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To my family

The motion of Truth is cyclical,
The way of Truth is pliant
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PREFACE
This book deals with the Leray—Schauder Principle, the study of
complementarity problems and the study of variational inequalities. The

first is given by the following classical result.

Theorem 1 [Leray-Schauder Principle]. Let (E,

) be a Banach space,

Q c E an open bounded set such that 0 € Q and f: Q> E a continuous

compact mapping. If fx) = Ax for all x € dQ and 1> 1, then f has a fixed
point.

From Theorem 1 we deduce the following result.

Theorem 2 [Leray—Schauder alternative]. Le? (E,

) be a Banach space,

Q < E an open bounded subset such that 0 € Q and f Q—>E a
continuous compact mapping. Then:

(1) either f has a fixed point in Q or
(2) there exists an element x+ € 7€) and a real number A« € 10, 1] such
that x« = Asf(x+).

Theorems 1 and 2 are considered to be the most important results in
nonlinear analysis and lead to applications in the study of nonlinear
functional equations.

Complementarity theory is a relatively new domain in applied
mathematics with deep connections with several aspects of fundamental
mathematics. The main goal of complementarity theory is the study of
complementarity problems from several points of view. Complementarity
problems represent a wide class of mathematical models related to
optimization, economics, mechanics and engineering. In many
mathematical models the complementarity condition is used to determine
the equilibrium as used in physics or in economics. There exist few books
dedicated to the study of complementarity problems: Some of these are
(Cottle, R. W., Pang, J. S. and Stone, R. E. [1]), (Isac, G. [12] and [26]),
(Hyers, D. H., Isac, G. and Rassias, Th. M. [1]) and (Isac, G., Bulavski, W.
A. and Kalashnikov, V. V. [2])

The study of variational inequalities is another domain of applied
mathematics. Variational inequalities have many applications to the study of
certain problems with unilateral conditions, and there are many papers and
books dedicated to this subject. A complementarity problem is associated
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with a mapping and a closed convex cone, whereas a variational inequality
is associated with a mapping and a closed convex set. It is known that a
variational inequality associated with a mapping and a closed convex cone
is equivalent to a complementarity problem. Until now all applications of

the Leray—Schauder Principle [Theorem 1] have been exclusively dedicated
to the study of existence of fixed points or of existence of solutions of

nonlinear equations. See, for example, the books (O’Regan, D. and Precup,
R.[1] and (Precup, R. [1]).

Considering these applications from the point of view of the Leray—
Schauder alternative [Theorem 2], we observe that the authors considered
only the conclusion (1) of Theorem 2. In this book we show that conclusion
(2) of Theorem 2 has also interesting applications. By using this conclusion
we introduce the notion of an exceptional family of elements for a mapping.
This notion is related to a complementarity problem or to a variational
inequality. The property of being without an exceptional family of elements
is a kind of coercivity property, which is more general than the classical
notion of coercivity.

The notion of an exceptional family of elements introduced in this
book by the Leray—Schauder alternative is the same notion that was

introduced in 1997 in our paper, (Isac, G., Bulavski, V. A. and Kalashnikov,
V. V. [1]), by using the family’s topological degree. In this book we replace

the topological degree by Leray—Schauder alternatives, because in this way
we can define the notion of exceptional family of elements for classes of

mappings for which the topological degree is not defined. The investigation
method based on this notion is simpler and elegant.

Our notion of exceptional family of elements contains as a particular
case the notion of “exceptional sequence of elements” which was

introduced with respect to &, in (Smith, T. E. [1]) and has no relation with
the main result proved in (Eaves, B. C. [2]). Moreover, the main result
proved by Eaves is strongly related to the fact that the convex cone R” has

a bounded base; his result can not be extended to an arbitrary cone in a
Hilbert space or in a Banach space.

The notion of exceptional family of elements presented in this book
has deep relations with fundamental notions of nonlinear analysis and
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shows promise of other new developments. In particular, research shows
that the investigation method based on this notion is a remarkable method
for complementarity theory and for the theory of variational inequalities
with respect to unbounded closed convex sets. The study of existence of
solutions for complementarity problems and for variational inequalities is
unified by this method.

Now, let us briefly describe the content of this book.

Chapter 1 is dedicated to the preliminary notions that are used
systematically in this book.

Chapter 2 defines the complementarity problems and the variational
inequalities used in this book and their equivalences.

Chapter 3 presents the Leray—Schauder type alternatives. The alternatives
are given by their proofs.

Chapter 4 contains several results and facts considered as the origin of the
notions of exceptional family of elements presented in Chapters S-8.

Chapter 5 is dedicated to the results obtained for complementarity
problems by the topological method based on the notion of exceptional
Sfamily of elements.

Chapter 6 introduces the notion of infinitesimal exceptional family of
elements. Here we apply scalar derivatives to the study of complementarity
problems.

Chapter 7 presents several special notions and results related to the notion
of exceptional family of elements. In this chapter we show that the notion of
exceptional family of elements can be defined for more general classes of

mappings and for this definition the Leray—Schauder alternatives are not
necessary. In this chapter we give also a necessary and sufficient condition

for the non-existence of an exceptional family of elements. This result is the
starting point for new and interesting results.

Finally, Chapter 8 is dedicated to the study of variational inequalities by
the method presented in this book. The last subject of this chapter is the
study of variational inequalities with integral operators.
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We note that the Bibliography contains not only the cited papers but
other papers related to this subject.

The goal of many books is to present a collection of the most
significant results on some subjects, obtained in a period of time, but the
main goal of our book is to show a new method, applicable to the study of
complementarity problems and variational inequalities. We would like the
reader to consider this book as a starting point of a new topological method
applicable to the study of complementarity problems and of variational
inequalities. Certainly, this method can be improved, and many new
developments based on ideas presented in this book are possible. In
particular, the study of order complementarity problems by the method
presented in this book is a completely open subject. Considering the fact
that mathematics is a collective work, perhaps other authors will improve
and develop our method.

It is impossible to finish this preface without to say many, many
thanks to my wife Viorica, for her excellent work. She has carefully
prepared the manuscript of this book with unlimited and constant
enthusiasm. [ will keep in my heart her real support.

To conclude, I would like to say that I appreciated very much the excellent
assistance offered me by the staff of Springer Publishers.
June 1, 2005

Prof. G. Isac



1

PRELIMINARY NOTIONS

The reader of this book must have a minimum background of a course
in general topology and a course in functional analysis. However, to
facilitate the lecture we recall in this chapter several preliminary notions.
Certainly, other special notions related to the results presented in this book
will be introduced in each chapter.

1.1 Topological spaces. Some fundamental notions

Let X, Y be arbitrary sets. We use the standard notations x € X for “x is
an element of X, X < Y for “X is a subset of Y” and X = Y for “ X < Y and

Y © X”. The complement of X relative to Yis the set C, X ={xeY¥:x¢ X}.
The set of all subsets of X is denoted by &X). Let {X ,.}iE , be a family of

sets. For the union of this family we use the notation UX ., and for
iel
intersection the notation ﬂX .. If I= N we have a sequence of sets and we

iel

use respectively the notations UXn and ﬂX , - A mapping f of X into Y is

n=1 n=1

denoted by f: X — Y. The domain of fis X and the image of X under f is
called the range of f. For any 4 — X, we write f4) to denote the set

{f(x):xeA}cY. For any B < Y, f'l(B)z{xeX:f(x)eB}. If
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f:X > Yand g : Y > Z are mappings, the composition mapping
x> g( f (x)) is denoted by g - /. We denote the empty set by ¢.

DEFINITION 1.1.1. Let X be any non-empty set. A subset T of ®X) is said
to be a topology on X if the following axioms are satisfied:

(i) X and ¢ are members of 1,

(i1) the intersection of any two members of tis a member of 1,

(i)  the union of any family of members of v is again in 7.

We say that the couple (X, 1) is a topological space. If 7 is a topology on X
the members of 7 are then said to be open subsets of X, or merely open
subsets of X if no confusion may result. The subset 7, = {¢,X } of AX)is a

topology on X called the mrivial topology. It is easy to show that 7; = AX) is
a topology on X called the discrete topology. The topologies 7; and 7; are
not interesting. An interesting topology 7 on X must be such that
T, CTCT,.

DEFINITION 1.1.2. In a topological space (X , r), we say that a subset F
of Xis v-closed (or merely closed) if F'=C,U, where Uis a t-open set.

The closed subsets of X have the following properties:

(1) Xand ¢ are closed subsets of X,

(2) the union of any two closed subsets of X is again a closed subset of
X

(3) the intersection of any family of closed subsets of X is again a
closed subset of X.

Remark. There exist subsets that are not open and not closed.

Given a non-empty subset 4 — X, the open set int4 which is the
union of all open subsets of 4, is called the interior of A. The interior of a

set may be empty. The closed set A, the intersection of all closed sets
containing 4, is called the closure of A. An element x€ int4 is called an
interior point of A. An element x € A is called an adherent point of A.
We say that a subset V of X is a wneighborhood (or merely neighborhood)
of a point x € X if there exists an open set Usuch thatx € Uc V. Let (I ,S)

be any partially ordered set. It is said to be a directed set if given any i and
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any j in I there is k € I such that i < k and j < k. Note that any totally ordered

set is directed. In particular the set &V of natural real numbers is a directed

set.

Let (X,7)be a topological space and I be a directed set. A function
x from / into X is said to be a net in X. The expression x(i) is usually denoted
by x;, and the net itself is denoted by {x;}

iel *

DEFINITION 1.1.3. 4 net {x,}_ is said to be convergent to a point x+€ X

iel
if for any neighborhood V of xs, there exists an index i, € I such that for

any i€ Isatisfying i, <i, we have thatx; € V.

If a net {x,} is convergent to x+, we write limx, =x.. It is known that a

ief

iel

subset 4 of X is closed, if and only if for any net {x,.}iE , in 4 the condition

limx, =x, implies xy € 4.

iel

DEFINITION 1.1.4. We say that a topological space (X , r) is a Hausdorff
space, if and only if given any two distinct points x and y of X, there are
open sets Uand V suchthatx € U,y € Vand UN V= ¢.

It is known that a topological space (X ,r) is HausdorfY, if and only if given

any convergent net {x,}  in X the limit of {x} _ is unique. In this book

ef
we will consider only Hausdorff topological spaces.

Let (X,r,),(Y, rz) be topological spaces and let f: X — Y be a
mapping.

DEFINITION 1.1.5. We say that f is continuous at a point x € X, if for
each t-neighborhood V of y =f(x), f~ l(V) is a r-neighborhood of x.

If f is continuous at any x € X, then in this case we say that f is continuous
on X

The following statements are equivalent:
(1) fis continuous on X,
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(2) for any subset A of X, we have f(Z) c f(4),

(3) if F c Yis n-closed, then f\(F) is w-closed in X,

(4) ifUc Yis n-open, then (V) is 1-open in X.

Convergent nets can characterize the continuity of a mapping. In this
sense we have the following classical result.

A mapping f X — Y is continuous on X if and only if for every net
{x,.}lel in X such that {x,.}lel is convergent to x, the net { f(x )}’_E[ inY

1

converges to f(x).

1.2 Metric spaces

First, we note that a metric space is a set in which we have a measure of the
closedness or proximity of two arbitrary elements in the set. This measure is
obtained by a “distance”.

DEFINITION 1.2.1. Let X be an arbitrary non-empty set. We say that a
Sfunctiond : X x X — R is said to be a metric (distance) on X if:

(1) dxy) =20, forallx, y € X,

2) dx,y)=d(y,x), forallx, y € X,

3) dx,y)=0ifand only ifx =y,

@) dix,z) <d(x,y)+dy,z), forallx, y, z € X.

The couple (X, d) is said to be a metric space. If (X, d) is a metric space, we
can define on X a topology by the following method. For any x € X and any
positive real number g, the d — g-ball is the set:

B(x,e)={yeX:d(x,y)<e}.
Consider the following collection of subsets of X,

7, ={U<:X:f0r any x € U there existsa>0suchthatB(x,a)cU} .
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Obviously X, ¢ € 7, Indeed, if x € X and £> 0, then B(x, &) — X. Since ¢
contains no points, it is true that for each x € ¢ (there is no such x) and any
£> 0, B(x,e) < ¢. We can prove that 7, is a topology on X, named the
topology defined by the metric d. Therefore, any metric space is a
topological space, but the converse is not true. Moreover, any metric space
is a Hausdorff topological space.

Let (X, d) be a metric space and {x,} . beasequence in X.

DEFINITION 1.2.2. The sequence {xn}”E y s said to be convergent to a

point x» of X if given any positive real number &, there is a natural number
ng such that ifn > n,, then d(xs, x,) < &.

If {xn}neN converges to x«, then we write {xn} —> X+, OF X, = ll_rg x,. The

neN
element x« is said to be the limit of {xn}ne , - In a metric space the limit of a

sequence is unique.
Let (X,,d,) and (X,,d,) be metric spaces.

DEFINITION 1.2.3. 4 mapping f: X, = X, is said to be continuous at a
point xy € Xi if, given any positive real number &> 0, there is a positive real

number 8, such that if d,(x,,x) <&, , then d, (f(xo),f(x)) <e.

Let (X, d) be a metric space and {xn} a sequence in X.

neN

DEFINITION 1.24. The sequence {xn}

sequence if given any positive real numbere there is a natural number n,
such that if m, n are natural numbers and m, n> n, , then d(x,,x, ) <&.

oy 15 said to be a Cauchy

DEFINITION 1.2.5. 4 metric space (X, d) is said to be complete if every
Cauchy sequence in X converges to a point of X.

It is known that any incomplete metric space can be densely immersed in a
complete metric space.
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1.3 Some classes of topological vector spaces

In this book we will use only real vector spaces. Given a real vector
space E and a topology 7 on E, the pair (E, 7) (or often denoted by E(7)) is
called a topological vector space if the following axioms are satisfied:

(1) (x,y)—>x+y is continuous on E x E into E,

(2) (4 x) > Ax is continuous on R x E into E.

An important class of topological vector spaces is the class of normed
vector spaces.

Normed vector spaces
A real vector space E is said to be a normed space if to every x € E
there is associated a non-negative real number ||x||, called the norm of x such

that the following axioms are satisfied:

,forall xand y in E,

() e+ <]+l
(ny) ﬂlx“ =]/l]”x , for all xe E and L& R,
(n3) ||x|| = 0 if and only if x = 0.

Remark. From axiom (n;) we have that ||x|| > 0 if x # 0.

A normed vector space will be denoted by (E, ) Every normed

vector space (E,

) may be regarded as a metric space, in which the

distance between x and y is d(x,y)=|x - y||. The topology defined on E by

The sets B(O,l) = {x ek ”x” < 1} and E(O,l) = {x ek: Hx” < 1} are
the open unit ball and the closed unit ball of E, respectively.

this distance is called the topology of the normed vector space (E,

Banach space

A Banach space is a normed vector space, which is complete in the
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metric defined by its norm, that is, every Cauchy sequence is convergent.

Many of the best-known function spaces, used in practical problems
are Banach spaces. We mention just a few types: spaces of continuous
functions on compact spaces, the well-known L,-spaces, certain spaces of
differentiable functions, spaces of continuous linear mappings from one
Banach space into another etc.

Let (El,

]]I) and (Ez,
L:E, > E, is called a linear mapping if L(ax+ By)=aL(x)+ BL(y) for

'2) be Banach spaces. A mapping

all x, y € E, and all real numbers ¢, £ The linear mapping L is called

continuous at x, € E, if for any sequence {xn}neN of elements of E; such

that |x, - x,|, =0 we have that “L(xn) - L(x, )” — 0. If L is continuous at

every x € E; , then we say that L is continuous on E;. A mapping
L:E — E, is called bounded if there exists a number p such that

HL(x)n2 Sp”xl, for all x € E;. We denote by £(E), E,) the set of all

continuous mappings from E; into E,. It is known that a linear mapping
from E, into E, is continuous, if and only if it is bounded.

)= (®,
R, then we denote by E = £(E,, R) and we say that E, is the topological
dual of E\. If for any L € L(E), E;) we define

| =sup| ()
then we have that L — ||Z|| is a norm on £4(E;, E,) and it is known that
(£(E,.E,),

(£

Hilbert space

If we take (E2

), where |x| is the absolute value of x €

b

) is a Banach space. Consequently for any Banach space

), its topological dual E" is also a Banach space.

The class of Hilbert spaces is an important subclass of Banach
spaces. In this book, we will consider only real Hilbert spaces. D. Hilbert (in
his paper: Grundzuge einer allgemeinen Theory der linearen
Integralgleichungen, Leipzig, 1912) initiated the theory of Hilbert spaces.
After many years, John von Neumann (1903-1957) became the first to
formulate an axiomatic theory of Hilbert spaces.
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Let £ be a real vector space.

DEFINITION 1.3.1. We say that a mapping <~, > :Ex E— R is an inner-

product in E if for any x, v, z € E and &, [ € R the following axioms are
satisfied:

(M) (xy)=(r.x),
2) <ax+ﬁy,z>:a<x,z>+ﬂ<y,z>,
3) (x,x>20and (x,x>=0 if and only if x = 0.

A real vector space with an inner-product is called an inner-product
space, or a pre-Hilbert space.

Examples

1L

III.

V.

The real field R is an inner-product space. The inner-product is
defined by <x,y> =X-y.

The n-dimensional real vector space R', with the inner-product

defined by (x,y)zixiyi, where x = (xl,xz,...,x) and y =
i=1

n

( VisVyseees yn) , is an inner-product space.

The space £* of all sequences (X, X,.,...,X,,...) of real numbers such

that Z’x,f <+, with the inner-product defined by

k=1
(x, y> = Zxk ¥, is an infinite dimensional inner-product space.
k=1
This space is between the most important examples of inner-product
spaces.

Let E be the real vector space of sequences (x,,%,,..., X,,...) of real

numbers such that only a finite number of terms is non-zero. This is
an inner-product space with the inner-product defined by

(x,y>=ixkyk, where x = (xl,xz,...,x,,,...) and y =
k=1

(yv)’za---,yk,...),
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V. The real vector space C([a,b],R) of all continuous real-valued

functions on the interval [a, ] — R, with the inner-product

(f.g)= f f(x)g(x)dx is an inner-product space.
VI. The real vector space L’(Q) with the inner-product defined by
( fs g> = L f (x) g (x)dx is a very important inner-product space.
VII. Let E be the Cartesian product of Hilbert spaces
(E.(+), )5 Eno (), ) e
E=E xE,x---xE, ={(%,%,...%,): %, € E,...x, € E,}
is a Hilbert space with the inner-product defined by:
<(x1,...,xn),(yl,...,yn» = <xl,y1>] + (xz,y2>2 +oet (xn,yn> .

Let (E,(,}) be an inner-product space. Two vectors x and y in £

are called orthogonal, denoted by x L y, if {x, y) = 0. Any inner-product
space (E,<,>) is a normed vector space with the norm defined by

”xl]:m, forany xe E.

The norm of any inner-product space (E,(,)) satisfies the following

important properties:

Schwartz’s inequality. For any two elements x and y in E we have
(x,y)' S“x““y" The equality (x,y)l =“x““y“ holds, if and only if x and y

are linearly dependent.

Parallelogram law. For any two elements x and y in E we have
[+ A7+l = oA =2(l + oA7).

A consequence of the parallelogram law is the Pythagorean Formula:
. 2 2 2
ifx Ly, then ||x+ y“ = “x” + “y“ .

DEFINITION 1.3.2. 4 complete inner-product space is called a Hilbert
space. (By the completeness of an inner-product space (E,(,)) , we mean

the completeness of E as a normed space).
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The examples I-III and VI-VII are Hilbert spaces. The examples
described in IV and V are not Hilbert spaces, since these spaces as normed

vector spaces are not complete. We will denote a Hilbert space by (H ,(-,-)) .

The topological dual of a Hilbert space (H ,<-,->) can be identified

(by an isomorphism) with H. We recall also that a Hilbert space is called
separable if it contains a complete orthonormal sequence. (An orthonormal

sequence {x,} _ in a Hilbert space (H,(--)) is said to be complete if for

neN

every x € H we have xzzwxx,xn)xn J)

n=1

Let E£(7) be a topological vector space.

DEFINITION 1.3.3. 4 subset D of E is called bounded if for each
0-neighborhood U in E, there exists A € R such that D < AU.

For example, in a normed vector space (E, (-,->), the sets B(0, 1)
and B (0,1) are bounded sets. The following notions are also useful. We say
that a subset D, < E absorbs a subset D, — FE if there exists 4y € & such that

D, ¢ AD, whenever |4] = [A|. A subset D c E is called radial (absorbing),

if D absorbs every finite subset of E. A subset D < E is circled if AD < D,
whenever |4 < 1. If A c E the circled hull of A is the intersection of all
circled subsets of E containing 4.

DEFINITION 1.3.4. We say that a subset D of E is convex if x € D and
y € D imply that Ax+(1-A)y €D for all scalars satisfying 0 < A< 1.

It is known that the sets
{xlx+(1—/l)y:0£/1sl} and {ﬂx+(1—/1)y:0</1<1}
are called the closed and open line segments. It is easy to show that
convexity of a subset D — E is preserved under translation, i.e., D is convex
if and only if xo + D is convex for every xy € E. If 4, B are convex subsets
of the space E, then int(4), A, A+B and AA(A € R) are convex.

The union of two convex sets generally is not a convex set, but the
intersection of any family of convex sets is a convex set.
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Let 4 be a subset of the space E. The convex hull of A, denoted by
conv(A), is the intersection of all convex sets containing the set 4. It is
known that

conv(A):{ilﬂixi 2 A >O,§i;/1, =1andneN}.

DEFINITION 1.3.5. If D c E is any radial subset, the non-negative real
Sunction on E

x> p,(x)=inf{1>0:xe AD}
is called the gauge, or Minkowski functional of D.

A semi-norm on E is the gauge of a radial, circled and convex
subset of E. The analytical description of semi-norms is given by the
following definition.

DEFINITION 1.3.6. 4 real-valued function p on E is a semi-norm if and
only if

() p(x+y)<p(x)+p(p) for any x,y € E,
2) p(ﬂx):‘/l’p(x)foranyﬂeRander.

Obviously if p is a semi-norm on £ then p(0) = 0 and p(x) > 0 for any x € E.
If D c E is a radial, convex, circled set, then the semi-norm p on E is the

gauge of D if and only if Dy ¢ D < D; where D,={xeE: p(x)<1},
D = {x ek: p(x) < 1} . It is known also that if p is a semi-norm on E, then
p is continuous at 0 € E if and only if D, = {x €E:p(x)< 1} is open in E ,

and also, if and only if p is uniformly continuous on E. The following two
notions are also useful in this book.

Let E(7) be a topological vector space. A subset D of E is said to be
star-shaped if there s at least one xo € D such that (1-4)x,+Axe D for
all x € D and 0 < A < 1.The point xy € D is said to be the star centre of D.

Every convex set is star shaped but not conversely.
A subset D of E is called contractible if there is a continuous

mapping h:Dx[O,l]—)D such that h(x,()):x for all x € D and

h(x,1)=x, for some xo € D. Every star shaped set D c E is contractible
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since the mapping h(x, t) =Ix, + (1 - t) X, (x, t) eDx [0, 1] where x; is the
star centre of D.

Loecally convex spaces

A topological vector space E over R will be called locally convex if

it is a Hausdorff space such that every neighborhood of any x € E contains a
convex neighborhood of x. We can show that £ is a locally convex
topological vector space if the convex neighborhoods of 0 form a base at 0
with intersection {0}.

Analytically, a locally convex topology on E is determined by an

arbitrary family { pa}aeﬂ of semi-norms as follows: for each o € 4, let

U, = {x eE:p, (x)s 1} and consider the family {lU }, where n € N and
n

U ranges over all finite intersections of sets U e € 4). This family U
satisfies the conditions indicated above and hence is a base at 0 for a locally
convex topology 7 on E, called the topology generated by the family
{ pa}aeﬂ ; equivalently, { P, }m is said to be a generating family of semi-

norms for 7. We denote a locally convex space by E(7) or (E (7):4 P} e, ) )

Conversely every locally convex topology on E is generated by a
suitable family of semi-norms; it suffices to take the gauge functions of a
family of convex, circled 0-neighborhoods whose positive multiples form a
subbase at 0. Obviously, every member of a generating family of semi-
norms is continuous for 7.

We note that, we can prove that 7 is Hausdorff if and only if for each x € E,
x # 0 and each family @ of semi-norms generating 7, there exists p € @ such
that p(x) > 0. Any Banach space is a locally convex vector space, but the
converse is not true. There exist topological vector spaces that are not
locally convex spaces. The general topological vector spaces are not very
much used in mathematical modeling of practical problems, but the notion
of topological vector space is a fundamental notion in mathematics.
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1.4 Compactness and compact operators

Let (X ,r) be a topological space. We say that a family {U,.},_E[ of open
subsets of X is an open cover of X if X :UUE . Let {Ui}id be an open

iel

cover of the space X. A collection {Vj} . is said to be an open subcover of
Jje

J

o}, if {VJ :jeJ} c{U,:iel}, (that is, each V; is a U; and {V‘}je./ , is

itself an open cover of X.

DEFINITION 1.4.1. 4 topological space (X,t) is said to be compact if
given any open cover {U, }iE ,» of X, there is a finite subcover of {U ; }’_E .
Let (X,7) be a topological space and 4 — X a non-empty subset.

An open cover of 4 is a collection {U,.}’_

Ac|JU, . Equivalently, {U,}

iel

_, of open subsets of X such that

is an open cover of 4 if {U,.ﬂA} is an

iel iel

open cover of the subspace 4. We say that 4 is a compact subset of X if
every open cover of 4 has a finite subcover. Equivalently, 4 is a compact
subset if the topological subspace (A,TA) is compact, where 1z, is the

topology on A induced by the topology 7. The following theorem is a
classical result.

THEOREM 1.4.1. Let (X,7) be a topological space. The following
statements are equivalent:
) (X , r) is a compact topological space,

(2) for any family {F}  of closed subsets of X such that the

i

intersection of any finite number of the F,is non-empty we have that

E=#¢.

iel
(3) every net in X has a subnet convergent to an element of X.

If A is a subset of topological space (X,7), we say that 4 is relatively

compact in X, if 4 is compact. Suppose we are given two topological
spaces (X,,7,) and (X,,7,).
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DEFINITION 1.4.2. We say that a mapping f: X\ = X, is compact with
respect to a non-empty subset A of X; if f(A) is compact in X, (i.e., if RA)
is relatively compact in X).

Remark. For nonlinear mappings (when X;, X; are Banach spaces) the
continuity is not a consequence of compactness. This is true only for linear
mappings.

Let (E], -1) and (Ez,

be a mapping (linear or nonlinear).

. 2) be two Banach spaces. Let T: £1 —> E,

DEFINITION 1.4.3. We say that T is completely continuous if and only if
the following two properties are satisfied:
(1) T is a continuous mapping,
(2) for any bounded subset A in E,, the set T(A) is relatively compact in
E,.

Remark. If T is linear then, in this case property (2) implies property (1),
but for nonlinear operators this implication is not true.

Compactness and complete continuity are two fundamental notions
in topology and in functional analysis (linear and nonlinear). Complete
continuity will be very much used in this book.

DEFINITION 1.4.4. We say that a mapping f : E1 — E; is a completely
continuous field if and only if, there is a completely continuous operator

T: E\ — Ey such that f has the representation f(x)=x—-T(x), for any
xe Ey (or shortly, f =1-T , where I: E\ — E, is the identity mapping).

The notion of a completely continuous field is related to the notion of
Leray—Schauder degree.

1.5 Measures of noncompactness and condensing
operators

In this section we consider the basic notions connected with measures
of noncompactness and condensing mappings. We give on this subject only
the elementary properties necessary in this book.
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The first notion of “measure of noncompactness” was introduced
by K. Kuratowski in 1930, (Kuratowski, K. [1]). The theory of measures of
noncompactness and of condensing operators received a new impetus after
the work of G. Darbo (Darbo, G. [1}). Now, there exist some expository
articles and books on this subject [(Sadovskii, B. N., [1]), (Danes, J., [1]),
(Banas, J. and Goebel, K., [1]), (Akhmerov, R. R., Kamenskii, M. I,
Potapov, A. S., Rodkina, A. E. and Sadovskii, B. N., [1]).

We give the notions of noncompactness in a general Banach space.
Let (E, H
empty subset of E. We recall that by diameter of A, (denoted by diam(4))
one means the number sup{”x —y“ X, V€ A} . We use B = B(0, 1) to denote

) be a Banach space and let Q be a subset of E. Let 4 be a non-

the open unity ball in E.
DEFINITION 1.5.1. The Kuratowski measure of noncompactness oY) of
the set Q is the number inf{d > 0 : Q admits a finite covering of sets of

diameter smaller than d}.

We say that a set D  E is an g-net of Q if
QcD+gl_3:{x+gb:xeD,be§}.

DEFINITION 1.5.2. The Hausdorff measure of noncompactness () of
the set Q) is the number inf {g >0:Q has a finite € — net in E} .

Now, we indicate some of the properties of the Kuratowski and
Hausdorff measures of noncompactness (denoted below by ).

Property 1 (Regularity). (Q) = 0 if and only if Q is compact.
Property 2 (Nonsingularity). y is equal to zero on every one-element set.

Property 3 (Monotonicity). Q, ¢ Q, implies y(€)) < YA).

Property 4 (Semi-additivity). (Q,UQ,)= max{t,//((.ll ) (Q, )} .
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Property 5 (Lipschitzianity). lt,(/(Q1 )- (//(Qz)l <L,p(Q,Q,), where
L,=LL,=2 and p denotes the Hausdorff semi-metric, i.e.
p(Q,Q,)=inf{e>0:Q +eB5Q, and Q, +sB 5 Q,}.

Property 6 (Continuity). For any Q < E and any €> 0 there is a 6> 0
such that ll//(Q) -~y (9 )l <& for all Q satisfying p(Q,Q,)<&.

Property 7 (Semi-homogeneity). y(AQ)=|4|yw(Q) for any real number
A

Property 8 (Algebraic Semi-additivity). (Q, + Q,)<y(Q)+y(Q,).

Property 9 (Invariance under Translations). y(Q+x,)=w(Q) for any
Xp€ E.

The following properties are important but the proof of each
requires some technicalities.

THEOREM 1.5.1. The Kuratowski and Hausdorff measures of
noncompactness are invariant under passage to the closure and to the

convex hull, i.e., y(Q)= w(ﬁ) = (//(conv(Q)).

COROLLARY 1.5.2. We have the following useful formula:

{Umj Ao (Q).

0<,1,<,10

Proof. This formula is a consequence of properties (1), (3), (4) of Theorem
1.5.1 and of the fact that | ] AQ < conv(4,2U{0}). o

0<Agdy

THEOREM 1.53. Let B = B(0, 1) be the unit ball in E. Then
a(B)=;((B)=O if dim(E)<oo and a(B)=2, x(B)=1 if E is an

infinite dimensional Banach space.
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THEOREM 1.54. The Kuratowski and Hausdorff measures of
noncompactness are related by the inequalities y(Q)<a(Q)<2x(Q).

Now, we give the definition and some properties of condensing
operators. A condensing operator is a mapping under which the image of
any set is in a certain sense “more compact” than the set itself. The degree
of noncompactness of a set is estimated by a measure of noncompactness.
Contractive maps and the completely continuous maps are condensing.

Let (E,|,)-(£,.]1,) and (£,
are given on each space a measure of noncompactness denoted respectively
by w1, 16, 5. We denote by B, the bounded sets in £, (i = 1, 2, 3).

. 3) be Banach spaces. Suppose we

DEFINITION 1.5.3. We say that a mapping f- E\ — E, satisfies the Darbo
condition with a constant k > 0, with respect to the measures of
noncompactness th, th if for any D € B, we have D) € B, and

#: (f (D) <kt (D)

Remark. We note that if f satisfies the Darbo condition with a constant £,
we say also that f'is a k-set Lipschitz mapping.

If 0 < k<1 and f satisfies the Darbo condition with the constant £,
then in this case we say that fis a k-set contraction. If f satisfies the Darbo

condition, the smallest constant k¥ such that g, ( f (D))S/’c,uI (D) will be
denoted by k(u,p,, f). In the case Ey = E; and g =y, = yr, we shall

write k(s f), instead of & (z,, 41, f) .

The following propositions describe the basic properties of mapping
satistying the Darbo property.

PROPOSITION 1.55. Iff: E, —> E, and g : E, > F; satisfy the Darbo
condition with respect to (1, tb) and (b, 1) respectively, then we have

k(ﬂwﬂvgOf)gk(,uw:uzsf)'k(/uz’ﬂ:ng)-
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PROPOSITION 1.5.6. Iff, f>: E\ — E, satisfy the Darbo condition, then
f=2f +(1-2A) f,, with0 < A< 1 also satisfy the Darbo condition and we

have k(ﬂl:ﬂzaf)Slk(/ﬁaﬂz’fl)+(]—ﬂ)k(/ul"uZ’fZ)'

PROPOSITION 1.5.7. Iff, g : Ey > E, and 1, is semi-homogeneous and
semi-additive, then we have

k(s ttys [+ 8) Sk (ptys pio f) + k(145 115, 8)
and for any A € R, also we have the formula,

k(,ul’:uz’ﬂ‘f):Iﬂ"k(ﬂluuzaf)-

H1)>(E2’

on £,) is defined a measure of noncompactness 4 (resp. i), with values in
some partially ordered set (Q, <).

Let (E] ,

. ) be Banach spaces. Suppose that on E; (resp.

DEFINITION 1.54. A continuous mapping f : E, — E, is said to be
(11, th)-condensing if Q < E; and pu, [f (Q)]ZM (Q) imply that Q is

relatively compact.

Remarks.

1. In Definition 1.5.4 we can have f: D(f) > E,, where D(f) c E, is the
domain of definition of fand D(f) is such that D(f) # E,.In this case we
must take Q c D(f).

2. The mapping f'is said also to be (1, 1n)-condensing in the proper sense

if 4, [ f (Q)J < (Q) for any Q < D(f) with the property that Q is

not compact. We note that in a partially ordered set (QJ, <) the strict
inequality o < fmeans a < fand a # £. If the set Q is totally ordered
by the ordering “<”, then in this case the two notions of condensing
mapping coincide. Obviously, a completely continuous mapping and a
contractive mapping, both are condensing with respect to the
Kuratowski measure of noncompactness and any continuous and
compact mapping is also condensing with respect to the Hausdorff
measure of noncompactness.

Suppose that (Q, <) is an ordered convex cone in a Banach space.
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DEFINITION 1.5.5. 4 continuous mapping f: D(f) c E, > E, is said to be

(k, th, po)-bounded if u, [ f (Q)] <ku (Q) for any set Q < D(f), (We
suppose 0 <k.)

When we have E; = E, = E and 1 = 15 = pu we say that fis (k, )-
bounded. In the case 0 < k < 1, (k, w)-bounded means, y~condensing with
constant k. We indicate the following elementary properties of condensing
mappings. We suppose again that (Q, <) is an ordered convex cone in a
Banach space.

PROPOSITION 1.5.8. If the measure of noncompactness w is regular,
then any (k, , 1b)-bounded operator with 0 < k <1 is (w, tn)-condensing
in the proper sense.

PROPOSITION 1.5.9. The composition f, o f, of a (k, th, tb)-bounded

mapping fi and a (k,, (b, 1)-bounded mapping is a (ky ka, t, 1s)-bounded
mapping.

PROPOSITION 1.5.10. If the measure of noncompactness Ly is monotone
and algebraically semi-additive, then the sum fi + £ of a (k, w, to)-
bounded f; and a (ky, 1, to)-bounded f, (where f, f, : E1 — E>) is a (ky + k,,
My, th)-bounded operator.

PROPOSITION 1.5.11. If f; is a (4, th)—condensing mapping and f, is a
(1o, ps)—condensing mapping that maps relatively compact sets into
relatively compact sets, p and [ are regular measures of noncompactness
and Q = R,, then the composition f,o f is a (w, is)-condensing

mapping.

1.6 Topological degrees

A fundamental mathematical tool in nonlinear analysis is the notion
of topological degree, because one of the most important tasks in
mathematical analysis is to compute the number of solutions x» € Q of an

equation f (x) = y,, where Q is a subset of some vector space E, y; is an
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element of a range space F and f: E — F is a mapping. We denote this
number of solutions by N ( RO ) We consider the following

elementary example.

Let E be the real field & and E = F. Let Q = Ja, b[ where a,
be R anda<band f(x)=ax"+a,x"" +-+a, x+a,, a polynomial
function with real coefficients defined on the real field & . In this case by
the classical theorem of Sturm, we have a procedure to calculate the number
N(f,Q,y,), for any y, € R. For a general situation, the estimation of

N(f,Q,y,) is a hard problem. We remark that the number N(f,Q,y,)

may not be continuous in dependence on yy or f. The number N ( f,Q, yo)
suggested the idea to introduce a numerical indicator of the existence of
solutions of an equation f (x)=y, ina given set Q.

L. E. J. Brouwer introduced this indicator, named “fopological
degree” in 1912 and M. Nagumo gave the analytic viewpoint on this notion
in 1951. We note that topological degrees have developed as a means of

examining the solution set of the equation f (x) =y, in the sense of
obtaining information on the existence of solutions, their number and their
nature, when fis a member of some special classes of mappings (continuous
fields or functions in R&", completely continuous fields or functions
satisfying condition (S), in Banach spaces). Now the theory of topological
degree is used in the study of both ordinary and partial differential equations
and in that of more general functional equations. For this book we need to

recall Brouwer’s topological degree, Leray—Schauder’s degree and the
topological degree defined by 1. V. Skrypnik.

I. Degree theory in finite dimensional space (Brouwer’s topological
degree)

Let B" = {x =(x1,x2,...,xn): xeR, i= 2,...,n} be the n-dimensional
Euclidean space. Let Q — R" be a bounded, open non-empty subset and y,
a point of R". We denote by Q the closure of QQ and by &2 its boundary.

Let ¢ (Q) be the linear space of continuous functions from Q into R”
with the norm

b

|71=sup (x)



Preliminary notions 21

where H is the norm ,x’ =max {]x,. f: i=12, ...,n} which is equivalent to the

Euclidean norm.

If f ’(x) is the derivative of the function f at the point x, we denote
by J{x) the Jacobian determinant of f at x, ie., J, (x)=det f '(x). The
vector space Cl(ﬁ) is the space defined as follows: f € Cl(ﬁ) iffe C(ﬁ)
and there is an extension ? of f defined on an open set U(f) containing Q

such that f has continuous first order partial derivatives in U(f). The norm
on C'( 5) is

|71, =suplf, (x)|+ sup

I<i<n 1<, jsn

%,
79

Let f € ¢'(Q) be an arbitrary mapping. We say that x, € Q is a critical
point of fif J, (xo) =0. In this case, f{xy) is a critical value of f. We define

S, =8, (Q):{x0 €eQ: J, (xo):O} . It is known that s, (f(Sf))=0,
where g, denotes the n-dimensional Lebesgue measure and if y, & f (S . ),

then /' (y,) is a finite set.

DEFINITION 1.6.1. Let Q < R" be an open bounded set, f € Cl(ﬁ) and
YoeR'\f (aQuS f). Then we define the (Brouwer’s) degree of f at y,

relative to Q to be d ( [y, ) where
d(f.Qy,)= > signt,(x).
Xefil()’o)
Remarks.
) d(f,Q,yo) is an integer number, i.e., d(f,Q,yo) e 7.
(2) The condition y, ¢ f (6(2) is essential; it cannot be removed.

(3) Often the degree defined by Definition 1.6.1 is also called the
topological degree.

@ From Definition 1.6.1 we have that d(I, Q, yo) =1,if y,€Q and
d(1,9,¥,)=0,if y, € Q, where I denotes the identity mapping.
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f:Q— R" continuous and y € R" \ f (002)

that there exists only one function d : D, — Z (where Z is the set of integer

, 0. 9):Qc R open and bounded,
If o, -—-{(f y) P }, then it is known

numbers), satisfying the following properties:
i) d([,Q,yO)zl,foranyyer,

i) d(f,Q,yO):d(f,Ql,y0)+ d(f,Qz,yo) where Q; ,Q, are
disjoint open subsets of Q2 such that y ¢ f (5 \ (Q, uQ, )) ,

iii) d (h(t,~),Q, y(t)) is independent of ¢ € [0, 1] whenever
h:[0,1]x Q-—» R" is continuous, y: [0,1] - &"is continuous and
y(t)efh(t,aﬁ) forallz € [0, 1].

It is known that this unique function d, satisfying conditions (i) — (iii) is

exactly the topological degree if we extend Definition 1.6.1 from functions
of class ¢ to continuous functions. Denote by p the induced distance by the

norm H considered on R".If 4 — K" is a non-empty subset, we denote by
Py, 4) the distance from a point ye &”" \4 to the set 4.

DEFINITION 1.6.2. Let fe C(ﬁ) be an arbitrary function and
¥, € f(0Q). Define the degree d(f,Q,y,) to be the degree d(g,Q,y,),
where g is any function C' (S_l) satisfying the inequality

f(x)-g(x)| < (3 f (2Q)). (1.6.1)

Remark. In Definition 1.6.2 the integer number d ( g,Q, yo) is the same
for all g € (' (5) satisfying inequality (1.6.1). We note also that in the
definition of the degree d(g,L,,), for ge ' (E_l) satisfying inequality
(1.6.1) it is sufficient to have that y, ¢g(dQ) and not that
YV, € R" \g(@QuSg).

Properties of topological degree in R"

We recall only some fundamental properties necessary in this book.
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Property 1 [Existence]. Let f € C(ﬁ) be an arbitrary function. If
d ( 1,90, yo) is defined and non-zero, then the equation fx) = y, has a

solution in Q.

Property 2 [Rouché’s Theorem|. Suppose that f g € C(ﬁ) and

Vo & F(0Q). If | f - g| < p(o. £ (8Q)). then d (g, ,) is defined and
d(g>Q’y0) :d(f595y0)‘

Property 3 [Homotopy Invariance]. I H (t,x)=h,(x) is a homotopy and
Y, &h (GQ) for any t € [0, 1], then d(k,,Q, yo) is independent of
t €0, 1].

Property 4 [Poincaré-Bohl]. If f,ge C(ﬁ) and for all x € 0Q) the line

segment [: f (x), g(x)] does not contain y,, then d ( f,Q, yo) =
d(g.Qy,).

Property 5 [Domain Decomposition]. Suppose that [ € C(ﬁ) and
Yo ef(@Q). If Q is the disjoint union of open sets Q; (i =1, 2, ....), then
d(f.y,) = Yd(f.Q.y,). (Note that for any yo & f0Q), the

summation is finite).

Property 6 |Excision]. If fec(ﬁ), Yo ef(@Q) and y, eéf(Qo), where
Q, cQ is closed, then d(f,Qy,)=d(f,Q\Qy,¥,).

Property 7 [Boundary Value Dependence]. If f,ge C(ﬁ),
Yo € f(0Q) and =g on 3Q, then d(f,Q,y,) = d(g,2y,).

Property 8. d(f,Q,) is constant on connected components of
R\ f(06).
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IL. Leray—Schauder degree

By the Leray—Schauder degree we extend to the infinite dimensional case
the topological degree presented in the previous section in £” .

Let (E,

Yo an arbitrary element in E. Our aim, in this section is to define for a

”) be a Banach space, Q an open bounded subset of £ and

suitable class of mappings f: Q> E, an integer d(f, Q, y,) which satisfies

the most important properties of the topological degree defined in &£” .

It is known that, it is impossible to define a topological degree d(f, 2, y,) for
any continuous mapping in an arbitrary Banach space. Therefore, in an
infinite dimensional Banach space it is necessary to impose some

restrictions to the mapping f : Q- E, before defining a topological degree
for f with respect to the set Q and the element y, € E.

Let D be a bounded subset in £ and 7 : E — E a completely

continuous mapping. In this case T (D) is a compact set.

A classical result says that, for any € > 0, there is a continuous mapping
T :D—>E whose range TAD) is finite dimensional such that

HT(x) -T (x)” <g, foranyx € D.

Let f: E — E be a completely continuous field of the form f=1—T,
where 7 is a completely continuous mapping. In this case Tl'a Q>F isa

compact mapping. Having found a mapping 7. (for some ¢ > 0) which
approximates the mapping 7" and which has finite dimensional range, we
will use the mapping 7, to define d(f, Q, y,) using the degree of I- T,
relative to an appropriate finite dimensional subset of Q. We have the
following definition.

DEFINITION 1.6.3. Let Q be an open bounded subset of Eandf=1—-T a
mapping such that T :Q—> E is continuous and T (5) is compact. Suppose
that y, € E\ f(0Q). Consider the mapping f,=1-T., where T, is a

continuous mapping defined on Q with finite dimensional range such that
HT(x) -T. (x)” < p(yo,f(aQ)), (x € 5) Consider a finite dimensional
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vector subspace Ey in E containing T, (5) and yo. Let Q, =QNE,. Then
define
d(f.Qy,)=d(£.Q,.5)

Remark. In the theory of topological degree it is proved that Definition
1.6.3 is correct and all are well defined. The integer number d(f, Q, yo)
defined by Definition 1.6.3 is known by the name of “Leray—Schauder
degree”. Therefore the Leray—Schauder degree is defined for any
completely continuous field f=7-T:E— E with respect to any open

bounded subset Q  E and any y, € E\ f(0Q).
Properties of the Leray—Schauder degree

Let (E,

) be a Banach space and Q c E an open bounded subset.
Denote by K (5_2) the set of compact mappings from Q into E and define
K, (g_l)z{f:f =I-T,T EK(?})} . First, we remark that from the

definition of Leray—Schauder degree we have the following elementary
result.

Ifyo € Q, then d(f, Q, yo) = 1 and if yo & Q, then d(f, Q, y,) = 0.

Property 1 [Existence]. If fe K, (5) and d(f, Q, yo) # 0, then there is
Xo € Q such that f(xo) = yo.

Property 2 [Rouché’s Theorem]. Suppose f, geKl(ﬁ) and

v e f(0Q). If “f(x)—g(x)”<p(yo,f(c'BQ)), for all x € Q, then
Yo € g(0Q) and d(f,Q,y,)=d(g.Q,3,).

Suppose that # maps the interval [0, 1] into &K (ﬁ) We say that 4 is a

homotopy of compact transformation on Q if, given £> 0 and a (bounded)
subset 4 of Q, there is 6 =6 (8, A) >0 such that

H(h(t)) (x)- (h(S))(x)” <g,forany x € 4and ¢, s with |t—s] <8.
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Property 3 [Homotopy Invariance]. Let Q be a bounded open subset of E
and let h(f) be a homotopy of compact transformations on Q such that if
fi=I-h(t), then y ¢ f(8Q), (0<t<1). Then d(f,,Qy,) is
independent of t € [0, 1].

Property 4 [Poincaré—Bohl]. Let Q be a bounded open subset of E.
Suppose given fi, f in K, (ﬁ) and consider f, =(l—t)fl +1tf, for any
t e [0, 1. If y, & f,(0Q) for any t € [0, 1], then d(f,,Q,y,) is
independent of t.

Property 5 [Domain Decomposition]. Suppose f € K, ((_2) and
¥, & £(0Q). If Q is the disjoint union of open sets Q; (i =1, 2, ...) then
d(f,Q2.3,)=2d (/.. 5,).

Property 6 [Excision]. Suppose f € K, (5) and y, ¢ f(6€). If Q Q
is closed and y, & (), then d(f,Q,y,)=d(f.Q\Qy,,).

Property 7 [Boundary Value Dependence]. Suppose that f, g € K, (f_l)
andf=gon Q. Then d(f,Q,y,)=d(f,Q,).

Property 8. Suppose f € K, (5) . Then d(f,Q,y,) is the same for all y,
in the same connected component of E\ 0Q).

Remark. We conclude that the properties (1)—(8) of Brouwer’s degree are

valid also for the Leray—Schauder degree, but replacing the continuous
mapping by completely continuous fields.

111 Skrypnik degree

Let (E,|

) be a real reflexive Banach space and Q c E a bounded

open set. We say that a mapping f Q > E is demicontinuous if for any
sequence {xn}ne v C©Q, strongly convergent to x; € Q, we have that
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lim<f(xn),v>:<f(x0),v>,foranyv e E.

(We denote by <~, > the natural duality between E and its topological dual
EN.

DEFINITION 1.6.4. If Dc Q is a subset, then we say that the mapping f is
of class (S)+ with respect to D if for any sequence {xn}ne v ©D weakly

convergent to x,, (xo € D) and limsup < f (xn),x” - xO>S 0 we have that

n—oc

{xn }"E y 1S norm convergent 1o xo.

For more information about mappings satisfying condition (.S )+ the

reader is referred to (F. E. Browder [1]), (I. V. Skrypnik, [1], [2]) and (G.
Isac and M. S. Gawda [1]).

We denote by 7 (E) the set of all finite-dimensional subspaces F of
E such that Q N F # ¢. Let F € F(E) and let u ,u,,...,u, be a basis in F.
We define the finite-dimensional mapping

S (x)zz<f(x),ui>u,.,forer_F, where Q. =QNF.
i=]
The topological degree defined by I. V. Skrypnik is a topological degree for

mappings satisfying condition (S) . The definition of this topological
degree is based on the following result proved in (I. V. Skrypnik [1], [2]).

THEOREM 1.6.1. Let f: Q — E' be a demicontinuous mapping satisfying
condition (S)_ with respect to 8Q and fix) # 0 for x € 0Q. Then there exists

a subspace F,eF (E) such that any subspace F € WE) with Fy  F
satisfies the following properties:

(1) the equation fi{x) = 0 has no solution belonging to 0y,

(i) deg(f;,€,,0)=deg (be Q; 0), where deg is the Brouwer

degree of the finite-dimensional mapping.
Now we can give the following definition.
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DEFINITION 1.6.5. Under the condition of Theorem 1.6.1, the number
deg ( f,Q, 0) =deg ( S Qp ,O) is called the degree (Skrypnik degree) of
the mapping f on the set Q with respect to the point 0 € E.

Remark. In Definition 1.6.5, fi;,, Qy are defined as above and F, is the
finite-dimensional subspace of E determined by Theorem 1.6.1.

The degree defined by Definition 1.6.5 can be extended also to
pseudomonotone (in Brezis’s sense) mappings (I. V. Skrypnik [2]).

Therefore on a Hilbert space (H .(++)), for each mapping f of class (S),

defined on Q (where Q — H is a bounded open set, without zero on its
boundary 0Q) there is defined an integer deg(f, Q2, 0), named the Skrypnik
degree, which has the usual properties of the Brouwer and Leray—Schauder
degree. More precisely, deg(f, €2, 0) has the following properties:

Property 1 [Kronecker]. deg(f,Q,0)=1if 0Q.

Property 2. If Q=Q UQ, and f has no zero on the set
00, V0, U(Q NQ,), then deg(f,Q0) = deg(f,Q,0)+
deg(f,©,,0).

Property 3. If fy and fi are homotopic on Q, then deg(f,,Q,0)=

deg( f;,Q,0). In this property we say that fy and f; are homotopic on Q if
there exists a family of mappings f(A,)(0<A<1) of class (S),, defined

on Q and demicontinuous with respect to both variables such that

£(0.)=/y, f(L)=f and f(A,x)=0(0<A<I,xedQ).

Remark. In Property 3 the condition (S)+ can be replaced by “to be a zero-

closed mapping” or to be a “quasi-monotone mapping”.

We recall (see Carbone, A. and Zabreiko, P. P. [1], [2]) that a
mapping h : H — H is zero-closed if the convergence in norm of

{h(x, )}neN to zero implies that there exists a point x, € conv{x,} such that

h(x.)=0 holds. Also, we say that h: H — H is quasi-monotone if each
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sequence {xn}neN from H, which weakly converges to x«, satisfies the

condition
lim inf (A(x,),x, —x.)>0.

hn—w

If f satisfies condition (S)+ then f'is zero-closed and quasi-monotone, the

converse is not true (see [. V. Skrypnik [2]; see also M. A. Krasnoselskii
and P. P. Zabreiko [1])

Property 4. If f has no zero on the boundary 0Q of Q and the degree
d ( 1,9Q, 0) is non-zero, then there exists at least one zero x+ of f in Q.

For the proof of Properties 1-4 see 1. V. Skrypnik [2].

1.7 Zero-epi mappings

We present in this section the concept of zero-epi mapping. This notion was
defined in 1980 in (Furi, M., Martelli, M. and Vignoli, A. [1]), and

developed by the Italian School (Furi, M. and Pera, M. P. [1]-[3]), (Furi,

M. and Vignoli, A. [1]), (Furi, M., Pera, M. P. and Vignoli, A. [1]), (Ize, J.,
Massabo, ., Pejsachowicz J., and Vignoli, A, [1]), Massabo, 1., Nistri, P and

Pera, M. P., [1]), (Pera, M. P. [1]-[3]). Applications to optimization and to

complementarity theory are given in (Isac, G. [1], [19], {20]) and a
generalization of the notion of zero-epi mapping to k-set-contractions was
presented in (Tarafdar, E. U. and Thompson, H. B. [1]).

We find important, recent contributions to the development of the
theory of zero-epi mappings in (Vith, M., [1] and in (Giorgieri, E. and Vith,
M. [1]). We note that the notion of zero-epi mapping has some relations
with the notion of essential compact vector field introduced in 1962 in
(Granas, A. [1]). The notion of zero-epi mapping has been applied to the
study of some problems related to differential equations and to some
problems considered in nonlinear analysis.

Some deep relations between the notion of zero-epi mapping and
the notion of topological degree exist and are interesting. About this fact the
reader is referred to (Vith, M. [1]) and (Giorgieri, E. and Vith, M. [1]). The
notion of zero-epi mapping is based on homotopy theory, on Urysohn’s
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Lemma and on the Schauder Fixed Point Theorem, while the theory of
topological degree is more complicated and is based on advanced calculus
and on some special results of nonlinear analysis. For more results about the
notion of zero-epi mapping the reader is also referred to (Hyers, D. H., Isac,
G. and Rassias, Th. M. [1}).

Let (E||) and (F,

following classical theorems.

) be Banach spaces. First, we recall the

THEOREM 1.7.1. [Schauder]. If Q is a convex (not necessarily closed)
subset of a Banach space (E,I

.

), then each continuous compact mapping

f:Q — Q has at least one fixed point, i.e., there exists at least an element
x. €Q suchthat f(x.)=x,.

Proof. For a proof of this result, the reader is referred to (Dugundji, J. and
Granas, A. [1]). (See also Chapter 3 of this book). O

We recall that a topological space (X,7) is normal if it is Hausdorff, and
for all closed subsets 4, B — X such that 4 B=¢, there exist two open

subsets U and V' suchthat 4 c U, Bc Vand Un V = ¢. It is known that
every normed vector space is normal.

THEOREM 1.7.2. [Urysohn]. 4 Hausdorff topological space (X,t) is

normal if and only if, for every two closed subsets A and B such that
AN B=¢, there exists a continuous function h : X — [0, 1] such that

h(x) =0 for every x € A and h(x) = 1, for every x € B.

Proof. A proof of this fundamental result of the general topology is given in
(Bourbaki, N. [1]). o

DEFINITION 1.7.1. Let Q c E be a bounded subset and f Q> F a
continuous mapping. We say that f is zero-epi (shortly 0-epi) if and only if
the following properties are satisfied:
1. 0¢ f(aQ) (i.e., fis 0-admissible),
2. for any continuous compact mapping h :Q > F, such that h(x) =0
Jor every xe 0Q), the equation f{x) = h(x) has a solution in Q.
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The notion of zero-epi mapping was defined for the first time in
(Furi, M., Martelli, M and Vignoli, A. [1]) and studied by many authors.
The fundamental properties of zero-epi mappings are similar to the
properties of Brouwer’s topological degree.

Remark. If for an arbitrary element p € F we have that p¢ f(0Q) and the
mapping f — p defined by (f - p)(x)= f(x) - p is 0-epi, then in this case
we say that fis p-epi, with respect to Q0.

Property 1 [Existence]. If f Q> F is p-epi, then the equation fx) = p
has a solution in Q.

Proof. The property is a consequence of the definition. O

Property 2 [Normalization]. The inclusion i:Q—E (ie., i(x)=x for any
x e Q) isp-epiifand only if p € Q.

Proof. If the inclusion i:Q— E is p-epi, then by the existence property
(Property 1) we have that p € Q. Conversely, we suppose that p € Q. It is

sufficient to suppose that 0 € Q and to show that the inclusion i: Q — E is
0-epi. Indeed, let 4 : E — E be a continuous and compact mapping such that
h(x) = 0 for any x ¢ Q. Since 0 € Q, the equation i(x)=/4(x) has a
solution in Q if and only if the mapping 4 : E — E has a fixed point. But,

since h(E) is compact, applying Schauder’s Fixed Point Theorem,

(Theorem 1.7.1), we deduce that 4 has a fixed point and the proof is
complete. O

Property 3 [Localization]. If f Q> F is 0-epi and Q,  Q is an open

set such that f"(0)CQ,, then the restriction of f to Q,, ie,
I :Q, — F is 0-epi.

Proof. Because ™' (0)cQ, and Q, " oQ, =¢, we have that 0¢ £ (0Q,).

Let 4:Q — F be a continuous compact mapping such that s(x) = 0 for
every x € 0Q);. Let A« be the extension of #to Q given by
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h*(x):{o, ifxgﬁ\@,
h(x),if xeQ,.
We have that 4. is a continuous and compact mapping. By assumption, the
equation f(x)=h,(x) has a solution x. € Q. Since ' (0) < Q,, we must
have that x. € Qy, and the property is proved. o

Property 4 [Homotopy]. Let f Q> F be a 0-epi mapping and let
h:Qx [0,1]> F be a continuous and compact mapping such that
h(x, 0)=0 foranyx e Q.If f(x)+h(x,t)#0 for all x € 3Q and for any
t € [0, 1], then the mapping f () + h(-,1):Q— F is 0-epi.

Proof. Consider a continuous compact mapping g : Q — F such that
g(x) =0 for all x € 8Q. The set

D= {x ceQ:f(x)+ h(x,t)=g(x) for somet [0, 1]} is a closed set since
[0, 17 is compact. By Urysohn’s Theorem, there exists a continuous function
w:Q—[0,1] such that y(x) = 1 for every xe D and y(x) = 0 for all x €
0Q. Considering the equation
f(x)=g(x)-h(xw(x)), (1.7.1)
we have that the mapping A, :Q— F defined by
()= (x) - h(xv ()
is continuous, compact and vanishes on 0Q, then, since f is 0-epi, there
exists a solution x= of equation (1.7.1). We observe that x» € D and hence
w(x.)=1.Obviously f(x)+h(x,1)=g(x)and the proof is complete.
O
Property S [Boundary Dependence]. If f Q> Fis 0-epiand g : Q>F
is a continuous compact mapping such that g(x) = 0 for all x € 0Q, then
fteg: Q — Fis 0-epi.

Proof. This property is a consequence of Definition 1.7.1. o
The notion of 0-epi mapping is obviously simpler than the notion of

topological degree. We must put in evidence the fact that the notion of 0-epi
mapping is more refined than the notion of topological degree, in the sense
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that we may have a mapping that has the topological degree zero but it is 0-
epi. (See (Furi, M., Martelli, M. and Vignoli, A. [1}).

There exist several results about the relation between topological
degree and the property to be 0-epi. In this sense, we cite the following
results.

THEOREM 1.7.3. Let (E,

) be a Banach space and Q — E an open

bounded set. Let f :Q—>E be a continuous compact vector field (i.e.,

f=1-1T where T:Q — E is compact) such that p ¢ f0Q). If the Leray—
Schauder degree, deg ( 1., p) #0, then fis p-epi.

Proof. For a proof of this result the reader is referred to (Furi, M., Martelli,
M and Vignoli, A. [1]) or to (Hyers, D. H., Isac, G. and Rassias, Th. M.[1]).
o

Let (E,

Kuratowski measure of noncompactness. Recall that a non-empty bounded

) be a Banach space. We denote by ythe Hausdortf or the

open set Q  E is called a Jordan domain if E\ Q is connected. We say
that f:Q — E is countably k-condensing (on Q with respect to y ) if all

countable sets D = Q with y ( f (D)) > ky (D) are precompact.

THEOREM 1.74. If Q c E is a Jordan domain and f:Q—E is
1
continuously countably 3 condensing without fixed points on A€ then

h =1 —fis 0-epi if and only ifdeg(h,Q);tO.

Proof. For a proof of this theorem and the definition of deg(h,Q) the

reader is referred to (Vith, M. [1]). Other similar results are presented in
(Vith, M. [1]) and in (Giorgieri, E. and Vith, M. [1]). |

The notion of 0-epi mapping was extended to functions defined on
unbounded sets and in particular defined on a closed convex cone. (See the
references cited in the introduction of this section or see (Hyers, D. H., Isac,
G. and Rassias, Th. M.[1]). For this book, we need to present also the
extension of the notion of 0-epi mapping to k-set contraction. The extension
to k-set contractions is due to (Tarafdar, E. U. and Thompson, H. B. [1]).
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If (E,

recall that the measure of noncompactness in Kuratowski’s sense of the set
Dis

) is a Banach space and D  E is a bounded subset, then we

a(D):inf{g>0

D can be covered by a finite number of sets
of diameter less than & '

We presented in section 1.5 of this chapter the properties of the measure of
noncompactness o.

Let (E|) and (F,
continuous mapping. Denoting by « on both spaces the measure of
noncompactness we recall that f is called a k-set contraction, if for each

bounded subset D — E, we have that a( f (D)) <ka(D), where k > 0. We

know that the concept of zero-epi mapping is strongly based on Schauder’s
Fixed Point Theorem and on Urysohn’s Theorem. We note that the concept
of (p, k)-epi mapping is based on Darbo’s Fixed Point Theorem and also on
Urysohn’s Theorem.

) be Banach spaces and f: E — F a

THEOREM 1.7.5 [Darbo]. if (E,

closed bounded convex set, then any k-set contraction f: Q — Q with k €
[0, 1[, has a fixed point in Q.

. ) is a Banach space and Q2 C E is a

Let (E, ) and (F,

bounded subset of E. Let p € F be an element and £ > 0 a real number.

) be Banach spaces and €2 < E an open

DEFINITION 1.7.2. We say that a continuous mapping f : Q > Fis
®.k)-epi if:
1. peA0Q),
2. for each k-set contraction h : Q — Fwith h(x) =0 on 0Q we have
that the equation f(x)— p = h(x) has a solution in Q.
When p = 0, we say that fis (0, k)-epi.

The (p, k)-epi mappings have the following fundamental properties:

Property 1 [Existence]. If f: Q > Fisa (p, k)-epi mapping, then the
equation f(x) = p has a solution in Q.
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Property 2 [Normalization]. 7he inclusion mapping i : Q > E (ie.,
i(x) =x, for any x € Q) is (p,k)-epi with k € [0, 1[ if and only if p € Q.

Property 3 [Localization]. If f : Q - Fisa (0, k) —epi mapping and
F7(0) is contained in an open set Q) < Q, then frestricted to Q is also a
(0, k)-epi mapping.

