spaced data. We will use the fill distance
as a measure of the data distribution. The fill distance is usually defined as

h = hx,n = sup min !Ix - Xj 112,
:i:EO :i:jEX

(2.3)

and it indicates how well the data in the set X fill out the domain n. A geometric
interpretation of the fill distance is given by the radius of the largest possible empty
ball that can be placed among the data locations inside n (see Figure 2.3). Some­
times the synonym covering radius is used. In our MATLAB code we can estimate
the fill distance via

hX = max(min(DM_eval')) (2.4)

where DM_eval is the matrix consisting of pairwise distances between the evaluation
points (placed on a fine uniform grid in n) and the data sites x (c.f. line 15 of
Program 2.1). Note that we transpose the non-symmetric evaluation matrix. This
corresponds to finding - for each evaluation point - the distance to the corre­
sponding closest data site, and then setting hx ,n as the worst of those distances.
Figure 2.3 illustrates the fill distance for a set of 25 Halton points. Note that in
this case the largest "hole" in the data is near the boundary.

0
0

0
0.8 0

0
0

0
0

0.6 0
0

y 0
0

0
0

0.4 0
0

0
0

0.2 0
0

0

0
0

0
0 0.2 0.4 0.6 0.8

x

Fig. 2.3 The fill distance for N = 25 Halton points (hx,n ::::::! 0.2667).

We will take a closer look at the differences between stationary and non­
stationary interpolation in later chapters of this book.

2. Radial Basis Function Interpolation in MATLAB 23

In the following examples we will clearly see the effects the shape parame­
ter has on the condition number of the interpolation matrix (and therefore the
numerical stability) of our computations. In order to be able to use our script
RBFinterpolation2D .min conjunction with Gaussians to produce a meaningful se­
quence of non-stationary experiments, i.e., with a fixed value of the shape parameter
£, we are required to take the fairly large value £ = 21.1. Otherwise computation
with the relatively densely spaced point set of N = 4225 Halton points results in
MATLAB warnings of ill-conditioning. This means that - for the non-stationary
approach - the basis functions are too localized on the smaller point sets, and the
approximation is very poor (see Figure 2.4).

The test results for a non-stationary interpolation experiment using Gaussians
and Euclidean distance matrices for Franke's function are shown in Table 2.1. As
just pointed out, we note that a fit with Gaussians and a small shape parameter
such as £ = 1 would quickly lead to a numerical breakdown. For as few as N = 25
data points and £ = 1 MATLAB issues a "matrix close to singular" warning with an
estimated reciprocal condition number of RCOND=3.986027e-020.

z

0.8 ..

0.6 ..

0.4

0.2

0

Table 2.1 Non-stationary RBF interpolation to Franke's function using
Gaussians (c: = 21.1) and Euclidean distance matrices.

Gaussian distance matrix

k N RMS-error max-error RMS-error max-error

1 9 3.647169e-001 1. 039682e+OOO l .323106e-001 4.578028e-001
2 25 3.203404e-001 9.670980e-001 6.400558e-002 2. 767871e-001
3 81 2.152222e-001 8.455161e-001 l.343780e-002 6. 733130e-002
4 289 7.431729e-002 7.219253e-001 3. 707360e-003 3.057540e-002
5 1089 1. 398297 e-002 3.857234e-001 1.143589e-003 l.451950e-002
6 4225 4.890709e-004 1. 940675e-002 4.0027 49e-004 8.022336e-003

0.7

0.6

0.8 -·····
0.5

0.6
z

0.4 0
t:

0.4
UJ 0.2 .. 0.3

0
0.2 -0.2

0
0.1

1 1 0.5
1 1 y x y x

0.35

0.3

0.25

0.2 g
UJ

0.15

0.1

0.05

0

Fig. 2.4 Gaussian RBF interpolant with c: = 21.1 at N = 289 (left) and at N = 1089 Halton
points (right).

24 Meshfree Approximation Methods with MATLAB

If we look at the entries in Table 2.1 then we see that - contrary to what we
announced earlier - the results based on the distance matrix fit are more accurate
than those obtained with Gaussians. This will change, however, if we try to optimize
our choice of the shape parameter E (see the results of the next experiment in
Table 2.2).

In a second experiment we consider the same test function and Gaussian basis
functions. Now, however, we want to study the effects of the shape parameter.
Therefore, in Figure 2.5 we display both the maximum and RMS errors as a function
of the shape parameter E for four fixed data sets (81, 289, 1089 and 4225 Halton
points). These curves reveal some of the problems associated with radial basis
function interpolation - especially when working with globally supported basis
functions, i.e., dense matrices. We see that the errors decrease with decreasing E

(of course, they also decrease with decreasing fill distance - but that is not what
we are concerned with now). However, the error curves are not monotonic. We can
identify an optimal value of E for which both errors are minimal (the minima of
the two error curves occur at almost the same place). Moreover, there is a value of
E at which the computational results become unpredictable, and the error curves
become erratic. This point is associated with severe ill-conditioning of the system
matrix. Since MATLAB issues a warning when attempting to solve an ill-conditioned
linear system, we refer to the smallest value of E for which we do not see a MATLAB
warning as the "safe" value of E (for a given set X of data sites and basic function
rp). The interesting fact about the four plots displayed in Figure 2. 5 is that for the
smaller data sets (N = 81 and N = 289) the minimum errors are obtained for a
"safe" E, while for the larger sets (N = 1089 and N = 4225) the minimum errors
are obtained in the "unsafe" range. Therefore, we are computing in a certain "gray
zone". We are obtaining highly accurate solutions from severely ill-conditioned
linear systems. We will come back later to this interesting feature of radial basis
function interpolation (called uncertainty or trade-off principle). It is conceivable
(and in fact possible [Fornberg and Wright (2004)]) to obtain even more accurate
results by using a more stable way to evaluate the radial basis function interpolant
(see the discussion in Chapters 16 and 17).

In Table 2.2 we list the "best possible" results for stationary Gaussian interpo­
lation. We view "best" in two different ways. For the results presented in columns
3-5 we select for each choice of N the smallest possible value of E such that MATLAB
does not issue a warning. We refer to this case as the "safe" E case in Table 2.2.
Most of these errors are now comparable (or smaller) than those for simple distance
matrix interpolation (c.f. Table 2 .1).

These results, however, do not always represent the smallest achievable error.
Therefore, we present (in columns 6-8) results for those "optimal" values of E which
yield the smallest RMS-error. These results are obtained in the "gray zone" men­
tioned above. For example, if we use N = 1089 Halton points and shape parameter
E = 6.2 then MATLAB issues a warning with RCOND = 2.683527e-020. However,

103

102

101

g
Cl)

100

10-1

10-2
0 5

10•

102

100

g
Cl)

5

2. Radial Basis Function Interpolation in MATLAB

--- --------------

10
E:

10

"

15

15

20

20

10•

102

g 10° ----------Cl)

10-2

10-4
0 5

105

-- ---

10
E:

15 20

10-10,__ _ __..__ _ __. ___ __. __ _. __ __.

0 5 10 15 20 25
E:

25

Fig. 2.5 Maximum (dashed/top curve) and RMS (solid/bottom curve) errors vs. e for 81 (top
left), 289 (top right), 1089 (bottom left), and 4225 Halton points (bottom right).

Table 2.2 "Optimal" RBF interpolation to Franke's function using Gaussians.

smallest "safe" e smallest RMS-error

k N e RMS-error max-error e RMS-error max-error

1 9 0.02 3.658421e-001 1.580259e+ooo 2.23 l.118026e-001 3.450275e-001
2 25 0.32 3.629342e-001 2.845554e+ooo 3.64 4.032550e-002 2. 996488e-OO 1
3 81 1.64 1. 7 43059e-001 2.398284e+ooo 4.28 l .09060le-002 l .579465e-001
4 289 4.73 2. 785388e-003 5.4 72502e-002 5.46 4.610079e-004 7.978283e-003
5 1089 10.5 4. 945428e-004 l.812246e-002 6.2 2 .498848e-006 8. 779119e-005
6 4225 21.1 4.890709e-004 l.940675e-002 6.3 4.269292e-008 8.889552e-007

as we can see in Table 2.2 and Figure 2.5, the corresponding errors are now much
smaller than those previously obtained. Moreover, the errors decrease at a rate that
is faster than the O(h) we observed earlier for the distance matrix fit example.

Of course, if the data we are trying to fit are not sampled from a known test
function then we will not be able to choose an "optimal" shape parameter by mon­
itoring the RMS error. The associated issues of ill-conditioning, preconditioning,
optimal shape parameter selection, and alternate stable evaluation methods via a
Contour-Pade algorithm are studied later in Chapters 16 and 17.

Chapter 3

Positive Definite Functions

We noted in the previous chapters that the solution of the scattered data interpola­
tion problem with RBFs boils down to the solution of a system of linear equations

Ac=y,

where the system matrix A has entries cp(llxj - xki12), j, k = 1, ... , N. We know
from linear algebra that this system will have a unique solution whenever the matrix
A is non-singular. While no one has yet succeeded in characterizing the class of all
basic functions cp that generate a non-singular system matrix for any set X =

{x1 , ... , XN} of distinct data sites, the situation is much better if we consider
positive definite matrices.

In this chapter we present the main theoretical results under lying this approach
along with some of their proofs. A series of examples are presented in the next
chapter. A comprehensive treatment of the mathematical theory needed for scat­
tered data interpolation with strictly positive definite functions (see Def. 3.2 below)
is presented in the recent monograph [Wendland (2005a)].

3.1 Positive Definite Matrices and Functions

Definition 3.1. A real symmetric matrix A is called positive semi-definite if its
associated quadratic form is non-negative, i.e.,

N N

LL CjCkAjk > 0 (3.1)
j=lk=l

for c = [c1, ... 'CN]T E JRN.
If the quadratic form (3.1) is zero only for c _ 0, then A is called positive

definite.

An important property of positive definite matrices is that all their eigenvalues
are positive, and therefore a positive definite matrix is non-singular (but certainly
not vice versa).

27

28 Meshfree Approximation Methods with MATLAB

If we therefore had basis functions Bk in the expansion (1.1) that generate a
positive definite interpolation matrix, we would always have a well-posed interpo­
lation problem. To this end we introduce the concept of a positive definite function
from classical analysis.

Positive definite functions were first considered in classical analysis early in the
20th century. [Mathias (1923)] seems to have been the first to define and study
positive definite functions. An overview of the development of positive definite
functions up to the mid 1970s can be found in [Stewart (1976)]. However, as we
see from the definition below, positive definite functions were -- unfortunately -
defined in analogy to positive semi-definite matrices. Therefore, in order to meet
our goal of having a well-posed interpolation problem, it is necessary to sharpen the
classical notion of a positive definite function to that of a strictly positive definite
one. This concept does not seem to have been studied until [Micchelli (1986)] made
the connection between scattered data interpolation and positive definite functions.
This leads to an unfortunate difference in terminology used in the context of matri­
ces and functions. Instead of rewriting history we will adhere to this terminology
here. We would like to point out that when reading recent articles (especially in
the radial basis function literature) dealing with (strictly) positive definite functions
one has to be aware of the fact that some authors have tried to "correct" history,
and now refer to strictly positive definite functions as positive definite functions.

Definition 3.2. A complex-valued continuous function <I> : Rs --+ C is called positive
definite on Rs if

N N

LL CjCk<l>(xj - xk) > 0 (3.2)
j=lk=l

for any N pairwise different points X1' ... 'x N E JRS' and c = (c1' ... 'CN v E cN.

The function <I> is called strictly positive definite on Rs if the quadratic form
(3.2) is zero only for c - 0.

We note that even though we are interested in problems with real data and
real coefficients, an extension of the notion of positive definiteness to cover complex
coefficients c and complex-valued functions <I> as done in Definition 3.2 will be help­
ful when deriving some properties of (strictly) positive definite functions later on.
Moreover, the celebrated Bochner's theorem (see Theorem 3.3) characterizes exactly
the positive definite functions of Definition 3.2. In all practical circumstances, how­
ever, we will be concerned with real-valued functions only, and a characterization
of such functions appears below as Theorem 3.2. It should also be noted that Def­
inition 3.2 implies that only functions whose quadratic form is real are candidates
for (strictly) positive definite functions.

Example 3.1. Here, and throughout this book, we will denote the standard inner
product of x and yin Rs by x · y. With this notation the function <I>(x) = eix·y,

3. Positive Definite Functions 29

for y E Rs fixed, is positive definite on Rs since the quadratic form in Definition 3.2
becomes

N N N N

LL CjCk<I>(xj - Xk) =LL CjCkei(xj-xk)·y
j=lk=l j=lk=l

N N

= L Cjeixj·Y L Cke-ixk·Y
j=l k=l

2
N

= L CjeixrY > 0.
j=l

Definition 3.2 and the discussion preceding it suggest that we should use strictly
positive definite functions as basis functions in (1.1), i.e., Bk(x) = <I>(x - Xk), or

N

P1(x) = L ck<I>(x - xk), x E Rs. (3.3)
k=l

Note that at this point we do not require <I> to be a radial function. In fact,
the function P1 of (3.3) will yield an interpolant that is translation invariant, i.e.,
the interpolant to translated data is the same as the translated interpolant to the
original data. In order to obtain invariance also under rotations and reflections we
will later specialize to strictly positive definite functions that are also radial on Rs.

We will now discuss some of the most important properties and characterizations
of (strictly) positive definite functions. For the sake of completeness we present a list
of some basic properties of (strictly) positive definite functions and some examples.

Theorem 3.1. Some basic properties of positive definite functions are

(1) Non-negative finite linear combinations of positive definite functions are
positive definite. If <I>1, ... , <I>n are positive definite on Rs and Cj > 0,
j = 1, ... , n, then

n

<I>(x) = Lcj<I>j(x),
j=l

x E Rs,

is also positive definite. Moreover, if at least one of the <I>j is strictly positive
definite and the corresponding Cj > 0, then <I> is strictly positive definite.

(2) <I>(O) > 0.
(3) <I>(-x) = <I>(x).
(4) Any positive definite function is bounded. In fact,

l<I>(x)I < <I>(O).

(5) If <I> is positive definite with <I>(O) = 0 then <I> _ 0.
(6) The product of {strictly) positive definite functions is (strictly) positive def­

inite.

30 Meshfree Approximation Methods with MATLAB

Proof. Properties (1) and (2) follow immediately from Definition 3.2.
To show (3) we let N = 2, X1 = 0, X2 = x, and choose c1 = 1 and c2 = c. Then

the quadratic form in Definition 3.2 becomes

2 2

L L c J ck <I> (x J - x k) = (1 + I c I 2) <I> (O) + c<I> (x) + c<I> (- x) > o
j=lk=l

for every c E C. Taking c = 1 and c = i (where i = y1=T), respectively, we can see
that both <I>(x) + <I>(-x) and i (<I>(x) - <I>(-x)) must be real. This, however, is only
possible if <I>(-x) = <I>(x).

For the proof of (4) we let N = 2, X1 = 0, X2 = x, and choose c1 = l<I>(x)I and
c2 = -<I>(x). Then the quadratic form in Definition 3.2 is

2 2

LLCJCk<I>(xJ - xk) = 2<I>(O)l<I>(x)l 2 -<I>(-x)<I>(x)l<I>(x)I - <I>2(x)l<I>(x)I > 0.
j=lk=l

Since <I>(-x) = <I>(x) by Property (3), this gives

2<I>(O)l<I>(x)l 2 - 2l<I>(x)l 3 > 0.

If l<I>(x)I > 0, we divide by l<I>(x)l 2 and the statement follows immediately. In case
l<I>(x)I - 0 the statement holds trivially.

Property (5) follows immediately from (4), and Property (6) is a consequence of a
theorem by Schur in the field of linear algebra which states that the elementwise (or
Hadamard) product of positive (semi-)definite matrices is positive (semi-)definite.
For more details we refer the reader to [Cheney and Light (1999)] or [Wendland
(2005a)]. D

Example 3.2. The cosine function is positive definite on IR. since, for x E IR., we
have cosx = ~ (eix + e-ix). Now Property (1) and Example 3.1 can be invoked.

Property (3) shows that any real-valued (strictly) positive definite function has
to be even. However, it is also possible to characterize real-valued (strictly) positive
definite functions using only real coefficients (see [Wendland (2005a)] for details),
z.e.,

Theorem 3.2. A real-valued continuous function <I> is positive definite on IR.s if and
only if it is even and

N N

LL cJck<I>(xJ - xk) > 0 (3.4)
j=lk=l

for any N pairwise different points X1, ... , XN E IR.s, and c = [c1, ... , cNJT E JR.N.
The function <I> is strictly positive definite on IR.s if the quadratic form (3.4) is

zero only for c - 0.

3. Positive Definite Functions

3.2 Integral Characterizations for (Strictly) Positive Definite
Functions

31

We will now summarize some facts about integral characterizations of positive def­
inite functions. They were established in the 1930s by Bochner and Schoenberg.
However, we will also mention the more recent extensions to strictly positive defi­
nite and strictly completely /multiply monotone functions that are essential to the
application of the theory to the scattered data interpolation problem. A much
more detailed discussion of this material is presented in the recent book [Wend­
land (2005a)]. Some frequently used integral transforms are listed in Appendix B.
Integral characterizations of the closely related completely and multiply monotone
functions are presented in Chapter 5.

3.2.1 Bochner's Theorem

One of the most celebrated results on positive definite functions is their character­
ization in terms of Fourier transforms established by Bochner in 1932 (for s = 1)
and 1933 (for generals).

Theorem 3.3 (Bochner). A (complex-valued) function <I> E C(JRs) is positive def­
inite on JRs if and only if it is the Fourier transform of a finite non-negative Borel
measure µ on JRs, i.e.

x E JR 5
•

Proof. There are many proofs of this theorem. Bochner's original proof can be
found in [Bochner (1933)]. Other proofs can be found, e.g., in the books [Cuppens
(1975)] or [Gel'fand and Vilenkin (1964)]. A proof using the Riesz representation
theorem to interpret the Borel measure as a distribution, and then taking advantage
of distributional Fourier transforms can be found in the book [Wendland (2005a)].

We will prove only the one (easy) direction. It is this part of the statement that
is important for the application to scattered data interpolation. We assume <I> is
the Fourier transform of a finite non-negative Borel measure and show <I> is positive
definite. Thus,

NN l NN[1. l L LCjCk<I>(xj - Xk) = -==s LL CjCk e-i(xJ-xk)·Ydµ(y)
j=lk=l ~j=lk=l Rs

[t Cje-ix;-y t CkeiXk·Y] dµ(y)
j=l k=l

2

32 Meshfree Approximation Methods with MATLAB

The last inequality holds because of the conditions imposed on the measureµ. 0

Remark 3.1. We can see from Theorem 3.3 that the function <I>(x) = eix·y of
Example 3.1 can be considered as the fundamental positive definite function since
all other positive definite functions are obtained as (infinite) linear combinations of
this function. While Property (1) of Theorem 3.1 implies that linear combinations
of <I> will again be positive definite, the remarkable content of Bochner's Theorem
is the fact that indeed all positive definite functions are generated by <I>.

3.2.2 Extensions to Strictly Positive Definite Functions

In order to accomplish our goal of guaranteeing a well-posed interpolation problem
we have to extend (if possible) Bochner's characterization to strictly positive definite
functions.

We begin with a sufficient condition for a function to be strictly positive definite
on Rs.

For this result we require the notion of the carrier of a (non-negative) Borel
measure defined on some topological space X (see also Appendix B). This set is
given by

X \ LJ{O: 0 is open and µ(O) = O}.

Theorem 3.4. Letµ be a non-negative finite Borel measure on Rs whose carrier
is a set of nonzero Lebesgue measure. Then the Fourier transform ofµ is strictly
positive definite on Rs.

Proof. · As in the proof of Bochner's theorem we have

dµ(y) > 0.

Now let
N

g(y) = L Cje-ixrY'

j=l

and assume that the points x j are all distinct and c =f=. 0. In this case the functions
y 1--+ e-ix;-y are linearly independent so that g =f=. 0. Since g is an entire function its
zero set, i.e., {y E Rs : g(y) = O} can have no accumulation point and therefore
it has Lebesgue measure zero (see, e.g., [Cheney and Light (1999)1). Now, the only

3. Positive Definite Functions 33

remaining way to make the above inequality an equality is if the carrier of /.L is
contained in the zero set of g, i.e., has Lebesgue measure zero. This, however, is
ruled out in the hypothesis of the theorem. 0

Work toward an analog of Bochner's theorem, i.e., a complete integral charac­
terization of functions that are strictly positive definite on Rs, is given in [Chang
(1996)] for the case s = 1.

The following corollary gives us a way to construct strictly positive definite
functions.

Corollary 3.1. Let f be a continuous non-negative function in L 1 (Rs) which is not
identically zero. Then the Fourier transform of f is strictly positive definite on Rs.

Proof. This is a special case of the previous theorem in which the measure µ has
Lebesgue density f. Thus, we use the measureµ defined for any Borel set B by

µ(B) = L f(x)dx.

Then the carrier of µ is equal to the (closed) support of f. However, since f is
non-negative and not identically equal to zero, its support has positive Lebesgue
measure, and hence the Fourier transform of f is strictly positive definite by the
preceding theorem. 0

Finally, a criterion to check whether a given function is strictly positive definite
is given in [Wendland (2005a)].

Theorem 3.5. Let <I> be a continuous function in L 1 (Rs). <I> is strictly positive
definite if and only if <I> is bounded and its Fourier transform is non-negative and
not identically equal to zero.

Theorem 3.5 is of fundamental importance and we will come back to this theorem
several times later on. In fact, the proof of Theorem 3.5 in [Wendland (2005a)] shows
that - if <I> ¢ 0 (which implies that then also cl> ¢ 0) - we need to ensure only
that cl> be non-negative in order for <I> to be strictly positive definite.

3.3 Positive Definite Radial Functions

We now turn our attention to positive definite radial functions. Recall that Def­
inition 3.2 characterizes (strictly) positive definite functions in terms of multi­
variate functions <I>. However, when we are dealing with radial functions, i.e.,
<I>(x) = 'P(llxll), then it will be convenient to also refer to the univariate function
<p as a positive definite radial function. While this does present a slight abuse of
our terminology for positive definite functions this is what is commonly done in the
literature.

An immediate consequence of this notational convention is

34 Meshfree Approximation Methods with MATLAB

Lemma 3.1. lf ~ = cp(ll · II) is {strictly) positive definite and radial on lR8 then ~
is also {strictly) positive definite and radial on Ru for any a < s.

We now return to integral characterizations and begin with a theorem due to
Schoenberg (see, e.g., [Schoenberg (1938a)], p.816, or [Wells and Williams (1975)],
p.27).

Theorem 3.6. A continuous Junction cp: [O, oo) ~JR is positive definite and radial
on 1R8 if and only if it is the Bessel transform of a finite non-negative Borel measure
µ on [O, oo), i.e.

cp(r) = 1= 0 8 (rt)dµ(t).

Here

{
cosr for s = 1,

ns(r) = r (!i) (£)(s-2)/2 J () f
2 r (s-2)/2 r ;Or s > 2,

and J(s- 2);2 is the classical Bessel function of the first kind of order (s - 2)/2.

As above, now the function ~(x) = cos(x) from Example 3.2 can be viewed
as the fundamental positive definite radial function on JR. We will see below (in
Example 3 of Chapter 4) that the characterization of Theorem 3.6 immediately
suggests a class of (even strictly) positive definite radial functions. As for the basic
lD example, the measureµ will simply be a point evaluation measure.

A Fourier transform characterization of strictly positive definite radial functions
on lR8 can be found in [Wendland (2005a)]. It is essentially a combination of Theo­
rem 3.5 and the formula in Theorem B.l of Appendix B for the Fourier transform
of a radial function:

Theorem 3.7. A continuous function cp: [O, oo) ~JR such that r ~ r 8
-

1 cp(r) E

L 1 [O, oo) is strictly positive definite and radial on lR8 if and only if the s-dimensional
Fourier transform

1 1= s :Fscp(r) = ~ cp(t)t'i J(s-2)/2(rt)dt
rs-2 0

is non-negative and not identically equal to zero.

Since Lemma 3.1 states that any function that is (strictly) positive definite and
radial on lR8 is also (strictly) positive definite and radial on Ru for any a < s,
those functions which are (strictly) positive definite and radial on lR8 for all s are
of particular interest. The class of functions that are positive definite on lR8 for all
s was also characterized by Schoenberg ([Schoenberg (1938a)], pp. 817-821). An
extension to the strictly positive definite case can be found in [Micchelli (1986)]:

:3. Positive Definite Functions 35

Theorem 3.8 (Schoenberg). A continuous function <.p [O, oo) ---+ JR is strictly
positive definite and radial on Rs for all s if and only if it is of the form

<.p(r) = 1= e-r2t2 dµ(t),

where µ is a finite non-negative Borel measure on [O, oo) not concentrated at the
origin.

As suggested for Theorem 3.6 above, lettingµ be a point evaluation measure in
Theorem 3.8 we obtain that the Gaussian is strictly positive definite and radial on
Rs for alls (c.f Example 1 of Chapter 4).

The Schoenberg characterization of (strictly) positive definite radial functions on
Rs for alls (Theorem 3.8) implies that we have a finite non-negative Borel measure
µ on [O, oo) such that

<.p(r) = 1= e-r2t2 dµ(t).

If we want to find a zero ro of <.p then we have to solve

<.p(ro) = 1= e-r6t
2
dµ(t) = 0.

Since the exponential function is positive and the measure is non-negative, it follows
that µ must be the zero measure. However, then <.p is identically equal to zero.
Therefore, a non-trivial function <.p that is positive definite and radial on Rs for all
s can have no zeros. This implies in particular that

Theorem 3.9. There are no oscillatory univariate continuous functions that are
strictly positive definite and radial on Rs for all s. Moreover, there are no com­
pactly supported univariate continuous functions that are strictly positive definite
and radial on Rs for all s.

An equivalent argument for the oscillatory case is given in Theorem 2.3 of [Forn­
berg et al. (2004)].

Chapter 4

Examples of Strictly Positive Definite
Radial Functions

We now present a number of functions that are covered by the theory presented
thus far. While it is possible to include a shape parameter E for all of the functions
presented in the examples below by rescaling x to EX, we avoid its use in the
formulation of all but the Gaussian example to keep the formulas as simple as
possible. We do, however, use a shape parameter when plotting some of the basis
functions.

Our use of the shape parameter does not always match its "traditional" use.
For example, Hardy introduced his inverse multiquadrics (see Example 5 below)
in the form <I>(llxll) = 1/Jc2 + llxll 2 with shape parameter c. It is, of course,
straightforward to transform this representation to the one suggested above, i.e.,
<I>(llxll) = 1/Jl +c2 llxll 2 , by setting c2 = 1/c2 and scaling the result by 1/lcl.

Our use of the shape parameter as a factor applied directly to x has the advan­
tage of providing a unified treatment in which a decrease of the shape parameter
always has the effect of producing "fiat" basis functions, while increasing E leads to
more peaked (or localized) basis functions.

4.1 Example 1: Gaussians

We can now show that the Gaussian

<I>(x) = e_c2Jlxll2' E > 0, (4.1)

is strictly positive definite (and radial) on JR 5 for any s. This is due to the fact that
the Fourier transform of a Gaussian is essentially a Gaussian. In fact,

~ 1 llw11 2
<I>(w) = e-~,

(v'2c)s

and this is positive independent of the space dimension s. In particular, for E = ~
we have cl> = <I>. Plots of Gaussian RBFs were presented in Fig. 2.1. Clearly, the
Gaussians are infinitely differentiable. Some of its derivatives (as well as those of
many other RBFs) are collected in Appendix D.

37

38 Meshfree Approximation Methods with MATLAB

Another argument to show that Gaussians are strictly positive definite and radial
on lR8 for any s that avoids dealing with Fourier transforms will become available
later. It will make use of completely monotone functions.

Recall that Property (1) of Theorem 3.1 shows that any finite non-negative lin­
ear combination of (strictly) positive definite functions is again (strictly) positive
definite. Moreover, we just saw that Gaussians are strictly positive definite and ra­
dial on all lR8

. Now, the Schoenberg characterization of functions that are (strictly)
positive definite and radial on any lR8

, Theorem 3.8, states that all such functions
are given as infinite linear combinations of Gaussians. Therefore, the Gaussians can
be viewed as the fundamental member of the family of functions that are strictly
positive definite and radial on JR 5 for all s.

Since Gaussians play a central role in statistics this is a good place to mention
that positive definite functions are - up to a normalization CI>(O) = 1 - identical
with characteristic functions of distribution functions in statistics.

4.2 Example 2: Laguerre-Gaussians

In order to obtain a generalization of Gaussians we start with the generalized La­
guerre polynomials L:/2 of degree n and order s/2 defined by their Rodrigues formula
(see, e.g., formula (6.2.1) in [Andrews et al. (1999)])

ett-s/2 dn ()
L:/2 (t) =

1
- e-ttn+s/2 , n = 1, 2, 3,

n. dtn
An explicit formula for the generalized Laguerre polynomials is

Ls/2() = ~ (-l)k (n + s/2) k
n t ~ k! n- k t .

k=O

We then define the Laguerre-Gaussians

<I>(x) = e-llxll2 L:/2(llxl!2),

and list their Fourier transforms as

~ e_ 11 .. ~r n llwll2j
<I>(w) = y"F ?= j!4J > 0.

J=O

(4.2)

(4.3)

Note that the definition of the Laguerre-Gaussians depends on the space dimension
s. Therefore they are strictly positive definite and radial on lR8 (and by Lemma 3.1
also on JR17 for any a< s).

Laguerre-Gaussian functions for some special choices of s and n are listed m
Table 4.1. Figure 4.1 shows a Laguerre-Gaussian for s = 1, n = 2, and for s
2, n = 2 displayed with a shape parameter c = 3 and scaled so that CI>(O) = 1.
Moreover, the Laguerre-Gaussians are infinitely smooth for all choices _of n and s.

Note that the Laguerre-Gaussians (while being strictly positive definite func­
tions) are not positive. Since the Laguerre-Gaussians are oscillatory functions we

4. Examples of Strictly Positive Definite Radial Functions 39

know from Theorem 3.9 that they cannot be strictly positive definite and radial on
lR8 for alls. We will encounter these functions later in the context of approximate
moving least squares approximation (c.f. Chapter 26).

1.2

0.8

0.6
y

0.4

0.2

0

-0.2
-1 -0.5

Table 4.1 Laguerre-Gaussians for various choices of s and n.

s

1

2

3

n=l

(~ - lxl2) e-lxl2

(2 - llxll2) e-11"'112

(~ - llxll2) e-11"'11
2

0
x

0.5

n=2

(15 - ~lxl2 + .!.lx14) e-lxl2
8 2 2

(3 - 3llxll2 + ~llxl1 4) e- 11 "'
112

(
35

- 2:11xll2 + .!.llxll4) e- 11 "'
112

8 2 2

0.6
z

0.4

0.2

0
1

y -1 -1
x

Fig. 4.1 Laguerre-Gaussians with s = 1, n = 2 (left) and s = 2, n = 2 (right) centered at the
origin.

4.3 Example 3: Poisson Radial Functions

Another class of oscillatory functions that are strictly positive definite and radial
on lR8 (and all JR17 for O" < s) were recently studied by Fornberg and co-workers (see
[Fornberg et al. (2004)] and also [Flyer (2006)]). These functions are of the form

..T-.() = Js/2-1 (llxll)
'*' x llxlis/2-1 ' s > 2, (4.4)

where Jv is the Bessel function of the first kind of order v. While these functions
are not defined at the origin they can be extended to be infinitely differentiable in
all of JRS.

The functions (4.4) were already studied by Schoenberg (see the discussion sur­
rounding Theorem 3.6) who suggested calling them Poisson functions. In fact, the
functions in (4.4) are (up to the scale factor 2Cs-2)/2 r(s/2)) the functions Os of

40 Meshfree Approximation Methods with MATLAB

Theorem 3.6 and therefore can be viewed as the fundamental member of the family
of functions that are strictly positive definite and radial on Rs for fixed s.

Schoenberg showed that the functions Os are given by

where Ws-1 denotes the area of the unit Sphere ss-l in JRS, and da denotes the
usual measure on ss- 1 .

The Poisson functions are another generalization of Gaussians (the fundamental
strictly positive definite radial function on Rs for all s) since the following limit­
ing relation due to John von Neumann holds (see the discussion in [Schoenberg
(1938a)]):

lim ns(rffs) = e-r
2

•
s-oo

Since the Poisson radial functions are defined in terms of Bessel functions they are
also band-limited, i.e., their Fourier transform has compact support. In fact, the
Fourier transform of <I> in Ra, a < s, is given by (see [Flyer (2006)])

<i>(w) =
1

l) (1 - llwll 2)(s-a-2)/2 , -1 < W1, ... , Ws < 1.
2a- r(s;a 1f0"

Some of these Poisson functions are listed in Table 4.2 and displayed in Figure 4.2
(where a shape parameter c = 10 was used for the plots).

z

s=2

Jo(llxll)

y

Table 4.2 Poisson functions for various choices of s.

s=3

{2 sin(llxll)

Y; llxll

x

s=4 s=5

{2 sin(ll:z:ll) - ll:z:ll cos(ll:z:ll)

v; ll:z:ll 3

y

············:
... --- ~- --...

l ····-...

... -----~----- ····t· ·····-.... ····T·
..... +. ········ ... i ··· ·· ...

-1 -1

·········-··-.... ·~·-. ·····-~
····· __

··· ...

x

'····-+ ··--.. ~
....... _:

······-... ~
············ .. ~

Fig. 4.2 Poisson functions with s = 2 (left) and s = 3 (right) centered at the origin in JR2 •

4. Examples of Strictly Positive Definite Radial Functions 41

4.4 Example 4: Matern Functions

A fourth example of strictly positive definite functions is given by the class of
Matern functions which are quite common in the statistics literature (see, e.g.,
[Matern (1986)] or [Stein (1999)])

K13-~ (llxll) llxll 13 -~
1>(x) = ;/3-lI'(/3) '

s
J3 > -2· (4.5)

Here Kv is the modified Bessel function of the second kind (sometimes also called
modified Bessel function of the third kind, or MacDonald's function) of order v.
The Fourier transform of the Matern functions is given by the Bessel kernels

<i>(w) = (1 + llwll 2)-/3 > 0.

Therefore the Matern functions are strictly positive definite on :IR8 for all s < 2/3.
Schaback calls these functions Sobolev splines (see, e.g., [Schaback (1995a)] or his
earlier discussion in [Schaback (1993)]) since they are naturally related to Sobolev
spaces (see Chapter 13). These functions are also discussed in the relatively early
paper [Dix and Ogden (1994)].

Some simple representatives of the family of Matern functions are listed (up to
a dimension-dependent scale factor) in Table 4.3. Note that the scaled functions
listed in Table 4.3 do not depend on s. Since the modified Bessel functions are
positive, so are the Matern functions. Two examples are displayed in Figure 4.3.
The function on the left is displayed using a shape parameter c = 3. The plot
on the right is scaled so that the value at the origin equals one and uses a shape
parameter c = 10. Note that the function on the left (corresponding to J3 = 8 ! 1

)

is not differentiable at the origin. The Matern function for j3 = s!3 is C 2 smooth,
and that for j3 = 8! 5 is in C4 (:IR8

).

Table 4.3 Matern functions for various choices of /3.

4.5 Example 5: Generalized Inverse Multiquadrics

Since both 1> and <i> in the previous example are positive radial functions we can
use the Hankel inversion theorem (see Appendix B) to reverse their roles and see
that the so-called generalized inverse multiquadrics

1>(x) = (1 + llxll 2)-/3, J3 > ~' (4.6)

are strictly positive definite on Rs for s < 2/3. Generalized inverse multiquadrics are
infinitely differentiable. By using another argument based on completely monotone

42 Meshfree Approximation Methods with MATLAB

0.8 0.8

0.6 0.6
z z

0.4 0.4

0.2 0.2

0 0
1 1

y x y x

Fig. 4.3 Matern functions with /3 = 5 ! 1 (left) and f3 = 5 ! 5 (right) centered at the origin in JR2 .

functions we will be able to show that in fact we need to require only (3 > 0, and
therefore the generalized inverse multiquadrics are strictly positive definite on lR8

for any s.
The "original" inverse multiquadric was introduced by Hardy in the early 1970s

and corresponds to the value (3 = 1/2. The special choice (3 = 1 was referred to as
inverse quadratic in various papers of Fornberg and co-workers (see, e.g., [Fornberg
and Wright (2004)]). These two functions are displayed in Figure 4.4 using a shape
parameter c = 5.

y x y x

Fig. 4.4 Inverse multiquadric (/3 = ~, left) and inverse quadratic (/3 = 1, right) centered at the
origin in JR2 .

4.6 Example 6: Truncated Power Functions

We now present an example of a family of strictly positive definite functions with
compact support. Note that due to the observation made in Theorem 3.9 at the end
of the previous chapter, they can not be strictly positive definite on lR 8 for all s.

4. Examples of Strictly Positive Definite Radial Functions 43

The truncated power functions

<pt(r) = (1 - r)~ (4.7)

give rise to strictly positive definite and radial functions on JRS provided l satisfies
l > L ~ J + 1. Finding the Fourier transform of the truncated power function is
rather involved. For details we refer to [Wendland (2005a)]. We will later use a
simpler test based on multiply monotone functions to establish the strict positive
definiteness of the truncated power functions. In (4. 7) we used the cutoff function
(·)+ which is defined by

(x)+ = {x,
0,

for x > 0,

for x < 0.

The cutoff function can be implemented conveniently in MATLAB using the max
function, i.e., if fx is a vector of function values off for different choices of x, then
max(fx,0) computes (f(x))+. We also point out that the expressions of the form
(1-r)~ are to be interpreted as ((1 - r)+)l, i.e., we first apply the cutoff function,
and then the power.

Two different truncated power functions (with l = 2, 4) are displayed in Fig­
ure 4.5. While none of the truncated power functions are differentiable at the origin,
the smoothness at the boundary of the support increases with l.

0.8

0.6 0.6
z z

0.4 0.4 ... ······

0.2 0.2

0 0
1 1

x x

Fig. 4.5 Truncated power function with f. = 2 (left) and e = 4 (right) centered at the origin in
JR2.

4. 7 Example 7: Potentials and Whittaker Radial Functions

Let f E C[O, oo) be non-negative and not identically equal to zero, and define the
function cp by

cp(r) = 1= (1 - rt)~-l f(t)dt. (4.8)

44 Meshfree Approximation Methods with MATLAB

Then <I>= cp(ll · 11) is strictly positive definite and radial on IR8 provided k > l~J + 2
(see also Theorem 5.5 below). This can be verified by considering the quadratic
form

N N 00 N N

LL CJCkcp(llx1 - xkll) = 1 LL CJCk'Pk-1 (tllx1 - xkll)f(t)dt
j=lk=l 0 j=lk=l

which is non-negative since the truncated power function 'Pk-l (II · II) is strictly
positive definite by Example 6, and f is non-negative. Since f is also assumed to
be not identically equal to zero, the only way for the quadratic form to equal zero
is if c = 0, and therefore <p is strictly positive definite.

For example, if we take f(t) = tf3, /3 > 0, then we get

r(k)r(/3 + 1)
<I>(x) = r(k + /3 + l)llxll/3+1. (4.9)

While these functions are strictly positive definite and radial they are also singular
at the origin and therefore not useful for our purposes. However, these functions
are - up to scaling - generalizations of the Coulomb potential (for /3 = 0), and
can therefore be given a physical interpretation.

Another possibility is to take f(t) = t 0 e-f3t, a> 0, /3 > 0. Then we get

;F,.() - ll:rl/(k-a)/2r(l+o.)r(k) - 2iizll
'l' x - ,Bl+(k+a)/2r(k+o.+2) e x (4.10)

(kMco.-k)/2,(k+o.+1)/2 (i&i) + (1 + a)M1-(k-a)/2,(k+o.+1)/2 (11 ~ 11)) ·
Here Mµ,v is the Whittaker-M function, a confluent hypergeometric function (see,
e.g., Chapter 13 of [Abramowitz and Stegun (1972)]). When v is a half-integer
(which is, e.g., the case for integer k and a) formula (4.10) simplifies significantly.
Examples for various integer values of k and a are listed in Table 4.4. Note that
these functions are not defined at the origin. However, they can be made (only)
continuous at the origin. Plots of two of these functions are provided in Figure 4.6.
Note that only the functions fork > 3 are guaranteed to be strictly positive definite
and radial on IR3 .

0

1

Table 4.4 Whittaker radial functions <I> for various choices of k and a.

k=2

13
f3 - llxll + llxlle -R

132
13

13 - 2llxll + (!3 + 2llxll)e -~
133

k=3

132
- 213llxll + 2llxll 2

- 2llxll 2 e -~
133

132
- 413llxll + 6llxll 2

- (21311xll + 61ixi1 2)e -~
134

Equation (4.8) amounts to another integral transform of f (not listed in
Appendix B) with the compactly supported truncated power function as integra­
tion kernel. We will take another look at these functions in the context of multiply
monotone functions below.

4. Examples of Strictly Positive Definite Radial Functions

x

0.8 ...

0.6 . ..
z

0.4

0.2

0 ...
1

y -1 -1

45

x

Fig. 4.6 Whittaker radial functions for a = 0 and (3 = 1 with k = 2 (left) and k = 3 (right)
centered at the origin in JR2 .

4.8 Example 8: Integration Against Strictly Positive
Definite Kernels

In fact, in [Wendland (2005a)] it is shown that integration of any non-negative
function f that is not identically equal to zero against a function K(t, ·) that is
strictly positive definite on JR.s leads to another function that is strictly positive
definite on JR.s, i.e.,

cp(r) = fo00

K(t, r)f(t)dt

gives rise to <I> = cp(ll · II) being strictly positive definite on JR.s. By choosing f and
K appropriately we can obtain both globally supported and compactly supported
functions.

For example, the multiply monotone functions in Williamson's characterization
Theorem 5.4 are covered by this general theorem by taking K(t, r) = (1-rt)~-l and
f an arbitrary positive function in L 1 so that dµ(t) = f(t)dt. Also, functions that
are strictly positive definite and radial on JR.s for all s (or equivalently completely
monotone functions) are covered by choosing K(t, r) = e-rt.

4.9 Summary

To summarize the theory surveyed thus far we can say that any multivariate (radial)
function <I> whose Fourier transform is non-negative can be used to generate a basis
for the scattered data interpolation problem by shifting it to the data sites. The
function <I> can be positive, oscillatory, or have compact support. However, if <I> has
any zeros then it cannot be strictly positive definite on JR.s for all choices of s.

Chapter 5

Completely Monotone and
Multiply Monotone Functions

Since Fourier transforms are not always easy to compute, we now present two alter­
native criteria that allow us to decide whether a function is strictly positive definite
and radial on lR8 (one for the case of alls, and one for only limited choices of s).

5.1 Completely Monotone Functions

We begin with the former case. To this end we now introduce a class of functions
that is very closely related to positive definite radial functions and leads to a simple
characterization of such functions.

Definition 5.1. A function r.p : [O, oo) ~ IR that is in C[O, oo) n C 00 (0, oo) and
satisfies

(-l)lr.p(i)(r) > 0, r > 0, £ = 0, 1, 2, ... ,

is called completely monotone on [O, oo).

Example 5.1. The function r.p(r) = c, c > 0, is completely monotone on [O, oo).

Example 5.2. The function r.p(r) = e-er, c > 0, is completely monotone on [O, oo)
since

£ = 0, 1, 2,

Example 5.3. The function r.p(r) = (l: r)f3, f3 > 0, is completely monotone on

[O, oo) since

(-l)lr.p(l)(r) = (-1) 2i/3(/3 + 1) · · · ({3 + £- 1)(1 + r)-f3-l > 0, £ = 0, 1, 2,

Some properties of completely monotone functions that can be found in [Cheney
and Light (1999); Feller (1966); Widder (1941)] are:

(1) A non-negative finite linear combination of completely monotone functions is
completely monotone.

(2) The product of two completely monotone functions is completely monotone.

47

48 Meshfree Approximation Methods with MATLAB

(3) If <pis completely monotone and 'ljJ is absolutely monotone (i.e., '!jJ(£) 2 0 for all
f. 2 0), then 'ljJ o <p is completely monotone.

(4) If <pis completely monotone and 'ljJ is a positive function such that its derivative
is completely monotone, then <p o 'ljJ is completely monotone.

Note that the functions in the second and third example above are, except for
a variable substitution r ~ r 2 , similar to the Gaussian and inverse multiquadrics
mentioned earlier. In order to see how completely monotone functions are related
to strictly positive definite radial functions we require an integral characterization
of completely monotone functions.

Theorem 5.1 (Hausdorff-Bernstein-Widder). A function <p : [O, oo) - IR is
completely monotone on [O, oo) if and only if it is the Laplace transform of a finite
non-negative Borel measureµ on [O, oo), i.e., <p is of the form

<p(r) = £µ(r) = 100

e-rtdµ(t).

Proof. Widder's proof of this theorem can be found in [Widder (1941)], p. 160,
where he reduces the proof of this theorem to another theorem by Hausdorff on
completely monotone sequences. A detailed proof can also be found in the books
[Cheney and Light (1999); Wendland (2005a)]. 0

Theorem 5.1 shows that, in the spirit of our earlier remarks, the function :p(r) =

e-cr can be viewed as the fundamental completely monotone function.
The following connection between positive definite radial and completely mono­

tone functions was first pointed out by Schoenberg in 1938.

Theorem 5.2. A function <p is completely monotone on [O, oo) if and only if <I> =

<p(ll · 11 2) is positive definite and radial on IR 8 for alls.

Note that the function <I> is now defined via the square of the norm. This differs
from our definition of radial functions (see Definition 2.1).

Proof. One possibility is to use a change of variables to combine Schoenberg's
characterization of functions that are positive definite and radial on any lR8

, Theo­
rem 3.8, with the Hausdorff-Bernstein-Widder characterization of completely mono­
tone functions. To get more insight we present an alternative proof of the claim that
the completely monotone function <p gives rise to a <I> that is positive definite and
radial on any lR8

• Details for the other direction can be found, e.g., in [Wendland
(2005a)].

The Hausdorff-Bernstein-Widder theorem implies that we can write <p as

5. Completely Monotone and Multiply Monotone Functions 49

with a finite non-negative Borel measure µ. Therefore, <I>(x) = cp(llxJl 2
) has the

representation

<I>(x) = fooo e-llxll2tdµ(t).

To see that this function is positive definite on any IR8 we consider the quadratic
form

N N 00 N N

L Lcjck<I>(xj - xk) = 1 L LCjCke-tllxi-xi.:11
2
dµ(t).

j=lk=l 0 j=lk=l

Since we saw earlier that the Gaussians are strictly positive definite and radial on
any IR8 it follows that the quadratic form is non-negative. D

We can see from the previous proof that if the measure µ is not concentrated
at the origin, then cl> is even strictly positive definite and radial on any IR8

• This
condition on the measure is equivalent with <p not being constant. With this addi­
tional restriction on <p we can apply the notion of a completely monotone function
to the scattered data interpolation problem. The following interpolation theorem
originates in the work of Schoenberg ([Schoenberg (1938a)], p. 823) who showed
that complete monotonicity implies strict positive definiteness, thus providing a
very simple test for verifying the well-posedness of many scattered data interpo­
lation problems. A proof that the converse also holds can be found in [Wendland
(2005a)].

Theorem 5.3. A function <p : [O, oo) ~ IR is completely monotone but not constant
if and only if cp(ll · 11 2

) is strictly positive definite and radial on IR8 for any s.

Example 5.4. Since we showed above that the functions cp(r) = e-e:r, c > 0, and
cp(r) = 1/(1 + r)f3, (3 2: 0, are completely monotone on [O, oo), and since they are
also not constant we know from Theorem 5.3 that the Gaussians <I>(x) = cp(llxll 2) =

e-e:
2

llxll
2

, c > 0, and inverse multiquadrics <I>(x) = cp(llxll 2
) = 1/(1 + llxll 2)f3, (3 2: 0,

are strictly positive definite and radial on IR8 for all s. Not only is the test for
complete monotonicity a simpler one than calculation of the Fourier transforms,
but we also are able to verify strict positive definiteness of the inverse multiquadrics
without any dependence of son (3.

5.2 Multiply Monotone Functions

We can also use monotonicity to test for strict positive definiteness of radial func­
tions on IR 8 for some fixed value of s. To this end we introduce the concept of a
multiply monotone function.

Definition 5.2. A function cp: (0, oo) ~IR which is in ck-2 (0, oo), k > 2, and for
which (-l)lcp(l)(r) is non-negative, non-increasing, and convex for l = 0, 1, 2, ... , k-

50 Meshfree Approximation Methods with MATLAB

2 is called k-times monotone on (0, oo). In case k = 1 we only require r..p E C (0, oo)
to be non-negative and non-increasing.

Since convexity of r..p means that r..p(ri tr2) < <;:i(ri)~<;:i(r2), or simply r..p" (r) > 0 if

r..p" exists, a multiply monotone function is in essence just a completely monotone
function whose monotonicity is "truncated".

Example 5.5. The truncated power function (c.f. (4.7))

r..pt(r) = (1 - r)~

is .e-times monotone for any .e since

(-l)lr..p~l)(r) = .e(.e-1) ... (f- l + 1)(1- r)~-l > 0, l = 0, 1, 2, ... ,.e.

We saw in Section 4.6 that the truncated power functions lead to radial functions
that are strictly positive definite on lR8 provided .e > Ls/2J + 1.

Example 5.6. If we define the integral operator I by

(If)(r) = 100

f(t)dt, r > 0, (5.1)

and f is f-times monotone, then If is .e + 1-times monotone. This follows immedi­
ately from the fundamental theorem of calculus. As we will see later, the operator
I plays an important role in the construction of compactly supported radial basis
functions.

To make the connection to strictly positive definite radial functions we require
an integral representation for the class of multiply monotone functions. This was
given in [Williamson (1956)] but apparently already known to Schoenberg in 1940.

Theorem 5.4 (Williamson). A continuous function r..p : (0, oo) --+ JR is k-times
monotone on (0, oo) if and only if it is of the form

r..p(r) = fo00

(1 - rt)~- 1 dµ(t), (5.2)

whereµ is a non-negative Borel measure on (0, oo).

Proof. To see that a function of the form (5.2) is indeed multiply monotone we
just need to differentiate under the integral (since derivatives up to order k - 2
of (1 - rt)~-l are continuous and bounded). The other direction can be found in
[Williamson (1956)]. D

Williamson's characterization shows us that - just like the truncated power
functions - the Whittaker radial functions (4.10) in Section 4.7 are based on mul­
tiply monotone functions.

For k --+ oo the Williamson characterization corresponds to the Hausdorff­
Bernstein-Widder characterization Theorem 5.1 of completely monotone functions

5. Completely Monotone and Multiply Monotone Functions 51

(and is equivalent provided we extend Williamson's work to include continuity at
the origin) .

We can see from Sections 4.6 and 4. 7 that multiply monotone functions give rise
to positive definite radial functions. Such a connection was first noted in [Askey
(1973)] (and in the one-dimensional case by Polya) using the truncated power func­
tions of Section 4.6.

In the RBF literature the following theorem was stated in [Micchelli (1986)],
and then refined in [Buhmann (1993a)]:

Theorem 5.5 (Micchelli). Letk = Ls/2J+2 be a positive integer. lf,rp: [O,oo)-+
JR, rp E C[O, oo), is k-times monotone on (0, oo) but not constant, then rp is strictly
positive definite and radial on Rs for any s such that Ls/2j < k - 2.

We would like to mention that several versions of Theorem 5.5 contain mis­
prints in the literature. The correct form should be as stated above (c.f. also the
generalization for strictly conditionally positive definite functions, Theorem 9.3).

Using Theorem 5.5 we can now verify the strict positive definiteness of the
truncated power functions and Whittaker radial functions of Sections 4.6 and 4. 7
without the use of Fourier transforms. Again, as for Gaussians and the Poisson
radial functions, we can view the truncated power function as the fundamental
compactly supported strictly positive definite radial function since it is obtained
using the point evaluation measure in Williamson's characterization of a multiply
monotone function.

It is interesting to observe a certain lack of symmetry in the theory for completely
monotone and multiply monotone functions. First, in the completely monotone
case we can use Theorem 5.3 to conclude that if rp is completely monotone and not
constant then rp(· 2) is strictly positive definite on]Rs for any s. In the multiply
monotone case (see Theorem 5.5) the square is missing. Now it is clear that we
cannot expect the statement with a square to be true in the multiply monotone
case. To see this we consider the truncated power function rp(r) = (1 - r)~ (which
we know - according to Example 5.1 above - to be £-times multiply monotone for
any£). However, the function 'l/J(r) = (1 - r2)~ is not strictly positive definite and
radial on Rs for any s since it is not even strictly positive definite and radial on JR
(and therefore even much less so on any higher-dimensional space). We can see this
from the univariate radial Fourier transform of 'l/J (see Theorem B.l of Appendix B
withs= 1)

52 Meshfree Approximation Methods with MATLAB

Here we used the compact support of 7/J and the fact that J_ 1; 2 (r) = fil7iT cos r.
The function :F1 'ljJ is oscillatory, and therefore 7/J cannot be strictly positive definite
(c.f. Theorem 3.5). In fact, the Fourier transform :F17/J is closely related to the
Poisson radial functions of Section 4.3.

Moreover, in the completely monotone case we have an equivalence between
completely monotone and strictly positive definite functions that are radial on any
JR5 (see Theorem 5.3). Again, we cannot expect such an equivalence to hold in the
multiply monotone case, i.e., the converse of Theorem 5.5 cannot be true. This
is clear since we have already seen a number of functions that are strictly positive
definite and radial, but not monotone at all - namely the oscillatory Laguerre­
Gaussians of Section 4.2 and the Poisson radial functions of Section 4.3.

However, it is interesting to combine the Schoenberg Theorem 5.3 and The­
orem 5.5 based on Williamson's characterization. If one starts with the strictly
positive definite radial Gaussian <.p(r) = e-c:

2
r

2
, then Theorem 5.3 tells us that

¢(r) = <.p(y'r) = e-c:
2

r is completely monotone. Now, any function that is com­
pletely monotone is also multiply monotone of any order, so that we can use Theo­
rem 5.5 and conclude that the function ¢(r) = e-c:

2
r is also strictly positive definite

and radial on JR5 for alls. Of course, now we can repeat the argument and conclude
that '1/J(r) = e-c:

2
.JF is strictly positive definite and radial on JR5 for alls, and so on

(see [Wendland (2005c)]). This result was already known to Schoenberg (at least
in the non-strict case).

As a final remark in this chapter we mention that we are a long way from
having a complete characterization of (radial) functions for which the scattered
data interpolation problem has a unique solution. As we will see later, such an (as
of now unknown) characterization will involve also functions which are not strictly
positive definite. For example, we will mention a result of Micchelli's according
to which conditionally positive definite functions of order one can be used for the
scattered data interpolation problem. Furthermore, all of the results dealt with so
far involve radial basis functions that are centered at the given data sites. There
are only limited results addressing the situation in which the centers for the basis
functions and the data sites may differ.

Chapter 6

Scattered Data Interpolation with
Polynomial Precision

6.1 Interpolation with Multivariate Polynomials

As we mentioned in the introduction it is not an easy matter to use polynomials
to perform multivariate scattered data interpolation. Only if the data sites are in
certain special locations can we guarantee well-posedness of multivariate polynomial
interpolation. We now address this problem.

Definition 6.1. We call a set of points X = {x1 , ... , XN} C lR8 m-unisolvent if
the only polynomial of total degree at most m interpolating zero data on X is the
zero polynomial.

This definition guarantees a unique solution for interpolation to given data at a
subset of cardinality M = (m~s) of the points x 1 , ... , XN by a polynomial of degree
m. Here M is the dimension of the linear space rr:n of polynomials of total degree
less than or equal to m in s variables.

For polynomial interpolation at N distinct data sites in lR8 to be a well-posed
problem, the polynomial degree needs to be chosen accordingly, i.e., we need M =

N, and the data sites need to form an m-unisolvent set. This is rather restrictive.
For example, this implies that polynomial interpolation at N = 7 points in IR2

can not be done in a unique way since we could either attempt to use bivariate
quadratic polynomials (for which M = 6), or bivariate cubic polynomials (with
M = 10). There exists no space of bivariate polynomials for which M = 7.

We will see in the next chapter that m-unisolvent sets play an important role in
the context of conditionally positive definite functions. There, however, even though
we will be interested in interpolating N pieces of data, the polynomial degree will
be small (usually m = 1, 2, 3), and the restrictions imposed on the locations of the
data sites by the unisolvency conditions will be rather mild.

A sufficient condition (to be found in [Chui (1988)], Ch. 9) on the points
X1, ... , XN to form an m-unisolvent set in IR2 is

Theorem 6.1. Suppose {Lo, ... , Lm} is a set ofm+l distinct lines in IR2 , and that
U = { u1, ... , UM} is a set of M = (m + 1)(m + 2)/2 distinct points such that the

53

54 Meshfree Approximation Methods with MATLAB

first point lies on Lo, the next two points lie on Li but not on Lo, and so on, so that
the last m + 1 points lie on Lm but not on any of the previous lines Lo, ... , Lm-l ·
Then there exists a unique interpolation polynomial of total degree at most m to
arbitrary data given at the points in U. Furthermore, if the data sites { x 1, ... , x N}
contain U as a subset then they form an m-unisolvent set on JR2 .

Proof. We use induction on m. Form= 0 the result is trivial. Take R to be the
matrix arising from polynomial interpolation at the points in U, i.e.,

Rjk = Pk(uJ), j, k = 1, ... , M,

where the Pk form a basis of II~. We want to show that the only possible solution
to Re= 0 is c = 0. This is equivalent to showing that if p E II~ satisfies

p(ui) = 0, i = 1, ... , M,

then p is the zero polynomial.
For each i = 1, ... , m, let the equation of the line Li be given by

CtiX + f3iY = ri,

where x = (x, y) E JR2 .

Suppose now that p interpolates zero data at all the points Ui as stated above.
Since p reduces to a univariate polynomial of degree m on Lm which vanishes at
m + 1 distinct points on Lm, it follows that p vanishes identically on Lm, and so

p(x, y) = (etmX + f3mY - rm)q(x, y),

where q is a polynomial of degree m - 1. But now q satisfies the hypothesis of the
theorem with m replaced by m - 1 and U replaced by U consisting of the first (m;ri)
points of U. By induction, therefore q - 0, and thus p = 0. This establishes the
uniqueness of the interpolation polynomial. The last statement of the theorem is
obvious. D

A similar theorem was already proved in [Chung and Yao (1977)]. Theorem 6.1
can be generalized to lR8 by using hyperplanes. The proof is constructed with the
help of an additional induction on s. Chui also gives an explicit expression for the
determinant of the matrix associated with (polynomial) interpolation at the set of
points U.

Remark 6.1. For later reference we note that (m - 1)-unisolvency of the points
x1, ... , XN is equivalent to the fact that the matrix P with

PJz=pz(xJ), j=l, ... ,N, l=l, ... ,M,

has full (column-)rank. For N = M this is the polynomial interpolation matrix.

Example 6.1. As can easily be verified, three collinear points in JR2 are not 1-
unisolvent, since a linear interpolant, i.e., a plane through three arbitrary heights
at these three collinear points is not uniquely determined. On the other hand, if a
set of points in JR2 contains three non-collinear points, then it is 1-unisolvent.

6. Scattered Data Interpolation with Polynomial Precision 55

We used the difficulties associated with multivariate polynomial interpolation
as one of the motivations for the use of radial basis functions. However, sometimes
it is desirable to have an interpolant that exactly reproduces certain types of func­
tions. For example, if the data are constant, or come from a linear function, then
it would be nice if our interpolant were also constant or linear, respectively. Unfor­
tunately, the methods we have presented thus far (except for the distance matrix
fit in the s = 1 case) do not reproduce these simple polynomial functions. More­
over, later on we will be interested in applying our interpolation methods to the
numerical solution of partial differential equations, and practitioners (especially of
finite element methods) often judge an interpolation method by its ability to pass
the so-called patch test. An interpolation method passes the standard patch test if
it can reproduce linear functions. In engineering applications this translates into
exact calculation of constant stress and strain. We will see later that in order to
prove error estimates for meshfree approximation methods it is not necessary to
be able to reproduce polynomials globally (but local polynomial reproduction is an
essential ingredient). Thus, if we are only concerned with the approximation power
of a numerical method there is really no need for the standard patch test to hold.

6.2 Example: Reproduction of Linear Functions Using
Gaussian RBFs

If we do insist on reproduction of linear functions then the top part of Figure 6.1
shows a Gaussian RBF interpolant (c = 6) to the bivariate linear function f(x, y) =

(x + y)/2 based on 1089 uniformly spaced points in the unit square along with
the absolute error. Clearly the interpolant is not completely planar - not even to
machine precision.

Fortunately, there is a simple remedy for this problem. All we need to do
is add the polynomial functions x 1-+ 1, x 1-+ x, and x 1-+ y to the basis
{e-e

2
ll·-:z:1ll

2
, ••• ,e-e

2
ll·-:z:Nll

2
} we have thus far been using to obtain our inter­

polant. However, now we have N + 3 unknowns, namely the coefficients Ck,

k = 1, ... , N + 3, in the expansion
N

P1(x) = L Cke-e
2

ll:z:-:z:1cll
2 + CN+l + CN+2X + CN+3Y, x = (x, y) E lR.2 ,

k=l

and we have only N conditions to determine them, namely the interpolation con­
ditions

P1(xj) = f(xj) = (xj + yj)/2, j = 1, ... , N.

What can we do to obtain a (non-singular) square system? As we will see below,
we can add the following three conditions:

N

Lck = 0,
k=l

56 Meshfree Approximation Methods with MATLAB

N

LCkXk = 0,
k=l

N

LCkYk = 0.
k=l

How do we have to modify our existing MATLAB program for scattered data
interpolation to incorporate these modifications? If we previously dealt with the
solution of

Ac=y,

with Ajk = e-c:
2
Jl:cj-:ckil

2
, j, k 1, ... , N, c = [c1 , ... , cN]T,

[f(x1), ... , f(xN)]T, then we now have to solve the augmented system
and y

(6.1)

where A, c, and y are as before, and Pjl = pz(xJ), j = 1, ... , N, l = 1, ... , 3, with
p1(x) = 1, p2(x) = x, and p3(x) = y. Moreover, 0 is a zero vector of length 3, and
0 is a zero matrix of size 3 x 3.

The MATLAB script RBF!nterpolation2Dlinear .m shows an implementation
of this approach for Gaussians (although they can easily be replaced by any other
RBF) and test function f(x, y) = (x + y)/2. The resulting interpolant using N = 9
equally spaced data points and c = 6 is shown in the bottom part of Figure 6.1.
Now, while still not perfectly linear, the error is on the level of machine accuracy.

Program 6.1. RBFinterpolation2Dlinear. m

% RBFinterpolation2Dlinear
% Script that performs 2D RBF interpolation with reproduction of
% linear functions
% Calls on: DistanceMatrix

% Define the Gaussian RBF and shape parameter
1 rbf = ©(e,r) exp(-(e*r).-2); ep = 6;

% Define linear test function
2 testfunction = ©(x,y) (x+y)/2;

% Number and type of data points
3 N = 9; gridtype = 'u';

% Load data points
4 name= sprintf('Data2D_%d%s',N,gridtype); load(name)
5 ctrs = dsites;
6 neval = 40; M = neval-2; grid= linspace(0,1,neval);
7 [xe,ye] = meshgrid(grid); epoints = [xe(:) ye(:)];

% Evaluate the test function at the data points.
8 rhs = testfunction(dsites(:,1),dsites(:,2));

6. Scattered Data Interpolation with Polynomial Precision

% Add zeros for linear (20) reproduction
g rhs = [rhs; zeros(3,1)];

% Compute distance matrix between the data sites and centers
10 DM_data = DistanceMatrix(dsites,ctrs);

% Compute interpolation matrix
11 IM= rbf(ep,DM_data);

% Define 3-column matrix P for linear reproduction
12 PM= [ones(N,1) dsites];

% Augment interpolation matrix
13 IM = [IM PM; [PM' zeros(3,3)]];

% Compute distance matrix between evaluation points and centers
14 DM_eval = DistanceMatrix(epoints,ctrs);

% Compute evaluation matrix
15 EM= rbf(ep,DM_eval);

% Add column for constant reproduction
16 PM= [ones(M,1) epoints]; EM= [EM PM];

% Compute RBF interpolant
% (evaluation matrix * solution of interpolation system)

17 Pf= EM* (IM\rhs);
% Compute maximum error on evaluation grid

18 exact= testfunction(epoints(: ,1),epoints(:,2));
19 maxerr = norm(Pf-exact,inf);
20 rms_err = norm(Pf-exact)/neval;
21 fprintf('RMS error: %e\n', rms_err)
22 fprintf('Maximum error: %e\n', maxerr)
23 fview = [-30,30];
24 plotsurf(xe,ye,Pf,neval,exact,maxerr,fview);
25 ploterror2D(xe,ye,Pf,exact,maxerr,neval,fview);

57

Note that Program 6.1 is almost the same as Program 2.1. The only difference
are lines 9, 12, 13, and 16 that have been added to deal with the augmented problem.
In Program 6.1 we also modified the definition of the test function.

6.3 Scattered Data Interpolation with More General Polynomial
Precision

As we just saw for a specific example, we may want to modify the assumption on
the form (1.1) of the solution to the scattered data interpolation Problem 1.1 by
adding certain polynomials to the expansion, i.e., Pf is now assumed to be of the
form

N M

P1(x) = L:ck<p(llx - xkll) + Ld1p1(x), x E lR. 8
, (6.2)

k=l l=l

58 Meshfree Approximation Methods with MATLAB

x 10-7 x 10-7

2 3 2

1.5 2 1.5
zo.5

~
z

e e
1 w

1
w

0
0.5 1 0.5

0 0
y 0 0 y 0 0 x x

x 10-18 x 10-16

x 10-16

1.5 -········

0.8 0.8

zo.5 z
o.6 e 0.6 0

w 0.5 ... · J:i
0 0.4 0.4

0 ..
1 ' ' 0.2 0.2

0 0
y 0 0 y 0 0 x x

Fig. 6.1 Top: Gaussian interpolant to bivariate linear function with N = 1089 (left) and as­
sociated abolute error (right). Bottom: Interpolant based on linearly augmented Gaussians to
bivariate linear function with N = 9 (left) and associated abolute error (right).

where P1, ... ,PM form a basis for the M = (mr:~i5)-dimensional linear space H:n_ 1
of polynomials of total degree less than or equal to m - 1 in s variables. It seems
awkward to formulate this setup with polynomials in n:i._ 1 instead of degree m
polynomials. However, in light of our discussion of conditionally positive definite
functions in the next chapter this choice is quite natural.

Since enforcing the interpolation conditions Pf (x j) = f (x j), j = 1, ... , N, leads
to a system of N linear equations in the N + M unknowns ck and dz one usually
adds the M additional conditions

N

2:::ckPz(xk) = 0, l = l, ... ,M,
k=l

to ensure a unique solution. The example in the previous section represents the
particular case s = m = 2.

While the use of polynomials is somewhat arbitrary (any other set of M linearly
independent functions could also be used), it is obvious that the addition of poly­
nomials of total degree at most m - 1 guarantees polynomial precision provided the
points in X form an (m -1)-unisolvent set. In other words, if the data come from a

6. Scattered Data Interpolation with Polynomial Precision 59

polynomial of total degree less than or equal to m - 1, then they are fitted exactly
by the expansion (6. 2).

In general, solving the interpolation problem based on the extended expansion
(6.2) now amounts to solving a system of linear equations of the form

[;1r ~] [~] [~], (6.3)

where the pieces are given by Ajk = cp(llxi - xkll), j, k = 1, ... , N, Pjl = pz(xj),
j = 1, ... , N, l = 1, ... , M, c = [c1, ... , cNJT, d = [d1, ... , dM]T, y = [y1, ... , YN]T,
0 is a zero vector of length M, and 0 is an M x M zero matrix. Below we will
study the invertibility of this matrix in two steps. First for the case m = 1 in
Theorem 6.2, and then for the case of general m in Theorem 7.2.

Note that we can easily modify the MATLAB program listed above to deal with
reproduction of polynomials of other degrees. For example, if we want to reproduce
constants then we need to replace lines 9, 12, 13, and 16 by

9 rhs = [rhs; OJ;

12 PM = ones(N,1);

13 IM = [IM PM; [PM' OJ];

16 PM = ones(M,1); EM = [EM PM];

and for reproduction of bivariate quadratic polynomials we can use

9 rhs = [rhs; zeros(6,1)];
12a PM= [ones(N,1) dsites dsites(:,l).-2
12b dsites(:,2).-2 dsites(: ,l).•dsites(:,2)];
13 IM= [IM PM; [PM' zeros(6,6)]];
16a PM
16b
16c EM

= [ones(M,1) epoints epoints(:,1).-2 ...
epoints(:,2) .-2 epoints(:,1).•epoints(: ,2)];

= [EM PM] ;

Of course, these specific examples work only for the case s = 2. The generaliza­
tion to higher dimensions, however, is obvious but more cumbersome.

6.4 Conditionally Positive Definite Matrices and Reproduction of
Constant Functions

We now need to investigate whether the augmented system matrix in (6.3) is non­
singular. The special case m = 1 (in any space dimension s), i.e., reproduction of
constants, is covered by standard results from linear algebra, and we discuss it first.

Definition 6.2. A real symmetric matrix A is called conditionally positive semi-

60 Meshfree Approximation Methods with MATLAB

definite of order one if its associated quadratic form is non-negative, i.e.
N N

L LcickAjk > 0
j=lk=l

for all c = [c 1 , ... , cNf E RN that satisfy

N

Lei =0.
j=l

(6.4)

If c =/=- 0 implies strict inequality in (6.4) then A is called conditionally positive
definite of order one.

In the linear algebra literature the definition usually is formulated using "<"
in (6.4), and then A is referred to as (conditionally or almost) negative definite.
Obviously, conditionally positive definite matrices of order one exist only for N > 1.

We can interpret a matrix A that is conditionally positive definite of order one
as one that is positive definite on the space of vectors c such that

N

Lci = 0.
j=l

Thus, in this sense, A is positive definite on the space of vectors c "perpendicular"
to constant functions.

Now we are ready to formulate and prove

Theorem 6.2. Let A be a real symmetric N x N matrix that is conditionally
positive definite of order one, and let P = [1, ... , lf be an N x 1 matrix (column
vector). Then the system of linear equations

is uniquely solvable.

Proof. Assume [c, df is a solution of the homogeneous linear system, i.e., with
y = 0. We show that [c, d]T = oT is the only possible solution.

Multiplication of the top block of the (homogeneous) linear system by cT yields

cT Ac+ dcT P = 0.

From the bottom block of the system we know pT c = cT P = 0, and therefore

cT Ac= 0.

Since the matrix A is conditionally positive definite of order one by assumption we
get that c = 0. Finally, the top block of the homogeneous linear system under
consideration states that

Ac+ dP = 0,

so that c = 0 and the fact that P is a vector of ones imply d = 0. D

6. Scattered Data Interpolation with Polynomial Precision 61

Since Gaussians (and any other strictly positive definite radial function) give rise
to positive definite matrices, and since positive definite matrices are also condition­
ally positive definite of order one, Theorem 6.2 establishes the nonsingularity of the
(augmented) radial basis function interpolation matrix for constant reproduction.

In order to cover radial basis function interpolation with reproduction of higher­
order polynomials we will now introduce (strictly) conditionally positive definite
functions of order m.

Chapter 7

Conditionally Positive Definite Functions

7.1 Conditionally Positive Definite Functions Defined

In analogy to our earlier discussion of interpolation with positive definite functions
we will now introduce conditionally positive definite and strictly conditionally pos­
itive definite functions of order m. We will realize that these functions provide the
natural generalization of RBF interpolation with polynomial reproduction discussed
in the previous chapter. Examples of strictly conditionally positive definite (radial)
functions are presented in the next chapter.

Definition 7.1. A complex-valued continuous function <I> is called conditionally
positive definite of order m on JR 5 if

N N

L 2.:cjck<I>(xj - xk) ~ 0 (7.1)
j=lk=l

for any N pairwise distinct points x 1 , ... ,XN E lR8
, and c = [c1 1 ••• ,cNf E c_N

satisfying
N

L Cjp(Xj) = 0,
j=l

for any complex-valued polynomial p of degree at most m - 1. The function <I> is
called strictly conditionally positive definite of order m on JR5 if the quadratic form
(7.1) is zero only for c = 0.

An immediate observation is

Lemma 7.1. A function that is {strictly) conditionally positive definite of order
m on lR8 is also (strictly) conditionally positive definite of any higher order. In
particular, a (strictly) positive definite function is always {strictly) conditionally
positive definite of any order.

Proof. The first statement follows immediately from Definition 7.1. The second
statement is true since the case m = 0 yields the class of (strictly) positive definite
functions, i.e., (strictly) conditionally positive definite functions of order zero are
(strictly) positive definite. D

63

64 Meshfree Approximation Methods with MATLAB

As for positive definite functions earlier, we can restrict ourselves to real-valued,
even functions <I> and real coefficients. A detailed discussion is presented in [Wend­
land (2005a)].

Theorem 7.1. A real-valued continuous even function <I> zs called conditionally
positive definite of order m on]Rs if

N N

L 2:.:cjck<I>(xj - xk) > 0 (7.2)
j=lk=l

for any N pairwise distinct points x1, ... , XN E Rs, and c = [c1, ... , cNJT E JRN
satisfying

N

L Cjp(Xj) = 0,
j=l

for any real-valued polynomial p of degree at most m - 1. The function <I> is called
strictly conditionally positive definite of order m on]Rs if the quadratic form (1.2)
is zero only for c _ 0.

The matrix A with entries Ajk = <I>(xj - xk) corresponding to a real and even
strictly conditionally positive definite function <I> of order m can also be interpreted
as being positive definite on the space of vectors c such that

N

L Cjp(xj) = 0, p E rr:n_ 1 .

j=l

Thus, in this sense, A is positive definite on the space of vectors c "perpendicular"
to s-variate polynomials of degree at most m - 1.

We can now generalize the interpolation Theorem 6.2 to the case of general
polynomial reproduction:

Theorem 7.2. lf the real-valued even function <I> is strictly conditionally positive
definite of order m on Rs and the points x 1 , ... , XN form an (m - l)-unisolvent
set, then the system of linear equations {6.3) is uniquely solvable.

Proof. The proof is almost identical to the proof of Theorem 6.2. Assume [c, djT
is a solution of the homogeneous linear system, i.e., with y = 0. We show that
[c, djT = 0 is the only possible solution.

Multiplication of the top block by cT yields

cT Ac+ cT Pd= 0.

From the bottom block of (6.3) we know pT c = 0. This implies CT p = or, and
therefore

cT Ac= 0. (7.3)

7. Conditionally Positive Definite Functions 65

Since the function <I> is strictly conditionally positive definite of order m by assump­
tion we know that the quadratic form of A (with coefficients such that pT c = 0)
above is zero only for c = 0. Therefore (7.3) tells us that c = 0. The unisolvency of
the data sites, i.e., the linear independence of the columns of P (c.f. Remark 6.1),
and the fact that c = 0 guarantee d = 0 from the top block

Ac+Pd = 0

of (6.3).

7.2 Conditionally Positive Definite Functions and Generalized
Fourier Transforms

D

As before, integral characterizations help us identify functions that are strictly con­
ditionally positive definite of order m on ~s. An integral characterization of con­
ditionally positive definite functions of order m, i.e., a generalization of Bochner's
theorem, can be found in the paper [Sun (1993b)]. However, since the subject mat­
ter is rather complicated, and since it does not really help us solve the scattered
data interpolation problem, we do not mention any details here.

The Fourier transform characterization of strictly conditionally positive definite
functions of order m on ~s also makes use of some advanced tools from analy­
sis. However, since this characterization is relevant for our purposes we state the
result (due to [Iske (1994)]) and collect some of the most relevant concepts from
distribution theory in Appendix B.

This distributional approach originated in the manuscript [Madych and Nelson
(1983)]. Many more details can be found in the original papers mentioned above as
well as in the book [Wendland (2005a)].

Theorem 7 .3. Suppose the complex-valued function <I> E B possesses a generalized
Fourier transform <i> of order m which is continuous on ~s \ { 0}. Then <I> is strictly
conditionally positive definite of order m if and only if <i> is non-negative and non­
vanishing.

Theorem 7.3 states that strictly conditionally positive definite functions on ~s
are characterized by the order of the singularity of their generalized Fourier trans­
form at the origin, provided that this generalized Fourier transform is non-negative
and non-zero.

Since integral characterizations similar to Schoenberg's Theorems 3.6 and 3.8
are so complicated in the conditionally positive definite case we do not pursue the
concept of a conditionally positive definite radial function here. The interested
reader is referred to [Guo et al. (1993a)] for details. We will discuss some exam­
ples of radial functions via the Fourier transform approach in the next chapter,
and in Chapter 9 we will explore the connection between completely and multiply
monotone functions and conditionally positive definite radial functions.

Chapter 8

Examples of Conditionally Positive
Definite Functions

We now present a number of strictly conditionally positive definite (radial) func­
tions that are covered by the Fourier transform characterization Theorem 7.3. The
generalized Fourier transforms for these examples are explicitly computed in [Wend­
land (2005a)]. We will establish the strict conditional positive definiteness of these
functions again in detail in the next chapter with the help of completely monotone
functions. Included in the examples below are several of the best known radial basic
functions such as the multiquadric due to [Hardy (1971)] and the thin plate spline
due to [Duchon (1976)].

8.1 Example 1: Generalized Multiquadrics

The generalized multiquadrics

<I>(x) = (1 + llxll 2)!'.3, x E JR5
, /3 E IR\ No,

have generalized Fourier transforms
21+1'.3

<i>(w) = r(-/3) JJwJl-i'.3-s/2Ki'.3+s/2(JJwl1), w =I- 0,

(8.1)

of order m = max(O, I /31), where l,Bl denotes the smallest integer greater than or
equal to f3. Here the Kv are again the modified Bessel functions of the second kind
of order v (c.f. Section 4.5). Note that we need to exclude positive integer values
of ,B since this would lead to polynomials of even degree (see the related discussion
in Example 2 below).

Since the generalized Fourier transforms are positive with a singularity of order
m at the origin, Theorem 7 .3 tells us that the functions

<I> (x) = (-1) r i'.31 (1 + 11 x 11
2) i1 , o < f3 <t- N,

are strictly conditionally positive definite of order m = I /31 (and higher).
For f3 < 0 the Fourier transform is a classical one and we are back to the

generalized inverse multiquadrics of Section 4.5. These functions are again shown
to be strictly conditionally positive definite of order m = 0, i.e., strictly positive
definite.

67

68 Meshfree Approximation Methods with MATLAB

y x x

Fig. 8.1 Hardy's multiquadric with /3 = ~ (left) and a generalized multiquadric with /3 = ~
(right) centered at the origin in JR 2 •

Figure 8.1 shows Hardy's "original" multiquadric (with (3 = 1/2, i.e., strictly
conditionally positive definite of order 1) and a generalized multiquadric with
(3 = 5/2 (i.e., strictly conditionally positive definite of order 3). Note that the
generalized multiquadrics are no longer "bump" functions (as most of the strictly
positive definite functions were), but functions that grow with the distance from
the origin.

The arguments above together with Theorem 7 .2 show that we can use Hardy's
multiquadrics in the form

N

P1(x) = :LckJl + l\x - xkll 2 + d,
k=l

together will the constraint
N

Lck=O
k=l

x E :IR.
8

'

to solve the scattered data interpolation problem. The resulting interpolant will
be exact for constant data. As in our earlier discussions we can scale the basis

functions with a shape parameter E by replacing llxll by lclllxll· This does not
affect the well-posedness of the interpolation problem. However, a small value of E

gives rise to "flat" basis functions, whereas a large value of E produces very steep
functions. As before, the accuracy of the fit will improve with decreasing E while

the stability will decrease, and the numerical results will become increasingly less
reliable. For Figure 8.1 we used the shape parameter E = 1.

By Theorem 9.7 below we can also solve the scattered data interpolation problem
using the simpler expansion

N

P1(x) = :LckJl + llx - xkll 2 ,

k=l
This is what Hardy proposed to do in his work in the early 1970s (see, e.g., [Hardy
(1971)]).

8. Examples of Conditionally Positive Definite Functions

8.2 Example 2: Radial Powers

The radial powers

<I>(x) = llxll 13 ,

have generalized Fourier transforms

~ 2.B+s/2r(s+,8)
<I>() = 2 II 11-13 -s w r(-/3/2) w , w =f. 0,

of order m = I j3 /2-1. Therefore, the functions

<I>(x) = (-1)ri3121llxlli3, 0 < j3 <t. 2N,

are strictly conditionally positive definite of order m = l/3/21 (and higher).

69

(8.2)

This shows that the basic function <I>(x) = llxll2 used for the distance matrix
fits in the introductory chapter are strictly conditionally positive definite of order
one. According to Theorem 7.2 we should have used these basic functions together
with an appended constant. However, Theorem 9. 7 below provides the justification
for their use as a pure distance matrix.

In Figure 8.2 we show radial cubics (/3 = 3, i.e., strictly conditionally positive
definite of order 2) and quintics (/3 = 5, i.e., strictly conditionally positive definite
of order 3).

Note that we had to exclude even powers in (8.2). This is clear since an even
power combined with the square root in the definition of the Euclidean norm results
in a polynomial - and we have already decided that polynomials cannot be used
for interpolation at arbitrarily scattered multivariate sites.

Note that radial powers are not affected by a scaling of their argument. In other
words, radial powers are shape parameter free. This has the advantage that the
user need not worry about finding a "good" value of c. On the other hand, we will
see below that radial powers will not be able to achieve the spectral convergence
rates that are possible with some of the other basic functions such as Gaussians and
generalized (inverse) multiquadrics.

y x

el .\ : .. >·

z 41· , .. ···
2 .. ·····

0
1

y -1 -1
x

Fig. 8.2 Radial cubic {left) and quintic (right) centered at the origin in JR2 .

70 Meshfree Approximation Methods with MATLAB

8.3 Example 3: Thin Plate Splines

In the previous example we had to rule out even powers. However, if the even radial
powers are multiplied by a log term, then we are back in business.

Duchon's thin plate splines (or Meinguet's surface splines)

xEIR.8
, /3EN, (8.3)

have generalized Fourier transforms

<i>(w) = (-1)f'+122J3-I+s/2r(/3 + s/2)/3!llwll-s-2/3

of order m = /3 + 1. Therefore, the functions

<I>(x) = (-1)f'+l llxll 2t3 log llxll, /3 E N,

are strictly conditionally positive definite of order m = /3 + 1. In particular, we can
use

N

P1(x) = ·~.::::Ckllx - xkll 2 log llx - xkll +di+ d2x + d3y, x = (x,y) E IR.2 ,

k=l

together will the constraints
N N N

Lek= 0, LCkXk = 0, LCkYk = 0,
k=l k=l k=l

to solve the scattered data interpolation problem in IR.2 provided the data sites are
not all collinear. The resulting interpolant will be exact for data coming from a
bivariate linear function.

0.8 .. ·· ···

0.4
z

0.2 .. ····

y -1 -1 x y x

Fig. 8.3 "Classical" thin plate spline (left) and order 3 thin plate spline (right) centered at the
origin in JR2 .

Figure 8.3 shows the "classical" thin plate spline (with /3 = 1, i.e., strictly
conditionally positive definite of order 2) and the order 3 spline <I>(x) = llxll 4 log llxll ·
Note that the thin plate spline basic functions are not monotone. Also, both graphs
displayed in Figure 8.3 contain a portion with negative function values.

8. Examples of Conditionally Positive Definite Functions 71

As with radial powers, use of a shape parameter c in conjunction with thin plate
splines is pointless. Finally, we note that the families of radial powers and thin plate
splines are often referred to collectively as polyharmonic splines.

There is no result that states that interpolation with thin plate splines (or any
other strictly conditionally positive definite function of order m ~ 2) without the
addition of an appropriate degree m - 1 polynomial is well-posed. Theorem 9.7
quoted several times before covers only the case m = 1.

Chapter 9

Conditionally Positive Definite
Radial Functions

As for strictly positive definite radial functions, we will be able to connect strictly
conditionally positive definite radial functions to completely monotone and multiply
monotone functions, and thus be able to obtain a criterion for checking conditional
positive definiteness of radial functions that is easier to use than the generalized
Fourier transform in the previous chapters.

9.1 Conditionally Positive Definite Radial Functions and
Completely Monotone Functions

In analogy to the discussion in Section 3.3 we now focus on conditionally positive
definite functions that are radial on JR5 for all s. The paper [Guo et al. (1993a)]
by Guo, Hu and Sun contains an integral characterization for such functions. This
characterization is too technical to be included here.

Another important result in [Guo et al. (1993a)] is a characterization of con­
ditionally positive definite radial functions on JR5 for all s in terms of completely
monotone functions.

Theorem 9.1. Let <p E C[O, oo) n C 00 (0, oo). Then the function <I>= rp(ll · 11
2) is

conditionally positive definite of order m and radial on JR5 for all s if and only if
(-1)=rpC=) is completely monotone on (0, oo).

Proof. The fact that complete monotonicity implies conditional positive definite­
ness was proved in [Micchelli (1986)]. Micchelli also conjectured that the converse
holds and gave a simple proof for this in the case m = 1. For m = 0 this is Schoen­
berg's characterization of positive definite radial functions on JR5 for alls in terms of
completely monotone functions (Theorem 5.2). The remaining part of the theorem
is shown in [Guo et al. (1993a)]. 0

In order to get strict conditional positive definiteness we need to generalize
Theorem 5.3, i.e., the fact that <p not be constant. This leads to (see [Wendland
(2005a)])

73

74 Meshfree Approximation Methods with MATLAB

Theorem 9.2. If cp is as in Theorem 9.1 and not a polynomial of degree at most
m, t'hen q, is strictly conditionally positive definite of order m and radial on IRs for
alls.

We can now more easily verify the conditional positive definiteness of the func­
tions listed in the previous chapter.

Example 9.1. The functions

p(r) = (-l)f/31(1 +r)/3,

imply

cp(i) (r) = (-1) f/31 /3(/3 - 1) · · · (/3 - f + 1)(1 + r)/3-i

so that

is completely monotone. Moreover, m = I /31 is the smallest possible m such that
(-l)mcp(m) is completely monotone. Since /3 tt. N we know that cp is not a polyno­
mial, and therefore the generalized multiquadrics (c.f. (8.1))

/3 > 0,

are strictly conditionally positive definite of order m > I /31 and radial on lR8 for all
values of s.

Example 9.2. The functions

cp(r) = (-l)f/3/2lr/3/2, 0 < ,B tt. 2N,

imply

cp(i)(r) = (-1)f/3/2l ~ (~ - 1) · .. (~ - f + 1) r/312-t

so that (-1)ff3/2lcp<f.B/2l) is completely monotone and m = l/3/21 is the smallest
possible m such that (-l)mcp(m) is completely monotone. Since /3 is not an even
integer cp is not a polynomial, and therefore, the radial powers (c.f. (8.2))

/3 > 0, /3 tt. 2N,

are strictly conditionally positive definite of order m > l.B /2-] and radial on lR8 for
all s.

Example 9.3. The thin plate splines (c.f. (8.3))

q,(llxll) = (-1) 13+1 llxll 213 logllxll, /3 EN,

are strictly conditionally positive definite of order m > /3 + 1 and radial on lR8 for
all s. To see this we observe that

9. Conditionally Positive Definite Radial Functions

Therefore, we let

/3 E N,

which is obviously not a polynomial. Differentiating <p we get

<p(l) (r) = (-1),B+l /3(/3 - 1) · · · (/3 - £ + 1)r,B-l log r + Pt(r), 1 < f, < /3,

with Pl a polynomial of degree /3 - £. Therefore, taking£= f3 we have

cp(,B) (r) = (-1),B+l /3! log r + C

and

which is completely monotone on (0, oo).

9.2 Conditionally Positive Definite Radial Functions and Multiply
Monotone Functions

75

Finally, [Micchelli (1986)] proved a more general version of Theorem 5.5 relating
conditionally positive definite radial functions of order m on Rs (for some fixed
value of s) and multiply monotone functions. We state a stronger version due to
[Buhmann (1993a)] which ensures strict conditional positive definiteness.

Theorem 9.3. Let k = Ls /2 J - m + 2 be a positive integer, and suppose <p E

c=-1 [O, oo) is not a polynomial of degree at most m. If (-1)=cpC=) is k-times
monotone on (0, oo) but not constant, then cp is strictly conditionally positive definite
of order m and radial on IRs for any s such that Ls/2J < k + m - 2.

Just as we showed earlier that compactly supported radial functions cannot be
strictly positive definite on Rs for all s, it is important to note that there are no
truly conditionally positive definite functions with compact support. More precisely
(see [Wendland (2005a)]),

Theorem 9.4. Assume that the complex-valued function <I> E C(Rs) has compact
support. If <I> is strictly conditionally positive definite of (minimal} order m, then
m is necessarily zero, i.e., <I> is already strictly positive definite.

Proof. The hypotheses on <I> ensure that it is integrable, and therefore it pos­
sesses a classical Fourier transform <i> which is continuous. For integrable functions
the generalized Fourier transform coincides with the classical Fourier transform.
Theorem 7.3 ensures that <i> is non-negative on Rs\ {O} and not identically equal
to zero. By continuity we also get <i>(O) > 0, and Theorem 3.5 shows that <I> is
strictly positive definite. 0

76 Meshfree Approximation Methods with MATLAB

Theorem 9.3 together with Theorem 9.4 implies that if we perform m-fold anti­
differentiation on a non-constant k-times monotone function, then we obtain a func­
tion that is strictly positive definite and radial on Rs for Ls/2J < k + m - 2.

Example 9.4. The function 'Pk(r) = (1 - r)t is k-times monotone (see Ex­
ample 5.5 in Section 5.2). To avoid the integration constant for the compactly
supported truncated power function we compute the anti-derivative via the integral

operator I of Example 5.6 in Section 5.2, i.e.,

Ic.pk(r) = 1= 'Pk(t)dt = 100

(1-t)idt = ~-l)k (1- r)~+ 1 .
T T + 1

If we apply m-fold anti-differentiation we get

I m () Jlm 1 () (-l)mk (1 - r)k+rn
'Pk r = - 'Pk r = (k + l)(k + 2) · · · (k + m) + ·

Therefore, by Theorem 9.3, the function

c.p(r) = (1 - r)i+m

is strictly conditionally positive definite of order m and radial on Rs for Ls/2J <
k + m - 2, and by Theorem 9.4 it is even strictly positive definite and radial on Rs.
This was also observed in Example 6 of Chapter 4. In fact, we saw there that <.p is

strictly positive definite and radial on Rs for Ls/2J < k + m - 1.

We see that we can construct strictly positive definite compactly supported
radial functions by anti-differentiating the truncated power function. This is es­
sentially the approach taken by Wendland to construct his popular compactly
supported radial basis functions. We provide more details of his construction in
Chapter 11.

9.3 Some Special Properties of Conditionally Positive Definite

Functions of Order One

Since an N x N matrix that is conditionally positive definite of order one is positive
definite on a subspace of dimension N - 1 it has the interesting property that
at least N - 1 of its eigenvalues are positive. This follows immediately from the
Courant-Fischer theorem of linear algebra (see e.g., p. 550 of [Meyer (2000)]):

Theorem 9.5 (Courant-Fischer). Let A be a real symmetric N x N matrix with
eigenvalues >.1 > >.2 2: · · · > >w, then

and

Ak = max min xT Ax
dimV=k :.:EV

11:.:ll=l

Ak = min max xT Ax.
dimV=N-k+l :.:EV

11:.:ll=l

9. Conditionally Positive Definite Radial Functions 77

With an additional assumption on A we can make an even stronger statement.

Theorem 9.6. An N x N matrix A which is conditionally positive definite of or­
der one and has a non-positive trace possesses one negative and N - 1 positive
eigenvalues.

Proof. Let .A1 > .A2 > · · · > AN denote the eigenvalues of A. From the Courant­
Fischer theorem we get

AN-1 = max min xT Ax>
dimV=N-1 "'EV

ll:1>1i=l

min cT Ac> 0,
c: L "k=O

llcll=l

so that A has at least N - 1 positive eigenvalues. But since tr(A) = 'E~=l Ak < 0,
A also must have at least one negative eigenvalue. D

Note that the additional hypothesis of Theorem 9.6 is satisfied for the interpo­
lation matrix resulting from (the negative) of RBFs such as Hardy's multiquadric
or the linear radial function cp(r) = r since its diagonal elements correspond to the
value of the basic function at the origin.

Moreover, we will now use Theorem 9.6 to conclude that we can use radial
functions that are strictly conditionally positive definite of order one (such as the
multiquadric, 0 < {3 < 1, and the norm basic function) without appending the con­
stant term to solve the scattered data interpolation problem. This was first proved
by [Micchelli (1986)] and motivated by Hardy's earlier work with multiquadrics
and Franke's conjecture that the matrix A is non-singular in this case (see [Franke
(1982a)]).

Theorem 9. 7 (Interpolation). Suppose <I> is strictly conditionally positive defi­
nite of order one and that <I>(O) < 0. Then for any distinct points x1, ... , XN E IR 8

the matrix A with entries Ajk = <I>(xJ - xk) has N - 1 positive and one negative
eigenvalue, and is therefore non-singular.

Proof. Clearly, the matrix A is conditionally positive definite of order one. More­
over, the trace of A is given by tr(A) = N<I>(O) < 0. Therefore, Theorem 9.6 applies
and the statement follows. D

As mentioned above, this theorem covers the generalized multiquadrics <I>(x) =

-(1 + llxll),a with 0 < {3 < 1 (which includes the Hardy multiquadric). The theorem
also covers the radial powers <I>(x) = -llxll,a for 0 < {3 < 2 (including the Euclidean
distance function).

Another special property of a conditionally positive definite function of order
one is

Lemma 9.1. lf C is an arbitrary real constant and the real even function <I> is
(strictly) conditionally positive definite of order one, then <I> + C is also {strictly)
conditionally positive definite of order one.

78 Meshfree Approximation Methods with MATLAB

Proof. Simply consider

NN NN NN

L LCJCk[~(Xj - Xk) +CJ = L LCJCk~(Xj - Xk) + L LCJCkC.
j=lk=l j=lk=l j=lk=l

The second term on the right is zero since ~ is conditionally positive definite of
order one, i.e., Ef=1 CJ = 0, and thus the statement follows. D

Chapter 10

Miscellaneous Theory: Other Norms and
Scattered Data Fitting on Manifolds

10.1 Conditionally Positive Definite Functions and p-Norrns

In Chapter 1 we used interpolation with distance matrices as a multivariate general­
ization of the piecewise linear approach. Our choice of the distance matrix approach
was motivated by the fact that the associated basis functions, <I>J(x) = llx - Xj II
would satisfy the dependence on the data sites imposed on a multivariate interpo­
lation method by the Mairhuber-Curtis theorem. We made the (natural?) choice
of using the Euclidean (2-norm) distance function, and then showed in subsequent
chapters that the function <I>(x) = -llxll 2 is strictly conditionally positive definite
of order one and radial on JR5

, and thus our distance matrix approach was indeed
well-posed via Micchelli's Theorem 9.7.

We now briefly consider solving the scattered data interpolation problem with
radial functions based on other p-norms. These norms are defined as usual as

(

s) 1/p

llxllP = ~ lxilP , x E lR8
' 1 ~ p < 00.

The content of this section is mostly the subject of the paper [Baxter (1991)].
If we consider only distance matrices, i.e., interpolation matrices generated by

the basic function <I>(x) = llxllP, then it was shown in [Dyn et al. (1989)] that
the choice p = 1 leads to a singular matrix already for very simple sets of distinct
interpolation points. For example, if X = {(O, 0), (1, 0), (1, 1), (0, 1)} then the 1-
norm distance matrix is given by

[

o 1 2 1]
101 2
2 101 '
121 0

and it is easy to verify that this matrix is singular. This result has discouraged
people from using 1-norm radial basis functions.

However, if we use, e.g., N Halton points, then we have never encountered a
singular 1-norm distance matrix in all of our numerical experiments. In fact, the

79

80 Meshfree Approximation Methods with MATLAB

matrix seems to have N - 1 negative and one positive eigenvalue (just as predicted
by Theorem 9.7 for the 2-norm case).

Figure 10.2 shows various interpolants to the linear function f(x, y) = (x + y)/2
on the unit square. The interpolant is false colored according to the maximum
error. In the top row of the figure we used a 1-norm distance matrix based on 1089
Halton points. The MATLAB code for generating a p-norm distance matrix fit is
virtually identical to our earlier code in Programs 1.1 and 1.2. The only change
required is the replacement of lines 6 and 8 of Program 1.1 by

6 DM = DM + abs(dr-cc).-p;
8 DM = DM.-(1/p);

We can also use this modification of Program 1.1 to produce more general RBF
interpolants (see the example with p-norm Gaussians in the bottom row of Fig­
ure 10.2 below).

Similar to the 1-norm result from [Dyn et al. (1989)] quoted above it was shown
in [Baxter (1991)] that for p > 2 we cannot in general guarantee non-singular
distance matrices, either. On the other hand, a number of numerical experiments
showed the p-norm matrices to be non-singular provided uniformly spaced or Halton
points in [O, 1]2 were used. The second row of Figure 10.2 shows distance matrix
interpolants to f(x, y) = (x + y)/2 on the unit square using a p-norm distance
matrix for p = 10 and p = 100 based on 25 uniformly spaced points.

These examples show that certainly not all is lost when using p-norm radial
basis functions. The situation is similar as with the use of Kansa's method for the
collocation solution of elliptic PDEs (see Chapter 38). There do exist configurations
of data points for which the interpolation matrix becomes singular. However, these
configurations may be rare, and therefore the use of p-norm radial basis functions
may be justified in many cases. We point out that we used norms for p > 2 even
though the Baxter result mentioned above guarantees existence of data sets X for
which the interpolation matrix will be singular. For our examples the interpolation
matrix was far from singular. Using 25 uniformly spaced data sites the matrices
again exhibited 24 negative and one positive eigenvalue. This use of p-norm radial
basis functions certainly deserves further investigation.

The case 1 < p < 2, however, is much better understood. In [Baxter (1991)] we
find

Theorem 10.1. Suppose 1 < p < 2 and let A be the p-norm distance matrix with
entries

j,k = 1, ... ,N.

Then the matrix -A is conditionally positive definite of order one. Moreover,
it is strictly conditionally positive definite of order one if N > 2 and the points
x 1, ... , x N are distinct.

10. Miscellaneous Theory: Other Norms and Scattered Data Fitting on Manifolds 81

This theorem is derived from a much earlier theorem by Schoenberg relating
conditionally positive definite matrices of order one and Euclidean distance matri­
ces. When Schoenberg first studied conditionally positive definite matrices of order
one this was in connection with isometric embeddings. Based on earlier work by
Karl Menger [Menger (1928)] Schoenberg derived the following result characterizing
certain conditionally positive definite matrices as Euclidean distance matrices (see
[Schoenberg (1937)]).

Theorem 10.2 (Schoenberg-Menger). Let A be a real symmetric N x N ma­
trix with all diagonal entries zero and all other elements positive. Then -A is
conditionally positive semi-definite of order one if and only if there exist N points
Y1, · · · ,YN E]RN for which

These points are the vertices of a simplex in JRN.

In the third row of Figure 10.2 we display the interpolants to the test function
f(x, y) = (x+y)/2 on [O, 1] 2 using distance matrix interpolation based on 25 equally
spaced points and p-norms with p = 1.001 and p = 2. Since we use a plain distance
interpolant, i.e., <I>(x) = llxllP it is remarkable that the error using the p = 1.001-
norm is about two orders of magnitude smaller than the next best p-norm distance
matrix fit among our experiments (which we obtained for p = 100, c.f. Figure 10.2).

The use of different p-norms for different applications has not been studied
carefully in the literature.

Two other results regarding interpolation with p-norm radial basis functions
can also be found in the literature. In [Wendland (2005a)] we find a reference to
[Zastavnyi (1993)] according to which - for space dimensions s > 3 - the only
function that is positive definite and p-norm radial on JRS is the zero function.
Again, somewhat discouraging news. However, there is also good news. The follow­
ing rather powerful theorem comes from [Baxter (1991)]. Baxter calls the matrix
A of Theorem 10.2 an almost negative definite matrix (c.f. the remarks following
Definition 6.2).

Theorem 10.3. Let -A be an N x N matrix that is conditionally positive semi­
definite of order one with all diagonal entries zero, and let cp(·2) be a function that
is conditionally positive definite of order one and radial on JRS. Then the matrix
defined by

j,k=l, ... ,N,

is conditionally positive semi-definite of order one. Moreover, if N ~ 2 and no
off-diagonal elements of A vanish, then B is strictly conditionally positive definite
of order one whenever cp(·2) is strictly conditionally positive definite of order one.

82 Meshfre.e Approximation Methods with MATLAB

Proof. By Schoenberg's Theorem 10.2 we can write Ajk = llYJ - Yk II~ for ap­
propriate points YJ E JRN. By assumption :p(-2) is conditionally positive definite of
order one and radial, and therefore B is conditionally positive semi-definite of order
one. Moreover, if Ajk # 0 for all off-diagonal elements, then y 1 , ... , YN are distinct,
and therefore B is strictly conditionally positive definite of order one provided cp(·2)

is strictly conditionally positive definite of order one. 0

Since Baxter also shows that if A is a 1-norm distance matrix, then -A is a
conditionally positive semi-definite matrix of order one, Theorem 10.3 guarantees
that we can use many "standard" radial basic functions in conjunction with the 1-
norm for RBF interpolation. For example, the use of 1-norm Gaussians is justified
by Theorem 10.3. In the literature one can also find an analog of Bochner's theorem
for positive definite 1-norm radial functions due to [Cambanis at al. (1983)] (see
also [Wendland (2005a)]).

Figure 10.1 shows p-norm Gaussians <I>(x) = e- 102 ll::cll~ for p = 1 and p = 10. A
shape parameter c = 3 was used. Interpolants to the function f(x, y) = (x+y)/2 at
25 equally spaced points in [O, 1] 2 using these basic functions with c = 1 are shown
in the bottom row of Figure 10.2.

0.2

0
1

y ·1 -1
x

?···················

0.8
1 i·············· .. ··················.· , .. ············ .L .

~-··················

) ··········
Z0.61···············

0.4~ .

0.2i ···

0
1

y -1 -1 x

Fig. 10.1 p-norm Gaussians for p = 1 (left) and p = 10 (right) centered at the origin in JR.2 .

Another, closely related theorem by Baxter is

Theorem 10.4. Suppose :p(·2) and 'l/J(· 2) are functions that are conditionally pos­
itive definite of order one and radial on JRS with 'l/J(O) = 0. Then 'P 0 'lj.J(- 2) is also
conditionally positive definite of order one and radial on JR 8 • Indeed, if cp(·2) is
strictly conditionally positive definite of order one and radial and 1/J vanishes only
at zero, then cp o 'l/J(-2) is strictly conditionally positive definite of order one and
radial.

This theorem is a generalization of a classical result in linear algebra by Schur
(see, e.g., [Horn and Johnson (1991); Micchelli (1986)], where Schur's theorem was
extended to cover strictness).

10. Miscellaneous Theory: Other Norms and Scattered Data Fitting on Manifolds 83

10.2 Scattered Data Fitting on Manifolds

There exists a sizeable body of literature on the topic of scattered data interpolation
on manifolds, especially the sphere ss-l in :!Rs. We will not mention any specific
results here. Instead we refer the reader to the book [Freeden et al. (1998)], the
survey papers [Cheney (1995a); Fasshauer and Schumaker (1998)], as well as many
original papers such as [Baxter and Hubbert (2001); Bingham (1973); Fasshauer
(1995a); Fasshauer (1999b); Hubbert and Morton (2004a); Hubbert and Morton
(2004b); Levesley et al. (1999); Menegatto (1994b); Narcowich and Ward (2002);
Ragozin and Levesley (1996); Ron and Sun (1996); Schoenberg (1942); Schreiner
(1997); Wahba (1981); Wahba (1982); Xu and Cheney (1992b)].

Radial basis functions on more general Riemannian manifolds are studied in,
e.g., [Dyn et al. (1997); Dyn et al. (1999); Levesley and Ragozin (2002); Narcowich
(1995); Narcowich et al. (2003); Schimming and Belger (1991)].

There is also a "poor man's solution" to interpolation on manifolds, especially
the sphere. One can use the Euclidean radial basis function methods discussed thus
far, and simply restrict their evaluation to the manifold. This approach is outlined
in Section 6 of [Fasshauer and Schumaker (1998)].

We will discuss another, related, interpolation problem later. Namely, interpo­
lation to point cloud data in IR3 . In this case, the underlying manifold is unknown,
and another approach needs to be taken. See Chapter 30 for details.

10.3 Remarks

Many of the results given in the previous chapters can be generalized to vector­
valued or even matrix-valued functions. Some results along these lines can be found
in [Lowitzsch (2002); Lowitzsch (2005); Myers (1992); Narcowich and Ward (1994a);
Schaback (1995a)].

We point out that the approach to solving the interpolation problems taken in
the previous chapters always assumes that the centers, i.e., the points Xk, k =

1, ... , N, at which the basis functions are centered, coincide with the data sites.
This is a fairly severe restriction, and it has been shown in examples in the context
of least squares approximation of scattered data (see, e.g., [Franke et al. (1994);
Franke et al. (1995)] or [Fasshauer (1995a)]) that better results can be achieved
if the centers are chosen different from the data sites. Theoretical results in this
direction are very limited, and are reported in [Quak et al. (1993)] and in [Sun
(1993a)].

84 Meshfree Approximation Methods with MATLAB

x 10-3

1.6
1

1.4

1.2

zo.5 g
a.aw

0.6
0
1 0.4

0.2

0
0

y 0 x
x 10-3

0.015

2

0.01 1.5

g zo.5 g
w w

0 0.005 0
1 1 0.5

0 0 y 0 0 x y 0 0 x
x 10-5

5 • . 0.016

(.- .. ~' 0.014
4

0.012

zo.5 3~ ZQ.5 0.01 ~ g e
w o.ooaw

2
0

0.006
0

1 1 0.004

0 0
y 0 0 x y 0 0 x

0.12

0.1
0.015

0.08
zo.5 g zo.5

~

0.01 e
w o.06w

0 0 0.04
1 0.005 1

0.02

0 0 y 0 0 x y 0 0 x

Fig. 10.2 p-norm distance matrix fits to f(x, y) = (x + y)/2 on a 5 x 5 grid in [O, 1] 2 unless noted
otherwise. Top: p = 1 (1089 Halton points). 2nd row: p = 10 (left), p = 100 (right). 3rd row:
p = 1.001 (left), p = 2 (right). Bottom: p-norm Gaussian fits for p = 1 (left) and p = 10 (right).

Chapter 11

Compactly Supported
Radial Basis Functions

As we saw earlier (see Theorem 9.4), compactly supported functions <I> that are
truly strictly conditionally positive definite of order m > 0 do not exist. The
compact support automatically ensures that <I> is strictly positive definite. Another
observation (see Theorem 3.9) was that compactly supported radial functions can
be strictly positive definite on]Rs only for a fixed maximal s-value. It is not possible
for a function to be strictly positive definite and radial on Rs for alls and also have
a compact support. Therefore we focus our attention on the characterization and
construction of functions that are compactly supported, strictly positive definite
and radial on]Rs for some fixed s.

According to our earlier work (Bochner's theorem and generalizations thereof), a
function is strictly positive definite and radial on Rs if its s-variate Fourier transform
is non-negative. Theorem B.1 in the Appendix gives the Fourier transform of the
radial function <I> = <p(11 · II) as another radial function

where Jv is the Bessel function of the first kind of order v.

11.1 Operators for Radial Functions and Dimension Walks

A certain integral operator and its inverse differential operator were defined in
[Schaback and Wu (1996)]. In that paper an entire calculus was developed for how
these operators act on radial functions. In fact, according to [Gneiting (2002)],
these operators can be traced back to ~Matheron (1965)] who called the integral
operator montee and the differential operator descente motivated by an application
related to mining.

In the following we define these operators and show how they facilitate the
construction of compactly supported radial functions.

85

86 Meshfree Approximation Methods with MATLAB

Definition 11.1.

(1) Let r..p be such that t 1---+ tr..p(t) E L 1 [O, oo). Then we define the integral operator
'I via

('Ir..p)(r) = 1= fr..p(t)dt, r > 0.

(2) For even r..p E C 2 (IR) we define the differential operator V via

(Vr..p)(r) = -~r..p'(r),
r

r > 0.

In both cases the resulting functions are to be interpreted as even functions
using even extensions.

Note that the integral operator 'I differs from the operator I introduced earlier
(see (5.1)) by a factor tin the integrand.

The most important properties of the montee and descente operators are (see,
e.g., [Schaback and Wu (1996)] or [Wendland (1995)]):

Theorem 11.1.

(1) Both V and 'I preserve compact support, i.e., if r..p has compact support, then so
do Vr..p and 'Ir..p.

(2) If r..p E C(IR) and t 1---+ t¢(t) E L 1 [O, oo), then V'Ir..p = r..p.
(3) If r..p E C 2 (IR) (r..p ¢ 1) is even and r..p' E L 1 [0, oo), then 'IVr..p = r..p.
(4) Ift 1---+ ts-lr..p(t) E L1[0,oo) ands~ 3, then :Fs(r..p) = Fs-2('Ir..p).
(5) If r..p E C 2 (IR) is even and t 1---+ tsr..p'(t) E Li[O, oo), then :Fs(r..p) = Fs+2(Vr..p).

The operators 'I and Vallow us to express s-variate Fourier transforms as (s-2)­
or (s+2)-variate Fourier transforms, respectively. In particular, a direct consequence
of the above properties and the characterization of strictly positive definite radial
functions (Theorem 3.6) is

Theorem 11.2.

(1) Suppose r..p E C(IR). If t 1---+ ts- 1 r..p(t) E L 1 [0, oo) ands> 3, then r..p is strictly
positive definite and radial on IRs if and only if 'Ir..p is strictly positive definite
and radial on IRs-2 .

(2) If r..p E C 2 (IR) is even and t 1---+ tsr..p'(t) E L1[0, oo), then r..p is strictly positive
definite and radial on IR s if and only if Vr..p is strictly positive definite and
radial on IRs+2 .

This allows us to construct new strictly positive definite radial functions from
given ones by a "dimension-walk" technique that steps through multivariate Eu­
clidean space in even increments. The examples presented in the following sections
illustrate this technique.

11. Compactly Supported Radial Basis Functions

1 2 Wendland's Compactly Supported Functions 1 .

87

Probably the most popular family of compactly supported radial functions presently
in use was constructed in [Wendland (1995)]. Wendland starts with the truncated
power function r..pe(r) = (1- r)~ (which we know to be strictly positive definite and
radial on :!Rs for f ~ L~J + 1 according to Section 4.6), and then he walks through
dimensions by repeatedly applying the operator I.

Definition 11.2. With r..pe(r) = (1 - r)~ we define

i..ps,k = Tkr..pls/2J+k+I ·

It turns out that the functions i..ps,k are all supported on [O, 1] and have a poly­
nomial representation there. More precisely,

Theorem 11.3. The functions i..ps,k are strictly positive definite and radial on :!Rs
and are of the form

(r) = { Ps,k(r), r E [O, l],
i..ps,k 0, r > 1,

with a univariate polynomial Ps,k of degree Ls/2J +3k+ 1. Moreover, i..ps,k E C2k(JR)
are unique up to a constant factor, and the polynomial degree is minimal for given
space dimension s and smoothness 2k.

This theorem states that any other compactly supported C 2 k polynomial func­
tion that is strictly positive definite and radial on JR5 will not have a smaller poly­
nomial degree. Our other examples below (Wu's functions, Gneiting's functions)
illustrate this fact. The strict positive definiteness of Wendland's functions r..p 5 ,k
starting with non-integer values of C in Definition 11.2 was established in [Gneiting
(1999)]. Note, however, that then the functions are no longer guaranteed to be
polynomials on their support.

Wendland gave recursive formulas for the functions i..ps,k for all s, k. We instead
list the explicit formulas of [Fasshauer (1999a)].

Theorem 11.4. The functions i..ps,k, k = 0, 1, 2, 3, have the form

i..ps,o(r) = (1 - r)~,
r..p s, 1 (r) · (1 - r) ~+ 1

[(C + 1) r + 1],
i..ps,2(r) · (1 - r)~+2 [(£2 + 4£ + 3)r2 + (3£ + 6)r + 3] ,
i..ps,3(r) · (1 - r)~+3 [(£3 + 9£2 + 23£ + 15)r3 + (6£2 + 36£ + 45)r2

+(15£ + 45)r + 15],

where C = Ls/2J + k + 1, and the symbol · denotes equality up to a multiplicative
positive constant.

88 Meshfree Approximation Methods with MATLAB

Proof. The case k = 0 follows directly from the definition. Application of the
definition for the case k = 1 yields

'Ps,1(r) = (Icpe)(r) = 1= tcpe(t)dt

= 1= t(l - t)~dt

~ 1' t{l - t)'dt

1 i+l
(£ + l)(f + 2) (1 - r) [(£ + l)r + 1],

where the compact support of 'Pi reduces the improper integral to a definite integral
which can be evaluated using integration by parts. The other two cases are obtained
similarly by repeated application of I. D

Example 11.1. For s = 3 we list some of the most commonly used functions in
Table 11.l. These functions are strictly positive definite and radial on 1R8 for s :S 3.
We also list their degree of smoothness 2k. The functions were determined using
the formulas from Theorem 11.4, i.e., fork= 1, 2, 3 they match Definition 11.2 only
up to a positive constant factor.

For the MATLAB implementation in the next chapter it is better to express
the compactly supported functions in a shifted form since we will be using a matrix
version of 1-cr in place of the code used earlier in DistanceMatrix.mfor r. Thus we
also list the appropriate functions 'Ps,k = 'Ps,k(l- ·)so that 'Ps,k(l-cr) = 'Ps,k(cr).

For clarification purposes we reiterate that expressions of the form (x)~ are to be

interpreted as ((x)+)e, i.e., we first apply the cutoff function, and then the power.

Table 11.1 Wendland's compactly supported radial functions </)s,k and 'Ps,k = </)s,k(l-·)
for various choices of k and s = 3.

k </)3,k(r) 'P3,k(r) smoothness

0 (1 - r)i r2
+

co
1 (1 - r)t (4r + 1) r+(5-4r) c2

2 (1 - r)~ (35r2 + 18r + 3) r~ (56 - 88r + 35r2) c4
3 (1 - r)~ (32r3 + 25r2 + 8r + 1) r~ (66 - 154r + 121r2 - 32r3) C6

11.3 Wu's Compactly Supported Functions

In [Wu (1995b)] we find another way to construct strictly positive definite radial
functions with compact support. Wu starts with the function

'l/J(r) = (1 - r2)~, f EN,

11. Compactly Supported Ra:dial Basis Functions 89

which in itself is not positive definite (see the discussion at the end of Chapter 5).
However, Wu then uses convolution to construct another function that is strictly
positive definite and radial on IR, i.e.,

7/Jt(r) = (7/J*7/J)(2r)

= 1: (1 - t2)~ (1 - (2r - t) 2)~dt

= [
1

1
(1 - t2)~(1 - (2r - t) 2)~dt.

This function is strictly positive definite since its Fourier transform is essentially
the square of the Fourier transform of 7/J and therefore non-negative. Just like the
Wendland functions, this function is a polynomial on its support. In fact, the degree
of the polynomial is 4t' + 1, and 7/Je E C2l(JR).

Now, a family of strictly positive definite radial functions is constructed by a
dimension walk using the 'D operator.

Definition 11.3. With 7/Je(r) = ((1 - · 2)~ * (1 - · 2)~)(2r) we define

7/Jk,e = 'Dk7/Je.

The functions 7/Jk,e are strictly positive definite and radial on IR8 for s < 2k + 1,
are polynomials of degree 4t' - 2k + 1 on their support and in c2<t-k) in the interior
of the support. On the boundary the smoothness increases to c2t-k.

Example 11.2. Fort'= 3 we can compute the four functions

k = 0,1,2,3.

They are listed in Table 11.2 along with their smoothness. The maximal space
dimension s for which these functions are strictly positive definite and radial on
IR.8 is also listed. Just as with flie Wendland functions, the functions in Table 11.2
match the defi~ition only up to a positive multiplicative constant. Again, we also list
the functions 7/Jk,l = '1/Jk,t(l - ·) used in our MATLABimplementation in Chapter 12.
This representation of the Wu functions is given in Table 11.3.

Table 11.2 Wu's compactly supported radial functions 't/Jk,i for various choices of
k and l = 3.

k 't/Jk,3(r) smoothness s

0 (1 - r)~(5 + 35r + 101r2 + 147r3 + 101r4 + 35r5 + 5r6) c6 1

1 (1 - r)i(6 + 36r + 82r2 + 72r3 + 30r4 + 5r5) C4 3

2 (1 - r)~(8 + 40r + 48r2 + 25r3 + 5r4) c2 5

3 (1 - r) t (16 + 29r + 20r2 + 5r3) co 7

90

0.8

0.6
y

0.4

0.2

Meshfree Approximation Methods with MATLAB

Table 11.3 Shifted version {lk,e of Wu's compactly supported radial functions 'l/Jk,e
for various choices of k and £ = 3.

k

0

1

2

3

{lk,3(r) smoothness s

ri(429 - 1287r + 1573r2 - 1001r3 + 35lr4 - 65r5 + 5r6) C6 1

ri(231 - 56lr + 528r2 - 242r3 + 55r4 - 5r5) C4 3

r!(126 - 23lr + 153r2 - 45r3 + 5r4) c2 5

rt (70 - 84r + 35r2 - 5r3) co 7

0.8

0.6
y

0.4

0.2

O'----~--~~~_._~~------'.,...~~

-1 -0.5 0 0.5
x

Fig. 11.l Plot of Wendland's functions from Example 11.l (left) and Wu's functions from Exam­
ple 11.2 (right).

As predicted by Theorem 11.3, for a prescribed smoothness the polynomial
degree of Wendland's functions is lower than that of Wu's functions. For example,
both Wendland's function rp3 ,2 and Wu's function 7/Ji,3 are C 4 smooth and strictly
positive definite and radial on IR.3 . However, the polynomial degree of Wendland's
function is 8, whereas that of Wu's function is 11. Another comparable function
is Gneiting's oscillatory function 0"2 (see Table 11.5), which is a C 4 polynomial of
degree 9 that is strictly positive definite and radial on IR.3 .

While the two families of strictly positive definite compactly supported functions
discussed above are both constructed via dimension walk, Wendland uses integration
(and thus obtains a family of increasingly smoother functions), whereas Wu needs
to start with a function of sufficient smoothness, and then obtains successively less
smooth functions (via differentiation).

11.4 Oscillatory Compactly Supported Functions

Other strictly positive definite compactly supported radial functions have been pro­
posed by Gneiting (see, e.g., [Gneiting (2002)]). He showed that a family of oscilla­
tory compactly supported functions can be constructed using the so-called turning

11. Compactly Supported Radial Basis Functions 91

bands operator of [Matheron (1973)]. Starting with a function 'Ps that is strictly
positive definite and radial on IR.s for s > 3 the turning bands operator produces

rr.p~ (r)
f./Js-2(r) = 'Ps(r) + -­

s - 2

which is strictly positive definite and radial on IR.s- 2 .

(11.1)

Example 11.3. One such family of functions is generated is we start with the
Wendland functions 'Ps+2,1(r) = (1 - r)~+l [(f + l)r + 1] (f non-integer allowed).
Application of the turning bands operator results in the functions

() -(l-)e (l {) _ (f+l)(f+2+s) 2)
Ts e r - r + + t,T r ,

' s

which are strictly positive definite and radial on IR.s provided f 2: s!5 (see [Gneiting
(2002)]). Some specific functions from this family are listed in Table 11.4. All of
the functions are in C 2 (IR.). If we want smoother functions, then we need to start
with a smoother Wendland family as described below in Example 11.4.

Table 11.4 Gneiting's compactly supported radial
functions rs,£ for various choices of£ and s = 2.

£ T2,l(r) smoothness

7/2 (1 - r)~2 (1 + ~r - 1 ~5 r2) c2

5 (1 - r)~ (1 + 5r - 27r2) c2

15/2 (1 _ r)~5/2 (l + ~5r _ 3~lr2) c2

12 (1 - r)~2 (1+12r - 104r2) c2

The functions of Table 11.4 are shown in the left plot of Figure 11.2 with f
increasing from the outside in (as viewed near the origin).

.. ·-·-·1=7/2
1: :'. ······ 1=5

0.8 j:, ,:_~ - - -1=15/2 0.8

!'• 1:1 -1=12 ,:. •:\ 0.6 ;;r , .. 0.6
·:1 ,:•
!:1 ,:1

y
0.4 !:• 1:\ y

0.4 I; I 1:·,
i: I ,:.
•·I ': ~

0.2 ·':I ' : '· 0.2
1: I I ·. I

.i :· I ' · .. ·, I I ' ·,
0 I \ ·.

.:,);;.~·::·:~·.-
0 ...

J
-0.2 -0.2

-1 -0.5 0 0.5 -1 -0.5

...

0 0.5
x x

Fig. 11.2 Oscillatory functions of Table 11.4 (left) and Table 11.5 (right).

92 Meshfree Approximation Methods wi.th MATLAB

Example 11.4. Alternatively, we can obtain a set of oscillatory functions that are
strictly positive definite and radial on JR3 by applying the turning bands operator
to the Wendland functions <ps,k that are strictly positive definite and radial on JR5

for different choices of k. Then the resulting functions ak will have the same degree
of smoothness 2k as the original functiovs and they will be strictly positive definite
and radial on JR3 . The results for k = 1, 2, 3 are listed in Table 11.5 and displayed
in the right plot of Figure 11.2.

Table 11.5 Oscillatory compactly supported functions that are
strictly positive definite and radial on JR.3 parametrized by smooth­
ness.

k O"k (r) smoothness

1 (1-r)t(1+4r-15r2) 02

2 (1 - r)~ (3 + 18r + 3r2 - 192r3) 0 4

3 (1 - r)i (15 + 120r + 210r2 - 840r3 - 3465r4) 06

Gneiting also suggests the construction of strictly positive definite radial func­
tions by taking the product of the (appropriately scaled) Poisson functions fl 8 (see
either Theorem 3.6 or Section 4.3) with a certain compactly supported non-negative
function (see [Gneiting (2002)] for more details). By Property (6) of Theorem 3.1
the resulting function will be strictly positive definite.

