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Preface 

Traditional numerical methods, such as finite element, finite difference, or finite vol
ume methods, were motivated mostly by early one- and two-dimensional simulations 
of engineering problems via partial differential equations (PDEs). The discretiza
tion involved in all of these methods requires some sort of underlying computational 
mesh, e.g., a triangulation of the region of interest. Creation of these meshes (and 
possible re-meshing) becomes a rather difficult task in three dimensions, and virtu
ally impossible for higher-dimensional problems. This is where meshfree methods 
enter the picture. Meshfree methods are often - but by no means have to be -
radially symmetric in nature. This is achieved by composing some univariate basic 
function with a (Euclidean) norm, and therefore turning a problem involving many 
space dimensions into one that is virtually one-dimensional. Such radial basis .func
tions are at the heart of this book. Some people have argued that there are three 
"big technologies" for the numerical solution of PDEs, namely finite difference, fi
nite element, and spectral methods. While these technologies came into their own 
right in successive decades, namely finite difference methods in the 1950s, finite el
ement methods in the 1960s, and spectral methods in the 1970s, meshfree methods 
started to appear in the mathematics literature in the 1980s, and they are now on 
their way to becoming "big technology" number four. In fact, we will demonstrate 
in later parts of this book how different types of meshfree methods can be viewed 
as generalizations of the traditional "big three". 

Multivariate meshfree approximation methods are being studied by many re
searchers. They exist in many flavors and are known under many names, e.g., 
diffuse element method, ele'ment-free Galerkin method, generalized finite element 
method, hp-clouds, meshless local Petrov-Galerkin method, moving least squares 
method, partition of unity finite element method, radial basis function method, 
reproducing kernel particle method, smooth particle hydrodynamics method. 

In this book we are concerned mostly with the moving least squares (MLS) and 
radial basis function (RBF) methods. We will consider all different kinds of aspects 
of these meshfree approximation methods: How to construct them? Are these 
constructions mathematicallj' justifiable? How accurate are they? Are there ways 
to implement them efficiently with standard mathematical software-packages such 
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as MATLAB? How do they compare with traditional methods? How do the various 
flavors of meshfree methods differ from one another, and how are they similar to one 
another? Is there a general framework that captures all of these methods? What 
sort of applications are they especially well suited for? 

While we do present much of the underlying theory for RBF and MLS ap
proximation methods, the emphasis in this book is not on proofs. For read
ers who are interested in all the mathematical details and intricacies of the 
theory we recommend the two excellent recent monographs [Buhmann (2003); 
Wendland (2005a)]. Instead, our objective is to make the theory accessible to a 
wide audience that includes graduate students and practitioners in all sorts of sci
ence and engineering fields. We want to put the mathematical theory in the context 
of applications and provide MATLAB implementations which give the reader an easy 
entry into meshfree approximation methods. The skilled reader should then easily 
be able to modify the programs provided here for his/her specific purposes. 

In a certain sense the present book was inspired by the beautiful little book [Tre
fethen (2000)]. While the present book is much more expansive (filling more than 
five hundred pages with forty-seven MATLAB 1 programs, one Maple2 program, one 
hundred figures, more than fifty tables, and more than five hundred references), it is 
our aim to provide the reader with relatively simple MATLAB code that illustrates 
just about every aspect discussed in the book. 

All MATLAB programs printed in the text (as well as a few modifications dis
cussed) are also included on the enclosed CD. The folder MATLAB contains M-files 
and data files of type MAT that have been written and tested with MATLAB 7. For 
those readers who do not have access to MATLAB 7, the folder MATLAB6 contains 
versions of these files that are compatible with the older MATLAB release. The 
main difference between the two versions is the use of anonymous functions in the 
MATLAB 7 code as compared to inline functions in the MATLAB 6 version. Two 
packages from the MATLAB Central File Exchange [MCFE] are used throughout the 
book: the function hal tonseq written by Daniel Dougherty and used to generate 
sequences of Halton points; the kd-tree library (given as a set of MATLAB MEX-files) 
written by Guy Shechter and used to generate the kd-tree data structure underlying 
our sparse matrices based on compactly supported basis functions. Both of these 
packages are discussed in Appendix A and need to be downloaded separately. The 
folder Maple on the CD contains the one Maple file mentioned above. 

The manuscript for this book and some of its earlier incarnations have been 
used in graduate level courses and seminars at Northwestern University, Vanderbilt 
University, and the Illinois Institute of Technology. Special thanks are due to Jon 

1 MATLAB® is a trademark of The MathWorks, Inc. and is used with permission. The Math
Works does not warrant the accuracy of the text or exercises in this book. This book's use or 
discussion of MATLAB software or related products does not constitute endorsement or sponsor
ship by The MathWorks of a particular pedagogical approach or particular use of the MATLAB 
software. 

2 Maple™ is a registered trademark of Waterloo Maple Inc. 
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Cherrie, John Erickson, Paritosh Mokhasi, Larry Schumaker, and Jack Zhang for 
reading various portions of the manuscript and/or MATLAB code and providing 
helpful feedback. Finally, thanks are due to all the people at World Scientific 
Publishing Co. who helped make this project a success: Rajesh Babu, Ying Oi 
Chiew, Linda Kwan, Rok Ting Tan, and Yubing Zhai. 

Greg Fasshauer 
Chicago, IL, January 2007 
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Chapter 1 

Introduction 

Meshfree methods have gained much attention in recent years, not only in the 
mathematics but also in the engineering community. Thus, much of the work con
cerned with meshfree approximation methods is interdisciplinary - at the interface 
between mathematics and numerous application areas (see the partial list below). 
Moreover, computation with high-dimensional data is an important issue in many 
areas of science and engineering. Many traditional numerical methods can either 
not handle such problems at all, or are limited to very special (regular) situations. 
Meshfree methods are often better suited to cope with changes in the geometry 
of the domain of interest (e.g., free surfaces and large deformations) than classical 
discretization techniques such as finite differences, finite elements or finite volumes. 
Another obvious advantage of meshfree discretizations is - of course - their in
dependence from a mesh. Mesh generation is still the most time consuming part 
of any mesh-based numerical simulation. Since meshfree discretization techniques 
are based only on a set of independent points, these costs of mesh generation are 
eliminated. Meshfree approximation methods can be seen to provide a new gen
eration of numerical tools. Other traditional numerical methods such as the finite 
element, finite difference or finite volume methods are usually limited to problems 
involving two or three parameters (space dimensions). However, in many applica
tions the number of parameters can easily range in the hundreds or even thousands. 
Multivariate approximation methods present one way to address these issues. 

Applications of meshfree methods can be found 

• in many different areas of science and engineering via scattered data mod
eling (e.g., fitting of potential energy surfaces in chemistry; coupling of 
engineering models with sets of incompatible parameters; mapping prob
lems in geodesy, geophysics, meteorology); 

• in many different areas of science and engineering via solution of partial 
differential equations (e.g., solution of gas dynamics equations, Boltzmann 
and Fokker-Planck equations in six-dimensional phase space; problems in
volving moving discontinuities such as cracks and shocks, multi-scale resolu
tion, large material distortions; elasticity studies in plate and shell bending 
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2 Meshfree Approximation Methods with MATLAB 

problems; applications in nanotechnology); 
• in non-uniform sampling (e.g., medical imaging, tomographic reconstruc

tion); 
• in mathematical finance (e.g., option pricing); 
• in computer graphics (e.g., representation of surfaces from point information 

such as laser range scan data, image warping); 
• in learning theory, neural networks and data mining (e.g., kernel approxi

mation, support vector machines); 
• in optimization. 

Since many of these applications either come down to a function approximation 
problem, or include function approximation as a fundamental component, we will 
begin our discussion with - and in fact base a large part of the contents of this 
book on - the multivariate scattered data interpolation problem. 

1.1 Motivation: Scattered Data Interpolation in R 8 

We will now describe the general process of scattered data fitting, which is one of 
the fundamental problems in approximation theory and data modeling in general. 
Our desire to have a well-posed problem formulation will naturally lead to an in
troductory example based on the use of so-called distance matrices. In the next 
chapters we will generalize this approach by introducing the concept of a radial 
basis function. 

1.1.1 The Scattered Data Interpolation Problem 

In many scientific disciplines one faces the following problem: We are given a set of 
data (measurements, and locations at which these measurements were obtained), 
and we want to find a rule which allows us to deduce information about the process 
we are studying also at locations different from those at which we obtained our 
measurements. Thus, we are trying to find a function Pf which is a "good" fit to 
the given data. There are many ways to decide what we mean by "good", and the 
only criterion we will consider now is that we want the function Pf to exactly match 
the given measurements at the corresponding locations. This approach is called 
interpolation, and if the locations at which the measurements are taken do not lie 
on a uniform or regular grid, then the process is called scattered data interpolation. 

To give a precise definition we assume that the measurement locations (or data 
sites) are labeled xi, j = 1, ... , N, and the corresponding measurements (or data 
values) are called Yi. We will use X to denote the set of data sites and assume 
that x c n for some region n in JRS. Throughout this book we will restrict our 
discussion to scalar-valued data, i.e., Yi E R. However, much of the following can 
be generalized easily to problems with vector-valued data. In many of our later 
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discussions we will assume that the data are obtained by sampling some (unknown) 
function fat the data sites, i.e., Yi = f(xi), j = 1, ... , N. Our notation Pt for the 
interpolating function emphasizes the connection between the interpolant and the 
data function f. We are now ready for a precise formulation of the scattered data 
interpolation problem. 

Problem 1.1 (Scattered Data Interpolation). Given data (xi, Yi), J 
1, ... , N, with xi E IRS, Yi E IR, find a {continuous) function Pt such that 
Pt(xi) =Yi, j = 1, ... ,N. 

The fact that we allow xi to lie in an arbitrary s-dimensional space IRs means 
that the formulation of Problem 1.1 allows us to cover many different types of ap
plications. If s = 1 the data could, e.g., be a series of measurements taken over 
a certain time period, thus the "data sites" xi would correspond to certain time 
instances. For s = 2 we can think of the data being obtained over a planar region, 
and so xi corresponds to the two coordinates in the plane. For instance, we might 
want to produce a map that shows the rainfall in the state we live in based on the 
data collected at weather stations located throughout the state. For s = 3 we might 
think of a similar situation in space. One possibility is that we could be interested 
in the temperature distribution inside some solid body. Higher-dimensional exam
ples might not be that intuitive, but a multitude of them exist, e.g., in finance, 
optimization, economics or statistics, but also in artificial intelligence or learning 
theory. 

A convenient and common approach to solving the scattered data problem is to 
make the assumption that the function Pt is a linear combination of certain basis 
functions Bk, i.e., 

N 

Pt(x) = L ckBk(x), (1.1) 
k=l 

Solving the interpolation problem under this assumption leads to a system of 
linear equations of the form 

Ac=y, 
where the entries of the interpolation matrix A are given by Aik = Bk(xi), j, k = 

1, ... , N, c = [c1, ... , CN]T, and y = [y1, ... , YN]T. 
Problem 1.1 will be well-posed, i.e., a solution to the problem will exist and be 

unique, if and only if the matrix A is non-singular. 
In the univariate setting it is well known that one can interpolate to arbitrary 

data at N distinct data sites using a polynomial of degree N -1. For the multivariate 
setting, however, there is the following negative result (see [Mairhuber (1956); Curtis 
(1959)]). 

Theorem 1.1 (Mairhuber-Curtis). lf f! c IRS, s > 2, contains an interior 
point, then there exist no Haar spaces of continuous functions except for one
dimensional ones. 
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In order to understand this theorem we need 

Definition 1.1. Let the finite-dimensional linear function space B ~ C(n) have a 
basis {B1, ... ' BN }. Then Bis a Haar space on n if 

det A=/. 0 

for any set of distinct x 1 , ... , XN in n. Here A is the matrix with entries Ajk 

Bk(XJ)· 

Note that existence of a Haar space guarantees invertibility of the interpolation 
matrix A, i.e., existence and uniqueness of an interpolant of the form (1.1) to 
data specified at x 1 , ... , XN from the space B. As mentioned above, univariate 
polynomials of degree N - 1 form an N-dimensional Haar space for data given at 
X1, ... ,XN. 

The Mairhuber-Curtis theorem tells us that if we want to have a well-posed 
multivariate scattered data interpolation problem we can no longer fix in advance 
the set of basis functions we plan to use for interpolation of arbitrary scattered data. 
For example, it is not possible to perform unique interpolation with (multivariate) 
polynomials of degree N to data given at arbitrary locations in IR2 . Instead, the 
basis should depend on the data locations. We will give a simple example of such 
an interpolation scheme in the next subsection. 

Proof. [of Theorem 1.1] Let s > 2 and assume that Bis a Haar space with basis 
{B1 , ... , BN} with N > 2. We need to show that this leads to a contradiction. 

We let x 1 , ... , XN be a set of distinct points inn c JR 5 and A the matrix with 
entries Ajk = Bk(XJ ), j, k = 1, ... , N. Then, by the definition of a Haar space, we 
have 

detA =/. 0. (1.2) 
Now, consider a closed path Pinn connecting only x 1 and x 2 . This is possible 

since - by assumption - n contains an interior point. We can exchange the 
positions of x 1 and x 2 by moving them continuously along the path P (without 
interfering with any of the other Xj)· This means, however, that rows 1 and 2 of 
the determinant (1.2) have been exchanged, and so the determinant has changed 
sign. 

Since the determinant is a continuous function of x 1 and x 2 we must have had 
det = 0 at some point along P. This contradicts (1.2). D 

1.1.2 Example: Interpolation with Distance Matrices 

In order to obtain data dependent approximation spaces. as suggested by the 
Mairhuber-Curtis theorem we now consider a simple example. As a "testfunction" 
we employ the function 

s 

f 8 (x) = 4s IT Xd(l - xd), 
d=l 



1. Introduction 5 

This function is zero on the boundary of the unit cube in JR.s and has a maximum 
value of one at the center of the cube. A simple MATLAB script defining ls is given 
as Program C.l in Appendix C. 

We will use a set of uniformly scattered data sites in the unit cube at which 

we sample our testfunction ls· This will be accomplished here (and in many other 
examples later on) by resorting to the so-called Halton points. These are uniformly 
distributed random points in (0, 1 )s. A set of 289 Halton points in the unit square 
in JR.2 is shown in Figure 1.1. More details on Halton points are presented in 
Appendix A. In our computational experiments we generate Halton points using 
the program hal tonseq. m written by Daniel Dougherty. This function can be 
downloaded from the MATLAB Central File Exchange (see [MCFE]). 
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x 

Fig. 1.1 289 Halton points in the unit square in IR 2 • 

As explained in the previous subsection we are interested in constructing a (con
tinuous) function P1 that interpolates the samples obtained from ls at the set of 
Halton points, i.e., such that 

P1(xJ) = ls(xj), Xj a Halton point. 
As pointed out above, ifs = 1, then this problem is often solved using univariate 
polynomials or splines. For a small number of data sites polynomials may work 
satisfactorily. However, if the number of points increases, i.e., the polynomial degree 
grows, then it is well known that one should use splines (or piecewise polynomials) 
to avoid oscillations. The simplest solution is to use a continuous piecewise linear 
spline, i.e., to "connect the dots". It is also well known that one possible basis for 
the space of piecewise linear splines interpolating data at a given set of points in 
[O, 1] consists of the shifts of the absolute value function to the data sites. In other 
words, we can construct the piecewise linear spline interpolant by assuming Pf is 
of the form 

N 

P1(x) = L cklx - xkl, xE[O,l], 
k=l 
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and then determine the coefficients ck by satisfying the interpolation conditions 

j = l, ... ,N. 

Clearly, the basis functions Bk= l·-xkl are dependent on the data sites as suggested 
by the Mairhuber-Curtis theorem. The points Xk to which the basic function B(x) = 
lxl is shifted are usually referred to as centers. While there may be circumstances 
that suggest choosing these centers different from the data sites one generally picks 
the centers to coincide with the data sites. This simplifies the analysis of the 
method, and is sufficient for many applications. Since the functions Bk are (radially) 
symmetric about their centers Xk this constitutes the first example of radial basis 
functions. We will formally introduce the notion of a radial function in the next 
chapter. 

Of course, one can imagine many other ways to construct an N-dimensional 
data-dependent basis for the purpose of scattered data interpolation. However, the 
use of shifts of one single basic function makes the radial basis function approach 
particularly elegant. 

Note that we distinguish between basis functions Bk and the basic function B. 
We use this terminology to emphasize that there is one basic function B which 
generates the basis via shifts to the various centers. 

Coming back to the scattered data problem, we find the coefficients Ck by solving 
the linear system 

lx1 - x1 I lx1 - x2 I 
lx2 - xii lx2 - x2I 

(1.3) 

As mentioned earlier, for higher space dimensions s such a data dependent basis 
is required. Thus, even though the construction of piecewise linear splines in higher 
space dimensions is a different one (they are closely associated with an underlying 
computational mesh), the idea just presented suggests a very simple generalization 
of univariate piecewise linear splines that works for any space dimension. 

The matrix in (1.3) above is an example of a distance matrix. Such matrices have 
been studied in geometry and analysis in the context of isometric embeddings of 
metric spaces for a long time (see, e.g., [Baxter (1991); Blumenthal (1938); Bochner 
(1941); Micchelli (1986); Schoenberg (1938a); Wells and Williams (1975)] and also 
Chapter 10). It is known that the distance matrix based on the Euclidean distance 
between a set of distinct points in lR8 is always non-singular (see Section 9.3 for 
more details). Therefore, we can solve the scattered data interpolation problem we 
posed on [O, 1] 8 by assuming 

N 

P1(x) = L:ckllx - xkll2, (1.4) 
k=l 
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and then determine the coefficients Ck by solving the linear system 

l1x1 - xii12 llx1 - x2l12 
llx2 - xii12 l1x2 - ~2112 

l1x1 - XNjb 
llx2 - XNll2 

7 

This is precisely the interpolation method we will choose to illustrate with our first 
MATLAB script DistanceMatrixFi t .m (see Program 1.2 below) and the supporting 
figures and tables. A typical basis function for the Euclidean distance matrix fit, 
Bk(x) = llx - xkl12, is shown in Figure 1.2 for the case Xk = 0 ands= 2. 

z 

1.5 

0.5 

0 
1 

y x 

Fig. 1.2 A typical basis function for the Euclidean distance matrix centered at the origin in JR2 . 

Before we discuss the actual interpolation program we first list a subroutine 
used in many of our later examples. It is called DistanceMatrix .m and we use it 
to compute the matrix of pairwise Euclidean distances of two (possibly different) 
sets of points in ~s. In the code these two sets are denoted by dsi tes and ctrs. In 
most of our examples both of these sets will coincide with the set X of data sites. 

Program 1.1. DistanceMatrix. m 

% DM = DistanceMatrix(dsites,ctrs) 
% Forms the distance matrix of two sets of points in R-s, 
% i.e., DM(i,j) = I I datasite_i - center_j I 1_2. 
% Input 
% dsites: Mxs matrix representing a set of M data sites in R~s 
% (i.e., each row contains ones-dimensional point) 
% ctrs: Nxs matrix representing a set of N centers in R-s 

% 
% Output 
% DM: 
% 

(one center per row) 

MxN matrix whose i,j position contains the Euclidean 
distance between the i-th data site and j-th center 
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1 function DM = DistanceMatrix(dsites,ctrs) 
2 [M,s] = size(dsites); [N,s] = size(ctrs); 
3 DM = zeros(M,N); 

!. Accumulate sum of squares of coordinate differences 
!. The ndgrid command produces two MxN matrices: 
% dr, consisting of N identical columns (each containing 
!. the d-th coordinate of the M data sites) 
!. cc, consisting of M identical rows (each containing 
!. the d-th coordinate of the N centers) 

4 for d=l:s 
5 [dr,cc] = ndgrid(dsites(:,d),ctrs(:,d)); 
6 DM = DM + (dr-cc).-2; 

7 end 
8 DM = sqrt(DM); 

Note that this subroutine can easily be modified to produce a p-norm distance 
matrix by making the obvious changes to lines 6 and 8 of the code in Program 1.1. 
We will come back to this idea in Chapter 10. 

Our first main script is Program 1.2. This script can be used to compute the 
distance matrix interpolant to data sampled from the test function f s provided by 
Program C.l. We use Halton points and are able to select the space dimension 
s and number of points N by editing lines 1 and 2 of the code. The subrou
tine MakeSDGrid.m which we use to compute the equally spaced points in the s
dimensional unit cube on line 6 ofDistanceMatrixFit .mis provided in Appendix C. 
These equally spaced points are used as evaluation points and to compute errors. 
Note that since the distance matrix interpolant is of the form (1.4) its simultaneous 
evaluation at the entire set of evaluation points amounts to a matrix-vector product 
of the evaluation matrix EM and the coefficients c. Here the evaluation matrix has 
the same structure as the interpolation matrix and can also be computed using the 
subroutine Distancematrix.m (only using evaluation points in place of the data 
sites, see line 9 of DistanceMatrixFit .m). The coefficient vector c is supplied di
rectly as solution of the linear system Ac = f (see (1.3) and the MATLAB expression 
IM\rhs on line 10 of the program). The evaluation points are subsequently used 
for the error computation in lines 11-13 and are also used for plotting purposes in 
the last part of the program (lines 16-35). Note that for this example we know the 
function f s that generated the data, and therefore are able to compute the error in 
our reconstruction. The subroutines that produce the 2D and 3D plots on lines 24-
32 are provided in Appendix C. Note that the use of reshape on lines 22-23 and 
27-29 corresponds to the use of meshgrid for plotting purposes. 

Program 1.2. DistanceMatrixFit .m 

!. DistanceMatrixFit 
!. Script that uses Euclidean distance matrices to perform 
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% scattered data interpolation for arbitrary space dimensions 
% Calls on: DistanceMatrix, MakeSDGrid, testfunction 
% Uses: haltonseq (written by Daniel Dougherty from MATLAB 
% Central File Exchange) 

1 s = 3; 
2 k = 2; N = (2-k+1)-s; 

3 neval = 10; M = neval-s; 

% Use Halton points as data sites and centers 
4 dsites = haltonseq(N,s); 
5 ctrs = dsites; 

% Create neval-s equally spaced evaluation locations in the 
% s-dimensional unit cube 

6 epoints = MakeSDGrid(s,neval); 
% Create right-hand side vector, 
% i.e., evaluate the test function at the data sites 

7 rhs = testfunction(s,dsites); 
% Compute distance matrix for the data sites and centers 

8 IM= DistanceMatrix(dsites,ctrs); 
% Compute distance matrix for evaluation points and centers 

9 EM= DistanceMatrix(epoints,ctrs); 
% Evaluate the interpolant on evaluation points 
% (evaluation matrix * solution of interpolation system) 

10 Pf= EM* (IM\rhs); 
% Compute exact solution, 
% i.e., evaluate test function on evaluation points 

11 exact= testfunction(s,epoints); 
% Compute maximum and RMS errors on evaluation grid 

12 maxerr = norm(Pf-exact,inf); 
13 rms_err = norm(Pf-exact)/sqrt(M); 
14 fprintf('RMS error: %e\n', rms_err) 
15 fprintf('Maximum error: %e\n', maxerr) 
16 switch s 
17 case 1 
18 plot(epoints, Pf) 
19 figure; plot(epoints, abs(Pf-exact)) 
20 case 2 
21 fview = [-30,30]; 
22 xe = reshape(epoints(:,2),neval,neval); 
23 ye= reshape(epoints(:,1),neval,neval); 
24 PlotSurf(xe,ye,Pf,neval,exact,maxerr,fview); 
25 PlotError2D(xe,ye,Pf,exact,maxerr,neval,fview); 
26 case 3 

9 
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27 xe = reshape(epoints(:,2),neval,neval,neval); 
38 ye= reshape(epoints(:,l),neval,neval,neval); 
29 ze = reshape(epoints(:,3),neval,neval,neval); 
30 xslice = .25:.25:1; yslice = 1; zslice = [0,0.5]; 
31 PlotSlices(xe,ye,ze,Pf ,neval,xslice,yslice,zslice); 
32a PlotErrorSlices(xe,ye,ze,Pf,exact,neval, ... 
32b xslice,yslice,zslice); 
33 otherwise 
34 disp('Cannot display plots for s>3') 
35 end 

In Tables 1.1 and 1.2 as well as Figures 1.3 and 1.4 we present some examples 
computed with Program 1.2. The number M of evaluation points (determined by 
neval on line 3 of the code) we used for the cases s = 1, 2, ... , 6, was 1000, 1600, 
1000, 256, 1024, and 4096, respectively (i.e., neval = 1000, 40, 10, 4, 4, and 4, 
respectively). Note that, as the space dimensions increases, more and more of the 
evaluation points lie on the boundary of the domain, while the data sites (which are 
given as Halton points) are located in the interior of the domain. The value k listed 
in Tables 1.1 and 1.2 is the same as the kin line 2 of Program 1.2. The formula for 
the root-mean-square error (RMS-error) is given by 

RMS-error= 
1 M 1 

M ~ [Pt(ej) - J(ej)J2 
= v:MllPt - 1112, (1.5) 

where the ej, j = 1, ... , M are the evaluation points. Formula (1.5) is used on 
line 13 of Program 1.2. 

The basic MATLAB code for the solution of any kind of RBF interpolation prob
lem will be very similar to Program 1.2. Note in particular that the data used -
even for the distance matrix interpolation considered here - can also be "real" 
data. In that case one simply needs to replace lines 4 and 7 of the program by 
appropriate code that generates the data sites and data values for the right-hand 
side. 

The plots on the left of Figures 1.3 and 1.4 display the graphs of the distance 
matrix fits for space dimensions s = 1, 2, and 3, respectively, while those on the 
right depict the corresponding errors. For the lD plots (in Figure 1.3) we used 
5 Halton points to interpolate the testfunction Ji. The piecewise linear nature of 
the interpolant is clearly visible at this resolution. If we use more points then the 
fit becomes more accurate - see Table 1.1 - but then it is no longer possible to 
distinguish the piecewise linear nature of the interpolant. The 2D plot (top left of 
Figure 1.4) interpolates the testfunction f2 at 289 Halton points. The graph of Pt is 
false-colored according to the absolute error (indicated by the color bar at the right 
of the plot). The bottom plot in Figure 1.4 shows a slice plot of the distance matrix 
interpolant to f3 based on 729 Halton points. For this plot the colors represent 
function values (again indicated by the color bar on the right). 
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Table 1.1 Distance matrix fit to N Halton points in (0, 1]"', s = 1, 2, 3. 

lD 2D 3D 

k N RMS-error N RMS-error N RMS-error 

1 3 5.896957e-001 9 l.937341e-001 27 9.721476e-002 
2 5 3.638027e-001 25 6.336315e-002 125 6.277141e-002 
3 9 l.158328e-001 81 2. 349093e-002 729 2. 759452e-002 
4 17 3.981270e-002 289 1.045010e-002 
5 33 l.406188e-002 1089 4.326940e-003 
6 65 5.068541e-003 4225 1. 797 430e-003 
7 129 l .877013e-003 
8 257 7.264159e-004 
9 513 3.016376e-004 
10 1025 l.381896e-004 
11 2049 6.907386e-005 
12 4097 3.4531 79e-005 

1.4.-----...-----.------------. 1.4-----.----.-----------

1.2 

y 

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 
x x 

Fig. 1.3 Fit (left) and absolute error (right) for 5 point distance matrix interpolation in lD. 

In the right half of Figures 1.3 and 1.4 we show absolute errors for the distance 
matrix interpolants displayed in the left column. We use analogous color schemes, 
i.e., the 2D plot (top part of Figure 1.4) is false-colored according to the absolute 
error, and so is the 3D plot (bottom) since now the "function value" corresponds 
to the absolute error. We can see clearly that most of the error is concentrated 
near the boundary of the domain. In fact, the absolute error is about one order of 
magnitude larger near the boundary than it is in the interior of the domain. This 
is no surprise since the data sites are located in the interior. However, even for 
uniformly spaced data sites (including points on the boundary) the main error in 
radial basis function interpolation is usually located near the boundary. 

From this first simple example we can observe a number of other features. Most 
of them are characteristic for the radial basis function interpolants we will be study
ing later on. First, the basis functions employed, Bk = II· -Xk 112, are radially sym-
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Fig. 1.4 Fits (left) and errors (right) for distance matrix interpolation with 289 points in 2D 
(top), and 729 points in 3D (bottom). 

Table 1.2 Distance matrix fit to N Halton points in (0, 1] 8
, s = 4, 5, 6. 

4D 5D 6D 

k N RMS-error N RMS-error N RMS-error 

1 81 l.339581e-001 243 9. 558350e-002 729 5.097600e-002 
2 625 6.817 424e-002 3125 3.118905e-002 

metric. Second, as the MATLAB scripts show, the method is extremely simple to 
implement for any space dimension s. For example, no underlying computational 
mesh is required to compute the interpolant. The process of mesh generation is 
a major factor when working in higher space dimensions with polynomial-based 
methods such as splines or finite elements. All that is required for our method is 
the pairwise distance between the data sites. Therefore, we have what. is known as 
a meshfree (or meshless) method. 

Third, the accuracy of the method improves if we add more data sites. In fact, 
it seems that the RMS-error in Tables 1.1 and 1.2 is reduced by a factor of about 
two from one row to the next. Since we use (2k + 1) 8 uniformly distributed random 
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data points in row k this indicates a convergence rate of roughly O(h), where h can 
be viewed as something like the average distance or meshsize of the set X of data 
sites (we will be more precise later on). 

Another thing to note is that the simple distance function interpolant used here 
(as well as many other radial basis function interpolants used later) requires the 
solution of a system of linear equations with a dense N x N matrix. This makes 
it very costly to apply the method in its simple form to large data sets. Moreover, 
as we will see later, these matrices also tend to be rather ill-conditioned. These are 
the reasons why we can only present results for relatively small data sets in higher 
space dimensions using this simple approach. 

In the remainder of this book it is our goal to present alternatives to this basic 
interpolation method that address the problems mentioned above such as limitation 
to small data sets, ill-conditioning, limited accuracy and limited smoothness of the 
interpolant. 

1.2 Some Historical Remarks 

Originally, the motivation for the basic meshfree approximation methods (ra
dial basis function and moving least squares methods) came from applications in 
geodesy, geophysics, mapping, or meteorology. Later, applications were found in 
many other areas such as in the numerical solution of PDEs, computer graph
ics, artificial intelligence, statistical learning theory, neural networks, signal and 
image processing, sampling theory, statistics (kriging), finance, and optimiza
tion. It should be pointed out that meshfree local regression methods have been 
used independently in statistics for well over 100 years (see, e.g., [Cleveland and 
Loader (1996)] and the references therein). In fact, the basic moving least squares 
method (known also as local regression in the statistics literature) can be traced 
back at least to the work of [Gram (1883); Woolhouse (1870); De Forest (1873); 
De Forest (1874)]. 

In the literature on approximation theory and related applications areas some 
historical landmark contributions have come from 

• Donald Shepard, who as an undergraduate student at Harvard University, 
suggested the use of what are now called Shepard functions in the late 
1960s (see Chapter 22). The publication [Shepard (1968)] discusses the 
basic inverse distance weighted Shepard method and some modifications 
thereof. The method was at the time incorporated into a computer pro
gram, SYMAP, for map making. 

• Rolland Hardy, who was a geodesist at Iowa State University. He intro
duced the so-called multiquadrics (MQs) in the early 1970s (see, e.g., [Hardy 
(1971)] or Chapter 8). Hardy's work was primarily concerned with appli
cations in geodesy and mapping. 
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• Robert L. Harder and Robert N. Desmarais, who were aerospace engineers 
at MacNeal-Schwendler Corporation (MSC Software), and NASA's Langley 
Research Center. They introduced the so-called thin plate splines (TPSs) 
in 1972 (see, e.g., [Harder and Desmarais (1972)] or Chapter 8). Their work 
was concerned mostly with aircraft design. 

• Jean Duchon, a mathematician at the Universite Joseph Fourier in Greno
ble, France. Duchon suggested a variational approach minimizing the 
integral of 9 2 f in IR2 which also leads to the thin plate splines. This 
work was done in the mid 1970s and is considered to be the foundation 
of the variational approach to radial basis functions (see [Duchon (1976); 
Duchon (1977); Duchon (1978); Duchon (1980)]) or Chapter 13). 

• Jean Meinguet, a mathematican at Universite Catholique de Louvain in 
Louvain, Belgium. Meinguet introduced what he called surface splines in 
the late 1970s. Surface splines and thin plate splines fall under what we 
will refer to as polyharmonic splines (see, e.g., [Meinguet (1979a); Meinguet 
(1979b ); Meinguet (1979c); Meinguet (1984)] or Chapter 8). 

• Peter Lancaster and Kes Salkauskas, mathematicians at the University of 
Calgary, Canada. They published [Lancaster and Salkauskas (1981)] in
troducing the moving least squares method (a generalization of Shepard 
functions). 

• Richard Franke, a mathematician at the Naval Postgraduate School in Mon
terey, California. In [Franke (1982a)] he compared various scattered data 
interpolation methods, and concluded MQs and TPSs were the best. Franke 
also conjectured that the interpolation matrix for MQs is invertible. 

• Wolodymyr (Wally) Madych, a mathematician at the University of Con
necticut, and Stuart Alan Nelson, a mathematician from Iowa State Univer
sity. In 1983 they completed their manuscript [Madych and Nelson (1983)] 
in which they proved Franke's conjecture (and much more) based on a varia
tional approach. However, this manuscript was never published. Other fun
damental papers by these two authors are, e.g., [Madych and Nelson (1988); 
Madych and Nelson (1990a); Madych and Nelson (1992)]. 

• Charles Micchelli, a mathematician at the IBM Watson Research Center. 
Micchelli published the paper [Micchelli (1986)]. He also proved Franke's 
conjecture. His proofs are rooted in the work of [Bochner (1932); Bochner 
(1933)] and [Schoenberg (1937); Schoenberg (1938a); Schoenberg (1938b)] 
on positive definite and completely monotone functions. This is also the 
approach we will follow throughout much of this book. 

• Grace Wahba, a statistician at the University of Wisconsin. She studied the 
use of thin plate splines for statistical purposes in the context of smoothing 
noisy data and data on spheres, and introduced the ANOVA and cross 
validation approaches to the radial basis function setting(see, e.g., [Wahba 
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(1979); Wahba (1981); Wahba and Wendelberger (1980)]). One of the first 
monographs on the subject is [Wahba (1990b)]. 

• Robert Schaback, a mathematician at the University of Gottingen, Ger
many. Compactly supported radial basis functions ( CSRBFs) were intro
duced in [Schaback (1995a)], and a very popular family of CSRBFs was 
presented by Holger Wendland (also a mathematician in Gottingen) in his 
Ph.D. thesis (see also [Wendland (1995)] and Chapter 11). Both of these 
authors have contributed extensively to the field of radial basis functions. 
We mention particularly the recent monograph [Wendland (2005a)]. 





Chapter 2 

Radial Basis Function Interpolation 
in MATLAB 

Before we discuss any of the theoretical foundation of radial basis functions we want 
to get a feel for what they are all about. We saw in the introductory chapter that 
it is easy to use Euclidean distance matrices to compute a solution to the scattered 
data interpolation problem. However, we also pointed out a number of limitations 
to that approach such as the limited accuracy and limited smoothness. It turns out 
that we can maintain the underlying structure presented by the distance matrix 
approach and address these limitations by composing the distance function with 
certain "good" univariate functions. 

2.1 Radial (Basis) Functions 

As a first example we pick a function well-represented in many branches of mathe
matics, namely the Gaussian 

<p(r) = e-(cr)2' r E IR. 

Our shape parameter E is related to the variance <J2 of the normal distribution 
function by c 2 = l/(2<J2 ). If we compose the Gaussian with the Euclidean distance 
function II · 112 we obtain for any fixed center Xk E IR8 a multivariate function 

x E IR 8
• 

Obviously, the connection between <I>k and <p is given by 

It is this connection that gives rise to the name radial basis function (RBF). The 
following is a formal definition of a radial function. 

Definition 2.1. A function <I> : IR 8 ----+ IR is called radial provided there exists a 
univariate function (p : [O, oo) ----+ IR such that 

<I>(x) = <p(r), where r = llxll, 

and II· 11 is some norm on IR 8 
- usually the Euclidean norm. 

17 
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Definition 2.1 says that for a radial function <I> 

llxill = llx2 II ===? <I>(xi) = <I>(x2), 

In other words, the value of <I> at any point at a certain fixed distance from the origin 
(or any other fixed center point) is constant. Thus, <I> is radially (or spherically) 
symmetric about its center. Definition 2.1 shows that the Euclidean distance func
tion we used in the introduction is just a special case of a radial (basis) function. 
Namely, with cp(r) = r. 

Figure 2.1 shows the graphs of two Gaussian radial basis functions, one with 
shape parameter c = 1 (left) and one with c = 3 (right) (both centered at the origin 
in 1R2 ). A smaller value of c (i.e., larger variance) causes the function to become 
"flatter", while increasing c leads to a more peaked RBF, and therefore localizes its 
influence. We will see soon that the choice of c has a profound influence on both 
the accuracy and numerical stability of the solution to our interpolation problem. 

y x 

zo.5 

0 
1 

y x 

Fig. 2.1 Gaussian withe= 1 (left) and e = 3 (right) centered at the origin in JR.2 . 

Definition 2.1 and the discussion leading up to it show again why it makes sense 
to call cp the basic function, and <I> k (II · II 2) (centered at Xk) a radial basis function. 
One single basic function generates all of the basis functions that are used in the 
expansion ( 1.1). 

Radial function interpolants have the nice property of being invariant under all 
Euclidean transformations (i.e., translations, rotations, and reflections). By this 
we mean that it does not matter whether we first compute the RBF interpolant 
and then apply a Euclidean transformation, or if we first transform the data and 
then compute the interpolant. This is an immediate consequence of the fact that 
Euclidean transformations are characterized by orthogonal transformation matri
ces and are therefore 2-norm-invariant. Invariance under translation, rotation and 
reflection is often desirable in applications. 

Moreover, the application of radial functions to the solution of the scattered data 
interpolation problem (as well as many other multivariate approximation problems) 
benefits from the fact that the interpolation problem becomes insensitive to the 
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dimension s of the space in which the data sites lie. Instead of having to deal with 
a multivariate function <I> (whose complexity will increase with increasing space 
dimension s) we can work with the same univariate function cp for all choices of s. 

2.2 Radial Basis Function Interpolation 

Instead of using simple distance matrices as we did earlier, we now use a radial 
basis function expansion to solve the scattered data interpolation problem in Rs by 
assuming 

N 

PJ(x) = I.::ckcp(llx - xkll2), (2.1) 
k=l 

The coefficients Ck are found by enforcing the interpolation conditions, and thus 
solving the linear system 

cp(llx1 - xil12) cp(llx1 - x2ll2) 
cp(llx2 - x1ll2) cp(llx2 - x2ll2) 

'P (llx1 - XNll2) 
'P (llx2 - XNll2) 

As the solution of the scattered data interpolation problem hinges entirely on the 
solution of this system of linear equations we will devote the next chapter to the 
question of when (i.e., for what type of basic functions cp) the system matrix is 
non-singular. 

For the numerical example presented below we restrict ourselves to the two
dimensional case s = 2. As basic function cp we will use both Gaussians and the 
linear function cp(r) = r which gives rise to the Euclidean distance matrix approach 
used ear lier. 

The code of the MATLAB script RBFinterpolation2D.m (see Program 2.1) 
we use to perform RBF interpolation in 2D is very similar to the earlier script 
DistanceMatrixFi t .m. It also makes use of the subroutine DistanceMatrix .m. 
While it is easy to write a version of the interpolation script that works for any 
space dimension s (just as we did in DistanceMatrixFit .m) we will stick with a 
basic 2D version here. 

In line 1 we define the Gaussian RBF as a MATLAB anonymous function that 
accepts a matrix argument (namely the output from DistanceMatrix) along with 
its shape parameter. Note that this feature is only available since MATLAB Re
lease 7. For older MATLAB versions we suggest using an inline function instead 
(see the programs in the folder Matlab6 of the enclosed CD). If execution speed 
is important, then one should explicitly provide the function (either hardcoded di
rectly where needed, or as an M-f ile). This latter approach will always be more 
efficient than the i.nline or even anonymous function approach. However, then the 
interpolation program is no longer as generic. 
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We can replace the definition of the Gaussian on line 1 by the definition of the 
linear function <p(r) = r or any other admissible RBF we will encounter later. In 
lines 2-6 we define a test function that we will sample similarly to the function 
fs used in the introductory example. Here (and in many later examples) we use 
Franke 's function 

f(x, y) = ~e-1/4((9x-2) 2 +(9y-2) 2 ) + ~e-(1/49)(9x+1) 2 -(1/10)(9y+1) 2 

+~e-1/4((9x-7) 2+(9y-3) 2 ) _ ~e-(9x-4) 2 -(9y-7) 2 
( 2.2) 

2 5 

which is a standard test function for 2D scattered data fitting. Note that we used 
(x, y) to denote the two components of x E 1R2 . The graph of Franke's function 
over the unit square is shown in Figure 2.2. 
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Franke's test function. 
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For many of our examples we use data locations that have been saved in files 
named Data2D_%d%s where the number of points (%d) is taken from the progression 
{(2k + 1)2 } = { 9, 25, 81, 289, 1089, 4225, ... }. The characters u or h (in place of 
%s) are used to denote either uniformly spaced points, or Halton points in the unit 
square. The set of data points is defined and loaded in lines 7 and 8. As in the earlier 
example we consider here only the case where the centers for the RBFs coincide 
with the data locations (line 9). 

A grid of evaluation points used to evaluate our interpolant for the purposes 
of rendering and error computation is defined in lines 10 and 11. The test data 
(right-hand side of the interpolation equations) are computed on line 12 where the 
test function is sampled at the data sites. 

The main part of the code is given by lines 13-17. Note that this part is very 
similar to the corresponding segment (lines 7-9) in DistanceMatrixFi t .m. The 
only difference is that we now apply the basic function <p to the entire distance 
matrices in order to obtain the interpolation and evaluation matrices. 
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Program 2.1. RBFinterpolation2D.m 

% RBFinterpolation2D 
% Script that performs basic 2D RBF interpolation 
% Calls on: DistanceMatrix 

% Define the Gaussian RBF and shape parameter 
1 rbf = ©(e,r) exp(-(e*r).-2); ep = 21.1; 

% Define Franke's function as testfunction 
2 f1 = ©(x,y) 0.75*exp(-((9*x-2).-2+(9*y-2).-2)/4); 
3 f2 = ©(x,y) 0.75*exp(-((9*x+l).-2/49+(9*y+l).-2/10)); 
4 f3 = ©(x,y) 0.5*exp(-((9*x-7).-2+(9*y-3).-2)/4); 
5 f4 = ©(x,y) 0.2*exp(-((9*x-4).-2+(9*y-7).-2)); 
6 testfunction = ©(x,y) fl(x,y)+f2(x,y)+f3(x,y)-f4(x,y); 
7 N = 1089; gridtype = 'h'; 

% Load data points 
8 name= sprintf('Data2D_%d%s',N,gridtype); load(name) 
9 ctrs = dsites; 

10 neval = 40; grid= linspace(0,1,neval); 
11 [xe,ye] = meshgrid(grid); epoints = [xe(:) ye(:)]; 

% Evaluate the test function at the data points 
12 rhs = testfunction(dsites(:,1),dsites(:,2)); 

% Compute distance matrix between the data sites and centers 
13 DM_data = DistanceMatrix(dsites,ctrs); 

% Compute interpolation matrix 
14 IM= rbf(ep,DM_data); 

% Compute distance matrix between evaluation points and centers 
15 DM_eval = DistanceMatrix(epoints,ctrs); 

% Compute evaluation matrix 
16 EM= rbf(ep,DM_eval); 

% Compute RBF interpolant 
% (evaluation matrix * solution of interpolation system) 

17 Pf= EM* (IM\rhs); 
% Compute exact solution, i.e., 
% evaluate test function on evaluation points 

18 exact= testfunction(epoints(:,1),epoints(:,2)); 
% Compute errors on evaluation grid 

19 maxerr = norm(Pf-exact,inf); 
20 rms_err = norm(Pf-exact)/neval; 
21 fprintf('RMS error: %e\n', rms_err) 
22 fprintf('Maximum error: %e\n', maxerr) 
23 fview = [160,20]; % for Franke's function 
24 PlotSurf(xe,ye,Pf,neval,exact,maxerr,fview); 
25 PlotError2D(xe,ye,Pf ,exact,maxerr,neval,fview); 

21 
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In Table 2.1 we report the results of a series of experiments in which we compute 
Gaussian RBF and distance matrix interpolants to increasingly larger sets of data. 
We use one fixed value of c for all of the experiments with the Gaussians. This 
type of approximation is known as non-stationary approximation. Its counterpart 
is known as stationary approximation. 

Even though we do not perform stationary interpolation in this experiment we 
take a minute to explain the essential difference between the two approaches. In the 
stationary setting we would scale the shape parameter c according to the fill distance 
(or meshsize) h so that we end up using "peaked" basis functions for densely spaced 
data and "flat" basis functions for coarsely spaced data. We will use the fill distance 
as a measure of the data distribution. The fill distance is usually defined as 

h = hx,n = sup min !Ix - Xj 112, 
:i:EO :i:jEX 

(2.3) 

and it indicates how well the data in the set X fill out the domain n. A geometric 
interpretation of the fill distance is given by the radius of the largest possible empty 
ball that can be placed among the data locations inside n (see Figure 2.3). Some
times the synonym covering radius is used. In our MATLAB code we can estimate 
the fill distance via 

hX = max(min(DM_eval')) (2.4) 

where DM_eval is the matrix consisting of pairwise distances between the evaluation 
points (placed on a fine uniform grid in n) and the data sites x ( c.f. line 15 of 
Program 2.1). Note that we transpose the non-symmetric evaluation matrix. This 
corresponds to finding - for each evaluation point - the distance to the corre
sponding closest data site, and then setting hx ,n as the worst of those distances. 
Figure 2.3 illustrates the fill distance for a set of 25 Halton points. Note that in 
this case the largest "hole" in the data is near the boundary. 
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Fig. 2.3 The fill distance for N = 25 Halton points (hx,n ::::::! 0.2667). 

We will take a closer look at the differences between stationary and non
stationary interpolation in later chapters of this book. 
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In the following examples we will clearly see the effects the shape parame
ter has on the condition number of the interpolation matrix (and therefore the 
numerical stability) of our computations. In order to be able to use our script 
RBFinterpolation2D .min conjunction with Gaussians to produce a meaningful se
quence of non-stationary experiments, i.e., with a fixed value of the shape parameter 
£, we are required to take the fairly large value £ = 21.1. Otherwise computation 
with the relatively densely spaced point set of N = 4225 Halton points results in 
MATLAB warnings of ill-conditioning. This means that - for the non-stationary 
approach - the basis functions are too localized on the smaller point sets, and the 
approximation is very poor (see Figure 2.4). 

The test results for a non-stationary interpolation experiment using Gaussians 
and Euclidean distance matrices for Franke's function are shown in Table 2.1. As 
just pointed out, we note that a fit with Gaussians and a small shape parameter 
such as £ = 1 would quickly lead to a numerical breakdown. For as few as N = 25 
data points and £ = 1 MATLAB issues a "matrix close to singular" warning with an 
estimated reciprocal condition number of RCOND=3.986027e-020. 
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Table 2.1 Non-stationary RBF interpolation to Franke's function using 
Gaussians (c: = 21.1) and Euclidean distance matrices. 

Gaussian distance matrix 

k N RMS-error max-error RMS-error max-error 

1 9 3.647169e-001 1. 039682e+OOO l .323106e-001 4.578028e-001 
2 25 3.203404e-001 9.670980e-001 6.400558e-002 2. 767871e-001 
3 81 2.152222e-001 8.455161e-001 l.343780e-002 6. 733130e-002 
4 289 7.431729e-002 7.219253e-001 3. 707360e-003 3.057540e-002 
5 1089 1. 398297 e-002 3.857234e-001 1.143589e-003 l.451950e-002 
6 4225 4.890709e-004 1. 940675e-002 4.0027 49e-004 8.022336e-003 
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Fig. 2.4 Gaussian RBF interpolant with c: = 21.1 at N = 289 (left) and at N = 1089 Halton 
points (right). 
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If we look at the entries in Table 2.1 then we see that - contrary to what we 
announced earlier - the results based on the distance matrix fit are more accurate 
than those obtained with Gaussians. This will change, however, if we try to optimize 
our choice of the shape parameter E (see the results of the next experiment in 
Table 2.2). 

In a second experiment we consider the same test function and Gaussian basis 
functions. Now, however, we want to study the effects of the shape parameter. 
Therefore, in Figure 2.5 we display both the maximum and RMS errors as a function 
of the shape parameter E for four fixed data sets (81, 289, 1089 and 4225 Halton 
points). These curves reveal some of the problems associated with radial basis 
function interpolation - especially when working with globally supported basis 
functions, i.e., dense matrices. We see that the errors decrease with decreasing E 

(of course, they also decrease with decreasing fill distance - but that is not what 
we are concerned with now). However, the error curves are not monotonic. We can 
identify an optimal value of E for which both errors are minimal (the minima of 
the two error curves occur at almost the same place). Moreover, there is a value of 
E at which the computational results become unpredictable, and the error curves 
become erratic. This point is associated with severe ill-conditioning of the system 
matrix. Since MATLAB issues a warning when attempting to solve an ill-conditioned 
linear system, we refer to the smallest value of E for which we do not see a MATLAB 
warning as the "safe" value of E (for a given set X of data sites and basic function 
rp). The interesting fact about the four plots displayed in Figure 2. 5 is that for the 
smaller data sets (N = 81 and N = 289) the minimum errors are obtained for a 
"safe" E, while for the larger sets (N = 1089 and N = 4225) the minimum errors 
are obtained in the "unsafe" range. Therefore, we are computing in a certain "gray 
zone". We are obtaining highly accurate solutions from severely ill-conditioned 
linear systems. We will come back later to this interesting feature of radial basis 
function interpolation (called uncertainty or trade-off principle). It is conceivable 
(and in fact possible [Fornberg and Wright (2004)]) to obtain even more accurate 
results by using a more stable way to evaluate the radial basis function interpolant 
(see the discussion in Chapters 16 and 17). 

In Table 2.2 we list the "best possible" results for stationary Gaussian interpo
lation. We view "best" in two different ways. For the results presented in columns 
3-5 we select for each choice of N the smallest possible value of E such that MATLAB 
does not issue a warning. We refer to this case as the "safe" E case in Table 2.2. 
Most of these errors are now comparable (or smaller) than those for simple distance 
matrix interpolation ( c.f. Table 2 .1). 

These results, however, do not always represent the smallest achievable error. 
Therefore, we present (in columns 6-8) results for those "optimal" values of E which 
yield the smallest RMS-error. These results are obtained in the "gray zone" men
tioned above. For example, if we use N = 1089 Halton points and shape parameter 
E = 6.2 then MATLAB issues a warning with RCOND = 2.683527e-020. However, 
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Fig. 2.5 Maximum (dashed/top curve) and RMS (solid/bottom curve) errors vs. e for 81 (top 
left), 289 (top right), 1089 (bottom left), and 4225 Halton points (bottom right). 

Table 2.2 "Optimal" RBF interpolation to Franke's function using Gaussians. 

smallest "safe" e smallest RMS-error 

k N e RMS-error max-error e RMS-error max-error 

1 9 0.02 3.658421e-001 1.580259e+ooo 2.23 l.118026e-001 3.450275e-001 
2 25 0.32 3.629342e-001 2.845554e+ooo 3.64 4.032550e-002 2. 996488e-OO 1 
3 81 1.64 1. 7 43059e-001 2.398284e+ooo 4.28 l .09060le-002 l .579465e-001 
4 289 4.73 2. 785388e-003 5.4 72502e-002 5.46 4.610079e-004 7.978283e-003 
5 1089 10.5 4. 945428e-004 l.812246e-002 6.2 2 .498848e-006 8. 779119e-005 
6 4225 21.1 4.890709e-004 l.940675e-002 6.3 4.269292e-008 8.889552e-007 

as we can see in Table 2.2 and Figure 2.5, the corresponding errors are now much 
smaller than those previously obtained. Moreover, the errors decrease at a rate that 
is faster than the O(h) we observed earlier for the distance matrix fit example. 

Of course, if the data we are trying to fit are not sampled from a known test 
function then we will not be able to choose an "optimal" shape parameter by mon
itoring the RMS error. The associated issues of ill-conditioning, preconditioning, 
optimal shape parameter selection, and alternate stable evaluation methods via a 
Contour-Pade algorithm are studied later in Chapters 16 and 17. 





Chapter 3 

Positive Definite Functions 

We noted in the previous chapters that the solution of the scattered data interpola
tion problem with RBFs boils down to the solution of a system of linear equations 

Ac=y, 

where the system matrix A has entries cp(llxj - xki12), j, k = 1, ... , N. We know 
from linear algebra that this system will have a unique solution whenever the matrix 
A is non-singular. While no one has yet succeeded in characterizing the class of all 
basic functions cp that generate a non-singular system matrix for any set X = 

{x1 , ... , XN} of distinct data sites, the situation is much better if we consider 
positive definite matrices. 

In this chapter we present the main theoretical results under lying this approach 
along with some of their proofs. A series of examples are presented in the next 
chapter. A comprehensive treatment of the mathematical theory needed for scat
tered data interpolation with strictly positive definite functions (see Def. 3.2 below) 
is presented in the recent monograph [Wendland (2005a)]. 

3.1 Positive Definite Matrices and Functions 

Definition 3.1. A real symmetric matrix A is called positive semi-definite if its 
associated quadratic form is non-negative, i.e., 

N N 

LL CjCkAjk > 0 (3.1) 
j=lk=l 

for c = [c1, ... 'CN]T E JRN. 
If the quadratic form (3.1) is zero only for c _ 0, then A is called positive 

definite. 

An important property of positive definite matrices is that all their eigenvalues 
are positive, and therefore a positive definite matrix is non-singular (but certainly 
not vice versa). 

27 



28 Meshfree Approximation Methods with MATLAB 

If we therefore had basis functions Bk in the expansion (1.1) that generate a 
positive definite interpolation matrix, we would always have a well-posed interpo
lation problem. To this end we introduce the concept of a positive definite function 
from classical analysis. 

Positive definite functions were first considered in classical analysis early in the 
20th century. [Mathias (1923)] seems to have been the first to define and study 
positive definite functions. An overview of the development of positive definite 
functions up to the mid 1970s can be found in [Stewart (1976)]. However, as we 
see from the definition below, positive definite functions were -- unfortunately -
defined in analogy to positive semi-definite matrices. Therefore, in order to meet 
our goal of having a well-posed interpolation problem, it is necessary to sharpen the 
classical notion of a positive definite function to that of a strictly positive definite 
one. This concept does not seem to have been studied until [Micchelli (1986)] made 
the connection between scattered data interpolation and positive definite functions. 
This leads to an unfortunate difference in terminology used in the context of matri
ces and functions. Instead of rewriting history we will adhere to this terminology 
here. We would like to point out that when reading recent articles (especially in 
the radial basis function literature) dealing with (strictly) positive definite functions 
one has to be aware of the fact that some authors have tried to "correct" history, 
and now refer to strictly positive definite functions as positive definite functions. 

Definition 3.2. A complex-valued continuous function <I> : Rs --+ C is called positive 
definite on Rs if 

N N 

LL CjCk<l>(xj - xk) > 0 (3.2) 
j=lk=l 

for any N pairwise different points X1' ... 'x N E JRS' and c = (c1' ... 'CN v E cN. 

The function <I> is called strictly positive definite on Rs if the quadratic form 
(3.2) is zero only for c - 0. 

We note that even though we are interested in problems with real data and 
real coefficients, an extension of the notion of positive definiteness to cover complex 
coefficients c and complex-valued functions <I> as done in Definition 3.2 will be help
ful when deriving some properties of (strictly) positive definite functions later on. 
Moreover, the celebrated Bochner's theorem (see Theorem 3.3) characterizes exactly 
the positive definite functions of Definition 3.2. In all practical circumstances, how
ever, we will be concerned with real-valued functions only, and a characterization 
of such functions appears below as Theorem 3.2. It should also be noted that Def
inition 3.2 implies that only functions whose quadratic form is real are candidates 
for (strictly) positive definite functions. 

Example 3.1. Here, and throughout this book, we will denote the standard inner 
product of x and yin Rs by x · y. With this notation the function <I>(x) = eix·y, 
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for y E Rs fixed, is positive definite on Rs since the quadratic form in Definition 3.2 
becomes 

N N N N 

LL CjCk<I>(xj - Xk) =LL CjCkei(xj-xk)·y 
j=lk=l j=lk=l 

N N 

= L Cjeixj·Y L Cke-ixk·Y 
j=l k=l 

2 
N 

= L CjeixrY > 0. 
j=l 

Definition 3.2 and the discussion preceding it suggest that we should use strictly 
positive definite functions as basis functions in (1.1), i.e., Bk(x) = <I>(x - Xk), or 

N 

P1(x) = L ck<I>(x - xk), x E Rs. (3.3) 
k=l 

Note that at this point we do not require <I> to be a radial function. In fact, 
the function P1 of (3.3) will yield an interpolant that is translation invariant, i.e., 
the interpolant to translated data is the same as the translated interpolant to the 
original data. In order to obtain invariance also under rotations and reflections we 
will later specialize to strictly positive definite functions that are also radial on Rs. 

We will now discuss some of the most important properties and characterizations 
of (strictly) positive definite functions. For the sake of completeness we present a list 
of some basic properties of (strictly) positive definite functions and some examples. 

Theorem 3.1. Some basic properties of positive definite functions are 

(1) Non-negative finite linear combinations of positive definite functions are 
positive definite. If <I>1, ... , <I>n are positive definite on Rs and Cj > 0, 
j = 1, ... , n, then 

n 

<I>(x) = Lcj<I>j(x), 
j=l 

x E Rs, 

is also positive definite. Moreover, if at least one of the <I>j is strictly positive 
definite and the corresponding Cj > 0, then <I> is strictly positive definite. 

(2) <I>(O) > 0. 
(3) <I>(-x) = <I>(x). 
(4) Any positive definite function is bounded. In fact, 

l<I>(x)I < <I>(O). 

(5) If <I> is positive definite with <I>(O) = 0 then <I> _ 0. 
(6) The product of {strictly) positive definite functions is (strictly) positive def

inite. 
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Proof. Properties (1) and (2) follow immediately from Definition 3.2. 
To show (3) we let N = 2, X1 = 0, X2 = x, and choose c1 = 1 and c2 = c. Then 

the quadratic form in Definition 3.2 becomes 

2 2 

L L c J ck <I> ( x J - x k) = ( 1 + I c I 2) <I> ( O) + c<I> ( x) + c<I> ( - x) > o 
j=lk=l 

for every c E C. Taking c = 1 and c = i (where i = y1=T), respectively, we can see 
that both <I>(x) + <I>(-x) and i (<I>(x) - <I>(-x)) must be real. This, however, is only 
possible if <I>(-x) = <I>(x). 

For the proof of (4) we let N = 2, X1 = 0, X2 = x, and choose c1 = l<I>(x)I and 
c2 = -<I>( x). Then the quadratic form in Definition 3.2 is 

2 2 

LLCJCk<I>(xJ - xk) = 2<I>(O)l<I>(x)l 2 -<I>(-x)<I>(x)l<I>(x)I - <I>2(x)l<I>(x)I > 0. 
j=lk=l 

Since <I>(-x) = <I>(x) by Property (3), this gives 

2<I>(O)l<I>(x)l 2 - 2l<I>(x)l 3 > 0. 

If l<I>(x)I > 0, we divide by l<I>(x)l 2 and the statement follows immediately. In case 
l<I>(x)I - 0 the statement holds trivially. 

Property (5) follows immediately from ( 4), and Property (6) is a consequence of a 
theorem by Schur in the field of linear algebra which states that the elementwise (or 
Hadamard) product of positive (semi-)definite matrices is positive (semi-)definite. 
For more details we refer the reader to [Cheney and Light (1999)] or [Wendland 
(2005a)]. D 

Example 3.2. The cosine function is positive definite on IR. since, for x E IR., we 
have cosx = ~ (eix + e-ix). Now Property (1) and Example 3.1 can be invoked. 

Property (3) shows that any real-valued (strictly) positive definite function has 
to be even. However, it is also possible to characterize real-valued (strictly) positive 
definite functions using only real coefficients (see [Wendland (2005a)] for details), 
z.e., 

Theorem 3.2. A real-valued continuous function <I> is positive definite on IR.s if and 
only if it is even and 

N N 

LL cJck<I>(xJ - xk) > 0 (3.4) 
j=lk=l 

for any N pairwise different points X1, ... , XN E IR.s, and c = [c1, ... , cNJT E JR.N. 
The function <I> is strictly positive definite on IR.s if the quadratic form (3.4) is 

zero only for c - 0. 
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3.2 Integral Characterizations for (Strictly) Positive Definite 
Functions 
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We will now summarize some facts about integral characterizations of positive def
inite functions. They were established in the 1930s by Bochner and Schoenberg. 
However, we will also mention the more recent extensions to strictly positive defi
nite and strictly completely /multiply monotone functions that are essential to the 
application of the theory to the scattered data interpolation problem. A much 
more detailed discussion of this material is presented in the recent book [Wend
land (2005a)]. Some frequently used integral transforms are listed in Appendix B. 
Integral characterizations of the closely related completely and multiply monotone 
functions are presented in Chapter 5. 

3.2.1 Bochner's Theorem 

One of the most celebrated results on positive definite functions is their character
ization in terms of Fourier transforms established by Bochner in 1932 (for s = 1) 
and 1933 (for generals). 

Theorem 3.3 (Bochner). A (complex-valued) function <I> E C(JRs) is positive def
inite on JRs if and only if it is the Fourier transform of a finite non-negative Borel 
measure µ on JRs, i.e. 

x E JR 5
• 

Proof. There are many proofs of this theorem. Bochner's original proof can be 
found in [Bochner (1933)]. Other proofs can be found, e.g., in the books [Cuppens 
(1975)] or [Gel'fand and Vilenkin (1964)]. A proof using the Riesz representation 
theorem to interpret the Borel measure as a distribution, and then taking advantage 
of distributional Fourier transforms can be found in the book [Wendland (2005a)]. 

We will prove only the one (easy) direction. It is this part of the statement that 
is important for the application to scattered data interpolation. We assume <I> is 
the Fourier transform of a finite non-negative Borel measure and show <I> is positive 
definite. Thus, 

NN l NN[ 1. l L LCjCk<I>(xj - Xk) = -==s LL CjCk e-i(xJ-xk)·Ydµ(y) 
j=lk=l ~j=lk=l Rs 

[t Cje-ix;-y t CkeiXk·Y] dµ(y) 
j=l k=l 

2 
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The last inequality holds because of the conditions imposed on the measureµ. 0 

Remark 3.1. We can see from Theorem 3.3 that the function <I>(x) = eix·y of 
Example 3.1 can be considered as the fundamental positive definite function since 
all other positive definite functions are obtained as (infinite) linear combinations of 
this function. While Property (1) of Theorem 3.1 implies that linear combinations 
of <I> will again be positive definite, the remarkable content of Bochner's Theorem 
is the fact that indeed all positive definite functions are generated by <I>. 

3.2.2 Extensions to Strictly Positive Definite Functions 

In order to accomplish our goal of guaranteeing a well-posed interpolation problem 
we have to extend (if possible) Bochner's characterization to strictly positive definite 
functions. 

We begin with a sufficient condition for a function to be strictly positive definite 
on Rs. 

For this result we require the notion of the carrier of a (non-negative) Borel 
measure defined on some topological space X (see also Appendix B). This set is 
given by 

X \ LJ{O: 0 is open and µ(O) = O}. 

Theorem 3.4. Letµ be a non-negative finite Borel measure on Rs whose carrier 
is a set of nonzero Lebesgue measure. Then the Fourier transform ofµ is strictly 
positive definite on Rs. 

Proof. · As in the proof of Bochner's theorem we have 

dµ(y) > 0. 

Now let 
N 

g(y) = L Cje-ixrY' 

j=l 

and assume that the points x j are all distinct and c =f=. 0. In this case the functions 
y 1--+ e-ix;-y are linearly independent so that g =f=. 0. Since g is an entire function its 
zero set, i.e., {y E Rs : g(y) = O} can have no accumulation point and therefore 
it has Lebesgue measure zero (see, e.g., [Cheney and Light (1999)1). Now, the only 
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remaining way to make the above inequality an equality is if the carrier of /.L is 
contained in the zero set of g, i.e., has Lebesgue measure zero. This, however, is 
ruled out in the hypothesis of the theorem. 0 

Work toward an analog of Bochner's theorem, i.e., a complete integral charac
terization of functions that are strictly positive definite on Rs, is given in [Chang 
(1996)] for the case s = 1. 

The following corollary gives us a way to construct strictly positive definite 
functions. 

Corollary 3.1. Let f be a continuous non-negative function in L 1 (Rs) which is not 
identically zero. Then the Fourier transform of f is strictly positive definite on Rs. 

Proof. This is a special case of the previous theorem in which the measure µ has 
Lebesgue density f. Thus, we use the measureµ defined for any Borel set B by 

µ(B) = L f(x)dx. 

Then the carrier of µ is equal to the (closed) support of f. However, since f is 
non-negative and not identically equal to zero, its support has positive Lebesgue 
measure, and hence the Fourier transform of f is strictly positive definite by the 
preceding theorem. 0 

Finally, a criterion to check whether a given function is strictly positive definite 
is given in [Wendland (2005a)]. 

Theorem 3.5. Let <I> be a continuous function in L 1 (Rs). <I> is strictly positive 
definite if and only if <I> is bounded and its Fourier transform is non-negative and 
not identically equal to zero. 

Theorem 3.5 is of fundamental importance and we will come back to this theorem 
several times later on. In fact, the proof of Theorem 3.5 in [Wendland (2005a)] shows 
that - if <I> ¢ 0 (which implies that then also cl> ¢ 0) - we need to ensure only 
that cl> be non-negative in order for <I> to be strictly positive definite. 

3.3 Positive Definite Radial Functions 

We now turn our attention to positive definite radial functions. Recall that Def
inition 3.2 characterizes (strictly) positive definite functions in terms of multi
variate functions <I>. However, when we are dealing with radial functions, i.e., 
<I>(x) = 'P(llxll), then it will be convenient to also refer to the univariate function 
<p as a positive definite radial function. While this does present a slight abuse of 
our terminology for positive definite functions this is what is commonly done in the 
literature. 

An immediate consequence of this notational convention is 
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Lemma 3.1. lf ~ = cp(ll · II) is {strictly) positive definite and radial on lR8 then ~ 
is also {strictly) positive definite and radial on Ru for any a < s. 

We now return to integral characterizations and begin with a theorem due to 
Schoenberg (see, e.g., [Schoenberg (1938a)], p.816, or [Wells and Williams (1975)], 
p.27). 

Theorem 3.6. A continuous Junction cp: [O, oo) ~JR is positive definite and radial 
on 1R8 if and only if it is the Bessel transform of a finite non-negative Borel measure 
µ on [O, oo), i.e. 

cp(r) = 1= 0 8 (rt)dµ(t). 

Here 

{
cosr for s = 1, 

ns(r) = r (!i) (£)(s-2)/2 J ( ) f 
2 r (s-2)/2 r ;Or s > 2, 

and J(s- 2);2 is the classical Bessel function of the first kind of order (s - 2)/2. 

As above, now the function ~(x) = cos(x) from Example 3.2 can be viewed 
as the fundamental positive definite radial function on JR. We will see below (in 
Example 3 of Chapter 4) that the characterization of Theorem 3.6 immediately 
suggests a class of (even strictly) positive definite radial functions. As for the basic 
lD example, the measureµ will simply be a point evaluation measure. 

A Fourier transform characterization of strictly positive definite radial functions 
on lR8 can be found in [Wendland (2005a)]. It is essentially a combination of Theo
rem 3.5 and the formula in Theorem B.l of Appendix B for the Fourier transform 
of a radial function: 

Theorem 3.7. A continuous function cp: [O, oo) ~JR such that r ~ r 8
-

1 cp(r) E 

L 1 [O, oo) is strictly positive definite and radial on lR8 if and only if the s-dimensional 
Fourier transform 

1 1= s :Fscp(r) = ~ cp(t)t'i J(s-2)/2(rt)dt 
rs-2 0 

is non-negative and not identically equal to zero. 

Since Lemma 3.1 states that any function that is (strictly) positive definite and 
radial on lR8 is also (strictly) positive definite and radial on Ru for any a < s, 
those functions which are (strictly) positive definite and radial on lR8 for all s are 
of particular interest. The class of functions that are positive definite on lR8 for all 
s was also characterized by Schoenberg ([Schoenberg (1938a)], pp. 817-821). An 
extension to the strictly positive definite case can be found in [Micchelli (1986)]: 
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Theorem 3.8 (Schoenberg). A continuous function <.p [O, oo) ---+ JR is strictly 
positive definite and radial on Rs for all s if and only if it is of the form 

<.p(r) = 1= e-r2t2 dµ(t), 

where µ is a finite non-negative Borel measure on [O, oo) not concentrated at the 
origin. 

As suggested for Theorem 3.6 above, lettingµ be a point evaluation measure in 
Theorem 3.8 we obtain that the Gaussian is strictly positive definite and radial on 
Rs for alls (c.f Example 1 of Chapter 4). 

The Schoenberg characterization of (strictly) positive definite radial functions on 
Rs for alls (Theorem 3.8) implies that we have a finite non-negative Borel measure 
µ on [O, oo) such that 

<.p(r) = 1= e-r2t2 dµ(t). 

If we want to find a zero ro of <.p then we have to solve 

<.p(ro) = 1= e-r6t
2 
dµ(t) = 0. 

Since the exponential function is positive and the measure is non-negative, it follows 
that µ must be the zero measure. However, then <.p is identically equal to zero. 
Therefore, a non-trivial function <.p that is positive definite and radial on Rs for all 
s can have no zeros. This implies in particular that 

Theorem 3.9. There are no oscillatory univariate continuous functions that are 
strictly positive definite and radial on Rs for all s. Moreover, there are no com
pactly supported univariate continuous functions that are strictly positive definite 
and radial on Rs for all s. 

An equivalent argument for the oscillatory case is given in Theorem 2.3 of [Forn
berg et al. (2004)]. 





Chapter 4 

Examples of Strictly Positive Definite 
Radial Functions 

We now present a number of functions that are covered by the theory presented 
thus far. While it is possible to include a shape parameter E for all of the functions 
presented in the examples below by rescaling x to EX, we avoid its use in the 
formulation of all but the Gaussian example to keep the formulas as simple as 
possible. We do, however, use a shape parameter when plotting some of the basis 
functions. 

Our use of the shape parameter does not always match its "traditional" use. 
For example, Hardy introduced his inverse multiquadrics (see Example 5 below) 
in the form <I>(llxll) = 1/Jc2 + llxll 2 with shape parameter c. It is, of course, 
straightforward to transform this representation to the one suggested above, i.e., 
<I>(llxll) = 1/Jl +c2 llxll 2 , by setting c2 = 1/c2 and scaling the result by 1/lcl. 

Our use of the shape parameter as a factor applied directly to x has the advan
tage of providing a unified treatment in which a decrease of the shape parameter 
always has the effect of producing "fiat" basis functions, while increasing E leads to 
more peaked (or localized) basis functions. 

4.1 Example 1: Gaussians 

We can now show that the Gaussian 

<I>(x) = e_c2Jlxll2' E > 0, (4.1) 

is strictly positive definite (and radial) on JR 5 for any s. This is due to the fact that 
the Fourier transform of a Gaussian is essentially a Gaussian. In fact, 

~ 1 llw11 2 
<I>(w) = e-~, 

( v'2c)s 

and this is positive independent of the space dimension s. In particular, for E = ~ 
we have cl> = <I>. Plots of Gaussian RBFs were presented in Fig. 2.1. Clearly, the 
Gaussians are infinitely differentiable. Some of its derivatives (as well as those of 
many other RBFs) are collected in Appendix D. 

37 
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Another argument to show that Gaussians are strictly positive definite and radial 
on lR8 for any s that avoids dealing with Fourier transforms will become available 
later. It will make use of completely monotone functions. 

Recall that Property (1) of Theorem 3.1 shows that any finite non-negative lin
ear combination of (strictly) positive definite functions is again (strictly) positive 
definite. Moreover, we just saw that Gaussians are strictly positive definite and ra
dial on all lR8

. Now, the Schoenberg characterization of functions that are (strictly) 
positive definite and radial on any lR8

, Theorem 3.8, states that all such functions 
are given as infinite linear combinations of Gaussians. Therefore, the Gaussians can 
be viewed as the fundamental member of the family of functions that are strictly 
positive definite and radial on JR 5 for all s. 

Since Gaussians play a central role in statistics this is a good place to mention 
that positive definite functions are - up to a normalization CI>(O) = 1 - identical 
with characteristic functions of distribution functions in statistics. 

4.2 Example 2: Laguerre-Gaussians 

In order to obtain a generalization of Gaussians we start with the generalized La
guerre polynomials L:/2 of degree n and order s/2 defined by their Rodrigues formula 
(see, e.g., formula (6.2.1) in [Andrews et al. (1999)]) 

ett-s/2 dn ( ) 
L:/2 (t) = 

1 
- e-ttn+s/2 , n = 1, 2, 3, .... 

n. dtn 
An explicit formula for the generalized Laguerre polynomials is 

Ls/2( ) = ~ (-l)k (n + s/2) k 
n t ~ k! n- k t . 

k=O 

We then define the Laguerre-Gaussians 

<I>(x) = e-llxll2 L:/2(llxl!2), 

and list their Fourier transforms as 

~ e_ 11 .. ~r n llwll2j 
<I>(w) = y"F ?= j!4J > 0. 

J=O 

(4.2) 

(4.3) 

Note that the definition of the Laguerre-Gaussians depends on the space dimension 
s. Therefore they are strictly positive definite and radial on lR8 (and by Lemma 3.1 
also on JR17 for any a< s). 

Laguerre-Gaussian functions for some special choices of s and n are listed m 
Table 4.1. Figure 4.1 shows a Laguerre-Gaussian for s = 1, n = 2, and for s 
2, n = 2 displayed with a shape parameter c = 3 and scaled so that CI>(O) = 1. 
Moreover, the Laguerre-Gaussians are infinitely smooth for all choices _of n and s. 

Note that the Laguerre-Gaussians (while being strictly positive definite func
tions) are not positive. Since the Laguerre-Gaussians are oscillatory functions we 
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know from Theorem 3.9 that they cannot be strictly positive definite and radial on 
lR8 for alls. We will encounter these functions later in the context of approximate 
moving least squares approximation ( c.f. Chapter 26). 

1.2 

0.8 

0.6 
y 

0.4 

0.2 

0 

-0.2 
-1 -0.5 

Table 4.1 Laguerre-Gaussians for various choices of s and n. 

s 

1 

2 

3 

n=l 

( ~ - lxl2) e-lxl2 

(2 - llxll2) e-11"'112 

( ~ - llxll2) e-11"'11
2 

0 
x 

0.5 

n=2 

( 15 - ~lxl2 + .!.lx14) e-lxl2 
8 2 2 

( 3 - 3llxll2 + ~llxl1 4) e- 11 "'
112 

( 
35 

- 2:11xll2 + .!.llxll4) e- 11 "'
112 

8 2 2 

0.6 
z 

0.4 

0.2 

0 
1 

y -1 -1 
x 

Fig. 4.1 Laguerre-Gaussians with s = 1, n = 2 (left) and s = 2, n = 2 (right) centered at the 
origin. 

4.3 Example 3: Poisson Radial Functions 

Another class of oscillatory functions that are strictly positive definite and radial 
on lR8 (and all JR17 for O" < s) were recently studied by Fornberg and co-workers (see 
[Fornberg et al. (2004)] and also [Flyer (2006)]). These functions are of the form 

..T-.( ) = Js/2-1 (llxll) 
'*' x llxlis/2-1 ' s > 2, (4.4) 

where Jv is the Bessel function of the first kind of order v. While these functions 
are not defined at the origin they can be extended to be infinitely differentiable in 
all of JRS. 

The functions (4.4) were already studied by Schoenberg (see the discussion sur
rounding Theorem 3.6) who suggested calling them Poisson functions. In fact, the 
functions in (4.4) are (up to the scale factor 2Cs-2)/2 r(s/2)) the functions Os of 
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Theorem 3.6 and therefore can be viewed as the fundamental member of the family 
of functions that are strictly positive definite and radial on Rs for fixed s. 

Schoenberg showed that the functions Os are given by 

where Ws-1 denotes the area of the unit Sphere ss-l in JRS, and da denotes the 
usual measure on ss- 1 . 

The Poisson functions are another generalization of Gaussians (the fundamental 
strictly positive definite radial function on Rs for all s) since the following limit
ing relation due to John von Neumann holds (see the discussion in [Schoenberg 
(1938a)]): 

lim ns(rffs) = e-r
2

• 
s-oo 

Since the Poisson radial functions are defined in terms of Bessel functions they are 
also band-limited, i.e., their Fourier transform has compact support. In fact, the 
Fourier transform of <I> in Ra, a < s, is given by (see [Flyer (2006)]) 

<i>(w) = 
1 

l ) (1 - llwll 2 )(s-a-2)/2 , -1 < W1, ... , Ws < 1. 
2a- r( s;a 1f0" 

Some of these Poisson functions are listed in Table 4.2 and displayed in Figure 4.2 
(where a shape parameter c = 10 was used for the plots). 

z 

s=2 

Jo(llxll) 

y 

Table 4.2 Poisson functions for various choices of s. 

s=3 

{2 sin(llxll) 

Y; llxll 

x 

s=4 s=5 

{2 sin(ll:z:ll) - ll:z:ll cos(ll:z:ll) 

v; ll:z:ll 3 

y 

············: 
... --- ~- --... 

l ····-... 

... -----~----- ····t· ·····-.... ····T· .... 
..... +. ········ ... i ··· .... ·· ... 

-1 -1 

·········-··-.... ·~·-. ·····-~ 
····· .... __ 

··· ... 

x 

'····-+ .... ··--.. ~ 
....... _: 

······-... ~ 
············ .. ~ 

Fig. 4.2 Poisson functions with s = 2 (left) and s = 3 (right) centered at the origin in JR2 • 
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4.4 Example 4: Matern Functions 

A fourth example of strictly positive definite functions is given by the class of 
Matern functions which are quite common in the statistics literature (see, e.g., 
[Matern (1986)] or [Stein (1999)]) 

K13-~ (llxll) llxll 13 -~ 
1>(x) = ;/3-lI'(/3) ' 

s 
J3 > -2· (4.5) 

Here Kv is the modified Bessel function of the second kind (sometimes also called 
modified Bessel function of the third kind, or MacDonald's function) of order v. 
The Fourier transform of the Matern functions is given by the Bessel kernels 

<i>(w) = (1 + llwll 2 )-/3 > 0. 

Therefore the Matern functions are strictly positive definite on :IR8 for all s < 2/3. 
Schaback calls these functions Sobolev splines (see, e.g., [Schaback (1995a)] or his 
earlier discussion in [Schaback (1993)]) since they are naturally related to Sobolev 
spaces (see Chapter 13). These functions are also discussed in the relatively early 
paper [Dix and Ogden (1994)]. 

Some simple representatives of the family of Matern functions are listed (up to 
a dimension-dependent scale factor) in Table 4.3. Note that the scaled functions 
listed in Table 4.3 do not depend on s. Since the modified Bessel functions are 
positive, so are the Matern functions. Two examples are displayed in Figure 4.3. 
The function on the left is displayed using a shape parameter c = 3. The plot 
on the right is scaled so that the value at the origin equals one and uses a shape 
parameter c = 10. Note that the function on the left (corresponding to J3 = 8 ! 1

) 

is not differentiable at the origin. The Matern function for j3 = s!3 is C 2 smooth, 
and that for j3 = 8! 5 is in C4 (:IR8

). 

Table 4.3 Matern functions for various choices of /3. 

4.5 Example 5: Generalized Inverse Multiquadrics 

Since both 1> and <i> in the previous example are positive radial functions we can 
use the Hankel inversion theorem (see Appendix B) to reverse their roles and see 
that the so-called generalized inverse multiquadrics 

1>(x) = (1 + llxll 2 )-/3, J3 > ~' (4.6) 

are strictly positive definite on Rs for s < 2/3. Generalized inverse multiquadrics are 
infinitely differentiable. By using another argument based on completely monotone 
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Fig. 4.3 Matern functions with /3 = 5 ! 1 (left) and f3 = 5 ! 5 (right) centered at the origin in JR2 . 

functions we will be able to show that in fact we need to require only (3 > 0, and 
therefore the generalized inverse multiquadrics are strictly positive definite on lR8 

for any s. 
The "original" inverse multiquadric was introduced by Hardy in the early 1970s 

and corresponds to the value (3 = 1/2. The special choice (3 = 1 was referred to as 
inverse quadratic in various papers of Fornberg and co-workers (see, e.g., [Fornberg 
and Wright (2004)]). These two functions are displayed in Figure 4.4 using a shape 
parameter c = 5. 

y x y x 

Fig. 4.4 Inverse multiquadric (/3 = ~, left) and inverse quadratic (/3 = 1, right) centered at the 
origin in JR2 . 

4.6 Example 6: Truncated Power Functions 

We now present an example of a family of strictly positive definite functions with 
compact support. Note that due to the observation made in Theorem 3.9 at the end 
of the previous chapter, they can not be strictly positive definite on lR 8 for all s. 



4. Examples of Strictly Positive Definite Radial Functions 43 

The truncated power functions 

<pt(r) = (1 - r)~ (4.7) 

give rise to strictly positive definite and radial functions on JRS provided l satisfies 
l > L ~ J + 1. Finding the Fourier transform of the truncated power function is 
rather involved. For details we refer to [Wendland (2005a)]. We will later use a 
simpler test based on multiply monotone functions to establish the strict positive 
definiteness of the truncated power functions. In ( 4. 7) we used the cutoff function 
( · )+ which is defined by 

(x)+ = {x, 
0, 

for x > 0, 

for x < 0. 

The cutoff function can be implemented conveniently in MATLAB using the max 
function, i.e., if fx is a vector of function values off for different choices of x, then 
max(fx,0) computes (f(x))+. We also point out that the expressions of the form 
(1-r)~ are to be interpreted as ((1 - r)+)l, i.e., we first apply the cutoff function, 
and then the power. 

Two different truncated power functions (with l = 2, 4) are displayed in Fig
ure 4.5. While none of the truncated power functions are differentiable at the origin, 
the smoothness at the boundary of the support increases with l. 

0.8 

0.6 0.6 
z z 

0.4 0.4 ... ······ 

0.2 0.2 

0 0 
1 1 

x x 

Fig. 4.5 Truncated power function with f. = 2 (left) and e = 4 (right) centered at the origin in 
JR2. 

4. 7 Example 7: Potentials and Whittaker Radial Functions 

Let f E C[O, oo) be non-negative and not identically equal to zero, and define the 
function cp by 

cp(r) = 1= (1 - rt)~-l f(t)dt. (4.8) 
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Then <I>= cp(ll · 11) is strictly positive definite and radial on IR8 provided k > l~J + 2 
(see also Theorem 5.5 below). This can be verified by considering the quadratic 
form 

N N 00 N N 

LL CJCkcp(llx1 - xkll) = 1 LL CJCk'Pk-1 (tllx1 - xkll)f(t)dt 
j=lk=l 0 j=lk=l 

which is non-negative since the truncated power function 'Pk-l (II · II) is strictly 
positive definite by Example 6, and f is non-negative. Since f is also assumed to 
be not identically equal to zero, the only way for the quadratic form to equal zero 
is if c = 0, and therefore <p is strictly positive definite. 

For example, if we take f(t) = tf3, /3 > 0, then we get 

r(k)r(/3 + 1) 
<I>(x) = r(k + /3 + l)llxll/3+1. (4.9) 

While these functions are strictly positive definite and radial they are also singular 
at the origin and therefore not useful for our purposes. However, these functions 
are - up to scaling - generalizations of the Coulomb potential (for /3 = 0), and 
can therefore be given a physical interpretation. 

Another possibility is to take f(t) = t 0 e-f3t, a> 0, /3 > 0. Then we get 

;F,.( ) - ll:rl/(k-a)/2r(l+o.)r(k) - 2iizll 
'l' x - ,Bl+(k+a)/2r(k+o.+2) e x (4.10) 

( kMco.-k)/2,(k+o.+1)/2 ( i&i) + (1 + a)M1-(k-a)/2,(k+o.+1)/2 ( 11 ~ 11 )) · 
Here Mµ,v is the Whittaker-M function, a confluent hypergeometric function (see, 
e.g., Chapter 13 of [Abramowitz and Stegun (1972)]). When v is a half-integer 
(which is, e.g., the case for integer k and a) formula (4.10) simplifies significantly. 
Examples for various integer values of k and a are listed in Table 4.4. Note that 
these functions are not defined at the origin. However, they can be made (only) 
continuous at the origin. Plots of two of these functions are provided in Figure 4.6. 
Note that only the functions fork > 3 are guaranteed to be strictly positive definite 
and radial on IR3 . 

0 

1 

Table 4.4 Whittaker radial functions <I> for various choices of k and a. 

k=2 

13 
f3 - llxll + llxlle -R 

132 
13 

13 - 2llxll + (!3 + 2llxll)e -~ 
133 

k=3 

132 
- 213llxll + 2llxll 2 

- 2llxll 2 e -~ 
133 

132 
- 413llxll + 6llxll 2 

- (21311xll + 61ixi1 2 )e -~ 
134 

Equation ( 4.8) amounts to another integral transform of f (not listed in 
Appendix B) with the compactly supported truncated power function as integra
tion kernel. We will take another look at these functions in the context of multiply 
monotone functions below. 
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Fig. 4.6 Whittaker radial functions for a = 0 and (3 = 1 with k = 2 (left) and k = 3 (right) 
centered at the origin in JR2 . 

4.8 Example 8: Integration Against Strictly Positive 
Definite Kernels 

In fact, in [Wendland (2005a)] it is shown that integration of any non-negative 
function f that is not identically equal to zero against a function K(t, ·) that is 
strictly positive definite on JR.s leads to another function that is strictly positive 
definite on JR.s, i.e., 

cp(r) = fo00 

K(t, r)f(t)dt 

gives rise to <I> = cp(ll · II) being strictly positive definite on JR.s. By choosing f and 
K appropriately we can obtain both globally supported and compactly supported 
functions. 

For example, the multiply monotone functions in Williamson's characterization 
Theorem 5.4 are covered by this general theorem by taking K(t, r) = (1-rt)~-l and 
f an arbitrary positive function in L 1 so that dµ(t) = f(t)dt. Also, functions that 
are strictly positive definite and radial on JR.s for all s (or equivalently completely 
monotone functions) are covered by choosing K(t, r) = e-rt. 

4.9 Summary 

To summarize the theory surveyed thus far we can say that any multivariate (radial) 
function <I> whose Fourier transform is non-negative can be used to generate a basis 
for the scattered data interpolation problem by shifting it to the data sites. The 
function <I> can be positive, oscillatory, or have compact support. However, if <I> has 
any zeros then it cannot be strictly positive definite on JR.s for all choices of s. 





Chapter 5 

Completely Monotone and 
Multiply Monotone Functions 

Since Fourier transforms are not always easy to compute, we now present two alter
native criteria that allow us to decide whether a function is strictly positive definite 
and radial on lR8 (one for the case of alls, and one for only limited choices of s). 

5.1 Completely Monotone Functions 

We begin with the former case. To this end we now introduce a class of functions 
that is very closely related to positive definite radial functions and leads to a simple 
characterization of such functions. 

Definition 5.1. A function r.p : [O, oo) ~ IR that is in C[O, oo) n C 00 (0, oo) and 
satisfies 

(-l)lr.p(i)(r) > 0, r > 0, £ = 0, 1, 2, ... , 

is called completely monotone on [O, oo). 

Example 5.1. The function r.p(r) = c, c > 0, is completely monotone on [O, oo). 

Example 5.2. The function r.p(r) = e-er, c > 0, is completely monotone on [O, oo) 
since 

£ = 0, 1, 2, .... 

Example 5.3. The function r.p(r) = (l: r)f3, f3 > 0, is completely monotone on 

[O, oo) since 

(-l)lr.p(l)(r) = (-1) 2i/3(/3 + 1) · · · ({3 + £- 1)(1 + r)-f3-l > 0, £ = 0, 1, 2, .... 

Some properties of completely monotone functions that can be found in [Cheney 
and Light (1999); Feller (1966); Widder (1941)] are: 

(1) A non-negative finite linear combination of completely monotone functions is 
completely monotone. 

(2) The product of two completely monotone functions is completely monotone. 

47 
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(3) If <pis completely monotone and 'ljJ is absolutely monotone (i.e., '!jJ(£) 2 0 for all 
f. 2 0), then 'ljJ o <p is completely monotone. 

(4) If <pis completely monotone and 'ljJ is a positive function such that its derivative 
is completely monotone, then <p o 'ljJ is completely monotone. 

Note that the functions in the second and third example above are, except for 
a variable substitution r ~ r 2 , similar to the Gaussian and inverse multiquadrics 
mentioned earlier. In order to see how completely monotone functions are related 
to strictly positive definite radial functions we require an integral characterization 
of completely monotone functions. 

Theorem 5.1 (Hausdorff-Bernstein-Widder). A function <p : [O, oo) - IR is 
completely monotone on [O, oo) if and only if it is the Laplace transform of a finite 
non-negative Borel measureµ on [O, oo), i.e., <p is of the form 

<p(r) = £µ(r) = 100 

e-rtdµ(t). 

Proof. Widder's proof of this theorem can be found in [Widder (1941)], p. 160, 
where he reduces the proof of this theorem to another theorem by Hausdorff on 
completely monotone sequences. A detailed proof can also be found in the books 
[Cheney and Light (1999); Wendland (2005a)]. 0 

Theorem 5.1 shows that, in the spirit of our earlier remarks, the function :p(r) = 

e-cr can be viewed as the fundamental completely monotone function. 
The following connection between positive definite radial and completely mono

tone functions was first pointed out by Schoenberg in 1938. 

Theorem 5.2. A function <p is completely monotone on [O, oo) if and only if <I> = 

<p(ll · 11 2 ) is positive definite and radial on IR 8 for alls. 

Note that the function <I> is now defined via the square of the norm. This differs 
from our definition of radial functions (see Definition 2.1). 

Proof. One possibility is to use a change of variables to combine Schoenberg's 
characterization of functions that are positive definite and radial on any lR8

, Theo
rem 3.8, with the Hausdorff-Bernstein-Widder characterization of completely mono
tone functions. To get more insight we present an alternative proof of the claim that 
the completely monotone function <p gives rise to a <I> that is positive definite and 
radial on any lR8

• Details for the other direction can be found, e.g., in [Wendland 
(2005a)]. 

The Hausdorff-Bernstein-Widder theorem implies that we can write <p as 
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with a finite non-negative Borel measure µ. Therefore, <I>(x) = cp(llxJl 2
) has the 

representation 

<I>(x) = fooo e-llxll2tdµ(t). 

To see that this function is positive definite on any IR8 we consider the quadratic 
form 

N N 00 N N 

L Lcjck<I>(xj - xk) = 1 L LCjCke-tllxi-xi.:11
2 
dµ(t). 

j=lk=l 0 j=lk=l 

Since we saw earlier that the Gaussians are strictly positive definite and radial on 
any IR8 it follows that the quadratic form is non-negative. D 

We can see from the previous proof that if the measure µ is not concentrated 
at the origin, then cl> is even strictly positive definite and radial on any IR8

• This 
condition on the measure is equivalent with <p not being constant. With this addi
tional restriction on <p we can apply the notion of a completely monotone function 
to the scattered data interpolation problem. The following interpolation theorem 
originates in the work of Schoenberg ([Schoenberg (1938a)], p. 823) who showed 
that complete monotonicity implies strict positive definiteness, thus providing a 
very simple test for verifying the well-posedness of many scattered data interpo
lation problems. A proof that the converse also holds can be found in [Wendland 
(2005a)]. 

Theorem 5.3. A function <p : [O, oo) ~ IR is completely monotone but not constant 
if and only if cp(ll · 11 2

) is strictly positive definite and radial on IR8 for any s. 

Example 5.4. Since we showed above that the functions cp(r) = e-e:r, c > 0, and 
cp(r) = 1/(1 + r)f3, (3 2: 0, are completely monotone on [O, oo), and since they are 
also not constant we know from Theorem 5.3 that the Gaussians <I>(x) = cp(llxll 2 ) = 

e-e:
2

llxll
2

, c > 0, and inverse multiquadrics <I>(x) = cp(llxll 2
) = 1/(1 + llxll 2 )f3, (3 2: 0, 

are strictly positive definite and radial on IR8 for all s. Not only is the test for 
complete monotonicity a simpler one than calculation of the Fourier transforms, 
but we also are able to verify strict positive definiteness of the inverse multiquadrics 
without any dependence of son (3. 

5.2 Multiply Monotone Functions 

We can also use monotonicity to test for strict positive definiteness of radial func
tions on IR 8 for some fixed value of s. To this end we introduce the concept of a 
multiply monotone function. 

Definition 5.2. A function cp: (0, oo) ~IR which is in ck-2 (0, oo), k > 2, and for 
which (-l)lcp(l)(r) is non-negative, non-increasing, and convex for l = 0, 1, 2, ... , k-
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2 is called k-times monotone on ( 0, oo). In case k = 1 we only require r..p E C ( 0, oo) 
to be non-negative and non-increasing. 

Since convexity of r..p means that r..p( ri tr2 ) < <;:i(ri )~<;:i(r2 ), or simply r..p" (r) > 0 if 

r..p" exists, a multiply monotone function is in essence just a completely monotone 
function whose monotonicity is "truncated". 

Example 5.5. The truncated power function (c.f. (4.7)) 

r..pt(r) = (1 - r)~ 

is .e-times monotone for any .e since 

(-l)lr..p~l)(r) = .e(.e-1) ... (f- l + 1)(1- r)~-l > 0, l = 0, 1, 2, ... ,.e. 

We saw in Section 4.6 that the truncated power functions lead to radial functions 
that are strictly positive definite on lR8 provided .e > Ls/2J + 1. 

Example 5.6. If we define the integral operator I by 

(If)(r) = 100 

f(t)dt, r > 0, (5.1) 

and f is f-times monotone, then If is .e + 1-times monotone. This follows immedi
ately from the fundamental theorem of calculus. As we will see later, the operator 
I plays an important role in the construction of compactly supported radial basis 
functions. 

To make the connection to strictly positive definite radial functions we require 
an integral representation for the class of multiply monotone functions. This was 
given in [Williamson (1956)] but apparently already known to Schoenberg in 1940. 

Theorem 5.4 (Williamson). A continuous function r..p : (0, oo) --+ JR is k-times 
monotone on (0, oo) if and only if it is of the form 

r..p(r) = fo00 

(1 - rt)~- 1 dµ(t), (5.2) 

whereµ is a non-negative Borel measure on (0, oo). 

Proof. To see that a function of the form (5.2) is indeed multiply monotone we 
just need to differentiate under the integral (since derivatives up to order k - 2 
of (1 - rt)~-l are continuous and bounded). The other direction can be found in 
[Williamson (1956)]. D 

Williamson's characterization shows us that - just like the truncated power 
functions - the Whittaker radial functions (4.10) in Section 4.7 are based on mul
tiply monotone functions. 

For k --+ oo the Williamson characterization corresponds to the Hausdorff
Bernstein-Widder characterization Theorem 5.1 of completely monotone functions 
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(and is equivalent provided we extend Williamson's work to include continuity at 
the origin) . 

We can see from Sections 4.6 and 4. 7 that multiply monotone functions give rise 
to positive definite radial functions. Such a connection was first noted in [Askey 
(1973)] (and in the one-dimensional case by Polya) using the truncated power func
tions of Section 4.6. 

In the RBF literature the following theorem was stated in [Micchelli (1986)], 
and then refined in [Buhmann (1993a)]: 

Theorem 5.5 (Micchelli). Letk = Ls/2J+2 be a positive integer. lf,rp: [O,oo)-+ 
JR, rp E C[O, oo), is k-times monotone on (0, oo) but not constant, then rp is strictly 
positive definite and radial on Rs for any s such that Ls/2j < k - 2. 

We would like to mention that several versions of Theorem 5.5 contain mis
prints in the literature. The correct form should be as stated above ( c.f. also the 
generalization for strictly conditionally positive definite functions, Theorem 9.3). 

Using Theorem 5.5 we can now verify the strict positive definiteness of the 
truncated power functions and Whittaker radial functions of Sections 4.6 and 4. 7 
without the use of Fourier transforms. Again, as for Gaussians and the Poisson 
radial functions, we can view the truncated power function as the fundamental 
compactly supported strictly positive definite radial function since it is obtained 
using the point evaluation measure in Williamson's characterization of a multiply 
monotone function. 

It is interesting to observe a certain lack of symmetry in the theory for completely 
monotone and multiply monotone functions. First, in the completely monotone 
case we can use Theorem 5.3 to conclude that if rp is completely monotone and not 
constant then rp(· 2 ) is strictly positive definite on ]Rs for any s. In the multiply 
monotone case (see Theorem 5.5) the square is missing. Now it is clear that we 
cannot expect the statement with a square to be true in the multiply monotone 
case. To see this we consider the truncated power function rp(r) = (1 - r)~ (which 
we know - according to Example 5.1 above - to be £-times multiply monotone for 
any£). However, the function 'l/J(r) = (1 - r2 )~ is not strictly positive definite and 
radial on Rs for any s since it is not even strictly positive definite and radial on JR 
(and therefore even much less so on any higher-dimensional space). We can see this 
from the univariate radial Fourier transform of 'l/J (see Theorem B.l of Appendix B 
withs= 1) 
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Here we used the compact support of 7/J and the fact that J_ 1; 2 (r) = fil7iT cos r. 
The function :F1 'ljJ is oscillatory, and therefore 7/J cannot be strictly positive definite 
( c.f. Theorem 3.5). In fact, the Fourier transform :F17/J is closely related to the 
Poisson radial functions of Section 4.3. 

Moreover, in the completely monotone case we have an equivalence between 
completely monotone and strictly positive definite functions that are radial on any 
JR5 (see Theorem 5.3). Again, we cannot expect such an equivalence to hold in the 
multiply monotone case, i.e., the converse of Theorem 5.5 cannot be true. This 
is clear since we have already seen a number of functions that are strictly positive 
definite and radial, but not monotone at all - namely the oscillatory Laguerre
Gaussians of Section 4.2 and the Poisson radial functions of Section 4.3. 

However, it is interesting to combine the Schoenberg Theorem 5.3 and The
orem 5.5 based on Williamson's characterization. If one starts with the strictly 
positive definite radial Gaussian <.p(r) = e-c:

2
r

2
, then Theorem 5.3 tells us that 

¢(r) = <.p(y'r) = e-c:
2

r is completely monotone. Now, any function that is com
pletely monotone is also multiply monotone of any order, so that we can use Theo
rem 5.5 and conclude that the function ¢(r) = e-c:

2
r is also strictly positive definite 

and radial on JR5 for alls. Of course, now we can repeat the argument and conclude 
that '1/J(r) = e-c:

2
.JF is strictly positive definite and radial on JR5 for alls, and so on 

(see [Wendland (2005c)]). This result was already known to Schoenberg (at least 
in the non-strict case). 

As a final remark in this chapter we mention that we are a long way from 
having a complete characterization of (radial) functions for which the scattered 
data interpolation problem has a unique solution. As we will see later, such an (as 
of now unknown) characterization will involve also functions which are not strictly 
positive definite. For example, we will mention a result of Micchelli's according 
to which conditionally positive definite functions of order one can be used for the 
scattered data interpolation problem. Furthermore, all of the results dealt with so 
far involve radial basis functions that are centered at the given data sites. There 
are only limited results addressing the situation in which the centers for the basis 
functions and the data sites may differ. 



Chapter 6 

Scattered Data Interpolation with 
Polynomial Precision 

6.1 Interpolation with Multivariate Polynomials 

As we mentioned in the introduction it is not an easy matter to use polynomials 
to perform multivariate scattered data interpolation. Only if the data sites are in 
certain special locations can we guarantee well-posedness of multivariate polynomial 
interpolation. We now address this problem. 

Definition 6.1. We call a set of points X = {x1 , ... , XN} C lR8 m-unisolvent if 
the only polynomial of total degree at most m interpolating zero data on X is the 
zero polynomial. 

This definition guarantees a unique solution for interpolation to given data at a 
subset of cardinality M = (m~s) of the points x 1 , ... , XN by a polynomial of degree 
m. Here M is the dimension of the linear space rr:n of polynomials of total degree 
less than or equal to m in s variables. 

For polynomial interpolation at N distinct data sites in lR8 to be a well-posed 
problem, the polynomial degree needs to be chosen accordingly, i.e., we need M = 

N, and the data sites need to form an m-unisolvent set. This is rather restrictive. 
For example, this implies that polynomial interpolation at N = 7 points in IR2 

can not be done in a unique way since we could either attempt to use bivariate 
quadratic polynomials (for which M = 6), or bivariate cubic polynomials (with 
M = 10). There exists no space of bivariate polynomials for which M = 7. 

We will see in the next chapter that m-unisolvent sets play an important role in 
the context of conditionally positive definite functions. There, however, even though 
we will be interested in interpolating N pieces of data, the polynomial degree will 
be small (usually m = 1, 2, 3), and the restrictions imposed on the locations of the 
data sites by the unisolvency conditions will be rather mild. 

A sufficient condition (to be found in [Chui (1988)], Ch. 9) on the points 
X1, ... , XN to form an m-unisolvent set in IR2 is 

Theorem 6.1. Suppose {Lo, ... , Lm} is a set ofm+l distinct lines in IR2 , and that 
U = { u1, ... , UM} is a set of M = (m + 1 )(m + 2)/2 distinct points such that the 

53 
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first point lies on Lo, the next two points lie on Li but not on Lo, and so on, so that 
the last m + 1 points lie on Lm but not on any of the previous lines Lo, ... , Lm-l · 
Then there exists a unique interpolation polynomial of total degree at most m to 
arbitrary data given at the points in U. Furthermore, if the data sites { x 1, ... , x N} 
contain U as a subset then they form an m-unisolvent set on JR2 . 

Proof. We use induction on m. Form= 0 the result is trivial. Take R to be the 
matrix arising from polynomial interpolation at the points in U, i.e., 

Rjk = Pk(uJ), j, k = 1, ... , M, 

where the Pk form a basis of II~. We want to show that the only possible solution 
to Re= 0 is c = 0. This is equivalent to showing that if p E II~ satisfies 

p(ui) = 0, i = 1, ... , M, 

then p is the zero polynomial. 
For each i = 1, ... , m, let the equation of the line Li be given by 

CtiX + f3iY = ri, 

where x = (x, y) E JR2 . 

Suppose now that p interpolates zero data at all the points Ui as stated above. 
Since p reduces to a univariate polynomial of degree m on Lm which vanishes at 
m + 1 distinct points on Lm, it follows that p vanishes identically on Lm, and so 

p(x, y) = (etmX + f3mY - rm)q(x, y), 

where q is a polynomial of degree m - 1. But now q satisfies the hypothesis of the 
theorem with m replaced by m - 1 and U replaced by U consisting of the first (m;ri) 
points of U. By induction, therefore q - 0, and thus p = 0. This establishes the 
uniqueness of the interpolation polynomial. The last statement of the theorem is 
obvious. D 

A similar theorem was already proved in [Chung and Yao (1977)]. Theorem 6.1 
can be generalized to lR8 by using hyperplanes. The proof is constructed with the 
help of an additional induction on s. Chui also gives an explicit expression for the 
determinant of the matrix associated with (polynomial) interpolation at the set of 
points U. 

Remark 6.1. For later reference we note that (m - 1)-unisolvency of the points 
x1, ... , XN is equivalent to the fact that the matrix P with 

PJz=pz(xJ), j=l, ... ,N, l=l, ... ,M, 

has full (column-)rank. For N = M this is the polynomial interpolation matrix. 

Example 6.1. As can easily be verified, three collinear points in JR2 are not 1-
unisolvent, since a linear interpolant, i.e., a plane through three arbitrary heights 
at these three collinear points is not uniquely determined. On the other hand, if a 
set of points in JR2 contains three non-collinear points, then it is 1-unisolvent. 
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We used the difficulties associated with multivariate polynomial interpolation 
as one of the motivations for the use of radial basis functions. However, sometimes 
it is desirable to have an interpolant that exactly reproduces certain types of func
tions. For example, if the data are constant, or come from a linear function, then 
it would be nice if our interpolant were also constant or linear, respectively. Unfor
tunately, the methods we have presented thus far (except for the distance matrix 
fit in the s = 1 case) do not reproduce these simple polynomial functions. More
over, later on we will be interested in applying our interpolation methods to the 
numerical solution of partial differential equations, and practitioners (especially of 
finite element methods) often judge an interpolation method by its ability to pass 
the so-called patch test. An interpolation method passes the standard patch test if 
it can reproduce linear functions. In engineering applications this translates into 
exact calculation of constant stress and strain. We will see later that in order to 
prove error estimates for meshfree approximation methods it is not necessary to 
be able to reproduce polynomials globally (but local polynomial reproduction is an 
essential ingredient). Thus, if we are only concerned with the approximation power 
of a numerical method there is really no need for the standard patch test to hold. 

6.2 Example: Reproduction of Linear Functions Using 
Gaussian RBFs 

If we do insist on reproduction of linear functions then the top part of Figure 6.1 
shows a Gaussian RBF interpolant (c = 6) to the bivariate linear function f(x, y) = 

(x + y)/2 based on 1089 uniformly spaced points in the unit square along with 
the absolute error. Clearly the interpolant is not completely planar - not even to 
machine precision. 

Fortunately, there is a simple remedy for this problem. All we need to do 
is add the polynomial functions x 1-+ 1, x 1-+ x, and x 1-+ y to the basis 
{e-e

2
ll·-:z:1ll

2
, ••• ,e-e

2
ll·-:z:Nll

2
} we have thus far been using to obtain our inter

polant. However, now we have N + 3 unknowns, namely the coefficients Ck, 

k = 1, ... , N + 3, in the expansion 
N 

P1(x) = L Cke-e
2

ll:z:-:z:1cll
2 + CN+l + CN+2X + CN+3Y, x = (x, y) E lR.2 , 

k=l 

and we have only N conditions to determine them, namely the interpolation con
ditions 

P1(xj) = f(xj) = (xj + yj)/2, j = 1, ... , N. 

What can we do to obtain a (non-singular) square system? As we will see below, 
we can add the following three conditions: 

N 

Lck = 0, 
k=l 
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N 

LCkXk = 0, 
k=l 

N 

LCkYk = 0. 
k=l 

How do we have to modify our existing MATLAB program for scattered data 
interpolation to incorporate these modifications? If we previously dealt with the 
solution of 

Ac=y, 

with Ajk = e-c:
2
Jl:cj-:ckil

2
, j, k 1, ... , N, c = [c1 , ... , cN]T, 

[f(x1 ), ... , f(xN )]T, then we now have to solve the augmented system 
and y 

(6.1) 

where A, c, and y are as before, and Pjl = pz(xJ), j = 1, ... , N, l = 1, ... , 3, with 
p1(x) = 1, p2(x) = x, and p3(x) = y. Moreover, 0 is a zero vector of length 3, and 
0 is a zero matrix of size 3 x 3. 

