


Proof Templates 

1 Direct proof of an if-then theorem. 19 
2 Direct proof of an if-and-only-if theorem. 23 
3 Refuting a false if-then statement via a counterexample. 26 
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5 Proving two sets are equal. 51 
6 Proving one set is a subset of another. 54 
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8 Proving universal statements. 60 
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11 Proof by contrapositive. 136 
12 Proof by contradiction. 137 
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14 Proving uniqueness. 140 
15 Proof by smallest counterexample. 146 
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17 Proof by induction. 158 
18 Proof by strong induction. 163 
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22 Proving two functions are equal. 213 
23 Proving (G, *) is a group. 344 
24 Proving a subset of a group is a subgroup. 354 
25 Proving theorems about trees by leaf deletion. 418 



Mathematics 
A Discrete Introduction 

Second Edition 

Edward R. Scheinerman 
Department of Applied Mathematics and Statistics 
The Johns Hopkins University 

1 THOMSON 

BROOKS/COLE Australia • Canada • Mexico • Singapore • Spain 

United Kingdom • United States 



THOMSON • BROOKS/COLE 

Mathematics: A Discrete Introduction, Second Edition 
Edward R. Scheinerman 

Publisher: Bob Pirtle 
Assistant Editor: Stacy Green 
Editorial Assistant: Katherine Cook 
Technology Project Manager: Earl Perry 
Executive Marketing Manager: Tom Ziolkowski 
Marketing Communications Manager: Bryan Vann 
Project Manager, Editorial Production: Kelsey McGee 
Art Director: Vernon Boes 
Print Buyer: Doreen Suruki 
Permissions Editor: Joohee Lee 

© 2006 Thomson Brooks/Cole, a part of The Thomson 
Corporation. Thomson, the Star logo, and Brooks/Cole are 
trademarks used herein under license. 

ALL RIGHTS RESERVED. No part of this work 
covered by the copyright hereon may be reproduced 
or used in any form or by any means-graphic, 
electronic, or mechanical, including photocopying, 
recording, taping, Web distribution, information 
storage and retrieval systems, or in any other 
manner-without the written permission of the 
publisher. 

Printed in the United States of America 
I 2 3 4 5 6 7 09 08 07 06 05 

For more information about our products, 
contact us at: 

Thomson Learning Academic Resource Center 
1-800-423-0563 

For permission to use material from this text 
or product, submit a request online at 

http://www.thomsonrights.com. 

Any additional questions about permissions 
can be submitted by email to 

thomsonrights@ thomson. com. 

Library of Congress Control Number: 2005922132 

Student Edition: ISBN 0-534-39898-7 

Production Service: Matrix Productions/ 
Merrill Peterson 

Text Designer: Kim Rokusek 
Photo Researcher: Pat Quest 
Copy Editor: Connie Day 
Cover Designer: Jeanne Calabrese 
Cover Image: Albert Kocourek 
Cover Printer: Phoenix Color Corp 
Compositor: Interactive Composition Corporation 
Printer: R.R. Donnelley, Crawfordsville 

Thomson Higher Education 
10 Davis Drive 
Belmont, CA 94002-3098 
USA 



To 
David, Karen, Matthew, Zachary, and Alanna 

and 
Robert, Suzanne, Calida, and Olivia 

I 





Contents 

To the Student xv 
How to Read a Mathematics Book xvi 
Exercises xvii 

To the Instructor xix 
Audience and Prerequisites xix 
Topics Covered and Navigating the Sections xix 
Sample Course Outlines xxi 
Special Features xxi 

What's New in This Second Edition xxiii 

Acknowledgments xxv 
This New Edition xxv 
From the First Edition xxv 

1 Fundamentals 1 

Joy 1 
Why? 1 
The Agony and the Ecstasy 2 
Exercise 2 

2 Definition 2 
Recap 5 
Exercises 5 

3 Theorem 8 
The Nature of Truth 8 
If-Then 9 
If and Only If 11 
And, Or, and Not 12 
What Theorems Are Called 13 
Vacuous Truth 14 
Recap 14 
Exercises 15 

4 Proof 16 
A More Involved Proof 20 

1 
Proving If-and-Only-If Theorems 22 

v 



vi Contents 

Proving Equations and Inequalities 24 
Recap 25 
Exercises 25 

5 Counterexample 25 
Recap 27 
Exercises 27 

6 Boolean Algebra 27 
More Operations 31 
Recap 32 
Exercises 32 

Chapter 1 Self Test 34 

2 Collections 37 

7 Lists 37 
Counting Two-Element Lists 37 
Longer Lists 40 
Recap 43 
Exercises 43 

8 Factorial 45 
Much Ado About 0! 46 
Product Notation 47 
Recap 48 
Exercises 48 

9 Sets 1: Introduction, Subsets 49 
Equality of Sets 51 
Subset 53 
Counting Subsets 55 
Power Set 57 
Recap 57 
Exercises 57 

10 Quantifiers 58 
There Is 58 
For All 59 
Negating Quantified Statements 60 
Combining Quantifiers 61 
Recap 62 
Exercises 63 

11 Sets II: Operations 64 
Union and Intersection 64 
The Size of a Union 66 
Difference and Symmetric Difference 68 



Contents vii 

Cartesian Product 73 
Recap 74 
Exercises 7 4 

12 Combinatorial Proof: Two Examples 76 
Recap 80 
Exercises 80 

Chapter 2 Self Test 80 

3 Counting and Relations 83 

13 Relations 83 
Properties of Relations 86 
Recap 87 
Exercises 87 

14 Equivalence Relations 89 
Equivalence Classes 92 
Recap 95 
Exercises 96 

15 Partitions 98 
Counting Classes/Parts 100 
Recap 102 
Exercises 102 

16 Binomial Coefficients 104 
Calculating G) 107 
Pascal's Triangle 109 
A Formula for G) 111 
Recap 113 
Exercises 113 

17 Counting Multisets 117 
Multisets 117 
Formulas for (G)) 119 
Recap 122 
Exercises 122 

18 Inclusion-Exclusion 123 
How to Use Inclusion-Exclusion 126 
Derangements 129 
A Ghastly Formula 132 
Recap 132 
Exercises 132 

Chapter 3 Self Test 133 



viii Contents 

4 More Proof 135 f 

19 Contradiction 135 
Proof by Contrapositive 135 

Reductio ad Absurdum 137 
A Matter of Style 141 
Recap 141 
Exercises 141 

20 Smallest Counterexample 142 

Well-Ordering 148 
Recap 153 
Exercises 153 
And Finally 154 

21 Induction 155 
The Induction Machine 155 
Theoretical Underpinnings 157 
Proof by Induction 157 
Proving Equations and Inequalities 160 

Other Examples 162 
Strong Induction 163 
A More Complicated Example 165 

A Matter of Style 168 
Recap 168 
Exercises 168 

22 Recurrence Relations 171 

First-Order Recurrence Relations 172 

Second-Order Recurrence Relations 175 

The Case of the Repeated Root 178 

Sequences Generated by Polynomials 180 

Recap 187 
Exercises 188 

Chapter 4 Self Test 190 

5 Functions 193 

23 Functions 193 
Domain and Image 195 
Pictures of Functions 196 
Counting Functions 197 
Inverse Functions 198 
Counting Functions, Again 202 

Recap 203 
Exercises 203 



6 

24 The Pigeonhole Principle 
Cantor's Theorem 208 
Recap 210 
Exercises 210 

25 Composition 211 
Identity Function 214 
Recap 215 
Exercises 215 

26 Permutations 216 
Cycle Notation 217 
Calculations with Permutations 
Transpositions 221 
A Graphical Apptoach 226 
Recap 228 
Exercises 228 

27 Symmetry 231 
Symmetries of a Square 
Symmetries as Permutations 

231 

Combining Symmetries 233 
Formal Definition of Symmetry 
Recap 236 
Exercises 236 

28 Assorted Notation 236 
Big oh 236 
Q and e 239 
Little oh 240 
Floor and Ceiling 241 
Recap 242 
Exercises 242 

Chapter 5 Self Test 242 

Probability 245 

29 Sample Space 245 
Recap 248 
Exercises 248 

30 Events 249 
Combining Events 
The Birthday Problem 
Recap 254 
Exercises 255 

252 
253 

Contents ix 

205 

220 

232 

235 



x Contents 

7 

31 Conditional Probability and Independence 
Independence 259 
Independent Repeated Trials 
The Monty Hall Problem 
Recap 263 
Exercises 263 

261 
262 

32 Random Variables 266 
Random Variables as Events 
Independent Random Variables 
Recap 270 
Exercises 270 

33 Expectation 271 
Linearity of Expectation 276 

267 
269 

Product of Random Variables 279 
Expected Value as a Measure of Centrality 282 
Variance 283 
Recap 287 
Exercises 287 

Chapter 6 Self Test 289 

Number Theory 293 

34 Dividing 293 
Div and Mod 296 
Recap 297 
Exercises 297 

35 Greatest Common Divisor 298 
Calculating the gcd 299 
Correctness 301 
How Fast? 302 
An Important Theorem 304 
Recap 307 
Exercises 307 

36 Modular Arithmetic 309 
A New Context for Basic Operations 309 

Modular Addition and Multiplication 310 
Modular Subtraction 311 
Modular Division 313 
A Note on Notation 318 
Recap 318 
Exercises 318 

257 
fo 



Contents xi 

37 The Chinese Remainder Theorem 320 
Solving One Equation 320 
Solving Two Equations 322 
Recap 324 
Exercises 324 

38 Factoring 325 \ 
Infinitely Many Primes 327 
A Formula for Greatest Common Divisor 328 
Irrationality of v'2 329 
Recap 331 
Exercises 3 31 

Chapter 7 Self Test 335 

8 Algebra 337 
39 Groups 337 

Operations 337 
Properties of Operations 338 
Groups 340 
Examples 342 
Recap 345 
Exercises 345 

40 Group Isomorphism 347 
The Same? 347 
Cyclic Groups 349 
Recap 352 
Exercises 352 

41 Subgroups 353 
- Lagrange's Theorem 356 

Recap 359 
\, Exercises 359 

42 Fermat's Little Theorem 362 
First Proof 362 
Second Proof 363 
Third Proof 366 
Euler's Theorem 367 
Primality Testing 368 
Recap 369 
Exercises 369 

43 Public Key Cryptography 1: Introduction 370 
The Problem: Private Communication in Public 370 
Factoring 370 



xii Contents 

Words to Numbers 371 

Cryptography and the Law 373 

Recap 373 
Exercises 373 

44 Public Key Cryptography II: Rabin's Method 373 

Square Roots Modulo n 374 

The Encryption and Decryption Procedures 378 

Recap 379 
Exercises 379 

45 Public Key Cryptography Ill: RSA 380 

The RSA Encryption and Decryption Functions 381 

Security 383 

Recap 384 
Exercises 384 

Chapter 8 Self Test 385 

9 Graphs 389 

46 Fundamentals of Graph Theory 389 

Map Coloring 389 

Three Utilities 391 

Seven Bridges 391 

What Is a Graph? 392 

Adjacency 393 

A Matter of Degree 394 

Further Notation and Vocabulary 396 

Recap 397 
Exercises 397 

47 Subgraphs 399 

Induced and Spanning Subgraphs 400 

Cliques and Independent Sets 402 

Complements 403 

Recap 404 
Exercises 404 

48 Connection 406 

Walks 406 

Paths 407 
Disconnection 410 

Recap 411 
Exercises 411 

49 Trees 413 

Cycles 413 
Forests and Trees 413 



10 

Properties of Trees 414 
Leaves 416 
Spanning Trees 418 
Recap 419 
Exercises 420 

50 Eulerian Graphs 
Necessary Conditions 

421 
422 

Main Theorems 423 
Unfinished Business. 425 
Recap 426 
Exercises 426 

51 Coloring 427 
Core Concepts 427 
Bipartite Graphs 429 
The Ease of Two-Coloring and the Difficulty 

of Three-Coloring 433 
Recap 434 
Exercises 434 

52 Planar Graphs 435 
Dangerous Curves 435 
Embedding 436 
Euler's Formula 437 
Nonplanar Graphs 440 
Coloring Planar Graphs 442 
Recap 444 
Exercises 444 

Chapter 9 Self Test 446 

Partially Ordered Sets 449 
53 Fundamentals of Partially Ordered Sets 449 

What Is a Poset? 449 
Notation and Language 452 
Recap 454 
Exercises 454 

54 Max and Min 455 
Recap 457 
Exercises 457 

55 Linear Orders 458 
Recap 460 
Exercises 461 

Contents xiii 



xiv Contents 

56 Linear Extensions 461 
Sorting 465 
Linear Extensions of Infinite Posets 467 
Recap 468 
Exercises 468 

57 Dimension 469 
Realizers 469 
Dimension 4 71 
Embedding 473 
Recap 476 
Exercises 4 7 6 

58 Lattices 477 
Meet and Join 4 77 
Lattices 4 79 
Recap 481 
Exercises 482 

Chapter 10 Self Test 483 

Appendices 487 
A Lots of Hints and Comments; Some Answers 487 

8 Solutions to Self Tests 515 
Chapter 1 515 
Chapter 2 516 
Chapter 3 518 
Chapter 4 520 
Chapter 5 524 
Chapter 6 526 
Chapter 7 530 
Chapter 8 532 
Chapter 9 535 
Chapter 10 539 

c Glossary 544 

D Fundamentals 552 
Numbers 552 
Operations 552 
Ordering 553 
Complex Numbers 553 
Substitution 553 

Index 555 



Continuous versus discrete 
mathematics. 

What is mathematics? A 
more sophisticated answer 
is that mathematics is the 
study of sets, functions, 
and concepts built on these 
fundamental notions. 

To the Student 

Welcome. 
This book is an introduction to mathematics, In particular, it is an introduction 

to discrete mathematics. What do these terms-discrete and mathematics-mean? 
The world of mathematics can be divided roughly into two realms: the con­

tinuous and the discrete. The difference is illustrated nicely by wristwatches. 
Continuous mathematics corresponds to analog watches-the kind with separate 
hour, minute, and second hands. The hands move smoothly over time. From an ana­
log watch perspective, between 12:02 P.M. and 12:03 P.M. there are infinitely many 
possible different times as the second hand sweeps around the watch face. Contin­
uous mathematics studies concepts that are infinite in scope, in which one object 
blends smoothly into the next. The real-number system lies at the core of con­
tinuous mathematics, and-just as on the watch-between any two real numbers, 
there is an infinity of real numbers. Continuous mathematics provides excellent 
models and tools for analyzing real-word phenomena that change smoothly over 
time, including the motion of planets around the sun and the flow of blood through 
the body. 

Discrete mathematics, on the other hand, is comparable to a digital watch. 
On a digital watch there are only finitely many possible different times between 
12:02 P.M. and 12:03 P.M. A digital watch does not acknowledge split seconds! 
There is no time between 12:02:03 and 12:02:04. The watch leaps from one time 
to the next. A digital watch can show only finitely many different times, and the 
transition from one time to the next is sharp and unambiguous. Just as the real 
numbers play a central role in continuous mathematics, integers are the primary 
tool of discrete mathematics. Discrete mathematics provides excellent models 
and tools for analyzing real-world phenomena that change abruptly and that lie 
clearly in one state or another. Discrete mathematics is the tool of choice in a 
host of applications, from computers to telephone call routing and from personnel 
assignments to genetics. 

Let us tum to a harder question: What is mathematics? A reasonable answer 
is that mathematics is the study of numbers and shapes. The particular word in 
this definition we would like to clarify is study. How do mathematicians approach 
their work? 

Every field has its own criteria for success. In medicine, success is healing and 
the relief of suffering. In science, the success of a theory is determined through 
experimentation. Success in art is the creation of beauty. Lawyers are successful 
when they argue cases before juries and convince the jurors of their clients' cases. 
Players in professional sports are judged by whether they win or lose. And success 
in business is profit. 

XV 
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What is successful mathematics? Many people lump mathematics together 
with science. This is plausible, because mathematics is fncredibly useful for 
science, but of the various fields just described, mathematics has less to do with 
science than it does with law and art! 

Mathematical success is measured by proof A proof is an essay in which an 
assertion, such as "There are infinitely many prime numbers," is incontrovertibly 
shown to be correct. Mathematical statements and proofs are, first and foremost, 
judged in terms of their correctness. Other, secondary criteria are also important. 
Mathematicians are concerned with creating beautiful mathematics. And mathe­
matics is often judged in terms of its utility; mathematical concepts and techniques 
are enormously useful in solving real-world problems. 

Proof writing. One of the principal aims of this book is to teach you, the student, how to 
write proofs. Long after you complete this course in discrete mathematics, you 
may find that you do not need to know how many k-element subsets ann-element 
set has or how Fermat's Little Theorem can be used as a test for primality. Proof 
writing, by contrast, will always serve you well. It trains us to think clearly and 
present our case logically. 

Many students find proof writing frightening and difficult. They might freeze 
after writing the word proof on their paper, unsure what to do next. The anti­
dote to this proof phobia can be found in the pages of this book! We demystify 
the proof-writing process by decoding the idiosyncrasies of mathematical English 

Proof templates. and by providing proof templates. The proof templates, scattered throughout this 
book, provide the structure (and boilerplate language) for the most common vari­
eties of mathematical proofs. Do you need to prove that two sets are equal? See 
Proof Template 5! Trying to show that a function is one-to-one? Consult Proof 
Template 20! 

How to Read a Mathematics Book 

Reading a mathematics book is an active process. You should have a pad of paper 
and a pencil handy as you read. Work out the examples and create examples of 
your own. Before you read the proofs of the theorems in this book, try to write 
your own proof. Then, if you get stuck, read the proof in the book. 

One of the marvelous features of mathematics is that you need not (perhaps, 
should not!) trust the author. If a physics book refers to an experimental result, it 
might be difficult or prohibitively expensive for you to do the experiment yourself. 
If a history book describes some events, it might be highly impractical to consult 
the original sources (which may be in a language you do not understand). But with 
mathematics, all is before you to verify. Have a reasonable attitude of doubt as you 
read; demand of yourself to verify the material presented. Mathematics is not so 
much about the truths it espouses but about how those truths are established. Be 
an active participant in the process. 

One way to be an active participant is to work on the hundreds of exercises 
found in this text. If you run into difficulty, you may be helped by the many hints 
and occasional answers in Appendix A. However, I hope you will not treat this book 
as just a collection of problems with some stuff thrown in to keep the publisher 
happy. I tried hard to make the exposition clear and useful to students. If you find it 



Exercises 

To the Student xvii 

otherwise, please let me know. I hope to improve this book continually, so send your 
comments to me by email at ers@jhu. edu or by conventional letter to Professor 
Edward Scheinerman, Department of Applied Mathematics and Statistics, The 
Johns Hopkins University, Baltimore, Maryland 21218, USA. Thank you. 

I hope you enjoy. 

1. On a digital watch there are only finitely many different times that can be 
displayed. How many different times can be displayed on a digital watch that 
shows hours, minutes, and seconds and that distinguishes between A.M. and 
P.M.? 

2. An ice cream shop sells ten different flavors of ice cream. You order a two­
scoop sundae. In how many ways can you choose the flavors for the sundae if 
the two scoops in the sundae are different flavors? 





Please also read the 

"To the Student." 

Serving the computer 

science/engineering 

student. 

To the Instructor 

Why do we teach discrete mathematics? I think there are two good reasons. First, 

discrete mathematics is useful, especially to students whose interests lie in com­

puter science and engineering, as well as those who plan to study probability, 

statistics, operations research, and other areas of modem applied mathematics. 

But I believe there is a second, more important reason to teach discrete mathe­

matics. Discrete mathematics is an excellent venue for teaching students to write 

proofs. 
Thus this book has two primary objectives: 

to teach students fundamental concepts in discrete mathematics (from count­

ing to basic cryptography to graph theory) and 

to teach students proof-writing skills. 

Audience and Prerequisites 

This text is designed for an introductory-level course on discrete mathematics. 

The aim is to introduce students to the world of mathematics through the ideas and 

topics of discrete mathematics. 

A course based on this text requires only core high school mathematics: algebra 

and geometry. No calculus is presupposed or necessary. 

Discrete mathematics courses are taken by nearly all computer science and 

computer engineering students. Consequently, some discrete mathematics courses 

focus on topics such as logic circuits, finite state automata, Turing machines, algo­

rithms, and so on. Although these are interesting, important topics, there is more 

that a computer scientist/engineer should know. We take a broader approach. All of 

the material in this book is directly applicable to computer science and engineering, 

but it is presented from a mathematician's perspective. As college instructors, our 

job is to educate students, not just to train them. We serve our computer science and 

engineering students better by giving them a broader approach, by exposing them 

to different ideas and perspectives, and, above all, by helping them to think and 

write clearly. To be sure, in this book you will find algorithms and their analysis, 

but the emphasis is on mathematics. 

Topics Covered and Navigating the Sections 

The topics covered in this book include 

the nature of mathematics (definition, theorem, proof, and counterexample), 

basic logic, 
lists and sets, 

xix 
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relations and partitions, 
advanced proof techniques, 
recurrence relations, 
functions and their properties, 
permutations and symmetry, 
discrete probability theory, 
number theory, 
group theory, 
public-key cryptography, 
graph theory, and 
partially ordered sets. 

Furthermore, enumeration (counting) and proof writing are developed throughout 

the text. Please consult the table of contents for more detail. 

Each section of this book corresponds (roughly) to one classroom lecture. 

Some sections do not require this much attention, and others require two lectures. 

There is enough material in this book for a year-long course in discrete math­

ematics. If you are teaching a year-long sequence, you can cover all the sections. 

A semester course based on this text can be roughly divided into two halves. 

In the first half, core concepts are covered. This core consists of Sections 2 through 

23 (optionally omitting Sections 17 and 18). 

From there, the choice of topics depends on the needs and interests of the 

students. Sample course outlines are given below. The interdependence of the 

various sections is depicted in the following diagram. 

Fundamentals Collections Counting and Relations More Proof 

1._2._3._4.-5-+-6t +-7-+-8-+-9--10--11- - ~13-+-14-+-15-+-16 19-+-20-+-21-

t 1\ I zt 12 17 1~ 

I 

--------------------------------------------------------------------------I 
I Functions I 

t ... r24r28 - -46-+-47-+-48-+-49-+-51-+-52 
Graphs t 

~23-+-25-+-26-+-27 
50 

' 
Number Theory 

~ 53-+-54-+-55-+-56-+-57 

+ 
34-+-35-+-36-+-37 58 

t 
38-------- ------------~ 

Partially Ordered Sets 

I : 
I 
I 

Probability L Algebra : 

1 L+-29-30-+-31-+-32--33 I 
,,,--,--,~ 

i-+-39--40-41·--42 43-+-44 
I I • 45 



To the Instructor xxi 

Sample Course Outlines 

Thanks to its plentiful selection of topics, this book can serve a variety of dis­
crete mathematics courses. The following outlines provide some ideas on how to 
structure a course based on this book. 

Computer science/engineering focus: Cover sections 1-16, 19-23, 28, 29-
33, 34-36, 46-49, and 51. This plan covers the core material, special com­
puter science notation, discrete probability, essential number theory, and graph 
theory. 

· Abstract algebra focus: Cover sections 1-16, 19-27, and 34-45. This plan 
covers the core material, permutations and symmetry, number theory, group 
theory, and cryptography. 

• Discrete structures focus: Cover sections 1-26, 46-56, and 58. This plan 
includes the core material, inclusion-exclusion, multi sets, permutations, graph 
theory, and partially ordered sets. 

· Broad focus: Cover sections 1-16, 19-23, 25-26, 34-38,42-45, and 46-52. 
This plan covers the core material, permutations, number theory, cryptogra­
phy, and graph theory. It most closely resembles the course I teach at Johns 
Hopkins. 

Special Features 

• Proof templates: Many students find proof writing difficult. When presented 
with a task such as proving two sets are equal, they have trouble structuring 
their proof and don't know what to write first. (See Proof Template 5 on 
page 51.) The proof templates appearing throughout this book give students 
the basic skeleton of the proof as well as boilerplate language. A list of the 
proof templates appears on the inside front cover. 
Growing proofs: Experienced mathematicians can write proofs sentence by 
sentence in proper order. They are able to do so because they can see the entire 
proof in their minds before they begin. Novice mathematicians (our students) 
often cannot see the whole proof before they begin. It is difficult for a student to 
learn how to write a proof simply by studying completed examples. I instruct 
students to begin their proofs by first writing the first sentence and next writing 
the last sentence. We then work the proof from both ends until we (ideally) 
meet in the middle. 

This approach is presented in the text through ever-expanding proofs 
in which the new sentences appear in color. See, for example, the proof of 
Proposition 11.11 (pages 69-73). 

• Mathspeak: Mathematicians write well. We are concerned with expressing 
our ideas clearly and precisely. However, we change the meaning of some 
words (e.g., injection and group) to suit our needs. We invent new words (e.g., 
poset and bijection), and we change the part of speech of others (e.g., we use 
the noun maximum and the preposition onto as adjectives). I point out and 
explain many of the idiosyncrasies of mathematical English in marginal notes 
flagged with the term Mathspeak. 
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• Hints: Appendix A contains an extensive collection of hint~ (and some an­

swers). It is often difficult to give hints that point a studerit in the correct 

direction without revealing the full answer. Some hints may give away too 

much, and others may be cryptic, but on balance, students will find this sec­

tion enormously helpful. They should be instructed to consult this section only 

after mounting a hearty first attack on the problems. 

· Answers: An Instructor's Guide and Solutions book is available from 

Brooks/Cole. Not only does this supplement give solutions to all the problems, 

it also gives helpful tips for teaching each of the sections. 

Self tests: Every chapter ends with a self test for students. Complete answers 

appear in Appendix B. These problems are of varying degrees of difficulty. 

Instructors may wish to specify which problems students should attempt in 

case not all sections of a chapter have been covered in class. 
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What's New in This 
Second Edition 

In addition to correcting various errors (thank you to all those who wrote!), the 
following new features have been added: 

Self tests: These are described at the end of the previous section. 
A new example proof in Section 4: A number of instructors remarked that the 
first statements proved (sum of evens is even and transitivity of divisibility) 
are too simplistic. A new example has been added that is moderately more 
complicated. 
Section 12 is entirely new and gives a more thorough introduction to combi­
natorial proof via two nontrivial examples. 
Section 21 on induction has been expanded and made essentially independent 
of Section 20 on proof by smallest counterexample. 
Section 22 on recurrence relations is entirely new. We develop methods (with 
full supporting theory) to solve first- and second-order homogeneous constant 
coefficient recurrence relations. First-order recurrence relations are solved in 
both the homogeneous and nonhomogeneous cases, whereas the second-order 
equations are solved only in the homogeneous case (but the more general case 
is explored in an exercise). 

We also show how to find the formula for the nth term of a sequence of 
numbers if that sequence is generated by a polynomial function of n. 
Section 26 includes a new proof that two decompositions of a permutation into 
transpositions must have the same parity. The new proof avoids the tedious 
consideration of inversions in a permutation and is based on T. L. Bartlow, 
"An historical note on the parity of permutations," American Mathematical 
Monthly 79 (1972) 766-769 and S. Nelson, "Defining the sign of a permuta­
tion," American Mathematical Monthly 94 (1987) 543-545. 
There is a new opening section that describes the pleasure of doing mathe­
matics. 

xxiii 
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CHAPTER 

1 Fundamentals 

The cornerstones of mathematics are definition, theorem, and proof. Definitions 
specify precisely the concepts in which we are interested, theorems assert exactly 
what is true about these concepts, and proofs irrefutably demonstrate the truth of 
these assertions. 

Before we get started, though, we ask a question: Why? 

1 Joy 

Please also read the To the 
Student preface, where we 
briefly address the 
questions: What is 
mathematics, and what is 
discrete mathematics? We 
also give important advice 
on how to read a 
mathematics book. 

Why? 

Before we roll up our sleeves and get to work in earnest, I want to share with you 
a few thoughts on the question: Why study mathematics? 

Mathematics is incredibly useful. Mathematics is central to every facet of 
modem technology: the discovery of new drugs, the scheduling of airlines, the 
reliability of communication; the encoding of music and movies on CDs and 
DVDs, the efficiency of automobile engines, and on and on. Its reach extends 
far beyond the technical sciences. Mathematics is also central to all the social 
sciences, from understanding the fluctuations of the economy to the modeling of 
social networks in schools or businesses. Every branch of the fine arts-including 
literature, music, sculpture, painting, and theater-has also benefited from (or been 
inspired by) mathematics. 

Because mathematics is both flexible (new mathematics is invented daily) and 
rigorous (we can incontrovertibly prove our assertions are correct), it is the finest 
analytic tool humans have developed. 

The unparalleled success of mathematics as a tool for solving problems in 
science, engineering, society, and the arts is reason enough to engage actively this 
wonderful subject. We mathematicians are immensely proud of the accomplish­
ments that are fueled by mathematical analysis. However, for many of us, this is 
not the primary motivation in studying mathematics. 
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Conversely, if you have 

solved this problem, do not 

offer your assistance to 

others; you don't want to 

spoil their fun. 

Exercise 

The Agony and the Ecstasy 
v 

Why do mathematicians devote their lives to the study of mathematics? For most 
of us, it is because of the joy we experience when doing mathematics. 

Mathematics is difficult for everyone. No matter what level of accomplishment 
or skill in this subject you (or your instructor) have attained, there is always a 
harder, more frustrating problem waiting around the bend. Demoralizing? Hardly! 
The greater the challenge, the greater the sense of accomplishment we experience 
when the challenge has been met. The best part of mathematics is the joy we 
experience in practicing this art. 

Most art forms can be enjoyed by spectators. I can delight in a concert per­
formed by talented musicians, be awestruck by a beautiful painting, or be deeply 
moved by literature. Mathematics, however, releases its emotional surge only for 
those who actually do the work. 

I want you to feel the joy, too. So at the end ofthis brief section there is a single 
problem for you to tackle. In order for you to experience the joy, do not under 
any circumstances let anyone help you solve this problem. I hope that when 
you first look at the problem, you do not immediately see the solution but, rather, 
have to struggle with it for a while. Don't feel bad: I've shown this problem to 
extremely talented mathematicians who did not see the solution right away. Keep 
working and thinking-the solution will come. My hope is that when you solve 
this puzzle, it will bring a smile to your face. Here's the puzzle: 

1.1. Simplify the following algebraic expression: 

(x - a)(x - b)(x -c)··· (x - z). 

2 Definition 
Mathematics exists only in people's minds. There is no such "thing" as the num­
ber 6. You can draw the symbol for the number 6 on a piece of paper, but you can't 
physically hold a 6 in your hands. Numbers, like all other mathematical objects, 
are purely conceptual. 

Mathematical objects come into existence by definitions. For example, anum­
ber is called prime or even provided it satisfies precise, unambiguous conditions. 
These highly specific conditions are the definition for the concept. In this way, 
we are acting like legislators, laying down specific criteria such as eligibility for a 
government program. The difference is that laws may allow for some ambiguity, 
whereas a mathematical definition must be absolutely clear. 

Let's take a look at an example. 

Definition 2.1 (Even) An integer is called even provided it is divisible by two. 

In a definition. the word(s) 

being defined are set in 

italic type. 

Clear? Not entirely. The problem is that this definition contains terms that we 
have not yet defined, in particular integer and divisible. If we wish to be terribly 
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The symbol Z stands for 
the integers. This symbol 
is easy to draw, but often 
people do a poor job. 
Why? They fall into the 
following trap: They first 
draw a Z and then try to 
add an extra slash. That 
doesn't work! Instead, 
make a 7 and then an 
interlocking, upside-down 
7 to draw Z. 
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fussy, we can complain that we haven't defined the term two. Each of these terms­
integer, divisible, and two-can be defined in terms of simpler concepts, but this is 
a game we cannot entirely win. If every term is defined in terms of simpler terms, 
we will be chasing definitions forever. Eventually we must come to a point where 
we say, "This term is undefined, but we think we understand what it means." 

The situation is like building a house. Each part of the house is built up from 
previous parts. Before roofing and siding, we must build the frame. Before the 
frame goes up, there must be a foundation. As house builders, we think of pouring 
the foundation as the first step, but this is not really the first step. We also have to 
own the land and run electricity and water to the property. For there to be water, 
there must be wells and pipes laid in the ground. STOP! We have descended to a 
level in the process that really has little to do with building a house. Yes, utilities 
are vital to home construction, but it is not our job, as home builders, to worry 
about what sorts of transformers are used at the electric substation! 

Let us return to mathematics and Definition 2.1. It is possible for us to define 
the terms integer, two, and divisible in terms of more basic concepts. It takes 
a great deal of work to define integers, multiplication, and so forth in terms of 
simpler concepts. What are we to do? Ideally, we should begin from the most 
basic mathematical object of all-the set-and work our way up to the integers. 
Although this is a worthwhile activity, in this book we build our mathematical 
house assuming the foundation has already been formed. 

Where shall we begin? What may we assume? In this book, we take the integers 
as our starting point. The integers are the positive whole numbers, the negative 
whole numbers, and zero. That is, the set of integers, denoted by the letter Z, is 

z = { ... ' -3, -2, -1, 0, 1, 2, 3, ... }. 

We also assume that we know how to add, subtract, and multiply, and we need 
not prove basic number facts such as 3 x 2 = 6. We assume the basic algebraic 
properties of addition, subtraction, and multiplication and basic facts about order 
relations ( <, .::::;, >, and ::::). See Appendix D for more details on what you may 
assume. 

Thus, in Definition 2.1, we need not define integer or two. However, we still 
need to define what we mean by divisible. To underscore the fact that we have not 
made this clear yet, consider the question: Is 3 divisible by 2? We want to say that 
the answer to this question is no, but perhaps the answer is yes since 3 --;-- 2 is 1 ~. 
So it is possible to divide 3 by 2 if we allow fractions. Note further that in the 
previous paragraph we were granted basic properties of addition, subtraction, and 
multiplication, but not-and conspicuous by its absence-division. Thus we need 
a careful definition of divisible. 

Definition 2.2 (Divisible) Let a and b be integers. We say that a is divisible by b provided there 
is an integer c such that be =a. We also say b divides a, orb is a factor of a, or 
b is a divisor of a. The notation for this is bla. 

This definition introduces various terms (divisible ,factor, divisor, and divides) 
as well as the notation bla. Let's look at an example. 
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Example 2.3 Is 12 divisible by 4? To answer this question, we examine the definition. It says 

that a = 12 is divisible by b = 4 if we can find an integer~ so that 4c = 12. Of 

course, there is such an integer, namely, c = 3. 
In this situation, we also say that 4 divides 12 or, equivalently, that 4 is a factor 

of 12. We also say 4 is a divisor of 12. 
The notation to express this fact is 4112. 
On the other hand, 12 is not divisible by 5 because there is no integer x for 

which 5x = 12; thus 5112 is false. 

Now Definition 2.1 is ready to use. The number 12 is even because 2112, and 

we know 2112 because 2 x 6 = 12. On the other hand, 13 is not even, because 13 

is not divisible by 2; there is no integer x for which 2x = 13. Note that we did not 

say that 13 is odd because we have yet to define the term odd. Of course, we know 

that 13 is an odd number, but we simply have not "created" odd numbers yet by 

specifying a definition for them. All we can say at this point is that 13 is not even. 
That being the case, let us define the term odd. 

Definition 2.4 (Odd) An integer a is called odd provided there is an integer x such that 

a= 2x + 1. 

Thus 13 is odd because we can choose x = 6 in the definition to give 13 = 
2 x 6 + 1. Note that the definition gives a clear, unambiguous criterion for whether 

or not an integer is odd. 
Please note carefully what the definition of odd does not say: It does not say 

that an integer is odd provided it is not even. This, of course, is true, and we prove 

it in a subsequent chapter. "Every integer is odd or even but not both" is a fact that 

we prove. 
Here is a definition for another familiar concept. 

Definition 2.5 (Prime) An integer pis called prime provided that p > 1 and the only positive 

divisors of p are 1 and p. 

For example, 11 is prime because it satisfies both conditions in the definition: 

First, 11 is greater than 1, and second, the only positive divisors of 11 are 1 and 11. 
Is 1 a prime? No. To see why, take p = 1 and see if p satisfies the definition 

of primality. There are two conditions: First we must have p > 1, and second, the 

only positive divisors of pare 1 and p. The second condition is satisfied: the only 

divisors of 1 are 1 and itself. However, p = 1 does not satisfy the first condition 

because 1 > 1 is false. Therefore, 1 is not a prime. 
We have answered the question: Is 1 a prime? The reason why 1 isn't prime 

is that the definition was specifically designed to make 1 nonprime! However, the 

real "why question" we would like to answer is: Why did we write Definition 2.5 

to exclude 1? 
I will attempt to answer this question in a moment, but there is an important 

philosophical point that needs to be underscored. The decision to exclude the 
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number 1 in the definition was deliberate and conscious. In effect, the reason 1 is 
not prime is "because I said so!" In principle, you could define the word prime 

differently and allow the number 1 to be prime. The main problem with your 
using a different definition for prime is that the concept of a prime number is well 
established in the mathematical community. If it were useful to you to allow 1 as 
a prime in your work, you ought to choose a different term for your concept, such 
as relaxed prime or alternative prime. 

Now, let us address the question: Why did we write Definition 2.5 to 
exclude 1? The idea is that the prime numbers should form the "building blocks" 
of multiplication. Later, we prove the fact that every positive integer can be fac­
tored in a unique fashion into prime numbers. For example, 12 can be factored as 
12 = 2 x 2 x 3. There is no other way to factor 12 down to primes (other than 
rearranging the order of the factors). The prime factors of 12 are precisely 2, 2, 
and 3. Were we to allow 1 as a prime number, then we could also factor 12 down 
to "primes" as 12 = 1 x 2 x 2 x 3, a different factorization. 

Since we have defined prime numbers, it is appropriate to define composite 
numbers. 

Definition 2.6 (Composite) A positive integer a is called composite provided there is an integer 

b such that 1 < b < a and bla. 

2 Exercises 

For example, the number 25 is composite because it satisfies the condition of 
the definition: There is a number b with 1 < b < 25 and b 125; indeed, b = 5 is 
the only such number. 

Similarly, the number 360 is composite. In this case, there are several numbers 
b that satisfy 1 < b < 360 and b 1360. 

Prime numbers are not composite. If pis prime, then, by definition, there can 
be no divisor of p between 1 and p (read Definition 2.5 carefully). 

Furthermore, the number 1 is not composite. (Clearly, there is no number b 

with 1 < b < 1.) Poor number 1! It is neither prime nor composite! (There is, 
however, a special term that is applied to the number 1-the number 1 is called a 
unit.) 

Recap 

In this section, we introduced the concept of a mathematical definition. Definitions 
typically have the form "An object X is called the term being defined provided it 
satisfies specific conditions." We presented the integers Z and defined the terms 
divisible, odd, even, prime, and composite. 

2.1. Please determine which of the following are true and which are false; use 
Definition 2.2 to explain your answers. 
a. 31100. 
b. 3199. 
c. -313. 
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The symbol N stands for 

the natural numbers. 

The symbol Q stands for 

the rational numbers. 

d. -51-5. 
e. -21-7. 
f. 014. 
g. 410. 
h. 010. 

2.2. Here is a possible alternative to Definition 2.2: We say that a is divisible by 

b provided ~ is an integer. Explain why this alternative definition is different 

from Definition 2.2. 
Here, different means that Definition 2.2 and the alternative definition 

specify different concepts. So, to answer this question, you should find 

integers a and b such that a is divisible by b according to one definition, but 

a is not divisible by b according to the other definition. 

2.3. None of the following numbers is prime. Explain why they fail to satisfy 

Definition 2.5. Which of these numbers is composite? 

a. 21. 
b. 0. 
c. JT. 

d. ~-
e. -2. 
f. -1. 

2.4. The natural numbers are the nonnegative integers; that is, 

N={0,1,2,3, ... }. 

Use the concept of natural numbers to create definitions for the following 

relations about integers: less than ( <), less than or equal to (:S), greater 

than(>), and greater than or equal to(~). 

Note: Many authors define the natural numbers to be just the positive in-. 

tegers; for them, zero is not a natural number. To me, this seems unnatural !D). 

The concepts positive integers and nonnegative integers are unambiguous 

and universally recognized among mathematicians. The term natural num­

ber, however, is not 100% standardized. 

2.5. A rational number is a number formed by dividing two integers a I b where 

b # 0. The set of all rational numbers is denoted Q. 

Explain why every integer is a rational number, but not all rational 

numbers are integers. 

2.6. Define what it means for an integer to be a peifect square. For example, the 

integers 0, 1, 4, 9, and 16 are perfect squares. Your definition should begin 

An integer x is called a perfect square provided .... 

2.7. This problem involves basic geometry. Suppose the concept of distance 

between points in the plane is already defined. Write a careful definition for 

one point to be between two other points. Your definition should begin 

Suppose A, B, C are points in the plane. We say that C is between A 

and B provided .... 

Note: Since you are crafting this definition, you have a bit of flexibility. 

Consider the possibility that the point C might be the same as the point A or 
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B, or even that A and B might be the same point. Personally, if A and C were 

the same point, I would say that C is between A and B (regardless of where 

B may lie), but you may choose to design your definition to exclude this 

possibility. Whichever way you decide is fine, but be sure your definition 

does what you intend. 
Note further: You do not need the concept of collinearity to define between. 

Once you have defined between, please use the notion of between to define 

what it means for three points to be collinear. Your definition should begin 

Suppose A, B, C are points in the plane. We say that they are collinear 

provided .... 

Note even further: Now if, say, A and B are the same point, you certainly 

want your definition to imply that A, B, and C are collinear. 

2.8. Discrete mathematicians especially enjoy counting problems: problems that 

ask how many. Here we consider the question: How many positive divisors 

does a number have? For example, 6 has four positive divisors: 1, 2, 3, 

and6. 
How many positive divisors does each of the following have? 

a. 8. 
b. 32. 
c. 2n where n is a positive integer. 
d. 10. 
e. 100. 
f. 1,000,000. 
g. 1 on where n is a positive integer. 
h. 30 = 2 X 3 X 5. 
i. 42 = 2 x 3 x 7. (Why do 30 and 42 have the same number of positive 

divisors?) 
j. 2310 = 2 X 3 X 5 X 7 X 11. 
k. 1 X 2 X 3 X 4 X 5 X 6 X 7 X 8. 
I. 0. 

2.9. An integer n is called perfect provided it equals the sum of all its divisors 

that are both positive and less than n. For example, 28 is perfect because 

the pos.itive divisors of 28 are 17 2, 4 7 7, 14~ and 28. Note that 1 + 2 + 4 + 7 + 
14 = 28. 
a. There is a perfect number smaller than 28. Find it. 
b. Write a computer program to find the next perfect number after 28. 

2.10. At a Little League game there are three umpires. One is an engineer, one is 

a physicist, and one is a mathematician. There is a close play at home plate, 

but all three umpires agree the runner is out. 
Furious, the father of the runner screams at the umpires, "Why did you 

call her out?!" 
The engineer replies, "She's out because I call them as they are." 

The physicist replies, "She's out because I call them as I see them." 

The mathematician replies, "She's out because I called her out." 

Explain the mathematician's point of view. 
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Theorem 
A theorem is a declarative statement about mathematics for which there is a 
proof. 

The notion of proof is the subject of the next section-indeed, it is a cen­
tral theme of this book. Suffice it to say for now that a proof is an essay that 
incontrovertibly shows that a statement is true. 

In this section we focus on the notion of a theorem. Reiterating, a theorem is 
a declarative statement about mathematics for which there is a proof. 

What is a declarative statement? In everyday English we utter many types of 
sentences. Some sentences are questions: Where is the newspaper? Other sentences 
are commands: Come to a complete stop. And perhaps the most common sort of 
sentence is a declarative statement-a sentence that expresses an idea about how 
something is, such as: It's going to rain tomorrow or The Yankees won last night. 

Practitioners of every discipline make declarative statements about their sub­
ject matter. The economist says, "If the supply of a commodity decreases, then its 
price will increase." The physicist asserts, "When an object is dropped near the 
surface of the earth, it accelerates at a rate of 9. 8 meter I sec2 

." 

Mathematicians also make statements that we believe are true about mathe­
matics. Such statements fall into three categories: 

Statements we know to be true because we can prove them-we call these 
theorems. 
Statements whose truth we cannot ascertain-we call these conjectures. 
Statements that are false-we call these mistakes! 

There is one more category of mathematical statements. Consider the sentence 
"The square root of a triangle is a circle." Since the operation of extracting a square · 
root applies to numbers, not to geometric figures, the sentence doesn't make sense. 
We therefore call such statements nonsense! 

The Nature of Truth 

To say that a statement is true asserts that the statement is correct and can be 
trusted. However, the nature of truth is much stricter in mathematics than in any 
other discipline. For example, consider the following well-known meteorological 
fact: "In July, the weather in Baltimore is hot and humid." Let me assure you, from 
persona] experience, that this statement is true! Does this mean that every day in 
every July is hot and humid? No, of course not. It is not reasonable to expect such 
a rigid interpretation of a general statement about the weather. 

Consider the physicist's statement just presented: "When an object is dropped 
near the surface of the earth, it accelerates at a rate of 9.8 meterjsec2 ."This state­
ment is also true and is expressed with greater precision than our assertion about 
the climate in Baltimore. But this physics "law" is not absolutely correct. First, the 
value 9.8 is an approximation. Second, the term near is vague. From a galactic per­
spective, the moon is "near" the earth, but that is not the meaning of near that we in­
tend. We can clarify near to mean "within 100 meters of the surface of the earth," but 
this leaves us with a problem. Even at an altitude of 100 meters, gravity is slightly 
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less than at the surface. Worse yet, gravity at the surface is not constant; the grav­
itational pull at the top of Mount Everest is a bit smaller than the pull at sea level! 

Despite these various objections and qualifications, the claim that objects 
dropped near the surface of the earth accelerate at a rate of 9. 8 meter I sec2 is true. 
As climatologists or physicists, we learn the limitations of our notion of truth. 
Most statements are limited in scope, and we learn that their truth is not meant to 
be considered absolute and universal. 

However, in mathematics the word true is meant to be considered absolute, 
unconditional, and without exception. 

Let us consider an example. Perhaps the most celebrated theorem in geometry 
is the following classical result of Pythagoras. 

(Pythagorean) If a and b are the lengths of the legs of a right triangle and c is the 

length of the hypotenuse, then 

The relation a2 + b2 = c2 holds for the legs and hypotenuse of every right 
triangle, absolutely and without exception! We know this because we can prove 
this theorem (more on proofs later). 

Is the Pythagorean Theorem really absolutely true? We might wonder: If we 
draw a right triangle on a piece of paper and measure the lengths of the sides down 
to a billionth of an inch, would we have exactly a2 + b2 = c2? Probably not, 
because a drawing of a right triangle is not a right triangle! A drawing is a helpful 
visual aid for understanding a mathematical concept, but a drawing is just ink on 
paper. A "real" right triangle exists only in our minds. 

On the other hand, consider the statement, "Prime numbers are odd." Is this 
statement true? No. The number 2 is prime but not odd. Therefore, the statement 
is false. We might like to say it is nearly true since all prime numbers except 2 are 
odd. Indeed, there are far more exceptions to the rule "July days in Baltimore are 
hot and humid" (a sentence regarded to be true) than there are to "Prime numbers 
are odd." 

Mathematicians have adopted the convention that a statement is called true 

provided it is absolutely true without exception. A statement that is not absolutely 
true in this strict way is called false. 

An engineer, a physicist, and a mathematician are taking a train ride through 

Scotland. They happen to notice some black sheep on a hillside. 
"Look," shouts the engineer. "Sheep in this part of Scotland are black!" 

"Really," retorts the physicist. "You mustn't jump to conclusions. All we can 

say is that in this part of Scotland there are some black sheep." 
"Well, at least on one side," mutters the mathematician. 

If-Then 

Mathematicians use the English language in a slightly different way than ordinary 
speakers. We give certain words special meanings that are different from that of 
standard usage. Mathematicians take standard English words and use them as 
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Con~ider the mathematical 
and the ordinary usage of 
the word prime. When an 
economist says that the 
prime interc~t rate is now 

8C!r. we arc not upset that 8 
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In the ~tatement "'If A. then 
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condition B called the 
condu.IW/1. 

technical terms. We give words such as set, group, and graph ~ew meanings. We 
also invent our own words, such as bijection and poset. (All these~ words are defined 
later in this book.) 

Not only do mathematicians expropriate nouns and adjectives and give them 
new meanings, we also subtly change the meaning of common words, such as or, 
for our own purposes. Although we may be guilty of fracturing standard usage, 
we are highly consistent in how we do it. I call such altered usage of standard 
English mathspeak, and the most important example of mathspeak is the if-then 
construction. 

The vast majority of theorems can be expressed in the form "If A, then B." 
For example, the theorem "The sum of two even integers is even" can be rephrased 
"If x and y are even integers, then x + y is also even." 

In casual conversation, an if-then statement can have various interpretations. 
For example, I might say to my daughter, "If you mow the lawn, then I will pay 
you $1 0." If she does the work, she will expect to be paid. She certainly wouldn't 
object if I gave her $10 when she didn't mow the lawn, but she wouldn't expect it. 
Only one consequence is promised. 

On the other hand, if I say to my son, "If you don't finish your lima beans, 
then you won't get dessert," he understands that unless he finishes his vegetables, 
no sweets will follow. But he also understands that if he does finish his lima beans, 
then he will get dessert. In this case two consequences are promised: one in the 
event he finishes his lima beans and one in the event he doesn't. 

The mathematical use of if-then is akin to that of "If you mow the lawn, then 
I will pay you $1 0." The statement "If A, then B" means: Every time condition 
A is true, condition B must be true as well. Consider the sentence "If x and y are 
even, then x + y is even." All this sentence promises is that when x and y are both 
even, it must also be the case that x + y is even. (The sentence does not rule out , 
the possibility of x + y being even despite x or y not being even. Indeed, if x and 
y are both odd, we know that x + y is also even.) 

In the statement "If A, then B," we might have condition A true or false, and 
we might have condition B true or false. Let us summarize this in a chart. If the 
statement "If A, then B" is true, we have the following. 

Condition A Condition B 

True True Possible 
True False Impossible 
False True Possible 
False False Possible 

All that is promised is that whenever A is true, B must be true as well. If A is not 
true, then no claim about B is asserted by "If A, then B." 

Here is an example. Imagine I am a politician running for office, and I announce 
in public, "If I am elected, then I will lower taxes." Under what circumstances would 
you call me a liar? 

Suppose I am elected and I lower taxes. Certainly you would not call me a 
liar-I kept my promise. 



Alternative wordings for 

"If A. then B." 
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Suppose I am elected and I do not lower taxes. Now you have every right to 

call me a liar-I have broken my promise. 
Suppose I am not elected, but somehow (say, through active lobbying) I man­

age to get taxes lowered. You certainly would not call me a liar-I have not 

broken my promise. 
Finally, suppose I am not elected and taxes are not lowered. Again, you would 

not accuse me of lying-I promised to lower taxes only if I were elected. 

The only circumstance under which "If (A) I am elected, then (B) I will lower 

taxes" is a lie is when A is true and B is false. 
In summary, the statement "If A, then B" promises that condition B is true 

whenever A is true but makes no claim about B when A is false. 

If-then statements pervade all of mathematics. It would be tiresome to use 

the same phrases over and over in mathematical writing. Consequently, there is 

an assortment of alternative ways to express "If A, then B." All of the following 

express exactly the same statement as "If A, then B." 

"A implies B." This can also be expressed in passive voice: "B is implied 
by A." 
"Whenever A, we have B." Also: "B, whenever A." 

"A is sufficient for B." Also: "A is a sufficient condition for B." 

This is an example of mathspeak. The word sufficient can carry, in standard 

English, the connotation of being "just enough." No such connotation should 

be ascribed here. The meaning is "Once A is true, then B must be true as 

well." 
"In order forB to hold, it is enough that we have A." 

"B is necessary for A." 
This is another example of mathspeak. The way to understand this wording 

is as follows: In order for A to be true, it is necessarily the case that B is also 

true. 
"A, only if B." 

The meaning is that A can happen only if B happens as well. 
"A====} B." 

The special arrow symbol ====} is pronounced "implies." 
"B-¢:== A". 

The arrow -¢:== is pronounced "is implied by." 

If and Only If 

The vast majority of theorems are-or can readily be expressed-in the if-then 

form. Some theorems go one step further; they are of the form "If A then B, and 

if B then A." For example, we know the following is true: 

If an integer x is even, then x + 1 is odd, and if x + 1 is odd, then x is even. 

This statement is verbose. There are concise ways to express statements of the 

form "A implies B and B implies A" in which we do not have to write out the 

conditions A and B twice each. The key phrase is if and only if. The statement 
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Alternative wordings for 

"A if and only if B." 

Mathematical use of and. 

"If A then B, and if B then A" can be rewritten as "A if and only if B." The 
example just given is more comfortably written as follows: V 

An integer x is even if and only if x + 1 is odd. 

What does an if-and-only-if statement mean? Consider the statement "A if 
and only if B." Conditions A and B may each be either true or false, so there are 
four possibilities that we can summarize in a chart. If the statement "A if and only 
if B" is true, we have 

Condition A Condition B 

True True Possible 
True False Impossible 
False True Impossible 
False False Possible 

It is impossible for condition A to be true while B is false, because A ===} B. 
Likewise, it is impossible for condition B to be true while A is false, because 
B ===} A. Thus the two conditions A and B must be both true or both false. 

Let's revisit the example statement. 

An integer x is even if and only if x + 1 is odd. 

Condition A is "x is even" and condition B is "x + 1 is odd." For some integers 
(e.g., x = 6), conditions A and B are both true (6 is even and 7 is odd), but for 
other integers (e.g., x = 9), both conditions A and B are false (9 is not even and 
10 is not odd). 

Just as there are many ways to express an if-then statement, so too are there 
several ways to express an if-and-only-if statement. 

"A iff B." 
Because the phrase "if and only if" occurs so frequently, the abbreviation "iff" 
is often used. 
"A is necessary and sufficient for B." 
"A is equivalent to B". 
The reason for the word equivalent is that condition A holds under exactly 
the same circumstances under which condition B holds. 
"A~B". 

The symbol ~ is an amalgamation of the symbols {:::= and ===}. 

And, Or, and Not 

Mathematicians use the words and, or, and not in very precise ways. The mathe­
matical usage of and and not is essentially the same as that of standard English. 
The usage of or is more idiosyncratic. 

The statement "A and B" means that both statements A and B are true. For 
example, "Every integer whose ones digit is 0 is divisible by 2 and by 5." This 
means that a number that ends in a zero, such as 230, is divisible both by 2 and by 
5. The use of and can be summarized in the following chart. 
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Mathematical use of or. 

The word theorem should 
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word theory. A theorem is 
a specific statement that 1 
can be proved. A theory is 
a broader assembly of 
ideas on a particular issue. 
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A B A and B 

True True True 
True False False 
False True False 
False False False 

The statement "not A" is true if and only if A is false. For example, the 
statement "All primes are odd" is false. Thus the statement "Not all primes are 
odd" is true. Again, we can summarize the use of not in a chart. 

A not A 

True False 
False True 

Thus the mathematical usage of and and not corresponds closely with standard 
English. The use of or, however, does not. In standard English, or often suggests 
a choice of one option or the other, but not both. Consider the question "Tonight, 
when we go out for dinner, would you like to have pizza or Chinese food?" The 
implication is that we'll dine on one or the other, but not both. 

In contradistinction, the mathematical or allows the possibility of both. The 
statement "A orB" means that A is true, orB is true, or both A and B are true. 
For example, consider the following: 

Suppose x and y are integers with the property that xI y andy lx. Then .1.:· = y 
or x = -y. 

The conclusion of this result says that we may have any one of the following: 

x = y but not x = -y (e.g., take x = 3 andy = 3). 
x = -y but not x = y (e.g., take x = -5 andy= 5). 
x = y and x = -y, which is possible only when x = 0 andy= 0. 

Here is a chart for or statements. 

A B A orB 

True True True 
True False True 
False True True 
False False False 

What Theorems Are Called 

Some theorems are more important or more interesting than others. There are 
alternative nouns that mathematicians use in place of theorem. Each has a slightly 
different connotation. The word theorem carries the connotation of importance and 
generality. The Pythagorean Theorem certainly deserves to be called a theorem. 
The statement "The square of an even integer is also even" is also a theorem, but 
perhaps it doesn't deserve such a profound name. And the statement "6 + 3 = 9" 
is technically a theorem but does not merit such a prestigious appellation. 
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Here we list words that are alternatives to theorem and qffer a guide to their 
~ 

usage. 

Result A modest, generic word for a theorem. There is an air of humility in 
calling your theorem merely a "result." Both important and unimportant 
theorems can be called results. 

Fact A very minor theorem. The statement "6 + 3 = 9" is a fact. 
Proposition A minor theorem. A proposition is more important or more gen­

eral than a fact but not as prestigious as a theorem. 
Lemma A theorem whose main purpose is to help prove another, more im­

portant theorem. Some theorems have complicated proofs. Often one can 
break the job of proving a complicated theorem down into smaller parts. 
The lemmas are the parts, or tools, used to build the more complicated 
proof. 

Corollary A result with a short proof whose main step is the use of another, 
previously proved theorem. 

Claim Similar to lemma. A claim is a theorem whose statement usually ap­
pears inside the proof of a theorem. The purpose of a claim is to help 
organize key steps in a proof. Also, the statement of a claim may involve 
terms that make sense only in the context of the proof. 

Vacuous Truth 

What are we to think of an if-then statement in which the hypothesis is impossib1l'T 
Consider the following: 

Statement 3.2 (Vacuous) If an integer is both a perfect square and prime, then it is negative. 

Is this statement true or false? 
The statement is not nonsense. The terms perfect square (see Exercise 2.6), 

prime, and negative properly apply to integers. 
We might be tempted to say that the statement is false because square numbers 

and prime numbers cannot be negative. However, for a statement of the form "If 
A, then B" to be declared false, we need to find an instance in which clause A is 
true and clause B is false. In the case of Statement 3.2, condition A is impossible; 
there are no numbers that are both a perfect square and prime. So we can never 
find an integer that renders condition A true and condition B false. Therefore, 
Statement 3.2 is true! 

Statements of the form "If A, then B" in which condition A is impossible are 
called vacuous, and mathematicians consider such statements true because they 
have no exceptions. 

Recap 

This section introduced the notion of a theorem: a declarative statement about 
mathematics that has a proof. We discussed the absolute nature of the word true 
in mathematics. We discussed extensively the if-then and if-and-only-if forms of 
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then B.'' 
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theorems, as well as alternative language to express such results. We clarified the 
way in which mathematicians use the words and, or, and not. We presented a 
number of synonyms for theorem and explained their connotations. Finally, we 
discussed vacuous if-then statements and noted that mathematicians regard such 
statements as true. 

3.1. Each of the following statements can be recast in the if-then form. Please 
rewrite each of the following sentences in the form "If A, then B." 
a. The product of an odd integer and an even integer is even. 
b. The square of an odd integer is odd. 
c. The square of a prime number is not prime. 
d. The product of two negative integers is negative. (This, of course, is false.) 

3.2. It is a common mistake to confuse the following two statements: 
a. If A, then B. 
b. If B, then A. 
Find two conditions A and B such that statement (a) is true but statement 
(b) is false. 

3.3. Consider the two statements 
a. If A, then B. 
b. (not A) or B. 
Under what circumstances are these statements true? When are they false? 
Explain why these statements are, in essence, identical. 

3.4. Consider the two statements 
a. If A, then B. 
b. If (not B), then (not A). 
Under what circumstances are these statements true? When are they false? 
Explain why these statements are, in essence, identical. 

3.5. Consider the two statements 
a. A iff B. 
b. (not A) iff (not B). 
Under what circumstances are these statements true? Under what circum­
stances are they false? Explain why these statements are, in essence, identical. 

3.6. Consider an equilateral triangle whose side lengths are a = b = c = 1. 
Notice that in this case a2 + b2 =1= c2

. Explain why this is not a violation of 
the Pythagorean Theorem. 

3. 7. Explain how to draw a triangle on the surface of a sphere that has three right 
angles. Do the legs and hypotenuse of such a right triangle satisfy the con­
dition a2 + b2 = c2? Explain why this is not a violation of the Pythagorean 
Theorem. 

3.8. Consider the sentence "A line is the shortest distance between two points." 
Strictly speaking, this sentence is nonsense. 

Find two errors with this sentence and rewrite it properly. 
3.9. Consider the following rather grotesque claim: "If you pick a guinea pig up 

by its tail, then its eyes will pop out." Is this true? 
3.10. What are the two plurals of the word lemma? 
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4 Proof 
We create mathematical concepts via definitions. We then posit assertions about 
mathematical notions, and then we try to prove our ideas are correct. 

What is a proof? 
In science, truth is borne out through experimentation. In law, truth is ascer­

tained by a trial and decided by a judge and/or jury. In sports, the truth is the ruling 
of referees to the best of their ability. In mathematics, we have proof. 

Truth in mathematics is not demonstrated through experimentation. This is 
not to say that experimentation is irrelevant for mathematics-quite the contrary! 
Trying out ideas and examples helps us to formulate statements we believe to 
be true (conjectures); we then try to prove these statements (thereby converting 
conjectures to theorems). 

For example, recall the statement "All prime numbers are odd." If we start 
listing the prime numbers from 3, we find hundreds and thousands of prime num­
bers, and they are all odd! Does this mean all prime numbers are odd? Of course 
not! We simply missed the number 2. 

Let us consider a far less obvious example. 

Conjecture 4.1 (Goldbach) Every even integer greater than two is the sum of two primes. 

Mathspeak! 
A proof o!ten called an 

arg!mielli< ln ·aandard 
English. the vmrd 

argument carries a 
connotation of 
disagreement or 
controversy< 01o such 
negative connotation 

should be c1~sociated with a 
mathematical argument. 

Indeed. mathematicians 
are honored when their 

proofs arc called "beautiful 
arguments.·· 

Let's see that this statement is true for the first few even numbers. We have 

4=2+2 
12 = 5 + 7 

6=3+3 
14 = 7 + 7 

8=3+5 
16 = 11 + 5 

10 = 3 + 7 
18 = 11 + 7. 

..... 

One could write a computer program to verify that the first few billion even numbers 
(starting with 4) are each the sum of two primes. Does this imply Goldbach's 
Conjecture is true? No! The numerical evidence makes the conjecture believable, 
but it does not prove that it is true. To date, no proof has been found for Goldbach's 
Conjecture, so we simply do not know whether it is true or false. 

A proof is an essay that incontrovertibly shows that a statement is true. Math­
ematical proofs are highly structured and are written in a rather stylized manner. 
Certain key phrases and logical constructions appear frequently in proofs. In this 
and subsequent sections, we show how proofs are written. 

The theorems we prove in this section are all rather simple. Indeed, you won't 
learn any facts about numbers you probably didn't already know quite well. The 
point in this section is not to learn new information about numbers; the point is to 
learn how to write proofs. So without further ado, let's start writing proofs! 

We prove the following: 

Proposition 4.2 The sum of two even integers is even. 

I will write the proof here in full, and then we will discuss how this proof was 
created. In this proof, I have numbered each sentence so we can examine the proof 
piece by piece. Normally we would write this short proof out in a single paragraph 
and not number the sentences. 



Convert the statement to 
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of the statement. 

Unravel definitions. 
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Proof (of Proposition 4.2) 

1. We show that if x and y are even integers, then x + y is an even integer. 
2. Let x and y be even integers. 
3. Since x is even, we know by Definition 2.1 that x is divisible by 2 (i.e., 21x ). 
4. Likewise, since y is even, 2jy. 
5. Since 2jx, we know, by Definition 2.2, that there is an integer a such that 

x = 2a. 
6. Likewise, since 2iy, there is an integer b such that y = 2b. 
7. Observe that x + y = 2a + 2b = 2(a +b). 
8. Therefore there is an integer c (namely, a+ b) such that x + y = 2c. 
9. Therefore (Definition 2.2) 2i(x + y). 

10. Therefore (Definition 2.1) x + y is even. • 

Let us examine exactly how this proof was written. 

The first step is to convert the statement of the proposition into the if-then 
form. 

The statement reads, "The sum of two even integers is even." 
We convert the statement into if-then form as follows: 
"If x and y are even integers, then x + y is an even integer." 
Note that we introduced letters (x andy) to name the two even integers. 

These letters come in handy in the proof. 
Observe that the first sentence of the proof spells out the proposition in 

if-then form. 
Sentence 1 announces the structure of this proof. The hypothesis (the "if" 

part) tells the reader that we will assume that x andy are even integers, and 
the conclusion (the "then" part) tells the reader that we are working to prove 
that x + y is even. 

Sentence 1 can be regarded as a preamble to the proof. The proof starts 
in earnest at sentence 2. 
The next step is to write the very beginning and the very end of the proof. 

The hypothesis of sentence 1 tells us what to write next. It says, '' ... if x 
andy are even integers ... ,"so we simply write, "Let x andy be even integers.'' 
(Sentence 2) 

Immediately after we write the first sentence, we write the very last sen­
tence of the proof. The last sentence of the proof is a rewrite of the conclusion 
of the if-then form of the statement. 

"Therefore, x + y is even." (Sentence I 0) 
The basic skeleton of the proof has been constructed. We know where we 

begin (x andy are even), and we know where we are heading (x + y is even). 
The next step is to unravel definitions. We do this at both ends of the proof. 

Sentence 2 tells us that x is even. What does this mean? To find out, we 
check (or we remember) the definition of the word even. (Take a quick look at 
Definition 2.1 on page 2.) It says that an integer is even provided it is divisible 
by 2. So we know that x is divisible by 2, and we can also write that as 2ix; 
this gives sentence 3. 
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What do we know? What 

do we nccd'7 Make the 

ends meet. 

Sentence 4 does the same job as sentence 3. Since the reasoning in sen­

tence 4 is identical to that of sentence 3, we use the word li~ewise to flag this 

parallel construction. 

We now unravel the definition of divisible. We consult Definition 2.2 to 

learn that 2jx means there is an integer-we need to give that integer a name 

and we call it a-such that x = 2a. So sentence 5 just unravels sentence 3. 

Similarly (likewise!) sentence 6 unravels the fact that 2/y (sentence 4), and 

we know we have an integer b such that y = 2b. 

At this point, we are stuck. We have unraveled all the definitions at the 

beginning of the proof, so now we return to the end of the proof and work 

backward! 
We are still in the "unravel definitions" phase of writing this proof. The 

last sentence of the proof says, "Therefore x + y is even." How do we prove 

an integer is even? We turn to the definition of even, and we see that we need 

to prove that x + y is divisible by 2. So we know that the penultimate sentence 

(number 9) should say that x + y is divisible by 2. 

How do we get to sentence 9? To show that an integer (namely, x + y) is 

divisible by 2, we need to show there is an integer-let's call it c-such that 

(x + y) = 2c. This gives sentence 8. 

Now we have unraveled definitions from both ends of the proof. Let's 

pause a moment to see what we have. The proof (written more tersely here) 

reads: 

We show that if x and y are even integers, then x + y is an even integer. 

Let x andy be even integers. By definition of even, we ki\OW that 

2ix and 21 y. By definition of divisibility, we know there are 'integers a 

and b such that x = 2a andy= 2b. 

Therefore there is an integer c such that x + y = 2c; hence 2j(x + y), 

and therefore x + y is even. 

The next step is to think. What do we know and what do we need? 

We know x = 2a andy = 2b. We need an integer c such that x + y = 2c. 

So in this case, it is easy to see that we can take c = a + b because the sum of 

two integers is an integer. We fill in the middle of the proof with sentence 7 

and we are finished! To celebrate, and to mark the end of the proof, we append 

an end-of-proof symbol to the end of the proof: • 

This middle step-which was quite easy-is actually the hardest part of 

the proof. The translation of the statement of the proposition into if-then form 

and the unraveling of definitions are routine; once you have written several 

proofs, you will find these steps are easily produced. The hard part comes 

when you try to make ends meet! 
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The proof of Proposition 4.2 is the most basic type of proof; it is called a direct 
proof. The steps in writing a direct proof of an if-then statement are summarized 
in Proof Template 1. 

Proof Template 1 Direct proof of an if-then theorem. 

• Write the first sentence(s) of the proof by restating the hypothesis of the 
result. Invent suitable notation (e.g., assign letters to stand for variables). 

• Write the last sentence(s) of the proof by restating the conclusion of the 
result. 

• Unravel the definitions, working forward from the beginning of the proof 
and backward from the end of the proof. 

• Figure out what you know and what you need. Try to forge a link between 
the two halves ofyour argument. 

Let's use the direct proof technique to prove another result. 

Proposition 4.3 Let a, b, and e be integers. If alb and ble, then ale. 

The first step in creating the proof of this proposition is to write the first and 
last sentences based on the hypothesis and conclusion. This gives 

Suppose a, b, and e are integers with alb and ble. 

Therefore ale. 

Next we unravel the definition of divisibility. 

• 
__j 

Suppose a, b, and e are integers with alb and ble. Since alb, there is an 
integer x such that b = ax. Likewise there is an integer y such that c = by. 

Therefore there is an integer z such that e = az. Therefore ale. • 

We have unraveled the definitions. Let's consider what we have and what we 
need. 

We have a, b, e, x, andy such that: b = ax and e = by. 

We want to find z such that: e = az. 

Now we have to think, but fortunately the problem is not hard. Since b = ax, we 
can substitute ax forb in e = by and get e = axy. So the z we need is z = xy. 
We can use this to finish the proof of Proposition 4.3. 
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Suppose a, b, and care integers with alb and hie. Since~alb, there is an 
integer x such that b = ax. Likewise there is an integer y such that c = by. 
Let z = xy. Then az = a(xy) = (ax)y =by= c. 

Therefore there is an integer z such that c = az. Therefore a I c. • 

A More Involved Proof 

Propositions 4.2 and 4.3 are rather simple and not particularly interesting. Here 
we develop a more interesting proposition and its proof. 

One of the most intriguing and most difficult issues in mathematics is the 
pattern of prime and composite numbers. Here is one pattern for you to consider. 
Pick a posititive integer, cube it, and then add one. Some examples: 

33 + 1 = 27 + 1 = 28, 

4 3 + 1 = 64 + 1 = 65' 

53 + 1 = 125 + 1 = 126, and 

63 + 1 = 216 + 1 = 217. 

Notice that the results are all composite. (Note that 217 = 7 x 31.) Try a few more 
examples on your own. 

Let us try to convert this observation into a proposition for us to prove. Here's a 
first (but incorrect) draft: "If x is an integer, then x 3 + 1 is composite." This is a good 
start, but when we examine Definition 2.6, we note that the term composite applies 
only to positive integers. If x is negative, then x 3 + 1 is either negative or zero. 

Fortunately, it's easy to repair the draft statement; here is a secollct version: 
"If x is a positive integer, then x 3 + 1 is composite." This looks better, but we're 
in trouble already when x = 1 because, in this case, x 3 + 1 = 13 + 1 = 2, which 
is prime. This makes us worry about the entire idea, but we note that when x = 2, 
x 3 + 1 = 23 + 1 = 9, which is composite, and we can try many other examples 
with x > 1 and always meet with success. The case x = 1 turns out to be the only 
exception, and this leads us to a third (and correct) version of the proposition we 
wish to prove. 

Proposition 4.4 Let x be an integer. If x > 1, then x 3 + 1 is composite. 

Let's write down the basic outline of the proof. 

Let x be an integer and suppose x > 1. 

Therefore x 3 + 1 is composite. • 
To reach the conclusion that x 3 + 1 is composite, we need to find a factor of 

x 3 + 1 that is strictly between 1 and x 3 + 1. With luck, the word factor makes us 
think about factoring the polynomial x 3 + 1 as a polynomial. Recall from basic 



You might have the 

following concern: "I 

forgot that x 3 + 1 factors. 

How would I ever come up 

with this proof?" One idea 

is to look for patterns in 

the factors. We saw that 

63 + 1 = 7 X 31, SO 63 + 1 

is divisible by 7. Trying 

more examples, you may 

notice that 73 + 1 is 

divisible by 8, 83 + 1 is 
divisible by 9, 93 + I is 

divisible by I 0, and so on. 
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x 3 + I = (x + I) x ?. 
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algebra that 

x 3 + 1 = (x + 1)(x2 
- x + 1). 

This is the "Aha!" insight we need. Both x + 1 and x 2 - x + 1 are factors of x 3 + 1. 

For example, when x = 6, the factors x + 1 and x 2 
- x + 1 evaluate to 7 and 31, 

respectively. Let's add this insight to our proof. 

Let x be an integer and suppose x > 1. Note that x 3 + 1 = (x + 1 )(x2 - x + 1). 

Since x + 1 is a divisor of x 3 + 1, we have that x 3 + 1 is composite. • 

To correctly say that x + 1 is a divisor of x 3 + 1, we need the fact that both 

x + 1 and x 2 - x + 1 are integers. This is clear, because x itself is an integer. Let's 

be sure we include this detail in our proof. 

Letx be an integer and supposex > 1. Note thatx 3 + 1 = (x+ 1)(x2 -x+ 1 ). 

Because x is an integer, both x + 1 and x 2 - x + 1 are integers. Therefore 

(x + 1)1(x3 + 1). 

Since x + 1 is a divisor of x 3 + 1, we have that x 3 + 1 is composite. • 

The proof isn't quite finished yet. Consult Definition 2.6; we need that the 

divisor be strictly between 1 and x 3 + 1, and we have not proved that yet. So let's 

figure out what we need to do. We must prove 

1 < x + 1 < x 3 + 1. 

The first part is easy. Since x > 1, adding 1 to both sides gives 

x+1>1+1=2>1. 

Showing thatx+ 1 < x 3 + 1 is only slightly more difficult. Working backward, 

to show x + 1 < x 3 + 1, it will be enough if we can prove that x < x 3
. Notice that 

since x > 1, multiplying both sides by x gives x 2 > x, and since x > 1, we have 

x 2 > 1. Multiplying both sides of this by x gives x 3 > x. 
Let's take these ideas and add them to the proof. 

Letx be an integer and supposex > 1. Note thatx 3 + 1 = (x+ 1)(x2 -x+ 1). 

Because xis an integer, both x + 1 and x 2
- x + 1 are integers. Therefore 

(x + l)l(x3 + 1). 
Since x > 1, we have x + 1 > 1 + 1 = 2 > 1. 
Also x > 1 implies x 2 > x, and since x > 1, we have x 2 > 1. Multiplying 

both sides by x again yields x 3 > x. Adding 1 to both sides gives x 3 + 1 > 

x+l. 
Thus x + 1 is an integer with 1 < x + 1 < x 3 + 1. 
Since x + 1 is a divisor of x 3 + 1 and 1 < x + 1 < x 3 + 1 , we have that 

x 3 + 1 is composite. • 
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Proving If-and-Only-If Theorems 

The basic technique for proving a statement of the form "A iff B" is to prove two 
if-then statements. We prove both "If A, then B" and "If B, then A." Here is an 
example: 

Proposition 4.5 Let x be an integer. Then x is even if and only if x + 1 is odd. 

The basic skeleton of the proof is as follows: 

Let x be an integer. 
( =}) Suppose x is even .... Therefore x + 1 is odd. 
( {=) Suppose x + 1 is odd .... Therefore x is even. • 

Notice that we flag the two sections of the proof with the symbols ( =}) and 
( {=). This lets the reader know which section of the proof is which. 

Now we unravel the definitions at the front of each part of the proof. (Recall 
the definition of odd; see Definition 2.4 on page 4.) 

Let x be an integer. 
( =}) Suppose x is even. This means that 21x. Hence there is an integer 

a such that x = 2a . ... Therefore x + 1 is odd. 
( {=) Suppose x + 1 is odd. So there is an integer b such that x + 1 = 

2b + 1 .... Therefore x is even. • 

The next steps are clear. In the first part of the proof, we have x = 2a, and 
we want to prove x + 1 is odd. We just add 1 to both sides of x = 2a to get 
x + 1 = 2a + 1, and that shows that x + 1 is odd. 

