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To my family 

The motion of Truth is cyclical, 
The way of Truth is pliant 

The Works of Lao Zi 
Truth and Nature 
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PREFACE 

This book deals with the Leray-Schauder Principle, the study of 

complementarity problems and the study of variational inequalities. The 
first is given by the following classical result. 

Theorem 1 [Leray-Schauder Principle]. Let (£,||||) be a Banach space, 

Q d E an open bounded set such that 0 e Q and f :Q-^ E a continuous 

compact mapping. If j{x) n^ ^xfor all x e dQ. and A > 1, then f has a fixed 
point. 

From Theorem 1 we deduce the following result. 

Theorem 2 [Leray-Schauder alternative]. Let (£^,||D be a Banach space, 

Q. d E an open bounded subset such that 0 e Q and f:Q->E a 
continuous compact mapping. Then: 

(1) either/has a fixed point in Q or 
(2) there exists an element x* e (9Q and a real number A* G ]0, 1 [ such 

thatx* = A*J(x*). 

Theorems 1 and 2 are considered to be the most important results in 
nonlinear analysis and lead to applications in the study of nonlinear 
functional equations. 

Complementarity theory is a relatively new domain in applied 
mathematics with deep connections with several aspects of fundamental 
mathematics. The main goal of complementarity theory is the study of 
complementarity problems from several points of view. Complementarity 
problems represent a wide class of mathematical models related to 
optimization, economics, mechanics and engineering. In many 
mathematical models the complementarity condition is used to determine 
the equilibrium as used in physics or in economics. There exist few books 
dedicated to the study of complementarity problems: Some of these are 
(Cottle, R. W., Pang, J. S. and Stone, R. E. [1]), (Isac, G. [12] and [26]), 
(Hyers, D. H., Isac, G. and Rassias, Th. M. [1]) and (Isac, G., Bulavski, W. 
A. and Kalashnikov, V. V. [2]) 

The study of variational inequalities is another domain of applied 
mathematics. Variational inequalities have many applications to the study of 
certain problems with unilateral conditions, and there are many papers and 
books dedicated to this subject. A complementarity problem is associated 
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with a mapping and a closed convex cone, whereas a variational inequality 
is associated with a mapping and a closed convex set. It is known that a 
variational inequality associated with a mapping and a closed convex cone 
is equivalent to a complementarity problem. Until now all applications of 

the Leray-Schauder Principle [Theorem 1] have been exclusively dedicated 

to the study of existence of fixed points or of existence of solutions of 
nonlinear equations. See, for example, the books (O'Regan, D. and Precup, 
R. [l]and(Precup,R. [1]). 

Considering these applications from the point of view of the Leray-
Schauder alternative [Theorem 2], we observe that the authors considered 
only the conclusion (1) of Theorem 2. In this book we show that conclusion 
(2) of Theorem 2 has also interesting applications. By using this conclusion 
we introduce the notion oian exceptional family of elements for a mapping. 
This notion is related to a complementarity problem or to a variational 
inequality. The property of being without an exceptional family of elements 
is a kind of coercivity property, which is more general than the classical 
notion of coercivity. 

The notion of an exceptional family of elements introduced in this 
book by the Leray-Schauder alternative is the same notion that was 

introduced in 1997 in our paper, (Isac, G., Bulavski, V. A. and Kalashnikov, 
V. V. [1]), by using the family's topological degree. In this book we replace 

the topological degree by Leray-Schauder alternatives, because in this way 

we can define the notion of exceptional family of elements for classes of 
mappings for which the topological degree is not defined. The investigation 
method based on this notion is simpler and elegant. 

Our notion of exceptional family of elements contains as a particular 
case the notion of "exceptional sequence of elements" which was 
introduced with respect to Ml in (Smith, T. E. [1]) and has no relation with 
the main result proved in (Eaves, B. C. [2]). Moreover, the main result 
proved by Eaves is strongly related to the fact that the convex cone M^ has 
a bounded base; his result can not be extended to an arbitrary cone in a 
Hilbert space or in a Banach space. 

The notion of exceptional family of elements presented in this book 
has deep relations with fundamental notions of nonlinear analysis and 
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shows promise of other new developments. In particular, research shows 
that the investigation method based on this notion is a remarkable method 
for complementarity theory and for the theory of variational inequalities 
with respect to unbounded closed convex sets. The study of existence of 
solutions for complementarity problems and for variational inequalities is 
unified by this method. 

Now, let us briefly describe the content of this book. 

Chapter 1 is dedicated to the preliminary notions that are used 
systematically in this book. 

Chapter 2 defines the complementarity problems and the variational 
inequalities used in this book and their equivalences. 

Chapter 3 presents the Leray-Schauder type alternatives. The alternatives 

are given by their proofs. 

Chapter 4 contains several results and facts considered as the origin of the 
notions of exceptional family of elements presented in Chapters 5-8. 

Chapter 5 is dedicated to the results obtained for complementarity 
problems by the topological method based on the notion of exceptional 
family of elements. 

Chapter 6 introduces the notion of infinitesimal exceptional family of 
elements. Here we apply scalar derivatives to the study of complementarity 
problems. 

Chapter 7 presents several special notions and results related to the notion 
of exceptional family of elements. In this chapter we show that the notion of 
exceptional family of elements can be defined for more general classes of 
mappings and for this definition the Leray-Schauder alternatives are not 

necessary. In this chapter we give also a necessary and sufficient condition 
for the non-existence of an exceptional family of elements. This result is the 
starting point for new and interesting results. 

Finally, Chapter 8 is dedicated to the study of variational inequalities by 
the method presented in this book. The last subject of this chapter is the 
study of variational inequalities with integral operators. 
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We note that the Bibliography contains not only the cited papers but 
other papers related to this subject. 

The goal of many books is to present a collection of the most 
significant results on some subjects, obtained in a period of time, but the 
main goal of our book is to show a new method, applicable to the study of 
complementarity problems and variational inequalities. We would like the 
reader to consider this book as a starting point of a new topological method 
applicable to the study of complementarity problems and of variational 
inequalities. Certainly, this method can be improved, and many new 
developments based on ideas presented in this book are possible. In 
particular, the study of order complementarity problems by the method 
presented in this book is a completely open subject. Considering the fact 
that mathematics is a collective work, perhaps other authors will improve 
and develop our method. 

It is impossible to finish this preface without to say many, many 
thanks to my wife Viorica, for her excellent work. She has carefully 
prepared the manuscript of this book with unlimited and constant 
enthusiasm. I will keep in my heart her real support. 

To conclude, I would like to say that I appreciated very much the excellent 
assistance offered me by the staff of Springer Publishers. 

June 1,2005 

Prof. G. Isac 



PRELIMINARY NOTIONS 

The reader of this book must have a minimum background of a course 
in general topology and a course in functional analysis. However, to 
facilitate the lecture we recall in this chapter several preliminary notions. 
Certainly, other special notions related to the results presented in this book 
will be introduced in each chapter. 

1.1 Topological spaces. Some fundamental notions 

Let JC YhQ arbitrary sets. We use the standard notations x G Xfor "x is 
an element ofJC\ X e 7 for "X is a subset of Y" and X - 7 for "XczY and 
Y<:iX\ The complement of X relative to 7 is the set CyX = [xeY:x^X]. 

The set of all subsets of Xis denoted by (P(X). Let {X/},̂ ^ be a family of 

sets. For the union of this family we use the notation [Jx. and for 
/ G / 

intersection the notation ^X..lfI=NwQ have a sequence of sets and we 
iel 

00 00 

use respectively the notations \^X^ a n d Q x ^ . A mapping / of X into 7 is 
n=\ n=l 

denoted hyf: X -> 7. The domain of / i s Xand the image of X under/is 
called the range of / For any A c: X, WQ write J{A) to denote the set 
{f{x):xeA}(^Y. For any B ^ Y, f'{B) = {xeX :f{x)eB}. If 
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f : X -^ Y and g : Y -^ Z avQ mappings, the composition mapping 

X -^ g ( / ( ^ ) ) is denoted by g of. We denote the empty set by (/>. 

DEFINITION lAA. Let X be any non-empty set. A subset Tof(P(X) is said 
to be a topology on X if the following axioms are satisfied: 

(i) Xand (j) are members of r, 
(ii) the intersection of any two members of r is a member of % 
(iii) the union of any family of members ofris again in r. 

We say that the couple {X, r) is a topological space. If r is a topology on X 
the members of r are then said to be r-open subsets of X, or merely open 
subsets ofXif no confusion may result. The subset r, ={(^,X] of<P(X) is a 

topology on X called the trivial topology. It is easy to show that r̂  = (F(X) is 
a topology on X called the discrete topology. The topologies Tt and TJ are 
not interesting. An interesting topology r on X must be such that 

DEFINITION 1.1.2. In a topological space (X, r ) , we say that a subset F 

ofXis T'Closed (or merely closed) if F -C^U, where Uis a r-open set. 

The closed subsets of Xhave the following properties: 

(1) Xand ^ are closed subsets ofX, 
(2) the union of any two closed subsets ofX is again a closed subset of 

X, 
(3) the intersection of any family of closed subsets of X is again a 

closed subset ofX. 

Remark. There exist subsets that are not open and not closed. 

Given a non-empty subset ^ e X, the open set int4 which is the 
union of all open subsets of ^ , is called the interior of A. The interior of a 
set may be empty. The closed set A , the intersection of all closed sets 
containing A, is called the closure of A. An element JCG int4 is called an 
interior point of A. An element x e ^ is called an adherent point of A. 
We say that a subset F of X is a r-neighborhood (or merely neighborhood) 
of a point jc e X if there exists an open set C/such that JC G C/e K Let (/,^) 
be any partially ordered set. It is said to be a directed set if given any / and 
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any7 in /there is A: G / such that / < k andy < k. Note that any totally ordered 

set is directed. In particular the set TV of natural real numbers is a directed 

set. 
Let (X,r) be a topological space and /be a directed set. A function 

X from / into X is said to be a net in X. The expression x{i) is usually denoted 
by JC/, and the net itself is denoted by {x.} .̂ .̂ 

DEFINITION 1.1.3, A net {^i}.^j is said to be convergent to apointx*e X 

if for any neighborhood Vofx*, there exists an index iy GI such that for 

any ie /satisfying iy <i, we have thatXi e V. 

If a net {̂ /}.̂ ^ is convergent to x*, we write limx. =x^. It is known that a 

subsets ofXis closed, if and only if for any net {̂ ,}.̂ ^ i n^ the condition 

limx, =XQ implies XO G A. 
iel 

DEFINITION 1.1.4. We say that a topological space (X, r) is a Hausdorff 

space, if and only if given any two distinct points x and y of X, there are 

open sets Uand Vsuch thatx e U,y e Fand f/fl V= cf). 

It is known that a topological space {X,T) is Hausdorff, if and only if given 

any convergent net {̂ ,}.̂ ^ in v^the limit of {x^}.^j is unique. In this book 

we will consider only Hausdorff topological spaces. 

Let (X,ri),(7,r2) be topological spaces and l e t / : Z - > Fbe a 

mapping. 

DEFINITION 1.1.5. We say that f is continuous at a point x e X, if for 
each T2-neighborhood Vofy =f{x),f (V) is a Zi-neighborhoodofx. 

I f / i s continuous at any jc G X, then in this case we say that/is continuous 
onX 

The following statements are equivalent: 
{}) fis continuous onX, 
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(2) for any subset A ofX, we have / ( ^ ) ̂  / ( ^ ) ^ 

(3) ifFd Yis T2-closed, thenJ^^(F) is T\-closed in X, 
(4) ifUa Yis Zx-open, thenJ^\U) is T\-open inX, 
Convergent nets can characterize the continuity of a mapping. In this 

sense we have the following classical result. 

A mapping f. X -^ Y is continuous on X if and only if for every net 

{x.}.̂ ^ in Xsuch that {^i].^j is convergent to x, the net {/(^/)} in Y 

converges to fix). 

1.2 Metric spaces 

First, we note that a metric space is a set in which we have a measure of the 
closedness or proximity of two arbitrary elements in the set. This measure is 
obtained by a "distance". 

DEFINITION 1.2.1. Let X be an arbitrary non-empty set. We say that a 
function d :XxX -^ R is said to be a metric (distance) on Xif: 

(1) d(x,y) > OJor allx, y ^ X, 
(2) d{x,y) = d(y,x), for all x, y e X, 
(3) d(x,y) = 0 if and only ifx == y, 
(4) d{x,z) < d{x,y) + d(y,z), for all x, y, z e X. 

The couple (X, d) is said to be a metric space. If {X, d)\sdi metric space, we 
can define on Xa topology by the following method. For any x e Xand any 
positive real number s, th^d -s-ball is the set: 

B[X,€) = [y e X:d{x,y) < 6^. 

Consider the following collection of subsets of Jf, 

T^ ={U dX: for any xeU there exists e>0 such that B{X,S) a C/|. 
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Obviously X, (j) ^ td. Indeed, if jc E X and ^ > 0, then B(x, s) a X. Since (j) 
contains no points, it is true that for each x e (j) (there is no such x) and any 
^ > 0, B{x, s) ci (/>. We can prove that r^ is a topology on X, named the 
topology defined by the metric d. Therefore, any metric space is a 
topological space, but the converse is not true. Moreover, any metric space 
is a Hausdorff topological space. 

Let (JC ^ be a metric space and {x„]^^^, be a sequence inX. 

DEFINITION 1.2.2. The sequence {̂ „}„̂ ^ is said to be convergent to a 

point X* of X if given any positive real number s, there is a natural number 
ns such that ifn > n^, then d(x*, x^) < s. 

If {x„}^^^ converges to x*, then we write {̂ „}„̂ ^ -> x*, or x, = limx„. The 

element x* is said to be the limit of [x^]^^^ . In a metric space the limit of a 

sequence is unique. 

Let (Xj,^j) and [X^.d^) be metric spaces. 

DEFINITION 1.2.3. A mapping f: X\ -> X2 is said to be continuous at a 
point xo G X\ if given any positive real number £•> 0, there is a positive real 
number S^such that if d^ {x^,jc) < ̂ ^, then d2[f{xQ),f (x)) < s. 

Let (X, d)hGa metric space and {x„}^^^ a sequence inX 

DEFINITION 1.2.4. The sequence { Ĵ̂ ^^ is said to be a Cauchy 

sequence if given any positive real numbers there is a natural number ns 

such that ifm, n are natural numbers andm, n> n^ , then d[x^,x^)<£. 

DEFINITION 1.2.5. A metric space {X, d) is said to be complete if every 
Cauchy sequence in X converges to a point ofX. 

It is known that any incomplete metric space can be densely immersed in a 
complete metric space. 



6 Leray-Schauder Type Alternatives 

1.3 Some classes of topological vector spaces 

In this book we will use only real vector spaces. Given a real vector 
space E and a topology r on E, the pair {E, r) (or often denoted by E{T)) is 
called a topological vector space if the following axioms are satisfied: 

(1) [x,y^^>'X + y is continuous on Ex EintoE, 

(2) (/I, x)-^ Ax is continuous on Mx E into E. 

An important class of topological vector spaces is the class of normed 
vector spaces. 

Normed vector spaces 

A real vector space E is said to be a normed space if to every x e E 
there is associated a non-negative real number ||x||, called the norm of x such 
that the following axioms are satisfied: 

(ni) ||jc + 3̂11 < ||x|| +1|>;||, for all x and y in E, 

(n2) \\Ax\\ = \A\\\x\\, for all xe E and AG R , 

(ns) ||x|| = 0 if and only if jc = 0. 

Remark. From axiom (us) we have that ||x|| > 0 if JC ^̂  0. 

A normed vector space will be denoted by (^,||||). Every normed 

vector space (£',||-||) may be regarded as a metric space, in which the 

distance between x and y is d[x,y) = \\x - j ^ | | . The topology defined on E by 

this distance is called the topology of the normed vector space (^,||'ll) • 

The sets B{0^) = {XGE:\\X\\<\] andB{0,\) = [xe E:\\x\\<\] are 

the open unit ball and the closed unit ball ofE, respectively. 

Banach space 

A Banach space is a normed vector space, which is complete in the 
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metric defined by its norm, that is, every Cauchy sequence is convergent. 

Many of the best-known function spaces, used in practical problems 
are Banach spaces. We mention just a few types: spaces of continuous 
functions on compact spaces, the well-known Z^-spaces, certain spaces of 
differentiable functions, spaces of continuous linear mappings from one 
Banach space into another etc. 

Let (^i,|||U and (£'2,||||2) be Banach spaces. A mapping 

L:E^^ E^ is called a linear mapping if L{ax + Py) = aZ(x) + j3L(y) for 

all X, y e Ex and all real numbers a, yS The linear mapping L is called 

continuous at xo e E\ if for any sequence {̂ „}̂ ^̂  of elements of £"1 such 

that ||x„ -^olli ^ 0 we have that ||z(jc„)-Z(xo)||^^0 . If Z is continuous at 

every jc G £1 , then we say that L is continuous on £"1. A mapping 
L'.E^-^ E^ is called bounded if there exists a number p such that 

||z(jc)|| </7||jc|[, for all x e E\. We denote by L{E\, E2) the set of all 

continuous mappings from E\ into E2. It is known that a linear mapping 
from El into E2 is continuous, if and only if it is bounded. 

If we take (£2 9|Hl2) " ( ^ ' H ) ' where |jc| is the absolute value of jc G 

M, then we denote by E* =L{E^, M) and we say that £* is the topological 

dual ofE\, If for any L G £(£"1, £2) we define 

then we have that Z -> ||Z|| is a norm on £(£1, £2) and it is known that 

(z(£p£2),|| | |) is a Banach space. Consequently for any Banach space 

(£,| | | |), its topological dual £* is also a Banach space. 

Hiibert space 

The class of Hiibert spaces is an important subclass of Banach 
spaces. In this book, we will consider only real Hiibert spaces. D. Hiibert (in 
his paper: Grundzuge einer allgemeinen Theory der linearen 
Integralgleichungen, Leipzig, 1912) initiated the theory of Hiibert spaces. 
After many years, John von Neumann (1903-1957) became the first to 
formulate an axiomatic theory of Hiibert spaces. 
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Let £" be a real vector space. 

DEFINITION 1.3.1. We say that a mapping (^','):ExE^M is an inner-

product in E if for any x, y, z e E and a, /3 e M the following axioms are 

satisfied: 

(1) {x,y) = {y,x), 

(2) {ax + J3y,z) = a{x,z) + /3{y,z), 

(3) (x,x) > 0 and {x,x) = 0 if and only ifx = 0. 

A real vector space with an inner-product is called an inner-product 
space, or a pre-Hilbert space. 

Examples 

I. The real field M is an inner-product space. The inner-product is 

defined by {x,y) = X'y. 

II. The ^-dimensional real vector space M^, with the inner-product 
n 

defined by {x,y) = ^x-y., where x = {x^,x^,.„,x^) and y = 

(j;,, 3̂2 ? ••? Ĵ w) ' is ^^ inner-product space. 

III. The space /•̂  of all sequences (xj,X2,...,x„,...) of real numbers such 
00 

that Xk^l '^+°^' ^i^h the inner-product defined by 

{x,y) = ^x,^yj^, is an infinite dimensional inner-product space. 
k=\ 

This space is between the most important examples of inner-product 
spaces. 

IV. Let E be the real vector space of sequences [x^, x^,..., x^,...) of real 

numbers such that only a finite number of terms is non-zero. This is 
an inner-product space with the inner-product defined by 

00 

{^^y) = Tj^kyk^ where x = {x^,x^,...,x^,,..) and y = 
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V. The real vector space c([^,fe],i?) of all continuous real-valued 

functions on the interval [a, b] a M, with the inner-product 

(f^s) - if{^)s{^)d^ is an inner-product space. 

VI. The real vector space Z ^ ( Q ) with the inner-product defined by 

(/? s)= Vf{^)s {^yi^ is a very important inner-product space. 

VII. Let E be the Cartesian product of Hilbert spaces 

(^,,(v)0,...,(£.,(•,•),),i.e., 

E = E,xE^X"-xE„= [{x,,x^,...,x„): x, e E,,...,x„ e E^] 

is a Hilbert space with the inner-product defined by: 

{{x,....,x„),{y,,...,y„)) = {x,,y,\+{x,,y,)^+"' + {x„,y„). 

Let (£",(•,)) be an inner-product space. Two vectors x and 3̂  in JE 

are called orthogonal, denoted hy x ± y, if {x, >') == 0. Any inner-product 

space (J5',(-,)) is a normed vector space with the norm defined by 

||x|| = yj{x,x), for any xeE. 

The norm of any inner-product space (£,(•,)) satisfies the following 

important properties: 

Schwartz's inequality. For any two elements x and y in E we have 

(x,j^) <||x||||j^||. The equality (-^JJ^) =||-^||||j^|| holds, if and only if x and y 

are linearly dependent. 

Parallelogram law. For any two elements x and y in E we have 

\\x^yt^\\x~yt=2{^\xt.\\yt). 

A consequence of the parallelogram law is the Pythagorean Formula: 

if X ± _y , then ||jc + j^ | | = ||x|| + ||_y|| . 

DEFINITION 1.3.2. A complete inner-product space is called a Hilbert 

space. (By the completeness of an inner-product space (£",(•,•)), we mean 

the completeness ofE as a normed space). 
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The examples I-III and VI-VII are Hilbert spaces. The examples 
described in IV and V are not Hilbert spaces, since these spaces as normed 

vector spaces are not complete. We will denote a Hilbert space by (//,(•,•)). 

The topological dual of a Hilbert space (//,(•,•)) can be identified 

(by an isomorphism) with H. We recall also that a Hilbert space is called 
separable if it contains a complete orthonormal sequence. (An orthonormal 

sequence {̂ „}̂ ^̂  in a Hilbert space (//,(•,•)) is said to be complete if for 
00 

every X G / /we have ^ = ^{x,^n)^n •) 
n=\ 

Let E{T) be a topological vector space. 

DEFINITION 1.3.3. A subset D of E is called bounded if for each 

0-neighborhood U in E, there exists X ^Msuch that D^ XU. 

For example, in a normed vector space (£",(•,)), the sets 5(0, 1) 

and 5(0,1) are bounded sets. The following notions are also useful. We say 

that a subset DiCzE absorbs a subset D2C1E if there exists A^) e M such that 

D^ e AD^ whenever \A\ > |/?o|. A subset D d E is called radial (absorbing), 
if D absorbs every finite subset of ^. A subset D cz E is circled if AD ^ D, 
whenever |/l| < 1. If A c: £ the circled hull of A is the intersection of all 
circled subsets ofE containing^. 

DEFINITION 1.3.4. We say that a subset D of E is convex ifxeD and 
y e D imply that Ax + {\-X)yeD for all scalars satisfying 0 < A<\. 

It is known that the sets 

{Ax + {l-A)y:0<A<\] and {Ax + {l-A)y:0<A<\} 

are called the closed and open line segments. It is easy to show that 
convexity of a subset D czE is preserved under translation, i.e., D is convex 
if and only ifxo + D is convex for every Xo e E. If A, B are convex subsets 
of the space E, then int[A),A,A + B and AA(^AeR) are convex. 

The union of two convex sets generally is not a convex set, but the 
intersection of any family of convex sets is a convex set. 
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Let ^ be a subset of the space E. The convex hull of J , denoted by 
conv(A% is the intersection of all convex sets containing the set ^ . It is 
known that 

C n n 

conv{^A) = <s ^^jX.: /I. >0, ^ / l^ = 1 and neN 

DEFINITION 1.3.5. If D a E is any radial subset, the non-negative real 
function on E 

^~^ PD (^) = inf {A > 0: ;c G AD] 
is called the gauge, or Minkowski functional ofD. 

A semi-norm on E is the gauge of a radial, circled and convex 
subset of E. The analytical description of semi-norms is given by the 
following definition. 

DEFINITION 1.3.6. A real-valued function p on E is a semi-norm if and 
only if 

(1) p{x + y)<p{x) + p{y) for any x,y e E, 

(2) p{^?ix) = \X\p{x) for any XeM and xeE . 

Obviously if/? is a semi-norm on E then p{Qi) = 0 and/7(x) > 0 for any x e E. 
If D d E is Si radial, convex, circled set, then the semi-norm p on E is the 
gauge of D if and only if DQ ^ D a, Di where D^ =\^xeE:p[x)<\], 

Z)j =\^XGE : P{X) < l} . It is known also that ifp is a semi-norm on E, then 

p is continuous at 0 G £" if and only if D^ - \^x e E: p(^x) < l | is open in E , 

and also, if and only ifp is uniformly continuous on E. The following two 
notions are also useful in this book. 

Let E(T) be a topological vector space. A subset DofEis said to be 
star-shaped if there is at least one Xo e D such that (l-A)xQ+AxeD for 

all X G £) and 0 < /I < 1 .The point XQ e D is said to be the star centre of D. 
Every convex set is star shaped but not conversely. 

A subset D of E is called contractible if there is a continuous 
mapping / ? :Dx[0 , l ] ^D such that h[x,0) = x for R\\ x e D and 

h[x,l) = XQ for some XQ G D. Every star shaped SQt D cz E is contractible 
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since the mapping h(jc,t^^tx^ + (l -^)jc, (JC,t)eDx[O,l] where XQ is the 

star centre ofD. 

Locally convex spaces 

A topological vector space E over M will be called locally convex if 

it is a Hausdorff space such that every neighborhood of any x e E contains a 
convex neighborhood of x. We can show that £ is a locally convex 
topological vector space if the convex neighborhoods of 0 form a base at 0 
with intersection {0}. 

Analytically, a locally convex topology on E is determined by an 
arbitrary family |/?^} of semi-norms as follows: for each a e Jl, let 

U^ =\^xeE:p^[x)<l| and consider the family ^ — ̂ k where n e Nand 

U ranges over all finite intersections of sets Uda e Jf). This family V 

satisfies the conditions indicated above and hence is a base at 0 for a locally 

convex topology r on E, called the topology generated by the family 

{Poc]a^ ; equivalently, [Pa]^^ is said to be a generating family of semi-

norms for T. We denote a locally convex space by E{r) or (£'(r),{/?^}^^ j . 

Conversely every locally convex topology on E is generated by a 
suitable family of semi-norms; it suffices to take the gauge functions of a 
family of convex, circled 0-neighborhoods whose positive multiples form a 
subbase at 0. Obviously, every member of a generating family of semi-
norms is continuous for r. 

We note that, we can prove that r is Hausdorff if and only if for each x e E, 
x^O and each family (P of semi-norms generating r, there exists/? e (P such 
that p(x) > 0. Any Banach space is a locally convex vector space, but the 
converse is not true. There exist topological vector spaces that are not 
locally convex spaces. The general topological vector spaces are not very 
much used in mathematical modeling of practical problems, but the notion 
of topological vector space is a fundamental notion in mathematics. 
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1.4 Compactness and compact operators 

Let {X,T) be a topological space. We say that a family {[/.}.^^of open 

subsets of X is an open cover o fXi f X = [}U, . Let {C/,},̂ ^ be an open 

cover of the space X. A collection {vA , is said to be an open subcover of 

{ /̂};e/ if {'^,:7ey}(z{t/. : /G/},(thatis, each F̂  is a [7, and { F . } ^ ^ , is 

itself an open cover of X 

DEFINITION 1.4.1. A topological space {X,T) is said to be compact if 

given any open cover {U^].^^, ofX, there is a finite subcover of {U^].^^. 

Let (X, r) be a topological space and A (z X a non-empty subset. 

An open cover of A is a collection {U^].^^ of open subsets of X such that 

Aczl^U.. Equivalently, {U^].^^ is an open cover of v4 if | i [ / .p |^ | is an 

open cover of the subspace A. We say that ^ is a compact subset of X if 
every open cover of A has a finite subcover. Equivalently, ^ is a compact 
subset if the topological subspace {A,T^) is compact, where TA is the 

topology on A induced by the topology r. The following theorem is a 
classical result. 

THEOREM 1.4.1. Let (X,r) be a topological space. The following 

statements are equivalent: 
(1) (X, r) is a compact topological space, 

(2) for any family {^}.̂ ^ of closed subsets of X such that the 

intersection of any finite number of the Fi is non-empty we have that 

iel 

(3) every net in X has a subnet convergent to an element ofX. 

If ^ is a subset of topological space (X , r ) , we say that A is relatively 

compact in X, if A is compact. Suppose we are given two topological 
spaces (XpZ-J and (^X^.r^). 
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DEFINITION 1.4.2. We say that a mapping f\ X\ -> X2 is compact with 

respect to a non-empty subset A ofX\ if / ( ^ ) is compact in Xj (i.e., ifJ{A) 

is relatively compact in X^). 

Remark. For nonlinear mappings (when X\, X2 are Banach spaces) the 
continuity is not a consequence of compactness. This is true only for linear 
mappings. 

Let (£'j,||||J and (£'2,||||2) be two Banach spaces. Let T: E\ -> E2 

be a mapping (linear or nonlinear). 

DEFINITION 1.4.3. We say that T is completely continuous if and only if 
the following two properties are satisfied: 

(1) T is a continuous mapping, 
(2) for any bounded subset A in E\, the set T{A) is relatively compact in 

E2. 

Remark. If T is linear then, in this case property (2) implies property (1), 
but for nonlinear operators this implication is not true. 

Compactness and complete continuity are two fundamental notions 
in topology and in functional analysis (linear and nonlinear). Complete 
continuity will be very much used in this book. 

DEFINITION 1.4.4. We say that a mapping f \ E\ -> E\ is a completely 
continuous field if and only if there is a completely continuous operator 
T\ E\ —> El such that f has the representation f{x) = x-T{x), for any 
xe E\ (or shortly, f = 1 -T, where I: E\ ^> E\ is the identity mapping). 

The notion of a completely continuous field is related to the notion of 
Leray-Schauder degree. 

1.5 Measures of noncompactness and condensing 
operators 

In this section we consider the basic notions connected with measures 
of noncompactness and condensing mappings. We give on this subject only 
the elementary properties necessary in this book. 
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The first notion of "measure of noncompactness'' was introduced 
by K. Kuratowski in 1930, (Kuratowski, K. [1]). The theory of measures of 
noncompactness and of condensing operators received a new impetus after 
the work of G. Darbo (Darbo, G. [1]). Now, there exist some expository 
articles and books on this subject [(Sadovskii, B. N., [1]), (Danes, J., [1]), 
(Banas, J. and Goebel, K., [1]), (Akhmerov, R. R., Kamenskii, M. I., 
Potapov, A. S., Rodkina, A. E. and Sadovskii, B. N., [1]). 

We give the notions of noncompactness in a general Banach space. 

Let (£^,||||) be a Banach space and let Q be a subset of £". Let ^ be a non­

empty subset of £". We recall that by diameter of A, (denoted by diam(J)) 

one means the number sup|||jc - j ; | | : x, j ; e ^ | . We use B = B(0, 1) to denote 

the open unity ball in E. 

DEFINITION 1.5.1. The Kuratowski measure of noncompactness a(Q) of 
the set Q is the number inf{d > 0 : Q admits a finite covering of sets of 
diameter smaller than d). 

We say that a set £) c: £" is an s-net of Q if 

a(zD + £B = [x + sb:x^D,b^B], 

DEFINITION 1.5.2. The Hausdorff measure of noncompactness ^O) of 
the set Q is the number inf j ^ * > 0: Q has a finite s - net in £"}. 

Now, we indicate some of the properties of the Kuratowski and 
Hausdorff measures of noncompactness (denoted below by ̂ //). 

Property 1 (Regularity). ^ Q ) = 0 if and only if Q is compact. 

Property 2 (Nonsingularity). xj/is equal to zero on every one-element set. 

Property 3 (Monotonicity). Qi a Q2 implies ^Qi ) < ^02)-

Property 4 (Semi-additivity). y/(rii \]VL^-max|^^(Qj),^(Q2)} • 
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Property 5 (Lipschitzianity). | ^ / / ( Q J ) - ^ ( Q 2 ) | <I^p(Qi,Q2)? ^here 

L^-\,L^=2 and p denotes the Hausdorff semi-metric, i.e., 

p{Q.^,Q.^) = 'mf[£>Q:Q.^ ^sBz^Q^ andQ^ +^BIDQA . 

Property 6 (Continuity). For any Q a E and any s> 0 there is a S> 0 

such that | ^ ( Q ) - ^(f^i )| < ̂  for all Qi satisfying p{Q, Q^)<s. 

Property 7 (Semi-homogeneity). ^ ( A Q ) = |/1|^//(Q) for any real number 

1 

Property 8 (Algebraic Semi-additivity). y/{0.^ + Q^) <i//[Q.^) + (//[Q^] • 

Property 9 (Invariance under Translations). i//{Q + x^) = y/{Q) for any 

XQE E. 

The following properties are important but the proof of each 
requires some technicalities. 

THEOREM 1.5.1. The Kuratowski and Hausdorff measures of 
noncompactness are invariant under passage to the closure and to the 

convex hull, i.e., ii/{Q) = y/{Q\ = y/{^conv{Q^. 

COROLLARY 1.5.2. We have the following useful formula: 
( \ 

\^o<>i<;io j 
a 

Proof. This formula is a consequence of properties (1), (3), (4) of Theorem 

1.5.1 and of the fact that | J ;IQCZCO«V(AOQU{0}). D 
o<A<;jo 

THEOREM 1.5.3. Let B = 5(0, 1) be the unit ball in E. Then 

a{B) = ziB) = 0 / / d i m ( £ ) < o o and a{B) = 2,z{B) = l if E is an 

infinite dimensional Banach space. 
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THEOREM 1.5.4. The Kuratowski and Hausdorff measures of 
noncompactness are related by the inequalities x{^ <a{p) < 2;(f ( Q ) . 

Now, we give the definition and some properties of condensing 
operators. A condensing operator is a mapping under which the image of 
any set is in a certain sense "more compact" than the set itself The degree 
of noncompactness of a set is estimated by a measure of noncompactness. 
Contractive maps and the completely continuous maps are condensing. 

Let f£^,|||j,(£'2,||J2 jand(J?3,||-|M be Banach spaces. Suppose we 

are given on each space a measure of noncompactness denoted respectively 

by //i, //2, //3. We denote by (B^ the bounded sets in Ei (i = 1, 2, 3). 

DEFINITION 1.5.3. We say that a mapping/, E\ -^ E2 satisfies the Darbo 
condition with a constant k > 0, with respect to the measures of 
noncompactness jU], jU2 if for any D G (B^ we have f{D) e (B^ and 

ju,{f{D))<kM,{D) 

Remark. We note that if/ satisfies the Darbo condition with a constant k, 
we say also that/is a k-set Lipschitz mapping. 

If 0 < A: < 1 and/satisfies the Darbo condition with the constant k, 
then in this case we say that/is a k-set contraction. If/satisfies the Darbo 

condition, the smallest constant k such that lu^ (^f(^Dyj<kju^ (£)) will be 

denoted by k(^ju^^ju^.f). In the case E\ = E2 and ju^ = ju^ = ju, WQ shall 

write k(jUy f), instead of k [ju^ .ju^.f). 

The following propositions describe the basic properties of mapping 
satisfying the Darbo property. 

PROPOSITION 1.5.5. Iff'.E^-^ E2 and g : E2 ̂  E3 satisfy the Darbo 
condition with respect to {ju\, JU2) and (//2, ju^) respectively, then we have 
k{ju,,iu,,gof)<k{]u,,/u^j)'k{iu^,lu^,g). 
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PROPOSITION 1.5.6. Iffxji : Ex -^ £2 satisfy the Darbo condition, then 
f = /lyj +{\- X)f^, with 0 < A < 1 also satisfy the Darbo condition and we 

have k{iu,,iu^j)<Xk{^,iu^J,) + {\-X)k{ju,,ju^J^), 

PROPOSITION 1.5.7. Iff, g\ Ei ^^ E2 and IU2 is semi-homogeneous and 
semi-additive, then we have 

and for any A e M, also we have the formula, 
k{/^,ju^,Xf) = \X\k{iLi,,^^j). 

Let (£j,|||n,(£'2 9|H|) ^^ Banach spaces. Suppose that on E\ (resp. 

on £"2) is defined a measure of noncompactness iu\ (resp. jUi), with values in 
some partially ordered set (g, <). 

DEFINITION 1.5.4. A continuous mapping f \ E\ ^>' E2 is said to be 

(MU jU2ycondensing if Cl cz E\ and //2 [ / ( Q ) ] >/f ( Q ) imply that Q is 

relatively compact. 

Remarks. 
1. In Definition 1.5.4 we can have / : D{f) -^ E2, where D{f) a E\ is the 

domain of definition of/and Dif) is such that D{f) ^ E\,\n this case we 
must take Q c D(f). 

2. The mapping/is said also to be (//i, iU2)-condensing in the proper sense 

if ju^ [ / ( n ) ] < //i ( Q ) for any Q ci D(f) with the property that Q is 

not compact. We note that in a partially ordered set {Q, <) the strict 
inequality a< P means a < (3 and a^ p,\f the set Q is totally ordered 
by the ordering "<", then in this case the two notions of condensing 
mapping coincide. Obviously, a completely continuous mapping and a 
contractive mapping, both are condensing with respect to the 
Kuratowski measure of noncompactness and any continuous and 
compact mapping is also condensing with respect to the Hausdorff 
measure of noncompactness. 

Suppose that {Q, <) is an ordered convex cone in a Banach space. 
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DEFINITION 1.5.5. A continuous mapping/\ D(f) aEx^y E2 is said to be 

{k, juu iU2)-bounded if ju^ [ / ( Q ) ] < A : / / J ( Q ) for any set Q e D{f), (We 

suppose 0 < k.) 

When we have Ei= £2 = E and jui= jU2 = JUWQ say that/ is (k, ju)-
bounded. In the case 0 < k < I, (k, //)-bounded means, ju-condensing with 
constant k. We indicate the following elementary properties of condensing 
mappings. We suppose again that (Q, <) is an ordered convex cone in a 
Banach space. 

PROPOSITION 1.5.8. If the measure of noncompactness jUx is regular, 
then any (k, jUu jU2)-boundedoperator with 0 < k< 1 is (jUu jU2ycondensing 
in the proper sense. 

PROPOSITION 1.5.9. The composition fof^ of a {kx, JU\'> Miybounded 

mapping fx and a {k2, //2, ju^ybounded mapping is a (kx ^2, Mu ju^ybounded 
mapping. 

PROPOSITION 1.5.10. If the measure of noncompactness ^2 is monotone 
and algebraically semi-additive, then the sum f + / of a {kx, jUx, //i)-
boundedfx and a (̂ 2, Mu /H2yboundedf2 {where fx,f2: Ex -^ E2) is a {kx + ̂ 2,? 
Mu IU2ybounded operator. 

PROPOSITION 1.5.11. Iff is a {jUx, IU2)-condensing mapping andf is a 
(//2? lu^)-condensing mapping that maps relatively compact sets into 
relatively compact sets, jUx and //2 are regular measures of noncompactness 
and Q = R^, then the composition f2^fx ^s a {jUx, ju^)-condensing 
mapping. 

1.6 Topological degrees 

A fundamental mathematical tool in nonlinear analysis is the notion 
of topological degree, because one of the most important tasks in 
mathematical analysis is to compute the number of solutions x* G Q of an 
equation / ( x ) = y^, where Q is a subset of some vector space E, >̂o is an 
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element of a range space F and f: E -^ F is a mapping. We denote this 

number of solutions by A ^ ( / , Q , > ^ Q ) . We consider the following 

elementary example. 

Let E be the real field M and E = F. Let Q = ]a, b[ where a , 
b e M and a < b and f(^x) = a^x" + â ,x"~^ + • • • + a^_^x + a^, a polynomial 

function with real coefficients defined on the real field M . In this case by 
the classical theorem of Sturm, we have a procedure to calculate the number 
7 V ( / , Q , J ; Q ) , for any y^ e M. For a general situation, the estimation of 

A/^ ( / ,Q ,7Q) is a hard problem. We remark that the number A^(/,Q,>^o) 

may not be continuous in dependence onyo o r / The number A^(/ ,Q,>^Q) 

suggested the idea to introduce a numerical indicator of the existence of 

solutions of an equation f{x) = y^ in a given set Q. 

L. E. J. Brouwer introduced this indicator, named "topological 
degree'' in 1912 and M. Nagumo gave the analytic viewpoint on this notion 
in 1951. We note that topological degrees have developed as a means of 
examining the solution set of the equation / (x) = y^ in the sense of 

obtaining information on the existence of solutions, their number and their 
nature, when/is a member of some special classes of mappings (continuous 
fields or functions in M", completely continuous fields or functions 
satisfying condition [S)^ in Banach spaces). Now the theory of topological 

degree is used in the study of both ordinary and partial differential equations 
and in that of more general functional equations. For this book we need to 
recall Brouwer's topological degree, Leray-Schauder's degree and the 
topological degree defined by L V. Skrypnik. 

L Degree theory in finite dimensional space (Brouwer's topological 
degree) 

Let M" = |x = (x ,̂X2 9---'̂ n)* ^i ^^9 /=,2,...,/?| be the /^-dimensional 

Euclidean space. Let Qcz M" be a bounded, open non-empty subset and yo 

Si point of M". We denote by Q the closure of Q and by (XI its boundary. 

Let C (f^) be the linear space of continuous functions from Q into M" 
with the norm 

| / | | = sup | / (x) | . 
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where |-| is the norm |x| = max||x.|: / = 1,2,...,«| which is equivalent to the 

Euclidean norm. 

If f\x) is the derivative of the function/at the point x, we denote 

by J/^x) the Jacobian determinant o f / a t x, i.e., J^ (x) = d e t / ' ( x ) . The 

vector space C^ ^ ) is the space defined as follows:/ G Ck ^ ) if/ e C( ̂  ) 

and there is an extension / of/defined on an open set U(f) containing Q 

such that / has continuous first order partial derivatives in U(J). The norm 

on c k ^ ) i s 

| | / |L=sup| / (x) | + sup 
x&Q. x^Q. 
\<i<n \<i,j<n 

dxj ^ ] 

L e t / e C^(^) be an arbitrary mapping. We say that x^ eQ is a critical 

point of/if J^ (JCQ) = 0. In this casQ,J{xo) is a critical value off. We define 

S^=S^{Q) = {x,en: J^{x,) = 0}. It is known that //„ (/(5'^)) = 0, 

where //„ denotes the w-dimensional Lebesgue measure and if >̂o i flSyV 

then / ' (>'Q ) is a finite set. 

DEFINITION 1.6.1. Let Q cz M" be an open boundedset,fe c\0) and 

y^ e M" \ f (dQu Sj.). Then we define the (Brouwer 's) degree off at y^ 

relative to Qto be d(/,Q^y^), where 

d{f.O.,y^)= Y. signJ^{x). 

Remarks. 
(1) ^(/^Q^j^o) is an integer number, i.e., (i(/,Q,jVo)G Z . 

(2) The condition y^^ f {dQ) is essential; it cannot be removed. 

(3) Often the degree defined by Definition 1.6.1 is also called the 
topological degree. 

(4) From Definition 1.6.1 we have that J(/,Q,3;o) = l, if y^^O^ and 

(i (/, Q, 7Q ) = 0, if >̂Q ^ Q, where / denotes the identity mapping. 



22 Leray-Schauder Type Alternatives 

f ( / , Q, j ; ) : Q e #"" open and bounded, 1 
If CD, = < _ k then it is known 

[ / : Q ^ #" continuous andy^M'\f {pQ)\ 
that there exists only one function J : ®, -^ Z (where Z is the set of integer 
numbers), satisfying the following properties: 

i) J(/,Q,>;o) = l,foranyj;oG Q, 

ii) d{f,0.,y^)^d[f,^,,y^)^d{f,Q.^,y^) where Qi A are 

disjoint open subsets of Q such that y^f\p.\ (Qj uQ2)) ? 

iii) d{h{t,^,Q.,y{t^ is independent of / G [0, 1] whenever 

/z: [0,1] X Q ^> JS'" is continuous, y: [O, l] -> ^'^ is continuous and 

y{t)€h{t,d^ foralUe [0, 1]. 

It is known that this unique function d, satisfying conditions (i) - (iii) is 
exactly the topological degree if we extend Definition 1.6.1 from functions 
of class C ^ to continuous functions. Denote by p the induced distance by the 
norm || considered on W . If ̂  ^ W is a non-empty subset, we denote by 
piy, A) the distance from a point J'G W \A to the setv4. 

DEFINITION 1.6.2. Let / G C ( Q ) he an arbitrary function and 

y^^f ( 9 Q ) . Define the degree d ( / , Q, y^) to be the degree d (g, Q, Jo)» 

where g is any function C ^^) satisfying the inequality 

\f{x)~g{x)\<p(y„f{da)). (1.6.1) 

Remark. In Definition 1.6.2 the integer number di^g^Vl^y^^ is the same 

for all g e C^ ( Q J satisfying inequality (1.6.1). We note also that in the 

definition of the degree (i(g,Q,jVQ), for g^C\^ satisfying inequality 

(1.6.1) it is sufficient to have that yQ^g{dQ) and not that 

y,^M^\g{davjS^), 

Properties of topological degree in M"" 

We recall only some fundamental properties necessary in this book. 
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Property 1 [Existence]. Let / e c ( ^ ) be an arbitrary function. If 

d ( / , Q, y^) is defined and non-zero, then the equation f{x) = ĵ o has a 

solution in Q. 

Property 2 [Rouche's Theorem]. Suppose that f g ^ ^ ( ^ ) ^^^ 

y^ if{dQ).If\f-g\<p(y,j{dQ)), then d{g,Q.,y,) is defined and 

d{g,a,y,) =d{f,Q,y,). 

Property 3 [Homotopy Invariance]. If H{t, x) = h^ (JC) is a homotopy and 

7 Q ^ / / ^ ( 9 Q ) for any t € [0, 1], then d[h^,Q,yQ) is independent of 

t G [0, 1]. 

Property 4 [Poincare-Bohl]. If f.geci^) and for all x E 9 Q the line 

segment [ / ( x ) , g ( x ) ] does not contain yo, then d[f,Q,yQ) = 

d{g.^.yo)' 

Property 5 [Domain Decomposition]. Suppose that f G C ( ^ ) and 

y^ ^ / ( 5 Q ) . IfQ is the disjoint union of open sets Q/ (i = 1, 2, ....), then 

d{f,Q,y,) = Y,d{f,Q.,y^). {Note that for any yo ^ / a Q ) , the 
i 

summation is finite). 

Property 6 [Excision]. If f e ci^), Jo ^ / ( ^ ^ ) ^^^ Ĵo ̂  / ( ^ o ) ' ^here 

QQ c Q is closed, then d ( / , Q, j^^) = J ( / , Q \ Q^, >̂Q ) . 

Property 7 [Boundary Value Dependence]. If f^geci^)-, 

y^€f{dQ) and f = g on ^Q, then d{f,Q,y,) = d{g,Q,yQ). 

Property 8. (^(/,Q,-) is constant on connected components of 

M"\f{dQ). 
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II. Leray-Schauder degree 

By the Leray-Schauder degree we extend to the infinite dimensional case 
the topological degree presented in the previous section in M"". 

Let (^,||D be a Banach space, Q an open bounded subset of £ and 

y^ an arbitrary element in E. Our aim, in this section is to define for a 

suitable class of mappings / : Q -> £ , an integer d{f, Q, y^) which satisfies 

the most important properties of the topological degree defined in W . 
It is known that, it is impossible to define a topological degree d{f, Q, y^) for 
any continuous mapping in an arbitrary Banach space. Therefore, in an 
infinite dimensional Banach space it is necessary to impose some 

restrictions to the mapping / : Q —> £ , before defining a topological degree 

for/with respect to the set Q and the element jv'o ̂  E. 

Let D be a bounded subset in E and T : E -> E a, completely 

continuous mapping. In this case T[D) is a compact set. 

A classical result says that, for any 8 > 0, there is a continuous mapping 
T^',D-^ E whose range TJJJ) is finite dimensional such that 

T[X)-T^ (x)j<s,foranyx e D. 

Let/ : £•->£" be a completely continuous field of the form/= / - T, 

where T is a completely continuous mapping. In this case T- : Q -^ £ is a 

compact mapping. Having found a mapping T^ (for some 6: > 0) which 
approximates the mapping T and which has finite dimensional range, we 
will use the mapping T^ to define d(f, Q, y^) using the degree of / - T^ 
relative to an appropriate finite dimensional subset of Q. We have the 
following definition. 

DEFINITION 1.6.3. Let Q be an open bounded subset ofE andf^ I -T a 

mapping such that T :Q-> E is continuous and TIQ\ is compact. Suppose 

that yQeE\f(^dQ). Consider the mapping f=I-Z, where T, is a 

continuous mapping defined on Q with finite dimensional range such that 

T(jc) - r , (x) < piy^.f {dQ)), [jc G QJ. Consider a finite dimensional 
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vector subspace Ef in E containing TAQ\ andyo. Let Q^ =QnEy. Then 

define 

d{f,n,y,):=d(f,Q^,y,). 

Remark. In the theory of topological degree it is proved that Definition 
1.6.3 is correct and all are well defined. The integer number d(f, Q, yo) 
defined by Definition 1.6.3 is known by the name of "Leray-Schauder 
degree''. Therefore the Leray-Schauder degree is defined for any 
completely continuous field f = I-T:E-^E with respect to any open 

bounded subset QczEand any y^ eE\f (9Q) . 

Properties of the Leray-Schauder degree 

Let (£",111) be a Banach space and Q c £" an open bounded subset. 

Denote by ^ ( Q j the set of compact mappings from Q into E and define 

K,i^a) = if:f = I-T,TGKiJl)Y First, we remark that from the 

definition of Leray-Schauder degree we have the following elementary 
result. 

Lfyo G Q, then d(f, Q, yo) = 1 and ifyo € Q, then d(f, Q, 3̂ 0) =" 0. 

Property 1 [Existence]. If f EKJO) and d(f Q, yo) ^ 0, then there is 

Xo e Q such thatfxo) =yo' 

Property 2 [Rouche's Theorem]. Suppose f^geKAOA and 

y,^f{dQL). If \f{x)-g{x)\<p[y,j{d^)), for all x e Q, then 

y^^g{dn) and d{f,Q,y,) = d{g,Q,y,). 

Suppose that h maps the interval [0, 1] into ^ ( Q j . We say that // is a 

homotopy of compact transformation on Q if, given s> 0 and a (bounded) 
subset A of Q, there is S = S(^s,A^>0 such that 

[/2(^))(x)-(/^(5))(x) <6:, for any X G A and/, 5 with \t-s\ <5 . 
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Property 3 [Homotopy Invariance]. Let Q be a bounded open subset ofE 

and let h{t) be a homotopy of compact transformations on Q such that if 

f=I-h{t), then y,^f{dQL), ( 0 < / < l ) . Then d{f,n,y,) is 

independent of t e [0, 1]. 

Property 4 [Poincare-Bohl]. Let Q be a bounded open subset of E. 

Suppose given f, f in K^ (Qj and consider f = (l - / ) / ^-tf^for any 

t e [0, 1]. If y,^f{dQ) for any t e [0, 1], then d{f,Q,y,) is 

independent oft. 

Property 5 [Domain Decomposition]. Suppose f G KAQ\ and 

y^ ^ / ( 9 Q ) . LfQ is the disjoint union of open sets Q̂  (/ = 1, 2, ...) then 

d{f,Q,y,) = '£d{f,n„y,). 
i 

Property 6 [Excision]. Supposef e K^ (Qj and y^ ^ / ( 5 Q ) . LfQ.^ cz Q 

is closed and y^ ^ / ( Q J , then d{f,a,y^)--d{f,Q.\n^,y^). 

Property 7 [Boundary Value Dependence]. Suppose that f g e KAQA 

andf=gon(9Q, Then d{f,n,y^) = d{f,0.,y^). 

Property 8. Suppose f e KAQ\ . Then J(/ ,Q,>'o) is the same for all y^ 

in the same connected component ofE \f(dQ). 

Remark. We conclude that the properties (l)-(8) of Brouwer's degree are 

valid also for the Leray-Schauder degree, but replacing the continuous 
mapping by completely continuous fields. 

Ill Skrypnik degree 

Let (^,||||) be a real reflexive Banach space and Q cz E a bounded 

open set. We say that a mapping f: Q ^> E* is demicontinuous if for any 

sequence {̂ „}̂ ^̂  e Q, strongly convergent tox^ e Q.,we have that 
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l i m ( / ( x J , v ) = {/(xo),v},/ora«j;vG£. 

(We denote by (•, •) the natural duality between E and its topological dual 

DEFINITION 1.6.4. IfDcz Q is a subset, then we say that the mapping/is 

of class (5*)̂  with respect to D if for any sequence {^n]n^N ^^ weakly 

convergent to XQ, (XQ G D) and lim sup ( / (^„), -̂ ^ - JCQ ) < 0 we have that 

[x^ l̂eAT ^^ norm convergent to XQ. 

For more information about mappings satisfying condition (^S) the 

reader is referred to (F. E. Browder [1]), (I. V. Skrypnik, [1], [2]) and (G. 
Isac and M. S. Gawda [1]). 

We denote by T(E) the set of sdl finite-dimensional subspaces F of 
E such that Q n F ^ (j). Let F e T{E) and let u^,u^,,..,u^ be a basis in F. 
We define the finite-dimensional mapping 

m 

/ F W ' ^ Z K / W ' ^ / K ' / ^ ^ - ^ ^ ^ F ' w h e r e Q^ = Q n F . 

The topological degree defined by I. V. Skrypnik is a topological degree for 
mappings satisfying condition i^S)^. The definition of this topological 

degree is based on the following result proved in (I. V. Skrypnik [1], [2]). 

THEOREM 1.6.1. Letf\ Q -^ E be a demicontinuous mapping satisfying 
condition (^S)^ with respect to dQ andf{x) ^ 0 for x e 9Q. Then there exists 

a subspace F^e^i^E) such that any subspace F e ^E) with FQ ^ F 

satisfies the following properties: 
(i) the equation ff(x) = 0 has no solution belonging to dQp, 

(ii) deg(/^,,Q^,0) = degf/^ ,Q^ ,Oj, where deg is the Brouwer 

degree of the finite-dimensional mapping. 
Now we can give the following definition. 
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DEFINITION 1.6.5. Under the condition of Theorem 1.6.1, the number 

deg(/ ,Q,0):=deg(/^ ,Q^ ,0) is called the degree (Skrypnik degree) of 

the mapping f on the set Q with respect to the point 0 e E . 

Remark. In Definition 1.6.5, fp-,, Qf are defined as above and FQ is the 
finite-dimensional subspace of £ determined by Theorem 1.6.1. 

The degree defined by Definition 1.6.5 can be extended also to 
pseudomonotone (in Brezis's sense) mappings (I. V. Skrypnik [2]). 

Therefore on a Hilbert space (// ,(• ,)) , for each mapping / of class (5*)̂  

defined on Q (where Q cz 7/ is a bounded open set, without zero on its 
boundary 9Q) there is defined an integer deg(^ Q, 0), named the Skrypnik 
degree, which has the usual properties of the Brouwer and Leray-Schauder 
degree. More precisely, deg(/, Q, 0) has the following properties: 

Property 1 [Kronecker]. deg ( / , Q, O) = 1, // 0 G Q. 

Property 2. If Q = Qj u Q2 and f has no zero on the set 

dQ, u5Q2 u{Q^nQ^), then deg(/,Q,O) = deg(/ ,0^,0) + 

d e g ( / , Q „ 0 ) . 

Property 3. If f and f are homotopic on Q, then deg (/^, Q, O) = 

deg(yj,Q,0). In this property we say thatf andf are homotopic on O. if 

there exists a family of mappings / ( / l , - ) (0< / l< l ) of class (*S') , defined 

on Q and demicontinuous with respect to both variables such that 

/ ( 0 , - ) - / o , / ( I - ) - / andf{X,x)^Q{Q<X<\,xedn). 

Remark. In Property 3 the condition (̂ S) can be replaced by "to be a zero-

closed mapping" or to be a "quasi-monotone mapping''. 

We recall (see Carbone, A. and Zabreiko, P. P. [1], [2]) that a 
mapping h : H -^ H is zero-closed if the convergence in norm of 
{^(^«)} ^̂  ^^^^ implies that there exists a point x, G conv{x^] such that 

h[x^) = 0 holds. Also, we say that h: H -^ H is quasi-monotone if each 
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sequence {̂ „}„̂ ^ from //, which weakly converges to x*, satisfies the 

condition 

\m\\nflh{x\,x^ -jc*)>0. 

If/ satisfies condition (iS)^ then / is zero-closed and quasi-monotone, the 

converse is not true (see I. V. Skrypnik [2]; see also M. A. Krasnoselskii 
andP. P. Zabreiko[l]) 

Property 4. If f has no zero on the boundary dQ of Q and the degree 
d ( / , Q, O) is non-zero, then there exists at least one zero x* off in Q. 

For the proof of Properties 1-4 see I. V. Skrypnik [2]. 

1.7 Zero-epi mappings 

We present in this section the concept of zero-epi mapping. This notion was 
defined in 1980 in (Furi, M., Martelli, M. and Vignoli, A. [1]), and 

developed by the Italian School (Furi, M. and Pera, M. P. [l]-[3]), (Furi, 

M. and Vignoli, A. [1]), (Furi, M., Pera, M. P. and Vignoli, A. [1]), (Ize, J., 
Massabo, I., Pejsachowicz J., and Vignoli, A, [1]), Massabo, I., Nistri, P and 
Pera, M. P., [1]), (Pera, M. P. [l]-[3]). Applications to optimization and to 

complementarity theory are given in (Isac, G. [1], [19], [20]) and a 
generalization of the notion of zero-epi mapping to A:-set-contractions was 
presented in (Tarafdar, E. U. and Thompson, H. B. [1]). 

We find important, recent contributions to the development of the 
theory of zero-epi mappings in (Vath, M., [1] and in (Giorgieri, E. and Vath, 
M. [1]). We note that the notion of zero-epi mapping has some relations 
with the notion of essential compact vector field introduced in 1962 in 
(Granas, A. [1]). The notion of zero-epi mapping has been applied to the 
study of some problems related to differential equations and to some 
problems considered in nonlinear analysis. 

Some deep relations between the notion of zero-epi mapping and 
the notion of topological degree exist and are interesting. About this fact the 
reader is referred to (Vath, M. [1]) and (Giorgieri, E. and Vath, M. [1]). The 
notion of zero-epi mapping is based on homotopy theory, on Urysohn's 
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Lemma and on the Schauder Fixed Point Theorem, while the theory of 
topological degree is more complicated and is based on advanced calculus 
and on some special results of nonlinear analysis. For more results about the 
notion of zero-epi mapping the reader is also referred to (Hyers, D. H., Isac, 
G. andRassias,Th.M. [1]). 

Let (£^,||||) and (^,||||) be Banach spaces. First, we recall the 

following classical theorems. 

THEOREM 1.7.1. [Schauder]. If CI is a convex (not necessarily closed) 

subset of a Banach space (^E,\\'\^, then each continuous compact mapping 

f:Q-^Q has at least one fixed point, i.e., there exists at least an element 
X* G Q such that / (x*) = x*. 

Proof. For a proof of this result, the reader is referred to (Dugundji, J. and 
Granas, A. [1]). (See also Chapter 3 of this book). n 

We recall that a topological space (X, r) is normal if it is Hausdorff, and 

for all closed subsets A, B (z. Xsuch that AnB = (/^, there exist two open 

subsets U and V such that A a U, B a V and f/ n F = ^. It is known that 
every normed vector space is normal. 

THEOREM 1.7.2. [UrysohnJ. A Hausdorff topological space (X,r) is 
normal if and only if for every two closed subsets A and B such that 
AnB = (f>, there exists a continuous function h : X -> [0, I] such that 
h{x) = Ofor every x e A and h(x) = 1 ,for every x e B. 

Proof. A proof of this fundamental result of the general topology is given in 
(Bourbaki,N. [1]). n 

DEFINITION 1.7.1. Let Q cz E be a bounded subset and f:Q.-^F a 
continuous mapping. We say that f is zero-epi (shortly 0-epi) if and only if 
the following properties are satisfied: 

1. 0 ̂  / (SQ) (i.e., fis 0-admissible), 

2. for any continuous compact mapping h:Q.^> F, such that h(x) = 0 
for every jce dQ, the equation f{x) = h(x) has a solution in Q. 
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The notion of zero-epi mapping was defined for the first time in 
(Furi, M., MartelH, M and Vignoli, A. [1]) and studied by many authors. 
The fundamental properties of zero-epi mappings are similar to the 
properties of Brouwer's topological degree. 

Remark. If for an arbitrary element/? G F we have that p€ f (9Q) and the 

mapping/-/? defined by ( / -p){x) = f{x)-p is 0-epi, then in this case 

we say that f is p-epi, with respect to Q. 

Property 1 [Existence]. If f \Q.^> F is p-epi, then the equation j{x) = p 

has a solution in Q. 

Proof. The property is a consequence of the definition. n 

Property 2 [Normalization]. The inclusion i:Q-^ E (i.e., i(x) = xfor any 

X e Q) is p-epi if and only ifp e Q. 

Proof. If the inclusion /: Q -> £ is /?-epi, then by the existence property 
(Property 1) we have that/? e Q. Conversely, we suppose that/? e Q. It is 
sufficient to suppose that 0 G Q and to show that the inclusion /: Q -> £" is 
0-epi. Indeed, let /?:£ '->£' be a continuous and compact mapping such that 
h(x) = 0 for any x ^ Q. Since 0 G Q, the equation /(x) = //(x) has a 
solution in Q if and only if the mapping h : E -> E has a fixed point. But, 
since h(^E) is compact, applying Schauder's Fixed Point Theorem, 

(Theorem 1.7.1), we deduce that h has a fixed point and the proof is 
complete. n 

Property 3 [Localization]. If f :Q-^ F is 0-epi and Qj c Q is an open 

set such that / ~^ (0 )eQj , then the restriction of f to Qj, i.e., 

f— :Q^ -^ F is 0-epi. 

Proof. Because f~^ (O) e Qj and Q̂  n dQ^ = ̂ , we have that 0 ̂  / (9Qj) . 

Let h:Q\ ^' F be a continuous compact mapping such that h(x) = 0 for 

every x G 9QI . Let h* be the extension of/? to Q given by 
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We have that h* is a continuous and compact mapping. By assumption, the 

equation f{x) = h^{x) has a solutions* e Q. Since /"^ (0)c:Qj, we must 

have that x* e Qi, and the property is proved. n 

Property 4 [Homotopy]. Let f:Q-^F be a 0-epi mapping and let 

/?:Qx[0,l]^>F be a continuous and compact mapping such that 

h{x, 0) = 0 for any X e Q. If f (^x) + h[x,t) ^ 0 for all x e dCl and for any 

t e [0, 1], then the mapping / (•) + /z (•, l ) : Q -^ F is 0-epi. 

Proof. Consider a continuous compact mapping g : Q -> F such that 
g(x) = 0 for all X e dQ. The set 

D = Ix e Q.: f [x) + h[x,t) = g[x) for some t e [O,l]| is a closed set since 

[0, 1] is compact. By Urysohn's Theorem, there exists a continuous function 

^ : Q -> [O, l] such that i/X^x) = 1 for every xe D and i/4,x) = 0 for all x e 

dQ. Considering the equation 

f{x) = g{x)-h{x,y/{x)), (1.7.1) 

we have that the mapping h, :Q-^ F defined by 

h,{x) = g{x)-h[x,i//{x)) 

is continuous, compact and vanishes on 5Q, then, since / is 0-epi, there 
exists a solution x* of equation (1.7.1). We observe that x* e D and hence 
^ (x,) = 1. Obviously / (jc*) + /z (jc*, l) = g (x*) and the proof is complete. 

D 

Property 5 [Boundary Dependence].If f:Q-^F is 0-epiandg : Q -^ F 

is a continuous compact mapping such that g(x) = 0 for all x e 9Q, then 

f+g:Q -^F is 0-epi. 

Proof. This property is a consequence of Definition 1.7.1. D 

The notion of 0-epi mapping is obviously simpler than the notion of 
topological degree. We must put in evidence the fact that the notion of 0-epi 
mapping is more refined than the notion of topological degree, in the sense 
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that we may have a mapping that has the topological degree zero but it is 0-
epi. (See (Furi, M., Martelli, M. and Vignoli, A. [1]). 

There exist several results about the relation between topological 
degree and the property to be 0-epi. In this sense, we cite the following 
results. 

THEOREM 1.7.3. Let (£',||*ll) *^ ^ Banach space and Q ^ E an open 

bounded set. Let f:Q^^E be a continuous compact vector field (i.e., 

f=L-T, where T : Q -^ E is compact) such that p ^ J{dQ). If the Leray-

Schauder degree, deg ( / , Q, /?) ^ 0, then f isp-epi. 

Proof. For a proof of this result the reader is referred to (Furi, M., Martelli, 
M and Vignoli, A. [1]) or to (Hyers, D. H., Isac, G. and Rassias, Th. M.[l]). 

n 

Let (£^,||||) be a Banach space. We denote by /the Hausdorff or the 

Kuratowski measure of noncompactness. Recall that a non-empty bounded 

open set Q e £ is called a Jordan domain '\i E\ Q is connected. We say 

that f :Q-> E is countably k-condensing (on Q with respect to / ) if all 

countable sets Z) e Q with ;r(/(/)))>A^;r(/)) are precompact. 

THEOREM 1.7.4. If Q cz E is a Jordan domain and f:Q-^E is 

continuously countably — - condensing without fixed points on dQ, then 

h = I -fis 0-epi if and only if deg (//, Q) ^ 0. 

Proof. For a proof of this theorem and the definition of deg(//,Q) the 

reader is referred to (Vath, M. [1]). Other similar results are presented in 
(Vath, M. []]) and in (Giorgieri, E. and Vath, M. [1]). n 

The notion of 0-epi mapping was extended to functions defined on 
unbounded sets and in particular defined on a closed convex cone. (See the 
references cited in the introduction of this section or see (Hyers, D. H., Isac, 
G. and Rassias, Th. M.[l]). For this book, we need to present also the 
extension of the notion of 0-epi mapping to k-set contraction. The extension 
to A:-set contractions is due to (Tarafdar, E. U. and Thompson, H. B. [1]). 
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If (£,||D is a Banach space and Z) c £ is a bounded subset, then we 

recall that the measure of noncompactness in Kuratowski's sense of the set 
iDis 

\D can be covered by a finite number of sets) 

of diameter less than s J 

We presented in section 1.5 of this chapter the properties of the measure of 
noncompactness a. 

a{D) = mi\e>^ 

Let (£',||||) and (£,||||) be Banach spaces a n d / : E -^ F a, 

continuous mapping. Denoting by a on both spaces the measure of 
noncompactness we recall that / is called a k-set contraction, if for each 

bounded subset D cz E,V/Q have that a ( / (Z) ) ) < ka[D), where A: > 0. We 

know that the concept of zero-epi mapping is strongly based on Schauder's 
Fixed Point Theorem and on Urysohn's Theorem. We note that the concept 
of(p, A:)-epi mapping is based on Darbo's Fixed Point Theorem and also on 
Urysohn's Theorem. 

THEOREM 1.7.5 [Darbo]. If {E,\\'\\) is a Banach space and Q cz E is a 

closed bounded convex set, then any k-set contraction f:Q^>Q with k e 
[0, 1 [, has a fixed point in Q. 

Let (£,||D and (£,| |D be Banach spaces and Q cz E an open 

bounded subset ofE. Let/? G Fbe an element and k>0 a real number. 

DEFINITION 1.7.2. We say that a continuous mapping f: Q -^ F is 
{p,kyepi if: 

1. p^fdni 

2. for each k-set contraction h: Q ^> F with h(x) = 0 on 9Q we have 
that the equation fx)-p = h{x) has a solution in Q. 

Whenp = 0, we say that f is (0, k)-epi. 