Property 4 [Homotopy]|. Let f: Q —> F be a (0, k)-epi mapping and
h:[O,l] xQ-—>F a [set contraction with 0< f<k<l1, such that
O0x) =0 forall x € Q. If S (x)+h(t,x) %0 for all xc0Q and for all
te[0,1], then f()+h(1,-):Q~ F is a (0, k- —epi mapping.

Property 5 [Boundary Dependence]. Let f : Q > Fbea 0, k)-epi
mapping and g © Q —> F a [set contraction with 0< f<k <1 and such
that g(x)=0forallx € 0Q. Thenf+ g: Q - Fis 0, k£ — P-epi.

The proofs of properties (1)~(5) of (p, k)-epi mappings are similar to the
proofs of p-epi mappings, but with several technical details, specific to k-set
contractions. For the proofs of these properties, the reader is referred to
(Tarafdar, E. U and Thompson, H. B. [1]) or (Hyers, D. H., Isac, G. and
Rassias, Th. M. [1]).

1.8 Convex cones

We recall in this section several notions and results related to
convex cones in topological vector spaces. Let E(7) be a real topological
vector space. We suppose that E is endowed with an order structure defined
by a reflexive, transitive and anti-symmetric binary relation, denoted by
“<* and such that the following axioms are satisfied:

ON)x<yimpliesx +tz<y+zforallxy,zekE,

0,) x <y implies Ax < Ay, forallx, y € Eand A€ R, \{O} .

Obviously, the set £, = {x ek |x > 0} satisfies the following properties:

c) E. +E CE,,

) AE CE , forall le R,
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;) E. N (-E,)={0}.

We say in this case that E, is a pointed convex cone in E. Generally we

suppose also that E, is a closed set with respect to the topology 7 given on
E.
Now, we introduce the following notion.

DEFINITION 1.8.1. We say that a non-empty subset K c E is a convex
cone if the following assumptions are satisfied:

k) K+ KcK,

k) AKc K, foranyleR,.

We say that the convex cone K c E is pointed if K satisfies also the
following assumption:

k) K N (-K)={0}.

Given a pointed convex cone K — E, we can define an order
structure on E by, x<y < y—xe K . This ordering is compatible with the

vectorial structure of E. In a topological vector space, we will consider only
closed, pointed convex cones. An ordered vector space will be denoted by

(E,K) and an ordered topological vector space by (E(7), & ) In this
book we will consider only closed pointed convex cones in a Hilbert space
(H,(--)) or in a Banach space (E,

”) We recall also that an ordered

vector space (E , K ) is a vector lattice if and only if, for every pair (x, y) €
E x E, the supremum (denoted by xv y and the infimum (denoted by
x A y), with respect to the ordering “<” defined by K , exist in E.

Let (E,

[) be a Banach space and let E" be the topological dual of

E. If <,> :ExE — R is a bilinear form satisfying the separation axioms,
that is:

$1) <xo,y> =0 forally € E" implies xo =0,

s7) (x, Yo > =0 for all x € E implies y, =0,

then in this case we say that (E,E‘,(-, >) is a dual system, or a duality

between E and E*. A dual system of Banach spaces will be denoted by
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Let <E, E*> be a dual system of Banach spaces. If K c F is a
pointed convex cone, we define the dual of X by:
K’ :{yeE* :(x,y)ZOforanyxe]K}.
The set K is a closed convex cone. The polar of K is defined by
K° :{yeE* :(x,y>£0foranyxeK}.
We have that K°=-K" and using the Bipolar Theorem (Peressini, A. L.
[1]), we can show that K~ = (K ’ )* = K (because we supposed that K is

closed). The duality of cones is more interesting in Hilbert spaces than in
Banach spaces, since the dual is in the same space. Indeed, let (H ,<-,-)) be

a Hilbert space and K — H a closed pointed convex cone. In this case we
have

K*={yeH:<x,y>20f0ranyxeK}.

The following result has some consequences for relations between &K and
K.

THEOREM 18.1. If (H,(-,-)) is an arbitrary Hilbert space and K < H is
a closed pointed convex cone, such that K = {0}, then K N K" #{0} .

Proof. Consider an arbitrary element we K \{O}. Using a classical

separation theorem (see Schaefer, H. H. [2]) for {-u} and K (since

—u ¢ K) we obtain a continuous linear functional ¢ such that ¢(—u) < -1

and ¢(x) > -1 for all x € K . The functional ¥ : K — K defined by:

‘F(x)z@—¢(x),f0rallxe[/§

is strictly convex weakly lower semicontinuous and coercive (i.e.,
lim ‘P(x)=+oo ). By a classical variational result, we obtain an element

>

x+ € K suchthat ¥(x,)= ilelg ¥ (x), which implies

d
ET (x + tx)ll:0 >0, forallxe K ,

that is ,
(x.,x)2p(x)20 forall xe K and (x.,u}>¢p(u)>0.
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Therefore we have x+ #0 and x, e K N K" . O

An immediate consequence of Theorem 1.8.1 is the fact that in a Hilbert
space (H ,(-,-}) , given a closed pointed convex cone K < H , we can have
one of the following interesting situations:

(i) Kc K" (K issub-adjoint),

(i) K o K" (K is super-adjoint),

(iii) K= K* (K is self-adjoint).

Remark. The general situation, ie, K"K #K and KNnK =K, is
also possible.

A particular class of cones, in an arbitrary Banach space (E,

with many applications is the class of well-based cones. Suppose that

K c E is a closed convex cone. Let B © K be a non-empty convex
subset. We say that K is generated by B if

K=|JAB={x=Ab:Ae R, and be B}.

A20

DEFINITION 1.8.2. We say that a non-empty convex subset B of K is a
base for K if each element x € K \{0} has a unique representation of the
Jormx = Ab, with A>0 and b € B.

The following results are known.

THEOREM 1.8.2. Let E(7) be a locally convex space and K E a
convex cone. A subset B — K is a base for K if and only if there is a
strictly positive linear functional f on E (i.e. fx)> 0 for any x € K \{0})
such that f (1)N K =B.

THEOREM 1.8.3 [Krein—Rutman]. In a separable Banach space every

closed pointed convex cone has a base.
Proof. A proof of this result is in (Krein, M. G. and Rutman, M. A. [1]). ©

Remark. Any closed convex cone, which has a base, is pointed.
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Let E(7) be a locally convex space.

DEFINITION 1.8.3. We say that a convex cone K c E is well based, if it
has a bounded base B suchthat 0 ¢ B .

It is known that, if a pointed convex cone has a closed base B, then K is
closed.

The next theorem is a characterization of a well-based cone K by a
topological property of its dual & .

THEOREM 1.8.4. Let E(7) be a locally convex space and K c E a
pointed convex cone. The cone K is well based if and only if its dual

K" has an interior point with respect to the strong topology ,B(E " E ) .

Proof. The reader can see a proof of this result in [(Isac, G. [20]) or in
(Jameson, G. [1])]. O

The locally compact cones form a particular sub-class of the class
of well-based cones. It is known that if E(7) is a locally convex space, then a
pointed convex cone K c E is locally compact if and only if there exists a
r-neighborhood U of zero such that U n K is a compact set.

THEOREM 1.8.5 [Klee]. Let E(7) be a locally convex space and K c E a
pointed convex cone. The cone K is locally compact, if and only if it has a
compact base.

Proof. For a proof of this result the reader is referred to (G. Isac [20]). |

Another particular class of convex cones in Banach spaces is the class of
Bishop—Phelps cones.

Let (E, ) be a Banach space and let E’ be its topological dual.
Given 0 <k <1 and f € E" with ||f]| = 1, we consider the set
K(f,k)z{er:k”x”Sf(x)}.
We can show that K (f,k) is a pointed convex cone with non-
empty interior. Moreover, K (f,k) has a bounded base. The cone
K (f,k) is called the Bishop-Phelps cone. It is known that if 1 <k, then
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K(f,k) = {0}. Finally, if (H,(.-)) is a Hilbert space and {x,}  isa

eN
complete orthogonal system, then in this case we know that any element

x € H has a representation of the form x = Z(x, xn>xn . We can prove that
n=l1
the set K = {x el: (x, X, > 20 foranyne N} is a closed convex cone in

H . The reader can find other examples of convex cones in the books (Isac,
G. [20]), (Schaefer, H. H. [2]) and (Peressini, A. L. [1]) among others.

1.9 Projection operators

The projection operators play an important role in this book. The
main results presented in Chapters 3-8 are based, in particulars, on
projection operators. We will give some results on projections operators
onto closed convex sets in Hilbert spaces, onto closed convex cones, onto
arbitrary closed sets in Hilbert spaces and we will introduce the notion of
generalized projection in Alber’s sense. First, we recall the following result.

Proposition 1.9.1. Let (E,

) be a Banach space and let E' be the dual of
E If {xn}nE v is a sequence in E weakly convergent to an element x, € E,

then we have ”xo ” <liminf

n—w

xn

Proof. The sequence {x,}  is bounded (because it is weakly convergent).

neN

(see (Brezis, H. [1], Proposition IIL.5). For any f € E, the sequence
{( f.x, >}nEN is convergent to < f ,x0> (and in particular it is bounded). If fis

an arbitrary element in £, then we have:

(fox )] =17

and computing the lim inf we obtain

(.%,)| <[/ lim inf

n—w

Considering (Brezis, H. [1], Corollary 1.4) we obtain
Nxo H = supKf, X, >| < “f” lim inf“xn |] <liminf

“/‘Hgl n—>%0 n—>w

x,|,foranyne N,

x'l

xn
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THEOREM 1.9.2. Let (E,

closed convex set. For every x € E, there exists an element xy € D such that
“x - X, “ < ||x - y[[ , for any y € D. Moreover, if E is a Hilbert space, then the

) be a reflexive Banach space and D — E a

element xq is unique.

Proof. If xe D, then the element x, is x itself. Suppose that x € E \ D.
Consider the continuous function ®@: D — K defined by

1
‘D(y)=5||x‘y

We have —00<a=in1f; (D( y). It is sufficient to show that there exists an
ye

Z,foreveryyeD.

element x, € D such that d)(xo):a. Indeed, the definition of the greatest

lower bound implies that for every n € /N there exists x, € D such that

1
()] < —.
(x,) a+n

The sequence {x,}  is bounded, and because E is reflexive there exists a

neN

subsequence {xnk }k . of {xn} weakly convergent to an element Xx,.

neN
Because D is closed and convex it is weakly closed, and hence we have that

xo € D. Applying Proposition 1.9.1 to the sequence {x—xnk}

keN

considering the fact that a+—I—ZCD(xnk) and applying to the last
Ry

inequality the operator lim inf, we obtain @ >®(x,)>a . Therefore we
have that Hx - X, ” S“x - y“ for any y € D. When E is a Hilbert space, in this

case the function ®(y) is strictly convex, which implies that x, is unique. 0

The element x, defined in Theorem 1.9.2 is called a projection of x onto D
and it is denoted by x, € P, (x) . In the case when E is a Hilbert space, we

denote x, = P, (x), and we have

"x -P, (x)” < ”x -y

, foranyyeD.

Remark. It is known that the projection of any element x € E onto a closed
convex set D € E is also unique if (E,

. ) is a uniformly convex Banach
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space. In this case, the existence and the uniqueness are obtained by another
proof, not similar to the proof given above.

Now, we consider the case of Hilbert spaces.

THEOREM 1.9.3. Let (H ,(~,-)) be a Hilbert space, D — H a closed

convex set and x € H an arbitrary element. The following statements are
equivalent:

i) <x—PD (x),PD (x)—y>20,for all ye D,
ii) “x - P, (x) I <|x - y|| for all y e D.

Proof. Indeed, if (i) is satisfied, then we have
“x ~P, (x)“2 —|x- y“2 = “x ~P, (x)“2 - “(x -P, (x)) + (PD (x)- y)“2

2
= —2<x —P,(x),P,(x)- y> - HPD (x)- y“ <0,
which implies that (ii) is satisfied. Conversely, suppose that (ii) is satisfied.
In this case, for an arbitrary ye D and all ¢ € ]0, 1] we have

be=2, () =[x [+ (1-0) B, (1) ][

= —2t<x - P, (x),P,(x)- y> - ”PD (x) —y"2 .
Dividing by # and computing llmol we obtain formula (i). o

Remark. The projection operator P, satisfies also the following properties:
iii) HPD (x1 ) -P, (x2 )“ < Hx1 - X,

iv) <PD (x)=Py(x,),x - x2> > “PD (x)-P, (x, )l
For a proof of these properties, the reader is referred to (Baiocchi, C. and
Capelo, A. [1]). See also (Zarantonello, E. H. [1]). From property (iii) we
deduce that P, is a non-expansive operator and property (iv) means that P,
is a monotone operator.

,forany x,,x, e H,

2
,forany x,,x, € H.

Now, we give an important characterization of the projection
operator P, using the notion of normal cone. First, we remark that Theorem
1.9.3 can be put in the following equivalent form:

THEOREM 1.9.3 b. Let (H ,(-,-)) be a Hilbert space, D — H a closed

convex set and x € H an arbitrary element. Then the projection of x onto D
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(denoted by P(x)) is the unique element z € D such that <x - Z,X— u> >0,
forany u € D.

If D c H is a closed convex set and x« € D, then the normal cone of the set
D at the point x- is by definition

N, (x*)z{geH:(f,u—x&SO,forallueD}.

THEOREM 1.94. If D ¢ H is a closed convex set and x € H is an
arbitrary element, then we have that z = Pp(x) if and only if x € z + Np(z).

Proof. The theorem is a consequence of the definition of the normal cone
and of Theorem 1.9.3.b. Now, we consider the particular case, when the set

D is a closed convex cone K in a Hilbert space (H ,(-,-}). In this case the

projection operator P, () has some particular properties. O

THEOREM 1.9.5 [Moreau’s Decomposition Theorem]. Let (H ,(-,-)) be
a Hilbert space, K,, K, two closed convex cones in H. If K and K, are
mutually polar, ie, K,= K,and K =K,, then for any x, y, z € H the

Jollowing properties are equivalent:
1) z=x+yxe K,,ye K, and{x, y)=0,

2) x=P (z)and y = Py, (2).

Proof. Let x, y, z € H be arbitrary elements satisfying property (1). In this
case we have (z—x,u—x)=(y,u—x)=(y,u)<0, forall u € K, and by

Theorem 1.9.3 a, (i) we have that x = P, (z) . Similarly we can show that
y="F (z) . Hence, property (1) implies property (2). Conversely, we have

that (2) implies (1). Indeed, if z € H is an arbitrary element, we put
x =Py (z) and y' =z —x. For every u € K,, by Theorem 1.9.3 a, (i) we

have

(z—xu-x)<0. (1.9.1)
If u = Ax, with 4> 0, then from (1.9.1) we deduce

(A-1){y"x)<0. (1.9.2)

Since 4 — 1 can be positive or negative, we obtain (using (1.9.2)) that
(y', x> =0, which implies (using (1.9.1)) that (y’,u) <0 forall u € K,

12
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that is, ¥ € K,. Hence, x, )/, z satisfy property (1) and by a similar
calculus, as in the proof of implication (1) = (2) we obtain that
y'= P (z), and the proof is complete. O

A consequence of Theorem 1.9.5 is the following result.

COROLLARY 1.9.6. If K < H is a closed convex cone, then Py () is a

positive homogeneous operator, i.e., Py (ax)=aPy (x) forall ac R, and
allx € H.

Proof. Indeed if we take in Theorem 1.9.5 K, = K and K,= K°, then
we obtain x =Py (x)+ P, (x), with <PK (%), P (x)> =0. For an arbitrary
a € R, we have ax=aP(x)+aP,(x), where aP(x)ekK,
aP, (x)e K° and <aPK (x),aP,, (x)> =0. Since the decomposition

given by Theorem 1.9.5 is unique, we obtain in particular that
aPy, (x):PK (ax). o

THEOREM 1.9.7. Let (H ,(3-)) be a Hilbert space and K — H a closed

convex cone. Forx € Handx« € K we have that x, = P, (x) if and only
if the following properties are satisfied:

1) x, —xe K",

2) (x‘,x,,—x>=0.

Proof. First, we suppose that x" satisfies (1) and (2). In this case, for every
ye K we have

Iy =l =]y -
The uniqueness of P, (x) implies that x. = P, (x) .

’ +2<y,x* —x>+ X, —)c“2 =||x, —x“z.

Conversely, suppose that x« = P, (x) If (1) is not satisfied, then

there exists an element ¥ € K such that <ijr (x)- x,u> <0 and for some
t> 0 we have

2t<PK (x) - x,u> +1 ”u"2 <0
which implies
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1B (x) + 21— <[ (x) o - (1.9.3)
Because Py (x)+me K, and considering the definition of P (x), we
observe that (1.9.3) is impossible. Therefore, relation (1) is true. Also, if (2)
is not satisfied, then we have <PK (x), P (x)- x> >0 (since (1) is
satisfied). Then there exists p> 0 such that
~t{Py (x), B, (x)—x) + 22 |P; (x)[ <0, forallze]o, o[,
which implies
“(1 - t) Py (x) - x“2 < “PK (x) - x'
But the last inequality is in contradiction with the definition P, (x) [since
(1-1)P (x)eK]. n)

* forsomere Jo.q[.

Finally, for closed convex cones we remark also the following property
) HPK (x)” < ||x" for any x € H.

Property (v) is a consequence of property (iii). Indeed, we have that x; = x
andx,=0e K.

Now, we consider the last situation, the case of a generalized
projection operator, useful in the transformation of a variational inequality
in a fixed point problem, when the mapping is from a Banach space to its
topological dual. First, we need to recall some well-known notions in the
theory of the geometry of Banach spaces.

Let (E,[H
for two elements x, y € E which are linearly independent, we have
I+ ¥ <|]x| +]l¥|. The strict convexity is equivalent to the following
condition:

) be a Banach space. We say that E is strictly convex, if

<l1.

== x2y=|*=2

The Banach space E is said to be uniformly convex, if for any two sequences
{x,}, v}, in E such that y,|=1 and lim|x, +y,|=2,

} =0 holds. The uniform convexity is equivalent to the following

X |[=

n

limuxn -,
property. for any £> 0 with 0 < £ < 2, there exists 6> 0 depending only on
&> 0 such that
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xX+y

<1-4

foranyx,y e Ewith||x||=||=1 and|jx -} 2 &

It is known (Takahashi, W. [1]) that any uniformly convex Banach space is
strictly convex. Consider the set S, = {x ek: “x“ = 1} . We say that the norm

of E is uniformly Fréchet differentiable (and we say in this case that E is
uniformly smooth) if the limit
el I

=0 t

is attained uniformly for (x,y)e S, x S,.

Let £ be the topological dual of £. To each x € E we associate the
set

J(x)={feE S ()= =T
The multivalued mapping J : E — E is called the duality mapping of E. For
each x € E, J(x) is a non-empty bounded, closed and convex set, J(0) = {0}
and for any x € E and any real number & we have J(ax) = aJ(x). In the
definition and the applications of the generalized projection we need to have
E a uniformly convex and a uniformly smooth Banach space. In this case
the duality mapping J is a single-valued mapping norm-to-norm continuous.
We cite as uniformly convex and uniformly smooth Banach spaces, the
spaces I, [ and W', pe ]1, 0 [. Also, it is known (Takahashi, W. [1]) that
the duality mapping J is a monotone operator and it is strictly monotone, if
the space E is strictly convex. About the proofs of the results presented
above (related to the geometry of Banach spaces) the reader is referred to
(Takahashi, W. [1]) and (Cioranescu, I. [1]). Now, we can define the
generalized projection, using the construction given by Y. Alber (Alber, Y.

L[1]).

Let (E,
space. Denote by E~ the topological dual of E. We introduce the functional:
V(p,x)= ||(p”i -2{p,x)+ ”x“i , for any (p,x)€ E" x E.

We have that V:E'xE— R. The functional V(-,)) has several nice
properties, but we will put in evidence only the properties necessary to
define the generalized projection:

1. W@, x) is continuous,

{) be a uniformly convex and uniformly smooth Banach
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2. W@, x) is differentiable with respect to ¢ and x,

3. W@, x)=0,forall (p,x) € E" X E,

4. for any @ (fixed) we have that V(@, x) —> o« if ||x|| = o,

5. W@, x)=0 ifand only if p =J(x).
Let Q c E be a closed convex set. Using property (4) of the functional
@, x), Theorem 1.2 from (Vladimirov, A. A., Nesterov, Yu. E. and
Chekanov, Yu. N. [1]), property (5) of the functional ¥(¢, x) and the strict
monotonicity of the mapping .J, we have that the minimization problem

givenp e E', find x, eQCE,
such that V((p, X, ) = Lrelgf; V((o, xw)

has a solution and the solution is unique. The operator I1,:E" > QcCE
defined by II, ((p) =x, is called the generalized projection operator. The

generalized projection operator has several interesting properties, but we
need to put in evidence only the following properties.

THEOREM 1.9.8. Let (E,

Banach space. Let Q c E be a closed convex set. Then the following
properties hold:

1) The operator 11, is J-fixed in each point x € Q, ie,
I, (J(x)) =x.

2) I, is monotone in E, ie, for all ¢,p,€E we have
(0, ~ 0,1 (@) - (9,)) 2 0.

3) For any ¢ € E* we have <¢—J(HQ ((o)),HQ ((p)—x>20 Jor all

x e Q.
4) Tl is uniformly continuous on each bounded subset of E.

) be a uniformly convex and uniformly smooth

Proof. For the proof of the properties 14 the reader is referred to (Alber, Y.
I. [1]) (See also Chapter 2, section 2.3). o
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COMPLEMENTARITY PROBLEMS AND
VARIATIONAL INEQUALITIES

We present in this chapter two classes of mathematical models,
used in applied mathematics. The first class comprises complementarity
problems and the second class variational inequalities. We present the
necessary  definitions and some important relations between
complementarity problems, variational inequalities and the fixed-point
problem.

2.1. Complementarity problems

The study of complementarity problems has developed sufficiently

to call it Complementarity Theory. Now we consider it as a new domain of
Applied Mathematics, having deep relations with several domains of
fundamental mathematics and with numerical analysis. Complementarity
problems represent a wide class of mathematical models related to
optimization, economics, engineering, mechanics, elasticity, fluid
mechanics and game theory.
It is important to note that the complementarity condition is a kind of
general equilibrium concept that includes the equilibria of physics and
economics. Equilibrium in physics has long been well known. Equilibrium
in economics has become central to the understanding of competitive
systems. One example is the general economic equilibrium problem in
which all commodity prices are to be determined. A second example is the
general financial equilibrium of markets in which firms compete to
determine their profit-maximizing production outputs.
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Many authors have studied equilibria of economic systems by
several mathematical methods and from several points of view, but the
recent development of Complementarity Theory helps us to understand
better a number of more complex aspects of economic equilibrium. In this
sense we cite the books (Isac, G. [20] and (Isac, G., Bulavsky, V. A. and
Kalashnikov, V. V. [2]). A deep study of equilibrium in Economics help us
to understand better the non-equilibrium state of particular economical
systems.

There exist several kinds of complementarity problems [see books
(Isac, G. [12], [20]), (Isac, G., Bulavski, V. A. and Kalashnikov, V. V. [2]),
(Hyers, D. H,, Isac, G. and Rassias, Th. [1])]. In this book we present only
the most important kinds of complementarity problems, from the point of
view of applications and related to the Leray—Schauder type alternatives.
We must keep in mind the fact that Complementarity Theory stands at a
point on the crossroads of applied mathematics, fundamental mathematics
and experimental mathematics related to numerical solvability. The
connection of Complementarity Theory with Variational Inequalities
Theory, with Fixed Point Theory and with Nonlinear Analysis is an
important factor in its development as a theory. The literature on
complementarity problems is now huge [See the references cited in [(Cottle,
R. W., Pang, J. S. and Stone, R. E. [1]), (Isac, G. [12], 20]), (Isac, G.,
Bulavski, V. A. and Kalashnikov, V. V. [2]), (Hyers, D. H., Isac, G. and
Rassias, Th. [1]), (Murty, K. G. [1])].

A. The classical complementarity problem

First, we note that many problems arising in fields such as economics, game
theory, mathematical programming, mechanics, elasticity theory and
engineering, several equilibrium problems can be stated in the following
unified form.

Consider the vector space &” and the classical inner-product
(x,¥)=>"xy,x=(x,), y=(»,) e R" . Suppose that R” is ordered by the
i=1
closed pointed convex cone & and suppose given a function f: K — K.

The classical complementarity problem defined by the function f and the
convex cone K’ is

CP(f,Rf):{

find x, € R such that
f(x,) e R and (x,, f (x,))=0.
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The origin of this problem is perhaps in the Kuhn—Tucker Theorem, known

in nonlinear programming (which gives the necessary optimality conditions,
under some differentiability assumptions), or perhaps in the old and
neglected paper by Du Val published in 1940 (Du Val, P. [1]). We note also
that the origin of the term “complementarity” is in the paper by Cottle
(Cottle, R. W. [1]) published in 1964. Initially, this problem was called, in

the linear case (i.e., when f(x) = Ax+b, where 4 is a matrix and b is a

vector), the “copositive problem”, the “fundamental problem of
mathematical programming” and the “complementarity problem”. It seems
that the term “complementarity problem” was proposed by R. W. Cottle in
1965 and used in the papers of R. W. Cottle, G. J. Habetler and C. E.
Lemke. From the mathematical point of view, the origin of the term
“complementarity” is the following fact.

n

i=.

Let x, = {x*i} , be a solution of CP(f,Rf). We say that x« is
nondegenerate if at most n components of a 2n-components vector
(x*, f (x, )) are equal to zero. Otherwise, it is a degenerate solution. Denote
it by N, :{1,2,...,n}. If x« is a nondegenerate solution and y. ={ Vi }:':1,
where y, = f(x*), then the sets A={i:x, >0} and B= {i Ve > O} are
complementary subsets of N, thatis 4 =C, B.

If the function f has the form f (x) = Ax + b, where 4 is an n x n-
matrix and b € R", then in this case CP( f ,Rf) is called the linear

complementarity problem defined by 4, b and R’ , and it is denoted by
find x, € R such that
LCP(A,b,R?):{ Ax, +be R, and
(x*,Ax* + b> =0.

We note that the linear complementarity problem was initially defined as a
basic mathematical model that unified linear and quadratic programs, as
well as the bimatrix game problem. Specifically, W. S. Dorn in 1961 proved
that if A is a positive-definite (but not necessarily symmetric) matrix then
the minimum value of the quadratic programming problem
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minimize <x, Ax+ b> ,
(P):qxeF
whereT:{xe]R’f :Ax+beRf}andbeR"
is zero. [See (Dorn, W. S., [1])]. We note that Dorn’s paper was the first

step in treating the linear complementarity problem as an independent
problem.

In 1963 G. B. Dantzig and R. W. Cottle generalized Dorn’s result to
the case when all the principal minors of the matrix 4 are positive (Dantzig,
G. B. and Cottle, R. W. [1]). R. W. Cottle studied problem (P) in 1964,
under the assumption that 4 is a positive semi-definite matrix and he
remarked that, in this case it is not true that (P) must have an optimal
solution. [See Cottle, R. W. [2]). Cottle proved that, if the matrix 4 is
positive semi-definite and the set

F= {x eR!:Ax+be [Kﬂ’} where be K" (called the feasible sef) is non-
empty, then an optimal solution for (P) exists and again mi]p {x, Ax + b> =0.

After some time, G. B. Dantzig and R. W. Cottle constructively
showed that if 4 is a square (not necessarily symmetric) matrix with all the
principal minors positive, then problem () has an optimal solution x- such

that (x,, Ax, +b)=0. This result is in (Dantzig, G. B. and Cottle, R. W.

[1]). In 1966 R. W. Cottle generalized this result. His generalization is the
following:

Let f:R" —> R" be a continuously differentiable mapping. We say that f

has a positively bounded Jacobian matrix J

4 (x) , if there exists a real

number 0 < 8 < 1 such that for every x € K' each principal minor of

J_ / (x) is an element of the interval [6, 5 ™).

We recall that a solution (y, x) of the equation y — fix) = 0 is said to be
nondegenerate if at most »n of the 2n components are zero.

THEOREM [Cottle]. If f:R" —> R"is a continuous differentiable

mapping such that the solutions of equation y — f(x) = 0 are nondegenerate,
and if f has a positively bounded Jacobian matrix Jx), then the problem

Nep(f g ). | % € R suchthat
(/. R.): S (%) € R and (x,, f (%)) =0,



Complementarity Problems and Variational Inequalities 53

has a solution.

A proof of this theorem is in (Cottle, R. W., [3]) where he defined the
nonlinear complementarity problem by f and the convex cone K., and

denoted it by NCP(f,I\?: ) i

In studying the origin of the Complementarity Theory we must consider the
papers (Lemke, C. E. [1]-[6]) and (Ingleton, A. W. [1]). Lemke proposed,

in 1965, the complementarity problem as a method for solving matrix
games (Lemke, C. E. [1]). His contribution to the development of
complementarity theory was remarkable, because his algorithm for solving
complementarity problems, known as Lemke’s algorithm, has been widely

used in many practical applications, (Lemke, C. E. [1]-[6]), (Lemke, C. E.
and Howson, J, T. [1]).

In 1966, A. Ingleton showed the importance of complementarity
problems in engineering (Ingleton, A. W. [1], [2]). Certainly, a strong
influence on the development of complementarity theory is also found in
(Eaves, B. C, [1]-[7]), (Eaves, B. C. and Lemke, C. E. [1], [2]).
(Karamardian, S. [1]-[5]), (Kaneko, I, [1]-[13]) and (Kojima, M. [1]-[4]).

After 1970 the complementarity theory enjoyed a strong and
ascending development from theoretical, numerical solvability and
applicability points of view. Now, the literature on this subject is vast. To
see this, the reader is referred to the books (Cottle, R. W., Pang, J. S. and
Stone, R. E, [1]), (Isac, G. [12], [20]), (Isac, G., Bulavski, V. A. and
Kalashnikov, V. V. [2]), (Murty, K. G. [1]) among others. Now, it is
unanimously accepted that the study of complementarity problems is a
necessary domain in applied mathematics and a stimulant for fundamental
mathematics.

B. The general nonlinear complementarity problem

Let <E,E*> be a dual system of locally convex spaces and let X < £

be a closed pointed convex cone. If f:K — E" is a given mapping, the
(general) nonlinear complementarity problem defined by fand K is:

‘ find x, € K such that
NCP(f,K): Fx)e K and (x., £ ())=0.
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NCP ( [ K ) contains as a particular case the classical complementarity

problem NCP(f,R!), where f:R! —R". Also the (general) linear

complementarity problem LCP(T, b, K ), where T: E — E is a linear
operator and b € E can be considered as a particular case of the problem
NCP(f,K).

The problem NCP(f,K) has many applications in optimization, game
theory, economics, engineering, mechanics, etc. We will see in this chapter
that the problem NCP(f,K) is related to variational inequalities and in

Hilbert spaces it is related to the Fixed Point Problem. The fixed-point
problem represents an important chapter in nonlinear analysis. (Isac, G.

[20]).
C. The multivalued complementarity problem

First, we note that the multivalued complementarity problem is
necessary in the study of some problems in economics in the sensitivity
analysis of classical complementarity problems and in numerical
computation of solutions of practical complementarity problems, because of
the accidental corruption of the problem data. Also, the multivalued
complementarity problem is related with the theory of quasi-variational
inequalities defined by set-valued mappings. Variational inequalities with
set-valued mappings are used in the study of equilibrium in economics.

Let <E,E*> be a dual system of locally convex spaces, K < E a

pointed closed convex cone and f: K — 27 a set-valued mapping. The
multivalued complementarity problem defined by fand K is:

MCP(f. K): find x,e K anaz ¥, € E" suchthat

yo€ f(%)N K" and (x,,,)=0.
This complementarity problem has been the subject of several papers as for
example: (Chang, S. S. and Huang, N. J., [1]-{4]), (Gowda, M. S. and Pang,
J. S, [1]), (Huang, N. J., [1]), (Isac, G. [12], [20]), (Isac, G. and Kostreva,
M. M., [2]), (Isac, G. and Kalashnikov, V. V. [1]), (Luna, G. [1]), (Parida, J.
and Sen, A., [1]), (Saigal, R., [1]).

D. Implicit complementarity problem

Another class of complementarity problems is the class of implicit
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complementarity problems. It secems that the origin of implicit
complementarity problems is the dynamic programming approach of
stochastic impulse and of continuous optimal control (Bensoussan, A., [1]),

(Bensoussan, A. and Lions, J. L., [1]-3]), (Bensoussan, A., Gourset, M.

and Lions, J. L. [1]), (Capuzzo—Dolcetta. 1. and Mosco, U., [1]), (Mosco, U.
[1]), (Mosco, U. and Scarpini, F., [1].

The study of implicit complementarity problems has been stimulated by
the applications of this class of mathematical models to the study of various
free boundary problems associated to some particular differential operators.
This class of complementarity problems has been studied by many authors

as for example: (Pang, J. S. [1]-[2]), (Chan, D. and Pang J. S., [1]), (Noor,
M. A., [1]), (Capuzzo—Dolcetta, I., Lorenzani, M. and Spizziachino, F. [1]),

(Isac, G. and Nemeth, S. Z. [1]), (Kalashnikov, V. V. and Isac. G. [1]). We
note that there exist deep and interesting relations between the implicit
complementarity problems and the quasivariational inequalities theory.

Now, we give the most important kind of implicit complementarity
problems. Let E(7) be a locally convex space and let K < E be a closed
convex cone. Suppose given an element » € E and two mappings A,

M:E—>E1If <~, > is a bilinear functional defined on E x E then the implicit
complementarity problem is:
find x, € E such that
ICP(A,M,b,K): <M(x,)-x, €K ,b—A(x,)e K (2.1.1)
and <A(x0)—b, X, —M(x0)> =0.
The implicit complementarity problem (2.1.1) has the following variant for
a dual system. Let <E ,E *> be a dual system of locally convex spaces, K <

E a closed pointed convex cone, M : E —> E and A : E > E arbitrary
mappings and b € E an arbitrary element. In this case the problem (2.1.1)
has the following form:

find x, € E such that
ICP(A,M,b,K): {M(x,)-x, e K,b—A(x,)e K" (2.12)
and <A(x0)~b, X, —M(xo)>=0.
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Obviously, if £ = H, where (H ,<-,->) is a Hilbert space with respect to an
inner-product (-, > , then the problem (2.1.2) is exactly the problem (2.1.1).

The most general form of the implicit complementarity problem is
the following. Let <E, E *> be a dual system of locally convex spaces, K <

E a pointed closed convex cone and D — E a non-empty subset. If
f:D—>E" and g:D—E are arbitrary mappings, then the generalized
implicit complementarity problem defined by £, g, D and K is:

find x, € D such that
GICP(f,g.D.K): <g(x,)ekK, f(x)e K and

<g(x0),f(x0)>=0.

Finally, the generalized implicit complementarity problem has the
following multivalued variant. Let D  E be a non-empty subset, K c E a

closed pointed convex cone and f :D 2", g:D 2" set-valued

mappings. The multivalued generalized implicit complementarity problem
is:

find x, € D such that

there exist x, € g (xO ) N K and
Y. € f(x0 ) NK’ , satisfying
<x* . y*> =0.

MGICP(f,g, D, K):

E. Order complementarity problem

A new chapter in complementarity theory is the study of
complementarity problems with respect to an ordering. The introduction of
order complementarity problems in complementarity theory is justified by
two reasons.

(i)  In the study of some particular classical complementarity problems
the essential fact is not the orthogonality in the sense of an inner-
product, but the lattice orthogonality. Therefore, in some
circumstances it is useful to represent the classical complementarity
problem as an order complementarity problem.
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(i) In some practical problems, we must use the complementarity
condition simultaneously with respect to several operators.

Denote by E(7) [respectively by (E,

. ) or by (E,(-,->)] a locally convex
space (respectively, a Banach space or a Hilbert space). Suppose that, E is
ordered by a closed, pointed convex cone K . Denote by “<” the ordering
defined by K, that is x <y if and only if y —x € K . Assume that the
ordered vector space (E,K) is a vector lattice, ie., for every pair
(x,y)eEXE, the supremum v(x,y) and the infimum A(x,y) with
respect to the ordering < exist in E. In this case, for every x,,x,,x, € £ we
have the following formulas:

(D) v(x,x)+x =v(x +x,x, +x,),

(2) A(x,%)+ % =A% +x,,%, +X,),

() v(x.x,5)=v(v(x.x,).%)=v(v(x,x,),v(x,.x,)).

If x,,%,,...,x, € E, then by induction v(x,x,,...,x,)and A (x,,x,,...,X,)
are well defined for any n e N, considering also the formula
Axy)=—v(-x,-y).

Let (-, >E x E— R be a bilinear form. We say that the bilinear
form (,) is K -local, if and only if <x, y>=0, whenever x, y € K and
A (x, y) =0. (The term K -local is used in the axiomatic potential theory).
Let D be a non-empty subset of E. In particular the set D can be the cone
K . Given m, linear or nonlinear mappings f,, f,,..., f,, : E = E, the order
complementarity problem defined by the family of mappings { f }Zl and the
set D is:

” find x, € D such that
OCP({fi}izl ’D):{ i

/\(f1 (%), £5(%5)sees fon (xo))zo.

In (Isac, G. and Goeleven, D. [1]) this problem is called the implicit general

order complementarity problem. We have several interesting particular

cases:

(1) Itfm=2 D =E, f =1 (the identity mapping) and f,(x) = T(x)+q,
where T : E — E is a linear mapping and ¢ is an element in E, we
have the linear order complementarity problem denoted by
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LOCP(T, g). This problem was studied systematically for the first
time in 1989 in (Borwein, J. M. and Dempster, M. A. H., [1]), where
several interesting new classes of linear operators were introduced.
We find for example the operators of class (H'), (S), (2), (K ), (P)
and (4).

If m is an arbitrary natural number and f,,(i=1,2,...,m)are affine

mappings we have the generalized linear order complementarity
problem. Several results about this problem are in (Gowda, M. S. and
Sznajder, R., [1]), (Isac, G. and Goeleven, D., [1]), and (Sznajder, R.
[1D.

If m=2,D= K andf, f, are nonlinear mappings, then in this case
we have the nonlinear order complementarity problem, studied for
the first time in 1986 (Isac, G. [S]).

If m =3, D =E, f; = I (the identity mapping) and f,, f; are nonlinear
we have an order complementarity problem. In 1986 Oh, K. P
introduced this notion in lubrication theory. (Oh, K. P., [1]). This
interesting order complementary problem is the following. Consider
the mixed lubrication in the context of a journal bearing with elastic
support. The problem is to study the contact pressure X. In this case

E=H'(Q) (defined over [I’(Q)) and the cone is

K= {u eH' (Q)ju=0ae.,on Q} . We have two operators, 7;(X) and

T5(X), where T, is the Reynolds partial differential operator. For the
definition of these operators, the reader is referred to (Oh, K. P., [1]),
(Isac, G. and Kostreva, M., [1], (Isac, G. and Goeleven, D., [1]). In
this case, there are three distinct functions, which cause the
decomposition of the spatial area into three disjoint regios: the
innermost region (solid-to-solid contact), the elasto-hydrodynamic
lubrication region (solid-to-fluid contact) and the cavity region (in
which the pressure returns to the ambient value). The
complementarity formulation is based on the observation that the
contact pressure X satisfies the following equation specified for every
region;

(1) X220, T (X)=0, TH(X) = 0 (solid-to-solid contact),

(i) X =0, Ti(X) =0, T»(X) = 0 (cavity point),

(iii)  X=0, T1(X) 2 0, Tx(X) = 0 (lubrication point).

The problem of finding the contact pressure X is equivalent to
solvability of OCP(I, T\, T,; K ). This problem, defined in 1986 in
(Oh, K. P., [1]) is theoretical not yet solved, but it has many
interesting applications. In practical problems this mathematical
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model is implemented by simulation and by numerical
approximations. Finally, we note that the order complementarity
problems are used also in the study of the global reproduction of
economic systems working with several technologies, in the study of
discrete dynamic complementarity problems. (Isac, G. [20]), and in
the study of the fold complementarity problems (Isac, G. [15]) and
(Isac, G. and Kostreva, M. [3]).

If m is an arbitrary natural number, D = K , f | = I (the identity
mapping) and f, fi,...,/n are nonlinear but having the form
£ (x)=x-T (x),(i=1,2,3,...,m), with T; nonlinear mappings, then
we have the generalized order complementarity problem studied
systematically in (Isac, G. and Kostreva, M. [1]) and for set valued
mappings in (Isac, G. and Kostreva, M. [2]) and (Huang, N. J. and
Fang, Y. P. [1]). Some numerical methods for the order

complementarity problem can be found in (Isac, G. [11]) and in (Isac,
G. and Goeleven, D. [2]).

2.2. Variational inequalities

Another important domain of applied mathematics is the study of
variational inequalities, which is deeply related to complementarity theory.
It seems that the notion of variational inequality was introduced in the
papers of G. Stampacchia and G. Stampacchia and P. Hartman. For
references the reader is referred to the books (Stampacchia, G. [1]),
(Kinderlehrer, D, [1]), (Baiocchi, C. and Capelo, A, [1]), (Duvaut, G. and
Lions, J. L., [1]) and (Lions, J. L. and Magenes, E., [1]).

The theory of variational inequalities had from the beginning a
rapid development and a prolific growth of its applications. Initially, one of
the attractions of the theory of variational inequalities was its applications to
many questions of physical interest, as for example: the lubrication theory,
the steady filtration of a liquid through a porous membrane, the motion of a
fluid past a given profile and the small deflections of an elastic beam etc.
Many remarkable mathematicians added their contributions to the
development of the variational inequalities theory as for example: H. Brezis,
C. Baiocchi, L. Caffarelly, D. Kinderlehrer, H. Lewy, J. L. Lions and
E. Magenes, among others. Now, the literature on variational inequalities is
huge and contains several variations. We consider in this book only the
classical variational inequalities.
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Let <E ,E*> be a duality of locally convex spaces, i.e., E is a locally
convex space, E is the topological dual of E and (-, > is a bilinear form on
E x E' satisfying the following separation axioms:

(s1) (x,,¥)=0 for all y € E" implies x, =0,
(s2) <x, Y, ) =0 for all x € E implies y, =0.

Let f: E— E' be a mapping. We recall the following classical notions.
(a) We say that f is monotone, if for any x, y € E we have

(v=.f (x)- 1 (¥))20.
(b) We say that f'is pseudomonotone (in Karamardian’s sense) if for any
x, y € E we have that <x —y,f(y)> 20 implies <x —y,f(x)> 20.

We have similar definitions if f: Q — E’, where Q is an arbitrary non-
empty subset of E. The Hartman—Stampacchia variational inequality
defined by fand Q is:

find x, € Q such that
HSVI(f,Q):

<x—x*,f(x,,)>20for all xeQ,
and the Minty variational inequality defined by fand Q is:

P find x, € Q such that
(f.Q): <x_x”f(x)>20foraller-

For more information about Minty’s variational inequality the reader is
referred to (Minty, G. J., [1]). The Hartman—Stampacchia variational

inequality has many applications in physics, engineering and in economics,
while the Minty variational inequality is important in the study of
solvability of HSVI({, ).

About the solvability of problem HSVI(f, ), first we note the
following classical result, which is a generalization to locally convex spaces

of Hartman—Stampacchia’s theorem (proved initially in Euclidean space).

THEOREM 2.2.1 [Hartman—Stampacchia]. Let Q) be a compact convex

subset of a locally convex space E and let f: Q — E' be a continuous
mapping, (with respect to the strong topology). Then, there exists an

element x+€ Q) such that <x =x, f(x )> >0 forallx € Q.
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Proof. A proof of this result is in (Holmes, R. B., [1]). The proof is based
on the Fan—Kakutani Fixed Point Theorem. a

Remark. The study of solvability of problem HSVI(f, Q) in the case when
Q is unbounded, generally is based on special mathematical tools. In this
book we develop a new method to study variational inequalities with respect
to unbounded closed convex sets.

The following result establishes a relation between problems
HSVIf Q) and MVI(f, Q). If Q c Eis aconvex setand f: Q — E is a
mapping, we say that f is hemicontinuous if it is continuous from the line
segments of Q to the weak topology of E"

THEOREM 2.2.2. Let E(7) be a locally convex space, Q — E a closed
convex set and f: Q — E a pseudomonotone, hemicontinuous mapping.

Then, an element uy € Q is a solution to the problem HSVI(f, QO), if and only
if uy is a solution to the problem MVI(f, QQ).

Proof. Suppose that u, € Q is a solution to the problem HSVI(f, Q). Then,
in this case we have,

<x—u0,f(uo)>20 ,Jorallx € Q
and the pseudomonotonicity implies that

<x—u0,f(x)>20,forallx € Q,
i.e., Uy is a solution to the problem MVI(f, Q).

Conversely, suppose that an element u, € Q is a solution to the
problem MVI(f, Q). In this case, if xe Q is an arbitrary element, we denote
it by

x, =(1-1)u, +1x, te]O,l[.

If we put x; in the definition of the problem MVI(f, Q), then we have

<x, —uo,f(x,)>20,
which implies

<t(x, —uo),f(x,)>20,

and finally,

<x—u0,f(x,)>20.
Supposing that # - 0 and using the hemicontinuity of f we obtain that
£ (x,) is weakly convergent to £ (u, ), which implies that
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<x—uo,f(uo)>20,foranyxe Q,

i.e., Uy is a solution to the problem HSVI(f, Q) and the proof is complete. O
Obviously, the variational inequalities HSVI(f, Q) and MVI(f, Q)
can be defined for set-valued mappings. Indeed, let f be a set-valued

mapping from Q into £, ie., f:Q— 2% . The multivalued Hartman—
Stampacchia variational inequality defined by fand Q is:
find x, € Qand y, e E’
WSVI(f,Q): such that y. ef(x*)and
<x—x*,y*>20for all xe Q
and the multivalued Minty variational inequality defined by fand Q is:
find x, € Q such that
Jfor any x € Q there exists
¥, € f(x) satisfying
<x—x,,yx> =0.
Finally, we consider in this book a special implicit variational inequality.

MMVI(f,Q):

Consider again a dual system (E,E’) of locally convex spaces.
y P

Q c E a closed convex cone and two mappings §: Q »> Qandf: Q — E'.
The implicit variational inequality defined by S, fand Q is:

5.0 find x, € Q such that
(f, s ) <x_S(xo)’f(xo»z(),forallxeQ.

The problem IVI(f, S,Q) is a special variational inequality. It is implicit in
the sense of implicit variational inequalities presented in (Mosco, U., [1]).
Obviously, if S(x) = x for every xe Q, the problem IVI(f, S,Q) is exactly the
problem HIVI(Y, 2). We note that the problem IVI(f, S,Q) is related to the
problem GICP(f,g,D,K) wheng=Sand D=K .

2.3 Complementarity problems, variational inequa-
lities, equivalences and equations

We present in this section some equivalences between complemen-
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tarity problems and variational inequalities. We show also, how a
complementarity problem or a variational inequality can be transformed in
an equation. These equations are essential for the next chapters of this book.

Let <E, E*> be a dual system of locally convex spaces. Let K — E

be a closed convex cone and £ E — E* a mapping.

THEOREM 2.3.1. The problems NCP(f,K) and HSVI(f,K) are
equivalent.

Proof. Indeed, if x- is a solution to the problem HSVI( f,K), then we have

<x—x*,f(x*)>20,for all xe K . (2.3.1)

Let y € K be an arbitrary element. If we put x =y + x« in (2.3.1), then we
obtain

(v f(x))20, forall ye K,
which implies that f(x,)e K.

If we consider x = 2x« in (2.3.1) then we deduce that
<x* S (% )> =0, i.e., x« is a solution to the NCP(f,K).
Conversely, if we suppose that x» € K is a solution to the problem
NCP(f,K), then we have <x*,f(x,, )> =0and <x,f(x,, )> >0 for every
x € K, which obviously imply <x —x.,f(x, )) >0, for all xe K , that is,
x+ is a solution to the problem HSVI(f,K). O

Now, we consider the following problems. Let <E E *> be a duality

of locally convex spaces and K < FE a pointed closed convex cone. Suppose
given two mappings, /: E — E and g : E — E. The next theorem is related
to the following two problems:

find x, € E such that
VI(f.g.K): g(x)eK and

<x—g(x,,),f(x.)>20for adlxe K,
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find x, € E such that
ICP(f,g,K): {g(x)ekK, f(x)eK and

(g(x.), f(x))=0.

THEOREM 2.3.2. The problems IVI(f,g,K) and ICP(f,g.K) are
equivalent.

Proof. Indeed if x. € E is a solution to the problem ICP(f,g,K), then we
have g(x.)e K, f(x.)e K and<g(x.),f(x*)> =0 which imply

(x,f(x.))=0 for all xe K (2.32)
and

(g(x).f(x))=0. (2.3.3)
By wusing (232) and (233) we obtain g(x)eK, and
<x—g(x,,),f(x,, )>20 for any x € K, that is, x+ is a solution to the
problem IVI(f,g,K).
Conversely, we suppose that x» € E is a solution to the problem
VI(f,8.K). Then, we have g(x.)eK, and(x—g(x*),f(x*)>20 for
all xe K . If we take x = y + g(x), then we obtain that <y,f(x* )>20 ,
which implies that f(x,)e K. If we consider x = 2g(x) in ICP(f,g,K),
then we obtain < g(x).f (x* )> >0 and considering x = 0, we obtain
<g (%), f(x )> <0. Therefore <g (%), /(% )> =0 and we have that x: is a
solution to the problem ICP(f,g,K). O

For the method developed in this book, it is important to transform
a complementarity problem or variational inequality in a fixed-point

problem or in an equation. Let (H,(-,-)) be a Hilbert space and Q@ c H a

closed convex cone. Given f g: H — H two arbitrary mappings, we
consider the following implicit variational inequality:

find x, € H such that
]VI(f,g,Q): g(x,,)eQand

<y—g(x*),f(x‘)>20forallyeQ.
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We have the following result.

THEOREM 2.3.3. An element x« € H is a solution to the problem
IVI(f, g, Q) if and only if, x« is a solution to the coincidence problem

find x, € H such that
CP (f, g, Q):

g(x)="Fa(g(x)-7(x))

Proof. Indeed, if x» € H and g(x*)zPQ (g (x.)— f (x,, )) , then we have

that g(x«) € Q and g(x*)—f(x*)eg(x¢)+Ng(g(x,,)). [We used
Theorem 1.9.4]. Therefore <—f(x*),y—g(x,,)>30 for all y € Q and

g(x«) € Q, that is x« is a solution to the problem IVI(f, g Q). Conversely, if
xs € H, g(x+) € Q and <f(x,,),y—g(x,)>20 for all y € Q, then we have

<—f(x*),y—g(x*)>s0 forally e Q,
or

g(x)-f(x)eg(x)+Na(g(x)),

which implies that
g(x)=Pa(g(x)-f(x)),
[using again Theorem 1.9.4]. ]

COROLLARY 2.3.4. Let (H,(-)) be a Hilbert space, K — H a closed
convex cone and f. H — H a mapping. The problem NCP(f,K) has a
solution if and only if the mapping ¥ . H — H defined by
Y, (x) =P, (x -f (x)) has a fixed point, i.e., there exists an element x+ €

H such that x, = Py (x. — f(x.)).

Proof. We take in Theorem 2.3.2 and Theorem 2.3.3, g(x) = x, for any
xe Hand Q= K . O

Also for problem HSVI(f, (0) we have the following result.

COROLLARY 2.3.5. Let (H,(--)) be a Hilbert space, Q@ c H a closed
convex set and - H—> H a mapping. The problem HSVI(f, QO) has a solution
if and only if the mapping Yq : H — H defined by ¥, (x) =P, (x - f(x))
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has a fixed point, ie., there exists an element x« € H such that

x =B, (x* —f(x,)).
Proof. We take in Theorem 2.3.3 g(x) =x, forany x € H. o
Remark. We can prove Corollary 2.3.4 using Theorem 1.9.7.

The reader can extend Corollary 2.3.4 (resp. Corollary 2.3.5) to the case
when fis a set-valued mapping, that is when f: H — 2, but in this case the
mapping W, (resp. ¥, ) will be a set-valued mapping. Therefore, we have
the following result, related to the problems:

( find x, € K and

MCP(f,K): Yo ef(xo)mK* such that
<x0,yo>=0,

and
Jfind x, € Q and
MHSVI(f,Q):3 v, € f(x,) suchthat
(x=%4,,)20 for all xe Q.

COROLLARY 2.3.6. Let (H ,(~,->) be a Hilbert space, K < H a closed
convex set and f: H—> H a set-valued mapping. The problem MCP(f,K)
(resp. the problem MHSVI(f, Q) has a solution if and only if the set-valued
mapping ¥ (x)= Py (x - f(x)) (resp. ¥, (x)=P, (x - f(x)) ) has a
fixed point, i.e., there exists an element xo € H such that
% e¥y (x%)=Pe(x, —f(xo)) (resp. x, € ¥, (%) =P, (x0 —f(xo)). u]

Now, we introduce the normal operator and we will show that the
solvability of a complementarity problem or a variational inequality is

equivalent to the solvability of an equation. Let (H,(-)) be a Hilbert space

and Q@ < H a closed convex set. Let f: H — H be an arbitrary mapping.
Consider again the problem:

find x, € Q such that
HSVI(f,Q):

<x —xo,f(x0)> >0, for all xe Q.
The operator N, : H — H defined by
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N, (z)=f(PQ (z))+z—PQ (z) forallze H
is called the normal operator defined by f and Q.

Remark. In 1992, S. M. Robinson introduced the name normal operator
[see (Robinson S. M., [1]-[4]), and this operator was used in several papers
to transform a variational inequality in an equation of the form %, (z) =0.
In 1988, G. Isac used the same operator in complementarity theory, but in
the form z =P, (z) - f(Py (z)). He used this operator to transform the

solvability of the complementarity problem in a fixed-point problem. (Isac,
G. [7D.

THEOREM 2.3.7. An element z« € H is a solution to the equation
N, (z) =0
ifand only if, x, =P, (z*) is a solution to the problem HSVI(f, Q).

Proof. First, by Theorem 1.9.3 a, we have that x, = P, (z) if and only if

(z* — X, X, —x>20, forall xeQ. 2.3.4)
If &, (z*) =0, then we have

f(PQ (z*))+z,, —Py(z.)=0
or
~-f(x)=z-x

which implies [using (2.3.4)]

(—f(x*),x,, —x>20,f0r all xe O,
and finally

(f(x*),x* —x>20,f0r all xeQ,

that is (using the commutativity of the inner-product, we have that x« is a
solution to the problem HSVI(f, ).

Conversely, suppose that 2z = x - Afixx) and
<—f(x*),x—x,>20,for any x € Q. We have z+ — x+ = —f{xs) or fxs)
= x+« — z», which implies

<x. —z,,x—x.,>20,foraller,
or
(z, — X, X —x>20,foraller,
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which implies that x, = P, (z. ). Therefore, we have

f(PQ (Z,,))+z, - P, (z.)=0,
that is, IV, (Z,, ) =0, and the proof is complete. o

Now, we consider the case when the Hilbert space is replaced by a
Banach space. In this case we must replace the projection operator defined
in a Hilbert space by the projection operator in Alber’s sense (See Chapter 1
of this book).

Let (E, ”) be a uniformly convex and uniformly smooth Banach
space. Let £ be the topological dual of E. Denote by (,-) the natural
duality between E” and E, that is, <y, x> = y(x) ,forall y € E and all xe E.
Let Q c E be a closed convex set. Denote by the norm on E'. Let
J : E - E be the duality mapping (See Chapter 1). We consider the
mapping V : E* x E — R, defined by:

V(x,y)=|y : —2(y,x)+|x * for any (y,x)e E" xE .
We know that the minimization problem:

given ye E", find x, € Qc E such that
V(v.x,)=infV (y,x)
has a unique solution. (see Chapter 1). The mapping I, :E' > QcE,

*

defined by II, ( y):xy, is called the generalized projection operator (or

the Alber projection). We need to use the following properties of mapping
V.

(i) Wy, x) is convex with respect to y, when x is fixed and with respect to
x, when y is fixed.

(i) gradV(y,x)=2 (J (x)- y), (because E is a smooth Banach space).

For the proof of properties (i) and (ii) the reader is referred to (Alber, Y. 1.
[1]). We recall also the following property, well known in convex analysis.
(iii) A differentiable mapping @ : E — R, is convex if and only if, for any
x and xy in E we have

(p(x)—¢)(x0)2<grad¢(x0),x—xo>.
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THEOREM 2.3.8. An element y« € Q is the generalized projection of an
elementy € E' (i.e., y. =11, (y), if and only if,

(y=J(3.), 3. —u)=0, forall ue Q. (2.3.5)

Proof. Considering the definition of y, =II,, () we have

V(v 2)<V(py +1(u=y.)),
where r€ 10, 1] and y, +¢(u—y.)€Q, because of the convexity of Q.
Using the properties (i), (ii) and (iii) we have
OZV(y,y*)—V(y,y* +t(u—y‘))

22<J(y* +1(u=y.)) =y, 3.~ » —t(u—y*)>,
which implies
<J(y,, +t(u—y*))—y,u—y*>20.

Letting +— 0, we have

<J(y*)—y,u—y*>20,forallueQ,
or

<y—J(y*),y* —u>20,forallueQ,
that is condition (2.3.5) is satisfied.

Conversely, if condition (2.3.5) is satisfied, then we have (using
properties (i), (ii) and (iii)),
V(y,u)—V(y,y*)22<J(y*)—y,u—y*>ZO, forany x € Q,
which implies
V(y,u)2V(y,».), forany u € Q.
Therefore y, =11, (y) and the proof is complete. s

Letf: E — E be an arbitrary mapping. Consider again the problem

SV .0 find x, € Q such that
(/.9Q): <f(x*)’u_x*>20,forallueQ.

THEOREM 2.3.9. Let f be a mapping from E to E', Q  E a closed convex
set and « an arbitrary fixed positive real number. Then an element x+c Q is
a solution to the problem HSVI(f, Q) if and only if x« is a fixed point of the

mapping ¥, (x)=T1,[J (x) -af (x)] ie, x, =TI, I:J(x* )-af(x)]
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Proof. Indeed, we observe that the problem HSVI(f, Q) has the following
representation:

<J(x,,)—af(x*)-J(x,,),x* —u>20, forallueQ.
Considering this representation, and taking into account Theorem 2.3.8,
y=J(x)-af(x)eE and y, =x, € Qc E, we obtain the conclusion of
the theorem. 0



3

LERAY-SCHAUDER ALTERNATIVES

We present in this book a topological method applicable to the
study of solvability of complementarity problems and of variational
inequalities. This special method is based on several Leray-Schauder type
alternatives. The classical Leray-Schauder Alternative is based on the
Leray-Schauder Continuation Theorem, which is a remarkable result in
nonlinear analysis. We note that there exist several continuation theorems,
which have many applications to the study of nonlinear functional equations
(O’Regan, D. and Precup, R. [1]), (Precup, R. [1]).

The Continuation Theorem is based on the idea of obtaining a
solution of a given equation, starting from one of the solutions of a simpler
equation. The essential part of this theorem is the “Leray—Schauder
boundary condition”. 1t seems the “continuation method”, was initiated by
H. Poincaré and S. Bernstein (Poincaré, H. [1], [2]), (Bernstein, S. [1]).
Certainly, J. Leray and J. Schauder in 1934 gave the first abstract
formulation of “continuation principle” using the topological degree. Now
we recall this result.

|.

#:Ux[0,]]>E a compact mapping, ie, ¥ is continuous and

Let (E,

) be a Banach space, U < E a bounded open set and

H (5 x [0, 1]) is relatively compact. Denote by 7 the identity mapping of E

and by deg(7-s1(-0),U, 0) the Leray—Schauder degree of #(-,0) with
respect to U and the origin of E.

THEOREM A [Leray-Schauder]. If the following conditions are
satisfied:

(i) H (x,t) # x, for all xe 8U and 1 €]0,1],
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(i)  deg(/-#(,0),U,0)=0,

then there exists at least one xy € U such that H(x,, 1) = x,

Proof. To prove this result it is sufficient to show that
deg(7 - #(-,0),U,0)=deg(1 - 7(-1),U,0). o

The continuation theorem is an expression of the homotopy invariance of
the degree. There exist many books and papers presenting Theorem A,
using generalizations of Leray-Schauder degree, as for example (Deimling,
K. [1]), (Gaines, R. E. and Mawhin, J. [1]), (Krasnoselskii, M. A. [1]),
(Krasnoselskii, M. A. and Zabreiko, P. P. [1]), (Lloyd, N. G. [1]),
(Nussbaum, R. D. [1]), (Petryshyn, V. [1]) and (Rothe, E. H. [1]) among
others. In 1955, H. H. Schaefer proved a variant of Theorem A in a Banach
space, using the Schauder fixed-point theorem (Schaefer, H. H. [1]). A
version of Theorem A without degree for the general case is due to A.
Granas. The result proved by Granas in 1959 is based on the notion of
essential map (Granas, A. [1]).

In this chapter we will present several Leray—Schauder type
alternatives. The alternatives will be with respect to an open set in a Hilbert
or in a Banach space. We will suppose that the open set contains the origin
of the space. This case is related to applications to the study of
complementarity problems and to the study of variational inequalities.

3.1 The Leray-Schauder alternative by topological
degree

We give in this section the classical Leray—Schauder alternative, for
completely continuous mappings in Banach spaces.

THEOREM 3.1.1 [Leray-Schauder]. Let (E,

.) be a Banach space,

Q < E an open bounded subset such that 0 € Q and f Q>Ea compact
mapping. If the following assumption is satisfied:
S(x)# Ax, for all x € dQ and all 2 >1, then f has a fixed point.
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Proof. We consider the homotopy 4 (-, ) :Qx [0, 1] — E defined by

h(x,i):x—lf(x), for all xe Q and all /16[0,1].
We have two possibilities:
(a) fhas a fixed point in 0 Q,
(b) fhas no fixed point in 0 Q.
If (a) is satisfied, in this case there is nothing to prove. Now, we suppose
that (b) is satisfied. In this case we can suppose that

0¢ h(@Q,ﬂ,) for0<A<1.Indeed, if A=0and 0 € W(FQ, 0), then x =0 for

some x € JQ, which is impossible. If 1 = 1 and 0 € h(F Q, 1), then
0 =x — flx), for some x € JQ, which is impossible, since we suppose that f
has no fixed point in JQ.

Finally, we suppose that A(x, A) = 0 for some x € JQ and some
0 < A <1. Then in this case we have %x:f(x), where 0 < A <1 and
x € ¢ €, which is in contradiction with our assumption. Therefore,
0¢ h(0Q,A)for 0<A<1. Applying Property 3 (Homotopy Invariance) of
the Leray—Schauder degree, we have
d(1-£,9,0)=d(1,Q,0)=1 (since 0 € Q),
which implies that there exists an element x € €2 such that fx) = x, and the

proof is complete. ni

From Theorem 3.1.1 we deduce the following result.