The MATLAB script RBF!nterpolation2Dlinear .m shows an implementation 
of this approach for Gaussians (although they can easily be replaced by any other 
RBF) and test function f(x, y) = (x + y)/2. The resulting interpolant using N = 9 
equally spaced data points and c = 6 is shown in the bottom part of Figure 6.1. 
Now, while still not perfectly linear, the error is on the level of machine accuracy. 

Program 6.1. RBFinterpolation2Dlinear. m 

% RBFinterpolation2Dlinear 
% Script that performs 2D RBF interpolation with reproduction of 
% linear functions 
% Calls on: DistanceMatrix 

% Define the Gaussian RBF and shape parameter 
1 rbf = ©(e,r) exp(-(e*r).-2); ep = 6; 

% Define linear test function 
2 testfunction = ©(x,y) (x+y)/2; 

% Number and type of data points 
3 N = 9; gridtype = 'u'; 

% Load data points 
4 name= sprintf('Data2D_%d%s',N,gridtype); load(name) 
5 ctrs = dsites; 
6 neval = 40; M = neval-2; grid= linspace(0,1,neval); 
7 [xe,ye] = meshgrid(grid); epoints = [xe(:) ye(:)]; 

% Evaluate the test function at the data points. 
8 rhs = testfunction(dsites(:,1),dsites(:,2)); 
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% Add zeros for linear (20) reproduction 
g rhs = [rhs; zeros(3,1)]; 

% Compute distance matrix between the data sites and centers 
10 DM_data = DistanceMatrix(dsites,ctrs); 

% Compute interpolation matrix 
11 IM= rbf(ep,DM_data); 

% Define 3-column matrix P for linear reproduction 
12 PM= [ones(N,1) dsites]; 

% Augment interpolation matrix 
13 IM = [IM PM; [PM' zeros(3,3)]]; 

% Compute distance matrix between evaluation points and centers 
14 DM_eval = DistanceMatrix(epoints,ctrs); 

% Compute evaluation matrix 
15 EM= rbf(ep,DM_eval); 

% Add column for constant reproduction 
16 PM= [ones(M,1) epoints]; EM= [EM PM]; 

% Compute RBF interpolant 
% (evaluation matrix * solution of interpolation system) 

17 Pf= EM* (IM\rhs); 
% Compute maximum error on evaluation grid 

18 exact= testfunction(epoints(: ,1),epoints(:,2)); 
19 maxerr = norm(Pf-exact,inf); 
20 rms_err = norm(Pf-exact)/neval; 
21 fprintf('RMS error: %e\n', rms_err) 
22 fprintf('Maximum error: %e\n', maxerr) 
23 fview = [-30,30]; 
24 plotsurf(xe,ye,Pf,neval,exact,maxerr,fview); 
25 ploterror2D(xe,ye,Pf,exact,maxerr,neval,fview); 

57 

Note that Program 6.1 is almost the same as Program 2.1. The only difference 
are lines 9, 12, 13, and 16 that have been added to deal with the augmented problem. 
In Program 6.1 we also modified the definition of the test function. 

6.3 Scattered Data Interpolation with More General Polynomial 
Precision 

As we just saw for a specific example, we may want to modify the assumption on 
the form (1.1) of the solution to the scattered data interpolation Problem 1.1 by 
adding certain polynomials to the expansion, i.e., Pf is now assumed to be of the 
form 

N M 

P1(x) = L:ck<p(llx - xkll) + Ld1p1(x), x E lR. 8
, (6.2) 

k=l l=l 
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Fig. 6.1 Top: Gaussian interpolant to bivariate linear function with N = 1089 (left) and as
sociated abolute error (right). Bottom: Interpolant based on linearly augmented Gaussians to 
bivariate linear function with N = 9 (left) and associated abolute error (right). 

where P1, ... ,PM form a basis for the M = (mr:~i5)-dimensional linear space H:n_ 1 
of polynomials of total degree less than or equal to m - 1 in s variables. It seems 
awkward to formulate this setup with polynomials in n:i._ 1 instead of degree m 
polynomials. However, in light of our discussion of conditionally positive definite 
functions in the next chapter this choice is quite natural. 

Since enforcing the interpolation conditions Pf ( x j) = f ( x j), j = 1, ... , N, leads 
to a system of N linear equations in the N + M unknowns ck and dz one usually 
adds the M additional conditions 

N 

2:::ckPz(xk) = 0, l = l, ... ,M, 
k=l 

to ensure a unique solution. The example in the previous section represents the 
particular case s = m = 2. 

While the use of polynomials is somewhat arbitrary (any other set of M linearly 
independent functions could also be used), it is obvious that the addition of poly
nomials of total degree at most m - 1 guarantees polynomial precision provided the 
points in X form an (m -1)-unisolvent set. In other words, if the data come from a 
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polynomial of total degree less than or equal to m - 1, then they are fitted exactly 
by the expansion ( 6. 2). 

In general, solving the interpolation problem based on the extended expansion 
(6.2) now amounts to solving a system of linear equations of the form 

[;1r ~] [~] [~], (6.3) 

where the pieces are given by Ajk = cp(llxi - xkll), j, k = 1, ... , N, Pjl = pz(xj), 
j = 1, ... , N, l = 1, ... , M, c = [c1, ... , cNJT, d = [d1, ... , dM]T, y = [y1, ... , YN]T, 
0 is a zero vector of length M, and 0 is an M x M zero matrix. Below we will 
study the invertibility of this matrix in two steps. First for the case m = 1 in 
Theorem 6.2, and then for the case of general m in Theorem 7.2. 

Note that we can easily modify the MATLAB program listed above to deal with 
reproduction of polynomials of other degrees. For example, if we want to reproduce 
constants then we need to replace lines 9, 12, 13, and 16 by 

9 rhs = [rhs; OJ; 

12 PM = ones(N,1); 

13 IM = [IM PM; [PM' OJ]; 

16 PM = ones(M,1); EM = [EM PM]; 

and for reproduction of bivariate quadratic polynomials we can use 

9 rhs = [rhs; zeros(6,1)]; 
12a PM= [ones(N,1) dsites dsites(:,l).-2 
12b dsites(:,2).-2 dsites(: ,l).•dsites(:,2)]; 
13 IM= [IM PM; [PM' zeros(6,6)]]; 
16a PM 
16b 
16c EM 

= [ones(M,1) epoints epoints(:,1).-2 ... 
epoints(:,2) .-2 epoints(:,1).•epoints(: ,2)]; 

= [EM PM] ; 

Of course, these specific examples work only for the case s = 2. The generaliza
tion to higher dimensions, however, is obvious but more cumbersome. 

6.4 Conditionally Positive Definite Matrices and Reproduction of 
Constant Functions 

We now need to investigate whether the augmented system matrix in (6.3) is non
singular. The special case m = 1 (in any space dimension s), i.e., reproduction of 
constants, is covered by standard results from linear algebra, and we discuss it first. 

Definition 6.2. A real symmetric matrix A is called conditionally positive semi-
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definite of order one if its associated quadratic form is non-negative, i.e. 
N N 

L LcickAjk > 0 
j=lk=l 

for all c = [c 1 , ... , cNf E RN that satisfy 

N 

Lei =0. 
j=l 

(6.4) 

If c =/=- 0 implies strict inequality in (6.4) then A is called conditionally positive 
definite of order one. 

In the linear algebra literature the definition usually is formulated using "<" 
in ( 6.4), and then A is referred to as (conditionally or almost) negative definite. 
Obviously, conditionally positive definite matrices of order one exist only for N > 1. 

We can interpret a matrix A that is conditionally positive definite of order one 
as one that is positive definite on the space of vectors c such that 

N 

Lci = 0. 
j=l 

Thus, in this sense, A is positive definite on the space of vectors c "perpendicular" 
to constant functions. 

Now we are ready to formulate and prove 

Theorem 6.2. Let A be a real symmetric N x N matrix that is conditionally 
positive definite of order one, and let P = [1, ... , lf be an N x 1 matrix (column 
vector). Then the system of linear equations 

is uniquely solvable. 

Proof. Assume [c, df is a solution of the homogeneous linear system, i.e., with 
y = 0. We show that [c, d]T = oT is the only possible solution. 

Multiplication of the top block of the (homogeneous) linear system by cT yields 

cT Ac+ dcT P = 0. 

From the bottom block of the system we know pT c = cT P = 0, and therefore 

cT Ac= 0. 

Since the matrix A is conditionally positive definite of order one by assumption we 
get that c = 0. Finally, the top block of the homogeneous linear system under 
consideration states that 

Ac+ dP = 0, 

so that c = 0 and the fact that P is a vector of ones imply d = 0. D 
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Since Gaussians (and any other strictly positive definite radial function) give rise 
to positive definite matrices, and since positive definite matrices are also condition
ally positive definite of order one, Theorem 6.2 establishes the nonsingularity of the 
(augmented) radial basis function interpolation matrix for constant reproduction. 

In order to cover radial basis function interpolation with reproduction of higher
order polynomials we will now introduce (strictly) conditionally positive definite 
functions of order m. 





Chapter 7 

Conditionally Positive Definite Functions 

7.1 Conditionally Positive Definite Functions Defined 

In analogy to our earlier discussion of interpolation with positive definite functions 
we will now introduce conditionally positive definite and strictly conditionally pos
itive definite functions of order m. We will realize that these functions provide the 
natural generalization of RBF interpolation with polynomial reproduction discussed 
in the previous chapter. Examples of strictly conditionally positive definite (radial) 
functions are presented in the next chapter. 

Definition 7.1. A complex-valued continuous function <I> is called conditionally 
positive definite of order m on JR 5 if 

N N 

L 2.:cjck<I>(xj - xk) ~ 0 (7.1) 
j=lk=l 

for any N pairwise distinct points x 1 , ... ,XN E lR8
, and c = [c1 1 ••• ,cNf E c_N 

satisfying 
N 

L Cjp(Xj) = 0, 
j=l 

for any complex-valued polynomial p of degree at most m - 1. The function <I> is 
called strictly conditionally positive definite of order m on JR5 if the quadratic form 
(7.1) is zero only for c = 0. 

An immediate observation is 

Lemma 7.1. A function that is {strictly) conditionally positive definite of order 
m on lR8 is also (strictly) conditionally positive definite of any higher order. In 
particular, a (strictly) positive definite function is always {strictly) conditionally 
positive definite of any order. 

Proof. The first statement follows immediately from Definition 7.1. The second 
statement is true since the case m = 0 yields the class of (strictly) positive definite 
functions, i.e., (strictly) conditionally positive definite functions of order zero are 
(strictly) positive definite. D 
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As for positive definite functions earlier, we can restrict ourselves to real-valued, 
even functions <I> and real coefficients. A detailed discussion is presented in [Wend
land (2005a)]. 

Theorem 7.1. A real-valued continuous even function <I> zs called conditionally 
positive definite of order m on ]Rs if 

N N 

L 2:.:cjck<I>(xj - xk) > 0 (7.2) 
j=lk=l 

for any N pairwise distinct points x1, ... , XN E Rs, and c = [c1, ... , cNJT E JRN 
satisfying 

N 

L Cjp(Xj) = 0, 
j=l 

for any real-valued polynomial p of degree at most m - 1. The function <I> is called 
strictly conditionally positive definite of order m on ]Rs if the quadratic form (1.2) 
is zero only for c _ 0. 

The matrix A with entries Ajk = <I>(xj - xk) corresponding to a real and even 
strictly conditionally positive definite function <I> of order m can also be interpreted 
as being positive definite on the space of vectors c such that 

N 

L Cjp(xj) = 0, p E rr:n_ 1 . 

j=l 

Thus, in this sense, A is positive definite on the space of vectors c "perpendicular" 
to s-variate polynomials of degree at most m - 1. 

We can now generalize the interpolation Theorem 6.2 to the case of general 
polynomial reproduction: 

Theorem 7.2. lf the real-valued even function <I> is strictly conditionally positive 
definite of order m on Rs and the points x 1 , ... , XN form an (m - l)-unisolvent 
set, then the system of linear equations {6.3) is uniquely solvable. 

Proof. The proof is almost identical to the proof of Theorem 6.2. Assume [c, djT 
is a solution of the homogeneous linear system, i.e., with y = 0. We show that 
[c, djT = 0 is the only possible solution. 

Multiplication of the top block by cT yields 

cT Ac+ cT Pd= 0. 

From the bottom block of (6.3) we know pT c = 0. This implies CT p = or, and 
therefore 

cT Ac= 0. (7.3) 
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Since the function <I> is strictly conditionally positive definite of order m by assump
tion we know that the quadratic form of A (with coefficients such that pT c = 0) 
above is zero only for c = 0. Therefore (7.3) tells us that c = 0. The unisolvency of 
the data sites, i.e., the linear independence of the columns of P ( c.f. Remark 6.1), 
and the fact that c = 0 guarantee d = 0 from the top block 

Ac+Pd = 0 

of (6.3). 

7.2 Conditionally Positive Definite Functions and Generalized 
Fourier Transforms 

D 

As before, integral characterizations help us identify functions that are strictly con
ditionally positive definite of order m on ~s. An integral characterization of con
ditionally positive definite functions of order m, i.e., a generalization of Bochner's 
theorem, can be found in the paper [Sun (1993b)]. However, since the subject mat
ter is rather complicated, and since it does not really help us solve the scattered 
data interpolation problem, we do not mention any details here. 

The Fourier transform characterization of strictly conditionally positive definite 
functions of order m on ~s also makes use of some advanced tools from analy
sis. However, since this characterization is relevant for our purposes we state the 
result (due to [Iske (1994)]) and collect some of the most relevant concepts from 
distribution theory in Appendix B. 

This distributional approach originated in the manuscript [Madych and Nelson 
(1983)]. Many more details can be found in the original papers mentioned above as 
well as in the book [Wendland (2005a)]. 

Theorem 7 .3. Suppose the complex-valued function <I> E B possesses a generalized 
Fourier transform <i> of order m which is continuous on ~s \ { 0}. Then <I> is strictly 
conditionally positive definite of order m if and only if <i> is non-negative and non
vanishing. 

Theorem 7.3 states that strictly conditionally positive definite functions on ~s 
are characterized by the order of the singularity of their generalized Fourier trans
form at the origin, provided that this generalized Fourier transform is non-negative 
and non-zero. 

Since integral characterizations similar to Schoenberg's Theorems 3.6 and 3.8 
are so complicated in the conditionally positive definite case we do not pursue the 
concept of a conditionally positive definite radial function here. The interested 
reader is referred to [Guo et al. (1993a)] for details. We will discuss some exam
ples of radial functions via the Fourier transform approach in the next chapter, 
and in Chapter 9 we will explore the connection between completely and multiply 
monotone functions and conditionally positive definite radial functions. 





Chapter 8 

Examples of Conditionally Positive 
Definite Functions 

We now present a number of strictly conditionally positive definite (radial) func
tions that are covered by the Fourier transform characterization Theorem 7.3. The 
generalized Fourier transforms for these examples are explicitly computed in [Wend
land (2005a)]. We will establish the strict conditional positive definiteness of these 
functions again in detail in the next chapter with the help of completely monotone 
functions. Included in the examples below are several of the best known radial basic 
functions such as the multiquadric due to [Hardy (1971)] and the thin plate spline 
due to [Duchon (1976)]. 

8.1 Example 1: Generalized Multiquadrics 

The generalized multiquadrics 

<I>(x) = (1 + llxll 2 )!'.3, x E JR5
, /3 E IR\ No, 

have generalized Fourier transforms 
21+1'.3 

<i>(w) = r(-/3) JJwJl-i'.3-s/2Ki'.3+s/2(JJwl1), w =I- 0, 

(8.1) 

of order m = max(O, I /31 ), where l,Bl denotes the smallest integer greater than or 
equal to f3. Here the Kv are again the modified Bessel functions of the second kind 
of order v ( c.f. Section 4.5). Note that we need to exclude positive integer values 
of ,B since this would lead to polynomials of even degree (see the related discussion 
in Example 2 below). 

Since the generalized Fourier transforms are positive with a singularity of order 
m at the origin, Theorem 7 .3 tells us that the functions 

<I> ( x) = ( -1) r i'.31 ( 1 + 11 x 11
2 ) i1 , o < f3 <t- N, 

are strictly conditionally positive definite of order m = I /31 (and higher). 
For f3 < 0 the Fourier transform is a classical one and we are back to the 

generalized inverse multiquadrics of Section 4.5. These functions are again shown 
to be strictly conditionally positive definite of order m = 0, i.e., strictly positive 
definite. 
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y x x 

Fig. 8.1 Hardy's multiquadric with /3 = ~ (left) and a generalized multiquadric with /3 = ~ 
(right) centered at the origin in JR 2 • 

Figure 8.1 shows Hardy's "original" multiquadric (with (3 = 1/2, i.e., strictly 
conditionally positive definite of order 1) and a generalized multiquadric with 
(3 = 5/2 (i.e., strictly conditionally positive definite of order 3). Note that the 
generalized multiquadrics are no longer "bump" functions (as most of the strictly 
positive definite functions were), but functions that grow with the distance from 
the origin. 

The arguments above together with Theorem 7 .2 show that we can use Hardy's 
multiquadrics in the form 

N 

P1(x) = :LckJl + l\x - xkll 2 + d, 
k=l 

together will the constraint 
N 

Lck=O 
k=l 

x E :IR.
8

' 

to solve the scattered data interpolation problem. The resulting interpolant will 
be exact for constant data. As in our earlier discussions we can scale the basis 

functions with a shape parameter E by replacing llxll by lclllxll· This does not 
affect the well-posedness of the interpolation problem. However, a small value of E 

gives rise to "flat" basis functions, whereas a large value of E produces very steep 
functions. As before, the accuracy of the fit will improve with decreasing E while 

the stability will decrease, and the numerical results will become increasingly less 
reliable. For Figure 8.1 we used the shape parameter E = 1. 

By Theorem 9.7 below we can also solve the scattered data interpolation problem 
using the simpler expansion 

N 

P1(x) = :LckJl + llx - xkll 2 , 

k=l 
This is what Hardy proposed to do in his work in the early 1970s (see, e.g., [Hardy 
(1971)]). 
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8.2 Example 2: Radial Powers 

The radial powers 

<I>(x) = llxll 13 , 

have generalized Fourier transforms 

~ 2.B+s/2r( s+,8) 
<I>( ) = 2 II 11-13 -s w r(-/3/2) w , w =f. 0, 

of order m = I j3 /2-1. Therefore, the functions 

<I>(x) = (-1)ri3121llxlli3, 0 < j3 <t. 2N, 

are strictly conditionally positive definite of order m = l/3/21 (and higher). 
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(8.2) 

This shows that the basic function <I>(x) = llxll2 used for the distance matrix 
fits in the introductory chapter are strictly conditionally positive definite of order 
one. According to Theorem 7.2 we should have used these basic functions together 
with an appended constant. However, Theorem 9. 7 below provides the justification 
for their use as a pure distance matrix. 

In Figure 8.2 we show radial cubics (/3 = 3, i.e., strictly conditionally positive 
definite of order 2) and quintics (/3 = 5, i.e., strictly conditionally positive definite 
of order 3). 

Note that we had to exclude even powers in (8.2). This is clear since an even 
power combined with the square root in the definition of the Euclidean norm results 
in a polynomial - and we have already decided that polynomials cannot be used 
for interpolation at arbitrarily scattered multivariate sites. 

Note that radial powers are not affected by a scaling of their argument. In other 
words, radial powers are shape parameter free. This has the advantage that the 
user need not worry about finding a "good" value of c. On the other hand, we will 
see below that radial powers will not be able to achieve the spectral convergence 
rates that are possible with some of the other basic functions such as Gaussians and 
generalized (inverse) multiquadrics. 

y x 

el .\ : .. >· 

z 41· ................. , .. ··· 
2 .. ····· 

0 
1 

y -1 -1 
x 

Fig. 8.2 Radial cubic {left) and quintic (right) centered at the origin in JR2 . 
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8.3 Example 3: Thin Plate Splines 

In the previous example we had to rule out even powers. However, if the even radial 
powers are multiplied by a log term, then we are back in business. 

Duchon's thin plate splines (or Meinguet's surface splines) 

xEIR.8
, /3EN, (8.3) 

have generalized Fourier transforms 

<i>(w) = (-1)f'+122J3-I+s/2r(/3 + s/2)/3!llwll-s-2/3 

of order m = /3 + 1. Therefore, the functions 

<I>(x) = (-1)f'+l llxll 2t3 log llxll, /3 E N, 

are strictly conditionally positive definite of order m = /3 + 1. In particular, we can 
use 

N 

P1(x) = ·~.::::Ckllx - xkll 2 log llx - xkll +di+ d2x + d3y, x = (x,y) E IR.2 , 

k=l 

together will the constraints 
N N N 

Lek= 0, LCkXk = 0, LCkYk = 0, 
k=l k=l k=l 

to solve the scattered data interpolation problem in IR.2 provided the data sites are 
not all collinear. The resulting interpolant will be exact for data coming from a 
bivariate linear function. 

0.8 .. ·· .... ··· 

0.4 .... 
z 

0.2 .. ···· 

y -1 -1 x y x 

Fig. 8.3 "Classical" thin plate spline (left) and order 3 thin plate spline (right) centered at the 
origin in JR2 . 

Figure 8.3 shows the "classical" thin plate spline (with /3 = 1, i.e., strictly 
conditionally positive definite of order 2) and the order 3 spline <I>(x) = llxll 4 log llxll · 
Note that the thin plate spline basic functions are not monotone. Also, both graphs 
displayed in Figure 8.3 contain a portion with negative function values. 
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As with radial powers, use of a shape parameter c in conjunction with thin plate 
splines is pointless. Finally, we note that the families of radial powers and thin plate 
splines are often referred to collectively as polyharmonic splines. 

There is no result that states that interpolation with thin plate splines (or any 
other strictly conditionally positive definite function of order m ~ 2) without the 
addition of an appropriate degree m - 1 polynomial is well-posed. Theorem 9.7 
quoted several times before covers only the case m = 1. 





Chapter 9 

Conditionally Positive Definite 
Radial Functions 

As for strictly positive definite radial functions, we will be able to connect strictly 
conditionally positive definite radial functions to completely monotone and multiply 
monotone functions, and thus be able to obtain a criterion for checking conditional 
positive definiteness of radial functions that is easier to use than the generalized 
Fourier transform in the previous chapters. 

9.1 Conditionally Positive Definite Radial Functions and 
Completely Monotone Functions 

In analogy to the discussion in Section 3.3 we now focus on conditionally positive 
definite functions that are radial on JR5 for all s. The paper [Guo et al. (1993a)] 
by Guo, Hu and Sun contains an integral characterization for such functions. This 
characterization is too technical to be included here. 

Another important result in [Guo et al. (1993a)] is a characterization of con
ditionally positive definite radial functions on JR5 for all s in terms of completely 
monotone functions. 

Theorem 9.1. Let <p E C[O, oo) n C 00 (0, oo). Then the function <I>= rp(ll · 11
2 ) is 

conditionally positive definite of order m and radial on JR5 for all s if and only if 
( -1 )=rpC=) is completely monotone on (0, oo). 

Proof. The fact that complete monotonicity implies conditional positive definite
ness was proved in [Micchelli (1986)]. Micchelli also conjectured that the converse 
holds and gave a simple proof for this in the case m = 1. For m = 0 this is Schoen
berg's characterization of positive definite radial functions on JR5 for alls in terms of 
completely monotone functions (Theorem 5.2). The remaining part of the theorem 
is shown in [Guo et al. (1993a)]. 0 

In order to get strict conditional positive definiteness we need to generalize 
Theorem 5.3, i.e., the fact that <p not be constant. This leads to (see [Wendland 
(2005a)]) 
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Theorem 9.2. If cp is as in Theorem 9.1 and not a polynomial of degree at most 
m, t'hen q, is strictly conditionally positive definite of order m and radial on IRs for 
alls. 

We can now more easily verify the conditional positive definiteness of the func
tions listed in the previous chapter. 

Example 9.1. The functions 

p(r) = (-l)f/31(1 +r)/3, 

imply 

cp(i) (r) = (-1) f/31 /3(/3 - 1) · · · (/3 - f + 1)(1 + r)/3-i 

so that 

is completely monotone. Moreover, m = I /31 is the smallest possible m such that 
(-l)mcp(m) is completely monotone. Since /3 tt. N we know that cp is not a polyno
mial, and therefore the generalized multiquadrics ( c.f. (8.1)) 

/3 > 0, 

are strictly conditionally positive definite of order m > I /31 and radial on lR8 for all 
values of s. 

Example 9.2. The functions 

cp(r) = (-l)f/3/2lr/3/2, 0 < ,B tt. 2N, 

imply 

cp(i)(r) = (-1)f/3/2l ~ (~ - 1) · .. (~ - f + 1) r/312-t 

so that (-1)ff3/2lcp<f.B/2l) is completely monotone and m = l/3/21 is the smallest 
possible m such that (-l)mcp(m) is completely monotone. Since /3 is not an even 
integer cp is not a polynomial, and therefore, the radial powers ( c.f. (8.2)) 

/3 > 0, /3 tt. 2N, 

are strictly conditionally positive definite of order m > l.B /2-] and radial on lR8 for 
all s. 

Example 9.3. The thin plate splines ( c.f. (8.3)) 

q,(llxll) = (-1) 13+1 llxll 213 logllxll, /3 EN, 

are strictly conditionally positive definite of order m > /3 + 1 and radial on lR8 for 
all s. To see this we observe that 
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Therefore, we let 

/3 E N, 

which is obviously not a polynomial. Differentiating <p we get 

<p(l) (r) = (-1),B+l /3(/3 - 1) · · · (/3 - £ + 1 )r,B-l log r + Pt(r), 1 < f, < /3, 

with Pl a polynomial of degree /3 - £. Therefore, taking£= f3 we have 

cp(,B) (r) = ( -1 ),B+l /3! log r + C 

and 

which is completely monotone on (0, oo). 

9.2 Conditionally Positive Definite Radial Functions and Multiply 
Monotone Functions 
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Finally, [Micchelli (1986)] proved a more general version of Theorem 5.5 relating 
conditionally positive definite radial functions of order m on Rs (for some fixed 
value of s) and multiply monotone functions. We state a stronger version due to 
[Buhmann (1993a)] which ensures strict conditional positive definiteness. 

Theorem 9.3. Let k = Ls /2 J - m + 2 be a positive integer, and suppose <p E 

c=-1 [O, oo) is not a polynomial of degree at most m. If (-1)=cpC=) is k-times 
monotone on (0, oo) but not constant, then cp is strictly conditionally positive definite 
of order m and radial on IRs for any s such that Ls/2J < k + m - 2. 

Just as we showed earlier that compactly supported radial functions cannot be 
strictly positive definite on Rs for all s, it is important to note that there are no 
truly conditionally positive definite functions with compact support. More precisely 
(see [Wendland ( 2005a)]), 

Theorem 9.4. Assume that the complex-valued function <I> E C(Rs) has compact 
support. If <I> is strictly conditionally positive definite of (minimal} order m, then 
m is necessarily zero, i.e., <I> is already strictly positive definite. 

Proof. The hypotheses on <I> ensure that it is integrable, and therefore it pos
sesses a classical Fourier transform <i> which is continuous. For integrable functions 
the generalized Fourier transform coincides with the classical Fourier transform. 
Theorem 7.3 ensures that <i> is non-negative on Rs\ {O} and not identically equal 
to zero. By continuity we also get <i>(O) > 0, and Theorem 3.5 shows that <I> is 
strictly positive definite. 0 
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Theorem 9.3 together with Theorem 9.4 implies that if we perform m-fold anti
differentiation on a non-constant k-times monotone function, then we obtain a func
tion that is strictly positive definite and radial on Rs for Ls/2J < k + m - 2. 

Example 9.4. The function 'Pk(r) = (1 - r)t is k-times monotone (see Ex
ample 5.5 in Section 5.2). To avoid the integration constant for the compactly 
supported truncated power function we compute the anti-derivative via the integral 

operator I of Example 5.6 in Section 5.2, i.e., 

Ic.pk(r) = 1= 'Pk(t)dt = 100

(1-t)idt = ~-l)k (1- r)~+ 1 . 
T T + 1 

If we apply m-fold anti-differentiation we get 

I m ( ) Jlm 1 ( ) (-l)mk (1 - r)k+rn 
'Pk r = - 'Pk r = (k + l)(k + 2) · · · (k + m) + · 

Therefore, by Theorem 9.3, the function 

c.p(r) = (1 - r)i+m 

is strictly conditionally positive definite of order m and radial on Rs for Ls/2J < 
k + m - 2, and by Theorem 9.4 it is even strictly positive definite and radial on Rs. 
This was also observed in Example 6 of Chapter 4. In fact, we saw there that <.p is 

strictly positive definite and radial on Rs for Ls/2J < k + m - 1. 

We see that we can construct strictly positive definite compactly supported 
radial functions by anti-differentiating the truncated power function. This is es
sentially the approach taken by Wendland to construct his popular compactly 
supported radial basis functions. We provide more details of his construction in 
Chapter 11. 

9.3 Some Special Properties of Conditionally Positive Definite 

Functions of Order One 

Since an N x N matrix that is conditionally positive definite of order one is positive 
definite on a subspace of dimension N - 1 it has the interesting property that 
at least N - 1 of its eigenvalues are positive. This follows immediately from the 
Courant-Fischer theorem of linear algebra (see e.g., p. 550 of [Meyer (2000)]): 

Theorem 9.5 (Courant-Fischer). Let A be a real symmetric N x N matrix with 
eigenvalues >.1 > >.2 2: · · · > >w, then 

and 

Ak = max min xT Ax 
dimV=k :.:EV 

11:.:ll=l 

Ak = min max xT Ax. 
dimV=N-k+l :.:EV 

11:.:ll=l 
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With an additional assumption on A we can make an even stronger statement. 

Theorem 9.6. An N x N matrix A which is conditionally positive definite of or
der one and has a non-positive trace possesses one negative and N - 1 positive 
eigenvalues. 

Proof. Let .A1 > .A2 > · · · > AN denote the eigenvalues of A. From the Courant
Fischer theorem we get 

AN-1 = max min xT Ax> 
dimV=N-1 "'EV 

ll:1>1i=l 

min cT Ac> 0, 
c: L "k=O 

llcll=l 

so that A has at least N - 1 positive eigenvalues. But since tr(A) = 'E~=l Ak < 0, 
A also must have at least one negative eigenvalue. D 

Note that the additional hypothesis of Theorem 9.6 is satisfied for the interpo
lation matrix resulting from (the negative) of RBFs such as Hardy's multiquadric 
or the linear radial function cp(r) = r since its diagonal elements correspond to the 
value of the basic function at the origin. 

Moreover, we will now use Theorem 9.6 to conclude that we can use radial 
functions that are strictly conditionally positive definite of order one (such as the 
multiquadric, 0 < {3 < 1, and the norm basic function) without appending the con
stant term to solve the scattered data interpolation problem. This was first proved 
by [Micchelli (1986)] and motivated by Hardy's earlier work with multiquadrics 
and Franke's conjecture that the matrix A is non-singular in this case (see [Franke 
(1982a)]). 

Theorem 9. 7 (Interpolation). Suppose <I> is strictly conditionally positive defi
nite of order one and that <I>(O) < 0. Then for any distinct points x1, ... , XN E IR 8 

the matrix A with entries Ajk = <I>(xJ - xk) has N - 1 positive and one negative 
eigenvalue, and is therefore non-singular. 

Proof. Clearly, the matrix A is conditionally positive definite of order one. More
over, the trace of A is given by tr(A) = N<I>(O) < 0. Therefore, Theorem 9.6 applies 
and the statement follows. D 

As mentioned above, this theorem covers the generalized multiquadrics <I>(x) = 

-(1 + llxll),a with 0 < {3 < 1 (which includes the Hardy multiquadric). The theorem 
also covers the radial powers <I>(x) = -llxll,a for 0 < {3 < 2 (including the Euclidean 
distance function). 

Another special property of a conditionally positive definite function of order 
one is 

Lemma 9.1. lf C is an arbitrary real constant and the real even function <I> is 
(strictly) conditionally positive definite of order one, then <I> + C is also {strictly) 
conditionally positive definite of order one. 
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Proof. Simply consider 

NN NN NN 

L LCJCk[~(Xj - Xk) +CJ = L LCJCk~(Xj - Xk) + L LCJCkC. 
j=lk=l j=lk=l j=lk=l 

The second term on the right is zero since ~ is conditionally positive definite of 
order one, i.e., Ef=1 CJ = 0, and thus the statement follows. D 



Chapter 10 

Miscellaneous Theory: Other Norms and 
Scattered Data Fitting on Manifolds 

10.1 Conditionally Positive Definite Functions and p-Norrns 

In Chapter 1 we used interpolation with distance matrices as a multivariate general
ization of the piecewise linear approach. Our choice of the distance matrix approach 
was motivated by the fact that the associated basis functions, <I>J(x) = llx - Xj II 
would satisfy the dependence on the data sites imposed on a multivariate interpo
lation method by the Mairhuber-Curtis theorem. We made the (natural?) choice 
of using the Euclidean (2-norm) distance function, and then showed in subsequent 
chapters that the function <I>(x) = -llxll 2 is strictly conditionally positive definite 
of order one and radial on JR5

, and thus our distance matrix approach was indeed 
well-posed via Micchelli's Theorem 9.7. 

We now briefly consider solving the scattered data interpolation problem with 
radial functions based on other p-norms. These norms are defined as usual as 

( 

s ) 1/p 

llxllP = ~ lxilP , x E lR8
' 1 ~ p < 00. 

The content of this section is mostly the subject of the paper [Baxter (1991)]. 
If we consider only distance matrices, i.e., interpolation matrices generated by 

the basic function <I>(x) = llxllP, then it was shown in [Dyn et al. (1989)] that 
the choice p = 1 leads to a singular matrix already for very simple sets of distinct 
interpolation points. For example, if X = {(O, 0), (1, 0), (1, 1), (0, 1)} then the 1-
norm distance matrix is given by 

[

o 1 2 1] 
101 2 
2 101 ' 
121 0 

and it is easy to verify that this matrix is singular. This result has discouraged 
people from using 1-norm radial basis functions. 

However, if we use, e.g., N Halton points, then we have never encountered a 
singular 1-norm distance matrix in all of our numerical experiments. In fact, the 

79 
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matrix seems to have N - 1 negative and one positive eigenvalue (just as predicted 
by Theorem 9.7 for the 2-norm case). 

Figure 10.2 shows various interpolants to the linear function f(x, y) = (x + y)/2 
on the unit square. The interpolant is false colored according to the maximum 
error. In the top row of the figure we used a 1-norm distance matrix based on 1089 
Halton points. The MATLAB code for generating a p-norm distance matrix fit is 
virtually identical to our earlier code in Programs 1.1 and 1.2. The only change 
required is the replacement of lines 6 and 8 of Program 1.1 by 

6 DM = DM + abs(dr-cc).-p; 
8 DM = DM.-(1/p); 

We can also use this modification of Program 1.1 to produce more general RBF 
interpolants (see the example with p-norm Gaussians in the bottom row of Fig
ure 10.2 below). 

Similar to the 1-norm result from [Dyn et al. (1989)] quoted above it was shown 
in [Baxter (1991)] that for p > 2 we cannot in general guarantee non-singular 
distance matrices, either. On the other hand, a number of numerical experiments 
showed the p-norm matrices to be non-singular provided uniformly spaced or Halton 
points in [O, 1]2 were used. The second row of Figure 10.2 shows distance matrix 
interpolants to f(x, y) = (x + y)/2 on the unit square using a p-norm distance 
matrix for p = 10 and p = 100 based on 25 uniformly spaced points. 

These examples show that certainly not all is lost when using p-norm radial 
basis functions. The situation is similar as with the use of Kansa's method for the 
collocation solution of elliptic PDEs (see Chapter 38). There do exist configurations 
of data points for which the interpolation matrix becomes singular. However, these 
configurations may be rare, and therefore the use of p-norm radial basis functions 
may be justified in many cases. We point out that we used norms for p > 2 even 
though the Baxter result mentioned above guarantees existence of data sets X for 
which the interpolation matrix will be singular. For our examples the interpolation 
matrix was far from singular. Using 25 uniformly spaced data sites the matrices 
again exhibited 24 negative and one positive eigenvalue. This use of p-norm radial 
basis functions certainly deserves further investigation. 

The case 1 < p < 2, however, is much better understood. In [Baxter (1991)] we 
find 

Theorem 10.1. Suppose 1 < p < 2 and let A be the p-norm distance matrix with 
entries 

j,k = 1, ... ,N. 

Then the matrix -A is conditionally positive definite of order one. Moreover, 
it is strictly conditionally positive definite of order one if N > 2 and the points 
x 1, ... , x N are distinct. 
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This theorem is derived from a much earlier theorem by Schoenberg relating 
conditionally positive definite matrices of order one and Euclidean distance matri
ces. When Schoenberg first studied conditionally positive definite matrices of order 
one this was in connection with isometric embeddings. Based on earlier work by 
Karl Menger [Menger (1928)] Schoenberg derived the following result characterizing 
certain conditionally positive definite matrices as Euclidean distance matrices (see 
[Schoenberg (1937)]). 

Theorem 10.2 (Schoenberg-Menger). Let A be a real symmetric N x N ma
trix with all diagonal entries zero and all other elements positive. Then -A is 
conditionally positive semi-definite of order one if and only if there exist N points 
Y1, · · · ,YN E ]RN for which 

These points are the vertices of a simplex in JRN. 

In the third row of Figure 10.2 we display the interpolants to the test function 
f(x, y) = (x+y)/2 on [O, 1] 2 using distance matrix interpolation based on 25 equally 
spaced points and p-norms with p = 1.001 and p = 2. Since we use a plain distance 
interpolant, i.e., <I>(x) = llxllP it is remarkable that the error using the p = 1.001-
norm is about two orders of magnitude smaller than the next best p-norm distance 
matrix fit among our experiments (which we obtained for p = 100, c.f. Figure 10.2). 

The use of different p-norms for different applications has not been studied 
carefully in the literature. 

Two other results regarding interpolation with p-norm radial basis functions 
can also be found in the literature. In [Wendland (2005a)] we find a reference to 
[Zastavnyi (1993)] according to which - for space dimensions s > 3 - the only 
function that is positive definite and p-norm radial on JRS is the zero function. 
Again, somewhat discouraging news. However, there is also good news. The follow
ing rather powerful theorem comes from [Baxter (1991)]. Baxter calls the matrix 
A of Theorem 10.2 an almost negative definite matrix ( c.f. the remarks following 
Definition 6.2). 

Theorem 10.3. Let -A be an N x N matrix that is conditionally positive semi
definite of order one with all diagonal entries zero, and let cp( ·2 ) be a function that 
is conditionally positive definite of order one and radial on JRS. Then the matrix 
defined by 

j,k=l, ... ,N, 

is conditionally positive semi-definite of order one. Moreover, if N ~ 2 and no 
off-diagonal elements of A vanish, then B is strictly conditionally positive definite 
of order one whenever cp( ·2 ) is strictly conditionally positive definite of order one. 
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Proof. By Schoenberg's Theorem 10.2 we can write Ajk = llYJ - Yk II~ for ap
propriate points YJ E JRN. By assumption :p( -2 ) is conditionally positive definite of 
order one and radial, and therefore B is conditionally positive semi-definite of order 
one. Moreover, if Ajk # 0 for all off-diagonal elements, then y 1 , ... , YN are distinct, 
and therefore B is strictly conditionally positive definite of order one provided cp( ·2 ) 

is strictly conditionally positive definite of order one. 0 

Since Baxter also shows that if A is a 1-norm distance matrix, then -A is a 
conditionally positive semi-definite matrix of order one, Theorem 10.3 guarantees 
that we can use many "standard" radial basic functions in conjunction with the 1-
norm for RBF interpolation. For example, the use of 1-norm Gaussians is justified 
by Theorem 10.3. In the literature one can also find an analog of Bochner's theorem 
for positive definite 1-norm radial functions due to [Cambanis at al. (1983)] (see 
also [Wendland (2005a)]). 

Figure 10.1 shows p-norm Gaussians <I>(x) = e- 102 ll::cll~ for p = 1 and p = 10. A 
shape parameter c = 3 was used. Interpolants to the function f(x, y) = (x+y)/2 at 
25 equally spaced points in [O, 1] 2 using these basic functions with c = 1 are shown 
in the bottom row of Figure 10.2. 
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Fig. 10.1 p-norm Gaussians for p = 1 (left) and p = 10 (right) centered at the origin in JR.2 . 

Another, closely related theorem by Baxter is 

Theorem 10.4. Suppose :p(·2 ) and 'l/J(· 2 ) are functions that are conditionally pos
itive definite of order one and radial on JRS with 'l/J(O) = 0. Then 'P 0 'lj.J(- 2 ) is also 
conditionally positive definite of order one and radial on JR 8 • Indeed, if cp( ·2 ) is 
strictly conditionally positive definite of order one and radial and 1/J vanishes only 
at zero, then cp o 'l/J( -2 ) is strictly conditionally positive definite of order one and 
radial. 

This theorem is a generalization of a classical result in linear algebra by Schur 
(see, e.g., [Horn and Johnson (1991); Micchelli (1986)], where Schur's theorem was 
extended to cover strictness). 
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10.2 Scattered Data Fitting on Manifolds 

There exists a sizeable body of literature on the topic of scattered data interpolation 
on manifolds, especially the sphere ss-l in :!Rs. We will not mention any specific 
results here. Instead we refer the reader to the book [Freeden et al. (1998)], the 
survey papers [Cheney (1995a); Fasshauer and Schumaker (1998)], as well as many 
original papers such as [Baxter and Hubbert (2001); Bingham (1973); Fasshauer 
(1995a); Fasshauer (1999b); Hubbert and Morton (2004a); Hubbert and Morton 
(2004b); Levesley et al. (1999); Menegatto (1994b); Narcowich and Ward (2002); 
Ragozin and Levesley (1996); Ron and Sun (1996); Schoenberg (1942); Schreiner 
(1997); Wahba (1981); Wahba (1982); Xu and Cheney (1992b)]. 

Radial basis functions on more general Riemannian manifolds are studied in, 
e.g., [Dyn et al. (1997); Dyn et al. (1999); Levesley and Ragozin (2002); Narcowich 
(1995); Narcowich et al. (2003); Schimming and Belger (1991)]. 

There is also a "poor man's solution" to interpolation on manifolds, especially 
the sphere. One can use the Euclidean radial basis function methods discussed thus 
far, and simply restrict their evaluation to the manifold. This approach is outlined 
in Section 6 of [Fasshauer and Schumaker ( 1998)]. 

We will discuss another, related, interpolation problem later. Namely, interpo
lation to point cloud data in IR3 . In this case, the underlying manifold is unknown, 
and another approach needs to be taken. See Chapter 30 for details. 

10.3 Remarks 

Many of the results given in the previous chapters can be generalized to vector
valued or even matrix-valued functions. Some results along these lines can be found 
in [Lowitzsch (2002); Lowitzsch (2005); Myers (1992); Narcowich and Ward (1994a); 
Schaback (1995a)]. 

We point out that the approach to solving the interpolation problems taken in 
the previous chapters always assumes that the centers, i.e., the points Xk, k = 

1, ... , N, at which the basis functions are centered, coincide with the data sites. 
This is a fairly severe restriction, and it has been shown in examples in the context 
of least squares approximation of scattered data (see, e.g., [Franke et al. (1994); 
Franke et al. (1995)] or [Fasshauer (1995a)]) that better results can be achieved 
if the centers are chosen different from the data sites. Theoretical results in this 
direction are very limited, and are reported in [Quak et al. (1993)] and in [Sun 
(1993a)]. 
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Fig. 10.2 p-norm distance matrix fits to f(x, y) = (x + y)/2 on a 5 x 5 grid in [O, 1] 2 unless noted 
otherwise. Top: p = 1 (1089 Halton points). 2nd row: p = 10 (left), p = 100 (right). 3rd row: 
p = 1.001 (left), p = 2 (right). Bottom: p-norm Gaussian fits for p = 1 (left) and p = 10 (right). 



Chapter 11 

Compactly Supported 
Radial Basis Functions 

As we saw earlier (see Theorem 9.4), compactly supported functions <I> that are 
truly strictly conditionally positive definite of order m > 0 do not exist. The 
compact support automatically ensures that <I> is strictly positive definite. Another 
observation (see Theorem 3.9) was that compactly supported radial functions can 
be strictly positive definite on ]Rs only for a fixed maximal s-value. It is not possible 
for a function to be strictly positive definite and radial on Rs for alls and also have 
a compact support. Therefore we focus our attention on the characterization and 
construction of functions that are compactly supported, strictly positive definite 
and radial on ]Rs for some fixed s. 

According to our earlier work (Bochner's theorem and generalizations thereof), a 
function is strictly positive definite and radial on Rs if its s-variate Fourier transform 
is non-negative. Theorem B.1 in the Appendix gives the Fourier transform of the 
radial function <I> = <p( 11 · II) as another radial function 

where Jv is the Bessel function of the first kind of order v. 

11.1 Operators for Radial Functions and Dimension Walks 

A certain integral operator and its inverse differential operator were defined in 
[Schaback and Wu (1996)]. In that paper an entire calculus was developed for how 
these operators act on radial functions. In fact, according to [Gneiting (2002)], 
these operators can be traced back to ~Matheron (1965)] who called the integral 
operator montee and the differential operator descente motivated by an application 
related to mining. 

In the following we define these operators and show how they facilitate the 
construction of compactly supported radial functions. 

85 
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Definition 11.1. 

(1) Let r..p be such that t 1---+ tr..p( t) E L 1 [O, oo). Then we define the integral operator 
'I via 

('Ir..p)(r) = 1= fr..p(t)dt, r > 0. 

(2) For even r..p E C 2 (IR) we define the differential operator V via 

(Vr..p)(r) = -~r..p'(r), 
r 

r > 0. 

In both cases the resulting functions are to be interpreted as even functions 
using even extensions. 

Note that the integral operator 'I differs from the operator I introduced earlier 
(see (5.1)) by a factor tin the integrand. 

The most important properties of the montee and descente operators are (see, 
e.g., [Schaback and Wu (1996)] or [Wendland (1995)]): 

Theorem 11.1. 

(1) Both V and 'I preserve compact support, i.e., if r..p has compact support, then so 
do Vr..p and 'Ir..p. 

(2) If r..p E C(IR) and t 1---+ t¢(t) E L 1 [O, oo), then V'Ir..p = r..p. 
(3) If r..p E C 2 (IR) (r..p ¢ 1) is even and r..p' E L 1 [0, oo), then 'IVr..p = r..p. 
(4) Ift 1---+ ts-lr..p(t) E L1[0,oo) ands~ 3, then :Fs(r..p) = Fs-2('Ir..p). 
(5) If r..p E C 2 (IR) is even and t 1---+ tsr..p'(t) E Li[O, oo), then :Fs(r..p) = Fs+2(Vr..p). 

The operators 'I and Vallow us to express s-variate Fourier transforms as (s-2)
or (s+2)-variate Fourier transforms, respectively. In particular, a direct consequence 
of the above properties and the characterization of strictly positive definite radial 
functions (Theorem 3.6) is 

Theorem 11.2. 

(1) Suppose r..p E C(IR). If t 1---+ ts- 1 r..p(t) E L 1 [0, oo) ands> 3, then r..p is strictly 
positive definite and radial on IRs if and only if 'Ir..p is strictly positive definite 
and radial on IRs-2 . 

(2) If r..p E C 2 (IR) is even and t 1---+ tsr..p'(t) E L1[0, oo), then r..p is strictly positive 
definite and radial on IR s if and only if Vr..p is strictly positive definite and 
radial on IRs+2 . 

This allows us to construct new strictly positive definite radial functions from 
given ones by a "dimension-walk" technique that steps through multivariate Eu
clidean space in even increments. The examples presented in the following sections 
illustrate this technique. 
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1 2 Wendland's Compactly Supported Functions 1 . 
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Probably the most popular family of compactly supported radial functions presently 
in use was constructed in [Wendland (1995)]. Wendland starts with the truncated 
power function r..pe(r) = (1- r)~ (which we know to be strictly positive definite and 
radial on :!Rs for f ~ L~J + 1 according to Section 4.6), and then he walks through 
dimensions by repeatedly applying the operator I. 

Definition 11.2. With r..pe(r) = (1 - r)~ we define 

i..ps,k = Tkr..pls/2J+k+I · 

It turns out that the functions i..ps,k are all supported on [O, 1] and have a poly
nomial representation there. More precisely, 

Theorem 11.3. The functions i..ps,k are strictly positive definite and radial on :!Rs 
and are of the form 

(r) = { Ps,k(r), r E [O, l], 
i..ps,k 0, r > 1, 

with a univariate polynomial Ps,k of degree Ls/2J +3k+ 1. Moreover, i..ps,k E C2k(JR) 
are unique up to a constant factor, and the polynomial degree is minimal for given 
space dimension s and smoothness 2k. 

This theorem states that any other compactly supported C 2 k polynomial func
tion that is strictly positive definite and radial on JR5 will not have a smaller poly
nomial degree. Our other examples below (Wu's functions, Gneiting's functions) 
illustrate this fact. The strict positive definiteness of Wendland's functions r..p 5 ,k 
starting with non-integer values of C in Definition 11.2 was established in [Gneiting 
(1999)]. Note, however, that then the functions are no longer guaranteed to be 
polynomials on their support. 

Wendland gave recursive formulas for the functions i..ps,k for all s, k. We instead 
list the explicit formulas of [Fasshauer (1999a)]. 

Theorem 11.4. The functions i..ps,k, k = 0, 1, 2, 3, have the form 

i..ps,o(r) = (1 - r)~, 
r..p s, 1 ( r) · ( 1 - r) ~+ 1 

[ ( C + 1) r + 1], 
i..ps,2(r) · (1 - r)~+2 [(£2 + 4£ + 3)r2 + (3£ + 6)r + 3] , 
i..ps,3(r) · (1 - r)~+3 [(£3 + 9£2 + 23£ + 15)r3 + (6£2 + 36£ + 45)r2 

+(15£ + 45)r + 15], 

where C = Ls/2J + k + 1, and the symbol · denotes equality up to a multiplicative 
positive constant. 
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Proof. The case k = 0 follows directly from the definition. Application of the 
definition for the case k = 1 yields 

'Ps,1(r) = (Icpe)(r) = 1= tcpe(t)dt 

= 1= t(l - t)~dt 

~ 1' t{l - t)'dt 

1 i+l 
(£ + l)(f + 2) (1 - r) [(£ + l)r + 1], 

where the compact support of 'Pi reduces the improper integral to a definite integral 
which can be evaluated using integration by parts. The other two cases are obtained 
similarly by repeated application of I. D 

Example 11.1. For s = 3 we list some of the most commonly used functions in 
Table 11.l. These functions are strictly positive definite and radial on 1R8 for s :S 3. 
We also list their degree of smoothness 2k. The functions were determined using 
the formulas from Theorem 11.4, i.e., fork= 1, 2, 3 they match Definition 11.2 only 
up to a positive constant factor. 

For the MATLAB implementation in the next chapter it is better to express 
the compactly supported functions in a shifted form since we will be using a matrix 
version of 1-cr in place of the code used earlier in DistanceMatrix.mfor r. Thus we 
also list the appropriate functions 'Ps,k = 'Ps,k(l- ·)so that 'Ps,k(l-cr) = 'Ps,k(cr). 

For clarification purposes we reiterate that expressions of the form ( x )~ are to be 

interpreted as ((x)+)e, i.e., we first apply the cutoff function, and then the power. 

Table 11.1 Wendland's compactly supported radial functions </)s,k and 'Ps,k = </)s,k(l-·) 
for various choices of k and s = 3. 

k </)3,k(r) 'P3,k(r) smoothness 

0 (1 - r)i r2 
+ 

co 
1 (1 - r)t (4r + 1) r+(5-4r) c2 

2 (1 - r)~ (35r2 + 18r + 3) r~ (56 - 88r + 35r2) c4 
3 (1 - r)~ (32r3 + 25r2 + 8r + 1) r~ (66 - 154r + 121r2 - 32r3) C6 

11.3 Wu's Compactly Supported Functions 

In [Wu (1995b)] we find another way to construct strictly positive definite radial 
functions with compact support. Wu starts with the function 

'l/J(r) = (1 - r2 )~, f EN, 
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which in itself is not positive definite (see the discussion at the end of Chapter 5). 
However, Wu then uses convolution to construct another function that is strictly 
positive definite and radial on IR, i.e., 

7/Jt(r) = (7/J*7/J)(2r) 

= 1: (1 - t2 )~ (1 - (2r - t) 2 )~dt 

= [
1

1 
(1 - t2 )~(1 - (2r - t) 2 )~dt. 

This function is strictly positive definite since its Fourier transform is essentially 
the square of the Fourier transform of 7/J and therefore non-negative. Just like the 
Wendland functions, this function is a polynomial on its support. In fact, the degree 
of the polynomial is 4t' + 1, and 7/Je E C2l(JR). 

Now, a family of strictly positive definite radial functions is constructed by a 
dimension walk using the 'D operator. 

Definition 11.3. With 7/Je(r) = ((1 - · 2 )~ * (1 - · 2 )~)(2r) we define 

7/Jk,e = 'Dk7/Je. 

The functions 7/Jk,e are strictly positive definite and radial on IR8 for s < 2k + 1, 
are polynomials of degree 4t' - 2k + 1 on their support and in c2<t-k) in the interior 
of the support. On the boundary the smoothness increases to c2t-k. 

Example 11.2. Fort'= 3 we can compute the four functions 

k = 0,1,2,3. 

They are listed in Table 11.2 along with their smoothness. The maximal space 
dimension s for which these functions are strictly positive definite and radial on 
IR.8 is also listed. Just as with flie Wendland functions, the functions in Table 11.2 
match the defi~ition only up to a positive multiplicative constant. Again, we also list 
the functions 7/Jk,l = '1/Jk,t(l - ·) used in our MATLABimplementation in Chapter 12. 
This representation of the Wu functions is given in Table 11.3. 

Table 11.2 Wu's compactly supported radial functions 't/Jk,i for various choices of 
k and l = 3. 

k 't/Jk,3(r) smoothness s 

0 (1 - r)~(5 + 35r + 101r2 + 147r3 + 101r4 + 35r5 + 5r6 ) c6 1 

1 (1 - r)i(6 + 36r + 82r2 + 72r3 + 30r4 + 5r5 ) C4 3 

2 (1 - r)~(8 + 40r + 48r2 + 25r3 + 5r4 ) c2 5 

3 ( 1 - r) t ( 16 + 29r + 20r2 + 5r3 ) co 7 
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Table 11.3 Shifted version {lk,e of Wu's compactly supported radial functions 'l/Jk,e 
for various choices of k and £ = 3. 

k 

0 

1 

2 

3 

{lk,3(r) smoothness s 

ri(429 - 1287r + 1573r2 - 1001r3 + 35lr4 - 65r5 + 5r6) C6 1 

ri(231 - 56lr + 528r2 - 242r3 + 55r4 - 5r5) C4 3 

r!(126 - 23lr + 153r2 - 45r3 + 5r4 ) c2 5 

rt (70 - 84r + 35r2 - 5r3) co 7 
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y 
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Fig. 11.l Plot of Wendland's functions from Example 11.l (left) and Wu's functions from Exam
ple 11.2 (right). 

As predicted by Theorem 11.3, for a prescribed smoothness the polynomial 
degree of Wendland's functions is lower than that of Wu's functions. For example, 
both Wendland's function rp3 ,2 and Wu's function 7/Ji,3 are C 4 smooth and strictly 
positive definite and radial on IR.3 . However, the polynomial degree of Wendland's 
function is 8, whereas that of Wu's function is 11. Another comparable function 
is Gneiting's oscillatory function 0"2 (see Table 11.5), which is a C 4 polynomial of 
degree 9 that is strictly positive definite and radial on IR.3 . 

While the two families of strictly positive definite compactly supported functions 
discussed above are both constructed via dimension walk, Wendland uses integration 
(and thus obtains a family of increasingly smoother functions), whereas Wu needs 
to start with a function of sufficient smoothness, and then obtains successively less 
smooth functions (via differentiation). 

11.4 Oscillatory Compactly Supported Functions 

Other strictly positive definite compactly supported radial functions have been pro
posed by Gneiting (see, e.g., [Gneiting (2002)]). He showed that a family of oscilla
tory compactly supported functions can be constructed using the so-called turning 
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bands operator of [Matheron (1973)]. Starting with a function 'Ps that is strictly 
positive definite and radial on IR.s for s > 3 the turning bands operator produces 

rr.p~ ( r) 
f./Js-2(r) = 'Ps(r) + -

s - 2 

which is strictly positive definite and radial on IR.s- 2 . 

(11.1) 

Example 11.3. One such family of functions is generated is we start with the 
Wendland functions 'Ps+2,1(r) = (1 - r)~+l [(f + l)r + 1] (f non-integer allowed). 
Application of the turning bands operator results in the functions 

( ) -(l- )e (l {) _ (f+l)(f+2+s) 2) 
Ts e r - r + + t,T r , 

' s 

which are strictly positive definite and radial on IR.s provided f 2: s!5 (see [Gneiting 
(2002)]). Some specific functions from this family are listed in Table 11.4. All of 
the functions are in C 2 (IR.). If we want smoother functions, then we need to start 
with a smoother Wendland family as described below in Example 11.4. 

Table 11.4 Gneiting's compactly supported radial 
functions rs,£ for various choices of£ and s = 2. 

£ T2,l(r) smoothness 

7/2 (1 - r)~2 (1 + ~r - 1 ~5 r2 ) c2 

5 (1 - r)~ (1 + 5r - 27r2) c2 

15/2 (1 _ r)~5/2 (l + ~5r _ 3~lr2) c2 

12 (1 - r)~2 (1+12r - 104r2) c2 

The functions of Table 11.4 are shown in the left plot of Figure 11.2 with f 
increasing from the outside in (as viewed near the origin). 

.. ·-·-·1=7/2 
1: :'. ······ 1=5 

0.8 j:, ,:_~ - - -1=15/2 0.8 

!'• 1:1 -1=12 ,:. •:\ 0.6 ;;r , .. 0.6 
·:1 ,:• 
!:1 ,:1 

y 
0.4 !:• 1:\ y 

0.4 I; I 1:·, 
i: I ,:. 
•·I ': ~ 

0.2 ·':I ' : '· 0.2 
1: I I ·. I 
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.:,);;.~·::·:~·.-
0 ... 

J 
-0.2 -0.2 
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Fig. 11.2 Oscillatory functions of Table 11.4 (left) and Table 11.5 (right). 
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Example 11.4. Alternatively, we can obtain a set of oscillatory functions that are 
strictly positive definite and radial on JR3 by applying the turning bands operator 
to the Wendland functions <ps,k that are strictly positive definite and radial on JR5 

for different choices of k. Then the resulting functions ak will have the same degree 
of smoothness 2k as the original functiovs and they will be strictly positive definite 
and radial on JR3 . The results for k = 1, 2, 3 are listed in Table 11.5 and displayed 
in the right plot of Figure 11.2. 

Table 11.5 Oscillatory compactly supported functions that are 
strictly positive definite and radial on JR.3 parametrized by smooth
ness. 

k O"k ( r) smoothness 

1 (1-r)t(1+4r-15r2 ) 02 

2 (1 - r)~ (3 + 18r + 3r2 - 192r3 ) 0 4 

3 (1 - r)i (15 + 120r + 210r2 - 840r3 - 3465r4 ) 06 

Gneiting also suggests the construction of strictly positive definite radial func
tions by taking the product of the (appropriately scaled) Poisson functions fl 8 (see 
either Theorem 3.6 or Section 4.3) with a certain compactly supported non-negative 
function (see [Gneiting (2002)] for more details). By Property (6) of Theorem 3.1 
the resulting function will be strictly positive definite. 

11.5 Other Compactly Supported Radial Basis Functions 

There are many other ways in which one can construct compactly supported func
tions that are strictly positive definite and radial on IR8

• In [Schaback (1995a)] 
several such possibilities are described. 

Example 11.5. Euclid's hat functions are constructed in analogy to B-splines. It is 
well known that the univariate function /3(r) = (1- lri)+ is a second-order B-spline 
with knots at -1,0,1, and it is obtained as the convolution of the characteristic 
function of the interval [-1/2, 1/2] with itself. Euclid's hat functions are now ob
tained by convolving the characteristic function of the s-dimensional Euclidean unit 
ball with itself. The resulting functions can be written for r E [O, 1] in the form 

l.{J2k+1(2r) = 2k+l 
{ 

27T"'P2k-1(2r)-r(l-r2)k 

2(1 - r) 

for odd space dimensions s = 2k + 1, and as 

k = i,2,3, ... , 

k = 0, 

{ 

27T"'P2k(2r)-ry(l-r2)(1-r2)k 

l.{J2k+2(2r) = 2k+2 ~~ 
2(arccosr - rv'l - r2) 

k=i,2,3, ... , 

k = 0, 
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for even space dimensions s = 2k. Note that these functions are zero outside the 
interval [O, 2]. 

We have listed several of these functions in Table 11.6 where we have employed 
a substitution 2r -+ r and a normalization factor such that the functions all have 
a value of one at the origin. The functions are also displayed in the left plot of 
Figure 11.3. 
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Table 11.6 Euclid's hat functions (defined for 0 ~ r ~ 2) for 
different values of s. 

s 

1 

2 

3 

4 

5 

'Ps(r) 

1-~ 

2~ ( 4 arccos ( ~) - r../4-=?) 

1 - 3i7r ((4 + 167r)r - r 3) 

1. arccos ( .!:.) - -1-~2- (20r + r 3) 7r 2 3211" 
1 - 64~2 ((12 + 811' + 327r2)r - (3 + 27r)r3) 

0 
x 

-s=1 
·-·- S=2 
- - -s=3 
-s=4 
...... 5=5 

y 

2 
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Fig. 11.3 Euclid's hat functions (left) of Table 11.6 and Buhmann's function of Example 11.6 
(right). 

Another construction described in [Schaback (1995a)] is the radialization of the 
s-fold tensor product of univariate B-splines of even order 2m with uniform knots. 
These functions do not seem to have a simple representation that lends itself to 
numerical computations. As can be seen from its radialized Fourier transform, the 
radialized B-spline itself is not strictly positive definite and radial on any JR5 with 
s > 1. For s = 1 only the B-splines of even order are strictly positive definite (see, 
e.g., [Scholkopf and Smola (2002)]). 

The last family of compactly supported strictly positive definite radial functions 
we would like to mention is due to [Buhmann (1998)]. Buhmann's functions contain 
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a logarithmic term in addition to a polynomial. His functions have the general form 

r.p(r) = 1= (1 - r 2 /t)~t°'(l - t 0 )f!+_dt. 

Here 0 < 8 < ~' p > 1, and in order to obtain functions that are strictly positive 
definite and radial on IR.8 for s < 3 the constraints for the remaining parameters are 
>. ~ 0, and -1 <a~ >-;- 1

. 

Example 11.6. An example with a = 8 = ~' p = 1 and >. 
[Buhmann (2000)]: 

2 is listed m 

r.p(r) · 12r4 logr - 21r4 + 32r3 - 12r2 + 1, O<r~l. 

This function is in C 2 (IR) and strictly positive definite and radial on JRS for s ~ 3. 
It is displayed in the right plot of Figure 11.3. 

While it is stated in [Buhmann (2000)] that the construction there encompasses 
both Wendland's and Wu's functions, an even more general theorem that shows that 
integration of a positive function f E £ 1 (0, oo) against a strictly positive definite 
kernel K results in a strictly positive definite function can be found in [Wendland 
(2005a)] (see also Section 4.8). More specifically, 

cp(r) = 1= K(t, r)f(t)dt 

is strictly positive definite. Buhmann's construction then corresponds to choosing 
f(t) = t°'(l - t 0 )f!+_ and K(t, r) = (1 - r 2 /t)~. 



Chapter 12 

Interpolation with Compactly Supported 
RBFs in MATLAB 

We now have an alternative way to construct an RBF interpolant to scattered 
data in :IR8

• If we use the compactly supported radial functions of the previous 
chapter then the main difference to our previous interpolants is that now the in
terpolation matrix can be made sparse by scaling the support of the basic function 
appropriately. To achieve this we use - as we did earlier - the basic functions 
'Pc(r) = cp(c-r). Thus, a large value of c corresponds to a small support. In other 
words, if the support of 1p is the interval [O, 1], then the support radius p of Pc is 
given by p = 1/c so that 'Pc(r) = 0 for r > p = 1/c. 

Since we know that the interpolation matrix will be a sparse matrix, we want 
to write MATLAB code to efficiently assemble the matrix. Once we have defined a 
sparse matrix, MATLAB will automatically use state-of-the-art sparse matrix tech
niques to solve the linear system. Obviously, we do not want to compute the matrix 
entries for all pairs of points since we know all of the entries for far away points 
will be zero. Therefore, an efficient data structure is needed. We use kd-trees 
(implemented in a set of MATLAB MEX-files written by Guy Shechter that can be 
downloaded from the MATLAB Central File Exchange, see [MCFE]). Some infor
mation on kd-trees is provided in Appendix A. Data structures for the use with 
meshfree approximation methods are also discussed in [Wendland (2005a)]. 

12.1 Assembly of the Sparse Interpolation Matrix 

We have structured the scattered data interpolation program in the compactly sup
ported case analogous to the code for the global interpolants, i.e., first construct a 
distance matrix, and then apply the anonymous function rbf to obtain the interpo
lation/evaluation matrix (as on lines 13-14 and 15-16 of Program 2.1). However, it 
turns out that it is easier to deal with the compact support if we compute the "dis
tance matrix" corresponding to the (1 - c-r)+ term since otherwise those entries of 
the distance matrix that are zero (since the mutual distance between two identical 
points is zero) would be "lost" in the sparse representation of the matrix. 

The MATLAB code DistanceMatrixCSRBF .m (Program 12.1) contains two simi-

95 
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lar blocks that will be used depending on whether we have more centers than data 
sites or vice versa. For example, if there are more data sites than centers (cf. lines 7-
16), then we build a kd-tree for the data sites and find - for each center Xj - those 
data sites within the support of the basis function centered at Xj, i.e., we construct 
the (sparse) matrix column by column. In the other case (cf. lines 18-27) we start 
with a tree for the centers and build the matrix row by row. This is accomplished by 
determining - for each data site Xi - all centers whose associate.cl basis function 
covers data site Xi. 

The functions kdtree and kdrangequery are provided by the kd-tree library 
mentioned above. The call in line 7 (respectively 18) of Program 12.l generates the 
kd-tree of all the centers (data sites), and with the call to kdrangequery in line 9 
(respectively 20) we find all centers (data sites) that lie within a distance support 
of the jth center point (data site). The actual distances are returned in the vector 
dist and the indices into the list of all data sites are provided in idx. The distances 
for these points only are stored in the matrix DM. For maximum efficiency (in order 
to avoid dynamic memory allocation) it is important to have a good estimate of 
the number of nonzero entries in the matrix for the allocation statement in lines 4 
and 5. The version of the code presented here has the best performance for larger 
problems since sparse is only invoked once. 

Program 12.1. DistanceMatrixCSRBF .m 

% DM = DistanceMatrixCSRBF(dsites,ctrs,ep) 
% Forms the distance matrix of two sets of points in R-s 
% for compactly supported radial basis functions, i.e., 
% DM(i,j) = I I datasite_i - center_j I 1_2. 
% The CSRBF used with this code must be given in shifted form 
% rbf2(u) = rbf(r), u=1-e*r. 
% For example, the Wendland C2 
% rbf = ©(e,r) max(1-e*r,0).-4.*(4*e*r+1); 
% becomes 
% rbf2 = ©(u) u.-4.*(4*u+5); 
% Input 
% dsites: Nxs matrix representing a set of N data sites 
% in R-s (i.e., each row contains one 
% s-dimensional point) 

% 
% 
% 
% 
% 

ctrs: 

ep: 

% Output 
% DM: 

Mxs matrix representing a set of M centers for 
RBFs in R-s (also one center per row) 
determines size of support of basis function. 
Small ep yields wide function, 
i.e., supportsize = 1/ep 

NxM SPARSE matrix that contains the Euclidean 
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u-distance (u=1-e*r) between the i-th data 

% Uses: 
site and the j-th center in the i,j position 

k-D tree package by Guy Shechter from 

1 

2 

3 

4 

5 
6 

7 

8 
9 

10 
11 
12 
13 

14 

15 
16 

17 
18 

19 

20 
21 
22 
23 
24 
25 
26 
27 

28 
29 
30 

31 

MATLAB Central File Exchange 
function DM = DistanceMatrixCSRBF(dsites,ctrs,ep) 
N = size(dsites,1); M = size(ctrs,1); 
% Build k-D tree for data sites 
% For each center (basis function), find the data sites 
% in its support along with u-distance 
support = 1/ep; 
nzmax = 25*N; rowidx = zeros(1,nzmax); colidx = zeros(1,nzmax); 
validx = zeros(1,nzmax); istart = 1; iend = O; 
if M > N % faster if more centers than data sites 

[tmp,tmp,Tree] = kdtree(ctrs, []); 
for i = 1:N 

[pts,dist,idx] = kdrangequery(Tree,dsites(i,:),support); 
newentries = length(idx); 

end 
else 

iend = iend + newentries; 
rowidx(istart:iend) = repmat(i,1,newentries); 
colidx(istart:iend) = idx'; 
validx(istart:iend) = 1-ep*dist'; 
istart = istart + newentries; 

[tmp,tmp,Tree] = kdtree(dsites,[]); 
for j = 1:M 

[pts,dist,idx] = kdrangequery(Tree,ctrs(j,:),support); 
newentries = length(idx); 
iend = iend + newentries; 
rowidx(istart:iend) = idx'; 
colidx(istart:iend) = repmat(j,1,newentries); 
validx(istart:iend) = 1-ep*dist'; 
istart = istart + newentries; 

end 
I 

end 
idx = find(rowidx); 
DM = sparse(rowidx(idx),colidx(idx),validx(idx),N,M); 
% Free the k-D Tree from memory. 
kdtree([],[],Tree); 

97 

The reason for coding DistanceMatrixCSRBF. min two different ways is so that 
we will be able to speed up the program when dealing with non-square (evaluation) 
matrices (for example in the context of MLS approximation ( c.j. Chapter 24). 
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One could also implement the distance matrix routine for sparse matrices as 
follows: 

1 function DM = DistanceMatrixCSRBF(dsites,ctrs,ep) 
2 N = size(dsites,1); M = size(ctrs,l); 

% Build k-D tree for data sites 
% For each center (basis function), find the data sites 
% in its support along with u-distance 

3 support= 1/ep; nzmax = 25*N; DM = spalloc(N,M,nzmax); 
4 [tmp,tmp,Tree] = kdtree(dsites, []); 
5 for j = 1:M 
6 [pts,dist,idx] = kdrangequery(Tree,ctrs(j,:),support); 
7 DM(idx,j) = 1-ep*dist; 
8 end 

% Free the k-D Tree from memory. 
9 kdtree([] ,[],Tree); 

This code is certainly easier to follow, but not as efficient as the one listed in 
Program 12.1. Note that we listed only one version of the code here. Clearly, the 
alternative version can be added analogously to the previous program. 

The interpolation program is virtually identical to Program 2 .1. 
changes are to replace lines 13 and 15 by the corresponding lines 

13 DM data= DistanceMatrixCSRBF(dsites,ctrs,ep); 
15 DM_eval = DistanceMatrixCSRBF(epoints,ctrs,ep); 

I 
The only 

and to define the RBF in shifted form, i.e., instead of representing, e.g., the C 2 

Wendland function cp3 ,1 on line 1 by 

1 rbf = ©(e,r) max(1-e*r,0).-4.*(4*e*r+1); ep=0.7; 

we now write 

1 rbf = ©(e,r) r.-4.*(5*spones(r)-4*r); ep=0.7; 

Note the use of the sparse matrix of ones spones. Had we used 5-4*r instead, then 
a full matrix would have been generated (with many additional - and unwanted 
- ones). 

In order to speed up the solution of the (symmetric positive definite) sparse 
linear system we could use the preconditioned conjugate gradient algorithm (peg 
in MATLAB) instead of the basic backslash \ (or matrix left division mldi vi de) 
operation, i.e., we could replace line 1 7 of Program 2 .1 by 

17 c = pcg(IM,rhs); Pf= EM* c; 

Note, however, that the\ operator also employs state-of-the-art direct sparse solvers 
by first applying a minimum degree preordering. 
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12.2 Numerical Experiments with CSRBFs 

We now present two sets of interpolation experiments with compactly supported 
RBfs. In Table 12.2 we use the non-stationary approach to interpolation, i.e., 
the support size remains fixed for increasingly denser sets X of data sites. In this 
approach we will be able to observe convergence. However, the matrices become 
increasingly denser, and therefore the non-stationary approach is very inefficient. 
In Table 12.1, on the other hand, we use the stationary approach, i.e., we scale the 
support size of the basis functions proportionally to the fill distance hx ,n (defined 
in (2.3)). Now the "bandwidth" of the interpolation matrix A is constant. This 
theoretically results in O(N) computational complexity, i.e., a very efficient inter
polation method. The stationary interpolation method is also numerically stable, 
but there will be essentially no convergence (see Table 12.1). 

We use Wendland's compactly supported function 'P3, 1 (r) = (1 - r)~ (4r + 1) 
to interpolate Franke's function (2.2) on grids of equally spaced points in the unit 
square [O, 1] 2 . In the stationary case (Table 12.1) the support of the basis function 
starts out with an initial scale parameter € = 0.7 which is subsequently multiplied 
by a factor of two whenever the fill distance is halved, i.e., when we repeat the 
experiment on the next finer grid. This corresponds to keeping a constant number 
of roughly 25 data sites within the support of any basis function. Therefore, the 
"bandwidth" of the interpolation matrix A is kept constant (at 25), so that A is very 
sparse for finer grids. We can observe nice convergence for the first few iterations, 
but once an RMS-error of approximately 5 x 10-3 is reached, there is not much 
further improvement. This behavior is not yet fully understood. However, it is 
similar to what happens in the approximate approximation method of Maz'ya (see, 
e.g., [Maz'ya and Schmidt (2001)] and our discussion in Chapter 26). The rate 
listed in the table is the exponent of the observed RMS-convergence rate O(hrate). 
It is computed using the formula 

ln( ek-i/ ek) 
ratek = ln(hk-i/ hk)' k = 2,3, ... , (12.1) 

where ek is the error for experiment number k, and hk is the fill distance of the 
kth computational mesh. Note, that for uniformly spaced points the ratio of fill 
distances of two consecutive meshes will always be two, while for random points 
(such as Halton points) we estimate the fill distance via (2.4). The % nonzero 
column indicates the sparsity of the interpolation matrices, and the time is measured 
in seconds. Errors ate computed on an evaluation grid of 40 x 40 equally spaced 
points in [O, 1 ]2. 

In the non-stationary case (Table 12.2) we use basis functions without adjusting 
their support size, i.e.,€= 0.7 is kept fixed for all experiments. We have convergence 
- although it is not obvious what the rate might be. However, the matrices become 
increasingly dense and computation requires lots of system memory. Therefore, we 
left out the solution for the N = 16641 and N = 66049 cases in Table 12.2. The time 
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Table 12.1 Stationary interpolation at N equally 
spaced points in [O, 1] 2 (constant 25 points in support) 
with Wendland's function cp(r) = (1 - r)t(4r + 1). 

N RMS-error rate 3 nonzero time 

9 l.562729e-001 
25 2.690350e-002 2.5382 
81 l.027881e-002 1.3881 

289 6.589552e-003 0.6414 
1089 3.891263e-003 0.7599 
4225 3.726913e-003 0.0623 
16641 2.638296e-003 0.4984 
66049 2.467867e-003 0.0963 

100 
57.8 
23.2 
7.47 
2.13 
0.57 
0.15 
0.04 

Table 12.2 Non-stationary interpolation 
at N equally spaced points in [O, 1]2 

(c = 0.7 fixed) with Wendland's function 
cp(r) = (1 - r)t (4r + 1). 

N RMS-error rate time 

9 l .562729e-001 0.03 
25 2. 807706e-002 2.4766 0.04 
81 4.853006e-003 2.5324 0.12 

289 2.006041e-004 4.5965 0.45 
1089 l .288000e-005 3.9611 2.75 
4225 1.382497 e-006 3.2198 47.92 

0.23 
0.31 
0.33 
0.41 
0.63 
1.23 
3.75 
15.48 

comparison between the entries in Table 12.1 and Table 12.2 is not a straightforward 
one since we used the (dense) code Program 2.1 to do the experiments for Table 12.2 
since there is no sparseness to be exploited and the kd-trees actually introduce 
additional overhead. 

The interplay between computational efliciency and non-convergence in the sta
tionary case and convergence and computational inefficiency in the non-stationary 
case is again a trade-off principle similar to the interplay between accuracy and 
ill-conditioning for globally supported RBFs ( c.f. Chapter 2). These trade-off prin
ciples were explained theoretically as well as illustrated with numerical experiments 
in [Schaback (1997b)], and we will consider them in Chapter 16. 

For comparison purposes we repeat the experiments with the oscillatory basic 
function 

tp(r) = o-2(r) = (1 - r)i (3 + 18r + 3r2 - 192r3
), 

which is also C4 smooth and strictly positive definite and radial on "JR. 5 for s < 3 
(see Table 11.5). The results are listed in Table 12.3 for the stationary case and in 
Table 12.4 for the non-stationary case. Note that the function is implemented as 

rbf = ©(e,r) -r.-6.*(168*spones(r)-552*r+573*r.-2-192*r.-3); 
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Table 12.3 Stationary interpolation at N equally spaced 
points in [O, 1 ]2 (constant 25 points in support) with the os-
cillatory function cp(r) = (1-r)t (3 + 18r + 3r2 - 192r3 ). 

N 

9 
25 
81 
289 

1089 
4225 

16641 
66049 

RMS-error rate 3 nonzero 

1.655969e-001 100 
3.941226e-002 2.0710 57.8 
2. 978973e-002 0.4038 23.2 
2.914215e-002 0.0317 7.47 
3.063424e-002 -0.0720 2.13 
3.094308e-002 -0.0145 0.57 
3.089882e-002 0.0021 0.15 
3. 086639e-002 0.0015 0.04 

Table 12.4 Non-stationary interpolation 
at N equally spaced points in [O, 1] 2 

(c: = 0. 7 fixed) with the oscillatory function 
cp(r) = (1 - r)t (3 + 18r + 3r2 

- 192r3 ). 

N RMS-error rate time 

9 1.655969e-001 0.03 
25 3.097850e-002 2.4183 0.06 
81 4.612941e-003 2.7475 0.20 

289 l .305297e-004 5.1432 0.72 
1089 4. 780575e-006 4.7711 4.06 
4225 2.687479e-007 4.1529 55.09 

in the sparse setting and as 

for the dense code. 

time 

0.28 
0.34 
0.36 
0.42 
0.64 
1.31 
4.13 

16.81 
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While the performance of the oscillatory functions for the stationary experi
ment is even more disappointing than that of Wendland's functions, the situation 
is reversed in the non-stationary case. In fact, the errors obtained with the oscilla
tory basis functions are almost as good as those achieved with "optimally" scaled 
Gaussians (c.f. Table 2.2). 

In order to overcome the problems due to the trade-off principle that are ap
parent in both the stationary and non-stationary approach to interpolation with 
compactly supported radial functions we will later consider using a multilevel sta
tionary scheme (see Chapter 32). 





Chapter 13 

Reproducing Kernel Hilbert Spaces and 
Native Spaces for Strictly Positive 

Definite Functions 

In the next few chapters we will present some of the theoretical work on error 
bounds for approximation and interpolation with radial basis functions. Since the 
discussion for strictly positive definite functions will already be technical enough, 
we focus on this case, and only mention a few results for the conditionally positive 
definite case. The following discussion follows mostly the presentation in [Wendland 
(2005a)] where the interested reader can find many more details. 

13.1 Reproducing Kernel Hilbert Spaces 

Our first set of error bounds will come rather naturally once we associate with each 
(strictly positive definite) radial basic function a certain space of functions called its 
native space. We will then be able to establish a connection to reproducing kernel 
Hilbert spaces, which in turn will give us the desired error bounds as well as certain 
optimality results for radial basis function interpolation (see Chapter 18). 

Reproducing kernels are a classical concept in analysis introduced by Nachman 
Aronszajn (see [Aronszajn (1950)]). We begin with 

Definition 13.1. Let 1t be a real Hilbert space of functions f: n(~ JR5
) -+JR with 

inner product (-,·ht· A function K: n x n-+ JR is called reproducing kernel for 1t 
if 

(1) K(·, x) E 1t for all x E fl, 
(2) f(x) = (!, K(·, x))rt for all f E 1t and all x En. 

The name reproducing kernel is inspired by the reproducing property (2) in 
Definition 13.1. It is known that the reproducing kernel of a Hilbert space is unique, 
and that existence of a reproducing kernel is equivalent to the fact that the point 
evaluation functionals 8:r are bounded linear functionals on n, i.e., there exists a 
positive constant M = M:r such that 

l8:rfl = lf(x)I <-Mllfllrt 
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for all f E H and all x E n. This latter fact is due to the Riesz representation 
theorem. 

Other properties of reproducing kernels are given by 

Theorem 13.1. Suppose H is a Hilbert space of functions f : n---+ IR with repro
ducing kernel K. Then we have 

(1) K(x, y) = (K(·, y), K(·, x))rt for x, y En. 
(2) K(x, y) = K(y, x) for x, y En. 
(3) Convergence in Hilbert space norm implies pointwise convergence, i.e., if we 

have II!- fnllrt---+ 0 for n---+ 00 then lf(x) - fn(x)I - 0 for all x En. 

Proof. By Property (1) of Definition 13.1 K(·, y) EH for every y En. Then the 
reproducing property (2) of the definition gives us 

K(x, y) = (K(·, y), K(·, x))rt 

for all x, y E n. This establishes (1). Property (2) follows from (1) by the symmetry 
of the Hilbert space inner product. For (3) we use the reproducing property of K 
along with the Cauchy-Schwarz inequality: 

lf(x)-fn(x)I =I(!- fn,K(·,x))rtl < llf- fnllrtllK(·,x)llrt· D 

Now it is interesting for us that the reproducing kernel K is known to be positive 
definite. Here we use a slight generalization of the notion of a positive definite func
tion to a positive definite kernel. Essentially, we replace <I>(xj-Xk) in Definition 3.2 
by K(xj, xk)- At this point we remind the reader that the space of bounded linear 
functionals on H is known as its dual, and denoted by H*. 

Theorem 13.2. Suppose H is a reproducing kernel Hilbert function space with 
reproducing kernel K : n x n ---+ IR.. Then K is positive definite. Moreover, K is 
strictly positive definite if and only if the point evaluation functionals c5x are linearly 
independent in H*. 

Proof. Since the kernel is real-valued we can restrict ourselves to a quadratic 
form with real coefficients. For distinct points x 1 , ... , XN and nonzero c E IRN we 
have 

N N N N 

LLcjckK(xj,Xk) = LLcjck(K(·,xj),K(·,xk))rt 
j=lk=l j=lk=l 

N n 

= (L CjK(·, Xj), L CkK(·, Xk))rt 
j=l k=l 

N 

=II L CjK(·, Xj)ll~ > 0. 
j=l 

Thus K is positive definite. To establish the second claim we assume K is not 
strictly positive definite and show that the point evaluation functionals must be 
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linearly dependent. If K is not strictly positive definite then there exist distinct 
points x1, ... , XN and nonzero coefficients Cj such that 

N N 

LLcickK(xj,xk) = O. 
j=lk=l 

The first part of the proof therefore implies 

N 

LciK(·,xj) = 0. 
j=l 

Now we take the Hilbert space inner product with an arbitrary function f E 1-l and 
use the reproducing property of K to obtain 

N 

0 = (!, L CjK(-, Xj))rt 
j=l 

N 

= Lci(f,K(·,Xj))rt 
j=l 

N 

= Lcif(xj) 
j=l 

N 

= LCjOxi(J). 
j=l 

This, however, implies the linear dependence of the point evaluation functionals 
Oxi (f) = f ( x j), j = 1, ... , N, since the coefficients Cj were assumed to be not all 
zero. An analogous argument can be used to establish the converse. 0 

This theorem provides one direction of the connection between strictly positive 
definite functions and reproducing kernels. However, we are also interested in the 
other direction. Since the RBFs we have built our interpolation methods from are 
strictly positive definite functions, we want to know how to construct a reproducing 
kernel Hilbert space associated with those strictly positive definite basic functions. 

13.2 Native Spaces for Strictly Positive Definite Functions 

In this section we will show that every strictly positive definite radial basic function 
can indeed be associated with a reproducing kernel Hilbert space - its native space. 

First, we note that Definition 13.1 tells us that 1-l contains all functions of the 
form 

N 

f = LciK(·,Xj) 
j=l 
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provided Xj E n. As a consequence of Theorem 13.1 we have that 

N N 

llfll~ = (!, !)1t = (L CjK(-, xJ), L ckK(·, xk))1t 
j=l k=l 

N N 

=LL CjCk\K(·, Xj), K(·, Xk))1t 
j=lk=l 
N N 

= LLcJckK(xj,xk)· 
j=lk=l 

Therefore, we define the (possibly infinite-dimensional) space 

HK(fl) = span{K(·, y) : y E fl} 

with an associated bilinear form (-, ·) K given by 

NK NK NK NK 

\LcJK(·,xJ),LdkK(-,yk))K = LLcJdkK(xJ,Yk), 
j=l k=l j=lk=l 

where N K = oo is also allowed. 

(13.1) 

Theorem 13.3. lf K : fl x fl~ IR is a symmetric strictly positive definite kernel, 
then the bilinear form (-, . ) K defines an inner product on HK ( n). Furthermore, 
HK(fl) is a pre-Hilbert space with reproducing kernel K. 

Proof. (-, ·)K is obviously bilinear and symmetric. We just need to show that 
(!, f)K > 0 for nonzero f E HK(fl). Any such f can be written in the form 

NK 

f = L CjK(·, Xj), Xj E fl. 
j=l 

Then 
NK NK 

\f, f)K =LL CJCkK(xJ, xk) > 0 
j=lk=l 

since K is strictly positive definite. The reproducing property follows from 

NK 

(f,K(·,x))K = LcJK(x,xJ) = f(x). 
j=l D 

Since we just showed that HK(fl) is a pre-Hilbert space, i.e., need not be com
plete, we now define the native space NK(fl) of K to be the completion of HK(fl) 

with respect to the K-norm II · llK so that llJllK = llJllNK(n) for all f E HK(fl). 
The technical details concerned with this construction are discussed in [Wendland 
(2005a)]. 

In the special case when we are dealing with strictly positive definite (translation 
invariant) functions <I>(x-y) = K(x, y) and when n = JRS we get a characterization 
of native spaces in terms of Fourier transforms. 
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Theorem 13.4. Suppose <I> E C(lR8
) n L 1 (JRs) is a real-valued strictly positive def

inite function. Define 

g = {! E L2(R') n C(R'): ~ E L2(R')} 

and eguip this space with the bilinear form 

= 1 _j_ _fj_ s = 1 r f(w)g(w) dw 
(f,g)g ~( ~' ~)L2(IR) ~ }'R.s <f>(w) · 

Then Q is a real Hilbert space with inner product (·, ·)g and reproducing kernel 
<I>(· - ·). Hence, Q is the native space of <I> on lR8

, i.e., Q = N<:>(lR8
) and both 

inner products coincide. In particular, every f E N<I> (lR8
) can be recovered from its 

Fourier transform j E Li(lR8
) n L2(1R8

). 

Another characterization of the native space is given in terms of the eigenfunc
tions of a linear operator associated with the reproducing kernel. This operator, 
T<t> : L2(0) ~ L2(0), is given by 

T.I>(v)(x) = L <I>(x,y)v(y)dy, v E L2(0), x En. 

For the eigenvalues >..k, k = 1, 2, ... , and eigenfunctions ¢k of this operator Mercer's 
theorem [Riesz and Sz.-Nagy (1955)] states 

Theorem 13.5 (Mercer). Let <I>(·,·) be a continuous positive definite kernel that 

satisfies 

L <I>(x, y)v(x)v(y)dxdy > 0, 

Then <I> can be represented by 
00 

k=l 

for all v E L2(0), x, y E 0. (13.2) 

(13.3) 

where >..k are the (non-negative) eigenvalues and ¢k are the {L 2 -orthonormal) eigen
functions of T<t>. Moreover, this representation is absolutely and uniformly conver
gent. 

We can interpret condition (13.2) as a type of integral positive definiteness. As 
usual, the eigenvalues and eigenfunctions satisfy T<I>¢k = >..k¢k or 

L <I>(x, y)¢k(y)dy = >..k¢k(x), k = 1, 2, .... 

In general, Mercer's theorem allows us to construct a reproducing kernel Hilbert 
space 1i by representing the functions in 1i as infinite linear combinations of the 
eigenfunctions, i.e., 

H = {1: f = f Ck¢k}. 
k=l 
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It is clear that the kernel q. itself is in 1{ since it has the eigenfunction expansion 
(13.3). The inner product for 1{ is given by 

00 00 00 d 
(f,g)Jf. = (Lcj</>j,Ldk¢k)Jf. = L c~ k' 

j=l k=l k=l k 

where we used the 1i-orthogonality 

of the eigenfunctions. 

8·k 
(¢j, ¢k)Ji. = vx}vx;; 

We note that q. is indeed the reproducing kernel of 1{ since the eigenfunction 
expansion (13.3) of q. and the orthogonality of the eigenfunctions imply 

00 00 

(!, q.(·, x))H = (L Cj</>j, L Ak</>k</>k(x))Jf. 
j=l k=l 

= f CkAk</>k(x) 

k=l Ak 
00 

k=l 

Finally, one has ( c.f. [Wendland (2005a)]) that the native space N<1>(f2) is given 
by 

N.,(!1) ~ { f E L2(!1) : t, L l(f, </.>•h,(<>)12 < 00} 
and the native space inner product can be written as 

00 1 
(f,g)N<f> = L >:(f,¢k)L2(n)(g,¢k)L2(n), 

k=l k 

f, g E N<t>(n). 

Since N<1>(f2) is a subspace of L 2 (f2) this corresponds to the identification Ck 
(!, ¢k)L

2
(n) of the generalized Fourier coefficients in the discussion above. 

13.3 Examples of Native Spaces for Popular Radial Basic 
Functions 

Theorem 13.4 shows that native spaces of translation invariant functions can be 
viewed as a generalization of standard Sobolev spaces. Indeed, for m > s/2 the 
Sobolev space W2 can be defined as (see, e.g., [Adams (1975)]) 

W;1(1R 8
) = {f E L2(1R8

) n C(IR. 8
) : /(·)(1 +II. ll~)m/2 E L2(1R8

)}. (13.4) 

One also frequently sees the definition 
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which applies whenever f2 c ~s is a bounded domain. This interpretation will 
make clear the connection between the natives spaces of Sobolev splines and those 
of polyharmonic splines to be discussed below. The norm of W2(~s) is usually 
given by 

According to (13.4), any strictly positive definite function <I> whose Fourier trans
form decays only algebraically has a Sobolev space as its native space. In particular, 
the Matern functions 

Kf3-~ (llxll) llxllfJ-~ 
<I>13(x) = ;f3-1r(J3) ' 

of Section 4.4 with Fourier transform 

<i>f3(w) = (1 + llwll 2 )-f3 
can immediately be seen to have native space N c1> 13 (~ s) = Wf (~ s) with J3 > s / 2 
(which is why some people refer to the Matern functions as Sobolev splines). 

Wendland's compactly supported functions <I>s,k = 'Ps,k(ll · 112) of Chapter 11 can 
be shown to have native spaces N<P~.k (~s) = w;1 2

+k+
1! 2 (~s) (where the restriction 

s > 3 is required for the special case k = 0). 
Native spaces for strictly conditionally positive definite functions can also be 

constructed. However, since this is more technical, we limited the discussion above 
to strictly positive definite functions, and refer the interested reader to the book 
[Wendland (2005a)] or the papers [Schaback (1999a); Schaback (2000a)], With the 
extension of the theory to strictly conditionally positive definite functions the native 
spaces of the radial powers and thin plate (or surface) splines of Sections 8.2 and 
8.3 can be shown to be the so-called Beppo-Levi spaces of order k 

BLk(~s) = {f E C(~s) : no: f E L2(~s) for all lnl = k, a E Ns}, 

where no: denotes a generalized derivative of order a (defined in the same spirit as 
the generalized Fourier transform, see Appendix B). In fact, the intersection of all 
Beppo-Levi spaces BLk(~s) of order k ~ m yields the Sobolev space W2(~s). In 
the literature the Beppo-Levi spaces BLk (~s) are sometimes referred to as homo
geneous Sobolev spaces of order k. Alternatively, the Beppo-Levi spaces on ~s are 
defined as 

and the formulas given in Chapter 8 for the Fourier transforms of radial powers and 
thin plate splines show immediately that their native spaces are Beppo-Levi spaces. 
The semi-norm on BLk is given by 

{ }

1/2 

lflsLk = L ai! .~'.ad! 11n° fllLcIR~) ' 
lo:l=k 

(13.6) 
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and its kernel is the polynomial space Ilk_ 1 . For more details see [Wendland 
(2005a)]. Beppo-Levi spaces were already studied in the early papers [Duchon 
(1976); Duchon (1977); Duchon (1978); Duchon (1980)]. 

The native spaces for Gaussians and (inverse) multiquadrics are rather small. 
For example, according to Theorem 13.4, for Gaussians the Fourier transform of 
f E N~(n) must decay faster than the Fourier transform of the Gaussian (which is 
itself a Gaussian). It is known that, even though the native space of Gaussians is 
small, it does contain the important class of so-called band-limited functions, i.e., 
functions whose Fourier transform is compactly supported. These functions play 
an important role in sampling theory where Shannon's famous sampling theorem 
[Shannon (1949)] states that any band-limited function can be completely recovered 
from its discrete samples provided the function is sampled at a sampling rate at 
least twice its bandwidth. The content of this theorem was already known much 
earlier (see [Whittaker (1915)]). 

Theorem 13.6 (Shannon Sampling). Suppose f E C(IR8
) nL1 (IR8

) such that its 
Fourier transform vanishes outside the cube Q = [-!, !J s. Then f can be uniquely 
reconstructed from its values on zs, i.e., 

t(x) = 2= t(e)sinc(x - e), 
eEz~ 

Here the sine function is defined for any x = (x1 , ... , x 8 ) E JR5 as sine x = 

TI~=l sinJ;;d). For more details on Shannon's sampling theorem see, e.g., Chap
ter 29 in the book [Cheney and Light (1999)] or the paper [Unser (2000)]. 



Chapter 14 

The Power Function and Native Space 
Error Estimates 

14.1 Fill Distance and Approximation Orders 

Our goal in this section is to provide error estimates for scattered data interpolation 
with strictly (conditionally) positive definite functions. As in the previous chapter 
we will provide most of the details for the strictly positive definite case, and only 
mention the extension to the conditionally positive definite case in the end. In their 
final form we will want our estimates to depend on some kind of measure of the 
data distribution. The measure that is usually used in approximation theory is the 
so-called fill distance 

h = hx,n =sup min llx - XJll2 
:z:Ef1:Z:jEX 

already introduced in (2.3) in Chapter 2. The fill distance indicates how well the 
data fill out the domain n, and it therefore denotes the radius of the largest empty 
ball that can be placed among the data locations. We will be interested in whether 
the error 

II! - Pt)ll= 
tends to zero as h -+ 0, and if so, how fast. Here {P(h)}h presents a sequence 
of interpolation (or, more generally, projection) operators that vary with the fill 
distance h. For example, p(h) could denote interpolation to data given at (2n + 1) 8

, 

n = 1, 2, ... , equally spaced points in the unit cube in lR8 (with h = 2-n) as we 
used in some of our earlier examples. Of course, the definition of the fill distance 
also covers scattered data such as sets of Halton points. In fact, since Halton points 
are quasi-uniformly distributed (see Appendix A) we can assume h ~ 2-n for a set 
of (2n + 1) 8 Halton points in lR8

• This explains the specific sizes of the point sets 
we used in earlier examples. 

Since we want to employ the machinery of reproducing kernel Hilbert spaces 
presented in the previous chapter we will concentrate on error estimates for functions 
f E N~. In the next chapter we will also mention some more general estimates. 

The term that is often used to measure the speed of convergence to zero is approx
imation order. We say that the approximation operator p(h) has Lp-approximation 
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order kif 

II! - PJh)llP = O(hk) for h ~ 0. 

Moreover, if we can also show that II! - Pt) llP -=/- o(hk), then p(h) has exact 
Lp-approximation order k. We will concentrate mostly on the case p = oo (i.e., 
pointwise estimates), but approximation order in other norms can also be studied. 

In order to keep the following discussion as transparent as possible we will restrict 
ourselves to strictly positive definite functions. With (considerably) more technical 
details the following can also be formulated for strictly conditionally positive definite 
functions (see [Wendland (2005a)] for details). 

14.2 Lagrange Form of the Interpolant and Cardinal 
Basis Functions 

The key idea for the following discussion is to express the interpolant in Lagrange 
form, i.e., using so-called cardinal basis functions. For radial basis function approx
imation this idea is due to [Wu and Schaback (1993)]. In the previous chapters we 
established that, for any strictly positive definite function <I>, the linear system 

Ac=y 

with Aij = <I>(xi - Xj), Z,J 1, ... 'N, c = [c1, ... 'CNv, and y = 
[f(x1 ), ... , J(xN )JI' has a unique solution. In the following we will consider the 
more general situation where <I> is a strictly positive definite kernel, i.e., the entries 
of A are given by Aij = <I>(xi,x1). The uniqueness result holds in this case also. 

In order to obtain the cardinal basis functions uj, j = 1, ... , N, with the prop
erty uj(xi) = Oij, i.e., 

we consider the linear system 

if i = j, 
if i -=/- j' 

Au* (x) = b(x), (14.1) 

where the matrix A is as above (and therefore invertible), u* = [ui, ... , uNV, and 
b= [<I>(·,x 1 ), ... ,<I>(·,xN)JI'. Thus, 

Theorem 14.1. Suppose <I> is a strictly positive definite kernel on IR. 8
• Then, for any 

distinct points x 1 , ... , XN, there exist functions uj E span{<I>(·, x1),j = 1, ... , N} 
such that uj(xi) = OiJ· 

Therefore, we can write the interpolant P1 to f at x 1 , ... , XN in the cardinal 
form 

N 

P1(x) = L f(x1)uj(x), x E IR.8
• 

j=l 
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It is of interest to note that the cardinal functions do not depend on the data 
values of the interpolation problem. Once the data sites are fixed and the basic 
function is chosen with an appropriate shape parameter (whose optimal value will 
depend on the data), then the cardinal functions are determined by the linear system 
(14.1). We have plotted various cardinal functions based on the Gaussian basic 
function with shape parameter E = 5 in Figures 14.1-14.3. The dependence on the 
data locations is clearly apparent when comparing the different data distributions 
(uniformly spaced in Figure 14.1, tensor-product Chebyshev in Figure 14.2, and 
Halton points in Figure 14.3). The data sets can be seen in Figure 14.5 below. 

z 
0.5 

0 

-0.5 
0 

y 1 1 x 

z 

0 0 

y 1 1 x 

Fig. 14.1 Cardinal functions for Gaussian interpolation (with c = 5) on 81 uniformly spaced 
points in [O, 1] 2. Centered at an edge point (left) and at an interior point (right). 

1 . . ... / 

l ./ 
0.5~ .··· .... ·· ... 

z z 

0 0 

y 1 1 x y 1 1 x 

Fig. 14.2 Cardinal functions for Gaussian interpolation (with c = 5) on 81 tensor-product Cheby
shev points in [O, 1] 2 . Centered at an edge point (left) and at an interior point (right). 

Basic functions that grow with increasing distance from the center point (such as 
multiquadrics) are sometimes criticized for being "counter-intuitive" for scattered 
data approximation. However, as Figure 14.4 shows, the cardinal functions are just 
as localized as those for the Gaussian basic functions, and thus the function space 
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Fig. 14.3 Cardinal functions for Gaussian interpolation (with e = 5) on 81 Halton points in 
[O, 1] 2 . Centered at an edge point (left) and at an interior point (right). 

spanned by multiquadrics is a "good" local space. 
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1r . 
0.5 ... · 
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-0.5 ./ . 
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0 

1 1 x 

0 
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Fig. 14.4 Cardinal functions for multiquadric interpolation (with e = 5) on 81 Halton points in 
[O, 1] 2 . Centered at an edge point (left) and at an interior point (right). 

The MATLAB program RBFCardinalFunction.m used to produce the plots m 
Figures 14.1-14.3 is provided in Program 14.1. Note that we use the pseudo-inverse 
(via the MATLABcommand pinv) to stably compute the inverse of the interpolation 
matrix (see line 13 of Program 14.1). A specific cardinal function is then chosen in 
line 15. 

Program 14.1. RBFCardinalFunction.m 

% RBFCardinalFunction 
% Computes and plots cardinal function for 2D RBF interpolation 
% Calls on: DistanceMatrix 

1 rbf = ©(e,r) exp(-(e*r).-2); ep = 5; 
2 N = 81; gridtype = 'u'; 
3 neval = 80; M = neva1-2; 
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% Load data points 
4 name= sprintf('Data2D_%d%s' ,N,gridtype); load(name) 
5 ctrs = dsites; % centers coincide with data sites 
6 grid= linspace(0,1,neval); [xe,ye] = meshgrid(grid); 
7 epoints = [xe(:) ye(:)]; 
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% Compute distance matrix between evaluation points and centers 
8 DM_eval = DistanceMatrix(epoints,ctrs); 

% Compute distance matrix between the data sites and centers 
9 DM_data = DistanceMatrix(dsites,ctrs); 

% Compute interpolation matrix 
10 IM= rbf(ep,DM_data); 

% Compute evaluation matrix 
11 EM= rbf(ep,DM_eval); 

% Compute cardinal functions at evaluation points 
12 invIM = pinv(IM); 

% centered at datasite(50) 
13 for j=l:M 
14 cardvec = (invIM*EM(j,:)')'; 
15 cardfun(j) = cardvec(50); 
16 end 
17 figure 
18 RBFplot = surf(xe,ye,reshape(cardfun,neval,neval)); 
19 set(RBFplot,'FaceColor' ,'interp','EdgeColor' ,'none') 
20 colormap autumn; view([145 45]); camlight; lighting gouraud 

14.3 The Power Function 

Another important ingredient needed for our error estimates is the so-called power 
function. To this end, we consider a domain n ~ IRs. Then for any strictly positive 
definite kernel cl> E C(n x n), any set of distinct points x = {x1, ... 'XN} c n, and 
any vector u E RN, we define the quadratic form 

N N N 

Q(u) = <I>(x, x) - 2 L Uj<l>(x, Xj) +LL uiuj<I>(xi, Xj ). 
j=l i=l j=l 

Then 

Definition 14.1. Suppose n ~ JRS and <I> E C(n x n) is strictly positive definite 
on }R5

• For any distinct points x = { X1' ... 'x N} ~ n the power function is defined 
by 

[Pw,x(x)] 2 = Q(u*(x)), 

where u* is the vector of cardinal functions from Theorem 14.1. 
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Using the definition of the native space norm from the previous chapter we can 
rewrite the quadratic form Q ( u) as 

N N N 

Q(u) = <I>(x, x) - 2 L uJ<I>(x, xJ) +LL UiUJ<I>(xi, xJ) 
j=l i=l j=l 

N 

=(<I>(·, x), <I>(·, x))N"'(n) - 2 L uJ(<I>(·, x), <I>(·, XJ))N"'(n) 
j=l 

N N 

+LL uiuJ(<I>(·, xi), <I>(·, xJ))N"'(n) 
i=l j=l 

N N 

= (<I>(·, x) - L uJ<I>(·, XJ ), <I>(·, x) - L uJ<I>(-, XJ ))N"'(n) 
j=l j=l 

2 
N 

<I>(-, x) - L uJ<I>(-, xJ) 
j=l N<t>(n) 

(14.2) 

The name power function was chosen by Schaback based on its connection to the 
power function of a statistical decision function (originally introduced in [Neyman 
and Pearson (1936)]). In the paper [Wu and Schaback (1993)] the power function 
was referred to as kriging function. This terminology comes from geostatistics (see, 
e.g., [Myers (1992)]). 

Using the linear system notation employed earlier, i.e., Aij = <I>(xi,Xj), i,j = 
1, ... , N, u = [ u 1, ... , u N JI', and b = [<I> ( ·, x 1), ... , <I> ( ·, x N) JI', we note that we can 
also rewrite the quadratic form Q(u) as 

Q(u) = <I>(x, x) - 2uTb(x) + uT Au. (14.3) 

This suggests two alternative representations of the power function. Using the 
matrix-vector notation for Q(u), the power function is given as 

P<I>,x(x) = vQ(u*(x)) = j<I>(x,x) - 2(u*(x))Tb(x) + (u*(x))T Au*(x). 

However, by the definition of the cardinal functions Au*(x) = b(x), and therefore 
we have the two new variants 

P<I>,x(x) = V <I>(x, x) - ( u* (x ))T b(x) 

= j<I>(x,x) - (u*(x))T Au*(x). 

These formulas can be used for the numerical evaluation of the power function 
at x. To this end one has to first find the value of the cardinal functions u * ( x) by 
solving the system Au* ( x) = b( x). This results in 

P<I>,x(x) = V<l>(x,x) - (b(x))T A-lb(x). (14.4) 
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Since A is a positive definite matrix whenever <I> is a strictly positive definite kernel 
we see that the power function satisfies the bounds 

0::::; P<t>,x(x)::::; y/<I>(x, x). 

Plots of the power function for the Gaussian with c = 6 on three different point 
sets with N = 81 in the unit square are provided in Figure 14.5. The sets of data 
points are displayed on the left, while the plots of the power function are displayed 
in the right column. Dependence of the power function on the data locations is 
clearly visible. In fact, this connection was used in a recent paper [De Marchi et al. 
(2005)] to iteratively obtain an optimal set of data locations that are independent 
of the data values. 

At this point the power function is mostly a theoretical tool that helps us better 
understand error estimates since we can decouple the effects due to the data function 
f from those due to the basic function <I> and the data locations X (see the following 
Theorem 14.2). 

The power function is defined in an analogous way for strictly conditionally 
positive definite functions. 

14.4 Generic Error Estimates for Functions in N~(n) 

Now we can give a first generic error estimate. 

Theorem 14.2. Let n ~ JRS' <I> E C(n x n) be strictly positive definite on JRS' 
and suppose that the points X = {x1 , ... , XN} are distinct. Denote the interpolant 
to f E Nct>(n) on x by P1. Then for every x En 

lf(x) - P1(x)I < P<t>,x(x)llJllN4>(n)· 

Proof. Since f is assumed to lie in the native space of <I> the reproducing property 
of <I> yields 

f(x) =(!,<I>(·, x))N4>(n)-

We express the interpolant in its cardinal form and apply the reproducing property 
of <I>. This gives us 

N 

P1(x) = L f(xJ)uj(x) 
j=l 

N 

= L uj(x)(f, <I>(·, Xj))N<i>(11) 
j=l 

N 

= (!, L uj(x)<I>(·, Xj))N4>(fl)· 
j=l 
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Fig. 14.5 Data sites and power function for Gaussian interpolant with E: = 6 based on N = 81 
uniformly distributed points (top), tensor-product Chebyshev points (middle), and Halton points 
(bottom). 