11.5 Other Compactly Supported Radial Basis Functions

There are many other ways in which one can construct compactly supported func­
tions that are strictly positive definite and radial on IR8

• In [Schaback (1995a)]
several such possibilities are described.

Example 11.5. Euclid's hat functions are constructed in analogy to B-splines. It is
well known that the univariate function /3(r) = (1- lri)+ is a second-order B-spline
with knots at -1,0,1, and it is obtained as the convolution of the characteristic
function of the interval [-1/2, 1/2] with itself. Euclid's hat functions are now ob­
tained by convolving the characteristic function of the s-dimensional Euclidean unit
ball with itself. The resulting functions can be written for r E [O, 1] in the form

l.{J2k+1(2r) = 2k+l
{

27T"'P2k-1(2r)-r(l-r2)k

2(1 - r)

for odd space dimensions s = 2k + 1, and as

k = i,2,3, ... ,

k = 0,

{

27T"'P2k(2r)-ry(l-r2)(1-r2)k

l.{J2k+2(2r) = 2k+2 ~~
2(arccosr - rv'l - r2)

k=i,2,3, ... ,

k = 0,

11. Compactly Supported Radial Basis Functions 93

for even space dimensions s = 2k. Note that these functions are zero outside the
interval [O, 2].

We have listed several of these functions in Table 11.6 where we have employed
a substitution 2r -+ r and a normalization factor such that the functions all have
a value of one at the origin. The functions are also displayed in the left plot of
Figure 11.3.

0.8

0.6
y

0.4

0.2

-1

Table 11.6 Euclid's hat functions (defined for 0 ~ r ~ 2) for
different values of s.

s

1

2

3

4

5

'Ps(r)

1-~

2~ (4 arccos (~) - r../4-=?)

1 - 3i7r ((4 + 167r)r - r 3)

1. arccos (.!:.) - -1-~2- (20r + r 3) 7r 2 3211"
1 - 64~2 ((12 + 811' + 327r2)r - (3 + 27r)r3)

0
x

-s=1
·-·- S=2
- - -s=3
-s=4
...... 5=5

y

2

0.8

0.6

0.4

0.2

0
-1 -0.5

smoothness

co
co
co
co
co

0
x

0.5

Fig. 11.3 Euclid's hat functions (left) of Table 11.6 and Buhmann's function of Example 11.6
(right).

Another construction described in [Schaback (1995a)] is the radialization of the
s-fold tensor product of univariate B-splines of even order 2m with uniform knots.
These functions do not seem to have a simple representation that lends itself to
numerical computations. As can be seen from its radialized Fourier transform, the
radialized B-spline itself is not strictly positive definite and radial on any JR5 with
s > 1. For s = 1 only the B-splines of even order are strictly positive definite (see,
e.g., [Scholkopf and Smola (2002)]).

The last family of compactly supported strictly positive definite radial functions
we would like to mention is due to [Buhmann (1998)]. Buhmann's functions contain

94 Meshfree Approximation Methods with MATLAB

a logarithmic term in addition to a polynomial. His functions have the general form

r.p(r) = 1= (1 - r 2 /t)~t°'(l - t 0)f!+_dt.

Here 0 < 8 < ~' p > 1, and in order to obtain functions that are strictly positive
definite and radial on IR.8 for s < 3 the constraints for the remaining parameters are
>. ~ 0, and -1 <a~ >-;- 1

.

Example 11.6. An example with a = 8 = ~' p = 1 and >.
[Buhmann (2000)]:

2 is listed m

r.p(r) · 12r4 logr - 21r4 + 32r3 - 12r2 + 1, O<r~l.

This function is in C 2 (IR) and strictly positive definite and radial on JRS for s ~ 3.
It is displayed in the right plot of Figure 11.3.

While it is stated in [Buhmann (2000)] that the construction there encompasses
both Wendland's and Wu's functions, an even more general theorem that shows that
integration of a positive function f E £ 1 (0, oo) against a strictly positive definite
kernel K results in a strictly positive definite function can be found in [Wendland
(2005a)] (see also Section 4.8). More specifically,

cp(r) = 1= K(t, r)f(t)dt

is strictly positive definite. Buhmann's construction then corresponds to choosing
f(t) = t°'(l - t 0)f!+_ and K(t, r) = (1 - r 2 /t)~.

Chapter 12

Interpolation with Compactly Supported
RBFs in MATLAB

We now have an alternative way to construct an RBF interpolant to scattered
data in :IR8

• If we use the compactly supported radial functions of the previous
chapter then the main difference to our previous interpolants is that now the in­
terpolation matrix can be made sparse by scaling the support of the basic function
appropriately. To achieve this we use - as we did earlier - the basic functions
'Pc(r) = cp(c-r). Thus, a large value of c corresponds to a small support. In other
words, if the support of 1p is the interval [O, 1], then the support radius p of Pc is
given by p = 1/c so that 'Pc(r) = 0 for r > p = 1/c.

Since we know that the interpolation matrix will be a sparse matrix, we want
to write MATLAB code to efficiently assemble the matrix. Once we have defined a
sparse matrix, MATLAB will automatically use state-of-the-art sparse matrix tech­
niques to solve the linear system. Obviously, we do not want to compute the matrix
entries for all pairs of points since we know all of the entries for far away points
will be zero. Therefore, an efficient data structure is needed. We use kd-trees
(implemented in a set of MATLAB MEX-files written by Guy Shechter that can be
downloaded from the MATLAB Central File Exchange, see [MCFE]). Some infor­
mation on kd-trees is provided in Appendix A. Data structures for the use with
meshfree approximation methods are also discussed in [Wendland (2005a)].

12.1 Assembly of the Sparse Interpolation Matrix

We have structured the scattered data interpolation program in the compactly sup­
ported case analogous to the code for the global interpolants, i.e., first construct a
distance matrix, and then apply the anonymous function rbf to obtain the interpo­
lation/evaluation matrix (as on lines 13-14 and 15-16 of Program 2.1). However, it
turns out that it is easier to deal with the compact support if we compute the "dis­
tance matrix" corresponding to the (1 - c-r)+ term since otherwise those entries of
the distance matrix that are zero (since the mutual distance between two identical
points is zero) would be "lost" in the sparse representation of the matrix.

The MATLAB code DistanceMatrixCSRBF .m (Program 12.1) contains two simi-

95

96 Meshfree Approximation Methods with MATLAB

lar blocks that will be used depending on whether we have more centers than data
sites or vice versa. For example, if there are more data sites than centers (cf. lines 7-
16), then we build a kd-tree for the data sites and find - for each center Xj - those
data sites within the support of the basis function centered at Xj, i.e., we construct
the (sparse) matrix column by column. In the other case (cf. lines 18-27) we start
with a tree for the centers and build the matrix row by row. This is accomplished by
determining - for each data site Xi - all centers whose associate.cl basis function
covers data site Xi.

The functions kdtree and kdrangequery are provided by the kd-tree library
mentioned above. The call in line 7 (respectively 18) of Program 12.l generates the
kd-tree of all the centers (data sites), and with the call to kdrangequery in line 9
(respectively 20) we find all centers (data sites) that lie within a distance support
of the jth center point (data site). The actual distances are returned in the vector
dist and the indices into the list of all data sites are provided in idx. The distances
for these points only are stored in the matrix DM. For maximum efficiency (in order
to avoid dynamic memory allocation) it is important to have a good estimate of
the number of nonzero entries in the matrix for the allocation statement in lines 4
and 5. The version of the code presented here has the best performance for larger
problems since sparse is only invoked once.

Program 12.1. DistanceMatrixCSRBF .m

% DM = DistanceMatrixCSRBF(dsites,ctrs,ep)
% Forms the distance matrix of two sets of points in R-s
% for compactly supported radial basis functions, i.e.,
% DM(i,j) = I I datasite_i - center_j I 1_2.
% The CSRBF used with this code must be given in shifted form
% rbf2(u) = rbf(r), u=1-e*r.
% For example, the Wendland C2
% rbf = ©(e,r) max(1-e*r,0).-4.*(4*e*r+1);
% becomes
% rbf2 = ©(u) u.-4.*(4*u+5);
% Input
% dsites: Nxs matrix representing a set of N data sites
% in R-s (i.e., each row contains one
% s-dimensional point)

%
%
%
%
%

ctrs:

ep:

% Output
% DM:

Mxs matrix representing a set of M centers for
RBFs in R-s (also one center per row)
determines size of support of basis function.
Small ep yields wide function,
i.e., supportsize = 1/ep

NxM SPARSE matrix that contains the Euclidean

%
%

12. Interpolation with Compactly Supported RBFs in MATLAB

u-distance (u=1-e*r) between the i-th data

% Uses:
site and the j-th center in the i,j position

k-D tree package by Guy Shechter from

1

2

3

4

5
6

7

8
9

10
11
12
13

14

15
16

17
18

19

20
21
22
23
24
25
26
27

28
29
30

31

MATLAB Central File Exchange
function DM = DistanceMatrixCSRBF(dsites,ctrs,ep)
N = size(dsites,1); M = size(ctrs,1);
% Build k-D tree for data sites
% For each center (basis function), find the data sites
% in its support along with u-distance
support = 1/ep;
nzmax = 25*N; rowidx = zeros(1,nzmax); colidx = zeros(1,nzmax);
validx = zeros(1,nzmax); istart = 1; iend = O;
if M > N % faster if more centers than data sites

[tmp,tmp,Tree] = kdtree(ctrs, []);
for i = 1:N

[pts,dist,idx] = kdrangequery(Tree,dsites(i,:),support);
newentries = length(idx);

end
else

iend = iend + newentries;
rowidx(istart:iend) = repmat(i,1,newentries);
colidx(istart:iend) = idx';
validx(istart:iend) = 1-ep*dist';
istart = istart + newentries;

[tmp,tmp,Tree] = kdtree(dsites,[]);
for j = 1:M

[pts,dist,idx] = kdrangequery(Tree,ctrs(j,:),support);
newentries = length(idx);
iend = iend + newentries;
rowidx(istart:iend) = idx';
colidx(istart:iend) = repmat(j,1,newentries);
validx(istart:iend) = 1-ep*dist';
istart = istart + newentries;

end
I

end
idx = find(rowidx);
DM = sparse(rowidx(idx),colidx(idx),validx(idx),N,M);
% Free the k-D Tree from memory.
kdtree([],[],Tree);

97

The reason for coding DistanceMatrixCSRBF. min two different ways is so that
we will be able to speed up the program when dealing with non-square (evaluation)
matrices (for example in the context of MLS approximation (c.j. Chapter 24).

98 Meshfree Approximation Methods with MATLAB

One could also implement the distance matrix routine for sparse matrices as
follows:

1 function DM = DistanceMatrixCSRBF(dsites,ctrs,ep)
2 N = size(dsites,1); M = size(ctrs,l);

% Build k-D tree for data sites
% For each center (basis function), find the data sites
% in its support along with u-distance

3 support= 1/ep; nzmax = 25*N; DM = spalloc(N,M,nzmax);
4 [tmp,tmp,Tree] = kdtree(dsites, []);
5 for j = 1:M
6 [pts,dist,idx] = kdrangequery(Tree,ctrs(j,:),support);
7 DM(idx,j) = 1-ep*dist;
8 end

% Free the k-D Tree from memory.
9 kdtree([] ,[],Tree);

This code is certainly easier to follow, but not as efficient as the one listed in
Program 12.1. Note that we listed only one version of the code here. Clearly, the
alternative version can be added analogously to the previous program.

The interpolation program is virtually identical to Program 2 .1.
changes are to replace lines 13 and 15 by the corresponding lines

13 DM data= DistanceMatrixCSRBF(dsites,ctrs,ep);
15 DM_eval = DistanceMatrixCSRBF(epoints,ctrs,ep);

I
The only

and to define the RBF in shifted form, i.e., instead of representing, e.g., the C 2

Wendland function cp3 ,1 on line 1 by

1 rbf = ©(e,r) max(1-e*r,0).-4.*(4*e*r+1); ep=0.7;

we now write

1 rbf = ©(e,r) r.-4.*(5*spones(r)-4*r); ep=0.7;

Note the use of the sparse matrix of ones spones. Had we used 5-4*r instead, then
a full matrix would have been generated (with many additional - and unwanted
- ones).

In order to speed up the solution of the (symmetric positive definite) sparse
linear system we could use the preconditioned conjugate gradient algorithm (peg
in MATLAB) instead of the basic backslash \ (or matrix left division mldi vi de)
operation, i.e., we could replace line 1 7 of Program 2 .1 by

17 c = pcg(IM,rhs); Pf= EM* c;

Note, however, that the\ operator also employs state-of-the-art direct sparse solvers
by first applying a minimum degree preordering.

12. Interpolation with Compactly Supported RBFs in MATLAB 99

12.2 Numerical Experiments with CSRBFs

We now present two sets of interpolation experiments with compactly supported
RBfs. In Table 12.2 we use the non-stationary approach to interpolation, i.e.,
the support size remains fixed for increasingly denser sets X of data sites. In this
approach we will be able to observe convergence. However, the matrices become
increasingly denser, and therefore the non-stationary approach is very inefficient.
In Table 12.1, on the other hand, we use the stationary approach, i.e., we scale the
support size of the basis functions proportionally to the fill distance hx ,n (defined
in (2.3)). Now the "bandwidth" of the interpolation matrix A is constant. This
theoretically results in O(N) computational complexity, i.e., a very efficient inter­
polation method. The stationary interpolation method is also numerically stable,
but there will be essentially no convergence (see Table 12.1).

We use Wendland's compactly supported function 'P3, 1 (r) = (1 - r)~ (4r + 1)
to interpolate Franke's function (2.2) on grids of equally spaced points in the unit
square [O, 1] 2 . In the stationary case (Table 12.1) the support of the basis function
starts out with an initial scale parameter € = 0.7 which is subsequently multiplied
by a factor of two whenever the fill distance is halved, i.e., when we repeat the
experiment on the next finer grid. This corresponds to keeping a constant number
of roughly 25 data sites within the support of any basis function. Therefore, the
"bandwidth" of the interpolation matrix A is kept constant (at 25), so that A is very
sparse for finer grids. We can observe nice convergence for the first few iterations,
but once an RMS-error of approximately 5 x 10-3 is reached, there is not much
further improvement. This behavior is not yet fully understood. However, it is
similar to what happens in the approximate approximation method of Maz'ya (see,
e.g., [Maz'ya and Schmidt (2001)] and our discussion in Chapter 26). The rate
listed in the table is the exponent of the observed RMS-convergence rate O(hrate).
It is computed using the formula

ln(ek-i/ ek)
ratek = ln(hk-i/ hk)' k = 2,3, ... , (12.1)

where ek is the error for experiment number k, and hk is the fill distance of the
kth computational mesh. Note, that for uniformly spaced points the ratio of fill
distances of two consecutive meshes will always be two, while for random points
(such as Halton points) we estimate the fill distance via (2.4). The % nonzero
column indicates the sparsity of the interpolation matrices, and the time is measured
in seconds. Errors ate computed on an evaluation grid of 40 x 40 equally spaced
points in [O, 1]2.

In the non-stationary case (Table 12.2) we use basis functions without adjusting
their support size, i.e.,€= 0.7 is kept fixed for all experiments. We have convergence
- although it is not obvious what the rate might be. However, the matrices become
increasingly dense and computation requires lots of system memory. Therefore, we
left out the solution for the N = 16641 and N = 66049 cases in Table 12.2. The time

100 Meshfree Approximation Methods with MATLAB

Table 12.1 Stationary interpolation at N equally
spaced points in [O, 1] 2 (constant 25 points in support)
with Wendland's function cp(r) = (1 - r)t(4r + 1).

N RMS-error rate 3 nonzero time

9 l.562729e-001
25 2.690350e-002 2.5382
81 l.027881e-002 1.3881

289 6.589552e-003 0.6414
1089 3.891263e-003 0.7599
4225 3.726913e-003 0.0623
16641 2.638296e-003 0.4984
66049 2.467867e-003 0.0963

100
57.8
23.2
7.47
2.13
0.57
0.15
0.04

Table 12.2 Non-stationary interpolation
at N equally spaced points in [O, 1]2

(c = 0.7 fixed) with Wendland's function
cp(r) = (1 - r)t (4r + 1).

N RMS-error rate time

9 l .562729e-001 0.03
25 2. 807706e-002 2.4766 0.04
81 4.853006e-003 2.5324 0.12

289 2.006041e-004 4.5965 0.45
1089 l .288000e-005 3.9611 2.75
4225 1.382497 e-006 3.2198 47.92

0.23
0.31
0.33
0.41
0.63
1.23
3.75
15.48

comparison between the entries in Table 12.1 and Table 12.2 is not a straightforward
one since we used the (dense) code Program 2.1 to do the experiments for Table 12.2
since there is no sparseness to be exploited and the kd-trees actually introduce
additional overhead.

The interplay between computational efliciency and non-convergence in the sta­
tionary case and convergence and computational inefficiency in the non-stationary
case is again a trade-off principle similar to the interplay between accuracy and
ill-conditioning for globally supported RBFs (c.f. Chapter 2). These trade-off prin­
ciples were explained theoretically as well as illustrated with numerical experiments
in [Schaback (1997b)], and we will consider them in Chapter 16.

For comparison purposes we repeat the experiments with the oscillatory basic
function

tp(r) = o-2(r) = (1 - r)i (3 + 18r + 3r2 - 192r3
),

which is also C4 smooth and strictly positive definite and radial on "JR. 5 for s < 3
(see Table 11.5). The results are listed in Table 12.3 for the stationary case and in
Table 12.4 for the non-stationary case. Note that the function is implemented as

rbf = ©(e,r) -r.-6.*(168*spones(r)-552*r+573*r.-2-192*r.-3);

12. Interpolation with Compactly Supported RBFs in MATLAB

Table 12.3 Stationary interpolation at N equally spaced
points in [O, 1]2 (constant 25 points in support) with the os-
cillatory function cp(r) = (1-r)t (3 + 18r + 3r2 - 192r3).

N

9
25
81
289

1089
4225

16641
66049

RMS-error rate 3 nonzero

1.655969e-001 100
3.941226e-002 2.0710 57.8
2. 978973e-002 0.4038 23.2
2.914215e-002 0.0317 7.47
3.063424e-002 -0.0720 2.13
3.094308e-002 -0.0145 0.57
3.089882e-002 0.0021 0.15
3. 086639e-002 0.0015 0.04

Table 12.4 Non-stationary interpolation
at N equally spaced points in [O, 1] 2

(c: = 0. 7 fixed) with the oscillatory function
cp(r) = (1 - r)t (3 + 18r + 3r2

- 192r3).

N RMS-error rate time

9 1.655969e-001 0.03
25 3.097850e-002 2.4183 0.06
81 4.612941e-003 2.7475 0.20

289 l .305297e-004 5.1432 0.72
1089 4. 780575e-006 4.7711 4.06
4225 2.687479e-007 4.1529 55.09

in the sparse setting and as

for the dense code.

time

0.28
0.34
0.36
0.42
0.64
1.31
4.13

16.81

101

While the performance of the oscillatory functions for the stationary experi­
ment is even more disappointing than that of Wendland's functions, the situation
is reversed in the non-stationary case. In fact, the errors obtained with the oscilla­
tory basis functions are almost as good as those achieved with "optimally" scaled
Gaussians (c.f. Table 2.2).

In order to overcome the problems due to the trade-off principle that are ap­
parent in both the stationary and non-stationary approach to interpolation with
compactly supported radial functions we will later consider using a multilevel sta­
tionary scheme (see Chapter 32).

Chapter 13

Reproducing Kernel Hilbert Spaces and
Native Spaces for Strictly Positive

Definite Functions

In the next few chapters we will present some of the theoretical work on error
bounds for approximation and interpolation with radial basis functions. Since the
discussion for strictly positive definite functions will already be technical enough,
we focus on this case, and only mention a few results for the conditionally positive
definite case. The following discussion follows mostly the presentation in [Wendland
(2005a)] where the interested reader can find many more details.

13.1 Reproducing Kernel Hilbert Spaces

Our first set of error bounds will come rather naturally once we associate with each
(strictly positive definite) radial basic function a certain space of functions called its
native space. We will then be able to establish a connection to reproducing kernel
Hilbert spaces, which in turn will give us the desired error bounds as well as certain
optimality results for radial basis function interpolation (see Chapter 18).

Reproducing kernels are a classical concept in analysis introduced by Nachman
Aronszajn (see [Aronszajn (1950)]). We begin with

Definition 13.1. Let 1t be a real Hilbert space of functions f: n(~ JR5
) -+JR with

inner product (-,·ht· A function K: n x n-+ JR is called reproducing kernel for 1t
if

(1) K(·, x) E 1t for all x E fl,
(2) f(x) = (!, K(·, x))rt for all f E 1t and all x En.

The name reproducing kernel is inspired by the reproducing property (2) in
Definition 13.1. It is known that the reproducing kernel of a Hilbert space is unique,
and that existence of a reproducing kernel is equivalent to the fact that the point
evaluation functionals 8:r are bounded linear functionals on n, i.e., there exists a
positive constant M = M:r such that

l8:rfl = lf(x)I <-Mllfllrt

103

104 Meshfree Approximation Methods with MATLAB

for all f E H and all x E n. This latter fact is due to the Riesz representation
theorem.

Other properties of reproducing kernels are given by

Theorem 13.1. Suppose H is a Hilbert space of functions f : n---+ IR with repro­
ducing kernel K. Then we have

(1) K(x, y) = (K(·, y), K(·, x))rt for x, y En.
(2) K(x, y) = K(y, x) for x, y En.
(3) Convergence in Hilbert space norm implies pointwise convergence, i.e., if we

have II!- fnllrt---+ 0 for n---+ 00 then lf(x) - fn(x)I - 0 for all x En.

Proof. By Property (1) of Definition 13.1 K(·, y) EH for every y En. Then the
reproducing property (2) of the definition gives us

K(x, y) = (K(·, y), K(·, x))rt

for all x, y E n. This establishes (1). Property (2) follows from (1) by the symmetry
of the Hilbert space inner product. For (3) we use the reproducing property of K
along with the Cauchy-Schwarz inequality:

lf(x)-fn(x)I =I(!- fn,K(·,x))rtl < llf- fnllrtllK(·,x)llrt· D

Now it is interesting for us that the reproducing kernel K is known to be positive
definite. Here we use a slight generalization of the notion of a positive definite func­
tion to a positive definite kernel. Essentially, we replace <I>(xj-Xk) in Definition 3.2
by K(xj, xk)- At this point we remind the reader that the space of bounded linear
functionals on H is known as its dual, and denoted by H*.

Theorem 13.2. Suppose H is a reproducing kernel Hilbert function space with
reproducing kernel K : n x n ---+ IR.. Then K is positive definite. Moreover, K is
strictly positive definite if and only if the point evaluation functionals c5x are linearly
independent in H*.

Proof. Since the kernel is real-valued we can restrict ourselves to a quadratic
form with real coefficients. For distinct points x 1 , ... , XN and nonzero c E IRN we
have

N N N N

LLcjckK(xj,Xk) = LLcjck(K(·,xj),K(·,xk))rt
j=lk=l j=lk=l

N n

= (L CjK(·, Xj), L CkK(·, Xk))rt
j=l k=l

N

=II L CjK(·, Xj)ll~ > 0.
j=l

Thus K is positive definite. To establish the second claim we assume K is not
strictly positive definite and show that the point evaluation functionals must be

13. Reproducing Kernel Hilbert Spaces for Strictly Positive Definite Functions 105

linearly dependent. If K is not strictly positive definite then there exist distinct
points x1, ... , XN and nonzero coefficients Cj such that

N N

LLcickK(xj,xk) = O.
j=lk=l

The first part of the proof therefore implies

N

LciK(·,xj) = 0.
j=l

Now we take the Hilbert space inner product with an arbitrary function f E 1-l and
use the reproducing property of K to obtain

N

0 = (!, L CjK(-, Xj))rt
j=l

N

= Lci(f,K(·,Xj))rt
j=l

N

= Lcif(xj)
j=l

N

= LCjOxi(J).
j=l

This, however, implies the linear dependence of the point evaluation functionals
Oxi (f) = f (x j), j = 1, ... , N, since the coefficients Cj were assumed to be not all
zero. An analogous argument can be used to establish the converse. 0

This theorem provides one direction of the connection between strictly positive
definite functions and reproducing kernels. However, we are also interested in the
other direction. Since the RBFs we have built our interpolation methods from are
strictly positive definite functions, we want to know how to construct a reproducing
kernel Hilbert space associated with those strictly positive definite basic functions.

13.2 Native Spaces for Strictly Positive Definite Functions

In this section we will show that every strictly positive definite radial basic function
can indeed be associated with a reproducing kernel Hilbert space - its native space.

First, we note that Definition 13.1 tells us that 1-l contains all functions of the
form

N

f = LciK(·,Xj)
j=l

106 Meshfree Approximation Methods with MATLAB

provided Xj E n. As a consequence of Theorem 13.1 we have that

N N

llfll~ = (!, !)1t = (L CjK(-, xJ), L ckK(·, xk))1t
j=l k=l

N N

=LL CjCk\K(·, Xj), K(·, Xk))1t
j=lk=l
N N

= LLcJckK(xj,xk)·
j=lk=l

Therefore, we define the (possibly infinite-dimensional) space

HK(fl) = span{K(·, y) : y E fl}

with an associated bilinear form (-, ·) K given by

NK NK NK NK

\LcJK(·,xJ),LdkK(-,yk))K = LLcJdkK(xJ,Yk),
j=l k=l j=lk=l

where N K = oo is also allowed.

(13.1)

Theorem 13.3. lf K : fl x fl~ IR is a symmetric strictly positive definite kernel,
then the bilinear form (-, .) K defines an inner product on HK (n). Furthermore,
HK(fl) is a pre-Hilbert space with reproducing kernel K.

Proof. (-, ·)K is obviously bilinear and symmetric. We just need to show that
(!, f)K > 0 for nonzero f E HK(fl). Any such f can be written in the form

NK

f = L CjK(·, Xj), Xj E fl.
j=l

Then
NK NK

\f, f)K =LL CJCkK(xJ, xk) > 0
j=lk=l

since K is strictly positive definite. The reproducing property follows from

NK

(f,K(·,x))K = LcJK(x,xJ) = f(x).
j=l D

Since we just showed that HK(fl) is a pre-Hilbert space, i.e., need not be com­
plete, we now define the native space NK(fl) of K to be the completion of HK(fl)

with respect to the K-norm II · llK so that llJllK = llJllNK(n) for all f E HK(fl).
The technical details concerned with this construction are discussed in [Wendland
(2005a)].

In the special case when we are dealing with strictly positive definite (translation
invariant) functions <I>(x-y) = K(x, y) and when n = JRS we get a characterization
of native spaces in terms of Fourier transforms.

13. Reproducing Kernel Hilbert Spaces for Strictly Positive Definite Functions 107

Theorem 13.4. Suppose <I> E C(lR8
) n L 1 (JRs) is a real-valued strictly positive def­

inite function. Define

g = {! E L2(R') n C(R'): ~ E L2(R')}

and eguip this space with the bilinear form

= 1 _j_ _fj_ s = 1 r f(w)g(w) dw
(f,g)g ~(~' ~)L2(IR) ~ }'R.s <f>(w) ·

Then Q is a real Hilbert space with inner product (·, ·)g and reproducing kernel
<I>(· - ·). Hence, Q is the native space of <I> on lR8

, i.e., Q = N<:>(lR8
) and both

inner products coincide. In particular, every f E N<I> (lR8
) can be recovered from its

Fourier transform j E Li(lR8
) n L2(1R8

).

Another characterization of the native space is given in terms of the eigenfunc­
tions of a linear operator associated with the reproducing kernel. This operator,
T<t> : L2(0) ~ L2(0), is given by

T.I>(v)(x) = L <I>(x,y)v(y)dy, v E L2(0), x En.

For the eigenvalues >..k, k = 1, 2, ... , and eigenfunctions ¢k of this operator Mercer's
theorem [Riesz and Sz.-Nagy (1955)] states

Theorem 13.5 (Mercer). Let <I>(·,·) be a continuous positive definite kernel that

satisfies

L <I>(x, y)v(x)v(y)dxdy > 0,

Then <I> can be represented by
00

k=l

for all v E L2(0), x, y E 0. (13.2)

(13.3)

where >..k are the (non-negative) eigenvalues and ¢k are the {L 2 -orthonormal) eigen­
functions of T<t>. Moreover, this representation is absolutely and uniformly conver­
gent.

We can interpret condition (13.2) as a type of integral positive definiteness. As
usual, the eigenvalues and eigenfunctions satisfy T<I>¢k = >..k¢k or

L <I>(x, y)¢k(y)dy = >..k¢k(x), k = 1, 2,

In general, Mercer's theorem allows us to construct a reproducing kernel Hilbert
space 1i by representing the functions in 1i as infinite linear combinations of the
eigenfunctions, i.e.,

H = {1: f = f Ck¢k}.
k=l

108 Meshfree Approximation Methods with MATLAB

It is clear that the kernel q. itself is in 1{ since it has the eigenfunction expansion
(13.3). The inner product for 1{ is given by

00 00 00 d
(f,g)Jf. = (Lcj</>j,Ldk¢k)Jf. = L c~ k'

j=l k=l k=l k

where we used the 1i-orthogonality

of the eigenfunctions.

8·k
(¢j, ¢k)Ji. = vx}vx;;

We note that q. is indeed the reproducing kernel of 1{ since the eigenfunction
expansion (13.3) of q. and the orthogonality of the eigenfunctions imply

00 00

(!, q.(·, x))H = (L Cj</>j, L Ak</>k</>k(x))Jf.
j=l k=l

= f CkAk</>k(x)

k=l Ak
00

k=l

Finally, one has (c.f. [Wendland (2005a)]) that the native space N<1>(f2) is given
by

N.,(!1) ~ { f E L2(!1) : t, L l(f, </.>•h,(<>)12 < 00}
and the native space inner product can be written as

00 1
(f,g)N<f> = L >:(f,¢k)L2(n)(g,¢k)L2(n),

k=l k

f, g E N<t>(n).

Since N<1>(f2) is a subspace of L 2 (f2) this corresponds to the identification Ck
(!, ¢k)L

2
(n) of the generalized Fourier coefficients in the discussion above.

13.3 Examples of Native Spaces for Popular Radial Basic
Functions

Theorem 13.4 shows that native spaces of translation invariant functions can be
viewed as a generalization of standard Sobolev spaces. Indeed, for m > s/2 the
Sobolev space W2 can be defined as (see, e.g., [Adams (1975)])

W;1(1R 8
) = {f E L2(1R8

) n C(IR. 8
) : /(·)(1 +II. ll~)m/2 E L2(1R8

)}. (13.4)

One also frequently sees the definition

13. Reproducing Kernel Hilbert Spaces for Strictly Positive Definite Functions 109

which applies whenever f2 c ~s is a bounded domain. This interpretation will
make clear the connection between the natives spaces of Sobolev splines and those
of polyharmonic splines to be discussed below. The norm of W2(~s) is usually
given by

According to (13.4), any strictly positive definite function <I> whose Fourier trans­
form decays only algebraically has a Sobolev space as its native space. In particular,
the Matern functions

Kf3-~ (llxll) llxllfJ-~
<I>13(x) = ;f3-1r(J3) '

of Section 4.4 with Fourier transform

<i>f3(w) = (1 + llwll 2)-f3
can immediately be seen to have native space N c1> 13 (~ s) = Wf (~ s) with J3 > s / 2
(which is why some people refer to the Matern functions as Sobolev splines).

Wendland's compactly supported functions <I>s,k = 'Ps,k(ll · 112) of Chapter 11 can
be shown to have native spaces N<P~.k (~s) = w;1 2

+k+
1! 2 (~s) (where the restriction

s > 3 is required for the special case k = 0).
Native spaces for strictly conditionally positive definite functions can also be

constructed. However, since this is more technical, we limited the discussion above
to strictly positive definite functions, and refer the interested reader to the book
[Wendland (2005a)] or the papers [Schaback (1999a); Schaback (2000a)], With the
extension of the theory to strictly conditionally positive definite functions the native
spaces of the radial powers and thin plate (or surface) splines of Sections 8.2 and
8.3 can be shown to be the so-called Beppo-Levi spaces of order k

BLk(~s) = {f E C(~s) : no: f E L2(~s) for all lnl = k, a E Ns},

where no: denotes a generalized derivative of order a (defined in the same spirit as
the generalized Fourier transform, see Appendix B). In fact, the intersection of all
Beppo-Levi spaces BLk(~s) of order k ~ m yields the Sobolev space W2(~s). In
the literature the Beppo-Levi spaces BLk (~s) are sometimes referred to as homo­
geneous Sobolev spaces of order k. Alternatively, the Beppo-Levi spaces on ~s are
defined as

and the formulas given in Chapter 8 for the Fourier transforms of radial powers and
thin plate splines show immediately that their native spaces are Beppo-Levi spaces.
The semi-norm on BLk is given by

{ }

1/2

lflsLk = L ai! .~'.ad! 11n° fllLcIR~) '
lo:l=k

(13.6)

110 Meshfree Approximation Methods with MATLAB

and its kernel is the polynomial space Ilk_ 1 . For more details see [Wendland
(2005a)]. Beppo-Levi spaces were already studied in the early papers [Duchon
(1976); Duchon (1977); Duchon (1978); Duchon (1980)].

The native spaces for Gaussians and (inverse) multiquadrics are rather small.
For example, according to Theorem 13.4, for Gaussians the Fourier transform of
f E N~(n) must decay faster than the Fourier transform of the Gaussian (which is
itself a Gaussian). It is known that, even though the native space of Gaussians is
small, it does contain the important class of so-called band-limited functions, i.e.,
functions whose Fourier transform is compactly supported. These functions play
an important role in sampling theory where Shannon's famous sampling theorem
[Shannon (1949)] states that any band-limited function can be completely recovered
from its discrete samples provided the function is sampled at a sampling rate at
least twice its bandwidth. The content of this theorem was already known much
earlier (see [Whittaker (1915)]).

Theorem 13.6 (Shannon Sampling). Suppose f E C(IR8
) nL1 (IR8

) such that its
Fourier transform vanishes outside the cube Q = [-!, !J s. Then f can be uniquely
reconstructed from its values on zs, i.e.,

t(x) = 2= t(e)sinc(x - e),
eEz~

Here the sine function is defined for any x = (x1 , ... , x 8) E JR5 as sine x =

TI~=l sinJ;;d). For more details on Shannon's sampling theorem see, e.g., Chap­
ter 29 in the book [Cheney and Light (1999)] or the paper [Unser (2000)].

Chapter 14

The Power Function and Native Space
Error Estimates

14.1 Fill Distance and Approximation Orders

Our goal in this section is to provide error estimates for scattered data interpolation
with strictly (conditionally) positive definite functions. As in the previous chapter
we will provide most of the details for the strictly positive definite case, and only
mention the extension to the conditionally positive definite case in the end. In their
final form we will want our estimates to depend on some kind of measure of the
data distribution. The measure that is usually used in approximation theory is the
so-called fill distance

h = hx,n =sup min llx - XJll2
:z:Ef1:Z:jEX

already introduced in (2.3) in Chapter 2. The fill distance indicates how well the
data fill out the domain n, and it therefore denotes the radius of the largest empty
ball that can be placed among the data locations. We will be interested in whether
the error

II! - Pt)ll=
tends to zero as h -+ 0, and if so, how fast. Here {P(h)}h presents a sequence
of interpolation (or, more generally, projection) operators that vary with the fill
distance h. For example, p(h) could denote interpolation to data given at (2n + 1) 8

,

n = 1, 2, ... , equally spaced points in the unit cube in lR8 (with h = 2-n) as we
used in some of our earlier examples. Of course, the definition of the fill distance
also covers scattered data such as sets of Halton points. In fact, since Halton points
are quasi-uniformly distributed (see Appendix A) we can assume h ~ 2-n for a set
of (2n + 1) 8 Halton points in lR8

• This explains the specific sizes of the point sets
we used in earlier examples.

Since we want to employ the machinery of reproducing kernel Hilbert spaces
presented in the previous chapter we will concentrate on error estimates for functions
f E N~. In the next chapter we will also mention some more general estimates.

The term that is often used to measure the speed of convergence to zero is approx­
imation order. We say that the approximation operator p(h) has Lp-approximation

111

112 Meshfree Approximation Methods with MATLAB

order kif

II! - PJh)llP = O(hk) for h ~ 0.

Moreover, if we can also show that II! - Pt) llP -=/- o(hk), then p(h) has exact
Lp-approximation order k. We will concentrate mostly on the case p = oo (i.e.,
pointwise estimates), but approximation order in other norms can also be studied.

In order to keep the following discussion as transparent as possible we will restrict
ourselves to strictly positive definite functions. With (considerably) more technical
details the following can also be formulated for strictly conditionally positive definite
functions (see [Wendland (2005a)] for details).

14.2 Lagrange Form of the Interpolant and Cardinal
Basis Functions

The key idea for the following discussion is to express the interpolant in Lagrange
form, i.e., using so-called cardinal basis functions. For radial basis function approx­
imation this idea is due to [Wu and Schaback (1993)]. In the previous chapters we
established that, for any strictly positive definite function <I>, the linear system

Ac=y

with Aij = <I>(xi - Xj), Z,J 1, ... 'N, c = [c1, ... 'CNv, and y =
[f(x1), ... , J(xN)JI' has a unique solution. In the following we will consider the
more general situation where <I> is a strictly positive definite kernel, i.e., the entries
of A are given by Aij = <I>(xi,x1). The uniqueness result holds in this case also.

In order to obtain the cardinal basis functions uj, j = 1, ... , N, with the prop­
erty uj(xi) = Oij, i.e.,

we consider the linear system

if i = j,
if i -=/- j'

Au* (x) = b(x), (14.1)

where the matrix A is as above (and therefore invertible), u* = [ui, ... , uNV, and
b= [<I>(·,x 1), ... ,<I>(·,xN)JI'. Thus,

Theorem 14.1. Suppose <I> is a strictly positive definite kernel on IR. 8
• Then, for any

distinct points x 1 , ... , XN, there exist functions uj E span{<I>(·, x1),j = 1, ... , N}
such that uj(xi) = OiJ·

Therefore, we can write the interpolant P1 to f at x 1 , ... , XN in the cardinal
form

N

P1(x) = L f(x1)uj(x), x E IR.8
•

j=l

14. The Power Function and Native Space Error Estimates 113

It is of interest to note that the cardinal functions do not depend on the data
values of the interpolation problem. Once the data sites are fixed and the basic
function is chosen with an appropriate shape parameter (whose optimal value will
depend on the data), then the cardinal functions are determined by the linear system
(14.1). We have plotted various cardinal functions based on the Gaussian basic
function with shape parameter E = 5 in Figures 14.1-14.3. The dependence on the
data locations is clearly apparent when comparing the different data distributions
(uniformly spaced in Figure 14.1, tensor-product Chebyshev in Figure 14.2, and
Halton points in Figure 14.3). The data sets can be seen in Figure 14.5 below.

z
0.5

0

-0.5
0

y 1 1 x

z

0 0

y 1 1 x

Fig. 14.1 Cardinal functions for Gaussian interpolation (with c = 5) on 81 uniformly spaced
points in [O, 1] 2. Centered at an edge point (left) and at an interior point (right).

1 /

l ./
0.5~ .··· ·· ...

z z

0 0

y 1 1 x y 1 1 x

Fig. 14.2 Cardinal functions for Gaussian interpolation (with c = 5) on 81 tensor-product Cheby­
shev points in [O, 1] 2 . Centered at an edge point (left) and at an interior point (right).

Basic functions that grow with increasing distance from the center point (such as
multiquadrics) are sometimes criticized for being "counter-intuitive" for scattered
data approximation. However, as Figure 14.4 shows, the cardinal functions are just
as localized as those for the Gaussian basic functions, and thus the function space

114

z
0.5

0

-0.5 ... /·
0

y 1 1

Meshfree Approximation Methods with MATLAB

z

0 0

x y 1 1 x

Fig. 14.3 Cardinal functions for Gaussian interpolation (with e = 5) on 81 Halton points in
[O, 1] 2 . Centered at an edge point (left) and at an interior point (right).

spanned by multiquadrics is a "good" local space.

z

1r .
0.5 ... ·

0

-0.5 ./ .
0

y

z

0

1 1 x

0

y 1 1 x

Fig. 14.4 Cardinal functions for multiquadric interpolation (with e = 5) on 81 Halton points in
[O, 1] 2 . Centered at an edge point (left) and at an interior point (right).

The MATLAB program RBFCardinalFunction.m used to produce the plots m
Figures 14.1-14.3 is provided in Program 14.1. Note that we use the pseudo-inverse
(via the MATLABcommand pinv) to stably compute the inverse of the interpolation
matrix (see line 13 of Program 14.1). A specific cardinal function is then chosen in
line 15.

Program 14.1. RBFCardinalFunction.m

% RBFCardinalFunction
% Computes and plots cardinal function for 2D RBF interpolation
% Calls on: DistanceMatrix

1 rbf = ©(e,r) exp(-(e*r).-2); ep = 5;
2 N = 81; gridtype = 'u';
3 neval = 80; M = neva1-2;

14. The Power Function and Native Space Error Estimates

% Load data points
4 name= sprintf('Data2D_%d%s' ,N,gridtype); load(name)
5 ctrs = dsites; % centers coincide with data sites
6 grid= linspace(0,1,neval); [xe,ye] = meshgrid(grid);
7 epoints = [xe(:) ye(:)];

115

% Compute distance matrix between evaluation points and centers
8 DM_eval = DistanceMatrix(epoints,ctrs);

% Compute distance matrix between the data sites and centers
9 DM_data = DistanceMatrix(dsites,ctrs);

% Compute interpolation matrix
10 IM= rbf(ep,DM_data);

% Compute evaluation matrix
11 EM= rbf(ep,DM_eval);

% Compute cardinal functions at evaluation points
12 invIM = pinv(IM);

% centered at datasite(50)
13 for j=l:M
14 cardvec = (invIM*EM(j,:)')';
15 cardfun(j) = cardvec(50);
16 end
17 figure
18 RBFplot = surf(xe,ye,reshape(cardfun,neval,neval));
19 set(RBFplot,'FaceColor' ,'interp','EdgeColor' ,'none')
20 colormap autumn; view([145 45]); camlight; lighting gouraud

14.3 The Power Function

Another important ingredient needed for our error estimates is the so-called power
function. To this end, we consider a domain n ~ IRs. Then for any strictly positive
definite kernel cl> E C(n x n), any set of distinct points x = {x1, ... 'XN} c n, and
any vector u E RN, we define the quadratic form

N N N

Q(u) = <I>(x, x) - 2 L Uj<l>(x, Xj) +LL uiuj<I>(xi, Xj).
j=l i=l j=l

Then

Definition 14.1. Suppose n ~ JRS and <I> E C(n x n) is strictly positive definite
on }R5

• For any distinct points x = { X1' ... 'x N} ~ n the power function is defined
by

[Pw,x(x)] 2 = Q(u*(x)),

where u* is the vector of cardinal functions from Theorem 14.1.

116 Meshfre.e Approximation Methods with MATLAB

Using the definition of the native space norm from the previous chapter we can
rewrite the quadratic form Q (u) as

N N N

Q(u) = <I>(x, x) - 2 L uJ<I>(x, xJ) +LL UiUJ<I>(xi, xJ)
j=l i=l j=l

N

=(<I>(·, x), <I>(·, x))N"'(n) - 2 L uJ(<I>(·, x), <I>(·, XJ))N"'(n)
j=l

N N

+LL uiuJ(<I>(·, xi), <I>(·, xJ))N"'(n)
i=l j=l

N N

= (<I>(·, x) - L uJ<I>(·, XJ), <I>(·, x) - L uJ<I>(-, XJ))N"'(n)
j=l j=l

2
N

<I>(-, x) - L uJ<I>(-, xJ)
j=l N<t>(n)

(14.2)

The name power function was chosen by Schaback based on its connection to the
power function of a statistical decision function (originally introduced in [Neyman
and Pearson (1936)]). In the paper [Wu and Schaback (1993)] the power function
was referred to as kriging function. This terminology comes from geostatistics (see,
e.g., [Myers (1992)]).

Using the linear system notation employed earlier, i.e., Aij = <I>(xi,Xj), i,j =
1, ... , N, u = [u 1, ... , u N JI', and b = [<I> (·, x 1), ... , <I> (·, x N) JI', we note that we can
also rewrite the quadratic form Q(u) as

Q(u) = <I>(x, x) - 2uTb(x) + uT Au. (14.3)

This suggests two alternative representations of the power function. Using the
matrix-vector notation for Q(u), the power function is given as

P<I>,x(x) = vQ(u*(x)) = j<I>(x,x) - 2(u*(x))Tb(x) + (u*(x))T Au*(x).

However, by the definition of the cardinal functions Au*(x) = b(x), and therefore
we have the two new variants

P<I>,x(x) = V <I>(x, x) - (u* (x))T b(x)

= j<I>(x,x) - (u*(x))T Au*(x).

These formulas can be used for the numerical evaluation of the power function
at x. To this end one has to first find the value of the cardinal functions u * (x) by
solving the system Au* (x) = b(x). This results in

P<I>,x(x) = V<l>(x,x) - (b(x))T A-lb(x). (14.4)

14. The Power Function and Native Space Error Estimates 117

Since A is a positive definite matrix whenever <I> is a strictly positive definite kernel
we see that the power function satisfies the bounds

0::::; P<t>,x(x)::::; y/<I>(x, x).

Plots of the power function for the Gaussian with c = 6 on three different point
sets with N = 81 in the unit square are provided in Figure 14.5. The sets of data
points are displayed on the left, while the plots of the power function are displayed
in the right column. Dependence of the power function on the data locations is
clearly visible. In fact, this connection was used in a recent paper [De Marchi et al.
(2005)] to iteratively obtain an optimal set of data locations that are independent
of the data values.

At this point the power function is mostly a theoretical tool that helps us better
understand error estimates since we can decouple the effects due to the data function
f from those due to the basic function <I> and the data locations X (see the following
Theorem 14.2).

The power function is defined in an analogous way for strictly conditionally
positive definite functions.

14.4 Generic Error Estimates for Functions in N~(n)

Now we can give a first generic error estimate.

Theorem 14.2. Let n ~ JRS' <I> E C(n x n) be strictly positive definite on JRS'
and suppose that the points X = {x1 , ... , XN} are distinct. Denote the interpolant
to f E Nct>(n) on x by P1. Then for every x En

lf(x) - P1(x)I < P<t>,x(x)llJllN4>(n)·

Proof. Since f is assumed to lie in the native space of <I> the reproducing property
of <I> yields

f(x) =(!,<I>(·, x))N4>(n)-

We express the interpolant in its cardinal form and apply the reproducing property
of <I>. This gives us

N

P1(x) = L f(xJ)uj(x)
j=l

N

= L uj(x)(f, <I>(·, Xj))N<i>(11)
j=l

N

= (!, L uj(x)<I>(·, Xj))N4>(fl)·
j=l

118 Meshfree Approximation Methods with MATLAB

···:

0 0 0 0 0 0 0
100

0.8
0 0 0 0 0 0 0

0. 0 0 0 0 0 0 0

y
z10-5

0 0 0 0 0 0 0

0.4 0 0 0 0 0 0 0

0 0 0 0 0 0 0
10-10

0.2 1

0 0 0 0 0 0 0

0 0.2 0.4 0.6 0.8 y 0 0 x x

0 0 0 0 0 0 0 ··

0 0 0 0 0 0 0 100
0.8

,0 0 0 0 0 0 0

0.6
z10-5 y

10 0 0 0 0 0
0 '

0.4 ... ···· ···· ...

,0 0 0 0 0 0
0 ' 10-10 . ·······~

······-..
0.2 1

0 0 0 0 0 0 0
.... ··

0.5
0 0 0 0 0 0 0

0- - 0.2 0.4 0.6 0.8- - 1 y 0 0 x x

1 " 0 0
0 00

0
0 0

0 0 0 100 0 0 0
0.8 IO 0

0 0 0 0 0 0 0 0 0 0
10-1

0 0
0 0

0.6 0 0 0
0 0 0 z y 0 0

0 0 0
10-2

0 0 0

0.4' 0 0 0
0 0 0 0 0 0

0 0
10-3

0 0 0 0 0 0 1 0.2 0 0
0 0

0 0
0 0

0 0 00
Cl 0 0 _o -00 0.2 0.4 0.6 0.8 y 0 0 x x

Fig. 14.5 Data sites and power function for Gaussian interpolant with E: = 6 based on N = 81
uniformly distributed points (top), tensor-product Chebyshev points (middle), and Halton points
(bottom).

Now all that remains to be done is to combine the two formulas just derived and
apply the Cauchy-Schwarz inequality. Thus,

lf(x) - P1(x)I
N

(f, <I>(·, x) - L uj(x)<I>(·, Xj))N<:>(n)

j=l

14. The Power Function and Native Space Error Estimates 119

N

< llJllN~(n) <I>(·, x) - 2: uj(x)<I>(·, Xj)

j=l
N~(O)

where we have applied (14.2) and the definition of the power function. D

One of the main benefits of Theorem 14.2 is that we are now able to estimate
the interpolation error by considering two independent phenomena:

• the smoothness of the data (measured in terms of the native space norm off
- which is independent of the data locations, but does depend on <I>),

• and the contribution due to the use of the specific kernel (i.e., basic function)
<I> and the distribution of the data (measured in terms of the power function -
independent of the actual data values).

This is analogous to the standard error estimate for polynomial interpolation cited
in most numerical analysis texts. Note, however, that, for any given basic function
<I>, a change of the shape parameter € will have an effect on both terms in the error
bound in Theorem 14.2 since the native space norm off varies with€.

14.5 Error Estimates in Terms of the Fill Distance

The next step is to refine this error bound by expressing the influence of the data
locations in terms of the fill distance. And then, of course, the bound needs to be
specialized to various choices of basic functions <I>.

The most common strategy for obtaining error bounds in numerical analysis is
to take advantage of the polynomial precision of a method (at least locally), and
then to apply a Taylor expansion. With this in mind we observe

Theorem 14.3. Let n ~ JRS' and suppose <I> E C(n x n) is strictly positive definite
on JRS. Let x = { x 1, ... ' x N} be a set of distinct points in n' and define the
quadratic form Q(u) as in {14.2). The minimum of Q(u) is given for the vector
u = u*(x) from Theorem 14.1, i.e.,

Q(u*(x)) < Q(u) for all u E IRN.

Proof. We showed above (see (14.3)) that

Q(u) = <I>(x, x) - 2uTb(x) + uT Au.

The minimum of this quadratic form is given by the solution of the linear system

Au= b(x).

This, however, yields the cardinal functions u = u * (x). D

120 Meshfree Approximation Methods with MATLAB

In the proof below we will use a special coefficient vector u which provides the
polynomial precision desired for the proof of the refined error estimate. Its existence
is guaranteed by the following theorem on local polynomial reproduction proved in
[Wendland (2005a)]. This theorem requires the notion of a domain that satisfies an
interior cone condition.

Definition 14.2. A region n <;:;;; IR8 satisfies an interior cone condition if there exists
an angle () E (0, rr /2) and a radius r > 0 such that for every x E n there exists a
unit vector e(x) such that the cone

C={x+>.y: yElR5 ,llYll2=l, yre(x)2cos(), >.E(O,r]}

is contained in n.

A consequence of the interior cone condition is the fact that a domain that
satisfies this condition contains balls of a controllable radius. In particular, this will
be important when bounding the remainder of the Taylor expansions below. For
more details see [Wendland (2005a)].

Existence of an approximation scheme with local polynomial precision is guar­
anteed by

Theorem 14.4. Suppose n ~ IR8 is bounded and satisfies an interior cone condi­
tion, and let£ be a non-negative integer. Then there exist positive constants h0 , c 1 ,

and C2 such that for all X = {x1, ... , XN} ~ f2 with hx,n < ho and every X E f2
there exist numbers ili(x), ... , uN(x) with

N

(1) L UJ(x)p(xJ) = p(x) for all polynomials p E II~,
j=l

N

(2) L luj(x)I ~ c1,
j=l

(3) UJ(x) = 0 if llx - xJll2 > c2hx,n.

Property (1) yields the polynomial precision, and property (3) shows that the
scheme is local. The bound in property (2) is essential for controlling the growth
of error estimates and the quantity on the left-hand side of (2) is known as the
Lebesgue constant at x.

In the following theorem and its proof we will make repeated use of multi-index
notation and multivariate Taylor expansions. For f3 = (/31 , ... , /38) E N0 with
l/31 = I:::=l /Ji we define the differential operator n/3 as

13 0 1131
D - ~~---=-~~~_____,-

- (oxi)/31 · · · (8x 8)!3s'

and the notation D~<P(w, ·) used below indicates that the operator is applied to
<I> (w, ·) viewed as a function of the second variable.

14. The Power Function and Native Space Error Estimates 121

The multivariate Taylor expansion of the function <I>(w, ·)centered at w is given
by

with remainder

<I>(w, z) = L D~<I>~~' w) (z - w)/3 + R(w, z)
l.Bl<2k

R() = '""" D~if!(W, f.w,z) (_)/3
w, z L...t {3! z w '

l/31=2k

where ew,z lies somewhere on the line segment connecting w and z.
The generic error estimate of Theorem 14.2 can now be formulated in terms of

the fill distance.

Theorem 14.5. Suppose n ~ "IR 8 is bounded and satisfies an interior cone condi­
tion. Suppose <I> E C2k(O x 0) is symmetric and strictly positive definite. Denote
the interpolant to f E N<i> (n) on the set X by Pf. Then there exist positive constants
ho and C (independent of x, f and <I>) such that

lf(x) - PJ(x)I:::; Ch1,oVC<t>(x)JlfilN.z,(n),

provided hx,n :::; ho. Here

C<i>(x) = max max ID~<I>(w, z)I
l/31=2k w,zEflnB(x,c2hx,n)

with B(x, c2hx,n) denoting the ball of radius c2hx,n centered at x.

Proof. By Theorem 14.2 we know

Jf(x) - PJ(x)J :S P<t>,x(x)JJfJIN~cn)·

Therefore, we now derive the bound

for the power function in terms of the fill distance.
We know that the power function is defined by

[P<i>,x(x)] 2 = Q(u*(x)).

Moreover, we know from Theorem 14.3 that the quadratic form Q(u) is minimized
by u = u*(x). Therefore, any other coefficient vector u will yield an upper bound
on the power function. We take u = ii.(x) from Theorem 14.4 so that we are ensured
to have polynomial precision of degree f, > 2k - 1.

For this specific choice of coefficients we have

[P<1>,x(x)] 2
:::; Q(u) = <I>(x, x) - 2 L UJ<I>(x, XJ) +LL uiuJ<I>(xi, XJ),

j i j

122 Meshfree Approximation Methods with MATLAB

where the sums are over those indices j with Uj =I= 0. Now we apply the Taylor
expansion centered at x to <I>(x, ·)and centered at Xi to <I>(xi, ·),and evaluate both
functions at Xj. This yields

"' ["' D~<I>(x, x) 13] Q(u) = <I>(x, x) - 2 L_.., Uj L_.., {3! (xJ - x) + R(x, Xj)
j l/31<2k

~ ~ [~ D~<I>(xi, Xi) f3] + L_.., L_.., UiUj L_.., {3! (xJ - Xi) + R(xi, Xj) .
i j l,Bl<2k

Next, we identify p(z) = (z - x),a so that p(x) = 0 unless {3 = 0. Therefore the
polynomial precision property of the coefficient vector u simplifies this expression
to

Q(u) = <I>(x, x) - 2<I>(x, x) - 2 L uJR(x, xJ)
j

"' ~ D~<I>(xi, xi) (,a ~ ~ (+ L_.., Ui L_.., {3! X - Xi) + L_.., L_.., UiUjR(xi, Xj). 14.5)
i 1.a1 <2k i j

Now we can apply the Taylor expansion again and make the observation that

~ D~<I>(xi, xi) (/3 ((()
L_.., {3! x - Xi) =<I> Xi, x) - R Xi, x). 14.6

l.Bl<2k

If we use (14.6) and rearrange the terms in (14.5) we get

Q(u) = -.P(x, x) - ~ uj [2R(x, xj) - ~ u;R(x;, x,)]

+ L Ui [<I>(xi, x) - R(xi, x)I.

One final Taylor expansion we need is (using the symmetry of <I>)

"' D~<I>(x, x) ,a
<I>(xi, x) = <I>(x, xi) = L_.., {3! (xi - x) + R(x, xi).

l.Bl<2k

(14.7)

(14.8)

If we insert (14.8) into (14.7) and once more take advantage of the polynomial
precision property of the coefficient vector u we are left with

Q(u) = - ~ u, [R(x, Xj) + R(x,, x) - ~ u;R(x;, Xj)] .

Now Theorem 14.4 allows us to bound L:j luJI < c1. Moreover, llx-xJll2:::; c2hx,n
and llxi - Xj 11 2 ::; 2c2 hx,n. Therefore, all three remainder terms can be bounded
by an expression of the form Ch~0,C<I>(x). Here we made use of the interior cone

' property of n enabling us to define the term C<I> (x). Combining these bounds and
taking the square root yields the stated bound for the power function. 0

14. The Power Function and Native Space Error Estimates 123

Theorem 14.5 says that interpolation with a C 2k smooth kernel <I> has approx­
imation order k. Thus, for infinitely smooth strictly positive definite functions
such as the Gaussians, Laguerre-Gaussians, Poisson radial functions, and the gen­
eralized inverse multiquadrics we see that the approximation order k is arbitrarily
high. For strictly positive definite functions with limited smoothness such as the
Matern functions, the Whittaker radial functions, as well as all of the compactly
supported functions, the approximation order is limited by the smoothness of the
basic function.

The estimate in Theorem 14.5 is still generic. It does not fully account for the
particular basic function <I> being used for the interpolation since the factor c<f> (x)
still depends on <I>. Moreover, we point out that the term C<:>(x) may include a
hidden dependence on hx,n. For most basic functions it will be possible to use
C<:> (x) to "squeeze out" additional powers of h. This is the reason for splitting the
constant in front of the h-power into a generic C and a C <f> (x).

The statement of Theorem 14.5 can be generalized for strictly conditionally pos­
itive definite functions and also to cover the error for approximating the derivatives
of f by derivatives of Pf. We state this general theorem without comment (c.f.
[Wendland (2005a)] for details).

Theorem 14.6. Suppose n ~ ~s is open and bounded and satisfies an interior
cone condition. Suppose <I> E C 2k(n x n) is symmetric and strictly conditionally
positive definite of order m on ~s. Denote the interpolant to f E N<f> (n) on the
(m- l)-unisolvent set X by P1. Fix a E N0 with lal :S k. Then there exist positive
constants ho and C (independent of x, f and <I>) such that

IDa f(x) - DaP1(x)I < Ch~~~al JC<:>(x)lflN<t>(n),

provided hx,n :S ho. Here

C<t>(X) = max max IDr DJ<I>(w, z)I.
/3,-,.EN0 w,zEnnB(x,c2hx,n)

l/31+hl=2k

Note that for conditionally positive definite functions we have only a native
space semi-norm instead of a norm.

Chapter 15

Refined and Improved Error Bounds

15.1 Native Space Error Bounds for Specific Basis Functions

For the first part of this chapter we discuss the non-stationary setting. The ad­
ditional refinement of the error estimate of Theorem 14.6 for specific functions <I>

is rather technical (for details see, e.g., the book [Wendland (2005a)]). A large
body of literature exists on this topic such as, e.g., [Buhmann and Dyn (1991);
Light (1996); Light and Wayne (1995); Light and Wayne (1998); Madych (1992);
Madych and Nelson (1992); Narcowich and Ward (2004); Narcowich et al. (2003);
Narcowich et al. (2005); Schaback (1995b); Schaback (1996); Wendland (1998);
Wendland (1997); Wu and Schaback (1993); Yoon (2003)]). We now list some of
the results that can be obtained.

15.1.1 Infinitely Smooth Basis Functions

As mentioned before, an application of Theorem 14.6 to infinitely smooth func­
tions such as Gaussians or generalized (inverse) multiquadrics immediately yields
arbitrarily high algebraic convergence rates, i.e., for every£ E N and lol < £ we
have

(15.1)

whenever f E Nif>(0.). A considerable amount of work has gone into investigating
the dependence of the constant Ct on£ (see, e.g., [Wendland (2001b)]).

Using different proof techniques (see, e.g., [Madych and Nelson (1988)] or [Wend­
land (2005a)] for details) it is possible to derive more precise error bounds for Gaus­
sians and (inverse) multiquadrics. The resulting theorem from [Wendland (2005a)]
is

Theorem 15.1. Let n be a cube in JRS. Suppose that <I> = cp(ll . II) is a strictly con­
ditionally positive definite radial function such that 'I/; = <p(V.) satisfies l'l/J(e) (r) I <
f!Mf for all integers £ > £0 and all r ~ 0, where M is a fixed positive constant.
Then there exists a constant c such that for any f E Nif>(fi)

-c

II f - Pf II L°"(n) ~ e hx,n IJL,._r<1>(n)> (15.2)

125

126 Meshfree Approximation Methods with MATLAB

for all data sites X with sufficiently small fill distance hx,n.
Moreover, if 'lj; satisfies even l'1/J(£)(r)I <Me, then

-cl log hx,n I

llf - Pf llLoo(n) < e hx,n llJllN~(n) (15.3)

provided hx,n is sufficiently small.

Example 15.1. For Gaussians <I>(x) = e-e:
2

Jl:z:Jl
2

, c > 0 fixed, we have 1/J(r) = e-e:
2
r,

so that 'lj;(£)(r) = (-1)£c2£e-e:
2

r for f > fo = 0. Thus, M = c2 , and the error bound
(15.3) applies. This kind of exponential approximation order is usually referred to
as spectral (or even super-spectral) approximation order. We emphasize that this
nice property holds only in the non-stationary setting and for data functions f that
are in the native space of the Gaussians such as band-limited functions.

Example 15.2. For generalized (inverse) multiquadrics <I>(x) = (1 + llxll 2)/3, {3 < 0,
or 0 < {3 tj: N, we have 1/J(r) = (l+r)/3. In this case one can show that l'1/J£(r)I < f!M£
whenever f > lf31. Here M = l+lf3+ll. Therefore, the error estimate (15.2) applies,
i.e., in the non-stationary setting generalized (inverse) multiquadrics have spectral
approximation order.

Example 15.3. For Laguerre-Gaussians <I>(x) = L~2 (llcxll 2)e-e:2 Jl:z:ll 2 , c > 0 fixed,
we have 1/J(r) = L~2 (c2 r)e-e:2 r and the derivatives 'lj;(£) will be bounded by 'lj;(£)(O) =

Pn (f)c2£, where Pn is a polynomial of degree n. Thus, the approximation power of
Laguerre-Gaussians falls between (15.3) and (15.2) and Laguerre-Gaussians have at
least spectral approximation power.

15.1.2 Basis Functions with Finite Smoothness

For functions with finite smoothness (such as the Matern functions, radial powers,
thin plate splines, and Wendland's compactly supported functions) it is possible to
bound the constant C<I>(x) by some additional powers of h, and thereby to improve
the order predicted by Theorem 14.6. In particular, for Ck functions the factor
C ct> (x) can be expressed as

C<t>(X) = iJI'i~k llD/3<I>llL00 (B(0,2chx,n))

independent of x (see [Wendland (2005a)]). Therefore, this results in the following
error estimates (see, e.g., [Wendland (2005a)], or the much earlier [Wu and Schaback
(1993)] where other proof techniques were used).

, . _ K13-1-(li:z:Jl)\l:z:ll 13 - ~ s
Example 15.4. For the Matern functions <I>(x) - 213 _ 1 r(/3) , {3 > 2 , we get

ID 0 f(x) - D 0 P1(x)I < Ch~~J-lal lflN~(fl)·

provided lo:I < {3- r.st 1 1, hx,n is sufficiently small, and f E Nct>(n).

(15.4)

15. Refined and Improved Error Bounds 127

Example 15.5. For the compactly supported Wendland functions <I>s,k(x) =

'Ps,k(llxll) this first refinement leads to

ID0 f(x) - D 0 P1(x)I < Ch~~J-lol llJllN4>(f2)· (15.5)

provided lal < k, hx,n is sufficiently small, and f E Nif>(O).

Example 15.6. For the radial powers <I>(x) = (-1) r,a/21 iixll,a, 0 < f3 ¢. 2N, we get

ID0 f(x) - D 0 PJ(x)I < Chkda11JIN4>(f2)· (15.6)

provided lal < [/11-
1

, hx,n is sufficiently small, and f E Nif>(O).

Example 15.7. For thin plate splines <I>(x) = (-l)k+1 11xll 2klogllxll, we get

ID 0 f(x) - D 0 P1(x)I < Ch~~b01 1JIN4>(f2)· (15.7)

provided 10!1 < k - 1, hx,n is sufficiently small, and f E Nif>(O).

15.2 Improvements for Native Space Error Bounds

Radial powers and thin plate splines can be interpreted as a generalization of uni­
variate natural splines. Therefore, we know that the approximation order estimates
obtained via the native space approach are not optimal. For example, for inter­
polation with univariate piecewise linear splines (i.e., <I>(x) = llxll in x E JR.) we
know the approximation order to be O(h), whereas the estimate (15.6) yields only
approximation order O(h1l 2). Similarly, for thin plate splines <I>(x) = llxll 2 log llxll
one would expect order O(h2) in the case of pure function approximation. However,
the estimate (15.7) yields only O(h). These two examples suggest that it should be
possible to "double" the approximation orders obtained thus far.

One can improve the estimates for functions with finite smoothness (i.e., Matern
functions, Wendland functions, radial powers, and thin plate splines) by either (or
both) of the following two ideas:

• by requiring the data function f to be even smoother than what the native
space prescribes, i.e., by building certain boundary conditions into the native
space;

• by using weaker norms to measure the error.

The idea to localize the data by adding boundary conditions was introduced in
the paper [Light and Wayne (1998)]. This "trick" allows us to "square" the approx­
imation order, and thus reach the expected approximation orders. The second idea
can already be found in the early paper [Duchon (1978)].

After applying both of these techniques the final approximation order estimate
for interpolation with the compactly supported functions <I>s,k is (see [Wendland
(1997)])

(15.8)

128 Meshfree Approximation Methods with MATLAB

k+ s+l

where f is assumed to lie in the subspace Wik+l+s(I~.8) of N<I>(Il.~.8) = W 2
2

• For
example, for the popular basic function <p3,1(r) = (1- r)t(4r + 1) we have

II! - P1 llL2(0) :S Ch
6

llfllw;cIRs)·

Note that the numerical experiments in Table 12.2 produced RMS-convergence rates
only as high as 4.5.

For radial powers and thin plate splines one obtains L 2-error estimates of or­
der O(hf3+s) and O(h2k+s), respectively. These estimates are optimal, i.e., exact
approximation orders, as shown in [Bejancu (1999)].

More work on improved error bounds can be found in, e.g., [Johnson (2004a)]
or [Schaback (1999b)].

15.3 Error Bounds for Functions Outside the Native Space

The error bounds mentioned so far were all valid under the assumption that the
function f providing the data came from (a subspace of) the native space of the
RBF employed in the interpolation. We now mention a few recent results that
provide error bounds for interpolation of functions f not in the native space of
the basic function. In particular, the case when f lies in some Sobolev space is of
great interest. A rather general theorem was recently given in [Narcowich et al.
(2005)]. In this theorem Narcowich, Ward and Wendland provide Sobolev bounds
for functions with many zeros. However, since the interpolation error function is
just such a function, these bounds have a direct application to our situation. We
point out that this theorem again applies to the non-stationary setting.

Theorem 15.2. Let k be a positive integer, 0 < a ::::; 1, 1 ::::; p < oo, 1 ::::; q < oo
and let a be a multi-index satisfying k > lal + s/p or, for p = 1, k > lal + s.
Let X c 0 be a discrete set with fill distance h = hx,o where 0 is a compact set
with Lipschitz boundary which satisfies an interior cone condition. lf u E w;+a (0)
satisfies ulx = 0, then

lul < chk+a-lal-s(l/p-1/q)+ lul
wJ°'I (O) - w;+u (O)'

where c is a constant independent of u and h, and (x)+ is the cutoff function.

Suppose we have an interpolation process P : w;+a (0) _, V that maps Sobolev
functions to a finite-dimensional subspace v of w;+a (0) with the additional prop­

erty IPJ lw;+""(O) < lflw;+a-co)' then Theorem 15.2 immediately yields the error
estimate

If _ p I < chk+a-1a1-sc11p-1/q)+ Ill
f wJ°'I (0) - w;+u (0) ·

The additional property IP1lw;+""(n) < lflw;+a-(O) is certainly satisfied provided
the native space of the basic function is a Sobolev space. Thus, Theorem 15.2
provides an alternative to the power function approach discussed in the previous

15. Refined and Improved Error Bounds 129

chapter if we base P on linear combinations of shifts of the basic function <I>. This
new approach has the advantage that the term Ccp (x) which may depend on both
<I> and X no longer needs to be dealt with.

In particular, the authors of [Narcowich et al. (2005)] show that if the Fourier
transform of <I> satisfies

llwll ~ oo, w E IRs, (15.9)

then the above error estimate holds with T = k + <J and p = 2 provided the fill
distance is sufficiently small. Examples of basic functions with an appropriately
decaying Fourier transform are provided by the families of Wendland or Matern
functions. In addition, Narcowich, Ward and Wendland show that analogous error
bounds hold for radial powers and thin plate splines (whose native spaces are Beppo­
Levi spaces).

For functions f outside the native space of a basic function <I> whose Fourier
transform satisfies (15.9) Narcowich, Ward and Wendland prove

Theorem 15.3. Let k and n be integers with 0 < n < k ::; T and k > s/2, and let
f E Ck(O). Also suppose that x = {x1, ... 'XN} c n satisfies diam(X) < 1 with
sufficiently small fill distance. Then for any 1 ::; q ::; oo we have

If - P1lw;(n) :S cp7;:-khk-n-s(l/2-l/q)+ llfllck(fl)'

where Px = -1!_ is the mesh ratio for X and qx is the separation distance
qx

~ lrilili:;tj llxi - Xjll2·

We remind the reader that the fill distance corresponds to the radius of the
largest possible empty ball that can be placed between the points in X. The sep­
aration distance (c.f. Chapter 16), on the other hand, can be interpreted as the
radius of the largest ball that can be placed around every point in X such that no
two balls overlap. Thus, the mesh ratio is a measure of the non-uniformity of the
distribution of the points in X.

Similar results were obtained earlier in [Brownlee and Light (2004)] (for radial
powers and thin plate splines only), and in [Yoon (2003)] (for shifted surface splines,
see below).

Example 15.8. If we consider polyharmonic splines, then the decay condition
(15.9) for the Fourier transform is satisfied with T = 2/3 for thin plate splines and
with T = f3 for radial powers. If we take k = r, n = 0, and q = oo in Theorem 15.3
then we arrive at the bound

If - Pf !Loo :S ch2,6-s/2 llfllc2/3(fl)

for thin plate splines <I> (x) = II x 11 2,e log(ll x 11), and

If - P1IL00 < ch,6-s/2
llfllc/3(fl)

for radial powers <I> (x) = II x 11,6. These bounds immediately correspond to the "op­
timal" native space bounds obtained earlier only after the improvements discussed

130 Meshfree Approximation Methods with MATLAB

in the previous subsection. For data functions f with less smoothness the approxi­
mation order is reduced accordingly.

Lower bounds on the approximation order for approximation by polyharmonic
splines were recently provided in [Maiorov (2005)]. Maiorov studies for any 1 <
p,q::; oo and ,B/s > (1/p-1/q)+ the error E of Lq-approximation of Wf functions
by polyharmonic splines. More precisely,

E(Wf ([O, 1) 5
), RN('f?f3, (3), Lq([O, 1) 5

)) 2: cN-f31s,

where RN('Pf3, (3) denotes the linear space formed by all possible linear combinations
of N polyharmonic (or thin-plate type) splines

{
r 2f3-s ifs is odd s

'Pf3(r) = 2(3-sl "f . (3 > -2, r og r I s is even,

and multivariate polynomials of degree at most (3 - 1. Note that these bounds are
in terms of the number N of data sites instead of the usual fill distance h.

For the special cases p = q = oo and p = 2, 1 < q < 2 the above lower bound is
shown to be asymptotically exact.

15.4 Error Bounds for Stationary Approximation

The stationary setting is a natural approach for use with local basis functions. The
main motivation comes from the computational point of view. We are interested in
maintaining sparse interpolation matrices as the density of the data increases. This
can be achieved by scaling the basis functions proportional to the data density.
In principle we can take any of our basic functions and apply a scaling of the
variable, i.e., we replace x by EX, E > 0. As mentioned several times earlier, this
scaling results in "peaked" or "narrow" basis functions for large values of E, and
"flat" basis functions for E -+ 0. We will now discuss what happens if we choose E

inversely proportional to the fill distance, i.e.,

co
Eh=--

hxn
'

(15.10)

for some fixed base scale co and study the approximation error based on the RBF
interpolant

where

N

PJ(x) = LCJ'Peh(llx - Xj\\),
j=l

Example 15.9. A rather disappointing fact is that Gaussians do not provide any
positive approximation order, i.e., the approximation process is saturated. This was

15. Refined and Improved Error Bounds 131

studied by [Buhmann (1989a)] on infinite lattices. However, for quasi-interpolation
the approximate approximation approach of Maz'ya shows that it is possible to
choose co in such a way that the level at which the saturation occurs can be con­
trolled (see, e.g., [Maz'ya and Schmidt (1996)]). Therefore, Gaussians may very
well be used for stationary interpolation provided an appropriate initial shape pa­
rameter is chosen. We will illustrate this behavior in the next chapter. The same
kind of argument also applies to the Laguerre-Gaussians of Section 4.2.

Example 15.10. Basis functions with compact support such as the Wendland
functions also do not provide any positive approximation order in the station­
ary case. This can be seen by looking at the power function for the scaled ba­

sic function <I>c-h = <I>(ch·) which is of the form P<I>.,h,x(x) = P<I>,x.,h (chx) where
Xc-h = {chx1, ... , chXN} denotes the scaled data set. Moreover, the fill distances of
the sets Xc-h and X satisfy hx.,h,n = chhx ...fl.. Therefore, the power function (which

'Eh
can be bounded in terms of the fill distance, c.f. the proof of Theorem 14.5) satisfies

P<t>Eh,x(x) ~ C (chhx,.,n,.)1:t
for some a > 0. This, however, does not go to zero if ch is chosen as in (15.10).

If, on the other hand, we work in the approximate approximation regime, then
we can obtain good convergence in many cases (see the next chapter for some
numerical experiments).

Example 15.11. Stationary interpolation with (inverse) multiquadrics, radial pow­
ers and thin plate splines presents no difficulties. In fact, [Schaback (1995c)] shows
that the native space error bound for thin plate splines and radial powers is invariant
under a stationary scaling. Therefore, the non-stationary bound of Theorem 15.3
applies in the stationary case also. The advantage of scaling thin plate splines or
radial powers comes from the added stability one can gain by preventing the sepa­
ration distance from becoming too small (see Chapter 16 and the work of Iske on
local polyharmonic spline approximation, e.g., [Iske (2004)]).

Yoon provides error estimates for stationary approximation of rough functions
(i.e., functions that are not in the native space of the basic function) by so-called
shifted surface splines. Shifted surface splines are of the form

<I> x -{ (-I)l/3-s/21(1 + llxll2)/3-s/2, s odd,
() - (-1)6-s/2+1(1 + llxll2)/3-s/2log(l + llxll2)1/2, seven,

where s/2 < {3 E N. These functions include all of the (inverse) multiquadrics,
radial powers and thin plate splines.

Yoon has the following theorem (see [Yoon (2003)] for the Lp case, and [Yoon
(2001)] for L 00 bounds only).

Theorem 15.4. Let <I> be a shifted surface spline with shape parameter c inversely
proportional to the fill distance hx,n. Then there exists a positive constant C (in­
dependent of X) such that for every f in the Sobolev space Wf (0) n Wl(O) we

132 Meshfree Approximation Methods with MATLAB

have

1 ::::; p < oo,

with

/p = min{,B, ,B - s/2 + s/p}.

Furthermore, if f E Wf (f2) n W~(n) with max{O, s/2 - s/p} <a< ,B, then

II! - P1 llLp(n) = o(h1 P-f3+o:).

Yoon's estimates address the question of how well the infinitely smooth (inverse)
multiquadrics approximate functions that are less smooth than those in their native
space. For example, Theorem 15.4 states that £ 2-approximation to functions in

W?(n), n ~ IR. 8
, by multiquadrics <I>e(x) = yfl + llcxll 2 is of the order O(h2).

However, we emphasize once more that this refers to stationary approximation of
rough functions, i.e., c is scaled inversely proportional to the fill distance and f
need not lie in the native space of <I>, whereas the spectral order given in (15.2)
corresponds to approximation of functions in the native space in the non-stationary
case with fixed c.

For thin plate splines and radial powers the approximation orders in Theo­
rem 15.4 are equivalent to those of Theorem 15.3 and the results of Brownlee and
Light mentioned above. This is to be expected due to the invariance of these basic
functions with respect to scaling.

The second part of Yoon's result is a step toward exact approximation orders as
is the work of [Maiorov (2005)] and [Bejancu (1999)] mentioned above.

15.5 Convergence with Respect to the Shape Parameter

None of the error bounds discussed thus far have taken into account the pos­
sibility of varying the shape parameter c for a fixed data set X. However, in
the literature the infinitely smooth basic functions such as the Gaussians and
(inverse) multiquadrics are usually formulated including the shape parameter c
(or another parameter equivalent to it) and one may wonder how a change
in this shape parameter affects the convergence properties of the RBF inter­
polant. In fact, quite a bit of work has been spent on the quest for the
"optimal" shape parameter (see, e.g., [Carlson and Foley (1991); Foley (1994);
Hagan and Kansa (1994); Kansa and Carlson (1992); Rippa (1999); Tarwater (1985);
Wertz et al. (2006)]).

Convergence of the infinitely smooth Gaussians and (inverse) multiquadrics with
respect to the shape parameter was studied early on in [Madych (1991)]. Madych
showed that for these basic functions there exists a positive constant ,\ < 1 such
that

lf(x) - P1(x)I < C,\1/(ehx,n) (15.11)

15. Refined and Improved Error Bounds 133

provided f is in the native space of <I>. This estimate shows that taking either the
shape parameter c or the fill distance hx,n to zero results in exponential conver­

gence.

15.6 Polynomial Interpolation as the Limit of RBF Interpolation

Recently, a number of authors (see, e.g., [Driscoll and Fornberg (2002); Fornberg and
Flyer (2005); Fornberg and Wright (2004); Larsson and Fornberg (2005); Schaback
(2005); Schaback (2006b)]) have studied the limiting case as c: - 0 of scaled radial
basis function interpolation with infinitely smooth basic functions such as Gaussians
and generalized (inverse) multiquadrics. It turns out that there is an interesting
connection to polynomial interpolation.

In [Driscoll and Fornberg (2002)] univariate (s = 1) interpolation with c:-scaled
infinitely smooth radial basic functions is studied. Driscoll and· Fornberg show that
the RBF interpolant

N

P1(x) = L CJ<P(llc:(x - XJ)ll),
j=l

x E [a, b] CIR,

to function values at N distinct data sites tends to the Lagrange interpolating

polynomial of f as c - 0.
The multivariate case is more complicated. However, the limiting RBF inter­

polant (provided it exists) is given by a low-degree multivariate polynomial (see
[Larsson and Fornberg (2005); Schaback (2005); Schaback (2006b)]). For example,
if the data sites are located such that they guarantee a unique polynomial inter­
polant, then the limiting RBF interpolant is given by this polynomial. If polyno­
mial interpolation is not unique, then the RBF limit depends on the choice of basic
function. However, these statements require the RBFs to satisfy an (unproven)
condition on certain coefficient matrices Ap,J. In [Larsson and Fornberg (2005)]
the authors also provide an explanation for the error behavior for small values of
the shape parameter, and for the existence of an optimal (positive) value of c giv­
ing rise to a global minimum of the error function. For the special case of scaled
Gaussians Schaback [Schaback (2005)] shows that the RBF interpolant converges
to the de Boor and Ron least polynomial interpolant (see [de Boor and Ron (1990);
de Boor and Ron (1992a)] and also [de Boor (2006)]) as c: - 0.

In [Fornberg and Wright (2004)] the authors describe a so-called Contour-Pade
algorithm that makes it possible (for data sets of relatively modest size) to compute
the RBF interpolant for all values of the shape parameter c: including the limiting
case c: - 0. We present some numerical result obtained with Grady Wright's
MATLAB toolbox in Chapter 17.

We will later exploit the connection between RBF and polynomial interpolants
to design numerical solvers for partial differential equations.

Chapter 16

Stability and 'Irade-Off Principles

16.l Stability and Conditioning of Radial Basis Function
lnterpolants

A standard criterion for measuring the numerical stability of an approximation
method is its condition number. In particular, for radial basis function interpolation
we need to look at the condition number of the interpolation matrix A with entries
Aij = cI>(xi - Xj)· For any matrix A its f2-condition number is given by

cond(A) = llAll2llA- 1 ll2 = <7max,
<7min

where amax and <7min are the largest and smallest singular values of A. If we
concentrate on positive definite matrices A, then the condition number of A can
also take be computed as the ratio

of the largest and smallest eigenvalues.

Amax

Amin

What do we know about these eigenvalues? First, Gershgorin's theorem (see,
e.g., [Meyer (2000)]) says that

N

!Amax - Aiil < Z:: IAijl

for some i E {1, ... , N}. Therefore,

j=l
j#i

Amax< N . . max IAijl = N max lcI>(xi - Xj)I,
i,J=l, ... ,N ~i,~JEX

which, since cl> is strictly positive definite, becomes

Amax < NcI>(O)

by the properties of positive definite functions (Property (4) in Theorem 3.1). Now,
as long as the data are not too wildly distributed, N will grow as h··;/n which

' is acceptable. Therefore, the main work in establishing a bound for the condition
number of A lies in finding lower bounds for Amin (or correspondingly upper bounds

135

136 Meshfree Approximation Methods with MATLAB

for the norm of the inverse llA- 1 11 2). This is the subject of several papers by Ball,
Narcowich, Sivakumar and Ward [Ball et al. (1992); Narcowich et al. (1994);
Narcowich and Ward (1991a); Narcowich and Ward (1991b); Narcowich and Ward
(1992)) who make use of a result from [Ball (1992)) on eigenvalues of distance
matrices. Ball's result follows from the Rayleigh quotient (or the Courant-Fischer
Theorem 9.5), which gives the smallest eigenvalue of a symmetric positive definite
matrix as

cTAc
Amin = min T .

cERN\O C C

This can be used to prove the following bound for the norm of the inverse of A
which covers also the case of conditional positive (negative) definiteness of order
one.

Lemma 16.1. Let x 1 , ... , XN be distinct points in JR5 and let <I>: JR5
----t IR be either

strictly positive definite, or strictly conditionally negative definite of order one with
<I> (0) < 0. Also, let A be the interpolation matrix with entries Aij = <I> (Xi - xi). lf
the inequality

N N

LL cicjAii > Ollcll~
i=l j=l

is satisfied whenever the components of c satisfy 2-:::f=l Cj = 0, then

Note that for positive definite matrices the Rayleigh quotient implies () = Amin

which shows why lower bounds on the smallest eigenvalue correspond to upper
bounds on the norm of the inverse of A. In order to obtain the bound for con­
ditionally negative definite matrices the Courant-Fischer theorem 9.5 needs to be
employed.

The bound in Lemma 16.1 is too generic to give us any information for specific
basic functions <I>. This extension was accomplished in some of the other papers
mentioned above. Narcowich and Ward establish bounds on the norm of the inverse
of A in terms of the separation distance of the data sites

qx =!min llxi - x ·112. 2 iof=j J

We can picture qx as the radius of the largest ball that can be placed around every
point in X such that no two balls overlap (see Figure 16.1). The separation distance
is sometimes also referred to as the packing radius. In our MATLAB code we can
compute the separation distance via

qX = min(min(DM_data+eye(size(DM_data))))/2

16. Stability and Trade- Off Principles 137

0 0.2 0.4 0.6 0.8
x

Fig. 16.1 The separation distance for N = 25 Halton points (qx ~ 0.0597).

where DM_data is the matrix of pairwise distances among the data sites X. The
identity matrix is added only to avoid counting the distance of a point Xj to itself
as a potential minimum.

The derivation of these bounds is rather technical, and for details we refer to
either the original papers by Narcowich, Ward and co-workers listed above, the
more recent paper [Schaback (2002)], or the book [Wendland (2005a)]. By providing
matching lower bounds for llA-1 112 (i.e., upper bounds for Amin) Schaback showed
that the upper bounds on the norm of the inverse obtained by Narcowich, Ward
and others are near optimal (see [Schaback (1994b)]).

We now list several (lower) bounds for Amin as derived in [Wendland (2005a)].
In the examples below the explicit (space-dependent) constants

(nr
2 (~))1/(s+l) 1 (~ss)s

Ms= 12 9
2 < 6.38s and Cs= 2r(y) yo

are used. The upper bound for Ms can be obtained using Stirling's formula (see
[Wendland (2005a)]).

Since the bounds in the literature for Gaussians and multiquadrics also include
the influence of the shape parameter c we present the basic functions in their scaled
version here.

Example 16.1. For Gaussians <I>(x) = e-e
2
llxll

2
one obtains

Amin> Cs(vf2c)-se-40.71s2/(qxE)2 q;/.

We see that, for a fixed shape parameter c, the lower bound for Amin goes expo­
nentially to zero as the separation distance qx decreases. Since we observed above
that the condition number of the interpolation matrix A depends on the ratio of
its largest and smallest eigenvalues and the growth of Amax is of order N we see
that the condition number grows exponentially with decreasing separation distance.
This shows that, if one adds more interpolation points in order to improve the ac­
curacy of the interpolant (within the same domain S1), then the problem becomes

138 Meshfree Approximation Methods with MATLAB

increasingly ill-conditioned. Of course one would always expect this to happen,
but here the ill-conditioning grows primarily due to the decrease in the separation
distance qx, and not to the increase in the number N of data points. We will come
back to this observation when we discuss a possible change of basis in Section 34.4.

On the other hand, if one keeps the number of points (or at least the separation
distance) fixed and instead decreases the value of e, then the condition number of
A suffers in almost the same exponential manner. Of course, an increase in e can
be used to improve the condition number of A (however, as we saw earlier, at the
expense of accuracy of the fit).

Example 16.2. For scaled generalized (inverse) multiquadrics <I>(x)

(1 + llexll 2)/3, (3 E IR\ No one obtains

A · > C(s (3 e)q/3- ~+~ e- 2Ms/(qxc:)
min - ' ' X

with another explicitly known constant C(s, (3, e).
The same comments as in the previous example apply.

Example 16.3. For thin plate splines <I>(x) = (-1),B+lllxll 2/3logllxll, (3 EN, one
obtains

Amin > Csc,a(2Ms)-s-2f3q2J

with another explicitly known constant c,a.
In this case the lower bound also goes to zero with decreasing separation distance.

However the decay is only of polynomial order.

Example 16.4. For the radial powers <I>(x) = (-1)rN2l llxllf3, 0 < (3 ¢. 2N, one
obtains

Amin~ Csc,a(2M8)-s-,(3q~

with another explicitly known constant c,a (different from c,a in Example 3). Again,
the decay is of polynomial order.

Example 16.5. For the compactly supported functions of Wendland <l> 8 ,k(x)
'Ps,k(llxll) one obtains

Amin > C(s, k)q'J:+l

with a constant C(s, k) depending on s and k. The lower bound goes to zero with
the separation distance at a polynomial rate.

16.2 Trade-Off Principle I: Accuracy vs. Stability

The observations made in Examples 16.1 and 16.2 above set up the first trade­
off principle. This principle states that if we use the standard approach to the
RBF interpolation problem (i.e., solution of the linear system (6.3)) then there is

16. Stability and Trade-Off Principles 139

a conflict between theoretically achievable accuracy and numerical stability. For
example, the error bounds for non-stationary interpolation using infinitely smooth
basis functions show that the error decreases (exponentially) as the fill distance
decreases. For well-distributed data a decrease in the fill distance also implies a
decrease of the separation distance. But now the condition estimates of the previous
subsection imply that the condition number of A grows exponentially. This leads
to numerical instabilities which make it virtually impossible to obtain the highly
accurate results promised by the theoretical error bounds.

Similarly, if we use the shape parameter to (exponentially) increase accuracy
as guaranteed by Madych's error bound (15.11), then the condition number again
grows exponentially. This is to be expected since for small values of c: the basic
functions more and more resemble a constant function, and therefore the rows (as
well as columns) of the matrix A become more and more alike, so that the matrix
becomes almost singular - even for well separated data sites.

In the literature this phenomenon has been referred to as trade-off or (uncer­
tainty) principle (see, e.g., the papers [Schaback (1995b); Schaback (1995c)]).

Schaback looked at the power function P<I>,x and showed that it can always be
bounded from above by a function F<I> depending on the fill distance. On the other
hand, he showed that the Rayleigh quotient can always be bounded from below by a
function G<I> depending on the separation distance. Furthermore, Schaback showed
that

and therefore, for well-distributed data (with qx ~ hx,n), a small error bound (i.e.,
small F<I>(hx,n)) will necessarily result in a small lower bound (i.e., small G<I>(Qx))
for the Rayleigh quotient, and therefore for the smallest eigenvalue. This however
implies a large condition number.

We have seen evidence of the first trade-off principle in various numerical ex­
periments. This trade-off has led a number of people to search for an "optimal"
value of the shape parameter, i.e., a value that yields maximal accuracy, while still
maintaining numerical stability.

In particular, multiquadrics have attracted the best part of this attention. For
example, in his original work on (inverse) multiquadric interpolation in IR2 Hardy
[Hardy (1971)] suggested using c: = 1/(0.815d), where d = Jv 2:!1 di, and di is
the distance from Xi to its nearest neighbor. Later, in [Franke (1982a)], one can

find the recommended value c: = 0 ·8;{N, where D is the diameter of the smallest
circle containing all data points. Another strategy for finding a good value for c: is
based on the observation that such a value seems to be similar for multiquadrics and
inverse multiquadrics (see [Foley (1994)]). Other studies were reported in [Carlson
and Foley (1992); Carlson and Natarajan (1994)]. We will consider a more recent
algorithm proposed in [Rippa (1999)] in the next chapter.

140 Meshfree Approximation Methods with MATLAB

16.3 Trade-Off Principle II: Accuracy and Stability vs. Problem
Size

More recently, Fornberg and co-workers have investigated the dependence of the
stability on the values of the shape parameter c in a series of papers (e.g., [Driscoll
and Fornberg (2002); Fornberg and Wright (2004); Larsson and Fornberg (2005);
Platte and Driscoll (2005)]). They suggest a way to stably compute very accurate
generalized (inverse) multiquadric and Gaussian interpolants with extreme values
of c ---+ 0 by using a complex Contour-Pade integration algorithm. Thus, this ap­
proach allows us to overcome the first trade-off principle mentioned in the previous
section. However, there is another kind of trade-off associated with the Contour­
Pade approach. Namely it is limited to only rather small data sets (roughly N = 20
for s = 1 and N = 80 for s = 2).

In spite of these limitations the Contour-Pade algorithm has been used to gain
a number of theoretical insights such as the connection between RBF interpolation
and polynomial interpolation mentioned in Section 15.6. We present some numerical
experiments based on the Contour-Pade approach in the next chapter.

16.4 Trade-Off Principle III: Accuracy vs. Efficiency

There is also a trade-off principle for compactly supported functions. This was ex­
plained theoretically as well as illustrated with numerical experiments in [Schaback
(1997b)]. The consequences are as follows. In the case of ~tationary interpolation,
i.e., if we scale the support size of the basis functions proportional to the fill dis­
tance hx,n, the "bandwidth" of the interpolation matrix A is kept constant. This
means we can apply numerical algorithms (e.g., the conjugate gradient method) for
the solution of the interpolation system that can be performed with O(N) compu­
tational complexity. The method is numerically stable, but there will be essentially
no convergence (see our earlier numerical experiments in Table 12.1). In the non­
stationary case, i.e., with fixed support size, the bandwidth of A increases as hx,n
decreases. This results in convergence (i.e., the error decreases) as we showed with
our experiments in Table 12.2 and the error bounds in Section 15.1.2. However,
the interpolation matrices will become more and more densely populated as well as
ill-conditioned. Therefore, this approach is not very efficient.

Chapter 17

Numerical Evidence for Approximation
Order Results

17.1 Interpolation for e--+ 0

We begin by considering the choice of the shape parameter for a fixed data set.
This is probably the situation that will arise most frequently in practical situations.
In other words, we assume we are given a set of data (x J, fj), j = 1, ... , N, with
data sites Xj E lR.8 (with s = 1 or s = 2 for the purpose of our experiments), and
function values fj = f(xJ) E JR. Our goal is to use an RBF interpolant

N

Pi (x) = 2:= cJcp(llx - Xj II)
j=l

to match these data exactly, i.e., to satisfy P1(xi) = f(xi), i = 1, ... , N. The two
most important questions now seem to be:

• Which basic function cp should we use?
• How should we scale the basis functions 'PJ = cp(ll · -XJ II)?

The error bounds we reviewed in previous chapters give us some insight into
the first issue. If we know that the data come from a very smooth function, then
application of one of the smoother basic functions is called for. Otherwise, there
is not much to be gained from doing so. In fact, these functions may add too
much smoothness to the interpolant. A first attempt at providing guidelines for the
selection of appropriate basic functions (or kernels) can be found in [Schaback and
Wendland (2006)). We will not pursue this issue any further.

Instead we want to focus our attention on the second question, i.e., the choice of
the shape parameter c. A number of strategies can be used to guide us in making a
decision. We will assume throughout that a (fixed) basic function has been chosen,
and that we will use only one value to scale all basis functions uniformly. Clearly,
one can also follow other strategies such as using a shape parameter that varies
with j, or even basic functions that vary with j. While some work has been done
in these directions (see, e.g., [Bozzini et al. (2002); Kansa and Carlson (1992);
Schaback and Wendland (2000b); Fornberg and Zuev (2006))), not much concrete
can be said in these cases.

141

142 Meshfree Approximation Methods with MATLAB

We now discuss four strategies for choosing a "good" value of c.

17.1.1 Choosing a Good Shape Parameter via Trial and Error

The simplest strategy is to perform a series of interpolation experiments with vary­
ing shape parameter, and then to pick the "best" one. This strategy can be used if
we know the function f that generated the data, and therefore can calculate some
sort of error for the interpolant. Of course, if we already know f, then the exercise
of finding an interpolant Pi may be mostly pointless. However, this is the strategy
we used for the "academic" examples in Chapter 2.

If we do not have any knowledge of f, then it becomes very difficult to decide
what "best" means. One (non-optimal) criterion we used in Chapter 2 was based
on the trade-off principle, i.e., the fact that for small c the error improves while
the condition number grows. We then defined "best" to be the smallest c for which
MATLAB did not issue a near-singular warning.

In many cases selection of an optimal shape parameter via trial and error will
end up being a rather subjective process. However, this may presently be the
approach taken by most practitioners.

For comparison with the other selection methods featured below we present three
one-dimensional test cases for which we know the data function f. We use

F1 (x) = sine (x),

p. (x) = ~ (e-(9x-2)
2
/4 + e-(9x+1)

2
/49) + ~e-(9x-7) 2 /4 _ 2._e-(9x-4) 2

2 4 2 10 '

F3(x) = (1 - Ix - ~1)
5

(1+5lx - ~I - 27lx - ~12).
The first of these functions is the classical band limited function (and thus in the
native space of Gaussians). The second function is a one-dimensional variant of
Franke's function, and the third function is one of Gneiting's C2 oscillatory com­
pactly supported RBFs shifted to the point (1/2, 1/2) (see Table 11.4).

For these functions we list maximum errors and optimal shape parameters c in
Table 17.1. Maximum errors for a large range of c values and the different values
of N used in Table 17.1 are displayed in Figure 17.1. The optimal c values listed
in Table 17 .1 corresponds to the lowest point for each of the curves in the figure.
Clearly, the optimal value of the shape parameter is strongly dependent on the
function that generated the test data.

17.1.2 The Power Function as Indicator for a Good Shape
Parameter

Another strategy is suggested by the error analysis of Chapter 14. We showed there
in Theorem 14.2 that

lf(x) - P1(x)I :S P<t>,x(x)llJllN.z.(n),

100

10-2

10-•
~ e w

10-6

10-8

10-10

0

17. Numerical Evidence: for Approximation Order Results 143

Table 17.1 Optimal e: values based on Gaussian interpolation to various test func-
tions in lD for various choices of N uniform points.

N

3
5
9
17
33
65

F1 F2 F3

max-error optimal e: max-error

2.1403e-003 1.12 4.9722e-001
2.3260e-005 0.68 6.9380e-002
4.8764e-009 0.64 1. 7555e-002
l.8922e-010 LOO 2. l 928e-004
1.5250e-010 2.04 l.6536e-007
4.1307e-010 2.04 3.6260e-009

---- ········· """
... -";.--~:'.--~~·~~:.:::.::•"';;:::.-·-·-·-·-·-·
... ····· ,.­,.

,· ,.
/

5 10
E

15

g
w

20

optimal e:

2.20
5.44
5.20
5.80
6.08
7.48

max-error

3. 7087e-002
2.5253e-002
2.5360e-003
l .4380e-003
3.4189e-004
8.6431e-005

optimal e:

5.68
5.20
8.84
9.52
13.24
21.84

-N=3
- - -N=5
······ N=9
·-·-·N=17
-N=33

J.-----, - - -N=65 ·

10-•...._ __ __,, _______ ~----

o 5 10 15 20
E

Fig. 17.1 Optimal e: curves based on Gaussian interpolation in lD for various choices of N uniform
points. Data sampled from sine function F1 (left) and C 2 oscillatory function F3 (right).

where P<t>,x denotes the power function. This estimate decouples the interpolation
error into a component independent of the data function f and one depending on
f. Once we have decided on a basic function <P and a data set X we can use the
power function based on scaled versions of <P to optimize the error component that
is independent of f: While this approach has the advantage over the previously
mentioned trial and error approach that it is objective and does not depend on
any knowledge of the data function, unfortunately, this approach will not be an
optimal one since the second component of the error bound also depends on the
basic function via the native space norm (which changes when <P is scaled).

We said earlier (see (14.4)) that the power function can be computed via

P<t>,x(x) = .j<t>(x, x) - (b(x))T A-lb(x),

where A is the interpolation matrix and b = [<P(·, x 1), ... , <1>(·, XN)JT. This formula
is implemented on lines 15-18 in the MATLAB program Powerfunction2D. m. We
compute the inverse of A using the function pinv which is based on the singular
value decomposition of A and therefore guarantees maximum stability. Also, due to
roundoff some of the arguments of the sqrt function on line 18 come out negative.

144 Meshfree Approximation Methods with MATLAB

This explains the use of the real command. The vectors b(x) are just rows of the
evaluation matrix if x is taken from the grid of evaluation points we used earlier
for error computations and plotting purposes. Except for the loop over the shape
parameter c: (lines 12-20) the rest of the program is similar to earlier code.

Program 17.1. Powerfunction2D.m

% Powerfunction2D
% Script that finds "optimal" shape parameter by computing the power
% function for the 2D RBF interpolation approach with varying epsilon
% Calls on: DistanceMatrix

1 rbf = ©(e,r) exp(-(e*r).-2); % Define the Gaussian RBF
% Parameters for shape parameter loop below

2 mine = O; maxe = 20;
3 ne = 500; ep = linspace(mine,maxe,ne);

% Number and type of data points
4 N = 81; gridtype = 'u';

% Resolution of grid for power function norm computation
5 neval = 20; M = neva1-2;

% Load data points
6 name= sprintf('Data2D_%d%s' ,N,gridtype); load(name)
7 ctrs = dsites; % centers coincide with data sites
8 grid= linspace(0,1,neval); [xe,ye] = meshgrid(grid);
9 epoints = [xe(:) ye(:)];

% Compute distance matrix between evaluation points and centers
10 DM_eval = DistanceMatrix(epoints,ctrs);

% Compute distance matrix between the data sites and centers
11 DM_data = DistanceMatrix(dsites,ctrs);
12 for i=l:length(ep)

% Compute interpolation matrix
13 IM= rbf(ep(i),DM_data);

% Compute evaluation matrix
14 EM= rbf(ep(i),DM_eval);

% Compute power function at evaluation points
15 invIM = inv(IM); phiO = rbf(ep(i),0);
16 for j=1:M
17 powfun(j) = real(sqrt(phiO-(invIM*EM(j,:)')'*EM(j,:)'));
18 end

% Compute max. norm of power function on evaluation grid
19 maxPF(i) = max(powfun);
20 end
21 fprintf('Smallest maximum norm: %e\n', min(maxPF))
22 fprintf('at epsilon= %f\n',ep(maxPF==min(maxPF)))

17. Numerical Evidence for Approximation Order Results

23 fprintf('with cond(A) = %e\n', ...
condest(rbf(ep(find(maxPF==min(maxPF))),DM_data)))

% Plot power function norm
24 figure; semilogy(ep,maxPF,'b');

145

In Figure 17.2 we show plots of the maximum norms of the power function
vs. c for a one-dimensional experiment (left) and a 2D experiment (right). Each
plot shows several curves corresponding to different choices of N (set on line 4 of
Powerfuntion2D.m). The optimal c values along with the corresponding condition
numbers of the interpolation matrix (computed using the condest command) are
listed in Table 17.2. The graphs of the maximum norm of the power function can
all be included in a single plot by adding another loop to the program which varies
N. The program for the one-dimensional case is almost identical to the one printed
and therefore omitted.

g
w

................. ····· -----·-·-·-·-·-· ,.,·"

-N=3
- - -N=5
...... N=9
·-·-·N=17
-N=33
- - -N=65 10-5L-_______ __ _,1;==:;;:;;;::;!,,

0 5 10 15 20
£

g 10-2

w

.. ·······
.. ····· ...

········-·-·

-N=9
- - -N=25
······ N=81
·-·-·N=289 10-•L_ __ __... ____ __!;i;===::...

0 5 10 15 20
£

Fig. 17.2 Optimal E curves based on power functions for Gaussians in lD (left) and 2D (right)
for various choices of N uniform points.

Clearly, even for the small data sets considered here, the numerical instability,
i.e., large condition number of the interpolation matrix A, plays a significant role.

Table 17.2 Optimal E values based on power functions for Gaus-
sians in lD and 2D for various choices of N uniform points.

lD 2D

N optimal E cond(A) N optimal E cond(A)

3 0.04 l.8749e+007 9 0.16 5.3534e+009
5 0.44 5. 7658e+007 25 0.84 l.02lle+Oll
9 1.72 6.5682e+008 81 0.04 2.0734e+Ol9
17 4.48 6.1306e+009 289 0.56 l.2194e+020
33 9.60 5.4579e+Ol0
65 19.52 l.2440e+Oll

146 Meshfree Approximation Methods with MATLAB

17.1.3 Choosing a Good Shape Parameter via Cross Validation

A third strategy for finding an "optimal" shape parameter is to use a cross valida­
tion approach. In [Rippa (1999)] an algorithm is described that corresponds to a
variant of cross validation known as "leave-one-out" cross validation. This method
is rather popular in the statistics literature where it is also known as PRESS (Pre­
dictive REsidual Sum of Squares) provided the 2-norm is used. In this algorithm
an "optimal" value of c is selected by minimizing the (least squares) error for a fit
to the data based on an interpolant for which one of the centers was "left out". A
major advantage over the previous method is that now the dependence of the error
on the data function is also taken into account. Therefore, the predicted "optimal"
shape parameter is closer to the one we found via the trial and error approach (for
which we had to assume knowledge of the exact solution).

A similar strategy was proposed earlier in [Golberg et al. (1996)] for the solution
of elliptic partial differential equations via the dual reciprocity method based on
multiquadric interpolation.

Specifically, if Pjkl is the radial basis function interpolant to the data

{Ji,···, fk-11 fk+l1 · · ·, fN }, i.e.,
N

Pjkl (x) = L c}kl'P(llx - Xj II),

such that

Pjkl (xi) = fi,

and if Ek is the error

j=l
j#k

i = 1, ... , k - 1, k + 1, ... , N,

Ek = fk - Pjkl (xk)

at the one point Xk not used to determine the interpolant, then the quality of the
fit is determined by the norm of the vector of errors E = [E1, ... , EN]T obtained
by removing in turn one of the data points and comparing the resulting fit with
the (known) value at the removed point. In [Rippa (1999)] the author presented
examples based on use of the f 1 and f 2 norms. We will mostly use the maximum
norm (see line 14 in the code below).

By adding a loop over c we can compare the error norms for different values of
the shape parameter, and choose that value of c that yields the minimal error norm
as the optimal one.

While a naive implementation of the leave-one-out algorithm is rather expensive
(on the order of N 4 operations), Rippa showed that the computation of the error
components can be simplified to a single formula

E -~
k - A-1'

kk
(17.1)

where Ck is the kth coefficient in the interpolant Pf based on the full data set, and
AJ;1 is the kth diagonal element of the inverse of the corresponding interpolation

11. Numerical Evidence for Approximation Order Results 147

matrix. Since both Ck and A- 1 need to be computed only once for each value of c
this results in O(N3) computational complexity. Note that all entries in the error
vector E can be computed in a single statement in MATLAB if we vectorize the
component formula (17.1) (see line 13 in Program 17.2). The sine function used
on line 5 is not a standard MATLAB function (it is part of the Signal Processing
Toolbox). Therefore we provide it in Program C.2 in Appendix C.

Program 17.2. LOOCV2D.m

% LOOCV2D
% Script that performs leave-one-out cross-validation
% (Rippa's method) to find a good epsilon for 2D RBF interpolation
% Calls on: DistanceMatrix

1 rbf = ©(e,r) exp(-(e*r).-2); % Gaussian RBF
% Parameters for shape parameter loop below

2 mine = O; maxe = 20; ne = 500;
3 ep = linspace(mine,maxe,ne);

% Number and type of data points
4 N = 81; gridtype = 'u';

% Define test function
5 testfunction = ©(x,y) sinc(x).*sinc(y);

% Load data points
6 name= sprintf('Data2D_%d%s',N,gridtype); load(name)
7 ctrs = dsites; % centers coincide with data sites

% Create right-hand side vector, i.e.,
% evaluate the test function at the data points.

8 rhs = testfunction(dsites(:,1),dsites(:,2));
% Compute distance matrix between the data sites and centers

9 DM_data = DistanceMatrix(dsites,ctrs);
10 for i=l:length(ep)

% Compute interpolation matrix
11 IM= rbf(ep(i),DM_data);

% Compute error function (i.e., "cost 11 of epsilon)
12 invIM = pinv(IM);
13 EF = (invIM*rhs)./diag(invIM);

% Compute maximum norm of EF
14 maxEF(i) = norm(EF(:),inf);
15 end
16 fprintf('Smallest maximum norm: %e\n', min(maxEF))
17 fprintf(~at epsilon= %f\n',ep(maxEF==min(maxEF)))

% Plot cost function norm
18 figure; semilogy(ep,maxEF,'b');

In Figure 17.3 we show plots of the predicted maximum errors vs. c for a one-

I48 Meshfree Approximation Methods with MATLAB

dimensional experiment (left) and a 2D experiment (right) based on data sampled
from the sine function F 1 . Each plot shows several curves corresponding to different
choices of N (set on line 4 of LOOCV2D.m). The optimal c values are listed in
Table 17.3.

....
e w

-·-·-·- -·-·-,'-~······ ~---
I •••

I _:

" :"

-N=3
- - -N=5
...... N=9
·-·-·N=17
-N=33
- - -N=65 10-e....._ __, ___ _.._ ___ .====-

O 5 10 15
E

20

100
~ -... -... ~················· ---·-·-·-·-·-·-·- -

,', ---·-·-·
10-

2 ~ I '
o t I : /

a1i 104 1 ; / .-"/ r· :- r
rt~

10~ ~r
-N=9
- - -N=25
...... N=81
·-·-·N=289

1o~L-__ __. ____ __ --';.;;;;==;;;;;!..
0 5 10 15 20

E

Fig. I 7.3 Optimal e curves based on leave-one-out cross validation for interpolation to the sine
function with Gaussians in ID (left) and 2D (right) for various choices of N uniform points.

Table I 7.3 Optimal e values based
on leave-one-out cross validation for
interpolation to the sine function
with Gaussians in ID and 2D for
various choices of N uniform points.

ID 2D

N optimal e N optimal e

3 0.96 9 0.96
5 1.00 25 1.00
9 0.80 8I 1.48
I7 0.92 289 1.60
33 1.92
65 1.76

The graphs in Figure 17.4 show side-by-side the optimal c curves for the trial and
error approach and for the leave-one-out cross validation approach in the case of lD
Gaussian interpolation to data sampled from the test function F2 . The similarity
of the curves is clearly apparent. Thus, the leave-one-out cross validation approach
can be recommended as a good method for selecting an "optimal" shape parameter
c since for this method no knowledge of the exact error is needed. Another pair of
comparison plots is given by the Gaussian interpolants to the sine function F1 in
Figure 17 .1 (left) and Figure 17 .3 (left).

Similar conclusions hold for other basic functions, other test functions, other
data distributions, and other space dimensions. For example, Figure 17.5 shows the

11. Numerical Evidence for Approximation Order Results 149

------ ················

--- --
j : , iJ.• -N=3

'"' I it»....:r""• - - - N=5
- ~· j IJ~~· ., N=9
'\ ~ ·-·-·N=17

I I -N=33

- - -N=65 10-10L-__ ___._ ___ _._ ___ .1:===:::::!.
0 5 10 15 20

E

-N=3
- - -N=5
...... N=9
·-·-·N=17
-N=33
- - -N=65 10-10L.-__ ___._ ________ ~==:::::.

0 5 10 15 20
E

Fig. 17.4 Optimal c curves based on interpolation to the test function F2 with Gaussians for
various choices of N uniform points. Trial and error approach (left), leave-one-out cross validation
(right).

optimal E curves for interpolation to the lD Franke function F2 with Wendland's
C 2 function cp3 ,1 on uniformly spaced points, and on Chebyshev points. Note that
for this configuration all computations are stable, and the optimal scale parameter
is quite small, i.e., the support radius of the compactly supported basic function is
chosen to be very large. In other words, the best results for compactly supported
functions are obtained with dense matrices.

e w

101

10-3

10-•
0

5 10

101

---- -----

-N=3
- - -N=5
...... N=9

10-3
·-·-·N=17

,
I

-N=33
-__ ,

- - -N=65
10-•

15 20 0

, ,

, , , ,

5

, , --
,.,.,,,,,. ' --

10
E

--- ------
-N=3
- - -N=5
...... N=9
·-·-·N=17
-N=33
- - -N=65

15 20

Fig. 17.5 Optimal c curves based on leave-one-out cross validation for interpolation to ID Franke's
function with Wendland 's function 'P3, 1 for various choices of N uniform points (left) and Cheby­
shev points (right).

If we are not interested in the €-curves displayed above, but only want to find
a good value of the shape parameter as quickly as possible, then we can use the
MATLAB function fminbnd to find the minimum of the cost function for E. First,
we implement the cost function in the subroutine CostEpsilon. m displayed in Pro­
gram 17.3. The commands are the same as those on lines 11-14 in Program 17.2.

150 Meshfree Approximation Methods with MATLAB

Program 17.3. CostEpsilon.m

% ceps = CostEpsilon(ep,r,rbf ,rhs)
% Implements cost function for optimization of shape parameter
% via Rippa's LOOCV algorithm
% Example of usage in LOOCV2Dmin.m

1 function ceps = CostEpsilon(ep,r,rbf ,rhs)
2 A= rbf(ep,r);
3 invA = pinv(A);
4 EF = (invA*rhs)./diag(invA);
5 ceps = norm(EF(:),inf);

In order to demonstrate the use of the CostEpsilon function we use a modifi­
cation of Program 17.2 which we list as Program 17.4.

Program 17.4. LOOCV2Dmin.m

% LOOCV2Dmin
% Script that performs leave-one-out cross-validation
% (Rippa's method) to find a good epsilon for 2D RBF interpolation
% with the help of MATLAB's fminbnd
% Calls on: DistanceMatrix
% Requires: CostEpsilon

1 rbf = ©(e,r) exp(-(e*r).-2); % Gaussian RBF
% Parameters for shape parameter optimization below

2 mine = O; maxe = 20;
% Number and type of data points

3 N = 81; gridtype = 'u';
% Define test function

4 testfunction = ©(x,y) sinc(x).*sinc(y);
% Load data points

5 name= sprintf('Data2D_%d%s' ,N,gridtype); load(name)
6 ctrs = dsites; % centers coincide with data sites

% Create right-hand side vector, i.e.,
% evaluate the test function at the data points.

7 rhs = testfunction(dsites(: ,1),dsites(:,2));
% Compute distance matrix between the data sites and centers

8 DM_data = DistanceMatrix(dsites,ctrs);
9a [ep,fval] = fminbnd(©(ep) CostEpsilon(ep,DM_data,rbf,rhs), ...
9b mine,maxe);

10 fprintf('Smallest maximum norm: %e\n', fval)
11 fprintf('at epsilon= %f\n', ep)

17. Numerical Evidence for Approximation Order Results 151

17.1.4 The Contour-Pade Algorithm

The Contour-Pade algorithm was the subject of Grady Wright's Ph.D. thesis
[Wright (2003)] and was reported in [Fornberg and Wright (2004)]. The aim of
the Contour-Pade algorithm is to come up with a method that allows the computa­
tion and evaluation of RBF interpolants for infinitely smooth basic functions when
the shape parameter E tends to zero (including the limiting case).

The starting point is to consider evaluation of the RBF interpolant

N

P1(x,c) = :Lcjcpi:(llx - Xjll)
j=l

for a fixed evaluation point x as an analytic function of c.
The key idea is to represent Pf (x, E) by a Laurent series in c, and approximate

the "negative part" of the series by a Pade approximant, i.e.,
00

P1(x,c) ~ r(c) + Ldkck,
k=O

where r(c) is the rational Pade approximant.
We then rewrite the interpolant in cardinal form, i.e., as

N

P1(x,c) = :Lcjcpi:(llx - Xjll)
j=l

= bT(x,c)c

= bT(x,c)A-1(c)f

= (u*(x,c))T f

where b(x,E)j = 'Pi:(llx- Xjll), A(c)i,j = 'Pi:(llxi - Xjll), c = [c1, ... ,cNJI', f =

[!1, · .. , fNJI', and

u*(x,c) = A-1 (c)b(x,c)

denotes the vector of values of the cardinal functions at x (c.f. Chapter 14).
It is now the goal to stably compute the vector u*(c) for all values of E 2:: 0 with­

out explicitly forming the inverse A(c)- 1 and without computing the matrix vector
product A(c)- 1b(c). Here the vectors u*(c) and b(c) are obtained by evaluating
the vector functions u * (·, E) and b(·, c) on an appropriate evaluation grid.

The solution proposed by Wright and Fornberg is to use Cauchy's integral the­
orem to integrate around a circle in the complex c-plane. The residuals (i.e., co­
efficients in the Laurent expansion) are obtained using the (inverse) fast Fourier
transform. The terms with negative powers of c are then approximated using a
rational Pade approximant. The integration contour (usually a circle) has to lie
between the region of instability near c = 0 and possible branch point singularities
that lie somewhere in the complex plane depending on the choice of cp. Details of
the method can be found in [Fornberg and Wright (2004)].

152 Meshfree Approximation Methods with MATLAB

In Figure 17.6 we show optimal c curves for interpolation to the lD and 2D
sine function F2 using Gaussians at equally spaced points. These curves should be
compared with the optimal c curves obtaine_d for the same problem via trial and
error (see Figure 17.1 and Table 17.1) and via leave-one-out cross validation (see
Figure 17.3 and Table 17.3).

The main drawback of the Contour-Pade algorithm is the fact that if N becomes
too large then the region of ill-conditioning around the origin in the complex c­
plane and the branch point singularities will overlap. This, however, implies that
the method can only be used with limited success. Moreover, as the graphs in
Figure 17.6 and the entries in Table 17.4 show, the value of N that has to be
considered "large" is unfortunately rather small. For the one-dimensional case the
results for N = 17 already are affected by instabilities, and in the two-dimensional
experiment N = 81 causes problems.

~ g
w

100

10-2

10 ...

10-6

10-8

--- -·­......
····' I - .~>··~.~ ::.:::.:::.::~ ::.: ·-·-. - . - . .:

.. ··· ,,,·'
I : ,·

',, / ,·
i I : /
I !_i

: I

:"{
I:-

· l:'
~i -N=3

- - -N=5
······ N=9
·-·-·N=17 10-1oi_ __ __._ ___ ...__ __ ---l:===:!..

0 5 10 15 20
E

g
w

..
-3 f• I

10 .1111

ti' ' I
I I

10-4
I I

'

,
I

, .. --,

... ····· ·········· ... ·
.··

... ...
.. ·

ra
10- 5'-----------------''--~=~

0 5 10 15 20
E

Fig. 17.6 Optimal e curves based on Contour-Pade for interpolation to the sine function with
Gaussians in lD (left) and 2D (right) for various choices of N uniform points.

Table 17.4 Optimal e values based on Contour-Pade for interpolation to the sine
function with Gaussians in lD and 2D for various choices of N uniform points.

lD 2D

N max-error € cond(A) N max-error € cond(A)

3 1. 7605e-003 1.10 3.3386e+001 9 3.3875e-003 1.10 1.1146e+003
5 4.0380e-005 0.70 1.3852e+006 25 5.5542e-005 0.70 l.9187e+Ol2
9 3.9703e-009 0.45 7. 7731e+016 81 3.6528e-004 0.00 00

17 l.2726e-009 0.45 1. 7327e+018

17.1.5 Summary

All strategies pursued in this chapter have shown that even though the bound
(15.11) by Madych seems to indicate that the interpolation error for functions in

17. Numerical Evidence for Approximation Order Results 153

the native space of the basic function goes to zero exponentially as c ---+ 0, this
does not seem to be true in practice. Especially those optimal c curves that were
computed reliably with the Contour-Pade algorithm all have a global minimum for
some positive value of c. In many cases this optimal c value (or an c close to the
optimal value) can be found using the leave-one-out cross validation algorithm of
Program 17.2. From now on we will frequently use leave-one-out cross validation
to find an optimal shape parameter for our numerical experiments.

17.2 Non-stationary Interpolation

In order to illustrate the spectral convergence predicted for infinitely smooth basic
functions such as Gaussians and generalized (inverse) multiquadrics we need to work
in a setting for which neither the instability due to large problem size or small shape
parameter have a significant effect on our experiments. Otherwise, if we simply take
an "optimal" value of c (determined via trial and error for a large N = 4225 problem
in the "gray zone", c.f. Chapter 2) then the spectral convergence will only be visible
for a limited number of experiments (see Table 17.5).

Table 17.5 20 non-stationary interpolation (c- = 6.3) to
Franke's function with Gaussians on uniformly spaced and
Halton points.

uniform Halton

N RMS-error rate RMS-error

9 3. l 95983e-OO 1 2. 734756e-001
25 5.00859le-002 2.6738 8.831682e-002
81 9.029664e-003 2.4717 2.401868e-002

rate

2.3004
1.7582

289 2.263880e-004 5.3178 l.589117e-003 5.0969
1089 3.323287e-008 12.7339 l.59505le-006 10.8015
4225 l.868286e-008 0.8309 9.510404e-008 4.8203

Even for a band-limited function (see Table 17.6) the situation is not better; in
fact worse, for the value of c used.

In Figures 17.7-17.8 we are able to verify (at least to some extent) the conver­
gence estimates for non-stationary RBF interpolants. We obtain the data for all
experiments by sampling the sine function f(x) = sin('rrx)/('rrx) at N uniformly
spaced points in the interval [O, 1] where N runs from 1 to 100. Each plot shows six
maximum error curves (corresponding to shape parameters c = 1, 6, 11, 16, 21, 26)
versus the number N of data points on a loglog scale. The errors are evaluated on a
grid of 250 equally spaced points. In order to compare these curves with the theo­
retical bounds from Chapter 15 we have plotted comparison curves corresponding to
the theoretical bounds. For Gaussians the comparison curve is given by the graph
of hr--+ e-1 Ioghl/h corresponding to super-spectral convergence with h = 1/(N -1),

154

-E=1

- - "E=6
...... E=11

-E=21

- - "E=26

Meshfree Approximation Methods with MATLAB

Table 17.6 2D non-stationary interpolation (c: = 6.3) to the sine
function with Gaussians on uniformly spaced and Halton points.

uniform

N RMS-error

9 3. 302644e-OO 1
25 3.271035e-002
81 l.293184e-002

289 3.786113e-004
1089 3.476835e-008
4225 3. 775365e-008

... ,···· .. :_ ~ ,
, __ ·4 ~.:,,,,' -

.. '' ·<.:~<
'\ ·.. ·,

\ ·.. ·,
'\ ··.. ·,_

\ ·. \

\
\

rate

3.3358
1.3388
5.0941
13.4107
-0.1188

Halton

RMS-error rate

2.823150e-001
l .282572e-001 1.6058
3.407580e-002 1.7898
l.990217e-003 5.3309
2.286014e-006 10.5905
9.868530e-008 5.3724

-E=1
- - -E=6
'"'"'" E=11

10-8 ·-·- E=16
-E=21

10-10L::::==;;;;;...---_._ _ _.x. ___ ...:....:.~

1if 1~ 1~
N

- - "E=26
10-101.!;::===----------------

100 101 102
N

Fig. 17. 7 Maximum errors for non-stationary interpolation to the sine function with Gaussians
(left) and inverse multiquadrics (right) based on N uniformly spaced points in [O, 1] and c: =
1, 6, 11, 16, 21, 26.

and for inverse multiquadrics we have spectral convergence with h t--+ e-l/h. We
can see that for a certain range of problems these rates are indeed obtained (see
Figµre 17.7).