THEOREM 3.1.2 [Leray-Schauder alternative)]. Let (E, M) be a Banach

space, Q C E an open bounded subset such that 0 € Q and f Q>E a
compact mapping. Then:

(1) either f has a fixed point in Q, or

(2) there exist an element x, € 9Q and a real number A, € ]0,1[ such

that x*=/Lf(x*). )
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3.2 The Leray—Schauder alternative by the fixed point
theory

The main result of this section is based on the following classical results.

THEOREM 3.2.1 [Schauder]. Let (E,

non-empty convex compact subset and f: D — D a continuous mapping.
Then f has at least one fixed point.

) be a Banach space, D c E a

Proof. A proof of this theorem can be found in (Schauder, J., [1]) or in
(Dugundji, J and Granas, A., [1]). 0

LEMMA 3.2.2 [Mazur]. Let (E,

) be a Banach space. If D c E is a

relatively compact subset, then conv(D) is also a relatively compact subset
inE.

Proof. This result is also true in a locally convex space. See (Schaefer, H.
H., [2], Theorem 4.3, page 50). O

The next result is a more general variant of Theorem 3.1.1. If Q and
U are subsets of E and U < Q, then in this case we denote by JhU the
boundary of U with respect to the topology of Q.

THEOREM 3.2.3 [Leray-Schauder]. Let (E,

Q c E a closed convex subset, U < Q a bounded set, open (with respect to

the topology Q) and such that 0 € U. Let f: U->Qbea completely
continuous mapping. If the following assumption is satisfied:
Ax) = x, for all x € hUand all A € 10,1],

then f has a fixed point in U.

) be a Banach space,

Proof. First we observe that the assumption is satisfied also for 4 = 0 (since
0 € U). If the assumption is satisfied for A = 1, then in this case we have a
fixed-point in &,U and there is nothing to prove.

In conclusion, we can suppose that the assumption is satisfied for
any xe chU and any A € [0, 1]. Let D be the set defined by
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Dz{xea:xzif(x),forsomeﬂe[O,l]}.
The set D is non-empty, because 0 € U and the continuity of f implies that
D is closed. We have that D N U= 2.

By Theorem 1.7.2 (Urysohn’s Lemma), there exists a function
gec(ﬁ,[o, 1]) such that
0 if xeoyU,
g(x)=y |
1 if xeD.
The mapping f*: Q — Q defined by

croy g(x)f(x) if xeU,
f(x)_{o if xeQ\U

is continuous and f~ (Q)c conv({O} U f (l—])) . The complete continuity of
Jfimplies that f (5) is relatively compact. Applying Lemma 3.2.2 we have

that the set D, :Tnv({O} U f (ﬁ)) is convex and compact. Moreover

f (D.)c D.. By Theorem 3.2.1 we obtain the existence of an element
xo € D« such that f*(x,)=x,. By the definition of f*, xo must be an

element of the set U. Then, x, = g(x,) f(x,), which implies that x, € D
and so, g(xg) = 1. Therefore f{xy) = xo and the proof is complete. D

Remark. It seems that the idea to prove Theorem 3.2.3 by using the fixed-
point theory is due to A. Granas.

From Theorem 3.2.3 we deduce the following alternative.

THEOREM 3.2.4 [Leray—Schauder alternative]. Let (E , ) be a Banach

space, Q < E a closed convex subset, U c Q a bounded set, open (with
respect to the topology of Q) and such that 0 € U If f: U->Qisa
completely continuous mapping then:
(1) either f has a fixed point in U, or
(2) there exist an element x» € U and a real number A+ € 10,1] such
that x« = Af(x+). o
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Remark. The condition used in Theorem 3.1.1, and in Theorem 3.2.3 is
known in nonlinear analysis under the name of the Leray—Schauder
boundary condition.

3.3 The Leray Schauder alternative by the topological
transversality theory

The general proof of the Leray—Schauder alternative can be given by the
Topological Transversality Theory. A. Granas introduced the notion of
topological transversality [See (Granas, A. [2, 3, 4])]. We follow his ideas.
The main idea of topological transversality is the following.

Let (E,

and f© X — E a compact mapping satisfying a “boundary condition” on a
closed subset D — X. A method for determining whether or not the equation
Aix) =x has a solution is to deform f and possibly also the boundary value
Jip to a simpler mapping g and to reduce the problem to that for the equation
g(x) = x. Geometrically, one deforms the graph of fto that of g and seeks to
conclude, from the nature of the deformation, that if the graph of g meets

“) be a normed vector space, X — E a non-empty subset

the diagonal A X x E < E x E , then the graph of f must also do so. Now,

we give the topological transversality theorem. This theorem gives
conditions under which such a conclusion is valid.

Let C be a non-empty convex subset of £. We denote by (X, D) a
pair of subsets, such that X is a subset of ¢ and D c X is a closed subset of
X, ie., Dc Xc C and D is closed in X. We say in this case that (X, D) isa
pair in the convex set C < E. Let ¥ be another subset of £ and / = [0, 1]. We
say that a homotopy H : X x I — Y is a compact homotopy if it is a compact
mapping. If X ¥, the homotopy H is called fixed-point free on D c X if for
each ¢t € [, the map H, Dagi :D—Y has no fixed point. Also, we denote by

H ), (X ,C ) the set of all compact maps f: X — C such that the restriction
Jip : D — Cis fixed-point free.
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DEFINITION 3.3.1. We say that two mappings f,g€ ¥, (X ,C) are
homotopic (and we denote f=g) in 3,(X,C) if there is a compact

homotopy H : X x I —»C which is fixed-point free on D for each t € [0, 1]
and such that H(-,0)= f and H(-,1)=g.

The following result is from (Dugundji, J. and Granas, A., [1]).

PROPOSITION 33.1. Let f,geH,(X,C) be two mappings. If one of
the following conditions holds:

(1) 1g(x) +(1—1) f (x) = x for each(x,t) e Dx[0,1],

(2) sug”f (x)- g(x)" <inf||x - f(x)“

xelD

then f=g in }[D(X,C).

Proof. First, we observe that assumption (2) implies that given xe D, the
segment [ f(x).g (x)] does not contain x, which is exactly assumption (1).
Thus it is sufficient to show that assumption (1) implies f=g in
H,, (X,C). Indeed,

H(x,t)=1g(x)+(1-1) f (x), for (x,t) e X x[0,1]]
is a compact homotopy which is fixed-point free on D and such that
H(,0)=fand H(,1)=g. 0

DEFINITION 3.3.2. Let (X ,D) be a pair in a convex set C — E. We say
that a mapping f €, (X ,C ) is transverse or essential, provided every
geH, (X ,C) such that Jip =8 has a fixed-point. A mapping, which is

not transverse, is called inessential.

Remark. In geometric terms, a compact mapping f: X — C is transverse,
if the graph of fp does not meet the diagonal A< X xC but the graph of
every compact mapping g: X —C that coincides with fon D must cross (i.e.
traverse) the diagonal A.

The following result [See (Dugundji, J. and Granas, A., [1])] is a
characterization of inessential mappings in terms of homotopy, and it
implies the topological transversality principle.
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THEOREM 3.3.2. Let (X ,D) be a pair in a convex set C — E. The

following conditions on f € 3, (X,C) are equivalent:
(1) fis inessential,
(2) there is a fixed-point free mapping g€ H, (X ,C’) suchthat f=g

in 3, (X,C),
(3) f is homotopic in 3, (X,C) to a fixed-point free f, € ,(X,C)
by a homotopy, keeping ﬁ , pointwise fixed.

Proof.
(1) = (2) Let gesf,(X,C) be a fixed-point free mapping such that
Jio =8p- The compact homotopy

H(x,t)=1g(x)+(1-1) £ (x).

joins fto g and is fixed-point free on D.

2) > @3) Let H: X x [0, 1] > C be a compact homotopy from g to f (i.e.,
H(,0)=gand H(-1)= f), such that HI D) is fixed-point free for each
t € [0, 1]. We consider the set D, :{x:x:H(x,t) for some t 6[0,1]} )
There is no loss of generality in supposing that Dy is non-empty. Then Dy is
a closed subset of the compact set H (X X [0,1]) , so is compact and

therefore closed in X. Since D D, =¢, because H is fixed-point free on
D, then by Theorem 1.7.2 (Urysohn’s Lemma), there is a continuous
function ¥:X —[0,1], with ¥(D)=1and ¥(D,)=0. We define a

mapping £+ by f.(x)=H(x,¥(x)). Obviously, f. is compact, it is also
fixed-point free. Because, if f, (x)=H (x,‘P(x)) =x we have x € D,, we

deduce that W(x) = 0 and x=H(x,0)=g(x), which contradicts the
assumption that g is fixed-point free.

We consider the compact homotopy H. (x,7)=H (x,l —t+1¥ (x))
to show that, f+ is homotopic to f keeping f, pointwise fixed. Then we

have

H, (x,0)= H(x,l) =f(x) and H, (x,1)= H(x,‘P(x)):f,, (x) .
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Moreover, ¥(x) = 1 for all x e D, therefore H. (x,1)=H (x,1)=f(x),

forallze [0,1] . For each ¢ € [0, 1], H«(x, t) is obviously fixed-point free on
D.
(3) = (1) The proof of this implication is elementary. a

An immediate consequence is the following important result, due to
A. Granas.

THEOREM 3.3.3 [Topological transversality]. Let (X, D) be a pair in a
convex set C C E and f, g two mappings in 3, (X,C) such that f=g in

H, (X ,C ) Then, fis essential if and only if g is essential. o

We note that the concept of topological transversality, which is invariant
under fixed-point free deformations on D is also invariant under small
modifications of fon D. This fact is presented in the following result.

THEOREM 3.34. Let (X, D) be a pair in a convex set C c E. If
fe 9, (X,C) is an essential mapping, then there exists an £> 0 such that:
(1) any compact mapping g : X — C satisfying H g(x) - f (x)” <g for
allx € D, isin 9, (X,C) and
(2) gis essential.

Proof. Because f is compact and fixed-point free on D, there is an £> 0
such that “x - f (x)” >¢ forallx € D. If g: X — C satisfies the inequality

|g(x) - 7 (x)| <& for all x e D,
then g is fixed-point free. Indeed, if for some xo,g(xo) = xo we have
|x, - f (x,)] < &, which is impossible. By Proposition 3.3.1 we have f =g

in 91, (X,C). Now, the theorem follows from Theorem 3.3.2. O

THEOREM 3.3.5. Let Cc E be a convex set and U an open subset of C.
Let (5,6U ) be the pair consisting of the closure of U in C and the

boundary of U in C. Then, for any x, € C, the constant mapping fix) = x,,
for any x € U is essential in U (E,C )
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Proof. Indeed, the theorem is proved, if we show that any compact mapping

g: U — C with g(8U) = x, has a fixed-point. Let g« be the extension of g to
C defined by

g (x if xe U,
g.(x)= ) _
x, ifxeC\U.
The mapping g+ : C —C is (continuous) compact and by Schauder’s fixed
point theorem [the general version given in (Dugundji, J, and Granas, A. [1]

Theorem 3.2 pg. 57)] it has a fixed point x», which must be in U. Therefore,
we have g(x+) = xs. ]

Now, we apply the transversality theory to the study of equation
fix) = x, where f is compact and we obtain the Leray-Schauder nonlinear
alternative.

THEOREM 3.3.6. Let C < E be a convex set, U — C an open subset (in U)

such that 0 € U. Then, each compact mapping f: U — C has at least one
of the following properties:
(1) f has a fixed point,
(2) there exist an element x» € JU and a real number A+ € |0, 1] such
that x« = A+f(x+).

Proof. If property (1) is satisfied, there is nothing to prove. Therefore, we
can assume that Jow is fixed-point free. Let g : U — C be the constant

mapping g(x) = 0, for any x € U .We consider the compact homotopy H :
U x [0, 1] = C defined by H(x, f) = tx). The homotopy H(:,") joins g with
/- Either this homotopy is fixed-point free on JU or it is not. If it is fixed-
point free, then by Theorem 3.3.3 and Theorem 3.3.5 we find that f must
have a fixed point. If the homotopy is not fixed-point free on JU, then there

is an x» € JU with x, =4, f(x,) and 4. € [0, 1]. We observe that 4. # 0,
because 0 ¢ AU and A+ # 1, because ﬂw has been assumed to be fixed-
point free and the proof is complete. a

Remark. In Theorem 3.3.6, the closure and the boundary of U are with
respect to C.
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3.4. Some classes of mappings and Leray-Schauder
type alternatives

We present in this section some Leray—Schauder type alternatives
for mappings, which are not completely continuous fields.

Let (H,(,-)) be a Hilbert space and K — H a closed pointed

convex cone. For any real number » > 0 we denote K, :{xe K: “x“ < r} .

We denote by « the Kuratowski measure of noncompactness, i.e., for any
bounded set B < H,

e>0:B=
a(B)=inf< ™ o .
U B, for some me N and some B, with diam (B,. ) <¢
i=l
(See Chapter 1). We recall that a mapping f: K, » H is a-condensing (see
also Definition 1.5.4) if fis continuous, bounded and a( f(B))<a(B) for

any B — K, bounded and such that «(B) > 0. It is known that any

completely continuous mapping and any contraction are a-condensing. For
any » > 0, we denote by P, the radial projection of K onto K, i.e.,

P,: K— K and
v i s

Fx)= P b

Since (P, (B))<a/(B) for any bounded set B — K, we have that f o P, is

r

a-condensing if f: K, — Kis a-condensing. Indeed, in this case we have

a(f < P.(B))<a(P.(B))<a(B), for any bounded set B < K.

Let D c H be a closed convex set and f: D — H a mapping. The set
I, (x):x+{/1(y—x):/120,yeD}={(1—/1)x+/1y:/120,yeD},
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is the inward set of x € D with respect to D. We say that the mapping fis
weakly inward if f (x) el, (x) for every x € D. It is known that fis weakly
inward if and only if

- p(x+t(f(x)—x),D)

-0, t

=0, forallxe D,

where p denotes the distance to D.

The following results are well known.

THEOREM 3.4.1. Let (H,(,-)) be a Hilbert space, D c H a closed

bounded convex set and f: D — H a mapping. If f is a-condensing and
weakly inward, then f has a fixed point.

Proof. This result is valid in an arbitrary Banach space and a proof is given
in (Deimling, K., [1], Theorem 18.3). ]

THEOREM 3.4.2. Let (H,(.-)) be a Hilbert space, D ¢ H a closed

bounded convex set and f: D — H a continuous mapping. If the following
assumptions are satisfied:

) H f (x)H <c for any x € D , where c is a positive real number,

) a(f(B)) <ka/(B) for some k> 0 and all subsets B D,

p(x+1(x).D)
{

3) lim

10,

=0 forall x € D,

L u'=f(u),
then the initial value problem
u(0)=xeD

has a solution on J = [0, a] for
eacha> 0.

Proof. For the proof of this result, the reader is referred to (Deimling, K.,
[1], Lemma 18.3). We note that this result is valid in any Banach space. 0

The following fixed-point theorem is due to K. Deimling.

THEOREM 3.4.3. Let (H,(--)) be a Hilbert space, K ¢ H a closed

pointed convex cone and f : K, - H an a-condensing mapping. If the

Jfollowing assumptions are satisfied:



Leray—Schauder alternatives 83

(1) ifxe K, x| <r,x € K and x'(x) =0, then x' (f(x))ZO,

(2) f(x)# Ax for all A> 1 and all x with ||x|| =r,
then f has a fixed point (in K,).
Proof. We follow the ideas of the proof given in (Deimling, K., [2]). It is
known [see (Deimling, K., [2])] that assumption (1) implies that f o P, is
weakly inward on K. We can show that there exists & > 1 such that
]'f o P (x)” <0 -1 on K. Hence it is enough to show that f o P is weakly
inward on K because applying Theorem 3.3.1 we obtain a fixed point in
Ks for fo P, which must be in X, a fact implied by assumption (2).
Indeed, since f o P, is weakly inward on K, we have

p(x+t(foP, (x)—x),[f():o(t)ast—>0+ foreveryxe K, .

(We recall that p(»,C)=inf {”y ~z|:ze C} ). Because
a((f oP — I)(B))s2a (B) for all bounded sets B — K, the initial value

problem

{u':foﬂ(u)—u,

u(0)=xe K

has a solution # in K on J = [0, 1]. This fact is obtained by applying
Theorem 3.4.2. This solution cannot leave K}, since we have

(foP (x)-xx)=(f P (x),x)=|x[ <(8-1)5 -5 for |xl| = &
Hence u(f) € Ksand u(t)=x+1(f P, (x)—x)+o(t);ast -0, imply

p(x+t(foR (x)—x),./](&)zO(t);ast—)0+

and therefore f o P, (x)e m ,thatis f o P is weakly inward on K. O
Remark. Theorem 3.4.3 is valid in an arbitrary Banach space (Deimling, K.

[2D.

From Theorem 3.4.3 we obtain the following alternative.
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THEOREM 3.4.4 [Leray-Schauder type alternative]. Let (H,{-)) be a
Hilbert space, K c H a closed pointed convex cone and h : H - H a

mapping such that h(x) = x —T(x), for all x € H, where T - H —> H is an o
condensing mapping. Then, for any r > 0, for the mapping f(x) = Pgx —
h(x)] at least one of the following two situations is satisfied:

(1) h has a fixed-point in K,

(2) there exist x« with ||x«|| = r and A« € )0, 1] such that x+ = A+f(xs).

Proof. Since f'is continuous, bounded and
a(PK [T (B)]) < a(T (B)) <a(B) forall Bc K, with o(B) > 0,

we deduce that fis a-condensing. The theorem is now a consequence of
Theorem 3.4.3. i

Now, we consider mappings of the form fix) = x — 7(x), where
T: H— His a nonexpansive mapping, i.e., for any x;, x, € H we have

”T(x1 )-T(x, )” <
We say that a mapping g: H — H is semi-closed if its graph is sequentially
closed in the product of the weak topology on H with the norm topology on
H. Because a Hilbert space is a uniformly convex Banach space, it is known
that any mapping of the form f{x) = x — T(x), with T nonexpansive is demi-
closed (Penot, J. P., [1]). This means that if {x,} < H is weakly

%, = x, .

convergent to an element x, € H and {x" ~T(x, )} is convergent in norm
nen

to an element y, € H then xo — T(xo) = yo. We show that Theorem 3.4.3 is
valid also for nonexpansive mappings.

THEOREM 3.4.5. Let (H,(--)) be a Hilbert space, K — H a closed

pointed convex cone and f : K., —> H a nonexpansive mapping. If the
Jfollowing assumptions are satisfied:

(1) if xe oK, |x|<r,x" € K" and x"(x) =0, then x’ (f(x))ZO,

() f(x)#A(x) for all 2 >1and all x with
then f has a fixed point (in K,).

[ =r,
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Proof. We consider a sequence of real numbers {an}neN <]0,1] such that

lime, =1 and for any n € N the mapping f, (x)=a, f (x) . The mapping £,

is a contraction and consequently it is a-condensing. We can show that, for
any n € N, the mapping f, satisfies the assumptions of Theorem 3.4.3.

Therefore, for any n € N, there exists an element x, € K& such that
x, =a, f(x,). Because K, is a bounded set and H is a reflexive space, we

have that the sequence {xn} has a subsequence {x }k v weakly

neN K7

convergent to an element x» € K&,. We have also,

%, = F (5 )| = £ (5 ) = £ () = e, =17 (.,

Because f is nonexpansive it is bounded and consequently there exists a
number M > 0 such that

%, = £ (%)=l =17 (x,)

x, = f (xnk )
mapping g(x) = x — fx) is demi-closed we deduce that f{x«) = x«. o

', for any keN.

|<er, —1]1,

which implies that I!im

=0. Now, using the fact that the

Remark. From Theorem 3.4.5 we obtain some similar resuits proved in
(Frigon, M., Granas, A and Guennoun, Z. E. A, [1]).

From Theorem 3.4.5 we obtain the following alternative.

THEOREM 3.4.6 [Leray-Schauder type alternative]. Let (H,(-)) be a

Hilbert space, K < H a closed pointed convex cone and h : H > H a

mapping such that h(x) = x —1(x), for any x € H, where T : H > H is a
nonexpansive mapping. Then for any r > 0 the mapping

f (x) =P [x —h (x)] has at least one of the following two properties:
(1) fhas a fixed point in K,
(2) there exist x« with ||x+|| = r and A+ € 10, 1] such that x, = /Lf(x,).

Proof. The mapping f (x)= Py [x - h(x)] =P, [T (x)] is nonexpansive. If

f has a fixed point in X, the proof is complete. Suppose the f has no fixed
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point in K. If property (2) is not satisfied, we have that assumptions (1) and

(2) of Theorem 3.4.5 are satisfied which implies that f has a fixed-point in
K, and a contradiction follows. o

Remark. A variant of Theorem 3.4.5 was proved in 1974 in (Gatica, J. A.
and Kirk, W. A. [1}).

Now, we consider mappings that are demi-continuous and pseudo-
contractant. Let (H,(.-)) be a Hilbert space. We recall that a mapping
f + H —H is monotone if for any x, y € H we have
<f(x)—f(y),x—y>20. We say that a mapping T : H — H is pseudo-
contractant if the mapping f(x)=x-T(x) is monotone. We need to

introduce some notations. If L is a linear operator defined on a vector
subspace of H, we denote by D(L) the maximal domain of definition of L.
We have:

L:D(L)cH—>H.

/V(L) = {x eH: L(x) = O} = Ker (L) the null space.
ﬁ(L)z{yeH:L(x)zyfor someer} . The set Z(L) is the range of L.
We denote by £ the class of linear operators L . D(L) ¢ H — H such that
Y4 (L)=[/V (L)]l (the orthogonal complement of A/(L).). We suppose
that, for each L € £, D(L) is dense in H. Obviously we have that I € £ and
O € £ (where I is the identity operator and O is the null operator). If L € £
we denote by P the orthogonal projection onto A/(L), and by A the
continuous inverse of the restriction of L with respect to D(L)nZ(L).
We denote by F the class of finite dimensional subspaces of A/(L). For any

Fe & we denote by Pr the orthogonal projection onto F and we put
H,=72(I-P+P,). The following notation was defined in (Willem, M.,

[1D. If {xn}neN is a sequence in H, we denote by {xn}neN M5 x, ts

convergence with respect to the norm given on H and by {xn }ne . )y,

its convergence with respect to the weak topology, if this sequence is
respectively convergent to an element x+ € H.
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DEFINITION 3.4.1. We say that a mapping T: H — H is pseudomonotone
with respect to a linear operator Le L if the following conditions are
satisfied:

@ 7
P(x,)—sx,, (1-P)(x,) >y, and
limsup<T(x”),xn -(x +y*)> <0,

then <T(xn),xn ~(x +y,,)> —0and T(x,)—2>T(x + ).

(il) K(I —P)T is a completely continuous mapping,
(iii) (I — P)T is a bounded mapping, i.e., if M C H is a bounded set, then
[(1 - P)J (M) is bounded,

(ivy T is demicontinuous, ie., {xn }ne N M, implies
(T}, T (%),
(V) forany F € F the restriction of PiT with respect to Hy is a bounded

mapping.
Examples
€8] Any completely continuous mapping is pseudomonotone with

respect to the identity operator /.

2) T: H— H is pseudomonotone with respect to the null operator O, if
and only if T is pseudomonotone in Brezis’s sense [See (Brezis, H.,
[2]) and demicontinuous.

3) Any monotone and demicontinuous mapping is pseudomonotone
with respect to the null operator O
4) Other examples of pseudomonotone mappings with respect to a

linear operator / € L are considered in (Willem, M., [1])

Remark. The pseudomonotonicity defined by Definition 3.4.1 is a
generalization of the classical pseudomonotonicity defined in (Brezis, H.,

[2D-

The following result is due to M. Willem.
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THEOREM 3.4.7. Let (H ,(-,-)) be a Hilbert space T, : H—> H a mapping
and Q c H an open bounded set such that 0 € Q. If the following
assumptions are satisfied:

(1) T, is pseudomonotone with respect to a linear operator L € L,

(2) for any p € 10, 1[ and any xe D(L) N 0 Q we have

L(x)+(1-p)P(x)+ ul,(x)=0,
then for any Ac 10, 1] there exists x € Q such that
L(x)+(1-4)P(x)+ AT, (x)=0.

Proof. A proof of this result is in (Willem, M., [1]). We note that the proof
is long and it is based on several intermediate results. o

The following result is also due to M. Willem.

THEOREM 3.4.8. Let (H,(.-)) be a Hilbert space and T : H> H a
demicontinuous pseudo-contractant mapping. Let O < H be an open
bounded set such that 0 € Q. If for any A € 10, 1] and any x € JQ we have
x # AI(x), then T has at least a fixed point in Q.

Proof. We denote by 7, = I — T. The mapping 7, is monotone and
demicontinuous. Because for any A € 10, 1[ and any xe & Q we have that
x # AT(x) we deduce that, for any A € ]0, 1[ and any xe 5Q we have

(1-A)x+ AT, (x) = 0.
We have also that 7} is pseudomonotone with respect to the null operator O.
Let {ﬂn }”e , be a strictly increasing sequence in ]0, 1[, convergent to 1.
Applying Theorem 3.4.7 for any » € N we obtain for any n € N an element
x, € © such that
(1-24,)x, + 4,7, (x,)=0.

n

1- .
If we denote o, = , for any n € N, then from the last relation we

obtain
a,x, +T,(x,)=0.
Using the fact that 7, is monotone we deduce that for any n, m € N we have
(@, — X, , X, —X,) = —<To (x,)- T, (x,). %, —~xn> <0. (34.0)

We observe that the sequence {a,} s decreasing. By an algebraic

neN
computation we can show that for any m <» we have
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(o, +a,)

- X

m n

i +(am ——an)("xm ”2 -

x, 2)=2<ozmxm -a,x,, X, —xn>.
(3.4.2)

X } . is increasing. Because
ne

n

From (3.4.2) we obtain that the sequence {

this sequence is bounded it is convergent. From (3.4.1) and (3.4.2) we
deduce that for any m, n satisfying m > n we have

S o sl

is a Cauchy sequence. Therefore {xn}nEN is

B

which implies that {x,}

neN
norm convergent to an element x. € Q. Then we have
{7, (x, )}neN —® 57 (x.) and because {1, (x, )}MN — ,0, we have that

x+ = T(x+) and the proof is complete. O

For applications to complementarity problems and to variational
inequalities defined on unbounded closed convex sets, it is interesting to

know under what conditions the mapping (x)= Py [x -f (x)] is pseudo-
contractant where K — H is a closed convex cone or an unbounded closed

convex set and f: H — H is a given mapping. In this sense we have the
following result.

PROPOSITION 3.4.9. Let (H,(-,-)) be a Hilbert space, K  H a closed

convex cone or a closed convex set and f : H — H a mapping.
If fx) = x — p(x,), where ¢ : H— H is non-expansive, then the mapping
@ (x)=P, [x ~-f (x)] is pseudo-contractant.

Proof. Indeed, the mapping ¥(x) = x — ®(x,) is monotone, if for any
x1, X, € Hwe have

<x1 —xz,‘P(xl)—‘P(xz»

= (X, —x,,X, —x2>—<x1 ~x,, Py [xl —f(xl)]—PK [xz —f(xz)D >0,
which is equivalent to

<x1 X, P [x = £ (x)] =P [x - f(x, ]>S"xl—x2||2. (3.4.3)

From our assumptions we have,
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<x1 —xz,PK[xl —f(xl)]_PK[x2 _f(xZ)]>

< Hxl - x2||H¢(xl ) - ¢(x2 )” < ”xl - X, ’,
which implies that (3.4.3) is true and the proof is complete. ]

From Theorem 3.4.8 we deduce the following result.

THEOREM 3.4.10 [Leray—Schauder type alternative]. Let (H ,(-,~>) be

a Hilbert space, Q — H a bounded open set such that 0 € Q. If T: H— H is
a demicontinuous pseudo-contractant mapping, then at least one of the
following situations is true:

(1) T has a fixed point in Q,
(2) There exist A, €10,1] and x, € 0Q such that x, = AT(x,).

Proof. The theorem is a direct consequence of Theorem 3.4.8. 0

COROLLARY 3.4.11. Let (H,(,")) be a Hilbert space, K — H a closed

convex cone or a closed convex set and f: H — H a continuous mapping.
Let Q@  H be a bounded open set such that 0 € Q. If f(x)=x—-p(x),

where @:H —>H is non-expansive then for the mapping
D (x) =P, [x -f (x)] at least one of the following situations is true:

(1) @ has a fixed point in Q,
(2) there exist A, €10,1] and x, € 8Q such that x, = AP (x.).

Proof. The corollary is a consequence of Proposition 3.4.9 and of Theorem
3.4.10. o

Remark. We note that Theorems 3.5, 3.6, 3.8 and 3.9 proved in (O’Regan,

D., [1]) are Leray—Schauder type alternatives and all are particular cases of
Theorem 3.4.10.

3.5 An implicit Leray—Schauder alternative

We indicated that in this book we will develop a topological method based
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on Leray—Schauder type alternatives applicable to the study of solvability of
complementarity problems. This method can be extended to the study of
solvability of variational inequalities. The unification of both theories is
realized by an implicit Leray—Schauder alternative. For this aim we present
in this section an implicit Leray—Schauder alternative. The following result,
which is valid in locally convex spaces, is the most general form of
Schauder’s fixed-point theorem, proposed by R. Cauty in 2001, as a
solution to Schauder’s conjecture. [See (Mauldin, R. D. [1])]

THEOREM 3.5.1. Let E(7) be a topological Hausdorff vector space, C Cc E
a convex subset and f: C — C a continuous mapping. If {C) is contained in
a compact subset of C, then f has a fixed point.

Proof. It seems that the proof of this result proposed in (Cauty, R. [1]) has a
gap. T. Dobrowolski remarked this fact in the international conference
“Fixed Point Theory and its Applications”, August 01-05, 2005, Stefan
Banach International Mathematical Center, Poland. m]

Waiting a new proof, if such proof exists for Theorem 3.5.1, we
present Theorems 3.5.2, 3.5.3 and 3.5.4 in a general Hausdorff topological
vector space. We note that Theorems 3.5.2, 3.5.3 and 3.5.4 are valid in any
locally convex topological vector spaces.

Let E(7) be a Hausdorff topological vector space. We recall the
following notions. If 4 and B are subsets of E, we say that 4 absorbs B if

there exists 4y € R such that B < A4 whenever || > |4|. We say that a

subset U c E is radial if U absorbs every finite subset of E. We say that U
is circled if AU cU whenever |4] < 1. We denote by JU (respectively by
intU) the boundary (respectively the interior) of U.

THEOREM 3.5.2 [Rothe type]. Let E(7) be a Hausdorff topological vector
space, in particular a locally convex space and B — E a closed convex
subset such that the zero of E is contained in the interior of B. Let h: B > E
be a continuous mapping with h(B) relatively compact in E. If h(éB) c B,
then there is a point x« € B such that h(xs) = x«.

Proof. First we recall that, because E(7) is a Hausdorff topological vector
space, we have that the topology 7 possess a zero-neighborhood base U/ such

that any V < U is radial and circled (Schaefer, H. H., [2], Theorem 1.2).
Then, because int B< B, we have that B is radial. Let pg the Minkowski
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functional of B, i. e, for any x € E p,(x)=inf{1>0:xeAB}. The
functional pj is positive homogeneous. Indeed, first p3(0) = 0. Let xe E be
arbitrary and 4> 0. We have,

py(Ax)=inf{u>0:Axe uB} =inf{y>0:xe[l,uB}

=inf{ﬂ,ul : xeMB} =Ap, (x)

Now, we show that p, is continuous. The continuity of p, is a

consequence of the following facts. Let £ > 0 be an arbitrary real number.
From (Schaefer, H. H., [2], Theorem 1.2) there exists a radial and circled
zero-neighbourhood U such that 0eUcintBc B. Let Py be the
Minkowski functional of U. We have p, < p,. Because B is convex, p, is

subadditive and we can show that for any x, y € E we have,

Py (x) =Py (V) <Py (x-y)<py(x-)
and

Py (¥)~ Py (x)< Py (y—x)<py (¥ -3).
Because U is circled p, (x—y)=p, (y—x).Ifx, yare such thatx —y €
gU, then we have,

‘pb’ (x) — P (J’)l <e,

which implies the continuity of p, .
Now, we consider the mapping g: £ — E defined by

g(x)= [max {1, p (x)}]_] -x, for any x€ E.

The mapping g is continuous and g(E) — B. We define the mapping
f: B> B by f = goh. The mapping f is continuous and f{B) is relatively
compact in E. By Theorem 3.5.1 there exists an element x» € B such that
Six«) = x+«. We have two possibilities:

(1) X+ € intB or

(i1) x+ € 0B.
If (i) holds, then we have

1> py (5)=p, (£ (5) = [max{L.p, ()} ] Py ().

which implies that we must have p, (h(x.))<1 and consequently

flx)=g(h(x)=A(x.).

Therefore A (x, ) = x, . If (ii) holds, then we have
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X, =f(x.‘)=[max {l,pB (h(x* ))}T -h(x.)

and

[max{l, Dy (h(x* ))}T Dy (h(x,, )) =1.
If p, (h(x.))<1 then 1= p, (h(x.))<1 which is a contradiction. Thus we
must have p, (h(x,, ))=1 (since W(JB) c B). But p, (h(x* ))zl implies
f(x.)=h(x.), that is we have again A(x,)=x, and the proof is complete.

O

Remark. Our Theorem 3.5.2 is a generalization to an arbitrary Hausdorff
topological vector space of a similar result proved in 1972 in (Potter, A. J.
B., [1]) in a locally convex topological vector space. The next result is an
implicit Leray—Schauder type theorem in an arbitrary topological vector
space with respect to a closed convex set Bwith 0eint B B.

THEOREM 3.5.3 [Leray—Schauder (implicit form)]. Let E(7) be a
Hausdorff topological vector space, in particular a locally convex space,
B c E a closed convex set such that 0 € intB. Let f: [0, 1] x B—> E be a
continuous mapping ([0, 1] x B is endowed with the product topology). The

set f ([0,1] X B) is supposed to be relatively compact in E. If the following

assumptions are satisfied:
H f(t,x)ixfor all x € &B and te [0,1],

@) f({0}x8B)c B,

then there is an element x» € B such that f(1,x.)=x,.

Proof. For any n € N we consider the mapping f, : B — E defined by

f(l_ij(X)’pB?x)]’ifl_g" <ps(¥)<l,

(%)=

1-¢

n

f[l,ij, if py(x)<l-¢,
where p, is the Minkowski functional of B and {gn}neN is a sequence of

real numbers such that limeg, =0 and O0<g, <-;— for any ne N. We observe

h—r0

that for each ne N the mapping £, is continuous on B and f,(B) is relatively
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compact in E. From assumption (2) we have that f,(JB) < B, and the
assumptions of Theorem 3.5.2 are satisfied. Then for each ne N there exists
an element u, € B such f,(u,) = u,.

We suppose that an infinite number of the elements u, satisfy
1-¢,<p,(u,)<1. 3.5.1)
Because f(B) is relatively compact and considering the definition of

mappings f, we have that {un} is contained in a compact set in E. It is

neN
known that any compact set is countably compact [(Gemignani, M. C. [1],
page 179)] and every countable infinite subset of a countable compact set
has at least an accumulation point [(Gemignani, M. C. [1], page 179)]. We

consider the sequence {, }nE ,, defined by

:l—pB(un)
&

n

We have that {t”}neNc [0, 1]. Considering eventually a subsequence, we

t

n

, for any ne N,

suppose that lim#, =7 €[0,1]. The corresponding subsequence of {u,}  is

denoted again by {un} and it satisfies the inequalities (3.5.1). From (3.5.1)
we have that lim p, (u,)=1.

Let u+ be an accumulation point of {u,} . We know that {u,}

has a net converging to u«. Using this fact we can show that (¢, us, u+) is an

accumulation point of the sequence [tn , % ,unJ in[0,1] x Ex E.
pB (un ) neN

Considering the net convergent to u«, the continuity of f and the equations

f (tn, U jzun for any n € N, we obtain A, u«) = u». This fact is a
pB (un)

contradiction ~of assumption (1). Indeed, p,(u)=1 (since
lim p, (u,)=1,{u}_, beinganetof {u,}  convergenttou),and usc JB.
Therefore, it is impossible to have satisfied (3.5.1). Then (3.5.1) can be
satisfied only for a finite number of elements of the sequence {u, }neN.

Hence, we can suppose that
py(u,)<1-¢,, foralln e N. (3.5.2)
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Since lim(1—¢,)=1, selecting an accumulation point . for {u, }nE , and

n—xc

using a net of {un} convergent to u., we obtain by continuity and

neN
considering the equations f[l,iij =u,neN that f(l, u, ) =u,. By
—_ gn

this conclusion the proof is complete. |

Remark. Theorem 3.5.3 is a generalization to an arbitrary Hausdorff
topological vector space of a similar result proved in (Potter, A. J. B. [1]).
We note that the proof given in (Potter, A. J. B. [1]) has some inaccuracies.
(The notion of accumulation point is badly used.)

THEOREM 3.5.4 [Implicit Leray—Schauder type alternative]. Let E(7)
be a Hausdorff topological vector space, in particular a locally convex
space, B < E a closed convex set such that 0 € intB. Let f: [0, 1] x B —> E

be a continuous mapping such that f ([0,1] X B) is relatively compact in E.

We consider an [0, 1] x B the product topology. If the following
assumptions are satisfied:

(1) f({0}xoB)c B,
2) f(O, x) #x, for any x€ 0B,
then at least one of the following properties is satisfied:
@) there exists x« € B such that f{1, x+) = X,
(ii) there exists (A.,x.)€]0,1[x 8B such that f(A,x.)=x..

Proof. The theorem is an immediate consequence of Theorem 3.5.3. 0

3.6 Leray-Schauder type alternatives for set-valued
mappings

In many applications of complementarity problems or of variational
inequalities, we need to replace a single-valued mapping by a set-valued
mapping. The reason is the fact that, in many practical problems, the
mappings used in mathematical modelling are not single-valued and the
interest is to study, for example complementarity problems or variational
inequalities with set-valued mappings. It is clear that the set-valued
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mappings are also related to the presence of perturbations, to approximate
definitions of values of functions or to uncertainty. While many results have
been obtained for complementarity problems defined by single-valued
mappings, few results have been published for complementarity problems
defined by set-valued mappings. In this book we will show that the Leray—
Schauder type alternatives can be applied to the study of complementarity
problems defined by set-valued mappings. To do this, we need to give a
Leray—Schauder type alternative for set-valued mappings. This is the aim of
this section in which all topological vector spaces are assumed to be real
Hausdorff spaces.

Given a set X, we denote by AX) the family of all non-empty
subsets of X. Let E and F be topological vector spaces, and X C E, Y c F

non-empty subsets. We recall that the boundary, the interior and the convex
hull of the subset X are denoted by &X, int(X) and conv(X). Let f: X— Y be a

set-valued mapping (i.e., f: X > AY)).

DEFINITION 3.6.1. We say that the set-valued mapping f is upper
semicontinuous (u.s.c.) on X if the set {xe X:f (x)c: V} is open in X,

whenever V is an open subset in Y.

The following result is well known: if f: X — Y is (u.s.c.) and fix) is
compact for every x € X, then, if D < X is compact we have that

f (D)= U f (x) is compact (Berge, C., [1]). From this result we deduce

xeb

that if fis a set-valued mapping with f{x) compact for any x € X and there
exists a compact set D such that D) is not compact, then f is not (u.s.c.).
Obviously, if fis single-valued then the upper semicontinuity is the classical
continuity. As for single-valued mappings, we say that a set-valued
mapping f: X — Y, is compact if £X) is relatively compact in ¥. We recall
that a single-valued mapping ¢ : X —Y, is a selection of a set-valued
mapping f: X — 7, if for any x € X, ¢(x) € fAx).

We recall that a Hausdorff topological space Q is a completely
regular space, if for each closed subset 4 — Q and each xo € Q \ 4 there

exists a continuous function y:Q—>[0,1] such that w(x,)= 1 and
w(x)=0 forany x € 4.1t is known [see (Schaefer, H. H. [2]), page 16] that

any Hausdorff topological vector space is completely regular. A set D in a
topological space Q is called a neighbourhood retract if and only if, D is a
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retract of some of its neighbourhood U, (D c U c Q). This is equivalent to
being able to extend the identity mapping i : D — D (i.e., i(x) = x for any
x € D) to a continuous mapping ». The mapping 7 is called a retract. It is
known that every closed convex set in a Banach space E is a neighbourhood
retract. By an ANR we mean a compact metric space Q with the universal
property that every homeomorphic image of Q in a separable metric space
is a neighbourhood retract. The prototype for ANR spaces, are compact
convex sets in Banach spaces.

Let (QQ, <) be an ordered set. We suppose that Q is a lattice with a
minimal element denoted by 0. We recall that a function @ : 7 (E ) —->Q is

a measure of noncompactness (see Chapter 1) if the following conditions
hold for any X1, X, € HE):

(1) @(comv(X,))=®(X,),
(2) ®(X,)=0 ifand only if X, is precompact,
3) @(X, U X,)=max{®(X,),®(X,)}.

We recall that a subset D of a Hausdorff topological vector space is
precompact if and only if the closure of D in the completion E of E is
compact. 4 set-valued mapping f: X — Y is said to be ®-condensing if for

any subset D of X with ®(f(D))=®(D) we have that D is relatively

compact.

There exist ®$-condensing mappings f : X — FE only if for the
subsets of X precompactness coincides with relative compactness. A
compact set-valued mapping f: X — E is ®-condensing if either the domain

X is complete, or if E is quasicomplete. (We recall that a topological vector
space E is quasicomplete if every bounded closed subset of £ is complete.)

Obviously, every mapping defined on a compact set is necessarily ®-
condensing.

Let E(7) be a locally convex topological vector space. We suppose
that E has a fundamental system U(0) of convex symmetric neighborhoods

of the origin. The following notions are fundamental for the main result of
this section.
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Let X and Y be non-empty subsets of E.

DEFINITION 3.6.2. If f : X> Y is a set-valued mapping and if

U, V € UQ0), then in this case we say that a function ¢ : X— Y is a (U, V)-

approximative selection of f if for any x € X,
p(x)e(f[(x+U)nX]+V)NY.

This notion was introduced in (Ben-El-Mechaiekh, H. Chebbi, S and

Florenzano, M., [1}), but the reader is also referred to (Ben-El-Mechaiekh,

H. and Deguire, P., [1]), (Ben-El-Mechaiekh, H. and Idzik, A., [1]) and for
the metric space to (Gorniewicz, L., Granas, A. and Kryszewski, W., [1]).

DEFINITION 3.6.3. We say that a set-valued mapping f : X — Y is
approachable if it has a continuous (U, V)-approximative selection for any

(U, V) € U0) x LAO).

We denote by A(X, ) the class of approachable set-valued mappings from
Xinto Y. When X =Y, we write A(X) for A(X, X).

DEFINITION 3.6.4. We say that a set-valued mapping f X —Y is
approximable if its restriction fx to amy compact subset K of X is

approachable.

It is known (Ben-El-Mechaiekh, H., [1]) that an approachable set-
valued mapping is approximable. For examples of approachable and
approximable mappings the reader is referred to (Ben-El-Mechaiekh, H. and
Deguire, P., [1]), (Ben-El-Mechaiekh, H. and Idzik, A., [1]), (Ben-El-
Mechaiekh, H. Chebbi, S and Florenzano, M., [1]), (Ben-El-Mechaiekh, H.
and Isac, G., [1]), (Cellina, A., [1]) and (Gorniewicz, L., Granas, A. and
Kryszewski, W., [1])

For the main result of this section we need to indicate only the following
examples.

We suppose that £ X — AY) is an (u.s.c.) mapping
(i) Convex case. If X is a topological space, Y is a convex subset in a

locally convex space F and if the values of f are convex, then f is
approximable. (Cellina, A., [1]), (Ben-El-Mechaiekh, H. and Idzik,

A, [1]).
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(ii) Nonconvex case. If X is contained in a topological vector space E
and Y is contained in a locally convex space F, then fadmits a (U, V)-
approximative continuous selection for any open neighborhoods of
the origin U and V in E and F respectively if the following condition
is satisfied: X is a compact ANR, Y is an ANR and the values of f are
compact and contractible. (Ben-El-Mechaiekh, H. and Deguire, P.,
[1]). Obviously, in this case fis approximable.

Now, to give the Leray—Schauder type alternative for set-valued mappings
we follow the steps and the ideas used in (Ben-El-Mechaiekh, H. Chebbi, S
and Florenzano, M., [1]). First, we will prove some useful results.

PROPOSITION 3.6.1. Let f: X —> E be a compact approximable mapping.
For any Y € UQO) there exists a finite subset Dy of f(X) and
fr: X >comv(D,) such that f,(x)c f(x)+V, for any x € X
Moreover, fi is u.s.c. with non-empty closed values whenever f has the same

properties. If f € A(X, E) takes its values in a convex compact subset K of
E, then fe A(X,K).

Proof. Let V be an arbitrary neighborhood in U(0) and let
D, = {ul,uz,....,un}be a finite subset in f (X ) with the property that the

sets {u, + %V =1, 2,..n} form an open cover of the compact set f(X).

For any /=1, 2, ...,n and any ueU(ui +§V) we define

i1
m (u)zmax{o,l _péV (u—u,.)} ,

where b, is the Minkowski functional of %V. We define the Schauder

3
projection.

11, (u)z_n_l_zn:,ui (v)u,, for alZueLnJ[u, +%V).
Zﬂi (u) i=1 i=1

i=1

We have that T1,, : U(ui + %Vj — conv(D, ) . We can show that
i=1
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I, (u)—u e%V, for allueLnJ(u,. +§VJ.
i=l

Now, we define the mapping f, : X —>conv(D,), as the composition

product f, =II, o f. If fis approximable, then f is approximable because

its restriction to any compact subset of X is approachable as the composition
product of two approachable mappings (Ben-El-Mechaiekh, H., [1],

Proposition 2.5). We have also that, f, (x)c f(x)+V forallx € X, f is

u.s.c. and for any x € X, fi{x) is compact, whenever fis u.s.c. and, for any
x € X, fix) is compact.
Now, we suppose that f € A(X, E) and for any x € X, Ax) c K,

where K C E is a compact convex set. In this case, for a given U € U(0) let

. 1 o .
s : X — E be a continuous (U ’EV) -approximative selection of f. Then for

all x € X we have

S(x)ef((X+U)mX)+%VcQ[u, %y}%y:qu,.%@,

IT, (s(x))es(x)+%V cf((x+U)mX)+%V+§V
c f((x+U)nX)+V.
Therefore, I1, o5 is a continuous (U, ¥)-approximative selection of f with

values in conv(Dy) c K m|

PROPOSITION 3.6.2. Let X ¢ E be a convex compact subset and
fe AX). Iffis u.s.c. with non-empty closed values, then f has a fixed-point,
i.e., there exists a point xy € X such that, x, € fxo).

Proof. This proposition is a generalization of the classical Fan—Kakutani
fixed-point theorem, and a proof is in (Ben-El-Mechaiekh, H. and Deguire,
P, [1D]). O

The following useful result is related to a similar result used in
(Petryshyn, W. V. and Fitzpatrick, P. M. [1]). We follow the proof given in
(Ben-El-Mechaiekh, H. Chebbi, S and Florenzano, M., [1]).
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PROPOSITION 3.6.3. If X is a non-empty subset of Eand f: X - E is a
®-condensing mapping, then there exists a non-empty compact and convex

subset K < E such that f(KmX)CK,

Proof. Indeed, let xo € X be a fixed element. We consider the family F of
all closed convex subsets D of E such that x, € D and f (Dm X ) c D.

Obviously F is non-empty, since conv( f (X ) U {xo}) e F .We denote
K= ﬂ D . We have that Kis closed convex and xp € K. If xe Kn X,

DeF

then f{x) = D for all D € Fand hence f (K nX)c K . Therefore we have
that K € F. The proof will be complete if we prove that X is compact. If K
is not compact, then ®(K)Z CD( f(K )) , since f is ®-condensing.
Denoting by K. =conv({x,} U f (&K ~ X)), we have that K, — K , which
implies that f (K. X)c f(K nX)cK.. Therefore K. e F and
K c K+ Because K= K-,

B() -0 (K.) -0 (f (X X)) <0 (K))

and we have a contradiction. 0
A main result is the following theorem.

Theorem 3.6.4 [Leray—Schauder set-valued alternative|. Let X be a
closed subset of E such that 0 € int(X).Let f: X > E be a ®-condensing or a
compact u.s.c. set-valued mapping. If f is approximable with non-empty
closed values, then one of the following properties holds:

(1) there exists an element xy € X such that xy € fx),

(2) there exist x« € KX and A» € 10, 1] such that x« € Afx:).

Proof. First, we suppose that f is ®-condensing. In this case, we suppose
that for each x e X, with x¢ f(x) and for each (1,x)e]0,1[xoX,

xeAf (x) . Applying, Proposition 3.6.3 we deduce the existence of a non-
empty convex and compact subset K of E such that f (&K NnX)c K. We
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can suppose that 0 € K Since K n X is compact, ﬁK . eA(KmX,E)
and by Proposition 3.6.1, f € AKNX,K).

We consider the set-valued mapping f; : K — K defined by

f(x) if xe K and x cint(X),
fl(x):{K if xe/Kanderint(X)
and we can show that f; is u.s.c., with non-empty closed values. We have
that /i € A(K). Indeed, let (U, V) € U0O0) x U{O) be arbitrary and

s: KX —>K be a continuous (U,%V}-approximative selection of

f| ko + BY [(Ben-El-Mechaiekh, H. and Deguire, P., [1]), Proposition 1.6]

there exists a continuous function s; : K — K such that s and Sygxnx are

%V -near (i.e., for any xe K N X, s, (x) —s(x)e%V). Therefore s, is a

(U, V)-approximative selection of f].

Now, we consider the set
D={xeXmleexlf(x)forsomeﬂe[O,l]} .
Because 0 € D, we have that D is non-empty and D is closed since fis u.s.c.
and f (X N K)c K , hence compact. Because E is a Hausdorff locally

convex space, we have that £ is completely regular [(Schaefer, H.H., [2]),
page 16]. Since DN (E \'int (X )) = ¢, there is a continuous function

@ E—> [0, 1] , such that ¢(x) = 1 for xe D and ¢(x) = 0 for xe E \ int(X).
Let g: K— K be the mapping defined by:

g(x) = p(x)fi(x).
The mapping g is u.s.c. with non-empty closed values and by [(Ben-El-
Mechaiekh, H., [1]), Proposition 2.4 and Proposition 2.5] we have that

ge .A(./K) By Proposition 3.6.2, g has a fixed-point x, € K, i.e.,
Xo € P(x,)f,(%,). If x, ¢int(X), ¢xo) = 0 and x, = 0, which contradicts
the hypothesis 0 € int (X). If x, € int(X), x, eqo(xo)f(xo), hence x, € D,
@(xo) = 1 and x, is a fixed-point of £, another contradiction.
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Now, we consider the case when fis compact. In this case, let V e
U(0) be arbitrary but fixed. Let Dy be the finite subset of f (X ) and the
approximable mapping f, : X —conv(D, ), verifying f, (x)c f(x)+V
for all xe X, both provided by Proposition 3.6.1. Without loss of
generality, we can assume that Oeconv(D,) (otherwise, we replace
conv(Dy) by conv({0} W Dy). We note that
fVleconv(]),,) eA (X N conv(D, ),conv(D, ))

The same proof as in the first case, but replacing fl PO )% fV{ Kecon(Dy) ?

gives us the following alternative:
(i) there exists xy € X, with x, € f, (x,); or

(i) there exists (x,,4,)€0X x |0,1[, withx, € 4, f, (x,).

Using the compactness of f, its upper semicontinuity and the closedness of
its values we conclude that the proof is complete. [For more details the
reader is referred to (Ben-El-Mechaiekh, H. and ldzik, A. [1]). ]

Remark. In the proof of Theorem 3.6.4 we followed the ideas used in (Ben-
El-Mechaiekh, H., Chebbi, S. and Florenzano, M., [1])

A variant of Theorem 3.6.4 is the following result due to S. Park.
We recall that a set-valued mapping f: X — Y is said to be closed if it has a
closed graph Gr(f)c X xY , where

Gr{f) = {(x,y)eXxY:xeX,erandyef(x)}
It is known that if fis u.s.c., then it is closed (Berge, C. [1]).

THEOREM 3.6.5 [Leray—-Schauder set-valued alternative]. Let X be a
closed subset of E such that 0 € int(X). If f: E — E is a closed compact
approximable set-valued mapping, then either:

(1) A has a fixed-point, or

(2) there exist x« € AX and 2» > 1 such that Asx« € f{x+).

Proof. A proof of this theorem is given in (Park, S. [1]) and it is similar to
the second part of the proof of Theorem 3.6.4. ]

For the results presented in this book the following variant of
Theorem 3.6.4. is useful.
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THEOREM 3.6.6. Let X be a closed subset of a Banach space (E,||),

such that 0 € int(X). Let f: X > E be a compact u.s.c. set-valued mapping
with non-empty compact contractible values. If f is fixed-point free, then

there exists (A.,x,)€]0,1[x 0X such that x, € A f (x.).

Proof. This result is a corollary of Theorem 3.6.4. o

Remark. We note that Theorem 3.6.6 follows immediately from Corollary
3.3 proved in (Gorniewicz, L. and Slosarski, M., [1]), using the notion of
essential set-valued mapping.

Now, we present another notion. First, we need to introduce some
notation and definitions. Let X be a topological space. We denote by H the
Cech homology functor with compact carriers and rational coefficients Q
(See (Gorniewicz, L. and Slosarski, M., [1]). We say that X is acyclic if

Hn(X):{Olfn>0’
Qif n=0.
It is known that a contractible space is acyclic. Let Z be another topological
space. We say that a continuous mapping p : Z— X is a Vietoris mapping if
the following conditions are satisfied:

(1) the set p’\(x) is acyclic, for each x € X,

(2) p is proper, i.e., p’(K) is compact for any compact set K < X.

Let X and Y be subsets of a Banach space (E,

w:X > Y is called admissible if there exists a topological space Z and two
continuous mappings p : Z — X and q: Z — Y such that the following
conditions are satisfied:

(1) p is a Vietoris mapping,

2) W(x):q(p"1 (x ))for anyxe X,

It is known that all u.s.c. set-valued mappings with acyclic compact values
and all compositions of such set-valued mappings are admissible.

“) A set-valued mapping

Now, we suppose that (E,

. ) and (F , ”H) are Banach spaces. Let
U c E be an open bounded subset. We introduce the following notation:
A, (U, F) = {l//:_[j — Fy is admissible and 0 ¢ t//(aU)} ,

A (U,F)= {l// :U — F;y is admissible and compact} ,
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AO(U,F):{V/:ﬁeF; we A (U,F)and y(x)={0} forallxeaU}.

DEFINITION 3.6.5. We say that a set-valued mapping f € A, (U,F) is
essential if for every we A (U,F) there exists a point xe U such that
f(x)rw/(x);t¢.

We enumerate several properties of the notion of essential set-valued
mappings.

Property 3.6.5 [Existence]. If f €A, (U,F) is an essential mapping,
then there exists a point x € U such that 0 € fx).

Property 3.6.6 [Compact Perturbation]. If fe A, (U, F ) is essential
and ge A, (U,F), then (f+g)e Ay, (U,F) is an essential set-valued
mapping.

Property 3.6.7 [Coincidence]l. If f e A, (U,F) is essential,
geA (U,F) and A c U, where
A= {x eU :f(x) N (18)(x) = @, for somet e [O,l]}, then f and g have a

coincidence point, i.e., there exists xo € A such that f(x,)Ng(x,)# .

Property 3.6.8 [Normalization]. If 0 ¢ JU and U is an absolute retract
space, then the inclusion mapping i :U—>E defined by i(x) = x, for any x €
U is essential if and only if 0 € U.

Property 3.6.9 [Localization]. Let f € A, (U,F) be an essential set-

valued mapping. If V is an open subset of U satisfying the following
conditions:

@ r{o)<u.
(i1) V is an absolute retract space ,
then the restriction fi, :V — E of fis an essential set-valued mapping.

We recall that a topological space X is an absolute retract, if for each space
Y and each homeomorphism 4: X — Y such that 4(X) is a closed subset of 7,
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the set A(X) is a retract of Y. We note that a convex subset of a space is an
absolute retract.

Property 3.6.10 [Homotopy]. Let f € A, (U,F ) be an essential set-

valued mapping. If h:ﬁx[O,l]—)F is a compact admissible set-valued

mapping such that.
() h(x,0) = {0} for every x € AU,
(ii) {xeﬁ:f(x)mh(x,t)¢¢,forsomete[O,l]}CU,

then ( f- h(~,1)) :U — F is an essential set-valued mapping.

Property 3.6.11 [Continuation]. Let f € A,, (U,F) be an essential set-
valued mapping. Assume that f is proper, i.e., f " (K) is compact for any

compact set K< F. If h:U x [0,1] > F is a compact admissible set-valued

mapping such that h(x, 0) = {0}, for every x € JU, then there exists a
positive real number & such that the mapping ( f —h(-, ﬂ)):U —>F s

essential for each A€ |-¢,,&,| .

For Definition 3.6.5 and the proofs of Properties 3.6.5-3.6.11, the reader is
referred to (Gorniewicz, L. and Slosarski, M. [1]).

Remark. The notion of essential set-valued mapping is similar to the notion
of zero-epi mapping defined for single-valued mappings (see Chapter 1).

Now, using the essentiality we can give a Leray—Schauder
alternative for coincidence.

THEOREM 3.6.7 [Leray-Schauder] [Alternative for coincidence]. Let
fe A, (UF), geA (U,F) be arbitrary set-valued mappings. If f is
essential and f (x)ﬁ g(x) =¢ for any x € JU, then at least one of the

Jollowing conditions is satisfied:
(1) there exists a coincidence point of f and g, i.e., there exists a point

xo € U, such that f(x,)Ng(x,)#¢, or
(2) there exists Ay € 10, 1[ and xy € JU such that

f(xo)m[log(xo)]¢¢-
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Proof. We obtain the conclusion of the theorem if we apply Property 3.6.10
considering the set-valued mappings f and A, where h(x,r)=1g(x), for

xeU and e [0, 1]. o

Comment. There exist in the literature other kinds of Leray—Schauder
alternatives, but we selected in this chapter only the Leray—Schauder type
alternatives, which are useful for complementarity problems and variational
inequalities.



4

THE ORIGIN OF THE NOTION OF
EXCEPTIONAL FAMILY OF ELEMENTS

We informed the reader that we present in this book a topological
method applicable to the study of solvability of complementarity problems
and of variational inequalities. This method is based on the notion of
“exceptional family of elements” associated to a mapping and to a closed
convex cone or more generally to an unbounded closed convex set. A
mapping can have, or have not an exceptional family of elements. When a
mapping is without an exceptional family of elements, we have for this
mapping a kind of general coercivity condition. This general coercivity
condition implies the solvability of complementarity problems and of
variational inequalities. We explain in this chapter how this notion was

introduced in R " using the topological degree. In the next chapters we will

extend this method to more general situations using Leray-Schauder type
alternatives. By Leray-Schauder type alternatives, this method becomes
simpler and more elegant.

4.1 Exceptional family of elements, topological degree

and nonlinear complementarity problems in R".

Let (R",(-, >) be the n-dimensional Euclidean space. We denote by K a
closed pointed convex cone in R", and by K its dual. The cone K defines

an ordering on R"by x < y if and onlynif y —x € K. We say that the
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ordered vector space (R",K ) is a vector lattice if and only if, for every
pair (x, y) of elements of R" the supremum x v y and the infimum x A y
exist in R".If ([X{”’,K ) is a vector lattice, we define for every x € K",
x"=xv0, x =(-x)v0 and |x|=x" +x . Other properties of x', x~ and
|x| are presented and proved in (Peressini, A. L., [1]). We say that the n-
dimensional Euclidean space (.ZR’",(,-),K ) is a Hilbert lattice if and only
if:

(hy) R is a vector lattice,

(hy) Wx‘” = [lx” for every xe K",
(h3) 0< x <y implies ||x|| < ||| for every x, y € K.

We denote by Py the projection onto K (see Chapter 1). We say
that K is an isotone projection cone if and only if, for every x, ye R", x <

y implies P(x) < P(y). The following result is known.

THEOREM 4.1.1. If (R",(--),K) is a Hilbert lattice, then K is an

isotone projection cone and moreover, Py(x) =x" for everyx € R".

Proof. The theorem is a particular case of Theorem 1.50 proved in (Isac, G.,
[20]). m

This result justifies some of our notation in this chapter and in
particular we have that P, (x) =x"' foreveryx € R".Let Kc K" be an

arbitrary closed pointed convex cone and f: K —» R" a continuous

mapping. We consider the nonlinear complementarity problem defined by f
and K i.e.,

find x, € K suchthat
f(x)e K and (x.,f(x* )> =0.
We recall that the polar cone K° of Kis defined by

NCP(f,K):{
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K° :{xeﬁ?” (x,y)SOforallyeK}.
If 9 = K°, then by the Bipolarity Theorem (Schaefer, H., [2]) it follows
that &K =./[T(:Q° and hence K and @ are mutually polar. By Moreau’s

Decomposition Theorem (Theorem 1.9.5), each vector z € B” has a unique
decomposition of the form z =z" —z7, where z” = P, (z)and z~ =-P_, (z).
(Note that —z~ is the orthogonal complement to z') Obviously, z~ = z -z
The following result is useful in this chapter.
PROPOSITION 4.1.2. Given a mapping f:K —> R", the complemen-
tarity problem NCP(f, K) has a solution if and only if, the mapping

‘I’(x) =P, (x) - f(PK (x)), forall xe R”
has a fixed point in K". If x, is a fixed point of ¥, x, =P (xo) is a
solution to the problem NCP(f, K).

Proof. This proposition is Theorem 2.3.7 considered for the case

(H.(-) = (&".(). 0
Let f: K’ — R" be a continuous mapping.

DEFINITION 4.1.1. We say that a family of elements {x"} < R is an

exceptional family of elements for f, if “x’” —> 40 as r —> +oo and for each
real number r> 0 there exists a real number > 0 such that:

@ £ (x")=-ux if x>0,

(ii) f,.(x’)ZO if x =0.

DEFINITION 4.1.2. We say that an exceptional family of elements
{x’ }DO Jor fis regular if |X'|| = r for every r> 0.

The importance of the notion introduced in Definition 4.1.1 is given
by the following result. First, we consider the problem NCP(f, K) with

K=R".
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THEOREM 4.1.3. For a continuous mapping f:R — K", there exists
either a solution to the problem NCP ( 7/, ZK{’:’) or an exceptional family of

elements for f.