In the second part of the proof, we know x + 1 = 2b + 1, and we want to 
prove that x is even. We subtract 1 from both sides and we are finished. 

Let x be an integer. 
( =}) Suppose x is even. This means that 21x. Hence there is an integer 

a such that x = 2a. Adding 1 to both sides gives x + 1 = 2a + 1. By the 
definition of odd, x + 1 is odd. 

( {=) Suppose x + 1 is odd. So there is an integer b such that x + 1 = 
2b + 1. Subtracting 1 from both sides gives x = 2b. This shows that 21x 
and therefore x is even. • 

Proof Template 2 shows the basic method for proving an if-and-only-if 
theorem. 
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Proof Template 2 Direct proof of an if-and-only-if theorem. 

When is it safe to skip 

steps? 

To prove a statement of the form "A iff B": 

( =>) Prove "If A, then B." 

C<=) Prove "If B, then A." 

As you become more comfortable writing proofs, you may find yourself get­

ting bored writing the same steps over and over again. We have seen the sequence 

(1) xis even, so (2) xis divisible by 2, so (3) there is an integer a such that x = 2a 

several times already. You may be tempted to skip step (2) and just write "x is 

even, so there is an integer a such that x = 2a ." The decision about skipping steps 

requires some careful judgment, but here are some guidelines. 

• Would it be easy (and perhaps boring) for you to fill in the missing steps? Are 

the missing steps obvious? If you answer yes, then omit the steps. 

• Does the same sequence of steps appear several times in your proof(s), but the 

sequence of steps is not very easy to reconstruct? Here you have two choices: 

- Write the sequence of steps out once, and the next time the same sequence 

appears, use an expression such as "as we saw before" or "likewise." 

- Alternatively, if the consequence of the sequence of steps can be described 

in a statement, first prove that statement, calling it a lemma. Then invoke 

(refer to) your lemma whenever you need to repeat those steps. 

• When in doubt, write it out. 

Let us illustrate the idea of explicitly separating off a portion of a proof into 

a lemma. Consider the following statement. 

Proposition 4.6 Let a, b, c, and d be integers. If alb, blc, and cld, then ald. 

Here is the proof as suggested by Proof Template 1. 

Let a, b, c, and d be integers with alb, blc, and cld. ~~ 
Since alb, there is an integer x such that ax = b. j 

Since blc, there is an integer y such that by =c. 

Since cld, there is an integer z such that cz =d. 

Note that a(xyz) = (ax)(yz) = b(yz) = (by)z = cz =d. 1 

Therefore there is an integer w = x y z such that a w = d. 1 

Therefore ald. • I 

~----------------------------------------------_j 
There is nothing wrong with this proof, but there is a simpler, less verbose 

way to handle it. We have already shown that alb, blc =>ale in Proposition 4.3. 

Let us use this proposition to prove Proposition 4.6. 

Here is the alternative proof. 

Let a, b, c, and d be integers with alb, blc, and cld. 

Since alb and blc, by Proposition 4.3 we have ale. 

Now, since ale and cld, again by Proposition 4.3 we have ald. • 
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We need to comment that 
x is positive because 

multiplying both sides of 

an inequality by a negative 
number reverses the 
inequality. 

The key idea was to use Proposition 4.3 twice. Once it was applied to a, b, and 
e to get ale. When we have ale, we can use Proposition 4.3 agatn on the integers 
a, e, and d to finish the proof. 

Proposition 4.3 serves as a lemma in the proof of Proposition 4.6. 

Proving Equations and Inequalities 

The basic algebraic manipulations you already know are valid steps in a proof. It 
is not necessary for you to prove that x + x = 2x or that x 2 - y2 = (x - y) (x + y). 
In your proofs, feel free to use standard algebraic steps without detailed comment. 

However, even these simple facts can be proved using the fundamental prop­
erties of numbers and operation (see Appendix D). We show how here, simply 
to illustrate that algebraic manipulations can be justified in terms of more basic 
principles. 

For x + x = 2x: 

x+x=1·x+1·x 
= (1 + l)x 

1 is the identity element for multiplication 
distributive property 

= 2x because 1 + 1 = 2. 

For (x - y)(x + y) = x 2 - y 2
: 

(x - y)(x + y) = x(x + y) - y(x + y) 
= x 2 + xy - yx - y2 

= x 2 + xy - xy - y2 

= x 2 + 1xy - 1xy - y2 

= x 2 + (1 - 1)xy - y2 

= x 2 + Oxy- y 2 

= x2 + 0- y2 

<;» 

distributive property 
distributive property 
commutative property for 

multiplication 
1 is the identity element for 

multiplication 
distributive property 
because 1 - 1 = 0 
because anything multiplied 

by 0 is 0 
0 is the identity element for addition. 

Working with inequalities may be less familiar, but the basic steps are the 
same. For example, suppose you are asked to prove the following statement: If 
x > 2 then x 2 > x + 1. Here is a proof: 

Proof. We are given that x > 2. Since x is positive, multiplying both sides by x 
gives x 2 > 2x. So we have 

Therefore x 2 > x + 1. 

x 2 > 2x 
=x+x 
>x+2 
>x+l 

because x > 2 
because 2 > 1. 

• 
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Recap 

We introduced the concept of proof and presented the basic technique of writing a 
direct proof for an if-then statement. For if-and-only-if statements, we apply this 
basic technique to both the forward(==>) and the backward (¢)implications. 

4 Exercises 4.1. Prove that the sum of two odd integers is even. 
4.2. Prove that the sum of an odd integer and an even integer is odd. 
4.3. Prove that the product of two even integers is even. 
4.4. Prove that the product of an even integer and an odd integer is even. 
4.5. Prove that the product of two odd integers is odd. 
4.6. Suppose a, b, and care integers. Prove that if alb and alc, then al(b +c). 
4.7. Suppose a, b, and care integers. Prove that if alb, then al(bc). 
4.8. Suppose a, b, d, x, and y are integers. Prove that if dla and dlb, then 

dl(ax +by). 
4.9. Suppose a, b, c, and dare integers. Prove that if alb and cld, then (ac)/(bd). 

4.10. Let x be an integer. Prove that x is odd if and only if x + 1 is even. 
4.11. Let x be an integer. Prove that Olx if and only if x = 0. 
4.12. Let a and b be integers. Prove that a < b if and only if a ~ b - 1. 
4.13. Prove that an integer is odd if and only if it is the sum of two consecutive 

integers. 
4.14. Suppose you are asked to prove a statement of the form "If A or B, then C." 

Explain why you need to prove (a) "If A, then C" and also (b) "If B, then 
C." Why is it not enough to prove only one of (a) and (b)? 

4.15. Suppose you are asked to prove a statement of the form "A iff B." The 
standard method is to prove both A =} Band B =} A. 

Consider the following alternative proof strategy: Prove both A =} B 
and (not A) =} (not B). Explain why this would give a valid proof. 

5 Counterexample 
In the previous section, we developed the notion of proof: a technique to demon­
strate irrefutably that a given statement is true. Not all statements about mathemat­
ics are true! Given a statement, how do we show that it is false? Disproving false 
statements is usually simpler than proving theorems. The typical way to disprove 
an if-then statement is to create a counterexample. Consider the statement "If A, 
then B." A counterexample to such a statement would be an instance where A is 
true but B is false. 

For example, consider the statement "If x is a prime, then x is odd." This 
statement is false. To prove that it is false, we just have to give an example of an 
integer that is prime but is not odd. The integer 2 has the requisite properties. 

Let's consider another false statement. 

Statement 5.1 (false) Let a and b be integers. If alb and bla, then a = b. 
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This statement appears plausible. It seems that if alb, th~n a ~ b, and if bla, 

then b ~ a, and so a = b. But this reasoning is incorrect. ~ 
To disprove Statement 5.1, we need to find integers a and b that, on the one 

hand, satisfy alb and bla but, on the other hand, do not satisfy a= b. 

Here is a counterexample: Take a = 5 and b = -5. To check that this is a 
counterexample, we simply note that, on the one hand, 51 - 5 and -515 but, on 
the other hand, 5 i- -5. 

Proof Template 3 Refuting a false if-then statement via a counterexample. 

A strategy for finding 
counterexamples. 

To disprove a statement of the form "If A, then B": 

Find an instance where A is true but B is false. 

Refuting false statements is usually easier than proving true statements. How­
ever, finding counterexamples can be tricky. To create a counterexample, I recom­
mend you try creating several instances where the hypothesis of the statement is 
true and check each to see whether or not the conclusion holds. All it takes is one 
counterexample to disprove a statement. 

Unfortunately, it is easy to get stuck in a tfiinking rut. For Statement 5.1, we 
might consider 313 and 414 and 515 and never think about making one number 
positive and the other negative. 

Try to break out of such a rut by creating strange examples. Don't forget about 
the number 0 (which acts strangely) and negative numbers. Of course, following 
that advice, we might still be stuck in the rut 0 I 0, -11 - 1, -21 - 2, and so on. 

Here is a strategy for finding counterexamples. Begin by trying ~ prove the 
statement; when you get stuck, try to figure out what the problem is and look there 
to build a counterexample. 

Let's apply this technique to Statement 5.1. We start, as usual, by converting 
the hypothesis and conclusion of the statement into the beginning and end of the 
proof. 

Let a and b be integers with alb and bla .... Therefore a= b. • 
Next we unravel definitions. 

Let a and b be integers with alb and bla. Since alb, there is an integer x such 
that b =ax. Since bla, there is an integer y such that a= by .... Therefore 

a =b. • 

Now we ask: What do we know? What do we need? We know 

b =ax and a= by 

and we want to show a = b. To get there, we can try to show that x = y = 1. 

Let's try to solve for x or y. 
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Since we have two expressions in terms of a and b, we can try substituting 
one in the other. We use the fact that b = ax to eliminate b from a = by. We get 

a= by =} a= (ax)y =} a= (xy)a. 

It now looks quite tempting to divide both sides of the last equation by a, but 
we need to worry that perhaps, a = 0. Let's ignore the possibility of a = 0 for 
just a moment and go ahead and write xy = 1. We see that we have two integers 
whose product is 1. And we realize at this point that there are two ways that can 
happen: either 1 = 1 x 1 or 1 = -1 x -1. So although we know xy = 1, we 
can't conclude that x = y = 1 and finish the proof. We're stuck and now we 
consider the possibility that Statement 5.1 is false. We ask: What if x = y = 1? 
We see that this would imply that a = -b; for example, a = 5 and b = -5. 
And then we realize that in such a case, alb and bla but a =I= b. We have found a 
counterexample. Do we need to go back to our worry that perhaps a= 0? No! We 
have refuted the statement with our counterexample. The attempted proof served 
only to help us find a counterexample. 

Recap 

This section showed how to disprove an if-then statement by finding an example 
that satisfies the hypothesis of the statement but not the conclusion. 

5.1. Disprove: If a and bare integers with alb, then a ::::b. 
5.2. Disprove: If a and b are nonnegative integers with alb, then a :=: b. 

Note: A counterexample to this statement would also be a counterex-
ample for the previous problem, but not necessarily vice versa. 

5.3. Disprove: If a, b, and care positive integers with al(bc), then alb or ale. 
5.4. Disprove: If a, b, and care positive integers, then aWl = (abY. 
5.5. Consider the polynomial n2 + n + 41. Calculate the value of this polynomial 

for n = 1, 2, 3, ... , 1 O.Notice that all the numbers you computed are prime. 
Disprove: If n is a positive integer, then n 2 + n + 41 is prime. 

5.6. What does it mean for an if-and-only-if statement to be false? What prop­
erties should a counterexample for an if-and-only-if statement have? 

5.7. Disprove: An integer xis positive if and only if x + 1 is positive. 
5.8. Disprove: Two right triangles have the same area if and only if the lengths 

of their hypotenuses are the same. 
5.9. Disprove: A positive integer is composite if and only if it has two different 

prime factors. 

6 Boolean Algebra 
Algebra is useful for reasoning about numbers. An algebraic relationship, such 
as x 2 

- y 2 = (x - y)(x + y), describes a general relationship that holds for any 
numbers x and y. 
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Variables stand for TRUE 

and fALSE. 

The basic operations of 
Boolean algebra are 1\, v. 
and ....,. These operations 

are also present in many 
computer languages. Since 

computer keyboards 
typically do not have these 
symbols, the symbols & 
(for/\), I (for v), and~ 

(for....,) arc often used 

instead. 

In a similar way, Boolean algebra provides a frameworkJor dealing with 
statements. We begin with basic statements, such as "x is prime," and combine 
them using connectives such as if-then, and, or, not, and so on. 

For example, in Section 3 you were asked (see Exercise 3.3) to explain why 
the statements "If A, then B" and "(not A) orB" mean essentially the same thing. 
In this section, we present a simple method for showing that such sentences have 
the same meaning. 

In an ordinary algebraic expression, such as 3x - 4, letters stand for numbers, 
and the operations are the familiar ones of addition, subtraction, multiplication, 
and so forth. The value of the expression 3x - 4 depends on the number x. When 
x = 1, the value of the expression is -1, and if x = 10, the value is 26. 

Boolean algebra also has expressions containing letters and operations. Letters 
(variables) in a Boolean expression do not stand for numbers. Rather, they stand 
for the values TRUE and FALSE. Thus letters in a Boolean algebraic expression can 
only have two values! 

There are several operations we can perform on the values TRUE and FALSE. 

The most basic operations are called and (symbol: A), or (symbol: v), and not 
(symbol: --.). 

We begin with /\. To define /\, we need to define the value of x 1\ y for all 
possible values of x and y. Since there are only two possible values for each of x 
andy, this is not hard. Withouf further ado, here is the definition of the operation 1\. 

TRUE 1\ TRUE = TRUE 

TRUE 1\ FALSE = FALSE 

FALSE 1\ TRUE = FALSE 

FALSE 1\ FALSE = FALSE. 

In other words, the value of the expression x 1\ y is TRUE when both x and y 
are TRUE and is FALSE otherwise. A convenient way to write all this is in a truth 
table, which is a chart showing the value of a Boolean expression depending on 
the values of the variables. Here is a truth table for the operation A. 

X y xAy 

TRUE TRUE TRUE 

TRUE FALSE FALSE 

FALSE TRUE FALSE 

FALSE FALSE FALSE 

The definition of the operation 1\ is designed to mirror exactly the mathemati­
cal use of the English word and. Similarly, the Boolean operation v is designed to 
mirror exactly the mathematical use of the English word or. Here is the definition 
ofv. 

TRUE V TRUE = TRUE 

TRUE V FALSE= TRUE 

FALSE V TRUE = TRUE 

FALSE V FALSE = FALSE. 
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In other words, the value of the expression x v y is TRUE in all cases except when 
both x and y are FALSE. We summarize this in a truth table. 

X y xvy 

TRUE TRUE TRUE 

TRUE FALSE TRUE 

FALSE TRUE TRUE 

FALSE FALSE FALSE 

The third operation, .....,, is designed to reproduce the mathematical use of the 
English word not: 

.....,TRUE = FALSE 

.....,FALSE = TRUE. 

In truth table form, ....., is as follows: 

X --.x 

TRUE FALSE 

FALSE TRUE 

Ordinary algebraic expressions (e.g., 3 x 2- 4) may combine several opera­
tions. Likewise we can combine the Boolean operations. For example, consider 

TRUE 1\ ((.....,FALSE) V FALSE). 

Let us calculate the value of this expression step by step: 

TRUE 1\ ((.....,FALSE) V FALSE) =TRUE 1\ (TRUE V FALSE) 

= TRUE 1\ TRUE 

=TRUE. 

In algebra we learn how to manipulate formulas so we can derive identities 
such as 

In Boolean algebra we are interested in deriving similar identities. Let us begin 
with a simple example: 

x/\y=y/\x. 

What does this mean? The ordinary algebraic identity (x + y) 2 = x 2 + 2xy + y2 
means that once we choose (numeric) values for x and y, the two expressions 
(x + y) 2 and x 2 + 2xy + y 2 must be equal. Similarly, the identity x 1\ y = y 1\ x 

means that once we choose (truth) values for x andy, the results x 1\ y andy 1\ x 
must be the same. 

Now it would be ridiculous to try to prove an identity such as (x + y) 2 = 

x 2 + 2xy + y 2 by trying to substitute all possible values for x and y-there are 
infinitely many possibilities! However, it is not hard to try all the possibilities to 
prove a Boolean algebraic identity. In the case of x 1\ y = y 1\ x, there are only 
four possibilities. Let us summarize these in a truth table. 
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Logical equivalence. 

Proposition 6.1 

X y x/\y y/\x ~ 

TRUE TRUE TRUE TRUE 
TRUE FALSE FALSE FALSE 
FALSE TRUE FALSE FALSE 
FALSE FALSE FALSE FALSE 

By running through all possible combinations of values for x and y, we have a 
proof that x 1\ y = y 1\ x. 

When two Boolean expressions, such as x 1\ y and y 1\ x, are equal for all 
possible values of their variables, we call these expressions logically equivalent. 
The simplest method to show that two Boolean expressions are logically equivalent 
is to run through all the possible values for the variables in the two expressions 
and to check that the results are the same in every case. 

Let us consider a more interesting example. 

The Boolean expressions -.(x 1\ y) and (-.x) v (-.y) are logically equivalent. 
19 

Proof. To show this is true, we construct a truth table for both expressions. To 
save space, we write T for TRUE and F for FALSE. 

X y x/\y -,(x 1\ y) -,X -,y (-,x) v (-,y) 

T T T F F F F 
T F F T F T T 
F T F T T F T 
F F F T T T T 

The important thing to notice is that the columns for -.(x 1\ y) and (-.x) v (-.y) 
are exactly the same. Therefore, no matter how we choose the values for x and 
y, the expressions -.(x 1\ y) and (-.x) v (-.y) evaluate to the same truth value. 
Therefore the expressions -.(x 1\ y) and ( -.x) v ( -.y) are logically equivalent. • 

Proof Template 4 Truth table proof of logical equivalence. 

To show that two Boolean expressions are logically equivalent: 

Construct a truth table showing the values of the two expressions for 
all possible values of the variables. 

Check to see that the two Boolean expressions always have the same value. 

Proofs by means of truth tables are easy but dull. The following result sum­
marizes the basic algebraic properties of the operations /\, v, and --.. In several 
cases, we give names for the properties. 
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• x 1\ y = y 1\ x and x v y = y v x. (Commutative properties) 

(x 1\ y) 1\ z = x 1\ (y 1\ z) and (x v y) v z = x v (y v z). (Associative 

properties) 
• X 1\ TRUE= X and XV FALSE= X. (Identity elements) 

-.(-.x) = x. 
• X 1\ X = X and X V X = X. 

• x 1\ (y v z) = (x 1\y) v (x /\z) andx v (y /\z) = (x v y) 1\ (x v z). (Distributive 

properties) 
• X 1\ (-.x) =FALSE and XV (-.x) =TRUE. 

-.(x 1\ y) = (-.x) v (-.y) and -.(x v y) = (-.x) 1\ (-.y). (DeMorgan's Laws) 

All of these logical equivalences are easily proved via truth tables. In some 

of these identities, there is only one variable (e.g., x 1\ -.x =FALSE); in this case, 

there would be only two rows in the truth table (one for x = TRUE and one for 

x = FALSE). In the cases where there are three variables, there are eight rows in the 

truth table as (x, y, z) take on the possible values (T, T, T), (T, T, F), (T, F, T), 

(T, F, F), (F, T, T), (F, T, F), (F, F, T), and (F, F, F). 

More Operations 

The operations /\, v, and -. were created to replicate mathematicians' use of 

the words and, or, and not. We now introduce two more operations, ~ and B, 

designed to model statements of the form "If A, then B" and "A if and only if B ," 

respectively. The simplest way to define these is through truth tables. 

X y x-;.y X y X+-'>Y 

TRUE TRUE TRUE TRUE TRUE TRUE 

TRUE FALSE FALSE 
and TRUE FALSE FALSE 

FALSE TRUE TRUE FALSE TRUE FALSE 

FALSE FALSE TRUE FALSE FALSE TRUE 

The expression x ~ y models an if-then statement. We have x ~ y = TRUE 

except when x = TRUE and y = FALSE. Likewise the statement "If A, then B" 

is true unless there is an instance in which A is true but B is false. Indeed, the 

arrow ~ reminds us of the implication arrow =>. 
Similarly, the expression x B y models the statement "A if and only if B." 

The expression x B y is true provided x andy are either both true or both false. 

Likewise the statement "A {:::::::=} B" is true provided that in every instance A and 

B are both true or both false. 
Let us revisit the issue that the statements "If A, then B" and "(not A) orB" 

mean the same thing (see Exercise 3.3). 

Proposition 6.3 The expressions x ~ y and (-.x) v yare logically equivalent. 
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6 Exercises 

Exercise 4 shows that 
an if-then statement is 
logically equivalent to its 
contrapositive. 

Proof. We construct a truth table for both expressions. 

X y x----+y ...,X y (....,x) v y 

TRUE TRUE TRUE FALSE TRUE TRUE 

TRUE FALSE FALSE FALSE FALSE FALSE 

FALSE TRUE TRUE TRUE TRUE TRUE 
FALSE FALSE TRUE TRUE FALSE TRUE 

The columns for x ~ y and ( --.x) v y are the same, and therefore these expressions 
are logically equivalent. • 

Proposition 6.3 shows how the operation ~ can be reexpressed just in terms 
of the basic operations v and --.. Similarly, the operation *+ can be expressed in 
terms of the basic operations/\, v, and--. (see Exercise 6.14). 

Recap 

This section presented Boolean algebra as "arithmetic" with the values TRUE and 
FALSE. The basic operations are/\, v, and--.. Two Boolean expressions are logically 
equivalent provided they always yield the same values when we substitute for their 
variables. We can prove Boolean expressions are logically equivalent using truth 
tables. We concluded this section by defining the operations~ and*+. 

6.1. Do the following calculations: 
a. TRUE 1\ TRUE 1\ TRUE 1\ TRUE 1\ FALSE. 

b. (-.TRUE) V TRUE. 

C. -.(TRUE V TRUE). 

d. (TRUE V TRUE) 1\ FALSE. 

e. TRUE V (TRUE 1\ FALSE). 

The point of the last four is that the order in which you do the operations 
matters! Compare the expressions in (b)-( c) and (d)-( e) and note that they 
are the same except for the placement of the parentheses. 

Now rethink your answer to (a). Does your answer to (a) depend on the 
order in which you do the operations? 

6.2. Prove by use of truth tables as many parts of Theorem 6.2 as you can tolerate. 
6.3. Prove: (x 1\ y) v (x 1\ --.y) is logically equivalent to x. 

6.4. Prove: x ~ y is logically equivalent to (--.y) ~ (--.x). 
6.5. Prove: x *+ y is logically equivalent to (--.x) *+ (--.y). 
6.6. Prove: x *+ y is logically equivalent to (x ~ y) 1\ (y ~ x). 

6.7. Prove: x *+ y is logically equivalent to (x ~ y) 1\ ((--.x) ~ (--.y)). 
6.8. Prove: (x v y) ~ z is logically equivalent to (x ~ z) 1\ (y ~ z). 
6.9. Suppose we have two Boolean expressions that involve ten variables. To 

prove that these two expressions are logically equivalent, we construct a 
truth table. How many rows (besides the "header" row) would this table 
have? 



An if-then statement is not 
logically equivalent to its 
converse. 

The phrase exclusive or is 
sometimes written as xor. 
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6.10. How would you disprove a logical equivalence? Show the following: 
a. x ---+ y is not logically equivalent to y ---+ x. 
b. x ---+ y is not logically equivalent to x ~ y. 
c. x v y is not logically equivalent to (x 1\ .....,y) v ((.....,x) 1\ y). 

6.11. A tautology is a Boolean expression that evaluates to TRUE for all possible 
values of its variables. For example, the expression x v .....,x is TRUE both 
when x = TRUE and when x = FALSE. Thus x v .....,x is a tautology. 

Explain how to use a truth table to prove that a Boolean expression is a 
tautology and prove that the following are tautologies. 
a. (x v y) v (x v .....,y). 
b. (x 1\ (x ---+ y)) ---+ y. 
c. (.....,(.....,x)) ~ x. 
d. X ---+ X. 

e. ((x ---+ y) 1\ (y ---+ z)) ---+ (x ---+ z). 
f. FALSE ---+ X. 

6.12. A contradiction is a Boolean expression that evaluates to FALSE for all 
possible values of its variables. For example, x 1\ .....,x is a contradiction. 

Prove that the following are contradictions: 
a. (x v y) 1\ (x v .....,y) 1\ .....,x. 
b. x 1\ (x ---+ y) 1\ (....., y). 

c. (x---+ y) 1\ ((.....,x)---+ y) 1\ .....,y. 
6.13. Suppose A and B are Boolean expressions-that is, A and B are formulas 

involving variables (x, y, z, etc.) and Boolean operations(/\, v, .....,, etc.). 
Prove: A is logically equivalent to B if and only if A ~ B is a tautology. 

6.14. The expression x ---+ y can be rewritten in terms of only the basic operations 
1\, v, and.....,; that is, x---+ y = (.....,x) v y. 

Find an expression that is logically equivalent to x ~ y and uses only 
the basic operations/\, v, and....., (and prove that you are correct). 

6.15. Here is another Boolean operation called exclusive or; it is denoted by the 
symbol y_. It is defined in the following table. 

X y xvy 

TRUE TRUE FALSE 

TRUE FALSE TRUE 

FALSE TRUE TRUE 

FALSE FALSE FALSE 

Please do the following: 
a. Prove that y_ obeys the commutative and associative properties; that is, 

prove the logical equivalences x y_ y = y y_ x and (x y_ y) y_ z = x y_ (y y_ z). 
b. Prove that x y_ y is logically equivalent to (x 1\ ....., y) v ( ( .....,x) 1\ y). (Thus 

y_ can be expressed in terms of the basic operations/\, v, and.....,.) 
c. Prove that x y_ y is logically equivalent to (x v y) 1\ ( .....,(x 1\ y)). (This is 

another way that y_ can be expressed in terms of/\, v, and.....,.) 
d. Explain why the operation y_ is called exclusive or. 
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A binary operation is an 

operation that combines 

two values. The operation 

...., is not binary because it 

works on just one value at 

a time: it is called unary. 

Nand. 

lt is not known whether 

every perfect number is 

even, but it is conjectured 

that there are no odd 

perfect numbers. 

6.16. We have discussed several binary Boolean operations: A,.V, ---+, B, and (in 

the previous problem) y. How many different binary Boolean operations 

can there be? In other words, in how many different ways can we complete 

the following chart? 

X y X*Y 

TRUE TRUE ? 
TRUE FALSE ? 
FALSE TRUE ? 

FALSE FALSE ? 

There aren't too many possibilities, and, in worst case, you can try writing 

out all of them. Be sure to organize your list carefully so you don't miss any 

or accidentally list the same operation twice. 
6.17. We have seen that the operations---+, B, andy can be reexpressed in terms 

of the basic operations A, v, and-... Show that all binary Boolean operations 

(see the previous problem) can be expressed in terms of these basic three. 

6.18. Prove that x v y can be reexpressed in terms of just A and -.. so all binary 

Boolean operations can be reduced to just two basic operations. 

6.19. Here is yet another Boolean operation called nand; it is denoted by the 

symbol 7\. We define x 7\ y to be -..(x A y). 

Please do the following: 
a. Construct a truth table for 7\. 
b. Is the operation 7\ commutative? Associative? 
c. Show how the operations x A y and -..x can be reexpressed just in terms 

of/\. 
d. Conclude that all binary Boolean operations can be reexpressed just in 

terms of 7\ alone. 

Chapter 1 Self Test 

1. True or false: Every positive integer is either prime or composite. Explain 

your answer. 
2. Find all integers x for which xI (x + 2). You do not need to prove your answer. 

3. Let a and b be positive integers. Explain why the notation alb + 1 can be 

interpreted only as a I (b + 1) and not as (alb) + 1. 
4. Write the following statement in if-then form: "Every perfect integer is even." 

5. What is the converse of the statement "If you love me, then you will marry 

me." 
6. Determine which of the following statements are true and which are false. 

You should base your reply on your common knowledge of mathematics; 

you do not need to prove your answers. 
a. Every integer is positive or negative. 
b. Every integer is even and odd. 
c. If x is an integer and x > 2 and x is prime, then x is odd. 
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d. Let x andy be integers. We have x 2 = y 2 if and only if x = y. 
e. The sides of a triangle are all congruent to each other if and only if its 

three angles are all 60°. 
f. If an integer x satisfies x = x + 1, then x = 6. 

7. Consider the following statement (which you are not expected to understand): 
"If a matroid is graphic, then it is representable." 

Write the first and last lines of a direct proof of this statement. It is 
customary to use the letter M to stand for a matroid. 

8. The following statement is false: If x, y, and z are integers and x > y, then 
xz > yz. Please do the following: 
a. Find a counterexample. 
b. Modify the hypothesis of the statement by adding a condition concerning 

z so that the edited statement is true. 
9. Prove or disprove the following statements: 

a. Let a, b, c be integers. If ale and blc, then (a+ b)lc. 
b. Let a, b, c be integers. If alb, then (ac)l(bc). 

10. Consider the following proposition. Let N be a two-digit number and let M 
be the number formed from N by reversing N's digits. Now compare N 2 and 
M 2 . The digits of M 2 are precisely those of N 2

, but reversed. For example: 

102 = 1 00 01 2 = 001 
11 2 = 121 11 2 = 121 
122 = 144 21 2 = 441 
132 = 169 31 2 = 961 

and so on. 
Here is a proof of the proposition: 

Proof. Since N is a two-digit number, we can write N = 1 Oa + b where 
a and b are the digits of N. Since M is formed from N by reversing digits, 

M =lOb +a. 
NotethatN2 =(lOa+ b)2 = 100a2 + 20ab + b2 = (a2

) x 100 + (2ab) x 
10 + (b2) x 1, so the digits of N 2 are, in order, a 2

, 2ab, b2
. 

Likewise, M 2 = (lOb+ a) 2 = (b2
) x 100 + (2ab) x 10 + (a2

) x 1, so 
the digits of M 2 are, in order, b2 , 2ab, a 2

, exactly the reverse of N 2
. • 

Your job: Show that the proposition is false and explain why the proof is 
invalid. 

11. Suppose we are asked to prove the following identity: 

x(x + y- 1)- y(x + 1) = x(x- 1)- y. 

The identity is true (i.e., the equation is valid for all real numbers x and y ). 
The following "proof" is incorrect. Explain why. 

Proof. We begin with 

x(x + y- 1) - y(x + 1) = x(x - 1)- y 
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See Exercise 2.6 and its 
solution on page 487 for 
the definition of perfect 
square. 

and expand the terms (using the distributive property) 
2 2 ~ 

x +xy-x-yx-y=x -x-y. 

We cancel the terms x 2
, -x, and-y from both sides to give 

xy- yx = 0, 

and finally xy and -yx cancel to give 

0 = 0, 

which is correct. • 
12. Are the Boolean expressions x ~ --.y and --.(x ~ y) logically equivalent? 

Justify your answer. 
13. Is the Boolean expression (x ~ y) v (x ~ --.y) a tautology? Justify your 

answer. 
14. Prove that the sum of any three consecutive integers is divisible by three. 
15. In the previous problem you were asked to prove that the sum of any three 

consecutive integers is divisible by three. Note, however, that the sum of any 
four consecutive integers is never divisible by four. For example, 10 + 11 + 
12 + 13 = 46, which is not divisible by four. 

For which positive integers a is the sum of a consecutive integers divis­
ible by a? That is, complete the following sentence to give a true statement: 

Let a be a positive integer. The sum of a consecutive integers is divisible by 
a if and only if .... 

You need not prove your conjecture. 
16. Let a be an integer. Prove: If a :=:: 3, then a2 > 2a + 1. 

17. Suppose a is a perfect square and a :=:: 9. Prove that a - 1 is composite. 
18. Consider the following definition: 

A pair of positive integers, x and y, are called square mates if their sum, 
x + y, is a perfect square. (The concept of square mates was contrived just 
for this test, problems 18 to 20.) 

For example, 4 and 5 are square mates because 4 + 5 = 9 = 32
. Like­

wise, 8 and 8 are square mates because 8 + 8 = 16 = 42
• However, 3 and 8 

are not square mates. 
Explain why 10 and -1 are not square mates. 

19. Let x be a positive integer. Prove that there is an integer y that is greater than 
x such that x and y are square mates. 

20. Prove that if x is an integer and x :=:: 5, then x has a square mate y with 
y <X. 

You may use the following fact in your proof. If x is a positive integer, 
then x lies between two consecutive perfect squares; that is, there is a positive 
integer a such that a2 

::::: x < (a + 1)2
. 



Collections 

This chapter deals with collections. We consider two types of collections: ordered 

collections (lists) and unordered collections (sets). 

7 Lists 

What it means for two lists 

to be equal. 

Mathspeak! 
Another word 
mathematicians use for 

lists is tuple. A list of n 

elements is known as an 
n-tuple. 

A list is an ordered sequence of objects. We write lists by starting with an open 

parenthesis, following with the elements of the list separated by commas, and 

finishing with a close parenthesis. For example, (1, 2, Z) is a list whose first element 

is the number 1, whose second element is the number 2, and whose third element 

is the set of integers. 
The order in which elements appear in a list is significant. The list ( 1 , 2, 3) is 

not the same as the list (3, 2, 1). 
Elements in a list might be repeated, as in (3, 3, 2). 
The number of elements in a list is called its length. For example, the list 

( 1, 1, 2, 1) is a list of length four. 
A list of length two has a special name; it is called an ordered pair. 

A list of length zero is called the empty list and is denoted (). 
Two lists are equal provided they have the same length, and elements in the 

corresponding positions on the two lists are equal. Lists (a, b, c) and (x, y, z) are 

equal iff a = x, b = y, and c = z. 
Lists are all-pervasive in mathematics and beyond. A point in the plane is 

often specified by an ordered pair of real numbers (x, y). A natural number, when 

written in standard notation, is a list of digits; you can think of the number 172 as 

the list (1, 7, 2). An English word is a list of letters. An identifier in a computer 

program is a list of letters and digits (where the first element of the list is a 

letter). 

Counting Two-element Lists 

In this section, we address questions of the form "How many lists can we make?" 

Example 7.1 Suppose we wish to make a two-element list where the entries in the list may be 

any of the digits 1, 2, 3, and 4. How many such lists are possible? 

37 
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Mathspeak! 
The lll~ilhc'illdtical lhC or 
the word ~~ strange. 
ff a rcqaur,uH lla~ a menu 
with Cilln~L'. the 
mathcm:HiCictll would say 
thatthi~ n,cnu oilers one 
choice. TIK rc~st of the 
world\\ uuld prohahly say 
that the menu utTers no 
choice~' mat hematic a! 
usc (>f tilL' \\ md < 'iwi< 'I:' is 
similar '/)1/nl/. 

The most direct approach to answering this question is to write out all the 
possibilities. ~ 

(1,1) (1, 2) (1, 3) (1, 4) 
(2, 1) (2, 2) (2, 3) (2, 4) 
(3, 1) (3, 2) (3, 3) (3, 4) 
(4, 1) (4, 2) (4, 3) (4, 4) 

There are 16 such lists. 

We organized the lists in a manner that ensures we have neither repeated nor 
omitted a list. The first row of the chart contains all the possible lists that begin 
with 1, the second row those that begin with 2, and so on. Thus there are 4 x 4 = 16 
length-two lists whose elements are any one of the digits 1 through 4. 

Let's generalize this example a little bit. Suppose we wish to know the number 
of two-element lists where there are n possible choices for each entry in the list. 
We may assume the possible elements are the integers 1 through n. As before, we 
organize all the possible lists into a Ghart. 

(1, 1) 
(2, 1) 

(1, 2) 
(2, 2) 

(n, 1) (n, 2) 

(1, n) 
(2, n) 

(n, n) 

The first row contains all the lists that begin with 1, the second those that begin 
with 2, and so forth. There are n rows in all. Each row has exactly n lists. Therefore 
there are n x n = n2 possible lists. 

When a list is formed, the options for the second position may be different 
from the options for the first position. Imagine that a meal is a two-element list 
consisting of an entree followed by a dessert. The number of possible entrees might 
be different from the number of possible desserts. 

Therefore let us ask: How many two-element lists are possible in which there 
are n choices for the first element and m choices for the second element? Suppose 
that the possible entries in the first position of the list are the integers 1 through n, 
and the possible entries in the second position are 1 throqgh m. 

We construct a chart of all the possibilities as before. 

(1, 1) 
(2, 1) 

(n, 1) 

(1, 2) 
(2, 2) 

(n, 2) 

(l,m) 
(2, m) 

(n, m) 

There are n rows (for each possible first choice), and each row contains m entries. 
Thus the number of possible such lists is 

m + m + · · · + m = m x n. 
n times 
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Sometimes the elements of a list satisfy special properties. In particular, the 

choice of the second element might depend on what the first element is. For 

example, suppose we wish to count the number of two-element lists we can form 

from the integers 1 through 5, in which the two numbers on the list must be 

different. For example, we want to count (3, 2) and (2, 5) but not (4, 4). We make 

a chart of the possible lists. 

(1, 2) (1' 3) (1' 4) (1, 5) 
(2, 1) (2, 3) (2, 4) (2, 5) 
(3, 1) (3, 2) (3, 4) (3, 5) 
(4, 1) (4, 2) (4, 3) (4, 5) 
(5, 1) (5, 2) (5, 3) (5, 4) 

As before, the first row contains all the possible lists that begin with 1, the second 

row those lists that start with 2, and so on, so there are 5 rows. Notice that each 

row contains exactly 5 - 1 = 4 lists, so the number of lists is 5 x 4 = 20. 

Let us summarize and generalize what we have learned in a general principle. 

Theorem 7.2 (Multiplication Principle) Consider two-element lists for which there are n 

choices for the first element, and for each choice of the first element there are 

m choices for the second element. Then the number of such lists is nm. 

Proof. Construct a chart of all the possible lists. Each row of this chart contains 

all the two-element lists that begin with a particular element. Since there are n 

choices for the first element, there are n rows in the chart. Since, for each choice of 

the first element, there are m choices for the second element, we know that every 

row of the chart has m entries. Therefore the number of lists is 

m + m + · · · + m = n x m. • 
n times 

Let us consider some examples. 

Example 7.3 A person's initials are the two-element list consisting of the initial letters of their 

first and last names. For example, the author's initials are ES. In how many ways 

can we form a person's initials? In how many ways can we form initials where the 

two letters are different? 
The first question asks for the number of two-element lists where there are 26 

choices for each element. There are 262 such lists. 
The second question asks for the number of two-element lists where there are 

26 choices for the first element and, for each choice of first element, 25 choices 

for the second element. Thus there are 26 x 25 such lists. 

Another way to answer the second question in Example 7.3 is as follows: 

There are 262 ways to form initials (repetitions allowed). Of these, there are 26 
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"bad" sets of initials in which there is a repetition, namely, AA, BB, CC, ... , 
ZZ. The remaining lists are the ones we want to count, so there are 262 

- 26 
possibilities. Since 26 x 25 = 26 x (26 - 1) = 262 

- 26, the two answers 

agree. 
Please note that we reported the answers to these questions as 262 and 26 x 25, 

and not as 676 and 650. Although the latter pair of answers are correct, the answers 
262 and 26 x 25 are preferred because they retain the essence of the reasoning 
used to derive them. Furthermore, the conversion of 262 and 26 x 25 to 676 
and 650, respectively, is not interesting and can be done easily by anyone with a 

calculator. 

Example 7.4 A club has ten members. The members wish to elect a president and to elect 
someone else as a vice president. In how many ways can these posts be filled? 

We recast this question as a list-counting problem. How many two-element 
lists of people can be formed in which the two people in the list are selected 
from a collection of ten candidates and the same person may not be selected 
twice? 

There are ten choices for the first element of the list. For each choice of the 
first element (for each president), there are nine possible choices for the second 
element of the list (vice president). By the Multiplication Principle, there are 10 x 9 

possibilities. 

Longer Lists 

Let us explore how to use the Multiplication Principle to count longer lists. 
Consider the following problem. How many lists of three elements can we 

make using the numbers 1, 2, 3, 4, and 5? Let us write out all the possibilities. 
Here is a way we might organize our work: 

(1,1,1) (1,1,2) (1,1,3) (1,1,4) (1,1,5) 
(1,2, 1) (1,2,2) (1,2,3) (1,2,4) (1,2,5) 
(1,3,1) (1,3,2) (1,3,3) (1,3,4) (1,3,5) 
(1,4, 1) (1,4,2) (1 ,4,3) (1,4,4) (1,4,5) 
(1,5,1) (1,5,2) (1,5,3) (1,5,4) (1,5,5) 
(2, 1 ,1) (2,1,2) (2,1,3) (2,1,4) (2, 1,5) 
(2,2, 1) (2,2,2) (2,2,3) (2,2,4) (2,2,5) 

and so forth until 
(5,5,1) (5,5,2) (5,5,3) (5,5,4) (5,5,5) 

The first line of this chart contains all lists that begin (1, 1, ... ) . The second line 
is all lists that begin (1, 2, ... ) and so forth. Clearly, each line has five lists. The 
question becomes: 

How many lines are there in this chart? 

This is a problem we have already solved! Notice that each line of the chart begins, 
effectively, with a different two-element list; the number of two-element lists where 



Suppose A and B are lists. 

Their concatenation is the 

new list formed by listing 

first the elements of A and 

then the elements of B. 
The concatenation of the 
lists (1, 2, 1) and (I, 3, 5) 

is the list (1, 2, I, I, 3. 5). 
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each element is one of five possible values is 5 x 5, so this chart has 5 x 5 lines. 
Therefore, since each line of the chart has five entries, the number of three-element 
lists is (5 x 5) x 5 = 53 . 

We can think of a three-element list as the concatenation of a two-element list 
and a one-element list. In this problem, there are 25 possible two-element lists to 
occupy the front of the three-element list, and for each choice of the front part, 
there are five choices for the back. 

Next, let us count three-element lists whose elements are the integers 1 through 
5 in which no number is repeated. As before, we make a chart. 

(1,2,3) 
(1 ,3,2) 
(1 ,4,2) 
(1,5,2) 
(2, 1 ,3) 

(1 ,2,4) 
(1,3,4) 
(1,4,3) 
(1,5,3) 
(2, 1,4) 

and so forth until 

(1,2,5) 
(1 ,3,5) 
(1,4,5) 
(1 ,5,4) 
(2, 1 ,5) 

(5,4,1) (5,4,2) (5,4,3) 

The first line of the chart contains all the lists that begin (1, 2, ... ). (There can be 
no lines that begin (1, 1, ... ) because repetitions are disallowed.) The second line 
contains all lists that begin (1, 3, ... ), and so on. Each line of the chart contains 
just three lists; once we have chosen the first and second elements of the list (from 
a world of only five choices), there are exactly three ways to finish the list. So, as 
before, the question becomes: How many lines are on this chart? And as before, 
this is a problem we have already solved! 

The first two elements of the list form, unto themselves, a two-element list 
with each element chosen from a list of five possible objects and without repetition. 
So, by the Multiplication Principle, there are 5 x 4 lines on the chart. Since each 
line has three elements, there is a total of 5 x 4 x 3 possible lists in all. 

These three-element lists are a concatenation of a two-element list (20 choices), 
and, for each two-element list, a one-element list (3 choices), giving a total of 
20 x 3 lists. 

We extend the Multiplication Principle to count longer lists. Consider length­
three lists. Suppose we have a choices for the first element of the list, and for each 
choice of first element, there are b choices for the second element, and for each 
choice of first and second elements, there are c choices for the third element. Thus, 
in all, there are abc possible lists. To see why, imagine that the three-element list 
consists of two parts: the initial two elements and the final element. There are ab 
ways to fill in the first two elements (by the Multiplication Principle!) and there 
are c ways to complete the last element once the first two are specified. So, by 
the Multiplication Principle again, there are (ab )c ways to make the lists. The 
extension of these ideas to lists of length-four or more is analogous. 

A useful way to think about list-counting problems is to make a diagram with 
boxes. Each box stands for a position in the list, so if the length of the list is four, 
there will be four boxes on the list. We write the number of possible entries in 
each box. The number of possible lists is computed by multiplying these numbers 
together. 
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Example 7.5 Let us revisit Example 7.4. We have a club with ten membe~s. We want to elect 
an executive board consisting of a president, a vice president, a secretary, and a 
treasurer. In how many ways can we do this (assuming no member of the club can 
fill two offices)? We draw the following diagram. 

The numb~r of lists of 
length k where there are n 

poss1hle nllri~~ in each 

position ol the list and 

repetitions are allowed. 

Lists without repetitions 

are ~ometi mes called 

permutarions. However. in 
this booL the word 

pennulurion has another 
meaning d~scribed later. 

The number of lists of 

length f.; where the 

elements are chosen from a 

pool of 11 possibilities and 

Pres. V.P. Sec. Treas. 

~00[2] 
This shows there are ten choices for president. Once the president is selected, there 
are are nine choices for vice president, so there are 10 x 9 ways to fill in the first 
two elements of the list. Once these are filled, there are eight ways to fill in the 
next element of the list (secretary), so there are (10 x 9) x 8 ways to complete the 
first three slots. Finally, once the first three offices are filled, there are seven ways 
to select a treasurer, so there are (1 0 x 9 x 8) x 7 ways to select the entire slate 
of officers. 

Two particular list-making problems recur often enough to warrant special 
attention. These problems both involve making a list of length k in which each 
element of the list is selected from among n possibilities. In the first problem, 
we count all such lists; in the second problem, we count those without repeated 
elements. 

When repetitions are allowed, we have n choices for the first element of the 
list, n choices for the second element of the list, and so on, and n choices for the 
last element of the list. All told, there are 

n x n x · · · x n = nk (1) 

k times 

possible lists. 
Now suppose we fill in the length-k list with n possible values, but in this 

case, repetition is not allowed. There are n ways to select the first element of the 
list. Once this is done, there are n - 1 choices for the second element of the list. 
There are n - 2 ways to fill in position three, n - 3 ways to fill in position four, 
and so on, and finally, there are n - (k - 1) = n - k + 1 ways to fill in position k. 
Therefore, the number of ways to make a list of length k where the elements are 
chosen from a pool of n possibilities and no two elements on the list may be the 
same is 

n x [n- 1] x [n - 2] x · · · x [n - (k- 1)]. (2) 

no two elements on the list This formula is correct, but there is a minor mistake in our reasoning! How many 
are the same. length-six lists can we make where each element of the list is one of the digits 

1, 2, 3, or 4 and repetition is not allowed? The answer, obviously, is zero; you 
cannot make a length-six list using only four possible elements and not repeat an 



In this paragraph, we use 

Exercise 4.12: If a, b E Z. 

then a < h {=::::? 

a :'S h-I. 

The special notation for 

n(n- I)··· (n- k + I) is 

(nh. An alternative 

notation. still in use on 

some calculators. is "Pk. 
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element! What does the formula give? Equation (2) says the number of such lists is 

4x3x2x1x0x-1 

which equals 0. However, the reasoning behind the formula breaks down. Although 
it is true that there are 4, 3, 2, 1, and 0 choices for positions one through five, 
it does not make any sense to say there are -1 choices for the last position! 
Formula (2) gives the correct answer, but the reasoning used to arrive there needs 
to be rechecked. 

If the number of elements from which we select entries in the list, n, is less 
than the length of the list, k, no repetition-free list is possible. But since n < k, we 
know that n - k < 0 and so n - k + 1 < 1. Since n - k + 1 is an integer, we know 
that n- k + 1 ::: 0. Therefore, in the product n x (n- 1) x · · · x (n- k + 1), 

we know that at least one of the factors is zero. Therefore the whole expression 
evaluates to zero, which is what we wanted! 

On the other hand, if n 2: k, our reasoning makes sense (all the numbers are 
positive), and the formula in (2) gives the correct answer. 

Because the expression n (n - 1) (n - 2) · · · (n - k + 1) occurs fairly often, 
there is a special notation for it. The notation is 

(n)k = n(n - 1)(n - 2) · · · (n- k + 1). 

This notation is called falling factorial. We summarize our results on lists with or 
without repetition concisely using this notation. 

Th eo rem 7. 6 The number of lists of length k whose elements are chosen from a pool of n possible 
elements 

7 Exercises 

if repetitions are permitted 
if repetitions are forbidden. 

I do not recommend that you memorize this result because it is too easy to get 
confused between the meanings of nand k. Rather, rederive it in your mind when 
you need it. Imagine the k boxes written out in front of you, put the appropriate 
numbers in the boxes, and multiply. 

Recap 

This section deals with counting lists of objects. The central tool is the Multi­
plication Principle. A general formula is developed for counting length-k lists of 
elements selected from a pool of n elements either with or without repetitions. 

7.1. A bit string is a list ofOs and 1s. How many length-k bit strings can be made? 
7.2. Airports have names, but they also have three-letter codes. For example, the 

airport serving Baltimore is BWI, and the code YYY is for the airport in Mont 
Joli, Quebec, Canada. How many different airport codes are possible? 

7.3. A car's ventilation system has various controls. The fan control has four 
settings: off, low, medium, and high. The air stream can be set to come out 
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The word charucter means 
a letter or a digit. 

at the floor, through the vents, or through the defroster. The air conditioning 
button can be either on or off. The temperature control dan be set to cold, 
cool, warm, or hot. And finally, the recirculate button can be either on or off. 

In how many different ways can these various controls be set? 
Note: Several of these settings result in the same effect since nothing 

happens if the fan control is off. However, the problem asks for the number 
of different settings of the controls, not the number of different ventilation 
effects possible. 

7.4. My compact disc player has space for 5 CDs; there are five trays numbered 
1 through 5 into which I load the CDs. I own 100 CDs. 
a. In how many ways can the CD player be loaded if all five trays are filled 

with CDs? 
b. In how many ways can the CD player be loaded if only one CD is placed 

in the machine? 
7.5. You own three different rings. You wear all three rings, but no two of the 

rings are on the same finger, nor are any of them on your thumbs. In how 
many ways can you wear your rings? (Assume any ring will fit on any finger.) 

7.6. In how many ways can a black rook and a white rook be placed on different 
squares of a chess board such that neither is attacking the other? (In other 
words, they cannot be in the same row or the same column of the chess 
board. A standard chess board is 8 x 8.) 

7.7. License plates in a certain state consist of six characters: The first three 
characters are uppercase letters (A-Z), and the last three characters are 
digits (0-9). 
a. How many license plates are possible? 
b. How many license plates are possible if no character may be repeated on 

the same plate? 
7.8. A telephone number (in the United States and Canada) is a ten-digit number 

whose first digit cannot be a 0 or a 1. How many telephone numbers are 
possible? 

7.9. A U.S. Social Security number is a nine-digit number. The first digit(s) may 
be 0. 
a. How many Social Security numbers are available? 
b. How many of these are even? 
c. How many have all of their digits even? 
d. How many read the same backward and forward (e.g., 122979221)? 
e. How many have none of their digits equal to 8? 
f. How many have at least one digit equal to 8? 
g. How many have exactly one 8? 

7.10. A computer operating system allows files to be named using any combination 
of uppercase letters (A-Z) and digits (0-9), but the number of characters in 
the file name is at most eight (and there has to be at least one character in the 
file name). For example, X23, W, 4AA, and ABCD1234 are valid file names, 
but W-23 and WONDERFUL are not valid (the first has an improper character, 
and the second is too long). 

How many different file names are possible in this system? 
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7.11. How many five-digit numbers are there that do not have two consecutive 
digits the same? For example, you would count 12104 and 12397 but not 
6321 (it is not five digits) or 43356 (it has two consecutive 3s). 

Note: The first digit may not be a zero. 
7.12. A padlock has the digits 0 through 9 arranged in a circle on its face. A 

combination for this padlock is four digits long. Because of the internal 
mechanics of the lock, no pair of consecutive numbers in the combination 
can be the same or one place apart on the face. For example 0-2-7-1 is a valid 
combination, but neither 0-4-4-7 (repeated digit 4) nor 3-0-9-5 (adjacent 
digits 0-9) are permitted. How many combinations are possible? 

7.13. A bookshelf contains 20 books. In how many different orders can these 
books be arranged on the shelf? 

7.14. A class contains ten boys and ten girls. In how many different ways can they 
stand in a line if they must alternate in gender (no two boys and no two girls 
are standing next to one another)? 

7.15. Four cards are drawn from a standard deck of 52 cards. In how many ways 
can this be done if the cards are all of different values (e.g., no two 5s or 
two jacks) and all of different suits? (For this problem, the order in which 
the cards are drawn matters, so drawing A~-Kv-3<>-6® is not the same as 
drawing 6®-Kv-3<>-A~ even though the same cards are selected.) 

8 Factorial 
In Section 7, we counted lists of elements of various lengths in which we were 
either allowed or forbidden to repeat elements. A special case of this problem is 
to count the number of length-n lists chosen from a pool of n objects in which 
repetition is forbidden. In other words, we want to arrange n objects into a list, 
using each object exactly once. By Theorem 7.6, the number of such lists is 

(n)n = n(n- 1)(n- 2) · · · (n - n + 1) = n(n - l)(n - 2) ... (1). 

The quantity (n)n occurs frequently in mathematics and has a special name 
and notation; it is called n factorial and is written n!. For example, 5! = 5 x 4 x 
3 X 2 X 1 = 120. 

Two special cases of the factorial function require special attention. 
First, let us consider 1!. This is the result of multiplying all the numbers 

starting from 1 all the way down to, well, 1. The answer is 1. Just in case this isn't 
clear, let's return to the list-counting application. In how many ways can we make 
a length-1list where there is only one possible element to fill the first (and only!) 
position? Obviously, there is only one possible list. So 1! = 1. 

The other special case is 0!. 



46 Chapter 2 Collections 

,\lice .md Boh arL' to add 

the nu:TihL'P, on the list 
(2. -1-l. The answer 
,h,)uld hL· I 

Car!u' Alice the list 
\.2. 3, -f.) and Bnh the 
list ' \ l:cc' adds her 

Much Ado About 0! 

0! is 1. Students' reactions to this statement typically range from "That doesn't 
make sense" to "That's wrong!" There seems to be an overwhelming urge to 
evaluate 0! as 0. 

Because of this confusion, I feel I owe you a clear and unambiguous expla­
nation of why 0! = 1. Here it is: Because I said so! 

No, that wasn't a terribly satisfying answer, and I will endeavor to do a better 
job in a moment, but the simple fact is that mathematicians have defined 0! to be 1, 
and we are all in agreement on this point. Just as we declared (via our definition) 
that the number 1 is not prime, we can also declare 0! = 1. Mathematics is a 
human invention, and as long as we are consistent, we can set things up pretty 
much however we please. 

So now the burden falls on me to explain why it is a good idea to have 0! = 1 
and a bad idea for it to be 0, -JU, or anything else. 

To begin, let us rethink the list-counting problem. The number 0! ought to be 
the answer to the following problem: 

In how many ways can we make a length-0 list whose elements come from a pool 
of 0 elements in which there is no repetition? 

It is tempting to say that no such list is possible, but this is not correct. There is 
a list whose length is zero: the empty list (). The empty list has zero length, and 
(vacuously!) its elements satisfy the conditions of the problem. So the answer to 
the problem is 0! = 1. 

Here is another explanation why 0! = 1. Consider the equation 

n!=nx(n-1)! (3) 

For example, 5! = 5 x (4 x 3 x 2 x 1) = 5 x 4!. Equation (3) makes sense for 
n = 2 since 2! = 2 x 1! = 2 x 1. The question becomes: Does Equation (3) 
make sense for n = 1? If we want Equation (3) to work when n = 1, we need 
1! = 1 x 0!. This forces us to choose 0! = 1. 

Here is another explanation why 0! = 1. We can think of n! as the result 
of multiplying n numbers together. For example, 5! is the result of multiplying 
the numbers on the list (5, 4, 3, 2, 1). What should it mean to multiply together 
the numbers on the empty list ()? Let me try to convince you that the sensible 
answer is 1. We begin by considering what it means to add the numbers on the 
empty list. 

Alice and Bob work in a number factory and are given a list of numbers to 
add. They are both quite adept at addition, so they decide to break the list in two. 
Alice will add her numbers, Bob will add his numbers, and then they will add their 
results to get the final answer. This is a sensible procedure, and they ask Carlos to 
break the list in two for them. 

Carlos, perhaps because he is feeling mischievous, decides to give Alice all 
of the numbers and Bob none of the numbers. Alice receives the full list and Bob 

numh,-r:- ~llld ~cts 17. What receives the empty list. Alice adds her numbers as usual, but what is Bob to report 
~hould Bob ~av·) as the sum of the numbers on his list? If Bob gives any answer other than 0, the 



Alice and Bob are to 

multiply the numbers on 
the list (2, 3, 3, 5, 4). The 

answer should be 360. 

Carlos gives Alice the list 
() and Bob the list 
(2, 3, 3, 5, 4). Bob 

multiplies his numbers and 

gets 360. What should 
Alice say? 

Section 8 Factorial 47 

final answer to the problem will be incorrect. The only sensible thing for Bob to 
say is that his list-the empty list-sums to 0. 

The sum of the numbers in the empty list is 0. 
Now, all three of them have received a promotion and are working on multi­

plication. Their multiplication procedure is the same as their addition procedure. 
They are asked to multiply lists of numbers. When they receive a list, they ask 
Carlos to break the list into two parts. Alice multiplies the numbers on her list, and 
Bob multiplies the numbers on his. They then multiply together their individual 
results to get the final answer. 

But of course Carlos decides to have some fun and gives all the numbers to 
Bob; to Alice, he gives the empty list. Bob reports the product of his numbers as 
usual. What should Alice say? What is the product of the numbers on ()?If she 
says 0, then when her answer is multiplied by Bob's answer, the final result will 
be 0, and this is likely to be the wrong answer. Indeed, the only sensible reply that 
Alice can give is 1. 

The product of the numbers in the empty list is: 1. Since 0! "asks" you to 
multiply together a list containing no numbers, the se~sible answer is 1. 

This reasoning is akin to taking 2° = 1. ' 
The final reason why we declare 0! = 1 is that as we move on, other formulas 

work out better if we take 0! = 1. If we did not set 0! = 1, these other results 
would have to treat 0 as a special case, different from other natural numbers. 

Product Notation 

Here is another way to write n!: 

n 

n!=rrk. 
k=I 

What does this mean? The symbol n is the uppercase form of the Greek letter pi 
(.rr), and it stands for product (i.e., multiply). This notation is similar to using ~ 
for summation. 

The letter k is called a dummy variable and is a place holder that ranges from 
the lower value (written below the n symbol) to the upper value (written at the 
top). The variable k takes on the values 1, 2, ... , n. 

To the right of the n symbol are the quantities we multiply. In this case, it 
is simple: We just multiply the values of k as k goes from 1 to n; that is, we 
multiply 

1 X 2 X··· X n. 

The expression on the right of the n symbol can be more complex. For 
example, consider the product 

5 

II (2k + 3). 
k=I 
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This specifies that we multiply together the various values of (2k + 3) for k = 

1, 2, 3, 4, 5. In other words, ~ 

5 

II (2k + 3) = 5 X 7 X 9 X 11 X 13. 
k=l 

The expression on the right of the n can be simpler. For example, 

n 

is a fancy way to write 2n. 

Consider the following way of writing 0!: 

0 

IJk. 
k=l 
--]] n: 

k=l 

This means that k starts at 1 and goes up to 0. Since there is no possible value of 

k with 1 :::; k :::; 0, there are no terms to multiply. Therefore the product is empty 

and evaluates to 1. 

Recap 

In this section, we introduced factorial, discussed why 0! 

product notation. 

1, and presented 

8.1. There are six different French books, eight different Russian books, and five 

different Spanish books. 

a. In how many different ways can these books be arranged on a bookshelf? 

b. In how many different ways can these books be arranged on a bookshelf 

if all books in the same language are grouped together? 

8.2. Give an Alice-and-Bob discussion about what it means to add (and to mul­

tiply) a list of numbers that only contains one number. 

8.3. Consider the formula 
n! 

(nh = (n -k)!. 

This formula is mostly correct. For what values of n and k is it correct? Prove 

the formula is correct under a suitable hypothesis; that is, this problem asks 

you to find and prove a theorem of the form "If (conditions on nand k), then 

(nh = n!j(n- k)!." 

8.4. Evaluate ~08~! without calculating 100! or 98!. 

8.5. Order the following integers from least to greatest: 2100 , 1002 , 100100 , 100 l, 

1010 . 

8.6. The Scottish mathematician James Stirling found an approximation formula 

for n!. Stirling's formula is 
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where n = 3.14159 ... and e = 2. 71828 .... (Scientific calculators have a 
key that computes ex; this key might be labeled 1 exp x j.) 

Compute n! and Stirling's approximation ton! for n = 10, 20, 30, 40, 50. 
What is the relative error in the approximations? 

8.7. Calculate the following products: 

a. rr:=l (2k + 1). 

b. rr1=-3 k. 

C. rr~=l kk I , where n is a positive integer. 

d. rr~=l t• where n is a positive integer. 

8.8. When 100! is written out in full, it equals 

100! = 9332621 ... 000000. 

Without using a computer, determine the number of 0 digits at the end of 
this number. 

8.9. Prove that all of the following numbers are composite: 1000! + 2, 1 000! +3, 
1000! + 4, ... ' 1000! + 1002. 

The point of this problem is to present a long list of consecutive numbers, 
all of which are composite. 

1

\ 

8.10. Can factorial be extended to negative integers? On the basis of Equation (3), 
what value would you assign to ( -1)!? 

8.11. This problem is only for those who have studied calculus. Evaluate the 
following integral for n = 0, 1, 2, 3, 4: 

100 

x"e-" dx. 

Note: The case n = 0 is easiest. Do the remaining values of n in order 
(first 1, then 2, etc.) and use integration by parts. 

What is the value of this integral for an arbitrary natural number n? 
Extra for experts: Evaluate the integral with n = ~. 

9 Sets 1: Introduction, Subsets 
A set is a repetition-free, unordered collection of objects. A given object either is a 
member of a set or it is not-an object cannot be in a set "more than once." There 
is no order to the members of a set. The simplest way to specify a set is to list its 
elements between curly braces. For example, {2, 3, ~} is a set with exactly three 
members: the integers 2 and 3, and the rational number ~. No other objects are in 
this set. All of the following sets are the same: 

{3, ~,2} {2, 2, 3, ~ }. 

It does not matter in what order we list the objects, nor does it matter if we repeat 
an object. All that matters is what objects are members of the set and what objects 
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Set-hlllkkr notation. 

are not. In this example, exactly three objects are members of the set; no other 
objects are members. ~ 

Earlier, we introduced three special sets of numbers. These sets are Z (the 
integers), N (the natural numbers), and Q (the rational numbers). 

An object that belongs to a set is called an element of the set. 
Membership in a set is denoted with the symbol E. The notation x E A means 

that the object x is a member of the set A. For example, 2 E {2, 3, ~} is true, but 
5 E {2, 3, ~} is false. In the latter case, we can write 5 tj. {2, 3, ~ }; the notation 
x tj. A means x is not an element of A. 

When read aloud, E is pronounced "is a member of" or "is an element of" or 
"is in." Often mathematicians write, "If x E Z, then .... " This means exactly the 
same thing as "If x is an integer, then .... " 

However, the E symbol can also stand for "be a member of" or "be in." For 
example, if we write "Let x E Z," we mean "Let x be a member of Z" or, more 
prosaically, "Let x be an integer." 

The number of elements in a set A is denoted I A 1. The cardinality of A is 
simply the number of objects in the set. The cardinality of the set {2, 3, ~} is 3. 
The cardinality of Z is infinite. We also call I A I the size of the set A. 

A set is called finite if its cardinality is an integer (i.e., is finite). Otherwise, it 
is called infinite. 

The empty set is the set with no members. The empty set may be denoted 
{ }, but it is better to use the special symbol 0. The statement "x E 0" is false 
regardless of what object x might represent. The cardinality of the empty set is 
zero (i.e., 101 = 0). 

Please note that the symbol 0 is not the same as the Greek letter phi: ¢ or <P. 
There are two principal ways of specifying a set. The most direct way is to 

list the elements of the set between curly braces, as in {3, 4, 9}. This notation is 
appropriate for small sets. More often, set-builder notation is used. The form of 
this notation is 

{dummy variable : conditions} . 

For example, consider 

{x : x E Z, x 2:: 0}. 

This is the set of all objects x that satisfy two conditions: (1) x E Z (i.e., x must 
be an integer) and (2) x 2:: 0 (i.e., x is nonnegative). In other words, this set is N, 
the natural numbers. 

An alternative way of writing set-builder notation is 

{dummy variable E set : conditions} . 

This is the set of all objects drawn from the set mentioned and subject to the 
conditions specified. For example, 

{xEZ:21x} 

is the set of all integers that are divisible by 2 (i.e., the set of even integers). 
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It is often tempting to write a set by establishing a pattern to the elements and 
then using three dots( ... ) to indicate that the pattern continues. For example, we 
might write {1, 2, 3, ... , 100} to denote the set of integers from 1 to 100 inclusive. 
In this case, the notation is clear, but it would be better to write { x E Z : 1 s x s 
100}. 

Here is another example, which is less clear: {3, 5, 7, ... }. What is intended? 
We have to guess whether we mean the set of odd integers greater than 1 or the set 
of odd primes. Use the" ... " notation sparingly and only when there is absolutely 
no chance of confusion. 

Equality of Sets 

What does it mean for two sets to be equal? It means that the two sets have exactly 
the same elements. To prove that sets A and B are equal, one shows that every 
element of A is also an element of B, and vice versa. 

Proof Template 5 Proving two sets are equal. 

Let A and B be the sets. To show A = B, we have the following template: 

Suppose x E A . ... Therefore x E B. 
Suppose x E B . ... Therefore x E A. 

therefore A = B. • 
Let us illustrate the use of Proof Template 5 on a simple statement. 

Proposition 9.1 The following two sets are equal: 

E = { x E Z : x is even}, and 

F = { z E Z : z = a + b where a and b are both odd}. 

In other words, the set F is the set of all integers that can be written as the 
sum of two odd numbers. Using the template, the proof looks like this: 

Let E = {x E Z : xis even} and F = {z E Z : z =a+ b where a and bare 
both odd}. We seek to prove that E =F. 

Suppose x E E . ... Therefore x E F. 
Suppose x E F . ... Therefore x E E. • 

'-------------------------------------

Start with the first half by unraveling definitions. 
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Let E = { x E Z : x is even} and F = { z E Z : z = a + b where a and b are 

both odd}. We seek to prove that E = F. 

Suppose x E E. Therefore x is even, and hence divisible by 2, sox = 2 y 

for some integer y. . .. Therefore x is the sum of two odd numbers and so 

X E F. 
Suppose x E F .... Therefore x E E. • 

We have that x = 2y, and we want x as the sum of two odd numbers. Here's 

a simple way to do this: 2y + 1 is odd (see Definition 2.4) and so is -1 (because 

-1 = 2 x (-1) + 1). So we can write 

X= 2y = (2y + 1) + (-1). 

Let's fold these ideas into the proof. 

Let E = { x E Z : x is even} and F = { z E Z : z = a + b where a and b are 

both odd}. We seek to prove that E =F. 

Suppose x E E. Therefore x is even, and hence divisible by 2, so 

x = 2y for some integer y. Note that 2y + 1 and -1 are both odd, and since 

x = 2y = (2y + 1) + (-1), we see that x is the sum of two odd numbers. 

Therefore x E F. 
Suppose x E F .... Therefore x E E. • 

The second part of the proof was already considered in Exercise 4.1 (and the 

solution to that exercise can be found in Appendix A). So we simply refer to that 

previously worked problem to complete the proof. 

Let E = { x E Z : x is even} and F = { z E Z : z = a + b where a and b 

are both odd}. We seek to prove that E =F. 

Suppose x E E. Therefore x is even, and hence divisible by 2, so 

x = 2 y for some integer y. Note that 2 y + 1 and -1 are both odd, and since 

x = 2y = (2y + 1) + (-1), we see that x is the sum of two odd numbers. 

Therefore x E F. 
Suppose x E F. Therefore x is the sum of two odd numbers. As we 

showed in Exercise 4.1, x must be even and so x E E. • 

Note that Proposition 9.1 can be rewritten as follows: An integer is even if and 

only if it can be expressed as the sum of two odd numbers. 
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Subset 

Next we define subset. 

(Subset) Suppose A and B are sets. We say that A is a subset of B provided every 
element of A is also an element of B. The notation A ~ B means A is a subset 
of B. 

For example, {1, 2, 3} is a subset of {1, 2, 3, 4}. For any set A, we have A ~ A 
because every element of A is (of course) in A. 

Furthermore, for any set A, we have 0 ~ A. This is because every element of 
0 is in A-since there are no elements in 0, there are no elements of 0 that fail to 
be in A. This is an example of a vacuous statement, but a useful one. 

The symbol c is often used for subset as well, but we do not use it in this 
book. We prefer~ because it looks more like:::::, and we want to emphasize that a 
set is always a subset of itself. (The symbol ~ is a hybrid of the symbols c and =.) 

If we want to rule out the equality of the two sets, we may say that A is a strict or 
proper subset of B; this means that A ~ B and A =1- B. It would be tempting to let 
c denote proper subset (because it looks like < ), but th~ use of C to mean ordinary 
subset has not completely fallen out of fashion in the niathematics community. We 
avoid controversy by not using the symbol c. 

It is important to distinguish between E and ~. The notation x E A means that 
xis an element (or member) of A. The notation A ~ B means that every element 
of A is also an element of B. Thus 0 ~ { 1, 2, 3} is true, but 0 E { 1, 2, 3} is false. 

The difference between E and c is analogous to the difference between x and 
{x }. The symbol x refers to some object (a number or whatever), and the notation 
{x} means the set whose one and only element is the object x. It is always correct 
to write x E {x}, but it is incorrect to write x = {x} or x ~ {x }. (Well, it usually 
is incorrect to write x ~ {x }; see Exercise 9.9.) 

To prove that one set is a subset of another, we need to show that every element 
of the first set is also a member of the second set. 

Let x be anything and let A be a set; then x E A if and only if {x} ~ A. 

Proof. Let x be any object and let A be a set. 
(:::::}) Suppose that x E A. We want to show { x} ~ A. To do this, we need to 

show that every element of {x} is also an element of A. But the only element of 
{x} is x, and we are given that x E A. Therefore {x} ~ A. 

( ~) Suppose that {x} ~ A. This means that every element ofthe first set ( {x}) 
is also a member of the second set (A). But the only element of {x} is certainly x 

and sox EA. • 

The general method for showing that one set is a subset of another is outlined 
in Proof Template 6. 
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Proof Template 6 Proving one set is a subset of another. 

To show As; B: 

Let x E A . ... Therefore x E B. Therefore A £ B. • 
We illustrate the use of Proof Template 6 using the following concept. 

Definition 9.4 (Pythagorean Triple) A list of three integers (a, b, c) is called a Pythagorean 
triple provided a2 + b2 = c2

• 
Plea:-,e note that 
( ./2. v)) is not a 
Pythagorean triple because 
the numbers in the list are 
not integers; the term 
Pvtlwgorean triple only 
applies to lists of integers. 

Proposition 9.5 

For example, (3, 4, 5) is a Pythagorean triple because 32 + 42 = 52 . Pytha­
gorean triples are so named because they are the lengths of the sides of a right 
triangle. 

Let P be the set of Pythagorean triples; that is, 

P ={(a, b, c) :a, b, c E Z and a2 + b2 = c2
} 

and let T be the set 

T = {(p, q, r): p = x 2
- y 2

, q = 2xy, and r = x 2 + y 2 where x, y E Z}. 

Then T s; P. 

For example, if we let x = 3 and y = 2 and we calculate 

p = x 2 
- y 2 = 9- 4 = 5, q = 2xy = 12, r = x 2 + y 2 = 9 + 4 = 13 

we find that (5, 12, 13) E T. Proposition 9.5 asserts that T s; P, which implies 
(5, 12, 13) E T. Indeed, this is correct since 

52 + 122 = 25 + 144 = 169 = 132
. 

We now develop the proof of Proposition 9.5 by utilizing Proof Template 6. 

Let P and T be as in the statement of Proposition 9.5. 
Let (p, q, r) E T .... Therefore (p, q, r) E P. • 

Unravel the meaning of (p, q, r) E T. 

Let P and T be as in the statement of Proposition 9.5. 
Let (p, q, r) E T. Therefore there are integers x and y such that p = 

x 2
- y2

, q = 2xy, and r = x 2 + y 2 
.•.• Therefore (p, q, r) E P. • 

To verify that (p, q, r) E P, we simply have to check that all three are 
integers (which is clear) and that p 2 + q 2 = r 2

• We can write p, q, and r in terms 



Section 9 Sets 1: Introduction, Subsets 55 

of x and y, so the problem reduces to an algebraic computation. We finish the 
proof. 

Let P and T be as in the statement of Proposition 9.5. 
Let (p, q, r) E T. Therefore there are integers x and y such that p = 

x 2 - y2, q = 2x y, and r = x 2 + y 2. Note that p, q, and r are integers because 
x andy are integers. We calculate 

p2 + q2 = (x2 _ y2)2 + (2xy)2 

= (x4- 2x2/ + y4) + 4x2y2 

= x4 + 2x2 y2 + y4 

= (x2 + y2)2 = r2. 

Therefore (p, q, r) is a Pythagorean triple and so (p, q, r) E P. • 

The symbols E and s; may be written backward: 3 and 2. The notation A 3 x 

means exactly the same thing as x E A. The symbol 3 can be read, "contains the 
element." The notation B 2 A means exactly the sa~e thing as A s;: B. We say 
that B is a superset of A. ' 

(We also say that B contains A and A is contained in B, but the word contains 

can be a bit ambiguous. If we say "B contains A," we generally mean that B 2 A, 

but it might mean B 3 A. We avoid this term unless the meaning is utterly clear 
from context.) 

Counting Subsets 

How many subsets does a set have? Let us consider an example. 

Example 9.6 How many subsets does A= {1, 2, 3} have? 
The easiest way to do this is to list all the possibilities. Since I A I = 3, a subset 

of A can have anywhere from zero to three elements. Let's write down all the 
possibilities organized this way. 

Number of elements Subsets Number 

0 0 1 
1 { 1}, {2}, {3} 3 

2 {1, 2}, {1, 3}, {2, 3} 3 

3 {1,2,3} 1 

Total: 8 

Therefore, there are eight subsets of { 1, 2, 3}. 

There is another way to analyze this problem. Each element of the set { 1, 2, 3} 
either is a member of or is not a member of a subset. Look at the following diagram. 
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{ 1,2,3} v 

{ 1,2} 

' { 1,3} 
oe;':> 

~.;:; 
·-$''"' 

{ 1} 

e>+ob 
{2,3} 

qQ;:; 
C>J' / {2} 

{3} 

0 

For each element, we have two choices: to include or not to include that element 
in the subset. We can "ask" each element if it "wants" to be in the subset. The list 
of answers uniquely determines the subset. So if we ask elements 1, 2, and 3 in 
turn if they are in the subset and the answers we receive are (yes, yes, no), then 
the subset is {1, 2}. 

The problem of counting subsets of { 1, 2, 3} reduces to the problem of counting 
lists, and we know how to count lists! The number of lists of length three where 
each entry on the list is either "yes" or "no" is 2 x 2 x 2 = 8. 

This list-counting method gives us the solution to the general problem. 

Theorem 9.7 Let A be a finite set. The number of subsets of A is 21AI. 