The {p, A:)-epi mappings have the following fundamental properties: 

Property 1 [Existence]. Iff: Q -^ F is a (p, k)-epi mapping, then the 
equation fx) =p has a solution in Q. 
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Property 2 [Normalization]. The inclusion mapping i : Q -^ E (i.e., 
i(x) = X, for any x e Q) is (p,kyepi with k e [0, l[ if and only ifp e Q. 

Property 3 [Localization]. Iff: Q -^ F is a (0, k) -epi mapping and 

f~^ (O) is contained in an open set Qi e Q, then f restricted to Qi is also a 

(0, k)-epi mapping. 

Property 4 [Homotopy]. Let / : Q -^ F be a (0, kyepi mapping and 

/7 : [0 , l ]xQ-^F a 13-set contraction with Q<(3<k<\, such that 

/z(O^) = 0 for all X ^ Q. If f[x)-\- h[t,x)^0 for all xedQ and for all 

t e [O, l], then / (•) + /z (l, •): Q -> F is a (0, k-/J) -epi mapping. 

Property 5 [Boundary Dependence]. Let / : Q -^ F be a (0, k)-epi 

mapping and g : Q -> F a fi-set contraction with 0 < /? < A: < 1 and such 

that g{x) = Qfor all x G 5 Q . Thenf+ g : Q -^ F is (0, k - l3)-epi. 

The proofs of properties (l)-(5) of {p, A:)-epi mappings are similar to the 

proofs of/7-epi mappings, but with several technical details, specific to A:-set 
contractions. For the proofs of these properties, the reader is referred to 
(Tarafdar, E. U and Thompson, H. B. [1]) or (Hyers, D. H., Isac, G. and 
Rassias,Th.M. [1]). 

1.8 Convex cones 

We recall in this section several notions and results related to 
convex cones in topological vector spaces. Let E{T) be a real topological 
vector space. We suppose that E is endowed with an order structure defined 
by a reflexive, transitive and anti-symmetric binary relation, denoted by 
"<" and such that the following axioms are satisfied: 
0\)x<y impliesx + z<y + zfor allx, y, z e E, 
O2) x<y implies Ax < Ay, for allx, y e E and AeM^ ^{^} -

Obviously, the set E^ =\XGE\X>0] satisfies the following properties: 

ci) E_^+E^^E_^, 

C2) A.E^ c E^, for all AGM^, 
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C3)£ ,n ( -£ j = {0}. 

We say in this case that E+ is a pointed convex cone in E. Generally we 
suppose also that £+ is a closed set with respect to the topology r given on 
E. 

Now, we introduce the following notion. 

DEFINITION 1.8.1. We say that a non-empty subset K czE is a convex 
cone if the following assumptions are satisfied: 
ki) K + K<^K, 

k2) XKc^K, foranyX^R^, 
We say that the convex cone K <z.Eis pointed if K satisfies also the 

following assumption: 
k3) Kn{-K)^{{)]. 

Given a pointed convex cone K(z.E, we can define an order 
structure on^by, x<yoy-x^K . This ordering is compatible with the 
vectorial structure oiE. In a topological vector space, we will consider only 
closed, pointed convex cones. An ordered vector space will be denoted by 

(£',JK^) and an ordered topological vector space by {^E{r^,K^. In this 

book we will consider only closed pointed convex cones in a Hilbert space 

(7/, (•,•)) or in a Banach space (^, | | | ) . We recall also that an ordered 

vector space (£, K) is a vector lattice if and only if, for every pair {x, y) e 

E X E, the supremum (denoted hy xvy and the infimum (denoted by 

jc A 3;), with respect to the ordering "<" defined by K, exist in E. 

Let (£,||D be a Banach space and let E* be the topological dual of 

E. If (^','):ExE* ^M is a bilinear form satisfying the separation axioms, 

that is: 

Si) (XQ ,y) = 0 for ally e E* implies xo = 0, 

S2) {x,yo) = 0 for allx e E impliesyo = 0, 

then in this case we say that (£•,£*,(•,-)) is a dual system, or a duality 
between E and E . A dual system of Banach spaces will be denoted by 
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Let {E, Ej be a dual system of Banach spaces. If K aE is a 

pointed convex cone, we define the dual of K by: 

K* =\^yeE* : (x, j ) > 0 for any x e K^. 

The set K isa. closed convex cone. The polar of iS'is defined by 

K' ={yeE* :{x,y)<OforanyxeK], 

We have that K^ = -K* and using the Bipolar Theorem (Peressini, A. L. 

[1]), we can show that K** = ( ^ * ) = ^ (because we supposed that K is 

closed). The duality of cones is more interesting in Hilbert spaces than in 

Banach spaces, since the dual is in the same space. Indeed, let (^ , ( - , ) ) be 

a Hilbert space and K c:H a, closed pointed convex cone. In this case we 
have 

K' ={y e H:{x,y)>0 for any XeK} . 

The following result has some consequences for relations between M and 

THEOREM 1.8.1. If (//,<•,)) is an arbitrary Hilbert space and KciH is 

a closed pointed convex cone, such that K ^\Q^, then K r\K* ^ {0}. 

Proof. Consider an arbitrary element ueK\[Q]. Using a classical 

separation theorem (see Schaefer, H. H. [2]) for {-u} and K, (since 

-u ^ M) we obtain a continuous linear functional (p such that (p(-u) < -1 

and (p(x) > -1 for all x G K . The functional ^ :K ^ M defined by: 

^^{x) = ^^-(p{x),forallxeK 

is strictly convex weakly lower semicontinuous and coercive (i.e., 
lim ^ ( x ) = +oo). By a classical variational result, we obtain an element 

||jir||-^oo ^ "̂  

X* s K such that ^ (x*) = inf ^ (x), which implies 

— ^{x, + tx), >0, for allxeK , 

that is, 
{x^,x)>(p{x)>Q for allx^K and (x, ,w)>^(w)>0. 
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Therefore we havex* ^ 0 and x, eMnK\ n 

An immediate consequence of Theorem 1.8.1 is the fact that in a Hilbert 
space ( / / , (• , ) ) , given a closed pointed convex cone K <^H ,WQ can have 
one of the following interesting situations: 
(i) ^ e i S ^ * (J^ is sub-adjoint), 
(ii) K:DK* (K is super-adjoint), 
(iii) K=K* (K is self-adjoint). 

Remark. The general situation, i.e., K nK* ^K and K nK* ^K\ is 
also possible. 

A particular class of cones, in an arbitrary Banach space (£", ||-||), 

with many applications is the class of well-based cones. Suppose that 
K czE is a closed convex cone. Let B cz K bQ a, non-empty convex 
subset. We say that K is generated by B if 

K = [JAB = {x = Ab:ZeM^andbeB}. 

DEFINITION 1.8.2. We say that a non-empty convex subset B of K is a 
base for K if each element x G ^ \{0} has a unique representation of the 
form X = Xb, with Ji >0 and b e B. 

The following results are known. 

THEOREM 1.8.2. Let E(T) be a locally convex space and KczE a 
convex cone. A subset B <:z K is a base for K if and only if there is a 
strictly positive linear functional f on E (i.e. f^x) > Q for any x G ^ \ { 0 } ^ 

such that /~^ [\)nK = B. 

THEOREM 1.8.3 [Krein-Rutman]. In a separable Banach space every 

closed pointed convex cone has a base. 

Proof. A proof of this result is in (Krein, M. G. and Rutman, M. A. [1]). D 

Remark. Any closed convex cone, which has a base, is pointed. 
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Let E{r) be a locally convex space. 

DEFINITION 1.8.3. We say that a convex cone K czE is well based, if it 
has a bounded base B such that 0 ^ B . 

It is known that, if a pointed convex cone has a closed base B, then K is 
closed. 

The next theorem is a characterization of a well-based cone K hy a. 
topological property of its dual K*. 

THEOREM 1.8.4. Let E{f) be a locally convex space and KciE a 
pointed convex cone. The cone K is well based if and only if its dual 

K* has an interior point with respect to the strong topology j3yE*, Ej. 

Proof. The reader can see a proof of this result in [(Isac, G. [20]) or in 
(Jameson, G. [1])]. n 

The locally compact cones form a particular sub-class of the class 
of well-based cones. It is known that if £(r) is a locally convex space, then a 
pointed convex cone K czE is locally compact if and only if there exists a 
r-neighborhood [/of zero such that U nK isa compact set. 

THEOREM 1.8.5 [Klee]. Let E(T) be a locally convex space and M czE a 
pointed convex cone. The cone K is locally compact, if and only if it has a 
compact base. 

Proof. For a proof of this result the reader is referred to (G. Isac [20]). n 

Another particular class of convex cones in Banach spaces is the class of 
Bishop-Phelps cones. 

Let (£^,||D be a Banach space and let E* be its topological dual. 

Given 0 < ^ < 1 and / e E with \\f\\ = 1, we consider the set 

K{f,k) = {xeE:k\\x\\<f{x)]. 

We can show that K(^f,k) is a pointed convex cone with non­

empty interior. Moreover, K(^f,k) has a bounded base. The cone 

K ( / , k) is called the Bishop-Phelps cone. It is known that if 1 < k, then 
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K[f,k) = {0}. Finally, if (//,(•,•>) is a Hilbert space and {x„}^^^ is a 

complete orthogonal system, then in this case we know that any element 

X G H has a representation of the form x = ^(^x,x^)x^ . We can prove that 

the set K = \^xeH:[x,x^)>OforanyneN^ is a closed convex cone in 

M. The reader can find other examples of convex cones in the books (Isac, 
G. [20]), (Schaefer, H. H. [2]) and (Peressini, A. L. [1]) among others. 

1.9 Projection operators 

The projection operators play an important role in this book. The 
main results presented in Chapters 3-8 are based, in particulars, on 

projection operators. We will give some results on projections operators 
onto closed convex sets in Hilbert spaces, onto closed convex cones, onto 
arbitrary closed sets in Hilbert spaces and we will introduce the notion of 
generalized projection in Alber's sense. First, we recall the following result. 

Proposition 1.9.1. Let (^,||'ll) ^^ ^ Banach space and let E* be the dual of 

E. If {x„]^^^ is a sequence in E weakly convergent to an element XQ G E, 

then we have ||XQ || < lim inf \x^ ||. 

Proof. The sequence {^n\n^N ^^ bounded (because it is weakly convergent), 

(see (Brezis, H. [1], Proposition III.5). For any / G £*, the sequence 

{ ( / ' ^n)} is convergent to ( / , x^) (and in particular it is bounded). If/ is 

an arbitrary element in £"*, then we have: 

|(/,xJ|<||/||||xJ|,foranyA7G7V, 

and computing the lim inf we obtain 

|(/,x,)|<||/|limmf|K||. 
Considering (Brezis, H. [1], Corollary 1.4) we obtain 

||x„|| = sup| / ,Xo) |<| | / | liminf||x„||<liminf ||x„|l. 
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THEOREM 1.9.2. Let (£ ,̂||-||) be a reflexive Banach space and D a E a 

closed convex set. For every x e E, there exists an element XQ e D such that 

\x - 0̂II - Ij-̂  ~ y\ ^ f^^ ^^y y ^ D' Moreover, ifE is a Hilbert space, then the 

element Xo is unique. 

Proof. If XG D, then the element JCQ is x itself. Suppose that x e E \ D. 
Consider the continuous fiinction (S):D-^ M defined by 

^{y)^~\x-yf , for every yeD. 

We have -oo<a = inf 0 ( v ) . It is sufficient to show that there exists an 

element Xo e D such that 0 ( X Q ) = (2. Indeed, the definition of the greatest 

lower bound implies that for every n e N there exists Xn e D such that 

n 
^{x^)<a + 

The sequence {x„}^^^ is bounded, and because E is reflexive there exists a 

subsequence ix\ of {x„]^^^ weakly convergent to an element XQ, 

Because D is closed and convex it is weakly closed, and hence we have that 

XQ G D. Applying Proposition 1.9.1 to the sequence {^--^wl , 

considering the fact that a + — >(!>(x^ ) and applying to the last 

inequality the operator lim inf, we obtain a > O (x^) > a . Therefore we 

have that \\x - ô || - Ik ~ -̂ i ^^^ ̂ ^^ y ^ D. When J? is a Hilbert space, in this 

case the function 0(y) is strictly convex, which implies that Xo is unique, n 

The element XQ defined in Theorem 1.9.2 is called a projection of x onto D 
and it is denoted by XQ e P^ (x) . In the case when £ is a Hilbert space, we 

denote x^ = P^ (x), and we have 

Ijx - Pj^ {x)\\ < \\x - y\\,for any yeD. 

Remark. It is known that the projection of any element x e E onto a closed 

convex set D e E is also unique if (E,||||) is a uniformly convex Banach 
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space. In this case, the existence and the uniqueness are obtained by another 
proof, not similar to the proof given above. 

Now, we consider the case of Hilbert spaces. 

THEOREM 1.9.3. Let (//,<•,•)) be a Hilbert space, D a H a closed 

convex set and x e H an arbitrary element. The following statements are 
equivalent: 

i){x-P^{x),P^{x)-y)>0,forallyeD, 

ii) \\x - P^ {x)\ < \x - y\\ for all yeD. 

Proof. Indeed, if (i) is satisfied, then we have 

1̂  - P, {x)f - \\x - yf = \\x - P, (x)|f - ||(x - P, {x)) + (P, (x) - j ) f 

= -2{x-P,{x),P,{x)-y)-\P,{xyy^<Q, 

which implies that (ii) is satisfied. Conversely, suppose that (ii) is satisfied. 
In this case, for an arbitrary Ĵ G D and all ^ G ]0, 1] we have 

\x-P^{x)^ -\x-[ty + {\-t)P,{x)f 

= -2t{x-P^{x),P,{x)~y)-t'\P,{x)-y^. 

Dividing by / and computing lim we obtain formula (i). n 

Remark. The projection operator PD satisfies also the following properties: 

iii) | |^/)(^i)-^/)(^2)||^lh -x^\jormyx,,x^^H, 

iv) {Pj,{x,)-P^{x^),x, -x^)>\Pj,{x,)-Pj,{x^)^ Jormyx,,x^^H. 

For a proof of these properties, the reader is referred to (Baiocchi, C. and 
Capelo, A. [1]). See also (Zarantonello, E. H. [1]). From property (iii) we 
deduce that Po is a non-expansive operator and property (iv) means that PD 
is a monotone operator. 

Now, we give an important characterization of the projection 
operator Po using the notion of normal cone. First, we remark that Theorem 
1.9.3 can be put in the following equivalent form: 

THEOREM 1.9.3 b. Let (//,(•,)) be a Hilbert space, D ^ H a closed 

convex set and x e H an arbitrary element. Then the projection ofx onto D 
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(denoted by PD(X)) is the unique element z e D such that (x - z, x - w) > 0, 

for any u e D. 

If D (^ His a, closed convex set and x* e D, then the normal cone of the set 
D at the point x* is by definition 

Nj, {x.) = {^ e H:{^,u -X.) <0, for allueD] , 

THEOREM 1.9.4. If D a H is a closed convex set and x e H is an 
arbitrary element, then we have thatz = PD{X) if and only ifxez + No{z). 

Proof. The theorem is a consequence of the definition of the normal cone 
and of Theorem 1.9.3.b. Now, we consider the particular case, when the set 
Z) is a closed convex cone K xm, Hilbert space (//,(•,)) . In this case the 

projection operator P^ (•) has some particular properties. n 

THEOREM 1.9.5 [Moreau's Decomposition Theorem]. Let (^,<, )) be 

a Hilbert space, K^, K^ two closed convex cones in H If K^ and K^ are 

mutually polar, i.e., K^ = K^and K^ = ^ 2 ' then for any x, y, z e H the 

following properties are equivalent: 
1) z =x + y, X e K^,y e K^ and{x,y) = 0, 

2) x = Pj^^ (z) and y = P^^ (z) . 

Proof. Let x, y, z e Hbc arbitrary elements satisfying property (1). In this 
case we have (^z -x,u -x) = (y,u-x) = (ĵ ,w) <0 , for all u e K^, and by 

Theorem 1.9.3 a, (i) we have that x = P^ (z) . Similarly we can show that 

y = P^ (z) . Hence, property (1) implies property (2). Conversely, we have 

that (2) implies (1). Indeed, if z G / / is an arbitrary element, we put 

x = Pjf^ (z) and y' = z -x. For every we K^.hy Theorem 1.9.3 a, (i) we 

have 

( z - x , z / - x ) < 0 . (1.9.1) 

lfu = Ax, with /I > 0, then from (1.9.1) we deduce 
( ; i - l ) (> ' ' ,^ )<0. (1.9.2) 

Since A - 1 can be positive or negative, we obtain (using (1.9.2)) that 
(^y\x) = 0, which implies (using (1.9.1)) that (^y\u)<0 for all u e K^, 
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that is, y e K^. Hence, x, y\ z satisfy property (1) and by a similar 

calculus, as in the proof of implication (1) => (2) we obtain that 

y' -Pjf^ (z) , and the proof is complete. n 

A consequence of Theorem 1.9.5 is the following result. 

COROLLARY 1.9.6. If K cz H is a closed convex cone, then P^ (•) is a 

positive homogeneous operator, i.e., P^ (^ax) = aP^ (x) for all ae M^ and 

allx G H. 

Proof. Indeed if we take in Theorem 1.9.5 K^ = K and K^ = K^, then 

we obtain x = P^ (x) + P̂ o (x), with (P^ [x), P^o {x)j = 0 . For an arbitrary 

a e î ^ we have ax = aP^ (jc) + aP^o (x), where aP^ (x)eK, 

aP^o {x) G K^ and (ccP^ [x),aP^o (x)) = 0 . Since the decomposition 

given by Theorem 1.9.5 is unique, we obtain in particular that 

THEOREM L9.7. Let (//,(•,•)) be a Hilbert space and E ^ H a closed 

convex cone. For x G Handx* e K we have that x^ =P^ (x), if and only 

if the following properties are satisfied: 
1) x^ -xeK\ 

2) (x,,x, -x) = 0. 

Proof. First, we suppose that x* satisfies (1) and (2). In this case, for every 
y e K WQ have 

\\y ~ A ^ \\y ~ *̂ II "̂  ^ (^' X, -x) + \\x, - x\\ > \\x, - x\\ . 

The uniqueness of P^ (x) implies that x* = P^ (x) . 

Conversely, suppose that x* = P^ (x) . If (1) is not satisfied, then 

there exists an element u e K such that ^P^ (x)-x,wy <0 and for some 

/ > 0 we have 

2t{P^{x)-x,u) + t^\\uf <0 

which implies 
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\P^{x)^tu-x\ <\P^[x)-x\ . (1.9.3) 

Because P^ (jc) + tueK, and considering the definition of P^ (x) , we 

observe that (1.9.3) is impossible. Therefore, relation (1) is true. Also, if (2) 

is not satisfied, then we have (^P^[x),P^[x)-x^>0 (since (1) is 

satisfied). Then there exists /?> 0 such that 

-t {P^ (x), P^ {x) -x) + t' \\P^ {x)( < 0, for all / e ]0, p[, 

which implies 

| | ( l - / ) / ^ (jc)-x|| < ||P^ (jc) - jc|| , for some / G ]0, l[. 

But the last inequality is in contradiction with the definition P^ (x) [since 

{l-t)P^{x)eK]. D 

Finally, for closed convex cones we remark also the following property 

(v) P^ (x) < ||jc|| for any x e H, 

Property (v) is a consequence of property (iii). Indeed, we have that X\ = x 
and X2 = 0 G K . 

Now, we consider the last situation, the case of a generalized 
projection operator, usefiil in the transformation of a variational inequality 
in d fixed point problem, when the mapping is from a Banach space to its 
topological dual. First, we need to recall some well-known notions in the 
theory of the geometry of Banach spaces. 

Let (£, 11*11) be a Banach space. We say that E is strictly convex, if 

for two elements x, y e E which are linearly independent, we have 

||x -h y\\ < \\x\\ + \\y\\. The strict convexity is equivalent to the following 

condition: 

'M|<1. 
I 2 II 

The Banach space E is said to be uniformly convex, if for any two sequences 
\^r,\ ^rAyn\ X. in E such that |U„|| = ||v 11 = 1 and limllx + v 11 = 2 , 
C ") neN ^ i-^ n) neN II « II I K « II M^OO " " 

limllx^ ~ >̂„ II = 0 holds. The uniform convexity is equivalent to the following 

property.-/or any s> 0 with 0 < s<2, there exists S> 0 depending only on 
6> 0 such that 

\\y\\ = l x^y: 
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x + y <\-S 
2 

for any x, y e E with \\x\\ = \\y\\ = 1 and \\x -y\\ > s. 

It is known (Takahashi, W. [1]) that any uniformly convex Banach space is 

strictly convex. Consider the set S^ =[xeE\\x\ = l | . We say that the norm 

of E is uniformly Frechet differentiable (and we say in this case that E is 
uniformly smooth) if the limit 

t^Q f 

is attained uniformly for (jc, y^^S^ xS^. 

Let E be the topological dual ofE. To each x e EWQ associate the 
set 

j{x) = {feE':f{xM4=\\ff}. 
The multivalued mapping J: E -^ E is called the duality mapping ofE, For 
each x G E, J(x) is a non-empty bounded, closed and convex set, J(0) = {0} 
and for any x e E and any real number a we have J(ooc) = oJ{x), In the 
definition and the applications of the generalized projection we need to have 
E a uniformly convex and a uniformly smooth Banach space. In this case 
the duality mapping J is a single-valued mapping norm-to-norm continuous. 
We cite as uniformly convex and uniformly smooth Banach spaces, the 
spaces P, LF and W^, pe ]1, oo [. Also, it is known (Takahashi, W. [1]) that 
the duality mapping J is a monotone operator and it is strictly monotone, if 
the space E is strictly convex. About the proofs of the results presented 
above (related to the geometry of Banach spaces) the reader is referred to 
(Takahashi, W. [1]) and (Cioranescu, I. [1]). Now, we can define the 
generalized projection, using the construction given by Y. Alber (Alber, Y. 
I. [1]). 

Let ( ,̂||*ll) ^^ ^ uniformly convex and uniformly smooth Banach 

space. Denote by E* the topological dual oiE. We introduce the functional: 

V (^, x) = 1^1 ,̂ -2{(p,x) + ||x||̂  , for any {(p, x)eE* x E. 

We have that V :E* x E ^>' M. The functional F(-,) has several nice 
properties, but we will put in evidence only the properties necessary to 
define the generalized projection: 

1. V((p, x) is continuous, 
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2. V((p, x) is differentiable with respect to cp andx, 
3. V{(p, x) > O.for all (cp, x) e E* x E, 
4. for any (p (fixed) we have that V{(p, x) -> oo if\\x\\ -^ oo, 
5. V{(p,x) = Q if and only if cp =J{x). 

Let Q cz £• be a closed convex set. Using property (4) of the functional 
V{(p, jc), Theorem 1.2 from (Vladimirov, A. A., Nesterov, Yu. E. and 
Chekanov, Yu. N. [1]), property (5) of the functional F(^, x) and the strict 
monotonicity of the mapping J, we have that the minimization problem 

given (peE\ find x^ eQczE, 

such that V (cp, x) = inf v((p,x) 

has a solution and the solution is unique. The operator n ^ : £* -^ Q cz £ 

defined by n ^ (^) = x̂  is called the generalized projection operator. The 

generalized projection operator has several interesting properties, but we 
need to put in evidence only the following properties. 

THEOREM 1.9.8. Let (£,||-||) be a uniformly convex and uniformly smooth 

Banach space. Let Q. cz E be a closed convex set. Then the following 
properties hold: 

1) The operator n ^ is J-fixed in each point x e Q, i.e., 

n^(j{x))^x. 

2) n ^ is monotone in E, i.e., for all (p^.cp^eE* we have 

{(p,-(p,,U^{(p,)-U^{(p,))>0. 

3) For any (p e E* we have / ^ - j ( n ^ (^)) ,n^ (^ ) -xy >0 for all 

X e Q. 

4) n ^ is uniformly continuous on each bounded subset ofE. 

Proof. For the proof of the properties 1-4 the reader is referred to (Alber, Y. 

I. [1]) (See also Chapter 2, section 2.3). n 



COMPLEMENTARITY PROBLEMS AND 
VARIATIONAL INEQUALITIES 

We present in this chapter two classes of mathematical models, 
used in applied mathematics. The first class comprises complementarity 
problems and the second class variational inequalities. We present the 
necessary definitions and some important relations between 
complementarity problems, variational inequalities and the fixed-point 
problem. 

2.1. Complementarity problems 

The study of complementarity problems has developed sufficiently 
to call it Complementarity Theory, Now we consider it as a new domain of 
Applied Mathematics, having deep relations with several domains of 
fundamental mathematics and with numerical analysis. Complementarity 
problems represent a wide class of mathematical models related to 
optimization, economics, engineering, mechanics, elasticity, fluid 
mechanics and game theory. 
It is important to note that the complementarity condition is a kind of 
general equilibrium concept that includes the equilibria of physics and 
economics. Equilibrium in physics has long been well known. Equilibrium 
in economics has become central to the understanding of competitive 
systems. One example is the general economic equilibrium problem in 
which all commodity prices are to be determined. A second example is the 
general financial equilibrium of markets in which firms compete to 
determine their profit-maximizing production outputs. 
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Many authors have studied equilibria of economic systems by 
several mathematical methods and from several points of view, but the 
recent development of Complementarity Theory helps us to understand 
better a number of more complex aspects of economic equilibrium. In this 
sense we cite the books (Isac, G. [20] and (Isac, G., Bulavsky, V. A. and 
Kalashnikov, V. V. [2]). A deep study of equilibrium in Economics help us 
to understand better the non-equilibrium state of particular economical 
systems. 

There exist several kinds of complementarity problems [see books 
(Isac, G. [12], [20]), (Isac, G., Bulavski, V. A. and Kalashnikov, V. V. [2]), 
(Hyers, D. H., Isac, G. and Rassias, Th. [1])]. In this book we present only 
the most important kinds of complementarity problems, from the point of 
view of applications and related to the Leray-Schauder type alternatives. 
We must keep in mind the fact that Complementarity Theory stands at a 
point on the crossroads of applied mathematics, fundamental mathematics 
and experimental mathematics related to numerical solvability. The 
connection of Complementarity Theory with Variational Inequalities 
Theory, with Fixed Point Theory and with Nonlinear Analysis is an 
important factor in its development as a theory. The literature on 
complementarity problems is now huge [See the references cited in [(Cottle, 
R. W., Pang, J. S. and Stone, R. E. [1]), (Isac, G. [12], 20]), (Isac, G., 
Bulavski, V. A. and Kalashnikov, V. V. [2]), (Hyers, D. H., Isac, G. and 
Rassias, Th. [1]), (Murty, K. G. [1])]. 

A. The classical complementarity problem 

First, we note that many problems arising in fields such as economics, game 
theory, mathematical programming, mechanics, elasticity theory and 
engineering, several equilibrium problems can be stated in the following 
unified form. 

Consider the vector space M"" and the classical inner-product 
n 

(^'y)~^^/3^/->^-{^i)^y-{yi)^^"^ • suppose that M"" is ordered by the 

closed pointed convex cone M^ and suppose given a function f \Ml -^ M. 
The classical complementarity problem defined by the function / and the 
convex cone M^ is 

, I find Xf, e M"such that 

^^ '' [f{x,)eM:and{x„f{x,)) = 0. 
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The origin of this problem is perhaps in the Kuhn-Tucker Theorem, known 

in nonHnear programming (which gives the necessary optimality conditions, 
under some differentiabiUty assumptions), or perhaps in the old and 
neglected paper by Du Val published in 1940 (Du Val, P. [1]). We note also 
that the origin of the term "complementarity" is in the paper by Cottle 
(Cottle, R. W. [1]) published in 1964. Initially, this problem was called, in 

the linear case (i.e., when f{x) = Ax-\-b, where 4̂ is a matrix and b is a, 

vector), the "copositive problem", the "fundamental problem of 
mathematical programming" and the "complementarity problem". It seems 
that the term "complementarity problem" was proposed by R. W. Cottle in 
1965 and used in the papers of R. W. Cottle, G. J. Habetler and C. E. 
Lemke. From the mathematical point of view, the origin of the term 
"complementarity" is the following fact. 

Let X* ={x*^Y.^^ be a solution of CP[f,Ml). We say that x* is 

nondegenerate if at most n components of a 2«-components vector 

[x^, / (x*)) are equal to zero. Otherwise, it is a degenerate solution. Denote 

it by Â^ ={l,2,...,w}. If x* is a nondegenerate solution and y^ ̂ {y*^]]^^, 

where y^ = / ( ^ * ) , then the sets A = [i:x*, > 0} and B - \i: y^. > 0} are 

complementary subsets of Â „, that is A = C^ B , 

If the function/has the form / ( x ) - Ax-\-b, where ^ is an « x /?-

matrix and b e M", then in this case CP f/, #" j is called the linear 

complementarity problem defined hy A, b and M^, and it is denoted by 

[find X, e M^ such that 

LCP[A,b,Ml)\\Ax,+beMland 

(x,, Jx* +b) = Q. 

We note that the linear complementarity problem was initially defined as a 
basic mathematical model that unified linear and quadratic programs, as 
well as the bimatrix game problem. Specifically, W. S. Dom in 1961 proved 
that if ^ is a positive-definite (but not necessarily symmetric) matrix then 
the minimum value of the quadratic programming problem 
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minimize (x, Ax + b), 

{P)'AxeT, 

I where <F = [xe M^ : Ax + b e M^] and b e M"" 

is zero. [See (Dom, W. S., [1])]. We note that Dom's paper was the first 
step in treating the linear complementarity problem as an independent 
problem. 

In 1963 G. B. Dantzig and R. W. Cottle generalized Dom's result to 
the case when all the principal minors of the matrix 4̂ are positive (Dantzig, 
G. B. and Cottle, R. W. [1]). R. W. Cottle studied problem (P) in 1964, 
under the assumption that ^ is a positive semi-definite matrix and he 
remarked that, in this case it is not true that (P) must have an optimal 
solution. [See Cottle, R. W. [2]). Cottle proved that, if the matrix A is 
positive semi-definite and the set 

^ = [xe Ml \ Ax + be Ml] wherebeM"" (called the feasible set) is non­

empty, then an optimal solution for (P) exists and again min (x, Ax + b) = 0 . 

After some time, G. B. Dantzig and R. W. Cottle constructively 
showed that if 4̂ is a square (not necessarily symmetric) matrix with all the 
principal minors positive, then problem (P) has an optimal solution x* such 
that {x^.Ax^ +Z)) = 0. This result is in (Dantzig, G. B. and Cottle, R. W. 

[1]). In 1966 R. W. Cottle generalized this result. His generalization is the 
following: 
Let f-.M"" -^ M" be a continuously differentiable mapping. We say that f 

has a positively bounded Jacobian matrix J^ ( x ) , // there exists a real 

number 0 < ^ < 1 such that for every x e IT each principal minor of 

J J (x) is an element of the interval [S, S ~^]. 

We recall that a solution (y, x) of the equation y -f{x) = 0 is said to be 
nondegenerate if at most n of the 2n components are zero. 

THEOREM [Cottle]. If f:M"-^M"is a continuous differentiable 

mapping such that the solutions of equation y -fix) = 0 are nondegenerate, 
and if f has a positively bounded Jacobian matrix Jj(x), then the problem 

I find Xn G Ml such that 
NCP(f,M\: \ , ' , , ,v 

^' '^ \f{x,)^M:and{x,j{x,))^0, 
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has a solution. 

A proof of this theorem is in (Cottle, R. W., [3]) where he defined the 

nonlinear complementarity problem by / and the convex cone M'l, and 

denoted it by NCP[f, E^). 

In studying the origin of the Complementarity Theory we must consider the 

papers (Lemke, C. E. [l]-[6]) and (Ingleton, A. W. [1]). Lemke proposed, 

in 1965, the complementarity problem as a method for solving matrix 
games (Lemke, C. E. [1]). His contribution to the development of 
complementarity theory was remarkable, because his algorithm for solving 
complementarity problems, known as Lemke's algorithm, has been widely 

used in many practical applications, (Lemke, C. E. [l]-[6]), (Lemke, C. E. 

and Howson, J, T. [1]). 

In 1966, A. Ingleton showed the importance of complementarity 
problems in engineering (Ingleton, A. W. [1], [2]). Certainly, a strong 
influence on the development of complementarity theory is also found in 
(Eaves, B. C, [l]-[7]), (Eaves, B. C. and Lemke, C. E. [1], [2]), 
(Karamardian, S. [l]-[5]), (Kaneko, I, [1]-[13]) and (Kojima, M. [l]-[4]). 

After 1970 the complementarity theory enjoyed a strong and 
ascending development from theoretical, numerical solvability and 
applicability points of view. Now, the literature on this subject is vast. To 
see this, the reader is referred to the books (Cottle, R. W., Pang, J. S. and 
Stone, R. E, [1]), (Isac, G. [12], [20]), (Isac, G., Bulavski, V. A. and 
Kalashnikov, V. V. [2]), (Murty, K. G. [1]) among others. Now, it is 
unanimously accepted that the study of complementarity problems is a 
necessary domain in applied mathematics and a stimulant for fundamental 
mathematics. 

B. The general nonlinear complementarity problem 

Let (E,EJ be a dual system of locally convex spaces and let i^ cz E 

be a closed pointed convex cone. If f :K^^E^" is a given mapping, the 
(general) nonlinear complementarity problem defined by/and K is: 

(find x^ eK such that 
NCP(f,K): \ , ^ , / , ,\ 

[f{x.)eK and{x.j{x.)) = 0. 
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NCP(^f,K) contains as a particular case the classical complementarity 

problem NCP[f,Ml), where f:Ml-^E\ Also the (general) linear 

complementarity problem LCP(T, b, K), where 7: £ ' ->£ '* is a linear 
operator and b e E* can be considered as a particular case of the problem 
NCP{f,K), 

The problem NCP ( / , K) has many applications in optimization, game 

theory, economics, engineering, mechanics, etc. We will see in this chapter 

that the problem NCP[f,K) is related to variational inequalities and in 

Hilbert spaces it is related to the Fixed Point Problem. The fixed-point 
problem represents an important chapter in nonlinear analysis. (Isac, G. 
[20]). 

C. The multivalued complementarity problem 

First, we note that the multivalued complementarity problem is 
necessary in the study of some problems in economics in the sensitivity 
analysis of classical complementarity problems and in numerical 
computation of solutions of practical complementarity problems, because of 
the accidental corruption of the problem data. Also, the multivalued 
complementarity problem is related with the theory of quasi-variational 
inequalities defined by set-valued mappings. Variational inequalities with 
set-valued mappings are used in the study of equilibrium in economics. 

Let \E,E*\ be a dual system of locally convex spaces, K (^ E a 

pointed closed convex cone and f : K ^>^2 a set-valued mapping. The 

multivalued complementarity problem defined by/and K is: 

I find Xf, eK and y^, e E* such that 
MCP{f,K): ' / ' 

[yo^/M^^ and{x,,y,} = 0. 

This complementarity problem has been the subject of several papers as for 

example: (Chang, S. S. and Huang, N. J., [l]-[4]), (Gowda, M. S. and Pang, 
J. S., [1]), (Huang, N. J., [1]), (Isac, G. [12], [20]), (Isac, G. and Kostreva, 
M. M., [2]), (Isac, G. and Kalashnikov, V. V. [1]), (Luna, G. [1]), (Parida, J. 
and Sen, A., [1]), (Saigal, R., [1]). 

D. Implicit complementarity problem 

Another class of complementarity problems is the class of implicit 



Complementarity Problems and Variational Inequalities 55 

complementarity problems. It seems that the origin of implicit 
complementarity problems is the dynamic programming approach of 
stochastic impulse and of continuous optimal control (Bensoussan, A., [1]), 

(Bensoussan, A. and Lions, J. L., [l]-[3]), (Bensoussan, A., Gourset, M. 

and Lions, J. L. [1]), (Capuzzo-Dolcetta. L and Mosco, U., [1]), (Mosco, U. 

[1]), (Mosco, U. and Scarpini, F., [1]. 

The study of implicit complementarity problems has been stimulated by 
the applications of this class of mathematical models to the study of various 
free boundary problems associated to some particular differential operators. 
This class of complementarity problems has been studied by many authors 

as for example: (Pang, J. S. [l]-[2]), (Chan, D. and Pang J. S., [1]), (Noor, 

M. A., [1]), (Capuzzo-Dolcetta, L, Lorenzani, M. and Spizziachino, F. [1]), 

(Isac, G. and Nemeth, S. Z. [1]), (Kalashnikov, V. V. and Isac. G. [1]). We 
note that there exist deep and interesting relations between the implicit 
complementarity problems and the quasivariational inequalities theory. 

Now, we give the most important kind of implicit complementarity 
problems. Let E(T) be a locally convex space and let ^ e £ be a closed 
convex cone. Suppose given an element b e E and two mappings A, 
M : £ - > £ ' . If (•, •) is a bilinear functional defined onEx E then the implicit 
complementarity problem is: 

find XQ eE such that 

ICP{A,M,b,K): \M{x,)-x,eK ,b-A{x,)eK (2.L1) 

awt/M(XQ)-Z>,XQ - M ( X O ) ) = 0. 

The implicit complementarity problem (2.1.1) has the following variant for 

a dual system. Let (£", Ej be a dual system of locally convex spaces, K e 

E a closed pointed convex cone, M : E -^ E and A : E ^^ E* arbitrary 
mappings and Z? G £"* an arbitrary element. In this case the problem (2.1.1) 
has the following form: 

find XQ eE such that 

\M{x,)-x,eK,b-A{x,)eK* (2.L2) 

I and (^A [x^) - 6, x̂  - M [XQ )^ = 0. 

ICP{A,M,b,K): 
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Obviously, if E = H, where (//,(•,)) is a Hilbert space with respect to an 

inner-product (•, •), then the problem (2.1.2) is exactly the problem (2.1.1). 

The most general form of the implicit complementarity problem is 

the following. Let (E, Ej be a dual system of locally convex spaces, K a 

E a pointed closed convex cone and D c: E a, non-empty subset. If 
f :D-^E* and g:D^>E* are arbitrary mappings, then the generalized 
implicit complementarity problem defined b y / g, D and K is: 

find XQ eD such that 

< g(^XQ)eK, f (^XQ)G K* and GICP{f,g,D,K): 

Finally, the generalized implicit complementarity problem has the 
following multivalued variant. Let Z) cz £" be a non-empty subset, K cz E di 
closed pointed convex cone and / : Z ) - ^ 2 ^ , g:D^>2^ set-valued 
mappings. The multivalued generalized implicit complementarity problem 
is: 

MGICP{f,g,D,K): 

find XQ eD such that 

there exist x^ e g (XQ ) n JK' and 

y,Gf{xQ)nK\ satisfying' 

E. Order complementarity problem 

A new chapter in complementarity theory is the study of 
complementarity problems with respect to an ordering. The introduction of 
order complementarity problems in complementarity theory is justified by 
two reasons, 

(i) In the study of some particular classical complementarity problems 
the essential fact is not the orthogonality in the sense of an inner-
product, but the lattice orthogonality. Therefore, in some 
circumstances it is useful to represent the classical complementarity 
problem as an order complementarity problem. 



Complementarity Problems and Variational Inequalities 57 

(ii) In some practical problems, we must use the complementarity 
condition simultaneously with respect to several operators. 

Denote by E(T) [respectively by (£ ,̂||*||) or by (£',(•,))] a locally convex 

space (respectively, a Banach space or a Hilbert space). Suppose that, E is 
ordered by a closed, pointed convex cone K . Denote by "<" the ordering 
defined by K , that is x < j ; if and only if y -x e K . Assume that the 
ordered vector space [E,K) is a vector lattice, i.e., for every pair 

[x.y^^ExE, the supremum v(x,>') and the inflmum A ( X , 7 ) with 

respect to the ordering < exist in E, In this case, for every x^.x^.x^ GE we 

have the following formulas: 
( 1 ) V ( x j , ^ 2 ) + X3 = V (:v:i + X3, JC2 + JC3), 

(2) A ( X J , X 2 ) + X3 = A(XJ+X3,JC2 + ^ 3 ) , 

(3) v{x,,x^,x,) = v{y{x,,x^),x,) = v{v{x,,x^),v{x^,x,)). 

If x,,X2?---?^„ ^E, then by induction v(x^,X2,...,x„)andA(X^,X2,...,X^) 

are well defined for any n e N, considering also the formula 
A{x,y) = -v{-x,-y), 

Let (^;'):ExE-^M be a bilinear form. We say that the bilinear 

form (•,•) is K -local, if and only if (jc,>;) = 0, whenever jc, y e K and 

A(JC, JF) = 0. (The term K -local is used in the axiomatic potential theory). 

Let Z) be a non-empty subset of E. In particular the set D can be the cone 

K . Given m, linear or nonlinear mappings /J, / s , • • •, Xi '-E -> E ,thQ order 

COwp/eme«/ar//);/?roW^w defined by the family of mappings {/}^j and the 

set D is: 

( m \ \fi^^ XQ GD such that 

In (Isac, G. and Goeleven, D. [1]) this problem is called the implicit general 
order complementarity problem. We have several interesting particular 
cases: 
(1) If m = 2, D = E, f\ = I (the identity mapping) and/2(x) =" T(x)-^q, 

where T : E -^ E is a linear mapping and q is an element in E, we 
have the linear order complementarity problem denoted by 
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LOCP{T, q). This problem was studied systematically for the first 
time in 1989 in (Borwein, J. M. and Dempster, M. A. H., [1]), where 
several interesting new classes of linear operators were introduced. 
We find for example the operators of class (/T), (5), (Z), {K \ (P) 
and (A), 

(2) If m is an arbitrary natural number and yj,(/= l,2,...,m)are affine 

mappings we have the generalized linear order complementarity 
problem. Several results about this problem are in (Gowda, M. S. and 
Sznajder, R., [1]), (Isac, G. and Goeleven, D., [1]), and (Sznajder, R. 
[1]). 

(3) If m =" 2^ D = K and fufi are nonlinear mappings, then in this case 
we have the nonlinear order complementarity problem, studied for 
the first time in 1986 (Isac, G. [5]). 

(4) If m = 3, D = E,f\= I (the identity mapping) and/2,/3 are nonlinear 
we have an order complementarity problem. In 1986 Oh, K. P 
introduced this notion in lubrication theory. (Oh, K. P., [1]). This 
interesting order complementary problem is the following. Consider 
the mixed lubrication in the context of a journal bearing with elastic 
support. The problem is to study the contact pressure X. In this case 
E = H^ ( Q ) (defined over L^ ( Q ) ) and the cone is 

K = ^ueH^ (Q)|W > 0 a.e., on QJ. We have two operators, T\(X) and 

T2(X), where T\ is the Reynolds partial differential operator. For the 
definition of these operators, the reader is referred to (Oh, K. P., [1]), 
(Isac, G. and Kostreva, M., [1], (Isac, G. and Goeleven, D., [1]). In 
this case, there are three distinct functions, which cause the 
decomposition of the spatial area into three disjoint regios: the 
innermost region (solid-to-solid contact), the elasto-hydrodynamic 
lubrication region (solid-to-fluid contact) and the cavity region (in 
which the pressure returns to the ambient value). The 
complementarity formulation is based on the observation that the 
contact pressure X satisfies the following equation specified for every 
region: 
(i) X>0,Ti{X) = 0, T2(X) > 0 (solid-to-solid contact), 
(ii) X=0, Ti{X) > 0, T2{X) > 0 (cavity point), 
(iii) X> 0, Ti(X) > 0, T2(X) = 0 (lubrication point). 

The problem of finding the contact pressure X is equivalent to 
solvability of OCP(l Tu T2; K ). This problem, defined in 1986 in 
(Oh, K. P., [1]) is theoretical not yet solved, but it has many 
interesting applications. In practical problems this mathematical 
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model is implemented by simulation and by numerical 
approximations. Finally, we note that the order complementarity 
problems are used also in the study of the global reproduction of 
economic systems working with several technologies, in the study of 
discrete dynamic complementarity problems. (Isac, G. [20]), and in 
the study of the fold complementarity problems (Isac, G. [15]) and 
(Isac, G. and Kostreva, M. [3]). 
If m is an arbitrary natural number, D = K , f \ = I (the identity 
mapping) and ^ , /s, . . .^^ are nonlinear but having the form 
/ (x) = jc - 7̂  (x), (/ = 1,2,3,..., w), with Ti nonlinear mappings, then 

we have the generalized order complementarity problem studied 
systematically in (Isac, G. and Kostreva, M. [1]) and for set valued 
mappings in (Isac, G. and Kostreva, M, [2]) and (Huang, N. J. and 
Fang, Y. P. [1]). Some numerical methods for the order 
complementarity problem can be found in (Isac, G. [11]) and in (Isac, 
G. and Goeleven, D. [2]). 

2.2. Variational inequalities 

Another important domain of applied mathematics is the study of 
variational inequalities, which is deeply related to complementarity theory. 
It seems that the notion of variational inequality was introduced in the 
papers of G. Stampacchia and G. Stampacchia and P. Hartman. For 
references the reader is referred to the books (Stampacchia, G. [1]), 
(Kinderlehrer, D, [1]), (Baiocchi, C. and Capelo, A, [1]), (Duvaut, G. and 
Lions, J. L., [1]) and (Lions, J. L. and Magenes, E., [1]). 

The theory of variational inequalities had from the beginning a 
rapid development and a prolific growth of its applications. Initially, one of 
the attractions of the theory of variational inequalities was its applications to 
many questions of physical interest, as for example: the lubrication theory, 
the steady filtration of a liquid through a porous membrane, the motion of a 
fluid past a given profile and the small deflections of an elastic beam etc. 
Many remarkable mathematicians added their contributions to the 
development of the variational inequalities theory as for example: H. Brezis, 
C. Baiocchi, L. Caffarelly, D. Kinderlehrer, H. Lewy, J. L. Lions and 
E. Magenes, among others. Now, the literature on variational inequalities is 
huge and contains several variations. We consider in this book only the 
classical variational inequalities. 
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Let \E,E* y be a duality of locally convex spaces, i.e., £ is a locally 

convex space, E is the topological dual of £ and (•,) is a bilinear form on 

Ex E* satisfying the following separation axioms: 
(si) (XQ , J^) = 0 for all yeE* implies XQ = 0, 

(S2) {x,yo) = 0 for all xeE implies >̂o - ^ . 

Let / : E^> E* be a mapping. We recall the following classical notions. 
(a) We say that / is monotone, if for any x, y e E WQ have 

{x-y,f{x)-f{y))>0. 
(b) We say that/is pseudomonotone (in Karamardian's sense) if for any 

x,y^Ev^Q have that {x-y,f {^yyj > 0 implies \x-y,f {xyj >0. 

We have similar definitions if / : Q -^ £ , where Q is an arbitrary non­

empty subset of E. The Hartman-Stampacchia variational inequality 

defined by/and Q is: 
[find X* G Q such that 

HSVl(f,a):\. , ,. 
Ux-x^,f[x^)l>0 for all xeQ, 

and the Minty variational inequality defined by/and Q is: 
[find X, G Q such that 

^ ^ \ix-X.J{x))>0 for allx^a. 

For more information about Minty's variational inequality the reader is 

referred to (Minty, G. J., [1]). The Hartman-Stampacchia variational 

inequality has many applications in physics, engineering and in economics, 
while the Minty variational inequality is important in the study of 
solvability of HSVI(f, Q). 

About the solvability of problem HSVIif, Q), first we note the 
following classical result, which is a generalization to locally convex spaces 
of Hartman-Stampacchia's theorem (proved initially in Euclidean space). 

THEOREM 2.2.1 [Hartman-Stampacchia]. Let Q be a compact convex 

subset of a locally convex space E and let f: Q, ^> E be a continuous 
mapping, (with respect to the strong topology). Then, there exists an 

elementx*G Q such that \x-x^,f[x^yj>Q for allx e Q. 
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Proof. A proof of this result is in (Holmes, R. B., [1]). The proof is based 

on the Fan-Kakutani Fixed Point Theorem. n 

Remark. The study of solvability of problem HSVIif, Q) in the case when 
Q is unbounded, generally is based on special mathematical tools. In this 
book we develop a new method to study variational inequalities with respect 
to unbounded closed convex sets. 

The following result establishes a relation between problems 
HSVIif, Q) and MVI{f, Q). If Q c £ is a convex set a n d / : Q ^ J?* is a 
mapping, we say that / is hemicontinuous if it is continuous from the line 
segments of Q to the weak topology ofE 

THEOREM 2.2.2. Let E(T) be a locally convex space, Q cz E a closed 
convex set and f \ Q. -^ E a pseudomonotone, hemicontinuous mapping. 
Then, an element % e Q is a solution to the problem HSVIif, Q), if and only 
ifuo is a solution to the problem MVI(f, Q). 

Proof. Suppose that wo e Q is a solution to the problem HSVIif, Q). Then, 
in this case we have, 

^x-Wo,/(wo))>0 ,for allx e Q 

and the pseudomonotonicity implies that 

l^x-u^.f [xyj>0,/or allx G Q, 

i.e., Wo is a solution to the problem MVIif, Q). 

Conversely, suppose that an element wo e Q is a solution to the 
problem MVIif, Q). In this case, if JCG Q is an arbitrary element, we denote 
it by 

x^ ={\-t)u^ +tx, / G ] 0 , 1 [ . 

If we put Xt in the definition of the problem MVIif Q), then we have 

( x , - W o , / ( x J ) > 0 , 

which implies 

{t{x,-u,),f{x,))>0, 
and finally, 

{x-u,,f{x^))>0. 
Supposing that / ^ ' 0 and using the hemicontinuity of / we obtain that 

/ (jĉ ) is weakly convergent to / (WQ ), which implies that 
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MMVl{f,Q): 

(X - WQ , / (WQ )) > 0 , for any jc G Q, 

i.e., Wo is a solution to the problem HSVIif Q) and the proof is complete, n 
Obviously, the variational inequalities HSVI(f, Q) and MVI(f, Q) 

can be defined for set-valued mappings. Indeed, let / be a set-valued 

mapping from Q into E, i.e., / : Q ^ 2^ . The multivalued Hartman-

Stampacchia variational inequality defined by/and Q is: 

Jind X* G Q and y^ e E* 

MHSVI ( / , Q): <̂  such that y.^f (JC, ) and 

(jc - JC*, >̂ *) > 0 for all x^Cl 

and the multivalued Minty variational inequality defined by/and Q is: 

[find :\c, G Q such that 

for any jc G Q there exists 

\y^ef{x) satisfying 

Finally, we consider in this book a special implicit variational inequality. 

Consider again a dual system (E,EJ of locally convex spaces. 

Q e £• a closed convex cone and two mappings S : Q -^ Q. and/ : Q ^> E . 
The implicit variational inequality defined by 5*,/and Q is: 

\fmd JCQ G Q such that 

^' ^ [{x-S{x,)j{x,))>0,forallxeQ. 

The problem IVI(f S,Q) is a special variational inequality. It is implicit in 
the sense of implicit variational inequalities presented in (Mosco, U., [1]). 
Obviously, if 5'(jc) = JC for every JCG Q, the problem IVI(f S,Q) is exactly the 
problem HIVI(f, Q). We note that the problem IVI(f S,Q) is related to the 
problem GICP ( / , g, D, K) when g = SdiX\& D = K, 

2.3 Complementarity problems, variational inequa­
lities, equivalences and equations 

We present in this section some equivalences between complemen-
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tarity problems and variational inequalities. We show also, how a 
complementarity problem or a variational inequality can be transformed in 
an equation. These equations are essential for the next chapters of this book. 

Let {E, Ej be a dual system of locally convex spaces. Let K czE 

be a closed convex cone and/: E -^ E a. mapping. 

THEOREM 2.3.1. The problems NCP{f,K) and HSVl{f,K) are 

equivalent. 

Proof. Indeed, if jc* is a solution to the problem HSVl[f,K), then we have 

{x-x,,f{x,))>0,forallxeM, (2.3.1) 

Let j ; e ^ be an arbitrary element. If we put JC = j ; + JC* in (2.3.1), then we 
obtain 

{yj{x.))>0,forallyGK, 

which implies that f(^x,)eK*. 

If we consider x = 2x* in (2.3.1) then we deduce that 

(x*, / (x*)) = 0, i.e., X* is a solution to the NCP ( / , K). 

Conversely, if we suppose that x* e K is a, solution to the problem 

NCP{f,K), then we have (jc*,/(jc.)) = Oand(jc,/(jc*))>0 for every 

X G K , which obviously imply (x -x*,/(x*)j >0, for allxeK , that is, 

X* is a solution to the problem HSVI ( / , K) . D 

Now, we consider the following problems. Let (E, Ej be a duality 

of locally convex spaces and K ciEa. pointed closed convex cone. Suppose 
given two mappings,/: E -^ E* and g : E ^^ E. The next theorem is related 
to the following two problems: 

find x^ eE such that 

IVl{f,g,K): \g{x,)eKand 

\{x-g[x^),f[x^yj>0 for allxeK, 
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ICP{f,g,K): 

find x^ eE such that 

g (jc,) E K,f[x, )eK* and 

(g(^*)'/(^*)>-o. 

THEOREM 2.3.2. The problems IVl{f,g,K) and ICP{f,g,K) are 

equivalent. 

Proof. Indeed if x* e E is a, solution to the problem ICP(^f,g,K), then we 

have g(x,)eK,f (x,)eK* and{g(x^), f (x,)) = 0 which imply 

{xj{x.))>OforallxeK (2.3.2) 

and 

{g{x.)j{x.)) = 0. (2.3.3) 

By using (2.3.2) and (2.3.3) we obtain g[x^)eK, and 

( jc-g(x*), /(x*)^>0 for any x e K, that is, x* is a solution to the 

problem IVl{f,g,K). 

Conversely, we suppose that jc* e £ is a solution to the problem 

IVli^f,g,Ky Then, we have g(x*)Gi^,and^A:-g(x*),/(jc*)^>0 for 

all xe J C If we take x = y + g(x*X then we obtain that (^y,f{x^)) - ^ ' 

which implies that / (x,) e ^ * . If we consider x = 2g(x*) in ICP ( / , g, K) , 

then we obtain ^g(jc*),/(x,)^>0 and considering x = 0, we obtain 

(g{x*),f {x*))^0. Therefore ^g(x*), /(x,)) = 0 and we have that x* is a 

solution to the problem ICP ( / , g, K). n 

For the method developed in this book, it is important to transform 
a complementarity problem or variational inequality in a fixed-point 
problem or in an equation. Let (/f, (•,•)) be a Hilbert space and Q a H a, 

closed convex cone. Given f g: H ^ H two arbitrary mappings, we 
consider the following implicit variational inequality: 

find x^ eH such that 

/ F / ( / , g , Q ) : \g{x.)eQand 

[{y-g{x.)J{x.))>OforallyeQ, 
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We have the following result. 

THEOREM 2.3.3. An element x* e H is a solution to the problem 
IVI(f, g, Q) if and only if, x* is a solution to the coincidence problem 

(find x^ sH such that 

Proof. Indeed, if x* e H and g{x^) = PQ [g(^*)-/{x*)), then we have 

that g{x*) G Q and g{x,)-f{x,)e g[x,) +N^(^g[x,)). [We used 

Theorem 1.9.4]. Therefore ( - / ( ^ * ) , 7 - g ( ^ * ) ) ^ 0 for all j ^ G Q and 

g{x*) G Q, that is x* is a solution to the problem IVHf, g, Q). Conversely, if 

jc* G H, g{x*) G Q and ( / (^*), 3̂  - g (x*)) ^ 0 for all >̂  G Q, then we have 

{-f{x.).y-g{x.))<Q forall>;GQ, 
or 

g{x.)-f{x.)Gg{x.) + N^(g{x.)), 

which implies that 

[using again Theorem 1.9.4]. n 

COROLLARY 2.3.4. Let (^,<•,•)) be a Hilbert space, K^H a closed 

convex cone and f. H ^y H a mapping. The problem NCP[f,K) has a 

solution if and only if the mapping ^ : H -^ H defined by 

^K {^) - ^K (-̂  ~ / ( ^ ) ) ^^^ a fixed point, i.e., there exists an element x* e 

H such that x, = P^yx^ - f (x*)). 

Proof. We take in Theorem 2.3.2 and Theorem 2.3.3, g(x) = x, for any 
X G HandQ= K . n 

Also for problem HSVI(f, Q) we have the following result. 

COROLLARY 2.3.5. Let (^,<-,)) be a Hilbert space, Q cz H a closed 

convex set andf H ^^ H a mapping. The problem HSVI(f, Q) has a solution 

if and only if the mapping WQ : H -^ H defined by ^ ^ (JC) = P^ (X - / (x)) 
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has a fixed point, i.e., there exists an element x* G H such that 

x,=P^(x,-f{x,)). 

Proof. We take in Theorem 2.3.3 g{x) = x, for any x e H. n 

Remark. We can prove Corollary 2.3.4 using Theorem 1.9.7. 

The reader can extend Corollary 2.3.4 (resp. Corollary 2.3.5) to the case 
when/is a set-valued mapping, that is when/: / / - > 2^, but in this case the 
mapping ^ ^ (resp. ^ ^ ) will be a set-valued mapping. Therefore, we have 
the following result, related to the problems: 

find XQEK and 

MCP ( / , K):\y^ef{xQ)nK* such that 

and 

MHSVl{f,Q): 

find XQ eQ and 

y^e f (XQ ) such that 

I (x - XQ , j^o) > 0 /or all X e Q. 

COROLLARY 2.3.6. Ze^ (ZT, <•,•)) be a Hilbert space, K a H a closed 

convex set andf: H -^ H a set-valued mapping. The problem MCP ( / , K^ 

{resp. the problem MHSVI(f, Q) has a solution if and only if the set-valued 

mapping '¥j^{x) = P^{x-f{x)) (resp. "F^ W ^ i ' n ( x - / ( ^ ) ) ) has a 

fixed point, i.e., there exists an element XQ G H such that 

^o^'I '^(^o) = ^^ (^0 - / (^0 ) ) i^esp. X, e'¥^{x,)-^P^(x, - f (x,)). D 

Now, we introduce the normal operator and we will show that the 
solvability of a complementarity problem or a variational inequality is 
equivalent to the solvability of an equation. Let (//,(•,)) be a Hilbert space 

and Q d / / a closed convex set. L e t / : H ^> H be an arbitrary mapping. 
Consider again the problem: 

{find XQ GQ such that 

^ ^ [{x-x,j{x,))>0,forallxGQ. 

The operator Wŷ  :H -^ H defined by 
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W^ (z) = / (P„ (2 ) ) + z -P^ (z) for allzeH 

is called the normal operator defined by f and Q. 

Remark. In 1992, S. M. Robinson introduced the name normal operator 

[see (Robinson S. M., [l]-[4]), and this operator was used in several papers 

to transform a variational inequality in an equation of the form W^ (z) = 0 . 

In 1988, G. Isac used the same operator in complementarity theory, but in 
the form z = P^ (z) - / (P^ (z)). He used this operator to transform the 

solvability of the complementarity problem in a fixed-point problem. (Isac, 
G. [7]). 

THEOREM 2.3.7. An element z* e H is a solution to the equation 

if and only if x^ =P^ (z*) is a solution to the problem HSVI(f Q). 

Proof. First, by Theorem 1.9.3 a, we have that x^ =P^ (z,) if and only if 

(z, -x , ,x , - x ) > 0 , for allx&Q. (2.3.4) 

If Wy (z*) = 0 , then we have 

/ (P^ (z . ) ) + r . - P , ( z . ) = 0 

or 

- / ( x , ) = z, -X, 

which implies [using (2.3.4)] 

( - / (x,), X* - jc\ > 0, for all xeQ, 

and finally 

( / {^*) ? ̂ * -x)>0, for all XGQ, 
that is (using the commutativity of the inner-product, we have that x* is a 
solution to the problem HSVI(f Q). 

Conversely, suppose that z* = x* - fx*) and 

( - / ( x , ) , x - x * ) > 0 , for any x e Q. We have z* - x* = -fx*) or fix*) 

= x*- z*, which implies 
(x* - z,, X - X,) > 0, for a// X G Q, 

or 
(z* -X,,X, - x ) >0, for allxeQ, 
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which implies that x^ - P^ (z,) . Therefore, we have 

that is, Wŷ  (z*) = 0 , and the proof is complete. n 

Now, we consider the case when the Hilbert space is replaced by a 
Banach space. In this case we must replace the projection operator defined 
in a Hilbert space by the projection operator in Alber's sense (See Chapter 1 
of this book). 

Let (£̂ 5 I'll) be a uniformly convex and uniformly smooth Banach 

space. Let £* be the topological dual of E. Denote by (•,) the natural 

duality between E and E, that is, (3;, x)-y {x), for all j^ G £" and all x^ E, 

Let Q d £• be a closed convex set. Denote by ||-||, the norm on E . Let 

J \ E ^y E^ \yQ the duality mapping (See Chapter 1). We consider the 
mapping V \E* xE-> M, defined by: 

V(x,y) = IIj;||' -2{y,x) + \x( , for any {y,x)eE* xE . 

We know that the minimization problem: 

given yeE, find x^ eClciE such that 

has a unique solution, (see Chapter 1). The mapping n ^ :E* ->Qc:E, 

defined by n ^ (j;) = Xy, is called the generalized projection operator (or 

the Alter projection). We need to use the following properties of mapping 
V. 
(i) V(y, x) is convex with respect to y, when x is fixed and with respect to 

X, when y is fixed. 

(ii) grad^ V (j;, jc) = 2 ( J (x) - y^, (because E is a smooth Banach space). 

For the proof of properties (i) and (ii) the reader is referred to (Alber, Y. L 
[1]). We recall also the following property, well known in convex analysis, 
(iii) A differentiable mapping cp'.E ^y R, is convex if and only if for any 

X andxQ in E we have 

(p{x) - (p{x^)>{grad(p{x^),x - XQ) . 
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THEOREM 2.3.8. An element y* e Q is the generalized projection of an 
element y G E* (i.e., y^ =11^ (^y), if and only if 

{y-^{y*).y* -ii)>0,foralluEQ. (2.3.5) 

Proof. Considering the definition of y^ = H^ (jv) we have 

V{y,y.)<V{y,y.+t{u-y.)), 

where te ]0, 1] and y^ +t(u-y^)eQ, because of the convexity of Q. 

Using the properties (i), (ii) and (iii) we have 

0>V{y,y.)-V{y,y.+t{u-y.)) 

>2{j(y. +t{u-y,))-y,y. -y. -t{u-y.)), 

which implies 

{j(y, +t{u-y,))-y,u-y,)>Q. 

Letting t-^ 0, we have 

\j{y*)-y^u-y*)^^-> for allueQ, 

or 

\y-j{y*)'>y* -u)>0,forallueQ, 

that is condition (2.3.5) is satisfied. 

Conversely, if condition (2.3.5) is satisfied, then we have (using 
properties (i), (ii) and (iii)), 

V{y,u)-V{y,y.)>2{j{y.)-y,u-y.)>0JormyxeQ, 

which implies 
V (3;, u)>V (j;, y^), for any w G Q. 

Therefore y^ - TL̂  (j^) and the proof is complete. n 

Let/ : E^>^ E* hQ an arbitrary mapping. Consider again the problem 
{find x^ eQ such that 

[{f{x.),u-x.)>0,forallueQ. 

THEOREM 2.3.9. Let f be a mapping from E to E ,Q<^E a closed convex 
set and a an arbitrary fixed positive real number. Then an element X*G Q is 
a solution to the problem HSVI(f Q) if and only ifx* is a fixed point of the 
mapping ^ ^ (x) = n^ [j(x)-6ir/(x)], i.e., x* =n^ [ j (x*)-a / (x*)] . 



^0 Leray-Schauder Type Alternatives 

Proof. Indeed, we observe that the problem HSVIif, Q) has the following 
representation: 

{j(x*)-af {x^)-J(jc*),X* -w)>0, for allueQ. 

Considering this representation, and taking into account Theorem 2.3.8, 

y = j[x^)-af (x,)eE* and y^ =x^ sQaE,we obtain the conclusion of 

the theorem. n 



LERAY-SCHAUDER ALTERNATIVES 

We present in this book a topological method applicable to the 
study of solvability of complementarity problems and of variational 
inequalities. This special method is based on several Leray-Schauder type 
alternatives. The classical Leray-Schauder Alternative is based on the 
Leray-Schauder Continuation Theorem, which is a remarkable result in 
nonlinear analysis. We note that there exist several continuation theorems, 
which have many applications to the study of nonlinear functional equations 
(O'Regan, D. and Precup, R. [1]), (Precup, R. [1]). 

The Continuation Theorem is based on the idea of obtaining a 
solution of a given equation, starting from one of the solutions of a simpler 
equation. The essential part of this theorem is the "Leray-Schauder 
boundary condition''. It seems the "continuation method'\ was initiated by 
H. Poincare and S. Bernstein (Poincare, H. [1], [2]), (Bernstein, S. [1]). 
Certainly, J. Leray and J. Schauder in 1934 gave the first abstract 
formulation of "continuation principle'' using the topological degree. Now 
we recall this result. 

Let (£',||||) be a Banach space, U a E a, bounded open set and 

H:Ux[0,\\-^E a compact mapping, i.e., H is continuous and 

:7/'(C/x[0,l]j is relatively compact. Denote by / the identity mapping ofE 

and by deg(/-:;/(•,0),C/,0) the Leray-Schauder degree of J/(-,0) with 

respect to f/and the origin of £". 

THEOREM A [Leray-Schauder]. If the following conditions are 
satisfied: 

(i) H{x,t) ^ X, for all xedU and t e [0,l], 
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(ii) deg(/-Jf(.,0),C/,0)^0, 

then there exists at least one XQ G U such that ^XQ, 1) = ^O. 

Proof. To prove this result it is sufficient to show that 

deg( / -J f ( - ,0) , [ / ,0)=:deg( / -J f ( . , l ) , [ / ,0) . D 

The continuation theorem is an expression of the homotopy invariance of 
the degree. There exist many books and papers presenting Theorem A, 
using generalizations of Leray-Schauder degree, as for example (Deimling, 
K. [1]), (Gaines, R. E. and Mawhin, J. [1]), (Krasnoselskii, M. A. [1]), 
(Krasnoselskii, M. A. and Zabreiko, P. P. [1]), (Lloyd, N. G. [1]), 
(Nussbaum, R. D. [1]), (Petryshyn, V. [1]) and (Rothe, E. H. [1]) among 
others. In 1955, H. H. Schaefer proved a variant of Theorem A in a Banach 
space, using the Schauder fixed-point theorem (Schaefer, H. H. [1]). A 
version of Theorem A without degree for the general case is due to A. 
Granas. The result proved by Granas in 1959 is based on the notion of 
essential map (Granas, A. [1]). 

In this chapter we will present several Leray-Schauder type 
alternatives. The alternatives will be with respect to an open set in a Hilbert 
or in a Banach space. We will suppose that the open set contains the origin 
of the space. This case is related to applications to the study of 
complementarity problems and to the study of variational inequalities. 

3.1 The Leray-Schauder alternative by topological 
degree 

We give in this section the classical Leray-Schauder alternative, for 
completely continuous mappings in Banach spaces. 

THEOREM 3.1.1 [Leray-Schauder]. Let [E,\\) be a Banach space, 

Q cz E an open bounded subset such that 0 e Q and f :Q^>^ E a compact 
mapping. If the following assumption is satisfied: 
f (x) ^ Ax, for all xedQ. and all A>\, then f has a fixed point 
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Proof. We consider the homotopy /z (•, •): Q x [O, !]->£" defined by 

/z (jc, /I) = jc - Xf (x), for all xeCl and all /I G [O, l]. 

We have two possibiHties: 
(a) /has a fixed point in d Q, 
(b) /has no fixed point in 9 Q. 