In the case of functions with finite smoothness (such as the compactly sup­
ported functions of Wendland) we can only expect algebraic convergence rates.
Figure 17.8 shows two more sets of maximum error curves. These plots are
based on Wendland's C 2 function <p3,1(r) = (1 - r)t(4r + 1) and the C6 func­
tion <p3,3(r) = (1-r)~(32r3 +25r2 +8r+1). While the error bound (15.5) predicts
only O(h312) and O(h712) approximation order, respectively. We see that an extra
factor of h512 is indeed possible in practice. This extra factor has also been captured
in some of the theoretical work on improved error bounds (c.f. Section 15.2).

For less smooth data functions we no longer have spectral convergence for
the infinitely smooth functions, while the orders remain unchanged for the ba­
sic functions with finite smoothness (as long as the data function lies in the
native space of the basic function). This is illustrated in Figure 17.9 where
we compare Gaussians and C 2 Wendland functions for the C 2 test function

17. Numerical Evidence for Approximation Order Results 155

100
' \

10-' \ ... ··. -..
'-_:- ... ~·--:: -..

10-2 -...
~ e w

10-3 -E=1

- - -E=6
...... €=11

10-• ·-·- €=16
-£=21
- - •£=26

10-5
100 10'

N

-... -..
···.~::
' .. ~ e w

102

100

10-2

10-•

-€=1

- - -€=6

10-6 €=11

·-·- £=16
-€=21

- - -e=26
10-8

100

.. ...

h4

10'
N

.. ', ··.

Fig. 17.8 Maximum errors for non-stationary interpolation to the sine function with C 2 (left)
and C 6 (right) Wendland function based on N uniformly spaced points in (0, 1] and c =
1, 6, 11, 16, 21, 26.

g 10-2

W I ~_-..::€-=-1 ~

- - •£=6
10-4 €=11

·-·- €=16
-£=21

- - •£=26
10-6L!:::===--------------

100 10' 102

N

-€=1
- - -€=6

10-• €=11

·-·- €=16
-€=21
- - •£=26

10-BL!:::===-----'---------'
10° 10' 10

2

N

Fig. 17.9 Maximum errors for non-stationary interpolation to a C 2 function with Gaussians
(left) and C 2 Wendland function (right) based on N uniformly spaced points in (0, 1] and c =
1, 6, 11, 16, 21, 26.

(1 - Ix - 1/21)~(1 + 5lx - 1/21 - 27(x - 1/2)2) (c.f. the oscillatory functions of
Table 11.4). It is interesting to note that for a certain range of N the rate of
convergence for the 0 2 Wendland function is even better than predicted.

17.3 Stationary Interpolation

We begin with an illustration of the fact that for radial powers and thin plate
splines there is no difference in convergence behavior between the stationary and
non-stationary regime. Figure 17.10 shows this phenomenon for the norm radial
function <I>(x) = llxll in the case of interpolation to data sampled from the 0 2

function f(x) = Ix - 1/2J3 at uniformly spaced points in [O, 1]. Moreover, the left
plot in Figure 17.10 (illustrating the non-stationary setting) shows that the shape

156 Meshfree Approximation Methods with MATLAB

g 10-4

W •~----E=-1~

- - -e=6

10
-e "'"' E=11

·-·- E=16
-e=21
- - -e=26

10-ei.====--------------
1~ 1~ 1~ 1~ 1~

N

•··•• .. h2

···· ...
g 10-4 ···

······ ... w

10-e

10-e..__ __ _._ ___ .__ __ _._ __ _

1~ 1~ 1~ 1~ 1~
N

Fig. 17.10 Maximum errors for non-stationary (left) and stationary (right) interpolation to a C 2

function with the norm basic function based on N uniformly spaced points in (0, 1).

parameter has no effect for the norm basic function and other polyharmonic splines.
Note that Figure 17.10 suggests that the norm basic function has O(h2) approx­

imation order, while the bound from Theorem 15.3 with T = k = {3 = 1, n = 0,
s = 1 and q = oo yields only O(h112). Since the norm basic function is strictly
conditionally positive definite of order one we can use the same RBF expansion
as for strictly positive definite functions, i.e., without appending a constant (c.f.
Theorem 9. 7).

The discrepancy between the theoretical bounds of Theorem 15.3 (or Theo­
rem 15.4 as well as the native space bounds of Examples 15.6 and 15.7 of Chap­
ter 15) and those observed in numerical experiments is similar for radial cubics and
thin plate splines (which are both strictly conditionally positive definite of order
two). For cubics Theorem 15.3 with T = {3 = 3, k = 2, n = 0, s = 2 and q = oo
predicts O(h2) since the mesh ratio provides another power of h for uniformly dis­
tributed data. The left plot of Figure 17.11, however, suggests O(h3) or better £ 00

approximation order based on interpolation to the 2D analog of the oscillatory C 2

test function F3, i.e., f(x) = (1- llx - (1/2, 1/2) 11)~(1+5llx - (1/2, 1/2) II - 27llx­
(l/2, 1/2)11 2). The predicted rate for thin plate splines is O(h312) (since T = 2{3 = 2,
k = 2, n = 0, s = 2 and q = oo) while the plot on the right of Figure 17.11 indicates
at least O(h2) convergence.

For Gaussian basis functions we noted earlier that we should not expect any con­
vergence in the stationary setting. However, if the initial shape parameter is chosen
small enough (but not too small), then we can observe the approximate approxima­
tion phenomenon, i.e., there is convergence up to a certain point, and then satura­
tion occurs. This is depicted in Figure 17.12. In the left plot we used the Gaussian
basic function with different initial shape parameters (c = 0.8, 1.0, 1.2, 1.4, 1.6, 1.8)
to interpolate data sampled from the oscillatory C 2 function used in the previous
illustration at uniformly spaced points in the unit square. The plot on the right
corresponds to Gaussian interpolation of data sampled from the 2D sine function
f(x, y) = sinc(x)sinc(y) with initial€= 0.1, 0.2, 0.3, 0.4, 0.5, 0.6.

17. Numerical Evidence for Approximation Order Results 157

100 100

10-1 10-1

10-2 10-2

g g
w

10-3
w

h3 .. 10-3 ··.
h3 •· ••. ·

10-4 ·· . 10-4

. ·······•······ ...

10-5

100 10' 102 103 10•
10-5

100 10'
N

Fig. 17.11 Maximum errors for stationary interpolation to a 0 2 function with the cubic radial
basic function (left) and thin plate spline basic function (right) based on N uniformly spaced
points in (0, 1]2.

e w

100

10-'

10-2

-e=0.8 10-3
- - •£=1.0
...... E=1.2

10-• ·-·- E=1.4
-e=1.6
- - -e=1.8 10-5L:::;;;;;==;;:;;;:... ___ _._ ______ __,

1if 1~ 1~ 1if
N

g 10-"'
W r ~ --~E-=-0.~1

- - "€=0.2

10
-e """ €=0.3

·-·- E=0.4
-e=0.5

~-~ --

Fig. 17.12 Maximum errors for stationary interpolation to the 0 2 oscillatory function (left) and
to the sine function (right) with Gaussians based on N uniformly spaced points in (0, 1] 2 using
various initial c: values.

If we consider the range of N values used in the experiments (N
9, 25, 81, 289, 1089, 4225), then we see that stationary interpolation with Gaussians
does converge for the smaller values of N (at at rate better than O(h2)). However,
the larger the value of the initial c is taken, the sooner does the saturation occur.
It is also apparent that in the case of interpolation to the sine function small ini­
tial values of the shape parameter lead to severe ill-conditioning and subsequent
instabilities especially for the tests with larger values of N. We also point out that
the range of values of c for which we can observe convergence depends on the data
function f.

We will come back to the approximate approximation phenomenon in the con­
text of quasi-interpolation and approximate moving least squares approximation in
Chapters 26 and 27.

Chapter 18

The Optimality of RBF Interpolation

In this chapter we will see that within the native Hilbert spaces associated with
strictly positive definite (and strictly conditionally positive definite) radial functions
the radial basis function interpolant provides the best approximation to a given
data function. This optimality of interpolants in Hilbert space is the subject of the
theory of optimal recovery described in the late 1950s by Michael Golomb and Hans
Weinberger in their paper [Golomb and Weinberger (1959)].

18.1 The Connection to Optimal Recovery

In [Golomb and Weinberger (1959)] the authors studied the following general prob­
lem:

Problem 18.1. Given the values Ji = A1 (!), ... ,JN = AN(!) E IR, where
{Al, ... , AN} is a linearly independent set of linear functionals {called information
functionals yielding the information about f), how does one "best" approximate the
value A(j) (called a feature of f) where A is a given linear functional and J is
unknown? Moreover, what is the total range of values for A(j) '?

This is a very general problem formulation that allows not only for interpolation
of function values, but also for other types of data (such as values of derivatives
and integrals off, such as averages or moments of J, etc.), as well as methods of
approximation other than interpolation.

The kind of problem described above is known in the literature as an optimal
recovery problem. Besides the seminal work by Golomb and Weinberger, optimal
recovery was also studied in detail by Micchelli, Rivlin and Winograd [Micchelli et
al. (1976); Micchelli and Rivlin (1977); Micchelli and Rivlin (1980); Micchelli and
Rivlin (1985)].

In a Hilbert space setting the solution to this optimal recovery problem is shown
to be the minimum-norm interpolant. More precisely, given a Hilbert space 1t and
data Ji =Al(!), ... , JN= AN(!) E IR with {A1, ... , AN} ~ 1t* (the dual of 1t), the

159

160 Meshfree Approximation Methods with MATLAB

minimum-norm interpolant is that function g* E 1t that satisfies

j = 1, ... ,N,

and for which

mm ll9llH·
gE'H.

>.j(g)=!j ,j=l, ... ,N

It turns out that the radial basis function interpolant with basic function <I> satisfies
these criteria if 1t is taken as the associated native space N<f!(fJ).

We will present three optimality results:

• The radial basis function interpolant for any strictly conditionally positive def­
inite function <I> is the minimum norm interpolant from N<f!(fJ).

• The radial basis function interpolant provides the best approximation to f in
the native space norm.

• The (cardinal form of the) radial basis function interpolant is more accurate
(as measured by the pointwise error) than any other linear combination of the
data.

18.2 Orthogonality in Reproducing Kernel Hilbert Spaces

The proofs of the first two "optimality theorems" require the following two lemmas.
These lemmas and their corollary can also be generalized to cover the strictly con­
ditionally positive definite case. However, to keep our discussion transparent, we
present only the details of the strictly positive definite case.

Lemma 18.1. Assume <I> is a symmetric strictly positive definite kernel on JR5 and
let P1 be the interyolant to f E N<f!(fJ) at the data sites x = {x1, ... ,xN} ~ n.
Then

(Pf, Pf - g)N'fl(n) = 0

for all interyolants g E N<t>(fJ), i.e., with g(xj) = f(xj), j = 1, ... , N.

Proof. The interpolant Pf is of the form

N

P1 = :Z::::cj<I>(·,xj),
j=l

where the coefficients Cj are determined by the interpolation conditions Pf (Xi) =

f (xi), i = 1, ... , N. Using this representation, the symmetry of the kernel <I> and
its reproducing property we have

N

(PJ, P1 - g)N'fl(n) = (L Cj<I>(·, Xj), P1 - g)N'fl(n)
j=l

18. The Optimality of RBF Interpolation

N

= Lci(q>(.,xj), Pf -g)N.z,(O)
j=l

N

= L Cj (Pf - g, q>(-, Xj))N.z,(O)
j=l

N

= L cj(Pf - g)(xj)
j=l

=0

since both Pf and g interpolate f on X.

161

0

For the next result, recall the definition of the space H<1>(X) as the linear span

H<1>(X) = span{q>(·, Xj): Xj EX}

(c.f. (13.1)). Clearly, H<1>(X) is a subspace of the native space N<:>(D).

Lemma 18.2. Assume q> is a strictly positive definite kernel on IRs and let Pf be
the interpolant to f E N<1>(D) on x = {x1, ... 'XN} ~ n. Then

(! - Pf, h)N.z,(O) = 0

for all h E Hit>(X).

Proof. Any h E H ti> (X) can be written in the form
N

h = LC/l>(·,Xj)
j=l

with appropriate coefficients Cj. Using this representation of h as well as the repro­
ducing property of q> we have

N

(f-Pf,h)N.z,(O.) = (f-Pf,LCjq>(.,xj))N.z,(O)
j=l

N

= L Cj (f - Pj' q>(·, Xj))N.z,(O)
j=l

N

=Lei(! - Pf)(xj)·
j=l

This last expression, however, is zero since Pf interpolates f on X, i.e., (f -
Pf)(xj)=O,j=l, ... ,N. 0

The following Pythagorean theorem (or "energy splitting" theorem) is an im­
mediate consequence of Lemma 18.2. It says that the native space "energy" off
can be split into the "energy" of the interpolant Pf and that of the residual f - Pf,
which - according to Lemma 18.2 - is orthogonal to the interpolant.

Corollary 18.1. The orthogonality property of Lemma 18.2 implies the energy split

111111..,(n) = II! - Pf 1114>(n) + llPf 111<1>(0.)·

r

162 Meshfree Approximation Methods with MATLAB

Proof. The statement follows from

ll!lli<t>(n) =II! - P1 + P1 lli<t>(n)
= ((f-P1) +Pf, (f-P1) + P1)N<t>(n)
=II! - P111i<t>(f2) + 2(! - Pj, P1)N<1>(fi) + llP111i.z,(f2)

and the fact that(! - Pf, P1)N<t>(n) = 0 by Lemma 18:2 since P1 E H<t.>(X). D

The above energy split is the fundamental idea behind a number of Krylov­
type iterative algorithms for approximately solving the interpolation problem when
very large data sets are involved (see, e.g., our discussion in Chapter 33 or the
papers [Faul and Powell (1999); Faul and Powell (2000)] or [Schaback and Wendland
(2000a)]).

18.3 Optimality Theorem I

The following theorem presents the first optimality property formulated for the gen­
eral case of strictly conditionally positive definite kernels. It is taken from [Wend­
land (2005a)].

Theorem 18.1 (Optimality I). Suppose <I> E C(f2 x f2) is a strictly conditionally
positive definite kernel with respect to the finite-dimensional space P ~ C(f2) and
that X is P-unisolvent. lf the values Ji, ... , f N are given, then the interpolant Pf
is the minimum-{semi)norm interpolant to {fj}f=1 , i.e.,

mm lglN<t>(fi)· gEM.z,(O.)
g(""j)=fj ,j=l,. .. ,N

Proof. We consider only the strictly positive definite case. Consider an arbitrary
interpolant g E N<t>(f2) to Ji, ... , fN· Then Lemma 18.l gives us

(PJ, P1 - g)N<t>(n) = 0.

This orthogonality relation gives us

IP11i.z,(f2) = (PJ, P1 - g + g)N.z,(fi)
= (PJ, P1 - g)N.z,(n) + (PJ, g)N.z,(n)
= (PJ,g)N<t>(n),

and the Cauchy-Schwarz inequality yields

IP117v<i>(n):::; IP1IN.z,(n)lglN.z,(n),

so that the statement follows. D

As in our earlier use of conditionally positive definite functions, the space P
mentioned in Theorem 18.1 is usually taken as the space rr:n,_ 1 of multivariate
polynomials. Also, if <I> is strictly positive definite then the semi-norms in Theo­
rem 18.1 become norms.

18. The Optimality of RBF Interpolation 163

Example 18.1. We said earlier that the native space of thin plate splines ¢(r) =

r 2 logr, r = llxll2 with x = (x, y) E IR2 is given by the Beppo-Levi space BL2(IR2).
Now, the corresponding semi-norm in the Beppo-Levi space BL2 (IR 2) is (c.f. (13. 6))

2 r (I [J2 f 12 I [J2 f 12 I a2 f 12) lflBL2(JR2) = JR2 8x2 (x) + 2 axay (x) + 8y2 (x) dx,

which is the bending energy of a thin plate. By Theorem 18.1 the thin plate spline
interpolant minimizes this energy. This explains the name of these functions.

18.4 Optimality Theorem II

Another nice property of the radial basis function interpolant is the fact that it is
at the same time the best Hilbert-space approximation to the given data, and thus
not just any projection off but the orthogonal projection. Again, we formulate the
theorem for the strictly conditionally positive definite case and provide details only
for the strictly positive definite case.

Theorem 18.2 (Optimality II). Let

N

Hct>(X) = {h = I:c/I>(-,xj) +p
j=l

N

pEP

and L Cjq(xj) = 0 for all q E P and Xj E X},
j=l

where <I> E C(fl x fl) is a strictly conditionally positive definite kernel with respect
to the finite-dimensional space P ~ C(fl) and X is P-unisolvent. If only the val­
ues Ji = f(x1), ... , f N = f(xN) are given, then the interpolant 'Pt is the best
approximation to f from Hct>(X) in Nct>(fl), i.e.,

If - 'PtlN~(n) :S If - hlN~(n)

for all h E Hct>(X).

Proof. We consider only the strictly positive definite case. As explained in Sec­
tion 13.2, the native space Nct>(fl) is the completion of Hct>(fl) with respect to the

II · ll<t>-norm so that llfll<t> = llfllN~(n) for all f E Hct>(fl). Also, X ~ fl. Therefore,
we can characterize the best approximation g* to f from Hct>(X) by

(f-g*,h)N~(n) =0 for all h E Hct>(X).

However, Lemma 18.2 shows that g* ='Pt satisfies this relation. 0

These optimality properties of radial basis function interpolants play an im­
portant role in applications such as in the design of support vector machines in
statistical learning theory or the numerical solution of partial differential equations.

164 Meshfree Approximation Methods with MATLAB

The optimality results above imply that one could also start with some Hilbert
space 1t with norm II· II rt and ask to find the minimum norm interpolant (i.e., Hilbert
space best approximation) to some given data. In this way any given space defines
a set of optimal basis functions, generated by the reproducing kernel of 1t. This is
how Duchon approached the subject in his papers [Duchon (1976); Duchon (1977);
Duchon (1978); Duchon (1980)]. More recently, Kybic, Blu and Unser [Kybic et al.
(2002a); Kybic et al. (2002b)] take this point of view and explain from a sampling
theory point of view how the thi11 plate splines can be interpreted as fundamental
solutions of the differential operator defining the semi-norm in the Beppo-Levi space
BL2(IR2), and thus radial basis functions ~an be viewed as Green's functions.

18.5 Optimality Theorem III

The third optimality result is in the context of quasi-interpolation, i.e.,

Theorem 18.3 (Optimality III). Suppose cl> E C(f! x f!) is a strictly condition­
ally positive definite kernel with respect to the finite-dimensional space P ~ C(f!).
Suppose X is P-unisolvent and x E f! is fixed. Let uj (x), j = 1, ... , N, be the
values at x of the cardinal basis functions for interpolation with cl>. Then

N N

f(x) - Lf(xJ)uj(x) < f(x) - Lf(xJ)uJ
j=l j=l

for all choices of u1, ... , UN E IR with I.:f=l UJp(xJ) = p(x) for any p E P.

Theorem 18.3 is proved in [Wendland (2005a)]. It says in particular that the
minimum norm interpolant P1 is also more accurate (in the pointwise sense) than
any linear combination of the given data values that reproduce P.

Chapter 19

Least Squares RBF Approximation
with MATLAB

Up to now we have looked only at interpolation. However, many times it makes
more sense to approximate the given data by a least squares fit. This is especially
true if the data are contaminated with noise, or if there are so many data points
that efficiency considerations force us to approximate from a space spanned by fewer
basis functions than data points.

19.1 Optimal Recovery Revisited

As we saw in Chapter 18 we can interpret radial basis function interpolation as
a constrained optimization problem, i.e., the RBF interpolant automatically min­
imizes the native space norm among all interpolants in the native space. We now
take this point of view again, but start with a more general formulation. Let us
assume we are seeking a function Pf of the form

M

P1(x) = L Cj<I>(x, Xj), x E IR
8

'

j=l

where the number M of basis functions is in general less than or equal the number
N of data sites. We then want to determine the coefficients c = [c1, ... , cMf so
that we minimize the quadratic form

(19.1)

with some symmetric positive definite matrix Q subject to the linear constraints

Ac=/ (19.2)

where A is an N x M matrix with full rank, and the right-hand side f = (Ji, ... , f NV
is given. Such a constrained quadratic minimization problem can be converted to a
system of linear equations by introducing Lagrange multipliers A = [>.1, ... , AN]T,
i.e., we consider finding the minimum of

1 T T (] -c Qc-A Ac-f
2

165

(19.3)

166 Meshfree Approximation Methods with MATLAB

with respect to c and .A. Since Q is assumed to be a positive definite matrix, it is
well known that the functional to be minimized is convex, and thus has a unique
minimum. Therefore, the standard necessary condition for such a minimum (which
is obtained by differentiating with respect to c and .A and finding the zeros of those
derivatives) is also sufficient. This leads to

or, in matrix form,

Qc-AT.A = 0
Ac-f = 0

By applying (block) Gaussian elimination to this block matrix (Q is invertible since
it is assumed to be positive definite) we get

A= (AQ-1 AT)-1 f

c = Q-1 AT (AQ-1 AT)-1 f.

(19.4)

(19.5)

In particular, if the quadratic form represents the native space norm of the

interpolant P1 = "L,~ 1 cj<I>(·, Xj), i.e.,

M M

llP1lli<t>(n) = LLcicJ<I>(xi,xJ) = cTQc
i=l j=l

with Qij = <I>(xi, xJ) and c = [c1, ... , cMJT, and the linear side conditions are the
interpolation conditions

Ac=f

with A = AT = Q (symmetric), the same c as above and data vector f
[!1, ... , fMJT, then we see that the Lagrange multipliers (19.4) become

.A= Jl-1 f

and the coefficients are given by

C=A

via (19.5). Therefore, as we saw earlier, the minimum norm interpolant is obtained
by solving the interpolation equations alone.

19.2 Regularized Least Squares Approximation

Since we took the more general point of view that Pf is generated by M basis
functions, and N linear constraints are specified, the above formulation also covers
both over- and under-determined least squares fitting where the quadratic form

19. Least Squares RBF Approximation with MATLAB 167

cT Qc represents an added smoothing (or regularization) term. This term is not
required to obtain a unique solution of the system Ac= f in the over-determined
case (N 2:: M), but in the under-determined case such a constraint is needed (c.f.
the solution of under-determined linear systems via singular value decomposition in
the numerical linear algebra literature (e.g., [Trefethen and Bau (1997)])).

Usually the regularized least squares approximation problem is formulated as
minimization of

(19.6)

The quadratic form cT Qc controls the smoothness of the fitting function and the
least squares term measures the closeness to the data. The parameter w controls
the tradeoff between these two terms with a large value of w shifting the balance
toward increased pointwise accuracy.

The formulation (19.6) is used in regularization theory (see, e.g., [Evgeniou et al.
(2000); Girosi (1998)]). The same formulation is also used in penalized least squares
fitting (see, e.g., [von Golitschek and Schumaker (1990)]), the literature on smooth­
ing splines [Reinsch (1967); Schoenberg (1964)], and in papers by Wahba on thin
plate splines (e.g., [Kimeldorf and Wahba (1971); Wahba (1979); Wahba (1990b);
Wahba and Luo (1997); Wahba and Wendelberger (1980)]). In fact, the idea of
smoothing a data fitting process by this kind of formulation seems to go back to
at least [Whittaker (1923)]. In practice a penalized least squares formulation is
especially useful if the data fi cannot be completely trusted, i.e., they are contami­
nated by noise. The problem of minimizing (19.6) is also known as ridge regression
in the statistics literature. The regularization parameter w is usually chosen using
generalized cross validation.

If we restrict ourselves to working with square symmetric systems, i.e., A= AT,
and assume the smoothness functional is given by the native space norm, i.e.,
Q = A, then we obtain the minimizer of the unconstrained quadratic functional
(19.6) by solving the linear system

(19.7)

which is the result of setting the derivative of (19.6) with respect to c equal to
zero. Thus, ridge regression corresponds to a diagonal stabilization/regularization
of the usual interpolation system Ac = f. This approach is especially useful for
smoothing of noisy data. We present an implementation of this method and some
numerical examples below in Section 19.4.

168 Meshfree Approximation Methods with MATLAB

19.3 Least Squares Approximation When RBF Centers Differ from
Data Sites

We are now interested in the more general setting where we still sample the given
function f on the set X = { x1, ... , XN} of data sites, but now introduce a second set
3 = {ei}f!1 at which we center the basis functions. Usually we will have M :::; N,
and the case M = N with 3 = X recovers the traditional interpolation setting
discussed in earlier chapters. Therefore, we can let the RBF approximant be of the
form

M

Q1(x) = L:cJ4>(x,eJ), x E IR.s. (19.8)
j=l

The coefficients CJ can be found as the least squares solution of Ac = f, i.e., by
minimizing II Qf - f II~, where the £2-norm

N

11111~ = 2= [J(xi)l 2
,

i=l

is induced by the discrete inner product
N

(!, g) = L f(xi)g(xi),
i=l

Xi EX,

Xi EX. (19.9)

This approximation problem has a unique solution if the (rectangular) colloca­
tion matrix A with entries

AJk = 4>(xJ, ek), j = 1, ... , N, k = 1, ... , M,

has full rank.
If the centers in 3 are chosen to form a subset of the data locations X, then A

does have full rank provided the radial basis functions are selected according to our
previous chapters on interpolation. This is true, since in this case A will have an
M x M square submatrix which is non-singular (by virtue of being an interpolation
matrix).

The over-determined linear system Ac = f which arises in the solution of the
least squares problem can be solved using standard algorithms from numerical linear
algebra such as QR or singular value decomposition. Therefore the MATLAB code
for RBF least squares approximation is almost identical to that for interpolation.

Program 19.1 presents an example for least squares approximation in 2D. Now
we define two sets of points: the data points (defined in lines 3 and 8), and the
centers (defined in lines 4, 6 and 7). Note that we first load the centers since our
data files Data2D_l089h and Data2D_8lu contain a variable dsi tes which we want
to use for our data sites. Loading the data sites first, and then the centers would
lead to unwanted overwriting of the values in ds i te s. The solution of the least
squares problem is computed on line 16 using backslash matrix left division (\ or
mldi vi de) which automatically produces a least squares solution. The subroutines
PlotSurf and PlotError2D are provided in Appendix C.

19. Least Squares RBF Approximation with MATLAB

Program 19.1. RBFApproximation2D.m

% RBFApproximation2D
% Script that performs basic 2D RBF least squares approximation
% Calls on: DistanceMatrix, PlotSurf, PlotError2D

1 rbf = ©(e,r) exp(-(e*r).-2); ep = 1;
2 testfunction = ©(x,y) sinc(x).*sinc(y);
3 N = 1089; gridtype = 'h';
4 M = 81; grid2type = 'u';
5 neval = 40;

% Load centers
6 name= sprintf('Data2D_%d%s',M,grid2type); load(name)
7 ctrs = dsites;

% Load data points
8 name= sprintf('Data2D_%d%s',N,gridtype); load(name)

% Compute distance matrix between data sites and centers
9 DM_data = DistanceMatrix(dsites,ctrs);

% Build collocation matrix
10 CM= rbf(ep,DM_data);

% Create right-hand side vector, i.e.,
% evaluate the test function at the data points.

11 rhs = testfunction(dsites(:,1),dsites(: ,2));
% Create neval-by-neval equally spaced evaluation
% locations in the unit square

12 grid= linspace(0,1,neval); [xe,ye] = meshgrid(grid);
13 epoints = [xe(:) ye(:)];

169

% Compute distance matrix between evaluation points and centers
14 DM_eval = DistanceMatrix(epoints,ctrs);
15 EM= rbf(ep,DM_eval);

% Compute RBF least squares approximation
16 Pf= EM* (CM\rhs);

% Compute exact solution, i.e., evaluate test
% function on evaluation points

17 exact= testfunction(epoints(:,1),epoints(:,2));
% Compute maximum error on evaluation grid

18 maxerr = norm(Pf-exact,inf);
% Plots

19 figure; fview = [100,30]; % viewing angles for plot
20 caption= sprintf('%d data sites and %d centers',N,M);
21 title(caption);
22 plot(dsites(:,1),dsites(:,2),'bo',ctrs(:,1),ctrs(:,2),'r+');
23 PlotSurf(xe,ye,Pf,neval,exact,maxerr,fview);
24 PlotError2D(xe,ye,Pf 1 exact,maxerr,neval,fview);

170 Meshfree Approximation Methods with MATLAB

Output from RBFApproximation2D .mis presented in Figure 19.1 and the top
part of Figure 19.2.

x

Fig. 19. l 1089 Halton data sites (o) and 81 uniform centers (+).

If c = 1, then the coliocation matrix is rank deficient with MATLAB reporting a
numerical rank of 58. In order to have a full numerical rank for this problem c needs
to be at least 2.2 (in which case the maximum error deteriorates to 5.255591e-004
instead of 2.173460e-007 for c = 1, c.f. the top part of Figure 19.2). There is not
much theory available for the case of differing centers and data sites. We present
what is known in the next chapter. Some care needs to be taken when computing
least squares solutions based on sets of differing centers and data sites.

19.4 Least Squares Smoothing of Noisy Data

We present two strategies for dealing with noisy data, i.e., data that we consider
to be not reliable due to, e.g., measurement or transmission errors. This situation
arises frequently in practice. We simulate a set of noisy data by sampling Franke's
test function at a set X of data sites, and then adding uniformly distributed random
noise of various strengths. For this experiment we use thin plate splines since their
native space norm corresponds to the bending energy of a thin plate and thus they
have a tendency to produce "visually pleasing" smooth and tight surfaces.

Since the thin plate splines have a singularity at the origin a little extra care
needs to be taken with their implementation. The MATLAB script tps . m we use for
our implementation of this basic function is included in Appendix C as Program C.4.

Our first strategy is to compute a straightforward least squares approximation
to the (large) set of data using a (small) set of basis functions as we did in the
previous section. In the statistics literature this approach is known as regression
splines. We will not address the question of how to choose the centers for the basis
functions at this point.

We use a modification of program RBFApproximation2D .m that allows us to use

19. Least Squares RBF Approximation with MATLAB 171

thin plate splines with the added linear polynomial term. These changes can be
found on lines 1, 15, 16, 19 and 24 of Program 19.2. Also, we now replace the sine
test function by Franke's function (2.2). The noise is added to the right-hand side
of the linear syst~m on line 18. This modification adds 33 noise to the data.

Program 19.2. RBFApproximation2Dlinear .m

!. RBFApproximation2Dlinear
!. Script that performs 2D RBF least squares approximation with
!. linear reproduction for noisy data
!. Calls on: tps, DistanceMatrix

1 rbf = ©tps; ep = 1; !. defined in tps.m (see Appendix C)
!. Define Franke's function as testfunction

2 f1 = ©(x,y) 0.75*exp(-((9*x-2).-2+(9*y-2).-2)/4);
3 f2 = ©(x,y) 0.75*exp(-((9*x+1).-2/49+(9*y+1).-2/10));
4 f3 = ©(x,y) 0.5*exp(-((9*x-7).-2+(9*y-3).-2)/4);
5 f4 = ©(x,y) 0.2*exp(-((9*x-4).-2+(9*y-7).-2));
6 testfunction = ©(x,y) f1(x,y)+f2(x,y)+f3(x,y)-f4(x,y);
7 N = 1089; gridtype = 'h';
8 M = 81; grid2type = 'u';
9 neval = 40;

!. Load centers
10 name= sprintf('Data2D_/.d/.s',M,grid2type); load(name)
11 ctrs = dsites;

!. Load data points
12 name= sprintf('Data2D_/.d%s',N,gridtype); load(name)

!. Compute distance matrix between data sites and centers
13 DM_data = DistanceMatrix(dsites,ctrs);
14 CM= rbf(ep,DM_data); !. Collocation matrix

!. Add extra columns and rows for linear reproduction
15 PM= [ones(N,1) dsites]; PtM = [ones(M,1) ctrs] ';
16 CM = [CM PM; [PtM zeros(3,3)]];

!. Create right-hand side vector and add noise
17 rhs = testfunction(dsites(:,1),dsites(:,2));
18 rhs = rhs + 0.03*randn(size(rhs));

I. Add zeros for linear (2D) reproduction
19 rhs = [rhs; zeros(3,l)];

!. Create neval-by-neval equally spaced evaluation locations
% in the unit square

20 grid= linspace(0,1,neval); [xe,ye] = meshgrid(grid);
21 epoints = [xe(:) ye(:)];

!. Compute distance matrix between evaluation points and centers
22 DM eval = DistanceMatrix(epoints,ctrs);

172 Meshfree Approximation Methods with MATLAB

23 EM= rbf(ep,DM_eval); % Evaluation matrix
% Add columns for linear reproduction

24 PM= [ones(neval-2,1) epoints]; EM= [EM PM];
% Compute RBF least squares approximation

25 Pf= EM* (CM\rhs);
% Compute exact solution, i.e.,
% evaluate test function on evaluation points

26 exact= testfunction(epoints(:,1),epoints(:,2));
% Compute maximum error on evaluation grid

27 maxerr = norm(Pf-exact,inf);
% Plots

28 figure; fview = [160,20]; % viewing angles for plot
29 caption= sprintf('%d data sites and %d centers',N,M);
30 title(caption);
31 plot(dsites(:,1),dsites(:,2),'bo',ctrs(:,1),ctrs(:,2),'r+');
32 PlotSurf(xe,ye,Pf,neval,exact,maxerr,fview);
33 PlotError2D(xe,ye,Pf ,exact,maxerr,neval,fview);

Program RBFApproxiation2Dlinear. m was used to produce the right plot in the
bottom part of Figure 19.2 and the entries in line 2 of Table 19.1. Clearly, this simple
least squares approach performs much better than straightforward interpolation
to the noisy data (see the left plot the bottom part of Figure 19.2 and line 1 of
Table 19.1). Moreover, this least squares approximation is also much cheaper to
compute. However, as we pointed out earlier, it is not clear how to choose the
smaller set of RBF centers, and what is even more unsettling, there is not much
mathematical theory (see the next section) to guarantee if (or when) this approach
is well-posed, i.e., the collocation matrix has full rank.

Table 19.1 Errors and condition numbers for various least squares approximants
to noisy data.

method w RMS-error max-error cond(A)

Interpolation 00 2.482624e-002 9.914837e-002 1. 502900e+007
LSQ approximation NA 9.6657 43e-003 5.490050e-002 NA

Ridge regression 1000 1. 713843e-002 7. 580288e-002 2. 537652e+006
Ridge regression 100 l .078358e-002 4. 215865e-002 3.839384e+005
Ridge regression 10 9.173961e-003 3.349371e-002 4.571167e+004
Ridge regression 1 2. 764272e-002 l.041350e-001 9.317936e+003

Another strategy for smoothing of noisy data is the ridge regression method
explained earlier (see (19.7)). This method is popular in the statistics and neural
network community.

The nature of the MATLAB program for ridge regression is very similar to that for
RBF interpolation. We present a version for ridge regression with thin plate splines

19. Least Squares RBF Approximation with MATLAB

x 10-7

2
..... :.

1.5 2.5

~ 2 g
1 w

z 1.5

0.5
0.5

0 0.2 0.4 0.6 1 x 0
1 0.8 0.6 0.8

y y

0.08
0.8 .. -···

z 0.06 z 0.6
~ e 0.4 ..
w

0.04

0.02

0.5

y
1 1

x

0
0

1 0.5
1 y x

·······-.:

1 1 x

0

173

2

1.5

~

e
1 w

0.5

0

0.05

0.04

0.03 0
t:
w

0.02

O.Q1

0

Fig. 19.2 Top: Least squares approximation (left) to 1089 data points sampled from 2D sine
function with 81 Gaussian basis functions with e: = 1 and maximum error (right) false-colored
by magnitude of error. Bottom: Thin plate spline interpolant (left) to 1089 noisy data points
sampled from Franke's function, and least squares approximation with 81 uniformly spaced thin
plate spline basis functions (right) false-colored by magnitude of error.

(including the linear term in the basis expansion) for smoothing of noisy data. The
smoothing parameter w of (19. 7) is defined on line 7 of Program 19.3, and the
diagonal stabilization of the (interpolation) matrix A is performed on line 17. Note
that the stabilization only affects the A part of the matrix, and not the extra rows
and columns added for polynomial precision.

Program 19.3. TPS...RidgeRegression2D.m

'', TP h S_RidgeRegression2D
'', s h h h cript t at performs 2D TPS-RBF approximation wit reproduction of
~. 1 h h inear functions and smoot ing via ridge regression
'', c h alls on: tps, DistanceMatrix

Y. Use TPS (defined in tps.m, see Appendix C)
1 rbf = ©tps; ep = 1;

Y. Define Franke's function as testfunction
2 fl= ©(x,y) 0.75*exp(-((9*x-2).-2+(9*y-2).-2)/4);

174 Meshfree Approximation Methods with MATLAB

3 f2 = ©(x,y) 0.75*exp(-((9*x+l).-2/49+(9*y+1).-2/10));

4 f3 = ©(x,y) 0.5*exp(-((9*x-7).-2+(9*y-3).-2)/4);

5 f4 = ©(x,y) 0.2*exp(-((9*x-4).-2+(9*y-7).-2));

6 testfunction = ©(x,y) f1(x,y)+f2(x,y)+f3(x,y)-f4(x,y);

7 omega = 100; % Smoothing parameter

8 N = 1089; gridtype = 'h';

9 neval = 40;

% Load data points

10 name= sprintf('Data2D_%d%s',N,gridtype); load(name)

11 ctrs = dsites;

% Compute distance matrix between data sites and centers
12 DM_data = DistanceMatrix(dsites,ctrs);

% Create noisy right-hand side vector

13 rhs = testfunction(dsites(:,1),dsites(:,2));

14 rhs = rhs + 0.03*randn(size(rhs));

% Add zeros for 2D linear reproduction

15 rhs = [rhs; zeros(3,1)];

% Compute interpolation matrix and add diagonal regularization
16 IM= rbf(ep,DM_data);

17 IM= IM+ eye(size(IM))/(2*omega);

% Add extra columns and rows for linear reproduction

18 PM= [ones(N,1) dsites]; IM= [IM PM; [PM' zeros(3,3)]];

19 fprintf('Condition number estimate: %e\n',condest(IM))

% Create neval-by-neval equally spaced evaluation locations

% in the unit square

20 grid= linspace(0,1,neval); [xe,ye] = meshgrid(grid);

21 epoints = [xe(:) ye(:)];

% Compute distance matrix between evaluation points and centers

22 DM_eval = DistanceMatrix(epoints,ctrs);

% Compute evaluation matrix and add columns for linear precision

23 EM= rbf(ep,DM_eval);

24 PM= [ones(neval-2,1) epoints]; EM= [EM PM];

!. Compute RBF interpolant

25 Pf= EM* (IM\rhs);

!. Compute exact solution, i.e.,

!. evaluate test function on evaluation points

26 exact= testfunction(epoints(: ,1),epoints(: ,2));

!. Compute maximum error on evaluation grid

27 maxerr = norm(Pf-exact,inf);

!. Plots

28 fview = [160,20]; % viewing angles for plot

29 PlotSurf(xe,ye,Pf,neval,exact,maxerr,fview);

19. Least Squares RBF Approximation with MATLAB 175

30 PlotError2D(xe,ye,Pf ,exact,maxerr,neval,fview);

The results for our examples computed with Program 19.3 are shown in Fig­
ure 19.3 as well as in lines 3-6 of Table 19.1. These results illustrate very nicely
the smoothing effect obtained by varying w. A very large value of w emphasizes the
fitting component of the functional to be minimized in (19.6) resulting in a rather
rough surface, while a small value of u.J gives preference to the smoothing term. The
"optimal" value of w lies somewhere in the middle. In practice one would usually
use cross validation to obtain the optimal value of w.

Besides the visual smoothing of the approximating surface, a small value of w
also has a stabilizing effect on the collocation matrix. The diagonal of the matrix
becomes more and more dominant. The condition estimates in Table 19.1 also verify
this behavior.

0.8

0.6
z

y

0.8

z
0.6

0.2

0

-0.2
0

··: ..

x

........ ··.

··.:

~--~~-~o 0.5
1 1

y x

0.05

0.04 g
w

0.03

0.02

0.01

0

0.03

0.025

0.02
g

o.015w

0.01

0.005

0

z

z

y

0.8

0.6

0.4

0.2 ······

0.5

1 1
y

·····•.

x

:

:

0.5
x

0.04

0.035

0.03

0.025
~ e

0.02 w
O.Q15

0.01

0.005

0

0.1

0.08

0.06 ~
g
w

0.04

0.02

0

Fig. 19.3 Thin plate spline ridge regression to 1089 noisy data points sampled from Franke's
function with w = 1000 (top left), w = 100 (top right), w = 10 (bottom left), and w = 1 (bottom
right).

Chapter 20

Theory for Least Squares Approximation

In this chapter we give a brief account of the theoretical results known for least
squares approximation with radial basis functions. These results include extensions
of the RBF interpolation theory to cover well-posedness for the situation in which
centers S and data sites X differ. We also present some recent error estimates for
least squares approximation.

20.1 Well-Posedness of RBF Least Squares Approximation

The results mentioned here are due to Quak, Sivakumar and Ward [Sivakumar and
Ward (1993); Quak et al. (1993)]. The first paper deals with discrete, the second
with continuous least squares approximation. In both papers the authors do not
discuss the collocation matrix A we used in the previous chapter, but rather base
their results on the non-singularity of the coefficient matrix obtained from a system
of normal equations.

In the discrete setting they use the inner product (19.9) which induces the £2

norm, and then discuss non-singularity of the Gram matrix G that occurs in the
following system of normal equations

Gc=w, (20.1)

where the entries of Gare the £2 inner products of the radial basis functions, i.e.,

N

Gjk = (q,(·, ej), q,(·, ek)) = L q,(xi, ej)q,(xi, ek), j, k = 1, ... 'M,
i=l

and the right-hand side vector w in (20.1) is given by

N

Wj = (q,(·, ej), /) = L q,(xi, ej)f(xi), j = 1, ... 'M.
i=l

Note that in the interpolation case with M = N and S = X (i.e., coinciding
centers and data sites) we have

177

178 Meshfree Approximation Methods with MATLAB

so that G is just the interpolation matrix A. This provides yet another way of
saying that the interpolation matrix A is also the system matrix for the normal
equations in the case of best approximation with respect to the native space norm
- a fact already mentioned earlier in Chapter 18 on optimal recovery.

In both papers, [Sivakumar and Ward (1993)] as well as [Quak et al. (1993)],
even the formulation of the main theorems is very technical. We therefore just try
to give a feel for their results.

Essentially, the authors show that the Gram matrix for certain radial basis
functions (norm, (inverse) multiquadrics, and Gaussians) is non-singular if the cen­
ters 3 = { ek, k = 1, ... , M} are sufficiently well distributed and the data points
X = {xj,j = 1, ... , N} are fairly evenly clustered about the centers with the di­
ameter of the clusters being relatively small compared to the separation distance of
the data points. Figure 20.1 illustrates this clustering idea.

0

0 0 •
0 0

0 • 0

0
0

0
0

0 • 0 0
0

0 •
0

0
0

Fig. "Q. l Clusters of data points o around well separated centers •.

One of the key ingredients in the proof of the non-singularity of G is to set
up an interpolation matrix B for which the basis functions are centered at certain
representatives of the clusters of knots about the data sites. One then splits the
matrix B (which is non-symmetric in general) into a part that is symmetric and
one that is anti-symmetric, a standard strategy in linear algebra, i.e., B = B 1 + B 2

where B1 and B2 are defined by

B+BT
B1 =

2
(symmetric),

B-BT
B2 =

2
(anti-symmetric).

Then, lower estimates for the norm of these two parts are found and used to conclude
that, under certain restrictions, G is non-singular.

As a by-product of this argumentation the authors obtain a proof for the non­
singularity of interpolation matrices for the case in which the centers of the basis

20. Theory for Least Squares Approximation 179

functions are chosen different from the data sites, namely as small perturbations
thereof.

20.2 Error Bounds for Least Squares Approximation

In the case of basis functions centered at the points of an infinite lattice de Boor,
DeVore and Ron [deBoor et al.(1994b); Ron (1992)] discussed £ 2-approximation
orders for radial basis functions.

More recently, [Ward (2004)] provided error bounds for least squares approxi­
mation at scattered centers and in finite domains. His work is closely linked to the
results in [Narcowich et al. (2005)] discussed earlier in Chapter 15.

A typical result is that the continuous least squares error for approximation
based on the compactly supported Wendland functions is

Here n c Rs is a bounded Lipschitz domain which satisfies an interior cone condi­
tion, X c n is the set of centers, H'l>(X) =span{ <I>(· -xi), Xj EX}, k is such that
T = k +a with 0 < a < 1, and T > s/2 measures the decay of the Fourier transform
of <I>, i.e.,

with positive constants c1 and c2 so that the native space of <I> is given by the Sobolev
space W{(Rs). This error bound is of the same order as the one for interpolation
(c.f. Theorem 15.3). We refer the reader to [Ward (2004)] for more details.

Chapter 21

Adaptive Least Squares Approximation

In this chapter we mention some strategies for solving the least squares problem in
an adaptive fashion.

21.1 Adaptive Least Squares using Knot Insertion

A classical technique used to improve the quality of a given initial approximation
based on a linear combination of certain basis functions is to adaptively increase
the number of basis functions used for the fit. In other words, one refines the space
from which the approximation is computed. Since every radial basis function is
associated with one particular center (or knot), this can be achieved by adding
new knots to the existing ones. This idea was explored for multiquadrics on 1R2 in
[Franke et al. (1994); Franke et al. (1995)], and for radial basis functions on spheres
in [Fasshauer (1995a)].

We will now describe an algorithm that adaptively adds knots to a radial basis
function approximant in order to improve the .f 2 error.

Let us assume we are given a large number, N, of data and we want to fit them
with a radial basis expansion to within a given tolerance. The idea is to start with
very few initial knots, and then to repeatedly insert a knot at that data location
whose £2 error component is largest. This is done as long as the least squares error
exceeds a given tolerance. The following algorithm may be used.

Algorithm 21.1. Knot insertion

(1) Let data sites X = {x1 , ... , XN }, data Ji, i = 1, ... , N, and a tolerance tol be
given.

(2) Choose M initial knots 3 = {e1, ... ,eM}·
(3) Calculate the least squares fit

M

Q1(x) = L Cj4>(x, ej)
j=l

181

182 Meshfree Approximation Methods with MATLAB

with its associated error
N

e = L)fi - Qi (xi)] 2
.

i=l

While e > tol do

(4) "Weight" each data point Xi, i = 1, ... , N, according to its error compo­
nent, i.e., let

Wi = lfi - Q1(xi)I, i = 1, ... ,N.

(5) Find the data point Xv tJ. 3 with maximum weight Wv and insert it as a
knot, i.e.,

3 = 3 U {xv} and M = M + 1.

(6) Recalculate fit and associated error.

A MATLAB implementation of the knot insertion algorithm is provided in
RBFKnotinsert2D .m (Program 21.1). This program is a little more technical than
previous ones since we need to avoid adding the same point multiple times. This
would lead to a singular system. In MATLAB we can easily check this with the
command ismember (see line 28). We also take advantage of the sort command to
help us find (possibly several) knots with largest error contribution. The addition
of these data sites to the set of centers is accomplished on lines 26-32. Evaluation
of the approximant (see lines 34-36) is not required until all of the knots have been
inserted.

Program 21.1. RBFKnotinsert2D .m

% RBFKnotinsert2D
% Script that performs 20 RBF least squares approximation
% via knot insertion
% Calls on: DistanceMatrix

1 rbf = ©(e,r) exp(-(e*r).-2); ep = 5.5;
% Define Franke's function as testfunction

2 fl= ©(x,y) 0.75*exp(-((9*x-2).-2+(9*y-2).-2)/4);
3 f2 = ©(x,y) 0.75*exp(-((9*x+1).-2/49+(9*y+1).-2/10));
4 f3 = ©(x,y) 0.5*exp(-((9*x-7).-2+(9*y-3).-2)/4);
5 f4 = ©(x,y) 0.2*exp(-((9*x-4).-2+(9*y-7).-2));
6 testfunction = ©(x,y) f1(x,y)+f2(x,y)+f3(x,y)-f4(x,y);
7 N = 289; gridtype = 'h';
8 M = 1; % Number of initial centers
9 neval = 40;

10 grid= linspace(0,1,neval); [xe,ye] = meshgrid(grid);
11 epoints = [xe(:) ye(:)];
12 tol = le-5; % Tolerance; stopping criterion

21. Adaptive Least Squares Approximation

I. Load data points

13 name= sprintf('Data2D_/.d/.s',N,gridtype); load(name)

I. Take first M "data sites" as centers

14 ctrs = dsites(1:M,:);

I. Compute exact solution, i.e., evaluate test function

I. on evaluation points

15 exact= testfunction(epoints(: ,1),epoints(:,2));

I. Create right-hand side vector, i.e.,

I. evaluate the test function at the data points.

16 rhs = testfunction(dsites(:,1),dsites(:,2));

17 rms_res = 999999;
18 while (rms_res > tol)

I. Compute least squares fit

19 DM_data = DistanceMatrix(dsites,ctrs);

20 CM= rbf(ep,DM_data);

21 coef = CM\rhs;

I. Compute residual

22 residual= abs(CM*coef - rhs);

23 [sresidual,idx] = sort(residual);

24 lres = length(residual);

25 rms_res = norm(residual)/sqrt(lres);

'/, Add point(s)

26 if (rms_res > tol)

27 addpoint = idx(lres); I. This is the point we add

!. lf already used, try next point

28 while any(ismember(ctrs,dsites(addpoint,:),'rows'))

29 lres = lres-1; addpoint = idx(lres);

30 end

31 ctrs = [ctrs; dsites(addpoint,:)];

32 end

33 end

I. Compute evaluation matrix

34 DM_eval = DistanceMatrix(epoints,ctrs);
35 EM= rbf(ep,DM_eval);

36 Pf = EM*coef; !. Compute RBF least squares approximation

183

37 maxerr = max(abs(Pf - exact)); rms_err = norm(Pf-exact)/neval;

38 fprintf('RMS error: /.e\n', rms_err)

39 figure; !. Plot data sites and centers

40 plot(dsites(: ,1) ,dsites(: ,2), 'bo' ,ctrs(: ,1) ,ctrs(: ,2), 'r+');

41 PlotSurf(xe,ye,Pf,neval,exact,maxerr, [160,20]);

We point out that we have to solve one linear least squares problem in each

iteration. We do this using the standard MATLAB backslash (or ml di vi de) QR-

184 Meshfree Approximation Methods with MATLAB

based solver (see line 21). The size of these problems increases at each step which
means that addition of new knots becomes increasingly more expensive. This is
usually not such a big deal. Both [Franke et al. (1994); Franke et al. (1995)] and
[Fasshauer (1995a)] found that the desired accuracy was usually achieved with fairly
few additional knots and thus the algorithm is quite fast.

If the initial knots are chosen to lie at data sites (as we did in our MATLAB
implementation), then the collocation matrix A in the knot insertion algorithm will
always have full rank. This is guaranteed since we only add data sites as new knots,
and we make sure in step (5) of the algorithm that no multiple knots are created
(which would obviously lead to a rank deficiency).

Instead of deciding which point to add based on residuals one could also
pick the new point by looking at the power function, since the dependence of
the approximation error on the data sites is encoded in the power function.
This strategy is used to build so-called greedy adaptive algorithms that inter­
polate successively more and more data (see [Schaback and Wendland (2000a);
Schaback and Wendland (2000b)] or Chapter 33). The power function is also em­
ployed in [De Marchi et al. (2005)] to compute an optimal set of RBF centers
independent of the specific data values.

21.2 Adaptive Least Squares using Knot Removal

The idea of knot removal was primarily motivated by the need for data reduction,
but it can also be used for the purpose of adaptive approximation (for a survey
of knot removal see, e.g., [Lyche (1992)]). The basic idea is to start with a good
fit (e.g., an interpolation to the data), and then successively reduce the number of
knots used (and therefore basis functions) until a certain given tolerance is reached.

Specifically, this means we will start with an initial fit and then use some kind
of weighting strategy for the knots, so that we can repeatedly remove those con­
tributing least to the accuracy of the fit. The following algorithm was suggested
in [Fasshauer (1995a)] for adaptive least squares approximation on spheres and
performs this task.

Algorithm 21.2. Knot removal

(1) Let data points X = {x1 , ... , XN }, data Ji, i = 1, ... , N, and a tolerance tol
be given.

(2) Choose M initial knots 3 = {e1, ... , eM }.
(3) Calculate an initial fit

M

Qf (x) = L Cj<I>(x, ej)
j=l

21. Adaptive Least Squares Approximation

with its associated least squares error

N

e = L)fi - Q1(xi)] 2
.

i=l

While e < tol do

185

(4) "Weight" each knot eJ, j = 1, ... , M, according to its least squares error,
i.e., form

and calculate the weights

N

Wj = L [fi - Qj(xi)]2,
i=l

where
M-1

Qj(x) = L Cj<I>(x, e;)
j=l

is the approximation based on the reduced set of knots 3*.
(5) Find the knot eµ with lowest weight Wµ < tol and permanently remove it,

i.e.,

3 = 3 \ {eµ} and M = M -1.

(6) Recalculate fit and associated error.

We present a MATLAB implementation of a knot removal algorithm that is
slightly more efficient. Its weighting strategy is based on the leave-one-out cross
validation algorithm (see [Rippa (1999)] and Chapter 17). The code is given in
RBFKnotRemoval2D.m (Program 21.2). This program is similar to the knot inser­
tion program. In fact, it is a little simpler since we do not have to worry about
multiple knots.

Program 21.2. RBFKnotRemove2D. m

% RBFKnotRemove2D
% Script that performs 2D RBF least squares approximation
% via knot removal
% Calls on: DistanceMatrix

1 rbf = ©(e,r) exp(-(e*r).-2); ep = 5.5;
% Define Franke's function as testfunction

2 fl= ©(x,y) 0.75*exp(-((9*x-2).-2+(9*y-2).-2)/4);
3 f2 = ©(x,y) 0.75*exp(-((9*x+l).-2/49+(9*y+l).-2/10));
4 f3 = ©(x,y) 0.5*exp(-((9*x-7).-2+(9*y-3).-2)/4);
5 f4 = ©(x,y) 0.2*exp(-((9*x-4).-2+(9*y-7).-2));
6 testfunction = ©(x,y) f1(x,y)+f2(x,y)+f3(x,y)-f4(x,y);

186 Meshfree Approximation Methods with MATLAB

7 N = 289; gridtype = 'h';
8 M = 289; !. Number of initial centers
9 neval = 40;

10 grid= linspace(0,1,neval); [xe,ye] = meshgrid(grid);
11 epoints = [xe(:) ye(:)];
12 tol = 5e-1; !. Tolerance; stopping criterion

!. Load data points
13 name= sprintf('Data2D_/.d/,s',N,gridtype); load(name)

!. Take first M "data sites" as centers
14 ctrs = dsites(1:M,:);

!. Compute exact solution, i.e., evaluate test function

!. on evaluation points
15 exact= testfunction(epoints(:,1),epoints(:,2));

% Create right-hand side vector, i.e.,
!. evaluate the test function at the data points.

16 rhs = testfunction(dsites(:,1),dsites(:,2));
17 minres = O;
18 while (minres < tol)

!. Compute collocation matrix
19 DM_data = DistanceMatrix(dsites,ctrs);
20 CM= rbf(ep,DM_data);

I. Compute residual

21 invCM = pinv(CM); EF = (invCM*rhs)./diag(invCM);
22 residual= abs(EF);

23 [sresidual,idx] = sort(residual); minres = residual(1);
!. Remove point

24 if (minres < tol)
25 ctrs = [ctrs(1:idx(1)-1,:); ctrs(idx(1)+1:M,:)];
26 M = M-1;
27 end
28 end

!. Evaluate final least squares fit
29 DM_data = DistanceMatrix(dsites,ctrs);
30 CM= rbf(ep,DM_data);

31 DM_eval = DistanceMatrix(epoints,ctrs);
32 EM= rbf(ep,DM_eval);
33 Pf= EM*(CM\rhs);
34 maxerr = max(abs(Pf - exact)); rms err= norm(Pf-exact)/neval;
35 fprintf('RMS error: /.e\n', rms_err)

36 figure; I. Plot data sites and centers
37 plot(dsites(:,1),dsites(:,2),'bo',ctrs(:,1),ctrs(:,2),'r+');
38 caption= sprintf('/.d data sites and /.d centers', N, M);

21. Adaptive Least Squares Approximation 187

39 title(caption);
40 PlotSurf(xe,ye,Pf,neval,exact,maxerr,[160,20]);

Again we would like to comment on the algorithm. As far as computational
times are concerned, Algorithm 21.2 as listed above is much slower than the MAT­
LAB implementation Program 21.2 based on the LOOCV idea since the weight for
every knot is determined by the solution of a least squares problem, i.e., in every
iteration one needs to solve M least squares problems. The MATLAB program runs
considerably faster, but usually it is still slower than the knot insertion algorithm.
This is clear since with the knot removal strategy one starts with large problems
that get successively smaller, whereas with knot insertion one begins with small
problems that can be solved quickly.

The only way the knot removal approach will be beneficial is when the number
of evaluations of the constructed approximant is much larger than its actual compu­
tation. This is so since, for comparable tolerances, one would expect knot removal
to result in fewer knots than knot insertion. However, our examples show that this
is not necessarily true.

If the initial knots are chosen at the data sites then, again, there will be no
problems with the collocation matrix becoming rank deficient.

In [Fasshauer (1995a); Fasshauer (1995b)] some other alternatives to this knot
removal strategy were considered. One of them is the removal of certain groups of
knots at one time in order to speed up the process. Another is based on choosing
the weights based on the size of the coefficients Cj in the expansion of Qf, i.e., to
remove that knot whose associated coefficient is smallest.

A further variation of the adaptive algorithms was considered in both [Franke
et al. (1994)] and in [Fasshauer (1995a)]. Instead of treating only the coefficients
of the expansion of Qf as parameters in the minimization process, one can also
include the knot locations themselves and possibly a (variable) shape parameter.
This however, leads to nonlinear least squares problems. We will not discuss this
topic further here.

Buhmann, Derrien, and Le Mehaute [Buhmann et al. (1995); Le Mehaute
(1995)] also discuss knot removal. Their approach is based on an a priori esti­
mate for the error made when removing a certain knot. These estimates depend on
the specific choice of radial basis function, and only cover the inverse multiquadric
type, i.e.,

<p(r) = (1 + r 2)-f3, 0 < j3 < s/2.

Iske (see [Iske (1999a); Iske (2004)]) suggests an alternative knot removal strat­
egy for least squares approximation. His removal heuristics are based on so-called
thinning algorithms. In particular, in each iteration a point is removed if it belongs
to a pair of points in 3 with minimal separation distance. The thinning phase of the
algorithm is then enhanced by an exchange phase in which points can be "swapped
back in" if this process reduces the fill-distance of 3. This strategy maintains a
relatively stable mesh ratio.

188 Meshfree Approximation Methods with MATLAB

21.3 Some Numerical Examples

For the following examples we consider Franke's test function (2.2). All final fits are
evaluated on a grid of 40 x 40 equally spaced points in the unit square. RMS and
maximum errors are also computed on this grid. The programs RBFKnot!nsert2D .m
(Program 21.1) and RBFKnotRemove2D.m (Program 21.2) were used to compute the
results.

In the top and middle parts of Figure 21.1 we compare the knot insertion and
knot removal algorithms. In both cases we use a reference set of 289 Halton data
sites and Gaussian basic functions scaled with a shape parameter c = 5.5. Using
the knot insertion algorithm with tol = le-004 as in Program 21.1 we select a subset
of 154 data sites as centers for the basis functions. These points are displayed on
the left side of the top part of Figure 21.1 along with the fit on the right. The knot
insertion algorithm is initialized with a single random knot in the unit square.

Table 21.1 Total of knots selected, errors and runtimes for adaptive
least squares approximants.

Method N M RMS-error max-error time

Knot insert 289 154 1.3346 lle-003 2.871526e-002 2.66
Knot remove 289 153 l .424598e-003 3.961593e-002 35.09
Knot insert 4225 163 1. l 98695e-004 l .137886e-003 48.75

In the middle part of Figure 21.1 we show the results for the same configuration,
i.e., Gaussians with c = 5.5 and N = 289 initial knots, for the knot removal
algorithm. This time we take tol = 0.5, and the knot removal algorithm begins
with an interpolant to all 289 data values. In Table 21.1 we can compare the errors
and runtimes for the two algorithms. It is clear that the knot insertion algorithm
is much more efficient for this example.

Another advantage of the knot insertion algorithm is revealed in the bottom
part of Figure 21.l and line 3 of Table 21.1. We still use Gaussians with shape
parameter c = 5.5. However, now we take N = 4225 Halton points as our data
set. This provides many more candidates as centers for basis functions. The chosen
centers are displayed on the left of the bottom part of Figure 21.1, and it is clear
that this center selection is closely adapted to the features of the data function,
namely the peaks and valley. The rest of the knots are located along the boundary
of the domain. Moreover, we see that it is possible to obtain a much more accurate
fit with roughly the same number of basis functions. While the runtime for this
example is considerably longer than that for the other knot insertion example it
is comparable to the time required for the knot removal algorithm with only 289
data sites. Running the knot removal algorithm with 4225 data sites would be
prohibitively expensive.

21. Adaptive Least Squares Approximation

•. •o4i ••.•om• Cbo19•11.EB
•• '80 flt&>e a ID &'8 II '9 •• at 0 0 ID

o o •• • &I • e ,,• a o o Oo •
• a • a..,, 9 w,.. o

• a ... - • o oo
_ID GI 0 GI GI 9 6' GIO GI 0

a.- 0 0 e $ oO O 0
a Cboaam•oo oo o e&o

0.6 GI 9 9 $ O GI $O 9 $
0
cfJ O O ID

y oo o a Cb o •o o
0 0 .. 0 .. 0 .. 0 00 0

ao o o ~ o oo o ea e oo o ED a o
0.4 0. ·.. 0 0 '\, 0 0 0 0 0 0 C{i

ID 0 ID 0 ID 9 0 II a.._ 0
O 0 0 O $ O O -,,, 00

• e • fif> o ~ oo o o o .•
0.2 C{i • .. • 0 .. 0 .. 0 0 .. 0

• • om o o o e o

.. ,. .. ,.,.'"o ,.,. oo'" Glo.,~,. .,'"oo o'" •o., • o'" .,o,.

0.2 0.4 0.6 0.8
x

a o oo ., o C{i o o
o 18 o O ID 0 0

0 18 ID 0 .·II o• $ 0 0
a• o" o ~ • o •e ED o

0.8 O $ O O $ 6l GI 6l GI 0 O GI GI 0 O O GI O
EB $ EB $ 9 00 &$

GI 0 GI GI '9 '9 ,j ,.e GI ID

a> ,. o • ., ., •.o o,. ., • o
06 o •o,. "b o•,. • ,.,. ., orP • o o

y . • .. 0 0 0. .. c:;,,'" : 0

a o o ID m ID o o o •a o
.,'" o o ~ ,. o'" • '"o • •., o ,. • o

0.4
0

o o $ GI e O GI GI 6l
o .o 0 • o'ti 0 °,. "bo

o Oo • 0 C{i o
o • o rJ1' .,o o o o .,e o o o

0.2 ..,,.o • • • e • e.,o •., o ., ., o o., o o ~., oo
• ..,aa ID o o ID

0$ a $ $ Q 0 0 0 0 0 0 ID 0 ID

oO • oO • • o oo o

0.2 0.4 0.6 0.8
x

x

z

z

0.8

0.6

0.4

0.2

0

-0.2
0

0.8

0.6

0.4

0.2

0

-0.2
0

0.5

y

0.5

y

1 l -...
0.8

0.6
z

0.4

0.2

0

-0.2
0

y

~- ...

'\·.

:.;.,:
-~-:

x

0.5
0

x

0.5
x

189

0.025

0.02

O.Q15 e
w

O.Q1

0.005

0

0.035

0.03

0.025

0.02 g
w

0.015

0.01

0

x 10-3

0.8

0.6 g
U.J

0.4

0.2

0

Fig. 21.1 Top: 289 data sites and 154 knots (left) for least squares approximation to Franke's
function (right) using knot insertion algorithm with tol = le-004. Middle: 289 data sites and 153
knots (left) for least squares approximation to Franke's function (right) using knot removal algo­
rithm with tol = 0.5. Bottom: 4225 data sites and 163 knots (left) for least squares approximation
to Franke's function (right) using knot insertion algorithm with tol = le-004.

Chapter 22

Moving Least Squares Approximation

An alternative to radial basis function interpolation and approximation is the so­
called moving least squares (:MLS) method. As we will see below, in this method the
approximation Pt to f is obtained by solving many (small) linear systems, instead
of via solution of a single - but large - linear system as we did in the previous
chapters.

22. I Discrete Weighted Least Squares Approximation

In order to motivate the moving least squares method we begin by discussing discrete
weighted least squares approximation from the space of multivariate polynomials.
Thus, we consider data (xi, !(xi)), i = 1, ... 'N, where Xi Enc]RS and !(xi) E IR
with arbitrary s 2: 1. The approximation space is of the form

U = span{p1, ... ,pm}, m<N,

with multivariate polynomials Pm E Ild of degree at most d.
We intend to find the best discrete weighted least squares approximation from

U to some given function f, i.e., we need to determine the coefficients CJ in

such that

m

u(x) = L CJPJ(x),
j=l

x E]RS'

llf - ull2,w ~min.
Here the norm is defined via the discrete (pseudo) inner product

N

(!, 9)w = L f (xi)g(xi)w(xi)
i=l

with scalar weights Wi = w(xi), i = 1, ... , N. The induced norm is then of the form

N

llfll~,w = L [!(xi)]
2
w(xi)·

i=l

191

192 Meshfree Approximation Methods with MATLAB

It is well known that the best approximation u from U to f is characterized by

f - u J_w u -<====> (f - u,pk)w = 0, k = 1, ... 'm,
m

-<====> (f - L CjPj,Pk)w = 0, k = 1, ... , m,
j=l

m

-<====> L Cj(pj,Pk)w = (f,pk)w, k = 1, ... 'm,
j=l

-<====>Ge= f p· (22.1)

Here the Gram matrix G has entries Gjk = (p1 , Pk)w and the right-hand side vec­
tor is f P = [(f,p1)w, ... , (f,pm)wJI'· We refer to (22.1) as the normal equations
associated with this problem.

Another way to think of this problem would be as a pure linear algebra problem.
To this end, define the Nxm matrix A with entries Aij = p1 (xi), and the vectors c =

[c1, ... , emV and f = [f(x1), ... , f(xN)]I'. With this notation we seek a solution of
the (overdetermined, since N > m) linear system Ac = f. The standard weighted
least squares solution is given by the solution of the normal equations ATW Ac=
ATWJ, where Wis the diagonal weighting matrix W = diag(w1 , ... ,wN)· This,
however, is exactly what is written in (22.1), i.e., the matrix G is of the form
G = ATWA, and for the right-hand side vector we have fp = ATWf.

22.2 Standard Interpretation of MLS Approximation

Several equivalent formulations exist for the moving least squares approximation
scheme. In order to make a connection with the discussion of the discrete weighted
least squares approximation just presented we start with the standard formulation
of MLS approximation. The Backus-Gilbert formulation to be presented in the fol­
lowing section will have a closer connection to previous chapters since it corresponds
to a linearly constrained quadratic minimization problem.

The general moving least squares method first appeared in the approximation
theory literature in the paper [Lancaster and Salkauskas (1981)) whose authors also
pointed out the connection to the earlier more specialized work [Shepard (1968);
McLain (1974)). We now present a description of MLS approximation that is sim­
ilar to the discussion in Lancaster and Salkauskas' original paper and most closely
resembles what is found in much .of the other literature on MLS approximation.

We consider the following approximation problem. Assume we are given data
values f(xi), i = 1, ... , N, on some set X = {x1, ... , XN} C JRS of distinct data
sites, where f is some (smooth) function, as well as an approximation space U =

span{ u 1 , ... , um} with m < N. In addition, we define a weighted £2 inner product

N

(!, 9)w
11

= L f(xi)g(xi)w(xi, y), y E Rs fixed, (22.2)
i=l

22. Moving Least Squares Approximation 193

where now the weight functions Wi = w (xi, ·), i = 1, ... , N, vary with the point
y. Note that the definition of this inner product naturally introduces a second
variable, y, into the discussion of the problem. This two-variable formulation of
MLS approximation will be essential to understanding the connection between the
various formulations.

As in the previous sections we wish to find the best approximation u from U to
f. However, we focus our interest on best approximation at the pointy, i.e., with
respect to the norm induced by (22.2). In order to keep the discussion as simple
as possible we will restrict our discussion to the multivariate polynomial case, i.e.,
U = H;i with basis {P1, ... ,Pm}· As always, the space Ild of s-variate polynomials
of degree d has dimension m = (s~d). We emphasize, however, that everything that
is said below also goes through for a more general linear approximation space U.

Since we just introduced the second variable y into our formulation we will now
look for the best approximation u in the form

m

u(x, y) = L CJ(Y)PJ(x - y), (22.3)
j=l

We can think of x as the global variable and y as the local variable. Thus, expressing
the polynomial basis functions in this form is reminiscent of a Taylor expansion.
This shift to the local evaluation point y also adds stability to numerical computa­
tions.

For the purpose of final evaluation of our approximation we identify the global
and the local variable, i.e., we have

m

P1(x) = u(x, x) = L CJ(x)pJ(O), x E Rs. (22.4)
j=l

Since for the polynomial approximation space Ild with standard monomial basis we
have p1 (x) - 1, and PJ(O) = 0 for j > 1 we get the standard MLS approximation
in the final form

(22.5)

Note, however, that x has been identified with the fixed local pointy, and therefore
in general we still need to recompute the coefficient c1 every time the evaluation
point changes. Examples for some common choices of s and d will be provided in
the next chapter.

As in the standard least squares case, the coefficients cJ(Y) in (22.3) are found
by (locally) minimizing the weighted least squares error II! - u(·, y) llw

11
, i.e.,

N

L [f(xi) - u(xi, y)] 2 w(xi, y) (22.6)
i=l

is minimized over the coefficients in the expansion (22.3) of u(·, y). Note, however,
that due to the definition of the inner product (22.2) whose weights "move" with

194 Meshfree Approximation Methods with MATLAB

the local point y, the coefficients Cj in (22.3) depend also on y. As a consequence
one has to solve the normal equations

m

Lcj(y)(pj(· -y),Pk(· -y))w
11

=(!,pk(· - Y))w
11

, k= l, ... ,m, (22. 7)
j=l

anew each time the point y is changed. In matrix notation (22.7) becomes

G(y)c(y) = fp(y). (22.8)

Here the positive definite Gram matrix G(y) has entries

G(y)ik =(pi(· - y),pk(- - y))w
11

N

= LPi(xi - y)pk(xi - y)w(xi, y), (22.9)
i=l

and the coefficient vector is of the form c(y) = [c1 (y), ... , cm(y)JT. On the right­
hand side of (22.8) we have the vector fp(Y) = [(f,p1(- - y))w

11
, ••• , (!,pm(- -

y))w
11
V of projections of the data onto the basis functions.

Several comments are called for. First, to ensure invertibility of the Gram matrix
we need to impose a small restriction on the set X of data sites. Namely, X needs
to be d-unisolvent (c.f. Definition 6.1). In this case the Gram matrix is symmetric
and positive definite since the polynomial basis is linearly independent and the
weights are positive. Second, the fact that the coefficients Cj depend on the point
y, and thus for every evaluation of Pt a Gram system (with different matrix G(y))
needs to be solved, initially scared people away from the moving least squares
approach. However, for small values of m, i.e., small polynomial degreed and small
space dimensions s, it is possible to solve the Gram system analytically, and thus
avoid solving linear systems altogether. We follow this approach and present some
examples with explicit formulas in Chapter 23 and use them for our numerical
experiments later. Moreover, if one chooses to use compactly supported weight
functions, then only a few terms are "active" in the sum defining the entries of
G(y) (c.f. (22.9)).

22.3 The Backus-Gilbert Approach to MLS Approximation

The connection between the standard moving least squares formulation and Backus­
Gilbert theory was pointed out in [Bos and Salkauskas (1989)]. Mathematically, in
the Backus-Gilbert approach one considers a quasi-interpolant of the form

N

P1(x) = L f(xi)wi(x), (22.10)
i=l

where f = [f(x1), ... , J(xN)JT represents the given data.

22. Moving Least Squares Approximation 195

Quasi-interpolation is a generalization of the interpolation idea. If we use a linear
function space span{tl>1, ... ,tl>N} to approximate given data {f(x1), ... ,f(xN)},
then we saw earlier that we can determine coefficients c1, ... , CN such that

N

u (x) = L Ci tl> i (x)
i=l

interpolates the data, i.e., u(xi) = f(xi), i = 1, ... , N. In particular, if the basis
functions tl>i are cardinal functions, i.e., tl>i(x1) = i5ij, i,j = 1, ... , N, then the
coefficients are given by the data, i.e., Ci = f(xi), i = 1, ... , N.

Now, for a general quasi-interpolant we take generating functions Wi, i =

1, ... , N (which can be the same as the basis functions tl>i) and form the expansion
(22.10). This expansion will in general no longer interpolate the data, but it will
represent some form of approximation. In order to ensure that a quasi-interpolant
achieves a certain approximation power one usually requires that the generating
functions reproduce polynomials of a certain degree. The same approach will be
followed here, also (cf. (22.13)). The major advantage of quasi-interpolation over
interpolation is the fact that we no longer have to solve a (potentially very large)
system of linear equations to determine the coefficients c1 . Instead, they are given
directly by the data. We will now discuss a scheme that tells us how to choose
"good" generating functions wi.

As before, we consider the more general formulation
N

u(x, y) = L f(xi)wi(x, y),
i=l

with a global variable x and a local variable y. To obtain the Backus-Gilbert
approximant we identify x and y, i.e.,

N

P1(x) = u(x, x) = L f(xi)K(xi, x), (22.11)
i=l

where we now introduced the notation K(xi, x) = wi(x, x) with a kernel K.
From the discussion above and from Theorem 18.3 we know that the quasi­

interpolant that minimizes the point-wise error is given if the generating functions
W i (·, y) are cardinal functions (for fixed y).

In the Backus-Gilbert formulation of the moving least squares method one does
not attempt to minimize the pointwise error, but instead seeks - for a fixed refer­
ence pointy - to find the values of the generating functions wi(x, y) at the fixed
point x as the minimizers of

1 N 1

22:w;(x,y) (.)
i=l WXi,Y

subject to the polynomial reproduction constraints
N

LP(Xi - y)wi(x, y) = p(x - y), for all p E Il~,
i=l

(22.12)

(22.13)

196 Meshfree Approximation Methods with MATLAB

where Ild is the space of s-variate polynomials of total degree at most d with di­
mension m = (d~s) . If we again express the basis polynomials by p 1 , ... , Pm, then
we can reformulate (22.13) in matrix-vector form as

A(y)w(x, y) = p(x - y), (22.14)

where Aji(Y) = Pi(xi - y), j 1, ... , m, i 1, ... , N, \J!(x, y)
['11 1 (x, y), ... , \JI N(x, y)JT is the vector of values of the generating functions, and
p = [p1 , ... , Pm]T is the vector of basis polynomials. The corresponding matrix-
vector formulation of (22.12) is

1

2 wT (x, y)Q(y)w(x, y), (22.15)

where

Q (y) = diag ((
1

) , ... , (
1

)) ,
w X1,Y w XN,Y

(22.16)

and the w(xi, ·) are positive weight functions (and thus for any fixed y the matrix
Q(y) is positive definite).

In the above formulation there is no explicit emphasis on nearness of fit as this
is implicitly obtained by the quasi-interpolation "ansatz" and the closeness of the
generating functions to the pointwise optimal delta functions. This is achieved by
the above problem formulation if thew(Xi, ·) are weight functions that decrease with
distance from the origin. The strictly positive definite radial functions used earlier
are candidates for these weight functions. However, strict positive definiteness is
not required at this point, so that, e.g., (radial or tensor product) B-splines can
also be used. As mentioned earlier, the polynomial reproduction constraint is added
so that the quasi-interpolant will achieve a desired approximation order. This will
become clear in Chapter 25.

In pure linear algebra notation the Backus-Gilbert approach corresponds to
finding the minimum norm solution of an underdetermined linear system, i.e., we
want to solve the polynomial reproduction constraints

A(y)w(x, y) = p(x - y)

with m x N (m < N) system matrix. The norm of the solution vector is a weighted
norm that varies with the (fixed) reference point y and is measured as in (22.15).
In other words, the Backus-Gilbert formulation guarantees that we find the "best"
system of generating functions with local polynomial reproduction properties, where
"best" is measured in terms of the norm (22.15).

The quadratic form (22.12) (or equivalently (22.15)) can also be interpreted as
a smoothness functional. Its use is also motivated by practical applications. In
the Backus-Gilbert theory, which was developed in the context of geophysics (see
[Backus and Gilbert (1968)]), it is desired that the generating functions wi are as
close as possible to the ideal cardinal functions (i.e., delta functions). Therefore,
one needs to minimize their "spread". The polynomial reproduction constraints

22. Moving Least Squares Approximation 197

are a generalization of an original normalization condition which corresponds to
reproduction of constants only.

For any combination of a fixed (evaluation) point x and a fixed (reference)
pointy the combination of (22.12) and (22.13) (or equivalently (22.15) and (22.14))
present just another constrained quadratic minimization problem of the form dis­
cussed in previous chapters.

According to our earlier work we use Lagrange multipliers .X(x, y)
[>.1 (x, y), ... , >.m(x, y)jT (depending on x and y), and then know that (c.f. (19.4)
and (19.5))

.X(x, y) = (A(y)Q- 1 (y)AT(y))-
1
p(x - y)

w(x, y) = Q-1 (y)AT(y).X(x, y).

(22.17)

(22.18)

Equation (22.18) tells us how to compute the generating functions for (22.11), i.e.,
if we write (22.18) componentwise then

m

wi(x,y) = w(xi,Y) L>.J(x,y)pj(Xi -y), i = l, ... ,N. (22.19)
j=l

Therefore, once the values of the Lagrange multipliers >.j (x, y), j = 1, ... , N, have
been determined we have explicit formulas for the values of the generating functions.
In particular, we get

N

P1(x) = u(x, x) = 2::: f(xi)wi(x, x)
i=l

N m

= L f(xi)w(xi, x) L >.J(x, x)pJ(Xi - x), i = l, ... ,N,
i=l j=l

N

= L f(xi)K(xi, x)
i=l

with kernels K(xi, x) = w(xi, x).XT(x, x)p(xi - x).
In general, finding the Lagrange multipliers involves solving a (small) linear

system that changes as soon as the reference point y changes (see (22.17)). Using
equation (22.17), the Lagrange multipliers are obtained as the solution of a Gram
system

G(y).X(x, y) = p(x - y), (22.20)

where the entries of the m x m matrix G(y) are the weighted £2 inner products
N

Gjk(Y) = (pj(- -y),pk(· - y))w
11

= LPJ(Xi -y)pk(Xi - y)w(xi,y). (22.21)
i=l

Note that this is identical to the matrix G(y) needed for the determination of the
coefficients c(y) in the standard MLS approach (c.f. (22.8) and (22.9)). Equation
(22.20) shows us that - for a fixed reference point y - the Lagrange multipliers
are polynomials, i.e., >.j (·, y), j = 1, ... , m, are polynomials.

198 Meshfree Approxirnation Methods with MATLAB

22.4 Equivalence of the Two Formulations of MLS Approximation

We now show that the two formulations of moving least squares approximation
described in the previous two sections are equivalent, i.e., we show that P1(x)
computed via (22.4) and (22.11) are the same. The approximant in the standard
moving least squares formulation (22.4) establishes u(x, y) in the form

rn
u(x, y) = L CJ(Y)PJ(x - y) = pT(x - y)c(y),

j=l

where p = [p1, ... ,prnJI' and c = [c1, ... , crnV·
In (22.8) we wrote the normal equations for this approach as

G(y)c(y) = f p(y).

Note that the right-hand side vector f p(y) can be written as

f p(Y) = [(f,p1(· - y))w11 , • • ·' (f,Prn(· - y))w
11

]T

= A(y)Q-1 (y)f (22.22)

with the matrix Q- 1(y) used in the Backus-Gilbert formulation. This implies

c(y) = c- 1(y)A(y)Q- 1 (y)f.

Thus, using the standard approach, we get

u(x,y) = pT(x -y)c(y) = pT(x - y)G- 1 (y)A(y)Q- 1 (y)f. (22.23)

For the Backus-Gilbert approach, on the other hand, the "ansatz" is of the form
(22.11)

N

u(x, y) = L f(xi)wi(x, y) = wT(x, y)f,
i=l

where as before w(x, y) = ['1'1(x, y), ... , W N(x, y)JI' and f = [f(x1), ... , f(xN)JI'.
For this approach we derived (see (22.17) and (22.18))

A.(x, y) = c- 1(y)p(x - y)
w(x, y) = Q- 1 (y)AT(y)A.(x, y),

where G(y) = A(y)Q-1 (y)AT(y) (see (22.21) or (22.9)). Therefore, we now obtain
for the Backus-Gilbert approximant

u(x,y) = WT(x,y)f = [Q-l(y)AT(y)G-l(y)p(x-y)]T f

which, by the symmetry of Q(y) and G(y), is the same as (22.23). Clearly, we also
have equivalence when we evaluate either representation at y = x, i.e., consider
P1(x) = u(x, x).

The equivalence of the two approaches shows that the moving least squares
approximant has all of the following properties:

• It reproduces any polynomial of degree at most din s variables exactly.

22. Moving Least Squares Approximation 199

• It produces the best locally weighted least squares fit.
• Viewed as a quasi-interpolant, the generating functions 'l'i are as close as pos­

sible to the optimal cardinal basis functions among all functions that produce
polynomials of the desired degree in the sense that (22.12) is minimized.

• Since polynomials are infinitely smooth, either of the representations of 'Pf
shows that its smoothness is determined by the smoothness of the weight func­
tion(s) Wi = w(xi, ·).

In particular, the standard moving least squares method will reproduce the
polynomial basis functions p 1 , ... , Pm even though this is not explicitly enforced by
the minimization (solution of the normal equations). Moreover, the more general
"ansatz" with (non-polynomial) approximation space U allows us to build moving
least squares approximations that also reproduce any other function that is included
in U. This can be very beneficial for the solution of partial differential equations with
known singularities (see, e.g., the papers [Babuska and Melenk (1997); Belytschko
et al. (1996)]).

22.5 Duality and Bi-Orthogonal Bases

From the Backus-Gilbert formulation we know that

G(y)>.(x, y) = p(x - y) ~ >.(x, y) = c- 1 (y)p(x - y). (22.24)

By taking multiple right-hand sides p(x - y) with x EX= {x1, ... , XN} we get

[>.(x1, y), ... , >.(xN, y)] = c-l (y) [p(x1 - y), · · ·, p(XN - y))

or

A(y) = c- 1 (y)A(y), (22.25)

where A(y) is the polynomial matrix (22.14) from above and the m x N matrix
A(y) has entries Aji(Y) = Aj(xi,y).

The standard MLS formulation, on the other hand, gives us (see (22.8) and
(22.22))

G(y)c(y) = fv(Y) ~ c(y) = c-1 (y)A(y)Q- 1 (y)f. (22.26)

By combining (22.25) with (22.26) we get

c(y) = c-1 (y)A(y)Q- 1 (y)f = A(y)Q-1 (y)f = f >..(Y),

where f>..(Y) is defined analogously to f v(Y) (c.f. (22.22)). Componentwise this
gives us

and therefore,

j = l, ... ,m,

m

u(x, y) = 'J:)J, Aj(·, y))w
11
Pj(X - y).

j=l

(22.27)

200 Meshfree Approximation Methods with MATLAB

It is also possible to formulate the moving least squares method by using the
Lagrange multipliers of the Backus-Gilbert approach as basis functions for the ap­
proximation space U. Then, using the same argumentation as above, we end up
with

with

m

u(x,y) = LdJ(y).XJ(x,y)
j=l

j = l, ... ,m.

We can verify this by applying (22.20) and (22.22) to (22.23), i.e.,

u(x,y) = pT(x -y)G-1(y)A(y)Q-1(y)f.

We then obtain

u(x,y) = >..T(x,y)fp(y),

which corresponds to (22.28).

(22.28)

The calculations just presented show that the Lagrange multipliers form a basis
that is dual to the polynomial basis. In particular, if we recall the MLS approximant
in its standard representation

m

j=l

and let f = Pk(· - y), then the polynomial reproduction property of the method
ensures

m

L(Pk(· - y), Aj(·, y))w11 PJ(X - Y) = Pk(X - y).
j=l

This, however, implies

j,k = l, ... ,m. (22.29)

Therefore we have two sets of basis functions that are bi-orthogonal with respect
to the special weighted inner product (·, ·)w

11
on the set X. We will illustrate this

duality in Chapter 24.
Earlier we derived the representation (c.f. (22.18))

'l!(x,y) = Q-1(y)AT(y)>..(x,y)

for the generating functions in the Backus-Gilbert formulation. Since the Lagrange
multipliers are given by >..(x,y) = c-1(y)p(x -y) (see (22.20)) we get

'l!(x,y) = Q-1(y)AT(y)G-1(y)p(x -y) = Q-l(y)AT(y)p(x - y)

due to (22.25). Thus, the Backus-Gilbert representation is given also by the dual
representation

N ·'

u(x,y) = Lf(xi)w(xi,y)>..T(xi,y)p(x -y). (22.30)
i=l

22. Moving Least Squares Approximation 201

By also considering the two dual expansions (22.28) and (22.30) we now have
four alternative representations for the moving least squares quasi-interpolant. This
is summarized in the following theorem.

Theorem 22.1. Let f: n---+ lR be some function whose values on the d-unisolvent
set of points X = { xi}~ 1 C JRS are given as data. Let P1, ... , Prn be a basis for Ild
with P1 (x) - 1, let { w(Xi, ·), ... , w(x N, ·)} be a set of positive weight functions, and
let Aj, j = 1, ... , m, be the Lagrange multipliers defined by {22.17}. Furthermore,
consider the generating functions

Tn

'lli(x, y) = w(xi, y) L >...J(x, y)pJ(Xi - y),
j=l

or in dual form

Tn

'lli(x, y) = w(xi, y) ~= AJ(xi, Y)PJ(x - y),
j=l

i = 1, ... ,N,

i = 1, ... ,N.

The best local least squares approximation to f on X in the sense of {22.6} is
given by P1(x) = u(x, x), where

Tn

u(x,y) = L(J,>...j(-,y))w
11
PJ(x -y)

j=l
Tn

= LU,PJ(· - y))w11 >...J(x, y)
j=l

N

= L f(xi)\I!i(x, y).
i=l

This results in the four representations

Tn

P1(x) = L(J, Aj(·, x))w..,PJ(O) = (!, >...1(-, x))w.., = c1(x)
j=l

Tn

= L(J,pJ(· - x))w..,>...J(x, x)
j=l

N rn
= L f(xi)w(xi, x) L AJ(x, x)pJ(Xi - x)

i=l j=l

N rn N

= Lf(xi)w(xi,x) L>...J(Xi,x)pJ(O) = Lf(xi)w(xi,x)>...1(xi,x).
i=l j=l i=l

Note that the first two expansions for P1(x) in Theorem 22.1 can be viewed as
generalizations of (finite) eigenfunction or Fourier series expansions.

202 Meshfree Approximation Methods with MATLAB

22.6 Standard MLS Approximation as a Constrained Quadratic
Optimization Problem

Finally, it is also possible to formulate the standard MLS approach as a con­
strained quadratic minimization problem. To this end We (artificially) introduce
the quadratic functional

Tn Tn

cT(y)G(y)c(y) =LL CJ(y)ck(y)GJk(Y)
j=lk=l

Tn Tn

=LL CJ(y)ck(y)(pJ(· - y),pk(· - y))w
11

j=lk=l

which should be interpreted as the (y-dependent) native space norm of the approx-
Tn

imant u(x, y) = LCJ(Y)PJ(x - y). The Gram system (22.8) can be written in
j=l

matrix-vector form as

G(y)c(y) = A(y)Q-1(y)f

where Q(y) is the diagonal matrix of weight functions (22.16) and A(y) is the matrix
of polynomials (22.14) used earlier.

Minimization of the quadratic form subject to the linear side conditions is equiv­
alent to minimization of (for fixed y)

(22.31)

where µ(y) is a vector of Lagrange multipliers.
The solution of the linear system resulting from the minimization problem

(22.31) gives us

µ(y) = (G(y)c-1 (y)GT (y))-1 A(y)Q-1 (y)f = c-T (y)A(y)Q-1 (y)f
c(y) = c-1 (y)GT(y)µ(y) = µ(y)

so that - as in the case of radial basis function interpolation - the quadratic
functional cT(y)G(y)c(y) is automatically minimized by solving only the Gram
system G(y)c(y) = f p(y).

22.7 Remarks

In the statistics literature the moving least squares approach is known as local
(polynomial) regression. Good sources of information are the book [Fan and Gi­
jbels (1996)] and the review article [Cleveland and Loader (1996)] according to
which the basic ideas of local regression can be traced back at least to work done
in the late 19th century by [Gram (1883); Woolhouse (1870); De Forest (1873);
De Forest (1874)]. In particular, in the statistics literature one learns that the use

22. Moving Least Squares Approximation 203

of least squares approximation is justified when the data Ji, ... , f N are normally
distributed, whereas, if the noise in the data is not Gaussian, then other criteria
should be used. See, e.g., the survey article [Cleveland and Loader (1996)] for more
details.

We close by establishing a connection between the polynomial reproduction
constraints and certain moment conditions. Recall the polynomial reproduction
constraints (22.14) in the Backus-Gilbert formulation

A(y)W(x, y) = p(x - y).

By setting y = x we get

A(x)w(x, x) = p(O). (22.32)

Since we defined the kernels K(xi, x) = wi(x, x) earlier, and since we assume that
the polynomials basis is such that p 1 (x) - 1 and PJ (0) = 0 for j > 1 we get from
(22.32)

N

LPk(Xi - x)K(xi, ~) = 01k, k= l, ... ,m.
i=l

This comprises a set of discrete moment conditions for the kernel K. Since there
are only m conditions for the N kernel values K(xi, x) at a fixed point x, the kernel
is not uniquely determined by these moment conditions. If, however, we add the
least norm constraint from the Backus-Gilbert formulation, i.e., we minimize

N
1"'"' 2 1 1 2
2 ~K (xi,x) (.) = 2llK(·,x)ll1;w..,•

i=l WX 1 ,X

then we get the standard minimum norm solution for underdetermined least squares
problems. We also point out that we derived earlier (see Theorem 22.1) that the
kernel K (·, x) is of the form

K(·,x) = ,\1 (·,x)w(·,x)

with polynomial term ,\1 (·, x) and weight function w(·, x). Thus, we have a unique
solution once the weight function w(·, x) has been chosen.

The interpretation of MLS approximation with the help of moment matrices is
used in the engineering literature (see, e.g., [Li and Liu (2002)]), and also plays
an essential role when connecting moving least squares approximation to the more
efficient concept of approximate approximation [Maz 'ya and Schmidt (2001)]. For
a discussion of approximate moving least squares approximation see [Fasshauer
(2002c); Fasshauer (2002d); Fasshauer (2003); Fasshauer (2004)] or Chapter 26.

Chapter 23

Examples of MLS Generating Functions

23.1 Shepard's Method

The moving least squares method in the case d = 0 (and therefore m = 1) with
p 1 (x) _ 1 is usually referred to as Shepard's method [Shepard (1968)]. In the
statistics literature Shepard's method is also known as a kernel method (see, e.g., the
papers from the 1950s and 60s [Rosenblatt (1956); Parzen (1962); Nadaraya (1964);
Watson (1964)]). Using our notation we have

Pf (X) = c1 (X).

The Gram "matrix" (22.9) consists of only one element
N

G(x) = (p1(· - x),p1(· - x))w"' = L w(xi, x)
i=l

so that

G(x)c(x) = f p(x)

implies
N

L f(xi)w(xi, x)

()
i-1 C1 X = ---N ____ _

LW(Xj,X)
j=l

(23.1)

If we compare (23.1) with the Backus-Gilbert quasi-interpolation formulation
(22.11) we immediately see that the generating functions Wi are given by

Since

ff'·()- w(xi,x)
'Jc'i X,X - N

LW(Xj,X)
j=l

N N
~ff'·()-~ w(xi,x)
~'Jc'i X,X - ~ N

i=l
i=l L w(xj, x)

j=l

205

(23.2)

-1 (23.3)

206 Meshfree Approximation Methods with MATLAB

independent of x, Shepard's method is also known as a partition of unity method.
The weight functions can take many forms. In practice one usually takes a

single basic weight function w which is then shifted to the data sites. Often the
basic weight function is also a radial function (in either the Eµclidean or maximum
norm). We will use radial functions as basic weights in our numerical experiments
below, i.e.,

where w is one of our (strictly positive definite) radial basic functions. Both com­
pactly supported and globally supported functions will be used.

The dual Shepard basis is defined by (see (22.24))

G(y)>..(x, y) = p(x - y)

so that
1 Ai(x,x) = _N ___ _

Lw(xi,x)
i=l

and(c.f. (22.28))

(23.4)

with
N

di(x) = (J,p1(· - x))w.., = Lf(xi)w(xi,x).
i=l

The explicit dual representation of the Shepard approximant is, of course, identical
to (23.1).

The generating functions (22.19) are defined as

\lli(x, x) = w(xi, x)A1(x, x)p1(xi - x) = Nw(xi, x)

L:w(xJ,x)
j=l

which matches our earlier expression (23.2). This once more gives rise to the well­
known quasi-interpolation formula for Shepard's method

N

P1(x) = L f(xi)wi(x, x)
i=l
N

= L f(xi) Nw(xi, x)

i=l L w(xJ, x)
j=l

We now also have bi-orthogonality of the basis and dual basis, i.e.,

Indeed

23. Examples of MLS Generating Functions

N

(-\1(·,x),P1(· -x))w.., = LA1(xi,x)w(xi,x)
i=l
N

= ~ Nw(xi,x)
~-----=l.

i=l L w(xj, x)
j=l

23.2 MLS Approximation with Nontrivial Polynomial
Reproduction

207

While it is always possible to simply solve the local Gram systems (22.8) or (22.20)
and therefore implicitly compute the generating functions '11 i, i = 1, ... , N, it is
often of interest to have explicit formulas for '11 i. We saw in the previous section
that in the case of reproduction of constants we arrive at Shepard's method which
is valid independent of the space dimension. However, if the degree d of polynomial
reproduction is nontrivial (i.e., d > 0), then the size m = (d~s) of the Gram systems,
and therefore the resulting formulas for the generating functions will depend on the
space dimension s.

We now present three examples with explicit formulas for the MLS generating
functions.

To simplify the notation in the following examples we define the moments

N

µa= L(xi - x)aw(xi, x),
i=l

with a: a multi-index. These moments arise as entries in the Gram matrix G(y)
if we use a monomial basis and identify the reference point y with the evaluation
point x.

Example 23.1. We take s = 1, d = 1, and therefore m = 2. The set of data sites
is given by X = { x 1, ... , x N}. We choose the standard monomial basis

U = span{p1(x) = 1, p2(x) = x }.

Then the Gram matrix (22.20) is of the form

G(x) = [(P1(· - x),p1(· - x))wx (p1(· - x),P2(· - x))wx]
(P2(· - x),p1(· - x))wx (p2(· - x),p2(· - x))wx

[
E!1 w(xi, x) E!i (xi - x)w(xi, x)]

E!1 (xi - x)w(xi, x) E!1 (xi - x)2w(xi, x)

208 Meshfree Approximation Methods with MATLAB

and the right-hand side of the Gram system is given by

[
P1(0)l [1] p(x - x) = P2 (0) = 0 .

Therefore, solution of the Gram system via Cramer's rule immediately yields

.X 1 (x, x) = µ 2
2 ,

µ0µ2 - µ1

)
µ1

.X2(x,x = 2 '
µ1 - µ0µ2

and according to (22.19) the generating functions for the Backus-Gilbert quasi­
interpolant (MLS approximant) (22.11) are given by

i = l, ... ,N,

where the w(xi, ·) are arbitrary (positive) weight functions.

Example 23.2. We remain in the univariate case (s = 1) but increase the degree
of polynomial reproduction to d = 2 so that m = 3. Again we take the standard
monomial basis, i.e.,

U = span{p1(x) = 1, P2(x) = x, p3(x) = x 2}.

The 3 x 3 Gram system

[~~ ~~ ~:] [~~~:: :~] = [~]
µ2 µ3 µ4 .X3(x, x) 0

can then be solved analytically (e.g., using Maple), and one obtains the Lagrange
multipliers

where D = 2µ1µ2µ3 - µoµ~ - µ~ - µrµ4 + µ0µ2µ4. Now the generating functions
are given by

Example 23.3. Reproduction of linear polynomials in 2D also leads to a 3 x 3
Gram system (since s = 2, d = 1, and therefore m = 3). Now the monomial basis
is given by

U = span{p1(x, y) = 1, P2(x, y) = x, p3(x, y) = y},

23. Examples of MLS Generating Functions 209

where x = (x, y) E JR2
, and the Gram system looks like

[~~~ ~~~ ~~~] [~~~:::~] =
µ01 µ11 µ02 A3(a~, x)

The Lagrange multipliers in this case turn out to be

Al(x, x) = ~ [µ~ 1 - µ20µ02],

1
A3(x, x) = D [µ20µ01 - µ10µ11],

with D = µr0µ02 + µ20µ'fn - µ00µ20µ02 - 2µ10µ01µ11 + µooµt 1. The generating
functions wi, i = 1, ... , N, for this example are of the form

While we can use a symbolic manipulation program such as Maple to solve the
Gram system analytically for other choices of d ands, it is clear that the expressions
for the generating functions quickly become very unwieldy. It may be tolerable to
continue this approach for a 4 x 4 Gram system corresponding to reproduction
of linear polynomials in 3D (or cubic polynomials in lD), but already the case of
quadratic reproduction in 2D (with m = 6) is much too complex to print here,
and reproduction of quadratics in 3D (or cubics in 2D) requires even 10 Lagrange
multipliers.

Chapter 24

MLS Approximation with MATLAB

24.1 Approximation with Shepard's Method

In this section we investigate approximation with Shepard's method
N

P1(x) = L f(xi) Nw(xi, x) x E Rs.

i=l L w(xj, x)
j=l

We will look at three sets of experiments. The first two sets will employ global
Gaussian weights, i.e., w(xi,x) = e-c

2
ll:z:-:z:.;il

2
, in R 2 , while the third set of ex­

periments is based on Wendland's compactly supported C 2 weights w(xi, x) =

(1 - c-llx - xiii)! (4c-llx - xiii+ 1) in Rs for s = 1, 2, ... , 6. Note that the Wend­
land weights are strictly positive definite basic functions only for s < 3 so that it
would not be advisable to use them for RBF interpolation in higher dimensions.
For MLS approximation, however, strict positive definiteness is not required. Here
we only ask that the weights be positive on their support.

In our 2D experiments we take Franke's function (2.2) as our test function and
sample it at uniformly spaced points in the unit square. In Table 24.l we list the
RMS-errors and computed convergence rates for both stationary and non-stationary
approximation. Clearly, non-stationary approximation does not converge. This
behavior is exactly opposite the convergence behavior of Gaussians in the RBF
interpolation setting. There we have convergence in the non-stationary setting, but
not in the stationary setting (c.f. Table 17.5 and Figure 17.12). The initial shape
parameter for the stationary setting (and the fixed value in the non-stationary
setting) is c = 3. This value is subsequently multiplied by a factor of two for each
halving of the fill-distance. We can see that Shepard's method seems to have a
stationary approximation order of at least CJ(h). This will be verified theoretically
in the next chapter.

The first two stationary Shepard approximations (based on 9 and 25 points,
respectively) are displayed in the top part of Figure 24. l. It is apparent that
the Shepard method has a smoothing effect. In order to emphasize this feature
we provide Shepard approximations to noisy data (with 3% noise added to the

211

212 Meshfree Approximation Methods with MATLAB

Table 24.1 2D stationary and non-stationary Shepard ap-
proximation with Gaussian weight function.

stationary non-stationary

N RMS-error rate RMS-error rate

9 1.8351 lOe-001 l.835 llOe-001
25 5.885159e-002 1.6407 l.303771e-001 0.4932
81 2.299502e-002 1.3558 l.311538e-001 -0.0086

289 6. 726166e-003 1.7735 l.315894e-001 -0.0048
1089 2. l 13604e-003 1.6701 l .320564e-001 -0.0051
4225 8.065893e-004 1.3898 l.323576e-001 -0.0033

Franke data) in the bottom part of Figure 24.1. On the left we display the Shepard
approximation based on Gaussian weights with c = 48 (corresponding to the entry
in line 5 of Table 24.1). The RMS-error for this approximation is l.820897e-002.
The plot on the right of the bottom part of Figure 24.1 is the result of reducing c
to 12, and thus increasing the smoothing effect since "wider" weight functions are
used, i.e., more neighboring data are incorporated into the local regression fit. The
corresponding RMS-error is 2.481218e-002. Note that even though the RMS-error
is larger for the plot on the right, the surface is visually smoother. These examples
should be compared to the data smoothing experiments in Chapter 19.

The MATLAB code for the 2D experiments is Shepard2D. m listed as Pro­
gram 24.1. It is a little simpler than the RBF interpolation code used earlier since
we do not need to assemble an interpolation matrix and no linear system needs to
be solved. The evaluation matrix is assembled in two steps. First, on line 14, we
compute the standard RBF evaluation matrix. In order to implement the Shepard
scaling we note that all of the entries in row i of the evaluation matrix are scaled
with the same sum, E;=l w(xj, xi)· Therefore, on line 16, we perform the extra
Shepard scaling with the help of repmat and a vector of ones which gives us all the
necessary sums in the denominator. For the example with noisy data we add

f = f + 0.03*randn(size(f));

after line 11.

Program 24.1. Shepard2D .m

!. Shepard2D
!. Script that performs 20 Shepard approximation with global weights
!. Calls on: DistanceMatrix, PlotSurf, PlotError2D

1 rbf = ©(e,r) exp(-(e*r).-2); ep = 5.5;
!. Define Franke's function as testfunction

2 f1 = ©(x,y) 0.75*exp(-((9*x-2).-2+(9*y-2).-2)/4);
3 f2 = ©(x,y) 0.75*exp(-((9*x+l).-2/49+(9*y+l).-2/10));
4 f3 = ©(x,y) 0.5*exp(-((9*x-7).-2+(9*y-3).-2)/4);

24. MLS Approximation with MATLAB 213

0.6
·······. 0.2

········: ·.· 0.5 ·.·
0.8 ···-:· .. ··. 0.8 ·····

.·.
0.4

.·. 0.15 0.6 ··················· 0.6 ·····················
z ... z

~ 0.4 ············· g e o.3w
0.2 0.1 w

0.2 0 ····· · ..
-0.2 0.05 0 0.1 :

·.·

1 0.5 0
1 0.5 0

1 1 y x y x

0.07 0.08
·········: ~- ~- .. -

0.06 0.07
0.8 -~ ··. 0.8

.·.

. ·. 0.05 :-. . .. 0.06
0.6 0.6 z z 0.05
0.4 0.04 0 0.4 : e t: o.04w 0.2 w 0.2 ...

.. 0.03 ..
0 ······ 0.03

-0.2 0.02 -0.2 0.02 ...

0 0
O.Q1 O.Q1

0 0 0
1 0.5 1 0.5

1 1 y x y x

Fig. 24.1 Top: Shepard approximation with stationary Gaussian weights to Franke's function
using 9 (left) and 25 (right) uniformly spaced points in (0, 11 2 . Bottom: Shepard approximation
with Gaussian weights to noisy Franke's function using c = 48 (left) and c = 12
uniformly spaced points in (0, 11 2

5 f4 = ©(x,y) 0.2*exp(-((9*x-4).-2+(9*y-7).-2));
6 testfunction = ©(x,y) f1(x,y)+f2(x,y)+f3(x,y)-f4(x,y);
7 N = 1089; gridtype = 'u';
8 neval = 40;

% Load data points
9 name= sprintf('Data2D_/.d/.s',N,gridtype); load(name)

10 ctrs = dsites;
% Create vector of function (data) values

11 f = testfunction(dsites(:,1),dsites(:,2));

(right)

% Create neval-by-neval equally spaced evaluation locations
% in the unit square

12 grid= linspace(0,1,neval); [xe,ye] = meshgrid(grid);
13 epoints = [xe (:) ye (:)] ;

on 1089

% Compute distance matrix between evaluation points and centers
14 DM_eval = DistanceMatrix(epoints,ctrs);

% Compute evaluation matrix
15 EM= rbf(ep,DM_eval);

214 Meshfree Approximation Methods with MATLAB

16 EM= EM./repmat(EM*ones(N,1),1,N); !. Shepard normalization
!. Compute quasi-interpolant

17 Pf = EM*f;
!. Compute exact solution, i.e.,
!. evaluate test function on evaluation points

18 exact= testfunction(epoints(:,1),epoints(:,2));
!. Compute errors on evaluation grid

19 maxerr = norm(Pf-exact,inf);
20 rms_err = norm(Pf-exact)/neval;
21 fprintf('RMS error: /.e\n', rms_err)
22 fprintf('Maximum error: /.e\n', maxerr)

!. Plot interpolant
23 PlotSurf(xe,ye,Pf,neval,exact,maxerr,[160,20]);

!. Plot absolute error
24 PlotError2D(xe,ye,Pf,exact,maxerr,neval,[160,20]);

The next group of experiments (reported in Tables 24.2 and 24.3) should be
compared to the distance matrix fits of Chapter 1. The data are again sampled
from the test function

s

fs(x) = 4 8 IT Xd(l - Xd),
d=l

which is parametrized by the space dimensions and coded in the MATLAB subrou­
tine testfunction.m (see Program C.l).

Since we are using the compactly supported weights w(xi, x)
(1 - cllx - xiii)! (4cllx - xiii+ 1) we can keep the evaluation matrix sparse and
are therefore able to deal with much larger data sets. Again, we employ a station­
ary approximation scheme, i.e., the scale parameter E for the support of the weight
functions is (inversely) proportional to the fill-distance. In fact, we take E = 2k + 1
(see line 4 of Program 24.2), where k also determines the number N = (2k + 1) 8 of
data points used (c.f. line 3). These points are taken to be Halton points in [O, 1] 8

(c.f. line 6).
In Tables 24.2 and 24.3 we list RMS-errors (computed on various grids of equally

spaced points, i.e., mostly on the boundary of the unit cube in higher dimensions)
for a series of approximation problems in IR.8 for s = 1, 2, ... , 6. Again, the approx­
imation order for Shepard's method seems to be roughly O(h) independent of the
space dimension s.

The MATLAB code Shepard_CS .mis listed as Program 24.2. This time the eval­
uation matrix is a sparse matrix which we also compute in two steps. The standard
RBF evaluation matrix is computed as for our earlier CSRBF computations on
lines 10 and 11 using the subroutine DistanceMatrixCSRBF .m (see Chapter 12).
This time the Shepard scaling is performed on line 12 with the help of a diagonal
matrix stored in the spdiags format.

24. MLS Approximation with MATLAB

Table 24.2 Shepard fit in 1D-3D with compactly supported weight function.

ID 2D 3D

k N RMS-error N RMS-error N RMS-error

1 3 2.844398e-001 9 2.388314e-001 27 1.912827e-001
2 5 1.665656e-001 25 1.271941e-001 125 1. 249589e-001
3 9 8. 796073e-002 81 7 .107988e-002 729 6.898182e-002
4 17 3. 970488e-002 289 3.944228e-002 4913 3.718816e-002
5 33 1. 738869e-002 1089 3.109722e-002 35937 2.838763e-002
6 65 7. 535 727 e-003 4225 l .888361e-002 274625 9.837855e-003
7 129 3.418925e-003 16641 2.831294e-002
8 257 1.615694e-003 66049 2.667914e-003
9 513 7.872903e-004 263169 2.352736e-003
10 1025 3.884881e-004
11 2049 1.940611e-004
12 4097 9.699922e-005

Table 24.3 Shepard fit in 4D-6D with compactly supported weight function.

4D

k N RMS-error

1 81 1.31031 le-001
2 625 8. 943469e-002
3 6561 4.599027e-002
4 83521 2.523581e-002

Program 24.2. Shepard_CS. m

% Shepard_CS

5D 6D

N RMS-error N RMS-error

243 8.936253e-002 729 6.372675e-002
3125 6.344921e-002 15625 3.910649e-002
59049 3.492958e-002 531441 2.234389e-002

% Script that performs Shepard approximation for arbitrary
% space dimensions s using sparse matrices
% Calls on: DistanceMatrixCSRBF, MakeSDGrid, testfunction
% Uses: haltonseq (written by Daniel Dougherty from
% MATLAB Central File Exchange)

% Wendland C2 weight function
1 rbf = ©(e,r) r.-4.*(5*spones(r)-4*r);
2 s = 6; % Space dimension s

% Number of Halton data points
3 k = 3; N = (2-k+1)-s;
4 ep = 2-k+i; % Scale parameter for basis function
5 neval = 4; M = neval-s;

% Compute data sites as Halton points
6 dsites = haltonseq(N,s);
7 ctrs = dsites;

% Create vector of function (data) values

215

216 Meshfree Approximation Methods with MATLAB

8 f = testfunction(s,dsites);
% Create neval~s equally spaced evaluation locations in
% the s-dimensional unit cube

9 epoints = MakeSDGrid(s,neval);
% Compute evaluation matrix, i.e.,
% matrix of values of generating functions

10 DM_eval = DistanceMatrixCSRBF(epoints,ctrs,ep);
11 EM= rbf(ep,DM_eval);

% Shepard scaling
12 EM= spdiags(1./(EM*ones(N,1)),0,M,M)*EM;

% Compute quasi-interpolant
13 Pf = EM*f;

% Compute exact solution, i.e.,
% evaluate test function on evaluation points

14 exact= testfunction(s,epoints);
% Compute errors on evaluation grid

15 maxerr = norm(Pf-exact,inf);
16 rms_err = norm(Pf-exact)/sqrt(M);
17 fprintf('RMS error: %e\n', rms_err)
18 fprintf('Maximum error: %e\n', maxerr)

24.2 MLS Approximation with Linear Reproduction

In general one would expect a moving least squares method that reproduces linear
polynomials to be more accurate than one that reproduces only constants such as
Shepard's method. We illustrate this in Table 24.4 where we again use the C 2 com­
pactly supported weight functions w(xi, x) = (1 - c:llx - xiii)! (4c:llx - xiii+ 1) in
a stationary approximation setting with a base € = 3 for N = 9 data points (and
then scaled inversely proportional to the fill-distance) to approximate data sam­
pled from Franke's function at uniformly spaced points in [O, 1]2. We can see that
the MLS method with linear reproduction has a numerical approximation order of
O(h2). This will be justified theoretically in the next chapter.

Instead of solving a Gram system for each evaluation point as suggested in (22.8)
or (22.20) we use the explicit formulas for the Lagrange multipliers and generating
functions given for the 2D case in Example 23.3. These formulas are implemented
in MATLAB in the subroutine LinearScaling2D_CS. m and listed in Program 24.3.
In particular, this subroutine is written to deal with compactly supported weight
functions and thus uses sparse matrices. As in the assembly of sparse interpolation
matrices we make use of kd-trees.

We build a kd-tree of all of the centers for the weight functions and find - for
each evaluation point - those centers whose support overlaps the evaluation point.
The input to LinearScaling2D_CS .mare epoints (an N x s matrix representing a
set of N data sites in IR 8

), ctrs (an M x s matrix representing a set of M centers

i

'

24. MLS Approximation with MATLAB

Table 24.4 2D stationary MLS ap­
proximation to Franke's function at
uniformly spaced points in [O, 1] 2

with linear precision using com­
pactly supported weight function.

N RMS-error rate

9 1. 789573e-001
25 7.089522e-002 1.3359
81 2.691693e-002 1.3972
289 7.516377e-003 1.8404
1089 1.944252e-003 1.9508
4225 4.903575e-004 1.9873
16641 l.228639e-004 1.9968
66049 3.072866e-005 1.9994
263169 7.658656e-006 2.0044
1050625 l.921486e-006 1.9949

217

for the weight functions in lR8
), rbf (an anonymous or inline function defining the

RBF weight function), and ep (the scale parameter that determines the size of the
support of the weight functions). As always, wide functions result from a small
value of ep, i.e., the size of the support of the weight function is given by 1/ep. The
output of LinearScaling2D_CS. m is an N x M sparse matrix Phi that contains the
MLS generating functions centered at the points given by center and evaluated at
the evaluation points in epoints. Note that the compactly supported basic function
needs to be supplied in its standard (unshifted) form, e.g., as

rbf = ©(e,r) max(spones(r)-e*r,0).-4.*(4*e*r+spones(r));

for the C2 Wendland function <p3 , 1 (r) = (1 - r)t (4r + 1).
For each evaluation point (see the loop over i from line 10 to line 33) we compute

the six different moments (entries of the Gram matrix G, c.f. Example 23.3) required
for the computation of the Lagrange multipliers on lines 14-20. Then the values of
the Lagrange multipliers and of the generating functions at the ith evaluation point
are computed on lines 21-24. The final sparse matrix Phi is assembled on line 35.

Program 24.3. LinearScaling2D_CS .m

!. Phi= LinearScaling2D_CS(epoints,ctrs,rbf ,ep)
'', F h orms a sparse matrix of scaled generating functions for MLS
'', h approximation with linear reproduction.
!. Uses: k-D tree package by Guy Shechter from

''. h MATLAB Central File Exchange
1 function Phi= LinearScaling2D_CS(epoints,ctrs,rbf ,ep)
2 [N,s] = size(epoints); [M,s] = size(ctrs);
3 alpha= [O O; 1 O; 0 1; 1 1; 2 O; 0 2];

% Build k-D tree for centers

218 Meshfree Approximation Methods with MATLAB

4 [tmp,tmp,Tree] = kdtree(ctrs,[]);

% For each eval. point, find centers whose support overlap it
5 support= 1/ep; mu= zeros(6);

% Modify the following line for optimum performance
6 veclength = round(support*N*M/4);
7 rowidx = zeros(1,veclength); colidx = zeros(1,veclength);
8 validx = zeros(1,veclength);
9 istart = 1; iend = O;

10 for i = 1:N
11 [pts,dist,idx] = kdrangequery(Tree,epoints(i,:),support);
12 newlen = length(idx);

% Vector of basis functions
13 Phi_i = rbf(ep,dist');

% Compute all 6 moments for i-th evaluation point
14 for j=1:6
15 x_to_alpha = 1;

16 for coord=1:s
17a x_to_alpha = x_to_alpha .*(ctrs(idx,coord)- ...
17b repmat(epoints(i,coord),newlen,1)).-alpha(j,coord);
18 end
19 mu(j) = Phi_i*x_to_alpha;

20 end
21 L1=(mu(4)-2-mu(5)*mu(6)); L2=(mu(2)*mu(6)-mu(3)*mu(4));
22 L3=(mu(5)*mu(3)-mu(2)*mu(4));
23a
23b
23c
24a
24b
25
26
27
28
29

30
31
32

33 end

scaling= L1*repmat(1,newlen,1) + ...
L2*(ctrs(idx,l)-repmat(epoints(i,1),newlen,1))+ ...
L3*(ctrs(idx,2)-repmat(epoints(i,2),newlen,1));

denom = mu(2)-2*mu(6)+mu(5)*mu(3)-2-mu(1)*mu(5)*mu(6)- ...
2*mu(2)*mu(3)*mu(4)+mu(1)*mu(4)-2;

if (denom -= 0)

end

scaling = scaling/denom;
iend = iend + newlen;
rowidx(istart:iend) = repmat(i,1,newlen);
colidx(istart:iend) = idx';
validx(istart:iend) = Phi_i.*scaling';
istart = istart + newlen;

34 filled= find(rowidx); % only those actually filled
35 Phi= sparse(rowidx(filled),colidx(filled),validx(filled),N,M);

% Free memory
36 clear rowidx colidx validx; kdtree([], [],Tree);

24. MLS Approximation with MATLAB 219

With all the difficult coding relegated to the subroutine LinearScaling2D_CS. m
the main program LinearMLS2D_CS. m is rather simple. It is listed in Program 24.4.
The version of the code listed here is adapted to read a data file that contains both
data sites (in the variable dsites) and function values (in the variable rhs). For
the example displayed in Figure 24.2 we used an actual set of 1:250,000-scale Digital
Elevation Model (DEM) data from the U.S. Geological Survey, namely the data set
Dubuque-E which contains elevation data from a region in northeastern Iowa, north­
western Illinois, and southwestern Wisconsin. The data set is available on the world­
wide web at http://edcsgs9.cr.usgs.gov/glis/hyper/guide/1_dgr_demfig/­
states/IL. html. The original data set contains 1201 x 1201 uniformly spaced
measurements ranging in height from 178 meters to 426 meters. We converted
the DEM data format with the utility DEM2XYZN that can be downloaded from
http: I I data. geocomm. com/ dem/ dem2xyzn/, selected only the northeastern quad­
rant of 601 x 601 = 361201 elevation values, and scaled the x and y coordinates
that originally defined a square with a side length of about 35 miles to the unit
square. The resulting data set Data2D_DubuqueNE is included on the enclosed CD.
An MLS approximation with linear reproduction based on the C 2 compactly sup­
ported Wendland weight used earlier was evaluated on a grid of 60 x 60 equally
spaced points and is displayed in Figure 24.2. We use a shape parameter of E = 30
to determine the support size of the weight functions.

Program 24.4. LinearMLS2D_CS. m

% LinearMLS2D_CS
% Script that performs MLS approximation with linear reproduction
% using sparse matrices
% Calls on: LinearScaling2D_CS

1 rbf = ©(e,r) max(spones(r)-e*r,0).-4.*(4*e*r+spones(r));
2 ep = 30; neval = 60;

% Load data points and rhs
3 load('Data2D_DubuqueNE');
4 ctrs = dsites;

% Create neval-by-neval equally spaced evaluation locations
% in the unit square

5 grid= linspace(O,l,neval); [xe,ye] = meshgrid(grid);
6 epoints = [xe(:) ye(:)];

% Compute evaluation matrix
7 EM= LinearScaling2D_CS(epoints,ctrs,rbf ,ep);

% Compute MLS approximation (rhs read from data file)
8 Pf = EM*rhs;
9 figure % Plot MLS fit

10 surfplot = surf(xe,ye,reshape(Pf,neval,neval));
11 set(surfplot,'FaceColor','interp','EdgeColor','none')
12 view([l5,35]); camlight; lighting gouraud; colormap summer

220 Meshfree Approximation Methods with MATLAB

Fig. 24.2 MLS approximation using compactly supported weight for elevation data in northwest­
ern Illinois.

A much simpler (but also much slower) implementation of MLS approximation
with linear reproduction is given as Program 24.5. In this implementation we solve
the local least squares problem for each evaluation point x, i.e., we obtain the MLS
approximation at the point x as

m

Pf(x) = u(x,x) = L:cj(x)pj(x - x) = c1(x),
j=l

where the coefficients are found by solving the Gram system (c.f. 22.8)

G(x)c(x) = f p(x).

The solution of these systems (for each evaluation point x) is computed on line 18
of the program, with the Gram matrix built as

G(x) = PT(x)W(x)P(x),

and the polynomial matrix P with entries Pij(x) = Pj(Xi - x) and diago­
nal weight matrix computed on lines 16 and 17, respectively. The subroutine
LinearScaling2D_CS .m is not required by this program. Compare this program
with Program 24.l.

Program 24.5. LinearMLS2D_GramSol ve. m

% LinearMLS2D_GramSolve
% Script that performs MLS approximation with linear reproduction
% by solving local Gram systems
% Calls on: DistanceMatrix, PlotSurf, PlotError2D

24. MLS Approximation with MATLAB

1 rbf = ©(e,r) exp(-(e*r).-2); ep = 5.5;
% Define Franke's function as testfunction

2 fl= ©(x,y) 0.75*exp(-((9*x-2).-2+(9*y-2).-2)/4);
3 f2 = ©(x,y) 0.75*exp(-((9*x+l).-2/49+(9*y+l).-2/10));
4 f3 = ©(x,y) 0.5*exp(-((9*x-7).-2+(9*y-3).-2)/4);
5 f4 = ©(x,y) 0.2*exp(-((9*x-4).-2+(9*y-7).-2));
6 testfunction = ©(x,y) f1(x,y)+f2(x,y)+f3(x,y)-f4(x,y);
7 N = 1089; gridtype = 'u';
8 neval = 40;

% Load data points
9 name= sprintf('Data2D_%d%s',N,gridtype); load(name)

10 ctrs = dsites;
% Create vector of function (data) values

11 f = testfunction(dsites(:,1),dsites(:,2));
% Create neval-by-neval equally spaced evaluation locations
% in the unit square

12 grid= linspace(0,1,neval); [xe,ye] = meshgrid(grid);
13 epoints = [xe(:) ye(:)];

% Compute MLS approximation with shifted basis polynomials
14 Pf= zeros(neval-2,1);
15 for j=l:neva1-2
16 P = [ones(N,1) dsites-repmat(epoints(j,:),N,1)];
17 W = diag(rbf(ep,DistanceMatrix(epoints(j,:),ctrs)));
18 c = (P'*W*P)\(P'*W*f);
19 Pf(j) = c(l);
20 end

% Compute exact solution, i.e.,
% evaluate test function on evaluation points

21 exact= testfunction(epoints(:,1),epoints(:,2));
% Compute errors on evaluation grid

22 maxerr = norm(Pf-exact,inf);
23 rms_err = norm(Pf-exact)/neval;

% Plot interpolant
24 PlotSurf(xe,ye,Pf,neval,exact,maxerr,[160,20]);

% Plot absolute error
25 PlotError2D(xe,ye,Pf,exact,maxerr,neval,[160,20]);

221

Alternatively, we could have coded lines 14-20 with an unshifted polynomial
basis (c.f the discussion in Chapter 22), in which case we would have

14 P = [ones(N,1) dsites];
15 Pf= zeros(neval-2,1);
16 for j=l:neva1-2

222 Meshfree Approximation Methods with MATLAB

17 W = diag(rbf(ep,DistanceMatrix(epoints(j,:),ctrs)));

18 c = (P'*W*P)\(P'*W*f);
19 Pf(j) = [1 epoints(j,:)]*c;
20 end

in Program 24.5. This requires setting up the matrix P only once. However, the
computations are numerically not as stable. Also, additional computation of the
approximant on line 19 is required via a dot product.