Proof. Applying Proposition 4.1.2 we have that the solvability of the
problem NCP ( f, Rf) is equivalent to the problem of finding a fixed point
for the mapping ¥ (x) = P, (x)-f (PM (x)), (x € /KP") . Consequently, we
consider the equation ¥(x) = x, or

F(Py () +x= P, (x)=0. (4.1.1)
Since (R",(~,~>,Z€’f) is a Hilbert lattice by Theorem 4.1.1 we have that

P, (x)=x", and because x —x" = x, equation (4.1.1) becomes

+

f(x)-x =0. (4.12)
If we denote F(x)= f (x*) —x~, now the problem is to solve the equation
F(x)=f(x")-x =0. (4.1.3)

Obviously, the mapping F: " — K" is continuous. For any real number
r > 0, we consider the spheres of radius #:

S = {x e R : || =r}
and the open ball of radius 7:

B, ={xel7€’ : Nx||<r}.
Obviously 0B, = S§,. We consider the homotopy between the identity
mapping / and F defined by:

H(x,t)=tx+(1-1)F(x),

for any (x,t) € 8B, x[0,1].
We apply the Poincaré—Bohl Theorem (this is Property 4 of topological
degree, in part I of Chapter 1), with y, =0 and Q = B,. We have

H(x,t)=tx+(1-1) f(x")-(1-1)x
:t(x+x‘)+(l —t)f(x*)—x'
=i +(1—t)f(x+)—x',
and for this homotopy the following cases are possible:

(i) There exists an > 0 such that 0¢ H(x,7),xeS,,7€[0,1]. Then
the Poincaré-Bohl Theorem implies that

(4.1.4)
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deg(F,B,,0)=deg(/,B,,0).
Because deg(Z, B, 0) = 1, we have that deg(F, B,, 0) = 1. This means
that the ball B, contains at least one solution to the equation F(x) = 0
[cf. Kronecker’s Theorem, Property 1 of topological degree, Chapter
1)]. Therefore the problem NCP ( f, [R’f) has a solution.

(i) For each r > 0, there exist a point u, € S, and a scalar ¢, € [0, 1] such
that

H(u, 1,)=0. (4.1.5)
We remark that |u,| =<u,+ —u,u —u;>: : o I
t, = 0, then u, solves equation (4.1.3), which implies again that the
problem NCP(f,R!) has a solution. Otherwise, if 7, > 0, then the
definition of H(x, f) and (4.1.5) yield

+

U

r

u

r

+

ta +(1-1,) f(u))=u, . (4.1.6)
From (4.1.6) we have
(L=t )f ()=, (u) . if (), >0 4.1.7)
and
(=1) £ () =(x),» if (u.), <O. (4.1.8)
Now, we put x” =u; and we rearrange (4.1.7) and (4.1.8) as follows:
fi(xr)z_li’tr X, i x>0, (4.1.9)
and
. 1, Y
fi(x ):"1_—7,(”’ ) 20, if x =0. (4.1.10)

t
If we put g, :1 we have that (4.1.9) and (4.1.10) represent

»r

relation (i) and (ii) from Definition 4.1.1. To have that {x’ }DO is an
exceptional family of elements, we must show that ”x’ “ — +00 when

r — +oo. Indeed, if we suppose that the set {uf} . is bounded, then in

this case it follows that .Iu; ”:,/rz —llu; * > 40 which means that
the right-hand side of (4.1.6) is unbounded, On the other hand, the

left-hand side of (4.1.6) is bounded since the set {u: }DO is supposed




114 Leray—Schauder Type Alternatives

to be bounded and f is a continuous mapping. This contradiction
completes the proof. i

We have a similar result for regular exceptional families.

THEOREM 4.1.4. For any continuous mapping f: R — R" there exists

either a solution to the problem NCP ( /s Rﬁ) or a regular exceptional
Jamily of elements for f.

Proof. As in the proof of Theorem 4.1.3, we consider the equation
F(x)=f(x")-x =0. (4.1.11)
For each »> 0 we define the set
D, =W, N B,, where W, :{xeR” :
and the number

5:\/(max{r,M,})2 +r°+1, with M, =r2:;1yx“f(x*)

x+

<r}

The number & is well defined since
M, < max |f(x)]|<+e.

xeB, R}
As in the proof of Theorem 4.1.3 we apply the Poincaré-Bohl Theorem to
the mappings 7, F and to the set D,. It is sufficient to consider two cases:

6 There exists an r > 0 such that 0¢ H(x,t), x€dD,, t€[0,1] .By
the same arguments used in the proof of Theorem 4.1.3 we obtain
a solution to the problem NCP ( /s ZR’:’)

(ii) For each » > 0 there exist a point u, € 0D, and a real number
1, € [0, 1] such that H (u,,2,)=0.1f¢, =0, then u, is a solution of
equation (4.1.11), which implies that the problem NCP ( s Rf)

has a solution. Otherwise, if ¢, > 0 we obtain as in the proof of
Theorem 4.1.3 that x" =u satisfies conditions (i) and (ii) of

Definition 4.1.1. In order to show that ”x’ H =y, we examine the

structure of the frontier & D, We can show that
oD, =V, VU, where

V,={xeR": r=|x'|<8}=oW, \B, and U; =W, NS,
We have that u, ¢ U, . Indeed from (4.1.6) it follows that

x+
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|[u,' H < max{

"
ur

f(u)

}Smax{r,M,} .

2

Hence,
2

+

U

r

: +”u;”2 <r’ +(max{r,M,})2 =(s-1y

which implies that |ju,|| < 6. Thus, . € V, and consequently

U

r

x"||=|u’||=r. This means that {x,}  is a regular exceptional
family of elements and the theorem is completely proved. i
Remarks.

1. G. Isac in 1991-1992 defined the notion of exceptional family of

elements in some unpublished notes, under the name of radial (or
asymptotic) family of elements. T. E. Smith considered a similar
notion. The notion considered by Smith is not a family of elements of

the form {x’ }M but is a sequence {xn}neN (Smith, T. E., [1]). This

sequence was defined using some special properties of the polyhedral
cone K7 . Smith’s notion cannot be related to the topological degree
and cannot be extended to any closed convex cone. Because the
sequence he defined was named, exceptional sequence of elements,
we named our notion “exceptional family of elements”, and we
developed this notion in several papers, published after the paper
(Isac, G., Bulavski, V. and Kalashnikov, V. [1]).

2. We remark that Theorem 4.1.4 can be derived by using the Hartman—

Stampacchia Theorem and the Karush-Kuhn-Tucker conditions, used

in optimization, but this method cannot be extended to general
situations and in particular to infinite dimensional Hilbert spaces. Our
method based on the notion of exceptional family of elements can be
extended to general situations because it is based on the topological
degree. In Chapter 7 we will give a more general construction without
topological degree.

From Theorem 4.1.3 and 4.1.4 we deduce immediately the following
result.

THEOREM 4.1.5. If f: R’ —> R is an arbitrary continuous mapping
without an exceptional family of elements, then the problem NCP ( 7, Rf)

has at least a solution. )
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From Theorem 4.1.5 we deduce the following natural question: Is
the class of functions f such that f is without an exceptional family of
elements empty, or non-empty?

In the theory of variational inequalities we find the notion of “coercive

mapping”. We recall that a mapping f: R — K" is said to be coercive on
R’ if and only if
(f (1)~ f (%) x - x,)

¢ = x|
We proved in (Isac, G., Bulavski, V. and Kalashnikov, V. [1]) that coercive
continuous mappings do not have regular exceptional families of elements
with respect to &’ and also, there exist noncoercive mappings without

exceptional families of elements.
In a later chapter, we will consider again the relation between coercivity and
the property of being without an exceptional family of elements.

=+ as||x| > +w, xe R}, for some x, € R} .

Now, we consider the case of a general closed convex cone in R”.
Let f:K" — K" be a continuous mapping and K c K" a closed convex

cone.

DEFINITION 4.1.3. We say that a set of elements {x’} < K" is an

exceptional family of elements for f (with respect to K) if the following
conditions are satisfied:

) “(x’)+|.—>+oo as ¥ —» 4w,

(2) foreachr>0, f ((x’ )+ ) belongs to the open ray
(9((x’)_ ;sr)z{yz(x’)f + us,

Remarks.

(a) If in particular, x" € K, then from condition (2) of Definition 4.1.3,
we have the equality

f(x’)z—,u, (x’), Jor some u, >0.
(b) If K=R", then from Definition 4.1.3 we do not obtain exactly
Definition 4.1.1. In Definition 4.1.1 there is more information
about f, (x’ ) , because of the particularities of the cone R” .

,u>0} where s, =(x”)7 —(x’)+.



The origin of the notion of exceptional family of elements 117

(c) For a general cone Kc R’ there is also the concept of regular
exceptional family of elements. We say that an exceptional family of

()]

:r’

elements {x’} . Jor f (with respect to K) is regular if

Jor every r > 0.

THEOREM 4.1.6. For any continuous mapping f:R" — R" and any

closed pointed convex cone Kc R", there exists either a solution to the
problem NCP(f,K) or an exceptional family of elements (in the sense of
Definition 4.1.3) for f.

Proof. Using Proposition 4.1.2 and Theorem 1.9.5 (Moreau’s
Decomposition Theorem), we have that the solvability of the problem

NCP(f,K), is equivalent to the solvability of the equation

F(x) = f(x+ ) —x =0, wherex" =Py (x) and x =-P,, (x).
Now, repeating exactly the proof of Theorem 4.1.3 we obtain either that
there exists a solution to the problem NCP ( K ) or for each r > 0 there

exist a point u,€ S, and real number ¢, € ]0,1[ such that the equality
tu, +(1-1) f (u,+ )=u; is true. Dividing both sides of that equality by

(1 —t,) and rearranging, one obtains the relation

| S P
f(u:):i:r—u’—l~t,u:=u’+1—tr(u'_u')’

which  means  that  f (u,+ ) e? (u; ; sr) . The  fact that,

u, || — 4+ as r—>+w is established in the same way as in the proof of
Theorem 4.1.3. Thus {x’} 0 where x" =u’ is an exceptional family of

elements for f(with respect to &) and this complete the proof. |

Remark. We have a variant of Theorem 4.1.6 for regular exceptional
families of elements with respect to a closed convex cone Kc R".
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4.2. Exceptional family of elements, topological degree

and implicit complementarity problems in &'

We present in this section a notion of exceptional family of elements
for a couple of continuous mappings in &". This notion is applicable to the

study of implicit complementarity problems.

Let K< R" be aclosed convex cone and f, g : " — R” continuous

mappings. In particular the convex cone R"may be R'.If D c R"is a
non-empty subset, the implicit complementarity problem defined by f, g D
and Kis:

find x, € D such that
ICP(f.g,K): sg(x,)e K, f(x,)e K and

(g(x). /(%)) =0.
When D = K, we denote this problem by ICP(f g, K).

In complementarity theory, the study of implicit complementarity problems
is a big chapter (Isac, G. [12], [20]), (Hyers, D. H., Isac, G. and Rassias, Th.
M. [1]). Several authors have studied implicit complementarity problems
from several points of view. [See the references of the book (Isac, G, [20]).

DEFINITION 4.2.1. We say that a family of elements {x’}bo c R" is an

exceptional family of elements for the couple (f, g) with respect to K if the
Jfollowing conditions are satisfied:

1)
2) g(x')ZOfor eachr >0,

(3) for each r > 0, there exists yu. > 0 such that for i = 1, 2, ....n we
have

(M f;(xr):‘“,urgf (xr)’ it g (xr)>0’
(i) £, ()20 if g (x)=0.

We have the following result.

xr

— +00 as r—>+0,
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THEOREM 4.2.1. Let f, g : R"—> R" be continuous mappings. If the
Jfollowing assumptions are satisfied:
(1) there exists an element b € R" such that g(x) = 0 if and only if
x =5,
(2) g maps a neighborhood of the point b homeomorphically onto a
neighborhood of the origin,

then, there exists either a solution to the problem ICP ( f.g, Rf) or an

exceptional family of elements (in the sense of Definition 4.2.1) for the
couple (1, g).

Proof. We consider the mapping F : R" x R"— R" x R" defined by
x)—z
F(z,x):Lf( ) j;for any (z,x)eR"xR"

g(x)-="
and the equation
Fiz, x)=0. “4.2.1

The problem ICP ( f.g, Rf) is equivalent to the solvability of
equation (4.2.1). Indeed, if (z, x) solves (4.2.1), then x is a solution to the
problem ICP( /.8, R’f). Conversely, if x is a solution to the problem

ICp ( 1.2 K ) , then (z, x) is a solution of (4.2.1) where
N {g, (). 2.(x) >0,
- A (3) 1 g (x)=0,

Obviously the mapping F(z, x) is continuous over R*". For any r > 0, let S,
be the (2n-1)-dimensional sphere

S = {(z,x) e R : “(z,x - b)" = r} ,
and B, the open ball of radius 7, i.e.,
B, = {(z, x)e R*: H(z,x - b)” < r} )
Now, we consider the homotopy H(z, x, f) of the mappings F(z, x) and

G(z.x)= (; (x)j , defined by
H(z,x,t)=1G(z,x)+(1-1)F(z,x)

[m(l—r)f(x)—(l—t)z-] [zzw(l—t)f(x)—f].
£()+(x)z()~()") (e()-(-02

i=1,23,..,n



120  Leray—Schauder Type Alternatives

Hence we have

(4.2.2)

H(z,x,t)=[lz+ +(1—t)f(x)—z‘].

g(x) —(1 —l‘)z+
Two cases are possible:
(A) There exists an r > 0 such that
H(z,x,t)#0, for dll (z,x)eS, and 1 €[0,1].

In this case, Property 4 [Poincaré-Bohl] of topological degree implies
the equality

deg(F,B,,0)=deg(G,B.,0).
Since ]deg(G, B,,O)|=1, we have that deg(F,B,,0)=+1. Because
of this fact, we conclude that the ball B, contains at least one
solution of the equation (4.2.1) and the solvability of the problem
Icp ( f.g, Rf) is proved.
(B) For r> 0 there exist a point (z,,x’)eS, and a scalar ¢, € [0, 1]
such that
H(z,,x",1,)=0. (42.3)
We have

2

x"-b

H(zr,x’ - b)

If t, = 0, then x, solves the problem ICP( 7.8 [R’f) If t.> 0, from
(4.2.2) and (4,2,3) we obtain

2 -
+ e
n r

4 =, (4.2.4)

2 +
= Hzr
2n n

Lz +(1-1)f(x")=2, (4.2.5)
and
z = ¢(x) . (4.2.6)
1—t,

Substituting expression (4.2.6) for z’ into (4.2.5) we obtain
t)‘

1 g(x)+(1-1)r(x)=2.

r

which implies fori=1, 2, ....,n,
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_t,g(x’Z, 7 (z,), >0,
(} ~4,) 4.2.7)
@),y (z,), <0.

|

()=

t
Taking u, 2(—’?, we obtain from (4.2.7) that the family of
1-¢

elements {x’}DO is an exceptional family of elements for the couple

xr

(, g), if we prove that — +0 when # — + . To prove this fact we

suppose on the contrary, that the family {x’ }M is bounded, hence it has

a finite accumulation point x«. Note that the respective scalar limit ¢
cannot be equal to 1 (otherwise (4.2.4) contradicts (4.2.5)). But if & < 1,
then the continuity of fand g combined with (4.2.5) and (4.2.6) imply

the boundedness of the family {z,}  , which again contradicts (4.2.4)

as r — +oo. Thus we must have that ||x']| - +o as » — +oo, and the

proof is complete. o

Remarks.

1. We remark that, because of assumption (2) in Theorem 4.2.1, the
notion of exceptional family of elements for a pair of continuous
mappings is not so natural. Later, we will replace this notion by
another, more natural and more flexible.

2. In the next section we will extend Definition 4.2.1 to an arbitrary

closed convex cone K — R".

4.3 A general notion of an exceptional family of

elements for continuous mappings

In this section we introduce another notion of exceptional family of

elements, for a continuous mapping f:RK" — K", with respect to an

arbitrary closed convex cone K — K". This notion is more natural and
more flexible than the similar notion introduced by Definition 4.1.3.
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Let f:R" — K"be a continuous mapping and K < K" a closed
pointed convex cone. Let & be the dual of the cone K (see Chapter 1). If x

is an arbitrary element in &', then x" = P, (x) is well defined. We denote
x =x" —x. By Theorem 1.9.7 we have that x" € K and <x+ X > =0, that

is, x"is a normal vector to a supporting hyperplane of the cone K at the

point x".

DEFINITION 4.3.1. We say that a family of elements {x,}r>0 cK,isan

exceptional family of elements for f with respect to the cone K if the

Sfollowing conditions are satisfied.
(1) |x,||—> 0 asr— +o,
(2) for each r > 0 there exists a scalar p, > 0 such that
s, =f(x)+ux €K and(x, s )=0.
Remark. If {xr}w is an exceptional family of elements for f with respect
to K, then from condition (1) and (2) of Definition 4.3.1 we deduce that for
any r > 0, the vector s, = f(x, )+ ,x, is the normal one to a supporting

hyperplane of the cone K at the point x,.

We have the following result, which justifies the importance of the
notion of exceptional family of elements (in the sense of Definition 4.3.1).

THEOREM 4.3.1. If K c R is an arbitrary closed pointed convex cone
and fi K— R is a continuous mapping, then either the problem NCP(f, K)

has a solution or f has an exceptional family of elements with respect to K
(in the sense of Definition 4.3.1).

Proof. We consider the mapping F (x) =f (x+)—x’ where
X =P (x) and x™ =x" — x, and we remark that the solvability of equation

F(x) = 0 and the solvability of the NCP(f, K) are equivalent in the following
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sense: if x« is a solution of equation F(x) = 0, then x, = P, (x) solves the
problem NCP(f, K), and conversely, if x; is a solution to the problem
NCP(t, K), then x, =x, — f (xo) is a solution of equation F(x) = 0. In order
to investigate equation
F(x)=f(x")-x =0. (4.3.1)

we consider, for any #> 0 the spheres S, and the open balls B,:

S, ={xe R": |x||=r},

B, :{xeR" : }x"<r}.

Let G(x) = x be the identity mapping and H(x, ¢) the following homotopy
defined by G and F:

H(x,t)=tx+(1-1)F(x), 1€[0,1].
In order to apply the Poincaré—Bohl Theorem (Property 4 of topological

degree) for yo = 0 and Q = B,, we consider the expression H(x, ¢) for
arbitrary x€ 0B, =S, and 1 €[0,1]:
H(x,t)=ox' +(1-1) f(x")-x . (43.2)
We have two possibilities:
(A) There is a scalar # > 0 such that
H(x, )= 0, forallx € S,and all # € [0, 1].
Then by the Poincaré-Bohl Theorem we obtain that
deg(F, B, 0)=deg(G, B,, 0)=1.
Therefore, because deg(F, B,, 0) = 1, by Property 1 of topological
degree (Kronecker’s Theorem), we have that equation (4.3.1) has a

solution in B, and consequently the NCP(f, K) has a solution.
(B) For every r> 0 there exist a point x, = S, and a scalar ¢, € [0, 1[such
that
H(x, t)=0. “4.3.3)
If ¢, = 0, then x, solves (4.3.1) which again implies the solvability of

the NCP(f, K). Otherwise, if £, > 0, then it follows from (4.3.2) and
(4.3.3) that

tx) +(1-1,) f (%) =x . (4.3.4)
Dividing both parts of equation (4.3.4) by (1 — ¢,) we obtain

Fl) L = (43.5)

1-¢ " 1-1 "
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t . . .
If we denote u, = i—i—, we obtain {x,+ } , s an exceptional family
— t r>

r

of elements for f with respect to K. Indeed, from (4.3.5) it follows that

the vector s, = f (x:)+ ux is in K and <xr+ ,sr>=0. Moreover,

“x,+ “—»+oo asr —» +w0, because if the contrary is true, the family

{x: } , must have a finite accumulation point. On the other hand, the

equality ﬂx; “ = ,/rz - “xr+ ”2 implies that the right-hand side of (4.3.4)
comprises an unbounded sequence of elements. On the other hand, the
respective vectors in the left-hand side of (4.3.4) compose a bounded
family due to the continuity of the mapping f. This contradiction
completes the proof. o

The notion of exceptional family of elements introduced by Definition
4.3.1 can be extended to a pair of mappings. Indeed, let K< X" be a closed

pointed convex cone and f, g : R — R" continuous mappings.

DEFINITION 4.3.2. We say that a family of elements {xr}r>0 c R"is an
exceptional family of elements for the pair (f, ) of continuous mappings

with respect to the cone K, if the following conditions are satisfied:
ey
(2) g(x,) € Kforanyr> 0,

(3) for every r> 0, there exists > 0 such that
s,=f(x)+ug(x)eK and <g(xr),sr> =0.

X,|| > +0asr —+o,

Remark. The notion of an exceptional family of elements for a couple (£, g)
of continuous mappings was introduced as a mathematical tool for the study

of the problem ICP(f, g, K). If the cone K is self-adjoint, i.e., K= K, then

in this case the notion of exceptional family of elements can be formulated
for the couple (g, /).

Definition 4.3.2 allows us to state the following result.
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THEOREM 4.3.2. Let f, g: R" — R"" be continuous mappings, K < R"

a closed convex cone. Let b € R" be a unique solution to equation fix) = 0.
Moreover, let g map homeomorphically some neighborhood of the element
b onto a particular neighborhood of the origin. Then either the problem

ICP(f, g, K) has a solution, or the couple (f, g) has an exceptional family of
elements (in the sense of Definition 4.3.1).

Proof. We consider the mapping F: R" x B" — R" x K" defined by
xX)—z
F(Z’x):[f( ) +
g(x)-z
We observe that equation

] ,Wherez' =Py2) z =z -z".

F(z, x)=0, (4.3.6)
is equivalent to the solvability of the problem ICP(f g K) in the following
sense. If (z, x) solves (4.3.6), then x is a solution to the problem
ICP(f, g, K). Conversely, given a solution x to the problem ICP(f, g K),
then the pair (z, x) with z=g(x)— f(x) is a solution to equation (4.3.6).

Obviously, the mapping F is continuous over R*". Let S, be a 2n — 1)-
dimensional sphere of radius » with its centre at the point (0, b):

S, = {(z, x)e R : [(z,x - b)” = r} ,
and B, an open ball with the same radius and centre, i.e.,
B = {(z, x)e R™: 1(z,x — b)“ < r} .

We consider the sets S, and B, for any » > 0. Considering the mapping

z
G(z, x) :[ ( )] we define the following standard homotopy defined with
g(x

F and G by:

4.3.7)

H(z,x,t) =tG(z,x) + (1 —t)F(z,x)
with te [O, 1].
We have
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H(z,x,t)z

{tz-k(l—t)f(x)—(l—t)z‘ ]
tg(x)%—(l—t)g(x)—(l—t)z+
[tf +(1—t)f(x)—zJ‘

g(x)-(1-1)z'
We have two possible cases:
(A) There exists » > 0 such that

H(z, x,t) #0, for any (z,x) eS,,and anyte [0, 1].

In this case, Property 4 of topological degree (Poincaré-Bohl
Theorem) implies

deg(F,B,,0)=deg(G,B,.0). (4.3.8)
Using the assumptions of our theorem we can verify that
deg (G, B,,0)=1. By taking (4.3.8) into account we also obtain that

deg(F,B,,0)=+1. Now by Property 1 of topological degree
(Kronecker’s Theorem), we conclude that B, contains at least one
solution of (4.3.8). Therefore, the problem ICP(f, g, K) has a solution.
(B) For every r > 0, there exist a pair (z,,x,)€S, and a scalar ¢, € [0, 1]
such that
H(z,,x,,1,)=0. 4.3.9)
Note that
2
”(zr’xr - b) &2
If t,= 0, then (zr , x,) solves equation (4.3.6) and consequently, x, is a
solution to the problem ICP(f, g, K). Otherwise, if ¢, > 0, then (4.3.7)
and (4.3.9) imply the following equalities:
tz+(1-t) f(x)=2z, “4.3.11)
._8(x)
z = .
(1-1)

If we put z given by (4.3.12) in (4.3.11), we obtain
t -
—g(x,)+(1-1)f(x)=2 .

-1,

2
+
R

=lz; x, ~ b, =r*. (43.10)

5"

r

+
R"

(4.3.12)
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r

(1-)

Dividing both sides by (1 - ¢,), and denoting by x, = >0 we

have

F) e mg(s) =z

r

From the last equality we obtain that the family of elements {xr }r> o 18

an exceptional family of elements for the couple (7, g) if we show that
g» —>+0 as r— +oo. In order, to prove this, we suppose on the

xr
contrary, that the family {xr}bo has a finite accumulation point xs.

Note that the respective scalar limit # cannot be equal to 1, otherwise
(4.3.10) contradicts (4.3.11). But if # < 1, then the continuity of
mappings f and g combined with (4.3.11) and (4.3.12) imply the
boundedness of the family of elements {zr}DO , which again

contradicts (4.3.10) as # — +co. Thus, it is shown that ||x,{| - + c and
the proof is complete. o

4.4 Exceptional family of elements, zero-epi mappings
and nonlinear complementarity problems in
Hilbert spaces

In this section we extend the concept of exceptional family of
elements to infinite dimensional Hilbert spaces, for £-set fields. We realize
this extension using the concept of k-set contraction and (0, k)-epi mapping,
presented in sections 1.5 and 1.7 of Chapter 1. The properties of these
concepts will be used in this section.

Let (H ,<~,->) be a Hilbert space and K < H a closed pointed convex

cone. We recall that if 4 is a subset of H, the Kuratowski measure of
noncompactness of 4 is defined by:

. . |&>0:A4can be convered by
a(A4)=inf _ . :
a finite number of sets of diameter less than &
It is known (see Chapter 1) that o{4) = 0 if and only if 4 is relatively
compact. Let D be a subset of H and f# D — H a continuous mapping. We
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recall that f is said to be a k-set contraction if for each bounded subset A of
D we have a( f (A)) <ka (A) , where k£ > 0. For more information about

the measure of noncompactness « and about k-set contractions, the reader is
referred to Chapter 1. Let £ H — H be an arbitrary mapping. We repeat
Definition 4.3.1 but in a general Hilbert space

DEFINITION 4.4.1. We say that a family of elements {x,}r>0 c K is an

exceptional family of elements for f, with respect to K if and only if, for

every real number r > 0 there exists a real number u, > 0 such that the
vector u, = f(x,)+ u,x, satisfies the following conditions:

D) ue K,
@ (u,.%,)=0,
3)

—> 40 as ¥ —> 40 .,

xr

Remark. We say that an exceptional family of elements {xr }r> , is regular if

for any r> 0 we have ||x,|| =r.

DEFINITION 4.4.2. We say that a mapping f: H— H is a k-set field if
Ax) =x— T(x), where T': H—> H is a k-set contraction with0 < k< 1.

Remark. If in Definition 4.4.2 the mapping 7 is completely continuous, we
have that fis a completely continuous field.
If £ H— H is a mapping and Kc H is a closed pointed convex cone, we

consider again the problem:
find x. € K suchthat

NCP ,K = *

(/%) {f(x*)e/]( and(x,,,f(x,,)>=().

THEOREM 4.4.1. If f: H—> H is an arbitrary k-set field, then there exists
either a solution to the problem NCP(f, K) or an exceptional family of

elements for fwith respect to K (in the sense of Definition 4.4.1).

Proof. We consider the mapping ®: H — H defined by
Q(x)=x-Py [x—f(x)],for anyxe H .
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From Chapter 2 (Corollary 2.3.4) we know that the problem NCP(f, K) has

a solution if and only if, the equation ®(x) = 0 has a solution. For any » > 0
we consider the sets:

S, :{er: ”x“:r} and B, ={er: “x“<r} .
We remark that the identity mapping on H, denoted by 1, is a (0, k)-epi
mapping on any B, with k € [0, 1. Let A :[0,1]>< B—,—> H be the mapping
defined by

h(t,x) :I(x -P, [x - f(x):l - x) = t(—PK [x — f(x)])
The mapping 4 is a k-set contraction such that 40, x) =0, for all x € 1_9: .
We have only the following two situations.

(A) There exists » > 0 such that x+t(— K[x—f(x):l);to, for all

xe S,and all te [0, 1]. In this case, applying Property 4 [Homotopy]
of (0, k)-epi mappings we have that x + (—PK [x—f(x)]) =0has a
solution in B, that 1is there exists x:€ B, such that
X, =P, [x* -f (x* )], which implies that x. is a solution to the

problem NCP(f, K).
(B) For every r > 0 there exists x, €S,and ¢, € [0, 1] such that

x, +1, ( Polx, - f(x, ])
If t, = 0, we have that x, = 0, which is impossible since x, € S,. If
t, =1, then x, — P, i:xr - f(x, ):I =0, which is equivalent to saying

that the problem NCP(f, K) has a solution. Hence, we can say that

either the problem NCP(f, K) has a solution or for any » > 0, there
exist x, € S,and ¢, € ]0, 1] such that

x, —t,P [x, - f(x,)]=0. (4.4.1)
From (4.4.1) we have

%x, =P [x, - f(x)] (4.4.2)
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From (4.4.2) and using the properties (1) and (2) of projection
operator Py, given in Theorem 1.9.7, we deduce:

<tlxr—(xr—f(xr)),y>20 for all ye K

r

and (4.4.3)

<tix,—(x,~f(x,))%xr>=°’

¥

which implies

<(%—l)xr+f(x,),y>20 for all ye K

»

and (4.4.4)
<(%—1]xr + f(xr),%xr>:0.

Ifin (4.4.3) and (4.4.4) we put u, = 1 1, it follows that
t

r

ux, + f(x)ek, <,u,xr +f(x,),xr>=0
and since for every > 0, ||x,|| = r, we have that ”xr H—)Jroo asr — +o0 .

Thus, the family of elements {xr}r>0 is an exceptional family of elements

for fwith respect to &K and the proof is complete. mi

Remark. Looking at the proof of Theorem 4.4.1 we remark that the

exceptional family of elements {xr} is a regular exceptional family of

r>0
elements.

COROLLARY 44.2. If f: H— H is a k-set field without an exceptional
Sfamily of elements, with respect to K , then the problem NCP(f, K) has a

solution.
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COROLLARY 4.4.3. If f: H— H is a completely continuous field without

an exceptional family of elements, with respect to K , then the problem

NCP(f, K) has a solution.

COROLLARY 4.4.4. If K ¢ R' is an arbitrary closed pointed convex
cone, then for any continuous mapping f: R' — R, there exists either a
solution to the problem NCP(f, K), or an exceptional family of elements for

[, with respect to K

Remark. Theorem 4.4.1 is valid even if the k-set field fis defined only on
the cone K& Indeed, in this case we consider the k-set field

h(x):x—T(PK (x)), for all xe H.

4.5 Two applications

We will close this chapter with two applications of the notion of
exceptional family of elements to the study of two particular

complementarity problems. We consider the problem NCP ( IR ) , where

f:R! > R" is a Py-function. The notions of Py-function (resp. P-function)

were introduced by J. J. Moré and W. Rheinboldt as a natural extension of
the notions of Py-matirx (resp. P-matrix). For more details about P, and P-
functions the reader is referred to (Moré, J. J. and Rheinboldt, W. [1]).

We recall that a matrix is a Py-matrix (resp. P-matrix) if all its
principal minors are nonnegative (resp. positive). Let D be a subset of &’
and f: D — K a function. We say that fis a Py-function (resp. P-function)
on D if for all x, y € D, x # y, there exists an index i = i(x, y), such that
x, #, and (x, —yi)(fi (x)-f, (y)) > 0 (resp.

(x =2) (£ ()= £.()>0).
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Considering the problem NCP( f Rf), we denote by F the set of all
feasible solutions, i.e.,
F={xeR: f(x)20, foralli=1,2,.n}.

We say that u € F is strictly feasible if f(u) > 0 foralli =1, 2, ...,n. It is
known that if £ is a monotone mapping, i.e., (x—y)(f(x)-/f(y))=0 for
all x,ye K, and F contains at least one strictly feasible point, then the
NCP ( 7/, /}&’f) has a solution (Moré, J. J. [1]). This result cannot be extended

to the class of Py-functions (even P-function), as the following simple
example shows.

Let f:R’>— R® be the function defined by f, (x)=w(x)+x,

and f,(x)=x,, where y:R—> R is (//(t):~%e". The function f is a

+

. . 1
continuous P-function and F = {(xl,xz) eR*: x,>0,x, 236 u } The

point # = (0, 1) is a strictly feasible point, but the only point which satisfies
the complementarity condition associated with f is (0, 0) which is not a

solution to the problem NCP ( f, Rf) since (0, 0) ¢ F.

The next result shows that the problem NCP ( /s ZR’:’) associated to

a Py-function is solvable if the set F contains # points of a particular form.

THEOREM 4.5.1. Let f: R} — R" be a Py-function. If the feasible set F
contains n points e(j), j=12,...,n such that efij) >0 and e,.(j) =0 for all

i # j, then the problem NCP ( f, RZ) has a solution.

Proof. If, for a particular j, f; (e(’) ) =0, we have that e” is a solution to the
problem NCP ( [ R ) . Hence, we can suppose that for every
je{li2,...ni, f, (e(j) ) > 0. The theorem will be proved, if we show that f'is

without exceptional families of elements in the sense of Definition 4.1.1
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with respect to R’ . Indeed, we suppose that f has an exceptional family of

elements {x’ }M c R’ . We have the following facts:

(i) Hx’ “ —> 400 as F —> +w,

(i) for every r> 0 there exists p,> 0, such that
@ £ (¥)=-sx, if x>0,
(b) £ (x")20 if x/ =0.

By property (i;) there exists an index r> 0 such that
n A\2

> > (e) . 45.1)
Jj=1

From (4.5.1) we have that there exists j, € {1, 2, ..., n} such that xj'.0 > eﬁﬁj") .
We observe that

»

X

X # el :(o,o e(f"),o,o,...,o). (4.5.2)

> €

Since fis a Po-function, there exists i = i(x’ ,e(j")) such that x/ # e,.(j°) and

(3 - ) (£ () £ (e¥)) 0. (4.5.3)
If i = j,, then we have
(%, =), () = £ () <o,
which is a contradiction of (4.5.3). If i # j,, then we have e,.(j") =0 and

x] >0, which imply again

(xir _ ei(jo) )(fz (xr)_fi (e(fo))) <0.
The last inequality is also a contradiction of (4.5.3). We conclude that f is
without an exceptional family of elements with respect to &’ , in the sense
of Definition 4.1.1, and by Theorem 4.1.3, the problem NCP ( f Rf) has a

solution. O

Theorem 4.5.1 can be used to obtain an existence theorem for the
Generalized Linear Complementarity Problem, associated to a matrix M
and a vector g. We recall the definition of this problem. By a vertical bloc,
matrix M of type (m,,m,,....,m,) we mean a matrix
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Ml
M2

Mj

M,‘

where the j* block M’ has order m; x n. Thus for m = Z m, , the matrix M
j=1

is of order m x n. Let g be a vector in &R" partitioned conformably with A,

i.,e.,

with ¢/ € R™ .
The Generalized Linear Complementarity Problem (associated with
M and ¢g), denoted by GLCP(M, q), is

find ze R" suchthat:
GLCP(M,q): {z=0,M’z+¢’ 20, and

ZjIj[(M’Hq’)i =0, (j=12,...,n),

where 0, is the null vector in R™ . This clearly agrees with the Linear

Complementarity Problem when m, = 1 and M is the Jhrowof M(G=1,2,
...,h). The problem GLCP(M, q) was defined in (Cottle, R. W. and Dantzig,
G. B, [1] and it was studied in (Isac, G. and Carbone, A. [1]) (Carbone, A.
and Isac, G. [1]), (Ebiefung, A. A [1]), (Ebiefung, A. A and Kostreva, M.
M. [1]), (Mohan, S. R., Neogy, S. K. and Sridhar, R., [1]), (Szank, B. P.,
[1]), (Sznajder, R. and Gowda, M. S., [1]) and (Vandeberge, L., De Moor,
B. L. and Vanderwalle, J. [1]) among others.
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Now, we recall some notions on rectangular matrices. Let M be a
vertical block matrix of type (m,,m, ,...,m, ). An n x n submatrix N of M is

called a representative submatrix if its 7™ row is drawn from the /™ block,
M’ of M. The properties of M are based on properties of its representative
submatrices. Having this concept, we can talk about principal submatrices
of the rectangular matrix M. Obviously a vertical block matrix M of type

n
(m,,m,...,m,) has Hm ; Tepresentative submatrices.
j=1

Let M be a vertical block matrix of type (m,,m,,....,m, ). Consider

a principal submatrix of M. The determinant of such a matrix is a principal
minor of M. A vertical block matrix M of type (m] ,mz,....,mn) is called a

Py-matrix (resp. P-matrix) if and only if all its principal minors are
nonnegative (resp. strictly positive).

The next result is an existence theorem for the problem
GLCP(M, q) when M is a Py-vertical block matrix. This existence theorem
is more general than some existence results for this problem obtained by
other authors.

THEOREM 4.5.2. Let M be a Py-vertical block matrix of type

(m,,m,,....m,)) and q € K" a vector partitioned conformably with M,

m:ij. Assume that there exists n vectors x :(x,'(),lzl,Z,...,n,
Jj=1

k=1,2,....,nsuch that

foreach [=1,2,..,n

x, =0 fork#l, x, >0and (4.5.4)
min {(ij(’))‘ +q,.j} >0, for j=1,..,n.

Then the problem GLCP(M, q) has a solution.

Proof. We consider the piecewise linear function f:®" — R” defined as

f, (x)=min {(M’x)i +q,.j}, j=12,...n.

<i<
Ll,mj
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Clearly, the solvability of the GLCP(M, g) is equivalent to the solvability of
the problem NCP ( f, [R’f). As already observed by A. A. Ebiefung, the

assumptions on M, imply that f is a Py-function (Ebiefung, A. A., [1]).
Condition (4.5.4) implies that the assumptions of Theorem 4.5.1 hold for f

defined above and e =x0, e® =59 " =x" Hence, the result

follows from Theorem 4.5.1. o



5

LERAY-SCHAUDER TYPE ALTERNATIVES.
EXISTENCE THEOREMS

Considering the results presented in Chapter 4, we conclude that the
notion of exceptional family of elements can be used to study the solvability
of complementarity problems. This concept is supported by the notion of
topological degree and by the notion of zero-epi mapping, which is a kind
of topological degree, but more refined than the classical notion of
topological degree.

It is useful, from the point of view of applications to extend the
investigation methods based on the notion of exceptional family of elements
to other classes of mappings, different than the mappings used in Chapter 4,
and to set-valued mappings. To do this, the topological degree can be an
obstacle. Because of this fact, in this chapter we will establish some
relations between the notion of exceptional family of elements and Leray—
Schauder type alternatives. The Leray—Schauder type alternatives are not
based on topological degree (see Chapter 3). Moreover, there exist Leray—
Schauder type alternatives for set-valued mappings, (see again Chapter 3).

By establishing relations between the notion of exceptional family
of elements and Leray—Schauder type alternatives we will attain also two
major goals. The first goal is the fact that the method based on the notion of
exceptional family of elements will be founded on Leray—Schauder type
alternatives. In this way, we obtain a simpler method, which is open to new
developments, related to new classes of mappings and also related to other
kinds of applications. The second goal is to give a new direction of
applications of Leray—Schauder type alternatives. By this method we
introduce a very general notion of coercivity. The coercivity conditions are
used in nonlinear analysis and in optimization theory.
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In the Leray—Schauder Alternative Theorem (see Chapter 3) the
essential idea is to join the operator f to the constant operator ({x) = 0 by
means of the homotopy H:Qx[0,1]—> E defined by H (x,4)=Af(x), in
a such way that the unique fixed-point of H (-,0) can be “continued” in a
fixed-point of H (-, 1), for each Ae [0, 1] and in particular in a fixed-point
of H (-, 1) = f. This continuation process is possible, if all operators
H(,A), for A € [0, 1] are fixed-point free on the boundary of Q. In

applications, the Leray—Schauder Principle is usually used together with the
so-called a priori bounds techniques. In many problems related to
complementarity problems or to variational inequalities, it is hard to locate
the solution and hence to use the a priori bounds principle. Establishing a
relation between the notion of exceptional family of elements and the Leray—
Schauder Principle, we give a new Kind of application of this powerful
classical principle, well known in nonlinear analysis. This chapter is
dedicated to this development.

5.1 Nonlinear complementarity problems in arbitrary
Hilbert spaces

Let (H ,<~, >) be a Hilbert space, K c H a closed pointed convex cone

and f: H— H a mapping. We consider in this section the problem

). find x, € K suchthat
NCP(f’ ) f(x*)eK* and(x“f(x*»:()‘

For any real number » > 0 we consider the sets:
B, ={er:HxH<r},
S, :{er:"xH:r}.
Obviously, we have that &B, = §,. Let P be the projection operator onto &

We know that P (x) is well defined for any x € H. We recall that a

mapping f: H — H is a completely continuous field if f has a representation
of the form f (x) =x-T (x) , where T : H— H is a completely continuous

mapping. Similarly, we say that a mapping f: H — H is an a-condensing



Leray—Schauder type alternatives. Existence theorems 139

field if f has a representation of the form f(x)=x-T(x), where T: H —»

H is an a~condensing mapping. Also, we say that a mapping f: H > Hisa
nonexpansive field if f has a representation of the form f(x)=x—T(x)

where T': H — H is a nonexpansive mapping.

We recall that a mapping f: H — H is said to be monotone if for
any x, y € H, we have <x—y,f(x)—f(y)>20 and a mapping T: H > H
is pseudo-contractant if the mapping f (x)=x—T(x) is monotone. Also, a
mapping f : H — H is said to be demicontinuous if for any sequence
{x,},., © H, convergent in norm to an element x, € H, we have that the
sequence { f(x, )}neN is weakly convergent to flx:). Obviously any

continuous mapping is demicontinuous.

Let K — H be a closed pointed convex cone and f: H > H a

mapping. Let ®:H—>K be the mapping defined by
D, (x)=Py [x—f(x)].

DEFINITION 5.1.1. We say that a continuous mapping f : H - H is a
projectionally Leray—Schauder mapping with respect to K, if for any r > 0,
the condition

(LS): x# AD, (x) for any(x,A)€dB, x|0,1[,
implies that, ®, has a fixed-point in —B_r (Obviously the fixed-point is in
E NK.)

Examples

(1) If K has a compact base (i.e., K is a locally compact cone), then in

this case, any bounded mapping f: H — H is a projectionally Leray—

Schauder mapping, with respect to K. (In this example, fis a bounded
mapping means that for any bounded subset D c H, we have that D)
is a bounded set).

2) If f: H—> H is a completely continuous field, then f is a
projectionally Leray—Schauder mapping with respect to any closed

convex cone K < H. (In particular, in &”, any continuous mapping is
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a projectionally Leray—Schauder mapping with respect to any closed
convex cone.) This example is a consequence of Theorem 3.2.4.
(3) If f: H— His an a-condensing field, then f is a projectionally

Leray—Schauder mapping with respect to any closed convex cone K

c H. This result is a consequence of Theorem 3.4.4.
(4) Iff: H— His anonexpansive field, then fis a projectionally Leray—

Schauder mapping, with respect to any closed convex cone K < H.

This example is a consequence of Theorem 3.4.6.
(5) We say that a mapping f : H —> H is a projectionally pseudo-

contractant  field with respect to K if the mapping
D, (x)=Py [x -f (x)] is pseudo-contractant. If f is a continuous
and projectionally pseudo-contractant field with respect to K, then fis

a projectionally Leray—Schauder mapping with respect to K. This

result is a consequence of Theorem 3.4.10.

Let (H,(-,->) be a Hilbert space, K < H a closed pointed convex
cone and f: H — H a mapping.

DEFINITION 5.1.2. We say that a family of elements {x,}r>o c K is an
exceptional family of elements (denoted shortly by EFE) for the mapping f,
with respect to K if for every real number r > 0, there exists a real number
W > 0 such that the vector u, =ux, + f(x,) satisfies the following
conditions:

() u e K,

@) (u,,x,)=0,

3) |

~—>+0 as v —> +x0,

Related to the notion of EFE we have the following alternative theorem for
nonlinear complementarity problems.

THEOREM 5.1.1. Let (H ,(-, >) be a Hilbert space, K — H a closed

pointed convex cone and f: H — H a continuous mapping. If f is a
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projectionally Leray-Schauder mapping with respect to K then there exists
either a solution to the problem NCP(f, K), or f has an EFE with respect to
K

Proof. We consider the mapping @, (x)=P; [x —f (x)], for any x € H.
From complementarity theory (see also Chapter 2), we know that the
problem NCP(f, K) has a solution if and only if the mapping ®, has a

fixed-point. Therefore, if the mapping @, has a fixed-point, this fixed-
point must be in K and the problem NCP(f, K) has a solution. The converse
is also true. If the problem NCP(f, K) has a solution, then the proof is

complete.

Suppose that the problem NCP(f, K) is without solution. Obviously,

in this case the mapping @, is fixed-point free. Because f is a
projectionally Leray—Schauder mapping we have that for any » > 0 there
exist x, with |lx,/| = » and 4, € 10, 1] such that x, =4 P, [x, —f(x, )]
Because K is a cone, we have that x, € K We have

1
Tx, =P [xr —f(x,)].

P

Applying the properties of operator P, we obtain
<x,//1, ~(x, —f(xr)),y>20, forallye K,
<x,/ﬂ, —(x, ~f(xr)),xr /l,> =0,

which implies
<(1//1, —l)x, +f(xr),y> >0 forall ye K,
{((1//1, ~1)x, + £(x,).x,)=0.

If we put ,u,=(—;—-lj it follows that px +f(x)ek’,

r

<,u,x, +f(x,),x,>:0, and since ||x,|| = #, for any » > 0, we have that
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{x,}r>0 is an EFE for the mapping f, with respect to K and the proof is

complete. ]

A consequence of Theorem 5.1.1 is the following result.

THEOREM 5.1.2 [Existence theorem|. Let (H,(--)) be a Hilbert space,

K < H a closed pointed convex cone and f: H— H a continuous mapping.

If f is a projectionally Leray—Schauder mapping without an EFE with
respect to KK then the problem NCP(f, K) has a solution.

COROLLARY 5.1.3. Let (H ,(-,->) be a Hilbert space, K — H a closed
pointed convex cone and f: H — H a continuous mapping. If f is a

completely continuous field without an EFE, with respect to K then the

problem NCP(f, K) has a solution.

COROLLARY 5.1.4. Let (H,(,")) be a Hilbert space, K < H a closed

pointed convex cone and f: H — H a mapping. If fis an a-condensing field
without an EFE, with respect to K then the problem NCP(f K) has a

solution.

COROLLARY 5.1.5. Let (H ,<~,->) be a Hilbert space, K c H a closed

pointed convex cone and f: H— H a mapping. If f is a nonexpansive field
without an EFE, with respect to K then the problem NCP(f, K) has a

solution.

COROLLARY 5.1.6. Let (ZR"‘,(-,)) be the n-dimensional Euclidean
space, K c R" a closed pointed convex cone. If f:R" is a continuous
mapping without EFE, with respect to K then the problem NCP(f, K) has a

solution.
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A consequence of the results presented above, is the fact that for
applications, it is useful to have tests that can be used to decide if a given
mapping does not have exceptional families of elements. A test is given by
the following definition.

DEFINITION 5.1.3. We say that a mapping f: H — H satisfies condition
() with respect to a closed convex cone K c H if there exists p > 0 such

that for each xe K with ||x|| > p there exists y € Kwith ||y|| < ||x|| such that

<x—y,f(x)>20.

Remark. Condition (6) is due to G. Isac. For more details the reader is
referred to (Isac, G. [16], [17], [26]), (Isac, G. and Carbone, A. [1]).

The importance of condition () is given by the following result.

THEOREM S5.1.7. If f : H — H satisfies condition (6) with respect to a
closed pointed convex cone K < H, then f is without an EFE (with respect

to K).
Proof. Indeed, we suppose that f has an EFE {x,} <K . Then for all
r > 0 we have u, =px, + f(x,)e K ,(x,,u,)=0 and ||| - + o as

r — + «. We take » > 0 such that ||x,|| > p, where p is the positive real
number defined in condition (). Since f satisfies condition (), there exists

¥ € Ksuch that |[y,|| <|lx,|| and <xr -y, f(x )>20-
We have
0S<xr —yr’f(xr)>:<xr _yr’ur —lurxr>
:<xr—yr’ur>_iur 2+/ur<yr’xr>g_‘u" [ y’:|<0’

which is a contradiction. Hence f is without an EFE and the proof is
complete. o

xr xr xr

We recall the classical notion of coercivity.
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DEFINITION 5.1.4. We say that a mapping f: H — H is coercive with

respect to a closed pointed convex cone K < H, if there exists an element

xo € K such that

(¥ =%,/ (x)- /(%)) _

1m = +00,
xeK,"x“—)w “x — xo "

THEOREM 5.1.8. If f: H — H is a coercive mapping with respect to a

closed pointed convex cone K then [ satisfies condition (6) and

consequently f is without an EFE.

Proof. Let & be a real number such that H I (% )“ <k,.The coercivity of f

implies that there exists p> 0 such that for any x € K with ||x|| > p we have

{r=x,/(x)- /(%))

x|

>k,

or
<x—x0,f(x)—f(x0)>2k0 "x—xoll.
We can take p such that p> |jx,||. We have
<x—xo,f(x)> 2<x—xo,f(x0)>+ ko [|x — x|
2—|x- onHf (%, )“ ke = x| =[x - x, "[ko - ”f (%, )l” 20.
If for any x € K with ||x|| > p we take y = x; , we obtain that f satisfies

condition (6). Applying Theorem 5.1.7 we obtain that f is without an EFE,
with respect to K. o

Remark. There exist mappings that are not coercive with respect to a closed
pointed convex cone but without an EFE. In this sense we have the

following example. Let (H ,(-,-)) be a Hilbert space and K < H a closed
pointed convex cone. We consider the mapping f : H — H defined by

f (x)=“"%1. The mapping f cannot be coercive with respect to K,
x

because for any x; € K, we have
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<x—xo,f(x)—f(xo)> x
F] V@G )“Sﬂnxnu

for any x € K. The mapping f is without an EFE. Indeed if {xr}M c K is

<>
I

Ix ”+1

an EFE, then we have that for any » >0 there exists 4 > 0 such that
u, =pux,+ f(x,)e K and (xr,ur>= 0. In this case we have

X 2
0= = +—T )= o
(x,,ur> <xr,,urxr , 1> . {ur , },

which implies that “xr “zO for any » >0, and it is impossible to have

%, [| = +o0 as r — co.

Therefore, the property for a mapping of being “without an EFE”
is a kind of coercivity property but strictly more general than the classical
coercivity property. Obviously, condition (8) implies this generalized
coercivity condition. Considering the results presented above we deduce
that if £ is a projectionally Leray—Schauder mapping and satisfies condition

(6), then the problem NCP(f, K) has a solution.

Now, we show that if K'is a locally compact convex cone (i.e., if &

has a compact base), then condition () gives also information about the
norm of solution. This information about the solution is important in the
study of equilibrium problems.

THEOREM 5.1.9. Let (H,(-")) be a Hilbert space, K < H a closed
pointed convex cone. The cone K is supposed to be locally compact. Let
f: H — H be a continuous bounded mapping such that f0) ¢ K. If f
satisfies condition (6) with respect to K then the problem NCP(f, K) has a
solution x+ such that ||x+|| < p (where p is defined by condition (6)).

Proof. For every ¢ > 0, consider the Tihonov regularization
f.(x)=f(x)+ex, for all x € H. The mapping f; satisfies condition (6),



146 Leray—Schauder Type Alternatives

but with a strict inequality, i.e., there exists p > 0 such that for all x € K
with [[x|| > p, there exists y € K with [|y]| <|Jx|| such that

(x=y.1,(x))>0. (5.1.1)
Indeed, let p > 0 be the real number given by condition (), for f. Let
x € K be an element such that ||x|| > p. By condition () there exists y € K

with |[y]] <|x|| such that,
<x—y,f€ (x)>=<x—y,f(x)+€x>2<x—y,gx>

2 " ~ sl | = el el 1] > -

We note that the mapping f; is bounded and because K is locally compact, f;

is a projectionally Leray-Schauder mapping. We keep this p and we take
& > 0. By Theorem 5.1.2 and 5.1.7, for every £ € 10, &] there exists a

solution x:(&) to the problem NCP(f, K). Condition (5.1.1), implies that for

x+(&) we must have |[x«(&)l| < p. If 0 < § < g < &, then we have
x.(&)#x (&,). Indeed, &,= & + r withr> 0. If x,(&,)=x (&), then we

have
0={/ (v () + 25 (1) . c2)
=(f (% (2))+ (& +)x ()5 (2)) =7 | ()

which implies that x+(&) = 0, and finally f0) € K", which is impossible.

2

2

We have that {x* (8)} is a branch of solutions, where x+(&) is a

O<e<e,

solution to the problem NCP(f, K) and it is a subset of Z?; N K . We take

1 .
g, =—,ne Nandg, =1. Because K is a locally compact cone, we have that
n

1 i
the sequence {x* (—)} has a convergent subsequence {x* (—j} . Let
n neN nk keN

x+ be its limit. By continuity we obtain that x- is a solution of the problem
NCP(f, K) such that [

x,| < p and the proof is complete. o

The following result is an application of Theorem 5.1.2 and Theorem 5.1.7
to the fixed-point theory.



Leray—Schauder type alternatives. Existence theorems 147

THEOREM 5.1.10. Let (H ,<~,->) be a Hilbert space, K — H a closed
pointed convex cone and h : K— K a mapping. If the mapping
f(x)=x-h(x) is a projectionally Leray-Schauder mapping which
satisfies condition (6) with respect to K then h has a fixed point in K.

Proof. From the complementarity theory it is known that the mapping
h: K — Khas a fixed point in X if and only if the problem NCP(I - h, K)

has a solution. Since by Theorem 5.1.2 and 5.1.7 the problem
NCP(I — h, K) has a solution, the conclusion of the theorem follows. o

By the following theorems, we put in evidence some classes of
mappings that satisfy condition (&) that is mappings without an EFE.

THEOREM 5.1.11. Let (H,(-, >) be a Hilbert space, K — H a closed
pointed convex cone and f: H—> H a mapping. Let ¢: [O, +oo[ - [O, +oo[ be
a mapping such that lim p(t)=+wand ¢(1)>0 for any t > 0. If

(x=y.f @)= f N2l =Ho( =), for any x y e K then the
mapping f satisfies condition (6).

Proof. Obviously, we suppose that f is not a trivial mapping. Let y, € K be
an arbitrary element such that ” 7( yo)” >0. We denote p, :“ £ (5 )” By
assumption, there exists p > 0 such that ¢(||x - ¥, H)Z p, forany x € K

with Hx—yO]|>p. If x € K and ”x”>p+”y0“ ”yo then we have

>yl and <x—y0,f(x f(y0> [lx - yo“qo Ix - yoﬂ) which implies
(x—yo,f(x)> (x Yor f (¥ )> = yollo (Jx - 3l

=[x = ol (e = 3o l) = e = 3o 7 (2]

=lx =yl o (b= 2 l) = o)l
Lo

==yl ol - 2l) - 2 ]20.
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If for any x € K, satisfying “xu >p+ Hyo

, we take y = yp, we obtain that f

satisfies condition (6). m)

DEFINITION 5.1.5. We say that a mapping f: H — H satisfies the weak
Karamardian’s condition with respect to a closed pointed convex cone

K c H, if there exists a bounded set D — K such that for all x € K\ D
there exists y € D such that <x -vf (x)> >0.

Remark. The classical Karamardian’s condition supposes in Definition
5.1.5 that D is a compact convex set. (Karamardian, S. [1]].

THEOREM 5.1.12. Let (H.,(.-)) be a Hilbert space, K < H a closed

pointed convex cone and f: H —> H a mapping. If f satisfies the weak
Karamardian’s condition with respect to K, then f satisfies condition (6).

Proof. Let D c K be the set defined by the weak Karamardian’s condition.
Since D is bounded, there exists p > 0 such that DCB_me . For any
x € K such that |jx|| > p, there exists ye D (that is such that ||y| < p <|x||)

verifying <x -wf (x)> > 0. Hence, condition (6) is satisfied. o

Remark. Condition (€) is a strict generalization of Karamardian’s
condition. Indeed, consider the Euclidean space (R2,<-,->), the cone

K =R’ and the function f(xl,xz)z(xl,—xlz) for all (x,x,)e R*. We

can show that f satisfies condition (&), but not Karamardian’s condition.

DEFINITION 5.1.6. We say that f: H— H is a p-copositive mapping with

respect to a closed pointed convex cone K c H, if there exists p> 0 such

that for all x € Kwith |[x|> p we have (x, f (x))>0.
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THEOREM 5.1.13. Lert (H ,(-, >) be a Hilbert space, K — H a closed

pointed convex cone and f: H —> H a mapping. If f is p-copositive with
respect to KK then f satisfies condition (6).

Proof. Indeed, we consider the set D = B—p " K . Because D is bounded and

<x - 0,f(x)> = <x,f(x)> >0 for any x € K such that ||x]| > o, we have that

[ satisfies a weak Karamardian’s condition and we apply Theorem 5.1.12.
m

Remark. The mapping f:®R* — R’ defined by f (xl,xz)z(xl,—xf) is
not p-copositive with respect to the convex cone R&°, with some p > 0.
Indeed, if we suppose that f is p-copositive with respect to &2, we take

x=(x,x,) withx; >0 and x, >max{p,1} and we have

<x,f(x)>=<(x,,x2),(x1,-—x12)>:x12 —xx; =x7 (1-x,)<0,

which is impossible. From Theorem 5.1.13 we obtain the following result.

COROLLARY 5.1.14. Let (H,(-,-)) be a Hilbert space, K < H a closed

pointed convex cone and f: H — H a mapping. If there exists a bounded
subset C of K such that <x, f (x)> >0 for any x € K\ C, then the mapping f

satisfies condition ().

Proof. Indeed, because the set (’is bounded, we can show that f is p-

copositive with respect to & and Theorem 5.1.13 is applicable. 0

The condition used in the definition of p-copositivity can be replaced in
some particular cases by a weak condition using a radial retract. Let (E , )

be a Banach space and » > 0 a real number. By definition the radial retract
associated to the number 7 is:

v if Josr

R= 2 i o
x
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THEOREM 5.1.15. For any r > 0, the radial projection 7, is a continuous
mapping.

Proof. We prove that 7, is a 2-Lipschitzian mapping, considering three
possible situations:
1)) Hx” <rand Hy“ <r. In this case we have

)= & ()=l -l =2fx-¥].
an “x“ > ¢ and Hyﬂ <r . Then we have

=g~
By

<=y (Bl =7) <l =+ Il =l < 20 - 51

(). Hx“ > r and “ y” > r . In this last case, we have

1
VA <
)R Ol Gl 1 Mg
Sllx—yH+” HUI;VII Il <2l - o,
Therefore, the mapping 7 is a continuous mapping. i

DEFINITION 5.1.7. We say that f : H — H is a strictly p-copositive

mapping with respect to a closed pointed convex cone , K c H, if there

exists p> 0 such that for all x € Kwith ||x|| > pwe have <x,f(x)> >0.

THEOREM 5.1.16. Let (H ,<-, )) be a Hilbert space, K — H a closed
pointed convex cone and f: H — H a continuous mapping. If there exists
p >0 such that <x, f (x)> >0 for any x € Kwith ”x” = p, then the mapping
h: H— H defined by h(x)= f(7€p (x)) + ”x -7, (x)”x is continuous and

strictly p-copositive with respect to K. Moreover, if K has a compact base

and f is a bounded mapping, then the problem NCP(f, K) has a solution x»
such that ||x+|| < p..
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Proof. Obviously, the mapping % is continuous. We remark also that
7, (K)c K . Letx € K be an arbitrary element such that ||x|| > p. Then

”73p (x)n =p>0and x= “—Z“ 7, (x). We have

(1) = (. (7, () # e, (o]
B (9.1 (7 ()« - 2 (i >0

Therefore A(x) is strictly p-copositive with respect to K and consequently

without an EFE with respect to K The mapping % is bounded if f is

bounded. If the cone K has a compact base and f'is bounded, we have that

is a projectionally Leray-Schauder mapping and consequently the problem
NCP(h, K) has a solution x«. Because 4 is strictly p-copositive, the solution

x» must satisfy the condition [jx+| < . But in this case h(x,)=f(x.) and
we have that x« is a solution to the problem NCP(f, K). O

COROLLARY 5.1.17. Let (R",(--)) be n-dimensional Euclidean space,
K c R" a closed pointed convex cone and f : R"—> R" a continuous
mapping. If there exists p > 0 such that <x, f (x)> >0for any x € K with
Hx” = p, then the problem NCP(f, K) has a solution x+ such that

x|<p.

THEOREM 5.1.18. Let (ZXP”,(-,-)) be n-dimensional Euclidean space,

Kc R” aclosed convex cone and f : K — R" a continuous function. If
there exists p> 0 such that for all x € K with ||x|| = p, there exists u with

lull < p, such that <x - u,f(x)> >0, then the problem NCP(f K) has a

solution.
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Proof. For any x € K with ||x|| > p, we denote by T(x) the radial projection

of xonto S ={xe K :|x|= p} Jie,T, (x)= ﬁ . We consider the function
X

g: K — R", defined by
- {f(x» = .
S @) =-1,). >

For any x € K with ||x|| > p there exists 4. > 0 such that x=A,T, (x) By
assumption, for T,(x) there exists u; with “u; ” <p such that
<Tp (x)-u, (Tp (x))> > 0. We have the following relations:

<x - lxu;,g(x» = </1pr (x)-Au, g(x)>

=(AT, (x) - Aa £ (T, (x)) + e - T, (x)] x)

A (1,9 (1, )+ - T, G — -, (B )

> ”x - Tp (x)“li”x”2 - </lxu; , xﬂ

e -7, ()| 2|7, () - 22 |7, ()]

= “x -T, (x)| A4 |T, (x)HD’Tp (x)” - } > 0.

If for a given x we take y =4 u;, we have that g satisfies condition (&) with

X
u,

X
u,

respect to K. Because we can show that g is continuous, we have that the
problem NCP(g, K) has a solution, x» € K. The solution x« is such that
lles|] < p Indeed, if ||x+] > p we must have <x, ~/Ix‘u;‘,g(x,)>>0 or
</1X. U, - Xx., g(x* )> <0, which is impossible, because the problem
NCP(g, K) is equivalent to the variational inequality
</1x‘ ur —x.,g(x )> >0 . Hence, ||x+|| < pand in this case g(x+) = f{x+), that is

x+ is a solution to the problem NCP(f, K). ]

Let (H ,<-, )) be a Hilbert space and D — H a closed convex set. We

say that D has a retraction if there exists a continuous mapping %p : H > H
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such that 7Zp(x) € D for any x € H and &) (x) =x forany x € D.[f D has a
retraction we say that D is a retract of the space H. It is known (Zeidler, E.

[1]) that every closed convex subset D of a Banach space (E, - ) is a retract

of E. We have the following result, which is a generalization of Theorem
5.1.16.