Proof. Let A be a finite set and let n = I A 1. Let the n elements of A be named 
a 1 , a2 , .•• , an. To each subset B of A we can associate a list of length n; each 
element of the list is one of the words "yes" or "no." The kth element of the 
list is "yes" precisely when ak E B. This establishes a correspondence between 
length-n yes-no lists and subsets of A. Observe that each subset of A gives a 
yes-no list, and every yes-no list determines a different subset of A. Therefore 
the number of subsets of A is exactly the same as the number of length-n yes-no 
lists. The number of such lists is 2n, so the number of subsets of A is 2n where 
n = IAI. • 

This style of proof is called a bijective proof. To show that two counting 
problems have the same answer, we establish a one-to-one correspondence between 
the two sets we want to count. If we know the answer to one of the counting 
problems, then we know the answer to the other. 
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Power Set 

A set can be an element of another set. For example, { 1, 2, { 3, 4}} is a set with 
three elements: the number 1, the number 2, and the set {3, 4}. A special example 
of this is called the power set of a set. 

Definition 9.8 (Power set) Let A be a set. The power set of A is the set of all subsets of A. 

The power set of A is 
denoted 2A. 

9 Exercises 

For example, the power set of { 1, 2, 3} is the set 

{0, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}. 

Theorem 9.7 tells us that if a set A has n elements, its power set contains 2n 
elements (the subsets of A). As a mnemonic, the notation for the power set of A 
is 2A. This is a special notation; there is no general meaning for raising a number 
to a power that is a set. The only case in which this makes sense is writing the set 
as a superscript on the number 2; the meaning of the notation is the power set of 
A. This notation was created so that we would have 

12AI = 21AI 

for any finite set A. The left side of this equati6n is the cardinality of the power set 
of A; the right side is 2 raised to the cardinality of A. On the left, the superscript 
on 2 is a set, so the notation means power set; on the right, the superscript on 2 is 
a number, so the notation means ordinary exponentiation. 

Recap 

In this section, we introduced the concept of a set and the notation x E A. We 
presented the set-builder notation {x E A : ... }. We discussed the concepts of 
empty set (0), subset (~), and superset (2). We distinguished between finite and 
infinite sets and presented the notation IAI for the cardinality of A. We considered 
the problem of counting the number of subsets of a finite set and defined the power 
set of a set, 2A. 

9.1. Write out the following sets by listing their elements between curly braces. 
a. {x EN: x :::S 10 and 31x }. 
b. {x E Z :xis prime, and 21x }. 
C. {X E Z : x 2 = 4}. 
d. {X E Z : x 2 = 5}. 
e. 2°. 
f. {x E Z : 101x and x 1100}. 
g. {x :x ~ {1,2,3,4,5}andlxl :::S 1}. 

9.2. Find the cardinality of the following sets. 
a. { x E Z : I xI ::::: 10}. 
b. {x E Z : 1 :::S x 2 

::::: 2}. 
C. {x E Z: X E 0}. 
d. {x E Z : 0 E X}. 
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e. {x E Z : 0 s; {x}}. 
f. 22{!.2.3}. 

g. {x E 2{ 1
•
2

•
3.41 : lx I = 1 }. 

h. { {1 ' 2}' { 3' 4' 5}}. 
9.3. Complete each of the following by writing either E or s; in place of the 0. 

a. 2 0 {1, 2, 3}. 
b. {2} 0 {1, 2, 3}. 
c. { 2} 0 { { 1}, { 2}, { 3}}. 

d. 0 0 { 1 ' 2' 3}. 
e. NOZ. 
f. {2} 0 z. 
g. {2} 0 2z. 

9.4. Let A and B be sets. Prove that A = B if and only if A s; B and B s; A. 
(This gives a slightly different proof strategy for showing two sets are 

equal; compare to Proof Template 5.) 
9.5. Let A= {x E Z: 41x} and let B = {x E Z: 21x}. Prove that As; B. 
9.6. Generalize the previous problem. Let a and b be integers and let A = {x E 

Z : a lx} and B = { x E Z : b lx}. Find and prove a necessary and sufficient 
condition for A s; B. In other words, given the notation developed, find and 
prove a theorem of the form "A s; B if and only if some condition involving 
a and b." 

9.7. Let C = {x E Z: xll2} and let D = {x E Z: xl36}. Prove that C s; D. 
9.8. Generalize the previous problem. Let c and d be integers and let C = {x E 

Z: xlc} and D = {x E Z: xld}. Find and prove a necessary and sufficient 
condition for C s; D. 

9.9. Give an example of an object x that makes the sentence x s; {x} true. 
9.10. Please refer to Proposition 9.5, in which we proved that T s; P. Show that 

T =f. P. 

10 Quantifiers 
There are certain phrases that appear frequently in theorems, and the purpose of 
this section is to clarify and formalize those phrases. At first glance, these phrases 
are simple, but we' 11 do our best to try to make them complicated. The expressions 
are there is and every. 

There Is 

Consider a sentence such as the following: 

There is a natural number that is prime and even. 

The general form of this sentence is "There is an object x, a member of set A, that 
has the following properties." The example sentence can be rewritten to adhere 
more strictly to this form as follows: 

There is an x, a member of N, such that x is prime and even. 



Section 10 Quantifiers 59 

The meaning of the sentence is, we hope, clear. It says that at least one element in 
N has the required properties. In this case, there is only one possible x (the number 
2), but the phrase there is does not rule out the possibility that there can be more 
than one object with the requisite properties. 

The phrase there exists is synonymous with there is. 
Because the phrase there is occurs so often, mathematicians have developed 

a formal notation for statements of the form "There is an x in set A such that .... " 
We write a backward, uppercase E (i.e., 3) that we pronounce there is or there 
exists. The general form for using this notation is 

3x E A, assertions about x. 

This is read, "There is an x, a member of the set A, for which the assertions hold." 
The sentence "There is a natural number that is prime and even" would be written 

3x E N, x is prime and even. 

The letter x is a dummy variable-simply a placeholder. It is similar to the index 
of summation in I: notation. 

At times, we abbreviate the statement "3x E A, assertions about x" to "3x, 
assertions about x" when context makes it cl~ar what sort of object x ought to be. 

The backward E is called the existential qfmntifier. 
To prove a statement of the form "3x E A, assertions about x ," we have to 

show that some element in A satisfies the assertions. The general form for such a 
proof is given in Proof Template 7. 

Proof Template 7 Proving existential statements. 

To prove 3x E A, assertions about x: 

Let x be (give an explicit example) . . . (Show that x satisfies the 
assertions.) ... Therefore x satisfies the required assertions. • 

Proving an existential statement is akin to finding a counterexample. We sim­
ply have to find one object with the required properties. 

Example 10.1 Here is a proof (very short!) that there is an integer that is even and prime. 
Statement: 3x E Z, x is even and x is prime. 
Proof. Consider the integer 2. Clearly 2 is even and 2 is prime. • 

For All 

The other phrase we consider in this section is every, as in "Every integer is even 
or odd." There are alternative phrases we use in place of every, including all, each, 
and any. All of the following sentences mean the same thing: 

• Every integer is either even or odd. 
• All integers are either even or odd. 
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Each integer is either even or odd. 
Let x be any integer. Then x is even or odd. 

In all cases, we mean that the condition applies to all integers without exception. 

There is a fancy notation for these types of sentences. Just as we used the 

backward E for there is, we use an upside-down A (V) as a notation for all. The 

general form for this notation is 

\1 x E A, assertions about x. 

This means that all elements of the set A satisfy the assertions, as in 

\lx E Z, xis odd or xis even. 

When the context makes clear what sort of object x is, the notation may be shortened 

to "V x, assertions about x ." 
The upside-down A is called the universal quantifier. 
To prove an "all" theorem, we need to show that every element of the set 

satisfies the required assertions. The general form for this sort of proof is given in 
Proof Template 8. 

Proof Template 8 Proving universal statements. 

To prove \lx E A, assertions about x: 

Let x be any element of A .... (Show that x satisfies the assertions 
using only the fact that x E A and no further assumptions on x.) ... 

Therefore x satisfies the required assertions. • 

Example 10.2 To prove: Every integer that is divisible by 6 is even. 

Mathspeak! 
Mathematicians use the 

word ar/Jitrarr in a slightly 

nonstandard way. When 

we say that .r is an 

arbitrary clement of a set 

A. we mean that x might 

be any element of A. and 

one ~hould not assume 

anything about x other 

than it i~ an clement of A. 

To say x is an arbitrary 

even number means that x 

is even. but we make no 

further assumptions 

about x. 

More formally, let A = {x E Z: 61x }. Then the statement we want to prove is 

\lx E A, xis even. 

Proof. Let x E A; that is, x is an integer that is divisible by 6. This means there 

is an integer y such that x = 6y, which can be rewritten x (2 · 3)y = 2(3y). 

Therefore x is divisible by 2 and therefore even. • 

Note that this proof is not really any different from proving an ordinary if­

then: "If x is divisible by 6, then x is even." The point we are trying to stress is 

that in the proof, we assume that x is an arbitrary element of A and then move on 

to show that x satisfies the condition. 

Negating Quantified Statements 

Consider the statements 

There is no integer that is both even and odd. 
Not all integers are prime. 
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---, (3x E Z, x is even and x is odd) . 
...., ('v'x E Z, x is prime). 
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In both cases, we have negated a quantified statement. What do these negations 
mean? 

Let us first consider a statement of the form 

---, (3x E A, assertions about x) . 

This means that none of the elements of A satisfy the assertions, and this is equiv­
alent to saying that all of the elements of A fail to satisfy the assertions. In other 
words, the following two sentences are equivalent: 

---, (3x E A, assertions about x) 

Vx E A, ...., (assertions about x). 

For example, the statement "There is no integer that is both even and odd" says 
the same thing as "Every integer is not both ~ven and odd." 

Next we consider the negation of universal, statements. Consider a statement 
of the form 

...., ('v' x E A, assertions about x) . 

This means that not all of the elements of x have the requisite assertions (i.e., some 
don't). Thus the following two statements are equivalent: 

...., ('v'x E A, assertions about x) 

3x E A, ...., (assertions about x) . 

For example, the statement "Not all integers are prime" is equivalent to the state­
ment "There is an integer that is not prime." 

The mnemonic I use to remember these equivalences is 

...,v ... = 3..., ... and ...,3 ... = v..., .... 
When the---, "moves" inside the quantifier, it toggles the quantifier between 'v' and 3. 

Combining Quantifiers 

Quantified statements can become difficult and confusing when there are two (or 
more!) quantifiers in the same statement. For example, consider the following 
statements about integers: 

For every x, there is a y such that x + y = 0. 
There is a y such that for every x, we have x + y = 0. 

In symbols, these statements are written 

Vx,3y,x+y=0. 
3y,Vx,x+y=0. 

What do these mean? 
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The first sentence makes a claim about an arbitrary inte_ger x. It says that no 

matter what X is, something is true-namely, We can find an integer y SUCh that 

x + y = 0. Let's say x = 12. Can we find a y such that x + y = 0? Of course! 

We just want y = -12. Say x = -53. Can we find a y such that x + y = 0? Yes! 
Take y = 53. Notice that the y that satisfies x = 12 is different from the y that 

satisfies x = -53. The statement just requires that no matter how we pick x (Vx ), 
we can find a y (3y) such that x + y = 0. And this is a true statement. Here is the 

proof: 

Let x be any integer. Let y be the integer -x. Then x + y = x + (-x) = 0 . 

• 
Since the overall statement begins Vx, we begin the proof by considering an arbi­

trary integer x. We now have to prove something about this number x-namely, 
we can find a number y such that x + y = 0. The choice for y is obvious, just take 

y = -x. The statement Vx, 3y, x + y = 0 is true. 
Now let us examine the similar statement 

3y,Vx,x+y=0. 

This sentence is similar to the previous sentence; the only difference is the order 
of the quantifiers. This sentence alleges that there is an integer y with a certain 

property-namely, no matter what number we add toy (Vx ), we get 0 (x + y = 0). 

This sentence is blatantly false! There is no such integer y. No matter what integer 
y you might think of, we can always find an integer x such that x + y is not 

zero. 
The statements Vx, 3y, x + y = 0 and 3y, Vx, x + y = 0 are made a bit 

clearer through the use of parentheses. They may be rewritten as follows: 

Vx, (3y, x + y = 0) 

3y, (Vx, x+y=O). 

These additional parentheses are not strictly necessary, but if they make these 

statements clearer to you, please feel free to use them. 
In general, the two sentences 

Vx, 3y, assertions about x andy 

3 y, V x, assertions about x and y 

are not equivalent to one another. 

Recap 

We analyzed statements of the form "For all ... " and "There exists ... " and intro­
duced the formal quantifier notation for them. We presented basic proof templates 
for such sentences. We examined the negation of quantified sentences, and we 

studied statements with more than one quantifier. 
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10 Exercises 10.1. Write the following sentences using the quantifier notation (i.e., use the 
symbols 3 and/or V). Note: We do not claim these statements are true, so 
please do not try to prove them! 
a. Every integer is prime. 
b. There is an integer that is neither prime nor composite. 
c. There is an integer whose square is 2. 
d. All integers are divisible by 5. 
e. Some integer is divisible by 7. 
f. The square of any integer is nonnegative. 
g. For every integer x, there is an integer y such that xy = 1. 
h. There are an integer x and an integer y such that xI y = 10. 
i. There is an integer that, wli~ multiplied by any integer, always gives 

the result 0. 
j. No matter what integer you choose, there is always another integer that 

is larger. 
k. Everybody loves somebody sometime. 

10.2. Write the negation of each of the sentences in the previous problem. You 
should "move" the negation all the way inside the quantifiers. Give your 
answer in English and symbolically. For example, the negation of part (a) 
would be "There is an integer that is not prime" (English) and "3x E Z, x is 
not prime" (symbolic). 

10.3. What does the sentence "Everyone is not invited to my party" mean? 
Presumably the meaning of this sentence is not what the speaker in­

tended. Rewrite this sentence to give the intended meaning. 
10.4. True or False: Please label each of the following sentences about integers 

as either true or false. (You do not need to prove your assertions.) 
a. V x, Vy, x + y = 0. 
b. V X, :Jy, X + y = 0. 
c. 3x, Vy, x + y = 0. 
d. 3x, 3y, x + y = 0. 
e. Vx, Vy, xy = 0. 
f. Vx, 3y, xy = 0. 
g. 3x, Vy, xy = 0. 
h. 3x, 3y, xy = 0. 

10.5. For each of the following sentences, write the negation of the sentence, but 
place the --. symbol as far to the right as possible. Then rewrite the negation 
in English. 

For example, for the sentence 

Vx E Z, x is odd 

the negation would be 

3x E Z, --.(x is odd), 

which in English is "There is an integer that is not odd." 
a. Vx E Z, x < 0. 
b. :Jx E Z, x = x + 1. 
c. :Jx E N, x > 10. 
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10.6. 

d. V x E N, x + x = 2x. 
e. 3x E Z, Vy E Z, x > y. 
f. Vx E Z, Vy E Z, x = y. 
g. v X E Z, 3y E Z, X + y = 0. 
Do the following two statements mean the same thing? 

Explain. 

Vx, Vy, assertions about x andy 

Vy, V x, assertions about x and y 

Likewise, do the following two statements mean the same thing? 

3x, 3y, assertions about x and y 

3 y, 3x, assertions about x and y 

Explain. 

11 Sets II: Operations 
Just as numbers can be added or multiplied, and truth values can be combined 
with 1\ and v, there are various operations we perform on sets. In this section, we 
discuss several set operations. 

Union and Intersection 

The most basic set operations are union and intersection. 

Definition 11.1 (Union and intersection) Let A and B be sets. 

Example 11.2 

. 

' 

[]] 

The union of A and B is the set of all elements that are in A or B. The union 
of A and B is denoted AU B. 

The intersection of A and B is the set of all elements that are in both A and 
B. The intersection of A and B is denoted A n B. 

In symbols, we can write this as follows: 

AU B = {x : x E A or x E B}, and 

A n B = { x : x E A and x E B}. 

Suppose A= {1, 2, 3, 4} and B = {3, 4, 5, 6}. Then AU B = {1, 2, 3, 4, 5, 6} and 
An B = {3, 4} . 

It is useful to have a mental picture of union and intersection. A Venn diagram 
depicts sets as circles or other shapes. In the figure, the shaded region in the upper 
diagram is A U B, and the shaded region in the lower diagram is A n B. 

The operations of U and n obey various algebraic properties. We list some of 
them here. 
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Theorem 11.3 Let A, B, and C denote sets. The following are true: 

• AU B = B U A and An B = B n A. (Commutative properties) 
• AU (B U C) = (AU B) U C and An (B n C) = (An B) n C. (Associative 

properties) 
• A u 0 = A and A n 0 = 0. 
• AU (B n C) = (AU B) n (AU C) and An (B U C) = (An B) U (An C). 

(Distributive properties) 

Proof. Most of the proof is left as Exercise 11.2. Theorem 6.2 is extremely useful 
in proving this result. 

Here we prove the associative property for union. You may use this as a 
template for proving the other parts of this theorem. 

Let A, B, and C be sets. We have the following: 

AU (B U C) = {x : (x E A) v (x E B U C)} 

= {x: (x E A) V ((x E B) V (x E C))} 
= {x : ((x E A) V (x E B)) V (x E C)t 
= {x : (x E AU B) V (x E C)} 
=(AU B) U C 

definition of union 
definition of union 
associative property of v 
definition of union 
definition of union. • 

How did we think up this proof? We used the technique of writing the beginning 
and end of the proof and working toward the middle. Imagine a long sheet of paper. 
On the left, we write AU (B U C) = ... ; on the right, we write ... =(AU B) U C. 
On the left, we unravel the definition of U for the first U, obtaining AU (B U C) = 

{x : (x E A) v (x E B U C)}. We unravel the definition of U again (this time on 
the B U C) to transform the set into 

{x : (x E A) V ((x E B) V (x E C))}. 

Meanwhile, we do the sa·me thing on the right. We unravel the second U in 
(AU B) U C to yield {x : (x E AU B) v (x E C)} and then unravel AU B to get 
{x: ((x E A) v (x E B)) V (x E C)}. 

Now we ask: What do we have and what do we want? On the left, we have 

{x: (x E A) V ((x E B) V (x E C))} 

and on the right, we need 

{x: ((x E A) v (x E B)) V (x E C)}. 

Finally, we stare at these two sets and realize that the conditions after the colon 
are logically equivalent (by Theorem 6.2) and we have our proof. 

Venn diagrams are also useful for visualizing why these properties hold. For 
example, the following diagrams illustrate the distributive property AU (B n C) = 
(AU B) n (AU C). 

First examine the top row of pictures. On the left, we see the set A highlighted; 
in the center, the region for B n C is shaded; and finally, on the right, we show 
AU (B n C). 
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A BnC Au (B n C) 

AuB AuC (A u B) n (A u C) 

Next examine the bottom row. The left and center pictures show AU B and 

A U C highlighted, respectively. The rightmost picture superimposes the first two, 

and the darkened region shows (A U B) n (A U C). 

Notice that exactly the same two shapes on the right panels (top and bottom) 

are dark, illustrating that AU (B n C) = (AU B) n (AU C). 

The Size of a Union 

Suppose A and B are finite sets. There is a simple relationship between the quan­

tities lA I, IBI, lA u Bl, and lA n Bl. 

Proposition 11.4 Let A and B be finite sets. Then 

IAI + IBI = lA U Bl + lA n Bl. 

Proof. Imagine we assign labels to every object. We attach a label A to objects 

in the set A, and we attach a label B to objects in B. 

Question: How many labels have we assigned? 

On the one hand, the answer to this question is I A I + I B I because we assign 

I A I labels to the objects in A and I B I labels to the objects in B. 

On the other hand, we have assigned at least one label to the elements in 

I A U B 1. So I A U B I counts the number of objects that get at least one label. 

Elements in A n B receive two labels. Thus I A U B I + I A n B I counts all elements 

that receive a label and double counts those elements that receive two labels. This 

gives the number of labels. 

Since these two quantities, I A I + I B I and I A U B I + I A n B I, answer the same 

question, they must be equal. • 

This proof is an example of a combinatorial proof. Typically a combinatorial 

proof is used to demonstrate that an equation (such as the one in Proposition 11.4) 

is true. We do this by creating a question and then arguing that both sides of the 
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equation give a correct answer to the question. It then follows, since both sides 
are correct answers, that the two sides of the alleged equation must be equal. This 
technique is summarized in Proof Template 9. 

Proof Template 9 Combinatorial proof. 

Basic inclusion-exclusion. 

To prove an equation of the form LHS = RHS: 

Pose a question of the form, "In how many ways ... ?" 
On the one hand, argue why LHS is a correct answer to the question. 
On the other hand, argue why RHS is a correct answer. 

Therefore LHS = RHS. • 

Finding the correct question to ask can be difficult. Writing combinatorial 
proofs is akin to playing the television game Jeopardy!. You are given the answer 
(indeed, two answers) to a counting question; your job is to find a question whose 
answers are the two sides of the equation you are trying to prove. 

We shall do more combinatorial proofs, but for now, let us return to Proposi­
tion 11.4. One useful way to rewrite ~result is as follows: 

lA U Bl = IAI + IBI- lA n Bl. (4) 

This is a special case of a counting method called inclusion-exclusion. It can be 
interpreted as follows: Suppose we want to count the number of things that have 
one property or another. Imagine that set A contains those things that have the 
one property and set B contains those that have the other. Then the set A U B 
contains those things that have one property or the other, and we can count those 
things by calculating I A I + I B I - I A n B 1. This is useful when calculating I A I, 
I B I, and I A n B I is easier than calculating I A U B 1. We develop the concept of 
inclusion-exclusion more extensively in Section 18. 

Example 11.5 How many integers in the range 1 to 1000 (inclusive) are divisible by 2 or by 5? 
Let 

A= {x E Z: 1 ::::: x::::: 1000 and 21x}, and 

B = {x E Z: 1::::: x::::: 1000and51x}. 

The problem asks for I A U B 1. 
It is not hard to see that IAI = 500 and IBI = 200. Now An B are those 

numbers (in the range from 1 to 1000) that are divisible by both 2 and 5. Now an 
integer is divisible by both 2 and 5 if and only if it is divisible by 10 (this can be 
shown rigorously using ideas developed in Section 38; see Exercise 38.3), so 

An B = {x E Z : 1 ::::: x ::::: 1000 and 101x} 

and it follows that lA n Bl = 100. Finally, we have 

lA u Bl = IAI + IBI- lA n Bl = 500 + 200- 100 = 600. 

There are 600 integers in the range 1 to 1000 that are divisible by 2 or by 5. 
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In case An B = 0, Equation (4) simplifies to lA U Bl = lA I+ IBI. In words, 

if two sets have no elements in common, then the size of tlfeir union equals the 

sum of their sizes. There is a special term for sets with no elements in common. 

Definition 11.6 (Disjoint, pairwise disjoint) Let A and B be sets. We call A and B disjoint 

provided An B = 0. 
Let A 1, A 2, ... , An be a collection of sets. These sets are called pairwise 

disjoint provided Ai n A j = 0 whenever i =J. j. In other words, they are pairwise 

disjoint provided no two of them have an element in common. 

Example 11.7 Let A = {1, 2, 3}, B = {4, 5, 6}, and C = {7, 8, 9}. These sets are pairwise 

disjoint because A n B = A n C = B n C = 0. 

However, let X = {1, 2, 3}, Y = {4, 5, 6, 7}, and Z = {7, 8, 9, 10}. This 

collection of sets is not pairwise disjoint because Y n Z =J. 0 (all other pairwise 

intersections are empty). 

Corollary 11.8 (Addition Principle) Let A and B be finite sets. If A and B are disjoint, then 

lA u Bl = lA I+ IBI. 

Corollary 11.8 follows immediately from Proposition 11.4. There is an exten­

sion of the Addition Principle to more than two sets. 

If A 1, A 2, ... , An are pairwise disjoint sets, then 

This can be shown formally using the methods from Section 20; see Exercise 20.9. 

A fancy way to write this is 

The big U is analogous to the 2.:: and TI symbols. It means, as k goes from 1 to 

n (the lower and upper values), take the union of the expression to the right (in 

this case Ak). So the big U notation is just a shorthand for A1 U A 2 U · · · U An. 

This is surrounded by vertical bars, so we want the size of that set. On the right, 

we see an ordinary summation symbol telling us to add up the cardinalities of A 1, 

A2, ... , An. 

Difference and Symmetric Difference 

Definition 11.9 (Set difference) Let A and B be sets. The set difference, A- B, is the set of all 

elements of A that are not in B: 

A- B = {x : x E A and x tJ_ B}. 
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The symmetric difference of A and B, denoted A ~ B, is the set of all elements 

in A but not B or in B but not A. That is, 

A ~ B = (A - B) U (B - A). 

Example 11.10 Suppose A = {1, 2, 3, 4} and B = {3, 4, 5, 6}. Then A- B = {1, 2}, B- A = 
{5, 6}, and A~ B = {1, 2, 5, 6}. 

The figures show Venn diagram for these operations. 
In general, the sets A - B and B - A are different (but see Exercise 11.14). 

Here is another way to express symmetric difference: 

Proposition 11.11 Let A and B be sets. Then 

A-B 

AI1B 

A ~ B = (A U B) - (A n B). 

Let us illustrate the various proof techniques by developing the proof of Propo­

sition 11.11 step by step. The proposition asks us to prove that two sets are equal, 

namely, A ~ B and (A U B) - (A n B). We use Proof Template 5 to form the 

skeleton of the proof. 

Let A and B be sets. 

(1) Suppose x E A~ B .... Therefore x E (AU B)- (An B). 

(2) Suppose x E (AU B)- (An B) .... Therefore x E A~ B. 

Therefore A ~ B = (AU B) - (An B). • 
We begin with part (1) of the proof. We unravel definitions from both ends. 

We know thatx E A~ B. By definition of~, this means x E (A- B) U (B- A). 

The proof now reads as follows: 

Let A and B be sets. 

(1) Suppose x E A ~ B. Thus x E (A - B) U (B - A) .... Therefore 
x E (A U B) - (An B). 

(2) Suppose x E (AU B)- (An B) .... Therefore x E A~ B. 

Therefore A ~ B = (AU B) - (A n B). • 

Now we know that x E (A - B) U (B - A). What does this mean? By 

definition of union, it means that x E (A - B) or x E (B - A). We have to 

consider both possibilities since we don't know in which of these sets x lies. This 

means that part ( 1) of the proof breaks into cases depending on whether x E A - B 

or x E B- A. In both cases, we need to show that x E (AU B)- (An B). 
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Let A and B be sets. 

(1) Suppose x E A L\ B. Thus x E (A- B) U (B- A). This means either 
x E A- B or x E B- A. We consider both cases. 

• Suppose x E A - B .... Therefore x E (A U B) - (An B). 
• Suppose x E B - A .... Therefore x E (AU B) - (An B) . 

. . . Therefore x E (AU B) - (An B). 

(2) Suppose x E (AU B)- (An B) .... Therefore x E A L\ B. 

Therefore A L\ B = (A U B) - (An B). • 
Let's focus on the first case, x E A - B. This means that x E A and x fj. B. 

We put that in. 

Let A and B be sets. 

(1) Suppose x E A L\ B. Thus x E (A - B) U (B - A). This means either 
x E A- B or x E B- A. We consider both cases. 

• Suppose x E A - B. Sox E A and x fj. B . ... Therefore x E 

(AU B) - (A n B). 
• Suppose X E B - A . ... Therefore X E (Au B) - (An B) . 

. . . Therefore X E (Au B) - (An B). 

(2) Suppose x E (A U B) - (An B) . ... Therefore x E A L\ B. 

Therefore A L\ B = (AU B) - (An B). • 

We appear to be stuck. We have unraveled definitions down to x E A and 
x fj. B. To proceed, we work backward from our goal; we want to show that 
x E (A U B) - (A n B). To do that, we need to show that x E A U B and 
X fj. A n B. We add this language to the proof. 

Let A and B be sets. 

(1) Suppose x E A L\ B. Thus x E (A - B) U (B -A). This means either 
x E A- B or x E B- A. We consider both cases. 

• Supposex E A- B. Sox E A andx fj. B .... 
Thus x E AU B, butx fj. An B. Thereforex E (AU B)- (An B). 

• Suppose X E B -A . ... Therefore X E (Au B) - (An B) . 

. . . Therefore x E (AU B) - (An B). 

(2) Suppose x E (AU B)- (An B) .... Therefore x E A L\ B. 

Therefore A L\ B = (AU B) - (An B). • 
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Now the two parts of this proof are moving closer together. Let's record what 

we know and what we want. 

We already know: x E A and x ¢: B. 

We want to show: x E A u B and x ¢: A n B. 

The gap is now easy to close! Since we know x E A, certainly xis in A orB (we 

just said it's in A!), sox E A U B. Since x ¢: B, x is not in both A and B (we just 

said it's not in B !), sox ¢: A n B. We add this to the proof. 

Let A and B be sets. 

(1) Suppose x E A~ B. Thus x E (A- B) U (B- A). This means either 

x E A- B or x E B- A. We consider both cases. 
• Suppose x E A - B. So x E A and x ¢: B. 

Since x E A, we have x E AU B. Since x ¢: B, we have x ¢: An B. 

Thusx E AUB, butx ¢:An B. Thereforex E (AUB)-(AnB). 

• Suppose x E B - A . ... Therefore x E (AU B) - (A n B) . 

. . . Therefore x E (A U B) - (An B). 

(2) Suppose x E (AU B)- (An B) .... Therefore x E A~ B. 

Therefore A ~ B = (AU B) - (A n B). • 

We can now return to the second case of part ( 1) of the proof: "Suppose 

x E B -A . ... Therefore x E (AU B) - (An B)." We have good news! This 

case looks just like the previous case, except we have A and B switched around. 

The argument in this case is going to proceed exactly as before. Since the steps 

are (essentially) the same, we don't really have to write them out. (If you are not 

100% certain that the steps in t~ second case are exactly the same as before, I 

urge you to write out this portion of the proof for yourself using the previous case 

as a guide.) We can now complete part (1) of the proof. 

Let A and B be sets. 

(1) Suppose x E A~ B. Thus x E (A- B) U (B- A). This means either 

x E A - B or x E B - A. We consider both cases. 
• Suppose x E A - B. So x E A and x ¢: B. Since x E A, we have 

X E A u B. Since X ¢: B, we have X ¢: A n B. Thus X E A u B, but 
x ¢:An B. Thereforex E (AU B)- (An B). 

• Suppose x E B - A. By the same argument as above, we have 

x E (Au B) - (An B). 

Therefore x E (AU B) - (An B). 

(2) Suppose x E (AU B)- (An B) .... Therefore x E A~ B. 

Therefore A ~ B = (AU B) - (An B). • 
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Now we are ready to work on part (2). We begin by unraveling x E (AU B) -
(An B). This means that x E AU B, but x ~ An B (by the definition of set 
difference). 

Let A and B be sets. 

(1) Suppose x E A~ B. Thus x E (A- B) U (B- A). This means either 
x E A- B or x E B- A. We consider both cases. 

• Suppose x E A - B. So x E A and x ~ B. Since x E A, we have 
X E A u B. Since X ~ B' we have X ~ A n B. Thus X E A u B' but 
x ~An B. Thereforex E (AU B)- (An B). 

• Suppose x E B - A. By the same argument as above, we have 
x E (A u B) - (A n B). 

Therefore x E (AU B) - (An B). 

(2) Supposex E (AU B)- (An B). Thusx E AU B andx ~An B . 
. . . Therefore x E A~ B. 

Therefore A ~ B = (AU B) - (An B). • 
Now let's work backward from theendofpart(2). We want to show x E A~B, 

so we need to show x E (A - B) U (B - A). 

Let A and B be sets. 

(1) Suppose x E A~ B. Thus x E (A- B) U (B- A). This means either 
x E A- B or x E B- A. We consider both cases. 

• Suppose x E A - B. So x E A and x ~ B. Since x E A, we have 
x E A U B. Since x ~ B, we have x ~ A n B. Thus x E A U B, but 
x ~An B. Thereforex E (AU B)- (An B). 

• Suppose x E B - A. By the same argument as above, we have 
x E (Au B) - (An B). 

Therefore X E (Au B) - (An B). 

(2) Supposex E (AUB)- (An B). Thusx E AUB andx ~An B .... So 
x E (A- B) U (B- A). Thereforex E A~ B. 

Therefore A ~ B = (AU B) - (An B). • 
To show x E (A- B) U (B- A), we need to show that either x E A- B or 

x E B- A. Let's pause and write down what we know and what we want. 

We already know: 
We want to show: 

x E A u B and x ~ A n B. 
x E A - B or x E B - A. 

What we know says: xis in A orB but not both. In other words, either xis in A, in 
which case it's not in B, or xis in B, in which case it's not in A. In other words, x E 

A- B or x E B- A, and that's what we want to show! Let's work this into the proof. 
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Let A and B be sets. 

(1) Suppose x E A~ B. Thus x E (A- B) U (B- A). This means either 

x E A- B or x E B- A. We consider both cases. 
• Suppose x E A - B. So x E A and x ¢:. B. Since x E A, we have 

X E A u B. Since X ¢:. B' we have X ¢:. A n B. Thus X E A u B, but 
X ¢:.An B. Therefore X E (Au B)- (An B). 

• Suppose x E B - A. By the same argument as above, we have 
x E (AU B) - (An B). 

Therefore X E (A u B) - (An B). 

(2) Suppose x E (AU B)- (An B). Thus x E AU Band x ¢:. An B. 

This means that x is in A or B but not both. Thus either x is in A but 

not B or xis in B but not A. That is, x E (A- B) or x E (B -A). So 
x E (A- B) U (B- A). Thereforex E A~ B. 

Therefore A ~ B = (AU B) - (An B). • 
And this completes the proof. 
More properties of difference and symmetric difference are developed in the 

exercises. One particularly worthwhile result, however, is the following: 

Proposition 11.12 (DeMorgan's Laws) Let A, B, and C be sets. Then 

A- (B U C) = (A- B) n (A- C) and A- (B n C) = (A -B) U (A -C). 

The proof is left to you (Exercise 11.15). 

Cartesian Product 

We close this section with one more ~et operation. 
I 

Definition 11.13 (Cartesian product) Let A and B be sets. The Cartesian product of A and B, 

denoted A x B, is the set of all ordered pairs (two-element lists) formed by taking 

an element from A together with an element from B in all possible ways. That is, 

Ax B ={(a, b): a E A, bE B}. 

Example 11.14 Suppose A= {1, 2, 3} and B = {3, 4, 5}. Then 

Ax B = {(1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 3), (3, 4), (3, 5)}, and 

B x A= {(3, 1), (3, 2), (3, 3), (4, 1), (4, 2), (4, 3), (5, 1), (5, 2), (5, 3)}. 

Notice that for the sets in Example 11.14, A x B =!=- B x A, so Cartesian 

product of sets is not a commutative operation. 
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In what sense does Cartesian product "multiply" the set~? Why do we use a 
times sign x to denote this operation? Notice, in the example, that the two sets 

both had three elements, and their product had 3 x 3 = 9 elements. In general, we 

have the following: 

Proposition 11.15 Let A and B be finite sets. Then lAx Bl = IAI x IBI. 

11 Exercises 

The proof is left for Exercise 11.24. 

Recap 

In this section we discussed the following set operations: 

• Union: AU B is the set of all elements in A orB (or both). 
• Intersection: A n B is the set of all elements in both A and B. 
• Set difference: A - B is the set of all elements in A but not B. 

• Symmetric difference: A ~ B is the set of all elements in A orB, but not both. 
• Cartesian product: A x B is the set of all ordered pairs of the form (a, b) 

where a E A and b E B. 

11.1. Let A = {1, 2, 3, 4, 5} and let B = {4, 5, 6, 7}. Please compute: 
a. AUB. 
b. An B. 
c. A-B. 
d. B-A. 
e. A~B. 
f. A X B. 
g. B X A. 

11.2. Prove Theorem 11.3. 
11.3. Earlier we presented a Venn diagram illustration of the distributive property 

AU (B n C) = (AU B) n (AU C). Please give a Venn diagram illustration 
of the other distributive property, An (B u C) = (An B) U (An C). 

11.4. Is a Venn diagram illustration a proof? (This is a philosophical question.) 
11.5. Suppose A, B, and C are sets with A n B n C = 0. Prove or disprove: 

lA u B u Cl = IAI + IBI + ICI. 
11.6. Suppose A, B, and Care pairwise disjoint sets. Prove or disprove: lA U 

B u Cl = IAI + IBI + ICI. 
11.7. Let A and B be sets. Prove or disprove: AU B = A n B if and only if 

A= B. 
11.8. Let A and B be sets. Prove or disprove: lA ~ Bl = IAI + IBI- lA n Bl. 
11.9. Let A and B be sets. Prove or disprove: lA ~ Bl = lA- Bl + IB- AI. 

11.10. Let A be a set. Prove: A - 0 = A and 0 - A = 0. 
11.11. Let A be a set. Prove: A ~ A = 0 and A ~ 0 = A. 
11.12. Prove that A s; B if and only if A- B = 0. 
11.13. Let A and B be nonempty sets. Prove: A x B = B x A if and only if A = B. 

Why do we need the condition that A and B are nonempty? 



Set complement. 

The notation U - A is 

much clearer than A. 
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11.14. State and prove necessary and sufficient conditions for A- B = B- A. In 

other words, create a theorem of the form "Let A and B be sets. We have 

A- B = B- A if and only if (a condition on A and B)." Then prove your 

result. 
11.15. Give a standard proof of Proposition 11.12 and illustrate it with a Venn 

diagram. 
11.16. True or False: For each of the following statements, determine whether the 

statement is true or false and then prove your assertion. That is, for each 

true statement, please supply a proof, and for each false statement, present 

a counterexample (with explanation). 
In the following, A, B, and C denote sets. 

a. A - (B - C) = (A - B) - C. 

b. (A - B) - C = (A - C) - B. 

c. (A U B) - C = (A - C) n ( B - C). 

d. If A = B - C, then B = A U C. 
e. If B = A U C, then A = B - C. 

f. lA- Bl = IAI- IBI. 
g. (A - B) U B = A. 
h. (A U B) - B = A. 

11.17. Let A be a set. The complement of A, denoted A, is the set of all objects that 

are not in A. STOP! This definition needs some amending. Taken literally, 

the complement of the set { 1, 2, 3} includes the number -5, the ordered 

pair (3, 4), and the sun, moon, and stars! After all, it says" ... all objects 

that are not in A." This is not what is intended. 
When mathematicians speak of set complements, they usually have 

some overarching set in mind. For example, during a given proof or dis­

cussion about the integers, if A is a set containing just integers, A stands 

for the set containing all integers not in A. 
If U (for "universe") is the set of all objects under consideration and 

A s; U, then the complement of A is the set of all objects in U that are not 

in A. In other words, A= U- A. Thus 0 = U. 

Prove the following about set complements. Here the letters A, B, and 

C denote subsets of a universe set U. 

a. !!_ = B if and only if A= B. 
b. A=A. 
c. A U B U C = A n B n C. 

The notation A is handy, but it dm be ambiguous. Unless it is perfectly 

clear what the "universe" set U should be, it is better to use the set difference 

notation rather than complement notation. 

11.18. Design a four-set Venn diagram. Notice that the three-set Venn diagram we 

have been using has eight regions (including the region surrounding the four 

circles) corresponding to the eight possible memberships an object might 

have. An object might be in or not in A, in or not in B, and in or not in C. 

Explain why this gives eight possibilities. 
Your Venn diagram should show four sets, A, B, C, and D. How many 

regions should your diagram have? 
On your Venn diagram, shade in the set A ~ B ~ C ~ D. 
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An expanded version of 

inc lusion-cxc I usion. 

The connection between 

set operations and Boolean 

algebra. 

Note: Your diagram does not have to use circles to demark sets. Indeed, 

it is impossible to create a Venn diagram for four sets~using circles! You 

need to use other shapes. 
11.19. Let A, B, and C be sets. Prove that 

lA u B u Cl = IAI + IBI + ICI 

-lA n BI-IA n CI-IB n Cl 

+IAnBnCI. 

11.20. There is an intimate connection between set concepts and Boolean algebra 

concepts. The symbols 1\ and v are pointy versions of nand U, respectively. 

This is more than a coincidence. Consider: 

x E An B {=::} (x E A) 1\ (x E B) 

x E AU B {=::} (x E A) V (x E B) 

Find similar relations between the set-theoretic notions of s;: and ~ 

and notions from Boolean algebra. 
11.21. Prove that symmetric difference is a commutative operation; that is, for 

sets A and B, we have A ~ B = B ~A. 

11.22. Prove that symmetric difference is an associative operation; that is, for any 

sets A, B, and C, we have A~ (B ~C)= (A~ B)~ C. 

11.23. Give a Venn diagram illustration of A~ (B ~C)= (A~ B)~ C. 

11.24. Prove Proposition 11.15. 
11.25. Let A, B, and C denote sets. Prove the following: 

a. A x (B u C) = (A x B) u (A x C). 

b. A x ( B n C) = (A x B) n (A x C). 

c. A X ( B - C) = (A X B) - (A X C). 

d. A X ( B ~ C) = (A X B) ~ (A X C). 

12 Combinatorial Proof: Two Examples 
In Section 11 we introduced the concept of combinatorial proof of equations. 

This technique works by showing that both sides of an equation are answers to a 

common question. This method was used to prove Proposition 11.4 (for finite sets 

A and B we have lA I+ IBI = lA U Bl + lA n Bl). See Proof Template 9. 

In this section we give two examples that further illustrate this technique. One 

is based on a set-counting problem and the other on a list-counting problem. 

Proposition 12.1 Let n be a positive integer. Then 

20 + 21 + ... + 2n-1 = 2n _ 1. 

For example, 2° + 21 + 22 + 23 + 24 = 1 + 2 + 4 + 8 + 16 = 31 = 25 
- 1. 

We seek a question to which both sides of the equation give a correct answer. 
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The right-hand side is simpler, so let us begin there. The 2n term answers the 
question "How many subsets does ann-element set have?" However, the term is 
2n - 1, not 2n. We can modify the question to rule out all but one of the subsets. 
Which subset should we ignore? A natural choice is to skip the empty set. The 
rephrased question is "How many nonempty subsets does ann-element set have?" 
Now it is clear that the right-hand side of the equation, 2n - 1, is a correct answer. 
But what of the left? 

The left-hand side is a long sum, with each term of the form 2.i. This is a hint 
that we are considering several subset-counting problems. Somehow, the question 
of how many nonempty subsets an n-element set has must be broken down into 
disjoint cases (each a subset-counting problem unto itself) and then combined to 
give the full answer. 

We know we are counting nonempty subsets of an n-element set. For the 
sake of specificity, suppose the set is { 1, 2, ... , n }. Let's start writing down the 
nonempty subsets of this set. It's natural to start with { 1 }. Next we write down 
{ 1, 2} and {2}-these are the sets whose largest element is 2. Next we write down 
the sets whose largest element is 3. Let's organize this into a chart. 

Largest element Subsets of { 1, 2, ... , n} 

1 {1} 
2 {2},{1,2} 
3 {3}, {1' 3}, {2, 3}, {1' 2, 3} 
4 {4}, {1' 4}, {2, 4}, {1' 2, 4}, ... ' {1' 2, 3, 4} 

n {n}, {1, n}, {2, n}, {1, 2, n}, ... , {1, 2, 3, ... , n} 

We neglected to write out all the subsets on line 4 of the chart. How many are 
there? The sets on this line must contain 4 (since that's the largest element). The 
other elements of these sets are chosen from among 1, 2, and 3. Because there are 
23 = 8 possible ways to form a subset of {1, 2, 3}, there must be 8 sets on this line. 
Please take a moment to verify this for yourself by completing line 4 of the chart. 

Now skip to the last line of the chart. How many subsets of { 1, 2, ... , n} have 
largest element n? We must include n together with any subset of { 1, 2, ... , n - 1}, 
for a total of 2n-I choices. 

Notice that every nonempty subset of { 1, 2, ... , n} must appear exactly once 
in the chart. Totaling the row sizes gives 

1 + 2 + 4 + 8 + · · · + 2n -I . 

Aha! This~ precisely the lefthand side of the equation we seek to prove . 
.Arrtied with these insights, we are ready to write the proof. 

Proof (of Proposition 12.1) 

Let n be a positive integer, and let N = { 1, 2, ... , n}. How many nonempty subsets 
does N have? 

Answer 1: Since N has 2n subsets, when we disregard the empty set, we see 
that N has 2n - 1 nonempty subsets. 
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Answer 2: We consider the number of subsets of N whos.e largest element is 

j where 1 ::: j ::: n. Such subsets must be of the form{ ... ,to}} where the other 

elements are chosen from { 1, ... , j - 1}. Since this latter set has 2j - 1 subsets, N 

has 2j - 1 subsets whose largest element is j. Summing these answers over all j 

gives 

nonempty subsets of N. 
Since answers 1 and 2 are both correct solutions to the same counting problem, 

we have 

We now tum to a second example. 

Proposition 12.2 Let n be a positive integer. Then 

1 · 1 ! + 2 · 2! + · · · + n · n! = (n + 1)! - 1. 

For example, with n = 4, observe that 

1 . 1! + 2 . 2! + 3 . 3! + 4 . 4! = 1 . 1 + 2 . 2 + 3 . 6 + 4 . 24 

= 1 + 4 + 18 + 96 

= 119 = 120 - 1 = 5! - 1. 

• 

The key to proving Proposition 12.2 is to find a question to which both sides 

of the equation give a correct answer. As with the first example, the righthand side 

is simpler, so we begin there. 
The (n + 1)! term reminds us of counting lists without replacement. Specifi­

cally, it answers the question "How many lists can we form using the elements of 

{ 1, 2, ... , n + 1} in which every element is used exactly once?" Because the right­

hand side also includes a -1 term, we need to discard one of these lists. Which? 

A natural choice is to skip the list (1, 2, 3, ... , n + 1); this is the only list in which 

every element j appears in position j for every j = 1, 2, ... , n. In every other list, 

some element j is not in the jth position on this list. Alternatively, the discarded 

list is the only one in which the elements appear in increasing order. 

We therefore consider the question "How many lists can we form using the 

elements of { 1, 2, ... , n + 1} in which every element appears exactly once and in 

which the elements do not appear in increasing order?" 

Clearly (n + 1)! - 1 is one solution to this problem; we need to show that the 

lefthand side is also a correct answer. If the elements in the list are not in increasing 

order, then some element, say k, will not be in position k. We can organize this 

counting problem by considering where this first happens. 

Let us consider the case n = 4. We form a chart containing all length-5 

repetition-free lists we can form from the elements of {1, 2, 3, 4, 5} that are not 

in increasing order. We organize the chart by considering the first time slot k is 

not element k. For example, when k = 3 the lists are 12135, 12153, 12~34, and 



k 

1 

2 

3 
4 
5 
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12~43 since the entries in positions 1 and 2 are elements 1 and 2, respectively, but 
entry 3 is not 3. (We have omitted the commas and parentheses for the sake of 
clarity.) 

The chart for n = 4 follows. 

first "misplaced" element at position k 

21345 21354 21435 21453 21534 21534 23145 23154 23415 23154 23514 23541 
24135 24153 24315 24351 24513 24531 25134 25143 25314 25341 25413 25431 
31245 31254 31425 31452 31524 31542 32145 32154 32415 32451 32514 32541 
34125 34152 34215 34251 34512 34521 35124 35142 35214 35241 35412 35421 
41235 41253 41325 41352 41523 41532 42135 42153 42315 4235142513 42531 
43125 43152 43215 43251 43512 43521 45123 45132 45213 45231 45312 45321 
51234 51243 51324 51342 51423 51432 52134 52143 52314 52341 52413 52431 
53124 53142 53214 53241 53412 53421 54123 54132 54213 54231 54312 54321 
13245 13254 13425 13452 13524 13542 
14235 14253 14325 14352 14523 14532 
152341524315324153421542315432 
12435 12453 12534 12543 
12354 
-

Notice that row 5 of the chart is empty; why? This row should contain all repetition­
free lists in which the first slot k that does not contain element k is k = 5. Such a 
list must be of the form (1, 2, 3, 4, ?), but then there is no valid way to fill in the 
last position. 

Next, count the number of lists in each portion of the chart. Working from 
the bottom, there are 1 + 4 + 18 + 96 = 119 lists (all 5! = 120 except the 
list (1, 2, 3, 4, 5) ). The sum 1 + 4 + 18 + 96 should be familiar; it is precisely 
1 · 1 ! + 2 · 2! + 3 · 3! + 4 · 4!. Of course, this is not a coincidence. Consider the first 
row of the chart. The lists in this row must not begin with a 1 but may begin with 
any element of {2, 3, 4, 5}; there are 4 choices for the first element. Once the first 
element is chosen, the remaining four elements in the lists may be chosen in any 
way we like. Since there are 4 elements remaining (after selecting the first), these 
4 elements can be arranged in 4! ways. Thus, by the Multiplication Principle, there 
are 4 · 4! lists in which the first element is not 1. 

The same analysis works for the second row. Lists on this row must begin 
with a 1, and then the second element must not be a 2. There are 3 choices for 
the second element because we must choose it from {3, 4, 5}. Once the second 
element has been selected, the remaining three elements may be arranged in any 
way we wish, and there are 3! ways to do so. Thus the second row of the chart 
contains 3 · 3! = 18 lists. 

We are ready to complete the proof. 

Proof (of L:osition 12.2) 

Let n be a positive integer. We ask, "How many repetition-free lists can we form 
using all the elements in { 1, 2, ... , n + 1} in which the elements do not appear in 
increasing order?" 
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Answer 1: There are (n + 1)! repetition-free lists, and in only one such list do .. 
the elements appear in order, namely (1, 2, ... , n, n + 1). Thus the answer to the 

question is (n + 1)! - 1. 
Answer 2: Let j be an integer between 1 and n, inclusive. Let us consider 

those lists in which the first j - 1 elements are 1, 2, ... , j - 1, respectively, but 

for which the jth element is not j. How many such lists are there? For element j 

there are n + 1 - j choices because elements 1 through j - 1 have already been 

chosen and we may not use element j. The remaining n + 1 - j elements may 

fill in the remaining slots on the list in any order, giving (n + 1 - j)! possibilities. 

By the Multiplication Principle, there are (n + 1 - j) · (n + 1 - j)! such lists. 

Summing over j = 1, 2, ... , n gives 

n · n! + (n- 1) · (n- 1)! + · · · + 3 · 3! + 2 · 2! + 1 · 1!. 

Since answers 1 and 2 are both correct solutions to the same counting problem, 

we have 

1 · 1! + 2 · 2! + · · · + n · n! = (n + 1)!- 1. • 
Recap 

In this section we illustrated the concept of combinatorial proof by applying the 

technique to demonstrate two identities. 

12 Exercises 12.1. Give an alternative proof of Proposition 12.1 in which you use list counting 

instead of subset counting. 
12.2. Let n be a positive integer. Use algebra to simplify the following expression: 

(x -1)(1 +x +x2 + ... +xn-1). 

Use this to give another proof of Proposition 12.1. 

12.3. Substituting x = 3 into your expression in the previous problem yields 

2 · 3° + 2 · 31 + 2 · 32 + · · · + 2 · 3n-l = 3n- 1. 

Prove this equation combinatorially. 
Next, substitute x = 10 and illustrate the result using ordinary base-10 

numbers. 
12.4. Let a and b be positive integers with a > b. Give a combinatorial proof of 

the identity (a+ b)(a -b) = a 2 - b2 • 

12.5. Let n be a positive integer. Give a combinatorial proof that n2 = n (n -1) +n. 

Chapter 2 Self Test 

1. The call sign for a radio station in the United States is a list of three or four 

letters, such as WJHU or WJZ. The first letter must be a W or a K, and there 

is no restriction on the other letters. In how many ways can the call sign of a 

radio station be formed? 
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2. In how many ways can we make a list of three integers (a, b, c) where 
0 ::::; a, b, c ::::; 9 and a + b + c is even? 

3. In how many ways can we make a list of three integers (a, b, c) where 
0 ::::; a, b, c ::::; 9 and abc is even? 

4. Without the use of any computational aid, simplify the following 
expression: 

20! 

17!. 3! 

5. In how many ways can we arrange a standard deck of 52 cards so that all cards 
in a given suit appear contiguously (e.g., first all the spades appear, then all 
the diamonds, then all the hearts, and then all the clubs)? 

6. Ten married couples are waiting in line to enter a restaurant. Husbands and 
wives stand next to each other, but either one might be ahead of the other. How 
many such arrangements are possible? 

7. Evaluate the following: 

8. Let A= {x E Z: lxl < 10}. Evaluate !AI. 
9. Let A = {1, 2, {3, 4}}. Which of the following are true and which false? No 

proof is required. 

10. 

11. 

12. 

13. 

a. 1 EA. 
b. {1} EA. 
c. 3 EA. 
d. {3} EA. 
e. {3} ~A. 
Let A and B be finite sets. Determine whether the following statements are true 
or false. Justify your answer with a proof or counterexample, as appropriate. 
a. 2AnB = 2A n 2B. 
b. 2AUB = 2A U 2B. 
C. 2AL\B = 2A .6. 2B. 

Let A be a set. Which of the following are true and which false? 
a. x E A iff x E 2A. 
b. T ~ A iff T E 2A. 
C. X E A iff {X} E 2A. 
d. {x} E A iff {{x}} E 2A. 
Which of the following statements about integers are true and which false? 
No proof is required. 
a. V x, Vy, x > y. 

b. 3x, Vy, x > y. 

C. \f X, 3y, X > y. 

d.
1

=rx, 3y, x > y. 
Ut p (x, y) stand for a sentence about two integers, x and y. For example, 
p(x, y) could mean "x- y is a perfect square." 
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Assume the statement 'v'x, 3y, p(x, y) is true. Whi~h of the following 
statements about integers must also be true? ~ 
a. 'v'x, 3y, -.p(x, y). 
b. -.(3x, 'v'y, -.p(x, y)). 

c. 3x, 3y, p(x, y). 
14. Let A and B be sets and suppose Ax B = {(1, 2), (1, 3), (2, 2), (2, 3)}. Find 

A U B, A n B, and A - B. 
15. Let A, B, and C denote sets. Prove that (AU B)- C =(A- C) U (B- C) 

and give a Venn diagram illustration. 
16. Suppose A and B are finite sets. Given that IAI = 10, lA U Bl = 15, and 

lA n Bl = 3, determine IBI. 
17. Let A and B be sets. Create an expression that evaluates to An B and uses only 

the operations union and set difference. That is, find a formula that uses only 
the symbols A, B, U, -, and parentheses; this formula should equal A n B for 
all sets A and B. 

18. Let n be a positive integer. Give a combinatorial proof of the identity 

n 3 = n(n - 1)(n- 2) + 3n(n - 1) + n. 



13 

Counting and Relations 

Relations 
Mathematics is teeming with relations. Intuitively, a relation is a comparison be­
tween two objects. The two objects either are or are not related according to some 
rule. For example, less than ( <) is a relation defined on integers. Some pairs of 
numbers, such as (2, 8), satisfy the less-than relation (since 2 < 8), but other pairs 
of numbers do not, such as (10, 3) (since 10 f:. 3). 

There are other relations defined on the integers, such as divisibility, greater 
than, equality, and so on. Furthermore, there are relations on other sorts of objects. 
We can ask whether a pair of sets satisfies the ~ relation or whether a pair of 
triangles satisfies the is-congruent-to relation. 

Typically we use relations to study objects. For example, the is-congruent-to 
relation is a central tool in geometry in the study of triangles. In this section, we 
take a different point of view. Our purpose is to study the relations themselves. 

What is a relation? The precise definition follows. Beware! At first glance, 
it may seem utterly perplexing and bear little resemblance to what you under­
stand relations, such as ::::;, to be. Rest assured that we will explain this definition 
thoroughly. 

Definition 13.1 (Relation) A relation is a set of ordered pairs. 

A set of ordered pairs??? Yes, we mean a set of two-element lists. For example, 
R = {(1, 2), (1, 3), (3, 0)} is a relation, though not a particularly interesting one. 
This seems to have little to do with familiar relations such as < and ~ and 1. 

In truth, when mathematicians think about relations, we rarely think about 
them as sets of ordered pairs. We think of a relation R as a "test." If x andy are 
related by R-ifthey pass the test-then we write x R y. Otherwise, if they are not 
related by the relation R, we put a slash through the relation symbol, as in x =1- y 
or A £ B (A is not a subset of B). 

How can we understand Definition 13.1 in this way? The set of ordered pairs 
is a complete listing of all pairs of objects that "satisfy" the relation. 

I 
83 
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X R y <====> (X, Y) E R. 

Let's return to the example R ={(I, 2), (1, 3), (3, 0)}. This ~ays that, for the 

relation R, 1 is related to 2, 1 is related to 3, and 3 is related to 0, ~nd for any other 

objects x, y, it is not the case that x is related to y. We can write, 

(1,2) E R, (1,3) E R, (3,0) E R, (5,6) f/- R 

and this means that (1, 2), (1, 3), and (3, 0) are related by R, but (5, 6) is not. 

Although this is a formally correct way to express these facts, it is not how math­

ematicians write. We would rather write, 

1 R 2, 1 R 3, 3 R 0, 5!J. 6. 

In other words, the symbols x R y mean (x, y) E R. Read aloud, x R y can be 

spoken "x is related by the relation R to y ," or, if everyone knows what relation is 

under consideration at the moment, we can simply say, "x is related to y ." 

The familiar relations of mathematics can be thought of in these terms. For 

example, the less-than-or-equal-to relation on the set of integers can be written as 

follows: 

{ (x, y) : X, y E iZ and y - X E N}. 

This says that (x, y) is in the relation provided y - x E N-that is, provided y - x 

is a nonnegative integer, which in turn is equivalent to x ::::; y. 

Let's reiterate the two salient points: 

• A relation R is a set of ordered pairs (x, y); we include an ordered pair in R 

just when (x, y) "satisfies" the relation R. Any set of ordered pairs constitutes 

a relation, and a relation does not have to be specified by a general "rule" or 

special principle. 
• Even though relations are sets of ordered pairs, we usually do not write (x, y) E 

R. Rather, we write x R y and say, "x is related to y by the relation R ." 

Next we extend Definition 13.1 a bit. 

Definition 13.2 (Relation on, between sets) Let R be a relation and let A and B be sets. We say 

R is a relation on A provided R ~ A x A, and we say R is a relation from A to B 

provided R ~Ax B. 

Example 13.3 Let A= {1, 2, 3, 4} and B = {4, 5, 6, 7}. Let 

R = {(I, 1), (2, 2), (3, 3), (4, 4)}, 

s = {(1, 2), (3, 2)}, 

T = {(1, 4), (1, 5), (4, 7)}, 

U = {(4, 4), (5, 2), (6, 2), (7, 3)}, and 

v = { (1' 7)' (7' 1)}. 

All of these are relations. 

• R is a relation on A. Note that it is the equality relation on A. 

• S is a relation on A. Note that element 4 is never mentioned. 
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T is a relation from A to B. Note that elements 2, 3 E A, and 6 E B are never 
mentioned. 
U is a relation from B to A. Note that 1 E A is never mentioned. 
V is a relation, but it is neither a relation from A to B nor a relation from 
B to A. 

Since, formally, a relation is a set, all the various set operations apply to 
relations. For example, if R is a relation and A is a set, then R n (A x A) is the 
relation R restricted to the set A. [We can also consider R n (A x B), in which 
case we have restricted R to be a relation from A to B.] 

Here is another operation we can perform on relations. 

Definition 13.4 (Inverse relation) Let R be a relation. The inverse of R, denoted R- 1
, is the 

relation formed by reversing the order of all the ordered pairs in R. 

In symbols, 

R- 1 = {(x, y): (y, x) E R}. 

Example 13.5 Let 

R = {(1, 5), (2, 6), (3, 7), (3, 8)}. 

Then 

R- 1 = {(5, 1), (6, 2), (7, 3), (8, 3)}. 

If R is a relation on A, so is R- 1• If R is a relation from A to B, then R- 1 is a 
relation from B to A. 

Note that writing 1 / R is nonsense. To form the inverse of a relation simply 
means to reverse all the ordered pairs in the relation; it has nothing to do with 
division. The - 1 superscript is a convenient notation. We have not defined a 
general operation of raising a relation to a power. 

Since the inverse operation reverses the ordered pairs in a relation, it is clear 
that (R- 1)-1 = R. Here are a formal statement and proof. 

Proposition 13.6 Let R be a relation. Then (R- 1 )-1 = R. 

Note that R, R-1, and (R-1)-1 are all sets. Thus, to prove that (R- 1
)-

1 = R, 

we use Proof Template 5. 

Proof. Suppose (x, y) E R. Then (y, x) E R- 1 and thus (x, y) E (R-- 1 
)-

1
• 

Now suppose (x, y) E (R-1)-1. Then (y, x) E R- 1 and so (x, y) E R. 
We have shown that (x,y) E R {::=::} (x,y) E {R-1)-

1
; therefore 

R = (R-1)-1. • 
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Properties of Relations 

We introduce special terms to describe relations. 

Definition 13.7 (Properties of relations) Let R be a relation defined on a set A. 

• If for all x E A we have x R x, we call R reflexive. 
· If for all x E A we have x 1J. x, we call R irrefiexive. 
· If for all x, yEA we have x R y ===} y R x, we call R symmetric. 
· If for all x, y E A we have (x R y 1\ y R x) ===} x = y, we call R 

antisymmetric. 
· If for all x, y, z E A we have (x R y 1\ y R z) ===} x R z, we call R transitive. 

We present several examples to illustrate this vocabulary. 

Example 13.8 Consider the relation = (equality) on the integers. It is reflexive (any integer is 
equal to itself), symmetric (if x = y, then y = x ), and transitive (if x = y and 
y = z, then we must have x = z). 

The relation = is antisymmetric, though this is not an interesting example of 
antisymmetry. See the subsequent examples. 

However, the relation= is not irreflexive (which would say that x =f. x for all 
X E Z). 

Example 13.9 Consider the relation ~ (less than or equal to) on the integers. Note that ~ is 
reflexive because for any integer x, it is true that x ~ x. It is also transitive, since 
x ~ y andy ~ z imply that x ~ z. 

The relation ~ is not symmetric because that would mean that x ~ y ===} 

y ~ x. This is false; for example, 3 ~ 9, but 9 i 3. 
However, ~is antisymmetric: If we know x ~ y andy ~ x, it must be the 

case that x = y. 
Finally, ~ is not irreftexive; for example, 5 ~ 5. 

Example 13.10 Consider the relation< (strict less than) on the integers. Note that< is not reflexive 
because, for example, 3 < 3 is false. Further, < is irreflexive because x < x is 
never true. 

The relation < is not symmetric because x < y does not imply y < x; for 
example, 0 < 5 but 5 f:. 0. 

The relation < is antisymmetric, but it fulfills the condition vacuously. The 
condition states 

(x < y andy < x) ===} x = y. 

However, it is impossible to have both x < y and y < x, so the hypothesis of this 
if-then statement can never be satisfied. Therefore it is true. 

Finally, < is transitive. 
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Example 13.11 Consider the relation I (divides) on the natural numbers. Note that I is antisymmetric 
because, if x and y are natural numbers with xI y and y lx, then x = y. 

However, the relation I on the integers is not antisymmetric. For example, 
31-3 and -313, but 3 =j:. -3. 

Also notice that I is not symmetric (e.g., 319, but 9 does not divide 3). 
The properties in Definition 13.7 depend on the context of the relation. The I 

(divides) relation on the integers is different from the I relation when restricted to 
the natural numbers. 

This example also shows that a relation can be neither symmetric nor 
antisymmetric. 

The terms in Definition 13.7, such as reflexive, are attributes of a relation R 
defined on a set A. Consider the relation R = { (1, 1), (1, 2), (2, 2), (2, 3), (3, 3) }. 
We ask: Is R reflexive? This question does not have a definitive answer. If we think 
of R as a relation on the set { 1, 2, 3}, then the answer is yes. However, we can also 
consider Rasa relation on all of Z; in this context, the answer is no. One can only 
say that a relation R is reflexive if we are presented with the set A on which R is a 
relation. In most cases, the set A will either be explicitly mentioned or be obvious 
from context. 

Recap 
We introduced the notion of a relation in both the intuitive sense as a "condition" 
and in the formal sense as a set of ordered pairs. We presented the concept of 
an inverse relation and defined the following properties of relations: reflexive, 
irreflexive, symmetric, antisymmetric, and transitive. 

13 Exercises 13.1. For each of the following relations defined on the set { 1, 2, 3, 4, 5}, deter-
mine whether the relation is reflexive, irreflexive, symmetric, antisymmet­
ric, and/or transitive. 
a. R = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)}. 
b. R = {(1, 2), (2, 3), (3, 4), (4, 5)}. 
c. R = { (1 , 1), (1 , 2), (1 , 3), (1 , 4), (1 , 5)}. 
d. R = {(1, 1), (1, 2), (2, 1), (3, 4), (4, 3)}. 
e. R = {1, 2, 3, 4, 5} x { 1 , 2, 3, 4, 5}. 

13.2. Let us say that two integers are near one another provided their difference 
is 2 or smaller (i.e., the numbers are at most 2 apart). For example, 3 is near 
to 5, 10 is near to 9, but 8 is not near to 4. Let R stand for this is-near-to 
relation. Please do the following: 
a. Write down R as a set of ordered pairs. Your answer should look like 

this: 

R = {(x, y): ... }. 

b. Prove or disprove: R is reflexive. 
c. Prove or disprove: R is irreflexive. 
d. Prove or disprove: R is symmetric. 
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13.3. 

13.4. 
13.5. 

13.6. 

13.7. 

e. Prove or disprove: R is antisymmetric. 

f. Prove or disprove: R is transitive. 
For each of the following relations, find R- 1

. 

a. R = {(1, 2), (2, 3), (3, 4)}. 

b. R = {(1, 1), (2, 2), (3, 3)}. 
c. R = { (x, y) : x, y E Z, x - y = 1}. 
d. R={(x,y):x,yEN,xiy}. 

e. R = { (x, y) : X, y E Z, X y > 0}. 
Suppose that RandS are relations and R = s-1. Prove that S = R- 1. 

Let R be a relation on a set A. Prove or disprove: If R is antisymmetric, 

then R is irreflexive. 
Let R be the relation has-the-same-size-as defined on all finite subsets of Z 

(i.e., ARB iff IAI = IB 1). Which of the five properties (reflexive, irreflexive, 

symmetric, antisymmetric, transitive) does R have? Prove your answers. 

Consider the relation s; on 2;z, (i.e., the is-a-subset-of relation defined on all 

sets of integers). Which of the properties in Definition 13.7 does s; have? 

Prove your answers. 
13.8. What is :::-1? 
13.9. The property irreflexive is not the same as being not reflexive. To illustrate 

this, please do the following: 
a. Give an example of a relation on a set that is neither reflexive nor 

irreflexive. 
b. Give an example of a relation on a set that is both reflexive and irreflexive. 

Part (a) is not too hard, but for (b), you will need to create a rather strange 

example. 
13.10. A fancy way to say R is symmetric is R = R- 1

. Prove this (i.e., prove that 

a relation R is symmetric if and only if R = R- 1 
). 

13.11. Prove: A relation Ron a set A is antisymmetric if and only if 

R n R- 1 s; {(a, a): a E A}. 

13.12. Give an example of a relation on a set that is both symmetric and transitive 

but not reflexive. 
Explain what is wrong with the following "proof." 

Statement: If R is symmetric and transitive, then R is reflexive. 

"Proof": Suppose R is symmetric and transitive. Symmetric means 

that x R y implies y R x. We apply transitivity to x R y and y R x to 

give x R x. Therefore R is reflexive. • 

13.13. Drawing pictures of relations. Pictures of mathematical objects are won­

derful aids in understanding concepts. There is a nice way to draw a picture 

of a relation on a set or of a relation from one set to another. 

To draw a picture of a relation R on a set A, we make a diagram in 

which each element of A is represented by a dot. If a R b, then we draw 

an arrow from dot a to dot b. If it should happen that b is also related to a, 

we draw another arrow from b to a. And if a R a, then we draw a looping 

arrow from a to itself. 
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For example, let A = {1, 2, 3, 4, 5} and R = {(1, 1), (1, 2), (1, 3), 
(4, 3), (3, 1)}. A picture of the relation Ron A is given in the first figure. 

To draw a picture of a relation from A to B, we draw two collections of 
dots. The first collection of dots corresponds to the elements in A, and we 
place these on the left side of the figure. The dots for B go on the right. We 
then draw an arrow from a E A to b E B just when (a, b) is in the relation. 

For example, let A = { 1, 2, 3, 4, 5} and B = {4, 5, 6, 7} and let S be 
the relation { ( 1, 4), ( 1, 5), (2, 5), (3, 6)}. A picture of the relation S is given 
in the second figure. 

Please draw pictures of the following relations. 
a. Let A = {a E N : a 110} and let R be the relation I (divides) restricted 

to A. 
b. Let A = {1, 2, 3, 4, 5} and let R be the less-than relation restricted to A. 
c. Let A = {1, 2, 3, 4, 5} and let R be the relation= (equals) restricted 

to A. 
d. Let A = {1, 2, 3, 4, 5} and let B = {2, 3, 4, 5}. Let R be the relation 2: 

(greater than or equal to) from A to B. 
e. Let A = {-1, -2, -3, -4, -5} and let B = {1, 2, 3, 4, 5} and let 

R ={(a, b): a E A, bE B, alb}. 

Equivalence Relations 
As we proceed with our study of discrete mathematics, we shall encounter various 
relations. Certain relations bear a strong resemblance to the relation equality. 
A good example (from geometry) is the is-congruent-to relation (often denoted 
by ~) on the set of triangles. Roughly speaking, triangles are congruent if they 
have exactly the same shape. Congruent triangles are not equal (i.e., they might be 
in different parts of the plane), but in a sense, they act like equal triangles. Why? 
What is special about ~ that it acts like equality? 

Of the five properties listed in Definition 13.7, ~is reflexive, symmetric, and 
transitive (but it is neither irreflexive nor anti symmetric). Relations with these three 
properties are akin to equality and are given a special name. 

Definition 14.1 (Equivalence relation) Let R be a relation on a set A. We say R is an equivalence 
relation provided it is reflexive, symmetric, and transitive. 

Example 14.2 Consider the has-the-same-size-as relation on finite sets (see Exercise 13.6): For 
finite sets of integers A and B, let A R B provided I A I = I B j. Note that R is 

1 reflexive, symmetric, and transitive and therefore is an equivalence relation. 
It is not the case that two sets with the same size are the same. For example, 

{1, 2, 3} R {2, 3, 4}, but {1, 2, 3} =I= {2, 3, 4}. Nonetheless, sets related by Rare 
"like" each other in that they share a common property: their size. 
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The following equivalence relation plays a central role in number theory . .. 

Definition 14.3 (Congruence modulo n) Let n be a positive integer. We say that integers x and 

y are congruent modulo n, and we write 

Example 14.4 

Congruence of numbers 

(modulo n) is different 

from congruence of 

geometric figures. They 

are both equivalence 

relations. Unfortunately, 

mathematicians do use the 

same word with different 

meanings. We try. 

however, to make sure the 

meaning is always clear 

from context. 

Two numbers that are both 

even or both odd are said 

to have the same pari(v. 

Theorem 14.5 

x = y (mod n) 

provided nl(x- y). 

In other words, x = y (mod n) if and only if x andy differ by a multiple of n. 

3 = 13 
4=4 

16 ~ 3 

(mod 5) 
(mod 5) 
(mod 5) 

because 3- 13 = -10 is a multiple of 5. 

because 4 - 4 = 0 is a multiple of 5. 

because 16 - 3 = 13 is not a multiple of 5. 

We often abbreviate the word modulo to just mod. If the integer n is known 

and unchanging throughout the discussion, we may omit the (mod n) on the right. 

Also, the (mod n) is often shortened to just (n ). 

The simplest case for this definition is when n = 1. In this case, we have x = y 

provided the integer x - y is divisible by 1. However, all integers are divisible by 

1, so any two integers are congruent modulo 1. This is not interesting. 

The next case is when n = 2. Two numbers are congruent mod 2 provided 

their difference is divisible by 2 (i.e., they differ by an even number). For example, 

3 = 15 (mod 2), 0 = -14 (mod 2), and 3 = 3 (mod 2). 

However, 

3 ~ 12 (mod 2) and - 1 ~ 0 (mod 2). 

Please notice that two numbers are congruent mod 2 iff they are both even or both 

odd (we prove this later). 

Let n be a positive integer. The is-congruent-to-mod-n relation is an equivalence 

relation on the set of integers. 

The proof of this result is not hard if we use the proof techniques we have 

developed. Our goal is to prove that a relation is an equivalence relation. This 

means the proof should look like this: 

Let n be a positive integer and let= denote congruence mod n. We need to 

show that = is reflexive, symmetric, and transitive. 

Claim: = is reflexive .... Thus = is reflexive. 

Claim:= is symmetric .... Thus= is symmetric. 

Claim: = is transitive .... Thus = is transitive. 

Therefore = is an equivalence relation. • 
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Note that the proof breaks into three parts corresponding to the three conditions 
in Definition 14.1. Each section is announced with the word claim. A claim is a 
statement we plan to prove during the course of a proof. This helps the reader 
know what's coming next and why. 

We can now start unraveling each part of the proof. For example, to show 
that= is reflexive, we have to show Vx E Z, x = x (see Definition 13.7). Let's 
put that into the proof. 

Let n be a positive integer and let= denote congruence mod n. We need to 
show that = is reflexive, symmetric, and transitive. 

Claim: =is reflexive. Let x be an arbitrary integer, ... Therefore x = x. 

Thus = is reflexive. 
Claim: = is symmetric, ... Thus = is symmetric. 
Claim: = is transitive, ... Thus = is transitive. 

Therefore = is an equivalence relation. • 
Now we want to prove x = x. What does this mean? It means n I (x - x )-that 

is, niO-and this is obvious! Clearly 0 is a multiple of n since n · 0 = 0. We add 
this to the proof: 

Let n be a positive integer and let= denote congruence mod n. We need to 
show that = is reflexive, symmetric, and transitive. 

Claim: = is reflexive. Let x be an arbitrary integer. Since 0 . n = 0, we 
have niO, which we can rewrite as nl(x- x). Therefore x = x. Thus= 
is reflexive. 
Claim: = is symmetric .... Thus = is symmetric. 
Claim: = is transitive .... Thus = is transitive. 

Therefore = is an equivalence relation. • 
Now we tackle the symmetry of=. To show symmetry, we consult Defini­

tion 13.7 to see that we must prove x = y ===} y = x. This is an if-then statement, 
so we write: 

Let n be a positive integer and let = denote congruence mod n. We need to 
show that = is reflexive, symmetric, and transitive. 

Claim: = is reflexive. Let x be an arbitrary integer. Since 0 · n = 0, we 
have n!O, which we can rewrite as n!(x- x). Therefore x = x. Thus= 
is reflexive. 
Claim: = is symmetric. Let x and y be integers and suppose x 
y . ... Therefore y = x. Thus = is symmetric. 
Claim: =is transitive .... Thus= is transitive. 

Therefore = is an equivalence relation. • 
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Next we unravel definitions. 

Let n be a positive integer and let= denote congruence mod n. We need to 

show that = is reflexive, symmetric, and transitive. 

Claim: = is reflexive. Let x be an arbitrary integer. Since 0 · n = 0, we 

have n/0, which we can rewrite as n/(x- x). Therefore x = x. Thus= 

is reflexive. 
Claim: = is symmetric. Let x and y be integers and suppose x = y. 

This means that n I (x - y) . ... And son I (y - x). Therefore y = x. Thus 

=is symmetric. 
Claim: = is transitive .... Thus = is transitive. 

Therefore = is an equivalence relation. • 
We're nearly done. We know nl(x- y). We want nl(y- x). We can unravel 

the definition of divisibility and complete this section of the proof. (Alternatively, 

we can use Exercise 4.7 .) 

Let n be a positive integer and let= denote congruence mod n. We need to 

show that = is reflexive, symmetric, and transitive. 