24.3 Plots of Basis-Dual Basis Pairs

We now provide some plots of the polynomial basis functions p for the standard MLS
approach, the dual basis functions >. (Lagrange multipliers), and the generating
functions W from the Backus-Gilbert approach for a one-dimensional example with
X being the set of 11 equally spaced points in (0, 1]. We take m = 3, i.e., we
consider the case that ensures reproduction of quadratic polynomials. The weight
function is taken to be the standard Gaussian radial function scaled with a shape
parameter c = 5. In the only exception in this book, these plots were created with
Maple using the program MLSDualBases. mws included in Appendix C.

The three basis polynomials P1 (x) = 1, P2 (x) = x, and p 3 (x) = x 2 are shown
in Figure 24.3, whereas the dual basis functions >. 1 , >.2 , and >.3 are displayed in
Figure 24.4.

10 I 0 1.0

0.75 0.75 0.75

" 05 0.5

025 0.25 0.25

0.0 00 0.0
0.0 0.20 " 0.75 1.0 0.0 0.25 0.5 0.75 I 0 0.0 025 0.5 0.75 1.0

Fig. 24.3 Plot of the three polynomial basis functions for moving least squares approximation
with quadratic reproduction on [O, l].

In Figure 24.5 we plot three MLS generating functions (solid) together with the
corresponding generating functions from the approximate moving least squares ap­
proach (dashed) described in Chapter 26. The generating functions for the approx­
imate MLS approach are Laguerre-Gaussians (c.f. Section 4.2). While the standard
MLS generating functions reflect the fact that the data is given on a finite interval,
the generating functions for approximate MLS approximation are all just shifts of

24. MLS Approximation with MATLAB 223

1.0

0.25 0.5 0.75 1.0

-1

Fig. 24.4 Plot of the three dual basis functions for moving least squares approximation with
quadratic reproduction for 11 equally spaced points in [O, I).

the one function

'T'() 1 (3 jjx - Yll
2

) _ 11"'-1111
2

':f! X Y = -- - - e Vh2 ' v'151f 2 Vh2

to the center points y. Here we identify the scale parameter V with our shape
parameter c for the weight function via c = Ah. For this example with 11 points
in [O, 1] we have h = 1/10, so that c = 5 corresponds to a value of V = 4.

In the center of the interval, where the influence of the boundary is minimal,
the two types of generating functions are almost identical (see the right plot in
Figure 24.5). ·

0.0 0.25 0.5 0.75 1.0

Fig. 24.5 Standard MLS generating functions (solid) and approximate MLS generating functions
(dashed) centered at three of the 11 equally spaced points in [O, I).

If the data points are no longer equally spaced, the Lagrange functions and
generating functions are also less uniform. Figures 24.6 and 24. 7 illustrate this
dependence on the data distribution for 11 Halton points in [O, 1].

Finally, we provide plots of MLS generating functions for the case of reproduc­
tion of linear polynomials in 2D (see Figure 24.8). These plots were created with the
MATLAB program LinearMLS2D_CS .m (see Program 24.4) by plotting column j of
the evaluation matrix EM corresponding to the values of the jth generating function.
We used the C2 Wendland weights w(xi, x) = (1 - cllx - Xiii)! (4cllx - Xiii+ 1)
with c = 5.

224 Meshfre.e Approximation Methods with MATLAB

0.7~ 1.0

Fig. 24.6 Plot of the three dual basis functions for moving least squares approximation with
quadratic reproduction for 11 Halton points in [O, 1].

Fig. 24. 7 Standard MLS generating functions (solid) and approximate MLS generating functions
(dashed) centered at three of the 11 Halton points in [O, 1].

0.25 0.3

0.2 0.2

0.15
0.1

0.1

0.05
0

0 -0.1
0 0

1 0 y 1 0 y
x x

Fig. 24.8 MLS generating functions for linear reproduction centered at two of 289 uniformly
spaced data sites in [O, 1] 2 .

Chapter 25

Error Bounds for
Moving Least Squares Approximation

25.1 Approximation Order of Moving Least Squares

Since the moving lea.st squares approximants can be written as qua.si-interpolants
we can use standard techniques to derive their point-wise error estimates. The
standard argument proceeds as follows. Let f be a given (smooth) function that
generates the data, i.e., Ji = J(x1), ... , fN = J(xN), and let p be an arbitrary
polynomial. Moreover, assume that the moving lea.st squares approximant is given
in the form

N

P1(x) = L f(xi)wi(x, x)
i=l

with the generating functions Wi satisfying the polynomial reproduction property

N

LP(Xi)wi(x, x) = p(x), for all p E rrd,
i=l

as described in Chapter 22. Then, due to the polynomial reproduction property of
the generating functions, we get

N

lf(x) - P1(x)I < lf(x) - p(x)I + lp(x) - L f(xi)wi(x, x)I
i=l

N N

= lf(x) - p(x)I +I LP(xi)wi(x, x) - L f(xi)wi(x, x)I.
i=l i=l

Combination of the two sum and the definition of the discrete maximum norm yield

N

lf(x) - P1(x)I < lf(x) - p(x)I + L lp(xi) - f(xi)llwi(x, x)I
i=l

(25.1)

We see that in order to refine the error estimate we now have to answer two ques­
tions:

225

226 Meshfree Approximation Methods with MATLAB

• How well do polynomials approximate f? This can be achieved with standard
Taylor expansions.

N

• Are the generating functions bounded? The expression L lllfi(x, x)I is known
i=l

as the (value of the) Lebesgue function, and finding a bound for the Lebesgue
function is the main task that remains.

By taking the polynomial p above to be the Taylor polynomial of total degreed
for fat x, the remainder term immediately yields an estimate of the form

II! - Plloo < C1hd+I max ID0 J(e)I, lnl = d + 1. (25.2)
eH2

Thus, if we can establish a uniform bound for the Lebesgue function, then (25.1)
and (25.2) will result in

lf(x) - P1(x)I < Chd+I max ID0 f(e)I, lnl = d + 1,
eH2

which shows that moving least squares approximation with polynomial reproduction
of degree d has approximation order O(hd+I).

For Shepard's method, i.e., moving least squares approximation with constant
reproduction (i.e., m = 1 or d = 0), we saw above that the generating functions are
of the form

.T'·() _ w(xi, x)
'l'i X, X - N

Lw(xj,x)
j=l

and form a partition of unity (see (23.3)). Therefore the Lebesgue function admits
the uniform bound

N

L lllfi(x, x)I = 1.
i=l

This shows that Shepard's method has approximation order O(h).
Bounding the Lebesgue function in the general case is more involved and is

the subject of the papers [Levin (1998); Wendland (2001a)]. As indicated above,
this results in approximation order O(hd+I) for a moving least squares method
that reproduces polynomials of degreed. In both papers the authors assumed that
the weight function is compactly supported, and that the support size is scaled
proportional to the fill distance. The following theorem paraphrases the results of
[Levin (1998); Wendland (2001a)].

Theorem 25.1. Let fl C IR 5
• If f E Cd+1 (f2), {xi: i = 1, ... ,N} C fl are quasi­

uniformly distributed with fill distance h, the weight functions wi(x) = w(xi, x) are
compactly supported with support size Pi = ch (c = const.), and if polynomials in
II~ are reproduced according to (22.13), then the scale of MLS approximations

N

Pjh) (x) = ~ f(x,)'11 (x ~' x,) , (25.3)

25. Error Bounds for Moving Least Squares Approximation 227

with generating junctions W(x - Xi) • Wi(X, x) determined via {22.17)-(22.Jg)
satisfies

lal = d + 1.

It should be possible to arrive at similar estimates if the weight function only
decays fast enough (see, e.g., the survey [de Boor (1993)]).

Aside from this constraint on the weight function (which essentially corresponds
to a stationary approximation scheme), the choice of weight function w does not
play a role in determining the approximation order of the moving least squares
method. As noted earlier, it only determines the smoothness of 'Pf. For example,
in the paper [Cleveland and Loader (1996)] from the statistics literature on local
regression the authors state that often "the choice [of weight function] is not too
critical", and the use of the so-called tri-cube

Wi(x) = (1 - llx - Xill 3)!, XE Rs,
is suggested. Of course, many other weight functions such as (radial) B-splines or
any of the (bell-shaped) radial basis functions studied earlier can also be used. If
the weight function is compactly supported, then the generating functions wi will
be so, too. This leads to computationally efficient methods since the Gram matrix
G(x) will be sparse.

An interesting question is also the size of the support of the different local
weight functions. Obviously, a fixed support size for all weight functions is possible.
However, this will cause serious problems as soon as the data are not uniformly
distributed. Therefore, in the arguments in [Levin (1998); Wendland (2001a)] the
assumption is made that the data are at least quasi-uniformly distributed. Another
choice for the support size of the individual weight functions is based on the number
of nearest neighbors, i.e., the support size is chosen so that each of the local weight
functions contains the same number of centers in its support. A third possibility is
suggested in [Schaback (2000b)] where the author proposes to use another moving
least squares approximation based on (equally spaced) auxiliary points to determine
a smooth function 8 such that at each evaluation point x the radius of the support
of the weight function is given by 8(x). However, convergence estimates for these
latter two choices do not exist.

Sobolev error estimates are provided for moving least squares approximation
with compactly supported weight functions in [Armentano (2001)]. The rates ob­
tained in that paper are not in terms of the fill distance but instead in terms of the
support size p of the weight function. Moreover, it is assumed that for general s
and m = (8!d) the local Lagrange functions are bounded. As mentioned above, this
is the hard part, and in [Armentano (2001)] such bounds are only provided in the
case s = 2 with d = 1 or d = 2. However, if combined with the general bounds for
the Lebesgue function provided by Wendland, the paper [Armentano (2001)] yields
the following estimates:

lf(x) - P1(x)I < Cpd+l max ID0 J(e)I, lal = d + 1,
~EO

228 Meshfree Approximation Methods with MATLAB

but also

lal = d + 1.

In the weaker (local) L2-norm we have

II! - P1llL2(BJnn) < Cpd+
1
lflw;+ 1 (Bjnn)

and

ll\7(! - Pi)llL2(Bjnn) < Cpdlflw2d+ 1 (Bjnn)'

where the balls BJ provide a finite cover of the domain n, i.e., n ~ LJi BJ, and
the number of overlapping balls is bounded. Here Wf (n) is the Sobolev space of
functions whose derivatives up to order d are in L2 (c.f. Chapter 13).

We close this chapter by pointing out that early error estimates for some special
cases were provided in [Farwig (1987); Farwig (1991)].

Chapter 26

Approximate Moving Least Squares
Approximation

26.1 High-order Shepard Methods via Moment Conditions

While we mentioned earlier that the weight function does not have an effect on
the approximation order results for Shepard's method (cf. Theorem 25.1), wee now
present some heuristic considerations for obtaining higher-order Shepard methods.
This will result in certain conditions on the moments of the weight function w.

Recall that using our shifted monomial representation we obtain Pf (x) = c1 (x)
(see (22.5)) for any degree d. Therefore, if we can find weight functions w(xi, ·)
such that the first row (and first column) of the Gram matrix G(x) becomes
[~=iw(xi,x),O, ... ,O]T [(1,l)w"',O, ... ,OjT, then c1(x) = (f,l)w"'/(1,l)w.., via
(22.8). Thus,

N

P1(x) = L f(xi) :(xi, x) ,
i=l l:j=l w(xj, x)

but now - by construction - the method has approximation order O(hd+I) (in­
stead of the mere O(h) of Shepard's method which permits the use of arbitrary
weights).

We therefore use the discrete moments (c.f. Section 23.2)

N

µa= L(xi - x)aw(xi, x), x E 1R8
, (26.1)

i=l

where a is a multi-index, and then demand

(26.2)

As mentioned in Chapter 23 these moments provide the entries of the Gram matrix
G(x). The condition µ0 = 1 ensures that the weights w(xi, ·) form a partition of
unity, and we end up with a quasi-interpolant of the form

N

P1(x) = L f(xi)w(xi, x).
i=l

We can summarize our heuristics in

229

230 Meshfree Approximation Methods with MATLAB

Proposition 26.1. Let n c lR8
• lf f E cd+1(n), the data sites {xi : i =

1, ... , N} c n are quasi-uniformly distributed with fill distance h, the weight func­
tions w(xi, ·) = w(xi - x) are compactly supported with support size Pi = ch
(c = const.), and the discrete moment conditions

o < lo:I < d,

are satisfied, then

has approximation order O(hd+l).

The discrete moment conditions m Proposition 26.1 lead us to the following
interpretation of the weight function w:

w(x, y) = wo(x, y)q(x - y), (26.3)

where w0 is a new (arbitrary) weight function, and q is a polynomial of degree d
orthonormal in the sense of the inner product (22.2) with respect to w 0 . This view
is also taken by Liu and co-workers (see, e.g., [Li and Liu (2002)]) where q is called
the correction function.

The discrete moment conditions in Proposition 26.1 are difficult to satisfy an­
alytically, as is the construction of discrete multivariate orthogonal polynomials as
needed for (26.3). In order to obtain quasi-interpolants for arbitrary space dimen­
sions and scattered data sites we consider the concept of approximate approxima­
tion in the next section. There one satisfies continuous moment conditions while
ensuring that the discrete moment conditions are almost satisfied.

26.2 Approximate Approximation

We now give the main results on approximate approximation relevant to our work.
The concept of approximate approximation was first introduced by Maz'ya in the
early 1990s (see [Maz'ya (1991); Maz'ya (1994)]). To keep the discussion transparent
we restrict ourselves to results for regular center distributions. However, irregularly
spaced data are also allowed by the theory (see, e.g., [Maz'ya and Schmidt (2001);
Lanzara et al. (2006)]) and have been investigated in practice (see, e.g., [Fasshauer
(2004)] or [Lanzara et al. (2006)]). In [Maz'ya and Schmidt (2001)] the authors
present a quasi-interpolation scheme of the form

Mjh)(x) = v-s/2 L f(xv)'I! (x - Xv)'
vEV Y15h

(26.4)

where the data sites Xv = hv are required to lie on a regular s-dimensional grid with
gridsize h. The parameter V scales the support of the generating function \I!. As we

26. Approximate Moving Least Squares Approximation 231

will see below, the parameter V can be chosen to make a so-called saturation error
so small that it does not affect numerical computations. The generating function is
required to satisfy the continuous moment conditions

f y°'w(y)dy = 8a.o, o < lo:I < d. (26.5)
}Rs

This is the continuous analog of (26.2).
The following approximate approximation result is due to Maz'ya and Schmidt

(see, e.g., [Maz'ya and Schmidt (2001)]).

Theorem 26.1. Let f E cd+1(IRs), {xv: v E zs} c IRS and let \I! be a continuous
generating function which satisfies the moment conditions {26. 5) along with the
decay requirement

x E IRS'

where CK is some constant, K > d + s + 1 and d is the desired degree of polynomial
reproduction. Then

(26.6)

Using Poisson's summation formula one can bound the saturation error Eo by
(see Lemma 2.1 in [Maz'ya and Schmidt (1996)])

Eo('I!, V) < L F\I!(VVv). (26.7)
vE:V\{O}

For this result the Fourier transform of '11 is defined via

F\I! (w) = r \I! (x)e- 2
7ri:Z:·W dx

}Rs
with x · w the standard Euclidean inner product of x and w in IRs. The saturation
error can be interpreted as the discrepancy between the continuous and discrete mo­
ment conditions, and its influence can be controlled by the choice of the parameter
V in (26.4).

If we use radial generating functions, then we can use the formula for the Fourier
transform of a radial function (see Theorem B.1 in Appendix B) to compute the
leading term of (26.7), and therefore obtain an estimate for V for any desired satu­
ration error. If V is chosen large enough, then the saturation error will be smaller
than the machine accuracy for any given computer, and therefore not noticeable
in numerical computations. This means, that even though - theoretically - the
quasi-interpolation scheme (26.4) fails to converge, it does converge for all practical
numerical purposes. Moreover, we can have an arbitrarily high rate of convergence,
d + 1, by picking a generating function \I! with sufficiently many vanishing moments.

We point out that the error bound (26.6) is formulated for gridded data on an
unbounded domain. An analogous result also holds for finite grids (see [Ivanov et al.
(1999)]); and similar results for scattered data on bounded domains can be found
in, e.g., [Lanzara et al. (2006); Maz'ya and Schmidt (2001)]. However, in this case
the function f (defining the "data") is required to be compactly supported on the
finite domain, or appropriately mollified.

232 Meshfree Approximation Methods with MATLAB

26.3 Construction of Generating Functions for Approximate MLS
Approximation

In order to construct the generating functions for the approximate MLS approach
we assume the generating function W to be radial and of the form

w(x) = 'l/io(11 xll 2)q(11 xll 2).
Therefore, the continuous moment conditions become (c.f. (26.5))

r llxll2kq(llxll2)'1/io(llxll 2)dx = 8ko, 0 < k < d, la5 (26.8)

and we need to determine the univariate polynomial q of degree d accordingly to
get approximation order O(h2d+2).

By using s-dimensional spherical coordinates we can rewrite the integral in (26.8)
as

(26.9)

The substitution y = r 2 converts the last integral to

1
00 1 r 00

r2kq(r2)1/io(r2)rs-Idr = 2 I ykq(y)'l/io(y)y<s-2)/2dy,
o Jo

(26.10)

and one can show that
s-2 {1r s/2

7r !I lo sinm ¢d¢ = r ~s/2). (26.11)

Combining (26.9), (26.10) and (26.11) gives us

L
5

11x112kq(11x11 2)'1/io(11x11 2)dx = r ~:~
2

2) 1= yk-lq(y)'l/io(y)y8 12dy,

and therefore we now have obtained a set of one-dimensional orthogonality condi-
tions

s/2 r=
7r k-1 s/2 _

r(s/2) lo y q(y)'l/io(y)y dy - 8ko,

that can be used to determine the generating function

w(x) = 1/io (11xII2)q(llxll2)

(26.12)

once we have chosen an initial weight 'l/io. Moreover, we know that this construction
ensures W to have approximate approximation order O(h2d+2).

Thus, the strategy for constructing generating functions for higher-order ap­
proximate MLS approxmation is as follows:

26. Approximate Moving Least Squares Approximation 233

(1) Pick an arbitrary (univariate) weight function ¢ 0 .

(2) Compute the coefficients of q E II~ via the (univariate) moment conditions
(26.12).

(3) This leads to the (multivariate) radial generating function w(x)
¢ 0 (1ixll 2)q(llxll 2

) to be used in the quasi-interpolant (26.4).

Example 26.1. Probably the most aesthetic example is given by 'l/Jo(Y) = e-Y so
that the basic generating function (corresponding to d = 0, i.e., with approximate
approximation order O(h2) is found by assuming that the polynomial q is a constant,
i.e., q(y) _ a0 . Then (26.12) becomes

100 a y(s-2)f2e-Ydy = I'(s!2)
Q S/2 l

0 ~

which leads to a0 = 7r-s/2 , so that we have

w(x) = _l_e-ll:z:ll2
../1fS

- an appropriately scaled Gaussian.
If we take d = 1 (to obtain approximate approximation order O(h4)) and assume

q to be a linear polynomial of the form q(y) = a0 + a1y, then there are two moment
conditions, namely

or

100 (ao + aiy)y(s-2)f2e-Ydy = r~:~;)'

100
(ao + aiy)ysl2e-Ydy = 0,

r(s/2)
a0I'(s/2) + aiI'((s + 2)/2) = ~s/2 ,

aoI'((s + 2)/2) + a 1r((s + 4)/2) = 0.

We can solve this system of linear equations and obtain
s +2 -1

ao =
2

../7r5, ai = fis ·

In the special case s = 2 this yields a0 = ~ and ai = -1, so that
7r 7r

w(x) = .!_ (2 - llxll2) e-IJ:z:ll
2

.
~

In general, the polynomials q turn out to be (univariate) generalized Laguerre
polynomials L~/2 of degree d (c.f. Section 4.2) which are known to be orthogo­
nal on the interval [O, oo) with respect to the weight function ysl2e-Y. Therefore
the generating functions for the approximate MLS approximation method are the
Laguerre-Gaussians

w(x) = . ~e-ll:z:ll2 L~/2(llxll2).
y~S

In particular, Table 4.1 contains specific examples for s = 1, 2, 3 and d = 1 and 2
except for the scale factor 1/ #. Figure 4.1 shows plots of the generating functions
in the cases s = 1, d = 2, and s = 2, d = 2.

234 Meshfree Approximation Methods with MATLAB

Example 26.2. If we use the function 'l/Jo(y) = (1 - V]/): (4y'y + 1) as initial
weight, then we can perform calculations analogous to those above. For d = 0 and
s = 2 we get

7 2 7 4
w(x) = -1/Jo(llxll) = - (1 - llxll)+ (41lxll + 1),

7r 7r
x E R 2

, (26.13)

with approximation order CJ(h2). Except for the factor 7 /7r this generating func­
tion corresponds to Wendland's compactly supported C 2 radial basic function (c.f.
Table 11.1).

Using the same function 'I/Jo for d = 1 and s = 2 we obtain

(26.14)

with approximation order CJ(h4
). This function is displayed in the left plot of

Figure 26.1. See Examples 27.2 and 27.4 for more special cases based on this initial
weight function.

Example 26.3. Many other choices for the initial weight function 1);0 are possible.
For example, we can take 'l/Jo(y) = (1-y)°'(l+y)/3, the weight function for univariate
Jacobi polynomials (which are orthogonal on (-1, 1]). Since the integral defining
the orthogonality relations contains an extra factor of y(2k+s-2)/2 , the moment con­
ditions (26.12) do not yield Jacobi polynomials. However, the resulting generating
functions for approximate MLS approximation can still be rather simple. In Ta­
ble 26.1 we list several such examples for s = 2, {3 = 0 and various combinations
of d and a. Note that these functions are also compactly supported, i.e., they are
defined to be zero for llxll > 1.

Table 26.1 Approximate MLS generating functions W based on '!/Jo (y)
y E [-1, 1] for various choices of d and a.

(1 - y)°',

d a=2

0 ~(1 - ll:z:ll 2)2
7r

1 ~ (2 - 5ll:z:ll 2) (1 - ll:z:ll 2)2
7r

2
15

(1 - 6ll:z:ll 2 + 7ll:z:ll 4
) (1 - ll:z:l1 2)2

7r

Q = 5/2

!_ (1 - ll:z:ll2)5/2
27r

~ (4 - 11ll:z:ll 2) (1 - ll:z:ll 2)5/ 2
47r

33
(8 - 52ll:z:ll 2 + 65ll:z:ll 4

) (1 - llxll 2)512
l67r

The function w(x) = ~ (2 - 5llxll 2) (1 - llxll 2) 2 is displayed in the right plot of
Figure 26.l.

26. Approximate Moving Least Squares Approximation 235

y x x

Fig. 26.1 Compactly supported generating functions for approximate linear reproduction.

w(x) = ~ (~~~ - 1
{:9° llxJl 2

) (1 - llxJl)t (4JJxJJ + 1) (left) and 'l!(x) = ~ (2 - 5JlxJJ 2
) (1 - JlxJl 2

)
2

(right) centered at the origin in JR2 •

Chapter 27

Numerical Experiments for Approximate
MLS Approximation

In this chapter we present a series of experiments for approximate MLS approx­
imation with both globally supported Laguerre-Gaussian generating functions as
well as with compactly supported generating functions based on the initial weight
'1/Jo(Y) = (1 - Ji/): (4y'y + 1) as in Example 26.2 of the previous chapter.

27.1 Univariate Experiments

Example 27.1. We begin with univariate globally supported Laguerre-Gaussians.
These functions are listed in Table 4.1 except for the scaling factor 1/ ../if required
for the ID case. In the left plot of Figure 27 .1 we illustrate the effect the scaling
parameter V has on the convergence behavior for Gaussian generating functions.
We use a mollified univariate Franke-like function of the form

f(x) = 15e l-(20:-1)2 -e- 4 + -e- 49 + -e- 4 - -e- 9x-4
- 1 (3 (9x-2)

2 3 (9o:+1)
2 1 (9o:-7)

2 1 ()2)

4 4 2 5

as test function. For each choice of VE {0.4, 0.8, 1.2, 1.6, 2.0} we use a sequence of
grids of N = 2k + 1 (with k = 1, ... , 14) equally spaced points in [O, 1] at which we
sample the test function. The approximant is computed via

1 N 2

P1(x) = c;:;:;. L f(xi)e- <"'.;~~> ,
y 7r'D i=l

x E (0, 1],

where h = l/(N - 1). This corresponds to our usual shape parameter c having a
value of

1 N - 1 2k
c - -- - ------- v'15 h - v'15 v'15'

i.e., we are in the regime of stationary approximation. The effect of V is clearly
visible in the figure. A value of V > 2 exhibits an approximation order of O(h2)

throughout the range of our experiments, while smaller values allow the saturation
error to creep in at earlier stages.

237

238 Meshfree Approximation Methods with MATLAB

_. -0=0.4
10 - - -0=0.8

...... 0=1.2
·-·- 0=1.6
-0=2.0

10-Sa.======---------~-_,
1~ 1~

N

~ g
w

105

100
...... ..,

""·,..,,..
10-5

·-.~'
·· ... ' ',

10-10 ·· ~.~

10-
15

-d=O, 0=2.0
- - -d=1, 0=4.0
...... d=2, 0=6.0

10-2QL:;;;;;;;:=====------------'
100 105

N

Fig. 27.1 Convergence of lD approximate MLS approximation. The left plot shows the effect
of various choices of V on the convergence behavior of Gaussians. The right plot illustrates the
convergence of Laguerre-Gaussians for various values of d.

In the right plot of Figure 27. l we compare the approximation orders achievable
with the Laguerre-Gaussians of orders d = 0, 1, 2 in lD. The respective values of
D are D = 2, 4, 6. The steepest sections of the curves correspond to approximate
approximation orders of O(h2 ·0), O(h4 ·0), and O(h5 ·99), respectively - a perfect
match with the rates predicted by the theory. Notice that for the second-order
Laguerre-Gaussian we have convergence all the way to machine accuracy.

The MATLAB program ApproxMLSApprox1D.m (see Program 27.1) was used to
generate the right plot in Figure 27.1. We define the three different Laguerre­
Gaussian generating functions as members of a MATLAB cell array rbf and place
the corresponding values of D to be used with each of the functions in the vector
D (see lines 1-4). The univariate Franke-like test function is defined in lines 5-10.
This function is mollified so that it goes to zero smoothly at the boundaries of the
interval. The program contains two for-loops. The first is over the three different
generating functions (corresponding to approximate constant, linear and quadratic
reproduction, respectively). The inner loop performs a series of experiments with
an increasing number N of data. Here we perform 14 iterations with N ranging
from N = 3 to N = 16385.

For applications of approximate MLS approximation we limit ourselves to
uniformly spaced data since there are presently no robust methods for deal­
ing with nonuniform data (see [Lanzara et al. (2006); Maz'ya and Schmidt
(2001)] for a theoretical approach to non-uniform data, and [Fasshauer (2004);
Lanzara et al. (2006)] for some numerical experiments). All we need in order to
compute the approximant is the evaluation matrix EM computed on line 23, which is
then multiplied by the function values f and scaled by the factor v-s/2 on line 24.
The commands needed to produce the plot are included on lines 15, 27 and 29-31.

27. Numerical Experiments for Approximate MLS Approximation

Program 27.1. ApproxMLSApprox1D .m

% ApproxMLSApprox1D

% Script that performs 10 approximate MLS approximation
% Calls on: DistanceMatrix

% Laguerre-Gaussians for 10
1 rbf{1} = ©(e,r) exp(-(e*r).-2)/sqrt(pi);
2 rbf{2} = ©(e,r) exp(-(e*r).-2)/sqrt(pi).*(1.5-(e*r).-2);

3a rbf{3} = ©(e,r) exp(-(e*r).-2)/sqrt(pi).*···
3b (1.875-2.5*(e*r).-2+0.5*(e*r).-4);
4 D = [2, 4, 6]; % Scale parameters for generating functions

% Define Franke-like function as testfunction
5 fl= ©(x) 0.75*exp(-(9*x-2).-2/4);
6 f2 = ©(x) 0.75*exp(-(9*x+1).-2/49);
7 f3 = ©(x) 0.5*exp(-(9*x-7).-2/4);
8 f4 = ©(x) 0.2*exp(-(9*x-4).-2);
9 moll= ©(x) 15*exp(-1./(1-4*(x-0.5).-2));

10 testfunction = ©(x) moll(x).*(f1(x)+f2(x)+f3(x)-f4(x));

11 maxlevel = 14; % number of iterations
12 M = 200; % to create M evaluation points in unit interval
13 xe = linspace(0,1,M); epoints = xe(:);
14 exact= testfunction(epoints);
15 figure; hold on; cword = cellstr(['r- ';'g--';'b: ']);
16 for i=1:length(D)
17 for k=1:maxlevel
18 N(k) = (2-k+1); ep = (N(k)-1)/sqrt(D(i));

19

20

21

name= sprintf('DatalD_%du', N(k)); load(name);
ctrs = dsites;
% Create vector of function values
f = testfunction(dsites);
% Compute evaluation matrix

22 DM = DistanceMatrix(epoints,ctrs);
23 EM= rbf{i}(ep,DM);

% Compute approximate MLS approximation
24 Pf= EM*f/sqrt(D(i));

% Compute RMS error on evaluation grid
25 rms_err(k) = norm(Pf-exact)/sqrt(M);
26 end
27 plot(N,rms_err,cword{i});
28 end
29 set(gca,'XScale','log','YScale','log','Fontsize',14)
30 legend('d=O, D=2.0','d=1, D=4.0','d=2, D=6.0',3);
31 xlabel('N'); ylabel('Error'); hold off

239

240 Meshfree Approximation Methods with MATLAB

Example 27.2. In the second set of experiments we use compactly supported gen­
erating functions with initial weight 7/Jo(y) = (1 - .JY): (4.JY+l). In the univariate
case these functions are for d = 0, 1, 2

3 4
w(x) = 2 (1 - lxl)+ (4lxl + 1),

w(x) = ~ (7 - 35lxl 2
) (1 - lxl)~ (4lxl + 1),

w(x) =
105

(350- 3960lxl 2 + 7293lxl 4
) (1 - lxl)

4
+ (4lxl + 1).

11993

(27.1)

These functions can be computed as in Section 26.3 of the previous chapter. An
approximate approximation order of O(h2) for the first function in (27.1) is illus­
trated in the left plot of Figure 27.2. Note that a rather large value of V (namely
V ~ 500) is required to make the saturation error so small that it no longer affects
our experiments. Since the shape parameter c determines the support radius of
our generating functions, and since c = l/vfi5h = (N - 1)/v'f5, we see that the
evaluation matrix will be completely dense until N grows above approximately 25.
Furthermore, for such a large value of V there is a visible smoothing effect (very
slow convergence) during the first few iterations with N = 3, 5, 9, 17, 33, 65.

In the right plot of Figure 27.2 we compare the approximation orders achiev­
able with the univariate compactly supported generating functions (27.1) of orders
d = 0, 1, 2. The respective values of V required to prevent the saturation error
from corrupting our experiments are V = 500, 5000, 20000, respectively. Note that
V = 20000 implies that the evaluation matrix will be dense (and therefore compu­
tationally inefficient) until N reaches about 150. Thus, it is not until the very last
iterations with N = 8193 and N = 16385 that we get to take real advantage of the
compact support of the generating function, i.e., have sparse sums. The steepest
sections of the curves correspond to approximate approximation orders of O(h2 ·0),

O(h3 ·91), and O(h5 ·45), respectively.
The MATLAB code for the compactly supported experiments can be writ­

ten in two ways. One possibility would be to rewrite the generating func­
tions in shifted form as explained in Chapter 12, and then use the sparse code
DistanceMatrixCSRBF .m. However, as just explained, we cannot take much advan­
tage of the sparsity usually associated with compactly supported functions. There­
fore, we use essentially the same code as in Program 27.1. The only changes needed
are the substitution of the definition of the compactly supported generating func­
tions for the Laguerre-Gaussians along with appropriate values for D.

Our experiments seem to suggest that there is no point in using compactly sup­
ported generating functions for univariate approximate MLS approximation. The
results using Laguerre-Gaussians are far more accurate, and due to the large value
of V required for the compactly supported functions they do not offer an advantage
in terms of computational complexity, either.

27. Numerical Experiments for Approximate MLS Approximation

-0=16
- - -0=32
...... 0=64

·-·- 0=128
-0=256
- - -0=512

...
g
w 10 ...

-d=0,0=500
- - -d=1, 0=5000

' ' . , ..
.;.

\·. ...
\

\
·~
~ ...

241

10~~ ... = .. =·d===2,:0===20000==:;;;!_---------------'

1~ 1~
N N

Fig. 27.2 Convergence of ID approximate MLS approximation with compactly supported gener­
ating functions. The left plot shows the effect of various choices of 'D on the convergence behavior
for the first function in (27.1). The right plot illustrates the convergence for the three functions
in (27.1).

27.2 Bivariate Experiments

Example 27.3. This example is similar to the second part of Example 27.1. Now
we use bivariate Laguerre-Gaussians with scale factor 1/?T. The test data are sam­
pled from a bivariate mollified Franke function, i.e., we multiply Franke's function
(2.2) by the mollifier

1 1
g(x, y) = 15e -1-c2x-1)2 e - l-(2y-1)2 .

The data sites are uniform grids of (2k + 1)2 points (with k = 1, ... , 5) in the unit
square. The values for the scale parameter 1J used are 1J = 1, 2, 2.5. The steep­
est sections of the error curves correspond to approximate approximation orders of
O(hl.83), O(h2·80), and O(h3·00), respectively. Note that these rates do not match
the theoretically predicted orders. We will see that we can achieve the theoreti­
cally predicted orders by using more data sites. This, however, will require special
evaluation techniques to deal with the large sums efficiently (see the next chapter).

Example 27.4. The bivariate compactly supported generating functions with ini­
tial weight 'I/Jo (y) = (1 - ,,/Y): (4,,jY + 1) providing approximate reproduction of
constants, linear and quadratic polynomials, respectively, are (c.f. Example 26.2)

7 4
w(x) = - (1 - llxll)+ (4llxll + 1)'

?T

w(x) = 222~?T (14 - 55llxll
2

) (1 - llxll)~ (4llxll + 1),

w(x) = ll~~~l?T (4179- 37050llxll 2 + 59605llxll 4
) (1- llxll)~ (4Jlxll + 1).

The values we use for the scale parameter are 1J = 20, 40, 80, respectively. The
steepest sections of the error curves correspond to approximate approximation or-

242 Meshfree Approximation Methods with MATLAB

·· ..

-d=O, 0=1.0
- - -d=1, 0=2.0

..... · ... ·. ' · .. ' ·.' ·. ' '
·. ' ·. ' ·. ' · .. ' ·. ' ·. ' ·. '

···· .. ~

...... d=2, 0=2.5
10-31.!===;;;;;;.;==-------...._ __ _

10° 101 102 103 10'
N

100

10-1

10-2

e w
10-3

Fig. 27.3 Convergence of 2D approximate MLS approximation with Laguerre-Gaussians (left)
and compactly supported (right) generating functions for various values of d.

ders of O(hl.96), O(h3 ·03), and O(h3·26), respectively. Again, we do not obtain a
match with the theoretically predicted orders, even though we used up to N = 66049
data points.

The bivariate case provides a more level playing field for the compactly sup­
ported generating functions. We can take advantage of the compact support and
obtain more accurate results at a reasonable cost. However, another alternative
way of obtaining highly accurate multivariate approximate MLS approximations is
presented in the next chapter.

Chapter 28

Fast Fourier Transforms

28.1 NFFT

In the recent papers [Kunis et al. (2002); Nieslony et al. (2004); Potts and Steidl
(2003)] use of the fast Fourier transform for non-uniformly spaced points was sug­
gested as an efficient way to solve and evaluate radial basis function problems. The
C++ software package NFFT by the authors is available for free download [Kunis
and Potts (2002)]. A discussion of the actual NFFT software would go beyond the
scope of this book. Instead, we briefly describe how to use NFFTs and FFTs to
simultaneously evaluate expansions of the form

N

P1(YJ) = L Ck<I>(yj - Xk) (28.1)
k=l

at many evaluation points YJ, j = 1, ... , M. Note that this covers not only approx­
imate MLS approximations, but also the evaluation of other quasi-interpolants as
well as the evaluation of RBF interpolants.

Direct summation of (28.1) requires O(M N) operations, while it can be shown
that use of the NFFT reduces the cost to O(M + N) operations. Therefore, as is
always the case with fast Fourier transforms, use of the algorithm will pay off for
sufficiently many evaluations.

In their papers Nieslony, Potts and Steidl distinguish between basic functions cI>
that are singular and those that are non-singular. Singular basic functions are C 00

everywhere except at the origin and include examples such as

1 1 2
-, 2 , logr, r logr,
r r

where r = II· II· Non-singular basic functions are smooth everywhere such as Gaus­
sians and (inverse) multiquadrics. We will restrict our discussion to this latter
class.

The basic idea for the following algorithm is remarkably simple. It relies on the
fact that the exponential e-a(yj-:z:k) can be written as e-0 Yi e 0 :z:k. Moreover, the
method applies to arbitrary basic functions (which is in strong contrast to the fast

243

244 Meshfree Approximation Methods with MATLAB

multipole type methods discussed in Chapter 35. One starts out by approximating
the (arbitrary, but smooth) basic function <I> using standard Fourier series, i.e.,

<I>(x) ~ L bte27ril·a;

lEin

(28.2)

with £ a multi-index in the index set In = [- ~, ~)
8

• The coefficients bt are found
by the discrete inverse Fourier transform

bt = ~s L <I> (~) e-21rik·l/n.

kEin

(28.3)

Numerically, this task is accomplished with software for the standard (inverse) FFT
(e.g., [FFTW]).

Remark 28.1. Note that this definition of the Fourier transform (as well as the
one below) is different from the one used throughout the rest of this book. However,
in order to stay closer to the software packages, we adopt the notation used there.

Using the representation (28.2) of the basic function <I> we can rewrite (28.1) as

N

P1(Y1) ~Lek L bte27ril-(yi-a;k)

k=l lEin
N

= L bt L Cke21ril·(yj-:z:k)

lEin k=l

Now, the exponential is split using the above mentioned property, i.e.,

N

P1(YJ) ~ L btLcke-27ril·a;ke27ril·11i.

lEin k=l

This, however, can be viewed as a fast Fourier transform at the non-uniformly
spaced points y j, i.e.,

P1(YJ) ~ L dte27ril·yi.

lEin

where the coefficients dt = btat with

N

at = L Cke-27ril·:z:k'

k=l

which in turn is nothing but an inverse discrete Fourier transform at the non­
uniformly spaced points Xk· These latter two transforms are dealt with numerically
using the NFFT software.

Together, for the case of non-singular basic functions <I>, we have the following
algorithm.

28. Fast Fourier Transforms

Algorithm 28.1. Fast Fourier transform evaluation

For .f. E In

end

Compute the coefficients

bt = ~s L cp (~) e-2Trik·l/n

kEln

by inverse FFT.
Compute the coefficients

by inverse NFFT.

N

at = L Cke-27ril·:r:k

k=l

Compute the coefficients di.= atbt.

For 1 < j < M

Compute the values

by NFFT.

end

P1(Yj) ~ L di.e27ril·yi

lEln

245

In the papers [Kunis et al. (2002); Nieslony et al. (2004); Potts and Steidl (2003)]
the authors suggest a special boundary regularization in case the basic function
does not decay fast enough, i.e., the basic function is large near the boundary of
the domain. However, for our experiments with Laguerre-Gaussians reported in the
next section this is not an issue.

Of course, this method will only provide an approximation of the expansion
(28.1) and error estimates are provided in the literature (see, e.g., [Nieslony et al.
(2004)]).

While we only illustrate the use of (N)FFTs for the evaluation of radial sums it
should be clear that this method can also be coupled with any other algorithm that
is based on evaluation of fast summation at non-uniform points (such as the precon­
ditioned GMRES algorithm of Section 34.3, the "greedy" algorithm of Section 33.1,
or the Faul-Powell algorithm of Section 33.2).

28.2 Approximate MLS Approximation via Non-uniform Fast
Fourier Transforms

A few examples that illustrate the use of fast Fourier transforms for the evalua­
tion of approximate moving least squares approximations (quasi-interpolants) are

246 Meshfree Approximation Methods with MATLAB

taken from the paper [Fasshauer and Zhang (2004)]. We deviate from our usual
policy of providing only results of experiments based on MATLAB code and include
Figures 28.1-28.3, which were obtained with C++ software incorporating the NFFT
library.

We use the following mollified Franke-type function in the unit cube [O, 1] 8 in
space dimensions s = 1, 2, 3:

!() 3 [((9x1 - 2)2 (9x2 - 2)2 (9x3 - 2) 2
)

X1, X2, X3 = 4 exp - 4 - 4 - 4

ex (- (9x1+1)2 _ (9x2 + 1)2
_ (9x3 + I)2)]

+ p 49 10 29

1 ((9x1 - 7)2 (9 3)2 (9x3 - 5)2)
+ '2 exp -

4
- x2 - -

2
1 ((2 2 2 -5 exp - 9x1 - 4) - (9x2 - 7) - (9x3 - 5)),

3 -1
g(x1, x2, x3) = 15f (x1, x2, x3) IT exp(

1
_ (

2
. _)2),

i=l Xi 1

where x1, x2 , X3 are used according to the space dimensions. The data sites are
N = (2k + 1)8 equally spaced points in the unit cube, while the errors are computed
at M evaluation points randomly distributed in (0, 1] 8 with M = 32768 for s = 1,
M = 262144 for s = 2, and M = 2146689 for s = 3.

In our experiments we use n = 4N11 s in (28.3) for all computations except for
the very last experiments in 2D and 3D. We do not have an automated strategy for
choosing n. However, the values just mentioned yield satisfactory results and go
along with the values suggested by Theorems 3.1 and 3.4 of [Nieslony et al. (2004)].
In all experiments displayed in Figures 28.1-28.3, the scale parameter V is taken to
be 3.0.

The left plots in Figures 28.1-28.3 show the maximum error versus the number of
centers N on a logarithmic scale for the three types of Laguerre-Gaussian generating
functions of Table 4.1. This illustrates that the approximation does converge well
(almost reaching the rates predicted by the theory) as we increase the number of
data sites.

The presence of the saturation error is clearly visible in Figure 28.1. The plots on
the right compare the cost of direct summation versus that for NFFT summation,
and show that the efficiency is greatly improved by the use of the NFFT. Due to
their long duration some of the computational times for the direct summation were
omitted.

The experiments presented in this section show that it is not unreasonable to
approximate large data sets with globally supported generating functions. In fact,
the accuracy achieved with the global functions is far superior to that which we ob­
tained with the compactly supported functions for similar problems in the previous
chapter.

28. Fast Fourier Transforms 247

..,.,"";' ·,, .,,
-,~,

3 9 33

'' .. ' "· ', '· \
\ ' .. ' . \

'· \

'· ' ' ' ·,, -·~· -' -. -' -. -'-· -. -

257

'

4097
N

65537 1048577

103

102

101
Ql
E
I=

100

10-1

10-2
3 9 33 257 4097

N

--d=O, direct
- - - d=1, direct
· - · - d=2, direct
-d=O,NFFT
- - -d=1, NFFT
·-·- d=2, NFFT

65537 1048577

Fig. 28.1 Convergence and execution times for lD example (Gaussian, linear and quadratic
Laguerre-Gaussian generating functions).

102

100

10-2
~ g
w

10-•

10-6

10-8

9

....... ,..__:-.. "." .. -:
...

81

........ ~
.........

1089
N

16641

--d=O
- - -d=1
·-·- d=2

........
... .. ·,, '

'·

263169

Ql
E
I=

81 1089
N

--d=O, direct
- - - d=1, direct
· - · - d=2, direct
-d=O, NFFT
- - -d=1, NFFT
·-·- d=2, NFFT

16641 263169

Fig. 28.2 Convergence and execution times for 2D example (Gaussian, linear and quadratic
Laguerre-Gaussian generating functions) .

g 10-2

w

... ·,
...

·, ·, ·, ' ·, ·, ·, ·,
' '

' '

' ' ' '
·,_

' '·
10~~----------~------~----------------

21 125 729 4913 35937 274625
N

Ql
E
I=

--d=O, direct
- - - d=1, direct
· - · - d=2, direct
--d=O, NFFT
---d=1,NFFT
·-·-·d=2, NFFT

101L---------.._ ____ __ .!:::;;;;;:;;:;;;c;::::;;:;;;:;;:;:;;;J

27 125 729 4913 35937 274625
N

Fig. 28.3 Convergence and (predicted) execution times for 3D example (Gaussian, linear and
quadratic Laguerre-Gaussian generating functions).

Chapter 29

Partition of Unity Methods

Another possibility for fast computation with meshfree approximation methods is
the partition of unity method. This approach offers a simple way to decompose a
large problem into many small problems while at the same time ensuring that the
accuracy obtained for the local fits is carried over to the global fit.

29.1 Theory

The partition of unity method was suggested in [Babuska and Melenk (1997);
Melenk and Babuska (1996)] in the mid 1990s in the context of meshfree Galerkin
methods for the solution of partial differential equations (see Chapters 44 and 45
for a discussion of an RBF-based Galerkin approach). In the scattered data fitting
context the paper [Franke (1977)] already contains a similar algorithm. We base
the presen-~ation in this section on the paper [Wendland (2002a)].

The basic idea for the partition of unity method is to start with a partition of the
open and bounded domain n ~ JRS into M subdomains nj such that U~1 nj ;;2 n
with some mild overlap among the subdomains. Associated with these subdomains
we choose a partition of unity, i.e., a family of compactly supported, non-negative,
continuous functions WJ supported on the closure of nj such that at every point x
inn we have

M

LwJ(x) = 1.
j=l

(29.1)

Now, for every subdomain nJ we construct a local approximation UJ (e.g., a radial
basis function interpolant), and then form the global approximant to the data on
the entire domain n via

M

P1(x) = L uJ(x)wJ(x),
j=l

x E fl. (29.2)

Note that if the local fits interpolate at a given data point xe, i.e., UJ(xe) = f(xe),

249

250 Meshfree Approximation Methods with MATLAB

then the global approximant also interpolates at this point:
M

P1(xt) = L uj(xe)wj(xt)
j=l

M

= L f(xe)wj(xe) = f(xt)·
j=l

The last equality holds due to the partition of unity property (29.1). Technically,
the second sum will most likely not run over the full set of indices, 1, ... , M, since
xe will lie only in the support of some of the Wj. Of course, this does not change
the result.

In order to be able to formulate error bounds we need some technical conditions.
We require the partition of unity functions to be k-stable, i.e., we require that each
Wj E Ck(IRs) satisfies for every multi-index a:: with la::I < k the inequality

II D 0
Wj II £ 00 (Oj) < Ca/ bj°1,

where C0 is some positive constant, and bj = diam(nj)·
In order to understand the following approximation theorem from [Wendland

(2002a)) we need to define the space Cg(IRs) of all Ck functions f whose derivatives

of order la::I = k satisfy D 0 f(x) = O(llxllg) for llxll2 ---+- 0.

Theorem 29.1. Suppose n ~ JRS is open and bounded, and let x = {x1, ... 'XN} ~
n. Let <I> E C3 (!Rs) be strictly conditionally positive definite of order m. Let
{ n j} be a regular covering for (n, X) and let { w j} be k-stable for { n j}. Then
the error between f E N.p(n) and its partition of unity interpolant (29.2) with
Uj E span{ <I>(·, x) : x E X n nj} + II:,._ 1 can be bounded by

k+/3 I I
ID0 f(x) - D 0 P1(x)I < Chx~n -

0 lflN<i>(O),
for all x E n and all la::I < k/2.

The regularity assumptions on the subdomains nj are:

• For every x E n the number of subdomains nj with x E nj is bounded by a
global constant K.

• Every subdomain nj satisfies an interior cone condition (c.f. Definition 14.2).
• The local fill distances hxi ,nj are uniformly bounded by the global fill distance

hx,n, where Xj = X n nj.

If we compare this with the global error estimates from Chapter 15 we see that
the partition of unity preserves the local approximation order for the global fit.
Thus, we can efficiently compute large RBF interpolants by solving many small
RBF interpolation problems (in parallel if we wish) and then glue them together
with the global partition of unity { Wj }.

A simple way to obtain a partition of unity is via a Shepard approximant (c.f.
Chapter 23). Therefore, we can think of the partition of unity method as a Shepard

29. Partition of Unity Methods 251

method with higher-order data. Namely, the "data" are now given by the local
approximations Uj instead of just the values f (xJ). The benefits of this kind of
approach seem to have first been realized in [Franke (1977)].

29.2 Partition of Unity Approximation with MATLAB

The MATLAB program for the partition of unity approximation based on local RBF
interpolants is again rather similar to our earlier programs. The main difference is
that we now also have to create the subdomains nj (which we will do as overlapping
circles) and the associated partition of unity { Wj} (for which we use a Shepard
method based on Wendland's compactly supported RBFs) .

The compactly supported radial weight functions on line 1 of Program 29.1 and
the RBF on line 2 are used in the shifted form :Ps,k = <ps,k(l - ·) (cf. Table 11.1).
Note that we use the kd-tree routines to build two trees: a data tree, and an
evaluation tree. Inside the loop over all partition of unity cells (lines 27-38) we
first use kdrangequery to find all data sites in cell j, build the local interpolation
matrix based on these points, and then repeat the process for the evaluation points.
Note that the contributions to the final global fit are accumulated cell by cell (see
line 36).

Program 29.1. PU2D_CS.m

% PU2D_CS
% Script that performs partition of unity approximation using
% sparse matrices
% Calls on: DistanceMatrixCSRBF
% Uses: k-D tree package by Guy Shechter
% from MATLAB Central File Exchange

% Weight function for global Shepard partition of unity weighting
1 wf = ©(e,r) r.-4.*(5*spones(r)-4*r);

% RBF basis function for local RBF interpolation
2 rbf = ©(e,r) r.-4.*(5*spones(r)-4*r);
3 ep = 0.1; % Parameter for local basis functions

% Define Franke's function as testfunction
4 f1 = ©(x,y) 0.75*exp(-((9*x-2).-2+(9*y-2).-2)/4);
5 f2 = ©(x,y) 0.75*exp(-((9*x+1).-2/49+(9*y+1).-2/10));
6 f3 = ©(x,y) 0.5*exp(-((9*x-7).-2+(9*y-3).-2)/4);
7 f4 = ©(x,y) 0.2*exp(-((9*x-4).-2+(9*y-7).-2));
8 testfunction = ©(x,y) fl(x,y)+f2(x,y)+f3(x,y)-f4(x,y);

9 N = 1089; gridtype = 'h';
% Parameter for npu-by-npu grid of PU cells in unit square

10 npu = 16;
% Parameter for neval-by-neval evaluation grid in unit square

252 Meshfree Approximation Methods with MATLAB

11 neval = 40;

!. Load data points

12 name= sprintf('Data2D_/.d/.s',N,gridtype); load(name)

13 ctrs = dsites;

14 rhs = testfunction(dsites(:,1),dsites(:,2));

15 wep = npu; !. Parameter for weight function

!. Create neval-by-neval equally spaced evaluation locations

!. in the unit square

16 grid= linspace(0,1,neval); [xe,ye] = meshgrid(grid);

17 epoints = [xe(:) ye(:)];

!. Create npu-by-npu equally spaced centers of PU cells in the

!. unit square

18 pugrid = linspace(0,1,npu); [xpu,ypu] = meshgrid(pugrid);

19 cellctrs = [xpu(:) ypu(:)];

20 cellradius = 1/wep;

!. Compute Shepard evaluation matrix

21 DM_eval = DistanceMatrixCSRBF(epoints,cellctrs,wep);

22 SEM = wf(ep,DM_eval);

23 SEM = spdiags(1./(SEM*ones(npu-2,1)),0,neval-2,neval-2)*SEM;

!. Build k-D trees for data sites and evaluation points

24 [tmp,tmp,datatree] = kdtree(dsites,[]);

25 [tmp,tmp,evaltree] = kdtree(epoints,[]);

26 Pf= zeros(neval-2,1); !. initialize

27 for j=1:npu-2

!.
28a

28b

29

!.
30a

30b

31

!.
32a

32b

!.
33a

33b

34

!.
35

%

Find data sites in cell j

[pts,dist,idx] = kdrangequery(datatree, ...

cellctrs(j,:),cellradius);

if (length(idx) > 0)

Build local interpolation matrix for cell j

DM_data = DistanceMatrixCSRBF(dsites(idx,:), ...
ctrs (idx, :) , ep) ;

IM= rbf(ep,DM_data);

Find evaluation points in cell j

[epts,edist,eidx] = kdrangequery(evaltree, ...

cellctrs(j,:),cellradius);

Compute local evaluation matrix

DM_eval = DistanceMatrixCSRBF(epoints(eidx,:), ...

ctrs(idx,:),ep);

EM= rbf(ep,DM_eval);

Compute local RBF interpolant

localfit =EM* (IM\rhs(idx));

Accumulate global fit

29. Partition of Unity Methods

36 Pf(eidx) = Pf(eidx) + localfit.*SEM(eidx,j);
37 end
38 end

I. Compute exact solution
39 exact= testfunction(epoints(:,1),epoints(:,2));

% Compute maximum error on evaluation grid
40 maxerr = norm(Pf-exact,inf);
41 rms_err = norm(Pf-exact)/neval;
42 fprintf('RMS error: /.e\n', rms_err)
43 fprintf('Maximum error: /.e\n', maxerr)

I. Plot interpolant
44 fview = [160,20];
45 PlotSurf(xe,ye,Pf,neval,exact,maxerr,fview);

I. Plot maximum error
46 PlotError2D(xe,ye,Pf,exact,maxerr,neval,fview);

253

In Tables 29.1 and 29.2 we illustrate how the local convergence order is main­
tained globally for a partition of unity based on Wendland's C 2 compactly supported
RBFs. In both tables the local approximations are computed via either the com­
pactly supported C 2 functions of Wendland, or via Gaussians (that are globally
supported on the local subdomains). The data were sampled from Franke's func­
tion at various sets of uniformly spaced points (in Table 29.1) and Halton points
(in Table 29.2) in the unit square. The M local subdomains were given by circles
centered at equally spaced points in the unit square. We can see that (especially
on the uniformly spaced data sites) the partition of unity method reflects the ap­
proximation behavior of the local methods. For the compactly supported Wendland
functions we obtain O(h2) throughout our series of experiments (with a theoretically
predicted local order of O(h312)), whereas for the Gaussians we obtain an approxi­
mation behavior in places vaguely suggestive of exponential convergence. For these
experiments the fill distances for the sets of Halton points were not estimated via
(2.4). Instead, we assumed that the fill distance decreases by a factor of two from
one iteration to the next, as it does in· the case of uniformly distributed points.

A relatively large uniform value of the shape parameter c was used for the Gaus­
sians on the uniform data sets in Table 29.1 to obtain the exponential convergence
results. Use of the same value of con the Halton data sets results in RMS-errors for
the Gaussians that are worse than those for local interpolants based on compactly
supported RBFs (see Table 29.2). For the local interpolants based on the Wend­
land functions we used a large support radius of p = 1/ c = 10 in accordance to the
observations made in Chapter 17. The main reason for the relatively poor qual­
ity of the local interpolants based on Gaussians in the Halton setting is that all of
the computations with the Wendland functions are performed with well-conditioned
interpolation matrices (in spite of the large support radius, i.e., flat basis functions).

Note that the RMS-error for local Gaussian interpolation in the last row of

254 Meshfree Approximation Methods with MATLAB

Table 29.1 2D partition of unity approximation on uniform points with Wend-
land's C 2 compactly supported functions for partition of unity and local Wend-
land and Gaussian interpolants.

Wendland Gaussian

N M RMS-error rate c RMS-error rate c

9 1 3.475816e-001 0.1 3. 703960e-001 6
25 4 1.301854e-001 1.4168 0.1 1.229046e-001 1.5915 6
81 16 8.089165e-003 4.0084 0.1 2.413852e-002 2.3481 6

289 64 1.183369e-003 2.7731 0.1 4.551325e-003 2.4070 6
1089 256 2. 716542e-004 2.1231 0.1 5.393771e-004 3.0769 6
4225 1024 6. 795949e-005 1.9990 0.1 1.112507 e-005 5.5994 6
16641 4096 1.697195e-005 2.0015 0.1 2.031757e-006 2.4530 6
66049 16384 4.241184e-006 2.0006 0.1 1. 798 27 4e-007 3.4980 6

263169 65536 9.778231e-007 2.1168 0.1 2.657751e-008 2.7583 6
1050625 262144 2.557991e-007 1.9346 0.1 1.844820e-009 3.8487 6

Table 29.2 2D partition of unity approximation on Halton points with Wend-
land's C 2 compactly supported functions for partition of unity and local Wend-
land and Gaussian interpolants.

Wendland Gaussian

N M RMS-error rate c RMS-error rate c

9 1 3.325975e-001 0.1 3.384117e-001 6
25 4 1. 355396e-OO 1 1.2951 0.1 l .383321e-001 1.2906 6
81 16 1. 035963e-002 3.7097 0.1 3. 640953e-002 1.9257 6

289 64 2.569458e-003 2.0114 0.1 l .030984e-002 1.8203 6
1089 256 5. 860966e-004 2.1323 0.1 3.543463e-003 1.5408 6
4225 1024 2. 703318e-004 1.1164 0.1 l.045103e-003 1.7615 6

16641 4096 7. 701234e-005 1.8116 0.1 3.896345e-004 1.4235 6
66049 16384 4.492321e-005 0.7776 0.1 5.012220e-005 2.9586 6
263169 65536 1.589134e-005 1.4992 0.1 1. 631609e-005 1.6192 6

1050625 262144 1.032629e-006 3.9438 0.1 2.000238e-006 3.0281 6

Table 29.1 presents the best approximation of Franke's test function reported in this
book. However, in Table 17.5 we needed only N = 4225 uniformly spaced points for
a global Gaussian interpolant with c = 6.3 to achieve an RMS-error of 7.371879e-
009. Of course, it may be possible to obtain even better approximations with other
RBFs. We do not claim that Gaussians are the "best" RBFs. However, we do
recommend the partition of unity approach for the solution of large interpolation or
approximation problems since it is relatively simple to implement and its execution
is quite efficient.

Chapter 30

Approximation of Point Cloud Data in 3D

30.1 A General Approach via Implicit Surfaces

A common problem in computer graphics and computer aided design (CAD) is the
reconstruction of a three-dimensional surface defined in terms of point cloud data,
i.e., as a set of unorganized, irregular points in 3D. For example, this could be
laser range data obtained for the purpose of computer modeling of a complicated
3D object. Such applications also arise, e.g., in computer graphics or in medical
imaging. An approach to obtaining a surface that fits the given 3D point cloud data
that has recently become rather popular (see, e.g., [Carr et al. (1997); Carr et al.
(2001); Morse et al. (2001); Ohtake et al. (2003a); Ohtake et al. (2003b); Turk and
O'Brien (2002); Wendland (2002b)]) is based on the use of implicit surfaces defined
in terms of some meshfree approximation method such as an RBF interpolant or
an MLS approximant.

More precisely, given data of the form {Xi = (Xi, Yi, Zi) E IR3 , i = 1, ... , N}
assumed to come from some two-dimensional manifold M (i.e., a surface in IR3), we
seek another surface M* that is a reasonable approximation to M. For the implicit
surface approach we think of M as the surface of all points (x, y, z) that satisfy the
implicit equation

J(x, y, z) = 0

for some function f. Thus, the function f implicitly defines the surface M. In
other words, the equation f(x, y, z) = 0 defines the zero iso-surface of the trivariate
function f and therefore this iso-surface coincides with M.

As so often before, we will construct the surface M* via interpolation. Obvi­
ously, if we only specify the interpolant to be zero at the data points, then we will
obtain a zero interpolant, and will not be able to extract a meaningful iso-surface.
Therefore, the key to finding an approximation to the trivariate function f from
the given data points xi, i = 1, ... , N, is to add an extra set of off-surface points to
the data so that we can then compute a (solid) three-dimensional interpolant Pf to
the total set of points, i.e., the surface points plus the auxiliary off-surface points.
This will result in a nontrivial interpolant, and we will then be able to extract its

255

256 Meshfree Approximation Methods with MATLAB

zero iso-surface. To illustrate this technique we discuss how this idea works in the
2D setting in the next section.

The addition of off-surface points results in a problem of the same type as the
scattered data approximation problems discussed in earlier chapters. In particular,
if the data sets are large, it is advisable to use either a local radial basis interpolant,
a moving-least squares approach, or a partition of unity interpolant. However, there
are also implicit point cloud interpolants based on fast evaluation algorithms with
global RBFs (see, e.g., [Carr et al. (2001)]).

The surface reconstruction problem consists of three sub-problems:

(1) Construct the extra off-surface points.
(2) Find the trivariate meshfree approximant to the augmented data set.
(3) Render the iso-surface (zero-contour) of the fit computed in step (2).

In order to keep the discussion as simple as possible we assume that, in addition
to the point cloud data, we are also given a set of surface normals ni = (nf, nf, nf)
to the surface M at the points Xi = (xi, Yi, zi)· If these normals are not explicitly
given, there are techniques available that can be used to estimate the normals (see,
e.g., the discussion in [Wendland (2002b)]). Once we have the (oriented) surface
normals, we construct the extra off-surface points by marching a small distance
along the surface normal, i.e., we obtain for each data point (xi, Yi, zi) two additional
off-surface points. One point lies "outside" the manifold M and is given by

(xN+i,YN+i,ZN+i) =Xi+ 8ni =(xi+ 8nf,Yi + 8nt,Yi + 8nf),

and the other point lies "inside" M and is given by

(x2N+i, Y2N+i, z2N+i) =xi - 8ni = (xi - 8nf, Yi - 8nt, Yi - 8nf).

Here 8 is a small step size (whose specific magnitude can be rather critical for a
good surface fit, see [Carr et al. (2001)]). In particular, if 8 is chosen too large,
then this can easily result in self-intersecting inner or outer auxiliary surfaces. In
our simple MATLAB implementation in the next section we uniformly take 8 to be
13 of the maximum dimension of the bounding box of the data as suggested in
[Wendland (2002b)].

Once we have created the auxiliary data, the interpolant is computed by deter­
mining a function Pf whose zero contour interpolates the given point cloud data,
and whose "inner" and "outer" offset contours interpolate the augmented data, i.e.,

P1(xi) = 0, .i = 1, ... , N,

P1(xi) = 1,· i = N + 1, ... ,2N,

P1(xi) = -1, i = 2N + 1, ... ,3N.

The values of ±1 for the auxiliary data are arbitrary. Their precise value is not as
critical as the choice of 8.

For the third step we also use a very simple solution, namely we just render the
resulting approximating surface M* as the zero contour of the 3D interpolant. In

30. Approximation of Point Cloud Data in SD 257

MATLAB this can be accomplished with the command isosurface (or contour for
2D problems). This provides a rough picture of the implicit surface interpolant, but
may also lead to some rendering artifacts that can be avoided with more sophis­
ticated rendering procedures. For more serious applications one usually employs
some variation of a ray tracing or marching cube algorithm (see the discussion in
the references listed above).

The implicit surface representation has the advantage that the surface normals
of the approximating surface M * can be explicitly and analytically calculated as
the gradients of the trivariate function Pf, i.e., n(x) = VP1 (x).

Since in practice the data (e.g., obtained by laser range scanners) is subject
to measurement errors it is often beneficial if an additional smoothing procedure is
employed. One can either use the ridge regression approach suggested in Chapter 19,
or use a moving least squares approximation instead of an RBF interpolant. Another
implicit smoothing technique was suggested in [Beatson and Bui (2003)]. Noisy data
can also be dealt with by using a multilevel technique such as suggested in [Ohtake
et al. (2003b)]. We discuss multilevel interpolation and approximation algorithms
in Chapter 32.

30.2 An Illustration in 2D

Since the 3D point cloud interpolation problem requires an interpolant to points
viewed as samples of a trivariate function whose graph is a 4D hypersurface, the
visualization of the individual steps of the construction of the final iso-surface is
problematic. We therefore illustrate the process with an analogous two-dimensional
problem, i.e., we assume we are given points (taken from a closed curve C) in the
plane, and it is our goal to find an interpolating curve C*. Below we present both
MATLAB code and several figures.

Program 30.1. PointCloud2D. m

% PointCloud2D
% Script that fits a curve to 2D point cloud
% Calls on: DistanceMatrix
% Uses: haltonseq (written by Daniel Dougherty
% from MATLAB Central File Exchange)

% Gaussian RBF
1 rbf = ©(e,r) exp(-(e*r).-2); ep = 3.5;
2 N = 81; % number of data points
3 neval = 40; % to create neval-by-neval evaluation grid
4 t = 2*pi*haltonseq(N,1); dsites = [cos(t) sin(t)];
5 x = (2+sin(t)).*cos(t); y = (2+cos(t)).*sin(t);
6 nx = (2+cos(t)).*cos(t)-sin(t).-2;

258 Meshfree Approximation Methods with MATLAB

7 ny = (2+sin(t)).*sin(t)-cos(t).-2;
8 dsites = [x y]; normals = [nx ny];

% Produce auxiliary points along normals "inside" and "outside"
9 bmin = min(dsites,[] ,1); bmax = max(dsites,[] ,1);

10 bdim = max(bmax-bmin);
% Distance along normal at which to place new points

11 delta= bdim/100;
% Create new points

12 dsites(N+1:2*N,:) = dsites(1:N,:) + delta*normals;
13 dsites(2*N+1:3*N,:) = dsites(1:N,:) - delta*normals;

% "original" points have rhs=O,
% "inside" points have rhs=-1, "outside" points have rhs=l

14 rhs = [zeros(N,1); ones(N,1); -ones(N,l)];
% Let centers coincide with data sites

15 ctrs = dsites;
% Compute new bounding box

16 bmin = min(dsites,[],1); bmax = max(dsites,[],1);
% Create neval-by-neval equally spaced evaluation locations
% in bounding box

17 xgrid = linspace(bmin(1),bmax(1),neval);
18 ygrid = linspace(bmin(2),bmax(2),neval);
19 [xe,ye] = meshgrid(xgrid,ygrid);
20 epoints = [xe(:) ye(:)];
21 DM_eval = DistanceMatrix(epoints,ctrs);
22 EM= rbf(ep,DM_eval);
23 DM_data = DistanceMatrix(dsites,ctrs);
24 IM= rbf(ep,DM_data);
25 Pf= EM* (IM\rhs);

% Plot extended data with 2D-fit Pf
26 figure; hold on; view([-30,30])
27 plot3(dsites(:,1),dsites(:,2),rhs,'r.','markersize',20);
28 mesh(xe,ye,reshape(Pf,neval,neval));
29 axis tight; hold off

% Plot data sites with interpolant (zero contour of 2D-fit Pf)
30 figure; hold on
31 plot(dsites(1:N,1),dsites(1:N,2),'bo');
32 contour(xe,ye,reshape(Pf,neval,neval),[O O],'r');
33 hold off

In the MATLAB program PointCloud2D .m (see Program 30.1) we create test
data on lines 4-8 by sampling a parametric curve (in polar coordinates) at irregular
parameter values t. These points are displayed in the left plot of Figure 30.1.

30. Approximation of Point Cloud Data in 3D 259

Since we use a known representation of the curve to generate the point cloud it is
also possible to obtain an exact normal vector associated with each data point (see
lines 6-8).

The strategy for creation of the auxiliary points is the same as above, i.e., we
add data points "inside" and "outside" the given point set. This is done by placing
these points along the normal vector at each original data point (see lines 12 and
13). The distance along the normal at which the auxiliary points are placed is taken
to be 1 % of the size of the maximum dimension of the bounding box of the original
data (see lines 9-11).

Next, the problem is turned into a full 2D interpolation problem (whose solution
has a 3D graph) by adding function values (of the unknown bivariate function f
whose zero-level iso-curve will be the desired interpolating curve) at the extended
data set. We assign a value of 0 to each original data point, and a value of 1 or
-1 to "outside" or "inside" points, respectively. This is done on line 14 of the code
and the resulting data is displayed in the right plot of Figure 30.1 (c.f. also line 27
of the code).

2 00 0 o ooo o o~

cP° 0
0 ° 0

0

(
~ 0.5
§

8
z 0

y 0
0 -0.5

~o 0

-1 o~ ,f -1
0 4 ocq,

0
o

2
-2 0~0# 0

-2
-2 -1 0 2 y -4

x x

Fig. 30.1 Point cloud data (left) and extended "inner" and "outer" data (right) for implicit curve
with 81 non-uniform data points.

Now we can solve the problem just like any of our 2D interpolation problems
discussed earlier. In fact, in Program 30.1 we use straightforward RBF interpolation
with Gaussian RBFs (see lines 1 and 19-25).

Finally, the zero contour of the resulting surface is extracted on line 32 using
the contour command. In the left plot of Figure 30.2 we display a surface plot
of the bivariate RBF interpolant to the extended data set (obtained via the mesh
command on line 28), and in the right plot we show the final interpolating curve
along with the original data.

260

2

z 0

-1

-2

2

0

y -2 -2

Meshfree Approximation Methods with MATLAB

-1

x -2 -1 0
x

Fig. 30.2 Surface fit (left) and zero contour for 81 non-uniform data points.

2

30.3 A Simplistic Implementation in 3D via Partition of Unity
Approximation in MATLAB

In the MATLAB program PointCloud3D_FUCS (see Program 30.2) we present a fairly
simple implementation of the partition of unity approach to interpolation of point
cloud data in 3D. The partition of unity is created with a Shepard approximant
as in the previous chapter. As in Program 29.1 we use Wendland's C 2 compactly
supported function as both the Shepard weights and for the local RBF interpolants.

The data sets used in our examples correspond to various resolutions of the Stan­
ford bunny available on the world-wide web at http: I I graphics. stanf ord. edu/­
data/3Dscanrep/. Data sets consisting of 35947, 8171, 1889, and 453
points are included in the file bunny. tar. gz. The normals for this kind
of PLY data can be computed with the utility normals ply from the pack­
age ply. tar. gz provided by Greg Turk, and available on the world-wide web
at http: I /www. cc. gate ch. edu/pro j ects/large...models/ply. html. Results ob­
tained with the PointCloud3D_FUCS for the 453 and 8171 point cloud sets are dis­
played in Figure 30.3. Processed data files are included on the enclosed CD.

Many parts of the MATLAB code for PointCloud3D_FUCS are similar to Pro­
gram 29.1. The bunny data set including point normals is loaded on line 6, and
the bounding box for the point cloud and its maximum dimension are computed
on lines 7-8. The off-surface points are added in lines 10-14. Then the right-hand
side for the augmented (3D) interpolation problem is defined on line 15 (assigning
a value of 0 for the on-surface data points, and a value of ±1 for the "outside" and
"inside" off-surface points), and we recompute the bounding box for the augmented
data on line 16.

We have found that a reasonable value for the radius of the partition of unity
subdomains seems to be given by the maximal dimension of the bounding box
divided by the cube root of the number, M, of subdomains, i.e., diam(f2J) = l/wc
with we = ifM /bdim (see lines 9 and 28).

30. Approximation of Point Cloud Data in 3D 261

The main part of the program (lines 29-46) is almost identical to lines 21-38
of Program 29.1. On lines 47-55 we add the code that creates and displays the
zero-contour iso-surface for the 3D (solid) interpolant Pf along with the point cloud
data.

Program 30.2. PointCloud3D_FUCS .m

/. PointCloud3D_PUCS
% Script that fits a surface to 30 point cloud using partition of
% unity approximation with sparse matrices
I. Calls on: CSEvalMatrix
I. Uses: k-D tree package by Guy Shechter

from MATLAB Central File Exchange I.
% Weight function for global Shepard partition of unity weighting

1 wf = ©(e,r) r.-4.*(5*spones(r)-4*r);
I. The RBF basis function for local RBF interpolation

2 rbf = ©(e,r) r.-4.*(5*spones(r)-4*r);
3 ep = 1; % Parameter for basis function

I. Parameter for npu-by-npu-by-npu grid of PU cells
4 npu = 8;

I. Parameter for npu-by-npu-by-npu grid of PU cells
5 neval = 25;

I. Load data points and compute bounding box
6 load('Data3D_Bunny3'); N = size(dsites,1);
7 bmin = min(dsites,[],1); bmax = max(dsites,[],1);
8 bdim = max(bmax-bmin);
9 wep = npu/bdim;

I. Add auxiliary points along normals "inside" and "outside"
I. Find points with nonzero normal vectors and count them

10 withnormals = find(normals(:,1) lnormals(:,2)1normals(:,3));
11 addpoints = length(withnormals);

% Distance along normal at which to place new points
12 delta = bdim/100;

I. Create new points
13a dsites(N+l:N+addpoints,:) =
13b dsites(withnormals,:) + delta*normals(withnormals,:);
14a dsites(N+addpoints+1:N+2*addpoints,:) = ...
14b dsites(withnormals,:) - delta*normals(withnormals,:);

I. Interpolant is implicit surface, i.e.,
I. "original" points have rhs=O, "inside" rhs=-1, "outside" rhs=l

15 rhs = [zeros(N,1); ones(addpoints,1); -ones(addpoints,1)];
I. Compute new bounding box

16 bmin = min(dsites,[] ,1); bmax = max(dsites,[],1);

262 Meshfree Approximation Methods with MATLAB

17 ctrs = dsites;
% Create neval-by-neval-by-neval equally spaced evaluation
% locations in bounding box

18 xgrid = linspace(bmin(1),bmax(1),neval);
19 ygrid = linspace(bmin(2),bmax(2),neval);
20 zgrid = linspace(bmin(3),bmax(3),neval);
21 [xe,ye,ze] = meshgrid(xgrid,ygrid,zgrid);
22 epoints = [xe(:) ye(:) ze(:)];

!. Create npu-by-npu-by-npu equally spaced centers of PU cells

% in bounding box
23 puxgrid = linspace(bmin(1),bmax(1),npu);
24 puygrid = linspace(bmin(2),bmax(2),npu);
25 puzgrid = linspace(bmin(3),bmax(3),npu);
26 [xpu,ypu,zpu] = meshgrid(puxgrid,puygrid,puzgrid);
27 cellctrs = [xpu(:) ypu(:) zpu(:)];
28 cellradius = 1/wep;

% Compute Shepard evaluation matrix
29 DM_eval = DistanceMatrixCSRBF(epoints,cellctrs,wep);
30 SEM = wf(wep,DM_eval);
31 SEM = spdiags(1./(SEM*ones(npu-3,1)),0,neval-3,neval-3)*SEM;

!. Build k-D trees for data sites and evaluation points
32 [tmp,tmp,datatree] = kdtree(dsites,[]);
33 [tmp,tmp,evaltree] = kdtree(epoints, []);
34 Pf= zeros(neval-3,1); % initialize
35 for j=1:npu-3

% Find data sites in cell j
36a [pts,dist,idx] = kdrangequery(datatree, ...
36b cellctrs(j,:),cellradius);
37 if (length(idx) > 0)

!. Build local interpolation matrix for cell j
38a DM_data = DistanceMatrixCSRBF(dsites(idx,:), ...
38b ctrs(idx,:),ep);
39 IM= rbf(ep,DM_data);

!. Find evaluation points in cell j
40a [epts,edist,eidx] = kdrangequery(evaltree, ...
40b cellctrs(j,:),cellradius);

% Compute local evaluation matrix
41a DM_eval = DistanceMatrixCSRBF(epoints(eidx,:), ...
41b ctrs(idx,:),ep);
42 EM= rbf(ep,DM_eval);

% Compute local RBF interpolant
43 localfit =EM* (IM\rhs(idx));

30. Approximation of Point Cloud Data in 3D

% Accumulate global fit
44 Pf(eidx) = Pf(eidx) + localfit.*SEM(eidx,j);
45 end
46 end

% Plot data sites with interpolant (zero contour of 30-fit Pf)
47 figure; hold on
48 plot3(dsites(1:N,1),dsites(1:N,2),dsites(1:N,3),'bo');
49a pfit = patch(isosurface(xe,ye,ze, ...
49b reshape(Pf,neval,neval,neval),O));
50 isonormals(xe,ye,ze,reshape(Pf,neval,neval,neval),pfit)
51a set(pfit,'FaceLighting','gouraud','FaceColor', ...
51b 'red','EdgeColor','none');
52 light('Position',[0 0 1] ,'Style','infinite');
53 daspect([1 1 1]); view([0,90]);
54 axis([bmin(1) bmax(1) bmin(2) bmax(2) bmin(3) bmax(3)]);
55 axis off; hold off

263

In Figure 30.3 we display partition of unity fits based on local RBF interpolants
built with compactly supported Wendland's C 2 basis functions. The point cloud
data sets consist of 453 points (top plots in Figure 30.3) and 8171 points (bottom
plots in Figure 30.3). The augmented data sets for the 3D interpolants are almost
three times as large (since not every data point has a normal vector associated with
it). On the left we show the fitted surface along with the data points, and on the
right the fit is displayed by itself. For the plots in the bottom part of Figure 30.3 the
simple iso-surface plot in MATLAB does a surprisingly good job. In other situations,
however, it causes some artifacts such as the extra surface fragment near the bunny's
ear in the top part of Figure 30.3.

For the top plots in Figure 30.3 we used 83 = 256 subdomains and 253 = 15625
evaluation points in the bounding box of the 3D data, and for those on the bottom of
Figure 30.3 we used 323 = 32768 subdomains and 503 = 125000 evaluation points.

264 Meshfree Approximation Methods with MATLAB

Fig. 30.3 Partition of unity implicit surface interpolant to Stanford bunny with 453 (top) and
8171 (bottom) data points.

Chapter 31

Fixed Level Residual Iteration

In the next few chapters we will look at various versions of residual iteration. The
basic idea of using an iterative algorithm in which one takes advantage of the residual
of an initial approximation to obtain a more accurate solution is well-known in many
branches of mathematics.

31.1 Iterative Refinement

For example, in numerical linear algebra this process is known as iterative refinement
(see, e.g., [Kincaid and Cheney (2002)]). We might be interested in solving a system
of linear equations Ax = b, and obtain a (numerical) solution x 0 by applying
an algorithm such as Gaussian elimination. We can then compute the residual
r = b - Ax0 , and realize that it is related to the error, e = x - Xo, via the relation

Ae = Ax - Axo = r. (31.1)

Thus, by adding the (numerical) solution e 0 of equation (31.1) to the initial solution
x 0 one expects to improve the initial approximation to X1 = xo + eo (since the true
solution x = x 0 + e). Of course, this procedure can be repeated iteratively. This
leads to the algorithm

Algorithm 31.1. Iterative refinement

(1) Compute an approximate solution xo of Ax= b.
(2) Fork= 1,2, ... do

(a) Compute the residual Tk = b - Axk-1·

(b) Solve Aek = rk.

(c) Update Xk = Xk-1 + ek.

We can rewrite the last statement in the algorithm as

Xk = Xk-1 + B(b - Axk-1), (31.2)

where Bis an approximate (or numerical) inverse of A characterized by the property
that III - BAii < 1 for some matrix norm. This condition allows us to express the

265

266 Meshfree Approximation Methods with MATLAB

exact inverse of A by a Neumann series, i.e.,

A- 1 = (BA)- 1 B = [f (J - BA)j] B.
J=O

Therefore the exact solution of Ax= b can be written in the form

x = A-1b = [f (I - BA)j] Bb.
J=O

(31.3)

For the iterative refinement algorithm, on the other hand, we have from (31.2)
and the fact that x 0 = Bb, that

Xk = Xk-1 + B(b - Axk-1)

= (I - BA)xk-1 + Bb

= (I - BA)xk-1 + xo. (31.4)

We can recursively substitute this relation back in for Xk-l, Xk- 2 , etc., and obtain

Xk = [tu -BA)'] Xo = [t(I -BA)j] Bb.
J=O J=O

(31.5)

It is now easy to see that the iterates Xk of the refinement algorithm converge
to the exact solution x. We simply look at the difference x - Xk at level k, i.e.,
from (31.3) and (31.5) we obtain

x - Xk = [f (I - BA)j] Bb,
j=k+l

whose norm goes to zero fork ~ oo since III - BAii < 1 by the assumption made
on the approximate inverse B.

We now apply these ideas to RBF interpolation and MLS approximation. In
this and the following chapters we will consider three different scenarios:

• Fixed level iteration, i.e., the iterative refinement algorithm is performed on a
fixed set of data points X.

• Multilevel iteration, i.e., we work with a nested sequence of data sets X0 ~

X1 ~ ··· ~ X.
• Adaptive iteration, i.e., residual iteration is performed on adaptively chosen

subsets of X, e.g., by starting with some small subset of X and then adding one
point at a time from the remainder of X that is determined to be "optimal".

Note that the third approach is similar to the adaptive knot insertion algorithm
of Chapter 21.

31. Fixed Level Residual Iteration 267

31.2 Fixed Level Iteration

The simplest setting for a meshfree residual iteration algorithm arises when we
fix the data sites X = {x1 , ... , XN} throughout the iterative procedure. For this
setting the iterative refinement algorithm from linear algebra can be adapted in
a straightforward way. We first discuss residual iteration for quasi-interpolants
(or approximate MLS approximants) based on (radial) generating functions Wj,
j= l, ... ,N.

If we keep the same set of generating functions for all steps of the iteration then
we are performing non-stationary approximation and we obtain

Algorithm 31.2. Fixed level residual iteration based on quasi-interpolation

(1) Compute an initial approximation Pj0) to the data {(xj, f(xJ)), j = 1, ... ,N}
N

of the form Pj0)(x) = L f(xJ)WJ(x).
j=l

(2) For k = 1, 2, ... do

(a) Compute the residuals rk(xJ) = f(xJ) - Py-l)(xJ) for all j = 1, ... , N.
N

(b) Compute the correction u(x) = L rk(xJ)Wj(x).
j=l

(c) Update P?)(x) = P?-l)(x) + u(x).

As for the iterative refinement algorithm, we can rewrite the last line of the
algorithm as

N

P?)(x) = P?-l)(x) + L [f(xJ) - P?-l)(xJ)] Wj(x).
j=l

Now we restrict the evaluation of the approximation to the data sites only. Thus,
we have

N

(k)() - (k-1)() """ [() (k-1)()] () pf Xi - pf Xi + L...t f X j - pf X j W j Xi , i = 1, . .. ,N.
j=l

(31.6)
Next we collect all of these N equations into one single matrix-vector equation by
introducing the vectors f = [f(x1), f(x2), ... , f(xN)]T and W = ['111, '112, ... , W N]T.
This allows us to rewrite the initial approximant in matrix-vector form

(31.7)

Moreover, evaluation of the vector W of generating functions at the data sites Xi,

i = 1, ... , N gives rise to a matrix A with rows wT(xi), i = 1, ... , N. Therefore,
(31.6) now becomes

268 Meshfree Approximation Methods with MATLAB

where we interpret 'Pf(k) as a vector of values of the approximant at the data sites,
. (k) [(k)() -n(k)()IT i.e., Pi = P1 X1 , ... , r f XN .

Next we follow analogous steps as in our discussion of iterative refinement above.
Thus

p/k) = p/k-1) + A(f _ p/k-1))

= (I - A)P/k-l) + Af

=(I - A)P/k-1) + P/o),
(31.8)

since (31.7) implies that on the data sites we have 'Pt(O) = Af. Now we can again
recursively substitute back in and obtain

(31.9)

Note that here we have to deal only with the matrix A since the computation
of the correction in the algorithm does not require the solution of a linear system.

As before, the sum E7=0 (I - A)J can be seen as a truncated Neumann series
expansion for the inverse of the matrix A. If we demand that III - All < 1, then

the matrix (E7=0 (J - A)J) is an approximate inverse of A which converges to A- 1

since III - Allk ~ 0 for k ~ oo. More details (such as sufficient conditions under
which III - All < 1) are given in [Fasshauer and Zhang (2006)].

In order to establish a connection between iterated (approximate) MLS approx­
imation and RBF interpolation we assume the matrix A to be positive definite and
generated by radial basis functions <l?j = cp(ll · -xjll) as in our discussions in ear­
lier chapters. Then A corresponds to an RBF interpolation matrix, and we see
that the iterated (approximate) MLS approximation converges to the RBF inter­
polant provided the same function spaces are used, i.e., span{Wj, j = 1, ... , N} =

span{<I?j, j = 1, ... , N}.
In particular, we have established

Theorem 31.1. Assume w 1 , ... , 'I! N are strictly positive definite {radial) generat­
ing functions for approximate MLS approximation as discussed in Chapter 26. Then
the residual iteration fit of Algorithm 31.2 based on approximate MLS approxima­
tion with these generating functions converges to the REF interpolant based on the
same basis functions 'I! 1, ... , 'I! N provided the matrix A with entries Aij = 'I! j (Xi)
satisfies III - All < 1.

A sufficient condition for A to satisfy III - All < 1 was given in [Fasshauer and
Zhang (2006)]. As long as the maximum row sum of A is small enough, i.e.,

i=~~~.N {t IAi,j1} < 2,
J=l

31. Fixed Level Residual Iteration 269

we have convergence of the residual iteration algorithm. This condition is closely
related to the Lebesgue function of the RBF interpolant. For example, it is not
hard to see that Shepard generating functions satisfy this condition since each row
sum is equal to one due to the partition of unity property of the Shepard functions.
For other types of functions the condition can be satisfied by an appropriate scaling
of the basic function with a sufficiently small shape parameter. However, if c is
taken too small, then the algorithm converges very slowly. A series of experiments
analyzing the behavior of the algorithm are presented in [Fasshauer and Zhang
(2006)] and also in Section 31.4 below.

The question of whether the approximate MLS generating functions are strictly
positive definite has been irrelevant up to this point. However, in order to make
the connection between AMLS approximation and RBF interpolation as stated in
Theorem 31.l it is important to find AMLS generating functions that satisfy this
additional condition. Of course, any (appropriately normalized) strictly positive
definite function can serve as a second-order accurate AMLS generating function.
However, it is an open question for which of these functions their higher-order
generating functions computed according to our discussion in Chapter 26 are also
strictly positive definite.

The family of Laguerre-Gaussians (4. 2) provides one example of generating/basis
functions that can be used to illustrate Theorem 31.1 (see the numerical experiments
below) since their Fourier transforms are positive (see (4.3)).

31.3 Modifications of the Basic Fixed Level Iteration Algorithm

If we start from the interpolation end, then the interpolation conditions P1 (xi) =

f (xi) tell us that we need to solve the linear system Ac = f in order to find the
coefficients of the RBF expansion

N

P1(x) = L ci<I>i(x).
j=l

Following the same iterative procedure as above (c.f. (31.4)) this leads to

ck = Ck-1 + B(f - Ack-i) (31.10)
k

=LU - BA)j Bf, (31.11)
j=O

where B is an approximate inverse of A as in Section 31.1 and we let co = Bf.
Here Ck is the k-th step approximation to the coefficient vector c = [c1, ... , c N]T.

Equation (31.10) can also be rewritten as

Ck= (I - BA)ck-1 +Bf,

and therefore corresponds to a standard stationary iteration for the solution of
linear systems (see, e.g., p. 620 of [Meyer (2000)]). The splitting matrices such that
A= M-N are M = B-1, N = B-1 -A, and H = M- 1N =(I-BA).

270 Meshfree Approximation MethOds with MATLAB

On the other hand, (31.11) gives us an interpretation of the residual iteration
as a Krylov subspace method with the Krylov subspaces generated by the matrix
I - BA and the vector Bf.

In the quasi-interpolation formulation the corresponding formulas are given by
(31.9), i.e.,

(31.12)

and can also be interpreted as a Krylov subspace iteration with the Krylov subspaces
generated by the matrix I - A and the vector Af. Note, however, that in (31.11)
we are computing the coefficients of the RBF interpolant, while in (31.12) we are
directly computing an approximation to the interpolant.

A natural problem associated with Krylov subspace methods is the determina­
tion of coefficients (search directions) O.j such that L:;=O aJ(I - A)J Af converges
faster than the generic method with aj = 1 discussed above., Some related work is
discussed in the context of the Faul-Powell algorithm in Section 33.2.

We conclude our discussion of modifications of the basic fixed level residual iter­
ation algorithm by noting that the usual stationary approximation method cannot
be applied within the fixed level iteration paradigm since we do not have a change
in data density that can be used as a guide to re-scale the basis functions. However,
it is possible to generalize the non-stationary algorithm to a more general setting
in which we change the approximation space from one step to the next. As in the
non-stationary setting we can only apply this strategy with approximation methods
since an interpolation method will immediately lead to a zero initial residual. For
example, one could devise an algorithm in which we use cross-validation at each it­
eration step to determine the optimal shape parameter (or support size) for the next
residual correction. Such an algorithm would also fit into the category of adaptive
iterations as discussed below.

31.4 Iterated Approximate MLS Approximation in MATLAB

We now illustrate the fixed level residual iteration algorithm with some MATLAB
experiments based on the iteration of approximate MLS approximants with Gaus­
sian generating functions. To obtain some test data we use Franke's function (2.2)
on 289 Halton points in the unit square.

In our earlier discussion of approximate MLS approximation we limited ourselves
mostly to the case of uniformly spaced data. This was due to the fact, that for
non-uniformly spaced data one needs to scale the generating functions individually
according to the local variation in the data density in order to maintain the approx­
imate approximation orders stated in Theorem 26.1. Now the convergence result
of Theorem 31.1 shows that we no longer need to feel bound by those limitations.

31. Fixed Level Residual Iteration 271

Iteration will automatically improve the approximate MLS fit also on non-uniform
data. On the other hand, this observation suggests that the use of a uniform shape
parameter for RBF interpolation is most likely not the ideal strategy to obtain
highly accurate RBF fits. While a few experiments of RBF interpolation with vary­
ing shape parameters exist in the literature (see, e.g., [Kansa and Carlson (1992);
Bozzini et al. (2002); Fornberg and Zuev (2006)]), the theory for this case is only
rudimentary [Bozzini et al. (2002)].

The MATLAB code for our examples is provided in Program 31.1. Since we are
iterating the approximate MLS approximation we define the scale of the generat­
ing functions in terms of the parameter D (see line 2). However, since the RBF
(Gaussian) is defined with the parameter e we convert D to e based on the for­
mulae = l/(VVh). We approximate h (even for non-uniform Halton points) by
h = 1/(..JN - 1), where N is the number of data points (in 2D).

In contrast to previous programs we now require two sets of evaluation points.
The usual epoints that we employ for error computation and plotting along with
another set respoints, the points at which we evaluate the residuals during the
iterative procedure. These points coincide with the data points (see line 13). The
iteration on lines 23-28 is equivalent to the formulation in Algorithm 31.2 above.

Program 31.1. Iterated..MLSApproxApprox2D.m

% Iterated_MLSApproxApprox2D
% Script that performs iterated approximate MLS approximation
% Calls on: DistanceMatrix

1 rbf = ©(e,r) exp(-(e*r).-2);
2 D = 64/9; % Parameter for basis function

% Define Franke's function as testfunction
3 f1 = ©(x,y) 0.75*exp(-((9*x-2).-2+(9*y-2).-2)/4);
4 f2 = ©(x,y) 0.75*exp(-((9*x+l).-2/49+(9*y+1).-2/10));
5 f3 = ©(x,y) 0.5*exp(-((9*x-7).-2+(9*y-3).-2)/4);
6 f4 = ©(x,y) 0.2*exp(-((9*x-4).-2+(9*y-7).-2));
7 testfunction = ©(x,y) f1(x,y)+f2(x,y)+f3(x,y)-f4(x,y);

8 neval = 40;
9 N = 289; gridtype = 'h';

% Convert D to epsilon for use with basis function definition
10 h = 1/(sqrt(N)-1); ep = 1/(sqrt(D)*h);

% Number of levels for multilevel iteration
11 maxlevel = 10000;

% Load data points
12 name= sprintf('Data2D_%d%s',N,gridtype); load(name)
13 respoints = dsites; ctrs = dsites;

% Create neval-by-neval equally spaced evaluation locations
% in the unit square

272 Meshfree Approximation Methods with MATLAB

14 grid= linspace(0,1,neval); [xe,ye] = meshgrid(grid);
15 epoints = [xe(:) ye(:)];

% Compute exact solution
16 exact= testfunction(epoints(:,1),epoints(:,2));

% Compute evaluation matrix directly based on the distances
% between the evaluation points and centers

17 DM = DistanceMatrix(epoints,ctrs);
18 EM= rbf(ep,DM)/(pi*D);

% Compute - for all levels - evaluation matrices for
% residuals directly based on the distances between the
% next finer points (respoints) and centers

19 DM = DistanceMatrix(respoints,ctrs);
20 RM= rbf(ep,DM)/(pi*D);
21 Pf= zeros(neval-2,1); % initialize

% Create vector of function values (initial residual),
22 rhs = testfunction(dsites(:,1),dsites(:,2));
23 for level=l:maxlevel

% Evaluate on evaluation points
% (for error computation and plotting)

24 Pf = Pf + EM*rhs;
% Compute new residual

25 rhs = rhs - RM*rhs;
% Compute errors on evaluation grid

26 maxerr(level) = norm(Pf-exact,inf);
27 rms_err(level) = norm(Pf-exact)/neval;
28 end
29 figure; semilogy(l:maxlevel,maxerr,'b',l:maxlevel,rms_err,'r');

According to the experiments shown in Figure 2 .5 the optimal shape parameter
for Gaussian interpolation to Franke's function on 289 Halton points is close to
c = 6. The corresponding value of 1J for the Gaussian as an approximate MLS
generating function is 1J = 64/9 (since c = 1/(../15h), and we approximate h for
the non-uniform Halton points by the value we would have for uniform points, i.e.,
h = 1/(VN - 1). For this value of the shape parameter we see the convergence
behavior of the approximate MLS residual iteration in the left plot of Figure 31.1.
The final maximum error after 10000 iterations is 9.921772e-002 (top/solid curve),
and the RMS error is 3.939342e-003 (lower/dashed curve). For comparison, the
errors for the corresponding RBF interpolant (which is the theoretical limit of the
residual iteration) are 3.238735e-002 for the maximum error and l.074443e-003 for
the RMS error. These errors are included as horizontal straight lines in the left plot
of Figure 31.1.

~ g
w

31. Fixed Level Residual Iteration

- maxerr AMLS
- - - RMSerr AMLS
·-·-·maxerr RBF

10
_, '---~--------1·="="'..,:· R~M~S~e~rr~R~B~F d

10-
2 ~' --------------------------·

10-3 ... _..._
0 2000 4000 6000 8000 10000

#Iterations

4

3

2 ······

z 1

-2
0

0.5

1 1
y

273

2.5

2

1.5
g
w

0.5

0.5
x

Fig. 31.1 Convergence for iterated MLS approximation based on Gaussian generating functions
with V = 64/9 (e = 6) to data sampled from Franke's function at 289 Halton points (left), and fit
for an RBF interpolant based on Gaussians withe= 1 (right).

An advantage of the residual iteration is that it allows us to compute radial basis
approximations also for values of the shape parameter for which the interpolation
matrix is very ill-conditioned. For example, the right plot of Figure 31.1 shows an
RBF interpolant to the 289 Halton samples of Franke's function based on Gaussians
with shape parameter c = 1. The reciprocal condition number estimate provided by
MATLAB for the interpolation matrix for this problem is RCOND = 2 .132739e-020.

In these ill-conditioned cases convergence of the residual iteration to the limit
is rather slow, but the approximations can be computed very stably. In the left
plot of Figure 31.2 we show the convergence behavior for the residual iteration
with approximate MLS approximants based on Gaussian generating functions with
V = 256 (corresponding to c = 1). Note that the approximation errors for the
iterative scheme quickly drop below the maximum error of 2.507017e+000 and RMS
error of 2.186992e-001 of the mostly meaningless interpolant. The corresponding fit
for the iterative method is displayed in the right plot of the figure. While this fit
is not very accurate, it is still much more reliable than the fit consisting of mostly
numerical noise shown in the right plot of Figure 31.1. The final errors after 10000
iterations are 2.933448e-001 for the maximum error and 8.470775e-002 for the RMS
error.

It is of interest to note that the residual iteration shows the most dramatic
error improvement during the first few iterations. Thus, only a few iterations of
approximate MLS approximation are required to obtain a reasonable (and stably
computable) approximation to the RBF interpolant. Moreover, we emphasize again
that while our discussion of approximate MLS approximation was mostly limited
to the case of uniform data (at least for most practical purposes), this limitation no
longer exists for the residual iteration algorithm.

274 Meshfree Approximation Methods wi.th MATLAB

10
1

- maxerr AMLS

1 0.25 - - - RMSerr AMLS
. - . - .. -· - .. - . -·· - . - .. - . - .. · - · -maxerr RBF

······ RMSerr RBF 0.8 ·········· ······.

0.6
0.2

z
0.4 0.15 g

---------------------- ----

10-2,__ _ __. _______ __.. __ __ __,

0 2000 4000 6000 8000 10000
Iterations

0.2

0 ..

-0.2
0

y

UJ

0.1

0.05

1 1
0.5

.. ·. 0

x

Fig. 31.2 Convergence and final fit for iterated approximate MLS approximation based on 289
Halton points and Gaussians with V = 256 (c = 1).

31.5 Iterated Shepard Approximation

The use of other approximation methods within the fixed level residual iteration
algorithm such as regular MLS approximation or RBF least squares approximation
is also possible. We point out, however, that the use of RBF interpolation does not
make any sense in the context of fixed level residual iteration since the residuals on
the data are automatically zero if we perform interpolation of the data.

If we want to use regular MLS approximation instead of approximate MLS
approximation in the residual iteration, then, for Shepard's method, this means
replacing line 18 in Program 31.1 by

18a EM= rbf(ep,DM);
18b EM= EM./repmat(EM*ones(N,1),1,N); I. Shepard normalization

and line 20 by

20a RM= rbf(ep,DM);
20b RM= RM./repmat(RM*ones(N,1),1,N); I. Shepard normalization

Note that we can now no longer claim that the limit of the iterated Shepard
approximant is given by the RBF interpolant based on the Shepard weights as basis
functions. In fact, the iterated Shepard approximant becomes more accurate than
the RBF interpolant. For example, if we take Gaussian weight functions with c = 6
or c = 1 as above, then the corresponding convergence behavior for the iterated
Shepard approximant is displayed in Figure 31.3. Moreover, for the example with
c = 6, 45 iterations of the Shepard approximant result in a smaller maximum error
than the RBF interpolant, while 3515 iterations are required to push the RMS
error for the Shepard iteration below l.074443e-003. After 10000 iterations with

31. Fixed Level Residual Iteration 275

Shepard approximants the maximum error is 8. 760946e-003 and the RMS error is
7.889609e-004. For the c = 1 example the final errors (after 10000 iterations) are
2.664303e-001 for the maximum error and 8.169080e-002 for the RMS error. This
example is very similar to the AMLS example displayed in Figure 31.2. Again,
the most significant part of the error improvement occurs during the first 10-20
iterations.

- maxerr lterShep
- - - RMSerr lterShep
· - · -· maxerr RBF
······ RMSerr RBF

g 10-2

w

......
10-3

•••• ,"';:-:"-·- -·-- -·-- __ • ..,.,. :..: ·..:.·.:.::..: ·..:. ·:.:.:.: ·~·:..·'

10-•.__ _ __. _____ __._ __ _._ __ _,

0 2000 4000 6000 8000 10000
Iterations

~

g
w

10'
- maxerr lterShep
- - - RMSerr lterShep

· - · - · · - · - · · - . - .. - . - .. - . - · - · -· maxerr RBF
...... RMSerr RBF

---- --- -- --- --- -- ----- --- -

10-2'-----'-----__._ __ _._ __ _,

0 2000 4000 6000 8000 10000
Iterations

Fig. 31.3 Convergence for iterated Shepard approximation based on 289 Halton points and Gaus­
sian weights with c = 6 (left), and c = 1 (right).

For other data sets and other values of c residual iteration may converge faster.
For example, in Figure 31.4 we used 1089 data points (again taken from Franke's
function) and a value of c = 16. On the left we show the convergence behavior for
iterated approximate MLS with Gaussian generating functions, and on the right for
iterated Shepard approximation with Gaussian weights. Both graphs contain the
errors for RBF interpolation with Gaussian basis functions for comparison. We note
that the approximate MLS iteration approaches the RBF interpolant faster than in
the previous examples. Moreover, both errors for iterated Shepard approximation
are smaller than those for the interpolant after only three iterations. In fact, after 10
iterations the maximum error for the iterated Shepard approximation is one order
of magnitude smaller than that for the RBF interpolant.

A detailed study of the dependence of the convergence of the fixed-level residual
iteration algorithm on the shape parameter c and more examples are provided in
[Fasshauer and Zhang (2006)].

276 Meshfree Approximation Methods with MATLAB

--maxerr lterShep
- - - RMSerr lterShep
· - · -· maxerr RBF g

w
· · RM Serr RBF

10-3 .__ ___ __ __. ___ _._ __ __ __,

0 2000 4000 6000 8000 1 0000
Iterations

..

--maxerr lterShep
- - - RMSerr lterShep
· - · -· maxerr RBF
...... RMSerr RBF

............. .;.··· --- --- --- ----- -------10-3 ,____...__ __ __. ____ ____ __ ____,

2 4 6 8 10
lte rations

Fig. 31.4 Convergence for iterated approximate MLS approximation (left) and Shepard approx­
imation (right) based on 1089 Halton points and Gaussian weights with c = 16.

Chapter 32

Multilevel Iteration

As we saw in Chapters 12 and 16 that there is a trade-off principle for interpo­
lation with compactly supported radial functions. Namely, using a non-stationary
approach we can obtain good approximation results at the cost of increasing compu­
tational complexity, while with a stationary approach one has an efficient approx­
imation method. However, stationary approximation with compactly supported
radial functions is saturated, i.e., it provides only limited convergence.

32.1 Stationary Multilevel Interpolation

In order to combine the advantages of both approaches for interpolation with com­
pactly supported radial functions described above, Schaback suggested the use of a
multilevel stationary scheme. This scheme was implemented first in [Floater and lske
(1996b)] and later studied by a number of other researchers (see, e.g., [Chen et al.
(2002); Fasshauer and Jerome (1999); Hales and Levesley (2002); Hartmann (1998);
lske (2001); Narcowich et al. (1999); Wendland (1999a)]).

In contrast to the fixed level iteration of the previous chapter we will now use a
nested sequence X1 C · · · C XK = X C lR8 of point sets with increasingly greater
data density, i.e., smaller fill distance hx,n. The basic idea of the stationary multi­
level interpolation algorithm is to scale the size of the support of the basis functions
with the fill distance, but to interpolate to residuals on progressively refined sets of
centers. This method has all of the combined benefits of the interpolation methods
for compactly supported RBFs referred to earlier: it is computationally efficient
(can be performed in O(N) operations), well-conditioned, and appears to be con­
vergent.

An algorithm for multilevel interpolation is as follows:

Algorithm 32.1. Stationary multilevel interpolation

(1) Create nested point sets X1 C · · · C XK = X C lR8
, and initialize P1(x) = 0.

(2) For k = 1, 2, ... , K do

(a) Solve u(x) = f(x) - P1(x) on Xk.

277

278 Meshfree Approximation Methods with MATLAB

(b) Update P1(x) ~ P1(x) + u(x).

The representation of the update u at step k is a radial basis function expansion
of the form

with <p a (compactly supported) basic function and its support scale Pk '.:::::'. hxk,n.
This requires the solution of a linear system whose size is determined by the number
of points in xk.

Unfortunately, so far there are only limited theoretical results concerning the
convergence of this multilevel algorithm. In [Narcowich et al. (1999)] the authors
show that a related algorithm (in which additional boundary conditions are im­
posed) converges at least linearly. Hartmann analyzes the multilevel algorithm in
his Ph.D. thesis [Hartmann (1998)]. He shows at least linear convergence for mul­
tilevel interpolation on a regular lattice for various radial basis functions. Similar
results are obtained in [Hales and Levesley (2002)] for (globally supported) poly­
harmonic splines, i.e., thin plate splines and radial powers. In this context linear
convergence is to be interpreted as an improvement of the form

k= l, ... ,K,

where P?) denotes the interpolant at level k, and C < 1 is a positive (level­
independent) constant.

The main difficulty in proving the convergence of the multilevel algorithm is the
fact that the approximation space changes from one level to the next. The approx­
imation spaces are not nested (as they usually are for wavelets). This means that
the native space norm changes from one level to the next. Hales and Levesley avoid
this problem by scaling the (uniformly spaced) data instead of the basis functions.
Then the fact that polyharmonic splines are in a certain sense homogeneous (see
Section 34.4) simplifies the analysis. This fact was also used in [Wendland (2005a)]
to prove linear convergence for multilevel (scattered data) interpolation based on
thin plate splines.

Another approach to multilevel interpolation was recently suggested by Opfer
(see [Opfer (2004); Opfer (2006)]). He constructs so-called multiscale kernels that
have the information from different resolution levels built into a single function.
These kernels are built as tensor products of scaling functions that form a wavelet­
like multiresolution analysis. Opfer provides error bounds for interpolation with
these kernels analogous to those in Theorem 15.3. He also demonstrates how mul­
tiscale kernels can be used for scattered data interpolation, and for image decom­
position and compression.

32. Multilevel Iteration

32.2 A MATLAB Implementation of Stationary Multilevel
Interpolation

279

The MATLAB program ML_CSRBF3D. m for stationary multilevel interpolation with
compactly supported RBFs is displayed as Program 32.1. In this program we use
the compactly supported RBF cp(r) = (1 - r)t (35r2 + 18r + 3) of Wendland. This
function is C 4 and strictly positive definite and radial on .IR3 . The program shows
a number of differences compared to our previous codes. On line 2 we define the
maximum number of levels K we wish to use, and then define the corresponding
scale parameters E for the basic function. Since we load data sets consisting of
(2k + 1)3 uniformly spaced data points in the unit cube (where k runs from 1 to K,
see lines 13-17), the fill distance hxk,n changes by a factor of two from one level to
the next. Therefore, in order to guarantee a stationary interpolation scheme, the
scale parameter E needs to change by a factor of two from one level to the next,
also. This is achieved in line 2 of the code where we also use an additional factor
of 0.7 to uniformly scale all values of E. Note that here E corresponds to a support
radius p = l/E.

In each iteration we solve one interpolation problem (see line 18-22). The expan­
sion coefficients coef are stored in one component of a MATLAB cell array. Similarly,
we need to keep the centers for all levels in memory (again using a cell array ctrs,
see line 17). The right-hand side for the interpolation problem is given by the data
(values of the test function on the initial data set) in the first iteration, and in later
iterations by the residual, i.e., the difference between the data (values of the test
function on the present grid) and the values of the fit on the present grid. These
values are computed at the end of the previous iteration and stored in the vector Rf
(see lines 28-32). This extra evaluation (in addition to the evaluation on a separate
evaluation grid for error monitoring and plotting purposes, see lines 34-39) adds to
the complexity (and inefficiency) of the present code. Moreover, the evaluation of
the residual on the present grid requires us to keep evaluation matrices for all levels
in memory (in the cell array RM, see lines 24-27). Note that the evaluation points
(respoints) for the residuals change with every iteration and need not be kept in
storage. An alternative approach would be to evaluate all residuals on a common
(fine) grid, e.g., the evaluation grid. This, however, would make (the evaluation of)
the initial iterates rather expensive.

Finally, on lines 42-48 we keep track of the RMS error, and compute the rate of
convergence from one level to the next. The commands that generate plots of the
data sites, interpolant and error are given on lines 49-54.

Program 32.1. ML_CSRBF3D .m

% ML_CSRBF3D
% Script that performs multilevel RBF Interpolation using
% sparse matrices

280 Meshfree Approximation Methods with MATLAB

% Calls on: DistancMatrixCSRBF

% Wendland C4
1 rbf = ©(e,r) r.-6.*(35*r.-2-88*r+56*spones(r));

% Number of levels with epsilons for stationary interpolation
2 K = 4; ep = 0.7*2.-[0:K-1];
3 testfunction = ©(x,y,z) 64*x.*(1-x).*y.*(1-y).*z.*(1-z);
4 gridtype = 'u'; % Type of data points: 'u'=uniform
5 neval = 10; M = neval-3;
6 grid=linspace(0,1,neval); [xe,ye,ze]=meshgrid(grid);
7 epoints=[xe(:) ye(:) ze(:)];
8 exact= testfunction(epoints(:,1),epoints(:,2),epoints(:,3));
9 isomin = 0.1; isomax = 1; isostep = .1;

10 xslice = .25:.25:1; yslice = 1; zslice = [0,0.5];
11 Rf_old = zeros(27,1); % initialize

12 for k=1:K
13 Ni = c2-k+1)-3; N2 = c2-ck+1)+1)-3;

14 name!= sprintf('Data3D_%d%s',N1,gridtype);
15 name2 = sprintf('Data3D_%d%s',N2,gridtype);
16 load(name2); respoints = dsites;
17 load(name1); ctrs{k} = dsites;

% Compute right-hand side (= residual)
18 Tf = testfunction(dsites(:,1),dsites(:,2),dsites(:,3));
19 rhs = Tf - Rf _old;
20 DM_data = DistanceMatrixCSRBF(dsites,ctrs{k},ep(k));
21 IM= rbf(ep(k),DM_data);

% Compute coefficients for RBF interpolant to detail level
22 coef{k} = IM\rhs;
23 if (k < K)

24
25
26
27

28
29

30
31

% Compute - for all levels - evaluation matrices for
% residuals directly
for j=1:k

end

DM_res = DistanceMatrixCSRBF(respoints,ctrs{j},ep(j));
RM{j} = rbf(ep(j),DM_res);

% Evaluate RBF interpolant (sum of all previous fits
% evaluated on current grid)
Rf= zeros(N2,1);
for j=1:k

Rf = Rf + RM{j}*coef{j};
end

32 Rf_old =Rf;
33 end

32. Multilevel Iteration 281

34 DM_eval = DistanceMatrixCSRBF(epoints,ctrs{k},ep(k));
35 EM= rbf(ep(k),DM_eval);
36 Pf = EM•coef{k};
37 if (k > 1)

38 Pf = Pf_old + Pf;
39 end
40 Pf_old = Pf;
41 maxerr = norm(Pf-exact,inf);
42 rms_err = norm(Pf-exact)/sqrt(M);
43 fprintf('RMS error: %e\n', rms_err)
44 if (k > 1)
45 rms_rate = log(rms_err_old/rms_err)/log(2);
46 fprintf('RMS rate: %f\n', rms_rate)
47 end
48 rms_err_old = rms_err;
49 figure
50 plot3(dsites(:,1),dsites(:,2),dsites(:,3),'bo');
51a Plotlsosurf(xe,ye,ze,Pf,neval,exact,maxerr,isomin, ...
5lb isostep,isomax);
52 PlotSlices(xe,ye,ze,Pf,neval,xslice,yslice,zslice);
53a PlotErrorSlices(xe,ye,ze,Pf,exact,neval, ...
53b xslice,yslice,zslice);
54 end

In Figure 32.1 we display four data sets used in the 3D multilevel experiment.
The corresponding 3D multilevel interpolants are shown as iso-surfaces in Fig­
ure 32.2. Note that the test function J(x, y, z) = 64x(l - x)y(l - y)z(l - z) is
a three-dimensional "bump" function, and therefore only the outermost iso-surface
(corresponding to the function value 0.1) is visible. Therefore, we also display three­
dimensional slice plots of the absolute error in Figure 32.3. Both the iso-surfaces
and the slice plots are color coded according to the absolute error.

In Table 32.1 we list the corresponding RMS errors and observed convergence
rates for the 3D multilevel experiment.

Table 32.1 3D stationary multilevel interpolation with
<p(r) = (1 - r)~_(35r2 + 18r + 3).

mesh RMS-error rate % nonzero time

3x3x3 l .005315e-001 92.32 0.16
5x5x5 2. 764907e-002 1.8623 36.99 0.56
9x9x9 2.626864e-003 3.3958 8.88 13.45

17x17x17 5. 706061 e-004 2.2028 1.57 73.50

282 Meshfree Approximation Methods with MATLAB

0 0
0 0

0 0
00 0

0 0

00
00 00 0

0
0

0
00 0

0 00 00 00 00
0 0 0 0 0 00

0 0 0
0

0 00 0 00 006' 00 0

zo.5 0 zo.5 0 06' 0 0 00
0 00 0 00 0 0

0 00 06'
0

o 0
0 00 00

00 0 0 6'o
0

o 0
0

0 00
0 00 00 0 0 00 0

0 0 0 00 0 00 00 00

1 1 0 0 00
0 00

0.5
00

y 0 0 x y 0 0 x

0
0

'b
'b
'b

zo.5 'b
'b

0
1

y 0 0 x y 0 0 x

Fig. 32.l Uniform point sets in the unit cube with 27, 125, 729, and 4913 points (top left to
bottom right).

Next we present a two-dimensional multilevel interpolation experiment with
scattered data. The data were obtained in the ASCII VRML format from
http://amba.charite.de/rvksch/spsm/beet1s.wrl.gz. The data set provides
a digitized surface model of a bust of the famous German composer Ludwig van
Beethoven. The original data set consists of 2663 points in the unit square. In
order to provide a nested set of data sites for the multilevel algorithm we use the
program Thin.m provided in Appendix C. The processed data files are included on
the enclosed CD. The resulting point sets are displayed in Figure 32.4. A much
more detailed discussion of thinning algorithms for scattered data is presented in
[Iske (2004)]. The MATLAB program used to generate the multilevel interpolants
in Figure 32.5 is essentially the same as Program 32.l. The main difference is that
the data values are also read from the data file instead of being generated by a test
function. For rendering purposes the interpolants are evaluated on an 80 x 80 grid
of equally spaced points in the unit square.

zo.5

0
1

zo.5

0
1

y 0 0 x

y 0 0 x

32. Multilevel Iteration

0.15

0.1 e
w

0.05

0

x 10-3

5

4

3~ e w
2

0

zo.5

0
1

zo.5

0
1

283

0.05

0.04

0.03 g
w

0.02

0.01

y 0 0
0

x

0.8

0.6 g
w

0.4

0.2

y 0 0
0

x

Fig. 32.2 !so-surface plots for multilevel interpolants at levels 1, 2, 3 and 4 (top left to bottom
right) false -colored by absolute error .

32.3 Stationary Multilevel Approximation

The same basic multilevel algorithm can also be used for other approximation meth­
ods. In [Fasshauer (2002c)] the idea was applied to moving least squares methods
and approximate moving least squares methods. Experiments similar to those of
[Fasshauer (2002c)] are now repeated here. In order to be able to provide a compar­
ison between the multilevel interpolation and approximation algorithms we begin
with one more example for multilevel interpolation.

We obtain the data for the following numerical examples by sampling a mollified
Franke function fat uniformly spaced points in the unit square [O, 1]2, i.e.,

f(x,y) = 15exp (1 _(~
1_1)2) exp (1 _(~

1_1)2) F(x,y),

where F denotes Franke's function (2.2).
In Table 32.2 we list the benchmark results for multilevel RBF interpolation

with the compactly supported function cp3, 1 (r) = (1 - r)! (4r + 1). We again use
an initial scale factor of 0.7 for the shape parameter e:. Since the shape parameter e:
is equal to the reciprocal of the support scale p this means that the initial support
scale p1 is chosen so that the (univariate) basic function is fairly wide. Subsequent

284

zo.5

0
1

zo.5

0
1

y

Meshfree Approximation Methods with MATLAB

x

,.,,._
1

x

0.15

0.1 g
w

0.05

0

x 10-3

5

4

3e
w

2

0

zo.5

0
1

zo.5

0
1

0.8

0.6 g
w

0.4

0.2

0

Fig. 32.3 Slice plots of absolute errors for multilevel interpolants at levels 1, 2, 3 and 4 (top left
to bottom right).

support scales are successively divided by two (i.e., c is multiplied by two) - just
as the fill distance is halved on successive computational grids Xk.

Table 32.2 2D stationary multilevel interpolation with
<p(r) = (1 - r)t(4r + 1) at equally spaced points in [O, 1]2.

mesh RMS-error rate 3 nonzero time

3x3 2.498505e-001 100 0.13
5x5 7. 695304e-002 1.6990 57.76 0.16
9x9 2. 092849e-002 1.8785 23.18 0.20

17 x 17 l .145664e-003 4.1912 7.47 0.42
33 x 33 l .376035e-004 3.0576 2.13 1.64
65 x 65 3.303559e-005 2.0584 0.57 7.98

129 x 129 2.149123e-006 3.9422 0.15 5.98

In Table 32.2 we list the RMS errors computed on a 40 x 40 uniform evalua­
tion grid along with the percentage of non-zero entries in the RBF interpolation
matrix and the computer time required for each iteration. The first four multilevel
interpolants are shown in Figure 32.6.

32. Multilevel Iteration 285

Fig. 32.4 Thinned data sets for Beethoven's head. For top left to bottom right: 163, 663, 1163,
1663, 2163, and 2663 points.

Fig. 32.5 Multilevel interpolants to Beethoven data. For top left to bottom right: 163, 663, 1163,
1663, 2163, and 2663 points.

Next we replace RBF interpolation at each step of the multilevel residual it­
eration algorithm by standard moving least squares approximation. Table 32.3
illustrates the performance of the multilevel algorithm for Shepard's method and a
moving least squares approximation with linear precision, both based on the com­
pactly supported weight function cp3 , 1 (r) = (1 - r)t (4r + 1). The support scaling
is the same as in the previous multilevel interpolation example. The MATLAB code
for these examples is omitted as it is very similar to that of Program 32.l. We
note, however, that our implementation of the linear precision variant based on
Program 24.3 is rather inefficient when compared to the other multilevel examples
presented here.

286 Meshfree Approximation Methods with MATLAB

z

z

1

0.8 ...

0.6

0.4 .. ·············

0.2 ..

0

-0.2
0

0.8

0.6

0.4

0

1 1
y

-0.2
0

1 1 y

0.8

0.8

0.6 0.6 ····· z
.... 0.4 e

o.4w 0.2

0

0.2
-0.2

0

0.5 1 1 x y x

··i. 0.1
.... : .. •

0.8 ·······:····
0.08

0.6
z

0.06 e 0.4

w 0.2

0.04 0

-0.2
.. :.·, __ :

0.02 0

0.5 1 1
x y x

Fig. 32.6 The first four interpolants from Table 32.2.

0.2

0.15
....
g
w

0.1

0.05

0

x 10-3

6

5

4

3g
w

2

0

There seems to be no theoretical investigation of the convergence properties of
the multilevel algorithm for moving least squares approximation in the literature.

Table 32.3 2D multilevel MLS approximation with cp(r) = (1 - r)t(4r + 1).

Shepard linear precision

mesh RMS-error rate time RMS-error rate time

3x3 2. 776569e-001 0.16 2.812184e-001 0.91
5x5 l.615753e-001 0.7811 0.14 l.481365e-001 0.9248 0.97
9 x 9 7. 519432e-002 1.1035 0.19 7.015497e-002 1.0783 1.36

17 x 17 1.858696e-002 2.0163 0.39 1. 932368e-002 1.8602 3.09
33 x 33 3.581720e-003 2.3756 1.56 2.639418e-003 2.8721 11.45
65 x 65 5.458943e-004 2.7140 7.67 3.426412e-004 2.9454 89.64

129 x 129 1.04 735le-004 2.3819 0.36 3. 936786e-005 3.1216 1.17

As a third part of this example we use approximate MLS approximation at
each level of the residual iteration algorithm. We use the generating functions
\J!(r) = ~(1 - r)t(4r + 1) (giving rise to an approximate partition of unity) and
\J!(r) = 2;~271"(1- r)t(4r + 1)(14 - 55r2

) (giving rise to an approximate partition of

32. Multilevel Iteration 287

unity with one vanishing moment). Recall that we constructed these functions in

Example 26.2 starting with the initial weight function 'ljJ0 (y) = (1 - fo): (4fo+l).
As scale parameter we take 'D = 400 / 49. This corresponds to the same scaling as
in the other examples since c = 1 / (../f5h) and the initial fill distance for the 3 x 3
grid is h = 1/2.

Table 32.4 Multilevel approximate MLS approximation with basic function
1/Jo(Y) = (1 - y'y)t(4.jY + 1) and 1J = 400/49.

basic method 1 vanishing moment

mesh RMS-error rate time RMS-error rate time

3x3 2.803247e-001 0.13 2. 630763e-001 0.13
5x5 1.578062e-001 0.8289 0.16 9.133669e-002 1.5262 0.16
9x9 7.483597e-002 1.0764 0.20 2.783120e-002 1.7145 0.22

17 x 17 1. 784522e-002 2.0682 0.39 3.399671e-003 3.0332 0.45
33 x 33 2.468958e-003 2.8536 1.52 4.359882e-004 2.9630 1.81
65 x 65 3.637815e-004 2.7628 7.30 7.856778e-005 2.4723 9.05

129 x 129 5.636161e-005 2.6903 0.39 2. 460906e-005 1.6747 0.38

If we compare the numbers from the three different approaches listed in Ta­
bles 32.2-32.4 we see that none of the approximation methods yield more accurate
results than the interpolation method. It is surprising, however, that the approxi­
mate MLS methods perform better than the regular MLS methods. For noisy data
the approximate MLS method would be preferable.

32.4 Multilevel Interpolation with Globally Supported RBFs

So far we have concentrated on the use of compactly supported functions within the
multilevel residual iteration algorithm. For globally supported functions we learned
in earlier chapters that we can obtain good approximation order estimates in the
non-stationary setting. One reason for our focus on compactly supported functions
in this chapter is that if we consider the use of globally supported functions in
a non-stationary multilevel interpolation framework, then we see that nothing is
gained by the multilevel approach (provided we limit ourselves to the solution of
linear problems such as the interpolation problems discussed above).

More precisely, if the meshes Xk at the different levels are nested and the shape
parameter c in the globally supported functions is kept fixed through all levels k,
then the function spaces Sk = span{ cp(ll · -x]k) IJ) : x]k) E Xk} are also nested.