THEOREM 5.1.19. Let (H ,<-, >) be a Hilbert space, K c H a closed

pointed convex cone and f: H — H a continuous mapping. Let D — K be a
closed bounded convex set such that 0 € D. If for any x € K\ D and for any

y € D we have <x,f(y)> >0, then for any retraction &, : H — H we have
that the mapping h . H— H defined by

h(x)= 1 (7 (1)) + s = 7, ()] x
satisfies the condition <x, h(x)> >0 forany xe K\ D. Moreover, the
mapping h satisfies condition (6) with respect to K. If K has a compact base

and f is bounded, then the problem NCP(f, K) has a solution x« such that

x+ € D.

Proof. We observe that the mapping 4 is a continuous mapping. Let x be an
arbitrary element in K\ D. We have

(0h(x)) = (3£ (o (5)) e~ % ()] )
= (%, 7 (% () +[}x = R, ()|l > 0.

Because D is bounded, there exists p > 0 such that for any x € D we have
x|l < o Therefore for any x € K with ||x|| > p we have <x,k(x)> >0, which

implies that 4 is strictly p-copositive with respect to K and it satisfied
condition (6). Consequently % is without an EFE with respect to K If K has
a compact base and f'is bounded, we have that % is bounded, and because K
is locally compact, the mapping # is a projectionally Leray-Schauder
mapping and the problem NCP(f, K) has a solution x.. Because

<x, h(x)> >0 for any x € K\ D, we must have that x» € D and the proof is

complete. o
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COROLLARY 5.1.20. Let (R'",(.)) be the n-dimensional Euclidean
space, K < R" a closed pointed convex cone and f: R"—> K" a
continuous mapping. Let D — K be a closed bounded convex set such that
0 € D. Iffor any x € K\ D and anyy € D we have (x,f(y)>20, then the

problem NCP(f, K) has a solution x+ such that x+ € D. O

In (Ding, X, P. and Tan, K. K. [1]) was introduced the following condition
which is more general than Karamardian’s condition.

DEFINITION 5.1.8. We say that f : H — H satisfies condition (DT) with

respect to K if there exist a non-empty compact convex subset D, c K and
a non-empty compact subset D, — K such that for each x € K\ D+, there is
a yeconv(D, U{x}) such that <x - y,f(x)> >0.

We have the following result.

THEOREM 5.1.21. If f: H — H satisfies condition (DT) with respect to K

then f satisfies condition (6) and consequently f is without an EFE with
respect to K .

Proof. Since Dy and D+ are bounded sets, there exists p > 0 such that
D,, D, CB_p N K . If x € K is such that ||x|| > p, then by condition (DT)
there exists yeconv (D0 W/ {x}) such that <x -wf (x)> >(0. We have
y=Ad, +(1-A)x, with A € [0, 1] and d € Dy, which implies

< Aldo+ (1= 2) ] < 2]+ (1= 2) x| = <]
(since “do “ <p< ”x" ). Therefore, fsatisfies condition (6). i

Let (H,(v,-)) be a Hilbert space and K — H a closed pointed
convex cone. Let ¢:[0,+0] —>[0,+[ be a function such that

lim ¢ (7)=+w and u € K an arbitrary element.

{—>+o0
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DEFINITION 5.1.9. We say that a mapping f: H — H is asymptotically
(v, g @)-monotone on K if there exists p> 0 and a mapping g : K > H

such that <x —u, f(x)~ g(u)> 2 |x—u|e(|x-u]), for all x € K with
Il > .

For this kind of mapping we have the following result.

THEOREM 5.1.22. If f: H — H is an asymptotically (u, g ¢)-monotone
mapping with respect to K then f satisfies condition (6).

Proof. For every x € K with “x” > max ( P,

u||) , we have

(=21 (x) - g () =[x -l o (Jx - o),
which implies

(x=uf(x))>(x-ug @)+ | —ulo(fx—u).

Since ||x|| > ||#|| we have ||x -4|| > 0 and we deduce
- el (50 ol |-

Since S, :{er ‘ “x”:l} is a bounded set and for u fixed, considering

g(u) as a continuous linear functional on A, we have that there exists y € R

uf).

Because lim go(t) +o0 , we have that there exists p« > 0 such that ||x —u|| >

{—>+x

such that <x
[ —u

.8 (u )>27 for any x € K with |x]|>max(p,

o implies (o(“x—u”)z—}/, that is <x—u,f(x)>20. If for any x € K

satisfying Hx“ > max( A , p) we take y = u, we have immediately that

satisfies condition (6), with respect to K and the proof is complete. a

COROLLARY 5.1.23. Let f: H — H be an asymptotically (u, g ¢)-
monotone mapping with respect to K. If f is projectionally Leray—-Schauder

with respect to K then the problem NCP(f, K) has a solution.
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Remark. The class of asymptotically (#, g, @)-monotone operators contains
as a particular case the strongly monotone operators.

We consider again an arbitrary Hilbert space (H , <~,->), a closed

pointed convex cone K — H and an arbitrary mapping, f: H — H. We know

that the problem NCP(f; K) has a solution if and only if the equation
x=P [x-f(x)] (5.12)

has a solution in H (which is necessarily an element of K). Therefore,

equation (5.1.2) has a solution if and only if, the optimization problem
“x—(x—f(x))“=min{Hy—(x—f(x))u: yeK}

has a solution in K. The above equation can be rewritten as the following

variational inequality:

lr sy —x+ 7(x)|, forat ye K .

Considering this variational inequality we define the following condition.

DEFINITION 5.1.10. We say that a mapping f: H — H satisfies condition
M(D) with respect to K if there exists a non-empty bounded subset D — K
such that the set M(D) defined by

M(D)=(fxeks @b - (- @)}

is a bounded set.

A natural question arises: Is there is a relation between condition M(D) and
condition (6)? An answer to this question is given by the following result.

THEOREM 5.1.24. If a mapping f: H — H satisfies condition M(D) with
respect to K, then f satisfies condition (6).

Proof. We consider the bounded set 4=D UM (D). If x, e K\ 4, then
X, & ﬂ {x € K:“f(x)” < Hy - (x - f(x))“} which implies that there exist
yeD

Yo € D with the property that
1G> = (% = £ ()] (5.1.3)
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From (5.1.3) we have

I )l >[ = (= £ ()

<f(x0),f(xo)>><y0 (% =/ (%)) 30— (% _f(xo))>
:<yo_xoayo_x0>"2<yo—xo’f(xo)>+<f(x0)’f(x0)>’

which implies

or

1
<xo _yoaf(x0)>>—2—||yo —x0“2 >0.

Therefore, the weak Karamardian’s condition is satisfied and by Theorem
5.1.24, we have that the mapping f'satisfies condition (6).

COROLLARY S5.1.28. If f : H — H is a projectionally Leray—Schauder
mapping with respect to a closed pointed convex cone K < H and satisfies

condition M(D), then the problem NCP(f, K) has a solution.

COROLLARY 5.1.26. Let (R”,(-,->) be n-dimensional Euclidean space,
K c R" a closed pointed convex cone. If f: R" — R" is a continuous

mapping and it satisfies condition M(D), then the problem NCP(f, K) has a

solution.

Remark. If in condition M(D) we have that D and M(D) are compact sets,
and fis a continuous mapping, then in this case we take, in the proof of

Theorem 5.1.24, 4 = conv(D UM (D)) and by the classical Karamardian’s

Theorem we have that the problem NCP(f, K) has a solution. About this
result the reader is referred to (Isac, G. and Li, J. [1]).

Now, we give a variant of condition (6) in an arbitrary Hilbert space
(H,<-,->). Let K < H be a pointed closed convex cone and f: H—> Ha

mapping.
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DEFINITION 5.1.11. We say that f satisfies condition (6 - S) with respect
to K if for any family of elements {xr}DO c K, such that ||x,|| — +o as

r — +oo, there exists y» € K such that <x, -y, f(x, )> >0 for some r>0

such that

>

xr y* .

Remark. We observe that condition (€) implies condition (8 — S). If fis
positive homogeneous, then condition (¢ — S) implies condition (& ). (In

this case we take for any r > 0, x, = rx if x € K). As for condition (8 — S5)

we have the following result.

THEOREM 5.1.27. Let (H,(.)) be a Hilbert space, K < H a closed

pointed convex cone and f: H — H a mapping. If f satisfies condition
(8 — S)with respect to K, then fis without an EFE with respect to K.

Proof. Indeed, we suppose that f has an EFE with respect to K, namely
{x,},., © K. Since f satisfies condition (§ — S) there exists y» € K such

that <x, -y f(x, )> >0 for some 7 > 0 for which we have
this case we have

0S<x, —y,,f(x,)>=(x, — YUl — [4.X, )
() )~ 1 G55, 1, (3
<] (vox) I [ ]| "]
Al -l 1<,

which is a contradiction. Therefore fis without an EFE with respect to X ©

y.|<|x|l- In

— X

r

X, X,

Vs

=ﬂr b xr

Remark. Our condition (€ - S) is more general than the condition used in
(Zhao, Y. B. and Han, J. Y. [1], Theorem 3.1), since in condition (& - S) ,
the element y» is dependent on the family {x,} , while in (Zhao, Y. B. and

Han, J. Y. [1]) the element x is independent on the family {x,}r>0 . In 1990
P. T. Harker and J. S. Pang studied the solvability of variational inequalities
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in B" and by using an interesting condition, they obtained some existence
theorems for variational inequalities (Harker, P. T. and Pang, J. S. [1]).

Now, we consider this condition in an arbitrary Hilbert space, but
for complementarity problems. We will denote this condition by (HP).

DEFINITION 5.1.12. We say that a mapping f: H — H satisfies condition

(HP) with respect to a closed pointed convex cone K C H, if there exists an

element x» € K such that the set K(x,)={xeK:<f(x),x—x*><0} is
bounded (or empty).

Considering this condition we have the following result.

THEOREM 5.1.28. Let (H,(-")) be a Hilbert space, K < H a closed

pointed convex cone and . H — H a mapping. If f satisfies condition (HP)
with respect to K then f satisfies condition (6 - S) and consequently f is

without an EFE with respect to K

Proof. Let {xr}r>0 c K be a family of elements such that |jx,|| & +o as
r — +o, If there exists an element x« € K& such that the set K(x+) is bounded
(or empty), then for » > 0 sufficiently large, we have that x ¢ K (x,‘)
implies that <xr — X, f (xr)> > (. We can take r sufficiently large satisfying

also the condition . Therefore f satisfies condition (€ - S). By

> .

Theorem 5.1.27, fis a mapping without an EFE with respect to K. o

PROPOSITION 5.1.29. Let (H,(,-}) be a Hilbert space, K < H a closed

pointed convex cone and f: H— H a mapping. If f has an EFE with respect
to K then for any point x« € K the set

]K(x,)z{xe][(:<f(x),x—x*><0}

is non-empty and unbounded.

Proof. This result is a consequence of Theorem 5.1.27 and 5.1.28. o
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The following notion was considered in (Zhao, Y. B. and Han, J. Y. [1]).
DEFINITION 5.1.13. We say that a mapping f: H— H is (x+, p)-coercive
with respect to a closed pointed convex cone K < H if there exists some

p € |-o,1[ and an element x« € K such that

(/()x-x)

xeK i “ x”p -

Remark. The case p = 1 is covered by the classical notion of coercivity.
Any coercive mapping is p-coercive, but the converse is not true. For

example if we take H= R, K = R., the mapping f (x) :IL“— , with >0
+X
and x« any element such that x« > 1, is p-coercive for any p € |-, 1[, but f

is not coercive since
im S G-x)

x2l,x—>+w X

THEOREM 5.1.30. Let (H ,<-,->) be a Hilbert space, K < H a closed

pointed convex cone and f: H— H a mapping. If f is (xs, p)-coercive with

o < p <1, then f satisfies condition (6 — S) and consequently f is without an
EFE.

Proof. Indeed, if 0 < p <1 then we have

(f(x),x—x,,>

K > “ x“”

=40, (5.1.4)

with x: € K defined by the (x», p)-coercivity. Relation (5.1.4) implies
f(x),x—x*>:+oo .

Which has as a consequence the fact that condition (8 — S) is satisfied with

m <
xeK ,"X“~>w

respect to K. If — o < p <0, then for every family of elements {x, }M ck,

with |jx,J| &> +w as »r — +ow, we have (using Definition 5.1.3) that
( f(x),x, —x > >0 for » > 0 sufficiently large. Therefore, again condition

(6 - 9) is satisfied and the proof is complete. ]
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DEFINITION 5.1.14. Let f: H — H be a mapping and K c H a closed
pointed convex cone. We say that a mapping T : H— H is an (x+, p)-scalar
asymptotic derivative of f with respect to K, if there exists an element x+ € K
and a real number p € |-, 1] such that

<f(x)—T(x),x—x,>:

ek x> +o0 “ x”p

The importance of Definition 5.1.14 is given by the following result.

THEOREM 5.1.31. Let (H,(-, >) be a Hilbert space, f: H— H a mapping
and K c H a closed pointed convex cone. If f has an (x«, p)-scalar
asymptotic derivative T with respect to K and T is (x+, p)-coercive, then f is

without an EFE with respect to K

Proof. The theorem is a consequence of Theorem 5.1.30 and of the relation

<f(x),x—x,,>

xeK x| >+o0 ”x”p
_ <f(x)—T(x),x—x,,>+ . (T(x),x—x,>:
xe K x|+ Hx”p xeK Jx|->+o ”x”p

O

For the next result, we need to recall the following notion. We say
that a mapping f: H — H is pseudo-monotone on K if for any x, y € K

x #y we have that <y—x,f(x)>20 implies <y—x,f(y)>20.
DEFINITION 5.1.15. We say that a mapping f: H — H is weakly proper
on K if for any family of elements {x, }M c K , with ||x,{| &> +oo as r = +oo,

there exists an element x« € K such that for some r > 0, with [

have <f(x,),x, —x,,)ZO.

x| <|x,| we

We have the following interesting result.
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THEOREM 5.1.32. Let (H ,(-, >) be a Hilbert space, K — H a closed

pointed convex cone and f: H — H a pseudo-monotone mapping. If f is a
projectionally Leray—Schauder mapping, then the problem NCP(f, K) has a

solution if and only if f is weakly proper with respect to K..

Proof. We suppose that the problem NCP(f, K) has a solution x,. Because
the fact that the solvability of the problem NCP(f, K) is equivalent to the

solvability of the variational inequality
find x, € K such that
VI(f,K):

<f(xo),x—x0> >0, forall xe K,
we have that (f(x,),x~x,)>0, for all xe K . Obviously, if we take in

Definition 5.1.15, x« = x;, we deduce that fis weakly proper on K

Conversely, assume that f is weakly proper on K. In this case
Definition 5.1.15 implies that for each family of elements {x,}r>0 ck,
with |jx,|| &> 4 as r — +owo, there exists an element x«+ € K such that

(f(x),x, —x)>0for some r > 0 such that

x| <|x,|. Since fis pseudo-
monotone we have that < f(x),x —x > >0, which implies that f satisfies
condition (€ - S), with respect to K. By Theorem 5.1.27, we have that f is
without an EFE with respect to K Applying Theorem 5.1.2, we obtain that

the problem NCP(f, K) has a solution and the proof is complete. o

Now, we introduce a generalization of the Harker-Pang condition.
We will denote this condition by (HPT), (Harker—Pang Type).

DEFINITION 5.1.16. We say that a mapping f: H — H satisfies condition
(HPT) with respect to K if there exists a bounded set D — K such that the

set K(D)z{xeK:<y—x,f(x)>20, for allyeD} is bounded.
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By using this notion we have the following result.

THEOREM 5.1.33. Let (H,(-")) be a Hilbert space, K c H a closed
pointed convex cone and f: H— H a mapping. If f satisfies condition (HPT)

with respect to K., then f is without an EFE. Moreover, if f is a continuous

projectionally Leray-Schauder mapping, then the problem NCP(f, K) has a

solution.

Proof. Indeed because f satisfies condition (HPT) with respect to K then
considering the sets D and K{(D) defined by condition (HPT), we have that
the set M =DU K (D) is a bounded subset of K If x is an arbitrary
element in K\ M, then x¢ K (D), which implies that there exists an

element y € D such that (y - x,f(x)> <0, or <x - y,f(x)> >0 . Because

y € M, we have that the weak Karamardian’s condition is satisfied and by
Theorem 5.1.12 we have that f satisfies condition (6 ). Applying Theorem

5.1.8 we obtain that f is without an EFE with respect to K If fis a
continuous projectionally Leray—Schauder mapping with respect to & by

Theorem 5.1.2 we have that the problem NCP(f, K) has a solution. o

Remarks.
1. If the set D has only one element x., that is D ={x,}, we obtain from
Definition 5.1.16 the condition (HP).
2. If D and K(D) are compact and f is continuous, we obtain that f
satisfies the classical Karamardian condition which implies that the
problem NCP(f, K) has a solution.

3. We remark that K (D)= {x eK: <y - x,f(x)> > 0} which implies

yeD

that A(D) can be bounded without each set {x eK: < y—x,f (x)> > O}
being bounded.
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We consider again a general Hilbert space (H ,(-,-)) and K< Ha

closed pointed convex cone.

DEFINITION 5.1.17. We say that a mapping f : H — H is scalarly

increasing to infinity with respect to K, if for each 'y € K there exists a real
number py) > O such that for all x € K with |x|>p(y) we have
<x —y,f(x)>2 0.

THEOREM 5.1.34. If f : H— H is a mapping that is scalarly increasing to
infinity with respect to K, then fis without an exceptional family of elements

with respect to K

Proof. Let {x,}r>0 c K be an exceptional family of elements for f with
respect to K. We have u, = f(x,)+ u,x, e K',(x,,u,)=0 for any r > 0

and ||x,|| & +o0 as ¥ — +o. For any » > 0 we have £, > 0. We show that in
this case the converse of Definition 5.1.17 is satisfied, i.e., there exists y €

K such that for each p > 0 there exists x € K with |x|]| > p and
<x - f (x)> <0. Indeed, if y € K\ {0} is an arbitrary element, then we
have
(x, = . f (%)) =(x. - pu, - p.x,)
(o)) (55 )+ s
2

S—ll’lr X <y’xr>’

which implies

(x, =y, f(x )< |, x ] (5.1.5)
Lety, € K\ {0} be an arbitrary element, p> 0 an arbitrary real number. Let

r > 0 be a real number such that ||x,|| > p and ||x,|| > |[yo||. Using (5.1.5) we

obtain
(5, =0 £ () <, % |y =%, [ ] < 0

Therefore, this fact is in contrad1ct1on with Definition 5.1.17, which implies
that fis without an EFE. m]
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DEFINITION 5.1.18. We say that a mapping h : H — H is monotonically
decreasing on rays with respect to K if there exists ty > 0 such that, for

every x € K and every s, t with the property s 2 t 2 t, we have
<x, h(lx)> > <x, h(sx)> .

PROPOSITION 5.1.35. A mapping h : H— H is monotonically decreasing
on rays with respect to K, if and only if, for every a > 1 and every x € K we

have:

(x,h(x)) = (x, h(ax)) . (5.1.6)

Proof. We suppose that / is monotonically decreasing on rays with respect
to K For x = 0, inequality (5.1.6) is satisfied. We consider @ > 1 and

xe K \{0}. We can put =2 (where s > t = ;). For t > t,, s = ot. Let
P t

1 . . . .
x. =—x. We have x = fx.. Since % is monotonically decreasing on rays we
t

have

<x* " h(tx* )> > <x* , h(sx,, )>

(x., b)) 2 (v, h(atx. ),

<x, h(x)> > <x, h(ax)> .
Conversely, we suppose that (5.1.6) is satisfied for every « > 1 and every
x € K Let x, € K \{0} be an arbitrary element. Take f,=1and s > 7> 1.

which implies

and finally we have

Using (5.1.6) with « =; and x = fx», we obtain
(tx., h(tx.)) > <tx* : h(;(tx* )j> :
<x* , h(tx,‘ )> > <x* , h(sx. )> R

that is 4 is monotonically decreasing on rays with respect to & m|

which implies
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THEOREM 5.1.36. If the mapping h : H — H is bounded and mono-
tonically decreasing on rays, with respect to K then fix) =x — h(x) is

without exceptional family of elements, with respect to K

Proof. We suppose that f has an exceptional family of elements, with

respect to K, namely {x,} < K . Then, for any r > 0 there exists a real
number 4 > 0 such that u, = f(x,)+ g,x, e K',(x,,u,)=0 and |x| >
+o0 as » — +oo. From Proposition 5.1.35 we have

{(x, h(x)> > <x, h(ax)> , forall xe K

(5.1.7
and all o > 1.

xr

and x =—

»

For every x, with |lx,|| = 1 we consider in (5.1.7) a = and

xr

we obtain
<ax, h(x)-h(x, )> >0,
which implies
{<xr,h(x)—h(xr)>20f0r allr>0 5.18)
such that nx, H >1.
The expression (5.1.8) is equivalent with the inequality

{(xr,h(x)—h(x,)+x, —x,>20for all r >0

(5.1.9)
such that >1.

xr

Because # is supposed to be bounded and x :—x’—, there exists M > 0 such
X,

r

that “h(x)“ <M . (Since ||x|| = 1, M is independent of ».) Using the fact that

{xr}r>o is an exceptional family of elements for fx) = x — A(x), we have
from (5.1.9),
0<(x,,h(x)-x, +u, —px,)
= (5o h(x) =+ (1) 1,
=—(1+ )% +{x,.h(x))
<—(1+ 1) M=

2
X,

r

x}‘

x| +]|x, X, X,

Ik

[M—(1+,ur)
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which implies |x, | < <M , for all » > 0 such that ||x,|| > 1. Obviously,

r

the last inequality is impossible, since ||x,|| & +o as ¥ — +o. We conclude
from this contradiction that f is without an EFE with respect to & and the

proof is complete. o

The following condition was defined in (Zhao, Y. B. [3]) under the
name of Isac-Gowda condition. We note that this condition was initially
used in (Isac, G. and Gowda, M. S. [1]).

DEFINITION 5.1.19. We say that a mapping f: H — H satisfies condition
(IG) with respect to K, if there exists a real number p > 0 such that the
mapping T (x)z“x“'H -x— f(x) is monotone decreasing on rays with

respect to K.

Remark. Y. B. Zhao used condition (IG) in R", with respect to the cone

R in relation with the notion of a d-oriented family of elements. [See
(Zhao, Y. B. [3])].

THEOREM 5.1.37. Let (H,(.-)) be a Hilbert space, K c H a closed

pointed convex cone and f: H — H a mapping. If the mapping f satisfies
condition (IG), then f is without an EFE with respect to K.

Proof. We suppose that f has an exceptional family of elements
{x, }DO c K and we consider the mapping 7 (x) = Hx”p_1 x—f (x) , defined
for any x € H. By Proposition 5.1.35 we have

(x,T(x)-T(ax))20 forall xe K and a>1. (5.1.10)
Setting @ = x| and x=- in (5.1.10) we have
xr

X X

r r

<L,T[L]*T(x,)>20, for all > 0 such that ||x] > 1, which is
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X

r

equivalent with <xr, T[x—’j -
X

Id

"x, +f(x,)>20, for all » > 0 such

that |jx,{| = 1. Using the definition of an EFE and the last inequality, we

obtain <xr T [_x_'_] _
xl‘
ledl > 1, which implies <xT("_J> _
xr

such that ||x,|| > 1. Finally we have <x, ,T[LD -
X,

»

s <xr,T[~x—’—}>, for all » > 0, such
xr

that |jx,|| > 1. Since T is bounded, there exists a real number M > 0 such that

p-1
X

r

»

X, +u, —,urxr>20 for all » > 0 such that

p+l

_ﬂrx

r

220,for all » > 0,

»

X

r

1 2
Y7 >0, for

x"

all » > 0, such that ||x,|| = 1, or “xr

T [l’—]SM , for all » > 0 such that ||xJ| = 1. Therefore we have
X

r

<M, for all » > 0 such that ||| > 1, which is impossible, since

xr
|x, | — +<0 as » — +0 . This contradiction implies that f is without an EFE

with respect to & o

DEFINITION 5.1.20. We say that a mapping f : H —> H is p-order

generalized coercive with respect to K if there exists an element x« € K and
a real number p € |-, 1] such that

fmoup L DX %)

Jixfj—>-+o0,xe K ”x”p

(5.1.11)

THEOREM 5.1.38. If f: H— H is a p-order generalized coercive mapping
with respect to K then f'is without an EFE.

Proof. Indeed, we suppose that f has an EFE with respect to K. Let {x,}

r>0

be this family. In this case we have
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2
+ H, X

4

X, X,

<f('xr)’xr _x"> _ <ur _/Llrxr’xr -x*> < —/ur
P P -
which implies that for » sufficiently large we have

(7(3)%, ) _a

S

xr

X

r

il

X

»

X —1x

r |

p-1

X

r

X,

—1X

r

p-1

J<0

which is a contradiction of (5.1.11). Therefore, f is without an EFE with
respect to K O

X

X

r

COROLLARY 5.1.39. If fis coercive with respect to K that is, there exists

x+ € K such that

(/()x-x)
xeK x|, ]

then f is without an EFE with respect to K

COROLLARY 5.1.40. If f satisfies the condition
liminf (x, f(x)})>0,

”x||—>co,x€K

then f is without an EFE with respect to K.

Remark. In (Zhao, Y. B. [3]) was proved a result similar to Theorem 5.1.38
but for a d-oriented family with respect to the cone &7 .

We close this section with another variant of condition (9).

DEFINITION 5.1.21. We say that a mapping f: H — H satisfies condition
(é) with respect to K, if there exists p > 0 such that for any x € K with

x|l > p, there exists y € K such that <y, x> < “x“2 and <x - y,f(x)> >0.
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Remark. If f satisfies condition (0), then it satisfies condition (é) . Indeed,
if there is p > 0 such that for any x € K with |x]| > p, there exists
y € K with|y]| > |l and, (x - y, £ (x)) >0, then we have

(o) <o ol <l
which implies <x— wf (x)>20. About condition (é) we have the

following result.

THEOREM 5.1.41. Let (H,(,-)) be a Hilbert space, K c H a closed
pointed convex cone and f: H — H a mapping. If f satisfies condition (é ) ,

then fis without an EFE with respect to K.

Proof. Suppose that f has an EFE with respect to K, namely {x,}»o cK.
We have that |x||—>+wasr—>+o, u,=px +f(x)eK and
(x,,ur>=0 , for any » > 0, (with g > 0). We take » > 0 such that ||x,|| > p.
Because f satisfies condition (67) for such r, there exists y, € K such that
<yr,x, > < Hx, ”2 and 0< <x, -y f(x )> . In this case we have
0£<x, —y,,f(x,)>=<x, — Y, U, — I, X,)

e (v )< ()= <0,
which is impossible. Therefore f'is without an EFE with respect to K o

xr

:<xr’ur>_<yr’ur>_ﬂr xr

Remark. We can show that if g : H — H satisfies condition (67) with
respect to a closed convex cone K < H, then for any a > 0, > 0, the

mapping f(x)=ax+ fg(x) satisfies also condition (é) We have the

same property for condition ().
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5.2 Implicit complementarity problems

In Chapter 4 we presented the extension of the notion of EFE from a
mapping to a pair of mappings and we applied this notion to the study of
implicit complementarity problems. In this section we present a variant of
this notion. This variant will be introduced by a little modification of the
notion of EFE defined in Chapter 4 and by replacing the topological degree
by the Leray—Schauder alternative. In this way we obtain a general
alternative, which implies an existence theorem for implicit
complementarity problems.

Let (H ,<',->) be a Hilbert space, K — H a closed pointed convex

cone and f g: H — H two arbitrary mappings. We consider the following
implicit complementarity problem defined by the (ordered) pair of mappings

(f, £) and the cone K
find x. € H such that
ICP(f,g,K):s f(x)eK ,g(x)e K and
(g(x*),f(x,,)> =0.
In Chapter 4 , we considered this problem supposing that the Hilbert space
(H , <-, >) is the Euclidean space (Z/E{’” ,(-, ->),K is a closed convex cone in

R"and f g : R" — R" are continuous mappings. We recall the definition of

EFE for the pair (f, g) of mappings (Definition 4.3.2). We say that a family
of elements {x,}r>0 c R" is an EFE for the pair (f, ), with respect to the

cone [ if the following conditions are satisfied:
(i)
(i1) g(x,) € Kforanyr> 0,

X || > +oasr — -+,

(iii)  for every r> 0, there exists u,> 0 such that
s,=f(x)+ug(x)eK and <g(x,),s,>=0.
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Using the topological degree we established the following result (Theorem
432). If f g: R" > R" are continuous mappings and the following
assumptions are satisfied:

(1)  the equation g(x) = 0 has a unique solution, namely b € R ",

(2) the mapping g maps homeomorphically a neighborhiood of the
element b onto a neighborhood of the origin,

then, there exists either a solution to the problem ICP(f, g, K) or an EFE for

the couple (f,g) (in the sense of Definition 4.3.2) with respect to K.

In this result, conditions (1) and (2) are strong conditions from the practical
point of view. Because of this fact, our goal in this section is to introduce a
new definition for the notion of an EFE associated to a pair of mappings
(. 2. We will realize this by a little modification of the notion introduced
by Definition 4.3.2 and replacing the topological degree by the Leray—
Schauder alternative.

Let (H ,<~,->) be a Hilbert space, K — H a closed pointed convex

cone and f, g : H — H continuous mappings.

DEFINITION 5.2.1. We say that a family of elements {xr}r>0 cH isan

exceptional family of elements (an EFE) for the pair (f, g) with respect to K

if the following conditions are satisfied:
() |x,| > +wasr >+,

(2) for any r> 0, there exists u, > 0 such that
S, = l1,X, +f(x,)€K*,V, =X, +g(x,)eK and< vr,sr>:0,

This notion will be used in this section. We have the following result.

THEOREM 5.2.1. Let (H,(.")) be a Hilbert space, K < H a closed
pointed convex cone and f, g : H — H completely continuous fields, such
that f(x)=x-T(x)and g(x)=x-S(x), where T, S : H - H are
completely continuous mappings. Then, there exists either a solution to the
problem ICP(f, g, K),or an exceptional family of elements {xr}DO for the
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pair (f, g). Moreover, if S(K)c K, then we have, either an exceptional
Sfamily of element {xr}bo c K for the pair (f, g) or the problem ICP(f, g,
K) has a solution in K.

Proof. We know (See Chapter 2) that the problem ICP(f, g K) has a
solution, if and only if the equation
g(x)=P;[g(x)-f(x)] (5.2.1)
has a solution in H. Considering the mapping
D(x)=x-g(x)+ P [g(x) -/ (x)]
defined for any x € H, we observe that equation (5.2.1) has a solution if and
only if, the mapping @ has a fixed point in H. From assumptions we have

CD(x):x—g(x)+PK [g(x)—f(x):':S(x)+PK I:—S(x)+T(x):|.
We note that @ is a completely continuous mapping. If the mapping ® has a
fixed point, then the problem ICP(f, g, K) has a solution and the proof is
complete. We suppose that @ has no fixed point in the space H. For any
r > 0, we consider the set U, =B, ={xe H:”x“ <r} and we observe that

the restriction of ® onto the set U, is a continuous compact mapping
without fixed points. Applying Theorem 3.2.4 (the classical Leray—
Schauder alternative) to the mapping ® and the set Q = H and U = U,, we

obtain that for all > 0,there exist x, € 8U, ={xe H:||x|=r} and 4, €]0,1]
such that
x, =2, [8(x)+ P [T(x)-S(x,)]]- (522)
From (5.2.2) we deduce
1

% = S()=Pe[T(x)=S(x.)],

which implies (using the properties of P),
</1,”’x, —T(x,),y> >0, forall ye K and
{</1,'x, -T(x,),4"'x, —S(x, )> =0.
Therefore we have that
A'x, —T(x,)e K and
{lr‘xr —-8(x,)e K.
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If we denote by 4, = A" —1> 0, for any > 0, we obtain

r

S, =X, +f(x,)=[%—1)xr +x,-T(x,)eK",

and

v, = l,X, +g(xr):[—;——1Jxr +x, -8(x,)ekK.

»

Obviously we have also the orthogonality condition <vr,sr>=0 for any
r > 0. According to Definition 5.2.1, the family of elements {xr}r>0 is an
EFE and the first conclusion of the theorem is proved. If S(X) < K, then
d( K) c K. In this case we apply Theorem 3.2.4 to the set O = K and for
any r > 0 we consider U=U, (K)z{xeK:Hxlkr}. If the problem
ICP(f, g K) has a solution in & then the proof is complete. Otherwise, as in

the first part of the proof, we construct the family {xr }r>0 , where x, € K for

each » > 0, and the proof of the second conclusion of the theorem is also
complete. Therefore, the theorem is proved. ]

COROLLARY 5.2.2. Let (H,(,-)) be a Hilbert space, K = H a closed

convex cone and f, g : H—~> H completely continuous fields. If the pair (f, g)
is without an EFE, then the problem ICP(f, g, K) has a solution.

COROLLARY 5.2.3. Let (R”,(-,-» be n-dimensional Euclidean space,

Kc R" aclosed convex cone and f,g: K" — R" continuous mappings. If

the pair (f, g) is without an EFE, then the problem ICP(f, g K) has a

solution.

In view of Corollary 5.2.2, now, we give some examples of pairs of
mappings without an EFE. We suppose again that (H ,<-, >) is an arbitrary
Hilbert space, K — H a closed pointed convex cone and f, g : H > H

continuous mappings.
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DEFINITION 5.2.2. We say that the pair (f, ) of mappings satisfies
condition (6,) with respect to K if there exists p> 0 such that for any x € K

with ||x|| > p, there exists y € K such that:
(M) (g(x)- . f(x))=0 and
@) (g(x)-y.x)>0.

This notion implies the following result.

THEOREM 5.2.4. Let (H,(-, >) be a Hilbert space, K — H a closed

pointed convex cone and f, g : H - H two mappings. If the pair (f, g)
satisfies condition (6,), then the pair (f, g) is without an EFE with respect to

K
Proof. Indeed, we suppose that the pair (f, g) has an EFE, {x, }DO c K . For

any r > 0 such that |jx,|| > p we have an element y, € K such that condition
(6,) is satisfied, i.e.,

(g(x,) =3, (x,))20
(g(x,)-3,.x)>0.
From the definition of an EFE for a pair of mappings we have
s,=px +f(x)eK",
v, =u,% +g(x,)e K and(v,,s,)=0.
We deduce

0<(g(x,) -2,/ (x,)=(v, ~s,%, = y,.s, - 1,,)
=<vr’sr>_<ﬂrxr’sr>_<yr’sr>_<vr’/urxr>+/u3 ’ +<yr’lurxr>

S—<vr’ﬂrxr>+#f xr“2+<yr’/urxr>
=—{ux, +g(x,).1,%)+ 1} |x. | + (3. 18,%,)

xr

xl‘

F (g (%), )+ g 5 (3, )
=—(g(x,) %)+ (3o x5 ) =1, [ (g(%.) = 3,.%,) ] <O,

X, X,
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which is a contradiction. Therefore, the pair (f g) is without an EFE, with
respect to K. 0

COROLLARY 5.2.5. Let (H ,<-, >) be a Hilbert space, K — H a closed
pointed convex cone and f, g . H— H completely continuous fields. If the
pair (f, g) satisfies condition (0, ), then the problem ICP(f, g K) has a

solution.

COROLLARY 5.2.6. Let (R",{--)) be n-dimensional Euclidean space,
K c R" a closed pointed convex cone and f,g:R" — K" continuous

mappings. If the pair (f, g) satisfies condition (6, ), then the problem
ICP(f, g, K) has a solution.

Remark. For a pair of mappings (f, g), condition (&, ) is an extension of
condition (&) from a mapping to pair of mappings. We consider f as the pair
(f, D), where I is the identity mapping. Indeed, if g(x) = x for any x € H, then
we have,

(&) = 3o x)=Cr = px) = (e,x) = () 2 ol =l =l (] - 1) -

Hence, if |ly|| < |||, then we have,
<g(x)—y,x>=<x—y,x> >0.

In Section 5.1 we presented several classes of mappings satisfying condition
(6). As in the case of a single function, now, we give some examples of

pairs of functions satisfying condition (€ z), and consequently, pairs of
functions without an EFE.

PROPOSITION 5.2.7. Let f, g : H—> H be two mappings. If there exists
p> 0 such that for any x € Kwith ||x|| > p, there exists y € K such that

M (g(x)-».1(x))>0,
(2) <g(x),x>2a”x2,aeﬁ?+\{O}and

(3) [l < adxll,
then the pair (f, g) satisfies condition (8y).
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Proof. The assertion of the proposition is implied by the definition of
condition (6,) and the following inequalities:

(£ (x)-2.%) =(&(x),%) = (.x) =l = Iollel = el (e <] - 1) >0 0

DEFINITION 5.2.3. We say that a pair (f, g) of mappings from H into H,
satisfies the Karamardian type condition, if there exists a bounded subset D

of K such that for all x € K\ D, the exists ay € D such that
<g(x) - y,f(x)> >0 and <g (x),x> ZHxHZ.

PROPOSITION 5.2.8. If the pair (f, g) satisfies the Karamardian type
condition, then it also satisfies condition (6,).

Proof. Because D is bounded, there exists p > 0 such that
Dg{xe]K:”xHSp}. In this case, for every x € K with ||x|| > p, there

exists y € D such that <g(x) —y,f(x)> >0, (g (x),x> 2“x”2 and |y]] < |l

Hence, all the assumptions of Proposition 5.2.7 are satisfied with &= 1 and
the conclusion of the proposition is a consequence of Proposition 5.2.7. o

DEFINITION 5.24. We say that a pair (f, g) of mappings satisfies
condition (HPT), if there exists a bounded set D c K such that for any

xe K\ D we have (g(x),x) >||x|* and the set

K(D,g)z{xeK:<y—g(x),f(x))ZOforanyyeD}
is bounded.

Remark. If in Definition 5.2.4, g(x) = x for any x € H, we obtain condition
(HPT) defined in Section 5.1.

PROPOSITION 5.2.9. If a pair (f, g) of mappings satisfies condition
(HPT), with respect to K, then (f, g) satisfies condition (6 ),

Proof. Indeed, we consider the set M =D U K (D,g). Obviously, M is a
bounded subset of K. If x € K\ M, then x ¢ K(D, g) and in this case there

exists ¥y € D such that <y—g(x),f(x)><Oor<g(x)—y,f(x)>>0.
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Because y € M and <g(x),x> > ”tz for any x € K\ M, we have that (f g)
satisfies the Karamardian type condition. Therefore, applying Proposition
5.2.8, we have that (f, g) satisfies condition (8). O

DEFINITION 5.2.5. We say that a pair (f, g) of mappings from H into H is
(p. @)-copositive, with respect to a closed convex cone K  H, if there exist

p > 0and a> 0 such that for any x € K with ||x|| > p we have
(M) (g(x).1(x)=0,
) <g(x),x>2a“x“2.

PROPOSITION 5.2.10. If the pair (f, g) of mappings from H into H is

(p. @)-copositive, with respect to a closed convex cone I < H, then the pair
(f, g) satisfies condition (8 ).

Proof. The conclusion of this proposition follows from Proposition 5.2.7 if
we take in this proposition y = 0. o

Let £ g: H— H be two mappings and K c H a closed convex cone.

We suppose that there exist p > 0 and « > 0, real numbers such that for any
x € Kwith ||x]| = p we have satisfied the following relations:

(@) (g(x).f (x))20,
) {g(x).x) 2l
Let R, be the radial retraction, i.e.,
x.if el<p.
7, (x)=1 px

i x> e
=]

The mapping R, is continuous. We consider the following mappings:
G(x)= g(7€p (x)) ,forany x € H,
F(x) = f(7€p (x)) + “x — %p (x)u Rp (x) ,forany x € H.

For every x € K with ||x|| > p we have
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(G(x).F (x)=(2(%, (). £ (%, (x) + ]~ %, (x)| %, (x))
=(2(% (). 7 (%, () +|r- & (N ((® (x)). %, (x))
> ”x -7, (x)”<g(kp (x)), 7, (x)> >ap® > 0.

We have also,

(68~ ()) = (. ) B 09

sallj (of =al 5 <apli >0

If we take in the definition of condition (6, ), y = 0 for any x € K with

x|l > p, we obtain that the pair (G, F) satisfies condition (&,). By Theorem
5.2.4 the pair (G, F) is without an EFE. If the problem ICP(F, G, K) has a

solution x+, we must have that ||x«|| < p, which implies that G(x+) = g(xx) and
F(x+) = f{x+). Therefore x- is a solution to the problem ICP(f, g, K).

Finally, we have also the following test for condition (6,).

THEOREM 5.2.11. Let (H,(.)) be a Hilbert space, K < H a closed

convex cone and f, g :H — H two mappings. If there exist p« > 0 and o> 0
such that:

(1) <g (x),x> > ()t”x”2 Jor all x e K with ([x" > p,,

(2) there exists a non-empty bounded set D — K such that the set
M=) {x eK: Hf(x)” < “y —g(x)+ f(x)”} is bounded or empty,
yeD
then the pair (f, g) satisfies condition (6,).

Proof. Since D and M are bounded sets, there exists p, >0 such that

MuDc {xe K:“x” < ,00} . We can suppose that 0 < a < 1. Moreover, we
can select o and p such that 0 < o < 1 and '—Oi<p, ie, p, <ap Let
a

p, zmax{p,p,} be arbitrary. If x € K is such that py < |jx||, then we have
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that x¢ () {xe K: Hf (x)H < ”y —-g(x)+ f(x)“} , which implies that for
yeD

some y; € D we have

£ > Dy = () + £ ) or | (I > [ -2 () + £ (¥)

which implies

(£ ()£ () > (7 — (%) 70 — (%)) +2(3 —2(x). £ (%))
+{F (%), £ (x)).

Therefore we have

2
s

(g(x)~ ¥, £ (x))>0. (5.2.3)
Because |[x]| > o+, we have (g(x),x) >a|jx|* and since for any y € D we

have Hy” <p,Sap< a“x , we deduce (y, x) S“y””x]’ < a“x]]2 which

implies that < g (x) -y, x> >0, for all y € D and in particular

(g(x)=y,.x)>0. (52.4)
We used the fact that

(8(5) - 3) = (g(x).5) (32x) 2l ~(y.x) >0,
Therefore, relations (5.2.3) and (5.2.4) say that the pair (f, g) satisfies
condition (6y). m

5.3 Set-valued complementarity problems

In this section we adapt the notion of exceptional family of elements
to the study of solvability of multivalued complementarity problems. All the
notions used in this section were defined in Chapter 3. Now, we recall the
definition of the multivalued nonlinear complementarity problem (i.e., the
nonlinear complementarity problem defined by a closed convex cone and a
set-valued mapping). (This problem was considered in Chapter 2 and it was
named the multivalued complementarity problem.)

Let (H ,<-, )) be a Hilbert space, K — H a closed pointed convex

cone and f: H— H a set-valued mapping, i.e., f: H— 2. In this section we
suppose that for all x € H, fix) # ¢ We recall that f'is upper semicontinuous
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(u.s.c) if the set {xe H:f(x)c V} is open in H, whenever V is an open

subset in H. We say that fis completely upper semicontinuous (c.u.s.c) if it
is upper semicontinuous and for any bounded set B — H, we have that

f(B)= f(x) is arelatively compact set.

xeB

Let P(H) be the collection of all non-empty subsets of H We

suppose given a measure of noncompactness @ P(H ) — Q) where, Qisa

lattice with a minimal element denoted by 0. Let X, ¥ be subsets of H. We
recall that a set-valued mapping / : X — Y is ®-condensing if A — X and

@ (h(A)) >®(4) imply that 4 is relatively compact.

DEFINITION 5.3.1. We say that f is projectionally ®-condensing (resp.
projectionally approximable) with respect to K if Pif) is ®-condensing

(resp. approximable).

The multivalued nonlinear complementarity problem defined by fand K is

the following problem.
find x, € K and

MNCP(f,K):y. € f(x)NK" suchthat

<x,, A > =0.
For more details about this problem see Chapter 3.

DEFINITION 5.3.2. We say that a family of elements {xr}bo c K is an

exceptional family of elements (denoted shortly by EFE) for a set-valued
mapping . H — H if and only if, for every real number r > 0 there exist a
real number r > 0 and a element y, € fx,) such that the following properties
are satisfied:

(1) |x| > +woas r—>+0,
(2) ur:#rxr+yr€K*’
3) <xr,u,>=0.

A justification of this notion is given by the following result.
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THEOREM 5.3.1. Let (H,(.")) be a Hilbert space, K < H a closed

pointed convex cone and f: H— H an u.s.c set-valued mapping with non-
empty values. If the following assumptions are satisfied:
(1) x —fx) is projectionally ®-condensing, or fx) = x — T(x), where T
is a c.u.s.c. set-valued mapping with non-empty values,

(2) x —fix) is projectionally approximable and Py, [x— f (x)] is with
closed values,

then there exists either a solution to the MNCP(f, K), or an exceptional
Jfamily of elements for f with respect to K.

Proof. If the problem MNCP(f, K) has a solution, we have nothing to prove.
We suppose that the problem MNCP(f, K) is without solution. For any

positive real number » > 0 we consider the set B, :{er :”xllSr}.
Obviously Oeint(Br). The set-valued mapping P [x— f (x)] is fixed-
point free with respect to any set B,. Indeed, if there exists » > 0 such that
P, [x— f (x)] has a fixed-point x« in B, then we have x. €
P [x,, -f (x. )] . Obviously, x: € K and there exists u» € fx-) such that
xo= P [x -u]. (53.1)
By using (5.3.1) and applying the properties (1) and (2) of the projection
operator P given in Theorem 1.9.7, we have
(x. = (x —u),y)=0, forally e K (5.3.2)
and
(x - (% -u),x)=0. (5.3.3)
From (5.3.2) and (5.3.3) we obtain that u, € f(x,)" K" and(x.,u,)=0,
that is, (x*,u*) is a solution to the problem MNCP(f K), which is a

contradiction. Therefore, P, [x —f (x)] is fixed-point free with respect to

any set B, with » > 0. Now, we observe that all the assumptions of Theorem
3.6.4 are satisfied for any set B, with » > 0, and the set-valued mapping

Py [x-f(x)]. Hence for any r > 0 there exist x, €08, and 4, €]0,1]
such that

x, € AP [x ~ f(x)] (5.3.4)
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From (5.3.4) we have that there exists y, € f (x,) such that

x, =AP, [xr -y, ] (5.3.5)
From (5.3.5) and using again the properties (1) and (2) of the projection
operator P (see Theorem 1.9.7), we obtain

—;—xr —[xr —yr]eK* (5.3.6)
and
—l—x ~[x— ]—l—x =0 (5.3.7)
ir r r yr > ﬂ,r > bl
which implies that
y, =1 ;’L x +y ek, (53.8)
and
(ur,x,> =0. (5.3.9)

Because [|x,|| = » we have that ||x,|| & +oo as # — +o0. Obviously x, € K. If

we denote =1—_Z11’— we have, (considering (5.3.8) and (5.3.9)) that

r

{xr }D , 1s an exceptional family of elements for f with respect to & i

From Theorem 5.3.1 we obtain also the following result.

THEOREM 5.3.2. Let (H,(-, >) be a Hilbert space, K — H a closed

pointed convex cone and f: H— H a set-valued mapping. If f has the form

Ax) = x — T(x), where T is a completely upper semicontinuous set-valued
mapping with non-empty compact contractible values, then there exists

either a solution to the problem MNCP(f, K), or an exceptional family of
elements for fwith respect to K

Proof. Obviously, because Py is continuous at any x € H and because T(x)
is a compact set, we have that

Pe[x-f(x)]=P[T(x)] (5.3.10)
is compact for any x € H and consequently the set-valued mapping
x— P, [x —f (x)} is with closed values. Following a proof similar to the
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proof of Theorem 5.3.1, but by using Theorem 3.6.6, we obtain the
conclusion of our theorem if we show (using (5.3.10)) that for any x € H,

Py | T(x)] is a contractible set. Indeed, if x € H is an arbitrary element, we

denote D =7{(x). By assumption D is a contractible set, i.e., there exists a
continuous function /:Dx[0,1]— D with the properties, A(x, 0) = u and

h(u, 1) = u, for some uy € D.
Considering the mapping 4" : P, (D)x[0,1]— P, (D) defined by
H (P (u),A)= Py [h(u), /IJ for all P (u)e Py (D)and A€(0,1],

we have

B (P (u).0)= P [ 1(w).0] = £
B (P (u),1) =Py [ h(u),1]=Py (u,).

The mapping %' is a continuous mapping. Indeed, let {(PK (un),/in )} Y be

and

a sequence in PgD) x [0, 1] convergent to an element (PK (u*),/l.).
Because D x [0, 1] is compact, there exists a subsequence {(unk s A )} of
{(un,ln)} convergent to an element (v,4,)eDx[0,1]. By using the

continuity of P and the uniqueness of the limit we have

lim Py ()= P (v) =B ()
We deduce that

lim & (Py (u,,2,)) = lim " (Py (u, . 4, )) =lim P ((u, .4, ))
=P, [h v&)] n ( (v), ) (PK(u*),L).

O

We recall that a mapping F : H — H is bounded if for any bounded set
B Hwe have that f(B)=| ] f(x) is bounded.

xeB

COROLLARY 5.3.3. Let (H,(")) be a Hilbert space, K — H a locally

compact pointed convex cone and f : H - H a bounded, upper semi-
continuous set-valued mapping, with non-empty compact contractible
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values. Then, there exists either a solution to the problem MNCP(f, K), or

an exceptional family of elements for fwith respect to K.

Proof. Since K is a locally compact cone and f is bounded upper

semicontinuous, we have that P, [x— f (x):l is completely upper
semicontinuous. For every x € H, flx) is compact, which implies that
x — fix) and consequently P [x— f (x)] is compact. Hence for every
xeH, P, [x~ f (x)] is closed. Moreover, Py [x— f (x):l is contractible.
Indeed, to show this fact we use the function A" (x —u,A)=x—h(u, 1), for

all # € fix) and A € [0,1], where % is the continuous mapping defined by the
contractibility of fx). Because = x — flx) is compact and contractible, we

have that P, [x -f (x)] is contractible. (See the proof of Theorem 5.3.2).

Now, the proof follows the proof of Theorem 5.3.1, but using Theorem
3.6.6. o

COROLLARY 5.34. Let (R”,(-, >) be n-dimensional Euclidean space

and K c R" a closed pointed convex cone. If f:R" — R"is an upper
semicontinuous set-valued mapping with non-empty compact contractible

values, then there exists either a solution to the problem MNCP(f, K), or an
exceptional family of elements for f with respect to K.

To recognize if a set-valued mapping is without exceptional families of
elements we adapt the condition (&) to set-valued mappings.

DEFINITION 5.3.3. Let (H ,<-, >) be a Hilbert space and K c H a closed

pointed convex cone. We say that a set-valued mapping f: H — H, with
non-empty values satisfies condition [0] with respect to K if there exists a

real number p >0 such that for all x € K with ||x|| > p, there exists y € K
with ||| < ||x|| such that <x -, u) 20 forallue f(x) .
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The classical Karamardian’s condition for single-valued mappings has the
following form for set-valued mappings.

DEFINITION 5.3.4. We say that a set-valued mapping f: H — H satisfies

the weak Karamardian’s condition with respect to K if there exists a
bounded set D ¢ K such that for all x € K\ D there exists y € D such that
<x—y,u>20foralluef(x).

Obviously, if f satisfies the weak Karamardian’s condition with respect to
K, then f satisfies condition [9]m , but the converse is not true.

DEFINITION 5.3.5. We say that a set-valued mapping f: H > H is p-
copositive with respect to K if there exists p > 0 such that for all x € K

with ||x|| > pwe have (x,u)>0 for allue f(x).

We observe that if a set-valued mapping f: H - H is p-copositive with
respect to &, then f satisfies condition [#] . To see this fact we take y = 0 in

the definition of condition [H]m

DEFINITION 5.3.6. We say that a set-valued mapping satisfies condition
M(D) with respect to K, if there exists a non-empty bounded set D — K
such that the set M(D) defined by

M (D) = ﬂ {x € K :there exists u € f(x), with “u” < “y - (x — u)”}

yeD
is a bounded set.

PROPOSITION 5.34. If a set-valued mapping f : H — H satisfies
condition M(D) with respect to K, then f satisfles condition [0] .

Proof. Indeed, we consider the bounded set 4 = D UM(D). If x, e K\ 4,
then x, ¢ () {x € K :there exists u e f (x), with|u| <[y - (x - u)’} , which

yeD

implies that there exists y, € D with the property that, for any # € fixo) we
have Hu” > “ Vo — (xo - u)“ . The last inequality implies
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2
>

e > Iyo =5[]+ 2y, = %0.u) + |
which implies

1 2
) >5”y0 - x| >0.
Because xy, is an arbitrary element in &\ 4, we deduce that f satisfies the

weak Karamardian’s condition with respect to K and consequently f

satisfies condition [Q]m ) !

The condition (HPT) can be also adapted to set-valued mappings.

DEFINITION 5.3.7. We say that a set-valued mapping f: H — H satisfies
condition [HPT|  with respect to K if there exists a bounded set D < K

such that the set K(D)={xeK: foranyye D thereexistue f(x),
such that < y- x,u> > 0} is a bounded set.

Related to condition [HPT]m , we have the following result.

THEOREM 5.3.5. Let (H , <,>) be a Hilbert space and K c H a closed

pointed convex cone and f: H — H a set-valued mapping. If f satisfies
condition [HPT]m , with respect to K, then f satisfies condition [6?]”l

Proof. We consider the bounded set M =D U K (D). If x, € K\ M , then
X ¢ M which implies x,¢ K (D) and consequently there exists
Yo € D c M such that for any u € flx) we have <y0—xo,u><0 or
<x0 = yo,u>>0. Therefore f satisfies the weak Karamardian’s condition

with respect to K and consequently condition [0]m . ]

Now, we show that condition [#] implies the non-existence of

exceptional families of elements for a set-valued mapping.
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THEOREM 5.3.6. Let (H ,<.’.>) be a Hilbert space and K — H a closed

pointed convex cone. Let f: H — H be a set-valued mapping with non-
empty values. If f satisfies condition [0] . then f is without an exceptional

Jamily of elements with respect to K.

Proof. We suppose that f'has an exceptional family of elements with respect
to K, namely, {x,}Do c K . Let » > 0 be a real number such that p < ”xr H

(The positive real number p is defined by condition [#] .) This is possible
since |x,||— +o0 as r — +o . Because f satisfies condition [6],, there exists

yr € Ksuchthat |y, | < and

(x, = y,,u)=0, forallue f(x,). (5.3.11)
From the definition of exceptional family of elements, we have that there
exist 1. > 0 and v, € fx,) such that

X,

u =px +v ek
and (5.3.12)
(ur , X, > =0.

Considering (5.3.11) and (5.3.12) we obtain

0S<xr_yr>vr>:<xr_yr’ur_ﬂrxr>:<xr_yr’ur>_lur xr ’
+#r<yr5xr>g_lur xr ZI:xr - yr]<0’
which is a contradiction and the proof is complete. o

COROLLARY 5.3.7. Let (R”,(-,-)) be n-dimensional Euclidean space

and K c R" a closed pointed convex cone. Let f:R" — K" be an upper
semicontinuous set-valued mapping with non-empty compact contractible

values. If f satisfies condition [@] , then the problem MNCP(f, K) has a

solution.

DEFINITION 5.3.8. We say that a set-valued mapping f: H — H satisfies
condition [9 - S]m with respect to K if for any family of elements

{xr}r>0 c K, such that Hx, “ —> 400 as ¥ —> +o0, there exists y» € K with the
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property that for some r > O with |[y+|| < |jx/|l, we have <xr - y*,u> >0, for
anyue f(x,).

THEOREM 5.3.8. Let (H ,<',~>) be a Hilbert space, K — H a closed

pointed convex cone and f: H—> H a set-valued mapping. If f satisfies
condition [0~ S] , with respect to K then f is without an exceptional

Sfamily of elements with respect to K

Proof. We suppose that f has an exceptional family of elements, namely
{x,} , <K . Because f satisfies condition [0 —S] , there exists y» € K

such that for some r > 0, with

<

A , we have (xr - y*,u> >0 for any

ue f (x,). From the definition of exceptional family of elements there

xr

exists y, € f(x,) such that u, = x, +y, € K" and (x,,u,)=0. Then we

have
0S<xr —y*’yr>:<xr —y*7ur _Iurxr>
=(x,u, )= (yo,u)— p, (x,.%, )+ p (y.,x.)
<u [(y.,x,>— X, 2]gﬂr X, D]y’— X, :|<O,
which is a contradiction and the proof is complete. a

Let (H ,<',->) be a Hilbert space, K — H a closed pointed convex

cone, f: H —»> H a set-valued mapping and g : H > H a single-valued
mapping. We consider the following multivalued implicit complementarity
problem:

findx,e Hand y. € f (x. )N K~
MICP(f,g,K):{ suchthat g(x.)e K

and <g(x*),y*> =0.
We consider the set-valued mapping
W (x)=P [8(x) -/ ()]
and we remark that the solvability of MICP(fg, K) is equivalent to the

solvability of the following coincidence equation:
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CE( ¥ ) find x, € H such that
& x): g(x)e¥y(x).

Also, we remark that if fx) is a contractible set, then g(x) — Ax) is
contractible. Indeed if Ax) is contractible, then there exists a continuous

function /: f (x)x[0,1]— f(x) such that A(u, 0) = u, for any u € fx) and
there exists 4y € f{x) such that A(:, 1) = u, for any u € fx).

Considering the function
W (g(x) - f () x[0.1] > g (x) - /(%)
defined by
) (g(x)—u,),) :g(x)—h(u,/l),
we can show that g(x) — f{x) is a contractible set. Moreover, as in the proof
of Theorem 5.3.2 we can show that if Ax) is contractible, then

P, [ g(x)-f (x)] is contractible too.

DEFINITION 5.3.9. We say that a family of elements {x }DO cH isan

exceptional family of elements for the pair (f, g) with respect to K if the
Jfollowing properties are satisfied:
) “xr”—) +0 as r —> +o0 ,
(2) for any r> 0 there exist y,> 0 and y, € fx,) such that
0w, =pg(x)+y ek,
(ii) <ur g (x, )> =0.

The notation and the notions used in the next theorem are defined in
Chapter 3 in relation to Theorem 3.6.12.

THEOREM 5.3.9. Let (H ,(-, >) be a Hilbert space and K — H a closed

pointed convex cone g: H — H a single-valued continuous mapping and
f: H— H a set-valued mapping with non-empty values. If the following
assumptions are satisfied:

(1) gx)#0foranyx#0,

(2) g is essential with respect to any set U, = {xe H | x| < r}, where

r>0,
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(3) f is completely upper semicontinuous with compact contractible
values,

(4) for any bounded set D — H, (g —f)(D) is relatively compact, then, at
least one of the following conditions holds:

(1) the problem MICP(f, g, K) has a solution,

(ii) there exists an exceptional family of elements for the pair
(, g) with respect to K.

Proof. If the problem MICP(f g K) has a solution we have nothing to

prove. We suppose that the problem MICP(f, g, K) has no solution. We

show that the assumptions of Theorem 3.6.12 are satisfied. For this we use
the notation and the terminology of this theorem.

For any » > 0 we consider the open set U, = {x eH l ||x|| < r} and its
boundary 0oU, :{er l ||x“=r}. From our assumptions we have that
0¢g(0U,) and geA, (U, H). Also, we can show that
Y, €A (U,,H). Because the problem MICP(f; g, K) is without solution,
we have that g(x)¢ W (x) for any x € U, ie., g(x)N'¥P (x)=¢ for

any x € JU, and also the conclusion (1) of Theorem 3.6.12 is not satisfied.

By assumption g is essential with respect to any U,. Therefore, we
conclude that for any » > 0, there exist A, € 10, 1[ and x, € U, such that

g(x)eA ¥, (x)=24P[g(x)-f(x)]
Then, there exists y, € f{x,) such that

g(xr):/erK [g(xr)_yr]
and considering the properties of operator Py (given in Theorem 1.9.7) we

obtain

u, =u,g(x,)+yr e K', where u, =—/—11——1and<u,,g,>=0.

P
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Because [[x,]| =, we have that |x, | — + as r — +o and we conclude that

{xr }r>0 is an exceptional family of elements for the pair (f g) with respect

to K, and the proof is complete. i

Remark. The following mappings g are essential with respect to any set U,
r>0.

(1) g=identity mapping.
(2) g =L, where L : H— H is a continuous linear isomorphism.

(3) g =a Vietoris mapping p : H— H such that p™' ({0})={0} .

For more details about essentiality the reader is referred to (Gorniewicz, L.
and Slosarski, M. [1]).

Obviously, we can consider the multivalued implicit complemen-
tarity problem defined by a closed convex cone K — H and a pair (f, g) of

set-valued mappings from H into H. This problem is the following:
find x, € H such that

MlCP(f,g,K): thereexistuef(x,)r\K*,
ve g(x*)f\ K satisfying (u, v) =0.

The study of this problem in an arbitrary Hilbert space is a difficult
problem. An idea is to use a selection for f and a selection for g, but the
selections must satisfy some topological properties, as for example
complete continuity. We note that such selection theorems are unknown at

this moment. However, this idea works in the Euclidean space (R",(-,-)) .

To do this, we need to recall some definitions.

We say that a set-valued mapping f:R" —> R" is lower

semicontinuous at the point x € R", if for any arbitrary £> 0 there exists a
&> 0 such that |x— y| <& implies f(x)c f(y)+&B where B is the unit
ball centred at the origin. The mapping f'is called lower semicontinuous, if it
is such at every point x € R". We say that a single-valued mapping
@: R"—> R" is a continuous selection if ¢ is continuous and ¢(x) € f(x),
for every x € K" . We recall also the following classical result.

THEOREM 5.3.10 [Michael’s theorem]. Let X be a paracompact

1

topological space and (E,

) a Banach space. If f: X— E is a set-valued
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lower semicontinuous mapping such that for any x € X, f{x) is a non-empty
closed convex subset of E, then there exists a continuous selection ¢ : X —

E forf.

We recall that a topological space X is called paracompact if it is
Hausdorff and from every open cover of it, one can extract a locally finite
subcover. By Stone’s Theorem every metric space is paracompact. A
particular case of Theorem 5.3.70 is the following result.

THEOREM 5.3.11. Let f: R" — K" be a lower semicontinuous set-valued
mapping such that fx) is a non-empty closed convex subset of R" for each
x € R". Then f has a continuous selection ¢ . R" — K" .

Now, we introduce the following notion of exceptional family of elements
for a pair of set-valued mappings.

DEFINITION 5.3.10. We say that a family of elements {x,}r>0 c R" isan
exceptional family of elements for the pair (f, g) of set-valued mappings
f.g:R" > R", with respect to a closed convex cone K c R" if the

Jfollowing conditions are satisfied.
(1) |x, | > +ooas r — +o0,
(2) for every r > 0, there exist a real number u, > 0 and two elements
v, €f(x,),z,€g(x,) suchthat s, =px, +y, €K', vy = pix, +
zy€ Kand (s,,v,)=0.