Claim: = is reflexive. Let x be an arbitrary integer. Since 0 · n = 0, we 

haven 10, which we can rewrite as n I (x - x). Therefore x = x. Thus = 

is reflexive. 
Claim: = is symmetric. Let x and y be integers and suppose x = y. This 

means that n I (x - y). So there is an integer k such that (x - y) = kn. 

But then (y- x) = ( -k)n. And so n/(y- x). Therefore y = x. Thus 

=is symmetric. 

Claim: = is transitive .... Thus = is transitive. 

Therefore = is an equivalence relation. • 
The proof of the third section nearly writes itself and we leave it to you 

(Exercise 14.4). 

Equivalence Classes 

We noted earlier that two numbers are congruent mod 2 if and only if they are 

either (1) both odd or (2) both even. (We have not proved this yet; we will. See 

Corollary 34.5.) 
We have two classes of numbers: odd and even. Any two odd numbers are 

congruent modulo 2 (this you can prove), and any two even numbers are congruent 

modulo 2. The two classes are disjoint (have no elements in common) and, taken 

together, contain all the integers. 

Similarly, let R denote the has-the-same-size-as relation on the finite subsets 

of Z. We noted that R is an equivalence relation. Notice that we can categorize 
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finite subsets of Z according to their cardinality. There is just one finite subset of 

Z that has cardinality zero-namely, the empty set. The only set related by R to 0 

is 0. Next, there are the subsets of size one: 

... '{-2}, {-1}, {0}, {1}, {2}, ... 

These are all R-related to one another but not to other sets. There is also the class 

of all subsets of Z of size two; again, these are related to one another but not to 

any other sets. 
This decomposition of a set by an equivalence relation is an important idea 

we now formalize. 

Definition 14.6 (Equivalence class) Let R be an equivalence relation on a set A and let a E A. 

The equivalence class of a, denoted [a], is the set of all elements of A related (by 

R) to a; that is, 

[a]= {x E A: x R a}. 

Example 14.7 Consider the equivalence relation congruence mod 2. What is [1]? By definition, 

[l]={xEZ:x=1 (mod2)}. 

This is the set of all integers x such that 21(x- 1) (i.e., x- 1 = 2k for some k), 

sox = 2k + 1 (i.e., xis odd)! The set [1] is the set of odd numbers. 
It's not hard to see (you should prove) that [0] is the set of even numbers. 

Consider [3]. You should also prove that [3] is the set of odd numbers, so 

[1] = [3]. (See Exercise 14.6.) 
The equivalence relation congruence mod 2 has only two equivalence classes: 

the set of odd integers [ 1] and the set of even integers [0]. 

Example 14.8 Let R be the has-the-same-size-as relation defined on the set of finite subsets of 

Z. What is [0]? By definition, 

[0] ={A ~ Z: lA I = 0} = {0} 

since 0 is the only set of cardinality zero. 
What is [{2, 4, 6, 8}]? The set of all finite subsets of Z related to {2, 4, 6, 8} 

are exactly those of size 4: 

[{2,4,6,8}] ={A~ Z: IAI =4}. 

The relation R separates the set of finite subsets of Z into infinitely many equiva­

lence classes (one for each element of N). Every class contains sets that are related 

to each other but not to anything not in that class. 

We now present several propositions describing the salient features of equiv­

alence classes. 
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Proposition 14.9 Let R be an equivalence relation on a set A and let a EA. Tllen a E [a]. 

Proof. Note that [a] = {x E A : x R a}. To show that a E [a], we just need to 

show that a R a, and that is true by definition (R is reflexive). • 

One consequence of Proposition 14.9 is that equivalence classes are not empty. 

A second consequence is that the union of all the equivalence classes is A (see 

Exercise 14.7). 

Proposition 14.10 Let R be an equivalence relation on a set A and let a, b E A. Then a R b if and 

onlyif[a] = [b]. 

Proof. (=>)Suppose aRb. We need to show that the sets [a] and [b] are the 

same (see Proof Template 5). 
Suppose x E [a]. This means thatx R a. Since aRb, we have (by transitivity) 

x R b. Therefore x E [b]. 

On the other hand, suppose y E [b ]. This means that y R b. We are given 

a R b, and this implies b R a (symmetry). By transitivity (applied to y R b and 

bRa), we have y R a. Therefore y E [a]. 

Hence [a]= [b]. 
( {=) Suppose [a] = [b]. We know (Proposition 14.9) that a E [a]. But [a] = [b ], 

so a E [b ]. Therefore aRb. • 

Proposition 14.11 Let R be an equivalence relation on a set A and let a, x, y E A. If x, y E [a], then 

X R y. 

You are asked to prove Proposition 14.11 in Exercise 14.9. 

Proposition 14.12 Let R be an equivalence relation on A and suppose [a] n [b] =!= 0. Then [a]= [b]. 

Before we work on the proof of this result, let us understand clearly what it 

is telling us. It says that either two equivalence classes have nothing in common 

or else (if they do have a common element) they are identical. In other words, 

equivalence classes must be pairwise disjoint. 
Now we develop the proof of Proposition 14.12. This proposition asks us to 

prove that two sets ([a] and [b]) are the same. We could use Proof Template 5, and 

the proof would not be too hard to do (you can try this for yourself). 

However, please notice that Proposition 14.10 gives us a necessary and suf­

ficient condition to prove that two equivalence classes are the same. To show that 

[a]= [b], it is enough to show aRb. The proof skeleton is as follows: 

Let R be an equivalence relation on A and suppose [a] and [ b] are equivalence 

classes with [a] n [b] =!= 0 .... Therefore aRb. By Proposition 14.10, we 

therefore have [a]= [b]. • 
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Now we need to unravel the fact that [a] n [ b] i= 0. The fact that two sets 
have a nonempty intersection means there is some element that is in both. 

Let R be an equivalence relation on A and suppose [a] and [ b] are equivalence 
classeswith[a]n[b] i= 0. Hencethereisanx E [a]n[b]-thatis,anelement 
x with x E [a] and x E [b] .... Therefore aRb. By Proposition 14.10, we 

therefore have [a] = [ b]. • 

We can now unravel the facts x E [a] and x E [b] to give x R a and x R b (by 
Definition 14.6). 

Let R be an equivalence relation on A and suppose [a] and [b] are equivalence 
classes with [a]n[b] i= 0. Hence there is an x E [a]n[b ]-that is, an element 
x with x E [a] and x E [b]. Sox R a and x R b .... Therefore aRb. By 
Proposition 14.10, we therefore have [a]= [b]. • 

Now we are almost finished. 

We know: 
We want: 

x R a and x R b. 
aRb. 

We can switch x R a to a R x (by symmetry) and then use transitivity on a R x 

and x R b to get aRb, completing the proof. 

Let R be an equivalence relation on A and suppose [a] and [ b] are equivalence 
classes with [a]n[b] i= 0. Hence there is an x E [a]n[b ]-that is, an element 
x with x E [a] and x E [b]. So x R a and x R b. Since x R a, we have 
a R x (symmetry), and since a R x and x R b, we have (transitivity) a R b. 

By Proposition 14.10, we therefore have [a]= [b]. • 

The proof is finished. 
Let us reiterate some of what we have learned. 

Corollary 14.13 Let R be an equivalence relation on a set A. The equivalence classes of R are 
nonempty, pairwise disjoint subsets of A whose union is A. 

Recap 

An equivalence relation is a relation on a set that is reflexive, symmetric, and tran­
sitive. We discussed the important equivalence relation congruence modulo n on Z. 
We developed the notion of equivalence classes and discussed various properties 
of equivalence classes. 
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14 Exercises 14.1. Which of the following are equivalence relations? 
a. R = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3)} on the set {1, 2, 3}. 
b. R = {(1, 2), (2, 3), (3, 1)} on the set {1, 2, 3}. 

c. I onZ. 
d. :Son Z. 
e. {1, 2, 3} x {1, 2, 3} on the set {1, 2, 3}. 
f. {1, 2, 3} x {1, 2, 3} on the set {1, 2, 3, 4}. 
g. Is-an-anagram-of on the set of English words. (For example, STOP is an 

anagram of POTS because we can form one from the other by rearranging 
its letters.) 

14.2. Prove that if x andy are both odd, then x = y (mod 2). 
Prove that if x and y are both even, then x = y (mod 2). 

14.3. Prove: If a is an integer, then a = -a (mod 2). 
14.4. Complete the proof of Theorem 14.5; that is, prove that congruence mod­

ulo n is transitive. 
14.5. For each equivalence relation, find the requested equivalence class. 

a. R = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (4, 4)}on{1, 2, 3, 4}.Find[l]. 
b. R = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (4, 4)}on{1, 2, 3, 4}.Find[4]. 
c. R is has-the-same-tens-digit-as on the set {x E Z : 100 < x < 200}. 

Find [123]. 
d. R is has-the-same-parents-as on the set of all human beings. Find [you]. 
e. R is has-the-same-birthday-as on the set of all human beings. Find [you]. 
f. R is has-the-same-size-as on 21 1•2·3·4·51. Find [{1, 3}]. 

14.6. Please refer to the Example 14.7, in which we discussed the congruence 
modulo 2 relation on the integers. For that relation, prove that [1] = [3]. 

14.7. Let R be an equivalence relation on a set A. Prove that the union of all of 
R's equivalence classes is A. 

In symbols this is 

U[a] =A. 
aEA 

The big U notation on the left is worthy of comment. It is akin to the 
notation developed in Section 9. There, however, we had an index that ran 
between two integers, as in 

n 

U (sets depending on k) 
k=l 

The dummy variable is k, and we take a union of sets that depend on k as 
k ranges over the integers 1, 2, ... , n. 

The situation here is slightly different. The dummy variable is not 
necessarily an integer. The notation is of the form 

U (sets depending on a). 
aEA 

This means we take the union over all possible (sets depending on a) as a 
ranges over the various members of A. 
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Notice that in this problem the union may be redundant. It is possible 
for [a] = [a'] where a and a' are different members of A. For example, if 
R is congruence mod 2 and A = Z, then 

U[a] = · · · U [ -2] U [ -1] U [0] U [1] U [2] U · · · = [0] U [1] = Z 
aEZ 

because···= [-2] = [0] = [2] =···and···= [-3] = [-1] = [1] = 
[3] = .. ·. 

14.8. Suppose R is an equivalence relation on a set A and suppose a, b E A. 
Prove: a E [b] {::::=:} b E [a]. 

14.9. Prove Proposition 14.11. 
14.10. Let R and S be equivalence relations on a set A. Prove that R = S if and 

only if the equivalence classes of R are the same as the equivalence classes 
of S. 

14.11. Please refer to Exercise 13.13 on drawing pictures of relations. 
Let A= {1, 2, 3, ... , 10}. Do the following: 

a. Draw three pictures of different equivalence relations on A. 
b. For each equivalence relation, list all of its equivalence classes. 
c. Describe what equivalence relations "look like." 

14.12. Here is another way to draw a picture of an equivalence relation: Draw 
the equivalence classes. For example, consider the following equivalence 
relation on A= {1, 2, 3, 4, 5, 6}: 

R = {(I, 1), (1, 2), (2, 1), (2, 2), (3, 3), 

(4, 4), (4, 5), (4, 6), (5, 4), (5, 5), (5, 6), (6, 4), (6, 5), (6, 6)}. 

The equivalence classes of this relation on A are 

[1] = [2] = {1, 2}, [3] = {3}, and [4] = [5] = [6] = {4, 5, 6}. 

The picture of the relation R, rather than showing relation arrows, simply 
shows the equivalence classes of A. The elements of A are enclosed in a 
circle, and we subdivide the circle into regions to show the equivalence 
classes. By Corollary 14.13, we know that the equivalence classes of Rare 
nonempty, are pairwise disjoint, and contain all the elements of A. So in 
the picture, the regions are nonoverlapping, and every element of A ends 
up in exactly one region. 

For each of the equivalence relations you found in the previous prob­
lem, draw a diagram of the equivalence classes. 

14.13. There is only one possible equivalence relation on a one-element set: If 
A = { 1}, then R = { (1, 1)} is the only possible equivalence relation. 

There are exactly two possible equivalence relations on a two-element 
set: If A = {1, 2}, then R1 ={(I, 1), (2, 2)} and R 2 = { (1, 1), (1, 2), (2, 1), 

(2, 2)} are the only equivalence relations on A. 
How many different equivalence relations are possible on a three­

element set? ... on a four-element set? 
14.14. Describe the equivalence classes for the is-similar-to relation on the set of 

all triangles. 
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15 

M 
~ 
Definition 15.1 

The parts of a partition are 
also called blocks. 

Example 15.2 

We often use a fancy letter 
P to denote a partition. We 
do this because P is a set 
of sets. The elements of P 
are subsets of A. This 
hierarchy of 
letters-lowercase, 
uppercase. fancy-is a 
useful convention for 
distinguishing elements, 
sets, and sets of sets, 
respectively. 

Forming an equivalence 
relation from a partition. 

Partitions 
We ended the previous section with Corollary 14.13. Let us repeat that result here. 

Let R be an equivalence relation on a set A. The equivalence classes of R are 
nonempty, pairwise disjoint subsets of A whose union is A. 

This corollary is illustrated nicely by the diagrams you drew in Exercise 14.12. The 
equivalence classes of R are drawn as separate regions inside a circle containing 
the elements of A. 

The technical language for this property is that the equivalence classes of R 

partition A. 

(Partition) Let A be a set. A partition of (or on) A is a set of nonempty, pairwise 
disjoint sets whose union is A. 

There are four key points in this definition, and we shall examine them closely 
in an example. The four points are 

A partition is a set of sets; each member of a partition is a subset of A. The 
members of the partition are called parts. 
The parts of a partition are nonempty. The empty set is never a part of a 
partition. 
The parts of a partition are pairwise disjoint. No two parts of a partition may 
have an element in common. 
The union of the parts is the original set. 

Let A = {1, 2, 3, 4, 5, 6} and let 

p = {{1, 2}, {3}, {4, 5, 6}}. 

This is a partition of A into three parts. The three parts are {1, 2}, {3}, and {4, 5, 6}. 
These three sets are (1) nonempty, (2) they are pairwise disjoint, and (3) their union 
is A. 

The partttwn { { 1, 2}, {3}, {4, 5, 6}} is not the only partition of A 
{1, 2, 3, 4, 5, 6}. Here are two more that are worthy of note: 

{{1, 2, 3, 4, 5, 6}} and {{1}, {2}, {3}, {4}, {5}, {6}}. 

The first is a partition of A into just one part containing all the elements of A, and 
the second is a partition of A into six parts, each containing just one element. 

Corollary 14.13 can be restated as follows: 

Let R be an equivalence relation on a set A. The equivalence classes of R form a 
partition of the set A. 

Given an equivalence relation on a set, the equivalence classes of that relation 
form a partition of the set. We start with an equivalence relation, and we form a 
partition. We can also go the other way; given a partition, there is a natural way to 
construct an equivalence relation. " 
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Let P be a partition of a set A. We use P to form a relation on A. We call 

this relation the is-in-the-same-part-as relation and denote it by ~. It is defined as 
follows. Let a, bE A. Then 

3P E P, a, bE P. 

In words, a and b are related by ~ provided there is some part of the partition P 
that contains both a and b. 

Proposition 15.3 Let A be a set and let P be a partition on A. The relation ~ is an equivalence 
relation on A. 

Proposition 15.4 

Proof. To show that ~ is an equivalence relation, we must show that it is (I) re­
flexive, (2) symmetric, and (3) transitive. 

• Claim: ~ is reflexive. 
Let a be an arbitrary element of A. Since Pis a partition, there must be a 

part P E P that contains a (the union of the parts is A). We have a~a, since 
a, a E PEP. 

Cl 
. p. . 

• mm: = IS symmetnc. 

Suppose a~b for a, b E A. This means there is a P E P such that 

a, b E P. Since b and a are in the same part of P, we have b~a. 
• Claim: ~is transitive. (This step is more interesting.) 

Let a, b, c E A and suppose a~b and b~c. Since a~b, there is a part 

P E P containing both a and b. Since b~c, there is a part Q E P with 
b, c E Q. Notice that b is in both P and Q. Thus parts P and Q have a 
common element. Since parts of a partition must be pairwise disjoint, it must 
be the case that P = Q. Therefore all three of a, b, care together in the same 

part of P. Since a, c are in a common part of P, we have a ~c. • 

We have confirmed that ~ is an equivalence relation on A. What are its 
equivalence classes? 

Let P be a partition on a set A and let ~ be the is-in-the-same-part-as relation. 

The equivalence classes of~ are exactly the parts of P. 

We leave the proof for you (Exercise 15.5). 
The salient point here is that equivalence relations and partitions are flip sides 

of the same mathematical coin. Given a partition, we can form the in-the-same-part­
as equivalence relation. Given an equivalence relation, we can form the partition 
into equivalence classes. 
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Counting Classes/Parts 

In discrete mathematics, we often encounter counting problems of the form "In 
how many different ways can ... "The word on which we wish to focus is different. 

For example, in how many different ways can the letters in the word HELLO 
be rearranged? The difficult part of this problem is the repeated L. So let us begin 
with an easier word. 

Example 15.5 In how many ways can the letters in the word WORD be rearranged? A word is 
simply a list of letters. We have a list of four possible letters, and we want to count 
lists using each of them exactly once. This is a problem we have already solved 
(see Sections 7 and 8). The answer is 4! = 24. Here they are: 

Anagrams of HELLO. 

WORD 
OWRD 
RWOD 
DWOR 

WODR 
OWDR 
RWDO 
DWRO 

WROD 
ORWD 
ROWD 
DOWR 

WRDO 
ORDW 
RODW 
DORW 

WDOR 
ODWR 
RDWO 
DRWO 

WDRO 
ODRW 
RDOW 
DROW 

Let us return to the problem of counting the number of ways it is possible to 
rearrange the letters in the word HELLO. If there were no repeated letters, then the 
answer would be 5! = 120. Imagine for a moment that the two Ls are different 
letters. Let us write one larger than the other: HELLO. If we were to write down all 
120 different ways to rearrange the letters in HELLO, we would have a chart that 
looks like this: 

HELLO HELOL HELLO HELOL HEOLL HEOLL 
HLELO HLEOL HLLEO HLLOE HLOLE HLOEL 

many lines omitted 
LLHEO LLHOE LLEHO LLEOH LLOHE LLOEH 
LLHEO LLHOE LLEHO LLEOH LLOHE LLOEH 

Now we shrink the large Ls back to their proper size. When we do, we can no 
longer distinguish between HELLO and HELLO, or between LEHLO and LEHLO. 

I hope at this point it is clear that the answer to the counting problem is 60: 
There are 120 entries in the chart (from HELLO to LLOEH), and each rearrangement 
of HELLO appears exactly twice on the chart. 

Let's think about this by using equivalence relations and partitions. The set 
A is the set of all 120 different rearrangements of HELLO. Suppose a and b are 
elements of A (anagrams of HELLO). Define a relation R with aRb provided that 
a and b give the same rearrangement of HELLO when we shrink the large L to a 
small L. For example, (HELOL) R (HELOL). 

Is R an equivalence relation? Clearly R is reflexive, symmetric, and transitive 
(if in doubt, think this out), and so, yes, R is an equivalence relation. The equiv­
alence classes of R are all the different ways of rearranging HELLO that look the 
same when we shrink the large L. For example, 

[HLEOL] = {HLEOL, HLEOL} 

since HLEOL and HLEOL both give HLEOL when we shrink the big L. 
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Here is the important point: The number of ways to rearrange the letters in 

HELLO is exactly the same as the number of equivalence classes of R. 

Now let's do the arithmetic: There are 120 different ways to rearrange the 

letters in HELLO (i.e., IAI = 120). The relation R partitions the set A into a certain 

number of equivalence classes. Each equivalence class has exactly two elements 

in it. So all told, there are 120 ....;- 2 = 60 different equivalence classes. Hence there 

are 60 different ways to rearrange HELLO. 
Let us consider another example. How many different ways can we rearrange 

the letters in the word AARDVARK? This eight -letter word features two Rs and three 

As. Let us use two styles of R (say, Rand R) and three styles of A (say, a, A, and 

A), so the word is AARDVaRK. 
Let X be the set of all rearrangements of AARDVaRK. We consider two 

spellings to be related by relation R if they are the same once their letters are 

restored to normal size. Clearly R is an equivalence relation on X, and we want to 

count the number of equivalence classes. 
The problem becomes: How large are the equivalence classes? Let us consider 

the size of the equivalence class [RADaKRA v]. These are all the rearrangements that 

become RADAKRAV when their letters are all the same style. How many are there? 

This is a list-counting problem! We want to count the number of lists wherein the 

entries on the list satisfy the following restrictions: 

Elements 3, 5, and 8 of the list must beD, K, and v. 
Elements 1 and 6 must be one each of two different styles of R. 

Elements 2, 4, and 7 must be one each of three different styles of A. 

See the figure. 

DDLQJDLRJDDLYJ 
2 X 3 X 1 X 2 X 1 X 1 X 1 X 1 

l ! l l l 
[2! choices foe Rs [ 3! choiccdm As 

The letters R and A in the figure are dimmed to show that their final form is to be 

determined. 
Now let's count how many ways we can build this list. There are two choices 

for the first position (we can user either R). There are three choices for the second 

position (we can use any A). There is only one choice for position 3 (it must be 

D). Now, given the choices thus far, there are only two choices for position 4 (the 

first A has already been selected, and so there are only two choices of A left at this 

point). For each of the remaining positions, there is only one choice (the K and v 
are predetermined, and we are down to only one choice each on the remaining A 

and R). 
Therefore, the number of rearrangements of AARDVaRK in [RADaKRAV] is 

2 X 3 X 1 X 2 X 1 X 1 X 1 X 1 = 3! X 2! = 12. 
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And now for a critical comment: All equivalence classes have the same size! 

No matter how we rearrange the letters in AARDVaRK, the analyJis we just con­

ducted remains the same. Regardless of where the As may fall, there will be exactly 

3! ways to fill them in, and regardless of where the Rs are, there are 2! ways to 

select their styles. And there is only one choice each for the style of D, K, and v. 

So all of the equivalence classes have size twelve. 

Therefore the number of rearrangements of AARDVARK is 

8! 40320 
- = -- =3360. 
3!2! 12 

It is worth summarizing the central idea of this counting technique in an official 

statement. 

Theorem 15.6 (Counting equivalence classes) Let R be an equivalence relation on a finite set 

A. If all the equivalence classes of R have the same size, m, then the number of 

equivalence classes is I A I I m. 

There is an important hypothesis in this result: The equivalence classes must 

all be the same size. This does not always happen. 

Example 15.7 Let A = 2ll. 2,3Al_that is, the set of all subsets of { 1, 2, 3, 4}. Let R be the has-the­

same-size-as relation. This relation partitions A into five parts (subsets of size 0 

through 4 ). The sizes of these equivalence classes are not all the same. For example, 

[0] contains only 0, so that class has size 1. However, [{1}] = {{1}, {2}, {3}, {4}}, 

so this class contains four members of A. Here is a full chart. 

15 Exercises 

Equivalence Size of 

class the class 

[0] 1 

[ {1}] 4 

[{1, 2}] 6 
[{1, 2, 3}] 4 

[{1, 2, 3, 4}] 1 

Recap 

A partition of a set A is a set of nonempty, pairwise disjoint subsets of A whose 

union is A. We explored the connection between partitions and equivalence rela­

tions. We applied these ideas to counting problems where we seek to count the 

number of equivalence classes when all the equivalence classes have the same 

size. 

15.1. There are only two possible partitions of the set {1, 2}. They are {{1}, {2}} 

and {{1, 2}}. Find all possible partitions of {1, 2, 3} and of {1, 2, 3, 4}. 



22 4 5 20 

16 3 8 7 

21 1 25 9 

6 12 11 2 

19 10 17 13 

20 4 5 22 

7 3 8 16 

9 I 25 21 

2 12 11 6 

13 10 17 19 
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23 

14 

15 

24 
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23 

14 

15 

24 
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15.2. How many different anagrams (including nonsensical words) can be made 

from each of the following? 
a. STAPLE 

b. DISCRETE 

c. MATHEMATICS 

d. SUCCESS 

e. MISSISSIPPI 

15.3. How many different anagrams (including nonsensical words) can be made 

from SUCCESS if we require that the first and last letters must both be s. 

15.4. How many different anagrams (including nonsensical words) can be made 

from FACETIOUSLY if we require that all six vowels must remain in alpha­

betical order (but not necessarily contiguous with each other). 

15.5. Prove Proposition 15.4. 
15.6. Prove Theorem 15.6. You may assume the generalized Addition Principle 

(see after Corollary 11.8). 

15.7. Twelve people join hands for a circle dance. In how many ways can they 

do this? 
15.8. Continued from the previous problem. Suppose six of these people are men, 

and the other six are women. In how many ways can they join hands for a 

circle dance, assuming they alternate in gender around the circle? 

15.9. You wish to make a necklace with 20 different beads. In how many different 

ways can you do this? 
15.10. The integers 1 through 25 are arranged in a 5 x 5 array (we use each number 

from 1 to 25 exactly once). All that matters is which numbers are in each 

column and how they are arranged in the columns. It does not matter in 

what order the columns appear. (See the figure. The two arrays shown 

should be considered to be the same.) 
How many different such arrays can be formed? 

15.11. Twenty people are to be divided into two teams with ten players on each 

team. In how many ways can this be done? 

15.12. One hundred people are to be divided into ten discussion groups with ten 

people in each group. In how many ways can this be done? 

15.13. How many different partitions with exactly two parts can be made of the 

set {1, 2, 3, 4}? 
Answer the same question for the set {1, 2, 3, ... , 100}. 

15.14. Two different coins are placed on squares of a standard 8 x 8 chess board; 

they may both be placed on the same square. 

Let us call two arrangements of these coins on the chess board equiv­

alent if we can move the coins diagonally to get from one arrangement to 

another. For example, the two positions shown on the two boards in the 

figure are equivalent. 
How many different (inequivalent) ways can the coins be placed on 

the chess board? 
15.15. Please redo the previous problem, this time assuming the coins are identical. 

15.16. Let A be a set and let P be a partition of A. Is it possible to have A = P? 
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16 
The nutation (:) 
:s prolhlunccd "'n choose 

,. Another form of 

th1s notation. still in use on 

some udculators. is" C,. 
Occasionally people write 

Cl n. k) An alternative 

way tu express (;) is as the 

number of '"combinations" 

ofn taken kat a time. 

The word comhinatorics (a 

term that refers to counting 

problem~ in discrete 

mathematics) comes 

from "'combinations." 

I dislike the use of the 

word "combinations" and 

,._,,,,,n,Pm subsets 

of an n-•c:lement set. 

Binomial Coefficients 
We ended the previous section with Example 15.7, in which we counted the number 
of equivalence classes of the has-the-same-size-as relation on the set of subsets 
of {1, 2, 3, 4}. We found five different equivalence classes (corresponding to the 
five integers from 0 to 4), and these equivalence classes have various sizes. Their 
sizes are, in order, 1, 4, 6, 4, and 1. These numbers may be familiar to you. 
Observe: 

These numbers are the coefficients of (x + y)4 after it is expanded. You may also 
recognize these numbers as the fourth row of Pascal's triangle. In this section, we 
explore these numbers in detail. 

The central problem we consider in this section is the following: 

How many subsets of size k does ann-element set have? 

There is a special notation for the answer to this question: G). 

Definition 16.1 (Binomial coefficient) Let n, k E N. The symbol G) denotes the number of 
k-element subsets of an n-element set. 

We call the number G) a binomial coefficient. The reason for this nomenclature 
is that the numbers G) are the coefficients of binomial (x + y )n. This is explained 
more thoroughly below. 

Example 16.2 Evaluate (~). 
Solution: We need to count the number of subsets of a five-element set that have 
zero elements. The only possible such set is 0, so the answer is (~) = 1. 

Clearly there is nothing special about the number 5 in this example. The 
number of zero-element subsets of any set is always 1. So we have, for all n E N, 

(~) =I. 

Example 16.3 Evaluate (i). 
Solution: This asks for the number of one-element subsets of a five-element set. 
For example, consider the five-element set { 1, 2, 3, 4, 5}. The one-element subsets 
are {1}, {2}, {3}, {4}, and {5}, so (i) = 5. The number of one-element subsets of 
an n-element set is exactly n: 

G) =n. 
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Example 16.4 Evaluate(;). 

Solution: The symbol (;) stands for the number of two-element subsets of a 

five-element set. The simplest thing to do is to list all the possibilities. 

{1,2} {1,3} {1,4} {1,5} 

{2,3} {2,4} {2,5} 
{3, 4} {3, 5} 
{4, 5} 

Therefore, there are 10 two-element subsets of a five-element set, so (;) = 4 + 
3 + 2 + 1 = 10. 
--------------------------·-·-·-·----

There is an interesting pattern in Example 16.4. Let us try to generalize it. 

Suppose we want to know the number of two-element subsets of ann-element set. 

Let's say that then-element set is {1, 2, 3, ... , n}. We can make a chart as in the 

example. The first row of the chart lists the two-element subsets whose smaller 

element is 1. The second row lists those two-element subsets whose smaller element 

is 2, and so on, and the last row of the chart lists the (one and only) two-element 

subset whose smaller element is n - 1 (i.e., {n - 1, n }). 

Notice that our chart exhausts all the possibilities (the smaller element must 

be one of the numbers from 1 ton - 1), and no duplication takes place (subsets 

on different rows of the chart have different smaller elements). 

The number of sets in the first row of this hypothetical chart is n - 1 , because 

once we decide that the smaller element is 1, the subset looks like this: { 1, _}. 

The second element must be larger than 1, and so it is chosen from {2, ... , n}; 

there are n - 1 ways to complete the set { 1, -}. 

The number of sets in the second row of this chart is n - 2. All subsets in 

this row look like this: {2, _}.The second element needs to be chosen from the 

numbers 3 ton, so there are n - 2 ways to complete this set. 

In general, the number of sets in row k of this hypothetical chart is n - k. 

Subsets on this row look like { k, _}, the second element of the set needs to be an 

integer from k + 1 to n, and there are n - k possibilities. 

This discussion is the proof of the following result. 

Proposition 16.5 Let n be an integer with n 2': 2. Then 

(;)=I+ 2+ 3+ · · · + (n- I)= %k. 
So far we have evaluated (~), (~), and (;). Let us continue this exploration. 

Example 16.6 Evaluate (;). 

Solution: We simply list the three-element subsets of { 1, 2, 3, 4, 5}: 

{1,2,3} {1,2,4} {1,2,5} {1,3,4} {1,3,5} 
{1,4,5} {2, 3,4} {2,3,5} {2,4,5} {3,4,5} 

There are ten such sets, so (~) = 10. 
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This is an example or a 
bijecth·e proof 

The concept of I'CI 

complement is developed 
in Exercise II !7. 

Notice that (~) = (;) = 10. This equality is not a coincid1nce. Let's see 
why these numbers are equal. The idea is to find a natural way to match up the 
two-element subsets of {1, 2, 3, 4, 5} with the three-element subsets. We want a 
one-to-one correspondence between these two kinds of sets. Of course, we could 
just list them down two columns of a chart, but this is not necessarily "natural." 
The idea is to take the complement (see Exercise 11.17) of a two-element subset 
to form a three-element subset, or vice versa. We do this het:_e: 

- -
A A A A 

{1' 2} {3, 4, 5} {2,4} {1,3,5} 
{1, 3} {2,4,5} {2,5} {1, 3, 4} 
{1, 4} {2,3,5} {3, 4} {1,2,5} 
{I, 5} {2, 3, 4} {3,5} {1,2,4} 
{2, 3} {1,4,5} {4, 5} {1, 2, 3} 

Each two-element subset A is paired up with { 1, 2, 3, 4, 5} - A (which we denote 
A since { 1, 2, 3, 4, 5} is the "universe" we are considering at the moment). 

This pairing, A ++ A, is a one-to-one correspondence between the two­
element and three-element subsets of {1, 2, 3, 4, 5}. If A 1 and A 2 are two different 
two-element subsets, then A 1 and A2 are two different three-element subsets. Ev­
ery two-element subset is paired up with exactly one three-element subset, and no 
sets are left unpaired. This thoroughly explains why (~) = (;) and gives us an 
avenue for generalization. 

We might guess (;) = G), but this is not right. Let's apply our comple­
ment analysis to (;) and see what we learn. Let A be a two-element subset of 
{1, 2, ... , n}. In this context, A means {1, 2, ... , n} -A. The pairing A ++ A 
does not pair up two-element and three-element subsets. The complement of a 
two-element subset would be an (n - 2)-element subset of {1, 2, ... , n}. Aha! 
Now we have the correct result: (;) = (n~2). 

We can push this analysis further. Instead of forming the complement of the 
two-element subsets of { 1, 2, ... , n}, we can form the complements of subsets of 
another size. What are the complements of the k-element subsets of { 1, 2, ... , n}? 
They are precisely the (n - k)-element subsets. Furthermore, the correspondence 
A ++A gives a one-to-one pairing of the k-element and (n- k)-element subsets 
of { 1, 2, ... , n }. This implies that the number of k- and (n - k)-element subsets 
of an n-element set must be the same. We have shown the following: 

Proposition 16.7 Let n, k E N with 0 :::; k :::; n. Then 

Here is another way to think about this result. Imagine a class with n children. 
The teacher has k identical candy bars to give to exactly k of the children. In how 
many ways can the candy bars be distributed? The answer is G) because we are 
selecting a set of k lucky children to get candy. But the pessimistic view is also 
interesting. We can think about selecting the unfortunate children who will not be 
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receiving candy. There are n- k children who do not get candy, and we can select 

that subset of the class in c:k) ways. Since the two counting problems are clearly 

the same, we must have G) = c:k). 
Thus far we have evaluated (~), G), (D, and (~). Let us continue. We can use 

Proposition 16.7 to evaluate (~);the proposition says that 

and we already know that (~) = 5. So (~) = 5. 

Next is (;).We can use Proposition 16.7 and reason (;) = (5 ~ 5 ) = (~) = 1, 

or we can realize that there can be only one five-element subset of a five-element 

set-namely, the whole set! 
Next comes (~).We can try to use Proposition 16.7, but we run into a snag. 

We write 

but we don't know what (~1 ) is. Actually, the situation is worse: (~1 ) is nonsense. 

It does not make sense to ask for the number of subsets of a five-element set that 

have -1 elements; it does not make sense to consider sets with a negative number 

of elements! (This is why we included the hypothesis 0 ::S k ::S n in the statement 

ofProposition 16.7.) 
However, a set can have six elements, so G) is not nonsense; it is simply zero. 

A five-element set cannot have any six-element subsets, so (~) = 0. Similarly, 

(;) = G) = ... = o. 
Let us summarize what we know so far: 

• We have evaluated(~) for all natural numbers k. The values are 1, 5, 10, 10, 

5, 1, 0, 0, ... , fork= 0, 1, 2, ... , respectively. 

• We have (~) = 1 and (~) = n. 

• We have (;) = 1 + 2 + · · · + (n - 1). 

• We have G) = c:k). 
• If k > n, G) = 0. 

Calculating G) 
Thus far we have calculated various values of G), but our work has been ad hoc. 

We do not have a general method for obtaining these values. We found that the 

nonzero values of (~) are 

1, 5, 10, 10, 5, 1. 

If we expand (x + y )5
, we get 

(x + y)
5 = 1x5 + 5x

4y + 10x 3y
2 + 10x

2y 3 + 5xy
4 + ly 5 

= (~)x5 + G)x•y + G)x'l + G)x'y' + (!)xl + G)l 
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This suggests a way to calculate G): Expand (x + y )n and G) is~the coefficient of 
xn-kyk. This is marvelous! Let's prove it. 

Theorem 16.8 (Binomial) Let n E N. Then 

(x + y)" = ~ (:)x•-'y' 

This result explains why G) is called a binomial coefficient. The numbers G) 
are the coefficients that appear in the expansion of (x + y t. 
Proof. The key to proving the Binomial Theorem is to think about how we 
multiply polynomials. When we multiply (x + y )2

, we calculate as follows: 

(x + y) 2 = (x + y)(x + y) = xx + x y + yx + y y 

and then we collect like terms to get x 2 + 2xy + y 2
. 

The procedure for (x + y )n is much the same. We write out n factors of (x + y): 

(x + y) (x + y) (x + y) · .. (x + y). 
'--..--''--..--''--..--' '--..--.' 

1 2 3 n 

We then form all possible terms by taking either an x or a y from factors 1, 2, 
3, ... , n. This is like making lists (see Section 7). We are forming all possible 
n-element lists where each element is either an x or a y. For example, 

(x + y)(x + y)(x + y) = xxx + xxy + xyx + xyy + yxx + yxy + yyx + yyy. 

The next step is to collect like terms. In the example (x + y ) 3 there is one term 
with three xs and no ys, three terms with two xs and one y, three terms with one 
x and two ys, and one term with no xs and three ys. This gives 

(x + y) 3 = 1x3 + 3x 2
y + 3xy

2 + 1y3
. 

The question now becomes: How many terms in (x + y )n have precisely k ys 
(and n - k xs)? Let us think of this as a list-counting question. We want to count 
the number of n-element lists with precisely n- k xs and k ys. And we know what 
we want the answer to be: G). We need to justify this answer. 

We can specify all the lists with k ys (and n- k xs) by reporting the positions 
of the ys (and the xs fill in the remaining positions). For example, if n = 10 and we 
say that the set of y positions is {2, 3, 7}, then we know we are speaking of the term 
(list) xyyxxxyxxx. We could make a chart: On the left of the chart would be all the 
lists with k ys and n - k xs, and on the right we would write the set of y positions 
for each list. The right column of the chart would simply be the k-element subsets 
of {1, 2, ... , n}. Aha! The number of lists with k ys and n- k xs is exactly the 
same as the number of k-element subsets of { 1, 2, ... , n}. Therefore the number 
of xn-k l terms we collect is G). And this completes the proof! • 

Example 16.9 Expand (x + y) 5 and find all the terms with two ys and three xs. Pair these terms 
up with the two-element subsets of {1, 2, 3, 4, 5}. 
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yyxxx B- {1, 2} 
yxyxx B- {1, 3} 
yxxyx B- {1, 4} 

yxxxy B- {1, 5} 
xyyxx B- {2, 3} 

xyxyx B- {2, 4} 
xyxxy B- {2, 5} 

xxyyx B- {3, 4} 

xxyxy B- {3, 5} 
xxxyy B- {4, 5} 

We now have a procedure to calculate, say, (i~). All we have to do is expand 

out (x + y )20 and find the coefficient of x 10 y 10 . To do that, we just write down 

all the terms from xxx · · · xx to yyy · · · yy and collect like terms. There are only 
220 = 1,048,576 terms. Sounds like fun! 

No? You are right. This is not a good way to find (i~). It is no better than 
writing out all the possible ten-element subsets of { 1, 2, ... , 20}. And there are a 

lot of them. How many? We don't know! That's what we're trying to find out. We 

need another method (see also Exercise 16.29). 

Pascal's Triangle 

Recall from your algebra class that the coefficients of (x + y )n form the nth row of 
Pascal's triangle. The figure shows Pascal's triangle. The entry in row n = 4 and 

diagonal k = 2 is (~) = 6, as shown (we count the rows and diagonals starting 
from 0). 

How is Pascal's triangle generated? Here is a complete description: 

• The zeroth row of Pascal's triangle contains just the single number 1. 
• Each successive row contains one more number than its predecessor. 
• The first and last number in every row is 1. 
• An intermediate number in any row is formed by adding the two numbers just 

to its left and just to its right in the previous row. For example, the first 10 in 
row n = 5 (and diagonal k = 2) is formed by adding the 4 to its upper left (at 

n = 4, k = 1) and the 6 to its upper right (at n = 4, k = 2 as shown circled 

in the figure). 

How do we know that Pascal's triangle generates the binomial coefficients? 

How do we know that the entry in row n and column k is G)? 
To see why this works, we need to show that the binomial coefficients follow 

the same four rules we just listed. 
In other words, we form a triangle containing (~) on the zeroth row; (~), C) 

on the first row, (~), (i), (;) on the second row, and so on. We then need to prove 
that this triangle of binomial coefficients is generated by exactly the same four 

rules as Pascal's triangle! This is three-fourths easy plus one-fourth tricky. Here 

we go. 

The zeroth row of the binomial coefficient triangle contains the single 

number 1. 
This is easy: The zeroth row of the binomial coefficients triangle is 

(~) = 1. 
• Each successive row contains one more number than its predecessor. 
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Theorem 16.10 

This is easy: Row n of the binomial coefficient triangle coptains exactly 

n + 1 numbers: (~), (';), ... , (~). ~ 
The first and last number in every row is 1. 

This is easy: The first and last numbers in row n of the binomial coefficient 

triangle are (~) = (:) = 1. 
The intermediate number in any row is formed by adding the two numbers 

just to its left and just to its right in the previous row. 

This is tricky! The first thing we need to do is write down a careful 

statement of what we need to prove about binomial coefficients. We need an 

intermediate number in any row. This means we do not need to worry about 

(~) or C); we already know those are 1. An intermediate number in row n 

would be G) with 0 < k < n. 

What are the numbers just above G)? To find the upper left neighbor, we 

move up to row n - 1 and up to diagonal k - 1. So the number to the upper 

left is G::::~). To find the upper right neighbor, we move up to row n - 1 but 

stay on diagonal k. So the number to the upper right is (n~ 1). 

We need to prove the following: 

(Pascal's Identity) Let nand k be integers with 0 < k < n. Then 

How can we prove this? We don't have a formula for G). The idea is to use 

combinatorial proof (see Proof Template 9). We need to ask a question and then 

prove that the left and right sides of the equation in Theorem 16.10 both give 

correct answers to this question. What question has these answers? There is a clear 

question to which the left-hand side gives an answer. The question is: How many 

k-element subsets does ann-element set have? 

Proof. To prove G) = G::::~) + (n~ 1 ), we consider the question: How many 

k-element subsets does the set {1, 2, 3, ... , n} have? 

Answer 1: G), by definition. 

Now we need another answer. The right-hand side of the equation gives us 

some hints. It contains the numbers n - 1, k - 1, and k. It is telling us to pick either 

k- 1 or k elements from an (n- I)-element set. But we have been thinking about 

ann-element set, so let's throw away one of the elements; let's say that element n 

is a "weirdo." The right-hand side is telling us to pick either k - 1 or k elements 

from among the normal elements 1, 2, ... , n - 1. If we only pick k - 1 elements, 

that doesn't make a full k-element subset-in this case, we can add the weirdo to 

the (k -1)-element subset. Or we pick k elements from the normal elements. Now 

we have a full k-element subset, and no room is left for the weirdo. 

We now have all the ideas in place; let's express them clearly. 

Let n be called the "weird" element of { 1, 2, ... , n}. When we form a 

k-element subset of { 1, 2, ... , n}, there are two possibilities. Either we have a 
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subset that includes the weirdo, or we have a subset that does not include the 
weirdo-these mutually exclusive possibilities cover all cases. 

If we put the weird element in the subset, then we have G=::) choices for how to 
complete the subset because we must choose k- 1 elements from { 1, 2, ... , n - 1}. 

If we do not put the weird element in the subset, then we have (n~ 1) ways to 
make the subset because we must choose all k elements from { 1, 2, ... , n - 1}. 

Thus we have another answer. 

Since Answer 1 and Answer 2 are correct answers to the same question, they 
must be equal, and we are finished. • 

Example 16.11 We show that(~) = (~)+(;)by listing all the two-element subsets of {1, 2, 3, 4, 
5, 6}. 

There are G) = 5 two-element subsets that include the weirdo 6: 

{1,6} {2,6} {3,6} {4,6} {5,6} 

and there are (;) = 10 two-element subsets that do not include 6: 

{1, 2} {1, 3} {1, 4} {1, 5} {2, 3} 
{2, 4} {2, 5} {3, 4} {3, 5} {4, 5}. 

We now want to calculate G~). The technique we could follow is to generate 

Pascal's triangle down to the 20th row and look up the entry on diagonal 10. How 
much work would this be? The 20th row of Pascal's triangle contains 21 numbers. 
The previous row contains 20, and the one before that has 19. There are only 
1 + 2 + 3 + · · · + 21 = 231 numbers. We get most of them by simple addition 
and we need to do about 200 addition problems. (We can be more efficient; see 
Exercise 16.30.) If you were to implement this procedure on a computer, you would 
not need to save all 210 numbers. You would only need to save about 40. Once 
you have calculated a row of Pascal's triangle, you can discard the previous row. 
So at any time, you would only keep the previous row and the current row. And if 
you are clever, you can save even more memory. 

In any case, if you follow this procedure, you will find that G~) = 184,7 56. 

A Formula for G) 
The technique of generating Pascal's triangle to calculate binomial coefficients is 
a good one. We can calculate (~~) by performing roughly 200 addition problems 
instead of sifting through a million terms in a polynomial (see also Exercise 16.29). 

There is something a bit unsatisfying about this answer. We like formulas! We 
want a nice way to express G) in a simple expression using familiar operations. 

We have an expression for (;): Proposition 16.5 says 

(~) =I+ 2 + 3+ · · · + (n -I). 
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All the entries in a "ingle 

row of this chart expresses 

the same three-element 

sub~ct in ~ix different 

way'>. Sinct? this chart has 

60 enuie~. the number of 

three-element subsets of 

( l. 2. 4. 5l is 

60-:-6 = 10. 

The rea"on why each list is 

equi\ alent tu (k h = k' 
lists aiso follows from 

Theorem 7.6; we want to 

know huw many length-k. 

repetitiun-frec lists we can 

form using k elements. 

This is not bad, but it suggests that we still need to do a lot ofaddition to get the 

answer. There is, however, a nice trick for simplifying this sunt. Write the integers 

1 through n - 1 forward and backward, and then add: 

(;)= 1 + 2 + 3 + + n-2 + n-1 

+G)= n- 1 + n -2 + n- 3 + + 2 + 

2(;) = n + n + n + ... + n + n = n(n- 1) 

and therefore 

G) n(n- 1) 

2 

This equation is a special case of a more general result. Here is another way 

to count k-element subsets of an n-element set. 
Let us begin by counting all k-element lists, without repetition, whose elements 

are selected from ann-element set. This is a problem we have already solved (see 

Section 7)! The number of such lists is (n h. 
For example, there are (5) 3 = 5 · 4 · 3 = 60 three-element, repetition-free lists 

we can form from the members of {1, 2, 3, 4, 5}: 

123 
124 
125 

345 

132 
142 
152 

354 

213 
214 
215 

231 
241 
251 

and so on, until 
435 453 

312 
412 
512 

534 

321 
421 
521 

543 

Notice how we have organized our chart. All lists on the same row contain exactly 

the same elements, just in different orders. Let us define a relation R on these 

lists. The relation is "has-the-same-elements-as" -two lists are related by R just 

when their elements are the same (but their orders might be different). Clearly R 

is an equivalence relation. Each row of the chart gives an equivalence class. We 

want to count the equivalence classes. There are 60 elements of the set (all three­

element lists). Each equivalence class contains six lists. Therefore the number of 

equivalence classes is ~ = 10 = (;) by Theorem 15.6. 
Let's repeat this analysis for the general problem. We want to count the num­

ber of k-element subsets of { 1, 2, ... , n}. Instead, we consider the k-element, 

repetition-free lists we can form from { 1, 2, ... , n}. We declare two of these lists 

equivalent if they contain the same members. Finally, we compute the number of 

equivalence classes to calculate G). 
The number of k-element, repetition-free lists we can form from { 1, 2, ... , n} 

is a problem we already solved (Theorem 7 .6); there are (n h such lists. 

Therefore the number of equivalence classes is (nh/ k! = G). We can rewrite 

(n h as n! I (n - k)! (provided k ::S n ), and we have the following result. 

-----------------------------------------------------------------------
Theorem 16.12 (Formula for(~)) Let nand k be integers with 0 ::S k ::S n. Then 

n! 

k!(n-k)! 



16 Exercises 

To make this problem 

tractable, assume that there 

are no ties. 
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We have found a "formula" for G). Are we happy? Perhaps. If we want to 

compute (~~) , what does this theorem tell us to do? It asks us to calculate 

(
20) 20 X 19 X 18 X · · · X 3 X 2 X 1 

10 - 10 X 9 X 8 X · · · X 2 X 1 X 10 X 9 X 8 X · · · X 2 X 1. 

This entails about 40 multiplications and 1 division. Also, the intermediate results 
(the numerator and denominator) are very large (more digits than most calculators 
can handle). 

Of course, we can cancel some terms between the numerator and the denom­
inator to speed things up. The last ten terms of the numerator are 10 x · · · x 1, and 
that cancels out one of the 10! s in the denominator. So now the problem reduces to 

(
20) = 20 X 19 X 18 X · · · X 11 . 
10 10x9x8x···x1 

We can hunt for more cancellations, but now it requires us to think about the 
numbers involved. The cancellation of one 10! in the denominator was mindless; 
we could build that easily into a computer program. Other cancellations may be 
tricky to find. If we're doing this on a computer, we may as well just do the 
remaining multiplications and final division, which would be 

670442572800 
3628800 = 

184756
" 

Recap 

This section dealt entirely with the binomial coefficient G), the number of 
k-element subsets of an n-element set. We proved the Binomial Theorem, we 
showed that the binomial coefficients are the entries in Pascal's triangle, and we 
developed a formula to express G) in terms of factorials. 

16.1. Mixed Matched Marvin has a drawer full of 30 different socks (no two are 
the same). He reaches in and grabs two. In how many different ways can 
he do this? Now he puts them on his feet (presumably, one on the left and 
the other on the right). In how many different ways can he do that? 

16.2. Twenty people attend a party. If everyone shakes everyone else's hand 
exactly once, how many handshakes take place? 

16.3. a. How many n-digit binary (0,1) sequences contain exactly k 1s? 
b. How many n-digit ternary (0,1,2) sequences contain exactly k ls? 

16.4. Fifty runners compete in a 1 OK race. How many different outcomes are 
possible? 

The answer to this question depends on what we are judging. Find 
different answers to this question depending on the context. 
a. We want to know in what place every runner finished. 
b. The race is a qualifying race, and we just want to pick the ten fastest 

runners. 
c. The race is an Olympic final event, and we care only about who gets 

the gold, silver, and bronze medals. 
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16.5. Write out all the three- and four-element subsets of {.1, 2, 3, 4, 5, 6, 7} in 
two columns. Pair each three-element subset with it; complement. Your 
chart should have 35 rows. 

16.6. A special type of door lock has a panel with five buttons labeled with the 
digits 1 through 5. This lock is opened by a sequence of three actions. Each 
action consists of either pressing one of the buttons or pressing a pair of 
them simultaneously. 

For example, 12-4-3 is a possible combination. The combination 12-
4-3 is the same as 21-4-3 because both the 12 and the 21 simply mean to 
press buttons 1 and 2 simultaneously. 
a. How many combinations are possible? 
b. How many combinations are possible if no digit is repeated in the 

combination? 
16.7. In how many different ways can we partition ann-element set into two parts 

if one part has four elements and the other part has all the remaining 
elements? 

16.8. Look down the middle column of Pascal's triangle. Notice that, except for 
the very top 1, all these numbers are even. Why? 

16.9. Use Theorem 16.12 to prove Proposition 16.7. 
16.10. Prove that the sum of the numbers in the nth row of Pascal's triangle is 2n. 

One easy way to do this is to substitute x = y = 1 into the Binomial 
Theorem (Theorem 16.8). 

However, please give a combinatorial proof. That is, prove that 

2n = t (n) 
k=O k 

by finding a question that is correctly answered by both sides of this 
equation. 

16.11. Use the Binomial Theorem (Theorem 16.8) to prove 

G)- G)+ G)- G)+···±(:) =O 

provided n > 0. 
Move all the negative terms over to the right-hand side to give 

(~) + G) + (:) + · · · = G) + G) + G) + · · · 
Give a combinatorial description of what this means and convert it into a 
combinatorial proof. Use the "weirdo" method. 

16.12. Consider the following formula: 

Give two different proofs. One proof should use the factorial formula for 
G) (Theorem 16.12). The other proof should be combinatorial; develop a 
question that both sides of the equation answer. 

16.13. Let n =:::: k =:::: m =:::: 0 be integers. Consider the following formula: 
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Give two different proofs. One proof should use the factorial formula for 
G) (Theorem 16.12). The other proof should be combinatorial. Try to 
develop a question that both sides of the equation answer. 

16.14. How many rectangles can be formed from an m x n chess board? For 
example, for a 2 x 2 chess board, there are nine possible rectangles. 

16.15. Let n be a natural number. Give a combinatorial proof of the following: 

(
2n + 2) = ( 2n ) + 2 (2n) + ( 2n ) . 
n+1 n+1 n n-1 

16.16. Use Stirling's formula (see Exercise 8.6) to develop an approximation 
formula for C:). Without using Stirling's formula, give a direct proof that 

Cnn) ::; 4n. 
16.17. Use the factorialformulafor G) (Theorem 16.12) to prove Pascal's Identity 

(Theorem 16.10). 
16.18. Prove 

Hint: Mimic the argument for Proposition 16.5. 
16.19. Continued from the previous problem. Proposition 16.5 says (;) = 1 + 2 

+ · · · + (n - 1). Make a large copy of Pascal's triangle and mark the 
numbers G), 6, 5, 4, 3, 2, and 1. You have several choices-do this "right." 
What's the pattern? 

The previous exercise asks you to prove (;) = G) + (;) + (~) + · · · + 

(n; 1). On a large copy of Pascal's triangle, mark the numbers G), (~), (~), 
(~), (;),and G). What's the pattern? 

Now generalize these formulas and prove your assertion. 
16.20. Give a geometric and an algebraic proof that 

1 + 2 + 3 + · · · + (n--:- 1) + n + (n- 1) + (n- 2) + · · · + 2 + 1 = n 2
• 

16.21. Prove: (~) (:) + (7) (n~l) + (;) (n~2) + ... + C~~) (7) + (:) (~) = el). 
16.22. How many Social Security numbers (see Exercise 7.9) have their nine 

digits in strictly increasing order? 
The following series of problems introduce the concept of multinomial 

coefficients. 
16.23. The binomial coefficient G) is the number of k-element subsets of an 

n-element set. Here is another way to think of G). Let A be ann-element 
set and suppose we have a supply of labels; we have k labels that say 
"good" and n - k labels that say "bad." In how many ways can we affix 

exactly one label to each element of A? 
16.24. Let A be an n-element set. Suppose we have three types of labels to assign 

to the elements of A. We can call these labels "good," "bad," and "ugly" or 
give them less interesting names such as "Type 1," "Type 2," and "Type 3." 

Let a, b, c E N. Define the symbol C ~c) to be the number of ways to 
label the elements of an n-element set with three types of labels in which 
we give exactly a of the elements labels of Type 1, b of the elements labels 
of Type 2, and c of the elements labels of Type 3. 



116 Chapter 3 Counting and Relations 

If you divide the answers 

to this problem by (~2 ) 
(the answer to the previous 

problem l, you will have 

the prohahilitv that a 
randomly selected poker 
hand is of the sort 

described. The concept of 

probability is developed in 
Chapter 6. 

Evaluate the following from first principles: 

a. C ~ 1). 
b. C 1~ s)· 
c. (o; o) · 
d. (/3o o). 
e. (s 12° 3) ~ C 13° s) · 

16.25. Let n, a, b, c EN with a+ b + c = n. Please prove the following: 
a. C ~ J = (:) (n~a). 
b ( n ) - ___!!l_ 

• a b c - a!b!c! · 

c. If a+ b + c # n, then C ~c) = 0. 
16.26. Let n E N. Prove 

where the sum is over all natural numbers a, b, c with a + b + c = n. 
16.27. A poker hand consists of 5 cards chosen from a standard deck of 52 cards. 

How many different poker hands are possible? 
16.28. Poker continued. There are a variety of special hands that one can be dealt 

in poker. For each of the following types of hands, count the number of 
hands that have that type. 
a. Four of a kind: The hand contains four cards of the same numerical 

value (e.g., four jacks) and another card. 
b. Three of a kind: The hand contains three cards of the same numerical 

value and two other cards with two other numerical values. 
c. Flush: The hand contains five cards all of the same suit. 
d. Full house: The hand contains three cards of one value and two cards 

of another value. 
e. Straight: The five cards have consecutive numerical values, such as 

7-8-9-10-jack. Treat ace as being higher than king but not less than 2. 
The suits are irrelevant. 

f. Straight flush: The hand is both a straight and a flush. 
16.29. It is silly to compute (x + y )20 by expanding it to a million terms and then 

collecting like terms. A much better way is to calculate (x + y )2 and collect 
like terms. Then multiply that result by (x + y) and collect like terms to 
give (x + y) 3 • Now multiply that again by (x + y) and so on until you 
reach (x + y )20

. Compare this method to the method of generating all of 
Pascal's triangle down to the 20th row. 

16.30. To compute G) by generating Pascal's triangle, it is not necessary to gener­
ate the entire triangle down to row n; you need only the part of the triangle 
in a 90° wedge above G). 

Estimate how many addition problems you would need to perform to 
calculate C3°0°) by this method. How many addition problems would you 
need to perform if you were to compute the entire Pascal's triangle down to 
row 30? 



17 

Subsets as unordered lists. 

There is no standard 
notation for multisets. Our 

notation ( · · ·) is not widely 

used. The delimiters ( and ) 

are called angle brackets 

and should not be confused 

with the less-than < and 

greater-than > symbols. 

Some mathematicians 1 
simply use curly braces 

{ · · ·} for both sets and 
multisets. 
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16.31. Use a computer to print out a very large copy of Pascal's triangle, but with 

a twist. Instead of printing the number, print a dot if the number is odd and 

leave the location blank if the number is even. Produce at least 64 rows. 

Note that the computer doesn't actually need to compute the entries 

in Pascal's triangle; it needs only to calculate their parity. (Explain.) What 

do you see? 

Counting Multisets 
We have considered two kinds of counting problems: lists and sets. The list­

counting problems (see Section 7) come in two flavors: we either allow or forbid 

repetition of the members of the lists. The number of lists of length k whose 

members are drawn from an n-element set is either nk (if repetition is allowed) or 

(nh (if repetition is forbidden). 
Sets may be thought of as unordered lists (i.e., lists of elements where the 

order of the members does not matter). As we saw in Section 16, the number of 

unordered lists of length k whose members are drawn without repetition from an 

n-element set is G). This is a set-counting problem. 
The goal of this section is to count the number of unordered lists of length 

k whose elements are drawn from an n-element set with repetition allowed. It is 

difficult, however, to express this idea in the language of sets. We need the more 

general concept of multiset. 

Multisets 

A given object either is or is not in a set. An element cannot be in a set "twice." 

The following sets are all identical: 

{1, 2, 3} = {3, 1, 2} = {1, 1, 2, 2, 3, 3} = {1, 2, 3, 1, 2, 3, 1, 1, 1, 1}. 

A multiset is a generalization of a set. A multiset is, like a set, an unordered 

collection of elements. However, in a multiset, an object may be considered to be 

in the multiset more than once. 
In this book, we write a multiset as follows: (1, 2, 3, 3). This multiset contains 

four elements: the element 1, the element 2, and the element 3 counted twice. We 

say that element 3 has multiplicity equal to 2 in the multi set ( 1, 2, 3, 3). The 

multiplicity of an element is the number of times it is a member of the multiset. 

Two multisets are the same provided they contain the same elements with 

the same multiplicities. For example, (1, 2, 3, 3) = (3, 1, 3, 2), but (1, 2, 3, 3) =1-

(1, 2, 3, 3, 3). 
The cardinality of a multi set is the sum of the multiplicities of its elements. In 

other words, it is the number of elements in the multi set where we take into account 

the number of times each element is present. The notation is the same as for sets. If 

M is a multiset, then IMI denotes its cardinality. For example, I (1, 2, 3, 3) I= 4. 



118 Chapter 3 Counting and Relations 

The notation ( {;)) is 
pronounced "n 
multichoo~e k ." The 

doubkd parentheses 
remind us that we may 

include elements more 
than once. 

Definition 17.1 

Example 17.2 

The counting problem we consider is: How many k-element multisets can we 
form by choosing elements from an n-element set? In other wbrds, how many un­
ordered length-k lists can we form using the elements { 1, 2, ... , n} with repetition 
allowed? 

Just as we defined G) to represent the answer to a set-counting problem, we 
have a special notation for the answer to this multiset-counting problem. 

Let n, k E N. The symbol (G)) denotes the number of multisets with cardinality 
equal to k whose elements belong to an n-element set such as { 1, 2, ... , n}. 

Let n be a positive integer. Evaluate (G)). 
Solution: This asks for the number of one-element multisets whose elements are 
selected from { 1, 2, ... , n}. The multisets are 

.(1), (2), (n) 

and so ((~)) = n. 

Example 17.3 Let k be a positive integer. Evaluate (G)). 
Solution: This asks for the number of k-element multisets whose elements are 
selected from { 1}. Since there is only one possible member of the multiset, and the 
multiset has cardinality k, the only possibility is 

(1, 1, ... , 1) 

and so (G)) = 1. 

Example 17.4 Evaluate (G)). 
Solution: We need to count the number of two-element multisets whose elements 
are selected from the set { 1, 2}. We simply list all the possibilities. They are 

(1,1), (1,2), and, (2,2). 

Therefore ( (;)) = 3. 
In general, consider ((~)). We need to form a k-element multiset using only 

the elements 1 and 2. We can decide how many 1s are in the multiset (anywhere 
from 0 to k, giving k + 1 possibilities), and then the remaining elements of the 
multiset must be 2s. Therefore ((;)) = k + 1. 

Example 17.5 Evaluate ((;)). 

Solution: We need to count the number of three-element multi sets whose elements 
are selected from the set { 1, 2, 3}. We list all the possibilities. They are 

(1, 1, 1) 
(1, 3, 3) 

Therefore ((;)) = 10. 

(1, 1, 2) 
(2, 2, 2) 

(1, 1, 3) 
(2, 2, 3) 

(1, 2, 2) 
(2, 3, 3) 

(1,2,3) 
(3, 3, 3) 
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Formulas for ((Z)) 

In the foregoing examples, we calculated (G)) by explicitly listing all possible 

multisets. This, of course, is not practical if we want to calculate (G)) for large 

values of nand k. We need a better way to perform this computation. 

For ordinary binomial coefficients, we have two methods to calculate (;). We 

can generate Pascal's triangle using the relation G) = (n~ 1 ) + (~=~) or we can 

use the formula G) = k!(;~k)!. 
Let's look for patterns in the values of (G)). Here is a table of values of (G)) 

for 0 ::::: n, k ~ 6. 

k 

0 1 2 3 4 5 6 

0 1 0 0 0 0 0 0 
1 1 I 1 1 1 I 1 
2 I 2 3 4 5 6 7 

n 3 1 3 6 10 15 21 28 
4 1 4 10 20 35 56 84 
5 1 5 15 35 70 126 210 
6 1 6 21 56 126 252 462 

In Pascal's triangle, we found that the value of G) can be computed by adding 

two values in the previous row. Does a similar relationship hold here? 

Look at the value 56 in row n = 6 and column k = 3. The number just above 

this 56 is 35. Is 21 next to 35 so we can get 56 by adding 21 and 35? There is no 

21 in row 5, but just to the left of the 56 in row 6 there is a 21. 
Examine other numbers in this chart. Each is the sum of the number just above 

and just to the left. The number to the left of (G)) is ((k:1)) and number above is 

((n~l)). 
We have observed the following: 

Proposition 17.6 Let n, k be positive integers. Then 

The proof of this result is similar to that of Theorem 16.1 0. I recommend you 

reread that proof now. The essential idea of that proof and the one we are about to 

present is to consider a weird element. We count [multi]sets of size k that either 

include or exclude the weirdo. 

Proof. We use a combinatorial proof to prove this result (see Proof Template 9). 

We ask a question that we expect will be answered by both sides of the equation: 

How many multi sets of size k can we form using the elements { 1, 2, ... , n}? 

A simple answer to this question is (G)). 
For a second answer, we analyze the meanings of ((n~ 1 )) and ((k:1)). 
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The first has an easy interpretation. The number ((n~ 1 }) is the number of 
k-element multisets using the members of { 1, 2, ... , n} in which we never use 
element n. 

How should we interpret ((k~ 1 ))? What we want to say is that this represents 
the number of k-element multisets using the members of { 1, 2, ... , n} in which we 
must use element n. To see why this is true, suppose we must use element n when 
forming a k-element multiset. So we throw element n into the multiset. Now we 
are free to complete this multiset in any way we wish. We need to pick k - 1 more 
elements from {1, 2, ... , n}; the number of ways to do that is precisely ((k~ 1 )). 

Since element neither is or is not in the multiset, we have (G)) = ((n~ 1 )) + 
((k~l)). • 

Example 17.7 WeillustratetheproofofProposition 17.6byconsidering ((!))=(G))+((;)). 
We list all the multisets of size 4 we can form using the elements { 1, 2, 3}. 
First, we list all the multisets of size 4 we can form from the elements in 

{1, 2, 3} that do not use element 3. In other words, we want all the multisets of 
size 4 we can form that use just elements { 1, 2}. There are ( (~)) = 5 of them. They 
are 

(1, 1, 1, 1) (1, 1, 1,2) (1, 1,2,2) (1,2,2,2) (2,2,2,2) 

Second, we list all the multisets of size 4 that include the element 3 (at least 
once). They are 

(1, 1, 1, 3) (1, 1, 2, 3) (1, 1, 3, 3) (1, 2, 2, 3) (1, 2, 3, 3) 
(1, 3, 3, 3) (2, 2, 2, 3) (2, 2, 3, 3) (2, 3, 3, 3) (3, 3, 3, 3) 

Notice that if we ignore the mandatory 3 (in color), we have listed all the three­
element multi sets we can form from the elements in { 1, 2, 3}. There are ( (;)) = 10 
of them. 

This result, (G)) = ((n~ 1 )) + ((k~J), and its proof are quite similar to The­
orem 16.10, G) = G:=~) + (n~ 1 ). The table of ((Z)) values is similar to Pascal's 

triangle in another way. If we read the table of (G)) values diagonally from the 
lower-left comer to the upper-right comer, we read off the values 

5 10 10 5 

and this is the fifth row of Pascal's triangle. We can write this as follows: 

5 10 10 5 

i i i i t t 
((~)) ((~)) ((~)) ((;)) (G)) ((!)) 
t t t t i t 
(~) (~) (;) (;) (~) (~) 

Observe that (G)) = G). What number should we fill in for the question 
mark? A bit of guesswork and we see that ? = n + k - 1 fits the pattern we 
observed. For example, ((~)) == (;) = (4+~- 1 ). 
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We assert the following: 

Theorem 17.8 Let n, kEN. Then 

This one-to-one pairing of 
multisets and 
stars-and-bars encodings is 

an example of a bijective 
proof. 

Proof. The idea of this proof is to develop a way to encode multisets and then 

count their encodings. To find (G)), we list all (encodings of) the k-element mul­

tisets we can form using the integers 1 through n. Before we present the encoding 

scheme, we need to deal with the special case n = 0. 
If both n = 0 and k = 0, then ((~)) = 1 (the empty multiset). However, 

the formula gives (0+~- 1 ) = C~/). Although this is nonsense (it is not possible to 

have a set with -1 elements), it is possible to extend the definition of G) to allow 

the upper index, n, to be any real number; see Exercise 17.10. In the extended 

definition, c~n = 1 as desired. 
If n = 0 and k > 0, then (G)) = 0 (there are no multisets of cardinality k 

whose elements are chosen from the empty set). In this case, (n+~- 1 ) = (k~J) = 0, 

as required. 
Hence, from this point on, we may assume n is a positive integer. We now 

present the scheme for encoding multisets as lists. 

Suppose, for the moment, that n = 5 and the multi set isM = (1, 1, 1, 2, 3, 3, 5). 

We encode this multiset with a sequence of stars * and bars I . We have a star for 

each element and a bar to make separate compartments for the elements. For this 

multiset, the stars-and-bars encoding is as follows: 

(1, 1, 1, 2, 3, 3, 5) ~ ***I* I** I I* 

The first three *S stand for the three 1s in M. Then there is a I to mark the end of 

the 1 s section. Next there is a single * to denote the single 2 in M, and another I 

to signal the end of the 2s. Two more *S follow for the two 3s in the multiset. Now 

notice that we have two I s in a row. Since there are no 4s in M, there are no *S in 

this compartment. Finally, the last * is for the single 5 in M. 

In the general case, let M beak-element multiset formed using the integers 1 

through n. Its stars-and-bars notation contains exactly k *S (one for each element 

of M) and exactly n- 1 Is (to separate n different compartments). 
Notice that given any sequence of k *Sand n- 1 Is, we can recover a unique 

multiset of cardinality k whose elements are chosen from the integers 1 through n. 

Thus there is a one-to-one correspondence between k-element multi sets of integers 

chosen from { 1, 2, ... , n} and lists of stars and bars with k *S and n - 1 Is. The 

good news is that it is easy to count the number of such stars-and-bars lists. 

Each stars-and-bars list contains exactly n + k - 1 symbols, of which exactly 

k are *S. The number of such lists is (n+~- 1 ) because we can think of choosing 

exactly k positions on the length-(n + k - 1) list to be *s. In other words, there 

are n + k- 1 positions on this list. We want to select a k-element subset of those 

n + k - 1 positions in all possible ways. There are (n+~- 1 ) ways to do this. 

Therefore (G)) = (n+~- 1 ). • 
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Example 17.9 In Example 17.5, we explicitly listed all possible size-three mu]tisets formed using 
the integers 1, 2, and 3. Here we list them with their stars-and-bars notation. 

17 Exercises 

Multiset Stars-and -bars Subset 

( 1, 1, 1) ***II {1, 2, 3} 
(1, 1, 2) **1*1 {1, 2, 4} 
(1, 1, 3) **II* {1,2,5} 
(1, 2, 2) *1**1 {1, 3, 4} 
(1, 2, 3) *1*1* {1, 3, 5} 
(1, 3, 3) *II** {1, 4, 5} 
(2, 2, 2) 1***1 {2, 3, 4} 
(2, 2, 3) 1**1* {2, 3, 5} 
(2, 3, 3) 1*1** {2,4,5} 
(3, 3, 3) II*** {3, 4, 5} 

The column labeled Subset shows which of the five positions in the stars-and-bars 
encoding are occupied by *s. Notice that the ((;)) multisets correspond to the (;) 
subsets. Thus((;)) = e+;- 1

) = (;). -

Recap 

In this section, we considered the following counting problem: How many 
k-element multi sets can we form whose elements are selected from { 1, 2, ... , n}? 
We denoted the answer by (G)). We proved various properties of (G)), most no­
tably that 

We have studied four counting problems: counting lists (with or without rep­
etitions), counting subsets, and counting multi sets. The answers to these four 
counting problems are summarized in the following chart. 

Counting collections 

Repetition Repetition 
allowed forbidden 

Ordered nk (n)k 

Unordered (G)) G) 
Size of collection: k 
Size of universe: n 

17.1. Evaluate ((;)) and ((~)) by explicitly listing all possible multisets of the 
appropriate size. Check that your answers agree with the formula in The­
orem 17.8. 

17.2. Give a stars-and-bars representation for all the sets you found in the pre­
vious problem. 

17 .3. Let n be a positive integer. Evaluate the following from first principles (i.e., 
don't use Proposition 17.6). 
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a. ((~)). 
b. ((~)). 

c. ((~)). 
Explain your answers. 

17.4. What multiset is encoded by the stars-and-bars notation *Ill***? 
17.5. Express (G)) using factorial notation. 
17.6. Prove: 

(G)) = (G ~ :)) · 
17.7. Let [ [ ~ J J denote the number of multi sets of cardinality k we can form 

choosing the elements in { 1, 2, 3, ... , n} with the added condition that we 
must use each of these n elements at least once in the multi set. 
a. Evaluate from first principles, [ [ ~ J J . 
b. Prove: [[~]] = (C~J). 

17.8. Let n, k be positive integers. Prove: 

17.9. Let n, k be positive integers. Prove: 

17.10. Let x be a positive integer. We can write 

(
x) = x(x- 1) = ~x2 _ ~x. 
2 2 2 2 

In this way, we can think of (~) as a polynomial in x. Thus, although it does 
- I 

not make sense as a counting problem, we can write (~) and this evaluates 
to l(l)2 _ l(l) = _.!. 

2 3 2 3 9·' 

a. Write ((~)) as a polynomial in x. 
b. As silly as it looks, evaluate 

c. Write G) and (G)) as polynomials in x. 
d. Let k E N. Find (and prove) a relationship between the polynomials 

(Z) and ((Z)). 

18 Inclusion-Exclusion 
In Section 11 we learned that for finite sets A and B, we have I A I + I B I 
lA U Bl + lA n Bl. We can rewrite this as 

lA u Bl = IAI +lEI-lA n Bl 
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[see Proposition 11.4 and Equation ( 4)]. The equation expresse~the size of a union 

of two sets in terms of the sizes of the individual sets and their intersection. In 

Exercise 11.19, you were asked to extend this result to three sets A, B, and C -that 

is, to prove that 

lA u B u Cl = JAI + IBI + JCI 

-lA n Bj- lA n Cj- IBn Cj 

+JAnBnCj. 

Again, the size of the union is expressed in terms of the sizes of the individual 

sets and their various intersections. These equations are called inclusion-exclusion 

formulas. 
In this section, we prove a general inclusion-exclusion formula. 

Theorem 18.1 (Inclusion-Exclusion) LetA 1, A2, ... , An be finite sets. Then 

IA1 U A2 U · · · U Ani= IA1I + IA2l + · · · + IAni 

-jA1 n A2l- JA1 n A3j- · · ·- IAn-1 n Ani 

+ IA1 n A2 n A3j + IA1 n A2 n A4j + · · · 

+ IAn-2 n An-1 n Ani 

- ···+········· 
± IA1 n A2 n · · · n Ani· 

To find the size of a union, we add the sizes of the individual sets (inclusion), 

subtract the sizes of all the pairwise intersections (exclusion), add the sizes of all 

the three-way intersections (inclusion), and so on. 

The idea is that when we add up all the sizes of the individual sets, we have 

added too much because some elements may be in more than one set. So we 

subtract off the sizes of the pairwise intersections to compensate, but now we may 

have subtracted too much. Thus we correct back by adding in the sizes of the triple 

intersections, but this overcounts, so we have to subtract, and so on. Amazingly, 

at the end, everything is in perfect balance (we prove this in a moment). 

The repeated use of ellipsis ( · · ·) in the formula is unfortunate, but it is difficult 

to express this formula using the notations we have thus far developed. For four 

sets (A through D) the formula is 

iA u B u C u Dl = IAI + IBI + ICI + IDI 

-lA n Bj- lA n Cj- JAn Dj- IBn Cj 

-IBn Dl - IC n Dl 

+\An B n Cj +\An B n Dj +\An C n Dj 

+IB nc nDI 

- lA n B n c n DJ. 

Example 18.2 At an art academy, there are 43 students taking ceramics, 57 students taking paint­

ing, and 29 students taking sculpture. There are 10 students in both ceramics and 

painting, 5 in both painting and sculpture, 5 in both ceramics and sculpture, and 
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2 taking all three courses. How many students are taking at least one course at the 

art academy? 
Solution: Let C, P, and S denote the sets of students taking ceramics, painting, 

and sculpture, respectively. We want to calculate IC UP U Sl. We apply inclusion­

exclusion: 

IC UP U Sl = ICI + IPI +lSI- IC n PI- IC n Sl-IP n Sl + IC n P n Sl 
= 43 + 57 + 29 - 10 - 5 - 5 + 2 = 111. 

Proof (of Theorem 18.1) 

Let then sets be A1, A 2 , ••• , An and let the elements in their union be named x 1, 

x2 , ... , Xm· We create a large chart. The rows of this chart are labeled by the 

elements x1 through Xm. The chart has 211 
- 1 columns that correspond to all 

the terms on the right-hand side of the inclusion-exclusion formula. The first n 

columns are labeled A1 through A 11 • The next (;) columns are labeled by all the 

pairwise intersections from A1 n A 2 through A11 _ 1 n A 11 • The next(;) columns are 

labeled by the triple intersections, and so on. 
The entries in this chart either are blank or contain a + or - sign. The entries 

depend on the row label (element) and column label (set). If the element is not in 

the set, the entry in that position is blank. If the element is a member of the set, we 

put a + sign when the column label is an intersection of an odd number of sets or 

else a - sign when the column label is an intersection of an even number of sets. 