Now all that remains to be done is to combine the two formulas just derived and 
apply the Cauchy-Schwarz inequality. Thus, 

lf(x) - P1(x)I 
N 

(f, <I>(·, x) - L uj(x)<I>(·, Xj))N<:>(n) 

j=l 



14. The Power Function and Native Space Error Estimates 119 

N 

< llJllN~(n) <I>(·, x) - 2: uj(x)<I>(·, Xj) 

j=l 
N~(O) 

where we have applied (14.2) and the definition of the power function. D 

One of the main benefits of Theorem 14.2 is that we are now able to estimate 
the interpolation error by considering two independent phenomena: 

• the smoothness of the data (measured in terms of the native space norm off 
- which is independent of the data locations, but does depend on <I>), 

• and the contribution due to the use of the specific kernel (i.e., basic function) 
<I> and the distribution of the data (measured in terms of the power function -
independent of the actual data values). 

This is analogous to the standard error estimate for polynomial interpolation cited 
in most numerical analysis texts. Note, however, that, for any given basic function 
<I>, a change of the shape parameter € will have an effect on both terms in the error 
bound in Theorem 14.2 since the native space norm off varies with€. 

14.5 Error Estimates in Terms of the Fill Distance 

The next step is to refine this error bound by expressing the influence of the data 
locations in terms of the fill distance. And then, of course, the bound needs to be 
specialized to various choices of basic functions <I>. 

The most common strategy for obtaining error bounds in numerical analysis is 
to take advantage of the polynomial precision of a method (at least locally), and 
then to apply a Taylor expansion. With this in mind we observe 

Theorem 14.3. Let n ~ JRS' and suppose <I> E C(n x n) is strictly positive definite 
on JRS. Let x = { x 1, ... ' x N} be a set of distinct points in n' and define the 
quadratic form Q(u) as in {14.2). The minimum of Q(u) is given for the vector 
u = u*(x) from Theorem 14.1, i.e., 

Q(u*(x)) < Q(u) for all u E IRN. 

Proof. We showed above (see (14.3)) that 

Q(u) = <I>(x, x) - 2uTb(x) + uT Au. 

The minimum of this quadratic form is given by the solution of the linear system 

Au= b(x). 

This, however, yields the cardinal functions u = u * ( x). D 
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In the proof below we will use a special coefficient vector u which provides the 
polynomial precision desired for the proof of the refined error estimate. Its existence 
is guaranteed by the following theorem on local polynomial reproduction proved in 
[Wendland (2005a)]. This theorem requires the notion of a domain that satisfies an 
interior cone condition. 

Definition 14.2. A region n <;:;;; IR8 satisfies an interior cone condition if there exists 
an angle () E (0, rr /2) and a radius r > 0 such that for every x E n there exists a 
unit vector e(x) such that the cone 

C={x+>.y: yElR5 ,llYll2=l, yre(x)2cos(), >.E(O,r]} 

is contained in n. 

A consequence of the interior cone condition is the fact that a domain that 
satisfies this condition contains balls of a controllable radius. In particular, this will 
be important when bounding the remainder of the Taylor expansions below. For 
more details see [Wendland (2005a)]. 

Existence of an approximation scheme with local polynomial precision is guar
anteed by 

Theorem 14.4. Suppose n ~ IR8 is bounded and satisfies an interior cone condi
tion, and let£ be a non-negative integer. Then there exist positive constants h0 , c 1 , 

and C2 such that for all X = {x1, ... , XN} ~ f2 with hx,n < ho and every X E f2 
there exist numbers ili(x), ... , uN(x) with 

N 

(1) L UJ(x)p(xJ) = p(x) for all polynomials p E II~, 
j=l 

N 

(2) L luj(x)I ~ c1, 
j=l 

(3) UJ(x) = 0 if llx - xJll2 > c2hx,n. 

Property (1) yields the polynomial precision, and property (3) shows that the 
scheme is local. The bound in property (2) is essential for controlling the growth 
of error estimates and the quantity on the left-hand side of (2) is known as the 
Lebesgue constant at x. 

In the following theorem and its proof we will make repeated use of multi-index 
notation and multivariate Taylor expansions. For f3 = (/31 , ... , /38 ) E N0 with 
l/31 = I:::=l /Ji we define the differential operator n/3 as 

13 0 1131 
D - ~~---=-~~~_____,-

- (oxi)/31 · · · (8x 8 )!3s' 

and the notation D~<P(w, ·) used below indicates that the operator is applied to 
<I> ( w, ·) viewed as a function of the second variable. 
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The multivariate Taylor expansion of the function <I>(w, ·)centered at w is given 
by 

with remainder 

<I>(w, z) = L D~<I>~~' w) (z - w)/3 + R(w, z) 
l.Bl<2k 

R( ) = '""" D~if!( W, f.w,z) ( _ )/3 
w, z L...t {3! z w ' 

l/31=2k 

where ew,z lies somewhere on the line segment connecting w and z. 
The generic error estimate of Theorem 14.2 can now be formulated in terms of 

the fill distance. 

Theorem 14.5. Suppose n ~ "IR 8 is bounded and satisfies an interior cone condi
tion. Suppose <I> E C2k(O x 0) is symmetric and strictly positive definite. Denote 
the interpolant to f E N<i> ( n) on the set X by Pf. Then there exist positive constants 
ho and C (independent of x, f and <I>) such that 

lf(x) - PJ(x)I:::; Ch1,oVC<t>(x)JlfilN.z,(n), 

provided hx,n :::; ho. Here 

C<i>(x) = max max ID~<I>(w, z)I 
l/31=2k w,zEflnB(x,c2hx,n) 

with B(x, c2hx,n) denoting the ball of radius c2hx,n centered at x. 

Proof. By Theorem 14.2 we know 

Jf(x) - PJ(x)J :S P<t>,x(x)JJfJIN~cn)· 

Therefore, we now derive the bound 

for the power function in terms of the fill distance. 
We know that the power function is defined by 

[P<i>,x(x)] 2 = Q(u*(x)). 

Moreover, we know from Theorem 14.3 that the quadratic form Q(u) is minimized 
by u = u*(x). Therefore, any other coefficient vector u will yield an upper bound 
on the power function. We take u = ii.(x) from Theorem 14.4 so that we are ensured 
to have polynomial precision of degree f, > 2k - 1. 

For this specific choice of coefficients we have 

[P<1>,x(x)] 2
:::; Q(u) = <I>(x, x) - 2 L UJ<I>(x, XJ) +LL uiuJ<I>(xi, XJ), 

j i j 
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where the sums are over those indices j with Uj =I= 0. Now we apply the Taylor 
expansion centered at x to <I>(x, ·)and centered at Xi to <I>(xi, ·),and evaluate both 
functions at Xj. This yields 

"' [ "' D~<I>(x, x) 13 ] Q(u) = <I>(x, x) - 2 L_.., Uj L_.., {3! (xJ - x) + R(x, Xj) 
j l/31<2k 

~ ~ [ ~ D~<I>(xi, Xi) f3 ] + L_.., L_.., UiUj L_.., {3! (xJ - Xi) + R(xi, Xj) . 
i j l,Bl<2k 

Next, we identify p(z) = (z - x),a so that p(x) = 0 unless {3 = 0. Therefore the 
polynomial precision property of the coefficient vector u simplifies this expression 
to 

Q(u) = <I>(x, x) - 2<I>(x, x) - 2 L uJR(x, xJ) 
j 

"' ~ D~<I>(xi, xi) ( ,a ~ ~ ( + L_.., Ui L_.., {3! X - Xi) + L_.., L_.., UiUjR(xi, Xj ). 14.5) 
i 1.a1 <2k i j 

Now we can apply the Taylor expansion again and make the observation that 

~ D~<I>(xi, xi) ( /3 ( ( ( ) 
L_.., {3! x - Xi) =<I> Xi, x) - R Xi, x). 14.6 

l.Bl<2k 

If we use (14.6) and rearrange the terms in (14.5) we get 

Q(u) = -.P(x, x) - ~ uj [2R(x, xj) - ~ u;R(x;, x,)] 

+ L Ui [<I>(xi, x) - R(xi, x)I. 

One final Taylor expansion we need is (using the symmetry of <I>) 

"' D~<I>(x, x) ,a 
<I>(xi, x) = <I>(x, xi) = L_.., {3! (xi - x) + R(x, xi). 

l.Bl<2k 

(14.7) 

(14.8) 

If we insert (14.8) into (14.7) and once more take advantage of the polynomial 
precision property of the coefficient vector u we are left with 

Q(u) = - ~ u, [ R(x, Xj) + R(x,, x) - ~ u;R(x;, Xj)] . 

Now Theorem 14.4 allows us to bound L:j luJI < c1. Moreover, llx-xJll2:::; c2hx,n 
and llxi - Xj 11 2 ::; 2c2 hx,n. Therefore, all three remainder terms can be bounded 
by an expression of the form Ch~0,C<I>(x). Here we made use of the interior cone 

' property of n enabling us to define the term C<I> ( x). Combining these bounds and 
taking the square root yields the stated bound for the power function. 0 
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Theorem 14.5 says that interpolation with a C 2k smooth kernel <I> has approx
imation order k. Thus, for infinitely smooth strictly positive definite functions 
such as the Gaussians, Laguerre-Gaussians, Poisson radial functions, and the gen
eralized inverse multiquadrics we see that the approximation order k is arbitrarily 
high. For strictly positive definite functions with limited smoothness such as the 
Matern functions, the Whittaker radial functions, as well as all of the compactly 
supported functions, the approximation order is limited by the smoothness of the 
basic function. 

The estimate in Theorem 14.5 is still generic. It does not fully account for the 
particular basic function <I> being used for the interpolation since the factor c<f> ( x) 
still depends on <I>. Moreover, we point out that the term C<:>(x) may include a 
hidden dependence on hx,n. For most basic functions it will be possible to use 
C<:> ( x) to "squeeze out" additional powers of h. This is the reason for splitting the 
constant in front of the h-power into a generic C and a C <f> ( x). 

The statement of Theorem 14.5 can be generalized for strictly conditionally pos
itive definite functions and also to cover the error for approximating the derivatives 
of f by derivatives of Pf. We state this general theorem without comment ( c.f. 
[Wendland (2005a)] for details). 

Theorem 14.6. Suppose n ~ ~s is open and bounded and satisfies an interior 
cone condition. Suppose <I> E C 2k(n x n) is symmetric and strictly conditionally 
positive definite of order m on ~s. Denote the interpolant to f E N<f> (n) on the 
(m- l)-unisolvent set X by P1. Fix a E N0 with lal :S k. Then there exist positive 
constants ho and C (independent of x, f and <I>) such that 

IDa f(x) - DaP1(x)I < Ch~~~al JC<:>(x)lflN<t>(n), 

provided hx,n :S ho. Here 

C<t>(X) = max max IDr DJ<I>(w, z)I. 
/3,-,.EN0 w,zEnnB(x,c2hx,n) 

l/31+hl=2k 

Note that for conditionally positive definite functions we have only a native 
space semi-norm instead of a norm. 





Chapter 15 

Refined and Improved Error Bounds 

15.1 Native Space Error Bounds for Specific Basis Functions 

For the first part of this chapter we discuss the non-stationary setting. The ad
ditional refinement of the error estimate of Theorem 14.6 for specific functions <I> 

is rather technical (for details see, e.g., the book [Wendland (2005a)]). A large 
body of literature exists on this topic such as, e.g., [Buhmann and Dyn (1991); 
Light (1996); Light and Wayne (1995); Light and Wayne (1998); Madych (1992); 
Madych and Nelson (1992); Narcowich and Ward (2004); Narcowich et al. (2003); 
Narcowich et al. (2005); Schaback (1995b); Schaback (1996); Wendland (1998); 
Wendland (1997); Wu and Schaback (1993); Yoon (2003)]). We now list some of 
the results that can be obtained. 

15.1.1 Infinitely Smooth Basis Functions 

As mentioned before, an application of Theorem 14.6 to infinitely smooth func
tions such as Gaussians or generalized (inverse) multiquadrics immediately yields 
arbitrarily high algebraic convergence rates, i.e., for every£ E N and lol < £ we 
have 

(15.1) 

whenever f E Nif>(0.). A considerable amount of work has gone into investigating 
the dependence of the constant Ct on£ (see, e.g., [Wendland (2001b)]). 

Using different proof techniques (see, e.g., [Madych and Nelson (1988)] or [Wend
land (2005a)] for details) it is possible to derive more precise error bounds for Gaus
sians and (inverse) multiquadrics. The resulting theorem from [Wendland (2005a)] 
is 

Theorem 15.1. Let n be a cube in JRS. Suppose that <I> = cp(ll . II) is a strictly con
ditionally positive definite radial function such that 'I/; = <p( V.) satisfies l'l/J(e) ( r) I < 
f!Mf for all integers £ > £0 and all r ~ 0, where M is a fixed positive constant. 
Then there exists a constant c such that for any f E Nif>(fi) 

-c 

II f - Pf II L°"(n) ~ e hx,n IJL,._r<1>(n)> (15.2) 
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for all data sites X with sufficiently small fill distance hx,n. 
Moreover, if 'lj; satisfies even l'1/J(£)(r)I <Me, then 

-cl log hx,n I 

llf - Pf llLoo(n) < e hx,n llJllN~(n) (15.3) 

provided hx,n is sufficiently small. 

Example 15.1. For Gaussians <I>(x) = e-e:
2

Jl:z:Jl
2

, c > 0 fixed, we have 1/J(r) = e-e:
2
r, 

so that 'lj;(£)(r) = (-1)£c2£e-e:
2

r for f > fo = 0. Thus, M = c2 , and the error bound 
(15.3) applies. This kind of exponential approximation order is usually referred to 
as spectral (or even super-spectral) approximation order. We emphasize that this 
nice property holds only in the non-stationary setting and for data functions f that 
are in the native space of the Gaussians such as band-limited functions. 

Example 15.2. For generalized (inverse) multiquadrics <I>(x) = (1 + llxll 2 )/3, {3 < 0, 
or 0 < {3 tj: N, we have 1/J(r) = (l+r)/3. In this case one can show that l'1/J£(r)I < f!M£ 
whenever f > lf31. Here M = l+lf3+ll. Therefore, the error estimate (15.2) applies, 
i.e., in the non-stationary setting generalized (inverse) multiquadrics have spectral 
approximation order. 

Example 15.3. For Laguerre-Gaussians <I>(x) = L~2 (llcxll 2 )e-e:2 Jl:z:ll 2 , c > 0 fixed, 
we have 1/J(r) = L~2 (c2 r)e-e:2 r and the derivatives 'lj;(£) will be bounded by 'lj;(£)(O) = 

Pn ( f)c2£, where Pn is a polynomial of degree n. Thus, the approximation power of 
Laguerre-Gaussians falls between (15.3) and (15.2) and Laguerre-Gaussians have at 
least spectral approximation power. 

15.1.2 Basis Functions with Finite Smoothness 

For functions with finite smoothness (such as the Matern functions, radial powers, 
thin plate splines, and Wendland's compactly supported functions) it is possible to 
bound the constant C<I>(x) by some additional powers of h, and thereby to improve 
the order predicted by Theorem 14.6. In particular, for Ck functions the factor 
C ct> ( x) can be expressed as 

C<t>(X) = iJI'i~k llD/3<I>llL00 (B(0,2chx,n)) 

independent of x (see [Wendland (2005a)]). Therefore, this results in the following 
error estimates (see, e.g., [Wendland (2005a)], or the much earlier [Wu and Schaback 
(1993)] where other proof techniques were used). 

, . _ K13-1-(li:z:Jl)\l:z:ll 13 - ~ s 
Example 15.4. For the Matern functions <I>(x) - 213 _ 1 r(/3) , {3 > 2 , we get 

ID 0 f(x) - D 0 P1(x)I < Ch~~J-lal lflN~(fl)· 

provided lo:I < {3- r.st 1 1, hx,n is sufficiently small, and f E Nct>(n). 

(15.4) 
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Example 15.5. For the compactly supported Wendland functions <I>s,k(x) = 

'Ps,k(llxll) this first refinement leads to 

ID0 f(x) - D 0 P1(x)I < Ch~~J-lol llJllN4>(f2)· (15.5) 

provided lal < k, hx,n is sufficiently small, and f E Nif>(O). 

Example 15.6. For the radial powers <I>(x) = (-1) r,a/21 iixll,a, 0 < f3 ¢. 2N, we get 

ID0 f(x) - D 0 PJ(x)I < Chkda11JIN4>(f2)· (15.6) 

provided lal < [/11-
1

, hx,n is sufficiently small, and f E Nif>(O). 

Example 15.7. For thin plate splines <I>(x) = (-l)k+1 11xll 2klogllxll, we get 

ID 0 f(x) - D 0 P1(x)I < Ch~~b01 1JIN4>(f2)· (15.7) 

provided 10!1 < k - 1, hx,n is sufficiently small, and f E Nif>(O). 

15.2 Improvements for Native Space Error Bounds 

Radial powers and thin plate splines can be interpreted as a generalization of uni
variate natural splines. Therefore, we know that the approximation order estimates 
obtained via the native space approach are not optimal. For example, for inter
polation with univariate piecewise linear splines (i.e., <I>(x) = llxll in x E JR.) we 
know the approximation order to be O(h), whereas the estimate (15.6) yields only 
approximation order O(h1l 2). Similarly, for thin plate splines <I>(x) = llxll 2 log llxll 
one would expect order O(h2 ) in the case of pure function approximation. However, 
the estimate (15.7) yields only O(h). These two examples suggest that it should be 
possible to "double" the approximation orders obtained thus far. 

One can improve the estimates for functions with finite smoothness (i.e., Matern 
functions, Wendland functions, radial powers, and thin plate splines) by either (or 
both) of the following two ideas: 

• by requiring the data function f to be even smoother than what the native 
space prescribes, i.e., by building certain boundary conditions into the native 
space; 

• by using weaker norms to measure the error. 

The idea to localize the data by adding boundary conditions was introduced in 
the paper [Light and Wayne (1998)]. This "trick" allows us to "square" the approx
imation order, and thus reach the expected approximation orders. The second idea 
can already be found in the early paper [Duchon (1978)]. 

After applying both of these techniques the final approximation order estimate 
for interpolation with the compactly supported functions <I>s,k is (see [Wendland 
(1997)]) 

(15.8) 
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k+ s+l 

where f is assumed to lie in the subspace Wik+l+s(I~.8 ) of N<I>(Il.~.8) = W 2 
2 

• For 
example, for the popular basic function <p3,1(r) = (1- r)t(4r + 1) we have 

II! - P1 llL2(0) :S Ch
6

llfllw;cIRs)· 

Note that the numerical experiments in Table 12.2 produced RMS-convergence rates 
only as high as 4.5. 

For radial powers and thin plate splines one obtains L 2-error estimates of or
der O(hf3+s) and O(h2k+s), respectively. These estimates are optimal, i.e., exact 
approximation orders, as shown in [Bejancu (1999)]. 

More work on improved error bounds can be found in, e.g., [Johnson (2004a)] 
or [Schaback (1999b)]. 

15.3 Error Bounds for Functions Outside the Native Space 

The error bounds mentioned so far were all valid under the assumption that the 
function f providing the data came from (a subspace of) the native space of the 
RBF employed in the interpolation. We now mention a few recent results that 
provide error bounds for interpolation of functions f not in the native space of 
the basic function. In particular, the case when f lies in some Sobolev space is of 
great interest. A rather general theorem was recently given in [Narcowich et al. 
(2005)]. In this theorem Narcowich, Ward and Wendland provide Sobolev bounds 
for functions with many zeros. However, since the interpolation error function is 
just such a function, these bounds have a direct application to our situation. We 
point out that this theorem again applies to the non-stationary setting. 

Theorem 15.2. Let k be a positive integer, 0 < a ::::; 1, 1 ::::; p < oo, 1 ::::; q < oo 
and let a be a multi-index satisfying k > lal + s/p or, for p = 1, k > lal + s. 
Let X c 0 be a discrete set with fill distance h = hx,o where 0 is a compact set 
with Lipschitz boundary which satisfies an interior cone condition. lf u E w;+a ( 0) 
satisfies ulx = 0, then 

lul < chk+a-lal-s(l/p-1/q)+ lul 
wJ°'I (O) - w;+u (O)' 

where c is a constant independent of u and h, and (x)+ is the cutoff function. 

Suppose we have an interpolation process P : w;+a (0) _, V that maps Sobolev 
functions to a finite-dimensional subspace v of w;+a (0) with the additional prop

erty IPJ lw;+""(O) < lflw;+a-co)' then Theorem 15.2 immediately yields the error 
estimate 

If _ p I < chk+a-1a1-sc11p-1/q)+ Ill 
f wJ°'I (0) - w;+u (0) · 

The additional property IP1lw;+""(n) < lflw;+a-(O) is certainly satisfied provided 
the native space of the basic function is a Sobolev space. Thus, Theorem 15.2 
provides an alternative to the power function approach discussed in the previous 
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chapter if we base P on linear combinations of shifts of the basic function <I>. This 
new approach has the advantage that the term Ccp ( x) which may depend on both 
<I> and X no longer needs to be dealt with. 

In particular, the authors of [Narcowich et al. (2005)] show that if the Fourier 
transform of <I> satisfies 

llwll ~ oo, w E IRs, (15.9) 

then the above error estimate holds with T = k + <J and p = 2 provided the fill 
distance is sufficiently small. Examples of basic functions with an appropriately 
decaying Fourier transform are provided by the families of Wendland or Matern 
functions. In addition, Narcowich, Ward and Wendland show that analogous error 
bounds hold for radial powers and thin plate splines (whose native spaces are Beppo
Levi spaces). 

For functions f outside the native space of a basic function <I> whose Fourier 
transform satisfies (15.9) Narcowich, Ward and Wendland prove 

Theorem 15.3. Let k and n be integers with 0 < n < k ::; T and k > s/2, and let 
f E Ck(O). Also suppose that x = {x1, ... 'XN} c n satisfies diam(X) < 1 with 
sufficiently small fill distance. Then for any 1 ::; q ::; oo we have 

If - P1lw;(n) :S cp7;:-khk-n-s(l/2-l/q)+ llfllck(fl)' 

where Px = -1!_ is the mesh ratio for X and qx is the separation distance 
qx 

~ lrilili:;tj llxi - Xjll2· 

We remind the reader that the fill distance corresponds to the radius of the 
largest possible empty ball that can be placed between the points in X. The sep
aration distance ( c.f. Chapter 16), on the other hand, can be interpreted as the 
radius of the largest ball that can be placed around every point in X such that no 
two balls overlap. Thus, the mesh ratio is a measure of the non-uniformity of the 
distribution of the points in X. 

Similar results were obtained earlier in [Brownlee and Light (2004)] (for radial 
powers and thin plate splines only), and in [Yoon (2003)] (for shifted surface splines, 
see below). 

Example 15.8. If we consider polyharmonic splines, then the decay condition 
(15.9) for the Fourier transform is satisfied with T = 2/3 for thin plate splines and 
with T = f3 for radial powers. If we take k = r, n = 0, and q = oo in Theorem 15.3 
then we arrive at the bound 

If - Pf !Loo :S ch2,6-s/2 llfllc2/3(fl) 

for thin plate splines <I> ( x) = II x 11 2,e log(ll x 11), and 

If - P1IL00 < ch,6-s/2
llfllc/3(fl) 

for radial powers <I> ( x) = II x 11,6. These bounds immediately correspond to the "op
timal" native space bounds obtained earlier only after the improvements discussed 
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in the previous subsection. For data functions f with less smoothness the approxi
mation order is reduced accordingly. 

Lower bounds on the approximation order for approximation by polyharmonic 
splines were recently provided in [Maiorov (2005)]. Maiorov studies for any 1 < 
p,q::; oo and ,B/s > (1/p-1/q)+ the error E of Lq-approximation of Wf functions 
by polyharmonic splines. More precisely, 

E(Wf ([O, 1) 5
), RN('f?f3, (3), Lq([O, 1) 5

)) 2: cN-f31s, 

where RN('Pf3, (3) denotes the linear space formed by all possible linear combinations 
of N polyharmonic (or thin-plate type) splines 

{
r 2f3-s ifs is odd s 

'Pf3(r) = 2(3-sl "f . (3 > -2, r og r I s is even, 

and multivariate polynomials of degree at most (3 - 1. Note that these bounds are 
in terms of the number N of data sites instead of the usual fill distance h. 

For the special cases p = q = oo and p = 2, 1 < q < 2 the above lower bound is 
shown to be asymptotically exact. 

15.4 Error Bounds for Stationary Approximation 

The stationary setting is a natural approach for use with local basis functions. The 
main motivation comes from the computational point of view. We are interested in 
maintaining sparse interpolation matrices as the density of the data increases. This 
can be achieved by scaling the basis functions proportional to the data density. 
In principle we can take any of our basic functions and apply a scaling of the 
variable, i.e., we replace x by EX, E > 0. As mentioned several times earlier, this 
scaling results in "peaked" or "narrow" basis functions for large values of E, and 
"flat" basis functions for E -+ 0. We will now discuss what happens if we choose E 

inversely proportional to the fill distance, i.e., 

co 
Eh=--

hxn 
' 

(15.10) 

for some fixed base scale co and study the approximation error based on the RBF 
interpolant 

where 

N 

PJ(x) = LCJ'Peh(llx - Xj\\), 
j=l 

Example 15.9. A rather disappointing fact is that Gaussians do not provide any 
positive approximation order, i.e., the approximation process is saturated. This was 
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studied by [Buhmann (1989a)] on infinite lattices. However, for quasi-interpolation 
the approximate approximation approach of Maz'ya shows that it is possible to 
choose co in such a way that the level at which the saturation occurs can be con
trolled (see, e.g., [Maz'ya and Schmidt (1996)]). Therefore, Gaussians may very 
well be used for stationary interpolation provided an appropriate initial shape pa
rameter is chosen. We will illustrate this behavior in the next chapter. The same 
kind of argument also applies to the Laguerre-Gaussians of Section 4.2. 

Example 15.10. Basis functions with compact support such as the Wendland 
functions also do not provide any positive approximation order in the station
ary case. This can be seen by looking at the power function for the scaled ba

sic function <I>c-h = <I>(ch·) which is of the form P<I>.,h,x(x) = P<I>,x.,h (chx) where 
Xc-h = {chx1, ... , chXN} denotes the scaled data set. Moreover, the fill distances of 
the sets Xc-h and X satisfy hx.,h,n = chhx ...fl.. Therefore, the power function (which 

'Eh 
can be bounded in terms of the fill distance, c.f. the proof of Theorem 14.5) satisfies 

P<t>Eh,x(x) ~ C (chhx,.,n,. )1:t 
for some a > 0. This, however, does not go to zero if ch is chosen as in (15.10). 

If, on the other hand, we work in the approximate approximation regime, then 
we can obtain good convergence in many cases (see the next chapter for some 
numerical experiments). 

Example 15.11. Stationary interpolation with (inverse) multiquadrics, radial pow
ers and thin plate splines presents no difficulties. In fact, [Schaback (1995c)] shows 
that the native space error bound for thin plate splines and radial powers is invariant 
under a stationary scaling. Therefore, the non-stationary bound of Theorem 15.3 
applies in the stationary case also. The advantage of scaling thin plate splines or 
radial powers comes from the added stability one can gain by preventing the sepa
ration distance from becoming too small (see Chapter 16 and the work of Iske on 
local polyharmonic spline approximation, e.g., [Iske (2004)]). 

Yoon provides error estimates for stationary approximation of rough functions 
(i.e., functions that are not in the native space of the basic function) by so-called 
shifted surface splines. Shifted surface splines are of the form 

<I> x -{ (-I)l/3-s/21(1 + llxll2)/3-s/2, s odd, 
( ) - (-1)6-s/2+1(1 + llxll2)/3-s/2log(l + llxll2)1/2, seven, 

where s/2 < {3 E N. These functions include all of the (inverse) multiquadrics, 
radial powers and thin plate splines. 

Yoon has the following theorem (see [Yoon (2003)] for the Lp case, and [Yoon 
(2001)] for L 00 bounds only). 

Theorem 15.4. Let <I> be a shifted surface spline with shape parameter c inversely 
proportional to the fill distance hx,n. Then there exists a positive constant C (in
dependent of X) such that for every f in the Sobolev space Wf (0) n Wl(O) we 
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have 

1 ::::; p < oo, 

with 

/p = min{,B, ,B - s/2 + s/p}. 

Furthermore, if f E Wf (f2) n W~(n) with max{O, s/2 - s/p} <a< ,B, then 

II! - P1 llLp(n) = o(h1 P-f3+o:). 

Yoon's estimates address the question of how well the infinitely smooth (inverse) 
multiquadrics approximate functions that are less smooth than those in their native 
space. For example, Theorem 15.4 states that £ 2-approximation to functions in 

W?(n), n ~ IR. 8
, by multiquadrics <I>e(x) = yfl + llcxll 2 is of the order O(h2 ). 

However, we emphasize once more that this refers to stationary approximation of 
rough functions, i.e., c is scaled inversely proportional to the fill distance and f 
need not lie in the native space of <I>, whereas the spectral order given in (15.2) 
corresponds to approximation of functions in the native space in the non-stationary 
case with fixed c. 

For thin plate splines and radial powers the approximation orders in Theo
rem 15.4 are equivalent to those of Theorem 15.3 and the results of Brownlee and 
Light mentioned above. This is to be expected due to the invariance of these basic 
functions with respect to scaling. 

The second part of Yoon's result is a step toward exact approximation orders as 
is the work of [Maiorov (2005)] and [Bejancu (1999)] mentioned above. 

15.5 Convergence with Respect to the Shape Parameter 

None of the error bounds discussed thus far have taken into account the pos
sibility of varying the shape parameter c for a fixed data set X. However, in 
the literature the infinitely smooth basic functions such as the Gaussians and 
(inverse) multiquadrics are usually formulated including the shape parameter c 
(or another parameter equivalent to it) and one may wonder how a change 
in this shape parameter affects the convergence properties of the RBF inter
polant. In fact, quite a bit of work has been spent on the quest for the 
"optimal" shape parameter (see, e.g., [Carlson and Foley (1991); Foley (1994); 
Hagan and Kansa (1994); Kansa and Carlson (1992); Rippa (1999); Tarwater (1985); 
Wertz et al. (2006)]). 

Convergence of the infinitely smooth Gaussians and (inverse) multiquadrics with 
respect to the shape parameter was studied early on in [Madych (1991)]. Madych 
showed that for these basic functions there exists a positive constant ,\ < 1 such 
that 

lf(x) - P1(x)I < C,\1/(ehx,n) (15.11) 
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provided f is in the native space of <I>. This estimate shows that taking either the 
shape parameter c or the fill distance hx,n to zero results in exponential conver

gence. 

15.6 Polynomial Interpolation as the Limit of RBF Interpolation 

Recently, a number of authors (see, e.g., [Driscoll and Fornberg (2002); Fornberg and 
Flyer (2005); Fornberg and Wright (2004); Larsson and Fornberg (2005); Schaback 
(2005); Schaback (2006b )]) have studied the limiting case as c: - 0 of scaled radial 
basis function interpolation with infinitely smooth basic functions such as Gaussians 
and generalized (inverse) multiquadrics. It turns out that there is an interesting 
connection to polynomial interpolation. 

In [Driscoll and Fornberg (2002)] univariate (s = 1) interpolation with c:-scaled 
infinitely smooth radial basic functions is studied. Driscoll and· Fornberg show that 
the RBF interpolant 

N 

P1(x) = L CJ<P(llc:(x - XJ)ll), 
j=l 

x E [a, b] CIR, 

to function values at N distinct data sites tends to the Lagrange interpolating 

polynomial of f as c - 0. 
The multivariate case is more complicated. However, the limiting RBF inter

polant (provided it exists) is given by a low-degree multivariate polynomial (see 
[Larsson and Fornberg (2005); Schaback (2005); Schaback (2006b)]). For example, 
if the data sites are located such that they guarantee a unique polynomial inter
polant, then the limiting RBF interpolant is given by this polynomial. If polyno
mial interpolation is not unique, then the RBF limit depends on the choice of basic 
function. However, these statements require the RBFs to satisfy an (unproven) 
condition on certain coefficient matrices Ap,J. In [Larsson and Fornberg (2005)] 
the authors also provide an explanation for the error behavior for small values of 
the shape parameter, and for the existence of an optimal (positive) value of c giv
ing rise to a global minimum of the error function. For the special case of scaled 
Gaussians Schaback [Schaback (2005)] shows that the RBF interpolant converges 
to the de Boor and Ron least polynomial interpolant (see [de Boor and Ron (1990); 
de Boor and Ron (1992a)] and also [de Boor (2006)]) as c: - 0. 

In [Fornberg and Wright (2004)] the authors describe a so-called Contour-Pade 
algorithm that makes it possible (for data sets of relatively modest size) to compute 
the RBF interpolant for all values of the shape parameter c: including the limiting 
case c: - 0. We present some numerical result obtained with Grady Wright's 
MATLAB toolbox in Chapter 17. 

We will later exploit the connection between RBF and polynomial interpolants 
to design numerical solvers for partial differential equations. 





Chapter 16 

Stability and 'Irade-Off Principles 

16.l Stability and Conditioning of Radial Basis Function 
lnterpolants 

A standard criterion for measuring the numerical stability of an approximation 
method is its condition number. In particular, for radial basis function interpolation 
we need to look at the condition number of the interpolation matrix A with entries 
Aij = cI>(xi - Xj)· For any matrix A its f2-condition number is given by 

cond(A) = llAll2llA- 1 ll2 = <7max, 
<7min 

where amax and <7min are the largest and smallest singular values of A. If we 
concentrate on positive definite matrices A, then the condition number of A can 
also take be computed as the ratio 

of the largest and smallest eigenvalues. 

Amax 

Amin 

What do we know about these eigenvalues? First, Gershgorin's theorem (see, 
e.g., [Meyer (2000)]) says that 

N 

!Amax - Aiil < Z:: IAijl 

for some i E {1, ... , N}. Therefore, 

j=l 
j#i 

Amax< N . . max IAijl = N max lcI>(xi - Xj)I, 
i,J=l, ... ,N ~i,~JEX 

which, since cl> is strictly positive definite, becomes 

Amax < NcI>(O) 

by the properties of positive definite functions (Property (4) in Theorem 3.1). Now, 
as long as the data are not too wildly distributed, N will grow as h··;/n which 

' is acceptable. Therefore, the main work in establishing a bound for the condition 
number of A lies in finding lower bounds for Amin (or correspondingly upper bounds 

135 
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for the norm of the inverse llA- 1 11 2 ). This is the subject of several papers by Ball, 
Narcowich, Sivakumar and Ward [Ball et al. (1992); Narcowich et al. (1994); 
Narcowich and Ward (1991a); Narcowich and Ward (1991b); Narcowich and Ward 
(1992)) who make use of a result from [Ball (1992)) on eigenvalues of distance 
matrices. Ball's result follows from the Rayleigh quotient (or the Courant-Fischer 
Theorem 9.5), which gives the smallest eigenvalue of a symmetric positive definite 
matrix as 

cTAc 
Amin = min T . 

cERN\O C C 

This can be used to prove the following bound for the norm of the inverse of A 
which covers also the case of conditional positive (negative) definiteness of order 
one. 

Lemma 16.1. Let x 1 , ... , XN be distinct points in JR5 and let <I>: JR5 
----t IR be either 

strictly positive definite, or strictly conditionally negative definite of order one with 
<I> ( 0) < 0. Also, let A be the interpolation matrix with entries Aij = <I> (Xi - xi). lf 
the inequality 

N N 

LL cicjAii > Ollcll~ 
i=l j=l 

is satisfied whenever the components of c satisfy 2-:::f=l Cj = 0, then 

Note that for positive definite matrices the Rayleigh quotient implies () = Amin 

which shows why lower bounds on the smallest eigenvalue correspond to upper 
bounds on the norm of the inverse of A. In order to obtain the bound for con
ditionally negative definite matrices the Courant-Fischer theorem 9.5 needs to be 
employed. 

The bound in Lemma 16.1 is too generic to give us any information for specific 
basic functions <I>. This extension was accomplished in some of the other papers 
mentioned above. Narcowich and Ward establish bounds on the norm of the inverse 
of A in terms of the separation distance of the data sites 

qx =!min llxi - x ·112. 2 iof=j J 

We can picture qx as the radius of the largest ball that can be placed around every 
point in X such that no two balls overlap (see Figure 16.1). The separation distance 
is sometimes also referred to as the packing radius. In our MATLAB code we can 
compute the separation distance via 

qX = min(min(DM_data+eye(size(DM_data))))/2 
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x 

Fig. 16.1 The separation distance for N = 25 Halton points (qx ~ 0.0597). 

where DM_data is the matrix of pairwise distances among the data sites X. The 
identity matrix is added only to avoid counting the distance of a point Xj to itself 
as a potential minimum. 

The derivation of these bounds is rather technical, and for details we refer to 
either the original papers by Narcowich, Ward and co-workers listed above, the 
more recent paper [Schaback (2002)], or the book [Wendland (2005a)]. By providing 
matching lower bounds for llA-1 112 (i.e., upper bounds for Amin) Schaback showed 
that the upper bounds on the norm of the inverse obtained by Narcowich, Ward 
and others are near optimal (see [Schaback (1994b)]). 

We now list several (lower) bounds for Amin as derived in [Wendland (2005a)]. 
In the examples below the explicit (space-dependent) constants 

(nr
2 (~))1/(s+l) 1 (~ss)s 

Ms= 12 9 
2 < 6.38s and Cs= 2r(y) yo 

are used. The upper bound for Ms can be obtained using Stirling's formula (see 
[Wendland (2005a)]). 

Since the bounds in the literature for Gaussians and multiquadrics also include 
the influence of the shape parameter c we present the basic functions in their scaled 
version here. 

Example 16.1. For Gaussians <I>(x) = e-e
2
llxll

2 
one obtains 

Amin> Cs(vf2c)-se-40.71s2/(qxE)2 q;/. 

We see that, for a fixed shape parameter c, the lower bound for Amin goes expo
nentially to zero as the separation distance qx decreases. Since we observed above 
that the condition number of the interpolation matrix A depends on the ratio of 
its largest and smallest eigenvalues and the growth of Amax is of order N we see 
that the condition number grows exponentially with decreasing separation distance. 
This shows that, if one adds more interpolation points in order to improve the ac
curacy of the interpolant (within the same domain S1), then the problem becomes 
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increasingly ill-conditioned. Of course one would always expect this to happen, 
but here the ill-conditioning grows primarily due to the decrease in the separation 
distance qx, and not to the increase in the number N of data points. We will come 
back to this observation when we discuss a possible change of basis in Section 34.4. 

On the other hand, if one keeps the number of points (or at least the separation 
distance) fixed and instead decreases the value of e, then the condition number of 
A suffers in almost the same exponential manner. Of course, an increase in e can 
be used to improve the condition number of A (however, as we saw earlier, at the 
expense of accuracy of the fit). 

Example 16.2. For scaled generalized (inverse) multiquadrics <I>(x) 

(1 + llexll 2 )/3, (3 E IR\ No one obtains 

A · > C(s (3 e)q/3- ~+~ e- 2Ms/(qxc:) 
min - ' ' X 

with another explicitly known constant C(s, (3, e). 
The same comments as in the previous example apply. 

Example 16.3. For thin plate splines <I>(x) = (-1),B+lllxll 2/3logllxll, (3 EN, one 
obtains 

Amin > Csc,a(2Ms)-s-2f3q2J 

with another explicitly known constant c,a. 
In this case the lower bound also goes to zero with decreasing separation distance. 

However the decay is only of polynomial order. 

Example 16.4. For the radial powers <I>(x) = (-1)rN2l llxllf3, 0 < (3 ¢. 2N, one 
obtains 

Amin~ Csc,a(2M8 )-s-,(3q~ 

with another explicitly known constant c,a (different from c,a in Example 3). Again, 
the decay is of polynomial order. 

Example 16.5. For the compactly supported functions of Wendland <l> 8 ,k(x) 
'Ps,k(llxll) one obtains 

Amin > C(s, k)q'J:+l 

with a constant C(s, k) depending on s and k. The lower bound goes to zero with 
the separation distance at a polynomial rate. 

16.2 Trade-Off Principle I: Accuracy vs. Stability 

The observations made in Examples 16.1 and 16.2 above set up the first trade
off principle. This principle states that if we use the standard approach to the 
RBF interpolation problem (i.e., solution of the linear system (6.3)) then there is 
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a conflict between theoretically achievable accuracy and numerical stability. For 
example, the error bounds for non-stationary interpolation using infinitely smooth 
basis functions show that the error decreases (exponentially) as the fill distance 
decreases. For well-distributed data a decrease in the fill distance also implies a 
decrease of the separation distance. But now the condition estimates of the previous 
subsection imply that the condition number of A grows exponentially. This leads 
to numerical instabilities which make it virtually impossible to obtain the highly 
accurate results promised by the theoretical error bounds. 

Similarly, if we use the shape parameter to (exponentially) increase accuracy 
as guaranteed by Madych's error bound (15.11), then the condition number again 
grows exponentially. This is to be expected since for small values of c: the basic 
functions more and more resemble a constant function, and therefore the rows (as 
well as columns) of the matrix A become more and more alike, so that the matrix 
becomes almost singular - even for well separated data sites. 

In the literature this phenomenon has been referred to as trade-off or ( uncer
tainty) principle (see, e.g., the papers [Schaback (1995b); Schaback (1995c)]). 

Schaback looked at the power function P<I>,x and showed that it can always be 
bounded from above by a function F<I> depending on the fill distance. On the other 
hand, he showed that the Rayleigh quotient can always be bounded from below by a 
function G<I> depending on the separation distance. Furthermore, Schaback showed 
that 

and therefore, for well-distributed data (with qx ~ hx,n), a small error bound (i.e., 
small F<I>(hx,n)) will necessarily result in a small lower bound (i.e., small G<I>(Qx)) 
for the Rayleigh quotient, and therefore for the smallest eigenvalue. This however 
implies a large condition number. 

We have seen evidence of the first trade-off principle in various numerical ex
periments. This trade-off has led a number of people to search for an "optimal" 
value of the shape parameter, i.e., a value that yields maximal accuracy, while still 
maintaining numerical stability. 

In particular, multiquadrics have attracted the best part of this attention. For 
example, in his original work on (inverse) multiquadric interpolation in IR2 Hardy 
[Hardy (1971)] suggested using c: = 1/(0.815d), where d = Jv 2:!1 di, and di is 
the distance from Xi to its nearest neighbor. Later, in [Franke (1982a)], one can 

find the recommended value c: = 0 ·8;{N, where D is the diameter of the smallest 
circle containing all data points. Another strategy for finding a good value for c: is 
based on the observation that such a value seems to be similar for multiquadrics and 
inverse multiquadrics (see [Foley (1994)]). Other studies were reported in [Carlson 
and Foley (1992); Carlson and Natarajan (1994)]. We will consider a more recent 
algorithm proposed in [Rippa (1999)] in the next chapter. 
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16.3 Trade-Off Principle II: Accuracy and Stability vs. Problem 
Size 

More recently, Fornberg and co-workers have investigated the dependence of the 
stability on the values of the shape parameter c in a series of papers (e.g., [Driscoll 
and Fornberg (2002); Fornberg and Wright (2004); Larsson and Fornberg (2005); 
Platte and Driscoll (2005)]). They suggest a way to stably compute very accurate 
generalized (inverse) multiquadric and Gaussian interpolants with extreme values 
of c ---+ 0 by using a complex Contour-Pade integration algorithm. Thus, this ap
proach allows us to overcome the first trade-off principle mentioned in the previous 
section. However, there is another kind of trade-off associated with the Contour
Pade approach. Namely it is limited to only rather small data sets (roughly N = 20 
for s = 1 and N = 80 for s = 2). 

In spite of these limitations the Contour-Pade algorithm has been used to gain 
a number of theoretical insights such as the connection between RBF interpolation 
and polynomial interpolation mentioned in Section 15.6. We present some numerical 
experiments based on the Contour-Pade approach in the next chapter. 

16.4 Trade-Off Principle III: Accuracy vs. Efficiency 

There is also a trade-off principle for compactly supported functions. This was ex
plained theoretically as well as illustrated with numerical experiments in [Schaback 
(1997b)]. The consequences are as follows. In the case of ~tationary interpolation, 
i.e., if we scale the support size of the basis functions proportional to the fill dis
tance hx,n, the "bandwidth" of the interpolation matrix A is kept constant. This 
means we can apply numerical algorithms (e.g., the conjugate gradient method) for 
the solution of the interpolation system that can be performed with O(N) compu
tational complexity. The method is numerically stable, but there will be essentially 
no convergence (see our earlier numerical experiments in Table 12.1). In the non
stationary case, i.e., with fixed support size, the bandwidth of A increases as hx,n 
decreases. This results in convergence (i.e., the error decreases) as we showed with 
our experiments in Table 12.2 and the error bounds in Section 15.1.2. However, 
the interpolation matrices will become more and more densely populated as well as 
ill-conditioned. Therefore, this approach is not very efficient. 



Chapter 17 

Numerical Evidence for Approximation 
Order Results 

17.1 Interpolation for e--+ 0 

We begin by considering the choice of the shape parameter for a fixed data set. 
This is probably the situation that will arise most frequently in practical situations. 
In other words, we assume we are given a set of data ( x J, fj), j = 1, ... , N, with 
data sites Xj E lR.8 (with s = 1 or s = 2 for the purpose of our experiments), and 
function values fj = f(xJ) E JR. Our goal is to use an RBF interpolant 

N 

Pi (x) = 2:= cJcp(llx - Xj II) 
j=l 

to match these data exactly, i.e., to satisfy P1(xi) = f(xi), i = 1, ... , N. The two 
most important questions now seem to be: 

• Which basic function cp should we use? 
• How should we scale the basis functions 'PJ = cp(ll · -XJ II)? 

The error bounds we reviewed in previous chapters give us some insight into 
the first issue. If we know that the data come from a very smooth function, then 
application of one of the smoother basic functions is called for. Otherwise, there 
is not much to be gained from doing so. In fact, these functions may add too 
much smoothness to the interpolant. A first attempt at providing guidelines for the 
selection of appropriate basic functions (or kernels) can be found in [Schaback and 
Wendland (2006)). We will not pursue this issue any further. 

Instead we want to focus our attention on the second question, i.e., the choice of 
the shape parameter c. A number of strategies can be used to guide us in making a 
decision. We will assume throughout that a (fixed) basic function has been chosen, 
and that we will use only one value to scale all basis functions uniformly. Clearly, 
one can also follow other strategies such as using a shape parameter that varies 
with j, or even basic functions that vary with j. While some work has been done 
in these directions (see, e.g., [Bozzini et al. (2002); Kansa and Carlson (1992); 
Schaback and Wendland (2000b); Fornberg and Zuev (2006))), not much concrete 
can be said in these cases. 

141 
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We now discuss four strategies for choosing a "good" value of c. 

17.1.1 Choosing a Good Shape Parameter via Trial and Error 

The simplest strategy is to perform a series of interpolation experiments with vary
ing shape parameter, and then to pick the "best" one. This strategy can be used if 
we know the function f that generated the data, and therefore can calculate some 
sort of error for the interpolant. Of course, if we already know f, then the exercise 
of finding an interpolant Pi may be mostly pointless. However, this is the strategy 
we used for the "academic" examples in Chapter 2. 

If we do not have any knowledge of f, then it becomes very difficult to decide 
what "best" means. One (non-optimal) criterion we used in Chapter 2 was based 
on the trade-off principle, i.e., the fact that for small c the error improves while 
the condition number grows. We then defined "best" to be the smallest c for which 
MATLAB did not issue a near-singular warning. 

In many cases selection of an optimal shape parameter via trial and error will 
end up being a rather subjective process. However, this may presently be the 
approach taken by most practitioners. 

For comparison with the other selection methods featured below we present three 
one-dimensional test cases for which we know the data function f. We use 

F1 ( x) = sine ( x), 

p. (x) = ~ (e-(9x-2)
2 
/4 + e-(9x+1)

2 
/49) + ~e-(9x-7) 2 /4 _ 2._e-(9x-4) 2 

2 4 2 10 ' 

F3(x) = ( 1 - Ix - ~1) 
5 

( 1+5lx - ~I - 27lx - ~12). 
The first of these functions is the classical band limited function (and thus in the 
native space of Gaussians). The second function is a one-dimensional variant of 
Franke's function, and the third function is one of Gneiting's C2 oscillatory com
pactly supported RBFs shifted to the point (1/2, 1/2) (see Table 11.4). 

For these functions we list maximum errors and optimal shape parameters c in 
Table 17.1. Maximum errors for a large range of c values and the different values 
of N used in Table 17.1 are displayed in Figure 17.1. The optimal c values listed 
in Table 17 .1 corresponds to the lowest point for each of the curves in the figure. 
Clearly, the optimal value of the shape parameter is strongly dependent on the 
function that generated the test data. 

17.1.2 The Power Function as Indicator for a Good Shape 
Parameter 

Another strategy is suggested by the error analysis of Chapter 14. We showed there 
in Theorem 14.2 that 

lf(x) - P1(x)I :S P<t>,x(x)llJllN.z.(n), 
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Table 17.1 Optimal e: values based on Gaussian interpolation to various test func-
tions in lD for various choices of N uniform points. 

N 

3 
5 
9 
17 
33 
65 

F1 F2 F3 

max-error optimal e: max-error 

2.1403e-003 1.12 4.9722e-001 
2.3260e-005 0.68 6.9380e-002 
4.8764e-009 0.64 1. 7555e-002 
l.8922e-010 LOO 2. l 928e-004 
1.5250e-010 2.04 l.6536e-007 
4.1307e-010 2.04 3.6260e-009 

---- ········· ....... """ .... 
... -";.--~:'.--~~·~~:.:::.::•"';;:::.-·-·-·-·-·-· 
... ····· ,.,. 

,· ,. 
/ 

5 10 
E 

15 

g 
w 

20 

optimal e: 

2.20 
5.44 
5.20 
5.80 
6.08 
7.48 

max-error 

3. 7087e-002 
2.5253e-002 
2.5360e-003 
l .4380e-003 
3.4189e-004 
8.6431e-005 

optimal e: 

5.68 
5.20 
8.84 
9.52 
13.24 
21.84 

-N=3 
- - -N=5 
······ N=9 
·-·-·N=17 
-N=33 

J.-----, - - -N=65 · 

10-•...._ __ __,, _______ ~----

o 5 10 15 20 
E 

Fig. 17.1 Optimal e: curves based on Gaussian interpolation in lD for various choices of N uniform 
points. Data sampled from sine function F1 (left) and C 2 oscillatory function F3 (right). 

where P<t>,x denotes the power function. This estimate decouples the interpolation 
error into a component independent of the data function f and one depending on 
f. Once we have decided on a basic function <P and a data set X we can use the 
power function based on scaled versions of <P to optimize the error component that 
is independent of f: While this approach has the advantage over the previously 
mentioned trial and error approach that it is objective and does not depend on 
any knowledge of the data function, unfortunately, this approach will not be an 
optimal one since the second component of the error bound also depends on the 
basic function via the native space norm (which changes when <P is scaled). 

We said earlier (see (14.4)) that the power function can be computed via 

P<t>,x(x) = .j<t>(x, x) - (b(x))T A-lb(x), 

where A is the interpolation matrix and b = [<P(·, x 1), ... , <1>(·, XN )JT. This formula 
is implemented on lines 15-18 in the MATLAB program Powerfunction2D. m. We 
compute the inverse of A using the function pinv which is based on the singular 
value decomposition of A and therefore guarantees maximum stability. Also, due to 
roundoff some of the arguments of the sqrt function on line 18 come out negative. 
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This explains the use of the real command. The vectors b(x) are just rows of the 
evaluation matrix if x is taken from the grid of evaluation points we used earlier 
for error computations and plotting purposes. Except for the loop over the shape 
parameter c: (lines 12-20) the rest of the program is similar to earlier code. 

Program 17.1. Powerfunction2D.m 

% Powerfunction2D 
% Script that finds "optimal" shape parameter by computing the power 
% function for the 2D RBF interpolation approach with varying epsilon 
% Calls on: DistanceMatrix 

1 rbf = ©(e,r) exp(-(e*r).-2); % Define the Gaussian RBF 
% Parameters for shape parameter loop below 

2 mine = O; maxe = 20; 
3 ne = 500; ep = linspace(mine,maxe,ne); 

% Number and type of data points 
4 N = 81; gridtype = 'u'; 

% Resolution of grid for power function norm computation 
5 neval = 20; M = neva1-2; 

% Load data points 
6 name= sprintf('Data2D_%d%s' ,N,gridtype); load(name) 
7 ctrs = dsites; % centers coincide with data sites 
8 grid= linspace(0,1,neval); [xe,ye] = meshgrid(grid); 
9 epoints = [xe(:) ye(:)]; 

% Compute distance matrix between evaluation points and centers 
10 DM_eval = DistanceMatrix(epoints,ctrs); 

% Compute distance matrix between the data sites and centers 
11 DM_data = DistanceMatrix(dsites,ctrs); 
12 for i=l:length(ep) 

% Compute interpolation matrix 
13 IM= rbf(ep(i),DM_data); 

% Compute evaluation matrix 
14 EM= rbf(ep(i),DM_eval); 

% Compute power function at evaluation points 
15 invIM = inv(IM); phiO = rbf(ep(i),0); 
16 for j=1:M 
17 powfun(j) = real(sqrt(phiO-(invIM*EM(j,:)')'*EM(j,:)')); 
18 end 

% Compute max. norm of power function on evaluation grid 
19 maxPF(i) = max(powfun); 
20 end 
21 fprintf('Smallest maximum norm: %e\n', min(maxPF)) 
22 fprintf('at epsilon= %f\n',ep(maxPF==min(maxPF))) 
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23 fprintf('with cond(A) = %e\n', ... 
condest(rbf(ep(find(maxPF==min(maxPF))),DM_data))) 

% Plot power function norm 
24 figure; semilogy(ep,maxPF,'b'); 
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In Figure 17.2 we show plots of the maximum norms of the power function 
vs. c for a one-dimensional experiment (left) and a 2D experiment (right). Each 
plot shows several curves corresponding to different choices of N (set on line 4 of 
Powerfuntion2D.m). The optimal c values along with the corresponding condition 
numbers of the interpolation matrix (computed using the condest command) are 
listed in Table 17.2. The graphs of the maximum norm of the power function can 
all be included in a single plot by adding another loop to the program which varies 
N. The program for the one-dimensional case is almost identical to the one printed 
and therefore omitted. 
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Fig. 17.2 Optimal E curves based on power functions for Gaussians in lD (left) and 2D (right) 
for various choices of N uniform points. 

Clearly, even for the small data sets considered here, the numerical instability, 
i.e., large condition number of the interpolation matrix A, plays a significant role. 

Table 17.2 Optimal E values based on power functions for Gaus-
sians in lD and 2D for various choices of N uniform points. 

lD 2D 

N optimal E cond(A) N optimal E cond(A) 

3 0.04 l.8749e+007 9 0.16 5.3534e+009 
5 0.44 5. 7658e+007 25 0.84 l.02lle+Oll 
9 1.72 6.5682e+008 81 0.04 2.0734e+Ol9 
17 4.48 6.1306e+009 289 0.56 l.2194e+020 
33 9.60 5.4579e+Ol0 
65 19.52 l.2440e+Oll 
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17.1.3 Choosing a Good Shape Parameter via Cross Validation 

A third strategy for finding an "optimal" shape parameter is to use a cross valida
tion approach. In [Rippa (1999)] an algorithm is described that corresponds to a 
variant of cross validation known as "leave-one-out" cross validation. This method 
is rather popular in the statistics literature where it is also known as PRESS (Pre
dictive REsidual Sum of Squares) provided the 2-norm is used. In this algorithm 
an "optimal" value of c is selected by minimizing the (least squares) error for a fit 
to the data based on an interpolant for which one of the centers was "left out". A 
major advantage over the previous method is that now the dependence of the error 
on the data function is also taken into account. Therefore, the predicted "optimal" 
shape parameter is closer to the one we found via the trial and error approach (for 
which we had to assume knowledge of the exact solution). 

A similar strategy was proposed earlier in [Golberg et al. (1996)] for the solution 
of elliptic partial differential equations via the dual reciprocity method based on 
multiquadric interpolation. 

Specifically, if Pjkl is the radial basis function interpolant to the data 

{Ji,···, fk-11 fk+l1 · · ·, fN }, i.e., 
N 

Pjkl (x) = L c}kl'P(llx - Xj II), 

such that 

Pjkl (xi) = fi, 

and if Ek is the error 

j=l 
j#k 

i = 1, ... , k - 1, k + 1, ... , N, 

Ek = fk - Pjkl (xk) 

at the one point Xk not used to determine the interpolant, then the quality of the 
fit is determined by the norm of the vector of errors E = [E1, ... , EN]T obtained 
by removing in turn one of the data points and comparing the resulting fit with 
the (known) value at the removed point. In [Rippa (1999)] the author presented 
examples based on use of the f 1 and f 2 norms. We will mostly use the maximum 
norm (see line 14 in the code below). 

By adding a loop over c we can compare the error norms for different values of 
the shape parameter, and choose that value of c that yields the minimal error norm 
as the optimal one. 

While a naive implementation of the leave-one-out algorithm is rather expensive 
(on the order of N 4 operations), Rippa showed that the computation of the error 
components can be simplified to a single formula 

E -~ 
k - A-1' 

kk 
(17.1) 

where Ck is the kth coefficient in the interpolant Pf based on the full data set, and 
AJ;1 is the kth diagonal element of the inverse of the corresponding interpolation 
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matrix. Since both Ck and A- 1 need to be computed only once for each value of c 
this results in O(N3 ) computational complexity. Note that all entries in the error 
vector E can be computed in a single statement in MATLAB if we vectorize the 
component formula (17.1) (see line 13 in Program 17.2). The sine function used 
on line 5 is not a standard MATLAB function (it is part of the Signal Processing 
Toolbox). Therefore we provide it in Program C.2 in Appendix C. 

Program 17.2. LOOCV2D.m 

% LOOCV2D 
% Script that performs leave-one-out cross-validation 
% (Rippa's method) to find a good epsilon for 2D RBF interpolation 
% Calls on: DistanceMatrix 

1 rbf = ©(e,r) exp(-(e*r).-2); % Gaussian RBF 
% Parameters for shape parameter loop below 

2 mine = O; maxe = 20; ne = 500; 
3 ep = linspace(mine,maxe,ne); 

% Number and type of data points 
4 N = 81; gridtype = 'u'; 

% Define test function 
5 testfunction = ©(x,y) sinc(x).*sinc(y); 

% Load data points 
6 name= sprintf('Data2D_%d%s',N,gridtype); load(name) 
7 ctrs = dsites; % centers coincide with data sites 

% Create right-hand side vector, i.e., 
% evaluate the test function at the data points. 

8 rhs = testfunction(dsites(:,1),dsites(:,2)); 
% Compute distance matrix between the data sites and centers 

9 DM_data = DistanceMatrix(dsites,ctrs); 
10 for i=l:length(ep) 

% Compute interpolation matrix 
11 IM= rbf(ep(i),DM_data); 

% Compute error function (i.e., "cost 11 of epsilon) 
12 invIM = pinv(IM); 
13 EF = (invIM*rhs)./diag(invIM); 

% Compute maximum norm of EF 
14 maxEF(i) = norm(EF(:),inf); 
15 end 
16 fprintf('Smallest maximum norm: %e\n', min(maxEF)) 
17 fprintf(~at epsilon= %f\n',ep(maxEF==min(maxEF))) 

% Plot cost function norm 
18 figure; semilogy(ep,maxEF,'b'); 

In Figure 17.3 we show plots of the predicted maximum errors vs. c for a one-
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dimensional experiment (left) and a 2D experiment (right) based on data sampled 
from the sine function F 1 . Each plot shows several curves corresponding to different 
choices of N (set on line 4 of LOOCV2D.m). The optimal c values are listed in 
Table 17.3. 
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Fig. I 7.3 Optimal e curves based on leave-one-out cross validation for interpolation to the sine 
function with Gaussians in ID (left) and 2D (right) for various choices of N uniform points. 

Table I 7.3 Optimal e values based 
on leave-one-out cross validation for 
interpolation to the sine function 
with Gaussians in ID and 2D for 
various choices of N uniform points. 

ID 2D 

N optimal e N optimal e 

3 0.96 9 0.96 
5 1.00 25 1.00 
9 0.80 8I 1.48 
I7 0.92 289 1.60 
33 1.92 
65 1.76 

The graphs in Figure 17.4 show side-by-side the optimal c curves for the trial and 
error approach and for the leave-one-out cross validation approach in the case of lD 
Gaussian interpolation to data sampled from the test function F2 . The similarity 
of the curves is clearly apparent. Thus, the leave-one-out cross validation approach 
can be recommended as a good method for selecting an "optimal" shape parameter 
c since for this method no knowledge of the exact error is needed. Another pair of 
comparison plots is given by the Gaussian interpolants to the sine function F1 in 
Figure 17 .1 (left) and Figure 17 .3 (left). 

Similar conclusions hold for other basic functions, other test functions, other 
data distributions, and other space dimensions. For example, Figure 17.5 shows the 
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Fig. 17.4 Optimal c curves based on interpolation to the test function F2 with Gaussians for 
various choices of N uniform points. Trial and error approach (left), leave-one-out cross validation 
(right). 

optimal E curves for interpolation to the lD Franke function F2 with Wendland's 
C 2 function cp3 ,1 on uniformly spaced points, and on Chebyshev points. Note that 
for this configuration all computations are stable, and the optimal scale parameter 
is quite small, i.e., the support radius of the compactly supported basic function is 
chosen to be very large. In other words, the best results for compactly supported 
functions are obtained with dense matrices. 
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Fig. 17.5 Optimal c curves based on leave-one-out cross validation for interpolation to ID Franke's 
function with Wendland 's function 'P3, 1 for various choices of N uniform points (left) and Cheby
shev points (right). 

If we are not interested in the €-curves displayed above, but only want to find 
a good value of the shape parameter as quickly as possible, then we can use the 
MATLAB function fminbnd to find the minimum of the cost function for E. First, 
we implement the cost function in the subroutine CostEpsilon. m displayed in Pro
gram 17.3. The commands are the same as those on lines 11-14 in Program 17.2. 
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Program 17.3. CostEpsilon.m 

% ceps = CostEpsilon(ep,r,rbf ,rhs) 
% Implements cost function for optimization of shape parameter 
% via Rippa's LOOCV algorithm 
% Example of usage in LOOCV2Dmin.m 

1 function ceps = CostEpsilon(ep,r,rbf ,rhs) 
2 A= rbf(ep,r); 
3 invA = pinv(A); 
4 EF = (invA*rhs)./diag(invA); 
5 ceps = norm(EF(:),inf); 

In order to demonstrate the use of the CostEpsilon function we use a modifi
cation of Program 17.2 which we list as Program 17.4. 

Program 17.4. LOOCV2Dmin.m 

% LOOCV2Dmin 
% Script that performs leave-one-out cross-validation 
% (Rippa's method) to find a good epsilon for 2D RBF interpolation 
% with the help of MATLAB's fminbnd 
% Calls on: DistanceMatrix 
% Requires: CostEpsilon 

1 rbf = ©(e,r) exp(-(e*r).-2); % Gaussian RBF 
% Parameters for shape parameter optimization below 

2 mine = O; maxe = 20; 
% Number and type of data points 

3 N = 81; gridtype = 'u'; 
% Define test function 

4 testfunction = ©(x,y) sinc(x).*sinc(y); 
% Load data points 

5 name= sprintf('Data2D_%d%s' ,N,gridtype); load(name) 
6 ctrs = dsites; % centers coincide with data sites 

% Create right-hand side vector, i.e., 
% evaluate the test function at the data points. 

7 rhs = testfunction(dsites(: ,1),dsites(:,2)); 
% Compute distance matrix between the data sites and centers 

8 DM_data = DistanceMatrix(dsites,ctrs); 
9a [ep,fval] = fminbnd(©(ep) CostEpsilon(ep,DM_data,rbf,rhs), ... 
9b mine,maxe); 

10 fprintf('Smallest maximum norm: %e\n', fval) 
11 fprintf('at epsilon= %f\n', ep) 
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17.1.4 The Contour-Pade Algorithm 

The Contour-Pade algorithm was the subject of Grady Wright's Ph.D. thesis 
[Wright (2003)] and was reported in [Fornberg and Wright (2004)]. The aim of 
the Contour-Pade algorithm is to come up with a method that allows the computa
tion and evaluation of RBF interpolants for infinitely smooth basic functions when 
the shape parameter E tends to zero (including the limiting case). 

The starting point is to consider evaluation of the RBF interpolant 

N 

P1(x,c) = :Lcjcpi:(llx - Xjll) 
j=l 

for a fixed evaluation point x as an analytic function of c. 
The key idea is to represent Pf ( x, E) by a Laurent series in c, and approximate 

the "negative part" of the series by a Pade approximant, i.e., 
00 

P1(x,c) ~ r(c) + Ldkck, 
k=O 

where r(c) is the rational Pade approximant. 
We then rewrite the interpolant in cardinal form, i.e., as 

N 

P1(x,c) = :Lcjcpi:(llx - Xjll) 
j=l 

= bT(x,c)c 

= bT(x,c)A-1(c)f 

= (u*(x,c))T f 

where b(x,E)j = 'Pi:(llx- Xjll), A(c)i,j = 'Pi:(llxi - Xjll), c = [c1, ... ,cNJI', f = 

[!1, · .. , fNJI', and 

u*(x,c) = A-1 (c)b(x,c) 

denotes the vector of values of the cardinal functions at x (c.f. Chapter 14). 
It is now the goal to stably compute the vector u*(c) for all values of E 2:: 0 with

out explicitly forming the inverse A(c)- 1 and without computing the matrix vector 
product A(c)- 1b(c). Here the vectors u*(c) and b(c) are obtained by evaluating 
the vector functions u * ( ·, E) and b( ·, c) on an appropriate evaluation grid. 

The solution proposed by Wright and Fornberg is to use Cauchy's integral the
orem to integrate around a circle in the complex c-plane. The residuals (i.e., co
efficients in the Laurent expansion) are obtained using the (inverse) fast Fourier 
transform. The terms with negative powers of c are then approximated using a 
rational Pade approximant. The integration contour (usually a circle) has to lie 
between the region of instability near c = 0 and possible branch point singularities 
that lie somewhere in the complex plane depending on the choice of cp. Details of 
the method can be found in [Fornberg and Wright (2004)]. 
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In Figure 17.6 we show optimal c curves for interpolation to the lD and 2D 
sine function F2 using Gaussians at equally spaced points. These curves should be 
compared with the optimal c curves obtaine_d for the same problem via trial and 
error (see Figure 17.1 and Table 17.1) and via leave-one-out cross validation (see 
Figure 17.3 and Table 17.3). 

The main drawback of the Contour-Pade algorithm is the fact that if N becomes 
too large then the region of ill-conditioning around the origin in the complex c
plane and the branch point singularities will overlap. This, however, implies that 
the method can only be used with limited success. Moreover, as the graphs in 
Figure 17.6 and the entries in Table 17.4 show, the value of N that has to be 
considered "large" is unfortunately rather small. For the one-dimensional case the 
results for N = 17 already are affected by instabilities, and in the two-dimensional 
experiment N = 81 causes problems. 
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Fig. 17.6 Optimal e curves based on Contour-Pade for interpolation to the sine function with 
Gaussians in lD (left) and 2D (right) for various choices of N uniform points. 

Table 17.4 Optimal e values based on Contour-Pade for interpolation to the sine 
function with Gaussians in lD and 2D for various choices of N uniform points. 

lD 2D 

N max-error € cond(A) N max-error € cond(A) 

3 1. 7605e-003 1.10 3.3386e+001 9 3.3875e-003 1.10 1.1146e+003 
5 4.0380e-005 0.70 1.3852e+006 25 5.5542e-005 0.70 l.9187e+Ol2 
9 3.9703e-009 0.45 7. 7731e+016 81 3.6528e-004 0.00 00 

17 l.2726e-009 0.45 1. 7327e+018 

17.1.5 Summary 

All strategies pursued in this chapter have shown that even though the bound 
(15.11) by Madych seems to indicate that the interpolation error for functions in 



17. Numerical Evidence for Approximation Order Results 153 

the native space of the basic function goes to zero exponentially as c ---+ 0, this 
does not seem to be true in practice. Especially those optimal c curves that were 
computed reliably with the Contour-Pade algorithm all have a global minimum for 
some positive value of c. In many cases this optimal c value (or an c close to the 
optimal value) can be found using the leave-one-out cross validation algorithm of 
Program 17.2. From now on we will frequently use leave-one-out cross validation 
to find an optimal shape parameter for our numerical experiments. 

17.2 Non-stationary Interpolation 

In order to illustrate the spectral convergence predicted for infinitely smooth basic 
functions such as Gaussians and generalized (inverse) multiquadrics we need to work 
in a setting for which neither the instability due to large problem size or small shape 
parameter have a significant effect on our experiments. Otherwise, if we simply take 
an "optimal" value of c (determined via trial and error for a large N = 4225 problem 
in the "gray zone", c.f. Chapter 2) then the spectral convergence will only be visible 
for a limited number of experiments (see Table 17.5). 

Table 17.5 20 non-stationary interpolation (c- = 6.3) to 
Franke's function with Gaussians on uniformly spaced and 
Halton points. 

uniform Halton 

N RMS-error rate RMS-error 

9 3. l 95983e-OO 1 2. 734756e-001 
25 5.00859le-002 2.6738 8.831682e-002 
81 9.029664e-003 2.4717 2.401868e-002 

rate 

2.3004 
1.7582 

289 2.263880e-004 5.3178 l.589117e-003 5.0969 
1089 3.323287e-008 12.7339 l.59505le-006 10.8015 
4225 l.868286e-008 0.8309 9.510404e-008 4.8203 

Even for a band-limited function (see Table 17.6) the situation is not better; in 
fact worse, for the value of c used. 

In Figures 17.7-17.8 we are able to verify (at least to some extent) the conver
gence estimates for non-stationary RBF interpolants. We obtain the data for all 
experiments by sampling the sine function f(x) = sin('rrx)/('rrx) at N uniformly 
spaced points in the interval [O, 1] where N runs from 1 to 100. Each plot shows six 
maximum error curves (corresponding to shape parameters c = 1, 6, 11, 16, 21, 26) 
versus the number N of data points on a loglog scale. The errors are evaluated on a 
grid of 250 equally spaced points. In order to compare these curves with the theo
retical bounds from Chapter 15 we have plotted comparison curves corresponding to 
the theoretical bounds. For Gaussians the comparison curve is given by the graph 
of hr--+ e-1 Ioghl/h corresponding to super-spectral convergence with h = 1/(N -1), 
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Table 17.6 2D non-stationary interpolation (c: = 6.3) to the sine 
function with Gaussians on uniformly spaced and Halton points. 

uniform 

N RMS-error 

9 3. 302644e-OO 1 
25 3.271035e-002 
81 l.293184e-002 

289 3.786113e-004 
1089 3.476835e-008 
4225 3. 775365e-008 

... .... ,···· .. :_ .... ~ .... .... , 
, __ ·4 ...... ~.:,,,,' -

.. '' ·<.:~< .... 
'\ ·.. ·, 

\ ·.. ·, 
'\ ··.. ·,_ 

\ ·. \ 

\ 
\ 

rate 

3.3358 
1.3388 
5.0941 
13.4107 
-0.1188 

Halton 

RMS-error rate 

2.823150e-001 
l .282572e-001 1.6058 
3.407580e-002 1.7898 
l.990217e-003 5.3309 
2.286014e-006 10.5905 
9.868530e-008 5.3724 
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Fig. 17. 7 Maximum errors for non-stationary interpolation to the sine function with Gaussians 
(left) and inverse multiquadrics (right) based on N uniformly spaced points in [O, 1] and c: = 
1, 6, 11, 16, 21, 26. 

and for inverse multiquadrics we have spectral convergence with h t--+ e-l/h. We 
can see that for a certain range of problems these rates are indeed obtained (see 
Figµre 17.7). 

In the case of functions with finite smoothness (such as the compactly sup
ported functions of Wendland) we can only expect algebraic convergence rates. 
Figure 17.8 shows two more sets of maximum error curves. These plots are 
based on Wendland's C 2 function <p3,1(r) = (1 - r)t(4r + 1) and the C6 func
tion <p3,3(r) = (1-r)~(32r3 +25r2 +8r+1). While the error bound (15.5) predicts 
only O(h312 ) and O(h712 ) approximation order, respectively. We see that an extra 
factor of h512 is indeed possible in practice. This extra factor has also been captured 
in some of the theoretical work on improved error bounds ( c.f. Section 15.2). 

For less smooth data functions we no longer have spectral convergence for 
the infinitely smooth functions, while the orders remain unchanged for the ba
sic functions with finite smoothness (as long as the data function lies in the 
native space of the basic function). This is illustrated in Figure 17.9 where 
we compare Gaussians and C 2 Wendland functions for the C 2 test function 
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Fig. 17.8 Maximum errors for non-stationary interpolation to the sine function with C 2 (left) 
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Fig. 17.9 Maximum errors for non-stationary interpolation to a C 2 function with Gaussians 
(left) and C 2 Wendland function (right) based on N uniformly spaced points in (0, 1] and c = 
1, 6, 11, 16, 21, 26. 

(1 - Ix - 1/21)~(1 + 5lx - 1/21 - 27(x - 1/2)2 ) (c.f. the oscillatory functions of 
Table 11.4). It is interesting to note that for a certain range of N the rate of 
convergence for the 0 2 Wendland function is even better than predicted. 

17.3 Stationary Interpolation 

We begin with an illustration of the fact that for radial powers and thin plate 
splines there is no difference in convergence behavior between the stationary and 
non-stationary regime. Figure 17.10 shows this phenomenon for the norm radial 
function <I>(x) = llxll in the case of interpolation to data sampled from the 0 2 

function f(x) = Ix - 1/2J3 at uniformly spaced points in [O, 1]. Moreover, the left 
plot in Figure 17.10 (illustrating the non-stationary setting) shows that the shape 



156 Meshfree Approximation Methods with MATLAB 

g 10-4 

W •~----E=-1~ 

- - -e=6 

10
-e "'"' E=11 

·-·- E=16 
-e=21 
- - -e=26 

10-ei.====--------------
1~ 1~ 1~ 1~ 1~ 

N 

•··•• .. h2 

···· ... 
g 10-4 ··· .... 

······ ... w 

10-e 

10-e..__ __ _._ ___ .__ __ _._ __ _ 

1~ 1~ 1~ 1~ 1~ 
N 

Fig. 17.10 Maximum errors for non-stationary (left) and stationary (right) interpolation to a C 2 

function with the norm basic function based on N uniformly spaced points in (0, 1). 

parameter has no effect for the norm basic function and other polyharmonic splines. 
Note that Figure 17.10 suggests that the norm basic function has O(h2 ) approx

imation order, while the bound from Theorem 15.3 with T = k = {3 = 1, n = 0, 
s = 1 and q = oo yields only O(h112 ). Since the norm basic function is strictly 
conditionally positive definite of order one we can use the same RBF expansion 
as for strictly positive definite functions, i.e., without appending a constant ( c.f. 
Theorem 9. 7). 

The discrepancy between the theoretical bounds of Theorem 15.3 (or Theo
rem 15.4 as well as the native space bounds of Examples 15.6 and 15.7 of Chap
ter 15) and those observed in numerical experiments is similar for radial cubics and 
thin plate splines (which are both strictly conditionally positive definite of order 
two). For cubics Theorem 15.3 with T = {3 = 3, k = 2, n = 0, s = 2 and q = oo 
predicts O(h2 ) since the mesh ratio provides another power of h for uniformly dis
tributed data. The left plot of Figure 17.11, however, suggests O(h3 ) or better £ 00 

approximation order based on interpolation to the 2D analog of the oscillatory C 2 

test function F3, i.e., f(x) = (1- llx - (1/2, 1/2) 11)~(1+5llx - (1/2, 1/2) II - 27llx
(l/2, 1/2)11 2 ). The predicted rate for thin plate splines is O(h312 ) (since T = 2{3 = 2, 
k = 2, n = 0, s = 2 and q = oo) while the plot on the right of Figure 17.11 indicates 
at least O(h2 ) convergence. 

For Gaussian basis functions we noted earlier that we should not expect any con
vergence in the stationary setting. However, if the initial shape parameter is chosen 
small enough (but not too small), then we can observe the approximate approxima
tion phenomenon, i.e., there is convergence up to a certain point, and then satura
tion occurs. This is depicted in Figure 17.12. In the left plot we used the Gaussian 
basic function with different initial shape parameters (c = 0.8, 1.0, 1.2, 1.4, 1.6, 1.8) 
to interpolate data sampled from the oscillatory C 2 function used in the previous 
illustration at uniformly spaced points in the unit square. The plot on the right 
corresponds to Gaussian interpolation of data sampled from the 2D sine function 
f(x, y) = sinc(x)sinc(y) with initial€= 0.1, 0.2, 0.3, 0.4, 0.5, 0.6. 
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If we consider the range of N values used in the experiments (N 
9, 25, 81, 289, 1089, 4225), then we see that stationary interpolation with Gaussians 
does converge for the smaller values of N (at at rate better than O(h2 )). However, 
the larger the value of the initial c is taken, the sooner does the saturation occur. 
It is also apparent that in the case of interpolation to the sine function small ini
tial values of the shape parameter lead to severe ill-conditioning and subsequent 
instabilities especially for the tests with larger values of N. We also point out that 
the range of values of c for which we can observe convergence depends on the data 
function f. 

We will come back to the approximate approximation phenomenon in the con
text of quasi-interpolation and approximate moving least squares approximation in 
Chapters 26 and 27. 





Chapter 18 

The Optimality of RBF Interpolation 

In this chapter we will see that within the native Hilbert spaces associated with 
strictly positive definite (and strictly conditionally positive definite) radial functions 
the radial basis function interpolant provides the best approximation to a given 
data function. This optimality of interpolants in Hilbert space is the subject of the 
theory of optimal recovery described in the late 1950s by Michael Golomb and Hans 
Weinberger in their paper [Golomb and Weinberger (1959)]. 

18.1 The Connection to Optimal Recovery 

In [Golomb and Weinberger (1959)] the authors studied the following general prob
lem: 

Problem 18.1. Given the values Ji = A1 (!), ... ,JN = AN(!) E IR, where 
{Al, ... , AN} is a linearly independent set of linear functionals {called information 
functionals yielding the information about f ), how does one "best" approximate the 
value A(j) (called a feature of f) where A is a given linear functional and J is 
unknown? Moreover, what is the total range of values for A(j) '? 

This is a very general problem formulation that allows not only for interpolation 
of function values, but also for other types of data (such as values of derivatives 
and integrals off, such as averages or moments of J, etc.), as well as methods of 
approximation other than interpolation. 

The kind of problem described above is known in the literature as an optimal 
recovery problem. Besides the seminal work by Golomb and Weinberger, optimal 
recovery was also studied in detail by Micchelli, Rivlin and Winograd [Micchelli et 
al. (1976); Micchelli and Rivlin (1977); Micchelli and Rivlin (1980); Micchelli and 
Rivlin (1985)]. 

In a Hilbert space setting the solution to this optimal recovery problem is shown 
to be the minimum-norm interpolant. More precisely, given a Hilbert space 1t and 
data Ji =Al(!), ... , JN= AN(!) E IR with {A1, ... , AN} ~ 1t* (the dual of 1t), the 
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minimum-norm interpolant is that function g* E 1t that satisfies 

j = 1, ... ,N, 

and for which 

mm ll9llH· 
gE'H. 

>.j(g)=!j ,j=l, ... ,N 

It turns out that the radial basis function interpolant with basic function <I> satisfies 
these criteria if 1t is taken as the associated native space N<f!(fJ). 

We will present three optimality results: 

• The radial basis function interpolant for any strictly conditionally positive def
inite function <I> is the minimum norm interpolant from N<f!(fJ). 

• The radial basis function interpolant provides the best approximation to f in 
the native space norm. 

• The (cardinal form of the) radial basis function interpolant is more accurate 
(as measured by the pointwise error) than any other linear combination of the 
data. 

18.2 Orthogonality in Reproducing Kernel Hilbert Spaces 

The proofs of the first two "optimality theorems" require the following two lemmas. 
These lemmas and their corollary can also be generalized to cover the strictly con
ditionally positive definite case. However, to keep our discussion transparent, we 
present only the details of the strictly positive definite case. 

Lemma 18.1. Assume <I> is a symmetric strictly positive definite kernel on JR5 and 
let P1 be the interyolant to f E N<f!(fJ) at the data sites x = {x1, ... ,xN} ~ n. 
Then 

(Pf, Pf - g)N'fl(n) = 0 

for all interyolants g E N<t>(fJ), i.e., with g(xj) = f(xj), j = 1, ... , N. 

Proof. The interpolant Pf is of the form 

N 

P1 = :Z::::cj<I>(·,xj), 
j=l 

where the coefficients Cj are determined by the interpolation conditions Pf (Xi) = 

f (xi), i = 1, ... , N. Using this representation, the symmetry of the kernel <I> and 
its reproducing property we have 

N 

(PJ, P1 - g)N'fl(n) = (L Cj<I>(·, Xj ), P1 - g)N'fl(n) 
j=l 



18. The Optimality of RBF Interpolation 

N 

= Lci(q>(.,xj), Pf -g)N.z,(O) 
j=l 

N 

= L Cj (Pf - g, q>(-, Xj ))N.z,(O) 
j=l 

N 

= L cj(Pf - g)(xj) 
j=l 

=0 

since both Pf and g interpolate f on X. 
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For the next result, recall the definition of the space H<1>(X) as the linear span 

H<1>(X) = span{q>(·, Xj): Xj EX} 

(c.f. (13.1)). Clearly, H<1>(X) is a subspace of the native space N<:>(D). 

Lemma 18.2. Assume q> is a strictly positive definite kernel on IRs and let Pf be 
the interpolant to f E N<1>(D) on x = {x1, ... 'XN} ~ n. Then 

(! - Pf, h)N.z,(O) = 0 

for all h E Hit>(X). 

Proof. Any h E H ti> ( X) can be written in the form 
N 

h = LC/l>(·,Xj) 
j=l 

with appropriate coefficients Cj. Using this representation of h as well as the repro
ducing property of q> we have 

N 

(f-Pf,h)N.z,(O.) = (f-Pf,LCjq>(.,xj))N.z,(O) 
j=l 

N 

= L Cj (f - Pj' q>(·, Xj ))N.z,(O) 
j=l 

N 

=Lei(! - Pf )(xj)· 
j=l 

This last expression, however, is zero since Pf interpolates f on X, i.e., (f -
Pf)(xj)=O,j=l, ... ,N. 0 

The following Pythagorean theorem (or "energy splitting" theorem) is an im
mediate consequence of Lemma 18.2. It says that the native space "energy" off 
can be split into the "energy" of the interpolant Pf and that of the residual f - Pf, 
which - according to Lemma 18.2 - is orthogonal to the interpolant. 

Corollary 18.1. The orthogonality property of Lemma 18.2 implies the energy split 

111111..,(n) = II! - Pf 1114>(n) + llPf 111<1>(0.)· 
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Proof. The statement follows from 

ll!lli<t>(n) =II! - P1 + P1 lli<t>(n) 
= ((f-P1) +Pf, (f-P1) + P1)N<t>(n) 
=II! - P111i<t>(f2) + 2(! - Pj, P1)N<1>(fi) + llP111i.z,(f2) 

and the fact that(! - Pf, P1 )N<t>(n) = 0 by Lemma 18:2 since P1 E H<t.>(X). D 

The above energy split is the fundamental idea behind a number of Krylov
type iterative algorithms for approximately solving the interpolation problem when 
very large data sets are involved (see, e.g., our discussion in Chapter 33 or the 
papers [Faul and Powell (1999); Faul and Powell (2000)] or [Schaback and Wendland 
(2000a)]). 

18.3 Optimality Theorem I 

The following theorem presents the first optimality property formulated for the gen
eral case of strictly conditionally positive definite kernels. It is taken from [Wend
land (2005a)]. 

Theorem 18.1 (Optimality I). Suppose <I> E C(f2 x f2) is a strictly conditionally 
positive definite kernel with respect to the finite-dimensional space P ~ C(f2) and 
that X is P-unisolvent. lf the values Ji, ... , f N are given, then the interpolant Pf 
is the minimum-{semi)norm interpolant to {fj}f=1 , i.e., 

mm lglN<t>(fi)· gEM.z,(O.) 
g(""j )=fj ,j=l,. .. ,N 

Proof. We consider only the strictly positive definite case. Consider an arbitrary 
interpolant g E N<t>(f2) to Ji, ... , fN· Then Lemma 18.l gives us 

(PJ, P1 - g)N<t>(n) = 0. 

This orthogonality relation gives us 

IP11i.z,(f2) = (PJ, P1 - g + g)N.z,(fi) 
= (PJ, P1 - g)N.z,(n) + (PJ, g)N.z,(n) 
= (PJ,g)N<t>(n), 

and the Cauchy-Schwarz inequality yields 

IP117v<i>(n):::; IP1IN.z,(n)lglN.z,(n), 

so that the statement follows. D 

As in our earlier use of conditionally positive definite functions, the space P 
mentioned in Theorem 18.1 is usually taken as the space rr:n,_ 1 of multivariate 
polynomials. Also, if <I> is strictly positive definite then the semi-norms in Theo
rem 18.1 become norms. 
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Example 18.1. We said earlier that the native space of thin plate splines ¢(r) = 

r 2 logr, r = llxll2 with x = (x, y) E IR2 is given by the Beppo-Levi space BL2(IR2). 
Now, the corresponding semi-norm in the Beppo-Levi space BL2 (IR 2) is ( c.f. ( 13. 6)) 

2 r (I [J2 f 12 I [J2 f 12 I a2 f 12) lflBL2(JR2) = JR2 8x2 (x) + 2 axay (x) + 8y2 (x) dx, 

which is the bending energy of a thin plate. By Theorem 18.1 the thin plate spline 
interpolant minimizes this energy. This explains the name of these functions. 

18.4 Optimality Theorem II 

Another nice property of the radial basis function interpolant is the fact that it is 
at the same time the best Hilbert-space approximation to the given data, and thus 
not just any projection off but the orthogonal projection. Again, we formulate the 
theorem for the strictly conditionally positive definite case and provide details only 
for the strictly positive definite case. 

Theorem 18.2 (Optimality II). Let 

N 

Hct>(X) = {h = I:c/I>(-,xj) +p 
j=l 

N 

pEP 

and L Cjq(xj) = 0 for all q E P and Xj E X}, 
j=l 

where <I> E C(fl x fl) is a strictly conditionally positive definite kernel with respect 
to the finite-dimensional space P ~ C(fl) and X is P-unisolvent. If only the val
ues Ji = f(x1), ... , f N = f(xN) are given, then the interpolant 'Pt is the best 
approximation to f from Hct>(X) in Nct>(fl), i.e., 

If - 'PtlN~(n) :S If - hlN~(n) 

for all h E Hct>(X). 

Proof. We consider only the strictly positive definite case. As explained in Sec
tion 13.2, the native space Nct>(fl) is the completion of Hct>(fl) with respect to the 

II · ll<t>-norm so that llfll<t> = llfllN~(n) for all f E Hct>(fl). Also, X ~ fl. Therefore, 
we can characterize the best approximation g* to f from Hct>(X) by 

(f-g*,h)N~(n) =0 for all h E Hct>(X). 

However, Lemma 18.2 shows that g* ='Pt satisfies this relation. 0 

These optimality properties of radial basis function interpolants play an im
portant role in applications such as in the design of support vector machines in 
statistical learning theory or the numerical solution of partial differential equations. 
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The optimality results above imply that one could also start with some Hilbert 
space 1t with norm II· II rt and ask to find the minimum norm interpolant (i.e., Hilbert 
space best approximation) to some given data. In this way any given space defines 
a set of optimal basis functions, generated by the reproducing kernel of 1t. This is 
how Duchon approached the subject in his papers [Duchon (1976); Duchon (1977); 
Duchon (1978); Duchon (1980)]. More recently, Kybic, Blu and Unser [Kybic et al. 
(2002a); Kybic et al. (2002b)] take this point of view and explain from a sampling 
theory point of view how the thi11 plate splines can be interpreted as fundamental 
solutions of the differential operator defining the semi-norm in the Beppo-Levi space 
BL2(IR2), and thus radial basis functions ~an be viewed as Green's functions. 

18.5 Optimality Theorem III 

The third optimality result is in the context of quasi-interpolation, i.e., 

Theorem 18.3 (Optimality III). Suppose cl> E C(f! x f!) is a strictly condition
ally positive definite kernel with respect to the finite-dimensional space P ~ C(f!). 
Suppose X is P-unisolvent and x E f! is fixed. Let uj ( x), j = 1, ... , N, be the 
values at x of the cardinal basis functions for interpolation with cl>. Then 

N N 

f(x) - Lf(xJ)uj(x) < f(x) - Lf(xJ)uJ 
j=l j=l 

for all choices of u1, ... , UN E IR with I.:f=l UJp(xJ) = p(x) for any p E P. 

Theorem 18.3 is proved in [Wendland (2005a)]. It says in particular that the 
minimum norm interpolant P1 is also more accurate (in the pointwise sense) than 
any linear combination of the given data values that reproduce P. 



Chapter 19 

Least Squares RBF Approximation 
with MATLAB 

Up to now we have looked only at interpolation. However, many times it makes 
more sense to approximate the given data by a least squares fit. This is especially 
true if the data are contaminated with noise, or if there are so many data points 
that efficiency considerations force us to approximate from a space spanned by fewer 
basis functions than data points. 

19.1 Optimal Recovery Revisited 

As we saw in Chapter 18 we can interpret radial basis function interpolation as 
a constrained optimization problem, i.e., the RBF interpolant automatically min
imizes the native space norm among all interpolants in the native space. We now 
take this point of view again, but start with a more general formulation. Let us 
assume we are seeking a function Pf of the form 

M 

P1(x) = L Cj<I>(x, Xj), x E IR
8

' 

j=l 

where the number M of basis functions is in general less than or equal the number 
N of data sites. We then want to determine the coefficients c = [c1, ... , cMf so 
that we minimize the quadratic form 

(19.1) 

with some symmetric positive definite matrix Q subject to the linear constraints 

Ac=/ (19.2) 

where A is an N x M matrix with full rank, and the right-hand side f = (Ji, ... , f NV 
is given. Such a constrained quadratic minimization problem can be converted to a 
system of linear equations by introducing Lagrange multipliers A = [>.1, ... , AN ]T, 
i.e., we consider finding the minimum of 

1 T T ( ] -c Qc-A Ac-f 
2 
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(19.3) 
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with respect to c and .A. Since Q is assumed to be a positive definite matrix, it is 
well known that the functional to be minimized is convex, and thus has a unique 
minimum. Therefore, the standard necessary condition for such a minimum (which 
is obtained by differentiating with respect to c and .A and finding the zeros of those 
derivatives) is also sufficient. This leads to 

or, in matrix form, 

Qc-AT.A = 0 
Ac-f = 0 

By applying (block) Gaussian elimination to this block matrix ( Q is invertible since 
it is assumed to be positive definite) we get 

A= (AQ-1 AT)-1 f 

c = Q-1 AT (AQ-1 AT)-1 f. 

(19.4) 

(19.5) 

In particular, if the quadratic form represents the native space norm of the 

interpolant P1 = "L,~ 1 cj<I>(·, Xj), i.e., 

M M 

llP1lli<t>(n) = LLcicJ<I>(xi,xJ) = cTQc 
i=l j=l 

with Qij = <I>(xi, xJ) and c = [c1, ... , cMJT, and the linear side conditions are the 
interpolation conditions 

Ac=f 

with A = AT = Q (symmetric), the same c as above and data vector f 
[!1, ... , fMJT, then we see that the Lagrange multipliers (19.4) become 

.A= Jl-1 f 

and the coefficients are given by 

C=A 

via (19.5). Therefore, as we saw earlier, the minimum norm interpolant is obtained 
by solving the interpolation equations alone. 

19.2 Regularized Least Squares Approximation 

Since we took the more general point of view that Pf is generated by M basis 
functions, and N linear constraints are specified, the above formulation also covers 
both over- and under-determined least squares fitting where the quadratic form 
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cT Qc represents an added smoothing (or regularization) term. This term is not 
required to obtain a unique solution of the system Ac= f in the over-determined 
case ( N 2:: M), but in the under-determined case such a constraint is needed ( c.f. 
the solution of under-determined linear systems via singular value decomposition in 
the numerical linear algebra literature (e.g., [Trefethen and Bau ( 1997)])). 

Usually the regularized least squares approximation problem is formulated as 
minimization of 

(19.6) 

The quadratic form cT Qc controls the smoothness of the fitting function and the 
least squares term measures the closeness to the data. The parameter w controls 
the tradeoff between these two terms with a large value of w shifting the balance 
toward increased pointwise accuracy. 

The formulation (19.6) is used in regularization theory (see, e.g., [Evgeniou et al. 
(2000); Girosi (1998)]). The same formulation is also used in penalized least squares 
fitting (see, e.g., [von Golitschek and Schumaker (1990)]), the literature on smooth
ing splines [Reinsch (1967); Schoenberg (1964)], and in papers by Wahba on thin 
plate splines (e.g., [Kimeldorf and Wahba (1971); Wahba (1979); Wahba (1990b); 
Wahba and Luo (1997); Wahba and Wendelberger (1980)]). In fact, the idea of 
smoothing a data fitting process by this kind of formulation seems to go back to 
at least [Whittaker (1923)]. In practice a penalized least squares formulation is 
especially useful if the data fi cannot be completely trusted, i.e., they are contami
nated by noise. The problem of minimizing (19.6) is also known as ridge regression 
in the statistics literature. The regularization parameter w is usually chosen using 
generalized cross validation. 

If we restrict ourselves to working with square symmetric systems, i.e., A= AT, 
and assume the smoothness functional is given by the native space norm, i.e., 
Q = A, then we obtain the minimizer of the unconstrained quadratic functional 
(19.6) by solving the linear system 

(19.7) 

which is the result of setting the derivative of (19.6) with respect to c equal to 
zero. Thus, ridge regression corresponds to a diagonal stabilization/regularization 
of the usual interpolation system Ac = f. This approach is especially useful for 
smoothing of noisy data. We present an implementation of this method and some 
numerical examples below in Section 19.4. 
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19.3 Least Squares Approximation When RBF Centers Differ from 
Data Sites 

We are now interested in the more general setting where we still sample the given 
function f on the set X = { x1, ... , XN} of data sites, but now introduce a second set 
3 = {ei}f!1 at which we center the basis functions. Usually we will have M :::; N, 
and the case M = N with 3 = X recovers the traditional interpolation setting 
discussed in earlier chapters. Therefore, we can let the RBF approximant be of the 
form 

M 

Q1(x) = L:cJ4>(x,eJ), x E IR.s. (19.8) 
j=l 

The coefficients CJ can be found as the least squares solution of Ac = f, i.e., by 
minimizing II Qf - f II~, where the £2-norm 

N 

11111~ = 2= [J(xi)l 2
, 

i=l 

is induced by the discrete inner product 
N 

(!, g) = L f(xi)g(xi), 
i=l 

Xi EX, 

Xi EX. (19.9) 

This approximation problem has a unique solution if the (rectangular) colloca
tion matrix A with entries 

AJk = 4>(xJ, ek), j = 1, ... , N, k = 1, ... , M, 

has full rank. 
If the centers in 3 are chosen to form a subset of the data locations X, then A 

does have full rank provided the radial basis functions are selected according to our 
previous chapters on interpolation. This is true, since in this case A will have an 
M x M square submatrix which is non-singular (by virtue of being an interpolation 
matrix). 

The over-determined linear system Ac = f which arises in the solution of the 
least squares problem can be solved using standard algorithms from numerical linear 
algebra such as QR or singular value decomposition. Therefore the MATLAB code 
for RBF least squares approximation is almost identical to that for interpolation. 

Program 19.1 presents an example for least squares approximation in 2D. Now 
we define two sets of points: the data points (defined in lines 3 and 8), and the 
centers (defined in lines 4, 6 and 7). Note that we first load the centers since our 
data files Data2D_l089h and Data2D_8lu contain a variable dsi tes which we want 
to use for our data sites. Loading the data sites first, and then the centers would 
lead to unwanted overwriting of the values in ds i te s. The solution of the least 
squares problem is computed on line 16 using backslash matrix left division (\ or 
mldi vi de) which automatically produces a least squares solution. The subroutines 
PlotSurf and PlotError2D are provided in Appendix C. 
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Program 19.1. RBFApproximation2D.m 

% RBFApproximation2D 
% Script that performs basic 2D RBF least squares approximation 
% Calls on: DistanceMatrix, PlotSurf, PlotError2D 

1 rbf = ©(e,r) exp(-(e*r).-2); ep = 1; 
2 testfunction = ©(x,y) sinc(x).*sinc(y); 
3 N = 1089; gridtype = 'h'; 
4 M = 81; grid2type = 'u'; 
5 neval = 40; 

% Load centers 
6 name= sprintf('Data2D_%d%s',M,grid2type); load(name) 
7 ctrs = dsites; 

% Load data points 
8 name= sprintf('Data2D_%d%s',N,gridtype); load(name) 

% Compute distance matrix between data sites and centers 
9 DM_data = DistanceMatrix(dsites,ctrs); 

% Build collocation matrix 
10 CM= rbf(ep,DM_data); 

% Create right-hand side vector, i.e., 
% evaluate the test function at the data points. 

11 rhs = testfunction(dsites(:,1),dsites(: ,2)); 
% Create neval-by-neval equally spaced evaluation 
% locations in the unit square 

12 grid= linspace(0,1,neval); [xe,ye] = meshgrid(grid); 
13 epoints = [xe(:) ye(:)]; 
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% Compute distance matrix between evaluation points and centers 
14 DM_eval = DistanceMatrix(epoints,ctrs); 
15 EM= rbf(ep,DM_eval); 

% Compute RBF least squares approximation 
16 Pf= EM* (CM\rhs); 

% Compute exact solution, i.e., evaluate test 
% function on evaluation points 

17 exact= testfunction(epoints(:,1),epoints(:,2)); 
% Compute maximum error on evaluation grid 

18 maxerr = norm(Pf-exact,inf); 
% Plots 

19 figure; fview = [100,30]; % viewing angles for plot 
20 caption= sprintf('%d data sites and %d centers',N,M); 
21 title(caption); 
22 plot(dsites(:,1),dsites(:,2),'bo',ctrs(:,1),ctrs(:,2),'r+'); 
23 PlotSurf(xe,ye,Pf,neval,exact,maxerr,fview); 
24 PlotError2D(xe,ye,Pf 1 exact,maxerr,neval,fview); 
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Output from RBFApproximation2D .mis presented in Figure 19.1 and the top 
part of Figure 19.2. 

x 

Fig. 19. l 1089 Halton data sites ( o) and 81 uniform centers ( + ). 

If c = 1, then the coliocation matrix is rank deficient with MATLAB reporting a 
numerical rank of 58. In order to have a full numerical rank for this problem c needs 
to be at least 2.2 (in which case the maximum error deteriorates to 5.255591e-004 
instead of 2.173460e-007 for c = 1, c.f. the top part of Figure 19.2). There is not 
much theory available for the case of differing centers and data sites. We present 
what is known in the next chapter. Some care needs to be taken when computing 
least squares solutions based on sets of differing centers and data sites. 

19.4 Least Squares Smoothing of Noisy Data 

We present two strategies for dealing with noisy data, i.e., data that we consider 
to be not reliable due to, e.g., measurement or transmission errors. This situation 
arises frequently in practice. We simulate a set of noisy data by sampling Franke's 
test function at a set X of data sites, and then adding uniformly distributed random 
noise of various strengths. For this experiment we use thin plate splines since their 
native space norm corresponds to the bending energy of a thin plate and thus they 
have a tendency to produce "visually pleasing" smooth and tight surfaces. 

Since the thin plate splines have a singularity at the origin a little extra care 
needs to be taken with their implementation. The MATLAB script tps . m we use for 
our implementation of this basic function is included in Appendix C as Program C.4. 

Our first strategy is to compute a straightforward least squares approximation 
to the (large) set of data using a (small) set of basis functions as we did in the 
previous section. In the statistics literature this approach is known as regression 
splines. We will not address the question of how to choose the centers for the basis 
functions at this point. 

We use a modification of program RBFApproximation2D .m that allows us to use 
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thin plate splines with the added linear polynomial term. These changes can be 
found on lines 1, 15, 16, 19 and 24 of Program 19.2. Also, we now replace the sine 
test function by Franke's function (2.2). The noise is added to the right-hand side 
of the linear syst~m on line 18. This modification adds 33 noise to the data. 

Program 19.2. RBFApproximation2Dlinear .m 

!. RBFApproximation2Dlinear 
!. Script that performs 2D RBF least squares approximation with 
!. linear reproduction for noisy data 
!. Calls on: tps, DistanceMatrix 

1 rbf = ©tps; ep = 1; !. defined in tps.m (see Appendix C) 
!. Define Franke's function as testfunction 

2 f1 = ©(x,y) 0.75*exp(-((9*x-2).-2+(9*y-2).-2)/4); 
3 f2 = ©(x,y) 0.75*exp(-((9*x+1).-2/49+(9*y+1).-2/10)); 
4 f3 = ©(x,y) 0.5*exp(-((9*x-7).-2+(9*y-3).-2)/4); 
5 f4 = ©(x,y) 0.2*exp(-((9*x-4).-2+(9*y-7).-2)); 
6 testfunction = ©(x,y) f1(x,y)+f2(x,y)+f3(x,y)-f4(x,y); 
7 N = 1089; gridtype = 'h'; 
8 M = 81; grid2type = 'u'; 
9 neval = 40; 

!. Load centers 
10 name= sprintf('Data2D_/.d/.s',M,grid2type); load(name) 
11 ctrs = dsites; 

!. Load data points 
12 name= sprintf('Data2D_/.d%s',N,gridtype); load(name) 

!. Compute distance matrix between data sites and centers 
13 DM_data = DistanceMatrix(dsites,ctrs); 
14 CM= rbf(ep,DM_data); !. Collocation matrix 

!. Add extra columns and rows for linear reproduction 
15 PM= [ones(N,1) dsites]; PtM = [ones(M,1) ctrs] '; 
16 CM = [CM PM; [PtM zeros(3,3)]]; 

!. Create right-hand side vector and add noise 
17 rhs = testfunction(dsites(:,1),dsites(:,2)); 
18 rhs = rhs + 0.03*randn(size(rhs)); 

I. Add zeros for linear (2D) reproduction 
19 rhs = [rhs; zeros(3,l)]; 

!. Create neval-by-neval equally spaced evaluation locations 
% in the unit square 

20 grid= linspace(0,1,neval); [xe,ye] = meshgrid(grid); 
21 epoints = [xe(:) ye(:)]; 

!. Compute distance matrix between evaluation points and centers 
22 DM eval = DistanceMatrix(epoints,ctrs); 
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23 EM= rbf(ep,DM_eval); % Evaluation matrix 
% Add columns for linear reproduction 

24 PM= [ones(neval-2,1) epoints]; EM= [EM PM]; 
% Compute RBF least squares approximation 

25 Pf= EM* (CM\rhs); 
% Compute exact solution, i.e., 
% evaluate test function on evaluation points 

26 exact= testfunction(epoints(:,1),epoints(:,2)); 
% Compute maximum error on evaluation grid 

27 maxerr = norm(Pf-exact,inf); 
% Plots 

28 figure; fview = [160,20]; % viewing angles for plot 
29 caption= sprintf('%d data sites and %d centers',N,M); 
30 title(caption); 
31 plot(dsites(:,1),dsites(:,2),'bo',ctrs(:,1),ctrs(:,2),'r+'); 
32 PlotSurf(xe,ye,Pf,neval,exact,maxerr,fview); 
33 PlotError2D(xe,ye,Pf ,exact,maxerr,neval,fview); 

Program RBFApproxiation2Dlinear. m was used to produce the right plot in the 
bottom part of Figure 19.2 and the entries in line 2 of Table 19.1. Clearly, this simple 
least squares approach performs much better than straightforward interpolation 
to the noisy data (see the left plot the bottom part of Figure 19.2 and line 1 of 
Table 19.1). Moreover, this least squares approximation is also much cheaper to 
compute. However, as we pointed out earlier, it is not clear how to choose the 
smaller set of RBF centers, and what is even more unsettling, there is not much 
mathematical theory (see the next section) to guarantee if (or when) this approach 
is well-posed, i.e., the collocation matrix has full rank. 

Table 19.1 Errors and condition numbers for various least squares approximants 
to noisy data. 

method w RMS-error max-error cond(A) 

Interpolation 00 2.482624e-002 9.914837e-002 1. 502900e+007 
LSQ approximation NA 9.6657 43e-003 5.490050e-002 NA 

Ridge regression 1000 1. 713843e-002 7. 580288e-002 2. 537652e+006 
Ridge regression 100 l .078358e-002 4. 215865e-002 3.839384e+005 
Ridge regression 10 9.173961e-003 3.349371e-002 4.571167e+004 
Ridge regression 1 2. 764272e-002 l.041350e-001 9.317936e+003 

Another strategy for smoothing of noisy data is the ridge regression method 
explained earlier (see (19.7)). This method is popular in the statistics and neural 
network community. 

The nature of the MATLAB program for ridge regression is very similar to that for 
RBF interpolation. We present a version for ridge regression with thin plate splines 
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Fig. 19.2 Top: Least squares approximation (left) to 1089 data points sampled from 2D sine 
function with 81 Gaussian basis functions with e: = 1 and maximum error (right) false-colored 
by magnitude of error. Bottom: Thin plate spline interpolant (left) to 1089 noisy data points 
sampled from Franke's function, and least squares approximation with 81 uniformly spaced thin 
plate spline basis functions (right) false-colored by magnitude of error. 

(including the linear term in the basis expansion) for smoothing of noisy data. The 
smoothing parameter w of (19. 7) is defined on line 7 of Program 19.3, and the 
diagonal stabilization of the (interpolation) matrix A is performed on line 17. Note 
that the stabilization only affects the A part of the matrix, and not the extra rows 
and columns added for polynomial precision. 