We note the following result.

THEOREM 53.12. Let f,g:R" > K" be lower semicontinuous set-
valued mappings with non-empty convex closed values, and K — R" a
pointed closed convex cone. Then there exists either a solution to the
problem MICP(f, g, K), or an exceptional family of elements in the sense of
Definition 5.3.10.

Proof. By Theorem 5.3.11, we have a continuous selection ¢ for f and a
continuous selection y for g. Obviously. Because the space is #-dimensional
Euclidean space, the pair (@, ) of continuous mappings from R” into R”



194 Leray—Schauder Type Alternatives

are completely continuous and we have that the assumptions of Theorem
5.2.1 are satisfied.

Hence, there exists either a solution to the problem ICP(¢, y, K), which

evidently solves the initial problem MICP(f, g, K) too, or an exceptional

family of elements {xr}r>0 for the pair (¢ ) in the sense of Definition

5.2.1, which is clearly an exceptional family of elements for the initial pair
(f ) in the sense of Definition 5.3.10, and the proof is complete. m]
The study of the MICP(f g K) is an interesting subject. We note also that

condition [6?]m can be generalized in the following form.

DEFINITION 5.3.11. We say that a set-valued mapping f: H — H with

non-empty values satisfies condition [é ] with respect to K if there exists
m

a real number p > 0 such that for each x € K there exists p € K with

(p,x)< ”xH2 such that <x -p, xf>2 0 forall x" e f(x).

Remark. Theorem 5.3.6 is also true if we replace condition [0]m by

condition [é :| .

m

5.4 Exceptional family of elements and monotonicity

We know that, in a Hilbert space (H, (-, )), if we have a closed pointed
convex cone K and a mapping f : H — H which is projectionally Leray—

Schauder, with respect to X then the problem NCP(f, K) has a solution if /

is without an EFE. A natural question is: under what conditions does the
solvability of the NCP(f, K) imply that fis without an EFE? In this section

we will study this problem. First, we recall the definition of
pseudomonotone mappings.
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Let (H ,(-,-)) be a Hilbert space, f: H — H a mapping and Kc
H a closed convex cone. We say that f is pseudomonotone on K if, for any
distinct points x, y € K, the inequality <x -vf ( y)> >0 implies

<x -nf (x)> > (. Many authors have studied this notion from some points

of view (Karamardian, S. [5]), (Karamardian, S. and Schaible, S. [1]),
(Hadjisavvas, N. and Schaible, S. [1], [2]) and (Schaible, S. and Yao, J. C.
[1]D, (Yao, J. C. [1]). In 1976 S. Karamardian introduced the notion of
pseudomonotone mapping in relation to the study of complementarity
problems (Karamardian. S. [5]). In the cited paper, we can find a number of
existence theorems for complementarity problems defined by monotone or

pseudomonotone operators in &" or in Hilbert space.

Also, it is natural to consider complementarity problems defined by
set-valued pseudomonotone mappings. Let f : H — H be a set-valued

mapping. We say that f'is pseudomonotone on K, if for any distinct points x,
y € K and arbitrary u € fix) and w € fy,), <x -y, w> >0 implies

<x -, u> >0.
A monotone mapping is pseudomonotone but the converse is not true. We
have the following result.

THEOREM 5.4.1. Let (H ,(-;)) be a Hilbert space, and K c H a closed,

pointed convex cone. If f: H— H is a set-valued pseudomonotone mapping
on K and the problem MNCP(f, K) has a solution, then f is without an EFE

with respect to K (in the sense of Definition 5.3.2).

Proof. Indeed, we suppose that the problem MNCP(f, K) has a solution

(xe, o), le, xx € K y, € f(x,,)r\/K* and <x*,y*>=0 , which is equivalent
to the variational inequality
<x—x,,y*>20forallxeK. 54.1)
Since fis pseudomonotone, then from (5.4.1) we have
(x=x,u)>0 forany xe K and anyu e f (x). (5.4.2)
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Suppose that f has an EFE, namely {x,} < K . In this case for any r > 0,
there exist g, > 0 and w, € fx,) such that

Q) Du=pux +w ek,

i (x.4,)=0,

(i) x|

We choose x, such that

—>0asry —> 0,

x| < llxr ” . Making use of (5.4.2) we have

0S<xr —x*,w,>=<x, - X, U, —,u,x,>

:<xr’ur>~<x*9ur>_ﬂr 2+ﬂr<x*’x’>

2
S—H %, H tH, = A (“x" ) <0
which is a contradiction. Therefore, f is without an exceptional family of

xl'

x| i|x, X, X,

elements (an EFE) with respect to & in the sense of Definition 5.3.1 and

the proof is complete. m]

We recall that f : H — H has a representation of the form
fx) =x — I(x), where T : H— H is a completely upper semicontinuous set-
valued mapping with compact contractible values; we say that f is a
completely upper semicontinuous field with compact contractible values.

COROLLARY 5.4.2. Let (H,(-")) be a Hilbert space, K — H a closed

pointed convex cone and f: H— H a set-valued pseudomonotone mapping
with respect to K. If f is a completely upper semicontinuous field with non-

empty compact contractible values, then the problem MNCP(f, K) has a
solution, if and only if f is without an EFE with respect to K (in the sense of
Definition 5.3.2).

Proof. The corollary is a consequence of Theorem 5.3.2 and Corollary
5.4.2. m

COROLLARY 5.4.3. Let (H,(-")) be a Hilbert space, K = H a closed

pointed convex cone and f : H — H a projectionally Leray-Schauder

mapping with respect to K If f is pseudomonotone with respect to K, then
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the problem NCP(f, K) has a solution if and only if f is without an EFE with

respect to K (in the sense of Definition 5.1.2).

COROLLARY 5.4.4. Let (R",(--)) be n-dimensional Euclidean space,
and let K c R"be a closed pointed convex cone. If f:R" — R" is a
continuous pseudomonotone mapping with respect to K then the problem
NCP(f, K) has a solution if and only if f is without an EFE with respect to
K.

Now we consider a more general situation. Let f, g : H > Hbe a
pair of mappings and K c H a closed pointed convex cone.

DEFINITION S5.4.1. We say that f is asymptotically g-pseudomonotone
with respect to K if there exists a real number p > 0 such that for all

x, y € K with max{p,
<x—y,f(x)>20.

yH} <|x| we have that <x -y.g( y)> >0 implies

Remark. Any pseudomonotone (in particular monotone) mapping
f+ H— H, with respect to K, is asymptotically f~pseudomonotone.

THEOREM 5.4.5. Let (H ,<~, )) be a Hilbert space, K — H a closed
pointed convex cone and f, g . H— H two mappings. If f is asymptotically
g-pseudomonotone with respect to K and the problem NCP(g, K) has a

solution, then f is without an exceptional family of elements with respect to
K.

Proof. Let x. € K be a solution to the problem NCP(g, K). Considering the

relations between complementarity problems and variational inequalities we
have that

(x-x,g(x))20, forall xe K . (5.4.3)
Since fis asymptotically g-pseudomonotone, we deduce that
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<x—x*,f(x)>20, for all x € K with max{p,

b<l+l. (44

X«

Suppose that f'has an exceptional family of elements, that is, there exists a
family of elements {x,} =<K, such that for any r > 0 there exists a real

number 4, > 0 such that the following properties are satisfied:
0] u,=px +f(x)ek,
Gi)  (x,u,)=0,

(i) |, [>+oasr > w.
By property (iii) we can choose x, such that max{p, X, }< x, | . Making
use of (5.4.4) we obtain
0£<xr —x (%)) =(x, = x4, — p,x,)
:<xr’ur>_<x*’ur>—/ur xr ’ +:ur <x*’xr>
S—:ur X, 2+:ur Xe |1 %r :lur X, [x“ = |1% ]<0’

which is a contradiction. Therefore, f is without an exceptional family of
elements, with respect to K a

Remark. We note that any (#, g ¢@)-monotone mapping (see Definition
5.1.9) is asymptotically g-pseudomonotone mapping.

From Theorem 5.4.5, we deduce the following interesting result.

THEOREM 5.4.6 [Transitivity principlel. Let(H,(--)) be a Hilbert

space, K < H a closed pointed convex cone and f, g - H — H a pair of
mappings. If the following assumptions are satisfied:
(1) fis a projectionally Leray—Schauder mapping with respect to K

(2) fis asymptotically g-pseudomonotone with respect to K,
(3) the problem NCP(g, K) has a solution,
then the problem NCP(f, K) has a solution.

Proof. This theorem is a consequence of Theorem 5.4.5 and 5.1.2. a
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Remark. It is known that complementarity problems are used as
mathematical models in the study of equilibrium of economical systems.
Related to this fact, Theorem 5.4.6 may have interesting applications to the
study of equilibrium of two economical systems depending on each other
(integrated economical systems).

COROLLARY 54.7. Letf, g: R"— R" be a pair of continuous mappings
and K c R" an arbitrary closed pointed convex cone. If the following
assumptions are satisfied:

(1) fis asymptotically g-pseudomonotone with respect to K
(2) the problem NCP(g, K) has a solution,
then the problem NCP(f, K) has a solution.

COROLLARY 54.8. Let(H ,(-,-)) be a Hilbert space, K — H a closed
pointed convex cone and f : H — H a projectionally Leray-Schauder

mapping. If f is pseudomonotone with respect to K, then the NCP(f, K) has

a solution, if and only if f is without an EFE with respect to K.

The next result is a variant of Theorem 5.4.5 where the solvability
of the problem NCP(g, K) is replaced by a strict feasibility condition for the

problem NCP(g, K). Before giving this result, we recall some notions. The

strict dual of K is by definition:
@z{yeH|<y,x>>0foranyxej7{\{0}}.

It is known that if K is well-based (see Chapter 1), then there exists a

continuous linear functional ¢ : H — K and a constant ¢ > 0 such that

c|lx|| < @(x), for any xe K (Hyers, D. H., Isac, G. and Rassias, Th. M. [1]).

Obviously, in this case ¢ € X' and hence, we have that K is non-empty.

—

When K is non-empty we say that the problem NCP(g, K) is strictly

feasible if there exists an element xo € K such that g(x,)e K.
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THEOREM 5.4.9. Let(H,(,-})) be a Hilbert space, K — H a closed well-

based convex cone and f: H — H an asymptotically g-pseudomonotone
mapping with respect to K. If there exists an element x, € K \ {O} such

that g(xo) e K", then f is without an exceptional family of elements with
respect to K

Proof. We assume that f has an exceptional family of elements {x, }r> , With

respect to K

Then, for any » > 0 there exists & > 0 such that
() w=px+f(x)ek,
()  (x.u,)=0,
(iii)

as v —> 40,

We show that in this case, there exists #y > 0 such that for all 7 > r, we have
< g(x,).x, - x0> >0. Indeed, since K is well-based there exist ¢ € H and a

constant ¢ > 0 such that c“x” < <(o,x>, forallxe K .

The set D = {x € K \ } is weakly compact in H. We have
(%)

(g(x).x, - > (2(3)%) (g (). %)
<g(x) W ,>><¢” g,

eD, we deduce that <g(x0),<—x’-—>>28>0, where
?, X,

X
Since z

(0.x,)
8=mi1§1 < g(xo),x>>0, due to the weak compactness of D, the weak

continuity of < g (%), x> and the fact that g(x,)e K" . Therefore, we have

(g(x)sx —x) 2 e (px,) (g (%) %)

X, —<g(xo)>x0>>0for allr >r,,
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(8(x).5)

where r; is such that >——————+ forall r>r,.
c

x"

Now, making use of the fact that f is asymptotically g-
pseudomonotone we have that < f(x).x - x0> >0 for all 7 such that » > r,

and

X, >max{ £s11%, “} From the last inequality and the definition of

{x,}wo we have

Os<f(xr)’xr —x0>:<ur —lurxr’xr _x()):(ur’xr)_lur <xr’xr>
_<ur’x()>+lur <xr’x0>s_lur 1:

for all  such that » > ry and

2
TH,

> max{p,

xr xr :_#r xr xr

x|

X, H} .
Since |JxJ| = + o as r —> +oo, there exists r« > ry such that
||x,||>max{p, ]x()”} and 0<-—p, [“x,

impossible. Therefore, f is without an exceptional family of elements and
the proof is complete. ]

],

- "xo

xr

— ”xo ||J <Qforall r >, which is

xr

Remark. It is interesting to know if there exist other classes of mappings,
different than the mappings considered in this section, with the property that
the solvability of the complementarity problem implies the non-existence of
exceptional families of elements.

5.5 Semi-definite complementarity problems

All existence theorems for complementarity problems and the results related

to the notion of exceptional family of elements, presented in this chapter,
can be applied in particular to the study of semi-definite complementarity
problems. The application of the notion of exceptional family of elements to
the study of semi-definite complementarity problems was considered also in
(Isac, G., Bulavski, V. A. and Kalashnikov, V. V. [2]) but now we have
more results. Therefore, the goal of this section is to inform the reader that
the majority of results presented in this chapter are applicable to the study of
semi-definite complementarity problems.
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Let (Z/?”X",<-, >) be the n x n-dimensional Euclidean space of n x n-
matrices endowed with the inner-product
(A, B> ={r (A’B), for any A,Be R™

(where tr(A’B) means the trace of A'B). We introduce the norm on the

space K™ in the standard manner: HA”:(A,A>”2. Let S$™” be the linear

subspace of symmetric real (» x n)-matrices, and S7 < §™” the convex cone

of positive semi-definite matrices. The notation 4 > 0 means Ae€S’.

Interior points of this cone are positive definite matrices 4, i.e., 4 > 0 of full
rank n. We denote that by 4 > 0.

Let F:S" > 8" be a continuous mapping. The semi-definite
complementarity problem is:
find X € S? suchthat

F(X)eS! and (X,F(X))=0.
It is known that the cone S is self-dual, i.e.,
() ={res™ :(¥,X)=0, forall XS’} =5
(See Schatten, R. [1]). Also we note that for 4, B € S, the equality
r(AB) = 0 is equivalent to AB = 0. Because of this fact, the SDCP(F ,Sf)

can be given also by:

SDCP(F,S!): {

find X €8 such that
F(X)eS!and X - F(X)=0.
For more details about the semi-definite complementarity problem the

reader is referred to (Kojima, M, Shindoh, S. and Hara, S. [1]) and
(Bulavsky, V. A., Isac, G. and Kalashnikov, V. V. {2]).

SDCP(F,S:'):{

The space (S "”’,(-, >) is finite dimensional Hilbert space and S is

a closed convex cone in this space. Therefore, for any matrix Z € S™” the
projection operator P, (Z ) is well defined, as in the general case we have

the following definition.

DEFINITION 5.5.1. A4 family of matrices {Zr}r>0 c 8" is called an

exceptional family of matrices with respect to the cone S for a mapping
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F:8 - 8™ if|z,
scalar p, > 0 such that the matrix M, =F(Z,)+ pu.Z, has the following
property:.

— 40 as r —> +o and for each r > 0 there exists a

M, eSS and M Z, =0.
This definition is justified by the following result.

THEOREM 5.5.1. If F : §7 — S§™ is a continuous mapping, then there
exists either a solution to the problem SDCP(F ,Sf) or an exceptional

Sfamily of matrices with respect to the cone S .

Proof. A proof of this theorem is in (Bulavsky, V. A. Isac, G. and
Kalashnikov, V. V. [2]). )

Because the space (S"”',(-,-)) is a finite dimensional Hilbert space,

in the existence theorems for the problem SDCP(F, K), based on the notion

of exceptional family of matrices, we need to have only the continuity and
the fact that the mapping is without exceptional family of matrices. The
condition (0) is also applicable. All the existence theorems presented in this
chapter are applicable to semi-definite complementarity problems.

5.6 Feasibility and an exceptional family of elements

In complementarity theory it is well known that, under some
supplementary conditions, the feasibility of a complementarity problem
implies its solvability [see (Isac, G. [26]), Section 5.5]. Certainly feasibility
plays an important role in the study of complementarity problems. In this
sense, we recall that in Theorem 4.5.1 we have that if f:®" — R" is a Py-

mapping and the feasible set with respect to &’ contains n particular
points, then the mapping f'is without an exceptional family of elements with
respect to /&7 . Also, in Theorem 5.4.9 we have that, if a g-pseudomonotone
mapping f: H— H (where H is Hilbert space ordered by a closed pointed
convex cone K C H), is such that there exists an element x, € K \ {0} with
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g (xO ) ek’ (the strict dual of K), then f'is without an exceptional family of

elements with respect to K.

Now, in this section we will present other results where the strict
feasibility implies the non-existence of an exceptional family of elements
and we will introduce some notions of exceptional families of elements,
which can be used to obtain the strict feasibility.

Let (H . >) be a Hilbert space, let K < H be a closed pointed convex
cone and let f: H — H be a mapping. We consider the problem:

. find x, € K such that
NCP(f’K)' f(xo)eK* and(xoaf(xo»zo'

By definition, the feasible set of this problem is:
fz{xeK:f(x)e]K*}, where K is the dual of K .

The set F can be empty; when F is non-empty, we say that the NCP(f, K) is
feasible. If the cone K has a non-empty interior and if the set

F = {x e K: f(x)eint (K* )} is non-empty, we say that the NCP(f. K) is
strictly feasible.

We recall that the strict dual of K is:
K ={yeH:(x,y)>0 forall xe K \{0}}.
It is known that if K is well based, then K s non-empty. The solvability
of NCP(}, K) implies its feasibility, but the converse is not true. We say that

a mapping f: H— H is quasimonotone with respect to K if for every x, y €

K the following implication holds:
<f(x),y—x>>0:><f(y),y—x>20.

Obviously, any monotone mapping is pseudomonotone and any
pseudomonotone mapping is quasimonotone, but the converse is not true.
We have the following result.
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THEOREM 5.6.1. Let (H ,<-,->) be a Hilbert space, let K c H a closed
well based convex cone and let f : H — H be a mapping. If f is

quasimonotone with respect to K and there exists an element x, € K such

that fix)) € K, then f is without an exceptional family of elements with
respect to K.

Proof. To show that £ is without an exceptional family of elements with
respect to & is sufficient to show that f satisfies condition (6 — S). Indeed,

let {x,} , <K beafamily of elements such that |x, || — +c0 asr —+o.

First, we show that there exists 7, > 0 such that < F(x%),x, - x0> >0
for any » with » > ry. Since K is well based, there exist ¢ € H and a
constant ¢ > 0 such that c['x“ < <(p,x> for any x € K (¢ can be considered
as an element of H). Moreover, the set D= {x eK :((o, x> = 1} is a weakly

compact set. (Since D is a base of K and H is reflexive we have that K is

weakly locally compact.) We have
(f(xo),x, _xo>=<f(xo)axr> —<f(xo)>xo>
:<f(x())7<_¢:rx_r_>_><¢”xr>—<f(x0)’x0>'

xl‘

(.x,)

o~

Since

eD, then we have 111151 <f(xo),x> =& >0 (because

fix) € K and D is weakly compact), which implies
< f (xo),<x—’>28>0.Theref0re, we have

?,%,)
(f(x%):% = %) > (0. %, )= (f (%), %) 2 &c|x, |~ (£ (%), x,) >0, for all
(f (%) %)

r > ro, where o > 0 is such that|x, || >
ec

, for all » > »,. Now, the

quasimonotonicity of f with respect to & implies
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<f(x,),x, —x0>20, for all » > r.
If we take on » > ry and y« = xo, we obtain that f satisfies condition (8 — S)
with respect to K and by Theorem 5.1.27 we obtain that f is without an

exceptional family of elements with respect to K. O

COROLLARY 5.6.2. Let (H ,<-, >) be a Hilbert space, let K c H be a

closed well based convex cone and f: H — H a quasimonotone mapping. If
fis a projectionally Leray-Schauder mapping, and the problem NCP(f, K)

is strictly feasible, then the NCP(f, K) has a solution.

Remark. The result presented in Corollary 5.6.2, was independently proved
by a different proof in (Hadjsavvas, N. and Schaible, S. [2}]).

Now, we consider some results in the n-dimensional Euclidean
space ordered by the cone K .

DEFINITION 5.6.1. We say that a mapping f: R" —> R is a quasi-P+-
mapping if there exists a constant T> 0 such that the following implication
holds:

(f)x=y)=7 Y (x-2)NAEF)-£(D)]>0=2(/(x),x-p)20

iel,(x.y)
Jor all distinct points x, y in R" , where
I (x) ={i:(x,. -n)f () -5 (0]> 0} :

We consider also the following definition:

DEFINITION 5.6.2. We say that a mapping f: R" — K" is a P-mapping,
if there exists a scalar k > 0 such that, for any distinct points x, y in K" we

have
@) =10)x=ypek 3, (-2 (3= ()]0,

iel (x,y

Obviously, a Ps-mapping is a quasi- P«-mapping, but the converse is not
true. Clearly, a quasimonotone mapping, which corresponds to the case
7= 0, is a quasi-P--mapping, but the converse is not true. It is known that
the class of quasi-P.-mappings is larger than the union of P+-mappings and
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quasimonotone mapping. We note also the fact that the notion of
P.-mapping is related to the notion of P:.-matrix. An affine mapping
f(x)=Mx +q, where M is an (n x n)-matrix and ¢ € R” is a P~-mapping
if and only if M is a P«-matrix.

In recent years, linear complementarity problem with P.-matrices
have gained more attention in the field of interior-point algorithms,
(Kojima, M., Megiddo, N., Noma, T. and Yoshise, A. [1]), (Potra, F. A. and
Sheng, R., [1], [2], [3]) and (Miao, J. M., [1]).

DEFINITION 5.6.3. We say that a mapping f: R"— R"is a P(t, o p)-
mapping, if there exist constants t> 0, > 0 and 0 < B <1 such that the
following inequality holds:

(1+ 7)max(x, —yi)[f,. (x)—ﬁ(y)}rmin(xi —y,)[f,. (x)—f,(y)]

1<i<n Isisn

7, Jor any distinct points x,y € R".

> ~alx -

Remark. The union of all P(z, 0, 0)-mappings with 7> 0 coincides with the
class of P.mappings. For more details and results about the classes of
mappings defined by Definitions 5.6.1, 5.6.2, and 5.6.3, the reader is
referred to (Zhao, Y. B. and Isac, G. [1]). We cite without proof the
following result.

THEOREM 5.6.3. Let f R"— R" be a continuous mapping. If f is a
quasi-P«~mapping or a P(t, o, [P)-mapping and there exists an element
x, € R" such that f(x,)e Int(Rf ) then f is without an exceptional family
of elements (in the sense of Definition 4.1.1). Moreover, the problem
NCP(f, R") has a solution.

Proof. The proof is given by the proofs of Theorem 2.1 and 3.1 presented in
(Zhao, Y. B. and Isac, G. [1]) and are based on several technical details.

O
Remark. We recall that when the cone K < K" is reduced to the cone &7,

the notion of EFE defined by Definition 5.1.2 is reduced to the notion of
EFE defined by Definition 4.1.1.

By the next results we will show that the notion of EFE can be used
to study the feasibility of nonlinear complementarity problems. Certainly,
we must modify the notion of EFE introduced by Definition 5.1.2. Let
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(R”,(-,-)) be n-dimensional Euclidean space, K — R" a closed pointed

convex cone and f1 K" — R" a continuous mapping.

DEFINITION 5.64. Let (@, ) be a pair of real numbers such that
0 < o < BWe say that a family of elements {xr}r>0 cR" is an (o, P)-
exceptional family of elements for f with respect to K if and only if
lim
t, € 10, 1[ such that the vector u, =(1/t, —1)x, +(B~-a) f(x,) satisfies
the following properties:

(i) u ek,

(i) (u,.x, —at,f(x))=0.

x,|=+ and for each real number r > 0, there exists a scalar

The importance of this notion is given by the following result.

THEOREM 5.6.4. Let (o, D) be a pair of real numbers such that 0 < ¢ < f8
and let K c R" be a closed pointed convex cone such that K — K or
K" =K . Then, for any continuous mapping f : R"— R", either the

problem NCP(f, K) is feasible or there exists an (&, [P)-exceptional family of

elements for fwith respect to K.

Proof. For any > 0 we denote
S, :{xe[R’" : \tzr} and B, ={xe[K€" :
We consider the mapping ¥ : " — R" defined by:
¥(x)=af(x)+ Py [x~,8f(x)].
Obviously, ¥ is a continuous mapping. If the problem NCP(f, K) is feasible

xH<r}.

we have nothing to prove.

We suppose that the problem NCP(f, K) is not feasible. In this case,

we apply Theorem 3.2.4 [Leray—Schauder alternative] for any » > 0 to the
set B, and the mapping P'. For any » > 0, ¥ does not have a fixed point in

Fr , because if x« is a fixed point for ¥ in E: , then, in this case we have

xo=af(x)+Pe[x - Bf(x)]
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which implies that

<x —af x, [x* Bf x,):l y>>0f0rallye[l'(

We have <(ﬂ—a)f(x*),y>20for all ye K, thatis f(x.)e K.
Since P, [x* - Bf(x )J e K and k' c K , we deduce that
=af(x)+ P [x,, —ﬁf(x*)]eK.
Consequently the NCP(f, K) is feasible which is a contradiction. Therefore,

for any » > 0 there exist x, € S, and ¢, € 10,1[ such that
%, =t [af(x)+ P [x, - Bf(x)]]- (5.6.1)
From (5.6.1) we have

P [x, —ﬂf(x,)]:tlx,—af(x,). (5.6.2)

Using (5.6.1) and the properties of the operator P, we deduce
<tix’ —af(x,)—[x, —,Bf(x,)],y>20for allye K

and

t

<—x —af(x)-[x - Bf(x, )] Ly —af(x, )>

If we denote

u, :(%—l]xr +(ﬁ—a)f(x,),f0reveryr>0,

r

we deduce that u, € K and <ur,xr —at f (xr)> =0, because, for every

r>0, x, € S, we have that |x,| >+ as r — +e . Therefore, {x,}  isan

(o, P)-exceptional family of elements for ' with respect to & o

Now, we consider the case of a general Hilbert space. Let (H ,(-, >)

be a Hilbert space and let K < H be a closed pointed convex cone. Let f:

H—> H be a completely continuous field of the form £ (x)=%x -T(x),

where > 0 and T : H — H is a completely continuous operator. We
introduce the following notion.
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DEFINITION 5.6.5. Let f: H—> H be a completely continuous field of the

form f (x) :%x -T (x) , for all x € H. Given a real number o such that

0<a< f, we say that the family of elements {xr} c His an (o, P)-

r>0

exceptional family of elements for f with respect to K if and only if

lim

F—>+0

X, ”=+oo and, for every real number r > 0, there exists a scalar

t, € 10, 1[ such that the element u, = Lx, ~T (x,) satisfies the following
t

r

properties:

() u € K,

(ii) <u,, A - %x, +apT(x, )> ~0.

r

We have the following result.

THEOREM 5.6.5. Let (H ,<-,->) be an arbitrary Hilbert space and K ¢ H

a closed pointed convex cone such that K < K Let f: H-»> H be a
completely continuous field of the form f (x):—'lgx ~T(x), where 3> 0.

Then, for any real « such that 0 < a < f3 either the problem NCP(f, K) is

feasible or there exists an (o, [3)-exceptional family of elements in the sense
of Definition 5.6.5 for fwith respect to K.

Proof. For any » > 0 we denote
S, ={xeH:|x|=r} and B, ={xe H:||x| <r}
and we consider the mapping ¥ : H— H defined by

¥ (x)=- L2 T(x)+PK|:}B’BZ T(x)}.

p-a -a
The mapping ¥ is completely continuous. If the problem NCP(f, K) is

feasible, then in this case we have nothing to prove. We suppose that the
problem NCP(f, K) is not feasible. For any » > 0 we apply Theorem 3.2.4 to



Leray—Schauder type alternatives. Existence theorems 211

the set B, and the mapping V. If the mapping W has a fixed point x« in a set
B_, then in this case we have

sy L)

which implies that
X, —af(x,,)=PK [x* —ﬁf(x*)}
and as in the proof of Theorem 5.6.4 we deduce that NCP(f, K) is feasible

which is a contradiction.

Therefore, supposing that NCP(f, K) is not feasible, we have (by
Theorem 3.2.4) that for any » > 0 there exist x, € S,and ¢, € ]0, 1] such that

x =t i:—;ﬁa—T(xr)+PK [Eﬁz_ar(x,)ﬂ.

-

This relation implies (as in the proof of Theorem 5.6.4) that {xr} is an

r>0

(e, P)-exceptional family of elements for f'with respect to K o

Remark. Modulo some details, it is possible to extend Theorem 5.6.5 from

completely continuous fields of the form f'(x)= % x =T (x), to k-set fields

of the form f (x):%x—T(x), where T is a k-set contraction with an
appropriate .

Now, we introduce another notion of exceptional family of
elements, which can be used in the study of feasibility. When we use this

notion, it is not necessary to suppose that X < K.

DEFINITION 5.6.6. Given a completely continuous field f, of the form
f(x) :%x - T(x), where > 0 and T : H—> H (where T is a completely

continuous mapping) and « € [0,5 [, we say that a family of elements

{xr }M c Kis an (o, P)-exceptional family of elements for fif |x | — +oo as

r — +oo and for each r > 0, there exists t, € 10, 1[ such that
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(i) tx, + Bf(x)eK",
() (5% + B (x).(1+1)x, —aP, [T(x,)])=0.

With this notion we have the following result.

THEOREM 5.6.6. Let (H,(-")) be an arbitrary Hilbert space and K < H

a closed pointed convex cone and f : H—> H a completely continuous field of

the form f(x):%x—T(x), where > 0. Then either the NCP(f. K) is

feasible or for each o € [0, B, there exists an (¢, P )-exceptional family of
elements for fwith respect to K. (in the sense of Definition 5.6.5).

Proof. For any r > 0 we denote
S, :{er:”x”=r} and B, :{er:”x”<r},
and we consider the mapping ¥ : H— H defined for any « by:
¥ (x)=aP [T(x)]+ Py [x - Bf(x)-aP, [T(x)]] .
The mapping ¥ is completely continuous. If the problem NCP(f, K) is

feasible, then in this case we have nothing to prove.

We suppose that the problem NCP(f, K) is not feasible. In this case,

Y is without a fixed point, because supposing that ¥ has a fixed point x.,
we can show that the problem NCP(f K) is feasible which is a

contradiction. Applying Theorem 3.2.4 to any set B, with » > 0 and to the

mapping ‘¥, we obtain an element x, € S, and a real number 7, € ]0, 1[ such
that

x, =1, {aPK [7(x,)]+ P [xr - Bf(x,)-aP[T(x, )H} .

Considering the properties of the projection operator P, we can show that

the family {x,} is an (¢, f)-exceptional family of elements for f with

>0

respect to K o
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If the Hilbert space (H ,<~,~>) is the n-dimensional Euclidean space
(R”,(-, >) and K < R" is a closed pointed convex cone, then for any

continuous mapping f:R&" — K" and any « > 0 we can introduce the
following notion.

DEFINITION 5.6.7. We say that a family of elements {x, }r>0 c Kis an o-

exceptional family for f, with respect to K, if ”x, || —> +0 as r — +oo and for

eachr> 0, there exists t, € 10, 1[ such that denoting by 7, = tl —1 we have

O nxf(n)ek ,
@ (mx S (x)(1+7,)x, —ab [ f(x,)])=0.

Considering for any « > 0 the mapping

‘I’(x):aPK l:f(x)] + Py [x—f(x)—aPK [f(x)ﬂ ,

and by a proof similar to the proof of Theorem 5.6.6 we obtain the
following result.

THEOREM 5.6.7. Let K c R" be a closed pointed convex cone and

f:R" > R" a continuous mapping. Then either the problem NCP(f, K) is

Seasible, or for each a > 0, there exists an a-exceptional family of elements.

Remark. Definition 5.6.7 is due to N. J. Huang, C. J. Gao and X. P. Huang
[1]. About the study of feasibility by the notion of exceptional family of
elements we cite also the paper (Zhao,Y. B. and Li, D. [1]). The strict
feasibility can be studied also using a special notion of exceptional family of
elements. In this sense we have the following notion, in &" .

DEFINITION 5.6.8. Let 6 > 0 be an arbitrary real number and let
f:R" > R" be a continuous mapping. We say that {xr}bo cR! isad&

exceptional family of elements for f with respect to R if and only if, for
every r > 0, there exists t, € 10, 1[ such that
(i) |x.|—> +o asr—> +oo,
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. 1
(11) f’.(xr)-{-)ur i’ :5’ for x,.r>0,Wherelur= r’
(iii) £, (x" )20, if x =0.
We have the following result.

THEOREM 5.6.8. Let f:R" — K" be a continuous mapping. Then, either
the problem NCP(f, R’ ) is strictly feasible or for any 6> 0, the mapping f

has a &-exceptional family of elements with respect to K" .

Proof. Let 6> 0 be an arbitrary real number. If the problem NCP(f, R ) is
strictly feasible the proof is complete. We suppose that the problem
NCP(f, R7) is not strictly feasible, and we consider the mapping

Ys: R > R" defined by
¥ (x)= [(‘{’5 )(x)]:'=1 , where for any x € R”,

{(ws)xx)—ﬁ -1+ [£(x)-0T.

i=12,..,n.

The mapping ¥ is continuous and ‘¥ (Rf )c_: R”. We apply the Leray—
Schauder alternative (Theorem 3.3.6) to the mapping Vs considering
C= R and U=U, ={xeR:

[x” < r} for an arbitrary » > 0. The mapping

Y is fixed-point free on every set iz{xe/l@f : |x” Sr} . Indeed, if for

some 7> 0 there exists x/ €U, such that ¥, (x.’ ) =x, , then in this case we

can show that the problem NCP(f, R") is strictly feasible, which is a
contradiction.

Hence W is fixed-point free on any Fr , #> 0. In this case applying
Theorem 3.3.6 we obtain for any » > 0 an element x” € R” such that ||x|| =7
and a real number ¢, € 10,1 [ such that x" =z ¥, (x’). Now, recalling the

definition of ¥ we have that, for every i =1, 2, ..., n,

x;:z,[ () ~f(x)+o+ [f,,(xr)_a}’]
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If x =0, then in this case we have
f()rs+y[£(x)-5] =0
which implies f, (x’)z o.If x' #0,i.e., x >0, then in this case we have
1L, , , 2
t—x,. - X =—fi(x )+§+ [ﬁ(x )—5]

and finally,
1-t,
t

X +f,.(x')—5: [f,(x’)—é'}z .
If in the last relation rwe denote

u=f(x')-45,

then we obtain

Lt x; +u=x/u>2

r

l_tr r
u=- X .
2t

Therefore, we have the equality

and finally,

1
f,.(x')+yri’:5,where,u,= ~>0,
and the proof is complete. O

COROLLARY 5.6.9. If all the assumptions of Theorem 5.6.8 are satisfied
and f'is without &-exceptional families of elements with respect to K, then

the problem NCP(f, R ) is strictly feasible.

5.7 Paths of e-solutions and exceptional families of
elements

In this section we selected some results necessary to show how the
notion of exceptional family of elements can be adapted to the study of

interior bands of €-solutions for complementarity problems in R” .
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Let (1&"’,(-,-)) be the n-dimensional Euclidean space ordered by the

closed pointed convex cone &” and f: K" — R" a continuous mapping.
We consider the following nonlinear complementarity problem:

Jfind x, € R such that
NCP(f.R?):

f(x)eR: and<x*,f(x.)> =0.
We note that there exist several equivalent formulations of the problem
NCP ( /s [7&’:'). In particular, several formulations are in the form of a
nonlinear equation F(x) = 0, where F: " — R" is a continuous mapping
(Isac, G. [20]). By using such formulation, several techniques proposed by
some authors are based on the idea to perturb F to a certain F(x, &), where &
is a positive parameter and to consider the equation F(x, & = 0. If
F(x, &) = 0 has a unique solution, denoted by x(¢), and x(¢&) is continuous in
&, then the solutions describe (depending on the properties of F) a short path

denoted by {x(a) :e€0,¢, ]} or a long path {x(s) g€ ]O,oo[} .
We note that, if a short path {x(s) g€, oo[} is bounded, then for

any sequence {Sk} with {8k} — 0, the sequence {x(ek )} has at least one
accumulation point, which by continuity is a solution to the problem
NCP ( f, R ) . Based on this fact, several numerical methods for solving the

problem NCP ( £, Rf) have been developed, as for example the interior-

point path-following methods, regularization methods and noninterior path-
Jollowing methods, among others.

About such methods the reader can see the paper (Burke, J. and Xu,
S. [1], [2]), (Chen, B and Chen, X. [1]), (Chen, B., Chen, X. and Kanzow,
C. [1]), (Facchinei, F. and Kanzow, C. [1]), (Ferris, C. and Pang, J. S. [1]),
(Gowda, M. S. and Tawhid, M. A. [1]), (Guler, O. [1]), (Kanzow, C. [1]),
(Kojima, M., Megiddo, N., Noma, T. and Yoshise, A. [1]), (Megiddo, N.
[1]), (Monteiro, R. D. C. and Adler, I. [1]) and (Tseng, P. [1]).

The most common interior-point path-following method is based on
the notion of central path. The curve {x(e):ee]O, oo[} is said to be the

central path if for each £ > 0 the vector x(&) is the unique solution to the
system
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(5.7.1)

x(g)>0, f(x(a)) >0,
{and X(g) f(x(g))=¢e,
where the inequality “>” means that the components of the vector are
strictly positive, e=(L1,..., l)T , X (¢) =the matrix diag (x(g)) and x(&) is

continuous on ]0, oo[.

It is well known that, for a general NCP( f, R ) , the system (5.7.1)

may have multiple solutions for a given &> 0, and even if the solution is
unique it is not necessarily continuous in & Related to system (5.7.1) we

consider the set-valued mapping U : |0, 0] — § (ZK?L ) defined by
Zl(e)z{xej/({’f+ :f(x)>O,Xf(x)=ge},
where X = the matrix diag (x),S(RL) is the collection of all subsets of
R, and R, ={(x=x,....,x,):x, >0,x,>0,..,x, >0} =int(Rf). We say
that I is the interior band mapping.
The set-valued mapping U was studied from several points of view
in (Zhao, Y. B. and Isac, G. [2]). About the set-valued mapping U, we are

interested to know, under what conditions I/ has the following desirable
properties.

(@) U(e)= ¢foreach € € ]0, of.

(b) For any fixed &> 0 the set | | U (&) is a bounded set.

ge]O,so]
(©) IfU¢) # ¢ then U(¢) is upper-semicontinuous at €.
(d) If U(") is single-valued, then U(€) is continuous at & provided that
Ue) =+ ¢

If the mapping () satisfies properties (a), (b) and (c), then the set

U U (6) can be viewed as an interior band associated with the solution
se]O,sO]

set of problem NCP( 7, Rf). The interior band can be viewed as a

generalization of the concept of the central path. We will show in this
section that a notion of exceptional family of elements can be used to obtain

several results related to the set-valued mapping U.
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DEFINITION 5.7.1. Let f: R" — R" be a continuous mapping. Given a
scalar € > 0, we say that a family {x’} . c R, is an interior-point -&-
exceptional family of elements for f if “x” H —>+00 as ¥ —> +oo and for each

x there exists a real number A, €0,1] such that

A
fi(x’)zé(lr —%—]xf +i—r’,f0ralli:1,...,n.

r i

Using this notion we can prove the following result.

THEOREM 5.7.1. Let f: R" — R" be a continuous function. Then for
each &> 0 there exists either a point x(€) such that

{x (£)>0, f(x(g))>0and x, (£) £, (x(¢)) =&,
foralli=1,2,...n,

or an interior-point-g-exceptional family of elements exists for f.

We will prove a more general result than Theorem 5.7.1, using the &
multivalued complementarity problem. Let f: R" — R" be a set-valued
mapping with non-empty values. Suppose given a real number £> 0. The &-
multivalued complementarity problem defined by fand the cone R is:

find x(g)eint R" and u(z)e f(x(¢))
a—MCP(f,RZ): such that u(g) >0 and
[X(E)l -[u (8)1_ =g, foralli=1,2,..,n.

DEFINITION 5.7.2. Let f: R" — R" be a set-valued mapping with non-
empty values. Given a real number &> 0, we say that { x }r>0 Cint (Rf) is

an interior-point-g exceptional family of elements for f if ”x’ ’—>+oo as

r — +oo, and for each r > 0, there exist A, € 10,1[ and y € Ax") such that

1 1 el
"= A —— |x +—, foralli=1,2,..,n.
Y 2( r /J, s St

r i

We have the following result.
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THEOREM 5.7.2. Let (R",(-,-» be the n-dimensional Euclidean space

ordered by the cone K. Let f: K" — R" be a set-valued mapping with
non-empty closed convex values. If f is lower semicontinuous, then for each
g >0 there exists either a solution to the problem & — MCP ( f. R ) or an

interior-point-g-exceptional family of elements for f.
Proof. Let £> 0 be given. Because f is a lower semicontinuous set-valued

mapping, with non-empty closed, convex values, we have, by Theorem
5.3.10 (Michael’s theorem) that f has a continuous selection. We denote this

selection by ¢ =(¢,,9,,...9, ). Let ®°(x)= (CDf (x),... D, (x)) be the &
Fischer-Burmeister function, i.e.,
{d)f (x)=x,+¢,(x)—yx* + 0" +2¢,
i=12,..,n
It is easy to see that if x(¢) solves the nonlinear equation
@’ (x)=0, (5.7.2)
then (x(g), (o(x(s))) is a solution to the problem & — MCP (f, ZR’:’) .

Consider the continuous function T (x)=x—®°(x), defined for
any x € K" . Obviously, x(&) is a solution of equation (5.7.2), if and only if,
x(¢) is a fixed point for 7. For any r > 0 denote by B, = {xe V& Hx“ < r}
and S, :{xeﬁ?" : \x“zr} =0B,. If the problem 8—MCP(f,1K§’f) has a

solution we have nothing to prove.

Suppose that this problem has no solution. In this case, 7’ is fixed-
point free with respect to any set B,. Applying Theorem 3.2.4 [Leray—

Schauder alternative] with Q = &” and B, = U, we obtain that for any » > 0
there exist x” € 0B, =S, and A, € ]0, 1] such that

x' =2, [x’ - (xr ):I,

which implies

x +/1(p, /1\/ +qo, +2£

i=12,..,n
From (5.7.3) we deduce

(5.7.3)
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r ’ 1 1 r
xp,(x )=E[i’ _Tj(x’ ) e (5:7.4)
i=12,..,n

Because A.€ ]0, 1], formula (5.7.4) implies that x #0 for alli=1,2,...,n

and hence we have
%(x’)zl ﬂ’r_i xir+/lr8,
2 A x (5.7.5)

r 1

i=L2,..,n
Considering (5.7.3) we have

T+ Ap(x")=A2¢,
xl r¢l (x ) r\/—; (5.7.6)
i=12,..,n
Multiplying (5.7.5) by 4, and adding for every i = 1,2,...,n, x] we obtain
, R Y . Ale
x + .0 (x )=—(/1, +1)x,. + L,
2 X (5.7.7)

i=L2,..,n
Considering (5.7.6) we have that the right-hand side of (5.7.7) is strictly
positive, which implies that x| > 0 for every i = 1,2,...,n. If for every r > 0

we denote 3/ =@, (x, ), we obtain that " =(y,”)ef(x’) and {x’} , isan

interior-point-g-exceptional family of elements for f, and the proof is
complete. o

COROLLARY 5.73. Let f: B" — R" be a lower semicontinuous set-
valued mapping with non-empty closed convex values. If f is without an

interior-point-g-exceptional family of elements, with respect to R’ , then the
problem & — MCP ( IR ) has a solution.

DEFINITION 5.7.3. We say that a continuous mapping f: R" — R"
satisfies the Browder—Hartman-Stampacchia condition (shortly denoted by
(BHS)) on a closed convex cone K < R"if there exists p > 0 such that
<x,f(x)> >0 for any x € Kwith||x| = p.
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PROPOSITION 5.74. If f: R" — R" is a continuous mapping which

satisfies condition (BHS) on R, then the problem NCP(f, R') has a
solution.

Proof. This proposition is a consequence of Corollary 5.1.17. O

DEFINITION 5.7.4. We say that a continuous mapping f: R" — R"
satisfies the asymptotic Browder—Hartman-Stampacchia condition (shortly

denoted by (ABHS)) on a close convex K c R", if 11m inf <x, f (x)> =

[+
c K

We have the following result.

THEOREM S5.75. Let f: R" —> R" be a continuous mapping. If
liminf <x, f (x)> =+, then the problem NCP(f, R" ) has a solution,

[+
xeRY,

(1) U(e) # ¢ for any £>0,
(2) for any fixed & > 0 the set U U (s) is bounded.

£€]0,¢]

Proof.
(1) We can show that 11m1nf<x f( )>:+oo if and only if

|x > 400
xeR7,

lim inf <x, f (x)>=+oo. The last formula implies that f satisfies

x>+
xc R}

condition (BHS) and applying Proposition 5.7.4 we obtain that the
problem NCP(f, R’ ) has a solution.

(2) By using Theorem 5.7.1 it is sufficient to show that for any £> 0, fdoes
not have an interior-g-exceptional family {x’ }r>0 c R?, . Indeed, we

suppose that fhas an interior-point-g-exceptional family {x’ }DO c R, .

Multiplying the formula given in Definition 5.7.1 by x/ and summing
with / from 1 to » we obtain

S

where 0 < 4, < 1, for any » > 0. From the last equality we deduce
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x"|| < ne.

(o) +2 -

v

Let #y > 0 such that [|x®

> (0. Because “x’H — +00 qs r —» +o0, we can

consider a subsequence {x"‘} such that Bl < ||x" and

X

<

x’.

— +©0 as i — +oo . For this sequence we have

11 > 5 5
E[ﬂ_ﬁ_ﬂ"‘] +<x ,f(x )><ng.
Computing lim inf and using the assumption of our theorem, we obtain
a contradiction. Therefore by Theorem 5.7.1 we have that U(g) = ¢ for
any £>0.
(3) We observe that for any x(&) (&) we have <x(€),f(x(s))>:n8.
Now, we suppose that there is an £ >0 such that | ] U(g) is not

£€]0,5,]
bounded. Hence, by the assumption of our theorem we have

liminf (x(z,), f (x(5,))) =

x’o

On the other hand

<x(gk ). f(x(& ))> =ng, <ng,,
which implies

lim inf <x(e?,c ). f(x(z, ))> <neg,

and we have a contradiction. Therefore U U (6‘) is bounded for any

£€]0,5,]

&> 0. O
By using Theorem 5.7.5 we can prove also the following result.

THEOREM 5.7.6. Let f: R" — K" be a continuous mapping. If

nfw>0,

felo>-e 1 x“2

xeR7,
then { satisfies properties (a) and (b).

Proof. We can show that
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1mi3f (x, f(x))=+o0

n
xeR,,

and apply Theorem 5.7.5. 0

The reader can see other results about the set-valued mapping U in (Zhao,

Y. B. and I[sac, G. [2]) and in (Isac, G. and Nemeth, S. Z. [S5]). We cite only
the following interesting result, due to Y. B. Zhao and G. Isac.

THEOREM 5.7.7. Let f : R" — R" be a P(t, o, P)-mapping. If the
problem NCP(f, R") is strictly feasible, the U satisfies properties (a)
and (b).



6

INFINITESIMAL EXCEPTIONAL FAMILY OF
ELEMENTS

In this chapter we will introduce and we will use the notion of
infinitesimal exceptional family of elements for a mapping. This notion is
due to S. Z. Németh and it has been used in some recent papers. By this
notion we establish an interesting relation between the notion of exceptional
Jamily of elements and the notion of scalar derivative, due also to S. Z.
Németh. We note that by this relation we give some applications of the
notion of scalar derivative to the study of complementarity problems.

6.1 Scalar derivatives

Let (H ,<~,~>) be a Hilbert space, C — H a non-empty set which contains at

least one non-isolated point and f, g: C — H two mappings. Let x, a non-
isolated point of C.

DEFINITION 6.1.1. We say that the limit
<f(x) - f(xo)>x""xo>

/' (x,)=liminf P

x—>x%g,xeC

e — x,
is the lower scalar derivative of f at x,. Taking “lim sup” in place of “lim

M . . . _# . »
inf”, we obtain the upper scalar derivative f (x,) of fat xo similarly.

Definition 6.1.1 can be extended for the unordered pair of mappings (f g).
In this sense we have the following notion.
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DEFINITION 6.1.2. We say that the limit
(f.8)" (x,)=liminf (f (x) - f(x).8(x) - g(x,))

A Sl ) Xxy,xeC ”x -x, ”2

is the lower scalar derivative of the unordered pair of mappings (f, g) at x,.
Taking “lim sup” in place of “lim inf” we obtain the upper scalar deriva-

—#
tive (f,g) (x,) of (f, g at xo similarly.

The notion of scalar derivative can be also extended for set-valued
mappings. Indeed, we suppose that f, g : C — H are set-valued mappings
and x, again a non-isolated point of C.

DEFINITION 6.1.3. We say that the limit
v

<xf ~x ,x—x0>

# I
f'(%)= liminf
xf ef(x),xof ef(x)
is called the lower scalar derivative of the unordered pair of set-valued

mappings (f, g) at xo. Taking “lim sup” in place of “lim inf”, we can define

——#

the upper scalar derivative (f,g) (x,) of (f, g) at xo similarly.

2
| = x|

The notion of scalar derivative was introduced and studied by S. Z.
Németh, and the reader is referred to (Németh, S. Z., [1], [2]). Several
methods for computation are given in (Németh, S. Z., [3]). Applications of
scalar derivatives to the study of complementarity problems, to study of
fixed points and to the study of eigenvalues of nonlinear mappings are given
in (Isac, G. and Németh, S. Z., [1], [4])

6.2 Infinitesimal exceptional family of elements

By Definition 5.1.6, we introduced the notion of exceptional family
of element (EFE) for a mapping f, by Definition 5.2.1 the notion of EFE for
a pair of mappings (f, g) and by Definition 5.3.2 the notion of EFE for a set-
valued mapping and by using these notions we obtained several existence
theorems for nonlinear complementarity problems, for implicit complemen-
tarity problems and for multivalued complementarity problems. Now, in this
section we will introduce for each of them, a kind of infinitesimal
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exceptional family of elements (EFE). By infinitesimal forms we will
establish a relation between the notion of EFE and the scalar derivatives.

Let (H ,(-,'>) be a Hilbert space and ||| the norm defined by the

inner-product <-, > .

DEFINITION 6.2.1. The operator i:H\{0}—> H\{0} defined by

i(x)= —x? is called inversion (of pole 0).
x

Obviously, i is one-to-one and i =i. Let K < H be a closed convex cone

and f: K— H. Since K\ {0} is an invariant set of i the following definition

makes sense.

DEFINITION 6.2.2. The inversion (of pole 0) of the mapping f is the
mapping T(f): K — H defined by:

I(f)(x):{“xllz (/1)) i x 20

0 if x=0.

It is easy to see that the inversion operator Z is a one-to-one operator on the
set of mappings {f:f:K—)H;f(O)zO} and TI'=7, ie,
(Z(N)=7.

DEFINITION 6.2.3. Let (H ,(-, >) be a Hilbert space K ¢ H a closed

convex cone and g : K > H a mapping. We say that { y,} ,CK isan

infinitesimal exceptional family of elements (IEFE) for g with respect to K

if for every real number r > 0, there exists a real number . > 0 such that
the vector v, = .y, + g(v,) satisfies the following conditions:

(1) ve K

(2) <vr5yr>:O’
3) y >0 asr—+o.
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The following condition is similar to condition (5) (see Definition 5.1.2).

DEFINITION 6.2.4. Let (H,(.-)) be a Hilbert space, K = H a closed

convex cone and g : H — H a mapping. We say that the mapping g satisfies
condition (’67) with respect to K if there exists A > 0 such that for each

yeK\{O} with ||| < A, there exists q € K with <q, y> <Hy”2 such that
(v-q.g())=0.

We have the following result.

THEOREM 6.2.1. Let (H,(-)) be a Hilbert space, K < H a closed
convex cone and g : H - H a mapping. If g satisfies condition (’é) with

respect to K then g is without an IEFE with respect to K.

Proof. We suppose the contrary, that is, we suppose that g has an /IEFE
{ yr}r>o c K, with respect to K. For any r> 0 such that |[y|| < p there is an

element g, € K with (g,,y,) <

v, satisfying the relation

(v, —4,.8(»,))=0.

Since, according to Definition 6.2.3, (v, Y, > =0 and v, € K, we have
OS<y" _qr’g(y")>:<yr —-4q,,Y, _luryr>

:_ﬂr yr2 _<qr’vr>+/ur <qr’yr> S_/lr( yr2 _<qr’yr>) < 0
which is a contradiction. 0

THEOREM 6.2.2. Let (H,(-, >) be a Hilbert space, K — H a closed
convex cone and f . K — H a mapping. A family of elements
{x,} ,<K\0} is an EFE for f with respect to K if and only if

{ yr}r> , @ K\{0} is an IEFE for g, with respect to K, where y, = i(x,) and
g =10
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Proof. Bearing in mind the notation of Definition 6.2.3 we have
v, =y, +|n. [ £(i(5,)).
’ (,i(v,))+ f(i(y,)). Since i =i, we have

v, =%(#,y, +f(x))

r

Hence, v, =

i\

1
Hence, v, =——u, . Therefore

x"

1
<vr,y,>=——7<u,,xr>, (6.2.1)

xr

and

<vr , z> = —12,—<u, , z> , (6.2.2)

||
for every z € K. Since |x||-|y.|=1,|x,|| > +o if and only if y, — 0. By
using (6.2.1), (u,,x,)=0 if and only if (v,,y,)=0. By using (6.2.2),
u, e K ifandonlyifv, e K". O

THEOREM 6.2.3. Let (H,(-")) be a Hilbert space, K < H a closed
convex cone f: H —> H a mapping and g= 1(f). Then f satisfies condition
(é ) with respect to K, if and only if g satisfies condition (’é ) with respect
to K

Proof. We suppose that g satisfies condition ( ' é) with respect to K and we

prove that f satisfies condition (5) with respect to K We consider the

constant A defined in condition (ié) and let p:jl{' Let x € K be an

arbitrary element satisfying the inequality
[Ixll > o, (6.2.3)

! , it follows that |[y|| < A. Hence by condition

and y = i(x). Since lly”:"x—l

(ié) , there exists p € K with <q,y> < “y2 ” such that <y - q,g(y)> >0. Let
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p=-t. (6.2.4)
Iyl

Since ( ><H yl] and i”' =i, relatlon (6.2. 4) implies that

AT

On the other hand Z"' = T implies that
(x=p.f (1) =(x-P.Z(g)(x))
=(x= Pl 2 (1)) =+l (v~ 9. 8()) 2 0

By (6.2.3), (6.2.5) and (6.2.6) f satisfies condition (67) with respect to K.

— = - (6.2.5)

(6.2.6)

Now, we suppose that f satisfies condition (é) with respect to K and we

prove that g satisfies condition (’ ] ) with respect to K. Indeed we consider

the constant p> 0 defined in condition (67) and let A= . Let ye K\{0}
P

with H y“ < A. We have to prove that there exists g € K with <q, y> <n y”2

such that < g£-49,8 ( y)> > 0. Since f = I(g), we can proceed as above. o

DEFINITION 6.2.5. Let (H, (")) be a Hilbert space, K = H a closed

pointed convex cone and f,§:H — H two mappings. We say that a family

of elements {%,}  is an infinitesimal exceptional family of elements

>0
(IEFE) for the ordered pair of mappings ( f~ , g) with respect to K if the

following conditions are satisfied:
(1) x, >0 as r >+,

(2) for any r> 0, there exists p, >0 suchthat 5, =pu % + f(%,)e K",
V,=p% +g(x)eK and (3,,5)=0.

We have the following result.

THEOREM 6.2.4. Let (H ,<-,->) be a Hilbert space, K — H a closed
pointed convex cone, f,g:K —> H two mappings. A family of elements
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{xr}m) c K \{0} is an EFE (in the sense of Definition 5.2.1) for the
ordered pair of mappings (f, g) with respect to K if and only if
{ir }r>0 c H\ {0} is an IEFE for the ordered pair of mappings ( 7, g) with
respect to K, where %, =i(x,), f =Z(f)and =1 (g).

Proof. Considering the notions of Definition 6.2.5, we have

5, =u% +|& | £(i(%)) and 5, = %, +|% [ g(i(%.)).
Hence,
S =18 [mi®)+ £ (i(%))] and 5, =|% [ [ i (%) +2(i(%))].
Since (% ||-|x [[=1and i"' =i, we have
~ 1 - 1
Sr :—z[ﬂrxr +f(x")] andvr :__z-[lurxr +g(xr):|'
xl‘ xr
Hence
. 1 - 1
L =5, V,=——,.
X, x,
Therefore,
(v,,5,)= ! (v.,s.), (6.2.7)
xr
and
<§,,y> = —1—4<sr ,y> , for every ye K (6.2.8)

xr
By using (6.2.7), (v,,s,> =0 if and only if (\7,,§r > =0.

By using (6.2.8) we have that s, € X' if and only if § € K . By the
relation between v, and ¥, given above we obtain that v, € K if and only if

veK. o

DEFINITION 6.2.6. Let (H,(.-)) be a Hilbert space, K < H a closed

pointed convex cone, f ,g&:H — H two mappings. We say that the mapping
j~' satisfies condition ('Qg) with respect to K, if there exists p >0 such
that for each X € K \ {0} with nfc” < p there exists y€ K such that
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(2(%)-7.7(%))=0and

6.2.9
(8(%)-7.%)>0. ©29

The importance of Definition 6.2.6 is supported by the following result.

THEOREM 6.2.5. Let (H.(.,-)) be a Hilbert space, K < H a closed

pointed convex cone, f,g:H — H two mappings. If f satisfies condition
(’6’2) with respect to K then the pair of mappings ( /s g) is without an
IEFE with respect to K.

Proof. We suppose to the contrary, that ( 7, g) has an infinitesimal family

of elements {%,} < K .Forany r> 0 such that |%, | < p there is an

element y € K which satisfies relations (6.2.9) i.e.,
(2(2)-7..7(%))20 and (2(%)-3,.%)>0.
Considering Definition 6.2.5 we have
S, = J.X, +]~”()~cr)eK*,\7r =% +g(%)e K and <\7r,§r>=0,
and we deduce that
Os<g(i’)_—j}r’f(ir)>:<ﬁr _/ur'ir -j}r’gr _ﬂr‘ir>
’ + <5}r > ﬂr‘i"r >

:<§r’§r>_<ﬂr§r9§r>_<j}r9§r>_<‘7r9ﬂrir>+/'lr fr
<= m &)+ 2 |5+ (5 1.5,
:_<Il'lr'ir +g(ir)’lurir>+’ur2 ’ +<j}”ﬂrir>

’ +<j}r’lurir>

xr

xr

%

=1, |5 (&, (%), 1% )+ 1 |5,
=—(&(%). %)+ (7. 1.%,)
=4, (&(%)~5,.%)<0,

which is a contradiction. Hence, the pair ( £, g) is without /EFE with

respect to K i
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THEOREM 6.2.6. Let (H,(-, >) be a Hilbert space, K c H a closed
pointed convex cone, f,g:H—>H two mappings, f=T(f) and
g§=12(g). Then f satisfies condition (ﬁg) (see Definition 5.2.2) with

respect to K if and only if f" satisfies condition (i 6, ) with respect to K.

Proof. We suppose that f satisfies condition ( ’Og) with respect to K.

Let p be the constant defined by condition (’Hg) and let p= é
p
Let x € K be an element such that
x> o, (6.2.10)

and let ¥=i(x). Since ||%||= it follows that |[%|< 5. Hence, by

1
&
condition (’Bg) there exists y € K such that

(2(%)- 7.7 (%))20and

(g(%)-73.%)>0.
Let
y=-2_. (6.2.11)

I

Since <§ (%)-7, 5c> >0,i"' =i and considering (6.2.11) we obtain

<g(x)—y,x>:<g(i(i))— ylz, ;“2>:H;N4 (g(%)-5.%)>0. (62.12)

%

On the other hand < g§F®-5f (JE)> >0, i =i and considering again
(6.2.11) we deduce that

<g<x>—y,f<x>>:<g<f<x»— y f(f(f»>

I

(6.2.13)
1

I

(2(%) —;,i(i)) >0,
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By (6.2.10), (6.2.12) and (6.2.13) we have that f satisfies condition (Hg)

with respect to K. Since Z~' = T, the converse can be proved similarly. O

Now, we introduce the notion of infinitesimal exceptional family of
elements as a mathematical tool in the study of multivalued complemen-
tarity problems. In this way we establish also a relation between the scalar
derivative and the solvability of multivalued complementarity problems.

DEFINITION 6.2.7. Let (H,(.-)) be a Hilbert space, K = H a closed

pointed convex cone, g:K — H a set-valued mapping with non-empty

values. We say that a family of elements { y,}r>0 c K is an infinitesimal

exceptional family of elements (IEFE) for g with respect to K if for every

real number v > 0, there exist a real number y, > 0 and an element
yEe g( yr) such that the following conditions are satisfied:

D v, =py +yi ek,
2) (v.,y,)=0,
3) y,>0asr—>+wo.

DEFINITION 6.2.8. Let (H,(-,->) be a Hilbert space, K — H a closed
pointed convex cone. We say that a set-valued mapping g:H — H with

non-empty values satisfies condition [’ 9 :] with respect to K if there exists
a real number A > 0 such that for each y € K \ {O} with |[y|| < A there exists

g € Kwith <q,y><"y“2 such that <y—q,yg>20 for all y*® eg(y).

The importance of condition [’ ] ] is given by the following result.