If (a) is satisfied, in this case there is nothing to prove. Now ,̂ we suppose 
that (b) is satisfied. In this case we can suppose that 
0 €h{dn,X) for 0 < A < 1. Indeed, if A = 0 and 0 G / / ( ^ Q , 0), then x = 0 for 

some X e d Q., which is impossible. If 1 = 1 and 0 G h{d Q, 1), then 
0 = jc -J{x\ for some x G <^Q, which is impossible, since we suppose that / 
has no fixed point in <^Q. 

Finally, we suppose that h{x, /I) = 0 for some x G (̂  Q and some 

0 < A <1. Then in this case we have — x = / ( x ) , where 0 < /I < 1 and 
A 

X G (̂  Q, which is in contradiction with our assumption. Therefore, 
0 ^ /z(9Q, /I) for 0 < A < 1. Applying Property 3 (Homotopy Invariance) of 

the Leray-Schauder degree, we have 

t / ( / - / , Q , 0 ) = rf(/,Q,0) = l (since O G Q ) , 

which implies that there exists an element x G Q such that/^x) = x, and the 
proof is complete. n 

From Theorem 3.1.1 we deduce the following result. 

THEOREM 3.1.2 [Leray-Schauder alternative]. Let (^,|| ||) be a Banach 

space, Q <^ E an open bounded subset such that O G Q and f :Q-^ E a 
compact mapping. Then: 

(1) either f has a fixed point in Q, or 
(2) there exist an element x, G 5 Q and a real number A, G ]0, 1[ such 

that X, = A/(x*) . D 
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3.2 The Leray-Schauder alternative by the fixed point 
theory 

The main result of this section is based on the following classical results. 

THEOREM 3.2.1 [Schauder]. Let (£,||-||) be a Banach space, D a E a 

non-empty convex compact subset and f: D ^ D a continuous mapping. 
Then f has at least one fixed point. 

Proof. A proof of this theorem can be found in (Schauder, J., [1]) or in 
(Dugundji, J and Granas, A., [1]). n 

LEMMA 3.2.2 [Mazur]. Let (£',||-||) be a Banach space. If D cz E is a 

relatively compact subset, then convi^D) is also a relatively compact subset 

in E. 

Proof. This result is also true in a locally convex space. See (Schaefer, H. 
H., [2], Theorem 4.3, page 50). n 

The next result is a more general variant of Theorem 3.1.1. If Q and 
U are subsets of E and U cz CI, then in this case we denote by ^ C / the 
boundary of Uwith respect to the topology of Q. 

THEOREM 3.2.3 [Leray-Schauder]. Let (£,| | |) be a Banach space, 

Q a E a closed convex subset, UaQ a bounded set, open (with respect to 

the topology Q) and such that 0 e U. Let f: U -^ CI be a completely 
continuous mapping. If the following assumption is satisfied: 

Af{x) ^ X, for all X e ^QUandall Ae ]0,1[, 

then f has a fixed point in U. 

Proof. First we observe that the assumption is satisfied also for /I = 0 (since 
0 e U). If the assumption is satisfied for A = 1, then in this case we have a 
fixed-point in <^f/and there is nothing to prove. 

In conclusion, we can suppose that the assumption is satisfied for 
any xe ^Uand any A e [0, 1]. Let D be the set defined by 
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D = [x^U:x=^Xf[x), for some>1 G[O,l]|. 

The set D is non-empty, because 0 G [/and the continuity of/implies that 

D is closed. We have that D n (^C/= 0 . 

By Theorem 1.7.2 (Urysohn's Lemma), there exists a function 

gGc(f/,[0,l]) such that 

'^'Hl if xsD. 
The mapping /* : Q -> Q defined by 

\g{x)f{x) if xeU, 

if xeQ\U 

is continuous and /* (^Q)czconvl{0] u / f [ / j | . The complete continuity of 

/implies that f[U] is relatively compact. Applying Lemma 3.2.2 WQ have 

that the set D, =convi[0]u flu)) is convex and compact. Moreover 

f* (^D^)(^D,. By Theorem 3.2.1 we obtain the existence of an element 

XQ G D* such that /* (x^ ) = XQ. By the definition of /* , Xo must be an 

element of the set U. Then, ô ^ .& (^o) / (^o)' which implies that Xo G Z) 

and so, g(xo) = 1. ThereforeX^o) ^ Xo and the proof is complete. n 

Remark. It seems that the idea to prove Theorem 3.2.3 by using the fixed-
point theory is due to A. Granas. 

From Theorem 3.2.3 we deduce the following alternative. 

THEOREM 3.2.4 [Leray-Schauder alternative]. Let (£,|| ||) be a Banach 

space, Q cz E a closed convex subset, U (^ Q. a bounded set, open (with 

respect to the topology of Qj and such that 0 G U. If f \ U -^ CI is a 

completely continuous mapping then: 

(1) eitherf has a fixed point in U, or 
(2) there exist an element x* G d^U and a real number X* G ] 0 , 1 [ such 

thatx* = Zif{x*). D 
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Remark. The condition used in Theorem 3.1.1, and in Theorem 3.2.3 is 
known in nonlinear analysis under the name of the Leray-Schauder 
boundary condition. 

3.3 The Leray Schauder alternative by the topological 
transversality theory 

The general proof of the Leray-Schauder alternative can be given by the 
Topological Transversality Theory, A. Granas introduced the notion of 
topological transversality [See (Granas, A. [2, 3, 4])]. We follow his ideas. 
The main idea of topological transversality is the following. 

Let (£", III) be a normed vector space, X cz E di non-empty subset 

and f: X -> E a. compact mapping satisfying a "boundary condition" on a 
closed subset DaX, A method for determining whether or not the equation 
J{x) = X has a solution is to deform/and possibly also the boundary value 
f\o to a simpler mapping g and to reduce the problem to that for the equation 
g{x) = X. Geometrically, one deforms the graph of/to that of g and seeks to 
conclude, from the nature of the deformation, that if the graph of g meets 

the diagonal /\c:XxEczExE , then the graph of/must also do so. Now, 

we give the topological transversality theorem. This theorem gives 
conditions under which such a conclusion is valid. 

Let C be a non-empty convex subset of E. We denote by (X, D) a 
pair of subsets, such that X is a subset of C and D e X is a closed subset of 
X, i.e., D aXa C and D is closed in X. We say in this case that {X, D) is a 
pair in the convex set C^E. Let 7 be another subset of £ and / = [0, 1]. We 
say that a homotopy H:Xx I - ^ 7 is a compact homotopy if it is a compact 
mapping. If X e Y, the homotopy ^ is cM^d flxed-point free on Z) c X i f for 
each / G /, the map H^j)^,. :D^>Y has no fixed point. Also, we denote by 

!H'j) (X,C) the set of all compact maps / : X -> C such that the restriction 

fp: D ^^ Cis fixed-point free. 
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DEFINITION 3.3.1. We say that two mappings f,geJ{^{X,C) are 

homotopic (and we denote f - g) in Tfj^ (X, C) // there is a compact 

homotopy H : Xx I -^C which is fixed-point free on D for each ^ G [0, 1] 

and such that H (•, O) = / and / / (•, l) = g . 

The following result is from (Dugundji, J. and Granas, A., [1]). 

PROPOSITION 3.3.1. Let f,geH^{X,C) be two mappings. If one of 

the following conditions holds: 
(1) tg[x) + (1 - t)f[x) 9̂  X for each[xj) G Z) x [0,l], 

(2 ) sup | | / (x ) -g (x ) | |< in f | | x - / (x ) | | , 

then f^g in J{^{X,C), 

Proof. First, we observe that assumption (2) implies that given x^ D^ the 

segment [ / ( x ) , g ( x ) ] does not contain jc, which is exactly assumption (1). 

Thus it is sufficient to show that assumption (1) implies f-g in 

^ ^ ( X , C ) . Indeed, 

//(:c,^) = /g(x) + ( l - / ) / ( x ) , / o r ( x , / ) G X x [ 0 , l ] 
is a compact homotopy which is fixed-point free on D and such that 
7 / ( , 0 ) - / a A 2 J 7 / ( , l ) = g . D 

DEFINITION 3.3.2. Let {X,D) he a pair in a convex set C a E. We say 

that a mapping f G J/'^ ( X , C ) is transverse or essential, provided every 

g^^j) ( ^ ' ^ ) ^^^^ ^^^^ f\D ~ S\D ̂ ^^ a fixed-point. A mapping, which is 

not transverse, is called inessential. 

Remark. In geometric terms, a compact mapping/: X-^ C is transverse, 

if the graph offo does not meet the diagonal AaXxC but the graph of 

every compact mapping g: X->C that coincides with/on D must cross (i.e. 

traverse) the diagonal A. 

The following result [See (Dugundji, J. and Granas, A., [1])] is a 
characterization of inessential mappings in terms of homotopy, and it 
implies the topological transversality principle. 
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THEOREM 3.3,2. Let {X,D) be a pair in a convex set C ^ E. The 

following conditions on f G :7f̂  (^?C') are equivalent: 

(1) fis inessential, 
(2) there is a fixed-point free mapping g G J/*^ ( ^ ? C ' ) such that f - g 

in J{j,{X,C), 

(3) f is homotopic in ^ ^ {X,C^ to a fixed-point free f e ^ ^ (^9^) 

by a homotopy, keeping / ^ pointwise fixed. 

Proof. 
(1) => (2) Let g G iH'jy (X, C) be a fixed-point free mapping such that 

f\D ^ S\D' T̂ he compact homotopy 

H{xj) = tg{x) + {\-t)f{x). 
joins/to g and is fixed-point free on D. 

(2) => (3) Let H: X X [0, I] ^ C he a. compact homotopy from g t o / (i.e., 
//(•,0) = g and 7/(•,!) = / ) , such that Hi^^^iA is fixed-point free for each 

t e [0, 1]. We consider the set D^ =\^x:x = H[x,t) for some te[0,\^ . 

There is no loss of generality in supposing that Do is non-empty. Then Do is 

a closed subset of the compact set / / (Xx[0 , l ] ) , so is compact and 

therefore closed in X. Since DnD^ = ̂  , because H is fixed-point free on 
D, then by Theorem 1.7.2 (Urysohn's Lemma), there is a continuous 
function ^ : X ^ [ 0 , l ] , with '¥{D) = \md'¥{D,) = 0. We define a 

mapping/* by / (x) = ^ ( x , T ( x ) ) . Obviously,/* is compact, it is also 

fixed-point free. Because, if / (jc) = 7f (X ,^ ( JC) ) = X we have x e Z)o, we 

deduce that ^(x) = 0 and x = H[x,0) = g(x), which contradicts the 

assumption that g is fixed-point free. 

We consider the compact homotopy //* (x, /) = / / (jc, 1 - / + /4^ (x)) 

to show that, /* is homotopic to / keeping / ^ pointwise fixed. Then we 

have 

H.{x,0) = H{x,\) = f{x)andH.{xA) = H{x,'¥{x)) = f{x). 
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Moreover, ^(jc) = 1 for all x e D, therefore H,[x,t) = H(x,l) = f[x), 

for all t e [0,l]. For each t e [0, 1], H*(x, t) is obviously fixed-point fi-ee on 

D. 
(3) ^ (1) The proof of this implication is elementary. n 

An immediate consequence is the following important result, due to 
A. Granas. 

THEOREM 3.3.3 [Topological transversality]. Let {X, D) be a pair in a 

convex set C cz E andf, g two mappings in Jf̂  i^^^) ^^^^ ^^^^ f - S ^^ 

H^ (X, C). Then, fis essential if and only ifg is essential n 

We note that the concept of topological transversality, w ĥich is invariant 
under fixed-point free deformations on D is also invariant under small 
modifications of/on D. This fact is presented in the following result. 

THEOREM 3.3.4. Let {X, D) be a pair in a convex set C c: E. If 

/ G J/"^ i^^C) i^ ̂ ^ essential mapping, then there exists an e> 0 such that: 

(1) any compact mapping g : X ^>' C satisfying ||g(x) - / ( ^ ) | | < ̂  for 

allx G D, is in Jf̂  i^^^) ^^d 

(2) g is essential. 

Proof. Because / is compact and fixed-point fi-ee on Z), there is an 6: > 0 

such that llx - / ( ^ ) | | ^ ^ for all x e D. Ifg ',X^>C satisfies the inequality 

\s {^) ~ f (•^)|| < ^ far ^11X e D, 

then g is fixed-point free. Indeed, if for some :co,̂ (xo) = XQ we have 

||jCo - f{xQ )|| < ̂  ? which is impossible. By Proposition 3.3.1 we have f - g 

in J/'^ (-^5^'). Now, the theorem follows from Theorem 3.3.2. n 

THEOREM 3.3.5. Let Ca E be a convex set and U an open subset of C. 

Let \U,dU\ be the pair consisting of the closure of U in C and the 

boundary of U in C. Then, for any XQ e C, the constant mapping f{x) = XQ, 

for any X e U is essential in Jf̂ ^ iu.Cy 
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Proof. Indeed, the theorem is proved, if we show that any compact mapping 

g\ U -^ C with ^^U) = Xo has a fixed-point. Let g* be the extension of g to 
C defined by 

[jCo ifx^CW. 

The mapping g* : C ->C is (continuous) compact and by Schauder 's fixed 
point theorem [the general version given in (Dugundji, J, and Granas, A. [1] 
Theorem 3.2 pg. 57)] it has a fixed point jc*, which must be in U. Therefore, 
wehaveg(x*)=x*. n 

Now, we apply the transversality theory to the study of equation 
fix) = X, where / is compact and we obtain the Leray-Schauder nonlinear 
alternative. 

THEOREM 3.3.6. Let C (Z.E be a convex set, UczC an open subset (in U) 

such that 0 e U. Then, each compact mapping/: U -> C has at least one 
of the following properties: 

(1) fhas a fixed point, 
(2) there exist an element x* e dU and a real number /I* e ]0, 1[ such 

thatx* = A.*fix*). 

Proof. If property (1) is satisfied, there is nothing to prove. Therefore, we 

can assume that f^^ is fixed-point free. Let g : U -^ C be the constant 

mapping g(x) = 0, for any x e U .We consider the compact homotopy H : 
U X [0, 1] ^ C defined by H(x, t) = tfix). The homotopy //(•,•) joins g with 

/ Either this homotopy is fixed-point free on dU or it is not. If it is fixed-
point free, then by Theorem 3.3.3 and Theorem 3.3.5 we find that/must 
have a fixed point. If the homotopy is not fixed-point free on (^, then there 
is an X* G <^ with x^ = / l / ( ^* ) and X* E [0, 1]. We observe that /I* ̂  0, 
because 0 € oU 2inA X* ^ \, because /^^ has been assumed to be fixed-
point free and the proof is complete. n 

Remark. In Theorem 3.3.6, the closure and the boundary of U are with 
respect to C 
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3.4. Some classes of mappings and Leray-Schauder 
type alternatives 

We present in this section some Leray-Schauder type alternatives 
for mappings, which are not completely continuous fields. 

Let (//,(•,)) be a Hilbert space and K cz H a. closed pointed 

convex cone. For any real number r > 0 we denote iK̂^ = |x G JK̂  : ||x|| < r j . 

We denote by a the Kuratowski measure of noncompactness, i.e., for any 
bounded set BaH, 

a{B)^'mi\ 

(See Chapter 1). We recall that a mapping/: K^.-^ His a-condensing (see 

also Definition 1.5.4) if / is continuous, bounded and a ( / ( 5 ) ) < a : ( 5 ) for 

any B a Kr, bounded and such that oiB) > 0. It is known that any 

completely continuous mapping and any contraction are 6ir-condensing. For 

any r > 0, we denote by Pr the radial projection of K onto Kr, i.e., 

Pr: K-^ Kr and 

[ X, if \x\ < r, 

rx 

[JB. for some meN and some B. withdiam(^B.)<s 

Pi")' 
, : . ' / « > ' • . 

Since a(^P^ (5)) <a[B) for any bounded set B c: K,V/Q have that f o P^ is 

6)r-condensing if/: M^ -> Kis a-condensing. Indeed, in this case we have 

a{foP^[B))<a [P^ (B)) <a{B), for any bounded set BczK 

Let DaHhea. closed convex set and/ D ^^ Ha mapping. The set 

Ij,{x) = x + {X{y-x):X>0,y^D} = [{\-X)x + Xy\X>(),y^D}, 
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is the inward set of x G Z) with respect to D. We say that the mapping/is 

weakly inward if / (jc) e /^ {^x) for every x G D. It is known that/is weakly 

inward if and only if 

pix^t{f{x)-x),D) 
Hm —^ = 0, for all XGD, 

where p denotes the distance to D. 

The following results are well known. 

THEOREM 3.4.1. Let ( ^ , <•,•)) be a Hilbert space, D ^ H a closed 

bounded convex set and f \ D ^y H a mapping. Iff is a-condensing and 
weakly inward, then f has a fixed point. 

Proof. This result is valid in an arbitrary Banach space and a proof is given 
in (Deimling, K., [1], Theorem 18.3). n 

THEOREM 3.4.2. Let ( ^ , <•,•)) be a Hilbert space, D cz H a closed 

bounded convex set andf: D -^ H a continuous mapping. If the following 
assumptions are satisfied: 

(1) | | / (x)| < c for any xeD , where c is a positive real number, 

(2) a ( / (5)) < ka [B) for some k>0 and all subsets BaD, 

pix^-tf{x),D) 
(3) lim—^ -^^—^- = Oforallxe^, 

t^O, f 
W = f{u), 

then the initial value problem { , , has a solution onJ= [0, a] for 
\u{Q) = xeD 

each a > 0. 

Proof. For the proof of this result, the reader is referred to (Deimling, K., 
[1], Lemma 18.3). We note that this result is valid in any Banach space, n 

The following fixed-point theorem is due to K. Deimling. 

THEOREM 3.4.3. Let (7/, (•,•)) be a Hilbert space, K a H a closed 

pointed convex cone and f \ K^ -> H an a-condensing mapping. If the 

following assumptions are satisfied: 
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(1) ifx e dK, \\x\\ <r,x ^ IfC andx\x) = 0, then x (/(jc)) > 0, 

(2) / [x) ^ Xx for all X> 1 and all x with \\x\\= r, 

then f has a fixed point {in Kr). 

Proof. We follow the ideas of the proof given in (Deimling, K., [2]). It is 
known [see (Deimling, K., [2])] that assumption (1) implies that f ^ P^ is 

weakly inward on K. We can show that there exists ^ > 1 such that 

/ o /J. (jc)|| < ̂  - 1 on ^ Hence it is enough to show that / o P̂  is weakly 

inward on Ks, because applying Theorem 3.3.1 we obtain a fixed point in 

Ks for f "^ P^, which must be in Kr, a fact implied by assumption (2). 

Indeed, since / ^ /J. is weakly inward on K, we have 

pfx + / ( /oP^ [x)-x^,K) = o[t)ast-^0^ for every x^K^, 

(We recall that p (7, C) = inf ^y - z||: z G C| ). Because 

^ ( ( / ° Pr - ^)(^)) ^ ^oc{P) for all bounded sets B CL K, the initial value 

problem 

\u'^foP^{u)-u, 

[w(0) = X G ^ 

has a solution w in ^ on / = [0, 1]. This fact is obtained by applying 

Theorem 3.4.2. This solution cannot leave Ks, since we have 

{f <^P\x)-x,x) = {f o?\x),x)-\x\ <{5-\)d-d-" ioxM = 8. 

Hence u{i) e Ks and M (r) = x + / ( / o P̂  (x) - x) + o {t) last-^O^ imply 

p(x + t{foP^{x)-x),K,) = o{ty,ast^O^ 

and therefore f ° P, (x) e I^- (x), that is f °P, is weakly inward on Kg., n 

Remark. Theorem 3.4.3 is valid in an arbitrary Banach space (Deimling, K. 
[2]). 

From Theorem 3.4.3 we obtain the following alternative. 
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THEOREM 3.4.4 [Leray-Schauder type alternative]. Let (^,< , )) be a 

Hilbert space, K cz H a closed pointed convex cone and h : H ^> H a 

mapping such that h{x) = x -T{x), for all x e H, where T: H -^ H is an a-

condensing mapping. Then, for any r > Q, for the mapping f{x) = P^x -

h{x)] at least one of the following two situations is satisfied: 

(1) h has a fixed-point in Kr, 

(2) there existx* with \\x*\\ = r and A* e]0, \[ such thatx* = A^f(x*). 

Proof. Since/is continuous, bounded and 

a[P^[T{B)])<a{T{B))<a{B) for all 5 c: ^ , with 6<5) > 0, 

we deduce that / is 6jr-condensing. The theorem is now a consequence of 
Theorem 3.4.3. n 

Now, we consider mappings of the form f(x) "= x - T(x% where 
T: H^> Hissi nonexpansive mapping, i.e., for any x\, 2̂ e / /we have 

\\T{X,)-T{X,)\\<\\X,-X,\\, 

We say that a mapping g: H -^ H is semi-closed if its graph is sequentially 
closed in the product of the weak topology on //with the norm topology on 
//. Because a Hilbert space is a uniformly convex Banach space, it is known 
that any mapping of the form^^) = x - T(x), with T nonexpansive is demi-
closed (Penot, J. P., [1]). This means that if {jc^j^^e// is weakly 

convergent to an element XQ e Hand |x^ -T{x^ ) | is convergent in norm 

to an element yo e //then jco - T(xo) = yo. We show that Theorem 3.4.3 is 
valid also for nonexpansive mappings. 

THEOREM 3.4.5. Let ( ^ , (•,•)) be a Hilbert space, K c: H a closed 

pointed convex cone and / : Kr ^^ H a nonexpansive mapping. If the 

following assumptions are satisfied: 

(1) // JCGdK,\x\<r,x G JC* andx (x) = 0,thenx* ( / ( ^ ) ) ^ 0 , 

(2) / ( x ) ^ /I{x) for all X>\ and all x with\x\ = r, 

then f has a fixed point (in KJ. 
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Proof. We consider a sequence of real numbers {̂ „}„̂ ^ ^]^'^[ ^^^^ ^^^^ 

\\ma^ = 1 and for any n e Nthe mapping / (^) = ^nfi^) • The mapping/^ 

is a contraction and consequently it is 6i:-condensing. We can show that, for 
any « G A^, the mapping/, satisfies the assumptions of Theorem 3.4.3. 

Therefore, for any n G N, there exists an element x^ e K^ such that 

^n "^^nfi^n)' Bccausc K^ is a bounded set and 7/is a reflexive space, we 

have that the sequence {x„}^^^ has a subsequence ixl , weakly 

convergent to an element JC* G Kr. We have also, 

\U. - fi^n ) == k« f\x. ) - f(x„ )\\ = \^. -Mf\X. ) , for any A:GÂ . 

Because / is nonexpansive it is bounded and consequently there exists a 
number M> 0 such that 

\Un ~ fiXr,)\\=\^r. ' M f i ̂ r, lil ^l^r, " 1M^ 5 II "it -̂  V "k / | | I «/t I P V '̂ ^ / | | \ "k I ' 

which implies that lim x„ ~ / ( ^ « ) - ^ - Now, using the fact that the 
A^—>oo II * \ * / | | 

mapping g(x) = x -fix) is demi-closed we deduce thatX^*) = x*. n 

Remark. From Theorem 3.4.5 we obtain some similar results proved in 
(Frigon, M., Granas, A and Guennoun, Z. E. A., [1]). 

From Theorem 3.4.5 we obtain the following alternative. 

THEOREM 3.4.6 [Leray-Schauder type alternative]. Let ( / / , ( , ) ) be a 

Hilbert space, K (z. H a closed pointed convex cone and h : H ^> H a 

mapping such that h(x) = x -T{x), for any x e H, where T : H -^ H is a 
nonexpansive mapping. Then for any r > 0 the mapping 

f (x) = Pji^\_x- h^xYj has at least one of the following two properties: 

(1) fhas a fixed point in Kr, 

(2) there exist x* with ||x*|| =̂  r and A* G ]0, 1 [ such that x^ = Xf (A:* ). 

Proof. The mapping / ( x ) = i ^ [x - h^x)^ = P^ [ r ( x ) ] is nonexpansive. If 

/ h a s a fixed point in Mr the proof is complete. Suppose the/has no fixed 
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point in Ky. If property (2) is not satisfied, we have that assumptions (1) and 

(2) of Theorem 3.4.5 are satisfied which implies that/has a fixed-point in 

Kr and a contradiction follows. n 

Remark. A variant of Theorem 3.4.5 was proved in 1974 in (Gatica, J. A. 
and Kirk, W. A. [1]). 

Now, we consider mappings that are demi-continuous and pseudo-

contractant. Let (//,<•,)) be a Hilbert space. We recall that a mapping 

/ : H -^H is monotone if for any x, y e H V^Q have 

( / (^)"~ / {y) 9 -̂  - y) ^ 0 • We say that a mapping T : H -^ H is pseudo-

contractant if the mapping f[x) = x-T{x) is monotone. We need to 

introduce some notations. If Z is a linear operator defined on a vector 
subspace of H, we denote by D{L) the maximal domain of definition of L. 
We have: 
L\D{L)^H^H. 

Af {L) = |X G / / : Z (X) = 0 | = Ker (Z) the null space. 

7Z (Z) ^\y^H\L{x)-y for some jc G Z/^j. The set Td^L) is the range of Z. 

We denote by L the class of linear operators Z .* D{L) a H ^y H such that 

>;^(Z) = [yl/'(Z)] (the orthogonal complement of yl/1(Z).). We suppose 

that, for each L ^ L, D(L) is dense in H. Obviously we have that I e L and 

O e L (where I is the identity operator and O is the null operator). If Z G £ 

we denote by P the orthogonal projection onto A/'{L\ and by /C the 

continuous inverse of the restriction of Z with respect to D{^L)n7l{^L). 

We denote by ^ the class of finite dimensional subspaces of yl/1(Z). For any 

F G ^ we denote by Pf the orthogonal projection onto F and we put 

Hp =7d[l-P + Pj,). The following notation was defined in (Willem, M., 

[1]). If {̂ „}„̂ ^ is a sequence in H, we denote by {^„}„^^—'^x* its 

convergence with respect to the norm given on H and by {x„}^^^ —^^^^x* 

its convergence with respect to the weak topology, if this sequence is 
respectively convergent to an element x* G H. 
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DEFINITION 3.4.1. We say that a mapping T: H -> H is pseudomonotone 
with respect to a linear operator L^ L if the following conditions are 
satisfied: 

(i) if 
P{x„)-^^^x„{l-P){x„)^^y,and 

limsup(r(x„),x„ - (x . +_y,))<0, 

then{T{x^),x^-{x.+y^))-^QandT{x^)-^^^T{x.+y.). 

(ii) "Kil -P)T is a completely continuous mapping, 
(iii) (/ - P)T is a bounded mapping, i.e., if M a H is a bounded set, then 

[{I-P)']{M) is bounded, 

(iv) T is demicontinuous, i.e., {^n}nsN—^^^* implies 

(v) for any F e T the restriction ofPpT with respect to Hp is a bounded 
mapping. 

Examples 
(1) Any completely continuous mapping is pseudomonotone with 

respect to the identity operator /. 
(2) T. H^> H is pseudomonotone with respect to the null operator O, if 

and only if 7 is pseudomonotone in Brezis's sense [See (Brezis, H., 
[2]) and demicontinuous. 

(3) Any monotone and demicontinuous mapping is pseudomonotone 
with respect to the null operator O 

(4) Other examples of pseudomonotone mappings with respect to a 
linear operator / G Z are considered in (Willem, M., [1]) 

Remark. The pseudomonotonicity defined by Definition 3.4.1 is a 
generalization of the classical pseudomonotonicity defined in (Brezis, H., 
[2]). 

The following result is due to M. Willem. 
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THEOREM 3.4.7. Let (^ , (- , ) ) be a Hilbert space TQ : H-^ Ha mapping 

and Q (z H an open bounded set such that 0 e CI, If the following 
assumptions are satisfied: 

(1) Jo is pseudomonotone with respect to a linear operator L ^ L, 
{2) for any // G ]0, 1[ and any XG D{L) r^ d Cl we have 

L (x) + (1 - //) P \x) + juT^ (jc) ^ 0, 
then for any AG ]0, 1 [ there exists x G Q such that 

L {x) + {\-X)P (jc) + XT, (x) = 0. 

Proof. A proof of this result is in (Willem, M., [1]). We note that the proof 
is long and it is based on several intermediate results. n 

The following result is also due to M. Willem. 

THEOREM 3.4.8. Let (//,(•,)) be a Hilbert space and T : H^ H a 

demicontinuous pseudo-contractant mapping. Let CI a H be an open 
bounded set such that 0 G Q. If for any A G ]0, 1[ and any x G dCl we have 
X ^XT{x\ then Thas at least a fixed point in Q. 

Proof. We denote hy TQ "^ I - T. The mapping TQ is monotone and 
demicontinuous. Because for any A G ]0, 1[ and any JCG ^ Q we have that 
X ^XT{x) we deduce that, for any A G ]0, 1 [ and any XG ^ Q we have 

(\-X)x + XT,[x)^Q. 
We have also that To is pseudomonotone with respect to the null operator O. 

Let {\]^^j^ be a strictly increasing sequence in ]0, 1[, convergent to 1. 

Applying Theorem 3.4.7 for any n e N^WQ obtain for any n e Nan element 
x„ G Q such that 

{l-\)x,^AJ,{x^) = 0, 
1-/1 

If we denote a^ = , for any n e N, then from the last relation we 

obtain 

Using the fact that TQ is monotone we deduce that for any n, m e N-WQ have 

We observe that the sequence {<3r„}̂ ^̂  is decreasing. By an algebraic 

computation we can show that for any w < « we have 
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(a -\-a \\x -jc II -\-{a —au\x II — IIJC II \ = 2ia x -a x ^x —x\, 
\ m nj\\ m n\\ \ m n;\\\ m\\ \\ n\\ J \ m m n n^ m n j 

(3.4.2) 

From (3.4.2) we obtain that the sequence {||̂ „||} is increasing. Because 
this sequence is bounded it is convergent. From (3.4.1) and (3.4.2) we 
deduce that for any m, n satisfying m>nv^Q have 

II ||2 ^^m~^n l\\ ||2 || ||2 \ . || ||2 11 ||2 

which implies that {̂ ĵ̂ ^̂  is a Cauchy sequence. Therefore {̂ „}„ĝ  is 

norm convergent to an element JC* e Q. Then we have 

{̂ 0 (^„)}„,^ - ^ ^ 7 ; (^.) and because {T; (X„)}^^^ - ^ ^ 0 , we have that 

X* = 7(x*) and the proof is complete. n 

For applications to complementarity problems and to variational 
inequalities defined on unbounded closed convex sets, it is interesting to 

know under what conditions the mapping /(JC) = P^ [jc - / ( x ) ] is pseudo-

contractant where ^ c / / is a closed convex cone or an unbounded closed 

convex set and / : / / -^ / / is a given mapping. In this sense we have the 
following result. 

PROPOSITION 3.4.9. Let (//,<•,•)) *^ ci Hilbert space, Ka Ha closed 

convex cone or a closed convex set and f \ H ^^ H, a mapping. 
If fix) = X - (p{x,), where cp : H ^> H is non-expansive, then the mapping 
O (x) = P^ [x - / (x)] is pseudo-contractant. 

Proof. Indeed, the mapping ^(x) = x - 0(x,) is monotone, if for any 
xi,X2 e / /we have 

= {x, -x„x, -X2)-(x, -x„P^[x, -f{x,)]-P^[x, -f{x,)])>0, 

which is equivalent to 

(x, -x„P^[x, - / ( x , ) ] - P ^ [ x , -f{x,)])<\\x, -x,f. (3.4.3) 

From our assumptions we have. 
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^x,-xj^\(p{x,)-(p{x^)\<\x,-x^f, 

which implies that (3.4.3) is true and the proof is complete. n 

From Theorem 3.4.8 we deduce the following result. 

THEOREM 3.4.10 [Leray-Schauder type alternative]. Let ( / / , ( , ) ) be 

a Hubert space, QczHa bounded open set such that OeQ.IfT.H-^His 
a demicontinuous pseudo-contractant mapping, then at least one of the 
following situations is true: 

(1) T has a fixed point in Q., 

(2) There exist K ^ ]0,l[ and x^ e 9Q such that jc, - KT{x^^, 

Proof. The theorem is a direct consequence of Theorem 3.4.8. n 

COROLLARY 3.4.11. Let (//,<•,)) be a Hilbert space, Kcz Ha closed 

convex cone or a closed convex set andf: H ^ H a continuous mapping. 

Let Q d H be a bounded open set such that 0 e CI. If f{x) = x - ^ (x ) , 

where cp.H^^H is non-expansive then for the mapping 

O (x) = P^ [x - / (x) J at least one of the following situations is true: 
(1) ^ has a fixed point in Q, 
(2) there exist K e ]0, l[ and x^ e 9Q such that x, = /^O (x*). 

Proof. The corollary is a consequence of Proposition 3.4.9 and of Theorem 
3.4.10. D 

Remark. We note that Theorems 3.5, 3.6, 3.8 and 3.9 proved in (O'Regan, 
D., [1]) are Leray-Schauder type alternatives and all are particular cases of 
Theorem 3.4.10. 

3.5 An implicit Leray-Schauder alternative 

We indicated that in this book we will develop a topological method based 
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on Leray-Schauder type alternatives applicable to the study of solvability of 
complementarity problems. This method can be extended to the study of 
solvability of variational inequalities. The unification of both theories is 
realized by an implicit Leray-Schauder alternative. For this aim we present 
in this section an implicit Leray-Schauder alternative. The following result, 
which is valid in locally convex spaces, is the most general form of 
Schauder's fixed-point theorem, proposed by R. Cauty in 2001, as a 
solution to Schauder's conjecture. [See (Mauldin, R. D. [1])] 

THEOREM 3.5.1. Let E(T) be a topological Hausdorff vector space, C czE 
a convex subset andf: C -^ C a continuous mapping. Ifj{C) is contained in 
a compact subset ofC, then f has a fixed point. 

Proof. It seems that the proof of this result proposed in (Cauty, R. [1]) has a 
gap. T. Dobrowolski remarked this fact in the international conference 
"Fixed Point Theory and its Applications", August 01-05, 2005, Stefan 
Banach International Mathematical Center, Poland. n 

Waiting a new proof, if such proof exists for Theorem 3.5.1, we 
present Theorems 3.5.2, 3.5.3 and 3.5.4 in a general Hausdorff topological 
vector space. We note that Theorems 3.5.2, 3.5.3 and 3.5.4 are valid in any 
locally convex topological vector spaces. 

Let E{T) be a Hausdorff topological vector space. We recall the 
following notions. If ^ and B are subsets of E, we say that A absorbs B if 

there exists /IQ G M such that B cz M whenever \X\ > |/?o|. We say that a 

subset [/ c £• is radial if U absorbs every finite subset of E, We say that U 
is circled if W aU whenever |/l| < 1. We denote by (^ (respectively by 
intU) the boundary (respectively the interior) of U. 

THEOREM 3.5.2 [Rothe type]. Let E(T) be a Hausdorff topological vector 
space, in particular a locally convex space and B (z E a closed convex 
subset such that the zero ofE is contained in the interior ofB. Let h: B ^y E 
be a continuous mapping with h(B) relatively compact in E. Lfh(^) cz B, 
then there is a point x* e B such that h(x*) == x*. 

Proof. First we recall that, because E(T) is a Hausdorff topological vector 
space, we have that the topology r possess a zero-neighborhood base U such 

that any F e W is radial and circled (Schaefer, H. H., [2], Theorem L2). 

Then, because int ̂  c: ̂  , we have that B is radial. Let ps the Minkowski 
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functional of 5, i. e., for any x e E p^ (^x) = \nf {Ji>0:xEAB] , The 

functional/?5 is positive homogeneous. Indeed, first/^^(O) = 0. Let xe E be 
arbitrary and A>0. We have, 

PB(^^)-inf {// >0:/IJCe JUB] = inf | / / >0:XG A'^JUB^ 

= inf {/l//̂  : X e JU^B] = A/?̂  (jc). 

Now, we show that p^ is continuous. The continuity of p^ is a 

consequence of the following facts. Let 6" > 0 be an arbitrary real number. 
From (Schaefer, H. H., [2], Theorem 1.2) there exists a radial and circled 
zero-neighbourhood U such that OGUci'mtB(^B. Let Pu be the 
Minkowski functional of U. We have Pg < pu. Because B is convex, p^ is 
subadditive and we can show that for any x, y e E we have, 

PB{^)-PB{y)^PB{x-y)^Pu{^-y) 
and 

PB {y) - PB i^)^ PB {y - ^)^ Pu {y - ^) ' 

Because U is circled p^ (^x- y) = py (JK - JC) . If JC, y are such that x -y €. 

sU, then we have, 

\pB{^)-PB{y)\^^^ 
which implies the continuity of p^ . 

Now, we consider the mapping g: E ^ E defined by 

g(x) = rmax|l,/?^ (^)}1 'X,for any xeE. 

The mapping g is continuous and g(E) e B. We define the mapping 
/ : B^^ B hy f = goh. The mapping/is continuous andX^) is relatively 
compact in E. By Theorem 3.5.1 there exists an element x* e B such that 
J(x*) = X*. We have two possibilities: 

(i) X* G intS or 
(ii) X* e d B. 

If (i) holds, then we have 

\>Ps{x.) = Ps{f{x,)) = [max[lp,{h{x,))]^ p,{h{x,)), 

which implies that we must have p^ (/^(JC* )) < 1 and consequently 

f{x,) = g{h{x.)) = h{x,). 

Therefore h[x^) = x,. If (ii) holds, then we have 
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*̂ =f{^*) = \j^^^[^^PB{^{^*))]\ 'h{x,) 
and 

max{l,;7^(//(x,))}] - p,(h{x.)) = \. 

If pg (/z(x*)) < 1 then 1 = /?^ (/z(x*)) < 1 which is a contradiction. Thus we 

must have /?^ (//(x*)) = l (since //((®) e B). But p^ (/2(A:*)) = 1 implies 

/ (x,) = /? (x,) , that is we have again /z (jc,) = jc, and the proof is complete. 

Remark. Our Theorem 3.5.2 is a generalization to an arbitrary Hausdorff 
topological vector space of a similar result proved in 1972 in (Potter, A. J. 
B., [1]) in a locally convex topological vector space. The next result is an 
implicit Leray-Schauder type theorem in an arbitrary topological vector 
space with respect to a closed convex set B with 0 G int 5 c: 5 . 

THEOREM 3.5.3 [Leray-Schauder (implicit form)]. Let E(f) be a 
Hausdorff topological vector space, in particular a locally convex space, 
B d E a closed convex set such that 0 G intB. Let f\ [0, 1] x B -> E be a 
continuous mapping ([0, 1] x B is endowed with the product topology). The 

set / ( [0 , l ] X 5) is supposed to be relatively compact in E. If the following 

assumptions are satisfied: 

(1) f (t,x)^ X for all X e SBandte [0,1], 

{2)f{[Q]xdB)czB, 

then there is an elementx* e Bsuch that f (l,x^) = x^. 

Proof. For any n e NWQ consider the mapping/^: B -> E defined by 

xW= 
/ 

\-PB{X) 

f 1, 
\-s. 

PB{X) 
,if\-s„<p,{x)<\. 

n J 

where /"^ is the Minkowski functional of 5 and {ff„}„̂ ^ is a sequence of 

real numbers such that lim £•„ = 0 and 0 < £•„ < — for any n&'N. We observe 

that for each ne iVthe mapping/, is continuous on B and/)(5) is relatively 
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compact in E. From assumption (2) we have that fn{3B) a B, and the 
assumptions of Theorem 3.5.2 are satisfied. Then for each «G A/̂  there exists 
an element Un e B such fn(Ufj) = u„. 

We suppose that an infinite number of the elements Un satisfy 
l-s„<p,{u„)<\. (3.5.1) 

Because fn(B) is relatively compact and considering the definition of 
mappings/,, we have that {w„}̂ ^̂  is contained in a compact set in E. It is 

known that any compact set is countably compact [(Gemignani, M. C. [1], 
page 179)] and every countable infinite subset of a countable compact set 
has at least an accumulation point [(Gemignani, M. C. [1], page 179)]. We 
consider the sequence {t„}^^^ defined by 

We have that {^„}„^^^ [0, 1]. Considering eventually a subsequence, we 

suppose that limt^=te[O,l]. The corresponding subsequence of [u^}^^^ is 

denoted again by [u^] and it satisfies the inequalities (3.5.1). From (3.5.1) 

we have that lim pg(u) = l. 

Let u* be an accumulation point of {w„}^^ .̂ We know that {u„]^^^ 

has a net converging to u*. Using this fact we can show that (/, w*, u*) is an 

accumulation point of the sequence t — 
PBM 

in[0, \]xExE. 

Considering the net convergent to w*, the continuity of/and the equations 

/ t - ^ -u^ for any n e N, WQ obtain X^. W*) = u*. This fact is a 
PBM^ 

contradiction of assumption (1). Indeed, PB{^*) = ^ (since 

limPg (w.) = 1, {u. ].^^ being a net of [u^ }^^^ convergent to u*% and u*e 3B. 

Therefore, it is impossible to have satisfied (3.5.1). Then (3.5.1) can be 

satisfied only for a finite number of elements of the sequence {w }̂„̂ -̂

Hence, we can suppose that 
;?5 (i/„) < 1 - ^„, for all UGN. (3.5.2) 
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Since lim(l-6'„) = l , selecting an accumulation point u* for {w„}̂ ^̂  and 

using a net of {w„}̂ ^̂  convergent to w*, we obtain by continuity and 

considering the equations / u^^neN that / ( l ,w,) = w,. By 

this conclusion the proof is complete. 

Remark. Theorem 3.5.3 is a generalization to an arbitrary Hausdorff 
topological vector space of a similar result proved in (Potter, A. J. B. [1]). 
We note that the proof given in (Potter, A. J. B. [1]) has some inaccuracies. 
(The notion of accumulation point is badly used.) 

THEOREM 3.5.4 [Implicit Leray-Schauder type alternative]. Let E{T) 
be a Hausdorff topological vector space, in particular a locally convex 
space, B d E a closed convex set such that 0 e intB. Letf: [0, 1] x B -^ E 
be a continuous mapping such that f MO,l] x Bj is relatively compact in E. 

We consider an [0, 1] x 5 the product topology. If the following 
assumptions are satisfied: 

( l ) / ( {0}xa5)c i5, 

(2) / (O, x) 1^ jc, for any xedB, 

then at least one of the following properties is satisfied: 
(i) there exists x* e B such thatf{\,x*) = x*, 
(ii) there exists (/I,, jc,) E ]0, 1[ X dB such that / (/I, x*) = x,. 

Proof. The theorem is an immediate consequence of Theorem 3.5.3. D 

3.6 Leray-Schauder type alternatives for set-valued 
mappings 

In many applications of complementarity problems or of variational 
inequalities, we need to replace a single-valued mapping by a set-valued 
mapping. The reason is the fact that, in many practical problems, the 
mappings used in mathematical modelling are not single-valued and the 
interest is to study, for example complementarity problems or variational 
inequalities w îth set-valued mappings. It is clear that the set-valued 
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mappings are also related to the presence of perturbations, to approximate 
definitions of values of functions or to uncertainty. While many results have 
been obtained for complementarity problems defined by single-valued 
mappings, few results have been published for complementarity problems 
defined by set-valued mappings. In this book we will show that the Leray-
Schauder type alternatives can be applied to the study of complementarity 
problems defined by set-valued mappings. To do this, we need to give a 
Leray-Schauder type alternative for set-valued mappings. This is the aim of 
this section in which all topological vector spaces are assumed to be real 
Hausdorff spaces. 

Given a set X, we denote by HX) the family of all non-empty 

subsets of X. Let E and F be topological vector spaces, and X cz E, Y cz F 
non-empty subsets. We recall that the boundary, the interior and the convex 
hull of the subset X are denoted by 3X, 'mi{X) and conv{X). Let/ : X-> 7 be a 
set-valued mapping (i.e.,/: X^> HX)). 

DEFINITION 3.6.1. We say that the set-valued mapping f is upper 

semicontinuous (u.s.c.) on X if the set | J C G X : / ( X ) C I FJ is open in X, 

whenever V is an open subset in Y. 

The following result is well known: / / / \ X ^^ Y is (u.s.c.) and fix) is 
compact for every x ^ X, then, if D a X is compact we have that 
f{D) = [Jf{x) is compact (Berge, C, [1]). From this result we deduce 

x&D 

that i f / i s a set-valued mapping withX^) compact for any x e Xand there 
exists a compact set D such that f{D) is not compact, then/is not (u.s.c). 
Obviously, if/is single-valued then the upper semicontinuity is the classical 
continuity. As for single-valued mappings, we say that a set-valued 
mapping/: X-> 7, is compact iff(X) is relatively compact in Y. We recall 
that a single-valued mapping (p : X -^Y, is a selection of a set-valued 
mapping/: X-^ Y, if for any x e X, (p(x) efx). 

We recall that a Hausdorff topological space Q is a completely 
regular space, if for each closed subset A <z Q and each Xo e Q\ A there 
exists a continuous function ^//:Q^^[0,l] such that I//{XQ)= 1 and 

i//(^x) = 0 for any x e A.ltis known [see (Schaefer, H. H. [2]), page 16] that 
any Hausdorff topological vector space is completely regular. A set D in a. 
topological space Q is called a neighbourhood retract if and only if, D is a 
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retract of some of its neighbourhood U,{D a U a Q). This is equivalent to 
being able to extend the identity mapping i : D -^ D (i.e., i{x) = x for any 
X e D) to 3, continuous mapping r. The mapping r is called a retract. It is 
known that every closed convex set in a Banach space E is a neighbourhood 
retract. By an ANR we mean a compact metric space Q with the universal 
property that every homeomorphic image of Q in a separable metric space 
is a neighbourhood retract. The prototype for ANR spaces, are compact 
convex sets in Banach spaces. 

Let (Q, <) be an ordered set. We suppose that Q is a lattice with a 
minimal element denoted by 0. We recall that a function O \P{^E) ^^ Q is 
a measure of noncompactness (see Chapter 1) if the following conditions 
hold for any Xi, J^ G 7\E)'. 

{\)^{^v{X,)) = ^{X,), 

(2) O(Xj) = 0 if and only ifX\ is precompact, 

(3)cD(X,uX,) = max{(D(Xj,(D(X,)}. 

We recall that a subset D of a Hausdorff topological vector space is 

precompact if and only if the closure of D in the completion E oi E is 

compact. A set-valued mapping f\ X ^ Y is said to be ^-condensing if for 

any subset D of X with 0 ( / ( i ) ) ) > 0 ( i ) ) we have that D is relatively 

compact. 

There exist ^-condensing mappings f \ X ^^ E only if for the 

subsets of X precompactness coincides with relative compactness. A 

compact set-valued mapping/: X^> £" is ^-condensing if either the domain 

X\s complete, or if £" is quasicomplete. (We recall that a topological vector 
space E is quasicomplete if every bounded closed subset oi E is complete.) 

Obviously, every mapping defined on a compact set is necessarily $-

condensing. 

Let E{T) be a locally convex topological vector space. We suppose 
that E has a fundamental system Z//(0) of convex symmetric neighborhoods 

of the origin. The following notions are fundamental for the main result of 
this section. 
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Let X and 7 be non-empty subsets of £. 

DEFINITION 3.6.2. If f : X-^ Y is a set-valued mapping and if 

U, V e U(0), then in this case we say that a function cp : X-> Y is a{U, V)-

approximative selection of f if for any x e X, 

(p (jc) G ( / [(x + [/) n X ] + F ) n 7. 

This notion was introduced in (Ben-El-Mechaiekh, H. Chebbi, S and 
Florenzano, M., [1]), but the reader is also referred to (Ben-El-Mechaiekh, 
H. and Deguire, P., [1]), (Ben-El-Mechaiekh, H. and Idzik, A., [1]) and for 
the metric space to (Gomiewicz, L., Granas, A. and Kryszewski, W., [1]). 

DEFINITION 3.6.3. We say that a set-valued mapping f : X -> Y is 
approachable if it has a continuous (U, V)-approximative selection for any 
m V)GU(0)XU(0). 

We denote by A(X, Y) the class of approachable set-valued mappings from 

Xinto Y. When X= 7, we write A(X) for A(X, X). 

DEFINITION 3.6.4. We say that a set-valued mapping f X ->7 is 

approximable if its restriction f^ to any compact subset K of X is 

approachable. 

It is known (Ben-El-Mechaiekh, H., [1]) that an approachable set-
valued mapping is approximable. For examples of approachable and 
approximable mappings the reader is referred to (Ben-El-Mechaiekh, H. and 
Deguire, P., [1]), (Ben-El-Mechaiekh, H. and Idzik, A., [1]), (Ben-El-
Mechaiekh, H. Chebbi, S and Florenzano, M., [1]), (Ben-El-Mechaiekh, H. 
and Isac, G., [1]), (Cellina, A., [1]) and (Gomiewicz, L., Granas, A. and 
Kryszewski, W., [1]) 
For the main result of this section we need to indicate only the following 
examples. 
We suppose that/* X-> /(7) is an (u.s.c.) mapping 

(i) Convex case. If X is a topological space, 7 is a convex subset in a 
locally convex space F and if the values of /a re convex, t hen / i s 
approximable. (Cellina, A., [1]), (Ben-El-Mechaiekh, H. and Idzik, 
A., [1]). 
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(ii) Nonconvex case. If X is contained in a topological vector space E 
and 7 is contained in a locally convex space F, then/admits a (f/, V)-
approximative continuous selection for any open neighborhoods of 
the origin U and VmE and F respectively if the following condition 
is satisfied: X is a compact ANR, Y is an ANR and the values of fare 
compact and contractible. (Ben-El-Mechaiekh, H. and Deguire, P., 
[1]). Obviously, in this case/is approximable. 

Now, to give the Leray-Schauder type alternative for set-valued mappings 
we follow the steps and the ideas used in (Ben-El-Mechaiekh, H. Chebbi, S 
and Florenzano, M., [1]). First, we will prove some useful results. 

PROPOSITION 3.6.1. Letf: X^> E be a compact approximable mapping. 

For any Y e U{G) there exists a finite subset Dy of f(X) and 

fy :X-^conv(^Dy) such that /̂ ^ (jc)cz/(x) + F , for any x e X. 

Moreover, fy is u.s.c. with non-empty closed values whenever f has the same 

properties. Iff^ A(X, E) takes its values in a convex compact subset Kof 

E,then feA{X,K). 

Proof. Let V be an arbitrary neighborhood in U{0) and let 

Dy ={wj,W2,....,w^}be a finite subset in f{X) with the property that the 

1 sets <u. + — V\i-\,2,..n\ form an open cover of the compact set / (X) . 

For any / - 1, 2, ...,« and any w G (J z/. + - F we define 

//. {u) - max <̂  0,1 - /?j (w - w.) >, 

where p, is the Minkowski functional of - F . We define the Schauder 
-y 3 

3 -^ 

projection. 
i n ^ f \ ^ 

^v{u)=~ 2 ] A ( " ) " , ' / o ' " « ^ ^ " e U M,+-F 

We have that EL̂  : (J w. + - F ^ conv{Dy^ . We can show that 
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1 ^ ( \ 
Ily {u)-u G — V, for allue\^\ u. -\- — V 

Now, we define the mapping fy \X->conv{^Dy^, as the composition 
product fy =Ily o f, I f / is approximable, then/j/is approximable because 
its restriction to any compact subset of Xis approachable as the composition 
product of two approachable mappings (Ben-El-Mechaiekh, H., [1], 
Proposition 2.5). We have also that, fy [x) a f{x) + V for all x e X,fv is 

u.s.c. and for any x e X,fy{x) is compact, whenever/is u.s.c. and, for any 
X e X,J{x) is compact. 

Now, we suppose that/ G A{X, E) and for any x e X,fix) a K, 

where K̂̂ cz £" is a compact convex set. In this case, for a given U e U(0) let 

^ 1 ^ 
-approximative selection of/ Then for 

s : X -^ EhQ a continuous 

allx G XwG have 

s{x)ef{{x + U)nX)^^Vcz\j[u^^^vy^^ 

Uy(s{x))es{x) + ̂ Vczf{{x + U)nX) + ̂ V + ̂ V 

czf{{x-hU)nX) + V, 

Therefore, Ily "^ s is a continuous (U, K)-approximative selection of/with 

values in conv(Dy) a K n 

PROPOSITION 3.6.2. Let X (z E be a convex compact subset and 

/ G A{X), Iff is u.s.c. with non-empty closed values, then f has a fixed-point, 

i.e., there exists a point XQ G Xsuch that, Xo ^fixo)-

Proof. This proposition is a generalization of the classical Fan-Kakutani 
fixed-point theorem, and a proof is in (Ben-El-Mechaiekh, H. and Deguire, 
P., [1]). • 

The following useful result is related to a similar result used in 
(Petryshyn, W. V. and Fitzpatrick, P. M. [1]). We follow the proof given in 
(Ben-El-Mechaiekh, H. Chebbi, S and Florenzano, M., [1]). 
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PROPOSITION 3.6.3. IfX is a non-empty subset ofE andf \ X ^ E is a 
<S>-condensing mapping, then there exists a non-empty compact and convex 

subset Kd E such that f {^K r\X^czK. 

Proof. Indeed, let XQ G X be a fixed element. We consider the family T of 

all closed convex subsets D of E such that XQ e D and f(^DnX)czD. 

Obviously J^ is non-empty, since COWV(/(X)U{XO})G JF.We denote 

K = f^D. We have that Kis closed convex and XoeK.lfxGKnX, 

thenX^) ^ D for all D G ^and hence / {^K nX)<z.K . Therefore we have 

that K G T. The proof will be complete if we prove that ^ i s compact. \i K 

is not compact, then 0 ( ^ ) ^ 0 ( / ( ^ ) ) , since / is O-condensing. 

Denoting by K^ = conv({x^} u / [ K n X) ) , we have that K^ czK, which 

implies that f{K,nX)(zf{KnX)czK,. Therefore K* ^ T and 

Kd K*. Because K= K*, 

and we have a contradiction. n 

A main result is the following theorem. 

Theorem 3.6.4 [Leray-Schauder set-valued alternative]. Let X be a 

closed subset ofE such that 0 G int(X).Let f:X^ E be a ^-condensing or a 
compact u.s.c. set-valued mapping. Iff is approximate with non-empty 
closed values, then one of the following properties holds: 

(1) there exists an element XQ G Xsuch that XQ G X^O)? 
(2) there existX* G SXandX* e ]0, l[ such thatx* G A*f(x*). 

Proof. First, we suppose that / is O-condensing. In this case, we suppose 
that for each x e X, with x^f[x) and for each (yl,x)G]0,l[x9X, 

x€A,f[x) . Applying, Proposition 3.6.3 we deduce the existence of a non­

empty convex and compact subset Kof E such that f[KnX)ciK. We 
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can suppose that Q e K Since K r\X i^ compact, / ^A {^K n X^ E) 

and by Proposition 3.6.1, / ^ ^ sA{K nX,K). 

We consider the set-valued mapping/i : K ^>' ^defined by 

f /(x) if x^K and xemti^X), 

^^^'~\K if xeKandx^'mi{X) 

and we can show that/i is u.s.c, with non-empty closed values. We have 

that /i G ^ ( ^ . Indeed, let {U, V) e U(0) x W(0) be arbitrary and 

s:KnX->K be a continuous 
1 ^ 

2 
-approximative selection of 

/ ^^^ . By [(Ben-El-Mechaiekh, H. and Deguire, P., [1]), Proposition 1.6] 

there exists a continuous function î \ K-^ iS^such that s and s^^^^^^ are 

— F-near (i.e., for any xeKr\X,s^{x)-s{x)e — V). Therefore s\ is a 

([/, F)-approximative selection of/i. 

Now, we consider the set 

D•=-[x^ XnK\XeXf {x) for some Xe[0,l]|. 

Because 0 G A we have that D is non-empty and D is closed since/is u.s.c. 

and f{Xn M) c K, hence compact. Because £" is a Hausdorff locally 

convex space, we have that E is completely regular [(Schaefer, H.H., [2]), 

page 16]. Since Dn(^E\ int (X)) = (/>, there is a continuous function 

^ : JE -> [O,l], such that (p{x) = 1 for xe D and (p(x) = OfoYxeE\ int(JO-

Let g : K-^ K be the mapping defined by: 

g{x) = (p{xY\{x). 
The mapping g is u.s.c. with non-empty closed values and by [(Ben-El-
Mechaiekh, H., [1]), Proposition 2.4 and Proposition 2.5] we have that 

gG^(jK^). By Proposition 3.6.2, g has a fixed-point XQ G K, i.e., 

XQ G ^(XQ )yj (JCQ ). If JCQ ^ int (X) , ^JCQ) = 0 and JCQ = 0, which contradicts 

the hypothesis 0 G int {X). If Xo G int(X), x^ G ^ ( X O ) / ( X O ) , hence xo G D, 

(p{x{)) = 1 and Xo is a fixed-point of/, another contradiction. 
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Now, we consider the case when/is compact. In this case, let V G 

W(0) be arbitrary but fixed. Let Dy be the finite subset of / (X) and the 

approximable mapping fy\X -^conv[Dy ) , verifying fy (x)cz / ( x ) + F 

for all xe X, both provided by Proposition 3.6.1. Without loss of 

generality, WQ can assume that Oeconv[Dy) (otherwise, we replace 

conv{Dv) by co«v({0} u Dy). We note that 

fv\Xr.con.iD,) ^ ^ ( ^ ^ COTIV {Dy ) , COTIV {Dy ) ) 

The same proof as in the first case, but replacing f^^^^ by fv\^^,,^,^^y 

gives us the following alternative: 
(i) there exists Xy e X, with Xy s fy {xy ) ; or 

(ii) there exists {xy,Ay)edXx ]0,l[, withXy e^fy {xy). 

Using the compactness of/, its upper semicontinuity and the closedness of 
its values we conclude that the proof is complete. [For more details the 
reader is referred to (Ben-El-Mechaiekh, H. and Idzik, A. [1]). D 

Remark. In the proof of Theorem 3.6.4 we followed the ideas used in (Ben-
El-Mechaiekh, H., Chebbi, S. and Florenzano, M., [1]) 

A variant of Theorem 3.6.4 is the following result due to S. Park. 
We recall that a set-valued mapping/: X-^ Yis said to be closed if it has a 
closed graph Gr ( / ) czXxY, where 

Gr(f)= {{x,y) e X xY :x e X,y GY and y e f {x)} 

It is known that if/is u.s.c, then it is closed (Berge, C. [1]). 

THEOREM 3.6.5 [Leray-Schauder set-valued alternative]. Let X be a 
closed subset of E such that 0 G int(X). Iff: E -^ E is a closed compact 
approximable set-valued mapping, then either: 

(1) h has a fixed-point, or 
(2) there exist x* G 3Cand X* > 1 such that X*x* ef{x*). 

Proof. A proof of this theorem is given in (Park, S. [1]) and it is similar to 
the second part of the proof of Theorem 3.6.4. D 

For the results presented in this book the following variant of 
Theorem 3.6.4. is useful. 
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THEOREM 3.6.6. Let X be a closed subset of a Banach space (£',||*||), 

such that 0 G mX{X). Letf: X ^ E be a compact u.s.c. set-valued mapping 
with non-empty compact contractible values. Iff is fixed-point free, then 
there exists (/i , x,) G ]0, 1[ X dX such that x^ G A,/ (x,). 

Proof. This result is a corollary of Theorem 3.6.4. n 

Remark. We note that Theorem 3.6.6 follows immediately from Corollary 
3.3 proved in (Gomiewicz, L. and Slosarski, M., [1]), using the notion of 
essential set-valued mapping. 

Now, we present another notion. First, we need to introduce some 
notation and definitions. Let Xbe a topological space. We denote by / / the 
Cech homology functor with compact carriers and rational coefficients Q 
(See (Gomiewicz, L. and Slosarski, M., [1]). We say that Xis acyclic if 

It is known that a contractible space is acyclic. Let Z be another topological 
space. We say that a continuous mapping p : Z-^ X is a Vietoris mapping if 
the following conditions are satisfied: 

(1) the setp'^(x) is acyclic, for each x e X, 

(2) p is proper, i.e., p~^(M) is compact for any compact set KczX. 

Let X and Y be subsets of a Banach space (£", ||D. A set-valued mapping 

y/:X -^Y is called admissible if there exists a topological space Z and two 

continuous mappings p \ Z ^y X and q\ Z -> Y such that the following 
conditions are satisfied: 

(1) p is a Vietoris mapping, 

(2) Iff {x) - q (p~^ {x ) j for any jc G X. 

It is known that all u.s.c. set-valued mappings with acyclic compact values 
and all compositions of such set-valued mappings are admissible. 

Now, we suppose that (^^JII) and ( /^J I I ) are Banach spaces. Let 

?7c: £• be an open bounded subset. We introduce the following notation: 

A^jj ([/, F^-\ii/ \U ^y F\ii/ is admissible and 0 ̂  ^ ( 9 f / ) | , 

A^ {U,F) = \y/:U-^ F',y/ is admissible andcompactl, 
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A^{U,F) = [y/:U--^F\ y/^A,{U,F)and y/{x) = {Q] for all x^du]. 

DEFINITION 3.6.5. We say that a set-valued mapping f G A^^ (U, F ) is 

essential if for every y/ GA^{U^F^ there exists a point XG U such that 

f{x)rMi/{x)it(f,, 

We enumerate several properties of the notion of essential set-valued 
mappings. 

Property 3.6.5 [Existence]. If f eA^^iU^F) is an essential mapping, 

then there exists a point x e U such that 0 Gf{x). 

Property 3.6.6 [Compact Perturbation]. If f GAQ^{U,F^ is essential 

and g G ^ ( [ / , F ) , then ( / + g ) G ^ ^ ([/ ,F) is an essential set-valued 

mapping. 

Property 3.6.7 [Coincidence]. If f G A^^iU.F^ is essential, 

geA^ ([/, F) and A cz U, where 

A = \XGU :f(^x)n(^tg)(^x)^(^, for some tG[0,l]\, then f and g have a 

coincidence point, i.e., there exists XQ e A such that f {XQ) n g [XQ) ^ (p. 

Property 3.6.8 [Normalization]. IfO^ ^ and U is an absolute retract 

space, then the inclusion mapping i:U -> E defined by i{x) = x, for any x e 

U is essential if and only ifO G U. 

Property 3.6.9 [Localization]. Let f G AQIJ{U,F) be an essential set-
valued mapping. If V is an open subset of U satisfying the following 
conditions: 

(0 f-'{{0})<zU, 

(ii) V is an absolute retract space, 
then the restriction fy :V -^ E off is an essential set-valued mapping. 

We recall that a topological space X is an absolute retract, if for each space 
Y and each homeomorphism h:X-> Y such that h(X) is a closed subset of 7, 
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the set h{X) is a retract of Y. We note that a convex subset of a space is an 
absolute retract. 

Property 3.6.10 [Homotopy]. Let f G AQJJ{U,F^ be an essential set-

valued mapping. 7/* /z : [ /x[0 , l ] -^F is a compact admissible set-valued 

mapping such that: 
(i) h{x,G) = {Q} for every x G ^ , 

(ii) ixEiU'.fi^x)nh[x,t)^^, for sometG[O, 1 ] | C:f/, 

then {f-h{',l))\U^F is an essential set-valued mapping. 

Property 3.6.11 [Continuation]. Let f e AQJJ {U,F^ be an essential set-

valued mapping. Assume that f is proper, i.e., f ~^{K) is compact for any 

compact set K d F. If h'.U x^0,\^^ F is a compact admissible set-valued 

mapping such that h{x, 0) = {0}, for every x e dU, then there exists a 

positive real number SQ such that the mapping if-h{^.,X)\:U^>'F is 

essential for each X e ]-6'Q ,SQ[. 

For Definition 3.6.5 and the proofs of Properties 3.6.5-3.6.11, the reader is 
referred to (Gomiewicz, L. and Slosarski, M. [1]). 

Remark. The notion of essential set-valued mapping is similar to the notion 
of zero-epi mapping defined for single-valued mappings (see Chapter 1). 

Now, using the essentiality we can give a Leray-Schauder 
alternative for coincidence. 

THEOREM 3.6.7 [Leray-Schauder] [Alternative for coincidence]. Let 
f G AQ^ (U, F) , g^A^ ([/, F) be arbitrary set-valued mappings. Iff is 

essential and f{x)ng(^x) = (f> for any x e dU, then at least one of the 

following conditions is satisfied: 
(1) there exists a coincidence point offandg, i.e., there exists a point 

Xo G U, such that f {^Q) (^ g^x^) ^ (p, or 
(2) there exists >̂  G ]0, \[andxo G ^such that 

f{x,)r^[X,g{x,)\^(t). 
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Proof. We obtain the conclusion of the theorem if we apply Property 3.6.10 
considering the set-valued mappings / and h, where /z(jc,/) = /g(x), for 

XGU and/ G [0, 1]. n 

Comment. There exist in the literature other kinds of Leray-Schauder 
alternatives, but we selected in this chapter only the Leray-Schauder type 
alternatives, which are useful for complementarity problems and variational 
inequalities. 



THE ORIGIN OF THE NOTION OF 
EXCEPTIONAL FAMILY OF ELEMENTS 

We informed the reader that we present in this book a topological 
method applicable to the study of solvability of complementarity problems 
and of variational inequalities. This method is based on the notion of 
''exceptional family of elements'' associated to a mapping and to a closed 
convex cone or more generally to an unbounded closed convex set. A 
mapping can have, or have not an exceptional family of elements. When a 
mapping is without an exceptional family of elements, we have for this 
mapping a kind of general coercivity condition. This general coercivity 
condition implies the solvability of complementarity problems and of 
variational inequalities. We explain in this chapter how this notion was 

introduced m M"" using the topological degree. In the next chapters we will 

extend this method to more general situations using Leray-Schauder type 
alternatives. By Leray-Schauder type alternatives, this method becomes 
simpler and more elegant. 

4.1 Exceptional family of elements, topological degree 
and nonlinear complementarity problems in E^. 

Let (i?'",(-,)j be the /^-dimensional Euclidean space. We denote by K?i 

closed pointed convex cone in J?*", and by IfC its dual. The cone JK'defines 

an ordering on R'^hy x < y if and only \f y - x ^ K. We say that the 
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ordered vector space i^M'' ,K\ is a vector lattice if and only if, for every 

pair {x, y) of elements of R"" the supremum xw y and the infimum x Ay 

exist in i^". If {^M" ,K\ is a vector lattice, we define for every x e M", 

x"^ =xvO, x' = (-jc) V 0 and |jc| = x'' + x~. Other properties of x^, x~ and 

|jc| are presented and proved in (Peressini, A. L., [1]). We say that the n-

dimensional Euclidean space (M",(^',-),K] is a Hilbert lattice if and only 

if: 
(hi) M"" is a vector lattice, 

(h2) H = ||jc|| for every xeM\ 

(hs) 0< JC < j^ implies \\x\\< \\y\\for every x, y e K. 

We denote by P^the projection onto K (see Chapter 1). We say 

that ^ i s an isotone projection cone if and only if, for every x, ye M", x < 

y implies Pj<x) < P ^ ) . The following resuh is known. 

THEOREM 4.1.1. If {R\{^,),K) is a Hilbert lattice, then K is an 

isotone projection cone and moreover, PJx) = x^ for every x e M"". 

Proof. The theorem is a particular case of Theorem 1.50 proved in (Isac, G., 
[20]). D 

This result justifies some of our notation in this chapter and in 

particular we have that P^„ (jc) = x'' for every x G M". Let K(^ M"" bo an 

arbitrary closed pointed convex cone and f : K ^> M" a continuous 

mapping. We consider the nonlinear complementarity problem defined b y / 

and K, i.e., 

(find x^ eK such that 

^^^^^'^^[f{x.)eK*and{x.j{x.)) = 0. 