Program 19.3. TPS...RidgeRegression2D.m 

'', TP h S_RidgeRegression2D 
'', s h h h cript t at performs 2D TPS-RBF approximation wit reproduction of 
~. 1 h h inear functions and smoot ing via ridge regression 
'', c h alls on: tps, DistanceMatrix 

Y. Use TPS (defined in tps.m, see Appendix C) 
1 rbf = ©tps; ep = 1; 

Y. Define Franke's function as testfunction 
2 fl= ©(x,y) 0.75*exp(-((9*x-2).-2+(9*y-2).-2)/4); 
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3 f2 = ©(x,y) 0.75*exp(-((9*x+l).-2/49+(9*y+1).-2/10)); 

4 f3 = ©(x,y) 0.5*exp(-((9*x-7).-2+(9*y-3).-2)/4); 

5 f4 = ©(x,y) 0.2*exp(-((9*x-4).-2+(9*y-7).-2)); 

6 testfunction = ©(x,y) f1(x,y)+f2(x,y)+f3(x,y)-f4(x,y); 

7 omega = 100; % Smoothing parameter 

8 N = 1089; gridtype = 'h'; 

9 neval = 40; 

% Load data points 

10 name= sprintf('Data2D_%d%s',N,gridtype); load(name) 

11 ctrs = dsites; 

% Compute distance matrix between data sites and centers 
12 DM_data = DistanceMatrix(dsites,ctrs); 

% Create noisy right-hand side vector 

13 rhs = testfunction(dsites(:,1),dsites(:,2)); 

14 rhs = rhs + 0.03*randn(size(rhs)); 

% Add zeros for 2D linear reproduction 

15 rhs = [rhs; zeros(3,1)]; 

% Compute interpolation matrix and add diagonal regularization 
16 IM= rbf(ep,DM_data); 

17 IM= IM+ eye(size(IM))/(2*omega); 

% Add extra columns and rows for linear reproduction 

18 PM= [ones(N,1) dsites]; IM= [IM PM; [PM' zeros(3,3)]]; 

19 fprintf('Condition number estimate: %e\n',condest(IM)) 

% Create neval-by-neval equally spaced evaluation locations 

% in the unit square 

20 grid= linspace(0,1,neval); [xe,ye] = meshgrid(grid); 

21 epoints = [xe(:) ye(:)]; 

% Compute distance matrix between evaluation points and centers 

22 DM_eval = DistanceMatrix(epoints,ctrs); 

% Compute evaluation matrix and add columns for linear precision 

23 EM= rbf(ep,DM_eval); 

24 PM= [ones(neval-2,1) epoints]; EM= [EM PM]; 

!. Compute RBF interpolant 

25 Pf= EM* (IM\rhs); 

!. Compute exact solution, i.e., 

!. evaluate test function on evaluation points 

26 exact= testfunction(epoints(: ,1),epoints(: ,2)); 

!. Compute maximum error on evaluation grid 

27 maxerr = norm(Pf-exact,inf); 

!. Plots 

28 fview = [160,20]; % viewing angles for plot 

29 PlotSurf(xe,ye,Pf,neval,exact,maxerr,fview); 
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30 PlotError2D(xe,ye,Pf ,exact,maxerr,neval,fview); 

The results for our examples computed with Program 19.3 are shown in Fig
ure 19.3 as well as in lines 3-6 of Table 19.1. These results illustrate very nicely 
the smoothing effect obtained by varying w. A very large value of w emphasizes the 
fitting component of the functional to be minimized in (19.6) resulting in a rather 
rough surface, while a small value of u.J gives preference to the smoothing term. The 
"optimal" value of w lies somewhere in the middle. In practice one would usually 
use cross validation to obtain the optimal value of w. 

Besides the visual smoothing of the approximating surface, a small value of w 
also has a stabilizing effect on the collocation matrix. The diagonal of the matrix 
becomes more and more dominant. The condition estimates in Table 19.1 also verify 
this behavior. 
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Fig. 19.3 Thin plate spline ridge regression to 1089 noisy data points sampled from Franke's 
function with w = 1000 (top left), w = 100 (top right), w = 10 (bottom left), and w = 1 (bottom 
right). 





Chapter 20 

Theory for Least Squares Approximation 

In this chapter we give a brief account of the theoretical results known for least 
squares approximation with radial basis functions. These results include extensions 
of the RBF interpolation theory to cover well-posedness for the situation in which 
centers S and data sites X differ. We also present some recent error estimates for 
least squares approximation. 

20.1 Well-Posedness of RBF Least Squares Approximation 

The results mentioned here are due to Quak, Sivakumar and Ward [Sivakumar and 
Ward (1993); Quak et al. (1993)]. The first paper deals with discrete, the second 
with continuous least squares approximation. In both papers the authors do not 
discuss the collocation matrix A we used in the previous chapter, but rather base 
their results on the non-singularity of the coefficient matrix obtained from a system 
of normal equations. 

In the discrete setting they use the inner product (19.9) which induces the £2 

norm, and then discuss non-singularity of the Gram matrix G that occurs in the 
following system of normal equations 

Gc=w, (20.1) 

where the entries of Gare the £2 inner products of the radial basis functions, i.e., 

N 

Gjk = (q,(·, ej), q,(·, ek)) = L q,(xi, ej )q,(xi, ek), j, k = 1, ... 'M, 
i=l 

and the right-hand side vector w in (20.1) is given by 

N 

Wj = (q,( ·, ej ), /) = L q,(xi, ej )f(xi), j = 1, ... 'M. 
i=l 

Note that in the interpolation case with M = N and S = X (i.e., coinciding 
centers and data sites) we have 

177 
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so that G is just the interpolation matrix A. This provides yet another way of 
saying that the interpolation matrix A is also the system matrix for the normal 
equations in the case of best approximation with respect to the native space norm 
- a fact already mentioned earlier in Chapter 18 on optimal recovery. 

In both papers, [Sivakumar and Ward (1993)] as well as [Quak et al. (1993)], 
even the formulation of the main theorems is very technical. We therefore just try 
to give a feel for their results. 

Essentially, the authors show that the Gram matrix for certain radial basis 
functions (norm, (inverse) multiquadrics, and Gaussians) is non-singular if the cen
ters 3 = { ek, k = 1, ... , M} are sufficiently well distributed and the data points 
X = {xj,j = 1, ... , N} are fairly evenly clustered about the centers with the di
ameter of the clusters being relatively small compared to the separation distance of 
the data points. Figure 20.1 illustrates this clustering idea. 

0 

0 0 • 
0 0 

0 • 0 

0 
0 

0 
0 

0 • 0 0 
0 

0 • 
0 

0 
0 

Fig. "Q. l Clusters of data points o around well separated centers •. 

One of the key ingredients in the proof of the non-singularity of G is to set 
up an interpolation matrix B for which the basis functions are centered at certain 
representatives of the clusters of knots about the data sites. One then splits the 
matrix B (which is non-symmetric in general) into a part that is symmetric and 
one that is anti-symmetric, a standard strategy in linear algebra, i.e., B = B 1 + B 2 

where B1 and B2 are defined by 

B+BT 
B1 = 

2 
(symmetric), 

B-BT 
B2 = 

2 
(anti-symmetric). 

Then, lower estimates for the norm of these two parts are found and used to conclude 
that, under certain restrictions, G is non-singular. 

As a by-product of this argumentation the authors obtain a proof for the non
singularity of interpolation matrices for the case in which the centers of the basis 
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functions are chosen different from the data sites, namely as small perturbations 
thereof. 

20.2 Error Bounds for Least Squares Approximation 

In the case of basis functions centered at the points of an infinite lattice de Boor, 
DeVore and Ron [deBoor et al.(1994b); Ron (1992)] discussed £ 2-approximation 
orders for radial basis functions. 

More recently, [Ward (2004)] provided error bounds for least squares approxi
mation at scattered centers and in finite domains. His work is closely linked to the 
results in [Narcowich et al. (2005)] discussed earlier in Chapter 15. 

A typical result is that the continuous least squares error for approximation 
based on the compactly supported Wendland functions is 

Here n c Rs is a bounded Lipschitz domain which satisfies an interior cone condi
tion, X c n is the set of centers, H'l>(X) =span{ <I>(· -xi), Xj EX}, k is such that 
T = k +a with 0 < a < 1, and T > s/2 measures the decay of the Fourier transform 
of <I>, i.e., 

with positive constants c1 and c2 so that the native space of <I> is given by the Sobolev 
space W{(Rs). This error bound is of the same order as the one for interpolation 
( c.f. Theorem 15.3). We refer the reader to [Ward (2004 )] for more details. 





Chapter 21 

Adaptive Least Squares Approximation 

In this chapter we mention some strategies for solving the least squares problem in 
an adaptive fashion. 

21.1 Adaptive Least Squares using Knot Insertion 

A classical technique used to improve the quality of a given initial approximation 
based on a linear combination of certain basis functions is to adaptively increase 
the number of basis functions used for the fit. In other words, one refines the space 
from which the approximation is computed. Since every radial basis function is 
associated with one particular center (or knot), this can be achieved by adding 
new knots to the existing ones. This idea was explored for multiquadrics on 1R2 in 
[Franke et al. (1994); Franke et al. (1995)], and for radial basis functions on spheres 
in [Fasshauer (1995a)]. 

We will now describe an algorithm that adaptively adds knots to a radial basis 
function approximant in order to improve the .f 2 error. 

Let us assume we are given a large number, N, of data and we want to fit them 
with a radial basis expansion to within a given tolerance. The idea is to start with 
very few initial knots, and then to repeatedly insert a knot at that data location 
whose £2 error component is largest. This is done as long as the least squares error 
exceeds a given tolerance. The following algorithm may be used. 

Algorithm 21.1. Knot insertion 

(1) Let data sites X = {x1 , ... , XN }, data Ji, i = 1, ... , N, and a tolerance tol be 
given. 

(2) Choose M initial knots 3 = {e1, ... ,eM}· 
(3) Calculate the least squares fit 

M 

Q1(x) = L Cj4>(x, ej) 
j=l 
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with its associated error 
N 

e = L)fi - Qi (xi)] 2
. 

i=l 

While e > tol do 

( 4) "Weight" each data point Xi, i = 1, ... , N, according to its error compo
nent, i.e., let 

Wi = lfi - Q1(xi)I, i = 1, ... ,N. 

(5) Find the data point Xv tJ. 3 with maximum weight Wv and insert it as a 
knot, i.e., 

3 = 3 U {xv} and M = M + 1. 

(6) Recalculate fit and associated error. 

A MATLAB implementation of the knot insertion algorithm is provided in 
RBFKnotinsert2D .m (Program 21.1). This program is a little more technical than 
previous ones since we need to avoid adding the same point multiple times. This 
would lead to a singular system. In MATLAB we can easily check this with the 
command ismember (see line 28). We also take advantage of the sort command to 
help us find (possibly several) knots with largest error contribution. The addition 
of these data sites to the set of centers is accomplished on lines 26-32. Evaluation 
of the approximant (see lines 34-36) is not required until all of the knots have been 
inserted. 

Program 21.1. RBFKnotinsert2D .m 

% RBFKnotinsert2D 
% Script that performs 20 RBF least squares approximation 
% via knot insertion 
% Calls on: DistanceMatrix 

1 rbf = ©(e,r) exp(-(e*r).-2); ep = 5.5; 
% Define Franke's function as testfunction 

2 fl= ©(x,y) 0.75*exp(-((9*x-2).-2+(9*y-2).-2)/4); 
3 f2 = ©(x,y) 0.75*exp(-((9*x+1).-2/49+(9*y+1).-2/10)); 
4 f3 = ©(x,y) 0.5*exp(-((9*x-7).-2+(9*y-3).-2)/4); 
5 f4 = ©(x,y) 0.2*exp(-((9*x-4).-2+(9*y-7).-2)); 
6 testfunction = ©(x,y) f1(x,y)+f2(x,y)+f3(x,y)-f4(x,y); 
7 N = 289; gridtype = 'h'; 
8 M = 1; % Number of initial centers 
9 neval = 40; 

10 grid= linspace(0,1,neval); [xe,ye] = meshgrid(grid); 
11 epoints = [xe(:) ye(:)]; 
12 tol = le-5; % Tolerance; stopping criterion 
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I. Load data points 

13 name= sprintf('Data2D_/.d/.s',N,gridtype); load(name) 

I. Take first M "data sites" as centers 

14 ctrs = dsites(1:M,:); 

I. Compute exact solution, i.e., evaluate test function 

I. on evaluation points 

15 exact= testfunction(epoints(: ,1),epoints(:,2)); 

I. Create right-hand side vector, i.e., 

I. evaluate the test function at the data points. 

16 rhs = testfunction(dsites(:,1),dsites(:,2)); 

17 rms_res = 999999; 
18 while (rms_res > tol) 

I. Compute least squares fit 

19 DM_data = DistanceMatrix(dsites,ctrs); 

20 CM= rbf(ep,DM_data); 

21 coef = CM\rhs; 

I. Compute residual 

22 residual= abs(CM*coef - rhs); 

23 [sresidual,idx] = sort(residual); 

24 lres = length(residual); 

25 rms_res = norm(residual)/sqrt(lres); 

'/, Add point(s) 

26 if (rms_res > tol) 

27 addpoint = idx(lres); I. This is the point we add 

!. lf already used, try next point 

28 while any(ismember(ctrs,dsites(addpoint,:),'rows')) 

29 lres = lres-1; addpoint = idx(lres); 

30 end 

31 ctrs = [ctrs; dsites(addpoint,:)]; 

32 end 

33 end 

I. Compute evaluation matrix 

34 DM_eval = DistanceMatrix(epoints,ctrs); 
35 EM= rbf(ep,DM_eval); 

36 Pf = EM*coef; !. Compute RBF least squares approximation 
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37 maxerr = max(abs(Pf - exact)); rms_err = norm(Pf-exact)/neval; 

38 fprintf('RMS error: /.e\n', rms_err) 

39 figure; !. Plot data sites and centers 

40 plot(dsites(: ,1) ,dsites(: ,2), 'bo' ,ctrs(: ,1) ,ctrs(: ,2), 'r+'); 

41 PlotSurf(xe,ye,Pf,neval,exact,maxerr, [160,20]); 

We point out that we have to solve one linear least squares problem in each 

iteration. We do this using the standard MATLAB backslash (or ml di vi de) QR-
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based solver (see line 21). The size of these problems increases at each step which 
means that addition of new knots becomes increasingly more expensive. This is 
usually not such a big deal. Both [Franke et al. (1994); Franke et al. (1995)] and 
[Fasshauer (1995a)] found that the desired accuracy was usually achieved with fairly 
few additional knots and thus the algorithm is quite fast. 

If the initial knots are chosen to lie at data sites (as we did in our MATLAB 
implementation), then the collocation matrix A in the knot insertion algorithm will 
always have full rank. This is guaranteed since we only add data sites as new knots, 
and we make sure in step (5) of the algorithm that no multiple knots are created 
(which would obviously lead to a rank deficiency). 

Instead of deciding which point to add based on residuals one could also 
pick the new point by looking at the power function, since the dependence of 
the approximation error on the data sites is encoded in the power function. 
This strategy is used to build so-called greedy adaptive algorithms that inter
polate successively more and more data (see [Schaback and Wendland (2000a); 
Schaback and Wendland (2000b)] or Chapter 33). The power function is also em
ployed in [De Marchi et al. (2005)] to compute an optimal set of RBF centers 
independent of the specific data values. 

21.2 Adaptive Least Squares using Knot Removal 

The idea of knot removal was primarily motivated by the need for data reduction, 
but it can also be used for the purpose of adaptive approximation (for a survey 
of knot removal see, e.g., [Lyche (1992)]). The basic idea is to start with a good 
fit (e.g., an interpolation to the data), and then successively reduce the number of 
knots used (and therefore basis functions) until a certain given tolerance is reached. 

Specifically, this means we will start with an initial fit and then use some kind 
of weighting strategy for the knots, so that we can repeatedly remove those con
tributing least to the accuracy of the fit. The following algorithm was suggested 
in [Fasshauer (1995a)] for adaptive least squares approximation on spheres and 
performs this task. 

Algorithm 21.2. Knot removal 

(1) Let data points X = {x1 , ... , XN }, data Ji, i = 1, ... , N, and a tolerance tol 
be given. 

(2) Choose M initial knots 3 = {e1, ... , eM }. 
(3) Calculate an initial fit 

M 

Qf (x) = L Cj<I>(x, ej) 
j=l 
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with its associated least squares error 

N 

e = L)fi - Q1(xi)] 2
. 

i=l 

While e < tol do 
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(4) "Weight" each knot eJ, j = 1, ... , M, according to its least squares error, 
i.e., form 

and calculate the weights 

N 

Wj = L [fi - Qj(xi)]2, 
i=l 

where 
M-1 

Qj(x) = L Cj<I>(x, e;) 
j=l 

is the approximation based on the reduced set of knots 3*. 
(5) Find the knot eµ with lowest weight Wµ < tol and permanently remove it, 

i.e., 

3 = 3 \ {eµ} and M = M -1. 

(6) Recalculate fit and associated error. 

We present a MATLAB implementation of a knot removal algorithm that is 
slightly more efficient. Its weighting strategy is based on the leave-one-out cross 
validation algorithm (see [Rippa (1999)] and Chapter 17). The code is given in 
RBFKnotRemoval2D.m (Program 21.2). This program is similar to the knot inser
tion program. In fact, it is a little simpler since we do not have to worry about 
multiple knots. 

Program 21.2. RBFKnotRemove2D. m 

% RBFKnotRemove2D 
% Script that performs 2D RBF least squares approximation 
% via knot removal 
% Calls on: DistanceMatrix 

1 rbf = ©(e,r) exp(-(e*r).-2); ep = 5.5; 
% Define Franke's function as testfunction 

2 fl= ©(x,y) 0.75*exp(-((9*x-2).-2+(9*y-2).-2)/4); 
3 f2 = ©(x,y) 0.75*exp(-((9*x+l).-2/49+(9*y+l).-2/10)); 
4 f3 = ©(x,y) 0.5*exp(-((9*x-7).-2+(9*y-3).-2)/4); 
5 f4 = ©(x,y) 0.2*exp(-((9*x-4).-2+(9*y-7).-2)); 
6 testfunction = ©(x,y) f1(x,y)+f2(x,y)+f3(x,y)-f4(x,y); 
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7 N = 289; gridtype = 'h'; 
8 M = 289; !. Number of initial centers 
9 neval = 40; 

10 grid= linspace(0,1,neval); [xe,ye] = meshgrid(grid); 
11 epoints = [xe(:) ye(:)]; 
12 tol = 5e-1; !. Tolerance; stopping criterion 

!. Load data points 
13 name= sprintf('Data2D_/.d/,s',N,gridtype); load(name) 

!. Take first M "data sites" as centers 
14 ctrs = dsites(1:M,:); 

!. Compute exact solution, i.e., evaluate test function 

!. on evaluation points 
15 exact= testfunction(epoints(:,1),epoints(:,2)); 

% Create right-hand side vector, i.e., 
!. evaluate the test function at the data points. 

16 rhs = testfunction(dsites(:,1),dsites(:,2)); 
17 minres = O; 
18 while (minres < tol) 

!. Compute collocation matrix 
19 DM_data = DistanceMatrix(dsites,ctrs); 
20 CM= rbf(ep,DM_data); 

I. Compute residual 

21 invCM = pinv(CM); EF = (invCM*rhs)./diag(invCM); 
22 residual= abs(EF); 

23 [sresidual,idx] = sort(residual); minres = residual(1); 
!. Remove point 

24 if (minres < tol) 
25 ctrs = [ctrs(1:idx(1)-1,:); ctrs(idx(1)+1:M,:)]; 
26 M = M-1; 
27 end 
28 end 

!. Evaluate final least squares fit 
29 DM_data = DistanceMatrix(dsites,ctrs); 
30 CM= rbf(ep,DM_data); 

31 DM_eval = DistanceMatrix(epoints,ctrs); 
32 EM= rbf(ep,DM_eval); 
33 Pf= EM*(CM\rhs); 
34 maxerr = max(abs(Pf - exact)); rms err= norm(Pf-exact)/neval; 
35 fprintf('RMS error: /.e\n', rms_err) 

36 figure; I. Plot data sites and centers 
37 plot(dsites(:,1),dsites(:,2),'bo',ctrs(:,1),ctrs(:,2),'r+'); 
38 caption= sprintf('/.d data sites and /.d centers', N, M); 
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39 title(caption); 
40 PlotSurf(xe,ye,Pf,neval,exact,maxerr,[160,20]); 

Again we would like to comment on the algorithm. As far as computational 
times are concerned, Algorithm 21.2 as listed above is much slower than the MAT
LAB implementation Program 21.2 based on the LOOCV idea since the weight for 
every knot is determined by the solution of a least squares problem, i.e., in every 
iteration one needs to solve M least squares problems. The MATLAB program runs 
considerably faster, but usually it is still slower than the knot insertion algorithm. 
This is clear since with the knot removal strategy one starts with large problems 
that get successively smaller, whereas with knot insertion one begins with small 
problems that can be solved quickly. 

The only way the knot removal approach will be beneficial is when the number 
of evaluations of the constructed approximant is much larger than its actual compu
tation. This is so since, for comparable tolerances, one would expect knot removal 
to result in fewer knots than knot insertion. However, our examples show that this 
is not necessarily true. 

If the initial knots are chosen at the data sites then, again, there will be no 
problems with the collocation matrix becoming rank deficient. 

In [Fasshauer (1995a); Fasshauer (1995b)] some other alternatives to this knot 
removal strategy were considered. One of them is the removal of certain groups of 
knots at one time in order to speed up the process. Another is based on choosing 
the weights based on the size of the coefficients Cj in the expansion of Qf, i.e., to 
remove that knot whose associated coefficient is smallest. 

A further variation of the adaptive algorithms was considered in both [Franke 
et al. (1994)] and in [Fasshauer (1995a)]. Instead of treating only the coefficients 
of the expansion of Qf as parameters in the minimization process, one can also 
include the knot locations themselves and possibly a (variable) shape parameter. 
This however, leads to nonlinear least squares problems. We will not discuss this 
topic further here. 

Buhmann, Derrien, and Le Mehaute [Buhmann et al. (1995); Le Mehaute 
(1995)] also discuss knot removal. Their approach is based on an a priori esti
mate for the error made when removing a certain knot. These estimates depend on 
the specific choice of radial basis function, and only cover the inverse multiquadric 
type, i.e., 

<p(r) = (1 + r 2 )-f3, 0 < j3 < s/2. 

Iske (see [Iske (1999a); Iske (2004)]) suggests an alternative knot removal strat
egy for least squares approximation. His removal heuristics are based on so-called 
thinning algorithms. In particular, in each iteration a point is removed if it belongs 
to a pair of points in 3 with minimal separation distance. The thinning phase of the 
algorithm is then enhanced by an exchange phase in which points can be "swapped 
back in" if this process reduces the fill-distance of 3. This strategy maintains a 
relatively stable mesh ratio. 
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21.3 Some Numerical Examples 

For the following examples we consider Franke's test function (2.2). All final fits are 
evaluated on a grid of 40 x 40 equally spaced points in the unit square. RMS and 
maximum errors are also computed on this grid. The programs RBFKnot!nsert2D .m 
(Program 21.1) and RBFKnotRemove2D.m (Program 21.2) were used to compute the 
results. 

In the top and middle parts of Figure 21.1 we compare the knot insertion and 
knot removal algorithms. In both cases we use a reference set of 289 Halton data 
sites and Gaussian basic functions scaled with a shape parameter c = 5.5. Using 
the knot insertion algorithm with tol = le-004 as in Program 21.1 we select a subset 
of 154 data sites as centers for the basis functions. These points are displayed on 
the left side of the top part of Figure 21.1 along with the fit on the right. The knot 
insertion algorithm is initialized with a single random knot in the unit square. 

Table 21.1 Total of knots selected, errors and runtimes for adaptive 
least squares approximants. 

Method N M RMS-error max-error time 

Knot insert 289 154 1.3346 lle-003 2.871526e-002 2.66 
Knot remove 289 153 l .424598e-003 3.961593e-002 35.09 
Knot insert 4225 163 1. l 98695e-004 l .137886e-003 48.75 

In the middle part of Figure 21.1 we show the results for the same configuration, 
i.e., Gaussians with c = 5.5 and N = 289 initial knots, for the knot removal 
algorithm. This time we take tol = 0.5, and the knot removal algorithm begins 
with an interpolant to all 289 data values. In Table 21.1 we can compare the errors 
and runtimes for the two algorithms. It is clear that the knot insertion algorithm 
is much more efficient for this example. 

Another advantage of the knot insertion algorithm is revealed in the bottom 
part of Figure 21.l and line 3 of Table 21.1. We still use Gaussians with shape 
parameter c = 5.5. However, now we take N = 4225 Halton points as our data 
set. This provides many more candidates as centers for basis functions. The chosen 
centers are displayed on the left of the bottom part of Figure 21.1, and it is clear 
that this center selection is closely adapted to the features of the data function, 
namely the peaks and valley. The rest of the knots are located along the boundary 
of the domain. Moreover, we see that it is possible to obtain a much more accurate 
fit with roughly the same number of basis functions. While the runtime for this 
example is considerably longer than that for the other knot insertion example it 
is comparable to the time required for the knot removal algorithm with only 289 
data sites. Running the knot removal algorithm with 4225 data sites would be 
prohibitively expensive. 
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Fig. 21.1 Top: 289 data sites and 154 knots (left) for least squares approximation to Franke's 
function (right) using knot insertion algorithm with tol = le-004. Middle: 289 data sites and 153 
knots (left) for least squares approximation to Franke's function (right) using knot removal algo
rithm with tol = 0.5. Bottom: 4225 data sites and 163 knots (left) for least squares approximation 
to Franke's function (right) using knot insertion algorithm with tol = le-004. 





Chapter 22 

Moving Least Squares Approximation 

An alternative to radial basis function interpolation and approximation is the so
called moving least squares (:MLS) method. As we will see below, in this method the 
approximation Pt to f is obtained by solving many (small) linear systems, instead 
of via solution of a single - but large - linear system as we did in the previous 
chapters. 

22. I Discrete Weighted Least Squares Approximation 

In order to motivate the moving least squares method we begin by discussing discrete 
weighted least squares approximation from the space of multivariate polynomials. 
Thus, we consider data (xi, !(xi)), i = 1, ... 'N, where Xi Enc ]RS and !(xi) E IR 
with arbitrary s 2: 1. The approximation space is of the form 

U = span{p1, ... ,pm}, m<N, 

with multivariate polynomials Pm E Ild of degree at most d. 
We intend to find the best discrete weighted least squares approximation from 

U to some given function f, i.e., we need to determine the coefficients CJ in 

such that 

m 

u(x) = L CJPJ(x), 
j=l 

x E ]RS' 

llf - ull2,w ~min. 
Here the norm is defined via the discrete (pseudo) inner product 

N 

(!, 9)w = L f (xi)g(xi)w(xi) 
i=l 

with scalar weights Wi = w(xi), i = 1, ... , N. The induced norm is then of the form 

N 

llfll~,w = L [!(xi)]
2 
w(xi)· 

i=l 

191 
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It is well known that the best approximation u from U to f is characterized by 

f - u J_w u -<====> (f - u,pk)w = 0, k = 1, ... 'm, 
m 

-<====> (f - L CjPj,Pk)w = 0, k = 1, ... , m, 
j=l 

m 

-<====> L Cj(pj,Pk)w = (f,pk)w, k = 1, ... 'm, 
j=l 

-<====>Ge= f p· (22.1) 

Here the Gram matrix G has entries Gjk = (p1 , Pk)w and the right-hand side vec
tor is f P = [(f,p1)w, ... , (f,pm)wJI'· We refer to (22.1) as the normal equations 
associated with this problem. 

Another way to think of this problem would be as a pure linear algebra problem. 
To this end, define the Nxm matrix A with entries Aij = p1 (xi), and the vectors c = 

[c1, ... , emV and f = [f(x1), ... , f(xN )]I'. With this notation we seek a solution of 
the (overdetermined, since N > m) linear system Ac = f. The standard weighted 
least squares solution is given by the solution of the normal equations ATW Ac= 
ATWJ, where Wis the diagonal weighting matrix W = diag(w1 , ... ,wN)· This, 
however, is exactly what is written in (22.1), i.e., the matrix G is of the form 
G = ATWA, and for the right-hand side vector we have fp = ATWf. 

22.2 Standard Interpretation of MLS Approximation 

Several equivalent formulations exist for the moving least squares approximation 
scheme. In order to make a connection with the discussion of the discrete weighted 
least squares approximation just presented we start with the standard formulation 
of MLS approximation. The Backus-Gilbert formulation to be presented in the fol
lowing section will have a closer connection to previous chapters since it corresponds 
to a linearly constrained quadratic minimization problem. 

The general moving least squares method first appeared in the approximation 
theory literature in the paper [Lancaster and Salkauskas (1981)) whose authors also 
pointed out the connection to the earlier more specialized work [Shepard (1968); 
McLain (1974)). We now present a description of MLS approximation that is sim
ilar to the discussion in Lancaster and Salkauskas' original paper and most closely 
resembles what is found in much .of the other literature on MLS approximation. 

We consider the following approximation problem. Assume we are given data 
values f(xi), i = 1, ... , N, on some set X = {x1, ... , XN} C JRS of distinct data 
sites, where f is some (smooth) function, as well as an approximation space U = 

span{ u 1 , ... , um} with m < N. In addition, we define a weighted £2 inner product 

N 

(!, 9)w
11 

= L f(xi)g(xi)w(xi, y), y E Rs fixed, (22.2) 
i=l 
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where now the weight functions Wi = w (xi, ·), i = 1, ... , N, vary with the point 
y. Note that the definition of this inner product naturally introduces a second 
variable, y, into the discussion of the problem. This two-variable formulation of 
MLS approximation will be essential to understanding the connection between the 
various formulations. 

As in the previous sections we wish to find the best approximation u from U to 
f. However, we focus our interest on best approximation at the pointy, i.e., with 
respect to the norm induced by (22.2). In order to keep the discussion as simple 
as possible we will restrict our discussion to the multivariate polynomial case, i.e., 
U = H;i with basis {P1, ... ,Pm}· As always, the space Ild of s-variate polynomials 
of degree d has dimension m = ( s~d). We emphasize, however, that everything that 
is said below also goes through for a more general linear approximation space U. 

Since we just introduced the second variable y into our formulation we will now 
look for the best approximation u in the form 

m 

u(x, y) = L CJ(Y)PJ(x - y), (22.3) 
j=l 

We can think of x as the global variable and y as the local variable. Thus, expressing 
the polynomial basis functions in this form is reminiscent of a Taylor expansion. 
This shift to the local evaluation point y also adds stability to numerical computa
tions. 

For the purpose of final evaluation of our approximation we identify the global 
and the local variable, i.e., we have 

m 

P1(x) = u(x, x) = L CJ(x)pJ(O), x E Rs. (22.4) 
j=l 

Since for the polynomial approximation space Ild with standard monomial basis we 
have p1 (x) - 1, and PJ(O) = 0 for j > 1 we get the standard MLS approximation 
in the final form 

(22.5) 

Note, however, that x has been identified with the fixed local pointy, and therefore 
in general we still need to recompute the coefficient c1 every time the evaluation 
point changes. Examples for some common choices of s and d will be provided in 
the next chapter. 

As in the standard least squares case, the coefficients cJ(Y) in (22.3) are found 
by (locally) minimizing the weighted least squares error II! - u(·, y) llw

11
, i.e., 

N 

L [f(xi) - u(xi, y)] 2 w(xi, y) (22.6) 
i=l 

is minimized over the coefficients in the expansion (22.3) of u(·, y). Note, however, 
that due to the definition of the inner product (22.2) whose weights "move" with 
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the local point y, the coefficients Cj in (22.3) depend also on y. As a consequence 
one has to solve the normal equations 

m 

Lcj(y)(pj(· -y),Pk(· -y))w
11 

=(!,pk(· - Y))w
11

, k= l, ... ,m, (22. 7) 
j=l 

anew each time the point y is changed. In matrix notation (22.7) becomes 

G(y)c(y) = fp(y). (22.8) 

Here the positive definite Gram matrix G(y) has entries 

G(y)ik =(pi(· - y),pk(- - y))w
11 

N 

= LPi(xi - y)pk(xi - y)w(xi, y), (22.9) 
i=l 

and the coefficient vector is of the form c(y) = [c1 (y), ... , cm(y)JT. On the right
hand side of (22.8) we have the vector fp(Y) = [(f,p1(- - y))w

11
, ••• , (!,pm(- -

y))w
11
V of projections of the data onto the basis functions. 

Several comments are called for. First, to ensure invertibility of the Gram matrix 
we need to impose a small restriction on the set X of data sites. Namely, X needs 
to be d-unisolvent (c.f. Definition 6.1). In this case the Gram matrix is symmetric 
and positive definite since the polynomial basis is linearly independent and the 
weights are positive. Second, the fact that the coefficients Cj depend on the point 
y, and thus for every evaluation of Pt a Gram system (with different matrix G(y)) 
needs to be solved, initially scared people away from the moving least squares 
approach. However, for small values of m, i.e., small polynomial degreed and small 
space dimensions s, it is possible to solve the Gram system analytically, and thus 
avoid solving linear systems altogether. We follow this approach and present some 
examples with explicit formulas in Chapter 23 and use them for our numerical 
experiments later. Moreover, if one chooses to use compactly supported weight 
functions, then only a few terms are "active" in the sum defining the entries of 
G(y) (c.f. (22.9)). 

22.3 The Backus-Gilbert Approach to MLS Approximation 

The connection between the standard moving least squares formulation and Backus
Gilbert theory was pointed out in [Bos and Salkauskas (1989)]. Mathematically, in 
the Backus-Gilbert approach one considers a quasi-interpolant of the form 

N 

P1(x) = L f(xi)wi(x), (22.10) 
i=l 

where f = [f(x1), ... , J(xN)JT represents the given data. 
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Quasi-interpolation is a generalization of the interpolation idea. If we use a linear 
function space span{tl>1, ... ,tl>N} to approximate given data {f(x1), ... ,f(xN)}, 
then we saw earlier that we can determine coefficients c1, ... , CN such that 

N 

u ( x) = L Ci tl> i ( x) 
i=l 

interpolates the data, i.e., u(xi) = f(xi), i = 1, ... , N. In particular, if the basis 
functions tl>i are cardinal functions, i.e., tl>i(x1) = i5ij, i,j = 1, ... , N, then the 
coefficients are given by the data, i.e., Ci = f(xi), i = 1, ... , N. 

Now, for a general quasi-interpolant we take generating functions Wi, i = 

1, ... , N (which can be the same as the basis functions tl>i) and form the expansion 
(22.10). This expansion will in general no longer interpolate the data, but it will 
represent some form of approximation. In order to ensure that a quasi-interpolant 
achieves a certain approximation power one usually requires that the generating 
functions reproduce polynomials of a certain degree. The same approach will be 
followed here, also (cf. (22.13)). The major advantage of quasi-interpolation over 
interpolation is the fact that we no longer have to solve a (potentially very large) 
system of linear equations to determine the coefficients c1 . Instead, they are given 
directly by the data. We will now discuss a scheme that tells us how to choose 
"good" generating functions wi. 

As before, we consider the more general formulation 
N 

u(x, y) = L f(xi)wi(x, y), 
i=l 

with a global variable x and a local variable y. To obtain the Backus-Gilbert 
approximant we identify x and y, i.e., 

N 

P1(x) = u(x, x) = L f(xi)K(xi, x), (22.11) 
i=l 

where we now introduced the notation K(xi, x) = wi(x, x) with a kernel K. 
From the discussion above and from Theorem 18.3 we know that the quasi

interpolant that minimizes the point-wise error is given if the generating functions 
W i ( ·, y) are cardinal functions (for fixed y). 

In the Backus-Gilbert formulation of the moving least squares method one does 
not attempt to minimize the pointwise error, but instead seeks - for a fixed refer
ence pointy - to find the values of the generating functions wi(x, y) at the fixed 
point x as the minimizers of 

1 N 1 

22:w;(x,y) ( . ) 
i=l WXi,Y 

subject to the polynomial reproduction constraints 
N 

LP(Xi - y)wi(x, y) = p(x - y), for all p E Il~, 
i=l 

(22.12) 

(22.13) 
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where Ild is the space of s-variate polynomials of total degree at most d with di
mension m = ( d~s) . If we again express the basis polynomials by p 1 , ... , Pm, then 
we can reformulate (22.13) in matrix-vector form as 

A(y)w(x, y) = p(x - y), (22.14) 

where Aji(Y) = Pi(xi - y), j 1, ... , m, i 1, ... , N, \J!(x, y) 
['11 1 (x, y), ... , \JI N(x, y)JT is the vector of values of the generating functions, and 
p = [p1 , ... , Pm]T is the vector of basis polynomials. The corresponding matrix-
vector formulation of (22.12) is 

1 

2 wT (x, y)Q(y)w(x, y), (22.15) 

where 

Q ( y) = diag ( ( 
1 

) , ... , ( 
1 

) ) , 
w X1,Y w XN,Y 

(22.16) 

and the w(xi, ·) are positive weight functions (and thus for any fixed y the matrix 
Q(y) is positive definite). 

In the above formulation there is no explicit emphasis on nearness of fit as this 
is implicitly obtained by the quasi-interpolation "ansatz" and the closeness of the 
generating functions to the pointwise optimal delta functions. This is achieved by 
the above problem formulation if thew( Xi, ·) are weight functions that decrease with 
distance from the origin. The strictly positive definite radial functions used earlier 
are candidates for these weight functions. However, strict positive definiteness is 
not required at this point, so that, e.g., (radial or tensor product) B-splines can 
also be used. As mentioned earlier, the polynomial reproduction constraint is added 
so that the quasi-interpolant will achieve a desired approximation order. This will 
become clear in Chapter 25. 

In pure linear algebra notation the Backus-Gilbert approach corresponds to 
finding the minimum norm solution of an underdetermined linear system, i.e., we 
want to solve the polynomial reproduction constraints 

A(y)w(x, y) = p(x - y) 

with m x N (m < N) system matrix. The norm of the solution vector is a weighted 
norm that varies with the (fixed) reference point y and is measured as in (22.15). 
In other words, the Backus-Gilbert formulation guarantees that we find the "best" 
system of generating functions with local polynomial reproduction properties, where 
"best" is measured in terms of the norm (22.15). 

The quadratic form (22.12) (or equivalently (22.15)) can also be interpreted as 
a smoothness functional. Its use is also motivated by practical applications. In 
the Backus-Gilbert theory, which was developed in the context of geophysics (see 
[Backus and Gilbert (1968)]), it is desired that the generating functions wi are as 
close as possible to the ideal cardinal functions (i.e., delta functions). Therefore, 
one needs to minimize their "spread". The polynomial reproduction constraints 
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are a generalization of an original normalization condition which corresponds to 
reproduction of constants only. 

For any combination of a fixed (evaluation) point x and a fixed (reference) 
pointy the combination of (22.12) and (22.13) (or equivalently (22.15) and (22.14)) 
present just another constrained quadratic minimization problem of the form dis
cussed in previous chapters. 

According to our earlier work we use Lagrange multipliers .X(x, y) 
[>.1 (x, y), ... , >.m(x, y)jT (depending on x and y), and then know that ( c.f. (19.4) 
and (19.5)) 

.X(x, y) = (A(y)Q- 1 (y)AT(y))-
1 
p(x - y) 

w(x, y) = Q-1 (y)AT(y).X(x, y). 

(22.17) 

(22.18) 

Equation (22.18) tells us how to compute the generating functions for (22.11), i.e., 
if we write (22.18) componentwise then 

m 

wi(x,y) = w(xi,Y) L>.J(x,y)pj(Xi -y), i = l, ... ,N. (22.19) 
j=l 

Therefore, once the values of the Lagrange multipliers >.j (x, y), j = 1, ... , N, have 
been determined we have explicit formulas for the values of the generating functions. 
In particular, we get 

N 

P1(x) = u(x, x) = 2::: f(xi)wi(x, x) 
i=l 

N m 

= L f(xi)w(xi, x) L >.J(x, x)pJ(Xi - x), i = l, ... ,N, 
i=l j=l 

N 

= L f(xi)K(xi, x) 
i=l 

with kernels K(xi, x) = w(xi, x).XT(x, x)p(xi - x). 
In general, finding the Lagrange multipliers involves solving a (small) linear 

system that changes as soon as the reference point y changes (see (22.17)). Using 
equation (22.17), the Lagrange multipliers are obtained as the solution of a Gram 
system 

G(y).X(x, y) = p(x - y), (22.20) 

where the entries of the m x m matrix G(y) are the weighted £2 inner products 
N 

Gjk(Y) = (pj(- -y),pk(· - y))w
11 

= LPJ(Xi -y)pk(Xi - y)w(xi,y). (22.21) 
i=l 

Note that this is identical to the matrix G(y) needed for the determination of the 
coefficients c(y) in the standard MLS approach (c.f. (22.8) and (22.9)). Equation 
(22.20) shows us that - for a fixed reference point y - the Lagrange multipliers 
are polynomials, i.e., >.j (·, y), j = 1, ... , m, are polynomials. 
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22.4 Equivalence of the Two Formulations of MLS Approximation 

We now show that the two formulations of moving least squares approximation 
described in the previous two sections are equivalent, i.e., we show that P1(x) 
computed via (22.4) and (22.11) are the same. The approximant in the standard 
moving least squares formulation (22.4) establishes u(x, y) in the form 

rn 
u(x, y) = L CJ(Y)PJ(x - y) = pT(x - y)c(y), 

j=l 

where p = [p1, ... ,prnJI' and c = [c1, ... , crnV· 
In (22.8) we wrote the normal equations for this approach as 

G(y)c(y) = f p(y). 

Note that the right-hand side vector f p(y) can be written as 

f p(Y) = [(f,p1(· - y))w11 , • • ·' (f,Prn(· - y))w
11

]T 

= A(y)Q-1 (y)f (22.22) 

with the matrix Q- 1(y) used in the Backus-Gilbert formulation. This implies 

c(y) = c- 1(y)A(y)Q- 1 (y)f. 

Thus, using the standard approach, we get 

u(x,y) = pT(x -y)c(y) = pT(x - y)G- 1 (y)A(y)Q- 1 (y)f. (22.23) 

For the Backus-Gilbert approach, on the other hand, the "ansatz" is of the form 
(22.11) 

N 

u(x, y) = L f(xi)wi(x, y) = wT(x, y)f, 
i=l 

where as before w(x, y) = ['1'1(x, y), ... , W N(x, y)JI' and f = [f(x1), ... , f(xN )JI'. 
For this approach we derived (see (22.17) and (22.18)) 

A.(x, y) = c- 1(y)p(x - y) 
w(x, y) = Q- 1 (y)AT(y)A.(x, y), 

where G(y) = A(y)Q-1 (y)AT(y) (see (22.21) or (22.9)). Therefore, we now obtain 
for the Backus-Gilbert approximant 

u(x,y) = WT(x,y)f = [Q-l(y)AT(y)G-l(y)p(x-y)]T f 

which, by the symmetry of Q(y) and G(y), is the same as (22.23). Clearly, we also 
have equivalence when we evaluate either representation at y = x, i.e., consider 
P1(x) = u(x, x). 

The equivalence of the two approaches shows that the moving least squares 
approximant has all of the following properties: 

• It reproduces any polynomial of degree at most din s variables exactly. 
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• It produces the best locally weighted least squares fit. 
• Viewed as a quasi-interpolant, the generating functions 'l'i are as close as pos

sible to the optimal cardinal basis functions among all functions that produce 
polynomials of the desired degree in the sense that (22.12) is minimized. 

• Since polynomials are infinitely smooth, either of the representations of 'Pf 
shows that its smoothness is determined by the smoothness of the weight func
tion( s) Wi = w(xi, ·). 

In particular, the standard moving least squares method will reproduce the 
polynomial basis functions p 1 , ... , Pm even though this is not explicitly enforced by 
the minimization (solution of the normal equations). Moreover, the more general 
"ansatz" with (non-polynomial) approximation space U allows us to build moving 
least squares approximations that also reproduce any other function that is included 
in U. This can be very beneficial for the solution of partial differential equations with 
known singularities (see, e.g., the papers [Babuska and Melenk (1997); Belytschko 
et al. (1996)]). 

22.5 Duality and Bi-Orthogonal Bases 

From the Backus-Gilbert formulation we know that 

G(y)>.(x, y) = p(x - y) ~ >.(x, y) = c- 1 (y)p(x - y). (22.24) 

By taking multiple right-hand sides p(x - y) with x EX= {x1, ... , XN} we get 

[>.(x1, y), ... , >.(xN, y)] = c-l (y) [p(x1 - y), · · ·, p(XN - y)) 

or 

A(y) = c- 1 (y)A(y), (22.25) 

where A(y) is the polynomial matrix (22.14) from above and the m x N matrix 
A(y) has entries Aji(Y) = Aj(xi,y). 

The standard MLS formulation, on the other hand, gives us (see (22.8) and 
(22.22)) 

G(y)c(y) = fv(Y) ~ c(y) = c-1 (y)A(y)Q- 1 (y)f. (22.26) 

By combining (22.25) with (22.26) we get 

c(y) = c-1 (y)A(y)Q- 1 (y)f = A(y)Q-1 (y)f = f >..(Y), 

where f>..(Y) is defined analogously to f v(Y) (c.f. (22.22)). Componentwise this 
gives us 

and therefore, 

j = l, ... ,m, 

m 

u(x, y) = 'J:)J, Aj(·, y))w
11
Pj(X - y). 

j=l 

(22.27) 
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It is also possible to formulate the moving least squares method by using the 
Lagrange multipliers of the Backus-Gilbert approach as basis functions for the ap
proximation space U. Then, using the same argumentation as above, we end up 
with 

with 

m 

u(x,y) = LdJ(y).XJ(x,y) 
j=l 

j = l, ... ,m. 

We can verify this by applying (22.20) and (22.22) to (22.23), i.e., 

u(x,y) = pT(x -y)G-1(y)A(y)Q-1(y)f. 

We then obtain 

u(x,y) = >..T(x,y)fp(y), 

which corresponds to (22.28). 

(22.28) 

The calculations just presented show that the Lagrange multipliers form a basis 
that is dual to the polynomial basis. In particular, if we recall the MLS approximant 
in its standard representation 

m 

j=l 

and let f = Pk(· - y), then the polynomial reproduction property of the method 
ensures 

m 

L(Pk(· - y), Aj(·, y))w11 PJ(X - Y) = Pk(X - y). 
j=l 

This, however, implies 

j,k = l, ... ,m. (22.29) 

Therefore we have two sets of basis functions that are bi-orthogonal with respect 
to the special weighted inner product (·, ·)w

11 
on the set X. We will illustrate this 

duality in Chapter 24. 
Earlier we derived the representation (c.f. (22.18)) 

'l!(x,y) = Q-1(y)AT(y)>..(x,y) 

for the generating functions in the Backus-Gilbert formulation. Since the Lagrange 
multipliers are given by >..(x,y) = c-1(y)p(x -y) (see (22.20)) we get 

'l!(x,y) = Q-1(y)AT(y)G-1(y)p(x -y) = Q-l(y)AT(y)p(x - y) 

due to (22.25). Thus, the Backus-Gilbert representation is given also by the dual 
representation 

N ·' 

u(x,y) = Lf(xi)w(xi,y)>..T(xi,y)p(x -y). (22.30) 
i=l 
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By also considering the two dual expansions (22.28) and (22.30) we now have 
four alternative representations for the moving least squares quasi-interpolant. This 
is summarized in the following theorem. 

Theorem 22.1. Let f: n---+ lR be some function whose values on the d-unisolvent 
set of points X = { xi}~ 1 C JRS are given as data. Let P1, ... , Prn be a basis for Ild 
with P1 ( x) - 1, let { w( Xi, ·), ... , w( x N, ·)} be a set of positive weight functions, and 
let Aj, j = 1, ... , m, be the Lagrange multipliers defined by {22.17}. Furthermore, 
consider the generating functions 

Tn 

'lli(x, y) = w(xi, y) L >...J(x, y)pJ(Xi - y), 
j=l 

or in dual form 

Tn 

'lli(x, y) = w(xi, y) ~= AJ(xi, Y)PJ(x - y), 
j=l 

i = 1, ... ,N, 

i = 1, ... ,N. 

The best local least squares approximation to f on X in the sense of {22.6} is 
given by P1(x) = u(x, x), where 

Tn 

u(x,y) = L(J,>...j(-,y))w
11
PJ(x -y) 

j=l 
Tn 

= LU,PJ(· - y))w11 >...J(x, y) 
j=l 

N 

= L f(xi)\I!i(x, y). 
i=l 

This results in the four representations 

Tn 

P1(x) = L(J, Aj(·, x))w..,PJ(O) = (!, >...1(-, x))w.., = c1(x) 
j=l 

Tn 

= L(J,pJ(· - x))w..,>...J(x, x) 
j=l 

N rn 
= L f(xi)w(xi, x) L AJ(x, x)pJ(Xi - x) 

i=l j=l 

N rn N 

= Lf(xi)w(xi,x) L>...J(Xi,x)pJ(O) = Lf(xi)w(xi,x)>...1(xi,x). 
i=l j=l i=l 

Note that the first two expansions for P1(x) in Theorem 22.1 can be viewed as 
generalizations of (finite) eigenfunction or Fourier series expansions. 
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22.6 Standard MLS Approximation as a Constrained Quadratic 
Optimization Problem 

Finally, it is also possible to formulate the standard MLS approach as a con
strained quadratic minimization problem. To this end We (artificially) introduce 
the quadratic functional 

Tn Tn 

cT(y)G(y)c(y) =LL CJ(y)ck(y)GJk(Y) 
j=lk=l 

Tn Tn 

=LL CJ(y)ck(y)(pJ(· - y),pk(· - y))w
11 

j=lk=l 

which should be interpreted as the (y-dependent) native space norm of the approx-
Tn 

imant u(x, y) = LCJ(Y)PJ(x - y). The Gram system (22.8) can be written in 
j=l 

matrix-vector form as 

G(y)c(y) = A(y)Q-1(y)f 

where Q(y) is the diagonal matrix of weight functions (22.16) and A(y) is the matrix 
of polynomials (22.14) used earlier. 

Minimization of the quadratic form subject to the linear side conditions is equiv
alent to minimization of (for fixed y) 

(22.31) 

where µ(y) is a vector of Lagrange multipliers. 
The solution of the linear system resulting from the minimization problem 

(22.31) gives us 

µ(y) = ( G(y)c-1 (y)GT (y) )-1 A(y)Q-1 (y)f = c-T (y)A(y)Q-1 (y)f 
c(y) = c-1 (y)GT(y)µ(y) = µ(y) 

so that - as in the case of radial basis function interpolation - the quadratic 
functional cT(y)G(y)c(y) is automatically minimized by solving only the Gram 
system G(y)c(y) = f p(y). 

22.7 Remarks 

In the statistics literature the moving least squares approach is known as local 
(polynomial) regression. Good sources of information are the book [Fan and Gi
jbels (1996)] and the review article [Cleveland and Loader (1996)] according to 
which the basic ideas of local regression can be traced back at least to work done 
in the late 19th century by [Gram (1883); Woolhouse (1870); De Forest (1873); 
De Forest (1874)]. In particular, in the statistics literature one learns that the use 
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of least squares approximation is justified when the data Ji, ... , f N are normally 
distributed, whereas, if the noise in the data is not Gaussian, then other criteria 
should be used. See, e.g., the survey article [Cleveland and Loader (1996)] for more 
details. 

We close by establishing a connection between the polynomial reproduction 
constraints and certain moment conditions. Recall the polynomial reproduction 
constraints (22.14) in the Backus-Gilbert formulation 

A(y)W(x, y) = p(x - y). 

By setting y = x we get 

A(x)w(x, x) = p(O). (22.32) 

Since we defined the kernels K(xi, x) = wi(x, x) earlier, and since we assume that 
the polynomials basis is such that p 1 ( x) - 1 and PJ ( 0) = 0 for j > 1 we get from 
(22.32) 

N 

LPk(Xi - x)K(xi, ~) = 01k, k= l, ... ,m. 
i=l 

This comprises a set of discrete moment conditions for the kernel K. Since there 
are only m conditions for the N kernel values K(xi, x) at a fixed point x, the kernel 
is not uniquely determined by these moment conditions. If, however, we add the 
least norm constraint from the Backus-Gilbert formulation, i.e., we minimize 

N 
1"'"' 2 1 1 2 
2 ~K (xi,x) ( . ) = 2llK(·,x)ll1;w..,• 

i=l WX 1 ,X 

then we get the standard minimum norm solution for underdetermined least squares 
problems. We also point out that we derived earlier (see Theorem 22.1) that the 
kernel K ( ·, x) is of the form 

K(·,x) = ,\1 (·,x)w(·,x) 

with polynomial term ,\1 (·, x) and weight function w(·, x). Thus, we have a unique 
solution once the weight function w(·, x) has been chosen. 

The interpretation of MLS approximation with the help of moment matrices is 
used in the engineering literature (see, e.g., [Li and Liu (2002)]), and also plays 
an essential role when connecting moving least squares approximation to the more 
efficient concept of approximate approximation [Maz 'ya and Schmidt ( 2001)]. For 
a discussion of approximate moving least squares approximation see [Fasshauer 
(2002c); Fasshauer (2002d); Fasshauer (2003); Fasshauer (2004)] or Chapter 26. 





Chapter 23 

Examples of MLS Generating Functions 

23.1 Shepard's Method 

The moving least squares method in the case d = 0 (and therefore m = 1) with 
p 1 ( x) _ 1 is usually referred to as Shepard's method [Shepard ( 1968)]. In the 
statistics literature Shepard's method is also known as a kernel method (see, e.g., the 
papers from the 1950s and 60s [Rosenblatt (1956); Parzen (1962); Nadaraya (1964); 
Watson (1964)]). Using our notation we have 

Pf ( X) = c1 ( X). 

The Gram "matrix" (22.9) consists of only one element 
N 

G(x) = (p1(· - x),p1(· - x))w"' = L w(xi, x) 
i=l 

so that 

G(x)c(x) = f p(x) 

implies 
N 

L f(xi)w(xi, x) 

( ) 
i-1 C1 X = ---N ____ _ 

LW(Xj,X) 
j=l 

(23.1) 

If we compare (23.1) with the Backus-Gilbert quasi-interpolation formulation 
(22.11) we immediately see that the generating functions Wi are given by 

Since 

ff'·( )- w(xi,x) 
'Jc'i X,X - N 

LW(Xj,X) 
j=l 

N N 
~ff'·( )-~ w(xi,x) 
~'Jc'i X,X - ~ N 

i=l 
i=l L w(xj, x) 

j=l 
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(23.2) 

-1 (23.3) 
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independent of x, Shepard's method is also known as a partition of unity method. 
The weight functions can take many forms. In practice one usually takes a 

single basic weight function w which is then shifted to the data sites. Often the 
basic weight function is also a radial function (in either the Eµclidean or maximum 
norm). We will use radial functions as basic weights in our numerical experiments 
below, i.e., 

where w is one of our (strictly positive definite) radial basic functions. Both com
pactly supported and globally supported functions will be used. 

The dual Shepard basis is defined by (see (22.24)) 

G(y)>..(x, y) = p(x - y) 

so that 
1 Ai(x,x) = _N ___ _ 

Lw(xi,x) 
i=l 

and(c.f. (22.28)) 

(23.4) 

with 
N 

di(x) = (J,p1(· - x))w.., = Lf(xi)w(xi,x). 
i=l 

The explicit dual representation of the Shepard approximant is, of course, identical 
to (23.1). 

The generating functions (22.19) are defined as 

\lli(x, x) = w(xi, x)A1(x, x)p1(xi - x) = Nw(xi, x) 

L:w(xJ,x) 
j=l 

which matches our earlier expression (23.2). This once more gives rise to the well
known quasi-interpolation formula for Shepard's method 

N 

P1(x) = L f(xi)wi(x, x) 
i=l 
N 

= L f(xi) Nw(xi, x) 

i=l L w(xJ, x) 
j=l 

We now also have bi-orthogonality of the basis and dual basis, i.e., 
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N 

(-\1(·,x),P1(· -x))w.., = LA1(xi,x)w(xi,x) 
i=l 
N 

= ~ Nw(xi,x) 
~-----=l. 

i=l L w(xj, x) 
j=l 

23.2 MLS Approximation with Nontrivial Polynomial 
Reproduction 

207 

While it is always possible to simply solve the local Gram systems (22.8) or (22.20) 
and therefore implicitly compute the generating functions '11 i, i = 1, ... , N, it is 
often of interest to have explicit formulas for '11 i. We saw in the previous section 
that in the case of reproduction of constants we arrive at Shepard's method which 
is valid independent of the space dimension. However, if the degree d of polynomial 
reproduction is nontrivial (i.e., d > 0), then the size m = (d~s) of the Gram systems, 
and therefore the resulting formulas for the generating functions will depend on the 
space dimension s. 

We now present three examples with explicit formulas for the MLS generating 
functions. 

To simplify the notation in the following examples we define the moments 

N 

µa= L(xi - x)aw(xi, x), 
i=l 

with a: a multi-index. These moments arise as entries in the Gram matrix G(y) 
if we use a monomial basis and identify the reference point y with the evaluation 
point x. 

Example 23.1. We take s = 1, d = 1, and therefore m = 2. The set of data sites 
is given by X = { x 1, ... , x N}. We choose the standard monomial basis 

U = span{p1(x) = 1, p2(x) = x }. 

Then the Gram matrix (22.20) is of the form 

G(x) = [ (P1(· - x),p1(· - x))wx (p1(· - x),P2(· - x))wx] 
(P2(· - x),p1(· - x))wx (p2(· - x),p2(· - x))wx 

[ 
E!1 w(xi, x) E!i (xi - x)w(xi, x) ] 

E!1 (xi - x)w(xi, x) E!1 (xi - x)2w(xi, x) 
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and the right-hand side of the Gram system is given by 

[
P1(0)l [1] p( x - x) = P2 ( 0) = 0 . 

Therefore, solution of the Gram system via Cramer's rule immediately yields 

.X 1 ( x, x) = µ 2 
2 , 

µ0µ2 - µ1 

) 
µ1 

.X2(x,x = 2 ' 
µ1 - µ0µ2 

and according to (22.19) the generating functions for the Backus-Gilbert quasi
interpolant (MLS approximant) (22.11) are given by 

i = l, ... ,N, 

where the w(xi, ·) are arbitrary (positive) weight functions. 

Example 23.2. We remain in the univariate case (s = 1) but increase the degree 
of polynomial reproduction to d = 2 so that m = 3. Again we take the standard 
monomial basis, i.e., 

U = span{p1(x) = 1, P2(x) = x, p3(x) = x 2}. 

The 3 x 3 Gram system 

[ ~~ ~~ ~:] [~~~:: :~] = [~] 
µ2 µ3 µ4 .X3(x, x) 0 

can then be solved analytically (e.g., using Maple), and one obtains the Lagrange 
multipliers 

where D = 2µ1µ2µ3 - µoµ~ - µ~ - µrµ4 + µ0µ2µ4. Now the generating functions 
are given by 

Example 23.3. Reproduction of linear polynomials in 2D also leads to a 3 x 3 
Gram system (since s = 2, d = 1, and therefore m = 3). Now the monomial basis 
is given by 

U = span{p1(x, y) = 1, P2(x, y) = x, p3(x, y) = y}, 
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where x = (x, y) E JR2
, and the Gram system looks like 

[ ~~~ ~~~ ~~~] [~~~:::~] = 
µ01 µ11 µ02 A3(a~, x) 

The Lagrange multipliers in this case turn out to be 

Al(x, x) = ~ [µ~ 1 - µ20µ02], 

1 
A3(x, x) = D [µ20µ01 - µ10µ11], 

with D = µr0µ02 + µ20µ'fn - µ00µ20µ02 - 2µ10µ01µ11 + µooµt 1. The generating 
functions wi, i = 1, ... , N, for this example are of the form 

While we can use a symbolic manipulation program such as Maple to solve the 
Gram system analytically for other choices of d ands, it is clear that the expressions 
for the generating functions quickly become very unwieldy. It may be tolerable to 
continue this approach for a 4 x 4 Gram system corresponding to reproduction 
of linear polynomials in 3D (or cubic polynomials in lD), but already the case of 
quadratic reproduction in 2D (with m = 6) is much too complex to print here, 
and reproduction of quadratics in 3D (or cubics in 2D) requires even 10 Lagrange 
multipliers. 





Chapter 24 

MLS Approximation with MATLAB 

24.1 Approximation with Shepard's Method 

In this section we investigate approximation with Shepard's method 
N 

P1(x) = L f(xi) Nw(xi, x) x E Rs. 

i=l L w(xj, x) 
j=l 

We will look at three sets of experiments. The first two sets will employ global 
Gaussian weights, i.e., w(xi,x) = e-c

2
ll:z:-:z:.;il

2
, in R 2 , while the third set of ex

periments is based on Wendland's compactly supported C 2 weights w(xi, x) = 

(1 - c-llx - xiii)! (4c-llx - xiii+ 1) in Rs for s = 1, 2, ... , 6. Note that the Wend
land weights are strictly positive definite basic functions only for s < 3 so that it 
would not be advisable to use them for RBF interpolation in higher dimensions. 
For MLS approximation, however, strict positive definiteness is not required. Here 
we only ask that the weights be positive on their support. 

In our 2D experiments we take Franke's function (2.2) as our test function and 
sample it at uniformly spaced points in the unit square. In Table 24.l we list the 
RMS-errors and computed convergence rates for both stationary and non-stationary 
approximation. Clearly, non-stationary approximation does not converge. This 
behavior is exactly opposite the convergence behavior of Gaussians in the RBF 
interpolation setting. There we have convergence in the non-stationary setting, but 
not in the stationary setting (c.f. Table 17.5 and Figure 17.12). The initial shape 
parameter for the stationary setting (and the fixed value in the non-stationary 
setting) is c = 3. This value is subsequently multiplied by a factor of two for each 
halving of the fill-distance. We can see that Shepard's method seems to have a 
stationary approximation order of at least CJ(h). This will be verified theoretically 
in the next chapter. 

The first two stationary Shepard approximations (based on 9 and 25 points, 
respectively) are displayed in the top part of Figure 24. l. It is apparent that 
the Shepard method has a smoothing effect. In order to emphasize this feature 
we provide Shepard approximations to noisy data (with 3% noise added to the 

211 
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Table 24.1 2D stationary and non-stationary Shepard ap-
proximation with Gaussian weight function. 

stationary non-stationary 

N RMS-error rate RMS-error rate 

9 1.8351 lOe-001 l.835 llOe-001 
25 5.885159e-002 1.6407 l.303771e-001 0.4932 
81 2.299502e-002 1.3558 l.311538e-001 -0.0086 

289 6. 726166e-003 1.7735 l.315894e-001 -0.0048 
1089 2. l 13604e-003 1.6701 l .320564e-001 -0.0051 
4225 8.065893e-004 1.3898 l.323576e-001 -0.0033 

Franke data) in the bottom part of Figure 24.1. On the left we display the Shepard 
approximation based on Gaussian weights with c = 48 (corresponding to the entry 
in line 5 of Table 24.1). The RMS-error for this approximation is l.820897e-002. 
The plot on the right of the bottom part of Figure 24.1 is the result of reducing c 
to 12, and thus increasing the smoothing effect since "wider" weight functions are 
used, i.e., more neighboring data are incorporated into the local regression fit. The 
corresponding RMS-error is 2.481218e-002. Note that even though the RMS-error 
is larger for the plot on the right, the surface is visually smoother. These examples 
should be compared to the data smoothing experiments in Chapter 19. 

The MATLAB code for the 2D experiments is Shepard2D. m listed as Pro
gram 24.1. It is a little simpler than the RBF interpolation code used earlier since 
we do not need to assemble an interpolation matrix and no linear system needs to 
be solved. The evaluation matrix is assembled in two steps. First, on line 14, we 
compute the standard RBF evaluation matrix. In order to implement the Shepard 
scaling we note that all of the entries in row i of the evaluation matrix are scaled 
with the same sum, E;=l w(xj, xi)· Therefore, on line 16, we perform the extra 
Shepard scaling with the help of repmat and a vector of ones which gives us all the 
necessary sums in the denominator. For the example with noisy data we add 

f = f + 0.03*randn(size(f)); 

after line 11. 

Program 24.1. Shepard2D .m 

!. Shepard2D 
!. Script that performs 20 Shepard approximation with global weights 
!. Calls on: DistanceMatrix, PlotSurf, PlotError2D 

1 rbf = ©(e,r) exp(-(e*r).-2); ep = 5.5; 
!. Define Franke's function as testfunction 

2 f1 = ©(x,y) 0.75*exp(-((9*x-2).-2+(9*y-2).-2)/4); 
3 f2 = ©(x,y) 0.75*exp(-((9*x+l).-2/49+(9*y+l).-2/10)); 
4 f3 = ©(x,y) 0.5*exp(-((9*x-7).-2+(9*y-3).-2)/4); 
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Fig. 24.1 Top: Shepard approximation with stationary Gaussian weights to Franke's function 
using 9 (left) and 25 (right) uniformly spaced points in (0, 11 2 . Bottom: Shepard approximation 
with Gaussian weights to noisy Franke's function using c = 48 (left) and c = 12 
uniformly spaced points in (0, 11 2 

5 f4 = ©(x,y) 0.2*exp(-((9*x-4).-2+(9*y-7).-2)); 
6 testfunction = ©(x,y) f1(x,y)+f2(x,y)+f3(x,y)-f4(x,y); 
7 N = 1089; gridtype = 'u'; 
8 neval = 40; 

% Load data points 
9 name= sprintf('Data2D_/.d/.s',N,gridtype); load(name) 

10 ctrs = dsites; 
% Create vector of function (data) values 

11 f = testfunction(dsites(:,1),dsites(:,2)); 

(right) 

% Create neval-by-neval equally spaced evaluation locations 
% in the unit square 

12 grid= linspace(0,1,neval); [xe,ye] = meshgrid(grid); 
13 epoints = [xe (:) ye (:)] ; 

on 1089 

% Compute distance matrix between evaluation points and centers 
14 DM_eval = DistanceMatrix(epoints,ctrs); 

% Compute evaluation matrix 
15 EM= rbf(ep,DM_eval); 
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16 EM= EM./repmat(EM*ones(N,1),1,N); !. Shepard normalization 
!. Compute quasi-interpolant 

17 Pf = EM*f; 
!. Compute exact solution, i.e., 
!. evaluate test function on evaluation points 

18 exact= testfunction(epoints(:,1),epoints(:,2)); 
!. Compute errors on evaluation grid 

19 maxerr = norm(Pf-exact,inf); 
20 rms_err = norm(Pf-exact)/neval; 
21 fprintf('RMS error: /.e\n', rms_err) 
22 fprintf('Maximum error: /.e\n', maxerr) 

!. Plot interpolant 
23 PlotSurf(xe,ye,Pf,neval,exact,maxerr,[160,20]); 

!. Plot absolute error 
24 PlotError2D(xe,ye,Pf,exact,maxerr,neval,[160,20]); 

The next group of experiments (reported in Tables 24.2 and 24.3) should be 
compared to the distance matrix fits of Chapter 1. The data are again sampled 
from the test function 

s 

fs(x) = 4 8 IT Xd(l - Xd), 
d=l 

which is parametrized by the space dimensions and coded in the MATLAB subrou
tine testfunction.m (see Program C.l). 

Since we are using the compactly supported weights w(xi, x) 
(1 - cllx - xiii)! (4cllx - xiii+ 1) we can keep the evaluation matrix sparse and 
are therefore able to deal with much larger data sets. Again, we employ a station
ary approximation scheme, i.e., the scale parameter E for the support of the weight 
functions is (inversely) proportional to the fill-distance. In fact, we take E = 2k + 1 
(see line 4 of Program 24.2), where k also determines the number N = (2k + 1) 8 of 
data points used (c.f. line 3). These points are taken to be Halton points in [O, 1] 8 

( c.f. line 6). 
In Tables 24.2 and 24.3 we list RMS-errors (computed on various grids of equally 

spaced points, i.e., mostly on the boundary of the unit cube in higher dimensions) 
for a series of approximation problems in IR.8 for s = 1, 2, ... , 6. Again, the approx
imation order for Shepard's method seems to be roughly O(h) independent of the 
space dimension s. 

The MATLAB code Shepard_CS .mis listed as Program 24.2. This time the eval
uation matrix is a sparse matrix which we also compute in two steps. The standard 
RBF evaluation matrix is computed as for our earlier CSRBF computations on 
lines 10 and 11 using the subroutine DistanceMatrixCSRBF .m (see Chapter 12). 
This time the Shepard scaling is performed on line 12 with the help of a diagonal 
matrix stored in the spdiags format. 
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Table 24.2 Shepard fit in 1D-3D with compactly supported weight function. 

ID 2D 3D 

k N RMS-error N RMS-error N RMS-error 

1 3 2.844398e-001 9 2.388314e-001 27 1.912827e-001 
2 5 1.665656e-001 25 1.271941e-001 125 1. 249589e-001 
3 9 8. 796073e-002 81 7 .107988e-002 729 6.898182e-002 
4 17 3. 970488e-002 289 3.944228e-002 4913 3.718816e-002 
5 33 1. 738869e-002 1089 3.109722e-002 35937 2.838763e-002 
6 65 7. 535 727 e-003 4225 l .888361e-002 274625 9.837855e-003 
7 129 3.418925e-003 16641 2.831294e-002 
8 257 1.615694e-003 66049 2.667914e-003 
9 513 7.872903e-004 263169 2.352736e-003 
10 1025 3.884881e-004 
11 2049 1.940611e-004 
12 4097 9.699922e-005 

Table 24.3 Shepard fit in 4D-6D with compactly supported weight function. 

4D 

k N RMS-error 

1 81 1.31031 le-001 
2 625 8. 943469e-002 
3 6561 4.599027e-002 
4 83521 2.523581e-002 

Program 24.2. Shepard_CS. m 

% Shepard_CS 

5D 6D 

N RMS-error N RMS-error 

243 8.936253e-002 729 6.372675e-002 
3125 6.344921e-002 15625 3.910649e-002 
59049 3.492958e-002 531441 2.234389e-002 

% Script that performs Shepard approximation for arbitrary 
% space dimensions s using sparse matrices 
% Calls on: DistanceMatrixCSRBF, MakeSDGrid, testfunction 
% Uses: haltonseq (written by Daniel Dougherty from 
% MATLAB Central File Exchange) 

% Wendland C2 weight function 
1 rbf = ©(e,r) r.-4.*(5*spones(r)-4*r); 
2 s = 6; % Space dimension s 

% Number of Halton data points 
3 k = 3; N = (2-k+1)-s; 
4 ep = 2-k+i; % Scale parameter for basis function 
5 neval = 4; M = neval-s; 

% Compute data sites as Halton points 
6 dsites = haltonseq(N,s); 
7 ctrs = dsites; 

% Create vector of function (data) values 

215 
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8 f = testfunction(s,dsites); 
% Create neval~s equally spaced evaluation locations in 
% the s-dimensional unit cube 

9 epoints = MakeSDGrid(s,neval); 
% Compute evaluation matrix, i.e., 
% matrix of values of generating functions 

10 DM_eval = DistanceMatrixCSRBF(epoints,ctrs,ep); 
11 EM= rbf(ep,DM_eval); 

% Shepard scaling 
12 EM= spdiags(1./(EM*ones(N,1)),0,M,M)*EM; 

% Compute quasi-interpolant 
13 Pf = EM*f; 

% Compute exact solution, i.e., 
% evaluate test function on evaluation points 

14 exact= testfunction(s,epoints); 
% Compute errors on evaluation grid 

15 maxerr = norm(Pf-exact,inf); 
16 rms_err = norm(Pf-exact)/sqrt(M); 
17 fprintf('RMS error: %e\n', rms_err) 
18 fprintf('Maximum error: %e\n', maxerr) 

24.2 MLS Approximation with Linear Reproduction 

In general one would expect a moving least squares method that reproduces linear 
polynomials to be more accurate than one that reproduces only constants such as 
Shepard's method. We illustrate this in Table 24.4 where we again use the C 2 com
pactly supported weight functions w(xi, x) = (1 - c:llx - xiii)! (4c:llx - xiii+ 1) in 
a stationary approximation setting with a base € = 3 for N = 9 data points (and 
then scaled inversely proportional to the fill-distance) to approximate data sam
pled from Franke's function at uniformly spaced points in [O, 1 ]2. We can see that 
the MLS method with linear reproduction has a numerical approximation order of 
O(h2 ). This will be justified theoretically in the next chapter. 

Instead of solving a Gram system for each evaluation point as suggested in (22.8) 
or (22.20) we use the explicit formulas for the Lagrange multipliers and generating 
functions given for the 2D case in Example 23.3. These formulas are implemented 
in MATLAB in the subroutine LinearScaling2D_CS. m and listed in Program 24.3. 
In particular, this subroutine is written to deal with compactly supported weight 
functions and thus uses sparse matrices. As in the assembly of sparse interpolation 
matrices we make use of kd-trees. 

We build a kd-tree of all of the centers for the weight functions and find - for 
each evaluation point - those centers whose support overlaps the evaluation point. 
The input to LinearScaling2D_CS .mare epoints (an N x s matrix representing a 
set of N data sites in IR 8

), ctrs (an M x s matrix representing a set of M centers 
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Table 24.4 2D stationary MLS ap
proximation to Franke's function at 
uniformly spaced points in [O, 1] 2 

with linear precision using com
pactly supported weight function. 

N RMS-error rate 

9 1. 789573e-001 
25 7.089522e-002 1.3359 
81 2.691693e-002 1.3972 
289 7.516377e-003 1.8404 
1089 1.944252e-003 1.9508 
4225 4.903575e-004 1.9873 
16641 l.228639e-004 1.9968 
66049 3.072866e-005 1.9994 
263169 7.658656e-006 2.0044 
1050625 l.921486e-006 1.9949 
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for the weight functions in lR8
), rbf (an anonymous or inline function defining the 

RBF weight function), and ep (the scale parameter that determines the size of the 
support of the weight functions). As always, wide functions result from a small 
value of ep, i.e., the size of the support of the weight function is given by 1/ep. The 
output of LinearScaling2D_CS. m is an N x M sparse matrix Phi that contains the 
MLS generating functions centered at the points given by center and evaluated at 
the evaluation points in epoints. Note that the compactly supported basic function 
needs to be supplied in its standard (unshifted) form, e.g., as 

rbf = ©(e,r) max(spones(r)-e*r,0).-4.*(4*e*r+spones(r)); 

for the C2 Wendland function <p3 , 1 ( r) = ( 1 - r )t ( 4r + 1). 
For each evaluation point (see the loop over i from line 10 to line 33) we compute 

the six different moments (entries of the Gram matrix G, c.f. Example 23.3) required 
for the computation of the Lagrange multipliers on lines 14-20. Then the values of 
the Lagrange multipliers and of the generating functions at the ith evaluation point 
are computed on lines 21-24. The final sparse matrix Phi is assembled on line 35. 

Program 24.3. LinearScaling2D_CS .m 

!. Phi= LinearScaling2D_CS(epoints,ctrs,rbf ,ep) 
'', F h orms a sparse matrix of scaled generating functions for MLS 
'', h approximation with linear reproduction. 
!. Uses: k-D tree package by Guy Shechter from 

''. h MATLAB Central File Exchange 
1 function Phi= LinearScaling2D_CS(epoints,ctrs,rbf ,ep) 
2 [N,s] = size(epoints); [M,s] = size(ctrs); 
3 alpha= [O O; 1 O; 0 1; 1 1; 2 O; 0 2]; 

% Build k-D tree for centers 
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4 [tmp,tmp,Tree] = kdtree(ctrs,[]); 

% For each eval. point, find centers whose support overlap it 
5 support= 1/ep; mu= zeros(6); 

% Modify the following line for optimum performance 
6 veclength = round(support*N*M/4); 
7 rowidx = zeros(1,veclength); colidx = zeros(1,veclength); 
8 validx = zeros(1,veclength); 
9 istart = 1; iend = O; 

10 for i = 1:N 
11 [pts,dist,idx] = kdrangequery(Tree,epoints(i,:),support); 
12 newlen = length(idx); 

% Vector of basis functions 
13 Phi_i = rbf(ep,dist'); 

% Compute all 6 moments for i-th evaluation point 
14 for j=1:6 
15 x_to_alpha = 1; 

16 for coord=1:s 
17a x_to_alpha = x_to_alpha .*(ctrs(idx,coord)- ... 
17b repmat(epoints(i,coord),newlen,1)).-alpha(j,coord); 
18 end 
19 mu(j) = Phi_i*x_to_alpha; 

20 end 
21 L1=(mu(4)-2-mu(5)*mu(6)); L2=(mu(2)*mu(6)-mu(3)*mu(4)); 
22 L3=(mu(5)*mu(3)-mu(2)*mu(4)); 
23a 
23b 
23c 
24a 
24b 
25 
26 
27 
28 
29 

30 
31 
32 

33 end 

scaling= L1*repmat(1,newlen,1) + ... 
L2*(ctrs(idx,l)-repmat(epoints(i,1),newlen,1))+ ... 
L3*(ctrs(idx,2)-repmat(epoints(i,2),newlen,1)); 

denom = mu(2)-2*mu(6)+mu(5)*mu(3)-2-mu(1)*mu(5)*mu(6)- ... 
2*mu(2)*mu(3)*mu(4)+mu(1)*mu(4)-2; 

if (denom -= 0) 

end 

scaling = scaling/denom; 
iend = iend + newlen; 
rowidx(istart:iend) = repmat(i,1,newlen); 
colidx(istart:iend) = idx'; 
validx(istart:iend) = Phi_i.*scaling'; 
istart = istart + newlen; 

34 filled= find(rowidx); % only those actually filled 
35 Phi= sparse(rowidx(filled),colidx(filled),validx(filled),N,M); 

% Free memory 
36 clear rowidx colidx validx; kdtree([], [],Tree); 
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With all the difficult coding relegated to the subroutine LinearScaling2D_CS. m 
the main program LinearMLS2D_CS. m is rather simple. It is listed in Program 24.4. 
The version of the code listed here is adapted to read a data file that contains both 
data sites (in the variable dsites) and function values (in the variable rhs). For 
the example displayed in Figure 24.2 we used an actual set of 1:250,000-scale Digital 
Elevation Model (DEM) data from the U.S. Geological Survey, namely the data set 
Dubuque-E which contains elevation data from a region in northeastern Iowa, north
western Illinois, and southwestern Wisconsin. The data set is available on the world
wide web at http://edcsgs9.cr.usgs.gov/glis/hyper/guide/1_dgr_demfig/
states/IL. html. The original data set contains 1201 x 1201 uniformly spaced 
measurements ranging in height from 178 meters to 426 meters. We converted 
the DEM data format with the utility DEM2XYZN that can be downloaded from 
http: I I data. geocomm. com/ dem/ dem2xyzn/, selected only the northeastern quad
rant of 601 x 601 = 361201 elevation values, and scaled the x and y coordinates 
that originally defined a square with a side length of about 35 miles to the unit 
square. The resulting data set Data2D_DubuqueNE is included on the enclosed CD. 
An MLS approximation with linear reproduction based on the C 2 compactly sup
ported Wendland weight used earlier was evaluated on a grid of 60 x 60 equally 
spaced points and is displayed in Figure 24.2. We use a shape parameter of E = 30 
to determine the support size of the weight functions. 

Program 24.4. LinearMLS2D_CS. m 

% LinearMLS2D_CS 
% Script that performs MLS approximation with linear reproduction 
% using sparse matrices 
% Calls on: LinearScaling2D_CS 

1 rbf = ©(e,r) max(spones(r)-e*r,0).-4.*(4*e*r+spones(r)); 
2 ep = 30; neval = 60; 

% Load data points and rhs 
3 load('Data2D_DubuqueNE'); 
4 ctrs = dsites; 

% Create neval-by-neval equally spaced evaluation locations 
% in the unit square 

5 grid= linspace(O,l,neval); [xe,ye] = meshgrid(grid); 
6 epoints = [xe(:) ye(:)]; 

% Compute evaluation matrix 
7 EM= LinearScaling2D_CS(epoints,ctrs,rbf ,ep); 

% Compute MLS approximation (rhs read from data file) 
8 Pf = EM*rhs; 
9 figure % Plot MLS fit 

10 surfplot = surf(xe,ye,reshape(Pf,neval,neval)); 
11 set(surfplot,'FaceColor','interp','EdgeColor','none') 
12 view([l5,35]); camlight; lighting gouraud; colormap summer 
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Fig. 24.2 MLS approximation using compactly supported weight for elevation data in northwest
ern Illinois. 

A much simpler (but also much slower) implementation of MLS approximation 
with linear reproduction is given as Program 24.5. In this implementation we solve 
the local least squares problem for each evaluation point x, i.e., we obtain the MLS 
approximation at the point x as 

m 

Pf(x) = u(x,x) = L:cj(x)pj(x - x) = c1(x), 
j=l 

where the coefficients are found by solving the Gram system ( c.f. 22.8) 

G(x)c(x) = f p(x). 

The solution of these systems (for each evaluation point x) is computed on line 18 
of the program, with the Gram matrix built as 

G(x) = PT(x)W(x)P(x), 

and the polynomial matrix P with entries Pij(x) = Pj(Xi - x) and diago
nal weight matrix computed on lines 16 and 17, respectively. The subroutine 
LinearScaling2D_CS .m is not required by this program. Compare this program 
with Program 24.l. 

Program 24.5. LinearMLS2D_GramSol ve. m 

% LinearMLS2D_GramSolve 
% Script that performs MLS approximation with linear reproduction 
% by solving local Gram systems 
% Calls on: DistanceMatrix, PlotSurf, PlotError2D 
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1 rbf = ©(e,r) exp(-(e*r).-2); ep = 5.5; 
% Define Franke's function as testfunction 

2 fl= ©(x,y) 0.75*exp(-((9*x-2).-2+(9*y-2).-2)/4); 
3 f2 = ©(x,y) 0.75*exp(-((9*x+l).-2/49+(9*y+l).-2/10)); 
4 f3 = ©(x,y) 0.5*exp(-((9*x-7).-2+(9*y-3).-2)/4); 
5 f4 = ©(x,y) 0.2*exp(-((9*x-4).-2+(9*y-7).-2)); 
6 testfunction = ©(x,y) f1(x,y)+f2(x,y)+f3(x,y)-f4(x,y); 
7 N = 1089; gridtype = 'u'; 
8 neval = 40; 

% Load data points 
9 name= sprintf('Data2D_%d%s',N,gridtype); load(name) 

10 ctrs = dsites; 
% Create vector of function (data) values 

11 f = testfunction(dsites(:,1),dsites(:,2)); 
% Create neval-by-neval equally spaced evaluation locations 
% in the unit square 

12 grid= linspace(0,1,neval); [xe,ye] = meshgrid(grid); 
13 epoints = [xe(:) ye(:)]; 

% Compute MLS approximation with shifted basis polynomials 
14 Pf= zeros(neval-2,1); 
15 for j=l:neva1-2 
16 P = [ones(N,1) dsites-repmat(epoints(j,:),N,1)]; 
17 W = diag(rbf(ep,DistanceMatrix(epoints(j,:),ctrs))); 
18 c = (P'*W*P)\(P'*W*f); 
19 Pf(j) = c(l); 
20 end 

% Compute exact solution, i.e., 
% evaluate test function on evaluation points 

21 exact= testfunction(epoints(:,1),epoints(:,2)); 
% Compute errors on evaluation grid 

22 maxerr = norm(Pf-exact,inf); 
23 rms_err = norm(Pf-exact)/neval; 

% Plot interpolant 
24 PlotSurf(xe,ye,Pf,neval,exact,maxerr,[160,20]); 

% Plot absolute error 
25 PlotError2D(xe,ye,Pf,exact,maxerr,neval,[160,20]); 
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Alternatively, we could have coded lines 14-20 with an unshifted polynomial 
basis ( c.f the discussion in Chapter 22), in which case we would have 

14 P = [ones(N,1) dsites]; 
15 Pf= zeros(neval-2,1); 
16 for j=l:neva1-2 
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17 W = diag(rbf(ep,DistanceMatrix(epoints(j,:),ctrs))); 

18 c = (P'*W*P)\(P'*W*f); 
19 Pf(j) = [1 epoints(j,:)]*c; 
20 end 

in Program 24.5. This requires setting up the matrix P only once. However, the 
computations are numerically not as stable. Also, additional computation of the 
approximant on line 19 is required via a dot product. 

24.3 Plots of Basis-Dual Basis Pairs 

We now provide some plots of the polynomial basis functions p for the standard MLS 
approach, the dual basis functions >. (Lagrange multipliers), and the generating 
functions W from the Backus-Gilbert approach for a one-dimensional example with 
X being the set of 11 equally spaced points in (0, 1]. We take m = 3, i.e., we 
consider the case that ensures reproduction of quadratic polynomials. The weight 
function is taken to be the standard Gaussian radial function scaled with a shape 
parameter c = 5. In the only exception in this book, these plots were created with 
Maple using the program MLSDualBases. mws included in Appendix C. 

The three basis polynomials P1 ( x) = 1, P2 ( x) = x, and p 3 ( x) = x 2 are shown 
in Figure 24.3, whereas the dual basis functions >. 1 , >.2 , and >.3 are displayed in 
Figure 24.4. 

10 I 0 1.0 

0.75 0.75 0.75 

" 05 0.5 

025 0.25 0.25 

0.0 00 0.0 
0.0 0.20 " 0.75 1.0 0.0 0.25 0.5 0.75 I 0 0.0 025 0.5 0.75 1.0 

Fig. 24.3 Plot of the three polynomial basis functions for moving least squares approximation 
with quadratic reproduction on [O, l]. 

In Figure 24.5 we plot three MLS generating functions (solid) together with the 
corresponding generating functions from the approximate moving least squares ap
proach (dashed) described in Chapter 26. The generating functions for the approx
imate MLS approach are Laguerre-Gaussians ( c.f. Section 4.2). While the standard 
MLS generating functions reflect the fact that the data is given on a finite interval, 
the generating functions for approximate MLS approximation are all just shifts of 
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0.25 0.5 0.75 1.0 

-1 

Fig. 24.4 Plot of the three dual basis functions for moving least squares approximation with 
quadratic reproduction for 11 equally spaced points in [O, I). 

the one function 
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to the center points y. Here we identify the scale parameter V with our shape 
parameter c for the weight function via c = Ah. For this example with 11 points 
in [O, 1] we have h = 1/10, so that c = 5 corresponds to a value of V = 4. 

In the center of the interval, where the influence of the boundary is minimal, 
the two types of generating functions are almost identical (see the right plot in 
Figure 24.5). · 

0.0 0.25 0.5 0.75 1.0 

Fig. 24.5 Standard MLS generating functions (solid) and approximate MLS generating functions 
(dashed) centered at three of the 11 equally spaced points in [O, I). 

If the data points are no longer equally spaced, the Lagrange functions and 
generating functions are also less uniform. Figures 24.6 and 24. 7 illustrate this 
dependence on the data distribution for 11 Halton points in [O, 1]. 

Finally, we provide plots of MLS generating functions for the case of reproduc
tion of linear polynomials in 2D (see Figure 24.8). These plots were created with the 
MATLAB program LinearMLS2D_CS .m (see Program 24.4) by plotting column j of 
the evaluation matrix EM corresponding to the values of the jth generating function. 
We used the C2 Wendland weights w(xi, x) = (1 - cllx - Xiii)! (4cllx - Xiii+ 1) 
with c = 5. 
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0.7~ 1.0 

Fig. 24.6 Plot of the three dual basis functions for moving least squares approximation with 
quadratic reproduction for 11 Halton points in [O, 1]. 

Fig. 24. 7 Standard MLS generating functions (solid) and approximate MLS generating functions 
(dashed) centered at three of the 11 Halton points in [O, 1]. 
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Fig. 24.8 MLS generating functions for linear reproduction centered at two of 289 uniformly 
spaced data sites in [O, 1] 2 . 



Chapter 25 

Error Bounds for 
Moving Least Squares Approximation 

25.1 Approximation Order of Moving Least Squares 

Since the moving lea.st squares approximants can be written as qua.si-interpolants 
we can use standard techniques to derive their point-wise error estimates. The 
standard argument proceeds as follows. Let f be a given (smooth) function that 
generates the data, i.e., Ji = J(x1), ... , fN = J(xN ), and let p be an arbitrary 
polynomial. Moreover, assume that the moving lea.st squares approximant is given 
in the form 

N 

P1(x) = L f(xi)wi(x, x) 
i=l 

with the generating functions Wi satisfying the polynomial reproduction property 

N 

LP(Xi)wi(x, x) = p(x), for all p E rrd, 
i=l 

as described in Chapter 22. Then, due to the polynomial reproduction property of 
the generating functions, we get 

N 

lf(x) - P1(x)I < lf(x) - p(x)I + lp(x) - L f(xi)wi(x, x)I 
i=l 

N N 

= lf(x) - p(x)I +I LP(xi)wi(x, x) - L f(xi)wi(x, x)I. 
i=l i=l 

Combination of the two sum and the definition of the discrete maximum norm yield 

N 

lf(x) - P1(x)I < lf(x) - p(x)I + L lp(xi) - f(xi)llwi(x, x)I 
i=l 

(25.1) 

We see that in order to refine the error estimate we now have to answer two ques
tions: 

225 
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• How well do polynomials approximate f? This can be achieved with standard 
Taylor expansions. 

N 

• Are the generating functions bounded? The expression L lllfi(x, x)I is known 
i=l 

as the (value of the) Lebesgue function, and finding a bound for the Lebesgue 
function is the main task that remains. 

By taking the polynomial p above to be the Taylor polynomial of total degreed 
for fat x, the remainder term immediately yields an estimate of the form 

II! - Plloo < C1hd+I max ID0 J(e)I, lnl = d + 1. (25.2) 
eH2 

Thus, if we can establish a uniform bound for the Lebesgue function, then (25.1) 
and (25.2) will result in 

lf(x) - P1(x)I < Chd+I max ID0 f(e)I, lnl = d + 1, 
eH2 

which shows that moving least squares approximation with polynomial reproduction 
of degree d has approximation order O(hd+I ). 

For Shepard's method, i.e., moving least squares approximation with constant 
reproduction (i.e., m = 1 or d = 0), we saw above that the generating functions are 
of the form 

.T'·( ) _ w(xi, x) 
'l'i X, X - N 

Lw(xj,x) 
j=l 

and form a partition of unity (see (23.3)). Therefore the Lebesgue function admits 
the uniform bound 

N 

L lllfi(x, x)I = 1. 
i=l 

This shows that Shepard's method has approximation order O(h). 
Bounding the Lebesgue function in the general case is more involved and is 

the subject of the papers [Levin (1998); Wendland (2001a)]. As indicated above, 
this results in approximation order O(hd+I) for a moving least squares method 
that reproduces polynomials of degreed. In both papers the authors assumed that 
the weight function is compactly supported, and that the support size is scaled 
proportional to the fill distance. The following theorem paraphrases the results of 
[Levin (1998); Wendland (2001a)]. 

Theorem 25.1. Let fl C IR 5
• If f E Cd+1 (f2), {xi: i = 1, ... ,N} C fl are quasi

uniformly distributed with fill distance h, the weight functions wi(x) = w(xi, x) are 
compactly supported with support size Pi = ch (c = const.), and if polynomials in 
II~ are reproduced according to (22.13), then the scale of MLS approximations 

N 

Pjh) (x) = ~ f(x,)'11 ( x ~' x,) , (25.3) 
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with generating junctions W(x - Xi) • Wi(X, x) determined via {22.17)-(22.Jg) 
satisfies 

lal = d + 1. 

It should be possible to arrive at similar estimates if the weight function only 
decays fast enough (see, e.g., the survey [de Boor (1993)]). 

Aside from this constraint on the weight function (which essentially corresponds 
to a stationary approximation scheme), the choice of weight function w does not 
play a role in determining the approximation order of the moving least squares 
method. As noted earlier, it only determines the smoothness of 'Pf. For example, 
in the paper [Cleveland and Loader (1996)] from the statistics literature on local 
regression the authors state that often "the choice [of weight function] is not too 
critical", and the use of the so-called tri-cube 

Wi(x) = (1 - llx - Xill 3 )!, XE Rs, 
is suggested. Of course, many other weight functions such as (radial) B-splines or 
any of the (bell-shaped) radial basis functions studied earlier can also be used. If 
the weight function is compactly supported, then the generating functions wi will 
be so, too. This leads to computationally efficient methods since the Gram matrix 
G( x) will be sparse. 

An interesting question is also the size of the support of the different local 
weight functions. Obviously, a fixed support size for all weight functions is possible. 
However, this will cause serious problems as soon as the data are not uniformly 
distributed. Therefore, in the arguments in [Levin (1998); Wendland (2001a)] the 
assumption is made that the data are at least quasi-uniformly distributed. Another 
choice for the support size of the individual weight functions is based on the number 
of nearest neighbors, i.e., the support size is chosen so that each of the local weight 
functions contains the same number of centers in its support. A third possibility is 
suggested in [Schaback (2000b )] where the author proposes to use another moving 
least squares approximation based on (equally spaced) auxiliary points to determine 
a smooth function 8 such that at each evaluation point x the radius of the support 
of the weight function is given by 8(x). However, convergence estimates for these 
latter two choices do not exist. 

Sobolev error estimates are provided for moving least squares approximation 
with compactly supported weight functions in [Armentano (2001)]. The rates ob
tained in that paper are not in terms of the fill distance but instead in terms of the 
support size p of the weight function. Moreover, it is assumed that for general s 
and m = (8!d) the local Lagrange functions are bounded. As mentioned above, this 
is the hard part, and in [Armentano (2001)] such bounds are only provided in the 
case s = 2 with d = 1 or d = 2. However, if combined with the general bounds for 
the Lebesgue function provided by Wendland, the paper [Armentano (2001)] yields 
the following estimates: 

lf(x) - P1(x)I < Cpd+l max ID0 J(e)I, lal = d + 1, 
~EO 
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but also 

lal = d + 1. 

In the weaker (local) L2-norm we have 

II! - P1llL2(BJnn) < Cpd+
1
lflw;+ 1 (Bjnn) 

and 

ll\7(! - Pi )llL2(Bjnn) < Cpdlflw2d+ 1 (Bjnn)' 

where the balls BJ provide a finite cover of the domain n, i.e., n ~ LJi BJ, and 
the number of overlapping balls is bounded. Here Wf (n) is the Sobolev space of 
functions whose derivatives up to order d are in L2 ( c.f. Chapter 13). 

We close this chapter by pointing out that early error estimates for some special 
cases were provided in [Farwig (1987); Farwig (1991)]. 



Chapter 26 

Approximate Moving Least Squares 
Approximation 

26.1 High-order Shepard Methods via Moment Conditions 

While we mentioned earlier that the weight function does not have an effect on 
the approximation order results for Shepard's method (cf. Theorem 25.1), wee now 
present some heuristic considerations for obtaining higher-order Shepard methods. 
This will result in certain conditions on the moments of the weight function w. 

Recall that using our shifted monomial representation we obtain Pf ( x) = c1 ( x) 
(see (22.5)) for any degree d. Therefore, if we can find weight functions w(xi, ·) 
such that the first row (and first column) of the Gram matrix G(x) becomes 
[~=iw(xi,x),O, ... ,O]T [(1,l)w"',O, ... ,OjT, then c1(x) = (f,l)w"'/(1,l)w.., via 
(22.8). Thus, 

N 

P1(x) = L f(xi) :(xi, x) , 
i=l l:j=l w(xj, x) 

but now - by construction - the method has approximation order O(hd+I) (in
stead of the mere O(h) of Shepard's method which permits the use of arbitrary 
weights). 

We therefore use the discrete moments ( c.f. Section 23.2) 

N 

µa= L(xi - x)aw(xi, x), x E 1R8
, (26.1) 

i=l 

where a is a multi-index, and then demand 

(26.2) 

As mentioned in Chapter 23 these moments provide the entries of the Gram matrix 
G(x). The condition µ0 = 1 ensures that the weights w(xi, ·) form a partition of 
unity, and we end up with a quasi-interpolant of the form 

N 

P1(x) = L f(xi)w(xi, x). 
i=l 

We can summarize our heuristics in 

229 
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Proposition 26.1. Let n c lR8
• lf f E cd+1(n), the data sites {xi : i = 

1, ... , N} c n are quasi-uniformly distributed with fill distance h, the weight func
tions w(xi, ·) = w(xi - x) are compactly supported with support size Pi = ch 
(c = const.), and the discrete moment conditions 

o < lo:I < d, 

are satisfied, then 

has approximation order O(hd+l ). 

The discrete moment conditions m Proposition 26.1 lead us to the following 
interpretation of the weight function w: 

w(x, y) = wo(x, y)q(x - y), (26.3) 

where w0 is a new (arbitrary) weight function, and q is a polynomial of degree d 
orthonormal in the sense of the inner product (22.2) with respect to w 0 . This view 
is also taken by Liu and co-workers (see, e.g., [Li and Liu (2002)]) where q is called 
the correction function. 

The discrete moment conditions in Proposition 26.1 are difficult to satisfy an
alytically, as is the construction of discrete multivariate orthogonal polynomials as 
needed for (26.3). In order to obtain quasi-interpolants for arbitrary space dimen
sions and scattered data sites we consider the concept of approximate approxima
tion in the next section. There one satisfies continuous moment conditions while 
ensuring that the discrete moment conditions are almost satisfied. 

26.2 Approximate Approximation 

We now give the main results on approximate approximation relevant to our work. 
The concept of approximate approximation was first introduced by Maz'ya in the 
early 1990s (see [Maz'ya (1991); Maz'ya (1994)]). To keep the discussion transparent 
we restrict ourselves to results for regular center distributions. However, irregularly 
spaced data are also allowed by the theory (see, e.g., [Maz'ya and Schmidt (2001); 
Lanzara et al. (2006)]) and have been investigated in practice (see, e.g., [Fasshauer 
(2004)] or [Lanzara et al. (2006)]). In [Maz'ya and Schmidt (2001)] the authors 
present a quasi-interpolation scheme of the form 

Mjh)(x) = v-s/2 L f(xv)'I! (x - Xv)' 
vEV Y15h 

(26.4) 

where the data sites Xv = hv are required to lie on a regular s-dimensional grid with 
gridsize h. The parameter V scales the support of the generating function \I!. As we 
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will see below, the parameter V can be chosen to make a so-called saturation error 
so small that it does not affect numerical computations. The generating function is 
required to satisfy the continuous moment conditions 

f y°'w(y)dy = 8a.o, o < lo:I < d. (26.5) 
}Rs 

This is the continuous analog of (26.2). 
The following approximate approximation result is due to Maz'ya and Schmidt 

(see, e.g., [Maz'ya and Schmidt (2001)]). 

Theorem 26.1. Let f E cd+1(IRs), {xv: v E zs} c IRS and let \I! be a continuous 
generating function which satisfies the moment conditions {26. 5) along with the 
decay requirement 

x E IRS' 

where CK is some constant, K > d + s + 1 and d is the desired degree of polynomial 
reproduction. Then 

(26.6) 

Using Poisson's summation formula one can bound the saturation error Eo by 
(see Lemma 2.1 in [Maz'ya and Schmidt (1996)]) 

Eo('I!, V) < L F\I!(VVv). (26.7) 
vE:V\{O} 

For this result the Fourier transform of '11 is defined via 

F\I! ( w) = r \I! ( x )e- 2
7ri:Z:·W dx 

}Rs 
with x · w the standard Euclidean inner product of x and w in IRs. The saturation 
error can be interpreted as the discrepancy between the continuous and discrete mo
ment conditions, and its influence can be controlled by the choice of the parameter 
V in (26.4). 

If we use radial generating functions, then we can use the formula for the Fourier 
transform of a radial function (see Theorem B.1 in Appendix B) to compute the 
leading term of (26.7), and therefore obtain an estimate for V for any desired satu
ration error. If V is chosen large enough, then the saturation error will be smaller 
than the machine accuracy for any given computer, and therefore not noticeable 
in numerical computations. This means, that even though - theoretically - the 
quasi-interpolation scheme (26.4) fails to converge, it does converge for all practical 
numerical purposes. Moreover, we can have an arbitrarily high rate of convergence, 
d + 1, by picking a generating function \I! with sufficiently many vanishing moments. 

We point out that the error bound (26.6) is formulated for gridded data on an 
unbounded domain. An analogous result also holds for finite grids (see [Ivanov et al. 
(1999)]); and similar results for scattered data on bounded domains can be found 
in, e.g., [Lanzara et al. (2006); Maz'ya and Schmidt (2001)]. However, in this case 
the function f (defining the "data") is required to be compactly supported on the 
finite domain, or appropriately mollified. 
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26.3 Construction of Generating Functions for Approximate MLS 
Approximation 

In order to construct the generating functions for the approximate MLS approach 
we assume the generating function W to be radial and of the form 

w(x) = 'l/io( 11 xll 2)q(11 xll 2). 
Therefore, the continuous moment conditions become (c.f. (26.5)) 

r llxll2kq(llxll2)'1/io(llxll 2)dx = 8ko, 0 < k < d, la5 (26.8) 

and we need to determine the univariate polynomial q of degree d accordingly to 
get approximation order O(h2d+2 ). 

By using s-dimensional spherical coordinates we can rewrite the integral in (26.8) 
as 

(26.9) 

The substitution y = r 2 converts the last integral to 

1
00 1 r 00 

r2kq(r2)1/io(r2)rs-Idr = 2 I ykq(y)'l/io(y)y<s-2)/2dy, 
o Jo 

(26.10) 

and one can show that 
s-2 {1r s/2 

7r !I lo sinm ¢d¢ = r ~s/2). (26.11) 

Combining (26.9), (26.10) and (26.11) gives us 

L
5 

11x112kq(11x11 2)'1/io(11x11 2)dx = r ~:~
2

2 ) 1= yk-lq(y)'l/io(y)y8 12dy, 

and therefore we now have obtained a set of one-dimensional orthogonality condi-
tions 

s/2 r= 
7r k-1 s/2 _ 

r(s/2) lo y q(y)'l/io(y)y dy - 8ko, 

that can be used to determine the generating function 

w( x) = 1/io ( 11xII2)q( llxll2) 

(26.12) 

once we have chosen an initial weight 'l/io. Moreover, we know that this construction 
ensures W to have approximate approximation order O(h2d+2 ). 

Thus, the strategy for constructing generating functions for higher-order ap
proximate MLS approxmation is as follows: 
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(1) Pick an arbitrary (univariate) weight function ¢ 0 . 

(2) Compute the coefficients of q E II~ via the (univariate) moment conditions 
(26.12). 

(3) This leads to the (multivariate) radial generating function w(x) 
¢ 0 (1ixll 2 )q(llxll 2

) to be used in the quasi-interpolant (26.4). 

Example 26.1. Probably the most aesthetic example is given by 'l/Jo(Y) = e-Y so 
that the basic generating function (corresponding to d = 0, i.e., with approximate 
approximation order O(h2 ) is found by assuming that the polynomial q is a constant, 
i.e., q(y) _ a0 . Then (26.12) becomes 

100 a y(s-2)f2e-Ydy = I'(s!2) 
Q S/2 l 

0 ~ 

which leads to a0 = 7r-s/2 , so that we have 

w(x) = _l_e-ll:z:ll2 
../1fS 

- an appropriately scaled Gaussian. 
If we take d = 1 (to obtain approximate approximation order O(h4 )) and assume 

q to be a linear polynomial of the form q(y) = a0 + a1y, then there are two moment 
conditions, namely 

or 

100 (ao + aiy)y(s-2)f2e-Ydy = r~:~;)' 

100 
(ao + aiy)ysl2e-Ydy = 0, 

r(s/2) 
a0I'(s/2) + aiI'((s + 2)/2) = ~s/2 , 

aoI'((s + 2)/2) + a 1r( (s + 4)/2) = 0. 

We can solve this system of linear equations and obtain 
s +2 -1 

ao = 
2

../7r5, ai = fis · 

In the special case s = 2 this yields a0 = ~ and ai = -1, so that 
7r 7r 

w(x) = .!_ (2 - llxll2) e-IJ:z:ll
2

. 
~ 

In general, the polynomials q turn out to be (univariate) generalized Laguerre 
polynomials L~/2 of degree d ( c.f. Section 4.2) which are known to be orthogo
nal on the interval [O, oo) with respect to the weight function ysl2e-Y. Therefore 
the generating functions for the approximate MLS approximation method are the 
Laguerre-Gaussians 

w(x) = . ~e-ll:z:ll2 L~/2(llxll2). 
y~S 

In particular, Table 4.1 contains specific examples for s = 1, 2, 3 and d = 1 and 2 
except for the scale factor 1/ #. Figure 4.1 shows plots of the generating functions 
in the cases s = 1, d = 2, and s = 2, d = 2. 
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Example 26.2. If we use the function 'l/Jo(y) = (1 - V]/): (4y'y + 1) as initial 
weight, then we can perform calculations analogous to those above. For d = 0 and 
s = 2 we get 

7 2 7 4 
w(x) = -1/Jo(llxll ) = - (1 - llxll)+ (41lxll + 1), 

7r 7r 
x E R 2

, (26.13) 

with approximation order CJ(h2 ). Except for the factor 7 /7r this generating func
tion corresponds to Wendland's compactly supported C 2 radial basic function ( c.f. 
Table 11.1). 

Using the same function 'I/Jo for d = 1 and s = 2 we obtain 

(26.14) 

with approximation order CJ(h4
). This function is displayed in the left plot of 

Figure 26.1. See Examples 27.2 and 27.4 for more special cases based on this initial 
weight function. 

Example 26.3. Many other choices for the initial weight function 1);0 are possible. 
For example, we can take 'l/Jo(y) = (1-y)°'(l+y)/3, the weight function for univariate 
Jacobi polynomials (which are orthogonal on (-1, 1]). Since the integral defining 
the orthogonality relations contains an extra factor of y( 2k+s-2)/2 , the moment con
ditions (26.12) do not yield Jacobi polynomials. However, the resulting generating 
functions for approximate MLS approximation can still be rather simple. In Ta
ble 26.1 we list several such examples for s = 2, {3 = 0 and various combinations 
of d and a. Note that these functions are also compactly supported, i.e., they are 
defined to be zero for llxll > 1. 

Table 26.1 Approximate MLS generating functions W based on '!/Jo (y) 
y E [-1, 1] for various choices of d and a. 

(1 - y)°', 

d a=2 

0 ~(1 - ll:z:ll 2)2 
7r 

1 ~ (2 - 5ll:z:ll 2) (1 - ll:z:ll 2)2 
7r 

2 
15 

(1 - 6ll:z:ll 2 + 7ll:z:ll 4
) (1 - ll:z:l1 2)2 

7r 

Q = 5/2 

!_ (1 - ll:z:ll2)5/2 
27r 

~ ( 4 - 11ll:z:ll 2) (1 - ll:z:ll 2)5/ 2 
47r 

33 
(8 - 52ll:z:ll 2 + 65ll:z:ll 4

) (1 - llxll 2)512 
l67r 

The function w(x) = ~ (2 - 5llxll 2 ) (1 - llxll 2 ) 2 is displayed in the right plot of 
Figure 26.l. 
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y x x 

Fig. 26.1 Compactly supported generating functions for approximate linear reproduction. 

w(x) = ~ ( ~~~ - 1
{:9° llxJl 2

) (1 - llxJl)t (4JJxJJ + 1) (left) and 'l!(x) = ~ (2 - 5JlxJJ 2
) (1 - JlxJl 2

)
2 

(right) centered at the origin in JR2 • 





Chapter 27 

Numerical Experiments for Approximate 
MLS Approximation 

In this chapter we present a series of experiments for approximate MLS approx
imation with both globally supported Laguerre-Gaussian generating functions as 
well as with compactly supported generating functions based on the initial weight 
'1/Jo(Y) = (1 - Ji/): (4y'y + 1) as in Example 26.2 of the previous chapter. 

27.1 Univariate Experiments 

Example 27.1. We begin with univariate globally supported Laguerre-Gaussians. 
These functions are listed in Table 4.1 except for the scaling factor 1/ ../if required 
for the ID case. In the left plot of Figure 27 .1 we illustrate the effect the scaling 
parameter V has on the convergence behavior for Gaussian generating functions. 
We use a mollified univariate Franke-like function of the form 

f(x) = 15e l-(20:-1)2 -e- 4 + -e- 49 + -e- 4 - -e- 9x-4 
- 1 (3 (9x-2)

2 3 (9o:+1)
2 1 (9o:-7)

2 1 ( )2) 

4 4 2 5 

as test function. For each choice of VE {0.4, 0.8, 1.2, 1.6, 2.0} we use a sequence of 
grids of N = 2k + 1 (with k = 1, ... , 14) equally spaced points in [O, 1] at which we 
sample the test function. The approximant is computed via 

1 N 2 

P1(x) = c;:;:;. L f(xi)e- <"'.;~~> , 
y 7r'D i=l 

x E (0, 1], 

where h = l/(N - 1). This corresponds to our usual shape parameter c having a 
value of 

1 N - 1 2k 
c - -- - ------- v'15 h - v'15 v'15' 

i.e., we are in the regime of stationary approximation. The effect of V is clearly 
visible in the figure. A value of V > 2 exhibits an approximation order of O(h2 ) 

throughout the range of our experiments, while smaller values allow the saturation 
error to creep in at earlier stages. 
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Fig. 27.1 Convergence of lD approximate MLS approximation. The left plot shows the effect 
of various choices of V on the convergence behavior of Gaussians. The right plot illustrates the 
convergence of Laguerre-Gaussians for various values of d. 