THEOREM 6.2.7. Let (H,(.-)) be a Hilbert space, K < H a closed
pointed convex cone and g:H — H a set-valued mapping with non-empty

values. If g satisfies condition ['é ] with respect to K then it is without an
m

IEFE with respect to K.
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Proof. Indeed, we suppose the contrary, i.e., we suppose that g has an JEFE
{ y,}M c K with respect to K For any » > 0 such that, ||y <A, there

exists an element g, € K with (g,,y,)< * satistying the relation

Y
< ¥y, —q,, )¢ >20 for an arbitrary y* eg(y,). Since, according to
Definition 6.2.7, <v, ), > =0 and v, e K", we have
0<(y, =435 )=(y, =V, - #,7,)
==t | [" = (g.v, )+ 1. (4, 3,.)
<[ ~{g..5.)]<0,

which is a contradiction. O

THEOREM 6.2.8. Let (H ,(-,-)) be a Hilbert space, K — H a closed
pointed convex cone and f:H — H a set-valued mapping with non-empty
values. A family of elements {x,} < K\{0} is an EFE (in the sense of

Definition 5.3.2) with respect to K if and only if { y,}r>0 c K\{O} is an
IEFE for g with respect to K where y, =i(x,) and g = I(f).
Proof. Considering Definition 6.2.7 we have
v, = 1,y, + y¢, for some y¢ € g(,).
Hence,
2| . yi
r: yr ﬂrl(yr)+ 2 "
Since i ' =i, we have
2
v, - L [urxr +|x, ’ yf} (6.2.14)
xr
Let
x/ =[x |y (6.2.15)
We have x/ € f(x,) . Indeed,
2 .
‘xrf € xr g(yr): xr ’ I(f)(yr): xr : yr ’ f(l(yr))zf(xr)‘

Now, we define

u, = x +x (6.2.16)
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Equations (6.2.14), (6.2.15) and (6.2.16) imply that
1

Vr =——2ur .
N
Therefore,
(v,3,) =— (1,.x, ) (6.2.17)
xr
and
(v,,2)=—{u,,z), (62.18)
x"
for every ze K Since ||x,||-|y,|=1 |x,| > +w as r— +o if and only if
y, >0 as r—>+o. By using (62.17), (u,,x,)=0 if and only if
(v,,,)=0.Byusing (6.2.18), u, e K" ifand only if ve K. O

THEOREM 6.2.9. Let (H ,<-,->) be a Hilbert space, K — H a closed
pointed convex cone and f:H — H a set-valued mapping with non-empty
values and g = T ( f ) Then, f satisfies condition [é:l (see Definition

5.3.11) with respect to K if and only if g satisfies condition [’5] with

respect to K

Proof. Since g = I(f) and I(I(f)) = f, it follows that
f=Z(g). (6.2.19)
We suppose that g satisfies condition ['é] with respect to K and we

prove that f satisfies condition [67] with respect to K. Consider the

m

constant A defined by condition [’ 67] and let p =% .

Let x € K with
lIxll > o, (6.2.20)
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(»). Indeed, by

y=i(x) and x" € f(x). Let * :sz

(6.2.19) we have
10 T I £li)
W W

, it follows that ||y|| < 4.

v

Since ”y” =o—

Hence, by condition [’ é:lm , there exists g € K with (g, y) <[y such that

(y-q.y%)20. (6.2.21)
Let
-4 (6.2.22)
I
Since ( > “ y" and i' =i, relation (6.2.22) implies that
=g ¢33
By (6.2.21) we also have

(x=px Y=ol (x=p.y Y=ol (y-a.p%)=0.  (6224)
By (6.2.20), (6.2.23) and (6.2.24),f satisfies condition [é] with respect

to K

Now, suppose that f satisfies condition [5] with respect to & and

m

prove that g satisfies condition [’5] with respect to K. Consider the

constant p defined by condition [67] and let A= Let ye K \{0} with
P

“ y” < A. We have to prove that there exists ¢ € K with (q, y> <“ y“2 such

that < y—q,)° > >0, forall y* € g(y). Since f = I(g), we can proceed as
above and the proof is complete. 0
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6.3  Applications to complementarity theory

We present in this section some applications to complementarity
problems. The results are based on the notions of infinitesimal exceptional
Sfamily of elements and scalar derivative.

THEOREM 6.3.1. Let (H,(.-)) be a Hilbert space, K < H a closed
convex cone and f:K > H a mapping. Then x, #0 is a solution to the
problem NCP(f, K) if and only if y. is a solution to the problem NCP(g, K),

where y, =i(x,) is the inversion of x, and g = I(f) is the inversion of f.

Proof.

(a2 = £((2)))-
(i) £ (1(.))-

Vs
Hence

(7 Z(N) ()=

Since i ' =i, we have

Y.

(y*,g(y*)>=%(x,,f(x*)>. (6.3.1)
It can be similarly proved that
(g(3.).2)= 12<f(x,.),z>, (63.2)

*

for every ze K. By using (6.3.1) we have (x*,f(x,,)> =0 if and only if

(»..g(».))=0.Byusing (6.3.2), f(x)e K" ifand only if g(y.)e K .
O

THEOREM 6.3.2. Let (H ,<-,~>) be a Hilbert space, K — H a closed
convex cone and f:K — H a projectionally Leray—Schauder mapping. If
g = I(f) satisfies condition (ié ) with respect to K then the problem NCP(f,

K) has a solution.
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Proof. By Theorem 6.2.3, f satisfies condition (67) with respect to K
Hence Theorem 5.1.41 implies that f'is without EFE with respect to K, and

finally by Theorem 5.1.2 we have that the problem NCP(f, K) has a

solution. m}

THEOREM 6.3.3. Let (H,(-,-}) be a Hilbert space, K — H a closed
convex cone and f:K — H a projectionally Leray—Schauder mapping. If
there exist a & > 0 and a mapping h:B(0,86) K — K , with h(0) =0 and

h (O)<1,(1 —h,Z(f))# (0)>0, where B(O,é'):{er:“x||< 5}, then
the problem NCP(f, K) has a solution.

Proof. Let g = I(f). Since k" (0) <1, there is a 4, with 0 < 4; < & such that
for every y € Kwith ||| <4, we have

(r(»).) <l (63.3)
Since (I - A, g)# (0) >0 ,there is a A, with 0 < 4, < & such that for every
y € Kwith |y|| < 4, we have

(y=h(y).2(»))>0. (63.4)
Let A=min{4,4,}. Obviously,

A>0 (6.3.5)
for
<4 (6.3.6)
Let g = A(y). Then , relations (6.3.3) and (6.3.4) imply
(0.9) <o (63.7)
and
(y-q.8(»))=0 (6.3.8)

respectively. Hence, relations (6.3.5), (6.3.6), (6.3.7) and (6.3.8) imply that
g satisfies condition (’ 9). Hence Theorem 6.3.2 implies that the problem

NCP(f, K) has a solution. o
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THEOREM 6.3.4. Let (H,(-,-)) be a Hilbert space, K c H a closed
pointed convex cone and f,g:K —> H two mappings. Then x, #0 is a

solution to the problem ICP(f, g, K) if and only if X, is a solution to the
problem ICP(f,g,]K), where X, =i(x,),f=l'(f)and§=l'(g).

Proof. We have
(8(®).7(®)=(1%[ 2(i(=)).
Since ||%. |- |x.|=1andi" =i, we have

(8(%).7(%))= 1 (g(x), f (%)) (6.3.9)

"f(i(%)))-

X,

T~ 4
We can prove similarly that .
(f(%).2)= “5:”2 (f(x).2), (6.3.10)
for every z € K. We also have
(%) =-——g(x). 63.11)
e

By using (6.3.9), <g(x,,),f(x, )> =0 if and only if <§(i*),f(i )> =0. By
using (6.3.10), f(x,,)e K" if and only if, f(i,,)e K" . By using (6.3.11),
g(x)eK ifandonlyif g(%)e K. o

THEOREM 6.3.5. Let (H,(.,")) be a Hilbert space, K < H a closed
pointed convex cone and f,g:K —> H completely continuous fields,
/} =7 ( f ) and g=1 ( g). If /~" satisfies condition (' Hg.) with respect to
K , then the problem ICP(f,g, K) has a solution.

Proof. Indeed, by Theorem 6.2.6, f satisfies condition (Hg) with respect to

K Hence Theorem 5.2.1 and Theorem 5.2.4 imply that ICP(f g K) has a

solution. O
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THEOREM 6.3.6. Let (H,(-, >) be a Hilbert space, K < H a closed

pointed convex cone and f,g:K —> H completely continuous fields. If
there is a 6 > 0 and a mapping h: B(O,é') N K — K with h(0)=0 and

Z(g) (0)>A"(0).
(Z(g)-n.F) (0)>0,
where B(O,5)={er:“x||<é’}, then the problem ICP(f,g,K) has a

solution.

Proof. Let g =7 (g). Since g*(0)>h"(0), we have (g - )’ (0)>0.
Hence, there is a real number A, with 0 < 4, <& such that for every ¥e K

with ”i“ <A, we have
(g(%)-h(%),%)>0. (6.3.12)
Since (g - h,f)# (0)>0, there is a real number A, with 0< 4, <& such

that for every X e K with |7 <4, we have
(2(%)-h(%),7(%))>0. (6.3.13)
Let p=min{A.4,}. Obviously, p>0.

For “i“<,[), let j/zh(fc). Then relations (6.3. 12) and (6.3.13)
imply
(8(%)-7.%)>0 (6.3.14)
and
(2()-75.7(%))>0 (63.15)

respectively. Hence, because p >0,

i“ < p we have that relations (6.3.14)
and (6.3.15) imply that f satisfies condition (’0). Therefore Theorem

6.3.5 implies that the problem ICP(f g, K) has a solution. o

Now, we give some applications to multivalued complementarity problems.
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THEOREM 6.3.7. Let (H ,(-, >) be a Hilbert space, K — H a closed
convex cone and f: K — H a set-valued mapping. Then (x* ,x] ) ¢ { 0} x H
is a solution to the problem MNCP(f, K) if and only if ( Vas yf) is a solution

S

to the problem MNCP(g K), where y.=i(x), y¢= x!  and

2
Xy

gzI(f).

Proof. First, we have to prove that yf e g(y.). Indeed, dividing both sides

of the relation x/ € f(x.) by Hx”2 we obtain
1

yie—r-o f(x),
X
which implies y# €|y, 2f(i(y*)):I(f)(y*):g(y*). It is easy to see
that
<y*,y§>= ! y <x*,x,,f> (6.3.16)
X
and
g 1 S
<yt ,Z>= 5 <x* ,z>,for everyze K . (6.3.17)

*

By using (6.3.16), <x‘,xf>=0, if and only if <y.,yf>=0. By using
(6.3.17), x/ e K" ifand only if yf e K. O

THEOREM 6.3.8. Let (H ,<-,->) be a Hilbert space, K — H a closed

pointed convex cone and f:H — H an us.c. set-valued mapping with
non-empty values such that:
(1) x—f(x) is projectionally ®-condensing, or f(x)=x-T(x),
where T is a c.u.s.c. set-valued mapping with non-empty values,
(2) x—f(x) is projectionally approximable and Py |:x— f (x)] is
also projectionally approximable with closed values.
If g = () satisfies condition [’ﬁ] with respect to K then the problem

m

MNCP(f, K) has a solution.
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Proof. By Theorem 6.2.9, f satisfies condition [é] with respect to K,

which implies that f is without an EFE (see the remark after Definition
5.3.11) Applying Theorem 5.3.1 we obtain that the problem MNCP(f, K)

has a solution. O

THEOREM 6.3.9. Let (H ,(-,->) be a Hilbert space, K c H a closed

convex cone and f:H — H an u.s.c. set-valued mapping with non-empty
values such that:
(1) x—f(x) is projectionally ®-condensing, or f(x)=x-T(x),
where T is a c.u.s.c. set-valued mapping with non-empty values,
2 x-f (x) is projectionally approximable and P, [x -f (x)] with
closed values.
If there is a 6> 0 and a mapping h: B(0,6) N K — K withh(0)=0 and

h*(0)<1,
(1-hZ(s)) (0)>0
where B(O,5)={er:||x“<5}, then the problem MNCP(f, K) has a

solution.

Proof. Let g = Z(f). Since h* (0)<1, there is a A; with 0< 4 <& such that
for every ye K with ” y" < A, we have

(h () 3) < (63.18)
Since (1 - h,g)# (0) >0, there is a A, with 0< A, <J such that for every

y € K with |ly|| < 4, we have

<y—h(y),yg>>0,forallygeg(y). (6.3.19)

Let ﬂ,:min{/ﬂ,lz}. Obviously 4 > 0. For [y|| < A let ¢ = A(y) Then
relations (6.3.18) and (6.3.19) imply

(g.¥)<|y*

, (6.3.20)
and

(y-q.y)>0, (6321)
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respectively for all y* e g(y). Hence, because 4 > 0, ||| < A and

considering (6.3.20) and (6.3.21) we obtain that g satisfies condition [’ 6’:[ .

m

Applying Theorem 6.3.8, we obtain that the problem MNCP(f, K) has a

solution. o

6.4 Infinitesimal interior-point-g-exceptional family
of elements

In Section 5.7 of Chapter 5 we considered the problem
& - MCP ( fs Rj’) and in relation with this problem we defined and we
studied the interior band set-valued mapping U :]O, oo[—)S (]RL). To

study this set-valued mapping, we defined in Section 5.7 the notion of
interior-point-g-exceptional family for a mapping f. Now, we will define the
infinitesimal variant of this notion, which is due to S.Z. Németh.

DEFINITION 6.4.1. Given a scalar ¢ > 0, we say that a family
{ y'}bo c R?, is an infinitesimal interior-point-g-exceptional family of a

mapping g: K" > R" if “ V' “ —0 asr —> +oo and for each y" there exists

a positive number 0 < u_ <1 such that

g () :%(#, —i—jy{ + 8;:

r

Y foralll=12,..n.  (6.4.1)

yl‘

THEOREM 6.4.1. If f: K" —> R" is a continuous function and g =T (f) is
the inversion of [, then {x’} o C R, is an interior-point-g-exceptional
family of f (in the sense of Definition 5.7.2), if and only if { y }DO cC R, is

an infinitesimal interior-point-g-exceptional family for g, where y" = i(x’)

is the inversion of X" for all r > 0.

Proof. Suppose that {x’}r>O c K7, is an interior-point-g-exceptional family
of fand let
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y =i(x'), (64.2)
for all » > 0. Since i =i, (equation defined in Definition 5.7.2 and (6.4.2))
imply that

f,(i(yr)):%[/ur _#L)i(y')l +i(‘€;‘;) foralll=1,2,.n. (6.4.3)

Multiplying both sides of equation (6.4.3) by

7

2 . .
y'| we obtain equation

(6.4.1). Hence { y’} , < R?, is an infinitesimal interior-point-g-exceptional

family for g. Similarly we can prove that if {y’}»ocﬁ’:’+ is an

infinitesimal interior-point-g-exceptional family for g, and then
{x’} . c R, is an interior-point-g-exceptional family for f a

THEOREM 6.4.2. Let f:R" — K" be a continuous mapping and €> 0. If
there is no infinitesimal interior-point-g-exceptional family for g = T (f),
then there exists a point x(€) such that
x(£)>0, f(x(¢))>0and x,(£) £, (x(¢)) =¢. (6.4.4)
for all 1 =1, 2, ...n (ie, x(&) is a solution to the problem
£- MCP(f,R!)).

Proof. We suppose that there is no point x(g) which satisfies relation
(6.4.4). Then by Theorem 5.7.1, the mapping f has an interior-point-&-

exceptional family {x'}r>0 c R}, . Hence Theorem 6.4.1 implies that
{ y’} . C R, is an infinitesimal interior-point-g-exceptional family for g,
where )" :i(x'),for all»>0. But this is in contradiction with our

assumption and the proof is complete. |

THEOREM 6.4.3. Let f:R" > R" be a continuous mapping and
g =1 (f). If the lower scalar derivative of g in 0 along R’ is positive, then
the interior band mapping U has properties (a) and (b).

Proof. We have
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g" (0)=liminf {0).») )2’y )
- y—0
YeRY, “y”

>0. (6.4.5)

Let y =i(x). Then we have

(g(»).y) . (f(x)%)

linl (i)nf ——= lllnll 12f —.
) ¥ PR

yeRY, xe R,

Equation (6.4.5) and (6.4.6) imply

(6.4.6)

g (0) =lim inf<—f(x%x> >0
) P

xe Ky,

which imply that Theorem 5.7.5 is applicable and our theorem is proved. o

Remarks.
(1) The results presented in this section are due to G. Isac and S. Z.
Németh.
(2) For more details and results related to the subject of this chapter the
reader is referred to (Isac. G. and Németh, S. Z., [1]-[5].
(3) The result presented in this chapter may be a starting point for new
developments.
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MORE ABOUT THE NOTION OF
EXCEPTIONAL FAMILY OF ELEMENTS

We present in this chapter several special results related to the
notion of exceptional family of elements. In Chapter 5 we obtained the
notion of exceptional family of elements for a mapping applying Leray—
Schauder type alternatives. Now we will show that this notion can be
obtained for more general classes of mappings, which are not necessarily
projectionally Leray-Schauder mappings. Moreover, we will present a
necessary and sufficient condition for the non-existence of exceptional
family of elements. In the last section, we will extend the notion of
exceptional family of elements to functions defined on a particular class of
Banach spaces and we will apply this notion to the study of
complementarity problems defined on not necessarily convex cones.

7.1 EFE-acceptable mappings

Let (H,<~,->) be a Hilbert space, K — H a closed convex cone and

f:H —> H amapping. For any » > 0 (r € &) we denote
K, ={xeK‘ “x“Sr} :

We recall the definition of the notion of exceptional family of element for a
mapping f with respect to K
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DEFINITION 7.1.1. We say that a family of elements {xr}r>0 c K isan
exceptional family of elements (EFE) for f with respect to K if for every

r > 0, there exists a real number 1, > O such that the following conditions
are satisfied.

(D) u =px, + f(x,)eK",
2) <xr,ur>=0,
3) |x|

—> +00 as ¥ —» +0.

DEFINITION 7.1.2. We say that a mapping f. H — H is EFE-acceptable
with respect to K if for any r > 0 the mapping v, (x) =P [x -f (x)] has

a fixed point (which necessarily is an element in K,). (The mapping y, is
considered from K, into K,.)

The following result is due to M. Bianchi, N. Hadjisavvas and S.
Schaible [1].

PROPOSITION  7.1.1. If there  exists x.€K, such that
<f(x*),x—x,>20 Sfor any x e K, and there exists ye K, with ||| <r
such that <f(x¢),x‘ —y>20, then we have <f(x,),x—x,,>20 for any
xe K

Proof. We consider the convex continuous mapping
(/1(x)=<f(x*),x —x.> defined for any x € K.
We have ¢(x) > 0 for any xe K, and ¢(x+) = 0. Then x: is a global
minimum of ¢ on K. Because we have
0<p(y)=(f(%),y-x)<0=p(x)
we deduce that y is also a global minimum of ¢ on K,. Therefore (since

IVl <) we have that y is a local minimum of ¢ on K and hence (because ¢

is convex) y is a global minimum on K. Since ¢(y)=¢(x.) we obtain that
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x» is a global minimum of ¢ on K that is, we have < f(x),x- x*>2 0 for

any x € K |

We have the following alternative.

THEOREM 7.1.2. Let (H,(-, >) be a Hilbert space, K < H a closed

convex cone and f : H— H an EFE-acceptable mapping with respect to K.
Then either the problem NCP( 1K ) has a solution, or the mapping f has
an EFE with respect to K.

Proof. If the problem NCP ( />K) has a solution we have nothing to prove.
We suppose that this problem has no solution. In this case we show that f
has an EFE with respect to K Indeed, because f is EFE-acceptable with

respect to K, then for every r > 0 there exists x €K, such that

X, =y, (x,)=P [x, - f(x, ):l . We know (see Chapter 2) that in this case
we have

<f(x,),x—x,>20 forany xe K, . (7.1.1)
(Because we supposed that the problem NCP(f,K) has no solution, we
have that (7.1.1) is not satisfied for allx € K.)

We show [following ideas of (Bianchi, M., Hadjisavvas, N. and
Schaible, S. [1], Theorem 5.1)] that {xr} is an EFE for f with respect to

r>0
K. For every r > 0 we define
<f(xr)’xr>

= (7.1.2)
r

and
u, =px +f(x). (7.1.3)
If |x|l<r, then taking y = x, in Proposition 7.1.1, we obtain that

<f(x,),x—x,>20 for any xe K , ie., x, is a solution to the problem
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NCP ( 1K ) which is impossible. Therefore we must have ”x, H =r, for any

r> 0, which implies that |[x, || — +c0 as » - +o0. Also, we have

(xr,ur>:<xr,,u,x, +f(x,)>:<xr,yrxr>+<xr,f(xr)>
=—<x,,<L(x;—)i>x,>+<f(x,),x,>=

The number g, is strictly positive. Indeed, we have < f (x,),O—x,>20

<f(xr)’xr> 0.

which implies <f (x,), X, > <0 and hence p, =—-————2
r

If 4, = 0, then <f(x,),x,> =O:<f(x,),x, —0> and taking y = 0 in
Proposition 7.1.1 we deduce <f(xr),x, —x>20 for any x € K i.e., the
NCP ( K ) has a solution which is impossible. Therefore we have 1. > 0

for any r > 0. The theorem will be proved if we show that u, € K~ for any
7> 0. To show this, it is sufficient to prove that

<f(x ) <x x>x >>0for anyxe K. (7.1.4)
P

Indeed if (7.1.4) is true, then we have (because f(x,)=u, —p,x,),

Os<ur KX X <x”2x> x’>=<ur>x>_<ura<xr;x> xr>
¥

r

(x.,x) , (

—;t,(x,,x>+,u,—2—r =(u x)
r

ro

Now, we show that (7.1.4) is true. Let » > 0 be fixed. We denote by

<x,,2x> x, and z, =y+Ax  with /1><x"x>. Then z, € K and
r

2
r

y=x-

-re K,. Hence, we have < f(x, ) xr>20, which implies

I!Z H

(because y =2z, — Ax,)

<f(n)y+(4—k?g%>zo. (7.1.5)
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We can show that (y,x,)=0, which implies that |z, || =1/“y2 “ + A% . We

also have

292 2 2.2
T P 1 * _(”y” tAT )
A+ r A+ r A=+ r(r/l + ”Z}. H)

Arioo p? (r/i + “Zl H)
Therefore, computing the limit as A — +oo in (7.1.5) we deduce that
<f (x, ), y> >0 and we have that formula (7.1.4) is true. i

COROLLARY 7.1.3. Let (H, (")) be a Hilbert space, K — H a closed

convex cone and f: H— H an EFE-acceptable mapping with respect to K.
If fis without EFE, then the problem NCP ( [, K ) has a solution.

Examples

We give several examples of EFE-acceptable mappings.

(1) In the n-dimensional Euclidean space (R",(-,->) , any continuous
mapping is EFE-acceptable with respect to any closed convex cone.

2) Let (H,(-,-)) be an arbitrary Hilbert space and K — H a closed
convex cone with a compact base. It is known that in this case K is
locally compact. Consequently, for any » > 0, K, is a compact set. In
this case, any continuous mapping f'is EFE-acceptable with respect to

K (This result is a consequence of Schauder’s Fixed Point Theorem.)

(3) Let (H ,(-, >) be an arbitrary Hilbert space, &K < H an arbitrary closed
convex cone and f: H — H a completely continuous field, i.e., fhas a
representation of the form f(x)=x—-T(x), where T: H—»> His a

completely continuous operator. In this case f is an EFE-acceptable
mapping. This result is also a consequence of Schauder’s Fixed Point
Theorem.

(4) Let (H,(-,-)) be an arbitrary Hilbert space and K < H a closed

convex cone and f : H — H a nonexpansive field, i.e., f has a
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&)

(6)

representation of the form f(x)=x-T(x), where T: H > His a

nonexpansive mapping. In this case also f is an EFE-acceptable
mapping. This result is a consequence of a classical fixed point
theorem for nonexpansive mapping defined on a bounded closed
convex subset of a uniformly convex Banach space.

Let (H ,(-,-}) be an arbitrary Hilbert space, K < H a closed convex

cone and f: H — H an a-set contraction field with respect to the o~
Kuratowski measure of noncompactness. We have that

f(x)=x-T(x), where T : H > H is an a-set contraction. The
mapping f is EFE-acceptable with respect to K. This result is a
consequence of Darbo’s Fixed Point Theorem.

Let (H,(-,-)) be an arbitrary Hilbert space and K — H a closed
convex cone. Any mapping f: H — H with the property that for any
r>0, VI(f,K,) has a solution is EFE-acceptable with respect to K

An interesting example of such mapping is a continuous
quasimonotone mapping f:K —> H. We recall that f is quasi-

monotone on K if for any x, y € K the inequality < f (x), y— x> >0
implies < f ( y), y- x> >0. Any pseudomonotone mapping (in

Karamardian’s sense) is quasimonotone. Also, in particular any
monotone mapping is quasimonotone. From Lemma 2.1 and
Proposition 2.1, both proved in (Aussel, D. and Hadjisavva, N., [1]),

we deduce that for any 7 > 0 the problem VI(f,K,) has a solution,
since K, is weakly compact. Because any solution of VI( f,K,) is a
fixed point for the mapping ;,, we have that any continuous
quasimonotone mapping is EFE-acceptable with respect to K. About

the solvability of the problem VI ( 7, K,) when f is quasimonotone

see also [(Bianchi, M., Hadjisavvas, N. and Schaible, S. [1]),
Propositions 2.2 and 2.3].

By the next theorem we will obtain other examples of EFE-

acceptable mappings. Let (H,(.-)) be a Hilbert space. We recall the

following notion defined by G. Isac in (Isac, G. and Gowda, M. S. [1]). Let
D be a subset in AH.
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DEFINITION 7.1.3. We say that a mapping f:D — H satisfies condition
(S )1 if any sequence {xn }ne v © D with

(w)—'l’ii?oxn =x,eH, (w)-lim f(x,)=uecH
and lir::sgp(xn, f(x, )> S(x*,u>, has a sub-sequence {xnk }kGN convergent

(in normy) to xs.

Remark. Condition (S), is related to condition (S), introduced in

1
nonlinear analysis by F. E. Browder. It is known that condition (S)+
implies condition (,S')l+ (Isac, G. and Gowda, M. S. [1]), (Isac, G. [23]).

Condition (S)l+ was used and considered in several papers [see the
references cited in (Isac, G. [23])].

We recall the following property of the inner-product given on H:
if asequence {xn} is weakly convergent to an element x,

and a sequence { yn} is convergent in normto an element y,, (7.1.6)

then lim <xn,y,,> = <x,,y,,>.

DEFINITION 7.1.4. We say that a mapping f : H— H is scalarly compact
with respect to a closed convex set D < H, if for any sequence {xn }ne v <D,

weakly convergent to an element x« € D, there exists a subsequence
{xnk }k Y such that lim sup<xnk —x*,f(xnk )> <0.

X—>00

Remark. If f is completely continuous or there exists a completely
continuous operator 7 : H — H such that |< wf (x))‘ < ( v, T (x)> , for any x,

y € D, then f is scalarly compact. We recall that f : H — H is
demicontinuous if for any sequence {xn}nE v © H convergent in norm to an

element x« € H, { f(x, )}nGN is weakly convergent to f{x:).

THEOREM 7.1.4. Let (H, <,>) be a Hilbert space and T,,T,:H - H

two demicontinuous mappings. If the following assumptions are satisfied:
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(1) T is bounded and satisfies condition (S ):
(2) T is scalarly compact with respect to a closed bounded convex set
DcH

Then the problem VI(T, —T,, D) has a solution.

Proof. Let A be a family of finite dimensional subspaces F of H such that
FND=#¢. We consider the family A ordered by inclusion and also we

consider the mapping h(x)=T; (x) -7, (x) defined for all x € D. For each
F e A wedenote D(F)=DNF and we set

A, ={yeD:<x—y,h(y)>ZOforallxeD(F)} .
For each F € A, the set Ar is non-empty. Indeed the solution set of
144 (h, D(F )) is a subset of A5 and the solution set of ¥/ (h, D(F )) is non-

empty. To obtain this fact we consider the mappings j : F — H,
j :H" — F" and j oho j, wherej is the inclusion and j is the adjoint of

j. The mapping j* o ko j is continuous and

(x=2.(s oo ) () =(x=».h(»).
Applying the classical Hartman—Stampacchia Theorem to the set D(F) and
the mapping j o 4> j we obtain that V7(k, D(F)) has a solution.

We denote by A_Fcr the weak closure of Ar. We have that ﬂ Ar s

FeA

non-empty. Indeed, let Z;, ,1—4;2 ,...,Z;,, be a finite subfamily of the family
{71‘;} . Let Fy be the finite dimensional subspace of H generated by
FeA

F\, F,, ....,F, . Because F, ¢ F, for all k =1, 2, ..., n, we have that
D(F,)c D(F,)) forallk=1,2, ..., n.

We have 4, < 4., which implies Z(;O gz;k Jforaltk=1,2,...,n

and finally we deduce that ﬂZ‘; #¢ . Because D is weakly compact we

k=1

conclude that n Ar # 0.

FeA
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Let y, € Ar , i.e., for every F € A, ‘ezz.LetxeDbean
ry Bz

FeA
arbitrary element. There exists some F € A such that x, y«» € F. Since

Y, eAr, by the Smulian Theorem there exists a sequence { yn} v S 4,

hne

weakly convergent to y.. We have
(3. =y,.h(3,))20

and

<x—yn,h(yn)>20

(3 =y T (3)) <3 = 3. L (3)) (7.1.7)
and

=y L) 2 (x -y L (). (7.1.8)

From (7.1.7) and assumption (2), (considering eventually a subsequence)
we have

limsup(y, - »..T, (»,))<0. (7.1.9)

Because 77 is bounded, we can suppose that {Y} (yn)} . is weakly

ne

convergent to an element vy € H. Because
(3T (7)) =0 = 3. + ¥ T (1))

=<yn “y,;,]—; (yn)> +<ynT; (y,,))
and considering (7.1.9) we obtain

limsup<yn,7}(yn)>s<y,,,v0>.
Hence, by condition (S)l+ we obtain that the sequence {y,}  has a

subsequence, denoted again by { yn} convergent in norm to y.. Because

neN

T, is continuous, we have lim7, (y,) =T, (».). From inequality (7.1.8) by

using property (7.1.6) of the inner-product and computing the limit we
conclude that
<x_y~5-7; (y*)—']; (y;)>20 fOl‘alle D

and the proof is complete. o
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COROLLARY 7.15. Let (H ,(-, >) be a Hilbert space, K c H a closed
convex cone and f: H— H a mapping. If f has a decomposition of the form
f(x) =T (x) -7, (x) such that

(1) T, is demicontinuous, bounded and satisfies condition (S )1+ ,

(2) T, is demicontinuous and scalarly compact with respect to K,

then f is EFE-acceptable with respect to K.

Proof. We apply Theorem 7.1.4 to fand to any K, with » > 0. o

7.2 Skrypnik topological degree and exceptional
families of elements

In the previous two chapters, we presented several results related to
the notion of EFE for projectionally Leray-Schauder mappings. In this

section we will present another approach of the notion of EFE due to A.
Carbone and P. P. Zabreiko [1], [2]. Their approach is based on a special
topological degree defined by 1. V. Skrypnik. [see (Skrypnik, I.V. [1], [2])].
By this approach we can define the notion of EFE (the same defined by
Definition 7.1.1) for mappings, which are not completely continuous fields.

Let (H ,(-, >) be a Hilbert space, K — H a closed convex cone and

f: K —> H a completely continuous mapping. Consider the operator

Ax =Py (x)- f(PK (x)) By Theorem 2.3.7 we know that if x. is a fixed

point of 4, then u, =P, (x,) is a solution to the problem NCP(f,K).
Consider the family of vector fields

{Q(g)xzx_z[p,,( (x)- £ (P (x) ]
0<A<l, xeH.

This is a linear deformation connecting the vector field / — 4 whose zeros
define solutions to the problem NCP( f,K) and the trivial field @y = I.
Consider the family of sets

(7.2.1)
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P, (r)“ < r} ,

{Qr’p = {x e H:|x|<p, 722)

O<r<p<om,

Obviously, €, , is a bounded domain in H and 0 is an interior point. A
geometrical image of the sets ), , is given in (Carbone, A. and Zabreiko,
P. P. [1]). The boundary 6Q, , of this domain is

oQ, ={er:”x"<p, P, (x)“zr} u{er:Hxﬂzp,

P, (x)” < r} )
(712.3)

Let 0Q, = {xe H:|x| < p,| Py (x)“ = r} . We note that we need a special

simple a priori estimate for values of the vector fields ®(4) (0<A<1),
which shows that the part 6ny , of the boundary 0Q,, is fundamental for

the next results. We define

u(r)= sup Hu - f(u)“

[x<r ek

PROPOSITION 7.2.1. Let p > u(r), then

Hd)(/i)x“ >p—u(r) (xe Q, \6Q2’p).
In particular, the zeros of the fields (D(ﬂ,) (0 <A< 1), which are situated
on the boundary 8Q,, lie on Q) .

Proof. This proposition is a consequence of the inequalities
”(D(/l)x” > x| - HPK (x)- (P (x))” >p—pu(r)>0 for xedQ, ,\oQ, .
m
Remark. From Proposition 7.2.1 we deduce that if the inequality p > z(r)

holds, then the zeros of ®(4) (0<A<1) situated on the boundary 8Q,,
really lie on its part GQS) ,- Now, we consider the family of complemen-

tarity problems

ue kK,
(1-Du+Af(u)e K,
(w,(1- Ayu+ Af (u))=0,
0<A<l,

(7.2.4)
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which corresponds to the family of operators (1-A)/+Af,(0<A<1). It
is easy to show the following result.

PROPOSITION 7.2.2. Let f be a mapping from K into H and

A(A)=2 [PK —f (P ):I ,(0<A<1). Then the complementarity problem
with (1—A)I + Af is solvable if and only if the operator A(A) has a fixed
point in H. Moreover, if x« is a fixed point of A(2), then u, =P, (x.) is a
solution to the complementarity problem with the mapping (1-A)I + Af .

We will use the notion of mapping of class (S)+ (see Chapter 1,

Definition 1.6.4) and a notion of quasi-monotonicity, which is different than
the quasi-monotonicity in Karamardian’s sense. We say that a mapping

f+ H— H is quasi-monotone if each sequence {x,}  from H, which is

weakly convergent to x., satisfies the condition
liminf { f(x,),x, -x)>0.

n—»x

It is known that if each mapping of class (S), is quasi-monotone the

converse is not true. We note that the mappings of class (S)+ and quasi-

monotone mappings were introduced and studied in detail by F. Browder,
H. Brezis, I. V. Skrypnik and others.

PROPOSITION 7.2.3. Let f: K — H be a completely continuous mapping.
Then the vector field ®(1),(0<A<1) is of class (S)+ )

Proof. Let 0 < A < 1 and suppose that {xn}neN is a sequence weakly

convergent to an element x- and
limsup(®(4)x,,x, - x)<0.

Because ”PK (x,)— P (;)_|r£
(1-2)(x, —x.,x, —x,,>£<xn — X = APg (x,)+ APy (x.),x, —x*>
=<d)(l)xn,xn —x*>—<x, - AP (x.),x, —x*>—l<f(PK (xn)),xn —x*>.

Without loss of generality, we can assume that the first summand in the
right-hand side of this chain, as » —» o, has a non-positive limit by the

x, —x.| we have




More about the notion of exceptional family of elements 259

properties of the sequence {xn }neN. The second summand tends to O as

n — « , by the weak convergence of {xn}ne v t0 0. The third summand also

tends to 0 as n — o since { f (PK (x, ))} is a bounded set.

Therefore
limsup(1-4)(x, —x.,x, —x)<0

n-—-»o

which implies that {x,}  tends to x. in norm. o

PROPOSITION 7.2.4. If f is completely continuous, then ®(1) is quasi-
monotone.

Proof. Let {xn}nE  be a sequence weakly convergent to x». We have (using

the properties of projection operator Py),
(®(1)x,.x, —x)=(x, —x. - P (x,) + Py (%)%, - x.)
+<f(PK (x,)).x, —x*> +<x,, ~ P (x),x, —x*>
2<f(PK (x,))x, —x*> +<x, — Py (%)%, —x*>.

Both summands in the right-hand side of this chain of terms tend to 0 as
n — o« by the properties of the sequence {x,}  and the operator f.
Therefore we obtain

lilnn%iilf <¢> ()x,,x, —x > >0,

that is ®(1) is quasi-monotone. o

Remark. Generally, the vector field ®(1) is not of class (S )

.
+

We say that a general mapping ¢:H — H is zero-closed if for any

bounded sequence {x,}  such that {(D(xn )} is convergent in norm to 0,

neN

there exists x, € c_o;;({xn }) such that ®(x,)=0.

We say that a mapping f: K — X is regular, if for each sequence

{un }ng v» (n€ Kfor any n € N), weakly convergent to u» and such that the
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* . .
sequence { f (un)}”eN converges to v+ € K , in norm, the equation

f(u,,) =v, holds.

PROPOSITION 7.25. If f:K — H is a regular completely continuous
mapping, then the vector field ®(1) is zero-closed.

Proof. Let {xn} be a bounded sequence such that {CD(I)xn} is

neN
convergent in norm to 0 as » — c. Without loss of generality we can
assume that the sequence {xn}nE » Weakly converges to an element x. and

the sequence { f (PK (x, ))} _ converges in norm to ve. In this case the

sequence x —P (x converges in norm to —Vs, since
n K n N
ne

%, = Pe (5,)==f (P (x,)) + @(1)(x,) (n=1).
By the properties of Py we have

<x,, — P (x,)—x+ P (x),x, —x>20 (xeH,n21).
Computing the limit in this inequality as #» — « we obtain

(=v. = x + P (x),x. —x> 20 (xeH).

If we consider x=x, +fu (ue H,) (0 <t <), and dividing by ¢ we have

<—v. — X, —tu+ Py (X, +tu),u>$0 (ueH, 0<t<w),
Passing to the limit as # — 0, we obtain

<—v, -, + Py (x,),u>£0 (ueH).
Because u is arbitrary in H, we deduce that v, =—(x. — Py (x. ))ekK".
Moreover, the sequence {u,}  , where u, = P, (x,) is weakly convergent
to u. = Py (x.), since
P (xn):xn —(x,, - P (xn))——>x* +v.=x—x + P (x*)=PK (x*).
{

Thus, the sequence {un} weakly converges to u+ and the sequence ; f (un )}

converges in norm to v, € K~ . By the regularity of f we have f(u)=v,.

Therefore
D(1)x =x - Py (x.)+ f (P (%)) =x — P (x.)+3 =0
and the proof is complete. o
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Now, we conclude that the vector fields ®(4) (0<A<1) defined
by (7.2.1) are of class (S)+ and the field ®(1) is quasi-monotone and

moreover, O(1) is zero-closed if f is regular. Therefore we can apply the
Skrypnik topological degree theory for studying fixed points of vector fields
@(A). The Skrypnik degree theory (Skrypnik, 1. V. [2]) states that for each
field @ of class (S)+ (and even zero-closed and quasi-monotone field @)
defined on a bounded domain Q and being without zero on the boundary of
0Q of the domain Q, there is defined an integer y(®, Q) with the following
properties: (see Chapter 1)
B YLQ=1if0eQ,
Giy If Q=Q uQ, and @O has no zero on the set
80, L oQ, U (0, MQ,), then y (©,Q) =y (0,Q)) +7(D,Q,).
(iii) 1f Dy and @, are homotopic on Q, then y (D,,Q) =y (D,,Q). We say
that @y and ®, are homotopic on Q if there exists a family of
mappings ®(4,-) (0 < A< 1) of class (S )+ (or zero-closed and quasi-

monotone), defined on Q and demicontinuous with respect to both
variables such that

@(0,)=®, ,0(1,")=@,,@(4,x)20 (0<A<],xedQ).

The following result is known (Skrypnik, I. V. [2].

If © has no zero on the boundary 0Q of the domain Q and the degree
}/(CD, Q) of this vector field on the boundary 0Q of Q is non-zero, then

there exists at least one zero x« of @ in Q.

Now, we consider the family of vector fields (1) (0 < 4 < 1)
(defined by (7.2.1)) on the domain Q, ,. We suppose that p and r are fixed
positive reals and p > u(r). Obviously the family of ®(4), under our

assumptions, is demicontinuous (i.e., each mapping ®(A) maps strongly
convergent sequences into weakly convergent sequences) with respect to
both variables and ®(0) = ®,, ®(1) = @;. We have two possibilities:

First, there exists 4, € ]0,1[ and x, €8Q, , (really x, € GQ?& ) such
that ® (A )x, =0. Certainly, in this case u, =P, (x.) is a solution of the
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problem NCP ((1 A+ Af K ) and this solution is situated on the set
S N K with S, :{ueH:“uﬂzr} .

Second, for all Ae ]0, I[ the relations ®(A)x#0 (x € OQW)

hold. In this case all vector fields ®(4) (0 < A < 1) are homotopic on Q, ,
and therefore they have the same degree 7(@(1),0,7 p) on the boundary

9Q,, of domain Q,,. But 7(@ (0),Q, ):1 since ®(0)=/and0€Q, .

P

Thus in the second case we have
y((2).9,,)=1 (0<i<1). (7.2.5)

Moreover, if the vector field ®(1) is zero-closed (for example if fis regular
and completely continuous), and has no zero on 0Q, ,, then we have

y(®(2),Q,,)=1 (0<i<l). (7.2.6)
(Obviously, if ®(1) has a zero on 0Q,, we have that the problem
NCP(f, K ) has a solution.)

Hence, if the vector field ®(1) is zero-closed and has no zero on
0Q,.,, then equation (7.2.5) implies the existence of a zero of ®(1) in the

domain €, , and therefore, the solvability of the problem NCP(f, K') in the

set B, = {u eH ]|u|| < r} . We conclude with the following result.

THEOREM 7.2.6. If f : K — H is a regular completely continuous
mapping and 0 <r < +owo, then:
(1) either for some A, e]O,l[ the complementarity problem with the
mapping (1—4,)I + A, f has a solution in the set S, N K,

(2) or the complementarity problem with the mapping f has a solution
inBNK.

Remark. Consider the conclusion (1) of Theorem 7.2.6. If x, € S, " K is
the solution of the problem NCP((1-24,)I+4,f,K ), then we have
x ek,

x||=r and
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1-4 p) K
{( 3 A S (%) K (7.2.7)

<x,,(1 -4 )x, + er(xr)> =0.
Dividing both relations in (7.2.7) by A, we obtain that {x,}  isan EFE for

fwith respect to K We have the following result.
THEOREM 7.2.7. Let (H , (-, >) be a Hilbert space, K — H a closed
convex cone and f: K— H. If f is regular and completely continuous then:
(1) either the problem NCP(f, K) has a solution,
(2) or fhas an EFE with respect to K.

Proof. This result is a consequence of Theorem 7.2.6 and of the remark
presented above. o

Now, we give an application to the study of complementarity
problems with respect to some particular nonconvex sets. Let (H , (-, >) be a

Hilbert space and D c H a closed non-empty set. We define the dual D* of
the set D by

D’ :{yeH:<x,y>20,forallxeD} .
We say that D is star-shaped with respect to a convex set 4 D, if and only
if, x € D whenever Ax + (1 —A)ye D forsomey € A and any 4 € [0, 1].

Let £> 0 be a real number, eventually very small. We say that D is
g-convex, if and only if whenever [x, y[ < conv(D)\ D, we have |y —x| < &.

We recall that [x, y[ = {ﬂy +(1-A)x: 1€ [O, 1[} . We denote by K(D) the
smallest closed convex comne such that D < K(D). We say that a non-empty

subset D — H is a locally compact pointed conical set if the following
properties are satisfied:

(c)) forallxe D and all A € R. we have Ax € D,
(e2) K (D) (- (D)) ={0}.

(c3) K (D) is alocally compact convex cone.
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For some practical problems the following examples are interesting,
supposing that D is a locally compact pointed conical set.

@8 D:UK , wWhere for every i € I, K is a polyhedral cone not

iel
necessarily convex. K (D) must be locally compact.

(2) D N Biis a set, star-shaped with respect to a convex set A ¢ D N B,
where B is a base of K (D).

(3) D n B is an g-convex set, with £> 0 very small, where B is again
a base of K (D).

If f: H— H is a mapping we can consider the complementarity problem

defined by fand D is:
find x, € D such that
NCP(f’D):{f(x*)e D' and (x., f (%)) =0.
We say that the set R(D;K)=K(D)\D is the residual set of D with
respect to K (D). Obviously 0¢ R(D; K) and R(D;K) isempty if Disa
closed pointed convex cone. The following result is due to G. Isac.

THEOREM 7.2.8. Let D c H be a non-empty, locally compact closed and
pointed conical set. D is supposed to be nonconvex. Let f : H—~> H be a

continuous bounded mapping. If there exists p > 0 such that the following
assumptions are satisfied.

(1) for every x € K (D) with |jx|| = p, there exists y € K (D) such
that |y| < p and {f (x),x - )20,
(2) for every xeR, (D; K) = {z € R(D;K) : Hz” < p} , there exists
ye K(D) with |[y|| <||x|| such that <f(x),x —y> >0,
then the problem NCP(f, D) has a solution x» such that ||x+|| < p.

Proof. Let € > 0 be a real number. Consider the mapping
/. (x):= f(x)+e&x, for any xe h. The mapping f, satisfies the following
properties:

(i) [z is continuous and bounded,

(i)  for every x € K (D), with ||x|| = p, there exists y € K (D)

such that |y|| < p and <fg (x),x—y>>0,
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(iii)  for every x € R,(D;K), there exists y € K (D), such that
bl < p and (f, (x),x~y)>0.

PX

For each x € K (D), with |jx|| > p we denote T, (x)=ﬂ
x

(the radial

projection onto S :{x € K(D):”x” = p} ).

Now, we consider the mapping g,: K (D) — H defined by
{1 b
‘ fg(Tp(x))-f-”x—Tp(x) x,if”x“>0.
We can show that g, satisfies the following property:
(iv)  foreveryx € K (D), with|x||> p, there exists y € K (D) with

|l <|Ix|| such that <x -8, (x)> >0.
(For the proof of this property see (Isac, G. [30]). Therefore g. satisfies
property (6 ) and hence it is without EFE with respect to K (D). The

mapping g. is also completely continuous and regular (Isac, G. [30]).

Applying Theorem 7.2.7 we obtain that for any &> 0 the classical
problem NCP(g,,K (D)) has a solution x,. Because of the fact that g,

x.|l<p, which implies that

g, (x: ) =1, (x:) . Therefore, for any &> 0 the problem NCP (fg,][((D))
has a solution x_ such that || x_|| < p . Considering the fact that f; satisfies

property (iii), we have that
x,e{xeD:|x|<p}=D,.

P

satisfies property (iv) we must have

1 . R
Ifforanyn =1, 2, ... we take £ =—, we obtain a sequence {xl } such
n

neN

that x; €D, and for any me N, x, is a solution to the problem

n

NCP ( £ K (D)) . Because D is a closed locally compact pointed conical
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set, D, is compact and hence the set {x; } has a convergent subsequence
neN

n

{x*l } . As a consequence, ll{im x', is an element of D. (K (D)) c D,
m Jgen e

we obtain that x. is a solution to the problem NCP(f, D) and |x+|| < p. The
proof is complete. a

Remark. To include in the class of EFE-acceptable mappings the regular
completely continuous mappings used in Theorem 7.2.6 and 7.2.7 it is
necessary to introduce the following more general definition.

DEFINITION 7.2.1. We say that a mapping f: H— H is REFE-acceptable
with respect to K if either the problem NCP(f, K) has a solution, or the

mapping f has an EFE {x,}bo c K with nx, ”zr, for any r > 0 (ie,

{x, }DO is a regular exceptional family of elements with respect to K).

This class of mappings was systematically used in (Isac, G. and Nemeth, S.
Z. [6]), and many interesting results where obtained for nonlinear and linear
complementarity problems.

7.3 A necessary and sufficient condition for the non-
existence of an exceptional family of elements for a
given mapping

In Chapters 5 and 6 we presented several sufficient conditions for the
non-existence of exceptional families of elements for a given mapping. It is
interesting to know if a necessary and sufficient condition for the non-
existence of an exceptional family of elements exists. In this section we will
show such a condition, which is due to G. Isac and S. Z. Németh. The proof
of this result follows an idea proposed by S. Z. Németh in (Isac, G. and
Nemeth, S. Z. [6]).
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THEOREM 7.3.1. Let (H,(.)) be a Hilbert space, K c H a closed

convex cone and f: H—> H a mapping. A necessary and sufficient condition
Jfor the mapping f to be without an EFE with respect to K is the following:

There exists a real number p > 0 such that for any x € K with ||x|| > p at
least one of the following conditions holds:

(M (f(x).x)=0,

(2) there exist y € K such that Hx“2 <f(x),y> < <x, y> <f (x), x>.

Proof. First, we suppose that f is without an EFE with respect to K We
prove that in this case at least one of conditions (1), (2) is satisfied. Now,
we suppose to the contrary, that for any » > 0 there is an x, € K with |jx|| >
such that the following conditions hold:

O (f(x).x)<0,

(ii) ”x,ll2 <f(x,),y> 2<xr,y><f(xr),xr>, forany ye K .

We consider the real number

(£ (x).x)

T e
x?’
Then by condition (i), g > 0. Let u, = 1.x, + f (x,). Then we have
(u,,x,)=0. (7.3.1)
Dividing condition (ii) by “xr ||2 we have
<f(xr)>y>2_lur <xr’y> 2 foranyy € K

Hence (u,,y)20 foranyy € K, i.e., u, € K. Since ”xr ” >r we have that

Hx, “—>+oo as r -+ . Therefore, the family {x,} _ is an exceptional

r>0

family of elements for fwith respect to K

Conversely, we suppose that at least one of conditions (1), (2) given
in the theorem is satisfied and we prove that f is without an EFE with

respect to K. Indeed, we suppose the contrary, i.e., we suppose that
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{x,} , < Kis an EFE for fwith respect to K, with corresponding 4, and ,

(as given in Definition 7.1.1). Because |x, || — +c as» — +o0, there is an

ro> 0 such that ”er “2 p.Since u, =p, x, + f(xro) and (urD )X, > =0, we

r(s)s)

2

have

O<p, =~
X,

()

Hence, < f (x,D ),xro > < 0. Since ero ” > p, the previous relation implies that

condition (1) of the theorem is not satisfied. Hence, condition (2) of the

theorem must hold. Because > o, we must have

’ <f(x,0 ),y> < <x,0 ,y><f(x,0 ),xro >,for someye K. (7.3.2)
Dividing (7.3.2) by ﬂxrﬂ “2 we obtain that

(f (% )-2) <=4, (%,.9),

and therefore, <urﬂ s y> < 0. Hence u, & K" . But this contradicts condition

xro

X

K}

(1) of Definition 7.1.1. We conclude that fis without an EFE with respect to
K D

By Corollary 7.1.3 and Theorem 7.3.1 we obtain the following existence
result.

THEOREM 7.3.2. Let (H,<~,->) be a Hilbert space, K — H a closed

convex cone and f: H— H an EFE-acceptable mapping. If there is a p> 0
such that for any x € K with ||x|| > p at least one of the following conditions
holds:

() (f(x).x)=0,

(2) there exists an element y € K such that

el” (7 (), ») < 2)( £ (2), %)

then the problem NCP(f, K) has a solution.

From Theorem 7.3.2 we deduce the following consequence.
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COROLLARY 7.3.3. Let (H,(-")) be a Hilbert space, K  H a closed

convex cone and f: H— H an EFE-acceptable mapping. If there is a p> 0
such that for any x € K with ||x|| > p, there is ay € K such that <x, y> <0

and <f(x),y> <0 (or (x,y> <0 and <f(x),y> <0, then the problem
NCP(f, K) has a solution.

Proof. Indeed, if x € K is such that |x|| > p and < f (x),x>20, then
assumption (1) of Theorem 7.3.2 is satisfied. If < f (x),x> <0, then in this

case, the assumptions of our corollary imply that assumption (2) of
Theorem 7.3.2 is satisfied. Therefore the conclusion of our corollary follows
from Theorem 7.3.2. i

Remark. Theorem 7.3.1 has many and interesting consequences presented
in (Isac, G. and Németh, S. Z. [6]).

In this sense we give without proof the following interesting result.
If f: H— H is a mapping, we define

(Q(f)(x)zﬂxu2 f(x) —<f(x),x>x , forany x € H.
We say that @ is the orthogonalizer of f and we have <0( f )(x),x> =0
forall x € H If Kc His a closed convex cone, we say that a subset U of K

is a face if it is a closed convex cone and if from x € U, y € K and

x —y e Kitfollows thaty € U.

THEOREM 7.3.4. Let (H ,(-,~>) be a Hilbert space, K < H a closed
convex cone, f: H—> H a mapping and F = O( f) the orthogonalizer of f.
Then the mapping f is without an EFE with respect to K if and only if there

exists a p> 0 such that for any x € K with ||x|| 2 pwe have:

(1) If xeint(K), then exactly one of the following conditions holds:

(a) x is not an eigenvector of f;
(b) x is an eigenvector of f with nonnegative eigenvalue,
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(2) Ifx € JK, then at least one of the following conditions holds:
@ (f(x),x)=0,

(b) if V is the minimal face of K with respect to inclusion which
contains x, then I (x) gV, , where V, c K ' is the orthogonal

complementer face of V with respect to K i.e.,
v ={ze./[(* :(x,z>=0foraller}
(We can show that V| is a face of K" .)

Proof. A proof of this result is given in (Isac, G. and Németh, S. Z. [6]). ©

This theorem has many and very interesting consequences. We cite without
proof only the following results.

THEOREM 7.3.5. Let f=(f,f,....[,):R" > R" be a continuous
mapping. If there is a p> 0 such that for any x € R with ”x” > p we have:

(1) If xeint (Rf) and x is an eigenvector of f, then its corresponding

eigenvalue is nonnegative,

Q) if x=(x,x,,...,x,)€0R" and <f(x),x><0, then there exists
I e{l,2,..,n} such that x, =0 A f, (JC)SOV)C,.O >0A f, (x)ZO,
where A and v denotes the “logical and” and the “logical or”

respectively,
then the problem NCP ( f, R ) has a solution.

THEOREM 7.3.6. Let f = A + b, where A: R" — R" is a linear mapping

with entries a,i, j € {1,2,...,n} with respect to the canonical basis of K"

and b= (b1 ,bys.b ) is a nonzero constant vector. If there is a p> 0 such

n

that for any x € R’ with Hx“ > p we have:

(1) if A is not an eigenvalue of A and x=(A4 - /11)71 be R’

++2

then A is

non negative,

) if x=(x,...x,)€0R! and Zn:a,x.xj +ibix,. <0, then there
ij i=1

/A

exists i, € {1, 2,...,n} such that
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LY AR

X, :O/\Za,.oj +b, <0 vx, >0/\Za. X, +b, 20,
Jj=1 j=1
then the linear complementarity problem LCP (A, b, R’f) has a solution.

Proof. A proof of this result is in (Isac, G. and Nemeth, S. Z. [6]). o

For other results on this subject the reader is referred to (Isac, G. and
Németh, S. Z. [6]).

7.4 Exceptional family of elements. Generalization to
Banach spaces

For applications of complementarity theory to practical problems it is
important to know if the notion of EFE can be extended from Hilbert spaces
to Banach spaces. In this sense we give a generalization of the notion of
EFE to uniformly smooth and uniformly convex Banach space. This
generalization is obtained considering the “generalized projection operator”
defined by Y. Alber presented in Chapters 1 and 2 and we use the notation
and the terminology introduced in the cited chapters.

Let (£

space. Letf: E — E be a mapping and Q c E a closed convex set.

) be a uniformly convex and uniformly smooth Banach

DEFINITION 7.4.1. If x € Q is an arbitrary element, then the generalized
normal cone of Q at the point x is

NQ(x):{y* eE :(y,,,u—x)SO,forallueQ}.

Remark. The generalized normal cone No(x) is a subset of the dual space
E'. If E is a Hilbert space, Q < E is a closed convex cone and xe €, then

in this case Ng(x) is the classical normal cone No(x) c E of the set Q at the
point x.
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PROPOSITION 74.1. An element y, € Q has the property that
v, =11, (».), where y« € E' and T1,(*) is the generalized projection if

andonly if y.eJ ( Yo ) + N, ( Yo ) (J is the duality mapping.)

Proof. Indeed, by Theorem 2.3.8 we have that y, =TI, (3.), if and only if,
for any # € Q we have

<y* —J(yo)ayo -u>20:
or

<y, —J(yo),u—yo>S0forallueQ,

that is, y. —J(¥)eN,(¥,), ie. yeJ(y)+Ny(»). So, the
proposition is proved. a

Now, we suppose that QQ = K < E, where K is a closed convex cone.

DEFINITION 7.4.2. We say that a mapping f: E —E" is a J-completely
continuous field, if f has a representation of the form f(x)=J(x)—-T(x)
for all x € E, where T: E —E' is a completely continuous mapping.

Now, we can define a notion of EFE for J-completely continuous fields.

DEFINITION 7.4.3. We say that a family of elements {x,} c K is an
exceptional family of elements (EFE) for a J-completely continuous field
f(x)=J(x)-T(x), with respect to a closed convex cone K C E, if and

only if, for every real number v > 0, there exists a real number y, > 1 such
that

M
()  T(x)-J(gx)eN;(1x).

X, || —>+oasr —> 40,

Remark. In the case of Hilbert space, the notion of EFE defined by
Definition 7.4.3 is the notion of EFE defined by Definition 7.1.1. The
notion of EFE used in this section will be in the sense of Definition 7.4.3.

We have the following result.
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THEOREM 7.4.2. Let (E,

) be a uniformly convex and uniformly smooth
Banach space, K  E a closed convex cone and f: E —E a J-completely
continuous field with the representation f(x)=J(x)—T(x). Then there
exists either a solution to the problem NCP(f, K) or f has an EFE with

respect to KK (in the sense of Definition 7.4.3).

Proof. Because the problem HSVI(f, K) is equivalent to the problem
NCP(f, K), by Theorem 2.3.9, we have that the problem NCP(f, K) has a

solution, if and only if the mapping
Wy (x)=T, [J(x)—f(x)]:HK [T(x)},foraller ,
has a fixed-point (which is obviously in K). If ¥, has a fixed-point, the

proof is completed.

Assume that the problem NCP(f, K), has no solution. Obviously, in
this case the mapping ¥, is fixed-point free. We observe that W,
satisfies the assumptions of Theorem 3.2.3 [Leray—Schauder alternative]
with respect to each set B, ={er “|x“£r} with 7 > 0 (because T is

completely continuous and Iy is uniformly continuous on each bounded
subset of the space). Then applying Theorem 3.2.3 to each set B,, we obtain
for each » > 0 that there exists x, € 0B, and there is a real number 4, € ]0,1[
such that x, = 4,1, (T(x,)) and we have that x, € KX for each > 0. From

Proposition 7.4.1 we obtain that T'(x,)e.J [—E’—j + Ny (%J Let 4, :—;—

r r r

for all » > 0, then we obtain:
@) |x||=rand p, >1, for all r >0,

(b) |

(C) T(xr) - J(/‘rxr ) € NK (lurxr) >
and the conclusion of the theorem is achieved. O

X, ||—>+0asr—+o,
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Remark. A consequence of Theorem 7.4.2 is the fact that if we know that
the J-completely continuous field f: E »E" is without EFE, the NCP(f, K)

has a solution. Therefore it is interesting to have some conditions that imply
the non-existence of an EFE for a given mapping.

Now, we give some results in this sense. First we show condition
(6) works also on Banach spaces. We give the definition of this condition
for Banach spaces.

DEFINITION 7.4.4. We say that a mapping f : E —E satisfies condition
(6) with respect to a closed convex cone K C E if there exists a real number

p > 0 such that for each x € K with ||x|| > p, there exists y € K such that

IVl < [}xI| and <f(x),x—y>20.

THEOREM 7.4.3. Let (E,
Banach space. If f : E —E is a J-completely continuous field satisfying

) be a uniformly convex and uniformly smooth

condition (0) with respect to a closed convex cone K c E, then fis without

an EFE, with respect to K , and the NCP(f, K) has a solution.

Proof. Suppose, by contradiction, that f has an EFE with respect to K
namely {x,} . Then for all » > 0, we have |x,|=r, y,x, € K with g, >0
and J(x,)— f(x,)—J(u,x,)eNg (1,x,), thatis

<J(x,)—f(x,) -J(mx,),y —,urx,>S0, forallye K . (7.4.1)
Because f satisfies condition (6), with respect to &, we have that for any r

sufficiently large, there exists y, € K such that ||x,|| > p and

(f(x.).x, —y,)=0.

<

X

r

Yy

Considering equation (7.4.1) and using the fact that the operator J is
homogeneous we have:
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0

IA

(7 (%)% =)

(7 (x )+f )+ (4, ,)+J(X)—J(ﬂrxr),x,—y,>

(I )+ £ )+ I ()%, =)+ (T (5) =T (1,%,).%, - ,)
<(J(x)-JI(&x),% - ,).

We used the following relation in the last inequality:

4, <—J(x,)+f(x,)+J(,u,x,),x, —y,>
=(~J (%) +f () + I (%,). 3, ~ 1.3,

=(J(x) = F (%) =T (%) 1,5, — #,%,) <0,
(because 1 y, € K ), which implies

<—J(x,)+f(x,)+J(,urx,),x, —y,>S0.

Therefore we have
0<(J(x)=J(1x.).% = 3,)=(J (%) -4 (x,).%, - ¥,)
=(1=1) (I (%)% =5, = (=) (5[ - (7 (x).2.)

== )% + (s -D){J(x,).5,)
<(1=)|lx [ +(x,

=(t=) %[ + (s =Dy
<(U=p) %+ (o, =Dl

=0

which is a contradiction. Hence f is without EFE with respect to K. The

conclusion of the theorem follows from Theorem 7.4.2, and the proof is
completed. O

The following condition was considered in Chapter 5 in Hilbert
spaces. Now, we give this condition for Banach spaces.

DEFINITION 7.4.5. We say that a mapping f: E — E satisfies condition
[DT] with respect to a closed convex cone K C E if there exist two bounded
subsets Dy and D+ in K such that for each x € K \ D« there is a
ye conv(Do ) {x}) such that <f(x),x - y> >0.
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We have the following result.

PROPOSITION 7.4.4. Iff: E — E  satisfies condition [DT] with respect to

a closed convex cone K C E, then f satisfies condition (6).

Proof. Because Dy and D« are bounded subsets in K there exists a real
number p > 0 such that D, D, c(Ep)mK. If x € Kis such that ||x|| > p,

then by condition [DT], there is an element ye conv(DO v {x}) such that
<f(x),x—y>>0. We have y=Ax, +(1-A)x with A e [0, 1] and
x, € D,, which implies

[ < Al + (1= 2) ] < Al + (1= 2) Jl = 1+
Therefore, f'satisfies condition (6) with respect to K o

DEFINITION 7.4.6. Let f,g:E — E" be two mappings. We say that the
mapping f is asymptotically g-pseudomonotone with respect to a closed
convex cone K c E, if there exists a real number p > 0 such that for all

, p} <|x|, we have

<g(y),x—-y>20 implies <f(x),x—y>20.

x,y € Kwith max{"y

This notion implies the following result.

THEOREM 7.4.5. Let (E,

) be a uniformly convex and uniformly smooth

Banach space, K c E an arbitrary closed convex cone and f g : E —E

mappings such that f is a J-completely continuous field. If f is asymptotically
g-pseudomonotone with respect to K and the problem NCP(g, K) has a

solution, then f is without an EFE with respect to K and the NCP(f, K) has

a solution.

Proof. Let x: be a solution to the problem NCP(g, K). Then for all y € K,

we have < g (x‘), y- x,.> >0 . Since f is asymptotically g-pseudomonotone
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with respect to & there exists a real number p > 0 such that for all x, y € K
with max{||y|, o} <||x] we have that <g (»),x- y> >0 implies
<f(x),x—y>20 . Take p, = max |

|Ix]] > b, we may take x+ € K Because

X+ 1,p+1}. Then for any x € K with

X, <"x” and <g(x,,),x—x*>20 ,
we have that ( f (x), x— x*> 20, that is, f satisfies condition (&) with respect
to K Now applying Theorem 7.4.3 the conclusion of this theorem is
achieved. a

Remark. If in Definition 7.4.6 we take g = f, we have that f is
asymptotically pseudomonotone, with respect to K. Obviously, if f is

monotone it is asymptotically pseudomonotone, but the converse is not true.