We recall that the polar cone K^ of iS îs defined by 



The origin of the notion of exceptional family of elements 111 

K' =[xeM"\{x,y)<Qforally^K], 

If g - K\ then by the Bipolarity Theorem (Schaefer, H., [2]) it follows 

that K = K = Q^ and hence JK'and Q are mutually polar. By Moreau's 

Decomposition Theorem (Theorem 1.9.5), each vector z G i?" has a unique 
decomposition of the form z =z^ -z~, where z^ = P^ (z) and z~ - -P^o (^) • 

(Note that -z~ is the orthogonal complement to z ) Obviously, z~ = z'^ - z. 
The following result is useful in this chapter. 

PROPOSITION 4.1.2. Given a mapping f\K^M\ the complemen­

tarity problem NCP(f K) has a solution if and only if the mapping 

W{x) = P^{x)-f{P^{x)),forallxGM'' 

has a fixed point in M". If XQ is a fixed point of ^^, x^ = P^ [x^) is a 

solution to the problem NCP(f M). 

Proof. This proposition is Theorem 2.3.7 considered for the case 

(H,{-,)) = [M\{.,)). 

Let f :Ml ^ M" be a continuous mapping. 

DEFINITION 4.1.1. We say that a family of elements {x"]^^^ c Ml is an 

exceptional family of elements for f if Ix'Vi —> +00 as r^>- +00 and for each 

real number r> 0 there exists a real number jUr>0 such that: 

(i) f{x')=-ju,x: if x:>o, 
(u)f{x')>Oifx:=0. 

DEFINITION 4.1.2. We say that an exceptional family of elements 

ix'] forf is regular if\\x^\\ = rfor every r> 0. 

The importance of the notion introduced in Definition 4.1.1 is given 

by the following result. First, we consider the problem NCP(f K) with 
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THEOREM 4.1.3. For a continuous mapping f:Ml^>'M", there exists 

either a solution to the problem NCPif.Mlj or an exceptional family of 

elements for f 

Proof. Applying Proposition 4.1.2 we have that the solvability of the 

problem NCP if, M") is equivalent to the problem of finding a fixed point 

for the mapping ^ (x) = P^„ (x) - / (P^„ (x) j , (^xeM") , Consequently, we 

consider the equation ^(x) = JC, or 

Since [M",{;•),M"^) is a Hilbert lattice by Theorem 4.1.1 we have that 

P^„ (x) = X*, and because x -x* = x', equation (4.1.1) becomes 

f{x')-x-=0. (4.1.2) 

If we denote F{x) = f{x*)-x' , now the problem is to solve the equation 

F{x) = f(x^)-x~=0. (4.1.3) 

Obviously, the mapping F :M" -^ M" is continuous. For any real number 
r > 0, we consider the spheres of radius r: 

S^={XGM' : \\x\\ = r] 

and the open ball of radius r: 

B^={xeM': \\x\\<r]. 

Obviously dBr = Sr^ We consider the homotopy between the identity 
mapping / and F defined by: 

{H(x,t) = tx + (\-t)F(x), 
<̂ ^ ^ ^ ^ ^ ̂  (4.1.4) 
\^for any (JC, /) G dB^ x [O, l]. 

We apply the Poincare-Bohl Theorem (this is Property 4 of topological 
degree, in part I of Chapter 1), with ĵ o = 0 and Q = B^.. We have 

H{xj) = tx + {l-t)f[x^)-{l-t)x~ 

= /(jc + jc") + ( l - r ) / ( jc^)-x" 

= tx^ + ( l - r ) / ( x " ) - j c " , 

and for this homotopy the following cases are possible: 

(i) There exists an r > 0 such that O^H[x,t),xeS^,te[0,l], Then 

the Poincare-Bohl Theorem implies that 
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deg(F,5,,0) = deg(/ ,5 , ,0) . 

Because deg(/, Br, 0) == 1, we have that deg(F, Br, 0) = 1. This means 

that the ball B^ contains at least one solution to the equation F{x) = 0 

[cf. Kronecker's Theorem, Property 1 of topological degree, Chapter 

1)]. Therefore the problem NCP[f, Ml) has a solution. 

(ii) For each r > 0, there exist a point Ur e S^ and a scalar tr G [0, 1] such 
that 

H(Ur,tr) = 0. (4.1.5) 

We remark that \\u^\\ =(w^^-1/^,^^""-w^ )= wH +m~l =r^. If 

tr = 0, then Ur solves equation (4.1.3), which implies again that the 

problem NCP[f,Ml) has a solution. Otherwise, if/, > 0, then the 

definition ofH{x, t) and (4.1.5) yield 

KK+{i-t^)f(u:) = u;. (4.1.6) 

From (4.1.6) we have 

{^-tr)f,{K)—tr{^:\, ifM,>0 (4.1.7) 
and 

{l~K)f:{u:) = {u;\,if{u^l<0. (4.1.8) 

Now, we put x' = u* and we rearrange (4.1.7) and (4.1.8) as follows: 

f,(x-) = -~^x:,if x:>0; (4.1.9) 

and 

f(x') = --^{u;l>0, if x:=0. (4.1.10) 

If we put ju^ =—'— we have that (4.1.9) and (4.1.10) represent 

relation (i) and (ii) from Definition 4.1.1. To have that |x | is an 

exceptional family of elements, we must show that Ix' -^ +oo when 

r -^ +00. Indeed, if we suppose that the set iu^ | is bounded, then in 

this case it follows that L^ 11 = Jr^ - m^ 11 -> +oo which means that 

the right-hand side of (4.1.6) is unbounded. On the other hand, the 

left-hand side of (4.1.6) is bounded since the set iu^] is supposed 
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to be bounded and / is a continuous mapping. This contradiction 
completes the proof. n 

We have a similar result for regular exceptional families. 

THEOREM 4.1.4. For any continuous mapping f :Ml -^ M"" there exists 

either a solution to the problem NCP (f, M^j or a regular exceptional 

family of elements for f. 

Proof. As in the proof of Theorem 4.1.3, we consider the equation 

F(jc) = / ( x " ) - x - = 0 . (4.1.11) 

For each r > 0 we define the set 

D^ =W^ n 5 ^ , where W^ =\^xeM" : \\x^\\<r] 

and the number 

S = J(mdix{r,M^}f +r^ +1, with M^ =max /(x"") . 

The number ^is well defined since 

M, < max II / (jc)ll < +oo . 

As in the proof of Theorem 4.1.3 we apply the Poincare-Bohl Theorem to 
the mappings /, F and to the set D^. It is sufficient to consider two cases: 

(i) There exists an r > 0 such that O^H{x,t),xedD^, te[O,l].By 

the same arguments used in the proof of Theorem 4.1.3 we obtain 

a solution to the problem NCP ( / , Ml) 

(ii) For each r > 0 there exist a point u^ e dD^ and a real number 

tr e [0, 1] such that H[u^,t^) = 0 Aftr = 0, then Ur is a solution of 

equation (4.1.11), which implies that the problem NCP[f,Ml) 

has a solution. Otherwise, if /̂  > 0 we obtain as in the proof of 

Theorem 4.1.3 that x'' =u^ satisfies conditions (i) and (ii) of 

Definition 4.1.1. In order to show that Ik | =^ ? we examine the 

structure of the frontier d Dr. We can show that 
dD^ = F̂  u [/^, where 

V^={xeM": r = \\x^\\<S}=dW^ n^ and U,=W^nS,. 

We have that u^^U^ . Indeed from (4.1.6) it follows that 
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||w; II < max {!< II, | | / ( < )||} < max {r, M^} . 

Hence, 

\u^f =||^^-||%||^-||' < r ' +(max{r,M,})' = ( ^ - l ) ' 

which implies that ||w |̂| < d. Thus, Ur e Vr and consequently 

r I Irni ^* This means that {̂ ;.}̂ ô is a regular exceptional 

family of elements and the theorem is completely proved. n 

Remarks. 
1. G. Isac in 1991-1992 defined the notion of exceptional family of 

elements in some unpublished notes, under the name of radial (or 
asymptotic) family of elements. T. E. Smith considered a similar 
notion. The notion considered by Smith is not a family of elements of 

the form jjc'̂ j but is a sequence {̂ „}̂ ^̂  (Smith, T. E., [1]). This 

sequence was defined using some special properties of the polyhedral 
cone Ml. Smith's notion cannot be related to the topological degree 
and cannot be extended to any closed convex cone. Because the 
sequence he defined was named, exceptional sequence of elements, 
we named our notion "exceptional family of elements '\ and we 
developed this notion in several papers, published after the paper 
(Isac, G., Bulavski, V. and Kalashnikov, V. [1]). 

2. We remark that Theorem 4.1.4 can be derived by using the Hartman-

Stampacchia Theorem and the Karush-Kuhn-Tucker conditions, used 
in optimization, but this method cannot be extended to general 
situations and in particular to infinite dimensional Hilbert spaces. Our 
method based on the notion of exceptional family of elements can be 
extended to general situations because it is based on the topological 
degree. In Chapter 7 we will give a more general construction without 
topological degree. 

From Theorem 4.1.3 and 4.1.4 we deduce immediately the following 
result. 

THEOREM 4.1.5. If f :Ml ^>' E is an arbitrary continuous mapping 

without an exceptional family of elements, then the problem NCP(f,Mlj 

has at least a solution. n 
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From Theorem 4.1.5 we deduce the following natural question: Is 
the class of functions f such that f is without an exceptional family of 
elements empty, or non-empty? 

In the theory of variational inequalities we find the notion of "coercive 

mapping". We recall that a mapping f :Ml -^ M" is said to be coercive on 

Ml ifandonlyif 

^ ^ ,, ,, ^ -^+00 a^ U ^ + o o , xeM\ for some x^eM^. 
\\x-x,\\ "II 

We proved in (Isac, G., Bulavski, V. and Kalashnikov, V. [1]) that coercive 
continuous mappings do not have regular exceptional families of elements 
with respect to M^ and also, there exist noncoercive mappings without 
exceptional families of elements. 
In a later chapter, we will consider again the relation between coercivity and 
the property of being without an exceptional family of elements. 

Now, we consider the case of a general closed convex cone in M"". 

Let f :M" -^ M" be a continuous mapping and Kcz M"" a closed convex 

cone. 

DEFINITION 4.1.3. We say that a set of elements { '̂j^^^c: M"" is an 

exceptional family of elements for f (with respect to K) if the following 

conditions are satisfied: 

(I) (-')* • +00 as r -^ + 0 0 , 

(2) for each r>0, fi(xj I belongs to the open ray 

d^NJc") ;5 ) = |>^ = (jc') + JUS^\ju>o\ where s^=(^x''^ -(x'*) . 

Remarks. 
(a) If in particular, x' GK , then from condition (2) of Definition 4.1.3, 

we have the equality 

f[x') = -ju^[x'), for someju^>0, 

(b) If K=E% then from Definifion 4.1.3 we do not obtain exactly 

Definition 4.1.1. In Definition 4.1.1 there is more information 

about / ( x ' ) , because of the particularities of the cone Ml. 
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(c) For a general cone Ka Ml there is also the concept of regular 
exceptional family of elements. We say that an exceptional family of 

elements |x j forf (with respect to K) is regular if \x'' j \-T^, 

for every r > 0. 

THEOREM 4.1.6. For any continuous mapping f \W -^W and any 

closed pointed convex cone Ka M", there exists either a solution to the 

problem NCP(^f,K) or an exceptional family of elements (in the sense of 

Definition 4.1.3) forf 

Proof. Using Proposition 4.1.2 and Theorem 1.9.5 (Moreau's 
Decomposition Theorem), we have that the solvability of the problem 
NCP[f,K), is equivalent to the solvability of the equation 

F[X) = f yx^ j-x~ =0, where x^ = P^ (jc) and x~ == -P^o {x) . 

Now ,̂ repeating exactly the proof of Theorem 4.1.3 we obtain either that 

there exists a solution to the problem NCP ( / , K), or for each r > 0 there 

exist a point ŴG Sr and real number tf. G ]0 ,1 [ such that the equality 

t^u^ +{^-t^)f\u^j = u~ is true. Dividing both sides of that equality by 

(1 -tr) and rearranging, one obtains the relation 

which means that f[ul^eO[u~\s^^, The fact that, 

hi'l -> +00 as r ^y +oo is established in the same way as in the proof of 

Theorem 4.1.3. Thus [x'\ , where x'' =u^ is an exceptional family of 

elements for/(with respect to K) and this complete the proof. n 

Remark. We have a variant of Theorem 4.1.6 for regular exceptional 
families of elements with respect to a closed convex cone Ka M". 
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4.2. Exceptional family of elements, topological degree 

and implicit complementarity problems in M^ 

We present in this section a notion of exceptional family of elements 

for a couple of continuous mappings in M^. This notion is applicable to the 

study oi implicit complementarity problems. 

Let Kd M" be a closed convex cone and/ g: M"" -> M" continuous 

mappings. In particular the convex cone f̂f" may be Ml. If D a M"" is a 
non-empty subset, the implicit complementarity problem defined b y / g, D 

and ^ i s : 

ICP{f,g,K): 

find XQ eD such that 

\g{x^)eK,f{x^)eK^ and 

[{g{x,)j{x,)) = Q, 

When D = K,WG denote this problem by ICP(f, g, M). 

In complementarity theory, the study of implicit complementarity problems 
is a big chapter (Isac, G. [12], [20]), (Hyers, D. H., Isac, G. and Rassias, Th. 
M. [1]). Several authors have studied implicit complementarity problems 
from several points of view. [See the references of the book (Isac, G, [20]). 

DEFINITION 4.2,1. We say that a family of elements | jc ' | e M" is an 

exceptional family of elements for the couple (f, g) with respect to Ml if the 
following conditions are satisfied: 

(1) xH -^+00 as r->+oo, 

(2) g[x')>Oforeachr>0, 

(3) for each r > 0, there exists jUr> 0 such that for i = I, 2, ...,n we 
have 

( i i ) / ( x ^ ) > 0 / / g , ( x ^ ) = 0. 

We have the following result. 
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THEOREM 4.2.1. Let f g : M"-> M" be continuous mappings. If the 
following assumptions are satisfied: 

(1) there exists an element b e E"" such that g{x) = 0 if and only if 
X = b, 

(2) g maps a neighborhood of the point b homeomorphically onto a 
neighborhood of the origin, 

then, there exists either a solution to the problem ICPyf.g.M'lj, or an 

exceptional family of elements (in the sense of Definition 4.2.1) for the 
couple (f, g). 

Proof. We consider the mapping F: 

F{z,x) = 

and the equation 

M"x M"-^ M"x R" defined by 

•,for any {z,x)&M"xM" 

F(z, x) = 0. (4.2.1) 

The problem ICP{^f,g,M1^ is equivalent to the solvability of 

equation (4.2.1). Indeed, if (z, x) solves (4.2.1), then x is a solution to the 

problem /CP ( / , g, # " ) . Conversely, if x is a solution to the problem 

ICP(/,g,Ml), then (z, x) is a solution of (4.2.1) where 

{g^ix),ifg>{x)>0, 
2,= . . . . . . . . / = 1,2.3,....,«. 

Obviously the mapping F(z, x) is continuous over M^". For any r> 0, let Sr 
be the (2«-l)-dimensional sphere 

S,=l{z,x)GM'":\\{z,x-b)\\ = r}, 

and Br the open ball of radius r, i.e., 

B^=[{z,x)GM'":\\{z,x-b)\\<r}. 

Now, we consider the homotopy H(z, x, f) of the mappings F{z, x) and 

G{z,x)^ . defined by 

H{z,x,t) = tG{z,x) + (l - t)F{z,x) 

tz + {l-t)f{x)-{\-t)z- ^ ftz^+{\-t)f{x)-z-

tg{x) + {-x)g{x)-{-t)z*j [g{x)-{\-t)z' 
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Hence we have 

H{z,x,t) = 
V+(l-0/(x)-z-^ 

(4.2.2) 
,g{x)-{\-t)z^ 

Two cases are possible: 
(A) There exists an r > 0 such that 

//^(z,jc,/)^0, for all [z,x)eS^ andte\Q,\\. 

In this case, Property 4 [Poincare-Bohl] of topological degree implies 
the equality 

deg(F,5,,0) = deg(G,5,,0). 

Since |deg(G,5^,0)| = 1, we have that deg(i^,5^,0) = ±l . Because 

of this fact, we conclude that the ball B^ contains at least one 
solution of the equation (4.2.1) and the solvability of the problem 
/ C P ( / , g , < ) is proved. 

(B) For r> 0 there exist a point [z^.x'^eS^ and a scalar tr G [0, 1] 

such that 

i/(z,,x%^,) = 0. (4.2.3) 

We have 

\(z^,x' -bt =|k|f +|kif +|Û  -bf =r\ (4.2.4) 
||V '̂  /\\2n " "« " ''« " "« 

If /, = 0, then Xr solves the problem ICP[f,g,Ml). If U > 0, from 

(4.2.2) and (4,2,3) we obtain 

tX^{^-tr)f(^') = ^;^ (4.2.5) 
and 

' 1 - ' . • 

Substituting expression (4.2.6) for z^ into (4.2.5) we obtain 

^g{x^)^{\-t^)f(x^) = z;, 

which implies for / = 1,2, ....,«, 

(4.2.6) 
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fX^y- ^ '' {A 2.1) 

1 - / , 

Taking ju^ = —- , we obtain from (4.2.7) that the family of 

elements |;c j is an exceptional family of elements for the couple 

(f g% if we prove that Ix'' -> +00 when r -^ + 00. To prove this fact we 

suppose on the contrary, that the family ix'] is bounded, hence it has 

a finite accumulation point x*. Note that the respective scalar limit /* 
cannot be equal to 1 (otherwise (4.2.4) contradicts (4.2.5)). But if *̂ < 1, 
then the continuity of/and g combined with (4.2.5) and (4.2.6) imply 
the boundedness of the family {z,]^^^, which again contradicts (4.2.4) 

as r -> +00. Thus we must have that | |/ | | -> +00 as r -> +00, and the 
proof is complete. n 

Remarks. 
1. We remark that, because of assumption (2) in Theorem 4.2.1, the 

notion of exceptional family of elements for a pair of continuous 
mappings is not so natural. Later, we will replace this notion by 
another, more natural and more flexible. 

2. In the next section we will extend Definition 4.2.1 to an arbitrary 
closed convex cone JK czM". 

4.3 A general notion of an exceptional family of 
elements for continuous mappings 

In this section we introduce another notion of exceptional family of 
elements, for a continuous mapping / : # " -^ M", with respect to an 

arbitrary closed convex cone K (^M". This notion is more natural and 
more flexible than the similar notion introduced by Definition 4.1.3. 
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Let f:M''->M"hQ a continuous mapping and K <^M" a closed 

pointed convex cone. Let ̂  be the dual of the cone j5^(see Chapter 1). If x 

is an arbitrary element in i^, then x^ = P^ (x) is well defined. We denote 

x~ =x^ -x.By Theorem 1.9.7 we have that x~ e 1ft and ^x" ,̂x~^ = 0, that 

is, x~ is a normal vector to a supporting hyperplane of the cone K at the 

point jĉ . 

DEFINITION 4.3.1. We say that a family of elements [x^]^^^ czK, is an 

exceptional family of elements for f with respect to the cone K, if the 

following conditions are satisfied: 
(1) Ijjicj ^^ 00 a^ r ->+00 , 

(2) for each r > 0 there exists a scalar jUr > 0 such that 

Sr =f{^r) + Mr^r ^^^ and{x^,s^) = 0. 

Remark. If {̂ }̂̂ ^Q is an exceptional family of elements for/with respect 

to K, then from condition (1) and (2) of Definition 4.3.1 we deduce that for 

any r > 0, the vector s^ = f{x,) + jUr^r ^^ ^he normal one to a supporting 

hyperplane of the cone ^ a t the point Xr. 

We have the following result, which justifies the importance of the 
notion of exceptional family of elements (in the sense of Definition 4.3.1). 

THEOREM 4.3.1. If K cz M^ is an arbitrary closed pointed convex cone 

andf: K-> M^ is a continuous mapping, then either the problem NCP(f K) 

has a solution or f has an exceptional family of elements with respect to K 

(in the sense of Definition 4.3.1). 

Proof. We consider the mapping Fi^x) = f[x^^-x~ where 

x^ = Pj^ (x) and x' =x'^ -X, and we remark that the solvability of equation 

F{x) = 0 and the solvability of the NCP(f E) are equivalent in the following 
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sense: if x* is a solution of equation F{x) = 0, then XQ = P ^ (JC*) solves the 

problem NCP{f, K), and conversely, if Xo is a solution to the problem 

NCP(f K), then x^ =XQ - f (JCQ ) is a solution of equation F(x) = 0. In order 

to investigate equation 

F{x) = f{x^)-x-=0, (4.3.1) 

we consider, for any r> 0 the spheres Sr and the open balls B/. 

S^={xeM":\\x\\ = r}, 

5, ={jce#":||jc||<r}. 

Let G(x) = jc be the identity mapping and H(x, t) the following homotopy 
defined by G and F: 

H{x,t) = tx + {\-t)F{x), / G [ 0 , 1 ] . 

In order to apply the Poincare-Bohl Theorem (Property 4 of topological 

degree) for ĵ o = 0 and Q = Br, we consider the expression H{x, t) for 

arbitrary xedB^ = S^ and / e [O, l ] : 

H{x,t) = tx^ +{\-t)f(x^)-x-. (4.3.2) 

We have two possibilities: 
(A) There is a scalar t>0 such that 

H(x, 0 ^ 0 , for all jc G ^'^andalWe [0, 1]. 
Then by the Poincare-Bohl Theorem we obtain that 

deg(F,5„0) = d e g ( a 5 „ 0 ) = l . 
Therefore, because deg(is Br, 0) = 1, by Property 1 of topological 
degree (Kronecker's Theorem), we have that equation (4.3.1) has a 

solution in Br and consequently the NCP(f K) has a solution. 

(B) For every r> 0 there exist a point Xr = Sr and a scalar tr e [0, 1 [such 
that 

H(Xr,tr) = 0. (4.3.3) 

If tr = 0, then Xr solves (4.3.1) which again implies the solvability of 

the NCP{f, E). Otherwise, if/, > 0, then it follows from (4.3.2) and 

(4.3.3) that 
trX:+{\-t^)f{x:) = x;. (4.3.4) 

Dividing both parts of equation (4.3.4) by (1 - tr) we obtain 

/ ( < ) + y 3 ^ < = : j ^ ^ ; - (4.3.5) 
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If we denote ju^ -—''-—, we obtain \xl]^ as an exceptional family 

of elements for/with respect to K. Indeed, from (4.3.5) it follows that 

the vector ^r-f{K)^l^rK î  ^̂  ^ ^^^ {x].,s\-^. Moreover, 

\x], -> +00 as r -^ +00, because if the contrary is true, the family 

[xl I must have a finite accumulation point. On the other hand, the 

II - I I \ \\ N^" 

equality \x^ - Jr^ - \x], implies that the right-hand side of (4.3.4) 
comprises an unbounded sequence of elements. On the other hand, the 
respective vectors in the left-hand side of (4.3.4) compose a bounded 
family due to the continuity of the mapping / This contradiction 
completes the proof. n 

The notion oi exceptional family of elements introduced by Definition 

4.3.1 can be extended to a pair of mappings. Indeed, let Ka M" be a closed 

pointed convex cone and/ g : M"" ^> M" continuous mappings. 

DEFINITION 4.3.2. We say that a family of elements {x^]^^^ e M"" is an 

exceptional family of elements for the pair (f g) of continuous mappings 

with respect to the cone M, if the following conditions are satisfied: 

(1) IJCJI->+00 a^ r-^+00 , 

(2) g(Xr) e Kfor any r > 0, 

(3) for every r > 0, there exists jUr> 0 such that 

s^=f{x^) + jUrg{^r)^^* and{g{x^),s^) = 0. 

Remark. The notion of an exceptional family of elements for a couple (f, g) 
of continuous mappings was introduced as a mathematical tool for the study 

of the problem ICP(f g, E). If the cone Kis self-adjoint, i.e., K= K\ then 

in this case the notion of exceptional family of elements can be formulated 
for the couple (g, f). 

Definition 4.3.2 allows us to state the following result. 
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THEOREM 4.3.2. Letf g: M"" ^ ^"''be continuous mappings, Kcz M" 

a closed convex cone. Let b e M" be a unique solution to equation f(x) = 0. 
Moreover, let g map homeomorphically some neighborhood of the element 
b onto a particular neighborhood of the origin. Then either the problem 

ICP(f g, K) has a solution, or the couple (f, g) has an exceptional family of 

elements (in the sense of Definition 4.3.1). 

Proof. We consider the mapping F :M" x M" -^ M" xM" defined by 

F{z,x) = 
f{x)-z 

, where z* = P/^z) z = z -z^. 

We observe that equation 
F(z, Jc)-0, (4.3.6) 

is equivalent to the solvability of the problem ICP(f, g, K) in the following 

sense. If (z, x) solves (4.3.6), then jc is a solution to the problem 

ICP(f, g, E). Conversely, given a solution x to the problem ICPif, g, K), 

then the pair (z, x) with z = g{^x)- f[x) is a solution to equation (4.3.6). 

Obviously, the mapping F is continuous over E^''. Let Sr be a {2n - 1)-
dimensional sphere of radius r with its centre at the point (0, b): 

S^=[{z,x)eM'^ :\{z,x-b)\ = r], 

and Br an open ball with the same radius and centre, i.e., 

B^=[{z,x)eM'^'.\{z,x-b)\<r]. 

(̂4 

We consider the sets Sr and Br for any r > 0. Considering the mapping 

G{z,x) 

F and G by: 

[H (Z. X, t) = to (z. x) + (\-t)F(z. x) 
(4.3.7) 

we define the following standard homotopy defined with 

H{z,x,t) = tG{z,x) + {\-t)F{z,x) 

[with te[0,l]. 

We have 
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^ " ^ [tg{xy{l-t)g{x)-{\-t)z\ 

Jtz'+{\-t)f{x)-z-~ 

~[s{x)-{\-t)z^ 

We have two possible cases: 
(A) There exists r > 0 such that 

H(z,X,/) ^ 0, for any (z,x)^S^, and any ^ G [O,l]. 

In this case, Property 4 of topological degree (Poincare-Bohl 

Theorem) implies 
deg(F,5,,0) = deg(G,5,,0). (4.3.8) 

Using the assumptions of our theorem we can verify that 
deg(G,5^,O) = ±1. By taking (4.3.8) into account we also obtain that 

deg(F,5^,0) = ±l . Now by Property 1 of topological degree 

(Kronecker's Theorem), we conclude that B^ contains at least one 

solution of (4.3.8). Therefore, the problem ICP(f, g, E) has a solution. 

(B) For every r > 0, there exist a pair (z^,jc^)^^r ^^d a scalar tr G [0, l[ 

such that 
7/(z,,x,,^J = 0. (4.3.9) 

Note that 

| |(z,,jc,-M||\ =||z;f +||z;|| ^h-b\L=r\ (4.3.10) 
||V A- 9 r 7 | |^2« II r | | ^« II r | |^« || r | |^« V / 

litr = 0, then (z^,x^) solves equation (4.3.6) and consequently, Xr is a 

solution to the problem ICP(f, g, M). Otherwise, if/, > 0, then (4.3.7) 

and (4.3.9) imply the following equalities: 

If we put z'^ given by (4.3.12) in (4.3.11), we obtain 

:^g{x^) + {l-K)f{x^) = z;. 

(4.3.11) 

(4.3.12) 
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t 
Dividing both sides by (1 - tr\ and denoting by ju^ = — - > 0 we 

have 
1 _ 

From the last equality we obtain that the family of elements {^r]r>o ^^ 

an exceptional family of elements for the couple {f, g) if we show that 

\\x^ \\^„ -^ +00 as r -^ +00 . In order, to prove this, we suppose on the 

contrary, that the family {̂ }̂̂ ^Q has a finite accumulation point x*. 

Note that the respective scalar limit /* cannot be equal to 1, otherwise 
(4.3.10) contradicts (4.3.11). But if ^ < 1, then the continuity of 
mappings / and g combined with (4.3.11) and (4.3.12) imply the 
boundedness of the family of elements {z^}^^^, which again 

contradicts (4.3.10) as r -> +oo. Thus, it is shown that ||x |̂| -> + oo and 
the proof is complete. n 

4.4 Exceptional family of elements, zero-epi mappings 
and nonlinear complementarity problems in 
Hilbert spaces 

In this section we extend the concept of exceptional family of 
elements to infinite dimensional Hilbert spaces, for A:-set fields. We realize 
this extension using the concept of k-set contraction and (0, kyepi mapping, 
presented in sections 1.5 and 1.7 of Chapter 1. The properties of these 
concepts will be used in this section. 

Let {H,{',')) be a Hilbert space and Ka H a. closed pointed convex 

cone. We recall that if 4̂ is a subset of H, the Kuratowski measure of 
noncompactness of ̂  is defined by: 

, . {s>Q'.A can be convered by 1 

[a finite number of sets of diameter less than s] 

It is known (see Chapter 1) that a{A) = 0 if and only li A is relatively 
compact. Let Z) be a subset of 7/and/: D ^ Ha continuous mapping. We 
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recall that//5 said to be a kset contraction if for each bounded subset A of 

D we have a ( / ( j ) ) < t e ( ^ ) , where A: > 0. For more information about 

the measure of noncompactness 6ir and about ^-set contractions, the reader is 
referred to Chapter 1. Let f H -^ H be an arbitrary mapping. We repeat 
Definition 4.3.1 but in a general Hilbert space 

DEFINITION 4.4.1. We say that a family of elements [x,]^^^ ciK is an 

exceptional family of elements for f with respect to K, if and only if for 

every real number r > 0 there exists a real number ju^ > 0 such that the 

vector u^ = / (^;.) + Mr^r satisfies the following conditions: 

(1) Ur e ^ , 

(2) (M,,X,) = 0 , 

(3 ) ||jc^ II -^ +00 as r ^y +oo . 

Remark. We say that an exceptional family of elements {^r]r>Q ^^ regular if 

for any r> 0 we have \\Xf\\ = r. 

DEFINITION 4.4.2. We say that a mapping f H->Hisa k-set field if 
f{x) =x- T(x), where T: H-^ His a k-set contraction with 0 <k< 1. 

Remark. If in Definition 4.4.2 the mapping T is completely continuous, we 
have that/is a completely continuous field. 

Iff / / - > / / is a mapping and Ec: H is a closed pointed convex cone, we 

consider again the problem: 
(find x^ eK such that 

^~\f{x.)eK* and{x.,f{x.)) = Q. 

THEOREM 4.4.1. Iff: H-^ H is an arbitrary k-set field, then there exists 

either a solution to the problem NCP(f K) or an exceptional family of 

elements for f with respect to K(in the sense of Definition 4.4.1). 

Proof. We consider the mapping (S>:H -^ H defined by 

^{x) = x-P^ \_x-f{x)\for anyxeH. 
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From Chapter 2 (Corollary 2.3.4) we know that the problem NCP{f, K) has 

a solution if and only if, the equation 0(jc) = 0 has a solution. For any r > 0 
we consider the sets: 

S^^[x^H: ||x|| = r}and5^={xG/ / : H < r } . 

We remark that the identity mapping on H, denoted by /, is a (0, A:)-epi 

mapping on any Br with k e [0, 1[. Let h:[0,l]x B^ ^> H be the mapping 

defined by 

h{t,x) = t(x-P^[x-f{x)]-x) = t(-P^[x-f{x)]). 

The mapping his a. k-SQt contraction such that /i(0, x) = 0, for all x e B^ . 
We have only the following two situations. 

(A) There exists r > 0 such that x + t(^-P^\_x-f{x)'\)^0, for all 

XG Sr and all te [0, 1]. In this case, applying Property 4 [Homotopy] 

of (0, k)-Qpi mappings we have that x + (-P^ [ x - / ( x ) ] j = Ohas a 

solution in 5^, that is there exists x*e Br such that 

*̂ ^ ^ ^ [̂ * ~ / ( ^ * ) ] ' ^hich implies that x* is a solution to the 

problem A^CP(;:^. 

(B) For every r > 0 there exists Xr eS^and tr e [0, 1] such that 

If tr = 0, we have that Xr = 0, which is impossible since Xr e Sr^ If 

tr = I, then x^ -P^ [x^ - / ( x ^ ) ] = 0, which is equivalent to saying 

that the problem NCP(f, K) has a solution. Hence, we can say that 

either the problem NCP{f, K) has a solution or for any r > 0, there 

exist Xr e Sr and tr e ]0, 1 [ such that 

x.-t.PK[xr-f{x.)] = 0. (4.4.1) 

From (4.4.1) we have 

r^r=PdXr-fM]- (4-4.2) 
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From (4.4.2) and using the properties (1) and (2) of projection 

operator/*^, given in Theorem 1.9.7, we deduce: 

1 

and 

^r - ( ^ . -fM)^y)^^ for all yeK 

-^.-(^.-/(^.)).-^.) = o. 

which implies 

'u 
\vv J 
and 

x,+f{x^).y)>0 for all yeK 

^r+fM^y^rj^^' 

(4.4.3) 

(4.4.4) 

If in (4.4.3) and (4.4.4) we put //̂  = 1, it follows that 

and since for every r> 0, ||x |̂| = r, we have that | |^J | -^+^ asr->+oo. 

Thus, the family of elements {̂ .̂Ĵ ^Q is an exceptional family of elements 

for/with respect to i^and the proof is complete. n 

Remark. Looking at the proof of Theorem 4.4.1 we remark that the 

exceptional family of elements {̂ }̂̂ ô is a regular exceptional family of 

elements. 

COROLLARY 4.4.2. Iff \ H ^^ H is a k-set field without an exceptional 

family of elements, with respect to K, then the problem NCP(f K) has a 

solution. 



The origin of the notion of exceptional family of elements 131 

COROLLARY 4.4.3. Iff: H^' H is a completely continuous field without 

an exceptional family of elements, with respect to K, then the problem 

NCP(f K) has a solution. 

COROLLARY 4.4.4. If K cz M^ is an arbitrary closed pointed convex 

cone, then for any continuous mapping f \ M^ -> ff, there exists either a 

solution to the problem NCP{f, K), or an exceptional family of elements for 

f with respect to K 

Remark. Theorem 4.4.1 is valid even if the A:-set field/is defined only on 

the cone K. Indeed, in this case we consider the ^-set field 

//(x) = x - r ( P ^ (x)), for all xeH. 

4.5 Two applications 

We will close this chapter with two applications of the notion of 
exceptional family of elements to the study of two particular 

complementarity problems. We consider the problem NCP(^f,Ml^, where 

f :Ml ^ M" is a Po-function. The notions of Po-function (resp. /^-function) 
were introduced by J. J. More and W. Rheinboldt as a natural extension of 
the notions of Po-niatirx (resp. P-matrix). For more details about PQ and P-
functions the reader is referred to (More, J. J. and Rheinboldt, W. [1]). 

We recall that a matrix is a Po-matrix (resp. P-matrix) if all its 

principal minors are nonnegative (resp. positive). Let Z) be a subset of M^ 

and / : D ^^ M" a. function. We say that/is a Po-function (resp. P-function) 

on D if for all x, y e D, x ^ y, there exists an index / = i(x, y), such that 

X. ^y, and(x, -y,){f (x) - f (y))>0(resp. 
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Considering the problem NCP if, #+) , we denote by T the set of all 

feasible solutions, i.e., 

T-^[x^Ml\ f. {x)>0, for all i = l2,...n]. 

We say that w G ̂  is strictly feasible if f(u) > 0 for all / = 1, 2, ...,«. It is 

known that if/is a monotone mapping, i.e., (x - y) ( / (x) - / (y)^ > 0 for 

all x.yeMl and T contains at least one strictly feasible point, then the 

NCP(f,Ml \ has a solution (More, J. J. [1]). This result cannot be extended 
to the class of Po-functions (even P-function), as the following simple 
example shows. 

Let f\M^ -^M^ be the function defined by f{x) = ii/{x^) + x^ 

and / (x) = x^, where y/\M-^ M is y/{t) = — e~\ The function / is a 

continuous P-function and T = \[x^,x^^ & Ml \ x̂  > 0, x̂  > — e"""' \. The 

point w = (0, 1) is a strictly feasible point, but the only point which satisfies 
the complementarity condition associated with / is (0, 0) which is not a 

solution to the problem NCP[f, Ml) since (0, 0) ^ JT. 

The next result shows that the problem NCP{^f,Ml^ associated to 

a Po-function is solvable if the set !F contains n points of a particular form. 

THEOREM 4.5.1. Let f:Ml-^ M" be a Po-fmction. If the feasible set T 

contains n points e^^\ j = \,2,...,n such that Cj >0 and e\^^ -() for all 

i"^ j , then the problem NCP if. Ml j has a solution. 

Proof. If, for a particular/ / ie^^"^ j = 0, we have that ê ^ is a solution to the 

problem NCP [f. Ml). Hence, we can suppose that for every 

j G {l, 2,..., n], / (ê ^̂  j > 0. The theorem will be proved, if we show that/is 

without exceptional families of elements in the sense of Definition 4.1.1 
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with respect to M^. Indeed, we suppose that/has an exceptional family of 

elements \x''\ ciM". We have the following facts: 

(ii) Ix'' ^ +00 a^ r - ^ +00, 

(h)for every r> 0 there exists jUr > 0, such that 

(a)y;(x') = -//X, ifx:>o, 
(h)/(x')>oifx:=o. 

By property (ii) there exists an index r> 0 such that 

(4.5.1) 

From (4.5.1) we have that there existsy'o ^ {1,2, ...,/?} such that x^ > e]^'^. 

We observe that 

x'' ^e^''^ =(0,0,..,^;f\0,0,...,0). (4.5.2) 

Since/is a Po-function, there exists / = / such that x' ^ e"'"^ and 

(<-^P°')(y;(^0-^P'))^o- (4.5.3) 
If / =7*0? then we have 

which is a contradiction of (4.5.3). If / ^ jo, then we have e '̂̂  =0 and 

jc[ > 0, which imply again 

(<-ep«')(y;(x^)-y:(.w))<o. 
The last inequality is also a contradiction of (4.5.3). We conclude that / is 
without an exceptional family of elements with respect to M^ , in the sense 

of Definition 4.1.1, and by Theorem 4.1.3, the problem NCP[f,Ml) has a 

solution. D 

Theorem 4.5.1 can be used to obtain an existence theorem for the 
Generalized Linear Complementarity Problem, associated to a matrix M 
and a vector q. We recall the definition of this problem. By a vertical bloc, 
matrix Mof type (w^, ^2,...., w^) we mean a matrix 
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A/ = 
M> 

KM"J 

where the/^^ block M^ has order rrij x n. Thus for ^ = ^ T^J ? the matrix M 
7=1 

is of order m x «. Let ^ be a vector in M^ partitioned conformably with M, 

i.,e., 

V^ 

with ^^ e '̂"^ . 
The Generalized Linear Complementarity Problem (associated with 

Mand q), denoted by GLCP{M, q\ is 

GLCP{M,q): 

find zeM"" such that: 

z>Q,M^z + q^ >0^ and 

mj 

where 0^ is the null vector in Hf' . This clearly agrees with the Linear 

Complementarity Problem when mj = 1 and M^ is they"̂ ^ row of M(j = 1,2, 
...,n). The problem GLCP(M, q) was defined in (Cottle, R. W. and Dantzig, 
G. B., [1] and it was studied in (Isac, G. and Carbone, A. [1]) (Carbone, A. 
and Isac, G. [1]), (Ebiefung, A. A [1]), (Ebiefung, A. A and Kostreva, M. 
M. [1]), (Mohan, S. R, Neogy, S. K. and Sridhar, R., [1]), (Szank, B. P., 
[1]), (Sznajder, R. and Gowda, M. S., [1]) and (Vandeberge, L., De Moor, 
B. L. and Vanderwalle, J. [1]) among others. 
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Now, we recall some notions on rectangular matrices. Let M be a 
vertical block matrix of type {m^, 7^2,...., m^). An « x « submatrix Â  of M is 

called a representative submatrix if its7"̂ ^ row is drawn from they"* block, 
M^ of M. The properties of M are based on properties of its representative 
submatrices. Having this concept, we can talk about principal submatrices 
of the rectangular matrix M. Obviously a vertical block matrix M of type 

n 

(wj,W2,....,m^) has Y\^j representative submatrices. 
7=1 

Let M be a vertical block matrix of type (m ,̂ ^2,...., m^) . Consider 
a principal submatrix of M The determinant of such a matrix is di principal 
minor of M. A vertical block matrix M of type {m^,m^,..,.,m^^ is called a 

i^o-matrix (resp. P-matrix) if and only if all its principal minors are 
nonnegative (resp. strictly positive). 

The next result is an existence theorem for the problem 
GLCP{M, q) when M is a Po-vertical block matrix. This existence theorem 
is more general than some existence results for this problem obtained by 
other authors. 

THEOREM 4.5.2. Let M be a Po-vertical block matrix of type 

(/Wj,m2,....,m^) and q e IT a vector partitioned conformably with M, 
n 

m = ^mj. Assume that there exists n vectors x^^-(x[jj = l,2,...,n, 

k = I, 2,...,n such that 

\ for each I = \,2,...,n 
\x[=0 fork^l, x\ >0and (4.5.4) 

min \{M^X^'^ ] + ?/1 > 0, for j = 1,..., n, 
\\<i<mj (V / ; j 

Then the problem GLCP{M, q) has a solution. 

Proof. We consider the piecewise linear function / : # " -> M'' defined as 

/ (x)-min[(M^x) +qj\, 7 = 1,2,...,«. 
^ ^ ^ \<i<mj K^ 'I ) 
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Clearly, the solvability of the GLCP{M, q) is equivalent to the solvability of 

the problem NCP(f,Ml). As already observed by A. A. Ebiefiing, the 

assumptions on M, imply t h a t / i s a Po-function (Ebiefiing, A. A., [1]). 
Condition (4.5.4) implies that the assumptions of Theorem 4.5.1 hold for / 

defined above and e^^^ =x^^\e^^^ =x^^\....,e^"'^ =x^"K Hence, the result 
follov^s from Theorem 4.5.1. n 



LERAY-SCHAUDER TYPE ALTERNATIVES. 
EXISTENCE THEOREMS 

Considering the results presented in Chapter 4, we conclude that the 
notion of exceptional family of elements can be used to study the solvability 
of complementarity problems. This concept is supported by the notion of 
topological degree and by the notion of zero-epi mapping, which is a kind 
of topological degree, but more refined than the classical notion of 
topological degree. 

It is useful, from the point of view of applications to extend the 
investigation methods based on the notion of exceptional family of elements 
to other classes of mappings, different than the mappings used in Chapter 4, 
and to set-valued mappings. To do this, the topological degree can be an 
obstacle. Because of this fact, in this chapter we will establish some 
relations between the notion of exceptional family of elements and Leray-
Schauder type alternatives. The Leray-Schauder type alternatives are not 
based on topological degree (see Chapter 3). Moreover, there exist Leray-
Schauder type alternatives for set-valued mappings, (see again Chapter 3). 

By establishing relations between the notion of exceptional family 
of elements and Leray-Schauder type alternatives we will attain also two 
major goals. The first goal is the fact that the method based on the notion of 
exceptional family of elements will be founded on Leray-Schauder type 
alternatives. In this way, we obtain a simpler method, which is open to new 
developments, related to new classes of mappings and also related to other 
kinds of applications. The second goal is to give a new direction of 
applications of Leray-Schauder type alternatives. By this method we 
introduce a very general notion of coercivity. The coercivity conditions are 
used in nonlinear analysis and in optimization theory. 
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In the Leray-Schauder Alternative Theorem (see Chapter 3) the 
essential idea is to join the operator/to the constant operator C{x) = 0 by 

means of the homotopy i / : Q x [O, l] -^ £" defined by H {x, X) = Af (x) , in 

a such way that the unique fixed-point of ^(- ,0) can be "continued" in a 

fixed-point of /f (•, A), for each Ae [0, 1] and in particular in a fixed-point 

of ^(-,1) = / . This continuation process is possible, if all operators 

/ / (• , / l ) , for A e [0, 1] are fixed-point free on the boundary of Q. In 

appHcations, the Leray-Schauder Principle is usually used together with the 
so-called a priori bounds techniques. In many problems related to 
complementarity problems or to variational inequalities, it is hard to locate 
the solution and hence to use the a priori bounds principle. Establishing a 
relation between the notion of exceptional family of elements and the Leray-
Schauder Principle, we give a new kind of application of this powerful 
classical principle, well known in nonlinear analysis. This chapter is 
dedicated to this development. 

5.1 Nonlinear complementarity problems in arbitrary 
Hilbert spaces 

Let ( / / , (v)) be a Hilbert space, Kd Ha closed pointed convex cone 

and/ : //—> Hn mapping. We consider in tliis section the problem 
{find Xt eM such that 

NCP(f,K): \ , ^ . / , ,\ 
[f{x,)eK ancl{x,,f{x.)) = 0. 

For any real number r > 0 we consider the sets: 

B^=[xeH:\\x\\<r}, 

S,=lxeH:\\x\\^r]. 

Obviously, we have that <®̂  = S^. Let P^ be the projection operator onto K. 

We know that P^ (x) is well defined for any x e H. We recall that a 

mapping/: / /—>// is a completely continuous field if/has a representation 

of the form / (x) = x-T (jc), where T : H ^^ His 2i completely continuous 

mapping. Similarly, we say that a mapping/: / / - > / / i s an a-condensing 
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field if/has a representation of the form f{x) = x-T{x), where T .H ^^ 

H is an a-condensing mapping. Also, we say that a mapping/: H-^ Hisa 

nonexpansive field i f /has a representation of the form / ( x ) = x - r ( x ) 

where T: H-^ Hisa nonexpansive mapping. 

We recall that a mapping/: H -^ H is said to be monotone if for 

any x, y e H, we have {x-y,f (jc) - / (j;)^ > 0 and a mapping T: H -^ H 

is pseudo-contractant if the mapping /(:^) = x- T(^X) is monotone. Also, a 

mapping f : H -^ H is said to be demicontinuous if for any sequence 

{̂«}«Gyv ^ ^ ' convergent in norm to an element x, e i / , we have that the 

sequence {/(^„)} is weakly convergent to fix*). Obviously any 

continuous mapping is demicontinuous. 

Let K cz H hQ ?i closed pointed convex cone and f: H -^ H 2i 

mapping. Let Q>:H->K be the mapping defined by 

^^{x) = P^[x-f{x)]. 

DEFINITION 5.1.1. We say that a continuous mapping f: H -^ H is a 

projectionally Leray-Schauder mapping with respect to K, if for any r > 0, 

the condition 
(LS): X ^ /lO^ (jc) for any (x, X) G dB^ x ]0, l[, 

implies that, O^ has a fixed-point in B^ . (Obviously the fixed-point is in 

Examples 

(1) If ^S^has a compact base (i.e., Kis SL locally compact cone), then in 

this case, any bounded mapping/: H-> His a projectionally Leray-

Schauder mapping, with respect to K. (In this example,/is a bounded 

mapping means that for any bounded subset DczH.we have thatX^) 
is a bounded set). 

(2) If f : H -^ H is a completely continuous field, then / is a 
projectionally Leray-Schauder mapping with respect to any closed 

convex cone Ka H. (In particular, in R"", any continuous mapping is 
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a projectionally Leray-Schauder mapping with respect to any closed 
convex cone.) This example is a consequence of Theorem 3.2.4. 

(3) If f : H -^ H is an a-condensing field, then / is a projectionally 

Leray-Schauder mapping with respect to any closed convex cone K 

d H. This result is a consequence of Theorem 3.4.4. 

(4) If/: H-^ Hissi nonexpansive field, then/is a projectionally Leray-

Schauder mapping, with respect to any closed convex cone K cz H. 

This example is a consequence of Theorem 3.4.6. 
(5) We say that a mapping f : H -^ H is a projectionally pseudo-

contractant field with respect to K if the mapping 

^K (^) ~ ^K [^ ~ / ( ^ ) ] is pseudo-contractant. If / is a continuous 

and projectionally pseudo-contractant field with respect to K, then/is 

a projectionally Leray-Schauder mapping with respect to K. This 

result is a consequence of Theorem 3.4.10. 

Let (//,(•,)) be a Hilbert space, K a H 3, closed pointed convex 

cone and/: H-^ Ha mapping. 

DEFINITION 5.1.2. We say that a family of elements [x,]^^^ czK is an 

exceptional family of elements (denoted shortly by EFE) for the mapping f 

with respect to K, if for every real number r > 0, there exists a real number 

jUr > 0 such that the vector u^ - l^r^r +/(-^r) satisfies the following 

conditions: 

(1) Ur e K\ 

(2) (^/„x,) = 0, 

(3) ll-^J-^+Q^ ^s r->+oo. 

Related to the notion of EFE we have the following alternative theorem for 
nonlinear complementarity problems. 

THEOREM 5.1.1. Let {H,{',-)) be a Hilbert space, K cz H a closed 

pointed convex cone and f : H ^>' H a continuous mapping. If f is a 
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projectionally Leray-Schauder mapping with respect to K, then there exists 

either a solution to the problem NCPif, K), or f has an EFE with respect to 

K 

Proof. We consider the mapping O^ (^) = ^^ [ ^ ~ / ( ^ ) ] ' ^^^ ^^^ x e H. 

From complementarity theory (see also Chapter 2), we know that the 

problem NCP{f, K) has a solution if and only if the mapping O^ has a 

fixed-point. Therefore, if the mapping O^ has a fixed-point, this fixed-

point must be in ^ a n d the problem NCP(f, K) has a solution. The converse 

is also true. If the problem NCP(f, K) has a solution, then the proof is 

complete. 

Suppose that the problem NCP(f K) is without solution. Obviously, 

in this case the mapping O^ is fixed-point free. Because / is a 

projectionally Leray-Schauder mapping we have that for any r > 0 there 

exist Xr with \\xr\\ = r and Ar G ]0, 1[ such that x^ = K^K \_^r ~ / ( ^ r ) ] • 

Because ^ i s a cone, we have that jĉ  e K. We have 

Applying the properties of operator P^ we obtain 

UxJ\-{x^-f{x^%y)>OJorallyeK, 

\{xJ\-{x^-f{x,%xJX,) = Q, 

which implies 

\{{\l\-\)x, + f{x,),y)>(iforally^K, 

If we put ju^ = 
\^r J 

it follows that //̂ x^ + / {x^) e i^*, 

/̂/̂ x^ +/(x^) ,x^) = 0, and since ||jĉ || = r, for any r > 0, we have that 
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{^r]r>(y ^^ ̂ ^ ^^^ ^^^ ^^^ i^^pping/, with respect to K, and the proof is 

complete. n 

A consequence of Theorem 5.1.1 is the following result. 

THEOREM 5.1.2 [Existence theorem]. Let {H,{',-)) be a Hilbert space, 

KaH a closed pointed convex cone andf: H^> H a continuous mapping. 

If f is a projectionally Leray-Schauder mapping without an EFE with 

respect to K, then the problem NCPif, K) has a solution. 

COROLLARY 5.1.3. Let (//,(•,•)) be a Hilbert space, K (z H a closed 

pointed convex cone and f : H -^ H a continuous mapping. If f is a 

completely continuous field without an EFE, with respect to K, then the 

problem NCPif, K) has a solution. 

COROLLARY 5.1.4. Let (^,(•,•)) be a Hilbert space, Ka H a closed 

pointed convex cone andf: H ^> H a mapping. Iff is an a-condensing field 

without an EFE, with respect to K, then the problem NCP(f, K) has a 

solution. 

COROLLARY 5.1.5. Let {H,{-,•)) be a Hilbert space, K cz H a closed 

pointed convex cone andf: H ^> H a mapping. Iff is a nonexpansive field 

without an EFE, with respect to K, then the problem NCP(f, E) has a 

solution. 

COROLLARY 5.1.6. Let (#",(•,•)) be the n-dimensional Euclidean 

space, K ciM" a closed pointed convex cone. If f :M" is a continuous 

mapping without EFE, with respect to K, then the problem NCPif, ^ has a 

solution. 
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A consequence of the results presented above, is the fact that for 
applications, it is useful to have tests that can be used to decide if a given 
mapping does not have exceptional families of elements. A test is given by 
the following definition. 

DEFINITION 5.1.3. We say that a mapping f\ H -^ H satisfies condition 

(0) with respect to a closed convex cone Ka H if there exists p> 0 such 

that for eachxe Kwith \\x\\ > p there exists y e Kwith \\y\\ < \\x\\ such that 

{x-yj{x))>0. 

Remark. Condition ( ^ is due to G. Isac. For more details the reader is 
referred to (Isac, G. [16], [17], [26]), (Isac, G. and Carbone, A. [1]). 

The importance of condition ( ^ is given by the following result. 

THEOREM 5.1.7. Iff: H -^ H satisfies condition (0) with respect to a 

closed pointed convex cone Kci H, then f is without an EFE (with respect 

toK). 

Proof. Indeed, we suppose tha t / has an EFE [x^^^^^K. Then for all 

r > 0 we have u^ = l^r^r + / ( ^ r ) ^ ^ * ' ( - ^ / " ^ r ) - ^ ^^d ||x |̂| -^ + oo as 
r -> + 00. We take r > 0 such that \\xr\\ > A where p is the positive real 
number defined in condition {9). Since/satisfies condition {0), there exists 

yr e ^such that M < |W| and {x^ -y,j{x^)) >0. 

We have 

which is a contradiction. Hence / is without an EFE and the proof is 
complete. n 

We recall the classical notion of coercivity. 
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DEFINITION 5.1.4. We say that a mapping/: H ^ H is coercive with 

respect to a closed pointed convex cone Ka H, if there exists an element 

xo G Ksuch that 

{x-x,j{x)-f{x,)) 
l im -̂^ r r̂  - +00. 

THEOREM 5.1.8. If f \ H -^ H is a coercive mapping with respect to a 

closed pointed convex cone K, then f satisfies condition (0) and 

consequently f is without an EFE. 

Proof. Let A:o be a real number such that ||/(x^ )|| < ̂ .̂ The coercivity of/ 

implies that there exists p > 0 such that for any x G ^with ||x|| > p we have 

x - x , , / ( x ) - / ( x , ) ) ^ 
K 

or 

We can take p such that p> \\XQ\\. We have 

{x-x,j{x))>{x-x^,f{x,)) + k,\x-x^\ 

>-||x-xJ|||/(xj|| + ̂ J|x-x,|| = |x-x,||[^„-||/(xJ||]>0. 

If for any x G jK^with ||x|| > p we take j^ = Xo , we obtain that / satisfies 

condition {9). Applying Theorem 5.1.7 we obtain that/is without an EFE, 

with respect to K u 

Remark. There exist mappings that are not coercive with respect to a closed 
pointed convex cone but without an EFE. In this sense we have the 

following example. Let (//,(•,)) be a Hilbert space and K<:z H 3, closed 

pointed convex cone. We consider the mapping f : H -> H defined by 

/ (^) - Tii— • The mapping / cannot be coercive with respect to K, 
\\x\\ + \ 

because for any xo e K, we have 
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{x-x^j{x)~f{x,)) 

\\X Xr\ 
||/W-/(^o 

\x\\ + \ b J + 1 
<2, 

for any x G K. The mapping/is without an EFE. Indeed if {̂ ;.}̂ ô czK \s 

an EFE, then we have that for any r >0 there exists //̂  > 0 such that 

"r = /^r^r + / (^r) ^ -^* ^^^ (jc ,̂ M̂ ) = 0 . In this case we have 

0 = (J:^,W^) = / X , , / / , X , + • \ = \\x. ^ir + 
1 

k +1 KII + 1/ 
which implies that ||jcj = 0 for any r >0, and it is impossible to have 

\x^ II -> +00 as r ^^ 00. 

Therefore, the property for a mapping of being ''without an EFE'' 
is a kind of coercivity property but strictly more general than the classical 
coercivity property. Obviously, condition (Q) implies this generalized 
coercivity condition. Considering the results presented above we deduce 
that iff is a projectionally LeraySchauder mapping and satisfies condition 

(0), then the problem NCP(f, E) has a solution. 

Now, we show that if ^ i s a locally compact convex cone (i.e., \iK 

has a compact base), then condition {6) gives also information about the 
norm of solution. This information about the solution is important in the 
study of equilibrium problems. 

THEOREM 5.1.9. Let {H, {',-)) be a Hilbert space, K cz H a closed 

pointed convex cone. The cone K is supposed to be locally compact. Let 

f : H -^ H be a continuous bounded mapping such that f(0) ^ ^ . Lff 

satisfies condition (0) with respect to K, then the problem NCP(f K) has a 

solution X* such that \\x*\\< p (where p is defined by condition (0)). 

Proof. For every s > 0, consider the Tihonov regularization 
fs (^) = /(-^) + ^^5 for 1̂1 X e H. The mapping/^ satisfies condition (0), 
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but with a strict inequality, i.e., there exists p > 0 such that for all x G ^ 

with ||jc|| > p, there exists7 e KW\th |[y|| < ||:v|| such that 

{x-y,l{x))>Q. (5.1.1) 

Indeed, let /? > 0 be the real number given by condition {0), fox f. Let 

X E jCbe an element such that ||JC|| > p. By condition {0) there exists y ^ K 

with livll < ||x|| such that, 

{x~yj^{x)) = l^x-yj{x) + £x)>{x-y,sx) 

>6 wr-HiHi =-IHI[H-|HD>o. 
We note that the mapping^^ is bounded and because ^ i s locally compact,/^ 

is a projectionally Leray-Schauder mapping. We keep this p and we take 
s* > 0. By Theorem 5.1.2 and 5.L7, for every s G ]0, ̂ *[ there exists a 

solution x*{£) to the problem NCP(fs, K). Condition (5.1.1), implies that for 

x*{s) we must have ||x*(£)|| < p. \f 0 < 6\ < 62 < s*, then we have 
X* (6:̂ ) ̂ X, (6-2). Indeed, 62= S\-^ r with r > 0. If x, {^s^) = x, (^r^), then we 
have 

which implies that x*{s\) = 0, and finallyXO) G K* , which is impossible. 

We have that |x* (6:)| ^ is a branch of solutions, where x*{e) is a 

solution to the problem NCPife, ^ and it is a subset of B^ nK. We take 

^̂  = — ,neNand^* = 1. Because ^ i s a locally compact cone, we have that 
n 

iw . . r p the sequence ^ *̂ — f has a convergent subsequence <̂  x. .Let 
^J HGN L V ^ ^ ^} kGN 

X* be its limit. By continuity we obtain that x* is a solution of the problem 

NCP(f, K) such that ||x* || < p and the proof is complete. n 

The following result is an application of Theorem 5.1.2 and Theorem 5.1.7 
to the fixed-point theory. 



Leray-Schauder type alternatives. Existence theorems 1̂ 7 

THEOREM 5.1.10. Let ( ^ , (•,•)) be a Hilbert space, K a H a closed 

pointed convex cone and h : K -> K a mapping. If the mapping 

f[x)-x-h[x^ is a projectionally Leray-Schauder mapping which 

satisfies condition (0) with respect to K, then h has a fixed point in K 

Proof. From the complementarity theory it is known that the mapping 

h: K-> iS^has a fixed point in K if and only if the problem NCP(I ~h K) 

has a solution. Since by Theorem 5.1.2 and 5.1.7 the problem 

NCP(I -h, M) has a solution, the conclusion of the theorem follows. n 

By the following theorems, we put in evidence some classes of 
mappings that satisfy condition {9) that is mappings without an EFE. 

THEOREM 5.1.11. Let {H, {-,•)) be a Hilbert space, K a H a closed 

pointed convex cone andf. H -> H a mapping. Let ^ : [O, +oo[ ^^ [O, +oo[ be 

a mapping such that Xmi(p{t\ = -\-^ and (p{t\>Q for any t > 0. If 

{x-y,f{x)-f{y))>\\x-y\\(p(lx-y\\), for my x, y e K, then the 

mappingf satisfies condition {0). 

Proof. Obviously, we suppose that/is not a trivial mapping. Let^'o e KhQ 

an arbitrary element such that | / ( j ; ^ )|| > 0. We denote p^ =||/(>'o)||- ^y 

assumption, there exists /? > 0 such that ^ (||x - y,, ||) > Pg for any x & K 

with IIJ: - 7Q II > /?. If X € K and |x|| > p + l̂ o || > ||Jo ||' ^^^^ '^^ have 

\4 >\y^II ^^^ {x~y^j{x)-f {y^)) > |x -y,\(p(||x - y^||) which implies 

{x-y^,f{x))>{x-y,j{y,)) + \x-y,\(p{lx-y,\) 

^ll^->'olk(lk->'oi)-lk-joll||/U)|| 
H|x->^oll[Klk->'oll)-||/U)||] 
= lk->'o|[^(lk-7o||)-Po]^0. 
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If for any x e K, satisfying ||jc|| > p + jy^ \\, we take y = yo, we obtain that / 

satisfies condition (0). D 

DEFINITION 5.1.5. We say that a mapping f: H ^> H satisfies the weak 
Karamardian 's condition with respect to a closed pointed convex cone 

K (^ H, if there exists a bounded set D cz K, such that for all x G K\ D 

there exists y e D such that (x- y,f [x)j > 0. 

Remark. The classical Karamardian's condition supposes in Definition 
5.1.5 that Z) is a compact convex set. (Karamardian, S. [1]]. 

THEOREM 5.1.12. Let (//,(•,•)) be a Hilbert space, K (z H a closed 

pointed convex cone and f : H -^ H a mapping. Iff satisfies the weak 

Karamardian's condition with respect to K, then f satisfies condition (0). 

Proof. Let D e ^ b e the set defined by the weak Karamardian's condition. 

Since D is bounded, there exists p > 0 such that DciB^ r\K, For any 

X G Ksnch that ||x|| > p, there exists ye D (that is such that ||j^|| < p< \\x\\) 

verifying {x-y,f [xfj > 0. Hence, condition ( ^ is satisfied. n 

Remark. Condition ( ^ is a strict generalization of Karamardian's 

condition. Indeed, consider the Euclidean space f#^,(•,•)), the cone 

K = Ml and the function f[x^,x^)^[x^,-x^^^ for all {x^,x^)eM'^. We 

can show that/satisfies condition (^, but not Karamardian's condition. 

DEFINITION 5.1.6. We say thatf: H-^ His a p-copositive mapping with 

respect to a closed pointed convex cone Ka H, if there exists p> 0 such 

that for allx e Kwith \\x\\ > p we have (x,/(jc)\ > 0. 
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THEOREM 5.1.13. Let ( ^ , (•,•)) be a Hilbert space, K a H a closed 

pointed convex cone and f \ H -^ H a mapping. Iff is p-copositive with 

respect to K, then f satisfies condition {0). 

Proof. Indeed, we consider the set Z) = 5^ n ^ . Because D is bounded and 

(jc - 0, / (x)) = [x, f (x)) > 0 for any x e ^K ŝuch that ||jc|| > /?, we have that 

/satisfies a weak Karamardian's condition and we apply Theorem 5.1.12. 

Remark. The mapping f :M^ -^ M^ defined by / (xj, JC2) = (x^, -xf j is 

not yO-copositive with respect to the convex cone Ml, with some p > 0. 

Indeed, if we suppose that / is />copositive with respect to M^, we take 

x = (x^,X2) withxi>Oand x^ >max{p,l} and we have 

[x,f (x)) = (^{x^,x^),(^x^,-xl)^ = x^ -^2^f =xl{\-x^)<0, 

which is impossible. From Theorem 5.1.13 we obtain the following result. 

COROLLARY 5.1.14. Let {H,{',-)) be a Hilbert space, Ka. Ha closed 

pointed convex cone and f: H ^ H a mapping. If there exists a bounded 

subset C of Ksuch that (x, / {xyi > 0 for any x e K\ C, then the mapping f 

satisfies condition {6). 

Proof. Indeed, because the set C is bounded, we can show that f is p-

copositive with respect to K and Theorem 5.1.13 is applicable. n 

The condition used in the definition of />copositivity can be replaced in 

some particular cases by a weak condition using a radial retract. Let (£, ||||) 

be a Banach space and r > 0 a real number. By definition the radial retract 
associated to the number r is: 

fx, if \\x\\<r. 

K{^) = 
'U ^̂ W"" 
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THEOREM 5.1.15. For any r > 0, the radial projection TZr is a continuous 

mapping. 

Proof. We prove that ; ^ is a 2-Lipschitzian mapping, considering three 

possible situations: 
(I) ||x|| < r and \y\ < r . In this case we have 

¥AA~^r{y)\=V-y¥A^-y\-
(II) ||x|| > r and \y\ < r . Then we have 

^.W-^.Mh rx 
\T\-y\ 

A^-yhT{M-')^V-yhV\-\y\^^V-y\-
(III). ||x|| > r and \y\ > r . In this last case, we have 

IKW-̂ .WIh rx ry 
^jjl-^'ll-'-IW 

\ \_ 

\A\\y\\ 

l̂k->̂ ll + p|IH|-|Hlp2||x-j;|. 

Therefore, the mapping y^ is a continuous mapping. n 

DEFINITION 5.1.7. We say that f : H ^ H is a strictly p-copositive 

mapping with respect to a closed pointed convex cone , K cz H, if there 

exists p> 0 such that for all x e Kwith \\x\\ > pwe have ^x, / [x)j > 0. 

THEOREM 5.1.16. Let {H,{-,•)) be a Hilbert space, K a H a closed 

pointed convex cone and f \ H ^y H a continuous mapping. If there exists 

p > 0 such that ĵc, / (jc)^ > 0 for any x E Kwith \\x\\ = p, then the mapping 

h : H -^ H defined by /z(jc) = fy^p (•^)) + k ~ ^ (^) F^ ^^ continuous and 

strictly p-copositive with respect to K. Moreover, if K has a compact base 

and f is a bounded mapping, then the problem NCP(f, K) has a solution x* 

such that \\x*\\ < p. 
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Proof. Obviously, the mapping h is continuous. We remark also that 

TZp ( i^) c K. Let X e i^ be an arbitrary element such that ||J:|| > p. Then 

|;e^ (x)|| = /? > 0 and X = y ;e, (x) . We have 

(x, h (x)) = (x, / (7^^ (x))} + ||x - 7Z^ (x)|| ||x|f 

= H ( ^ . W , / K ( x ) ) ) ^ | | x - ^ , ( x ) | | | | x r > 0 . 