In the right plot of Figure 27. l we compare the approximation orders achievable 
with the Laguerre-Gaussians of orders d = 0, 1, 2 in lD. The respective values of 
D are D = 2, 4, 6. The steepest sections of the curves correspond to approximate 
approximation orders of O(h2 ·0 ), O(h4 ·0 ), and O(h5 ·99 ), respectively - a perfect 
match with the rates predicted by the theory. Notice that for the second-order 
Laguerre-Gaussian we have convergence all the way to machine accuracy. 

The MATLAB program ApproxMLSApprox1D.m (see Program 27.1) was used to 
generate the right plot in Figure 27.1. We define the three different Laguerre
Gaussian generating functions as members of a MATLAB cell array rbf and place 
the corresponding values of D to be used with each of the functions in the vector 
D (see lines 1-4). The univariate Franke-like test function is defined in lines 5-10. 
This function is mollified so that it goes to zero smoothly at the boundaries of the 
interval. The program contains two for-loops. The first is over the three different 
generating functions (corresponding to approximate constant, linear and quadratic 
reproduction, respectively). The inner loop performs a series of experiments with 
an increasing number N of data. Here we perform 14 iterations with N ranging 
from N = 3 to N = 16385. 

For applications of approximate MLS approximation we limit ourselves to 
uniformly spaced data since there are presently no robust methods for deal
ing with nonuniform data (see [Lanzara et al. (2006); Maz'ya and Schmidt 
(2001)] for a theoretical approach to non-uniform data, and [Fasshauer (2004); 
Lanzara et al. (2006)] for some numerical experiments). All we need in order to 
compute the approximant is the evaluation matrix EM computed on line 23, which is 
then multiplied by the function values f and scaled by the factor v-s/2 on line 24. 
The commands needed to produce the plot are included on lines 15, 27 and 29-31. 
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Program 27.1. ApproxMLSApprox1D .m 

% ApproxMLSApprox1D 

% Script that performs 10 approximate MLS approximation 
% Calls on: DistanceMatrix 

% Laguerre-Gaussians for 10 
1 rbf{1} = ©(e,r) exp(-(e*r).-2)/sqrt(pi); 
2 rbf{2} = ©(e,r) exp(-(e*r).-2)/sqrt(pi).*(1.5-(e*r).-2); 

3a rbf{3} = ©(e,r) exp(-(e*r).-2)/sqrt(pi).*··· 
3b (1.875-2.5*(e*r).-2+0.5*(e*r).-4); 
4 D = [2, 4, 6]; % Scale parameters for generating functions 

% Define Franke-like function as testfunction 
5 fl= ©(x) 0.75*exp(-(9*x-2).-2/4); 
6 f2 = ©(x) 0.75*exp(-(9*x+1).-2/49); 
7 f3 = ©(x) 0.5*exp(-(9*x-7).-2/4); 
8 f4 = ©(x) 0.2*exp(-(9*x-4).-2); 
9 moll= ©(x) 15*exp(-1./(1-4*(x-0.5).-2)); 

10 testfunction = ©(x) moll(x).*(f1(x)+f2(x)+f3(x)-f4(x)); 

11 maxlevel = 14; % number of iterations 
12 M = 200; % to create M evaluation points in unit interval 
13 xe = linspace(0,1,M); epoints = xe(:); 
14 exact= testfunction(epoints); 
15 figure; hold on; cword = cellstr(['r- ';'g--';'b: ']); 
16 for i=1:length(D) 
17 for k=1:maxlevel 
18 N(k) = (2-k+1); ep = (N(k)-1)/sqrt(D(i)); 

19 

20 

21 

name= sprintf('DatalD_%du', N(k)); load(name); 
ctrs = dsites; 
% Create vector of function values 
f = testfunction(dsites); 
% Compute evaluation matrix 

22 DM = DistanceMatrix(epoints,ctrs); 
23 EM= rbf{i}(ep,DM); 

% Compute approximate MLS approximation 
24 Pf= EM*f/sqrt(D(i)); 

% Compute RMS error on evaluation grid 
25 rms_err(k) = norm(Pf-exact)/sqrt(M); 
26 end 
27 plot(N,rms_err,cword{i}); 
28 end 
29 set(gca,'XScale','log','YScale','log','Fontsize',14) 
30 legend('d=O, D=2.0','d=1, D=4.0','d=2, D=6.0',3); 
31 xlabel('N'); ylabel('Error'); hold off 
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Example 27.2. In the second set of experiments we use compactly supported gen
erating functions with initial weight 7/Jo(y) = (1 - .JY): (4.JY+l). In the univariate 
case these functions are for d = 0, 1, 2 

3 4 
w(x) = 2 (1 - lxl)+ (4lxl + 1), 

w(x) = ~ (7 - 35lxl 2
) (1 - lxl)~ (4lxl + 1), 

w(x) = 
105 

(350- 3960lxl 2 + 7293lxl 4
) (1 - lxl)

4
+ (4lxl + 1). 

11993 

(27.1) 

These functions can be computed as in Section 26.3 of the previous chapter. An 
approximate approximation order of O(h2 ) for the first function in (27.1) is illus
trated in the left plot of Figure 27.2. Note that a rather large value of V (namely 
V ~ 500) is required to make the saturation error so small that it no longer affects 
our experiments. Since the shape parameter c determines the support radius of 
our generating functions, and since c = l/vfi5h = (N - 1)/v'f5, we see that the 
evaluation matrix will be completely dense until N grows above approximately 25. 
Furthermore, for such a large value of V there is a visible smoothing effect (very 
slow convergence) during the first few iterations with N = 3, 5, 9, 17, 33, 65. 

In the right plot of Figure 27.2 we compare the approximation orders achiev
able with the univariate compactly supported generating functions (27.1) of orders 
d = 0, 1, 2. The respective values of V required to prevent the saturation error 
from corrupting our experiments are V = 500, 5000, 20000, respectively. Note that 
V = 20000 implies that the evaluation matrix will be dense (and therefore compu
tationally inefficient) until N reaches about 150. Thus, it is not until the very last 
iterations with N = 8193 and N = 16385 that we get to take real advantage of the 
compact support of the generating function, i.e., have sparse sums. The steepest 
sections of the curves correspond to approximate approximation orders of O(h2 ·0 ), 

O(h3 ·91 ), and O(h5 ·45 ), respectively. 
The MATLAB code for the compactly supported experiments can be writ

ten in two ways. One possibility would be to rewrite the generating func
tions in shifted form as explained in Chapter 12, and then use the sparse code 
DistanceMatrixCSRBF .m. However, as just explained, we cannot take much advan
tage of the sparsity usually associated with compactly supported functions. There
fore, we use essentially the same code as in Program 27.1. The only changes needed 
are the substitution of the definition of the compactly supported generating func
tions for the Laguerre-Gaussians along with appropriate values for D. 

Our experiments seem to suggest that there is no point in using compactly sup
ported generating functions for univariate approximate MLS approximation. The 
results using Laguerre-Gaussians are far more accurate, and due to the large value 
of V required for the compactly supported functions they do not offer an advantage 
in terms of computational complexity, either. 
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Fig. 27.2 Convergence of ID approximate MLS approximation with compactly supported gener
ating functions. The left plot shows the effect of various choices of 'D on the convergence behavior 
for the first function in (27.1). The right plot illustrates the convergence for the three functions 
in (27.1). 

27.2 Bivariate Experiments 

Example 27.3. This example is similar to the second part of Example 27.1. Now 
we use bivariate Laguerre-Gaussians with scale factor 1/?T. The test data are sam
pled from a bivariate mollified Franke function, i.e., we multiply Franke's function 
(2.2) by the mollifier 

1 1 
g(x, y) = 15e -1-c2x-1)2 e - l-(2y-1)2 . 

The data sites are uniform grids of (2k + 1)2 points (with k = 1, ... , 5) in the unit 
square. The values for the scale parameter 1J used are 1J = 1, 2, 2.5. The steep
est sections of the error curves correspond to approximate approximation orders of 
O(hl.83 ), O(h2·80 ), and O(h3·00 ), respectively. Note that these rates do not match 
the theoretically predicted orders. We will see that we can achieve the theoreti
cally predicted orders by using more data sites. This, however, will require special 
evaluation techniques to deal with the large sums efficiently (see the next chapter). 

Example 27.4. The bivariate compactly supported generating functions with ini
tial weight 'I/Jo (y) = ( 1 - ,,/Y): ( 4,,jY + 1) providing approximate reproduction of 
constants, linear and quadratic polynomials, respectively, are ( c.f. Example 26.2) 

7 4 
w(x) = - (1 - llxll)+ (4llxll + 1)' 

?T 

w(x) = 222~?T (14 - 55llxll
2

) (1 - llxll)~ (4llxll + 1), 

w(x) = ll~~~l?T (4179- 37050llxll 2 + 59605llxll 4
) (1- llxll)~ (4Jlxll + 1). 

The values we use for the scale parameter are 1J = 20, 40, 80, respectively. The 
steepest sections of the error curves correspond to approximate approximation or-
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Fig. 27.3 Convergence of 2D approximate MLS approximation with Laguerre-Gaussians (left) 
and compactly supported (right) generating functions for various values of d. 

ders of O(hl.96 ), O(h3 ·03 ), and O(h3·26 ), respectively. Again, we do not obtain a 
match with the theoretically predicted orders, even though we used up to N = 66049 
data points. 

The bivariate case provides a more level playing field for the compactly sup
ported generating functions. We can take advantage of the compact support and 
obtain more accurate results at a reasonable cost. However, another alternative 
way of obtaining highly accurate multivariate approximate MLS approximations is 
presented in the next chapter. 



Chapter 28 

Fast Fourier Transforms 

28.1 NFFT 

In the recent papers [Kunis et al. (2002); Nieslony et al. (2004); Potts and Steidl 
(2003)] use of the fast Fourier transform for non-uniformly spaced points was sug
gested as an efficient way to solve and evaluate radial basis function problems. The 
C++ software package NFFT by the authors is available for free download [Kunis 
and Potts (2002)]. A discussion of the actual NFFT software would go beyond the 
scope of this book. Instead, we briefly describe how to use NFFTs and FFTs to 
simultaneously evaluate expansions of the form 

N 

P1(YJ) = L Ck<I>(yj - Xk) (28.1) 
k=l 

at many evaluation points YJ, j = 1, ... , M. Note that this covers not only approx
imate MLS approximations, but also the evaluation of other quasi-interpolants as 
well as the evaluation of RBF interpolants. 

Direct summation of (28.1) requires O(M N) operations, while it can be shown 
that use of the NFFT reduces the cost to O(M + N) operations. Therefore, as is 
always the case with fast Fourier transforms, use of the algorithm will pay off for 
sufficiently many evaluations. 

In their papers Nieslony, Potts and Steidl distinguish between basic functions cI> 
that are singular and those that are non-singular. Singular basic functions are C 00 

everywhere except at the origin and include examples such as 

1 1 2 
-, 2 , logr, r logr, 
r r 

where r = II· II· Non-singular basic functions are smooth everywhere such as Gaus
sians and (inverse) multiquadrics. We will restrict our discussion to this latter 
class. 

The basic idea for the following algorithm is remarkably simple. It relies on the 
fact that the exponential e-a(yj-:z:k) can be written as e-0 Yi e 0 :z:k. Moreover, the 
method applies to arbitrary basic functions (which is in strong contrast to the fast 
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multipole type methods discussed in Chapter 35. One starts out by approximating 
the (arbitrary, but smooth) basic function <I> using standard Fourier series, i.e., 

<I>(x) ~ L bte27ril·a; 

lEin 

(28.2) 

with £ a multi-index in the index set In = [- ~, ~) 
8

• The coefficients bt are found 
by the discrete inverse Fourier transform 

bt = ~s L <I> ( ~) e-21rik·l/n. 

kEin 

(28.3) 

Numerically, this task is accomplished with software for the standard (inverse) FFT 
(e.g., [FFTW]). 

Remark 28.1. Note that this definition of the Fourier transform (as well as the 
one below) is different from the one used throughout the rest of this book. However, 
in order to stay closer to the software packages, we adopt the notation used there. 

Using the representation (28.2) of the basic function <I> we can rewrite (28.1) as 

N 

P1(Y1) ~Lek L bte27ril-(yi-a;k) 

k=l lEin 
N 

= L bt L Cke21ril·(yj-:z:k) 

lEin k=l 

Now, the exponential is split using the above mentioned property, i.e., 

N 

P1(YJ) ~ L btLcke-27ril·a;ke27ril·11i. 

lEin k=l 

This, however, can be viewed as a fast Fourier transform at the non-uniformly 
spaced points y j, i.e., 

P1(YJ) ~ L dte27ril·yi. 

lEin 

where the coefficients dt = btat with 

N 

at = L Cke-27ril·:z:k' 

k=l 

which in turn is nothing but an inverse discrete Fourier transform at the non
uniformly spaced points Xk· These latter two transforms are dealt with numerically 
using the NFFT software. 

Together, for the case of non-singular basic functions <I>, we have the following 
algorithm. 
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Algorithm 28.1. Fast Fourier transform evaluation 

For .f. E In 

end 

Compute the coefficients 

bt = ~s L cp ( ~) e-2Trik·l/n 

kEln 

by inverse FFT. 
Compute the coefficients 

by inverse NFFT. 

N 

at = L Cke-27ril·:r:k 

k=l 

Compute the coefficients di.= atbt. 

For 1 < j < M 

Compute the values 

by NFFT. 

end 

P1(Yj) ~ L di.e27ril·yi 

lEln 

245 

In the papers [Kunis et al. (2002); Nieslony et al. (2004); Potts and Steidl (2003)] 
the authors suggest a special boundary regularization in case the basic function 
does not decay fast enough, i.e., the basic function is large near the boundary of 
the domain. However, for our experiments with Laguerre-Gaussians reported in the 
next section this is not an issue. 

Of course, this method will only provide an approximation of the expansion 
(28.1) and error estimates are provided in the literature (see, e.g., [Nieslony et al. 
(2004)]). 

While we only illustrate the use of (N)FFTs for the evaluation of radial sums it 
should be clear that this method can also be coupled with any other algorithm that 
is based on evaluation of fast summation at non-uniform points (such as the precon
ditioned GMRES algorithm of Section 34.3, the "greedy" algorithm of Section 33.1, 
or the Faul-Powell algorithm of Section 33.2). 

28.2 Approximate MLS Approximation via Non-uniform Fast 
Fourier Transforms 

A few examples that illustrate the use of fast Fourier transforms for the evalua
tion of approximate moving least squares approximations ( quasi-interpolants) are 
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taken from the paper [Fasshauer and Zhang (2004)]. We deviate from our usual 
policy of providing only results of experiments based on MATLAB code and include 
Figures 28.1-28.3, which were obtained with C++ software incorporating the NFFT 
library. 

We use the following mollified Franke-type function in the unit cube [O, 1] 8 in 
space dimensions s = 1, 2, 3: 

!( ) 3 [ ( (9x1 - 2)2 (9x2 - 2)2 (9x3 - 2) 2
) 

X1, X2, X3 = 4 exp - 4 - 4 - 4 

ex (- (9x1+1)2 _ (9x2 + 1)2 
_ (9x3 + I)2 )] 

+ p 49 10 29 

1 ( (9x1 - 7)2 (9 3)2 (9x3 - 5)2 ) 
+ '2 exp -

4 
- x2 - -

2 
1 ( ( 2 2 2 -5 exp - 9x1 - 4) - (9x2 - 7) - (9x3 - 5) ), 

3 -1 
g(x1, x2, x3) = 15f (x1, x2, x3) IT exp( 

1 
_ (

2 
. _ )2 ), 

i=l Xi 1 

where x1, x2 , X3 are used according to the space dimensions. The data sites are 
N = (2k + 1)8 equally spaced points in the unit cube, while the errors are computed 
at M evaluation points randomly distributed in (0, 1] 8 with M = 32768 for s = 1, 
M = 262144 for s = 2, and M = 2146689 for s = 3. 

In our experiments we use n = 4N11 s in (28.3) for all computations except for 
the very last experiments in 2D and 3D. We do not have an automated strategy for 
choosing n. However, the values just mentioned yield satisfactory results and go 
along with the values suggested by Theorems 3.1 and 3.4 of [Nieslony et al. (2004)]. 
In all experiments displayed in Figures 28.1-28.3, the scale parameter V is taken to 
be 3.0. 

The left plots in Figures 28.1-28.3 show the maximum error versus the number of 
centers N on a logarithmic scale for the three types of Laguerre-Gaussian generating 
functions of Table 4.1. This illustrates that the approximation does converge well 
(almost reaching the rates predicted by the theory) as we increase the number of 
data sites. 

The presence of the saturation error is clearly visible in Figure 28.1. The plots on 
the right compare the cost of direct summation versus that for NFFT summation, 
and show that the efficiency is greatly improved by the use of the NFFT. Due to 
their long duration some of the computational times for the direct summation were 
omitted. 

The experiments presented in this section show that it is not unreasonable to 
approximate large data sets with globally supported generating functions. In fact, 
the accuracy achieved with the global functions is far superior to that which we ob
tained with the compactly supported functions for similar problems in the previous 
chapter. 
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Laguerre-Gaussian generating functions). 
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Chapter 29 

Partition of Unity Methods 

Another possibility for fast computation with meshfree approximation methods is 
the partition of unity method. This approach offers a simple way to decompose a 
large problem into many small problems while at the same time ensuring that the 
accuracy obtained for the local fits is carried over to the global fit. 

29.1 Theory 

The partition of unity method was suggested in [Babuska and Melenk (1997); 
Melenk and Babuska (1996)] in the mid 1990s in the context of meshfree Galerkin 
methods for the solution of partial differential equations (see Chapters 44 and 45 
for a discussion of an RBF-based Galerkin approach). In the scattered data fitting 
context the paper [Franke (1977)] already contains a similar algorithm. We base 
the presen-~ation in this section on the paper [Wendland (2002a)]. 

The basic idea for the partition of unity method is to start with a partition of the 
open and bounded domain n ~ JRS into M subdomains nj such that U~1 nj ;;2 n 
with some mild overlap among the subdomains. Associated with these subdomains 
we choose a partition of unity, i.e., a family of compactly supported, non-negative, 
continuous functions WJ supported on the closure of nj such that at every point x 
inn we have 

M 

LwJ(x) = 1. 
j=l 

(29.1) 

Now, for every subdomain nJ we construct a local approximation UJ (e.g., a radial 
basis function interpolant), and then form the global approximant to the data on 
the entire domain n via 

M 

P1(x) = L uJ(x)wJ(x), 
j=l 

x E fl. (29.2) 

Note that if the local fits interpolate at a given data point xe, i.e., UJ(xe) = f(xe), 
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then the global approximant also interpolates at this point: 
M 

P1(xt) = L uj(xe)wj(xt) 
j=l 

M 

= L f(xe)wj(xe) = f(xt)· 
j=l 

The last equality holds due to the partition of unity property (29.1). Technically, 
the second sum will most likely not run over the full set of indices, 1, ... , M, since 
xe will lie only in the support of some of the Wj. Of course, this does not change 
the result. 

In order to be able to formulate error bounds we need some technical conditions. 
We require the partition of unity functions to be k-stable, i.e., we require that each 
Wj E Ck(IRs) satisfies for every multi-index a:: with la::I < k the inequality 

II D 0
Wj II £ 00 (Oj) < Ca/ bj°1, 

where C0 is some positive constant, and bj = diam(nj)· 
In order to understand the following approximation theorem from [Wendland 

(2002a)) we need to define the space Cg(IRs) of all Ck functions f whose derivatives 

of order la::I = k satisfy D 0 f(x) = O(llxllg) for llxll2 ---+- 0. 

Theorem 29.1. Suppose n ~ JRS is open and bounded, and let x = {x1, ... 'XN} ~ 
n. Let <I> E C3 (!Rs) be strictly conditionally positive definite of order m. Let 
{ n j} be a regular covering for ( n, X) and let { w j} be k-stable for { n j}. Then 
the error between f E N.p(n) and its partition of unity interpolant (29.2) with 
Uj E span{ <I>(·, x) : x E X n nj} + II:,._ 1 can be bounded by 

k+/3 I I 
ID0 f(x) - D 0 P1(x)I < Chx~n -

0 lflN<i>(O), 
for all x E n and all la::I < k/2. 

The regularity assumptions on the subdomains nj are: 

• For every x E n the number of subdomains nj with x E nj is bounded by a 
global constant K. 

• Every subdomain nj satisfies an interior cone condition ( c.f. Definition 14.2). 
• The local fill distances hxi ,nj are uniformly bounded by the global fill distance 

hx,n, where Xj = X n nj. 

If we compare this with the global error estimates from Chapter 15 we see that 
the partition of unity preserves the local approximation order for the global fit. 
Thus, we can efficiently compute large RBF interpolants by solving many small 
RBF interpolation problems (in parallel if we wish) and then glue them together 
with the global partition of unity { Wj }. 

A simple way to obtain a partition of unity is via a Shepard approximant ( c.f. 
Chapter 23). Therefore, we can think of the partition of unity method as a Shepard 
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method with higher-order data. Namely, the "data" are now given by the local 
approximations Uj instead of just the values f (xJ ). The benefits of this kind of 
approach seem to have first been realized in [Franke (1977)]. 

29.2 Partition of Unity Approximation with MATLAB 

The MATLAB program for the partition of unity approximation based on local RBF 
interpolants is again rather similar to our earlier programs. The main difference is 
that we now also have to create the subdomains nj (which we will do as overlapping 
circles) and the associated partition of unity { Wj} (for which we use a Shepard 
method based on Wendland's compactly supported RBFs) . 

The compactly supported radial weight functions on line 1 of Program 29.1 and 
the RBF on line 2 are used in the shifted form :Ps,k = <ps,k(l - ·) (cf. Table 11.1). 
Note that we use the kd-tree routines to build two trees: a data tree, and an 
evaluation tree. Inside the loop over all partition of unity cells (lines 27-38) we 
first use kdrangequery to find all data sites in cell j, build the local interpolation 
matrix based on these points, and then repeat the process for the evaluation points. 
Note that the contributions to the final global fit are accumulated cell by cell (see 
line 36). 

Program 29.1. PU2D_CS.m 

% PU2D_CS 
% Script that performs partition of unity approximation using 
% sparse matrices 
% Calls on: DistanceMatrixCSRBF 
% Uses: k-D tree package by Guy Shechter 
% from MATLAB Central File Exchange 

% Weight function for global Shepard partition of unity weighting 
1 wf = ©(e,r) r.-4.*(5*spones(r)-4*r); 

% RBF basis function for local RBF interpolation 
2 rbf = ©(e,r) r.-4.*(5*spones(r)-4*r); 
3 ep = 0.1; % Parameter for local basis functions 

% Define Franke's function as testfunction 
4 f1 = ©(x,y) 0.75*exp(-((9*x-2).-2+(9*y-2).-2)/4); 
5 f2 = ©(x,y) 0.75*exp(-((9*x+1).-2/49+(9*y+1).-2/10)); 
6 f3 = ©(x,y) 0.5*exp(-((9*x-7).-2+(9*y-3).-2)/4); 
7 f4 = ©(x,y) 0.2*exp(-((9*x-4).-2+(9*y-7).-2)); 
8 testfunction = ©(x,y) fl(x,y)+f2(x,y)+f3(x,y)-f4(x,y); 

9 N = 1089; gridtype = 'h'; 
% Parameter for npu-by-npu grid of PU cells in unit square 

10 npu = 16; 
% Parameter for neval-by-neval evaluation grid in unit square 
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11 neval = 40; 

!. Load data points 

12 name= sprintf('Data2D_/.d/.s',N,gridtype); load(name) 

13 ctrs = dsites; 

14 rhs = testfunction(dsites(:,1),dsites(:,2)); 

15 wep = npu; !. Parameter for weight function 

!. Create neval-by-neval equally spaced evaluation locations 

!. in the unit square 

16 grid= linspace(0,1,neval); [xe,ye] = meshgrid(grid); 

17 epoints = [xe(:) ye(:)]; 

!. Create npu-by-npu equally spaced centers of PU cells in the 

!. unit square 

18 pugrid = linspace(0,1,npu); [xpu,ypu] = meshgrid(pugrid); 

19 cellctrs = [xpu(:) ypu(:)]; 

20 cellradius = 1/wep; 

!. Compute Shepard evaluation matrix 

21 DM_eval = DistanceMatrixCSRBF(epoints,cellctrs,wep); 

22 SEM = wf(ep,DM_eval); 

23 SEM = spdiags(1./(SEM*ones(npu-2,1)),0,neval-2,neval-2)*SEM; 

!. Build k-D trees for data sites and evaluation points 

24 [tmp,tmp,datatree] = kdtree(dsites,[]); 

25 [tmp,tmp,evaltree] = kdtree(epoints,[]); 

26 Pf= zeros(neval-2,1); !. initialize 

27 for j=1:npu-2 

!. 
28a 

28b 

29 

!. 
30a 

30b 

31 

!. 
32a 

32b 

!. 
33a 

33b 

34 

!. 
35 

% 

Find data sites in cell j 

[pts,dist,idx] = kdrangequery(datatree, ... 

cellctrs(j,:),cellradius); 

if (length(idx) > 0) 

Build local interpolation matrix for cell j 

DM_data = DistanceMatrixCSRBF(dsites(idx,:), ... 
ctrs (idx, : ) , ep) ; 

IM= rbf(ep,DM_data); 

Find evaluation points in cell j 

[epts,edist,eidx] = kdrangequery(evaltree, ... 

cellctrs(j,:),cellradius); 

Compute local evaluation matrix 

DM_eval = DistanceMatrixCSRBF(epoints(eidx,:), ... 

ctrs(idx,:),ep); 

EM= rbf(ep,DM_eval); 

Compute local RBF interpolant 

localfit =EM* (IM\rhs(idx)); 

Accumulate global fit 
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36 Pf(eidx) = Pf(eidx) + localfit.*SEM(eidx,j); 
37 end 
38 end 

I. Compute exact solution 
39 exact= testfunction(epoints(:,1),epoints(:,2)); 

% Compute maximum error on evaluation grid 
40 maxerr = norm(Pf-exact,inf); 
41 rms_err = norm(Pf-exact)/neval; 
42 fprintf('RMS error: /.e\n', rms_err) 
43 fprintf('Maximum error: /.e\n', maxerr) 

I. Plot interpolant 
44 fview = [160,20]; 
45 PlotSurf(xe,ye,Pf,neval,exact,maxerr,fview); 

I. Plot maximum error 
46 PlotError2D(xe,ye,Pf,exact,maxerr,neval,fview); 

253 

In Tables 29.1 and 29.2 we illustrate how the local convergence order is main
tained globally for a partition of unity based on Wendland's C 2 compactly supported 
RBFs. In both tables the local approximations are computed via either the com
pactly supported C 2 functions of Wendland, or via Gaussians (that are globally 
supported on the local subdomains). The data were sampled from Franke's func
tion at various sets of uniformly spaced points (in Table 29.1) and Halton points 
(in Table 29.2) in the unit square. The M local subdomains were given by circles 
centered at equally spaced points in the unit square. We can see that (especially 
on the uniformly spaced data sites) the partition of unity method reflects the ap
proximation behavior of the local methods. For the compactly supported Wendland 
functions we obtain O(h2 ) throughout our series of experiments (with a theoretically 
predicted local order of O(h312 )), whereas for the Gaussians we obtain an approxi
mation behavior in places vaguely suggestive of exponential convergence. For these 
experiments the fill distances for the sets of Halton points were not estimated via 
(2.4). Instead, we assumed that the fill distance decreases by a factor of two from 
one iteration to the next, as it does in· the case of uniformly distributed points. 

A relatively large uniform value of the shape parameter c was used for the Gaus
sians on the uniform data sets in Table 29.1 to obtain the exponential convergence 
results. Use of the same value of con the Halton data sets results in RMS-errors for 
the Gaussians that are worse than those for local interpolants based on compactly 
supported RBFs (see Table 29.2). For the local interpolants based on the Wend
land functions we used a large support radius of p = 1/ c = 10 in accordance to the 
observations made in Chapter 17. The main reason for the relatively poor qual
ity of the local interpolants based on Gaussians in the Halton setting is that all of 
the computations with the Wendland functions are performed with well-conditioned 
interpolation matrices (in spite of the large support radius, i.e., flat basis functions). 

Note that the RMS-error for local Gaussian interpolation in the last row of 
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Table 29.1 2D partition of unity approximation on uniform points with Wend-
land's C 2 compactly supported functions for partition of unity and local Wend-
land and Gaussian interpolants. 

Wendland Gaussian 

N M RMS-error rate c RMS-error rate c 

9 1 3.475816e-001 0.1 3. 703960e-001 6 
25 4 1.301854e-001 1.4168 0.1 1.229046e-001 1.5915 6 
81 16 8.089165e-003 4.0084 0.1 2.413852e-002 2.3481 6 

289 64 1.183369e-003 2.7731 0.1 4.551325e-003 2.4070 6 
1089 256 2. 716542e-004 2.1231 0.1 5.393771e-004 3.0769 6 
4225 1024 6. 795949e-005 1.9990 0.1 1.112507 e-005 5.5994 6 
16641 4096 1.697195e-005 2.0015 0.1 2.031757e-006 2.4530 6 
66049 16384 4.241184e-006 2.0006 0.1 1. 798 27 4e-007 3.4980 6 

263169 65536 9.778231e-007 2.1168 0.1 2.657751e-008 2.7583 6 
1050625 262144 2.557991e-007 1.9346 0.1 1.844820e-009 3.8487 6 

Table 29.2 2D partition of unity approximation on Halton points with Wend-
land's C 2 compactly supported functions for partition of unity and local Wend-
land and Gaussian interpolants. 

Wendland Gaussian 

N M RMS-error rate c RMS-error rate c 

9 1 3.325975e-001 0.1 3.384117e-001 6 
25 4 1. 355396e-OO 1 1.2951 0.1 l .383321e-001 1.2906 6 
81 16 1. 035963e-002 3.7097 0.1 3. 640953e-002 1.9257 6 

289 64 2.569458e-003 2.0114 0.1 l .030984e-002 1.8203 6 
1089 256 5. 860966e-004 2.1323 0.1 3.543463e-003 1.5408 6 
4225 1024 2. 703318e-004 1.1164 0.1 l.045103e-003 1.7615 6 

16641 4096 7. 701234e-005 1.8116 0.1 3.896345e-004 1.4235 6 
66049 16384 4.492321e-005 0.7776 0.1 5.012220e-005 2.9586 6 
263169 65536 1.589134e-005 1.4992 0.1 1. 631609e-005 1.6192 6 

1050625 262144 1.032629e-006 3.9438 0.1 2.000238e-006 3.0281 6 

Table 29.1 presents the best approximation of Franke's test function reported in this 
book. However, in Table 17.5 we needed only N = 4225 uniformly spaced points for 
a global Gaussian interpolant with c = 6.3 to achieve an RMS-error of 7.371879e-
009. Of course, it may be possible to obtain even better approximations with other 
RBFs. We do not claim that Gaussians are the "best" RBFs. However, we do 
recommend the partition of unity approach for the solution of large interpolation or 
approximation problems since it is relatively simple to implement and its execution 
is quite efficient. 



Chapter 30 

Approximation of Point Cloud Data in 3D 

30.1 A General Approach via Implicit Surfaces 

A common problem in computer graphics and computer aided design (CAD) is the 
reconstruction of a three-dimensional surface defined in terms of point cloud data, 
i.e., as a set of unorganized, irregular points in 3D. For example, this could be 
laser range data obtained for the purpose of computer modeling of a complicated 
3D object. Such applications also arise, e.g., in computer graphics or in medical 
imaging. An approach to obtaining a surface that fits the given 3D point cloud data 
that has recently become rather popular (see, e.g., [Carr et al. (1997); Carr et al. 
(2001); Morse et al. (2001); Ohtake et al. (2003a); Ohtake et al. (2003b); Turk and 
O'Brien (2002); Wendland (2002b )]) is based on the use of implicit surfaces defined 
in terms of some meshfree approximation method such as an RBF interpolant or 
an MLS approximant. 

More precisely, given data of the form {Xi = (Xi, Yi, Zi) E IR3 , i = 1, ... , N} 
assumed to come from some two-dimensional manifold M (i.e., a surface in IR3 ), we 
seek another surface M* that is a reasonable approximation to M. For the implicit 
surface approach we think of M as the surface of all points (x, y, z) that satisfy the 
implicit equation 

J(x, y, z) = 0 

for some function f. Thus, the function f implicitly defines the surface M. In 
other words, the equation f(x, y, z) = 0 defines the zero iso-surface of the trivariate 
function f and therefore this iso-surface coincides with M. 

As so often before, we will construct the surface M* via interpolation. Obvi
ously, if we only specify the interpolant to be zero at the data points, then we will 
obtain a zero interpolant, and will not be able to extract a meaningful iso-surface. 
Therefore, the key to finding an approximation to the trivariate function f from 
the given data points xi, i = 1, ... , N, is to add an extra set of off-surface points to 
the data so that we can then compute a (solid) three-dimensional interpolant Pf to 
the total set of points, i.e., the surface points plus the auxiliary off-surface points. 
This will result in a nontrivial interpolant, and we will then be able to extract its 
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zero iso-surface. To illustrate this technique we discuss how this idea works in the 
2D setting in the next section. 

The addition of off-surface points results in a problem of the same type as the 
scattered data approximation problems discussed in earlier chapters. In particular, 
if the data sets are large, it is advisable to use either a local radial basis interpolant, 
a moving-least squares approach, or a partition of unity interpolant. However, there 
are also implicit point cloud interpolants based on fast evaluation algorithms with 
global RBFs (see, e.g., [Carr et al. (2001)]). 

The surface reconstruction problem consists of three sub-problems: 

(1) Construct the extra off-surface points. 
(2) Find the trivariate meshfree approximant to the augmented data set. 
(3) Render the iso-surface (zero-contour) of the fit computed in step (2). 

In order to keep the discussion as simple as possible we assume that, in addition 
to the point cloud data, we are also given a set of surface normals ni = ( nf, nf, nf) 
to the surface M at the points Xi = (xi, Yi, zi)· If these normals are not explicitly 
given, there are techniques available that can be used to estimate the normals (see, 
e.g., the discussion in [Wendland (2002b)]). Once we have the (oriented) surface 
normals, we construct the extra off-surface points by marching a small distance 
along the surface normal, i.e., we obtain for each data point (xi, Yi, zi) two additional 
off-surface points. One point lies "outside" the manifold M and is given by 

(xN+i,YN+i,ZN+i) =Xi+ 8ni =(xi+ 8nf,Yi + 8nt,Yi + 8nf), 

and the other point lies "inside" M and is given by 

(x2N+i, Y2N+i, z2N+i) =xi - 8ni = (xi - 8nf, Yi - 8nt, Yi - 8nf). 

Here 8 is a small step size (whose specific magnitude can be rather critical for a 
good surface fit, see [Carr et al. (2001)]). In particular, if 8 is chosen too large, 
then this can easily result in self-intersecting inner or outer auxiliary surfaces. In 
our simple MATLAB implementation in the next section we uniformly take 8 to be 
13 of the maximum dimension of the bounding box of the data as suggested in 
[Wendland (2002b)]. 

Once we have created the auxiliary data, the interpolant is computed by deter
mining a function Pf whose zero contour interpolates the given point cloud data, 
and whose "inner" and "outer" offset contours interpolate the augmented data, i.e., 

P1(xi) = 0, .i = 1, ... , N, 

P1(xi) = 1,· i = N + 1, ... ,2N, 

P1(xi) = -1, i = 2N + 1, ... ,3N. 

The values of ±1 for the auxiliary data are arbitrary. Their precise value is not as 
critical as the choice of 8. 

For the third step we also use a very simple solution, namely we just render the 
resulting approximating surface M* as the zero contour of the 3D interpolant. In 
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MATLAB this can be accomplished with the command isosurface (or contour for 
2D problems). This provides a rough picture of the implicit surface interpolant, but 
may also lead to some rendering artifacts that can be avoided with more sophis
ticated rendering procedures. For more serious applications one usually employs 
some variation of a ray tracing or marching cube algorithm (see the discussion in 
the references listed above). 

The implicit surface representation has the advantage that the surface normals 
of the approximating surface M * can be explicitly and analytically calculated as 
the gradients of the trivariate function Pf, i.e., n(x) = VP1 (x). 

Since in practice the data (e.g., obtained by laser range scanners) is subject 
to measurement errors it is often beneficial if an additional smoothing procedure is 
employed. One can either use the ridge regression approach suggested in Chapter 19, 
or use a moving least squares approximation instead of an RBF interpolant. Another 
implicit smoothing technique was suggested in [Beatson and Bui (2003)]. Noisy data 
can also be dealt with by using a multilevel technique such as suggested in [Ohtake 
et al. (2003b)]. We discuss multilevel interpolation and approximation algorithms 
in Chapter 32. 

30.2 An Illustration in 2D 

Since the 3D point cloud interpolation problem requires an interpolant to points 
viewed as samples of a trivariate function whose graph is a 4D hypersurface, the 
visualization of the individual steps of the construction of the final iso-surface is 
problematic. We therefore illustrate the process with an analogous two-dimensional 
problem, i.e., we assume we are given points (taken from a closed curve C) in the 
plane, and it is our goal to find an interpolating curve C*. Below we present both 
MATLAB code and several figures. 

Program 30.1. PointCloud2D. m 

% PointCloud2D 
% Script that fits a curve to 2D point cloud 
% Calls on: DistanceMatrix 
% Uses: haltonseq (written by Daniel Dougherty 
% from MATLAB Central File Exchange) 

% Gaussian RBF 
1 rbf = ©(e,r) exp(-(e*r).-2); ep = 3.5; 
2 N = 81; % number of data points 
3 neval = 40; % to create neval-by-neval evaluation grid 
4 t = 2*pi*haltonseq(N,1); dsites = [cos(t) sin(t)]; 
5 x = (2+sin(t)).*cos(t); y = (2+cos(t)).*sin(t); 
6 nx = (2+cos(t)).*cos(t)-sin(t).-2; 
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7 ny = (2+sin(t)).*sin(t)-cos(t).-2; 
8 dsites = [x y]; normals = [nx ny]; 

% Produce auxiliary points along normals "inside" and "outside" 
9 bmin = min(dsites,[] ,1); bmax = max(dsites,[] ,1); 

10 bdim = max(bmax-bmin); 
% Distance along normal at which to place new points 

11 delta= bdim/100; 
% Create new points 

12 dsites(N+1:2*N,:) = dsites(1:N,:) + delta*normals; 
13 dsites(2*N+1:3*N,:) = dsites(1:N,:) - delta*normals; 

% "original" points have rhs=O, 
% "inside" points have rhs=-1, "outside" points have rhs=l 

14 rhs = [zeros(N,1); ones(N,1); -ones(N,l)]; 
% Let centers coincide with data sites 

15 ctrs = dsites; 
% Compute new bounding box 

16 bmin = min(dsites,[],1); bmax = max(dsites,[],1); 
% Create neval-by-neval equally spaced evaluation locations 
% in bounding box 

17 xgrid = linspace(bmin(1),bmax(1),neval); 
18 ygrid = linspace(bmin(2),bmax(2),neval); 
19 [xe,ye] = meshgrid(xgrid,ygrid); 
20 epoints = [xe(:) ye(:)]; 
21 DM_eval = DistanceMatrix(epoints,ctrs); 
22 EM= rbf(ep,DM_eval); 
23 DM_data = DistanceMatrix(dsites,ctrs); 
24 IM= rbf(ep,DM_data); 
25 Pf= EM* (IM\rhs); 

% Plot extended data with 2D-fit Pf 
26 figure; hold on; view([-30,30]) 
27 plot3(dsites(:,1),dsites(:,2),rhs,'r.','markersize',20); 
28 mesh(xe,ye,reshape(Pf,neval,neval)); 
29 axis tight; hold off 

% Plot data sites with interpolant (zero contour of 2D-fit Pf) 
30 figure; hold on 
31 plot(dsites(1:N,1),dsites(1:N,2),'bo'); 
32 contour(xe,ye,reshape(Pf,neval,neval),[O O],'r'); 
33 hold off 

In the MATLAB program PointCloud2D .m (see Program 30.1) we create test 
data on lines 4-8 by sampling a parametric curve (in polar coordinates) at irregular 
parameter values t. These points are displayed in the left plot of Figure 30.1. 
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Since we use a known representation of the curve to generate the point cloud it is 
also possible to obtain an exact normal vector associated with each data point (see 
lines 6-8). 

The strategy for creation of the auxiliary points is the same as above, i.e., we 
add data points "inside" and "outside" the given point set. This is done by placing 
these points along the normal vector at each original data point (see lines 12 and 
13). The distance along the normal at which the auxiliary points are placed is taken 
to be 1 % of the size of the maximum dimension of the bounding box of the original 
data (see lines 9-11). 

Next, the problem is turned into a full 2D interpolation problem (whose solution 
has a 3D graph) by adding function values (of the unknown bivariate function f 
whose zero-level iso-curve will be the desired interpolating curve) at the extended 
data set. We assign a value of 0 to each original data point, and a value of 1 or 
-1 to "outside" or "inside" points, respectively. This is done on line 14 of the code 
and the resulting data is displayed in the right plot of Figure 30.1 ( c.f. also line 27 
of the code). 
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Fig. 30.1 Point cloud data (left) and extended "inner" and "outer" data (right) for implicit curve 
with 81 non-uniform data points. 

Now we can solve the problem just like any of our 2D interpolation problems 
discussed earlier. In fact, in Program 30.1 we use straightforward RBF interpolation 
with Gaussian RBFs (see lines 1 and 19-25). 

Finally, the zero contour of the resulting surface is extracted on line 32 using 
the contour command. In the left plot of Figure 30.2 we display a surface plot 
of the bivariate RBF interpolant to the extended data set (obtained via the mesh 
command on line 28), and in the right plot we show the final interpolating curve 
along with the original data. 
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Fig. 30.2 Surface fit (left) and zero contour for 81 non-uniform data points. 

2 

30.3 A Simplistic Implementation in 3D via Partition of Unity 
Approximation in MATLAB 

In the MATLAB program PointCloud3D_FUCS (see Program 30.2) we present a fairly 
simple implementation of the partition of unity approach to interpolation of point 
cloud data in 3D. The partition of unity is created with a Shepard approximant 
as in the previous chapter. As in Program 29.1 we use Wendland's C 2 compactly 
supported function as both the Shepard weights and for the local RBF interpolants. 

The data sets used in our examples correspond to various resolutions of the Stan
ford bunny available on the world-wide web at http: I I graphics. stanf ord. edu/
data/3Dscanrep/. Data sets consisting of 35947, 8171, 1889, and 453 
points are included in the file bunny. tar. gz. The normals for this kind 
of PLY data can be computed with the utility normals ply from the pack
age ply. tar. gz provided by Greg Turk, and available on the world-wide web 
at http: I /www. cc. gate ch. edu/pro j ects/large...models/ply. html. Results ob
tained with the PointCloud3D_FUCS for the 453 and 8171 point cloud sets are dis
played in Figure 30.3. Processed data files are included on the enclosed CD. 

Many parts of the MATLAB code for PointCloud3D_FUCS are similar to Pro
gram 29.1. The bunny data set including point normals is loaded on line 6, and 
the bounding box for the point cloud and its maximum dimension are computed 
on lines 7-8. The off-surface points are added in lines 10-14. Then the right-hand 
side for the augmented (3D) interpolation problem is defined on line 15 (assigning 
a value of 0 for the on-surface data points, and a value of ±1 for the "outside" and 
"inside" off-surface points), and we recompute the bounding box for the augmented 
data on line 16. 

We have found that a reasonable value for the radius of the partition of unity 
subdomains seems to be given by the maximal dimension of the bounding box 
divided by the cube root of the number, M, of subdomains, i.e., diam(f2J) = l/wc 
with we = ifM /bdim (see lines 9 and 28). 
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The main part of the program (lines 29-46) is almost identical to lines 21-38 
of Program 29.1. On lines 47-55 we add the code that creates and displays the 
zero-contour iso-surface for the 3D (solid) interpolant Pf along with the point cloud 
data. 

Program 30.2. PointCloud3D_FUCS .m 

/. PointCloud3D_PUCS 
% Script that fits a surface to 30 point cloud using partition of 
% unity approximation with sparse matrices 
I. Calls on: CSEvalMatrix 
I. Uses: k-D tree package by Guy Shechter 

from MATLAB Central File Exchange I. 
% Weight function for global Shepard partition of unity weighting 

1 wf = ©(e,r) r.-4.*(5*spones(r)-4*r); 
I. The RBF basis function for local RBF interpolation 

2 rbf = ©(e,r) r.-4.*(5*spones(r)-4*r); 
3 ep = 1; % Parameter for basis function 

I. Parameter for npu-by-npu-by-npu grid of PU cells 
4 npu = 8; 

I. Parameter for npu-by-npu-by-npu grid of PU cells 
5 neval = 25; 

I. Load data points and compute bounding box 
6 load('Data3D_Bunny3'); N = size(dsites,1); 
7 bmin = min(dsites,[],1); bmax = max(dsites,[],1); 
8 bdim = max(bmax-bmin); 
9 wep = npu/bdim; 

I. Add auxiliary points along normals "inside" and "outside" 
I. Find points with nonzero normal vectors and count them 

10 withnormals = find(normals(:,1) lnormals(:,2)1normals(:,3)); 
11 addpoints = length(withnormals); 

% Distance along normal at which to place new points 
12 delta = bdim/100; 

I. Create new points 
13a dsites(N+l:N+addpoints,:) = 
13b dsites(withnormals,:) + delta*normals(withnormals,:); 
14a dsites(N+addpoints+1:N+2*addpoints,:) = ... 
14b dsites(withnormals,:) - delta*normals(withnormals,:); 

I. Interpolant is implicit surface, i.e., 
I. "original" points have rhs=O, "inside" rhs=-1, "outside" rhs=l 

15 rhs = [zeros(N,1); ones(addpoints,1); -ones(addpoints,1)]; 
I. Compute new bounding box 

16 bmin = min(dsites,[] ,1); bmax = max(dsites,[],1); 
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17 ctrs = dsites; 
% Create neval-by-neval-by-neval equally spaced evaluation 
% locations in bounding box 

18 xgrid = linspace(bmin(1),bmax(1),neval); 
19 ygrid = linspace(bmin(2),bmax(2),neval); 
20 zgrid = linspace(bmin(3),bmax(3),neval); 
21 [xe,ye,ze] = meshgrid(xgrid,ygrid,zgrid); 
22 epoints = [xe(:) ye(:) ze(:)]; 

!. Create npu-by-npu-by-npu equally spaced centers of PU cells 

% in bounding box 
23 puxgrid = linspace(bmin(1),bmax(1),npu); 
24 puygrid = linspace(bmin(2),bmax(2),npu); 
25 puzgrid = linspace(bmin(3),bmax(3),npu); 
26 [xpu,ypu,zpu] = meshgrid(puxgrid,puygrid,puzgrid); 
27 cellctrs = [xpu(:) ypu(:) zpu(:)]; 
28 cellradius = 1/wep; 

% Compute Shepard evaluation matrix 
29 DM_eval = DistanceMatrixCSRBF(epoints,cellctrs,wep); 
30 SEM = wf(wep,DM_eval); 
31 SEM = spdiags(1./(SEM*ones(npu-3,1)),0,neval-3,neval-3)*SEM; 

!. Build k-D trees for data sites and evaluation points 
32 [tmp,tmp,datatree] = kdtree(dsites,[]); 
33 [tmp,tmp,evaltree] = kdtree(epoints, []); 
34 Pf= zeros(neval-3,1); % initialize 
35 for j=1:npu-3 

% Find data sites in cell j 
36a [pts,dist,idx] = kdrangequery(datatree, ... 
36b cellctrs(j,:),cellradius); 
37 if (length(idx) > 0) 

!. Build local interpolation matrix for cell j 
38a DM_data = DistanceMatrixCSRBF(dsites(idx,:), ... 
38b ctrs(idx,:),ep); 
39 IM= rbf(ep,DM_data); 

!. Find evaluation points in cell j 
40a [epts,edist,eidx] = kdrangequery(evaltree, ... 
40b cellctrs(j,:),cellradius); 

% Compute local evaluation matrix 
41a DM_eval = DistanceMatrixCSRBF(epoints(eidx,:), ... 
41b ctrs(idx,:),ep); 
42 EM= rbf(ep,DM_eval); 

% Compute local RBF interpolant 
43 localfit =EM* (IM\rhs(idx)); 
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% Accumulate global fit 
44 Pf(eidx) = Pf(eidx) + localfit.*SEM(eidx,j); 
45 end 
46 end 

% Plot data sites with interpolant (zero contour of 30-fit Pf) 
47 figure; hold on 
48 plot3(dsites(1:N,1),dsites(1:N,2),dsites(1:N,3),'bo'); 
49a pfit = patch(isosurface(xe,ye,ze, ... 
49b reshape(Pf,neval,neval,neval),O)); 
50 isonormals(xe,ye,ze,reshape(Pf,neval,neval,neval),pfit) 
51a set(pfit,'FaceLighting','gouraud','FaceColor', ... 
51b 'red','EdgeColor','none'); 
52 light('Position',[0 0 1] ,'Style','infinite'); 
53 daspect([1 1 1]); view([0,90]); 
54 axis([bmin(1) bmax(1) bmin(2) bmax(2) bmin(3) bmax(3)]); 
55 axis off; hold off 
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In Figure 30.3 we display partition of unity fits based on local RBF interpolants 
built with compactly supported Wendland's C 2 basis functions. The point cloud 
data sets consist of 453 points (top plots in Figure 30.3) and 8171 points (bottom 
plots in Figure 30.3). The augmented data sets for the 3D interpolants are almost 
three times as large (since not every data point has a normal vector associated with 
it). On the left we show the fitted surface along with the data points, and on the 
right the fit is displayed by itself. For the plots in the bottom part of Figure 30.3 the 
simple iso-surface plot in MATLAB does a surprisingly good job. In other situations, 
however, it causes some artifacts such as the extra surface fragment near the bunny's 
ear in the top part of Figure 30.3. 

For the top plots in Figure 30.3 we used 83 = 256 subdomains and 253 = 15625 
evaluation points in the bounding box of the 3D data, and for those on the bottom of 
Figure 30.3 we used 323 = 32768 subdomains and 503 = 125000 evaluation points. 
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Fig. 30.3 Partition of unity implicit surface interpolant to Stanford bunny with 453 (top) and 
8171 (bottom) data points. 



Chapter 31 

Fixed Level Residual Iteration 

In the next few chapters we will look at various versions of residual iteration. The 
basic idea of using an iterative algorithm in which one takes advantage of the residual 
of an initial approximation to obtain a more accurate solution is well-known in many 
branches of mathematics. 

31.1 Iterative Refinement 

For example, in numerical linear algebra this process is known as iterative refinement 
(see, e.g., [Kincaid and Cheney (2002)]). We might be interested in solving a system 
of linear equations Ax = b, and obtain a (numerical) solution x 0 by applying 
an algorithm such as Gaussian elimination. We can then compute the residual 
r = b - Ax0 , and realize that it is related to the error, e = x - Xo, via the relation 

Ae = Ax - Axo = r. (31.1) 

Thus, by adding the (numerical) solution e 0 of equation (31.1) to the initial solution 
x 0 one expects to improve the initial approximation to X1 = xo + eo (since the true 
solution x = x 0 + e). Of course, this procedure can be repeated iteratively. This 
leads to the algorithm 

Algorithm 31.1. Iterative refinement 

(1) Compute an approximate solution xo of Ax= b. 
(2) Fork= 1,2, ... do 

(a) Compute the residual Tk = b - Axk-1· 

(b) Solve Aek = rk. 

(c) Update Xk = Xk-1 + ek. 

We can rewrite the last statement in the algorithm as 

Xk = Xk-1 + B(b - Axk-1), (31.2) 

where Bis an approximate (or numerical) inverse of A characterized by the property 
that III - BAii < 1 for some matrix norm. This condition allows us to express the 
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exact inverse of A by a Neumann series, i.e., 

A- 1 = (BA)- 1 B = [f (J - BA)j] B. 
J=O 

Therefore the exact solution of Ax= b can be written in the form 

x = A-1b = [f (I - BA)j] Bb. 
J=O 

(31.3) 

For the iterative refinement algorithm, on the other hand, we have from (31.2) 
and the fact that x 0 = Bb, that 

Xk = Xk-1 + B(b - Axk-1) 

= (I - BA)xk-1 + Bb 

= (I - BA)xk-1 + xo. (31.4) 

We can recursively substitute this relation back in for Xk-l, Xk- 2 , etc., and obtain 

Xk = [tu -BA)'] Xo = [t(I -BA)j] Bb. 
J=O J=O 

(31.5) 

It is now easy to see that the iterates Xk of the refinement algorithm converge 
to the exact solution x. We simply look at the difference x - Xk at level k, i.e., 
from (31.3) and (31.5) we obtain 

x - Xk = [ f (I - BA)j] Bb, 
j=k+l 

whose norm goes to zero fork ~ oo since III - BAii < 1 by the assumption made 
on the approximate inverse B. 

We now apply these ideas to RBF interpolation and MLS approximation. In 
this and the following chapters we will consider three different scenarios: 

• Fixed level iteration, i.e., the iterative refinement algorithm is performed on a 
fixed set of data points X. 

• Multilevel iteration, i.e., we work with a nested sequence of data sets X0 ~ 

X1 ~ ··· ~ X. 
• Adaptive iteration, i.e., residual iteration is performed on adaptively chosen 

subsets of X, e.g., by starting with some small subset of X and then adding one 
point at a time from the remainder of X that is determined to be "optimal". 

Note that the third approach is similar to the adaptive knot insertion algorithm 
of Chapter 21. 
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31.2 Fixed Level Iteration 

The simplest setting for a meshfree residual iteration algorithm arises when we 
fix the data sites X = {x1 , ... , XN} throughout the iterative procedure. For this 
setting the iterative refinement algorithm from linear algebra can be adapted in 
a straightforward way. We first discuss residual iteration for quasi-interpolants 
(or approximate MLS approximants) based on (radial) generating functions Wj, 
j= l, ... ,N. 

If we keep the same set of generating functions for all steps of the iteration then 
we are performing non-stationary approximation and we obtain 

Algorithm 31.2. Fixed level residual iteration based on quasi-interpolation 

(1) Compute an initial approximation Pj0 ) to the data {(xj, f(xJ)), j = 1, ... ,N} 
N 

of the form Pj0)(x) = L f(xJ)WJ(x). 
j=l 

(2) For k = 1, 2, ... do 

(a) Compute the residuals rk(xJ) = f(xJ) - Py-l)(xJ) for all j = 1, ... , N. 
N 

(b) Compute the correction u(x) = L rk(xJ)Wj(x). 
j=l 

(c) Update P?)(x) = P?-l)(x) + u(x). 

As for the iterative refinement algorithm, we can rewrite the last line of the 
algorithm as 

N 

P?)(x) = P?-l)(x) + L [f(xJ) - P?-l)(xJ)] Wj(x). 
j=l 

Now we restrict the evaluation of the approximation to the data sites only. Thus, 
we have 

N 

(k)( ) - (k-1)( ) """ [ ( ) (k-1)( )] ( ) pf Xi - pf Xi + L...t f X j - pf X j W j Xi , i = 1, . .. ,N. 
j=l 

(31.6) 
Next we collect all of these N equations into one single matrix-vector equation by 
introducing the vectors f = [f(x1), f(x2), ... , f(xN )]T and W = ['111, '112, ... , W N]T. 
This allows us to rewrite the initial approximant in matrix-vector form 

(31.7) 

Moreover, evaluation of the vector W of generating functions at the data sites Xi, 

i = 1, ... , N gives rise to a matrix A with rows wT(xi), i = 1, ... , N. Therefore, 
(31.6) now becomes 
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where we interpret 'Pf(k) as a vector of values of the approximant at the data sites, 
. (k) [ (k)( ) -n(k)( )IT i.e., Pi = P1 X1 , ... , r f XN . 

Next we follow analogous steps as in our discussion of iterative refinement above. 
Thus 

p/k) = p/k-1) + A(f _ p/k-1)) 

= (I - A)P/k-l) + Af 

=(I - A)P/k-1) + P/o), 
(31.8) 

since (31.7) implies that on the data sites we have 'Pt(O) = Af. Now we can again 
recursively substitute back in and obtain 

(31.9) 

Note that here we have to deal only with the matrix A since the computation 
of the correction in the algorithm does not require the solution of a linear system. 

As before, the sum E7=0 (I - A)J can be seen as a truncated Neumann series 
expansion for the inverse of the matrix A. If we demand that III - All < 1, then 

the matrix (E7=0 (J - A)J) is an approximate inverse of A which converges to A- 1 

since III - Allk ~ 0 for k ~ oo. More details (such as sufficient conditions under 
which III - All < 1) are given in [Fasshauer and Zhang (2006)]. 

In order to establish a connection between iterated (approximate) MLS approx
imation and RBF interpolation we assume the matrix A to be positive definite and 
generated by radial basis functions <l?j = cp(ll · -xjll) as in our discussions in ear
lier chapters. Then A corresponds to an RBF interpolation matrix, and we see 
that the iterated (approximate) MLS approximation converges to the RBF inter
polant provided the same function spaces are used, i.e., span{Wj, j = 1, ... , N} = 

span{<I?j, j = 1, ... , N}. 
In particular, we have established 

Theorem 31.1. Assume w 1 , ... , 'I! N are strictly positive definite {radial) generat
ing functions for approximate MLS approximation as discussed in Chapter 26. Then 
the residual iteration fit of Algorithm 31.2 based on approximate MLS approxima
tion with these generating functions converges to the REF interpolant based on the 
same basis functions 'I! 1, ... , 'I! N provided the matrix A with entries Aij = 'I! j (Xi) 
satisfies III - All < 1. 

A sufficient condition for A to satisfy III - All < 1 was given in [Fasshauer and 
Zhang (2006)]. As long as the maximum row sum of A is small enough, i.e., 

i=~~~.N {t IAi,j1} < 2, 
J=l 
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we have convergence of the residual iteration algorithm. This condition is closely 
related to the Lebesgue function of the RBF interpolant. For example, it is not 
hard to see that Shepard generating functions satisfy this condition since each row 
sum is equal to one due to the partition of unity property of the Shepard functions. 
For other types of functions the condition can be satisfied by an appropriate scaling 
of the basic function with a sufficiently small shape parameter. However, if c is 
taken too small, then the algorithm converges very slowly. A series of experiments 
analyzing the behavior of the algorithm are presented in [Fasshauer and Zhang 
(2006)] and also in Section 31.4 below. 

The question of whether the approximate MLS generating functions are strictly 
positive definite has been irrelevant up to this point. However, in order to make 
the connection between AMLS approximation and RBF interpolation as stated in 
Theorem 31.l it is important to find AMLS generating functions that satisfy this 
additional condition. Of course, any (appropriately normalized) strictly positive 
definite function can serve as a second-order accurate AMLS generating function. 
However, it is an open question for which of these functions their higher-order 
generating functions computed according to our discussion in Chapter 26 are also 
strictly positive definite. 

The family of Laguerre-Gaussians ( 4. 2) provides one example of generating/basis 
functions that can be used to illustrate Theorem 31.1 (see the numerical experiments 
below) since their Fourier transforms are positive (see (4.3)). 

31.3 Modifications of the Basic Fixed Level Iteration Algorithm 

If we start from the interpolation end, then the interpolation conditions P1 (xi) = 

f (xi) tell us that we need to solve the linear system Ac = f in order to find the 
coefficients of the RBF expansion 

N 

P1(x) = L ci<I>i(x). 
j=l 

Following the same iterative procedure as above (c.f. (31.4)) this leads to 

ck = Ck-1 + B(f - Ack-i) (31.10) 
k 

=LU - BA)j Bf, (31.11) 
j=O 

where B is an approximate inverse of A as in Section 31.1 and we let co = Bf. 
Here Ck is the k-th step approximation to the coefficient vector c = [ c1, ... , c N ]T. 

Equation (31.10) can also be rewritten as 

Ck= (I - BA)ck-1 +Bf, 

and therefore corresponds to a standard stationary iteration for the solution of 
linear systems (see, e.g., p. 620 of [Meyer (2000)]). The splitting matrices such that 
A= M-N are M = B-1, N = B-1 -A, and H = M- 1N =(I-BA). 
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On the other hand, (31.11) gives us an interpretation of the residual iteration 
as a Krylov subspace method with the Krylov subspaces generated by the matrix 
I - BA and the vector Bf. 

In the quasi-interpolation formulation the corresponding formulas are given by 
(31.9), i.e., 

(31.12) 

and can also be interpreted as a Krylov subspace iteration with the Krylov subspaces 
generated by the matrix I - A and the vector Af. Note, however, that in (31.11) 
we are computing the coefficients of the RBF interpolant, while in (31.12) we are 
directly computing an approximation to the interpolant. 

A natural problem associated with Krylov subspace methods is the determina
tion of coefficients (search directions) O.j such that L:;=O aJ(I - A)J Af converges 
faster than the generic method with aj = 1 discussed above., Some related work is 
discussed in the context of the Faul-Powell algorithm in Section 33.2. 

We conclude our discussion of modifications of the basic fixed level residual iter
ation algorithm by noting that the usual stationary approximation method cannot 
be applied within the fixed level iteration paradigm since we do not have a change 
in data density that can be used as a guide to re-scale the basis functions. However, 
it is possible to generalize the non-stationary algorithm to a more general setting 
in which we change the approximation space from one step to the next. As in the 
non-stationary setting we can only apply this strategy with approximation methods 
since an interpolation method will immediately lead to a zero initial residual. For 
example, one could devise an algorithm in which we use cross-validation at each it
eration step to determine the optimal shape parameter (or support size) for the next 
residual correction. Such an algorithm would also fit into the category of adaptive 
iterations as discussed below. 

31.4 Iterated Approximate MLS Approximation in MATLAB 

We now illustrate the fixed level residual iteration algorithm with some MATLAB 
experiments based on the iteration of approximate MLS approximants with Gaus
sian generating functions. To obtain some test data we use Franke's function (2.2) 
on 289 Halton points in the unit square. 

In our earlier discussion of approximate MLS approximation we limited ourselves 
mostly to the case of uniformly spaced data. This was due to the fact, that for 
non-uniformly spaced data one needs to scale the generating functions individually 
according to the local variation in the data density in order to maintain the approx
imate approximation orders stated in Theorem 26.1. Now the convergence result 
of Theorem 31.1 shows that we no longer need to feel bound by those limitations. 



31. Fixed Level Residual Iteration 271 

Iteration will automatically improve the approximate MLS fit also on non-uniform 
data. On the other hand, this observation suggests that the use of a uniform shape 
parameter for RBF interpolation is most likely not the ideal strategy to obtain 
highly accurate RBF fits. While a few experiments of RBF interpolation with vary
ing shape parameters exist in the literature (see, e.g., [Kansa and Carlson (1992); 
Bozzini et al. (2002); Fornberg and Zuev (2006)]), the theory for this case is only 
rudimentary [Bozzini et al. ( 2002)]. 

The MATLAB code for our examples is provided in Program 31.1. Since we are 
iterating the approximate MLS approximation we define the scale of the generat
ing functions in terms of the parameter D (see line 2). However, since the RBF 
(Gaussian) is defined with the parameter e we convert D to e based on the for
mulae = l/(VVh). We approximate h (even for non-uniform Halton points) by 
h = 1/( ..JN - 1), where N is the number of data points (in 2D). 

In contrast to previous programs we now require two sets of evaluation points. 
The usual epoints that we employ for error computation and plotting along with 
another set respoints, the points at which we evaluate the residuals during the 
iterative procedure. These points coincide with the data points (see line 13). The 
iteration on lines 23-28 is equivalent to the formulation in Algorithm 31.2 above. 

Program 31.1. Iterated..MLSApproxApprox2D.m 

% Iterated_MLSApproxApprox2D 
% Script that performs iterated approximate MLS approximation 
% Calls on: DistanceMatrix 

1 rbf = ©(e,r) exp(-(e*r).-2); 
2 D = 64/9; % Parameter for basis function 

% Define Franke's function as testfunction 
3 f1 = ©(x,y) 0.75*exp(-((9*x-2).-2+(9*y-2).-2)/4); 
4 f2 = ©(x,y) 0.75*exp(-((9*x+l).-2/49+(9*y+1).-2/10)); 
5 f3 = ©(x,y) 0.5*exp(-((9*x-7).-2+(9*y-3).-2)/4); 
6 f4 = ©(x,y) 0.2*exp(-((9*x-4).-2+(9*y-7).-2)); 
7 testfunction = ©(x,y) f1(x,y)+f2(x,y)+f3(x,y)-f4(x,y); 

8 neval = 40; 
9 N = 289; gridtype = 'h'; 

% Convert D to epsilon for use with basis function definition 
10 h = 1/(sqrt(N)-1); ep = 1/(sqrt(D)*h); 

% Number of levels for multilevel iteration 
11 maxlevel = 10000; 

% Load data points 
12 name= sprintf('Data2D_%d%s',N,gridtype); load(name) 
13 respoints = dsites; ctrs = dsites; 

% Create neval-by-neval equally spaced evaluation locations 
% in the unit square 
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14 grid= linspace(0,1,neval); [xe,ye] = meshgrid(grid); 
15 epoints = [xe(:) ye(:)]; 

% Compute exact solution 
16 exact= testfunction(epoints(:,1),epoints(:,2)); 

% Compute evaluation matrix directly based on the distances 
% between the evaluation points and centers 

17 DM = DistanceMatrix(epoints,ctrs); 
18 EM= rbf(ep,DM)/(pi*D); 

% Compute - for all levels - evaluation matrices for 
% residuals directly based on the distances between the 
% next finer points (respoints) and centers 

19 DM = DistanceMatrix(respoints,ctrs); 
20 RM= rbf(ep,DM)/(pi*D); 
21 Pf= zeros(neval-2,1); % initialize 

% Create vector of function values (initial residual), 
22 rhs = testfunction(dsites(:,1),dsites(:,2)); 
23 for level=l:maxlevel 

% Evaluate on evaluation points 
% (for error computation and plotting) 

24 Pf = Pf + EM*rhs; 
% Compute new residual 

25 rhs = rhs - RM*rhs; 
% Compute errors on evaluation grid 

26 maxerr(level) = norm(Pf-exact,inf); 
27 rms_err(level) = norm(Pf-exact)/neval; 
28 end 
29 figure; semilogy(l:maxlevel,maxerr,'b',l:maxlevel,rms_err,'r'); 

According to the experiments shown in Figure 2 .5 the optimal shape parameter 
for Gaussian interpolation to Franke's function on 289 Halton points is close to 
c = 6. The corresponding value of 1J for the Gaussian as an approximate MLS 
generating function is 1J = 64/9 (since c = 1/(../15h), and we approximate h for 
the non-uniform Halton points by the value we would have for uniform points, i.e., 
h = 1/( VN - 1). For this value of the shape parameter we see the convergence 
behavior of the approximate MLS residual iteration in the left plot of Figure 31.1. 
The final maximum error after 10000 iterations is 9.921772e-002 (top/solid curve), 
and the RMS error is 3.939342e-003 (lower/dashed curve). For comparison, the 
errors for the corresponding RBF interpolant (which is the theoretical limit of the 
residual iteration) are 3.238735e-002 for the maximum error and l.074443e-003 for 
the RMS error. These errors are included as horizontal straight lines in the left plot 
of Figure 31.1. 
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Fig. 31.1 Convergence for iterated MLS approximation based on Gaussian generating functions 
with V = 64/9 (e = 6) to data sampled from Franke's function at 289 Halton points (left), and fit 
for an RBF interpolant based on Gaussians withe= 1 (right). 

An advantage of the residual iteration is that it allows us to compute radial basis 
approximations also for values of the shape parameter for which the interpolation 
matrix is very ill-conditioned. For example, the right plot of Figure 31.1 shows an 
RBF interpolant to the 289 Halton samples of Franke's function based on Gaussians 
with shape parameter c = 1. The reciprocal condition number estimate provided by 
MATLAB for the interpolation matrix for this problem is RCOND = 2 .132739e-020. 

In these ill-conditioned cases convergence of the residual iteration to the limit 
is rather slow, but the approximations can be computed very stably. In the left 
plot of Figure 31.2 we show the convergence behavior for the residual iteration 
with approximate MLS approximants based on Gaussian generating functions with 
V = 256 (corresponding to c = 1). Note that the approximation errors for the 
iterative scheme quickly drop below the maximum error of 2.507017e+000 and RMS 
error of 2.186992e-001 of the mostly meaningless interpolant. The corresponding fit 
for the iterative method is displayed in the right plot of the figure. While this fit 
is not very accurate, it is still much more reliable than the fit consisting of mostly 
numerical noise shown in the right plot of Figure 31.1. The final errors after 10000 
iterations are 2.933448e-001 for the maximum error and 8.470775e-002 for the RMS 
error. 

It is of interest to note that the residual iteration shows the most dramatic 
error improvement during the first few iterations. Thus, only a few iterations of 
approximate MLS approximation are required to obtain a reasonable (and stably 
computable) approximation to the RBF interpolant. Moreover, we emphasize again 
that while our discussion of approximate MLS approximation was mostly limited 
to the case of uniform data (at least for most practical purposes), this limitation no 
longer exists for the residual iteration algorithm. 
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Fig. 31.2 Convergence and final fit for iterated approximate MLS approximation based on 289 
Halton points and Gaussians with V = 256 (c = 1). 

31.5 Iterated Shepard Approximation 

The use of other approximation methods within the fixed level residual iteration 
algorithm such as regular MLS approximation or RBF least squares approximation 
is also possible. We point out, however, that the use of RBF interpolation does not 
make any sense in the context of fixed level residual iteration since the residuals on 
the data are automatically zero if we perform interpolation of the data. 

If we want to use regular MLS approximation instead of approximate MLS 
approximation in the residual iteration, then, for Shepard's method, this means 
replacing line 18 in Program 31.1 by 

18a EM= rbf(ep,DM); 
18b EM= EM./repmat(EM*ones(N,1),1,N); I. Shepard normalization 

and line 20 by 

20a RM= rbf(ep,DM); 
20b RM= RM./repmat(RM*ones(N,1),1,N); I. Shepard normalization 

Note that we can now no longer claim that the limit of the iterated Shepard 
approximant is given by the RBF interpolant based on the Shepard weights as basis 
functions. In fact, the iterated Shepard approximant becomes more accurate than 
the RBF interpolant. For example, if we take Gaussian weight functions with c = 6 
or c = 1 as above, then the corresponding convergence behavior for the iterated 
Shepard approximant is displayed in Figure 31.3. Moreover, for the example with 
c = 6, 45 iterations of the Shepard approximant result in a smaller maximum error 
than the RBF interpolant, while 3515 iterations are required to push the RMS 
error for the Shepard iteration below l.074443e-003. After 10000 iterations with 
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Shepard approximants the maximum error is 8. 760946e-003 and the RMS error is 
7.889609e-004. For the c = 1 example the final errors (after 10000 iterations) are 
2.664303e-001 for the maximum error and 8.169080e-002 for the RMS error. This 
example is very similar to the AMLS example displayed in Figure 31.2. Again, 
the most significant part of the error improvement occurs during the first 10-20 
iterations. 
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Fig. 31.3 Convergence for iterated Shepard approximation based on 289 Halton points and Gaus
sian weights with c = 6 (left), and c = 1 (right). 

For other data sets and other values of c residual iteration may converge faster. 
For example, in Figure 31.4 we used 1089 data points (again taken from Franke's 
function) and a value of c = 16. On the left we show the convergence behavior for 
iterated approximate MLS with Gaussian generating functions, and on the right for 
iterated Shepard approximation with Gaussian weights. Both graphs contain the 
errors for RBF interpolation with Gaussian basis functions for comparison. We note 
that the approximate MLS iteration approaches the RBF interpolant faster than in 
the previous examples. Moreover, both errors for iterated Shepard approximation 
are smaller than those for the interpolant after only three iterations. In fact, after 10 
iterations the maximum error for the iterated Shepard approximation is one order 
of magnitude smaller than that for the RBF interpolant. 

A detailed study of the dependence of the convergence of the fixed-level residual 
iteration algorithm on the shape parameter c and more examples are provided in 
[Fasshauer and Zhang (2006)]. 
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Chapter 32 

Multilevel Iteration 

As we saw in Chapters 12 and 16 that there is a trade-off principle for interpo
lation with compactly supported radial functions. Namely, using a non-stationary 
approach we can obtain good approximation results at the cost of increasing compu
tational complexity, while with a stationary approach one has an efficient approx
imation method. However, stationary approximation with compactly supported 
radial functions is saturated, i.e., it provides only limited convergence. 

32.1 Stationary Multilevel Interpolation 

In order to combine the advantages of both approaches for interpolation with com
pactly supported radial functions described above, Schaback suggested the use of a 
multilevel stationary scheme. This scheme was implemented first in [Floater and lske 
(1996b)] and later studied by a number of other researchers (see, e.g., [Chen et al. 
(2002); Fasshauer and Jerome (1999); Hales and Levesley (2002); Hartmann (1998); 
lske (2001); Narcowich et al. (1999); Wendland (1999a)]). 

In contrast to the fixed level iteration of the previous chapter we will now use a 
nested sequence X1 C · · · C XK = X C lR8 of point sets with increasingly greater 
data density, i.e., smaller fill distance hx,n. The basic idea of the stationary multi
level interpolation algorithm is to scale the size of the support of the basis functions 
with the fill distance, but to interpolate to residuals on progressively refined sets of 
centers. This method has all of the combined benefits of the interpolation methods 
for compactly supported RBFs referred to earlier: it is computationally efficient 
(can be performed in O(N) operations), well-conditioned, and appears to be con
vergent. 

An algorithm for multilevel interpolation is as follows: 

Algorithm 32.1. Stationary multilevel interpolation 

(1) Create nested point sets X1 C · · · C XK = X C lR8
, and initialize P1(x) = 0. 

(2) For k = 1, 2, ... , K do 

(a) Solve u(x) = f(x) - P1(x) on Xk. 

277 
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(b) Update P1(x) ~ P1(x) + u(x). 

The representation of the update u at step k is a radial basis function expansion 
of the form 

with <p a (compactly supported) basic function and its support scale Pk '.:::::'. hxk,n. 
This requires the solution of a linear system whose size is determined by the number 
of points in xk. 

Unfortunately, so far there are only limited theoretical results concerning the 
convergence of this multilevel algorithm. In [Narcowich et al. (1999)] the authors 
show that a related algorithm (in which additional boundary conditions are im
posed) converges at least linearly. Hartmann analyzes the multilevel algorithm in 
his Ph.D. thesis [Hartmann (1998)]. He shows at least linear convergence for mul
tilevel interpolation on a regular lattice for various radial basis functions. Similar 
results are obtained in [Hales and Levesley (2002)] for (globally supported) poly
harmonic splines, i.e., thin plate splines and radial powers. In this context linear 
convergence is to be interpreted as an improvement of the form 

k= l, ... ,K, 

where P?) denotes the interpolant at level k, and C < 1 is a positive (level
independent) constant. 

The main difficulty in proving the convergence of the multilevel algorithm is the 
fact that the approximation space changes from one level to the next. The approx
imation spaces are not nested (as they usually are for wavelets). This means that 
the native space norm changes from one level to the next. Hales and Levesley avoid 
this problem by scaling the (uniformly spaced) data instead of the basis functions. 
Then the fact that polyharmonic splines are in a certain sense homogeneous (see 
Section 34.4) simplifies the analysis. This fact was also used in [Wendland (2005a)] 
to prove linear convergence for multilevel (scattered data) interpolation based on 
thin plate splines. 

Another approach to multilevel interpolation was recently suggested by Opfer 
(see [Opfer (2004); Opfer (2006)]). He constructs so-called multiscale kernels that 
have the information from different resolution levels built into a single function. 
These kernels are built as tensor products of scaling functions that form a wavelet
like multiresolution analysis. Opfer provides error bounds for interpolation with 
these kernels analogous to those in Theorem 15.3. He also demonstrates how mul
tiscale kernels can be used for scattered data interpolation, and for image decom
position and compression. 
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32.2 A MATLAB Implementation of Stationary Multilevel 
Interpolation 
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The MATLAB program ML_CSRBF3D. m for stationary multilevel interpolation with 
compactly supported RBFs is displayed as Program 32.1. In this program we use 
the compactly supported RBF cp(r) = (1 - r)t (35r2 + 18r + 3) of Wendland. This 
function is C 4 and strictly positive definite and radial on .IR3 . The program shows 
a number of differences compared to our previous codes. On line 2 we define the 
maximum number of levels K we wish to use, and then define the corresponding 
scale parameters E for the basic function. Since we load data sets consisting of 
(2k + 1)3 uniformly spaced data points in the unit cube (where k runs from 1 to K, 
see lines 13-17), the fill distance hxk,n changes by a factor of two from one level to 
the next. Therefore, in order to guarantee a stationary interpolation scheme, the 
scale parameter E needs to change by a factor of two from one level to the next, 
also. This is achieved in line 2 of the code where we also use an additional factor 
of 0.7 to uniformly scale all values of E. Note that here E corresponds to a support 
radius p = l/E. 

In each iteration we solve one interpolation problem (see line 18-22). The expan
sion coefficients coef are stored in one component of a MATLAB cell array. Similarly, 
we need to keep the centers for all levels in memory (again using a cell array ctrs, 
see line 17). The right-hand side for the interpolation problem is given by the data 
(values of the test function on the initial data set) in the first iteration, and in later 
iterations by the residual, i.e., the difference between the data (values of the test 
function on the present grid) and the values of the fit on the present grid. These 
values are computed at the end of the previous iteration and stored in the vector Rf 
(see lines 28-32). This extra evaluation (in addition to the evaluation on a separate 
evaluation grid for error monitoring and plotting purposes, see lines 34-39) adds to 
the complexity (and inefficiency) of the present code. Moreover, the evaluation of 
the residual on the present grid requires us to keep evaluation matrices for all levels 
in memory (in the cell array RM, see lines 24-27). Note that the evaluation points 
(respoints) for the residuals change with every iteration and need not be kept in 
storage. An alternative approach would be to evaluate all residuals on a common 
(fine) grid, e.g., the evaluation grid. This, however, would make (the evaluation of) 
the initial iterates rather expensive. 

Finally, on lines 42-48 we keep track of the RMS error, and compute the rate of 
convergence from one level to the next. The commands that generate plots of the 
data sites, interpolant and error are given on lines 49-54. 

Program 32.1. ML_CSRBF3D .m 

% ML_CSRBF3D 
% Script that performs multilevel RBF Interpolation using 
% sparse matrices 
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% Calls on: DistancMatrixCSRBF 

% Wendland C4 
1 rbf = ©(e,r) r.-6.*(35*r.-2-88*r+56*spones(r)); 

% Number of levels with epsilons for stationary interpolation 
2 K = 4; ep = 0.7*2.-[0:K-1]; 
3 testfunction = ©(x,y,z) 64*x.*(1-x).*y.*(1-y).*z.*(1-z); 
4 gridtype = 'u'; % Type of data points: 'u'=uniform 
5 neval = 10; M = neval-3; 
6 grid=linspace(0,1,neval); [xe,ye,ze]=meshgrid(grid); 
7 epoints=[xe(:) ye(:) ze(:)]; 
8 exact= testfunction(epoints(:,1),epoints(:,2),epoints(:,3)); 
9 isomin = 0.1; isomax = 1; isostep = .1; 

10 xslice = .25:.25:1; yslice = 1; zslice = [0,0.5]; 
11 Rf_old = zeros(27,1); % initialize 

12 for k=1:K 
13 Ni = c2-k+1)-3; N2 = c2-ck+1)+1)-3; 

14 name!= sprintf('Data3D_%d%s',N1,gridtype); 
15 name2 = sprintf('Data3D_%d%s',N2,gridtype); 
16 load(name2); respoints = dsites; 
17 load(name1); ctrs{k} = dsites; 

% Compute right-hand side (= residual) 
18 Tf = testfunction(dsites(:,1),dsites(:,2),dsites(:,3)); 
19 rhs = Tf - Rf _old; 
20 DM_data = DistanceMatrixCSRBF(dsites,ctrs{k},ep(k)); 
21 IM= rbf(ep(k),DM_data); 

% Compute coefficients for RBF interpolant to detail level 
22 coef{k} = IM\rhs; 
23 if (k < K) 

24 
25 
26 
27 

28 
29 

30 
31 

% Compute - for all levels - evaluation matrices for 
% residuals directly 
for j=1:k 

end 

DM_res = DistanceMatrixCSRBF(respoints,ctrs{j},ep(j)); 
RM{j} = rbf(ep(j),DM_res); 

% Evaluate RBF interpolant (sum of all previous fits 
% evaluated on current grid) 
Rf= zeros(N2,1); 
for j=1:k 

Rf = Rf + RM{j}*coef{j}; 
end 

32 Rf_old =Rf; 
33 end 
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34 DM_eval = DistanceMatrixCSRBF(epoints,ctrs{k},ep(k)); 
35 EM= rbf(ep(k),DM_eval); 
36 Pf = EM•coef{k}; 
37 if (k > 1) 

38 Pf = Pf_old + Pf; 
39 end 
40 Pf_old = Pf; 
41 maxerr = norm(Pf-exact,inf); 
42 rms_err = norm(Pf-exact)/sqrt(M); 
43 fprintf('RMS error: %e\n', rms_err) 
44 if (k > 1) 
45 rms_rate = log(rms_err_old/rms_err)/log(2); 
46 fprintf('RMS rate: %f\n', rms_rate) 
47 end 
48 rms_err_old = rms_err; 
49 figure 
50 plot3(dsites(:,1),dsites(:,2),dsites(:,3),'bo'); 
51a Plotlsosurf(xe,ye,ze,Pf,neval,exact,maxerr,isomin, ... 
5lb isostep,isomax); 
52 PlotSlices(xe,ye,ze,Pf,neval,xslice,yslice,zslice); 
53a PlotErrorSlices(xe,ye,ze,Pf,exact,neval, ... 
53b xslice,yslice,zslice); 
54 end 

In Figure 32.1 we display four data sets used in the 3D multilevel experiment. 
The corresponding 3D multilevel interpolants are shown as iso-surfaces in Fig
ure 32.2. Note that the test function J(x, y, z) = 64x(l - x)y(l - y)z(l - z) is 
a three-dimensional "bump" function, and therefore only the outermost iso-surface 
(corresponding to the function value 0.1) is visible. Therefore, we also display three
dimensional slice plots of the absolute error in Figure 32.3. Both the iso-surfaces 
and the slice plots are color coded according to the absolute error. 

In Table 32.1 we list the corresponding RMS errors and observed convergence 
rates for the 3D multilevel experiment. 

Table 32.1 3D stationary multilevel interpolation with 
<p(r) = (1 - r)~_(35r2 + 18r + 3). 

mesh RMS-error rate % nonzero time 

3x3x3 l .005315e-001 92.32 0.16 
5x5x5 2. 764907e-002 1.8623 36.99 0.56 
9x9x9 2.626864e-003 3.3958 8.88 13.45 

17x17x17 5. 706061 e-004 2.2028 1.57 73.50 
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Fig. 32.l Uniform point sets in the unit cube with 27, 125, 729, and 4913 points (top left to 
bottom right). 

Next we present a two-dimensional multilevel interpolation experiment with 
scattered data. The data were obtained in the ASCII VRML format from 
http://amba.charite.de/rvksch/spsm/beet1s.wrl.gz. The data set provides 
a digitized surface model of a bust of the famous German composer Ludwig van 
Beethoven. The original data set consists of 2663 points in the unit square. In 
order to provide a nested set of data sites for the multilevel algorithm we use the 
program Thin.m provided in Appendix C. The processed data files are included on 
the enclosed CD. The resulting point sets are displayed in Figure 32.4. A much 
more detailed discussion of thinning algorithms for scattered data is presented in 
[Iske (2004)]. The MATLAB program used to generate the multilevel interpolants 
in Figure 32.5 is essentially the same as Program 32.l. The main difference is that 
the data values are also read from the data file instead of being generated by a test 
function. For rendering purposes the interpolants are evaluated on an 80 x 80 grid 
of equally spaced points in the unit square. 
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Fig. 32.2 !so-surface plots for multilevel interpolants at levels 1, 2, 3 and 4 (top left to bottom 
right) false -colored by absolute error . 

32.3 Stationary Multilevel Approximation 

The same basic multilevel algorithm can also be used for other approximation meth
ods. In [Fasshauer (2002c)] the idea was applied to moving least squares methods 
and approximate moving least squares methods. Experiments similar to those of 
[Fasshauer (2002c)] are now repeated here. In order to be able to provide a compar
ison between the multilevel interpolation and approximation algorithms we begin 
with one more example for multilevel interpolation. 

We obtain the data for the following numerical examples by sampling a mollified 
Franke function fat uniformly spaced points in the unit square [O, 1]2, i.e., 

f(x,y) = 15exp ( 1 _(~
1_1)2 ) exp ( 1 _(~

1_1)2 ) F(x,y), 

where F denotes Franke's function (2.2). 
In Table 32.2 we list the benchmark results for multilevel RBF interpolation 

with the compactly supported function cp3, 1 (r) = (1 - r)! (4r + 1). We again use 
an initial scale factor of 0.7 for the shape parameter e:. Since the shape parameter e: 
is equal to the reciprocal of the support scale p this means that the initial support 
scale p1 is chosen so that the (univariate) basic function is fairly wide. Subsequent 
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Fig. 32.3 Slice plots of absolute errors for multilevel interpolants at levels 1, 2, 3 and 4 (top left 
to bottom right). 

support scales are successively divided by two (i.e., c is multiplied by two) - just 
as the fill distance is halved on successive computational grids Xk. 

Table 32.2 2D stationary multilevel interpolation with 
<p(r) = (1 - r)t(4r + 1) at equally spaced points in [O, 1]2. 

mesh RMS-error rate 3 nonzero time 

3x3 2.498505e-001 100 0.13 
5x5 7. 695304e-002 1.6990 57.76 0.16 
9x9 2. 092849e-002 1.8785 23.18 0.20 

17 x 17 l .145664e-003 4.1912 7.47 0.42 
33 x 33 l .376035e-004 3.0576 2.13 1.64 
65 x 65 3.303559e-005 2.0584 0.57 7.98 

129 x 129 2.149123e-006 3.9422 0.15 5.98 

In Table 32.2 we list the RMS errors computed on a 40 x 40 uniform evalua
tion grid along with the percentage of non-zero entries in the RBF interpolation 
matrix and the computer time required for each iteration. The first four multilevel 
interpolants are shown in Figure 32.6. 
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Fig. 32.4 Thinned data sets for Beethoven's head. For top left to bottom right: 163, 663, 1163, 
1663, 2163, and 2663 points. 

Fig. 32.5 Multilevel interpolants to Beethoven data. For top left to bottom right: 163, 663, 1163, 
1663, 2163, and 2663 points. 

Next we replace RBF interpolation at each step of the multilevel residual it
eration algorithm by standard moving least squares approximation. Table 32.3 
illustrates the performance of the multilevel algorithm for Shepard's method and a 
moving least squares approximation with linear precision, both based on the com
pactly supported weight function cp3 , 1 ( r) = ( 1 - r )t ( 4r + 1). The support scaling 
is the same as in the previous multilevel interpolation example. The MATLAB code 
for these examples is omitted as it is very similar to that of Program 32.l. We 
note, however, that our implementation of the linear precision variant based on 
Program 24.3 is rather inefficient when compared to the other multilevel examples 
presented here. 
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Fig. 32.6 The first four interpolants from Table 32.2. 
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There seems to be no theoretical investigation of the convergence properties of 
the multilevel algorithm for moving least squares approximation in the literature. 

Table 32.3 2D multilevel MLS approximation with cp(r) = (1 - r)t(4r + 1). 

Shepard linear precision 

mesh RMS-error rate time RMS-error rate time 

3x3 2. 776569e-001 0.16 2.812184e-001 0.91 
5x5 l.615753e-001 0.7811 0.14 l.481365e-001 0.9248 0.97 
9 x 9 7. 519432e-002 1.1035 0.19 7.015497e-002 1.0783 1.36 

17 x 17 1.858696e-002 2.0163 0.39 1. 932368e-002 1.8602 3.09 
33 x 33 3.581720e-003 2.3756 1.56 2.639418e-003 2.8721 11.45 
65 x 65 5.458943e-004 2.7140 7.67 3.426412e-004 2.9454 89.64 

129 x 129 1.04 735le-004 2.3819 0.36 3. 936786e-005 3.1216 1.17 

As a third part of this example we use approximate MLS approximation at 
each level of the residual iteration algorithm. We use the generating functions 
\J!(r) = ~(1 - r)t(4r + 1) (giving rise to an approximate partition of unity) and 
\J!(r) = 2;~271"(1- r)t(4r + 1)(14 - 55r2

) (giving rise to an approximate partition of 
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unity with one vanishing moment). Recall that we constructed these functions in 

Example 26.2 starting with the initial weight function 'ljJ0 (y) = (1 - fo): (4fo+l). 
As scale parameter we take 'D = 400 / 49. This corresponds to the same scaling as 
in the other examples since c = 1 / ( ../f5h) and the initial fill distance for the 3 x 3 
grid is h = 1/2. 

Table 32.4 Multilevel approximate MLS approximation with basic function 
1/Jo(Y) = (1 - y'y)t(4.jY + 1) and 1J = 400/49. 

basic method 1 vanishing moment 

mesh RMS-error rate time RMS-error rate time 

3x3 2.803247e-001 0.13 2. 630763e-001 0.13 
5x5 1.578062e-001 0.8289 0.16 9.133669e-002 1.5262 0.16 
9x9 7.483597e-002 1.0764 0.20 2.783120e-002 1.7145 0.22 

17 x 17 1. 784522e-002 2.0682 0.39 3.399671e-003 3.0332 0.45 
33 x 33 2.468958e-003 2.8536 1.52 4.359882e-004 2.9630 1.81 
65 x 65 3.637815e-004 2.7628 7.30 7.856778e-005 2.4723 9.05 

129 x 129 5.636161e-005 2.6903 0.39 2. 460906e-005 1.6747 0.38 

If we compare the numbers from the three different approaches listed in Ta
bles 32.2-32.4 we see that none of the approximation methods yield more accurate 
results than the interpolation method. It is surprising, however, that the approxi
mate MLS methods perform better than the regular MLS methods. For noisy data 
the approximate MLS method would be preferable. 

32.4 Multilevel Interpolation with Globally Supported RBFs 

So far we have concentrated on the use of compactly supported functions within the 
multilevel residual iteration algorithm. For globally supported functions we learned 
in earlier chapters that we can obtain good approximation order estimates in the 
non-stationary setting. One reason for our focus on compactly supported functions 
in this chapter is that if we consider the use of globally supported functions in 
a non-stationary multilevel interpolation framework, then we see that nothing is 
gained by the multilevel approach (provided we limit ourselves to the solution of 
linear problems such as the interpolation problems discussed above). 

More precisely, if the meshes Xk at the different levels are nested and the shape 
parameter c in the globally supported functions is kept fixed through all levels k, 
then the function spaces Sk = span{ cp(ll · -x]k) IJ) : x]k) E Xk} are also nested. 

Consequently, the richest space S = LJf"=i Sk, which is used when all updates have 
been performed at the finest level, is equal to the space SK on the finest mesh XK. 
Thus, a direct fit at the finest level K uses the same approximation space, and 
will therefore yield the same quality of fit, as the multilevel algorithm using all of 
the meshes Xk, k = 1, ... , K. However, the multilevel algorithm requires all the 
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additional (unnecessary) intermediate work on the coarser meshes. 
It therefore follows 

Theorem 32.1 (Rule 1). Consider a linear problem of the form Lu = f on 
n ~ IR.8

' let X1' ... 'XK be a nested sequence of point sets in n, and let <p be a 
globally supported REF with fixed shape parameter E for all k = 1, ... , K. Then the 
approximate solution UK obtained by the multilevel interpolation algorithm is the 
same as the solution of the problem Lu = f on the fixed level XK using the space 
SK, i.e., the use of globally supported RBFs with fixed value of E within a multilevel 
residual iteration algorithm for linear problems is pointless. 

Here L could even be a linear differential operator (as used in later chapters). 
However, for the present discussion of interpolation problems we are only interested 
in L =I. 

If one varies the parameter E with the levels k (i.e., one departs from the non
stationary regime) then the function spaces= u~1 sk used for the final fit with 
a multilevel algorithm will be richer than the space SK used directly for the finest 
level XK alone. This is clear since the spaces Sk, k = 1, ... , K, are no longer nested. 
This implies that, for a "good" sequence of €-values, one can expect to obtain more 
accurate fits using the multilevel framework. 

This is summarized in 

Corollary 32.1 (Rule 2). The multilevel residual iteration algorithm for linear 
problems has the potential of being more accurate than a direct fit if the parameter 
E is varied with the levels. 

We now illustrate Rules 1 and 2 with a scattered data fitting problem in IR.2 . 

We use Franke's function (2.2) on the unit square as our test function. We take the 
(radial) basic function to be a multiquadric <p(r) = vfl + (cr) 2 . The point sets Xk 
are given by (2k + 1 )2 equally spaced points in the unit square and are therefore 
nested with fill-distance hxk,n = 1/2k. 

In all of our numerical examples we list RMS-errors calculated on a fine evalu
ation mesh of 40 x 40 uniformly spaced points in the unit square. 

For the first example we fix the multiquadric shape parameter at E = 10/3 
throughout. The errors and rates in Table 32.5 indicate the well-known spectral 
convergence behavior of multiquadrics. The last row in the table also shows that the 
parameter E is too small for this point set and the matrix is so ill-conditioned that 
the approximation is starting to be contaminated by roundoff errors. According to 
Rule 1 there is no difference between using the multilevel algorithm and a direct fit 
on N points. This can also be observed numerically. 

In order to illustrate Rule 2 we repeat the above example, but now take E = 
VN /2 (essentially a stationary approach). This time we list what happens with 
the multilevel algorithm and compare this to the results obtained by computing the 
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Table 32.5 MQ fit to Franke's func
tion with fixed value of c = 10/3. 

mesh RMS-error rate 

3x3 l.802052e-001 
5x5 2. 807009e-002 2.6825 
9x9 4. 009608e-003 2.8075 

17 x 17 3.885488e-005 6.6892 
33 x 33 2.294910e-008 10.7254 
65 x 65 l.511150e-008 0.6028 
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approximation directly in one step on the sets Xk, k = 1, ... , 6 (c.f. Table 32.6). 

Table 32.6 Multilevel MQ and direct fits to Franke's function with 
variable value of c = v'N /2. 

multilevel direct 

mesh c RMS-error rate RMS-error rate 

3x3 .667 1.84 7122e-001 l.847122e-001 
5x5 .400 3.128037e-002 2.5619 3.1054lle-002 2.5724 
9x9 .222 4.288046e-003 2.8669 4. 036275e-003 2.9437 

17 x 17 .118 l.598555e-004 4.7455 1. 004206e-004 5.3289 
33 x 33 .061 l.187541e-005 3.7507 l.919679e-005 2.3871 
65 x 65 .031 1. 310485e-006 3.1798 4. 700632e-006 2.0299 

Note that, with the varying parameter c:, up to 289 points the direct approach is 
more accurate, but then the multilevel approach does a better job. This is due to the 
fact that the matrices for the denser point sets become increasingly ill-conditioned 
(even with the adjusted c:-value) and therefore the direct fits with 1089 or 4225 
points are likely to be inaccurate. With the multilevel algorithm the fits on the 
finer grids act only as "corrections" to the coarse grid fits computed earlier. This 
agrees with the philosophy of the multilevel algorithm, and here is where the richer 
function space pays off. 

Finally, it is also possible to combine the fixed level iteration of the previous 
chapter with the multilevel iteration of this chapter, i.e., we can replace the inter
polation steps in the multilevel scheme by fixed level iteration of an appropriate 
approximation method. We do not report any such experiments here. 





Chapter 33 

Adaptive Iteration 

The two adaptive algorithms discussed in this chapter were both conceived to yield 
an approximate solution to the RBF interpolation problem. However, they have 
some similarity with the least squares knot insertion algorithm of Chapter 21 as 
well as with the iterative algorithms of the previous two chapters. The contents 
of this chapter are based mostly on the papers [Faul and Powell (1999); Faul and 
Powell (2000); Schaback and Wendland (2000a); Schaback and Wendland (2000b)] 
and the book [Wendland (2005a)]. 

33.1 A Greedy Adaptive Algorithm 

We concentrate on systems for strictly positive definite functions (variations for 
strictly conditionally positive definite functions also exist). One of the central in
gredients (and main differences to the previous iterative algorithms) is the use of 
the native space inner product discussed in Chapter 13. As always, we assume that 
our data sites are X = {x1 , ... , XN }, but now we also consider a second set Y ~ X. 

If we let Pf be the interpolant to f on Y ~ X, then (! - Pf, Pf)N.:>(O) = 0 by 
Lemma 18.1 (with u = f) and we obtain the energy split (see Corollary 18.1) 

11111;.,,.<t>(O) = II! - Pf 111.:>(0) + llPf 111¢>(0)• 
One possible point of view is now to consider an iteration on residuals. To 

this end we pretend to start with our desired interpolant ro = P? on the entire 
set X, and an appropriate sequence of sets Yk, k = 0, 1, ... (we will discuss some 
possible heuristics for choosing these sets later). Then, just as in our earlier residual 
iterations, we iteratively define 

k = 0, 1, .... 

Now, the energy splitting identity with f = rk gives us 

llrkll1.:>(0) = llrk - p~k ll~rci>(O) + llP~k 111<Z>(O) 
or, using the iteration formula (33.1), 

llrk 111.z,(O) = llrk+1 ll1.z,(O) + llrk - Tk+1 ll1<Z>(O)' 
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(33.1) 

(33.2) 

(33.3) 
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Therefore, using (33.1) and (33.3), we have the following telescoping sum for the 
partial sums of the norm of the residual updates Pl,.,k 

K K 

L llP~k 1114>(0) = L llrk - rk+1 ll14>(0) 
k=O k=O 

K 

= L { llrkll14>(0) - llrk+1 ll14>(o)} 
k=O 

= llro 111<i>(O) - llrK +i 1114>(0) < llro 1114>(0) · 
This estimate shows that the sequence of partial sums is monotone increasing and 
bounded, and therefore convergent - even for a poor choice of the sets Yk. If 
we can show that the residuals Tk converge to zero, then we would have that the 
iteratively computed approximation 

K K 

UK+1 = LP~k = L (rk - rk+1) = ro - TK+l (33.4) 
k=O k=O 

converges to the original interpolant ro = Pf. 
While this residual iteration algorithm has some structural similarities with the 

fixed level algorithm of Chapter 31 we now are considering a way to efficiently 
compute the interpolant Pf on some fine set X by using an iteration on subsets of 
the data. Earlier we approximated the interpolant by iterating an approximation 
method on the full data set, whereas now we are approximating the interpolant by 
iterating an interpolation method on nested (increasing) adaptively chosen subsets 
of the data. 

The present method also has some similarities with the multilevel algorithms 
of Chapter 32. However, now we are interested in computing the interpolant Pf 
on the set X based on a single function ~' whereas earlier, our final interpolant 
was the result of using the spaces U~= 1 Nipk (n), where ~k was an appropriately 
scaled version of the basic function ~. Moreover, the goal in Chapter 32 was to 
approximate f, not Pt· 

In order to prove convergence of the residual iteration, let us assume that we 
can find sets of points Yk such that at step k at least some fixed percentage of the 
energy of the residual is picked up by its interpolant, i.e., 

(33.5) 

with some fixed/ E (0, l]. Then (33.3) and the iteration formula (33.1) imply 

llrk+1 ll14>(0) = llrk 1114>(0) - llP~k 1114>(0), 
and therefore 

llrk+1 ll14>(0) < llrk 111.z,(O) - 1llrk 111.z,(O) = (1 - 1) llrk 111.z,(O) · 
Applying this bound recursively yields 
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Theorem 33.1. 11 the choice of sets Yk satisfies (33.5}, then the residual iteration 
(33.4} converges linearly in the native space norm, and after K steps of iterative 
refinement there is an error bound 

llro - uKll1~cn) = llrKll1~cn) < (1 -1)Kllroll1~cn)· 

This theorem has various limitations. In particular, the norm involves the func
tion <I> which makes it difficult to find sets Yk that satisfy (33.5). Moreover, the 
native space norm of the initial residual r0 is not known, either. Therefore, using 
an equivalent discrete norm on the set X, Schaback and Wendland establish an 
estimate of the form 

2 c 2 C( 
2)K/2 

JJro - UK llx < --;; 1 - b C2 llro llx, 

where c and Care constants denoting the norm equivalence, i.e., 

cllullx < lluilN~(n) < Cllullx 

for any u E Nw(rl), and where bis a constant analogous to / (but based on use of 
the discrete norm II · llx in (33.5)). In fact, any discrete £p norm on X can be used. 
In the implementation below we will use the maximum norm. 

In [Schaback and Wendland (2000b)] a basic version of this algorithm - where 
the sets Yk consist of a single point - is described and tested. The resulting 
approximation yields the best K-term approximation to the interpolant. This idea 
is related to the concept of greedy approximation algorithms (see, e.g., [Temlyakov 
(1998)]) and sparse approximation (see, e.g., [Girosi (1998)]). 

If the set Yk consists of only a single point y k, then the partial interpolant P~k 
is particularly simple, namely 

with 

(3 = rk(Yk) 
if>(yk, Yk) 

This follows immediately from the usual RBF expansion (which consists of only one 
term here) and the interpolation condition P~k (y k) = rk(y k). 

The point Yk is picked to be the point in X where the residual is largest, i.e., 
lrk(Yk)I = Jirklloo· This choice of "set" Yk certainly satisfies the constraint (33.5) 
since <I> is strictly positive definite and therefore has its maximum at the origin (cf. 
Property (4) in Theorem 3.1). Moreover, the interpolation problem is (approxi
mately) solved without having to invert any linear systems. The algorithm can be 
summarized as 

Algorithm 33.1. Greedy one-point algorithm 

Input data locations X, associated values off, tolerance tol > 0 
Set initial residual ro =Pf, initialize uo = 0, e = oo, k = 0 
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Choose starting point y k E X 
While e > tol do 

end 

Set /3 = Tk (Yk) 
'P(yk, Yk) 

For 1 < i < N do 

end 

Tk+1(xi) = Tk(Xi) - /3'P(xi, Yk) 
uk+1(xi) = uk(xi) + /3'P(xi, Yk) 

Find e =max ITk+1 I and the point Yk+l where it occurs 
x 

Increment k = k + 1 

A MATLAB implementation of the greedy one-point algorithm is presented as 
Program 33.1. The implementation is quite straightforward using our function 
DistanceMatrix in conjunction with the anonymous function rbf to compute both 
'P(yk, Yk) (on lines 18 and 19) and 'P(xi, Yk) needed for the updates of the residual 
Tk+l and the approximation Uk+l on lines 21-24. The algorithm demands that 
we compute the residuals Tk on the data sites. On the other hand, the partial 
approximants Uk to the interpolant can be evaluated anywhere. If we choose to 
do this also at the data sites, then we are required to use a plotting routine that 
differs from our usual one (such as trisurf built on a triangulation of the data 
sites obtained with the help of delaunayn). We instead choose to follow the same 
procedure as in all of our other programs, i.e., to evaluate Uk on a 40 x 40 grid of 
equally spaced points. This has been implemented on lines 21-25 of the program. 
Note that the updating procedure has been vectorized in MATLAB allowing us to 
avoid the for-loop over i in the algorithm. 

It is important to realize that we never actually compute the initial residual 
To= Pf. All we require are the values of To on the grid X of data sites. However, 
since Pf Ix = fix the values To(xi) are given by the interpolation data f (xi) (see 
line 13 of the code). Moreover, since the sets Yk are subsets of X the value Tk(Yk) 
required to determine /3 is actually one of the current residual values (see line 20 of 
the code). 

The final approximation to the interpolant and the approximation error are 
plotted with the commands given on lines 36-38. The commands for the plots of 
the points Yk selected by the algorithm and the norm of the residual displayed in 
Figures 33.1 and 33.3 are included on lines 39 and 40. 

Program 33.1. RBFGreedy0nePoint2D .m 

% RBFGreedy0nePoint2D 
% Script that performs greedy one point algorithm for adaptive 
% 2D RBF interpolation 
% Calls on: DistanceMatrix 
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1 rbf = ©(e,r) exp(-(e*r).-2); !. Gaussian RBF 
2 ep = 5.5; !. Parameter for basis function 

% Define Franke's function as testfunction 

3 f1 = ©(x,y) 0.75*exp(-((9*x-2).-2+(9*y-2).-2)/4); 
4 f2 = ©(x,y) 0.75*exp(-((9*x+1).-2/49+(9*y+1).-2/10)); 
5 f3 = ©(x,y) 0.5*exp(-((9*x-7).-2+(9*y-3).-2)/4); 

6 f4 = ©(x,y) 0.2*exp(-((9*x-4).-2+(9*y-7).-2)); 

7 testfunction = ©(x,y) f1(x,y)+f2(x,y)+f3(x,y)-f4(x,y); 

% Number and type of data points 

8 N = 16641; gridtype = 'h'; 

9 neval = 40; grid= linspace(0,1,neval); 

10 [xe,ye] = meshgrid(grid); epoints = [xe(:) ye(:)]; 

!. Tolerance; stopping criterion 
11 tol = 1e-5; kmax = 1000; 

% Load data points 
12 name= sprintf('Data2D_%d/.s',N,gridtype); load(name) 

!. Initialize residual and fit 

13 r_old = testfunction(dsites(:,1),dsites(:,2)); 

14 u_old = O; 

15 k = 1; maxres(k) = 999999; 
!. Use an (arbitrary) initial point 

16 ykidx = (N+1)/2; yk(k,:) = dsites(ykidx,:); 

17 while (maxres(k) > tol && k < kmax) 

!. Evaluate basis function at yk 
18 DM_data = DistanceMatrix (yk (k, : ) , yk (k, : ) ) ; 

19 IM= rbf(ep,DM_data); 

20 beta = r_old(ykidx)/IM; 

!. Compute evaluation matrices for residual and fit 

21 DM_res = DistanceMatrix(dsites,yk(k,:)); 
22 RM= rbf(ep,DM_res); 

23 DM_eval = DistanceMatrix(epoints,yk(k,:)); 

24 EM= rbf(ep,DM_eval); 

% Update residual and fit 

25 r = r_old - beta*RM; u = u_old + beta*EM; 

% Find new point to add 

26 [sr,idx] = sort(abs(r)); 

27 maxres(k+1) = sr(end); 

28 ykidx = idx(end); yk(k+1,:) = dsites(ykidx,:); 

29 

30 

31 end 

r_old = r; 

k = k + 1; 

u_old = u; 

% Compute exact solution 

295 
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32 exact = tes.tfunction(epoints (:, l), epoints (:, 2)); 
33 maxerr = norm(u-exact,inf); rms_err = norm(u-exact)/neval; 
34 fprintf('RMS error: %e\n', rms_err) 
35 fprintf('Maximum error: %e\n', maxerr) 
36 fview = [160,20]; % viewing angles for plot 
37 PlotSurf(xe,ye,u,neval,exact,maxerr,fview); 
38 PlotError2D(xe,ye,u,exact,maxerr,neval,fview); 
39 figure; plot(yk(:,l),yk(:,2),'ro') 
40 figure; semilogy(maxres,'b'); 

To illustrate the greedy one-point algorithm we perform two experiments. Both 
tests use data obtained by sampling Franke's function at 16641 Halton points in 
(0, 1] 2 . However, the first test is based on Gaussians, while the second one uses 
inverse multiquadrics. For both tests we use the same shape parameter c = 5.5. 
This results in the inverse multiquadrics having a more global influence than the 
Gaussians. This effect is clearly evident in the first few approximations to the 
interpolants in Figures 33.2 and 33.4. 