Consequently, the richest space S = LJf"=i Sk, which is used when all updates have
been performed at the finest level, is equal to the space SK on the finest mesh XK.
Thus, a direct fit at the finest level K uses the same approximation space, and
will therefore yield the same quality of fit, as the multilevel algorithm using all of
the meshes Xk, k = 1, ... , K. However, the multilevel algorithm requires all the

288 Meshfre,e Approximation Methods with MATLAB

additional (unnecessary) intermediate work on the coarser meshes.
It therefore follows

Theorem 32.1 (Rule 1). Consider a linear problem of the form Lu = f on
n ~ IR.8

' let X1' ... 'XK be a nested sequence of point sets in n, and let <p be a
globally supported REF with fixed shape parameter E for all k = 1, ... , K. Then the
approximate solution UK obtained by the multilevel interpolation algorithm is the
same as the solution of the problem Lu = f on the fixed level XK using the space
SK, i.e., the use of globally supported RBFs with fixed value of E within a multilevel
residual iteration algorithm for linear problems is pointless.

Here L could even be a linear differential operator (as used in later chapters).
However, for the present discussion of interpolation problems we are only interested
in L =I.

If one varies the parameter E with the levels k (i.e., one departs from the non­
stationary regime) then the function spaces= u~1 sk used for the final fit with
a multilevel algorithm will be richer than the space SK used directly for the finest
level XK alone. This is clear since the spaces Sk, k = 1, ... , K, are no longer nested.
This implies that, for a "good" sequence of €-values, one can expect to obtain more
accurate fits using the multilevel framework.

This is summarized in

Corollary 32.1 (Rule 2). The multilevel residual iteration algorithm for linear
problems has the potential of being more accurate than a direct fit if the parameter
E is varied with the levels.

We now illustrate Rules 1 and 2 with a scattered data fitting problem in IR.2 .

We use Franke's function (2.2) on the unit square as our test function. We take the
(radial) basic function to be a multiquadric <p(r) = vfl + (cr) 2 . The point sets Xk
are given by (2k + 1)2 equally spaced points in the unit square and are therefore
nested with fill-distance hxk,n = 1/2k.

In all of our numerical examples we list RMS-errors calculated on a fine evalu­
ation mesh of 40 x 40 uniformly spaced points in the unit square.

For the first example we fix the multiquadric shape parameter at E = 10/3
throughout. The errors and rates in Table 32.5 indicate the well-known spectral
convergence behavior of multiquadrics. The last row in the table also shows that the
parameter E is too small for this point set and the matrix is so ill-conditioned that
the approximation is starting to be contaminated by roundoff errors. According to
Rule 1 there is no difference between using the multilevel algorithm and a direct fit
on N points. This can also be observed numerically.

In order to illustrate Rule 2 we repeat the above example, but now take E =
VN /2 (essentially a stationary approach). This time we list what happens with
the multilevel algorithm and compare this to the results obtained by computing the

32. Multilevel Iteration

Table 32.5 MQ fit to Franke's func­
tion with fixed value of c = 10/3.

mesh RMS-error rate

3x3 l.802052e-001
5x5 2. 807009e-002 2.6825
9x9 4. 009608e-003 2.8075

17 x 17 3.885488e-005 6.6892
33 x 33 2.294910e-008 10.7254
65 x 65 l.511150e-008 0.6028

289

approximation directly in one step on the sets Xk, k = 1, ... , 6 (c.f. Table 32.6).

Table 32.6 Multilevel MQ and direct fits to Franke's function with
variable value of c = v'N /2.

multilevel direct

mesh c RMS-error rate RMS-error rate

3x3 .667 1.84 7122e-001 l.847122e-001
5x5 .400 3.128037e-002 2.5619 3.1054lle-002 2.5724
9x9 .222 4.288046e-003 2.8669 4. 036275e-003 2.9437

17 x 17 .118 l.598555e-004 4.7455 1. 004206e-004 5.3289
33 x 33 .061 l.187541e-005 3.7507 l.919679e-005 2.3871
65 x 65 .031 1. 310485e-006 3.1798 4. 700632e-006 2.0299

Note that, with the varying parameter c:, up to 289 points the direct approach is
more accurate, but then the multilevel approach does a better job. This is due to the
fact that the matrices for the denser point sets become increasingly ill-conditioned
(even with the adjusted c:-value) and therefore the direct fits with 1089 or 4225
points are likely to be inaccurate. With the multilevel algorithm the fits on the
finer grids act only as "corrections" to the coarse grid fits computed earlier. This
agrees with the philosophy of the multilevel algorithm, and here is where the richer
function space pays off.

Finally, it is also possible to combine the fixed level iteration of the previous
chapter with the multilevel iteration of this chapter, i.e., we can replace the inter­
polation steps in the multilevel scheme by fixed level iteration of an appropriate
approximation method. We do not report any such experiments here.

Chapter 33

Adaptive Iteration

The two adaptive algorithms discussed in this chapter were both conceived to yield
an approximate solution to the RBF interpolation problem. However, they have
some similarity with the least squares knot insertion algorithm of Chapter 21 as
well as with the iterative algorithms of the previous two chapters. The contents
of this chapter are based mostly on the papers [Faul and Powell (1999); Faul and
Powell (2000); Schaback and Wendland (2000a); Schaback and Wendland (2000b)]
and the book [Wendland (2005a)].

33.1 A Greedy Adaptive Algorithm

We concentrate on systems for strictly positive definite functions (variations for
strictly conditionally positive definite functions also exist). One of the central in­
gredients (and main differences to the previous iterative algorithms) is the use of
the native space inner product discussed in Chapter 13. As always, we assume that
our data sites are X = {x1 , ... , XN }, but now we also consider a second set Y ~ X.

If we let Pf be the interpolant to f on Y ~ X, then (! - Pf, Pf)N.:>(O) = 0 by
Lemma 18.1 (with u = f) and we obtain the energy split (see Corollary 18.1)

11111;.,,.<t>(O) = II! - Pf 111.:>(0) + llPf 111¢>(0)•
One possible point of view is now to consider an iteration on residuals. To

this end we pretend to start with our desired interpolant ro = P? on the entire
set X, and an appropriate sequence of sets Yk, k = 0, 1, ... (we will discuss some
possible heuristics for choosing these sets later). Then, just as in our earlier residual
iterations, we iteratively define

k = 0, 1,

Now, the energy splitting identity with f = rk gives us

llrkll1.:>(0) = llrk - p~k ll~rci>(O) + llP~k 111<Z>(O)
or, using the iteration formula (33.1),

llrk 111.z,(O) = llrk+1 ll1.z,(O) + llrk - Tk+1 ll1<Z>(O)'

291

(33.1)

(33.2)

(33.3)

292 Meshfree Approximation Methods with MATLAB

Therefore, using (33.1) and (33.3), we have the following telescoping sum for the
partial sums of the norm of the residual updates Pl,.,k

K K

L llP~k 1114>(0) = L llrk - rk+1 ll14>(0)
k=O k=O

K

= L { llrkll14>(0) - llrk+1 ll14>(o)}
k=O

= llro 111<i>(O) - llrK +i 1114>(0) < llro 1114>(0) ·
This estimate shows that the sequence of partial sums is monotone increasing and
bounded, and therefore convergent - even for a poor choice of the sets Yk. If
we can show that the residuals Tk converge to zero, then we would have that the
iteratively computed approximation

K K

UK+1 = LP~k = L (rk - rk+1) = ro - TK+l (33.4)
k=O k=O

converges to the original interpolant ro = Pf.
While this residual iteration algorithm has some structural similarities with the

fixed level algorithm of Chapter 31 we now are considering a way to efficiently
compute the interpolant Pf on some fine set X by using an iteration on subsets of
the data. Earlier we approximated the interpolant by iterating an approximation
method on the full data set, whereas now we are approximating the interpolant by
iterating an interpolation method on nested (increasing) adaptively chosen subsets
of the data.

The present method also has some similarities with the multilevel algorithms
of Chapter 32. However, now we are interested in computing the interpolant Pf
on the set X based on a single function ~' whereas earlier, our final interpolant
was the result of using the spaces U~= 1 Nipk (n), where ~k was an appropriately
scaled version of the basic function ~. Moreover, the goal in Chapter 32 was to
approximate f, not Pt·

In order to prove convergence of the residual iteration, let us assume that we
can find sets of points Yk such that at step k at least some fixed percentage of the
energy of the residual is picked up by its interpolant, i.e.,

(33.5)

with some fixed/ E (0, l]. Then (33.3) and the iteration formula (33.1) imply

llrk+1 ll14>(0) = llrk 1114>(0) - llP~k 1114>(0),
and therefore

llrk+1 ll14>(0) < llrk 111.z,(O) - 1llrk 111.z,(O) = (1 - 1) llrk 111.z,(O) ·
Applying this bound recursively yields

33. Adaptive Iteration 293

Theorem 33.1. 11 the choice of sets Yk satisfies (33.5}, then the residual iteration
(33.4} converges linearly in the native space norm, and after K steps of iterative
refinement there is an error bound

llro - uKll1~cn) = llrKll1~cn) < (1 -1)Kllroll1~cn)·

This theorem has various limitations. In particular, the norm involves the func­
tion <I> which makes it difficult to find sets Yk that satisfy (33.5). Moreover, the
native space norm of the initial residual r0 is not known, either. Therefore, using
an equivalent discrete norm on the set X, Schaback and Wendland establish an
estimate of the form

2 c 2 C(
2)K/2

JJro - UK llx < --;; 1 - b C2 llro llx,

where c and Care constants denoting the norm equivalence, i.e.,

cllullx < lluilN~(n) < Cllullx

for any u E Nw(rl), and where bis a constant analogous to / (but based on use of
the discrete norm II · llx in (33.5)). In fact, any discrete £p norm on X can be used.
In the implementation below we will use the maximum norm.

In [Schaback and Wendland (2000b)] a basic version of this algorithm - where
the sets Yk consist of a single point - is described and tested. The resulting
approximation yields the best K-term approximation to the interpolant. This idea
is related to the concept of greedy approximation algorithms (see, e.g., [Temlyakov
(1998)]) and sparse approximation (see, e.g., [Girosi (1998)]).

If the set Yk consists of only a single point y k, then the partial interpolant P~k
is particularly simple, namely

with

(3 = rk(Yk)
if>(yk, Yk)

This follows immediately from the usual RBF expansion (which consists of only one
term here) and the interpolation condition P~k (y k) = rk(y k).

The point Yk is picked to be the point in X where the residual is largest, i.e.,
lrk(Yk)I = Jirklloo· This choice of "set" Yk certainly satisfies the constraint (33.5)
since <I> is strictly positive definite and therefore has its maximum at the origin (cf.
Property (4) in Theorem 3.1). Moreover, the interpolation problem is (approxi­
mately) solved without having to invert any linear systems. The algorithm can be
summarized as

Algorithm 33.1. Greedy one-point algorithm

Input data locations X, associated values off, tolerance tol > 0
Set initial residual ro =Pf, initialize uo = 0, e = oo, k = 0

294 Meshfre.e Approximation Methods with MATLAB

Choose starting point y k E X
While e > tol do

end

Set /3 = Tk (Yk)
'P(yk, Yk)

For 1 < i < N do

end

Tk+1(xi) = Tk(Xi) - /3'P(xi, Yk)
uk+1(xi) = uk(xi) + /3'P(xi, Yk)

Find e =max ITk+1 I and the point Yk+l where it occurs
x

Increment k = k + 1

A MATLAB implementation of the greedy one-point algorithm is presented as
Program 33.1. The implementation is quite straightforward using our function
DistanceMatrix in conjunction with the anonymous function rbf to compute both
'P(yk, Yk) (on lines 18 and 19) and 'P(xi, Yk) needed for the updates of the residual
Tk+l and the approximation Uk+l on lines 21-24. The algorithm demands that
we compute the residuals Tk on the data sites. On the other hand, the partial
approximants Uk to the interpolant can be evaluated anywhere. If we choose to
do this also at the data sites, then we are required to use a plotting routine that
differs from our usual one (such as trisurf built on a triangulation of the data
sites obtained with the help of delaunayn). We instead choose to follow the same
procedure as in all of our other programs, i.e., to evaluate Uk on a 40 x 40 grid of
equally spaced points. This has been implemented on lines 21-25 of the program.
Note that the updating procedure has been vectorized in MATLAB allowing us to
avoid the for-loop over i in the algorithm.

It is important to realize that we never actually compute the initial residual
To= Pf. All we require are the values of To on the grid X of data sites. However,
since Pf Ix = fix the values To(xi) are given by the interpolation data f (xi) (see
line 13 of the code). Moreover, since the sets Yk are subsets of X the value Tk(Yk)
required to determine /3 is actually one of the current residual values (see line 20 of
the code).

The final approximation to the interpolant and the approximation error are
plotted with the commands given on lines 36-38. The commands for the plots of
the points Yk selected by the algorithm and the norm of the residual displayed in
Figures 33.1 and 33.3 are included on lines 39 and 40.

Program 33.1. RBFGreedy0nePoint2D .m

% RBFGreedy0nePoint2D
% Script that performs greedy one point algorithm for adaptive
% 2D RBF interpolation
% Calls on: DistanceMatrix

33. Adaptive Iteration

1 rbf = ©(e,r) exp(-(e*r).-2); !. Gaussian RBF
2 ep = 5.5; !. Parameter for basis function

% Define Franke's function as testfunction

3 f1 = ©(x,y) 0.75*exp(-((9*x-2).-2+(9*y-2).-2)/4);
4 f2 = ©(x,y) 0.75*exp(-((9*x+1).-2/49+(9*y+1).-2/10));
5 f3 = ©(x,y) 0.5*exp(-((9*x-7).-2+(9*y-3).-2)/4);

6 f4 = ©(x,y) 0.2*exp(-((9*x-4).-2+(9*y-7).-2));

7 testfunction = ©(x,y) f1(x,y)+f2(x,y)+f3(x,y)-f4(x,y);

% Number and type of data points

8 N = 16641; gridtype = 'h';

9 neval = 40; grid= linspace(0,1,neval);

10 [xe,ye] = meshgrid(grid); epoints = [xe(:) ye(:)];

!. Tolerance; stopping criterion
11 tol = 1e-5; kmax = 1000;

% Load data points
12 name= sprintf('Data2D_%d/.s',N,gridtype); load(name)

!. Initialize residual and fit

13 r_old = testfunction(dsites(:,1),dsites(:,2));

14 u_old = O;

15 k = 1; maxres(k) = 999999;
!. Use an (arbitrary) initial point

16 ykidx = (N+1)/2; yk(k,:) = dsites(ykidx,:);

17 while (maxres(k) > tol && k < kmax)

!. Evaluate basis function at yk
18 DM_data = DistanceMatrix (yk (k, :) , yk (k, :)) ;

19 IM= rbf(ep,DM_data);

20 beta = r_old(ykidx)/IM;

!. Compute evaluation matrices for residual and fit

21 DM_res = DistanceMatrix(dsites,yk(k,:));
22 RM= rbf(ep,DM_res);

23 DM_eval = DistanceMatrix(epoints,yk(k,:));

24 EM= rbf(ep,DM_eval);

% Update residual and fit

25 r = r_old - beta*RM; u = u_old + beta*EM;

% Find new point to add

26 [sr,idx] = sort(abs(r));

27 maxres(k+1) = sr(end);

28 ykidx = idx(end); yk(k+1,:) = dsites(ykidx,:);

29

30

31 end

r_old = r;

k = k + 1;

u_old = u;

% Compute exact solution

295

296 Meshfree Approximation Methods with MATLAB

32 exact = tes.tfunction(epoints (:, l), epoints (:, 2));
33 maxerr = norm(u-exact,inf); rms_err = norm(u-exact)/neval;
34 fprintf('RMS error: %e\n', rms_err)
35 fprintf('Maximum error: %e\n', maxerr)
36 fview = [160,20]; % viewing angles for plot
37 PlotSurf(xe,ye,u,neval,exact,maxerr,fview);
38 PlotError2D(xe,ye,u,exact,maxerr,neval,fview);
39 figure; plot(yk(:,l),yk(:,2),'ro')
40 figure; semilogy(maxres,'b');

To illustrate the greedy one-point algorithm we perform two experiments. Both
tests use data obtained by sampling Franke's function at 16641 Halton points in
(0, 1] 2 . However, the first test is based on Gaussians, while the second one uses
inverse multiquadrics. For both tests we use the same shape parameter c = 5.5.
This results in the inverse multiquadrics having a more global influence than the
Gaussians. This effect is clearly evident in the first few approximations to the
interpolants in Figures 33.2 and 33.4.

Figure 33.4, in particular, shows that the greedy algorithm enforces interpolation
of the data only on the most recent set Yk (i.e., for the one-point algorithm studied
here only at a single point). If one wants to maintain the interpolation achieved in
previous iterations, then the sets Yk should be nested. This, however, would have a
significant effect on the execution time of the algorithm since the matrices at each
step would increase in size.

101

• ~o If (
cw>cO> o 7 j.o

100

tll I# 0 0.,,

0.4 • ~oo C\f ~ ~ o (ij

y 0 8 4'0 :§ 10-1
Cb 0 0 0 00 "'

o<b 0'11 cic>·~~o ~
Cl>

0.6 a:

0 e .. o'O o o oo 10-2

0.8 0 :~00" •o .r;; /o
1 10-3

1 0.8 0.6 0.4 0.2 0 0 200 400 600 800 1000
x # Iterations

Fig. 33.1 1000 selected points and residual for greedy one point algorithm with Gaussian RBFs
and N = 16641 data points.

In order to obtain our approximate interpolants we used a tolerance of 10-5

along with an additional upper limit of kmax=1000 on the number of iterations. For
both tests the algorithm uses up all 1000 iterations. The final maximum residual
for Gaussians is maxres = 0.0075, while for inverse MQs we have maxres = 0.0035.
In both cases there occurred several multiple point selections. Contrary to interpo-

z

z

0.4 ..

0.2

0

-0.2
0

0.8

0.6

0

-0.2
0

1 1
0.5

y x

1 1
0.5

y x

33. Adaptive Iteration

0.8
0.8

0.6 ...

0.6 ~ z
g 0.4 ..

w 0.2
0.4

0

-0.2 ..
0.2 0

0

0.4

0.35

0.3
0.6

0.25 z
~ 0.4 e

0.2 w 0.2

0.15

0.1 -0.2
0

0.05

0 0

297

0.6

0.5

0.4
~

e
o.3w

0.2

0.1

1 1
0

y x

0.01

0.008

0.006 g
w

0.004

0.002

1 1 y x

Fig. 33.2 Fits of Franke's function for greedy one point algorithm with Gaussian RBFs and
N = 16641 data points. Top left to bottom right: 1 point, 2 points, 4 points, final fit with 1000
points.

lation problems based on the solution of a linear system, multiple point selections
do not pose a problem here.

One advantage of this very simple algorithm is that no linear systems need to be
solved. This allows us to approximate the interpolants for large data sets even for
globally supported basis functions, and also with small values of c (and therefore an
associated ill-conditioned interpolation matrix). One should not expect too much
in this case, however, as the results in Figure 33.5 show where we used a value of
c = 0.1 for the shape parameter. As with the fixed level iteration of approximate
MLS approximants based on flat generating functions, a lot of smoothing occurs so
that the convergence to the RBF interpolant is very slow.

Moreover, in the pseudo-code of the algorithm matrix-vector multiplications are
not required, either. However, MATLAB allows for a vectorization of the for-loop
which does result in two matrix-vector multiplications.

For practical situations, e.g., for smooth radial basis functions and densely dis­
tributed points in X the convergence can be rather slow. The simple greedy algo­
rithm described above is extended in [Schaback and Wendland (2000b)] to a version
that adaptively uses basis functions of varying scales.

298

0.

0.
y

0.

0.

Meshfree Approximation Methods with MATLAB

"' o ~o ,
0
0

10-3'---~---___. __ __.. __ __._ __ _,

0 200 400 600 800 1000
x # Iterations

Fig. 33.3 1000 selected points and residual for greedy one point algorithm with IMQ RBFs and
N = 16641 data points.

33.2 The Faul-Powell Algori thrn

Another iterative algorithm was suggested in [Faul and Powell (1999); Faul and
Powell (2000)]. From our earlier discussions we know that it is possible to express
the radial basis function interpolant in terms of cardinal functions uj, j = 1, ... , N,
i.e.,

N

P1(x) = L f(xJ)uj(x).
j=l

The basic idea of the Faul-Powell algorithm is to use approximate cardinal functions
W j instead. Of course, this will only give an approximate value for the interpolant,
and therefore an iteration on the residuals is suggested to improve the accuracy of
this approximation.

The basic philosophy of this algorithm is very similar to that of the fixed level
iteration of Chapter 31. In particular, the Faul-Powell algorithm can also be inter­
preted as a Krylov subspace method. However, instead of taking approximate MLS
generating functions, the approximate cardinal functions Wj, j = 1, ... , N, are de­
termined as linear combinations of the basis functions <I>(·, Xf) for the interpolant,
i.e.,

Wj = L bjf<l>(·, Xf), (33.6)
fE.Cj

where Lj is an index set consisting of n (n ~ 50) indices that are used to determine
the approximate cardinal function. For example, then nearest neighbors of Xj will
usually do. In general, the choice of index sets allows much freedom, and this is the
reason why we include the algorithm in this chapter on adaptive iterative methods.
Also, as pointed out at the end of this section, there is a certain duality between
the Faul-Powell algorithm and the greedy algorithm of the previous section.

z

z

0.8

0.2

0

-0.2
0

y x

1 1 0.5
y x

33. Adaptive Iteration

0.8

0.6

0.6 ~
z

0.4
w 0.2

0.4 0

-0.2
0.2 0

. ...
0

y

0.25

0.2 0.8

0.6 ..
z

0.15 0 0.4 ..

in 0.2

0.1 0

-0.2 ········
0.05 0

y

299

0.35

0.3

0.25

0.2 ~

g
w

0.15

0.1

0.05

1 1
0

x

x 10-3

6

5

4

0
3::: w

2

1 1
x

Fig. 33.4 Fits of Franke's function for greedy one point algorithm with IMQ RBFs and N = 16641
data points. Top left to bottom right: 1 point, 2 points, 4 points, final fit with 1000 points.

For every j = 1, ... , N, the coefficients bjt are found as solution of the (relatively
small) n x n linear system

(33.7)

These approximate cardinal functions are computed in a pre-processing step.
As before, in its simplest form the residual iteration can be formulated as

N

u(O)(x) = L f(xJ)-WJ(x)
j=l

N

u(k+l)(x) = u(k)(x) + L [f(xJ) - u(k)(xJ)] 'llJ(x),
j=l

k = 0, 1,

Instead of adding the contribution of all approximate cardinal functions at the
same time, this is done in a three-step process in the Faul-Powell algorithm. To this
end, we choose index sets £j, j = 1, ... , N-n, such that £,J ~ {j,j+l, ... , N} while
making sure that j E £,J. Also, if one wants to use this algorithm to approximate
the interpolant based on conditionally positive definite functions of order m, then
one needs to ensure that the corresponding centers form an (m - 1)-unisolvent set
and append a polynomial to the local expansion (33.6).

300

0 -

0.2

0.4
y

0.6

0.8

1 -
1 0.8

Meshfree Approximation Methods with MATLAB

0 •

0.6 0.4 0.2
x

0 1 1
y x

0.5

0.7

0.6

0.5

0.4 g
w

0.3

0.2

0.1

0

Fig. 33.5 1000 selected points (only 20 of them distinct) and fit of Franke's function for greedy
one point algorithm with flat Gaussian RBFs (e = 0.1) and N = 16641 data points.

Now, in the first step we define Ubk) = uCk), and then iterate

(k) _ (k) + ()(k) ffr.
uj - uj-1 j "¥3, j = l, ... ,N-n, (33.8)

with

(
(k))

()~k) = P1 -uj-1' Wj N<t>(n)
1 (wJ, wJ)N<t>(n) ·

(33.9)

The stepsize OJk) is chosen so that the native space best approximation to the

residual P1 - u)kJ.1 from the space spanned by the approximate cardinal functions
W j is added. Using the representation (33.6) of \JI J in terms of the global basis
{<I> (·, Xi) : i = 1, ... , N}, the reproducing kernel property of <I>, and the (local)
cardinality property (33.7) of Wj we can calculate the denominator of (33.9) as

(wJ, WJ)N<Z>(n) = (wJ, L bJe<I>(·,xe))N<t>(n)
iECi

= L bje(WJ,<I>(·,xe))N<t>(n)
lECi

= L bjeWJ(xe) = bjj
lECi

since we have j E Lj by construction of the index set Lj. Similarly, we get for the
numerator

(Pf - u)kJ.1, W j)N<t>(n) = (Pf - u)kJ.1, L bje<P(·, xe))N<1> (O)
iECi

= L bJe(P1-u)kJ.1,<P(·,xe))N<1>(0)
lECi

= L bjl (P J - u)kJ.1) (xg)
lECj

33. Adaptive Iteration 301

= L bje (!(xe) - u)kJ.1 (xe)) .
eE.Cj

Therefore (33.8) and (33.9) can be written as

(k) (k) w j ~ ((k)) uj = uj-l + ~ ~ bje f (xe) - uj-l (xe) ,
JJ eE.Cj

j = 1, ... ,N-n.

In the second step of the Faul-Powell algorithm the residual is interpolated on
the remaining n points (collected via the index set £*). Thus, we find a function
vCk) in span{<I>(·, Xj): j E £*}such that

v(k)(xi) = J(xi) - u~~n(xi), i E £*,

and the approximation is updated, i.e.,

u<k+l) = u~~n + v(k).

In the third step the residuals are updated, i.e.,

r~k+l) = J(xi) - uCk+l) (xi), i = 1, ... , N. (33.10)

The outer iteration (on k) is now repeated unless the largest of these residuals is
small enough.

We can summarize this algorithm as

Algorithm 33.2. Faul-Powell algorithm

Input data locations X = {x1 , ... , XN }, associated values off, and tolerance
tol > 0
Pre-processing step

Choose n

For 1 ::; j < N - n do

Determine the index set Cj
Find the coefficients bje of the approximate cardinal function w j by
solving

end

Set k = 0 and u~k) = 0

Initialize residuals r~k) = f(xi), i = 1, ... , N

Set e = . max lr~k) I
i=l, ... ,N

While e > tol do

For 1 ::; j < N - n do

Update

i E £· J

(k) (k) w j ~ (() (k) ()) uj = uj-l + ~ ~ bje f xe - uj-l xe
JJ eE.Cj

302

end

Meshfree Approximation Methods with MATLAB

end
Solve the interpolation problem

v(k)(xi) = f(xi) - u~~n(xi),

Update the approximation

(k+l) - (k) + (k)
Uo - UN-n v

i E .C*

Compute new residuals r~k+l) = f (xi) - u6k+l) (xi), i = 1, ... , N

Set new value for e = . max lr~k+l) I
i=l, ... ,N

Increment k = k + 1

Faul and Powell prove that this algorithm converges to the solution of the original
interpolation problem. Similar to some of the other algorithms, one needs to make
sure that the residuals are evaluated efficiently by using, e.g., a fast multipole
expansion, fast Fourier transform, or compactly supported functions.

In its most basic form the Krylov subspace algorithm of Faul and Powell can
also be explained as a dual approach to the greedy residual iteration algorithm of
Schaback and Wendland. Instead of defining appropriate sets of points Yk, in the
Faul and Powell algorithm one picks certain subspaces Uk of the native space. In
particular, if Uk is the one-dimensional space Uk = span{wk} (where Wk is a local
approximation to the cardinal function) we get the algorithm described above. For
more details see [Schaback and Wendland (2000b)].

We leave the implementation of this algorithm to the reader.

Chapter 34

Improving the Condition Number of the
Interpolation Matrix

In Chapter 16 we noted that the system matrices arising in scattered data interpola­
tion with radial basis functions tend to become very ill-conditioned as the minimal
separation distance qx between the data sites x 1 , ... , XN, is reduced. Therefore it
is natural to devise strategies to prevent such instabilities by either preconditioning
the system, or by finding a better basis for the approximation space we are using.
The former approach is standard procedur'e in numerical linear algebra, and in fact
we can use any of the well-established methods (such as preconditioned conjugate
gradient iteration) to improve the stability and convergence of the interpolation
systems that arise for strictly positive definite functions. In particular, the sparse
systems that arise in (multilevel) interpolation with compactly supported radial
basis functions can be solved efficiently with the preconditioned conjugate gradi­
ent method. However, in our implementation (see the discussion in Section 12.1)
we use MATLAB's sparse function which takes advantage of state-of-the-art direct
methods for sparse linear systems.

The second approach to improving the condition number of the interpolation
system, i.e., the idea of using a more stable basis, is well known from univariate
polynomial and spline interpolation. The Lagrange basis functions for univariate
polynomial interpolation are the ideal basis if we are interested in stably solving
the interpolation equations since the resulting interpolation matrix is the identity
matrix (which is certainly much better conditioned than, e.g., the Vandermonde
matrix that we get if we use a monomial basis). Similarly, B-splines give rise to
diagonally dominant, sparse system matrices whi~h are much easier to deal with
than the matrices we would get if we were to represent a spline interpolant using
the alternative truncated power basis. Both of these examples are studied in great
detail in standard numerical analysis texts (see, e.g., [Kincaid and Cheney (2002)])
or in the literature on splines (see, e.g., [Schumaker (1981)]). We will address an
analogous approach for radial basis functions in Section 34.4 below.

Before we describe any of the specialized preconditioning procedures for radial
basis function interpolation matrices we give two examples presented in the early
RBF paper [Jackson (1989a)] to illustrate the effects of and motivation for precon­
ditioning in the context of radial basis functions.

303

304 Meshfree Approximation Methods with MATLAB

34.1 Preconditioning: Two Simple Examples

Example 34.1. Let s = 1 and consider interpolation based on <p(r) = r with no
polynomial terms added. As data sites we choose X = {1, 2, ... , 10}. This leads to
the system matrix

0123 ... 9
1012 ... 8
2101 ... 7

A= 3210 ... 6

9876 ... o
with .€2-condition number cond(A) ~ 67. Instead of solving the linear system Ac=
y, where y = [yi, ... ,y10]T E IR10 is a vector of given real numbers (data values),
we can find a suitable matrix B to pre-multiply both sides of the equation such
that the system is simpler to solve. Ideally, the new system matrix BA should be
the identity matrix, i.e., B should be an approximate inverse of A. Thus, having
found an appropriate matrix B, we must now solve the linear system BAc = By.
The matrix B is usually referred to as the preconditioner of the linear system. For
the matrix A above we can choose a preconditioner B as

1 0 0 0 0 0
.!. -1 1 0 0 0 2 2 ...
0 1 -1 1 0 0 2 2 ...

B= 0 0 1
2 -1 ... 0 0

0 0 0 0 ... -1 ~
0 0 0 0 ... 0 1

This leads to the following preconditioned system matrix

012 ... 89
010 ... 00
001 ... 00

BA=

000 ... 10
987 ... 10

in the system BAc = By. Note that BA is almost an identity matrix. One can
easily check that now cond(BA) ~ 45.

The motivation for this choice of B is the following. The function <p(r) = r

or cI>(x) = lxl is a fundamental solution of the Laplacian ~ (= d~2 in the one­
dimensional case), i.e.

d2 1
~cI>(x) = dx2 lxl = 28o(x),

34. Improving the Condition Number of the Interpolation Matrix 305

where 80 is the Dirac delta function centered at zero. Thus, B is chosen as a
discretization of the Laplacian with special choices at the endpoints of the data set.

Example 34.2. For non-uniformly distributed data we can use a different dis­
cretization of the Laplacian ~ for each row of B. To see this, let s = 1,
X = {1, ~' ~' 4, ~ }, and again consider interpolation with the radial function
cp(r) = r. Then

A=

7
2

with cond(A) ~ 18.15, and if we choose

1 0 0 0 0
1 _;! 1 0 0 2 2

B= 0 1 5 1 0 2 -6 3

0 0 1 -~1 3
0 0 0 0 1

based on second-order backward differences of the points in X, then the precondi­
tioned system to be solved becomes

0 l ;! 3 1
2 2 2

0 1 0 0 0

0 0 1 0 0 c =By.

0 0 0 1 0

1 3 2 l 0
2 2

Once more, this system is almost trivial to solve and has an improved condition
number of cond(BA) ~ 8.94.

34.2 Early Preconditioners

Ill-conditioning of the interpolation matrices was identified as a serious problem
very early, and Nira Dyn along with some of her co-workers (see, e.g., [Dyn (1987);
Dyn (1989); Dyn and Levin (1983); Dyn et al. (1986)]) provided some of the first
preconditioning strategies tailored especially to radial basis function interpolants.

For the following discussion we consider the general interpolation problem that
includes polynomial reproduction (see Chapter 6). Therefore, we have to solve the
following system of linear equations

(34.1)

306 Meshfree Approximation Methods with MATLAB

with the individual pieces given by Ajk = cp(llxJ - xkll), j, k = 1, ... , N, Pje =
Pe(xJ), j = 1, ... ,N, f = 1, ... , M, c = [c1, ... ,cN]T, d = [d1, ... ,dMJT, y =
[yi, ... , YNJT, 0 an M x M zero matrix, and 0 a zero vector of length M with
M = dim H:n_ 1 . Here, as discussed earlier, 1p should be strictly conditionally
positive definite of order m and radial on Rs and the set X = { x 1, ... , x N} should
be (m - 1)-unisolvent.

The preconditioning scheme proposed by Dyn and her co-workers is a general­
ization of the simple differencing scheme discussed above. It is motivated by the
fact that the polyharmonic splines (i.e., thin plate splines and radial powers)

{

2k-s · (r) = r 10g r, s even,
<p r 2k-s s odd

' '

2k > s, are fundamental solutions of the k-th iterated Laplacian in Rs, i.e.

where 80 is the Dirac delta function centered at the origin, and c is an appropriate
constant.

For the (inverse) multiquadrics r.p(r) = (1 +r2)±_112 , which are also discussed in
the papers mentioned above, application of the Laplacian yields a similar limiting
behavior, i.e.

lim .6.kcp(r) = 0,
r-+oo

and for r -t 0

One now wants to discretize the Laplacian on the (irregular) mesh given by the
(scattered) data sites in X. To this end the authors of [Dyn et al. (1986)] suggest
the following procedure for the case of scattered data interpolation over JR2 .

(1) Start with a triangulation of the set X, e.g., the will do. This triangulation
can be visualized as follows.

(a) Begin with the points in X and construct their or Voronoi diagram. The
Dirichlet tile of a particular point xis that subset of points in JR2 which are
closer to x than to any other point in X. The dashed lines in Figure 34.1
denote the Dirichlet tesselation for the set of 25 Halton points (circles) in
[O, 1]2.

(b) Construct the Delaunay triangulation, which is the dual of the Dirichlet
tesselation, i.e., connect all strong neighbors in the Dirichlet tesselation,
i.e., points whose tiles share a common edge. The solid lines in Figure 34.1
denote the corresponding Delaunay triangulation of the 25 Halton points.

34. Improving the Condition Number of the Interpolation Matrix

0.8

0.6
y

0.4

0.2

0.2 0.4 0.6 0.8
x

307

Fig. 34.1 Dirichlet tesselation (dashed lines) and corresponding Delaunay triangulation (solid
lines) of 25 Halton points (circles).

(2) Discretize the Laplacian on this triangulation. In order to also take into account
the boundary points Dyn, Levin and Rippa instead use a discretization of an
iterated Green's formula which has the space II~_ 1 as its null space. The
necessary partial derivatives are then approximated on the triangulation using
certain sets of vertices of the triangulation. (three points for first order partials,
six for second order).

Figure 34.l was created in ~ATLAB using the commands

load('Data2D_25h')
tes = delaunayn(dsites);
triplot(tes,dsites(:,1),dsites(:,2),'k-')
hold on
[vx, vy] = voronoi(dsites(:,1),dsites(:,2),tes);
plot(dsites(:,1),dsites(:,2),'ko',vx,vy,'k--')
axis ([O 1 0 1])

As in our other MATLAB examples, the file Data2D-25h contains the coordinates
of the 25 Halton points in the array dsi tes.

The discretization described above yields the matrix B = (bji)f,i=l as the pre­
conditioning matrix in a way analogous to the previous section. We now obtain

N

(BA)jk = L bji'P(llxi - Xk II) ~ _o.mcp(ll · -Xk ll)(xj), j, k = 1, ... , N. (34.2)
i=l

This matrix has the property that the entries close to the diagonal are large com­
pared to those away from the diagonal, which decay to zero as the distance between
the two points involved goes to infinity. Since the construction of B (in step 2 above)
ensures that part of the preconditioned block matrix vanishes, namely BP = 0,

308 Meshfree Approximation Methods with MATLAB

one must now solve the non-square system

Actually, the top part of the system, the square system BAc = By, is singular,
but it is shown in the paper [Dyn et al. (1986)] that the additional constraints
pT c = 0 guarantee existence of a unique solution. Furthermore, the coefficients d
in the original expansion of the interpolant Pf can be obtained by solving

Pd= y-Ac,

i.e., by fitting the polynomial part of the expansion to the residual y - Ac.
The approach just described leads to localized basis functions W that are linear

combinations of the original basis functions <.p. More precisely,

N

W1(x) = Lbii1P(llx - Xiii)~ ~m<p(ll · -x1ll)(x), (34.3)
i=l

where the coefficients bji are determined via the discretization described above.
The localized basis functions w1 , j = 1, ... , N, (see (34.3)) can be viewed as an

alternative (better conditioned) basis for the approximation space spanned by the
functions if.>1 = rp(ll · -x1ll). We will come back to this idea in Section 34.4.

In [Dyn et al. (1986)] the authors describe how the preconditioned matrices can
be used efficiently in conjunction with various iterative schemes such as Chebyshev
iteration or a version of the conjugate gradient method. The authors also men­
tion smoothing of noisy data, or low-pass filtering as other applications for this
preconditioning scheme.

The effectiveness of the above preconditioning strategy was illustrated with some
numerical examples in [Dyn et al. (1986)]. We list some of their results in Table 34.1.
Thin plate splines and multiquadrics were tested on two different data sets (grid
I and grid II) in IR2 . The shape parameter c for the multiquadrics was chosen to
be the reciprocal of the average mesh size. A linear term was added for thin plate
splines, and a constant for multiquadrics.

Table 34.1 Condition numbers without and with preconditioning.

<p N grid I orig. grid I precond. grid II orig. grid II precond.

TPS 49 1181 4.3 1885 3.4
121 6764 5.1 12633 3.9

MQ 49 7274 69.2 17059 222.8
121 10556 126.0 107333 576.0

One can see that the most dramatic improvement is achieved for thin plate
splines. This is to be expected since the method described above is tailored to these
functions. As noted earlier, for multiquadrics an application of the Laplacian does

34. Improving the Condition Number of the Interpolation Matrix 309

not yield the delta function, but for values of r close to zero gives just relatively
large values.

Another early preconditioning strategy was suggested in [Powell (1994a)]. Powell
uses Householder transformations to convert the matrix of the interpolation system
(34.1) to a symmetric positive definite matrix, and then uses the conjugate gradient
method. However, Powell reports that this method is not particularly effective for
large thin plate spline interpolation problems in IR2 .

In [Baxter (1992a); Baxter (2002)] preconditioned conjugate gradient methods
for solving the interpolation problem are discussed in the case when Gaussians
or multiquadrics are used on a regular grid. The resulting matrices are Toeplitz
matrices, and a large body of literature exists for dealing with matrices having this
special structure (see, e.g., [Chan and Strang (1989)]).

34.3 Preconditioned GMRES via Approximate Cardinal Functions

More recently, Beatson, Cherrie and Mouat [Beatson et al. (1999)] proposed a pre­
conditioner for the iterative solution of radial basis function interpolation systems
in conjunction with the GMRES method of [Saad and Schultz (1986)]. The GMRES
method is a general purpose iterative solver that can be applied to nonsymmetric
(nondefinite) systems. For fast convergence the matrix should be preconditioned
such that its eigenvalues are clustered around one and away from the origin. Obvi­
ously, if the basis functions for the radial basis function space were cardinal func­
tions, then the matrix would be the identity matrix with all its eigenvalues equal
to one. Therefore, the GMRES method would converge in a single iteration. Con­
sequently, the preconditioning strategy employed by the authors of [Beatson et al.
(1999)] for the GMRES method is to obtain a preconditioning matrix B that is
close to the inverse of A.

Since it is too expensive to find the true cardinal basis (this would involve
at least as much work as solving the interpolation problem), the idea pursued
in [Beatson et al. (1999)] (and suggested earlier in [Beatson et al. (1996);
Beatson and Powell (1993)]) is to find approximate cardinal functions similar to
the functions Wj in the previous subsection. Now, however, there is also an em­
phasis on efficiency, i.e., we are interested in local approximate cardinal functions,
if possible (c.f. also the use of approximate cardinal functions in the Faul-Powell
algorithm of Section 33.2). Several different strategies for the construction of these
approximate cardinal functions were suggested in [Beatson et al. (1999)]. We will
now explain the basic idea.

Given the centers x 1 , ... , x N for the basis functions in the RBF interpolant

N

P1(x) = L CJ'P(JJx - Xj),
j=l

the j-th approximate cardinal function is given as a linear combination of the basis

310 Meshfre.e Approximation Methods with MATLAB

functions <I>i = cp(\\ ·-xi\\), where i runs over (some subset of) {1, ... , N}, i.e.,

N

\lli = L biicp(I\ · -xd\) +Pi· (34.4)
i=l

Here Pi is a polynomial in Il~-l that is used only in the conditionally positive
definite case, and the coefficients bii satisfy the usual conditions

N

L biiPi(xi) = 0 for all Pi E rr:n-1 · (34.5)
i=l

The key feature in designing the approximate cardinal functions is to have only
a few n << N coefficients in (34.4) to be nonzero. In that case the functions \lf i
are found by solving small n x n linear systems, which is much more efficient than
dealing with the original N x N system. For example, in [Beatson et al. (1999)]
the authors use n ~ 50 for problems involving up to 10000 centers. The resulting
preconditioned system is of the same form as the earlier preconditioner (34.2), i.e.,
we now have to solve the preconditioned problem

(BA)c =By,

where the entries of the matrix BA are just wi(xk), j, k = 1, ... , N.
The simplest strategy for determining the coefficients bii is to select the n nearest

neighbors of xi, and to find bii by solving the (local) cardinal interpolation problem

i = 1, ... ,n,

subject to the moment constraint (34.5) listed above. Here 8ii is the Kronecker­
delta, so that \lf i is one at xi and zero at all of the neighboring centers Xi·

This basic strategy is improved by adding so-called special points that are dis­
tributed (very sparsely) throughout the domain (for example near corners of the
domain, or at other significant locations).

A few numerical results for thin plate spline and multiquadric interpolation in
IR2 from [Beatson et al. (1999)] are listed in Table 34.2. The condition numbers are
€2-condition numbers, and the points were randomly distributed in the unit square.
The "local precond." column uses the n = 50 nearest neighbors to determine the
approximate cardinal functions, whereas the right-most column uses the 41 nearest
neighbors plus nine special points placed uniformly in the unit square. The effect
of the preconditioning on the performance of the GMRES algorithm is, e.g., a
reduction from 103 to 8 iterations for the 289 point data set for thin plate splines,
or from 145 iterations to 11 for multiquadrics.

An extension of the ideas of [Beatson et al. (1999)] to linear systems arising
in the collocation solution of partial differential equations (see Chapter 38) was
explored in Mouat's Ph.D. thesis [Mouat (2001)] and also in the recent paper [Ling
and Kansa (2005)].

34. Improving the Condition Number of the Interpolation Matrix 311

Table 34.2 Condition numbers without and with preconditioning.

<.p N unprecond. local precond. local precond. w /special

TPS 289 4.005e+006 l.464e+003 5.721e+ooo
1089 2.753e+008 6.359e+005 l.818e+002
4225 2.605e+009 2.381e+006 1.040e+006

MQ 289 1.506e+008 3.185e+003 2.639e+002
1089 2.154e+009 8.125e+005 5.234e+004
4225 3.734e+010 1.390e+007 4.071e+004

34.4 Change of Basis

As pointed out at the beginning of this chapter, another approach to obtaining a
better conditioned interpolation system is to work with a different basis for the
approximation space. While this idea is implicitly addressed in the preconditioning
strategies discussed above, we will now make it our primary goal to find a better
conditioned basis for the RBF approximation space. Univariate piecewise linear
splines and natural cubic splines can be interpreted as radial basis functions, and
we know that B-splines form stable bases for those spaces. Therefore, it should be
possible to generalize this idea for other RBFs.

The process of finding a "better" basis for conditionally positive definite radial
basis functions is closely connected to finding the reproducing kernel of the associ­
ated native space. Since we did not elaborate on the construction of native spaces
for conditionally positive definite functions earlier, we will now present the relevant
formulas without going into any further details. In particular, for polyharmonic
splines we will be able to find a basis that is in a certain sense homogeneous, and
therefore the condition number of the related interpolation matrix will depend only
on the number N of data points, but not on their separation distance (c.f. the
discussion in Chapter 16). This approach was suggested by Beatson, Light and
Billings [Beatson et al. (2000)], and has its roots in [Sibson and Stone (1991)].

Let <I> be a strictly conditionally positive definite kernel of order m, and
x = {x1, ... ,xN} c n c JRS be an (m -1)-unisolvent set of centers. Then the
reproducing kernel for the native space N<I> (D) is given by

M M

K(x, y) = <I>(x, y) - LPk(x)<I>(xk, y) - LPe(y)<I>(x, xe)
k=l £=1

M M M

+ L LPk(x)pe(y)<I>(xk, xe) + LPe(x)pe(y), (34.6)
k=ll=l £=1

where the points {x1 , ... , XM} comprise an (m-1)-unisolvent subset of X and the
polynomials Pk, k = 1, ... , M, form a cardinal basis for n:n,_1 on this subset whose
d. · · M (s+rn-1) · ImenSIOn IS = rn- l , i.e.,

k,l!=l, ... ,M.

312 Meshfree Approximation Methods with MATLAB

This formulation of the reproducing kernel for the conditionally positive definite
case also appears in the statistics literature in the context of kriging (see, e.g.,
[Berlinet and Thomas-Agnan (2004)]). In that context the kernel K is a covariance
kernel associated with the generalized covariance <I>. These two kernels give rise to
the kriging equations and dual kriging equations, respectively.

An immediate consequence of having found the reproducing kernel K is that we
can express the radial basis function interpolant to values of some function f given
on X in the form

N

P1(x) = L CjK(x, Xj), x E IRS.

j=l

Note that the kernel K used here is a strictly positive definite kernel (since it is
a reproducing kernel) with built-in polynomial precision. The coefficients Cj are
determined by satisfying the interpolation conditions

i = 1, ... ,N.

We will see below (in Tables 34.3 and 34.4) that this basis already performs "better"
(i.e., is better conditioned) than the standard basis {<I>(·,x1), ... ,<I>(·,xN)} if we
keep the number of centers fixed, and vary only their separation distance.

To obtain the homogeneous basis referred to above we modify K by subtracting
the tensor product polynomial, i.e.,

M

K(x, y) = K(x, y) - LPt(x)pe(y).
l=l

Now, if y denotes any one of the points x1, ... , XM in the (m-1)-unisolvent subset
of X used in the construction of K above, then we have

M M

K(·,y) = <I>(·,y)- LPk(·)<I>(xk,y)- LPt(Y)<I>(·,xe)
k=l

MM

+ L LPk(·)pe(y)<I>(xk, xe)
k=ll=l

M M

= cl>(·,y)- LPk(·)<I>(xk,y)-<I>(·,y) + LPk(·)<I>(xk,y) = 0
k=l k=l

since the polynomials Pk are cardinal on x1, ... , XM, i.e., only one of the Pk(Y) will
"survive".

This means that the functions K (·, x j), j = 1, ... , N, cannot be used as a basis
of our approximation space. Instead we need to remove the points used to define
the cardinal polynomials above from the set of centers used for K. Once we do this
it turns out that the matrix C with entries Ci,j = K(xi, Xj), i,j = M + 1, ... , N, is
positive definite, and therefore we obtain the following basis

{p1, ···,PM} U {K(·, XM+1), ... , K(·, XN)}

34. Improving the Condition Number of the Interpolation Matrix 313

for the space span{<!>(-, x1), ... , <!>(·, XN)}. Therefore the interpolant can be repre­
sented in the form

M N

P1(x)=LdJPJ(x)+ L CkK(x,xk), xEIR8
• (34.7)

j=l k=M+l
The coefficients are determined as usual by enforcing the interpolation condi-
tions P1(xi) = f(xi), i = 1, ... , N. Since the polynomials PJ are cardinal on
{ x 1, ... , x M} and K was shown to be zero if centered at these points, this leads to
the following linear system

[:T ~ l [~ l = [~:] ,
(34.8)

with I an M x M identity matrix, 0 an M x (N - M) zero matrix, C as
above, Pij = PJ(xi), j = 1, ... , M, i = M + 1, ... , N, c = [cM+1, ... , cNJI',
d = [d1, ... , dM]I', and the right-hand side vectors Yp = [f(x1), ... , f(xM)]I' and
y /{, = [! (x M + 1), ... , f (x N)] T. The identity block (cardinality of the polynomial
basis functions) implies that the coefficient vector d is given by

dJ = f (xJ), j = 1, ... , M,
and therefore the system (34.8) can be solved as

Cc= YK - pT d. (34.9)

As mentioned above, one can show that the matrix C is symmetric and positive
definite.

Most importantly, for polyharmonic splines, the £2-condition number of the ma­
trix C is invariant under a uniform scaling of the centers, i.e., if Ch= (K(hxi, hxJ)),
then

cond(Ch) = cond(C).
This is proved to varying degrees of detail in the papers [Beatson et al. (2000);
Iske (2003a)] and the book [Wendland (2005a)].

Example 34.3. The simplest example is given by the polyharmonic spline cp(r) = r.
In this case M = 1 so that the only polynomial term is given by the constant p - 1.
For simplicity we use the origin as a special point. Using these conventions we have
the following three representations of the various kernels:

cI>(x, y) = llx - Yll,
K(x, y) = llx - Yll - llYll - llxll + 1,

K(x,y) = llx -yll - llYll - llxll-
Note that in this case the condition number of the matrix C associated with the
kernel K is clearly invariant under uniform scaling of the problem. However, the
matrix A associated with the basic norm RBF <P enjoys the same invariance. It
is only when we add the polynomial blocks P and pT to ensure reproduction of
constants that the condition number of the resulting block matrix will vary greatly
with the problem scaling. A similar dependence of the condition number of the
system matrix on the scaling is associated with the kernel K.

314 Meshfree Approximation Methods with MATLAB

34.5 Effect of the "Better" Basis on the Condition Number of the
Interpolation Matrix

We reproduce some numerical experiments from [Beatson et al. (2000)) based on
the use of thin plate splines in IR2 . We compute the £2-condition numbers of the
interpolation matrix for the three different approaches mentioned above, i.e., using
the standard basis consisting of functions <I>(·, XJ) and monomials (obtained with
the MATLAB program RBFinterpolation2Dlinear. m of Chapter 6), using the re­
producing kernels K(·, Xj), and using the matrix C based on the kernel K,. The
matrix for the kernels K(·,XJ) is computed with the program tpsK.m provided in
Program 34.1. The three polynomial cardinal functions are based on the three
corners (0, 0), (0, 1), and (1, 0) of the unit square, i.e.,

where z = (zi, z2) E IR2 .

P1 (z) = 1 - z1 - z2,

P2(z) = zi,

p3(z) = z2,

The program tpsK. mis completely vectorized, i.e., we input arrays of points x
and y, and create the entire matrix with entries K (Xi, x j), i, j = 1, ... , N (denoted
by rbf in the program). We assemble the matrix according to the terms in (34.6).
On lines 3 and 4 we fill two matrices, px and py, whose columns contain the values
of the polynomials p 1 , p2 and p3 (defined as separate functions at the end of the
program) at all of the points in x and y, respectively. The first term of (34.6), the
matrix <I>(x, y), is assembled on line 5 where we call the subroutine tps .m listed as
Program C.4 in Appendix C. Next, on lines 6-ll we add the next two sums from
(34.6) simultaneously. The double sum is added to the matrix rbf on lines 12-
17, and finally the tenor product polynomial term is computed and added on lines
18-20.

Program 34.1. tpsK. m

% rbf = tpsK(x,y)
% Computes matrix for thin plate spline kernel K with
% linear polynomials cardinal on (0,0), (1,0), (0,1)
% Calls on: tps

1 function rbf = tpsK(x,y)
% Define points for cardinal polynomials

2 ppoints = [O O; 1 O; 0 1];
3 px = [p1(x) p2(x) p3(x)];
4 PY= [p1(y) p2(y) p3(y)];
5 r = DistanceMatrix(x,y); rbf = tps(1,r);
6 for k=1:3
7 r = DistanceMatrix(ppoints(k,:),y);

34. Improving the Condition Number of the Interpolation Matrix

8 rbf = rbf - px(:,k)*tps(1,r);
9 r = DistanceMatrix(x,ppoints(k,:));

10 rbf = rbf - tps(1,r)*py(:,k)';

11 end
12 for j=1:3
13 for k=1:3
14 r = DistanceMatrix(ppoints(j,:),ppoints(k,:));
15 rbf = rbf + px(:,j)*py(:,k)'*tps(l,r);
16 end
17 end
18 for k=1:3
19 rbf = rbf + px(:,k)*py(:,k)';
20 end
21 return

I. The cardinal polynomials
22 function w = p1(z)
23 w = 1 - z(:,1) - z(:,2);

24 return
25 function w = p2(z)

26 w = z (: ' 1) ;

27 return
28 function w = p3(z)

29 w = z (: '2) ;
30 return

315

Since Program 34.1 produces the entire interpolation (or evaluation) matrix, we
can use Program 2.1 and replace lines 13 and 14 by

IM= tpsK(dsites,ctrs);

and lines 15 and 16 by

EM= tpsK(epoints,ctrs);

in order to solve the interpolation problem in this case.
The matrix C is obtained in a similar fashion by using a program tpsH. m that

is identical to tpsK. m except that lines 18-20 are removed. In addition, we need to
remove the corner points (0,0), (1,0), and (0,1) from the ctrs and dsites in the
driver program.

In the first experiment (illustrated in Table 34.3) the problem is formulated on
the unit square [O, 1]2. Here both the number of points and the separation distance
vary from one row in the table to the next. The three different columns list the
t'2-condition numbers of the interpolation matrix for the three different approaches
mentioned above. With this setup all three methods perform comparably.

316 Meshfree Approximation Methods with MATLAB

Table 34.3 Condition numbers for different thin plate spline bases on [O, 1]2

with increasing number of points and varying separation distance.

spacing h standard matrix reproducing kernel homogeneous matrix

1/8 3.515800e+003 1.839030e+004 7.583833e+003
1/16 3.893850e+004 2.651373e+005 l.108581e+005
1/32 5.136252e+005 4.000679e+006 l.686431e+006
1/64 7.618277e+006 6.202918e+007 2.626402e+007

In the second experiment (shown in Table 34.4) the number of points is kept fixed
at 5 x 5 equally spaced points. However, the domain is scaled to the square (0, a]2
with scale parameter a (this can easily be done using the same programs as above
by introducing a scale parameter at the appropriate places, see also Program 34.2).
The effect of this is that only the separation distance Qx changes from one row to
the next in the table. Now, clearly, the two new methods show less dependence on
the separation distance, with the condition number of the homogeneous matrix C
being completely insensitive to the re-scaling as claimed earlier.

Table 34.4 Condition numbers for different thin plate spline bases on [O, a] 2 with
fixed number of 25 points and varying separation distance.

scale parameter a standard matrix reproducing kernel homogeneous matrix

0.001 2.434883e+008 8 .463509e+008 5.493771e+002
0.01 2.436378e+006 8 .464002e+006 5.493771e+002
0.1 2.517866e+004 8.513354e+004 5.493771e+002
1.0 3.645782e+002 1.366035e+003 5.493771e+002
10 1.874215e+006 1.260864e+003 5.493771e+002

100 1.151990e+Oll l .139634e+005 5.493771e+002
1000 3.548239e+015 1.1385 72e+007 5.493771e+002

We close this section by pointing out that Iske an co-workers take advantage of
the scale invariance of poly harmonic splines (and thin plate splines in particular) in
the construction of a numerical multiscale solver for transport problems (see, e.g.,

[Behrens et al. (2002)]).

34.6 Effect of the "Better" Basis on the Accuracy of the
Interpolant

In this section we provide an example illustrating the surprising fact that for poly­
harmonic splines not only the homogeneous kernel K, can be used successfully for
poorly scaled problems, but also the standard kernel \'.I>.

Example 34.4. We use the thin plate spline basic function tp(r) = r2 log r and
a scaled version of Franke's testfunction to generate test data on a 5 x 5 uniform

34. Improving the Condition Number of the Interpolation Matrix 317

grid in the square [O, a] 2 as in Table 34.4. However, now the scale parameter a will
range from 10-9 to 109 . We will present condition numbers and root-mean-square
errors computed on a 40 x 40 uniform grid for the three different kernels discussed
previously. We list only the MATLAB code for the homogeneous case since the
two other programs are very similar to previous ones. The function tpsH. m called
by Program 34.2 is almost the same as Program 34.1 listed above. The required
modifications are noted there.

Many parts of Program 34.2 are familiar. However, in order to deal with the
kernel Kand the associated matrix C we need to define the special points at which
the cardinal polynomials are defined. This is done on line 9, where the special
points are taken as three corners of the scaled unit square. Since the kernel is the
zero function when centered at these points they need to be removed from the set
of centers. This is accomplished on lines 11, 12 and 14. The scaling of the problem
happens on lines 8, 9 and 13. The scale also enters in a number of other places such
as the definition of the evaluation grid on line 15, computation of the right-hand side
on lines 17-19, and the computation of the exact solution on line 26. In contrast
to most of our other interpolation programs here we compute the interpolation
and evaluation matrices with a single subroutine (c.f. the calls to tpsH on lines 20
and 22). Note that the scale parameter a is passed to tpsH. Equations 34.9 and
34.7 for the solution and evaluation of the interpolant are implemented together on
line 25. Finally, the three cardinal polynomials are coded on lines 35-43. Since these
polynomials are defined on the unit square they need to be called with re-scaled
arguments (cf. lines 17 and 23).

Program 34.2. RBFinterpolation2DtpsH.m

% RBFinterpolation2DtpsH
% Script that performs 2D TPS interpolation with homogeneous kernel
% Calls on: tpsH

1 function RBFinterpolation2DtpsH
% Define Franke's function as testfunction

2 fl= ©(x,y) 0.75*exp(-((9*x-2).-2+(9*y-2).-2)/4);
3 f2 = ©(x,y) 0.75*exp(-((9*x+1).-2/49+(9*y+l).-2/10));
4 f3 = ©(x,y) 0.5*exp(-((9*x-7).-2+(9*y-3).-2)/4);
5 f4 = ©(x,y) 0.2*exp(-((9*x-4).-2+(9*y-7).-2));
6 testfunction = ©(x,y) f1(x,y)+f2(x,y)+f3(x,y)-f4(x,y);

7 N = 25; gridtype = 'u';
8 a = 1e9;
9 ppoints = a*[O O; 1 O; 0 1];

% Load data points
10 name= sprintf('Data2D_/.d%s',N,gridtype); load(name)

% Remove (0,0), (1,0), (0,1) to work with C matrix
11a remove= [find(dsites(:,1)==0 & dsites(:,2)==0); ...

318 Meshfree Approximation Methods with MATLAB

1ib find(dsites(:,1)==1 & dsites(:,2)==0); ...
11c find(dsites(:,1)==0 & dsites(:,2)==1)]
12 dsites(remove,:) = [];

% Scale problem to square [O,a]-2
13 dsites = a*dsites;

% Let centers coincide with data sites
14 ctrs=dsites;
15 neval = 40; grid= linspace(O,a,neval);
16 [xe,ye] = meshgrid(grid); epoints = [xe(:) ye(:)];

% Create right-hand side for homogeneous problem
17 DP= [p1(dsites/a) p2(dsites/a) p3(dsites/a)] ';
18 d = testfunction(ppoints(:,1)/a,ppoints(:,2)/a);

19 rhs = testfunction(dsites(:,1)/a,dsites(:,2)/a) - DP'*d;
% Compute interpolation matrix for the special case of TPS
% native space kernel (no need to add polynomials)

20 IM= tpsH(dsites,ctrs,a);

% Compute condition number of interpolation matrix
21 fprintf('l2-condition : %e\n', cond(IM))

% Compute evaluation matrix
22 EM= tpsH(epoints,ctrs,a);

23 EP = [p1(epoints/a) p2(epoints/a) p3(epoints/a)];
24 EM = [EM EP] ;

/, Compute RBF interpolant
25 Pf= EM* [(IM\rhs); d];

% Compute exact solution
26 exact= testfunction(epoints(:,1)/a,epoints(:,2)/a);

% Compute errors on evaluation grid
27 maxerr = norm(Pf-exact,inf);
28 rms_err = norm(Pf-exact)/neval;
29 fprintf('RMS error: %e\n', rms_err)
30 fprintf('Maximum error: %e\n', maxerr)
31 fview = [160,20]; % viewing angles for plot

32 PlotSurf(xe,ye,Pf,neval,exact,maxerr,fview);
33 PlotError2D(xe,ye,Pf,exact,maxerr,neval,fview);
34 return

% The cardinal polynomials
35 function w = p1(z)
36 w = 1 - z(:,1) - z(:,2);
37 return
38 function w = p2(z)

39 w = z (: '1);
40 return

34. Improving the Condition Number of the Interpolation Matrix

41 function w = p3(z)
42 w=z(:,2);

43 return

319

In Table 34.5 we list the root-mean-square errors resulting from the three dif­
ferent interpolation methods. The scaling of the domain was chosen more extreme
than in Table 34.4 so that the sensitivity of the reproducing kernel K becomes
clearly visible. Its condition number of the interpolation matrix for a = 10-9 was
5.354134e+018, while for a = 109 it was 6.994062e+019. While both of these
condition numbers are clearly very high and therefore indicate that we might ex­
pect numerical difficulties solving a problem on these length scales, the other two
methods (standard TPS basis functions and the homogeneous kernel K) perform
perfectly throughout the entire range of scalings. Moreover, the condition num­
bers for the standard TPS interpolation matrix are much higher than for the K
kernel: 7.299408e+021 for a= 10-9 , and even 2.749537e+038 for a= 109 . Never­
theless, the standard TPS interpolant does not suffer from instability due to this
ill-conditioning. The same is true for all other tests we have performed with stan­
dard polyharmonic spline interpolants (such as, e.g., the norm basic function).

Table 34.5 RMS errors for different thin plate spline interpolants on [O, a] 2 with
fixed number of 25 points and varying separation distance.

scale parameter o standard matrix reproducing kernel homogeneous matrix

10-9 2. 9694 78e-002 NAN 2.969478e-002
10-6 2. 9694 78e-002 2.970740e-002 2. 9694 78e-002
10-3 2.969478e-002 2.969478e-002 2. 9694 78e-002
1.0 2.969478e-002 2. 9694 78e-002 2. 9694 78e-002
103 2. 9694 78e-002 2.969478e-002 2. 9694 78e-002
106 2. 9694 78e-002 2. 969218e-002 2. 9694 78e-002
109 2. 9694 78e-002 l.207446e+003 2. 9694 78e-002

Chapter 35

Other Efficient Numerical Methods

In earlier chapters we have already mentioned various algorithms for meshfree scat­
tered data interpolation that are more efficient than the straightforward solution
of the linear system obtained by enforcing the interpolation conditions. In par­
ticular, we suggested the use of the non-uniform fast Fourier transform (NFFT)
for fast evaluation of globally supported functions, a fixed level iterative algorithm
based on approximate MLS approximation, the greedy algorithm of Schaback and
Wendland, the Faul-Powell algorithm, and the preconditioned GMRES method of
Beatson et al.

We now add three more numerical techniques that can be used to make the
computation with globally supported functions on large data sets more efficient
and also more stable. In the first two sections of this chapter we discuss the fast
multipole method and fast tree codes, and how these methods can be adapted to
radial basis functions. In the third section we present a brief introduction to domain
decomposition methods, which not only make the solution of large interpolation
problems more efficient, but also provide a way to avoid the ill-conditioning issue
by breaking the large problem into many well-conditioned smaller ones.

35.1 The Fast Multipole Method

Another technique for dealing with fast summation problems is known as the fast
multipole method. It was first proposed by Greengard and Rokhlin in the late 1980s
(see, e.g., the original paper [Greengard and Rokhlin (1987)], the popular discussion
[Greengard (1994)], or the short course tailored to radial basis functions [Beatson
and Greengard (1997)]). This method has quickly become rather popular in the
computational sciences. The breakthrough accomplishment of this algorithm was
the ability to perform fast evaluations of sums of the type

N

P1(x) = L ckq>(x, Xk),
k=l

321

322 Meshfree Approximation Methods with MATLAB

In particular, M such evaluations can be performed in O(M log N) (or even O(M))
operations instead of the standard 0(MN) operations for a naive implementation of
the summation. The non-uniform fast Fourier transform of Chapter 28 was able to
do this also, and in a fairly general way for a very large class of kernels cl>. However,
the fast multipole method is a little older and it may be more efficient than the
NFFT since special expansions are used that are chosen with the particular kernel
cl> in mind.

We will now outline the basic idea of the fast Gauss transform [Greengard and
Strain (1991)]. This transform can be applied directly to the approximate moving
least squares approximands based on Gaussians used in earlier chapters (see the
numerical experiments reported in Table 35.1 below). The higher-order Laguerre­
Gaussian kernels, however, require a completely new derivation. Using our standard
abbreviation E = 1/(VVh), we are now interested in a fast summation technique for
M simultaneous evaluations of the Gaussian quasi-interpolant (or discrete Gauss
transform)

N

91 (YJ) = L f(xk)e-ll6(yj-:z:k)ll2' j = l, ... ,M. (35.1)
k=l

In [Greengard and Strain (1991)] such an algorithm was developed, and in [Strain
(1991)] a modification was suggested to cover also the case of variable scales Ek as
needed with quasi-interpolation at scattered sites or with variable shape parameters.

One of the central ingredients for the fast Gauss transform are the multivariate
Hermite functions ho. defined as

h0 (x) = (-1)1°1D0 e-ll:z:ll
2

, (35.2)

where a::= (0:: 1 , ... , o:s) E Ns is a multi-index. These functions are related to the
multivariate Hermite polynomials Ho. via

s

H 0 (x) = IT Had(xd) = ell:z:ll
2
ho.(x) (35.3)

d=l

(see, e.g., the univariate formula (6.1.3) in [Andrews et al. (1999)]). It is benefi­
cial that the Hermite functions can be evaluated recursively using the (univariate)
recurrence relation

hn+1(x) = 2xhn(x) - 2nhn-1(x), n = 1, 2, ... ,
ho(x) = e-lxl

2
, h1 (x) = 2xe-lxl

2
,

which follows immediately from (35.3) and the recursion relation for Hermite poly­
nomials (see, e.g., formula (6.1.10) in [Andrews et al. (1999)]).

The algorithm of Greengard and Strain is based on three basic expansions
which we list below as Theorems 35.1-35.3 (see [Greengard and Strain (1991);
Greengard and Sun (1998)]). The main effect of these expansions is the fact that the
variables YJ and Xk will be separated. This is the fundamental "trick" used with all

35. Other Efficient Numerical Methods 323

fast summation algorithms (see our discussion of the NFFT based fast summation
method in Chapter 28). This will allow for the pre-computation and storage of
certain moments below.

The first step in the algorithm is to scale the problem to the unit box (0, 1] 8 and
then subdivide the unit box into smaller boxes B and C which usually coincide.
They can, however, also differ. The boxes B contain the sources x k (i.e., our
centers), and the boxes C the targets YJ (i.e., our evaluation points). For each
source box B one then determines its interaction region IR(B). The interaction
region of B is a set of nearest neighbors of B such that the error of truncating
the sum over all boxes is below a certain threshold. Due to the fast decay of the
Gaussians it is suggested (see [Greengard and Sun (1998)]) to use the gs nearest
neighbors for single precision and the 138 nearest neighbors for double precision.

Theorem 35.1. Let IB be the index set denoting the sources Xk that lie in a box
B with center XB and side length 1/c, and let Ye be the center of the target box
CE IR(B) of radius rc containing the targets YJ· Then the Gaussian field due to
the sources in B,

9JB)(YJ) = L f(xk)e-llc(yj-:llk)ll2'
kEia

has the following Taylor expansion about Ye:

9J
8

)(YJ) =Lao: (c(YJ - Ye))o:,
o:?:O

where the coefficients ao: are given by
(-l)lo:I

ao: = 1 L f (xk)ho: (c(xk - Ye)).
O'..

kEia

(35.4)

The error ET(P) due to truncating the series {35.4) after the p-th order terms
satisfies the bound

IET(P)I =IL ao: (c(yj - Ye))o: I< (l.09) 8 p(B)
1

s [(;rcl+l] 8

,

o:>p .j(p + 1)! - €Tc

where p(B) = L:kEia If (xk) I·
Here we used the multi-index notation a > 0 to denote the constraints o:d 2: 0

for all d = 1, ... , s. More generally, for some integer p we say a > p if O:d > p for
all d = 1, ... , s. This implies that we have a > p for some integer p, if a > p and
o:d > p for some d. We also use a > {3 if O:d > f3d for all d = 1, ... , s.

The expansion (35.4) will be used in the case when the source box B contains
relatively few sources, but the target box C contains many targets.

By reversing the role of the Hermite functions and the shifted monomials one can
write a single Gaussian as a multivariate Hermite expansion about a point zo E JR5

,

i.e.,

(35.5)

This idea is used in

324 Meshfree Approximation Methods with MATLAB

Theorem 35.2 (Far-field expansion).· Let IB be the index set denoting the
sources Xk that lie in a box B with center XB and side length 1/e. Then the Gaus­
sian field due to the sources in B,

gjB) (YJ) = L f(xk)e-lle:(yj-:z:k)ll2'

kElB

is equal to an Hermite expansion about x B:

gj8>(yj) = L bo.ho. (c(yj - XB)).
o.2:0

The moments b0 are given by

ba =--\ L f(xk) (c(xk - XB))
0

.
Q.

kElB

(35.6)

The error EH(P) due to truncating the series (35.6) after p-th order terms satisfies
the bound

IEH(P)I =IL baho. (e(YJ - XB)) I~ (1.09) 8 p(B) l s [(E:re)p+l]
8

a>p .j(p + 1)! 1 - ere

Theorem 35.2 is used when B contains many sources, but C only few targets.
Finally, in the case when both B and C contain relatively many points we use

Theorem 35.3 (Translation operation). Let the sources Xk lie in a box B with
center XB and side length 1/e and let YJ be an evaluation point in a box C with
center ye. Then the corresponding truncated Hermite expansion (35.6) can be ex­
panded as a Taylor series of the form

gjBe) (YJ) = L c13 (dYJ - Ye) l·.
/32:0

The coefficients c13 are given by

(-1)1/31
c13 = j3! L baho.+/3 (e(xB - Ye)),

a~p

(35.7)

with b0 as in Theorem 35.2. The error Er(p) due to truncating the series (35. 7)
after p-th order terms satisfies the bound

IEr(P)I =IL b13 (c(x - Ye)) 13 I< (1.09) 5 p(B) 1
s [(~re)p+l]

5

f3>p .j(p + 1)! - ere

Theorem 35.3 is based on the multivariate Taylor series expansion of the Hermite
functions h 0 , i.e.,

~ (-1)1/31 /3
ho. (c(yj - XB)) = ~ /3! (c(yj - Ye)) ha+/3 (e(XB - Ye)).

/32:0

35. Other Efficient Numerical Methods 325

Note that the error estimates in the original paper on the fast Gauss transform
[Greengard and Strain (1991)] were incorrect. In the mean time a number of other
authors have provided alternate error bounds in their papers (see, e.g., [Baxter
and Roussos (2002); Florence and van Loan (2000); Greengard and Sun (1998);
Wendland (2004)]).

For ID calculations on the order of p = 20 terms are required to achieve double
precision accuracy. For the 2D case one can get by with a smaller value of p (about
15), but the number of terms is of course much higher (on the order of p 8 for
s-dimensional pro bl ems).

The basic outline of the algorithm is as follows:

Algorithm 35.1. Fast Gauss transform

(1) If necessary, scale the problem so that the coarsest box Bo= [O, 1] 8
• Subdivide

Bo into smaller boxes with side length 1/e: parallel to the axes. Assign each
source Xk to the box B in which it lies and each evaluation point YJ to the box
C in which it lies.

(2) Choose p so that the truncation error satisfies the desired accuracy, and for
each box B compute and store the coefficients (or moments)

a <p,

of its Hermite expansion (35.6).
(3) For each evaluation box C, determine its interaction region IR(C).
(4) For each evaluation box C transform all Hermite expansions in source boxes

within the interaction region IR(C) into a single Taylor expansion using (35.7),
i.e.,

where

91(Y1) ~ L c13 (e:(yJ - Yc)) 13 ,
/3$.p

c13 = (-l~l/3I L L bcxhcx+/3 (e:(xB - Ye))·
{3. BEI R(C) cx$_p

For a small number of points direct summation is more efficient than the fast
transform. Unfortunately, the value of the "crossover point" grows with the space
dimensions. This makes the fast Gauss transform in its basic form virtually unus­
able for 3D applications.

Note that the algorithm presented here does not use a hierarchical decomposition
of space as is typical for so-called tree codes, as well as many other more general fast
multipole algorithms. In the algorithm above the interaction region is determined
simply based on the fast decay of the Gaussian.

Clearly, the majority of the work has to be performed in step 4. The performance
of this step can be improved by using plane wave expansions to diagonalize the

326 Meshfree Approximation Methods with MATLAB

translation operators (see [Greengard and Sun (1998)]). In order to keep matters
as simple as possible, we will not discuss this feature.

A more complete algorithm (designed for radial basis function interpolation with
multiquadrics and thin plate splines) has been developed by Beatson and co-workers
(see, e.g., [Beatson and Newsam (1992); Cherrie et al. (2002)]).

For the numerical experiments in Table 35.1 we used the C-code FGT which
can also be used as a MEX-file with MATLAB. The code was written by Adam Flo­
rence and can be obtained at http: I /'filTilw. cs. cornell. edu/aflorenc/research/­
fgt .html (see also [Florence and van Loan (2000)]). The numerical results pre­
sented in Table 35.1 were obtained by performing quasi-interpolation of the form

N

Q(h) (x) = (7r'D)-1;2 '"'"'f(xk)if! (x - Xk)
f ~ ../Vh '

with a Gaussian if! on N = 2e + 1, £ = 2, 3, 4, ... , 18, equally spaced points in [O, 1]
with the mollified test function

f(x) = 15e 1-(2-::1-1)2 [~e-(x-2)2
/4 + ~e-Cx+1)2

/49 + ~e-(x-7)2
/4 _ ~e-(x-4)2] •

4 4 2 5

All errors were computed on M = 524289 equally spaced points in [O, 1]. In
the "rate" column we list the number rate = ln(ee-i/ ee) / ln 2 corresponding to the
exponent in the O(hrate) notation. Other parameters were V = 4, and the default
values for the FGT code (i.e., R = 0.5). All times were measured in seconds.

Table 35.1 lD quasi-interpolation using fast Gauss transform.

direct fast

N max-error rate time max-error rate time speedup

5 3.018954e-OO 1.93 5.495125e-OO 1.07 1.80
9 2.037762e-OO 0.57 3.40 2.037762e-OO 1.43 5.31 0.64
17 9.617170e-01 1.08 6.39 9.617170e-01 1.08 5.33 1.20
33 3.609205e-01 1.41 12.28 3.609205e-01 1.41 5.35 2.30
65 1.190192e-01 1.60 24.72 l.190192e-01 1.60 5.39 4.59
129 3.354132e-02 1.83 53.38 3.354132e-02 1.83 5.46 10.14
257 8. 702868e-03 1.95 113.35 8. 702868e-03 1.95 5.61 20.20
513 2. l 96948e-03 1.99 226.15 2.196948e-03 1.99 5.94 38.07
1025 450* 5.505832e-04 2.00 6.67 67.47
2049 900* 1.377302e-04 2.00 7.87 114.36
4097 1800* 3.443783e-05 2.00 10.56 170.45
8193 3600* 8.609789e-06 2.00 15.78 228.14
16385 7200* 2.152468e-06 2.00 26.27 274.08
32769 14400* 5.381182e-07 2.00 47.39 303.86
65537 28800* 1.345296e-07 2.00 89.91 320.32
131073 57600* 3.363241e-08 2.00 174.74 329.63
262145 115200* 8.408103e-09 2.00 343.59 335.28

An asterisk * on the entries in the lower part of the "direct" column indicates
estimated times. The fast Gauss transform yields a speedup of roughly a factor of

35. Other Efficient Numerical Methods 327

300. Another way to interpret these results is that for roughly the same amount
of work we can obtain an answer which is about 100000 times more accurate. The
predicted O(h2) convergence of the Gaussian quasi-interpolant (c.f. Chapter 26) is
perfectly illustrated by the entries in the "rate" columns.

35.2 Fast Tree Codes

An alternative to fast multipole methods are so-called fast tree codes. These kind
of algorithms originated in computational chemistry. For the interested reader we
recommend recent mathematical papers by Krasny and co-workers (e.g., [Duan and
Krasny (2001); Lindsay and Krasny (2001)]). An advantage of fast tree code meth­
ods is that they make use of standard Taylor expansions instead of the specialized
expansions that are used in the context of the fast multipole expansions of the
previous section (such as, e.g, in terms of Hermite functions, spherical harmon­
ics, spherical Hankel functions, plane waves, or hypergeometric functions [Cherrie
et al. (2002)]). This simplifies their implementation. However, their convergence
properties are probably not as good as those of fast multipole expansions.

We now present a very general discussion of fast summation via Taylor expan­
sions. The presentation of this material is motivated by the work of Krasny and
co-workers (see, e.g., [Duan and Krasny (2001); Lindsay and Krasny (2001)]) as
well as the algorithm for the fast Gauss transform reviewed in the previous section.
Since we are interested in many simultaneous evaluations of our quasi-interpolants
(or other radial basis function expansion), we split the set of M evaluation points
Yj into groups (contained in boxes C with centers Ye). We also split the N data
locations Xk into boxes B with centers XB, and use the index set IB to denote the
points in B.

In order to set the stage for a fast summation of the quasi-interpolant

N

Q1(Yj) = L f(xk)'P(yj - xk)
k=l

= L L f(xk)'P(yj - Xk) (35.8)
B kEia

with generating function 'P we require the multivariate Taylor expansion of 'P about
a point zo E IRs, i.e.,

~ a (z - zo) 0

'P(z) = ~ D 'P(z)lz=zo 1 ,
0:.

(35.9)
o:2:0

where a is a multi-index. Now - as for the fast Gauss transform - we consider
three basic expansions.

Theorem 35.4 (Taylor Series Expansion about Centers of Target Boxes).
Let 18 be the index set denoting the sources Xk that lie in a box B with center XB,

328 Meshfree Approximation Methods with MATLAB

and let Ye be the center of the target box C containing an evaluation point YJ. Then
the quasi-interpolant due to sources in B

QjB) (YJ) = L f(xk)<I>(yJ - xk)
kEla

. can be written as a Taylor expansion about ye:

Q<j3\YJ) = L aa(YJ ___:_ Ye) 0
,

where

Proof. We combine the contribution for the source box B of (35.8) with (35.9),
and let z = YJ - Xk and zo =Ye - Xk. Then (35.8) becomes

Q(B)() ""°""!()""°"" a ()I (YJ-Ye)
0

f YJ = ~ Xk ~ D <I> Z z=yc-:ck 1 a.
kEla a~O

Using the abbreviation T 0 (ye, Xk) = (-1)l 0 1D0 <I>(z)lz=yc-::ck we can rewrite this
as

QjB)(YJ) = L aa(YJ -ye)0
,

a~O

where
(-l)lal

aa = 1 L f (xk)Ta(Ye, Xk)·
a.

kEla

Example 35.1. If we take <I>(x) = e-ll:cll
2

then

Ta(Ye,xk) = ha(Ye - Xk) = ha(Xk -ye),

and Theorem 35.4 is equivalent to Theorem 35.1 given above.

0

We can see that the Taylor expansion has allowed us to separate the evaluation
points y J from the data points x k.

Theorem 35.5 (Taylor Series Expansion about Centers of Source Boxes).
Let IB be the index set denoting the sources Xk that lie in a box B with center XB.
Then the quasi-interpolant due to sources in B

QjB) (YJ) = L f(xk)<I>(yJ - xk)
kEla

can be written as a reversed Taylor expansion about x B:

QjB)(YJ) = L baTa(Yj,XB),

with the moments ba given by

ba = ~ L f(xk)(xk - XB) 0
,

a.
kEla

and Ta(YJ, XB) = (-l)l 0 ID 0 <I>(z)lz=yj-:ca.

35. Other Efficient Numerical Methods 329

Proof. We combine the contribution for the source box B of (35.8) with (35.9),
and let z = Yj - Xk and zo = Yj - XB· Then (35.8) becomes

Using the abbreviation Ta.(Yj, XB) = (-l)lo.lno.<I>(z)Jz=yj-~B we can reverse the
role of the Taylor coefficients and the polynomials to write this as

QjB)(yj) = L ba.Ta.(Yj, XB),
o.::2:0

with

D

Example 35.2. Using <I>(x) = e-11~11
2

this is equivalent to Theorem 35.2.

The moments ba. can be pre-computed and stored during the setup phase of the
algorithm.

Theorem 35.6 (Conversion). Let lB be the index set denoting the sources Xk

that lie in a box B with center XB, and let Ye be the center of the target box C
containing Yj. Then a fast summation formula for the quasi-interpolant

N

Q1(Yj) = L f(xk)<I>(yj - xk)
k=l

can be given as an expansion about Ye:

where

Ta.+/3(Ye, xB)
Theorem 35. 5.

Q1(Yj) ~ L c,13(Yj - Ye)/3,
/3'S_p

(-1)1/31
c,13 = {3! L LTa.+f3(Ye, xB)ba.,

o.+f3'S_p B

Proof. We combine (35.8) with (35.9), and now replace z by Yj - Xk and zo by
Ye - XB. Then (35.8) becomes

330 Meshfree Approximation Methods with MATLAB

Using the abbreviation Tcx.(yc, xB) = (-l)ialncx.~(z)iz=yc-:z:s along with the mul­
tivariate binomial theorem we can rewrite this as

Q1(Yj) =LL f(xk) L(-l)lcx.ITa(Y~!,xB) x
B kEls cx.2:::0

L (a:)(-1) 1131 (Y} -yc)cx.-.B(xk - XB) 13

.ascx. J3
(y)cx.-.a

= L L(-l)lnlTa(Yc, XB) L (-1)1.BI j - Ye x
cx.2:::0 B /3$.cx. (a: - j3)!

'"""' f() (xk - xn).B
L Xk J3! .

kEls

In fact, we can introduce the moments of Theorem 35.5 and write

where

A fast algorithm is now obtained by truncating the infinite series after the p-th
order terms, i.e.,

Using the fact that

L acx. L bcx.-,B = L bcx. L a13 = L bcx. L acx.+,a,
cx.$.p cx.+,B$.p

which can be verified by a simple rearrangement of the summations and an index
transformation, we obtain (interchanging the role of a: and /3) the following fast
summation formula:

QJ(Yj) ~ L L (-l)lcx.I~! L(-l)lcx.+f3ITa+f3(Yc,xB)bcx.(Yj-YC)13 .
{3$.pcx.+/3$.p B

This is equivalent to the statement of the theorem. 0

Example 35.3. Using ~(x) = e-llxll
2

Theorem 35.6 is almost equivalent to Theo­
rem 35.2. However, our alternate formula is more efficient since only Hermite func­
tions up to order p are required (as opposed to order 2p in the Greengard/Strain
version). This gain is achieved by using the binomial theorem instead of a second
Taylor expansion. The Hermite series expansion used in the traditional fast Gauss
transform is equivalent to a Taylor expansion.

35. Other Efficient Numerical Methods 331

Note that the Taylor coefficients Ta.(Yc, XB) depend only on the box centers Ye
and XB·

In order to make the algorithm efficient one will use a decision rule (as in Strain's
code for the fast Gauss transform) to decide when to use which of the three expan­
sions. Error estimation is very similar to Greengard/Strain. The only difference is
that one needs bounds on the Taylor coefficients instead of the Hermite functions.

In order to adapt this fast transform to Laguerre-Gaussian generating functions
(or any other generating function) one needs to compute the required Taylor coef­
ficients. This is a task that goes beyond the scope of this book.

35.3 Domain Decomposition

Finally, another method commonly used to deal with large computational problems
is the domain decorr:position method. Domain decomposition is frequently imple­
mented on parallel computers in order to speed up the computation. A standard
reference (based mostly on finite difference and finite element methods) is the book
by Smith, Bj0rstad and Gropp [Smith et al. (1996)]. For radial basis functions
there is a recent paper by Beatson, Light and Billings [Beatson et al. (2000)].

The main aim of the paper [Beatson et al. (2000)] is to solve the radial basis
function interpolation problem discussed many times in previous chapters. In par­
ticular, a so-called multiplicative Schwarz algorithm (which is analogous to Gauss­
Seidel iteration) is presented, and linear convergence of the algorithm is proved. A
section with numerical experiments reports results for an additive Schwarz method
(which is analogous to Jacobi iteration).

In particular, the authors implemented polyharmonic radial basis functions and
used the scale invariant basis discussed in Section 34.4.

The classical additive Schwarz algorithm is usually discussed in the context
of partial differential equations, and it is known that one should add a coarse level
correction in order to ensure convergence and to filter out some of the low-frequency
oscillations (see, e.g., [Smith et al. (1996)]).

In [Beatson et al. (2000)] a two-level additive algorithm for interpolation prob­
lems was presented. One begins by subdividing the set of interpolation points X
into M smaller sets Xi, i = 1, ... , M, whose pairwise intersection is non-empty. The
points that belong to one set Xi only are called inner points of Xi. Those points
in the intersection of more than one set need to be assigned in some way as inner
points to only one of the subsets Xi so that the collection of all inner points yields
the entire set X. This corresponds to the concept of overlapping domains. One also
needs to choose a coarse grid Y that contains points from all of the inner point sets.

In the setup phase of the algorithm the radial basis function interpolation matri­
ces for the smaller problems on each of the subsets Xi, i = 1, ... , M, are computed
and factored. At this point one can use the homogeneous basis of Section 34.4 to
ensure numerical stability. Now the algorithm proceeds as follows:

332 Meshfree Approximation Methods with MATLAB

Algorithm 35.2.

Input: Data f, point sets Xi and factored interpolation matrices Ai, i

1, ... , M, tolerance tol
Initialize r = f, u = 0
While llrll > tol do

end

For i = 1 to M (i.e., for each subset Xi) do

Determine the coefficient vector cCi) of the interpolant to the residual

rlxi on xi.
end
Make c orthogonal to n:n_ 1.

N

Assemble an intermediate approximation u 1 = L c1 <P (·, x j).
j=l

Compute the residual on the coarse grid, i.e.,

r1 = r - u1IY·

Interpolate to r 1 on the coarse grid Y using an RBF expansion u2.
Update u ~ u+u1 +u2.
Re-evaluate the global residual r = f - u on the whole set X.

In [Beatson et al. (2000)] it is proved that a multiplicative version of this algo­
rithm converges at least linearly. However, the additive version can be more easily
implemented on a parallel computer.

If strictly positive definite kernels such as Gaussians are used, then it is not
necessary to make the coefficients c orthogonal to polynomials.

As in many algorithms before, the evaluation of the residuals needs to be made
"fast" using either a fast multipole method or a version of the fast Fourier transform.

In the case of very large data sets it may be necessary to use more than two
levels so that one ends up with a multigrid algorithm.

The authors of [Beatson et al. (2000)] report having solved interpolation prob­
lems with several millions of points using the domain decomposition algorithm
above.

A number of other papers discussing domain decomposition methods for radial
basis functions have appeared in the literature (see, e.g., [Dubal (1994); Hon and
Wu (2000); Ingber et al. (2004); Li and Hon (2004); Ling and Kansa (2004); Wong
et al. (1999)]). However, most of these papers contain little theory, focusing mostly
on numerical experiments.

Chapter 36

Generalized Hermite Interpolation

In 1975 Rolland Hardy mentioned the possibility of using multiquadric basis func­
tions for Hermite interpolation, i.e., interpolation to data that also contains deriva­
tive information (see [Hardy (1975)] or the survey paper [Hardy (1990)]). This prob­
lem, however, was not further investigated in the RBF literature until the paper [Wu
(1992)] appeared. Since then, the interest in this topic has increased significantly.
In particular, since there is a close connection between the generalized Hermite in­
terpolation approach and symmetric collocation for elliptic partial differential equa­
tions (see Chapter 38). Wu deals with Hermite-Birkhoff interpolation in IR.8 and his
method is limited in the sense that one can have only one interpolation condition
per data point (i.e., some linear combination of function value and derivatives). In
[Sun (1994a)] this restriction is eliminated. Sun deals with the Euclidean setting and
gives results analogous to the (Lagrange) interpolation results of [Micchelli (1986)].
In [Narcowich and Ward (1994a)] an even more general theory of Hermite interpo­
lation for conditionally positive definite (matrix-valued) kernels in IR.8 is developed.
Hermite interpolation with conditionally positive definite functions is also discussed
in [Iske (1995)]. A number of authors have also considered the Hermite interpolation
setting on spheres (see, e.g., [Fasshauer (1999b); Freeden (1982); Freeden (1987);
Ron and Sun (1996)]) or even general Riemannian manifolds [Dyn et al. (1999);
Narcowich (1995)].

36.1 The Generalized Hermite Interpolation Problem

We now consider data {xi, Ai/}, i = 1, ... , N, Xi E IR.8
, where A= {A1, ... , AN} is

a linearly independent set of continuous linear functionals and f is some (smooth)
data function. For example, Ai could denote point evaluation at the point Xi and
thus yield a Lagrange interpolation condition, or it could denote evaluation of some
derivative at the point Xi· However, we allow the set A to contain more general
functionals such as, e.g., local integrals. This kind of problem was recently studied in
[Beatson and Langton (2006)]. Furthermore, we stress that there is no assumption
that requires the derivatives to be in consecutive order as is usually the case for

333

334 Meshfree Approximation Methods with MATLAB

polynomial or spline-type Hermite interpolation problems.
We try to find an interpolant of the form

N

P1(x) = L:c1'1/J1(11xll),
j=l

x E JRB' (36.1)

with appropriate (radial) basis functions -iP1 so that P1 satisfies the generalized
interpolation conditions

i = 1, .. . ,N.

To keep the discussion that follows as transparent as possible we now introduce
the notation ei, ... 'eN for the centers of the radial basis functions. They will
usually be selected to coincide with the data sites X = {x1 , ... , XN }. However, the
following is clearer if we formally distinguish between centers ej and data sites Xi.

As we will show in the next section, it is natural to let '!/i1(llxii) = ..\j<p(llx - ell)
with the same functionals ..\1 that generated the data and cp one of the usual radial
basic functions. However, the notation ,\~ indicates that the functional ,\ now acts
on cp viewed as a function of its second argument e. We will not add any superscript
if ,\ acts on a single variable function or on the kernel cp as a function of its first
variable. Therefore, we assume the generalized Hermite interpolant to be of the
form

N

P1(x) = L Cj..\jcp(llx - ell), x E JRS' (36.2)
j=l

and require it to satisfy

i = 1, ... ,N.

The linear system Ac = f A which arises in this case has matrix entries

AiJ = ..\i..\jcp, i, j = 1, ... , N, (36.3)

and right-hand side f A = [..\1f, ... , ..\N f]T.
In the references mentioned at the beginning of this chapter it is shown that

A is non-singular for the same classes of cp that were admissible for scattered data
interpolation in our earlier chapters.

Note that when we are assembling the interpolation matrix A the functionals ..\
act on cp both as a function of the first variable as well as the second variable. This
implies that we need to use C 2k functions in order to interpolate Ck data. This is
the price we need to pay to ensure invertibility of A.

It is interesting to note that the effect of the derivative acting on the second
variable (i.e., the center) of cp (which leads to a sign change for derivatives of odd
orders) was not taken into account in the early paper [Hardy (1975)], and thus his
interpolation matrix is not symmetric.

It should be pointed out that the formulation in (36.2) is very general and goes
considerably beyond the standard notion of Hermite interpolation (which refers to

36. Generalized Hermite Interpolation 335

interpolation of successive derivative values only). Here any kind of linear func­
tionals are allowed as long as the set A is linearly independent. For example, in
Chapter 38 we will see how this formulation can be applied to the solution of partial
differential equations.

One could also envision use of a simpler RBF expansion of the form

N

P1(x) = L Cj<p(llx - ell),
j=l

However, in this case the interpolation matrix will not be symmetric and much more
difficult to analyze theoretically. In fact, the approach just suggested is frequently
used for the solution of elliptic partial differential equations (see the description
of Kansa's method in Chapter 38), and it is known that for certain configurations
of the collocation points and certain differential operators the system matrix does
indeed become singular.

The question of when the functionals in A are linearly independent is not ad­
dressed in most papers on the subject. However, the book [Wendland (2005a)]
contains the following reassuring theorem that covers both Hermite interpolation
and collocation solutions of PDEs.

Theorem 36.1. Suppose that q> E L1 (JRS) n C 2k (JRS) is a strictly positive definitek­
emel. If the functionals >..i = Oa;j oDo.(j), j = 1, ... , N, with multi-indices la(j) I < k
are pairwise distinct, meaning that a<j) =!= aCf) if Xj = Xf for different j =/= l, then
they are also linearly independent over the native space N<t>(R8

).

In the theorem above the functional Oa;. denotes point evaluation at the point
J

Xj, and the kernel q> is related to <pas usual, i.e., q>(x, e) = <p(llx - ell). Like most
results on strictly positive definite functions, this theorem can also be generalized
to the strictly conditionally positive definite case.

36.2 Motivation for the Symmetric Formulation

In this section we illustrate why the formulation used in (36.2) is natural for the
Hermite interpolation problem. That is, aside from the fact that the symmetric
interpolation matrix (36.3) is guaranteed to be invertible for all commonly used
RBFs, we will show that by choosing the basis functions as in (36.2) the matrix
associated with (Hermite) interpolation to function value and first derivative value
at a point corresponds to a limit of the matrix for Lagrange interpolation to clusters
of points. We will also illustrate this fact numerically in the next section.

In [Franke et al. (1995)] the authors investigated adaptive least squares approx­
imation with multiquadrics in R 2 by means of inserting knots (similar to our algo­
rithm of Chapter 21). The authors describe numerical experiments which suggest
that (Lagrange) multiquadric basis functions associated with clusters of centers in

336 Meshfree Approximation Methods with MATLAB

adaptive least squares approximation should be replaced by appropriate directional
derivatives of one of the basis functions.

We now present a theoretical justification for this observation based on an anal­
ysis of a one-dimensional example. A more general analysis involving higher deriva­
tives and higher-dimensional spaces would be of the same flavor using the multivari­
ate Taylor theorem. We discuss interpolation to function values and first derivatives
at given points on the real line using radial basis functions.

To show how one general sub-block in the Hermite matrix relates to an associated
block of a Lagrange matrix, it will suffice to analyze the sub-block of the Lagrange
interpolation matrix corresponding to two pairs of nearby points. Let these points
be Xi, Xi + ~x, and f;.1, f.1 + ~f, for some indices i and j and some small distances
~x and ~f.. Furthermore, let the radial function be of the form cp = cp(lx - f,I),
x, f, E R. We also assume cp is differentiable at the origin. In the proof of the
following lemma we make use of the following identities, which are straightforward
applications of the univariate Taylor theorem

(36.4)

(36.5)

To keep the notation as simple as possible we write a8xcp(lxi - f,1 1) to denote

a8xcp(lx-f;,Jl)lx=xn a8e'P(lxi -f.11) to denote a8ecp(lxi -f;.l)le=€i' and a~~ecp(lxi -f.11)

to denote a~~ecp(lx - f.l)lx=xi,€=€r

Lemma 36.1. For the JD situation described above we have

detML
~x~f, = detMH + O(~x) + O(~f,),

where ML is the part of the Lagrange matrix corresponding to the basis junctions
centered at f.1 and f.1 + ~f, interpolating to values at Xi and Xi+ ~x, i.e.,

ML _ [cp(lxi - l:,1 I) cp(lxi - (e1 + ~e)I)]
- cp(l(xi + ~x) - f.11) cp(l(xi + ~x) - (f.1 + ~e)I) '

and MH is the associated Hermite block

MH = [:(lxi - f.1 I) -;~ cp(jxi - E;,j I) l
axcp(lxi - f.11) - axaecp(lxi - f.11) .

Proof. If we use (36.4) to modify the second row of ML, and then subtract the
first row from the second one, we obtain

This technique is commonly used when analyzing sign properties of Hermite matri­
ces (see, e.g., [Schumaker (1981)]). Now we repeat this process with (36.5) and the

36. Generalized Hermite Interpolation 337

second column of ML to get

detML = ~x~~ x

cp(lxi - ~jl) -Jecp(lxi - ~jl) + O(~~)
:Xcp(lxi - ~ii)+ O(~x) - a~;e'P(lxi - ~ii)+ O(~x) + O(~~)

and thus the statement follows. D

We now illustrate the Hermite interpolation approach with a simple 2D example
using first-order partial derivative functionals.

Example 36.1. Let data {xi, f(xi)}i=I and {xi, ~(xi)}~n+l with x = (x, y) E

R 2 be given. Thus

i = 1, ... ,n,
i = n+ 1, .. . ,N.

Then
N

P1(x) = Lci,\Jcp(llx - ell)
j=l

n N Bcp
= l:cjcp(llx -ejll) + L Cja(llx - ejll)

j=l j=n+l ~
n N Bcp

= L Cj'P(llx - ej II) - L Cj ax (lix - ej II).
j=l j=n+l

After enforcing the interpolation conditions the system matrix is given by

with

Aij = cp(llxi - eill), i,J = 1, ... , n,

- 8cp 8cp
(Ae)ij = 8~ (llxi -ejll) = - ax (llxi -ejll), i = 1, ... , n, j = n + 1, ... , N,

- 8cp
(Ax)ij = Bx (lixi - eill), i = n + 1, ... , N, j = 1, ... , n,

i,j = n + 1, ... , N.

Note that the two blocks Ae and Ax are identical provided the data sites and
centers coincide since in this case the sign change due to differentiation with respect
to the second variable in Ae is cancelled by the interchange of the roles of Xi and
ej when compared to Ax. Here one needs to realize that the partial derivative of <p

with respect to the coordinate x will always contain a linear factor in x, i.e., (for

338 Meshfree Approximation Methods with MATLAB

the 2D example considered here) ip(llxll) = •p(r) = <p(y'x2 + y 2), so that by the
chain rule

a d a
ax <p(llxll) = dr <p(r) ax r(x, y)

d x
= -<p(r)---;:::::==

dr y'x2 + y2

d x
= dr <p(r) r (36.6)

since r = llxll = y'x2 + y 2 . This argument generalizes for any odd-order derivative.
Note that the matrix A is also symmetric for even-order derivatives. For exam­

ple, one can easily verify that

a2 - i (2 d2 Y2 d)
ax21P(llxll) - r2 x dr2<p(r) +---:;: dr<p(r) '

so that now the interchange of Xi and ej does not cause a sign change. On the
other hand, two derivatives of <p with respect to the second variable e do not lead
to a sign change, either.

A catalog of RBFs and their derivatives is provided in Appendix D.

Chapter 37

RBF Hermite Interpolation in MATLAB

We now illustrate the symmetric approach to Hermite interpolation with a set of
numerical experiments for first-order Hermite interpolation (i.e., to positional and
gradient data) in 2D using the MATLAB program RBFHermite-2D.m listed below as
Program 37.1. Since derivatives of both the RBFs and the test function need to be
included in the program we use the function

f(x) = tanh(9(y - x)) + 1
'y tanh(9) + 1

which has fairly simple partial derivatives (see lines 9-10 of the program) to generate
the data. The RBF used in this set of experiments is the multiquadric with shape
parameter c = 6.

We compare four different problems:

(1) Lagrange interpolation, i.e., interpolation to function values only, at a set of N
equally spaced points in the unit square.

(2) Lagrange interpolation to function values at 3N clustered points with separation
distance q = O.lh, where his the fill distance of the set of equally spaced points
(see the left plot in Figure 37.1).

(3) The same as above, but with q = O.Olh (see the right plot in Figure 37.1).
(4) Hermite interpolation to function value, and values of both first-order partial

derivatives at the N equally spaced points used in the first experiment.

The standard Lagrange interpolants were computed via Program 2.1 with the
required modification of the RBF and test function definitions, i.e., line 1 is replaced
by

1 rbf = ©(e,r) sqrt(1+(e*r).-2); ep = 6;

and lines 2-6 are replaced by the single line

2 testfunction = ©(x,y) (tanh(9*(y-x))+1)/(tanh(9)+1);

The experiments with Lagrange interpolation at clustered data sites were ac­
complished by the same program by adding the following code between lines 8 and
9 in Program 2.1:

339

340 Meshfree Approximation Methods with MATLAB

q = 0.1/(sqrt(N)-1);
grid= 1inspace(0,1,sqrt(N));
shifted= 1inspace(q,1+q,sqrt(N)); shifted(end) = 1-q;
[xc1,yc1] = meshgrid(shifted,grid);
[xc2,yc2] = meshgrid(grid,shifted);
dsites = [dsites; xc1(:) ye!(:); xc2(:) yc2(:)];

The resulting data point sets for q = 0 .1/ (sqrt (N)-1), i.e., q = h/10, and for
q = 0.01/(sqrt(N)-1) (or q = h/100) are shown in Figure 37.1.

0. 8o 8o 8o 0.8
11 0 0 0

0.6

8o 8o 8o y
0 0 0 0 I

0.4

8o 8o 8o 0 0 0 0 0
0.2 0.2

- -
0 0.2 0.4 0.6 0.8 -o 0.2 - 0.4 0.6 0.8

x x

Fig. 37.1 Clustered point sets with N = 25 basic data points. Cluster size h/10 (left) and cluster
size h/100 (right).

The program RBFHermi te--20. m maintains the same basic structure as earlier
interpolation programs. Now, however, we need to define derivatives of the RBF
of up to twice the order of the data. This is done for the MQ basic function on
lines 1-6. Note that the second-order partials could be expressed either as stated
in Program 37.1 or as

4 dxxrbf = ©(e,r,dy) e-2*(1+(e*dy).-2)./(1+(e*r).-2).-(3/2);
6 dyyrbf = ©(e,r,dx) e-2*(1+(e*dx).-2)./(1+(e*r).-2).-(3/2);

Here dx and dy denote non-radial difference terms of the x or y-components, re­
spectively (see, e.g., (36.6)). We choose the former representation since for many
other basic functions these second-order partials are more naturally expressed in
terms of the differences of the variable of differentiation (i.e., dxxrbf is expressed
in terms of x-differences, etc.).

Since the derivatives of the basic function now also contain the difference terms
mentioned above, we need another subroutine that computes matrices of differ­
ences of point coordinates. This subroutine is called Di ff erenceMatrix .m (see
Program37.2), and it is built analogous to Program 1.1 (DistanceMatrix.m). Thus,
on lines 17-22 of Program 37.1 we compute not only distance matrices of data sites
and centers (or evaluation points and centers), but also the corresponding difference

31. RBF Hermite Interpolation in MATLAB 341

matrices. These three matrices are then required when we evaluate the RBF and its
partials to obtain the building blocks of the interpolation and evaluation matrices
(see lines 25-35). Note the minus signs used with the blocks in columns 2 and 3 of
the block matrices IM and EM on lines 31 and 35. They reflect differentiation of the
basic function with respect to its second variable (c.f. (36.2) and (36.3)).

The data are generated by sampling the test function and its derivatives (see
lines 8-10, and line 23). Evaluation of the interpolant, error computation and
rendering are exactly the same as in earlier programs.

Program 37.1. RBFHermite...2D.m

% RBFHermite_2D
% Script that performs first-order 2D RBF Hermite interpolation
% Calls on: DistanceMatrix, DifferenceMatrix

% Define RBF and its derivatives
1 rbf = ©(e,r) sqrt(1+(e*r).-2); % MQ RBF
2 dxrbf = ©(e,r,dx) dx*e-2./sqrt(l+(e*r).-2);
3 dyrbf = ©(e,r,dy) dy*e-2./sqrt(l+(e*r).-2);
4a dxxrbf = ©(e,r,dx) e-2*(1+(e*r).-2-(e*dx).-2)./ ...
4b (1+(e*r).-2).-(3/2);
5 dxyrbf = ©(e,r,dx,dy) -e-4*dx.*dy./(1+(e*r).-2).-(3/2);
6a dyyrbf = ©(e,r,dy) e-2*(1+(e*r).-2-(e*dy).-2)./ ...
6b (1+(e*r).-2).-(3/2);
7 ep = 6;

% Define test function and its derivatives
8 tf = ©(x,y) (tanh(9*(y-x))+1)/(tanh(9)+1);
9 tfDx = ©(x,y) 9*(tanh(9*(y-x)).-2-1)/(tanh(9)+1);

10 tfDy = ©(x,y) 9*(1-tanh(9*(y-x)).-2)/(tanh(9)+1);
11 N = 289; gridtype = 'u';
12 neval = 40;

% Load data points
13 name= sprintf('Data2D_%d%s',N,gridtype); load(name)
14 ctrs = dsites;

% Create neval-by-neval equally spaced evaluation locations
% in the unit square

15 grid= linspace(0,1,neval); [xe,ye] = meshgrid(grid);
16 epoints = [xe(:) ye(:)];

% Compute the distance and difference matrices for
% evaluation matrix

17 DM_eval = DistanceMatrix(epoints,ctrs);
18 dx_eval = DifferenceMatrix(epoints(:,1),ctrs(:,1));
19 dy_eval = Differencematrix(epoints(:,2),ctrs(:,2));

% Compute the distance and difference matrices for

342 Meshfree Approximation Methods with MATLAB

% interpolation matrix
20 DM data= DistanceMatrix(dsites,ctrs);
21 dx_data = DifferenceMatrix(dsites(:,1),ctrs(:,1));
22 dy_data = DifferenceMatrix(dsites(:,2),ctrs(:,2));
23a rhs = [tf(dsites(:,1),dsites(:,2)); .. .
23b tfDx(dsites(:,1),dsites(:,2)); .. .
23c tfDy(dsites(:,1),dsites(:,2))];
24 exact= tf(epoints(:,1),epoints(:,2));

% Compute blocks for interpolation matrix
25 IM= rbf(ep,DM_data);
26 DxIM = dxrbf(ep,DM_data,dx_data);
27 DylM = dyrbf(ep,DM_data,dy_data);
28 DxxIM = dxxrbf(ep,DM_data,dx_data);
29 DxylM = dxyrbf(ep,DM_data,dx_data,dy_data);
30 DyyIM = dyyrbf(ep,DM_data,dy_data);

% Assemble symmetric interpolation matrix
31a IM = [IM -DxIM -DylM;
31b DxIM -DxxIM -DxylM;
31c DylM -DxylM -DyyIM];

% Compute blocks for evaluation matrix
32 EM= rbf(ep,DM_eval);
33 DxEM = dxrbf(ep,DM_eval,dx_eval);
34 DyEM = dyrbf(ep,DM_eval,dy_eval);

/, Assemble evaluation matrix
35 EM= [EM -DxEM -DyEM];

% RBF Hermite interpolant
36 Pf= EM* (IM\rhs);

% Compute errors on evaluation grid
37 maxerr = norm(Pf-exact,inf);
38 rms_err = norm(Pf-exact)/neval;
39 fprintf('RMS error: /,e\n', rms_err)
40 fprintf('Maximum error: %e\n', maxerr)
41 fview = [-30,30]; % viewing angles for plot
42 PlotSurf(xe,ye,Pf,neval,exact,maxerr,fview);
43 PlotError2D(xe,ye,Pf ,exact,maxerr,neval,fview);

Program 3 7 .2. Dif f erenceMatrix. m

/, DM = DifferenceMatrix(datacoord,centercoord)
% Forms the difference matrix of two sets of points in R
% (some fixed coordinate of point in R-s), i.e.,
% DM(j,k) = datacoord_j - centercoord_k .

1 function DM = DifferenceMatrix(datacoord,centercoord)

2

37. REF Hermite Interpolation in MATLAB

% The ndgrid command produces two MxN matrices:
% dr, consisting of N identical columns
% (each containing the M data sites)

''· ,, cc,

%
[dr, cc]

consisting of M identical rows
(each containing the N centers)
= ndgrid(datacoord(:),centercoord(:));

3 DM = dr-cc;

343

fu Tables 37.1 and 37.2 as well as Figure 37.2 we display RMS-errors, £2-
condition numbers of the interpolation matrices, and plots of the interpolants for
the experiments described above.

Several observations can be made. First, the limiting relation between clustered
Lagrange interpolants and Hermite interpolants as discussed in the previous section
is obvious. Moreover, it is also obvious that interpolation to function and derivative
data at a given point is more accurate than interpolation to function values alone.

Table 37.1 2D interpolation with clustered data vs. Hermite interpolation
(part 1).

Lagrange clustered, q = O. lh

mesh RMS-error cond(A) RMS-error cond(A)

3x3 l.620492e-001 6.078349e+001 8.4 71301e-002 9.052247e+003
5x5 6.148258e-002 9.464176e+002 2. 733258e-002 3.073957e+005
9x9 8.521994e-003 6.523036e+004 2.678543e-003 8.811980e+007

17 x 17 2.246810e-004 9.017750e+007 3.138761e-005 3.555214e+012
33 x 33 2.017643e-006 4. 799960e+013 2. 925 784e-007 6.474324e+020

Table 37.2 2D interpolation with clustered data vs. Hermite interpolation
(part 2).

clustered, q = 0.0lh Hermite

mesh RMS-error cond(A) RMS-error cond(A)

3x3 9.084939e-002 8. 580483e+005 9.128193e-002 l .326346e+002
5x5 2. 792157e-002 2.829762e+007 2. 794943e-002 2. 292450e+003
9x9 2.687753e-003 8. 325283e+009 2.688346e-003 2.185224e+005

17 x 17 3.147808e-005 3.426489e+014 3.148843e-005 2 .486624e+009
33 x 33 8. 941613e-006 8. 9437 58e+020 5. 731027e-009 6.261336e+018

The advantage of the Hermite interpolation approach over the clustered La­
grange approach is clearly evident for the experiments with N = 33 x 33 = 1089
basic data points (or N = 3267 clustered data points). In this case the f2-condition
number of A for the clustered interpolants is on the order of 1020 , while it is "only"
6.261336e-!-018 for the Hermite matrix. This difference, however, has a significant

344 Meshfree Approximation Methods W'ith MATLAB

impact on the numerical stability, and the resulting RMS-errors. The Hermite in­
terpolant is more than three orders of magnitude more accurate than the Lagrange
interpolant to clusters with q = h/100 (see the last row of Table 37.2).

x 10-3

2.5

1.4

1 ..,.:-:~·:·· .. · -··

2 ,..:.- 1.2
"'·

zo.5 .. -·· 1.5 zo.5 .. -·· .-··
~ ~ g 0.8 g
w w

0 0 0.6

0.4
0.5

0.5 0.2

y 0 0
0

x y 0 0
0

x

x 10 ... x 10-•

:. 1.5 1.5
__ ···

...

zo.5 .. ···· ... zo.5 g e
w w

0 .. --············· 0
.. --··· 0.5 0.5

0.5

0 0
y 0 0 y 0 0 x x

Fig. 37.2 Fits for clustered interpolants with N = 289 basic data points. Top left to bottom
right: Lagrange interpolant, interpolant with cluster size h/10, interpolant with cluster size h/100,
Hermite interpolant.

Chapter 38

Solving Elliptic Partial Differential
Equations via RBF Collocation

In this chapter we discuss how the techniques used in previous chapters for Lagrange
and Hermite interpolation can be applied to the numerical solution of elliptic partial
differential equations. The resulting numerical method will be a collocation approach
based on radial basis functions. In the PDE literature this is also often referred to
as a strong form solution.

To make the discussion transparent we will initially focus on the case of a time
independent linear elliptic partial differential equation in IR2 .

38.1 Kansa's Approach

A now very popular non-symmetric method for the solution of elliptic PDEs with
radial basis functions was suggested by Ed Kansa in [Kansa (1990b)]. In order to be
able to clearly point out the differences between Kansa's method and a symmetric
approach proposed in [Fasshauer (1997)] we recall some of the basics of scattered
data interpolation with radial basis functions in lR8

•

In the scattered data interpolation context we are given data {xi, fi}, i =

1, ... , N, Xi E lR8
, where we can think of the values fi being sampled from a

function f : lR8
----+ IR. The goal is to find an interpolant of the form

N

P1(x) = L c1<p(llx - Xj II), x E IR8
' (38.1)

j=l

such that

i = l, ... ,N.

The solution of this problem leads to a linear system Ac= f with the entries of A
given by

i,j = 1, .. . ,N. (38.2)

As discussed earlier, the matrix A is non-singular for a large class of radial functions
including (inverse) multiquadrics, Gaussians, and the strictly positive definite com­
pactly supported functions of Wendland, Wu, Gneiting or Buhmann. In the case

345

346 Meshfree Approximation Methods with MATLAB

of strictly conditionally positive definite functions such as polyharmonic splines the
problem needs to be augmented by polynomials.

We now switch to the collocation solution of partial differential equations. As­
sume we are given a domain n c JR 8

, and a linear elliptic partial differential equation
of the form

.Cu(x) = f(x), x inn, (38.3)

with (for simplicity of description) Dirichlet boundary conditions

u(x) = g(x), x on an. (38.4)

For Kansa's collocation method we then choose to represent the approximate
solution ft by a radial basis function expansion analogous to that used for scattered
data interpolation, i.e.,

N

u(x) = :Lcj'P(llx - ~jll). (38.5)
j=l

As in the previous chapter on Hermite interpolation we now formally distin­
guish in our notation between centers 3 = { ~ 1, ... , ~ N} and collocation points
x = {x1, ... 'XN} c n. While formally different, these points will often physically
coincide. A scenario with 3 #- X will be explored in Chapters 39 and 40. For the
following discussion we assume the simplest possible setting, i.e., 3 = X and no
polynomial terms are added to the expansion (38.5).

The collocation matrix that arises when matching the differential equation (38.3)
and the boundary conditions (38.4) at the collocation points X will be of the form

(38.6)

where the two blocks are generated as follows:

(AL)ij = .Ccp(iix - ~jii)ix=x., Xi ET, ~j E 3,

Aij = 'P(llxi - ~jll), Xi EB, ~j E 3.

Here the set X of collocation points is split into a set T of interior points, and a
set B of boundary points. The problem is well-posed if the linear system Ac= y,
with y a vector consisting of entries f(xi), Xi ET, followed by g(xi), Xi E B, has
a unique solution.

We note that a change in the boundary conditions (38.4) is as simple as making
changes to a few rows of the matrix A in (38.6) as well as on the-right-hand side y.

We also point out that while this is a rather general description of a numerical
method with no particular RBF in mind, Kansa specifically proposed to use multi­
quadrics in (38.5), and consequently this non-symmetric collocation approach often
appears in the literature as the multiquadric method. In the paper [Kansa (l990b)1
the author describes three sets of experiments using the multiquadric method and he

38. Solving Elliptic Partial Differential Equations via RBF Collocation 347

comments on the superior performance of multiquadrics in terms of computational
complexity and accuracy when compared to finite difference methods.

Moreover, Kansa suggests the use of varying shape parameters c: j, j = 1, ... , N.
While the theoretical analysis of the resulting method is near intractable, Kansa
shows that this technique improves the accuracy and stability of the method when
compared to using only one constant value of E (see [Kansa (1990b)]). Except
for one paper by Bozzini, Lenarduzzi and Schaback [Bozzini et al. (2002)] (which
addresses only the interpolation setting) the theoretical aspects of varying shape
parameters have not been discussed in the literature.

A problem with Kansa's method is that - for a constant shape parameter
E - the matrix A may be singular for certain configurations of the centers ~j.
Originally, Kansa assumed that the non-singularity results established by Micchelli
for interpolation matrices (see the discussion in the earlier chapters of this book)
would carry over to the PDE case. However, as the numerical experiments of [Hon
and Schaback (2001)] show, this is not so. This fact is not really surprising since the
matrix for the collocation problem is composed of rows that are built from different
functions, which - depending on the differential operator £ - might not even be
radial. The results for the non-singularity of interpolation matrices, however, are
based on the fact that A is generated by a single function <p.

Nevertheless, an indication of the success of Kansa's method are the early
papers [Dubai (1992); Dubai (1994); Golberg et al. (1996); Kansa (1992);
Moridis and Kansa (1994)] and many more since. Since the numerical experiments
of Hon and Schaback show that Kansa's method cannot be well-posed for arbitrary
center locations, it is now an open question to find sufficient conditions on the center
locations that guarantee invertibility of the Kansa matrix. One possible approach
- built on the basic ideas of the greedy algorithm of Chapter 33 - is to adap­
tively select "good" centers from a large set of possible candidates. Following this
strategy it is possible to ensure invertibility of the collocation matrix throughout
the iterative algorithm. This approach is described in the recent paper [Ling et al.
(2006)].

Before we discuss an alternate approach (based on the symmetric Hermite in­
terpolation method) which does ensure well-posedness of the resulting collocation
matrix we would like to point out that in [Moridis and Kansa (1994)] the authors
suggest how Kansa's method can be applied to other types of partial differential
equation problems such as non-linear elliptic PDEs, systems of elliptic PDEs, and
time-dependent parabolic or hyperbolic PDEs. We will also see in the next chapter
that Kansa's method is well-suited for elliptic problems with variable coefficients.
We will come back to the use of Kansa's method for time-dependent problems in
Chapter 42.

348 Mesh.free Approximation Methods with MATLAB

38.2 An Hermite-based Approach

The following symmetric collocation method is based on the generalized Hermite
interpolation method detailed in Chapter 36. Assume we are given the same linear
elliptic PDE (38.3) with Dirichlet boundary conditions (38.4) as in the previous
section on Kansa's method. In order to be able to apply the results from generalized
Hermite interpolation that will ensure the non-singularity of the collocation matrix
we propose the following expansion for the unknown function u:

Nz N

u(x) = L Cj.Cecp(llx - e1Ule=ej + L Cjcp(llx - ej II). (38. 7)
j=l j=Nz+l

Here Nz denotes the number of nodes in the interior of n, and .ce is the differential
operator used in the differential equation (38.3), but acting on <p viewed as a function
of the second argument, i.e., £<p is equal to .ce <p up to a possible difference in sign.
Thus, the linear functionals ,\ in (36.2) are given by Aj = 8ei o £, j = 1, ... , Nz,

and Aj = 8ej, j = Nz + 1, ... , N.
After enforcing the collocation conditions

£u(xi) = f (xi),

u(xi) = g(xi),

Xi EI,

Xi E f3,

we end up with a collocation matrix A that is of the form

Here the four blocks are generated as follows:

(A.c.cdij = .c.cecp(llx - ell)lx=x;,e=ej' Xi, ej EI,

(A.c)ij = £cp(llx - eill)lx=x., Xi E 'I, ei E !3,

(A.ce)ij = .cecp(llxi - elUle=ej' Xi, E !3, ej EI,

Aij = cp(llxi - ej II), Xi, ej E !3.

(38.8)

Note that we have identified the two sets X =I U l3 of collocation points and 3 of
centers.

The matrix A of (38.8) is of the same type as the generalized Hermite interpola­
tion matrices (36.3), and therefore non-singular as long as <pis chosen appropriately.
Thus, viewed using the new expansion (38.7) for u, the collocation approach is cer­
tainly well-posed. Another point in favor of the Hermite-based approach is that
the matrix (38.8) is symmetric as opposed to the completely unstructured matrix
(38.6) of the same size used in the non-symmetric approach. This property is of
value when trying to devise an efficient implementation of the collocation method.
Also note that although A now consists of four blocks, it still is of the same size,
namely N x N, as the collocation matrix (38.6) obtained for Kansa's approach.

38. Solving Elliptic Partial Differential Equations via RBF Collocation 349

However, the symmetric collocation matrix is more complicated to assemble, it re­
quires smoother basis functions than the non-symmetric Kansa method, and it does
not lend itself very nicely to the solution of non-linear problems.

One attempt to obtain an efficient implementation of the Hermite-based collo­
cation method is a variation of the greedy algorithm described in Section 33.1. We
refer the reader to the original paper [Hon et al. (2003)] for details.

38.3 Error Bounds for Symmetric Collocation

A convergence analysis for the symmetric collocation method was provided in
[Franke and Schaback (1998a); Franke and Schaback (1998b)]. The error estimates
established in those papers require the solution of the PDE to be very smooth.
Therefore, one should be able to use meshfree radial basis function collocation tech­
niques especially well for (high-dimensional) PDE problems with smooth solutions
on possibly irregular domains. Due to the known counterexamples from [Hon and
Schaback (2001)] for the non-symmetric method, a convergence analysis is still lack­
ing for that method. However, for an adaptive version of the non-symmetric method
Schaback recently analyzed the convergence in [Schaback (2006a)].

In [Wendland (2005a)] one can find the following convergence result for the
symmetric collocation method:

Theorem 38.1. Let n ~ IR.8 be a polygonal and open region. Let £, =I= 0 be a
second-order linear elliptic differential operator with coefficients in C 2(k-2) (0) that
either vanish on n OT have no zero there. Suppose that cI> E C 2

k (IR.8
) is a strictly

positive definite function. Suppose further that the boundary value problem

LU= f inn,

u = g on an
has a unique solution u E N<t>(O) for given f E C(O) and g E C(80). Let u be the
approximate collocation solution of the form {38. 7) based on cI> = <p(ll ·II). Then

llu - ullLoo(O) < Chk-2 llullN<t>(O)
for all sufficiently small h, where h is the larger of the fill distances in the interior
and on the boundary of n, respectively.

The proof uses the same techniques as in Chapter 14 and takes advantage of a
"splitting theorem" that permits splitting the error into a boundary error and an
error in the interior. As a consequence of the proof Wendland suggests that the
collocation points and centers be chosen so that the fill distance on the boundary
is smaller than in the interior since the approximation orders differ by a factor f,

(for differential operators of order £). More precisely, he suggests distributing the
points so that

h k-l hk
I,n ~ B,an·

350 Meshfree Approximation Methods with MATLAB

Some numerical evidence for convergence rates of the symmetric collocation
method is given by the examples in the next chapter, and in the papers [Jumarhon
et al. (2000); Power and Barraco (2002)].