Therefore h{x) is strictly />copositive with respect to ^ a n d consequently 

without an EFE with respect to K The mapping h is bounded if / is 

bounded. If the cone ^K ĥas a compact base and/is bounded, we have that h 

is a projectionally Leray-Schauder mapping and consequently the problem 

NCP(h, K) has a solution x*. Because h is strictly />copositive, the solution 

X* must satisfy the condition ||;c*|| < p. But in this case h{x^) = f{x^) and 

we have that x* is a solution to the problem NCP{f, K), n 

COROLLARY 5.1,17. Let (i?''',(•,•)) be n-dimensional Euclidean space, 

K (z R"" a closed pointed convex cone and f : M" -^M'' a continuous 

mapping. If there exists p> 0 such that {x,f[xfj>Qfor any x e Kwith 

||x|| = p, then the problem NCP(f, K) has a solution x* such that ||jc, || ^ /> • 

THEOREM 5.1.18. Let f#",(•,•)) be n-dimensional Euclidean space, 

Kcz M" a closed convex cone and f : K^>M" a continuous function. If 

there exists p> 0 such that for all x e Kwith \\x\\ = p there exists u with 

\\u\\ < p, such that ^x-w,/(x)y >0 , then the problem NCP(f, JK) has a 

solution. 
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Proof. For any x ^ K with ||jc|| > p, we denote by T^x) the radial projection 

of X onto 5'̂  -\xeK\\x\ = p\, i,e,, T^ (x) = j ^ • We consider the function 
ll-̂ ll 

g : ^ - > # \ defined by 

For any x e Mwith \\x\\ > p there exists Ac > 0 such that x = A^T^ (x) . By 

assumption, for T^x) there exists M̂  with M̂  < /? such that 

r , (J:) - Ŵ  , / ( r , (x)j) > 0. We have the following relations: 

{x-Ay^,g{x)) = {AJ^{x)-AX,g{x)) 

= {AJ^{x)-AX^,f{T^{x)) + \\x-T^{x)\\x) 

= K {T, {X) - «;,/(?; (x))) + ||x - r, (x)||||xr - ||x - T; (X)||(A,<,X> 

If for a given x we take y - /l^w ,̂ we have that g satisfies condition {0) with 

respect to K. Because we can show that g is continuous, we have that the 

problem NCP(g, M) has a solution, x* e K. The solution jc* is such that 

\\x*\\ < p. Indeed, if ||x*|| > p we must have (x, -^;,.w^%g(x*)) >0 or 

( \ ^ p ~^* '^(^*)) '^^ ' ^hich is impossible, because the problem 

NCP{g, K) is equivalent to the variational inequality 

\K. ^p -x^,g{x*)j>0 . Hence, ||x*|| < p and in this case g(x*) =fix*\ that is 

X* is a solution to the problem NCP(f, K). n 

Let (//,(•,)) be a Hilbert space and D czHa closed convex set. We 

say that D has a retraction if there exists a continuous mapping TZo- H -^ H 
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such that 7ZD{^) ^ D for any x e H and /^D(^) = x for any x e D.IfD has a 

retraction we say that D is a, retract of the space H. It is known (Zeidler, E. 

[1]) that every closed convex subset D of a Banach space (^J*!) is a retract 

of E, We have the following result, which is a generalization of Theorem 
5.1.16. 

THEOREM 5.1.19. Let ( ^ , (•,•)) be a Hilbert space, K a H a closed 

pointed convex cone andf: H ^> H a continuous mapping. Let D a K be a 

closed bounded convex set such that 0 e D. If for any x e K\D and for any 

y e Dwe have ^x, / [y)j > 0, then for any retraction 7^:H -^ H we have 

that the mapping h: H-^ H defined by 

h{x) = f(7^^{x)) + \x-7^^{x)\x 

satisfies the condition (x,h(jc)) >0 for any xeK\D. Moreover, the 

mapping h satisfies condition {0) with respect to K. If Khas a compact base 

and f is bounded, then the problem NCP(f, K) has a solution x* such that 

X* G D. 

Proof. We observe that the mapping his a continuous mapping. Let x be an 

arbitrary element in K\D. We have 

(x, h (x)) = {xj{7^ (x)) + \\x-7^^ {x)\\ x) 

= (x,/(;^(x))) + ||x-;^(x)||.||xf >o. 
Because D is bounded, there exists p> 0 such that for any x e D WQ have 

||x|| < p. Therefore for any x e jK'with ||x|| > p we have (x,/z(x)^ > 0, which 

implies that h is strictly p-copositive with respect to Kand it satisfied 

condition (0). Consequently h is without an EFE with respect to K IfKhas 

a compact base and/is bounded, we have that h is bounded, and because K 

is locally compact, the mapping // is a projectionally Leray-Schauder 

mapping and the problem NCP(f, K) has a solution jc*. Because 

{x,h{x)^ >0 for any x G K\D,V^Q must have that x* e D and the proof is 

complete. n 
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COROLLARY 5.1.20. Let ( # ^ (•,•)) be the n-dimensional Euclidean 

space, K a W a closed pointed convex cone and / : W ^^^W a 

continuous mapping. Let D cz K be a closed bounded convex set such that 

0 e D. If for any x e K\ D and any y e Dwe have ĴC, / [yjj > 0, then the 

problem NCP(f K) has a solution x* such that x* e D. n 

In (Ding, X, P. and Tan, K. K. [1]) was introduced the following condition 
which is more general than Karamardian's condition. 

DEFINITION 5.1.8. We say thatf: H ^ H satisfies condition (DT) with 

respect to K, if there exist a non-empty compact convex subset D^ <zK and 

a non-empty compact subset D^ ciK such that for each x e K\D*, there is 

aye conv(^DQ u {jc}) such that (^x - y^f^x^j > 0. 

We have the following result. 

THEOREM 5.1.21. Iff: H-> H satisfies condition (DT) with respect to K, 

then f satisfies condition {9) and consequently f is without an EFE with 

respect to K. 

Proof. Since Z)o and D* are bounded sets, there exists p > Q such that 

DQ,D^ czB^ nK. If X e Kis such that ||x|| > p, then by condition (DT) 

there exists yeconvi^D^u^x]^ such that (jc->',/(x)y > 0 . We have 

y = MQ + (l - /I) X, with /I G [0, 1] and do G DQ, which implies 

\\y\\ <4d,\\ + (1 - X)\\x\\ <X\\x\\ + (1 - X)\\x\ = \\x\\, 

(since ||Jg | ^̂  Z' < ||jf| )• Therefore,/satisfies condition (0). n 

Let (//,(•,•)) be a Hilbert space and K cz H 2i closed pointed 

convex cone. Let ^:[0,+OO[^-[0,H-OO[ be a function such that 

lim (p{t^ = +00 and u ^ K an arbitrary element. 
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DEFINITION 5.1.9. We say that a mapping/: H -^ H is asymptotically 

{u, g, cpymonotone on K, if there exists p> 0 and a mapping g \ K^>^ H 

such that [x-u^f (x) - g (i/)\ > ||jc - w|| <2? (||-̂  - w||), for all x ^ K with 

\\x\\>p. 

For this kind of mapping we have the following result. 

THEOREM 5.1.22. Iff: H -^ H is an asymptotically (u, g, cpymonotone 

mapping with respect to K, then f satisfies condition (0), 

Proof. For every x e ^with ||x|| > max (/7, ||w||), we have 

{x-u,f{x)-g{u))> \\x - u\\ (p (||x - w||), 

which implies 

{x-u,f (x)y >ix-u,g (w)y + \x - u\ (p (||x - w||). 

Since ||x|| > ||w|| we have llx -wll > 0 and we deduce 

( X - W , / ( X ) \ > | | A : - W | x-u ,g(w)) + ^(| |x-w| 

such that (jj T^g{u)\>LY for any JC G iŜ  with ||x||>max(/7,||w 

Since is a bounded set and for u fixed, considering 

g{u) as a continuous linear functional on H, we have that there exists y ^R 

x-u 

\x - u\ 

Because lim (p{t\ - +oo, we have that there exists /> > 0 such that ||x - w|| > 

fh implies (p (||jc - w||) > - / , that is {x-u,f (A:)) > 0 . If for any x ^ K 

satisfying \x\ > max (A +1|^|| -> p) ^^ t^ke >̂  = w, we have immediately that/ 

satisfies condition (0), with respect to K and the proof is complete. n 

COROLLARY 5.1.23. Let f : H ^^ H be an asymptotically (u, g, (p)-

monotone mapping with respect to K Iffisprojectionally Leray-Schauder 

with respect to K, then the problem NCP(f K) has a solution. 
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Remark. The class of asymptotically {u, g, ^)-monotone operators contains 
as a particular case the strongly monotone operators. 

We consider again an arbitrary Hilbert space (/ / ,(• ,)) , a closed 

pointed convex cone KaHand an arbitrary mapping,/: H^^ H. We know 

that the problem NCP(f, K) has a solution if and only if the equation 

x = P^[x-f{x)\ (5.1.2) 

has a solution in H (which is necessarily an element of K). Therefore, 

equation (5.1.2) has a solution if and only if, the optimization problem 

| | ^ - ( ^ - / ( x ) ) | | = min{ | |> ; - (x - / (x ) ) | | :> ; e^ j 

has a solution in K. The above equation can be rewritten as the following 

variational inequality: 

\f{x)\<\y-x + f{x%forallyeK, 

Considering this variational inequality we define the following condition. 

DEFINITION 5.1.10. We say that a mapping f\ H -^ H satisfies condition 

M{D) with respect to K if there exists a non-empty bounded subset D cz K 

such that the set M{D) defined by 

M{D) = [\{xeK:\\f{x)\<\\y-(x-f{x))l 
yeD 

is a bounded set. 

A natural question arises: Is there is a relation between condition M{D) and 
condition {6)1 An answer to this question is given by the following result. 

THEOREM 5.1.24. If a mapping f: H -> H satisfies condition M(D) with 

respect to K, then f satisfies condition (0). 

Proof. We consider the bounded set A = DuM(^D). If x^ GK\A, then 

JCQ ^ P I IX G ^ : | | / (x)|| < p; - (jc - / (^)) I which implies that there exist 

yo e D with the property that 

| | /k ) | |> |k- (^0- / (^0) ) | | - (5.1.3) 



Leray-Schauder type alternatives. Existence theorems 157 

From (5.1.3) we have 

ii/(^o)ir>iK-(^0-/(^0)! 
or 

{ / ( ^o ) . / ( ^o )> >(>^o - (^0 -/(^o)).>^o - (^0 - / U ) ) ) 

= (;^o-^0.3^0-^o)-2(7o-^o./(^o)) + ( / (^o). / (-^o)) . 

which implies 

(^o-7o./u)>>-ik-^oir>o-
Therefore, the weak Karamardian's condition is satisfied and by Theorem 
5.1.24, we have that the mapping/satisfies condition (0). 

COROLLARY 5.1.25. Iff: H -^ H is a projectionally Leray-Schauder 

mapping with respect to a closed pointed convex cone Ka H and satisfies 

condition M{D), then the problem NCP{f, K) has a solution. 

COROLLARY 5.1.26. Let (TJS'",(•,•)) be n-dimensional Euclidean space, 

K a W a closed pointed convex cone. If f : H" -^M" is a continuous 

mapping and it satisfies condition M(D), then the problem NCP{f, K) has a 

solution. 

Remark. If in condition M(D) we have that D and M(D) are compact sets, 
and / is a continuous mapping, then in this case we take, in the proof of 

Theorem 5.1.24, A = conv and by the classical Karamardian's 

Theorem we have that the problem NCP(f, K) has a solution. About this 

result the reader is referred to (Isac, G. and Li, J. [1]). 

Now, we give a variant oi condition ( ^ in an arbitrary Hilbert space 

(/ / , (• ,)) . Let Ka HhQ di pointed closed convex cone a n d / : H -^ H a. 

mapping. 
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DEFINITION 5.1.11. We say that f satisfies condition {9- S) with respect 

to K, if for any family of elements [x^]^_^^ciK, such that \\xr\\ -> +oo as 

r -^ +00, there exists y* e Ksuch that {x^ -;; , ,/(jc^)^ > 0 for some r > 0 

such that \x^ || > || j , ||. 

Remark. We observe that condition {0) implies condition {0 - S). I f / i s 
positive homogeneous, then condition (0 - S) implies condition (9). (In 

this case we take for any r > 0, Xr = rx ifx e K). As for condition {9 - S) 

we have the following result. 

THEOREM 5.1.27. Let {H,{-,')) be a Hilbert space, K a H a closed 

pointed convex cone and f : H ^y H a mapping. If f satisfies condition 

(9 - S) with respect to K, then f is without an EFE with respect to K. 

Proof. Indeed, we suppose that / has an EFE with respect to K, namely 

(x̂ l̂ ^Q ciK. Since/satisfies condition (9 - S) there exists 3;* e jK^such 

that (^x^ - j ^ , , / (jĉ  )^ > 0 for some r > 0 for which we have \\y^ || < \\x^ ||. In 

this case we have 

0<(x, -y,j(x^)) = {x^ -y,,u^ -/^,x^) 

^ Mr [{y^ ^^r)- hr t ] ^ Mr \\^r || ||> *̂ || " | |^. if ] 

=/̂ .lkll[W-IKII]<o^ 
which is a contradiction. Therefore/is without an EFE with respect to JC n 

Remark. Our condition {9 - S) is more general than the condition used in 

(Zhao, Y. B. and Han, J. Y. [1], Theorem 3.1), since in condition (9 ~ S) , 

the element 3;* is dependent on the family {̂ ;.}̂ ô, while in (Zhao, Y. B. and 

Han, J. Y. [1]) the element jc is independent on the family {:̂ ;.}̂ >Q . In 1990 

P. T. Harker and J. S. Pang studied the solvability of variational inequalities 
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in M'' and by using an interesting condition, they obtained some existence 
theorems for variational inequalities (Harker, P. T. and Pang, J. S. [1]). 

Now, we consider this condition in an arbitrary Hilbert space, but 
for complementarity problems. We will denote this condition by {HP). 

DEFINITION 5.1.12. We say that a mapping/'. H -^ Hsatisfies condition 

(HP) with respect to a closed pointed convex cone K(Z.H, if there exists an 

element X* e Ksuch that the set K(^x^^ = \xeK:(f(^x),x-x^\<0\ is 

bounded (or empty). 

Considering this condition we have the following result. 

THEOREM 5.1.28. Let {H,{-,')) be a Hilbert space, K ^ H a closed 

pointed convex cone andf: H ^^ H a mapping. Iff satisfies condition (HP) 

with respect to K, then f satisfies condition (0 - S) and consequently f is 

without an EFE with respect to K 

Proof. Let [x^]^^^(z.K be a family of elements such that \\Xr\\ -^ +oo as 

r -> +00. If there exists an element x* e jK ŝuch that the set K(x*) is bounded 

(or empty), then for r > 0 sufficiently large, we have that x^^K (x,) 

implies that {x^ - x*, / (jc^)) > 0 . We can take r sufficiently large satisfying 

also the condition ||^J>||^*||- Therefore / satisfies condition (0 - S). By 

Theorem 5.121, f\^ a mapping without an EFE with respect to K. u 

PROPOSITION 5.1.29. Let (H,{-,')) be a Hilbert space, Kcz Ha closed 

pointed convex cone andf\ H^^ Ha mapping. Iff has an EFE with respect 

to K, then for any point x* G K, the set 

is non-empty and unbounded. 

Proof. This result is a consequence of Theorem 5.1.27 and 5.1.28. n 
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The following notion was considered in (Zhao, Y. B. and Han, J. Y. [1]). 

DEFINITION 5.1.13. We say that a mappingf: H^ His (jc*,p)-coercive 

with respect to a closed pointed convex cone K <^ H if there exists some 

p e ]-co^l[ and an element x* e Ksuch that 

if(x^,x-x^ 
lim ^^^^-^ ^ = +00. 

XG^,H^OO II J l / ' 

Remark. The case /? = 1 is covered by the classical notion of coercivity. 
Any coercive mapping is /7-coercive, but the converse is not true. For 

example if we take H= M, K= M+, the mapping / (x) = , with a> Q 
l + jc"" 

and X* any element such that jc* > 1, is/7-coercive for any/? e ]-oo, 1[, bu t / 
is not coercive since 

f (xMx - xA 
lim ^^^--^ ^ - 1 . 

THEOREM 5.1.30. Let {H,{',-)) be a Hilbert space, K a H a closed 

pointed convex cone andf\ H ^> H a mapping. Iff is (x*, pYcoercive with 
CO <p < I, then f satisfies condition (0 -S) and consequently f is without an 
EFE. 

Proof. Indeed, if 0 </? < 1 then we have 

(f(x),x-x,) 
lim ^^^-^-^ ^ = +00, (5.1.4) 

^E^JHhoO \ \ \ \ P 

with JC* G Â  defined by the (JC*,/?)-coercivity. Relation (5.1.4) implies 
lim (f(x),x-x^) = +co. 

Which has as a consequence the fact that condition {6 - S) is satisfied with 

respect to KAf-co<p<0, then for every family of elements [x^] ̂ ^^ cz K , 

with ||jC;̂ || -^ +00 as r ^> +oo, we have (using Definition 5.1.3) that 

//(jc^),jc^ -jc*^>0 for r > 0 sufficiently large. Therefore, again condition 

(0 -S)is satisfied and the proof is complete. n 
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DEFINITION 5.1.14. Let f: H -^ H be a mapping and K cz H a closed 
pointed convex cone. We say that a mapping T: H-^ His an (x*, p)-scalar 
asymptotic derivative off with respect to K, if there exists an element x* e K 
and a real number p G ]-OO, 1 [ such that 

, i ^ {f{x)-T{x),x-x^) _^ 

The importance of Definition 5.1.14 is given by the following result. 

THEOREM 5.1.31. Zer (//,(•,)) beaHilbert space, f'.H-^Ha mapping 

and K a H a closed pointed convex cone. If f has an (x*, p)-scalar 

asymptotic derivative Twith respect to K, and T is {x*, p)-coercive, then f is 

without an EFE with respect to K. 

Proof. The theorem is a consequence of Theorem 5.1.30 and of the relation 

( / ( x ) , x - x , ) 
lim 

JCG^,H^+00 ILJJ/ ' 

lf{x)-T[x),x-x,) {T{X),X-X,, 
lim ^ ^-^ -+ lim ^ ^ = +00. 

GK,\\X\\-^+OO \\^\\P XGK,\\X\\->^ \\J\P 

For the next result, we need to recall the following notion. We say 

that a mapping f.H^His pseudo-monotone on K if for any x, y ^ K, 

X 7^y we have that (^y-x,f [x)^ > 0 implies (^y-x,f [y^j > 0. 

DEFINITION 5.1.15. We say that a mapping f: H ^> H is weakly proper 

on K if for any family of elements [x^] ̂ ^^ a K , with \\Xr\\ -^ +oo as r -> +oo, 

there exists an element x* e Ksuch that for some r > 0, with ||x* || < \x^ || we 

have i^f (x,), x̂  - :̂ *) > 0. 

We have the following interesting result. 
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THEOREM 5.1.32. Let ( ^ , (•,•)) be a Hilbert space, K cz H a closed 

pointed convex cone andf: H -^ H a pseudo-monotone mapping. Iff is a 

projectionally Leray-Schauder mapping, then the problem NCP(f E) has a 

solution if and only iff is weakly proper with respect to K. 

Proof. We suppose that the problem NCP(f K) has a solution XQ. Because 

the fact that the solvability of the problem NCP(f K) is equivalent to the 

solvability of the variational inequality 
f find Xn G Ksuch that 

\{f{x,),x-x,)>%forallx^K, 

we have that ^/(x^),x - JCQ̂  >0, for allxeK. Obviously, if we take in 

Definition 5.1.15, x* = XQ, we deduce that/is weakly proper on K 

Conversely, assume that / is weakly proper on K. In this case 

Definition 5.1.15 implies that for each family of elements {̂ .̂Ĵ ^Q ciK, 

with ||x |̂| -> +00 as r ^^ +oo, there exists an element x* e K such that 

^ / (x*), x̂  - X, ̂  > 0 for some r > 0 such that \x^ || < \x^ ||. Since/is pseudo-

monotone we have that ^/(JC^),JC^ - X , ^ > 0 , which implies that/satisfies 

condition {6 - S), with respect to K, By Theorem 5.1.27, we have that / is 

without an EFE with respect to K Applying Theorem 5.1.2, we obtain that 

the problem NCP(f K) has a solution and the proof is complete. n 

Now, we introduce a generalization of the Harker-Pang condition. 

We will denote this condition by (HPT), (Harker-Pang Type). 

DEFINITION 5.1.16. We say that a mapping f: / / - > H satisfies condition 

(HPT) with respect to K if there exists a bounded set D c Ksuch that the 

set K (£)) = ixeK :(y-x,f (JC)\ > 0, for all yeD] is bounded. 
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By using this notion we have the following result. 

THEOREM 5.1.33. Let (//,(*,•)) be a Hilbert space, K a H a closed 

pointed convex cone andf: H^yHa mapping. Iff satisfies condition (HPT) 

with respect to K, then f is without an EFE. Moreover, iffis a continuous 

projectionally Leray-Schauder mapping, then the problem NCPif, K) has a 

solution. 

Proof. Indeed because / satisfies condition (LIPT) with respect to K, then 

considering the sets D and K{D) defined by condition {HPT), we have that 

the set M = D^K(Z)) is a bounded subset of ^ If x is an arbitrary 

element in ^ \ M, then x€K{^D), which implies that there exists an 

element >̂  G D such that ^>^-x , / (x ) \<0 , or \x-y,f{xyj>0 . Because 

j^ G M, we have that the weak Karamardian's condition is satisfied and by 
Theorem 5.1.12 we have that/satisfies condition (0). Applying Theorem 

5.1.8 we obtain that / is without an EFE with respect to K. If / is a 

continuous projectionally Leray-Schauder mapping with respect to K, by 

Theorem 5.1.2 we have that the problem NCPif, K) has a solution. n 

Remarks. 
1. If the set D has only one element x*, that is Z) = {x*}, we obtain from 

Definition 5.1.16 the condition {HP). 

2. If Z) and K{D) are compact and / is continuous, we obtain that / 

satisfies the classical Karamardian condition which implies that the 

problem NCPif, K) has a solution. 

3. We remark i\\2it K{D)= [^[xeK\l^y-xj{x))>o| which implies 
y&D 

that K{D) can be bounded without each set IxeK'.ly-x,f (x)\ > 0| 

being bounded. 
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We consider again a general Hilbert space (//,(•,)) and. Kc: H a. 

closed pointed convex cone. 

DEFINITION 5.1.17. We say that a mapping f : H ^ H is scalarly 

increasing to infinity with respect to K, if for eachy e K there exists a real 

number p(y) > 0 such that for all x e K with \\x\\>p(^y) we have 

{x-y,f{x))>0. 

THEOREM 5.1.34. Iff: H ^^ H is a mapping that is scalarly increasing to 

infinity with respect to K, then f is without an exceptional family of elements 

with respect to K 

Proof. Let {̂ .̂Ĵ ^Q aKhQ an exceptional family of elements for /wi th 

respect to K. We have u^ = / ( ^ r ) + Mr^r ^^\{\'>u^) = Q for any r > 0 

and ||jĉ || ^ +00 as r ^^ +cx). For any r > 0 we have jUr > 0. We show that in 
this case the converse of Definition 5.1.17 is satisfied, i.e., there exists >̂  E 

K such that for each p > Q there exists x ^ K with ||jc|| > p and 

{x-yj{x))<Q. Indeed, if>; e ^ \ {0} is an arbitrary element, then we 

have 

which implies 

(^.->',/(^.)>^;^.kll[M-IKII]- (5.1.5) 
Let ĵ o e ^ \ {0} be an arbitrary element, /?> 0 an arbitrary real number. Let 

r > 0 be a real number such that ||jĉ || > p and ||x |̂| > |[yo||. Using (5.1.5) we 
obtain 

{^.-3^o,/(^.))^;^.lkll[IKi-lki]<o. 
Therefore, this fact is in contradiction with Definition 5.1.17, which implies 
that/is without an EFE. u 
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DEFINITION 5.1.18. We say that a mapping h : H ^ H is monotonically 

decreasing on rays with respect to K if there exists ^ > 0 such that, for 

every x e K and every s, t with the property s > t > to we have 

{x, h {pcyi >{x,h {sxyj. 

PROPOSITION 5.1.35. A mapping h: H-^ His monotonically decreasing 

on rays with respect to K, if and only if for every a > 1 and every x e Kwe 

have: 

{x,h{x))>{x,h{ax)). (5.1.6) 

Proof. We suppose that h is monotonically decreasing on rays with respect 

to K For X = 0, inequality (5.1.6) is satisfied. We consider a > \ and 

jc G ^ \ {0}. We can put a = - (where ^ > / > to). For t > to, s = at. Let 

X* =-x. We have x = tx*. Since h is monotonically decreasing on rays we 

have 

(^x,,h{tx,))>(^x,,h{sx,)) 

which implies 

(^tx,,h(tx,)) >{tx,,h{atx,)), 

and finally we have 

^x, h (jc)^ > ̂ x, h {axfj. 

Conversely, we suppose that (5.1.6) is satisfied for every a> \ and every 

X e K Let x, ^K\\Qi\ be an arbitrary element. Take ^ = 1 and 5 > / > 1. 

Using (5.1.6) with a = - and x = tx*, we obtain 

\ / fs ^ 
(^tx,,h[tx,)j>ltx,,h\ -[tx,) 

which implies 

(x* ,h{tx,)) > (x, ,h(sx,)), 

that is h is monotonically decreasing on rays with respect to K 
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THEOREM 5.1,36, If the mapping h \ H ^ H is bounded and mono-

tonically decreasing on rays, with respect to K, then j{x) =x - h(x) is 

without exceptional family of elements, with respect to K 

Proof. We suppose that / has an exceptional family of elements, with 

respect to K, namely {̂ }̂̂ ^Q CI K . Then, for any r > 0 there exists a real 

number jUr > 0 such that u^ =f{^r)~^Mr^r e^*,(x^,w^) = 0 and \\Xr\\ -^ 

+00 as r -^ +00. From Proposition 5.1.35 we have 

Ux,h{x)^>{x,h{ax)^, for allxeK 

[and all a>\. 

For every Xr with ||jĉ || > 1 we consider in (5.1.7) 6ir = IIA: 11 and x = Tp^ and 
\rr II 

we obtain 

{ax, h{x)-h (x^)) > 0, 

which implies 

\{x^,h{x)-h{x^))>Qforallr>Q 
II II ( 5 . 1 . 8 ) 

such that \x^^>\. 

The expression (5.1.8) is equivalent with the inequality 

\{x^,h(x)-h{x\^-x^ -x\>0 for allr>0 
l \ . ' V ; V . ; . . / ^ ^5 J g^ 
such that \\x^ || > 1. 

X 

Because h is supposed to be bounded and x = 77-^, there exists M> 0 such 

k that p ( ^ ) | ^ M. (Since ||x|| = 1, Mis independent of r.) Using the fact that 

{jĉ }̂ ^̂  is an exceptional family of elements forX^) = x - h{x\ we have 

from (5.1.9), 

Q<{x^,h{x)-X^ +U^ -JUr^r) 

= {x,.h{x))-\\x^f+{x^,u^)-Mrhf 

<-(l + //,)||x,f+||x,||M = ||x,l|[M-(l + //,)|K||], 
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II II M which implies x̂  < < M , for all r > 0 such that ||X;.|| > 1. Obviously, 
1 + //, 

the last inequality is impossible, since ||JC |̂| -^ +oo as r ^> +oo. We conclude 

from this contradiction that / is without an EFE with respect to K diwd the 

proof is complete. n 

The following condition was defined in (Zhao, Y. B. [3]) under the 

name of Isac-Gowda condition. We note that this condition was initially 

used in (Isac, G. and Gowda, M. S. [1]). 

DEFINITION 5.1.19. We say that a mapping/: H-^ Hsatisfies condition 

(IG) with respect to K, if there exists a real number p > 0 such that the 

mapping r ( x ) = ||:̂ ||̂  • j c - / ( x ) is monotone decreasing on rays with 

respect to K. 

Remark. Y. B. Zhao used condition {IG) in M^, with respect to the cone 

Ml in relation with the notion of a d-oriented family of elements. [See 
(Zhao,Y.B. [3])]. 

THEOREM 5.1.37. Let ( ^ , (•,•)) be a Hilbert space, K ^ H a closed 

pointed convex cone and f \ H -^ H a mapping. If the mapping f satisfies 

condition (IG), then f is without an EFE with respect to K. 

Proof. We suppose that / has an exceptional family of elements 

[x^]^^^(z.K and we consider the mapping T(jc) = ||x||̂  * ^ - / ( ^ ) -> defined 

for any x ^ H.By Proposition 5.1.35 we have 

{xj{x)-T{ax))>Qforallx^Kanda>\. (5.1.10) 

JC 

Setting a = \\xr\\ and x = Tr~n '^ (5.1.10) we have 

k 
^T ^.r [M) 

- r ( x j ) > 0 , for all r > 0 such that ||;c,|| > 1, which i IS 
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equivalent with \x^,T 
f \ 

\\\^r\\J 

- | K i r - ^ r + / ( ^ . ) ) ^ 0 , for all r > 0 such 

that ||x |̂| > 1. Using the definition of an EFE and the last inequality, we 

obtain \x^,T 
f \ 

KWMJ 

\\p-^ 
x\ 'X^ +u^ ~Mr^r ) - 0 for all r > 0 such that 

||x |̂| > 1, which implies {x^,T 
f \ 

X. 

vii^Miy 
•-iKir-/^.iKir^O'fo^^»'^>0' 

such that ||x |̂| > 1. Finally we haveIx^^T 
f \ 

x^ 

Vii^Hiy 

i - | | x j f ^> / / j | x j | '>0 , fo r 

Z'+l all r > 0, such that ||x,|| > 1, or b If <[x^J 
f \ 

x^ 

vii-^Hiy 

for all r > 0, such 

that ||x.|| > 1. Since T is bounded, there exists a real number M> 0 such that 
f \ 

x^ 

\\\^r\\J 

< M , for all r > 0 such that ||x |̂| > 1. Therefore we have 

Ixjf < M , for all r > 0 such that ||X;.|| > 1, which is impossible, since 

IIjĉ  II -> +00 as r ^^ +00 . This contradiction implies that / is without an EFE 

with respect \o K n 

DEFINITION 5.1.20. We say that a mapping f : H -^ H is p-order 

generalized coercive with respect to K if there exists an element x^ G Kand 

a real number p e ]-QO, 1] such that 

y {f{x).x-x.) 
hm sup -̂̂  > 0. (5.1.11) 

THEOREM 5.1.38. Iff: H-^ His a p-order generalized coercive mapping 

with respect to K, then f is without an EFE. 

Proof. Indeed, we suppose that/has an EFE with respect to K. Let {̂ .̂Ĵ ^Q 

be this family. In this case we have 
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( / (^r ) . ̂ . - ^. ) _ (W. - IU^X^,X^ - X,) - / / , |X, If + Mr l^r \ ||^. || 

h i \\x¥ "' WxV 

M.[h4-h\\] 
II 11^-^ 

which implies that for r sufficiently large we have 

{fM^^r-^^Mr{l^4-h\\] 
II 11^ II l l^~^ 

<0, 

which is a contradiction of (5.1.11). Therefore, / is without an EFE with 

respect to K n 

COROLLARY 5.L39. Iff is coercive with respect to K, that is, there exists 

X* e K such that 

{f{x),x-x,) 
l i m -̂  ^—7. = +00 , 

xeK\\x\\^cc, ||;^|| 

then f is without an EFE with respect to K. 

COROLLARY 5.1.40. Iff satisfies the condition 

liminf (x, /'(jc)\>0, 

then f is without an EFE with respect to K 

Remark. In (Zhao, Y. B. [3]) was proved a result similar to Theorem 5.1.38 
but for a (i-oriented family with respect to the cone Ml. 

We close this section with another variant oicondition (6). 

DEFINITION 5.1.21. We say that a mapping f: H ^ H satisfies condition 

\i9\ with respect to K, if there exists p > 0 such that for any x e Kwith 

\\x\\ > p, there exists y e Ksuch that (_y,x) < \x\ and (x- y,f (x)) > 0. 
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Remark. If/satisfies condition (0% then it satisfies condition (d). Indeed, 

if there is p > 0 such that for any x e K with ||x|| > p, there exists 

y G K with |[y|| > ||x|| and ,(^x- y,f [x^j > 0, then we have 

(>'^-)^IHHHI<Hr 
which implies (x-y,f[x)\>0. About condition w) we have the 

following result. 

THEOREM 5.1.41. Let (//,(•,•)) be a Hilbert space, K a H a closed 

pointed convex cone andf: H -^ H a mapping. If/satisfies condition {6\, 

then f is without an EFE with respect to K 

Proof. Suppose that/has an EFE with respect to K, namely [x^]^^^c:K . 

We have that \x^|| -^ +oo as r -> +QO , u^= ju^x^ -\- f{x^^G K* and 

(jc ,̂ w )̂ = 0, for any r > 0, (with ju^ > 0). We take r>0 such that ||x |̂| > p. 

Because/satisfies condition (d), for such r, there exists j^^ e K, such that 

= {^r^^r)-{yr^^r)-Mrhf +Mr{yr^^r)^Mr[{yr^^r)-h^^^ 

which is impossible. Therefore/is without an EFE with respect to ^ n 

Remark. We can show that if g : H ^> H satisfies condition (o) with 

respect to a closed convex cone K cz H, then for any a > 0, /? > 0, the 

mapping f{x) = ax + (3g{x^ satisfies also condition w\. We have the 

same property for condition {6). 
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5.2 Implicit complementarity problems 

In Chapter 4 we presented the extension of the notion of EFE from a 
mapping to a pair of mappings and we applied this notion to the study of 
implicit complementarity problems. In this section we present a variant of 
this notion. This variant will be introduced by a little modification of the 
notion of EFE defined in Chapter 4 and by replacing the topological degree 
by the Leray-Schauder alternative. In this way we obtain a general 
alternative, which implies an existence theorem for implicit 
complementarity problems. 

Let (//,(•,)) be a Hilbert space, Kd H a closed pointed convex 

cone and f,g:H^y / / two arbitrary mappings. We consider the following 
implicit complementarity problem defined by the (ordered) pair of mappings 

{f, g) and the cone K 

ICP{f,g,K): 

find X, G / / such that 

f[x^)eK\g[x^)eK and 

[(g(x.)'/(^-)> = 0-

In Chapter 4 , we considered this problem supposing that the Hilbert space 

(H, (•, •)) is the Euclidean space (#" , (•, •)), ̂  is a closed convex cone in 

# " and/ g : M"" ^> M" are continuous mappings. We recall the definition of 

EFE for the pair (f, g) of mappings (Definition 4.3.2). We say that a family 
of elements {x^}^^^ a M" is an EFE for the pair (f, g), with respect to the 

cone K, if the following conditions are satisfied: 

(i) ||jĉ  II ^^ +00 a^ r -^ +00 , 

(ii) g{Xr) e Kfor any r > 0, 

(iii) for every r > 0, there exists jUr> 0 such that 

Sr=fM + MrgM^^* and {g{x^),s^) = 0. 
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Using the topological degree we established the following result (Theorem 

4.3.2). Iff, g : M"^ -> M" are continuous mappings and the following 

assumptions are satisfied: 

(1) the equationg{x) = 0 has a unique solution, namely b e M", 

(2) the mapping g maps homeomorphically a neighborhood of the 
element b onto a neighborhood of the origin, 

then, there exists either a solution to the problem ICP(f, g, M) or an EFEfor 

the couple (fg) (in the sense of Definition 4.3.2) with respect to K 

In this result, conditions (1) and (2) are strong conditions from the practical 
point of view. Because of this fact, our goal in this section is to introduce a 
new definition for the notion of an EFE associated to a pair of mappings 
(f, g). We will realize this by a little modification of the notion introduced 
by Definition 4.3.2 and replacing the topological degree by the Leray-
Schauder alternative. 

Let (//,(•,)) be a Hilbert space, K(z H 3. closed pointed convex 

cone and f g : H^ //continuous mappings. 

DEFINITION 5.2.1. We say that a family of elements {x^}^^^ czH is an 

exceptional family of elements (an EFE) for the pair (f g) with respect to K, 

if the following conditions are satisfied: 
(1) | |xJ->+ooa5r ^ + 0 0 , 

(2) for any r > 0, there exists jUr>0 such that 

^ =Mr^r + / ( ^ . ) ^ ^ * ^ ^ . =Mr^r + g(x,)^Kand{ v^,s^) = 0. 

This notion will be used in this section. We have the following result. 

THEOREM 5.2.1. Let (//,(•,•)) be a Hilbert space, K ^ H a closed 

pointed convex cone andf g : H ^^ H completely continuous fields, such 

that f[x) = x-T(^x)andg(x) = x-S[x), where T, S : H ^> H are 

completely continuous mappings. Then, there exists either a solution to the 

problem ICP(f g, M),or an exceptional family of elements [x^]^^^ for the 



Leray-Schauder type alternatives. Existence theorems 173 

pair if, g). Moreover, if S{^K^(z,K, then we have, either an exceptional 

family of element {y^r\r>o ^-^ fa^ ^^^ P^^^ (^ S) ^^ ^he problem ICP(f, g, 

K) has a solution in K 

Proof. We know (See Chapter 2) that the problem ICPif, g, K) has a 

solution, if and only if the equation 

g{x) = P^[g{x)-f{x)] (5.2.1) 

has a solution in H. Considering the mapping 

^{x)^x- g{x) + P^[g{x)- f{x)\ 

defined for any x e H,WQ observe that equation (5.2.1) has a solution if and 

only if, the mapping O has a fixed point in H. From assumptions we have 

^{x) = x-g{x) + P^[g{x)-f{x)] = S{x) + P^[-S{x) + T{x)]. 

We note that O is a completely continuous mapping. If the mapping O has a 

fixed point, then the problem ICP(f g, M) has a solution and the proof is 

complete. We suppose that O has no fixed point in the space H. For any 

r > 0, we consider the set U^ =B^ =|xGi/: | | jc | |<r | and we observe that 

the restriction of O onto the set Ur is a continuous compact mapping 
without fixed points. Applying Theorem 3.2.4 (the classical Leray-
Schauder alternative) to the mapping O and the set Q = / / and U = Ur, we 
obtain that for all r > 0,there exist x^ e dU^ =\^xeH:\\x\\ = r | and A^ e ]0,l[ 
such that 

Xr=\[s{x,) + P^[T{x,)-S{x^)]]. (5.2.2) 

From (5.2.2) we deduce 

^X^-S{X,) = P^[T{X^)-S{X,)], 

which implies (using the properties of P^), 

xK^^r ~^{^r)^y)^^^ fa^allyeKand 

\{;i-:x,-T{x^),X-:x^-S{x,)) = Q. 

Therefore we have that 

[A'T^X^ -T{X^^^K* and 

\x;'x^-s{x^)^K. 
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If we denote by //̂  = Â  - 1 > 0, for any r > 0, we obtain 

and 
V /̂- J 

( 1 1 

Obviously we have also the orthogonality condition (v^,5^) = 0 for any 

r > 0. According to Definition 5.2.1, the family of elements {̂ ;.}̂ >Q is an 

EFE and the first conclusion of the theorem is proved. If S{K) e K, then 

(S>{ K) (z, K. In this case we apply Theorem 3.2.4 to the set Q = K^LWA for 

any r > 0 we consider U = U^{^K)=^\^xeK\\x\<r^, If the problem 

ICPif, g, K) has a solution in K, then the proof is complete. Otherwise, as in 

the first part of the proof, we construct the family {̂ .̂Ĵ ^Q , where Xr e Kfor 

each r > 0, and the proof of the second conclusion of the theorem is also 
complete. Therefore, the theorem is proved. D 

COROLLARY 5.2.2. Let ( ^ , (•,•)) be a Hilbert space, K a H a closed 

convex cone andf, g.H -^ H completely continuous fields. If the pair {f, g) 

is without an EFE, then the problem ICP(f, g, K) has a solution. 

COROLLARY 5.2.3. Let (^",(•,•)) be n-dimensional Euclidean space, 

Kd E^ a closed convex cone and / , g'.M'' -> M"" continuous mappings. If 

the pair (f, g) is without an EFE, then the problem ICP(f g, K) has a 

solution. 

In view of Corollary 5.2.2, now, we give some examples of pairs of 

mappings without an EFE. We suppose again that (//,(•,•)) is an arbitrary 

Hilbert space, K cz H a closed pointed convex cone and fg.H-^H 

continuous mappings. 
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DEFINITION 5,2.2. We say that the pair (f, g) of mappings satisfies 

condition {Og) with respect to K if there exists p> 0 such that for any x ^ K 

with \\x\\> p, there exists y G Ksuch that: 

(1) {g{x)-yj{x))>Oand 

(2) {g{x)-y,x)>Q, 

This notion implies the following result. 

THEOREM 5.2.4. Let {H,{',-)) be a Hilbert space, K a H a closed 

pointed convex cone and f,g:H^>'H two mappings. If the pair (f g) 
satisfies condition (dg), then the pair (f g) is without an EFE with respect to 
K 

Proof. Indeed, we suppose that the pair (f g) has an EFE, [x^]^^^ cz K . For 

any r> 0 such that ||x |̂| > pwQ have an element yr e iS'such that condition 

(^g) is satisfied, i.e., 

{g{x,)-y„f{x^))>0 

From the definition of an EFE for a pair of mappings we have 

^r =MrX, +g{x,)eK and(v,,5^) = 0. 

We deduce 

<-{v,, Mr^r ) + l4 \Xr f' + (̂ ^ , Mr^r) 

= -{M.X,+g (X, ),MrX) + M^r \W If + {y^ 'MrX,) 

= -l4 \X, If - (g {X, ),MrXr) + MI hr f + ( j . , ^r^r ) 
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which is a contradiction. Therefore, the pair (f, g) is without an EFE, with 

respect to ^ n 

COROLLARY 5.2.5. Let ( ^ , (•,•)) be a Hilbert space, K a H a closed 

pointed convex cone andf, g : H ^ H completely continuous fields. If the 

pair if, g) satisfies condition {6g ), then the problem ICP(f, g, K) has a 

solution. 

COROLLARY 5.2.6. Let (i^"",(•,•)) be n-dimensional Euclidean space, 

K (z M ^ a closed pointed convex cone and f,g:M" -^ M" continuous 

mappings. If the pair (f g) satisfies condition (Og ), then the problem 

ICP(f g, K) has a solution. 

Remark. For a pair of mappings {f, g\ condition {6g) is an extension of 
condition {0) from a mapping to pair of mappings. We consider/as the pair 
{f, 7), where / is the identity mapping. Indeed, 'ifg{x) = x for any x e H, then 
we have, 

(g (x) -y,x) = {x- y, x) = {x, x)-{y,x)> \\xf - \\y\\ \\x\\ = \\x\\ (||x|| -1|>;||). 

Hence, if |[y|| < ||x||, then we have, 

{g{x)-y.x) = {x-y,x)>0. 

In Section 5.1 we presented several classes of mappings satisfying condition 
(0). As in the case of a single function, now, we give some examples of 
pairs of functions satisfying condition (6 g), and consequently, pairs of 
functions without an EFE. 

PROPOSITION 5.2.7. Letfg.H-^Hbetwo mappings. If there exists 

p> 0 such that for anyx e Kwith \\x\\> p, there exists y G Ksuch that 

(1) ( g ( x ) - j , / ( x ) ) > 0 , 

(2) l^g{x),x)>a\xf ,aeM^\{0]and 

0)\\y\\<cA\xl 
then the pair if, g) satisfies condition (dg). 
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Proof. The assertion of the proposition is implied by the definition of 
condition (0g) and the following inequalities: 

(gW->',^)={gW,^>-(>',^)^«INr-|WIH=H(«IHI-IWI)>o. D 

DEFINITION 5.2.3. We say that a pair (f, g) of mappings from H into H, 
satisfies the Karamardian type condition, if there exists a bounded subset D 

of K such that for allx e ^ \ D, the exists ay e D such that 

{g{x)-y,f{x))>Oand{g{x),x)>\\xf. 

PROPOSITION 5.2.8. If the pair (f g) satisfies the Karamardian type 
condition, then it also satisfies condition (0g). 

Proof. Because D is bounded, there exists p > 0 such that 

D e j x G JK^:| |X||</?| . In this case, for every x e K With \\x\\ > p, there 

exists;; e Z) such that ^g(x)->^,/(x)^>0,^g(x),x^>| |x| | and |[y|| < |M|. 

Hence, all the assumptions of Proposition 5.2.7 are satisfied with a= 1 and 
the conclusion of the proposition is a consequence of Proposition 5.2.7. D 

DEFINITION 5.2.4. We say that a pair (f g) of mappings satisfies 

condition (HPT)g if there exists a bounded set D cz K such that for any 

xe K\Dwe have (^g[x),x)>\\xf and the set 

K{D,g) = {xeK:{y-g{x)j{x))>OforanyyeD] 

is bounded. 

Remark. If in Definition 5.2.4, g(x) = x for any jc G 7/, we obtain condition 
(HPT) defined in Section 5.1. 

PROPOSITION 5.2.9. If a pair (f g) of mappings satisfies condition 

{HPT)g with respect to K, then (f, g) satisfies condition (dg). 

Proof. Indeed, we consider the set M = DuM(^D,g) . Obviously, Mis a 

bounded subset of ^ . If x G J ^ \ M, then x ^ K(D, g) and in this case there 

exists y e D such that (>^-g(^) , / (^ ) )<Oor^g(x) ->^ , / (x) ) > 0 . 
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Because y e Mand i^g{x),x^ >\x\ for any x e K\ M, we have that (f, g) 

satisfies the Karamardian type condition. Therefore, applying Proposition 
5.2.8, we have that {f, g) satisfies condition {6g). n 

DEFINITION 5.2.5. We say that a pair {f, g) of mappings from H into H is 

{p, g)-copositive, with respect to a closed convex cone KczH, if there exist 

p > 0 and a > 0 such that for any x ^ K, with \\x\\> pwe have 

(1) {g(x),/(x)>>0, 

(2) {g{x),x)>a\\xf, 

PROPOSITION 5.2.10. If the pair (f, g) of mappings from H into H is 

(/7, gYcopositive, with respect to a closed convex cone KczH, then the pair 

(f, g) satisfies condition {9g). 

Proof. The conclusion of this proposition follows fi*om Proposition 5.2.7 if 
we take in this proposition y = Q. n 

Let / g : H^> Hhe two mappings and Kcz Ha closed convex cone. 

We suppose that there exist p> 0 and a > 0, real numbers such that for any 

X G ^wi th ||x|| = p we have satisfied the following relations: 

(i){g{x),f{x))>0, 

(ii) {g{x),x)>a\\xf. 

Let TZp be the radial retraction, i.e., 

\x, if \\x\\ < p, 

px ^.W= 
,j''fM>p-

The mapping TZp is continuous. We consider the following mappings: 

G[X) = g\7Z^ {x)j, for any x e H, 

F{x) = f{7^^{x))^\x-7^^{x)\7^^{x),iox2inyx^H 

For every x G KWxih ||jc|| > p we have 
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{G{x),F{x)) = {g(7Z^{x))j(7Z^{x))^\x-7Z^{x)\7Z^{x)) 

= ( g ( ^ , W ) , / ( ^ , W ) ) + | |x-;^,(x) | | (g(;^,(x)) ,^^(x)) 

> \x - 7Z^ (x)|| (g [TZ^ (X)) , ;e^ (x)) > ap' > 0. 

We have also, 

(G(x),x) = (g(;e,(x)) ,x) = ( | g ( ^ , ( x ) ) , M ^ , ^ 

>ali\\7^(x)f=alip'=ap\\x\\>0. 

P " ^ ̂  " P 

If we take in the definition of condition (0gX y = 0 for any x e jK^with 

||x|| > p, we obtain that the pair (G,F) satisfies condition (6g). By Theorem 

5.2.4 the pair (G, F) is without an EFE. If the problem ICP{F, G, K) has a 

solution X*, we must have that ||jc*|| < p, which implies that G{x*) = g{x*) and 

F(x*) =J(x*). Therefore x* is a solution to the problem ICP(f, g, K). 
Finally, we have also the following test for condition {0^. 

THEOREM 5.2.11. Let (//,(•,•)) be a Hilbert space, M^ H a closed 

convex cone andf, g :H -^ H two mappings. If there exist p*> 0 and a> 0 
such that: 

(1) (^g[x),x)>a \\xf for all xeK with \\x\\ > p,, 

(2) there exists a non-empty bounded set D cz Ksuch that the set 

M = P I |x G JK̂  : | | / (x)|| < ||>̂  - g {x) + / (x)||| is bounded or empty, 
yeD 

then the pair (f g) satisfies condition (dg). 

Proof. Since D and M are bounded sets, there exists Po>0 such that 

M^Dcz\^xeK:\\x\\<Po}. We can suppose that 0 < a< I. Moreover, we 

can select a and p such that 0 < a < 1 and —^ < p , i.e., p^ < ap Let 
a 

p^ > max{p,p*} be arbitrary. If jc e Kis such that pi < \\x\\, then we have 
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that jc ^ P I |x e iS^: | | / (jc)|| < l^ - g(x) + / (jc)|||, which implies that for 

some yo e DwQ have 

| | /W| |> |^o - g W + /W| | o r | | / ( x ) | f >^„ -g{xhf{x)f, 

which implies 

{f{x),f{x))>{y, -g{x),y, -g{x)) + 2{y,-g{x),f{x)) 

Therefore we have 

{g{x)-yo,f{x))>0. (5.2.3) 

Because ||JC|| > p*, we have ^g(x),x)>a||x| | and since for any >̂  G £) we 

have IIj;|| <pQ<ap<a \\x\\, we deduce {y, x) < \\y\\ \\x\\ < a \\x\\ which 

implies that (^g(x) - j^,xy > 0, for ally G D and in particular 

{g{x)-y„x)>0. (5.2.4) 

We used the fact that 

{g{x)-y.x) = {g{x),x)-{y,x)>a\\xf ~{y,x)>0. 

Therefore, relations (5.2.3) and (5.2.4) say that the pair (f g) satisfies 
condition {0g). n 

5.3 Set-valued complementarity problems 

In this section we adapt the notion of exceptional family of elements 
to the study of solvability of multivalued complementarity problems. All the 
notions used in this section were defined in Chapter 3. Now, we recall the 
definition of the multivalued nonlinear complementarity problem (i.e., the 
nonlinear complementarity problem defined by a closed convex cone and a 
set-valued mapping). (This problem was considered in Chapter 2 and it was 
named the multivalued complementarity problem.) 

Let ( / / , ( v » beaHilbert space, K (z. H 2i closed pointed convex 

cone and/: / / -> / / a set-valued mapping, i.e.,/: H-> 2^. In this section we 
suppose that for all x G H,f{x) ^ (p. We recall that/is upper semicontinuous 
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{u.s.c) if the set | j c G i / : / ( x ) e FJ is open in H, whenever F is an open 

subset in H. We say that/ is completely upper semicontinuous (c.u.s.c) if it 
is upper semicontinuous and for any bounded set B (^ H, WQ have that 
/ (5) == U / {x) is a relatively compact set. 

XGB 

Let V{H) be the collection of all non-empty subsets of H. We 

suppose given a measure of noncompactness O :V[H^ —> Q where, Q is a 

lattice with a minimal element denoted by 0. L e t ^ 7 be subsets of H. We 

recall that a set-valued mapping h : X ^^ Y is (S>-condensing if A (^ X and 

O (/? (^)) > O (^) imply that A is relatively compact. 

DEFINITION 5,3.1. We say that f is projectionally ^-condensing (resp. 

projectionally approximable) with respect to K if PJf) is ^-condensing 

(resp. approximable). 

The multivalued nonlinear complementarity problem defined by/and ^ i s 

the following problem. 

find x^ eK and 

MNCP{f,K):<y,ef{x,)nK* suchthat 

[{x..y.) = 0. 
For more details about this problem see Chapter 3. 

DEFINITION 5.3.2. We say that a family of elements {x^}^^^ czK is an 

exceptional family of elements (denoted shortly by EFE) for a set-valued 
mapping f\ H -^ H if and only if for every real number r> 0 there exist a 
real number r> 0 and a element y^ e f{Xr) such that the following properties 
are satisfied: 

(1) ||x̂  II->+00 (25 r^^+oo, 

(2) u^=ju^x^+y^eK\ 

(3) {x^.u^) = 0, 

A justification of this notion is given by the following result. 
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THEOREM 5.3.1. Let (//,(•,•)) be a Hilbert space, K (^ H a closed 

pointed convex cone andf\ H -^ H an u.s.c set-valued mapping with non­
empty values. If the following assumptions are satisfied: 

(1) X -fix) is project ionally ^-condensing, or fix) = x - T(x), where T 
is a c.u.s.c. set-valued mapping with non-empty values, 

(2) X -fix) is projectionally approximable and P^ [ x - / ( x ) j is with 

closed values, 

then there exists either a solution to the MNCPif, K), or an exceptional 

family of elements for f with respect to K 

Proof. If the problem MNCPif, M) has a solution, we have nothing to prove. 

We suppose that the problem MNCPif, ^ is without solution. For any 

positive real number r > 0 we consider the set 5^ = | x e / / : | | x | | < r | . 

Obviously 0Gint(5^). The set-valued mapping ^^ [•x:-/(:v)] is fixed-

point free with respect to any set B^. Indeed, if there exists r > 0 such that 

P ^ [ x - / ( x ) J has a fixed-point x* in Bf, then we have x* e 

^K [̂ * "" / (^*)] • Obviously, x* G K and there exists u* G fix*) such that 

X* = P^ [x, - w , ] . (5.3.1) 

By using (5.3.1) and applying the properties (1) and (2) of the projection 

operator P^ given in Theorem 1.9.7, we have 

(x*-(jc* -w.), j ;)>0,forall>^Gi^ (5.3.2) 

and 

x̂* -(x* -u^),x^i = 0 . (5.3.3) 

From (5.3.2) and (5.3.3) we obtain that w, ef(^x,)r\K* and(jc*,w,) = 0, 

that is, (A:*,W*) is a solution to the problem MNCPif, ^^ which is a 

contradiction. Therefore, P^ [ ^ - / ( j c ) ] is fixed-point free with respect to 

any set B^ with r > 0. Now, we observe that all the assumptions of Theorem 
3.6.4 are satisfied for any set B^ with r > 0, and the set-valued mapping 

P^ [ x - / ( x ) ] . Hence for any r > 0 there exist x^ edB^ and A^ ^]0,l[ 

such that 

x,eX^P^[x,~f{x,)]. (5.3.4) 
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From (5.3,4) we have that there exists y^ ^ f {x^) such that 

^-KP^-yrV (5.3.5) 
From (5.3.5) and using again the properties (1) and (2) of the projection 

operator P^ (see Theorem 1.9.7), we obtain 

1 

and 

which implies that 

and 

^ x^-[x^-y,]eK' (5.3.6) 

j-^.-K->^.].^^) = 0, (5.3.7) 

u^=^—^x^+y^^K\ (5.3.8) 

(i/,,jc,) = 0. (5.3.9) 

Because ||x |̂| = r we have that ||JC |̂| -> +00 as r ^^ +00. Obviously Xr e K. If 

1 — /I 
we denote ju^- we have, (considering (5.3.8) and (5.3.9)) that 

K 
{jĉ  }̂ ^̂  is an exceptional family of elements for/with respect to JC D 

From Theorem 5.3.1 we obtain also the following result. 

THEOREM 5.3.2. Let {H, {',-)) be a Hilbert space, K a H a closed 

pointed convex cone andf: H -^ H a set-valued mapping. Iff has the form 
f{x) = X - T(xX where T is a completely upper semicontinuous set-valued 
mapping with non-empty compact contractible values, then there exists 

either a solution to the problem MNCPif, K), or an exceptional family of 

elements for f with respect to K. 

Proof. Obviously, because P^ is continuous at any x ^ H and because T{x) 

is a compact set, we have that 

PKb-f{^)yPK[T{x)] (5.3.10) 

is compact for any jc e / / and consequently the set-valued mapping 

x^^' Pj^\jK - / ( x ) ] is with closed values. Following a proof similar to the 
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proof of Theorem 5.3.1, but by using Theorem 3.6.6, we obtain the 
conclusion of our theorem if we show (using (5.3.10)) that for any x e H, 

Pj^ [^'(x)] is a contractible set. Indeed, if jc e His an arbitrary element, we 

denote D =T(x). By assumption JD is a contractible set, i.e., there exists a 

continuous function h:Dx[0,l]^>D with the properties, h(u, 0) = u and 

h(u, 1) = Wo for some UQ G D. 

Considering the mapping h* : P^ (D) X [O, l] -> P^ (D) defined by 

h'{P^{u),A):=P^[h{u),A]forallP^{u)eP^{D)andAe[OA], 

we have 

and 

h*{P^{u)A) = P^[h{u),l] = P^{u,). 

The mapping h* is a continuous mapping. Indeed, let UP^ {K)^\)} be 

a sequence in P^D) x [0, 1] convergent to an element (P^ (w*),/l,). 

Because Z) x [0, 1] is compact, there exists a subsequence |(w„^,/l„ ) | of 

|(w„,/l„)| convergent to an element (V , /1 , )EZ)X[0 ,1 ] . By using the 

continuity of P^ and the uniqueness of the limit we have 

^mP^M = PA^)-PA"*)-
We deduce that 

limh* (PAu„,^„)) = ^mh' (p^(u„^,\)) = \imP^(h{u„^,\)) 

^PAh{v,A,)] = h'{PAy),l) = h'{PA^^^)^^)-

We recall that a mapping F : H -^ H is bounded if for any bounded set 
B^HwG have that f{B) = \Jf (x) is bounded. 

XGB 

COROLLARY 5.3.3. Let {H, {',-)) be a Hilbert space, K cz. H a locally 

compact pointed convex cone and f . H ^> H a bounded, upper semi-
continuous set-valued mapping, with non-empty compact contractible 
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values. Then, there exists either a solution to the problem MNCPif, K), or 

an exceptional family of elements for f with respect to K 

Proof. Since K \s ?i locally compact cone and / is bounded upper 

semicontinuous, we have that ^ ^ [ ^ - / ( ^ ) ] is completely upper 

semicontinuous. For every x e H, f{x) is compact, which implies that 

X -fix) and consequently ^ ^ [ ^ - / ( ^ ) ] is compact. Hence for every 

X e H, Pji^ [ x - / ( x ) ] is closed. Moreover, î ^ [ x - / ( x ) ] is contractible. 

Indeed, to show this fact we use the function h* {x-u,X) = x -h{u,X), for 

all u ef{x) and A e [0,1], where h is the continuous mapping defined by the 
contractibility ofy(^). Because x -f{x) is compact and contractible, we 
have that P^ [ x - / ( x ) ] is contractible. (See the proof of Theorem 5.3.2). 

Now, the proof follows the proof of Theorem 5.3.1, but using Theorem 
3.6.6. D 

COROLLARY 5.3.4. Let (#'',(•,•)) be n-dimensional Euclidean space 

and K (^M" a closed pointed convex cone. If f :M" -> M" is an upper 

semicontinuous set-valued mapping with non-empty compact contractible 

values, then there exists either a solution to the problem MNCP{f, K), or an 

exceptional family of elements for f with respect to K. 

To recognize if a set-valued mapping is without exceptional families of 
elements we adapt the condition (6) to set-valued mappings. 

DEFINITION 5.3.3. Let (^,(•,•)) be a Hilbert space and K^ Ha closed 

pointed convex cone. We say that a set-valued mapping f: H -> H, with 

non-empty values satisfies condition [^] with respect to K, if there exists a 

real number p >0 such that for all x G Kwith \\x\\ > p, there exists y e K 

with |[y|| < ||x|| such that (^x-y,u)>0 for allue f (x). 
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The classical Karamardian's condition for single-valued mappings has the 
following form for set-valued mappings. 

DEFINITION 5.3.4. We say that a set-valued mapping f: 7/-> H satisfies 

the weak Karamardian 's condition with respect to K, if there exists a 

bounded set D a Ksuch that for all x G K\ D there exists y e D such that 

(^x-y,u)>0 for alluef (jc). 

Obviously, if/satisfies the weak Karamardian's condition with respect to 

K, then/satisfies condition [0]^, but the converse is not true. 

DEFINITION 5.3.5. We say that a set-valued mapping f: H ^> H is p-

copositive with respect to K if there exists p> 0 such that for all x e K, 

with \\x\\> pwe have (JC,W)>0 for allue f (x). 

We observe that if a set-valued mapping f: H ^>^ H is />copositive with 

respect to K, then/satisfies condition [0]^ . To see this fact we take >̂  = 0 in 

the definition of condition [^] . 

DEFINITION 5.3.6. We say that a set-valued mapping satisfies condition 

M(D) with respect to K, if there exists a non-empty bounded set D (^ K, 

such that the set M{D) defined by 

M(D) -f^lxeK: there exists uef(x), with \\u\\ < ^y -{x- w)||| 
yeD 

is a bounded set. 

PROPOSITION 5.3.4. If a set-valued mapping f : H -> H satisfies 

condition M(D) with respect to K, then f satisfies condition [^]^. 

Proof. Indeed, we consider the bounded set 4̂ = D uM(D). If x^ GK\A, 

then XQ ^f^ix^K: there exists uef(x), with \\u\\ < ^y -{x- w)|||, which 
y&D 

implies that there exists yo ^ D with the property that, for any u e fxo) we 

have ||w|| > j^y^ - [x^ - w)||. The last inequality implies 
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iî if > ibo - 0̂ i r + 2 (j;^ - ^0. ̂ ) + i n r ̂  
which implies 

{x,-y,,u)>-\y,-xj^ >0. 

Because xo, is an arbitrary element in ^ \ ^ , we deduce that/satisfies the 

weak Karamardian's condition with respect to K and consequently / 

satisfies condition [^]^ . n 

The condition {HPT) can be also adapted to set-valued mappings. 

DEFINITION 5.3.7. We say that a set-valued mapping/: H -^ H satisfies 

condition [HPT]^ with respect to K if there exists a bounded set D a K 

such that the set K (Z)) = \xeK \ for any yeD there exist ue f (x), 

such that (^y-x,u)>0^is a bounded set. 

Related to condition [//Pr] , we have the following result. 

THEOREM 5.3.5. Let (//,(•,)) be a Hilbert space and K <:z H a closed 

pointed convex cone and f \ H -> H a set-valued mapping. If f satisfies 

condition [//Pr] , with respect to K, then f satisfies condition [^] . 

Proof. We consider the bounded ^QX M = D^K[D) .\i x^^K\M, then 

XQ ^ M which implies x^^Ki^D) and consequently there exists 

y^ ^ D d M such that for any u e f{x) we have {^y^ -XQ,U)<Q or 

(XQ-JV'QJW) >0 . Therefore / satisfies the weak Karamardian's condition 

with respect to K̂̂ and consequently condition \0\^ . n 

Now, we show that condition [^]^ implies the non-existence of 

exceptional families of elements for a set-valued mapping. 
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THEOREM 5.3.6. Let ( i / , (•,•)) be a Hilbert space and K a H a closed 

pointed convex cone. Let f: H -^ H be a set-valued mapping with non­
empty values. If/satisfies condition [O]^, then f is without an exceptional 

family of elements with respect to K 

Proof. We suppose that/has an exceptional family of elements with respect 

to K, namely, [x^]^^^czK . Let r > 0 be a real number such that p < \x^||. 

(The positive real number p is defined by condition [^]^.) This is possible 

since ||JĈ  || -> +oo as r -> +oo . Because/satisfies condition [O]^, there exists 

yr e ^such that \\y^ || < ||jĉ  || and 

{^r "~>'r'^) -0? fo^ alluef^x^). (5.3.11) 
From the definition of exceptional family of elements, we have that there 
exist jUr>0 and v̂  G fix^) such that 

\U^ =jUr^r + V̂  e i ^ * 

land (5.3.12) 

[{u^^x^) = 0. 

Considering (5.3.11) and (5.3.12) we obtain 

+/^. (j^.. ̂ .) ̂ -/̂ . Ik ir [Ik II - b . II] < 0. 
which is a contradiction and the proof is complete. n 

COROLLARY 5.3.7. Let (J'",(•,•)) be n-dimensional Euclidean space 

and K (^M" a closed pointed convex cone. Let f :M" ^>' M" be an upper 

semicontinuous set-valued mapping with non-empty compact contractible 

values. If f satisfies condition \0\^, then the problem MNCP(f, K) has a 

solution. 

DEFINITION 5.3.8. We say that a set-valued mapping f\ / / - > H satisfies 

condition \0 - S^^ with respect to K, if for any family of elements 

[x^]^^^ciK , such that \x^|| -> +oo asr -^ +oo, there exists y* G Kwith the 
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property that for some r > 0 with |[y*|| < ||x |̂|, we have {x^ -};,,w)>0, for 

anyuef{x^). 

THEOREM 5.3.8. Let (//,(•,•)) be a Hilbert space, K c: H a closed 

pointed convex cone and f : H -> H a set-valued mapping. If f satisfies 

condition [^ - S] , with respect to K, then f is without an exceptional 

family of elements with respect to K. 

Proof. We suppose that / has an exceptional family of elements, namely 

{x^j^^^e^ . Because/satisfies condition [^-*5']^, there exists j * G K 

such that for some r > 0, with ||j;,||<\x^||, we have {x^ -y^,u)>^ for any 

w G / (x^). From the definition of exceptional family of elements there 

exists y^^ f {x^) such that u^ - l^r^r ^ yr ^ ^ * ^^^ (x^, w )̂ = 0 . Then we 

have 

^//.[(;^*.^.)-|kir]^/^.kll[b*l|-|kll]<o, 
which is a contradiction and the proof is complete. n 

Let (H,{;)) be a Hilbert space, K d H 2i closed pointed convex 

cone, f \ H ^y H di set-valued mapping and g : H -^ H a single-valued 
mapping. We consider the following multivalued implicit complementarity 
problem: 

findx^ eHandy^ e f(^x^)nK* 

MICP(/,g,M:):< such that g{x,)eM 

[and{g{x,),y,) = 0. 
We consider the set-valued mapping 

and we remark that the solvability of MICP(fg,M) is equivalent to the 

solvability of the following coincidence equation: 



190 Leray-Schauder Type Alternatives 

, f find x^eH such that 

[g (x . )G^^(x . ) . 

Also, we remark that if fix) is a contractible set, then g(x) - j{x) is 
contractible. Indeed if X^) is contractible, then there exists a continuous 
function h\f{x)x[O,l]-^/(^) such that h{u, 0) = w, for any u G X ^ ) and 
there exists UQ ^J{X) such that //(•, 1) = Wo foi* any u ej{x). 

Considering the fiinction 

h':{g{x)~f{x))x[0,\]^g{x)-f{x) 

defined by 

h* [g{x)-u,X) = g{x)-h{u,A), 

we can show that g(x) -fix) is a contractible set. Moreover, as in the proof 
of Theorem 5.3.2 we can show that if fx) is contractible, then 

P^ [g (x) - / (x)] is contractible too. 

DEFINITION 5.3.9. We say that a family of elements {x^]^^^c:H is an 

exceptional family of elements for the pair (f g) with respect to K if the 

following properties are satisfied: 
(1) | |xj->+00 a^ r->+00 , 

(2) for any r> 0 there exist jUr> 0 andy^ e fix,) such that 

{x\)(u^,g{x^)) = 0. 

The notation and the notions used in the next theorem are defined in 
Chapter 3 in relation to Theorem 3.6.12. 

THEOREM 5.3.9. Let {H,{-,')) be a Hilbert space and KciH a closed 

pointed convex cone g: H ^^ H a single-valued continuous mapping and 
f : H -^ H a set-valued mapping with non-empty values. If the following 
assumptions are satisfied: 

(1) Si^) ^ 0/or any x^O, 

(2) g is essential with respect to any set U^ =\xeH\ ||^||<^k where 

r > 0 , 
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(3) / is completely upper semicontinuous with compact contractible 
values, 

(4) for any bounded set DczH, (g -f)(JD) is relatively compact, then, at 
least one of the following conditions holds: 

(i) the problem MlCP(f, g, K) has a solution, 

(ii) there exists an exceptional family of elements for the pair 

if, g) with respect to K. 

Proof. If the problem MICPif, g, K) has a solution we have nothing to 

prove. We suppose that the problem MICPif g, M) has no solution. We 

show that the assumptions of Theorem 3.6.12 are satisfied. For this we use 
the notation and the terminology of this theorem. 

For any r > 0 we consider the open set U^-\XGH\ \X\<r\ and its 

boundary 9C/̂  = | ; C G / / | ||jc|| = r | . From our assumptions we have that 

0^g(9C/^) and g^^u iPr^^)- Also, we can show that 

^K ^ ^c i^r^^) • Because the problem MICPif, g, M) is without solution, 

we have that g(jc)^ 4^^ (x) for any x e oUr, i.e., g{x)n^^ (x) = ̂  for 

any X G <5t/̂ , and also the conclusion (1) of Theorem 3.6.12 is not satisfied. 