Figure 33.4, in particular, shows that the greedy algorithm enforces interpolation 
of the data only on the most recent set Yk (i.e., for the one-point algorithm studied 
here only at a single point). If one wants to maintain the interpolation achieved in 
previous iterations, then the sets Yk should be nested. This, however, would have a 
significant effect on the execution time of the algorithm since the matrices at each 
step would increase in size. 
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Fig. 33.1 1000 selected points and residual for greedy one point algorithm with Gaussian RBFs 
and N = 16641 data points. 

In order to obtain our approximate interpolants we used a tolerance of 10-5 

along with an additional upper limit of kmax=1000 on the number of iterations. For 
both tests the algorithm uses up all 1000 iterations. The final maximum residual 
for Gaussians is maxres = 0.0075, while for inverse MQs we have maxres = 0.0035. 
In both cases there occurred several multiple point selections. Contrary to interpo-
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Fig. 33.2 Fits of Franke's function for greedy one point algorithm with Gaussian RBFs and 
N = 16641 data points. Top left to bottom right: 1 point, 2 points, 4 points, final fit with 1000 
points. 

lation problems based on the solution of a linear system, multiple point selections 
do not pose a problem here. 

One advantage of this very simple algorithm is that no linear systems need to be 
solved. This allows us to approximate the interpolants for large data sets even for 
globally supported basis functions, and also with small values of c (and therefore an 
associated ill-conditioned interpolation matrix). One should not expect too much 
in this case, however, as the results in Figure 33.5 show where we used a value of 
c = 0.1 for the shape parameter. As with the fixed level iteration of approximate 
MLS approximants based on flat generating functions, a lot of smoothing occurs so 
that the convergence to the RBF interpolant is very slow. 

Moreover, in the pseudo-code of the algorithm matrix-vector multiplications are 
not required, either. However, MATLAB allows for a vectorization of the for-loop 
which does result in two matrix-vector multiplications. 

For practical situations, e.g., for smooth radial basis functions and densely dis
tributed points in X the convergence can be rather slow. The simple greedy algo
rithm described above is extended in [Schaback and Wendland (2000b )] to a version 
that adaptively uses basis functions of varying scales. 
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Fig. 33.3 1000 selected points and residual for greedy one point algorithm with IMQ RBFs and 
N = 16641 data points. 

33.2 The Faul-Powell Algori thrn 

Another iterative algorithm was suggested in [Faul and Powell (1999); Faul and 
Powell (2000)]. From our earlier discussions we know that it is possible to express 
the radial basis function interpolant in terms of cardinal functions uj, j = 1, ... , N, 
i.e., 

N 

P1(x) = L f(xJ)uj(x). 
j=l 

The basic idea of the Faul-Powell algorithm is to use approximate cardinal functions 
W j instead. Of course, this will only give an approximate value for the interpolant, 
and therefore an iteration on the residuals is suggested to improve the accuracy of 
this approximation. 

The basic philosophy of this algorithm is very similar to that of the fixed level 
iteration of Chapter 31. In particular, the Faul-Powell algorithm can also be inter
preted as a Krylov subspace method. However, instead of taking approximate MLS 
generating functions, the approximate cardinal functions Wj, j = 1, ... , N, are de
termined as linear combinations of the basis functions <I>(·, Xf) for the interpolant, 
i.e., 

Wj = L bjf<l>(·, Xf), (33.6) 
fE.Cj 

where Lj is an index set consisting of n (n ~ 50) indices that are used to determine 
the approximate cardinal function. For example, then nearest neighbors of Xj will 
usually do. In general, the choice of index sets allows much freedom, and this is the 
reason why we include the algorithm in this chapter on adaptive iterative methods. 
Also, as pointed out at the end of this section, there is a certain duality between 
the Faul-Powell algorithm and the greedy algorithm of the previous section. 
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Fig. 33.4 Fits of Franke's function for greedy one point algorithm with IMQ RBFs and N = 16641 
data points. Top left to bottom right: 1 point, 2 points, 4 points, final fit with 1000 points. 

For every j = 1, ... , N, the coefficients bjt are found as solution of the (relatively 
small) n x n linear system 

(33.7) 

These approximate cardinal functions are computed in a pre-processing step. 
As before, in its simplest form the residual iteration can be formulated as 

N 

u(O)(x) = L f(xJ)-WJ(x) 
j=l 

N 

u(k+l)(x) = u(k)(x) + L [f(xJ) - u(k)(xJ)] 'llJ(x), 
j=l 

k = 0, 1, .... 

Instead of adding the contribution of all approximate cardinal functions at the 
same time, this is done in a three-step process in the Faul-Powell algorithm. To this 
end, we choose index sets £j, j = 1, ... , N-n, such that £,J ~ {j,j+l, ... , N} while 
making sure that j E £,J. Also, if one wants to use this algorithm to approximate 
the interpolant based on conditionally positive definite functions of order m, then 
one needs to ensure that the corresponding centers form an (m - 1)-unisolvent set 
and append a polynomial to the local expansion (33.6). 
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Fig. 33.5 1000 selected points (only 20 of them distinct) and fit of Franke's function for greedy 
one point algorithm with flat Gaussian RBFs (e = 0.1) and N = 16641 data points. 

Now, in the first step we define Ubk) = uCk), and then iterate 

(k) _ (k) + ()(k) ffr. 
uj - uj-1 j "¥3, j = l, ... ,N-n, (33.8) 

with 

( 
(k) ) 

()~k) = P1 -uj-1' Wj N<t>(n) 
1 (wJ, wJ)N<t>(n) · 

(33.9) 

The stepsize OJk) is chosen so that the native space best approximation to the 

residual P1 - u)kJ.1 from the space spanned by the approximate cardinal functions 
W j is added. Using the representation (33.6) of \JI J in terms of the global basis 
{<I> ( ·, Xi) : i = 1, ... , N}, the reproducing kernel property of <I>, and the (local) 
cardinality property (33.7) of Wj we can calculate the denominator of (33.9) as 

(wJ, WJ)N<Z>(n) = (wJ, L bJe<I>(·,xe))N<t>(n) 
iECi 

= L bje(WJ,<I>(·,xe))N<t>(n) 
lECi 

= L bjeWJ(xe) = bjj 
lECi 

since we have j E Lj by construction of the index set Lj. Similarly, we get for the 
numerator 

(Pf - u)kJ.1, W j )N<t>(n) = (Pf - u)kJ.1, L bje<P( ·, xe) )N<1> (O) 
iECi 

= L bJe(P1-u)kJ.1,<P(·,xe))N<1>(0) 
lECi 

= L bjl (P J - u)kJ.1) (xg) 
lECj 
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= L bje (!(xe) - u)kJ.1 (xe)) . 
eE.Cj 

Therefore (33.8) and (33.9) can be written as 

(k) (k) w j ~ ( (k) ) uj = uj-l + ~ ~ bje f (xe) - uj-l (xe) , 
JJ eE.Cj 

j = 1, ... ,N-n. 

In the second step of the Faul-Powell algorithm the residual is interpolated on 
the remaining n points (collected via the index set £*). Thus, we find a function 
vCk) in span{<I>(·, Xj): j E £*}such that 

v(k)(xi) = J(xi) - u~~n(xi), i E £*, 

and the approximation is updated, i.e., 

u<k+l) = u~~n + v(k). 

In the third step the residuals are updated, i.e., 

r~k+l) = J(xi) - uCk+l) (xi), i = 1, ... , N. (33.10) 

The outer iteration (on k) is now repeated unless the largest of these residuals is 
small enough. 

We can summarize this algorithm as 

Algorithm 33.2. Faul-Powell algorithm 

Input data locations X = {x1 , ... , XN }, associated values off, and tolerance 
tol > 0 
Pre-processing step 

Choose n 

For 1 ::; j < N - n do 

Determine the index set Cj 
Find the coefficients bje of the approximate cardinal function w j by 
solving 

end 

Set k = 0 and u~k) = 0 

Initialize residuals r~k) = f(xi), i = 1, ... , N 

Set e = . max lr~k) I 
i=l, ... ,N 

While e > tol do 

For 1 ::; j < N - n do 

Update 

i E £· J 

(k) (k) w j ~ ( ( ) (k) ( )) uj = uj-l + ~ ~ bje f xe - uj-l xe 
JJ eE.Cj 
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end 
Solve the interpolation problem 

v(k)(xi) = f(xi) - u~~n(xi), 

Update the approximation 

(k+l) - (k) + (k) 
Uo - UN-n v 

i E .C* 

Compute new residuals r~k+l) = f (xi) - u6k+l) (xi), i = 1, ... , N 

Set new value for e = . max lr~k+l) I 
i=l, ... ,N 

Increment k = k + 1 

Faul and Powell prove that this algorithm converges to the solution of the original 
interpolation problem. Similar to some of the other algorithms, one needs to make 
sure that the residuals are evaluated efficiently by using, e.g., a fast multipole 
expansion, fast Fourier transform, or compactly supported functions. 

In its most basic form the Krylov subspace algorithm of Faul and Powell can 
also be explained as a dual approach to the greedy residual iteration algorithm of 
Schaback and Wendland. Instead of defining appropriate sets of points Yk, in the 
Faul and Powell algorithm one picks certain subspaces Uk of the native space. In 
particular, if Uk is the one-dimensional space Uk = span{wk} (where Wk is a local 
approximation to the cardinal function) we get the algorithm described above. For 
more details see [Schaback and Wendland (2000b)]. 

We leave the implementation of this algorithm to the reader. 



Chapter 34 

Improving the Condition Number of the 
Interpolation Matrix 

In Chapter 16 we noted that the system matrices arising in scattered data interpola
tion with radial basis functions tend to become very ill-conditioned as the minimal 
separation distance qx between the data sites x 1 , ... , XN, is reduced. Therefore it 
is natural to devise strategies to prevent such instabilities by either preconditioning 
the system, or by finding a better basis for the approximation space we are using. 
The former approach is standard procedur'e in numerical linear algebra, and in fact 
we can use any of the well-established methods (such as preconditioned conjugate 
gradient iteration) to improve the stability and convergence of the interpolation 
systems that arise for strictly positive definite functions. In particular, the sparse 
systems that arise in (multilevel) interpolation with compactly supported radial 
basis functions can be solved efficiently with the preconditioned conjugate gradi
ent method. However, in our implementation (see the discussion in Section 12.1) 
we use MATLAB's sparse function which takes advantage of state-of-the-art direct 
methods for sparse linear systems. 

The second approach to improving the condition number of the interpolation 
system, i.e., the idea of using a more stable basis, is well known from univariate 
polynomial and spline interpolation. The Lagrange basis functions for univariate 
polynomial interpolation are the ideal basis if we are interested in stably solving 
the interpolation equations since the resulting interpolation matrix is the identity 
matrix (which is certainly much better conditioned than, e.g., the Vandermonde 
matrix that we get if we use a monomial basis). Similarly, B-splines give rise to 
diagonally dominant, sparse system matrices whi~h are much easier to deal with 
than the matrices we would get if we were to represent a spline interpolant using 
the alternative truncated power basis. Both of these examples are studied in great 
detail in standard numerical analysis texts (see, e.g., [Kincaid and Cheney (2002)]) 
or in the literature on splines (see, e.g., [Schumaker (1981)]). We will address an 
analogous approach for radial basis functions in Section 34.4 below. 

Before we describe any of the specialized preconditioning procedures for radial 
basis function interpolation matrices we give two examples presented in the early 
RBF paper [Jackson (1989a)] to illustrate the effects of and motivation for precon
ditioning in the context of radial basis functions. 

303 
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34.1 Preconditioning: Two Simple Examples 

Example 34.1. Let s = 1 and consider interpolation based on <p(r) = r with no 
polynomial terms added. As data sites we choose X = {1, 2, ... , 10}. This leads to 
the system matrix 

0123 ... 9 
1012 ... 8 
2101 ... 7 

A= 3210 ... 6 

9876 ... o 
with .€2-condition number cond(A) ~ 67. Instead of solving the linear system Ac= 
y, where y = [yi, ... ,y10]T E IR10 is a vector of given real numbers (data values), 
we can find a suitable matrix B to pre-multiply both sides of the equation such 
that the system is simpler to solve. Ideally, the new system matrix BA should be 
the identity matrix, i.e., B should be an approximate inverse of A. Thus, having 
found an appropriate matrix B, we must now solve the linear system BAc = By. 
The matrix B is usually referred to as the preconditioner of the linear system. For 
the matrix A above we can choose a preconditioner B as 

1 0 0 0 0 0 
.!. -1 1 0 0 0 2 2 ... 
0 1 -1 1 0 0 2 2 ... 

B= 0 0 1 
2 -1 ... 0 0 

0 0 0 0 ... -1 ~ 
0 0 0 0 ... 0 1 

This leads to the following preconditioned system matrix 

012 ... 89 
010 ... 00 
001 ... 00 

BA= 

000 ... 10 
987 ... 10 

in the system BAc = By. Note that BA is almost an identity matrix. One can 
easily check that now cond(BA) ~ 45. 

The motivation for this choice of B is the following. The function <p( r) = r 

or cI>(x) = lxl is a fundamental solution of the Laplacian ~ ( = d~2 in the one
dimensional case), i.e. 

d2 1 
~cI>(x) = dx2 lxl = 28o(x), 
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where 80 is the Dirac delta function centered at zero. Thus, B is chosen as a 
discretization of the Laplacian with special choices at the endpoints of the data set. 

Example 34.2. For non-uniformly distributed data we can use a different dis
cretization of the Laplacian ~ for each row of B. To see this, let s = 1, 
X = {1, ~' ~' 4, ~ }, and again consider interpolation with the radial function 
cp(r) = r. Then 

A= 

7 
2 

with cond(A) ~ 18.15, and if we choose 

1 0 0 0 0 
1 _;! 1 0 0 2 2 

B= 0 1 5 1 0 2 -6 3 

0 0 1 -~1 3 
0 0 0 0 1 

based on second-order backward differences of the points in X, then the precondi
tioned system to be solved becomes 

0 l ;! 3 1 
2 2 2 

0 1 0 0 0 

0 0 1 0 0 c =By. 

0 0 0 1 0 

1 3 2 l 0 
2 2 

Once more, this system is almost trivial to solve and has an improved condition 
number of cond(BA) ~ 8.94. 

34.2 Early Preconditioners 

Ill-conditioning of the interpolation matrices was identified as a serious problem 
very early, and Nira Dyn along with some of her co-workers (see, e.g., [Dyn (1987); 
Dyn (1989); Dyn and Levin (1983); Dyn et al. (1986)]) provided some of the first 
preconditioning strategies tailored especially to radial basis function interpolants. 

For the following discussion we consider the general interpolation problem that 
includes polynomial reproduction (see Chapter 6). Therefore, we have to solve the 
following system of linear equations 

(34.1) 
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with the individual pieces given by Ajk = cp(llxJ - xkll), j, k = 1, ... , N, Pje = 
Pe(xJ), j = 1, ... ,N, f = 1, ... , M, c = [c1, ... ,cN]T, d = [d1, ... ,dMJT, y = 
[yi, ... , YNJT, 0 an M x M zero matrix, and 0 a zero vector of length M with 
M = dim H:n_ 1 . Here, as discussed earlier, 1p should be strictly conditionally 
positive definite of order m and radial on Rs and the set X = { x 1, ... , x N} should 
be (m - 1)-unisolvent. 

The preconditioning scheme proposed by Dyn and her co-workers is a general
ization of the simple differencing scheme discussed above. It is motivated by the 
fact that the polyharmonic splines (i.e., thin plate splines and radial powers) 

{ 

2k-s · (r) = r 10g r, s even, 
<p r 2k-s s odd 

' ' 

2k > s, are fundamental solutions of the k-th iterated Laplacian in Rs, i.e. 

where 80 is the Dirac delta function centered at the origin, and c is an appropriate 
constant. 

For the (inverse) multiquadrics r.p(r) = (1 +r2 )±_112 , which are also discussed in 
the papers mentioned above, application of the Laplacian yields a similar limiting 
behavior, i.e. 

lim .6.kcp(r) = 0, 
r-+oo 

and for r -t 0 

One now wants to discretize the Laplacian on the (irregular) mesh given by the 
(scattered) data sites in X. To this end the authors of [Dyn et al. (1986)] suggest 
the following procedure for the case of scattered data interpolation over JR2 . 

(1) Start with a triangulation of the set X, e.g., the will do. This triangulation 
can be visualized as follows. 

(a) Begin with the points in X and construct their or Voronoi diagram. The 
Dirichlet tile of a particular point xis that subset of points in JR2 which are 
closer to x than to any other point in X. The dashed lines in Figure 34.1 
denote the Dirichlet tesselation for the set of 25 Halton points (circles) in 
[O, 1]2. 

(b) Construct the Delaunay triangulation, which is the dual of the Dirichlet 
tesselation, i.e., connect all strong neighbors in the Dirichlet tesselation, 
i.e., points whose tiles share a common edge. The solid lines in Figure 34.1 
denote the corresponding Delaunay triangulation of the 25 Halton points. 
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Fig. 34.1 Dirichlet tesselation (dashed lines) and corresponding Delaunay triangulation (solid 
lines) of 25 Halton points (circles). 

(2) Discretize the Laplacian on this triangulation. In order to also take into account 
the boundary points Dyn, Levin and Rippa instead use a discretization of an 
iterated Green's formula which has the space II~_ 1 as its null space. The 
necessary partial derivatives are then approximated on the triangulation using 
certain sets of vertices of the triangulation. (three points for first order partials, 
six for second order). 

Figure 34.l was created in ~ATLAB using the commands 

load('Data2D_25h') 
tes = delaunayn(dsites); 
triplot(tes,dsites(:,1),dsites(:,2),'k-') 
hold on 
[vx, vy] = voronoi(dsites(:,1),dsites(:,2),tes); 
plot(dsites(:,1),dsites(:,2),'ko',vx,vy,'k--') 
axis ( [O 1 0 1] ) 

As in our other MATLAB examples, the file Data2D-25h contains the coordinates 
of the 25 Halton points in the array dsi tes. 

The discretization described above yields the matrix B = (bji)f,i=l as the pre
conditioning matrix in a way analogous to the previous section. We now obtain 

N 

(BA)jk = L bji'P(llxi - Xk II) ~ _o.mcp(ll · -Xk ll)(xj ), j, k = 1, ... , N. (34.2) 
i=l 

This matrix has the property that the entries close to the diagonal are large com
pared to those away from the diagonal, which decay to zero as the distance between 
the two points involved goes to infinity. Since the construction of B (in step 2 above) 
ensures that part of the preconditioned block matrix vanishes, namely BP = 0, 
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one must now solve the non-square system 

Actually, the top part of the system, the square system BAc = By, is singular, 
but it is shown in the paper [Dyn et al. (1986)] that the additional constraints 
pT c = 0 guarantee existence of a unique solution. Furthermore, the coefficients d 
in the original expansion of the interpolant Pf can be obtained by solving 

Pd= y-Ac, 

i.e., by fitting the polynomial part of the expansion to the residual y - Ac. 
The approach just described leads to localized basis functions W that are linear 

combinations of the original basis functions <.p. More precisely, 

N 

W1(x) = Lbii1P(llx - Xiii)~ ~m<p(ll · -x1ll)(x), (34.3) 
i=l 

where the coefficients bji are determined via the discretization described above. 
The localized basis functions w1 , j = 1, ... , N, (see (34.3)) can be viewed as an 

alternative (better conditioned) basis for the approximation space spanned by the 
functions if.>1 = rp(ll · -x1ll). We will come back to this idea in Section 34.4. 

In [Dyn et al. (1986)] the authors describe how the preconditioned matrices can 
be used efficiently in conjunction with various iterative schemes such as Chebyshev 
iteration or a version of the conjugate gradient method. The authors also men
tion smoothing of noisy data, or low-pass filtering as other applications for this 
preconditioning scheme. 

The effectiveness of the above preconditioning strategy was illustrated with some 
numerical examples in [Dyn et al. (1986)]. We list some of their results in Table 34.1. 
Thin plate splines and multiquadrics were tested on two different data sets (grid 
I and grid II) in IR2 . The shape parameter c for the multiquadrics was chosen to 
be the reciprocal of the average mesh size. A linear term was added for thin plate 
splines, and a constant for multiquadrics. 

Table 34.1 Condition numbers without and with preconditioning. 

<p N grid I orig. grid I precond. grid II orig. grid II precond. 

TPS 49 1181 4.3 1885 3.4 
121 6764 5.1 12633 3.9 

MQ 49 7274 69.2 17059 222.8 
121 10556 126.0 107333 576.0 

One can see that the most dramatic improvement is achieved for thin plate 
splines. This is to be expected since the method described above is tailored to these 
functions. As noted earlier, for multiquadrics an application of the Laplacian does 
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not yield the delta function, but for values of r close to zero gives just relatively 
large values. 

Another early preconditioning strategy was suggested in [Powell (1994a)]. Powell 
uses Householder transformations to convert the matrix of the interpolation system 
(34.1) to a symmetric positive definite matrix, and then uses the conjugate gradient 
method. However, Powell reports that this method is not particularly effective for 
large thin plate spline interpolation problems in IR2 . 

In [Baxter (1992a); Baxter (2002)] preconditioned conjugate gradient methods 
for solving the interpolation problem are discussed in the case when Gaussians 
or multiquadrics are used on a regular grid. The resulting matrices are Toeplitz 
matrices, and a large body of literature exists for dealing with matrices having this 
special structure (see, e.g., [Chan and Strang (1989)]). 

34.3 Preconditioned GMRES via Approximate Cardinal Functions 

More recently, Beatson, Cherrie and Mouat [Beatson et al. (1999)] proposed a pre
conditioner for the iterative solution of radial basis function interpolation systems 
in conjunction with the GMRES method of [Saad and Schultz (1986)]. The GMRES 
method is a general purpose iterative solver that can be applied to nonsymmetric 
(nondefinite) systems. For fast convergence the matrix should be preconditioned 
such that its eigenvalues are clustered around one and away from the origin. Obvi
ously, if the basis functions for the radial basis function space were cardinal func
tions, then the matrix would be the identity matrix with all its eigenvalues equal 
to one. Therefore, the GMRES method would converge in a single iteration. Con
sequently, the preconditioning strategy employed by the authors of [Beatson et al. 
(1999)] for the GMRES method is to obtain a preconditioning matrix B that is 
close to the inverse of A. 

Since it is too expensive to find the true cardinal basis (this would involve 
at least as much work as solving the interpolation problem), the idea pursued 
in [Beatson et al. (1999)] (and suggested earlier in [Beatson et al. (1996); 
Beatson and Powell ( 1993)]) is to find approximate cardinal functions similar to 
the functions Wj in the previous subsection. Now, however, there is also an em
phasis on efficiency, i.e., we are interested in local approximate cardinal functions, 
if possible ( c.f. also the use of approximate cardinal functions in the Faul-Powell 
algorithm of Section 33.2). Several different strategies for the construction of these 
approximate cardinal functions were suggested in [Beatson et al. (1999)]. We will 
now explain the basic idea. 

Given the centers x 1 , ... , x N for the basis functions in the RBF interpolant 

N 

P1(x) = L CJ'P(JJx - Xj), 
j=l 

the j-th approximate cardinal function is given as a linear combination of the basis 
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functions <I>i = cp(\\ ·-xi\\), where i runs over (some subset of) {1, ... , N}, i.e., 

N 

\lli = L biicp(I\ · -xd\) +Pi· (34.4) 
i=l 

Here Pi is a polynomial in Il~-l that is used only in the conditionally positive 
definite case, and the coefficients bii satisfy the usual conditions 

N 

L biiPi(xi) = 0 for all Pi E rr:n-1 · (34.5) 
i=l 

The key feature in designing the approximate cardinal functions is to have only 
a few n << N coefficients in (34.4) to be nonzero. In that case the functions \lf i 
are found by solving small n x n linear systems, which is much more efficient than 
dealing with the original N x N system. For example, in [Beatson et al. (1999)] 
the authors use n ~ 50 for problems involving up to 10000 centers. The resulting 
preconditioned system is of the same form as the earlier preconditioner (34.2), i.e., 
we now have to solve the preconditioned problem 

(BA)c =By, 

where the entries of the matrix BA are just wi(xk), j, k = 1, ... , N. 
The simplest strategy for determining the coefficients bii is to select the n nearest 

neighbors of xi, and to find bii by solving the (local) cardinal interpolation problem 

i = 1, ... ,n, 

subject to the moment constraint (34.5) listed above. Here 8ii is the Kronecker
delta, so that \lf i is one at xi and zero at all of the neighboring centers Xi· 

This basic strategy is improved by adding so-called special points that are dis
tributed (very sparsely) throughout the domain (for example near corners of the 
domain, or at other significant locations). 

A few numerical results for thin plate spline and multiquadric interpolation in 
IR2 from [Beatson et al. (1999)] are listed in Table 34.2. The condition numbers are 
€2-condition numbers, and the points were randomly distributed in the unit square. 
The "local precond." column uses the n = 50 nearest neighbors to determine the 
approximate cardinal functions, whereas the right-most column uses the 41 nearest 
neighbors plus nine special points placed uniformly in the unit square. The effect 
of the preconditioning on the performance of the GMRES algorithm is, e.g., a 
reduction from 103 to 8 iterations for the 289 point data set for thin plate splines, 
or from 145 iterations to 11 for multiquadrics. 

An extension of the ideas of [Beatson et al. (1999)] to linear systems arising 
in the collocation solution of partial differential equations (see Chapter 38) was 
explored in Mouat's Ph.D. thesis [Mouat (2001)] and also in the recent paper [Ling 
and Kansa (2005)]. 
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Table 34.2 Condition numbers without and with preconditioning. 

<.p N unprecond. local precond. local precond. w /special 

TPS 289 4.005e+006 l.464e+003 5.721e+ooo 
1089 2.753e+008 6.359e+005 l.818e+002 
4225 2.605e+009 2.381e+006 1.040e+006 

MQ 289 1.506e+008 3.185e+003 2.639e+002 
1089 2.154e+009 8.125e+005 5.234e+004 
4225 3.734e+010 1.390e+007 4.071e+004 

34.4 Change of Basis 

As pointed out at the beginning of this chapter, another approach to obtaining a 
better conditioned interpolation system is to work with a different basis for the 
approximation space. While this idea is implicitly addressed in the preconditioning 
strategies discussed above, we will now make it our primary goal to find a better 
conditioned basis for the RBF approximation space. Univariate piecewise linear 
splines and natural cubic splines can be interpreted as radial basis functions, and 
we know that B-splines form stable bases for those spaces. Therefore, it should be 
possible to generalize this idea for other RBFs. 

The process of finding a "better" basis for conditionally positive definite radial 
basis functions is closely connected to finding the reproducing kernel of the associ
ated native space. Since we did not elaborate on the construction of native spaces 
for conditionally positive definite functions earlier, we will now present the relevant 
formulas without going into any further details. In particular, for polyharmonic 
splines we will be able to find a basis that is in a certain sense homogeneous, and 
therefore the condition number of the related interpolation matrix will depend only 
on the number N of data points, but not on their separation distance ( c.f. the 
discussion in Chapter 16). This approach was suggested by Beatson, Light and 
Billings [Beatson et al. (2000)], and has its roots in [Sibson and Stone (1991)]. 

Let <I> be a strictly conditionally positive definite kernel of order m, and 
x = {x1, ... ,xN} c n c JRS be an (m -1)-unisolvent set of centers. Then the 
reproducing kernel for the native space N<I> (D) is given by 

M M 

K(x, y) = <I>(x, y) - LPk(x)<I>(xk, y) - LPe(y)<I>(x, xe) 
k=l £=1 

M M M 

+ L LPk(x)pe(y)<I>(xk, xe) + LPe(x)pe(y), (34.6) 
k=ll=l £=1 

where the points {x1 , ... , XM} comprise an (m-1)-unisolvent subset of X and the 
polynomials Pk, k = 1, ... , M, form a cardinal basis for n:n,_1 on this subset whose 
d. · · M (s+rn-1) · ImenSIOn IS = rn- l , i.e., 

k,l!=l, ... ,M. 
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This formulation of the reproducing kernel for the conditionally positive definite 
case also appears in the statistics literature in the context of kriging (see, e.g., 
[Berlinet and Thomas-Agnan (2004)]). In that context the kernel K is a covariance 
kernel associated with the generalized covariance <I>. These two kernels give rise to 
the kriging equations and dual kriging equations, respectively. 

An immediate consequence of having found the reproducing kernel K is that we 
can express the radial basis function interpolant to values of some function f given 
on X in the form 

N 

P1(x) = L CjK(x, Xj), x E IRS. 

j=l 

Note that the kernel K used here is a strictly positive definite kernel (since it is 
a reproducing kernel) with built-in polynomial precision. The coefficients Cj are 
determined by satisfying the interpolation conditions 

i = 1, ... ,N. 

We will see below (in Tables 34.3 and 34.4) that this basis already performs "better" 
(i.e., is better conditioned) than the standard basis {<I>(·,x1), ... ,<I>(·,xN)} if we 
keep the number of centers fixed, and vary only their separation distance. 

To obtain the homogeneous basis referred to above we modify K by subtracting 
the tensor product polynomial, i.e., 

M 

K(x, y) = K(x, y) - LPt(x)pe(y). 
l=l 

Now, if y denotes any one of the points x1, ... , XM in the (m-1)-unisolvent subset 
of X used in the construction of K above, then we have 

M M 

K(·,y) = <I>(·,y)- LPk(·)<I>(xk,y)- LPt(Y)<I>(·,xe) 
k=l 

MM 

+ L LPk(·)pe(y)<I>(xk, xe) 
k=ll=l 

M M 

= cl>(·,y)- LPk(·)<I>(xk,y)-<I>(·,y) + LPk(·)<I>(xk,y) = 0 
k=l k=l 

since the polynomials Pk are cardinal on x1, ... , XM, i.e., only one of the Pk(Y) will 
"survive". 

This means that the functions K ( ·, x j), j = 1, ... , N, cannot be used as a basis 
of our approximation space. Instead we need to remove the points used to define 
the cardinal polynomials above from the set of centers used for K. Once we do this 
it turns out that the matrix C with entries Ci,j = K(xi, Xj), i,j = M + 1, ... , N, is 
positive definite, and therefore we obtain the following basis 

{p1, ···,PM} U {K(·, XM+1), ... , K(·, XN)} 
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for the space span{<!>(-, x1), ... , <!>(·, XN )}. Therefore the interpolant can be repre
sented in the form 

M N 

P1(x)=LdJPJ(x)+ L CkK(x,xk), xEIR8
• (34.7) 

j=l k=M+l 
The coefficients are determined as usual by enforcing the interpolation condi-
tions P1(xi) = f(xi), i = 1, ... , N. Since the polynomials PJ are cardinal on 
{ x 1, ... , x M} and K was shown to be zero if centered at these points, this leads to 
the following linear system 

[ :T ~ l [ ~ l = [ ~:] , 
(34.8) 

with I an M x M identity matrix, 0 an M x (N - M) zero matrix, C as 
above, Pij = PJ(xi), j = 1, ... , M, i = M + 1, ... , N, c = [cM+1, ... , cNJI', 
d = [d1, ... , dM]I', and the right-hand side vectors Yp = [f(x1), ... , f(xM )]I' and 
y /{, = [! ( x M + 1 ), ... , f ( x N)] T. The identity block (cardinality of the polynomial 
basis functions) implies that the coefficient vector d is given by 

dJ = f (xJ ), j = 1, ... , M, 
and therefore the system (34.8) can be solved as 

Cc= YK - pT d. (34.9) 

As mentioned above, one can show that the matrix C is symmetric and positive 
definite. 

Most importantly, for polyharmonic splines, the £2-condition number of the ma
trix C is invariant under a uniform scaling of the centers, i.e., if Ch= (K(hxi, hxJ)), 
then 

cond( Ch) = cond( C). 
This is proved to varying degrees of detail in the papers [Beatson et al. (2000); 
Iske (2003a)] and the book [Wendland (2005a)]. 

Example 34.3. The simplest example is given by the polyharmonic spline cp(r) = r. 
In this case M = 1 so that the only polynomial term is given by the constant p - 1. 
For simplicity we use the origin as a special point. Using these conventions we have 
the following three representations of the various kernels: 

cI>(x, y) = llx - Yll, 
K(x, y) = llx - Yll - llYll - llxll + 1, 

K(x,y) = llx -yll - llYll - llxll-
Note that in this case the condition number of the matrix C associated with the 
kernel K is clearly invariant under uniform scaling of the problem. However, the 
matrix A associated with the basic norm RBF <P enjoys the same invariance. It 
is only when we add the polynomial blocks P and pT to ensure reproduction of 
constants that the condition number of the resulting block matrix will vary greatly 
with the problem scaling. A similar dependence of the condition number of the 
system matrix on the scaling is associated with the kernel K. 
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34.5 Effect of the "Better" Basis on the Condition Number of the 
Interpolation Matrix 

We reproduce some numerical experiments from [Beatson et al. (2000)) based on 
the use of thin plate splines in IR2 . We compute the £2-condition numbers of the 
interpolation matrix for the three different approaches mentioned above, i.e., using 
the standard basis consisting of functions <I>(·, XJ) and monomials (obtained with 
the MATLAB program RBFinterpolation2Dlinear. m of Chapter 6), using the re
producing kernels K(·, Xj), and using the matrix C based on the kernel K,. The 
matrix for the kernels K(·,XJ) is computed with the program tpsK.m provided in 
Program 34.1. The three polynomial cardinal functions are based on the three 
corners (0, 0), (0, 1), and (1, 0) of the unit square, i.e., 

where z = (zi, z2) E IR2 . 

P1 (z) = 1 - z1 - z2, 

P2(z) = zi, 

p3(z) = z2, 

The program tpsK. mis completely vectorized, i.e., we input arrays of points x 
and y, and create the entire matrix with entries K (Xi, x j), i, j = 1, ... , N (denoted 
by rbf in the program). We assemble the matrix according to the terms in (34.6). 
On lines 3 and 4 we fill two matrices, px and py, whose columns contain the values 
of the polynomials p 1 , p2 and p3 (defined as separate functions at the end of the 
program) at all of the points in x and y, respectively. The first term of (34.6), the 
matrix <I>(x, y), is assembled on line 5 where we call the subroutine tps .m listed as 
Program C.4 in Appendix C. Next, on lines 6-ll we add the next two sums from 
(34.6) simultaneously. The double sum is added to the matrix rbf on lines 12-
17, and finally the tenor product polynomial term is computed and added on lines 
18-20. 

Program 34.1. tpsK. m 

% rbf = tpsK(x,y) 
% Computes matrix for thin plate spline kernel K with 
% linear polynomials cardinal on (0,0), (1,0), (0,1) 
% Calls on: tps 

1 function rbf = tpsK(x,y) 
% Define points for cardinal polynomials 

2 ppoints = [O O; 1 O; 0 1]; 
3 px = [p1(x) p2(x) p3(x)]; 
4 PY= [p1(y) p2(y) p3(y)]; 
5 r = DistanceMatrix(x,y); rbf = tps(1,r); 
6 for k=1:3 
7 r = DistanceMatrix(ppoints(k,:),y); 
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8 rbf = rbf - px(:,k)*tps(1,r); 
9 r = DistanceMatrix(x,ppoints(k,:)); 

10 rbf = rbf - tps(1,r)*py(:,k)'; 

11 end 
12 for j=1:3 
13 for k=1:3 
14 r = DistanceMatrix(ppoints(j,:),ppoints(k,:)); 
15 rbf = rbf + px(:,j)*py(:,k)'*tps(l,r); 
16 end 
17 end 
18 for k=1:3 
19 rbf = rbf + px(:,k)*py(:,k)'; 
20 end 
21 return 

I. The cardinal polynomials 
22 function w = p1(z) 
23 w = 1 - z(:,1) - z(:,2); 

24 return 
25 function w = p2(z) 

26 w = z ( : ' 1) ; 

27 return 
28 function w = p3(z) 

29 w = z (: '2) ; 
30 return 
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Since Program 34.1 produces the entire interpolation (or evaluation) matrix, we 
can use Program 2.1 and replace lines 13 and 14 by 

IM= tpsK(dsites,ctrs); 

and lines 15 and 16 by 

EM= tpsK(epoints,ctrs); 

in order to solve the interpolation problem in this case. 
The matrix C is obtained in a similar fashion by using a program tpsH. m that 

is identical to tpsK. m except that lines 18-20 are removed. In addition, we need to 
remove the corner points (0,0), (1,0), and (0,1) from the ctrs and dsites in the 
driver program. 

In the first experiment (illustrated in Table 34.3) the problem is formulated on 
the unit square [O, 1 ]2. Here both the number of points and the separation distance 
vary from one row in the table to the next. The three different columns list the 
t'2-condition numbers of the interpolation matrix for the three different approaches 
mentioned above. With this setup all three methods perform comparably. 
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Table 34.3 Condition numbers for different thin plate spline bases on [O, 1]2 

with increasing number of points and varying separation distance. 

spacing h standard matrix reproducing kernel homogeneous matrix 

1/8 3.515800e+003 1.839030e+004 7.583833e+003 
1/16 3.893850e+004 2.651373e+005 l.108581e+005 
1/32 5.136252e+005 4.000679e+006 l.686431e+006 
1/64 7.618277e+006 6.202918e+007 2.626402e+007 

In the second experiment (shown in Table 34.4) the number of points is kept fixed 
at 5 x 5 equally spaced points. However, the domain is scaled to the square (0, a]2 
with scale parameter a (this can easily be done using the same programs as above 
by introducing a scale parameter at the appropriate places, see also Program 34.2). 
The effect of this is that only the separation distance Qx changes from one row to 
the next in the table. Now, clearly, the two new methods show less dependence on 
the separation distance, with the condition number of the homogeneous matrix C 
being completely insensitive to the re-scaling as claimed earlier. 

Table 34.4 Condition numbers for different thin plate spline bases on [O, a] 2 with 
fixed number of 25 points and varying separation distance. 

scale parameter a standard matrix reproducing kernel homogeneous matrix 

0.001 2.434883e+008 8 .463509e+008 5.493771e+002 
0.01 2.436378e+006 8 .464002e+006 5.493771e+002 
0.1 2.517866e+004 8.513354e+004 5.493771e+002 
1.0 3.645782e+002 1.366035e+003 5.493771e+002 
10 1.874215e+006 1.260864e+003 5.493771e+002 

100 1.151990e+Oll l .139634e+005 5.493771e+002 
1000 3.548239e+015 1.1385 72e+007 5.493771e+002 

We close this section by pointing out that Iske an co-workers take advantage of 
the scale invariance of poly harmonic splines (and thin plate splines in particular) in 
the construction of a numerical multiscale solver for transport problems (see, e.g., 

[Behrens et al. (2002)]). 

34.6 Effect of the "Better" Basis on the Accuracy of the 
Interpolant 

In this section we provide an example illustrating the surprising fact that for poly
harmonic splines not only the homogeneous kernel K, can be used successfully for 
poorly scaled problems, but also the standard kernel \'.I>. 

Example 34.4. We use the thin plate spline basic function tp(r) = r2 log r and 
a scaled version of Franke's testfunction to generate test data on a 5 x 5 uniform 
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grid in the square [O, a] 2 as in Table 34.4. However, now the scale parameter a will 
range from 10-9 to 109 . We will present condition numbers and root-mean-square 
errors computed on a 40 x 40 uniform grid for the three different kernels discussed 
previously. We list only the MATLAB code for the homogeneous case since the 
two other programs are very similar to previous ones. The function tpsH. m called 
by Program 34.2 is almost the same as Program 34.1 listed above. The required 
modifications are noted there. 

Many parts of Program 34.2 are familiar. However, in order to deal with the 
kernel Kand the associated matrix C we need to define the special points at which 
the cardinal polynomials are defined. This is done on line 9, where the special 
points are taken as three corners of the scaled unit square. Since the kernel is the 
zero function when centered at these points they need to be removed from the set 
of centers. This is accomplished on lines 11, 12 and 14. The scaling of the problem 
happens on lines 8, 9 and 13. The scale also enters in a number of other places such 
as the definition of the evaluation grid on line 15, computation of the right-hand side 
on lines 17-19, and the computation of the exact solution on line 26. In contrast 
to most of our other interpolation programs here we compute the interpolation 
and evaluation matrices with a single subroutine ( c.f. the calls to tpsH on lines 20 
and 22). Note that the scale parameter a is passed to tpsH. Equations 34.9 and 
34.7 for the solution and evaluation of the interpolant are implemented together on 
line 25. Finally, the three cardinal polynomials are coded on lines 35-43. Since these 
polynomials are defined on the unit square they need to be called with re-scaled 
arguments (cf. lines 17 and 23). 

Program 34.2. RBFinterpolation2DtpsH.m 

% RBFinterpolation2DtpsH 
% Script that performs 2D TPS interpolation with homogeneous kernel 
% Calls on: tpsH 

1 function RBFinterpolation2DtpsH 
% Define Franke's function as testfunction 

2 fl= ©(x,y) 0.75*exp(-((9*x-2).-2+(9*y-2).-2)/4); 
3 f2 = ©(x,y) 0.75*exp(-((9*x+1).-2/49+(9*y+l).-2/10)); 
4 f3 = ©(x,y) 0.5*exp(-((9*x-7).-2+(9*y-3).-2)/4); 
5 f4 = ©(x,y) 0.2*exp(-((9*x-4).-2+(9*y-7).-2)); 
6 testfunction = ©(x,y) f1(x,y)+f2(x,y)+f3(x,y)-f4(x,y); 

7 N = 25; gridtype = 'u'; 
8 a = 1e9; 
9 ppoints = a*[O O; 1 O; 0 1]; 

% Load data points 
10 name= sprintf('Data2D_/.d%s',N,gridtype); load(name) 

% Remove (0,0), (1,0), (0,1) to work with C matrix 
11a remove= [find(dsites(:,1)==0 & dsites(:,2)==0); ... 
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1ib find(dsites(:,1)==1 & dsites(:,2)==0); ... 
11c find(dsites(:,1)==0 & dsites(:,2)==1)] 
12 dsites(remove,:) = []; 

% Scale problem to square [O,a]-2 
13 dsites = a*dsites; 

% Let centers coincide with data sites 
14 ctrs=dsites; 
15 neval = 40; grid= linspace(O,a,neval); 
16 [xe,ye] = meshgrid(grid); epoints = [xe(:) ye(:)]; 

% Create right-hand side for homogeneous problem 
17 DP= [p1(dsites/a) p2(dsites/a) p3(dsites/a)] '; 
18 d = testfunction(ppoints(:,1)/a,ppoints(:,2)/a); 

19 rhs = testfunction(dsites(:,1)/a,dsites(:,2)/a) - DP'*d; 
% Compute interpolation matrix for the special case of TPS 
% native space kernel (no need to add polynomials) 

20 IM= tpsH(dsites,ctrs,a); 

% Compute condition number of interpolation matrix 
21 fprintf('l2-condition : %e\n', cond(IM)) 

% Compute evaluation matrix 
22 EM= tpsH(epoints,ctrs,a); 

23 EP = [p1(epoints/a) p2(epoints/a) p3(epoints/a)]; 
24 EM = [EM EP] ; 

/, Compute RBF interpolant 
25 Pf= EM* [(IM\rhs); d]; 

% Compute exact solution 
26 exact= testfunction(epoints(:,1)/a,epoints(:,2)/a); 

% Compute errors on evaluation grid 
27 maxerr = norm(Pf-exact,inf); 
28 rms_err = norm(Pf-exact)/neval; 
29 fprintf('RMS error: %e\n', rms_err) 
30 fprintf('Maximum error: %e\n', maxerr) 
31 fview = [160,20]; % viewing angles for plot 

32 PlotSurf(xe,ye,Pf,neval,exact,maxerr,fview); 
33 PlotError2D(xe,ye,Pf,exact,maxerr,neval,fview); 
34 return 

% The cardinal polynomials 
35 function w = p1(z) 
36 w = 1 - z(:,1) - z(:,2); 
37 return 
38 function w = p2(z) 

39 w = z (: '1); 
40 return 
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41 function w = p3(z) 
42 w=z(:,2); 

43 return 
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In Table 34.5 we list the root-mean-square errors resulting from the three dif
ferent interpolation methods. The scaling of the domain was chosen more extreme 
than in Table 34.4 so that the sensitivity of the reproducing kernel K becomes 
clearly visible. Its condition number of the interpolation matrix for a = 10-9 was 
5.354134e+018, while for a = 109 it was 6.994062e+019. While both of these 
condition numbers are clearly very high and therefore indicate that we might ex
pect numerical difficulties solving a problem on these length scales, the other two 
methods (standard TPS basis functions and the homogeneous kernel K) perform 
perfectly throughout the entire range of scalings. Moreover, the condition num
bers for the standard TPS interpolation matrix are much higher than for the K 
kernel: 7.299408e+021 for a= 10-9 , and even 2.749537e+038 for a= 109 . Never
theless, the standard TPS interpolant does not suffer from instability due to this 
ill-conditioning. The same is true for all other tests we have performed with stan
dard polyharmonic spline interpolants (such as, e.g., the norm basic function). 

Table 34.5 RMS errors for different thin plate spline interpolants on [O, a] 2 with 
fixed number of 25 points and varying separation distance. 

scale parameter o standard matrix reproducing kernel homogeneous matrix 

10-9 2. 9694 78e-002 NAN 2.969478e-002 
10-6 2. 9694 78e-002 2.970740e-002 2. 9694 78e-002 
10-3 2.969478e-002 2.969478e-002 2. 9694 78e-002 
1.0 2.969478e-002 2. 9694 78e-002 2. 9694 78e-002 
103 2. 9694 78e-002 2.969478e-002 2. 9694 78e-002 
106 2. 9694 78e-002 2. 969218e-002 2. 9694 78e-002 
109 2. 9694 78e-002 l.207446e+003 2. 9694 78e-002 





Chapter 35 

Other Efficient Numerical Methods 

In earlier chapters we have already mentioned various algorithms for meshfree scat
tered data interpolation that are more efficient than the straightforward solution 
of the linear system obtained by enforcing the interpolation conditions. In par
ticular, we suggested the use of the non-uniform fast Fourier transform (NFFT) 
for fast evaluation of globally supported functions, a fixed level iterative algorithm 
based on approximate MLS approximation, the greedy algorithm of Schaback and 
Wendland, the Faul-Powell algorithm, and the preconditioned GMRES method of 
Beatson et al. 

We now add three more numerical techniques that can be used to make the 
computation with globally supported functions on large data sets more efficient 
and also more stable. In the first two sections of this chapter we discuss the fast 
multipole method and fast tree codes, and how these methods can be adapted to 
radial basis functions. In the third section we present a brief introduction to domain 
decomposition methods, which not only make the solution of large interpolation 
problems more efficient, but also provide a way to avoid the ill-conditioning issue 
by breaking the large problem into many well-conditioned smaller ones. 

35.1 The Fast Multipole Method 

Another technique for dealing with fast summation problems is known as the fast 
multipole method. It was first proposed by Greengard and Rokhlin in the late 1980s 
(see, e.g., the original paper [Greengard and Rokhlin (1987)], the popular discussion 
[Greengard (1994)], or the short course tailored to radial basis functions [Beatson 
and Greengard (1997)]). This method has quickly become rather popular in the 
computational sciences. The breakthrough accomplishment of this algorithm was 
the ability to perform fast evaluations of sums of the type 

N 

P1(x) = L ckq>(x, Xk), 
k=l 

321 
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In particular, M such evaluations can be performed in O(M log N) (or even O(M)) 
operations instead of the standard 0( MN) operations for a naive implementation of 
the summation. The non-uniform fast Fourier transform of Chapter 28 was able to 
do this also, and in a fairly general way for a very large class of kernels cl>. However, 
the fast multipole method is a little older and it may be more efficient than the 
NFFT since special expansions are used that are chosen with the particular kernel 
cl> in mind. 

We will now outline the basic idea of the fast Gauss transform [Greengard and 
Strain (1991)]. This transform can be applied directly to the approximate moving 
least squares approximands based on Gaussians used in earlier chapters (see the 
numerical experiments reported in Table 35.1 below). The higher-order Laguerre
Gaussian kernels, however, require a completely new derivation. Using our standard 
abbreviation E = 1/( VVh), we are now interested in a fast summation technique for 
M simultaneous evaluations of the Gaussian quasi-interpolant (or discrete Gauss 
transform) 

N 

91 (YJ) = L f(xk)e-ll6(yj-:z:k)ll2' j = l, ... ,M. (35.1) 
k=l 

In [Greengard and Strain (1991)] such an algorithm was developed, and in [Strain 
(1991)] a modification was suggested to cover also the case of variable scales Ek as 
needed with quasi-interpolation at scattered sites or with variable shape parameters. 

One of the central ingredients for the fast Gauss transform are the multivariate 
Hermite functions ho. defined as 

h0 (x) = (-1)1°1D0 e-ll:z:ll
2

, (35.2) 

where a::= (0:: 1 , ... , o:s) E Ns is a multi-index. These functions are related to the 
multivariate Hermite polynomials Ho. via 

s 

H 0 (x) = IT Had(xd) = ell:z:ll
2 
ho.(x) (35.3) 

d=l 

(see, e.g., the univariate formula (6.1.3) in [Andrews et al. (1999)]). It is benefi
cial that the Hermite functions can be evaluated recursively using the (univariate) 
recurrence relation 

hn+1(x) = 2xhn(x) - 2nhn-1(x), n = 1, 2, ... , 
ho(x) = e-lxl

2
, h1 (x) = 2xe-lxl

2
, 

which follows immediately from (35.3) and the recursion relation for Hermite poly
nomials (see, e.g., formula (6.1.10) in [Andrews et al. (1999)]). 

The algorithm of Greengard and Strain is based on three basic expansions 
which we list below as Theorems 35.1-35.3 (see [Greengard and Strain (1991); 
Greengard and Sun (1998)]). The main effect of these expansions is the fact that the 
variables YJ and Xk will be separated. This is the fundamental "trick" used with all 
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fast summation algorithms (see our discussion of the NFFT based fast summation 
method in Chapter 28). This will allow for the pre-computation and storage of 
certain moments below. 

The first step in the algorithm is to scale the problem to the unit box (0, 1] 8 and 
then subdivide the unit box into smaller boxes B and C which usually coincide. 
They can, however, also differ. The boxes B contain the sources x k (i.e., our 
centers), and the boxes C the targets YJ (i.e., our evaluation points). For each 
source box B one then determines its interaction region IR(B). The interaction 
region of B is a set of nearest neighbors of B such that the error of truncating 
the sum over all boxes is below a certain threshold. Due to the fast decay of the 
Gaussians it is suggested (see [Greengard and Sun (1998)]) to use the gs nearest 
neighbors for single precision and the 138 nearest neighbors for double precision. 

Theorem 35.1. Let IB be the index set denoting the sources Xk that lie in a box 
B with center XB and side length 1/c, and let Ye be the center of the target box 
CE IR(B) of radius rc containing the targets YJ· Then the Gaussian field due to 
the sources in B, 

9JB)(YJ) = L f(xk)e-llc(yj-:llk)ll2' 
kEia 

has the following Taylor expansion about Ye: 

9J
8

)(YJ) =Lao: (c(YJ - Ye))o:, 
o:?:O 

where the coefficients ao: are given by 
(-l)lo:I 

ao: = 1 L f (xk)ho: (c(xk - Ye)). 
O'.. 

kEia 

(35.4) 

The error ET(P) due to truncating the series {35.4) after the p-th order terms 
satisfies the bound 

IET(P)I =IL ao: (c(yj - Ye))o: I< (l.09) 8 p(B) 
1 

s [(;rcl+l] 8

, 

o:>p .j(p + 1)! - €Tc 

where p(B) = L:kEia If (xk) I· 
Here we used the multi-index notation a > 0 to denote the constraints o:d 2: 0 

for all d = 1, ... , s. More generally, for some integer p we say a > p if O:d > p for 
all d = 1, ... , s. This implies that we have a > p for some integer p, if a > p and 
o:d > p for some d. We also use a > {3 if O:d > f3d for all d = 1, ... , s. 

The expansion (35.4) will be used in the case when the source box B contains 
relatively few sources, but the target box C contains many targets. 

By reversing the role of the Hermite functions and the shifted monomials one can 
write a single Gaussian as a multivariate Hermite expansion about a point zo E JR5

, 

i.e., 

(35.5) 

This idea is used in 
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Theorem 35.2 (Far-field expansion).· Let IB be the index set denoting the 
sources Xk that lie in a box B with center XB and side length 1/e. Then the Gaus
sian field due to the sources in B, 

gjB) (YJ) = L f(xk)e-lle:(yj-:z:k)ll2' 

kElB 

is equal to an Hermite expansion about x B: 

gj8>(yj) = L bo.ho. (c(yj - XB)). 
o.2:0 

The moments b0 are given by 

ba =--\ L f(xk) (c(xk - XB))
0

. 
Q. 

kElB 

(35.6) 

The error EH(P) due to truncating the series (35.6) after p-th order terms satisfies 
the bound 

IEH(P)I =IL baho. (e(YJ - XB)) I~ (1.09) 8 p(B) l s [(E:re)p+l] 
8 

a>p .j(p + 1)! 1 - ere 

Theorem 35.2 is used when B contains many sources, but C only few targets. 
Finally, in the case when both B and C contain relatively many points we use 

Theorem 35.3 (Translation operation). Let the sources Xk lie in a box B with 
center XB and side length 1/e and let YJ be an evaluation point in a box C with 
center ye. Then the corresponding truncated Hermite expansion (35.6) can be ex
panded as a Taylor series of the form 

gjBe) (YJ) = L c13 (dYJ - Ye) l·. 
/32:0 

The coefficients c13 are given by 

(-1)1/31 
c13 = j3! L baho.+/3 (e(xB - Ye)), 

a~p 

(35.7) 

with b0 as in Theorem 35.2. The error Er(p) due to truncating the series (35. 7) 
after p-th order terms satisfies the bound 

IEr(P)I =IL b13 (c(x - Ye)) 13 I< (1.09) 5 p(B) 1 
s [(~re)p+l] 

5 

f3>p .j(p + 1)! - ere 

Theorem 35.3 is based on the multivariate Taylor series expansion of the Hermite 
functions h 0 , i.e., 

~ (-1)1/31 /3 
ho. (c(yj - XB)) = ~ /3! (c(yj - Ye)) ha+/3 (e(XB - Ye)). 

/32:0 
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Note that the error estimates in the original paper on the fast Gauss transform 
[Greengard and Strain (1991)] were incorrect. In the mean time a number of other 
authors have provided alternate error bounds in their papers (see, e.g., [Baxter 
and Roussos (2002); Florence and van Loan (2000); Greengard and Sun (1998); 
Wendland (2004)]). 

For ID calculations on the order of p = 20 terms are required to achieve double 
precision accuracy. For the 2D case one can get by with a smaller value of p (about 
15), but the number of terms is of course much higher (on the order of p 8 for 
s-dimensional pro bl ems). 

The basic outline of the algorithm is as follows: 

Algorithm 35.1. Fast Gauss transform 

(1) If necessary, scale the problem so that the coarsest box Bo= [O, 1] 8
• Subdivide 

Bo into smaller boxes with side length 1/e: parallel to the axes. Assign each 
source Xk to the box B in which it lies and each evaluation point YJ to the box 
C in which it lies. 

(2) Choose p so that the truncation error satisfies the desired accuracy, and for 
each box B compute and store the coefficients (or moments) 

a <p, 

of its Hermite expansion (35.6). 
(3) For each evaluation box C, determine its interaction region IR(C). 
(4) For each evaluation box C transform all Hermite expansions in source boxes 

within the interaction region IR(C) into a single Taylor expansion using (35.7), 
i.e., 

where 

91(Y1) ~ L c13 (e:(yJ - Yc)) 13 , 
/3$.p 

c13 = (-l~l/3I L L bcxhcx+/3 (e:(xB - Ye))· 
{3. BEI R(C) cx$_p 

For a small number of points direct summation is more efficient than the fast 
transform. Unfortunately, the value of the "crossover point" grows with the space 
dimensions. This makes the fast Gauss transform in its basic form virtually unus
able for 3D applications. 

Note that the algorithm presented here does not use a hierarchical decomposition 
of space as is typical for so-called tree codes, as well as many other more general fast 
multipole algorithms. In the algorithm above the interaction region is determined 
simply based on the fast decay of the Gaussian. 

Clearly, the majority of the work has to be performed in step 4. The performance 
of this step can be improved by using plane wave expansions to diagonalize the 
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translation operators (see [Greengard and Sun (1998)]). In order to keep matters 
as simple as possible, we will not discuss this feature. 

A more complete algorithm (designed for radial basis function interpolation with 
multiquadrics and thin plate splines) has been developed by Beatson and co-workers 
(see, e.g., [Beatson and Newsam (1992); Cherrie et al. (2002)]). 

For the numerical experiments in Table 35.1 we used the C-code FGT which 
can also be used as a MEX-file with MATLAB. The code was written by Adam Flo
rence and can be obtained at http: I /'filTilw. cs. cornell. edu/aflorenc/research/
fgt .html (see also [Florence and van Loan (2000)]). The numerical results pre
sented in Table 35.1 were obtained by performing quasi-interpolation of the form 

N 

Q(h) (x) = (7r'D)-1;2 '"'"'f(xk)if! (x - Xk) 
f ~ ../Vh ' 

with a Gaussian if! on N = 2e + 1, £ = 2, 3, 4, ... , 18, equally spaced points in [O, 1] 
with the mollified test function 

f(x) = 15e 1-(2-::1-1)2 [~e-(x-2)2 
/4 + ~e-Cx+1)2 

/49 + ~e-(x-7)2 
/4 _ ~e-(x-4)2 ] • 

4 4 2 5 

All errors were computed on M = 524289 equally spaced points in [O, 1]. In 
the "rate" column we list the number rate = ln( ee-i/ ee) / ln 2 corresponding to the 
exponent in the O(hrate) notation. Other parameters were V = 4, and the default 
values for the FGT code (i.e., R = 0.5). All times were measured in seconds. 

Table 35.1 lD quasi-interpolation using fast Gauss transform. 

direct fast 

N max-error rate time max-error rate time speedup 

5 3.018954e-OO 1.93 5.495125e-OO 1.07 1.80 
9 2.037762e-OO 0.57 3.40 2.037762e-OO 1.43 5.31 0.64 
17 9.617170e-01 1.08 6.39 9.617170e-01 1.08 5.33 1.20 
33 3.609205e-01 1.41 12.28 3.609205e-01 1.41 5.35 2.30 
65 1.190192e-01 1.60 24.72 l.190192e-01 1.60 5.39 4.59 
129 3.354132e-02 1.83 53.38 3.354132e-02 1.83 5.46 10.14 
257 8. 702868e-03 1.95 113.35 8. 702868e-03 1.95 5.61 20.20 
513 2. l 96948e-03 1.99 226.15 2.196948e-03 1.99 5.94 38.07 
1025 450* 5.505832e-04 2.00 6.67 67.47 
2049 900* 1.377302e-04 2.00 7.87 114.36 
4097 1800* 3.443783e-05 2.00 10.56 170.45 
8193 3600* 8.609789e-06 2.00 15.78 228.14 
16385 7200* 2.152468e-06 2.00 26.27 274.08 
32769 14400* 5.381182e-07 2.00 47.39 303.86 
65537 28800* 1.345296e-07 2.00 89.91 320.32 
131073 57600* 3.363241e-08 2.00 174.74 329.63 
262145 115200* 8.408103e-09 2.00 343.59 335.28 

An asterisk * on the entries in the lower part of the "direct" column indicates 
estimated times. The fast Gauss transform yields a speedup of roughly a factor of 
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300. Another way to interpret these results is that for roughly the same amount 
of work we can obtain an answer which is about 100000 times more accurate. The 
predicted O(h2 ) convergence of the Gaussian quasi-interpolant (c.f. Chapter 26) is 
perfectly illustrated by the entries in the "rate" columns. 

35.2 Fast Tree Codes 

An alternative to fast multipole methods are so-called fast tree codes. These kind 
of algorithms originated in computational chemistry. For the interested reader we 
recommend recent mathematical papers by Krasny and co-workers (e.g., [Duan and 
Krasny (2001); Lindsay and Krasny (2001)]). An advantage of fast tree code meth
ods is that they make use of standard Taylor expansions instead of the specialized 
expansions that are used in the context of the fast multipole expansions of the 
previous section (such as, e.g, in terms of Hermite functions, spherical harmon
ics, spherical Hankel functions, plane waves, or hypergeometric functions [Cherrie 
et al. (2002)]). This simplifies their implementation. However, their convergence 
properties are probably not as good as those of fast multipole expansions. 

We now present a very general discussion of fast summation via Taylor expan
sions. The presentation of this material is motivated by the work of Krasny and 
co-workers (see, e.g., [Duan and Krasny (2001); Lindsay and Krasny (2001)]) as 
well as the algorithm for the fast Gauss transform reviewed in the previous section. 
Since we are interested in many simultaneous evaluations of our quasi-interpolants 
(or other radial basis function expansion), we split the set of M evaluation points 
Yj into groups (contained in boxes C with centers Ye). We also split the N data 
locations Xk into boxes B with centers XB, and use the index set IB to denote the 
points in B. 

In order to set the stage for a fast summation of the quasi-interpolant 

N 

Q1(Yj) = L f(xk)'P(yj - xk) 
k=l 

= L L f(xk)'P(yj - Xk) (35.8) 
B kEia 

with generating function 'P we require the multivariate Taylor expansion of 'P about 
a point zo E IRs, i.e., 

~ a (z - zo) 0 

'P(z) = ~ D 'P(z)lz=zo 1 , 
0:. 

(35.9) 
o:2:0 

where a is a multi-index. Now - as for the fast Gauss transform - we consider 
three basic expansions. 

Theorem 35.4 (Taylor Series Expansion about Centers of Target Boxes). 
Let 18 be the index set denoting the sources Xk that lie in a box B with center XB, 



328 Meshfree Approximation Methods with MATLAB 

and let Ye be the center of the target box C containing an evaluation point YJ. Then 
the quasi-interpolant due to sources in B 

QjB) (YJ) = L f(xk)<I>(yJ - xk) 
kEla 

. can be written as a Taylor expansion about ye: 

Q<j3\YJ) = L aa(YJ ___:_ Ye) 0
, 

where 

Proof. We combine the contribution for the source box B of (35.8) with (35.9), 
and let z = YJ - Xk and zo =Ye - Xk. Then (35.8) becomes 

Q(B)() ""°""!( )""°"" a ()I (YJ-Ye)
0 

f YJ = ~ Xk ~ D <I> Z z=yc-:ck 1 a. 
kEla a~O 

Using the abbreviation T 0 (ye, Xk) = (-1)l 0 1D0 <I>(z)lz=yc-::ck we can rewrite this 
as 

QjB)(YJ) = L aa(YJ -ye)0
, 

a~O 

where 
(-l)lal 

aa = 1 L f (xk)Ta(Ye, Xk)· 
a. 

kEla 

Example 35.1. If we take <I>(x) = e-ll:cll
2 

then 

Ta(Ye,xk) = ha(Ye - Xk) = ha(Xk -ye), 

and Theorem 35.4 is equivalent to Theorem 35.1 given above. 

0 

We can see that the Taylor expansion has allowed us to separate the evaluation 
points y J from the data points x k. 

Theorem 35.5 (Taylor Series Expansion about Centers of Source Boxes). 
Let IB be the index set denoting the sources Xk that lie in a box B with center XB. 
Then the quasi-interpolant due to sources in B 

QjB) (YJ) = L f(xk)<I>(yJ - xk) 
kEla 

can be written as a reversed Taylor expansion about x B: 

QjB)(YJ) = L baTa(Yj,XB), 

with the moments ba given by 

ba = ~ L f(xk)(xk - XB) 0
, 

a. 
kEla 

and Ta(YJ, XB) = (-l)l 0 ID 0 <I>(z)lz=yj-:ca. 
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Proof. We combine the contribution for the source box B of (35.8) with (35.9), 
and let z = Yj - Xk and zo = Yj - XB· Then (35.8) becomes 

Using the abbreviation Ta.(Yj, XB) = (-l)lo.lno.<I>(z)Jz=yj-~B we can reverse the 
role of the Taylor coefficients and the polynomials to write this as 

QjB)(yj) = L ba.Ta.(Yj, XB), 
o.::2:0 

with 

D 

Example 35.2. Using <I>(x) = e-11~11
2 

this is equivalent to Theorem 35.2. 

The moments ba. can be pre-computed and stored during the setup phase of the 
algorithm. 

Theorem 35.6 (Conversion). Let lB be the index set denoting the sources Xk 

that lie in a box B with center XB, and let Ye be the center of the target box C 
containing Yj. Then a fast summation formula for the quasi-interpolant 

N 

Q1(Yj) = L f(xk)<I>(yj - xk) 
k=l 

can be given as an expansion about Ye: 

where 

Ta.+/3(Ye, xB) 
Theorem 35. 5. 

Q1(Yj) ~ L c,13(Yj - Ye)/3, 
/3'S_p 

(-1)1/31 
c,13 = {3! L LTa.+f3(Ye, xB)ba., 

o.+f3'S_p B 

Proof. We combine (35.8) with (35.9), and now replace z by Yj - Xk and zo by 
Ye - XB. Then (35.8) becomes 
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Using the abbreviation Tcx.(yc, xB) = (-l)ialncx.~(z)iz=yc-:z:s along with the mul
tivariate binomial theorem we can rewrite this as 

Q1(Yj) =LL f(xk) L(-l)lcx.ITa(Y~!,xB) x 
B kEls cx.2:::0 

L (a:)(-1) 1131 (Y} -yc)cx.-.B(xk - XB) 13 

.ascx. J3 
(y )cx.-.a 

= L L(-l)lnlTa(Yc, XB) L (-1)1.BI j - Ye x 
cx.2:::0 B /3$.cx. (a: - j3)! 

'"""' f( ) (xk - xn).B 
L Xk J3! . 

kEls 

In fact, we can introduce the moments of Theorem 35.5 and write 

where 

A fast algorithm is now obtained by truncating the infinite series after the p-th 
order terms, i.e., 

Using the fact that 

L acx. L bcx.-,B = L bcx. L a13 = L bcx. L acx.+,a, 
cx.$.p cx.+,B$.p 

which can be verified by a simple rearrangement of the summations and an index 
transformation, we obtain (interchanging the role of a: and /3) the following fast 
summation formula: 

QJ(Yj) ~ L L (-l)lcx.I~! L(-l)lcx.+f3ITa+f3(Yc,xB)bcx.(Yj-YC)13 . 
{3$.pcx.+/3$.p B 

This is equivalent to the statement of the theorem. 0 

Example 35.3. Using ~(x) = e-llxll
2 

Theorem 35.6 is almost equivalent to Theo
rem 35.2. However, our alternate formula is more efficient since only Hermite func
tions up to order p are required (as opposed to order 2p in the Greengard/Strain 
version). This gain is achieved by using the binomial theorem instead of a second 
Taylor expansion. The Hermite series expansion used in the traditional fast Gauss 
transform is equivalent to a Taylor expansion. 
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Note that the Taylor coefficients Ta.(Yc, XB) depend only on the box centers Ye 
and XB· 

In order to make the algorithm efficient one will use a decision rule (as in Strain's 
code for the fast Gauss transform) to decide when to use which of the three expan
sions. Error estimation is very similar to Greengard/Strain. The only difference is 
that one needs bounds on the Taylor coefficients instead of the Hermite functions. 

In order to adapt this fast transform to Laguerre-Gaussian generating functions 
(or any other generating function) one needs to compute the required Taylor coef
ficients. This is a task that goes beyond the scope of this book. 

35.3 Domain Decomposition 

Finally, another method commonly used to deal with large computational problems 
is the domain decorr:position method. Domain decomposition is frequently imple
mented on parallel computers in order to speed up the computation. A standard 
reference (based mostly on finite difference and finite element methods) is the book 
by Smith, Bj0rstad and Gropp [Smith et al. (1996)]. For radial basis functions 
there is a recent paper by Beatson, Light and Billings [Beatson et al. (2000)]. 

The main aim of the paper [Beatson et al. (2000)] is to solve the radial basis 
function interpolation problem discussed many times in previous chapters. In par
ticular, a so-called multiplicative Schwarz algorithm (which is analogous to Gauss
Seidel iteration) is presented, and linear convergence of the algorithm is proved. A 
section with numerical experiments reports results for an additive Schwarz method 
(which is analogous to Jacobi iteration). 

In particular, the authors implemented polyharmonic radial basis functions and 
used the scale invariant basis discussed in Section 34.4. 

The classical additive Schwarz algorithm is usually discussed in the context 
of partial differential equations, and it is known that one should add a coarse level 
correction in order to ensure convergence and to filter out some of the low-frequency 
oscillations (see, e.g., [Smith et al. (1996)]). 

In [Beatson et al. (2000)] a two-level additive algorithm for interpolation prob
lems was presented. One begins by subdividing the set of interpolation points X 
into M smaller sets Xi, i = 1, ... , M, whose pairwise intersection is non-empty. The 
points that belong to one set Xi only are called inner points of Xi. Those points 
in the intersection of more than one set need to be assigned in some way as inner 
points to only one of the subsets Xi so that the collection of all inner points yields 
the entire set X. This corresponds to the concept of overlapping domains. One also 
needs to choose a coarse grid Y that contains points from all of the inner point sets. 

In the setup phase of the algorithm the radial basis function interpolation matri
ces for the smaller problems on each of the subsets Xi, i = 1, ... , M, are computed 
and factored. At this point one can use the homogeneous basis of Section 34.4 to 
ensure numerical stability. Now the algorithm proceeds as follows: 
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Algorithm 35.2. 

Input: Data f, point sets Xi and factored interpolation matrices Ai, i 

1, ... , M, tolerance tol 
Initialize r = f, u = 0 
While llrll > tol do 

end 

For i = 1 to M (i.e., for each subset Xi) do 

Determine the coefficient vector cCi) of the interpolant to the residual 

rlxi on xi. 
end 
Make c orthogonal to n:n_ 1. 

N 

Assemble an intermediate approximation u 1 = L c1 <P ( ·, x j). 
j=l 

Compute the residual on the coarse grid, i.e., 

r1 = r - u1IY· 

Interpolate to r 1 on the coarse grid Y using an RBF expansion u2. 
Update u ~ u+u1 +u2. 
Re-evaluate the global residual r = f - u on the whole set X. 

In [Beatson et al. (2000)] it is proved that a multiplicative version of this algo
rithm converges at least linearly. However, the additive version can be more easily 
implemented on a parallel computer. 

If strictly positive definite kernels such as Gaussians are used, then it is not 
necessary to make the coefficients c orthogonal to polynomials. 

As in many algorithms before, the evaluation of the residuals needs to be made 
"fast" using either a fast multipole method or a version of the fast Fourier transform. 

In the case of very large data sets it may be necessary to use more than two 
levels so that one ends up with a multigrid algorithm. 

The authors of [Beatson et al. (2000)] report having solved interpolation prob
lems with several millions of points using the domain decomposition algorithm 
above. 

A number of other papers discussing domain decomposition methods for radial 
basis functions have appeared in the literature (see, e.g., [Dubal (1994); Hon and 
Wu (2000); Ingber et al. (2004); Li and Hon (2004); Ling and Kansa (2004); Wong 
et al. (1999)]). However, most of these papers contain little theory, focusing mostly 
on numerical experiments. 



Chapter 36 

Generalized Hermite Interpolation 

In 1975 Rolland Hardy mentioned the possibility of using multiquadric basis func
tions for Hermite interpolation, i.e., interpolation to data that also contains deriva
tive information (see [Hardy (1975)] or the survey paper [Hardy (1990)]). This prob
lem, however, was not further investigated in the RBF literature until the paper [Wu 
(1992)] appeared. Since then, the interest in this topic has increased significantly. 
In particular, since there is a close connection between the generalized Hermite in
terpolation approach and symmetric collocation for elliptic partial differential equa
tions (see Chapter 38). Wu deals with Hermite-Birkhoff interpolation in IR.8 and his 
method is limited in the sense that one can have only one interpolation condition 
per data point (i.e., some linear combination of function value and derivatives). In 
[Sun (1994a)] this restriction is eliminated. Sun deals with the Euclidean setting and 
gives results analogous to the (Lagrange) interpolation results of [Micchelli (1986)]. 
In [Narcowich and Ward (1994a)] an even more general theory of Hermite interpo
lation for conditionally positive definite (matrix-valued) kernels in IR.8 is developed. 
Hermite interpolation with conditionally positive definite functions is also discussed 
in [Iske (1995)]. A number of authors have also considered the Hermite interpolation 
setting on spheres (see, e.g., [Fasshauer (1999b ); Freeden (1982); Freeden (1987); 
Ron and Sun (1996)]) or even general Riemannian manifolds [Dyn et al. (1999); 
Narcowich (1995)]. 

36.1 The Generalized Hermite Interpolation Problem 

We now consider data {xi, Ai/}, i = 1, ... , N, Xi E IR.8
, where A= {A1, ... , AN} is 

a linearly independent set of continuous linear functionals and f is some (smooth) 
data function. For example, Ai could denote point evaluation at the point Xi and 
thus yield a Lagrange interpolation condition, or it could denote evaluation of some 
derivative at the point Xi· However, we allow the set A to contain more general 
functionals such as, e.g., local integrals. This kind of problem was recently studied in 
[Beatson and Langton (2006)]. Furthermore, we stress that there is no assumption 
that requires the derivatives to be in consecutive order as is usually the case for 

333 
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polynomial or spline-type Hermite interpolation problems. 
We try to find an interpolant of the form 

N 

P1(x) = L:c1'1/J1(11xll), 
j=l 

x E JRB' (36.1) 

with appropriate (radial) basis functions -iP1 so that P1 satisfies the generalized 
interpolation conditions 

i = 1, .. . ,N. 

To keep the discussion that follows as transparent as possible we now introduce 
the notation ei, ... 'eN for the centers of the radial basis functions. They will 
usually be selected to coincide with the data sites X = {x1 , ... , XN }. However, the 
following is clearer if we formally distinguish between centers ej and data sites Xi. 

As we will show in the next section, it is natural to let '!/i1(llxii) = ..\j<p(llx - ell) 
with the same functionals ..\1 that generated the data and cp one of the usual radial 
basic functions. However, the notation ,\~ indicates that the functional ,\ now acts 
on cp viewed as a function of its second argument e. We will not add any superscript 
if ,\ acts on a single variable function or on the kernel cp as a function of its first 
variable. Therefore, we assume the generalized Hermite interpolant to be of the 
form 

N 

P1(x) = L Cj..\jcp(llx - ell), x E JRS' (36.2) 
j=l 

and require it to satisfy 

i = 1, ... ,N. 

The linear system Ac = f A which arises in this case has matrix entries 

AiJ = ..\i..\jcp, i, j = 1, ... , N, (36.3) 

and right-hand side f A = [..\1f, ... , ..\N f]T. 
In the references mentioned at the beginning of this chapter it is shown that 

A is non-singular for the same classes of cp that were admissible for scattered data 
interpolation in our earlier chapters. 

Note that when we are assembling the interpolation matrix A the functionals ..\ 
act on cp both as a function of the first variable as well as the second variable. This 
implies that we need to use C 2k functions in order to interpolate Ck data. This is 
the price we need to pay to ensure invertibility of A. 

It is interesting to note that the effect of the derivative acting on the second 
variable (i.e., the center) of cp (which leads to a sign change for derivatives of odd 
orders) was not taken into account in the early paper [Hardy (1975)], and thus his 
interpolation matrix is not symmetric. 

It should be pointed out that the formulation in (36.2) is very general and goes 
considerably beyond the standard notion of Hermite interpolation (which refers to 
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interpolation of successive derivative values only). Here any kind of linear func
tionals are allowed as long as the set A is linearly independent. For example, in 
Chapter 38 we will see how this formulation can be applied to the solution of partial 
differential equations. 

One could also envision use of a simpler RBF expansion of the form 

N 

P1(x) = L Cj<p(llx - ell), 
j=l 

However, in this case the interpolation matrix will not be symmetric and much more 
difficult to analyze theoretically. In fact, the approach just suggested is frequently 
used for the solution of elliptic partial differential equations (see the description 
of Kansa's method in Chapter 38), and it is known that for certain configurations 
of the collocation points and certain differential operators the system matrix does 
indeed become singular. 

The question of when the functionals in A are linearly independent is not ad
dressed in most papers on the subject. However, the book [Wendland (2005a)] 
contains the following reassuring theorem that covers both Hermite interpolation 
and collocation solutions of PDEs. 

Theorem 36.1. Suppose that q> E L1 (JRS) n C 2k (JRS) is a strictly positive definitek
emel. If the functionals >..i = Oa;j oDo.(j), j = 1, ... , N, with multi-indices la(j) I < k 
are pairwise distinct, meaning that a<j) =!= aCf) if Xj = Xf for different j =/= l, then 
they are also linearly independent over the native space N<t>(R8

). 

In the theorem above the functional Oa;. denotes point evaluation at the point 
J 

Xj, and the kernel q> is related to <pas usual, i.e., q>(x, e) = <p(llx - ell). Like most 
results on strictly positive definite functions, this theorem can also be generalized 
to the strictly conditionally positive definite case. 

36.2 Motivation for the Symmetric Formulation 

In this section we illustrate why the formulation used in (36.2) is natural for the 
Hermite interpolation problem. That is, aside from the fact that the symmetric 
interpolation matrix (36.3) is guaranteed to be invertible for all commonly used 
RBFs, we will show that by choosing the basis functions as in (36.2) the matrix 
associated with (Hermite) interpolation to function value and first derivative value 
at a point corresponds to a limit of the matrix for Lagrange interpolation to clusters 
of points. We will also illustrate this fact numerically in the next section. 

In [Franke et al. (1995)] the authors investigated adaptive least squares approx
imation with multiquadrics in R 2 by means of inserting knots (similar to our algo
rithm of Chapter 21). The authors describe numerical experiments which suggest 
that (Lagrange) multiquadric basis functions associated with clusters of centers in 
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adaptive least squares approximation should be replaced by appropriate directional 
derivatives of one of the basis functions. 

We now present a theoretical justification for this observation based on an anal
ysis of a one-dimensional example. A more general analysis involving higher deriva
tives and higher-dimensional spaces would be of the same flavor using the multivari
ate Taylor theorem. We discuss interpolation to function values and first derivatives 
at given points on the real line using radial basis functions. 

To show how one general sub-block in the Hermite matrix relates to an associated 
block of a Lagrange matrix, it will suffice to analyze the sub-block of the Lagrange 
interpolation matrix corresponding to two pairs of nearby points. Let these points 
be Xi, Xi + ~x, and f;.1, f.1 + ~f, for some indices i and j and some small distances 
~x and ~f.. Furthermore, let the radial function be of the form cp = cp(lx - f,I), 
x, f, E R. We also assume cp is differentiable at the origin. In the proof of the 
following lemma we make use of the following identities, which are straightforward 
applications of the univariate Taylor theorem 

(36.4) 

(36.5) 

To keep the notation as simple as possible we write a8xcp(lxi - f,1 1) to denote 

a8xcp(lx-f;,Jl)lx=xn a8e'P(lxi -f.11) to denote a8ecp(lxi -f;.l)le=€i' and a~~ecp(lxi -f.11) 

to denote a~~ecp(lx - f.l)lx=xi,€=€r 

Lemma 36.1. For the JD situation described above we have 

detML 
~x~f, = detMH + O(~x) + O(~f,), 

where ML is the part of the Lagrange matrix corresponding to the basis junctions 
centered at f.1 and f.1 + ~f, interpolating to values at Xi and Xi+ ~x, i.e., 

ML _ [ cp(lxi - l:,1 I) cp(lxi - (e1 + ~e)I) ] 
- cp(l(xi + ~x) - f.11) cp(l(xi + ~x) - (f.1 + ~e)I) ' 

and MH is the associated Hermite block 

MH = [ :(lxi - f.1 I) -;~ cp(jxi - E;,j I) l 
axcp(lxi - f.11) - axaecp(lxi - f.11) . 

Proof. If we use (36.4) to modify the second row of ML, and then subtract the 
first row from the second one, we obtain 

This technique is commonly used when analyzing sign properties of Hermite matri
ces (see, e.g., [Schumaker (1981)]). Now we repeat this process with (36.5) and the 
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second column of ML to get 

detML = ~x~~ x 

cp(lxi - ~jl) -Jecp(lxi - ~jl) + O(~~) 
:Xcp(lxi - ~ii)+ O(~x) - a~;e'P(lxi - ~ii)+ O(~x) + O(~~) 

and thus the statement follows. D 

We now illustrate the Hermite interpolation approach with a simple 2D example 
using first-order partial derivative functionals. 

Example 36.1. Let data {xi, f(xi)}i=I and {xi, ~(xi)}~n+l with x = (x, y) E 

R 2 be given. Thus 

i = 1, ... ,n, 
i = n+ 1, .. . ,N. 

Then 
N 

P1(x) = Lci,\Jcp(llx - ell) 
j=l 

n N Bcp 
= l:cjcp(llx -ejll) + L Cja(llx - ejll) 

j=l j=n+l ~ 
n N Bcp 

= L Cj'P(llx - ej II) - L Cj ax (lix - ej II). 
j=l j=n+l 

After enforcing the interpolation conditions the system matrix is given by 

with 

Aij = cp(llxi - eill), i,J = 1, ... , n, 

- 8cp 8cp 
(Ae)ij = 8~ (llxi -ejll) = - ax (llxi -ejll), i = 1, ... , n, j = n + 1, ... , N, 

- 8cp 
(Ax)ij = Bx (lixi - eill), i = n + 1, ... , N, j = 1, ... , n, 

i,j = n + 1, ... , N. 

Note that the two blocks Ae and Ax are identical provided the data sites and 
centers coincide since in this case the sign change due to differentiation with respect 
to the second variable in Ae is cancelled by the interchange of the roles of Xi and 
ej when compared to Ax. Here one needs to realize that the partial derivative of <p 

with respect to the coordinate x will always contain a linear factor in x, i.e., (for 
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the 2D example considered here) ip(llxll) = •p(r) = <p( y'x2 + y 2 ), so that by the 
chain rule 

a d a 
ax <p(llxll) = dr <p(r) ax r(x, y) 

d x 
= -<p( r )---;:::::== 

dr y'x2 + y2 

d x 
= dr <p(r) r (36.6) 

since r = llxll = y'x2 + y 2 . This argument generalizes for any odd-order derivative. 
Note that the matrix A is also symmetric for even-order derivatives. For exam

ple, one can easily verify that 

a2 - i ( 2 d2 Y2 d ) 
ax21P(llxll) - r2 x dr2<p(r) +---:;: dr<p(r) ' 

so that now the interchange of Xi and ej does not cause a sign change. On the 
other hand, two derivatives of <p with respect to the second variable e do not lead 
to a sign change, either. 

A catalog of RBFs and their derivatives is provided in Appendix D. 



Chapter 37 

RBF Hermite Interpolation in MATLAB 

We now illustrate the symmetric approach to Hermite interpolation with a set of 
numerical experiments for first-order Hermite interpolation (i.e., to positional and 
gradient data) in 2D using the MATLAB program RBFHermite-2D.m listed below as 
Program 37.1. Since derivatives of both the RBFs and the test function need to be 
included in the program we use the function 

f( x ) = tanh(9(y - x)) + 1 
'y tanh(9) + 1 

which has fairly simple partial derivatives (see lines 9-10 of the program) to generate 
the data. The RBF used in this set of experiments is the multiquadric with shape 
parameter c = 6. 

We compare four different problems: 

(1) Lagrange interpolation, i.e., interpolation to function values only, at a set of N 
equally spaced points in the unit square. 

(2) Lagrange interpolation to function values at 3N clustered points with separation 
distance q = O.lh, where his the fill distance of the set of equally spaced points 
(see the left plot in Figure 37.1). 

(3) The same as above, but with q = O.Olh (see the right plot in Figure 37.1). 
( 4) Hermite interpolation to function value, and values of both first-order partial 

derivatives at the N equally spaced points used in the first experiment. 

The standard Lagrange interpolants were computed via Program 2.1 with the 
required modification of the RBF and test function definitions, i.e., line 1 is replaced 
by 

1 rbf = ©(e,r) sqrt(1+(e*r).-2); ep = 6; 

and lines 2-6 are replaced by the single line 

2 testfunction = ©(x,y) (tanh(9*(y-x))+1)/(tanh(9)+1); 

The experiments with Lagrange interpolation at clustered data sites were ac
complished by the same program by adding the following code between lines 8 and 
9 in Program 2.1: 

339 
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q = 0.1/(sqrt(N)-1); 
grid= 1inspace(0,1,sqrt(N)); 
shifted= 1inspace(q,1+q,sqrt(N)); shifted(end) = 1-q; 
[xc1,yc1] = meshgrid(shifted,grid); 
[xc2,yc2] = meshgrid(grid,shifted); 
dsites = [dsites; xc1(:) ye!(:); xc2(:) yc2(:)]; 

The resulting data point sets for q = 0 .1/ (sqrt (N)-1), i.e., q = h/10, and for 
q = 0.01/(sqrt(N)-1) (or q = h/100) are shown in Figure 37.1. 

0. 8o 8o 8o 0.8 
11 0 0 0 

0.6 

8o 8o 8o y 
0 0 0 0 I 

0.4 

8o 8o 8o 0 0 0 0 0 
0.2 0.2 

- -
0 0.2 0.4 0.6 0.8 -o 0.2 - 0.4 0.6 0.8 

x x 

Fig. 37.1 Clustered point sets with N = 25 basic data points. Cluster size h/10 (left) and cluster 
size h/100 (right). 

The program RBFHermi te--20. m maintains the same basic structure as earlier 
interpolation programs. Now, however, we need to define derivatives of the RBF 
of up to twice the order of the data. This is done for the MQ basic function on 
lines 1-6. Note that the second-order partials could be expressed either as stated 
in Program 37.1 or as 

4 dxxrbf = ©(e,r,dy) e-2*(1+(e*dy).-2)./(1+(e*r).-2).-(3/2); 
6 dyyrbf = ©(e,r,dx) e-2*(1+(e*dx).-2)./(1+(e*r).-2).-(3/2); 

Here dx and dy denote non-radial difference terms of the x or y-components, re
spectively (see, e.g., (36.6) ). We choose the former representation since for many 
other basic functions these second-order partials are more naturally expressed in 
terms of the differences of the variable of differentiation (i.e., dxxrbf is expressed 
in terms of x-differences, etc.). 

Since the derivatives of the basic function now also contain the difference terms 
mentioned above, we need another subroutine that computes matrices of differ
ences of point coordinates. This subroutine is called Di ff erenceMatrix .m (see 
Program37.2), and it is built analogous to Program 1.1 (DistanceMatrix.m). Thus, 
on lines 17-22 of Program 37.1 we compute not only distance matrices of data sites 
and centers (or evaluation points and centers), but also the corresponding difference 
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matrices. These three matrices are then required when we evaluate the RBF and its 
partials to obtain the building blocks of the interpolation and evaluation matrices 
(see lines 25-35). Note the minus signs used with the blocks in columns 2 and 3 of 
the block matrices IM and EM on lines 31 and 35. They reflect differentiation of the 
basic function with respect to its second variable (c.f. (36.2) and (36.3)). 

The data are generated by sampling the test function and its derivatives (see 
lines 8-10, and line 23). Evaluation of the interpolant, error computation and 
rendering are exactly the same as in earlier programs. 

Program 37.1. RBFHermite...2D.m 

% RBFHermite_2D 
% Script that performs first-order 2D RBF Hermite interpolation 
% Calls on: DistanceMatrix, DifferenceMatrix 

% Define RBF and its derivatives 
1 rbf = ©(e,r) sqrt(1+(e*r).-2); % MQ RBF 
2 dxrbf = ©(e,r,dx) dx*e-2./sqrt(l+(e*r).-2); 
3 dyrbf = ©(e,r,dy) dy*e-2./sqrt(l+(e*r).-2); 
4a dxxrbf = ©(e,r,dx) e-2*(1+(e*r).-2-(e*dx).-2)./ ... 
4b (1+(e*r).-2).-(3/2); 
5 dxyrbf = ©(e,r,dx,dy) -e-4*dx.*dy./(1+(e*r).-2).-(3/2); 
6a dyyrbf = ©(e,r,dy) e-2*(1+(e*r).-2-(e*dy).-2)./ ... 
6b (1+(e*r).-2).-(3/2); 
7 ep = 6; 

% Define test function and its derivatives 
8 tf = ©(x,y) (tanh(9*(y-x))+1)/(tanh(9)+1); 
9 tfDx = ©(x,y) 9*(tanh(9*(y-x)).-2-1)/(tanh(9)+1); 

10 tfDy = ©(x,y) 9*(1-tanh(9*(y-x)).-2)/(tanh(9)+1); 
11 N = 289; gridtype = 'u'; 
12 neval = 40; 

% Load data points 
13 name= sprintf('Data2D_%d%s',N,gridtype); load(name) 
14 ctrs = dsites; 

% Create neval-by-neval equally spaced evaluation locations 
% in the unit square 

15 grid= linspace(0,1,neval); [xe,ye] = meshgrid(grid); 
16 epoints = [xe(:) ye(:)]; 

% Compute the distance and difference matrices for 
% evaluation matrix 

17 DM_eval = DistanceMatrix(epoints,ctrs); 
18 dx_eval = DifferenceMatrix(epoints(:,1),ctrs(:,1)); 
19 dy_eval = Differencematrix(epoints(:,2),ctrs(:,2)); 

% Compute the distance and difference matrices for 
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% interpolation matrix 
20 DM data= DistanceMatrix(dsites,ctrs); 
21 dx_data = DifferenceMatrix(dsites(:,1),ctrs(:,1)); 
22 dy_data = DifferenceMatrix(dsites(:,2),ctrs(:,2)); 
23a rhs = [tf(dsites(:,1),dsites(:,2)); .. . 
23b tfDx(dsites(:,1),dsites(:,2)); .. . 
23c tfDy(dsites(:,1),dsites(:,2))]; 
24 exact= tf(epoints(:,1),epoints(:,2)); 

% Compute blocks for interpolation matrix 
25 IM= rbf(ep,DM_data); 
26 DxIM = dxrbf(ep,DM_data,dx_data); 
27 DylM = dyrbf(ep,DM_data,dy_data); 
28 DxxIM = dxxrbf(ep,DM_data,dx_data); 
29 DxylM = dxyrbf(ep,DM_data,dx_data,dy_data); 
30 DyyIM = dyyrbf(ep,DM_data,dy_data); 

% Assemble symmetric interpolation matrix 
31a IM = [IM -DxIM -DylM; 
31b DxIM -DxxIM -DxylM; 
31c DylM -DxylM -DyyIM]; 

% Compute blocks for evaluation matrix 
32 EM= rbf(ep,DM_eval); 
33 DxEM = dxrbf(ep,DM_eval,dx_eval); 
34 DyEM = dyrbf(ep,DM_eval,dy_eval); 

/, Assemble evaluation matrix 
35 EM= [EM -DxEM -DyEM]; 

% RBF Hermite interpolant 
36 Pf= EM* (IM\rhs); 

% Compute errors on evaluation grid 
37 maxerr = norm(Pf-exact,inf); 
38 rms_err = norm(Pf-exact)/neval; 
39 fprintf('RMS error: /,e\n', rms_err) 
40 fprintf('Maximum error: %e\n', maxerr) 
41 fview = [-30,30]; % viewing angles for plot 
42 PlotSurf(xe,ye,Pf,neval,exact,maxerr,fview); 
43 PlotError2D(xe,ye,Pf ,exact,maxerr,neval,fview); 

Program 3 7 .2. Dif f erenceMatrix. m 

/, DM = DifferenceMatrix(datacoord,centercoord) 
% Forms the difference matrix of two sets of points in R 
% (some fixed coordinate of point in R-s), i.e., 
% DM(j,k) = datacoord_j - centercoord_k . 

1 function DM = DifferenceMatrix(datacoord,centercoord) 
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% The ndgrid command produces two MxN matrices: 
% dr, consisting of N identical columns 
% (each containing the M data sites) 

''· ,, cc, 

% 
[dr, cc] 

consisting of M identical rows 
(each containing the N centers) 
= ndgrid(datacoord(:),centercoord(:)); 

3 DM = dr-cc; 
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fu Tables 37.1 and 37.2 as well as Figure 37.2 we display RMS-errors, £2-
condition numbers of the interpolation matrices, and plots of the interpolants for 
the experiments described above. 

Several observations can be made. First, the limiting relation between clustered 
Lagrange interpolants and Hermite interpolants as discussed in the previous section 
is obvious. Moreover, it is also obvious that interpolation to function and derivative 
data at a given point is more accurate than interpolation to function values alone. 

Table 37.1 2D interpolation with clustered data vs. Hermite interpolation 
(part 1). 

Lagrange clustered, q = O. lh 

mesh RMS-error cond(A) RMS-error cond(A) 

3x3 l.620492e-001 6.078349e+001 8.4 71301e-002 9.052247e+003 
5x5 6.148258e-002 9.464176e+002 2. 733258e-002 3.073957e+005 
9x9 8.521994e-003 6.523036e+004 2.678543e-003 8.811980e+007 

17 x 17 2.246810e-004 9.017750e+007 3.138761e-005 3.555214e+012 
33 x 33 2.017643e-006 4. 799960e+013 2. 925 784e-007 6.474324e+020 

Table 37.2 2D interpolation with clustered data vs. Hermite interpolation 
(part 2). 

clustered, q = 0.0lh Hermite 

mesh RMS-error cond(A) RMS-error cond(A) 

3x3 9.084939e-002 8. 580483e+005 9.128193e-002 l .326346e+002 
5x5 2. 792157e-002 2.829762e+007 2. 794943e-002 2. 292450e+003 
9x9 2.687753e-003 8. 325283e+009 2.688346e-003 2.185224e+005 

17 x 17 3.147808e-005 3.426489e+014 3.148843e-005 2 .486624e+009 
33 x 33 8. 941613e-006 8. 9437 58e+020 5. 731027e-009 6.261336e+018 

The advantage of the Hermite interpolation approach over the clustered La
grange approach is clearly evident for the experiments with N = 33 x 33 = 1089 
basic data points (or N = 3267 clustered data points). In this case the f2-condition 
number of A for the clustered interpolants is on the order of 1020 , while it is "only" 
6.261336e-!-018 for the Hermite matrix. This difference, however, has a significant 
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impact on the numerical stability, and the resulting RMS-errors. The Hermite in
terpolant is more than three orders of magnitude more accurate than the Lagrange 
interpolant to clusters with q = h/100 (see the last row of Table 37.2). 
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Fig. 37.2 Fits for clustered interpolants with N = 289 basic data points. Top left to bottom 
right: Lagrange interpolant, interpolant with cluster size h/10, interpolant with cluster size h/100, 
Hermite interpolant. 



Chapter 38 

Solving Elliptic Partial Differential 
Equations via RBF Collocation 

In this chapter we discuss how the techniques used in previous chapters for Lagrange 
and Hermite interpolation can be applied to the numerical solution of elliptic partial 
differential equations. The resulting numerical method will be a collocation approach 
based on radial basis functions. In the PDE literature this is also often referred to 
as a strong form solution. 

To make the discussion transparent we will initially focus on the case of a time 
independent linear elliptic partial differential equation in IR2 . 

38.1 Kansa's Approach 

A now very popular non-symmetric method for the solution of elliptic PDEs with 
radial basis functions was suggested by Ed Kansa in [Kansa (1990b)]. In order to be 
able to clearly point out the differences between Kansa's method and a symmetric 
approach proposed in [Fasshauer (1997)] we recall some of the basics of scattered 
data interpolation with radial basis functions in lR8

• 

In the scattered data interpolation context we are given data {xi, fi}, i = 

1, ... , N, Xi E lR8
, where we can think of the values fi being sampled from a 

function f : lR8 
----+ IR. The goal is to find an interpolant of the form 

N 

P1(x) = L c1<p(llx - Xj II), x E IR8
' (38.1) 

j=l 

such that 

i = l, ... ,N. 

The solution of this problem leads to a linear system Ac= f with the entries of A 
given by 

i,j = 1, .. . ,N. (38.2) 

As discussed earlier, the matrix A is non-singular for a large class of radial functions 
including (inverse) multiquadrics, Gaussians, and the strictly positive definite com
pactly supported functions of Wendland, Wu, Gneiting or Buhmann. In the case 

345 



346 Meshfree Approximation Methods with MATLAB 

of strictly conditionally positive definite functions such as polyharmonic splines the 
problem needs to be augmented by polynomials. 

We now switch to the collocation solution of partial differential equations. As
sume we are given a domain n c JR 8

, and a linear elliptic partial differential equation 
of the form 

.Cu(x) = f(x), x inn, (38.3) 

with (for simplicity of description) Dirichlet boundary conditions 

u(x) = g(x), x on an. (38.4) 

For Kansa's collocation method we then choose to represent the approximate 
solution ft by a radial basis function expansion analogous to that used for scattered 
data interpolation, i.e., 

N 

u(x) = :Lcj'P(llx - ~jll). (38.5) 
j=l 

As in the previous chapter on Hermite interpolation we now formally distin
guish in our notation between centers 3 = { ~ 1, ... , ~ N} and collocation points 
x = {x1, ... 'XN} c n. While formally different, these points will often physically 
coincide. A scenario with 3 #- X will be explored in Chapters 39 and 40. For the 
following discussion we assume the simplest possible setting, i.e., 3 = X and no 
polynomial terms are added to the expansion (38.5). 

The collocation matrix that arises when matching the differential equation (38.3) 
and the boundary conditions (38.4) at the collocation points X will be of the form 

(38.6) 

where the two blocks are generated as follows: 

(AL)ij = .Ccp(iix - ~jii)ix=x., Xi ET, ~j E 3, 

Aij = 'P(llxi - ~jll), Xi EB, ~j E 3. 

Here the set X of collocation points is split into a set T of interior points, and a 
set B of boundary points. The problem is well-posed if the linear system Ac= y, 
with y a vector consisting of entries f(xi), Xi ET, followed by g(xi), Xi E B, has 
a unique solution. 

We note that a change in the boundary conditions (38.4) is as simple as making 
changes to a few rows of the matrix A in (38.6) as well as on the-right-hand side y. 

We also point out that while this is a rather general description of a numerical 
method with no particular RBF in mind, Kansa specifically proposed to use multi
quadrics in (38.5), and consequently this non-symmetric collocation approach often 
appears in the literature as the multiquadric method. In the paper [Kansa (l990b )1 
the author describes three sets of experiments using the multiquadric method and he 
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comments on the superior performance of multiquadrics in terms of computational 
complexity and accuracy when compared to finite difference methods. 

Moreover, Kansa suggests the use of varying shape parameters c: j, j = 1, ... , N. 
While the theoretical analysis of the resulting method is near intractable, Kansa 
shows that this technique improves the accuracy and stability of the method when 
compared to using only one constant value of E (see [Kansa (1990b)]). Except 
for one paper by Bozzini, Lenarduzzi and Schaback [Bozzini et al. (2002)] (which 
addresses only the interpolation setting) the theoretical aspects of varying shape 
parameters have not been discussed in the literature. 

A problem with Kansa's method is that - for a constant shape parameter 
E - the matrix A may be singular for certain configurations of the centers ~j. 
Originally, Kansa assumed that the non-singularity results established by Micchelli 
for interpolation matrices (see the discussion in the earlier chapters of this book) 
would carry over to the PDE case. However, as the numerical experiments of [Hon 
and Schaback (2001)] show, this is not so. This fact is not really surprising since the 
matrix for the collocation problem is composed of rows that are built from different 
functions, which - depending on the differential operator £ - might not even be 
radial. The results for the non-singularity of interpolation matrices, however, are 
based on the fact that A is generated by a single function <p. 

Nevertheless, an indication of the success of Kansa's method are the early 
papers [Dubai (1992); Dubai (1994); Golberg et al. (1996); Kansa (1992); 
Moridis and Kansa (1994)] and many more since. Since the numerical experiments 
of Hon and Schaback show that Kansa's method cannot be well-posed for arbitrary 
center locations, it is now an open question to find sufficient conditions on the center 
locations that guarantee invertibility of the Kansa matrix. One possible approach 
- built on the basic ideas of the greedy algorithm of Chapter 33 - is to adap
tively select "good" centers from a large set of possible candidates. Following this 
strategy it is possible to ensure invertibility of the collocation matrix throughout 
the iterative algorithm. This approach is described in the recent paper [Ling et al. 
(2006)]. 

Before we discuss an alternate approach (based on the symmetric Hermite in
terpolation method) which does ensure well-posedness of the resulting collocation 
matrix we would like to point out that in [Moridis and Kansa (1994)] the authors 
suggest how Kansa's method can be applied to other types of partial differential 
equation problems such as non-linear elliptic PDEs, systems of elliptic PDEs, and 
time-dependent parabolic or hyperbolic PDEs. We will also see in the next chapter 
that Kansa's method is well-suited for elliptic problems with variable coefficients. 
We will come back to the use of Kansa's method for time-dependent problems in 
Chapter 42. 
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38.2 An Hermite-based Approach 

The following symmetric collocation method is based on the generalized Hermite 
interpolation method detailed in Chapter 36. Assume we are given the same linear 
elliptic PDE (38.3) with Dirichlet boundary conditions (38.4) as in the previous 
section on Kansa's method. In order to be able to apply the results from generalized 
Hermite interpolation that will ensure the non-singularity of the collocation matrix 
we propose the following expansion for the unknown function u: 

Nz N 

u(x) = L Cj.Cecp(llx - e1Ule=ej + L Cjcp(llx - ej II). (38. 7) 
j=l j=Nz+l 

Here Nz denotes the number of nodes in the interior of n, and .ce is the differential 
operator used in the differential equation (38.3), but acting on <p viewed as a function 
of the second argument, i.e., £<p is equal to .ce <p up to a possible difference in sign. 
Thus, the linear functionals ,\ in (36.2) are given by Aj = 8ei o £, j = 1, ... , Nz, 

and Aj = 8ej, j = Nz + 1, ... , N. 
After enforcing the collocation conditions 

£u(xi) = f (xi), 

u(xi) = g(xi), 

Xi EI, 

Xi E f3, 

we end up with a collocation matrix A that is of the form 

Here the four blocks are generated as follows: 

(A.c.cdij = .c.cecp(llx - ell)lx=x;,e=ej' Xi, ej EI, 

(A.c)ij = £cp(llx - eill)lx=x., Xi E 'I, ei E !3, 

(A.ce)ij = .cecp(llxi - elUle=ej' Xi, E !3, ej EI, 

Aij = cp(llxi - ej II), Xi, ej E !3. 

(38.8) 

Note that we have identified the two sets X =I U l3 of collocation points and 3 of 
centers. 

The matrix A of (38.8) is of the same type as the generalized Hermite interpola
tion matrices (36.3), and therefore non-singular as long as <pis chosen appropriately. 
Thus, viewed using the new expansion (38.7) for u, the collocation approach is cer
tainly well-posed. Another point in favor of the Hermite-based approach is that 
the matrix (38.8) is symmetric as opposed to the completely unstructured matrix 
(38.6) of the same size used in the non-symmetric approach. This property is of 
value when trying to devise an efficient implementation of the collocation method. 
Also note that although A now consists of four blocks, it still is of the same size, 
namely N x N, as the collocation matrix (38.6) obtained for Kansa's approach. 
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However, the symmetric collocation matrix is more complicated to assemble, it re
quires smoother basis functions than the non-symmetric Kansa method, and it does 
not lend itself very nicely to the solution of non-linear problems. 

One attempt to obtain an efficient implementation of the Hermite-based collo
cation method is a variation of the greedy algorithm described in Section 33.1. We 
refer the reader to the original paper [Hon et al. (2003)] for details. 

38.3 Error Bounds for Symmetric Collocation 

A convergence analysis for the symmetric collocation method was provided in 
[Franke and Schaback (1998a); Franke and Schaback (1998b)]. The error estimates 
established in those papers require the solution of the PDE to be very smooth. 
Therefore, one should be able to use meshfree radial basis function collocation tech
niques especially well for (high-dimensional) PDE problems with smooth solutions 
on possibly irregular domains. Due to the known counterexamples from [Hon and 
Schaback (2001)] for the non-symmetric method, a convergence analysis is still lack
ing for that method. However, for an adaptive version of the non-symmetric method 
Schaback recently analyzed the convergence in [Schaback (2006a)]. 

In [Wendland (2005a)] one can find the following convergence result for the 
symmetric collocation method: 

Theorem 38.1. Let n ~ IR.8 be a polygonal and open region. Let £, =I= 0 be a 
second-order linear elliptic differential operator with coefficients in C 2(k-2) (0) that 
either vanish on n OT have no zero there. Suppose that cI> E C 2

k (IR.8
) is a strictly 

positive definite function. Suppose further that the boundary value problem 

LU= f inn, 

u = g on an 
has a unique solution u E N<t>(O) for given f E C(O) and g E C(80). Let u be the 
approximate collocation solution of the form {38. 7) based on cI> = <p(ll ·II). Then 

llu - ullLoo(O) < Chk-2 llullN<t>(O) 
for all sufficiently small h, where h is the larger of the fill distances in the interior 
and on the boundary of n, respectively. 

The proof uses the same techniques as in Chapter 14 and takes advantage of a 
"splitting theorem" that permits splitting the error into a boundary error and an 
error in the interior. As a consequence of the proof Wendland suggests that the 
collocation points and centers be chosen so that the fill distance on the boundary 
is smaller than in the interior since the approximation orders differ by a factor f, 

(for differential operators of order £). More precisely, he suggests distributing the 
points so that 

h k-l hk 
I,n ~ B,an· 



350 Meshfree Approximation Methods with MATLAB 

Some numerical evidence for convergence rates of the symmetric collocation 
method is given by the examples in the next chapter, and in the papers [Jumarhon 
et al. (2000); Power and Barraco (2002)]. 

38.4 Other Issues 

Since the methods described above were both originally used with globally sup
ported basis functions, the same concerns about stability and numerical efficiency 
apply as for interpolation problems. The two recent papers [Ling and Kansa (2004); 
Ling and Kansa (2005)] address these issues. In particular, the authors develop a 
preconditioner in the spirit of the one described in Section 34.3, and describe their 
experience with a domain decomposition algorithm. 

Recently, Miranda [Miranda (2004)] has shown that Kansa's method will be 
well-posed if it is combined with so-called R-functions. This idea was also used 
by Hollig and his co-workers in their development of web-splines (see, e.g., [Hollig 
(2003)]). 

Other recent papers investigating various aspects of radial basis function colloca
tion are, e.g., [Cheng et al. (2003); Fedoseyev et al. (2002); Kansa and Hon (2000); 
Larsson and Fornberg (2003); Leitao (2001); Mai-Duy and Tran-Cong (2001a); 
Young et al. (2004)]. 