For the three sets in the Venn diagram in the figure and their elements, the chart 

would be: 

El't A1 A2 A3 A1 nA2 AI n A3 A2 n A3 AI nA2nA'l 

1 + 
2 + 
3 + + -

4 + + -

5 + 
6 + + -

7 + + + - - - + 
8 + + + - - - + 
9 + + -

10 + + -

11 + + -

12 + 

There are three things to notice about this chart. 

• First, the number of marks in each column is the cardinality of that column's 

set; we make a mark in a column just for that set's elements. In the example, 

there are five marks in the A 2 n A3 column (corresponding to elements 7, 8, 

9, 10, and 11). 
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• Second, the sign of the mark ( + or -) corresponds to whether we are adding 
or subtracting that set's cardinality in the inclusion-exclu&ion formula. Thus, 
if we add 1 for every + sign in the chart and subtract 1 for every - sign, we 
get precisely the right-hand side of the inclusion-exclusion formula. 

• Third, look at the number of +sand -sin each row. In the example, notice 
that there is always one more + than -. If we can prove this always works, 
we will be finished because then the net effect of all the +sand-s is to count 
1 for each element in the union of the sets A 1 U A 2 U · · · U An. So, if we can 
prove this works in general, we have completed the proof. 

The problem now reduces to proving that every row has exactly one more + 
than-. 

Let x be an element of A 1 U A 2 U · · · U An. It is in some (perhaps all) of the 
Ai. Let us say it is in exactly k of them (with 1 ::::; k ::::; n). Let us calculate how 
many +sand-s are in x's row. 

In the columns indexed by single sets, there will be k +s; let's write G) in 
place of k (you will see why in a moment). 

In the columns indexed by pairwise intersections, there will be (~) -s. This 
is because x is in k of the Ai s, and the number of pairs of sets to which x belongs 
is (~). 

In the columns indexed by triple intersections, there will be (~) +s. 
In general, in the columns indexed by }-fold intersections, there will be G) 

marks. The marks are + if j is odd and - if j is even. Thus 

the number of +sis G)+ G)+ G)+·· , and 

the number of-sis G) + (:) + (~) + .. ·. 
Note that these sums do not go on forever; they include only those binomial coef­
ficients whose lower index does not exceed k. Also note that the term (~) is absent. 

In Exercise 16.11, you proved 

(~) -G) + G) -.. · ± G) = o 
or, equivalently, 

(~) + G) + (:) + G) + .. · = G) + G) + G) + .. · 
number of - signs number of + signs 

We therefore see that the number of +sis exactly (~) = 1 more than the number 
of-sin x's row. • 

How to Use Inclusion-Exclusion 

Inclusion-exclusion takes one counting problem (How many elements are in 
A 1 U · · · U An?) and replaces it with 2n- 1 new counting problems (How many el­
ements are in the various intersections?). Nevertheless, inclusion-exclusion makes 
certain counting problems easier. Here is an example. 
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Example 18.3 (A list-counting problem) The number oflength-k lists whose elements are cho­
sen from the set { 1, 2, ... , n} is nk. How many of these lists use all of the elements 
in {1, 2, ... , n} at least once? 

It is convenient to use # to 
stand for "number of." 

BI = {222, 223, 232, 233, 
322, 323, 332, 333}. 

B2 ={Ill, 113, 131, 133, 
311,313,331, 333}. 

For example, for n = 3 and k = 3, there are 33 = 27 length-three lists using 
the elements in { 1, 2, 3}. Of these, the following six lists use all of the elements 1, 
2, and 3: 

123 132 213 231 312 321. 

Here is how to use inclusion-exclusion to solve this problem. We begin by 
letting U (for universe) be the set of all length-k lists whose elements are chosen 
from { 1, 2, ... , n}. Thus I U I = nk. We call some of these lists "good" -these are 
the ones that contain all the elements of { 1, 2, ... , n}. And we call some of the lists 
"bad"-these are the ones that miss one or more of the elements in { 1, 2, ... , n}. 
If we can count the number of bad lists, we'll be finished because 

# good lists = nk - #bad lists. (5) 

Now a list might be bad because it fails to contain the number 1. Or it might be bad 
if it misses the number 2, and so on. There are n different elements in { 1, 2, ... , n}, 
and there are n different ways a list might be bad. Let B 1 be the set of all lists in 
U that do not contain the element 1, let B2 be the set of all lists in U that do not 
contain the element 2, ... , and let Bn be the set of all lists in U that do not contain 
the element n. The set 

contains precisely all the bad lists; what we want to do is calculate the size of this 
union. This is a job for inclusion-exclusion! To calculate the size of this union, we 
need to calculate the sizes of each of the sets Bi and all possible intersections, and 
then invoke Theorem 18.1. 

To begin, we calculate the size of B 1• This is the number of length-k lists whose 
elements are chosen from { 1, 2, ... , n} with the added condition that the element 
1 is never used. In other words, I B 11 is the number of length-k lists whose elements 
are chosen from {2, 3, ... , n} (notice we deleted element 1). Thus we haven- 1 
choices for each position on the list, so I B 11 = (n - 1 )k. 

What about I B2 1? The analysis is exactly the same as for I B 1 1. The number 
of length-k lists that do not use element 2 is the number of length-k lists whose 
elements are chosen from {1, 3, 4, ... , n} (we deleted 2). So IB2 1 = (n- 1)k. 

Indeed, for every j, I B j 1 = (n - 1 )k. The first part of the inclusion-exclusion 
formula now gives 

IB1 U .. · U Bnl = IB1I + .. · + IBnl- ...... 
= n(n- 1)k- · · · · · · 

Now we continue to the second row of terms in Theorem 18.1. These are all 
the terms of the form I Bi n B j 1. We begin with I B 1 n B2 1. This is the number of lists 
that (1) do not include the element 1 and (2) do not include the element 2. In other 
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{222}. 

The last term in the 

example is 

B 1 ,l IJ, n B, = 0. 

words, I B 1 n B2 1 equals the number of length-k lists whose. elements are chosen 
from the set {3, 4, ... , n}. The number of these lists is IB1 n B21 = (n- 2)k. 

What about I B 1 n B3 1? The analysis is exactly the same as before. These lists 
avoid the elements 1 and 3, so they are drawn from an (n - 2)-element set. Thus 
I B 1 n B3 1 = (n- 2)k. Indeed, all terms in the second row of the inclusion-exclusion 
formula give (n - 2)k. 

The question that remains is: How many terms are on the second row? We 
want to pick all possible pairs of sets from B1 through Bn and there are G) such 
pairs. Thus far, we have 

IB1 u · · · u Bnl = IB1I + · · · + IBni-IB1 n B2l- · · · + · · · · · · 
k (n) k = n(n - 1) -

2 
(n - 2) + · · · · · ·. 

Let's think about the triple intersections before we do the general case. How 
many lists are in B1 n B2 .n B3? This is the number of length-k lists that avoid all 
three of the elements 1, 2, and 3. In other words, these are the length-k lists whose 
elements are drawn from {4, ... , n}. The number of such lists is (n-3)k. Of course, 
this analysis applies to any triple intersection. How many triple intersections are 
there? There are (;). So we now have 

k (n) k (n) k IB1 U · · · U Bnl = n(n- 1) -
2 

(n- 2) + 
3 

(n- 3) - · · · · · ·. 

The pattern should be emerging. To make the pattern look better, replace the 
first n by (~) in the above equation. We expect the next term to be- G) (n- 4)k. 

To make sure the pattern we see is correct, let us think about the size of a j-fold 
intersection of the B sets. How many elements are in B 1 n B2 n · · · n B j? These are 
the length-k lists that avoid all elements from 1 to j; that is, they draw their elements 
from {j + 1, ... , n}(a setofsizen- j). So IB1 nB2n- · -nBj I = (n- j)k. Of course, 
all }-fold intersections work exactly like this. How many }-fold intersections are 
there? There are C). Thus the jth term in the inclusion-exclusion is± C) (n- j)k. 
The sign is positive when j is odd and negative when j is even. 

As a sanity check, let us make sure this formula applies to I B 1 n · · · n Bn I, 
the last term in the inclusion-exclusion. This is the number of lists of length k that 
contain none of the elements 1 through n. If we can't use any of the elements, we 
certainly can't make any lists. The size of this set is zero. Our formula for this term 
is ± (~) (n - n )k, which, of course, is 0. 

We now have 

which can be rewritten using 2..:.:: notation as 

IB1 U · · · U Bnl = t(-1)H1 (~) (n- j)k. 
j=1 1 

The ( -1)j+1 term is a device that gives a plus sign when j is odd and a minus sign 
when j is even. 



Example 18.4 is known as 

the hat-check problem. The 

story is that n people go to 

the theater and check their 

hats with a deranged clerk. 

The clerk hands the hats 

back to the patrons at ran­

dom. The problem is: What 

is the probability that none 

of the patrons get their own 

hat back? The answer to 

this probability question is 

the answer to Example 18.4 

divided by n!. 

Example 18.4 
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We have nearly answered the question from Example 18.3. The set B1 U · · · U 

Bn counts the number of bad lists; we want the number of good lists. We simply 
substitute into Equation (5) to get 

#good lists = nk -#bad lists 

= n'- [G) (n- 1)'- (;) (n- 2)' 

+ (;)en -3)' - · ± (:) (n - n )'] 

= n' - G )en - 1)' + G )en - 2)' 

-G) (n- 3)' + · · · 'F (:) (n- n)' 

= (~)n'- G) (n- 1)' + (;) (n- 2)' 

-G )en - 3)' + · · 'F (:)en -n )' 
= :f=c -1)j (~) (n- J)k 

j=O J 

answering the question from Example 18.3. 

Derangements 

We illustrate the method of Proof Template 10 on the following classical problem. 

(Counting derangements) There are n! ways to make lists of length n using the 
elements of { 1, 2, ... , n} without repetition. Such a list is called a derangement if 
the number j does not occupy position j of the list for any j = 1, 2, ... , n. How 
many derangements are there? 

For example, if n = 8, the lists (8, 7, 6, 5, 4, 3, 2, 1) and (6, 5, 7, 8, 1, 2, 3, 4) 
are derangements but (3, 5, 1, 4, 8, 6, 7) and (2, 1, 4, 3, 8, 6, 7, 5) are not. 

Proof Template 10 Using inclusion-exclusion. 

Counting with inclusion-exclusion: 

• Classify the objects as either "good" (the ones you want to count) or "bad" 
(the ones you don't want to count). 

• Decide whether you want to count the good objects directly or to count the 
bad objects and subtract from the total. 

• Cast the counting problem as the size of a union of sets. Each set describes 
one way the objects might be "good" or "bad." 

• Use inclusion-exclusion (Theorem 18.1 ). 
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Example 18.5 The derangements of {1, 2, 3, 4} are 

B1 = !1234. 1243, 1324, 
!342. 1423. 1432}. 

B1 n B2 = { 1234, 1243}. 

2143 2341 2413 
3142 3412 3421 
4123 4312 4321 

There are n! lists under consideration. The "good" lists are the derangements. 
The "bad" lists are the lists in which one (or more) element j of { 1, 2, ... , n} 
appears at position j of the list. 

We count the number of bad lists and subtract from n! to count the good lists. 
We count the number of bad lists by counting a union. There are n ways in 

which a list might be bad: 1 might be in position 1, 2 might be in position 2, and 
so forth, and n might be in position n. So we define the following sets: 

B 1 = {lists with 1 in position 1} 

B2 = {lists with 2 in position 2} 

Bn = {lists with n in position n}. 

Our goal is to count I B 1 U · · · U Bn I and finally to subtract from n!. To compute 
the size of a union, we use inclusion-exclusion. 

We first calculate I B 11. This is the number of lists with 1 in position 1; the 
other n - 1 elements may be anywhere. There are (n - 1)! such lists. Likewise, 
I B2 1 = (n - 1)! because element 2 must be in position 2, but the other n - 1 
elements may be anywhere. We have 

I B1 U .. · U Bn I = I B1l + .. · + IBn I - ...... 
= n(n- 1)!- · · · · · ·. 

Next consider IB1 n B2 1. These are the lists in which 1 must be in position 
1, 2 must be in position 2, and the remaining n - 2 elements may be anywhere. 
There are (n - 2)! such lists. Indeed, for any i -=f. j, we have 1 Bi n B j 1 = (n - 2)! 
since element i goes in position i, element j goes in position j, and the remaining 
n - 2 elements may go anywhere they want. There are (;) pairwise intersections, 
and they all have size (n - 2)!. This gives 

I Bl u ... u Bn I = I Bll + ... + IBn I - I Bl n B21 - ... + ...... 

= n(n- 1)!- (~) (n- 2)! + · · · · · · 

The G) triple intersections all work the same, too. The size of B1 n B2 n B3 

is (n - 3)! because elements 1, 2, and 3 must go into their respective positions, 
but the remaining n - 3 elements go wherever they please. So far we have 

IB1 U · · · U B,t = n(n- I)!- (;)<n- 2)! + (;) (n- 3)!- · · · 
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If we rewrite the first n as (~), this becomes 

I B1 U · · · U B, I = G) (n - I)! - G) (n - 2)! + G) (n - 3)! - · · . 

The pattern is emerging. To see that this works, let us consider the k-fold intersec­

tions such as I B1 n B2 n · · · n Bk 1. There are G) terms of this form. Each evaluates 
to (n - k)! because k of the elements/positions on the list are determined, and the 
remaining n - k elements can go wherever they wish. Thus we have 

Note the last term is (:)0! = 1. To see this is correct, note that this is the size of 
B 1 n · · · n Bn. This is the set of lists in which 1 must be in position 1, 2 must be 
in position 2, and so on, and n must be in position n. There is exactly one such 
list-namely, (1, 2, 3, ... , n). 

Finally, we subtract I B 1 U · · · U Bn I from n! to get the number of derangements. 
This is 

n!- [G)cn-1)!- (;)cn-2)!+ G)(n-3)!-···± (:)(n-n)!] 
which equals 

G)n!- G)cn -I)!+ G) (n- 2)!- (;)en- 3)! + . ~ (:) (n- n)! 
or, in I: notation, 

#derangements= i)-tl' (:) (n- k)!. 
k=O 

We can simplify this answer. Recall that 

(
n) n! 
k -k!(n-k)! 

(see Theorem 16.12). Therefore 

#derangements= t(-l)k (n) (n- k)! = I)-1)k 
1 

n~ 
1 
(n- k)! 

k=O k k=O k.(n k). 
n I 

= 2:)-1)k~. 
k=O k! 

Finally, we can factor out the n! from all the terms and just have 

n ( -l)k 
#derangements = n! L --

1
-. 

k=O k. 
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18 Exercises 

A Ghastly Formula 

The inclusion-exclusion formula is 

IA1 U A2 U · · · U Ani= IA1I + IA2I +···+!Ani 
-!A1 n A2l- IA1 n A3l- · · · -IAn-1 n Ani 

+ I A 1 n A2 n A 31 + I A 1 n A2 n A4l + · · · 

+ IAn-2 n An-1 n Ani 

- ···+········· 

±IA1nA2n···nAnl· 

Can this be rewritten without resorting to use of ellipsis (· · ·)? Here we reduce 

the formula so that it contains only a single ellipsis. You decide whether this is 

better. 

Can you invent a notation that does not require even one ellipsis? 

Recap 

We extended the simple formula I A U B I = I A I + I B I - I A n B I to deal with the 

size of the union of many sets in terms of the sizes of their various intersections. 

We then showed how to apply inclusion-exclusion to some complicated counting 

problems. 

18.1. There are four large groups of people, each with 1000 members. Any two 

of these groups have 100 members in common. Any three of these groups 

have 10 members in common. And there is 1 person in all four groups. All 

together, how many people are in these groups? 

18.2. Let A, B, and C be finite sets. Prove or disprove: If lA U B U Cl = 

IAI + IBI + ICI, then A, B, and C must be pairwise disjoint. 

18.3. How many five-letter "words" can you make in which no two consecutive 

letters are the same? A "word" may be any list of the standard 26 letters, 

so WENJW is a word you would count, but NUTTY is not. 

Here is an easy solution: By the list-counting methods of Section 7, 

the answer is 26 x 25 x 25 x 25 x 25 = 26 x 254 . 

Give a hard solution using inclusion-exclusion, and then show that the 

two answers are the same. 

18.4. This problem asks you to give two proofs for 

a. The first proof should use the binomial theorem (see Theorem 16.8). 

b. The second should be a combinatorial proof using inclusion-exclusion. 
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18.5. How many six -digit numbers do not have three consecutive digits the same? 

(For this problem, you may consider six-digit numbers whose initial digits 

might be 0. Thus you should count 012345 and 001122, but not 000987 or 

122234.) 
18.6. Note the following: I A n B I = I A I + I B I - I AU B 1. Find a general formula 

for the size of the intersection of several finite sets in terms of the sizes of 

their unions. 

Chapter 3 Self Test 

1. Let R be the relation on the set of all human beings (not just those in your 

family) defined by x R y if and only if xis a parent of y. 

a. If x is you, describe the set of people {y : x R y}. 

b. If y is you, describe the set of people { x : x R y}. 
c. Determine which of the following properties is satisfied by R: reflexive, 

irreftexive, symmetric, antisymmetric, transitive. 
d. Describe R- 1• 

2. Which of the following relations R defined on the set of all human beings (not 

just those in your family) are equivalence relations? 

a. x R y provided x and y have the same mother. 
b. x R y provided x and y have the same mother and the same father. 

c. x R y provided x and y have at least one parent in common. 

3. Let A= {1, 2, 3, 4}. How many different relations on A are there? 

4. Let x and y be integers. Suppose x = y (mod 10) and x = y (mod 11 ). 

Do these imply that x = y? 

5. Let R = {(x, y): x, y E Z and lxl = IYI}. 
a. Prove that R is an equivalence relation on the integers. 
b. Find the equivalence classes [5], [ -2], and [0]. 

6. Let A = {1, 2, 3}, B = {4, 5}, and R = (A x A) U (B x B). Note that R is 

an equivalence relation on A U B. Find all the equivalence classes of R. 

7. Let A = {1, 2, 3, 4, 5} and define an equivalence relation Ron 2A by X R Y 

if and only if lXI = IYI. How many equivalence classes does R have? 

8. Let P = {N, Z, P} be a partition of the integers, Z defined by 

• N = {x E Z : x < 0}, 
• Z = {0}, and 

p = {x E Z : X > 0}. 

Describe the equivalence relation~. Your answer should be of the following 

form: "Suppose x andy are integers. Then x~y if and only if .... " 

9. Ten married couples are seated around a large circular table. In how many 

different ways can they do this, assuming husbands and wives sit next to one 

another? Please note that if everyone moves one (or more) places to the left, 

the arrangement is not considered to be different. 
10. The letters in the word ELECTRICITY are scrambled to make two, possibly 

nonsensical words (e.g., TREEL CICTY). How many such anagrams are 

possible? 
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11. Two children are playing tic-tac-toe. In how many ways can the first two moves 
~m~? J 

One possible answer is 9 x 8 = 72 since there are 9 locations for the first 
player to mark X and, for each such choice, 8 locations for the second player 
to mark 0. 

However, because of symmetry, some of these opening pairs of moves 
are the same. For example, if the first player chooses a comer square and the 
second player chooses the center, it doesn't really matter which comer the first 
player chose. 

Taking this into account, in how many distinct ways can the first two 
moves be made? 

12. There are 21 students in a chemistry class. The students must pair up to work 
as lab partners, but, of course, one student will be left over to work alone. In 
how many ways can the students be paired up? 

13. Let A = {1, 2, 3, ... , 100}. How many 10-element subsets of A consist of 
only odd numbers? 

14. The expression (x + 2)50 is expanded. What is the coefficient of x 17 ? 
15. Let n be a positive integer. Simplify the following expression: 

n + (n + 1) + (n + 2) + · · · + (2n). 

16. In a school of 200 children, 15 students are chosen to be on the school's math 
team, and of those, 2 students are chosen to be co-captains. In how many ways 
can this be done? 

17. Let nand k be positive integers with k + 2 =:: n. Prove the identity 

by the following two methods: combinatorially and by use of Pascal's Identity 
(Theorem 16.10). 

18. A pizza restaurant features ten different kinds of toppings. When you order a 
quadruple pie, you get to pick four toppings on your pizza. 
a. How many different quadruple pizzas can be made if the four toppings 

must be different? 
b. How many different quadruple pizzas can be made if toppings may be 

repeated (e.g., onions, olives, and double mushrooms, or triple anchovies 
and garlic). 

19. Let n be a positive integer. How many multi sets can be made using the numbers 
1 through n, where each is used at most three times? Be sure to justify your 
answer. 

For example, if n = 5, then we would count (1, 2, 2, 3) and (1, 2, 3, 4, 
4,4,5), but we would not count (1,2,4,4,4,4,4,4,4) (too many 4s) or 
(3, 4, 6) (6 is not in the range from 1 ton). 

20. The squares of a 4 x 4 checkerboard are colored black or white. Use inclusion­
exclusion to find the number of ways the checkerboard can be colored so that 
no row is entirely one color. 

Explain why your expression simplifies to 144
. 



More Proof 

Thus far we have used primarily one proof technique known as direct proof. In 

this method, we work from hypothesis to conclusion, showing how each statement 

follows from previous statements. The central idea is to unravel definitions and 

bridge the gap from what we have to what we want. 

We are now ready for, and need, more sophisticated proof methods. In this 

chapter, we present two powerful methods: proof by contradiction and proof by 

induction (and its variant proof by smallest counterexample). 

19 Contradiction 
Most theorems can be expressed in the if-then form. The usual way to prove "If 

A, then B" is to assume the conditions listed in A and then work to prove the 

conditions in B (see Proof Template 1). In this section, we present two alternatives 

to the direct proof method. 

Proof by Contrapositive 

The statement "If A, then B" is logically equivalent to the statement "If (not B), 

then (not A)." The statement "If (not B), then (not A)" is called the contrapositive 

of "If A, then B." 
Why are a statement and its contrapositive logically equivalent? For "If A, 

then B" to be true, it must be the case that whenever A is true, B must also be true. 

If it ever should happen that B is false, then it must have been the case that A was 

false. In other words, if B is false, then A must be false. Thus we have "If (not B), 

then (not A)." 
Here's another explanation. We know that "If A, then B" is logically equivalent 

to "(not A) or B" (see Exercise 3.3). By the same reasoning, "If (not B), then 

(not A)" is equivalent to "(not (not B)) or (not A)," but "not (not B)" is the same 

as B, so this becomes "B or (not A)," which is equivalent to "(not A) or B." In 

symbols, 

a--+b (-.a) v b 

135 
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If these explanations are difficult to follow, here is a mechanical way to pro­
ceed. We build a truth table for a -+ b and (-,b) -+ (-,a j and see the same 
results. 

a b a~b -,b -,a (-,b)~ (_,a) 

T T T F F T 
T F F T F F 
F T T F T T 
F F T T T T 

The bottom line is this: To prove "If A, then B ," it is acceptable to prove "If 
(not B), then (not A)." This is outlined in Proof Template 11. 

Proof Template 11 Proof by contrapositive_ 

To prove "If A, then B": Assume (not B) and work to prove (not A). 

Let's work through an example. 

Proposition 19.1 Let R be an equivalence relation on a set A and let a, b E A. If a II b, then 
[a] n [b] = 0. 

We have essentially proved this already (see Proposition 14.12). Our pur­
pose here is to illustrate proof by contrapositive. We set up the proof using Proof 
Template 11. 

Let R be an equivalence relation on a set A and let a, b E A. We prove the 
contrapositive of the statement. 

Suppose [a] n [b] #- 0 .... Therefore aRb. • 

The key point to observe is that we suppose the opposite of the conclusion 
(not [a] n [b] = 0) and work toward proving the opposite of the hypothesis (not 
a II b; i.e., aRb). 

Notice that we alerted our reader that we are not using direct proof by an­
nouncing that we are going to prove the contrapositive. 

To continue the proof, we observe that [a] n [b] #- 0 means there is an element 
in both [a] and [b]. We put this into the proof. 

Let R be an equivalence relation on a set A and let a, b E A. We prove the 
contrapositive of the statement. 

Suppose [a] n [b] #- 0. Thus there is an x E [a] n [b ]; that is, x E [a] 
and x E [b ] .... Therefore a R b. • 



Proof by contradiction is 

also called indirect proof 

One mistake. Here is 

another way to think about 

proof by contradiction. We 

assume A and (not B) and 

then follow with valid 

reasoning until we reach 

an impossible situation. 

This means there must 

be a mistake. If all our 

reasoning is valid, and 

since we are allowed to 

assume A, the mistake 

must have been in 

supposing (not B). Since 

(not B) is the mistake, we 

must have B. 

Proof Template 12 

.1 
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We use the definition of equivalence class to finish. 

Let R be an equivalence relation on a set A and let a, b E A. We prove the 
contrapositive of the statement. 

Suppose [a] n [b] ::j:. 0. Thus there is an X E [a] n [b]; that is, X E [a] 

and x E [b]. Hence x R a and x R b. By symmetry a R x, and since x R b, 

by transitivity we have a R b. • 

Is there an advantage to proof by contrapositive? Yes. Try proving Proposi­
tion 19.1 by direct proof. We would assume a !J band try to show [a] n [b] = 0. 
How would we unravel the hypothesis a !J b? How do we show that two sets have 
nothing in common? We don't have good ways of accomplishing these tasks; a di­
rect proof here looks hard. By switching to the contrapositive, we have conditions 
that are easier for us to use. 

Reductio Ad Absurdum 

Proof by contrapositive is an alternative to direct proof. If you can't find a direct 
proof, try proving the contrapositive. Wouldn't it be nice if there were a proof 
technique that combined both direct proof and proof by contrapositive? There is! 
It is called proof by contradiction or, in Latin, reductio ad absurdum. Here is how 
it works. 

We want to prove "If A, then B." To do this, we show that it is impossible 
for A to be true while B is false. In other words, we want to show that "A and 
(not B)" is impossible. 

How do we prove that something is impossible? We suppose the impossible 
thing is true and prove that this supposition leads to an absurd conclusion. If a 
statement implies something clearly wrong, then that statement must have been 
false! 

To prove "If A, then B ,"we make two assumptions. We assume the hypothesis 
A and we assume the opposite of the conclusion; that is, we assume (not B). From 
these two assumptions, we try to reach a clearly false statement. The general outline 
is given in Proof Template 12. 

Proof by contradiction. 

To prove "If A, then B": 
We assume the conditions in A. 
Suppose, for the sake of contradiction, not B. 
Argue until we reach a contradiction. 
==:>{= • 

(The symbol ==:>{= is an abbreviation for the following: Thus we have reached 
a contradiction. Therefore the supposition (not B) must be false. Hence B is 
true.) 
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Let us present a formal description of proof by contradiction and then give an 
example. ~ 

We want to prove a statement of the form "If A, then B." To do this, we assume 
A and (not B) and show this implies something false. Symbolically, we want to 
show a --+ b. To do this, we prove (a 1\ -.b) --+ FALSE. These two are logically 
equivalent. 

Proposition 19.2 The Boolean formulas a --+ band (a 1\ -.b) --+ FALSE are logically equivalent. 

Proof. To see that these two are logically equivalent, we build a truth table. 

a b a-+b a A -,b (a A -,b) -+ FALSE 

T T T F T 
T F F T F 
F T T F T 
F F T F T 

Therefore a --+ b = (a 1\ -.b) --+ FALSE. • 
Let's apply this method to prove the following: 

Proposition 19.3 No integer is both even and odd. 

Reexpressed in if-then form, Proposition 19.3 reads, "If x is an integer, then 
x is not both even and odd." 

Let's set up a proof by contradiction. 

Let x be an integer. 
Suppose, for the sake of contradiction, that x is both even and odd. 

That is impossible. Thus we have reached a contradiction, so our sup­
position (that x is both even and odd) is false. Therefore x is not both even 
and odd, and the proposition is proved. • 

Several comments are in order: 

• The first sentence gives the hypothesis (let x be an integer). 
• The second sentence serves two purposes. 

First, it announces to the reader that this is going to be a proof by contra­
diction using the phrase "for the sake of contradiction." 

Second, it supposes the opposite of the conclusion. The supposition is 
that x is both even and odd. 

• The next sentence reads, "That is impossible." We don't know what the an­
tecedent to "That" is! What is impossible? We don't know yet! As the proof 
develops, we hope to run into a contradiction. 



Section 19 Contradiction 139 

Given that we have reached a contradiction, here is how we finish the proof. We 

say that the supposition is impossible because it leads to an absurd statement. 

Therefore the supposition (not B) must be false. Hence the conclusion (B) 

must be true. 
The last few sentences of a proof by contradiction are almost always 

the same. Mathematicians use a special symbol to abbreviate a lot of words. 

The symbol is=}{:::. The image is that two implications are crashing into one 

another. 
The symbol=}{::: is an abbreviation for "Thus we have reached a contra­

diction; therefore the supposition is false." 
The supposition is that which we have supposed-namely, (not B). 

We don't know (yet) what contradiction we might reach. Let's just continue 

working with what we have. We know that x is both even and odd, so we unravel. 

Let x be an integer. 
Suppose, for the sake of contradiction, that x is both even and odd. 

Since x is even, we know 21x; that is, there is an integer a such that 

x = 2a. 
Since x is odd, we know that there is an integer b such that x = 2h + l. 

=}{::: Therefore x is not both even and odd, and the proposition is 

proved. • 

No contradiction yet. The definitions are completely unraveled. What we 

have to work with is x = 2a = 2b + 1 where a and b are integers. Somehow, 

we need to manipulate these into something false. Let's try dividing the equation 

x = 2a = 2b + 1 through by 2 to give '5: = a = b + ~, and this says that one 

integer is just ~ bigger than another (i.e., a - b = ~ ), but a - b is an integer and 

~ is not! A number (a - b) cannot be both an integer and not an integer! That's a 

contradiction. Hurray!! Let's put it into the proof. (Notice we didn't use '5: in the 

contradiction, so we can simplify this a bit.) 

Let x be an integer. 
Suppose, for the sake of contradiction, that x is both even and odd. 

Since x is even, we know 21x; that is, there is an integer a such that 

x = 2a. 
Since x is odd, we know that there is an integer b such that x = 2b + 1. 

Therefore 2a = 2b + 1. Dividing both sides by 2 gives a = b + ~ 
so a - b = ~. Note that a - b is an integer (since a and b are integers-) 

but ~ is not an integer. =}{:::Therefore x is not both even and odd, and the 

proposition is proved. • 

This completes the proof. We did not know when we began this proof that 

the absurdity we would reach is that ~ is an integer. This is typical in a proof 
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by contradiction; we begin with A and (not B) and see where the implications 
lead. ~ 

Proposition 19.3 can also be expressed as follows. Let 

X = {x E Z : xis even}, and 

Y = {x E Z :xis odd}. 

Then X n Y = 0. 
Proof by contradiction is usually the best technique for showing that a set is 

empty. This is worth codifying in a proof template. 

ProofTemplate 13 Proving that a set is empty. 

To prove a set is empty: 

Assume the set is nonempty and argue to a contradiction. 

Proof Template 13 is appropriate to prove statements of the form "There is no 
object that satisfies conditions." 

Contradiction is also the proof technique of choice when proving uniqueness 

statements. Such statements assert that there can be only one object that satisfies 
the given conditions. 

Mathspeak! 
You would think that mathematicians, of all people, would use the word two correctly. 

So it may come as a surprise that when mathematicians say "two" they sometimes 

mean "one or two." Here is an example. Consider the following statement: Every 

positive even integer is the sum of two odd positive integers. Mathematicians consider 

this statement to be true despite the fact that the only way to write 2 as the sum of two 

positive odd numbers is 2 = 1 + 1. The two odd numbers in this case are 1 and 1. The 

two numbers just happen to be the same. 
The phrase "Let x and y be two integers ... " allows for the integers x and y to be 

the same. This is the convention, albeit a slightly dangerous one. It would be better 

simply to write, "Let x and y be integers .... " 
Occasionally we truly wish to eliminate the possibility that x = y. In this case, we 

write. "Let x and y be two different integers ... " or "Let x and y be two distinct 

integers .... " 

Proof Template 14 Proving uniqueness. 

To prove there is at most one object that satisfies conditions: 
Proof: Suppose there are two different objects, x and y, that satisfy 

conditions. 
Argue to a contradiction. 

Often the contradiction in a uniqueness proof is that the two allegedly different 
objects are in fact the same. Here is a simple example. 

Proposition 19.4 Leta andb be numbers with a =f=. 0. There is atmostonenumber x withax+b = 0. 
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Proof. Suppose there are two different numbers x and y such that ax + b = 0 

and ay + b = 0. This gives ax+ b = ay +b. Subtracting b from both sides gives 

ax = ay. Since a i= 0, we can divide both sides by a to give x = y .==>-<== • 

A Matter of Style 

Proof by contradiction of "If A, then B" is often easier than direct proof because 

there are more conditions available. Instead of starting with only condition A and 

trying to demonstrate condition B, we start with both A and (not B) and hunt for 

a contradiction. This gives us more material with which to work. 
Sometimes, when you elect to write a proof by contradiction, you may discover 

that proof by contradiction was not really required and a simpler sort of proof is 

possible. A proof is a proof, and you should be happy to have found a correct 

proof. Nonetheless, a simpler way to present your argument is always preferable. 

Here is how to tell when you can simplify a proof of "If A, then B." 

• You assumed A and (not B). You used only the hypothesis A, and the contra­

diction you reached was B and (not B). 
In this case, you really have a direct proof and you can remove the extra­

neous proof-by-contradiction apparatus. 
• You assumed A and not B. You used only the supposition (not B), and the 

contradiction you reached was A and (not A). 

In this case, you really have a proof by contrapositive. Rewrite it in that 

form. 

Recap 

We introduced two new proof techniques for statements of the form "If A, then 

B." In a proof by contrapositive, we assume (not B) and work to prove (not A). 

In a proof by contradiction, we assume both A and (not B) and work to produce a 

contradiction. 

19.1. Please state the contrapositive of each of the following statements: 

a. If x is odd, then x 2 is odd. 
b. If p is prime, then 2P - 2 is divisible by p. 

c. If x is nonzero, then x 2 is positive. 
d. If the diagonals of a parallelogram are perpendicular, then the parallel­

ogram is a rhombus. 
e. If the battery is fully charged, the car will start. 
f. If A orB, then C. 

19.2. What is the contrapositive of the contrapositive of an if-then statement? 

19.3. A statement of the form "A if and only if B" is usually proved in two parts: 

one part to show A ::::} B and another to show B ::::} A. 

Explain why the following is also an acceptable structure for a proof. 

First prove A ::::} B and then prove ....., A ::::} ....., B. 

19.4. For each of the following statements, write the first sentences of a proof 

by contradiction (you should not attempt to complete the proofs). Please 

use the phrase "for the sake of contradiction." 
a. If A s; B and B s; C, then A s; C. 
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20 
Proof by contradiction as 

proof by lack of 

counterexample, 

b. The sum of two negative integers is a negative integer. ~ 

c. If the square of a rational number is an integer, then the rational number 

must also be an integer. 
d. If the sum of two primes is prime, then one of the primes must be 2. 

e. A line cannot intersect all three sides of a triangle. 

f. Distinct circles intersect in at most two points. 

g. There are infinitely many primes. 

19.5. Prove by contradiction that consecutive integers cannot be both even. 

19.6. Prove by contradiction that consecutive integers cannot be both odd. 

19.7. Prove by contradiction: If the sum of two primes is prime, then one of the 

primes must be 2. 
You may assume that every integer is either even or odd, but never both. 

19.8. Let A and B be sets. Prove by contradiction that (A- B) n (B- A) = 0. 

19.9. Let A and B be sets. Prove An B = 0 if and only if (Ax B) n (B x A) = 0. 

19.10. Prove the converse of the Addition Principle (Corollary 11.8). The converse 

of a statement "If A, then B" is the statement "If B, then A." In other words, 

your job is to prove the following: 

Let A and B be finite sets. If lA u Bl = IAI + IBI, then An B = 0. 

19.11. Let A be a subset of the integers. 

a. Write a careful definition for the smallest element of A. 

b. Let E be the set of even integers; that is, E = {x E Z : 21x }. Prove by 

contradiction that E has no smallest element. 

c. Prove that if A ~ Z has a smallest element, it is unique. 

Smallest Counterexample 

In Section 19 we developed the method of proof by contradiction. Here is another 

way we can think about this technique. 

We want to prove a result of the form "If A, then B." Let's suppose this 

result were false. If that were the case, there would be a counterexample to the 

statement. That is, there would be an instance where A is true and B is false. 

We then analyze that alleged counterexample and produce a contradiction. Since 

the supposition that there is a counterexample leads to an absurd conclusion (a 

contradiction), that supposition must be wrong; there is no counterexample. Since 

there is no counterexample, the result must be true. 

For example, we showed that no integer could be both even and odd. We can 

rephrase the argument as follows: 

Suppose the statement "No integer is both even and odd" were false. Then 

there would be a counterexample; let's say x were such an integer (i.e., xis 

both even and odd). Since xis even, there is an integer a such that x = 2a. 

Since x is odd, there is an integer b such that x = 2b + 1. Thus 2a = 2b + 1, 

which implies a - b = ~. Since a and b are integers, so is a - b, =}{::::: ( ~ 

is not an integer). • 

In this section, we extend this idea by considering smallest counterexamples. 

It's a little idea that wields enormous power. The essence of the idea is that we not 
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only consider an alleged counterexample to an if-then result, we consider a smallest 

counterexample. This needs to be done carefully, and we explore this idea at length. 

We have not yet proved a fact you know well: Every integer is even or odd. 

We have shown that no integer can be both even and odd, but we have not yet ruled 

out the possibility that some integer is neither. It is sensible to try to prove this by 

contradiction. We would structure the proof as follows: 

Suppose, for the sake of contradiction, that there were an integer x that 

is neither even nor odd .... =}{= Therefore every integer is either even or 

odd. • 

Next we could unravel definitions as follows: 

Suppose, for the sake of contradiction, that there were an integer x that is 

neither even nor odd. So there is no integer a with x = 2a and there is no 

integer b with x = 2b + 1. ... =}{=Therefore every integer is either even 

or~~ • 

And now we're stuck. What do we do next? We need a new idea. The new idea is 

to consider a smallest counterexample. We begin with a restricted version of what 

we are trying to prove. 

Proposition 20.1 Every natural number is either even or odd. 

Note that we are just proving that every natural number (member of N) is 

either even or odd; we'll extend this to all integers later. (The reason for this 

restriction is presented later.) 
We begin the proof using the idea of smallest counterexample. 

Suppose, for the sake of contradiction, that not all natural numbers are even 

or odd. Then there is a smallest natural number, x, that is neither even nor odd . 

.. . =}{= • 

Why did we restrict the scope of Proposition 20.1 to natural numbers? If we 

were trying to prove that every integer is either even or odd, we could not rule 

out the possibility that there might be infinitely many counterexamples, marching 

off to -oo. Then we could not sensibly talk about the smallest counterexample. It 

is akin to talking about the smallest odd integer; there is no such thing! The odd 

numbers descend forever -3, -5, -7, ... ; there is no smallest odd integer. 

On the other hand, the natural numbers do not descend forever; they "stop" at 

zero. It makes sense to speak of the smallest odd natural number, namely 1. 

This is why we proved Proposition 20.1 only for natural numbers. We extend 

this result to all integers after we complete the proof. 

Let us return to the proof. We add the next sentence to the proof, and let me 

warn you that the next sentence has an error! Read the sentence carefully and try 

to find the mistake. 
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Suppose, for the sake of contradiction, that not all natural numbe~s are even 
or odd. Then there is a smallest natural number, x, that is neither even nor 
odd. Since x - 1 < x, we see that x - 1 is a smaller natural number and 
therefore is not a counterexample to Proposition 20.1. 

... =}{= 

Do you see the problem? It is subtle. Let's dissect the new sentence. 

Since x- 1 < x .... No problem here. Obviously x- 1 < x . 

• 

. . . x - 1 ... is not a counterexample to Proposition 20.1. No problem here 
either. We know x is the smallest counterexample. Because x - 1 is smaller 
than x, it is not a counterexample to Proposition 20.1. 

Where is the problem? 
... natural number. ... How do we know x - 1 is a natural number? Here's 
the mistake. We do not know that x - 1 is a natural number because we have 
not ruled out the possibility that x = 0. 

Now it is not hard to rule out x = 0; we simply haven't done it yet. Let's take 
care of this seemingly minor point. 

Suppose, for the sake of contradiction, that not all natural numbers are even 
or odd. Then there is a smallest natural number, x, that is neither even nor 
odd. 

We know x # 0 because 0 is even. Therefore x ~ 1. 
Since 0 .::: x - 1 < x, we see that x - 1 is a smaller natural number and 

therefore is not a counterexample to Proposition 20.1 . 
.. . =}{= • 

We can now continue the proof. We know that x - 1 E N and x - 1 is not a 
counterexample to the proposition. What does this mean? It means that since x - 1 
is a natural number, it must be either even or odd. We don't know which of these 
might be true, so we consider both possibilities. 

Suppose, for the sake of contradiction, that not all natural numbers are even 
or odd. Then there is a smallest natural number, x, that is neither even nor 
odd. 

We know x # 0 because 0 is even. Therefore x ~ 1. 
Since 0 .::: x - 1 < x, we see that x - 1 is a smaller natural number and 

therefore is not a counterexample to Proposition 20.1. 
Therefore x - 1 is either even or odd. We consider both possibilities. 

(1) Suppose x - 1 is odd ... . 
(2) Suppose x - 1 is even ... . 

• 
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Now we unravel definitions. In case (1), x - 1 is odd, sox - 1 = 2a + 1 for 

some integer a. In case (2), x- 1 is even, sox - 1 = 2b for some integer b. 

Suppose, for the sake of contradiction, that not all natural numbers are even 

or odd. Then there is a smallest natural number, x, that is neither even nor 

odd. 
We know x =/= 0 because 0 is even. Therefore x ~ 1. 

Since 0 :::: x - 1 < x, we see that x - 1 is a smaller natural number and 

therefore is not a counterexample to Proposition 20.1. 

Therefore x - 1 is either even or odd. We consider both possibilities. 

(1) Suppose x - 1 is odd. Therefore x - 1 = 2a + 1 for some integer a . .. . 

(2) Suppose x - 1 is even. Therefore x - 1 = 2b for some integer b . .. . 

... =}~ • 
In case (1), we have x- 1 = 2a + 1, sox= 2a + 2 = 2(a + 1), sox is even; 

this is a contradiction to the fact that x is neither even nor odd. In case (2), we get 

a similar contradiction. 

Suppose, for the sake of contradiction, that not all natural numbers are even 

or odd. Then there is a smallest natural number, x, that is neither even nor 

odd. 
We know x =/= 0 because 0 is even. Therefore x ~ 1. 

Since 0 :::: x - 1 < x, we see that x - 1 is a smaller natural number and 

therefore is not a counterexample to Proposition 20.1. 

Therefore x - 1 is either even or odd. We consider both possibilities. 

(1) Suppose x - 1 is odd. Therefore x - 1 = 2a + 1 for some integer a. 

Thus x = 2a + 2 = 2(a + 1), sox is even=}~ (xis neither even nor 

odd). 
(2) Suppose x - 1 is even. Therefore x - 1 = 2b for some integer b. Thus 

x = 2b + 1, sox is odd=}~ (xis neither even nor odd). 

In every case, we have a contradiction, so the supposition is false and 

the proposition is proved. • 

Let us summarize the main points of this proof. 

It is a proof by contradiction. 

• We consider a smallest counterexample to the result. 

We need to treat the very smallest possibility as a special case. 

We descend to a smaller case for which the theorem is true and work back. 

Before we present another example, let us finish the job we set out to 

accomplish. 
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Corollary 20.2 Every integer is either even or odd. 

The key idea is that either x :::: 0 (in which case we are finished by Proposi­
tion 20.1) or else x < 0 (in which case -x E N, and again we can use Proposi­
tion 20.1). 

Proof. Let x be any integer. 
If x :::: 0, then x EN, so by Proposition 20.1, xis either even or odd. 
Otherwise, x < 0. In this case -x > 0, so-x is either even or odd. 

• If-xis even, then -x = 2a for some integer a. But then x = -2a = 2( -a), 
sox is even. 

• If - x is odd, then - x = 2b + 1 for some integer b. From this we have 
x = -2b - 1 = 2( -b - 1) + 1, sox is odd. 

In every case, x is either even or odd. 

Proof Template 15 gives the general form of this technique. 

Proof Template 15 Proof by smallest counterexample. 

First, let x be a smallest counterexample to the result we are trying to prove. It 
must be clear that there can be such an x. 

Second, rule out x being the very smallest possibility. This (usually easy) 
step is called the basis step. 

Third, consider an instance x' of the result that is "just" smaller than x. 
Use the fact that the result for x' is true but the result for x is false to reach a 
contradiction::::}{::::. 

Conclude that the result is true. • 

• 

Here is another proposition we prove using the smallest-counterexample 
method. 

Proposition 20.3 Let n be a positive integer. The sum of the first n odd natural numbers is n2 • 

The first n odd natural numbers are 1, 3, 5, ... , 2n -1. The proposition claims 
that 

1 + 3 + 5 + · · · + (2n - 1) = n2 

or, in E notation, 
n 

L)2k- 1) = n2
• 

k=l 

For example, with n = 5 we have 1 + 3 + 5 + 7 + 9 = 25 = 52
• 



The absolute importance 
of the basis step. 

Statement 20.4 
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Proof. Suppose Proposition 20.3 is false. This means that there is a smallest 
positive integer x for which the statement is false (i.e., the sum of the first x odd 
numbers is not x 2

); that is, 

1 + 3 + 5 + · · · + (2x - 1) =f. x 2
. (6) 

Note that x =f. 1 because the sum of the first 1 odd numbers is 1 = 12
. (This 

is the basis step.) 
Sox > 1. Since x is the smallest number for which Proposition 20.3 fails and 

since x > 1, the sum of the first x - 1 odd numbers must equal (x - 1 )2
; that is, 

1 + 3 + 5 + · · · + [2(x- 1)- 1] = (x- 1)2
• (7) 

(So far this proof has been on "autopilot." We are simply using Proof Tem­
plate 15.) 

Notice that the left-hand side of (7) is one term short of the sum of the first x 
odd numbers. We add one more term to both sides of this equation to give 

1 + 3 + 5 + · · · + [2(x- 1)- 1] + (2x- 1) = (x- 1)2 + (2x- I). 

The right-hand side can be algebraically expanded; thus 

1 + 3 + 5 + · · · + [2(x - 1) - 1] + (2x - 1) = (x - 1)2 + (2x - 1) 

= (x2 
- 2x + 1) + (2x - 1) 

= x2 

contradicting (6).:::::}{= • 
In the two proofs we have considered thus far, there is a basis step. In the 

proof that all natural numbers are either even or odd, we first checked that 0 was 
not a counterexample. In the proof that the sum of the first n odd numbers is n2

, 

we first checked that 1 was not a counterexample. These steps are important. They 
show that the immediate smaller case of the result still makes sense. Perhaps the 
best way to convince you that this basis step is absolutely essential is to show how 
we can prove an erroneous result if we omit it. 

(false) Every natural number is both even and odd. 

Obviously Statement 20.4 is false! Here we give a bogus proof using the 
smallest-counterexample method, but omitting the basis step. 

Proof. Suppose Proposition 20.4 is false. Then there is a smallest natural number 
x that is not both even and odd. Consider x - 1. Since x - 1 < x, x - 1 is not a 
counterexample to Proposition 20.4. Therefore x - 1 is both even and odd. 

Since x- 1 is even, x- 1 = 2a for some integer a, and sox = 2a + 1, sox 
is odd. 
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Since x- 1 is odd, x- 1 = 2b + 1 for some integer b, and sox= 2b + 2 = 

2(b + 1 ), sox is even. 

Thus xis both even and odd, but xis not both even and odd.=}{= • 

The proof is 99% correct. Where is the mistake? The error is in the sentence 

"Therefore x - 1 is both even and odd." It is correct that x - 1 is not a counterex­

ample, but we do not know that x - 1 is a natural number. We do not know this 

because we have not ruled out the possibility that x - 1 = -1 (i.e., x = 0). Of 

course, no natural number is both even and odd. So the smallest natural number 

that is not both even and odd is zero (the exact problem easel). 

Well-Ordering 

Let us take a closer look at the proof-by-smallest-counterexample technique. We 

saw that it was appropriate to apply this technique to showing that all natural 

numbers are either even or odd, but the method is invalid for integers. The differ­

ence is that the integers contain infinitely descending negative numbers. However, 

consider the following statement and its bogus proof. 

Statement 20.5 (false) Every nonnegative rational number is an integer. 

Recall that a rational number is any number that can be expressed as a fraction 

a I b where a, b E Z and b f. 0. This statement is asserting that numbers such as 

i are integers. Ridiculous! Notice, however, that the statement is restricted to 

nonnegative rational numbers; this is analogous to Proposition 20.1, which was 

restricted to nonnegative integers. 

Let's look at the "proof." 

Proof. Suppose Statement 20.5 were false. Let x be a smallest counterexample. 

Notice that x = 0 is not a counterexample because 0 is an integer. (This is the 

basis step.) 
Since x is a nonnegative rational, so is x /2. Furthermore, since x f. 0, we know 

that x /2 < x, so x /2 is smaller than the smallest counterexample, x. Therefore 

xj2 is not a counterexample, so xj2 is an integer. Now x = 2(xj2), and 2 times 

an integer is an integer; therefore x is an integer.=}{= • 

What is wrong with this proof? It looks like we followed Proof Template 15, 

and we even remembered to do a basis step (we considered x = 0). 

The problem is in the sentence "Let x be a smallest counterexample." There 

are infinitely many counterexamples to Statement 20.5, including ~, ~, i, ~, .... 
These form an infinite descent of counterexamples, and so there can be no smallest 

counterexample! 

We need to worry that we do not make subtle mistakes like the "proof" of 

Statement 20.5 when we use the proof-by-smallest-counterexample technique. The 

central issue is: When can we be certain to find a smallest counterexample? 

The guiding principle is the following. 



Statement 20.6 

Example 20.7 

Example 20.8 

The tenn well-ordered 

applies to an ordered set 
(i.e., a set X with a < 

relation). The set X is 
called well-ordered if 
every nonempty subset of 
X contains a least element. 

Example 20.9 

The Well-Ordering 
Principle is an axiom of 
the natural numbers. 
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(Well-Ordering Principle) Every nonempty set of natural numbers contains a 

least element. 

Let P = { x E N : x is prime}. This set is a non empty subset of the natural 

numbers. By the Well-Ordering Principle, P contains a least element. Of course, 

the least element in P is 2. 

Consider the set 

X= {x EN: xis even and odd}. 

We know that this set is empty because we have shown that no natural number 

is both even and odd (Proposition 20.1 ). But for the sake of contradiction, we 

suppose that X f= 0; then, by the Well-Ordering Principle, X would contain a 

smallest element. This is the central idea in the proof of Proposition 20.1. 

In contradistinction, consider the set 

Y = {y E Q : y :::: 0, y tj_ /Z}. 

The bogus proof of Statement 20.5 sought a least element of Y. We subsequently 

realized that Y has no least element, and that was the error in our "proof." The 

Well-Ordering Principle applies toN, but not to Q. 

Notice that we called the Well-Ordering Principle a statement; we did not call 

it a theorem. Why? The reason harks back to the beginning of this book. We could, 

but did not, define exactly what the integers are. Were we to go through the difficult 

task of writing a careful definition of the integers, we would begin by defining 

the natural numbers. The natural numbers are defined to be a set of "objects" that 

satisfy certain conditions; these defining conditions are called axioms. One ofthese 

defining axioms is the Well-Ordering Principle. So the natural numbers obey the 

Well-Ordering Principle by definition. There are other ways to define integers and 

natural numbers, and in those contexts one can prove the Well-Ordering Principle. 

If you are intrigued about how all this is done, I recommend you take a course in 

foundations of mathematics (such a course might be called Logic and Set Theory). 

In any case, our approach has been to assume fundamental properties of the 

integers; we take the Well-Ordering Principle to be one of those fundamental 

properties. 
The Well-Ordering Principle explains why the smallest-counterexample tech­

nique works to prove that natural numbers cannot be both even and odd, but it does 

not work to prove that nonnegative rationals are integers. 
Proof Template 16 gives an alternative to Proof Template 15 that explicitly 

uses the Well-Ordering Principle. 
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Proof Template 16 Proof by the Well-Ordering Principle. 

To prove a statement about natural numbers: 

Proof. Suppose, for the sake of contradiction, that the statement is false. Let 
X £; N be the set of counterexamples to the statement. (I like the letter X for 
eXceptions.) Since we have supposed the statement is false, X :f:. 0. By the 
Well-Ordering Principle, X contains a least element, x. 

(Basis step.) We know that x :f:. 0 because show that the result holds for 0; 
this is usually easy. 

Consider x - 1. Since x > 0, we know that x - 1 E N and the statement 
is true for x - 1 (because x - 1 < x). From here we argue to a contradiction, 
often that x both is and is not a counterexample to the statement.:;;:}{:= • 

Here is an example of how to use Proof Template 16. 

Proposition 20.10 Let n E N. If a # 0 and a # 1, then 

In fancy notation, we want to prove 

n an+l - 1 
""'ak- --­
~ - a-1 · 
k=O 

(8) 

We rule out a = 1 because the right-hand side would be §. We also rule out a = 0 
to avoid worrying about 0°. If we take 0° = 1, then the formula still works. 

Proof. We prove Proposition 20.10 using the Well-Ordering Principle. 
Suppose, for the sake of contradiction, that Proposition 20.10 were false. Let 

X be the set of counterexamples-that is, those integers n for which Equation (8) 
does not hold. Hence 

X = {n E N : t ak # an+l - 1 } . 
k=O a- 1 

As we have supposed that the proposition is false, there must be a counterexample, 
so X# 0. 

Since X is a nonempty subset of N, by the Well-Ordering Principle, it contains 
a least element x. 

Note that for n = 0, Equation (8) reduces to 

a 1 -1 
1=-­

a-1 
and this is true. This means that n = 0 is not a counterexample to the proposition. 
Thus x # 0. (This is the basis step.) 
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Therefore x > 0. Now x- 1 E Nand x - 1 tJ. X because x- 1 is smaller 

than the least element of X. Therefore the proposition holds for n = x - 1, so we 

have 

We add ax to both sides of this equation to get 

Putting the right-hand side of Equation (9) over a common denominator gives 

and so 

ax - 1 x ax - 1 x (a- 1) 
--+a =--+a --
a-1 a-1 a-1 

ax+! - 1 

a-1 

ax+!- 1 
ao +al +a2 + ... +ax=--­

a- 1 

(9) 

This shows that x satisfies the proposition and is therefore not a counterexample, 

contradicting x E X.::::}{= • 

Proof Template 16 is more rigidly specified than Proof Template 15. Often you 

will need to modify Proof Template 16 to suit a particular situation. For example, 

consider the following: 

Proposition 20.11 For all integers n ::,: 5, we have 2n > n2 • 

Notice that the inequality 2n > n2 is not true for a few small values of n: 

n 0 1 2 3 4 5 

2n 1 2 4 8 16 32 
n2 0 1 4 9 16 25 

Thus Proposition 20.11 does not apply to all of N. We need to modify Proof 

Template 16 slightly. Here is the proof of Proposition 20.11: 

Proof. Suppose, for the sake of contradiction, Proposition 20.11 were false. Let 

X be the set of counterexamples; that is, 

X = { n E Z : n ::_: 5, 2n :f n 2 }. 

Since our supposition is that the proposition is false, we have X -=!= 0. By the 

Well-Ordering Principle, X contains a least element x. 
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We claim that x =f. 5. Note that 25 = 32 > 25 = 52
, so 5.is not a counter-.. 

example to the proposition (i.e., x ¢. X), and hence x =f. 5. Thus x :::: 6. 
Now consider x - 1. Since x :::: 6, we have x - 1 :::: 5. Since x is the least 

element of X, we know that the proposition is true for n = x - 1; that is, 

(10) 

We know 2x-l 
rewritten as 

~ · 2x and (x - 1)2 = x 2 - 2x + 1, so Equation (10) can be 

1 X 2 

2 .2 >x -2x+l. 

Multiplying both sides by 2 gives 

2x > 2x2 
- 4x + 2. (11) 

We will be finished once we can prove 

2x2 
- 4x + 2 :::: x 2

. (12) 

To prove Equation (12), we just need to prove 

x 2 
- 4x + 4 :::: 2. (13) 

We got Equation (13) from Equation (12) by adding 2- x 2 to both sides. Notice 
that Equation ( 13) can be rewritten 

(x - 2)2 
:::: 2. (14) 

So we have reduced the problem to proving Equation (14 ), and to prove that, it 
certainly is enough to prove 

X- 2:::: 2. (15) 

and that's true because x :::: 6 (all we need is x :::: 4). • 
The only modification to Proof Template 16 is that the basis case was x = 5 

instead of x = 0. 
We present another example where we need to modify slightly the Well­

Ordering Principle method. This example involves the following celebrated se­
quence of numbers. 

Definition 20.12 (Fibonacci numbers) The Fibonacci numbers are the list of integers 
(1, 1, 2, 3, 5, 8, ... ) = (F0 , F1, F2 , ... ) where 

F0 = 1, 

F1 = 1, and 

Fn = Fn-1 + Fn-2, for n :::: 2. 

In words, the Fibonacci numbers are the sequence that begins 1, 1, 2, 3, 5, 
8, ... and each successive term is produced by adding the two previous terms. We 
label these numbers Fn (starting with F0 ). 
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Proposition 20.13 For all n E N, we have Fn .:::; 1.7n. 

Proof. Suppose, for the sake of contradiction, that Proposition 20.13 were false. 
Let X be the set of counterexamples; that is, 

Since we have supposed that the proposition is false, we know that X=!= 0. Thus, 
by the Well-Ordering Principle, X contains a least element x. 

Observe that x =!= 0 because F0 = 1 = 1. 7° and x =!= 1 because F 1 = 1 ::S 1. 71
• 

Notice that we have considered two basis cases: x =!= 0 and x =!= l. Why? We 
explain in just a moment. 

Thus x 2: 2. Now we know that 

(16) 

and we know, since x - 1 and x - 2 are natural numbers less than x, that 

and (17) 

This is why! We want to use the fact that the proposition is true for x - 1 and x - 2 
in the proof. We cannot do this unless we are sure that x - 1 and x - 2 are natural 
numbers; that is why we must rule out both x = 0 and x = 1. 

Combining Equations (16) and (17), we have 

Fx = Fx-1 + Fx-2 
_:::; l.T-1 + 1.7x-2 

= 1.7x-2(1.7 + 1) 

= 1.7x-2(2.7) 

< 1.7x-2(2.89) 

= 1.7x-2(1.72) 

= 1.7x. 

(The trick was recognizing 2.7 < 2.89 = 1.72.) 
Therefore Proposition 20.13 is true for n = x, contradicting x EX.=>-{= • 

Recap 

In this section, we extended the proof-by-contradiction method to proof by smallest 
counterexample. We refined this method by explicit use of the Well-Ordering 
Principle. We underscored the vital importance of the (usually easy) basis case. 

------------------------------------------------------------------------------
20 Exercises 20.1. What is the smallest positive real number? 

20.2. Prove by the techniques of this section that 1 + 2 + 3 + · · · + n = ~ (n) (n + 1) 
for all positive integers n. 

20.3. Prove by the techniques of this section that n < 2n for all n E N. 
20.4. Prove by the techniques of this section that n! .:::; nn for all positive integers n. 
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20.5. The inequality Fn > 1.6n is true once n is big enough. Do so~ calculations 

to find out from what value n this inequality holds. Prove your assertion. 

20.6. Calculate the sum of the first n Fibonacci numbers for n = 0, 1, 2, ... , 5. 

In other words, calculate 

Fo + F1 + · · · + Fn 

for several values of n. 
Formulate a conjecture about these sums and prove it. 

20.7. Criticize the following statement and proof: 

Statement. All natural numbers are divisible by 3. 

Proof. Suppose, for the sake of contradiction, the statement were false. Let 

X be the set of counterexamples (i.e., X = {x E N : x is not divisible by 3} ). 

The supposition that the statement is false means that X I- 0. Since X is a 

nonempty set of natural numbers, it contains a least element x. 

Note that 0 tJ_ X because 0 is divisible by 3. So x I- 3. 

Now consider x - 3. Since x - 3 < x, it is not a counterexample to 

the statement. Therefore x - 3 is divisible by 3; that is, there is an integer 

a such that x- 3 = 3a. Sox = 3a + 3 = 3(a + 1) and xis divisible by 3, 

contradicting x E X.=}{= • 

20.8. In Section 16 we discussed that Pascal's triangle and the triangle of binomial 

coefficients are the same, and we explained why. Rewrite that discussion as 

a careful proof using the method of smallest counterexample. Your proof 

should contain a sentence akin to "Consider the first row where Pascal's 

triangle and the binomial coefficient triangle are not the same." 

20.9. Prove the generalized Addition Principle by use of the Well-Ordering Prin­

ciple. That is, please prove the following: 

Suppose A1, A2 , •.• , An are pairwise disjoint finite sets. Then 

And Finally 

Theorem 20.14 (Interesting) Every natural number is interesting. 

Proof. Suppose, for the sake of contradiction, that Theorem 20.14 were false. 

Let X be the set of counterexamples (i.e., X is the set of those natural numbers 

that are not interesting). Because we have supposed the theorem to be false, we 

have X I- 0. By the Well-Ordering Principle, let x be the smallest element of X. 

Of course, 0 is an interesting number: It is the identity element for addition, it 

is the first natural number, any number multiplied by 0 is 0, and so on. So x i= 0. 

Similarly, x I- 1 because 1 is the only unit in N, it is the identity element for 

multiplication, and so on. And x I- 2 because 2 is the only even prime. These are 

interesting numbers! 
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What is x? It is the first natural number that isn't interesting. That makes it 

very interesting! ==>-<== • 

21 Induction 
In this section, we present an alternative to proof by smallest counterexample. This 
method is called mathematical induction, or induction for short. 

Mathspeak! 
In standard English, the word induction refers to drawing general conclusions from 

examining several particular facts. For example, the general principle that the sun 

always rises in the east follows by induction from the observations that every sunrise 

ever seen has been in the east. This, of course, does not prove the sun will rise in the 

east tomorrow, but even a mathematician would not bet against it! The mathematician's 

use of the word induction is quite different and is explained in this section. 

The Induction Machine 

Imagine: Sitting before you is a statement to be proved. Rather than prove it your­
self, suppose you could build a machine to prove it for you. Although some progress 

has been made by computer scientists to create theorem-proving programs, the 
dream of a personal theorem-proving robot is still the stuff of science fiction. 

Nevertheless, some statements can be proved by an imaginary theorem-proving 

machine. Let us illustrate with an example. 

Proposition 21.1 Let n be a positive integer. The sum of the first n odd natural numbers is n2
• 

1 + 3 + 5 + 7 = 42 

is true 

ACME Equation 
Machine 

1 + 3 + 5 + 7 + 9 = 52 

is true 

(This is Proposition 20.3, repeated here for our reconsideration.) 
We can think of Proposition 21.1 as an assertion that infinitely many equations 

are true: 

1 = 12 

1 + 3 = 22 

1 + 3 + 5 = 32 

1 + 3 + 5 + 7 = 42 

It is neither difficult nor particularly interesting to verify any one of these equations; 

we just need to add some numbers and check that we get the promised answer. 
We could write a computer program to check these equations, but we cannot 

wait for the program to run forever to verify the entire list. Instead, we are going 

to build a different sort of machine. Here is how the machine works. 
We give the machine one of the equations that has already been proved, say 

1 + 3 + 5 = 32
• The machine takes this equation and uses it to prove the next 

equation on the list, say 1 + 3 + 5 + 7 = 42
. That's all the machine does. When 

we give the machine one equation, it uses that equation to prove the next equation 
on the list. 
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Suppose such a machine has been built and is ready to wqrk. We drop in 

1 + 3 + 5 + 7 = 42 and out pops 1 + 3 + 5 + 7 + 9 = 52
. Then we push in 

1 + 3 + 5 + 7 + 9 = 52 and out comes 1 + 3 + 5 + 7 + 9 + 11 = 62
. Amazing! But it 

gets tiring feeding the machine these equations, so let's attach a pipe from the "out" 

tube of the machine around to the "in" tube of the machine. As verified equations 

pop out of the machine, they are immediately shuttled over to the machine's intake 

to produce the next equation, and the whole cycle repeats ad infinitum. 

Our machine is all ready to work. To start it off, we put in the first equation, 

1 = 12
, switch on the machine and let it run. Out pops 1 + 3 = 22

, and then 

1 + 3 + 5 = 32
, and so on. Marvelous! 

Would such a machine be able to prove Proposition 21.1? Won't we need to 

wait forever for the machine to prove all the equations? Certainly the machine is 

fun to watch, but who has all eternity to wait? 

We need one more idea. Suppose we could prove that the machine is 100% 

reliable. Whenever one equation on the list is fed into the machine, we are ab­

solutely guaranteed that the machine will verify the next equation on the list. If 

we had such a guarantee, then we would know that every equation on the list will 

eventually be proved, so they all must be correct. 

Let's see how this is possible. The machine takes an equation that has already 

been proved, say 1 + 3 + 5 + 7 = 42
. The machine is now required to prove that 

1 + 3 + 5 + 7 + 9 =52
. The machine could simply add up 1, 3, 5, 7, and 9 to get 

25 and then check that 25 = 52
. But that is rather inefficient. The machine already 

knows that 1 + 3 + 5 + 7 = 42
, so it is faster and simpler to add 9 to both sides of 

the equation: 1 + 3 + 5 + 7 + 9 = 42 + 9. Now the machine just has to calculate 

42 + 9 = 16 + 9 = 25 =52
. 

Here are the blueprints for the machine: 

1. The machine receives an equation of the form 

1 + 3 + 5 + ... + (2k - 1) = k2 

through its intake tube. 
Note: We are allowed to insert only equations that have already been 

proved, so we trust that this particular equation is correct. 

2. The next odd number after 2k -1 is (2k- 1) + 2 = 2k + 1. The machine 

adds 2k + 1 to both sides of the equation. The equation now looks like 

this: 

1 + 3 + 5 + ... + (2k - 1) + (2k + 1) = k2 + (2k + 1). 

3. The machine calculates k2 + (2k + 1) and checks to see whether it equals 

(k + 1)2
. If so, it is happy and ejects the newly proved equation 

1 + 3 + 5 + ... + (2k - 1) + (2k + 1) = (k + 1 )2 

through its output tube. 

To be sure this machine is reliable, we need to check that whenever we feed 

the machine a valid equation, the machine will always verify that the next equation 

on this list is valid. 
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As we examine the inner workings of the machine carefully, the only place 

the machine's gears might jam is when it checks whether k2 + (2k + 1) is equal 

to (k + 1)2
. If we can be sure that step always works, then we can have complete 

confidence in the machine. Of course, we know from basic algebra that k 2 + 2k + 1 = 

(k + 1 )2
, and so we know with complete certainty that this machine will perform 

its job flawlessly! 
The proof boils down to this. It is easy to check the first equation: 1 = 12

. 

We now imagine this equation being fed into the machine (which we proved is 

flawless) and the machine will prove all the equations on the list. We don't need 

to wait for the machine to run forever; we know that every equation on the list is 

going to be proved. Therefore, Proposition 21.1 must be true. 

Theoretical Underpinnings 

The essence of proof by mathematical induction is embedded in the metaphor of 

the equation-proving machine. The method is embodied in the following theorem. 

Theorem 21.2 (Principle of Mathematical Induction) Let A be a set of natural numbers. If 

• 0 E A, and 
• Vk E N, k E A ===> k + 1 E A, 

then A= N. 

The two conditions say that (1) 0 is in the set A, and (2) whenever a natural 

number k is in A, it must be the case that k + 1 is also in A. The only way these 

two conditions can be met is if A is the full set of natural numbers. 

First we prove this result, and then we explain how to use it as the central tool 

of a proof technique. 

Proof. Suppose, for the sake of contradiction, that A =f. N. Let X = N- A (i.e., 

X is the set of natural numbers not in A). Our supposition that A =f. N means there 

is some natural number not in A (i.e., X =f. 0). 

Since X is a nonempty set of natural numbers, we know that X contains a 

least element x (Well-Ordering Principle). Sox is the smallest natural number not 

in A. 
Note that x =f. 0 because we are given that 0 E A, so 0 tf. X. Therefore x 2: 1. 

Thus x - 1 2:: 0, sox - 1 E N. Furthermore, since x is the smallest element not 

in A, we have x- 1 E A. 
Now the second condition ofthe theorem says that whenever a natural number 

is in A, so is the next larger natural number. Since x - 1 E A, we know that 

(x - 1) + 1 = x is in A. But x tf. A.=>~ • 

Proof by Induction 

We can use Theorem 21.2 as a proof technique. The general.kind of statement 

we prove by induction can be expressed in the form "Every natural number has a 

certain property." For example, consider the following: 
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Proposition 21.3 Let n be a natural number. Then 

02 12 22 2 (2n + 1)(n + 1)(n) + + +···+n = 6 . (18) 

The overall outline of the proof is summarized in Proof Template 17. We use 
this method to prove Proposition 21.3. 

Proof Template 17 Proof by induction. 

To prove every natural number has some property. 

Proof. 

• Let A be the set of natural numbers for which the result is true. 
• Prove that 0 E A. This is called the basis step. It is usually easy. 
• Prove that if k E A, then k + 1 E A. This is called the inductive step. To 

do this, we 
- Assume that the result is true for n = k. This is called the induction 

hypothesis. 
- Use the induction hypothesis to prove the result is true for n = k + 1. 

• We invoke Theorem 21.2 to conclude A = N. 
• Therefore the result is true for all natural numbers. • 

Proof (of Proposition 21.3) 

We prove this result by induction on n. Let A be the set of natural numbers for 
which Proposition 21.3 is true-that is, those n for which Equation (18) holds. 

· Basis step: Note that the theorem is true for n = 0 because both sides of 
Equation (18) evaluate to 0. 

· Induction hypothesis: Suppose the result is true for n = k; that is, we may 
assume 

• Now we need to prove that Equation ( 18) holds for n = k + 1; that is, we need 
to prove 

02+12+22+·. ·+k2+(k+1)2 = [2(k + 1) + 1][(k + 1) + 1][k + 1] (20) 
6 . 

• To prove Equation (20) from Equation (19), we add (k + 1)2 to both sides of 
Equation (19): 

02 + 12 + 22 + ... + k2 + (k + 1)2 = (2k + 1)~k + 1)(k) + (k + 1)2. (21) 
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To complete the proof, we need to show that the right-hand side of Equa­
tion (20) equals the right-hand side of Equation (21); that is, we have to prove 

(2k + 1)(k + 1)(k) 2 [2(k + 1) + 1][(k + 1) + 1][k + 1] (22) 
6 +(k+ 1) = 6 . 

The verification of Equation (22) is a simple, if mildly painful, algebra exercise 
that we leave to you (Exercise 21.2). 

• We have shown 0 E A and k E A ===} (k + 1) E A. Therefore, by induction 
(Theorem 21.2), we know that A = N; that is, the proposition is true for all 
natural numbers. • 

This proof can be described using the machine metaphor. We want to prove 
all of the following equations: 

So we build a machine that accepts one of these equations in its input tube; the 
equation entering the machine is assumed to have been proved already. The ma­
chine then uses that known equation to verify the next equation on the list. Suppose 
we know that the machine is absolutely reliable, and whenever one equation is fed 
into the machine, the next equation on the list will emerge from the machine as 
verified. 

So if we can prove that the machine is completely reliable, all we need to do is 
feed in the first equation on the list and let the machine chum through the rest. Our 
job reduces to this: Prove the first equation (which is easy), design the machine, 
and prove it works. 

The design of the machine is not particularly difficult. It simply adds the next 
term in the long sum to both sides of the equation and checks for equality. 

The challenging part is to verify that the machine will always work. For this, 
we must have to check an algebraic identity, namely 

(2k + l)(k + 1)(k) 2 [2(k + 1) + l][(k + 1) + l][k + 1] 
6 + (k + 1) = 6 . 

In the proof of Proposition 21.3, we explicitly referred to the set A of all 
natural numbers for which the result is true. As you become more comfortable 
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with proofs by induction, you can omit explicit mention of this set.. The important 
~ 

steps in a proof by induction are these: 

• Prove the basis case; that is, prove the result is true for n = 0. 

• Assume the induction hypothesis; that is, assume the result for n = k. 

• Use the induction hypothesis to prove the next case (i.e., for n = k + 1). 

Note that in proving the case n = k + 1, you should use the fact that the result is 

true in case n = k. If you do not use the induction hypothesis, then either (1) you 

can write a simpler proof of the result without induction or (2) you have made a 

mistake. 
The basis case is always essential and, thankfully, usually easy. If the result you 

wish to prove does not cover all natural numbers-say, it covers just the positive 

integers-then the basis step may begin at a value other than 0. 

The induction hypothesis is a seemingly magical tool that makes proving 

theorems easier. To prove the· case n = k + 1, not only may you assume the 

hypotheses of the theorem, but you also may assume the induction hypothesis; this 

gives you more with which to work. 

Proving Equations and Inequalities 

Proof by induction takes practice. One common application of this technique is 

to prove equations and inequalities. Here we present some examples for you to 

study. You will find that the general outlines of the proofs are the same; the only 

difference is in some of the algebra. The first two examples are results also proved 

in Section 12 by the combinatorial method (see Propositions 12.1 and 12.2). 

Proposition 21.4 Let n be a positive integer. Then 

Note that this induction 

proof begins with 11 = t 

because the Proposition is 

asserted for positive 

integers. 

20 + 21 + ... + 2n-l = 2n _ 1. 

Proof. We prove this by induction on n. 

Basis step: The case n = 1 is true because both sides of the equation, 2° and 

21 - 1, evaluate to 1. 

Induction hypothesis: Suppose the result is true when n = k; that is, we 

assume 
(23) 

We must prove that the Proposition is true when n = k + 1; that is, we must 

use Equation (23) to prove 

(24) 

Note that the left-hand side of Equation (24) can be formed from the left­

hand side of Equation (23) by adding the term 2k. So we add 2k to both sides of 

Equation (23) to get 
(25) 
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We need to show that the right-hand side of Equation (25) equals the right-hand 

side of Equation (24). Fortunately, this is easy: 

2k - 1 + 2k = 2 · 2k - 1 = 2k+ I - 1. (26) 

Using Equations (24) and (26) gives 

20 + 21 + ... + 2(k+1)-l = 2k+1 - 1 

which is what we needed to show. • 
As our comfort and confidence in writing proofs by induction grow, we can 

be a bit terser. The next proof is written in a more compact style. 

Proposition 21.5 Let n be a positive integer. Then 

1 · 1 ! + 2 · 2! + · · · + n · n ! = (n + 1)! - 1. 

Proof. We prove the result by induction on n. 

Basis case: The Proposition is true in the case n = 1, because both sides of 

the equation, 1 ! · 1 and 2! - 1, evaluate to 1. 
Induction hypothesis: Suppose the Proposition is true in case n = k; that is, 

we have that 

1. 1! + 2. 2! + ... + k. k! = (k + 1)!- 1. (27) 

We need to prove the Proposition for the case n = k + 1. To this end, we add 

(k + 1) · (k + 1)! to both sides of Equation (27) to give 

1-1!+2-2!+-··+k-k!+(k+l)·(k+l)! = (k+l)!-l+(k+l)·(k+l)!. (28) 

The right-hand side of Equation (28) can be manipulated as follows: 

(k + 1)!- 1 + (k + 1). (k + 1)! = (1 + k + 1). (k + 1)!- 1 

= (k + 2) . (k + 1)! - 1 

= (k + 2)!- 1 = [(k + 1) + 1]!- 1. 