The following result follows from Theorem 7.4.5.

COROLLARY. 7.4.6. Let (E,

) be a uniformly convex and uniformly

smooth Banach space, K c E a closed convex cone and f: E —E a J-

completely continuous field. If f is asymptotically pseudomonotone with
respect to KK then the problem NCP(f, K) has a solution, if and only if, f is

without an EFE with respect to K.

Remarks.
(1) The results presented in this section are due to G. Isac and J. Li and
can be found in (Isac, G. and Li, J. [3])
(2) The subject of this section may be a starting point for new
developments related to the notion of EFE and its applications to
the study of complementarity problems in Banach spaces.
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EXCEPTIONAL FAMILY OF ELEMENTS
AND VARIATIONAL INEQUALITIES

In the first chapters of this book we noted that there exist deep
relations between complementarity problems and variational inequalities.
Considering this fact it is natural to extend the notion of EFE and the
method based on this notion, from complementarity problems to variational
inequalities. In my lectures given in 1996 at the Institute of Applied
Mathematics of Academia Sinica (China) I presented the problem to do this
extension. The first work dedicated to this extension was the PhD thesis
presented by Y. B. Zhao in 1998, [2].

The results explored in this chapter represent the development of
this subject until now. See the papers: (Bianchi, M, Hadjisavvas, N. and
Schaible, S.[1]), (Isac, G. and Cojocaru, M. G. [2]), (Isac, G. and Motreanu,
D. [1]), (Isac, G. and Zhao, Y. B. [1]), (Zhao, Y. B. [1], [4]), (Zhao, Y. B.
and Han, J. Y. [1],), (Zhao, Y. B., Han, J. Y. and Qi, H. D. [1}]), (Zhao, Y.
B. and Li. D. [1]), (Zhao, Y. B. and Sun, D. [1]).

In the papers cited above the reader can find other results, which are
not presented in this chapter. We note that, to extend the notion of EFE
from complementarity problems to variational inequalities, we can follow
two ways: one is to use the (explicit) Leray—Schauder alternatives and
another is to use the implicit Leray—Schauder alternative.

8.1. Explicit Leray—Schauder type alternatives and
variational inequalities

As we noted in the introduction of this chapter, the first extension of the
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notion of EFE from complementarity problems to variational inequalities
was realized in the PhD thesis (Zhao, Y. B. [2]). In this thesis Y. B. Zhao
considered variational inequalities in the n-dimensional Euclidean space

(ZKP",(-,-)), with respect to unbounded closed convex sets, defined by

inequalities and equalities (considered as constraints). The constraints are
defined by continuously differentiable functions. We note that the notions of
EFE are obtained using the topological degree and the classical optimality
conditions. The notions of EFE obtained by this method have a long
expression. Consequently it is hard to obtain existence theorems for
variational inequalities using these notions. Moreover, the generalization to
infinite dimensional Hilbert spaces of this notion is not so easy, even
impossible.

To pass over these difficulties we use the normal cone, which can
be associated to any closed convex set, and we replace the topological
degree by the Leray—Schauder Alternative. In this way we obtain an elegant
and simple method, as it will be developed in this chapter. However, to
inform the reader about the method developed in (Zhao, Y. B. [2]) we give a
few notions and results, due to Y. B. Zhao.

Let (/R",(;-)) the n-dimensional Euclidean space and Q — R" a

non-empty unbounded closed convex set. We suppose that Q is defined by:
Q={xeR":E(x)<0,H(x)=0},
where E: R"—> R™ and H: R" — R' are continuous and differentiable
functions. The components E, (x)(i=1,2,..,m) are convex functions and
H, (j = 1,2,..,1) are linear functions. Let f, g : R" — K" be two mappings.
We consider the following finite-dimensional generalized variational
inequality
find x, € R" such that
VI(f,g.Q):4g(x)eQand

<f(x*),x—g(x*)> >0 for all xe Q.
We know that this variational inequality contains as particular cases the
classical (Hartman—Stampacchia) variational inequality and the nonlinear
complementarity problem. We know also that the solvability of this problem
is equivalent with the solvability of the nonlinear equation

g(x)- P (g(x)- f(x)=0.
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DEFINITION 8.1.1. Let f and g be continuous mappings of R" into R".
Let xy be an arbitrary element in R". A family {xr}r> , © R is said to be

an EFE with respect to x,, Q, and the pair of mappings (f, g) if the following
conditions are satisfied:

(1) |x|| >+ asr — +oo,

(2) for each x, there exist some vectors A € R",u € R' and some
scalar o, > 1 such that e(x,,a,)=a,g(x,)+(1-2,)g(x,)eQ,
and the following two equations hold.

£ () =~(e, -1)(g(x)-2(x)),
_%[VE(e(x,,a,))T A+ VH(e(x,,a,))T ,u,}

-(i )/ E, (e(x,,a,)) =0, i=12,...m

3

THEOREM 8.1.1. Let f, g © R" —> K" be two mappings. The mapping g is
supposed to be one-to-one (injective). Let x, be an arbitrary element in K" .
Then the problem IVI(f, g, Q) has either a solution or an EFE with respect
to xg and Q ( in the sense of Definition 8.1.1).

Proof. Let ®(x)=g(x)- P, ( (x)- f(x)), for any x € R". It is well

known that x solves the problem IVK(, g, Q) if and only if ®(x,)=0.We
consider the following homotopy between the mappings g(x) — g(x,) and

D(x):
ﬂ(x,t)=t[g(x)—g(xo)]+(1—t)d>(x), tefo.1].

Brz{xeﬁ?”: ”x—x()“<r},
aBrz{xGR": ”x—xoﬂ=r}.

Obviously, 0B, is the boundary of B,. Two cases are possible.
M There exists an #» > 0 such that

Oez{]{(x,t):xeéBr andte[O,l]} .

We denote

(1D For each r > 0, there exist some point x, € 0B, and ¢, € [0, 1]
such that
0=7f( x,,t, =, [g(x) g(x ]+(l—t ) 8.1.1)

If the case (1) holds, then we have
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deg(g(x)-g(x,).B,,0)=deg(®(x),B,,0). (8.12)
Since g is one-to-one in K" we have ldeg(g(x)—g(xo),Br’()» =1. [See

(Lloyd, N. G. [1])]. Then, in this case the equation ®(x) = 0 has at least a
solution.

Now, we suppose that the case (II) holds. When ¢, = 0 (8.1.1)
reduces to d(x,) = 0. Hence, x, is a solution to the problem IVI(f, g, Q). If
t, = 1, from (8.1.1) we have g(xr):g(xo) which implies that x, = x,
(because g is one-to-one). This fact is impossible since x, € 0B,. Therefore,
it suffices to consider the case that ¢, € 10, 1] for each » > 1. From the
definition of @ and the relation (8.1.1) we have

() g ()= (s(x) - () <@ 1)

11, 1-1,
Let a, :——1——. Denote
1-¢,
1 L
() =g (%) +(1-2) g (%) =g (x.) - ——g (x).

By (8.1.3) and the properties of the projection operator Pq, e(x, @) is the
unique solution to the following optimization problem (whose solution is

completely characterized by the Karus—Kuhn-Tucker optimality
conditions):

minimize Q(x)(: Hx - [g(x,) - f(x, )]“2 ),
st xel

Consequently, there exist two vectors A, € R” and u, € &' such that the
following equations hold:

VO(e(x,.,))+ VE(e(x,.a, ))7 4, +VH (e(x,.a, ))1 u =0,
(), E (e(x,.2,))=0, i=12,.,m.
We note that VQ(x):2[x—(g(xr)—f(xr ))] is the gradient of QO(x).

Rearranging the terms in the last equations, we obtain:
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f(x)==(a, -1)(g(x)-2(x))
_%[VE(e(xr,ar))T A+ VH(e(xr,a,))T ,u,},
(4.),E (e(x,,2,))=0, i=12,.,m.

Obviously, because “x, - xOH =r, we have that, |x ]] —> 4w as r — +0 and

{xr}bo is an EFE with respect to x, and Q for the pair (£, g) in the sense of
Definition 8.1.1. o

In Theorem 8.1.1 the assumption that g is one-to-one is a strong condition.
To eliminate this assumption we introduce another notion of EFE.

DEFINITION 8.1.2. Let f and g be continuous mappings from R" into
R" . Let xo be an arbitrary element in R" . We say that a family of elements
{x, }r> ,C R" is said to be an EFE with respect io xo, Q2 and the pair (f, g) if

the following conditions are satisfied.:
n Hx, H —> 40 gs ¥ —> +0 ,

(2) for each x,, there exist some vectors A, € R", yu < K. and a scalar
o, > 1 such that ¢(x,,a,)=(a, —1)(x, —x,)+g(x,) e K , and the
following two equations hold
£(x)=~(@, ~)(x,~x)
_%[VE(c(xr,ar))T A+ VH(c(x,,a,))T y,},
(/1,)’, E, (c(xr,ar)) =0, i=12,...,m.

We have the following result.

THEOREM 8.1.2. Let f, g : R" — R" be two continuous mappings and let
xo € R" be an arbitrary element. Then either the problem IVI(f, g, Q) has a
solution or there exists an EFE (in the sense of Definition 8.1.2) with
respect to xy and Q.

Proof. The proof is similar to the proof of Theorem 8.1.1, but using the
homotopy, # (x,t)=t(x-x,)+(1-¢)®@(x), r€[0,1]. For more details
the reader is referred to (Zhao, Y. B. [2]). i

From Theorem 8.1.1 and 8.1.2 we deduce the following result.
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THEOREM 8.1.3. Let f, g: R" > R" be two continuous mappings.

(1)  If there exists an element xy € R" such that the pair (f, g) is without
an EFE (Definition 8.1.2) with respect to x, and ), then the problem
IVKY g Q) has a solution.

(i)  If the mapping g is one-to-one and there exists an element xo € K"
such that the pair (f, g) is without an EFE (Definition 8.1.1) with
respect to x, and Q, then the problem IVI(f, g, Q) has a solution.

Motivated by the results presented above it is of interest to know conditions
that guarantee that a pair of mappings (f, g) is without EFE with respect to

an element x, € K" and to a set QQ defined as above. Several conditions in
this sense are given in (Zhao, Y. B. [2]).

Now, we cite without proof only the following condition.

THEOREM 8.14. Let f, g : R" > R" be two continuous mappings. The
mapping g is supposed to be one-to-one. If there exists a point x, € g’ (Q)

such that, for each family {xr}r>oc RB" with erH—>+oo asr —+wo and

{ g (x, )}DO c Q| there is an element x, # x, such that

(f(x).8(x) -2 (x))=0,
then the couple (f, g) is without an EFE (in the sense of Definition 8.1.1)
with respect to xy and €.

Proof. A proof of this result is given in (Zhao, Y. B. [2]). o

Other similar results and other kinds of EFE based on optimality conditions
are presented in (Zhao, Y. B. [2]) and in the papers: (Zhao, Y. B. [1], [4]),
(Zhao, Y. B. and Han. J. Y. [1]), (Zhao, Y. B., Han, J. Y. and Qi, H. D. [1]),
(Zhao, Y. B. and Li, D. [1]) and (Zhao, Y. B. and Sun, D. [1}).

Now, we replace the method developed by Y. B. Zhao, by our
method based on Leray—Schauder alternatives. Let (H ,<-, >) be a Hilbert

space and Q) C H a non-empty unbounded closed convex set. We denote by
Pq, the projection operator onto Q (which is well defined) and for any real

number r > 0 we denote B, = {x eH: “x“ < r} .Ifx € Q, we recall that the

normal cone of Q at the point x is
Nﬂ(x):{feH:<§,y—x>S0,forallyeQ}
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or N, (x)= —[TQ (x)T , where T, (x) is the tangent cone of Q at the point
x,i.e., T, (x) :U i(Q - x) .

A>0
Given mapping f : H — H, we consider the following classical variational
inequality defined by fand ©).

(f.Q find x, € Q such that
(f» ) <x_x”f(x*)>20,foralleQ-

DEFINITION 8.1.3. We say that {x,}r> , © H is an exceptional family of

elements EFE for a completely continuous field fx) = x — 1(x) defined on H,
with respect to the subset Q, if the following conditions are satisfied:
(1) |x || > +casr—+o0,

(2) for any r > 0 there exists a real number > 1 such that p,x, € Q
and T(x,)~ p,x, € Ny (1.%,).

With respect to this notion we have the following result.

THEOREM 8.1.5. Ler (H,(.-)) be a Hilbert space, Q < H an arbitrary

unbounded closed convex set and f: H— H a completely continuous field
with a representation of the form fix) = x — T(x), where T : H > H is a
completely continuous mapping(linear or nonlinear). Then the problem
VI(t, Q) has at least one of the following two properties:
(1) VI, Q) has a solution,
(2) The completely continuous field f has an EFE with respect to Q (in
the sense of Definition 8.1.3)

Proof. We know that the problem VI(f, Q) has a solution if and only if the
mapping ,®(x)="F, [x - f(x)] =P, (T(x)), xeH, has a fixed-point
(in H). Obviously, this fixed-point must be in Q. We observe that the
mapping @ is completely continuous. The set BT has a non-empty interior

and O eint (E) Only two situations are possible:

(1) The problem VI(f, Q) has a solution. In this case, the proof is complete.
(Il) The problem VI(f, Q) has no solution. In this case the mapping @ is

fixed-point free with respect to any set E:, because if @ has a fixed-
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point in ;3: we have that the problem VI(f, Q) has a solution, which is a
contradiction. Now, since Er is bounded and @ is completely

continuous, we have that @ restricted to E is a compact continuous
mapping. The assumptions of Theorem 3.2.4 are satisfied. Therefore,
there is an element x, € 0B, such that x, =4 P, (T (x, )) for some

A € [0, 1[. We know that for each x € H, y = Pg(x) if and only if
xey+ N, (y) . By using this result we have that

orlteonf( 2]

If we denote u, = /'LL for any » > 0, then we obtain

(i) eru=randy, >1 foranyr >0,
(i) Hx, € Q forany r> 0,
(i)  T(x,)-u,x €N, (ux,) forany r>0.

Since Hx, ﬂ—>+oo as r —>+oo, we deduce that {xr} is an exceptional

r>0
family of elements for f with respect to Q (in the sense of Definition 8.1.3).
o

COROLLARY 8.1.6. Let (H , (-, >) be a Hilbert space, Q2 c H an arbitrary

unbounded closed convex set and f (x)=x—T(x) a completely continuous

field on H. If f is without an EFE with respect to Q (in the sense of
Definition 8.1.3), then the problem VI(f, Q) has a solution.

Theorem 8.1.5 can be extended to variational inequalities for set-
valued mappings in the following manner. Let 2 : H —> H be a set-valued

mapping and Q < H a non-empty unbounded closed convex set. We
consider the problem

find (x*,y,, ) € Qx H such that

b ef(x*)and<u—x*,y*>20,f0r all ue Q.

We know that the problem MVI(h, Q) has a solution if and only if the set-
valued mapping 7, [x —h(x)i‘ has a fixed-point in H; i.e., there exists an

MVI(h,Q):{

element x. € H such that x, € B, [x, —h(x.)]. In this case there exists

y. €h(x) such that x, € P, [x. —y.], which implies that (x.,y.) is a
solution to the problem MVI(h, Q). Now, we suppose that f: H > His a
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set-valued mapping of the form fx) = x — T(x), where T: H — H is a set-
valued mapping. We introduce the following definition.

DEFINITION 8.1.4. We say that {x,} < H is an EFE for the set-valued

mapping fix) = x — T(x), with respect to the subset Q, if the following
conditions are satisfied:
@))] —> +0 as ¥ —>+w,

(2) for any r > 0 there exists a real number u. > 1 and an element
y, €T(x,) suchthat pux, €Q, and y, — p,x, € Ny (,%,).

xr

We have the following result.

THEOREM 8.1.7. Let (H ,<-, >) be a Hilbert space, Q) — H an arbitrary
unbounded closed convex set and f : H — H a completely upper
semicontinuous fleld with a representation of the form f(x)=x-T(x),

where T : H — H is a completely upper semicontinuous set-valued mapping
with non-empty compact contractible values. Then the problem MV, )
has at least one of the following two properties:
(1) MVKY, Q) has a solution,
(2) the completely upper semi-continuous field f has an EFE with
respect to Q) (in the sense of Definition 8.1.4).

Proof. The proof is similar to the proof of Theorem 8.1.5. We consider the
set-valued mapping @ (x)=PF, [x - f(x)] =P, (T(x)). We can show that
F, (T (x)) is a set-valued mapping with compact contractible values, all the

assumptions of Theorem 3.6.6 are satisfied and the proof follows the proof
of Theorem 8.1.5. m

A consequence of Theorem 8.1.7 is the following result.

COROLLARY 8.1.8. Let (H , <~, >) be a Hilbert space, Q c H an arbitrary
unbounded closed convex set. Let f(x)=x—T(x) be a completely upper

semi-continuous field, where T : H — H is with non-empty compact
contractible values. If f is without an EFE with respect to Q (in the sense of
Definition 8.1.4), then the problem MVK{, Q) has a solution.
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For other results related to the problem VI(f Q) the reader is
referred to (Isac, G. and Zhao, Y. B. [1]). In the cited paper are also

presented other results related to the problem VI(f, Q), where the set Q is
defined by

Q:{er:gi (x)SO,...,gm (x)SO},

where g1, 2&,...,gn : H— R are continuous real-valued convex functions.

Remark. Theorem 8.1.5 is valid for £-set fields, that is for mappings with a
representation of the form f(x)=x—-T7(x), where T: H — H is a k-set

contraction with 0 <k <1 (see Chapter 1). In this case the proof is based on
the notion of (0, k)-epi mapping. For this extension the reader is referred to
(Isac, G. and Cojocaru, M. G. [2]).

Now, we present several classes of mappings without EFE in the sense of
Definition 8.1.3.

DEFINITION 8.1.5. We say that a mapping f:H — H satisfies condition

(6, Q) with respect to an unbounded closed convex set Q C H if there exists
p >0 such that for each couple (x, @) with ||x||> p, =1 and ax € Q, there

exists y € Q such that ||y|| < of|x|| and <f(x),a‘x - y> >0.

If Q is a closed convex cone, then in this case condition (6, Q) is equivalent
to condition (&) used in the study of complementarity problems (Isac, G.
and Cojocaru, M. G. [2]). We recall that a mapping f:H > H is p

copositive on Q) if there exists p> 0 such that for all x € Q, with [[x|| > p we

have <x,f(x)> >0.

PROPOSITION 8.1.9. If f:H — H is p-copositive on Q and there exists
x» € Q such that ||x+|| < p and <x*,f(x)> <0 for all x € Hwith ax € Q for
a> 1 and ||x|| > p, then fsatisfies condition (6, Q).

Proof. Indeed, if x € H is such that ||x|| > pand ax € Q for ¢ > 1, then we
have <x,f(x)> >0. Since < p <|ex| and <ax —x*,f(x)> >0, we
have that f'satisfies condition (6, Q). m]

X
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COROLLARY 8.1.10. If f:H — H is p-copositive on Q and 0 € Q, then
[ satisfies condition (6, Q).

DEFINITION 8.1.6. We say that f:H — H satisfies condition (K) with

respect to C if there exists a bounded set D  Q such that for all couples
(x, ) withx € H a>1 and ax € Q\ D there exists y € D such that

<ax—y,f(x)>20.

Remark. Condition (K) is a Karamardian type condition.

PROPOSITION 8.1.11. If f: H — H satisfies condition (K) with respect
to Q, then fsatisfies condition (6, Q).

Proof. Let D — Q be the set defined by condition (K). Since D is bounded

there exists p > 0 such that Dc{xe Ql x| Sp} . For each couple (x, @)

where x € H, « > 1 and ax € Q, we have ||« x|| > ||x|| > p, which implies
axeQ\D and there exists y € D such that <ax -wf (x)> >0. Because

“ y” <p< a”xll , we have that fsatisfies condition (6, Q) on Q2. O

DEFINITION 8.1.7. Let f,g:H — H be two mappings. We say that f is

asymptotically strongly g-demimonotone with respect to Q if there exist a
mapping ¢:R_— R_, an element u € Q and a real number p> 0 such that

lim ¢ (t) =+ and

1>+

(1) for each couple (x,@) withx € H, |[x|| > p a>1 and ax € Q we

have <ax —u, f (x) -g (u)> > Hax - uH¢(Hax - u”) .

PROPOSITION 8.1.12. If f:H—> H is asymptotically strongly g-

demimonotone with respect to Q, then fsatisfies condition (6, Q).

Proof. Assume that f is asymptotically strongly g-demimonotone. For each
couple (x, @) withx € H, > 1, ax € Q and ||x||>max{p,

u“} we have

| <el|x| and <a'x —u, f(x)-g (u)> > lorx — ul| ¢ (“ax —ul), which
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implies (afx —~u, f (x)> 2 |lax — u“KﬂZ—i% ,8 (u)> +¢ (Hax - ”“)}

(because a”x” >||u|| implies Hax - u]] >0). Since S, :{xe H:Hx” = 1} is

bounded and considering for u fixed g(#) as a continuous linear functional

on H, we deduce that there exists y € & such that <Waﬂ’ g(u)> >y,
ax—u

for each pair (x, @) withx € H, a2 1, ax € Q and HxH > max{p,’u“} . Since
Q is unbounded there exist pairs (x, @) such that x € H, o > 1, ax € Q,

|d|>max{p.Jul} and |ox-u|—>+o as [x| —> +o. Because

lim ¢(¢) =+ we have that there exists p+ such that for all pairs (x, @) with

—roc

a > 1, ax € Q, Hx“>max{p, un} and |ax—-u|>p, we have
¢(Hax~u“)2—}/ , that is <ax—u,f(x)>20. If for any pair (x, &) with

a>1, ox € Qand ||x”>max{p,

uH} we take y = u, we have that fsatisfies
condition (6 Q). a

DEFINITION 8.1.8. We say that f:H — H s scalarly increasing to

infinity on Q, if for each y € Q) there exists a real number p(y) > 0 such that
for all couples (x, @) withx € H a> 1, ax € Q and ”x" > p(y) we have

<ax—y,f(x)>2().

PROPOSITION 8.1.13. If the mapping f:H — H s scalarly increasing
to infinity on Q, then f satisfies condition (6, Q).

Proof. Since f is scalarly increasing to infinity, then for each y € Q) there
exists a real number p(y) > 0 such that for all couples (x, @) with x € H,

a =1, ox € Qand |jx]| > o(y) we have <ax—y,f(x)>20.

Fix yy arbitrarily in Q with |jyo| > 0. This is possible since Q is
unbounded. Then there exists a real number p, = p(,)>0 such that for

all pairs (x, @) with x € H, a > 1, ax € Q and |x]| = p we have
<ax—yo,f(x)>20. If we put p, = p, +|¥,
last inequality is satisfied for each (x, @) withx € H, > 1, ax € Q and

, certainly we have that the
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[x]] = p+ >pp. Obviously, for such a pair we have a“x“Z”x“ >“y0

, which
implies that condition (6, Q) is satisfied for f with respect to Q. o

About condition (8, Q) we have also the following result.

THEOREM 8.1.14. Let (H.(.)) be a Hilbert space, Q < H an arbitrary
unbounded closed convex set and f:H — H a completely continuous field
(or a k-set field) with a representation of the form f(x)=x-T(x). If f

satisfies condition (6, Q) with respect to , then f is without an EFE with
respect to Q (in the sense of Definition 8.1.3).

Proof. Suppose that fhas an EFE {x,}
satisfies Definition 8.1.3. For each » > 0 we have that x,x, € Q where
1%,
and < F(x),mx, ~y, > >0 for each r > 0 such that |jx,|| > p. Therefore, for

with respect to Q. Hence {x, }

>0 r>0

4 > 1, and applying condition (8, Q), there exists y, such that ” y, “ <

¥ > 0 such that |ix)] = p we have T(x,)-ux, €N,(ux), ie.,

& =T (x,)— p,x, satisfies the condition (&,,y—4,x,)<0 for all y € Q
and

0<(f (%), 1% ~y,)=(x, ~T(x,), 4% ~»,)
=(x, =3, ~&mx, =y, ) =((1-4,)% — 4.5 - y,)
=(1=p) (%% = y,) + (S50, — 1.%,)
<(-m)| a5 - (x.5.)]<0,
since 1 — g <0 and

2
Iur _<xr9yr>2#r yr |:/ur yr :]>O
We have a contradiction, which implies that f'is without EFE with respect to
Q. o

'xr

2

X

»

X, X, X, X,

For other examples of classes of mappings without EFE in the sense
of Definition 8.1.3 the reader is referred to (Isac, G. and Cojocaru, M. G.
(2D.
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8.2. Implicit Leray—Schauder alternatives and
variational inequalities

Considering the notion of EFE introduced in Complementarity
Theory in Chapters 37 and the notions of EFE introduced in this chapter,

for variational inequalities, we may conclude that we have two different
investigation methods, while a variational inequality with respect to a closed
convex cone is a complementarity problem. Moreover, some results
obtained in Complementarity Theory by using the notion of EFE cannot be

extended to variational inequalities because if {x,}  is an EFE for a
variational inequality, namely VI(f, Q) ,we have u x, € Q for any » > 0 and

not x, € Q for any r > 0, as in the case of complementarity problems. In this
section we will show that by using the Implicit Leray—Schauder Alternative
we unify both notions of EFE. By this unification, we can extend to
variational inequalities several existence results obtained previously for
complementarity problems.

Let (H,(-,-)) be a Hilbert space and f:H —> H a completely

continuous field with a representation of the form f(x)=x—7(x), for all

x € H. Let Q € H be an unbounded closed convex set. We consider again
the variational inequality VI(f, Q).

DEFINITION 8.2.1. Let p=||P, (0)|. We say that a family of elements
{x, }r>p c Q is an exceptional family of elements (EFE) with respect to Q,

Jfor the completely continuous field f, if the following properties are
satisfied:

(1) |x|| >+ as r >+ (r>p),

(2) for any r > p there exists a real number t, € 10, 1[ such that
tT(x,)-x €Ny(x,).

We have the following result.

THEOREM 8.2.1. Let Q c H be a non-empty unbounded closed convex set
and f:H—>H a completely continuous field such that f(x)=x—-T(x)

for any x € H. Then there exists either a solution to the problem VI(f, Q), or
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the mapping f has an EFE (in the sense of Definition 8.2.1) with respect to
Q.

Proof. We know that the problem VI(f, 2) has a solution it and only if the
mapping ®(x)=PF, [x -f (x)} has a fixed point. If the problem VI(f Q)

has a solution, then in this case the theorem is proved.

We suppose that the problem VI(f Q) has no solution. In this case,

we consider for any real number » such that r > ,o:“PQ (O) , the closed

convex set B, = {xe H:Hx” Sr} . Obviously, 0B, = {xe H:“x” =r} . For
any r > 0, we consider the mapping @, :[0,1]x B, - H defined by
@, (1,x)=P, [t (x - f(x))} =P, [I(T(x)ﬂ .

We have that @, is continuous and @, ([0,1] x B ) is relatively compact in

-

H. Moreover, @, ({O}x@B,)CBr and for any xe€0B,, we have that
@, (0,x)=x.

We deduce that the assumptions of Theorem 3.5.4 (Leray—Schauder
implicit alternative) are satisfied and because we supposed that the problem

VI(f, Q) is without solution, we have that ®@,(l,x)#x for any xeB,,
which implies that there exist £, €]0,1] and x,€dB, such that
@, (1,,x,)=x,, for any ¥ > p. We have that for any r > p there exists
(#,.x,)€]0,1[x0B, such that x, =P, [tr (T (x,))] Therefore we have
x,€Q and £,T(x,)ex, +N,(x,). From the last relation we obtain
t,T(x,)=x +&, where EeN,(x,). Hence, we have
t,T(x,)~x, €N, (x,) and we have that the family {x,}  is an EFE for

the completely continuous field fand the proof is complete. |
From Theorem 8.2.1 we deduce the following existence theorem.

THEOREM 8.2.2. Let Q < H be a non-empty unbounded closed convex set
and f:H — H a completely continuous field. If f is without an EFE in the

sense of Definition 8.2.1, with respect to Q, then the problem VI(f, Q) has a
solution.
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COROLLARY 8.2.3. Let (R",(-,-}) be n-dimensional Euclidean space,

Q < K' an unbounded closed convex set and f:R" — R" a continuous

mapping. If [ is without an EFE, in the sense of Definition 8.2.1, with
respect to Q (considering f = I — (I — f), where I is the identity mapping),
then the problem VI(f, Q) has a solution. ni

Remark. If Q = K where K is a closed convex cone in H, then in this case

the notion of EFE defined by Definition 8.2.1 is exactly the notion of EFE

used in Complementarity Theory. Indeed, let {xr}»p be an EFE as defined

by Definition 8.2.1. In this case we have p = “PK (O)“ =0, i.e., >0 and for

any >0 we have 1,7 (x,) - x, € N, (x, ), which implies
<trT(x,)—xr,y—x,>SO, forally e K

From the last inequality we deduce

<T(xr)—tix,,y—xr>£0, forally e K

r

or

<x, —T(x,)+(tl—1]xr,y—xr>20, forally € K.

r

If we denote , =}1——1>0, we have (px, +f(x,),y—x,>20, for all

r

y € K. From the last inequality we obtain
@) u, =p.x, + f(x,)e K", forallr>0,
(i) <ur,xr>=0,for allr>0,

and because x, € K and

—> +o0as 7 —> +o0, we have that {x,}  isan

x" r>0

EFE in the sense used in Complementarity Theory.

A consequence of Corollary 8.2.3 is the fact that we must put in
evidence classes of mappings without an EFE in the sense of Definition
8.2.1. To realize this goal, now we present some tests that can be used as
sufficient tests for the non-existence of an EFE for a given mapping. To do
this, we need to give an equivalent form of Definition 8.2.1.
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Let (H ,<-,~>) be a Hilbert space and Q € H an arbitrary unbounded

closed convex set. We denote again p = HPQ (0)” .

DEFINITION 8.2.2. Given a mapping . H — H, we say that a family of
elements {x,}Dp c Q is an EFE for f with respect to Q, if the following

properties are satisfied:
1) |x.|| > 40 as ¥ — 4o,

) for any r > p there exists t. € 10, 1] such that

_f(xr)—(;l-—ljxr eN,(x,).

r

PROPOSITION 8.2.4. If f: H— H is a completely continuous field with a
representation of the form f (x) =x-T (x) Jor all x € H, then a family of

elements {x, }Dp — Q is an EFE in the sense of Definition 8.2.1, if and only
if it is an EFE for fin the sense of Definition 8.2.2.

Proof. Indeed, suppose that {xr}rw c Q is an EFE for f in the sense of

Definition 8.2.1. Then in this case we have
(D) |x,| >+ as r - +0 and
(2) for any r> p, there exists t. € 10, 1| such that
trT(x,)~x, eN, (x,).
We have

1 1
T(xr)—t—xr Et—Nﬂ (xr)gNQ (xr),

r r

which implies

‘f(xf)”[ti_l}c’ e, (x,).

r

Therefore {x,}__ is an EFE for f in the sense of Definition 8.2.2.
Conversely, let {x, }Dp be an EFE for f in the sense of Definition 8.2.2. We

have,
(1)
(2) for any r > p, there exists ¢, € ]0, 1] such that

—> +00 as ¥ —> +o0 and

xl'
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_f(xr)_(tl—ljxr eN, ().

r

We deduce that 7(x, ) - tl x, € N, (x,) , and finally,

trT(xr) -x, €l N, (xr)c; N, (xr),
that is, {x, },->p is an EFE for f in the sense of Definition 8.2.1. 0

Now, we will show that condition (&) also works for variational
inequalities. We recall this condition.

DEFINITION 8.2.3. We say that a mapping f: H — H satisfies condition
(6) with respect to a closed unbounded convex set Q0 < H, if and only if
there exists px 2 0 such that for any x € Q with ||x|| 2 p», there exists y € Q

with ||| <|lx|| such that <x N y,f(x)> >0.

We note that any mapping, which satisfies the classical
Karamardian condition, satisfies also condition (#). Condition (HP)

(Harker—Pang) defined initially in Euclidean space, can be extended to an
arbitrary Hilbert space.

DEFINITION 8.2.4. We say that a mapping f: H — H satisfies condition
(HP) with respect to a closed unbounded convex set QO < H, if there exists

an element x+ € Q such that the set Q(x*):{er:<f(x),x—x,,><0} is
bounded or empty.

Remark. In the classical Harker-Pang Condition, the set Q(x) is supposed
to be compact or empty which is more restrictive than in our condition (/7P).

PROPOSITION 8.2.5. Iff: H— H satisfies condition (HP), then f satisfies
condition( 6).

Proof. .If f satisfies condition (HP), then there exists x+ € Q such that the
set Q(x+) is bounded or empty. In this case, there exists gy > 0 such that

Q(x.)cB(0,p,)where  B(0,p,)={xeH:|x|<p,}. We take

£, >max { po,“x, ]} . If x € Q is an arbitrary element such that {|x|| > p», then
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we have x¢Q(x, ), which implies that <f(x),x - x*>2 0. Obviously, if

for any xe Q such that |[x|| > o, we take y = x+ we obtain that f satisfies
condition (). |

THEOREM 8.2.6. If f: H — H satisfies condition (6) with respect to an
unbounded closed convex set Q) — H, then f is without an EFE in the sense
of Definition 8.2.2.

Proof. We suppose that f has an EFE, namely {x,} . in the sense of

Definition 8.2.2, with respect to . Since er H —> +00 as ¥ —» +00 , we take

x, such that » > p and ||x,|| > p+, where p« > 0 is the real number considered
in condition (6).For this x,, there exists y, € Q such that ||y,|| < |lx,|| and

Is

<xr —y,,f(x,)>20. We have also, —f(xr)—[tl—l)xr €Ny (x,). If we

denote , =tl—1, we have 4, > 0 and —f(x,)—px, =£€ N, (x,). We

P

deduce
0<(x, —y,. f(x))=(x =y —p,x, &)
=(x, = »,.- > (X = 2x,)
=—(x, y,, &) =1 (x. = y.ox,)
<, | - (3,.-x.) ] <0,
which is a contradiction and the proof is complete. 0

COROLLARY 8.2.7. If f: H— H is a completely continuous field which
satisfies condition (6) with respect to an unbounded, closed convex set
Q c H, then the problem VI(f, Q) has a solution.

DEFINITION 8.2.5. We say that a mapping T : H — H satisfies condition
() with respect to Q if for any x € Q, with ||x||> 1, we have

<x,T(x)><<x T(n ||J>

We denote by coneh(QQ) the conical hull of Q, i.e., coneh(Q) = U AQ.

420
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DEFINITION 8.2.6. We say that a mapping T : H — H is monotonically
decreasing on rays, with respect to Q, if for any « 2 1, and any

u € coneh(Q) we have <u,T(au)> < <u,T(u)>.

PROPOSITION 8.2.8. If T : H— H is monotonically decreasing on rays,
then T satisfies condition (72).

Proof. Indeed, let x € Q2 be an arbitrary element such that ||x]| > 1. We take

a = |x|| and uzﬁ. We have ¢ u = x and hence
X
<|_)E_’T[“—xl—‘j> < (x)> , which implies <x,T( ><<x T(” H]>, that
X
is condition (&) is satisfied. i

THEOREM 8.2.9. If T : H > H is a bounded mapping which satisfies
condition (K) with respect to Q and 0 € Q, then the mapping f{x) = x —1(x),
x € His without an EFE with respect to Q in the sense of Definition 8.2.1.

Proof. Indeed, we suppose that {x,}

7l r>0

is an EFE for fwith respect to Q. In

5, (0)“ =0. For any x, such that |[x|| > 1, by condition (&) we

(x, T(x)>_<x T( j> (8.2.1)

Because {x,} . is an EFE, we have that £,T(x,)—x, € N,(x,) with

this case p =

have

X

»

t, € 10, 1] for any > 0 such that ||x,|| > 1. Since Nq(x,) is a cone we have

. 1 .
that 7' (x, ) —ixr =& €N, (x,), and if we denote 1, =, we obtain that
t

r r

T(x)=px +& . Considering (82.1) we get (x,px +&)

s<x,,T[L
X

exists M > 0 such that from the last inequality we have

(%0 pt,%,) +(x,,€,) <

]> , for any » > 0 such that er“ >1. Since T is bounded there

>1. (8.2.2)
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Because 0 € Qand &, € N, (x,) we have
(£,x,)=0. (8.2.3)

From (8.2.2) and (8.2.3) we deduce that []xr "s—l—M <M, for any r > 0
u

»

such that |lx,/| > 1. We obtain that {erH} is bounded, which is in

r>0
contradiction with the definition of the notion of EFE and the proof is
complete. ]

COROLLARY 8.2.10. If T : H —» H is completely continuous, satisfies
condition (72) and 0 € Q, then the problem VI, Q) has a solution, where

fix) =x —T(x), forany x € H.

COROLLARY 8.2.11. Let T : H —» H be a completely continuous
mapping. Consider the completely continuous field f, (x)zx—ﬂ,T (x)

(x € H), for some A € R. If T satisfies condition (%) with respect to Q)
(with 0 € Q), then the problem VIf;, Q) has a solution for any 1> 0.

Proof. The coroliary is a consequence of Corollary 8.2.10, since AT satisfies
condition (0) for any 4> 0. O

DEFINITION 8.2.7. We say that a mapping f : H — H satisfies condition
(IG) with respect to Q if there exists a real number p > 0 such that the

mapping (ID()c):“x“'F1 x—f (x) defined for all x = 0 satisfies condition
() with respect to Q.

We have the following result.

THEOREM 8.2.12. Let T : H — H be a bounded mapping. If Q < H is an
unbounded closed convex subset such that 0 € Q and f(x)=x-T(x)

satisfies condition (IG) with respect to Q, then f is without EFE in the sense
of Definition 8.2.1 with respect to Q.

Proof. Assume that fhas an EFE, namely {x,}  with respect to Q. By
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condition (/G) we have <x CI)(H U (I)(x)>>0 for any x € Q with
x

llx|] > 1. Then for any > 0 such that ||x,|| > 1 we obtain

<x CIJ[ % ]— @ (x, )> >0, which implies

-2l

Because f(x,)= ( ) we have T(x, )=, x, +¢&,, where g, > 1 and
£ €N, (x,). The assumptlon 0 € Q implies (x,,£,)>0. From (8.2.4) then

we have
<xr,¢(_xr_] )
xr
which implies
<x,,<1>("—’J> _
xr
<x,,d>[ = j>— x| 2, 1)
xr
and finally we have
<x (D( }> > ”

Because T is bounded, there exists A/ > 0 such that

X

»

xo f(x, )> >0. (8.2.4)

xl‘

x b x, —(px, +§,)>zo, (8.2.5)

pH 2 2
+ -4 x| =0,

»r

X

r

X

”

or

2
>0,

X

r

p+1

(8.2.6)

(D[ %
X

r

|

r > 0. From (8.2.6) we have |x, ”p <M, for any » > 0 such that ||x,]| > 1,

ISM,forany

which implies that the set {

X

r

}DO is bounded, which is impossible.

Therefore f'is without EFE in the sense of Definition 8.2.1 and the proof is
complete. ]

DEFINITION 8.2.8. We say that a mapping f:H — H is &pseudo-

monotone on Q if for any x € Q there exists a real number &x) > 0 such
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that for any y € Q with |[y|| > &Xx) we have that <x —y,f(y)> >0 implies
<x—y,f(x)>20.

THEOREM 8.2.13. Let (H,<~,->) be a Hilbert space, f. H — H a mapping

and Q < H an unbounded closed convex set. If f is &-pseudomonotone on Q)
and the problem VI(f, Q) has a solution, then f is without an EFE with
respect to Q, in the sense of Definition 8.2.2.

Proof. Indeed, let x« € Q be a solution to the problem VI(f, Q). Then we
have <x—x,,,f(x* )>2(), for all x € Q. In particular we have

<x—x*,f(x*)>20 for all x € Q with “x“>max{ ,5(x,,),p} , where
o= nPQ (O)“ . We suppose that {x,} isan EFE for f with respect to Q. We
,é'(x*),p} . We have
—f(x,)-mx,=£eN,(x,) and we obtain (considering the &
pseudomonotonicity)

0<(x, —x,f(x))=(x —x,—px —&)

=(x, = x.,~&) = p, (X, —x.,x,)

=(x —x,,&)—p (x, —x.,x,)

2 —(x*,x,>]<0,

(since p, =—~1>0), which is a contradiction. Therefore f is without an
t

r

X

>0

take x, with » > 8 and such that Hx”>max{

Xy

xr

<—p, (x, —x*»x,)=~ﬂ,[

EFE with respect to Q in the sense of Definition 8.2.2. o

COROLLARY 8.2.14. Let (H.(-")) be a Hilbert space f : H — H a

completely continuous field and Q c H, an unbounded closed convex set. If
f is O&-pseudomonotone (in particular pseudomonotone) on Q, then the
problem VI(f, Q) has a solution, if and only if f is without an EFE, with
respect to Q.

DEFINITION 8.2.9. We say that a mapping f : H— H is weakly proper on
Q if there is p> 0 such that for any x € Q with ||x|| > p, there exists x« € Q,

with ||| < |lxl| such that { f (x.),x—x.)20.
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THEOREM 8.2.15. Let (H.(.,")) be a Hilbert space, Q < H, an

unbounded closed convex set and f: H— H a pseudomonotone mapping. If
[fis a completely continuous field, then the problem VI, Q) has a solution,
if and only if the mapping f is weakly proper on Q.

Proof. We suppose that the problem VI(f, (2) has a solution. Let x, € Q be
this solution. We have <f (x,),x— x0>2 0 for any x € Q. Obviously, if we
take in Definition 8.2.9 an arbitrary real number p > ||xo|| and x» = xo, then
we have that fis weakly proper on Q. Conversely, assume that f'is weakly

proper with respect to Q. Then there exists p> 0 such that for any x € Q
with |x|| > o we can select an element x« € Q with |x| < |x|| and

< f (x*),x—x*>20. Because f is pseudomonotone we  have

< f (x),x—x,,>20. We deduce that f satisfies condition (€) and as a

consequence, we have that fis without EFE with respect to Q. Therefore, f
being a completely continuous field without an EFE, we have that the
problem VI(f, Q) has a solution. |

DEFINITION 8.2.10. Let f : H —» H be a mapping and QQ ¢ H an
unbounded closed convex set. We say that a mapping T : H — H is an x»-
scalar asympuiotic derivative of f, with respect to Q, if there exists an

element x+ € Q such that
<f(x)—T(x),x—x,,>

Jaff—>+20,xe2 ”xUz

Considering this notion we have the following result.

THEOREM 8.2.16. Let (H, (-, )} be a Hilbert space, f: H—> H a mapping

and Q c H an unbounded closed convex set. If f has an x«-scalar asymptotic
derivative T : H— H such that

<T(x),x—x*>

|l +o0,xeQ ”xuz

=5>0(5e]0,+oo[),
then f is without an EFE with respect to Q) in the sense of Definition 8.2.2.

Proof. We have
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<f(x),x—x*>

e
-T - X, T(x),x—x,
_ Q(f(x) (r-x) Q<—(i)ﬁ—x>=5>o.
x|+, xe HXH x|+, xe “xH

Let &, f € R such that 0< o < 6 < £ Then there exists p> 0 such that for

) < f(x),x- x,>
any x € Q with ||| > p we have ——WE Je, B[ - Now, we observe
x
that f satisfies condition (6) if we take in the definition of this condition
p. >max{p,|

respect to Q, in the sense of Definition 8.2.2. |

x*{} and y = x». Consequently, f is without an EFE with

8.3. Asymptotic Minty’s variational inequality and
condition (&)

Let (H ,(', >) be an arbitrary Hilbert space, . H — H a mapping and

Q) c H an unbounded closed convex set (obviously non-empty). We recall
that the variational inequality in the sense of Hartman and Stampacchia is
the following problem:

find x, € Q such that
(f(x)sx—x)20, forall xe Q.

This kind of variational inequality has many applications in physics,
engineering and economics. The variational inequality in Minty’s sense is

O find x, € Q such that
(f: ) <f(x),x_x*>2(),forallxeﬂ.

We suppose that f : H — H is pseudomonotone. In Theorem 2.2.2 we
proved that an element x» € Q is a solution of the problem HSVI(f, Q) if and
only if x+ is a solution of the problem MVI(f, Q). Now, in this section we
will introduce the asymptotic Minty variational inequality and we will show
that Theorem 2.2.2 is also valid if we replace the Minty variational
inequality by the asymptotic Minty variational inequality.

HSVI(f,Q): {
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DEFINITION 8.3.1. The asymptotic Minty variational inequality defined
by fand Q is the following:

find 6, >0 (eventually very large)

and x, € Q such that
AMVI(f.9): <f(x),x —x*>20for any x € Q
>0,.

satisfying ”x

The element x- satistying Definition 8.3.1 is called a solution of the problem
AMVIY, Q).

THEOREM 8.3.1. Let (H,<',->) be a Hilbert space, QQ — H a non-empty,

unbounded and closed convex set and f : H — H a completely continuous
field. If f is pseudomonotone then the problem HSVI(f, Q) has a solution if
and only if the problem AMVI(f, Q) has a solution.

Proof. Indeed, if x« € Q is a solution of the problem HSVI(f, Q2), then we
have

<f(x*),x-x*>20,foranyer. (8.3.1)
Because f'is pseudomonotone, from (8.3.1) we obtain
(f(x),x—x,>20,foranyer.
Now, taking an arbitrary & > 0, we have that
<f(x),x —x*>2 0, for any x € Q with “xn >0,,
that is, x« is a solution of the problem AMVI(f, 0). Conversely, let x« € o be

a solution of the problem AMVI(f, Q). Considering Theorem 8.2.2 it is
sufficient to show that fis without an EFE with respect to  in the sense of

Definition 8.2.1, where p = “PQ (0)“ . We suppose that fhas an EFE, namely

{x,} ,- Since “x,]]—>+oo as r—>+0, we consider x, with

b <

the problem AMVI(f, Q).

X, , where & is the real number used in the definition of

max {5,, ,

xr

Since

<

X

»

d. , we deduce that (f(x,).x, —x,,>20. We have
also the following relation:
—f(x,)-(l_ljx, eN, (),

t

r
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where ¢, € ]0, 1[ (considering the definition of {xr}bo ). If we let

4, :i—l, we have g, > 0 and —f(x,)—px, =£€ N, (x,). Then, we

deduce
0S<xr —x*,f(xr)>=<xr — X, —p,x, = &)
R R S Sy Sy P
:<x*~x,,§>—,u,<x,—x*,x,>ﬁ—,u,[ 2—<x*,xr>J<0,

which is a contradiction. Therefore, fis without an EFE, with respect to €,
in the sense of Definition 8.2.1. Applying Theorem 8.2.2 we have that the
problem AMVI(f, Q) has a solution, and the proof is complete. 0

xr

COROLLARY 8.3.2. Let (R",<~, >) be n-dimensional Euclidean space,

Q c R" anon-empty unbounded and closed convex set and f: R" —> R" a
continuous mapping. If f is pseudomonotone, then the problem HSVI(f, Q2)
has a solution if and only if the problem AMVI(f, Q) has a solution.

Remark. Obviously, if the problem MVI({, Q) has a solution, then the
problem AMVI(f, QO) also has a solution, but the converse, generally is not
true.

In this chapter we introduced the condition (&) for variational
inequalities with respect to general unbounded sets, and we proved that if f
satisfies this condition (), then f'is without EFFE in the sense of Definitions
8.2.1 or 8.2.2 and the problem HSVIf, Q) has a solution. We recall this
condition (6). We say that f: H—> H satisfies condition (6) with respect to
Q, if there exists p> 0 such that for any x € Q with ||[x|| > p, there exists

y € Q with |ly|| < |lx|| such that <x—y,f(x)>20. Because we can show

that, if the problem AMVI(f, QO) has a solution , then f satisfies condition (6),
we obtain the following resuit.

THEOREM 8.3.3. Let (H,(,")) be a Hilbert space, Q c H a non-empty,

unbounded and closed convex set and f: H— H a completely continuous
Sield. If f is pseudomonotone, then the problem HSVI(f, Q) has a solution if
and only if f satisfies condition () with respect to Q. ]
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Remarks.

(1) It would be interesting to know if Theorem 8.3.1 is valid for other
classes of mapping different from the pseudomonotone operators.

(2) From the results presented in this section, we deduce that for
condition (6) to be satisfied for a mapping f with respect to an
unbounded set Q, it is sufficient to show that the problem AMVI(f, (2)
has a solution. Therefore, if f is a completely continuous field and the
problem AMVI(f, Q) has a solution, then the problem HSVI(f, Q2) has
a solution too. This result seems to be a remarkable result.

8.4. Complementarity problems and variational inequa-
lities with integral operators

The complementarity theory and the theory of variational inequalities
have many applications to mechanics, elasticity, fluid mechanics,
engineering and economics. Moreover, in many applications we can have
complementarity problems or variational inequalities depending on
parameters. The study of such variational inequalities or of complementarity
problems is related to the study of bifurcation problems. About this subject
the reader is referred to the book (Le, V. K. and Schmitt, K [1]), where
several kinds of bifurcation problem for variational inequalities defined by
integral operators are considered. Because of this reality, we present in this
section some results related to variational inequalities defined by integral
operators. Our results are based on the notion of EFE in the sense of
Definition 8.1.3.

Let Q. be a bounded open set in K. We consider the Hilbert space
L*(Q+) and we recall that the norm on the space L*(Qs) is

e = ( L lu(x)]2 dx)l/2 ,Jorallue I’ (Q,).

This notion will be used throughout this section. For simplicity, we denote
the Lebesgue measure mesQx by |Q4]. We suppose we are given a function

G:QxQ, xR—> R satisfying the following conditions:
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(i) G is a Caratheodory function, i.e., G(x, y, u) is continuous with
respect to u for almost all (x, y)eQ,, xQ, and measurable with

respect to the pair of variables (x, y) eQ. xQ,, forallue K
(i) |G(x, ¥, u)l < 7€(x, y)(a + blul), ae x, y € Qu, for every u € R,

where a, b> 0, and R € L x Q).
The following integral operators are used in many practical problems:
(D) 4 : LX) — L(Q.) defined by A(u AL y) dy, for all

ue L(Q») where, 1 € R:
(D) f: L*(Q.) - L*() defined by
f(u) =u-— A(u) =u-— lLG(-,y,u(y))dy , for all u € L*(Q).

First, we recall the following results.

THEOREM 84.1. Let G:Q. xQ, xR—> R be a function satisfying

properties (i) and (ii). If in addition, the function G satisfies the following
assumptions:

(1) for any a > 0, the function 7%, (x,y)= maxG xy,u)]

summable with respect to y for almost x € Qx,
(2) forany a>0, limsup ||P, L G(x,y,u)dy
* L

mesD—>0 |u|<a ()
operator of multiplication by the characteristic function of the set
D c Q.

() forsome >0, limsup

mesD—>0 Jul<p
then for any A € R the mapping f =u- AL X, y,u(y))dy is a
completely continuous field from L*(Q-) to L2(Qs).

=0, where 7} is the

P, LG(x,y,u(y))dy“ o) =0,

Proof. For a proof of this classical result the reader is referred to
[(Zabreyko, P. P., Koshelev, A. L., Krasnoselskii, M. A., Mikhlin, S. G.,
Rakovshchik, L. S. and Stesenko, V. Ya [1]), Chapter 10, Theorem 1.12.] o

We cite also the following result,

THEOREM 8.4.2. Let A: L (Q) — LX) be the mapping defined by
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A(u)= ZL. G(-, y,u(y))dy,for all u € L*(Q) for some A € R.

Then the mapping A = LXQv) — LX) is continuous and bounded.
Moreover, if we suppose that

for every € > O there is a & > 0 such that
(iii) lG(x +h,y,u)-G(x,, u)l <¢g, forae.x,yeQ,,
eachhe K™ with “h
then the operator A : L*(€) — LX) is completely continuous.

L <0, x+heQ,,and eachuc R,

®

Proof. The proof is long and based on several technical details that can be
found in (Isac, G. and Motreanu, D. [1].) ]

We recall condition (HP) in a general Hilbert space. Let (H ,(-, >) be an

arbitrary Hilbert space and QO < H an unbounded and closed convex set. We
say that f: H— H satisfies condition (HP), with respect to ), if there exists

an element x« € Q such that the set Q(x*)z{er:<f(x),x—x,,><O} is
bounded or empty.

We know (see Proposition 8.2.5) that, if f satisfies condition (HP), then it
satisfies condition (6) and consequently, fis without an EFE in the sense of
Definition 8.2.2. Moreover, if fis a completely continuous field and satisfies
condition (HP) then the problem VI(f, Q) has a solution. About the integral
operator considered above we have the following result.

THEOREM 8.4.3. Let f: L*(Q) — L*(Q) be the mapping defined by
f(u):u—/lLG(.,y,u(y))dy, for all u € L*(Q), for some 1 € R

Suppose that the mapping G satisfies assumptions (i), (i), (iii) defined
above and also the following assumption:
1

iv A<
( : l ! bukul?(n.xn.)
Then the mapping f satisfies condition (HP) with respect to any unbounded,
closed convex set Q < L*(C). Moreover the problem VIf Q) has a
solution.

Proof. By Theorem 8.4.2 we have that fis a completely continuous field.
Therefore, it is sufficient to show that f satisfies property ({P) with respect
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to any unbounded, closed convex set Q c L¥(Q.). Indeed, let Q LX) be

an arbitrary, unbounded closed convex set and let v« € Q, be an arbitrary
element. We consider the set

Q(v,,):{ueQ:<f(u),u—v*><O},

where (-,-) is the inner product in L*(Q). Then, using (ii) and Cauchy-
Schwartz inequality we derive that

ol = () <(2 [, G(ysu(v)) =)

—AL( 2y (y))dy ) (u(x) = v, (x))dx

<1 [, ( £, 2 Ceor)as b)) () o ()

([ (=G ool ed) ax] ([, (uol b G )

< L((L 2y @) [ (o sl @] G+l

=1l oyl + Bl (] + - )
<Vl gy (@l + B ) (] + .-
If follows that
Jo? < e+ 212 (2] B ) ]+ . ])
thus
(112101, 0 (nvwnve s (a2 = )
+|/1|”7‘2 2{Q.xQ.) iQ \1/2

for all € Q(v+). Now taking into account (iv), from the above inequality
we derive that Q(v+) is bounded. Indeed, let {un }ne , b€ a sequence in Q(v+)

such that Hu,,“——>+oo. Then there exists a natural number #n, such that

”v* ]] < ”un H for all n> ny. From the last inequality we have

(1 -|2b| %

{

A1

12(€.xQ.) ) n

I7{Qux) (a‘Q* \”2 + bHv* ”)) u,

1/2
alQ,

v+ Al

13 (Qex Q) 0°
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which implies

(l—lllb”% I‘Z(Q.XQ.))
S[ Vi +‘/1H|73 L2 (W x€2) ( " +b Vs )
AR 1y @l [

Because the last mequahty 1mp11es a contradiction, the proof is complete. O
COROLLARY 8.4.4. If all the assumptions of Theorem 8.4.3 are satisfied
and Q = K, where K is a closed convex cone in L*(Q), then the

complementarity problem NCP(f, K) has a solution.

Now, we consider the particular case with QO = K where
Kz{ueLz (Q*):uZO,a.e.inQ,,} .
We note that K is a closed pointed convex cone in L*(Q.) satisfying K =K .

In this case we have the following result using directly Definition 5.1.2.

THEOREM 84.5. Let f: Lz(Q ) = LX) be the mapping defined by
f(u) u— ﬂL y,u(y) dy, for allue I’ (Q)

for some A € R Consider L*(Q) the cone K defined above. If the following
assumptions are satisfied:
(1) the mapping G satisfies assumptions (i), (ii) and (iii) wsed in
Theorem 8.4.3,
<1,

2 (Quxqu)

then the mapping f is without an EFE in the sense of Definition 5.1.2 and
the problem NCP(f, K) has a solution. Moreover, if b = 0, then the

problem NCP(f, K) has a solution for any 1 € R.

Proof. We note that fis a completely continuous field on L*(Q.). Arguing
by contradiction we assume that there exists an exceptional family of

elements {u,} =<K forfwith respect to K in the sense of Definition
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5.1.2. This means that for any » > 0 there exists g > 0 such that
v, = pu, + f(u,) verifies the following conditions:

(o) v, € K = K (in our case),

() L (x)u, (x)dx=0,

(03) |lu, | = +o0 as r —> +o0.

Considering (ocz) the deﬁnition of v, and the expression of fwe have
,u, /IL x V.U, (x) dxdy.

By the last equahty and the growth assumption (11) we have

u o+ 1< l'ft Lxﬂaﬁ(x,y)<a+b|u, (y)l)lur (x)|dx dy

which implies (considering the Cauchy-Schwartz inequality)
1/2
|7

2(QuxQ

S |ﬂ’lz 2 1/2
u, u, [L(L‘ﬂ’(x,y)u, (y)dy) )
A
< 1 }2 [a v H7\? 72 ( LZ(Q.xQ.):]
ur
1
7L a0 —b]

Letting # — + o in the last inequality and making use of (oi;) we obtain
that

1+limsupy, <b lll ||

£ (Qx)

Now, we observe that the last inequality is in contradiction with assumption
(2). Therefore, the mapping f is without an EFE with respect to K in the
sense of Definition 5.1.2. By Theorem 5.1.2 we have that the problem
NCP(f, K) has a solution. Finally, we observe that if » = 0, then the problem

NCP(f, K) has a solution for any 4 € R (following the same proof presented

above). o

Remark. The study of variational inequalities with an integral operator is
opened to new developments.
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8.5. Comments

We have presented in this book the main ideas developed until now about
the notion of exceptional family of elements. A given mapping can have, or
cannot have, an exceptional family of elements, with respect to an
unbounded closed convex set. When a mapping is without an exceptional
family of elements, this property can be considered as a generalized
coercivity condition and (modulo some supplementary conditions) it implies
the solvability of complementarity problems or of variational inequalities. It
is evident that the notion of exceptional family of elements is related to deep
notions and results well known in nonlinear analysis. We presented also this
aspect. We recommend this book to any reader as a starting point for new
developments related to this subject. In this moment we do not know if the
method based on the notion of exceptional family of elements can be
adapted to the study of order complementarity problem. We suspect that
many results can be obtained on variational inequalities using the method
presented in this book.
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Banach space, 6
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Bipolar Theorem, 37
Bishop—Phelps cone, 39
boundary value dependence, 23
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Brouwer’s topological degree, 20

Browder-Hartman—Stampacchia
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Cauchy sequence, 5
circled hull, 10

circled set, 10

closed (open) segment, 10
closed subset, 2

closed unit ball, 6

closure, 2

coercive mapping, 144

compact set, 13

complementarity problem, 50, 51
complete space, 5

completely continuous field, 14
completely continuous mapping,
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condition, (HPT), 162

condition (é) , 169
condition (9g), 175
condition [6] , 185
condition [6 - S] , 188
condition [é] , 194

condition (’é) ,228
condition (’ﬁg) ,231
condition [ié] ,234
condition (S)l+ ,253
condition (6,Q), 288
condition (&), 297
condition (DT), 154
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condition (MD), 156
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convergent net, 3
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Cottle’s Theorem, 52
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critical value, 21

Darbo condition, 17

Darbo’s Theorem, 34
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diameter of a set, 15

directed set, 2

discrete topology, 2

domain decomposition, 23
duality mapping, 46
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essential mapping, 105
exceptional family of elements,
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existence property, 23

general CP, 53, 54
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generalized projection, 47

Hartman—Stampacchia Theorem,
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Hausdorff measure of
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Hausdorff space, 3
Hilbert space, 7
homotopy invariance, 23

implicit CP, 55

Implicit Leray—Schauder Type
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implicit variational inequality, 62
infimum, 36

infinitesimal exceptional family
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infinitesimal interior-point-¢-
exceptional family, 244
inner-product, 8

inner-product space, 8

interior, 2

inversion, 227

Karamardian type condition, 177
Karamardian’s condition, 148

Krein—Rutman Theorem, 38

k-set contraction, 17

k-set Lipschitz mapping, 17
k-set-contraction, 128
Kuratowski measure of
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Leray—Schauder alternative, 73,
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Leray—Schauder alternative for
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Leray—Schauder degree, 25
Leray—Schauder set-valued
Alternative, 101, 103
Leray—Schauder Theorem, 71, 72,
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Leray—Schauder Theorem
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linear complementarity problem,
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linear mapping, 7

locally convex topological vector
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Mazur Theorem, 74

metric (distance), 4

metric space, 4

Minkowski functional, 11
Minty variational inequality, 60
monotonically decreasing on
rays, 165

monotonically decreasing on rays
on (), 298

Moreau’s Decomposition
Theorem, 43

multivalued CP, 54

multivalued Hartman—

Stampacchia variational
inequality, 62

multivalued Minty variational
inequality, 62

neighborhood, 2
nonlinear CP, 53, 54
normal cone, 42
normal operator, 66
normed vector space, 6
open cover, 13

open subset, 2

open unit ball, 6

order CP, 56

order structure, 36

P(z o, p)-mapping, 207
P+-mapping, 206
Po-function, 131
parallelogram, law, 9
P-function, 131

Poincare—Bohl condition, 23, 26

p-order generalized coercive
mapping, 168
projection operator, 40
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projectionally Leray—Schauder
mapping, 139

projectionally pseudo-
contractante mapping, 140
pseudo-contractant mapping, 86
pseudomonotone mapping, 87,
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quasicomplete space, 97
quasi-P«mapping, 206

radial (absorbing) set, 10
REFE-acceptable mapping, 266
regular exceptional family of
elements, 111, 117,128, 266
retraction, 152

Rothe type Theorem, 91

scalar derivative, 225, 226
scalarly compact mapping, 253
scalarly increasing mapping, 164
scalarly increasing to infinite on
Q, 290

Schauder Theorem, 74
Schwartz’s inequality, 9
semi-definite CP, 202
semi-norm, 11

Skrypnik degree, 26

star shaped set, 11

strict p-copositive mapping, 150
strict feasibility, 132

strictly convex Banach space, 45
supremum, 36

topological degree, 19
topological dual, 10
topological space, 2
Topological Transversality
Theorem, 79

topological vector space, 6
topology, 2
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transverse mapping, 77
trivial topology, 2

uniformly convex Banach space,
45

uniformly smooth Banach space,
46

Urysohn Theorem (or Lemma),
30

variational inequality, 59

weakly inward mapping, 82
weakly proper mapping, 161
well-based cone, 39

xs-scalar asymptotic derivative,
302

zero-epi mapping, 29
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