For example, in the paper [Fedoseyev et al. (2002)] the authors suggest that 
the collocation points on the boundary should also be used to satisfy the PDE. The 
motivation for this modification is the well-known fact that both for interpolation 
and collocation with radial basis functions the error is largest near the boundary. In 
order to prevent the collocation matrix from becoming trivially singular (by using 
duplicate columns, i.e., basis functions) it is suggested in [Fedoseyev et al. (2002)] 
that the corresponding centers lie outside the domain !1 (thus creating additional 
basis functions). In various numerical experiments this strategy is shown to improve 
the accuracy of Kansa's non-symmetric method. We implement this approach in 
the next chapter. However, it should be noted that there is once more no theoret
ical foundation for this modification of either the non-symmetric or the symmetric 
method. 

Larsson and Fornberg compare Kansa's basic collocation method, the modifica
tion just described, and the Hermite-based symmetric approach mentioned earlier 
(see [Larsson and Fornberg (2003)]). Using multiquadric basis functions in a stan
dard implementation they conclude that the symmetric method is the most accu
rate, followed by the non-symmetric method with boundary collocation. The reason 
for this is the better conditioning of the system for the symmetric method. Lars
son and Fornberg also discuss an implementation of the three methods using the 
complex Contour-Pade integration method mentioned in Section 16.1. With this 
technique stability problems are overcome, and it turns out that both the symmet
ric and the non-symmetric method perform with comparable accuracy. Boundary 
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collocation of the PDE yields an improvement only if these conditions are used as 
additional equations, i.e., by increasing the problem size. It should also be noted 
that often the most accurate results were achieved with values of the multiquadric 
shape parameter c that would lead to severe ill-conditioning using a standard im
plementation, and therefore these results could be achieved only using the complex 
integration method. Moreover, in [Larsson and Fornberg (2003)] radial basis func
tion collocation is deemed to be far superior in accuracy to standard second-order 
finite differences or even a standard Fourier-Chebyshev pseudospectral method. 

Leitao applies the symmetric collocation method to a fourth-order Kirchhoff 
plate bending problem (see [Leitao (2001)]) and emphasizes the simplicity of the 
implementation of the radial basis function collocation method. Mai-Duy and Tran
Cong suggest a collocation method for which the basis functions are taken to be 
anti-derivatives of the usual radial basis functions (see [Mai-Duy and Tran-Cong 
(2001a)]). And, finally, in [Young et al. (2004)] the authors discuss the solution of 
2D and 3D Stokes' systems by a self-consistent iterative approach based on Kansa's 
non-symmetric method. 





Chapter 39 

Non-Symmetric RBF Collocation 
in MATLAB 

In this and the next two chapters we present a number of MATLAB implementations 
for standard Laplace/Possion problems, problems with variable coefficients, and 
problems with mixed or piecewise defined boundary conditions. The non-symmetric 
Kansa method is discussed in this chapter. We provide a fairly detailed presentation 
since the MATLAB code changes rather significantly from one problem to another. 

Most of the following test examples are similar to those studied in [Li et al. 
(2003)]. We restrict ourselves to two-dimensional elliptic problems whose analytic 
solution is readily available and therefore can easily be verified. We will refer to a 
point x in JR2 as (x, y). 

39.1 Kansa's Non-Symmetric Collocation Method 

Example 39.1. Consider the following Poisson problem with Dirichlet boundary 
conditions: 

V 2u(x, y) = -%?T2 sin(7rx) cos (?T;) , (x, y) E n = (0, 1]2, 

u(x,y) = sin(?Tx), (x,y) E I'1, 

u(x, y) = 0, (x, y) E I'2, 

(39.1) 

where r 1 = { (x, y) : 0 < x < 1, y = O} and I'2 =on\ I'1. As can easily be verified, 
the exact solution is given by 

u(x, y) = sin(?Tx) cos (?T;). 

A MATLAB program for the non-symmetric collocation solution of this problem 
using inverse multiquadric RBFs is provided as Program 39.l. While this program 
still is of the same general structure as earlier interpolation programs we now require 
not only a definition of the basic function, but also of its Laplacian (see line 2). On 
lines 3 and 4 we define the exact solution and its Laplacian for this test problem. 
Note that when we define the right-hand side of the problem, instead of breaking the 
boundary condition down into two pieces as given in the problem definition above 
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we simply evaluate the known solution on the boundary (see line 26 of the code). Of 
course, this is not possible in general since the solution will not be known. In that 
case one would have to replace line 26 by the slightly more complicated expression 

rhs = [Lu(intdata(:,1),intdata(:,2)); ... 
sin(pi*bdydata(1:sn-1,1)); zeros(3*(sn-1),1)]; 

In order to stay as close as possible to the code used in earlier programs we 
load the (interior) collocation points from data files. For example, on line 7 we 
read N = 289 uniformly spaced points in [O, 1] 2 from the file Data2D..289u into 
the variable dsi tes. As always, the centers for the basis functions associated with 
interior points are taken to be the same as the collocation (i.e., data) sites. 

However, as explained in the previous chapter, we now also require collocation 
points and centers to fit the boundary conditions. There are several approaches we 
could take to accomplish this: 

• We could use those collocation points read from file that lie on the boundary as 
boundary collocation points (and centers). This means identifying those points 
in the array dsi tes. This approach would be the closest in spirit to the theory 
discussed in the previous chapter. In MATLAB one could easily code this with 
the commands 

indx = find(dsites(:,1)==0 
dsites(:,2)==0 

bdydata = dsites(indx,:); 

dsites(: ,1)==1 I 
dsites(:,2)==1); 

intdata = dsites(setdiff([1:N],indx),:); 
bdyctrs = bdydata; 

However, we do not follow this approach here. 
• We can create additional collocation points for the boundary conditions. These 

points can lie anywhere on the boundary. We take them to be equally spaced 
(see lines 9-11). Note that we arrange the boundary points in a counter
clockwise manner starting from the origin. Now we have several choices for 
the boundary centers: 

- We can let the boundary centers coincide with the boundary collocation 
points. However, this approach will lead to a singular collocation matrix 
for uniform interior points (since that set already contains points on the 
boundary, and therefore duplicate columns are created). Note, however, 
that this approach works fine if we take the interior collocation points to 
be Halton points (since those points do not lie on the boundary of the unit 
square). This approach can be realized by replacing lines 12-14 by 

bdyctrs = bdydata; 

We can create additional boundary centers outside the domain (see lines 12-
15). We follow this approach in most of our experiments since it seems 
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to provide a slightly more accurate solution. Placing boundary centers 
away from the boundary has been recommended recently by a number of 
authors. Note that this approach takes us into the realm of RBF methods 
for which the centers differ from the data sites (or collocation points), and 
we stated earlier that not much is known theoretically about this setting 
(i.e., invertibility of system matrices or error bounds). It is an open problem 
how to find the best location for the boundary centers. We take them a 
small distance perpendicularly from the boundary collocation points (see 
Figure 39.1). 

Program 39.1. KansaLaplace_2D .m 

I. KansaLaplace_2D 
I. Script that performs Kansa collocation for 2D Laplace equation 
I. Calls on: DistanceMatrix 

I. IMQ RBF and its Laplacian 
1 rbf = ©(e,r) 1./sqrt(1+(e*r).-2); ep = 3; 
2 Lrbf = ©(e,r) e-2*((e*r).-2-2)./(1+(e*r).-2).-(5/2); 

I. Exact solution and its Laplacian for test problem 
3 u = ©(x,y) sin(pi*x).*cos(pi*y/2); 
4 Lu= ©(x,y) -1.25*pi-2*sin(pi*x).*cos(pi*y/2); 

I. Number and type of collocation points 
5 N = 289; gridtype = 'u'; 
6 neval = 40; 

I. Load (interior) collocation points 
7 name= sprintf('Data2D_/.d/.s',N,gridtype); load(name); 
8 intdata = dsites; 

I. Additional (equally spaced) boundary collocation points 
9 sn = sqrt(N); bdylin = linspace(0,1,sn)'; 

10 bdyO = zeros(sn-1,1); bdy1 = ones(sn-1,1); 
11a bdydata = [bdylin(1:end-1) bdyO; bdy1 bdylin(1:end-1); ... 
11b flipud(bdylin(2:end)) bdy1; bdyO flipud(bdylin(2:end))]; 

I. Create additional boundary centers OUTSIDE the domain 
12 h = 1/(sn-1); bdylin = (h:h:1-h)'; 
13 bdyO = -h*ones(sn-2,1); bdy1 = (1+h)*ones(sn-2,1); 
14a bdyctrs = [-h -h; bdylin bdyO; 1+h -h; bdy1 bdylin; ... 
14b 1+h 1+h; flipud(bdylin) bdyl; -h 1+h; bdyO flipud(bdylin)]; 
15 ctrs = [intdata; bdyctrs] ; 

I. Create neval-by-neval equally spaced evaluation locations 
I. in the unit square 

16 grid= linspace(0,1,neval); [xe,ye] = meshgrid(grid); 
17 epoints = [xe(:) ye(:)]; 

I. Compute evaluation matrix 
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18 DM_eval = DistanceMatrix(epoints,ctrs); 
19 EM= rbf(ep,DM_eval); 
20 exact= u(epoints(:,l),epoints(:,2)); 

% Compute blocks for collocation matrix 
21 DM_intdata = DistanceMatrix(intdata,ctrs); 
22 LCM= Lrbf(ep,DM_intdata); 
23 DM_bdydata = DistanceMatrix(bdydata,ctrs); 
24 BCM = rbf(ep,DM_bdydata); 
25 CM = [LCM; BCM]; 

% Create right-hand side 
26a rhs = [Lu(intdata(:,l),intdata(:,2)); 
26b u(bdydata(:,1),bdydata(:,2))]; 

% Compute RBF solution 
27 Pf= EM* (CM\rhs); 

% Compute maximum error on evaluation grid 
28 maxerr = norm(Pf-exact,inf); 
29 rms_err = norm(Pf-exact)/neval; 
30 fprintf('RMS error: %e\n', rms_err) 
31 fprintf('Maximum error: %e\n', maxerr) 

% Plot collocation points and centers 
32 hold on; plot(intdata(:,1),intdata(:,2),'bo'); 
33 plot(bdydata(:,1),bdydata(:,2),'rx'); 
34 plot(bdyctrs(:,1),bdyctrs(:,2),'gx'); hold off 
35 fview = [-30,30]; % viewing angles for plot 
36 PlotSurf(xe,ye,Pf,neval,exact,maxerr,fview); 
37 PlotError2D(xe,ye,Pf,exact,maxerr,neval,fview); 

In Tables 39.1 and 39.2 we list RMS-errors and condition numbers for the non
symmetric collocation solution of the PDE problem (39.1). In Table 39.1 and the 
right part of Table 39.2 we present results for collocation with inverse multiquadric 
RBFs using a shape parameter of c = 3, N = 289 interior, and an additional 64 
boundary collocation points. In Table 39.1 the interior points are irregularly spaced 
Halton points, while in Table 39.2 we use uniformly spaced interior points. The 
boundary centers are placed outside the domain for the results in Table 39.2 (see 
the explanation above and the left part of Figure 39.1). In Table 39.1 we compare 
the effect of placing the boundary centers directly on the boundary (coincident with 
the boundary collocation points) as opposed to placement outside the domain as in 
Figure 39.1. 

The left part of Table 39.2 compares the use of Gaussians (with the same shape 
parameter c = 3) to inverse multiquadrics. For Gaussians we replace lines 1 and 2 
of Program 39.1 by 

1 rbf = ©(e,r) exp(-(e*r).-2); ep = 3; 
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Table 39.1 Non-symmetric collocation solution of Example 39.1 with IMQs, e = 3 
and interior Halton points. 

N 
centers on boundary centers outside 

(interior points) RMS-error cond(A) RMS-error cond(A) 

9 5.642192e-002 5. 2764 7 4e+002 6. 029293e-002 4.399608e+002 
25 l .039322e-002 3.418858e+003 4.187975e-003 2. 259698e+003 
81 2. 386062e-003 1. 726995e+006 4.895870e-004 3.650369e+005 
289 4.904715e-005 1. 706884e+010 2.668524e-005 5.328110e+009 

1089 3.676576e-008 l.446865e+018 1. 946954e-008 5.015917e+017 

Table 39.2 Non-symmetric collocation solution of Example 39.1 with Gaussians and 
IMQs, e = 3 and uniform interior points and boundary centers outside the domain. 

N 
Gaussian IMQ 

(interior points) RMS-error cond(A) RMS-error cond(A) 

3x3 1.981675e-001 1. 258837 e+003 1. 526456e-OO 1 2.794516e+002 
5x5 7.19993le-003 4.136193e+003 6.096534e-003 2.409431e+003 
9x9 1. 94 7108e-004 2.529708e+010 8.071271e-004 8. 771630e+005 

17 x 17 4.l 74290e-008 5.335000e+019 3.219110e-005 5.981238e+010 
33 x 33 l .408750e-005 7 .106505e+020 1. 55204 7 e-007 1. 706638e+020 
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Several observations can be made by looking at Tables 39.1 and 39.2. The use of 
Halton points instead of uniform points seems to be beneficial since both the errors 
and the condition numbers are smaller ( c.f. the right part of Table 39.1 vs. the right 
part of Table 39.2). Placement of the boundary centers outside the domain seems 
to be advantageous since again both the errors and the condition numbers decrease 
(c.f. Table 39.1). Also, the last row of Table 39.2 seems to indicate that Gaussians 
are more prone to ill-conditioning than inverse multiquadrics. 

Of course, these are rather superficial observations based on only a few numerical 
experiments. For many of these claims there is no theoretical foundation, and 
many more experiments would be needed to make a more conclusive statement (for 
example, no attempt was made here to find the best approximations, i.e., optimize 
the value of the shape parameter). Also, one could experiment with different values 
of the shape parameter on the boundary and in the interior (as suggested, e.g., in 
[Kansa and Carlson (1992)]). 

The collocation points and centers used here (and in most of the following ex
amples) are displayed in the left plot of Figure 39.1, while the right plot contains 
a solution for N = 289 interior Halton points corresponding to row 4 in the right 
part of Table 39.1. 
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Fig. 39.1 Collocation points (interior: blue circles, boundary: red crosses) and centers (interior: 
blue circles, boundary: green crosses) (left) and non-symmetric RBF collocation solution (right) 
for Example 39.1 using IMQs with € = 3 and N = 289 interior points. 

Example 39.2. Consider the following elliptic equation with variable coefficients 
and homogeneous Dirichlet boundary conditions: 

:x ( a(x, y) :x u(x, y)) + :y ( b(x, y) :y u(x, y)) = J(x, y), 

u(x, y) = 0, (x, y) EI'= 80., 

where 

(x,y) E 0. = [O, 1] 2
, 

J(x, y) = -16x(l - x)(3 - 2y)ex-y + 32y(l - y)(3x2 + y2 - x - 2), 

and the coefficients are given by 

a(x,y) = 2 - x 2 -y2
, 

As can easily be verified, the exact solution for this problem is given by 

u(x, y) = 16x(l - x)y(l - y). 

The corresponding MATLA'B program is listed as Program 39.2. The definition 
section of this program (lines 1-9) is much longer than before since we need to 
work with first and second-order partial derivatives of the basic function. Also, the 
coefficients a and b and their partials are required. 

While most of the remainder of the program is identical to the previous one, 
the assembly of the collocation matrix (lines 26-32) is much more involved since 
we need to apply the differential operator to the basis functions (see line 30 for 
the computation of the block LCM which corresponds to the block A.c in our earlier 
discussion (38.6)). 

Program 39.2. KansaEllipticVC...2D.m 

% KansaEllipticVC_2D 
% Script that performs Kansa collocation for 2D elliptic PDE 
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% with variable coefficients 
% Calls on: DistanceMatrix, DifferenceMatrix 

% IMQ RBF and its derivatives 
1 rbf = ©(e,r) 1./sqrt(1+(e*r).-2); ep = 3; 
2 dxrbf = ©(e,r,dx) -dx*e-2./(l+(e*r).-2).-(3/2); 
3 dyrbf = ©(e,r,dy) -dy*e-2./(1+(e*r).-2).-(3/2); 
4a dxxrbf = ©(e,r,dx) e-2*(3*(e*dx).-2-1-(e*r).-2)./ ... 
4b (l+(e*r).-2).-(5/2); 
5a dyyrbf 
5b 

= ©(e,r,dy) e-2*(3*(e*dy).-2-1-(e*r).-2)./ ... 
(1+(e*r).-2).-(5/2); 

% Test problem input (right-hand side, coefficients) 
6 u = ©(x,y) 16*x.*(1-x).*y.*(1-y); 
7a Lu= ©(x,y) -16*x.*exp(x-y).*(1-x).*(3-2*y)+ ... 
7b 32*y.*(1-y).*(3*x.-2+y.-2-x-2); 
8 a= ©(x,y) 2-x.-2-y.-2; ax= ©(x,y) -2*x; 
9 b = ©(x,y) exp(x-y); by= ©(x,y)-exp(x-y); 

10 N = 289; gridtype = 'h'; 
11 neval = 40; 

% Load (interior) collocation points 
12 name= sprintf('Data2D_%d%s',N,gridtype); load(name); 
13 intdata = dsites; 

% Additional boundary collocation points 
14 sn = sqrt(N); bdylin = linspace(0,1,sn)'; 
15 bdyO = zeros(sn-1,1); bdyl = ones(sn-1,1); 
16a bdydata = [bdylin(1:end-1) bdyO; bdy1 bdylin(1:end-1); ... 
16b flipud(bdylin(2:end)) bdy1; bdyO flipud(bdylin(2:end))]; 

% Create additional boundary centers OUTSIDE the domain 
17 h = 1/(sn-1); bdylin = (h:h:1-h)'; 
18 bdyO = -h*ones(sn-2,1); bdy1 = (1+h)*ones(sn-2,1); 
19a bdyctrs = [-h -h; bdylin bdyO; 1+h -h; bdy1 bdylin; ... 
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19b 1+h 1+h; flipud(bdylin) bdy1; -h 1+h; bdyO flipud(bdylin)]; 
20 ctrs = [intdata; bdyctrs] ; 

% Create neval-by-neval equally spaced evaluation locations 
% in the unit square 

21 grid= linspace(0,1,neval); [xe,ye] = meshgrid(grid); 
22 epoints = [xe(:) ye(:)]; 

% Compute evaluation matrix 
23 DM_eval = DistanceMatrix(epoints,ctrs); 
24 EM= rbf(ep,DM_eval); 
25 exact= u(epoints(:,1),epoints(:,2)); 

% Compute blocks for collocation matrix 
26 DM_intdata = DistanceMatrix(intdata,ctrs); 
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27 DM_bdydata = DistanceMatrix(bdydata,ctrs); 
28 dx_intdata = Differencematrix(intdata(:,1),ctrs(:,1)); 
29 dy_intdata = Differencematrix(intdata(:,2),ctrs(:,2)); 
30a LCM= diag(ax(intdata(:,1))) * ... 
30b dxrbf (ep,DM_intdata,dx_intdata) + ... 
30c diag(a(intdata(:,1),intdata(:,2))) * .. . 
30d dxxrbf(ep,DM_intdata,dx_intdata) + .. . 
30e diag(by(intdata(:,1),intdata(:,2))) * 
30f dyrbf (ep,DM_intdata,dy_intdata) + ... 
30g diag(b(intdata(:,1),intdata(:,2))) * ... 
30h dyyrbf(ep,DM_intdata,dy_intdata); 
31 BCM = rbf(ep,DM_bdydata); 
32 CM = [LCM; BCM]; 

!. Create right-hand side 
33 rhs = [Lu(intdata(:,1),intdata(:,2)); zeros(4*(sn-1),1)]; 

!. RBF solution 
34 Pf= EM* (CM\rhs); 

!. Compute maximum error on evaluation grid 
35 maxerr = norm(Pf-exact,inf); 
36 rms_err = norm(Pf-exact)/neval; 
37 fprintf('RMS error: /.e\n', rms_err) 
38 fprintf('Maximum error: /.e\n',-maxerr) 

!. Plot collocation points and centers 
39 hold on; plot(intdata(:,1),intdata(:,2),'bo'); 
40 plot(bdydata(:,1),bdydata(:,2),'rx'); 
41 plot(bdyctrs(:,1),bdyctrs(:,2),'gx'); hold off 
42 fview = [-30,30]; % viewing angles for plot 
43 PlotSurf(xe,ye,Pf,neval,exact,maxerr,fview); 
44 PlotError2D(xe,ye,Pf,exact,maxerr,neval,fview); 

In Table 39.3 we compare the solution obtained with Gaussians and inverse 
multiquadrics based on interior Halton points. The boundary centers are taken to 
lie outside the domain as in Figure 39.1. Again, the solution with inverse multi
quadrics is slightly better conditioned. For Gaussians we need to replace lines 1-5 
of Program 39.2 by 

1 rbf = ©(e,r) exp(-(e*r).-2); ep = 3; 
2 dxrbf = ©(e,r,dx) -2*dx*e-2.*exp(-(e*r).-2); 
3 dyrbf = ©(e,r,dy) -2*dy*e-2.*exp(-(e*r).-2); 
4 dxxrbf = ©(e,r,dx) 2*e-2*(2*(e*dx).-2-1).*exp(-(e*r).-2); 
5 dyyrbf = ©(e,r,dy) 2*e-2*(2*(e*dy) .-2-1).*exp(-(e*r).-2); 

The top part of Figure 39.2 contains plots of the approximate solution and 
maximum error for the inverse multiquadric solution based on N = 289 interior 
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Table 39.3 Solution of Example 39.2 with Gaussians and IMQs, c = 3 and interior 
Halton points. 

N 
Gaussian IMQ 

(interior points) RMS-error cond(A) RMS-error cond(A) 

9 6.852103e-002 8.874341e+003 l.123770e-001 6. 954910e+002 
25 l.091888e-002 4.898291e+003 l.123575e-002 3.302471e+003 
81 1.854386e-004 l .286993e+009 l .370992e-003 4.992219e+005 

289 8.445637 e-007 7.031011e+019 8.105109e-005 7.527 456e+009 
1089 2.559824e-005 4.553162e+020 7.041415e-008 7. 785955e+017 

and 64 boundary points. 
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Example 39.3. Consider the Poisson problem with mixed boundary conditions 

where 

V 2 u(x, y) = -5.4x, (x,y) E f2=[O,1] 2
, 

8 
on u(x, y) = 0, (x,y) Erl u r3, 

(x, y) E r2, u(x, y) = 0.1, 

u(x, y) = 1, (x, y) E r4, 

ri = {(x, y) : 0 < x < 1, y = O}, 

r2 = {(x, y) : x = 1, 0 ~ y ~ 1}, 

r3 = {(x, y) : 0 ~ x < 1, y = 1}, 

r4={(x,y): x=O, O~y<l}. 

For this problem the exact solution is given by 

u(x, y) = 1 - 0.9x3 . 

Note that the normal derivative on the edges r 1 and r3 is given by gy and 

- gy, respectively. Therefore, for the MATLAB program we require they-partial of 
the basic function in addition to its definition and its Laplacian (see lines 1-3 of 
Program 39.3). Again, the main difference in the code is in the assembly of the 
collocation matrix on lines 22-30. Note that this time we need to deal carefully 
with the boundary conditions and right-hand side (see lines 26-29 and 30). It is 
important that the orientation of the boundary points is consistent. 

Program 39.3. KansaLaplaceMixedBC...2D. m 

% KansaLaplaceMixedBC_2D 
% Script that performs Kansa collocation for 2D Laplace equation 
% with mixed BCs 
% Calls on: DistanceMatrix, DifferenceMatrix 
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% IMQ RBF and its Laplacian 

1 rbf = ©(e,r) 1./sqrt(1+(e*r).-2); ep = 3; 

2 dyrbf = ©(e,r,dy) -dy*e-2./(1+(e*r).-2).-(3/2); 

3 Lrbf = ©(e,r) e-2*((e*r).-2-2)./(1+(e*r).-2).-(5/2); 

% Exact solution and its Laplacian for test problem 

4 u = ©(x,y) 1-0.9*x.-3+0*y; 

5 Lu = ©(x,y) -5.4*x+O*y; 

% Number and type of collocation points 

6 N = 289; gridtype = 'h'; 

7 neval = 40; 

% Load (interior) collocation points 

8 name= sprintf('Data2D_%d%s',N,gridtype); load(name); 

9 intdata = dsites; 

% Additional boundary collocation points 

10 sn = sqrt(N); bdylin = linspace(0,1,sn)'; 

11 bdyO = zeros(sn-1,1); bdy1 = ones(sn-1,1); 

12a bdydata = [bdylin(1:end-1) bdyO; bdy1 bdylin(1:end-1); 

12b flipud(bdylin(2:end)) bdy1; bdyO flipud(bdylin(2:end))]; 

% Create additional boundary centers OUTSIDE the domain 

13 h = 1/(sn-1); bdylin = (h:h:l-h)'; 

14 bdyO = -h*ones(sn-2,1); bdy1 = (1+h)*ones(sn-2,1); 

15a bdyctrs = [-h -h; bdylin bdyO; 1+h -h; bdy1 bdylin; 

15b 1+h 1+h; flipud(bdylin) bdy1; -h 1+h; bdyO flipud(bdylin)]; 

16 ctrs = [intdata; bdyctrs]; 

% Create neval-by-neval equally spaced evaluation locations 

% in the unit square 

17 grid= linspace(0,1,neval); [xe,ye] = meshgrid(grid); 

18 epoints = [xe(:) ye(:)]; 

% Compute evaluation matrix 

19 DM_eval = DistanceMatrix(epoints,ctrs); 

20 EM= rbf(ep,DM_eval); 

21 exact= u(epoints(:,1),epoints(:,2)); 

% Compute blocks for collocation matrix 

22 DM_intdata = DistanceMatrix(1ntdata,ctrs); 

23 DM_bdydata = DistanceMatrix(bdydata,ctrs); 

24 dy_bdydata = Differencematrix(bdydata(:,2),ctrs(:,2)); 

25 LCM= Lrbf(ep,DM_intdata); 

26 BCM1 = -dyrbf(ep,DM_bdydata(1:sn-1,:),dy_bdydata(1:sn-1,:)); 

27 BCM2 = rbf(ep,DM_bdydata(sn:2*sn-2,:)); 

28a BCM3 = dyrbf(ep,DM_bdydata(2*sn-1:3*sn-3,:), ... 

28b dy_bdydata(2*sn-1:3*sn-3,:)); 
29 BCM4 = rbf(ep,DM_bdydata(3*sn-2:end,:)); 



39. Non-Symmetric RBF Collocation in MATLAB 

30 CM= [LCM; BCM1; BCM2; BCM3; BCM4]; 
I. Create right-hand side 

31a rhs = [Lu(intdata(:,1),intdata(:,2)); zeros(sn-1,1); ... 
31b 0.1•ones(sn-1,1); zeros(sn-1,1); ones(sn-1,1)]; 

% RBF solution 
32 Pf= EM* (CM\rhs); 

% Compute maximum error on evaluation grid 
33 maxerr = norm(Pf-exact,inf); 
34 rms_err = norm(Pf-exact)/neval; 
35 fprintf('RMS error: /.e\n', rms_err) 
36 fprintf('Maximum error: /.e\n', maxerr) 

I. Plot collocation points and centers 
37 hold on; plot(intdata(:,1),intdata(:,2),'bo'); 
38 plot(bdydata(:,1),bdydata(:,2),'rx'); 
39 plot(bdyctrs(:,1),bdyctrs(:,2),'gx'); hold off 
40 fview = [-30,30]; % viewing angles for plot 
41 PlotSurf(xe,ye,Pf,neval,exact,maxerr,fview); 
42 PlotError2D(xe,ye,Pf,exact,maxerr,neval,fview); 

363 

In Table 39.4 we again compare the use of Gaussians and inverse multiquadrics 
on a set of N = 9, 25, 81, 289 and 1089 interior Halton points (with additional 
boundary centers outside the domain). As in the previous experiments the Gaussian 
solution is slightly inferior in terms of stability for the same value of the shape 
parameter. 

Table 39.4 Non-symmetric collocation solution of Example 39.3 with Gaussians and 
IMQs, c = 3 and interior Halton points. 

N 
Gaussian IMQ 

(interior points) RMS-error cond(A) RMS-error cond(A) 

9 3.423330e-001 5. 430073e+003 7. 937 403e-002 2. 782348e+002 
25 1.065826e-002 1. 605086e+003 5.605445e-003 1.680888e+003 
81 5.382387e-004 3.684159e+008 1.487160e-003 2. 6 l l 650e+005 

289 6.181855e-006 1.452124e+Ol9 1. 822077 e-004 3. 775455e+009 
1089 2. 0604 70e-006 1.628262e+021 l.822221e-007 3.155751e+017 

In the bottom part of Figure 39.2 we show the inverse multiquadric solution for 
N = 289 interior points along with its maximum error. Note that (even though the 
problem has a symmetric solution) the approximate solution is not quite symmetric 
(as demonstrated by the error plot, c.f. also the top part of Figure 39.2). 
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Fig. 39.2 Top: Non-symmetric collocation solution (left) and error plot (right) for Example 39.2 
using IMQs with c = 3 and N = 289 interior Halton points. Bottom: Approximate solution (left) 
and error plot (right) for Example 39.3 using IMQs with c = 3 and N = 289 interior Halton points. 

In [Li et al. (2003)] the authors report that the non-symmetric collocation 
solution for this problem with multiquadric RBFs is several orders of magnitude 
more accurate than a solution with piecewise linear finite elements using the same 
number of nodes. 



Chapter 40 

Symmetric RBF Collocation in MATLAB 

In this chapter we discuss the implementation of the Hermite-based symmetric 
collocation method. Again, our discussion is fairly detailed with complete MATLAB 
code. As in the previous chapter we restrict ourselves to two-dimensional elliptic 
problems whose analytic solution is readily available and therefore can easily be 
verified. We will refer to a point x in IR2 as (x, y). 

40.1 Symmetric Collocation Method 

For problems involving the Laplacian we now require also the differential operator 

2 2 ( 8
2 

8
2 

) ( 82 82 ) 
V7 e V7 = 8~2 + 8rJ2 8x2 + 8y2 

( 
82 82 82 82 82 82 82 82 ) 
8e 8x2 + 8772 8x2 + 8e 8y2 + 8712 8y2 

( 
84 84 84 ) 

8x4 + 2 8x2y2 + 8y4 ' 

where the simplification in the last line is justified since we are working with even
order derivatives. For example, using the chain rule with r = llx - eJJ we get for 
various radial basis functions in IR2 : 

IMQ, 

More examples of RBFs and their derivatives are collected in Appendix D. 

( 40.1) 

(40.2) 

( 40.3) 

Example 40.1. We use the same PDE and boundary condition as in Exam
ple 39.1. A MATLAB program for symmetric Hermite-based collocation is given as 
Program 40.1. Note that this program is quite a bit more complicated than the 
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corresponding one for the non-symmetric collocation method (c.f. Program 39.1). 
The evaluation matrix EM now consists of two blocks (similar to the collocation ma
trix for the non-symmetric case, see lines 19-23), whereas the collocation matrix is 
assembled from four blocks ( c.f. lines 25-33). Note that we now also require one of 
the iterated Laplacians of the basic function as listed in (40.1)-(40.3). 

Program 40.1. HermiteLaplace--20.m 

I. HermiteLaplace_2D 
I. Script that performs Hermite collocation for 20 Laplace equation 
I. Calls on: DistanceMatrix 

I. IMQ RBF and its Laplacian and double Laplacian 
1 rbf = ©(e,r) 1./sqrt(l+(e*r).-2); ep = 3; 
2 Lrbf = ©(e,r) e-2*((e*r).-2-2)./(1+(e*r).-2).-(5/2); 
3a L2rbf = ©(e,r) 3*e-4*(3*(e*r).-4-24*(e*r).-2+8)./ ... 
3b (l+(e*r).-2).-(9/2); 

I. Exact solution and its Laplacian for test problem 
4 u = ©(x,y) sin(pi*x).*cos(pi*y/2); 
5 Lu= ©(x,y) -1.25*pi-2*sin(pi*x).*cos(pi*y/2); 

I. Number and type of collocation points 
6 N = 289; gridtype = 'u'; 
7 neval = 40; 

I. Load (interior) collocation points 
8 name= sprintf('Data2D_/.d/.s',N,gridtype); load(name); 
9 intdata = dsites; 

I. Additional (equally spaced) boundary collocation points 
10 sn = sqrt(N); bdylin = linspace(0,1,sn)'; 
11 bdyO = zeros(sn-1,1); bdy1 = ones(sn-1,1); 
12a bdydata = [bdylin(1:end-1) bdyO; bdy1 bdylin(1:end-1); 
12b flipud(bdylin(2:end)) bdy1; bdyO flipud(bdylin(2:end))]; 

I. Create additional boundary centers OUTSIDE the domain 
13 h = 1/(sn-1); bdylin = (h:h:1-h)'; 
14 bdyO = -h*ones(sn-2,1); bdy1 = (1+h)*ones(sn-2,1); 
15a bdyctrs = [-h -h; bdylin bdyO; 1+h -h; bdy1 bdylin; 
15b 1+h 1+h; flipud(bdylin) bdy1; -h 1+h; bdyO flipud(bdylin)]; 
16 intctrs = intdata; 

I. Create neval-by-neval equally spaced evaluation locations 
I. in the unit square 

17 grid= linspace(0,1,neval); [xe,ye] = meshgrid(grid); 
18 epoints = [xe(:) ye(:)]; 

I. Compute evaluation matrix 
19 DM_inteval = DistanceMatrix(epoints,intctrs); 
20 LEM= Lrbf(ep,DM_inteval); 
21 DM_bdyeval = DistanceMatrix(epoints,bdyctrs); 
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22 BEM = rbf(ep,DM_bdyeval); 
23 EM= [LEM BEM]; 
24 exact= u(epoints(:,1),epoints(:,2)); 

% Compute blocks for collocation matrix 
25 DM_IIdata = DistanceMatrix(intdata,intctrs); 
26 LLCM = L2rbf(ep,DM_I!data); 
27 DM_IBdata = DistanceMatrix(intdata,bdyctrs); 
28 LBCM = Lrbf(ep,DM_IBdata); 
29 DM_Bidata = DistanceMatrix(bdydata,intctrs); 
30 BLCM = Lrbf(ep,DM_Bidata); 
31 DM_BBdata = DistanceMatrix(bdydata,bdyctrs); 
32 BBCM = rbf(ep,DM_BBdata); 
33 CM= [LLCM LBCM; BLCM BBCM]; 

% Create right-hand side 
34a rhs = [Lu(intdata(:,1),intdata(:,2)); 
34b sin(pi*bdydata(l:sn-1,1)); zeros(3*(sn-1),1)]; 

% Compute RBF solution 
35 Pf= EM* (CM\rhs); 

% Compute maximum error on evaluation grid 
36 maxerr = norm(Pf-exact,inf); 
37 rms_err = norm(Pf-exact)/neval; 
38 fprintf('RMS error: %e\n', rms_err) 
39. fprintf('Maximum error: %e\n', maxerr) 

% Plot collocation points and centers 
40 hold on; plot(intdata(:,1),intdata(:,2),'bo'); 
41 plot(bdydata(:,1),bdydata(:,2),'rx'); 
42 plot(bdyctrs(:,1),bdyctrs(:,2),'gx'); hold off 
43 fview = [-30,30]; % viewing angles for plot 
44 PlotSurf(xe,ye,Pf,neval,exact,maxerr,fview); 
45 PlotError2D(xe,ye,Pf,exact,maxerr,neval,fview); 
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As above we deal with the boundary by allowing the use of different collocation 
points and centers along the boundary. This causes the collocation matrix to be 
non-symmetric, and therefore the theoretical foundation of Chapter 38 no longer 
applies, i.e., it is not clear that in this case the matrix is invertible. In order to 
work with a "safe" symmetric (and guaranteed invertible) matrix one should replace 
lines 13-15 with 

bdyctrs = bdydata; 

Note that, contrary to the non-symmetric Kansa approach, we can do this for both 
uniform and non-uniform interior points. In this case it is also possible to simplify 
the assembly of the collocation matrix. We can remove lines 29-30 and replace 
line 33 by 

CM = [LLCM LBCM; LBCM' BBCM]; 
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The same set of experiments as for the non-symmetric Kansa method (see 
Tables 39.1 and 39.2) are displayed in Tables 40.1 and 40.2 for the symmetric 
Hermite-based method. 

Table 40.1 Symmetric collocation solution of Example 40.l with IMQs, c = 3 and 
Halton points. 

N 
centers on boundary centers outside 

(interior points) RMS-error cond(A) RMS-error cond(A) 

9 1.869505e-001 9.055720e+003 2.438041e-001 3.549895e+004 
25 7.698471e-002 8. 506782e+004 9.429580e-002 1.162027e+005 
81 4. 839682e-003 l .338599e+007 5.070833e-003 l.017388e+007 

289 4.480250e-005 9.991615e+010 3.448546e-005 7.180249e+010 
1089 2.481407e-008 2.820823e+018 1. 907000e-008 2.262777e+018 

We note that, as for the non-symmetric collocation method, inverse multi
quadrics with interior Halton points and exterior boundary centers seems to per
form overall slightly better than the other choices (i.e., Gaussians, interior uniform 
points, or boundary centers on the boundary). 

Table 40.2 Symmetric collocation solution of Example 40.1 with Gaussians and IMQs, 
c = 3 and uniform points with boundary centers outside the domain. 

N 
Gaussian IMQ 

(interior points) RMS-error cond(A) RMS-error cond(A) 

3x3 4.088188e-001 1.196486e+005 2.806897e-001 3.105155e+004 
5x5 7. 704584e-003 1.359899e+005 l.583948e-001 1.216534e+005 
9x9 2.272289e-004 2.453107e+010 8. 650782e-004 2.016503e+007 

17 x 17 5.271776e-008 4.338406e+021 3. 962654e-005 6.051588e+Ol 1 
33 x 33 5.805757e-007 1.438258e+022 1.870210e-007 2.324115e+020 

It is remarkable, however, how small the difference in performance between the 
symmetric and non-symmetric approach is. This can be concluded by comparing 
the tables in Example 39.1 with those in Example 40.1. Also, Figure 40.1 shows 
error plots for the two methods using the same set of parameters, i.e., inverse 
multiquadrics with c = 3, N = 289 interior Halton points and 64 boundary points 
with the boundary centers placed outside the domain as in Figure 39.1. 

The example above shows very high convergence rates as predicted by the es
timate in Theorem 38.1 when using infinitely smooth inverse multiquadrics on a 
problem that has a smooth solution. 

Example 40.2. A MATLAB implementation of the variable coefficient problem of 
Example 39.2, while theoretically possible, is very cumbersome using the symmetric 
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Fig. 40.1 Error plots for the collocation solution of Example 39.1 (Example 40.1) using IMQs 
withe= 3 and N = 289 interior Halton points; boundary centers outside domain. Kansa's method 
(left) and symmetric method (right). 

collocation method. For example, since the differential operator £, is given by 

£= :x (a(x,y):x) + :y (b(x,y):y) 

the basic expansion for the RBF solution is 
NB N 

L Cj'f?(llx - ~j 11) + L cj.ce'P(llx - ~ll)le-ej, 
j=l j=N13+l 

with 

.ce = :~ ( a(e, 77) :e) + :7] ( b(e, 77) :7]) . 
This, however implies that the block A.c.ce of the symmetric collocation matrix has 
entries computed with the differential operator 

.c.ce = [:x (a(x,y):x) + :Y (b(x,y):Y)] [:e (a(e,77):e) + : 77 (b(e,77):77 )] 

a4 84 
= a(x, y)a(e, 17) 

8
x 4 + (a(x, y)b(e, 17) + b(x, y)a(e, 77)) 

8
x 28Y2 + 

8 4 (8a(x, y) 8a(e, 17)) 83 
b(x, y)b(e, r1) 8y4 + 8x a(e, 77) - a(x, y) 8e 8x3 + 

(
8b(x, y) (c ) _ ( ) 8b(e, 17)) 8

3 

8y a..,,77 ax,y 877 8x28y+ 

(
8a(x, y) b(c ) _ b( ) 8a(e, 17)) 8

3 

8x ..,, 7J x, y 8e 8x8y2 + 

(
8b(x,y)b(c )-b( )8b(e,77)) 8 3 8a(x,y)8a(e,77) 8

2 
_ 

8y ..,, 7J x, y 877 8y3 + 8x 8e 8x2 

(
8a(x, y) 8b(e, 17) + 8b(x, y) 8a(e, 17)) ~ + 8b(x, y) 8b(e, 17) 8 2 

. 

8x 877 8y 8e 8x8y 8y 877 8y2 
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Here we expressed derivatives with respect to the second variable e = (~, TJ) of 
the basic function in terms of those with respect to the first variable x = (x, y) 
remembering that every differentiation introduces a sign change ( c.f. the discussion 
at the end of Chapter 36). 

Example 40.3. Instead of repeating the calculations for Example 39.3, we present 
a different problem with piecewise defined boundary conditions. 

where 

\72 u(x, y) = 0, (x, y) E 0 = (-1, 1)2 , 

u(x, y) = 0, (x, y) E ri U r3 U r5, 
1 

u(x, y) = S sin(37ry), (x, y) E r2, 

u(x, y) = sin4(7rx), (x, y) E r 4, 

ri = {(x,y): -1:::; x < 1, y = -1}, 

r2 = {(x,y): x = 1, -1:::; y < 1}, 

r3={(x,y): O<x:::;l, y=l}, 

r4={(x,y): -l<x<O, y=l}, 

r5={(x,y): x=-l, O<y<1}. 

For this problem we do not have an exact solution available. However, this problem 
is taken from [Trefethen (2000)] and we use the pseudospectral solution from there 
for comparison. We will revisit this problem later when we discuss RBF-PS methods 
in Chapter 42. 

Program 40.2. HermiteLaplaceMixedBCTref.2D .m 

!. HermiteLaplaceMixedBCTref_2D 
!. Script that performs Hermite collocation for 2D Laplace equation 
!. Note: Prog 36 in Trefethen (2000), exact solution not provided 
!. Calls on: DistanceMatrix 

!. IMQ RBF and its Laplacian 
1 rbf = ©(e,r) 1./sqrt(l+(e*r).-2); ep = 3; 
2 Lrbf = ©(e,r) e-2*((e*r).-2-2)./(1+(e*r).-2).-(5/2); 
3a L2rbf = ©(e,r) 3*e-4*(3*(e*r).-4-24*(e*r).-2+8)./ ... 
3b (l+(e*r).-2).-(9/2); 

!. Laplacian for test problem 
4 Lu= ©(x,y) zeros(size(x)); 

!. Number and type of collocation points 
5 N = 289; gridtype = 'u'; 
6 neval = 41; 

!. Load (interior) collocation points 
7 name= sprintf('Data2D_/.d/.s',N,gridtype); load(name); 
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8 intdata = 2*dsites-1; 

!. Additional boundary collocation points 

9 sn = sqrt(N); bdylin = linspace(-1,1,sn)'; 
10 bdy1 = ones(sn-1,1); 

11a bdydata = [bdylin(i:end-1) -bdy1; bdy1 bdylin(i:end-1); 

11b flipud(bdylin(2:end)) bdy1; -bdy1 flipud(bdylin(2:end))]; 

!. Create additional boundary centers OUTSIDE the domain 

12 h = 2/(sn-1); bdylin = (-1+h:h:1-h)'; 

13 bdyO = repmat(-1-h,sn-2,1); bdy1 = repmat(1+h,sn-2,1); 

14a bdyctrs = [-1-h -1-h; bdylin bdyO; 1+h -1-h; bdy1 bdylin; 
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14b 1+h 1+h; flipud(bdylin) bdy1; -1-h 1+h; bdyO flipud(bdylin)]; 

15 intctrs = intdata; 

!. Create neval-by-neval equally spaced evaluation locations 

!. in the unit square 

16 grid= linspace(-1,1,neval); [xe,ye] = meshgrid(grid); 

17 epoints = [xe(:) ye(:)]; 

!. Compute evaluation matrix 

18 DM_inteval = DistanceMatrix(epoints,intctrs); 

19 LEM= Lrbf(ep,DM_inteval); 

20 DM_bdyeval = DistanceMatrix(epoints,bdyctrs); 

21 BEM = rbf(ep,DM_bdyeval); 

22 EM= [LEM BEM]; 

!. Compute blocks for collocation matrix 

23 DM_IIdata = DistanceMatrix(intdata,intctrs); 

24 LLCM = L2rbf(ep,DM_!Idata); 

25 DM_IBdata = DistanceMatrix(intdata,bdyctrs); 

26 LBCM = Lrbf(ep,DM_IBdata); 

27 DM_Bidata = DistanceMatrix(bdydata,intctrs); 

28 BLCM = Lrbf(ep,DM_Bidata); 

29 DM_BBdata = DistanceMatrix(bdydata,bdyctrs); 

30 BBCM = rbf(ep,DM_BBdata); 

31 CM= [LLCM LBCM; BLCM BBCM]; 

!. Create right-hand side 

32a rhs = [Lu(intdata(:,1),intdata(:,2)); zeros(sn-1,1); ... 

32b 0.2*sin(3*pi*bdydata(sn:2*sn-2,2)); zeros((sn-1)/2,1); ... 

32c sin(pi*bdydata((5*sn-3)/2:3*sn-3,l)).-4; zeros(sn-1,1)]; 

!. Compute RBF solution 

33 Pf= EM* (CM\rhs); 

34 surf(xe,ye,reshape(Pf,neval,neval)); 

35 view(-20,45), axis([-1 1 -1 1 -.2 1]); 

36 text(0,.8,.5,sprintf('u(0,0) = /.12.10f' ,Pf(841))) 
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The definition of the boundary conditions in the MATLAB code for Program 40.2 
is similar to that for Program 39.3. However, now we are working on the square 
[-1, 1] 2 instead of [O, 1] 2 , and therefore slight adjustments are required. For exam
ple, the collocation points we load from file are now transformed on line 8. Also, 
the boundary centers have to be offset from a different boundary (see lines 12-14). 
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Fig. 40.2 Plots for solution of Example 40.3 using pseudospectral method with 361 points from 
[Trefethen (2000)] (left), and with symmetric collocation using IMQs with e: = 3 and N = 289 
uniform interior points; 64 additional boundary centers outside domain. 

We note that the quality of the two solutions displayed in Figure 40.2 is quite 
similar. The total number of points used for the PS solution is 361, while 353 points 
(289 interior plus 64 boundary) are used for the RBF solution. 

40.2 Summarizing Remarks on the Symmetric and Non
Symmetric Collocation Methods 

All in all, the non-symmetric (Kansa) method seems to perform just a little bit 
better than the symmetric (Hermite) method (compare Tables 39.1 and 39.2 with 
Tables 40.1and40.2). For the same value of the shape parameter c the errors as well 
as the condition numbers are slightly smaller. This does not agree with the findings 
in [Larsson and Fornberg (2003)] where the authors concluded that the symmetric 
method is more accurate (see also our discussion at the end of Chapter 38). 

An advantage of the Hermite approach over Kansa's method is that the col
location matrices resulting from the Hermite approach are symmetric if all of the 
centers coincide with the collocation points. Therefore the amount of computation 
can be reduced considerably by using a solver for symmetric systems. Since Kansa's 
method requires fewer derivatives of the basic function it has the added advan
tages of being simpler to implement and applicable to problems with less smooth 
solutions. Moreover, as we saw in Examples 39.2 and 40.2, the non-symmetric 
method is much simpler for problems with non-constant coefficients. Further-
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more, it is not clear how to deal with non-linear problems using the symmetric 
method. For a treatment of non-linear PDEs based on the non-symmetric colloca
tion method within an operator Newton framework see [Bernal and Kindelan (2006); 
Fasshauer (2001a)]. 

Another contraposition of the two methods will be presented in the context of 
pseudospectral methods in Chapter 42. 

Both of the methods described in this section have been implemented for many 
different applications. Comparisons of the two methods were reported in, e.g., 
[Fasshauer (1997); Larsson and Fornberg (2003); Power and Barraco (2002)]. 





Chapter 41 

Collocation with CSRBFs in MATLAB 

In this third chapter describing the MATLAB implementation of RBF collocation 
methods we look at how compactly supported functions can be used in both a direct 
approach and within a multilevel framework. As in the previous two chapters we 
present only two-dimensional elliptic problems and will refer to a point x in .IR2 as 
(x, y). 

41.1 Collocation with Compactly Supported RBFs 

While Kansa initially proposed the non-symmetric collocation method for multi
quadrics, the general method applies to any kind of RBF including those with 
compact support. The same goes for the symmetric method. We now present MAT

LAB code for the symmetric collocation method based on Wendland's C 6 function 
cp3,3(r) = (1- r)~(32r3 + 25r2 + 8r + 1). Its Laplacian and biharmonic derivatives 
are given by 

V'2 cp3,3(r) = 44(1- r)~(88r3 + 3r2 
- 6r - 1), 

V 4 cp3
1
3(r) = 1056(1- r)~(297r3 - 212r2 + 16r + 4). 

Note, however, that in order for us to be able to take advantage of the subroutine 
DistanceMatrixCSRBF .m we provided earlier in Program 12.1 we need to represent 
the basic function and its derivatives in the shifted form 

~3,3(r) = r 8 (66 - 154r + 121r2 
- 32r3), 

V2~3,3(r) = 44r6 (84 - 264r + 267r2 
- 88r3), 

V4~3,3(r) = 1056r4 (105 - 483r + 679r2 
- 297r3), 

as implemented on lines 1-3 of Program 41.1. While we technically do not need 
to include a scale factor c in the MATLAB code for the basic function (since the 
support size is already used to determine the matrix entries in Program 12.1), the 
derivatives of the basic function still require the scale factor which appears as a 
consequence of the chain rule (see lines 2 and 3). 

Another point to reconsider in the compact support setting is the placement of 
the boundary centers. While we saw for globally supported basic functions that 

375 
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it was actually beneficial to place some centers outside the domain, this no longer 
makes much sense if we decide to use compactly supported functions. Clearly, 
any basic function whose support radius is smaller than the distance of its center 
from the boundary of the domain will not contribute to the solution of the problem. 
Therefore, we now use interior Halton points augmented by equally spaced boundary 
points for both the collocation points and the centers. This change is reflected on 
lines 14 and 15 of Program 41. l. Otherwise, Program 41. l is essentially identical to 
Program 40.1. However, for the convenience of the reader we decided to print the 
entire program for the compactly supported case, also. 

Program 41.1. HermiteLaplace_2D_CSRBF .m 

% HermiteLaplace_2D_CSRBF 
% Script that performs Hermite collocation for 2D Laplace equation 
% with sparse matrices 
% Calls on: DistanceMatrixCSRBF 

% Wendland C6 RBF, its Laplacian and double Laplacian 
1 rbf = ©(e,r) r.-8.*(66*spones(r)-154*r+121*r.-2-32*r.-3); 
2 Lrbf = ©(e,r) 44*e-2*r.-6.*(84*spones(r)-264*r+267*r.-2-88*r.-3); 
3a L2rbf = ©(e,r) 1056*e-4*r.-4.* ... 
3b (105*spones(r)-483*r+679*r.-2-297*r.-3); 
4 ep = 0.25; 

% Exact solution and its Laplacian for test problem 
5 u = ©(x,y) sin(pi*x).*cos(pi*y/2); 
6 Lu= ©(x,y) -1.25*pi-2*sin(pi*x).*cos(pi*y/2); 

% Number and type of collocation points 
7 N = 289; gridtype = 'h'; 
8 neval = 40; 

% Load (interior) collocation points 
9 name= sprintf('Data2D_%d%s',N,gridtype); load(name); 

10 intdata = dsites; 
% Additional (equally spaced) boundary collocation points 

11 sn = sqrt(N); bdylin = linspace(0,1,sn)'; 
12 bdyO = zeros(sn-1,1); bdy1 = ones(sn-1,1); 
13a bdydata = [bdylin(l:end-1) bdyO; bdy1 bdylin(l:end-1); 
13b flipud(bdylin(2:end)) bdy1; bdyO flipud(bdylin(2:end))]; 

% Let centers coincide with ALL data sites 
14 bdyctrs = bdydata; 
15 ctrs = [intdata; bdyctrs] ; 

% Create neval-by-neval equally spaced evaluation locations 
% in the unit square 

16 grid= linspace(0,1,neval); [xe,ye] = meshgrid(grid); 
17 epoints = [xe(:) ye(:)]; 
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% Compute evaluation matrix 
18 DM_inteval = DistanceMatrixCSRBF(epoints,intdata,ep); 
19 DM_bdyeval = DistanceMatrixCSRBF(epoints,bdyctrs,ep); 
20 LEM= Lrbf(ep,DM_inteval); 
21 BEM = rbf(ep,DM_bdyeval); 
22 EM= [LEM BEM]; 
23 exact= u(epoints(:,1),epoints(:,2)); 

% Compute blocks for collocation matrix 
24 DM !!data= DistanceMatrixCSRBF(intdata,intdata,ep); 
25 DM_IBdata = DistanceMatrixCSRBF(intdata,bdyctrs,ep); 
26 DM_Bidata = DistanceMatrixCSRBF(bdydata,intdata,ep); 
27 DM BBdata = DistanceMatrixCSRBF(bdydata,bdyctrs,ep); 
28 LLCM = L2rbf(ep,DM_I!data); 
29 LBCM = Lrbf(ep,DM_IBdata); 
30 BLCM = Lrbf(ep,DM_Bidata); 
31 BBCM = rbf(ep,DM_BBdata); 
32 CM = [LLCM LBCM; BLCM BBCM]; 

!. Create right-hand side 
33a rhs = [Lu(intdata(:,1),intdata(:,2)); 
33b sin(pi*bdydata(l:sn-1,1)); zeros(3*(sn-1),1)]; 

!. Compute RBF solution 
34 Pf= EM* (CM\rhs); 

!. Compute maximum error on evaluation grid 
35 maxerr = norm(Pf-exact,inf); 
36 rms_err = norm(Pf-exact)/neval; 
37 fprintf('RMS error: /.e\n', rms_err) 
38 fprintf('Maximum error: /.e\n', maxerr) 

!. Plot collocation points and centers 
39 hold on; plot(intdata(:,1),intdata(:,2),'bo'); 
40 plot(bdydata(:,1),bdydata(:,2),'rx'); 
41 plot(bdyctrs(:,1),bdyctrs(:,2),'gx'); hold off 
42 fview = [-30,30]; !. viewing angles for plot 
43 PlotSurf(xe,ye,Pf,neval,exact,maxerr,fview); 
44 PlotError2D(xe,ye,Pf ,exact,maxerr,neval,fview); 
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If we want to replace the symmetric collocation method in Program 41.1 by the 
non-symmetric one, then lines 18-32 need to be replaced by 

!. Compute evaluation matrix 
DM_eval = DistanceMatrixCSRBF(epoints,ctrs,ep); 
EM= rbf(ep,DM_eval); 
exact= u(epoints(:,1),epoints(:,2)); 
!. Compute blocks for collocation matrix 
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DM_intdata = DistanceMatrixCSRBF(intdata,ctrs,ep); 
DM_bdydata = DistanceMatrixCSRBF(bdydata,ctrs,ep); 
LCM= Lrbf(ep,DM_intdata); 
BCM = rbf(ep,DM_bdydata); 
CM= [LCM; BCM]; 

Example 41.1. We use the test problem of Examples 39.1 and 40.1. However, 
this time we compare a stationary approximation scheme to a non-stationary one 
for both the non-symmetric and the symmetric collocation method. In the station
ary setting we take an initial parameter value of c = 0.25 (i.e., very wide basis 
functions that cover the entire domain), and then double its value for every suc
cessive experiment. This keeps the "bandwidth" of the collocation matrix fixed 
and results in an efficient approximation method. However, as for scattered data 
interpolation ( c.f. Table 12 .1) we should not expect convergence for h --+ 0 in this 
stationary setting. This can be seen clearly in the left part of Tables 41.1 and 41.2. 
In fact, we can observe that for the collocation approach things are even worse than 
for interpolation. Not only is there no convergence for h --+ 0, the errors actually 
increase. This is especially pronounced for the symmetric method. 

Table 41.1 Non-symmetric collocation solution of Example 40.1 with CSRBFs, sta
tionary e (initial value e = 0.25) and non-stationary e = 0.25. N interior Halton 
points, 4( VN - 1) equally spaced boundary centers coinciding with boundary colloca
tion points. 

N 
stationary non-stationary 

(interior points) RMS-error cond(A) RMS-error cond(A) 

3 x 3 6.077025e-003 1.495127e+005 6.077025e-003 1.495127e+005 
5 x 5 2 .352498e-003 6.27 4058e+005 3.810928e-004 2. 720833e+007 
9 x 9 1. 94 7271 e-003 6.192333e+006 4.430301e-005 2.851716e+Ol0 

17 x 17 1. 3267 45e-003 6.113189e+007 2.200286e-006 2.293235e+013 
33 x 33 5. 703309e-003 1.824487e+008 9. 986944e-008 8.537 419e+015 

Table 41.2 Symmetric collocation solution of Example 40.1 with CSRBFs, stationary 
e (initial value e = 0.25) and non-stationary e = 0.25. N interior Halton points, 
4( VN - 1) equally spaced boundary centers coinciding with boundary collocation 
points. 

N 
(interior points) 

3 x 3 
5 x 5 
9 x 9 

17 x 17 
33 x 33 

stationary 

RMS-error cond(A) 

5.866837e-003 4.448249e+004 
3. l 90108e-003 2.454493e+006 
8.381144e-003 8.693440e+007 
1.115179e-001 2. l 62078e+009 
3.696962e-001 3.164425e+O 10 

non-stationary 

RMS-error cond(A) 

5.866837e-003 4.448249e+004 
4. 757992e-004 3.582872e+007 
3.825086e-005 2.360746e+Ol0 
2.09932le-006 1.392838e+013 
8.680882e-008 6.127122e+015 
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In the non-stationary setting we observe convergence whose rate is remarkably 
similar for both approaches ( c.f. the right part of Tables 41.1 and 41.2). However, 
the collocation matrices are now completely dense, and therefore this approach -
as in the case of interpolation - defies the use of compactly supported functions. 

It is also interesting to note that we can see that the accuracy obtained with 
the C 6 Wendland functions (in "global mode") is similar to that of the globally 
supported C 00 Gaussians and inverse multiquadrics used in Example 39.1 - an 
indication that the solution to the PDE does not lie in the native space of the 
Gaussians or inverse multiquadrics. 

On the other hand, if the basic functions are chosen too local (to keep the 
method efficient), then the boundary information can not penetrate to the inside of 
the problem. This is essentially what happens in the stationary setting. Figure 41.1 
shows fits with c = 2 (small support) and with c = 0.25 (large support) for N = 289 
interior Halton points plus 64 equally spaced boundary points corresponding to the 
fourth row in Tables 41.1 and 41.2. As indicated above, the centers are chosen 
to coincide with the collocation points. The collocation matrix in the c = 2 case 
is sparse and has only 11 % nonzero entries when using the symmetric method 
and 43% for the non-symmetric method. The rather significant difference in the 
sparsity patterns of the symmetric and non-symmetric methods is due to the fact 
that the entries for the symmetric matrix are given by higher-order derivatives of 
the basic function than those in the non-symmetric case. While the derivatives of 
<p theoretically retain the same support as c.p, numerically the size of the support 
appears to shrink with increasing differentiation. Thus the resulting approximation 
in the symmetric stationary case is much poorer because the basis functions and 
their derivatives are too local and the boundary information in prevented from 
traveling across the domain. Similar observations were reported in [Jumarhon et 
al. (2000); Fasshauer (1999d)]. 

In [Fasshauer (1999d)] use of a diagonal (Jacobi) preconditioner was proposed 
to speed up the convergence of the conjugate gradient method used there to solve 
the linear system. However, the accuracy of the method does not benefit from this 
measure and therefore we do not pursue the idea any further. 

The experiments above, as well as those reported in [Jumarhon et al. (2000)] 
using Wendland's C 4 compactly supported RBF <p3 ,2 , indicate that the error bounds 
of Theorem 38.1 may be too pessimistic. For elliptic problems and C6 basis functions 
the theorem predicts an error on the order of O(h) while the numerical experiments 
in Table 41.2 suggest an order of about O(h3 ) for the non-stationary setting. 

Even more than in the interpolation setting, for the numerical solution of PDEs 
with compactly supported RBFs we need to use a multilevel approach to have the 
potential to combine efficiency with accuracy. A coarse solution with wide functions 
will have to provide an initial fit that captures the main features of the solution, 
and then more refined residual updates can improve this initial solution locally. 
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Fig. 41.1 Plots for solution of Example 40.1 with non-symmetric (top) and symmetric (bottom) 
collocation using CSRBFs with € = 2 (left) and € = 0.25 (right) and N = 289 interior Halton 
points; boundary centers coincide with equally spaced boundary collocation points. 

41.2 Multilevel RBF Collocation 

We end the discussion of the collocation approach by looking at a multilevel imple
mentation of RBF collocation with compactly supported functions. 

The most significant difference between the use of compactly supported RBFs 
for scattered data interpolation and for the numerical solution of PDEs by colloca
tion appears when we turn to the multilevel approach. Recall that the use of the 
multilevel method is motivated by our desire to obtain a convergent scheme while at 
the same time keeping the bandwidth fixed, and thus the computational complexity 
at O(N). 

Here is an adaptation of the stationary multilevel algorithm of Chapter 32 to 
the case of a collocation solution of the linear problem £u = f: 

Algorithm 41.1. Stationary Multilevel Collocation 

(1) Let uo = 0 
( 2) For k = 1, 2, ... , K do 

(a) Find Uk E Sxk such that £uk = f - £uk-1 on grid xk 
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(b) Update Uk +-- Uk-1 +Uk 

Here Sxk is the space of functions used for expansion (38.5) for the non
symmetric method or (38.7) for the symmetric method on grid Xk. Note that 
the operator£ encodes both the differential equation and the boundary condition. 

Whereas we noted in Chapter 32 that there is strong numerical (and limited the
oretical) evidence that the stationary multilevel interpolation algorithm converges 
at least linearly, the following example shows that we cannot in general expect the 
stationary multilevel collocation algorithm to converge at all. 

Example 41.2. Once more we take the same test problem as in Examples 39.1, 
40.1, and 41.l. As for the numerical experiments in the previous example, we let 
the boundary centers coincide with the boundary collocation points (see line 25 of 
Program 41.2 below). 

An important difference between the multilevel interpolation code of Chapter 32 
and the code presented here for the collocation solution of PDEs lies in the com
putation of the residuals. Note that in the interpolation setting the residual is of 
the form f - Pf, while for PDEs we have f - £uk-l· Thus, the evaluation matrix 
in the interpolation setting is formed directly from the basis functions, while in the 
collocation setting (in both the symmetric and non-symmetric case) the evaluation 
matrix for the residuals is formed using the derivatives of the basis functions. These 
differences can be seen by comparing lines 23-33 of Program 32.1 with lines 39-56 
of Program 41.2 below. 

Program 41.2. ML1IermiteLaplaceCSRBF2D.m 

/. ML_HermiteLaplaceCSRBF2D 
I. Script that performs symmetric multilevel RBF collocation 
I. using sparse matrices 
I. Calls on: DistanceMatrixCSRBF 

I. Wendland C6 RBF, its Laplacian and double Laplacian 
1 rbf = ©(e,r) r.-8.*(66*spones(r)-154*r+l21*r.-2-32*r.-3); 
2 Lrbf = ©(e,r) 44*e-2*r.-6.*(84*spones(r)-264*r+267*r.-2-88*r.-3); 
3a L2rbf = ©(e,r) 1056*e-4*r.-4.* ... 
3b (105*spones(r)-483*r+679*r.-2-297*r.-3); 

I. Exact solution and its Laplacian for test problem 
4 u = ©(x,y) sin(pi*x).*cos(pi*y/2); 
5 Lu= ©(x,y) -1.25*pi-2*sin(pi*x).*cos(pi*y/2); 
6 K = 6; neval = 40; gridtype = 'h'; 
7 ep = 0.5*2.-[0:K-1]; 

I. Create neval-by-neval equally spaced evaluation locations 
I. in the unit square 

8 grid= linspace(0,1,neval); [xe,ye] = meshgrid(grid); 
9 epoints = [xe(:) ye(:)]; 
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% Compute exact solution 
10 exact= u(epoints(:,1),epoints(:,2)); 
11 Rf_old = zeros(17,l); 
12 for k=1 :K 
13 Ni = c2-k+1)-2; N2 = c2-ck+1)+1)-2; 
14 name!= sprintf('Data2D_%d/.s',N1,gridtype); 
15 name2 = sprintf('Data2D_%d/.s',N2,gridtype); 
16 load(name2) 

!. Additional boundary points for residual evaluation 
17 sn = sqrt(N2); bdylin = linspace(0,1,sn)'; 
18 bdyO = zeros(sn-1,1); bdy1 = ones(sn-1,1); 
19a bdyres = [bdylin(!:end-1) bdyO; bdy1 bdylin(!:end-1); 
19b flipud(bdylin(2:end)) bdy1; bdyO flipud(bdylin(2:end))]; 
20 intres = dsites; 
21 load(name1); intdata = dsites; 

!. Additional boundary points 
22 sn = sqrt(N1); bdylin = linspace(0,1,sn)'; 
23 bdyO = zeros(sn-1,1); bdy1 = ones(sn-1,1); 
24a bdydata = [bdylin(!:end-1) bdyO; bdy1 bdylin(!:end-1); 
24b flipud(bdylin(2:end)) bdy1; bdyO flipud(bdylin(2:end))]; 
25 bdyctrs{k} = bdydata; 
26 intctrs{k} = intdata; 

!. Compute new right-hand side (= residual) 
27a Tf = [Lu(intdata(:,1),intdata(:,2)); ... 
27b sin(pi*bdydata(!:sn-1,1)); zeros(3*(sn-1),1)]; 
28 rhs = Tf - Rf _old; 

% Compute blocks for collocation matrix 
29 DM_I!data = DistanceMatrixCSRBF(1ntdata,intctrs{k},ep(k)); 
30 DM_!Bdata = DistanceMatrixCSRBF(intdata,bdyctrs{k},ep(k)); 
31 DM_B!data = DistanceMatrixCSRBF(bdydata,intctrs{k},ep(k)); 
32 DM_BBdata = DistanceMatrixCSRBF(bdydata,bdyctrs{k},ep(k)); 
33 LLCM = L2rbf(ep(k),DM_I!data); 
34 LBCM = Lrbf(ep(k),DM_!Bdata); 
35 BLCM = Lrbf(ep(k),DM_B!data); 
36 BBCM = rbf(ep(k),DM_BBdata); 
37 CM = [LLCM LBCM; BLCM BBCM]; 

% Compute coefficients for RBF solution of detail level 
38 coef{k} = CM\rhs; 
39 if (k < K) 

% based on the distances between the next finer 
!. points (respoints) and centers 

40 for j=1:k 
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41 
42 
43 
44 
45 

DM_IIres = DistanceMatrixCSRBF(intres,intctrs{j},ep(j)); 
DM_IBres = DistanceMatrixCSRBF(intres,bdyctrs{j},ep(j)); 
DM Bires= DistanceMatrixCSRBF(bdyres,intctrs{j},ep(j)); 
DM_BBres = DistanceMatrixCSRBF(bdyres,bdyctrs{j},ep(j)); 
LLRM = L2rbf(ep(j),DM_IIres); 

46 
47 
48 
49 
50 

LBRM = Lrbf(ep(j),DM_IBres); 
BLRM = Lrbf(ep(j),DM_Bires); 
BBRM = rbf(ep(j),DM_BBres); 
RM{j} = [LLRM LBRM; BLRM BBRM]; 

end 
% Evaluate RBF approximation (sum of all previous fits, 
% but evaluated on current grid) 

51 Rf= zeros(N2+4*sqrt(N2)-4,1); 
52 for j=1:k 
53 Rf = Rf + RM{j}*coef{j}; 
54 end 
55 Rf_old = Rf; 
56 end 

% Compute evaluation matrix 
57 DM_inteval = DistanceMatrixCSRBF(epoints,intctrs{k},ep(k)); 
58 DM_bdyeval = DistanceMatrixCSRBF(epoints,bdyctrs{k},ep(k)); 
59 LEM= Lrbf(ep(k),DM_inteval); 
60 BEM = rbf(ep(k),DM_bdyeval); 
61 EM= [LEM BEM]; 

% Evaluate RBF approximation 
62 Pf = EM*coef{k}; 
63 if (k > 1) 
64 Pf = Pf_old + Pf; 
65 end 
66 Pf_old =Pf; 

% Compute maximum error on evaluation grid 
67 maxerr = norm(Pf-exact,inf); 
68 rms_err = norm(Pf-exact)/neval; 
69 fprintf('RMS error: %e\n', rms_err) 
70 fprintf('Maximum error: 'l.e\n', maxerr) 
71 if (k > 1) 
72 max_rate = log(maxerr_old/maxerr)/log(2); 
73 rms_rate = log(rms_err_old/rms_err)/log(2); 
74 fprintf('RMS rate: 'l.f\n', rms_rate) 
75 fprintf('Maxerror rate: 'l.f\n', max_rate) 

76 end 
77 maxerr_old = maxerr; rms_err_old = rms_err; 
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% Plot collocation solution 
78 fview = [-30,30]; 
79 PlotSurf(xe,ye,Pf,neval,exact,maxerr,fview); 
80 PlotError2D(xe,ye,Pf ,exact,maxerr,neval,fview); 
81 end 

For non-symmetric collocation we can delete line 3 of Program 41.2 and need to 
replace lines 29-37 by 

DM_intdata = DistanceMatrixCSRBF(intdata,ctrs{k},ep(k)); 
DM_bdydata = DistanceMatrixCSRBF(bdydata,ctrs{k},ep(k)); 
LCM= Lrbf(ep(k),DM_intdata); 
BCM = rbf(ep(k),DM_bdydata); 
CM = [LCM; BCM]; 

lines 41-49 by 

DM_intres = DistanceMatrixCSRBF(intres,ctrs{j},ep(j)); 
DM_bdyres = DistanceMatrixCSRBF(bdyres,ctrs{j},ep(j)); 
LRM = Lrbf(ep(j),DM_intres); 
BRM= rbf(ep(j),DM_bdyres); 
RM{j} = [LRM; BRM]; 

and lines 5 7-61 by 

DM_eval = DistanceMatrixCSRBF(epoints,ctrs{k},ep(k)); 
EM= rbf(ep(k),DM_eval); 

Table 41.3 Stationary symmetric and non-symmetric multilevel collocation solu
tions of Example 39.l using CSRBFs with initial scale parameter € = 0.5. Interior 
Halton points, additional centers on boundary. 

N 
symmetric non-symmetric 

(interior points) RMS-error rate RMS-error rate % nonzero 

3 x 3 2.491453e-002 l.512255e-002 100 
5x5 l.Oll 182e-002 1.3009 3. 785466e-003 1.9982 89.53 
9x9 9.016652e-003 0.1654 7 .873870e-004 2.2653 40.03 

17 x 17 8. 99522le-003 0.0034 2.470405e-004 1.6723 13.55 
33 x 33 8. 994046e-003 0.0002 l .070175e-004 1.2069 4.00 
65 x 65 8.993892e-003 0.0000 8. 334939e-005 0.3606 1.12 

129 x 129 8. 993969e-003 -0.0000 7.863637e-005 0.0840 0.29 

We note that the non-convergence behavior can be observed for both the sym
metric and the non-symmetric approach. However, with the non-symmetric ap
proach the convergence ceases at a significantly later stage. The explanation for the 
different convergence behavior of the two methods is the same as that presented at 
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the end of the previous example. The higher derivatives required for the symmetric 
method are numerically of a more localized nature - even though here the spar
sity patterns of the symmetric and non-symmetric matrices are identical ( c.f. the 
right-most column in Tables 41.3 and 41.4). 

Table 41.4 Stationary symmetric and non-symmetric multilevel collocation solu
tions of Example 39.1 using CSRBFs with initial scale parameter e. = 0.25. Interior 
Halton points, additional centers on boundary. 

N 
symmetric non-symmetric 

(interior points) RMS-error rate RMS-error rate % nonzero 

3x3 5.866837e-003 6.077025e-003 100 
5x5 7.287305e-004 3.0091 5. 751941e-004 3.4012 100 
9x9 l.193468e-004 2.6102 l.168520e-004 2.2994 91.90 

17 x 17 3.188905e-005 1.9040 l.482129e-005 2.9789 42.69 
33 x 33 2.530241e-005 0.3338 2.550329e-006 2.5389 14.34 
65 x 65 2.487657e-005 0.0245 6.067264e-007 2.0716 4.17 

129 x 129 2.485 l 84e-005 0.0014 7.348170e-008 3.0456 1.13 

Also, the accuracy that can be obtained with the multilevel algorithm - while 
better than using the stationary approach without residual iteration in Example 41.1 
- is considerably poorer than what we were able to obtain with globally supported 
functions (c.J. Examples 39.1, 40.1, or the non-stationary part of Example 41.1). 

The same saturation phenomenon was observed by Wendland in the context 
of a multilevel Galerkin algorithm for compactly supported RBFs (see [Wendland 
(1999b)) as well as our discussion in Chapter 44). 

It has been suggested that the convergence behavior of the multilevel colloca
tion algorithm may be linked to the phenomenon of approximate approximation. 
However, so far no connection has been established. 

As was shown in [Fasshauer (1999d)] a possible remedy for the non-convergence 
problem is . One might also expect that a slightly different scaling of the support 
sizes of the basis functions (such that the bandwidth of the matrix is allowed to in
crease slowly from one iteration to the next, i.e., moving toward the non-stationary 
setting) will lead to better results. In [Fasshauer (1999d)] it was shown that this is 
in fact true. However, smoothing further improved the convergence. A discussion 
of the idea of post-conditioning via smoothing is beyond the scope of this text. We 
refer the reader to the paper [Fasshauer and Jerome (1999)). 





Chapter 42 

Using Radial Basis Functions 
Pseudospectral Mode 

• 
Ill 

Pseudospectral (PS) methods are known as highly accurate solvers for partial dif
ferential equations. The basic idea (see, e.g., [Fornberg (1998); Trefethen (2000)]) 
is to use a set of very smooth and global basis functions Bj, j = 1, ... , N, such as 
polynomials to represent the approximate solution of the PDE via 

N 

ft(x) = L CjBj(x), 
j=l 

x E JR. ( 42.1) 

Since most of our discussion will focus on a representation of the spatial part of 
the solution we will at first ignore the time variable that may be a part of the the 
formulas for ft. We will later employ standard time-stepping procedures to deal 
with the temporal part of the solution. Moreover, since standard pseudospectral 
methods are designed for the univariate case we initially limit ourselves to single
variable functions. Later we will generalize the discussion to multivariate (spatial) 
problems by using radial basis functions. 

An important feature of pseudospectral methods is the fact that one usually 
is content with obtaining an approximation to the solution on a discrete set of 
grid points xi, i = 1, ... , N. One of several ways to implement the pseudospectral 
method is via so-called differentiation matrices, i.e., one finds a matrix D such that 
at the collocation points Xi we have 

u' =Du 
' 

(42.2) 

where u = [ft(x1 ), ... , ft(xN )jT is the vector of values of the approximate solution 
ft at the collocation points. Frequently, orthogonal polynomials such as Chebyshev 
polynomials are used as basis functions, and the collocation points are corresponding 
Chebyshev points. In this case the entries of the differentiation matrix are explicitly 
known (see, e.g., [Trefethen (2000)]). 

Example 42.1. In order to get an idea of how the differentiation matrix is used to 
solve a partial differential equation we consider the following simple one-dimensional 

387 
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transport equation ( c.f. the numerical experiments in Section 43.1. l below): 

Ut(X, t) + CUx(x, t) = 0, x > -1, t > 0, 

u(-1,t) = 0, 

u(x, 0) = f(x). 

(42.3) 

In order to solve this problem we discretize the spatial domain with the collocation 
points xi, i = 1, ... , N, so that for any fixed time tn we have the vector uCn) = 
[u(x1, tn), ... , u(xN, tn)JT of values of the approximate solution. In order to march 
in time we use a standard forward difference approximation of the time derivative, 
i.e., 

( ) 
u(x, tn+1) - u(x, tn) 

Ut X, tn ~ /),,t , (42.4) 

where /),,t = tn+l - tn. In our vectorized notation at the collocation points applica
tion of the differentiation matrix to express the spatial derivative along with (42.4) 
for the time derivative leads to 

uCn+l) = u(n) - c!)..tDu(n) 

for the solution of ( 42.3). Thus, there is no need - as with the RBF collocation 
methods studied earlier - to compute the expansion coefficients CJ in the represen
tation ( 42 .1) of the approximate solution. Also, no linear systems are solved during 
the time-marching phase of the code. The determination of the differentiation ma
trix will, however, involve solution of a linear system in the RBF framework. 

We are interested in using infinitely smooth radial basis functions in the pseu
dospectral expansion (42.1), i.e., BJ(x) = <p(llx-xJll), where <pis one of our strictly 
positive definite basic functions such as a Gaussian or an inverse multiquadric. We 
will also experiment with the use of functions having only limited smoothness such 
as the globally supported Matern functions or Wendland functions with a large sup
port. With some additional notational effort all that follows can also be formulated 
for conditionally positive definite functions such as multiquadrics. 

42.1 Differentiation Matrices 

In order to understand how to find a differentiation matrix consider the expansion 
(42.1) and let BJ, j = 1, ... , N, be an arbitrary linearly independent set of smooth 
functions that will serve as the basis for our approximation space. 

If we evaluate (42.1) at the collocation points Xi, i = 1, ... , N, then we get 

N 

u(xi) = L CjBj(Xi), i = 1, . .. ,N, 
j=l 

or in matrix-vector notation 

u=Ac, (42.5) 
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where c = [c1, ... , cNf is the coefficient vector, the evaluation matrix A has entries 
Aij = Bi (Xi), and u is as before. 

By linearity we can also use the expansion ( 42 .1) to compute the derivative of 
u by differentiating the basis functions 

d A N d 
dx u(x) = L Cj dx Bj(x). 

j=l 

If we agam evaluate at the collocation points Xi, then we get m matrix-vector 

notation 

u' =Axe, ( 42.6) 

where u and c are as in (42.5) above, and the derivative matrix Ax has entries 

d~Bj(xi), or, in the case of radial basis functions, d~ cp(llx - xill)lx=xi· 
In order to obtain the differentiation matrix D we need to ensure invertibility of 

the evaluation matrix A. This depends both on the basis functions chosen as well 
as the location of the collocation points Xi· For univariate polynomials it is well
known that the evaluation matrix is invertible for any set of distinct collocation 
points. In particular, if the polynomials are written in cardinal (or Lagrange) 
form, then the evaluation matrix is the identity matrix. If we use strictly positive 
definite radial basis functions, then the matrix A is invertible for any set of distinct 
collocation points (also non-uniformly spaced points and in JRS, s > 1) according 
to our discussion in Chapter 3. Cardinal radial basis functions, on the other hand, 
are rather difficult to obtain. For the special case of uniform one-dimensional grids 
explicit formulas can be found in [Platte and Driscoll (2005)). A general discussion 
of the cardinal representation of RBFs is given in Chapter 14. In the following we 
will not insist on having a cardinal representation. 

Now that we have discussed the invertibility of A, we can use ( 42.5) to formally 
solve for the coefficient vector c = A-1u, and with this ( 42.6) yields 

u' = AxA-1u, 

so that the differentiation matrix D corresponding to (42.2) is given by 

D = AxA-1 . 

For more complex linear differential operators £ with constant coefficients we 
proceed in an analogous fashion to obtain a discretized differential operator (differ
entiation matrix) 

(42.7) 

where the matrix A.c has entries (A.c)ij = £Bj(Xi). In the case of radial basis 

functions these entries are of the form (A.c)ij = £cp(llx - xill)lx=xi· 
In the context of pseudospectral methods the differentiation matrices D or 

L can now be used to solve all kinds of PDEs (time-dependent as well as time
independent). Sometimes only multiplication by Lis required, e.g., for many time
stepping algorithms such as the example given at the beginning of the chapter. For 
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other problems one needs to be able to invert L. In the standard PS case it is 
known that the Chebyshev differentiation matrix has an N-fold zero eigenvalue (see 
[Canuto et al. (1988)], p. 70), and thus is not invertible by itself. However, once 
boundary conditions are taken into consideration the situation changes (see, e.g., 
[Trefethen (2000)], p. 67). 

Example 42.2. To obtain a little more insight into the special properties of ra
dial basis functions let us pretend to solve the ill-posed linear elliptic PDE of the 
form .Cu = f by ignoring boundary conditions. An approximate solution at the 
collocation points Xi might be obtained by solving the discrete linear system 

Lu=f, 

where f contains the values of f at the collocation points and L is as above. In 
other words, the solution at the collocation points is given (see (42.7)) by 

u = L-1 f = A(A.c)-1 f, 

and we see that invertibility of L (and therefore A.c) is required to proceed. 
As mentioned above, the differentiation matrix for pseudospectral methods 

based on Chebyshev polynomials is singular. This is only natural since the problem 
of reconstructing an unknown function from the values of its derivatives alone is 
ill-posed. 

However, if we use radial basis functions the results on generalized Hermite 
interpolation cited in Chapter 36 ensure that the matrix A.c is invertible provided a 
strictly positive definite basic function is used and the differential operator is elliptic. 
Therefore, the basic differentiation matrix L for RBF-based pseudospectral methods 
is invertible. 

The observation just made suggests that RBF methods are sometimes "too good 
to be true". They may deliver a "solution" even for ill-posed problems. This is a 
consequence of the optimality principles of Chapter 18, i.e., as the minimizer of the 
native space norm RBF methods possess a built-in regularization capability. This 
interesting feature of RBFs has recently been used to solve ill-posed problems (see, 
e.g., [Cheng and Cabral (2005)]). 

42.2 PDEs with Boundary Conditions via Pseudospectral Methods 

First we discuss how the linear elliptic PDE problem 

.Cu= f inn 

with Dirichlet boundary condition 

u = g on r =an 
can be solved using pseudospectral methods. Sometimes one can find basis functions 
that already satisfy the boundary conditions (especially for periodic problems). 
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However, if the basis functions do not satisfy the boundary conditions we can follow 
a very simple procedure (see, e.g., Program 36 of [Trefethen (2000)]). Just take the 
differentiation matrix L based on all collocation points Xi, and then replace those 
rows of L corresponding to collocation at boundary points with unit vectors that 
have a one in the position corresponding to the diagonal of L. Thus, the condition 
u = g will be explicitly enforced at this point as soon as we set the right-hand side 
to the corresponding value of g. 

By reordering the rows and columns of the resulting matrix we obtain a block 
matrix of the form 

Lr= [ ~ ~], ( 42.8) 

where the non-zero square blocks M and I are of size (N - N13) x (N - N13) and 
N 13 x N13, respectively. Here N13 denotes the number of grid points on the boundary 
r. 

On the grid of collocation points the solution of the PDE with boundary condi
tions is then obtained by solving the block linear system 

Lru = [~], (42.9) 

where the vectors f and g collect the values off and g at the respective colloca
tion points, and the vector u of grid values of the approximate solution has been 
reordered along with the columns of the matrix so that it can be decomposed into 
u = [uz, u13jT. Here Uz collects the values in the interior of the domain n and U13 
collects the values on the boundary. 

Solving (42.9) for u13 = g and substituting this back into the top part we obtain 

uz = M-1(/ - Pg), 

or, in the case of homogeneous boundary conditions, 

ux = M- 11. 

We now see that all that really matters is whether the matrix Mis invertible. In the 
case of Chebyshev polynomial basis functions and the second-derivative operator d";2 

coupled with different types of boundary conditions this question has been answered 
affirmatively by Gottlieb and Lustman (see [Gottlieb and Lustman (1983)], or, e.g., 
Section 11.4 of [Canuto et al. (1988)]). Program 15 of [Trefethen (2000)] also 
provides a discussion and an illustration of one such problem. We will look at the 
matrix M in the RBF context in the next section. 

42.3 A Non-Symmetric RBF-based Pseudospectral Method 

Once boundary conditions are added to the PDE £u = f, then either of the two 
collocation approaches discussed in Chapters 38-41 are commonly used in the RBF 
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community. Recall that in Kansa's non-symmetric method [Kansa (1990b)] one 
starts with the expansion 

N 

u(x) = :Lcj<I>j(x), ( 42.10) 
j=l 

just as before (c.f. (42.1)). However, the coefficient vector c is now actually com
puted by inserting (42.10) into the PDE and boundary conditions by forcing these 
equations to be satisfied at the collocation points Xi. The RBF collocation solution 
is therefore obtained by solving the linear system 

(42.11) 

where f and g are as above, and the (rectangular) matrices A.c and A are of the 
form 

(A.c)ij = .C<I>j (xi) = .Ccp(llx - Xj IJ)lx=:z:i , i = 1, ... , N - NB, j = 1, ... , N, 

Aij = <I>J(xi) = cp(llxi -xJll), i = N-NB + 1, ... ,N, j = 1, ... ,N. 

Assuming that the system matrix in (42.11) is invertible one then obtains the ap
proximate solution (at any point x) by using the coefficients c in (42.10). However, 
as was mentioned earlier, counterexamples in [Hon and Schaback (2001)] show that 
certain collocation grids do not allow invertibility of the system matrix in ( 42.11). 

If we are interested in the RBF collocation solution at the collocation points 
only, then (using c from (42.11) and once again assuming invertibility of the system 
matrix) we get 

with evaluation matrix A such that Aij = <I> J (Xi) as above. This suggests that 
(according to our discussion in Section 42.1) the discretized differential operator L 
based on the grid points Xi, i = 1, ... , N, and basis functions <I> J, j = 1, ... , N, is 
given by 

Indeed, we have 

with the same blocks M, P, 0 and I as above. To see this we introduce the following 
notation: 
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with column vectors ai and bi such that a'[ b1 
( 42 .11) this notation implies 

8ij· For Kansa's matrix from 

T 
a.c,1 

where we have used an analogous notation to denote the rows of the block A.c. 
Now the discretized differential operator based on the non-symmetric collocation 
approach is given by 

T a.c,1 

aJ:r 

[

A.cAi1 A.cA81] 
AA-1 AA-1 

I l3 ___., ___., 
=0 =I 

Here we partitioned A-1 into the blocks Ai 1 with N -N13 columns corresponding to 
interior points, and A.B 1 with NB columns corresponding to the remaining boundary 
points. Also, we made use of the fact that a'[ b1 = 8iJ. 

This is the same as (see ( 42.8)) 

[~~]=Lr, 
where Mand P were obtained from the discrete differential operator (42.7) 

by replacing certain rows with unit vectors as we explained is common practice for 
handling the Dirichlet boundary conditions in the PS approach. 

Thus, we have just seen that - provided we use the same basis functions <I> J 

and the same grid of collocation points Xi - the non-symmetric RBF collocation 
approach for the solution of an elliptic PDE with Dirichlet boundary conditions 
followed by evaluation at the grid points is identical to a pseudospectral approach. 
However, neither of the two methods is well-defined in general since they both rely 
on the invertibility of Kansa's collocation matrix. 
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On the other hand, we showed above that we can always form the discretized 
differential operator 

Lr = [ 1] A-
1 

= [ ~ ~ l 
- even if Kansa's matrix is not invertible. This implies that we can safely use the 
non-symmetric RBF pseudospectral approach whenever inversion of the discretized 
differential operator is not required (e.g., in the context of explicit time-stepping 
for parabolic PDEs). 

Another interesting feature that we will illustrate in the next chapter is the 
fact shown recently by a number of authors (see, e.g., [de Boor (2006); Driscoll 
and Fornberg (2002); Schaback (2005); Schaback (2006b)]) that in the limiting case 
of "flat" basis functions the one-dimensional RBF interpolant yields a polynomial 
interpolant. Since we also mentioned earlier that the discretized differential operator 
Lr is invertible if a univariate polynomial basis is used we can conclude that Kansa's 
collocation matrix is invertible in the limiting case c -~ 0. 

42.4 A Symmetric RBF-based Pseudospectral Method 

The second RBF collocation method is the symmetric approach whose system ma
trix is invertible for all grid configurations and any strictly positive definite basic 
function as explained in Chapter 38. 

Recall that for the symmetric collocation method one uses a different basis than 
for the non-symmetric approach (42.10), i.e., a different function space to repre
sent the approximate solution. For the same elliptic PDE and Dirichlet boundary 
conditions as above one now starts with 

N-N5 N 

u(x) = L Cj.c}q,(x) + 2= (42.12) 
j=l j=N-NB+l 

Since the q,j are assumed to be radial functions, i.e., q,j (x) = cp(llx - Xj II) the 
functionals .cj can be interpreted as an application of .C to cp viewed as a function 
of the second variable followed by evaluation at Xj (see the discussion in Chapters 36 
and 38). One obtains the coefficients c = [ex, cs]T by solving the linear system 

(42.13) 

Here the blocks A.c.ce and A, respectively, are square matrices corresponding to the 
interaction of interior collocation points with each other and boundary collocation 
points with each other. As discussed in Chapter 38 (for centers coinciding with 
collocation points) their entries are given by 

i, j = 1, ... 'N - NB, 
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i, j = N - NB + 1, ... 'N. 

The other two blocks are rectangular, and correspond to interaction of interior 
points with boundary points and vice versa. They are defined as 

(A.c)iJ = [.Ccp(llx - xJll)]x=xi, i = 1, ... , N - NB, j = N - NB+ 1, ... , N, 

(A.ce)iJ = [.cecp(llxi - xll)]x=xi, i = N - NB+ 1, ... , N, j = 1, ... , N - NB. 

As already mentioned, it is well known that the system matrix in ( 42.13) is 
invertible for strictly positive definite radial functions. This implies that we can 
obtain the approximate solution at any point x by using the computed coefficients 
c in (42.12). Thus this RBF collocation method is rather similar to Kansa's non
symmetric method with the notable difference that the collocation approach is well
defined. 

A nice connection between the symmetric and non-symmetric collocation meth
ods appears if we consider the corresponding symmetric pseudospectral approaches. 

To this end we use the expansion (42.12) on which the symmetric RBF colloca
tion method is based as starting point for a pseudospectral method, i.e., 

N-Na N 

u(x) = I: Cj.Cj<P(x) + I: ( 42.14) 
j=l j=N-Ns+l 

In vectorized notation this corresponds to 

u( x) = [a Ie ( x) a T ( x)] [ ~:] 
with appropriate row vectors a Ie ( x) and a T ( x). Evaluated on the grid of colloca
tion points this becomes 

u = [ A.ce AT J [ ~: l · 
Here the blocks A.ce and AT of the evaluation matrix are rectangular matrices with 
entries 

(A.cdiJ = [.Cecp(llxi - xll)]x=xj, i = 1, ... , N, j = 1, ... , N - NB, 

(AT)iJ = cp(llxi -xJll), i = 1, ... ,N, j = N-NB + 1, ... ,N, 

corresponding to evaluation of the basis functions used in ( 42 .12) at the collocation 
points Xi· Note that the second matrix with entries cp(llxi - xJll) is in fact the 
transpose of the corresponding block of the system matrix in (42.11) for Kansa's 
method (and thus use of the tilde-notation is justified). 

Moreover, the radial symmetry of the basis functions implies that the first block 
of the evaluation matrix for the symmetric collocation method, A.ce, is again the 
transpose of the corresponding block in Kansa's collocation method, A.c. 

To see this we consider differential operators of even orders and odd orders 
separately. If .C is a linear differential operator of odd order, then .ce will introduce 
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a sign change since it is acting on cp as a function of the second variable. In addition, 
odd order derivatives (evaluated at x = Xj) include a factor of the form Xi - Xj. 

Now, transposition of this factor will again lead to a sign change. The combination 
of these two effects ensures that A.c~ = A.J;. For even orders the effects of the 
operators £ and ce are indistinguishable and the linear factor is not present. 

Therefore, using symmetric RBF collocation we obtain the approximate solution 
of the boundary value problem on the collocation grid as 

We emphasize that this is not the solution of a pseudospectral method built on 
the same function space (same basis functions and same collocation points) as the 
symmetric RBF collocation method. 

For a pseudospectral method we would require the discretized differential oper
ator. Formally (assuming invertibility of Kansa's matrix) we would have 

( 42.15) 

where we already incorporated the boundary conditions in a way analogous to our 
earlier discussion. 

The problem with the differentiation matrix (42.15) for the symmetric pseu
dospectral approach is that we cannot be assured that the method itself, i.e., the 
discretized differential operator, is well-defined. In fact, due to the Hon-Schaback 
counterexample [Hon and Schaback (2001)] we know that there exist grid configu
rations for which the "basis" used for the symmetric PS expansion is not linearly 
independent. 

Therefore, the symmetric RBF collocation approach is well-suited for problems 
that require inversion of the differential operator (such as elliptic PDEs). Subse
quent evaluation on a grid makes the symmetric collocation look like a pseudospec
tral method - but it may not be one (since we may not be able to formulate the 
pseudospectral A nsatz). 

42.5 A Unified Discussion 

In both the symmetric and non-symmetric collocation approaches we can think of 
the approximate solution as a linear combination of appropriate basis functions. In 
vectorized notation this can be written as 

( 42.16) 

where the vector p( x) contains the values of the basis functions at x. If we consider 
the non-symmetric method these basis functions are just q>j, j = 1, ... , N, while 
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for the symmetric method they are comprised of both functions of the type <I> j and 
.Cj<t> (c.f. (42.14)). 

We now let D denote the linear operator that combines both the differential 
operator .C and the boundary operator (for Dirichlet boundary conditions the latter 
is just the identity). Then we have 

( 42.17) 

for an appropriately defined vector q(x). With this notation the boundary value 
problem for our approximate solution is given by 

Du(x) = f(x), 

where f is a piecewise defined function that collects the forcing functions in both 
the interior and on the boundary. 

Now we evaluate the two representations ( 42 .16) and ( 42.1 7) on the grid of 
collocation points Xi, i = 1, ... , N, and obtain 

u =Pc and u-v = Qc 

with matrices P and Q whose rows correspond to evaluation of the vectors pT(x) 
and qT ( x), respectively, at the collocation points Xi, i = 1, ... , N. The discretized 
boundary value problem is then 

uv = f -¢=::::} Qc = f, ( 42.18) 

where f is the vector of values of f on the grid. 
For the non-symmetric collocation approach the evaluation matrix Pis the stan

dard RBF interpolation matrix, and the derivative matrix Q is Kansa's matrix, 
whereas for symmetric collocation P is given by the transpose of Kansa's matrix, 
and Q is the symmetric collocation matrix. 

It is our goal to find the vector u, i.e., the values of the approximate solution 
on the grid of collocation points. There are two ways by which we can potentially 
obtain this answer: 

(1) We solve Qc = f for c, i.e., 

c = Q-1 f. 

Then we use the discretized version of (42.16) to get the desired vector u as 

u = PQ-1/. 

(2) Alternatively, we first formally transform the coefficients, i.e., we rewrite u = 

Peas 

Then the discretized boundary value problem (42.18) becomes 

QP- 1u = f, 

and we can obtain the solution vector u by solving this system. 
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The first approach corresponds to RBF collocation, the second to the pseu
dospectral approach. Both of these approaches are equivalent as long as all of the 
matrices involved are invertible. Unfortunately, as mentioned earlier, there are con
figurations of collocation points for which Kansa's matrix is not invertible. This 
means that for the non-symmetric case (when Q is Kansa's matrix) Approach 1 
cannot be assured to work in general, and Approach 2 can only be used if the 
discretized differential operator is applied directly (but not inverted). For the sym
metric approach (when P is Kansa's matrix), on the other hand, Approach 1 is 
guaranteed to work in general, but Approach 2 may not be well-defined. 

42.6 Summary 

Our discussion above revealed that for the non-symmetric (Kansa) Ansatz (42.10) 
we can always formulate the discrete differential operator 

However, we cannot ensure in general the invertibility of Lr. This implies that the 
non-symmetric RBF pseudospectral approach is justified for time-dependent PDEs 
(with explicit time-stepping methods). 

For the symmetric Ansatz (42.12), on the other hand, we can in general ensure 
the solution of .Cu = f by RBF collocation. However, it is not possible in general 
to even formulate the discrete differential operator 

Lr= [Af.ce A.fl [A.ce _AT]- 1 

A.ce A 

needed for the pseudospectral approach. This suggests that we should use the 
symmetric approach for time-independent PDEs and possibly for time-dependent 
PDEs with implicit time-stepping. 

The difficulties with both approaches can be attributed to the possible singu
larity of Kansa's matrix which appears as discretized differential operator for the 
non-symmetric approach, and (via its transpose) as the evaluation matrix in the 
symmetric approach. 

Since the non-symmetric approach is quite a bit easier to implement than the 
symmetric approach, and since the grid configurations for which the Kansa matrix 
is singular seem to be very rare (see [Hon and Schaback (2001)]) many researchers 
(including ourselves) often prefer to use the non-symmetric approach - even under 
questionable circumstances (such as with implicit time-stepping procedures, or for 
elliptic problems). The connection to polynomials in the limiting case c: = 0 justifies 
this point of view at least for 1-D problems. 

An interesting question for future research is the study of RBF-pseudospectral 
methods with moving or adaptive grids. This will be computationally much more 
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involved than the case discussed here (and illustrated in the next chapter), but 
the use of RBFs should imply that there is no major restriction imposed by the 
use of moving (scattered) collocation grids. In particular, with RBF-PS methods 
one will no longer be restricted to a tensor-product structure as with traditional 
polynomial pseudospectral methods, i.e., with RBF expansions we should be able 
to take advantage of scattered multivariate grids as well as spatial domains with 
non-rectangular geometries. 





Chapter 43 

RBF-PS Methods in MATLAB 

Overall, the coupling of RBF collocation and pseudospectral methods discussed 
in the previous chapter has provided a number of new insights. For example, it 
should now be clear that we can apply many standard pseudospectral procedures 
to RBF solvers. In particular, we now have "standard" procedures for solving time
dependent PDEs with RBFs. 

In this chapter we illustrate how the RBF pseudospectral approach can be ap
plied in a way very similar to standard polynomial pseudospectral methods. Among 
our numerical illustrations are several examples taken from the book [Trefethen 
(2000)] (see Programs 17, 35 and 36 there). We will also use the ID transport equa
tion of Example 42. l to compare the RBF and polynomial pseudospectral methods. 

43.1 Computing the RBF-Dilferentiation Matrix in MATLAB 

We begin by explaining how to compute the discretized differential operators ( dif
ferentiation matrices) that came up in our discussion in the previous chapter. 

In order to compute, for example, a first-order differentiation matrix we need 
to remember that - by the chain rule - the derivative of an RBF will be of the 
general form 

Thus, we require not only the distances, r, but also differences in x, where x is the 
first component of x. Therefore, the main statements in our first MATLAB subrou
tine (listed as Program 43.1) are the computation of these distance and difference 
matrices on lines 5 and 6. According to the discussion in the previous chapter, 
the differentiation matrix is then given by D = AxA-1 . This is implemented on 
lines 9-11. Note the use of the matrix right di vision operator I or mrdi vi de in 
MATLAB on line 11 used to solve the system DA= Ax for D. 

Program 43.1 is actually a little more complicated than it needs to be since 
we included an optimization of the RBF shape parameter via leave-one-out cross 
validation as described in Chapter 17 (see lines 4,7 and 8). Here we use a mod-
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ification of the basic routine CostEpsilon which we call CostEpsilonDRBF (see 
Program 43.2 below) so that we optimize the choice of c for the matrix problem 
D = AxA-1 {=} ATDT = (Ax)T. 

Program 43.1. DRBF .m 

% [D,x] = DRBF(N,rbf ,dxrbf) 
% Computes the differentiation matrix D for 1-D derivative 
% using Chebyshev points and LOOCV for optimal shape parameter 
% Input: N, create N+1 collocation points 
% rbf, dxrbf function handles for rbf and its derivative 
% Calls on: DistanceMatrix, DifferenceMatrix 
% Requires: CostEpsilonDRBF 

1 function [D,x] = DRBF(N,rbf ,dxrbf) 
2 if N==O, D=O; x=1; return, end 
3 x = cos(pi*(O:N)/N)'; % Chebyshev points 
4 mine= .1; maxe = 10; % Shape parameter interval 
5 r = DistanceMatrix(x,x); 
6 dx = DifferenceMatrix(x,x); 
7 ep = fminbnd(©(ep) CostEpsilonDRBF(ep,r,dx,rbf,dxrbf),mine,maxe); 
8 fprintf('Using epsilon= %f\n', ep) 
9 A= rbf(ep,r); 

10 Ax= dxrbf(ep,r,dx); 
11 D = Ax/A; 

Note that CostEpsilonDRBF .m is very similar to CostEpsilon .m ( c.f. Pro
gram 17.3). Now, however, we compute a right-hand side matrix corresponding 
to the transpose of Ax. Therefore, the denominator - which remains the same 
for all right-hand sides (see formula ( 17.1)) - needs to be cloned on line 6 via the 
repmat command. The cost of c is now the Frobenius norm of the matrix EF. Other 
measures for the error may also be appropriate. For the standard interpolation set
ting Rippa compared use of the f 1 and f2 norms (see [Rippa ( 1999)]) and concluded 
that the f 1 norm yields more accurate "optima". For the RBF-PS problems to be 
presented here we have observed very good results with the f 2 (or Frobenius) norm, 
and therefore that is what is used on line 7 of Program 43.2. 

Program 43.2. CostEpsilonDRBF. m 

!. ceps = CostEpsilonDRBF(ep,r,dx,rbf ,dxrbf) 
% Provides the "cost of epsilon" function for LOOCV optimization 
!. of shape parameter 
!. Input: ep, values of shape parameter 
!. r, dx, Distance and Difference matrices 
!. rbf, dxrbf, definition of rbf and its derivative 

1 function ceps = CostEpsilonDRBF(ep,r,dx,rbf ,dxrbf) 
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N = size(r,2); 
A= rbf(ep,r); 
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% = A-T since A is symmetric 
rhs = dxrbf(ep,r,dx)'; !. A_x-T 
invA = pinv(A); 
EF = (invA*rhs)./repmat(diag(invA),1,N); 
ceps = norm(EF(:)); 

43.1.1 Solution of a 1-D Transport Equation 
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We illustrate the use of the subroutine DBRF. m by solving a one-dimensional trans
port equation. Consider 

Ut(X, t) + CUx(x, t) = 0, x > -1, t > 0, 
u(-1,t) = 0, 

u(x, 0) = f(x), 

with the well-known solution 

u(x, t) = f (x - ct). 

In Program 43.3 we implement a solution of this problem with the help of the 
differentiation matrix from Program 43.1 above. Note that we could use almost the 
identical code to solve this problem with a Chebyshev pseudospectral method as 
discussed in [Trefethen (2000)]. In fact, in Figure 43.1 we display side-by-side the 
solutions obtained with Gaussian RBFs and with Chebyshev polynomials. Both 
solutions were computed on a grid of 21 Chebyshev points. The cross-validation 
algorithm returned a value of c = 1.874049 for the Gaussian. The maximum error 
for the Gaussian solution at time t = 1 was 0.0416, while for the PS solution we 
get 0.0418. The only difference in the PS-code is the replacement of line 4 in 
Program 43.3 by 

4 [D,x] = cheb(N) 

where cheb. mis the subroutine provided on page 54 of [Trefethen (2000)] for spectral 
differentiation. 

Program 43.3. TransportDRBF. m 

!. TransportDRBF 
!. Script that solves constant coefficient wave equation 
!. u_t + c*u_x = 0, using RBF-PS approach 
% Calls on: DRBF 

1 rbf = ©(e,r) exp(-(e*r).-2); !. Gaussian RBF 
2 dxrbf = ©(e,r,dx) -2*dx*e-2.*exp(-(e*r).-2); 
3 N = 20; 
4 [D,x] = DRBF(N,rbf ,dxrbf); 
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5 x = flipud(x); dt = 0.001; t = O; c = -1; 
6 v = 64*(-x).-3.*(1+x).-3; 
7 v(find(x>O)) = zeros(length(find(x>0)),1); 

% Time-stepping by explicit Euler formula: 
8 tmax = 1; tplot = .02; plotgap = round(tplot/dt); 
9 dt = tplot/plotgap; nplots = round(tmax/tplot); 

10 data= [v'; zeros(nplots,N+1)]; tdata = t; 
11 I= eye(size(D)); 
12 for i = 1:nplots 
13 for n = 1:plotgap 
14 t = t+dt; 
15 vv = v(end-1); 
16 v = v - dt*c*(D*v); % explicit Euler 
17 v(1) = O; v(end) = vv; 
18 end 
19 data(i+1,:) = v'; tdata = [tdata; t]; 
20 end 
21 surf(x,tdata,data), view(10,70), colormap('default'); 
22 axis([-1 1 0 tmax 0 1]), ylabel t, zlabel u, grid off 

% exact solution and error 
23 xx= linspace(-1,1,101); 
24 vone = 64*(1-xx).-3.*xx.-3; 
25 vone(find(xx<O)) = zeros(length(find(xx<0)),1); 
26 w = interp1(x,v,xx); 
27 maxErr = norm(w-vone,inf) 

The graph in Figure 43.1 shows the time profile of the solutions for the time 
interval [O, 1] with initial profile f(x) = 64(1 - x) 3 x 3 and unit wave speed. 

x x 

Fig. 43.1 Solution to transport equation based on Gaussian RBFs withe = 1.874049 (left) and 
Chebyshev PS method (right). Explicit Euler time-stepping with (~t = 0.001), and 21 Chebyshev 
points. 
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43.2 Use of the Contour-Pade Algorithm with the PS Approach 

We now give a brief explanation of how the Contour-Pade algorithm of [Fornberg 
and Wright (2004)] can be used to compute RBF differentiation matrices. In its 
original form the Contour-Pade algorithm allows us to stably evaluate radial basis 
function interpolants based on infinitely smooth RBFs for extreme choices of the 
shape parameter c (in particular c ~ 0). More specifically, the Contour-Pade 
algorithm uses FFTs and Pade approximations to evaluate the function 

( 43.1) 

with b(x, c)j = <p€(11x-Xj II) at some evaluation point x and A(c)i,j = <p€(11xi-Xj II) 
( c.f. the discussion in the previous chapter and in Chapter 17). The parameter c 
is used to denote the dependence of b and A on the choice of that parameter as a 
scaling factor in the basic function <p€ = <p(c· ). 

If we evaluate u at all of the collocation points Xi, i = 1, ... , N, for some fixed 
value of c, then bT ( x, c) turns into the matrix A( c). In the case of interpolation this 
exercise is, of course, pointless. However, if the Contour-Pade algorithm is adapted 
to replace the vector bT(x, c) (corresponding to evaluation at a single point x) 
with the matrix A.c based on the differential operator used earlier (corresponding 
to evaluation at all collocation points), then 

computes the values of the (spatial) derivative of u on the collocation points Xi· 
Boundary conditions can then be incorporated later as in the standard pseudospec
tral approach (see, e.g., [Trefethen (2000)] or our discussion in Section 42.2). 

This means that we are able to supply yet another subroutine to compute the 
differentiation matrix on line 4 of Program 43.3 via the Contour-Pade algorithm. 