By assumption g is essential with respect to any C/̂ . Therefore, we 
conclude that for any r > 0, there exist Â  G ]0, 1 [ and Xr G dUr such that 

g{x,)eK^^{x,) = \P^[g{x^)-f{x,)\. 

Then, there exists yr e fixr) such that 

and considering the properties of operator P^ (given in Theorem 1.9.7) we 

obtain 

Ur =J^rS{^r)^yr ^K\where jj.^ = — -land{u^,g^) = 0. 
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Because ||JC |̂| = r , we have that ||x̂  || -^ -hoc asr -^ +00 and we conclude that 

{x̂ l̂ ^Q is an exceptional family of elements for the pair (f, g) with respect 

to K, and the proof is complete. n 

Remark. The following mappings g are essential with respect to any set Ur, 
r>0. 

(1) g = identity mapping. 
(2) g =L, where L : H-> Hisa continuous linear isomorphism. 

(3) g = a Vietoris mapping/?: / / -> ^such that p~^ ({O}) = {O}. 

For more details about essentiality the reader is referred to (Gomiewicz, L. 
and Slosarski, M. [1]). 

Obviously, we can consider the multivalued implicit complemen­

tarity problem defined by a closed convex cone Ka H and a pair {f, g) of 

set-valued mappings from H into H. This problem is the following: 

find jc* e / / such that 

MCP ( / , g,K)'A there exist uef{x,)nK\ 

IV G g (x*) n K satisfying (u, v) = 0. 
The study of this problem in an arbitrary Hilbert space is a difficult 
problem. An idea is to use a selection for / and a selection for g, but the 
selections must satisfy some topological properties, as for example 
complete continuity. We note that such selection theorems are unknown at 

this moment. However, this idea works in the Euclidean space (#"",(•,•)) . 

To do this, we need to recall some definitions. 

We say that a set-valued mapping f :M" ^ M"" is lower 
semicontinuous at the point x e iS''', if for any arbitrary s> 0 there exists a 
S> 0 such that ||jc- j^ | | < ̂  implies /(jc) c: /(^y) + sB where B is the unit 
ball centred at the origin. The mapping/is called lower semicontinuous, if it 
is such at every point x e M". We say that a single-valued mapping 
(p : M" -^M"" is a continuous selection if (p is continuous and (p{x) G J{X), 
for every x e M"". We recall also the following classical result. 

THEOREM 5.3.10 [Michael's theorem]. Let X be a paracompact 

topological space and (^,||*||) ci Banach space. Iff: X-> E is a set-valued 



Leray-Schauder type alternatives. Existence theorems 193 

lower semicontinuous mapping such that for any x G X, J{x) is a non-empty 
closed convex subset ofE, then there exists a continuous selection (p\X^^ 
Eforf. 

We recall that a topological space X is called paracompact if it is 
Hausdorff and from every open cover of it, one can extract a locally finite 
subcover. By Stone's Theorem every metric space is paracompact. A 
particular case of Theorem 5.3.70 is the following result. 

THEOREM 5.3.11. Letf\ M" -^R"" be a lower semicontinuous set-valued 
mapping such thatjix) is a non-empty closed convex subset of M" for each 
X e M"". Then f has a continuous selection cp: M" -> M". 

Now, we introduce the following notion of exceptional family of elements 
for a pair of set-valued mappings. 

DEFINITION 5.3.10. We say that a family of elements {x^]^^, c M"" is an 

exceptional family of elements for the pair (f g) of set-valued mappings 

/ , g:M" -^ M", with respect to a closed convex cone K cz M" if the 

following conditions are satisfied: 
(1) | |x j -^+00 a^ r->+00 , 

(2) for every r > 0, there exist a real number jUr> 0 and two elements 
y^ ef(^x^),z^eg(x^) such that s^ = ju^x^ + y^ eK*, Vr = jUfXr + 

Zr e Kand (̂ ,̂ v^) = 0. 

We note the following result. 

THEOREM 5.3.12. Let f,g:M"->M" be lower semicontinuous set-

valued mappings with non-empty convex closed values, and K cz M" a 

pointed closed convex cone. Then there exists either a solution to the 

problem MICP(f, g, M), or an exceptional family of elements in the sense of 

Definition 5.3.10. 

Proof. By Theorem 5.3.11, we have a continuous selection cp for/and a 
continuous selection ^for g. Obviously. Because the space is w-dimensional 
Euclidean space, the pair {cp, y/) of continuous mappings from M"" into M"" 
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are completely continuous and we have that the assumptions of Theorem 
5.2.1 are satisfied. 

Hence, there exists either a solution to the problem ICP{(p, y/, K), which 

evidently solves the initial problem MICP{f, g, K) too, or an exceptional 

family of elements {̂ }̂̂ ^Q for the pair {cp, y/) in the sense of Definition 

5.2.1, which is clearly an exceptional family of elements for the initial pair 
(f, g) in the sense of Definition 5.3.10, and the proof is complete. n 

The study of the MICP(f, g, K) is an interesting subject. We note also that 

condition [^]^ can be generalized in the following form. 

DEFINITION 5.3.11. We say that a set-valued mapping/: H -^ H with 

non-empty values satisfies condition 6 with respect to K, if there exists 
L JOT 

a real number p> 0 such that for each x e K there exists p e JK with 

(/?, x) < ||x|| such that i^x- p,x^\>Q for all x^ e f (jc). 

Remark. Theorem 5.3.6 is also true if we replace condition [^]^ by 

condition \o\ . 
L Am 

5.4 Exceptional family of elements and monotonicity 

We know that, in a Hilbert space (// ,(• ,)) , if we have a closed pointed 

convex cone ^ a n d a mapping/: H-^ ^which is projectionally Leray-

Schauder, with respect to K, then the problem NCP(f K) has a solution if/ 

is without an EFE. A natural question is: under what conditions does the 

solvability of the NCP(f K) imply that/is without an EFE? In this section 

we will study this problem. First, we recall the definition of 
pseudomonotone mappings. 
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Let ( i / , (•,•)) beaHilbert space, f\H-^H2i mapping and K a 

Ha, closed convex cone. We say thatf ispseudomonotone on Mif, for any 

distinct points x, y e K, the inequality (^x- y,f[y)j>0 implies 

i^x-y,f (x)^ > 0. Many authors have studied this notion from some points 

of view (Karamardian, S. [5]), (Karamardian, S. and Schaible, S. [1]), 
(Hadjisawas, N. and Schaible, S. [1], [2]) and (Schaible, S. and Yao, J. C. 
[1]), (Yao, J. C. [1]). In 1976 S. Karamardian introduced the notion of 
pseudomonotone mapping in relation to the study of complementarity 
problems (Karamardian. S. [5]). In the cited paper, we can find a number of 
existence theorems for complementarity problems defined by monotone or 
pseudomonotone operators in R"" or in Hilbert space. 

Also, it is natural to consider complementarity problems defined by 
set-valued pseudomonotone mappings. Let / : / / ^^ / / be a set-valued 

mapping. We say thai f'xs pseudomonotone on K, if for any distinct points x, 

y ^ K and arbitrary u G fix) and w e fy,\ {x- y,w)>0 implies 

{x- y,u)>Q. 

A monotone mapping is pseudomonotone but the converse is not true. We 
have the following result. 

THEOREM 5.4.1. Let (//,(•,•)) be a Hilbert space, and K<^ H a closed, 

pointed convex cone. Iff: H^> H is a set-valued pseudomonotone mapping 

on K, and the problem MNCP(f, K) has a solution, then f is without an EFE 

with respect to K(in the sense of Definition 5.3.2). 

Proof. Indeed, we suppose that the problem MNCP(f, M) has a solution 

(x*, y*), i.e., X* e K, j ; , e / (jc*) n ^ * and (x*, 7,) = 0, which is equivalent 

to the variational inequality 
{x-x,,y,)>OforallxeM. (5.4.1) 

Since/is pseudomonotone, then from (5.4.1) we have 
(x-X,,w)>0 for any xeKand any ue f (x) . (5.4.2) 
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Suppose that/has an EFE, namely [x,]^^^ c: ̂  . In this case for any r > 0, 

there exist //̂  > 0 and Wr e fixy) such that 
(i) (i) u^=iu^x^^-w^^K\ 

(ii) (x^,w^) = 0, 

(iii) ||x̂  II -> 00 a^ r —> 00. 

We choose Xr such that ||jc, || < jjjĉ  jj. Making use of (5.4.2) we have 

0<(x^ -x,,w^) = {x^ -x,,u^ -l^,x^) 

=-[x^,u}i-{x,,u^)- ld^\x^\ + iu^{x,,x^) 

^ -^r Vr ir + ^r ||^* || 1^. || = ^r Vr \ (1^* || " 1^. ||) < ^ 

which is a contradiction. Therefore, / is without an exceptional family of 

elements (an EFE) with respect to K^ in the sense of Definition 5.3.1 and 

the proof is complete. n 

We recall that f : H -^ H has a representation of the form 
fix) =x - T{x), where T. H^y H'lsdi completely upper semicontinuous set-
valued mapping with compact contractible values; we say that / is a 
completely upper semicontinuous field with compact contractible values. 

COROLLARY 5.4.2. Let ( ^ , (•,•)) be a Hilbert space, K cz H a closed 

pointed convex cone andf: H-> Ha set-valuedpseudomonotone mapping 

with respect to K Iff is a completely upper semicontinuous field with non­

empty compact contractible values, then the problem MNCP(f K) has a 

solution, if and only iff is without an EFE with respect to K(in the sense of 

Definition 5.3.2). 

Proof. The corollary is a consequence of Theorem 5.3.2 and Corollary 
5.4.2. D 

COROLLARY 5.4.3. Let ( i / , (•,•)) be a Hilbert space, K (z H a closed 

pointed convex cone and f : H ^> H a projectionally Leray-Schauder 

mapping with respect to K Iff is pseudomonotone with respect to K, then 
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the problem NCP(f, E) has a solution if and only iff is without an EFE with 

respect to K(in the sense of Definition 5.1.2). 

COROLLARY 5.4.4. Let f^",(•,•)) be n-dimensional Euclidean space, 

and let K c^M'' be a closed pointed convex cone. If f '.W ^^ W is a 

continuous pseudomonotone mapping with respect to K, then the problem 

NCP(f E) has a solution if and only iff is without an EFE with respect to 

K 

Now we consider a more general situation. Le t / g : H ^^ Hhc a. 

pair of mappings and Ka Ha closed pointed convex cone. 

DEFINITION 5.4.1. We say that f is asymptotically g-pseudomonotone 

with respect to K, if there exists a real number p > 0 such that for all 

X, y e K with max|p,||j;||| <||x|| we have that (^x-y,g[y)j>0 implies 

{x-yj{x))>0. 

Remark. Any pseudomonotone (in particular monotone) mapping 

f\H->H, with respect to K, is asymptotically/-pseudomonotone. 

THEOREM 5.4.5. Let {H, {-,')) be a Hilbert space, K (z H a closed 

pointed convex cone andf g : H ^> H two mappings. Iff is asymptotically 

g-pseudomonotone with respect to K and the problem NCP{g, K) has a 

solution, then f is without an exceptional family of elements with respect to 

K. 

Proof. Let x* G Kht a. solution to the problem NCP{g, K). Considering the 

relations between complementarity problems and variational inequalities we 
have that 

{x-x,,g{x,))>0,forallxeK. (5.4.3) 

Since/is asymptotically g-pseudomonotone, we deduce that 
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{x -x,,f[x)) > 0, for allx^K withmax{/7,||jc,||} <||JC|| . (5.4.4) 

Suppose that/has an exceptional family of elements, that is, there exists a 
family of elements {̂ .̂Ĵ ^Q CZK , such that for any r > 0 there exists a real 

number //̂  > 0 such that the following properties are satisfied: 
(i) u^ -^ju^x^ +f{x^)eK\ 

(ii) {x^^u^) = 0, 

(iii) \\x^ II ^ ' +00 â  r -> 00. 

By property (iii) we can choose x^ such that max|yO,||x*||| <||^J • Making 

use of (5.4.4) we obtain 

= {x^,u^)-{x,,u^)- ju^\\x^f +ju^{x,,x^) 

< -JU^ \\X^ If + Mr h II1^. II = Mr h II [11^* II - h II] < 0. 
which is a contradiction. Therefore, / is without an exceptional family of 

elements, with respect to ^ n 

Remark. We note that any (w, g, ^)-monotone mapping (see Definition 
5.1.9) is asymptotically g-pseudomonotone mapping. 

From Theorem 5.4.5, we deduce the following interesting result. 

THEOREM 5.4.6 [Transitivity principle]. Let[H, {',-)) be a Hilbert 

space, K d H a closed pointed convex cone and f, g : H -^ H a pair of 

mappings. If the following assumptions are satisfied: 

(1) fis aprojectionally Leray-Schauder mapping with respect to K, 

(2) fis asymptotically g-pseudomonotone with respect to K, 

(3) the problem NCP{g, K) has a solution, 

then the problem NCP(f, K) has a solution. 

Proof. This theorem is a consequence of Theorem 5.4.5 and 5.1.2. n 
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Remark. It is known that complementarity problems are used as 
mathematical models in the study of equilibrium of economical systems. 
Related to this fact, Theorem 5.4.6 may have interesting applications to the 
study of equilibrium of two economical systems depending on each other 
(integrated economical systems). 

COROLLARY 5.4.7. Letf, g\ M"" -^ W be a pair of continuous mappings 

and K <^ W an arbitrary closed pointed convex cone. If the following 

assumptions are satisfied: 

{\) fis asymptotically g-pseudomonotone with respect to K, 

(2) the problem NCP(g, K) has a solution, 

then the problem NCPif M) has a solution, 

COROLLARY 5.4.8. Let[H, {',-)) be a Hilbert space, K c: H a closed 

pointed convex cone and f : H -^ H a projectionally Leray-Schauder 

mapping, Iffispseudomonotone with respect to K, then the NCP(f K) has 

a solution, if and only iff is without an EFE with respect to K 

The next result is a variant of Theorem 5.4.5 where the solvability 

of the problem NCP(g, K) is replaced by a strict feasibility condition for the 

problem NCP{g, K). Before giving this result, we recall some notions. The 

strict dual of ^ i s by definition: 

K^ =[yeH\{y,x)>QforanyxeK\[Q]]. 

It is known that if K is well-based (see Chapter 1), then there exists a 

continuous linear fimctional cp \ H ^ M and a constant c > 0 such that 

c||jc|| < (p{x), for any XG ^(Hyers, D. H., Isac, G. and Rassias, Th. M. [1]). 

Obviously, in this case cp^K* and hence, we have that K* is non-empty. 

When K* is non-empty we say that the problem NCP{g, K) \^ strictly 

feasible if there exists an element XQ e jK ŝuch that g (XQ ) e ^ * . 
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THEOREM 5.4.9. Let[H,{-,')) be a Hilbert space, Ka. Ha closed well-

based convex cone and f \ H -^ H an asymptotically g-pseudomonotone 

mapping with respect to K. If there exists an element x^ eK\\0\ such 

that g{xQ^eK\ then f is without an exceptional family of elements with 

respect to K 

Proof. We assume that/has an exceptional family of elements {̂ .̂Ĵ ^Q with 

respect to K 

Then, for any r > 0 there exists //̂  > 0 such that 

(i) W ^ = / / ^ X ^ + / ( X J G ^ * , 

(ii) (x^,w^) = 0, 

(iii) \x^ II -^ +00 as r ^ +oo . 

We show that in this case, there exists ro > 0 such that for all r > ro we have 

(g (^0)' r̂ - ^0) > 0. Indeed, since K\s well-based there exist cp ^ if and a 

constant c > 0 such that C||A:|| <(^,JC), for dAXxeK . 

The set D = [x^K \{(p, x) = l | is weakly compact in H. We have 

Since -—'—TED, we deduce that lg(xA,-.—'—^)>s>0, where 

6: = min(g(xo),x)>0, due to the weak compactness of D, the weak 

continuity of ^g (x^), jĉ  and the fact that g (XQ ) G JK̂ * . Therefore, we have 

{gM^^r -Xo)^^{(P.X,)-{g{x,),X,) 

>sc\\x^\\-{g{x^),x^)>0 for allr>r^. 
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where r^ is such that llx̂  11 > -̂  ^ , for all r > ro. 
sc 

Now, making use of the fact that / is asymptotically g-

pseudomonotone we have that ^ / (jc^), x̂  - jĉ  ^ > 0 for all r such that r>r^ 

and | | x j>max |p , | | x j | . From the last inequality and the definition of 

{̂ .}.>o we have 

for all r such that r>r^ and ||x̂  || > max |/7, ||JCQ ||| . 

Since ||x |̂| -^ + oo as r -> +oo, there exists r* > ro such that 

||x^ II > max I p, \\XQ III and 0 < -ju^ \\x^ || [||x^ || - ||xo ||] < 0 for all r > n , which is 

impossible. Therefore, / is without an exceptional family of elements and 
the proof is complete. n 

Remark. It is interesting to know if there exist other classes of mappings, 
different than the mappings considered in this section, with the property that 
the solvability of the complementarity problem implies the non-existence of 
exceptional families of elements. 

5.5 Semi-definite complementarity problems 

All existence theorems for complementarity problems and the results related 
to the notion of exceptional family of elements, presented in this chapter, 
can be applied in particular to the study of semi-definite complementarity 
problems. The application of the notion of exceptional family of elements to 
the study of semi-definite complementarity problems was considered also in 
(Isac, G., Bulavski, V. A. and Kalashnikov, V. V. [2]) but now we have 
more results. Therefore, the goal of this section is to inform the reader that 
the majority of results presented in this chapter are applicable to the study of 
semi-definite complementarity problems. 
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Let [M"'",{;,)) be the n X ^-dimensional Euclidean space ofnxn-

matrices endowed with the inner-product 

{A,B) - tr[A!B)jor any A, Be #"^" 

(where tr(A^Bj means the trace of A^B). We introduce the norm on the 

space *"'" in the standard manner: ||^|| = (^ ,^) '^ \ Let 5""'" be the linear 

subspace of symmetric real (n x w)-matrices, and S" c S"""" the convex cone 

of positive semi-definite matrices. The notation A > Q means AeS^. 

Interior points of this cone are positive definite matrices A, i.e., A>0 of full 
rank n. We denote that by ̂  > 0. 

Let F \Sl ^>' S""""" be a continuous mapping. The semi-definite 

complementarity problem is: 

. . f find X eS" such that 

^ '' [F{X)eS':and{X,F{X)) = 0. 

It is known that the cone S" is self-dual, i.e., 

(S"^)* =[Y e S"""" :{Y,X)>0, for all X e S'^] = S"^ . 

(See Schatten, R. [1]). Also we note that for A, B e S% the equality 

tr(AB) = 0 is equivalent to AB = 0. Because of this fact, the SDCP[F,S") 

can be given also by: 

. . I find X eS" such that 

^ ^ [F{X)eS"^andX'F{X) = 0. 

For more details about the semi-definite complementarity problem the 
reader is referred to (Kojima, M, Shindoh, S. and Hara, S. [1]) and 
(Bulavsky, V. A., Isac, G. and Kalashnikov, V. V. [2]). 

The space (5'"'''',(-,)j is finite dimensional Hilbert space and S" is 

a closed convex cone in this space. Therefore, for any matrix Z e S""""" the 
projection operator P^„ (Z) is well defined, as in the general case we have 

the following definition. 

DEFINITION 5.5.1. A family of matrices {Z^]^^^^S'^ is called an 

exceptional family of matrices with respect to the cone S^ for a mapping 
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F : S" ^>^ S"""" if \\Z^ II -^ +00 as r -^ +00 and for each r > 0 there exists a 

scalar jUr > 0 such that the matrix M^ =F(^Z^) + ju^Z^ has the following 

property: 
M^eS';andM^Z^=0. 

This definition is justified by the following result. 

THEOREM 5.5.1. IfF: S" -^ S""" is a continuous mapping, then there 

exists either a solution to the problem SDCP(F,S"J or an exceptional 

family of matrices with respect to the cone S". 

Proof. A proof of this theorem is in (Bulavsky, V. A., Isac, G. and 
Kalashnikov, V. V. [2]). n 

Because the space (*?"'''',(•,•)) is a finite dimensional Hilbert space, 

in the existence theorems for the problem SDCP{F, K), based on the notion 

of exceptional family of matrices, we need to have only the continuity and 
the fact that the mapping is without exceptional family of matrices. The 
condition {6) is also applicable. All the existence theorems presented in this 
chapter are applicable to semi-definite complementarity problems. 

5.6 Feasibility and an exceptional family of elements 

In complementarity theory it is well known that, under some 
supplementary conditions, the feasibility of a complementarity problem 
implies its solvability [see (Isac, G. [26]), Section 5.5]. Certainly feasibility 
plays an important role in the study of complementarity problems. In this 
sense, we recall that in Theorem 4.5.1 we have that if f \W ^y W is a PQ-
mapping and the feasible set with respect to M\ contains n particular 
points, then the mapping/is without an exceptional family of elements with 
respect to W^ . Also, in Theorem 5.4.9 we have that, \i?i g-pseudomonotone 
mapping f\ H ^>^ H (where H is Hilbert space ordered by a closed pointed 
convex cone Kci / /) , is such that there exists an element x^ GK\[0] with 
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g (XQ ) G K* (the strict dual of K), then/is without an exceptional family of 

elements with respect to K 

Now, in this section we will present other results where the strict 
feasibility implies the non-existence of an exceptional family of elements 
and we will introduce some notions of exceptional families of elements, 
which can be used to obtain the strict feasibility. 

Let (//, (•, •)) be a Hilbert space, let Ka 7/be a closed pointed convex 

cone and let/ : / /^> 7/be a mapping. We consider the problem: 

[find x^eK such that 

^' ^ [f{x,)eK'and{x,j{x,)) = 0. 

By definition, the feasible set of this problem is: 
where K is the dual of K . 

The set T can be empty; when T is non-empty, we say that the NCP(f E) is 

feasible. If the cone K* has a non-empty interior and if the set 

T^ =[x e K \ f [x) e'mX (K* U is non-empty, we say that the NCP(f K) is 

strictly feasible. 

We recall that the strict dual of K\s\ 

K^' ^{y^H\{x,y)>Qforallx^K\{Q]]. 

It is known that \f Kh well based, then K* is non-empty. The solvability 

of NCP(f, K) implies its feasibility, but the converse is not true. We say that 

a mapping/: H-^ His quasimonotone with respect to jK'if for every x, y e 

KihQ following implication holds: 

{f{x),y-x)>Q=>{f{y),y-x)>0. 
Obviously, any monotone mapping is pseudomonotone and any 
pseudomonotone mapping is quasimonotone, but the converse is not true. 
We have the following result. 
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THEOREM 5.6.1. Let (//,(•,•)) be a Hilbert space, let K a H a closed 

well based convex cone and let f : H ^> H be a mapping. If f is 

quasimonotone with respect to K and there exists an element JJCQ G K such 

that J{XQ) G K* , then f is without an exceptional family of elements with 

respect to K. 

Proof. To show that / is without an exceptional family of elements with 

respect to K, is sufficient to show that/satisfies condition {6 -S). Indeed, 

let [x,]^^^ (= JC be a family of elements such that ||;̂ ^ || -> +oo (35 r -> +oo . 

First, we show that there exists ro > 0 such that ( / (^o) ? ̂ r ~ ^o) > 0 

for any r with r > r^. Since K is well based, there exist (p e H* and a 

constant c > 0 such that c||jc|| < {(p,x) for any x e K,{(p can be considered 

as an element of //). Moreover, the set D = \^xeK: (^, x) = l | is a weakly 

compact set. (Since Z) is a base of K and H is reflexive we have that K is 

weakly locally compact.) We have 

Since -—'—^eD, then we have min(/(xQ),x) = £:>0 (because 

f(xo) e K* and D is weakly compact), which implies 

( f(^n)r> 1—^ ) > 6: > 0. Therefore, we have 

{/M^^r -^o)>^(^ .^ . ) - ( / ( -^o) .^o)^^<^IKI | - ( / (^o) '^o)>0, for all 

r > ro, where ro > 0 is such that be > ^ , for all r > r^. Now, the 
£C 

quasimonotonicity of/with respect to jCimplies 
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( / (x , ),x^ - XQ ) > 0, for all r > VQ, 

If we take on r > ro and y* = JCQ, we obtain that f satisfies condition (0- S) 

with respect to jK^and by Theorem 5.1.27 we obtain tha t / i s without an 

exceptional family of elements with respect to K. n 

COROLLARY 5.6.2. Let ( ^ , (•,•)) be a Hilbert space, let K a H be a 

closed well based convex cone andf: H -^ H a quasimonotone mapping. If 

f is a projectionally Leray-Schauder mapping, and the problem NCP(f, K) 

is strictly feasible, then the NCP(f, K) has a solution. 

Remark. The result presented in Corollary 5.6.2, was independently proved 
by a different proof in (Hadjsawas, N. and Schaible, S. [2]). 

Now, we consider some results in the ^-dimensional Euclidean 
space ordered by the cone Ml. 

DEFINITION 5.6.1. We say that a mapping f\ i?" -> R"" is a quasi-P*-
mapping if there exists a constant r > 0 such that the following implication 
holds: 

{f{y),x-y)-T X {x,-y)[f,{x)-f,{y)]>0^{f{x),x-y)>0 

for all distinct points x, yin M", where 

l,{x,y) = {i:{x,-y,)[f,{x)-f,{y)']>0}. 
We consider also the following definition: 

DEFINITION 5.6.2. We say that a mapping f M" -^ M" is a P*-mapping 
if there exists a scalar k>0 such that, for any distinct points x, y in M" we 
have 

{f{x)-f{y),x-y) + k X {^.-y.)[f,{^)-f.{y)]^o. 
i^I^{x,y) 

Obviously, a P*-mapping is a quasi- P*-mapping, but the converse is not 
true. Clearly, a quasimonotone mapping, which corresponds to the case 
r = 0, is a quasi-P*-mapping, but the converse is not true. It is known that 
the class of quasi-P*-mappings is larger than the union of P*-mappings and 
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quasimonotone mapping. We note also the fact that the notion of 
P*-mapping is related to the notion of P*-matrix. An affme mapping 
/ [x) = Mx + q, where M is an {n x «)-matrix and q e M" is a P*-mapping 
if and only if Mis a P*-matrix. 

In recent years, linear complementarity problem with P*-matrices 
have gained more attention in the field of interior-point algorithms, 
(Kojima, M., Megiddo, N., Noma, T. and Yoshise, A. [1]), (Potra, F. A. and 
Sheng, R., [1], [2], [3]) and (Miao, J. M., [1]). 

DEFINITION 5.6.3. We say that a mapping/: M" -^ M" is a P(T, a, p)-
mapping, if there exist constants r > 0, a: > 0 and 0 < /3< \ such that the 
following inequality holds: 

(l + r ) m a x ( x , - 7 , ) [ / ( x ) - / { j ) ] + m i n ( x , - 7 , ) [ / { x ) - / ( 7 ) ] 

> -a \\x - y\\ , for any distinct points x.yeM". 

Remark. The union of all P(T, 0, 0)-mappings with r> 0 coincides with the 
class of P*-mappings. For more details and results about the classes of 
mappings defined by Definitions 5.6.1, 5.6.2, and 5.6.3, the reader is 
referred to (Zhao, Y. B. and Isac, G. [1]). We cite without proof the 
following result. 

THEOREM 5.6.3. Let f M" ^ M" be a continuous mapping. Iffis a 

quasi-P*'mapping or a P(T, a, ^-mapping and there exists an element 

XQ G Ml such that / (JCQ ) e Int yMlj, then f is without an exceptional family 

of elements (in the sense of Definition 4.1.1). Moreover, the problem 

NCPif, Ml ) has a solution. 

Proof. The proof is given by the proofs of Theorem 2.1 and 3.1 presented in 
(Zhao, Y. B. and Isac, G. [1]) and are based on several technical details. 

D 

Remark. We recall that when the cone K dM"" is reduced to the cone Ml, 
the notion of EFE defined by Definition 5.1.2 is reduced to the notion of 
EFE defined by Definition 4.1.1. 

By the next results we will show that the notion of EFE can be used 
to study the feasibility of nonlinear complementarity problems. Certainly, 
we must modify the notion of EFE introduced by Definition 5.1.2. Let 



208 Leray-Schauder Type Alternatives 

(i^'',(-,)) be w-dimensional Euclidean space, KczM" a closed pointed 

convex cone and/: M" ^^ M" a continuous mapping. 

DEFINITION 5.6.4. Let {a, (3) be a pair of real numbers such that 
0 < a < j3.We say that a family of elements {x^}^^^ czM"" is an (a, J3)-

exceptional family of elements for f with respect to K if and only if 

lim \x^ II = +00 and for each real number r > 0, there exists a scalar 

tr G ]0, 1[ such that the vector u^ ={}lt^ ~^)^r +( /^~^) / ( -^r ) satisfies 
the following properties: 

(i) u^^K\ 

(ii) iu^,x^-atj{x^)) = 0. 

The importance of this notion is given by the following result. 

THEOREM 5.6.4. Let {a, f3) be a pair of real numbers such that 0< a</3 
and let K czM" be a closed pointed convex cone such that K* czK or 
K* = K. Then, for any continuous mapping / : R"" ^^ R"", either the 

problem NCP(f K) is feasible or there exists an {a, /J)-exceptional family of 

elements for f with respect to K 

Proof. For any r> 0 we denote 

S^ ={xsM" :\\x\\ = r] andB^ ={xeM" :\\x\\<r]. 

We consider the mapping ^^: R" -^ R"" defined by: 

^{x) = af{x)^P^[x-j3f{x)]. 

Obviously, ^ is a continuous mapping. If the problem NCP(f K) is feasible 

we have nothing to prove. 

We suppose that the problem NCP(f K) is not feasible. In this case, 

we apply Theorem 3.2.4 [Leray-Schauder alternative] for any r > 0 to the 
set Br and the mapping ^ . For any r > 0, ^ does not have a fixed point in 
B^ , because if jc* is a fixed point for ^ in 5^ , then, in this case we have 

X. =af{x.) + P^ [x. -Pf{x.)\ 
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which implies that 

(x. -af{x,)-\_x, -/3f{x,)],y)>0forallyeK. 

We have {{fi-a)f{x,),y)>OforallyeK,thatisf{x,)eK''. 

Since P^ [x. - / ? / { x , ) ] e K a n d K ' ^K , we deduce that 

x.=af{x.) + P^[x.-/3f{x.)]eK, 

Consequently the NCP(f, E) is feasible which is a contradiction. Therefore, 

for any r > 0 there exist Xy e Sr and tr e ]0,1 [ such that 

x,=t^[af{x^) + P^[x^-l3f{x^y\\. (5.6.1) 

From (5.6.1) we have 

PMbr-Pf{^r)\=]-^r -CCf{x,). (5.6.2) 

Using (5.6.1) and the properties of the operator P^, we deduce 

l^x^-af{x^)-[x^-pf{x^)\y\>Qforally^K 

and 

- ^ -(^f{^r)-[_^r-Pf{^r)\j^r -(^fMj = ^ 

If we denote 

ti„ = 
/ 

we deduce that ŵ  G JC* and^w^,x^-a^^/(x^)) = 0, because, for every 

r>^^Xr ^ Sr we have that ||jĉ  || -> +00 as r -> +00 . Therefore, {̂ ;. j ^ ^ ^ is an 

(a, y^-exceptional family of elements for/with respect to ̂  n 

Now, we consider the case of a general Hilbert space. Let (//,(•,)) 

be a Hilbert space and let .K^e / / be a closed pointed convex cone. L e t / : 

H-^ / / b e a completely continuous field of the form / ( ^ ) = — X-T{X)^ 

where /? > 0 and T : H -^ H is 2i completely continuous operator. We 
introduce the following notion. 
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DEFINITION 5.6.5. Letf\ H-^ H be a completely continuous field of the 

form f{x) = — x-T{x), for all x e K Given a real number a such that 

0 < a < / ? , we say that the family of elements {^4r>o ^ ^ ^^ ̂ ^ ^^' ^' 

exceptional family of elements for f with respect to K if and only if 

lim llx II = +00 and, for every real number r > 0, there exists a scalar 

tf e ]0, \[ such that the element u^ = x^ -r(jc^) satisfies the following 

properties'. 

(i) Ur e Ift, 

(ii) 'u^^^-^x,^aPT{x^^ = 0. 

We have the following result. 

THEOREM 5.6.5. Let (//,(•,•)) be an arbitrary Hilbert space and Ka H 

a closed pointed convex cone such that Jit ^ K Let f : H^ H be a 

completely continuous field of the form f(^x) = — x-T[x), where fi> 0. 

Then, for any real a such that 0 < a< J3, either the problem NCP(f, K) is 

feasible or there exists an (a, P)-exceptional family of elements in the sense 

of Definition 5.6.5 for f with respect to K 

Proof. For any r > 0 we denote 

S^ =[xeH'.\x\ = r]andB^ ={xG^:||jc||<r} 

and we consider the mapping ^ : //-> 7/defined by 

" n^) ^ ^ (3-a ^ ^ l/3-a 

The mapping ^ is completely continuous. If the problem NCP(f, K) is 

feasible, then in this case we have nothing to prove. We suppose that the 

problem NCP(f E) is not feasible. For any r > 0 we apply Theorem 3.2.4 to 
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the set Br and the mapping ^ . If the mapping T has a fixed point x* in a set 

B^, then in this case we have 

X,=—^T{X,) + PA-^' P-a ^ ' ""IP 
which implies that 

P-a 
T{x,) 

X, - af{x,) = P^ [x. - Pf{x,)], 

and as in the proof of Theorem 5.6.4 we deduce that NCP(f, K) is feasible 

which is a contradiction. 

Therefore, supposing that NCP(f, E) is not feasible, we have (by 

Theorem 3.2.4) that for any r > 0 there exist Xr e Sr&nA U e ]0, 1 [ such that 

X. = / 
J3a 

P-a 
T{X,) + PK 0" 

p-a 
T{Xr) 

This relation implies (as in the proof of Theorem 5.6.4) that {̂ ;.}̂ ô is an 

{a, y9)-exceptional family of elements for/with respect to i^ n 

Remark. Modulo some details, it is possible to extend Theorem 5.6.5 from 

completely continuous fields of the form / ( x ) = — x - r ( x ) , to A:-set fields 

of the form / ( x ) = — x - r ( x ) , where T is a A:-set contraction with an 

appropriate k. 

Now, we introduce another notion of exceptional family of 
elements, which can be used in the study of feasibility. When we use this 

notion, it is not necessary to suppose that Ht a^K. 

DEFINITION 5.6.6. Given a completely continuous field f of the form 

/ ( x ) = — X - r ( x ) , where fi> 0 and T : H-^ H{where T is a completely 

continuous mapping) and a G [0,yff [, we say that a family of elements 

[x^]^^^ ci Kis an {a, P)-exceptional family of elements for f if \x^ || -> +oo as 

r -^ +00 and for each r > 0, there exists ^̂  G ]0, 1 [ such that 
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(i) t^x^^Pf{x,)eK\ 

(ii) {t^x^+Pf{x^),{\ + t,)x^-aP^[T{x,)\j^Q. 

With this notion we have the following result. 

THEOREM 5.6.6. Let (i/,(•,•)) be an arbitrary Hilbert space and KciH 

a closed pointed convex cone andf: H-^ Ha completely continuous field of 

the form f{x) = — x-T{x), where /?> 0. Then either the NCP(f, K) is 

feasible or for each a ^ [0, >0 [, there exists an {a, P)-exceptional family of 

elements for f with respect to K {in the sense of Definition 5.6.5). 

Proof. For any r > 0 we denote 

S^=[x^H'.\x\ = r | and B^ =\^xsH:\\x\\ <r|, 

and we consider the mapping ^ : //-> //defined for any 6ir by: 
^{x) = aP^[T{x)] + P^[x~/3f{x)-aP^[T{x)]\. 

The mapping W is completely continuous. If the problem NCP(f K) is 

feasible, then in this case we have nothing to prove. 

We suppose that the problem NCP(f K) is not feasible. In this case, 

m is without a fixed point, because supposing that ^ has a fixed point x*, 

we can show that the problem NCP(f K) is feasible which is a 

contradiction. Applying Theorem 3.2.4 to any set Br with r > 0 and to the 
mapping ^ , we obtain an element Xr e Sf. and a real number /̂  G ]0, 1[ such 
that 

x,=^^{a/>^[r(x,)] + />,[x,->ff/(x,)-^/>^[r(x,)]]). 

Considering the properties of the projection operator P^, we can show that 

the family {x^}^^^ is an (a, y5)-exceptional family of elements for/with 

respect to K n 
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If the Hilbert space (//,(•,)) is the ^-dimensional Euclidean space 

(i^",(-,)) and ^ c ^ " is a closed pointed convex cone, then for any 

continuous mapping f :E'' -^ M" and any 6ir > 0 we can introduce the 
following notion. 

DEFINITION 5.6.7. We say that a family of elements [x,]^^^ a Kis an a-

exceptional family for f with respect to K, if ||x̂  || —> +oo as r ^^ +oo and for 

each r > 0, there exists /̂^ G ]0, 1 [ such that denoting by rj^ = 1 we have 
K 

Considering for any or > 0 the mapping 
^{x) = aP^[f{x)] + P^[x- f{x)-aP^[f{x)i\, 

and by a proof similar to the proof of Theorem 5.6.6 we obtain the 
following result. 

THEOREM 5.6.7. Let K cz M^ be a closed pointed convex cone and 

f :M" ^> M" a continuous mapping. Then either the problem NCP(f K) is 

feasible, or for each a>Q, there exists an a-exceptional family of elements. 

Remark. Definition 5.6.7 is due to N. J. Huang, C. J. Gao and X. P. Huang 
[1]. About the study of feasibility by the notion of exceptional family of 
elements we cite also the paper (Zhao,Y. B. and Li, D. [1]). The strict 
feasibility can be studied also using a special notion oi exceptional family of 
elements. In this sense we have the following notion, in M"". 

DEFINITION 5.6.8. Let S > 0 be an arbitrary real number and let 
f :M" ^^ M"" be a continuous mapping. We say that [x^]^^^ a Ml is a 5-

exceptional family of elements for f with respect to W[ if and only if for 

every r > 0, there exists /̂  G ]0, 1 [ such that 
(i) \x^ II -> +00 asr -^ +oo, 
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(ii) / (^ J + I^X -=" ^. for x\ > 0, where //, = — ^ , 
2t^ 

(in) f,(x')>S, if x:=0. 

We have the following result. 

THEOREM 5.6.8. Let f:M"^M'' be a continuous mapping. Then, either 

the problem NCPif, M^ ) is strictly feasible or for any S> Q, the mapping f 

has a S-exceptional family of elements with respect to M^ . 

Proof. Let ^> 0 be an arbitrary real number. If the problem NCP(f M" ) is 
strictly feasible the proof is complete. We suppose that the problem 
NCP(f, Ml) is not strictly feasible, and we consider the mapping 

"i^s-.M" -^M"" defined by 

vp̂  (^x) = [ (^^ ) (x)J_^, where for any x e M\ 

\{^,l{x) = ^-f{x)^S^^[f{x)-S]\ 
[/ = 1,2,...,«. 

The mapping ^ ^ is continuous and ^^ {^M^ ) e ^^ . We apply the Leray-

Schauder alternative (Theorem 3.3.6) to the mapping 4^^ considering 

C= Ml md U = U^={xeMl: \\x\\ < r] for an arbitrary r > 0. The mapping 

^^s is fixed-point free on every set U^ =ixeMl :||A:||<r|. Indeed, if for 

some r > 0 there exists x' e U^ such that ^^ (x!i) = ̂ ^, then in this case we 

can show that the problem NCPif, Ml) is strictly feasible, which is a 
contradiction. 

Hence ^5 is fixed-point free on any f/̂ , r > 0. In this case applying 

Theorem 3.3.6 we obtain for any r > 0 an element x"" e Ml such that \\x''\\ = r 

and a real number tr e ]0,1 [ such that x' =t^^^ (^ )• Now, recalling the 

definition of ^ ^ we have that, for every / =1, 2, ..., «, 

X = / ^/(<7-/(^0 + ̂  + ̂ /[̂ (̂ 0-̂ ^ 
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If x' = 0, then in this case we have 

which implies f^yxj>5 .If x"^ ^Q , i.e., :i:[ > 0, then in this case we have 

^-x:-x:—f\x')^5^^[f\x')-S'^ 
t 

and finally, 

i^,,'./(.')-^=i/(.')-4. 
If in the last relation we denote 

then we obtain 
\-t r r 2 

and finally, 

^l-t. 

2r 
X, . 

Therefore, we have the equality 

fi{x') + juX = S, where ju^ = —^ > 0, 

and the proof is complete. n 

COROLLARY 5.6.9. If all the assumptions of Theorem 5.6.8 are satisfied 
and f is without 5-exceptional families of elements with respect to Ml, then 

the problem NCP(f, E^ ) is strictly feasible. 

5.7 Paths of 8-solutions and exceptional families of 
elements 

In this section we selected some results necessary to show how the 
notion of exceptional family of elements can be adapted to the study of 
interior bands of s-solutions for complementarity problems in # " . 
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Let iM'',l^',')\ be the ^-dimensional Euclidean space ordered by the 

closed pointed convex cone E'' andf: M" ^^ M" a continuous mapping. 
We consider the following nonlinear complementarity problem: 

, I find jc, G M" such that 

^' '' [f{x.)eM:and{x.J{x.)) = 0. 

We note that there exist several equivalent formulations of the problem 

NCPif.Ely In particular, several formulations are in the form of a 

nonlinear equation F{x) = 0, where F : W ^^ W \^ 3, continuous mapping 
(Isac, G. [20]). By using such formulation, several techniques proposed by 
some authors are based on the idea to perturb F to a certain F(x, 5), where s 
is a positive parameter and to consider the equation F{x, s) = 0. If 
F(x, s) = 0 has a unique solution, denoted by x{sX and x{s) is continuous in 
s, then the solutions describe (depending on the properties of F) a short path 
denoted by |x(5:):^G ]0,8Q] | or a long path \^x[s):se]0,oo[|. 

We note that, if a short path |x (^): 6: G ]0, QO[| is bounded, then for 

any sequence {̂ }̂ with [s,^] -^ 0, the sequence |x(£'^)| has at least one 

accumulation point, which by continuity is a solution to the problem 

NCPyf, Ml j . Based on this fact, several numerical methods for solving the 

problem NCPif,Ml\ have been developed, as for example the interior-
point path-following methods, regularization methods and noninterior path-
following methods, among others. 

About such methods the reader can see the paper (Burke, J. and Xu, 
S. [1], [2]), (Chen, B and Chen, X. [1]), (Chen, B., Chen, X. and Kanzow, 
C. [1]), (Facchinei, F. and Kanzow, C. [1]), (Ferris, C. and Pang, J. S. [1]), 
(Gowda, M. S. and Tawhid, M. A. [1]), (Guler, O. [1]), (Kanzow, C. [1]), 
(Kojima, M., Megiddo, N., Noma, T. and Yoshise, A. [1]), (Megiddo, N. 
[1]), (Monteiro, R. D. C. and Adler, I. [1]) and (Tseng, P. [1]). 

The most common interior-point path-following method is based on 

the notion of central path. The curve |X(6*):6:G]0,OO[| is said to be the 

central path if for each 6: > 0 the vector x(c) is the unique solution to the 
system 
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and X^s) 'fyx[s)j = se, 

where the inequality ">" means that the components of the vector are 

strictly positive, ^ = (l,l,...,l) , X[^s) = the matrix diag[x{^s)) and x(£) is 

continuous on ]0, oo[. 

It is well known that, for a general NCP[f, Ml), the system (5.7.1) 

may have multiple solutions for a given 6: > 0, and even if the solution is 
unique it is not necessarily continuous in s. Related to system (5.7.1) we 
consider the set-valued mapping W: ]0, oo[ ^ 5 [EI^ ) defined by 

U{S) = [X^M:^ :f{x)>Q,Xf{x) = 8e}, 

where X = the matrix diag (jc), S (M^^ ) is the collection of all subsets of 

Ml^ and M^^ =[{x = x,,.,.,x^):x, >0,x^>0,...,x„ >0}- in t ( i?") . We say 

that U is the interior band mapping. 

The set-valued mapping U was studied from several points of view 

in (Zhao, Y. B. and Isac, G. [2]). About the set-valued mapping U, we are 

interested to know, under what conditions U has the following desirable 

properties. 
(a) U(s) ^ (/>for each s G ]0, OO[. 

(b) For any fixed So>0 the set (J U (^s) is a bounded set. 
eG]0,eo] 

(c) IfU{£) # (/), then U{£) is upper-semicontinuous at e. 

(d) IfU{-) is single-valued, then U(s) is continuous at sprovided that 

U(G) ^ (f). 

If the mapping U{') satisfies properties (a), (b) and (c), then the set 

(J ^ ( ^ ) can be viewed as an interior band associated with the solution 

set of problem NCP{^f,Ml^. The interior band can be viewed as a 

generalization of the concept of the central path. We will show in this 
section that a notion of exceptional family of elements can be used to obtain 
several results related to the set-valued mapping U. 
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DEFINITION 5.7.1. Letf: M" -^ M" be a continuous mapping. Given a 

scalar s> 0, we say that a family |jc j ^^"++ is an interior-point -s-

exceptional family of elements for f if he'' -^ +oo as r -^ +oo and for each 

x^ there exists a real number X^ G ]0, 1[ such that 

/('')4 K 
\ ) 

x\ + —- , for all / = 1,..., n. 
x] 

Using this notion we can prove the following result. 

THEOREM 5.7.1. Ze^ / : W -^ R"" be a continuous function. Then for 
each 6:> 0 there exists either apointx{s) such that 

j x {s)>0,f{x{s))>0 and x. [s) f (x {s)) = s, 

[for all i = 1,2,...,n, 

or an interior-point-s-exceptional family of elements exists for f 

We will prove a more general result than Theorem 5.7.1, using the s-
multivalued complementarity problem. Let / : M" -^ M" be a set-valued 
mapping with non-empty values. Suppose given a real number £> 0. The s-
multivalued complementarity problem dofinQdhyf and the cone Ml is: 

fmd X (s) G int M^ and w (6-) G / (x (5:)) 

such that u[s)>0 and 

[jc(6:)]. -[^(6:)]. =s, for alii = \,2,...,n. 

s-MCP{f,M:): 

DEFINITION 5.7.2. Letf: M" -^ M" be a set-valued mapping with non­

empty values. Given a real number 6> 0,we say that jjc'' | c int (#^ ) is 

an interior-point-8 exceptional family of elements for f if l^x' -^ +00 as 

r -^ +00, and for each r > 0, there exist Xy G ] 0 , 1 [ and y^^ f{x^) such that 

y, A-L x\ + —y, for all i = l,2,...,n. 

We have the following result. 



Leray-Schauder type alternatives. Existence theorems 219 

THEOREM 5.7.2. Let (i^",(•,•)) be the n-dimensional Euclidean space 

ordered by the cone Ml. Let f \ M"" -> M" be a set-valued mapping with 

non-empty closed convex values. Lffis lower semicontinuous, then for each 

8 >0 there exists either a solution to the problem s - MCP if, E^ j or an 

interior-point-8-exceptional family of elements for f 

Proof. Let 6:> 0 be given. Because/is a lower semicontinuous set-valued 
mapping, with non-empty closed, convex values, we have, by Theorem 
5.3.10 (Michael's theorem) that/has a continuous selection. We denote this 

selection by (p = {(p^,(p^,...,(p^) . Let O^ (x) = (0' (jc),...,0^ (x)) be the s-

Fischer-Burmeister function, i.e., 

j o ; (x) = X, + cp^ (x)-^xf+(p^+2s, 

[/ = 1,2,...,«. 

It is easy to see that ifx(s) solves the nonlinear equation 
cD^(x) = 0, (5.7.2) 

then (x[e),(p(^x(s)yj is a solution to the problem 6: -MC/*( / ,#") . 

Consider the continuous function r(jc) = j c -0^ (x), defined for 

any x e M". Obviously, x(s) is a solution of equation (5.7.2), if and only if, 

x(£) is a fixed point for T. For any r > 0 denote by B^ =<^xe M" :\\x\\<r| 

and S^={xeM": \\x\\ = r]= dB^. If the problem s - MCP ( / , M^ ) has a 

solution we have nothing to prove. 

Suppose that this problem has no solution. In this case, T is fixed-
point free with respect to any set B^.. Applying Theorem 3.2.4 [Leray-
Schauder alternative] with Q= M" and B^ = U, we obtain that for any r> 0 
there exist x' G dB^ = S^ and A^ e ]0, 1[ such that 

x' =A^[x' -^'{x')], 
which implies 

\x; +A^(p,{x') = A^^{x;)\(p,(x') + 2s, ^^^^^3^ 

[/ = 1,2,...,«. 

From (5.7.3) we deduce 
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^'i<Pi(x') = i: 

i = \,2,...,n. 

1 (x:)\^t 
'r J 

(5.7.4) 

Because A^G ]0, 1[, formula (5.7.4) implies that x\ ^ 0 for all/ = l,2,...,« 
and hence we have 

<p~[A-\ X. •r J (5.7.5) 

[/ = l,2,...,n. 

Considering (5.7.3) we have 

\x\ + X^(p^ {x') = /l,^/2£, 

[i = l,2,...,«. 

Multiplying (5.7.5) by Xr and adding for every / = 1,2,...,«, x\ we obtain 

(5.7.6) 

x\^X^cp,[x') = Uxl^\)x]^^, 
z x^ (5.7.7) 

Considering (5.7.6) we have that the right-hand side of (5.7.7) is strictly 
positive, which implies that x[ > 0 for every / = 1,2,...,«. If for every r > 0 

we denote y' = cp. {x^), we obtain that y"" = (;;[) G / (x'') and | jc'̂  | is an 

interior-point-^-exceptional family of elements for / , and the proof is 
complete. n 

COROLLARY 5.7.3. Let / : R*" -^ M"" be a lower semicontinuous set-
valued mapping with non-empty closed convex values. Iff is without an 
interior-point-^-exceptional family of elements, with respect to M^, then the 

problem £ - MCP if, M^ \ has a solution. 

DEFINITION 5.7.3. We say that a continuous mapping f \ M" -> M" 

satisfies the Browder-Hartman-Stampacchia condition (shortly denoted by 

(BHS)) on a closed convex cone K cz M" if there exists p > 0 such that 

A:,/(x)y >Oforanyx G Kwith \\x\\ = p. 
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PROPOSITION 5.7.4. If f \ W" -^ W is a continuous mapping which 
satisfies condition (BHS) on M^, then the problem NCP(f M^) has a 
solution. 

Proof. This proposition is a consequence of Corollary 5.1.17. n 

DEFINITION 5.7.4. We say that a continuous mapping f: M" -> M" 

satisfies the asymptotic Browder-Hartman-Stampacchia condition (shortly 

denoted by (ABHS)) on a close convex K(zM", //liminf(jc,/(jc) =+00. 
xeK 

We have the following result. 

THEOREM 5.7.5. Let f : M" ^M" be a continuous mapping. If 

lim inf {x,f(x)) = +QO , then the problem NCP(f, M" ) has a solution, 

(1) U(£) ^ ^, for any s>0, 

(2) for any fixed £o> 0 the set [J U (£•) is bounded. 
ee]0,e] 

Proof. 
(1) We can show that liminf (x , / (x) ) = +oo if and only if 

||A:||->+OO \ V • ' / 

liminf (A:,/(JC)) = +OO. The last formula implies that / satisfies 
||;c||^+oo \ ^ / / 
XGM" 

condition (BHS) and applying Proposition 5.7.4 we obtain that the 
problem NCP(f, Ml) has a solution. 

(2) By using Theorem 5.7.7 it is sufficient to show that for any £> 0,/does 

not have an interior-s'-exceptional family ix""] c:#"^. Indeed, we 

suppose that/has an interior-point-^--exceptional family ix''] a E^^ . 

Muhiplying the formula given in Definition 5.7.1 by x''^ and summing 
with / from 1 to « we obtain 

{x\f(x^))^\U 1 

21 A , , 
jc"* + n£\, 

where 0 < /^ < 1, for any r > 0. From the last equality we deduce 
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x%/(xO) + j 
v4 

•k \x \\<ns. 

Let ro > 0 such that hc''° > 0. Because be'' -> +oo as r ^> +oo, we can 

consider a subsequence ix''' \ such that x'° < jx''' and 

Vix'' -^ +00 as /• -> +00. For this sequence we have 

x''f +(^x\f[x''fj<ns. 

Computing lim inf and using the assumption of our theorem, we obtain 

a contradiction. Therefore by Theorem 5.7.1 we have that U(8) ̂  ,̂ for 

any ^>0. 

(3) We observe that for any x(s) eU(s) we have (x[s),f(^x(^eyjj = ns. 

Now, we suppose that there is an 8 >0 such that (J ^ ( ^ ) is not 

bounded. Hence, by the assumption of our theorem we have 

On the other hand 

(^x{s,)j{x{6,))) = n£,<ns,, 

which implies 

•im^̂ nf (x (^,), / (x {s,))) < ns, 

and we have a contradiction. Therefore [J W(^) is bounded for any 
ee]0,eo] 

6b > 0 . D 

By using Theorem 5.7.5 we can prove also the following result. 

THEOREM 5.7.6. Ze^/: M"" -^ M" be a continuous mapping. If 

Hminf^ ; ^^ >0, 
Nh^ bll 
XGR"^^ II II 

then ^satisfies properties (a) and(h). 

Proof. We can show that 
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lim inf (jc, / (jc)) = +00 

and apply Theorem 5.7.5. n 

The reader can see other results about the set-valued mapping U in (Zhao, 

Y. B. and Isac, G. [2]) and in (Isac, G. and Nemeth, S. Z. [5]). We cite only 
the following interesting result, due to Y. B. Zhao and G. Isac. 

THEOREM 5.7.7. Let f \ R' --^ W he a P{T, a, p)-mapping. If the 
problem NCP(f, M") is strictly feasible, the U satisfies properties (a) 
and (b). 



INFINITESIMAL EXCEPTIONAL FAMILY OF 
ELEMENTS 

In this chapter we will introduce and we will use the notion of 
infinitesimal exceptional family of elements for a mapping. This notion is 
due to S. Z. Nemeth and it has been used in some recent papers. By this 
notion we establish an interesting relation between the notion of exceptional 
family of elements and the notion of scalar derivative, due also to S. Z. 
Nemeth. We note that by this relation we give some applications of the 
notion oi scalar derivative to the study of complementarity problems. 

6.1 Scalar derivatives 

Let ( / / , (v)) beaHilbert space, C ^H d non-empty set which contains at 

least one non-isolated point and / g: C -> 7/two mappings. Let XQ a non­
isolated point of C. 

DEFINITION 6.1.1. We say that the limit 

— ^ ^' x-^x r<=r II l | 2 

I n 0II 
is the lower scalar derivative offat XQ. Taking '1im sup'' in place of 'lim 
inf'', we obtain the upper scalar derivative f [x^) of fat x^ similarly. 

Definition 6.LI can be extended for the unordered pair of mappings (f, g). 
In this sense we have the following notion. 
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DEFINITION 6.1.2. We say that the limit 

( A g ) (^o)= iminf 1 p 
II oil 

is the lower scalar derivative of the unordered pair of mappings (f, g) atxo. 

Taking '1im sup'' in place of '1im inf" we obtain the upper scalar deriva­

tive ( / , g) {XQ ) of(f g) at xo similarly. 

The notion of scalar derivative can be also extended for set-valued 
mappings. Indeed, we suppose that / g : C ^> / / are set-valued mappings 
and Xo again a non-isolated point of C. 

DEFINITION 6.1.3. We say that the limit 

f [xA= liminf -̂  -

is called the lower scalar derivative of the unordered pair of set-valued 
mappings (f g) at XQ. Taking "lim sup" in place o/'iim inf, we can define 

the upper scalar derivative (^f, g) [XQ ) of(f g) at XQ similarly. 

The notion of scalar derivative ŵ as introduced and studied by S. Z. 
Nemeth, and the reader is referred to (Nemeth, S. Z., [1], [2]). Several 
methods for computation are given in (Nemeth, S. Z., [3]). Applications of 
scalar derivatives to the study of complementarity problems, to study of 
fixed points and to the study of eigenvalues of nonlinear mappings are given 
in (Isac, G. and Nemeth, S. Z., [1], [4]) 

6.2 Infinitesimal exceptional family of elements 

By Definition 5.1.6, we introduced the notion of exceptional family 
of element (EFE) for a mapping/, by Definition 5.2.1 the notion of EFE for 
a pair of mappings {f, g) and by Definition 5.3.2 the notion of EFE for a set-
valued mapping and by using these notions we obtained several existence 
theorems for nonlinear complementarity problems, for implicit complemen­
tarity problems and for multivalued complementarity problems. Now, in this 
section we will introduce for each of them, a kind of infinitesimal 
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exceptional family of elements (EFE). By infinitesimal forms we will 
establish a relation between the notion of EFE and the scalar derivatives. 

Let {H, {',')) be a Hilbert space and ||-|| the norm defined by the 

inner-product (•, •). 

DEFINITION 6.2.1. The operator / : ^ \ {0} ->7 / \ {0} defined by 

/ (x) = —J is called inversion {of pole 0). 
I|2 

\\x\\ 

Obviously, / is one-to-one and i^ -i. Let Kcz HhQ di closed convex cone 

and/ : K^> H. Since ^ \ {0} is an invariant set of/ the following definition 

makes sense. 

DEFINITION 6.2.2. The inversion {of pole 0) of the mapping f is the 
mapping X ( / ) :K ^>' H defined by: 

j(y)(^)jiHr(/°ow'/^^o, 
[O ifx^O. 

It is easy to see that the inversion operator J is a one-to-one operator on the 

set of mappings | / : / : ^ - > i f ; / ( 0 ) = 0| and I ' =X, i.e., 

DEFINITION 6.2.3. Let {H,{-,•)) be a Hilbert space K cz H a closed 

convex cone and g : K ^> H a mapping. We say that {j^lrio ^ ^ '* ^" 

infinitesimal exceptional family of elements {IEFE)for g with respect to K, 

if for every real number r > 0, there exists a real number fir> ^ such that 

the vector v, = jn^y^ + s{,yr) satisfies the following conditions: 

(1) Vr&K 

(2) (v„7,) = 0, 

(3) y, ^^'Q as r ^+co. 
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The following condition is similar to condition i6\ (see Definition 5.1.2). 

DEFINITION 6.2.4. Let (^,(- ,)) be a Hilbert space, KaH a closed 

convex cone andg : H^> Ha mapping. We say that the mappingg satisfies 

condition y 0\ with respect to K if there exists A > 0 such that for each 

yeK\{0] with \\y\\ < X, there exists q G Kwith {q'>y)<\y\ such that 

{y-q.g{y))>0. 

We have the following result. 

THEOREM 6.2.1. Let ( ^ , (•,•)) be a Hilbert space, K a H a closed 

convex cone and g : H ^> H a mapping. If g satisfies condition \'0\ with 

respect to K, then g is without an lEFE with respect to K 

Proof. We suppose the contrary, that is, we suppose that g has an lEFE 

[y^]^^^<^K, with respect to K. For any r> 0 such that |[y|| < p there is an 

element q^^K with (?;.,>'^)<||>^J| satisfying the relation 

{yr-qr.g{yr))^^' 

Since, according to Definition 6.2.3, {v^.y,)-^ and v̂  G ^ , we have 

--l^r\yr'\-{qr^\)^I^Mr^yr)^-l^r^^^^ 

which is a contradiction. n 

THEOREM 6.2.2. Let (//,(•,•)) be a Hilbert space, K ^ H a closed 

convex cone and f : K ^^ H a mapping. A family of elements 

[x^]^^^<^K\{0} is an EFE for f with respect to K if and only if 

[y^]^^^ciK\{0} is an lEFEfor g, with respect to K, where yr = i(Xr) and 
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Proof. Bearing in mind the notation of Definition 6.2.3 we have 

Hence, v̂  = \y^ f {iu^i{y,)) + f{i{yr)) • Since i'' = / , we have 

IK II 
Hence, v̂  = u^. Therefore 

Ik. If 
(v.,y.) = ̂ ( « . , x . ) , (6.2.1) 

IF. II 
and 

IF. II 
for every z ^ K Since ||x̂  || • l;;̂  || -1, \x^ || -^ +oo if and only if j ; ^ -^ 0. By 

using (6.2.1), (w^,x^) = 0 if and only if (v^,}^^)==0. By using (6.2.2), 

u^ G K* if and only \f v^^K*. u 

THEOREM 6.2.3. Let ( ^ , (•,•)) be a Hilbert space, K cz H a closed 

convex cone f \ H ^y H a mapping and g^ Z{f), Then f satisfies condition 

\6\ with respect to K, if and only if g satisfies condition (' d\ with respect 

to K 

Proof. We suppose that g satisfies condition y6\ with respect to K and we 

prove that / satisfies condition {6\ with respect to K We consider the 

constant X defined in condition i'6\ and let p-—. Let x G ^ be an 

arbitrary element satisfying the inequality 
IN|>A (6.2.3) 

and y = i{x). Since |y|| = 7r-;r' i* follows that |ly|| < A. Hence by condition 
IFII 

{'d\, there exists p e ^with (q,y) < ly^|| such that {y-q,g{y)) > 0. Let 



(6.2.6) 

230 LeraySchauder Type Alternatives 

P-^Yf- (6.2.4) 

Since (^, y) < \y\ and z~' = / , relation (6.2.4) implies that 

On the other hand X' = J implies that 

{x-p,f {x)) = {x-p,I (g) (x)) 

^{x-p,\\xfs{i{^)))=H{y-^My))^^-
By (6.2.3), (6.2.5) and (6.2.6)/satisfies condition (d) with respect to K 

Now, we suppose that / satisfies condition (Oj with respect to i^and we 

prove that g satisfies condition (' dj with respect to K. Indeed we consider 

the constantp>0 defined in condition (§] and let A = — . Let yeK\[0] 

with IIj;|| < Ji . We have to prove that there exists q e K with (g, y) < \\y\\ 

such that \g -q->g{y))^0. Since/ = J(g), we can proceed as above. n 

DEFINITION 6.2.5. Let ( ^ , (•,•)) be a Hilbert space, K cz H a closed 

pointed convex cone and f,g:H-^H two mappings. We say that a family 

of elements {^r\r>Q ^^ ^^ infinitesimal exceptional family of elements 

(lEFE) for the ordered pair of mappings if^g) ^ith respect to K if the 

following conditions are satisfied: 

(1) x̂  ->0 as r->+oo, 

(2) for any r > 0, there exists ju^ >0 such that s^ = Mr^r + / (-^r) ^ ^ * ^ 

% =Mr^r + ^ ( ^ . ) ^ ^ and {v^J^) = 0. 

We have the following result. 

THEOREM 6.2.4. Let (//,(•,•)) be a Hilbert space, K a H a closed 

pointed convex cone, f,g:K-^H two mappings. A family of elements 
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{x̂ l̂ ^Q c i ^ \ { 0 } is an EFE {in the sense of Definition 5.2.1) for the 

ordered pair of mappings if, g) with respect to K, if and only if 

{x̂ l̂ ^Q cz / / \ {O} is an lEFEfor the ordered pair of mappings \f,g) ^ith 

respect to K, where x^ =i[x^),f = I(/) and g = I(g). 

Proof. Considering the notions of Definition 6.2.5, we have 

Hence, 

Since \\x^ || • ||x̂  || = 1 and i'^ = /, we have 

^r = r ^ [ / ^ . ^ . +f{x^)]andV^ =i^[^rXr+g{Xr)]' 

h\\ IK II 
Hence 

\\x\\ \\x\\ 

Therefore, 

and 

(v.,^;) = r ^ ( v , , . , ) , (6.2.7) 
\\x. 

IF. II 
By using (6.2.7), (v^, ̂ ^) = 0 if and only if (v^, î )̂ = 0. 

By using (6.2.8) we have that s^ eK* if and only if s^eK*. By the 

relation between v̂  and v̂  given above we obtain that v^^K if and only if 

v^^K. n 

DEFINITION 6.2.6. Let ( ^ , (•,•)) be a Hilbert space, K a H a closed 

pointed convex cone, f,g:H-^H two mappings. We say that the mapping 

f satisfies condition \dg) ^ith respect to K, if there exists p>0 such 

that for each XGK\[0] with \\x\\ < p there exists y^K such that 
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\ig{x)-y,f{x))>Qand 
Y ' (6.2.9) 

[ ( g ( ^ ) - J , ^ ) > 0 -

The importance of Definition 6.2.6 is supported by the following result. 

THEOREM 6.2.5. Let (//,(•,•)) be a Hilbert space, K a H a closed 

pointed convex cone, f,g:H-^H two mappings. If f satisfies condition 

\^g) ^^^^ respect to K, then the pair of mappings \f,g) is without an 

lEFE with respect to K 

Proof. We suppose to the contrary, that ( / , g ) has an infinitesimal family 

of elements [x^]^^^c:K . For any r > 0 such that \x^ || < p there is an 

element y^^K which satisfies relations (6.2.9) i.e., 

{g{x^)-y,J[x^))>Q and (g( i , ) ->^ , , i ,>>0. 

Considering Definition 6.2.5 we have 

'^r =/^X + / ( ^ r ) ^ ^ * ' ^ r = l^rK + g(x,)GKand {v^,s^) = 0, 
and we deduce that 

0 < ( g ( ^ . ) - 7 . , / ( ^ . ) ) = (v, -MA -yr^l -Mr^r) 

<-{v^,Mr^^) + M^rPrf +{yr^MA) 

= -{Mr^r+g{^r)^Mr^r) + M'Pr( ^{yr^Mr^r) 

= -{g{^r)^MA) + {yr^MA) 

= -Mr{g{^r)-yr^^r)<^^ 

which is a contradiction. Hence, the pair ( / , g ) is without lEFE with 

respect to ^ n 
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THEOREM 6.2.6. Let (//,(•,)) be a Hilbert space, K a H a closed 

pointed convex cone, f,g:H-^H two mappings, / = X ( / ) and 

g = X(g) . Then f satisfies condition \6\ {see Definition 5.2.2) with 

respect to K if and only if f satisfies condition \0^\ with respect to K 

Proof. We suppose that / satisfies condition (' ^^ ) with respect to K 

Let p be the constant defined by condition i' 6.\ and let p- —. 

Let :̂  E jK b̂e an element such that 

\A>P. (6.2.10) 

and let x-i{x). Since ||^|| = ]pM it follows that ||jc||<y5. Hence, by 
Irll 

condition ('^^) there exists y^K such that 

\{g{x)-yj{x'^>^and 

(g(x)->^, i )>0. 

Let 

y ^ ^ ' (6.2.11) 
ii^ir 

Since i^g {x) -y,x^> 0, T̂  - i and considering (6.2.11) we obtain 

( g ( x ) - j , x > = / g ( / ( x ) ) - - ^ , - ^ ) = ̂ ( g ( x ) - ^ , ^ > > 0 . (6.2.12) 
\ Irll Irll / Irll 

On the other hand /g(x) ->^ , / ( jc ) \>0 , V^-i and considering again 

(6.2.11) we deduce that 

\ " / . (6.2.13) 
1 

lUii 
(^(^)->^,/(^))^o. 
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By (6.2.10), (6.2.12) and (6.2.13) we have that / satisfies condition (6>̂ ) 

with respect to K. Since 1~^ = X, the converse can be proved similarly, n 

Now, we introduce the notion of infinitesimal exceptional family of 
elements as a mathematical tool in the study of multivalued complemen­
tarity problems. In this way we establish also a relation between the scalar 
derivative and the solvability of multivalued complementarity problems. 