Substituting this into Equation (28) gives 

1. 1! + 2. 2! + ... + k. k! + (k + 1). (k + 1)! = [(k + 1) + 1]!- 1. • 

Inequalities can be proved by induction as well. Here is a simple example 

whose proof is a bit terser still. 

Proposition 21.6 Let n be a natural number. Then 

10° + 101 + · · · + IOn < Ion+1. 

Proof. The proof is by induction on n. The basis case, when n = 0, is clear 

because 10° < 101. 



162 Chapter 4 More Proof 

Assume (induction hypothesis) that the result holds for n = k; that is, we have 
v 

10° + 101 + · · · + 10k < 10k+1
. 

To show that the Proposition is true when n = k + 1, we add 10k+1 to both sides 
and find 

10° + 101 + · · · + 10k + 10k+1 < 10k+1 + 10k+1 

= 2 · 10k < 10 · 10k = 10k+1 . 

Therefore the result holds when n = k + 1. • 
Other Examples 

With a bit of practice, proving equations and inequalities by induction will become 
routine. Generally, we manipulate both sides of the given equation (assumed by 
the induction hypothesis, n = k) to demonstrate the next equation (n = k + 1). 
However, other kinds of results can be proved by induction. For example, consider 
the following: 

Proposition 21.7 Let n be a natural number. Then 4n - 1 is divisible by 3. 

Proof. The proof is by induction on n. The basis case, n = 0, is clear since 
4 ° - 1 = 1 - 1 = 0 is divisible by 3. 

Suppose (induction hypothesis) that the Proposition is true for n = k; that is, 
4k - 1 is divisible by 3. We must show that 4k+1 - 1 is also divisible by 3. 

Note that 4k+l - 1 = 4 · 4k - 1 = 4(4k- 1) + 4- 1 = 4(4k- 1) + 3. Since 
4k - 1 and 3 are both divisible by 3, it follows that 4(4k - 1) + 3 is divisible by 
3; hence 4k+l - 1 is divisible by 3. • 

The next example involves some geometry. We wish to cover a chess board 
with special tiles called L-shaped triominoes, or L-triominoes for short. These are 
tiles formed from three 1 x 1 squares joined at their edges to form an L shape. 

It is not possible to tile a standard 8 x 8 chess board with L-triominoes because 
there are 64 squares on the chess board and 64 is not divisible by 3. However, it is 
possible to cover all but one square of the chess board, and such a tiling is shown 
in the figure. 

Is it possible to tile larger chess boards? A 2n x 2n chess board has 4n squares, 
so, applying Proposition 21.7, we know that 4n - 1 is divisible by 3. Hence there 
is a hope that we may be able to cover all but one of the squares. 

Proposition 21.8 Let n be a positive integer. For every square on a 2n x 2n chess board, there is a 
tiling by L-triominoes of the remaining 4n - 1 squares. 

Proof. The proof is by induction on n. The basis case, n = 1, is obvious since 
placing an L-triomino on a 2 x 2 chess board covers all but one of the squares, and 
by rotating the triomino we can select which square is missed. 
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I! 

···········L8··········· 

Suppose (induction hypothesis) that the Proposition has been proved for n = k. 

We are given a 2k+l x 2k+1 chess board with one square selected. Divide 

the board into four 2n x 2n subboards (as shown); the selected square must lie in 

one of these subboards. Place an L-triomino overlapping three corners from the 

remaining subboards as shown in the diagram. 
We now have four 2k x 2k subboards each with one square that does not need 

to be covered. By induction, the remaining squares in the subboards can be tiled 

by L-triominoes. • 

Strong Induction 

Here is a variation on Theorem 21.2. 

Theorem 21.9 (Principle of Mathematical Induction-strong version) Let A be a set of natural 

numbers. If 

• 0 E A and 
• for all k E N, if 0, 1, 2, ... , k E A, then k + 1 E A 

then A= N. 

The proof of this theorem is left to you (see Exercise 21.14). 

Why is this called strong induction? Suppose you are using induction to prove 

a proposition. In both standard and strong induction, you begin by showing the 

basis case (0 E A). In standard induction, you assume the induction hypothesis 

(k E A; i.e., the proposition is true for n = k) and then use that to prove k + 1 E A 

(i.e., the proposition is true for n = k + 1). Strong induction gives you a stronger 

induction hypothesis. In strong induction, you may assume 0, 1, 2, ... , k E A (the 

proposition is true for all n from 0 to k) and use that to prove k + 1 E A (the 

proposition is true for n = k + 1). 
This method is outlined in Proof Template 18. 

Proof Template 18 Proof by strong induction. 

To prove every natural number has some property: 

Proof. 

• Let A be the set of natural numbers for which the result is true. 
• Prove that 0 E A. This is called the basis step. It is usually easy. 

• Prove that if 0, 1, 2, ... , k E A, then k + 1 E A. This is called the inductive 

step. To do this, we 

- Assume that the result is true for n =,0, 1, 2, ... , k. This is called the 

strong induction hypothesis. 
- Use the strong induction hypothesis to prove the result is true for 

n=k+l. 
• Invoke Theorem 21.9 to conclude A= N. 
• Therefore the result is true for all natural numbers. • 
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Proposition 21.10 

Let us see how to use strong induction and why it gives us more flexibility 

than standard induction. We illustrate proof by strong inducti6n on a geometry 

problem. 
Let P be a polygon in the plane. To triangulate a polygon is to draw diagonals 

through the interior of the polygon so that ( 1) the diagonals do not cross each 

other and (2) every region created is a triangle (see the figure). Notice that we have 

shaded two of the triangles. These triangles are called exterior triangles because 

two of their three sides are on the exterior of the original polygon. 
We prove the following result using strong induction. 

If a polygon with four or more sides is triangulated, then at least two of the triangles 

formed are exterior. 

Proof. Let n denote the number of sides of the polygon. We prove Proposi­

tion 21.10 by strong induction on n. 
Basis case: Since this result makes sense only for n ::=:: 4, the basis case is 

n = 4. The only way to triangulate a quadrilateral is to draw in one of the two 

possible diagonals. Either way, the two triangles formed must be exterior. 

Strong induction hypothesis: Suppose Proposition 21.10 has been proved 

for all polygons on n = 4, 5, ... , k sides. 
Let P be any triangulated polygon with k + 1 sides. We must prove that at 

least two of its triangles are exterior. 
Let d be one of the diagonals. This diagonal separates P into two polygons 

A and B where (this is the key comment) A and Bare triangulated polygons with 

fewer sides than P. It is possible that one or both of A and B are triangles them­

selves. We consider the cases where neither, one, or both A and B are triangles. 

• If A is not a triangle: Then, since A has at least four, but at most k sides, by 

strong induction we know that two or more of A's triangles are exterior. Now 

we need to worry: Are the exterior triangles of A really exterior triangles of 

P? Not necessarily. If one of A's exterior triangles uses the diagonal d, then 

it is not an exterior triangle of P. Nonetheless, the other exterior triangle of 

A can't also use the diagonal d, and so at least one exterior triangle of A is 

also an exterior triangle of P. 
• If B is not a triangle: As in the previous case, B contributes at least one 

exterior triangle to P. 
• If A is a triangle: Then A is an exterior triangle of P. 

• If B is a triangle: Then B is an exterior triangle of P. 

In every case, both A and B contribute at least one exterior triangle to P, and 

so P has at least two exterior triangles. • 

Strong induction helped us enormously in this proof. When we considered the 

diagonal d, we did not know the number of sides of the two polygons A and B. All 

we knew for sure was that they had fewer sides than P. To use ordinary induction, 

we would need to have chosen a diagonal such that A had k sides and B had three; 



Curiously, it is harder to 
prove that a triangulated 
polygon has one exterior 
triangle than to prove that 
a triangulated polygon has 
two exterior triangles! See 
Exercise 21.13. 

Fibonacci numbers were 
introduced in 
Definition 20.12. 
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in other words, we would have to select B to be an exterior triangle. The problem 

is that we had not yet proved that a triangulated polygon has an exterior triangle! 

Strong induction gives more flexibility than standard induction because the 

induction hypothesis lets you assume more. It is probably best not to write your 

proof in the style of strong induction when standard induction suffices. In the 

cases where you need to use strong induction, you also have proof by smallest 

counterexample as an alternative. 

A More Complicated Example 

We prove the following result by strong induction. The hard part of this example is 

keeping track of the many binomial coefficients. The overall structure of the proof 

is no different from the proof of Proposition 21.1 0. We follow Proof Template 18. 

Let n E Z and let Fn denote the nth Fibonacci number. Then 

(29) 

Note that the last several terms in the sum are all zero. Eventually the lower 

index in the binomial coefficient will exceed the upper index, and all terms from 

that point on are zero. For example, 

(~) + (~) + G) + (~) + (!) + G) + G) + (~) = 1 + 6 + 1 o + 4 + o + o + o + o 
= 21 = F7. 

In fancy notation, 

n (n _ j) L . =Fn. 
)=0 1 

Before we present the formal proof of Proposition 21.11, let us look to see 

why this might be true and why we need strong induction. 

In general, to prove that some expression gives a Fibonacci number, we use 

the fact that Fn = Fn-1 + Fn-2· If we know that the expression works for Fn-1 and 

Fn_2, then we can add the appropriate expressions and hope we get Fn. In ordinary 

induction, we can only assume the immediate smaller case of the result; here we 

need the two previous values, and strong induction allows us to do this. 

Let's see how we can apply this to Proposition 21.11 by examining the case 

n = 8. We want to prove 

Fs= (~)+G)+···+(~) 
We do this by assuming 

F6 = (~) + (~) + (~) + (~) and 

f?= W +G)+ G)+ G) 
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We want to add these equations because F8 = F7 + F6• The idea is to interleave 

the terms from the two expressions: ~ 

h + F, = G) + (~) + G) + G) + G) + G) + G) + G) 
Now we can use Pascal's identity (Theorem 16.10) to combine pairs of terms: 

(~)+(~)=G) G)+ G)= G) G)+ G)= G) 
We can therefore combine every other term to get 

F, + F, = m + [(~)+G) J + [G)+ G) J + [G)+ G) J +G) 
(~) + (~) + (~) + (~) + (~)· 

We are nearly finished. Notice that the (~) term should be (~) and the (;) term 

should be (:). The good news is that these terms both equal 1, so we can replace 

what we have by what we want to finish this example: 

F, + F, = G) + (~) + (~) + G) + G) + G) + G) + G) 
(~) + (~) + (~) + (~) + (~) 

= (~) + (~) + (~) + (~) + (:). 
The case F9 = F8 + F7 is similar, but there are some minor differences. It 

is important that you write out the steps for this case yourself before reading the 

proof. Be snre you see what the differences are between these two cases. 

Proof (of Proposition 21.11) 

We use strong induction. 
Basis case: The result is true for n = 0; Equation (29) reduces to (~) = 1 = 

F1, which is true. Notice that the result is also true for n = 1 since (~) + G) = 

1 + 0 = 1 = F1. 
Strong induction hypothesis: Proposition 21.11 is true for all values of n 

from 0 to k. (We may also assume k :::: 1 since we have already proved the result 

for n = 0 and n = 1.) 
We seek to prove Equation (29) in the case n = k + 1; that is, we want to 

prove 

(k + 1) (k) (k- 1) 
Fk+l = 0 + 1 + 2 + .... 
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By the strong induction hypothesis, we know the following two equations are true: 

Fk-1- + + + · · · - (k- 1) (k- 2) (k- 3) 
0 1 2 

(k) (k - 1) (k - 2) 
Fk = 0 + 1 + 2 + .... 

We add these two lines to get 

The next step is to combine terms with the same upper index using Pascal's identity 

(Theorem 16.10). First, we are going to worry about where this long sum ends. 

In the case k is even, the sum ends 

and in the case k is odd, it ends 

- (~(k- 1) + 1) (~(k- 1) + 1) (~(k- 1)) 
Fk+1 - ... + 1 + I + I • 

2 (k - 1) - 1 2 (k - 1) 2 (k - 1) 

Now we apply Pascal's identity, combining those pairs of terms with the same 

upper entry (each black term and the color term that follows). 

In the case k is even, we have 

and in the case k is odd, we have 

F = (k) [(k) (k- 1) . . . (~(k- 1) + 2)] (!Ck- 1)) 
k+

1 o + 1 + 2 + + !Ck- 1) + !Ck- 1) 

= (k + 1) [(k) + (k- 1) ... + (!Ck- 1) + 2)] + (!Ck + 1)). 
o + 1 2 + ~(k-1) !Ck+1) 

In both cases, we have verified Equation (29) with n = k + 1, completing the 

proof. • 

The most difficult part of this proof was dealing with the upper and lower 

indices of the binomial coefficients. 
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21 Exercises 

A Matter of Style 

Proof by induction and proof by smallest counterexample are usually interchange­
able. I prefer, however, proof by smallest counterexample. This is mostly a stylistic 
preference, but there is a mathematical reason to prefer the smallest -counterexample 
technique. When mathematicians try to prove statements, they may believe that 
the statement is true, but they don't know-until they have a proof-whether or 
not the statement is true. We often alternate between trying to prove the statement 
and trying to find a counterexample. One way to do both activities simultane­
ously is to try to deduce properties a smallest counterexample might have. In this 
way, we either reach a contradiction (and then we have a proof of the statement) 
or we learn enough about how the counterexample should behave to construct a 
counterexample. 

Recap 

Proof by induction is an alternative method to proof by smallest counterexample. 
The first step in a proof by induction is to prove a basis case (often that the result 
you want to prove is true for n = 0). In standard induction, we make an induction 
hypothesis (the proposition is true when n = k) and use it to prove the next case 
(the proposition is true when n = k + 1). Strong induction is similar, but the 
strong-induction hypothesis is that the proposition is true for n = 0, 1, 2, ... , k. 

Any result you prove by induction (standard or strong) can just as well be 
proved using the smallest-counterexample method. Induction proofs are more 
popular. 

21.1. Induction is often likened to climbing a ladder. If you can master the 
following two skills, then you can climb a ladder: ( 1) get your foot on the 
first rung and (2) advance from one rung to the next. 

Explain why both parts (1) and (2) are necessary, and explain what 
this has to do with induction. 

21.2. Prove Equation (22). 
21.3. Prove the following by induction. In each case, n is a positive integer. 

a. 1 + 4 + 7 + ... + (3n - 2) = n(3~-l). 

b. 13 + 23 + ... + n3 = n2(n:l)2. 

C. 9 + 9 X 10 + 9 X 1 QQ + · · · + 9 X 1 on-l = 1 Qn - 1. 

d. 1~2 + 2~3 + · · · + n(n~l) = 1 - n!1 · 

21.4. Prove the following by induction. In each case, n is a positive integer. 
a. 2n .::::: 2n+l - 2n-l - 1. 

b (1 - .!.)(1 - .!.)(1 - .!.) ... (1 - ..l) > .!. + - 1-• 2 4 8 2" - 4 2n+ I · 

1 1 1 1 1 1 n c. + 2 + 3 + 4 + ... + 2n ~ + 2. 
21.5. A group of people stand in line to purchase movie tickets. The first person 

in line is a woman and the last person in line is a man. Use proof by 

induction to show that somewhere in the line a woman is directly in front 
of a man. 
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21.6. The Tower of Hanoi is a puzzle consisting of a board with three dowels 

and a collection of n disks of n different sizes (radii). The disks have holes 

drilled through their centers so that they can fit on the dowels on the board. 

Initially, all the disks are on the first dowel and are arranged in size order 

(from the largest on the bottom to the smallest on the top). 

The object is to move all the disks to another dowel in as few moves 

as possible. Each move consists of taking the top disk off one of the stacks 

and placing it on another stack, with the added condition that you may not 

place a larger disk atop a smaller one. The figure shows how to solve the 

Tower of Hanoi in three moves when n = 2. 
Prove: For every positive integer n, the Tower of Hanoi puzzle (with 

n disks) can be solved in 2n - 1 moves. 

21.7. Let A1, A2, ... , An be sets (where n 2: 2). Suppose for any two sets Ai 

and Aj either A; ~ Aj or Aj ~ Ai. 
Prove by induction that one of these n sets is a subset of all of them. 

21.8. May a word be used in its own definition? Generally, the answer is no. 

However, in Definition 20.12, we defined the Fibonacci numbers as the 

sequence F0 , F1, F2, ... by setting F0 = 1, F1 = 1, and for n 2: 2, 

Fn = Fn-1 + Fn_2. Notice that we defined Fibonacci numbers in terms of 

themselves! This works because we have defined Fn in terms of previously 

defined Fibonacci numbers. This type of definition is called a recursive 

definition. 
Recursive definitions bear a strong resemblance to proofs by induc­

tion. There are typically one or a few basis cases, and then the rest of the 

definition refers back to smaller cases (this is like the inductive step in a 

proof by induction). 
Induction is the proof technique of choice to prove statements about 

recursively defined concepts. 
The following sequences of numbers are recursively defined. Answer 

the questions asked. 
a. Let a0 = 1 and, for n > 0, let an = 2an_ 1 + 1. The first few terms of 

the sequence a0 , a 1 , a2 , a3 , ••• are 1, 3, 7, 15, .... 

What are the next three terms? 
Prove: an = 2n+1 - 1. 

b. Let bo = 1 and, for n > 0, let bn = 3bn-I- 1. 
What are the first five terms of the sequence b0 , b1, b2, ... ? 

Prove: bn = 3ni1
. 

c. Let co = 3 and, for n > 0, let Cn = Cn-1 + n. 

What are the first five terms of the sequence c0 , c1, c2 , .•. ? 
Prove: Cn = n

2
+2n+6 • 

d. Let do= 2, d1 = 5 and, for n > 1, let dn = 5dn-l - 6dn-2· 

Why did we give two basis definitions? 
What are the first five terms of the sequence do, d 1 , d2, ... ? 

Prove: dn = 2n + 3n. 

e. Let eo = 1, e1 = 4 and, for n > 1, let en = 4 (en-1 - en-2). 

What are the first five terms of the sequence e0 , e1, e2, ... ? 

Prove: en = (n + 1 )211
• 
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f. Let Fn denote the nth Fibonacci number. Prove: 

21.9. A flagpole is n feet tall. On this pole we display flags of the following 
types: red flags that are 1 foot tall, blue flags that are 2 feet tall, and green 
flags that are 2 feet tall. The sum of the heights of the flags is exactly n 
feet. 

Prove that there are ~ 2n + ~ ( -1 )n ways to display the flags. 
21.10. Prove that every positive integer can be expressed as the sum of distinct 

Fibonacci numbers. 
For example, 20 = 2 + 5 + 13 where 2, 5, 13 are, of course, Fibonacci 

numbers. Although we can write 20 = 2 + 5 + 5 + 8, this does not illustrate 
the result because we have used 5 twice. 

21.11. Consider the following computer program. 

function findMax(array, first, last) { 

} 

if (first == last) return array[first]; 
mid = first + (last-first)/2; 
a= findMax(array,first,mid); 
b = findMax(array,mid+1,last); 
if (a<b) return b; 
return a; 

Here array is an array of integers. All other variables are integers. We 
assume that first and last are between 1 and the number of elements 
in array and that first ::::; last. 

The purpose of this program is to find the largest value in the ar­
ray between two indices; that is, it should return the largest value of 
array[first],array[first+1], ... ,array[last]. 

Your job: Prove that this program fulfills this task. 
[Technical note: If last-first is odd, then (last-first) /2 is 

rounded down to the nearest integer. For example, if first is 7 and last 
is 20, then (last-first) /2 is 6.] 

21.12. Consider the following computer program. 

function lookUp(array, first, last, key) { 
mid = first + (last-first)/2; 

} 

if (array[mid] == key) return mid; 
if (array[mid] >key) return lookUp(array,first,mid-1,key); 
return lookUp(array,mid+1,last,key); 

Here array is an array of integers; all other variables represent integers. 
The values stored in array are sorted; that is, we know that 

array [1] < array [2] < array [3] < · · ·. 
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We also know that 1 ::::; first ::::; last and that there is some index j 

between first and last for which array [j] is equal to key. 

Prove that this program finds that index j. 

21.13. Try to prove, using strong or standard induction, that a triangulated polygon 

has at least one exterior triangle. 
What goes wrong when you try to do your proof? 

The harder theorem (" ... has at least two exterior triangles") is easier 

to prove than the easier theorem(" ... has at least one exterior triangle"). 

This phenomenon is known as induction loading. 

21.14. Prove Theorem 21.9. 
21.15. Prove, using strong induction, that every natural number can be expressed 

as the sum of distinct powers of 2. For example, 21 = 24 + 22 + 2°. 

21.16. We showed how to prove the Principle of Mathematical Induction (The­

orem 21.2) by use of the Well-Ordering Principle. Now do the opposite. 

Use induction to prove the Well-Ordering Principle (Statement 20.6). 

22 Recurrence Relations 
Proposition 21.3 gives a formula for the sum of the squares of the natural numbers 

upton: 

0
2 2 2 2 (2n + 1)(n + 1)(n) 

+1 +2 +···+n = . 
6 

How did we derive this formula? 
In Exercise 21.8d you were told that a sequence of numbers, d0 , d 1, d2 , d3 , ... 

satisfies the conditions d0 = 2, d1 = 5, and d11 = 5d11 _ 1 - 6d11 _ 2 and you were 

asked to prove that d11 = 211 + 311
• More dramatically, in the same problem, you 

were asked to prove the following complicated expression for the nth Fibonacci 

number: 

How did we create these formulas? 
In this section we present methods for solving a recurrence relation: a formula 

that specifies how each term of a sequence is produced from earlier terms. 

For example, consider a sequence a0 , a 1, a2 , ••. defined by 

a11 = 3an-1 + 4a11 -2, ao = 3, a1 = 2. 

We can now compute a2 in terms of a0 and a 1, and then a3 in terms of a2 and a 1, 

and so on: 

a2 = 3al + 4ao = 3 x 2 + 4 x 3 = 18 

a3 = 3a2 + 4a 1 = 3 x 18 + 4 x 2 = 62 

a4 = 3a3 + 4a2 = 3 x 62 + 4 x 18 = 258. 
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The recurrence relations 

with which we begin are 

called first order because 

a11 can be expressed just in 

terms of the immediate 

previous element of the 

sequence, a"_ 1. 

Because the 11rst term of 

the sequence is oo. it is not 

meaningful to speak of the 

term a __ 
1

• Therefore, the 

recurrence relation holds 

only for n ::::_ I. The value 

of a 0 must be given 

separately. 

Our goal is to have a simple method to convert the recurrence r~lation into an 

explicit formula for the nth term of the sequence. In this case, an = 4n + 2 · ( -l)n. 

First-Order Recurrence Relations 

The simplest recurrence relation is an = an_ 1. Each term is exactly equal to the 

one before it, so every term is equal to the initial term, a0 • 

Let's try something only slightly more difficult. Consider the recurrence rela­

tion an = 2an_1. Here, every term is twice as large as the previous term. We also 

need to give the initial term-say, a0 = 5. Then the sequence is 5, 10, 20, 40, 80, 

160, .... It's easy to write down a formula for the nth term of this sequence: 

an= 5 X 2n. 
More generally, if the recurrence relation is 

then each term is just s times the previous term. Given a0 , then nth term of this 

sequence is 

Let's consider a more complicated example. Suppose we define a sequence 

by 

an = 2an-1 + 3, ao = 1. 

When we calculate the first several terms of this, sequence we find the following 

values: 

1, 5, 13, 29, 61, 125, 253, 509, 

Because the recurrence relation involves doubling each term, we might suspect 

that powers of 2 are present in the formula. With this in mind, if we stare at the 

sequence of values, we might realize that each term is 3 less than a power of 2. We 

can rewrite the sequence like this: 

4-3, 8-3, 16-3, 32-3, 64-3, 128-3, 256-3, 512-3, 

With this, we obtain an = 4 x 2n - 3. 

Unfortunately, "stare and hope you recognize" is not a guaranteed procedure. 

Let's try to analyze this recurrence relation again in a more systematic fashion. 

We begin with the recurrence an = 2an_1 + 3 but leave the initial term a0 

unspecified for the moment. We derive an expression for a 1 in terms of a0 using 

the recurrence relation: 

a1 = 2ao + 3. 

Next, let's find an expression for a2 . We know that a2 = 2a1 + 3, and we have an 

expression for a 1 in terms of a0 . Combining these, we get 

a2 = 2a1 + 3 = 2(2ao + 3) + 3 = 4ao + 9. 
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Now that we have a2 , we work out an expression for a3 in terms of a0 : 

a3 = 2a2 + 3 = 2(4ao + 9) + 3 = 16ao + 21. 

Here are the first several terms: 

ao = ao 

a1 = 2ao + 3 

a2 = 4ao + 9 

a3 =Sao+ 21 

a4 = 16a0 + 45 

as= 32ao + 93 

a6 = 64a0 + 189. 

One part of this pattern is obvious: an can be written as 211 ao plus something. It's 
the "plus something" that is still a mystery. We can try staring at the extra terms 
0, 3, 9, 21, 45, 93, 189, ... in the hope of finding a pattern, but we don't want to 
resort to that. Instead, let's trace out how the term +189 was created in a6 . We 
calculated a6 from as: 

a6 = 2as + 3 = 2(32ao + 93) + 3 

so the + 189 term comes from 2 x 93 + 3. Where did the 93 term come from? Let's 
trace these terms back to the beginning: 

189 = 2 X 93 + 3 

= 2 X (2 X 45 + 3) + 3 

= 2 X (2 X (2 X 21 + 3) + 3) + 3 

= 2 X (2 X (2 X (2 X 9 + 3) + 3) + 3) + 3 

= 2 X (2 X (2 X (2 X (2 X 3 + 3) + 3) + 3) + 3) + 3. 

Now let's rewrite the last temi as follows: 

2 X (2 X (2 X (2 X (2 X 3 + 3) + 3) + 3) + 3) + 3 

= 2S X 3 + 24 
X 3 + 23 X 3 + 22 

X 3 + 21 
X 3 + 2° X 3 

= (2S + 24 + 23 + 22 + 21 + 2°) X 3 

= (26 - 1) X 3 = 63 X 3 = 189 

Based on what we have learned, we predict a7 to be 

a7 = 128a0 + (27
- 1) x 3 = 2\a0 + 3)- 3 = 128a0 + 381 

and this is correct. 
We are now ready to conjecture the solution to the recurrence relation a11 = 

2an-1 + 3. It is 

Once we have the formula in hand, it is easy to prove it is correct using 
induction. However, we don't want to go through all that work every time we 
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need to solve a recurrence relation; we want a much simpler method. We seek a 
- .. 

ready-made answer to a recurrence relation of the form 

an= san-1 + t 
where s and t are given numbers. Based on our experience with the recurrence 

an = 2an-l + 3, we are in a position to guess that the formula for an will be of the 

following form: 

an = (a number) x sn + (a number). 

Let's see that this is correct by finding a 1, a2 , etc., in terms of a0 : 

ao = ao 

a1 =sao+ t 

a2 = sa1 + t = s(sao + t) + t = s2ao + (s + 1)t 

a3 = sa2 + t = s (s 2ao + (s + 1)t) + t = s 3 a0 + (s2 + s + 1)t 

a4 = sa3 + t = s ( s 3 ao + (s2 + s + l)t) = s4 ao + (s3 + s 2 + s + 1)t. 

Continuing with this pattern, we see that 

an = snao + (sn-1 + sn-2 + · · · + s + 1)t. 

We can simplify this by noticing that sn-l + sn-2 + · · · + s + 1 is a geometric 

series whose sum is 
sn- 1 

s- 1 

provided s ::f. 1 (a case with which we will deal separately). We can now write 

or, collecting the sn terms, we have 

( 
t ) n t an= ao + -- s ---. 

s-1 s-1 
(30) 

Despite the precise nature of Equation (30), I prefer expressing the answer as 

in the following result because it is easier to remember and just as useful. 

Proposition 22.1 All solutions to the recurrence relation an = san_1 + t where s ::f. 1 have the form 

where c1 and c2 are specific numbers. 

Let's see how to apply Proposition 22.1. 

Example 22.2 Solve the recurrence an = San-1 + 3 where ao = 1. 

Solution: We have an = c15n + c2. We need to find c1 and c2. Note that 

ao = 1 = c1 + c2 

a1 = 8 = Sc1 + c2. 
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Solving these equations, we find c1 = i and c2 = - ~, and so 

7 n 3 
an=-. 5 - -. 

4 4 

We have a small bit of unfinished business: the case s = 1. Fortunately this 
case is easy. The recurrence relation is of the form 

where tis some number. It's easy to write down the first few terms of this sequence 
and see the result: 

ao = ao 

a1 = ao + t 
az = a1 + t = (ao + t) + t = ao + 2t 

a3 = az + t = (ao + 2t) + t = ao + 3t 

a4 = a3 + t = (a0 + 3t) + t = ao + 4t. 

See the pattern? In retrospect, it's pretty obvious. 

Proposition 22.3 The solution to the recurrence relation an =an-I +tis 

In a second-order 
recurrence relation, an is 
Specified in terms of an-I 

and a11 _ 2 • Since the 

sequence begins with a0 , 

the recurrence relation is 
valid for n ~ 2. The values 
of ao and a1 must be given 
separately. 

an= ao + nt. 

Second-Order Recurrence Relations 

A second-order recurrence relation gives each term of a sequence in terms of the 
previous two terms. Consider, for example, the recurrence 

(31) 

(This is the recurrence from Exercise 21.8d.) Let us ignore the fact that we already 
know a solution to this recurrence and do some creative guesswork. A first-order 
recurrence, an = s an-I has a solution that's just powers of s. Perhaps such a 
solution is available for Equation (31). We can try an = 5n or perhaps an = 6n, 
but let's hedge our bets and guess a solution of the form an = rn for some number 
r. We'll substitute this into Equation (31) and hope for the best. Here goes: 

Dividing this through by rn-z gives 

r2 = 5r- 6 

a simple quadratic equation. We can solve this as follows: 

r2 = 5r-6 ::::> 0 = r2 -5r+6 = (r-2)(r-3) r = 2, 3. 

This suggests that both 2n and 3n are solutions to Equation (31 ). To see that this is 
correct, we simply have to check whether 2n (or 3n) works in the recurrence. That 
is, we have to check whether 2n = 5 · 2n-J - 6 · 2n-Z (and likewise for 3n). Here 
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There is a rough edge in 
this calculation; since we 
are dividing by r"-2 this 
analysis is faulty in the 
case r = 0. However, this 
is not a problem because 
we check our work in a 
moment by a different 

method. 

are the proofs: 

5 · 2n-1 - 6 · 2n-2 = 5 · 2n-1 - 3 · 2 · 2n-2 

= 5 . 2n-1 - 3 . 2n-1 

= (5 - 3) · 2n-1 = 2n 

5 . 3n-1 - 6 . 3n-2 = 5 . 3n-1 - 2 . 3 . 3n-2 

= 5. 3n-1 - 2. 3n-1 

= (5 - 2) · 3n-1 = 3n. 

We have shown that 2n and 3n are solutions to Equation (31). Are there other 

solutions? Here are two interesting observations. 
First, if an is a solution to Equation (31 ), so is can where c is any specific 

number. To see why, we calculate 

can = c (5dn-1 - 6an-2) = 5(can-1) - 6(can-2). 

Since 2n is a solution to (31 ), so is 5 · 2n. 
Second, if an and a~ are both solutions to Equation (31 ), then so is an + a~. 

To see why, we calculate: 

an +a~= (5an-1- 6an-2) + (5a~_ 1 - 6a~_2) = 5(an-1 +a~_ 1)- 6(an-2 +a~-2). 

Since 2n and 3n are solutions to Equation (31), so is 2n + 3n. 
Based on this analysis, any expression of the form c12n + c2 3n is a solution 

to Equation (31). Are there any others? The answer is no; let's see why. 
We are given that an = 5an_1 - 6an_2. Once we have set specific values for 

a
0 

and a
1

, a2, a
3

, a4 , ••• are all determined. If we are given a0 and a1. we can set 

up the equations 

ao = Ct2° + c23° = c1 + c2 

a1 = c12
1 + c231 = 2c1 + 3c2 

and solve these for c1 , c2 to get 

c1 = 3ao- a1 

c2 = -2ao + a1. 

Thus, any solution to Equation (31) can be expressed as 

an= (3ao- at)2n + (-2ao +at)3n. 

Encouraged by this success, we are prepared to tackle the general problem 

(32) 

where s1 and s2 are given numbers. 
We guess a solution of the form an = rn, substitute into Equation (32), and 

hope for the best: 

an = Stan-1 + s2an-2 

rn = s1rn-1 + S2rn-2 

r2 = s1r + s2 
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so the r we seek is a root of the quadratic equation x 2
- s1x- s2 = 0. Let's record 

this as a proposition. 

Proposition 22.4 Let s1, s2 be given numbers and suppose r is a root of the quadratic equation 

x 2 - s1x - s2 = 0. Then an = rn is a solution to the recurrence relation a11 = 
SJan-1 + S2an-2· 

Proof. Let r be a root of x 2 - s1x- s2 = 0 and observe 

s1rn-1 + s2rn-2 = rn-2(s1r + s2) 

= rn-2r2 because r2 = s1 r + s2 

Therefore rn satisfies the recurrence an = s1 an-1 + s2an-2· • 
We're now in a good position to derive the general solution to Equation (32). 

As we saw with Equation (31), if an is a solution to (32), then so is any constant 

multiple of an-that is, can. Also, if an and a;
1 

are two solutions to (32), then so is 

their sum an + a~. 
Therefore, if r 1 and r2 are roots of the polynomial x 2

- s1x - s2 = 0, then 

is a solution to Equation (32). 
Are these all the possible solutions? The answer is yes in most cases. Let's 

see what works and where we run into some trouble. 
The expression c1 r~ + c2r~ gives all solutions to (32) provided it can produce 

a0 and a 1 ; if we can choose c 1 and c2 so that 

ao = c1 r? + c2r~ = c1 + c2 
I I 

a1 = c1r1 + c2r2 = r1c1 + r2c2 

then every possible sequence that satisfies (32) is of the form c 1 r~ + c2r~. So all 

we have to do is solve those equations for c1 and c2 • When we do, we get this: 

and 

All is well unless r 1 = r2 ; we'll deal with this difficulty in a moment. First, let's 

write down what we know so far. 

Theorem 22.5 Let s1, s2 be numbers and let r1, r2 be roots of the equation x 2 - s1x - s2 = 0. If 

r1 # r2, then every solution to the recurrence 

is of the form 
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Example 22.6 Find the solution to the recurrence relation 

Solution: Using Theorem 22.5, we find the roots of the quadratic equation x 2 -

3x-4 = 0. This polynomial factors x 2 - 3x-4 = (x- 4) (x + 1) so the roots of the 

equation are r 1 = 4 and r 2 = -1. Therefore an has the form an = c14n + Cz ( -1 )n. 

To find c1 and c2 , we note that 

ao = c14° + Cz( -1)0 

a1 = c141 + Cz(-1) 1 

Solving these gives 

c1 = 1 and c2 = 2. 

Therefore an = 4n + 2. ( -l)n .. 

3 = c1 + Cz 
2 = 4cl- Cz 

Example 22.7 The Fibonacci numbers are defined by the recurrence relation Fn = Fn-l + Fn-Z· 

Using Theorem 22.5, we solve the quadratic equations x 2 - x -1 = 0 whose roots 

are (1 ± ,J"S) j2. Therefore there is a formula for Fn of the form 

(1+,JS)n (1-,JS)n 
Fn = C1 

2 
+ Cz 

2 

We can work out the values of c1 and c2 based on the given values of F0 and F1. 

Example 22.8 Solve the recurrence relation 

where a0 = 1 and a 1 = 3. 

Solution: The associated quadratic equation is x 2 - 2x + 2 = 0, which, by the 

quadratic formula, has two complex roots: 1 ± i. Do not panic. There is nothing in 

the work we did that required the numbers involved to be real. We now just seek a 

formula of the form an = c1 (1 + it + c2 (1 - i)n. Examining ao and a 1, we have 

ao = 1 = cr + Cz 

ar = 3 = (1 + i)cr + (1 - i)cz. 

Solving these gives Cr = ~- i and Cz = ~ + i. Therefore an=(~- i)(l + i)n + 
C4 + i)(l- i)n. 

The Case of the Repeated Root 

We now consider the recurrence relations in which the associated polynomial 

x 2
- s1x- s2 has only one root. We begin with the following recurrence relation: 

(33) 
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with a0 = 1 and a 1 = 3. The first few values of an are 1, 3, 8, 20, 48, 112, 256, 
and 576. 

The quadratic equation associated with this recurrence relation is 

x 2 - 4x + 4 = 0, which factors (x - 2) (x - 2). So the only root is r = 2. We 

might hope that the formula for an takes the form an = c2n, but this is incorrect. 

Consider the first two terms: 

ao = 1 = c2° and a 1 = 3 = c21
• 

The first equation implies c = 1 and the second implies c = ~. 
We need a new idea. We hope that 2n is involved in the formula, so we try a 

different approach. Let us guess a formula of the form 

an = c(n)211 

where we can think of c(n) as a "changing" coefficient. Let's work out the first 

few values of c(n) based on the values of an we already calculated: 

ao = 1 = c(0)2° ::::} c(O) = 1 

a1 = 3 = c(l)21 

a2 = 8 = c(2)22 

a3 = 20 = c(3)23 

a4 = 48 = c(4)24 

a5 = 112 = c(5)25 

::::} 

::::} 

::::} 

::::} 

::::} 

3 
c(l) = 2 
c(2) = 2 

5 
c(3) = 2 
c(4) = 4 

7 
c(5) = 2 

The "changing" coefficient c(n) works out to something simple: c(n) = 1 + ~n. 
We therefore conjecture that a11 = (1 + ~n)2n. 

Please note that the solution has the following form: an = c12n + c2n211
• Let's 

show that all sequences of this form satisfy the recurrence relation in (33): 

4an-l- 4an-2 = 4 (c12n-l + c2(n- 1)2n-I)- 4 (c12n-l + c2(n- 2)211
-

2
) 

= [2c12n - CJ2n] + [2c2n2n - C2n2n] + [ -4 · 2n-l + 8 · 2n-l] 

= CJ211 + C2n2n + 0 =an. 

So every sequence of the form a11 = c12n + c2n2n is a solution to Equation (33). 

Have we found all solutions? Yes we have, because we can choose c 1 and c2 to 

match any initial conditions a0 and a1; here's how. We solve 

which gives 

ao = c12° + c2 · 0 · 2° 

a1 = c121 + c2 • 1 · 21 

1 
c1 = a0 and c2 = -ao + -aJ. 

2 

Since the formula an = 2n + ~ n2n is of the form CJ211 + c2n2n, we know it 

satisfies the r~currence (33). Substituting n = 0 and n = 1 in the formula gives 
the correct values of a0 and a1 (namely, 1 and 3), it follows that we have found the 

solution to Equation (33). 
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Inspired by this success, we assert and prove the following sta~ement. Notice 

the requirement that r =!= 0; we'll treat the case r = 0 as a special c~se. 

Theorem 22.9 Let s1, s2 be numbers so that the quadratic equation x 2 - s1x - s2 = 0 has exactly 

one root, r =!= 0. Then every solution to the recurrence relation 

is of the form 

Proof. Since the quadratic equation has a single (repeated) root, it must be of 

the form (x - r)(x - r) = x 2 - 2rx + r2. Thus the recurrence must be an = 

2ran-1 - r2an-2· 
To prove the result, we show that an satisfies the recurrence and that c1, c2 can 

be chosen so as to produce all possible a0 , a 1. 

To see that an satisfies the recurrence, we calculate as follows: 

2ran-1- r2an-2 = 2r(clrn-l + c2(n- 1)rn-l)- r2(c1rn-2 + c2(n- 2)rn-2) 

= (2clrn- c1rn) + (2c2(n- 1)rn- c2(n- 2)rn) 

= clrn + c2nrn =an. 

To see that we can choose c1, c2 to produce all possible a0 , a 1, we simply solve 

ao = c1r0 + c2 · 0 · r0 = c1 

a1 = c1r 1 + c2 · 1 · r = r(c1 + c2). 

So long as r =!= 0, we can solve these. They yield 

aor -a1 
c1 = a0 and c2 = . 

r • 
Finally, in case r = 0, the recurrence is simply an = 0, which means that all 

terms are zero. 

Sequences Generated by Polynomials 

We began this section by recalling Proposition 21.3, which gives a formula for the 

sum of the squares of the natural numbers upton: 

02 + 12 + 22 + ... + n2 = (2n + 1)~n + 1)(n). 

Notice that the formula for the sum of the first n squares is a polynomial expression. 

In Exercise 21.3b you were asked to show that the sum of the firstn cubes is n2 (n+ 

1)2 /4-another polynomial expression. Proving these by induction is relatively 

routine, but how can we figure out the formulas in the first place? 



The difference operator f). 

should not be confused 

with the symmetric 

difference operation, also 

denoted by f).. The 

difference operator 

converts a sequence of 

numbers into a new 

sequence of numbers, 

whereas the symmetric 

difference operation takes 

a pair of sets and returns 

another set. 

Example 22.10 

The degree of a polynomial 

expression is the largest 

exponent appearing in the 

expression. For example, 

3n5
- n2 + 10 is a 

degree-S polynomial inn. 

Proposition 22.11 
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Good news: We will now develop a simple method for detecting whether 

a sequence of numbers is generated by a polynomial expression and, if so, for 

determining the polynomial that created the numbers. 

The key is the difference operator. Let a0, a I, a2, ... be a sequence of numbers. 

From this sequence we form a new sequence 

in which each term is the difference of two consecutive terms of the original 

sequence. We denote this new sequence as ~a. That is, ~a is the sequence whose 

nth term is ~an = an+l -an. We call~ the difference operator. 

Let a be the sequence 0, 2, 7, 15, 26, 40, 57, .... The sequence ~a is 2, 5, 8, 11, 

14, 17. This is easier to see if we write the sequence a on one row and ~a on a 

second row with ~an written between an and an+ I. 

a: 0 2 7 15 26 40 57 

~a: 2 5 8 11 14 1 7 

If the sequence an is given by a polynomial expression, then we can use that 

expression to find a formula for ~a. For example, if an = n 3 - 5n + 1, then 

~an= an+l- an 

= [(n + 1)3
- 5(n + 1) + 1] - [n 3 

- 5n + 1] 

= n3 + 3n2 + 3n + 1 - 5n - 5 + 1 - n3 + 5n - 1 

= 3n2 + 3n- 4. 

Notice that the difference operator converted a degree-3 polynomial formula, n3
-

5n + 1, into a degree-2 polynomial. 

Let a be a sequence of numbers in which an is given by a degree-d polynomial 

in n where d :::: 1. Then ~a is a sequence given by a polynomial of degree 

d-1. 

Proof. Suppose an is given by a polynomial of degree d. That is, we can write 

where cd =f. 0 and d :::: 1. We now calculate ~an: 

~an = an+l -an 

= [cd(n + 1)d + cd-I (n + 1)d-l + · · · + Ct (n + 1) +co] 

- [cdnd + cd-lnd-I + · · · + c1n +co] 
= [cd(n + 1)d- cdnd] + [cd-1 (n + 1)d-l - cd-lnd- 1] 

+ · · · + [c1 (n + 1) - c1 n] + [co - co]. 
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Each term on the last line is of the form cj(n + l)j- Cjnj. We expand the (n + l)j 

term using the Binomial Theorem (Theorem 16.8) to give r 

cj(n + i)j- cjnj = Cj [nj + ({)nj-1 + (;)nj-
2 + · · · + G)n"]- Cjnj 

= Cj [ G)nj-1 + (;)nj-
2 + ... +G)]. 

Notice that cj(n + l)j - cjnj is a polynomial of degree j- 1. Thus, if we look 

at the full expression for /).an, we see that the first term cd(n + l)d - cdnd is a 

polynomial of degree d - 1 (because cd i= 0) and none of the subsequent terms 

can cancel the nd-1 term because they all have degree less than d- 1. Therefore 

/).an is given by a polynomial of degree d - 1. • 

If a is given by a polynomial of degree d, then /).a is given by a polynomial of 

degree d- 1. This implies that !}.(!}.a) is given by a polynomial of degree d- 2, 

and so on. Instead of !}. (!}.a), we write !}. 2 a. In general, !}. k a is !}. (!}. k- 1 a) and !}. 1 a 

is just /).a. 

What happens if we apply!}. repeatedly to a polynomially generated sequence? 

Each subsequent sequence is a polynomial of one lower degree until we reach a 

polynomial of degree zero-which is just a constant. If we apply !}. one more time, 

we arrive at the all-zero sequence! 

Corollary 22.12 If a sequence a is generated by a polynomial of degree d, then !}.d+1a is the all-zeros 

sequence. 

Example 22.13 The sequence 0, 2, 7, 15, 26, 40, 57, ... from Example 22.10 is generated by a 

polynomial. Repeatedly applying !}. to this sequence gives this: 

a: 0 2 7 15 26 40 57 
/}.a: 2 5 8 11 14 17 

/}.2a: 3 3 3 3 3 
!}.3a: 0 0 0 0 

Corollary 22.12 tells us that if an is given by a polynomial expression, then 

repeated applications of !}. will reduce this sequence to all zeros. We now seek to 

prove the converse; that is, if there is a positive integer k such that !}. k an is the 

all-zeros sequence, then an is given by a polynomial formula. Furthermore, we 

develop a simple method for deducing the polynomial that generates an. 

Our first tool is the following simple proposition. 

Proposition 22.14 Let a, b, and c be sequences of numbers and lets be a number. 

(1) If, for all n, Cn =an + bn, then /).en = /).an + !}.bn. 

(2) If, for all n, bn = san, then !}.bn = s /).an. 



For those who have studied 
linear algebra. If we think 

of a sequence as a vector 

(with infinitely many 

components), then 

Proposition 22.14 says 

that ~ is a linear 

transformation. 

Not only can G) be 
expressed as a polynomial 

in n, but the same is true 

for all G) (where k is a 

positive integer). Using 

Theorem 16.12, when 

n :::_ k, write G) as 

n(n-l)(n-2)· · ·(n-k+ 1) 

k! 

For the case 0 :::::: n < k, 
observe that both (n and 

the polynomial evaluate to 

zero. Thus for every 

positive integer k, G) can 

be written as a polynomial 

of degree k. 
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This proposition can be written more succinctly as follows: ~(an + b11 ) 

~an+ ~bn and ~(san)= s~an. 

Proof. Suppose first that for all n, en = a11 + h11 • Then 

~Cn = Cn+l - Cn 

= (an+l + bn+I)- (an+ bn) 

= (an+l -an) + (bn+l - bn) 

=~an+ ~bn. 

Next, suppose that bn = sa11 • Then 

• 
The next step is to understand how ~ treats some particular polynomial se­

quences. We start with a specific example. 
Letabethesequencewhosenthtermisa11 = G).Forexample,a5 = (D = 10. 

By Theorem 16.12, we can write 

(n) n! 
an= 3 =(n-3)!3! 

n(n- 1)(n- 2)(n- 3)(n- 4) · · · (2)(1) 

(n- 3)(n- 4) · · · (2)(1) · 3! 

1 = -n(n- 1)(n- 2) 
6 

which is a polynomial. This formula is correct, but there is a minor error. The 

formula G) = (n:i)!k! applies only when 0 :::: k :::: n. The first few terms of 

the sequence, a0 , a 1, a2 , are (~), G), and G). All of these evaluate to zero, but 

Theorem 16.12 does not apply to them. Fortunately, the polynomial expression 

in(n - 1)(n - 2) also evaluates to zero for n = 0, 1, 2, so the formula an = 

in(n- 1)(n- 2) is correct for all values of n. 
Now let's calculate ~an, ~ 2 a11 , and so on, until we reach the all-zeros sequence 

(which, by Corollary 22.12, should be by ~4an). 

an: 0 0 0 4 10 20 35 56 

~an: 0 0 3 6 10 15 21 

~2an: 0 2 3 4 5 6 

~3an: 
~4an: 0 0 0 0 0 

Please note that every row of this table begins with a zero except for row ~ 3 a11 , 

which begins with a one. 
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Since an = G) is a polynomial of degree 3, we know that llpn is a polynomial 

of degree 2. Let's work this out algebraically: 

,;a.= ,;G) (n; I)- G) 
1 1 

= 6(n + 1)(n)(n- 1)- 6n(n- 1)(n- 2) 

(n 3 - n) - (n 3 - 3n2 + 2n) 3n2 - 3n 

6 6 

= ~n(n- I) = G). 
Having discovered that tl G) = tl G), we wonder whether there is an easier 

way to prove this (there is) and whether this generalizes (it does). 

We seek a quick way to prove that tl G) = G). This can be rewritten c; 1) -

(;) = G), which can be rearranged to G) + (;) = (n;1
). This follows directly 

from Pascal's Identity (Theorem 16.10). 

Seeing that tl (;) = G), it's not a bold leap to guess that tl G) = (;), or 

in general tl G) = (k:J. The proof is essentially a direct application of Pascal's 

Identity (with a bit of care in the case n < k). 

Proposition 22.15 Let k be a positive integer and let an = G) for all n :::: 0. Then tlan = c:J. 

Proof. We need to show that tl G) = (k:1) for all n ;::: 0. This is equivalent to 

(n;1) - G) = (k:1) which in turn is the same as 

(34) 

By Pascal's Identity (Theorem 16.10), Equation (34) holds whenever 0 < k < 

n + 1, so we need only concern ourselves with the case n + 1 ::=: k (i.e., n ::=: k -1). 

In the case n < k - 1, all three terms, (n;1), (Z), and (k:1), equal zero, so 

(34) holds. 
In the case n = k - 1, we have (n;1

) = (~) = 1, (~) = e;1
) = 0, and 

c:l) = (~=~) = 1, and (34) reduces to 1 = 0 + 1. • 

Earlier we noted that for an = (;), we have that f:ll a0 = 0 for all j except 

j = 3, and tl 3 a0 = 1. This generalizes. Let k be a positive integer and let an = G). 
Because an is expressible as a degree-k polynomial, f:lk+ 1an = 0 for all n. Using 

Proposition 22.15, we have that a0 = tla0 = tl2a0 = · · · = tlk- 1a0 = 0 but 

tl k ak = 1; see Exercise 22.5. 
Thus, for the sequence an = (~),we know (1) that f:lk+ 1an = 0 for all n, (2) 

the value of a0 , and (3) the value of f:li a0 for 1 ::=: j < k. We claim that these 

three facts uniquely determine the sequence an. Here is a careful statement of that 

assertion. 
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Proposition 22.16 Let a and b be sequences of numbers and let k be a positive integer. Suppose that 

J:).kan and J:).kbn are zero for all n, 
• ao = bo, and 

/:). J ao = /:). J b0 for all 1 :::=: j < k. 

Then an = bn for all n. 

Proof. The proof is by induction on k. 
The basis case is when k = 1. In this case we are given that /:).an = f:).bn = 0 

for all n. This means that an+J -an = 0 for all n, which implies that an+J = an 

for all n. In other words, all terms in an are identical. Likewise for bn. Since we 

also are given that a0 = b0 , the two sequences are the same. 
Now suppose (induction hypothesis) that the Proposition has been proved for 

the case k = e. We seek to prove the result in the case k = .e + 1. To that end, let 

a and b be sequences such that 

J:).f+ 1an = J:).f+ 1bn = 0 for all n, 
• ao = bo, and 

/:). J ao = /:). J b0 for all 1 :::=: j < .e + 1. 

Consider the sequences a~ = /:).an and b~ = f:).bn. By our hypotheses we see 

that /:).ea~ = f:).eb~ = 0 for all n, ab = bb, and J:).iab = J:).ibb for all1 :::=: j <.e. 
Therefore, by induction, a' and b' are identical (i.e., a~ = b~ for all n ). 

We now prove that an = bn for all n. Suppose, for the sake of contradiction, 

that a and b were different sequences. Choose m to be the smallest subscript so 

that am =f. bm. Note that m =f. 0 because we are given a0 = b0 ; thus m > 0. Thus 

we know am~J = bm~l· We also know that a~~J = b~~l; here is why: 

a~~l = /:).am~l =am- am~J 

= b~~J = f:).bm~l = bm - bm~1 

am- am~J = bm- bm~! 

am - bm = am~! - bm~l = 0 

Thus an = bn for all n. • 

We are now ready to present our main result about sequences generated by 

polynomial expressions. 

Th eo rem 22. 17 Let a0 , a 1, a2 , ••• be a sequence of numbers. The terms an can be expressed as 

polynomial expressions in n if and only if there is a nonnegative integer k such 

that for all n ~ 0 we have J:).k+lan = 0. In this case, 

a,= aoG) + (L>ao) G)+ (L> 2ao) (;) + · · · + (L>'ao) (:) 
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Proof. One half of the if-and-only-if statement has already b~en proved: If an is 
given by a polynomial of degree d, then ~d+lan = 0 for all n (Corollary 22.12). 

Suppose now that a is a sequence of numbers and that there is a natural number 
k such that for all n, ~k+ 1 an = 0. We prove that an is given by a polynomial 
expression by showing that an is equal to 

To show that an = bn for all n, we apply Proposition 22.16; that is, we need to 

prove 

(1) ~k+ 1 an = ~k+ 1 bn = 0 for all n, 
(2) ao = bo, and 
(3) ~ia0 = ~ib0 for all1 :::=: j :::=: k. 

We tackle each in tum. 
To show (1), note that ~k+ 1 an = 0 for all n by hypothesis. Notice that bn is a 

polynomial of degree k, and so ~k+ 1 bn = 0 for all n as well (by Corollary 22.12). 
It is easy to verify (2) by substituting n = 0 into the expression for bn; every 

term except the first evaluates to zero, and the first term is ao (~) = ao. 
Finally, we need to prove (3). The notation can become confusing as we 

calculate ~J bn-there will be too many ~scrawling around the page! To make 
our work easier to read, we let 

and so we can rewrite bn as 

Now, to calculate ~J bn we apply Proposition 22.14, Proposition 22.15, and Corol­

lary 22.12: 

Nbn = t,i [coG) +c1 G)+ cz(;) + · · · + c, G)] 
=cot>;(~) + c1t,i G) + c2t,i (;) + · · · + c,t>i (:) 

= 0 + ... + 0+ c;f>i C) + c;+If>t: 1) + ... + c,t>i G) 
=c;(~) +c;+l(~) +···+c,(k:J 

We substitute n = 0 into this, which gives 

~ i bo = c J + 0 + · · · + 0 = ~ 1 ao 

and this completes the proof. • 
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Example 22.18 We return to the sequence presented in Examples 22.10 and 22.13: 0, 2, 7, 15, 26, 

40, 57, .... We calculated successive differences and found this: 

a: 0 2 7 15 26 40 57 

f). a: 2 5 8 11 14 17 
£).2a: 3 3 3 3 3 
£).3a: 0 0 0 0 

By Theorem 22.17, 

(
n) (n) (n) n(n-1) n(3n+l) 

an = 0 O + 2 
1 

+ 3 
2 

= 0 + 2 · n + 3 · 
2 

= 
2 

. 

Example 22.19 Let us derive the following formula from Proposition 21.3: 

2 2 2 2 (2n + l)(n + l)(n) 
0 +1 +2 + .. ·+n = . 

6 

Let an = 02 + 12 + · · · + n2
. Computing successive differences, we have 

an: 0 5 14 30 55 91 140 

/).an: 4 9 16 25 36 49 

/:). 2an: 3 5 7 9 11 13 

/:).3an: 2 2 2 2 2 
/:).4an: 0 0 0 0 

Therefore 

an =0(~) +I G) +3G) +2(;) 
3 2 

= 0 + n + -n(n- 1) + -n(n - l)(n- 2) 
. 2 6 

2n3 + 3n2 + n (2n + 1)(n + l)(n) 

6 6 

Recap 

A recurrence relation for a sequence of numbers is an equation that expresses 

an element of the sequence in terms of earlier elements. We analyzed first-order 

recurrence relations of the form an = san-! + t and second-order recurrence 

relations of the form an = s1an-1 + s2an-2: 

• The recurrence an = san-l + t has the following solution: If s =j: 1, then 

an = c1 st + c2 where c1 , c2 are specific numbers. 

• The solution to the recurrence an = s1an-J +s2an_2 depends on the roots r1, r2 

of the quadratic equation x 2 - s1x- s2 = 0. If r 1 =/: r2, then an = c 1 r~ + c2r; 

but if r1 = r2 = r, then an= c1rn + c2nrn. 
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22 Exercises 

We introduced the difference operator, llan = an+l - Cfn· The sequence of 
numbers an is generated by a polynomial expression of degree d if and only if 
!).d+lan is zero for all n. In this case we can write an = ao (~) + (!lao)(~) + 
(ll 2ao) G) + · · · + (lldao) (~). 

22.1. For each of the following recurrence relations, calculate the first six terms of 
the sequence (that is, a0 through a5 ). You do not need to find a formula for an. 
a. an = 2an-l + 2, ao = 1. 
b. an = an-1 + 3, ao = 5. 
c. an = an-1 + 2an-2' ao = 0, a] = 1. 
d. an = 3an-1 - 5an-2' ao = 0, a2 = 0. 
e. an =an-I+ an-2 + 1, ao = a1 = 1. 
f. an = an-1 + n, ao = 1. 

22.2. Solve each of the following recurrence relations by giving an explicit for-
mula for an. For each, please calculate a9 . 

a. an = ~an-], ao = 4. 
b. an = lOan-], ao = 3. 
c. an = -an-], ao = 5. 
d. an = 1.2an-], ao = 0. 
e. an = 3an-l - 1, ao = 10. 
f. an = 4- 2an-J, ao = 0. 
g. an = an-1 + 3, ao = 0. 
h. an = 2an-1 + 2, ao = 0. 
i. an = San-! - 15an_2, ao = 1, a1 = 4. 
j. an = an-1 + 6an-2, ao = 4, a] = 4. 
k. an = 4an-l - 3an-2, ao = 1, a] = 2. 
I. an = -6an-l - 9an-2, ao = 3, a3 = 6. 

m. an = 2an-l - an-2, ao = 5, al = 1. 
n. an = -2an-l - an-2, ao = 5, a] = 1. 
o. an = 2an-l + 2an, ao = 3, al = 3. 
p. an = 2an-! - 5an-2' ao = 2, a1 = 3. 

22.3. Each of the following sequences is generated by a polynomial expression. 
For each, find the polynomial expression that gives an. 
a. 1,6, 17, 34,57, 86,121,162,209,262, ... 
b. 6, 5, 6, 9, 14, 21, 30, 41, 54, 69, ... 
c. 4,4, 10,28,64, 124,214,340,508,724, ... 
d. 5, 16,41, 116,301,680,1361,2476,4181,6656, ... 

22.4. Explain why the notation llan has implicit parentheses (lla)n and why 
ll(an) is not correct. 

22.5. Let k be a positive integer and let an = G). Prove that a0 = lla0 = ll 2 a0 = 
... = llk-1a0 = 0 and that llkao = 1. 

22.6. Suppose that the sequence a satisfies the recurrence an = an-I + 12an_2 
and that a0 = 6 and a5 = 4877. Find an expression for an. 

22.7. Find a polynomial formula for 14 + 24 + 34 +. ·. + n4
• 

22.8. Lett be a positive integer. Prove that 1 t + 2t + 3t + · · · + nt can be written 
as a polynomial expression. 
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22.9. Some so-called intelligence tests often include problems in which a series 

of numbers is presented and the subject is required to find the next term of 

the sequence. For example, the sequence might begin 1, 2, 4, 8. No doubt 

the examiner is looking for 16 as the next term. 

Show how to "outsmart" the intelligence test by finding a polynomial 

expression (of degree 3) for a11 such that a0 = 1, a1 = 2, a2 = 4, a3 = 8, 

but a4 = 15. 
22.10. Lets be a real number with s =f- 0. Find a sequence a such that an = s tlan 

and a0 = 1. 
22.11. Solve the equation !12an = -an with ao = a1 = 2. 

22.12. Find two different sequences a and b for which tlan = tlbn for all n. 

22.13. The second-order recurrence relations we solved were of the form an 

s1an-l + s2an_2. In this problem we extend this to relations of the form 

an = s1an_ 1 + s2an-2 + t. Typically (but not always) the solution to such 

a relation is of the form an = c1rr + c2r~ + c3 where c1, c2 , c3 are specific 

numbers, and r 1, r2 are roots of the associated quadratic equation x 2 
-

s1 x - s2 = 0. However, if one of these roots is 1, or if the roots are equal 

to each other, another form of solution is required. 

Please solve the following recurrence relations. In the cases where the 

standard form does not apply, try to work out an appropriate alternative 

form, but if you get stuck, please consult the Hints (Appendix A). 

a. an = 5an-1 - 6an-2 + 2, ao = 1, a, = 2. 

b. an = 4an-1 + 5an-2 + 4, ao = 2, G] = 3. 

C. Gn = 2an-1 + 4an-2 + 6, Go = G1 = 4. 
d. Gn = 3an-1 - 2an-2 + 5, Go= GJ = 3. 

e. an= 6an-1- 9an-2- 2, ao = -1, a1 = 4. 

f. Gn = 2an-1 - Gn-2 + 2, Go = 4, G1 = 2. 
22.14. Extrapolate from Theorems 22.5 and 22.9 to solve the following third-order 

recurrence relations. 
a. Gn = 4an-l - Gn-2- 6an-3• Go= 8, GJ = 3, and a2 = 27. 

b. an = 2an-1 + 2an-2- 4an-3• ao = 11, a1 = 10, and a2 = 32. 

c. Gn = -an-1 + 8an-2 + 12an-3• ao = 6, GJ = 19, and a2 = 25. 

d. an = 6an-1 - 12an-2 + 8an-3• ao = 3, a1 = 2, and a2 = 36. 

22.15. Suppose you wish to generate elements of a recurrence relation using a 

computer program. It is tempting to write such a program recursively. 

For example, consider the recurrence an = 3an-l - 2an_2, ao = 1, 

a 1 = 5. Here is a program to calculate the values an: 

procedure get_term(n) 
if (n < 0) 

print 'Illegal argument' 
exit 

end 

if (n == 0) 

return 1 
end 
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if (n == 1) 

return 5 
end 
return 3*get_term(n-1) - 2*get_term(n-2) 

end 
Although this program is easy to understand, it is extremely inefficient. 

Explain why. 
In particular, let bn be the number of times this routine is called when 

it calculates an. Find a recurrence-and solve it!-for bn. 

22.16. There are many types of recurrence relations that are of different forms 

from those presented in this section. Try your hand at finding a formula 

for an for these: 

a. an = nan-1, ao = 1. 

b. an = a;_1, ao = 2. 

c. an = ao + a1 + a2 + · · · + an-1, ao = 1. 

d. an = nao + (n- l)a1 + (n- 2)a2 + · · · + 2an-2 + 1an-1• ao = 1. 

e. an = 3.9an-1 (1- an_I), ao = ~· 

Chapter 4 Self Test 

1. Prove that the equation x 2 + 1 = 0 does not have any real solutions. 

2. Prove that the sum of any four consecutive integers is not divisible by 4. 

3. Let a and b be positive integers. Prove: If alb and bla, then a= b. 

4. Which of the following sets are well-ordered? 

a. The set of all even integers. 

b. The set of all primes. 

c. { -100, -99, -98, ... '98, 99, 100}. 

d. 0. 
e. The negative integers. 

f. {rr, rr 2, rr 3 , rr 4 , ... } where rr is the familiar real number 3.14159 .... 

5. Let n be a positive integer. Prove that 

3n2 - n 
1 + 4 + 7 + · · · + (3n - 2) = -

2
-

6. Let n be a natural number. Prove that 

0! + 1! +2! + ··· +n!:::; (n + 1)!. 

7. Suppose ao = 1 and an = 4an-1 - 1 when n ~ 1. Prove that for all natural 

numbers n, we have an = (2 · 4n + 1)/3. 

8. Prove by induction: If n E N, then n < 2n. 

9. Consider the following proposition. 
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Let P be a finite set of (three or more) points in the plane and suppose any 

three points in P are collinear. Then all the points in P must lie on a common 

line. 
Prove this two ways: by contradiction and by induction. 

10. Let n be a positive integer. Prove that 

v1 + h + · · · + Jn :S nvfn. 

11. Prove the Binomial Theorem (Theorem 16.8) by induction. That is, if n is a 

natural number, then 

12. Let n be a positive integer and suppose n distinct lines are drawn in the plane. 

No two of these lines are parallel, and no three of these lines intersect at a 

common point. Prove that these lines divide the plane into (~) + (':) + (;) 
regions. 

13. Let Fn denote the nth Fibonacci number (see Definition 20.12). Prove that for 

all natural numbers n, we have 

14. Let Fn denote the nth Fibonacci number. If n is a natural number, then l is 

the only positive divisor of both Fn and Fn+l (i.e., if d > 0, dl Fn, and diFn+J, 

then d = 1). 

15. A horizontal stripe is to be tiled. The tiles come in two shapes: 1 x 1 rectangles 

and 1 x 2 rectangles. The 1 x 1 tiles are available in two colors (white and 

dark blue), and the 1 x 2 tiles are available in three colors (white, light blue, 

and dark blue). For a positive integer n, let a11 denote the number of different 

ways to tile ann-long stripe using these tiles. The figure shows one possible 

tiling with n = 11. 

a. Show that for n ::=: 2, an = 2an-l + 3an-2· 

b. Prove thata11 = (3n+l + (-1Y)/4. 

16. Let n be a positive integer. Prove there is a unique pair of nonnegative integers 

a, b such that n = 2ab and b is odd. 

17. Let A be a nonempty finite set of positive integers. Suppose that for any 

two elements r, s E A, we have rls or sir. (In symbols, Vr E A, Vs E 

A, (rls or sir).) 

a. Prove that A contains an element t with the property that for all a E A, 

alt. (In symbols, 3t E A, Va E A, alt.) 

b. Furthermore, prove that t is unique (i.e., there is only one element of A 

that is a multiple of all elements of A). 

c. Finally, give an example to show that uniqueness does not hold if we do 

not assume that all the elements of A are positive. 

18. For each of the following recurrence relations, find a formula for the nth 

term, an. 
a. an = 2an-l + l5an-2, ao = 4, a1 = 0. 
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b. an = 2an-l + 15, ao = 4, a1 = 0. V 

c. an = 12an-1 - 36an-2• ao = 1, a1 = 2. 
19. The following sequence of numbers is generated by a polynomial expression. 

Find the polynomial. (The first term is a0 ; you should find a polynomial 

expression for an.) 
The sequence is 

5,26,67, 146,281,490,791,1202,1741,2426,3275, .... 
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23 

Functions 

The concept of function is central to mathematics. Intuitively, a function can be 
thought of as a machine. You put a number into the machine, push a button, and out 
comes an answer. A key property of being a function is consistency. Every time we 
put a specific number-say, 4-into the machine, the same answer emerges. We 
illustrate this in the figure. Here the function takes an integer x as input and returns 
the value 3x 2 - 1. Thus every time the number 4 is entered into the machine, the 
answer 4 7 is produced. 

Note that the function in the figure operates on numbers. It would not make 
sense to try to put a triangle down the hopper of this machine! However, we can 
create a function whose inputs are triangles and whose outputs are numbers. For 
example, we can define f to be the function whose inputs are triangles, and for 
each triangle entered into the function, the output is the area of the triangle. 

The "mechanism" in the function "machine" need not be dictated by an alge­
braic formula. All that is required is that we carefully specify the allowable inputs 
and, for each allowable input, the corresponding output. This is often done with 
an algebraic expression, but there are other ways to specify a function. 

In this chapter, we take a careful look at functions. We begin with a precise 
definition. 

Functions 
Intuitively, a function is a "rule" or "mechanism" that transforms one quantity 
into another. For example, the function f (x) = x 2 + 4 takes an integer x and 
transforms it into the integer x 2 + 4. The function g(x) = lxl takes the integer x 

and returns x if x ::=: 0 and -x if x < 0. 
In this section, we develop a more abstract and rigorous view of functions. 

Functions are special types of relations (please review Section 13). 
Recall that a relation is simply a set of ordered pairs. Just as this definition of 

a relation was at first counterintuitive, the precise definition of a function may at 
first seem strange. 

193 
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Definition 23.1 (Function) A relation f is called a function provided (a, b) "E f and (a, c) E f 

imply b =c. 

Stated in a negative fashion, a relation f is not a function if there exist a, b, c 

with (a, b) E f and (a, c) E f, and b #c. 

Example 23.2 Let 

Mathspeak! 
Mathematicians often 

use the word map as a 

synonym forfunction. In 

addition to saying "f of 1 

equals 2."' we also say "f 
maps l to 2." And there is a 

notation for this. We write 

1 ~ 2. The special arrow 

~means .f(l) = 2. The 

function f is not explicitly 

mentioned in the notation 

1 ~ 2; when we use the 

~ notation. we need to be 

certain that the reader 

knows what function is 

being discussed. 

Definition 23.3 

f = {(1, 2), (2, 3), (3, 1), (4, 7)} and 

g = {(1, 2), (1, 3), (4, 7)}. 

The relation f is a function, but the relation g is not because (1, 2), (1, 3) E g and 

2 # 3. 

When expressed as a set of ordered pairs, functions do not look like rules for 

transforming one object into another, but let us look closer. The ordered pairs in f 
associate "input" values (the first elements in the lists in f) with "output" values 

(the second elements in the lists). In Example 23.2, the function f associates the 

input value 1 with the output value 2, because ( 1, 2) E f. The reason why g is not 

a function is that for the input value 1, there are two different output values: 2 and 

3. What makes fa function is that for each input there can be at most one output. 

Mathematicians rarely use the notation (1, 2) E f, even though this is formally 

correct. Instead, we use the f ( ·) notation. 

(Function notation) Let f be a function and let a be an object. The notation f (a) 

is defined provided there exists an object b such that (a, b) E f. In this case, f(a) 

equals b. Otherwise [there is no ordered pair of the form (a,_) E f], the notation 

f(a) is undefined. The symbols f(a) are pronounced "f of a." 

For the function f from Example 23.2, we have 

f(l) = 2 f(2) = 3 f(3) = 1 f(4) = 7 

but for any other object x, f(x) is undefined. The reason why we don't call g 

a function becomes clearer. What is g(l)? Since both (1, 2) and (1, 3) E g, the 

notation g ( 1) does not specify an unambiguous value. 

Example 23.4 Problem: Express the integer function f(x) = x 2 as a set of ordered pairs. 

Solution: We might write this out using ellipses: 

f = { ... ' ( -3, 9), (-2, 4), ( -1, 1), (0, 0), (1, 1), (2, 4), (3, 9), ... } 

but it is much clearer if we use set-builder notation: 

f={(x,y):x,yEZ, y=x2
}. 

It is often clearer to write, "Let f be the function defined for an integer x by 

f (x) = x 2
" than to write out f as a set of ordered pairs as in the example. 



Definition 23.5 

We have avoided using the 

word range. Students are 

often taught that the word 

range means the same 

thing as our word image. 

The mathematician's use of 
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The set-of-ordered-pairs notation for a function is similar to writing a function as 

a chart: 

X f(x) 

-3 9 

-2 4 

-I I 
0 0 
1 1 
2 4 

3 9 

Domain and Image 

The sets of allowable inputs and possible outputs of a function have special names. 

(Domain, image) Let f be a function. The set of all possible first elements of the 
ordered pairs in f is called the domain of f and is denoted dom f. The set of all 
possible second elements of the ordered pairs in f is called the image of f and is 
denoted im f. 

In other notation, 

the word range is different dom f = {a : 3b, (a, b) E f} and im f = {b : 3a, (a, b) E f}. 
from that commonly 

taught in high school. Alternatively, we can write 
We avoid confusion simply 
by not using this word. dom f = {a : f(a) is defined} and im f = {b : b = f(a) for some a}. 

Example 23.6 Let f = {(1, 2), (2, 3), (3, 1), (4, 7)}. (This is the function from Example 23.2.) 
Then 

domf = {1,2,3,4} and im f = { 1 , 2, 3, 7}. 

Example 23.7 Let f be the function from Example 23.4; that is, 

f={(x,y):x,yEZ, y=x2
}. 

The domain of f is the set of all integers, and the image of f is the set of all perfect 
squares. 

Next we introduce a special notation for functions. 

Definition 23.8 (f : A ---* B) Let f be a function and let A and B be sets. We say that f is a 
function from A to B provided dom f = A and im f s; B. In this case, we write 
f : A ---* B. We also say that f is a mapping from A to B. 
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The notation f : A ~ B is read aloud "f is a function from A to B." 

The notation f : A ~ B makes three promises: First, f is "a function. Second, 

dom f =A. And third, im f s; B. 

Mathspeak! 
The notation f : A -+ B can be an entire sentence, an independent clause, or a noun 

phrase. In a theorem, we might write, "If f : A -+ B, then .... " In this case, we would 

pronounce the symbols as "If f is a function from A to B . ... " 

However, we may also write, "Let f : A -+ B .... " In this case, we would read the 

symbols as "Let f be a function from A to B . ... " 

Example 23.9 Consider the sine function. This function is defined for every real number andre­

turns a real value. The domain of the sine function is all real numbers, and the image 

is the set [ -1, 1] = {x E lR : -1 _::: x _::: 1}. We can write sin : lR ~ lR because 

dom sin = lR and im sin s; JR. It would also be correct to write sin : lR ~ [- 1, 1]. 

To prove that f : A ~ B (i.e., to prove that f is a function from A to B), use 

Proof Template 19. 

Proof Template 19 To show f: A~ B. 

Mathspeak! 
Later in this book we use 

the word graph in an 

entirely different way. 

Here the word graph refers 

to the diagram used to 

depict the relation between 

one quantity (x) and 

another (y = f (x) ). 

To prove that f is a function from a set A to a set B: 

• Prove that f is a function. 

Prove that dom f = A. 

• Prove that im f s; B. 

Pictures of Functions 

Graphs provide an excellent way to visualize functions whose inputs and outputs 

are real numbers. For example, the figure shows the graph of the function f (x) = 

sin x cos 3x. To draw the graph of a function, we plot a point in the plane at 

coordinates (x, f (x)) for every x E dom f. 
Formally, the graph of a function is the set {(x, y) : y = f(x)}. What is 

interesting is that this set is the function! The function f is the set of all ordered 

pairs (x, y) for which y = f(x). So to speak of "the graph of a function" is 

redundant! This is not bad. When we use the word graph in this context, we are 

conjuring up a geometric view of the function. 

Graphs are helpful tools for understanding functions to and from the real 

numbers. To verify that a picture represents a function, we can apply the vertical 

line test: Every vertical line in the plane may intersect the graph of a function in at 

most one point. A vertical line may not hit the graph twice; otherwise we would 

have two different points (x, y1) and (x, y2), both on the graph of the function. 

This would mean that both (x, Yl), (x, Y2) E f with Yl I= Y2· And this is forbidden 

by the definition of function. 



An alternative way to 

count functions is to count 

charts. In how many ways 

can we replace the 

question marks in the 

following chart with 

elements from B? 

X f(x) 

1 '? 

2 ? 

a ? 

The right-hand column is a 

length-a list of elements 

chosen from the b-element 

set B. There are b" ways to 

complete this chart. 

Proposition 23.10 
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In discrete mathematics, we are particularly interested in considering functions 

to and from finite sets (or N or Z). In such cases, traditional graphs of functions 

are either not helpful or nonsensical. For example, let A be a finite set. We can 

consider the function f : 2 A -+ N defined by f (x) = ix 1. (Alert: The vertical 

value bars in this context do not mean absolute value!) To each subset x of A, the 

function f assigns its size. There is no practical way to draw this as a graph on 

coordinate axes. 