38.4 Other Issues

Since the methods described above were both originally used with globally sup­
ported basis functions, the same concerns about stability and numerical efficiency
apply as for interpolation problems. The two recent papers [Ling and Kansa (2004);
Ling and Kansa (2005)] address these issues. In particular, the authors develop a
preconditioner in the spirit of the one described in Section 34.3, and describe their
experience with a domain decomposition algorithm.

Recently, Miranda [Miranda (2004)] has shown that Kansa's method will be
well-posed if it is combined with so-called R-functions. This idea was also used
by Hollig and his co-workers in their development of web-splines (see, e.g., [Hollig
(2003)]).

Other recent papers investigating various aspects of radial basis function colloca­
tion are, e.g., [Cheng et al. (2003); Fedoseyev et al. (2002); Kansa and Hon (2000);
Larsson and Fornberg (2003); Leitao (2001); Mai-Duy and Tran-Cong (2001a);
Young et al. (2004)].

For example, in the paper [Fedoseyev et al. (2002)] the authors suggest that
the collocation points on the boundary should also be used to satisfy the PDE. The
motivation for this modification is the well-known fact that both for interpolation
and collocation with radial basis functions the error is largest near the boundary. In
order to prevent the collocation matrix from becoming trivially singular (by using
duplicate columns, i.e., basis functions) it is suggested in [Fedoseyev et al. (2002)]
that the corresponding centers lie outside the domain !1 (thus creating additional
basis functions). In various numerical experiments this strategy is shown to improve
the accuracy of Kansa's non-symmetric method. We implement this approach in
the next chapter. However, it should be noted that there is once more no theoret­
ical foundation for this modification of either the non-symmetric or the symmetric
method.

Larsson and Fornberg compare Kansa's basic collocation method, the modifica­
tion just described, and the Hermite-based symmetric approach mentioned earlier
(see [Larsson and Fornberg (2003)]). Using multiquadric basis functions in a stan­
dard implementation they conclude that the symmetric method is the most accu­
rate, followed by the non-symmetric method with boundary collocation. The reason
for this is the better conditioning of the system for the symmetric method. Lars­
son and Fornberg also discuss an implementation of the three methods using the
complex Contour-Pade integration method mentioned in Section 16.1. With this
technique stability problems are overcome, and it turns out that both the symmet­
ric and the non-symmetric method perform with comparable accuracy. Boundary

38. Solving Elliptic Partial Differential Equations via RBF Collocation 351

collocation of the PDE yields an improvement only if these conditions are used as
additional equations, i.e., by increasing the problem size. It should also be noted
that often the most accurate results were achieved with values of the multiquadric
shape parameter c that would lead to severe ill-conditioning using a standard im­
plementation, and therefore these results could be achieved only using the complex
integration method. Moreover, in [Larsson and Fornberg (2003)] radial basis func­
tion collocation is deemed to be far superior in accuracy to standard second-order
finite differences or even a standard Fourier-Chebyshev pseudospectral method.

Leitao applies the symmetric collocation method to a fourth-order Kirchhoff
plate bending problem (see [Leitao (2001)]) and emphasizes the simplicity of the
implementation of the radial basis function collocation method. Mai-Duy and Tran­
Cong suggest a collocation method for which the basis functions are taken to be
anti-derivatives of the usual radial basis functions (see [Mai-Duy and Tran-Cong
(2001a)]). And, finally, in [Young et al. (2004)] the authors discuss the solution of
2D and 3D Stokes' systems by a self-consistent iterative approach based on Kansa's
non-symmetric method.

Chapter 39

Non-Symmetric RBF Collocation
in MATLAB

In this and the next two chapters we present a number of MATLAB implementations
for standard Laplace/Possion problems, problems with variable coefficients, and
problems with mixed or piecewise defined boundary conditions. The non-symmetric
Kansa method is discussed in this chapter. We provide a fairly detailed presentation
since the MATLAB code changes rather significantly from one problem to another.

Most of the following test examples are similar to those studied in [Li et al.
(2003)]. We restrict ourselves to two-dimensional elliptic problems whose analytic
solution is readily available and therefore can easily be verified. We will refer to a
point x in JR2 as (x, y).

39.1 Kansa's Non-Symmetric Collocation Method

Example 39.1. Consider the following Poisson problem with Dirichlet boundary
conditions:

V 2u(x, y) = -%?T2 sin(7rx) cos (?T;) , (x, y) E n = (0, 1]2,

u(x,y) = sin(?Tx), (x,y) E I'1,

u(x, y) = 0, (x, y) E I'2,

(39.1)

where r 1 = { (x, y) : 0 < x < 1, y = O} and I'2 =on\ I'1. As can easily be verified,
the exact solution is given by

u(x, y) = sin(?Tx) cos (?T;).

A MATLAB program for the non-symmetric collocation solution of this problem
using inverse multiquadric RBFs is provided as Program 39.l. While this program
still is of the same general structure as earlier interpolation programs we now require
not only a definition of the basic function, but also of its Laplacian (see line 2). On
lines 3 and 4 we define the exact solution and its Laplacian for this test problem.
Note that when we define the right-hand side of the problem, instead of breaking the
boundary condition down into two pieces as given in the problem definition above

353

354 Meshfree Approximation Methods with MATLAB

we simply evaluate the known solution on the boundary (see line 26 of the code). Of
course, this is not possible in general since the solution will not be known. In that
case one would have to replace line 26 by the slightly more complicated expression

rhs = [Lu(intdata(:,1),intdata(:,2)); ...
sin(pi*bdydata(1:sn-1,1)); zeros(3*(sn-1),1)];

In order to stay as close as possible to the code used in earlier programs we
load the (interior) collocation points from data files. For example, on line 7 we
read N = 289 uniformly spaced points in [O, 1] 2 from the file Data2D..289u into
the variable dsi tes. As always, the centers for the basis functions associated with
interior points are taken to be the same as the collocation (i.e., data) sites.

However, as explained in the previous chapter, we now also require collocation
points and centers to fit the boundary conditions. There are several approaches we
could take to accomplish this:

• We could use those collocation points read from file that lie on the boundary as
boundary collocation points (and centers). This means identifying those points
in the array dsi tes. This approach would be the closest in spirit to the theory
discussed in the previous chapter. In MATLAB one could easily code this with
the commands

indx = find(dsites(:,1)==0
dsites(:,2)==0

bdydata = dsites(indx,:);

dsites(: ,1)==1 I
dsites(:,2)==1);

intdata = dsites(setdiff([1:N],indx),:);
bdyctrs = bdydata;

However, we do not follow this approach here.
• We can create additional collocation points for the boundary conditions. These

points can lie anywhere on the boundary. We take them to be equally spaced
(see lines 9-11). Note that we arrange the boundary points in a counter­
clockwise manner starting from the origin. Now we have several choices for
the boundary centers:

- We can let the boundary centers coincide with the boundary collocation
points. However, this approach will lead to a singular collocation matrix
for uniform interior points (since that set already contains points on the
boundary, and therefore duplicate columns are created). Note, however,
that this approach works fine if we take the interior collocation points to
be Halton points (since those points do not lie on the boundary of the unit
square). This approach can be realized by replacing lines 12-14 by

bdyctrs = bdydata;

We can create additional boundary centers outside the domain (see lines 12-
15). We follow this approach in most of our experiments since it seems

39. Non-Symmetric RBF Collocation in MATLAB 355

to provide a slightly more accurate solution. Placing boundary centers
away from the boundary has been recommended recently by a number of
authors. Note that this approach takes us into the realm of RBF methods
for which the centers differ from the data sites (or collocation points), and
we stated earlier that not much is known theoretically about this setting
(i.e., invertibility of system matrices or error bounds). It is an open problem
how to find the best location for the boundary centers. We take them a
small distance perpendicularly from the boundary collocation points (see
Figure 39.1).

Program 39.1. KansaLaplace_2D .m

I. KansaLaplace_2D
I. Script that performs Kansa collocation for 2D Laplace equation
I. Calls on: DistanceMatrix

I. IMQ RBF and its Laplacian
1 rbf = ©(e,r) 1./sqrt(1+(e*r).-2); ep = 3;
2 Lrbf = ©(e,r) e-2*((e*r).-2-2)./(1+(e*r).-2).-(5/2);

I. Exact solution and its Laplacian for test problem
3 u = ©(x,y) sin(pi*x).*cos(pi*y/2);
4 Lu= ©(x,y) -1.25*pi-2*sin(pi*x).*cos(pi*y/2);

I. Number and type of collocation points
5 N = 289; gridtype = 'u';
6 neval = 40;

I. Load (interior) collocation points
7 name= sprintf('Data2D_/.d/.s',N,gridtype); load(name);
8 intdata = dsites;

I. Additional (equally spaced) boundary collocation points
9 sn = sqrt(N); bdylin = linspace(0,1,sn)';

10 bdyO = zeros(sn-1,1); bdy1 = ones(sn-1,1);
11a bdydata = [bdylin(1:end-1) bdyO; bdy1 bdylin(1:end-1); ...
11b flipud(bdylin(2:end)) bdy1; bdyO flipud(bdylin(2:end))];

I. Create additional boundary centers OUTSIDE the domain
12 h = 1/(sn-1); bdylin = (h:h:1-h)';
13 bdyO = -h*ones(sn-2,1); bdy1 = (1+h)*ones(sn-2,1);
14a bdyctrs = [-h -h; bdylin bdyO; 1+h -h; bdy1 bdylin; ...
14b 1+h 1+h; flipud(bdylin) bdyl; -h 1+h; bdyO flipud(bdylin)];
15 ctrs = [intdata; bdyctrs] ;

I. Create neval-by-neval equally spaced evaluation locations
I. in the unit square

16 grid= linspace(0,1,neval); [xe,ye] = meshgrid(grid);
17 epoints = [xe(:) ye(:)];

I. Compute evaluation matrix

356 Meshfree Approximation Methods with MATLAB

18 DM_eval = DistanceMatrix(epoints,ctrs);
19 EM= rbf(ep,DM_eval);
20 exact= u(epoints(:,l),epoints(:,2));

% Compute blocks for collocation matrix
21 DM_intdata = DistanceMatrix(intdata,ctrs);
22 LCM= Lrbf(ep,DM_intdata);
23 DM_bdydata = DistanceMatrix(bdydata,ctrs);
24 BCM = rbf(ep,DM_bdydata);
25 CM = [LCM; BCM];

% Create right-hand side
26a rhs = [Lu(intdata(:,l),intdata(:,2));
26b u(bdydata(:,1),bdydata(:,2))];

% Compute RBF solution
27 Pf= EM* (CM\rhs);

% Compute maximum error on evaluation grid
28 maxerr = norm(Pf-exact,inf);
29 rms_err = norm(Pf-exact)/neval;
30 fprintf('RMS error: %e\n', rms_err)
31 fprintf('Maximum error: %e\n', maxerr)

% Plot collocation points and centers
32 hold on; plot(intdata(:,1),intdata(:,2),'bo');
33 plot(bdydata(:,1),bdydata(:,2),'rx');
34 plot(bdyctrs(:,1),bdyctrs(:,2),'gx'); hold off
35 fview = [-30,30]; % viewing angles for plot
36 PlotSurf(xe,ye,Pf,neval,exact,maxerr,fview);
37 PlotError2D(xe,ye,Pf,exact,maxerr,neval,fview);

In Tables 39.1 and 39.2 we list RMS-errors and condition numbers for the non­
symmetric collocation solution of the PDE problem (39.1). In Table 39.1 and the
right part of Table 39.2 we present results for collocation with inverse multiquadric
RBFs using a shape parameter of c = 3, N = 289 interior, and an additional 64
boundary collocation points. In Table 39.1 the interior points are irregularly spaced
Halton points, while in Table 39.2 we use uniformly spaced interior points. The
boundary centers are placed outside the domain for the results in Table 39.2 (see
the explanation above and the left part of Figure 39.1). In Table 39.1 we compare
the effect of placing the boundary centers directly on the boundary (coincident with
the boundary collocation points) as opposed to placement outside the domain as in
Figure 39.1.

The left part of Table 39.2 compares the use of Gaussians (with the same shape
parameter c = 3) to inverse multiquadrics. For Gaussians we replace lines 1 and 2
of Program 39.1 by

1 rbf = ©(e,r) exp(-(e*r).-2); ep = 3;

39. Non-Symmetric RBF Collocation in MATLAB

Table 39.1 Non-symmetric collocation solution of Example 39.1 with IMQs, e = 3
and interior Halton points.

N
centers on boundary centers outside

(interior points) RMS-error cond(A) RMS-error cond(A)

9 5.642192e-002 5. 2764 7 4e+002 6. 029293e-002 4.399608e+002
25 l .039322e-002 3.418858e+003 4.187975e-003 2. 259698e+003
81 2. 386062e-003 1. 726995e+006 4.895870e-004 3.650369e+005
289 4.904715e-005 1. 706884e+010 2.668524e-005 5.328110e+009

1089 3.676576e-008 l.446865e+018 1. 946954e-008 5.015917e+017

Table 39.2 Non-symmetric collocation solution of Example 39.1 with Gaussians and
IMQs, e = 3 and uniform interior points and boundary centers outside the domain.

N
Gaussian IMQ

(interior points) RMS-error cond(A) RMS-error cond(A)

3x3 1.981675e-001 1. 258837 e+003 1. 526456e-OO 1 2.794516e+002
5x5 7.19993le-003 4.136193e+003 6.096534e-003 2.409431e+003
9x9 1. 94 7108e-004 2.529708e+010 8.071271e-004 8. 771630e+005

17 x 17 4.l 74290e-008 5.335000e+019 3.219110e-005 5.981238e+010
33 x 33 l .408750e-005 7 .106505e+020 1. 55204 7 e-007 1. 706638e+020

357

Several observations can be made by looking at Tables 39.1 and 39.2. The use of
Halton points instead of uniform points seems to be beneficial since both the errors
and the condition numbers are smaller (c.f. the right part of Table 39.1 vs. the right
part of Table 39.2). Placement of the boundary centers outside the domain seems
to be advantageous since again both the errors and the condition numbers decrease
(c.f. Table 39.1). Also, the last row of Table 39.2 seems to indicate that Gaussians
are more prone to ill-conditioning than inverse multiquadrics.

Of course, these are rather superficial observations based on only a few numerical
experiments. For many of these claims there is no theoretical foundation, and
many more experiments would be needed to make a more conclusive statement (for
example, no attempt was made here to find the best approximations, i.e., optimize
the value of the shape parameter). Also, one could experiment with different values
of the shape parameter on the boundary and in the interior (as suggested, e.g., in
[Kansa and Carlson (1992)]).

The collocation points and centers used here (and in most of the following ex­
amples) are displayed in the left plot of Figure 39.1, while the right plot contains
a solution for N = 289 interior Halton points corresponding to row 4 in the right
part of Table 39.1.

358 Meshfree Approximation Methods with MATLAB

y

1.2

0.8

0.6

0.4

0.2

0

.
•••••••••••••••• • 000000000000000••
000000000000000••
000000000000000••
000000000000000•·
000000000000000
000000000000000 •
000000000000000 •
000000000000000
000000000000000
000000000000000 •
000000000000000 •
000000000000000
000000000000000
000000000000000
000000000000000

•••••••••••••••
-~~-.2~_..o~__.o.~2~-o~.4~--0.~6~-o~.8~--~__,,1.2

x
y 0 0 x

8

6
~

g
w

4

2

0

Fig. 39.1 Collocation points (interior: blue circles, boundary: red crosses) and centers (interior:
blue circles, boundary: green crosses) (left) and non-symmetric RBF collocation solution (right)
for Example 39.1 using IMQs with € = 3 and N = 289 interior points.

Example 39.2. Consider the following elliptic equation with variable coefficients
and homogeneous Dirichlet boundary conditions:

:x (a(x, y) :x u(x, y)) + :y (b(x, y) :y u(x, y)) = J(x, y),

u(x, y) = 0, (x, y) EI'= 80.,

where

(x,y) E 0. = [O, 1] 2
,

J(x, y) = -16x(l - x)(3 - 2y)ex-y + 32y(l - y)(3x2 + y2 - x - 2),

and the coefficients are given by

a(x,y) = 2 - x 2 -y2
,

As can easily be verified, the exact solution for this problem is given by

u(x, y) = 16x(l - x)y(l - y).

The corresponding MATLA'B program is listed as Program 39.2. The definition
section of this program (lines 1-9) is much longer than before since we need to
work with first and second-order partial derivatives of the basic function. Also, the
coefficients a and b and their partials are required.

While most of the remainder of the program is identical to the previous one,
the assembly of the collocation matrix (lines 26-32) is much more involved since
we need to apply the differential operator to the basis functions (see line 30 for
the computation of the block LCM which corresponds to the block A.c in our earlier
discussion (38.6)).

Program 39.2. KansaEllipticVC...2D.m

% KansaEllipticVC_2D
% Script that performs Kansa collocation for 2D elliptic PDE

39. Non-Symmetric RBF Collocation in MATLAB

% with variable coefficients
% Calls on: DistanceMatrix, DifferenceMatrix

% IMQ RBF and its derivatives
1 rbf = ©(e,r) 1./sqrt(1+(e*r).-2); ep = 3;
2 dxrbf = ©(e,r,dx) -dx*e-2./(l+(e*r).-2).-(3/2);
3 dyrbf = ©(e,r,dy) -dy*e-2./(1+(e*r).-2).-(3/2);
4a dxxrbf = ©(e,r,dx) e-2*(3*(e*dx).-2-1-(e*r).-2)./ ...
4b (l+(e*r).-2).-(5/2);
5a dyyrbf
5b

= ©(e,r,dy) e-2*(3*(e*dy).-2-1-(e*r).-2)./ ...
(1+(e*r).-2).-(5/2);

% Test problem input (right-hand side, coefficients)
6 u = ©(x,y) 16*x.*(1-x).*y.*(1-y);
7a Lu= ©(x,y) -16*x.*exp(x-y).*(1-x).*(3-2*y)+ ...
7b 32*y.*(1-y).*(3*x.-2+y.-2-x-2);
8 a= ©(x,y) 2-x.-2-y.-2; ax= ©(x,y) -2*x;
9 b = ©(x,y) exp(x-y); by= ©(x,y)-exp(x-y);

10 N = 289; gridtype = 'h';
11 neval = 40;

% Load (interior) collocation points
12 name= sprintf('Data2D_%d%s',N,gridtype); load(name);
13 intdata = dsites;

% Additional boundary collocation points
14 sn = sqrt(N); bdylin = linspace(0,1,sn)';
15 bdyO = zeros(sn-1,1); bdyl = ones(sn-1,1);
16a bdydata = [bdylin(1:end-1) bdyO; bdy1 bdylin(1:end-1); ...
16b flipud(bdylin(2:end)) bdy1; bdyO flipud(bdylin(2:end))];

% Create additional boundary centers OUTSIDE the domain
17 h = 1/(sn-1); bdylin = (h:h:1-h)';
18 bdyO = -h*ones(sn-2,1); bdy1 = (1+h)*ones(sn-2,1);
19a bdyctrs = [-h -h; bdylin bdyO; 1+h -h; bdy1 bdylin; ...

359

19b 1+h 1+h; flipud(bdylin) bdy1; -h 1+h; bdyO flipud(bdylin)];
20 ctrs = [intdata; bdyctrs] ;

% Create neval-by-neval equally spaced evaluation locations
% in the unit square

21 grid= linspace(0,1,neval); [xe,ye] = meshgrid(grid);
22 epoints = [xe(:) ye(:)];

% Compute evaluation matrix
23 DM_eval = DistanceMatrix(epoints,ctrs);
24 EM= rbf(ep,DM_eval);
25 exact= u(epoints(:,1),epoints(:,2));

% Compute blocks for collocation matrix
26 DM_intdata = DistanceMatrix(intdata,ctrs);

360 Meshfree Approximation Methods with MATLAB

27 DM_bdydata = DistanceMatrix(bdydata,ctrs);
28 dx_intdata = Differencematrix(intdata(:,1),ctrs(:,1));
29 dy_intdata = Differencematrix(intdata(:,2),ctrs(:,2));
30a LCM= diag(ax(intdata(:,1))) * ...
30b dxrbf (ep,DM_intdata,dx_intdata) + ...
30c diag(a(intdata(:,1),intdata(:,2))) * .. .
30d dxxrbf(ep,DM_intdata,dx_intdata) + .. .
30e diag(by(intdata(:,1),intdata(:,2))) *
30f dyrbf (ep,DM_intdata,dy_intdata) + ...
30g diag(b(intdata(:,1),intdata(:,2))) * ...
30h dyyrbf(ep,DM_intdata,dy_intdata);
31 BCM = rbf(ep,DM_bdydata);
32 CM = [LCM; BCM];

!. Create right-hand side
33 rhs = [Lu(intdata(:,1),intdata(:,2)); zeros(4*(sn-1),1)];

!. RBF solution
34 Pf= EM* (CM\rhs);

!. Compute maximum error on evaluation grid
35 maxerr = norm(Pf-exact,inf);
36 rms_err = norm(Pf-exact)/neval;
37 fprintf('RMS error: /.e\n', rms_err)
38 fprintf('Maximum error: /.e\n',-maxerr)

!. Plot collocation points and centers
39 hold on; plot(intdata(:,1),intdata(:,2),'bo');
40 plot(bdydata(:,1),bdydata(:,2),'rx');
41 plot(bdyctrs(:,1),bdyctrs(:,2),'gx'); hold off
42 fview = [-30,30]; % viewing angles for plot
43 PlotSurf(xe,ye,Pf,neval,exact,maxerr,fview);
44 PlotError2D(xe,ye,Pf,exact,maxerr,neval,fview);

In Table 39.3 we compare the solution obtained with Gaussians and inverse
multiquadrics based on interior Halton points. The boundary centers are taken to
lie outside the domain as in Figure 39.1. Again, the solution with inverse multi­
quadrics is slightly better conditioned. For Gaussians we need to replace lines 1-5
of Program 39.2 by

1 rbf = ©(e,r) exp(-(e*r).-2); ep = 3;
2 dxrbf = ©(e,r,dx) -2*dx*e-2.*exp(-(e*r).-2);
3 dyrbf = ©(e,r,dy) -2*dy*e-2.*exp(-(e*r).-2);
4 dxxrbf = ©(e,r,dx) 2*e-2*(2*(e*dx).-2-1).*exp(-(e*r).-2);
5 dyyrbf = ©(e,r,dy) 2*e-2*(2*(e*dy) .-2-1).*exp(-(e*r).-2);

The top part of Figure 39.2 contains plots of the approximate solution and
maximum error for the inverse multiquadric solution based on N = 289 interior

39. Non-Symmetric RBF Collocation in MATLAB

Table 39.3 Solution of Example 39.2 with Gaussians and IMQs, c = 3 and interior
Halton points.

N
Gaussian IMQ

(interior points) RMS-error cond(A) RMS-error cond(A)

9 6.852103e-002 8.874341e+003 l.123770e-001 6. 954910e+002
25 l.091888e-002 4.898291e+003 l.123575e-002 3.302471e+003
81 1.854386e-004 l .286993e+009 l .370992e-003 4.992219e+005

289 8.445637 e-007 7.031011e+019 8.105109e-005 7.527 456e+009
1089 2.559824e-005 4.553162e+020 7.041415e-008 7. 785955e+017

and 64 boundary points.

361

Example 39.3. Consider the Poisson problem with mixed boundary conditions

where

V 2 u(x, y) = -5.4x, (x,y) E f2=[O,1] 2
,

8
on u(x, y) = 0, (x,y) Erl u r3,

(x, y) E r2, u(x, y) = 0.1,

u(x, y) = 1, (x, y) E r4,

ri = {(x, y) : 0 < x < 1, y = O},

r2 = {(x, y) : x = 1, 0 ~ y ~ 1},

r3 = {(x, y) : 0 ~ x < 1, y = 1},

r4={(x,y): x=O, O~y<l}.

For this problem the exact solution is given by

u(x, y) = 1 - 0.9x3 .

Note that the normal derivative on the edges r 1 and r3 is given by gy and

- gy, respectively. Therefore, for the MATLAB program we require they-partial of
the basic function in addition to its definition and its Laplacian (see lines 1-3 of
Program 39.3). Again, the main difference in the code is in the assembly of the
collocation matrix on lines 22-30. Note that this time we need to deal carefully
with the boundary conditions and right-hand side (see lines 26-29 and 30). It is
important that the orientation of the boundary points is consistent.

Program 39.3. KansaLaplaceMixedBC...2D. m

% KansaLaplaceMixedBC_2D
% Script that performs Kansa collocation for 2D Laplace equation
% with mixed BCs
% Calls on: DistanceMatrix, DifferenceMatrix

362 Meshfree Approximation Methods with MATLAB

% IMQ RBF and its Laplacian

1 rbf = ©(e,r) 1./sqrt(1+(e*r).-2); ep = 3;

2 dyrbf = ©(e,r,dy) -dy*e-2./(1+(e*r).-2).-(3/2);

3 Lrbf = ©(e,r) e-2*((e*r).-2-2)./(1+(e*r).-2).-(5/2);

% Exact solution and its Laplacian for test problem

4 u = ©(x,y) 1-0.9*x.-3+0*y;

5 Lu = ©(x,y) -5.4*x+O*y;

% Number and type of collocation points

6 N = 289; gridtype = 'h';

7 neval = 40;

% Load (interior) collocation points

8 name= sprintf('Data2D_%d%s',N,gridtype); load(name);

9 intdata = dsites;

% Additional boundary collocation points

10 sn = sqrt(N); bdylin = linspace(0,1,sn)';

11 bdyO = zeros(sn-1,1); bdy1 = ones(sn-1,1);

12a bdydata = [bdylin(1:end-1) bdyO; bdy1 bdylin(1:end-1);

12b flipud(bdylin(2:end)) bdy1; bdyO flipud(bdylin(2:end))];

% Create additional boundary centers OUTSIDE the domain

13 h = 1/(sn-1); bdylin = (h:h:l-h)';

14 bdyO = -h*ones(sn-2,1); bdy1 = (1+h)*ones(sn-2,1);

15a bdyctrs = [-h -h; bdylin bdyO; 1+h -h; bdy1 bdylin;

15b 1+h 1+h; flipud(bdylin) bdy1; -h 1+h; bdyO flipud(bdylin)];

16 ctrs = [intdata; bdyctrs];

% Create neval-by-neval equally spaced evaluation locations

% in the unit square

17 grid= linspace(0,1,neval); [xe,ye] = meshgrid(grid);

18 epoints = [xe(:) ye(:)];

% Compute evaluation matrix

19 DM_eval = DistanceMatrix(epoints,ctrs);

20 EM= rbf(ep,DM_eval);

21 exact= u(epoints(:,1),epoints(:,2));

% Compute blocks for collocation matrix

22 DM_intdata = DistanceMatrix(1ntdata,ctrs);

23 DM_bdydata = DistanceMatrix(bdydata,ctrs);

24 dy_bdydata = Differencematrix(bdydata(:,2),ctrs(:,2));

25 LCM= Lrbf(ep,DM_intdata);

26 BCM1 = -dyrbf(ep,DM_bdydata(1:sn-1,:),dy_bdydata(1:sn-1,:));

27 BCM2 = rbf(ep,DM_bdydata(sn:2*sn-2,:));

28a BCM3 = dyrbf(ep,DM_bdydata(2*sn-1:3*sn-3,:), ...

28b dy_bdydata(2*sn-1:3*sn-3,:));
29 BCM4 = rbf(ep,DM_bdydata(3*sn-2:end,:));

39. Non-Symmetric RBF Collocation in MATLAB

30 CM= [LCM; BCM1; BCM2; BCM3; BCM4];
I. Create right-hand side

31a rhs = [Lu(intdata(:,1),intdata(:,2)); zeros(sn-1,1); ...
31b 0.1•ones(sn-1,1); zeros(sn-1,1); ones(sn-1,1)];

% RBF solution
32 Pf= EM* (CM\rhs);

% Compute maximum error on evaluation grid
33 maxerr = norm(Pf-exact,inf);
34 rms_err = norm(Pf-exact)/neval;
35 fprintf('RMS error: /.e\n', rms_err)
36 fprintf('Maximum error: /.e\n', maxerr)

I. Plot collocation points and centers
37 hold on; plot(intdata(:,1),intdata(:,2),'bo');
38 plot(bdydata(:,1),bdydata(:,2),'rx');
39 plot(bdyctrs(:,1),bdyctrs(:,2),'gx'); hold off
40 fview = [-30,30]; % viewing angles for plot
41 PlotSurf(xe,ye,Pf,neval,exact,maxerr,fview);
42 PlotError2D(xe,ye,Pf,exact,maxerr,neval,fview);

363

In Table 39.4 we again compare the use of Gaussians and inverse multiquadrics
on a set of N = 9, 25, 81, 289 and 1089 interior Halton points (with additional
boundary centers outside the domain). As in the previous experiments the Gaussian
solution is slightly inferior in terms of stability for the same value of the shape
parameter.

Table 39.4 Non-symmetric collocation solution of Example 39.3 with Gaussians and
IMQs, c = 3 and interior Halton points.

N
Gaussian IMQ

(interior points) RMS-error cond(A) RMS-error cond(A)

9 3.423330e-001 5. 430073e+003 7. 937 403e-002 2. 782348e+002
25 1.065826e-002 1. 605086e+003 5.605445e-003 1.680888e+003
81 5.382387e-004 3.684159e+008 1.487160e-003 2. 6 l l 650e+005

289 6.181855e-006 1.452124e+Ol9 1. 822077 e-004 3. 775455e+009
1089 2. 0604 70e-006 1.628262e+021 l.822221e-007 3.155751e+017

In the bottom part of Figure 39.2 we show the inverse multiquadric solution for
N = 289 interior points along with its maximum error. Note that (even though the
problem has a symmetric solution) the approximate solution is not quite symmetric
(as demonstrated by the error plot, c.f. also the top part of Figure 39.2).

364 Meshfree Approximation Methods with MATLAB

~10
...

~ 10
...

6

3 3

z

0 0
y 0 0 x y 0 0 x

x 10
4 x 10

4

7 7
8

6 6

6
5 5

zo.5 ·· 4g z4 4g
w 2 w

3 3

0 -····
0

1 2 1 2

0.5

0 0
y 0 0 x y 0 0 x

Fig. 39.2 Top: Non-symmetric collocation solution (left) and error plot (right) for Example 39.2
using IMQs with c = 3 and N = 289 interior Halton points. Bottom: Approximate solution (left)
and error plot (right) for Example 39.3 using IMQs with c = 3 and N = 289 interior Halton points.

In [Li et al. (2003)] the authors report that the non-symmetric collocation
solution for this problem with multiquadric RBFs is several orders of magnitude
more accurate than a solution with piecewise linear finite elements using the same
number of nodes.

Chapter 40

Symmetric RBF Collocation in MATLAB

In this chapter we discuss the implementation of the Hermite-based symmetric
collocation method. Again, our discussion is fairly detailed with complete MATLAB
code. As in the previous chapter we restrict ourselves to two-dimensional elliptic
problems whose analytic solution is readily available and therefore can easily be
verified. We will refer to a point x in IR2 as (x, y).

40.1 Symmetric Collocation Method

For problems involving the Laplacian we now require also the differential operator

2 2 (8
2

8
2

) (82 82)
V7 e V7 = 8~2 + 8rJ2 8x2 + 8y2

(
82 82 82 82 82 82 82 82)
8e 8x2 + 8772 8x2 + 8e 8y2 + 8712 8y2

(
84 84 84)

8x4 + 2 8x2y2 + 8y4 '

where the simplification in the last line is justified since we are working with even­
order derivatives. For example, using the chain rule with r = llx - eJJ we get for
various radial basis functions in IR2 :

IMQ,

More examples of RBFs and their derivatives are collected in Appendix D.

(40.1)

(40.2)

(40.3)

Example 40.1. We use the same PDE and boundary condition as in Exam­
ple 39.1. A MATLAB program for symmetric Hermite-based collocation is given as
Program 40.1. Note that this program is quite a bit more complicated than the

365

366 Meshfree Approximation Methods with MATLAB

corresponding one for the non-symmetric collocation method (c.f. Program 39.1).
The evaluation matrix EM now consists of two blocks (similar to the collocation ma­
trix for the non-symmetric case, see lines 19-23), whereas the collocation matrix is
assembled from four blocks (c.f. lines 25-33). Note that we now also require one of
the iterated Laplacians of the basic function as listed in (40.1)-(40.3).

Program 40.1. HermiteLaplace--20.m

I. HermiteLaplace_2D
I. Script that performs Hermite collocation for 20 Laplace equation
I. Calls on: DistanceMatrix

I. IMQ RBF and its Laplacian and double Laplacian
1 rbf = ©(e,r) 1./sqrt(l+(e*r).-2); ep = 3;
2 Lrbf = ©(e,r) e-2*((e*r).-2-2)./(1+(e*r).-2).-(5/2);
3a L2rbf = ©(e,r) 3*e-4*(3*(e*r).-4-24*(e*r).-2+8)./ ...
3b (l+(e*r).-2).-(9/2);

I. Exact solution and its Laplacian for test problem
4 u = ©(x,y) sin(pi*x).*cos(pi*y/2);
5 Lu= ©(x,y) -1.25*pi-2*sin(pi*x).*cos(pi*y/2);

I. Number and type of collocation points
6 N = 289; gridtype = 'u';
7 neval = 40;

I. Load (interior) collocation points
8 name= sprintf('Data2D_/.d/.s',N,gridtype); load(name);
9 intdata = dsites;

I. Additional (equally spaced) boundary collocation points
10 sn = sqrt(N); bdylin = linspace(0,1,sn)';
11 bdyO = zeros(sn-1,1); bdy1 = ones(sn-1,1);
12a bdydata = [bdylin(1:end-1) bdyO; bdy1 bdylin(1:end-1);
12b flipud(bdylin(2:end)) bdy1; bdyO flipud(bdylin(2:end))];

I. Create additional boundary centers OUTSIDE the domain
13 h = 1/(sn-1); bdylin = (h:h:1-h)';
14 bdyO = -h*ones(sn-2,1); bdy1 = (1+h)*ones(sn-2,1);
15a bdyctrs = [-h -h; bdylin bdyO; 1+h -h; bdy1 bdylin;
15b 1+h 1+h; flipud(bdylin) bdy1; -h 1+h; bdyO flipud(bdylin)];
16 intctrs = intdata;

I. Create neval-by-neval equally spaced evaluation locations
I. in the unit square

17 grid= linspace(0,1,neval); [xe,ye] = meshgrid(grid);
18 epoints = [xe(:) ye(:)];

I. Compute evaluation matrix
19 DM_inteval = DistanceMatrix(epoints,intctrs);
20 LEM= Lrbf(ep,DM_inteval);
21 DM_bdyeval = DistanceMatrix(epoints,bdyctrs);

40. Symmetric RBF Collocation in MATLAB

22 BEM = rbf(ep,DM_bdyeval);
23 EM= [LEM BEM];
24 exact= u(epoints(:,1),epoints(:,2));

% Compute blocks for collocation matrix
25 DM_IIdata = DistanceMatrix(intdata,intctrs);
26 LLCM = L2rbf(ep,DM_I!data);
27 DM_IBdata = DistanceMatrix(intdata,bdyctrs);
28 LBCM = Lrbf(ep,DM_IBdata);
29 DM_Bidata = DistanceMatrix(bdydata,intctrs);
30 BLCM = Lrbf(ep,DM_Bidata);
31 DM_BBdata = DistanceMatrix(bdydata,bdyctrs);
32 BBCM = rbf(ep,DM_BBdata);
33 CM= [LLCM LBCM; BLCM BBCM];

% Create right-hand side
34a rhs = [Lu(intdata(:,1),intdata(:,2));
34b sin(pi*bdydata(l:sn-1,1)); zeros(3*(sn-1),1)];

% Compute RBF solution
35 Pf= EM* (CM\rhs);

% Compute maximum error on evaluation grid
36 maxerr = norm(Pf-exact,inf);
37 rms_err = norm(Pf-exact)/neval;
38 fprintf('RMS error: %e\n', rms_err)
39. fprintf('Maximum error: %e\n', maxerr)

% Plot collocation points and centers
40 hold on; plot(intdata(:,1),intdata(:,2),'bo');
41 plot(bdydata(:,1),bdydata(:,2),'rx');
42 plot(bdyctrs(:,1),bdyctrs(:,2),'gx'); hold off
43 fview = [-30,30]; % viewing angles for plot
44 PlotSurf(xe,ye,Pf,neval,exact,maxerr,fview);
45 PlotError2D(xe,ye,Pf,exact,maxerr,neval,fview);

367

As above we deal with the boundary by allowing the use of different collocation
points and centers along the boundary. This causes the collocation matrix to be
non-symmetric, and therefore the theoretical foundation of Chapter 38 no longer
applies, i.e., it is not clear that in this case the matrix is invertible. In order to
work with a "safe" symmetric (and guaranteed invertible) matrix one should replace
lines 13-15 with

bdyctrs = bdydata;

Note that, contrary to the non-symmetric Kansa approach, we can do this for both
uniform and non-uniform interior points. In this case it is also possible to simplify
the assembly of the collocation matrix. We can remove lines 29-30 and replace
line 33 by

CM = [LLCM LBCM; LBCM' BBCM];

368 Meshfree Approximation Methods with MATLAB

The same set of experiments as for the non-symmetric Kansa method (see
Tables 39.1 and 39.2) are displayed in Tables 40.1 and 40.2 for the symmetric
Hermite-based method.

Table 40.1 Symmetric collocation solution of Example 40.l with IMQs, c = 3 and
Halton points.

N
centers on boundary centers outside

(interior points) RMS-error cond(A) RMS-error cond(A)

9 1.869505e-001 9.055720e+003 2.438041e-001 3.549895e+004
25 7.698471e-002 8. 506782e+004 9.429580e-002 1.162027e+005
81 4. 839682e-003 l .338599e+007 5.070833e-003 l.017388e+007

289 4.480250e-005 9.991615e+010 3.448546e-005 7.180249e+010
1089 2.481407e-008 2.820823e+018 1. 907000e-008 2.262777e+018

We note that, as for the non-symmetric collocation method, inverse multi­
quadrics with interior Halton points and exterior boundary centers seems to per­
form overall slightly better than the other choices (i.e., Gaussians, interior uniform
points, or boundary centers on the boundary).

Table 40.2 Symmetric collocation solution of Example 40.1 with Gaussians and IMQs,
c = 3 and uniform points with boundary centers outside the domain.

N
Gaussian IMQ

(interior points) RMS-error cond(A) RMS-error cond(A)

3x3 4.088188e-001 1.196486e+005 2.806897e-001 3.105155e+004
5x5 7. 704584e-003 1.359899e+005 l.583948e-001 1.216534e+005
9x9 2.272289e-004 2.453107e+010 8. 650782e-004 2.016503e+007

17 x 17 5.271776e-008 4.338406e+021 3. 962654e-005 6.051588e+Ol 1
33 x 33 5.805757e-007 1.438258e+022 1.870210e-007 2.324115e+020

It is remarkable, however, how small the difference in performance between the
symmetric and non-symmetric approach is. This can be concluded by comparing
the tables in Example 39.1 with those in Example 40.1. Also, Figure 40.1 shows
error plots for the two methods using the same set of parameters, i.e., inverse
multiquadrics with c = 3, N = 289 interior Halton points and 64 boundary points
with the boundary centers placed outside the domain as in Figure 39.1.

The example above shows very high convergence rates as predicted by the es­
timate in Theorem 38.1 when using infinitely smooth inverse multiquadrics on a
problem that has a smooth solution.

Example 40.2. A MATLAB implementation of the variable coefficient problem of
Example 39.2, while theoretically possible, is very cumbersome using the symmetric

40. Symmetric RBF Collocation in MATLAB

x 10-5

x 10-4

-··:·

... ···;· ..

1.5
; ·· .. 8 1.5

. . . : . .
: ...

·· .. : ..

z 6 z
g
w 0.5

4

2

y 0 0
0

x y 0 0

·······:·
:

·····

x

369

X10-4
1.2

0.8

g
0.6w

0.4

0.2

0

Fig. 40.1 Error plots for the collocation solution of Example 39.1 (Example 40.1) using IMQs
withe= 3 and N = 289 interior Halton points; boundary centers outside domain. Kansa's method
(left) and symmetric method (right).

collocation method. For example, since the differential operator £, is given by

£= :x (a(x,y):x) + :y (b(x,y):y)

the basic expansion for the RBF solution is
NB N

L Cj'f?(llx - ~j 11) + L cj.ce'P(llx - ~ll)le-ej,
j=l j=N13+l

with

.ce = :~ (a(e, 77) :e) + :7] (b(e, 77) :7]) .
This, however implies that the block A.c.ce of the symmetric collocation matrix has
entries computed with the differential operator

.c.ce = [:x (a(x,y):x) + :Y (b(x,y):Y)] [:e (a(e,77):e) + : 77 (b(e,77):77)]

a4 84
= a(x, y)a(e, 17)

8
x 4 + (a(x, y)b(e, 17) + b(x, y)a(e, 77))

8
x 28Y2 +

8 4 (8a(x, y) 8a(e, 17)) 83
b(x, y)b(e, r1) 8y4 + 8x a(e, 77) - a(x, y) 8e 8x3 +

(
8b(x, y) (c) _ () 8b(e, 17)) 8

3

8y a..,,77 ax,y 877 8x28y+

(
8a(x, y) b(c) _ b() 8a(e, 17)) 8

3

8x ..,, 7J x, y 8e 8x8y2 +

(
8b(x,y)b(c)-b()8b(e,77)) 8 3 8a(x,y)8a(e,77) 8

2
_

8y ..,, 7J x, y 877 8y3 + 8x 8e 8x2

(
8a(x, y) 8b(e, 17) + 8b(x, y) 8a(e, 17)) ~ + 8b(x, y) 8b(e, 17) 8 2

.

8x 877 8y 8e 8x8y 8y 877 8y2

370 Meshfree Approximation Methods with MATLAB

Here we expressed derivatives with respect to the second variable e = (~, TJ) of
the basic function in terms of those with respect to the first variable x = (x, y)
remembering that every differentiation introduces a sign change (c.f. the discussion
at the end of Chapter 36).

Example 40.3. Instead of repeating the calculations for Example 39.3, we present
a different problem with piecewise defined boundary conditions.

where

\72 u(x, y) = 0, (x, y) E 0 = (-1, 1)2 ,

u(x, y) = 0, (x, y) E ri U r3 U r5,
1

u(x, y) = S sin(37ry), (x, y) E r2,

u(x, y) = sin4(7rx), (x, y) E r 4,

ri = {(x,y): -1:::; x < 1, y = -1},

r2 = {(x,y): x = 1, -1:::; y < 1},

r3={(x,y): O<x:::;l, y=l},

r4={(x,y): -l<x<O, y=l},

r5={(x,y): x=-l, O<y<1}.

For this problem we do not have an exact solution available. However, this problem
is taken from [Trefethen (2000)] and we use the pseudospectral solution from there
for comparison. We will revisit this problem later when we discuss RBF-PS methods
in Chapter 42.

Program 40.2. HermiteLaplaceMixedBCTref.2D .m

!. HermiteLaplaceMixedBCTref_2D
!. Script that performs Hermite collocation for 2D Laplace equation
!. Note: Prog 36 in Trefethen (2000), exact solution not provided
!. Calls on: DistanceMatrix

!. IMQ RBF and its Laplacian
1 rbf = ©(e,r) 1./sqrt(l+(e*r).-2); ep = 3;
2 Lrbf = ©(e,r) e-2*((e*r).-2-2)./(1+(e*r).-2).-(5/2);
3a L2rbf = ©(e,r) 3*e-4*(3*(e*r).-4-24*(e*r).-2+8)./ ...
3b (l+(e*r).-2).-(9/2);

!. Laplacian for test problem
4 Lu= ©(x,y) zeros(size(x));

!. Number and type of collocation points
5 N = 289; gridtype = 'u';
6 neval = 41;

!. Load (interior) collocation points
7 name= sprintf('Data2D_/.d/.s',N,gridtype); load(name);

40. Symmetric RBF Collocation in MATLAB

8 intdata = 2*dsites-1;

!. Additional boundary collocation points

9 sn = sqrt(N); bdylin = linspace(-1,1,sn)';
10 bdy1 = ones(sn-1,1);

11a bdydata = [bdylin(i:end-1) -bdy1; bdy1 bdylin(i:end-1);

11b flipud(bdylin(2:end)) bdy1; -bdy1 flipud(bdylin(2:end))];

!. Create additional boundary centers OUTSIDE the domain

12 h = 2/(sn-1); bdylin = (-1+h:h:1-h)';

13 bdyO = repmat(-1-h,sn-2,1); bdy1 = repmat(1+h,sn-2,1);

14a bdyctrs = [-1-h -1-h; bdylin bdyO; 1+h -1-h; bdy1 bdylin;

371

14b 1+h 1+h; flipud(bdylin) bdy1; -1-h 1+h; bdyO flipud(bdylin)];

15 intctrs = intdata;

!. Create neval-by-neval equally spaced evaluation locations

!. in the unit square

16 grid= linspace(-1,1,neval); [xe,ye] = meshgrid(grid);

17 epoints = [xe(:) ye(:)];

!. Compute evaluation matrix

18 DM_inteval = DistanceMatrix(epoints,intctrs);

19 LEM= Lrbf(ep,DM_inteval);

20 DM_bdyeval = DistanceMatrix(epoints,bdyctrs);

21 BEM = rbf(ep,DM_bdyeval);

22 EM= [LEM BEM];

!. Compute blocks for collocation matrix

23 DM_IIdata = DistanceMatrix(intdata,intctrs);

24 LLCM = L2rbf(ep,DM_!Idata);

25 DM_IBdata = DistanceMatrix(intdata,bdyctrs);

26 LBCM = Lrbf(ep,DM_IBdata);

27 DM_Bidata = DistanceMatrix(bdydata,intctrs);

28 BLCM = Lrbf(ep,DM_Bidata);

29 DM_BBdata = DistanceMatrix(bdydata,bdyctrs);

30 BBCM = rbf(ep,DM_BBdata);

31 CM= [LLCM LBCM; BLCM BBCM];

!. Create right-hand side

32a rhs = [Lu(intdata(:,1),intdata(:,2)); zeros(sn-1,1); ...

32b 0.2*sin(3*pi*bdydata(sn:2*sn-2,2)); zeros((sn-1)/2,1); ...

32c sin(pi*bdydata((5*sn-3)/2:3*sn-3,l)).-4; zeros(sn-1,1)];

!. Compute RBF solution

33 Pf= EM* (CM\rhs);

34 surf(xe,ye,reshape(Pf,neval,neval));

35 view(-20,45), axis([-1 1 -1 1 -.2 1]);

36 text(0,.8,.5,sprintf('u(0,0) = /.12.10f' ,Pf(841)))

372 Meshfree Approximation Methods with MATLAB

The definition of the boundary conditions in the MATLAB code for Program 40.2
is similar to that for Program 39.3. However, now we are working on the square
[-1, 1] 2 instead of [O, 1] 2 , and therefore slight adjustments are required. For exam­
ple, the collocation points we load from file are now transformed on line 8. Also,
the boundary centers have to be offset from a different boundary (see lines 12-14).

ZQ.5 ... ·····

0

y

.. -··· --········

·····>

x

····:. -

--···:-.

0

x

Fig. 40.2 Plots for solution of Example 40.3 using pseudospectral method with 361 points from
[Trefethen (2000)] (left), and with symmetric collocation using IMQs with e: = 3 and N = 289
uniform interior points; 64 additional boundary centers outside domain.

We note that the quality of the two solutions displayed in Figure 40.2 is quite
similar. The total number of points used for the PS solution is 361, while 353 points
(289 interior plus 64 boundary) are used for the RBF solution.

40.2 Summarizing Remarks on the Symmetric and Non­
Symmetric Collocation Methods

All in all, the non-symmetric (Kansa) method seems to perform just a little bit
better than the symmetric (Hermite) method (compare Tables 39.1 and 39.2 with
Tables 40.1and40.2). For the same value of the shape parameter c the errors as well
as the condition numbers are slightly smaller. This does not agree with the findings
in [Larsson and Fornberg (2003)] where the authors concluded that the symmetric
method is more accurate (see also our discussion at the end of Chapter 38).

An advantage of the Hermite approach over Kansa's method is that the col­
location matrices resulting from the Hermite approach are symmetric if all of the
centers coincide with the collocation points. Therefore the amount of computation
can be reduced considerably by using a solver for symmetric systems. Since Kansa's
method requires fewer derivatives of the basic function it has the added advan­
tages of being simpler to implement and applicable to problems with less smooth
solutions. Moreover, as we saw in Examples 39.2 and 40.2, the non-symmetric
method is much simpler for problems with non-constant coefficients. Further-

40. Symmetric RBF Collocation in MATLAB 373

more, it is not clear how to deal with non-linear problems using the symmetric
method. For a treatment of non-linear PDEs based on the non-symmetric colloca­
tion method within an operator Newton framework see [Bernal and Kindelan (2006);
Fasshauer (2001a)].

Another contraposition of the two methods will be presented in the context of
pseudospectral methods in Chapter 42.

Both of the methods described in this section have been implemented for many
different applications. Comparisons of the two methods were reported in, e.g.,
[Fasshauer (1997); Larsson and Fornberg (2003); Power and Barraco (2002)].

Chapter 41

Collocation with CSRBFs in MATLAB

In this third chapter describing the MATLAB implementation of RBF collocation
methods we look at how compactly supported functions can be used in both a direct
approach and within a multilevel framework. As in the previous two chapters we
present only two-dimensional elliptic problems and will refer to a point x in .IR2 as
(x, y).

41.1 Collocation with Compactly Supported RBFs

While Kansa initially proposed the non-symmetric collocation method for multi­
quadrics, the general method applies to any kind of RBF including those with
compact support. The same goes for the symmetric method. We now present MAT­

LAB code for the symmetric collocation method based on Wendland's C 6 function
cp3,3(r) = (1- r)~(32r3 + 25r2 + 8r + 1). Its Laplacian and biharmonic derivatives
are given by

V'2 cp3,3(r) = 44(1- r)~(88r3 + 3r2
- 6r - 1),

V 4 cp3
1
3(r) = 1056(1- r)~(297r3 - 212r2 + 16r + 4).

Note, however, that in order for us to be able to take advantage of the subroutine
DistanceMatrixCSRBF .m we provided earlier in Program 12.1 we need to represent
the basic function and its derivatives in the shifted form

~3,3(r) = r 8 (66 - 154r + 121r2
- 32r3),

V2~3,3(r) = 44r6 (84 - 264r + 267r2
- 88r3),

V4~3,3(r) = 1056r4 (105 - 483r + 679r2
- 297r3),

as implemented on lines 1-3 of Program 41.1. While we technically do not need
to include a scale factor c in the MATLAB code for the basic function (since the
support size is already used to determine the matrix entries in Program 12.1), the
derivatives of the basic function still require the scale factor which appears as a
consequence of the chain rule (see lines 2 and 3).

Another point to reconsider in the compact support setting is the placement of
the boundary centers. While we saw for globally supported basic functions that

375

376 Meshfree Approximation Methods with MATLAB

it was actually beneficial to place some centers outside the domain, this no longer
makes much sense if we decide to use compactly supported functions. Clearly,
any basic function whose support radius is smaller than the distance of its center
from the boundary of the domain will not contribute to the solution of the problem.
Therefore, we now use interior Halton points augmented by equally spaced boundary
points for both the collocation points and the centers. This change is reflected on
lines 14 and 15 of Program 41. l. Otherwise, Program 41. l is essentially identical to
Program 40.1. However, for the convenience of the reader we decided to print the
entire program for the compactly supported case, also.

Program 41.1. HermiteLaplace_2D_CSRBF .m

% HermiteLaplace_2D_CSRBF
% Script that performs Hermite collocation for 2D Laplace equation
% with sparse matrices
% Calls on: DistanceMatrixCSRBF

% Wendland C6 RBF, its Laplacian and double Laplacian
1 rbf = ©(e,r) r.-8.*(66*spones(r)-154*r+121*r.-2-32*r.-3);
2 Lrbf = ©(e,r) 44*e-2*r.-6.*(84*spones(r)-264*r+267*r.-2-88*r.-3);
3a L2rbf = ©(e,r) 1056*e-4*r.-4.* ...
3b (105*spones(r)-483*r+679*r.-2-297*r.-3);
4 ep = 0.25;

% Exact solution and its Laplacian for test problem
5 u = ©(x,y) sin(pi*x).*cos(pi*y/2);
6 Lu= ©(x,y) -1.25*pi-2*sin(pi*x).*cos(pi*y/2);

% Number and type of collocation points
7 N = 289; gridtype = 'h';
8 neval = 40;

% Load (interior) collocation points
9 name= sprintf('Data2D_%d%s',N,gridtype); load(name);

10 intdata = dsites;
% Additional (equally spaced) boundary collocation points

11 sn = sqrt(N); bdylin = linspace(0,1,sn)';
12 bdyO = zeros(sn-1,1); bdy1 = ones(sn-1,1);
13a bdydata = [bdylin(l:end-1) bdyO; bdy1 bdylin(l:end-1);
13b flipud(bdylin(2:end)) bdy1; bdyO flipud(bdylin(2:end))];

% Let centers coincide with ALL data sites
14 bdyctrs = bdydata;
15 ctrs = [intdata; bdyctrs] ;

% Create neval-by-neval equally spaced evaluation locations
% in the unit square

16 grid= linspace(0,1,neval); [xe,ye] = meshgrid(grid);
17 epoints = [xe(:) ye(:)];

41. Collocation with CSRBFs in MATLAB

% Compute evaluation matrix
18 DM_inteval = DistanceMatrixCSRBF(epoints,intdata,ep);
19 DM_bdyeval = DistanceMatrixCSRBF(epoints,bdyctrs,ep);
20 LEM= Lrbf(ep,DM_inteval);
21 BEM = rbf(ep,DM_bdyeval);
22 EM= [LEM BEM];
23 exact= u(epoints(:,1),epoints(:,2));

% Compute blocks for collocation matrix
24 DM !!data= DistanceMatrixCSRBF(intdata,intdata,ep);
25 DM_IBdata = DistanceMatrixCSRBF(intdata,bdyctrs,ep);
26 DM_Bidata = DistanceMatrixCSRBF(bdydata,intdata,ep);
27 DM BBdata = DistanceMatrixCSRBF(bdydata,bdyctrs,ep);
28 LLCM = L2rbf(ep,DM_I!data);
29 LBCM = Lrbf(ep,DM_IBdata);
30 BLCM = Lrbf(ep,DM_Bidata);
31 BBCM = rbf(ep,DM_BBdata);
32 CM = [LLCM LBCM; BLCM BBCM];

!. Create right-hand side
33a rhs = [Lu(intdata(:,1),intdata(:,2));
33b sin(pi*bdydata(l:sn-1,1)); zeros(3*(sn-1),1)];

!. Compute RBF solution
34 Pf= EM* (CM\rhs);

!. Compute maximum error on evaluation grid
35 maxerr = norm(Pf-exact,inf);
36 rms_err = norm(Pf-exact)/neval;
37 fprintf('RMS error: /.e\n', rms_err)
38 fprintf('Maximum error: /.e\n', maxerr)

!. Plot collocation points and centers
39 hold on; plot(intdata(:,1),intdata(:,2),'bo');
40 plot(bdydata(:,1),bdydata(:,2),'rx');
41 plot(bdyctrs(:,1),bdyctrs(:,2),'gx'); hold off
42 fview = [-30,30]; !. viewing angles for plot
43 PlotSurf(xe,ye,Pf,neval,exact,maxerr,fview);
44 PlotError2D(xe,ye,Pf ,exact,maxerr,neval,fview);

377

If we want to replace the symmetric collocation method in Program 41.1 by the
non-symmetric one, then lines 18-32 need to be replaced by

!. Compute evaluation matrix
DM_eval = DistanceMatrixCSRBF(epoints,ctrs,ep);
EM= rbf(ep,DM_eval);
exact= u(epoints(:,1),epoints(:,2));
!. Compute blocks for collocation matrix

378 Meshfree Approximation Methods with MATLAB

DM_intdata = DistanceMatrixCSRBF(intdata,ctrs,ep);
DM_bdydata = DistanceMatrixCSRBF(bdydata,ctrs,ep);
LCM= Lrbf(ep,DM_intdata);
BCM = rbf(ep,DM_bdydata);
CM= [LCM; BCM];

Example 41.1. We use the test problem of Examples 39.1 and 40.1. However,
this time we compare a stationary approximation scheme to a non-stationary one
for both the non-symmetric and the symmetric collocation method. In the station­
ary setting we take an initial parameter value of c = 0.25 (i.e., very wide basis
functions that cover the entire domain), and then double its value for every suc­
cessive experiment. This keeps the "bandwidth" of the collocation matrix fixed
and results in an efficient approximation method. However, as for scattered data
interpolation (c.f. Table 12 .1) we should not expect convergence for h --+ 0 in this
stationary setting. This can be seen clearly in the left part of Tables 41.1 and 41.2.
In fact, we can observe that for the collocation approach things are even worse than
for interpolation. Not only is there no convergence for h --+ 0, the errors actually
increase. This is especially pronounced for the symmetric method.

Table 41.1 Non-symmetric collocation solution of Example 40.1 with CSRBFs, sta­
tionary e (initial value e = 0.25) and non-stationary e = 0.25. N interior Halton
points, 4(VN - 1) equally spaced boundary centers coinciding with boundary colloca­
tion points.

N
stationary non-stationary

(interior points) RMS-error cond(A) RMS-error cond(A)

3 x 3 6.077025e-003 1.495127e+005 6.077025e-003 1.495127e+005
5 x 5 2 .352498e-003 6.27 4058e+005 3.810928e-004 2. 720833e+007
9 x 9 1. 94 7271 e-003 6.192333e+006 4.430301e-005 2.851716e+Ol0

17 x 17 1. 3267 45e-003 6.113189e+007 2.200286e-006 2.293235e+013
33 x 33 5. 703309e-003 1.824487e+008 9. 986944e-008 8.537 419e+015

Table 41.2 Symmetric collocation solution of Example 40.1 with CSRBFs, stationary
e (initial value e = 0.25) and non-stationary e = 0.25. N interior Halton points,
4(VN - 1) equally spaced boundary centers coinciding with boundary collocation
points.

N
(interior points)

3 x 3
5 x 5
9 x 9

17 x 17
33 x 33

stationary

RMS-error cond(A)

5.866837e-003 4.448249e+004
3. l 90108e-003 2.454493e+006
8.381144e-003 8.693440e+007
1.115179e-001 2. l 62078e+009
3.696962e-001 3.164425e+O 10

non-stationary

RMS-error cond(A)

5.866837e-003 4.448249e+004
4. 757992e-004 3.582872e+007
3.825086e-005 2.360746e+Ol0
2.09932le-006 1.392838e+013
8.680882e-008 6.127122e+015

41. Collocation with CSRBFs in MATLAB 379

In the non-stationary setting we observe convergence whose rate is remarkably
similar for both approaches (c.f. the right part of Tables 41.1 and 41.2). However,
the collocation matrices are now completely dense, and therefore this approach -
as in the case of interpolation - defies the use of compactly supported functions.

It is also interesting to note that we can see that the accuracy obtained with
the C 6 Wendland functions (in "global mode") is similar to that of the globally
supported C 00 Gaussians and inverse multiquadrics used in Example 39.1 - an
indication that the solution to the PDE does not lie in the native space of the
Gaussians or inverse multiquadrics.

On the other hand, if the basic functions are chosen too local (to keep the
method efficient), then the boundary information can not penetrate to the inside of
the problem. This is essentially what happens in the stationary setting. Figure 41.1
shows fits with c = 2 (small support) and with c = 0.25 (large support) for N = 289
interior Halton points plus 64 equally spaced boundary points corresponding to the
fourth row in Tables 41.1 and 41.2. As indicated above, the centers are chosen
to coincide with the collocation points. The collocation matrix in the c = 2 case
is sparse and has only 11 % nonzero entries when using the symmetric method
and 43% for the non-symmetric method. The rather significant difference in the
sparsity patterns of the symmetric and non-symmetric methods is due to the fact
that the entries for the symmetric matrix are given by higher-order derivatives of
the basic function than those in the non-symmetric case. While the derivatives of
<p theoretically retain the same support as c.p, numerically the size of the support
appears to shrink with increasing differentiation. Thus the resulting approximation
in the symmetric stationary case is much poorer because the basis functions and
their derivatives are too local and the boundary information in prevented from
traveling across the domain. Similar observations were reported in [Jumarhon et
al. (2000); Fasshauer (1999d)].

In [Fasshauer (1999d)] use of a diagonal (Jacobi) preconditioner was proposed
to speed up the convergence of the conjugate gradient method used there to solve
the linear system. However, the accuracy of the method does not benefit from this
measure and therefore we do not pursue the idea any further.

The experiments above, as well as those reported in [Jumarhon et al. (2000)]
using Wendland's C 4 compactly supported RBF <p3 ,2 , indicate that the error bounds
of Theorem 38.1 may be too pessimistic. For elliptic problems and C6 basis functions
the theorem predicts an error on the order of O(h) while the numerical experiments
in Table 41.2 suggest an order of about O(h3) for the non-stationary setting.

Even more than in the interpolation setting, for the numerical solution of PDEs
with compactly supported RBFs we need to use a multilevel approach to have the
potential to combine efficiency with accuracy. A coarse solution with wide functions
will have to provide an initial fit that captures the main features of the solution,
and then more refined residual updates can improve this initial solution locally.

380

y 0 0

y 0 0

Meshfree Approximation Methods with MATLAB

)(

)(

0.2

0.15

e
0.1 Ui

0.05

0

zo.5

0
1

y

zo.5 ... ···· ···

0
1

y

0 0

0 0

)(

)(

0.8

0.6
~

g
w

0.4

0.2

0

x10~

Fig. 41.1 Plots for solution of Example 40.1 with non-symmetric (top) and symmetric (bottom)
collocation using CSRBFs with € = 2 (left) and € = 0.25 (right) and N = 289 interior Halton
points; boundary centers coincide with equally spaced boundary collocation points.

41.2 Multilevel RBF Collocation

We end the discussion of the collocation approach by looking at a multilevel imple­
mentation of RBF collocation with compactly supported functions.

The most significant difference between the use of compactly supported RBFs
for scattered data interpolation and for the numerical solution of PDEs by colloca­
tion appears when we turn to the multilevel approach. Recall that the use of the
multilevel method is motivated by our desire to obtain a convergent scheme while at
the same time keeping the bandwidth fixed, and thus the computational complexity
at O(N).

Here is an adaptation of the stationary multilevel algorithm of Chapter 32 to
the case of a collocation solution of the linear problem £u = f:

Algorithm 41.1. Stationary Multilevel Collocation

(1) Let uo = 0
(2) For k = 1, 2, ... , K do

(a) Find Uk E Sxk such that £uk = f - £uk-1 on grid xk

41. Collocation with CSRBFs in MATLAB 381

(b) Update Uk +-- Uk-1 +Uk

Here Sxk is the space of functions used for expansion (38.5) for the non­
symmetric method or (38.7) for the symmetric method on grid Xk. Note that
the operator£ encodes both the differential equation and the boundary condition.

Whereas we noted in Chapter 32 that there is strong numerical (and limited the­
oretical) evidence that the stationary multilevel interpolation algorithm converges
at least linearly, the following example shows that we cannot in general expect the
stationary multilevel collocation algorithm to converge at all.

Example 41.2. Once more we take the same test problem as in Examples 39.1,
40.1, and 41.l. As for the numerical experiments in the previous example, we let
the boundary centers coincide with the boundary collocation points (see line 25 of
Program 41.2 below).

An important difference between the multilevel interpolation code of Chapter 32
and the code presented here for the collocation solution of PDEs lies in the com­
putation of the residuals. Note that in the interpolation setting the residual is of
the form f - Pf, while for PDEs we have f - £uk-l· Thus, the evaluation matrix
in the interpolation setting is formed directly from the basis functions, while in the
collocation setting (in both the symmetric and non-symmetric case) the evaluation
matrix for the residuals is formed using the derivatives of the basis functions. These
differences can be seen by comparing lines 23-33 of Program 32.1 with lines 39-56
of Program 41.2 below.

Program 41.2. ML1IermiteLaplaceCSRBF2D.m

/. ML_HermiteLaplaceCSRBF2D
I. Script that performs symmetric multilevel RBF collocation
I. using sparse matrices
I. Calls on: DistanceMatrixCSRBF

I. Wendland C6 RBF, its Laplacian and double Laplacian
1 rbf = ©(e,r) r.-8.*(66*spones(r)-154*r+l21*r.-2-32*r.-3);
2 Lrbf = ©(e,r) 44*e-2*r.-6.*(84*spones(r)-264*r+267*r.-2-88*r.-3);
3a L2rbf = ©(e,r) 1056*e-4*r.-4.* ...
3b (105*spones(r)-483*r+679*r.-2-297*r.-3);

I. Exact solution and its Laplacian for test problem
4 u = ©(x,y) sin(pi*x).*cos(pi*y/2);
5 Lu= ©(x,y) -1.25*pi-2*sin(pi*x).*cos(pi*y/2);
6 K = 6; neval = 40; gridtype = 'h';
7 ep = 0.5*2.-[0:K-1];

I. Create neval-by-neval equally spaced evaluation locations
I. in the unit square

8 grid= linspace(0,1,neval); [xe,ye] = meshgrid(grid);
9 epoints = [xe(:) ye(:)];

382 Meshfree Approximation Methods with MATLAB

% Compute exact solution
10 exact= u(epoints(:,1),epoints(:,2));
11 Rf_old = zeros(17,l);
12 for k=1 :K
13 Ni = c2-k+1)-2; N2 = c2-ck+1)+1)-2;
14 name!= sprintf('Data2D_%d/.s',N1,gridtype);
15 name2 = sprintf('Data2D_%d/.s',N2,gridtype);
16 load(name2)

!. Additional boundary points for residual evaluation
17 sn = sqrt(N2); bdylin = linspace(0,1,sn)';
18 bdyO = zeros(sn-1,1); bdy1 = ones(sn-1,1);
19a bdyres = [bdylin(!:end-1) bdyO; bdy1 bdylin(!:end-1);
19b flipud(bdylin(2:end)) bdy1; bdyO flipud(bdylin(2:end))];
20 intres = dsites;
21 load(name1); intdata = dsites;

!. Additional boundary points
22 sn = sqrt(N1); bdylin = linspace(0,1,sn)';
23 bdyO = zeros(sn-1,1); bdy1 = ones(sn-1,1);
24a bdydata = [bdylin(!:end-1) bdyO; bdy1 bdylin(!:end-1);
24b flipud(bdylin(2:end)) bdy1; bdyO flipud(bdylin(2:end))];
25 bdyctrs{k} = bdydata;
26 intctrs{k} = intdata;

!. Compute new right-hand side (= residual)
27a Tf = [Lu(intdata(:,1),intdata(:,2)); ...
27b sin(pi*bdydata(!:sn-1,1)); zeros(3*(sn-1),1)];
28 rhs = Tf - Rf _old;

% Compute blocks for collocation matrix
29 DM_I!data = DistanceMatrixCSRBF(1ntdata,intctrs{k},ep(k));
30 DM_!Bdata = DistanceMatrixCSRBF(intdata,bdyctrs{k},ep(k));
31 DM_B!data = DistanceMatrixCSRBF(bdydata,intctrs{k},ep(k));
32 DM_BBdata = DistanceMatrixCSRBF(bdydata,bdyctrs{k},ep(k));
33 LLCM = L2rbf(ep(k),DM_I!data);
34 LBCM = Lrbf(ep(k),DM_!Bdata);
35 BLCM = Lrbf(ep(k),DM_B!data);
36 BBCM = rbf(ep(k),DM_BBdata);
37 CM = [LLCM LBCM; BLCM BBCM];

% Compute coefficients for RBF solution of detail level
38 coef{k} = CM\rhs;
39 if (k < K)

% based on the distances between the next finer
!. points (respoints) and centers

40 for j=1:k

41. Collocation with CSRBFs in MATLAB 383

41
42
43
44
45

DM_IIres = DistanceMatrixCSRBF(intres,intctrs{j},ep(j));
DM_IBres = DistanceMatrixCSRBF(intres,bdyctrs{j},ep(j));
DM Bires= DistanceMatrixCSRBF(bdyres,intctrs{j},ep(j));
DM_BBres = DistanceMatrixCSRBF(bdyres,bdyctrs{j},ep(j));
LLRM = L2rbf(ep(j),DM_IIres);

46
47
48
49
50

LBRM = Lrbf(ep(j),DM_IBres);
BLRM = Lrbf(ep(j),DM_Bires);
BBRM = rbf(ep(j),DM_BBres);
RM{j} = [LLRM LBRM; BLRM BBRM];

end
% Evaluate RBF approximation (sum of all previous fits,
% but evaluated on current grid)

51 Rf= zeros(N2+4*sqrt(N2)-4,1);
52 for j=1:k
53 Rf = Rf + RM{j}*coef{j};
54 end
55 Rf_old = Rf;
56 end

% Compute evaluation matrix
57 DM_inteval = DistanceMatrixCSRBF(epoints,intctrs{k},ep(k));
58 DM_bdyeval = DistanceMatrixCSRBF(epoints,bdyctrs{k},ep(k));
59 LEM= Lrbf(ep(k),DM_inteval);
60 BEM = rbf(ep(k),DM_bdyeval);
61 EM= [LEM BEM];

% Evaluate RBF approximation
62 Pf = EM*coef{k};
63 if (k > 1)
64 Pf = Pf_old + Pf;
65 end
66 Pf_old =Pf;

% Compute maximum error on evaluation grid
67 maxerr = norm(Pf-exact,inf);
68 rms_err = norm(Pf-exact)/neval;
69 fprintf('RMS error: %e\n', rms_err)
70 fprintf('Maximum error: 'l.e\n', maxerr)
71 if (k > 1)
72 max_rate = log(maxerr_old/maxerr)/log(2);
73 rms_rate = log(rms_err_old/rms_err)/log(2);
74 fprintf('RMS rate: 'l.f\n', rms_rate)
75 fprintf('Maxerror rate: 'l.f\n', max_rate)

76 end
77 maxerr_old = maxerr; rms_err_old = rms_err;

384 Meshfree Approximation Methods with MATLAB

% Plot collocation solution
78 fview = [-30,30];
79 PlotSurf(xe,ye,Pf,neval,exact,maxerr,fview);
80 PlotError2D(xe,ye,Pf ,exact,maxerr,neval,fview);
81 end

For non-symmetric collocation we can delete line 3 of Program 41.2 and need to
replace lines 29-37 by

DM_intdata = DistanceMatrixCSRBF(intdata,ctrs{k},ep(k));
DM_bdydata = DistanceMatrixCSRBF(bdydata,ctrs{k},ep(k));
LCM= Lrbf(ep(k),DM_intdata);
BCM = rbf(ep(k),DM_bdydata);
CM = [LCM; BCM];

lines 41-49 by

DM_intres = DistanceMatrixCSRBF(intres,ctrs{j},ep(j));
DM_bdyres = DistanceMatrixCSRBF(bdyres,ctrs{j},ep(j));
LRM = Lrbf(ep(j),DM_intres);
BRM= rbf(ep(j),DM_bdyres);
RM{j} = [LRM; BRM];

and lines 5 7-61 by

DM_eval = DistanceMatrixCSRBF(epoints,ctrs{k},ep(k));
EM= rbf(ep(k),DM_eval);

Table 41.3 Stationary symmetric and non-symmetric multilevel collocation solu­
tions of Example 39.l using CSRBFs with initial scale parameter € = 0.5. Interior
Halton points, additional centers on boundary.

N
symmetric non-symmetric

(interior points) RMS-error rate RMS-error rate % nonzero

3 x 3 2.491453e-002 l.512255e-002 100
5x5 l.Oll 182e-002 1.3009 3. 785466e-003 1.9982 89.53
9x9 9.016652e-003 0.1654 7 .873870e-004 2.2653 40.03

17 x 17 8. 99522le-003 0.0034 2.470405e-004 1.6723 13.55
33 x 33 8. 994046e-003 0.0002 l .070175e-004 1.2069 4.00
65 x 65 8.993892e-003 0.0000 8. 334939e-005 0.3606 1.12

129 x 129 8. 993969e-003 -0.0000 7.863637e-005 0.0840 0.29

We note that the non-convergence behavior can be observed for both the sym­
metric and the non-symmetric approach. However, with the non-symmetric ap­
proach the convergence ceases at a significantly later stage. The explanation for the
different convergence behavior of the two methods is the same as that presented at

41. Collocation with CSRBFs in MATLAB 385

the end of the previous example. The higher derivatives required for the symmetric
method are numerically of a more localized nature - even though here the spar­
sity patterns of the symmetric and non-symmetric matrices are identical (c.f. the
right-most column in Tables 41.3 and 41.4).

Table 41.4 Stationary symmetric and non-symmetric multilevel collocation solu­
tions of Example 39.1 using CSRBFs with initial scale parameter e. = 0.25. Interior
Halton points, additional centers on boundary.

N
symmetric non-symmetric

(interior points) RMS-error rate RMS-error rate % nonzero

3x3 5.866837e-003 6.077025e-003 100
5x5 7.287305e-004 3.0091 5. 751941e-004 3.4012 100
9x9 l.193468e-004 2.6102 l.168520e-004 2.2994 91.90

17 x 17 3.188905e-005 1.9040 l.482129e-005 2.9789 42.69
33 x 33 2.530241e-005 0.3338 2.550329e-006 2.5389 14.34
65 x 65 2.487657e-005 0.0245 6.067264e-007 2.0716 4.17

129 x 129 2.485 l 84e-005 0.0014 7.348170e-008 3.0456 1.13

Also, the accuracy that can be obtained with the multilevel algorithm - while
better than using the stationary approach without residual iteration in Example 41.1
- is considerably poorer than what we were able to obtain with globally supported
functions (c.J. Examples 39.1, 40.1, or the non-stationary part of Example 41.1).

The same saturation phenomenon was observed by Wendland in the context
of a multilevel Galerkin algorithm for compactly supported RBFs (see [Wendland
(1999b)) as well as our discussion in Chapter 44).

It has been suggested that the convergence behavior of the multilevel colloca­
tion algorithm may be linked to the phenomenon of approximate approximation.
However, so far no connection has been established.

As was shown in [Fasshauer (1999d)] a possible remedy for the non-convergence
problem is . One might also expect that a slightly different scaling of the support
sizes of the basis functions (such that the bandwidth of the matrix is allowed to in­
crease slowly from one iteration to the next, i.e., moving toward the non-stationary
setting) will lead to better results. In [Fasshauer (1999d)] it was shown that this is
in fact true. However, smoothing further improved the convergence. A discussion
of the idea of post-conditioning via smoothing is beyond the scope of this text. We
refer the reader to the paper [Fasshauer and Jerome (1999)).

Chapter 42

Using Radial Basis Functions
Pseudospectral Mode

•
Ill

Pseudospectral (PS) methods are known as highly accurate solvers for partial dif­
ferential equations. The basic idea (see, e.g., [Fornberg (1998); Trefethen (2000)])
is to use a set of very smooth and global basis functions Bj, j = 1, ... , N, such as
polynomials to represent the approximate solution of the PDE via

N

ft(x) = L CjBj(x),
j=l

x E JR. (42.1)

Since most of our discussion will focus on a representation of the spatial part of
the solution we will at first ignore the time variable that may be a part of the the
formulas for ft. We will later employ standard time-stepping procedures to deal
with the temporal part of the solution. Moreover, since standard pseudospectral
methods are designed for the univariate case we initially limit ourselves to single­
variable functions. Later we will generalize the discussion to multivariate (spatial)
problems by using radial basis functions.

An important feature of pseudospectral methods is the fact that one usually
is content with obtaining an approximation to the solution on a discrete set of
grid points xi, i = 1, ... , N. One of several ways to implement the pseudospectral
method is via so-called differentiation matrices, i.e., one finds a matrix D such that
at the collocation points Xi we have

u' =Du
'

(42.2)

where u = [ft(x1), ... , ft(xN)jT is the vector of values of the approximate solution
ft at the collocation points. Frequently, orthogonal polynomials such as Chebyshev
polynomials are used as basis functions, and the collocation points are corresponding
Chebyshev points. In this case the entries of the differentiation matrix are explicitly
known (see, e.g., [Trefethen (2000)]).

Example 42.1. In order to get an idea of how the differentiation matrix is used to
solve a partial differential equation we consider the following simple one-dimensional

387

388 Meshfre.e Approximation Methods with MATLAB

transport equation (c.f. the numerical experiments in Section 43.1. l below):

Ut(X, t) + CUx(x, t) = 0, x > -1, t > 0,

u(-1,t) = 0,

u(x, 0) = f(x).

(42.3)

In order to solve this problem we discretize the spatial domain with the collocation
points xi, i = 1, ... , N, so that for any fixed time tn we have the vector uCn) =
[u(x1, tn), ... , u(xN, tn)JT of values of the approximate solution. In order to march
in time we use a standard forward difference approximation of the time derivative,
i.e.,

()
u(x, tn+1) - u(x, tn)

Ut X, tn ~ /),,t , (42.4)

where /),,t = tn+l - tn. In our vectorized notation at the collocation points applica­
tion of the differentiation matrix to express the spatial derivative along with (42.4)
for the time derivative leads to

uCn+l) = u(n) - c!)..tDu(n)

for the solution of (42.3). Thus, there is no need - as with the RBF collocation
methods studied earlier - to compute the expansion coefficients CJ in the represen­
tation (42 .1) of the approximate solution. Also, no linear systems are solved during
the time-marching phase of the code. The determination of the differentiation ma­
trix will, however, involve solution of a linear system in the RBF framework.

We are interested in using infinitely smooth radial basis functions in the pseu­
dospectral expansion (42.1), i.e., BJ(x) = <p(llx-xJll), where <pis one of our strictly
positive definite basic functions such as a Gaussian or an inverse multiquadric. We
will also experiment with the use of functions having only limited smoothness such
as the globally supported Matern functions or Wendland functions with a large sup­
port. With some additional notational effort all that follows can also be formulated
for conditionally positive definite functions such as multiquadrics.

42.1 Differentiation Matrices

In order to understand how to find a differentiation matrix consider the expansion
(42.1) and let BJ, j = 1, ... , N, be an arbitrary linearly independent set of smooth
functions that will serve as the basis for our approximation space.

If we evaluate (42.1) at the collocation points Xi, i = 1, ... , N, then we get

N

u(xi) = L CjBj(Xi), i = 1, . .. ,N,
j=l

or in matrix-vector notation

u=Ac, (42.5)

42. Using Radial Basis Functions in Pseudospectrol Mode 389

where c = [c1, ... , cNf is the coefficient vector, the evaluation matrix A has entries
Aij = Bi (Xi), and u is as before.

By linearity we can also use the expansion (42 .1) to compute the derivative of
u by differentiating the basis functions

d A N d
dx u(x) = L Cj dx Bj(x).

j=l

If we agam evaluate at the collocation points Xi, then we get m matrix-vector

notation

u' =Axe, (42.6)

where u and c are as in (42.5) above, and the derivative matrix Ax has entries

d~Bj(xi), or, in the case of radial basis functions, d~ cp(llx - xill)lx=xi·
In order to obtain the differentiation matrix D we need to ensure invertibility of

the evaluation matrix A. This depends both on the basis functions chosen as well
as the location of the collocation points Xi· For univariate polynomials it is well­
known that the evaluation matrix is invertible for any set of distinct collocation
points. In particular, if the polynomials are written in cardinal (or Lagrange)
form, then the evaluation matrix is the identity matrix. If we use strictly positive
definite radial basis functions, then the matrix A is invertible for any set of distinct
collocation points (also non-uniformly spaced points and in JRS, s > 1) according
to our discussion in Chapter 3. Cardinal radial basis functions, on the other hand,
are rather difficult to obtain. For the special case of uniform one-dimensional grids
explicit formulas can be found in [Platte and Driscoll (2005)). A general discussion
of the cardinal representation of RBFs is given in Chapter 14. In the following we
will not insist on having a cardinal representation.

Now that we have discussed the invertibility of A, we can use (42.5) to formally
solve for the coefficient vector c = A-1u, and with this (42.6) yields

u' = AxA-1u,

so that the differentiation matrix D corresponding to (42.2) is given by

D = AxA-1 .

For more complex linear differential operators £ with constant coefficients we
proceed in an analogous fashion to obtain a discretized differential operator (differ­
entiation matrix)

(42.7)

where the matrix A.c has entries (A.c)ij = £Bj(Xi). In the case of radial basis

functions these entries are of the form (A.c)ij = £cp(llx - xill)lx=xi·
In the context of pseudospectral methods the differentiation matrices D or

L can now be used to solve all kinds of PDEs (time-dependent as well as time­
independent). Sometimes only multiplication by Lis required, e.g., for many time­
stepping algorithms such as the example given at the beginning of the chapter. For

390 Meshfree Approximation Methods with MATLAB

other problems one needs to be able to invert L. In the standard PS case it is
known that the Chebyshev differentiation matrix has an N-fold zero eigenvalue (see
[Canuto et al. (1988)], p. 70), and thus is not invertible by itself. However, once
boundary conditions are taken into consideration the situation changes (see, e.g.,
[Trefethen (2000)], p. 67).

Example 42.2. To obtain a little more insight into the special properties of ra­
dial basis functions let us pretend to solve the ill-posed linear elliptic PDE of the
form .Cu = f by ignoring boundary conditions. An approximate solution at the
collocation points Xi might be obtained by solving the discrete linear system

Lu=f,

where f contains the values of f at the collocation points and L is as above. In
other words, the solution at the collocation points is given (see (42.7)) by

u = L-1 f = A(A.c)-1 f,

and we see that invertibility of L (and therefore A.c) is required to proceed.
As mentioned above, the differentiation matrix for pseudospectral methods

based on Chebyshev polynomials is singular. This is only natural since the problem
of reconstructing an unknown function from the values of its derivatives alone is
ill-posed.

However, if we use radial basis functions the results on generalized Hermite
interpolation cited in Chapter 36 ensure that the matrix A.c is invertible provided a
strictly positive definite basic function is used and the differential operator is elliptic.
Therefore, the basic differentiation matrix L for RBF-based pseudospectral methods
is invertible.

The observation just made suggests that RBF methods are sometimes "too good
to be true". They may deliver a "solution" even for ill-posed problems. This is a
consequence of the optimality principles of Chapter 18, i.e., as the minimizer of the
native space norm RBF methods possess a built-in regularization capability. This
interesting feature of RBFs has recently been used to solve ill-posed problems (see,
e.g., [Cheng and Cabral (2005)]).

42.2 PDEs with Boundary Conditions via Pseudospectral Methods

First we discuss how the linear elliptic PDE problem

.Cu= f inn

with Dirichlet boundary condition

u = g on r =an
can be solved using pseudospectral methods. Sometimes one can find basis functions
that already satisfy the boundary conditions (especially for periodic problems).

42. Using Radial Basis Functions in Pseudospectral Mode 391

However, if the basis functions do not satisfy the boundary conditions we can follow
a very simple procedure (see, e.g., Program 36 of [Trefethen (2000)]). Just take the
differentiation matrix L based on all collocation points Xi, and then replace those
rows of L corresponding to collocation at boundary points with unit vectors that
have a one in the position corresponding to the diagonal of L. Thus, the condition
u = g will be explicitly enforced at this point as soon as we set the right-hand side
to the corresponding value of g.

By reordering the rows and columns of the resulting matrix we obtain a block
matrix of the form

Lr= [~ ~], (42.8)

where the non-zero square blocks M and I are of size (N - N13) x (N - N13) and
N 13 x N13, respectively. Here N13 denotes the number of grid points on the boundary
r.

On the grid of collocation points the solution of the PDE with boundary condi­
tions is then obtained by solving the block linear system

Lru = [~], (42.9)

where the vectors f and g collect the values off and g at the respective colloca­
tion points, and the vector u of grid values of the approximate solution has been
reordered along with the columns of the matrix so that it can be decomposed into
u = [uz, u13jT. Here Uz collects the values in the interior of the domain n and U13
collects the values on the boundary.

Solving (42.9) for u13 = g and substituting this back into the top part we obtain

uz = M-1(/ - Pg),

or, in the case of homogeneous boundary conditions,

ux = M- 11.

We now see that all that really matters is whether the matrix Mis invertible. In the
case of Chebyshev polynomial basis functions and the second-derivative operator d";2

coupled with different types of boundary conditions this question has been answered
affirmatively by Gottlieb and Lustman (see [Gottlieb and Lustman (1983)], or, e.g.,
Section 11.4 of [Canuto et al. (1988)]). Program 15 of [Trefethen (2000)] also
provides a discussion and an illustration of one such problem. We will look at the
matrix M in the RBF context in the next section.

42.3 A Non-Symmetric RBF-based Pseudospectral Method

Once boundary conditions are added to the PDE £u = f, then either of the two
collocation approaches discussed in Chapters 38-41 are commonly used in the RBF

392 Meshfree Approximation Methods with MATLAB

community. Recall that in Kansa's non-symmetric method [Kansa (1990b)] one
starts with the expansion

N

u(x) = :Lcj<I>j(x), (42.10)
j=l

just as before (c.f. (42.1)). However, the coefficient vector c is now actually com­
puted by inserting (42.10) into the PDE and boundary conditions by forcing these
equations to be satisfied at the collocation points Xi. The RBF collocation solution
is therefore obtained by solving the linear system

(42.11)

where f and g are as above, and the (rectangular) matrices A.c and A are of the
form

(A.c)ij = .C<I>j (xi) = .Ccp(llx - Xj IJ)lx=:z:i , i = 1, ... , N - NB, j = 1, ... , N,

Aij = <I>J(xi) = cp(llxi -xJll), i = N-NB + 1, ... ,N, j = 1, ... ,N.

Assuming that the system matrix in (42.11) is invertible one then obtains the ap­
proximate solution (at any point x) by using the coefficients c in (42.10). However,
as was mentioned earlier, counterexamples in [Hon and Schaback (2001)] show that
certain collocation grids do not allow invertibility of the system matrix in (42.11).

If we are interested in the RBF collocation solution at the collocation points
only, then (using c from (42.11) and once again assuming invertibility of the system
matrix) we get

with evaluation matrix A such that Aij = <I> J (Xi) as above. This suggests that
(according to our discussion in Section 42.1) the discretized differential operator L
based on the grid points Xi, i = 1, ... , N, and basis functions <I> J, j = 1, ... , N, is
given by

Indeed, we have

with the same blocks M, P, 0 and I as above. To see this we introduce the following
notation:

42. Using Radial Basis Functions in Pseudospectral Mode 393

with column vectors ai and bi such that a'[b1
(42 .11) this notation implies

8ij· For Kansa's matrix from

T
a.c,1

where we have used an analogous notation to denote the rows of the block A.c.
Now the discretized differential operator based on the non-symmetric collocation
approach is given by

T a.c,1

aJ:r

[

A.cAi1 A.cA81]
AA-1 AA-1

I l3 ___., ___.,
=0 =I

Here we partitioned A-1 into the blocks Ai 1 with N -N13 columns corresponding to
interior points, and A.B 1 with NB columns corresponding to the remaining boundary
points. Also, we made use of the fact that a'[b1 = 8iJ.

This is the same as (see (42.8))

[~~]=Lr,
where Mand P were obtained from the discrete differential operator (42.7)

by replacing certain rows with unit vectors as we explained is common practice for
handling the Dirichlet boundary conditions in the PS approach.

Thus, we have just seen that - provided we use the same basis functions <I> J

and the same grid of collocation points Xi - the non-symmetric RBF collocation
approach for the solution of an elliptic PDE with Dirichlet boundary conditions
followed by evaluation at the grid points is identical to a pseudospectral approach.
However, neither of the two methods is well-defined in general since they both rely
on the invertibility of Kansa's collocation matrix.

394 Meshfree Approximation Methods with MATLAB

On the other hand, we showed above that we can always form the discretized
differential operator

Lr = [1] A-
1

= [~ ~ l
- even if Kansa's matrix is not invertible. This implies that we can safely use the
non-symmetric RBF pseudospectral approach whenever inversion of the discretized
differential operator is not required (e.g., in the context of explicit time-stepping
for parabolic PDEs).

Another interesting feature that we will illustrate in the next chapter is the
fact shown recently by a number of authors (see, e.g., [de Boor (2006); Driscoll
and Fornberg (2002); Schaback (2005); Schaback (2006b)]) that in the limiting case
of "flat" basis functions the one-dimensional RBF interpolant yields a polynomial
interpolant. Since we also mentioned earlier that the discretized differential operator
Lr is invertible if a univariate polynomial basis is used we can conclude that Kansa's
collocation matrix is invertible in the limiting case c -~ 0.

42.4 A Symmetric RBF-based Pseudospectral Method

The second RBF collocation method is the symmetric approach whose system ma­
trix is invertible for all grid configurations and any strictly positive definite basic
function as explained in Chapter 38.

Recall that for the symmetric collocation method one uses a different basis than
for the non-symmetric approach (42.10), i.e., a different function space to repre­
sent the approximate solution. For the same elliptic PDE and Dirichlet boundary
conditions as above one now starts with

N-N5 N

u(x) = L Cj.c}q,(x) + 2= (42.12)
j=l j=N-NB+l

Since the q,j are assumed to be radial functions, i.e., q,j (x) = cp(llx - Xj II) the
functionals .cj can be interpreted as an application of .C to cp viewed as a function
of the second variable followed by evaluation at Xj (see the discussion in Chapters 36
and 38). One obtains the coefficients c = [ex, cs]T by solving the linear system

(42.13)

Here the blocks A.c.ce and A, respectively, are square matrices corresponding to the
interaction of interior collocation points with each other and boundary collocation
points with each other. As discussed in Chapter 38 (for centers coinciding with
collocation points) their entries are given by

i, j = 1, ... 'N - NB,

42. Using Radial Basis Functions in Pseudospectral Mode 395

i, j = N - NB + 1, ... 'N.

The other two blocks are rectangular, and correspond to interaction of interior
points with boundary points and vice versa. They are defined as

(A.c)iJ = [.Ccp(llx - xJll)]x=xi, i = 1, ... , N - NB, j = N - NB+ 1, ... , N,

(A.ce)iJ = [.cecp(llxi - xll)]x=xi, i = N - NB+ 1, ... , N, j = 1, ... , N - NB.

As already mentioned, it is well known that the system matrix in (42.13) is
invertible for strictly positive definite radial functions. This implies that we can
obtain the approximate solution at any point x by using the computed coefficients
c in (42.12). Thus this RBF collocation method is rather similar to Kansa's non­
symmetric method with the notable difference that the collocation approach is well­
defined.

A nice connection between the symmetric and non-symmetric collocation meth­
ods appears if we consider the corresponding symmetric pseudospectral approaches.

To this end we use the expansion (42.12) on which the symmetric RBF colloca­
tion method is based as starting point for a pseudospectral method, i.e.,

N-Na N

u(x) = I: Cj.Cj<P(x) + I: (42.14)
j=l j=N-Ns+l

In vectorized notation this corresponds to

u(x) = [a Ie (x) a T (x)] [~:]
with appropriate row vectors a Ie (x) and a T (x). Evaluated on the grid of colloca­
tion points this becomes

u = [A.ce AT J [~: l ·
Here the blocks A.ce and AT of the evaluation matrix are rectangular matrices with
entries

(A.cdiJ = [.Cecp(llxi - xll)]x=xj, i = 1, ... , N, j = 1, ... , N - NB,

(AT)iJ = cp(llxi -xJll), i = 1, ... ,N, j = N-NB + 1, ... ,N,

corresponding to evaluation of the basis functions used in (42 .12) at the collocation
points Xi· Note that the second matrix with entries cp(llxi - xJll) is in fact the
transpose of the corresponding block of the system matrix in (42.11) for Kansa's
method (and thus use of the tilde-notation is justified).

Moreover, the radial symmetry of the basis functions implies that the first block
of the evaluation matrix for the symmetric collocation method, A.ce, is again the
transpose of the corresponding block in Kansa's collocation method, A.c.

To see this we consider differential operators of even orders and odd orders
separately. If .C is a linear differential operator of odd order, then .ce will introduce

396 Meshfre,e Approximation Methods with MATLAB

a sign change since it is acting on cp as a function of the second variable. In addition,
odd order derivatives (evaluated at x = Xj) include a factor of the form Xi - Xj.

Now, transposition of this factor will again lead to a sign change. The combination
of these two effects ensures that A.c~ = A.J;. For even orders the effects of the
operators £ and ce are indistinguishable and the linear factor is not present.

Therefore, using symmetric RBF collocation we obtain the approximate solution
of the boundary value problem on the collocation grid as

We emphasize that this is not the solution of a pseudospectral method built on
the same function space (same basis functions and same collocation points) as the
symmetric RBF collocation method.

For a pseudospectral method we would require the discretized differential oper­
ator. Formally (assuming invertibility of Kansa's matrix) we would have

(42.15)

where we already incorporated the boundary conditions in a way analogous to our
earlier discussion.

The problem with the differentiation matrix (42.15) for the symmetric pseu­
dospectral approach is that we cannot be assured that the method itself, i.e., the
discretized differential operator, is well-defined. In fact, due to the Hon-Schaback
counterexample [Hon and Schaback (2001)] we know that there exist grid configu­
rations for which the "basis" used for the symmetric PS expansion is not linearly
independent.

Therefore, the symmetric RBF collocation approach is well-suited for problems
that require inversion of the differential operator (such as elliptic PDEs). Subse­
quent evaluation on a grid makes the symmetric collocation look like a pseudospec­
tral method - but it may not be one (since we may not be able to formulate the
pseudospectral A nsatz).

42.5 A Unified Discussion

In both the symmetric and non-symmetric collocation approaches we can think of
the approximate solution as a linear combination of appropriate basis functions. In
vectorized notation this can be written as

(42.16)

where the vector p(x) contains the values of the basis functions at x. If we consider
the non-symmetric method these basis functions are just q>j, j = 1, ... , N, while

42. Using Radial Basis Functions in Pseudospectral Mode 397

for the symmetric method they are comprised of both functions of the type <I> j and
.Cj<t> (c.f. (42.14)).

We now let D denote the linear operator that combines both the differential
operator .C and the boundary operator (for Dirichlet boundary conditions the latter
is just the identity). Then we have

(42.17)

for an appropriately defined vector q(x). With this notation the boundary value
problem for our approximate solution is given by

Du(x) = f(x),

where f is a piecewise defined function that collects the forcing functions in both
the interior and on the boundary.

Now we evaluate the two representations (42 .16) and (42.1 7) on the grid of
collocation points Xi, i = 1, ... , N, and obtain

u =Pc and u-v = Qc

with matrices P and Q whose rows correspond to evaluation of the vectors pT(x)
and qT (x), respectively, at the collocation points Xi, i = 1, ... , N. The discretized
boundary value problem is then

uv = f -¢=::::} Qc = f, (42.18)

where f is the vector of values of f on the grid.
For the non-symmetric collocation approach the evaluation matrix Pis the stan­

dard RBF interpolation matrix, and the derivative matrix Q is Kansa's matrix,
whereas for symmetric collocation P is given by the transpose of Kansa's matrix,
and Q is the symmetric collocation matrix.

It is our goal to find the vector u, i.e., the values of the approximate solution
on the grid of collocation points. There are two ways by which we can potentially
obtain this answer:

(1) We solve Qc = f for c, i.e.,

c = Q-1 f.

Then we use the discretized version of (42.16) to get the desired vector u as

u = PQ-1/.

(2) Alternatively, we first formally transform the coefficients, i.e., we rewrite u =

Peas

Then the discretized boundary value problem (42.18) becomes

QP- 1u = f,

and we can obtain the solution vector u by solving this system.

398 Meshfree Approximation Methods with MATLAB

The first approach corresponds to RBF collocation, the second to the pseu­
dospectral approach. Both of these approaches are equivalent as long as all of the
matrices involved are invertible. Unfortunately, as mentioned earlier, there are con­
figurations of collocation points for which Kansa's matrix is not invertible. This
means that for the non-symmetric case (when Q is Kansa's matrix) Approach 1
cannot be assured to work in general, and Approach 2 can only be used if the
discretized differential operator is applied directly (but not inverted). For the sym­
metric approach (when P is Kansa's matrix), on the other hand, Approach 1 is
guaranteed to work in general, but Approach 2 may not be well-defined.

42.6 Summary

Our discussion above revealed that for the non-symmetric (Kansa) Ansatz (42.10)
we can always formulate the discrete differential operator

However, we cannot ensure in general the invertibility of Lr. This implies that the
non-symmetric RBF pseudospectral approach is justified for time-dependent PDEs
(with explicit time-stepping methods).

For the symmetric Ansatz (42.12), on the other hand, we can in general ensure
the solution of .Cu = f by RBF collocation. However, it is not possible in general
to even formulate the discrete differential operator

Lr= [Af.ce A.fl [A.ce _AT]- 1

A.ce A

needed for the pseudospectral approach. This suggests that we should use the
symmetric approach for time-independent PDEs and possibly for time-dependent
PDEs with implicit time-stepping.

The difficulties with both approaches can be attributed to the possible singu­
larity of Kansa's matrix which appears as discretized differential operator for the
non-symmetric approach, and (via its transpose) as the evaluation matrix in the
symmetric approach.

Since the non-symmetric approach is quite a bit easier to implement than the
symmetric approach, and since the grid configurations for which the Kansa matrix
is singular seem to be very rare (see [Hon and Schaback (2001)]) many researchers
(including ourselves) often prefer to use the non-symmetric approach - even under
questionable circumstances (such as with implicit time-stepping procedures, or for
elliptic problems). The connection to polynomials in the limiting case c: = 0 justifies
this point of view at least for 1-D problems.

An interesting question for future research is the study of RBF-pseudospectral
methods with moving or adaptive grids. This will be computationally much more

42. Using Radial Basis Functions in Pseudospectral Mode 399

involved than the case discussed here (and illustrated in the next chapter), but
the use of RBFs should imply that there is no major restriction imposed by the
use of moving (scattered) collocation grids. In particular, with RBF-PS methods
one will no longer be restricted to a tensor-product structure as with traditional
polynomial pseudospectral methods, i.e., with RBF expansions we should be able
to take advantage of scattered multivariate grids as well as spatial domains with
non-rectangular geometries.

Chapter 43

RBF-PS Methods in MATLAB

Overall, the coupling of RBF collocation and pseudospectral methods discussed
in the previous chapter has provided a number of new insights. For example, it
should now be clear that we can apply many standard pseudospectral procedures
to RBF solvers. In particular, we now have "standard" procedures for solving time­
dependent PDEs with RBFs.

In this chapter we illustrate how the RBF pseudospectral approach can be ap­
plied in a way very similar to standard polynomial pseudospectral methods. Among
our numerical illustrations are several examples taken from the book [Trefethen
(2000)] (see Programs 17, 35 and 36 there). We will also use the ID transport equa­
tion of Example 42. l to compare the RBF and polynomial pseudospectral methods.

43.1 Computing the RBF-Dilferentiation Matrix in MATLAB

We begin by explaining how to compute the discretized differential operators (dif­
ferentiation matrices) that came up in our discussion in the previous chapter.

In order to compute, for example, a first-order differentiation matrix we need
to remember that - by the chain rule - the derivative of an RBF will be of the
general form

Thus, we require not only the distances, r, but also differences in x, where x is the
first component of x. Therefore, the main statements in our first MATLAB subrou­
tine (listed as Program 43.1) are the computation of these distance and difference
matrices on lines 5 and 6. According to the discussion in the previous chapter,
the differentiation matrix is then given by D = AxA-1 . This is implemented on
lines 9-11. Note the use of the matrix right di vision operator I or mrdi vi de in
MATLAB on line 11 used to solve the system DA= Ax for D.

Program 43.1 is actually a little more complicated than it needs to be since
we included an optimization of the RBF shape parameter via leave-one-out cross
validation as described in Chapter 17 (see lines 4,7 and 8). Here we use a mod-

401

402 Meshfre.e Approximation Methods with MATLAB

ification of the basic routine CostEpsilon which we call CostEpsilonDRBF (see
Program 43.2 below) so that we optimize the choice of c for the matrix problem
D = AxA-1 {=} ATDT = (Ax)T.

Program 43.1. DRBF .m

% [D,x] = DRBF(N,rbf ,dxrbf)
% Computes the differentiation matrix D for 1-D derivative
% using Chebyshev points and LOOCV for optimal shape parameter
% Input: N, create N+1 collocation points
% rbf, dxrbf function handles for rbf and its derivative
% Calls on: DistanceMatrix, DifferenceMatrix
% Requires: CostEpsilonDRBF

1 function [D,x] = DRBF(N,rbf ,dxrbf)
2 if N==O, D=O; x=1; return, end
3 x = cos(pi*(O:N)/N)'; % Chebyshev points
4 mine= .1; maxe = 10; % Shape parameter interval
5 r = DistanceMatrix(x,x);
6 dx = DifferenceMatrix(x,x);
7 ep = fminbnd(©(ep) CostEpsilonDRBF(ep,r,dx,rbf,dxrbf),mine,maxe);
8 fprintf('Using epsilon= %f\n', ep)
9 A= rbf(ep,r);

10 Ax= dxrbf(ep,r,dx);
11 D = Ax/A;

Note that CostEpsilonDRBF .m is very similar to CostEpsilon .m (c.f. Pro­
gram 17.3). Now, however, we compute a right-hand side matrix corresponding
to the transpose of Ax. Therefore, the denominator - which remains the same
for all right-hand sides (see formula (17.1)) - needs to be cloned on line 6 via the
repmat command. The cost of c is now the Frobenius norm of the matrix EF. Other
measures for the error may also be appropriate. For the standard interpolation set­
ting Rippa compared use of the f 1 and f2 norms (see [Rippa (1999)]) and concluded
that the f 1 norm yields more accurate "optima". For the RBF-PS problems to be
presented here we have observed very good results with the f 2 (or Frobenius) norm,
and therefore that is what is used on line 7 of Program 43.2.

Program 43.2. CostEpsilonDRBF. m

!. ceps = CostEpsilonDRBF(ep,r,dx,rbf ,dxrbf)
% Provides the "cost of epsilon" function for LOOCV optimization
!. of shape parameter
!. Input: ep, values of shape parameter
!. r, dx, Distance and Difference matrices
!. rbf, dxrbf, definition of rbf and its derivative

1 function ceps = CostEpsilonDRBF(ep,r,dx,rbf ,dxrbf)

2

3
4
5
6

7

N = size(r,2);
A= rbf(ep,r);

43. RBF-PS Methods in MATLAB

% = A-T since A is symmetric
rhs = dxrbf(ep,r,dx)'; !. A_x-T
invA = pinv(A);
EF = (invA*rhs)./repmat(diag(invA),1,N);
ceps = norm(EF(:));

43.1.1 Solution of a 1-D Transport Equation

403

We illustrate the use of the subroutine DBRF. m by solving a one-dimensional trans­
port equation. Consider

Ut(X, t) + CUx(x, t) = 0, x > -1, t > 0,
u(-1,t) = 0,

u(x, 0) = f(x),

with the well-known solution

u(x, t) = f (x - ct).

In Program 43.3 we implement a solution of this problem with the help of the
differentiation matrix from Program 43.1 above. Note that we could use almost the
identical code to solve this problem with a Chebyshev pseudospectral method as
discussed in [Trefethen (2000)]. In fact, in Figure 43.1 we display side-by-side the
solutions obtained with Gaussian RBFs and with Chebyshev polynomials. Both
solutions were computed on a grid of 21 Chebyshev points. The cross-validation
algorithm returned a value of c = 1.874049 for the Gaussian. The maximum error
for the Gaussian solution at time t = 1 was 0.0416, while for the PS solution we
get 0.0418. The only difference in the PS-code is the replacement of line 4 in
Program 43.3 by

4 [D,x] = cheb(N)

where cheb. mis the subroutine provided on page 54 of [Trefethen (2000)] for spectral
differentiation.

Program 43.3. TransportDRBF. m

!. TransportDRBF
!. Script that solves constant coefficient wave equation
!. u_t + c*u_x = 0, using RBF-PS approach
% Calls on: DRBF

1 rbf = ©(e,r) exp(-(e*r).-2); !. Gaussian RBF
2 dxrbf = ©(e,r,dx) -2*dx*e-2.*exp(-(e*r).-2);
3 N = 20;
4 [D,x] = DRBF(N,rbf ,dxrbf);

404 Meshfree Approximation Methods with MATLAB

5 x = flipud(x); dt = 0.001; t = O; c = -1;
6 v = 64*(-x).-3.*(1+x).-3;
7 v(find(x>O)) = zeros(length(find(x>0)),1);

% Time-stepping by explicit Euler formula:
8 tmax = 1; tplot = .02; plotgap = round(tplot/dt);
9 dt = tplot/plotgap; nplots = round(tmax/tplot);

10 data= [v'; zeros(nplots,N+1)]; tdata = t;
11 I= eye(size(D));
12 for i = 1:nplots
13 for n = 1:plotgap
14 t = t+dt;
15 vv = v(end-1);
16 v = v - dt*c*(D*v); % explicit Euler
17 v(1) = O; v(end) = vv;
18 end
19 data(i+1,:) = v'; tdata = [tdata; t];
20 end
21 surf(x,tdata,data), view(10,70), colormap('default');
22 axis([-1 1 0 tmax 0 1]), ylabel t, zlabel u, grid off

% exact solution and error
23 xx= linspace(-1,1,101);
24 vone = 64*(1-xx).-3.*xx.-3;
25 vone(find(xx<O)) = zeros(length(find(xx<0)),1);
26 w = interp1(x,v,xx);
27 maxErr = norm(w-vone,inf)

The graph in Figure 43.1 shows the time profile of the solutions for the time
interval [O, 1] with initial profile f(x) = 64(1 - x) 3 x 3 and unit wave speed.

x x

Fig. 43.1 Solution to transport equation based on Gaussian RBFs withe = 1.874049 (left) and
Chebyshev PS method (right). Explicit Euler time-stepping with (~t = 0.001), and 21 Chebyshev
points.

43. RBF-PS Methods in MATLAB 405

43.2 Use of the Contour-Pade Algorithm with the PS Approach

We now give a brief explanation of how the Contour-Pade algorithm of [Fornberg
and Wright (2004)] can be used to compute RBF differentiation matrices. In its
original form the Contour-Pade algorithm allows us to stably evaluate radial basis
function interpolants based on infinitely smooth RBFs for extreme choices of the
shape parameter c (in particular c ~ 0). More specifically, the Contour-Pade
algorithm uses FFTs and Pade approximations to evaluate the function

(43.1)

with b(x, c)j = <p€(11x-Xj II) at some evaluation point x and A(c)i,j = <p€(11xi-Xj II)
(c.f. the discussion in the previous chapter and in Chapter 17). The parameter c
is used to denote the dependence of b and A on the choice of that parameter as a
scaling factor in the basic function <p€ = <p(c·).

If we evaluate u at all of the collocation points Xi, i = 1, ... , N, for some fixed
value of c, then bT (x, c) turns into the matrix A(c). In the case of interpolation this
exercise is, of course, pointless. However, if the Contour-Pade algorithm is adapted
to replace the vector bT(x, c) (corresponding to evaluation at a single point x)
with the matrix A.c based on the differential operator used earlier (corresponding
to evaluation at all collocation points), then

computes the values of the (spatial) derivative of u on the collocation points Xi·
Boundary conditions can then be incorporated later as in the standard pseudospec­
tral approach (see, e.g., [Trefethen (2000)] or our discussion in Section 42.2).

This means that we are able to supply yet another subroutine to compute the
differentiation matrix on line 4 of Program 43.3 via the Contour-Pade algorithm.

43.2.1 Solution of the 1D Transport Equation Revisited

We use the same example as in Subsection 43.1.1. In this subsection we compare
a solution based on the Contour-Pade algorithm for Gaussian RBFs in the limiting
case c ~ 0 to the two methods described earlier (based on DRBF and cheb). All of
these approaches use an implicit Euler method with time step 6.t = 0.001 for the
time discretization. We point out that for an implicit time-stepping method both
the Contour-Pade approach and the DRBF approach used earlier, of course, require
an inversion of the differentiation matrix. Recall that our theoretical discussion
suggested that this is justified as long as we confine ourselves to the limiting case
c ~ 0 and one space dimension. We will see that the non-limiting case (using DRBF)

seems to work just as well.
In Figures 43.2 and 43.3 we plot the maximum errors at time t = 1 for a

time step 6.t = 0.001) and spatial discretizations consisting of N + 1 = 7, ... , 19
collocation points. Errors for the Contour-Pade Gaussian RBF solution are on the

406 Meshfree Approximation Methods with MATLAB

left of Figure 43.2 and for the Chebyshev PS solution on the right. The errors
for the Gaussian RBF solution with N-dependent "optimal" shape parameter are
shown in the left part of Figure 43.3, while the corresponding "optimal" €-values
are displayed in the right plot. They range almost linearly increasing from 0.122661
at N = 6 to 1.566594 at N = 18.

We can see that the errors for all three methods are virtually identical. Unfortu­
nately, in this experiment we are limited to this small range of N since for N > 19
the Contour-Pade solution becomes unreliable. However, the agreement of all three
solutions for these small values of N is remarkable. In fact, this seems to indicate
that the errors in the solution are mostly due to the time-stepping method used.

10-2'---------...._ _____ ..._ _ _,

6 8 10 12 14 16 18
N

10_
2
_________ _ __... __ ..._ _ _.

6 8 10 12 14 16 18
N

Fig. 43.2 Errors at t = 1 for transport equation. Gaussian RBF with c = 0 (left) and Chebyshev
PS-solution (right); variable spatial discretization N. Implicit Euler method with 6.t = 0.001.

1.6..----.-----------.-------

1.4

1.2
c:
~ 1
c.
Q)

iii 0.8
E 8- 0.6

0.4

8 10 12
N

14 16 18

Fig. 43.3 Errors at t = 1 for transport equation using Gaussian RBF with "optimal" c (left)
and corresponding £-values (right); variable spatial discretization N. Implicit Euler method with
6.t = 0.001.

The spectra of the differentiation matrices for both the Gaussian Contour-Pade
and the Chebyshev PS approaches are plotted in Figures 43.4 and 43.5, respectively.

4:3. RBF-PS Methods in MATLAB 407

The subplots correspond to the use of N + 1 = 5, 9, 13, 17 Chebyshev collocation
points for the spatial discretization. The plots for the Gaussian and Chebyshev
methods show some similarities, but also some differences. The general distribution
of the eigenvalues for the two methods is quite similar. However, the spectra for
the Contour-Fade algorithm with Gaussian RBFs seem to be more or less a slightly
stretched reflection about the imaginary axis of the spectra of the Chebyshev pseu­
dospectral method. The differences increase as N increases. This, however, is not
surprising since the Contour-Pade algorithm is known to be unreliable for larger
values of N.

2

§ 0 •

-1

-2

-3 -2

2

•
..§ 0.

-1 •
-2

-2

-

•

•
-1

•

•
0

Re

•

•
2 3

x 10-3

••
0

0

••
2

0.2,--------...------.---~

0.15 •
0.1

0.05 •

0

-0.05 •

-0.1

-0.15 •
-0.2

-0.2 -0.1 0
Re

•

•
0.1

•
•

•
0.2

a,---...,....-------------~

6 • •• •
4 • •
2 •

..§ 0 • • •
-2 •
-4 • •
-6 • •• • -B.._-~_5 ________ 0 ________ 5 ____ __.10

Re

Fig. 43.4 Spectra of differentiation matrices for Gaussian RBF with E = 0 on Chebyshev collo­
cation points obtained with the Contour-Pade algorithm and N = 5, 9, 13, 17.

43.3 Computation of Higher-Order Derivatives

A rather nice feature of polynomial differentiation matrices is the fact that higher­
order derivatives can be computed by repeatedly applying the first-order differen­
tiation matrix, i.e., D(k) = Dk, where D is the standard first-order differentiation
matrix and D(k) is the matrix corresponding to the k-th (univariate) derivative.
Unfortunately, this nice feature does not carry over to the general RBF case (just

408 Meshfree Approximation Methods with MATLAB

x 10-3

0.2

2 • 0.15

• • • 0.1 •
0.05 •

.§ 0 • § 0 •
-0.05 • -1 • • -0.1 • • -2 • -0.15

-2 -1 0 2 -0.~
- .2 -0.1 0 0.1 0.2

Re x 10-3 Re

0.8 2

0.6 • • 1.5 • • • • • • • 0.4

• • • 0.2 • 0.5

§ 0 • § 0 • • •
-0.2 • -0.5 • • • -0.4 • -1 • • • -0.6 • • -1.5 • • •
-o.g

- .8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6
-2
-2 -1 0 2

Re Re

Fig. 43.5 Spectra of differentiation matrices for Chebyshev pseudospectral method on Chebyshev
collocation points with N = 5, 9, 13, 17.

as is does not hold for periodic Fourier spectral differentiation matrices, either).
We therefore need to provide separate MATLAB code for higher-order differentia­
tion matrices. As Program 43.4 shows, this is not fundamentally more complicated
than the first-order case. The only differences between Programs 43.1 and 43.4 are
given by the computation of the AD<kJ matrix on line 10 for the first-order case in
Program 43.1 and lines 9 for the second-order case in Program 43.4, and by the
use of the subroutine CostEpsilonD2RBF instead of CostEpsilonDRBF. These dif­
ferences are minute, and essentially all that is needed is the appropriate formula for
the derivative of the RBF passed to D2RBF via the parameter d2rbf. We do not
list the function CostEps ilonD2RBF. It differs from CostEps ilonDRBF only in the
definition of the right-hand side matrix which now becomes

4 rhs = d2rbf(ep,r)';

Also, the number and type of parameters that are passed to the functions are
different since the first-order derivative requires differences of collocation points
and the second-order derivative does not.

43. RBF-PS Methods in MATLAB

Program 43.4. D2RBF .m

/. [D2,x] = D2RBF(N,rbf ,d2rbf)
!. Computes the second-order differentiation matrix D2 for 1-D
!. derivative using Chebyshev points and LOOCV for optimal epsilon
!. Input: N, number of points -1

rbf, d2rbf, function handles for rbf and its derivative
!. Calls on: DistanceMatrix, DifferenceMatrix
!. Requires: CostEpsilonD2RBF

1 function [D2,x] = D2RBF(N,rbf ,d2rbf)
2 if N==O, D2=0; x=1; return, end
3 x = cos(pi•(O:N)/N)'; !. Chebyshev points
4 mine= .1; maxe = 10; !. Shape parameter interval
5 r = DistanceMatrix(x,x);

409

6 ep = fminbnd(©(ep) CostEpsilonD2RBF(ep,r,rbf,d2rbf),mine,maxe);
7 fprintf('Using epsilon= /.f\n', ep)
8 A= rbf(ep,r);
9 AD2 = d2rbf(ep,r);

10 D2 = AD2/A;

43.3.1 Solution of the Allen-Cahn Equation

To illustrate the use of the subroutine D2RBF. m we present a modification of Pro­
gram 35 in [Trefethen (2000)] which is concerned with the solution of the nonlinear
reaction:-diffusion (or Allen-Cahn) equation. The specific problem we will solve is
of the form

Ut = µUxx + U - u3
, x E (-1,1), t > 0,

with parameter µ, initial condition

u(x, 0) = 0.53x + 0.47sin (-~7rX), x E [-1, l],

and non-homogeneous (time-dependent) boundary conditions u(-1, t) = -1 and
u(l, t) = sin2 (t/5). The solution to this equation has three steady states (u =

-1, 0, 1) with the two nonzero solutions being stable. The transition between these
states is governed by the parameterµ. In our calculations below we use µ = 0.01,
and the unstable state should vanish around t = 30.

The modified MATLAB code is presented in Program 43.5. Note how easily the
nonlinearity is dealt with by incorporating it into the time-stepping method on
line 13.

Program 43.5. Modification of Program 35 of [Trefethen (2000)]

!. p35
!. Script that solves Allen-Cahn equation with boundary condition

410 Mesh.free Approximation Methods with MATLAB

% imposed explicitly ("method (II)") (from Trefethen (2000))
!. We replace the Chebyshev method by an RBF-PS method
!. Calls on: D2RBF

!. Matern cubic as RBF basic function
1 rbf = ©(e,r) exp(-e*r).*(15+15*e*r+6*(e*r).-2+(e*r).-3);
2 d2rbf = ©(e,r) e-2*((e*r).-3-3*e*r-3).*exp(-e*r);
3 N = 20;
4 [D2,x] = D2RBF(N,rbf,d2rbf);

!. Here is the rest of Trefethen's code.
5 mu= 0.01; dt = min([.01,50*N-(-4)/mu]);
6 t = O; v = .53*x + .47*sin(-1.5*pi*x);

!. Solve PDE by Euler formula and plot results:
7 tmax = 100; tplot = 2; nplots = round(tmax/tplot);
8 plotgap = round(tplot/dt); dt = tplot/plotgap;
9 xx= -1:.025:1; vv = polyval(polyfit(x,v,N),xx);

10 plotdata = [vv; zeros(nplots,length(xx))]; tdata = t;
11 for i = 1:nplots
12 for n = 1:plotgap
13 t = t+dt; v = v + dt*(mu*D2*v + v - v.-3); !. Euler
14 v(1) = 1 + sin(t/5)-2; v(end) = -1; !. BC
15 end
16 vv = polyval(polyfit(x,v,N),xx);
17 plotdata(i+1,:) = vv; tdata = [tdata; t];
18 end
19 surf(xx,tdata,plotdata), grid on
20 axis([-1 1 0 tmax -1 2]), view(-40,55)
21 colormap('default'); xlabel x, ylabel t, zlabel u

The original program in [Trefethen (2000)] is obtained by deleting lines 1-2 and
replacing line 4 by a call to cheb .m followed by the statement D2 = 0-2 which yields
the second-order differentiation matrix in the Chebyshev case.

Note that in our RBF-PS implementation the majority of the matrix computa­
tions are required only once outside the time-stepping procedure when computing
the derivative matrix as the solution of a linear system. Inside the time-stepping
loop (lines 12-15) we require only matrix-vector multiplication. We point out that
this approach is much more efficient than computation of RBF expansion coeffi­
cients at every time step (as suggested, e.g., in [Hon and Mao (1999)]). In fact, this
is the main difference between the RBF-PS approach and the collocation approach
of Chapters 38-40 (see also our comparison of the collocation approaches and the
RBF-PS approach in the previous chapter).

In Figure 43.6 we show the solution obtained via the Chebyshev pseudospectral
method and via an RBF pseudospectral approach based on the "cubic" Matern
function c.p(r) = (15 + 15cr + 6(cr)2 + (cr)3)e-e:r with "optimal" shape parameter

43. RBF-PS Methods in MATLAB 411

c = 0.350952. Note that these computations are rather sensitive to the value of c
and the norm used to measure the "cost" of c in CostEpsilonD2RBF .m. In fact, use
of the £1 or £00 norms instead of the f2 norm both lead to inacceptable results for
this test problem. The reasons for this high sensitivity of the solution to the value
of c are the extreme ill-conditioning of the matrix along with the changes of the
solution over time. An adaptive method would most likely perform much better in
this case.

The computations for this example are based on 21 Chebyshev points, and the
differentiation matrix for the RBF is obtained directly with the subroutine D2RBF. m

(i.e., without the Contour-Pade algorithm). We use this approach since for 21 points
the Contour-Pade algorithm no longer can be relied upon. Moreover, it is apparent
from the figures that reasonable solutions can also be obtained via this direct (and
much simpler) RBF approach. True spectral accuracy, however, will no longer be
given if c > 0. We can see from the figure that the solution based on Chebyshev
polynomials appears to be slightly more accurate since the transition occurs at a
slightly later and correct time (i.e., at t ~ 30) and is also a little "sharper".

2

u
0

-1
100

0 -1 x

2

u
0

-1
100

0 -1 x

Fig. 43.6 Solution of the Allen-Cahn equation using the Chebyshev pseudospectral method (left)
and an RBF-PS method with cubic Matern functions (right) with N = 20.

43.4 Solution of a 2D Helmholtz Equation

We consider the 2D Helmholtz equation (see Program 17 in [Trefethen (2000)])

Uxx + Uyy + k2
u = f(x, y), x, y E (-1, 1)2

,

with boundary condition u = 0 and

f (x, y) = exp (-10 [(y - 1) 2 + (x - ~) 2]) .

To solve this type of (elliptic) problem we again need to assume invertibility of
the differentiation matrix. Even though this may not be warranted theoretically

412 Meshfree. Approximation Methods with MATLAB

(see our discussion in the previous chapter), we compare a non-symmetric RBF
pseudospectral method with a Chebyshev pseudospectral method.

We attempt to solve the problem with radial basis functions in two different
ways. First, we apply the same technique as in [Trefethen (2000)] using the kron
function to express the disretized Laplacian on a tensor-product grid of (N + 1) x
(N + 1) points as

L =I® D2 + D2 ®I, (43.2)

where D2 is the (univariate) second-order differentiation matrix, I is an identity
matrix of size (N + 1) x (N + 1), and@ denotes the Kronecker tensor-product. For
polynomial PS methods the second-order differentiation matrix can be computed
as the square of the one for the first-order derivative, i.e., D2 = D 2 , and this is
what is used in [Trefethen (2000)].

As we pointed out ear lier, for RBFs we cannot follow this approach directly
since D 2 '/=- D(2). Thus, we generate the matrix D2 directly with the help of the
subroutine D2RBF. However, as long as the collocation points form a tensor-product
grid and the RBF is separable (such as a Gaussian or a polynomial), we can still
employ the Kronecker tensor-product construction (43.2). This is implemented in
lines 4 and 9 of Program 43.6 ·

Program 43.6. Modification of Program 17 of [Trefethen (2000)]

%
I.
I.
%
%
!.