43.2.1 Solution of the 1D Transport Equation Revisited 

We use the same example as in Subsection 43.1.1. In this subsection we compare 
a solution based on the Contour-Pade algorithm for Gaussian RBFs in the limiting 
case c ~ 0 to the two methods described earlier (based on DRBF and cheb). All of 
these approaches use an implicit Euler method with time step 6.t = 0.001 for the 
time discretization. We point out that for an implicit time-stepping method both 
the Contour-Pade approach and the DRBF approach used earlier, of course, require 
an inversion of the differentiation matrix. Recall that our theoretical discussion 
suggested that this is justified as long as we confine ourselves to the limiting case 
c ~ 0 and one space dimension. We will see that the non-limiting case (using DRBF) 

seems to work just as well. 
In Figures 43.2 and 43.3 we plot the maximum errors at time t = 1 for a 

time step 6.t = 0.001) and spatial discretizations consisting of N + 1 = 7, ... , 19 
collocation points. Errors for the Contour-Pade Gaussian RBF solution are on the 
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left of Figure 43.2 and for the Chebyshev PS solution on the right. The errors 
for the Gaussian RBF solution with N-dependent "optimal" shape parameter are 
shown in the left part of Figure 43.3, while the corresponding "optimal" €-values 
are displayed in the right plot. They range almost linearly increasing from 0.122661 
at N = 6 to 1.566594 at N = 18. 

We can see that the errors for all three methods are virtually identical. Unfortu
nately, in this experiment we are limited to this small range of N since for N > 19 
the Contour-Pade solution becomes unreliable. However, the agreement of all three 
solutions for these small values of N is remarkable. In fact, this seems to indicate 
that the errors in the solution are mostly due to the time-stepping method used. 

10-2'---------...._ _____ ..._ _ _, 

6 8 10 12 14 16 18 
N 

10_
2 
________ ...._ _ __... __ ..._ _ _. 

6 8 10 12 14 16 18 
N 

Fig. 43.2 Errors at t = 1 for transport equation. Gaussian RBF with c = 0 (left) and Chebyshev 
PS-solution (right); variable spatial discretization N. Implicit Euler method with 6.t = 0.001. 
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Fig. 43.3 Errors at t = 1 for transport equation using Gaussian RBF with "optimal" c (left) 
and corresponding £-values (right); variable spatial discretization N. Implicit Euler method with 
6.t = 0.001. 

The spectra of the differentiation matrices for both the Gaussian Contour-Pade 
and the Chebyshev PS approaches are plotted in Figures 43.4 and 43.5, respectively. 
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The subplots correspond to the use of N + 1 = 5, 9, 13, 17 Chebyshev collocation 
points for the spatial discretization. The plots for the Gaussian and Chebyshev 
methods show some similarities, but also some differences. The general distribution 
of the eigenvalues for the two methods is quite similar. However, the spectra for 
the Contour-Fade algorithm with Gaussian RBFs seem to be more or less a slightly 
stretched reflection about the imaginary axis of the spectra of the Chebyshev pseu
dospectral method. The differences increase as N increases. This, however, is not 
surprising since the Contour-Pade algorithm is known to be unreliable for larger 
values of N. 
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Fig. 43.4 Spectra of differentiation matrices for Gaussian RBF with E = 0 on Chebyshev collo
cation points obtained with the Contour-Pade algorithm and N = 5, 9, 13, 17. 

43.3 Computation of Higher-Order Derivatives 

A rather nice feature of polynomial differentiation matrices is the fact that higher
order derivatives can be computed by repeatedly applying the first-order differen
tiation matrix, i.e., D(k) = Dk, where D is the standard first-order differentiation 
matrix and D(k) is the matrix corresponding to the k-th (univariate) derivative. 
Unfortunately, this nice feature does not carry over to the general RBF case (just 
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Fig. 43.5 Spectra of differentiation matrices for Chebyshev pseudospectral method on Chebyshev 
collocation points with N = 5, 9, 13, 17. 

as is does not hold for periodic Fourier spectral differentiation matrices, either). 
We therefore need to provide separate MATLAB code for higher-order differentia
tion matrices. As Program 43.4 shows, this is not fundamentally more complicated 
than the first-order case. The only differences between Programs 43.1 and 43.4 are 
given by the computation of the AD<kJ matrix on line 10 for the first-order case in 
Program 43.1 and lines 9 for the second-order case in Program 43.4, and by the 
use of the subroutine CostEpsilonD2RBF instead of CostEpsilonDRBF. These dif
ferences are minute, and essentially all that is needed is the appropriate formula for 
the derivative of the RBF passed to D2RBF via the parameter d2rbf. We do not 
list the function CostEps ilonD2RBF. It differs from CostEps ilonDRBF only in the 
definition of the right-hand side matrix which now becomes 

4 rhs = d2rbf(ep,r)'; 

Also, the number and type of parameters that are passed to the functions are 
different since the first-order derivative requires differences of collocation points 
and the second-order derivative does not. 
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Program 43.4. D2RBF .m 

/. [D2,x] = D2RBF(N,rbf ,d2rbf) 
!. Computes the second-order differentiation matrix D2 for 1-D 
!. derivative using Chebyshev points and LOOCV for optimal epsilon 
!. Input: N, number of points -1 

rbf, d2rbf, function handles for rbf and its derivative 
!. Calls on: DistanceMatrix, DifferenceMatrix 
!. Requires: CostEpsilonD2RBF 

1 function [D2,x] = D2RBF(N,rbf ,d2rbf) 
2 if N==O, D2=0; x=1; return, end 
3 x = cos(pi•(O:N)/N)'; !. Chebyshev points 
4 mine= .1; maxe = 10; !. Shape parameter interval 
5 r = DistanceMatrix(x,x); 
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6 ep = fminbnd(©(ep) CostEpsilonD2RBF(ep,r,rbf,d2rbf),mine,maxe); 
7 fprintf('Using epsilon= /.f\n', ep) 
8 A= rbf(ep,r); 
9 AD2 = d2rbf(ep,r); 

10 D2 = AD2/A; 

43.3.1 Solution of the Allen-Cahn Equation 

To illustrate the use of the subroutine D2RBF. m we present a modification of Pro
gram 35 in [Trefethen (2000)] which is concerned with the solution of the nonlinear 
reaction:-diffusion (or Allen-Cahn) equation. The specific problem we will solve is 
of the form 

Ut = µUxx + U - u3
, x E (-1,1), t > 0, 

with parameter µ, initial condition 

u(x, 0) = 0.53x + 0.47sin (-~7rX), x E [-1, l], 

and non-homogeneous (time-dependent) boundary conditions u(-1, t) = -1 and 
u(l, t) = sin2 (t/5). The solution to this equation has three steady states (u = 

-1, 0, 1) with the two nonzero solutions being stable. The transition between these 
states is governed by the parameterµ. In our calculations below we use µ = 0.01, 
and the unstable state should vanish around t = 30. 

The modified MATLAB code is presented in Program 43.5. Note how easily the 
nonlinearity is dealt with by incorporating it into the time-stepping method on 
line 13. 

Program 43.5. Modification of Program 35 of [Trefethen (2000)] 

!. p35 
!. Script that solves Allen-Cahn equation with boundary condition 
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% imposed explicitly ("method (II)") (from Trefethen (2000)) 
!. We replace the Chebyshev method by an RBF-PS method 
!. Calls on: D2RBF 

!. Matern cubic as RBF basic function 
1 rbf = ©(e,r) exp(-e*r).*(15+15*e*r+6*(e*r).-2+(e*r).-3); 
2 d2rbf = ©(e,r) e-2*((e*r).-3-3*e*r-3).*exp(-e*r); 
3 N = 20; 
4 [D2,x] = D2RBF(N,rbf,d2rbf); 

!. Here is the rest of Trefethen's code. 
5 mu= 0.01; dt = min([.01,50*N-(-4)/mu]); 
6 t = O; v = .53*x + .47*sin(-1.5*pi*x); 

!. Solve PDE by Euler formula and plot results: 
7 tmax = 100; tplot = 2; nplots = round(tmax/tplot); 
8 plotgap = round(tplot/dt); dt = tplot/plotgap; 
9 xx= -1:.025:1; vv = polyval(polyfit(x,v,N),xx); 

10 plotdata = [vv; zeros(nplots,length(xx))]; tdata = t; 
11 for i = 1:nplots 
12 for n = 1:plotgap 
13 t = t+dt; v = v + dt*(mu*D2*v + v - v.-3); !. Euler 
14 v(1) = 1 + sin(t/5)-2; v(end) = -1; !. BC 
15 end 
16 vv = polyval(polyfit(x,v,N),xx); 
17 plotdata(i+1,:) = vv; tdata = [tdata; t]; 
18 end 
19 surf(xx,tdata,plotdata), grid on 
20 axis([-1 1 0 tmax -1 2]), view(-40,55) 
21 colormap('default'); xlabel x, ylabel t, zlabel u 

The original program in [Trefethen (2000)] is obtained by deleting lines 1-2 and 
replacing line 4 by a call to cheb .m followed by the statement D2 = 0-2 which yields 
the second-order differentiation matrix in the Chebyshev case. 

Note that in our RBF-PS implementation the majority of the matrix computa
tions are required only once outside the time-stepping procedure when computing 
the derivative matrix as the solution of a linear system. Inside the time-stepping 
loop (lines 12-15) we require only matrix-vector multiplication. We point out that 
this approach is much more efficient than computation of RBF expansion coeffi
cients at every time step (as suggested, e.g., in [Hon and Mao (1999)]). In fact, this 
is the main difference between the RBF-PS approach and the collocation approach 
of Chapters 38-40 (see also our comparison of the collocation approaches and the 
RBF-PS approach in the previous chapter). 

In Figure 43.6 we show the solution obtained via the Chebyshev pseudospectral 
method and via an RBF pseudospectral approach based on the "cubic" Matern 
function c.p(r) = (15 + 15cr + 6(cr)2 + (cr)3 )e-e:r with "optimal" shape parameter 
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c = 0.350952. Note that these computations are rather sensitive to the value of c 
and the norm used to measure the "cost" of c in CostEpsilonD2RBF .m. In fact, use 
of the £1 or £00 norms instead of the f2 norm both lead to inacceptable results for 
this test problem. The reasons for this high sensitivity of the solution to the value 
of c are the extreme ill-conditioning of the matrix along with the changes of the 
solution over time. An adaptive method would most likely perform much better in 
this case. 

The computations for this example are based on 21 Chebyshev points, and the 
differentiation matrix for the RBF is obtained directly with the subroutine D2RBF. m 

(i.e., without the Contour-Pade algorithm). We use this approach since for 21 points 
the Contour-Pade algorithm no longer can be relied upon. Moreover, it is apparent 
from the figures that reasonable solutions can also be obtained via this direct (and 
much simpler) RBF approach. True spectral accuracy, however, will no longer be 
given if c > 0. We can see from the figure that the solution based on Chebyshev 
polynomials appears to be slightly more accurate since the transition occurs at a 
slightly later and correct time (i.e., at t ~ 30) and is also a little "sharper". 
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Fig. 43.6 Solution of the Allen-Cahn equation using the Chebyshev pseudospectral method (left) 
and an RBF-PS method with cubic Matern functions (right) with N = 20. 

43.4 Solution of a 2D Helmholtz Equation 

We consider the 2D Helmholtz equation (see Program 17 in [Trefethen (2000)]) 

Uxx + Uyy + k2
u = f(x, y), x, y E (-1, 1)2

, 

with boundary condition u = 0 and 

f ( x, y) = exp ( -10 [ (y - 1) 2 + ( x - ~) 2] ) . 

To solve this type of (elliptic) problem we again need to assume invertibility of 
the differentiation matrix. Even though this may not be warranted theoretically 



412 Meshfree. Approximation Methods with MATLAB 

(see our discussion in the previous chapter), we compare a non-symmetric RBF 
pseudospectral method with a Chebyshev pseudospectral method. 

We attempt to solve the problem with radial basis functions in two different 
ways. First, we apply the same technique as in [Trefethen (2000)] using the kron 
function to express the disretized Laplacian on a tensor-product grid of (N + 1) x 
(N + 1) points as 

L =I® D2 + D2 ®I, (43.2) 

where D2 is the (univariate) second-order differentiation matrix, I is an identity 
matrix of size (N + 1) x (N + 1), and@ denotes the Kronecker tensor-product. For 
polynomial PS methods the second-order differentiation matrix can be computed 
as the square of the one for the first-order derivative, i.e., D2 = D 2 , and this is 
what is used in [Trefethen (2000)]. 

As we pointed out ear lier, for RBFs we cannot follow this approach directly 
since D 2 '/=- D(2). Thus, we generate the matrix D2 directly with the help of the 
subroutine D2RBF. However, as long as the collocation points form a tensor-product 
grid and the RBF is separable (such as a Gaussian or a polynomial), we can still 
employ the Kronecker tensor-product construction ( 43.2). This is implemented in 
lines 4 and 9 of Program 43.6 · 

Program 43.6. Modification of Program 17 of [Trefethen (2000)] 

% 
I. 
I. 
% 
% 
!. 

1 
2 
3 
4 
5 
6 

7 
8 

9 

10 
11 
12 
13 

p17 
Script that solves Helmholtz equation 
u_xx + u_yy + (k-2)u = f on [-1,1]x[-1,1] 
We replace the Chebyshev method by an RBF-PS method 
and explicitly enforce the boundary conditions 
Calls on: D2RBF 

% Gaussian RBF basic function 
rbf = ©(e,r) exp(-(e*r).-2); 
d2rbf = ©(e,r) 2*e-2*(2*(e*r).-2-1).*exp(-(e*r).-2); 
N = 24; 
[D2,x] = D2RBF(N,rbf,d2rbf); y = x; 
[xx,yy] = meshgrid(x,y); 
xx= xx(:); yy = yy(:); 
I eye(N+l); 
k = 9; 

L = kron(I,D2) + kron(D2,I) + k-2*eye((N+1)-2); 

% Impose boundary conditions by replacing appropriate rows of L 
b = find(abs(xx)==1 I abs(yy)==1); % boundary pts 
L(b,:) = zeros(4*N,(N+1)-2); L(b,b) = eye(4*N); 
f = exp(-10*((yy-1).-2+(xx-.5).-2)); 
f(b) = zeros(4*N,1); 
% Solve for u, reshape to 20 grid, and plot: 
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14 u = L\f; 
15 uu = reshape(u,N+1,N+l); 
16 [xx,yy] = meshgrid(x,y); 
17 [xxx,yyy] = meshgrid(-1:.0333:1,-1:.0333:1); 
18 uuu = interp2(xx,yy,uu,xxx,yyy,'cubic'); 
19 figure, elf, surf(xxx,yyy,uuu), 
20 xlabel x, ylabel y, zlabel u 
21 text(.2,1, .022,sprintf('u(0,0) = %13.11f' ,uu(N/2+1,N/2+1))) 
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The solution of the Helmholtz equation for k = 9 with Gaussians using an 
"optimal" shape parameter c = 2.549845 and N = 24 (i.e., 625 total points) is 
displayed next to the Chebyshev pseudospectral solution of [Trefethen (2000)] in 
Figure 43.7. Again, the similarity of the two solutions is remarkable. 
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Fig. 43. 7 Solution of the 2D Helmholtz equation with N = 24 using the Chebyshev pseudospectral 
method (left) and Gaussians with c = 2.549845 (right). 

As an alternative approach - that allows also the use of non-tensor product 
collocation grids - we modify Program 43.6 and use a direct implementation of the 
Laplacian of the RBFs. The only advantage of doing this on a tensor-product grid 
is that now all radial basis functions can be used. This variation of the code takes 
considerably longer to execute since the differentiation matrix is now computed with 
matrices of size 625 x 625 instead of the 25 x 25 matrices used for the univariate 
differentiation matrix D2 earlier. Moreover, the results are likely to be less accurate 
since the larger matrices are more prone to ill-conditioning. However, the advantage 
of this approach is that it frees us of the limitation of polynomial PS methods to 
tensor-product collocation grids. 

The modified code is listed in Program 43.7 where we have used the C 6 Wendland 
function <p3 ,3 (r) = (1 - cr)~(32(cr) 3 + 25(cr) 2 + 8cr + 1) with an "optimal" scale 
parameter c = 0.129440. Note that we used the compactly supported Wendland 
functions in "global mode" (with small c, i.e., large support size) and this explains 
the definition of the basic function as in lines 1 and 2 of Program 43. 7 in preparation 
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for the use with the dense code DistanceMatrix.min the subroutine LRBF .m (which 
is listed below as Program 43.8). The output of Program 43. 7 is displayed in 
Figure 43.8. 

Program 43. 7. Modification II of Program 17 of [Trefethen (2000)] 

/. p17_2D 
!. Script that solves Helmholtz equation 
!. u_xx + u_yy + (k-2)u = f on [-1,1]x[-1,1] 
!. We replace the Chebyshev method by an RBF-PS method, 
!. explicitly enforce the boundary conditions, and 
!. use a 2-D implementation of the Laplacian 
!. Calls on: LRBF 

!. Wendland C6 RBF basic function 
1 rbf = ©(e,r) max(1-e*r,0).-8.*(32*(e*r).-3+25*(e*r).-2+8*e*r+1); 
2a Lrbf = ©(e,r) 44*e-2*max(1-e*r,0).-6.* ... 
2b (88*(e*r).-3+3*(e*r).-2-6*e*r-1); 
3 [L,x,y] = LRBF(N,rbf,Lrbf); 
4 [xx,yy] = meshgrid(x,y); 
5 xx= xx(:); yy = yy(:); 
6 k = 9; 

7 L = L + k-2*eye((N+1)-2); 
!. Impose boundary conditions by replacing appropriate rows of L 

8 b = find(abs(xx)==1 I abs(yy)==1); !. boundary pts 
9 L(b,:) = zeros(4*N,(N+1)-2); L(b,b) = eye(4*N); 

10 f = exp(-10*((yy-1).-2+(xx-.5).-2)); 
11 f(b) = zeros(4*N,1); 

!. Solve for u, reshape to 2D grid, and plot: 
12 u = L\f; 
13 uu = reshape(u,N+1,N+1); 
14 [xx,yy] = meshgrid(x,y); 
15 [xxx,yyy] = meshgrid(-1: .0333:1,-1:.0333:1); 
16 uuu = interp2(xx,yy,uu,xxx,yyy,'cubic'); 
17 figure, elf, surf(xxx,yyy,uuu), 
18 xlabel x, ylabel y, zlabel u 
19 text(.2,1,.022,sprintf('u(0,0) = /.13.11f',uu(N/2+1,N/2+1))) 

Program 43.8. LRBF .m 

/. [L,x,y] = LRBF(N,rbf ,Lrbf) 
!. Computes the Laplacian differentiation matrix L for 2-D 
!. derivatives using Chebyshev points and LOOCV for optimal epsilon 
!. Input: N number of points -1 
!. rbf, Lrbf, function handles for rbf and its derivative 
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I. Calls on: DistanceMatrix 
I. Requires: CostEpsilonLRBF 

1 function [L,x,y] = LRBF(N,rbf ,Lrbf) 
2 if N==O, L=O; x=l; return, end 
3 x = cos(pi*(O:N)/N)'; !. Chebyshev points 
4 y = x; [xx,yy] = meshgrid(x,y); 

I. Stretch 2D grids to 10 vectors and put in 
5 points= [xx(:) yy(:)]; 

one array 

6 
7 

8 

9 

mine= .1; maxe = 10; !. Shape parameter interval 
r = DistanceMatrix(points,points); 

10 
11 
12 

ep = fminbnd(©(ep) CostEpsilonLRBF(ep,r,rbf,Lrbf),mine,maxe); 
fprintf('Using epsilon= /.f\n', ep) 
A= rbf(ep,r); 
AL= Lrbf(ep,r); 
L = AL/A; 
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Fig. 43.8 Solution of the 2D Helmholtz equation using a direct implementation of the Laplacian 
based on C 6 Wendland functions with e: = 0.129440 on 625 tensor-product Chebyshev collocation 
points. 

43.5 Solution of a 2D Laplace Equation with Piecewise Boundary 
Conditions 

Our final example is another elliptic equation. This time we use the Gaussian RBF 
with an "optimal" shape parameter c = 2.549845. Again, the spatial discretization 
consists of a tensor product of 25 x 25 Chebyshev points, and the differentiation ma
trix for the RBF-PS approach is computed using the D2RBF and kron construction 
as in the previous example. 
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We consider the 2D Laplace equation 

Uxx+Uyy =0, x,y E (-1,1)2
, 

with boundary conditions 

(

sin4 (7rx), 

u(x, y) = t sin(37ry), 

0, 

y = 1 and -1 < x < 0, 

x = 1, 

otherwise. 

This is the same problem as used in Program 36 of [Trefethen (2000)], and we do 
not list it here due to the similarity with previous examples and the original code 
in [Trefethen (2000)]. 

Figure 43.9 shows the solution obtained via the Chebyshev and RBF pseu
dospectral methods, respectively. The qualitative behavior of the two solutions is 
very similar. 

·····. 
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Fig. 43.9 Solution of the 2D Laplace equation using a Chebyshev PS approach (left) and Gaussian 
RBFs (right) with c = 2.549845 on 625 tensor-product Chebyshev collocation points. 

43.6 Summary 

While there is no advantage in going to arbitrarily spaced irregular collocation 
points for any of the problems presented here, there is nothing that prevents us 
from doing so for the RBF pseudospectral approach. In particular, as we saw in 
Section 43.4, we are not limited to using tensor product grids for higher-dimensional 
spatial discretizations. This is a potential advantage of the RBF pseudospectral 
approach over the standard polynomial methods. 

More applications of the RBF-PS method can be found in the recent papers 
[Ferreira and Fasshauer (2006); Ferreira and Fasshauer (2007)]. 

Future challenges include dealing with larger problems in an efficient and sta
ble way. Thus, such issues as preconditioning and FFT-type algorithms need to 
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be studied in the context of RBF pseudospectral methods. Some first studies of 
the eigenvalue stability of RBF pseudospectral methods have been reported very 
recently in [Platte and Driscoll (2006)). 





Chapter 44 

RBF Galerkin Methods 

44.1 An Elliptic PDE with Neumann Boundary Conditions 

A variational approach to the solution of PDEs with RBFs in Euclidean spaces has 
so far only been considered in [Wendland (1999a); Wendland (1999b)] and the very 
recent paper [Hu et al. (2005)]. On the sphere - where we do not have to worry 
about boundary conditions - we also have [Le Gia (2004)]. In [Wendland (1999b)] 
the author studies the Helmholtz equation with natural boundary conditions, i.e., 

-~u+u = f 
8 
-u=O 
8n 

where n denotes the unit outer normal vector. 

in n, 
on an, 

The classical Galer kin formulation then leads to the problem of finding a function 
u E H 1 (fl) such that 

a(u,v) = (f,vh2 cn) for all v E H 1 (n), 

where (f, v)L 2 (n) is the usual L2-hmer product, and for the Helmholtz equation the 
bilinear form a is given by 

a(u,v) = l (Vu· Vv + uv)dx. 

In order to obtain a numerical scheme the infinite-dimensional space H 1 (fl) is re
placed by some finite-dimensional subspace Sx ~ H 1 (fl), where X denotes the 
computational grid to be used for the solution. In the context of RBFs Sx is taken 
as 

Sx =span{ cp(ll · -Xj 11), Xj E X}. 

This results in a square system of linear equations for the coefficients of u E Sx 
determined by 

a(u, v) = (f, vh2 cn) for all v E Sx. 

More specifically, if X = { x 1 , ... , x N}, then 
N 

u = L CJ'P(ll . -Xj II), 
j=l 

419 

( 44.1) 
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and the system ( 44.1) is given by 

r [Vu(x). V<p(llx - Xiii)+ u<p(llx - Xiii)] dx = r f(x)<p(llx - Xill)dx, k k 
i = l, ... ,N. 

Using linearity and the definition of u given above this turns into 
N 

~CJ {L [V''l'(llx - xJll) · V'<p(llx - xdl) + <p(llx - xJll)'P(llx - x;ll)] dx} 

= l f(x)<p(llx - xill)dx, i = 1, ... , N. 

Clearly, this can be written in matrix-vector form as 

Ac=f 

with the entries of the stiffness matrix A given by 

Aij = l [V<p(llx - x1ll) · V<p(llx - xiii)+ 'P(llx - x1ll)'P(llx - xiii)] dx, 

and the right-hand side entries 

Ii= l f(x)<p(llx - xill)dx. 

The evaluation of these integrals is what is most time-consuming in the RBF 
Galerkin approach (see the numerical experiments of the next chapter). Wend
land reports that the numerical evaluation of these weak-form integrals presents a 
major problem for the radial basis function Galerkin approach. 

In addition, RBF Galer kin methods will face difficulties with Dirichlet (or some
times also called essential) boundary conditions. Both of these difficulties are also 
well-known in many other flavors of meshfree weak-form methods. An especially 
promising solution to the issue of Dirichlet boundary conditions seems to be the use 
of R-functions as proposed by Hollig and Reif in the context of web-splines (see, 
e.g., [Hollig (2003)] or our earlier discussion in the context of collocation methods in 
Chapter 38). Another popular approach uses Lagrange multipliers in a constrained 
optimization setting. 

For more on the Galerkin method see, e.g., [Braess (1997); Brenner and Scott 
(1994)] (in the context of finite elements), or [Babuska et al. (2003)] (in the context 
of MLS-based meshfree methods). 

44.2 A Convergence Estimate 

It was shown in [Wendland (1999a)] that for those RBFs (globally as well as lo
cally supported) whose Fourier transform decays like (1 + II · 11 2 )-2 .B the following 
convergence estimate for the RBF Galerkin method holds: 

llu - ullH 1 (0) < ChO"-lllullH"(O)i (44.2) 
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where h = hx ,n is the fill distance of X, the solution satisfies the regularity require
ments u E Ha-(n), and where the convergence rate is determined by /3 > o- > s/2+1. 

From our discussion in Chapter 13 we know that the Fourier transform of Wend
land's compactly supported functions decays as (1 + II · 11 2 )-s-211:- 1 . So for these 
functions the above estimate implies that functions which are in C 2

/t and strictly 
positive definite on ]Rs satisfying K, > o- - stl will have O(h11:+(s-l)/2 ) conver

gence order, i.e., the c0 function <p3 ,0 = (1 - r)~ yields O(h) and the C 2 function 
<p3,1 = (1- r)t(4r + 1) delivers O(h2 ) convergence in JR3 . 

As with the convergence estimate for symmetric collocation there is a link be
tween the regularity requirements on the solution and the space dimension s. Also, 
we point out that so far the theory is only established for PDEs with natural bound
ary conditions. 

The convergence estimate (44.2) holds for the non-stationary setting, i.e., if 
we are using compactly supported basis functions, for fixed support radii. By the 
same arguments used in Chapters 12, 16 and 41, one will want to switch to the 
stationary setting and employ a multilevel algorithm in which the solution at each 
step is updated by a fit to the most recent residual. This should ensure both 
convergence and numerical efficiency. 

44.3 A Multilevel RBF Galerkin Algorithm 

Here is the variant of the stationary multilevel collocation algorithm listed in Chap
ter 41 adapted for the weak formulation of the PDE discussed at the beginning of 
this chapter (see [Wendland (1999b )]): 

Algorithm 44.1. Multilevel Galerkin 

(1) uo = 0 
(2) For k from 1 to K do 

(a) Find Uk E Sxk such that a(uk, v) = (J, v) - a(uk-1, v) for all v E Sxk 
(b) Update Uk ~- Uk-1 +Uk 

This algorithm does not converge in general (see Tab. 1 in [Wendland (1999b)]). 
Since the weak formulation can be interpreted as a Hilbert space projection 

method, Wendland was able to show that a modified version of the multilevel 
Galerkin algorithm, namely 

Algorithm 44.2. Nested Multilevel Galerkin 

(1) Fix K and M EN, and set vo = 0. 
(2) For j from 0 while resiudal > tolerance to M do 

(a) Set uo = Vj· 

(b) Apply the k-loop of the previous algorithm and denote the result with u( Vj). 
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(c) Set Vj+l = u(vj)· 

does converge. In fact, using this algorithm Wendland proves, and also observes 
numerically, convergence which is at least linear (see Theorem 3 and Tab. 2 in 
[Wendland (1999b )]). 

The important difference between the two multilevel Galerkin algorithms is the 
added outer iteration in the nested version which is a well-known idea from linear 
algebra introduced in [Kaczmarz (1937)]. A proof of the linear convergence for 
general Hilbert space projection methods coupled with Kaczmarz iteration can be 
found in [Smith et al. (1977)]. This alternate projection idea is also the fundamental 
ingredient in the convergence proof of the domain decomposition method of [Beatson 
et al. (2000)] described in the Chapter 35. We mention here that in the multigrid 
literature Kaczmarz' method is frequently used as a smoother (see e.g. [McCormick 
(1992)]). 

In the recent paper [Schaback (2003)] the author presents a framework for the 
radial basis function solution of problems both in the strong (collocation) and weak 
(Galerkin) form. 

Many other meshfree methods for the solution of partial differential equations in 
the weak form appear in the (mostly engineering) literature. These methods come 
under such names as smoothed particle hydrodynamics (SPH) (e.g., [Monaghan 
(1988)]), reproducing kernel particle method (RKPM) (see, e.g., [Li and Liu (1996); 
Liu et al. (1997)]), point interpolation method (PIM) (see, [Liu (2002)]), element 
free Galerkin method (EFG) (see, e.g., [Belytschko et al. (1996)]), meshless lo
cal Petrov-Galerkin method (MLPG) [Atluri and Zhu (1998)], h-p-cloud method 
[Duarte and Oden (1996b )], partition of unity finite element method (PUFEM) 
[Babuska and Melenk (1997); Melenk and Babuska (1996)], or generalized finite ele
ment method (GFEM) [Babuska et al. (2003)]. Most of these methods are based on 
the moving least squares approximation method discussed in Chapter 22. The two 
recent books [Atluri and Shen(2002a)] and [Liu (2002)] summarize many of these 
methods. However, these books focus mostly on a survey of the various methods 
and related computational and implementation issues with little emphasis on the 
mathematical foundation of these methods. The recent survey paper [Babuska et al. 
(2003)] fills a large part of this void. 
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RBF Galerkin Methods in MATLAB 

We consider the following Helmholtz test problem ( c.f [Wendland (1999b)]): 

-~u(x,y) +u(x,y) = cos(7rx)cos(7ry) inn= [-1,1] 2
, 

8 
an u(x, y) = 0 on an, 

where x = (x, y) E IR.2 and n denotes the unit outer normal vector. It is easy to 
verify that the exact solution for this problem is given by 

( ) 
_ cos( 7r:l:) cos( 7rY) 

u x' y - 27!"2 + 1 . 

In Program 45.1 we provide a simple MATLAB implementation for the Galerkin 
solution of this problem. Note that our program does not attempt to provide a 
multilevel solution as described in the previous chapter, nor do we pretend to be 
especially efficient (and therefore the program is very slow). As pointed out in the 
previous chapter, the most time consuming part is the calculation of the integrals 
needed for the stiffness matrix A with entries 

Aij = 1. \7cp(llx - Xiii)· \7cp(llx - XJll)dx 
(-1,1]2 

+ 1. cp(llx - Xill)cp(llx - Xj ll)dx, 
(-1,1] 2 

and the right-hand side vector with entries 

1. f(x)cp(llx - xill)dx. 
(-1,1] 2 

We compute these integrals using the dblquad numerical integration routine on 
lines 15-20 of Program 45.1. Note that we exploit the symmetry of the stiffness 
matrix in the for-loop, and then complete the matrix on line 21. The functions 
needed for the integration are provided on lines 1-3 and 5-6. In [Wendland (1999b)] 
the author details a strategy for converting the double integrals to univariate inte
grals since all the functions involved are radially symmetric. We do not pursue that 
possibility here. 

For this example we use the 0 2 Wendland function cp3 ,1 (r) = (1 - r)t(4r + 1) 
with a support scaled by c = 0.7. On line 4 we provide the standard representation 

423 
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of the basic function as it is needed for the evaluation and plotting part of the 
program (lines 23-34, which are of the same form as our earlier programs). 

Program 45.1. RBFGalerkin2D. m 

% RBFGalerkin2D 
% Script that performs Galerkin solution of 2D Helmholtz equation 
'', f h - u_xx - u_yy + u = 
% Calls on: DistanceMatrix, PlotSurf, PlotError2D 

% Definition of the RBF and its gradient, Wendland C2 
1a rbf = ©(e,x,y,xi,yi) max(1-e*sqrt((x-xi).-2+(y-yi).-2),0).-4.* ... 
1b (4*e*sqrt((x-xi).-2+(y-yi).-2)+1); 
2a 
2b 
3a 
3b 
4 

dxrbf = 

dyrbf = 

evalrbf 

©(e,x,y,xi,yi) -20*(x-xi)*e-2.* ... 
max(l-e*sqrt((x-xi).-2+(y-yi).-2),0).-3; 

©(e,x,y,xi,yi) -20*(y-yi)*e-2.* ... 
max(1-e*sqrt((x-xi).-2+(y-yi).-2),0).-3; 

= ©(e,r) max(1-e*r,0).-4.*(4*e*r+1); 
% Products for integration 

5 rp = ©(e,x,y,xi,yi,xj,yj) rbf(e,x,y,xi,yi).*rbf(e,x,y,xj?yj); 

6a gp = ©(e,x,y,xi,yi,xj,yj) dxrbf(e,x,y,xi,yi).* ... 
6b dxrbf(e,x,y,xj,yj)+dyrbf(e,x,y,xi,yi).*dyrbf(e,x,y,xj,yj); 

% Parameter for basis function 
7 ep = .7; 

% Right-hand side function for Helmholtz equation 
8 f = ©(x,y) cos(pi*x).*cos(pi*y); 

% Exact solution 
9 u = ©(x,y) cos(pi*x).*cos(pi*y)/(2*pi-2+1); 

% Number and type of centers: 
10 N = 25; gridtype = 'u'; 

% Resolution of evaluation grid for errors and plotting 
11 neval = 40; 

% Load data points 
12 name= sprintf('Data2D_%d%s', N,gridtype); load(name) 

% Shift centers to the square [-1,1]-2 
13 ctrs = 2*dsites-1; 

% Build stiffness matrix and right-hand side 
14 A= zeros(N,N); rhs = zeros(N,1); 
15 for i=1:N 
16 for j=1:i 
17a A(i,j) = dblquad(©(x,y) gp(ep,x,y,ctrs(i,1),ctrs(i,2), .. . 
17b ctrs(j,1),ctrs(j,2)),-1,1,-1,1) + .. . 
17c dblquad(©(x,y) rp(ep,x,y,ctrs(i,1),ctrs(i,2), ... 
17d ctrs(j,1),ctrs(j,2)),-1,1,-1,1); 
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18 end 
19a rhs(i) = dblquad(©(x,y) f(x,y).• ... 
19b rbf(ep,x,y,ctrs(i,l),ctrs(i,2)),-1,1,-1,1); 
20 end 

% Make matrix symmetric 
21 A= A+ A' - diag(diag(A)); 

% Solve linear system, i.e., compute expansion coefficients 
22 c = A\rhs; 

% Evaluation 
23 grid= linspace(-1,1,neval); [xe, ye] = meshgrid(grid); 
24 epoints = [xe(:) ye(:)]; 
25 exact= u(epoints(:,1),epoints(:,2)); 
26 DM_eval = DistanceMatrix(epoints,ctrs); 
27 EM= evalrbf(ep,DM_eval); 
28 Pf = EM * c; 

% Compute maximum error on evaluation grid 
29 maxerr = norm(Pf-exact,inf); rms_err = norm(Pf-exact)/neval; 
30 fprintf('RMS error: %e\n', rms_err) 
31 fprintf('Maximum error: %e\n', maxerr) 

% Plot approximate solution 
32 fview = [-30,30]; % viewing angle for plot 
33 PlotSurf(xe,ye,Pf,neval,exact,maxerr,fview); 
34 PlotError2D(xe,ye,Pf,exact,maxerr,neval,fview); 
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Errors, condition numbers of the stiffness matrix, and observed convergence rates 
are listed in Table 45. l. A plot of the approximate solution and error distribution 
using 81 equally spaced centers to generate the trial and test spaces is provided in 
Figure 45.1. 

Table 45.l Errors and condition numbers for Galer kin solution of 
Helmholtz equation using the C 2 Wendland function with e: = 0. 7. 

N t'cxo-error rate RMS-error rate cond(A) 

9 4. 77 4434e-003 l.013915e-003 8.159139e+ooo 
25 3. 223359e-003 0.5668 9.561258e-004 0.0847 l.408312e+002 
81 9.346870e-005 5.1079 2.494297e-005 5.2605 3.232525e+004 

289 9. 701313e-005 -0.0537 2. 239018e-005 0.1558 6.897924e+007 

We can see that the convergence is rather erratic, and that the condition number 
increases rapidly. The WJ-convergence rate predicted in [Wendland (1999a)] for the 
basic function used here is O(h). On average, the results listed in Table 45.1 indicate 
roughly an O(h2 ) RMS-convergence rate. 
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Fig. 45.1 Approximate solution (left) and maximum error (right) for Galerkin solution of 
Helmholtz equation with C 2 Wendland functions using 81 equally spaced points in (-1, 1) 2 . 



Appendix A 

Useful Facts from Discrete Mathematics 

A.1 Halton Points 

Halton points (see [Halton (1960); Wong et al. (1997)]) are created from van der 
Corput sequences. They form so-called low discrepancy sequences and are used 
frequently in quasi-Monte Carlo methods for multi-dimensional integration appli
cations. 

The starting point in the construction of a van der Corput sequence is the fact 
that every nonnegative integer n can be written uniquely using a prime base p, i.e., . 

k 

n = Laipi, 
i=O 

where each coefficient ai is an integer such that 0 < ai < p. For example, if n = 10 
and p = 3, then 

10 = 1. 3° + 0. 31 +1. 32
' 

so that k = 2 and ao = a2 = 1 and ai = 0. 
Next we define a function hp that maps the nonnegative integers to the interval 

[O, 1) via 

For example 

1 1 10 
h3(lO) = 3 + 33 = 27· 

The resulting sequence hp,N = {hp(n) : n = 0, 1, 2, ... , N} is known as a van 
der Corput sequence. For example 

h3,10 = {O, 1/3, 2/3, 1/9, 4/9, 7 /9, 2/9, 5/9, 8/9, 1/27, 10/27}. 

In order to generate a Halton point set in s-dimensional space (more precisely 
in the s-dimensional unit cube [O, 1)8

) we takes (usually distinct) primesp1 , ... ,p8 
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and use the resulting van der Corput sequences hp 1 ,N, ... , hPa ,N as the coordinates 
of the s-dimensional Halton points, i.e., the set 

Hs,N = {(hp1 (n), ... , hpa(n)): n = 0, 1, ... , N} 

is the set of N + 1 Halton points in [O, 1)8
• Halton point sets for s = 2 are displayed 

in Figure 1.1 and the bottom part of Figure 14.5. 
An nice property of Halton points is the fact that they are nested point sets, 

i.e., Hs,M C Hs,N for M < N. In fact, the point sets can even be constructed 
sequentially, i.e., one does not need to start over if one wants to add more points 
to an existing set of Halton points. This distinguishes the Halton points from the 
related Hammersley points. 

It is known that in low space dimensions, the multi-dimensional Halton sequence 
quickly "fills up" the unit cube in a well-distributed pattern. However, for higher 
dimensions (such as s = 40), using a relatively small value of N results in poorly 
distributed Halton points. Only when N is large enough relative to s do the points 
become well-distributed. Since none of our examples exceed s = 6 this is not a 
concern for us. 

In the MATLAB programs throughout this book we use the function hal ton seq 
written by Daniel Dougherty. This function can be downloaded from the MATLAB 
Central File Exchange, see [MCFE]. In this implementation of Halton sequences 
the origin is not part of the point set, i.e., the Halton points are generated starting 
with n = 1 instead of n = 0 as described above. 

A.2 kd-Trees 

In order to deal with large sets of data efficiently we frequently use compactly sup
ported basic functions (see, e.g., Chapter 12). For their successful implementation 
certain geometric information is required. Most importantly, we need to know which 
data sites lie in the support of a given basis function. Such a query is known as a 
range search. We also may be interested in finding all centers whose support con
tains a given (evaluation) point x. Such a query is known as a containment query. 
Furthermore, we might also be interested in finding the (n) nearest neighbors of a 
given point (for instance if we need to find the separation distance qx of a set of 
points X). One way to accomplish these tasks is via kd-trees. A kd-tree (short for 
k-dimensional tree) is a space-partitioning data structure for organizing points in 
k-dimensional space. Thus, if we were to be true to the notation used throughout 
this book, we should technically be referring to these trees as sd-trees. We will, 
however, stick with the usual terminology and refer to them as kd-trees. 

The purpose of kd-trees is to hierarchically decompose a set of N data points in 
JR5 into a relatively small number of subsets such that each subset contains roughly 
the same number of data sites. Each node in the tree is defined by a splitting plane 
that is perpendicular to one of the coordinate axes and passes through one of the 
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data points. Therefore the splitting planes partition the set of points at the median 
into "left" and "right" (or "top" and "bottom") subsets, each with roughly half the 
points of the parent node. These children are again partitioned into equal halves, 
using planes through a different dimension (usually one keeps on cycling through the 
dimensions when determining the next splitting plane). This partitioning process 
stops after log N levels. In the end every node of the kd-tree, from the root to the 
leaves, stores a point. The computational complexity for building a kd-tree from N 
points in JRS is O(sN log N). Once the tree is built, a range query can be performed 
in O(log N) time. This compares favorably with the O(N) time it would take to 
search the "raw" data set. 

In our MATLAB examples we use the functions kdtree and kdrangequery from 
the kd-tree library (given as a set of MATLAB MEX-files written by Guy Shechter 
that can be downloaded from the MATLAB Central File Exchange, see [MCFE]). 

Figure A.l shows a standard median-based partitioning of nine Halton points 
in [O, 1]2 on the left along with the associated kd-tree on the right. 
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Fig. A.I kd partitioning (left) and tree (right) for 9 Halton points. 





Appendix B 

Useful Facts from Analysis 

B.1 Some Important Concepts from Measure Theory 

Bochner's theorem ( c.f. Theorem 3.3) and a number of other results are formulated 
in terms of Borel measures. 

Since we refer to the book [Wendland (2005a)] for many of the theoretical results 
presented in this book we follow the exposition in [Wendland (2005a)]. We start 
with an arbitrary set X, and denote the set of all subsets of X by P(X). The empty 
set is denoted by 0. 

Definition B.1. A subset A of P(X) is called a a-algebra on X if 

(1) XE A, 
(2) A EA implies that its complement (in X) is also contained in A, 
(3) Ai EA, i EN, implies that the union of these sets is contained in A. 

Definition B.2. Given an arbitrary set X and a a-algebra A of subsets of X, a 
measure on A is a functionµ: A--+ (0, oo] such that 

(1) µ(0) = 0, 
(2) for any sequence {Ai} of disjoint sets in A we have 

00 00 

µ(LJ Ai)= Lµ(Ai)· 
i=l i=l 

Definition B.3. If X is a topological space, and 0 is the collection of open sets 
in X, then the a-algebra generated by 0 is called the Borel a-algebra and denoted 
by B(X). If in addition Xis a Hausdorff space, then a measureµ defined on B(X) 
that satisfies µ(K) < oo for all compact sets K ~ X is called a Borel measure. 

The carrier of a Borel measure is given by the set X\ { 0 : 0 E 0 and µ( 0) = 0}. 
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B.2 A Brief Summary of Integral Transforms 

We summarize formulas for various integral transforms used throughout the text. 
The Fourier transform conventions we adhere to are laid out in 

Definition B.4. The Fourier transform off E L1 (IRs) is given by 

A 1 r • J(w) = ~ J(x)e-iw·xdx, w E IRs, 
V (27r )s JIR" 

(B.1) 

and its inverse Fourier transform is given by 

f(x) = k { f(w)eix·wdw, x E IR". 
(27r)s }JR .. 

This definition of the Fourier transform can be found in [Rudin (1973)]. Another, 
just as common, definition uses 

f(w) = r j(x)e- 2-rriw·xdx, (B.2) 
JR .. 

and can be found in [Stein and Weiss (1971)]. The form (B.1) we use can also be 
found in the books [Wendland (2005a); Scholkopf and Smola (2002)], whereas (B.2) 
is used in the books [Buhmann (2003); Cheney and Light (1999)]. 

Similarly, we can define the Fourier transform of a finite (signed) measureµ on 
IR" by 

1 1 . P,(w) = e-iw·xdµ(x), 
~ R" 

w E IRS. 

Since we are mostly interested in positive definite radial functions, we note that 
the Fourier transform of a radial function is again radial. Indeed, 

Theorem B.1. Let <I> E Li(IRs) be continuous and radial, i.e., <I>(x) = cp(llxll). 
Then its Fourier transform <i> is also radial, i.e., <i>(w) = fs'P(llwll) with 

1 1= s Fscp(r) = ~ cp(t)t2 J(s-2)/2(rt)dt, 
rs-2 o 

where J(s-2);2 is the classical Bessel function of the first kind of order (s - 2)/2. 

The proof of this theorem can be found in [Wendland (2005a)]. The integral 
transform appearing in Theorem B.1 is also referred to as a Fourier-Bessel transform 
or Hankel trans! orm. 

The Hankel inversion theorem [Sneddon (1972)] ensures that the Fourier trans
form for radial functions is its own inverse, i.e., for radial functions cp we have 

Fs [Fs'P] = 'P· 

A third integral transform that plays an important role is the Laplace transform. 
We have 

Definition B.5. Let J be a piecewise continuous function that satisfies lf(t)I < 
Meat for some constants a and M. The Laplace transform off is given by 

.Cf(s) = fo 00 

J(t)e-stdt, s >a. 
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Similarly, the Laplace transform of a Borel measure µ on [O, oo) is given by 

Cµ(s) = fo 00 

e-stdµ(t). 

The Laplace transform is continuous at the origin if and only ifµ is finite. 

B.3 The Schwartz Space and the Generalized Fourier Transform 
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Generalized Fourier transforms are required in the treatment of conditionally posi
tive definite functions. For the definition of the generalized Fourier transform given 
below we have to define the Schwartz space of rapidly decreasing test functions 

S = {1 E C00 (IR8
): lim x°'(Df31)(x) = 0, o.,{3 E No}, 

ll;;cll->oo 

where we use the multi-index notation 

f3 a1f31 
D --~--

- 8xf 1 ••• ax~· ' 

s 

1!31 = 2:f3i· 
i=l 

The space S consists of all those functions I E C00 (Il~. 8 ) which, together with 
all their derivatives, decay faster than any power of 1/llxll. The space S contains 
the space C0 (1Rs), the space of all infinitely differentiable functions on JRs with 
compact support. We also note that C0 (JRs) is a true subspace of S since, e.g., the 
function 1(x) = e-ll;;i:ll

2 
belongs to S but not to CQ°(JRs). A remarkable fact about 

the Schwartz space is that I E S has a classical Fourier transform :Y which is also 
in S. 

Of particular importance are the following subspaces Sm of S 

Sm= {1 ES: 1(x) = O(llxllm) for llxll---+ 0, m E No}. 

Furthermore, the set V of slowly increasing functions is given by 

V = {f E C(lR8
) : lf(x)I :::; lp(x)I for some polynomial p E II5}. 

The generalized Fourier transform is now given by 

Definition B.6. Let f E V be complex-valued. A continuous function J : lR. 8 
\ 

{ 0} ---+ C is called the generalized Fourier trans! arm of f if there exists an integer 
m E No such that 

r f(x),:Y(x)dx = r f(x)!(x)dx 
}Rs }Rs 

is satisfied for all I E S2m. The smallest such integer m is called the order of f. 

Various definitions of the generalized Fourier transform exist in the literature. 
A classical reference is the book [Gel'fand and Vilenkin (1964)]. 

Since one can show that the generalized Fourier transform of an s-variate poly
nomial of degree at most 2m is zero, it follows that the inverse generalized Fourier 
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transform is only unique up to addition of such a polynomial. The order of the 
generalized Fourier transform is nothing but the order of the singularity at the ori
gin of the generalized Fourier transform. For functions in L 1 (R8

) the generalized 
Fourier transform coincides with the classical Fourier transform, and for functions 
in L 2 (R 8

) it coincides with the distributional Fourier transform. 



Appendix C 

Additional Computer Programs 

In this appendix we list several MATLAB and one Maple program that are used in 
various places throughout the book. 

C.l MATLAB Programs 

As a test function for multi-dimensional problems we sometimes use 
s 

fs(x) = 48 IT xd(l - xd), 
d=l 

Program C.l. testfunction.m 

% tf = testfunction(s,points) 
% Evaluates testf unction 
% prod_{d=l}-s x_d*(l-x_d) (normalized so that its max is 1) 

% at s-dimensional points 
function tf = testfunction(s,points) 
tf = 4-s*prod(points.*(1-points),2); 

Another test function used in some of the numerical experiments is the sine 
function defined for any x = (x1 , ... , x 8 ) E :IR.8 as 

. ( ) ITs sin(7rxd) sine x = . 
d=l 7rXd 

The sine function is not a standard MATLAB function. It can, however, be found in 
the Signal Processing Toolbox. For the sake of completeness we provide MATLAB 
code for the sine function of a single variable, x E IR. 

Program C.2. sine. m 

% f = sinc(x) 
% Defines sine function 
function f = sinc(x) 
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f = ones(size(x)); 
nz = find(x-=O); 

Meshfree Approximation Methods with MATLAB 

f(nz) = sin(pi*x(nz))./(pi*x(nz)); 

Note that while sine. m takes a vector input x it produces a vector of values 
of the univariate sine function at the components of x - not the value of the 
multivariate sine function at the vector argument x. 

A multi-dimensional grid of equally spaced points is used several times through
out the book. MATLAB provides the command ndgrid that can accomplish this. 
However, in order to be able to use this command flexibly for all space dimensions 
s we require a little extra work. This is implemented MakeSDGrid. m. 

Program C.3. MakeSDGrid.m 

% gridpoints = MakeSDGrid(s,neval) 
% Produces matrix of equally spaced points in s-dimensional unit cube 
% (one point per row) 
% Input 
% s: space dimension 
% neval: number of points in each coordinate direction 
% Output 
% gridpoints: neval-s-by-s matrix (one point per row, 
% d-th column contains d-th coordinate of point) 
function gridpoints = MakeSDGrid(s,neval) 
if (s==1) 

end 

gridpoints = linspace(0,1,neval)'; 
return; 

% Mimic this statement for general s: 
% [x1, x2] = ndgrid(linspace(0,1,neval)); 
outputarg = 'x1'; 
for d = 2:s 

outputarg = strcat(outputarg,',x',int2str(d)); 
end 
makegrid = strcat(' [',outputarg,'] = ndgrid(linspace(0,1,neval));'); 
eval(makegrid); 
% Mimic this statement for general s: 
% gridpoints = [x1(:) x2(:)]; 
gridpoints = zeros(neval-s,s); 
for d = l:s 

end 

matrices= strcat('gridpoints(:,d) = x',int2str(d),'(:);'); 
eval(matrices); 
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Due to its removable singularity at the origin the thin-plate spline basic function 
requires a separate function definition. 

Program C.4. tps. m 

% rbf = tps(e,r) 
!. Defines thin plate spline RBF 
function rbf = tps(e,r) 
rbf = zeros(size(r)); 
nz = find(r-=O); % to deal with singularity at origin 
rbf(nz) = (e*r(nz)).-2.*log(e*r(nz)); 

Standard plotting routines for 2D function and error graphs are used by most 
programs. 

Program C.5. PlotSurf .m 

% PlotSurf(xe,ye,Pf ,neval,exact,maxerr,fview) 
% Generates plot of surf ace Pf false colored by the 
% maximum error abs(Pf-exact) 
% fview defines the view. 
function PlotSurf(xe,ye,Pf ,neval,exact,maxerr,fview) 

!. Plot surf ace 
figure 
Pfplot = surf(xe,ye,reshape(Pf,neval,neval), ... 

reshape(abs(Pf-exact),neval,neval)); 
set(Pfplot,'FaceColor' ,'interp','EdgeColor','none') 
[cmin cmax] = caxis; 
caxis([cmin-.25*maxerr cmax]); 
view(fview); 
colormap hsv 
vcb = colorbar('vert'); 
ylim(vcb, [O maxerr]) 
set(get(vcb,'YLabel'),'String','Error') 

Program C.6. PlotError2D.m 

!. PlotError2D(xe,ye,Pf ,exact,maxerr,neval,fview) 
!. Generates plot of abs error for surface Pf, i.e., abs(Pf-exact) 
% fview defines the view. 
function PlotError2D(xe,ye,Pf ,exact,maxerr,neval,fview) 

% Plot maximum error 
figure 
errorplot = surf(xe,ye,reshape(abs(Pf-exact),neval,neval)); 
set(errorplot,'FaceColor','interp','EdgeColor','none') 
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[cmin cmax] = caxis; 
caxis([cmin-.25*maxerr cmax]) 
view(fview); 
colormap hsv 
vcb = colorbar('vert'); 
ylim(vcb,[0 maxerr]) 
set(get(vcb,'YLabel'),'String','Error') 

For 3D plots we use the following routines. 

Prograni C.7. Plotlsosurf .m 

% Plotlsosurf(xe,ye,ze,Pf ,neval,exact,maxerr,isomin, 
% isostep,isomax) 
% Generates plot of isosurfaces of Pf false colored by 
% the error abs(Pf-exact) 
% isomin,isostep,isomax define the range and number of 
% isosurfaces. 
function Plotlsosurf(xe,ye,ze,Pf,neval,exact,maxerr, ... 

isomin,isostep,isomax) 
% Plot isosurf aces 
figure 
hold on 
for isovalue=isomin:isostep:isomax 

end 

pfit = patch(isosurface(xe,ye,ze,reshape(Pf,neval, .. . 
neval,neval),isovalue,reshape(abs(Pf-exact), .. . 
neval,neval,neval))); 

isonormals(xe,ye,ze,reshape(Pf,neval,neval,neval),pfit) 
set(pfit,'FaceColor','interp','EdgeColor','none'); 
daspect ( [1 1 1]) 
view(3); axis([O 1 0 1 0 1]) 

[cmin cmax] = caxis; 
caxis([cmin-.25*cmax cmax]) 
colormap hsv 
vcb = colorbar('vert'); 
ylim(vcb,[0 cmax]) 
set(get(vcb,'YLabel'),'String','Error') 
hold off 

Prograni C.8. PlotSlices. m 

% PlotSlices(xe,ye,ze,Pf ,neval,xslice,yslice,zslice) 
% Generates slice plot of volume Pf 
% xslice,yslice,zslice define the range and number of slices. 
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function PlotSlices(xe,ye,ze,Pf ,neval,xslice,yslice,zslice) 
% Plot slices 
figure 
pfit = slice(xe,ye,ze,reshape(Pf,neval,neval,neval), ... 

xslice,yslice,zslice); 
set(pfit,'FaceColor','interp','EdgeColor' ,'none') 
daspect([1 1 1]) 
view(3); axis([O 1 0 1 0 1]) 
vcb = colorbar('vert'); 
set(get(vcb,'YLabel'),'String','Function value') 

Prograin C.9. PlotErrorSlices.m 

% PlotErrorSlices(xe,ye,ze,Pf ,exact,ne,xslice,yslice,zslice) 
% Generates slice plot of volume error abs(Pf-exact) 
% xslice,yslice,zslice define the range and number of slices. 
function PlotErrorSlices(xe,ye,ze,Pf ,exact,ne, ... 

% Plot slices for error 
figure 

xslice,yslice,zslice) 

errorplot = slice(xe,ye,ze,reshape(abs(Pf-exact),ne,ne,ne), ... 
xslice,yslice,zslice); 

set(errorplot,'FaceColor' ,'interp','EdgeColor','none') 
daspect([1 1 1]) 
view(3); axis([O 1 0 1 0 1]) 
[cmin cmax] = caxis; 
caxis([cmin-.25*cmax cmax]) 
colormap hsv 
vcb = colorbar('vert'); 
ylim(vcb, [O cmax]) 
set(get(vcb,'YLabel'),'String','Error') 
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The following algorithm is a very primitive (and very inefficient) implementation 
of an adaptive thinning algorithm for scattered data. It removes 500 points at a 
time and writes the intermediate result to a file. 

Prograin C.10. Thin.m 

load('Data2D_Beethoven') 
% This loads variables dsites and rhs 
x = dsites(:,1); 
y = dsites(:,2); 
figure 
tes = delaunayn(dsites); 
triplot(tes,x,y,'g') 
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for 1=1:5 
for j=1:500 

n = size(dsites,1); 
d = zeros(1,n); 
for i=l:n 

temp = dsites; 
temp(i,:) = []; 
[k,d(i)] = dsearchn(temp,dsites(i,:)); 
if (k >= i) 

k=k+1; 
end 

end 
r = min(d); 
idx = find(d==r); 
dsites(idx(1),:) = []; 
x(idx(1)) = []; 
y(idx(1)) = []; 
rhs(idx(1)) = []; 

end 
figure 
tes = delaunayn(dsites); 
triplot(tes,x,y,'r') 
name= sprintf('Data2D_Beethoven%d', 1); 
save(name, 'dsites', 'rhs') 

end 

C.2 Maple Programs 

The MLS basis functions and dual basis functions displayed in Chapter 24 were 
computed with the following Maple code. 

Program C.11. MLSDualBases .mws 

restart; with(plots): with(linalg): 
N:=10: m:=3: DD:=4: h:=1/N: ep:=1/(sqrt(DD)*h): 
phi := (x,y) -> exp(-ep-2*(x-y)-2); 
for k from 1 to m do 

ppl lk := plot(x-(k-1), x=0 .. 1): 
od: 
display([seq(ppl lk,k=1 .. m)] ,insequence=true,thickness=2); 
X := vector([seq(h*k, k=O .. N)]); 
# or use 11 Halton points 
# X := vector([0.5000,0.2500,0.7500,0.1250,0.6250, 
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# 0.3750,0.8750,0.0625,0.5625,0.3125,0.8125]); 
G := matrix(m,m): 
for i from 1 to m do 

od: 

for j from 1 to m do 

od: 

G [i ,j] : = evalf (add( (X [k]) - (i-1) * (X [k]) - (j-1) * 
phi(x,X[k]), k=l .. N+1)); 

P := vector([evalf(seq(y-(k-1), k=1 .. m))]); 
Lambda:= linsolve(G,P): 
for k from 1 to m do 

11 lk := unapply(Lambda[k],(x,y)); 
od: 
for k from 1 to m do 

lpl lk := plot(ll lk(x,x), x=0 .. 1): 
od: 
display([seq(lpl lk, k=1 .. m)],insequence=true,thickness=2); 
K := (x,y) -> phi(x,y)*add(ll lk(x,x)*y-(k-1), k=1. .m): 
approxK := (x,y) -> 1/sqrt(DD*Pi)*(3/2-ep-2*(x-y)-2) 

*phi(x,y); 
for i from 1 to N+1 do 

od: 

aKpl Ii:= plot([K(x,X[i]),approxK(x,X[i])], x=0 .. 1, 
color=[green,red]): 

display(seq(aKpl li,i=l .. N+1),insequence=true,thickness=2); 
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Appendix D 

Catalog of RBFs with Derivatives 

D.1 Generic Derivatives 

We provide formulas for all first and second-order derivatives of radial functions of 
two variables, i.e., 1p(r) = r.p(llxll) = r.p(.jx2 +y2 ), where x = (x,y) E JR2 . The 
chain rule implies 

a d a 
ax r.p(llxll) = dr r.p(r) ax r(x, y) 

d x 
f= -r.p ( r) -,::::========= 

dr .jx2 + y2 
x d 

= -:;: dr r.p(r) 

since r = llxll = ./x2 + y2. Similarly, cfyr.p(llxll) = ;? frr.p(r). The generic second
order derivatives are given by 

a
2 

d
2 

( a ) 
2 

d a
2 

axz r.p(llxll) = drtl r.p(r) ax r(x, y) + dr r.p(r) 8x2 r(x, y) 

x2 d2 y2 d 
= 2 d 2 r.p(r) + 3-d r.p(r), r r r r 

as well as 

and the Laplacian 

( 
a 2 a 2 ) d2 1 d 

ax2 + 8y2 r.p(llxll) = dr2 r.p(r) + -:;. dr r.p(r). 

Derivatives of higher order or in higher space dimensions can be computed sim
ilarly by applying the chain rule. For example, the generic fourth-order biharmonic 
(or double Laplacian) turns out to be 

( 
a4 a4 a4 

) d4 2 d3 1 d2 1 d 
8x4 + 2ax2y2 + 8y4 r.p(llxll) = drt2r.p(r)+-:;.dr3r.p(r)- r 3 dr2r.p(r)+ r3 drr.p(r). 
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D.2 Formulas for Specific Basic Functions 

The generic derivatives of the basic function with respect to r in the previous section 
need to be replaced by the following formulas. 

D.2.1 Globally Supported, Strictly Positive Definite Functions 

Example D.1. Gaussian RBF: 

cp(r) = e-(er)2' 

:r cp(r) = -2c2re-(er)
2

, 

d2 
2 

dr
2 

cp(r) = 2c2e-(cr) (2(cr)2 - 1) . 

This function is C 00 at the origin. 

Example D.2. Inverse multiquadric (IMQ) RBF: 
1 

cp(r) = Jl + (cr)2 ' 

d c2r 
dr cp(r) = - (1 + (cr)2)3/2' 

d2 2(cr)2 - 1 
dr2 cp(r) = €2 (1 + (cr)2)5/2. 

This function is C00 at the origin. 

Example D.3. Generalized IMQ RBF: 
1 

cp(r) = (1 + (cr)2)2' 

d 4c2r 
dr cp(r) = - (1 + (cr)2 ) 3 ' 

d2 5(cr)2 - 1 
-cp(r) - 4c2

----
dr2 - (1 + (cr)2)4 · 

This function is C 00 at the origin. 

Example D.4. Inverse quadratic (IQ) RBF: 

1 
cp(r) = (1 + (cr)2 )' 

d 2c2 r 
dr cp(r) = - (1 + (cr)2)2 ' 

d2 3(cr)2 - 1 
-cp(r) = 2e:2

----
dr2 (1 + (cr)2) 3 · 

This function is C 00 at the origin. 
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Example D.5. Basic Matern RBF: 

cp(r) = e-er. 

This function is not differentiable at the origin. 

Example D.6. Linear Matern RBF: 

cp(r) = e-er(l +er), 
d -cp(r) = -e2re-er 
dr ' 
2 

d ( ) 2 -er( ) dr2 cp r = e e er - 1 . 

This function is C 2 at the origin, but not smoother. 

Example D. 7. Quadratic Matern RBF: 

cp(r) = e-er(3 + 3er + (er)2), 
d 
drcp(r) = -e2re-er(l +er), 

d2 
dr2cp(r) = e2e-er ((er)2 - er- 1). 

This function is C4 at the origin. 

Example D.8. Cubic Matern RBF: 

cp(r) = e-er(15 + 15er + 6(er)2 + (er)3), 
d 
dr cp(r) = -e2re-er ((er)2 + 3er + 3), 

d2 
dr2cp(r) = e2e-er ((er)3 - 3er - 3). 

This function is C 6 at the origin. 

D.2.2 Globally Supported, Strictly Conditionally Positive Definite 
Functions of Order 1 

Example D.9. Linear or norm RBF: 

cp(r) = r. 
This function is not differentiable at the origin. 

Example D.10. Multiquadric (MQ) RBF: 

cp(r) = y,.--1-+-(e-r)-2, 

d e2 r 
dr cp(r) = y'l + (er) 2 ' 

d2 e2 
dr2 cp(r) = (1 + (er)2)3/2. 

This function is C 00 at the origin. 
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D.2.3 Globally Supported, Strictly Conditionally Positive Definite 
Functions of Order 2 

Example D.11. Generalized MQ RBF: 

cp(r) = (1 + (er)2
)

312
, 

d 
dr cp(r) = 3e2r.jl + (er )2, 

d
2 

cp(r) = 3e2 2(er)
2 + 1 

dr2 .jl + (er)2 
This function is C 00 at the origin. 

Example D.12. Cubic RBF: 

cp(r) = r 3
, 

d 2 
dr cp(r) = 3r , 

d2 
dr2 cp(r) = 6r. 

Example D.13. Thin plate spline (TPS) RBF: 

cp(r) = r 2 log(r), 

d 
dr cp(r) = r (2 log(r) + 1), 

d2 
dr2 cp(r) = 2 log(r) + 3. 

While the singularities of the function and first derivative at the origin are remov
able, the singularity of the second derivative at the origin is not. 

D.2.4 Globally Supported, Strictly Conditionally Positive Definite 
Functions of Order 3 

Example D.14. Generalized MQ RBF: 

cp( r) = (1 + (er )2)5/2' 

! cp(r) = 5e2r (1 + (er)2)
312

, 

d2 
dr 2 cp(r) = 5e2.jl + (er)2 (4(er)2 +1). 

This function is C 00 at the origin. 

Example D.15. Quintic RBF: 

cp(r) = r 5 , 

d 4 
dr cp(r) = 5r , 

d2 ( 3 dr2 cp r) = 20r . 
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Example D.16. Second-order TPS RBF: 

cp(r) = r 4 log(r), 
d 
dr cp(r) = r3 (4log(r) + 1), 

d2 
dr2 cp(r) = r2 (12 log(r) + 7). 

D.2.5 Globally Supported, Strictly Conditionally Positive Definite 
Functions of Order 4 

Example D.17. Septic RBF: 

cp(r) = r7
, 

d 6 
dr cp(r) = 7r , 

d2 
dr2 cp(r) = 42r5. 

D.2.6 Globally Supported, Strictly Positive Definite and Oscilla
tory Functions 

Example D.18. Linear Laguerre-Gaussian RBF for 1R2 : 

cp(r) = e-(cr)2 (2 - (c:r)2), 

:r cp(r) = 2c:2re-(cr)
2 

((c:r) 2 - 3), 

d2 
2 

dr2 cp(r) = -2c:2e-(cr) (2(c:r)4 - 9(c:r)2 + 3). 
This function is c= at the origin. 

Example D.19. Quadratic Laguerre-Gaussian RBF for 1R2 : 

cp(r) = e-(cr)
2 
(3 - 3(c:r)2 + ~(c:r) 4 ), 

! cp(r) = -c:2re-(cr)
2 

((c:r) 4 - 8(c:r)2 + 12), 

d2 
2 

dr2 cp(r) = c:2e-(cr) (2(c:r)6 - 21(c-r)4 + 48(c-r)2 - 12). 

This function is c= at the origin. 

Example D.20. Linear generalized IMQ RBF: 
2 - (c-r) 2 

cp(r) = (1 + (c:r)2)4' 

d 2 (c-r)2 - 3 
dr c.p(r) = 6€ r (l + (c-r)2)5' 

d2 ip(r) = _ 6c2 7(c:r) 4 
- 30(c:r)

2 + 3 
dr2 (1 + (c-r)2) 6 
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This function is c= at the origin. 

Example D.21. Quadratic generalized IMQ RBF: 

( ) _ 3 - 6(er)2 + (er)4 

<p r - (1 + (er)2)6 ' 

!!:_<p(r) = -8€2r (er)4 - 8(er)2 + 6' 
dr (1 + (er)2)7 

d2 cp(r) = 24€23(er)6 - 31(er)4 + 34(er)2 - 2 
dr2 (1 + (er)2)8 

D.2. 7 Compactly Supported, Strictly Positive Definite Functions 

Example D.22. Wendland's '/!3,0 (strictly positive definite in JR3 ): 

cp(r) = (1 - er)!. 

This function is not differentiable at the origin. 

Example D.23. Wendland's 'P3,1 (strictly positive definite in JR3 ): 

<p ( r) = ( 1 - Er) t ( 4er + 1), 

d 
dr <p(r) = -20e2r(l - er)t, 

d2 
dr2 cp(r) = 20e2(4er - 1)(1 - er)!. 

This function is C 2 at the origin. 

Example D.24. Wendland's <p3 ,2 (strictly positive definite in JR3 ): 

cp(r) = (1 - er)~(35(er) 2 + 18er + 3), 

d 
dr cp(r) = -56e2r(5er + 1)(1 - er)i, 

d2 
dr2 <p(r) = 56e2 (35(er) 2 - 4er - 1) (1 - er)t. 

This function is C 4 at the origin. 

Example D.25. Wendland's <p3 ,3 (strictly positive definite in JR3 ) 

cp(r) = (1 - er)~(32(er)3 + 25(er)2 +Ser+ 1), 

d 
dr cp(r) = -22e2r (16(er)2 + 7er + 1) (1 - er)~, 

d2 
dr2 <p(r) = 22e2 (160(er)3 +15(er)2 - 6er - 1) (1 - er)~. 

This function is C 6 at the origin. 
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Example D.26. Wu's 'l/J3,3 (strictly positive definite in Il~.7): 

cp(r) = (1 - c:r)t(5(c:r) 3 + 20(c:r) 2 + 29c:r + 16). 

This function is not differentiable at the origin. 

Example D.27. Wu's 'l/J2,3 (strictly positive definite in IR5): 

cp(r) = (1 - c:r)~(5(c:r) 4 + 25(c:r) 3 + 48(c:r) 2 + 40c:r + 8), 

d 
dr cp(r) = -9c:2r (5(c:r) 3 + 20(c:r) 2 + 29c:r + 16) (1 - c:r)t, 

d2 
dr2 cp(r) = 18c:2 (20(c:r) 4 + 60(c:r) 3 + 57(c:r) 2 + llc:r - 8) (1 - c:r)!. 

This function is C 2 at the origin. 

Example D.28. Wu's 'l/J1,3 (strictly positive definite in IR3): 

cp(r) = (1 - c:r)~(5(c:r) 5 + 30(c:r)4 + 72(c:r)3 + 82(c:r)2 + 36c:r + 6), 

d 
dr cp(r) = -llc:2 r(c:r + 2) (5(c:r) 3 + 15(c:r)2 + 18c:r + 4) (1 - c:r)~, 
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d2 
dr2 cp(r) = 22c:2 (25(c:r) 5 + 100(c:r)4 + 142(c:r)3 + 68(c:r) 2 

- 16c:r - 4) (1 - c:r)t. 

This function is C 4 at the origin. 

Example D.29. Wu's 'l/Jo,3 (strictly positive definite in IR): 

cp(r) = (1 - c:r)~(5(c:r) 6 + 35(c:r) 5 + 101(c:r)4 + 147(c:r)3 + 10l(c:r)2 + 35c:r + 5), 

d 
dr cp(r) = -13c:2 r (5(c:r) 5 + 30(c:r)4 + 72(c:r) 3 + 82(c:r) 2 + 36c:r + 6) (1 - c:r)!, 

d2 
dr2 cp(r) = 78c:2 (10(c:r) 6 + 50(c:r) 5 + 95(c:r)4 + 75(c:r) 3 + 7(c:r)2 

- 5c:r - 1) (1 - c:r)~. 

This function is C 6 at the origin, but only strictly positive definite in IR. 

Example D.30. Euclid's hat cp 1 : 

<p ( r) = ( 1 - c:r / 2) +. 

None of the Euclid's hat functions are differentiable at the origin. 
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higher-order, 407 
of Gaussian, 365 
of generic radial function, 338, 443 
oflMQ, 358, 361, 365 
of MQ, 340, 365 

Index 

of Wendland C 6 CSRBF, 375, 381 
descente, 85 
differentiation matrix, 387-391, 401-403, 

412 
higher-order, 407 

dimension walk, 85, 89, 90 
Dirichlet boundary conditions, 346, 348, 

353, 358, 365, 378, 381, 390-392, 394, 
397, 420 

Dirichlet tesselation, 306 
discrete Gauss transform, 322 
discrete moment conditions, 203, 230 
discrete moments, 229 
discrete weighted least squares, 191 
distance matrix, 2, 6 
domain decomposition, 331, 332, 350, 422 

algorithm, 332 
dual, 104, 159 
dual basis, 200, 206, 222 
dual representation, 200, 201, 206 

eigenfunctions, 107, 201 
energy split, 161, 291 
error estimate, 111-123, 125-133 

for approximate approximation, 231 
for derivatives, 123 
for fast Gauss transform, 325 
for Gaussians, 126 
for least squares approximation, 179 
for Matern functions, 126 
for MLS approximation, 226 
for multiquadrics, 125 
for radial powers, 127 
for RBF Galerkin method, 420 
for rough functions, 129, 131 
for symmetric PDE collocation, 349 
for thin plate splines, 127 
for Wendland CSRBF, 127 
generic, in terms of fill distance, 121 
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generic, in terms of power function, 117 
improvements, 127 
with respect to shape parameter, 132 

essential boundary conditions, 420 
Euclid's hat, 92, 93 
Euclidean norm, 17 
evaluation matrix, 8, 20, 95, 144, 212, 214, 

223, 238, 366, 381, 389, 395 
evaluation points, 10 
exact Lp-approximation order k, 112 
exact approximation order, 132 

fast Fourier transform, 151, 245 
fast Gauss transform, 322, 325 
fast multipole method, 321 
fast tree codes, 327 
Faul-Powell algorithm, 298, 301 
feature, 159 
FFT evaluation algorithm, 245 
fill distance, 22, 111 
fixed level iteration algorithm, 267 
Fourier transform, 31-33, 110, 231, 432 

fast, 151, 245 
fast inverse, for non-uniformly spaced 

points, 244 
fast, for non-uniformly spaced points, 

243, 244 
generalized, 65, 433 

of generalized MQ, 67 
of radial powers, 69 
of thin plate splines, 70 

inverse, 43 2 
inverse discrete, 244 
of a measure, 432 
of a radial function, 51, 85, 432 
of Gaussians, 37 
of Laguerre-Gaussians, 38 
of Matern functions, 41 
of Poisson radial functions, 40 
of truncated power functions, 43 

Fourier transform characterization, 34, 65 
Franke's function, 20 
Franke-type function, 142, 241, 246, 283 
function 

approximate cardinal, 298, 301, 309, 
310 

band-limited, 40, 110, 126 
basic, 6, 18 
basis, 3, 6 
Bessel of the first kind, 34, 39, 85, 432 
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Buhmann CSRBF, 93, 94, 345 
cardinal basis, 112, 113-115, 151, 164, 

195, 196, 199, 311 
compactly supported RBF, 15, 76, 

85-101, 109, 127, 138, 140, 149, 
234, 240, 241, 251, 260, 
277-289, 345, 375-385, 421 

completely monotone, 14, 38, 42, 4 7, 
47-49, 51, 52, 73-75 

conditionally positive definite, 52, 
63-65, 123, 162, 299 

conditionally positive definite and 
radial, 73-78, 81 

conditionally positive definite of order 
m on !Rs, 63, 64 

construct strictly positive definite, 33 
correction, 230 
cutoff, 43, 88, 128 
eigen, 107 
Euclid's hat, 92, 93 
Franke's, 20 
Franke-type, 246 
fundamental positive definite, 32 
Gaussian, 17, 19, 22-24, 35, 37, 40, 49, 

52, 55, 82, 101, 110, 113, 117, 
123, 126, 130, 132, 133, 137, 
140, 148, 153, 156, 188, 211, 
243, 253, 259, 270, 296, 309, 
322, 327, 345, 356, 357, 363, 
403, 405, 412, 415 

generalized inverse multiquadric, 41, 49, 
67, 123, 138 

generalized multiquadric, 67, 74, 77, 
138 

generating, 195, 232 
Gneiting CSRBF, 91, 345 
Green's, 164 
inverse multiquadric, 37, 154, 296, 306, 

345, 353, 356, 357 
inverse quadratic, 42 
k-times monotone, 50, 50, 51, 75, 76 
kriging, 116 
Laguerre-Gaussian, 38, 52, 123, 126, 

131, 222, 233, 237, 238, 241, 
245, 246, 269, 322 

Lebesgue, 226 
local approximate cardinal, 309 
MacDonald's, 41 
Matern, 41, 109, 123, 126, 129, 388, 410 

modified Bessel of the second kind, 41, 
67 

modified Bessel of the third kind, 41 
multiply monotone, 49-52, 75-76 
multiquadric, 13, 68, 77, 110, 113, 126, 

131-133, 139, 140, 153, 243, 288, 
306, 308, 310, 326, 339, 345, 346 

multivariate, 1 7 
multivariate Hermite, 322 
optimal basis, 164 
Poisson radial, 39 
polyharmonic spline, 14, 71, 129, 130, 

278, 306, 313 
positive definite, 27-35 
positive definite on !Rs, 28 
positive definite radial, 33-35 
R, 350, 420 
radial, 17, 33 
radial basis, 6, 17 
radial power, 69, 74, 109, 127-129, 131, 

132, 138, 155, 278, 306 
rapidly decreasing, 433 
Shepard, 13, 205 
slowly increasing, 433 
Sobolev spline, 41, 109 
strictly conditionally positive definite of 

order m on !Rs, 63, 64 
strictly positive definite, 28, 32 
strictly positive definite and radial for 

all s, 34 
strictly positive definite on !Rs, 28 
surface spline, 14, 70 

shifted, 131 
thin plate spline, 14, 70, 74, 109, 

127-129, 131, 132, 138, 155, 
163, 164, 167, 170, 278, 306, 
308, 310, 314, 316, 326, 437 

tri-cube, 227 
truncated power, 43, 50 
univariate, 17 
vector-valued, 2, 83 
weight, 193, 196, 199, 201, 202, 206, 

212, 214, 216, 226, 227, 229, 
230, 233, 234, 274, 285, 287 

Wendland CSRBF, 87, 87-88, 91, 92, 
98, 99, 109, 127, 129, 131, 138, 
154, 179, 211, 234, 240, 241, 
251, 253, 260, 279, 345, 375, 
388, 413, 423 

Whittaker-M, 44 



Wu CSRBF, 89, 88-90, 345 
functional 

dual, 104 
information, 159 

functions 
generating, 197 

Index 

fundamental positive definite function, 32 

Galerkin system, 419, 421 
Gaussian, 17, 19, 22-24, 35, 37, 40, 49, 52, 

55, 82, 101, 110, 113, 117, 123, 126, 130, 
132, 133, 137, 140, 148, 153, 156, 188, 
211, 243, 253, 259, 270, 296, 309, 322, 
327, 345, 356, 357, 363, 403, 405, 412, 
415 

generalized covariance, 312 
generalized derivative, 109 
generalized Fourier transform, 65, 433 
generalized Hermite interpolation, 333, 

348, 390 
generalized interpolation conditions, 334 
generalized inverse multiquadric, 49 
generalized inverse multiquadrics, 41, 67, 

123, 138 
generalized Laguerre polynomials, 38, 233 
generalized multiquadrics, 67, 74, 77, 138 
generating functions, 195, 197 

construction of, 232 
global variable, 193 
GMRES, 309, 350 
Gneiting's functions, 91, 345 
Gram matrix, 177, 178, 194, 197, 207, 220 
greedy algorithm, 184 
greedy approximation algorithms, 293 
greedy one-point algorithm, 293 
Green's functions, 164 

Haar space, 4 
Halton points, 5, 427 
Hammersley points, 428 
Hankel inversion theorem, 41, 432 
Hankel transform, 432 
Hausdorff-Bernstein-Widder Theorem, 48 
Helmholtz equation, 411, 419, 423 
Hermite interpolation 

generalized, 333, 348, 390 
Hermite polynomials (multivariate), 322 
Hermite-based collocation, 348, 365 
high-order method, 229, 291, 419 
history of meshfree approximation, 13 
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homogeneous, 278, 311, 317 
homogeneous kernel, 312, 313, 319 
homogeneous Sobolev spaces of order k, 

109 

ill-posed problem, 390 
implicit surfaces, 255 
information functional, 159 
inner points, 331 
inner product, 28, 103, 106-108, 168, 177, 

191, 192, 200 
integral characterization, 31-33 
integral operator, 50, 76, 86 
integral transforms, 432 
integrally positive definite, 107 
interaction region, 323 
interior cone condition, 120 
interpolation, 2 

generalized Hermite, 333, 348, 390 
scattered data, 2 

interpolation matrix, 3, 8, 20 
sparse, 95-98 

interpolation theorem, 49, 64, 77 
inverse Fourier transform, 244, 432 
inverse multiquadric, 37, 154, 296, 306, 

345, 353, 356, 357 
inverse quadratic, 42 
iterative refinement algorithm, 265 

Jacobi polynomials, 234 

k-times monotone, 50, 50, 51, 75, 76 
Kansa's matrix, 346, 347, 393, 394, 

396-398 
Kansa's method, 335, 345, 353, 392 
kd-tree, 95, 98, 216, 428 
kernel 

Bessel, 41 
covariance, 312 
generalized covariance, 312 
homogeneous, 312, 313, 319 
integrally positive definite, 107 
multiscale, 278 
reproducing, 103, 103-108, 311 

kernel method, 205 
knot insertion algorithm, 181 
knot removal algorithm, 184 
kriging, 312 
kriging function, 116 
Kronecker tensor-product, 412 
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Lagrange form, 112 
Lagrange multipliers, 165, 166, 197, 

200-202, 208, 209, 216, 217, 222, 420 
Laguerre-Gaussians, 38, 52, 123, 126, 131, 

222, 233, 237, 238, 241, 245, 246, 269, 
322 

Laplace transform, 48, 432 
of a measure, 433 

Laplace's equation, 415 
Laurent series, 151 
learning theory, 2, 13, 163 
least squares 

adaptive, 181, 184 
approximation, 168, 177 
discrete weighted, 191 
moving, 14, 191, 192, 194, 198, 207, 216 

properties, 198 
nonlinear, 187 
penalized, 167 
regularized, 166 
smoothing, 1 70 

leave-one-out cross validation, 146, 148, 
150, 185, 401 

Lebesgue constant, 120 
Lebesgue function, 226, 227, 269 
local approximate cardinal functions, 309 
local polynomial regression, 202 
local polynomial reproduction, 120 
local variable, 193 
Lp-approximation order k, 112 

m-unisolvent, 53 
MacDonald's function, 41 
Mairhuber-Curtis theorem, 3 
manifolds, 83, 255 
Maple programs, see program 
marching cube, 257 
Matern functions, 41, 109, 123, 126, 129, 

388, 410 
mathematical finance, 2, 13 
MATLAB programs, see program 
matrix 

almost negative definite, 81 
augmented, 56, 59, 60, 64, 305 
conditionally positive definite of order 

one, 60 
conditionally positive semi-definite of 

order one, 60 
differentiation, 387-391, 401, 403, 412 
distance, 2, 6 

evaluation, 20, 389 
Gram, 177, 178, 194, 197, 207, 220 
higher-order differentiation, 407 
interpolation, 3, 8, 20 

sparse, 95-98 
Kansa's, 346, 347, 393, 394, 396-398 
negative definite, 60 
positive definite, 27 
positive semi-definite, 27 
stiffness, 420, 423 

measure, 431 
Borel, 31, 32, 34, 35, 48, 50, 431 
carrier, 32, 431 

Mercer's theorem, 107 
meshfree, 1, 12 
meshless, 12 
meshsize, 22 
Micchelli's theorem, 51 
minimal eigenvalue 

upper bound, 137 
for Gaussian, 137 
for generalized multiquadrics, 138 
for radial powers, 138 
for thin plate splines, 138 
for Wendland CSRBF, 138 

minimum norm interpolant, 162, 166 
mixed boundary conditions, 361 
MLS, see moving least squares 
modified Bessel function of the second 

kind, 41 
modified Bessel function of the third kind, 

41 
moment conditions, 203 

and approximation order, 230, 232 
continuous, 231, 232 
discrete, 203, 230 

moments, 207, 323, 328 
discrete, 229 

montee, 85 
moving least squares approximation, 14, 

191, 207, 216 
Backus-Gilbert approach, 194 
equivalence of formulations, 198 
iterated approximate, 270 
properties, 198 
standard interpretation, 192 

multigrid algorithm, 332 
multilevel Galerkin algorithm, 421 
multilevel interpolation, 277 
multiplicative Schwarz, 331 



multiply monotone functions, 49-52, 
75-76 

multiquadric, 13, 68, 77, 110, 113, 126, 
131-133, 139, 140, 153, 243, 288, 306, 
308, 310, 326, 339, 345 

multiquadric method, 346 
multiscale kernels, 278 
multivariate, 17 
multivariate Hermite functions, 322 

Index 

native space, 103, 105, 106 
native space norm, 119, 166, 278 
native space semi-norm, 123 
natural boundary conditions, 419, 421, 

423 
nearest neighbor, 227, 298, 310, 323, 428 
negative definite, 60 
nested multilevel Galerkin algorithm, 421 
neural networks, 2, 13, 172 
NFFT, see Fourier transform 
noisy data, 14, 165, 170-175, 212 
non-stationary approximation, 22, 99-101, 

126, 128, 131, 139, 140, 153-155, 211, 
267, 378, 421 

non-symmetric method, 345 
non-symmetric pseudospectral method, 

391 
non-uniform sampling, 2 
nonlinear least squares, 187 
nonlinear reaction-diffusion equation, 409 
norm, 17 

basic function, 156, 313 
equivalence, 293 
Euclidean, 1 7 
native space, 119, 166, 278 
Sobolev space, 109 
weighted, 191 

(p-)norm distance matrix, 8 
(semi-) norm 

Beppo-Levi space, 109, 163 
norm invariance, 18 
normal equations, 177, 192, 194 

off-surface points, 255 
operator 

descente, 85 
differential, 86 
discrete differential, 398 
for radial functions, 85 
integral, 50, 76, 86 

montee, 85 
turning bands, 91 

optimal basis functions, 164 
optimal recovery, 159, 165 
optimality properties, 160 
optimality theorem I, 162 
optimality theorem II, 163 
optimality theorem III, 164 
optimization, 2 

constrained, 165, 192, 197, 420 
constrained quadratic, 202 

orthogonal projection, 163 
oscillatory strictly positive definite 

functions, 35 
overlapping domains, 331 

p-norms, 79-82 
packing radius, 136 
partial differential equation 

Allen-Cahn, 409 
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elliptic with variable coefficients, 358 
Helmholtz, 411, 419, 423 
Laplace, 415 
linear elliptic, 346, 390 
nonlinear reaction diffusion, 409 
solution of, 1 
transport equation, 387, 403, 405 

partition of unity, 206, 229, 249 
patch test, 55 
PDE, see partial differential equation 
penalized least squares, 167 
piecewise defined boundary conditions, 

370 
piecewise linear spline, 5 
plane wave, 325 
point cloud data, 255 
point cloud modeling, 257, 260 
Poisson problem, 353, 361, 365, 378, 381 
Poisson radial functions, 39 
polyharmonic splines, 14, 71, 129, 130, 

278, 306, 313 
polynomial 

(multivariate) Hermite, 322 
generalized Laguerre, 38, 233 
Jacobi, 234 

polynomial precision, 119 
polynomial reproduction, 55-59, 64, 195, 

203, 207, 216, 305 
local, 120 

positive definite function, 27-35 
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criterion to check, 33 
properties, 29 

positive definite matrix, 27 
positive definite on JR5

, 28 
positive definite radial function, 33-35 
positive semi-definite matrix, 27 
power function, 115, 116, 119, 121, 128, 

139, 143 
preconditioned conjugate gradient, 98, 

303, 309, 379 
preconditioning, 303-313 
program 

ApproxMLSApproxlD.m, 239 
CostEpsilon.m, 150 
CostEpsilonDRBF.m, 402 
D2RBF .m, 409 
DifferenceMatrix.m, 342 
DistanceMatrix.m, 7 
DistanceMatrixCSRBF.m, 96 
DistanceMatrixFit.m, 8 
DRBF.m, 402 
HermiteLaplace_2D.m, 366 
HermiteLaplace_2D_CSRBF.m, 376 
HermiteLaplaceMixedBCTreL2D.m, 

370 
Iterated ... MLSApproxApprox2D.m, 271 
KansaEllipticVC_2D.m, 358 
kansaLaplace_2D.m, 355 
kansaLaplaceMixedBC_2D.m, 361 
LinearMLS2D_CS.m, 219 
LinearMLS2D_GramSolve.m, 220 
LinearScaling2D_CS.m, 217 
LOOCV2D.m, 147 
LOOCV2Dmin.m, 150 
LRBF.m, 414 
MakeSDGrid.m, 436 
ML_CSRBF3D.m, 279 
MLJ-IermiteLaplaceCSRBF2D.m, 381 
MLSDualBases.mws, 440 
pl 7.m, 412 
pl 7--2D.m, 414 
p35.m, 409 
PlotError2D.m, 437 
PlotErrorSlices.m, 439 
Plotlsosurf.m, 438 
PlotSlices.m, 438 
PlotSurf.m, 437 
PointCloud2D.m, 257 
PointCloud3D_PUCS.m, 261 
Powerfunction2D.m, 144 

PU2D_CS.m, 251 
RBFApproximation2D.m, 169 
RBFApproximation2Dlinear.m, 171 
RBFCardinalFunction.m, 114 
RBFGalerkin2D.m, 424 
RBFGreedyOnePoint2D .m, 294 
RBFHermite_2D.m, 341 
RBF1nterpolation2D.m, 21 
RBF1nterpolation2Dlinear.m, 56 
RBFinterpolation2DtpsH.m, 317 
RBFKnotlnsert2D.m, 182 
RBFKnotRemove2D.m, 185 
Shepard2D.m, 212 
Shepard_CS.m, 215 
sinc.m, 435 
testfunction.m, 435 
Thin.m, 439 
tps.m, 437 
TPS--RidgeRegression2D.m, 173 
tpsK.m, 314 
TransportDRBF.m, 403 

properties of positive definite functions, 29 
pseudospectral method 

non-symmetric, 391 
symmetric, 394 

quadratic form, 27, 165 
quasi-interpolant, 194, 201, 206, 208, 225, 

229, 230, 267, 322 
evaluation of, 243, 327 
optimal, 164 

R-functions, 350, 420 
radial, 33 
radial basis function, 6, 17 
radial function, 17 
radial powers, 69, 74, 109, 127-129, 131, 

132, 138, 155, 278, 306 
range search, 428 
rapidly decreasing test functions, 433 
rate of convergence, 99 
ray tracing, 257 
Rayleigh quotient, 136 
RBF, see radial basis function, function 
reaction-diffusion equation, 409 
regression 

local, 212, 227 
local polynomial, 202 
ridge, 167 
rigde, 257 



regression spline, 170 
regularization, 390 
regularization theory, 167 

Index 

reproducing kernel, 103, 106-108, 311 
for conditionally positive definite basic 

function, 311 
properties, 104 

reproducing kernel Hilbert space, 103, 
103-105, 107 

residual iteration, 268 
ridge regression, 167, 257 
RKHS, see reproducing kernel Hilbert 

space, 103 
RMS-error, see root-mean-square error 
root-mean-square error, 10 

sampling theory, 13, 110, 164 
saturation, 130, 156, 237, 240, 246, 385 
saturation error, 231 
scattered data interpolation, 2 
scattered data modeling, 1 
Schoenberg-Menger Theorem, 81 
Schwartz space, 433 
(semi-)norm 

Beppo-Levi space, 109, 163 
Shannon sampling theorem, 110 
shape parameter, 1 7, 3 7 

choice of, 141-150 
convergence with respect to, 132-133 

shape parameter free, 69 
Shepard function, 13, 205 
Shepard's method, 205, 211 

high-order, 229 
iterated, 274 

shifted surface splines, 131 
a-algebra, 431 
slowly increasing functions, 433 
smoothing, 167, 211, 240, 257, 297, 308, 

385 
of noisy data, 170-175 

smoothing splines, 167 
Sobolev space, 108, 128, 130-132, 179, 228 

homogeneous of order k, 109 
norm, 109 

Sobolev splines, 41, 109 
sources, 323 
sparse approximation, 293 
special point, 317 
special points, 310, 313 

spectral approximation order, 126, 153, 
288 

spline 
B-, 92, 93 
piecewise linear, 5 
polyharmonic, 14, 71, 129, 130, 278, 

306, 313 
regression, 170 
shifted surface, 131 
smoothing, 167 
Sobolev, 41, 109 
surface, 14, 70 
thin plate, 14, 70, 74, 109, 127-129, 

131, 132, 138, 155, 163, 164, 
167, 170, 278, 306, 308, 310, 
314, 316, 326, 437 

web-, 350, 420 
spread, 195 
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stability, 23, 131, 135-140, 193, 303, 331, 
347, 350 

stationary approximation, 22, 99-101, 
130-132, 140, 155-157, 211, 216, 227, 
237, 277, 279, 378, 421 

stationary multilevel collocation 
algorithm, 380 

stationary multilevel interpolation 
algorithm, 277 

stiffness matrix, 420, 423 
strictly conditionally positive definite 

function 
Fourier transform characterization, 65 

strictly conditionally positive definite of 
order m on JR 5

, 63, 64 
strictly positive definite and radial for all 

s, 34, 49 
Schoenberg's characterization, 35 

strictly positive definite function, 28, 32 
compactly supported, 35, 42 
Fourier transform characterization, 34 
oscillatory, 35, 39, 90 

strictly positive definite on IR", 28 
strong form solution, 345 
super-spectral approximation order, 126, 

153 
surface reconstruction algorithm, 256 
surface splines, 14, 70 
symmetric formulation, 335 
symmetric pseudospectral method, 394 

targets, 323 
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Taylor expansion, 119, 120, 193, 226, 323, 
327-331 

theorem 
Bochner, 28, 31, 33, 65, 82 
Courant-Fischer, 76, 136 
Hankel inversion, 41, 432 
Hausdorff-Bernstein-Widder, 48 
interpolation, 49, 64, 77 
Mairhuber-Curtis, 3 
Mercer, 107 
Micchelli, 51 
optimality I, 162 
optimality II, 163 
optimality III, 164 
Schoenberg-Menger, 81 
Shannon Sampling, 110 
Williamson, 50 
zeros, 128 

thin plate spline, 308 
thin plate splines, 14, 70, 74, 109, 

127-129, 131, 132, 138, 155, 163, 164, 
167, 170, 278, 306, 310, 314, 316, 326, 
437 

thinning algorithm, 187, 282, 439 
time-dependent boundary conditions, 409 
trade-off principle, 24, 100, 138-140, 277 
translation invariant, 29, 106 
transport equation, 387, 403, 405 
tree codes, 325 

tri-cube, 227 
trial and error, 142 
truncated power functions, 43, 50 
turning bands operator, 91 

uncertainty principle, 24, 139, 277 
univariate, 17 
upper bound for Amin, 137 

van der Corput sequence, 427 
vector-valued functions, 2, 83 
Voronoi diagram, 306 

web-spline, 350, 420 
weight functions, 193, 196, 199, 201, 202, 

206, 212, 214, 216, 226, 227, 229, 230, 
233, 234, 274, 285, 287 

weighted norm, 191 
well-posed, 3 
Wendland CSRBF, 87, 87-88, 91, 92, 98, 

99, 109, 127, 129, 131, 138, 154, 179, 
211, 234, 240, 241, 251, 253, 260, 279, 
345, 375, 388, 413, 423 

Whittaker-M function, 44 
Williamson's theorem, 50 
Wu CSRBF, 89, 88-90, 345 

zeros theorem, 128 




	Cover
	S Title
	INTERDISCIPLINARY MATHEMATICAL SCIENCES, Volume 6
	Meshfree Approximation Methods with MATLAB
	Copyright
	© 2007 by World Scientific Publishing Co.
	ISBN-13 978-981-270-633-l
	ISBN-10 981-270-633-X
	ISBN-13 978-981-270-634-8
	ISBN-10 981-270-634-8

	Dedicated to Inge, Conny, Marc and Patrick
	Preface
	Contents
	Chapter 1  Introduction
	1.1 Motivation: Scattered Data Interpolation in Rn
	1.1.1 The Scattered Data Interpolation Problem
	1.1.2 Example: Interpolation with Distance Matrices

	1.2 Some Historical Remarks

	Chapter 2  Radial Basis Function Interpolation in MATLAB
	2.1 Radial (Basis) Functions
	2.2 Radial Basis Function Interpolation

	Chapter 3  Positive Definite Functions
	3.1 Positive Definite Matrices and Functions
	3.2 Integral Characterizations for (Strictly) Positive Definite Functions
	3.2.1 Bochner's Theorem
	3.2.2 Extensions to Strictly Positive Definite Functions

	3.3 Positive Definite Radial Functions

	Chapter 4  Examples of Strictly Positive Definite Radial Functions
	4.1 Example 1: Gaussians
	4.2 Example 2: Laguerre-Gaussians
	4.3 Example 3: Poisson Radial Functions
	4.4 Example 4: Matern Functions
	4.5 Example 5: Generalized Inverse Multiquadrics
	4.6 Example 6: Truncated Power Functions
	4. 7 Example 7: Potentials and Whittaker Radial Functions
	4.8 Example 8: Integration Against Strictly Positive Definite Kernels
	4.9 Summary

	Chapter 5  Completely Monotone and Multiply Monotone Functions
	5.1 Completely Monotone Functions
	5.2 Multiply Monotone Functions

	Chapter 6  Scattered Data Interpolation with Polynomial Precision
	6.1 Interpolation with Multivariate Polynomials
	6.2 Example: Reproduction of Linear Functions Using Gaussian RBFs
	6.3 Scattered Data Interpolation with More General Polynomial Precision
	6.4 Conditionally Positive Definite Matrices and Reproduction of Constant Functions

	Chapter 7  Conditionally Positive Definite Functions
	7.1 Conditionally Positive Definite Functions Defined
	7.2 Conditionally Positive Definite Functions and Generalized Fourier Transforms

	Chapter 8  Examples of Conditionally Positive Definite Functions
	8.1 Example 1: Generalized Multiquadrics
	8.2 Example 2: Radial Powers
	8.3 Example 3: Thin Plate Splines

	Chapter 9  Conditionally Positive Definite Radial Functions
	9.1 Conditionally Positive Definite Radial Functions and Completely Monotone Functions
	9.2 Conditionally Positive Definite Radial Functions and Multiply Monotone Functions
	9.3 Some Special Properties of Conditionally Positive Definite Functions of Order One

	Chapter 10  Miscellaneous Theory: Other Norms and Scattered Data Fitting on Manifolds
	10.1 Conditionally Positive Definite Functions and p-Norrns
	10.2 Scattered Data Fitting on Manifolds
	10.3 Remarks

	Chapter 11  Compactly Supported Radial Basis Functions
	11.1 Operators for Radial Functions and Dimension Walks
	11.2 Wendland's Compactly Supported Functions
	11.3 Wu's Compactly Supported Functions
	11.4 Oscillatory Compactly Supported Functions
	11.5 Other Compactly Supported Radial Basis Functions

	Chapter 12  Interpolation with Compactly Supported RBFs in MATLAB
	12.1 Assembly of the Sparse Interpolation Matrix
	12.2 Numerical Experiments with CSRBFs

	Chapter 13  Reproducing Kernel Hilbert Spaces and Native Spaces for Strictly Positive Definite Functions
	13.1 Reproducing Kernel Hilbert Spaces
	13.2 Native Spaces for Strictly Positive Definite Functions
	13.3 Examples of Native Spaces for Popular Radial Basic Functions

	Chapter 14  The Power Function and Native Space Error Estimates
	14.1 Fill Distance and Approximation Orders
	14.2 Lagrange Form of the Interpolant and Cardinal Basis Functions
	14.3 The Power Function
	14.4 Generic Error Estimates for Functions in N
	14.5 Error Estimates in Terms of the Fill Distance

	Chapter 15  Refined and Improved Error Bounds
	15.1 Native Space Error Bounds for Specific Basis Functions
	15.1.1 Infinitely Smooth Basis Functions
	15.1.2 Basis Functions with Finite Smoothness

	15.2 Improvements for Native Space Error Bounds
	15.3 Error Bounds for Functions Outside the Native Space
	15.4 Error Bounds for Stationary Approximation
	15.5 Convergence with Respect to the Shape Parameter
	15.6 Polynomial Interpolation as the Limit of RBF Interpolation

	Chapter 16  Stability and 'Irade-Off Principles
	16.l Stability and Conditioning of Radial Basis Function lnterpolants
	16.2 Trade-Off Principle I: Accuracy vs. Stability
	16.3 Trade-Off Principle II: Accuracy and Stability vs. Problem Size
	16.4 Trade-Off Principle III: Accuracy vs. Efficiency

	Chapter 17  Numerical Evidence for Approximation Order Results
	17.1 Interpolation for e--> 0
	17.1.1 Choosing a Good Shape Parameter via Trial and Error
	17.1.2 The Power Function as Indicator for a Good Shape Parameter
	17.1.3 Choosing a Good Shape Parameter via Cross Validation
	17.1.4 The Contour-Pade Algorithm
	17.1.5 Summary

	17.2 Non-stationary Interpolation
	17.3 Stationary Interpolation

	Chapter 18  The Optimality of RBF Interpolation
	18.1 The Connection to Optimal Recovery
	18.2 Orthogonality in Reproducing Kernel Hilbert Spaces
	18.3 Optimality Theorem I
	18.4 Optimality Theorem II
	18.5 Optimality Theorem III

	Chapter 19  Least Squares RBF Approximation with MATLAB
	19.1 Optimal Recovery Revisited
	19.2 Regularized Least Squares Approximation
	19.3 Least Squares Approximation When RBF Centers Differ from Data Sites
	19.4 Least Squares Smoothing of Noisy Data

	Chapter 20  Theory for Least Squares Approximation
	20.1 Well-Posedness of RBF Least Squares Approximation
	20.2 Error Bounds for Least Squares Approximation

	Chapter 21  Adaptive Least Squares Approximation
	21.1 Adaptive Least Squares using Knot Insertion
	21.2 Adaptive Least Squares using Knot Removal
	21.3 Some Numerical Examples

	Chapter 22  Moving Least Squares Approximation
	22. I Discrete Weighted Least Squares Approximation
	22.2 Standard Interpretation of MLS Approximation
	22.3 The Backus-Gilbert Approach to MLS Approximation
	22.4 Equivalence of the Two Formulations of MLS Approximation
	22.5 Duality and Bi-Orthogonal Bases
	22.6 Standard MLS Approximation as a Constrained Quadratic Optimization Problem
	22.7 Remarks

	Chapter 23  Examples of MLS Generating Functions
	23.1 Shepard's Method
	23.2 MLS Approximation with Nontrivial Polynomial Reproduction

	Chapter 24  MLS Approximation with MATLAB
	24.1 Approximation with Shepard's Method
	24.2 MLS Approximation with Linear Reproduction
	24.3 Plots of Basis-Dual Basis Pairs

	Chapter 25  Error Bounds for Moving Least Squares Approximation
	25.1 Approximation Order of Moving Least Squares

	Chapter 26  Approximate Moving Least Squares Approximation
	26.1 High-order Shepard Methods via Moment Conditions
	26.2 Approximate Approximation
	26.3 Construction of Generating Functions for Approximate MLS Approximation

	Chapter 27  Numerical Experiments for Approximate MLS Approximation
	27.1 Univariate Experiments
	27.2 Bivariate Experiments

	Chapter 28  Fast Fourier Transforms
	28.1 NFFT
	28.2 Approximate MLS Approximation via Non-uniform Fast Fourier Transforms

	Chapter 29  Partition of Unity Methods
	29.1 Theory
	29.2 Partition of Unity Approximation with MATLAB

	Chapter 30  Approximation of Point Cloud Data in 3D
	30.1 A General Approach via Implicit Surfaces
	30.2 An Illustration in 2D
	30.3 A Simplistic Implementation in 3D via Partition of Unity Approximation in MATLAB

	Chapter 31  Fixed Level Residual Iteration
	31.1 Iterative Refinement
	31.2 Fixed Level Iteration
	31.3 Modifications of the Basic Fixed Level Iteration Algorithm
	31.4 Iterated Approximate MLS Approximation in MATLAB
	31.5 Iterated Shepard Approximation

	Chapter 32  Multilevel Iteration
	32.1 Stationary Multilevel Interpolation
	32.2 A MATLAB Implementation of Stationary Multilevel Interpolation
	32.3 Stationary Multilevel Approximation
	32.4 Multilevel Interpolation with Globally Supported RBFs

	Chapter 33  Adaptive Iteration
	33.1 A Greedy Adaptive Algorithm
	33.2 The Faul-Powell Algori thrn

	Chapter 34  Improving the Condition Number of theInterpolation Matrix
	34.1 Preconditioning: Two Simple Examples
	34.2 Early Preconditioners
	34.3 Preconditioned GMRES via Approximate Cardinal Functions
	34.4 Change of Basis
	34.5 Effect of the "Better" Basis on the Condition Number of the Interpolation Matrix
	34.6 Effect of the "Better" Basis on the Accuracy of the Interpolant

	Chapter 35  Other Efficient Numerical Methods
	35.1 The Fast Multipole Method
	35.2 Fast Tree Codes
	35.3 Domain Decomposition

	Chapter 36  Generalized Hermite Interpolation
	36.1 The Generalized Hermite Interpolation Problem
	36.2 Motivation for the Symmetric Formulation

	Chapter 37  RBF Hermite Interpolation in MATLAB
	Chapter 38  Solving Elliptic Partial Differential Equations via RBF Collocation
	38.1 Kansa's Approach
	38.2 An Hermite-based Approach
	38.3 Error Bounds for Symmetric Collocation
	38.4 Other Issues

	Chapter 39  Non-Symmetric RBF Collocation in MATLAB
	39.1 Kansa's Non-Symmetric Collocation Method

	Chapter 40  Symmetric RBF Collocation in MATLAB
	40.1 Symmetric Collocation Method
	40.2 Summarizing Remarks on the Symmetric and Non-Symmetric Collocation Methods

	Chapter 41  Collocation with CSRBFs in MATLAB
	41.1 Collocation with Compactly Supported RBFs
	41.2 Multilevel RBF Collocation

	Chapter 42  Using Radial Basis Functions Pseudospectral Mode
	42.1 Differentiation Matrices
	42.2 PDEs with Boundary Conditions via Pseudospectral Methods
	42.3 A Non-Symmetric RBF-based Pseudospectral Method
	42.4 A Symmetric RBF-based Pseudospectral Method
	42.5 A Unified Discussion
	42.6 Summary

	Chapter 43  RBF-PS Methods in MATLAB
	43.1 Computing the RBF-Dilferentiation Matrix in MATLAB
	43.1.1 Solution of a 1-D Transport Equatio

	43.2 Use of the Contour-Pade Algorithm with the PS Approach
	43.2.1 Solution of the 1D Transport Equation Revisited

	43.3 Computation of Higher-Order Derivatives
	43.3.1 Solution of the Allen-Cahn Equation

	43.4 Solution of a 2D Helmholtz Equation
	43.5 Solution of a 2D Laplace Equation with Piecewise  Boundary Conditions
	43.6 Summary

	Chapter 44  RBF Galerkin Methods
	44.1 An Elliptic PDE with Neumann Boundary Conditions
	44.2 A Convergence Estimate
	44.3 A Multilevel RBF Galerkin Algorithm

	Chapter 45  RBF Galerkin Methods in MATLAB
	Appendix A  Useful Facts from Discrete Mathematics
	A.1 Halton Points
	A.2 kd-Trees

	Appendix B  Useful Facts from Analysis
	B.1 Some Important Concepts from Measure Theory
	B.2 A Brief Summary of Integral Transforms
	B.3 The Schwartz Space and the Generalized Fourier Transform

	Appendix C  Additional Computer Programs
	C.1 MATLAB Programs
	C.2 Maple Programs

	Appendix D  Catalog of RBFs with Derivatives
	D.1 Generic Derivatives
	D.2 Formulas for Specific Basic Functions
	D.2.1 Globally Supported, Strictly Positive Definite Functions
	D.2.2 Globally Supported, Strictly Conditionally Positive Definite Functions of Order 1
	D.2.3 Globally Supported, Strictly Conditionally Positive Definite Functions of Order 2
	D.2.4 Globally Supported, Strictly Conditionally Positive Definite Functions of Order 3
	D.2.5 Globally Supported, Strictly Conditionally Positive Definite Functions of Order 4
	D.2.6 Globally Supported, Strictly Positive Definite and Oscillatory Functions
	D.2. 7 Compactly Supported, Strictly Positive Definite Functions


	Bibliography
	Index
	Index