DEFINITION 6.2.7. Let (//,(•,•)) be a Hilbert space, K cz H a closed 

pointed convex cone, g\K^>Ha set-valued mapping with non-empty 

values. We say that a family of elements [y^]^^^ciK is an infinitesimal 

exceptional family of elements {IEFE)for g with respect to K, if for every 

real number r > 0, there exist a real number jUr > 0 and an element 
y^ ^ g {y^.) such that the following conditions are satisfied: 

(1) V^=JUryr+yr ^^^^ 

(2) (v,,j^,) = 0, 

(3) y^ -> 0 a5 r ^ +00 . 

DEFINITION 6.2.8. Let ( ^ , (•,•)) be a Hilbert space, K cz H a closed 

pointed convex cone. We say that a set-valued mapping g:H^^H with 

non-empty values satisfies condition \' 0 \ with respect to K if there exists 

a real number >̂  > 0 such that for each yeK\[Q] with |[y|| < /I there exists 

q G Kwith (^, y) < \y\ such that iy -q,y^j>Q for all y^ ^g {y). 

The importance of condition r 6* 1 is given by the following result. 

THEOREM 6.2.7. Let (//,(•,•)) be a Hilbert space, K ^ H a closed 

pointed convex cone and g:H ^^ H a set-valued mapping with non-empty 

values. Ifg satisfies condition \ ' 0 \ with respect to K, then it is without an 

LEFE with respect to K 
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Proof. Indeed, we suppose the contrary, i.e., we suppose that g has an lEFE 

{yr]r>o^^ with respect to K For any r > 0 such that, ||>^J<>1, there 

exists an element q^^K with (?;.,J^^)<||j^J satisfying the relation 

Yr ~^rr>yr)-^ ^^ ^^ arbitrary y^ eg(^y^). Since, according to 

Definition 6.2.7, {v^,y^) = 0 and v^G^*,wehave 

which is a contradiction. 

hrt -klr^yr) <o, 

THEOREM 6.2.8. Let ( ^ , (•,•)) he a Hilbert space, K a H a closed 

pointed convex cone and f \H -^ H a set-valued mapping with non-empty 

values. A family of elements {^r]r>Q <^^{0} i^ ^^ E,FE {in the sense of 

Definition 5.3.2) with respect to K, if and only if {yr]^^^ (^K\[Q\ is an 

lEFEfor g with respect to K, where y^ = i{^x^) andg = 1(f). 

Proof. Considering Definition 6.2.7 we have 

V, = Mryr + >^f.foi*somey'̂  eg{y^). 
Hence, 

^r=yr Mri{yr)-
_yl_ 
Ik II 

Since / ' = / , we have 

Let 

MrXr+\\Xr\\ 7 . 

yf - I 
K :=BI| j ; -

We have x/̂  e / (x^) . Indeed, 

-.^-ikf?u)HKr^(/)U)Hkrikr/(/(y.))=/(-.) 

(6.2.14) 

(6.2.15) 

Now, we define 

M, = Mr^r + X; . (6.2.16) 
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Equations (6.2.14), (6.2.15) and (6.2.16) imply that 
1 

v„ = 

kir ' 
Therefore, 

(v.,J.) = - ^ ( w . , ^ . ) (6.2.17) 

and 
1 

Ikf 
(w.,^), (6.2.18) 

for every ZG K Since f-̂ J * ||>̂ r || -1? Il-^r||^'"^^ ^^ r->+oo if and only if 

y^^Qasr-^+^. By using (6.2.17), (w ,̂jc )̂ = 0 if and only if 

(v^, j^^) = 0 . By using (6.2.18), u^ e K* if and only if veK*. n 

THEOREM 6.2.9. Let (//,(•,•)) be a Hilbert space, K (z H a closed 

pointed convex cone and f :H ^ H a set-valued mapping with non-empty 

values and g = I ( / ) . Then, f satisfies condition 6 (see Definition 

5.3.11) with respect to K if and only if g satisfies condition \'0\ with 

respect to K 

Proof. Since g=l{f) and T{x{f)) = / , it follows that 

f = X{g). (6.2.19) 

We suppose that g satisfies condition r ^ with respect to K and we 

prove that / satisfies condition 0 with respect to K. Consider the 

constant X defined by condition r ^ 1 and let p = — . 

Let X G jK'with 

IWI>A (6.2.20) 
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x' 
y = i(x) and x^ ef (jc) . Let y^ = — - . We have y^ eg[y). Indeed, by 

\\x\\ 

(6.2.19) we have 

y II ii2 II ii2 II ii2 ^ yy) * l|2 II ||2 II ||2 

Since ||j;|| = TT—JT , it follows that |[y|| < >1. 

Hence, by condition [' ^ 1 , there exists qeK with iq, j ) < ||j^|| such that 
L Am ^ / II II 

{y-q,f)>^. (6.2.21) 

Let 

/' = A- (6-2.22) 

Since (^, y) < l^l and /"' = / , relation (6.2.22) implies that 

\y\ \y\ 
By (6.2.21) we also have 

{x-p,xf)^\xX{x-p,f)^\xX{y~q,f)>^. (6.2.24) 

By (6.2.20), (6.2.23) and (6.2.24)/ satisfies condition \e'\ with respect 

ioK 

Now, suppose that/satisfies condition 6 with respect to ^ a n d 

prove that g satisfies condition \'0\ with respect to K Consider the 
L Am 

constant p defined by condition \0\ and let X = — . Let yeK\{Q] with 
L Am p 

\y\<X. We have to prove that there exists q e iS^with (^,>^)<||7|| such 

that ^3; - 9,>̂ ^ ^ > 0, for all j ; ^ eg{y). S ince /= J(g), we can proceed as 

above and the proof is complete. n 
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6.3 Applications to complementarity theory 

We present in this section some applications to complementarity 
problems. The results are based on the notions of infinitesimal exceptional 
family of elements and scalar derivative. 

THEOREM 6.3.1. Let {H,{-,•)) be a Hilbert space, K a H a closed 

convex cone and f \K -^H a mapping. Then x, ^ 0 is a solution to the 

problem NCP(f, K) if and only if y^ is a solution to the problem NCP(g, K), 

where y^ = / (jc*) is the inversion of x, and g = X(f) is the inversion off. 

Proof. 

{7.,X(/)(>..)> = (7.,WV(/(>'.))). 
Hence 

{y>^^{f){y:)H\yX{^{y^f{i{y^)))• 
Since T̂  = / , we have 

{> *̂'g(3̂ *)> = r i 7 ( ^ - / ( ^ * ) ) - (6-3.1) 
\x, II 

It can be similarly proved that 

{g{y.\2)^^{f{x.\z)^ (6.3.2) 

for every z^ K. By using (6.3.1) we have ^jc*,/(x,)y = 0 if and only if 

(j^*,g(;^*)> = 0.Byusing(6.3.2), / ( X * ) G ^ * if and only if g ( > ; . ) E ^ . 

n 

THEOREM 6.3.2. Let ( i / , (•,•)) be a Hilbert space, K a. H a closed 

convex cone and f .K ^^ H a projectionally LeraySchauder mapping. If 

g = X(f) satisfies condition \0\ with respect to K, then the problem NCP(f 

K) has a solution. 



Infinitesimal exceptional family of elements 239 

Proof. By Theorem 6.2.3, / satisfies condition io\ with respect to K 

Hence Theorem 5.1.41 implies that/is without EFE with respect to K, and 

finally by Theorem 5.1.2 we have that the problem NCP(f K) has a 

solution. D 

THEOREM 6.3.3. Let (//,(•,•)) be a Hilbert space, K cz H a closed 

convex cone and f \K ->H aprojectionally Leray-Schauder mapping. If 

there exist a S > 0 and a mapping h:B(0,S)nK -^ K, with h{0) =0 and 

F ( 0 ) < l , ( l - / z , T ( / ) ) ' ( 0 ) > 0 , where B{0,S)^{xeH:\\x\\<S}, then 

the problem NCP(f E) has a solution. 

Proof. Let g = 1(f). Since P (O) < 1, there is a Ai with 0 < Xi < S such that 

for every 3; G ^with \\y\\ <X\ we have 

{Ky)^y)<\yX' (6-3.3) 
Since (/ - //,g) (O) > 0 ,there is a X^ with ^ < Xi< 5 such that for every 

y e jK^with \\y\\ < Xi we have 

{y-h{y),g{y))>^. (6,3.4) 

Let X - min |/^, /I2}. Obviously, 

A>0 (6.3.5) 
for 

IHI<^- (6.3.6) 
Let q = h(y). Then , relations (6.3.3) and (6.3.4) imply 

(^,>')<iWr (6.3.7) 
and 

{y-q,g{y))>^ (6.3.8) 

respectively. Hence, relations (6.3.5), (6.3.6), (6.3.7) and (6.3.8) imply that 

g satisfies condition yOy Hence Theorem 6.3.2 implies that the problem 

}^CP(f, K) has a solution. n 
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THEOREM 6.3.4. Let ( ^ , (•,•)) be a Hilbert space, K a H a closed 

pointed convex cone and f,g\K-^H two mappings. Then x* ^ 0 is a 

solution to the problem ICP(f, g, M) if and only if x, is a solution to the 

problem ICPif,g,K\, where x^ = /(jc,), / == X ( / ) and g = T{g). 

Proof. We have 

(g(x.)j(^.))=(ii^.r^«^.))'ii^.r/(/(xo)). 
Since ||jc, || • ||:̂ * || = 1 and /"̂  = / , we have 

( f (x) , / ( i . ) ) = ]ry(g^)' /(^.)>- (6-3.9) 
F* II 

We can prove similarly that 

(/(^*)'^)-py{/(^*)'^>' (6-3.10) 
P*ll 

for every z e K. We also have 

^(^*) = F V ^ ( ^ * ) - (6-3.11) 
Fll 

By using (6.3.9), {g (x.) J (x.)) = 0 if and only if ( g (x . ) , / ( x . ) ) = 0 . By 

using (6.3.10), f(x^)eK* if and only if, / ( J C , ) G ^ * . By using (6.3.11), 

g(^x^)eK if andonly if g ( j c , )G^ . n 

THEOREM 6.3.5. Let ( ^ , (-,•)) be a Hilbert space, K a H a closed 

pointed convex cone and f,g\K^>H completely continuous fields, 

f = l(^f) and g = l{g). Lf f satisfies condition \0g) with respect to 

K, then the problem ICP(f,g,K) has a solution. 

Proof. Indeed, by Theorem 6.2.6,/satisfies condition \9\ with respect to 

K Hence Theorem 5.2.1 and Theorem 5.2.4 imply that ICP(f,g,K) has a 

solution. D 
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THEOREM 6.3.6. Let ( ^ , (•,•)) be a Hilbert space, K a H a closed 

pointed convex cone and f,g'.K-^H completely continuous fields. If 

there is a S > 0 and a mapping h:B(0,S)nK -^ K with h(0) = 0 and 

{l{g)\0)>h*{0), 

\(l{g)-h,f)\0)>0. 

where B{Q,8)-[^X^H\\x\<S^, then the problem ICP(f,gK) has a 

solution. 

Proof. Let g = J (g) . Since | ^ (O) > /z"' (O), we have (g - h)* (O) > 0. 

Hence, there is a real number X\ with Q<\<S such that for every xeK 

with ||x|| < A ,̂ we have 

(g(jc)-/2(jc),jc}>0. (6.3.12) 

Since (g-h,f\ (0 )>0 , there is a real number A,2 with 0<A^<S such 

that for every x^K with ||jc|| < /̂ ^ we have 

( g ( x ) - / / ( x ) , / ( i ) ) > 0 . (6.3.13) 

Let p = min{/Ij.l^} • Obviously, p>0. 

For ||jc||<y5, let y = h[x). Then relations (6.3. 12) and (6.3.13) 

imply 

{g{x)-y,x)>0 (6.3.14) 

and 

{g{x)-y,f{x))>0 (6.3.15) 

respectively. Hence, because p > 0, ||JC|| < y5 we have that relations (6.3.14) 

and (6.3.15) imply that / satisfies condition ( ' ^ ) . Therefore Theorem 

6.3.5 implies that the problem ICP{f,g,K) has a solution. n 

Now, we give some applications to multivalued complementarity problems. 
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THEOREM 6.3.7. Let ( ^ , (•,•)) be a Hilbert space, K ̂  H a closed 

convex cone and f \K ^^H a set-valued mapping. Then \x^, x/ W {O} x 7/ 

is a solution to the problem MNCPif, M) if and only if yy^, yf j is a solution 

to the problem MNCP{g, K), where y^=i{x^), yf- jx{ and 
Ik* II 

Proof. First, we have to prove that yf e g (3;,). Indeed, dividing both sides 

of the relation x{ G / ( X * ) by ||JC|| we obtain 

IF* II 
which implies y^ ^\y*\ f{i{y*)) = '^{f){y^) = g{y*)- ^ is easy to see 

that 

{y..f.)--^{x..x{) (6.3.16) 
F*ll 

and 

iy^,z\ = (x{,z\, for every zeK . (6.3.17) 

Ik* II 
By using (6.3.16), ^x,,x/^ = 0, if and only if [y*,yf) = 0. By using 

(6.3.17), x{ e K' if and only if yf eK\ n 

THEOREM 6.3.8. Let ( ^ , (•,•)) be a Hilbert space, K cz H a closed 

pointed convex cone and f\H-^H an u.sx. set-valued mapping with 

non-empty values such that: 

(1) x-f[^x) is projectionally ^-condensing, or f[x^ = x-T[x^, 

where T is a c.u.s.c. set-valued mapping with non-empty values, 

(2) x-f[x) is projectionally approximate and P ^ [ x - / ( x ) ] is 

also projectionally approximate with closed values. 

If g = 1(f) satisfies condition \'§\ ^ith respect to K, then the problem 

MNCPif, K) has a solution. 
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Proof. By Theorem 6.2.9, / satisfies condition 6 with respect to K, 

which implies that / is without an EFE (see the remark after Definition 

5.3.11) Applying Theorem 5.3.1 we obtain that the problem MNCPif, K) 

has a solution. n 

THEOREM 6.3.9. Let ( ^ , (•,•)) be a Hilbert space, K a H a closed 

convex cone and f .H ^^ H an u.s.c. set-valued mapping with non-empty 
values such that: 

(1) x - / ( x ) is projectionally <^-condensing, or f{x^-x-T{x^, 

where T is a c.u.s.c. set-valued mapping with non-empty values, 

(2) x - / ( x ) is projectionally approximable and Pj^^x- f(x)j with 

closed values. 
If there is a S> 0 and a mapping h:B{0,S)nK -^ K with h{0) = 0 and 

{l-h^l{f))\0)>0 

where B{0,S) = \^xeII:\\x\\<S^, then the problem MNCPif, K) has a 

solution. 

Proof. Let g = X(f). Since h* {0)<l, there is a Ai with 0</{^<S such that 

for every yeK with ||_y||< A, we have 

{h{y)^y)<\\yf' (6-3.i8) 

Since (/ - //, g) (O) > 0 , there is a A2 with 0<A^<S such that for every 

y e iS^with ||y|| < /I2 we have 

{y-h{y),y')>0,forally'eg{y). (6.3.19) 

Let /l = min{/l|,/l2}. Obviously X > 0. For \\y\\ < A let q = h(y) Then 

relations (6.3.18) and (6.3.19) imply 

(^,>')<| | / | | , (6.3.20) 

and 

{y-q,y')>0, (6.3.21) 
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respectively for all y^ ^g{y)' Hence, because A > 0, \\y\\ < X and 

considering (6.3.20) and (6.3.21) we obtain that g satisfies condition \' 0\ . 

Applying Theorem 6.3.8, we obtain that the problem MNCP{f, K) has a 

solution. D 

6.4 Infinitesimal interior-point-8-exceptional family 
of elements 

In Section 5.7 of Chapter 5 we considered the problem 

6 -MCPyf.Mlj and in relation with this problem we defined and we 

studied the interior band set-valued mapping 

study this set-valued mapping, we defined in Section 5.7 the notion of 
interior-point's-exceptional family for a mapping/. Now, we will define the 
infinitesimal variant of this notion, which is due to S.Z. Nemeth. 

DEFINITION 6.4.1. Given a scalar s > 0, we say that a family 

(j; I c:#^^ is an infinitesimal interior-point-s-exceptional family of a 

mapping g:M" -^ M" if ^y'' ̂ 0 asr-^+co and for each y'' there exists 

a positive number 0< ju^ < 1 such that 

y:+^\\/f,foralll = l,2,...,n. (6.4.1) 
y, " " 

1 
Mr 

Mr 

THEOREM 6.4.1. Iff:M"^M" is a continuous function andg = I(f) is 

the inversion off, then ix''] czMl^ is an interior-point-s-exceptional 

family off(in the sense of Definition 5.7.2), if and only if \y] <= ^1+ is 

an infinitesimal interior-point-s-exceptional family for g, where y' =i{x'^ 

is the inversion of x'for allr>0. 

Proof. Suppose that ix' | c Ml^ is an interior-point-e-exceptional family 

of/and let 



fHy)) = \Wr-j\i{V),+^^JoraUl = \X...n. (6.4.3) 

l|2 
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/ =i{x'), (6.4.2) 

for all A" > 0. Since /"' - / , (equation defined in Definition 5.7.2 and (6.4.2)) 
imply that 

Multiplying both sides of equation (6.4.3) by WV we obtain equation 

(6.4.1). Hence {/} c i ? ; , is an infinitesimal interior-point-s-exceptional 

family for g. Similarly we can prove that if [y""] <^^"+ is an 

infinitesimal interior-point-c-exceptional family for g, and then 

^x'^ c Ml^ is an interior-point-^-exceptional family for/ n 

THEOREM 6.4.2. Let f:M''-^M" be a continuous mapping and s> 0. If 

there is no infinitesimal interior-point-s-exceptional family for g = X if), 

then there exists apointx{s) such that 

X[s) > 0, / (jc [s)) > 0 and x^ [s) f [x[s)) = s, (6.4.4) 

for all / = 1, 2, ...,« {i.e., x{s) is a solution to the problem 

£~MCP(f,M:)). 

Proof. We suppose that there is no point JC(^) which satisfies relation 
(6.4.4). Then by Theorem 5.7.1, the mapping / has an interior-point-^"-

exceptional family ix''] cii^^^. Hence Theorem 6.4.1 implies that 

iy'] cilRl^ is an infinitesimal interior-point-^-exceptional family for g, 

where j;"^ ^/(x'^ j , foral lr > 0 . But this is in contradiction with our 

assumption and the proof is complete. n 

THEOREM 6.4.3. Let f:M"-^M" be a continuous mapping and 

g = I(f).Ifthe lower scalar derivative ofg in 0 along M^^ is positive, then 

the interior band mapping U has properties (a) and (b). 

Proof. We have 
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Let j ; =/(x). Then we have 

g*(0) = l i m i n f ^ ^ ^ 4 ^ > 0 - (6-4.5) 

^"°» l lyl l 
Equation (6.4.5) and (6.4.6) imply 

lim inf ^ —- = Hm inf ^ —-. (6.4.6) 
'^' llvll M^" 11x11 
yeMi, \\y\\ X^M:, Irll 

:Jfi'U e* (0) = lim inf ^ ' > 0 
ATGyJ?'', 

which imply that Theorem 5.7.5 is applicable and our theorem is proved, n 

Remarks. 
(1) The results presented in this section are due to G. Isac and S. Z. 

Nemeth. 
(2) For more details and results related to the subject of this chapter the 

reader is referred to (Isac. G. and Nemeth, S. Z., [l]-[5]. 
(3) The result presented in this chapter may be a starting point for new 

developments. 



MORE ABOUT THE NOTION OF 
EXCEPTIONAL FAMILY OF ELEMENTS 

We present in this chapter several special results related to the 
notion of exceptional family of elements. In Chapter 5 we obtained the 
notion of exceptional family of elements for a mapping applying Leray-
Schauder type alternatives. Noŵ  we will show that this notion can be 
obtained for more general classes of mappings, which are not necessarily 
projectionally Leray-Schauder mappings. Moreover, we will present a 
necessary and sufficient condition for the non-existence of exceptional 
family of elements. In the last section, we will extend the notion of 
exceptional family of elements to functions defined on a particular class of 
Banach spaces and we will apply this notion to the study of 
complementarity problems defined on not necessarily convex cones. 

7.1 £'F£'-acceptable mappings 

Let (//,(•,)) be a Hilbert space, K a H di closed convex cone and 

f \H ^yH a mapping. For any r > 0 (r G i ^ we denote 

K^ ={xG^| | | jc | |<r} . 

We recall the definition of the notion oi exceptional family of element for a 

mapping/with respect to K 
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DEFINITION 7.1.1. We say that a family of elements [x^]^^^ <^IK is an 

exceptional family of elements (EFE) for f with respect to K if for every 

r > 0, there exists a real number jUr> 0 such that the following conditions 
are satisfied: 

(1) u^=jUrX,+f{x^)eK\ 

(2) (x,,z/.) = 0, 

(3 ) | | x j ^ + 0 0 (3f5 r - > + 0 0 . 

DEFINITION 7.1.2. We say that a mapping f H ^ H is EFE-acceptable 

with respect to K if for any r> 0 the mapping i//^ (jc) = P^ [JC - / ( X ) J has 

a fixed point {which necessarily is an element in K^). {The mapping y/^ is 

considered from Ky into Kr.) 

The following result is due to M. Bianchi, N. Hadjisavvas and S. 
Schaible [1]. 

PROPOSITION 7.1.1. If there exists x, e K^ such that 

^ / (x* ) ,x -x , ^>0 for any x^K^ and there exists yeK^ with \\y\\ < r 

such that (^f[x^),x^ -y)>0, then we have ( / (x*) ,x-x*y>0 for any 

xe K 

Proof. We consider the convex continuous mapping 

(p (jc) = ̂ / (x*), JC - JC, ̂  defined for any x e M. 

We have ^JC) > 0 for any xeK^ and (p{x*) = 0. Then x* is a global 

minimum of cp on M,.. Because we have 

0<(p{y) = {f{x.),y-x.)<0 = (p{x.) 

we deduce that y is also a global minimum of (p on K^. Therefore (since 

|[);|| < r) we have that j ; is a local minimum of g? on Kand hence (because (p 

is convex) j^ is a global minimum on K. Since cp (7) = ̂  (JC* ) we obtain that 
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X* is a global minimum of ^ on JK̂  that is, we have ( / (jc,), x - x* ^ > 0 for 

any x ^ K. n 

We have the following alternative. 

THEOREM 7.1.2. Let (//,(•,•)) be a Hilbert space, Ka H a closed 

convex cone andf \ H -> H an EFE-acceptable mapping with respect to K 

Then either the problem NCP(^f,K) has a solution, or the mapping f has 

an EFE with respect to K 

Proof. If the problem NCP(^f,K) has a solution we have nothing to prove. 

We suppose that this problem has no solution. In this case we show tha t / 

has an EFE with respect to K Indeed, because / is ^F^-acceptable with 

respect to K, then for every r > 0 there exists x^ e K^ such that 

^r - ¥r {^r) = ^^ \_^r ~ f (^r)] ' Wc loiow (scc Chapter 2) that in this case 

we have 

( / ( x j , j c - j c , ) > 0 forany xeK^. (7.1.1) 

(Because we supposed that the problem NCP[f,K) has no solution, we 

have that (7.1.1) is not satisfied for all x e K.) 

We show [following ideas of (Bianchi, M,, Hadjisavvas, N. and 
Schaible, S. [1], Theorem 5.1)] that {̂ ;.}̂ ô is an EFE for/with respect to 

K For every r > 0 we define 

(7.1.2) 
r 

and 

K=Mr^r+fM- (7.1.3) 

If ||-^J<^9 then taking y = Xr in Proposition 7.1.1, we obtain that 

^/(jc^),x-x^^>0 for any xeK, i.e., Xr is a solution to the problem 
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NCP[f,K) which is impossible. Therefore we must have \\x^ \\-^ ^ for any 

r > 0, which implies that ||jĉ  \\-^+co as r -> +00. Also, we have 

The number jUr is strictly positive. Indeed, we have ( / ( A : ^ ) , 0 - J C ^ ) > 0 

which implies ^ / (x^), x^) < 0 and hence ju^ = \ ' ^ 0 . 

m lfjUr = 0,thQn{f{x^),x^) = 0 = {f{x^),x^-0) and taking ;; = 0 i 

Proposition 7.1.1 we deduce ^/(jc^),x^ - x ) > 0 for any x e K, i.e., the 

NCP ( / , K) has a solution which is impossible. Therefore we have jUr> 0 

for any r > 0. The theorem will be proved if we show that Ur e K* for any 
r > 0. To show this, it is sufficient to prove that 

lf{x^),x-^^^^x\>Qforanyx^K. (7.1.4) 

Indeed if (7.1.4) is true, then we have (because f{x^^ = u^ - ju^x^), 

/ {\^x) \ . . I {x^,x) \ 
0<(u^ -ju^x^,x- ^ x^ ) = {u^,x)-iu^, r—x, 

r' ^ 

Now, we show that (7.1.4) is true. Let r > 0 be fixed. We denote by 
(JC X) \X X) 

y = x- "" x^ and z^=y + Xx^ with X> "" . Then z^^K and 
r r 

-rr^'Y^K. Hence, we have ( f ( x , ) , 7 r ^ * ' ' - ^ . ) ^ 0 , which implies 

(because y = z^- Ax^) 

f{xr).y + x)>0. (7.1.5) 
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lim x - ^ 

We can show that (j;,jc^) = 0, which implies that \z^|| = Jly^ + AV^ . We 

also have 

•• hm ! L ^ = hm j ^ — ^ — ^ ^ — ' -

= lim-Ji—= 0 

Therefore, computing the limit as /I -> +oo in (7.1.5) we deduce that 

( /{^r )^y) -^ ^^d we have that formula (7.1.4) is true. n 

COROLLARY 7.1.3. Let {H, {-,•)) be a Hilbert space, K(z H a closed 

convex cone andf\ H-^ Han EFE-acceptable mapping with respect to K 

Iff is without EFE, then the problem NCP(^f,K) has a solution. 

Examples 

We give several examples of £'F£'-acceptable mappings. 

(1) In the w-dimensional Euclidean space (#",(•,•)), any continuous 

mapping is ^FE'-acceptable with respect to any closed convex cone. 

(2) Let (//,(•,)) be an arbitrary Hilbert space and K cz H 2i closed 

convex cone with a compact base. It is known that in this case K is 

locally compact. Consequently, for any r > 0, JK'̂  is a compact set. In 

this case, any continuous mapping/is ^F£'-acceptable with respect to 

^(This result is a consequence of Schauder's Fixed Point Theorem.) 

(3) Let (//,(•,)) be an arbitrary Hilbert space, K<z. Han arbitrary closed 

convex cone and/ : H^> Ha completely continuous field, i.e.,/has a 
representation of the form f{x) - x -T{X) , where T : H ^ H xs^ a, 

completely continuous operator. In this case / is an £'F£'-acceptable 
mapping. This result is also a consequence of Schauder's Fixed Point 
Theorem. 

(4) Let (7/,(-,)) be an arbitrary Hilbert space and K cz H a. closed 

convex cone and f : H ^y H a nonexpansive field, i.e., / has a 
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representation of the form f[x) = x-T{x), where T : H ^ H is a, 

nonexpansive mapping. In this case also / is an ^F^-acceptable 
mapping. This result is a consequence of a classical fixed point 
theorem for nonexpansive mapping defined on a bounded closed 
convex subset of a uniformly convex Banach space. 

(5) Let (//,(•,)) be an arbitrary Hilbert space, Kcz H a. closed convex 

cone and/ : H ^> H an a-set contraction field with respect to the a-
Kuratowski measure of noncompactness. We have that 
/(jc) = jc- r ( jc) , where T : H ^ H is an a-SQt contraction. The 

mapping / is £'F£'-acceptable with respect to K. This result is a 

consequence of Darbo's Fixed Point Theorem. 

(6) Let (//,(•,•)) be an arbitrary Hilbert space and K a H a, closed 

convex cone. Any mapping/: H-^ //with the property that for any 

r > 0, Vl[f,K^) has a solution is ^/^E-acceptable with respect to K 

An interesting example of such mapping is a continuous 

quasimonotone mapping f :K-^H. We recall that / is quasi-

monotone on ^ if for any x, y e Kt\iQ inequality l^f{x),y-x'^>Q 

implies ( / ( ; ; ) , j - j c ) > 0 . Any pseudomonotone mapping (in 

Karamardian's sense) is quasimonotone. Also, in particular any 
monotone mapping is quasimonotone. From Lemma 2.1 and 
Proposition 2.1, both proved in (Aussel, D. and Hadjisawa, N., [1]), 
we deduce that for any r > 0 the problem Vl{f,K^) has a solution, 

since K^ is weakly compact. Because any solution of Vl[f,M^) is a 

fixed point for the mapping 1//^, we have that any continuous 

quasimonotone mapping is £'F£'-acceptable with respect to K About 

the solvability of the problem Vl[f,K^) when/ is quasimonotone 

see also [(Bianchi, M., Hadjisawas, N. and Schaible, S. [1]), 
Propositions 2.2 and 2.3]. 

By the next theorem we will obtain other examples of EFE-

acceptable mappings. Let (//,(•,•)) be a Hilbert space. We recall the 

following notion defined by G. Isac in (Isac, G. and Gowda, M. S. [1]). Let 
/) be a subset in //. 
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DEFINITION 7.1.3. We say that a mapping f .D^'H satisfies condition 

(iS)^ if any sequence {^n\n^N ^^ ^^^^ 

(w)-limX =x^ eH, (w)-\imf(x) = ueH 

and limsup(x^,/(x^)\<(x,,w), has a sub-sequence |x^ | convergent 

(in norm) to x*. 

Remark. Condition (5*)̂  is related to condition (5') introduced in 

nonlinear analysis by F. E. Browder. It is known that condition {S)^ 

implies condition {S)^ (Isac, G. and Gowda, M. S. [1]), (Isac, G. [23]). 

Condition (AS)̂  was used and considered in several papers [see the 

references cited in (Isac, G. [23])]. 

We recall the following property of the inner-product given on H\ 

if a sequence {jĉ } is weakly convergent to an element x^ 

and a sequence \y^ is convergent in norm to an element y^^ (7.1.6) 

then \\mU,y\^lx,,yX 

DEFINITION 7.1.4. We say that a mapping f\ H^yHis scalarly compact 
with respect to a closed convex set D czH, if for any sequence {x„]^^^ ciD, 

weakly convergent to an element x* G D, there exists a subsequence 

l^"^keN ^^^^^^^^ lim sup(x^^ - x . , / ( x ^ J ) < 0 . 

Remark. If / is completely continuous or there exists a completely 

continuous operator T: H^> Hsuch that \(^y, f (x)^ <(^y,T(x)^, for any x, 

y e D, then / is scalarly compact. We recall that f : H -> H is 
demicontinuous if for any sequence {x„]^^^ c: i/convergent in norm to an 

element x* e //, {f{x^)} is weakly convergent toX^*)-

THEOREM 7.1.4. Let ( ^ , (•,•)) be a Hilbert space and T^J^:H->H 

two demicontinuous mappings. If the following assumptions are satisfied: 
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{}) T\ is bounded and satisfies condition {S^, 

(2) 72 is scalarly compact with respect to a closed bounded convex set 
DciH, 

Then the problem VI {T^ -T^,D) has a solution. 

Proof. Let A be a family of finite dimensional subspaces F of H such that 
F r\Di^(p. We consider the family A ordered by inclusion and also we 

consider the mapping h[x) = T^ (x) - T^ (jc) defined for all x e D. For each 

F e A we denote D (/^) -Dr\F and we set 

Aj, =[yeD:{x-y,h{y))>OforallxeD{F)y 

For each F G A, the set AF is non-empty. Indeed the solution set of 

Vl(^h,D(Fyj is a subset ofAf and the solution set of F / ( / / , Z ) ( F ) ) is non­

empty. To obtain this fact we consider the mappings j : F -^ H, 

f \H* ->F* and f °ho j ^ wherey is the inclusion andy is the adjoint of 

j . The mapping f oho j is continuous and 

{x-y.{f ^hoj)[y)^ = (^x-y,h{y)). 

Applying the classical Hartman-Stampacchia Theorem to the set D(F) and 

the mapping f oho j we obtain that K / ( / 2 , Z ) ( F ) ) has a solution. 

We denote by Aj, the weak closure of Af. We have that \ ]AF is 
FeA 

— a — a —<T 

non-empty. Indeed, let AF^,AF2,...,AF„ be a finite subfamily of the family 

\AF\ . Let Fo be the finite dimensional subspace of H generated by 
( J FeA 

Fu F2, ....,Fn . Because Fk cz FQ for all ^ = 1, 2, ..., «, we have that 
D{F,)QD{F,) f o r a l U = l , 2 , ...,A7. 

(7 <T 

We have Aj, ^A^, which implies AF^ Q AF,, , for all k= 1,2, ..., « 
n 

and finally we deduce that (^AF ^ ^ . Because D is weakly compact we 
k=i 

conclude that p | ^ F ^ ^ . 
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AF , i.e., for every F ^ K, y^ e AF . Let jc G Z) be an 
FeA 

arbitrary element. There exists some FeA such that jc, j ; * e F. Since 

j ^ , G^F, by the Smulian Theorem there exists a sequence {>̂ „j„̂ ^ ^ ^ F ' 

weakly convergent to> *̂. We have 
\{y.-y„,h{y„))>0 

<and 

or 

{y„-y>My„))^{yr.-y>J2{yn)) (7.1.7) 
and 

{x-ynJAyn)M^-ynMyr.))- (7.1.8) 
From (7.1.7) and assumption (2), (considering eventually a subsequence) 
we have 

lim sup (>;„->;.,?;(>;J) <0. (7.1.9) 

Because T\ is bounded, we can suppose that (7](>^^)| is weakly 

convergent to an element VQ G H. Because 

{ynJx{yn))={yn-y*+y^Jx{yn)) 
={yn-y^J^{yn))^{y^J^{yn)) 

and considering (7.1.9) we obtain 

limsup(>^„,7;(>;J)<(>;,,v,). 

Hence, by condition (̂ S)̂  we obtain that the sequence {j^}^^^ has a 

subsequence, denoted again by {j^}^^^ convergent in norm to y*. Because 

T2 is continuous, we have limTl (ĵ n) "̂ 2̂ (>̂ *) • F^om inequality (7.1.8) by 

using property (7.1.6) of the inner-product and computing the limit we 
conclude that 

(jc->;,,7;(>;.)-7;(>;.))>0 foralljcGZ) 

and the proof is complete. n 
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COROLLARY 7.1.5. Let {H,{-,')) be a Hilbert space, K^H a closed 

convex cone andf: H^> H a mapping. Iff has a decomposition of the form 

f [x) - 7] (jc) - 7̂2 (^) such that 

{\) T\ is demicontinuous, bounded and satisfies condition {S^, 

(2) T2 is demicontinuous and scalarly compact with respect to K, 

then f is EFE-acceptable with respect to K 

Proof. We apply Theorem 7.1.4 to/and to any Kr with r > 0. n 

7.2 Skrypnik topological degree and exceptional 
families of elements 

In the previous two chapters, we presented several results related to 

the notion of EFE for projectionally Leray-Schauder mappings. In this 

section we will present another approach of the notion of EFE due to A. 
Carbone and P. P. Zabreiko [1], [2]. Their approach is based on a special 
topological degree defined by I. V. Skrypnik. [see (Skrypnik, I.V. [1], [2])]. 
By this approach we can define the notion of EFE (the same defined by 
Definition 7.1.1) for mappings, which are not completely continuous fields. 

Let (//,(•,)) be a Hilbert space, Kd H a closed convex cone and 

f : K -> H a completely continuous mapping. Consider the operator 

Ax = P^ (x) - / (P^ (jc)). By Theorem 2.3.7 we know that if JC* is a fixed 

point of 4̂, then w, =Pi^(^*) is a solution to the problem NCP[f,K), 

Consider the family of vector fields 

{^{A)x = x-A[P,{x)-f{P,{x))l ^^^^^ 

This is a linear deformation connecting the vector field I -A whose zeros 

define solutions to the problem NCP[f,K) and the trivial field Oo = /. 

Consider the family of sets 
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\^r.,={xeH:\\x\<p\P^{x)\<r}, ^^^^^^^ 

[0<r </7<oo. 

Obviously, Q^^ is a bounded domain in H and 0 is an interior point. A 
geometrical image of the sets Q ,̂̂  is given in (Carbone, A. and Zabreiko, 
P. P. [1]). The boundary SQ^^of this domain is 
da^^^ =[x^H'.\\x\\<p\P^ (x)|| = r} u{xE// : | |x | | = A \PK (^)| |^r] . 

(7.2.3) 

Let dCll^^ = | X G / / : | | X | | < P , | | P ^ ( ^ ) | H ^ | • ^ ^ ^^^^ ^̂ ^̂  ^^ ^^^^ ^ special 

simple a priori estimate for values of the vector fields 0 ( / i ) ( 0 < / l < l ) , 

which shows that the part 9Q^ ̂  of the boundary dQ,r,p is fundamental for 

the next results. We define 

/ / ( r )= sup ^ - / ( w ) . 

PROPOSITION 7.2.1. Let p > ju(r), then 

In particular, the zeros of the fields ^(>l) ( 0 < / l < l ) , which are situated 

on the boundary dQr,p He on 3Q^ ^. 

Proof. This proposition is a consequence of the inequalities 

\\^{A)x\\>\\x\\-\\P^{x)-f{P^{x))\\>p-M{r)>0 for ^ G 5 Q , , ^ \ 5 Q ° ^ . 

Remark. From Proposition 7.2.1 we deduce that if the inequality p > ju(r) 
holds, then the zeros of ^{^) (0<A<1) situated on the boundary dD.r,p 

really lie on its part 9Q^ ̂ . Now, we consider the family of complemen­

tarity problems 

UGK, 

{l-A)u + Af{u)eK\ 

{u,{\-A)u + Af{u)) = 0, 

o<;i<i, 
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which corresponds to the family of operators {\- X)I + Xf, (O < /I < l ) . It 

is easy to show the following result. 

PROPOSITION 7.2.2. Let f be a mapping from K into H and 

^(/ l) = / l [ P ^ - / ( P ^ ) ] , ( 0 < / 1 < 1 ) . Then the complementarity problem 

with {\- X)I + Xf is solvable if and only if the operator A(A) has a fixed 

point in H. Moreover, ifx* is a fixed point ofA(A% then w, =P^ (jc,) is a 

solution to the complementarity problem with the mapping {\-X)I + Xf. 

We will use the notion of mapping of class {S)^ (see Chapter 1, 

Definition 1.6.4) and a notion oi quasi-monotonicity, which is different than 
the quasi-monotonicity in Karamardian's sense. We say that a mapping 
f: H ^> H is quasi-monotone if each sequence {x„}^^^ from //, which is 
weakly convergent to x*, satisfies the condition 

\immf(f{x„),x^ -x,)>0. 

It is known that if each mapping of class (5')^ is quasi-monotone the 

converse is not true. We note that the mappings of class [S)^ and quasi-

monotone mappings were introduced and studied in detail by F. Browder, 

H. Brezis, I. V. Skrypnik and others. 

PROPOSITION 7.2.3. Letf: K^>' Hbe a completely continuous mapping. 

Then the vector field O (>^), (O < /I < l) is of class (^S) .̂ 

Proof. Let 0 < /I < 1 and suppose that {̂ «}̂ ^̂  is a sequence weakly 

convergent to an element x* and 

limsup/0(>l)A:^,jc„ - x , \ < 0 . 

Because ||P^ (x„) - P^ (x)|| < \x„ - x, \\ we have 

{l-A){x„ -x.,x„ -x,)<{x„ -X. -AP^{x„) + AP^{x.),x„ - x . ) 

= {0(A)x„,x„ -x,)-{x,-XP^{x,),x„ -x.)-A[f(P^{x„)),x„ -x,). 

Without loss of generality, we can assume that the first summand in the 
right-hand side of this chain, as « ^ oo, has a non-positive limit by the 



More about the notion of exceptional family of elements 259 

properties of the sequence {^ ĵ̂ ^ -̂ The second summand tends to 0 as 

w -> 00 , by the weak convergence of {^n]n^N ^^ ^' ^^^ ^^^^^ summand also 

tends to 0 as « -> 00 since | / ( i ^^ {x^ ))> is a bounded set. 

Therefore 
Hm sup (l - X)ix^ - X*, jĉ  - x,) < 0 

which implies that {jĉ  }^^^ tends to x* in norm. n 

PROPOSITION 7.2.4. Iffis completely continuous, then 0(1) is quasi-
monotone. 

Proof. Let {^n]n^N ^^ ^ sequence weakly convergent to jc*. We have (using 

the properties of projection operator P^), 

(cD(l)x^,x, -x,) = {x„ -X. -P^ { \ ) + PK{^^)^\ -^*) 

Both summands in the right-hand side of this chain of terms tend to 0 as 

« -^ 00 by the properties of the sequence {̂ „}̂ ^̂  and the operator/ 

Therefore we obtain 

liminf(o(l)x^,x„ - x . ) > 0 , 

that is 0(1) is quasi-monotone. n 

Remark. Generally, the vector field 0(1) is not of class {S)^. 

We say that a general mapping ^\H-^H is zero-closed if for any 

bounded sequence {̂ „}̂ ^̂  such that (o(x^)l is convergent in norm to 0, 

there exists x* G convy^x^ such that 0(x*) = 0. 

We say that a mapping f \K -> X is regular, if for each sequence 

{̂ "IweAT' (^"^ ^ f o r any n G TV), weakly convergent to u* and such that the 
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sequence {/(w^)} converges to v* G K\ in norm, the equation 

/(w*)==v, holds. 

PROPOSITION 7.2.5. If f\K -^H is a regular completely continuous 

mapping, then the vector field 0(l) is zero-closed. 

Proof. Let {x^} be a bounded sequence such that | 0 ( l ) x ^ | is 

convergent in norm to 0 as w ^ oo. Without loss of generality we can 
assume that the sequence {x„]^^^ weakly converges to an element x* and 

the sequence | / ( ^ ^ ( ^ „ ) ) | converges in norm to v*. In this case the 

sequence {^«-^^(^«)} converges in norm to -v*, since 

By the properties of P^we have 

Computing the limit in this inequality as « -^ oo we obtain 

(-V, -X, +P^[x),x^ - x ^ > 0 [xeH) , 

If we consider x = x, -\-tu {ue / / ,) (O < / < oo), and dividing by / we have 

(^-v,-x,-tu + Pj^[x^+tu),u^<0 [ueH, 0<t<oo). 

Passing to the limit as / ^^ 0, we obtain 

Because u is arbitrary in H, we deduce that v, =-(x* -Pj^ (^X:,)j eK*. 

Moreover, the sequence {u„}^^^, where u^ =P^ (JC^) is weakly convergent 

to w, = P^ (x,) , since 

PK M = ^n -(^n - PK M)^ X* +^* = X* - X* + PK {X*) = PK M ' 

Thus, the sequence [u^] weakly converges to u* and the sequence {/(w„)} 

converges in norm to v, GK* . By the regularity of /we have / (w,) = v,. 

Therefore 

^{\)x. =x. -P^{x.) + f(P^{x.)) = x. -P^{x.) + v. =0 

and the proof is complete. n 
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Now, we conclude that the vector fields O (^X) (O < A < l) defined 

by (7.2.1) are of class (S')^ and the field 0(1) is quasi-monotone and 

moreover, 0(1) is zero-closed i f / i s regular. Therefore we can apply the 
Skrypnik topological degree theory for studying fixed points of vector fields 
0(/l). The Skrypnik degree theory (Skrypnik, I. V. [2]) states that for each 
field O of class (5')^ (and even zero-closed and quasi-monotone field O) 

defined on a bounded domain Q and being without zero on the boundary of 
9Q of the domain Q, there is defined an integer y(0, Q) with the following 
properties: (see Chapter 1) 
(i) Y ( / , Q ) = U / O E Q , 

(ii) If Q = Qj u Q2 and O has no zero on the set 

dQ, udQ^ u(5Q^ n S Q j , then ; K ( 0 , Q ) = 7 ( 0 , Q J ) + 7 ( 0 , 0 2 ) . 

(iii) If<I>o and Oi are homotopic on Q, then y (OQ , Q ) = 7 (Oj, Q). We say 

that Oo and Oi are homotopic on Q // there exists a family of 

mappings 0(/l,-) (0 < /I < 1) of class (5)^ {or zero-closed and quasi-

monotone), defined on Q and demicontinuous with respect to both 

variables such that 

O(0,.) = 0 o , 0 ( l , ) = 0 ^ , 0 ( ^ x ) ; ^ 0 ( 0 < ; 1 < 1 , X G 5 Q ) . 

The following result is known (Skrypnik, I. V. [2]. 

If O has no zero on the boundary 9Q of the domain Q and the degree 

y (O, Q ) of this vector field on the boundary 9Q of Q is non-zero, then 

there exists at least one zero x* of^ in Q. 

Now, we consider the family of vector fields ^(A) (0 < A < 1) 
(defined by (7.2.1)) on the domain Q̂ ^̂ . We suppose that p and r are fixed 
positive reals and p>ju[r). Obviously the family of 0(>i), under our 

assumptions, is demicontinuous (i.e., each mapping 0(A) maps strongly 
convergent sequences into weakly convergent sequences) with respect to 
both variables and 0(0) = Oo, 0(1) = Oi. We have two possibilities: 

First, there exists A, e]0,l[ and jc* e9Q^^ (really x^ e9Q^ ) such 

that 0(/l,)jc, = 0 . Certainly, in this case w, = Pj^ (x*) is a solution of the 
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problem NCP{^{\-X,)l + X,f,K^ and this solution is situated on the set 

S^r^K with S^={u^H:\u\ = r}, 

Second, for all A G ] 0 , 1 [ the relations (S){X)x^Q {x^dQ.^^) 

hold. In this case all vector fields 0(A) {Q < X< 1) are homotopic on Q^^ 

and therefore they have the same degree / (o ( / l ) ,Q^^) on the boundary 

dQ.r,p of domain Q,,^. But y ( o (O), Q^^ ) - 1 since O (O) = / and 0 G Q^^ . 

Thus in the second case we have 

r (0 (A) ,Q,^) = l ( 0 < i < l ) . (7.2.5) 

Moreover, if the vector field 0(1) is zero-closed (for example if / is regular 
and completely continuous), and has no zero on SQ^ ,̂ then we have 

/ ( 0 ( 1 ) , Q , ^ ) = 1 (0<A<1). (7.2.6) 

(Obviously, if 0(1) has a zero on dClr,p we have that the problem 

NCP(f, i^) has a solution.) 

Hence, if the vector field 0(1) is zero-closed and has no zero on 
dQ.r,p, then equation (7.2.5) implies the existence of a zero of 0(1) in the 
domain Q^^ and therefore, the solvability of the problem NCP{f, K)m the 

set B^ =\^ueH: \\u\\ < r | . We conclude with the following result. 

THEOREM 7.2.6. If f : K -^ H is a regular completely continuous 

mapping and 0 < r < +oo, then: 

(1) either for some X^ ^]0,l[ the complementarity problem with the 

mapping (l- A^)l + A^f has a solution in the set S^ nK, 
(2) or the complementarity problem with the mapping f has a solution 

in B^r\K. 

Remark. Consider the conclusion (1) of Theorem 7.2.6. If x̂  ^ S^ nK is 

the solution of the problem NCP({l-A^)l + A^f,K^, then we have 

x^ G K, \\x^ II = r and 
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Dividing both relations in {12.1) by /l̂  we obtain that {̂ }̂̂ ^Q is an EFE for 

/with respect to K We have the following result. 

THEOREM 7.2.7. Let {H,{',-)) be a Hilbert space, K a H a closed 

convex cone andf: K-^ H. Iff is regular and completely continuous then: 

(1) either the problem NCP(f K) has a solution, 

(2) or f has an EFE with respect to K. 

Proof. This result is a consequence of Theorem 7.2.6 and of the remark 
presented above. D 

Now, we give an application to the study of complementarity 

problems with respect to some particular nonconvex sets. Let (i/ ,(-,)) be a 

Hilbert space and D cz. H di closed non-empty set. We define the dual D of 
the set D by 

D* =[y^H\{x,y)>0,forallx^D}. 

We say that D is star-shaped with respect to a convex set ̂  cz D, if and only 
\f,x e D whenever Xx + {\-X)yeD for somey ^ A and any /I e [0, 1]. 

Let 6: > 0 be a real number, eventually very small. We say that D is 
^'-convex, if and only if whenever [x, y{ a conv(D) \ D, we have |[y -x | | < 6*. 

We recall that [JC,;;[ = {AJ;4- (1- ;1 )JC: / IG[0 ,1[} . We denote by K(D) the 

smallest closed convex cone such that D cz K(D). We say that a non-empty 

subset Z) (z 7/ is a locally compact pointed conical set if the following 
properties are satisfied: 

(o\)for allxe D and all A e M+we have Ax e D, 

(c2)K{D)n{-K{D)) = {0}, 

(cs) K (/)) is a locally compact convex cone. 
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For some practical problems the following examples are interesting, 
supposing that Z) is a locally compact pointed conical set. 

(1) D = [JK^ , where for every / G /, ^ is a polyhedral cone not 

necessarily convex. K{^D) must be locally compact. 

(2) £) n 5 is a set, star-shaped with respect to a convex set ̂  c £) n 5, 
where 5 is a base of K ( /)) . 

(3) D n 5 is an ^-convex set, with £>Q very small, where B is again 
a base of ^ ( D ) . 

If/: H -^ H is a mapping we can consider the complementarity problem 
defined by/and D is: 

{find x^ eD such that 

^ [f{x.)eD and{x.j{x.)) = 0. 

We say that the set R{D;K) = K{D)\D is the residual set of D with 

respect to K{D) . Obviously 0 €R{D\K) and R[D\K) is empty if £) is a 

closed pointed convex cone. The following result is due to G. Isac. 

THEOREM 7.2.8. Let D a H be a non-empty, locally compact closed and 
pointed conical set. D is supposed to be nonconvex. Let f \ H ^>^ H be a 
continuous bounded mapping. If there exists p> 0 such that the following 
assumptions are satisfied: 

(1) for every x e K(^D) with \\x\\ = p, there exists y G K[D) such 

that\\y\\ <p and (^f{x),x-y)>0, 

(2) for every XGR^ (Z); K) = |Z G 7?(Z);K): ||z|| < p j , there exists 

ye K{D) with\\y\\ <\\X\\ such that l^f{x),x-y)>Q, 

then the problem NCP(f D) has a solution x* such that \\x*\\< p. 

Proof. Let 6: > 0 be a real number. Consider the mapping 
fs (^)*=/(^) + ^^5 fo^ ^^y ^^ h. The mapping/ satisfies the following 
properties: 

(i) fe is continuous and bounded, 
(ii) for every x e K(^D), with \\x\\ = p, there exists y e K(^D) 

such that \\y\\< p and ( / [x), x - j;) > 0, 
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(iii) for every x e R^ (^D;K), there exists y G Ki^D)^ such that 

\\y\\<p and {f{x),x-y)>0. 

ox 
For each x e K[D), with ||jc|| > p we denote T^[x) = j-rr (the radial 

projection onto 5*̂  = |jc eK[D): ||jc|| = p^ ). 

Now, we consider the mapping gp: K(Z)) -> //defined by 

We can show that gs satisfies the following property: 

(iv) for every X e K[D) , with \\x\\> p, there exists y e K(^D) with 

\\y\\ <\\x\\ such that {x-y,g^{x))>0. 

(For the proof of this property see (Isac, G. [30]). Therefore g^ satisfies 

property (0 ) and hence it is without EFE with respect to K(D). The 

mapping g^ is also completely continuous and regular (Isac, G. [30]). 

Applying Theorem 7.2.7 we obtain that for any 6: > 0 the classical 

problem A^CP(g^,jK'(/))) has a solution x*. Because of the fact that g^ 

satisfies property (iv) we must have be* p P , which implies that 

gs {K) = fe{^l)' Therefore, for any ^> 0 the problem NCP{f ,K{D)) 

has a solution xl such that || jc*|| < p . Considering the fact that/^ satisfies 

property (iii), we have that 

xle{xeD:\\x\\<p} = D^. 

If for any n = 1,2, ... we take 6: = — , we obtain a sequence \x\> such 

that x\ eD^ and for any ne N, x\ is a solution to the problem 
n n 

NCP(f ,K[D)\ . Because Z) is a closed locally compact pointed conical 



266 Leray-Schauder Type Alternatives 

set, Dp is compact and hence the set \ x\ \ has a convergent subsequence 

\^\ \ . As a consequence, limjc*j is an element of D. (JK^(£))) CIZ)*, 

we obtain that x* is a solution to the problem NCP{f, D) and ||x*|| < p. The 
proof is complete. n 

Remark. To include in the class of £'F£'-acceptable mappings the regular 
completely continuous mappings used in Theorem 7.2.6 and 7.2.7 it is 
necessary to introduce the following more general definition. 

DEFINITION 7.2.1. We say that a mapping f: H-^His REFE-acceptable 

with respect to K if either the problem NCP(f, K) has a solution, or the 

mapping f has an EFE [x^]^^^ czK with lx,\\ = r, for any r > 0 (i.e., 

{•^r]r>o ^^ ^ regular exceptional family of elements with respect to K). 

This class of mappings was systematically used in (Isac, G. and Nemeth, S. 
Z. [6]), and many interesting results where obtained for nonlinear and linear 
complementarity problems. 

7.3 A necessary and sufficient condition for the non­
existence of an exceptional family of elements for a 
given mapping 

In Chapters 5 and 6 we presented several sufficient conditions for the 
non-existence oi exceptional families of elements for a given mapping. It is 
interesting to know if a necessary and sufficient condition for the non­
existence of an exceptional family of elements exists. In this section we will 
show such a condition, which is due to G. Isac and S. Z. Nemeth. The proof 
of this result follows an idea proposed by S. Z. Nemeth in (Isac, G. and 
Nemeth, S. Z. [6]). 
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THEOREM 7.3.1. Let ( ^ , (*,•)) be a Hilbert space, K a H a closed 

convex cone andf: H -^ H a mapping. A necessary and sufficient condition 

for the mapping f to be without an EFE with respect to Kis the following: 

There exists a real number p> 0 such that for any x e Kwith \\x\\ > p at 

least one of the following conditions holds: 

(1) ( / ( x ) , ^ ) > 0 , 

(2) there exist y e Ksuch that \x\ if (x), y) < (x, y) i^f (x), xj. 

Proof. First, we suppose tha t / i s without an EFE with respect to K We 

prove that in this case at least one of conditions (1), (2) is satisfied. Now, 

we suppose to the contrary, that for any r > 0 there is an Xr G ^wi th ||x|| > r 

such that the following conditions hold: 

(i) ( / ( x , ) , x , )<0 , 

(") hrt{f{Xr),y)^{xr,y){f{Xr),x,),foranyy&K. 

We consider the real number 

Mr 
ikir 

Then by condition (i), jUr > 0. Let u^ = //̂ x^ + / (^r) • Then we have 

(M„X,) = 0 . (7.3.1) 
II I|2 

Dividing condition (ii) by ||x̂  || we have 

( / (^ . ) , ;^)^- /^ . (^ . ,3^) , foranyj ;G^ 

Hence (w^,>^)>0 for any 7 G K, i.e., Ur e IfC. Since | | ^ J^^ we have that 

j|xj->+00 a^ r->+00 . Therefore, the family {̂ .̂ĵ ô is an exceptional 

family of elements for/with respect to K 

Conversely, we suppose that at least one of conditions (1), (2) given 
in the theorem is satisfied and we prove that / is without an EFE with 

respect to K, Indeed, we suppose the contrary, i.e., we suppose that 
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{y^r]r>Q <̂  ^ i s an EFE for/with respect to K, with corresponding jUr and Ur 

(as given in Definition 7.1.1). Because ||ji:J->+00 a^ r ^ + 0 0 , there is an 

ro> 0 such that be, \>p. Since w, = Ur^r + / ( ^ . I and (w, ,x ) = 0, we 
11 'b II '^ 0̂ '̂  'b 'b "̂  \ 'b / \ 0̂ 'b / ' 

have 

o</^.=-
llx. II 

Hence, (/(^^.^ p-^rj^^ - Since bĉ^ - P ? ^^e previous relation implies that 

condition (1) of the theorem is not satisfied. Hence, condition (2) of the 

theorem must hold. Because pĉ^ > /?, we must have 

Dividing (7.3.2) by x, we obtain that 
II 'o II 

and therefore, \u^^,y\<0 . Hence u^^ ^K*. But this contradicts condition 

(1) of Definition 7.1.1. We conclude that/is without an EFE with respect to 

K D 

By Corollary 7.1.3 and Theorem 7.3.1 we obtain the following existence 
result. 

THEOREM 7.3.2. Let (//,(•,•)) be a Hilbert space, K a H a closed 

convex cone andf: H -^ Han EFE-acceptable mapping. If there is a p> 0 

such that for any x e Kwith \\x\\> pat least one of the following conditions 

holds: 

(1) {f{x),x)>0, 

(2) there exists an element y e Ksuch that 

iNr(/W'>^}<(^':^){/W'^}' 
then the problem NCP(f, K) has a solution. 

From Theorem 7.3.2 we deduce the following consequence. 
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COROLLARY 7.3.3. Let (//,(•,)) be a Hilbert space, K cz H a closed 

convex cone andf\ H ^>' H an EFE-acceptable mapping. If there is a p> 0 

such that for any x e Kwith \\x\\ > p, there is ay e Ksuch that {x,y) < 0 

and \f{x),y'^<Q (or {x,y)<Q and ^/(jc),j;^<0, then the problem 

NCP(f K) has a solution. 

Proof. Indeed, if x G ^ is such that ||jc|| > p, and ^/( jc) ,x)>0, then 

assumption (1) of Theorem 7.3.2 is satisfied. If ^/( jc) ,x^<0, then in this 

case, the assumptions of our corollary imply that assumption (2) of 
Theorem 7.3.2 is satisfied. Therefore the conclusion of our corollary follows 
from Theorem 7.3.2. n 

Remark. Theorem 7.3.1 has many and interesting consequences presented 
in (Isac, G. and Nemeth, S. Z. [6]). 

In this sense we give without proof the following interesting result. 
If/: H-^ Hisa. mapping, we define 

C^ ( / ) {x) = \\x\\ f (x) - l^f (x), Jĉ  Jc, for any x e H. 

We say that dP is the orthogonalizer off and we have {^(/)(jc),x) = 0 

for all X e H. \{ K<^H is a closed convex cone, we say that a subset U of K 

is a face if it is a closed convex cone and if from x e U, y e K and 

X - y e Kit follows that;; G U. 

THEOREM 7.3.4. Let ( ^ , (•,•)) be a Hilbert space, K cz H a closed 

convex cone, f:H-^Ha mapping andF = O(/) the orthogonalizer off 

Then the mapping f is without an EFE with respect to K if and only if there 

exists a p>0 such that for any x e K with \\x\\>pwe have: 

(1) If xe int (JK^), then exactly one of the following conditions holds: 

(a) X is not an eigenvector off 
(b) jc is an eigenvector of f with nonnegative eigenvalue, 
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(2) Ifx e dK, then at least one of the following conditions holds: 

(a)(/(^),:c)>0, 
(b) // V is the minimal face ofK with respect to inclusion which 
contains x, then F (jc) ^ V^, where V^ a K* is the orthogonal 

complementer face of V with respect to K, i.e., 

V^={zeK* :{x,z) = OforallxeV] 

{We can show that V^ is a face of K*.) 

Proof. A proof of this result is given in (Isac, G. and Nemeth, S. Z. [6]). D 

This theorem has many and very interesting consequences. We cite without 
proof only the following results. 

THEOREM 7.3.5. Let f = {fJ2^-Jn)'^" ^^" be a continuous 

mapping. If there is a p> 0 such that for any xeM^ with \\x\\ > p we have: 

(1) If xe mi yMl j and x is an eigenvector off then its corresponding 

eigenvalue is nonnegative, 

(2) // JC = (JCJ,X2,... ,X^)G9#^ and ( / ( jc) ,x)<0, then there exists 

/Q G{l,2,..,n} such that x^ =OAf. (x)<Ovx. >0 A f.[x)>0, 

where A and v denotes the ''logical and'' and the ''logical or'' 
respectively, 

then the problem NCP ( / , M^ ) has a solution. 

THEOREM 7.3.6. Letf = A + b, where A:M" ^M" is a linear mapping 
with entries a^j,i,j s {l,2,...,^} with respect to the canonical basis of W 

and b = {b^,b^,...,b^^ is a nonzero constant vector. If there is a p> 0 such 

that for any xeMl with \\x\\ > p we have: 

(1) if A is not an eigenvalue of A and x = [A- Al) b e M^^, then X is 

non negative, 
n n 

(2) if x = [x^,...,x^)edMl and ^a.jXjXj-{-^b^x. <0, then there 

exists IQ E | 1 , 2 , . . . , « } such that 
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n n 

X =OAYa, ,+fe, <0 vx, >OAVa, ,x,+& >0, 
7=1 7=1 

then the linear complementarity problem LCP (A, b. Ml j has a solution. 

Proof. A proof of this result is in (Isac, G. and Nemeth, S. Z. [6]). n 

For other results on this subject the reader is referred to (Isac, G. and 
Nemeth, S. Z. [6]). 

7.4 Exceptional family of elements. Generalization to 
Banach spaces 

For applications of complementarity theory to practical problems it is 
important to know if the notion of EFE can be extended from Hilbert spaces 
to Banach spaces. In this sense we give a generalization of the notion of 
EFE to uniformly smooth and uniformly convex Banach space. This 
generalization is obtained considering the ''generalized projection operator" 
defined by Y. Alber presented in Chapters 1 and 2 and we use the notation 
and the terminology introduced in the cited chapters. 

Let (£ ,̂||-||) be a uniformly convex and uniformly smooth Banach 

space. Let/ : £ -^ £'* be a mapping and Q e £" a closed convex set. 

DEFINITION 7.4.1. Ifx e Q is an arbitrary element, then the generalized 
normal cone ofCl at the point x is 

N^ (x) = \^y, ^E* :[y^,u-x)<0, for all w E QJ. 

Remark. The generalized normal cone NQ(X) is a subset of the dual space 
E .If E is Si Hilbert space, Q ci £" is a closed convex cone and xe Q, then 
in this case NQ(X) is the classical normal cone NQ(X) e E of the set Q at the 
point X. 
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PROPOSITION 7.4.1. An element >;o G Q has the property that 
y^ = n ^ (^y^), where y* e E and Yl^ (•) is the generalized projection if 

and only // j ; , G J (̂ Q̂ ) + 7V̂  (j;^). (J is the duality mapping.) 

Proof. Indeed, by Theorem 2.3.8 we have that y^ = n ^ (j^*)' if and only if, 

for any w e Q we have 

{y.-J{y,).y,-u)>Q, 
or 

(j* - J (yo).^ - yo) ^0 for all u eQ, 

that is, y,-j{y,)eN^{y,), i.e., y, ej{y,) +N^{y,). So, the 
proposition is proved. D 

Now, we suppose that Q = Ka E, where ^ i s a closed convex cone. 

DEFINITION 7.4.2. We say that a mapping f: E -^E* is a J-completely 

continuous field, iff has a representation of the form f(^x) = J[x)-T(^x) 

for all X e E, where T: E -^E is a completely continuous mapping. 

Now, we can define a notion of EFE for J-completely continuous fields. 

DEFINITION 7.4.3. We say that a family of elements {x^}c:K is an 

exceptional family of elements (EFE) for a J-completely continuous field 

/ ( x ) = J ( x ) - r ( j c ) , with respect to a closed convex cone Ka E, if and 

only if for every real number r > 0, there exists a real number //̂  ^ 1 such 
that 

(i) \x^ II -> +G0 as r -^ +oo , 

(ii) T{x^)-j{M,x^)eN^{M,x^). 

Remark. In the case of Hilbert space, the notion of EFE defined by 
Definition 7.4.3 is the notion of EFE defined by Definition 7.1.1. The 
notion of EFE used in this section will be in the sense of Definition 7.4.3. 

We have the following result. 
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THEOREM 7.4.2, Let (£, | | | ) be a uniformly convex and uniformly smooth 

Banach space, KaE a closed convex cone andf: E ->E a J-completely 

continuous field with the representation f{x) = J{x^-T[x^. Then there 

exists either a solution to the problem NCP(f K) or f has an EFE with 

respect to K(in the sense of Definition 7.4.3). 

Proof. Because the problem HSVI(f K) is equivalent to the problem 

NCPif, K), by Theorem 2.3.9, we have that the problem NCP{f, K) has a 

solution, if and only if the mapping 

"^ ̂ {x) = n^[j[x)- f{x)yn^[T{x)]jor all x^E , 

has a fixed-point (which is obviously in E). If ^ ^ has a fixed-point, the 

proof is completed. 

Assume that the problem NCP(f K), has no solution. Obviously, in 

this case the mapping ^ ^ is fixed-point free. We observe that ^ ^ 

satisfies the assumptions of Theorem 3.2.3 [Leray-Schauder alternative] 

with respect to each set B^ =[x^E\x\<r\ with r > 0 (because T is 

completely continuous and n ^ is uniformly continuous on each bounded 

subset of the space). Then applying Theorem 3.2.3 to each set Br, we obtain 
for each r > 0 that there exists Xr e dBr and there is a real number /^ e ]0,1 [ 

such that x^ = K^K {^{^r)) ^^^ ^^ hdMQ that Xr e ^ fo r each r > 0. From 

Proposition 7.4.1 we obtain that r (x^ )e J ^NK 

f \ 
Let u^ — 

for all r > 0, then we obtain: 
(a) \x^ II = r and ju^ > 1, for all r > 0, 

(b) \x^ II -> +00 (75 r ^^ +00 , 

(c) T{x^)-j{ju^x^)eN^{ju^x^), 

and the conclusion of the theorem is achieved. 
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Remark. A consequence of Theorem 7.4.2 is the fact that if we know that 

the /-completely continuous field/: E -^E* is without EFE, the NCP(f K) 

has a solution. Therefore it is interesting to have some conditions that imply 
the non-existence of an EFE for a given mapping. 

Now, we give some results in this sense. First we show condition 
{0) works also on Banach spaces. We give the definition of this condition 
for Banach spaces. 

DEFINITION 7.4.4. We say that a mapping f: E -^E* satisfies condition 

{0) with respect to a closed convex cone Kcz E if there exists a real number 

p> 0 such that for each x e Kwith \\x\\ > p, there exists y G K such that 

\\y\\<\\x\\and{f{x),x-y)>0. 

THEOREM 7.4.3. Let (£,||.||) be a uniformly convex and uniformly smooth 

Banach space. If f : E -^E is a J-completely continuous field satisfying 

condition (0) with respect to a closed convex cone KczE, then f is without 

an EFE, with respect to K, and the NCP(f K) has a solution. 

Proof. Suppose, by contradiction, that / has an EFE with respect to K, 

namely {̂ ;. }̂ >Q • Then for all r > 0, we have ||x̂  || - r, //̂ x^ G K with jUr> 0 

and J{x^)-f{x^)-j{ju^x^)eN^{ju,x^),thsdis 

{j{x^)-f{x^)-j{ju,x^),y-jUrX,)<0, forallyeK. (7.4.1) 

Because/satisfies condition (0), with respect to K, we have that for any r 

sufficiently large, there exists y^ e iS^such that ||jĉ || > p, | |7 j< | |^J and 

{f{x,),x,-y,)>0. 

Considering equation (7.4.1) and using the fact that the operator J is 
homogeneous we have: 



More about the notion of exceptional family of elements 275 

(i<{f{x,),x^-y,) 

= {-j{x^) + f{x^) + J{n^x^) + J{x^)- J{n^x^),x^ -y^] 

= {-J{x,) + f{x^) + J{n,x^),x^ -y,) + {j{x^)- J{n,x^),x^ -y^) 

<(j{x^)-j{/2^x^),x^~y^). 