1
2
3
4
5
6

7
8

9

10
11
12
13

p17
Script that solves Helmholtz equation
u_xx + u_yy + (k-2)u = f on [-1,1]x[-1,1]
We replace the Chebyshev method by an RBF-PS method
and explicitly enforce the boundary conditions
Calls on: D2RBF

% Gaussian RBF basic function
rbf = ©(e,r) exp(-(e*r).-2);
d2rbf = ©(e,r) 2*e-2*(2*(e*r).-2-1).*exp(-(e*r).-2);
N = 24;
[D2,x] = D2RBF(N,rbf,d2rbf); y = x;
[xx,yy] = meshgrid(x,y);
xx= xx(:); yy = yy(:);
I eye(N+l);
k = 9;

L = kron(I,D2) + kron(D2,I) + k-2*eye((N+1)-2);

% Impose boundary conditions by replacing appropriate rows of L
b = find(abs(xx)==1 I abs(yy)==1); % boundary pts
L(b,:) = zeros(4*N,(N+1)-2); L(b,b) = eye(4*N);
f = exp(-10*((yy-1).-2+(xx-.5).-2));
f(b) = zeros(4*N,1);
% Solve for u, reshape to 20 grid, and plot:

43. RBF-PS Methods in MATLAB

14 u = L\f;
15 uu = reshape(u,N+1,N+l);
16 [xx,yy] = meshgrid(x,y);
17 [xxx,yyy] = meshgrid(-1:.0333:1,-1:.0333:1);
18 uuu = interp2(xx,yy,uu,xxx,yyy,'cubic');
19 figure, elf, surf(xxx,yyy,uuu),
20 xlabel x, ylabel y, zlabel u
21 text(.2,1, .022,sprintf('u(0,0) = %13.11f' ,uu(N/2+1,N/2+1)))

413

The solution of the Helmholtz equation for k = 9 with Gaussians using an
"optimal" shape parameter c = 2.549845 and N = 24 (i.e., 625 total points) is
displayed next to the Chebyshev pseudospectral solution of [Trefethen (2000)] in
Figure 43.7. Again, the similarity of the two solutions is remarkable.

0.04 : : u(O,O) ~· O~O~ 17225.7.0~b
0.02

... -·············

u 0

-0.02 ..

-0.04 ..
1

y -1 -1 x

0.04
............... ,.

0.02 ..
-·· .. -······

u 0

-0.02

-0.04 .. ··· ··
1

0

y

.. ·····
... ····

·: ..
·· ..

. · .

. u(O,O) ~· O~O~ fr225.Q91

-1 -1 x

·-

· ..
·· ...

Fig. 43. 7 Solution of the 2D Helmholtz equation with N = 24 using the Chebyshev pseudospectral
method (left) and Gaussians with c = 2.549845 (right).

As an alternative approach - that allows also the use of non-tensor product
collocation grids - we modify Program 43.6 and use a direct implementation of the
Laplacian of the RBFs. The only advantage of doing this on a tensor-product grid
is that now all radial basis functions can be used. This variation of the code takes
considerably longer to execute since the differentiation matrix is now computed with
matrices of size 625 x 625 instead of the 25 x 25 matrices used for the univariate
differentiation matrix D2 earlier. Moreover, the results are likely to be less accurate
since the larger matrices are more prone to ill-conditioning. However, the advantage
of this approach is that it frees us of the limitation of polynomial PS methods to
tensor-product collocation grids.

The modified code is listed in Program 43.7 where we have used the C 6 Wendland
function <p3 ,3 (r) = (1 - cr)~(32(cr) 3 + 25(cr) 2 + 8cr + 1) with an "optimal" scale
parameter c = 0.129440. Note that we used the compactly supported Wendland
functions in "global mode" (with small c, i.e., large support size) and this explains
the definition of the basic function as in lines 1 and 2 of Program 43. 7 in preparation

414 Meshfree Approximation Methods with MATLAB

for the use with the dense code DistanceMatrix.min the subroutine LRBF .m (which
is listed below as Program 43.8). The output of Program 43. 7 is displayed in
Figure 43.8.

Program 43. 7. Modification II of Program 17 of [Trefethen (2000)]

/. p17_2D
!. Script that solves Helmholtz equation
!. u_xx + u_yy + (k-2)u = f on [-1,1]x[-1,1]
!. We replace the Chebyshev method by an RBF-PS method,
!. explicitly enforce the boundary conditions, and
!. use a 2-D implementation of the Laplacian
!. Calls on: LRBF

!. Wendland C6 RBF basic function
1 rbf = ©(e,r) max(1-e*r,0).-8.*(32*(e*r).-3+25*(e*r).-2+8*e*r+1);
2a Lrbf = ©(e,r) 44*e-2*max(1-e*r,0).-6.* ...
2b (88*(e*r).-3+3*(e*r).-2-6*e*r-1);
3 [L,x,y] = LRBF(N,rbf,Lrbf);
4 [xx,yy] = meshgrid(x,y);
5 xx= xx(:); yy = yy(:);
6 k = 9;

7 L = L + k-2*eye((N+1)-2);
!. Impose boundary conditions by replacing appropriate rows of L

8 b = find(abs(xx)==1 I abs(yy)==1); !. boundary pts
9 L(b,:) = zeros(4*N,(N+1)-2); L(b,b) = eye(4*N);

10 f = exp(-10*((yy-1).-2+(xx-.5).-2));
11 f(b) = zeros(4*N,1);

!. Solve for u, reshape to 2D grid, and plot:
12 u = L\f;
13 uu = reshape(u,N+1,N+1);
14 [xx,yy] = meshgrid(x,y);
15 [xxx,yyy] = meshgrid(-1: .0333:1,-1:.0333:1);
16 uuu = interp2(xx,yy,uu,xxx,yyy,'cubic');
17 figure, elf, surf(xxx,yyy,uuu),
18 xlabel x, ylabel y, zlabel u
19 text(.2,1,.022,sprintf('u(0,0) = /.13.11f',uu(N/2+1,N/2+1)))

Program 43.8. LRBF .m

/. [L,x,y] = LRBF(N,rbf ,Lrbf)
!. Computes the Laplacian differentiation matrix L for 2-D
!. derivatives using Chebyshev points and LOOCV for optimal epsilon
!. Input: N number of points -1
!. rbf, Lrbf, function handles for rbf and its derivative

43. RBF-PS Methods in MATLAB

I. Calls on: DistanceMatrix
I. Requires: CostEpsilonLRBF

1 function [L,x,y] = LRBF(N,rbf ,Lrbf)
2 if N==O, L=O; x=l; return, end
3 x = cos(pi*(O:N)/N)'; !. Chebyshev points
4 y = x; [xx,yy] = meshgrid(x,y);

I. Stretch 2D grids to 10 vectors and put in
5 points= [xx(:) yy(:)];

one array

6
7

8

9

mine= .1; maxe = 10; !. Shape parameter interval
r = DistanceMatrix(points,points);

10
11
12

ep = fminbnd(©(ep) CostEpsilonLRBF(ep,r,rbf,Lrbf),mine,maxe);
fprintf('Using epsilon= /.f\n', ep)
A= rbf(ep,r);
AL= Lrbf(ep,r);
L = AL/A;

0.04

0.02

u 0

-0.02

-0.04
1

0

y

.. :. · ...
. . . . u(O,o)' ~ 0.011-.721-02233 . · ..

. ~ ..

-1 -1 x

415

Fig. 43.8 Solution of the 2D Helmholtz equation using a direct implementation of the Laplacian
based on C 6 Wendland functions with e: = 0.129440 on 625 tensor-product Chebyshev collocation
points.

43.5 Solution of a 2D Laplace Equation with Piecewise Boundary
Conditions

Our final example is another elliptic equation. This time we use the Gaussian RBF
with an "optimal" shape parameter c = 2.549845. Again, the spatial discretization
consists of a tensor product of 25 x 25 Chebyshev points, and the differentiation ma­
trix for the RBF-PS approach is computed using the D2RBF and kron construction
as in the previous example.

416 Meshfree Approximation Methods with MATLAB

We consider the 2D Laplace equation

Uxx+Uyy =0, x,y E (-1,1)2
,

with boundary conditions

(

sin4 (7rx),

u(x, y) = t sin(37ry),

0,

y = 1 and -1 < x < 0,

x = 1,

otherwise.

This is the same problem as used in Program 36 of [Trefethen (2000)], and we do
not list it here due to the similarity with previous examples and the original code
in [Trefethen (2000)].

Figure 43.9 shows the solution obtained via the Chebyshev and RBF pseu­
dospectral methods, respectively. The qualitative behavior of the two solutions is
very similar.

·····.

UQ.5
""""",.......""'

0

y
-1 -1

x

Fig. 43.9 Solution of the 2D Laplace equation using a Chebyshev PS approach (left) and Gaussian
RBFs (right) with c = 2.549845 on 625 tensor-product Chebyshev collocation points.

43.6 Summary

While there is no advantage in going to arbitrarily spaced irregular collocation
points for any of the problems presented here, there is nothing that prevents us
from doing so for the RBF pseudospectral approach. In particular, as we saw in
Section 43.4, we are not limited to using tensor product grids for higher-dimensional
spatial discretizations. This is a potential advantage of the RBF pseudospectral
approach over the standard polynomial methods.

More applications of the RBF-PS method can be found in the recent papers
[Ferreira and Fasshauer (2006); Ferreira and Fasshauer (2007)].

Future challenges include dealing with larger problems in an efficient and sta­
ble way. Thus, such issues as preconditioning and FFT-type algorithms need to

43. RBF-PS Methods in MATLAB 417

be studied in the context of RBF pseudospectral methods. Some first studies of
the eigenvalue stability of RBF pseudospectral methods have been reported very
recently in [Platte and Driscoll (2006)).

Chapter 44

RBF Galerkin Methods

44.1 An Elliptic PDE with Neumann Boundary Conditions

A variational approach to the solution of PDEs with RBFs in Euclidean spaces has
so far only been considered in [Wendland (1999a); Wendland (1999b)] and the very
recent paper [Hu et al. (2005)]. On the sphere - where we do not have to worry
about boundary conditions - we also have [Le Gia (2004)]. In [Wendland (1999b)]
the author studies the Helmholtz equation with natural boundary conditions, i.e.,

-~u+u = f
8
-u=O
8n

where n denotes the unit outer normal vector.

in n,
on an,

The classical Galer kin formulation then leads to the problem of finding a function
u E H 1 (fl) such that

a(u,v) = (f,vh2 cn) for all v E H 1 (n),

where (f, v)L 2 (n) is the usual L2-hmer product, and for the Helmholtz equation the
bilinear form a is given by

a(u,v) = l (Vu· Vv + uv)dx.

In order to obtain a numerical scheme the infinite-dimensional space H 1 (fl) is re­
placed by some finite-dimensional subspace Sx ~ H 1 (fl), where X denotes the
computational grid to be used for the solution. In the context of RBFs Sx is taken
as

Sx =span{ cp(ll · -Xj 11), Xj E X}.

This results in a square system of linear equations for the coefficients of u E Sx
determined by

a(u, v) = (f, vh2 cn) for all v E Sx.

More specifically, if X = { x 1 , ... , x N}, then
N

u = L CJ'P(ll . -Xj II),
j=l

419

(44.1)

420 Meshfree Approximation Methods with MATLAB

and the system (44.1) is given by

r [Vu(x). V<p(llx - Xiii)+ u<p(llx - Xiii)] dx = r f(x)<p(llx - Xill)dx, k k
i = l, ... ,N.

Using linearity and the definition of u given above this turns into
N

~CJ {L [V''l'(llx - xJll) · V'<p(llx - xdl) + <p(llx - xJll)'P(llx - x;ll)] dx}

= l f(x)<p(llx - xill)dx, i = 1, ... , N.

Clearly, this can be written in matrix-vector form as

Ac=f

with the entries of the stiffness matrix A given by

Aij = l [V<p(llx - x1ll) · V<p(llx - xiii)+ 'P(llx - x1ll)'P(llx - xiii)] dx,

and the right-hand side entries

Ii= l f(x)<p(llx - xill)dx.

The evaluation of these integrals is what is most time-consuming in the RBF
Galerkin approach (see the numerical experiments of the next chapter). Wend­
land reports that the numerical evaluation of these weak-form integrals presents a
major problem for the radial basis function Galerkin approach.

In addition, RBF Galer kin methods will face difficulties with Dirichlet (or some­
times also called essential) boundary conditions. Both of these difficulties are also
well-known in many other flavors of meshfree weak-form methods. An especially
promising solution to the issue of Dirichlet boundary conditions seems to be the use
of R-functions as proposed by Hollig and Reif in the context of web-splines (see,
e.g., [Hollig (2003)] or our earlier discussion in the context of collocation methods in
Chapter 38). Another popular approach uses Lagrange multipliers in a constrained
optimization setting.

For more on the Galerkin method see, e.g., [Braess (1997); Brenner and Scott
(1994)] (in the context of finite elements), or [Babuska et al. (2003)] (in the context
of MLS-based meshfree methods).

44.2 A Convergence Estimate

It was shown in [Wendland (1999a)] that for those RBFs (globally as well as lo­
cally supported) whose Fourier transform decays like (1 + II · 11 2)-2 .B the following
convergence estimate for the RBF Galerkin method holds:

llu - ullH 1 (0) < ChO"-lllullH"(O)i (44.2)

44. REF Galerkin Methods 421

where h = hx ,n is the fill distance of X, the solution satisfies the regularity require­
ments u E Ha-(n), and where the convergence rate is determined by /3 > o- > s/2+1.

From our discussion in Chapter 13 we know that the Fourier transform of Wend­
land's compactly supported functions decays as (1 + II · 11 2)-s-211:- 1 . So for these
functions the above estimate implies that functions which are in C 2

/t and strictly
positive definite on]Rs satisfying K, > o- - stl will have O(h11:+(s-l)/2) conver­

gence order, i.e., the c0 function <p3 ,0 = (1 - r)~ yields O(h) and the C 2 function
<p3,1 = (1- r)t(4r + 1) delivers O(h2) convergence in JR3 .

As with the convergence estimate for symmetric collocation there is a link be­
tween the regularity requirements on the solution and the space dimension s. Also,
we point out that so far the theory is only established for PDEs with natural bound­
ary conditions.

The convergence estimate (44.2) holds for the non-stationary setting, i.e., if
we are using compactly supported basis functions, for fixed support radii. By the
same arguments used in Chapters 12, 16 and 41, one will want to switch to the
stationary setting and employ a multilevel algorithm in which the solution at each
step is updated by a fit to the most recent residual. This should ensure both
convergence and numerical efficiency.

44.3 A Multilevel RBF Galerkin Algorithm

Here is the variant of the stationary multilevel collocation algorithm listed in Chap­
ter 41 adapted for the weak formulation of the PDE discussed at the beginning of
this chapter (see [Wendland (1999b)]):

Algorithm 44.1. Multilevel Galerkin

(1) uo = 0
(2) For k from 1 to K do

(a) Find Uk E Sxk such that a(uk, v) = (J, v) - a(uk-1, v) for all v E Sxk
(b) Update Uk ~- Uk-1 +Uk

This algorithm does not converge in general (see Tab. 1 in [Wendland (1999b)]).
Since the weak formulation can be interpreted as a Hilbert space projection

method, Wendland was able to show that a modified version of the multilevel
Galerkin algorithm, namely

Algorithm 44.2. Nested Multilevel Galerkin

(1) Fix K and M EN, and set vo = 0.
(2) For j from 0 while resiudal > tolerance to M do

(a) Set uo = Vj·

(b) Apply the k-loop of the previous algorithm and denote the result with u(Vj).

422 Meshfree Approximation Methods with MATLAB

(c) Set Vj+l = u(vj)·

does converge. In fact, using this algorithm Wendland proves, and also observes
numerically, convergence which is at least linear (see Theorem 3 and Tab. 2 in
[Wendland (1999b)]).

The important difference between the two multilevel Galerkin algorithms is the
added outer iteration in the nested version which is a well-known idea from linear
algebra introduced in [Kaczmarz (1937)]. A proof of the linear convergence for
general Hilbert space projection methods coupled with Kaczmarz iteration can be
found in [Smith et al. (1977)]. This alternate projection idea is also the fundamental
ingredient in the convergence proof of the domain decomposition method of [Beatson
et al. (2000)] described in the Chapter 35. We mention here that in the multigrid
literature Kaczmarz' method is frequently used as a smoother (see e.g. [McCormick
(1992)]).

In the recent paper [Schaback (2003)] the author presents a framework for the
radial basis function solution of problems both in the strong (collocation) and weak
(Galerkin) form.

Many other meshfree methods for the solution of partial differential equations in
the weak form appear in the (mostly engineering) literature. These methods come
under such names as smoothed particle hydrodynamics (SPH) (e.g., [Monaghan
(1988)]), reproducing kernel particle method (RKPM) (see, e.g., [Li and Liu (1996);
Liu et al. (1997)]), point interpolation method (PIM) (see, [Liu (2002)]), element
free Galerkin method (EFG) (see, e.g., [Belytschko et al. (1996)]), meshless lo­
cal Petrov-Galerkin method (MLPG) [Atluri and Zhu (1998)], h-p-cloud method
[Duarte and Oden (1996b)], partition of unity finite element method (PUFEM)
[Babuska and Melenk (1997); Melenk and Babuska (1996)], or generalized finite ele­
ment method (GFEM) [Babuska et al. (2003)]. Most of these methods are based on
the moving least squares approximation method discussed in Chapter 22. The two
recent books [Atluri and Shen(2002a)] and [Liu (2002)] summarize many of these
methods. However, these books focus mostly on a survey of the various methods
and related computational and implementation issues with little emphasis on the
mathematical foundation of these methods. The recent survey paper [Babuska et al.
(2003)] fills a large part of this void.

Chapter 45

RBF Galerkin Methods in MATLAB

We consider the following Helmholtz test problem (c.f [Wendland (1999b)]):

-~u(x,y) +u(x,y) = cos(7rx)cos(7ry) inn= [-1,1] 2
,

8
an u(x, y) = 0 on an,

where x = (x, y) E IR.2 and n denotes the unit outer normal vector. It is easy to
verify that the exact solution for this problem is given by

()
_ cos(7r:l:) cos(7rY)

u x' y - 27!"2 + 1 .

In Program 45.1 we provide a simple MATLAB implementation for the Galerkin
solution of this problem. Note that our program does not attempt to provide a
multilevel solution as described in the previous chapter, nor do we pretend to be
especially efficient (and therefore the program is very slow). As pointed out in the
previous chapter, the most time consuming part is the calculation of the integrals
needed for the stiffness matrix A with entries

Aij = 1. \7cp(llx - Xiii)· \7cp(llx - XJll)dx
(-1,1]2

+ 1. cp(llx - Xill)cp(llx - Xj ll)dx,
(-1,1] 2

and the right-hand side vector with entries

1. f(x)cp(llx - xill)dx.
(-1,1] 2

We compute these integrals using the dblquad numerical integration routine on
lines 15-20 of Program 45.1. Note that we exploit the symmetry of the stiffness
matrix in the for-loop, and then complete the matrix on line 21. The functions
needed for the integration are provided on lines 1-3 and 5-6. In [Wendland (1999b)]
the author details a strategy for converting the double integrals to univariate inte­
grals since all the functions involved are radially symmetric. We do not pursue that
possibility here.

For this example we use the 0 2 Wendland function cp3 ,1 (r) = (1 - r)t(4r + 1)
with a support scaled by c = 0.7. On line 4 we provide the standard representation

423

424 Meshfree Approximation Methods with MATLAB

of the basic function as it is needed for the evaluation and plotting part of the
program (lines 23-34, which are of the same form as our earlier programs).

Program 45.1. RBFGalerkin2D. m

% RBFGalerkin2D
% Script that performs Galerkin solution of 2D Helmholtz equation
'', f h - u_xx - u_yy + u =
% Calls on: DistanceMatrix, PlotSurf, PlotError2D

% Definition of the RBF and its gradient, Wendland C2
1a rbf = ©(e,x,y,xi,yi) max(1-e*sqrt((x-xi).-2+(y-yi).-2),0).-4.* ...
1b (4*e*sqrt((x-xi).-2+(y-yi).-2)+1);
2a
2b
3a
3b
4

dxrbf =

dyrbf =

evalrbf

©(e,x,y,xi,yi) -20*(x-xi)*e-2.* ...
max(l-e*sqrt((x-xi).-2+(y-yi).-2),0).-3;

©(e,x,y,xi,yi) -20*(y-yi)*e-2.* ...
max(1-e*sqrt((x-xi).-2+(y-yi).-2),0).-3;

= ©(e,r) max(1-e*r,0).-4.*(4*e*r+1);
% Products for integration

5 rp = ©(e,x,y,xi,yi,xj,yj) rbf(e,x,y,xi,yi).*rbf(e,x,y,xj?yj);

6a gp = ©(e,x,y,xi,yi,xj,yj) dxrbf(e,x,y,xi,yi).* ...
6b dxrbf(e,x,y,xj,yj)+dyrbf(e,x,y,xi,yi).*dyrbf(e,x,y,xj,yj);

% Parameter for basis function
7 ep = .7;

% Right-hand side function for Helmholtz equation
8 f = ©(x,y) cos(pi*x).*cos(pi*y);

% Exact solution
9 u = ©(x,y) cos(pi*x).*cos(pi*y)/(2*pi-2+1);

% Number and type of centers:
10 N = 25; gridtype = 'u';

% Resolution of evaluation grid for errors and plotting
11 neval = 40;

% Load data points
12 name= sprintf('Data2D_%d%s', N,gridtype); load(name)

% Shift centers to the square [-1,1]-2
13 ctrs = 2*dsites-1;

% Build stiffness matrix and right-hand side
14 A= zeros(N,N); rhs = zeros(N,1);
15 for i=1:N
16 for j=1:i
17a A(i,j) = dblquad(©(x,y) gp(ep,x,y,ctrs(i,1),ctrs(i,2), .. .
17b ctrs(j,1),ctrs(j,2)),-1,1,-1,1) + .. .
17c dblquad(©(x,y) rp(ep,x,y,ctrs(i,1),ctrs(i,2), ...
17d ctrs(j,1),ctrs(j,2)),-1,1,-1,1);

45. RBF Galerkin Methods in MATLAB

18 end
19a rhs(i) = dblquad(©(x,y) f(x,y).• ...
19b rbf(ep,x,y,ctrs(i,l),ctrs(i,2)),-1,1,-1,1);
20 end

% Make matrix symmetric
21 A= A+ A' - diag(diag(A));

% Solve linear system, i.e., compute expansion coefficients
22 c = A\rhs;

% Evaluation
23 grid= linspace(-1,1,neval); [xe, ye] = meshgrid(grid);
24 epoints = [xe(:) ye(:)];
25 exact= u(epoints(:,1),epoints(:,2));
26 DM_eval = DistanceMatrix(epoints,ctrs);
27 EM= evalrbf(ep,DM_eval);
28 Pf = EM * c;

% Compute maximum error on evaluation grid
29 maxerr = norm(Pf-exact,inf); rms_err = norm(Pf-exact)/neval;
30 fprintf('RMS error: %e\n', rms_err)
31 fprintf('Maximum error: %e\n', maxerr)

% Plot approximate solution
32 fview = [-30,30]; % viewing angle for plot
33 PlotSurf(xe,ye,Pf,neval,exact,maxerr,fview);
34 PlotError2D(xe,ye,Pf,exact,maxerr,neval,fview);

425

Errors, condition numbers of the stiffness matrix, and observed convergence rates
are listed in Table 45. l. A plot of the approximate solution and error distribution
using 81 equally spaced centers to generate the trial and test spaces is provided in
Figure 45.1.

Table 45.l Errors and condition numbers for Galer kin solution of
Helmholtz equation using the C 2 Wendland function with e: = 0. 7.

N t'cxo-error rate RMS-error rate cond(A)

9 4. 77 4434e-003 l.013915e-003 8.159139e+ooo
25 3. 223359e-003 0.5668 9.561258e-004 0.0847 l.408312e+002
81 9.346870e-005 5.1079 2.494297e-005 5.2605 3.232525e+004

289 9. 701313e-005 -0.0537 2. 239018e-005 0.1558 6.897924e+007

We can see that the convergence is rather erratic, and that the condition number
increases rapidly. The WJ-convergence rate predicted in [Wendland (1999a)] for the
basic function used here is O(h). On average, the results listed in Table 45.1 indicate
roughly an O(h2) RMS-convergence rate.

426

0.05

z 0

-0.05
1

y -1 -1

Meshfree Approximation Methods with MATLAB

0.8

0.6 ~ 0.6 ~
g g
w w

0.4 0.4

0.2 0.2

0
y -1 -1 x x

0

Fig. 45.1 Approximate solution (left) and maximum error (right) for Galerkin solution of
Helmholtz equation with C 2 Wendland functions using 81 equally spaced points in (-1, 1) 2 .

Appendix A

Useful Facts from Discrete Mathematics

A.1 Halton Points

Halton points (see [Halton (1960); Wong et al. (1997)]) are created from van der
Corput sequences. They form so-called low discrepancy sequences and are used
frequently in quasi-Monte Carlo methods for multi-dimensional integration appli­
cations.

The starting point in the construction of a van der Corput sequence is the fact
that every nonnegative integer n can be written uniquely using a prime base p, i.e., .

k

n = Laipi,
i=O

where each coefficient ai is an integer such that 0 < ai < p. For example, if n = 10
and p = 3, then

10 = 1. 3° + 0. 31 +1. 32
'

so that k = 2 and ao = a2 = 1 and ai = 0.
Next we define a function hp that maps the nonnegative integers to the interval

[O, 1) via

For example

1 1 10
h3(lO) = 3 + 33 = 27·

The resulting sequence hp,N = {hp(n) : n = 0, 1, 2, ... , N} is known as a van
der Corput sequence. For example

h3,10 = {O, 1/3, 2/3, 1/9, 4/9, 7 /9, 2/9, 5/9, 8/9, 1/27, 10/27}.

In order to generate a Halton point set in s-dimensional space (more precisely
in the s-dimensional unit cube [O, 1)8

) we takes (usually distinct) primesp1 , ... ,p8

427

428 Meshfree Approximation Methods with MATLAB

and use the resulting van der Corput sequences hp 1 ,N, ... , hPa ,N as the coordinates
of the s-dimensional Halton points, i.e., the set

Hs,N = {(hp1 (n), ... , hpa(n)): n = 0, 1, ... , N}

is the set of N + 1 Halton points in [O, 1)8
• Halton point sets for s = 2 are displayed

in Figure 1.1 and the bottom part of Figure 14.5.
An nice property of Halton points is the fact that they are nested point sets,

i.e., Hs,M C Hs,N for M < N. In fact, the point sets can even be constructed
sequentially, i.e., one does not need to start over if one wants to add more points
to an existing set of Halton points. This distinguishes the Halton points from the
related Hammersley points.

It is known that in low space dimensions, the multi-dimensional Halton sequence
quickly "fills up" the unit cube in a well-distributed pattern. However, for higher
dimensions (such as s = 40), using a relatively small value of N results in poorly
distributed Halton points. Only when N is large enough relative to s do the points
become well-distributed. Since none of our examples exceed s = 6 this is not a
concern for us.

In the MATLAB programs throughout this book we use the function hal ton seq
written by Daniel Dougherty. This function can be downloaded from the MATLAB
Central File Exchange, see [MCFE]. In this implementation of Halton sequences
the origin is not part of the point set, i.e., the Halton points are generated starting
with n = 1 instead of n = 0 as described above.

A.2 kd-Trees

In order to deal with large sets of data efficiently we frequently use compactly sup­
ported basic functions (see, e.g., Chapter 12). For their successful implementation
certain geometric information is required. Most importantly, we need to know which
data sites lie in the support of a given basis function. Such a query is known as a
range search. We also may be interested in finding all centers whose support con­
tains a given (evaluation) point x. Such a query is known as a containment query.
Furthermore, we might also be interested in finding the (n) nearest neighbors of a
given point (for instance if we need to find the separation distance qx of a set of
points X). One way to accomplish these tasks is via kd-trees. A kd-tree (short for
k-dimensional tree) is a space-partitioning data structure for organizing points in
k-dimensional space. Thus, if we were to be true to the notation used throughout
this book, we should technically be referring to these trees as sd-trees. We will,
however, stick with the usual terminology and refer to them as kd-trees.

The purpose of kd-trees is to hierarchically decompose a set of N data points in
JR5 into a relatively small number of subsets such that each subset contains roughly
the same number of data sites. Each node in the tree is defined by a splitting plane
that is perpendicular to one of the coordinate axes and passes through one of the

A. Useful Facts from Discrete Mathematics 429

data points. Therefore the splitting planes partition the set of points at the median
into "left" and "right" (or "top" and "bottom") subsets, each with roughly half the
points of the parent node. These children are again partitioned into equal halves,
using planes through a different dimension (usually one keeps on cycling through the
dimensions when determining the next splitting plane). This partitioning process
stops after log N levels. In the end every node of the kd-tree, from the root to the
leaves, stores a point. The computational complexity for building a kd-tree from N
points in JRS is O(sN log N). Once the tree is built, a range query can be performed
in O(log N) time. This compares favorably with the O(N) time it would take to
search the "raw" data set.

In our MATLAB examples we use the functions kdtree and kdrangequery from
the kd-tree library (given as a set of MATLAB MEX-files written by Guy Shechter
that can be downloaded from the MATLAB Central File Exchange, see [MCFE]).

Figure A.l shows a standard median-based partitioning of nine Halton points
in [O, 1]2 on the left along with the associated kd-tree on the right.

0.9
l;

.

0.8
17

0.7 -
8

0.6 -
0.5

9

-
0.4 2

11
0.3

0.2
~4

0.1

~6
-a

0. 1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fig. A.I kd partitioning (left) and tree (right) for 9 Halton points.

Appendix B

Useful Facts from Analysis

B.1 Some Important Concepts from Measure Theory

Bochner's theorem (c.f. Theorem 3.3) and a number of other results are formulated
in terms of Borel measures.

Since we refer to the book [Wendland (2005a)] for many of the theoretical results
presented in this book we follow the exposition in [Wendland (2005a)]. We start
with an arbitrary set X, and denote the set of all subsets of X by P(X). The empty
set is denoted by 0.

Definition B.1. A subset A of P(X) is called a a-algebra on X if

(1) XE A,
(2) A EA implies that its complement (in X) is also contained in A,
(3) Ai EA, i EN, implies that the union of these sets is contained in A.

Definition B.2. Given an arbitrary set X and a a-algebra A of subsets of X, a
measure on A is a functionµ: A--+ (0, oo] such that

(1) µ(0) = 0,
(2) for any sequence {Ai} of disjoint sets in A we have

00 00

µ(LJ Ai)= Lµ(Ai)·
i=l i=l

Definition B.3. If X is a topological space, and 0 is the collection of open sets
in X, then the a-algebra generated by 0 is called the Borel a-algebra and denoted
by B(X). If in addition Xis a Hausdorff space, then a measureµ defined on B(X)
that satisfies µ(K) < oo for all compact sets K ~ X is called a Borel measure.

The carrier of a Borel measure is given by the set X\ { 0 : 0 E 0 and µ(0) = 0}.

431

432 Meshfree Approximation Methods with MATLAB

B.2 A Brief Summary of Integral Transforms

We summarize formulas for various integral transforms used throughout the text.
The Fourier transform conventions we adhere to are laid out in

Definition B.4. The Fourier transform off E L1 (IRs) is given by

A 1 r • J(w) = ~ J(x)e-iw·xdx, w E IRs,
V (27r)s JIR"

(B.1)

and its inverse Fourier transform is given by

f(x) = k { f(w)eix·wdw, x E IR".
(27r)s }JR ..

This definition of the Fourier transform can be found in [Rudin (1973)]. Another,
just as common, definition uses

f(w) = r j(x)e- 2-rriw·xdx, (B.2)
JR ..

and can be found in [Stein and Weiss (1971)]. The form (B.1) we use can also be
found in the books [Wendland (2005a); Scholkopf and Smola (2002)], whereas (B.2)
is used in the books [Buhmann (2003); Cheney and Light (1999)].

Similarly, we can define the Fourier transform of a finite (signed) measureµ on
IR" by

1 1 . P,(w) = e-iw·xdµ(x),
~ R"

w E IRS.

Since we are mostly interested in positive definite radial functions, we note that
the Fourier transform of a radial function is again radial. Indeed,

Theorem B.1. Let <I> E Li(IRs) be continuous and radial, i.e., <I>(x) = cp(llxll).
Then its Fourier transform <i> is also radial, i.e., <i>(w) = fs'P(llwll) with

1 1= s Fscp(r) = ~ cp(t)t2 J(s-2)/2(rt)dt,
rs-2 o

where J(s-2);2 is the classical Bessel function of the first kind of order (s - 2)/2.

The proof of this theorem can be found in [Wendland (2005a)]. The integral
transform appearing in Theorem B.1 is also referred to as a Fourier-Bessel transform
or Hankel trans! orm.

The Hankel inversion theorem [Sneddon (1972)] ensures that the Fourier trans­
form for radial functions is its own inverse, i.e., for radial functions cp we have

Fs [Fs'P] = 'P·

A third integral transform that plays an important role is the Laplace transform.
We have

Definition B.5. Let J be a piecewise continuous function that satisfies lf(t)I <
Meat for some constants a and M. The Laplace transform off is given by

.Cf(s) = fo 00

J(t)e-stdt, s >a.

B. Useful Facts from Analysis

Similarly, the Laplace transform of a Borel measure µ on [O, oo) is given by

Cµ(s) = fo 00

e-stdµ(t).

The Laplace transform is continuous at the origin if and only ifµ is finite.

B.3 The Schwartz Space and the Generalized Fourier Transform

433

Generalized Fourier transforms are required in the treatment of conditionally posi­
tive definite functions. For the definition of the generalized Fourier transform given
below we have to define the Schwartz space of rapidly decreasing test functions

S = {1 E C00 (IR8
): lim x°'(Df31)(x) = 0, o.,{3 E No},

ll;;cll->oo

where we use the multi-index notation

f3 a1f31
D --~--­

- 8xf 1 ••• ax~· '

s

1!31 = 2:f3i·
i=l

The space S consists of all those functions I E C00 (Il~. 8) which, together with
all their derivatives, decay faster than any power of 1/llxll. The space S contains
the space C0 (1Rs), the space of all infinitely differentiable functions on JRs with
compact support. We also note that C0 (JRs) is a true subspace of S since, e.g., the
function 1(x) = e-ll;;i:ll

2
belongs to S but not to CQ°(JRs). A remarkable fact about

the Schwartz space is that I E S has a classical Fourier transform :Y which is also
in S.

Of particular importance are the following subspaces Sm of S

Sm= {1 ES: 1(x) = O(llxllm) for llxll---+ 0, m E No}.

Furthermore, the set V of slowly increasing functions is given by

V = {f E C(lR8
) : lf(x)I :::; lp(x)I for some polynomial p E II5}.

The generalized Fourier transform is now given by

Definition B.6. Let f E V be complex-valued. A continuous function J : lR. 8
\

{ 0} ---+ C is called the generalized Fourier trans! arm of f if there exists an integer
m E No such that

r f(x),:Y(x)dx = r f(x)!(x)dx
}Rs }Rs

is satisfied for all I E S2m. The smallest such integer m is called the order of f.

Various definitions of the generalized Fourier transform exist in the literature.
A classical reference is the book [Gel'fand and Vilenkin (1964)].

Since one can show that the generalized Fourier transform of an s-variate poly­
nomial of degree at most 2m is zero, it follows that the inverse generalized Fourier

434 Meshfree Approximation Methods with MATLAB

transform is only unique up to addition of such a polynomial. The order of the
generalized Fourier transform is nothing but the order of the singularity at the ori­
gin of the generalized Fourier transform. For functions in L 1 (R8

) the generalized
Fourier transform coincides with the classical Fourier transform, and for functions
in L 2 (R 8

) it coincides with the distributional Fourier transform.

Appendix C

Additional Computer Programs

In this appendix we list several MATLAB and one Maple program that are used in
various places throughout the book.

C.l MATLAB Programs

As a test function for multi-dimensional problems we sometimes use
s

fs(x) = 48 IT xd(l - xd),
d=l

Program C.l. testfunction.m

% tf = testfunction(s,points)
% Evaluates testf unction
% prod_{d=l}-s x_d*(l-x_d) (normalized so that its max is 1)

% at s-dimensional points
function tf = testfunction(s,points)
tf = 4-s*prod(points.*(1-points),2);

Another test function used in some of the numerical experiments is the sine
function defined for any x = (x1 , ... , x 8) E :IR.8 as

. () ITs sin(7rxd) sine x = .
d=l 7rXd

The sine function is not a standard MATLAB function. It can, however, be found in
the Signal Processing Toolbox. For the sake of completeness we provide MATLAB
code for the sine function of a single variable, x E IR.

Program C.2. sine. m

% f = sinc(x)
% Defines sine function
function f = sinc(x)

435

436

f = ones(size(x));
nz = find(x-=O);

Meshfree Approximation Methods with MATLAB

f(nz) = sin(pi*x(nz))./(pi*x(nz));

Note that while sine. m takes a vector input x it produces a vector of values
of the univariate sine function at the components of x - not the value of the
multivariate sine function at the vector argument x.

A multi-dimensional grid of equally spaced points is used several times through­
out the book. MATLAB provides the command ndgrid that can accomplish this.
However, in order to be able to use this command flexibly for all space dimensions
s we require a little extra work. This is implemented MakeSDGrid. m.

Program C.3. MakeSDGrid.m

% gridpoints = MakeSDGrid(s,neval)
% Produces matrix of equally spaced points in s-dimensional unit cube
% (one point per row)
% Input
% s: space dimension
% neval: number of points in each coordinate direction
% Output
% gridpoints: neval-s-by-s matrix (one point per row,
% d-th column contains d-th coordinate of point)
function gridpoints = MakeSDGrid(s,neval)
if (s==1)

end

gridpoints = linspace(0,1,neval)';
return;

% Mimic this statement for general s:
% [x1, x2] = ndgrid(linspace(0,1,neval));
outputarg = 'x1';
for d = 2:s

outputarg = strcat(outputarg,',x',int2str(d));
end
makegrid = strcat(' [',outputarg,'] = ndgrid(linspace(0,1,neval));');
eval(makegrid);
% Mimic this statement for general s:
% gridpoints = [x1(:) x2(:)];
gridpoints = zeros(neval-s,s);
for d = l:s

end

matrices= strcat('gridpoints(:,d) = x',int2str(d),'(:);');
eval(matrices);

C. Additional Computer Programs 437

Due to its removable singularity at the origin the thin-plate spline basic function
requires a separate function definition.

Program C.4. tps. m

% rbf = tps(e,r)
!. Defines thin plate spline RBF
function rbf = tps(e,r)
rbf = zeros(size(r));
nz = find(r-=O); % to deal with singularity at origin
rbf(nz) = (e*r(nz)).-2.*log(e*r(nz));

Standard plotting routines for 2D function and error graphs are used by most
programs.

Program C.5. PlotSurf .m

% PlotSurf(xe,ye,Pf ,neval,exact,maxerr,fview)
% Generates plot of surf ace Pf false colored by the
% maximum error abs(Pf-exact)
% fview defines the view.
function PlotSurf(xe,ye,Pf ,neval,exact,maxerr,fview)

!. Plot surf ace
figure
Pfplot = surf(xe,ye,reshape(Pf,neval,neval), ...

reshape(abs(Pf-exact),neval,neval));
set(Pfplot,'FaceColor' ,'interp','EdgeColor','none')
[cmin cmax] = caxis;
caxis([cmin-.25*maxerr cmax]);
view(fview);
colormap hsv
vcb = colorbar('vert');
ylim(vcb, [O maxerr])
set(get(vcb,'YLabel'),'String','Error')

Program C.6. PlotError2D.m

!. PlotError2D(xe,ye,Pf ,exact,maxerr,neval,fview)
!. Generates plot of abs error for surface Pf, i.e., abs(Pf-exact)
% fview defines the view.
function PlotError2D(xe,ye,Pf ,exact,maxerr,neval,fview)

% Plot maximum error
figure
errorplot = surf(xe,ye,reshape(abs(Pf-exact),neval,neval));
set(errorplot,'FaceColor','interp','EdgeColor','none')

438 Meshfree Approximation Methods with MATLAB

[cmin cmax] = caxis;
caxis([cmin-.25*maxerr cmax])
view(fview);
colormap hsv
vcb = colorbar('vert');
ylim(vcb,[0 maxerr])
set(get(vcb,'YLabel'),'String','Error')

For 3D plots we use the following routines.

Prograni C.7. Plotlsosurf .m

% Plotlsosurf(xe,ye,ze,Pf ,neval,exact,maxerr,isomin,
% isostep,isomax)
% Generates plot of isosurfaces of Pf false colored by
% the error abs(Pf-exact)
% isomin,isostep,isomax define the range and number of
% isosurfaces.
function Plotlsosurf(xe,ye,ze,Pf,neval,exact,maxerr, ...

isomin,isostep,isomax)
% Plot isosurf aces
figure
hold on
for isovalue=isomin:isostep:isomax

end

pfit = patch(isosurface(xe,ye,ze,reshape(Pf,neval, .. .
neval,neval),isovalue,reshape(abs(Pf-exact), .. .
neval,neval,neval)));

isonormals(xe,ye,ze,reshape(Pf,neval,neval,neval),pfit)
set(pfit,'FaceColor','interp','EdgeColor','none');
daspect ([1 1 1])
view(3); axis([O 1 0 1 0 1])

[cmin cmax] = caxis;
caxis([cmin-.25*cmax cmax])
colormap hsv
vcb = colorbar('vert');
ylim(vcb,[0 cmax])
set(get(vcb,'YLabel'),'String','Error')
hold off

Prograni C.8. PlotSlices. m

% PlotSlices(xe,ye,ze,Pf ,neval,xslice,yslice,zslice)
% Generates slice plot of volume Pf
% xslice,yslice,zslice define the range and number of slices.

C. Additional Computer Programs

function PlotSlices(xe,ye,ze,Pf ,neval,xslice,yslice,zslice)
% Plot slices
figure
pfit = slice(xe,ye,ze,reshape(Pf,neval,neval,neval), ...

xslice,yslice,zslice);
set(pfit,'FaceColor','interp','EdgeColor' ,'none')
daspect([1 1 1])
view(3); axis([O 1 0 1 0 1])
vcb = colorbar('vert');
set(get(vcb,'YLabel'),'String','Function value')

Prograin C.9. PlotErrorSlices.m

% PlotErrorSlices(xe,ye,ze,Pf ,exact,ne,xslice,yslice,zslice)
% Generates slice plot of volume error abs(Pf-exact)
% xslice,yslice,zslice define the range and number of slices.
function PlotErrorSlices(xe,ye,ze,Pf ,exact,ne, ...

% Plot slices for error
figure

xslice,yslice,zslice)

errorplot = slice(xe,ye,ze,reshape(abs(Pf-exact),ne,ne,ne), ...
xslice,yslice,zslice);

set(errorplot,'FaceColor' ,'interp','EdgeColor','none')
daspect([1 1 1])
view(3); axis([O 1 0 1 0 1])
[cmin cmax] = caxis;
caxis([cmin-.25*cmax cmax])
colormap hsv
vcb = colorbar('vert');
ylim(vcb, [O cmax])
set(get(vcb,'YLabel'),'String','Error')

439

The following algorithm is a very primitive (and very inefficient) implementation
of an adaptive thinning algorithm for scattered data. It removes 500 points at a
time and writes the intermediate result to a file.

Prograin C.10. Thin.m

load('Data2D_Beethoven')
% This loads variables dsites and rhs
x = dsites(:,1);
y = dsites(:,2);
figure
tes = delaunayn(dsites);
triplot(tes,x,y,'g')

440 Meshfree Approximation Methods with MATLAB

for 1=1:5
for j=1:500

n = size(dsites,1);
d = zeros(1,n);
for i=l:n

temp = dsites;
temp(i,:) = [];
[k,d(i)] = dsearchn(temp,dsites(i,:));
if (k >= i)

k=k+1;
end

end
r = min(d);
idx = find(d==r);
dsites(idx(1),:) = [];
x(idx(1)) = [];
y(idx(1)) = [];
rhs(idx(1)) = [];

end
figure
tes = delaunayn(dsites);
triplot(tes,x,y,'r')
name= sprintf('Data2D_Beethoven%d', 1);
save(name, 'dsites', 'rhs')

end

C.2 Maple Programs

The MLS basis functions and dual basis functions displayed in Chapter 24 were
computed with the following Maple code.

Program C.11. MLSDualBases .mws

restart; with(plots): with(linalg):
N:=10: m:=3: DD:=4: h:=1/N: ep:=1/(sqrt(DD)*h):
phi := (x,y) -> exp(-ep-2*(x-y)-2);
for k from 1 to m do

ppl lk := plot(x-(k-1), x=0 .. 1):
od:
display([seq(ppl lk,k=1 .. m)] ,insequence=true,thickness=2);
X := vector([seq(h*k, k=O .. N)]);
or use 11 Halton points
X := vector([0.5000,0.2500,0.7500,0.1250,0.6250,

C. Additional Computer Programs

0.3750,0.8750,0.0625,0.5625,0.3125,0.8125]);
G := matrix(m,m):
for i from 1 to m do

od:

for j from 1 to m do

od:

G [i ,j] : = evalf (add((X [k]) - (i-1) * (X [k]) - (j-1) *
phi(x,X[k]), k=l .. N+1));

P := vector([evalf(seq(y-(k-1), k=1 .. m))]);
Lambda:= linsolve(G,P):
for k from 1 to m do

11 lk := unapply(Lambda[k],(x,y));
od:
for k from 1 to m do

lpl lk := plot(ll lk(x,x), x=0 .. 1):
od:
display([seq(lpl lk, k=1 .. m)],insequence=true,thickness=2);
K := (x,y) -> phi(x,y)*add(ll lk(x,x)*y-(k-1), k=1. .m):
approxK := (x,y) -> 1/sqrt(DD*Pi)*(3/2-ep-2*(x-y)-2)

*phi(x,y);
for i from 1 to N+1 do

od:

aKpl Ii:= plot([K(x,X[i]),approxK(x,X[i])], x=0 .. 1,
color=[green,red]):

display(seq(aKpl li,i=l .. N+1),insequence=true,thickness=2);

441

Appendix D

Catalog of RBFs with Derivatives

D.1 Generic Derivatives

We provide formulas for all first and second-order derivatives of radial functions of
two variables, i.e., 1p(r) = r.p(llxll) = r.p(.jx2 +y2), where x = (x,y) E JR2 . The
chain rule implies

a d a
ax r.p(llxll) = dr r.p(r) ax r(x, y)

d x
f= -r.p (r) -,::::=========

dr .jx2 + y2
x d

= -:;: dr r.p(r)

since r = llxll = ./x2 + y2. Similarly, cfyr.p(llxll) = ;? frr.p(r). The generic second­
order derivatives are given by

a
2

d
2

(a)
2

d a
2

axz r.p(llxll) = drtl r.p(r) ax r(x, y) + dr r.p(r) 8x2 r(x, y)

x2 d2 y2 d
= 2 d 2 r.p(r) + 3-d r.p(r), r r r r

as well as

and the Laplacian

(
a 2 a 2) d2 1 d

ax2 + 8y2 r.p(llxll) = dr2 r.p(r) + -:;. dr r.p(r).

Derivatives of higher order or in higher space dimensions can be computed sim­
ilarly by applying the chain rule. For example, the generic fourth-order biharmonic
(or double Laplacian) turns out to be

(
a4 a4 a4

) d4 2 d3 1 d2 1 d
8x4 + 2ax2y2 + 8y4 r.p(llxll) = drt2r.p(r)+-:;.dr3r.p(r)- r 3 dr2r.p(r)+ r3 drr.p(r).

443

444 Meshfree Approximation Methods with MATLAB

D.2 Formulas for Specific Basic Functions

The generic derivatives of the basic function with respect to r in the previous section
need to be replaced by the following formulas.

D.2.1 Globally Supported, Strictly Positive Definite Functions

Example D.1. Gaussian RBF:

cp(r) = e-(er)2'

:r cp(r) = -2c2re-(er)
2

,

d2
2

dr
2

cp(r) = 2c2e-(cr) (2(cr)2 - 1) .

This function is C 00 at the origin.

Example D.2. Inverse multiquadric (IMQ) RBF:
1

cp(r) = Jl + (cr)2 '

d c2r
dr cp(r) = - (1 + (cr)2)3/2'

d2 2(cr)2 - 1
dr2 cp(r) = €2 (1 + (cr)2)5/2.

This function is C00 at the origin.

Example D.3. Generalized IMQ RBF:
1

cp(r) = (1 + (cr)2)2'

d 4c2r
dr cp(r) = - (1 + (cr)2) 3 '

d2 5(cr)2 - 1
-cp(r) - 4c2

dr2 - (1 + (cr)2)4 ·

This function is C 00 at the origin.

Example D.4. Inverse quadratic (IQ) RBF:

1
cp(r) = (1 + (cr)2)'

d 2c2 r
dr cp(r) = - (1 + (cr)2)2 '

d2 3(cr)2 - 1
-cp(r) = 2e:2

dr2 (1 + (cr)2) 3 ·

This function is C 00 at the origin.

D. Catalog of RBFs with Derivatives

Example D.5. Basic Matern RBF:

cp(r) = e-er.

This function is not differentiable at the origin.

Example D.6. Linear Matern RBF:

cp(r) = e-er(l +er),
d -cp(r) = -e2re-er
dr '
2

d () 2 -er() dr2 cp r = e e er - 1 .

This function is C 2 at the origin, but not smoother.

Example D. 7. Quadratic Matern RBF:

cp(r) = e-er(3 + 3er + (er)2),
d
drcp(r) = -e2re-er(l +er),

d2
dr2cp(r) = e2e-er ((er)2 - er- 1).

This function is C4 at the origin.

Example D.8. Cubic Matern RBF:

cp(r) = e-er(15 + 15er + 6(er)2 + (er)3),
d
dr cp(r) = -e2re-er ((er)2 + 3er + 3),

d2
dr2cp(r) = e2e-er ((er)3 - 3er - 3).

This function is C 6 at the origin.

D.2.2 Globally Supported, Strictly Conditionally Positive Definite
Functions of Order 1

Example D.9. Linear or norm RBF:

cp(r) = r.
This function is not differentiable at the origin.

Example D.10. Multiquadric (MQ) RBF:

cp(r) = y,.--1-+-(e-r)-2,

d e2 r
dr cp(r) = y'l + (er) 2 '

d2 e2
dr2 cp(r) = (1 + (er)2)3/2.

This function is C 00 at the origin.

445

446 Meshfree Approximation Methods with MATLAB

D.2.3 Globally Supported, Strictly Conditionally Positive Definite
Functions of Order 2

Example D.11. Generalized MQ RBF:

cp(r) = (1 + (er)2
)

312
,

d
dr cp(r) = 3e2r.jl + (er)2,

d
2

cp(r) = 3e2 2(er)
2 + 1

dr2 .jl + (er)2
This function is C 00 at the origin.

Example D.12. Cubic RBF:

cp(r) = r 3
,

d 2
dr cp(r) = 3r ,

d2
dr2 cp(r) = 6r.

Example D.13. Thin plate spline (TPS) RBF:

cp(r) = r 2 log(r),

d
dr cp(r) = r (2 log(r) + 1),

d2
dr2 cp(r) = 2 log(r) + 3.

While the singularities of the function and first derivative at the origin are remov­
able, the singularity of the second derivative at the origin is not.

D.2.4 Globally Supported, Strictly Conditionally Positive Definite
Functions of Order 3

Example D.14. Generalized MQ RBF:

cp(r) = (1 + (er)2)5/2'

! cp(r) = 5e2r (1 + (er)2)
312

,

d2
dr 2 cp(r) = 5e2.jl + (er)2 (4(er)2 +1).

This function is C 00 at the origin.

Example D.15. Quintic RBF:

cp(r) = r 5 ,

d 4
dr cp(r) = 5r ,

d2 (3 dr2 cp r) = 20r .

D. Catalog of RBFs with Derivatives

Example D.16. Second-order TPS RBF:

cp(r) = r 4 log(r),
d
dr cp(r) = r3 (4log(r) + 1),

d2
dr2 cp(r) = r2 (12 log(r) + 7).

D.2.5 Globally Supported, Strictly Conditionally Positive Definite
Functions of Order 4

Example D.17. Septic RBF:

cp(r) = r7
,

d 6
dr cp(r) = 7r ,

d2
dr2 cp(r) = 42r5.

D.2.6 Globally Supported, Strictly Positive Definite and Oscilla­
tory Functions

Example D.18. Linear Laguerre-Gaussian RBF for 1R2 :

cp(r) = e-(cr)2 (2 - (c:r)2),

:r cp(r) = 2c:2re-(cr)
2

((c:r) 2 - 3),

d2
2

dr2 cp(r) = -2c:2e-(cr) (2(c:r)4 - 9(c:r)2 + 3).
This function is c= at the origin.

Example D.19. Quadratic Laguerre-Gaussian RBF for 1R2 :

cp(r) = e-(cr)
2
(3 - 3(c:r)2 + ~(c:r) 4),

! cp(r) = -c:2re-(cr)
2

((c:r) 4 - 8(c:r)2 + 12),

d2
2

dr2 cp(r) = c:2e-(cr) (2(c:r)6 - 21(c-r)4 + 48(c-r)2 - 12).

This function is c= at the origin.

Example D.20. Linear generalized IMQ RBF:
2 - (c-r) 2

cp(r) = (1 + (c:r)2)4'

d 2 (c-r)2 - 3
dr c.p(r) = 6€ r (l + (c-r)2)5'

d2 ip(r) = _ 6c2 7(c:r) 4
- 30(c:r)

2 + 3
dr2 (1 + (c-r)2) 6

447

/

448 Meshfree Approximation Methods with MATLAB

This function is c= at the origin.

Example D.21. Quadratic generalized IMQ RBF:

() _ 3 - 6(er)2 + (er)4

<p r - (1 + (er)2)6 '

!!:_<p(r) = -8€2r (er)4 - 8(er)2 + 6'
dr (1 + (er)2)7

d2 cp(r) = 24€23(er)6 - 31(er)4 + 34(er)2 - 2
dr2 (1 + (er)2)8

D.2. 7 Compactly Supported, Strictly Positive Definite Functions

Example D.22. Wendland's '/!3,0 (strictly positive definite in JR3):

cp(r) = (1 - er)!.

This function is not differentiable at the origin.

Example D.23. Wendland's 'P3,1 (strictly positive definite in JR3):

<p (r) = (1 - Er) t (4er + 1),

d
dr <p(r) = -20e2r(l - er)t,

d2
dr2 cp(r) = 20e2(4er - 1)(1 - er)!.

This function is C 2 at the origin.

Example D.24. Wendland's <p3 ,2 (strictly positive definite in JR3):

cp(r) = (1 - er)~(35(er) 2 + 18er + 3),

d
dr cp(r) = -56e2r(5er + 1)(1 - er)i,

d2
dr2 <p(r) = 56e2 (35(er) 2 - 4er - 1) (1 - er)t.

This function is C 4 at the origin.

Example D.25. Wendland's <p3 ,3 (strictly positive definite in JR3)

cp(r) = (1 - er)~(32(er)3 + 25(er)2 +Ser+ 1),

d
dr cp(r) = -22e2r (16(er)2 + 7er + 1) (1 - er)~,

d2
dr2 <p(r) = 22e2 (160(er)3 +15(er)2 - 6er - 1) (1 - er)~.

This function is C 6 at the origin.

Catalog of RBFs with Derivatives

Example D.26. Wu's 'l/J3,3 (strictly positive definite in Il~.7):

cp(r) = (1 - c:r)t(5(c:r) 3 + 20(c:r) 2 + 29c:r + 16).

This function is not differentiable at the origin.

Example D.27. Wu's 'l/J2,3 (strictly positive definite in IR5):

cp(r) = (1 - c:r)~(5(c:r) 4 + 25(c:r) 3 + 48(c:r) 2 + 40c:r + 8),

d
dr cp(r) = -9c:2r (5(c:r) 3 + 20(c:r) 2 + 29c:r + 16) (1 - c:r)t,

d2
dr2 cp(r) = 18c:2 (20(c:r) 4 + 60(c:r) 3 + 57(c:r) 2 + llc:r - 8) (1 - c:r)!.

This function is C 2 at the origin.

Example D.28. Wu's 'l/J1,3 (strictly positive definite in IR3):

cp(r) = (1 - c:r)~(5(c:r) 5 + 30(c:r)4 + 72(c:r)3 + 82(c:r)2 + 36c:r + 6),

d
dr cp(r) = -llc:2 r(c:r + 2) (5(c:r) 3 + 15(c:r)2 + 18c:r + 4) (1 - c:r)~,

449

d2
dr2 cp(r) = 22c:2 (25(c:r) 5 + 100(c:r)4 + 142(c:r)3 + 68(c:r) 2

- 16c:r - 4) (1 - c:r)t.

This function is C 4 at the origin.

Example D.29. Wu's 'l/Jo,3 (strictly positive definite in IR):

cp(r) = (1 - c:r)~(5(c:r) 6 + 35(c:r) 5 + 101(c:r)4 + 147(c:r)3 + 10l(c:r)2 + 35c:r + 5),

d
dr cp(r) = -13c:2 r (5(c:r) 5 + 30(c:r)4 + 72(c:r) 3 + 82(c:r) 2 + 36c:r + 6) (1 - c:r)!,

d2
dr2 cp(r) = 78c:2 (10(c:r) 6 + 50(c:r) 5 + 95(c:r)4 + 75(c:r) 3 + 7(c:r)2

- 5c:r - 1) (1 - c:r)~.

This function is C 6 at the origin, but only strictly positive definite in IR.

Example D.30. Euclid's hat cp 1 :

<p (r) = (1 - c:r / 2) +.

None of the Euclid's hat functions are differentiable at the origin.

Bibliography

Abramowitz, M. and Stegun, I. A. (1972). Handbook of Mathematical Functions with For­
mulas, Graphs, and Mathematical Tables, Dover (New York).

Acosta, F. M. (1995). Radial basis functions and related models, Signal Proc. 45, pp. 37-
58.

Adams, R. (1975). Sobolev Spaces, Academic Press (New York).
Alfeld, P. (1989). Scattered data interpolation in three or more variables, in Mathematical

Methods in Computer Aided Geometric Design, T. Lyche and L. Schumaker (eds.),
Academic Press (New York), pp. 1-33.

Allasia, G. and Giolito, P. (1997). Fast evaluation of cardinal radial basis interpolants, in
Surface Fitting and Multiresolution Methods, A. Le Mehaute, C. Rabut, and L. L.
Schumaker (eds.), Vanderbilt University Press (Nashville, TN), pp. 1-8.

Allison, J. (1993). Multiquadratic radial basis functions for representing multidimensional
high energy physics data, Comp. Phys. Comm. 77, pp. 377-395.

Alves, C. J. S. and Silvestre, A. L. (2004). Density results using Stokeslets and a method of
fundamental solutions for the Stokes equations, Engineering Analysis with Boundary
Elements 28, pp. 1245-1252.

Andrews, G. E., Askey, R. and Roy, R. (1999). Special Functions, Cambridge University
Press (Cambridge).

Arad, N., Dyn, N., Reisfeld, D. and Yeshurun, Y. (1994). Image warping by radial basis
functions: applications to facial expressions, CVGIP: Graphical models and image
processing 56, pp. 161-172.

Armentano, M. G. (2001). Error estimates in Sobolev spaces for moving least square
approximations, SIAM J. Numer. Anal. 39 1, pp. 38-51.

Arnott, R. (1993). An adaptive radial basis function diversity combiner for multipath
channels, IEE Electronics Letters 29, pp. 1092-1094.

Aronszajn, N. (1950). Theory ofreproducing kernels, Trans. Amer. Math. Soc. 68, pp. 337-
404.

Askey, R. (1973). Radial characteristic functions, TSR #1262, University of Wisconsin­
Madison.

Askey, R. (1975). Orthogonal Polynomials and Special Functions, Reg. Conf. Ser. in Appl.
Math. (SIAM).

Atluri, S. N. (2004). The Meshless Methods (MLPG) For Domain €3 BIE Discretizations,
Tech Science Press (Encino, CA).

Atluri, S. N. and Shen, S. (2002a). The Meshless Local Petrov-Galerkin (MLPG} Method,
Tech Science Press (Encino, CA).

Atluri, S. N. and Shen, S. (2002b). The meshless local Petrov-Galerkin (MLPG) method: a

451

452 Meshfree Approximation Methods 'l.JJith MATLAB

simple & less costly alternative to the finite element and boundary element methods,
Comput. Model. Eng. Sci. 3, pp. 11-51.

Atluri, S. N. and Zhu, T. (1998). A new meshless local Petrov-Galerkin (MLPG) approach
in computational mechanics, Comput. Mech. 22, pp. 117-127.

Babuska, I., Banerjee U. and Osborn, J. E. (2003). Survey of meshless and generalized
finite element methods: A unified approach, Acta Numerica 12, pp. 1-125.

Babuska, I. and Melenk, M. (1997). The partition of unity method, Int. J. Numer. Meths.
Eng. 40, pp. 727-758.

Backus, G. and Gilbert, F. (1968). The resolving power of gross earth data, Geophys. J.
R. Astr. Soc. 16, pp 169-205.

Ball, K. (1992). Eigenvalues of Euclidean distance matrices, J. Approx. Theory 68, pp. 74-
82.

Ball, K., Sivakumar, N. and Ward, J. D. (1992). On the sensitivity of radial basis inter­
polation to minimal data separation distance, Constr. Approx. 8, pp. 401-426.

Barnes, R. J. (1994). A modified conjugate gradient algorithm for scattered data interpo­
lation using radial basis functions, J. Appl. Sci. Comput. 1, pp. 227-238.

Barnhill, R. E. and Ou, H. S. (1990). Surfaces defined on surfaces, Comput. Aided Geom.
Design 7, pp. 323-336.

Barron, A. R. (1993). Universal approximation bounds for superpositions of a sigmoidal
function, IEEE Trans. Inform. Theory 39, pp. 930-945.

Bates, D., Lindstrom, M., Wahba, G. and Yandell, B. (1987). GCVPACK - routines for
generalized cross validation, Commun. Statist. B - Simulation and Computation
16, pp. 263-297.

Bates, D. and Wahba, G. (1982). Computational methods for generalized cross valida­
tion with large data sets, in Treatment of Integral Equations by Numerical Methods,
C. T. H. Baker, and G. F. Miller (eds.), Academic Press (New York), pp. 283-296.

Baule, R. (2000). Moving Least Squares Approximation mit parameterabhangigen
Gewichtsfunktionen, Diplomarbeit, Universitat Gottingen.

Baxter, B. J. C. (1991). Conditionally positive functions and p-norm distance matrices,
Constr. Approx. 7, pp. 427-440.

Baxter, B. J.C. (1992a). Norm estimates for inverses of distance matrices, in Mathematical
Methods in Computer Aided Geometric Design II, T. Lyche and L. Schumaker (eds.),
Academic Press (New York), pp. 9-18.

Baxter, B. J. C. (1992b). The asymptotic cardinal function of the multiquadric ¢(r) =
(r2 + c2

)
112 as c ~ oo, Comput. Math. Appl. 24, pp. 1-6.

Baxter, B. J. C. (1992c). The interpolation theory of radial basis functions, Ph.D. Disser­
tation, University of Cambridge.

Baxter, B. J. C. (2002). Preconditioned conjugate gradients, radial basis functions, and
Toeplitz matrices, Comput. Math. Appl. 43, pp. 305-318.

Baxter, B. J. C. (2006). Scaling radial basis functions via Euclidean distance matrices,
Comput. Math. Appl. 518, pp. 1163-1170.

Baxter, B. J. C. and Hubbert, S. (2001). Radial basis functions for the sphere, in Recent
progress in multivariate approximation, Internat. Ser. Numer. Math., 137, Birkhauser
(Basel), pp. 33-47.

Baxter, B. J.C. and Roussos, G. (2002). A new error estimate of the fast Gauss transform,
SIAM J. Sci. Comput. 24 1, pp. 257-259.

Baxter, B. J.C. and Sivakumar, N. (1996). On shifted cardinal interpolation by Gaussians
and multiquadrics, J. Approx. Theory 87, pp. 36-59.

Baxter, B. J. C., Sivakumar, N. and Ward, J. D. (1994). Regarding the p-norms of radial
basis interpolation matrices, Constr. Approx. 10, pp. 451-468.

Bibliography 453

Beatson, R. K., Cherrie, J. B. and Mouat, C. T. (1999). Fast fitting of radial basis func­
tions: methods based on preconditioned GMRES iteration, Adv. Comput. Math. 11,
pp. 253-270.

Beatson, R. K. and Bui, H.-Q. (2003). Mollification formulas and implicit smoothing,
Research Report UCDMS 2003/19, University of Canterbury.

Beatson, R. K., Bui, H.-Q. and Levesley, J. (2005). Embeddings of Beppo-Levi spaces in
Holder-Zygmund spaces, and a new method for radial basis function interpolation
error estimates, J. Approx. Theory 137, pp. 166-178.

Beatson, R. K. and Dyn, N. (1996). Multiquadric B-splines, J. Approx. Theory 87, pp. 1-
24.

Beatson, R. K., Goodsell, G. and Powell, M. J. D. (1996). On multigrid techniques for
thin plate spline interpolation in two dimensions, in The Mathematics of. Numerical
Analysis, Lectures in Appl. Math., 32, Amer. Math. Soc. (Providence, RI), pp. 77-97.

Beatson, R. K. and Greengard, L. (1997). A short course on fast multipole methods, in
Wavelets, Multilevel Methods and Elliptic PDEs (Leicester, 1996), M. Ainsworth, J.
Levesley, M. Marietta and W. A. Light (eds.), Numer. Math. Sci. Comput., Oxford
Univ. Press (New York), pp. 1-37.

Beatson, R. K. and Langton, M. K. (2006). Integral interpolation, in Algorithms for Ap­
proximation V, A. Iske and J. Levesley (eds.), Springer-Verlag, Heidelberg, pp. 199-
218.

Beatson, R. K. and Levesley, J. (2002). Good point/bad point iterations for solving the
thin-plate spline interpolation equations, in Approximation Theory X, C. K. Chui,
L. L. Schumaker, and J. Stockier (eds.), Vanderbilt Univ. Press (Nashville, TN),
pp. 17-25.

Beatson, R. K. and Light, W. A. (1992). Quasi-interpolation in the absence of polynomial
reproduction, in Numerical Methods in Approximation Theory, ISNM 105, D. Braess,
L. L. Schumaker (ed.), Birkhauser (Basel), pp. 21-39.

Beatson, R. K. and Light, W. A. (1993). Quasi-interpolation with thin plate splines on a
square, Constr. Approx. 9, pp. 407-433.

Beatson, R. K. and Light, W. A. (1997). Fast evaluation of radial basis functions: methods
for two-dimensional polyharmonic splines, IMA J. Numer. Anal. 17, pp. 343-372.

Beatson, R. K., Light, W. A. and Billings, S. (2000). Fast solution of the radial basis func­
tion interpolation equations: domain decomposition methods, SIAM J. Sci. Comput.
22, pp. 1717-1740.

Beatson, R. K. and Newsam, G. N. (1992). Fast evaluation of radial basis functions: I,
Comput. Math. Appl. 24, pp. 7-19.

Beatson, R. K. and Newsam, G. N. (1998). Fast evaluation of radial basis functions:
Moment based methods, SIAM J. Sci. Comput. 19, pp. 1428-1449.

Beatson, R. K. and Powell, M. J. D. (1992a). Univariate multiquadric approximation:
quasi-interpolation to scattered data, Constr. Approx. 8, pp. 275-288.

Beatson, R. K. and Powell, M. J. D. (1992b). Univariate interpolation on a regular finite
grid by a multiquadric plus a linear polynomial, J. Inst. Math. Applies. 12, pp. 107-
133.

Beatson, R. K. and Powell, M. J. D. (1993). An iterative method for thin plate spline inter­
polation that employs approximations to Lagrange functions, in Numerical Analysis
1993 (Dundee, 1993), G. A. Watson and D. F. Griffiths (ed.), Pitman Res. Notes
Math. Ser., 303, Longman Sci. Tech. (Harlow), pp. 17-39.

Behrens, J., Iske, A. and Kaser, M. (2002). Adaptive meshfree method of backward charac­
teristics for nonlinear transport equations, in Lecture Notes in Computer Science and
Engineering Vol.26: Meshfree Methods for Partial Differential Equations, M. Griebel
and M. A. Schweitzer (eds.), Springer Verlag, pp. 21-36.

454 Meshfree Approximation Methods with MATLAB

Bejancu, A. (1999)., Local accuracy for radial basis function interpolation on finite uniform
grids, J. Approx. Theory 99, pp. 242-257.

Belytschko, T., Krongauz, Y:., Organ, 0., Fleming, M. and Krysl, P. (1996). Meshless
methods: an overview and recent developments, Comp. Meth. Appl. Mech. Eng.
139, pp. 3-47.

Ben Moussa, B., Lanson, N. and Vila, J. P. (1999). Convergence of meshless methods for
conservation laws. Applications to Euler equations, in Hyperbolic problems: The­
ory, numerics, applications. Proceedings of the 7th international conference, Zurich,
Switzerland, February 1998. Vol. I, Fey, Michael et al. (eds.), Birkhauser, Basel,
pp. 31--40.

Berg, C., Christensen, J. P. R. and Ressel, P. (1984). Harmonic Analysis on Semigroups,
Springer (Berlin).

Berlinet, A. and Thomas-Agnan, C. (2004). Reproducing Kernel Hilbert Spaces in Proba­
bility and Statistics, Kluwer (Dordrecht).

Bernal, F. and Kindelan, M. (2006). Meshless simulation of Hele-Shaw flow, submitted.
Beyer, A. (1994). Optimale Centerverteilung bei Interpolation mit radialen Basisfunktio­

nen, Diplomarbeit, Universitat Gottingen.
Binev, P. and Jetter, K. (1992). Estimating the condition number for multivariate inter­

polation problems, in Numerical Methods in Approximation Theory, ISNM 105, D.
Braess, L. L. Schumaker (ed.), Birkhauser (Basel), pp. 41-52.

Bingham, N. H. (1973). Positive definite functions on spheres, Proc. Camb. Phil. Soc. 73,
pp. 145-156.

Bishop, C. (1991). Improving the generalization properties of radial basis function neural
networks, Neural Computation 3, pp. 579-588.

Blumenthal, L. M. (1938). Distance Geometries, Univ. of Missouri Studies, 13, 142pp.
Bochner, S. (1932). Vorlesungen uber Fouriersche Integrale, Akademische Verlagsge­

sellschaft (Leipzig).
Bochner, S. (1933). Monotone Funktionen, Stieltjes Integrale und harmonische Analyse,

Math. Ann. 108, pp. 378-410.
Bochner, S. (1941). Hilbert distances and positive definite functions, Ann. of Math. 42,

pp. 647-656.
de Boor, C. (1993). Approximation order without quasi-interpolants, in Approximation

Theory VJ!, E.W. Cheney, C. Chui, and L. Schumaker (eds.), Academic Press (New
York), pp. 1-18.

de Boor, C. On interpolation by radial polynomials, Adv. in Comput. Math. 24, pp. 143-
153.

de Boor, C., DeVore, R. A. and Ron, A. (1994a). Approximation from shift-invariant sub­
spaces of L 2(JR.d), Trans. Amer. Math. Soc. 341, pp. 787-806.

de Boor, C., DeVore, R. A. and Ron, A. (1994b). The structure of finitely generated shift­
invariant spaces in L 2(JR.d), J. Funct. Anal. 119, pp. 37-78.

de Boor, C. and Ron, A. (1990). On multivariate polynomial interpolation, Constr. Approx.
6, pp. 287-302.

deBoor, C. and Ron, A. (1992a). The least solution for the polynomial interpolation
problem, Math. Z. 210, pp. 347-378.

de Boor, C. and Ron, A. (1992b). Fourier analysis of the approximation power of principal
shift-invariant spaces, Constr. Approx. 8, pp. 427-462.

Bors, A.G. and Pitas, I. (1996). Median radial basis function neural network, IEEE Trans.
Neural Networks 7, pp. 1351-1364.

Bos, L. P. and Maier, U. (2002). On the asymptotics of Fekete-type points for univariate
radial basis interpolation, J. Approx. Theory 119, pp. 252-270.

Bibliography 455

Bos, L. P. and Salkauskas, K. (1987). On the matrix [lxi - Xjl 3
] and the cubic spline

continuity equations, J. Approx. Theory 51, pp. 81-88.
Bos, L. P. and Salkauskas, K. (1989). Moving least-squares are Backus-Gilbert optimal, J.

Approx. Theory 59, pp. 267-275.
Bouhamidi, A. and Le Mehaute, A. (2004). Radial basis functions under tension, J. Approx.

Theory 127, pp. 135-154.
Bozzini, M., Lenarduzzi, L. and Schaback, R. (2002). Adaptive interpolation by scaled

multiquadrics, Adv. in Comp. Math. 16, pp. 375-387.
Bozzini, M., Lenarduzzi, L. and Schaback, R. (2006). Kernel B-splines and interpolation,

Numer. Algorithms 41 1, pp. 1-16.
Braess, D. (1997). Finite Elements: Theory, Fast Solvers, and Applications in Solid Me­

chanics, Cambridge University Press (Cambridge).
Brenner, S. C. and Scott, L. R. (1994). The Mathematical Theory of Finite Element Meth­

ods, Springer Verlag (New York).
Broomhead, D.S. and Lowe, D. (1988). Multivariate functional interpolation and adaptive

networks, Complex Systems 2, pp. 321-355.
Brown, A. L. (1992). Uniform approximation by radial basis functions, Appendix B to

Radial basis functions in 1990, in Advances in Numerical Analysis II: Wavelets,
Subdivision, and Radial Basis Functions, W. Light (ed.), Oxford University Press
(Oxford), pp. 203-206.

Brown, D., Ling, L., Kansa, E. and Levesley, J. (2005). On approximate cardinal precondi­
tioning methods for solving PDEs with radial basis functions, Engineering Analysis
with Boundary Elements 29, pp. 343-353.

Brownlee, R. and Light, W. (2004). Approximation orders for interpolation by surface
splines to rough functions, IMA J. Numer. Anal. 24, pp. 179-192.

Buckley, M. J. (1994). Fast computation of a discretized thin-plate smoothing spline for
image data, Biometrika 81, pp. 247-258.

Buhmann, M. D. (1988). Convergence of univariate quasi-interpolation using multi­
quadrics, IMA J. Numer. Anal. 8, pp. 365-383.

Buhmann, M. D. (1989a). Multivariate interpolation using radial basis functions, Ph.D.
Dissertation, University of Cambridge.

Buhmann, M. D. (1989b). Cardinal interpolation with radial basis functions: an inte­
gral approach, in Multivariate Approximation Theory IV, ISNM 90, C. Chui, W.
Schempp, and K. Zeller (eds.), Birkhauser Verlag (Basel), pp. 41-64.

Buhmann, M. D. (1990a). Multivariate interpolation in odd-dimensional Euclidean
spaces using multiquadrics, Constr. Approx. 6, pp. 21-34.

Buhmann, M. D. (1990b). Multivariate cardinal interpolation with radial basis functions,
Constr. Approx. 6, pp. 225-255.

Buhmann, M. D. (1993a). New developments in the theory of radial basis function inter­
polation, in Multivariate Approximation: From CAGD to Wavelets, Kurt Jetter and
Florencio Utreras (eds.), World Scientific Publishing (Singapore), pp. 35-75.

Buhmann, M. D. (1993b). On quasi-interpolation with radial basis functions, J. Approx.
Theory 72, pp. 103-130.

Buhmann, M. D. (1993c). Discrete least squares approximation and prewavelets from radial
function spaces, Proc. Camb. Phil. Soc. 114, pp. 533-558.

Buhmann, M. D. (1995a). Multiquadric prewavelets on nonequally spaced knots in one
dimension, Math. Comp. 64, pp. 1611-1625.

Buhmann, M. D. (1995b). Pre-wavelets on scattered knots and from radial function spaces:
a review, in The Mathematics of Surfaces VI, R. R. Martin (ed.), Clarendon Press
(Oxford), pp. 309-324.

456 Meshfre,e Approximation Methods with MATLAB

Buhmann, M. D. (1998). Radial functions on compact support, Proc. Edin. Math. Soc. II
41, pp. 33-46.

Buhmann, M. D. (2000). Radial basis functions, Acta Numerica 2000 9, pp. 1-38.
Buhmann, M. D. (2003). Radial Basis Functions: Theory and Implementations, Cambridge

University Press (Cambridge).
Buhmann, M. D. (2006). Half-plane approximation with radial functions I, Comput. Math.

Appl. 51 8, pp. 1171-1184.
Buhmann, M. D. and Chui, C. K. (1993). A note on the local stability of translates of

radial basis functions, J. Approx. Theory 14, pp. 36-40.
Buhmann, M. D., Derrien, F. and Le Mehaute, A. (1995). Spectral properties and knot

removal for interpolation by pure radial sums, in Mathematical Methods for Curves
and Surfaces, M. Drehlen, T. Lyche, and L. Schumaker (eds.), Vanderbilt University
Press (Nashville), pp. 55-62.

Buhmann, M. D. and Dyn, N. (1991). Error estimates for multiquadric interpolation, in
Curves and Surfaces, P.-J. Laurent, A. Le Mehaute, and L. L. Schumaker (eds.),
Academic Press (New York), pp. 51-58.

Buhmann, M. D. and Dyn, N. (1993). Spectral convergence of multiquadric interpolation,
Proc. Edinburgh Math. Soc. 36, pp. 319-333.

Buhmann, M. D., Dyn, N. and Levin, D. (1993). On quasi-interpolation with radial basis
functions on non-regular grids, Constr. Approx. 11, pp. 239-254.

Buhmann, M. D. and Le Mehaute, A. (1995). Knot removal with radial basis function
interpolantion, C. R. Acad. Sci. Paris Ser. I Math. 320, pp. 501-506.

Buhmann, M. D. and Micchelli, C. A. (1989). Completely monotonic functions for cardinal
interpolation, in Approximation Theory VI, C. Chui, L. Schumaker, and J. Ward
(eds.), Academic Press (New York), pp. 1-4.

Buhmann, M. D. and Micchelli, C. A. (1991). Multiply monotone functions for cardinal
interpolation, Adv. in Appl. Math. 12, pp. 358-386.

Buhmann, M. D. and Micchelli, C. A. (1992a). Multiquadric interpolation improved, Com­
put. Math. Appl. 24, pp. 21-25.

Buhmann, M. D. and Micchelli, C. A. (1992b). On radial basis approximation on periodic
grids, Proc. Camb. Phil. Soc. 112, pp. 317-334.

Buhmann, M. D. and Pinkus, A. (1997). On a recovery problem, Annals of Numerical
Mathematics 4, pp. 129-142,

Buhmann, M. D. and Powell, M. J. D. (1990). Radial basis function interpolation on an
infinite regular grid, in Algorithms for Approximation II, M. G. Cox and J. C. Mason
(eds.), Chapman & Hall (London), pp. 146-169.

Buhmann, M. D. and Ron, A. (1994). Radial basis functions: LP-approximation orders
with scattered centres, in Wavelets, Images, and Surface Fitting, P.-J. Laurent, A.
Le Mehaute, and L. L. Schumaker (eds.), A. K. Peters (Wellesley, MA), pp. 93-112.

Caiti, A., Magenes, G., Panisini, T. and Simpson, R. (1994). Smooth approximation by
radial basis functions: three case studies, J. Appl. Sc. Comp. 1, pp. 88-113.

Cambanis, S., Keener, R. and Simons, G. (1983). On a-symmetric multivariate distribu­
tions, J. Multivariate Anal. 13, pp.213-233.

Canuto, C., Hussaini, M. Y., Quarteroni, A. and Zang, T. A. (1988). Spectral Methods in
Fluid Dynamics, Springer Verlag, Berlin.

Carlson, R. E. and Foley, T. A. (1991). The parameter R 2 in multiquadric interpolation,
Comput. Math. Appl. 21, pp. 29--42.

Carlson, R. E. and Foley, T. A. (1992). Interpolation of track data with radial basis
methods, Comput. Math. Appl. 24, pp. 27-34.

Bibliography 457

Carlson, R. E. and Natarajan, B. K. (1994). Sparse approximate multiquadric interpola­
tion, Comput. Math. Appl. 27, pp. 99-108.

Carr, J. C., Beatson, R. K., Cherie, J. B., Mitchell, T. J., Fright, W. R., McCallum, B.
C. and Evans, T. R. (2001). Reconstruction and representation of 3D objects with
radial basis functions, in SIGGRAPH 2001, pp. 67-76.

Carr, J. C., Fright, W. R. and Beatson, R. K. (1997). Surface Interpolation with Radial
Basis Functions for Medical Imaging, IEEE Transactions on Medical Imaging 16,
pp. 96-107.

Casciola, G., Lazzaro, D., Montefusco, L. B. and Morigi, S. (2006). Shape preserving
surface reconstruction using locally anisotropic RBF interpolants, Comput. Math.
Appl. 51 8, pp. 1185-1198.

Cha, I. and Kassam, S. A. (1992). Blind equalisation using radial basis function networks,
Proc. Canadian Conference Elec. Eng. and Comp. Sci. 1, TM.3.13.14.

Cha, I. and Kassam, S. A. (1995a). Channel equalization using adaptive complex radial
basis function networks, IEEE J. on Selected Areas in Communications 13, pp. 121-
131.

Cha, I. and Kassam, S. A. (1995b). Interference canellation using radial basis function
networks, EURASIP Signal Processing 147, pp. 247-268.

Chakravarthy, S. V.. and Ghosh, J. (1996). Scale-based clustering using the radial basis
function network, IEEE Trans. Neural Networks 7, pp. 1250-1261.

Chan, A. K., Chui, C. K. and Guan, L. T. (1990). Radial basis function approach to
interpolation of large reflecting surfaces, in Curves and Surfaces in Computer Vision
and Graphics, L. A. Ferrari and R. J. P. de Figueiredo (eds.), SPIE (Vol. 1251),
pp. 62-72.

Chan, R. and Strang, G. (1989). Toeplitz equations by conjugate gradients with circulant
preconditioners, SIAM J. Sci. Statist. Comput. 10, pp. 104-119.

Chan, T. F. and Foulser, D. E. (1988). Effectively well-conditioned linear systems, SIAM
J. Sci. Statist. Comput. 9, pp. 963-969.

Chang, K. F. (1996). Strictly positive definite functions, J. Approx. Theory 87, 148-158.
Addendum: J. Approx. Theory 88 1997, p. 384.

Chen, C. S. and Brebbia, C. A. (1998). The dual reciprocity method for Helmholtz-type
operators, in Boundary Elements XX, A. Kassab, C. A. Brebbia and M. Chopra
(eds.), Computational Mechanics Publications, pp. 495-504.

Chen, C. S., Brebbia, C. A. and Power, H. (1999). Boundary element methods using com­
pactly supported radial basis functions, Comm. Numer. Meths. Eng. 15, pp. 137-
150.

Chen, C. S., Ganesh, M., Golberg, M. A. and Cheng, A. H.-D. (2002). Multilevel compact
radial functions based computational schemes for some elliptic problems, Comput.
Math. Appl. 43, pp. 359-378.

·Chen, C. S., Golberg, M. A. and Schaback, R. (2003). Recent developments in the dual
reciprocity method using compactly supported radial basis functions, in Transfor­
mation of Domain Effects to the Boundary, Y. F. Rashed and C. A. Brebbia (eds.),
WIT Press, Southampton, Boston, pp. 138-225.

Chen, J. S., Wu, C. T., Yoon, S. and You, Y. (2001). A stabilized conforming nodal integra­
tion for Galerkin meshfree methods, Int. J. Numer. Meth. Engng. 50 2, pp. 435-466.

Chen, J.-T., Lee, Y.-T., Chen, I-L. and Chen, K.-H. (2004). Mathematical analysis and
treatment for the true and spurious eigenequations of circular plates by the meshless
method using radial basis function, J. Chinese Inst. Engineers 27, pp. 547-561.

Chen, S. (1994). Radial basis functions for signal prediction and system modelling, J. Appl.
Sci. Comput. 1, pp. 172-207.

458 Meshfre,e Approximation Methods with MATLAB

Chen, S., Billings, S. A., Cowan, C. F. N. and Grant, P. M. (1990). Non-linear systems
identification using radial basis functions, Int. J. Systems Science 21, pp. 2513-2539.

Chen, S., Billings, S. A. and Grant, P. M. (1992). Recursive hybrid algorithm for non­
linear system identification using radial basis function networks, Int. J. Control 55,
pp. 1051-1070.

Chen, S., Cowan, C. F. N. and Grant, P. M. (1991a). Orthogonal least squares learn­
ing algorithm for radial basis function networks, IEEE Trans. Neural Networks 2,
pp. 302-309.

Chen, S., Gibson, G. J., Cowan, C. F. N. and Grant, P. M. (1991b). Reconstruction of
binary signals using an adaptive radial-basis-function equaliser, EURASIP Signal
Processing 22, pp. 77-93.

Chen, S., McLaughlin, S., Grant, P. M. and Mulgrew, B. (1993). Reduced-complexity
multistage blind clustering equaliser, IEEE Int. Communications Conference (ICC)
Proceedings, pp. 1149-1153.

Chen, S., McLaughlin, S. and Mulgrew, B. (1994a). Complex valued radial basis function
networks: network architecture and learning algorithms (part I), EURASIP Signal
Processing J. 25, pp. 19-31.

Chen, S., McLaughlin, S. and Mulgrew, B. (1994b). Complex valued radial basis func­
tion networks: application to digital communications channel equalisation (part II),
EURASIP Signal Processing J. 36, pp. 175-188.

Chen, S. and Mulgrew, B. (1992). Overcoming co-channel interference using an adaptive
radial basis function equaliser, EURASIP Signal Processing J. 28, pp. 91-107.

Chen, T. and Chen, H. (1995a). Approximation capability to functions of several variables,
nonlinear functionals and operators by radial basis function neural networks, IEEE
Trans. Neural Networks 6, pp. 904-910.

Chen, T. and Chen, H. (1995b). Denseness ofradial-basis functions in £ 2 (Rn) and its appli­
cations in neural networks, in Approximation Theory VJII, Vol. 1: Approximation
and Interpolation, C. Chui, and L. Schumaker (eds.), World Scientific Publishing
(Singapore), pp. 137-144.

Cheney, E. W. (1992). Approximation by functions of nonclassical form, in Approximation
Theory, Spline Functions and Applications, S. P. Singh (ed.), Kluwer (Dordrecht),
pp. 1-18.

Cheney, E. W. (1995a). Approximation and interpolation on spheres, in Approximation
Theory, Wavelets and Applications, S. P. Singh (ed.), Kluwer (Dordrecht), pp. 47-53.

Cheney, E.W. (1995b). Approximation using positive definite functions, in Approximation
Theory VIII, Vol. 1: Approximation and Interpolation, C. Chui, and L. Schumaker
(eds.), World Scientific Publishing (Singapore), pp. 145-168.

Cheney, E.W. and Light, W. A. (1999). A Course in Approximation Theory, Brooks/Cole
(Pacific Grove, CA).

Cheney, E. W., Light, W. A. and Xu, Y. (1992). On kernels and approximation orders,
in Proc. Sixth Southeastern Approximation Theory Conference, George Anastassiou
(ed.), Lecture Notes in Pure and Applied Mathematics, Vol. 138, pp. 227-242.

Cheney, E. W. and Xu, Y. (1993). A set of research problems in approximation the­
ory, in Topics in Polynomials of One and Several Variables and Their Applications,
T. M. Rassias, H. M. Srivastava, and A. Yanushauskas (eds.), World Scientific Pub­
lishers (London), pp. 109-123.

Cheng, A. H. D., Golberg, M. A., Kansa, E. J. and Zammito, G. (2003). Exponential con­
vergence and H-c multiquadric collocation method for partial differential equations,
Numer. Methods Partial Differential Equations 19 5, pp. 571-594.

Cheng, A. H.-D. and Cabral, J. J. S. P. (2005). Direct solution of certain ill-posed boundary

Bibliography 459

value problems by collocation method, in Boundary Elements XXVII, A. Kassab, C.
A. Brebbia, E. Divo, and D. Poljak (eds.), WIT Press (Southampton), pp. 35-44.

Cheng, C. C. and Zheng, Y. F. (1994). Thin plate spline surface approximation using
Coons' patches, Comput. Aided Geom. Design 11, pp. 269-287.

Cherrie, J. B., Beatson, R. K. and Newsam, G. N. (2002). Fast evaluation of radial basis
functions: methods for generalized multiquadrics in nr, SIAM J. Sci. Comput. 23,
pp. 1549-1571.

Chien, C.-C. and Wu, T.-Y. (2004). An accurate solution to the meshless local Petrov­
Galerkin formulation in elastodynamics, J. Chinese inst. Engineers 27, pp. 463-471.

Chng, E. S., Chen, S. and Mulgrew, B. (1996). Gradient radial basis function networks for
nonlinear and nonstationary time series prediction, IEEE Trans. Neural Networks
7, pp. 190-194.

Chng, E. S., Chen, S., Mulgrew, B. and Gibson, G. J. (1995). Realising the Bayesian
decision boundary for channel equalisation using radial basis function network and
linear equaliser, in Mathematics for Neural Networks and Applications, Oxford.

Chui, C. K. (1988). Multivariate Splines, CBMS-NSF Reg. Conf. Ser. in Appl. Math. 54
(SIAM).

Chui, C. K., Stockier, J. and Ward, J. D. (1996). Analytic wavelets generated by radial
functions, Adv. Comput. Math. 5, pp. 95-123.

Chui, C. K., Ward, J. D. and Jetter, K. (1992). Cardinal interpolation with differences of
tempered functions, Comput. Math. Appl. 24, pp. 35-48.

Chung, K. C. and Yao, T. H. (1977). On lattices admitting unique Lagrange interpolations,
SIAM J. Numer. Anal. 14, pp. 735-743.

Cid-Sueiro, J., Artes-Rodriguez, A. and Figueiras-Vidal, A. R. (1994). Recurrent radial ba­
sis function networks for optimal symbol-by-symbol equalisation, EURASIP Signal
Processing 40, pp. 53-63.

Cid-Sueiro, J. and Figueiras-Vidal, A. R. (1993). Recurrent radial basis function networks
for optimal equalisation, Proc. IEEE Workshop on Neural Networks for Signal Pro­
cessing, pp. 562-571.

Cleveland, W. S. and Loader, C. L. (1996). Smoothing by local regression: Principles and
methods, in Statistical Theory and Computational Aspects of Smoothing, W. Haerdle
and M. G. Schimek (eds.), Springer (New York), pp. 10-49.

Cuppens, R. (1975). Decomposition of Multivariate Probability, Academic Press (New
York).

Curtis, P. C., Jr. (1959) n-parameter families and best approximation, Pacific J. Math. 9,
pp. 1013-1027.

Davidov, 0., Sestini, A. and Morandi, R. (2005). Local RBF approximation for scattered
data fitting with bivariate splines, in Trends and Applications in Constructive Ap­
proximation, M. G. de Bruin, D. H. Mache, and J. Szabados (eds.), Birkhauser
(Basel), pp. 91-102.

De Forest, E. L. (1873). On some methods of interpolation applicable to the graduation
of irregular series, Annual Report of the Board of Regents of the Smithsonian Insti­
tution for 1871, pp. 275-339.

De Forest, E. L. (1874). Additions to a memoir on methods of interpolation applicable
to the graduation of irregular series, Annual Report of the Board of Regents of the
Smithsonian Institution for 1873, pp. 319-353.

Delvos, F. J. (1985). Convergence of interpolation by translation, Colloq. Math. Soc. J.
Bolya 49, pp. 273-287.

Delvos, F. J. (1987). Periodic interpolation on uniform meshes, J. Approx. Theory 51,
pp. 71-80.

460 Meshfree Approximation Methods with MATLAB

De Marchi, S., Schaback, R. and Wendland, H. (2005). Near-optimal data-independent
point locations for radial basis function interpolation, Adv. in Comput. Math. 23 3,
pp. 317-330.

Dilts, G. (1996). Equivalence of the SPH method and a space-time Galer kin moving particle
method, Los Alamos National Laboratory.

Dix, J. G. and Ogden, R. D. (1994). An interpolation scheme with radial basis in Sobolev
spaces H 8 (Ilr), Rocky Mountain J. Math. 24, pp. 1319-1337.

Djokovic, D. and van Damme, R. (1996). Radial splines and moving grids, Technical report,
University of Twente.

Djokovic, D. and van Damme, R. (1997). Moving node methods for PDE's using radial
basis functions and B-splines, Technical report, University of Twente.

Dolbow, J. and Belytschko, T. (1997). An introduction to programming the meshless
element free Galerkin method, Technical report, Northwestern University.

Donoghue, W. F. (1974). Monotone Matrix Functions and Analytic Continuation, Springer
(Berlin).

Driscoll, T. A. and Fornberg, B. (2002). Interpolation in the limit of increasingly fiat radial
basis functions, Comput. Math. Appl. 43, pp. 413-422.

Driscoll, T. A. and Heryudono, A. (2006). Adaptive residual subsampling methods for
radial basis function interpolation and collocation problems, Comput. Math. Appl.,
submitted.

Duan, Z.-H. and Krasny, R. (2001). An adaptive treecode for computing nonbonded po­
tential energy in classical molecular systems, J. Comput. Chemistry 22, pp. 184-195.

Duarte, C. A. (1995). A review of some meshless methods to solve partial differential
equations, TI CAM Report 95-06, University of Texas.

Duarte, C. A. and Oden, J. T. (1995a). Hp clouds- a meshless method to solve boundary­
value problems, TICAM Report 95-05, University of Texas.

Duarte, C. A. and Oden, J. T. (1996a). An h-p adaptive method using clouds, Comput.
Meth. Appl. Mech. Engg. 139 1, pp. 237-262.

Duarte, C. A. and Oden, J. T. (1996b). H-p clouds - an h-p meshless method, Num.
Meth. for Part. Diff. Eq. 12, pp. 673-705.

Dubai, M. R. (1992). Construction of three-dimensional black-hole initial data via multi­
quadrics, Phys. Rev. D 45, pp. 1178-1187.

Dubai, M. R. (1994). Domain decomposition and local refinement for multiquadric ap­
proximations. I: Second-order equations in one-dimension, J. Appl. Sc. Comp. 1,
pp. 146-171.

Dubai, M. R., Oliveira, S. R. and Matzner, R. A. (1992). Solution of elliptic equations
in numerical relativity using multiquadrics, in Approaches to Numerical Relativity,
R. d'Inverno (ed.), Cambridge University Press (Cambridge), pp. 265--280.

Duchon, J. (1976). Interpolation des fonctions de deux variables suivant le principe de la
ftexion des plaques minces, Rev. Francaise Automat. lnformat. Rech. Oper., Anal.
Numer. 10, pp. 5-12.

Duchon, J. (1977). Splines minimizing rotation-invariant semi-norms in Sobolev spaces,
in Constructive Theory of Functions of Several Variables, Oberwolfach 1916, W.
Schempp and K. Zeller (eds.), Springer Lecture Notes in Math. 571, Springer-Verlag
(Berlin), pp. 85-100.

Duchon, J. (1978). Sur l'erreur d'interpolation des fonctions de plusieurs variables par
les Dm-splines, Rev. Francaise Automat. lnformat. Rech. Oper., Anal. Numer. 12,
pp. 325-334.

Duchon, J. (1980). Fontions splines homogenes a plusiers variables, Universite de Grenoble.
Dyn, N. (1987). Interpolation of scattered data by radial functions, in Topics in Multivari-

Bibliography 461

ate Approximation, C. K. Chui, L. L. Schumaker, and F. Utreras (eds.), Academic
Press (New York), pp. 47-61.

Dyn, N. (1989). Interpolation and approximation by radial and related functions, in Ap­
proximation Theory VI, C. Chui, L. Schumaker, and J. Ward (eds.), Academic Press
(New York), pp. 211-234.

Dyn, N., Goodman, T. and Micchelli, C. A. (1986). Positive powers of certain conditionally
negative definite matrices, Indaga. Math. Proc. Ser.A. 89, pp. 163-178.

Dyn, N., Jackson, I. R. H., Levin, D. and Ron, A. (1992). On multivariate approximation
by the integer translates of a basis function, Israel J. Math. 18, pp. 95-130.

Dyn, N. and Levin, D. (1981). Bell shaped basis functions for surface fitting, in Ap­
proximation Theory and Applications, Z. Ziegler (ed.), Academic Press (New York),
pp. 113-129.

Dyn, N. and Levin, D. (1982). Construction of surface spline interpolants of scattered data
over finite domains, Rev. Francaise Automat. Informat. Rech. Oper., Anal. Numer.
16, pp. 201-209.

Dyn, N. and Levin, D. (1983). Iterative solution of systems originating from integral equa­
tions and surface interpolation, SIAM J. Numer. Anal. 20, pp. 377-390.

Dyn, N., Levin, D. and Rippa, S. (1983). Surface interpolation and smoothing by "thin
plate" splines, in Approximation Theory IV, C. Chui, L. Schumaker, and J. Ward
(eds.), Academic Press (New York), pp. 445-449.

Dyn, N., Levin, D. and Rippa, S. (1986). Numerical procedures for surface fitting of
scattered data by radial functions, SIAM J. Sci. Statist. Comput. 1, pp. 639-659.

Dyn, N., Light, W. A. and Cheney, E. W. (1989). Interpolation by piecewise-linear radial
basis functions, I, J. Approx. Theory 59, pp. 202-223.

Dyn, N. and Micchelli, C. A. (1990). Interpolation by sums of radial functions, Numer.
Math. 58, pp. 1-9.

Dyn, N., Narcowich, F. J. and Ward, J. D. (1997). A framework for interpolation and
approximation on Riemannian manifolds, in Approximation theory and optimization
(Cambridge, 1996), Cambridge Univ. Press (Cambridge), pp. 133-144.

Dyn, N., Narcowich, F. J. and Ward, J. D. (1999). Variational principles and Sobolev-type
estimates for generalized interpolation on a Riemannian manifold, Constr. Approx.
15 2, pp. 175-208.

Dyn, N. and Ron, A. (1995a). Radial basis function approximation: from gridded centers
to scattered centers, Proc. London Math. Soc. 11, pp. 76-108.

Dyn, N. and Ron, A. (1995b). Multiresolution analysis by infinitely differentiable com­
pactly supported functions, Appl. Comput. Harmon. Anal. 2, pp. 15-20.

Evgeniou, T., Pontil, M. and Poggio, T. (2000). Regularization networks and support
vector machines, Adv. Comput. Math. 13 1, pp. 1-50.

Fan, J. and Gijbels, I. (1996). Local Polynomial Modelling and its Applications, Chapman
& Hall (New York).

Farwig, R. (1986). Multivariate interpolation of arbitrarily spaced data by moving least
squares methods, J. Comput. Appl. Math. 16, pp. 79-93.

Farwig, R. (1987). Multivariate interpolation of scattered data by moving least squares
methods, in Algorithms for Approximation, Oxford Univ. Press (New York), pp. 193-
211, 1987.

Farwig, R. (1991). Rate of convergence of moving least squares interpolation methods:
the univariate case, in Progress in Approximation Theory, Academic Press (Boston,
MA), pp. 313-327.

Fasshauer, G. E. (1994a). Scattered data interpolation with radial basis functions on the
sphere, Technical Report, Vanderbilt University.

462 Meshfree Approxirrw.tion Methods with MATLAB

Fasshauer, G. E. (1994b). On the density of certain classes of radial basis functions on
spheres, Technical Report, Vanderbilt University.

Fasshauer, G. E. (1995a). Adaptive least squares fitting with radial basis functions on the
sphere, in Mathematical Methods for Curves and Surfaces, M. Drehlen, T. Lyche,
and L. Schumaker (eds.), Vanderbilt University Press (Nashville), pp. 141-150.

Fasshauer, G. E. (1995b). Radial Basis Functions on Spheres, Ph.D. Dissertation, Vander­
bilt University.

Fasshauer, G. E. (1997). Solving partial differential equations by collocation with radial
basis functions, in Surface Fitting and Multiresolution Methods, A. Le Mehaute, C.
Rabut, and L. L. Schumaker (eds.), Vanderbilt University Press (Nashville, TN),
pp. 131-138.

Fasshauer, G. E. (1999a). On smoothing for multilevel approximation with radial ba­
sis functions, in Approximation Theory IX, Vol.II: Computational Aspects, Charles
K. Chui, and L. L. Schumaker (eds.), Vanderbilt University Press, pp. 55-62.

Fasshauer, G. E. (1999b). Hermite interpolation with radial basis functions on spheres,
Adv. in Comp. Math. 10, pp. 81-96.

Fasshauer, G. E. (1999c). On the numerical solution of differential equations with radial
basis functions, in Boundary Element Technology XIII, C. S. Chen, C. A. Brebbia,
and D. W. Pepper (eds.), WIT Press, pp. 291-300.

Fasshauer, G. E. (1999d). Solving differential equations with radial basis functions: mul­
tilevel methods and smoothing, Adv. in Comp. Math. 11, pp. 139-159.

Fasshauer, G. E. (2001a). Nonsymmetric multilevel RBF collocation within an opera­
tor Newton framework for nonlinear PDEs, in Trends in Approximation Theory,
K. Kopotun, T. Lyche, and M. Neamtu (eds.), Vanderbilt University Press, pp. 103-
112.

Fasshauer, G. E. (2001b). High-order moving least-squares approximation via fast radial
Laguerre transforms, Technical Report, Illinois Institute of Technology.

Fasshauer, G. E. (2002a). Newton iteration with multiquadrics for the solution of nonlinear
PDEs, Comput. Math. Applic. 43, pp. 423-438.

Fasshauer, G. E. (2002b). Matrix-free multilevel moving least-squares methods, in Approxi­
mation Theory X: Wavelets, Splines, and Applications, C. K. Chui, L. L. Schumaker,
and J. Stockier (eds.), Vanderbilt University Press (Nashville), pp. 271-281.

Fasshauer, G. E. (2002c). Approximate moving least-squares approximation with com­
pactly supported weights, in Lecture Notes in Computer Science and Engineer­
ing Vol.26: Meshfree Methods for Partial Differential Equations, M. Griebel and
M. A. Schweitzer (eds.), Springer Verlag (Berlin), pp. 105-116.

Fasshauer, G. E. (2002d). Approximate moving least-squares approximation for time­
dependent PDEs, in WCCM Vi Fifth World Congress on Computational Mechanics
(http://wccm.tuwien.ac.at), H. A. Mang, F. G. Rammerstorfer, and J. Eberhard­
steiner (eds.), Vienna University of Technology (Vienna).

Fasshauer, G. E. (2003). Approximate moving least-squares approximation: A fast and
accurate multivariate approximation method, in Curve and Surface Fitting: Saint­
Malo 2002, A. Cohen, J.-L. Merrien, and L. L. Schumaker (eds.), Nashboro Press
(Nashville), pp. 139-148.

Fasshauer, G. E. (2004). Toward approximate moving least squares approximation with
irregularly spaced centers, Computer Methods in Applied Mechanics & Engineering
193, pp. 1231-1243.

Fasshauer, G. E. (2005a). Dual bases and discrete reproducing kernels: a unified framework
for RBF and MLS approximation, Journal of Engineering Analysis with Boundary
Elements 29, pp. 313-325.

Bibliography 463

Fasshauer, G. E. (2005b). RBF collocation methods as pseudospectral methods, in Bound­
ary Elements XXVlI, A. Kassab, C. A. Brebbia, E. Divo, and D. Poljak (eds.), WIT
Press (Southampton), pp. 47-56.

Fasshauer, G. E. (2006). Meshfree Methods, in Handbook of Theoretical and Computational
Nanotechnology, Vol. 2, M. Rieth and W. Schommers (eds.), American Scientific
Publishers, pp. 33-97.

Fasshauer, G. E., Gartland, E. C. and Jerome, J. W. (2000a). Algorithms defined by Nash
iteration: some implementations via multilevel collocation and smoothing, J. Comp.
Appl. Math. 119, pp. 161-183.

Fasshauer, G. E., Gartland, E. C. and Jerome, J. W. (2000b). Newton iteration for partial
differential equations and the approximation of the identity, Numerical Algorithms
25, pp. 181-195.

Fasshauer, G. E. and Jerome, J. W. (1999). Multistep approximation algorithms: Improved
convergence rates through postconditioning with smoothing kernels, Adv. in Comput.
Math. 10, pp. 1-27.

Fasshauer, G. E., Khaliq, A. Q. M. and Voss, D. A. (2004). Using meshfree approxima­
tion for multi-asset American option problems, J. Chinese Institute Engineers 21,
pp. 563-571.

Fasshauer, G. E. and Schumaker, L. L. (1998). Scattered data fitting on the sphere,
in Mathematical Methods for Curves and Surfaces II, M. Drehlen, T. Lyche, and
L. L. Schumaker (eds.), Vanderbilt University Press, pp. 117-166.

Fasshauer, G. E. and Zhang, J. G. (2004). Recent results for moving least squares approx­
imation, in Geometric Modeling and Computing: Seattle 2003, M. L. Lucian and M.
Neamtu (eds.), Nashboro Press (Brentwood, TN), pp. 163-176.

Fasshauer, G. E. and Zhang, J. G. (2006). Iterated approximate moving least squares
approximation, submitted.

Faul, A. C. and Powell, M. J. D. (1999). Proof of convergence of an iterative technique for
thin plate spline interpolation in two dimensions, Adv. Comput. Math. 11, pp. 183-
192.

Faul, A. C. and Powell, M. J. D. (2000). Krylov subspace methods for radial basis function
interpolation, in Numerical Analysis 1999 (Dundee), Chapman & Hall/CRC (Boca
Raton, FL), pp. 115-141.

Fedoseyev, A. I., Friedman, M. J. and Kansa, E. J. (2000). Continuation for nonlinear
elliptic partial differential equations discretized by the multiquadric method, Int. J.
Bifurcation and Chaos 10 2, pp. 481-492.

Fedoseyev, A. I., Friedman, M. J. and Kansa, E. J. (2002). Improved multiquadric method
for elliptic partial differential equations via PDE collocation on the boundary, Com­
put. Math. Applic. 43, pp. 439-455.

Feller, W. (1966). An Introduction to Probability Theory and Its Application, Vol. 2, Wiley
& Sons, New York.

Fenn, M. and Steidl, G. (2006). Robust local approximation of scattered data, in Geometric
Properties from Incomplete Data, R. Klette, R. Kozera, L. Noakes, and J. Weickert
(eds.), Kluwer (Dordrecht), pp. 317-334.

Ferreira, A. J. M. and Fasshauer, G. E. (2006) Computation of natural frequencies of
shear deformable beams and plates by an RBF-pseudospectral method, Comput.
Meth. Appl. Mech. Engng. 196, 134-146.

Ferreira, A. J.M. and Fasshauer, G. E. (2007) Analysis of natural frequencies of composite
plates by an RBF-pseudospectral method, Composite Structures, to appear.

Floater, M. S. and Iske, A. (1996a). Thinning and approximation of large sets of scattered
data, in Advanced Topics in Multivariate Approximation, F. Fontanella, K. Jetter,
and P.-J. Laurent (eds.), World Scientific Publishing (Singapore), pp. 87-96.

464 Meshfre,e Approximation Methods with MATLAB

Floater, M. S. and Iske, A. (1996b). Multistep scattered data interpolation using compactly
supported radial basis functions, J. Comput. Applied Math. 73, pp. 65-78.

Florence, A. G. and van Loan, C. F. (2000). A Kronecker product formulation of the fast
Gauss transform, preprint.

Flyer, N. (2006). Exact polynomial reprodction for oscillatory radial basis functions on
infinite lattices, Comput. Math. Appl. 51 8, pp. 1199-1208.

Foley, T. A. (1987). Interpolation and approximation of 3-D and 4-D scattered data,
Comput. Math. Appl. 13, pp. 711-740.

Foley, T. A. (1990). Interpolation of scattered data on a spherical domain, in Algorithms
for Approximation II, M. G. Cox and J.C. Mason (eds.), Chapman & Hall (London),
pp. 303-310.

Foley, T. A. (1992). The map and blend scattered data interpolant on the sphere, Comput.
Math. Appl. 24, pp. 49-60.

Foley, T. A. (1994). Near optimal parameter selection for multiquadric interpolation, J.
Appl. Sc. Comp. 1, pp. 54-69.

Foley, T. A., Dayanand, S. and Zeckzer, D. (1995). Localized radial basis methods using
rational triangle patches, in Geometric Modelling - Dagstuhl 1993, H. Hagen, G.
Farin and H. Noltemeier (eds.), Springer Verlag (Berlin), pp. 163-176.

Foley, T. A., Lane, D. A., Nielson, G. M., Franke, R. and Hagen, H. (1990a). Interpolation
of scattered data on closed surfaces, Comput. Aided Geom. Design 7, pp. 303-312.

Foley, T. A., Lane, D. A., Nielson, G. M. and Ramaraj, R. (1990b). Visualizing functions
over a sphere, Comp. Graphics and Applies. 10, pp. 32-40.

Fornberg, B. (1998). A Practical Guide to Pseudospectral Methods, Cambridge Univ. Press.
Fornberg, B., Driscoll, T. A., Wright, G. and Charles, R. (2002). Observations on the

behavior of radial basis function approximations near boundaries, Comput. Math.
Appl. 43, pp. 473-490.

Fornberg, B. and Flyer, N. (2005). Accuracy of radial basis function interpolation and
derivative approximations on 1-D infinite grids, Adv. Comput. Math. 23 1-2, pp. 5-
20.

Fornberg, B., Larsson, E. and Wright, G. (2004). A new class of oscillatory radial basis
functions, Comput. Math. Appl. 51 8, pp. 1209-1222.

Fornberg, B. and Wright, G. (2004). Stable computation of multiquadric interpolants for
all values of the shape parameter, Comput. Math. Appl. 47, pp. 497-523.

Fornberg, B. and Zuev, J. (2006). The Runge phenomenon and spatially variable shape
parameters in RBF interpolation, Comput. Math. Appl., submitted.

Franke, C. and Schaback, R. (1998a). Solving partial differential equations by collocation
using radial basis functions, Appl. Math. Comp. 93, pp. 73-82.

Franke, C. and Schaback, R. (1998b). Convergence orders of meshless collocation methods
using radial basis functions, Adv. in Comput. Math. 8, pp. 381-399.

Franke, R. (1977). Locally determined smooth interpolation at irregularly spaced points
in several variables, J. Inst. Math. Applic. 19, pp. 471-482.

Franke, R. (1982a). Scattered data interpolation: tests of some methods, Math. Comp. 48,
pp. 181-200.

Franke, R. (1982b). Smooth interpolation of scattered data by local thin plate splines,
Comput. Math. Appl. 8, pp. 273-281.

Franke, R. (1985). Thin plate splines with tension, Comput. Aided Geom. Design 2, pp. 87-
95.

Franke, R. (1987). Recent advances in the approximation of surfaces from scattered data, in
Topics in Multivariate Approximation, C. K. Chui, L. L. Schumaker, and F. Utreras
(eds.), Academic Press (New York), pp. 79-98.

Bibliography 465

Franke, R. (1990). Approximation of scattered data for meteorological applications, in Mul­
tivariate Approximation and Interpolation, ISNM 94, W. Haussman and K. Jetter
(eds.), Birkhauser (Basel), pp. 107-120.

Franke, R. (1995). Paper presented at SIAM Geometric Modeling Conference in Nashville
Nov. 1995.

Franke, R., Hagen, H. and Nielson, G. M. (1994). Least squares surface approximation to
scattered data using multiquadric functions, Adv. in Comput. Math. 2, pp. 81-99.

Franke, R., Hagen, H. and Nielson, G. M. (1995). Repeated knots in least squares mul­
tiquadric functions, in Geometric Modelling - Dagstuhl 1993, H. Hagen, G. Farin
and H. Noltemeier (eds.), Springer Verlag (Berlin), pp. 177-187.

Franke, R. and Nielson, G. M. (1991). Scattered data interpolation and applications: A
tutorial and survey, in Geometric Modeling, Methods and Applications, H. Hagen
and D. Roller (eds.), Springer Verlag (Berlin), pp. 131-160.

Franke, R. and Salkauskas, K. (1995). Localization of multivariate interpolation and
smoothing methods, Paper presented at SIAM Geometric Modeling Conference,
Nashville, 1995.

Freeden, W. (1982). Spline methods in geodetic approximation problems, Math. Meth.
Appl. Sci. 4, pp. 382-396.

Freeden, W. (1984). Spherical spline interpolation - basic theory and computational
aspects, J. Comput. Appl. Math. 11, pp. 367-375.

Freeden, W. (1987). A spline interpolation method for solving boundary value problems of
potential theory from discretely given data, Num. Meth. Part. Diff. Eq. 3, pp. 375-
398.

Freeden, W., Gervens, T. and Schreiner, M. (1998). Constructive Approximation on the
Sphere, Oxford University Press (Oxford).

Freeden, W., Schreiner, M. and Franke, R. (1997). A survey on spherical spline approxi­
mation, Surv. Math. Ind. 7, pp. 29-85.

Freeman, J. A. and Saad, D. (1995). Learning and generalization in radial basis function
networks, Neural Computation 7, pp. 1000-1020.

Frigo, M. and Johnson, S. G. FFTW: The fastest Fourier transform in the West (C library),
http://vvv.fftv.org/.

Galperin, E. A. and Zheng, Q. (1993). Solution and control of PDE via global optimization
methods, Comput. Math. Appl. 25, pp. 103-118.

Gaspar, C. (2004). A meshless polyharmonic-type boundary interpolation method for solv­
ing boundary integral equations, Engineering Analysis with Boundary Elements 28,
pp. 1207-1216.

Gasper, G. (1975). Positivity and special functions, in Theory and Application of Special
Functions, R. Askey (ed.), Academic Press (New York), pp. 375-433.

Gel'fand, I. M. and Schilow, G. E. (1960). Verallgemeinerte Funktionen, Vol. 1, Deutscher
Verlag der Wissenschaften (Leipzig).

Gel'fand, I. M. and Vilenkin, N. Ya. (1964). Generalized Functions Vol. 4, Academic Press
(New York).

Ghorbany, M. and Soheili, A. R. (2004). Moving element free Petrov-Galerkin viscous
method, J. Chinese Inst. Engineers 27, pp. 473-479.

Girosi, F. (1992). Some extensions of radial basis functions and their applications in arti­
ficial intelligence, Comput. Math. Appl. 24, pp. 61-80.

Girosi, F. (1998). An equivalence between sparse approximation and support vector ma­
chines, Neural Computation 10, pp. 1455-1480.

Girosi, F. and Anzellotti, G. (1993). Rates of convergence for radial basis functions and
neural networks, in Artificial Networks for Speech and Vision, R. J. Mammone (ed.),
Chapman & Hall, London, 1993, pp. 97-114.

466 Meshfree Approximation Methods with MATLAB

Girosi, F., Jones, M. and Poggio, T. (1993). Regularization theory and neural network
architectures, MIT AI memo 1430.

Gneiting, T. (1999). Correlation functions for atmospheric data analysis, Quart. J. Mete­
orol. Soc. 125, pp. 2449-2464.

Gneiting, T. (2002). Compactly supported correlation functions, J. Multivariate Analysis
83, pp. 493-508.

Golberg, M. A. (1995). A note on the sparse representation of discrete integral operators,
Appl. Math. Comp. 70, pp. 97-118.

Golberg, M. A. (1996). Recent developments in the numerical evaluation of particular
solutions in the boudary element method, Appl. Math. Comp. 75, pp. 91-101.

Golberg, M. A. and Chen, C. S. (1994). The theory of radial basis functions applied to the
BEM for inhomogeneous partial differential equations, Boundary Elements Comm.
5, pp. 57-61.

Golberg, M. A. and Chen, C. S. (1996) A bibliography on radial basis function approxi­
mation, UNLV.

Golberg, M.A. and Chen, C. S. (1997). Discrete Projection Methods for Integral Equations,
Computational Mechanics Publications (Southampton).

Golberg, M. A., Chen, C. S. and Bowman, H. (1999). Some recent results and proposals
for the use of radial basis functions in the BEM, Eng. Anal. with Bound. Elem. 23,
pp. 285-296.

Golberg, M. A., Chen, C. S., Bowman, H. and Power, H. (1998). Some comments on
the use of radial basis functions in the dual reciprocity method, Comput. Mech. 21,
pp. 141-148.

Golberg, M.A., Chen, C. S. and Karur, S. R. (1996). Improved multiquadric approximation
for partial differential equations, Eng. Anal. with Bound. Elem. 18, pp. 9-17.

von Golitschek, M. and Schumaker, L. L. (1990). Data fitting by penalized least squares,
in Algorithms for Approximation II, M. G. Cox and J. C. Mason (eds.), Chapman
& Hall (London), pp. 210-227.

Golomb, M. and Weinberger, H. F. (1959). Optimal approximation and error bounds,
in On Numerical Approximation, R. E. Langer(ed.), University of Wisconsin Press,
pp. 117-190.

Golub, G. H. and Van Loan, C. F. (1989). Matrix Computations, Johns Hopkins University
Press (Baltimore).

Goodsell, G. (1997). A multigrid-type method for thin plate spline interpolation on a circle,
IMA J. Numer. Anal. 17, pp. 321-327.

Gottlieb, D. and Lustman, L. (1983). The spectrum of the Chebyshev collocation operator
for the heat equation, SIAM J. Numer. Anal. 20 5, pp. 909-921.

Gram, J. P. (1883). Uber Entwicklung reeler Functionen in Reihen mittelst der Methode
der kleinsten Quadrate, J. Math. 94, pp. 41-73.

Greengard, L. (1994). Fast algorithms for classical physics, Science 265, pp. 909-914.
Greengard, L. and Rokhlin, V. (1987). A fast algorithm for particle simulations, J. Comput.

Phys. 73 2, pp. 325-348.
Greengard, L. and Strain, J. (1991). The fast Gauss transform, SIAM J. Sci. Statist.

Comput. 12, pp. 79-94.
Greengard, L. F. and Sun, X. (1998). A new version of the fast Gauss transform, Doc.

Math. J. DMV, Extra Volume ICM, pp. 575-584.
Gu, C. and Wahba, G. (1993). Semiparametric analysis of variance with tensor product

thin plate splines, J. Roy. Statist. Soc. Ser. B 55, pp. 353-368.
Guo, K., Hu, S. and Sun, X. (1993a). Conditionally positive definite functions and Laplace­

Stieltjes integrals, J. Approx. Theory 7 4, pp. 249-265.

Bibliography 467

Guo, K., Hu, S. and Sun, X. (1993b). Cardinal interpolation using linear combinations of
translates of conditionally positive definite functions, Numer. Fune. Anal. Optim.
14, pp. 371-381.

Guo, K. and Sun, X. (1991). Scattered data interpolation by linear combinations of trans­
lates of conditionally positive definite functions, Numer. Fune. Anal. Optim. 12,
pp. 137-152.

Gutzmer, T. (1996). Interpolation by positive definite functions on locally compact groups
with application to S0(3), Results Math. 29, pp. 69-77.

Hagan, R. E. (1993). Multiquadrics in engineering modeling, in Proceedings ASCE National
Conference on Irrigation and Drainage Engineering, Park City, Utah.

Hagan, R. E. and Kansa, E. J. (1994). Studies of the R parameter in the multiquadric
function applied to ground water pumping, J. Appl. Sci. Comput. 1, pp. 266-281.

Hales, S. J. and Levesley, J. (2000). On compactly supported, positive definite, radial basis
functions, Technical Report 2000/30, University of Leicester, UK.

Hales, S. J. and Levesley, J. (2002). Error estimates for multilevel approximation using
polyharmonic splines, Numer. Algorithms 30, pp. 1-10.

Halgamuge, S. K., Poechmueller, W. and Glesner, M. (1995). An alternative approach for
generation of membership functions and fuzzy rules based on radial and cubic basis
function networks, lnternat. J. Approx. Reason. 12, pp. 279--298.

Halton, E. J. and Light, W. A. (1993). On local and controlled approximation order, J.
Approx. Theory 72, pp. 268-277.

Halton, J. H. (1960). On the efficiency of certain quasi-random sequences of points in
evaluating multi-dimensional integrals, Numer. Math. 2, pp. 84-90.

Handscomb, D. (1993). Local recovery of a solenoidal vector field by an extension of the
thin-plate spline technique, Numer. Algorithms 5 1-4, pp. 121-129.

Hangelbroek, T. (2006). Error estimates for thin plate spline approximation in the disc,
Constr. Approx., to appear.

Harder, R. L. and Desmarais, R. N. (1972). Interpolation using surface splines, J. Aircraft
9, pp. 189-191.

Hardy, R. L. (1971). Multiquadric equations of topography and other irregular surfaces,
J. Geophys. Res. 76, pp. 1905-1915.

Hardy, R. L. (1972). Geodetic applications of multiquadric analysis, AVN Allg. Vermess.
Nachr. 79, pp. 389-406.

Hardy, R. L. (1975). Research results in the application of multiquadric equations to
surveying and mapping problems, Survg. Mapp. 35, pp. 321-332.

Hardy, R. L. (1977). Least squares prediction, Photogramm. Eng. and Remote Sensing 43,
pp. 475-492.

Hardy, R. L. (1990). Theory and applications of the multiquadric-biharmonic method,
Comput. Math. Appl. 19, pp. 163-208.

Hardy, R. L. (1992a). Comments on the discovery and evolution of the multiquadric
method, Comput. Math. Appl. 24, pp. xi-xii.

Hardy, R. L. (1992b). A contribution of the multiquadric method: interpolation of potential
inside the earth, Comput. Math. Appl. 24, pp. 81-97.

Hardy, R. L. and Gopfert, W. M. (1975). Least squares prediction of gravity anomalies,
geodial undulations, and deflections of the vertical with multiquadric harmonic func­
tions, Geophys. Res. Letters 2, pp. 423-426.

Hardy, R. L. and Nelson, S. A. (1986). A multiquadric-biharmonic representation and
approximation of disturbing potential, Geophys. Res. Letters 13, pp. 18-21.

Hardy, R. L. and Siranyone, S. (1989). The multiquadric-biharmonic method of a three

468 Meshfree Approximation Methods with MATLAB

dimensional mapping inside ore deposits, in Proceedings of Multinational Conference
on Mine Planning and Design, University of Kentucky.

Hartman, E. J., Keeler, J. D. and Kowalski, J. M. (1990). Layered neural networks with
Gaussian hidden units as universal approximations, Neural Computations 2, pp. 210-
215.

Hartmann, S. (1998). Multilevel-Fehlerabschiitzung bei der Interpolation mit radialen Ba­
sisfunktionen, Ph.D. Dissertation, Universitiit Gottingen.

Heiss, M. and Kampl, S. (1996). Multiplication-free radial basis function network, IEEE
Trans. Neural Networks 7, pp. 1461-1464.

Hollig, K. (2003). Finite Element Methods With B-splines, SIAM Frontiers in Applied
Mathematics no. 26 (Philadelphia).

Hon, Y. C. (1999). Multiquadric collocation method with adaptive technique for problems
with boundary layer, Appl. Sci. Comput. 6 3, pp. 173-184.