We have an alternative way to draw pictures of functions f : A -+ B where A 

and Bare finite sets. Let A= {1, 2, 3, 4, 5, 6} and B = {1, 2, 3, 4, 5} and consider 

the function f : A -+ B defined by 

f = {(1, 2), (2, 1), (3, 2), (4, 4), (5, 5), (6, 2)}. 

A picture of f is created by drawing two sets of dots: one for A on the left and 

one for B on the right. We draw an arrow from a dot a E A to a dot b E B just 

when (a, b) E f-that is, when f(a) =b. From the picture, it is easy to see that 

im f = {1, 2, 4, 5}. 

Now consider g defined by 

g = {(1, 3), (2, 1), (2, 4), (3, 2), (4, 4), (5, 5)}. 

Is g a function from A = {1, 2, 3, 4, 5, 6} to B = {1, 2, 3, 4, 5}? There are two 

reasons why g : A -+ B is false. 

First, 6 E A but 6 1. dom g. Thus dom g -:f. A. You can see this in the picture: 

There are no arrows emanating from element 6. 

Second, g is not a function (from any set to any set). Notice that (2, 1), (2, 4) E 

g, which violates Definition 23.1. You can see this in the picture as well: There 

are two arrows emanating from element 2. 

Iff is a function from A to B (f : A -+ B), its picture satisfies the following: 

Every dot on the left (in A) has exactly one arrow leaving it, ending at the right 

(in B). 

Counting Functions 

Let A and B be finite sets. How many functions from A to B are there? Without 

loss of generality, we can choose A to be the set { 1, 2, ... , a} and B to be the set 

{ 1, 2, ... , b}. Every function f : A -+ B can be written out as 

f = {(1, ?), (2, ?), (3, ?), ... , (a,?)} 

where the ? entries are elements from B. In how many ways can we replace the ?s 

with elements in B? There are b choices for the element? in (1, ?), and for each 

such choice, there are b choices for the ? in (2, ?), etc., and finally b choices for 

the ? in (a, ?) given all the previous choices. Thus, all told, there are ba choices. 

We have shown the following: 

Let A and B be finite sets with !AI = a and IBI = b. The number of functions 

from A to B is ba. 
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Example 23.11 Let A= {1, 2, 3} and B = {4, 5}. Find all functions f :A, B. 

The notation W1 stands for 

the set oi' all functions 
I: A-~ IJ. 

Solution: Proposition 23.10 tells that there are 23 = 8 such functions. They are 

{(1, 4), (2, 4), (3, 4)} 

{(1, 4), (2, 4), (3, 5)} 

{(1, 4), (2, 5), (3, 4)} 

{ (1' 4), (2, 5), (3, 5)} 

{(1, 5), (2, 4), (3, 4)} 

{(1, 5), (2, 4), (3, 5)} 

{(1, 5), (2, 5), (3, 4)} 

{(1, 5), (2, 5), (3, 5)}. 

In Section 9 we introduced the notation 2A for the set of all subsets of A. 
This notation was a mnemonic for remembering that the number of subsets of an 
a-element set is 2a. Similarly, there is a special notation for the set of all functions 
from A to B. The notation isBA. This is a mnemonic for Proposition 23.10, because 
we can write 

In this book, we do not use this notation. Furthermore, people often find it con­
fusing. It is tempting to pronounce the symbols BA as "B to the A," whereas the 
notation means the set of functions from A to B. 

Inverse Functions 

A function is a special type of relation. Recall that in Section 13 we defined the 
inverse of a relation R, denoted R - 1

, to be the relation formed from R by reversing 
all its ordered pairs. 

Since a function, f, is a relation, we may also consider f- 1• The problem we 
consider here is: Iff is a function from A to B, is f- 1 a function from B to A? 

Example 23.12 Let A= {0, 1, 2, 3, 4} and B = {5, 6, 7, 8, 9}. Let f : A-+ B be defined by 

f = {(0, 5), (1, 7), (2, 8), (3, 9), (4, 7)}, 

so 

f- 1 = {(5, 0), (7, 1), (8, 2), (9, 3), (7, 4)}. 

Is f- 1 a function from B to A? The answer is no for two reasons. First, f- 1 is 
not a function. Note that both (7, 1) and (7, 4) are in f- 1. Second, dom f- 1 = 
{5, 7, 8, 9} =j:. B. See the figure. 

In this example, f- 1 is not a function. Let us examine why. Consulting 
Definition 23.1, we observe that for f- 1 to be a function, it must, first, be a 
relation. This is not an issue; since f is a relation, so is f- 1. Second, whenever 
(a, b), (a, c) E f- 1

, we must have b =c. Restating this in terms off, whenever 
(b, a), (c, a) E f, wemusthaveb =c. This is whatwentwronginExample23.12; 
we had (1, 7), (4, 7) E f, but 1 =j:. 4. 

Pictorially, f- 1 is not a function because there are two f-arrows entering 
element 7 on the right. 



Definition 23.13 

The term one-to-one is 
often written as 1: 1. 
Another word for a 
one-to-one function is 
injection. 

Proposition 23.14 
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Let us formalize this condition as a definition. 

(One-to-one) A function f is called one-to-one provided that, whenever (x, b), 

(y, b) E f, we must have x = y. In other words, if x ::f. y, then f(x) ::f. f(y). 

The function in Example 23.12 is not one-to-one because f(l) = /(4) but 

1 ::f. 4. Compare closely Definitions 23.13 (one-to-one) and 23.1 (function). The 

conditions are quite similar. 

Let f be a function. The inverse relation f- 1 is a function if and only if f is 

one-to-one. 

The proof is left to you (Exercise 23.10). While you are at it, also prove the 

following: 

Proposition 23.15 Let f be a function and suppose f- 1 is also a function. Then dom f = im f- 1 

and im f = dom f- 1
• 

It is common to want to prove that a function is one-to-one. Proof Template 20 

gives strategies for proving that a function is one-to-one. 

Proof Template 20 Proving a function is one-to-one. 

To show that f is one-to-one: 
Direct method: Suppose f(x) = f(y) .... Therefore x = y. Therefore f 

is one-to-one. • 

Contrapositive method.: Suppose x ::f. y . ... Therefore f (x) ::f. f (y). 

Therefore f is one-to-one. • 

Contradiction method: Suppose f(x) = f(y) butx ::f. y .... ::::}{=There-

fore f is one-to-one. • 

Example 23.16 Let f : Z ~ Z by f(x) = 3x + 4. Prove that f is one-to-one. 

Proof. Suppose f(x) = f(y). Then 3x + 4 = 3y + 4. Subtracting 4 from 

both sides gives 3x = 3y. Dividing both sides by 3 gives x = y. Therefore f is 

one-to-one. • 

On the other hand, to prove that a function is not one-to-one typically requires 

us to present a counterexample-that is, a pair of objects x and y with x ::f. y but 

f(x) = f(y). 
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Example 23.17 Let f: Z---+ Z by f(x) = x 2
• Prove that f is not one-to-one., 

Mathspeak! 
In standard English, the 
word onto is a preposition. 
In mathematical English, 
we use onto as an 
adjective. Another word 
for an onto function is 
surjection. 

Definition 23.18 

Proof. Notice that /(3) = f( -3) = 9, but 3 =f. -3. Therefore f is not one-to­

one. • 

For the inverse of a function also to be a function, it is necessary and sufficient 

that the function be one-to-one. Now we consider a more focused question. Let 

f : A ---+ B. We want to know when f- 1 is a function from B to A. Recall that 

we had two difficulties in Example 23.12. We have dealt with the first difficulty: 

f- 1 needs to be a function. The second difficulty was that there was an element in 

B that had no incoming arrow. 
Consider the function f : A ---+ B shown in the figure. Clearly f is one-to­

one, so f- 1 is a function. However, f- 1 is not a function from B to A because 

there is an element b E B for which f- 1 (b) is undefined. For f- 1 : B ---+ A, there 

must be an f-arrow pointing to every element of B. Here is the careful way to say 
this: 

(Onto) Let f : A ---+ B. We say that f is onto B provided that for every b E B 

there is an a E A so that f(a) =b. In other words, im f =B. 

The sentence "f : A ---+ B is onto" is a promise that the following are 

true. First, f is a function. Second, dom f = A. And third, im f = B (see 
Exercise 23.7). 

Example 23.19 Let A = {1, 2, 3, 4, 5, 6} and B = {7, 8, 9, 10}. Let 

f = {(1, 7), (2, 7), (3, 8), (4, 9), (5, 9), (6, 10)}, and 

g = {(1, 7), (2, 7), (3, 7), (4, 9), (5, 9), (6, 10)}. 

Note that f : A ---+ B is onto because for each element b of B, we can find one or 

more elements a E A such that f(a) =b. It is also easy to check that im f = B. 

However, g : A ---+ B is not onto. Note that 8 E B, but there is no a E A with 
g(a) = 8. Also, im g = {7, 9, 10} =f. B. 

The condition that f : A ---+ B is onto can be expressed using the quantifiers 
3 and Vas 

Vb E B, 3a E A, f (a) = b. 

The condition that f is not onto can be expressed 

3b E B, Va E A, f(a) =f. b. 

These ways of thinking about onto functions are formalized in Proof 
Template 21. 
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Proof Template 21 Proving a function is onto. 

Example 23.20 

Recall that IQl stands for 

the set of rational numbers. 

To show f : A ~ B is onto: 

Direct method: Let b be an arbitrary element of B. Explain how to find/construct 

an element a E A such that f(a) =b. Therefore f is onto. • 

Set method: Show that the sets B and im f are equal. • 

Let f : Q ~ Q by f(x) = 3x + 4. Prove that f is onto Q. 

Proof. Let b E Q be arbitrary. We seek an a E Q such that f(a) = b. Let 

a = ~ (b - 4). (Since b is a rational number, so is a.) Notice that 

f(a) = 3 [~(b- 4)] + 4 = (b- 4) + 4 =b. 

Therefore f : Q ~ Q is onto. • 
How did we ever "guess" that we should take a = ~ (b- 4)? We didn't guess; 

we worked backward! 

Let f : A ~ B. In order for f- 1 to be a function, it is necessary and sufficient 

that f be one-to-one. Given that, in order for f- 1 : B ~ A, it is necessary for f 
to be onto B. Otherwise, if f is not onto B, we can find a b E B such that f -l (b) 

is undefined. 

Theorem 23.21 Let A and B be sets and let f : A ~ B. The inverse relation f- 1 is a function 

from B to A if and only if f is one-to-one and onto B. 

A function f : A ~ B 

that is both kinds of 

·~ection"-an injection 

and a surjection-is called 

Proof. Let f: A~ B. 
(:::::})Suppose f is one-to-one and onto B. We need to prove that f- 1 : B ~ A. 

We use Proof Template 19. 

• Since f is one-to-one, we know by Proposition 23.14 that f- 1 is a function. 

• Since f is onto B, im f =B. By Proposition 23.15, dom f- 1 = B. 

• Since the domain off is A, by Proposition 23.15, im f- 1 = A. 

Therefore f- 1 : B ~A. 
C<=) Suppose f : A ~ Band f- 1 : B ~ A. Since f- 1 is a function, f is 

one-to-one (Proposition 23.14). Since im f = dom f- 1 = B, we see that f is 

onto B. • 

a bijection. A function that is both one-to-one and onto has a special name. 

Definition 23.22 (Bijection) Let f : A~ B. We call fa bijection provided it is both one-to-one 

and onto. 
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Example 23.23 Let A be the set of even integers and let B be the set of odd integers. The function 

f : A ---+ B defined by f (x) = x + 1 is a bijection. 

Proof. We must prove that f is both one-to-one and onto. To see that f is one­

to-one, suppose f (x) = f (y) where x and y are even integers. Thus 

f (X) = j (y) ::::} X + 1 = y + 1 ::::} X = y. 

Hence f is one-to-one. 
To see that f is onto B, let b E B (i.e., b is an odd integer). By definition, 

b = 2k + 1 for some integer k. Let a = 2k; clearly a is even. Then f(a) = 

a + 1 = 2k + 1 = b, so f is onto. Since f is both one-to-one and onto, f is a 

bijection. 
• 

Counting Functions, Again 

Let A and B be finite sets with !AI = a and !BI = b. How many functions 

f : A ---+ Bare one-to-one? How many are onto? 

Let's look at two easy special cases. If IAI > IBI, then f cannot be one-to-one. 

Why? Consider the function f : A ---+ B that we hope is one-to-one. Because f 

is one-to-one, for distinct elements x, y E A, f (x) and f (y) are distinct elements 

of B. So let's say the first b elements of A are mapped by f to b different elements in 

B. After that, there are no further elements in B to which we can map elements 

of A! 
On the other hand, if lA I < IBI, then f cannot be onto. Why? There aren't 

enough elements in A to "cover" all the elements in B! 

Let's summarize these comments. 

Proposition 23.24 (PigeonholePrinciple) LetAandBbefinitesetsandletf: A---+ B.IfiAI > IBI, 

then f is not one-to-one. If IAI < IBI, then f is not onto. 

Stated in the contrapositive, if f : A ---+ B is one-to-one, then I A I ::S I B I, and 

if f : A ---+ B is onto, then I A I 2: I B 1. If f is both, we have the following: 

Proposition 23.25 Let A and B be finite sets and let f: A---+ B. Iff is a bijection, then IAI = IBI. 

Counting one-to-one 

functions. 

Let us return to the problem of counting those functions from an a-element 

set to a b-element set that are one-to-one and those functions that are onto. 

The good news is that we have solved these problems in previous sections of 

this book! 
Consider the problem of counting one-to-one functions. Without loss of gen­

erality, suppose A= {1, 2, ... , a} and B = {1, 2, ... , b}. A one-to-one function 

from A to B is of the form 

f = {(1, ?), (2, ?), (3, ?), ... , (a,?)} 

where the ?s are filled in with elements of B without repetition. This is a list­

counting problem that we solved in Section 7. 
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Now consider the problem of counting onto functions. Here we want to fill in 

the ?s with elements of B so that every element is used at least once. The number 

of length-a lists whose elements come from B and use all the elements in B at 

least once was solved in Section 18. 
Let us collect what we learned in those sections and summarize them in the 

following result. 

Theorem 23.26 Let A and B be finite sets with lA I =a and IBI =b. 

(1) The number of functions from A to B is ba. 

23 Exercises 

(2) If a :S b, the number of one-to-one functions .f : A --+ B is 

b! 
(b)a = b(b- 1) · · · (b- a+ 1) = -­

(b- a)! 

If a > b, the number of such functions is zero. 

(3) If a ~ b, the number of onto functions .f : A --+ B is 

t(-I)j (~) (b- j)a. 
j=O J 

If a < b, the number of such functions is zero. 

(4) If a = b, the number of bijections f : A --+ B is a!. If a i= b, the number of 

such functions is zero. 

Recap 

We introduced the concept of function, as well as the notation .f : A --+ B. We 

investigated when the inverse relation of a function is itself a function. We studied 

the properties one-to-one and onto. We counted functions between finite sets. 

23.1. For each of the following relations, please answer these questions: 

(1) Is it a function? If not, explain why and stop. Otherwise, continue with 

the remaining questions. 
(2) What are its domain and image? 

(3) Is the function one-to-one? If not, explain why and stop. Otherwise, 

answer the remaining question. 
(4) What is its inverse function? 

a. { (1 , 2), ( 3, 4)}. 
b. { (x, y) : x, y E Z, y = 2x}. 

c. { (x, y) : x, y E Z, x + y = 0}. 

d. {(x,y):x,yEZ, xy=O}. 

e. {(x, y) : x, y E Z, y = x 2}. 

f. 0. 
g. {(x,y):x,yEQ,x 2 +y2 =1}. 

h. {(x, y): x, y E Z, xJy}. 

i. {(x, y): x, yEN, xly and yJx}. 

j. {(x,y):x,yEN, G)=l}. 
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Despite the fact that the 

phrase ··I is onto .. does not 

make sense in isolation, 

mathematicians often write 

it. It makes sense if we are 

thinking about a particular 

pair of sets A and B with 

f : A ----+ B. In this 

context. "f is onto" means 

"f is onto B." 

23.2. Let A= {1, 2, 3} and B = {4, 5}. Write down all functions.! : A -+ B . .. 
Indicate which are one-to-one and which are onto B. 

23.3. Let A = {1, 2} and B = {3, 4, 5}. Write down all functions f : A -+ B. 

Indicate which are one-to-one and which are onto B. 

23.4. Let A = {1, 2} and B = {3, 4}. Write down all functions f : A -+ B. 

Indicate which are one-to-one and which are onto B. 

23.5. For each of the following functions, find f (2). 

a. f={(x,y):x,yEZ,x+y=O}. 

b. f = {(1, 2), (2, 3), (3, 2)}. 

c. f: N-+ Nby f(x) = (x + 1)(x+1). 

d. f = {1 , 2, 3, 4, 5} X { 1}. 

e. f : N -+ N by f (n) = n!. 

23.6. Let A= {1, 2, 3, 4} and B = {5, 6, 7}. Let f be the relation 

f = {(1, 5), (2, 5), (3, 6), (?, ?)} 

where the two question marks are to be determined by you. Your job is to 

find replacements for (?, ?) so that each of the following is true. [Three 

different answers-one for each of (a), (b), and (c)-are expected. The 

ordered pair(?,?) should be a member of Ax B.] 

a. The relation f is not a function. 

b. The relation f is a function from A to B but is not onto B. 

c. The relation f is a function from A to B and is onto B. 

23.7. Consider the following two sentences about a function f: 

a. f is onto. 
b. f : A -+ B is onto. 

Explain why (a) does not make sense but (b) does. 

23.8. The sine function is a function to and from the real numbers; that is sin : 

ffi. -+ ffi.. The sine function is neither one-to-one nor onto. Yet the arc sine 

function, sin - 1
, is known as its inverse function. 

Explain. 

23.9. For each of the following, determine whether the function is one-to-one, 

onto, or both. Prove your assertions. 

a. f: Z-+ Z defined by f(x) = 2x. 

b. f : Z-+ Z defined by f(x) = 10 + x. 

c. f : N-+ N defined by f(x) = 10 + x. 

d. f : Z -+ Z defined by 

{ 

x if x is even 
f(x) = ~; 1 if xis odd. 

e. f : Q-+ Q defined by f(x) = x 2
• 

23.10. Prove Propositions 23.14 and 23.15. 

23.11. Let A and B be finite sets and let f : A -+ B. Prove that any two of the 

following statements being true implies the third. 

a. f is one-to-one. 

b. f is onto. 

c. IAI = IBI. 
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23.12. Give an example of a set A and a function f : A ~ A where f is onto but 

not one-to-one. 
Give an example where f is one-to-one but not onto. 

Are your examples contradictions to the previous exercise? 

23.13. Suppose f : A ~ B is a bijection. Prove that f- 1 
: B ~ A is a bijection 

as well. 
23.14. Let A be ann-element set and let k E N. How many functions f : A ~ 

{0, 1} are there for which there are exactly k elements a in A with f (a) = 1? 

23.15. Let A be ann-element set and let i, j, k E N with i + j + k = n. How 

many functions f : A ~ {0, 1, 2} are there for which there are exactly i 

elements a E A with j(a) = 0, exactly j elements a E A with f(a) = 1, 

and exactly k elements a E A with f (a) = 2. 

24 The Pigeonhole Principle 

Proposition 23.24 is called the Pigeonhole Principle. It asserts that if A and Bare 

finite sets and if IAI > IBI, then there can be no one-to-one function f : A~ B. 

The reason is clear: There are too many elements in A. What, you might ask, does 

this result have to do with pigeons? 

Imagine that we own a flock of pigeons and that the pigeons live in a coop. 

The pigeon coop is divided into separate compartments called holes where the 

pigeons nest. 
Suppose we own p pigeons and our coop hash holes. If p s h, then the coop 

is large enough so that pigeons do not have to share holes. However, if p > h, then 

there are not enough holes to give every pigeon a private room; some pigeons will 

have to share quarters. 
There are a number of interesting mathematical problems that can be solved 

by the Pigeonhole Principle. Here we present some examples. 

Proposition 24.1 Let n EN. Then there exist positive integers a and b, with a i=- b, such that na- nb 

is divisible by 10. 

For example, if n = 17, then we can subtract 

which is divisible by 10. 

24,137,569 
289 

24,137,280 

To prove this result, we use the well-known fact that a natural number is 

divisible by 10 if and only if its last digit is a zero. A more careful approach would 

use ideas developed in Section 34. 
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Proposition 24.2 

B 

Proof. Consider the 11 natural numbers 

The ones digits of these numbers take on values in the set {0, 1, 2, ... , 9}. Since 

there are only ten possible ones digits, and we have 11 different numbers, two 

of these numbers (say na and nb) must have the same ones digit. Therefore na- nb 

is divisible by 10. • 

The next example comes from geometry. Every point in the plane can be 

expressed in terms of its x- andy-coordinates. A point whose coordinates are both 

integers is called a lattice point. For example, the points (1, 2), ( -3, 8), and the 

origin are lattice points, but (1.3, 0) is not. 

Given five distinct lattice points in the plane, at least one of the line segments 

determined by these points has a lattice point as its midpoint. 

In other words, suppose A, B, C, D, and E are distinct lattice points. There 

are G) = 10 different line segments we can form whose endpoints are in the set 

{A, B, C, D, E}. Proposition 24.2 asserts that the midpoint of one (or more) of 

these line segments must also be a lattice point. For example, consider the five 

points in the figure. The midpoint of segment AD is a lattice point. 

To prove this result, we recall the midpoint formula from coordinate geometry. 

Let (a, b) and (c, d) be two points in the plane (not necessarily lattice points). The 

midpoint of the line segment determined by these points can be found using the 

following formula: 

(
a+c b+d)· 

2 ' 2 

Proof (of Proposition 24.2) 

We are given five distinct lattice points in the plane. The various coordinates are 

integers and hence are either even or odd. Given a lattice point's coordinates, we 

can classify it as one of the following four types: 

(even,even) (even,odd) (odd,even) (odd,odd) 

depending on the parity of its coordinates. Notice that we have five lattice points, 

but only four parity categories. Therefore (by the Pigeonhole Principle) two of these 

points must have the same parity type. Suppose these two points have coordinates 

(a, b) and (c, d). The midpoint of this segment is at coordinates ( a;c, bid). Since 

a and c have the same parity, a + c is even, and so a;c is an integer. Likewise bid 
is an integer. This proves that the midpoint is a lattice point. • 

The third example concerns sequences of integers. A sequence is simply a list. 

Given a sequence of integers, a subsequence is a list formed by deleting elements 

from the original list and keeping the remaining elements in the same order in 

which they originally appeared. 
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For example, the sequence 

9 10 8 3 7 5 2 6 4 

contains the subsequence 

9 8 6 4. 

Notice that the four numbers in the subsequence are in decreasing order, and so 
we call it a decreasing subsequence. Similarly, a subsequence whose elements are 
in increasing order is called an increasing subsequence. 

We claim that every sequence of ten distinct integers must contain a subse­
quence of four elements that is either increasing or decreasing. The sequence above 
has a decreasing subsequence of length four and also an increasing subsequence 
of length four (find it). The sequence 

10 9 8 7 6 5 4 3 2 

has several length-four decreasing subsequences, but no length-four increasing 
subsequence. 

A sequence that is either increasing or decreasing is called monotone. Our 
claim is that every sequence of ten distinct integers must contain a monotone, 
length-four subsequence. This claim is a special case of a more general result. 

Theorem 24.3 (Erdos-Szekeres) Let n be a positive integer. Every sequence of n2 + 1 distinct 
integers must contain a monotone subsequence of length n + 1. 

Our example (sequences of length ten) is the case n = 3 of the Erdos-Szekeres 
Theorem. 

Proof. Let n be a positive integer. Suppose, for the sake of contradiction, that 
there is a sequenceS of n2 + 1 distinct integers that does not contain a monotone 
subsequence of length n + 1. In other words, all the monotone subsequences of S 
have length n or less. 

Let x be an element of the sequence S. We label x with a pair of integers 
( u x, dx). The integer u x ( u for up) is the length of a longest increasing subsequence 
of S that starts at x. Similarly, dx (d for down) is the length of a longest decreasing 
subsequence of S that starts at x. 

For example, the sequence 

9 10 8 3 7 5 2 6 4 

would be labeled as follows: 

9 10 8 3 7 5 2 6 4 
(4,1) (2,5) (1,5) (1,4) (3,2) (1,3) (2,2) (2,1) (1,2) (1,1) 

Element 4 is the last element in the sequence, so it gets the label (1, 1 )-the 
only sequences starting at 4 have length one. Element 9 has label (2, 5) because 
the length of a longest increasing subsequence starting at 9 is two: (9, 1 0). The 
length of a longest decreasing subsequence starting at 9 is five: (9, 8, 7, 5, 4) or 
(9, 8, 7, 6, 4). 
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Returning to the proof, we make the following observati~ns. 
" 

• Because there are no monotone subsequences oflength n + 1 (or longer), the 

labels on the sequence S use only the integers 1 through n. 

Hence, we use at most n2 labels (from (1, 1) to (n, n)). 

• We claim that two distinct elements of the sequence cannot have the same 

label. 
To see why, suppose x and y are distinct elements of the sequence with 

x appearing before y. Their labels are (ux, dx) and (uy, dy). Because the 
numbers on the list are distinct, either x < y or x > y. 

If x < y, then we claim Ux > uy: We know there is an increasing 
subsequence of length u y starting at y. If we insert x at the beginning of 

this subsequence, we get an increasing subsequence of length uy + 1. Thus 

Ux :=:::: uy + 1, or, equivalently, Ux > uy. Thus x andy have different labels. 
Similarly, if x > y, then we have dx > dy and we again conclude that x 

and y have different labels. 

However, these two observations lead to a contradiction. There are only n2 

different labels, and S has n 2 + 1 elements. By the Pigeonhole Principle, two 
of the elements must have the same label. However, this contradicts the second 

observation that no two elements can have the same label.:::}{= Therefore S must 

have a monotone subsequence of length n + 1. • 

Cantor's Theorem 

The Pigeonhole Principle asserts that if I A I > I B I, there can be no one-to-one 
function f : A ---+ B. The flip side of this coin is that if I A I < I B I, there can be no 
onto function f : A ---+ B. Therefore, if f : A ---+ B is both one-to-one and onto, 

then IAI = IBI. 
These assertions are meaningful only if A and B are finite sets. Of course, it 

is possible to find bijections between infinite sets. For example, here is a bijection 

from N onto Z. Define f : N ---+ Z by 

f ( ) = { -n/2 if n is even and 
n (n + 1)/2 if n is odd. 

It is a bit awkward to see that f is a bijection from N onto Z just by staring at 
these formulas. However, if we compute a few values off (for some small values 
of n ), the picture snaps into focus. 

Clearly, f is a one-to-one function (every integer appears at most once in the lower 
row of the chart) and is onto Z (every integer is somewhere on the lower row). See 
Exercise 24.9. 

Since there is a bijection from N to Z, it makes a little bit of sense to write 

INI = IZI. This means that Nand Z are "just as infinite." This often strikes people 
as counterintuitive because Z ought to be "twice as infinite" as N. However, the 
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bijection shows that we can match up-in a one-to-one fashion-the elements of 

the two sets. 
You might be tempted to reconcile this in your mind by saying IZI = INI 

because both are infinite. This is not correct. The notation I Z I = IN I should not be 

used because the sets are infinite; however, the meaning we are trying to convey is 

that there is a bijection between N and Z. In this sense, the two infinite sets have 

the same size despite the fact that Z superficially appears to be "twice as big" as N. 

Is it possible for two infinite sets not to have the same "size"? At first, this 

seems like a silly question. If the two sets are both infinite, then they are both 

infinite-end of story! But this doesn't quite answer the question. 

It is reasonable to define two sets as having the same size provided there is a 

bijection between them. In this sense, N and Z have the same size. Do all infinite 

sets have the same size? The surprising answer to this question is no. 

We prove that Z and iZ (the set of integers and the set of all subsets of the 

integers) do not have the same size. Here is the general result: 

Theorem 24.4 (Cantor) Let A be a set. Iff : A ---+ 2A, then f is not onto. 

Since f (x) is a set, indeed 

a subset of A, the condition 

x ~ f (x) makes sense. 

If A is a finite set, this result is easy. If IAI = a, then 12A1 = 2u and we 

know that a < 2a (see Exercise 20.3). Since 2A is a larger set, there can be no 

onto function f : A ---+ 2A. This argument, however, applies only to finite sets. 

Cantor's Theorem applies to all sets. 

Proof. Let A be a set and let f : A ---+ 2A. To show that f is not onto, we must 

find a B E 2A (i.e., B s; A) for which there is no a E A with f(a) = B. In other 

words, B is a set that f "misses." To this end, let 

B = {x E A: x fj. f(x)}. 

We claim there is no a E A with f(a) =B. 

Suppose, for the sake of contradiction, there is an a E A such that f (a) = B. 

We ponder: Is a E B? 

• If a E B, then, since B = f(a), we have a E f(a). So, by definition of B, 

a tJ. f(a); that is, a tJ. B.=}{= 

• If a fj. B = f(a), then, by definition of B, a E B.=}{= 

Both a E B and a fj. B lead to contradictions, and hence our supposition [there is 

an a E A with f(a) = B] is false, and therefore f is not onto. • 

Example 24.5 We illustrate the proof of Theorem 24.4 with a specific example. Let A = {1, :2, 3}. 

Let f : A ---+ 2A as defined in the following chart. 

a f(a) a E j(a)? 

1 { 1, 2} yes 

2 {3} no 

3 0 no 



210 Chapter 5 Functions 

24 Exercises 

Now B = {x E A : x ¢. f(x)}. Since 1 E f(l), but 2 ¢. /(2) ~nd 3 ¢. /(3), we 

have B = {2, 3}. Notice that there is no a E A with f(a) =B. 

The implication of Cantor's Theorem is that IZI =j:. 12z1. In a correct sense 

2:z is more infinite than Z. Cantor developed these notions by creating a new set 

of numbers "beyond" the natural numbers; he called these numbers transfinite 

cardinals. The smallest infinite sets, Cantor proved, have the same size as N. The 

size of N is denoted by the transfinite number named ~0 (aleph null). 

Recap 

There cannot be a one-to-one function from a set to a smaller set; this fact is known 

as the Pigeonhole Principle. We illustrated how this fact can be used in proofs. We 

also know that there cannot be a function from a set onto a larger set. We showed 

that for any set A, the set 2A is larger, even for infinite sets A. 

24.1. Let (a1, a2 , a3 , a4 , as) be a sequence of five distinct integers. We call such 

a sequence increasing if a 1 < a2 < a3 < a4 < as and decreasing if 

a 1 > a2 > a3 > a4 > as. Other sequences may have a different pattern of 

<Sand >S. For the sequence (1, 5, 2, 3, 4) we have 1 < 5 > 2 < 3 < 4. 

Different sequences may have the same pattern of <S and >s between 

their elements. For example, ( 1, 5, 2, 3, 4) and (0, 6, 1, 3, 7) have the same 

pattern of <sand >s as illustrated here: 

1<5>2<3<4 

t t t t 
0<6>1<3<7 

Given a collection of 17 sequences of five distinct integers, prove that 2 of 

them have the same pattern of < s and > s. 
24.2. Two Social Security numbers (see Exercise 7 .9) match zeros if a digit of 

one number is zero iff the corresponding digit of the other is also zero. For 

example, the Social Security numbers 120-90-1109 and 430-20-5402 have 

matching zeros. 
Prove: Given a collection of 513 Social Security numbers, there must 

be two that match zeros. 
24.3. Given a set of seven distinct positive integers, prove that there is a pair 

whose sum or whose difference is a multiple of 10. 
You may use the fact that if the ones digit of an integer is 0, then that 

integer is a multiple of 10. 
24.4. Consider a square whose side has length one. Suppose we select five points 

from this square. Prove that there are two points whose distance is at most 

../2;2. 
24.5. Show that Proposition 24.2 is best possible by finding four lattice points 

in the plane such that none of their midpoints are lattice points. 
24.6. Find and prove a generalization of Proposition 24.2 to three dimensions. 

24.7. Find a sequence of nine distinct integers that does not contain a monotone 

subsequence of length four. 
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Generalize your construction by showing how to construct (for every 

positive integer n) a sequence of n2 distinct integers that does not contain 

a monotone subsequence of length n + 1. 

24.8. Write a computer program that takes as its input a sequence of distinct inte­

gers and returns as its output the length of a longest monotone subsequence. 

24.9. Let f: N--+ Z by 

f ( ) = { -n/2 if n is even and 
n (n + 1)/2 if n is odd. 

Prove that f is a bijection. 
24.10. Let E denote the set of even integers. Find a bijection between E and Z. 

25 Composition 
Just as there are operations (e.g., + and x) for combining integers and there are 

operations for combining sets (e.g., U and n), there is a natural operation for 

combining functions. 

Definition 25.1 (Composition of functions) Let A, B, and C be sets and let f : A --+ B and 

g : B --+ C. Then the function g o f is a function from A to C defined by 

(go f)(a) = g[f(a)] 

where a E A. The function go f is called the composition of g and f. 

Example 25.2 Let A = {1, 2, 3, 4, 5}, B = {6, 7, 8, 9}, and C = {10, 11, 12, 13, 14}. Let f : 
A --+ B and g : B --+ C be defined by 

f = {(1, 6), (2, 6), (3, 9), (4, 7), (5, 7)}, and 

g = {(6, 10), (7, 11), (8, 12), (9, 13)}. 

Then (g o f) is the function 

(g 0 f)= {(1, 10), (2, 10), (3, 13), (4, 11), (5, 11)}. 

For example, 

(g 0 f)(2) = g[f(2)] = g[6] = 10. 

So (2, 10) E go f; that is, (go f)(2) = 10. 

Example 25.f Let f : Z --+ Z by f(x) = x 2 + 1 and g : Z --+ Z by g(x) = 2x - 3. What is 

(g 0 f)(4)? 
Wecalculate(gof)(4) = g[f(4)] = g(42 +1) = g(l7) = 2x 17-3 = 31. 

(See the figure.) 
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4 

f(x) =x2 + I 

~ 
17 

g(x) = 2x- 3 

! 
31 

Example 25.4 

In general, 

(go f)(x) = g[f(x)] 

= g(x2 + 1) 

= 2(x2 + 1)- 3 

= 2x 2 + 2-3 

= 2x 2
- 1. 

Some comments: 

• The notation g o f means that we do f first and then g. It may seem strange 

that although we evaluate f first, we write its symbol after g. Why? When we 

apply the function (g o f) to an element a, as in 

(go f)(a) 

the letter f is closer to a and "hits" it first: 

(go f)(a)-----+ g[f(a)]. 

• The domain of g o f is the same as the domain of f: 

dom (g o f) = dom f. 

• In order for g o f to make sense, every output of f must be an acceptable input 

to g. Properly said, we need im f ~ dom g. The requirements f : A ---). B 

and g : B ---). C ensure that the functions fit together when we form g o f. 

For the functions in Example 25.2, fog is undefined because g(6) = 10, 

but 10 rf. dom f. 

• It is possible that g o f and f o g both make sense (are defined). In this 

situation, it may be the case that fog =f. go f (are different functions). 

(g 0 f =f. f 0 g) 

Let A= {1, 2, 3, 4, 5, 6} and let f: A---). A and g :A---). A be defined by 

f = {(1, 1), (2, 1), (3, 1), (4, 1), (5, 1)}, and 

g = {(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)}. 

Then go f and fog are as follows: 

go f = {(1, 5), (2, 5), (3, 5), (4, 5), (5, 5)} and 

f 0 g = {(1, 1), (2, 1), (3, 1), (4, 1), (5, 1)}. 

Thus g o f =f. f o g. 

Example 25.5 Recall the functions f andg fromExample25.3: f(x) = x2 +1 andg(x) = 2x-3. 

For these, we have 

(go f)(4) = g[f(4)] = g(l7) = 31 and 

(f 0 g)(4) = f[g(4)] = f(5) = 26. 

Therefore g o f =f. f o g. 
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More generally, 

(go f)(x) = g[f(x)] = g[x 2 + 1] 

= 2[x 2 + 1] - 3 = 2x2 
- 1 and 

(f o g)(x) = f[g(x)] = f[2x- 3] 

= [2x- 3f + 1 

= 4 x 2 
- l2x + 10. 

Therefore go f #- fog. 

Therefore function composition does not satisfy the commutative property. It 

does, however, satisfy the associative property. 

Proposition 25.6 Let A, B, C, and D be sets and let f : A -+ B, g : B -+ C, and h : C -+ D. 

Then 

h 0 (g 0 f) = (h 0 g) 0 f. 

This proposition asserts that two functions, h o (g o f) and (h o g) o f, are 

the same function. Before we begin this proof, let us pause to consider: How do 

we prove two functions are the same? We can go back to basics and recall tpat 

functions are relations, and relations in tum are sets of ordered pairs. We can rllen 

follow Proof Template 5 to show that the sets are equal. 

However, it is simpler if we show that the two functions have the same domain, 

and for every element in their common domain, they produce the same value. This 

implies that the two sets are the same (see Exercise 25.2). This is summarized in 

Proof Template 22. 

Proof Template 22 Proving two functions are equal. 

Let f and g be functions. To prove f = g, do the following: 

• Prove that dom f = dom g. 

• Prove that for every x in their common domain, f (x) = g (x). 

We now proceed with the proof of Proposition 25.6. 

Proof. Let f : A -+ B, g : B -+ C, and h : C -+ D. We seek to prove 

h 0 (g 0 f) = (h 0 g) 0 f. 

First, we check that the domains of h o (g o f) and (h o g) o f are the same. 

Earlier we noted that dom (g o f) = dom f. Applying this fact to the current 

situation, we have 

dom[h o (go f)]= dom(g of)= dom f =A. and 

dom[(h o g) of] = dom f = A 

so both functions have the same domain, A. 

) 
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Second, we check that for any a E A, the two functions produce the same 

value. Let a E A be arbitrary. We compute 

[h o (go f)](a) = h[(g o f)(a)] 

= h[g[f(a)]] 

and [(hog) o f](a) = (h o g)[f(a)] 

= h[g[f(a)]]. 

Hence h o (go f)= (hog) of. 

Identity Function 

• 

The integer 1 is the identity element for multiplication, and 0 is the identity element 

for union. What serves as an identity element for composition? There is no single 

identity element; instead we have many. 

Definition 25.7 (Identity function) Let A be a set. The identity function on A is the function idA 

whose domain is A, and for all a E A, idA (a) =a. In other words, 

idA= {(a, a) :a E A}. 

The reason we call idA the identity function is the following: 

Proposition 25.8 Let A and B be sets. Let f: A--+ B. Then 

f 0 idA = idB 0 f = f. 

Proof. We need to show that the functions f o idA, idB o f, and f are all the 

same. We use Proof Template 22. 

Consider f o idA and f. We have 

dom(f o idA)= dom idA= A= dom f 

so they have the same domain. Let a EA. We calculate 

(f o idA)(a) = f(idA(a)) = f(a) 

so f o idA and f give the same value for all a E A. Therefore f o idA = f. 

The argument that idB of= f is nearly the same (see Exercise 25.5). • 

Just as multiplying a rational number by its reciprocal gives 1, composing a 

function with its inverse gives an identity function. 

Proposition 25.9 Let A and B be sets and suppose f : A --+ B is one-to-one and onto. Then 

f o /-
1 = idB and f- 1 of =idA. 

Please prove this (Exercise 25.6). 
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Recap 

In this section we studied the composition of functions and identity functions. 

25 Exercises 25.1. We list several pairs of functions f and g. For each pair, please do the 

following: 
• Determine which of g o f and f o g is defined. 

· If one or both are defined, find the resulting function(s). 

• If both are defined, determine whether g o f = f o g. 

a. f = {(1, 2), (2, 3), (3, 4)} and g = {(2, 1), (3, 1), (4, 1)}. 

b. f = {(1, 2), (2, 3), (3, 4)} and g = {(2, 1), (3, 2), (4, 3)}. 

c. f = {(1, 2), (2, 3), (3, 4)} and g = {(1, 2), (2, 0), (3, 5), (4, 3)}. 

d. f = {(1, 4), (2, 4), (3, 3), (4, 1)} and g = {(1, 1), (2, 1), (3, 4), 

(4,4)}. 
e. f = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 1)} and g = {(1, 3), (2, 4), 

(3, 5), (4, 1), (5, 2)}. 

f. f(x) = x 2
- 1 and g(x) = x 2 + 1 (both for all x E Z). 

g. f(x) = x + 3 and g(x) = x- 7 (both for all x E Z). 

h. f(x) = 1 - x and g(x) = 2- x (both for all x E Q). 

i. f (x) = ~ for x E Q except x = 0 and g (x) = x + 1 for all x E Q. 

j. f =idA and g =ids where A s; B but A =I= B. 

25.2. Consider functions f and g. Prove that f = g (as sets) if and only if 

dom f = dom g and for every x in their common domain, f (x) = g (x). 

This justifies Proof Template 22. 

25.3. Let A and B be sets. Prove that A = B if and only if idA = ids. 

25.4. What is the difference between the identity function defined on a set A and 

the is-equal-to relation defined on A? 

25.5. Complete the proof of Proposition 25.8. 

25.6. Prove Proposition 25.9. 

25.7. Suppose A and B are sets, and f and g are functions with f : A -+ B and 

g: B--* A. 
Prove: If go f =idA and fog= ids, then f is invertible and g = f- 1

• 

Note: This result is a converse to Proposition 25.9. 

25.8. Suppose f : A -+ B is a bijection. Explain why the following are incorrect: 

f o f- 1 =idA and f- 1 of= ids. 

25.9. Suppose A, B, and Care sets and f : A--* Band g : B--* C. Prove the 

following: 
a. If f and g are one-to-one, so is g o f. 
b. Iff and g are onto, so is go f. 

c. If f and g are bijections, so is g o f. 
25.10. Find a pair of functions f and g, from set A to itself, such that fog = go f. 

Any of the following will work: 

• Choose f and g to be the same function. 

• Choose for g to be idA. 

• Choose g = f- 1• 

Those are too easy. Find another example. 
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Note that f 1111 (x) does not 

mean [f(x)]11
• For 

example. if 

.f(x) = ~x + 1, then 
fC2I(x)::::: flf(x)J = 
~fix+ IJ +I= ±x + ~· 
This is not the same as 

[f(x)f = dx + 1)2 = 
±x2 + x + (. 

25.11. Let A be a set and fa function with f : A ---+ A. 

a. Suppose f is one-to-one. Must f be onto? 
b. Suppose f is onto. Must f be one-to-one? 
Justify your answers. 

25.12. Suppose f : A ---+ A and g : A ---+ A are both bijections. 
a. Prove or disprove: g o f is a bijection from A to itself. 
b. Prove or disprove: (go f)- 1 = g-1 o f- 1. 

c. Prove or disprove: (go f)- 1 = f-1 o g-1. 

25.13. Let A be a set and let f : A ---+ A. Then f of is also a function from A 

to itself, as is f of of. 
Let us write f(n) to stand for then-fold composition off with itself; 

that is, 

Of course, fO) =f. 

f(n) = f 0 f 0 ... 0 f. 
'--v--' 

n times 

a. Develop a sensible meaning for f(O). 

b. If .f, g : A ---+ A, must it be the case that (go f)C2) = gC2) o fC2)? Prove 

or disprove. 
c. Iff is invertible, must it be the case that (f- 1 )(n) = (f(n))- 1? Prove or 

disprove. 
The following questions are best answered with the aid of a computer. 

d. Let f : lR---+ lR by f (x) = 2.8x ( 1 - x). Consider the sequence of values 

f(~), f(2)(~), f(3)(~), f(4)(~), .... 

Describe the long-term behavior of these numbers. 
e. Let f : lR---+ lR by f (x) = 3 .1x ( 1 - x). Consider the sequence of values 

f(~), f(2)(~), f(3)(~), f(4)(~), .... 

Describe the long-term behavior of these numbers. 

f. Let f : lR---+ lR by f (x) = 3. 9x ( 1 - x). Consider the sequence of values 

f(~), f(2)(~), f(3\~), f(4)(~), .... 

Describe the long-term behavior of these numbers. 

26 Permutations 
Informally, a permutation is an ordering of objects. The precise meaning of per­

mutation is the following. 

Definition 26.1 (Permutation) Let A be a set. A permutation on A is a bijection from A to 

itself. 
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Example 26.2 Let A= {1, 2, 3, 4, 5} and let f :A---+ A by 

Mathematicians use the 
notation Sn to denote the 

set of all permutations on 
any n-element set. 

Definition 26.3 

The symbolt is a 
lowercase Greek iota. It 

looks much like an i but 
does not have a dot. It is 
called the identity 
permutation. 

Proposition 26.4 

The permutation from 
Example 26.2 in the form 

of a chart: 

X 

2 
3 
4 

5 

JT(x) 

2 
4 
l 
3 
5 

f = {(1, 2), (2, 4), (3, 1), (4, 3), (5, 5)}. 

Since f is a one-to-one and onto function (i.e., a bijection) from A to A, it is a 

permutation. 
Notice that because f is a bijection, the list (j(l), f(2), f(3), f(4), f(5)) = 

(2, 4, 1, 3, 5) is simply a reordering of (1, 2, 3, 4, 5). 

It is customary to use lowercase Greek letters (especially n, a, and r) to stand 

for permutations. Note that in this context, n does not stand for the real number 

3.14159 .... 
The set of all permutations on { 1, 2, ... , n} has a special notation. 

(Sn) The set of all permutations on the set { 1, 2, ... , n} is denoted S11 • 

In later sections, we refer to S11 as the symmetric group on n elements. 

The following result lists important properties of Sn. One of these properties is 

that the identity function idp,2, ... ,n} is a permutation and therefore in S11 • We usually 

denote the identity function by the lowercase Greek letter L. 

There are n! permutations in S11 • The set S11 satisfies the following properties. 

• Vn' (J E s/1' 7T 0 (J E Sn. 
• V 7T, a, r E S11 , 7T o (a o r) = ( 7T o a) o r. 

• Vn E S11 , 7T o l = l o 7T = 7T. 

• Vn E S11 , n-1 E Sn and no n-1 = n-1 on = t. 

Proof. We have already proved all the assertions in this proposition! The fact 

that !Sn I = n! comes from Theorem 23.26. The fact that the composition of two 

permutations is a permutation is a consequence of Exercise 25.9. The equation 

l07T = 7TOL = nfollowsfromProposition25.8.Thefactthatn E s/1 ===} 7T-l E Sn 

comes from Exercise 23.13 and the fact that n o n -I = n -l o n = L is shown in 

Proposition 25.9. • 

Cycle Notation 

In Example 26.2, we considered the following permutation in S5 : 

7T = {(1, 2), (2, 4), (3, 1), (4, 3), (5, 5)}. 

Writing a function as a list of ordered pairs is correct, but it is not always the most 

useful notation. Here we consider alternative ways of expressing permutations. 



218 Chapter 5 Functions 

Example 26.5 

We can express n in chart form as in the figure. Another popular form is to 
... 

express a permutation as a 2 x n array of integers. The top row contains the integers 

1 through n in their usual order, and the bottom row contains n (1) through n (n): 

[ 
1 2 

JT = 2 4 
3 4 5] 

3 5 . 

Notice that the 2 x n array notation is not significantly different from a chart. 
The top row in the array notation is not strictly necessary. We could express 

the permutation n simply by reporting the bottom row; all the information we 

need is there. We could write n = [2, 4, 1, 3, 5]. When n is small (e.g., n = 5), 
this notation is reasonable. However, for a larger value of n (e.g., n = 200), it is 

awkward for human beings to distinguish between the values for n(83) and n(84). 

On the other hand, this is a reasonable way to store a permutation in a computer. 

An alternative notation for expressing permutations is known as cycle notation. 

Th 1 . .{:' h . [12345]· e eye e notatiOn 10r t e permutatiOn n = 2 4 1 3 5 1s 

JT = (1, 2, 4, 3)(5). 

Let us explain what this notation means. The two lists in parentheses, (1, 2, 4, 3) 
and ( 5), are called cycles. The cycle ( 1, 2, 4, 3) means that 

1r-+2r-+4r-+3r-+1. 

In other words, 

n(l) = 2, n(2) = 4, n(4) = 3, and n(3) = 1. 

Each number k is followed by n(k). Taken literally, if we began the cycle with 1, 
we would go on forever: (1, 2, 4, 3, 1, 2, 4, 3, 1, 2, 4, 3, 1, ... ). Instead, when we 

reach the first 3, we write a close parenthesis meaning "return to the start of the 
cycle." Thus (1, ... , 3) means that n(3) = 1. 

What does the lonely (5) mean? It means n(5) = 5. 
Let's continue with a more complicated example. 

123456789 . . 
Let n = 2 7 5 6 3 8 1 4 9 E S9. Express n m cycle notatiOn. 

Solution: Note that n(l) = 2, n(2) = 7, and n(7) = 1 (we have returned to start). 
So far we have 

JT = (1' 2, 7) .... 

The first element we have not considered is 3. Restarting from 3, we have n(3) = 5 
and n(5) = 3, so the next cycle is (3, 5). So far we haven = (1, 2, 7)(3, 5) .... 

The next element we have yet to consider is 4. We have n(4) = 6, n(6) = 8, 
and n(8) = 4 to complete the cycle. The next cycle is (4, 6, 8). Thus far we have 
(1, 2, 7)(3, 5)(4, 6, 8) .... 

Finally, we have n(9) = 9, so the last cycle is just (9). The permutation n in 
cycle notation is 

JT = (1, 2, 7)(3, 5)(4, 6, 8)(9). 
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We can draw a picture of a permutation. Let JT E Sn. We draw a dot for each 
element of the set {1, 2, ... , n}. We draw an arrow from dot k to dot rr(k). The 
fi h h . [ 1 2 3 4 5 6 7 8 9] N . h h I . gure s ows t e permutatiOn 7T = 2 7 5 6 3 8 1 4 9 . otice t at eac eye e m 
(1, 2, 7)(3, 5)(4, 6, 8)(9) corresponds to a cycle of arrows in the diagram. 

Does the cycle notation method work for all permutations? Is it possible that 
we begin making a cycle (1, 5, 2, 9, ... ) and the first repetition is not to the first 
element of the cycle. In other words, could we run into a situation such as 

rr(l) = 5 rr(5) = 2 rr(2) = 9 rr(9) = 5? 

In the diagram, we would have a chain of arrows starting at 1, going to 5, then 2, 
then 9, but then back to 5 rather than 1. Might this happen? No. Notice that in this 
case we would have rr(l) = rr(9) = 5, contradicting the fact that rr is one-to-one. 

More formally, let 7T E Sn. Consider the sequence 

1, rr(l), (rr o rr)(l), (rr orr o rr)(l), ... 

which we can rewrite 

(see Exercise 25.13). This is a sequence of integers in the finite set {1, 2, ... , n}, 
so eventually this sequence must repeat itself. Let's say that the first repeat is at 
7T (k) (1). [It is possible that the first repeat is at k = 1-that is, that rr (1) = 1.] 
We want to conclude that rr (k) ( 1) = 1. Suppose, for the sake of contradiction, that 
rr (k) (1) i= 1. In this case, we have 

where 0 < j < k. Because this is the first repeat, we have 

JT(k-1)(1) i= JT(j-1)(1). 

Since JT is one-to-one, applying rr to both sides of Equation (36) yields 

JT(k)(l) i= JT(j)(l) 

contradicting (35). Therefore the first repeat must go back to element 1. 

(35) 

(36) 

The cycle starting at element 1 might not include all the elements of { 1 , 2, ... , 
n}. In this case, we can restart with an as-yet-unconsidered element and start 
building a new cycle. 

Is it possible that this new cycle "runs into" an existing cycle? For this to 
happen, we would have two arrows pointing to the same dot, a violation of the 
fact that rr is one-to-one. More formally, if the elements is not an element of the 
cycle (t, rr(t), rr(2)(t), ... ), is it possible that rrCk)(s) is an element of the cycle? 
If so, there is an element c on the cycle with the property that there are two 
different elements a and b with rr(a) = rr(b) = c, contradicting the fact that rr is 
one-to-one. 

Therefore we can write rr as a collection of pairwise disjoint cycles; that is, 
no two of the cycles have a common element. 

We can say more. Is it possible to write the same permutation as a collec­
tion of disjoint cycles in two different ways? At first glance, the answer is yes. 
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For example, 

n = (1, 2, 7)(3, 5)(4, 6, 8)(9) = (5, 3)(6, 8, 4)(9)(7, 1, 2); 

both represent the permutatiOn n = 2 7 5 6 3 8 1 4 9 . However, on closer In-. [123456789l . 

spection, we see that the two representations of n have e same cycles; the cycles 

(1, 2, 7) and (7, 1, 2) both say the same thing-namely, n(l) = 2, n(2) = 7, 

n(7) = 1. 
There is only one way to write n as a collection of disjoint cycles. Suppose, for 

the sake of contradiction, that we had two ways to write n. Then an element, say 

element 1, would be listed in one cycle in the first representation and in a different 

cycle in the second representation. However, if we consider the sequence, 

1, n(l), n(2)(1), nC3)(1), ... 

we see that the two different cycles predict two different sequences. This is non­

sense because the sequence is· solely dependent on n and not on the notation in 

which we write it! 
We summarize what we have discussed in the following result: 

Theorem 26.6 Every permutation of a finite set can be expressed as a collection of pairwise 

disjoint cycles. Furthermore, this representation is unique up to rearranging the 

cycles and the cyclic order of the elements within cycles. 

Calculations with Permutations 

The cycle notation is handy for doing pencil-and-paper calculations with per­

mutations. Here we show how to compute the inverse of a permutation and the 

composition of two permutations. Let us begin with calculating n- 1 . 

If n maps a 1--+ b, then n- 1 maps b 1--+ a. Thus if (a, b, c, ... ) is a cycle of 

n, then( ... , c, b, a) is a cycle of n-1. 

Example 26.7 (Inverting n) Let n = (1, 2, 7, 9, 8)(5, 6, 3)(4) E S9 . Calculate n-1. 

Solution: n-1 = (8, 9, 7, 2, 1)(3, 6, 5)(4). 

To check that this is correct, let k be any element in { 1, 2, ... , 9}. If n (k) = j 
(if j follows kin a cycle inn), check that n- 1 (j) = k (then k follows j in a cycle 

ofn- 1). 

Let us explore how to compute the composition of two permutations. For 

example, let n, a E S9 be given by 

n = (1, 3, 5)(4, 6)(2, 7, 8, 9), and 

a = (1, 4, 7, 9)(2, 3)(5)(6, 8). 

We compute no a. To do this, we calculate (no a)(k) for all k E {1, 2, ... , 9}. 

We begin with (n o a) (1). This can be written out as 

[ (1, 3, 5)(4, 6)(2, 7, 8, 9)] 0 [ (1, 4, 7, 9)(2, 3)(5)(6, 8) ](1). 

n: 

Notice that a acts on 1 first and sends 1 1--+ 4. 
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The problem reduces to computing n: ( 4); that is, 

[(1, 3, 5)(4, 6)(2, 7, 8, 9)](4) 

and we see that n: sends 4 ~ 6. Thus (n: o a) (1) = n: ( 4) = 6, and we can write 

n: o a = (1, 6, .... 

To continue the cycle, we calculate (n: o a) ( 6). We have 

[ (1, 3, 5)(4, 6)(2, 7, 8, 9)] 0 [ (1, 4, 7, 9)(2, 3)(5)(6, 8) ](6) 

JT (J 

= [ (1, 3, 5)(4, 6)(2, 7, 8, 9) ](8) = 9. 

JT 

Son: o a maps 6 ~ 9. Now we have 

n: o a = (1, 6, 9, ... 

Next we compute (n: o a)(9) = n:(l) = 3, son: o a= (1, 6, 9, 3, .... Continuing 

in this fashion, we get 

1~6~9~3~7~2~5~1 

and we have completed a cycle! Thus ( 1, 6, 9, 3, 7, 2, 5) is a cycle of n: o a. Notice 

that 4 is not on this cycle, so we start over computing (n: o a) ( 4). We find 

[ (1, 3, 5)(4, 6)(2, 7, 8, 9)] 0 [ (1, 4, 7, 9)(2, 3)(5)(6, 8) ](4) = 8 

JT (J 

so 4 ~ 8. The second cycle inn: o a begins (4, 8, .... Now we calculate (n: o 

a)(8) = 4, so the entire cycle is simply (4, 8). The two cycles (1, 6, 9, 3, 7, 2, 5) 

and (4, 8) exhaust all the elements of {1, 2, ... , 9}, and so we are finished. We 

have found 

n: o a= (1, 6, 9, 3, 7, 2, 5)(4, 8). 

Transpositions 

The simplest permutation is the identity permutation L; it satisfies L (x) = x for 

every x in its domain. The identity permutation maps every element to itself. 

The next simplest type of permutation is called a transposition. Transpositions 

map almost all elements to themselves, except that they exchange one pair of 

elements. For example, 

r = (1)(2)(3, 6)(4)(5)(7)(8)(9) E 59 

is a transposition. Here is a formal definition: 

Definition 26.8 (Transposition) A permutation r E Sn is called a transposition provided 

• there exist i, j E {1, 2, ... , n} with i =P j so that r(i) = j and r(j) = i, and 

• for all k E {1, 2, ... , n} with k =Pi and k =P j, we have r(k) = k. 

When written in cycle notation, the vast majority of the cycles are singletons. 

It is more convenient not to write out all these 1-cycles and to write just r = (3, 6) 

instead of the verbose r = (1)(2)(3, 6)(4)(5)(7)(8)(9). 
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There is a nice trick for converting a cycle into a compositi9n of transpositions. 
" 

Example 26.9 Let n = (1, 2, 3, 4, 5). Write n as the composition of transpositions. 
Solution: (1, 2, 3, 4, 5) = (1, 5) o (1, 4) o (1, 3) o (1; 2). 

To see that this is correct, let n = (1, 5) o (1 , 4) o (1, 3) o (1, 2) and calculate 

n(l), n(2), n(3), n(4), and n(5). Look at how the elements 1 through 5 pass 

(from right to left) through the transpositions. For example, 1 r-+ 2 by (1, 2), 

then 2 r-+ 2 by (1, 3), then 2 r-+ 2 by (1, 4), and finally 2 r-+ 2 by (1, 5). So 

overall, 1 r-+ 2. Here is how all the elements are handled as they pass through 

(1, 5) 0 (1, 4) 0 (1, 3) 0 (1, 2): 

1r-+2r-+2r-+2r-+2 

2r-+1r-+3r-+3r-+3 

3r-+3r-+1r-+4r-+4 

4r-+4r-+4r-+1r-+5 

5r-+5r-+5r-+5r-+1 

so overall n = (1, 2, 3, 4, 5). 

Example 26.10 Let n = (1, 2, 3, 4, 5)(6, 7, 8)(9)(10, 11). Write n as the composition of transpo­

sitions. 
Solution: n = [(I, 5) o (1, 4) o (1, 3) o (1, 2)] o [(6, 8) o (6, 7)] o (10, 11). (The 

brackets are unnecessary; their purpose is to show how the answer was obtained.) 

Let n be any permutation. Write nasa collection of disjoint cycles. Using the 

technique from Example 26.9, we can rewrite each of its cycles as a composition 

of transpositions. Because the cycles are disjoint, there is no effect of one cycle 

on another. Thus we can simply string together the transpositions for the various 

cycles into one long composition of cycles. 
What about the identity permutation L? Can it also be represented as the 

composition of transpositions? Yes. We can write t = (1, 2) o (1, 2). Or we can 

say that tis the result of composing together a list of no permutations (this is akin 
to an empty product-see Section 8). 

Let us summarize what we have shown here. 

Theorem 26.11 Letn be any permutation on a finite set. Then n can be expressed as the composition 

of transpositions defined on that set. 

The decomposition (great word to use here!) of a permutation into transposi­

tions is not unique. For example, we can write 

(1, 2, 3, 4) = (1, 4) 0 (1, 3) 0 (1, 2) 

= (1, 2) 0 (2, 3) 0 (3, 4) 

= (1, 2) 0 (1, 4) 0 (2, 3) 0 (1, 4) 0 (3, 4). 
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These ways of writing (1, 2, 3, 4) are not simple rearrangements of one another. We 

see that they do not even have the same length. However, they do have something 

in common. In all three cases, we used an odd number of transpositions. 

Theorem 26.12 Let n E Sn. Let n be decomposed into transpositions as 

n = r 1 o r2 o · · · o Ta and 

Then a and b have the same parity; that is, they are both odd or both even. 

The key to proving this theorem is to prove a special case first. 

Lemma 26.13 If the identity permutation is written as a composition of transpositions, then that 

composition must use an even number of transpositions. That is, if 

L=i10i20···0ia, 

where the rs are transpositions, then a must be even. 

Before we prove this lemma, we show how to use it to prove Theorem 26.12. 

Proof (of Theorem 26.12) 

Let n be a permutation decomposed into transpositions as 

n = r 1 o r2 o · · · o Ta, and 

Note that we can write n- 1 as (see Exercise 26.) 1) 

n-1 
=abo ab_ 1 o · · · o a 2 o a 1 

and so 

-I 
t = n o n = r 1 o r 2 o · · · o Ta o ab o ab-I o · · · o a2 o a1. 

This is a decomposition oft into a + b transpositions. Hence a + b is even, and so 

a and b have the same parity. • 

Our job now reduces to proving Lemma 26.13. To do this, we introduce the 

concept of an inversion in a permutation. 

Definition 26.14 (Inversion in a permutation) Let n E Sn and leti, j E {1, 2, ... , n} with i < j. 

The pair i, j is called an inversion inn if n(i) > n(j). 

It is easier to understand inversions when the permutation is written in 2 x n 

array form. Let 

n- [1 - 4 
2 
2 

3 4 
5 
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Here is another way to 
think about inversions. 
Draw two collections of 
dots labeled I through n on 
the left and on the right. 
For each clement i on the 
left drmv a straight arrow 
from i to rr (i l 011 the right. 
The number ,)r crossings is 
the number ot inversions. 

There are (;) = 10 ways we can choose a pair of elements 1 .:::: i ~· j .:::: 5. In the 
following chart, we list all such pairs i, j and check whether n (i) > n (j). 

i j rr(i) rr(j) Inversion? 

1 2 4 2 YES 
1 3 4 1 YES 
1 4 4 5 no 
1 5 4 3 YES 
2 3 2 1 YES 
2 4 2 5 no 
2 5 2 3 no 
3 4 1 5 no 
3 5 1 3 no 
4 5 5 3 YES 

Thus n has five inversions. We can also write n as the composition of transposi­
tions: 

[
] 2 3 4 5] ]'( = 4 2 1 5 3 = (1, 4, 5, 3)(2) = (1, 4)(4, 5)(5, 3). 

In this decomposition there are three transpositions (odd) and the permutation n 
has five inversions (also odd). 

For a second, more abstract example, we calculate the number of inversions 
in a transposition (a, b) E Sn. Let us assume a < b so we can write this as 

(a,b)= [: 
2 
2 

a-1 
a- 1 

a 
b 

a+1 
a+1 

b-1 
b- 1 

b 
a 

b+1 
b+1 

Let us count the inversions. To begin, the only inversions possible are those that 
involve a or b. For any i, j (with neither i nor j equal to a or b), the transposition 
(a, b) does not invert the order of i and j; there are no inversions of this sort. 

We now count three types of inversions: those involving only a, those involving 
only b, and those involving both a and b. 

Inversions involving a but not b. 
Element a has advanced from column a to column b. In so doing, it has 

skipped past elements a + 1, a + 2, ... , b - 1 and creates inversions with 
those elements. It is still in its proper order with respect to all other columns. 
The number of inversions of this sort is (b- 1) - (a+ 1) + 1 = b- a- 1. 
Inversions involving b but not a. 

Element b has retreated from column b to column a. In so doing, it has 
ducked under elements a + 1, a + 2, ... , b - 1 and creates inversions with 
those elements. It is still in its proper order with respect to all other columns. 
The number of inversions of this sort is, again, ( b- 1) - (a+ 1) + 1 = b-a - 1. 
Inversions involving both a and b. 

This is just one inversion. 

Therefore the total number of inversions is 2(b- a- 1) + 1, an odd number. 
The number of inversions involving a but not b equals the number of inversions 
involving b but not a. Further, all these inversions involve the elements appearing 
between a and b. 
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The identity permutation has, of course, 0 (even) inversions. We now return 

to the goal of showing that any decomposition of L into transpositions uses an even 

number of transpositions. 

Proof (of Lemma 26.13) 

Write L as a composition of transpositions: 

(We have written the rs in reverse order because we want to think of doing r 1 first, 

r2 second, and so on.) 
Our goal is to prove that a is even. Imagine applying the transpositions ri one 

at a time. We begin with a "clean slate"; that is, [ ~ ~ ::: ~ J. 
Now we apply r 1 . As we analyzed earlier, the resulting number of inversions is 

now odd. We now show that as we apply each ri, the number of inversions changes 

by an odd amount. Since the number of inversions at the start and at the end is 

zero, and since each transposition increases or decreases the number of inversions 

by an odd amount, the number of transpositions must be even. 

Suppose rk = (a, b) and 

r,_, o . · · o r 1 = [ : : : 
a 

Now when we apply rk = (a, b), the effect is 

r, o r,_, o ... o r1 = [: : : 
i 
b 

m 
X 

m 
X 

j 
b 

j 
a 

.. ·]. 

... 

.. ·]. 

... 

The only change is that a and b are exchanged in the bottom row. What has 

happened to the number of inversions? 
The first thing to note is that for a pair of columns including neither column 

i nor column j, there is no change. All changes involve column i or j or both. 

The second thing to note is that columns to the left of column i and columns to 

the right of column j are unaffected by the interchange of a and b; these elements 

do not change their order with respect to these outer columns. 

Therefore we only need to pay attention to columns between columns i and j. 

Let's say that column m is between these (i < m < }), and the entry in column m is 

x. When we exchange a and b, the bottom row changes from [ · · · a · · · x · · · b · · ·] 

to[···b···X···a···]. 
We break into cases depending on x's size compared to a and b; x can be 

larger than both a and b, smaller than both a and b, or between a and b. 

If x > a and x > b, then there is no change in the number of inversions 

involving x and a or b. Before applying rb we had a and x inverted, but x 

and b were in natural order. After applying rb we have x and b inverted, but 

x and a are in their natural order. 
If x < a and x < b, then there is no change in the number of inversions 

involving x and a orb; the argument is analogous to the case where x is larger 

than both. 
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If a < x < b, then upon switching a and b, we gain two inversions involving 
a and x and involving band x. " 

If a > x > b, then upon switching a and b, we lose two inversions. 

In every case, the number of inversions either stays the same or changes by two. 
Thus the number of inversions involving column i or j and a column other than i 
or j changes by an even amount. 

Finally, the exchange of a and b either increases the number of inversions by 
one (if a < b) or decreases the number of inversions by one (if a > b). 

Thus the cumulative effect of rk is to change the number of inversions by an 
odd amount. 

In conclusion, since we begin and end with zero inversions, the number of 
transpositions in 

l = Ta o Ta-l o · · · o T2 o TJ 

must be even. • 
Theorem 26.12 enables us to separate permutations into two disjoint cate­

gories: those that can be expressed as the composition of an even number of trans­
positions, and those that can be expressed as the composition of an odd number of 
transpositions. 

Definition 26.15 (Even, odd permutations) Let n be a permutation on a finite set. We calln even 

provided it can be written as the composition of an even number of transpositions. 
Otherwise it can be written as the composition of an odd number of transpositions, 
in which case we call n odd. 

1 20 
3 5 

4 

7 

D. 
8 9 

The sign of a permutation is ± 1 depending on whether the permutation is 
odd or even. The sign of n is 1 if n is even and -1 if n is odd. The sign of n is 
written sgn n. 

A Graphical Approach 

We close with an alternative approach to understanding even and odd permuta­
tions. The ideas we present here yield another proof of Theorem 26.12. We use 
Theorem 26.6, which asserts that every permutation n E Sn can be expressed as a 
collection of disjoint cycles in, essentially, only one way. 

We begin by drawing a picture of the permutation. Given n E Sn, we make a 
figure in which the numbers 1, 2, ... , n are represented by points, and if n (a) = b, 
we draw an arrow from a to b. A picture for the permutation n = (1, 2, 3, 4, 5, 6) 
(7, 8, 9) is shown in the figure. In case n(a) =a, we draw a looping arrow from 
a to itself. Each cycle of n corresponds precisely to a closed path in the diagram. 

Suppose we compose a permutation n with a transposition r. What is the 
effect on the diagram? Suppose n, r E Sn and r = (a, b) where a -=f. b and 
a, b E {1, 2, ... , n}. When we express n as disjoint cycles, cycles that contain 
neither a nor b are the same in n and n o r. The only cycles that are affected are 
ones that contain a orb (or both). 
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If a and b are in the same cycle, then rr is of the form 

rr = (p, a, q, ... , s, b, t, ... , z) ( · · ·). 

Then rr o (a, b) will be of the form 

rr o (a, b)= (p, a, q, ... , s, b, t, ... , z)(· · ·) o (a, b) 

= (p, a, t, ... , z)(q, ... , s, b)(···). 

In other words, the cycle containing a and bin rr is split into two cycles in rr o (a, b): 

one containing a and the other containing b. 

The opposite effect occurs when a and b are in different cycles. In this case, 

rr is of the form 

rr = (p, a, q, .. . )(s, b, t, .. . )(· · ·) 

and so rr o (a, b) has the form 

rr o (a, b)= (p, a, q, .. . )(s, b, t, .. . )(· · ·) o (a, b) 

= (p, a, t, ... , s, b, q, .. . )(· · ·). 

The cycles containing a and bin rr are merged into a single cycle in rr o (a, b). 

For example, suppose rr = (1, 2, 3, 4, 5)(6, 7, 8, 9) and let a = rr o (4, 7). 

Observe that a = (1, 2, 3, 4, 8, 9, 6, 7, 5). Because 4 and 7 are in separate cycles 

of rr, they are in a common cycle of rr o (4, 7). Conversely, 4 and 7 are in the same 

cycle of a but are split into separate cycles in a o ( 4, 7). See the figure. 

3 

8 9 

7 

1t = (1, 2, 3, 4, 5)(6, 7, 8, 9) 

1t0(4, 7) 

(') 0(4, 7) 

C>=(l, 2, 3, 4, 8, 9, 6, 7, 5) 

With only a bit more care, these observations can be made into a rigorous 

proof of the following result. 

Proposition 26.16 Let n be a positive integer and rr, r E Sn, and suppose r is a transposition. Then 

the number of cycles in the disjoint cycle representations of rr and rr o r differ by 

exactly one. 
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Note that for a 

transposition T E S". we 

haven- c(r) =I. 

Remember that r =(a. b) 

is an abbreviated form of 

the permutation in which 

the !-cycles are not 

written. For example, in 56 

the. transposition 

r = (3 . .'i) is. when written 

in full. (I )(2)(3. 5)(4)(6). 

Therefore n- c(r) = 
6-5 =I. 

For the remainder of this section, it is convenient to write c(rr) to stand for the 

number of cycles in the unique disjoint cycle representation of n ~Proposition 26.16 

can be expressed as c(rr or) = c(rr) ± 1. 

We now apply Proposition 26.16 to give another proof of Theorem 26.12. 

Proof (of Theorem 26.12) 

Suppose 1T E Sn and 

(37) 

where the rs are transpositions. We claim that a = n - c(rr)(mod 2). In other 

words, the parity of the number of transpositions in Equation (37) equals the 

parity of n - c(rr), and so two different decompositions of n into transpositions 

will both have an even or both have an odd number of terms. 

Consider the sequence t, r 1, r 1 o r2 , r 1 o r 2 o r3 , ... , n. Each term is formed 

from the previous by appending the appropriate r 1. We calculate n - c ( ·) for each 

of these permutations; see the following chart. 

Permutation CY n- c(CY) 

L 0 

TJ 1 
TJ o T2 1 ± 1 

TJ o !2 o !3 1 ± 1 ± 1 

7f = r1 o · · · o Ta 1±1±1±···±1 

a terms 

Note that the parity of the expression 1 ± 1 ± 1 ± · · · ± 1 (with a terms) is exactly 

the same as the parity of a, and the result follows. • 

This proof of Theorem 26.12 yields the following corollary. 

Corollary 26.17 Let n be a positive integer and n E Sn. Then sgn n = ( -l)n-c(JT). 

26 Exercises 

Recap 

This section dealt with permutations: bijections from a set to itself. We stud­

ied properties of composition with respect to the set Sn of all permutations on 

{ 1, 2, ... , n}. We showed how to represent permutations in various forms, but 

we were especially interested in studying permutations in disjoint cycle form. 

We showed how to represent permutations as compositions of transpositions and 

discussed even and odd permutations. 

26 1 C · d h . [ 1 2 3 4 5 6 1 8 9 ] PI . 
. . ons1 er t e permutatiOn n = 2 4 1 6 5 3 8 9 7 . ease express n m as 

many forms as possible, including the following: 
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a. As a set of ordered pairs. (Never forget: A permutation is a function, 

and functions are sets of ordered pairs.) 

b. As a two-column chart. 
c. In cycle notation (disjoint cycle). 

d. As the composition of transpositions. 

e. As a diagram with two collections of dots for the numbers 1 through 9 

(one collection on the left and one collection on the right) with arrows 

from left to right. 
f. As a diagram with one collection of dots for the numbers 1 through 9 

~arrows from ito n(i) for each i = 1, 2, ... , 9. 

26.2. ~express the following permutations in disjoint cycle form. 

[
123456] 

a. a = 2 4 6 1 3 5 · 

[
123456] 

b. JT = 2 3 4 5 6 1 . 

c. n o n, where n is the permutation from part (b). 

d. n-1 where n is the permutation from part (b). 

e. L E S5. 

f. (1, 2) 0 (2, 3) 0 (3, 4) 0 (4, 5) 0 (5, 1). 

26.3. How many permutations in Sn have exactly one cycle? 

26.4. How many permutations in Sn do not have a cycle of length one in their 

disjoint cycle notation? 
26.5. Let n, a, r E S9 be given by 

JT = (1)(2, 3, 4, 5)(6, 7, 8, 9), 

a= (1,3,5, 7,9,2,4,6,8), and 

r = (1, 9)(2, 8)(3, 5)(4, 6)(7). 

Please calculate the following: 
a. no a. 
b. a on. 
c. JT 0 JT. 

d. Jr-1. 

e. a- 1• 

f. r or. 
g. r-1. 

26.6. Prove or disprove: For all n, a E Sn, n o a = a o n. 

26.7. Prove or disprove: If r and a are transpositions, then r o a =a or. 

26.8. Prove or disprove: For all n, a E Sn, (no a)- 1 = a-1 o n- 1 . 

26.9. Prove or disprove: For all n, a E Sn, (no a)- 1 = n-1 o a-1• 

26.10. Prove or disprove: A permutation r is a transposition if and only if r =f. L 

and r = r- 1 . 

26.11. Let r1 , r2 , ... , Ta be transpositions and suppose 

JT = T1 o T2 o · · · o Ta. 

Prove that 
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26.12. Let n = (1, 2)(3, 4, 5, 6, 7)(8, 9, 10, 11)(12) E S12 . Find the smallest 
positive integer k for which 

Jr (k) = Jr 0 Jr 0 ..• 0 Jr = l. 
"-v--' 

k times 

" 

Generalize. If an's disjoint cycles have lengths n 1, n2, ... , nt. what 
is the smallest integer k so that n (k) = t? 

26.13. Although permutations are uniquely expressible as disjoint permutations, 
there is some choice in the way the permutations can be written. For 
example, 

(1, 3, 9, 2)(7)(4, 6, 5, 8) = (7)(2, 1, 3, 9)(5, 8, 4, 6) 

= (6, 5, 8, 4)(3, 9, 2, 1)(7). 

Devise a standard form for writing permutations as disjoint cycles that 
makes it easy to check whether two permutations are the same. 