We used the following relation in the last inequality: 

>". {-J{^r) + f{x,) + j{MrX,),X^ -y,) 

= {-j{x^) + f{x^) + j{M,X^),MXr-Mryr) 

= {'^{Xr)-f{Xr)-j{MrXr),Mryr-MrXr)^0, 

(because ju^y^ eK), which implies 

{-J{Xr) + f{x,) + J{jUrX,),x,-y,)<0. 

Therefore we have 

^^{•^{Xr)-j{MrXr),X,-y,)={j{x^)-Mr'^{Xr),X,-y,) 

= ( 

= ( 

= ( 

<( 
= 0 

-^^){j{x^),x^-y^) = {\-M.)(jxX-{j{x^),y.)) 

-y".)|kr+(/^.-l){^(^.),>',) 

which is a contradiction. Hence / is without EFE with respect to K The 

conclusion of the theorem follows from Theorem 7.4.2, and the proof is 

completed. n 

The following condition was considered in Chapter 5 in Hilbert 
spaces. Now, we give this condition for Banach spaces. 

DEFINITION 7.4.5. We say that a mapping f: E -^ E satisfies condition 

[DT\ with respect to a closed convex cone K(^E if there exist two bounded 

subsets Do and D* in K such that for each x e K \ Z)*, there is a 

yeconv(^DQ u{x}) such that {^f(x),x-y)>0. 
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We have the following result. 

PROPOSITION 7.4.4. Iff: E-^E* satisfies condition [DT\ with respect to 

a closed convex cone Ka E, then f satisfies condition (0), 

Proof. Because Do and D* are bounded subsets in K, there exists a real 

number p> 0 such that D^.D, cz(^B^^nK.lfxeKis such that ||jc|| > p, 

then by condition [DT], there is an element yeconv{^DQ ^{x]^ such that 

(^f[x),x-y^>0. We have y = AxQ+{l-X)x with /I G [0, 1] and 

XQ GDQ, which implies 

||j;|| < A \\XQ II + (l - /I) ||A:|| < A \\x\\ + (1-JI) \\X\\ = \\x\\. 

Therefore,/satisfies condition (0) with respect to JC D 

DEFINITION 7.4.6. Let f,g:E-^E* be two mappings. We say that the 

mapping f is asymptotically g-pseudomonotone with respect to a closed 

convex cone K cz E, if there exists a real number p> 0 such that for all 

X, y e Kwith max|||j;||,p| <\x\, ^ve have 

{g{y)'>x-y)^0 implies [f{x),x-y)>0. 

This notion implies the following result. 

THEOREM 7.4.5. Let yE, ||-||) be a uniformly convex and uniformly smooth 

Banach space, K cz E an arbitrary closed convex cone and f g : E -^E 

mappings such that f is a J-completely continuous field. Iff is asymptotically 

g-pseudomonotone with respect to K and the problem NCP{g, K) has a 

solution, then f is without an EFE with respect to Kand the NCP(f K) has 

a solution. 

Proof. Let x* be a solution to the problem NCP{g, K). Then for all y ^ K, 

we have ^g (x*), >̂  - x* y > 0 . Since / is asymptotically g-pseudomonotone 
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with respect to K, there exists a real number /? > 0 such that for all x,y ^ K 

with max|||>^||,/7| <||j|| we have that {^g{y),x-y^>^ implies 

( / (x), X - JF) > 0 . Take p^ = max |||x* || +1, /? + 1 | . Then for any x e jK^with 

IWI ^ A? we may take x* e K Because ||^*||<||^|| and ^g(jc*),jc-jc*)>0, 

we have that ^ / (x) ,x-x^)>0, that is,/satisfies condition (0) with respect 

to K Now applying Theorem 7.4.3 the conclusion of this theorem is 

achieved. n 

Remark. If in Definition 7.4.6 we take g == / , we have that / is 

asymptotically pseudomonotone, with respect to K Obviously, if / is 

monotone it is asymptotically pseudomonotone, but the converse is not true. 

The following result follows from Theorem 7.4.5. 

COROLLARY. 7.4.6. Let (£,||-||) be a uniformly convex and uniformly 

smooth Banach space, K a E a closed convex cone and f: E -^E a J-

completely continuous field. If f is asymptotically pseudomonotone with 

respect to K, then the problem NCP(f K) has a solution, if and only if f is 

without an EFE with respect to K 

Remarks. 
(1) The results presented in this section are due to G. Isac and J. Li and 

can be found in (Isac, G. and Li, J. [3]) 
(2) The subject of this section may be a starting point for new 

developments related to the notion of EFE and its applications to 
the study of complementarity problems in Banach spaces. 



8 

EXCEPTIONAL FAMILY OF ELEMENTS 
AND VARIATIONAL INEQUALITIES 

In the first chapters of this book we noted that there exist deep 
relations between complementarity problems and variational inequalities. 
Considering this fact it is natural to extend the notion of EFE and the 
method based on this notion, from complementarity problems to variational 
inequalities. In my lectures given in 1996 at the Institute of Applied 
Mathematics of Academia Sinica (China) I presented the problem to do this 
extension. The first work dedicated to this extension was the PhD thesis 
presented by Y. B. Zhao in 1998, [2]. 

The results explored in this chapter represent the development of 
this subject until now. See the papers: (Bianchi, M, Hadjisavvas, N. and 
Schaible, S.[l]), (Isac, G. and Cojocaru, M. G. [2]), (Isac, G. and Motreanu, 
D. [1]), (Isac, G. and Zhao, Y. B. [1]), (Zhao, Y. B. [1], [4]), (Zhao, Y. B. 
and Han, J. Y. [1],), (Zhao, Y. B., Han, J. Y. and Qi, H. D. [1]), (Zhao, Y. 
B. and Li. D. [1]), (Zhao, Y. B. and Sun, D. [1]). 

In the papers cited above the reader can find other results, which are 
not presented in this chapter. We note that, to extend the notion of EFE 
from complementarity problems to variational inequalities, we can follow 
two ways: one is to use the (explicit) Leray-Schauder alternatives and 
another is to use the implicit Leray-Schauder alternative. 

8.1. Explicit Leray-Schauder type alternatives and 
variational inequalities 

As we noted in the introduction of this chapter, the first extension of the 
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notion of EFE from complementarity problems to variational inequalities 
was realized in the PhD thesis (Zhao, Y. B. [2]). In this thesis Y. B. Zhao 
considered variational inequalities in the A7-dimensional Euclidean space 

(#'',(•,•)), with respect to unbounded closed convex sets, defined by 

inequalities and equalities (considered as constraints). The constraints are 
defined by continuously differentiable functions. We note that the notions of 
EFE are obtained using the topological degree and the classical optimality 
conditions. The notions of EFE obtained by this method have a long 
expression. Consequently it is hard to obtain existence theorems for 
variational inequalities using these notions. Moreover, the generalization to 
infinite dimensional Hilbert spaces of this notion is not so easy, even 
impossible. 

To pass over these difficulties we use the normal cone, which can 
be associated to any closed convex set, and we replace the topological 
degree by the Leray-Schauder Alternative. In this way we obtain an elegant 
and simple method, as it will be developed in this chapter. However, to 
inform the reader about the method developed in (Zhao, Y. B. [2]) we give a 
few notions and results, due to Y. B. Zhao. 

Let (#%(•,)) the ^/-dimensional Euclidean space and Q c "̂̂  a 

non-empty unbounded closed convex set. We suppose that Q is defined by: 

Q = { X G J ' ' : £ ( X ) < 0 , / / ( X ) - 0 } , 

where E \ M"" ^ R"^ md H: M"" -> R^ are continuous and differentiable 
functions. The components £". (jc)(/= l,2,...,m) are convex functions and 

Hj (J = 1,2,.., /) are linear functions. Let / g : R" ^^R" be two mappings. 

We consider the following finite-dimensional generalized variational 
inequality 

find X* G M" such that 

IVl{f,g,Q):lg{x,)eQand 

K / (jc*), jc - g (x, )^ > 0 fi[)r all xeQ. 

We know that this variational inequality contains as particular cases the 
classical (Hartman-Stampacchia) variational inequality and the nonlinear 
complementarity problem. We know also that the solvability of this problem 
is equivalent with the solvability of the nonlinear equation 

g{x)-Pn{g{x)-f{x)) = 0. 



Exceptional family of elements and variational inequalities 281 

DEFINITION 8.1.1. Let f and g be continuous mappings of R"" into R"". 
Let XQ be an arbitrary element in R". A family {x^]^^^ cz R" is said to be 

an EFE with respect to XQ, Q, and the pair of mappings (f, g) if the following 
conditions are satisfied: 

(1) | |xj->+00 a5 r -^+00 , 

(2) for each Xr there exist some vectors \ e R"^, ju^ e R^ and some 

scalar ar > 1 such that e[x^,a^^ = a^g{x^^^-{\-a^^g{^XQ)^Q., 

and the following two equations hold: 
/ ( x j = - (a , - l ) (g(x , ) -g(x , ) ) , 

-^[v£(4x, ,a , ) /A,+V//(^(x, ,a , ) ) ' / i 

[X^). E. [e{x^,a^)) = 0, i = 1,2,...,w. 

THEOREM 8.1.1. Letf g\ R^^R"" be two mappings. The mapping g is 
supposed to be one-to-one (injective). Letxo be an arbitrary element in R". 
Then the problem LVL(f g, Q) has either a solution or an EFE with respect 
to XQ and Q (in the sense of Definition 8. LI), 

Proof. Let 0 ( x ) = g ( x ) - P ^ (g( jc)- / ( jc)) , for any x e i ? \ It is well 

known that x* solves the problem LVL(f g, Q) if and only if 0(x*) = 0 .We 

consider the following homotopy between the mappings g(x) - g{xo) and 
cD(x): 

H{x,t) = t[g{x)-g{x,)] + {l-t)0{x), te[0,\]. 

We denote 
B^={xeR'': \\x-x,\\<r], 

dB^={xeR": \\x-x,\\ = r]. 

Obviously, 95^ is the boundary ofB^. Two cases are possible. 
(I) There exists an r > 0 such that 

0^{!}{{x,t):xedB^ andte[0,\]] . 

(II) For each r > 0, there exist some point x^ e dB^ and tr G [0, 1] 
such that 

0 = Jf{x^,t^) = t,[g{x^)~g{x,)] + {\-t^)^{x^). (8.1.1) 

If the case (I) holds, then we have 
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deg(g(x) -g(x„) ,5 , ,0 ) = deg(o(x) ,5 , ,0) . (8.1.2) 

Since g is one-to-one in M*" we have deg(g(x)-g(xQ),5^,0) =1 . [See 

(Lloyd, N. G. [1])]. Then, in this case the equation 0(x) = 0 has at least a 
solution. 

Now, we suppose that the case (II) holds. When tr = 0 (8.1.1) 
reduces to 0(x^) = 0. Hence, Xr is a solution to the problem IVI{f, g, Q). If 
tr =^ \, from (8.1.1) we have g(^^) = g(^o) which implies that Xr = XQ 
(because g is one-to-one). This fact is impossible since Xr e dBr. Therefore, 
it suffices to consider the case that tr G ]0, 1[ for each r > 1. From the 
definition of O and the relation (8.1.1) we have 

7 r - ^ ( ^ . ) - T r 7 ^ k ) = ̂ n ( g ( ^ . ) - / ( ^ . ) ) e n . (8.1.3) 

Let a, = . Denote 

e{x^,a^) = a^g{x^) + {\-a^)g{x,) = ——g{x^)--^g{x,). 

By (8.1.3) and the properties of the projection operator P^, e{Xr, ar) is the 
unique solution to the following optimization problem (whose solution is 

completely characterized by the Karus-Kuhn-Tucker optimality 

conditions): 

I minimize e (x ) (= | | x - [g (x , ) - / ( ; c , ) ] | | J, 

ysX. jc G Q. 

Consequently, there exist two vectors X^ e M"" and ju^ e M^ such that the 
following equations hold: 

y{X^)^E.(e{x^,a^)) = Q, / = l,2,...,m. 

We note that Vg(jc) = 2 [ x - ( g ( x ^ ) - / ( j c J ) ] is the gradient of Q{x). 

Rearranging the terms in the last equations, we obtain: 
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/ (x , ) = - (a , - l ) (g(x , ) -g(x , ) ) 

\{X^)^E.(e{x^,a^)) = Q, / = l,2,..,w. 

Obviously, because \x^ - jĉ  || = r , we have that, \x^ || -> +00 as r -^ +00 and 

{x̂  }̂ Q̂ is an £F£ with respect to Xo and Q for the pair (f, g) in the sense of 

Definition 8.1.1. n 

In Theorem 8.1.1 the assumption that g is one-to-one is a strong condition. 
To eliminate this assumption we introduce another notion of EFE. 

DEFINITION 8.1.2. Let f and g be continuous mappings from #" into 
M". Let xo be an arbitrary element in M". We say that a family of elements 
{x^}^^^ a M" is said to be an EFE with respect to xo, Q and the pair (f, g) if 

the following conditions are satisfied: 
(1) ||xj->+00 â s r->+00 , 

(2) for each Xr, there exist some vectors A^ eM"^, ju^ e M[ and a scalar 

ar > 1 such that c(^x^,a^)=^{a^ ~0(-^^ ~-^o) + ? ( - ^ r ) ^ ^ ' ^^^^^^ 
following two equations hold 

[(A^)^ E^ [c{x^,a^)) = 0, / -1,2,...,w. 

We have the following result. 

THEOREM 8.1.2. Letf g: M" -^ M" be two continuous mappings and let 
Xo G M"^ be an arbitrary element. Then either the problem LVL(f g, Q) has a 
solution or there exists an EFE (in the sense of Definition 8.L2) with 
respect to XQ and Q. 

Proof. The proof is similar to the proof of Theorem 8.1.1, but using the 

homotopy, ^ ( x , / ) = /(x-Xo) + ( l - ^ ) O ( x ) , rG[0,l]. For more details 

the reader is referred to (Zhao, Y. B. [2]). n 

From Theorem 8.1.1 and 8.1.2 we deduce the following result. 
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THEOREM 8.1.3. Letf, g: M" -^M" be two continuous mappings. 
(i) If there exists an element XQ G W such that the pair if, g) is without 

an EFE (Definition 8.1.2) with respect to XQ and Q, then the problem 
IVI(f g, Q) has a solution. 

(ii) If the mapping g is one-to-one and there exists an element xo e M'' 
such that the pair if, g) is without an EFE (Definition 8.1.1) with 
respect to XQ and Q, then the problem IVI(f g, Q) has a solution. 

Motivated by the results presented above it is of interest to know conditions 
that guarantee that a pair of mappings if, g) is without EFE with respect to 
an element Xo e M" and to a set Q defined as above. Several conditions in 
this sense are given in (Zhao, Y. B. [2]). 

Now, we cite without proof only the following condition. 

THEOREM 8.1.4. Letf g : M"-^ M" be two continuous mappings. The 
mapping g is supposed to be one-to-one. If there exists a point XQ G g~^ ( Q ) 

such that, for each family {x^]^^^ cz M"" with \x^|| -^ +oo asr -> +oo and 

{^ (^r)} <^^ , there is an element Xr ^Xo such that 

then the couple if, g) is without an EFE (in the sense of Definition 8.1.1) 
with respect to JCQ and Q. 

Proof. A proof of this result is given in (Zhao, Y. B. [2]). n 

Other similar results and other kinds of EFE based on optimality conditions 
are presented in (Zhao, Y. B. [2]) and in the papers: (Zhao, Y. B. [1], [4]), 
(Zhao, Y. B. and Han. J. Y. [1]), (Zhao, Y. B., Han, J. Y. and Qi, H. D. [1]), 
(Zhao, Y. B. and Li, D. [1]) and (Zhao, Y. B. and Sun, D. [1]). 

Now, we replace the method developed by Y. B. Zhao, by our 

method based on Leray-Schauder alternatives. Let (//,(•,)) be a Hilbert 

space and Qa Ha, non-empty unbounded closed convex set. We denote by 

PQ the projection operator onto Q (which is well defined) and for any real 

number r > 0 we denote B^ = |jc G //^: ||JC|| < r | . If X G Q , we recall that the 

normal cone of Q at the point x is 

N^{x)^{^&H:{^,y-x)<0,forallyeQ} 
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or N^ (x) = -\T^ (X) ] , where T^ {x) is the tangent cone of Q at the point 

X, i.e., T^ (x) = IJ /I ( Q - x) . 
/l>0 

Given mapping/: H-^ H,WQ consider the following classical variational 
inequality defined by/and Q. 

ifmd X* G Q such that 

^ ^ [ (x-x. , / (x . ) )>0, /ora/ /xeQ. 

DEFINITION 8.1.3. We say that {^4r>o ^^ ^^ ^^ exceptional family of 

elements EFEfor a completely continuous field f{x) = x - T(x) defined on H, 
with respect to the subset CI, if the following conditions are satisfied: 

(1) | |x j ^^+00 ai* r->+00 , 

(2) for any r>0 there exists a real number jUr> 1 such that /u^x^ GQ 

and T{x^)-/u^x^ eN^ (//,x^). 

With respect to this notion we have the following result. 

THEOREM 8.1.5. Let {H, {',-)) be a Hilbert space, CI a H an arbitrary 

unbounded closed convex set and f: H -^ H a completely continuous field 
with a representation of the form f{x) = x - T{x\ where T : H -^ H is a 
completely continuous mapping(linear or nonlinear). Then the problem 
VI(f, Q) has at least one of the following two properties: 

(1) VI(f, Q) has a solution, 
(2) The completely continuous field f has an EFE with respect to Q (in 

the sense of Definition 8.1.3) 

Proof. We know that the problem VI{f, Q) has a solution if and only if the 

mapping , O (x) = /'^ [x - / (x)] = P^ (T (X)) , X G / / , has a fixed-point 

(in / /) . Obviously, this fixed-point must be in Q. We observe that the 

mapping O is completely continuous. The set B^ has a non-empty interior 

and 0 G int(5^ j . Only two situations are possible: 

(I) The problem VI(f Q) has a solution. In this case, the proof is complete. 
(II) The problem VI(f, Q) has no solution. In this case the mapping O is 

fixed-point free with respect to any set B^ , because if O has a fixed-
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point in B^ we have that the problem VI{f, Q) has a solution, which is a 

contradiction. Now, since B^ is bounded and O is completely 

continuous, we have that O restricted to B^ is a compact continuous 

mapping. The assumptions of Theorem 3.2.4 are satisfied. Therefore, 

there is an element Xr e dB^ such that x^ =/l^P^ (r(x^)) for some 

Xr G [0, 1 [. We know that for each x e H, y = PQ{X) if and only if 
xey + N^ (j;). By using this result we have that 

n^r) e x^+N^ 
J 

If we denote jd^- — for any r > 0, then we obtain 
K 

(i) ||x̂  II - r and //̂  > 1 fox any r > 0 , 

(ii) jijXr G Q for any r > 0, 

(iii) T{^r)-l^r^r ^ ^Q {l^r^r) ^ r auy T> 0. 

Since IJCJ^^+OO as r^ '+oo , we deduce that {̂ }̂̂ ô is an exceptional 

family of elements for/with respect to Q (in the sense of Definition 8.1.3). 

COROLLARY 8.L6. Let (H, (•, •)) be a Hilbert space, QczHan arbitrary 

unbounded closed convex set and f (x) = x-T (x) a completely continuous 

field on H. If f is without an EFE with respect to Q (in the sense of 
Definition 8.1.3), then the problem VI(f, Q) has a solution. 

Theorem 8.1.5 can be extended to variational inequalities for set-
valued mappings in the following manner. Let / / : / / - > / / be a set-valued 
mapping and Q a H a non-empty unbounded closed convex set. We 
consider the problem 

, \ find (x,,y^)eQx H such that 

Mvi{h,n):r \ , / 
[3;, G / (x*) and (w - X*, J*) > 0, for all ueCl. 

We know that the problem MVI(h, Q) has a solution if and only if the set-

valued mapping P^ [^- / / (x)] has a fixed-point in H; i.e., there exists an 

element x* e H such that x* GP^[X* - / Z ( X * ) ] . In this case there exists 

j ; , G/ / (X, ) such that x* GP^ [x* - j , ] , which implies that (x*,j*) is a 

solution to the problem MVI(h, Q). Now, we suppose tha t / : / / -^ / / is a 
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set-valued mapping of the formX^) ^ ^ - T{x), where T : H ^>^ H is a set-
valued mapping. We introduce the following definition. 

DEFINITION 8.1.4. We say that {x^}^^^ cz H is an EFEfor the set-valued 

mapping f{x) = x - T{x), with respect to the subset Q, // the following 
conditions are satisfied: 

(1) ||jcJ->+oo as r-^+oo, 

(2) for any r > 0 there exists a real number jUr > 1 and an element 
y^^T{x^) such that ju^x^ G Q , and y^ - ju^x^ e N^ {Mr^r)• 

We have the following result. 

THEOREM 8.1.7. Let ( / / , (v)) be a Hilbert space, Q d H an arbitrary 

unbounded closed convex set and f : H -^ H a completely upper 

semicontinuous field with a representation of the form f (x) -x-T(x), 

where T: H -^ H is a completely upper semicontinuous set-valued mapping 
with non-empty compact contractible values. Then the problem MVIif, Q) 
has at least one of the following two properties: 

(1) MVIif, ^) has a solution, 
(2) the completely upper semi-continuous field f has an EFE with 

respect to Q {in the sense of Definition 8.1.4). 

Proof. The proof is similar to the proof of Theorem 8.1.5. We consider the 

set-valued mapping 0(jc) = P^ [x - / ( x ) ] - P^ (7^(^)) • We can show that 

P^ (7'(^)) is a set-valued mapping with compact contractible values, all the 

assumptions of Theorem 3.6.6 are satisfied and the proof follows the proof 
of Theorem 8.1.5. n 

A consequence of Theorem 8.1.7 is the following result. 

COROLLARY 8.1.8. Let (//, (•, •)) be a Hilbert space, QaHan arbitrary 

unbounded closed convex set. Let / ( x ) = x -T(^x) be a completely upper 

semi-continuous field, where T : H ^>' H is with non-empty compact 
contractible values. Iff is without an EFE with respect to Q (in the sense of 
Definition 8.1.4), then the problem MVIif, Q) has a solution. 
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For other results related to the problem VI{f, Q) the reader is 
referred to (Isac, G. and Zhao, Y. B. [1]). In the cited paper are also 
presented other results related to the problem VI{f, Q), where the set Q is 
defined by 

Q = {xG// :g , (x)<0, . . . ,g^(x)<0}, 

where g\, g2,...,gm'' ff-> ^a re continuous real-valued convex functions. 

Remark. Theorem 8.1.5 is valid for k-SQt fields, that is for mappings with a 
representation of the form / ( x ) = j c - r ( x ) , where T : H -^ H is a, k-set 

contraction with 0 < A: < 1 (see Chapter 1). In this case the proof is based on 
the notion of (0, A:)-epi mapping. For this extension the reader is referred to 
(Isac, G. and Cojocaru, M. G. [2]). 

Now, we present several classes of mappings without EFE in the sense of 
Definition 8.1.3. 

DEFINITION 8.1.5. We say that a mapping f :H-^ H satisfies condition 
(0, Q) with respect to an unbounded closed convex set Q (z H if there exists 
p> 0 such that for each couple {x, a) with \\x\\> p, a>\ and or G Q, there 
existsy e Q such that \\y\\ < a\\x\\ and (f(^x),ax - y)>0. 

If Q is a closed convex cone, then in this case condition (6, Q) is equivalent 
to condition (0) used in the study of complementarity problems (Isac, G. 
and Cojocaru, M. G. [2]). We recall that a mapping f:H-^H is /> 
copositive on Q if there exists p > 0 such that for all x G Q, with ||x|| > p we 
have (jc,/(jc)}>0. 

PROPOSITION 8.1.9. If f:H-^H is phcopositive on Q and there exists 

X* G Q such that \\x*\\ < p and ( x , , / ( j ) \ < 0 for allx G Hwith ax G Clfor 

a> 1 and \\x\\ > p, then f satisfies condition (6, Q). 

Proof. Indeed, if x G His such that ||x|| > pand ooc e Q for a> I, then we 

have ( x , / ( x ) ) > 0 . Since ||x*||< p <||ax|| and ^ a x - x * , / ( x ) ) > 0 , we 

have that/satisfies condition {9, Q). n 
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COROLLARY 8.1.10. If f\H-^H is p-copositive on QandOe Q, then 

f satisfies condition (d,Q). 

DEFINITION 8.1.6. We say that f:H-^H satisfies condition (K) with 

respect to Q if there exists a bounded set D c: Q such that for all couples 
(x, a) with X e H, a> \ and ooc G Q \ D there exists y e D such that 

{ax-yj{x))>0. 

Remark. Condition (K) is a Karamardian type condition. 

PROPOSITION 8.1.11. If f:H-^Hsatisfies condition (K) with respect 

to Q, then f satisfies condition (0, Q). 

Proof. Let D czQhc the set defined by condition (K). Since D is bounded 

there exists p> 0 such that D e | x G Q I \\X\\<p\. For each couple (x, a) 

where x e H, a > 1 and ax G Q, we have \\ax\\ > \\x\\ > p, which implies 

axGQ\D and there exists >̂  G D such that (ax-y,f[x)j>0. Because 

\\y\\ < p<a\\x\\, we have that/satisfies condition (d, Q) on Q. n 

DEFINITION 8.1.7. Let f,g:H-^Hbe two mappings. We say thatf is 
asymptotically strongly g-demimonotone with respect to Q // there exist a 
mapping (fi:M^ -> ^+, an element w G Q and a real number p> 0 such that 

lim ^(t) = +co and 

(i) for each couple (x,a) with x e H, \\x\\ > p a>\ and ax ^ Vlwe 

have lax -u,f (x) - g {uyj > \ax - u\ (j) {\ax - w||). 

PROPOSITION 8.1.12. If f:H-^H is asymptotically strongly g-

demimonotone with respect to Q, then f satisfies condition (^ Q). 

Proof. Assume that/ is asymptotically strongly g-demimonotone. For each 

couple {x, a) with x ^ H, a> \, ax ^ Cl and ||x||>max|p,||w||| we have 

||w|| < a \x\ and (ax -u,f (x) - g (uf) > \ax - u\ (j) (||ax - i/||), which 
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ax-u 
implies (ax -u,f (x)) > \ax - u\ 

Wax - u\ 
,g(w)) + ^(||ax-w||) 

(because a \x\ > \u\ implies \ax - w|| > 0). Since S^ = |x G / / : ||x|| = l | is 

bounded and considering for u fixed g(w) as a continuous linear functional 

Ti [7 5 g {u) 1^7 -> 

\ax-u\ I 

for each pair (x, a) with x e H, a>\, ax e Q and ||x|| > max|yO,||w|||. Since 

Q is unbounded there exist pairs (x, a) such that x e H, a> I, ooc e Q, 
||x||>max|/7,||w||| and ||ax - w||->+oo as ||x|| -^ +oo. Because 

lim (/>{t) = +G0 we have that there exists /> such that for all pairs (x, a) with 

a > 1, ox G Q, ||x||>max|p,||w||| and | |ax-i/ | |>p* we have 

^(||6irx-w||)>-7, that is {ax-u,f{xy)>^. If for any pair {x, a) with 

a> \, ax e Q and ||x||>max|/?,||i/||| we takey = u,'WQ have that/satisfies 

condition (0, CI). n 

DEFINITION 8.1.8. We say that f.H^H is scalarly increasing to 

infinity on Q, if for each y ^ CI there exists a real number p{y) > 0 such that 

for all couples (x, a) with xeH, a>l,axeQ. and \x\ > p{^y^ we have 

ax-yj{x))>(). 

PROPOSITION 8.1.13. If the mapping f.H^H is scalarly increasing 

to infinity on Q, then f satisfies condition (0, Q). 

Proof. Since / is scalarly increasing to infinity, then for each y e Q there 
exists a real number p(y) > 0 such that for all couples (x, a) with x e H, 
a >\, ax e Q and ||x|| > p(y) we have (^ax - y,f[x)^ > 0 . 

Fix ĵ o arbitrarily in Q with \\yo\\ > 0. This is possible since Q is 

unbounded. Then there exists a real number p^ := /^(JQ) >0 such that for 

all pairs (x, a) with xeH, a>\, axeQ and ||x|| > /^ we have 

(^ax - yQ,f{xfj > 0 . If we put p^ = p^^ ||>^Q|| , certainly we have that the 

last inequality is satisfied for each (x, oc) with X G / / , 6 i^>l ,ca :GQ and 
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||x|| > /> >po. Obviously, for such a pair we have a||x||>||x|| >||J;Q||, which 

implies that condition {6, Q) is satisfied for/with respect to Q. n 

About condition {9, Q) we have also the following result. 

THEOREM 8.1.14. Let ( i / , (•,•)) be a Hilbert space, Q cz H an arbitrary 

unbounded closed convex set and f \H -^ H a completely continuous field 

(or a k-set field) with a representation of the form f [x) -x-T [x). If f 

satisfies condition {6, Q) with respect to Q, then f is without an EFE with 
respect to Q (in the sense of Definition 8.1.3). 

Proof. Suppose that/has an EFE [x^]^^^ with respect to Q. Hence [x^]^^^ 

satisfies Definition 8.1.3. For each r > 0 we have that ju^x^ G Q where 

IUr> \, and applying condition {6, Q), there existsyr such that ||j;^||<\iu^x^|| 

and ( / {x^), lu^x^ -y^^>0 for each r > 0 such that ||jĉ || > p. Therefore, for 

r > 0 such that ||x |̂| > p, we have T{x^)-ju^x^ ^N^i^ju^x^), i.e., 

^̂  =r(x^)-//^x^ satisfies the condition (^^,>^-//^x^)<0 for all jv G Q 

and 

= {X^ -Mr^r -^r^Mr^r ' yr) = {{^ ' Mr) ^r '^r^Mr^r - yr) 

= {^-Mr){^r^Mr^r-yr) + {^r^yr-Mr^r) 

^ { ^ - M r ) [ M r h t -{^r^yr)]<(^^ 

since 1 - //̂  < 0 and 

Mr h f -{^r^yr)^ Mr K ( ' H \\ kr \\ = h \\ [Mr H \\ " i ^ . | | ] > ^ • 

We have a contradiction, which implies that/is without EFE with respect to 
Q. n 

For other examples of classes of mappings without EFE in the sense 
of Definition 8.1.3 the reader is referred to (Isac, G. and Cojocaru, M. G. 
[2]). 



292 Leray-Schauder Type Alternatives 

8.2. Implicit Leray-Schauder alternatives and 
variational inequalities 

Considering the notion of EFE introduced in Complementarity 

Theory in Chapters 3-7 and the notions of EFE introduced in this chapter, 

for variational inequalities, we may conclude that we have two different 
investigation methods, while a variational inequality with respect to a closed 
convex cone is a complementarity problem. Moreover, some results 
obtained in Complementarity Theory by using the notion of EFE cannot be 
extended to variational inequalities because if {^^^^Q is an EFE for a 
variational inequality, namely VI{f, Q) ,we have ju^x^ G Q for any r > 0 and 

not x̂  e Q for any r > 0, as in the case of complementarity problems. In this 
section we will show that by using the Implicit Leray-Schauder Alternative 
we unify both notions of EFE. By this unification, we can extend to 
variational inequalities several existence results obtained previously for 
complementarity problems. 

Let (//,(•,)) be a Hilbert space and f.H^^H a completely 

continuous field with a representation of the form / (x) -x-T (x), for all 

X G H. Let Q e / / be an unbounded closed convex set. We consider again 
the variational inequality VI(f, Q). 

DEFINITION 8.2.1. Let p = \\P^{0)\\. We say that a family of elements 

{x^}^^ d Q is an exceptional family of elements (EFE) with respect to Q, 

for the completely continuous field f if the following properties are 
satisfied: 

(1) ||-̂ J|->+QO CIS r->+oo {r>p), 

(2) for any r > p there exists a real number tr e ]0, 1 [ such that 
KT{x,)-x^^N^{x^). 

We have the following result. 

THEOREM 8.2.1. Let QciHbe a non-empty unbounded closed convex set 

and f :H -^ H a completely continuous field such that f (x) = x-T (x) 

for any x E H Then there exists either a solution to the problem VI(f, Q), or 
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the mapping f has an EFE (in the sense of Definition 8.2.1) with respect to 
Q. 

Proof. We know that the problem VI(f, Q) has a solution if and only if the 

mapping 0 ( x ) = P^ [ x - / ( j c ) ] has a fixed point. If the problem Vlif, Q) 

has a solution, then in this case the theorem is proved. 

We suppose that the problem VI{f, Q) has no solution. In this case, 

we consider for any real number r such that r > p- ||P^ (0)||, the closed 

convex set 5^ = |xG^: | | j c | |<r | . Obviously, 95^ =|xG//: | |x | | = r | . For 

any r > 0, we consider the mapping O^ : [O, l] x 5^ -^H defined by 

o,(/,x) = p,[r(x-/(x))] = p,[;(r(x))]. 
We have that O^ is continuous and O^ ([OJ] >< ^r) î  relatively compact in 

H. Moreover, O^ ({O} x95^)c5^ and for any XG95^ , we have that 

O^(0,x)7^x. 

We deduce that the assumptions of Theorem 3.5.4 (Leray-Schauder 
implicit alternative) are satisfied and because we supposed that the problem 
VI{f, Q) is without solution, we have that <^^{\,x)i^x for any x&B^^ 

which implies that there exist / ^ G ] 0 , 1 [ and x^edB^ such that 

<E>̂  (̂ r ? ̂ r) ~ ^r' fo^ ^^y ^ ^ P' We have that for any r > p there exists 

(t^, x^) G ]0, l[ X dB^ such that x^ = P^ \t^ {T [X^ )) J . Therefore we have 

JC^GQ and t^T{x^)^x^ + N^{x^). From the last relation we obtain 

t^T{x^)^x^ + ̂  , where ^ G TV̂^ (jc )̂ . Hence, we have 

/^r(jc^)-x^eN^ {x^) and we have that the family [x^]^^ is an EFE for 

the completely continuous field/and the proof is complete. D 

From Theorem 8.2.1 we deduce the following existence theorem. 

THEOREM 8.2.2. Let QczHbe a non-empty unbounded closed convex set 
and f \H ^>H a completely continuous field. Iffis without an EFE in the 

sense of Definition 8.2.1, with respect to CI, then the problem VI(f Q) has a 
solution. 
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COROLLARY 8.2.3. Let f^"",(•,•)) be n-dimensional Euclidean space, 

CI d M^ an unbounded closed convex set and f :M" ^> M" a continuous 

mapping. If f is without an EFE, in the sense of Definition 8.2.1, with 
respect to Q (consideringf = I -{I -f), where I is the identity mapping), 
then the problem VI{f, Q) has a solution. n 

Remark. If Q = .^ where jCis a closed convex cone in //, then in this case 

the notion of EFE defined by Definition 8.2.1 is exactly the notion oi EFE 

used in Complementarity Theory. Indeed, let {^r]r> ^^ ^^ ^^^ ^^ defined 

by Definition 8.2.1. In this case we have p = JP^ (0)|| = 0, i.e., r> 0 and for 

any r >0 we have t^T(x^)-x^ eN^(^x^), which implies 

{tj{x^)-x^,y-x^)<0, forallj^e^K: 

From the last inequality we deduce 

lT{x^)--x^,y-x\<0, forallj^G^ 

or 

r(x,)4- x^,y-x)>0, for all j^ e ^ . 

If we denote ju^ = 1 > 0 , we have [ju^x^ + / (x^), 7 - x^) > 0, for all 

y G K. From the last inequality we obtain 

(i) u^ = ju^x^ + f[x^)eK\ for a\lr>0, 

(ii) (w^,x^) = 0 , fo ra l l r>0 , 

and because x^ e K and ||JĈ  || -> +00 as r -^ +00 , we have that [x^ ]^^^ is an 

EFE in the sense used in Complementarity Theory. 

A consequence of Corollary 8.2.3 is the fact that we must put in 
evidence classes of mappings without an EFE in the sense of Definition 
8.2.1. To realize this goal, now we present some tests that can be used as 
sufficient tests for the non-existence of an EFE for a given mapping. To do 
this, we need to give an equivalent form of Definition 8.2.1. 
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Let (H,{-,)) beaHilbert Space and Q e / / an arbitrary unbounded 

closed convex set. We denote again p -1|/^^ (0)||. 

DEFINITION 8.2.2. Given a mapping f\ H -^ H, we say that a family of 

elements {^f.]r> ̂ ^ ^^ ̂ ^ EFE for f with respect to Q, if the following 

properties are satisfied: 
(1) ||jcJ|->+oo as r - ^ + o o , 

(2) for any r > p, there exists tf G ]0, 1 [ such that 
f 1 A 

Vr J 

PROPOSITION 8.2.4. Iff :H-^ His a completely continuous field with a 
representation of the form f{x) = x -T(^x) for all x e H, then a family of 

elements {x^]^^ e Q is an EFE in the sense of Definition 8.2 J, if and only 

if it is an EFE for fin the sense of Definition 8.2.2. 

Proof. Indeed, suppose that [x^] c:Q is an EFE fo r / in the sense of 

Definition 8.2.1. Then in this case we have 
(1) I'^J^'+QO as r^-+oo and 

(2) for any r> p there exists t^ e ]0, 1 [ such that 

We have 

T{x^)-yX^eyN^{x^)QN^{x^), 

'l ^ 
which implies 

VV J 

Therefore ix\ is an EFE for / in the sense of Definition 8.2.2. 

Conversely, let {x^]^^ be an EFE for fin the sense of Definition 8.2.2. We 
have, 

(1) ||^,||->+Q0 as r->+Go and 

(2) for any r> p there exists t^ e ]0, 1 [ such that 
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o ^ 
Vr J 

We deduce that T[X^) x^ e N^ [x^) , and finally, 

tj{x^)-x^et^N^{x^)QN^{x^), 

that is, {x^}^^ is an EFE for/ in the sense of Definition 8.2.1. n 

Now, we will show that condition (0) also works for variational 
inequalities. We recall this condition. 

DEFINITION 8.2.3. We say that a mapping/: / / - > Hsatisfies condition 
(0) with respect to a closed unbounded convex set CI cz H, if and only if 
there exists /> > 0 such that for any jc G Q with \\x\\> />, there exists y ^ CI 
with |[y|| < ||jc|| such that {x-y^f (jc)^ > 0. 

We note that any mapping, which satisfies the classical 
Karamardian condition, satisfies also condition {9). Condition {HP) 
(Harker-Pang) defined initially in Euclidean space, can be extended to an 
arbitrary Hilbert space. 

DEFINITION 8.2.4. We say that a mapping f: / / - > H satisfies condition 
(HP) with respect to a closed unbounded convex set Q cz H, if there exists 

an element x* G Q such that the set Q(JC,) = |XGQ: ( f ( ^x ) , x - x , ^<0 \ is 

bounded or empty. 

Remark. In the classical Harker-Pang Condition, the set Q(x*) is supposed 

to be compact or empty which is more restrictive than in our condition (HP). 

PROPOSITION 8.2.5. Iff: H-> H satisfies condition (HP), then f satisfies 
condition(6). 

Proof. .If/ satisfies condition (HP\ then there exists x* G Q such that the 
set Q(x*) is bounded or empty. In this case, there exists /^ > 0 such that 

Q(x.)c:5(0,/7o)where B{Q,p^)^{xE:H:\x\<p^}. We take 

p^ > max|pQ,||x*|||. If X G Q is an arbitrary element such that ||x|| > p*, then 
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we have x ^ Q ( x , ) , which implies that ^ / (x ) , j c -x*)>0 . Obviously, if 

for any XG Q such that \\x\\ > />, we take j^ = x* we obtain that/satisfies 
condition {0). n 

THEOREM 8.2.6. Iff \ H -> H satisfies condition (ff) with respect to an 
unbounded closed convex set Q c: H, then f is without an EFE in the sense 
of Definition 8.2.2. 

Proof. We suppose tha t /has an EFE, namely [x^] ^ , in the sense of 

Definition 8.2.2, with respect to Q. Since ||xj -> +oo as r -^ +oo, we take 

Xr such that r> p and ||jĉ || > />, where /> > 0 is the real number considered 
in condition (^.For this x̂ , there exists j ; ^ G Q such that |[ŷ || < ||x |̂| and 

f l ^ 
{^r -yrJ{^r))^^' Wc havc also, -f{x^)-\ —-1 U^ e iV^(xJ . If we 

\'r J 

1 denote ju^= 1, we have //̂  > 0 and - / [ x ^ ) - ju^x^ =<^ GN^[X^) . We 

deduce 

= {^r-yr^-^)-Mr{^r-yr^^r) 

= -{Xr-yr^^)-Mr{Xr-yr^^r) 

^-Mr 
IP / \ <o. 

which is a contradiction and the proof is complete. n 

COROLLARY 8.2.7. Iff: H -^ H is a completely continuous field which 
satisfies condition (0) with respect to an unbounded, closed convex set 
QciH, then the problem VI(f Q) has a solution. 

DEFINITION 8.2.5. We say that a mapping T : H -^ H satisfies condition 
{7?) with respect to Q if for any x e Q, with ||x||> 1, we have 

xj{x))<lxj 
f \ 

X 

vi i^i iy 

We denote by coneh{Q) the conical hull of Q, i.e., coneh[Q) - [J AD.. 
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DEFINITION 8.2.6. We say that a mapping T : H ^ H is monotonically 
decreasing on rays, with respect to Q, if for any a > \, and any 
u G coneh(Q) we have {ii,T{au)\ < (U,T[U)J . 

PROPOSITION 8.2.8. IfT.H^His monotonically decreasing on rays, 
then Tsatisfies condition {7Z). 

Proof. Indeed, let x G Q be an arbitrary element such that ||x|| > 1. We take 

X and hence a 

( \ 
X 

virty 

and w = T7-7. We have a u 

> > / -rpr:, r (x) j , which impUcs [x, T (x)^ <(x,T 
( \ 

X 

vii^l iy 

that 

is condition (yQ is satisfied. 

THEOREM 8.2.9. If T \ H ^^ H is a hounded mapping which satisfies 

condition {7?) with respect to Q and 0 G Q, then the mapping fx) ~ x -T{x\ 

X e H is without an EFE with respect to Q in the sense of Definition 8.2.1. 

Proof. Indeed, we suppose that {y^r]r>o ^^ ^^ ^^^ for/with respect to Q. In 

this case p = ||Pn (0)1 = 0 . For any x^ such that ||JC|| > 1, by condition ( ;^ we 

have 

x^j{x^))<{x^J 
f \ 

Vii^Hiy 
(8.2.1) 

Because {x^}^^^ is an EFE, we have that t^T{^x^)-x^ eN^[x^) with 

tr G ]0, 1[ for any r> 0 such that ||x |̂| > 1. Since NQ(Xr) is a cone we have 

that T[X^) x^ =^^ GN^ (X^ ) , and if we denote ju^ = — ,WQ obtain that 

^{^r) = Mr^r + <^r' Considcring (8.2.1) we get {x^,ju^x^ + ̂ ^) 

<u„,r 
x„ 

vii^niy 

for any r > 0 such that llx̂  11 > 1. Since T is bounded there 

exists M> 0 such that from the last inequality we have 
{x^, //^x^) + (jc ,̂ ̂ ^) < M||jc^ II, for any r > 1 such that ||x̂  || > 1. (8.2.2) 
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Because 0 G Q and ^^ G A^̂  (X^ ) we have 

(^ . ,x , )>0. (8.2.3) 

From (8.2.2) and (8.2.3) we deduce that lU l|< — M<M, for any r > 0 

such that ||x |̂| > 1. We obtain that {||̂ J} is bounded, which is in 

contradiction with the definition of the notion of EFE and the proof is 
complete. n 

COROLLARY 8.2.10. If T : H -^ H is completely continuous, satisfies 

condition {7^ and 0 G Q, then the problem VI(f, Q) has a solution, where 

f(x) = X - T(x), for any x e K 

COROLLARY 8.2.1 L Let T : H -> H be a completely continuous 
mapping. Consider the completely continuous field /^ (x) = x - / i r ( x ) , 

{x G //), for some X ^ M.. If T satisfies condition {7^ with respect to Q 

{with 0 G Q), then the problem Vlif;^, Q) has a solution for any /I > 0. 

Proof. The corollary is a consequence of Corollary 8.2.10, since Ar satisfies 
condition {7^ for any /I > 0. n 

DEFINITION 8.2.7. We say that a mapping f: H -> H satisfies condition 
(IG) with respect to Q // there exists a real number p > 0 such that the 

mapping 0 ( x ) = ||:̂ ||̂  - x- f[x) defined for all x ^ 0 satisfies condition 

(71) with respect to Q. 

We have the following result. 

THEOREM 8.2.12. Let T: H -> H be a bounded mapping. IfQ. e H is an 
unbounded closed convex subset such that 0 G Q and f (x) = x-T(x) 

satisfies condition (IG) with respect to Q, then f is without EFE in the sense 
of Definition 8.2.1 with respect to Q. 

Proof. Assume that/has an EFE, namely {y^r]r>o ^^^^ respect to Q. By 
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condition (/G) we have (x, O 
r \ 

X 

vrty 
O(jc))>0, for any x G Q with 

||jc|| > 1. Then for any r > 0 such that \\Xr\\ > 1 we obtain 

x.,<S> 
f \ 

x , 0 

vii^Hiy 

X, 

- O (jc )̂ ) > 0, which implies 

vii-^Hiy 
-iKir^.-^/(^.)^o- (8.2.4) 

Because f{x^) = x^-T(^x^), we have T[X^) = JU^X^ H-^^, where jUr > 1 and 

^r ^ ^n i^r)' T̂ he assumption 0 G Q implies (x^,^^) > 0. From (8.2.4) then 

we have 

x,,0 
^ X ] 

IklJ 
ll/'-l ^.+X,-{MrXr+l))^0, (8.2.5) 

which implies 

^, ,3) 
\\\^r\\J 

or 

and finally we have 
vii^Hiy 

ikir^kr-z^jkr^o, 

-r^M.-^M^o, 

x,,0 
f \ 

x^ 

vii-^^iiy 

> > \x. 
ii/'+i 

Because T is bounded, there exists M> 0 such that 
r 

( M 

Ur^-iiyl 

(8.2.6) 

< M , for any 

r > 0. From (8.2.6) we have ||jcj^ < M , for any r > 0 such that ||x;.|| > 1, 

which implies that the set {||̂ J} is bounded, which is impossible. 

Therefore/is without EFE in the sense of Definition 8.2.1 and the proof is 
complete. n 

DEFINITION 8.2.8. We say that a mapping f\H->H is S-pseudo-

monotone on Q if for any x G Q there exists a real number S{x) > 0 such 
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that for any y e Q with \\y\\ > S(^x) we have that (x- y,f[y))>0 implies 

x-yj{x))>0. 

THEOREM 8.2.13. Let [H, (•, •)) be a Hilbert space J: H->Ha mapping 

and Q d Han unbounded closed convex set. Iffis 5-pseudomonotone on Q 
and the problem VI{f, Q) has a solution, then f is without an EFE with 
respect to Q, in the sense of Definition 8.2.2. 

Proof. Indeed, let x* e Q be a solution to the problem VI(f, Q). Then we 

have {x-x^,f{^x,yj>Q, for all x G Q. In particular we have 

( x - x * , / ( x , ) ) > 0 for all X e Q with ||jc|| >max|||jc*||,^(x*),p|, where 

5 = ||P^ (0)||. We suppose that [x^ }̂ ^̂  is an EFE for/with respect to Q. We 

take Xr with r > 8 and such that ||x|| >max(||x,| | ,(J(x,),p|. We have 

- / (x^) - //̂ x^ = (̂  G N^ (x^) and we obtain (considering the 5-

pseudomonotonicity) 

0<(x, - x , , / ( x j ) = (x, -x*,-//,x, -^ ) 

= (x , -x . , -^ ) - / / , (x , -x . ,x , ) 

= (x*-x^,^)-//^(x^ -x,,x^) 

^-y". (^.-^*'^.) = -/^J Ikir-(-^*'^r) <0, 

(since /j,^ = 1 >0X which is a contradiction. Therefore/is without an 

EFE with respect to Q in the sense of Definition 8.2.2. n 

COROLLARY 8.2.14. Let (//,(•,•)) be a Hilbert space f: H -> H a 

completely continuous field and Q cz H, an unbounded closed convex set. Lf 
f is S-pseudomonotone (in particular pseudomonotone) on Q, then the 
problem VI(f, Q) has a solution, if and only iff is without an EFE, with 
respect to Q. 

DEFINITION 8.2.9. We say that a mapping f: H-^ His weakly proper on 
Q if there is p> 0 such that for any x e Q. with \\x\\> p, there exists x* G Q, 
with ||x*|| < ||x|| such that ^ / (x*), x - x*) > 0. 
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THEOREM 8.2.15. Let (//,(•,)) be a Hilbert space, Q cz H, an 

unbounded closed convex set andf: H -^ H a pseudomonotone mapping. If 
fis a completely continuous field, then the problem VI(f, Q) has a solution, 
if and only if the mapping fis weakly proper on Q. 

Proof. We suppose that the problem VI(f, Q) has a solution. Let xo e Q be 

this solution. We have ( / (JCQ ), x - XQ ) > 0 for any jc G Q. Obviously, if we 

take in Definition 8.2.9 an arbitrary real number p > ||xo|| and x* = Xo, then 
we have that/ is weakly proper on Q. Conversely, assume that / is weakly 
proper with respect to Q. Then there exists p > 0 such that for any x e Q 
with ||jc|| > p, we can select an element x* e Q with ||x*|| < ||x|| and 
( / ( x , ) , x - x , y >0. Because / is pseudomonotone we have 

^/(x),jc-jc*)>0. We deduce that / satisfies condition (0) and as a 

consequence, we have that/is without EFE with respect to Q. Therefore,/ 
being a completely continuous field without an EFE, we have that the 
problem VI(f, Q) has a solution. n 

DEFINITION 8.2.10. Let f : H -^ H be a mapping and Q (z H an 
unbounded closed convex set. We say that a mapping T : H ^ H is an x*-
scalar asymptotic derivative of f with respect to Q, // there exists an 
element x* G Q such that 

Considering this notion we have the following result. 

THEOREM 8.2.16. Let (//, (•, •)) be a Hilbert space, f.H^Ha mapping 

and QczHan unbounded closed convex set. Iff has an x*-scalar asymptotic 
derivative T: H -^ H such that 

(T(X),X-X,) , _ .. 
lim ^ ^ , ^ = ( 5 > 0 ( J G 0,+oo), 

then fis without an EFE with respect to Q in the sense of Definition 8.2.2. 

Proof. We have 
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lim iM:^ 

y {f[x)-T{x),x-x}j {T{X),X-X.) 

||JC||̂ +OO,;CGQ I I ^ I P ||x||->+oo,;cGa | | ^ | r 

Let a, P ^ M such that 0< a< d< p. Then there exists p > 0 such that for 

lf[x),x-x,) 
any x G Q with ||jc|| > p we have ^ ^ e \a, y5[. Now, we observe 

ll̂ ll 
that / satisfies condition {6) if we take in the definition of this condition 

p^ >max|p,||x,| | | and y = x*. Consequently, / is without an EFE with 

respect to Q, in the sense of Definition 8.2.2. n 

8.3. Asymptotic Minty's variational inequality and 
condition (0) 

Let (//,(•,)) be an arbitrary Hilbert space,/; H-^ / / a mapping and 

Q c: H an unbounded closed convex set (obviously non-empty). We recall 
that the variational inequality in the sense of Hartman and Stampacchia is 
the following problem: 

[find X* G Q such that 

[{f{x.),x-x.)>0,forallxeQ, 

This kind of variational inequality has many applications in physics, 
engineering and economics. The variational inequality in Minty's sense is 

\find X, eO. such that 

[{f {x),x-x.)>0, for allXeQ, 

We suppose that f : H ^ H \s pseudomonotone. In Theorem 2.2,2 we 
proved that an element x* e Q is a solution of the problem HSVI(f Q) if and 
only if X* is a solution of the problem MVI(f Q). Now, in this section we 
will introduce the asymptotic Minty variational inequality and we will show 
that Theorem 2.2.2 is also valid if we replace the Minty variational 
inequality by the asymptotic Minty variational inequality. 
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DEFINITION 8.3.1. The asymptotic Minty variational inequality defined 
by f and Q is the following: 

{find cJ, > 0 {eventually very large) 

and jc* G Q such that 

I ( / (x), X - jc, ^ > 0 for any x e Q 

satisfying \x\ > 5^. 

AMVl{f,a): 

The element x* satisfying Definition 8.3.1 is called a solution of the problem 
AMVKf, Q). 

THEOREM 8.3.1. Let (//,(•,•)) be a Hilbert space, Q c: H a non-empty, 

unbounded and closed convex set andf: H -^ H a completely continuous 
field. Iff is pseudomonotone then the problem HSVIif, Q) has a solution if 
and only if the problem AMVI(f Q) has a solution. 

Proof. Indeed, if x* G Q is a solution of the problem HSVIif Q), then we 
have 

(^f[x^),x-x^j>0,foranyxeQ. (8.3.1) 

Because/is pseudomonotone, from (8.3.1) we obtain 

^ / (x), X - X* ^ > 0, for any x e Q . 

Now, taking an arbitrary ^ > 0, we have that 

^/(x),X-X,y >0, for any xeCl with||x||>S^, 

that is, X* is a solution of the problem AMVI(f Q). Conversely, let x* G o be 
a solution of the problem AMVI(f, Q). Considering Theorem 8.2.2 it is 
sufficient to show that/is without an EFE with respect to Q in the sense of 
Definition 8.2.1, where p = \\Pa (0)|| . We suppose that/has an EFE, namely 

{xr]r>o' Since ||xJ-^+oo as r->+oo, we consider x̂  with 

max|(5',,||x*||| <| |^J, where & is the real number used in the definition of 

the problem AMVI(f, Q). 

Since ||^*||<||^J5 we deduce that ^ / (x^) ,x^-x*)>0 . We have 

also the following relation: 

f l ^ 

Vr J 
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where t^ e ]0, 1[ (considering the definition of {xr]r>o^' ^^ ^^ '̂ ^ 

ju^ = 1, we have ju^ > 0 and -f{x^)-jUr^r ~^^^ni^r) - ^hen, we 

deduce 

= {x^ -x,,-^)-ju, {x, -x,,x^) = -{x^ -x,,^)-Mr{x, -x,.x^) 

= {x, -x^,^)-ju^{x^ -x,,x^)<-ju[\\xj-{x,,x^) <o, 
which is a contradiction. Therefore,/is without an EFE, with respect to Q, 
in the sense of Definition 8.2.1. Applying Theorem 8.2.2 we have that the 
problem AMVI{f, Q) has a solution, and the proof is complete. n 

COROLLARY 8.3.2. Let iM'', (•, •)) be n-dimensional Euclidean space, 

Cl(z R" a non-empty unbounded and closed convex set andf: M"" -^R'' a 
continuous mapping. Iff is pseudomonotone, then the problem HSVI{f, Q) 
has a solution if and only if the problem AMVI(f Q) has a solution. 

Remark. Obviously, if the problem MVI(f Q) has a solution, then the 
problem AMVIif, Q) also has a solution, but the converse, generally is not 
true. 

In this chapter we introduced the condition {9) for variational 
inequalities with respect to general unbounded sets, and we proved that if/ 
satisfies this condition {9), then/is without EFE in the sense of Definitions 
8.2.1 or 8.2.2 and the problem HSVI{f, Q) has a solution. We recall this 
condition {0). We say thatf: H -> H satisfies condition (0) with respect to 
Q, if there exists p> 0 such that for any x e Q with \\x\\ > p, there exists 
y e Q with \\y\\ < \\x\\ such that (x-y,f[x)j>0. Because we can show 

that, if the problem AMVIif, Q) has a solution, then f satisfies condition (<9), 
we obtain the following result. 

THEOREM 8.3.3. Let {H,{-,•)) be a Hilbert space, Q c Ha non-empty, 

unbounded and closed convex set andf: H -> H a completely continuous 
field. Iffispseudomonotone, then the problem HSVIif, Q) has a solution if 
and only iff satisfies condition {6) with respect to Q. n 
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Remarks. 
(1) It would be interesting to know if Theorem 8.3.1 is valid for other 

classes of mapping different from the pseudomonotone operators. 
(2) From the results presented in this section, we deduce that for 

condition ( ^ to be satisfied for a mapping / with respect to an 
unbounded set Q, it is sufficient to show that the problem AMVI(f, Q) 
has a solution. Therefore, iff is a completely continuous field and the 
problem AMVI(f, Q) has a solution, then the problem HSVI(f Q) has 
a solution too. This result seems to be a remarkable result. 

8.4. Complementarity problems and variational inequa­
lities with integral operators 

The complementarity theory and the theory of variational inequalities 
have many applications to mechanics, elasticity, fluid mechanics, 
engineering and economics. Moreover, in many applications we can have 
complementarity problems or variational inequalities depending on 
parameters. The study of such variational inequalities or of complementarity 
problems is related to the study of bifurcation problems. About this subject 
the reader is referred to the book (Le, V. K. and Schmitt, K [1]), where 
several kinds of bifurcation problem for variational inequalities defined by 
integral operators are considered. Because of this reality, we present in this 
section some results related to variational inequalities defined by integral 
operators. Our results are based on the notion of EFE in the sense of 
Definition 8.1.3. 

Let Q* be a bounded open set in M". We consider the Hilbert space 

Z (̂Q*) and we recall that the norm on the space Z (̂Q*) is 

il^ll" JL r("^) ^^ , for all ue L^ (^Q^). 

This notion will be used throughout this section. For simplicity, we denote 
the Lebesgue measure mesQ* by |Q*|. We suppose we are given a function 
G: Q, X Q, X M -> M satisfying the following conditions: 
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(i) G is a Caratheodory function, i.e., G{x, y, u) is continuous with 
respect to u for almost all (x, j;) e Q, x Q, and measurable with 

respect to the pair of variables (x, j ) G Q, x Q,, for all u e M, 

(ii) |G(X,J^,W)|<>^(X,JF)(^ + ^|W|), a.e. x, y e Q*, for every u e M, 

where a, b>0, and 7Z e L\Q* X Q*). 

The following integral operators are used in many practical problems: 

(I) A : L\Q*) -> L\Q*) defined hy A{u) = AJ^G (•, y, u {y)) dy, for all 

WG Z (̂Q*) where, X G M; 

(II) / : L\a.) -> L\Q.*) defined by 

f [u) = u - A[U) = u - A \ G(^;y,u[yyjdy , for all u G Z \ Q * ) . 

First, we recall the following results. 

THEOREM 8.4.1. Let G'.Q'.XQ', xM-^M be a function satisfying 
properties (i) and (ii). If in addition, the function G satisfies the following 
assumptions: 

(1) for any a > 0, the function 7Z^(x,y) = mdix\Gix,y,u)\ is 

summable with respect to yfor almost x G Q*, 

(2) for any a> 0, lim sup te^ f G (x, y, u) dyl = 0, where Po is the 
mesD->0\u\<a\\ ^* ll/?(a) 

operator of multiplication by the characteristic function of the set 
DaQ*, 

(3) forsomefi>0, limsup P^ f G(x,j^,w(j;))(iv ==0, 
mesD-^0\\u\\</^\\ ^* ^ ^ ll/?(Q,) 

then for any X ^ R the mapping f{u)-u-X\ G[x^y.,u{y^y is a 

completely continuous field from i^(Q*) to L^(Q*). 

Proof. For a proof of this classical result the reader is referred to 
[(Zabreyko, P. P., Koshelev, A. I., Krasnoselskii, M. A., Mikhlin, S. G., 
Rakovshchik, L. S. and Stesenko, V. Ya [1]), Chapter 10, Theorem 1.12.] D 

We cite also the following result. 

THEOREM 8.4.2. Let A: L\Q.) -> L\Q*) be the mapping defined by 
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A{U) = X\ G (•, y, u {y))dy, for all u e L^(Q*)for some A e M.. 

Then the mapping A : L (Q*) -> L (Q*) is continuous and bounded. 
Moreover, if we suppose that 

for every 6* > 0 there is aS >0 such that 

(iii) UG(^X + h,y,u)-G (x, y, u)\ < s, for a.e. x,;; G Q,, 

each heM*^ with \h\^^ <S,x + heQ,, and each ueM, 

then the operator A : Z (̂Q*) -> Z (̂Q*) is completely continuous. 

Proof. The proof is long and based on several technical details that can be 
found in (Isac, G. and Motreanu, D. [1].) n 

We recall condition (HP) in a general Hilbert space. Let (//,(•,)) be an 

arbitrary Hilbert space and Q e 7/ an unbounded and closed convex set. We 
say thatf: H^' H satisfies condition (HP), with respect to Q, if there exists 

an elementX* e Q such that the set Q(x,) = | x e Q : / / ( x ) , x - x , \ < 0 | is 

bounded or empty. 

We know (see Proposition 8.2.5) that, if/satisfies condition (HP% then it 
satisfies condition (0) and consequently,/is without an EFE in the sense of 
Definition 8.2.2. Moreover, if/is a completely continuous field and satisfies 
condition (HP) then the problem VI(f, Q) has a solution. About the integral 
operator considered above we have the following result. 

THEOREM 8.4.3. Let f : L\Q*) -> L\Q*) be the mapping defined by 

f{u) = u-X\ G{^,y,u{^y)yiy, for all u e Z (̂Q*), for some A e M. 

Suppose that the mapping G satisfies assumptions (i), (ii), (iii) defined 
above and also the following assumption: 

(iv) \X[ ^ 
m\W.o.) 

Then the mapping f satisfies condition (HP) with respect to any unbounded, 
closed convex set Q cz Z^(Q*). Moreover the problem VI(f, Q) has a 
solution. 

Proof. By Theorem 8.4.2 we have tha t / i s a completely continuous field. 
Therefore, it is sufficient to show that/satisfies property (HP) with respect 
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to any unbounded, closed convex set Q c Z (̂Q»). Indeed, let Q c Z^(Q.) be 
an arbitrary, unbounded closed convex set and let v» 6 Q, be an arbitrary 
element. We consider the set 

Q(V,) = { M G Q : ( / ( M ) , M - V . ) < 0 } , 

where (•,) is the inner product in Z,̂ (Q»). Then, using (ii) and Cauchy-
Schwartz inequality we derive that 

IJMf - iu,v,) <(X^G[;y,u {y)) dy, u-v,\ 

^I^IM.(o.n.)(-l^*l"^-*H)(iHhlKII)-

If follows that 

thus 

^\A\nna..a.,-pr\H 
for all u e Q(v*). Now taking into account (iv), from the above inequality 
we derive that Q(v*) is bounded. Indeed, let {u„]^^^ be a sequence in Q(v*) 

such that \\u^ || ^^ +00. Then there exists a natural number no such that 

||v, II < \\u^ II for all n > no. From the last inequality we have 

(l-l^l*II^IUo..a))lKII 

^(lKlkWWUn.a)(H^.|"^-^IKIl))lkll 
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which implies 

(l-|^l*II^IUa.n.))lkll 

IKIKI^IWUo.n.)(-|^.|"^+^IKIl) 

p^ II, for all n>nQ, 

Because the last inequality implies a contradiction, the proof is complete, n 
mWUn..n.)^P'\ 

COROLLARY 8.4,4. If all the assumptions of Theorem 8.4.3 are satisfied 

and Q = K, where K is a closed convex con 

complementarity problem NCP(f E) has a solution. 

and Q = K, where K is a closed convex cone in L (Q*), then the 

Now, we consider the particular case with Q = K, where 

K = [ueL^{n,):u>0, a.e,in Q*|. 

We note that Kis a closed pointed convex cone in L\n*) satisfying K =J^. 

In this case we have the following result using directly Definition 5.1.2. 

THEOREM 8.4.5. Letf: L\Q*) -^ L\Q*) be the mapping defined by 

/ (w) = 1/ - A f G[;y,u (> )̂) dy, for all ueL^ (Q*), 

for some X e M. Consider L^(Q*) the cone K defined above. If the following 

assumptions are satisfied: 
(1) the mapping G satisfies assumptions (i), (ii) and (iii) used in 

Theorem 8.4.3, 

(2) *I^IM.(a.n.)<l' 
then the mapping f is without an EFE in the sense of Definition 5.1.2 and 

the problem NCP(f, M) has a solution. Moreover, if b = 0, then the 

problem NCPif, K) has a solution for any Z e M.. 

Proof. We note that/is a completely continuous field on Z^(Q*). Arguing 
by contradiction we assume that there exists an exceptional family of 

elements {u^}^^^ aK for/with respect to K, in the sense of Definition 
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5.1.2. This means that for any r > 0 there exists jUr > 0 such that 
v̂  = ju^u^ + f{ti^) verifies the following conditions: 

(ai) Vr ^ Jft = K(\n our case), 

(a2) £ v̂  (x) u^ [x) dx = 0, 

(0C3) \\u^ II -^ +00 as r -^ +00 . 

Considering (a2), the definition of v̂  and the expression of/we have 

By the last equality and the growth assumption (ii) we have 

ui 
In'- II 

which implies (considering the Cauchy-Schwartz inequality) 

/ ^ .+1^^ 
UI 

\A "H^*l"M.(o.a)lklhHKiri^^^^^ 

H^IWL.a.a 
^ 1 ^ 

a Q J 71—f7 + fe 

V 
w„ 

Letting r 
that 

00 in the last inequality and making use of (as) we obtain 

Now, we observe that the last inequality is in contradiction with assumption 

(2). Therefore, the mapping / is without an EFE with respect to K in the 

sense of Definition 5.1.2. By Theorem 5.1.2 we have that the problem 

NCP(f K) has a solution. Finally, we observe that if/? = 0, then the problem 

NCP(f, K) has a solution for any X e J5? (following the same proof presented 

above). n 

Remark. The study of variational inequalities with an integral operator is 
opened to new developments. 
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8.5. Comments 

We have presented in this book the main ideas developed until now about 
the notion of exceptional family of elements. A given mapping can have, or 
cannot have, an exceptional family of elements, with respect to an 
unbounded closed convex set. When a mapping is without an exceptional 
family of elements, this property can be considered as a generalized 
coercivity condition and (modulo some supplementary conditions) it implies 
the solvability of complementarity problems or of variational inequalities. It 
is evident that the notion of exceptional family of elements is related to deep 
notions and results well known in nonlinear analysis. We presented also this 
aspect. We recommend this book to any reader as a starting point for new 
developments related to this subject. In this moment we do not know if the 
method based on the notion of exceptional family of elements can be 
adapted to the study of order complementarity problem. We suspect that 
many results can be obtained on variational inequalities using the method 
presented in this book. 
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retraction, 152 
Rothe type Theorem, 91 

scalar derivative, 225, 226 
scalarly compact mapping, 253 
scalarly increasing mapping, 164 
scalarly increasing to infinite on 
Q,290 
Schauder Theorem, 74 
Schwartz's inequality, 9 
semi-definite CP, 202 
semi-norm, 11 
Skrypnik degree, 26 
star shaped set, 11 
strict p-copositive mapping, 150 
strict feasibility, 132 
strictly convex Banach space, 45 
supremum, 36 

topological degree, 19 
topological dual, 10 
topological space, 2 
Topological Transversality 
Theorem, 79 
topological vector space, 6 
topology, 2 



338 Leray -Schauder Type A Iternatives 

transverse mapping, 77 
trivial topology, 2 

uniformly convex Banach space, 
45 
uniformly smooth Banach space, 
46 
Urysohn Theorem (or Lemma), 
30 

variational inequality, 59 

weakly inward mapping, 82 
weakly proper mapping, 161 
well-based cone, 39 
jc*-scalar asymptotic derivative, 
302 
zero-epi mapping, 29 
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