Hon, Y. C. and Mao, X. Z. (1997). A multiquadric interpolation method for solving initial
value problems, J. Sci. Comput. 12 1, pp. 51-55.

Hon, Y. C. and Mao, X. Z. (1998). An efficient numerical scheme for Burgers' equation,
Appl. Math. Comput. 95, pp. 37-50.

Hon, Y. C. and Mao, X. Z. (1999). A radial basis function method for solving options
pricing model, Financial Engineering 8, pp. 31-49.

Hon, Y. C. and Schaback, R. (2001). On nonsymmetric collocation by radial basis func­
tions, Appl. Math. Comput. 119, pp. 177-186.

Hon, Y. C., Schaback, R. and Zhou, X. (2003). An adaptive greedy algorithm for solving
large RBF collocation problems, Numer. Algorithms 32, pp. 13-25.

Hon, Y. C. and Wu, Z. (2000). Additive Schwarz domain decomposition with a radial basis
approximation, Int. J. Appl. Math. 4, pp. 81-98.

Horn, R. A. and Johnson, C. R. (1985). Matrix Analysis, Cambridge University Press
(Cambridge).

Horn, R. A. and Johnson, C. R. (1991). Topics in Matrix Analysis, Cambridge University
Press (Cambridge).

Hu, H.-Y., Li, Z.-C. and Cheng, A. H.-D. (2005). Radial basis collocation methods for
elliptic boundary value problems, Comput. Math. Appl. 50, pp. 289-320.

Hubbert, S. and Morton, T. M. (2004a). A Duchon framework for the sphere, J. Approx.
Theory 129, pp. 28-57.

Hubbert, S. and Morton, T. M. (2004b). Lp-error estimates for radial basis function inter­
polation on the sphere, J. Approx. Theory 129, pp. 58-77.

Hunt, K. J., Haas, R. and Murray Smith, R. (1996). Extending the functional equivalence
of radial basis function networks and fuzzy inference systems, IEEE Trans. Neural
Networks 7, pp. 776-781.

Hutchinson, M. F. (1991). The application of thin plate smoothing splines to continent­
wide data assimilation, in BMRC Research Report No.27, Data Assimilation Sys­
tems, J. D. Jasper (ed.), Bureau of Meteorology (Melbourne), pp. 104-113.

Hutchinson, M. F. (1993). On thin plate splines and kriging, in Computing and Science
in Statistics 25, M. E. Tarter and M. D. Lock (eds.), Interface Foundation of North
America, University of California, Berkeley, pp. 55-62.

Hutchinson, M. F. (1995). Interpolating mean rainfall using thin plate smoothing splines,
Int. J. GIS 9, pp. 305-403.

Ingber, M. S., Chen, C. S. and Tanski, J. A. (2004). A mesh free approach using radial basis
functions and parallel domain decomposition for solving three dimensional diffusion
equations, Int. J. Num. Meths. Engng. 60, pp. 2183-2201.

Iske, A. (1994). Charakterisierung bedingt positiv definiter Funktionen fiir multivariate

Bibliography 469

Interpolationsmethoden mit radial Basisfunktionen, Ph.D. Dissertation, Universitiit
Gottingen.

Iske, A. (1995). Reconstruction of functions from generalized Hermite-Birkhoff data, in
Approximation Theory VIII, Vol. 1: Approximation and Interpolation, C. Chui, and
L. Schumaker (eds.), World Scientific Publishing (Singapore), pp. 257-264.

Iske, A. (1999a). Reconstruction of smooth signals from irregular samples by using radial
basis function approximation, in Proceeding of the 1999 International Workshop on
Sampling Theory and Applications, Y. Lyubaskii (ed.), The Norwegian University of
Science and Technology (Trondheim), pp. 82-87.

lske, A. (1999b). Perfect centre placement for radial basis function methods, Technical
Report TUM M9809, Technische Universitiit Miinchen.

lske, A. (2001). Hierarchical scattered data filtering for multilevel interpolation schemes, in
Mathematical Methods for Curves and Surfaces: Oslo 2000, T. Lyche and L. L. Schu­
maker (eds.), Vanderbilt University Press, pp. 211-220.

Iske, A. (2002). Multiresolution Methods in Scattered Data Modelling, Habilitation Thesis,
Technische U niversitiit Miinchen.

Iske, A. (2003a). On the approximation order and numerical stability of local Lagrange
interpolation by polyharmonic splines, in Modern Developments in Multivariate Ap­
proximation, W. Haussmann, K. Jetter, M. Reimer, and J. Stockler (eds.), ISNM
145, Birkhiiuser Verlag (Basel), pp. 153-165.

Iske, A. (2003b). Radial basis functions: basics, advanced topics and meshfree methods
for transport problems, Rend. Sem. Mat. Univ. Pol. Torino 61, pp. 247-285.

Iske, A. (2004). Multiresolution Methods in Scattered Data Modelling, Lecture Notes in
Computational Science and Engineering 37, Springer Verlag (Berlin).

Iske, A. and Sonar, T. (1996). On the structure of function spaces in optimal recovery
of point functionals for ENO-schemes by radial basis functions, Numer. Math. 14,
pp. 177-201.

Ivanov, T., Maz'ya, V. and Schmidt, G. (1999). Boundary layer approximate approxima­
tions and cubature of potentials in domains, Adv. in Comput. Math. 10, pp. 311-342.

Jackson, I. R. H. (1987). Approximation to continuous functions using radial basis func­
tions, in The Mathematics of Surfaces II, R. R. Martin (ed.), Clarendon Press (Ox­
ford), pp. 115-135.

Jackson, I. R. H. (1988a). Radial basis function methods from multivariate approximation,
Ph.D. Dissertation, University of Cambridge.

Jackson, I. R.H. (1988b). Convergence properties ofradial basis functions, Constr. Approx.
4, pp. 243-264.

Jackson, I. R. H. (1989a). An order of convergence for some radial basis functions, !MA
J. Numer. Anal. 9, pp. 567-587.

Jackson, I. R.H. (1989b). Radial basis functions - a survey and new results, in Mathemat­
ics of Surfaces Ill, D. C. Handscomb (ed.), Clarendon Press (Oxford), pp. 115-133.

Jekeli, C. (1994). Hardy's multiquadric-biharmonic method for gravity field predictions,
Comput. Math. Appl. 28, pp. 43-46.

Jetter, K. (1993a). Multivariate approximation from the cardinal interpolation point of
view, in Approximation Theory VII, E. W. Cheney, C. Chui, and L. Schumaker
(eds.), Academic Press (New York), pp. 131-161.

Jetter, K. (1993b). Riesz bounds in scattered data interpolation and L2-approximation, in
Multivariate Approximation: From CAGD to Wavelets, Kurt Jetter and Florencio
Utreras (eds.), World Scientific Publishing (Singapore), pp. 167-177.

Jetter, K. (1994). Conditionally lower Riesz bounds in scattered data interpolation, in
Wavelets, Images, and Surface Fitting, P.-J. Laurent, A. Le Mehaute, and L. L.
Schumaker (eds.), A. K. Peters (Wellesley, MA), pp. 295-302.

470 Meshfree Approximation Methods with MATLAB

Jetter, K. and Stockier, J. (1991). Algorithms for cardinal interpolation using box splines
and radial basis functions, Numer. Math. 60, pp. 97-114.

Jetter, K. and Stockier, J. (1997). Topics in scattered data interpolation and non-uniform
sampling, in Surface Fitting and Multiresolution, A. Le Mehaute, C. Rabut, and
L. L. Schumaker (eds.), Vanderbilt University Press, pp. 191-208.

Jia, R. Q. and Lei, J. J. (1991). Approximation by multiinteger translates of functions
having global support, J. Approx. Theory 72, pp. 2-23.

Jia, R. Q. and Lei, J. J. (1993). A new version of the Strang-Fix conditions, J. Approx.
Theory 74, pp. 221-225.

Johnson, M. J. (1998). A bound on the approximation order of surface splines, Constr.
Approx. 14 3, pp. 429-438.

Johnson, M. J. (2000a). Overcoming the boundary effects in surface spline interpolation,
IMA J. Numer. Anal. 20 3, pp. 405-422.

Johnson, M. J. (2000b). Approximation in Lp(Rd) from spaces spanned by the perturbed
integer translates of a radial function, J. Approx. Theory 107 2, pp. 163-203.

Johnson, M. J. (2000c). An improved order of approximation for thin-plate spline inter­
polation in the unit disc, Numer. Math. 84 3, pp. 451-474.

Johnson, M. J. (200la). On the error in surface spline interpolation of a compactly sup­
ported function, Kuwait J. Sci. Engrg. 28 1, pp. 37-54.

Johnson, M. J. (2001b). The L22-approximation order of surface spline interpolation, Math.
Comp. 70 234, pp. 719-737.

Johnson, M. J. (2004a). An error analysis for radial basis function interpolation, Numer.
Math. 98 4, pp. 675-694.

Johnson, M. J. (2004b). The Lp-approximation order of surface spline interpolation for
1 ::; p ::; 2, Constr. Approx. 20 2, pp. 303-324.

Johnson, M. J. (2006). A note on the limited stability of surface spline interpolation, J.
Approx. Theory 141 2, pp. 182-188.

Jumarhon, B., Amini, S. and Chen, K. (2000). The Hermite collocation method using radial
basis functions, Engineering Analysis with Boundary Elements 24 7-8, pp. 607-611.

Kaczmarz, S. (1937). Approximate solution of systems of linear equations (originally pub­
lished as: Angenaherte Auflosung von Systemen linearer Gleichungen, Bulletin In­
ternational de l'Academie Polonaise des Sciences, Lett. A, 1937, pp. 355-357), Int.
J. Control' 57, pp. 1269-1271.

Kansa, E. J. (1986). Application of Hardy's multiquadric interpolation to hydrodynamics,
Proc. 1986 Simul. Corcf. 4, pp. 111-117.

Kansa, E. J. (1990a). Multiquadrics - A scattered data approximation scheme with ap­
plications to computational fluid-dynamics - I: Surface approximations and partial
derivative estimates, Comput. Math. Appl. 19, pp. 127-145.

Kansa, E. J. (1990b). Multiquadrics - A scattered data approximation scheme with ap­
plications to computational fluid-dynamics - II: Solutions to parabolic, hyperbolic
and elliptic partial differential equations, Comput. Math. Appl. 19, pp. 147-161.

Kansa, E. J. (1992). A strictly conservative spatial approximation scheme for the gov­
erning engineering and physics equations over irregular regions and inhomogeneous
scattered nodes, Comput. Math. Appl. 24, pp. 169-190.

Kansa, E. J. and Carlson, R. E. (1992). Improved accuracy of multiquadric interpolation
using variable shape parameters, Comput. Math. Appl. 24, pp. 99-120.

Kansa, E. J. and Carlson, R. E. (1995). Radial basis functions: a class of grid free scattered
data approximations, Computational Fluid Dynamics J. 3, pp. 479-496.

Kansa, E. J., Fasshauer, G. E., Power, H. and Ling, L. (2004). A volumetric integral
radial basis function method for time-dependent partial differential equations: I.
Formulation, Engineering Analysis with Boundary Elements 28, pp. 1191-1206.

Bibliography 471

Kansa, E. J. and Hon, Y. C. (2000). Circumventing the ill-conditioning problem with mul­
tiquadric radial basis functions: Applications to elliptic partial differential equations, ·
Comput. Math. Applic. 39, pp. 123-137.

Karlin, S. (1968). Total Positivity, Stanford University Press (Stanford).
Karur, S. R. and Ramachandran, P.A. (1994). Radial basis function approximation in the

dual reciprocity method, Math. Comput. Modell. 20, pp. 59-70.
Karur, S. R. and Ramachandran, P.A. (1995). Augmented thin plate spline approximation

in DRM, Boundary Elements Comm. 6, pp. 55-58.
Kent, J. T. and Mardia, K. V. (1994). The link between kriging and thin-plate splines,

Probability, statistics and optimisation, Wiley Ser. Probab. Math. Statist., Wiley
(Chichester), pp. 325-339.

Kimeldorf, G. and Wahba, G. (1971). Some results on Tchebycheffian spline functions, J.
Math. Anal. Applic. 33, pp. 82-95.

Kincaid, D. and Cheney, W. (2002). Numerical Analysis: Mathematics af Scientific Com­
puting (3rd ed.), Brooks/Cole (Pacific Grove, CA).

Komargodsky, Z. and Levin, D. (2006). Hermite type moving-least-squares approximation,
Comput. Math. Appl. 51 8, pp. 1223-1232.

Kounchev, 0. (2001). Multivariate Polysplines: Applications to Numerical and Wavelet
Analysis, Academic Press (New York).

Krzyzak, A., Linder, T. and Lugosi, G. (1996). Nonparametric estimation and classification
using radial basis function nets and empirical risk minimization, IEEE Trans. Neural
Networks 7, pp. 475-487.

Kunis, S. and Potts, D. (2002). NFFT, Softwarepackage (C-library), Universitat Lubeck,
http://www.math.uni-luebeck.de/potts/nfft/.

Kunis, S., Potts, D. and Steidl, G. (2002). Fast Fourier transforms at non-
equispaced knots: A user's guide to a C-library, Universitat Lubeck,
http://www.math.uni-luebeck.de/potts/nfft/.

Kurdila, A. J., Narcowich, F. J. and Ward, J. D. (1995). Persistency of excitation in
identification using radial basis function approximants, SIAM J. Control Optim. 33,
pp. 625-642.

Kybic, J., Blu, T. and Unser, M. (2002a). Generalized sampling: A variational approach
- Part I: Theory, IEEE Trans. Signal Proc. 50, pp. 1965-1976.

Kybic, J., Blu, T. and Unser, M. (2002b). Generalized sampling: A variational approach
- Part II: Applications, IEEE Trans. Signal Proc. 50, pp. 1977-1985.

Lancaster, P. and Salkauskas, K. (1981). Surfaces generated by moving least squares meth­
ods, Math. Comp. 37, pp. 141-158.

Lancaster, P. and Salkauskas, K. (1986). Curve and Surface Fitting, Academic Press (New
York).

Lanzara, F., Maz'ya, V. and Schmidt, G. (2006). Approximate Approximations from scat­
tered data, J. Approx. Theory, in press.

La Rocca, A., Hernandez Rosales, A. and Power, H. (2005). Radial basis function Her­
mite collocation approach for the solution of time dependent convection-diffusion
problems, Engineering Analysis with Boundary Elements 29, pp. 359-370.

Larsson, E. and Fornberg, B. (2003). A numerical study of some radial basis function based
solution methods for elliptic PDEs, Comput. Math. Appl. 46, pp. 891-902.

Larsson, E. and Fornberg, B. (2005). Theoretical and computational aspects of multivariate
interpolation with increasingly fiat radial basis functions, Comput. Math. Appl. 49,
pp. 103-130.

Lee, D. and Shiau, J. H. (1994). Thin plate splines with discontinuities and fast algorithms
for their computation, SIAM J. Scient. Computing 15, pp. 1311-1330.

472 Meshfree Approximation Methods with MATLAB

Lee, S. and Pan, J. C. J. (1996). Unconstrained handwritten numeral recognition based
on radial basis competitive and cooperative networks with spatiotemporal feature
representation, IEEE Trans. Neural Networks 7, pp. 455-474.

Lee, Y. (1991). Handwritten digit recognition using K nearest-neighbor, radial-basis func­
tion, and backpropagation neural networks, Neural Computation 3, pp. 440-449.

Le Gia, Q. T. (2004). Galerkin approximation for elliptic PDEs on spheres, J. Approx.
Theory 130, pp. 125-149.

Leitao, V. M. A. (2001). A meshless method for Kirchhoff plate bending problems, Int. J.
Numer. Meth. Engng. 52, pp. 1107-1130.

Leitao, V. M. A: (2004). REF-based meshless methods for 2D elastostatic problems, En­
gineering Analysis with Boundary Elements 28, pp. 1271-1281.

Leitao, V. M. A. (2006). Application of radial basis functions to linear and non-linear
structural analysis problems, Comput. Math. Appl. 51 8, pp. 1311-1334.

Le Mehaute, A. (1995). Knot removal for scattered data, in Approximation Theory,
Wavelets and Applications, S. P. Singh (ed.), Kluwer (Dordrecht), pp. 197-213.

Le Mehaute, A. (1999). Inf-Convolution and radial basis functions, in New Developments in
Approximation Theory, M. W. Miiller, M. D. Buhmann, D. H. Mache and M. Felten
(eds.), Birkhauser (Basel), pp. 95-108.

Leonard, J. A., Kramer, M. A. and Ungar, J. H. (1992). Using radial basis functions to
approximate a function and its error bounds, IEEE Trans. on Neural Networks 3,
pp. 624-627.

Levesley, J. (1994). Convolution kernels for approximation by radial basis functions, in
Wavelets, Images, and Surface Fitting, P.-J. Laurent, A. Le Mehaute, and L. L.
Schumaker (eds.), A. K. Peters (Wellesley, MA), pp. 343-350.

Levesley, J. (1995a). Pointwise estimates for multivariate interpolation using conditionally
positive definite functions, in Approximation Theory, Wavelets and Applications, S.
P. Singh (ed.), Kluwer (Dordrecht), pp. 381-401.

Levesley, J. (1995b). Convolution kernels based on thin plate splines, Numer. Algorithms
10, pp. 401-419.

Levesley, J. and Kushpel, A. K. (1995). Interpolation on compact Abelian groups using
generalised sk-splies, in Approximation Theory VJII, Vol. 1: Approximation and
Interpolation, C. Chui, and L. Schumaker (eds.), World Scientific Publishing (Sin­
gapore), pp. 317-324.

Levesley, J. and Kushpel, A. K. (1999). Generalised sk-spline interpolation on compact
Abelian groups, J. Approx. Theory 97 2, 311-333.

Levesley, J., Light, W., Ragozin, D. and Sun, X. (1999). A simple approach to the vari­
ational theory for interpolation on spheres, in New Developments in Approxima­
tion Theory, M. W. Miiller, M. D. Buhmann, D. H. Mache and M. Felten (eds.),
Birkhauser (Basel), pp. 117-144.

Levesley, J. and Ragozin, D. (2002). Positive definite kernel interpolation on manifolds:
convergence rates, in Approximation Theory X: Abstract and Classical Analysis,
C. K. Chui, L. L. Schumaker, and J. Stockier (eds.), Vanderbilt University Press,
Nashville, 2002, pp. 277-285.

Levesley, J. and Roach, M. (1995). Quasi-interpolation on compact domains, in Approxi­
mation Theory, Wavelets and Applications, S. P. Singh (ed.), Kluwer (Dordrecht),
pp. 557-566.

Levesley, J. and Sun, X. (1995). Scattered Hermite interpolation by ridge functions, Numer.
Fune. Anal. Optim. 16, pp. 989-1001.

Levesley, J. and Sun, X. (2005). Approximation in rough native spaces by shifts of smooth
kernels on spheres, J. Approx. Theory 133, pp. 269-283.

Bibliography 473

Levesley, J. and Sun, X. (2006). Corrigendum to and two open questions arising from the
article "Approximation in rough native spaces by shifts of smooth kernels on spheres"
[J. Approx. Theory 133 (2005) 269-283], J. Approx. Theory 138 1, pp. 124-127.

Levesley, J., Xu, Y., Light, W. and Cheney, W. (1996). Convolution operators for radial
basis approximation, SIAM J. Math. Anal. 21, pp. 286-304.

Levin, D. (1998). The approximation power of moving least-squares, Math. Comp. 61,
pp. 1517-1531.

Li, J. (2005). Mixed methods for fourth-order elliptic and parabolic problems using radial
basis functions, Adv. in Comput. Math. 23, pp. 21-30.

Li, J., Cheng, A. H.-D. and Chen, C-S. (2003). On the efficiency and exponential con­
vergence of multiquadric collocation method compared to finite element method,
Engineering Analysis with Boundary Elements 27 3, pp. 251-257.

Li, J. and Hon, Y. C. (2004). Domain decomposition for radial basis meshless methods,
Numerical Methods for Partial Differential Equations 20 3, pp. 450-462.

Li, S. and Liu, W. K. (1996). Moving least-square reproducing kernel method Part II:
Fourier analysis, Comp. Meth. Appl. Mech. Eng. 139, pp. 159-193.

Li, S. and Liu, W. K. (2002). Meshfree and particle methods and their applications, Applied
Mechanics Review 55, pp. 1-34.

Li, X. (1998). On simultaneous approximations by radial basis function neural networks,
Appl. Math. Comput. 95, pp. 75-89.

Li, X. and Chen, C. S. (2004). A mesh free method using hyperinterpolation and
fast Fourier transform for solving differential equations, Engineering Analysis with
Boundary Elements 28, pp. 1253-1260.

Li, X., Ho, C.H. and Chen, C. S. (2002). Computational test of approximation of functions
and their derivatives by radial basis functions, Neural Parallel Sci. Comput. 10,
pp. 25-46.

Li, X. and Micchelli, C. A. (2000). Approximation by radial bases and neural networks,
Numer. Algorithms 25, pp. 241-262.

Lindsay, K. and Krasny, R. (2001). A particle method and adaptive treecode for vortex
sheet motion in three-dimensional flow, J. Comput. Physics 172, pp. 879-907.

Light, W. A. (1991). Recent developments in the Strang-Fix theory for approximation
orders, in Curves and Surfaces, P.-J. Laurent, A. Le Mehaute, and L. L. Schumaker
(eds.), Academic Press (New York), pp. 285-292.

Light, W. A. (1992). Some aspects of radial basis function approximation, in Approxi­
mation Theory, Spline Functions and Applications, S. P. Singh (ed.), Kluwer (Dor­
drecht), pp. 163-190.

Light, W. A. (1994). Using radial functions on compact domains, in Wavelets, Images,
and Surface Fitting, P.-J. Laurent, A. Le Mehaute, and L. L. Schumaker (eds.), A.
K. Peters (Wellesley, MA), pp. 351-370.

Light, W. A. (1996). Variational error bounds for radial basis functions, in Numerical
Analysis 1995, D. F. Griffiths and G. A. Watson (eds.), Longman (Harlow), pp. 94-
106.

Light, W. A. and Cheney, E. W. (1991). Interpolation by piecewise-linear radial basis
functions, II, J. Approx. Theory 64, pp. 38-54.

Light, W. A. and Cheney, E. W. (1992a). Interpolation by periodic radial basis functions,
J. Math. Anal. Appl. 168, pp. 111-130.

Light, W. A. and Cheney, E.W. (1992b). Quasi-interpolation with translates of a function
having noncompact support, Constr. Approx. 8, pp. 35-48.

Light, W. A. and Wayne, H. (1995). Error estimates for approximation by radial basis

474 Meshfree Approximation Methods with MATLAB

functions, in Approximation Theory, Wavelets and Applications, S. P. Singh (ed.),
Kluwer (Dordrecht), pp. 215-246.

Light, W. A. and Wayne, H. (1998). On power functions and error estimates for radial
basis function interpolation, J. Approx. Theory 92, pp. 245-266.

Light, W. A. and Wayne, H. (1999). Spaces of distributions and interpolation by translates
of a basis function, Numer. Math. 81, pp. 415-450.

Ling, L. and Hon, Y. C. (2005). Improved numerical solver for Kansa's method based
on affine space decomposition, Engineering Analysis with Boundary Elements 29,
pp. 1077-1085.

Ling, L. and Kansa, E. J. (2004). Preconditioning for radial basis functions with domain
decomposition methods, Math. and Comput. Modelling 40, pp. 1413-1427.

Ling, L. and Kansa, E. J. (2005). A least-squares preconditioner for radial basis functions
collocation methods, Adv. in Comput. Math. 23, pp. 31-54.

Ling, L., Opfer, R. and Schaback, R. (2006). Results on meshless collocation techniques,
Engineering Analysis with Boundary Elements 30, pp. 247-253.

Liu, G. R. (2002). Mesh Free Methods: Moving beyond the Finite Element Method, CRC
Press (Boca Raton, FL).

Liu, W. K., Chen, Y., Aziz Uras, R. and Chang, C. T. (1996). Generalized multiple scale
reproducing kernel particle methods, Comp. Meth. Appl. Mech. Eng. 139, pp. 91-
157.

Liu, W. K., Li, S. and Belytschko, T. (1997). Moving least square reproducing kernel
methods (I) Methodology and convergence, Comp. Meth. Appl. Mech. Eng. 143,
pp. 113-154.

Locher, F. (1981). Interpolation on uniform meshes by the translates of one function and
related attenuation factors, Math. Comp. 37, pp. 403-416.

Lorentz, R., Narcowich, F. J. and Ward, J. D. (2003). Collocation discretizations of the
transport equation with radial basis functions, Applied Mathematics and Computa­
tion 145 1, pp. 97-116.

Lowe, D. (1993). Novel 'topographic' nonlinear feature extraction using radial basis func­
tions for concentration coding in the 'artificial nose', in 3rd JEE International Con­
ference on Artificial Neural Networks, IEE (London).

Lowe, D. and Matthews, R. (1995). Shakespeare vs. Fletcher: a stylistic analysis by radial
basis functions, Computers and Humanities 29, pp. 449-461.

Lowe, D. and McLachlan, A. (1995). Modelling of nonstationary processes using radial
basis function networks, in Artificial Neural Networks, 1995, 300-305.

Lowe, D. and Tipping, M. E. (1995). A novel neural network technique for exploratory
data analysis, in Proceedings of !CANN '95, Vol. 1, EC2 & Cie (Paris), pp. 339-344.

Lowe, D. and Tipping, M. E. (1996). Feed-forward neural networks and topographic map­
pings for exploratory data analysis, Neural Computing and Applications 4, pp. 83-95.

Lowitzsch, S. (2002). Approximation and Interpolation Employing Divergence-Free Radial
Basis Functions with Applications, Ph.D. Dissertation, Texas A&M University.

Lowitzsch, S. (2005). Matrix-valued radial basis functions: stability estimates and appli­
cations, Adv. in Comput. Math. 23 3, pp. 299-315.

Lukacs, E. (1970). Characteristic Functions, Griffin (London).
Lyche, T. (1992). Knot Removal for Spline Curves and Surfaces, in Approximation Theory

VII, E.W. Cheney, C. Chui, and L. Schumaker (eds.), Academic Press (New York),
pp. 207-226.

Madych, W. R. (1989). Cardinal interpolation with polyharmonic splines, in Multivariate
Approximation Theory IV, ISNM 90, C. Chui, W. Schempp, and K. Zeller (eds.),
Birkhiiuser Verlag (Basel), pp. 241-248.

Bibliography 475

Madych, W. R. (1990). Polyharmonic splines, multiscale analysis, and entire functions,
in Multivariate Approximation and Interpolation, ISNM 94, W. Haussman and K.
Jetter (eds.), Birkhauser (Basel), pp. 205-216.

Madych, W. R. (1991) Error estimates for interpolation by generalized splines, in Curves
and Surfaces, P.-J. Laurent, A. Le Mehaute, and L. L. Schumaker (eds.), Academic
Press (New York), pp. 297-306.

Madych, W. R. (1992). Miscellaneous error bounds for multiquadric and related interpo­
lators, Comput. Math. Appl. 24, pp. 121-138.

Madych, W. R. and Nelson, S. A. (1983). Multivariate interpolation: a variational theory,
manuscript.

Madych, W. R. and Nelson, S. A. (1988). Multivariate interpolation and conditionally
positive definite functions, Approx. Theory Appl. 4, pp. 77-89.

Madych, W. R. and Nelson, S. A. (1989). Error bounds for multiquadric interpolation, in
Approximation Theory VI, C. Chui, L. Schumaker, and J. Ward (eds.), Academic
Press (New York), pp. 413-416.

Madych, W. R. and Nelson, S. A. (1990a). Multivariate interpolation and conditionally
positive definite functions, II, Math. Comp. 54, pp. 211-230.

Madych, W. R. and Nelson, S. A. (1990b). Polyharmonic cardinal splines, J. Approx.
Theory 60, pp. 141-156.

Madych, W. R. and Nelson, S. A. (1990c). Polyharmonic cardinal splines: A minimization
property, J. Approx. Theory 63, pp. 303-320.

Madych, W. R. and Nelson, S. A. (1992). Bounds on multivariate polynomials and expo­
nential error estimates for multiquadric interpolation, J. Approx. Theory 70, pp. 94-
114.

Mai-Duy, N. and Tran-Cong, T. (2001a). Numerical solution of differential equations using
multiquadric radial basis function networks, Neural Networks 14, pp. 185-199.

Mai-Duy, N. and Tran-Cong, T. (2001b). Numerical solution of Navier-Stokes equations
using radial basis function networks, Int. J. Numer. Meth. Fluids 37, pp. 65-86.

Maiorov, V. (2005). On lower bounds in radial basis approximation, Adv. in Comp. Math.
22, pp. 103-113.

Mairhuber, J. C. (1956). On Haar's theorem concerning Chebyshev approximation prob­
lems having unique solutions, Proc. Am. Math. Soc. 7, pp. 609-615.

Makroglu, A. (1992). Radial basis functions in the numerical solution of Fredholm and
integro-differential equations, in Advances in Computer Methods for Partial Differ­
ential Equations - VII, R. Vichnevetsky, D. Knight, and G. Richter (eds.), IMACS
(New Brunswick), pp. 478-484.

Makroglu, A. (1994a). Radial basis functions in the numerical solution of nonlinear Volterra
integral equations, J. Appl. Sci. Comput. 1, pp. 33-53.

Makroglu, A. (1994b). Multiquadric collocation methods in the numerical solution of
Volterra integral and integro-differential equations, in Mathematics of Computation
1943-1993, Proc. Sympos. Appl. Math., 48, Amer. Math. Soc. (Providence, RI),
pp. 337-341.

Makroglu, A. and Kansa, E. J. (1993). Multiquadric collocation methods in the numer­
ical solution of Volterra integral equations with weakly singular kernels, Lawrence
Livermore National Laboratory.

Marcozzi, M. D., Choi, S. and Chen, C. S. (1999). RBF and optimal stopping problems: an
application to the pricing of vanilla options on one risky asset, in Boundary Element
Technology XIII, C. S. Chen, C. A. Brebbia, and D. W. Pepper (eds.), WIT Press,
pp. 345-354.

Marcus, M. and Mine, H. (1965). Introduction to Linear Algebra, Dover Publications (New
York), republished 1988.

476 Meshfree Approximation Methods with MATLAB

Matern, B. (1986). Spatial variation (Second ed.), Lecture Notes in Statistics, 36, Springer­
Verlag (Berlin).

Matheron, G. (1965). Les variables regionalisees et leur estimation, Masson (Paris).
Matheron, G. (1973). The intrinsic random functions and their applications, Adv. Appl.

Prob. 5, pp. 439-468.
Mathias, M. (1923). Uber positive Fourier-Integrale, Math. Zeit. 16, pp. 103-125.
MATLAB Central File Exchange, available online at http: I /www.mathworks.com/­

matlabcentral/f ileexchange/.
Maz'ya, V. (1991). A new approximation method and its applications to the calcula­

tion of volume potentials. Boundary point method, in DFG-Kolloquium des DFG­
Forschungsschwerpunktes "Randelementmethoden".

Maz'ya, V. (1994). Approximate approximations, in The Mathematics of Finite Elements
and Applications, J. R. Whiteman (ed.), Wiley (Chichester), pp. 77-104.

Maz'ya, V. and Schmidt, G. (1996). On approximate approximations using Gaussian ker­
nels, IMA J. Numer. Anal. 16, pp. 13-29.

Maz'ya, V. and Schmidt, G. (2001). On quasi-interpolation with non-uniformly distributed
centers on domains and manifolds, J. Approx. Theory 110, pp. 125-145.

McCormick, S. F. (1992). Multilevel Projection Methods for Partial Differential Equa­
tions, CBMS-NSF Regional Conference Series in Applied Mathematics 62, SIAM
(Philadelphia).

McLain, D. H. (1974). Drawing contours from arbitrary data points, Comput. J. 17,
pp. 318-324.

McMahon, J. (1986). Knot selection for least squares approximation using thin plate
splines, M.S. Thesis, Naval Postgraduate School.

McMahon, J. and Franke, R. (1992). Knot selection for least squares thin plate splines,
SIAM J. Sci. Statist. Comput. 13, pp. 484-498.

Meinguet, J. (1979a). Multivariate interpolation at arbitrary points made simple, Z.
Angew. Math. Phys. 30, pp. 292-304.

Meinguet, J. (1979b). An intrinsic approach to multivariate spline interpolation at arbi­
trary points, in Polynomial and Spline Approximations, N. B. Sahney (ed.), Reidel
(Dordrecht), pp. 163-190.

Meinguet, J. (1979c). Basic mathematical aspects of surface spline interpolation, in Nu­
merische Integration, G. Hammerlin (ed.), Birkhauser (Basel), pp. 211-220.

Meinguet, J. (1984). Surface spline interpolation: basic theory and computational aspects,
in Approximation Theory and Spline Functions, S. P. Singh, J. H. W. Burry, and B.
Watson (eds.), Reidel (Dordrecht), pp. 127-142.

Melenk, J. M. and Babuska, I. (1996). The partition of unity finite element method: basic
theory and applications, Comput. Methods Appl. Mech. Engrg. 139, pp. 289-314.

Menegatto, V. A. (1992). Interpolation on Spherical Spaces, Ph.D. Dissertation, University
of Texas Austin.

Menegatto, V. A. (1994a). Interpolation on spherical domains, Analysis 14, pp. 415-424.
Menegatto, V. A. (1994b). Strictly positive definite kernels on the Hilbert sphere, Appl.

Anal. 55, pp. 91-101.
Menegatto, V. A. (1995a). Interpolation on the complex Hilbert sphere, Approx. Theory

Appl. 11, pp. 1-9.
Menegatto, V. A. (1995b). Strictly positive definite kernels on the circle, Rocky Mountain

J. Math. 25, pp. 1149-1163.
Menegatto, V. A. (1997). Interpolation on the complex Hilbert sphere using positive defi­

nite and conditionally negative definite functions, Acta Mathematica Hungarica 75
3, pp. 215-225.

Bibliography 477

Menegatto, V. A., Oliveira, C. P. and Peron, A. P. (2006) Strictly positive definite kernels
on subsets of the complex plane, Comput. Math. Appl. 51 8, pp. 1233-1250.

Menegatto, V. A. and Peron, A. P. (2004). Conditionally positive definite kernels on Eu­
clidean domains, J. Math. Anal. Appl. 294 1, pp. 345-359.

Menger, K. (1928). Die Metrik des Hilbertschen Raumes, Anzeiger der Akad. der Wis­
senschaften in Wien, Nat. KL 65, pp. 159-160.

Meyer, C. D. (2000). Matrix Analysis and Applied Linear Algebm, SIAM (Philadelphia).
Mhaskar, H. N. (1990). Weighted polynomials, radial basis functions and potentials on

locally compact spaces, Numer. Fune. Anal. Optim. 11, pp. 987-1017.
Mhaskar, H. N. and Micchelli, C. A. (1992). Approximation by superposition of sigmoidal

and radial basis functions, Adv. in Appl. Math. 13, pp. 350-373.
Micchelli, C. A. (1986). Interpolation of scattered data: distance matrices and conditionally

positive definite functions, Constr. Approx. 2, pp. 11-22.
Micchelli, C. A. and Rivlin, T. J. (1977). A survey of optimal recovery, in Optimal Es­

timation in Approximation Theory (Proc. Internat. Sympos., Preudenstadt, 1976),
C. A. Micchelli and T. J. Rivlin (eds.), Plenum Press (New York), pp. 1-54.

Micchelli, C. A. and Rivlin, T. J. (1980). Optimal recovery of best approximations, Resul­
tate Math. 3 1, pp. 25-32.

Micchelli, C. A. and Rivlin, T. J. (1985). Lectures on optimal recovery, in Numerical
analysis, Lancaster 1984, P.R. Turner (ed.), Lecture Notes in Math., 1129, Springer
(Berlin), pp. 21-93.

Micchelli, C. A., Rivlin, T. J. and Winograd, S. (1976). The optimal recovery of smooth
functions, Numer. Math. 26 2, pp. 191-200.

Miranda, J. (2004). Incorporating R-functions into the Theory of Positive Definite Func­
tions to Solve Elliptic Partial Differential Equations, Ph.D. Dissertation, Illinois
Institute of Technology.

Monaghan, J. J. (1988). An introduction to SPH, Comp. Phys. Comm. 48, pp. 89-96.
Montes, P. (1991). Local kriging interpolation: Application to scattered data on the sphere,

in Curves and Surfaces, P.-J. Laurent, A. Le Mehaute, and L. L. Schumaker (eds.),
Academic Press (New York), pp. 325-329.

Montes, P. (1994). Smoothing noisy data by kriging with nugget effects, in Wavelets,
Images, and Surface Fitting, P.-J. Laurent, A. Le Mehaute, and L. L. Schumaker
(eds.), A. K. Peters (Wellesley, MA), pp. 371-378.

Moody, J. and Darken, C. J. (1989). Fast learning in networks of locally-tunes processing
units, Neural Computations l, pp. 281-294.

Moridis, G. J. and Kansa, E. J. (1992). The method of Laplace transform multiquadrics
for the solution of the groundwater flow equation, in Advances in Computer Methods
for Partial Differential Equations - VII, R. Vichnevetsky, D. Knight, and G. Richter
(eds.), !MACS (New Brunswick), pp. 539-545.

Moridis, G. J. and Kansa, E. J. (1994). The Laplace transform multiquadric method:
A highly accurate scheme for the numerical solution of linear partial differential
equations, J. Appl. Sc. Comp. 1, pp. 375-407.

Morse, B., Yoo, T. S., Rheingans, P., Chen, D. T. and Subramanian, K. R. (2001). Interpo­
lating implicit surfaces from scattered surface data using compactly supported radial
basis functions, in 2001 International Conference on Shape Modeling and Applica­
tions (SM! 2001), IEEE Computer Society Press (Los Alamitos, CA), pp. 89-98.

Morton, T. M. (2004). Two approaches to solving pseudodifferential equations on spheres
using zonal kernels, Engineering Analysis with Boundary Elements 28, pp. 1227-
1232.

478 Meshfree Approxi.mation Methods with MATLAB

Mouat, C. T. (2001). Fast algorithms and preconditioning techniques for fitting radial
basis functions, Ph.D. Dissertation, University of Canterbury, NZ.

Miiller, C. (1966). Spherical Harmonics, Springer Lecture Notes in Mathematics (Vol. 17).
Mulgrew, B. (1996). Applying radial basis functions, IEEE Signal Proc. Magazine 13,

pp. 50-65.
Musavi, M. T., Ahmed, W., Chan, K. H., Faris, K. B. and Hummels, D. M. (1992). On

the training of radial basis function classifiers, Neural Networks 5, pp. 595-603.
Muttiah, R., Hutchinson, M. and Dyke, P. (1995). Climate surfaces of Texas using thin

plate splines, in Approximation Theory VIII, Vol. 1: Approximation and Interpo­
lation, C. Chui, and L. Schumaker (eds.), World Scientific Publishing (Singapore),
pp. 427-434.

Myers, D. E. (1988). Interpolation with positive definite functions, Sciences de la Terre
28, pp. 252-265.

Myers, D. E. (1992). Kriging, ccrKriging, radial basis functions and the role of positive
definiteness, Comput. Math. Appl. 24, pp. 139-148.

Myers, D. E. (1993). Selection of a radial basis function for interpolation, in Advances
in Computer Methods for Partial Differential Equations - VII, R. Vichnevetsky,
D. Knight, and G. Richter (eds.), IMACS (New Brunswick), pp. 553-558.

Nadaraya, E. A. (1964). On estimating regression, Theor. Probab. Appl. 9, pp. 141-142.
Narcowich, F. J. (1995). Generalized Hermite interpolation and positive definite kernels

on a Riemannian manifold, J. Math. Anal. Appl. 190, pp. 165-193.
Narcowich, F. J., Schaback, R. and Ward, J. D. (1999). Multilevel interpolation and ap­

proximation, Appl. Comput. Harmon. Anal. 7, pp. 243-261.
Narcowich, F. J., Sivakumar, N. and Ward, J. D. (1994). On condition numbers associated

with radial-function interpolation, J. Math. Anal. Appl. 186, pp. 457-485.
Narcowich, F. J., Smith, P. and Ward, J. D. (1995). Density of translates ofradial functions

on compact sets, in Approximation Theory VIII, Vol. 1: Approximation and Inter­
polation, C. Chui, and L. Schumaker (eds.), World Scientific Publishing (Singapore),
pp. 435-442.

Narcowich, F. J. and Ward, J. D. (1991a). Norms of inverses and condition numbers for
matrices associated with scattered data, J. Approx. Theory 64, pp. 69-94.

Narcowich, F. J. and Ward, J. D. (1991b). Norms of inverses for matrices associated with
scattered data, in Curves and Surfaces, P.-J. Laurent, A. Le Mehaute, and L. L.
Schumaker (eds.), Academic Press (New York), pp. 341-348.

Narcowich, F. J. and Ward, J. D. (1992). Norm estimates for the inverses of a general
class of scattered-data radial-function interpolation matrices, J. Approx. Theory 69,
pp. 84-109.

Narcowich, F. J. and Ward, J. D. (1994a). Generalized Hermite interpolation via matrix­
valued conditionally positive definite functions, Math. Comp. 63, pp. 661-687.

Narcowich, F. J. and Ward, J. D. (1994b). Wavelets associated with periodic basis func­
tions, CAT #340, Texas A&M University.

Narcowich, F. J. and Ward, J. D. (1995). Nonstationary spherical wavelets for scattered
data, in Approximation Theory VIII, Vol. 2: Wavelets and Multilevel Approximation,
C. Chui, and L. Schumaker (eds.), World Scientific Publishing (Singapore), pp. 301-
308.

Narcowich, F. J. and Ward, J. D. (1996). Nonstationary wavelets on the m-sphere for
scattered data, Appl. Comput. Harmon. Anal. 3 4, pp. 324-336.

Narcowich, F. J. and Ward, J. D. (2002). Scattered-data interpolation on spheres: error
estimates and locally supported basis functions, SIAM J. Math. Anal. 33 6, pp. 1393-
1410.

Bibliography 479

Narcowich, F. J. and Ward, J. D. (2004). Scattered-data interpolation on llr: error es­
timates for radial basis and band-limited functions, SIAM J. Math. Anal. 36 1,
pp. 284-300.

Narcowich, F. J., Ward, J. D. and Wendland, H. (2003). Refined error estimates for radial
basis function interpolation, Constr. Approx. 19 4, pp. 541-564.

Narcowich, F. J., Ward, J. D. and Wendland, H. (2005). Sobolev bounds on functions
with scattered zeros, with applications to radial basis function surface fitting, Math.
Comp. 74, pp. 743-763.

Narcowich, F. J., Ward, J. D. and Wendland, H. (2006). Sobolev error estimates and
a Bernstein inequality for scattered data interpolation via radial basis functions,
Constr. Approx. 24 2, pp. 175-186.

Neyman, J. and Pearson, E. S. (1936). Contributions to the Theory of Testing Statistical
Hypotheses, Statistical Researc,h Memoirs 1, pp. 1-37.

Nielson, G. M. (1987). Coordinate free scattered data interpolation, in Topics in Multivari­
ate Approximation, C. K. Chui, L. L. Schumaker, and F. Utreras (eds.), Academic
Press (New York), pp.175-184.

Nielson, G. M. and Foley, T. A. (1989). A survey of applications of an affine invariant
norm, in Mathematical Methods in Computer Aided Geometric Design, T. Lyche
and L. Schumaker (eds.), Academic Press (New York), pp. 445-467.

Nieslony, A., Potts, D. and Steidl, G. (2004). Rapid evaluation of radial functions by fast
Fourier transforms at nonequispaced knots, Numer. Math. 98, pp. 329-351.

Nuss, W. A. and Titley, D. W. (1994). Use of multiquadric interpolation for meteorological
objective analysis, Monthly Weather Review 12, pp. 1011-1031.

Ohtake, Y., Belyaev, A. and Seidel, H.P. (2003a). A multi-scale approach to 3D scattered
data interpolation with compactly supported basis functions, in Shape Modeling
International, 2003, pp. 153-161.

Ohtake, Y., Belyaev, A., Alexa, M., Turk, G. and Seidel, H. P. (2003b). Multi-level par­
tition of unity implicits, ACM Trans. on Graphics (Proc. SIGGRAPH 2003) 22 3
pp. 463-470.

Opfer, R. (2004). Multiscale Kernels, Ph.D. Dissertation, Universitiit Gottingen.
Opfer, R. (2006). Multiscale Kernels, Adv. in Comput. Math. 25 4, pp. 357-380.
Orr, M. J. L. (1995). Regularization in the selection of radial basis function centres, Neural

Computation 7, pp. 606-{)23.
Orr, M. J. L. (1996). Introduction to radial basis function networks, Cen­

tre for Cognitive Sciences, University of Edinburgh, available online at
http://'WV'W'.anc.ed.ac.uk/rbf/intro/intro.html.

Orr, M., Hallam, J., Takezawa, K., Murray, A., Ninomiya, S., Oide, M. and Leonard, T.
(2000). Combining regression trees and radial basis function networks, Int. J. Neural
Systems 10, pp. 453-465.

Pahner, U. and Hameyer, K. (2000). Adaptive coupling of differential evolution and mul­
tiquadrics approximation for the tuning of the optimization process, IEEE Trans.
Magn. 36 1, pp. 1047-1051.

Park, J. and Sandberg, I. W. (1991). Universal approximation using radial bais function
networks, Neural Computation 3, pp. 246-257.

Park, J. and Sandberg, I. W. (1993). Approximation and radial basis function networks,
Neural Computation 5, pp. 305-316.

Parzen, E. (1962). On estimation of a probability density function and mode, Ann. Math.
Statist. 33, pp. 1065-1076.

Pegram, C. and Pegram, D. S. (1993). Integration of rainfall via multiquadric surfaces over
polygons, J. Hydraulic Eng. 114, pp. 151-163.

480 Meshfree Approximation Methods with MATLAB

Pinkus, A. (2004). Strictly positive definite functions on a real inner product space, Adv.
in Comput. Math. 20, pp. 263-271.

Platte, R. B. and Driscoll, T. A. (2004). Computing eigenmodes of elliptic operators using
radial basis functions, Comput. Math. Appl. 48, pp. 561-576.

Platte, R. B. and Driscoll, T. A. (2005). Polynomials and potential theory for Gaussian
radial basis function interpolation, SIAM J. Numer. Anal., 43, pp. 750-766.

Platte, R. B. and Driscoll, T. A. (2006). Eigenvalue stability of radial basis function
discretizations for time-dependent problems, Comput. Math. Appl. 51 8, pp. 1251-
1268.

Poggio, T. and Girosi, F. (1990). Networks for approximation and learning, Proc. IEEE
78, pp. 1481-1497.

Potter, E. H. (1981). Multivariate polyharmonic spline interpolation, Ph.D. Dissertation,
Iowa State University.

Pottmann, H. and Eck, M. (1990). Modified multiquadric methods for scattered data
interpolation over a sphere, Comput. Aided Geom. Design 7, pp. 313-321.

Pottmann, M. and Jorgl, H. P. (1995). Radial basis function networks for internal model
control, Appl. Math. Comput. 70, pp. 283-298.

Potts, D. and Steidl, G. (2003). Fast summation at nonequispaced knots by NFFTs, SIAM
J. Sci. Comput. 24, pp. 2013-2037.

Powell, M. J. D. (1987). Radial basis functions for multivariable interpolation: a review,
in Algorithms for the Approximation of Functions and Data, J. C. Mason and M. G.
Cox (eds.), Oxford Univ. Press (Oxford), pp. 143-167.

Powell, M. J. D. (1988). Radial basis function approximations to polynomials, in Numerical
Analysis 1987, D. F. Griffiths and G. A. Watson (eds.), Longman Scientific and
Technical (Essex), pp. 223-241.

Powell, M. J. D. (1990). Univariate multiquadric approximation: reproduction of linear
polynomials, in Multivariate Approximation and Interpolation, ISNM 94, W. Hauss­
man and K. Jetter (eds.), Birkhauser (Basel), pp. 227-240.

Powell, M. J. D. (1991). Univariate multivariate interpolation: some recent results, in
Curves and Surfaces, P.-J. Laurent, A. Le Mehaute, and L. L. Schumaker (eds.),
Academic Press (New York), pp. 371-382.

Powell, M. J. D. (1992a). The theory of radial basis functions in 1990, in Advances in
Numerical Analysis II: Wavelets, Subdivision, and Radial Basis Functions, W. Light
(ed.), Oxford University Press (Oxford), pp. 105-210.

Powell, M. J. D. (1992b). Tabulation of thin-plate splines on a very fine two-dimensional
grid, in Numerical Methods in Approximation Theory, ISNM 105, D. Braess, L. L.
Schumaker (ed.), Birkhauser (Basel), pp. 221-244.

Powell, M. J. D. (1993). Truncated Laurent expansions for the fast evaluation of thin
plate splines, in Algorithms for Approximation III, J. C. Mason and M. G. Cox
(eds.), Chapman and Hall (London), pp. 99-120.

Powell, M. J. D. (1994a). Some algorithms for thin plate spline interpolation to functions
of two variables, in Advances in Computational Mathematics (New Delhi, 1993),
H. P. Dikshit and C. A. Micchelli (eds.), World Sci. Publishing, pp. 303-319.

Powell, M. J. D. (1994b). The uniform convergence of thin plate spline interpolation in
two dimensions, Numer. Math. 68, pp. 107-128.

Powell, M. J. D. (1997). A new iterative algorithm for thin plate spline interpolation in
two dimensions, Annals of Numerical Mathematics 4, pp. 519-528.

Powell, M. J. D. (1999). Recent research at Cambridge on radial basis functions, in New De­
velopments in Approximation Theory, M. W. Miiller, M. D. Buhmann, D. H. Mache
and M. Felten (eds.), Birkhauser (Basel), pp. 215-232.

Bibliography 481

Power, H. and Barraco, V. (2002). A comparison analysis between unsymmetric and sym­
metric radial basis function collocation methods for the numerical solution of partial
differential equations, Comput. Math. Appl. 43, pp. 551-583.

Qian, L.-F. and Ching, H.-K. (2004). Static and dynamic analysis of 2-D functionally
graded elasticity by using meshless local Petrov-Galerkin method, J. Chinese Inst.
Engineers 27, pp. 491-503.

Quak, E., Sivakumar, N. and Ward, J. D. (1993). Least squares approximation by radial
functions, SIAM J. Numer. Anal. 24, 1043-1066.

Rabut, C. (1989). Fast quasi-interpolation of surfaces with generalized B-splines on reg­
ular nets, in Mathematics of Surfaces III, D. C. Handscomb (ed.), Clarendon Press
(Oxford), pp. 429-449.

Rabut, C. (1990). B-splines polyharmoniques cardinales: Interpolation, quasi-interpo­
lation, filtrage, Ph.D. Dissertation, University of Toulouse.

Rabut, C. (1992a). An introduction to Schoenberg's approximation, Comput. Math. Appl.
24, pp. 149-175.

Rabut, C. (1992b). Elementary m-harmonic cardinal B-splines, Numer. Algorithms 2,
pp. 39-67.

Rabut, C. (1992c). High level m-harmonic cardinal B-splines, Numer. Algorithms 2,
pp. 68-84.

Ragozin, D. L. and Levesley, J. (1996). Zonal kernels, approximations and positive defi­
niteness on spheres and compact homogeneous spaces, in Curves and Surfaces with
Applications in CAGD, A. Le Mehaute, C. Rabut, and L. L. Schumaker (eds.), Van­
derbilt University Press (Nashville, TN), pp. 371-378.

Reinsch, C. H. (1967). Smoothing by spline functions, Numer. Math. 10, pp. 177-183.
Riesz, F. and Sz.-Nagy, B. (1955). Functional Analysis, Dover Publications (New York),

republished 1990.
Rippa, S. (1984). Interpolation and smoothing of scattered data by radial basis functions,

M.S. Thesis, Tel Aviv University.
Rippa, S. (1999). An algorithm for selecting a good value for the parameter c in radial

basis function interpolation, Adv. in Comput. Math. 11, pp. 193-210.
Ron, A. (1992). The L2-approximation orders of principal shift-invariant spaces generated

by a radial basis function, in Numerical Methods in Approximation Theory, ISNM
105, D. Braess, L. L. Schumaker (ed.), Birkhauser (Basel), pp. 245-268.

Ron, A. and Sun, X. (1996). Strictly positive definite functions on spheres, Math. Comp.
65 216, pp. 1513-1530.

Rosenblatt, M. (1956). Remarks on some nonparametric estimates of a density function,
Ann. Math. Statist. 27, pp. 832-837.

Rosenblum, M. and Davis, L. S. (1996). An improved radial basis function network for
visual autonomous road following, IEEE Trans. Neural Networks 1, pp. 1111-1120.

Rosenblum, M., Yacoob, Y. and Davis, L. S. (1996). Human expression recognition from
motion using a radial basis function network architecture, IEEE Trans. Neural Net­
works 1, pp. 1121-1138.

Rudin, W. (1973). Functional Analysis, McGraw-Hill (New York).
Saad, Y. and Schultz, M. H. (1986). GMRES: a generalized minimal residual algorithm for

solving nonsymmetric linear equations, SIAM J. Sci. Statist. Comput. 1, pp. 856-
869.

Saha, A., Wu, C. L., and Tang, D. S. (1993). Approximation, dimension reduction and
nonconvex optimization using linear superpositions of Gaussians, IEEE Trans. on
Computers 42, pp. 1222-1233.

482 Meshfre.e Approximation Methods with MATLAB

Salkauskas, K. (1992). Moving least squares interpolation with thin-plate splines and radial
basis functions, Comput. Math. Appl. 24, pp. 177-185.

Salkauskas, K. and Bos, L. (1992). Weighted splines as optimal interpolants, Rocky Moun­
tain J. Math. 22, pp. 205-217.

Sanner, R. M. and Slotine, J. J. E. (1992). Gaussian networks for direct adaptive control,
IEEE Trans. Neural Networks 3, pp. 837-863.

Sader, B. and Vertnik, R. (2006). Meshfree explicit local radial basis function collocation
method for diffusion problems, Comput. Math. Appl. 51 8, pp. 1163-1170.

Sarra, S. A. (2005). Adaptive radial basis function methods for time dependent partial
differential equations, Appl. Numer. Math. 54, pp. 79-94.

Sarra, S. A. (2006). Integrated multiquadric radial basis function approximation methods,
Comput. Math. Appl. 51 8, pp. 1283-1296.

Saundersen, H. C. (1992). Multiquadric interpolation of fluid speeds in a natural river
channel, Comput. Math. Appl. 24, pp. 187-193.

Schaback, R. (1993). Comparison of radial basis function interpolants, in Multivariate
Approximation: From CAGD to Wavelets, Kurt Jetter and Florencio Utreras (eds.),
World Scientific Publishing (Singapore), pp. 293-305.

Schaback, R. (1994a). Approximation of polynomials by radial basis functions, in Wavelets,
Images, and Surface Fitting, P.-J. Laurent, A. Le Mehaute, and L. L. Schumaker
(eds.), A. K. Peters (Wellesley, MA), pp. 459-466.

Schaback, R. (1994b). Lower bounds for norms of inverses of interpolation matrices for
radial basis functions, J. Approx. Theory 79, pp. 287-306.

Schaback, R. (1995a). Creating surfaces from scattered data using radial basis functions,
in Mathematical Methods for Curves and Surfaces, M. Drehlen, T. Lyche, and L.
Schumaker (eds.), Vanderbilt University Press (Nashville), pp. 477-496.

Schaback, R. (1995b). Error estimates and condition numbers for radial basis function
interpolation, Adv. in Comput. Math. 3, pp. 251-264.

Schaback, R. (1995c). Multivariate interpolation and approximation by translates of a basis
function, in Approximation Theory VJIJ, Vol. 1: Approximation and Interpolation,
C. Chui, and L. Schumaker (eds.), World Scientific Publishing (Singapore), pp. 491-
514.

Schaback, R. (1996). Approximation by radial basis functions with finitely many centers,
Constr. Approx. 12, pp. 331-340.

Schaback, R. (1997a). Optimal recovery in translation-invariant spaces of functions, Annals
of Numerical Mathematics 4, pp. 547-556.

Schaback, R. (1997b). On the efficiency of interpolation by radial basis functions, in Surface
Fitting and Multiresolution Methods, A. Le Mehaute, C. Rabut, and L. L. Schumaker
(eds.), Vanderbilt University Press (Nashville, TN), pp. 309-318.

Schaback, R. (1999a). Native Hilbert spaces for radial basis functions I, in New Develop­
ments in Approximation Theory, M. W. Miiller, M. D. Buhmann, D. H. Mache and
M. Felten (eds.), Birkhauser (Basel), pp. 255-282.

Schaback, R. (1999b). Improved error bounds for scattered data interpolation by radial
basis functions, Math. Comp. 68 225, pp. 201-216.

Schaback, R. (2000a). A unified theory of radial basis functions. Native Hilbert spaces for
radial basis functions II, J. Comput. Appl. Math. 121, pp. 165-177.

Schaback, R. (2000b). Remarks on meshless local construction of surfaces, in The Mathe­
matics of Surfaces, IX, R. Cipolla and R. Martin (eds.), Springer, pp. 34-58.

Schaback, R. (2002) Stability of radial basis function interpolants, in Approximation The­
ory X, C. K. Chui, L. L. Schumaker, and J. Stockler (eds.), Vanderbilt Univ. Press
(Nashville, TN), pp. 433-440.

Schaback, R. (2003). On the versatility of meshless kernel methods, in Advances in Com-

Bibliography 483

putational and Experimental Engineering and Sciences, S. N. Atluri, D. E. Beskos,
and D. Polyzos (eds.), CD ROM, ICCES proceedings paper #428.

Schaback, R. (2005). Multivariate interpolation by polynomials and radial basis functions,
Constr. Approx. 21, pp. 293-317.

Schaback, R. (2006a) Convergence of unsymmetric kernel-based meshless collocation meth­
ods, SIAM J. Numer. Anal., to appear.

Schaback, R. (2006b) Limit problems for interpolation by analytic radial basis functions,
J. Comp. Appl. Math., to appear.

Schaback, R. and Wendland, H. (1999). Using compactly supported radial basis func­
tions to solve partial differential equations, in Boundary Element Technology XIII,
C. S. Chen, C. A. Brebbia, and D. W. Pepper (eds.), WIT Press, pp. 311-324.

Schaback, R. and Wendland, H. (2000a). Numerical techniques based on radial basis func­
tions, in Curve and Surface Fitting: Saint-Malo 1999, A. Cohen, C. Rabut, and
L. L. Schumaker (eds.), Vanderbilt University Press (Nashville, TN), 359-374.

Schaback, R. and Wendland, H. (2000b). Adaptive greedy techniques for approximate
solution of large RBF systems, Numer. Algorithms 24, pp. 239-254.

Schaback, R. and Wendland, H. (2001). Characterization and construction of radial basis
functions, in Multivariate Approximation and Applications, N. Dyn, D. Leviatan,
D. Levin, and A. Pinkus (eds.), Cambridge Univ. Press (Cambridge), pp. 1-24.

Schaback, R. and Wendland, H. (2006). Kernel techniques: From machine learning to
meshless methods, Acta Numerica, 15, pp. 543-639.

Schaback, R. and Werner, J. (2006). Linearly constrained reconstruction of functions by
kernels with applications to machine learning, Adv. in Comput. Math. 25, pp. 237-
258.

Schaback, R. and Wu, Z. (1996). Operators on radial functions, J. Comput. Appl. Math.
73, pp. 257-270.

Schagen, I. P. (1984). Sequential exploration of unknown multidimensional functions as an
aid to optimization, IMA J. Numer. Anal. 4, pp. 337-347.

Schimming, R. and Belger, M. (1991). Polyharmonic radial functions on a Riemannian
manifold, Math. Nachr. 153, pp. 207-216.

Schiro, R. and Williams, G. (1984). An adaptive application of multiquadric interpolants
for numerically modeling large numbers of irregularly spaced hydrographic data,
Survg. Mapp. 44, pp. 365-381.

Scholkopf, B. and Smola, A. J. (2002). Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond, MIT Press (Cambridge, MA).

Schoenberg, I. J. (1937). On certain metric spaces arising from Euclidean spaces by a
change of metric and their imbedding in Hilbert space, Ann. of Math. 38, pp. 787-
793.

Schoenberg, I. J. (1938a). Metric spaces and completely monotone functions, Ann. of Math.
39, pp. 811-841.

Schoenberg, I. J. (1938b). Metric spaces and positive definite functions, Trans. Amer.
Math. Soc. 44, pp. 522-536.

Schoenberg, I. J. (1942). Positive definite functions on spheres, Duke Math. J. 9, pp. 96-
108.

Schoenberg, I. J. (1964). Spline functions and the problem of graduation, Proc. Nat. Acad.
Sci. 52, pp. 947-950.

Schreiner, M. (1997). On a new condition for strictly positive definite functions on spheres,
Proc. Amer. Math. Soc. 125 2, pp. 531-539.

Schumaker, L. L. (1981). Spline Functions: Basic Theory, John Wiley & Sons (New York),
reprinted by Krieger Publishing 1993.

484 Meshfree Approximation Methods with MATLAB

Schweitzer, M.A. (2003). A Parallel Multilevel Partition of Unity Method for Elliptic Par­
tial Differential Equations, Lecture Notes in Computational Science and Engineering,
Vol. 29, Springer Verlag (Berlin).

Sethuraman, R. and Reddy, C. S. (2004). Pseudo elastic analysis of material non-linear
problems using element free Galer kin method, J. Chinese Inst. Engineers 27,
pp. 505-516.

Shannon, C. (1949). Communication in the presence of noise, Proc. IRE 37, pp. 10-21.
Sharan, M., Kansa, E. J. and Gupta, S. (1997). Application of the multiquadric method

for numerical solution of elliptic partial differential equations, Appl. Math. Comp.,
84 2-3, pp. 275-302.

Shaw, E. W. and Lynn, P. P. (1972). Area rainfall evaluation using two surface fitting
techniques, Bull. Int. Ass. Hydrol. Sci. 17, pp. 419-433.

Shepard, D. (1968). A two dimensional interpolation function for irregularly spaced data,
Proc. 23rd Nat. Conf. ACM, pp. 517-524.

Shepherd, T. J. and Broomhead, D. S. (1990). Nonlinear signal processing using radial
basis functions, SPE Advanced Signal Processing Algorithms, Architectures, and Im­
plementations 1348, pp. 51-61.

Sherstinsky, A. and Picard, R. W. (1996). On the efficiency of the orthogonal least squares
training method for radial basis function networks, IEEE Trans. Neural Networks
7, pp. 195-200.

Shu, C., Ding, H. and Yeo, K. S. (2003). Local radial basis function-based differen­
tial quadrature method and its application to solve two-dimensional incompressible
Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg. 192, pp. 941-954.

Shu, C., Ding, H. and Yeo, K. S. (2004). Solution of partial differential equations by
global radial basis function-based differential quadrature method, Engineering Anal­
ysis with Boundary Elements 28, pp. 1217-1226.

Shu, C., Ding, H. and Zhao, N. (2006). Numerical comparison of least square-based finite­
difference (LSFD) and radial basis function-based finite-difference (RBFFD) meth­
ods, Comput. Math. Appl. 51 8, pp. 1297-1310.

Sibson, R. and Stone, G. (1991). Computation of thin-plate splines, SIAM J. Sci. Statist.
Comput. 12, pp. 1304-1313.

Sivakumar, N. and Ward, J. D. (1993). On the least squares fit by radial functions to
multidimensional scattered data, Numer. Math. 65, pp. 219-243.

Smith, B. F., Bj0rstad, P. and Gropp, W. D. (1996). Domain Decomposition. Parallel
Multilevel Methods for Elliptic Partial Differential Equations, Cambridge University
Press (Cambridge).

Smith, K. T., Salmon, D. C. and Wagner, S. L. (1977). Practical and mathematical aspects
of the problem of reconstructing objects from radiographs, Bull. Amer. Math. Soc.
83, pp. 1227-1270.

Sneddon, I. H. (1972). The Use of Integral Transforms, McGraw-Hill (New York).
Sonar, T. (1995). Optimal recovery using thin plate splines in finite volume methods for

the numerical solution of hyperbolic conservation laws, IMA J. Numer. Anal. 16,
pp. 549-581.

Stead, S. (1984). Estimation of gradients from scattered data, Rocky Mountain J. Math.
14, pp. 265-279.

Steele, N. C., Reeves, C. R., Nicholas, M. and King, P. J. (1995). Radial basis func­
tion artificial neural networks for the inference process in fuzzy logic based control,
Computing 54, pp. 99-117.

Stein, E. M. and Weiss, G. (1971). Introduction to Fourier Analysis in Euclidean Spaces,
Princeton University Press (Princeton).

Bibliography 485

Stein, M. L. (1999). Interpolation of spatial data. Some theory for Kriging, Springer Series
in Statistics, Springer-Verlag (New York).

Stewart, J. (1976). Positive definite functions and generalizations, an historical survey,
Rocky Mountain J. Math. 6, pp. 409-434.

Strain, J. (1991). The fast Gauss transform with variable scales, SIAM J. Sci. Statist.
Comput. 12, pp. 1131-1139.

Sun, X. (1989). On the solvability of radial function interpolation, in Approximation Theory
VI, C. Chui, L. Schumaker, and J. Ward (eds.), Academic Press (New York), pp. 643-
646.

Sun, X. (1990). Multivariate interpolation using ridge or related functions, Ph.D. Disser­
tation, University of Texas.

Sun, X. (1992a). Norm estimates for inverses of Euclidean distance matrices, J. Approx.
Theory 10, pp. 339-347.

Sun, X. (1992b). Cardinal and scattered-cardinal interpolation by functions having non­
com pact support, Comput. Math. Appl. 24, pp. 195-200.

Sun, X. (1993a). Solvability of multivariate interpolation by radial or related functions, J.
Approx. Theory 12, pp. 252-267.

Sun, X. (1993b). Conditionally positive definite functions and their application to multi­
variate interpolation, J. Approx. Theory 14, pp. 159-180.

Sun, X. (1994a). Scattered Hermite interpolation using radial basis functions, Linear Al­
gebra Appl. 201, pp. 135-146.

Sun, X. (1994b). The fundamentality of translates of a continuous function on spheres,
Numerical Algorithms 8, pp. 131-134.

Sun, X. (1994c). Cardinal Hermite interpolation using positive definite functions, Numer­
ical Algorithms 1, pp. 253-268.

Sun, X. (1995). Conditional positive definiteness and complete monotonicity, in Approx­
imation Theory VIII, Vol. 1: Approximation and Interpolation, C. Chui, and L.
Schumaker (eds.), World Scientific Publishing (Singapore), pp. 537-540.

Sun, X. and Cheney, E. W. (1997). Fundamental sets of continuous functions on spheres,
Constr. Approx. 13 2, pp. 245-250.

Suykens, J. A. K., De Brabanter, J., Lukas, L. and Vandewalle, J. (2002). Weighted least
squares support vector machines: robustness and sparse approximation, Neurocom­
puting 48 1-4, pp. 85-105.

Szego, G. (1959). Orthogonal Polynomials, Amer. Math. Soc. Coll. Puhl. Vol. XXIII (Prov­
idence).

Tan, S., Hao, J. and Vandewalle, J. (1995). Multivariable nonlinear system identification
by radial basis function neural networks, Arch. Control Sci. 4, pp. 55-67.

Tarwater, A. E. (1985). A parameter study of Hardy's multiquadric method for scattered
data interpolation, Lawrence Livermore National Laboratory, TR UCRL-563670.

Temlyakov, V. N. (1998). The best m-term approximation and greedy algorithms, Adv. in
Comp. Math. 8, pp. 249-265.

Tiago, C. M. and Leitao, V. M. A. (2006). Application of radial basis functions to linear
and nonlinear structural analysis problems, Comput. Math. Appl. 51 8, pp. 1311-
1334.

Trefethen, L. N. (2000). Spectral Methods in MATLAB, SIAM (Philadelphia, PA).
Trefethen, L. N. and Bau, D. (1997). Numerical Linear Algebra, SIAM (Philadelphia, PA).
Treinish, L. A. (1995). Visualization of Scattered Meteorological Data, IEEE Computer

Graphics f3 Applications 15, pp. 20-26.
Tsukanov, I. and Shapiro, V. (2005). Meshfree modeling and analysis of physical fields in

heterogeneous media, Adv. in Comput. Math. 23 1-2, pp. 95-124.

486 Meshfree Approximation Methods with MATLAB

Turk, G. and O'Brien, J. F. (2002). Modelling with implicit surfaces that interpolate, ACM
Transactions on Graphics 21, pp. 855-873.

Unser, M. (2000). Sampling - 50 years after Shannon, Proc. IEEE 88, pp. 569-587.
Utreras, F. I. (1985). Positive thin plate splines, Approx. Theory Appl. 1, pp. 77-108.
Utreras, F. I. (1993). Multiresolution and pre-wavelets using radial basis functions, in

Multivariate Approximation: Prom CAGD to Wavelets, Kurt Jetter and Florencio
Utreras (eds.), World Scientific Publishing (Singapore), pp. 321-333.

Utreras, F. I. and Vargas, M. L. (1991). Monotone interpolations of scattered data in ~.2,
Constr. Approx. 7, pp. 49-68.

Villalobos, M. A. and Wahba, G. (1983). Multivariate thin plate spline estimates for
the posterior probabilities in the classification problem, Comm. Statist. A-Theory
Methods 12, pp. 1449-1479.

Vrankar, L., Turk, G. and Runovc, F. (2004). modelling of radionuclide migration through
the geosphere with radial basis function method and geostatistics, J. Chinese Inst.
Engineers 27, pp. 455-462.

Wahba, G. (1979). Convergence rate of "thin plate" smoothing splines when the data are
noisy (preliminary report), Springer Lecture Notes in Math. 757, pp. 233-245.

Wahba, G. (1981). Spline Interpolation and smoothing on the sphere, SIAM J. Sci. Statist.
Comput. 2, pp. 5-16.

Wahba, G. (1982). Erratum: Spline interpolation and smoothing on the sphere, SIAM J.
Sci. Statist. Comput. 3, pp. 385-386.

Wahba, G. (1986). Multivariate thin plate spline smoothing with positivity and other
linear inequality constraints, in Statistical image processing and graphics (Luray,
Va., 1983), Statist.: Textbooks Monographs, 72, Dekker (New York), pp. 275-289.

Wahba, G. (1990a). Multivariate model building with additive interaction and tensor prod­
uct thin plate splines, in Curves and Surfaces, P.-J. Laurent, A. Le Mehaute, and L.
L. Schumaker (eds.), Academic Press (New York), pp. 491-504.

Wahba, G. (1990b). Spline Models for Observational Data, CBMS-NSF Regional Confer­
ence Series in Applied Mathematics 59, SIAM (Philadelphia).

Wahba, G. and Luo, Z. (1997). Smoothing spline ANOVA fits for very large, nearly regular
data sets, with application to historical global climate data, in The Heritage of
P. L. Chebyshev: a Festschrift in honor of the 10th birthday of T. J. Rivlin, Ann.
Numer. Math. 4 1-4, pp. 579-597.

Wahba, G. and Wendelberger, J. (1980). Some new mathematical methods for variational
objective analysis using splines and cross validation, Monthly Weather Review 108,
pp. 1122-1143.

Wang, S. and Wang, M. Y.. (2006). Radial basis functions and level set method for struc­
tural topology optimization, Int. J. Numer. Meth. Engng. 65 12, pp. 2060-2090.

Ward, J. D. (2004). Least squares approximation using radial basis functions: an up­
date, in Advances in Constructive Approximation: Vanderbilt 2003, M. Neamtu and
E. B. Saff (eds.), Nashboro Press (Brentwood, TN), pp. 499--508.

Watson, G. S. (1964). Smooth regression analysis, Sankhya, Ser. A 26, pp. 359-372.
Webb, A. R. (1995). Multidimensional scaling by iterative majorisation using radial basis

functions, Pattern Recognition 28, pp. 753-759.
Weinrich, M. (1994). Charakterisierung von Funktionenraumen bei der Interpolationn mit

radialen Basisfunktionen, Ph.D. Dissertation, Universitat Gottingen.
Wells, J. H. and Williams, R. L. (1975). Embeddings and Extensions in Analysis, Springer

(Berlin).
Wendland, H. (1994). Ein Beitrag zur Interpolation mit radialen Basisfunktionen, Diplo­

marbeit, Universitat Gottingen.

Bibliogmphy 487

Wendland, H. (1995). Piecewise polynomial, positive definite and compactly supported
radial functions of minimal degree, Adv. in Comput. Math. 4, pp. 389-396.

Wendland, H. (1997). Sobolev-type error estimates for interpolation by radial basis func­
tions, in Surface Fitting and Multiresolution Methods, A. Le Mehaute, C. Rabut, and
L. L. Schumaker (eds.), Vanderbilt University Press (Nashville, TN), pp. 337-344.

Wendland, H. (1998). Error estimates for interpolation by compactly supported radial
basis functions of minimal degree, J. Approx. Theory 93, pp. 258-272.

Wendland, H. (1999a). Meshless Galerkin approximation using radial basis functions,
Math. Comp. 68, pp. 1521-1531.

Wendland, H. (1999b). Numerical solution of variational problems by radial basis functions,
in Approximation Theory IX, Vol.II: Computational Aspects, Charles K. Chui, and
L. L. Schumaker (eds.), Vanderbilt University Press, pp. 361-368.

Wendland, H. (2001a). Local polynomial reproduction and moving least squares approxi­
mation, IMA J. Numer. Anal. 21 1, pp. 285-300.

Wendland, H. (2001b). Gaussian interpolation revisited, in Trends in Approximation The­
ory, K. Kopotun, T. Lyche, and M. Neamtu (eds.), Vanderbilt University Press,
pp. 417-426.

Wendland, H. (2001c). Moving least squares approximation on the sphere, in Mathematical
Methods for Curves and Surfaces: Oslo 2000, T. Lyche and L. L. Schumaker (eds.),
Vanderbilt University Press, pp. 517-526.

Wendland, H. (2002a). Fast evaluation of radial basis functions: Methods based on par­
tition of unity, in Approximation Theory X: Wavelets, Splines, and Applications,
C. K. Chui, L. L. Schumaker, and J. Stockier (eds.), Vanderbilt University Press
(Nashville), 473-483.

Wendland, H. (2002b). Surface reconstruction from unorganized points,
http://www.num.math.uni-goettingen.de/wendland/Forschung/recon­
html/reconhtml.html.

Wendland, H. (2004). Solving large generalized interpolation problems efficiently, in Ad­
vances in Constructive Approximation: Vanderbilt 2003, M. Neamtu and E. B. Saff
(eds.), Nashboro Press, Brentwood, TN, pp. 509-518.

Wendland, H. (2005a). Scattered Data Approximation, Cambridge University Press (Cam­
bridge).

Wendland, H. (2005b). On the convergence of a general class of finite volume methods,
SIAM J. Numer. Anal. 43, pp. 987-1002.

Wendland, H. (2005c). Private communications.
Wendland, H. and Rieger, C. (2005). Approximate interpolation with applications to se­

lecting smoothing parameters, Nu mer. Math. 101 4, pp. 729-7 48.
Wertz, J., Kansa, E. J. and Ling, L. (2006). The role of the multiquadric shape parameters

in solving elliptic partial differential equations, Comput. Math. Appl. 51 8, pp. 1335-
1348.

Wetterschereck, D. and Dietterich, T. (1992). Improving the performance of radial basis
function networks by learning center locations, in Advances in Neural Information
Processing Systems 4. Proceedings of the 1991 Conference, J.E. Moody, S. J. Hanson,
and R. P. Lippmann (eds.), Morgan Kaufmann (San Mateo, CA), pp. 1133-1140.

Whittaker, J. M. (1915). On the functions which are represented by expansions of the
interpolation theory, Proc. Roy. Soc. Edinburgh 35, pp. 181-194.

Whittaker, E.T. (1923). On a new method of graduation, Proc. Edinburgh Math. Soc. 41,
pp. 63-75.

Whitehead, B. A. (1996). Genetic evolution of radial basis function coverage using orthog­
onal niches, IEEE Trans. Neural Networks 7, pp. 1525-1528.

488 Meshfree Approximation Methods with MATLAB

Whitehead, B. A. and Choate, T. D. (1996). Cooperative-competitive genetic evolution
of radial basis function centers and widths for time series prediction, IEEE Trans.
Neural Networks 1, pp. 869-880.

Widder, D. V. (1941). The Laplace Transform, Princeton University Press (Princeton).
Williamson, R. E. (1956). Multiply monotone functions and their Laplace transform, Duke

Math. J. 23, pp. 189-207.
Wong, S. M., Hon, Y. C. and Li, T. S. (1999). Radial basis functions with compactly

support and multizone decomposition: applications to environmental modelling, in
Boundary Element Technology XIII, C. S. Chen, C. A. Brebbia, and D. W. Pepper
(eds.), WIT Press, pp. 355-364.

Wong, T.-T., Luk, W.-S. and Heng, P.-A. (1997). Sampling with Hammersley and Halton
points, J. Graphics Tools 2, pp. 9-24.

Woolhouse, W. S. B. (1870). Explanation of a new method of adjusting mortality tables,
with some observations upon Mr. Makeham's modification of Gompertz's theory, J.
Inst. Act. 15, pp. 389-410.

Wright, G. B. (2003). Radial Basis Function Interpolation: Numerical and Analytical
Developments, Ph.D. Dissertation, University of Colorado at Boulder.

Wright, G. and Fomberg, B. (2006). Scattered node compact finite difference-type formulas
generated from radial basis functions, J. Comput. Physics 212 1, pp. 99-123.

Wu, Z. (1986). Die Kriging-Methode zur Losung mehrdimensionaler Interpolationsprob­
leme, Ph.D. Dissertation, Universitat Gottingen.

Wu, Z. (1990). A class of convexity-preserving bases for radial basis interpolation (in
Chinese), Math. Appl. 3, pp. 33-37.

Wu, Z. (1991). A convergence analysis for a class ofradial basis interpolations (in Chinese),
Gaoxiao Yingyong Shuxue Xuebao 6, pp. 331-336.

Wu, Z. (1992). Hermite-Birkhoff interpolation of scattered data by radial basis functions,
Approx. Theory Appl. 8, pp. 1-10.

Wu, Z. (1993a). On the convergence of the interpolation with radial basis function, Chinese
J. Contemp. Math. 14, pp. 269-277.

Wu, Z. (1993b). Convergence of interpolation by radial basis functions (in Chinese), Chi­
nese Ann. Math. Ser. A 14, pp. 480-486.

Wu, Z. (1995a). Characterization of positive definite radial functions, in Mathematical
Methods for Curves and Surfaces, M. Drehlen, T. Lyche, and L. Schumaker (eds.),
Vanderbilt University Press (Nashville), pp. 573-578.

Wu, Z. (1995b). Compactly supported positive definite radial functions, Adv. in Comput.
Math. 4, pp. 283-292.

Wu, Z. (2005). Dynamical knot and shape parameter setting for simulating shock wave
by using multi-quadric quasi-interpolation, Engineering Analysis with Boundary El­
ements 29, pp. 354-358.

Wu, Z. M. and Liu, J. P. (2005). Generalized Strang-Fix condition for scattered data
quasi-interpolation, Adv. in Comput. Math. 23, pp. 201-214.

Wu, Z. and Schaback, R. (1993). Local error estimates for radial basis function interpola­
tion of scattered data, IMA J. Numer. Anal. 13, pp. 13-27.

Wu, Z. and Schaback, R. (1994). Shape preserving properties and convergence of uni­
variate multiquadric quasi-interpolation, Acta Math. Appl. Sinica (English Ser.} 10,
pp. 441-446.

Xu, L., Kryzak, A. and Yuille, A. (1994). On radial basis function nets and kernel regression
statistical consistency, convergence rates, and receptive field sizes, Neural Networks
1, pp. 609-628.

Bibliography 489

Xu, Y. and Cheney, E. W. (1992a). Interpolation by periodic radial functions, Comput.
Math. Appl. 24, pp. 201-215.

Xu, Y. and Cheney, E. W. (1992b). Strictly positive definite functions on spheres, Proc.
Amer. Math. Soc. 116, pp. 977-981.

Xu, Y., Light, W. A. and Cheney, E.W. (1993). Constructive methods of approximation
by ridge functions and radial functions, Numer. Algorithms 4, pp. 205-223.

Yamada, T. and Wrobel, L. C. (1993). Properties of Gaussian radial basis functions in the
dual reciprocity boundary element method, Z. Angew. Math. Phys. 44, pp. 1054-
1067.

Yang, Y. and Barron, A. (1999). Information-theoretic determination of minimax rates of
convergence, Ann. Statist. 27, pp. 1564-1599.

Yee, P. V. and Haykin, S. (2001). Regularized Radial Basis Function Networks: Theory
and Applications, Wiley-lnterscience.

Yoon, J. (2001). Interpolation by radial basis functions on Sobolev space, J. Approx.
Theory 112, pp. 1-15.

Yoon, J. (2003). Lp-error estimates for "shifted" surface spline interpolation on Sobolev
space, Math. Comp. 72, pp. 1349-1367.

Yoon, Y.-C., Lee, S.-H. and Belytschko, T. (2006). Enriched meshfree collocation method
with diffuse derivatives for elastic fracture, Comput. Math. Appl. 51 8, pp. 1349-
1366.

Young, D. L., Jane, S. C., Lin, C. Y., Chiu, C. L. and Chen, K. C. (2004). Solutions
of 2D and 3D Stokes laws using multiquadrics method, Engineering Analysis with
Boundary Elements 28, pp. 1233-1243.

Zastavnyi, V. P. (1993). Positive definite functions depending on the norm, Russian J.
Math. Phys. 1, pp. 511-522.

Zeckzer, D. (1992). Dreiecks-basierte lokale Scattered Data Interpolation unter Verwen­
dung radialer Basismethoden, Diplomarbeit, Universitat Kaiserslautern.

Index

adaptive greedy algorithm, 291
adaptive least squares approximation,

181, 184
additive Schwarz, 331
algorithm

adaptive greedy, 291
Contour-Pade, 133, 151, 405
domain decomposition, 332
fast Gauss transform, 325
Faul-Powell, 298, 301
FFT evaluation, 245
fixed level iteration, 267
greedy one-point, 293
iterative refinement, 265
knot insertion, 181
knot removal, 184
multilevel Galerkin, 421
nested multilevel Galerkin, 421
Rippa's leave-one-out cross validation,

146, 150
stationary multilevel collocation, 380
stationary multilevel interpolation, 277
surface reconstruction, 256

Allen-Cahn equation, 409
almost negative definite, 81
applications, 1, 13, 351, 416, 422
approximate approximation, 99, 131, 156,

203, 230, 270, 385
numerical experiments, 237

approximate cardinal functions, 298, 301,
309, 310

approximate inverse, 265, 304
approximation

approximate, 99, 131, 156, 203, 230,
270, 385

numerical experiments, 237

491

best, 159, 163, 178, 192, 193, 254, 300
best K-term, 293
greedy, 293
non-stationary, 22, 99-101, 126, 128,

131, 139, 140, 153-155, 211,
267, 378, 421

saturated, 130, 156, 231, 237, 240, 246
385

sparse, 293
stationary, 22, 99-101, 130-132, 140,

155-157, 211, 216, 227, 237,
279, 378, 380, 421

stationary multilevel, 277, 283
approximation order, 111, see also error

estimates
Lp, 112
and moment conditions, 230, 232
exact, 128, 132
exact Lp , 112
exponential, 126
L2, 179
lower bounds, 130
numerical evidence, 141-157
of Laguerre-Gaussians, 237
of MLS approximation, 196, 225
of partition of unity, 250
of Shepard's method, 211, 226
spectral, 126, 153, 288
squaring of, 127
super-spectral, 126, 153

augmented system, 56, 59, 60, 64, 305
auxiliary data, 256

B-spline, 92, 93
Backus-Gilbert method, 194
band-limited functions, 40, 110, 126

492 Meshfree Approximation Methods with MATLAB

basic function, 6, 18
basis

bi-orthogonal, 200
change of, 311
dual, 200

basis function, 3, 6
Beppo-Levi space, 109, 129, 163, 164

(semi-)norm, 109, 163
Bessel function

modified of the second kind, 41, 67
modified of the third kind, 41
~t~fi~hl~,M,~'~'~2

Bessel kernels, 41
best K-term approximation, 293
best approximation, 159, 163, 178, 192,

193, 254, 300
bi-orthogonal basis, 200, 206
bilinear form, 106, 107, 419
Bochner's theorem, 28, 31, 33, 65, 82
Borel measure, 31, 32, 34, 35, 48, 50, 431
Borel a-algebra, 431
boundary centers, 354, 368, 375
boundary conditions, 390

and boundary centers, 354
change of, 346
Dirich~t, 346, 348, 353, 358, 365, 378,

381, 390-392, 394, 397, 420
essential, 420
for multilevel interpolation, 278
for native space, 127
homogeneous, 391
implementation, 361, 372, 391, 393, 396
mixed, 361
natural, 419, 421, 423
Neumann, 419
piecewise defined, 370, 415
time-dependent, 409

Buhmann's functions, 93, 94, 345

cardinal basis functions, 112, 113-115,
151, 164, 195, 196, 199, 311
approximate, 298, 301, 309, 310
local approximate, 309
polynomials, 314

carrier, 32, 431
centers, 6, 17, 334, 346
change of basis, 311
clustered data, 178, 339
collocation, 333, 335, 388, 420, 422

multilevel, 380

non-symmetric, 335, 345, 353, 392
preconditioned, 310
symmetric, 348, 365
with CSRBFs, 375

collocation approach, 345
collocation points, 346
collocation solution, 392
compactly supported radial basis

functions, 15, 76, 85-101, 109, 127, 138,
140, 149, 234, 240, 241, 251, 260,
277-289, 345, 375-385, 421

compactly supported strictly positive
definite functions, 35, 42

completely monotone functions, 14, 38,
42, 47, 47-49, 51, 52, 73-75
properties, 4 7

computer graphics, 2, 13, 255
condition number, 23, 135, 137, 139, 142,

172, 273, 303-314, 343, 356, 372, 425
conditionally positive definite functions,

52, 63-65, 123, 162, 299
conditionally positive definite of order m

on JR5
, 63, 64

conditionally positive definite of order
one, 60

conditionally positive definite radial
functions, 73-78, 81

conditionally positive semi-definite of
order one, 60

constrained optimization, 165, 192, 197,
202, 420

containment query, 428
continuous moment conditions, 231, 232
Contour-Fade algorithm, 133, 151, 405
convergence

rate of, 99
correction function, 230
Coulomb potential, 44
Courant-Fischer theorem, 76, 136
covariance, 312
covering radius, 22
cross validation, 14, 146-150, 167

leave-one-out, 146, 148, 150, 185, 401
CSRBF, see compactly supported radial

basis function, function
cutoff function, 43, 88, 128

data files, 20
data mining, 2
data sites, 2

data values, 2
Delaunay triangulation, 294, 306, 439
derivative matrix, see differentiation

matrix
derivatives

of RBFs, 444-449
higher-order, 407
of Gaussian, 365
of generic radial function, 338, 443
oflMQ, 358, 361, 365
of MQ, 340, 365

Index

of Wendland C 6 CSRBF, 375, 381
descente, 85
differentiation matrix, 387-391, 401-403,

412
higher-order, 407

dimension walk, 85, 89, 90
Dirichlet boundary conditions, 346, 348,

353, 358, 365, 378, 381, 390-392, 394,
397, 420

Dirichlet tesselation, 306
discrete Gauss transform, 322
discrete moment conditions, 203, 230
discrete moments, 229
discrete weighted least squares, 191
distance matrix, 2, 6
domain decomposition, 331, 332, 350, 422

algorithm, 332
dual, 104, 159
dual basis, 200, 206, 222
dual representation, 200, 201, 206

eigenfunctions, 107, 201
energy split, 161, 291
error estimate, 111-123, 125-133

for approximate approximation, 231
for derivatives, 123
for fast Gauss transform, 325
for Gaussians, 126
for least squares approximation, 179
for Matern functions, 126
for MLS approximation, 226
for multiquadrics, 125
for radial powers, 127
for RBF Galerkin method, 420
for rough functions, 129, 131
for symmetric PDE collocation, 349
for thin plate splines, 127
for Wendland CSRBF, 127
generic, in terms of fill distance, 121

493

generic, in terms of power function, 117
improvements, 127
with respect to shape parameter, 132

essential boundary conditions, 420
Euclid's hat, 92, 93
Euclidean norm, 17
evaluation matrix, 8, 20, 95, 144, 212, 214,

223, 238, 366, 381, 389, 395
evaluation points, 10
exact Lp-approximation order k, 112
exact approximation order, 132

fast Fourier transform, 151, 245
fast Gauss transform, 322, 325
fast multipole method, 321
fast tree codes, 327
Faul-Powell algorithm, 298, 301
feature, 159
FFT evaluation algorithm, 245
fill distance, 22, 111
fixed level iteration algorithm, 267
Fourier transform, 31-33, 110, 231, 432

fast, 151, 245
fast inverse, for non-uniformly spaced

points, 244
fast, for non-uniformly spaced points,

243, 244
generalized, 65, 433

of generalized MQ, 67
of radial powers, 69
of thin plate splines, 70

inverse, 43 2
inverse discrete, 244
of a measure, 432
of a radial function, 51, 85, 432
of Gaussians, 37
of Laguerre-Gaussians, 38
of Matern functions, 41
of Poisson radial functions, 40
of truncated power functions, 43

Fourier transform characterization, 34, 65
Franke's function, 20
Franke-type function, 142, 241, 246, 283
function

approximate cardinal, 298, 301, 309,
310

band-limited, 40, 110, 126
basic, 6, 18
basis, 3, 6
Bessel of the first kind, 34, 39, 85, 432

494 Meshfree Approximation Methods with MATLAB

Buhmann CSRBF, 93, 94, 345
cardinal basis, 112, 113-115, 151, 164,

195, 196, 199, 311
compactly supported RBF, 15, 76,

85-101, 109, 127, 138, 140, 149,
234, 240, 241, 251, 260,
277-289, 345, 375-385, 421

completely monotone, 14, 38, 42, 4 7,
47-49, 51, 52, 73-75

conditionally positive definite, 52,
63-65, 123, 162, 299

conditionally positive definite and
radial, 73-78, 81

conditionally positive definite of order
m on !Rs, 63, 64

construct strictly positive definite, 33
correction, 230
cutoff, 43, 88, 128
eigen, 107
Euclid's hat, 92, 93
Franke's, 20
Franke-type, 246
fundamental positive definite, 32
Gaussian, 17, 19, 22-24, 35, 37, 40, 49,

52, 55, 82, 101, 110, 113, 117,
123, 126, 130, 132, 133, 137,
140, 148, 153, 156, 188, 211,
243, 253, 259, 270, 296, 309,
322, 327, 345, 356, 357, 363,
403, 405, 412, 415

generalized inverse multiquadric, 41, 49,
67, 123, 138

generalized multiquadric, 67, 74, 77,
138

generating, 195, 232
Gneiting CSRBF, 91, 345
Green's, 164
inverse multiquadric, 37, 154, 296, 306,

345, 353, 356, 357
inverse quadratic, 42
k-times monotone, 50, 50, 51, 75, 76
kriging, 116
Laguerre-Gaussian, 38, 52, 123, 126,

131, 222, 233, 237, 238, 241,
245, 246, 269, 322

Lebesgue, 226
local approximate cardinal, 309
MacDonald's, 41
Matern, 41, 109, 123, 126, 129, 388, 410

modified Bessel of the second kind, 41,
67

modified Bessel of the third kind, 41
multiply monotone, 49-52, 75-76
multiquadric, 13, 68, 77, 110, 113, 126,

131-133, 139, 140, 153, 243, 288,
306, 308, 310, 326, 339, 345, 346

multivariate, 1 7
multivariate Hermite, 322
optimal basis, 164
Poisson radial, 39
polyharmonic spline, 14, 71, 129, 130,

278, 306, 313
positive definite, 27-35
positive definite on !Rs, 28
positive definite radial, 33-35
R, 350, 420
radial, 17, 33
radial basis, 6, 17
radial power, 69, 74, 109, 127-129, 131,

132, 138, 155, 278, 306
rapidly decreasing, 433
Shepard, 13, 205
slowly increasing, 433
Sobolev spline, 41, 109
strictly conditionally positive definite of

order m on !Rs, 63, 64
strictly positive definite, 28, 32
strictly positive definite and radial for

all s, 34
strictly positive definite on !Rs, 28
surface spline, 14, 70

shifted, 131
thin plate spline, 14, 70, 74, 109,

127-129, 131, 132, 138, 155,
163, 164, 167, 170, 278, 306,
308, 310, 314, 316, 326, 437

tri-cube, 227
truncated power, 43, 50
univariate, 17
vector-valued, 2, 83
weight, 193, 196, 199, 201, 202, 206,

212, 214, 216, 226, 227, 229,
230, 233, 234, 274, 285, 287

Wendland CSRBF, 87, 87-88, 91, 92,
98, 99, 109, 127, 129, 131, 138,
154, 179, 211, 234, 240, 241,
251, 253, 260, 279, 345, 375,
388, 413, 423

Whittaker-M, 44

Wu CSRBF, 89, 88-90, 345
functional

dual, 104
information, 159

functions
generating, 197

Index

fundamental positive definite function, 32

Galerkin system, 419, 421
Gaussian, 17, 19, 22-24, 35, 37, 40, 49, 52,

55, 82, 101, 110, 113, 117, 123, 126, 130,
132, 133, 137, 140, 148, 153, 156, 188,
211, 243, 253, 259, 270, 296, 309, 322,
327, 345, 356, 357, 363, 403, 405, 412,
415

generalized covariance, 312
generalized derivative, 109
generalized Fourier transform, 65, 433
generalized Hermite interpolation, 333,

348, 390
generalized interpolation conditions, 334
generalized inverse multiquadric, 49
generalized inverse multiquadrics, 41, 67,

123, 138
generalized Laguerre polynomials, 38, 233
generalized multiquadrics, 67, 74, 77, 138
generating functions, 195, 197

construction of, 232
global variable, 193
GMRES, 309, 350
Gneiting's functions, 91, 345
Gram matrix, 177, 178, 194, 197, 207, 220
greedy algorithm, 184
greedy approximation algorithms, 293
greedy one-point algorithm, 293
Green's functions, 164

Haar space, 4
Halton points, 5, 427
Hammersley points, 428
Hankel inversion theorem, 41, 432
Hankel transform, 432
Hausdorff-Bernstein-Widder Theorem, 48
Helmholtz equation, 411, 419, 423
Hermite interpolation

generalized, 333, 348, 390
Hermite polynomials (multivariate), 322
Hermite-based collocation, 348, 365
high-order method, 229, 291, 419
history of meshfree approximation, 13

495

homogeneous, 278, 311, 317
homogeneous kernel, 312, 313, 319
homogeneous Sobolev spaces of order k,

109

ill-posed problem, 390
implicit surfaces, 255
information functional, 159
inner points, 331
inner product, 28, 103, 106-108, 168, 177,

191, 192, 200
integral characterization, 31-33
integral operator, 50, 76, 86
integral transforms, 432
integrally positive definite, 107
interaction region, 323
interior cone condition, 120
interpolation, 2

generalized Hermite, 333, 348, 390
scattered data, 2

interpolation matrix, 3, 8, 20
sparse, 95-98

interpolation theorem, 49, 64, 77
inverse Fourier transform, 244, 432
inverse multiquadric, 37, 154, 296, 306,

345, 353, 356, 357
inverse quadratic, 42
iterative refinement algorithm, 265

Jacobi polynomials, 234

k-times monotone, 50, 50, 51, 75, 76
Kansa's matrix, 346, 347, 393, 394,

396-398
Kansa's method, 335, 345, 353, 392
kd-tree, 95, 98, 216, 428
kernel

Bessel, 41
covariance, 312
generalized covariance, 312
homogeneous, 312, 313, 319
integrally positive definite, 107
multiscale, 278
reproducing, 103, 103-108, 311

kernel method, 205
knot insertion algorithm, 181
knot removal algorithm, 184
kriging, 312
kriging function, 116
Kronecker tensor-product, 412

496 Meshjre,e Approximation Methods with MATLAB

Lagrange form, 112
Lagrange multipliers, 165, 166, 197,

200-202, 208, 209, 216, 217, 222, 420
Laguerre-Gaussians, 38, 52, 123, 126, 131,

222, 233, 237, 238, 241, 245, 246, 269,
322

Laplace transform, 48, 432
of a measure, 433

Laplace's equation, 415
Laurent series, 151
learning theory, 2, 13, 163
least squares

adaptive, 181, 184
approximation, 168, 177
discrete weighted, 191
moving, 14, 191, 192, 194, 198, 207, 216

properties, 198
nonlinear, 187
penalized, 167
regularized, 166
smoothing, 1 70

leave-one-out cross validation, 146, 148,
150, 185, 401

Lebesgue constant, 120
Lebesgue function, 226, 227, 269
local approximate cardinal functions, 309
local polynomial regression, 202
local polynomial reproduction, 120
local variable, 193
Lp-approximation order k, 112

m-unisolvent, 53
MacDonald's function, 41
Mairhuber-Curtis theorem, 3
manifolds, 83, 255
Maple programs, see program
marching cube, 257
Matern functions, 41, 109, 123, 126, 129,

388, 410
mathematical finance, 2, 13
MATLAB programs, see program
matrix

almost negative definite, 81
augmented, 56, 59, 60, 64, 305
conditionally positive definite of order

one, 60
conditionally positive semi-definite of

order one, 60
differentiation, 387-391, 401, 403, 412
distance, 2, 6

evaluation, 20, 389
Gram, 177, 178, 194, 197, 207, 220
higher-order differentiation, 407
interpolation, 3, 8, 20

sparse, 95-98
Kansa's, 346, 347, 393, 394, 396-398
negative definite, 60
positive definite, 27
positive semi-definite, 27
stiffness, 420, 423

measure, 431
Borel, 31, 32, 34, 35, 48, 50, 431
carrier, 32, 431

Mercer's theorem, 107
meshfree, 1, 12
meshless, 12
meshsize, 22
Micchelli's theorem, 51
minimal eigenvalue

upper bound, 137
for Gaussian, 137
for generalized multiquadrics, 138
for radial powers, 138
for thin plate splines, 138
for Wendland CSRBF, 138

minimum norm interpolant, 162, 166
mixed boundary conditions, 361
MLS, see moving least squares
modified Bessel function of the second

kind, 41
modified Bessel function of the third kind,

41
moment conditions, 203

and approximation order, 230, 232
continuous, 231, 232
discrete, 203, 230

moments, 207, 323, 328
discrete, 229

montee, 85
moving least squares approximation, 14,

191, 207, 216
Backus-Gilbert approach, 194
equivalence of formulations, 198
iterated approximate, 270
properties, 198
standard interpretation, 192

multigrid algorithm, 332
multilevel Galerkin algorithm, 421
multilevel interpolation, 277
multiplicative Schwarz, 331

multiply monotone functions, 49-52,
75-76

multiquadric, 13, 68, 77, 110, 113, 126,
131-133, 139, 140, 153, 243, 288, 306,
308, 310, 326, 339, 345

multiquadric method, 346
multiscale kernels, 278
multivariate, 17
multivariate Hermite functions, 322

Index

native space, 103, 105, 106
native space norm, 119, 166, 278
native space semi-norm, 123
natural boundary conditions, 419, 421,

423
nearest neighbor, 227, 298, 310, 323, 428
negative definite, 60
nested multilevel Galerkin algorithm, 421
neural networks, 2, 13, 172
NFFT, see Fourier transform
noisy data, 14, 165, 170-175, 212
non-stationary approximation, 22, 99-101,

126, 128, 131, 139, 140, 153-155, 211,
267, 378, 421

non-symmetric method, 345
non-symmetric pseudospectral method,

391
non-uniform sampling, 2
nonlinear least squares, 187
nonlinear reaction-diffusion equation, 409
norm, 17

basic function, 156, 313
equivalence, 293
Euclidean, 1 7
native space, 119, 166, 278
Sobolev space, 109
weighted, 191

(p-)norm distance matrix, 8
(semi-) norm

Beppo-Levi space, 109, 163
norm invariance, 18
normal equations, 177, 192, 194

off-surface points, 255
operator

descente, 85
differential, 86
discrete differential, 398
for radial functions, 85
integral, 50, 76, 86

montee, 85
turning bands, 91

optimal basis functions, 164
optimal recovery, 159, 165
optimality properties, 160
optimality theorem I, 162
optimality theorem II, 163
optimality theorem III, 164
optimization, 2

constrained, 165, 192, 197, 420
constrained quadratic, 202

orthogonal projection, 163
oscillatory strictly positive definite

functions, 35
overlapping domains, 331

p-norms, 79-82
packing radius, 136
partial differential equation

Allen-Cahn, 409

497

elliptic with variable coefficients, 358
Helmholtz, 411, 419, 423
Laplace, 415
linear elliptic, 346, 390
nonlinear reaction diffusion, 409
solution of, 1
transport equation, 387, 403, 405

partition of unity, 206, 229, 249
patch test, 55
PDE, see partial differential equation
penalized least squares, 167
piecewise defined boundary conditions,

370
piecewise linear spline, 5
plane wave, 325
point cloud data, 255
point cloud modeling, 257, 260
Poisson problem, 353, 361, 365, 378, 381
Poisson radial functions, 39
polyharmonic splines, 14, 71, 129, 130,

278, 306, 313
polynomial

(multivariate) Hermite, 322
generalized Laguerre, 38, 233
Jacobi, 234

polynomial precision, 119
polynomial reproduction, 55-59, 64, 195,

203, 207, 216, 305
local, 120

positive definite function, 27-35

498 Meshfree Approximation Methods with MATLAB

criterion to check, 33
properties, 29

positive definite matrix, 27
positive definite on JR5

, 28
positive definite radial function, 33-35
positive semi-definite matrix, 27
power function, 115, 116, 119, 121, 128,

139, 143
preconditioned conjugate gradient, 98,

303, 309, 379
preconditioning, 303-313
program

ApproxMLSApproxlD.m, 239
CostEpsilon.m, 150
CostEpsilonDRBF.m, 402
D2RBF .m, 409
DifferenceMatrix.m, 342
DistanceMatrix.m, 7
DistanceMatrixCSRBF.m, 96
DistanceMatrixFit.m, 8
DRBF.m, 402
HermiteLaplace_2D.m, 366
HermiteLaplace_2D_CSRBF.m, 376
HermiteLaplaceMixedBCTreL2D.m,

370
Iterated ... MLSApproxApprox2D.m, 271
KansaEllipticVC_2D.m, 358
kansaLaplace_2D.m, 355
kansaLaplaceMixedBC_2D.m, 361
LinearMLS2D_CS.m, 219
LinearMLS2D_GramSolve.m, 220
LinearScaling2D_CS.m, 217
LOOCV2D.m, 147
LOOCV2Dmin.m, 150
LRBF.m, 414
MakeSDGrid.m, 436
ML_CSRBF3D.m, 279
MLJ-IermiteLaplaceCSRBF2D.m, 381
MLSDualBases.mws, 440
pl 7.m, 412
pl 7--2D.m, 414
p35.m, 409
PlotError2D.m, 437
PlotErrorSlices.m, 439
Plotlsosurf.m, 438
PlotSlices.m, 438
PlotSurf.m, 437
PointCloud2D.m, 257
PointCloud3D_PUCS.m, 261
Powerfunction2D.m, 144

PU2D_CS.m, 251
RBFApproximation2D.m, 169
RBFApproximation2Dlinear.m, 171
RBFCardinalFunction.m, 114
RBFGalerkin2D.m, 424
RBFGreedyOnePoint2D .m, 294
RBFHermite_2D.m, 341
RBF1nterpolation2D.m, 21
RBF1nterpolation2Dlinear.m, 56
RBFinterpolation2DtpsH.m, 317
RBFKnotlnsert2D.m, 182
RBFKnotRemove2D.m, 185
Shepard2D.m, 212
Shepard_CS.m, 215
sinc.m, 435
testfunction.m, 435
Thin.m, 439
tps.m, 437
TPS--RidgeRegression2D.m, 173
tpsK.m, 314
TransportDRBF.m, 403

properties of positive definite functions, 29
pseudospectral method

non-symmetric, 391
symmetric, 394

quadratic form, 27, 165
quasi-interpolant, 194, 201, 206, 208, 225,

229, 230, 267, 322
evaluation of, 243, 327
optimal, 164

R-functions, 350, 420
radial, 33
radial basis function, 6, 17
radial function, 17
radial powers, 69, 74, 109, 127-129, 131,

132, 138, 155, 278, 306
range search, 428
rapidly decreasing test functions, 433
rate of convergence, 99
ray tracing, 257
Rayleigh quotient, 136
RBF, see radial basis function, function
reaction-diffusion equation, 409
regression

local, 212, 227
local polynomial, 202
ridge, 167
rigde, 257

regression spline, 170
regularization, 390
regularization theory, 167

Index

reproducing kernel, 103, 106-108, 311
for conditionally positive definite basic

function, 311
properties, 104

reproducing kernel Hilbert space, 103,
103-105, 107

residual iteration, 268
ridge regression, 167, 257
RKHS, see reproducing kernel Hilbert

space, 103
RMS-error, see root-mean-square error
root-mean-square error, 10

sampling theory, 13, 110, 164
saturation, 130, 156, 237, 240, 246, 385
saturation error, 231
scattered data interpolation, 2
scattered data modeling, 1
Schoenberg-Menger Theorem, 81
Schwartz space, 433
(semi-)norm

Beppo-Levi space, 109, 163
Shannon sampling theorem, 110
shape parameter, 1 7, 3 7

choice of, 141-150
convergence with respect to, 132-133

shape parameter free, 69
Shepard function, 13, 205
Shepard's method, 205, 211

high-order, 229
iterated, 274

shifted surface splines, 131
a-algebra, 431
slowly increasing functions, 433
smoothing, 167, 211, 240, 257, 297, 308,

385
of noisy data, 170-175

smoothing splines, 167
Sobolev space, 108, 128, 130-132, 179, 228

homogeneous of order k, 109
norm, 109

Sobolev splines, 41, 109
sources, 323
sparse approximation, 293
special point, 317
special points, 310, 313

spectral approximation order, 126, 153,
288

spline
B-, 92, 93
piecewise linear, 5
polyharmonic, 14, 71, 129, 130, 278,

306, 313
regression, 170
shifted surface, 131
smoothing, 167
Sobolev, 41, 109
surface, 14, 70
thin plate, 14, 70, 74, 109, 127-129,

131, 132, 138, 155, 163, 164,
167, 170, 278, 306, 308, 310,
314, 316, 326, 437

web-, 350, 420
spread, 195

499

stability, 23, 131, 135-140, 193, 303, 331,
347, 350

stationary approximation, 22, 99-101,
130-132, 140, 155-157, 211, 216, 227,
237, 277, 279, 378, 421

stationary multilevel collocation
algorithm, 380

stationary multilevel interpolation
algorithm, 277

stiffness matrix, 420, 423
strictly conditionally positive definite

function
Fourier transform characterization, 65

strictly conditionally positive definite of
order m on JR 5

, 63, 64
strictly positive definite and radial for all

s, 34, 49
Schoenberg's characterization, 35

strictly positive definite function, 28, 32
compactly supported, 35, 42
Fourier transform characterization, 34
oscillatory, 35, 39, 90

strictly positive definite on IR", 28
strong form solution, 345
super-spectral approximation order, 126,

153
surface reconstruction algorithm, 256
surface splines, 14, 70
symmetric formulation, 335
symmetric pseudospectral method, 394

targets, 323

500 Meshfree Approximation Methods with MATLAB

Taylor expansion, 119, 120, 193, 226, 323,
327-331

theorem
Bochner, 28, 31, 33, 65, 82
Courant-Fischer, 76, 136
Hankel inversion, 41, 432
Hausdorff-Bernstein-Widder, 48
interpolation, 49, 64, 77
Mairhuber-Curtis, 3
Mercer, 107
Micchelli, 51
optimality I, 162
optimality II, 163
optimality III, 164
Schoenberg-Menger, 81
Shannon Sampling, 110
Williamson, 50
zeros, 128

thin plate spline, 308
thin plate splines, 14, 70, 74, 109,

127-129, 131, 132, 138, 155, 163, 164,
167, 170, 278, 306, 310, 314, 316, 326,
437

thinning algorithm, 187, 282, 439
time-dependent boundary conditions, 409
trade-off principle, 24, 100, 138-140, 277
translation invariant, 29, 106
transport equation, 387, 403, 405
tree codes, 325

tri-cube, 227
trial and error, 142
truncated power functions, 43, 50
turning bands operator, 91

uncertainty principle, 24, 139, 277
univariate, 17
upper bound for Amin, 137

van der Corput sequence, 427
vector-valued functions, 2, 83
Voronoi diagram, 306

web-spline, 350, 420
weight functions, 193, 196, 199, 201, 202,

206, 212, 214, 216, 226, 227, 229, 230,
233, 234, 274, 285, 287

weighted norm, 191
well-posed, 3
Wendland CSRBF, 87, 87-88, 91, 92, 98,

99, 109, 127, 129, 131, 138, 154, 179,
211, 234, 240, 241, 251, 253, 260, 279,
345, 375, 388, 413, 423

Whittaker-M function, 44
Williamson's theorem, 50
Wu CSRBF, 89, 88-90, 345

zeros theorem, 128

	Cover
	S Title
	INTERDISCIPLINARY MATHEMATICAL SCIENCES, Volume 6
	Meshfree Approximation Methods with MATLAB
	Copyright
	© 2007 by World Scientific Publishing Co.
	ISBN-13 978-981-270-633-l
	ISBN-10 981-270-633-X
	ISBN-13 978-981-270-634-8
	ISBN-10 981-270-634-8

	Dedicated to Inge, Conny, Marc and Patrick
	Preface
	Contents
	Chapter 1 Introduction
	1.1 Motivation: Scattered Data Interpolation in Rn
	1.1.1 The Scattered Data Interpolation Problem
	1.1.2 Example: Interpolation with Distance Matrices

	1.2 Some Historical Remarks

	Chapter 2 Radial Basis Function Interpolation in MATLAB
	2.1 Radial (Basis) Functions
	2.2 Radial Basis Function Interpolation

	Chapter 3 Positive Definite Functions
	3.1 Positive Definite Matrices and Functions
	3.2 Integral Characterizations for (Strictly) Positive Definite Functions
	3.2.1 Bochner's Theorem
	3.2.2 Extensions to Strictly Positive Definite Functions

	3.3 Positive Definite Radial Functions

	Chapter 4 Examples of Strictly Positive Definite Radial Functions
	4.1 Example 1: Gaussians
	4.2 Example 2: Laguerre-Gaussians
	4.3 Example 3: Poisson Radial Functions
	4.4 Example 4: Matern Functions
	4.5 Example 5: Generalized Inverse Multiquadrics
	4.6 Example 6: Truncated Power Functions
	4. 7 Example 7: Potentials and Whittaker Radial Functions
	4.8 Example 8: Integration Against Strictly Positive Definite Kernels
	4.9 Summary

	Chapter 5 Completely Monotone and Multiply Monotone Functions
	5.1 Completely Monotone Functions
	5.2 Multiply Monotone Functions

	Chapter 6 Scattered Data Interpolation with Polynomial Precision
	6.1 Interpolation with Multivariate Polynomials
	6.2 Example: Reproduction of Linear Functions Using Gaussian RBFs
	6.3 Scattered Data Interpolation with More General Polynomial Precision
	6.4 Conditionally Positive Definite Matrices and Reproduction of Constant Functions

	Chapter 7 Conditionally Positive Definite Functions
	7.1 Conditionally Positive Definite Functions Defined
	7.2 Conditionally Positive Definite Functions and Generalized Fourier Transforms

	Chapter 8 Examples of Conditionally Positive Definite Functions
	8.1 Example 1: Generalized Multiquadrics
	8.2 Example 2: Radial Powers
	8.3 Example 3: Thin Plate Splines

	Chapter 9 Conditionally Positive Definite Radial Functions
	9.1 Conditionally Positive Definite Radial Functions and Completely Monotone Functions
	9.2 Conditionally Positive Definite Radial Functions and Multiply Monotone Functions
	9.3 Some Special Properties of Conditionally Positive Definite Functions of Order One

	Chapter 10 Miscellaneous Theory: Other Norms and Scattered Data Fitting on Manifolds
	10.1 Conditionally Positive Definite Functions and p-Norrns
	10.2 Scattered Data Fitting on Manifolds
	10.3 Remarks

	Chapter 11 Compactly Supported Radial Basis Functions
	11.1 Operators for Radial Functions and Dimension Walks
	11.2 Wendland's Compactly Supported Functions
	11.3 Wu's Compactly Supported Functions
	11.4 Oscillatory Compactly Supported Functions
	11.5 Other Compactly Supported Radial Basis Functions

	Chapter 12 Interpolation with Compactly Supported RBFs in MATLAB
	12.1 Assembly of the Sparse Interpolation Matrix
	12.2 Numerical Experiments with CSRBFs

	Chapter 13 Reproducing Kernel Hilbert Spaces and Native Spaces for Strictly Positive Definite Functions
	13.1 Reproducing Kernel Hilbert Spaces
	13.2 Native Spaces for Strictly Positive Definite Functions
	13.3 Examples of Native Spaces for Popular Radial Basic Functions

	Chapter 14 The Power Function and Native Space Error Estimates
	14.1 Fill Distance and Approximation Orders
	14.2 Lagrange Form of the Interpolant and Cardinal Basis Functions
	14.3 The Power Function
	14.4 Generic Error Estimates for Functions in N
	14.5 Error Estimates in Terms of the Fill Distance

	Chapter 15 Refined and Improved Error Bounds
	15.1 Native Space Error Bounds for Specific Basis Functions
	15.1.1 Infinitely Smooth Basis Functions
	15.1.2 Basis Functions with Finite Smoothness

	15.2 Improvements for Native Space Error Bounds
	15.3 Error Bounds for Functions Outside the Native Space
	15.4 Error Bounds for Stationary Approximation
	15.5 Convergence with Respect to the Shape Parameter
	15.6 Polynomial Interpolation as the Limit of RBF Interpolation

	Chapter 16 Stability and 'Irade-Off Principles
	16.l Stability and Conditioning of Radial Basis Function lnterpolants
	16.2 Trade-Off Principle I: Accuracy vs. Stability
	16.3 Trade-Off Principle II: Accuracy and Stability vs. Problem Size
	16.4 Trade-Off Principle III: Accuracy vs. Efficiency

	Chapter 17 Numerical Evidence for Approximation Order Results
	17.1 Interpolation for e--> 0
	17.1.1 Choosing a Good Shape Parameter via Trial and Error
	17.1.2 The Power Function as Indicator for a Good Shape Parameter
	17.1.3 Choosing a Good Shape Parameter via Cross Validation
	17.1.4 The Contour-Pade Algorithm
	17.1.5 Summary

	17.2 Non-stationary Interpolation
	17.3 Stationary Interpolation

	Chapter 18 The Optimality of RBF Interpolation
	18.1 The Connection to Optimal Recovery
	18.2 Orthogonality in Reproducing Kernel Hilbert Spaces
	18.3 Optimality Theorem I
	18.4 Optimality Theorem II
	18.5 Optimality Theorem III

	Chapter 19 Least Squares RBF Approximation with MATLAB
	19.1 Optimal Recovery Revisited
	19.2 Regularized Least Squares Approximation
	19.3 Least Squares Approximation When RBF Centers Differ from Data Sites
	19.4 Least Squares Smoothing of Noisy Data

	Chapter 20 Theory for Least Squares Approximation
	20.1 Well-Posedness of RBF Least Squares Approximation
	20.2 Error Bounds for Least Squares Approximation

	Chapter 21 Adaptive Least Squares Approximation
	21.1 Adaptive Least Squares using Knot Insertion
	21.2 Adaptive Least Squares using Knot Removal
	21.3 Some Numerical Examples

	Chapter 22 Moving Least Squares Approximation
	22. I Discrete Weighted Least Squares Approximation
	22.2 Standard Interpretation of MLS Approximation
	22.3 The Backus-Gilbert Approach to MLS Approximation
	22.4 Equivalence of the Two Formulations of MLS Approximation
	22.5 Duality and Bi-Orthogonal Bases
	22.6 Standard MLS Approximation as a Constrained Quadratic Optimization Problem
	22.7 Remarks

	Chapter 23 Examples of MLS Generating Functions
	23.1 Shepard's Method
	23.2 MLS Approximation with Nontrivial Polynomial Reproduction

	Chapter 24 MLS Approximation with MATLAB
	24.1 Approximation with Shepard's Method
	24.2 MLS Approximation with Linear Reproduction
	24.3 Plots of Basis-Dual Basis Pairs

	Chapter 25 Error Bounds for Moving Least Squares Approximation
	25.1 Approximation Order of Moving Least Squares

	Chapter 26 Approximate Moving Least Squares Approximation
	26.1 High-order Shepard Methods via Moment Conditions
	26.2 Approximate Approximation
	26.3 Construction of Generating Functions for Approximate MLS Approximation

	Chapter 27 Numerical Experiments for Approximate MLS Approximation
	27.1 Univariate Experiments
	27.2 Bivariate Experiments

	Chapter 28 Fast Fourier Transforms
	28.1 NFFT
	28.2 Approximate MLS Approximation via Non-uniform Fast Fourier Transforms

	Chapter 29 Partition of Unity Methods
	29.1 Theory
	29.2 Partition of Unity Approximation with MATLAB

	Chapter 30 Approximation of Point Cloud Data in 3D
	30.1 A General Approach via Implicit Surfaces
	30.2 An Illustration in 2D
	30.3 A Simplistic Implementation in 3D via Partition of Unity Approximation in MATLAB

	Chapter 31 Fixed Level Residual Iteration
	31.1 Iterative Refinement
	31.2 Fixed Level Iteration
	31.3 Modifications of the Basic Fixed Level Iteration Algorithm
	31.4 Iterated Approximate MLS Approximation in MATLAB
	31.5 Iterated Shepard Approximation

	Chapter 32 Multilevel Iteration
	32.1 Stationary Multilevel Interpolation
	32.2 A MATLAB Implementation of Stationary Multilevel Interpolation
	32.3 Stationary Multilevel Approximation
	32.4 Multilevel Interpolation with Globally Supported RBFs

	Chapter 33 Adaptive Iteration
	33.1 A Greedy Adaptive Algorithm
	33.2 The Faul-Powell Algori thrn

	Chapter 34 Improving the Condition Number of theInterpolation Matrix
	34.1 Preconditioning: Two Simple Examples
	34.2 Early Preconditioners
	34.3 Preconditioned GMRES via Approximate Cardinal Functions
	34.4 Change of Basis
	34.5 Effect of the "Better" Basis on the Condition Number of the Interpolation Matrix
	34.6 Effect of the "Better" Basis on the Accuracy of the Interpolant

	Chapter 35 Other Efficient Numerical Methods
	35.1 The Fast Multipole Method
	35.2 Fast Tree Codes
	35.3 Domain Decomposition

	Chapter 36 Generalized Hermite Interpolation
	36.1 The Generalized Hermite Interpolation Problem
	36.2 Motivation for the Symmetric Formulation

	Chapter 37 RBF Hermite Interpolation in MATLAB
	Chapter 38 Solving Elliptic Partial Differential Equations via RBF Collocation
	38.1 Kansa's Approach
	38.2 An Hermite-based Approach
	38.3 Error Bounds for Symmetric Collocation
	38.4 Other Issues

	Chapter 39 Non-Symmetric RBF Collocation in MATLAB
	39.1 Kansa's Non-Symmetric Collocation Method

	Chapter 40 Symmetric RBF Collocation in MATLAB
	40.1 Symmetric Collocation Method
	40.2 Summarizing Remarks on the Symmetric and Non-Symmetric Collocation Methods

	Chapter 41 Collocation with CSRBFs in MATLAB
	41.1 Collocation with Compactly Supported RBFs
	41.2 Multilevel RBF Collocation

	Chapter 42 Using Radial Basis Functions Pseudospectral Mode
	42.1 Differentiation Matrices
	42.2 PDEs with Boundary Conditions via Pseudospectral Methods
	42.3 A Non-Symmetric RBF-based Pseudospectral Method
	42.4 A Symmetric RBF-based Pseudospectral Method
	42.5 A Unified Discussion
	42.6 Summary

	Chapter 43 RBF-PS Methods in MATLAB
	43.1 Computing the RBF-Dilferentiation Matrix in MATLAB
	43.1.1 Solution of a 1-D Transport Equatio

	43.2 Use of the Contour-Pade Algorithm with the PS Approach
	43.2.1 Solution of the 1D Transport Equation Revisited

	43.3 Computation of Higher-Order Derivatives
	43.3.1 Solution of the Allen-Cahn Equation

	43.4 Solution of a 2D Helmholtz Equation
	43.5 Solution of a 2D Laplace Equation with Piecewise Boundary Conditions
	43.6 Summary

	Chapter 44 RBF Galerkin Methods
	44.1 An Elliptic PDE with Neumann Boundary Conditions
	44.2 A Convergence Estimate
	44.3 A Multilevel RBF Galerkin Algorithm

	Chapter 45 RBF Galerkin Methods in MATLAB
	Appendix A Useful Facts from Discrete Mathematics
	A.1 Halton Points
	A.2 kd-Trees

	Appendix B Useful Facts from Analysis
	B.1 Some Important Concepts from Measure Theory
	B.2 A Brief Summary of Integral Transforms
	B.3 The Schwartz Space and the Generalized Fourier Transform

	Appendix C Additional Computer Programs
	C.1 MATLAB Programs
	C.2 Maple Programs

	Appendix D Catalog of RBFs with Derivatives
	D.1 Generic Derivatives
	D.2 Formulas for Specific Basic Functions
	D.2.1 Globally Supported, Strictly Positive Definite Functions
	D.2.2 Globally Supported, Strictly Conditionally Positive Definite Functions of Order 1
	D.2.3 Globally Supported, Strictly Conditionally Positive Definite Functions of Order 2
	D.2.4 Globally Supported, Strictly Conditionally Positive Definite Functions of Order 3
	D.2.5 Globally Supported, Strictly Conditionally Positive Definite Functions of Order 4
	D.2.6 Globally Supported, Strictly Positive Definite and Oscillatory Functions
	D.2. 7 Compactly Supported, Strictly Positive Definite Functions

	Bibliography
	Index
	Index