26.14. Prove: If rr, a- E Sn and no a- =a-, then n = t. 
26.15. Let n, a-, r E Sn and suppose n o a- = n o r. Prove that a- = r. 
26.16. For each of the permutations listed, please do the following: 

(1) Write the permutation as a composition of transpositions. 
(2) Find the number of inversions. 
(3) Determine whether the permutation is even or odd. 

a. (1, 2, 3, 4, 5). 
b. (1,3)(2,4,5). 
c. [(1,3)(2,4,5)r 1

• 

[
12345] d. 2 4 1 3 5 . 

26.17. Prove: The number of inversions in a permutation equals the number of 
inversions in its inverse. 

26.18. Prove the following: 
a. The composition of two even permutations is even. 
b. The composition of two odd permutations is even. 
c. The composition of an even permutation and an odd permutation is odd. 
d. The inverse of an even permutation is even. 
e. The inverse of an odd permutation is odd. 
f. For n > 1, the number of odd permutations in Sn equals the number of 

even permutations in Sn. 
26.19. Suppose permutation n is written as a disjoint collection of cycles oflengths 

n 1, n2, ... , n1 • Can you determine, just from these numbers, whether n is 
even or odd? 

To answer yes, you need to develop and prove a formula for the parity 
of a permutation given only its disjoint cycle lengths. 

To answer no, you need to find two permutations-one even and one 
odd-whose disjoint cycles have the same length. 

26.20. The Fifteen Puzzle is a 4 x 4 array of tiles numbered 1 to 15 with one 
empty space. You move the tiles about this board by sliding a number tile 
into the empty position. The initial configuration of the puzzle is shown in 
the upper diagram. To play, you scramble the pieces about randomly and 
then try to restore the initial configuration. 
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Prove that it is impossible to move the pieces in the puzzle from the ini­

tial configuration to a new position in which all numbers are in their original 

positions, but tiles 14 and 15 are interchanged (shown in the lower figure). 

27 Symmetry 

H_!2p__D3 u 1 2 

R~o2 u 4 1 

In this section, we take a careful look at the concept of symmetry. What does it 

mean to say that an object is symmetric? A human face is symmetric because the 

left half and the right half are mirror images of one another. On the other hand, a 

human hand is not symmetric. 
In mathematics, the word symmetry typically refers to geometric figures. We 

give an informal definition of symmetry here; a precise definition is given later. 

A symmetry of a figure is a motion that, when applied to an object, results in 

a figure that looks exactly the same as the original. 

For example, consider a square sitting in the plane. If we rotate the square 

counterclockwise about its center through an angle of goo, the resulting figure is 

exactly the same as the original. However, if we rotate the square through an angle 

of, say, 30°, the resulting figure is not the same as the original. Therefore a goo 

rotation is a symmetry of the square, but a 30° rotation is not. 

Symmetries of a Square 

Rotating a square goo counterclockwise through its center leaves the square un­

changed. What are the other motions we can apply to a square that leave it un­

changed? To aid us in our analysis, imagine that the numbers 1 through 4 are 

written in the comers of the square. Since the square looks exactly the same before 

and after we move it, the labels enable us to see how the square was moved. The 

figure shows a counterclockwise rotation through goo; we call this symmetry R90 . 

We may also rotate the square counterclockwise through 180°. After this rota­

tion, the square will look exactly the same as before. We call this symmetry Rt 80 . 

We might also rotate the square clockwise through 180°. Even though the phys­

ical motion of the square might be different (clockwise versus counterclockwise 

rotation), the end results are identical. By looking at the comer labels, you can 

tell that the square was rotated 180°, but you cannot tell whether that rotation was 

clockwise or counterclockwise. We consider these two motions to be exactly the 

same; they give the same symmetry of the square. 

Next, we can rotate the square through 270° and leave the image unchanged. 

We call this symmetry R2?0· 

Finally, we can rotate the square through 360° and the result is unchanged. 

Should we call this R360? Although this is not a bad idea, notice that a 360° rotation 

has no effect on the labels. It is as if no motion whatsoever was applied to the square. 

We therefore call this symmetry I, for identity. 
If we rotate the square through 450° [Note: 450 = 360 + go], it is as if we 

rotated only through goo. A rotation through 450° is simply R90 • 
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M__!j___D4 
UJ 2 1 

So far we have found four symmetries: I, R90 , R180, and R270 . Are there more? 

In addition to rotating the square, we can pick the square up, flip it over, and 

set it back down in the plane. For example, we can flip the square over along a 

horizontal axis. The result of this motion is shown in the figure. Notice that after 

this motion, the square looks exactly the same as when it started. We call this 

symmetry F H for "flip-horizontal." 

We can also flip the square over along its vertical axis~ we call that motion 

F v. Please draw a picture of this symmetry yourself. 

We can also hold the square by two opposite comers and flip it over along its 

diagonal. If we hold the upper-right and lower-left comers, the result is as shown 

in the figure. We call this symmetry F; for "flip along the I diagonal." 

We can also hold the upper-left and lower-right comers firm and flip over 

along the \ diagonal. We call this symmetry F\. 

The eight symmetries we have found thus far are/, R90 , R1so, R21o, FH, Fv, 

F;, and F\. The following figure shows all of them. 

[] 8 EJ EJ 0 0 

2 1 

0 

4 3 

[] [] [] [] H v 

4 2 

I 

1 

\ 

3 

Two questions arise. 

• First, have we repeated ourselves? Just as a 360° rotation and the identity 

symmetry are the same, are (perhaps) two of the above symmetries the same? 

The answer is no. If you look at the labels, you can observe that no two 

of the squares are labeled the same. The eight symmetries we have found are 

all different. 

• Second, are there other symmetries we didn't think of? 

The labels can help us to see that the answer to this question is also no. 

Imagine that we pick up the square and lay it back down in its original place 

(but perhaps rotated and/or flipped). Where does the comer labeled 1 go? 

We have four choices: It might end up in the northeast, northwest, southeast, 

or southwest. Once we have decided where comer 1 goes, consider the final 

resting place of comer 2. We now have only two choices because comer 2 

must end up next to (and not opposite) corner 1. Once we have placed corners 

1 and 2, the remaining corners are forced into position. Therefore, there are 

4 x 2 = 8 choices (four choices for corner 1 and, for each such choice, two 

choices for corner 2). We have found all the symmetries. 

Symmetries as Permutations 

Sylvia and Steve work in a symmetry factory. One day their boss asks them to 

rotate the big stone square in the company lobby 90°. Of course, the only way the 
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boss can know that the square has been moved is by the labels on the corners of 

the square. So rather than move the big, heavy square, they peel the stickers off 

the corners of the square and reattach them in their new locations. 

To perform the rotation R90 , they simply move label 1 to position 2, label 2 to 

position 3, label 3 to position 4, and label 4 to position 1. 

[
1234] The symmetry R90 can be expressed as 2 3 4 1 . The first column means 

that label 1 moves to position 2, the second column means that label 2 moves to 

position 3, and so on. 

N [ 
1 2 3 4] • · ! YH h" . . 1 ow 2 3 4 1 ts a permutatiOn. vve can express t ts permutatiOn m eye e 

form as ( 1, 2, 3, 4). Indeed, all eight symmetries of the square can be expressed in 

this notation. 

Symmetry 1 2 3 4 Cycle 
name go to positions form 

I 1 2 3 4 (1)(2)(3)(4) 

R9o 2 3 4 1 (1, 2, 3, 4) 

R1so 3 1 4 2 (1, 3)(2, 4) 

R21o 4 1 2 3 (1, 4, 3, 2) 

FH 2 1 4 3 (1, 2)(3, 4) 

Fv 4 3 2 1 (1, 4)(2, 3) 

F; 3 2 1 4 (1, 3)(2)(4) 

F\ 1 4 3 2 (1)(2, 4)(3) 

Every day, Steve and Sylvia's boss asks them to reposition the big, heavy 

square in the lobby. And every day, they just move the stickers around. One day, 

they switch stickers 1 and 2 and then take a lunch break. Meanwhile, their boss 

sees that the "symmetry" they performed is (1, 2)(3)(4), and there is no such 

symmetry of the square. Not all permutations in S4 correspond to symmetries of 

the square-just the eight we listed. Sylvia and Steve were summarily sacked for 

their sham stone square symmetry stratagem! 

Combining Symmetries 

What happens if we first flip the square horizontally and then rotate it through goo? 

The combined motion looks like this: 

~---}~ u3 4 

~ ~ 
2 1 

\. ) 
F; 

The net effect of combining these two symmetries is a flip along the I diagonal, 

(i.e., F1 ). We write this as 

R9o o FH = F1. 

This is not a misprint! We did the horizontal flip F H first and then followed it 

by the goo rotation R90 • Why did we write R90 first? We are reusing the function 



234 Chapter 5 Functions 

composition symbol o in this context. Recall (Section 25) that wh~n we write go f, 

it means we perform function f first and then function g. " 

Suppose we want to calculate the result of 

We could draw several pictures or work with a physical model, but there is a 

better way. We saw above that the symmetries of the square can be thought of as 

relabeling permutations of its comers. Behold: 

R90 o FH = (1, 2, 3, 4) o (1, 2)(3, 4) 

= (1, 3)(2)(4) 

= F;. 

The first o stands for combining symmetries, and the second o is permutation 

composition. Notice, however, that the calculation with permutations gives the 

correct answer for the symmetries. 

Let's think about why this works. We first do FH, which we can express as 

n = (1, 2)(3, 4). The effect is to take whatever is in position 1 (label1) to position 

2. Then a = ( 1, 2, 3, 4) takes whatever is in position 2 (label 1) to position 3. So 

the net effect is 1 t---+ 2 t---+ 3. The other comers work the same way. 

It is a mildly laborious but worthwhile chore to make an 8 x 8 chart showing 

the combined effect of each pair of symmetries. Here is the result: 

0 I R9o R1s0 R21o FH Fv F; F\ 

I I R9o R1so R270 FH Fv F; F\ 

R9o R9o R1so R270 I F; F\ Fv FH 

R1so RJSO R270 I R9o Fv FH F\ F; 

R270 R270 I R9o R1so F\ F; FH Fv 

FH FH F\ Fv F; I R1so R270 R9o 

Fv Fv F; FH F\ R1s0 I R9o R270 

F; F; FH F\ Fv R9o R270 I Rtso 

F\ F\ Fv F; FH R270 R9o Rtso I 

Some comments: 

• The operation o is not commutative. Notice that R90 o F H = F1 but F H o R90 = 

F\. 
• Element I is an identity element for o. 

• Every element has an inverse. For example, Rif} = R27o because R9o o R27o = 

R21o o R9o =I. 
It is also interesting to notice that most of the elements are their own 

inverse. 
• The operation o is associative. This is not easy to see just from looking at 

the table. However, it follows from the fact that we can replace symmetries 



The plane is denoted by 

the symbollR2
. Why? The 

notation JR.2 is a shorthand 

way of writing 

JR. x JR.-that is, the set of 

all ordered pairs (x, y) 

where x and y are real 

numbers. This corresponds 

to the representation of 

points in the plane by two 
coordinates. 
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by permutations and then interpret o as composition. Since composition is 

associative, so is o for symmetries. 
• Compare these remarks to Proposition 26.4. If we o together two symmetries 

of the square, we get a symmetry of the square. The operation o is associative 

and has an identity element, and every symmetry has an inverse. The operation 

of composition on the set of all permutations of n elements, S11 , also exhibits 

these same properties. 

Formal Definition of Symmetry 

A geometric figure, such as a square, is a set of points in the plane (Il~2 ). For 

example, the following set is a square: 

S = { (x, y) E JR2 
: -1 .:::; x .:::; 1, and - 1 .:::; y .:::; 1}. (38) 

The distance between points (a, b) and (c, d) is (by the Pythagorean Theorem) 

dist[(a, b), (c, d)] = J (a- c) 2 + (b- d)l 

where dist[(a, b), (c, d)] stands for the distance between the points (a, b) and 

(c, d). 

(Isometry) Let f : JR2 --+ JR2
. We call fan isometry provided 

V(a, b), (c, d) E JR2
, dist[(a, b), (c, d)]= dist[f(a, b), f(c, d)]. 

A synonym for isometry is a distance-preserving function. 

Let X ~ JR2 (i.e., X is a geometric figure). Let f : JR2 --+ JR2
. Now writing 

f(X) is nonsense because X is a set of points and the domain off is the set of 

points in the plane. Nonetheless, f (X) is a useful notation. It means 

f(X) = {f(a, b) : (a, b) EX}. 

That is, f (X) is the set we obtain by evaluating f at all the points in X. 

We can now say precisely what a symmetry is. 

Definition 27.2 (Symmetry) Let X ~ JR2
. A symmetry of X is an isometry f : JR2 --+ JR2 such 

that f(X) =X. 

LetS be the square in the plane defined by Equation (38). The symmetries of 

S are 

l(a, b)= (a, b) 

Rgo(a, b) = ( -b, a) 

Rlso(a, b) = (-a, -b) 

R27o(a, b) = (b, -a) 

FH(a, b)= (a, -b) 

Fv(a, b)= (-a, b) 

F1(a, b) = (b, a) 

F\ (a, b) = (-a, -b). 

This discussion has been limited to geometric figures in the plane. One can 

extend all these ideas to three-dimensional space and beyond. 
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Recap 

This section introduced the concept of symmetry, related symmetry to permutations 

of labels, and explored the operation of combining symmetries. Finally, we gave 

a technical definition of symmetry. 

27 Exercises 27.1. Verify by pictures and by permutation calculation that FH o R90 = F\. 

27.2. Let R be a rectangle that is not a square. Describe the set of symmetries of 

R and write down the o table for this set. 

27 .3. Which of the symmetries of a square are represented by even permutations? 

Compare your answer to this exercise to the previous one. 

27.4. LetT be an equilateral triangle. Find all the symmetries ofT and represent 

them as permutations of the comers. Compare this to S3 . 

27 .5. What are the symmetries of a triangle that is isosceles but not equilateral? 

27 .6. What are the symmetries of a triangle that is not isosceles (all three sides 

have different lengths)? 
27.7. Let P be a regular pentagon. Find all the symmetries of P (give them sensible 

names) and represent them as permutations of the comers. 

27.8. Let Q be a cube in space. How many symmetries does Q have? 

a. Show that a correct answer to this question is 24. 

b. Show that another correct answer to this question is 48. 

c. By Proof Template 9, since 24 and 48 are both answers to the same 

question, it must be the case that 24 = 48. 
Actually, the question "How many symmetries does Q have?" is a bit 

ambiguous. 
What is different about the second set of 24 symmetries? 

d. Represent the 48 symmetries of the cube as permutations of its comers. 

27.9. This problem is only for those who have studied linear algebra. 

Let C be a circle in the plane. 
a. Describe the set of all symmetries of C. 

b. Show how the symmetries of the circle can be represented by 2 x 2 

matrices A with det A = ± 1. 
c. What is the difference between symmetries whose matrix has determi­

nant 1 and those whose matrix has determinant -1? 

d. Does every matrix with determinant ± 1 correspond to a symmetry of 

the circle? 

28 Assorted Notation 
Big oh 

Pricing items at $9.99 drives me crazy. 
I wish merchants would just sell the item for $10 and not try to deceive me 

that the item costs "about" $9. It's much easier for humans to deal with round, 

whole numbers, and that is why approximating is a valuable skill. 
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Just as it is valuable to approximate numbers, it is also useful to express 

functions in an approximate manner. Consider a complicated function f (defined 

on the natural numbers) defined by 

f(n) = 4ns - n(n + l)(n + 2) + 3n2- 12. 
3 

When n is large, the most "important" part is the n5 . In this section, we develop a 

notation that expresses this idea precisely. 
The "big oh" notation expresses the idea that one function is bounded by 

another. Here is the definition. 

Definition 28.1 (Big oh) Let f and g be real-valued functions defined on the natural numbers 

(i.e., f: N---+ JR. and g : N---+ JR.). We say that f(n) is O(g(n)) provided there is 

a positive number M such that, with at most finitely many exceptions, 

lf(n)l ::S Mlg(n)l. 

In other words, f (n) is 0 (g (n)) means that If (n) I is no greater than a constant 

multiple of lg(n)l (with, perhaps, a few exceptions). 

Example 28.2 Let f(n) = (;).We claim that f(n) is O(n2
). Recall that(;) = n(n- 1)/2. Thus 

n(n- 1) n2 

f(n) = 2 ::S 2 

and so f(n) :::: ~n2 for all n. So we can take M = ~in the definition of big oh and 

conclude that f(n) is O(n2
). 

Example 28.3 Let f(n) = n(n + 5)/2. We claim that f(n) is O(n2). Note that, except for n = 0, 

we have 

lf(n)l f(n) 

n2 

n(n + 5) 

2n2 

n+5 
2n 

1 5 
=-+-

2 2n 
1 5 

because f(n) :=:: 0 for all n EN 

<- +- < 3. -2 2-

Thus lf(n)l ::S 31n2 1 and so f(n) is O(n2
). 

Let us consider a more complicated example. Recall the function we men­

tioned at the start of this section: 

f(n) = 4ns - n(n + 1)(n + 2) + 3n2- 12. 
3 
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We show that this function is O(n5). To do this, we need to comp¥e lf(n)l and jn51 

where n EN. Since n is nonnegative, jn5 1 = n5 . However, because the polynomial 

defining f (n) has negative coefficients, we need a tool to handle If (n) \. 

Proposition 28.4 (Triangle inequality) Let a, b be real numbers. Then 

ia +hi~ iai + ibi. 

Proof. We consider four cases depending on whether or not each of a and b is 

negative. 

· If neither a nor b is negative, we have Ia + bi =a+ b = Ia! + lb\. 

• If a ;::: 0 but b < 0, we have Ia I+ lbl =a- b. 

If Ia + bi =a+ b (when a+ b;::: 0) and we have that Ia + bl =a+ b < 

a <a-b= lal+lb\. 
Otherwise ja + bi = -(a+ b) (when a+ b < 0), and we have Ia +hi = 

-a- b = -Ia! +\hi< Ia\ + ib\. 

In both cases, Ia +hi < Ia! + lb\. 

• The case a < 0 and b ;::: 0 is analogous to the preceding case. 

• Finally, if a and bare both negative, we have Ia + bi =-(a+ b)= (-a)+ 

(-b)= lal + lbl. 

In all cases, we have Ia +hi is either equal to or less than Ia! + lb\. • 
We return to the analysis of f (n). If we multiply out all the terms in f, we 

get an expression of the form 

f(n) = 4n5 + ?n3 + ?n2 + ?n +? 

where the question marks represent numbers that I'm too lazy to figure out. There­

fore 

lf(n)l = i4n5+?n3+?n2+?n+?i 

~ 4n5 + l?ln3 + \?\n2 +\?In+ 1?\. 

We divide this expression by n5 and get 

lf(n)l = 4 + l2l + l2l + l2l + 121. 
Ins! n2 n3 n4 ns 

Notice that once n is larger than 1?1 for all the terms I neglected to calculate, each 

of the terms with a question mark is less than 1. So I may conclude that, except 

for finitely many values of n, we have 

lf(n)l <4+1+1+1+1=8. 
Ins! 

That is, with at most finitely many exceptions, lf(n)l < 8jn5 1 and so f(n) is 

O(n 5). 



Example 28.5 

The awful but useful and 

popular notation 

f(n) = O(g(n)). 

Why do we use this 

terrible notation? It's like 

the old joke: 

A: My uncle is crazy. He 

thinks he's a chicken! 

B: So why don't you send 

him to a psychiatrist and 

have him helped?? 

A: Because we need the 

eggs! 
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n2 is O(n3 ) but n3 is not O(n2
). 

It is clear that ln2
1 ::S ln3

1 for all n EN, so n2 is O(n3
). 

However, suppose, for the sake of contradiction, that n3 is 0 (n2
). This means 

there is a constant M so that, except for finitely many n E N, we have ln3
1 ::S Mln 2 1. 

Since n EN, we may drop the absolute value bars and divide by n2 to get n ::S M 

for all but finitely many n E N, but this is obviously false. Therefore n3 is not 

O(n2
). 

When we say f(n) is O(g(n)), the function g(n) serves as a bound on lf(n)l. 

That is, it says that If (n) I grows no faster than a multiple of I g (n) 1. So the function 

n2 grows no faster than the function n3 , but not vice versa. 

For better or worse, mathematicians use the big oh notation in a sloppy way. It 

is proper to write "f(n) is O(g(n))." This means that the function f has a certain 

property-namely, that its absolute value is bounded by a constant multiple of g. 

Now it is natural to use the word is when we see an equals sign ( = ). As a result, 

mathematicians often write the abhorrent f(n) = O(g(n)). 

I deplore this terrible notation. But, of course, I use it all the time. The problem 

is that f(n) does not equal O(g(n)). Rather, f(n) has a certain property that we 

call O(g(n)). 
Further, we often write "equations" such as 

(
n
3

) n
3 

= 6 + O(n2). 

This means that the function G) is equal to the function ~ plus another function 

that is 0 ( n 2 ). This is a handy way to absorb all the less important information about 

G) into a "remainder" term. The proper way to express the foregoing "equation" 

is to say that G) - ~ is 0 (n2
). 

Although we tolerate the f(n) = O(g(n)) notation, we adamantly reject writ­

ing O(g(n)) = f(n). 
On the other end of the spectrum, some mathematicians write f (n) E 0 (g (n)). 

This is actually a nice notation. Many mathematicians define the notation 0 (g (n)) 

to be the set of all functions whose absolute values are bounded by a constant mul­

tiple of lg(n)l (with finitely many exceptions). When we write f(n) E O(g(n)), 

we assert that f is such a function. 

Q and 9 

The big oh notation establishes an upper bound on the growth of If (n) 1. Conversely, 

the Q (big omega) notation defines a lower bound on its growth. 

Definition 28.6 (Q) Let f and g be real-valued functions defined on the natural numbers (i.e., 

f : N--* lR and g : N--* JR). We say that f(n) is Q(g(n)) provided there is a 

positive number M such that, with at most finitely many exceptions, 

lf(n)l ::=::: Mlg(n)l. 

There is a simple relation between the 0 and Q notations. 
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Proposition 28.7 Let f and g be functions from N to JR. Then f(n) is O(g(n)) if arld only if g(n) 
is Q(j(n)). 

Proof. ( =}) Suppose f (n) is 0 (g (n)). Then there is a positive constant M such 
that lf(n)l ~ Mlg(n)l for all but finitely many n. Therefore lg(n)l :=: ifif(n)l 
for all but finitely many n, and so g(n) = Q(j(n)). 

( {=) Analogous to the previous argument. • 

Example 28.8 Let f(n) = n 2
- 3n + 2. Then f(n) is Q(n2

) and f(n) is also Q(n), but f(n) is 
not Q(n3). 

The 0 notation is an upper bound and the Q is a lower bound. The following 
notation combines them. The symbol e is a Greek capital theta. 

Definition 28.9 (8) Let f and g be real-valued functions defined on the natural numbers (i.e., 
f : N ---+ JR and g : N ---+ JR). We say that f(n) is 8(g(n)) provided there are 
positive numbers A and B such that, with at most finitely many exceptions, 

Alg(n)l ~ lf(n)l ~ Blg(n)l. 

Example 28.10 Let f(n) = (;).Then f(n) is 8(n3
), but f(n) is neither 8(n2 ) nor 8(n4). 

Proposition 28.11 Let f and g be functions from N to JR. Then f(n) is 8(g(n)) if and only if f(n) 
is O(g(n)) and f(n) is Q(g(n)). 

The proof is left for you (see Exercise 28.4). 
The statement that f(n) is 8(g(n)) says, in effect, that as n gets large, f(n) 

and g(n) grow at roughly the same rate. 
As with the 0 notation, mathematicians often misuse the Q and e notations, 

writing "equations" of the form f(n) = Q(g(n)) and f(n) = G(g(n)). 

Little oh 

This section is only for those who have studied calculus. 
The statement that f(n) is O(g(n)) says that f(n) does not grow faster than 

g(n) as n gets large. Sometimes it is useful to say that f(n) grows "much" slower 
than g(n). For this, we have the "little oh" notation. 
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Definition 28.12 (Little oh) Let f and g be real-valued functions defined on the natural numbers 

(i.e., f : N-+ ffi. and g : N-+ ffi.). We say that f(n) is o(g(n)) provided 

lim f(n) = 0. 
n---+oo g(n) 

Example 28.13 Let f(n) = .jn. Then f(n) = o(n). To see why, we calculate 

There is an alternative 

notation for floor and 

ceiling. Some 
mathematicians write [x] 

to stand for the floor of x 

and {x} to stand for the 

ceiling of x. The problem 

with this notation is that 

square brackets [ ] are used 

as big parentheses and 

curly braces {} are used for 

sets. You may see [x] in 

some older mathematics 

books; just remember that 

it means LxJ. 

Definition 28.14 

. .jn . 1 
hm - = hm r;; = 0. 

n---+00 n n---+oo v n 

~=-=:::::.~-·~i _.- misuse the little oh notation with the same reckless abandon 

with which they misuse the 0, Q, and 8 notations. You are more likely to see the 

"equation" f(n) = o(n2
) than the words "f(n) is o(n2

)." 

Floor and Ceiling 

I have n marbles to give to two children. How should I divide them fairly? The 

answer is to give each child n /2 marbles. That is, of course, unless n is odd. Half 

a marble does neither child any good, so I might as well give one child (n - 1) /2 

and the other child (n + 1) /2. (To be totally fair, I would flip a coin to decide who 

gets the extra.) 
The "give each child n/2 marbles" answer is easier to express than the more 

elaborate answer that applies when n is odd. Sometimes, the only sensible answer to 

a problem is an integer, but the algebraic expression we derive does not necessarily 

evaluate to an integer. It is useful, in many instances, to have a notation for rounding 

off a noninteger answer to an integral answer. 

There are a number of different ways to round off nonintegers. The standard 

method is to round the quantity to the nearest integer (and to round up if we 

are midway between). There are, however, two other natural alternatives: We can 

always round up or we can always round down. These functions have special names 

and notations. 

(Floor and ceiling) Let x be a real number. 

The floor of x, denoted LxJ, is the largest integer n such that n :::; x. 

The ceiling of x, denoted I x 1, is the smallest integer n such that n ~ x. 

In other words, Lx J is the integer we form from x by rounding down (unless 

x is already an integer), and I x l is the integer we form from x by rounding up. 

Example 28.15 The following illustrate the floor and ceiling functions. 

L3.2J = 3 

13.21 = 4 

L -3.2J = -4 

f-3.21 = -3 

L5J = 5 
151 = 5 
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28 Exercises 

Recap 

This section introduced the following notation for approximating func · ons: 0, Q, 

8, and o. We also introduced the floor and ceiling functions fo unding off real 
numbers to integer values. 

28.1. Prove the following: 
a. n 2 is O(n4

). 

b. n 2 is 0 ( 1.1 n). 
c. (n h is 0 (nk) where k is a fixed, positive integer. 
d. n+l is 0(1). 

n 
e. 2nis0(3n-l). 
f. n sinn is O(n). 

28.2. True or false: Determine whether the following statements are true or false. 
a. Suppose x E Q. Then x E Z if and only if fxl = x. 
b. Suppose x E Q. Then x E Z if and only if fxl = LxJ. 
c. Supposex, y E Q. Then Lx + yj = LxJ + LyJ. 
d. Supposex,y E Q. Then Lxyj = LxJ · LYJ. 
e. Suppose x E Z andy E Q. Then Lx + y J = x + LY J. 
f. Suppose x E Q. Then Lx J can be calculated as follows: Write x as a 

decimal and then drop all the digits to the right of the decimal point. 
28.3. Suppose f(n) is O(g(n)) and g(n) is O(h(n)). Prove that f(n) is O(h(n)). 

28.4. Prove Proposition 28.11. 
28.5. Let a and b be real numbers with a, b > 1. Prove that loga n = 0 (1ogb n). 

Conclude that logan = 8(logb n). 
28.6. Let p(n) be a polynomial of degree din n. Prove that p(n) is 8(nd). 
28.7. Develop an expression (using the floor or ceiling notation) for the ordinary 

meaning of rounding off a real number x to the nearest integer. Be sure your 
formula properly handles rounding 3.49 to 3, but 3.5 to 4. 

28.8. Develop an expression (using the floor or ceiling notation) for the ones 
digit of a positive integer. That is, if n = 326, then your expression should 
evaluate to 6. 

Chapter ? Self Test 

1. Let f = {(1, 2), (2, 3), (3, 4)} and g = {(2, 1), (3, 1), (4, 2)}. Please answer 
the following: 
a. What is f(2)? 
b. What is f(4)? 
c. What is dom f? 
d. What is im f? 
e. What is f- 1? 
f. Note that g- 1 is not a function. Why? 
g. What is g o f? 
h. What is f o g? 
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2. Suppose A and B are sets and f is a function with f : A ~ B. Suppose also 

that f (a) = b. Please mark each of the following statements as true or false. 

a. a EA. 
b. bE B. 

c. domf =A. 
d. im f =B. 

3. Let A= {1, 2, 3} and let B = {3, 4, 5, 6}. 

a. How many functions f : A ~ B are there? 

b. How many one-to-one functions f : A~ Bare there? 

c. How many onto functions f : A~ Bare there? 

4. Suppose f : A ~ B is one-to-one and g : B ~ A is one-to-one. Must it be 

the case that f is onto? Justify your answer. 

5. Let f : Z ~ N by f(x) = lxl. (a) Is f one-to-one? (b) Is f onto? Prove your 

answers. 
6. Let f: Z ~ Z by f(x) = x 3• (a) Is f one-to-one? (b) Is f onto? Prove your 

answers. 
7. Functions are relations, although it is not customary to consider whether they 

exhibit properties such as reflexive or antisymmetric. Nevertheless, find a 

function that is also an equivalence relation on the set { 1, 2, 3, 4, 5}. 

8. The squares of a 9 x 9 chess board are arbitrarily colored black and white. 

When we examine the 2 x 2 blocks of squares, we must see repeated patterns 

(prove this). Indeed, prove that some pattern must be repeated at least four 

times, as illustrated in the figure. 

9. Let A= {1, 2, 3, 4, 5} with f: A~ A, g: A~ A, and h: A~ A. We are 

given the following: 
. f = {(1, 2), (2, 3), (3, 1), (4, 3), (5, 5)}, 

• h = {(1,3), (2,3), (3,2), (4,5), (5,3)},and 

• h=fog. 

Find all possible functions g that satisfy these conditions. 

10. Suppose f, g : ffi. ~ ffi. are defined by 

f(x)=x 2 +x-1 and g(x) = 3x + 2. 

Express, in simplest terms, (f o g)(x) - (go f)(x). 

11. Let f, g, h : ffi. ~ ffi. defined by f(x) = 3x- 4, g(x) =ax+ b, and h(x) = 
2x + 1, where a and b are real numbers. Suppose that (fogo h) (x) = 6x + 5. 

Find (hog o f)(x). 

12. It is standard mathematical convention to consider the expression 0° to be 

undefined. However, from the perspective of a discrete mathematician, there 

is a natural value to associate with 0°. What is that value? Justify your answer. 

13. Let A be a set. Suppose f and g are functions f : A ~ A and g : A ~ A 

with the property that f o g = idA. 

Prove or disprove: f = g-1
• 

14. Let n be a permutation of {1, 2, 3, ... , 9} defined by the 2 x 9 array n 

[
123456789] . 

3 9 2 6 5 7 4 1 8 . Please do the followmg: 

a. Express n as a set of ordered pairs. 

b. Express n in cycle notation. 
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c. Express n - 1 in cycle notation. 
d. Express n o n in cycle notation. 
e. Express n as the product of transpositions and determine whet})er n is an 

even or odd permutation. _ ______/ 
15. Let n be a positive integer and let n E Sn. Prove there is a positive integer k 

such that n(k) = n-1• 

Note: n(k) = n on o · · · on where n appears on the right k times. 
16. Let n be a positive integer and n, a E Sn. Evaluate 

n 

L(n(k)- a(k)) 
k=l 

and explain your answer. 
17. Let n be a positive integer and let n E Sn. 

a. Prove that n can be written in the following form: 

Jr = (1, XI) o (1, Xz) 0 · · · 0 (1, Xa) 

where 1 <xi :::: n for all n. 
b. If the identity permutation t is written in the form presented in part (a) of 

this problem, we know that a must be even. Give such a representation 
of t in which some of the transpositions ( 1, x) appear an odd number of 
times. (The total number of transpositions must be even, but some of the 
particular transpositions appear an odd number of times.) 

18. Let n be a positive integer and n E Sn. Let x1, x2 , ••• , Xn be real numbers. 
Prove that 

Note: The products are over all pairs of integers i, j between 1 and n where 
i < j. For example, with n = 3, the products are 

(xz - x1) (x3 -xi) (x3 - xz) and 

( Xrr(2) - Xrr(l)) ( Xrr(3) - Xrr(l)) (xrr(3) - Xrr(2)) · 

19. LetT be a tetrahedron (a solid figure with four triangular faces) all of whose 
sides have the same length. 
a. Describe the set of symmetries of T, assuming reflections of the tetrahe-

dron are considered the same. 
b. Describe the set of symmetries of T, assuming reflections of the tetrahe-

dron are considered different. 
In both cases, the symmetries should be described as permutations of the four 
vertices (comers) ofT, which may be labeled 1, 2, 3, and 4. 

20. Let X be a real number and suppose that Lx J = r X l. What can you conclude 

about x? 
21. Show that 2n is 0(3n), but 3n is not 0(2n). 
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6 

There are many ways to 
write a number. The 
number 94% is exactly the 
same as 0.94, which is the 

same as 1
9

0~, which is the 

same as ~. Percentages 
are convenient ways to 
express numbers between 
0 and 1, but they are no 
different from fractions or 
decimal numbers. 

29 

There are two parts to a 
sample space: a list of 
outcomes and an 
assignment of probabilities 
to these outcomes. 

Probability 

Few things in life are certain. Probability theory provides us with tools for analyzing 

situations in which events occur at random. Probability theory is used in a wide 

range of disciplines, including sociology, nuclear physics, genetics, and finance. 

It is important to distinguish between mathematical probability theory and its 

application to problems in the real world. In mathematics, a probability is simply 

a number associated with some object. In applications, the object is some event or 

uncertain action, and the number is a measure of how frequent or how likely that 

event is. Imagine you are prescribed a medication for some disease. Your doctor 

might tell you that the probability the medication will be effective is 94%. This 

means that if a large number of patients were to use this drug for this disease, we 

would expect 94% of them to be cured and the remaining 6% of them would not 

be cured. In applications, probability is often synonymous with frequency. 

Probabilities are real numbers between 0 and 1. An event with probability 

1 is certain to occur, and an event with probability 0 is impossible. Probabilities 

between 0 and 1 reflect the relative likelihood between these two extremes. Unlikely 

events have probabilities close to 0, and likely events have probabilities close to 1. 

In this chapter we introduce fundamental ideas from discrete probability the­

ory. Discrete probability problems are often counting problems recast in the lan­

guage of probability theory. 

Sample Space 
Consider the toss of a die. We cannot say in advance which of the six sides of the 

die will land face up; the outcome of this experiment is unpredictable. However, if 

the die is fair, we can say that all six outcomes are equally likely. Thus, although 

we cannot predict which of the six sides will emerge on top, we can describe the 

likelihood of seeing, for example, a 4 when we roll the die. 

Mathematicians model the roll of a die using a concept called a sample space. 

A sample space has two parts. First, it contains a list of all the outcomes of some 

experiment. In this case, there are six outcomes: any of faces 1 through 6 might 

land face up. Second, it quantifies the likelihood of each of these outcomes. In 

245 
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this case, since all six outcomes are equally likely, we give ~he sam numerical 
score to each result; we call this likelihood score the probabi~ity of e result. By 
convention, we require that the sum of the probabilities of the rious possible 
outcomes be 1. Thus we assign probability i to each of th~ · x outcomes of the 
die-rolling experiment. 

Defined more carefully, a sample space consists of a set and a function. The set 
is the collection of all possible outcomes of some experiment. The function assigns 
a numerical score to each outcome; this numerical score-called the probability of 
the outcome-is simply a real number between 0 and 1 (inclusive). We also require 
the sum of the probabilities of all the outcomes to be exactly 1. It is customary to 
use the letter S for the set of outcomes and the letter P for the function that assigns 
to each s E S the probability of that outcome, P (s). 

Example 29.1 (Roll of a die) LetS be the set of outcomes from the roll of a die. The simplest 
way to name the outcomes .is with the integers 1, 2, 3, 4, 5, and 6, so 

S= {1,2,3,4,5,6}. 

We also have a function P : S ---+ JR. defined by 

1 
P(l) = 6 

1 
P(4) = 6 

1 
P(2) = 6 
P(5) = ~ 

1 
P(3) = 6 

1 
P(6) = 6. 

Note that the probabilities are nonnegative real numbers and the sum of the prob­
abilities of all the elements in S is 1. 

With this example in mind, we present the definition of a sample space 
formally: 

Definition 29.2 (Sample space) A sample space is a pair (S, P) where Sis a finite, nonempty set 
and P is a function P : S ---+ JR. such that P (s) ~ 0 for all s E S and 

LP(s) = 1. 
sES 

The condition 'L:sES P (s) = 1 means that the sum of the probabilities of all 
the elements in S must be exactly 1. 

Example 29.3 (Spinner) Consider the spinner shown in the figure. The arrow represents a needle 
that can be spun around to point to one of the four regions 1, 2, 3, or 4. 

We model this physical device with a sample space. The set of outcomes S 
contains the names of the four regions; that is, 

s = { 1' 2, 3' 4}. 

The probability function P : S ---+ JR. measures how likely it is for the spinner to 
land in each of the regions. The likelihood is proportional to the area of the region. 



Thus we have 

We check that 

1 
P(l) = 2' 

1 
P(2) = 4, 
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1 
P(3) = 8, 

1 
P(4) = 8. 

1 1 1 1 L P(S) = P(l) + P(2) + P(3) + P(4) = 2 + 4 + 8 + 8 = 1. 
sES 

Example 29.4 (Pair of dice) Two dice are tossed. Die 1 can land in any one of 6 equally likely 

ways, and the same is true for die 2. We can express the outcome of this experiment 

as an ordered pair (a, b) where a and bare integers between 1 and 6. Thus there 

are 6 x 6 = 36 possible outcomes for this experiment. We let 

S = {1,2,3,4,5,6} X {1,2,3,4,5,6} 

= {(1, 1), (1, 2), (1, 3), ... ' (6, 5), (6, 6)}. 

Each of the 36 possible outcomes of this experiment is equally likely; that is, 

P (s) = ~ for all s E S. 

Note that the fundamental outcomes of rolling a pair of dice are the 36 different 

ways the pair can land. In the next section, we consider events such as "the sum of 

the numbers on the dice is eight." Rolling a 6 on the first die and a 2 on the second 

is an outcome of the dice-rolling experiment. There are several different outcomes 

in which the two values sum to 8. 

Example 29.5 (Poker hand) A hand of poker is a five-element subset of the standard deck of 

52 cards. There are C5
2

) different five-element subsets of a 52-element set. The 

set S consists of all these different five-element subsets. Since they are all equally 

likely, we have 

for all s E S. 

1 
P(s) = es2) 

Example 29.6 (Coin tossing) A fair coin is tossed five times in a row, and the sequence of HEADS 

and TAILS is recorded. We model this as a sample space. The set S contains all 

possible outcomes of this experiment. We denote an outcome as a length-five list 

of Hs and Ts (where H stands for HEADS and T for TAILS). There are 25 = 32 such 

lists, and they are all equally likely. Thus 

S = {TTTTT, TTTTH, TTTHT, ... , HHHHT, HHHHH} 

and P(s) = -b for all s E S. 
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Are the sequences HHHHT and HHHHH equally likely? After seeing a cfuin turn up 

HEADS several times in a row, some people have an intuition that the next roll is more 

likely to be TAILS. They feel that the coin is "ready" to come up TAILS. 

This intuition is incorrect, but the reason is physical, not mathematical. The coin is 

capable of "remembering" the results it gave for the past several rolls; from the coin's 

ers ective, each roll is a new trial that has nothing to do with the past. 

Perhaps a brilliant 1echa~i~g~r could design a coin that could keep track of 

how it lands; if the c~unmlm'ed a series of HEADS, it would silently shift internal 

parts to make TAILS more likely on the next roll. Then our model that HHHHT and 

HHHHH are equally likely would not accurately reflect physical reality. 

How can we tell whether our model is accurate? Ultimately, because this is a physical 

issue and not a mathematical one, at some point we need to rely on physical 

measurements. We would record each group of five flips to see if all possible length-5 

lists came up about 1/32 of the time. 

A sample space (S, P) is a mathematical model of a physical experiment. In 

its pure form, the sample space (S, P) is simply a set and a function with certain 

properties. The interpretation of S as a set of outcomes and P (s) as the likelihood 

of S is an added layer of meaning. This added layer of meaning is what makes 

probability theory useful. However, we can create sample spaces that have no 

specific physical interpretation. Here is an example: 

Example 29.7 LetS= {1, 2, 3, 4, 5, 6} and define P : S ~ IR by 

P(l) = 0.1 P(2) = 0.4 P(3) = 0.1 

P(4) = 0 

Note that I:sES P(s) = 1. 

P(5) = 0.2 P(6) = 0.2. 

In this example P ( 4) = 0; this is perfectly acceptable. The interpretation is 

that outcome 4 is impossible. Thus the set S of outcomes might include results 

that cannot occur. 

Recap 

We introduced the concept of a sample space: a pair (S, P) where Sis a set and 

P is a function that assigns to each element in S a nonnegative number called its 

probability. The sum of the probabilities over all outcomes in S must be exactly 1. 

In applications, the elements of S represent the fundamental outcomes or results 

of some experiment. 

29 Exercises 29.1. Let (S, P) be the sample space in which S = {1, 2, 3, 4} and P(l) = 0.1, 

P(2) = 0.1, P(3) = 0.2, and P(4) = x. Find x. 

29.2. Let (S, P) be the sample space in which S = { 1, 2, 3, 4}. Suppose P (1) = x, 

P(2) = 2x, P(3) = 3x, and P(4) = 4x. Find x. 

29.3. An experiment is performed in which a coin is flipped and a die is rolled. 

Describe this experiment as a sample space. Explicitly list all elements of 

the set S and the value of P (s) for each element of the S. 

29.4. Tetrahedral dice. A tetrahedron is a solid figure with four faces, each of 

which is an equilateral triangle. We can make dice in the shape of tetrahedra 
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Rolling a 2 is an outcome 
of the die-rolling 
experiment. It is a 
fundamental result of the 
experiment. Rolling an 
even number is an event; 
an event is a set of 
outcomes. 
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and label their faces with the numbers 1 through 4. When such a die is rolled, 
the number that lands face down on the table is the result. 
a. Create a sample space that represents the toss of a tetrahedral die. 
b. Create a sample space that represents the toss of a pair of tetrahedral 

dice. 
29.5. A bag contains 20 marbles. These marbles are identical, except they are 

labeled with the integers 1 through 20. Five marbles are drawn at random 
from the bag. There are a few ways to think about this. 
a. Marbles are drawn one at a time without replacement. Once a marble is 

drawn, it is not replaced in the bag. We consider all the lists of marbles 
we might create. (In this case, picking marbles 1, 2, 3, 4, 5 in that order 
is different from picking marbles 5, 4, 3, 2, 1.) 

b. Marbles are drawn all at once without replacement. Five marbles are 
snatched up at once. (In this case, picking marbles 1, 2, 3, 4, 5 and pick­
ing marbles 5, 4, 3, 2, 1 are considered the same outcome.) 

c. Marbles are drawn one at a time with replacement. Once a marble is 
drawn, it is tossed back into the bag (where it is hopelessly mixed up with 
the marbles still in the bag). Then the next marble is drawn, tossed back 
in, and so on. (In this case, picking 1, 1, 2, 3, 5 and picking 1, 2, 1, 3, 5 
are different outcomes.) 

For each of these interpretations, describe the sample space that models 
these experiments. 

29.6. A dart is thrown blindly at the target shown in the figure. The probability that 
the dart lands in one of the four concentric regions is proportional to the area 
of the region. The radii of the circles in the figure are 1, 2, 3, and 4 units, 
respectively. Please note that region 2 consists of just the annular region 
from radius 1 to 2, and does not the include the enclosed circular region 1. 

Let (S, P) be a sample space modeling this situation. The set S con­
sists of four outcomes: hitting region 1, 2, 3, or 4. We can abbreviate that as 
s = {1, 2, 3, 4}. 

Please find P(l), P(2), P(3), and P(4). 
29.7. Give an example of a sample space with three elements in which one of the 

elements has probability equal to 1. 
29.8. Given an example of a sample space in which all of the elements have 

probability 1. 
29.9. Definition 29.2 requires that the setS be nonempty. In fact, this requirement 

is redundant. Show that if we delete this requirement from the definition, it is, 
nevertheless, impossible to have a sample space in which the set S is empty. 

Events 
In this section we extend the scope of the probability function P of a sample space. 

Let us return to the die-throwing example (Example 29.1 ). In this sample 
space (S, P), the probability function P gives the probability of each of the six 
possible outcomes of rolling the die. 

We might wish to know, for example, the probability that the die will show 
an even number. There are three ways the die might yield an even result: face 2, 
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4, and 6. We want to know the probability that the die produces .a res t in the set 

{2, 4, 6}. We call such a set an event. The probability of this e~en s ~. Each of 

the three outcomes of the die has probability ~, and we · d them. 

We denote the probability of the event {2, 4, 6} as P({2, 4, 6}). This is a 

forgivable abuse of notation. The function P is a function defined on the elements 

of the setS of a sample space. We use the same symbol applied to a subset of S. 

We define this extended use of the symbol P so that 

P({2, 4, 6}) = P(2) + P(4) + P(6). 

Definition 30.1 (Event) Let (S, P) be a sample space. An event A is a subset of S (i.e., A s; S). 

The probability of an event A, denoted P(A), is 

P(A) = L P(a). 
aEA 

Example 30.2 (Pair of dice) Let (S, P) be the sample space representing the toss of a pair of 

dice (see Example 29.4). What is the probability that the sum of the numbers on 

the two dice is 7? 
Let A denote the event that the numbers on the dice sum to 7. In other words, 

A= {(a, b) E S: a+ b = 7} = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}. 

The probability of this event is 

P(A) = P[(l, 6)] + P[(2, 5)] + P[(3, 4)] + P[(4, 3)] + P[(5, 2)] + P[(6, 1)] 

1 1 1 1 1 1 6 1 
= 36 + 36 + 36 + 36 + 36 + 36 = 36 = 6. 

Example 30.3 (Coin tossing) Let (S, P) be the sample space that models tossing a coin five 

times (see Example 29.6). What is the probability that we see exactly one HEAD? 

Let A denote the event that exactly one HEAD emerges. We can write this out 

explicitly as 

A= {HTTTT, THTTT, TTHTT, TTTHT, TTTTH}. 

Note that A contains five outcomes, each of which has probability -f2. Therefore 
P(A) = fi. -

What is the probability that exactly two HEADs are shown? Let B be the event 

that exactly two of the coin flips show HEADs. We can write out the elements of B 

explicitly, but all we really need to know is how many elements are in B (because 

all elements of Shave the same probability). The size of B is IBI = (~) = 10 

because we are choosing a two-element subset (the positions of the Hs) from a 

five-element set (the five positions in the list). Thus P(B) = ~ = f6. 

Example 30.4 (Ten dice) Ten dice are tossed. What is the probability that none of the dice shows 

the number 1? 
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We begin by constructing a sample space (S, P). Let S denote the set of 

all possible outcomes of this experiment. An outcome of this experiment can be 

expressed as a length-ten list formed from the symbols 1, 2, 3, 4, 5, and 6. There 

are 610 such lists and they are all equally likely, so P(s) = 6- 10 for all s E S. 

Let A be the event that none of the dice shows the number 1. Since all elements 

of S have the same probability, this problem reduces to finding the number of 

elements in A. 
The number of outcomes that do not have the number 1 is the number of lists 

of length ten whose elements are chosen from the symbols 2, 3, 4, 5, and 6. The 

number of such lists is 510 . Therefore there are 510 elements in A, all of which 

have probability 6-10. Therefore 

(5) 10 
P(A) = 510 

X 6- 10 = 6 ~ 0.1615. 

Example 30.5 (Four of a kind) Recall the poker hand sample space of Example 29.5. A poker 

hand is called a four of a kind if four of the five cards show the same value (e.g., 

all 7s or all kings). What is the probability that a poker hand is a four of a kind? 

Let A be the event that the poker hand is a four of a kind. Since every poker 

hand has probability 1 / C5
2

) , we simply need to calculate I A 1. There are 13 choices 

for which value is repeated four times. Given that value, there are 48 choices for 

the fifth card. Thus 

13 X 48 1 
P(A) = -(5~) = - ~ 0.00024. 

5 4165 

Example 30.6 (Four children) A couple has four children. Which is more likely: They have two 

boys and two girls, or they have three of one gender and one of the other? 

Let S be the set of all possible lists of genders the couple might have. We 

can represent the genders of the children as a list of length four drawn from the 

symbols b and g. There are 24 = 16 such lists, and they are all equally likely. 

Let A be the event that the couple has two boys and two girls. Then 

A = {ggbb, gbgb, gbbg, bbgg, bgbg, bggb} 

so P(A) = -f6 = ~ = 0.375. 
Let B be the event that the couple has three of one gender and one of the other. 

Thus 

B = {gggb,ggbg,gbgg,bggg,bbbg, bbgb,bgbb,gbbb} 

so P(B) = f6 = ~ = 0.5. 
Since P(B) > P(A), we conclude that it is more likely for the couple to have 

three of one gender and one of the other than for them to have two boys and two 

girls. 
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Union of events. 

Intersection of events. 

Difference of events. 

Complement of an event. 

Combining Events 

Events are subsets of a probability space. We can use the usual operations of set 
theory (e.g., union and intersection) to combine events. 

Let (S, P) be a sample space. If A and Bare events, so is AU B. We can think 
of A U B as the event that A or B occurs. For example, suppose A is the event 
that a die shows an even number and B is the event that the die shows a prime 
number. Then A U B is the event that the die shows a number that is even or prime 
(or both), so AU B = {2, 4, 6} U {2, 3, 5} = {2, 3, 4, 5, 6}. The probability of the 
event A U B is ~. 

Likewise, A n B is the event that represents when both A and B occur. If A is 
the event that a die shows an even number and B is the event that it shows a prime 
number, then A n B = {2, 4, 6} n {2, 3, 5} = {2}. The probability of this event is 
P(A n B)=~· 

The set A - B is the event.that A occurs but B does not. For the die-rolling 
example, A - B = {2, 4, 6} - {2, 3, 5} = {4, 6}. The probability of rolling a 
number that is even but not prime is P(A- B)= ~· 

Since the set S of a sample space is the "universe" of all outcomes, it is 
sensible to write A to stand for the setS- A. The set A represents the event when 
A does not occur. For the die-rolling example, A is the event that we do not roll 
an even number, so P(A) = P({1, 3, 5}) = ~· 

Can we find P(A U B) if we know only P(A) and P(B)? The answer is no. 
Consider these two examples (from rolling a die). 

• Let A = {2, 4, 6} and B = {2, 3, 5}. (Event A is rolling an even number 
and event B is rolling a prime number.) Note that P(A) = P(B) = ~ and 
P(AUB)=~. 

• Let A = {2, 4, 6} and let B = {1, 3, 5}. (Event A is rolling an even number 
and event B is rolling an odd number.) Note that P(A) = P(B) = ~ and 
P(A U B)= 1. 

These examples show that knowing P (A) = P (B) = ~ is not enough to determine 
the value of P(A U B). 

We can, however, relate the quantities P(A), P(B), P(A U B), and P(A n B). 

Proposition 30.7 Let A and B be events in a sample space (S, P). Then 

P(A) + P(B) = P(A U B)+ P(A n B). 

It is interesting to compare this to Proposition 11.4, which asserts that 

lA I+ IBI = lA U Bl + lA n Bl. 

In both cases, the results relate the "sizes" of sets. In the case of Proposition 11.4, 
we are relating the number of elements in the various sets. In Proposition 30.7, we 
find the analogous relation among the probabilities of the events. 
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Proof (of Proposition 30.7) 

Consider the two sides of the equation, 

P(A) + P(B) and P(A U B)+ P(A n B). 

We can expand these two sides as sums of P (s) for various members of S. The 

left side is 

P(A) + P(B) = L P(s) + L P(s) 
sEA sEB 

and the right side is 

P (A u B) + P (A n B) = L P (s) + L P (s). 
sEAUB sEAnB 

Consider an arbitrary elements E S. There are four possibilities: 

• s is in neither A nor B. In this case, the term P (s) does not enter either side 

of the equation. 
• s is in A but not in B. In this case, P (s) enters exactly once into both sides 

of the equation [once in P(A) and once in P(A U B), but not in P(B) or 

P(A n B)]. 
• sis in B but not in A. As before, P(s) enters exactly once into both sides of 

the equation. 
• s is in both A and B. In this case, P (s) appears twice on each side of the 

equation [once each in P(A) and P(B) and once each in P(A U B) and 

P(A n B)]. 

Therefore the two sides of the equation P(A) + P(B) and P(A U B)+ P(A n B) 

sum exactly the same terms and are therefore equal. • 

Proposition 30.8 Let (S, P) be a sample space and let A and B be events. We have the following: 

• If An B = 0, then P(A U B) = P(A) + P(B). 

P(A U B) :::; P(A) + P(B). 
P(S) = 1. 
P(0) = 0. 
P(A) = 1 - P(A). 

The proof is left for you (Exercise 30.13). In the first item, events whose 

intersection is the empty set are called mutually exclusive. 

The Birthday Problem 

Four people are chosen at random. What is the probability that two (or more) of 

them have the same birthday? 
To make this problem more tractable, we make two simplifying assumptions. 

First, we ignore the possibility that a person might be born on February 29. Second, 
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we assume that it is equally likely that a person is born on any give day of the 

year; that is, the probability a random person is born on a giv~n day f the year is 
1 

365. 
We model this problem with a sample space (S, P). The sample space consists 

of alllength-4lists of days of the year; we can represent these lists as (d1, d2 , d3 , d4) 

where the di are integers from 1 to 365. All such lists are equally likely with 

probability 365-4 • 

Let A be the event that two (or more) of the people have the same birthday. It 

is easier to calculate A, the probability they all have different birthdays. Because 

the four birthdays must be different, we can choose the first date in 365 ways, the 

second date in 364 ways, the third in 363, and the last in 362. Therefore 

so 

- 365 . 364 . 363 . 362 
p (A) = ---3-6-5

4 
__ _ 

- 795341 

47831784 

48627125 

P(A) = 1- P(A) = ~ 1.64%. 
48627125 

It is rather unlikely that two of them have the same birthday. 

Now suppose that 23 people are chosen at random. What is the probability 

that some of them have the same birthday? It would seem, since 23 is much smaller 

than 365, that this is also an unlikely event. However, let us analyze this situation 

carefully. 
Consider the sample space (S, P) where S contains alllength-23 lists (d1, 

d2 , ... , d23 ) where each of the di is an integer from 1 to 365. We assign probability 

365-23 to each of these lists. 
Let A be the event that two (or more) of the dis are equal. As before, it is 

easier to calculate the probability of A. The number of length-23 repetition-free 

lists we can form from 365 different symbols is (365)23 . Therefore, 

and so 

- (365)23 365 . 364 ... 343 
P(A) = -3-65_2_3 = --3-65_2_3 --

P(A) = 1 - P(A) = 1 - (
365

)23. 
36523 

Using a computer, it is not hard to calculate that P(A) = 50.73%, so it is more 

likely that two (or more) of the people will have the same birthday than it is that 

no two of them have the same birthday! 

Recap 

Let (S, P) be a sample space. An event is a subset A of S. The probability of 

the event A is the sum of the probabilities of the elements of A; that is, P(A) = 

'l::sEA P(s). We can combine events with the usual set operations, such as union 

(A U B represents the event that A or B occurs) and intersection (A n B is the 

event that both A and B occur). We investigated the birthday problem. 
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30.1. Recall the tetrahedral dice of Exercise 29 .4. Suppose a pair of these dice are 

tossed. The sum of the values we get (face down) can range from 2 = 1 + 1 

to 8 = 4 + 4. Let Ak be the event that the sum of the values of the dice is 

k. For each value of k from 2 to 8, please do the following: 

a. Write down the event Ak by explicitly writing out its elements between 

curly braces. 
b. Calculate P(Ak). 

30.2. A coin is flipped four times. Let A be the event that we record an equal 

number of HEADS and TAILS. 

a. Write down the event A by explicitly writing its elements between curly 

braces. 
b. Evaluate P(A). 

30.3. A coin is flipped ten times. What is the probability that we record an equal 

number of HEADS and TAILS? 

30.4. A coin is flipped n times. What is the probability that exactly h HEADS 

emerge? 
30.5. Let (S, P) denote the sample space for flipping a coin ten times. Let A 

denote the event that the results alternate between HEADS and TAILS. 

a. Explicitly write down the set A. 

b. Evaluate P(A). 

30.6. A pair of dice are rolled. Let A denote the event that the sum of the numbers 

showing is 8. 
a. Explicitly write down the set A (as a set of ordered pairs). 

b. Evaluate P(A). 

30.7. Three dice are rolled. What is the probability that all three dice show even 

numbers? 
30.8. Three dice are rolled. What is the probability that the sum of the numbers 

showing is even? 
30.9. Two dice are rolled. Let A denote the event that the number on the first die 

is greater than the number on the second die. 

a. Explicitly write down A as a set. 

b. Evaluate P(A). 

30.10. A bag contains ten identically wrapped boxes, but the contents of the boxes 

have different values (e.g., each contains a different amount of money). 

Alice and Bob are each going to pick one box from the bag. 

Suppose Alice picks first (one of the ten boxes at random) and then 

Bob picks at random from the remaining boxes. 

What is the probability that the contents of Alice's box are more valu­

able than the contents of Bob's box? Is there an advantage to going first? 

30.11. Nontransitive dice. In this problem we consider three dice with unusual 

numbering. Call the three dice 1, 2, and 3. The spots on the three dice are 

given in the following chart. 

Die 1 5 6 7 8 9 18 

Die 2 2 3 4 15 16 17 

Die 3 1 10 11 12 13 14 
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A game is played with these dice. Each player gets pne the dice (and 

the two players have different dice). They each roll their ie, and whoever 

has the higher number wins. 
a. If dice 1 and 2 are rolled, what is the probabilit at die 1 beats die 2? 

b. If dice 2 and 3 are rolled, what is the probabi 1ty that die 2 beats die 3? 

c. If dice 3 and 1 are rolled, what is the probability that die 3 beats die 1? 

d. Which die is best? 
30.12. More poker hands. 

a. What is the probability that a poker hand is a three of a kind? (A three of 

a kind has three cards of the same value and two other cards of different 

values, such as three lOs, a 7, and a jack.) 

b. What is the probability that a poker hand is a full house? (A full house 

has three cards with one common value and two other cards of another 

common value, such as three queens and two 4s.) 

c. What is the probability that a poker hand has one pair? (One pair means 

two cards have the same value and three other cards have three other 

values, such as two 9s, a king, an 8, and a 5.) 

d. What is the probability that a poker hand has two pairs? (Two pairs 

means two cards have one common value, two more cards have another 

common value, and a fifth card has yet another value, such as two jacks, 

two 8s, and a 3.) 
e. What is the probability that a poker hand is a flush? (A .flush means all 

five cards have the same suit.) 
30.13. Prove Proposition 30.8. 
30.14. A coin is flipped ten times. 

a. What is the probability that there are an equal number of HEADS and 

TAILS? 
b. What is the probability that the first three flips are HEADS? 

c. What is the probability that there are an equal number of HEADS and 

TAILS and the first three flips are HEADS? 
d. What is the probability that there are an equal number of HEADS and 

TAILS or the first three flips are HEADS (or both)? 

30.15. Three dice are rolled. 
a. What is the probability that none of the dice shows 1? 
b. What is the probability that at least one die shows 1? 

c. What is the probability that at least one die shows 2? 

d. What is the probability that none of the dice shows 1 or 2? 

e. What is the probability that at least one die shows 1 or at least one die 

shows 2 (or both)? 
f. What is the probability that at least one die shows 1 and at least one die 

shows 2? 
30.16. Let A and B be events in a sample space. Please prove that 

P(A n B)+ P(A n B) = P(A). 

30.17. Suppose A and B are events in a sample space. Please prove: If A s; B, 

then P(A) .::::; P(B). 

30.18. Suppose that A and Bare events in a sample space and that P(A) > ~and 

P(B) > ~-Prove that P(A n B) i= 0. 
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30.19. Suppose A 1, A2, ... , An are events in a sample space. Prove that 

P (Al U A2 U · · · U An) .:::; P(AJ) + P(A2) + · · · + P(An). 

30.20. Let A be an event in a sample space. Find P(A n A) and give a common­
sense interpretation. 

30.21. Write a computer program that takes as its input an integer n between 1 
and 365 and returns as its output the probability that, among n randomly 
chosen people, two (or more) have the same birthday. 

Use your program to find the least positive integer k such that the 
probability is greater than 99%. 

31 Conditional Probability and Independence 
An event is a subset of a sample space. Accordingly, we can apply set-theoretic 

operations to create new events. For example, if A and B are events, then A n B 

is the event in which both A and B occur. 
In this section, we present the concept of one event being conditional on 

another. We illustrate this concept with a nonmathematical example. 
Let A represent the event that a student misses the school bus. Let B represent 

the event that the student's alarm clock malfunctions. Both these events have low 

probability; P(A) and P(B) are small numbers. However, let us ask, "What is 

the probability of the student missing the school bus given the fact that the alarm 

clock malfunctioned?" Now it is likely the student will miss the bus! We denote 

this probability as P(AIB): This is the probability that event A occurs given that 
event B occurs. 

We can think of P(A) as the frequency (percentage of mornings) with which 
the student misses the bus. Similarly, P(B) measures how often the alarm clock 
fails. The conditional probability P (A 1 B) is the frequency with which the student 

misses the bus, but only considering the mornings when the alarm clock is broken. 
We can illustrate this with a Venn diagram. Since events are sets, we illustrate 

them as regions in the diagram. The box S represents the entire sample space. 
Regions A and B represent the two events (missing the bus and alarm clock 

malfunction). We have drawn boxes A and B relatively small to illustrate the fact 

that these are infrequent events. 
The "universe" box S has area 1, and the smaller rectangles for events A and 

B have area equal to their probabilities, P(A) and P(B). 

Look closely at box B-the alarm clock malfunction event. A large proportion 

of B's area is overlapped by box A. This overlap region represents those days on 

which the student misses the bus and the alarm clock fails. Given that the alarm 
clock has failed, a large proportion of the time the student misses the bus. The 

overlapping region has area P (A n B). What proportion of box B does this overlap 

1 region cover? It covers P(A n B)/ P(B). This ratio, P(A n B)/ P(B), is fairly 
close to 1 and represents the frequency with which the student misses the bus on 
days the alarm clock fails. The conditional probability of event A given event B 
is P(AIB) = P(A n B)/ P(B). 
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The conditional probability 
P(AIB) when P(B) = 0 
does not make sense for 
us. This asks for the 
probability that A occurs 
given that an impossible 
event B occurred. 

Definition 31.1 

We consider another example. Let (S, P) be the pair-of-die sample space 
(Example 29.4). Consider the events A and B defined by ~ 

• Event A: the numbers on the dice sum to 8. 
• Event B: the numbers on the dice are both even. / 

As sets, these can be written as follows: 

A= {(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)}, and 

B = {(2, 2), (2, 4), (2, 6), (4, 2), (4, 4), (4, 6), (6, 2), (6, 4), (6, 6)}. 

Therefore we have P(A) = fc; and P(B) = ~ = ~-
We now consider the problem: What is the probability the dice sum to 8 given 

that both dice show even numbers? Of the nine, equally likely dice rolls in set 
B, three of them (highlighted in color) sum to 8. Therefore P(AjB) = ~ ~­
Notice that P(A n B)= ~and we have 

P(A n B) 3/36 3 1 
P(AjB) = P(B) = 9/36 = 9 = 3· 

The equation P(AjB) = P(A n B)/ P(B) is the definition of P(AjB), and 
we interpret it as the probability of event A given that event B occurred. The only 
instance in which this definition does not make sense is when P (B) = 0. 

(Conditional probability) Let A and B be events in a sample space (S, P) and 
suppose P(B) =/= 0. The conditional probability P(AjB), the probability of A 
given B, is 

P(AjB) = P(A n B). 
P(B) 

Example 31.2 (Spinner revisited) Consider the spinner from Example 29.3 (see the figure). Let 
A be the event that we spin to a 1 (i.e., A = { 1}) and let B be the event that the 
pointer ends in a colored region (i.e., B = { 1, 3 }). What is the probability that we 
spin to a 1 given that the pointer ends in a colored region? 

Notice that region 1 consumes ~ of the colored portion of the diagram. We 
can also calculate 

P(A n B) P({1}) 1/2 4 
P(AjB) = P(B) = P({1, 3}) = 5/8 = s· 

Example 31.3 A coin is flipped five times. What is the probability that the first flip is a TAIL given 
that exactly three HEADS are flipped? 

Let A be the event that the first flip is TAILS, and let B be the event that we 
flip exactly three HEADS. We calculate 

24 1 
P(A) = 

25 
= 2, and 

(;) 10 5 
P(B)=25=32=16· 
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To calculate P(AIB), we also need to know P(A n B). The set An B contains 

exactly (~) = 4 sequences since the first flip must be TAILS and exactly three of 

the remaining four flips are HEADS. So 

Thus 

Independence 

4 1 
P(AnB) =- = -. 

32 8 

P(A n B) 1/8 2 
P(AIB) = P(B) = 5/16 = s· 

A coin is flipped five times. What is the probability that the first flip comes up 

HEADS given that the last flip comes up HEADS? 

Let A be the event that the first flip comes up HEADS, and let B be the event 

that the last flip comes up HEADS. We have 

and therefore 

24 1 
P(A) =- =-

25 2 
24 1 

P(B) =- =-
25 2 
23 1 

P(A n B)=-=-
25 4 

P(A n B) 1/4 1 
P(AIB) = P(B) = 1/2 = 2· 

Notice that P (A I B) and P (A) are equal. This makes intuitive sense. The proba­

bility the first flip comes up HEADS is ~ and has nothing to do with the last flip. 

We call such events independent (a formal definition follows). 

This situation is quite different from Example 31.3. In that example, knowing 

that three HEADS were seen decreases the likelihood that the first flip was a TAIL. 

Indeed, for that example, P(AI B) = ~ < ~ = P(A). 

We work out the consequences of the equation P (A I B) = P (A). This equation 

can be written 

P(A n B) 
P(AIB) = P(B) = P(A) 

and if we multiply through by P(B), we get 

P(A n B)= P(A)P(B). 

Now if P(A) =j:. 0, we can divide both sides by P(A), and we have 

P(BIA) = P(A n B) = P(B). 
P(A) 

We can summarize what we learned in the following proposition. 
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Proposition 31.4 

The expression ''the 

following statements are 

equivalent" means that 

each implies the other. In 

other words. we have 

(1) {=:::;. (2)' 

(!) {:::::::::} (3). and 

(2) {:::::::::} (3). 

Definition 31.5 

Let A, B be events in a sample space (S, P) and suppose P(A)and P B) are both 

nonzero. Then the following statements are equivalent: ~ 

1. P(A)B) = P(A). 

2. P(BIA) = P(B). 

3. P(A n B)= P(A)P(B). 

Nearly all the ideas for the proof have been presented. We leave it to you to 

fill in the details (Exercise 31.5). 

We use condition (3) to define the concept of independent events. 

(Independent events) Let A and B be events in a sample space. We say that these 

events are independent provided 

P(A n B)= P(A)P(B). 

Events that are not independent are called dependent. 

We consider another example. A bag contains twenty balls; ten of the balls 

are painted red and ten are painted blue. Two balls are drawn from the bag. Let A 

be the event that the first ball drawn is red, and let B be the event that the second 

ball is red. Are these events independent? 

The question is vague because we have not specified whether or not we replace 

the first ball before drawing the second. We consider both possibilities. 

Suppose we replace the first ball before drawing the second. Then there are 

20 x 20 ways to pick the two balls, of which 10 x 20 have the property that the 

first ball is red. Thus P(A) = ~~~ = ~-Likewise, P(B) = ~-Finally, there are 

10 x 10 ways to draw the balls such that both the first and second balls are red. 

Therefore P(A n B) = !~~ = i· Since 

1 1 1 
P(AnB) =- =- x- = P(A)P(B) 

4 2 2 

we conclude that A and B are independent events. This makes sense because the 

color we observe on the second draw does not in any way depend on the color seen 

on the first. 
But now suppose we do not replace the first ball once it is drawn. The situation 

is a bit more complicated. There are 20 x 19 = 380 different ways to draw one ball 

and then draw a second from those that remain. There are 10 x 19 ways to pick 

a ball such that the first ball is red; hence P(A) = ~~~ = ~- Similarly, there are 

190 ways to pick a ball such that the second ball is red, and we have P(B) = ~­
However, there are only 10 x 9 ways to pick the balls such that both are red. 

Therefore 

90 9 1 
P(An B)=-=- -:f.-= P(A)P(B) 

380 38 4 

and so the events are dependent. 



Technical note on 

Definition 31.6: We have 

overused the symbol P in 

this definition. We have 

two sample spaces under 

consideration here: (S, P) 

and (S", P). It would be 

more precise to use 

different symbols for the 

two probability functions. 

A reasonable choice would 

be to write P" (-) for the 

second probability 

function. 
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It is instructive to calculate the conditional probabilities in this no-replacement 

scenario. We have 

P(BIA) = P(A n B) = 9/38 = _2_ ~ 47.4% 

P(A) 1/2 19 

so we see that the probability the second ball is red given that the first was red 

is slightly less than the unconditional probability. This makes sense because once 

we pick the first ball, and it is red, the proportion of red balls left in the bag is 

less than half. Indeed, exactly nine of the remaining balls are red, and we have 

P(BIA) = f9, as we noted before. 

Independent Repeated Trials 

Recall the spinner from Examples 29.3 and 31.2. Suppose we spin the needle 

twice. Now, instead of 4 possible outcomes (1, 2, 3, and 4), there are 16 [from 

( 1, 1) through ( 4, 4)]. What is the probability that we spin a 3 and then we spin a 2? 

We cannot express this question in the limited confines of the spinner sample 

space (S, P) (where S = {1, 2, 3, 4}). Nonetheless, we can answer the question. 

The first spin of the spinner and the second spin are independent of one another­

the number that comes up on the second spin is not in any way dependent on the 

first number that appears. If we think of "first spin a 3" and "next spin a 2" as 

independent events with probabilities ~ and ±, respectively, then the probability 

that we spin a 3 and then a 2 ought to be k x ± = :A. 
This is an example of repeated independent trials. We have a sample space 

(S, P). Instead of taking a single elements E Sat random from S with probability 

P (s), we take a sequence of events s 1, s2 , ... , sn each drawn at random from S. 

We construct a new sample space designed to handle this situation. 

(Repeated trials) Let (S, P) be a sample space and let n be a positive integer. Let 

sn denote the set of alllength-n lists of elements inS. Then (S11
, P) is then-fold 

repeated-trial sample space in which 

Example 31.7 (Dice revisited) The pair-of-dice sample space (Example 29.4) can be consid­

ered a repeated trial on a single die. Let (S, P) be the sample space with S = 

{1, 2, 3, 4, 5, 6} and P(s) = ~for all s E S. Then (S2 , P) represents the roll-two­

dice sample space. The elements of S are all possible results for rolling a pair of 

dice, from (1, 1) through (6, 6), all with probability :}g. 

Example 31.8 (Coin tossing revisited) In Example 29.6, we consider the sample space repre­

senting five flips of a fair coin. We can reformulate this situation as follows: Let 

(S, P) be the sample space in which S = {HEADS,TAILS} and P(s) = i for both 

s E S . 

. 1 The toss-five-times sample space is simply (S5 , P). The set S5 contains all 

length-five lists of the symbols HEADS and TAILS. All such lists are equally likely 

with probability :A. 
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Example 31.9 

This 1:!'-'ncral i;at ion uf coin 

tossing. in \\hiL·h the coin 

might not producc HEADS 

and TAILS with the same 

frequcnc;.. knm\ nasa 

Bemoul/i 11 iu!. The term 

Bemuut!i 11'/Ui n:krs to a 

situation Ill which there arc 

tWll po.,~ihk outcomes. 

often called \l CC'I ss and 

IAILLIKL The nmhabi\ity 

of Sl CCI'" i-, 11 and that 

of FA ILl Rl 1 -- Ji. 

(Tossing an unfair coin) Imagine a coin that is not fairly balanc¢d; that is, · does 

not tum up HEADS and TAILS with the same frequencies. We model thi with a 

sample space (S, P) where S = {HEADS,TAILS}, but 

P(HEADS) = p and P(TAILS) = 1- p 

where p is a number with 0 :::: p :::: 1. 

If we toss this coin five times, what is the probability that we see (in this 

order): HEADS, HEADS, TAILS, TAILS, HEADS? 

The answer is 

P(HHTTH) = P(H)P(H)P(T)P(T)P(H) = p · p · (1- p) · (1- p) · p. 

The Monty Hall Problem 

The following problem is inspired by the old television game show Let's Make a 

Deal. On this show, one lucky contestant was presented with a choice of three doors. 

Behind exactly one of these doors was a terrific prize; the other doors concealed 

items of considerably less value. The contestant was asked to choose a door. At 

this point, the host of the show, Monty Hall, would show the contestant one of the 

worthless prizes behind one of the other doors. Furthermore, the contestant was 

offered the opportunity to switch to the other closed door. The problem is: Is it 

helpful to switch to the other door, or doesn't it matter? 

An informal-and incorrect!-analysis of this problem runs as follows. The 

probability that the prize is behind the door originally picked by the contestant 

is ~. But now that one door has been revealed, the probability that the valuable 

prize is behind either of the two remaining doors is ~,so it doesn't matter whether 

the contestant switches to the other door. The error in this argument is that the 

contestant knows more than the fact that the prize is not behind a certain door. The 

door the host opens depends on which door the contestant originally chose, and 

this is not an arbitrary choice. 

Let us model this situation with a sample space. Suppose, without loss of 

generality, the contestant chooses door 1. The prize might be behind door 1, in 

which case the host will show door 2 or 3. Let us suppose the host is equally likely 

to pick either. If the prize is behind door 2, then the host will certainly show door 3, 

and if the prize is behind door 3, then the host will certainly show door 2. 

Let us write "P 1: S2" to stand for "the prize is behind door 1 and the host shows 

door 2." With this notation, the four possible occurrences are P1:S2, Pl:S3, P2:S3, 

P3:S2. We model this as a sample space by assigning the following probabilities: 

1 1 1 1 
P(P1:S2) = 6, P(Pl:S3) = 6, P(P2:S3) = 3, P(P3:S2) = 3. 

Suppose that after the contestant picks door 1, the host reveals the worthless 

item behind door 2. Should the contestant switch to door 3? 

Consider the following three events: 

A: the prize is behind door 1; i.e. A= {P1:S2, Pl:S3}. 

B: the prize is behind door 3; i.e. B = {P3:S2}. 

C: the host reveals door 2; i.e., C = {P1:S2, P3:S2}. 
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Note that P (A) = P (B) = ~. If the host did not reveal a door, there is no reason 

to switch. 
However, let us calculate P(AIC) and P(BJC). We have 

1 
P(A n C)= P({Pl:S2}) = 6 

1 1 1 
P(C) = P({P1:S2, P3:S2}) = 6 + 3 = 2 

and so 
P(A n C) 1/6 1 

P(AIC) = P(C) = 1/2 = 3· 

And we also have 
1 

P(B n C) = P({P3:S2}) = -
3 

1 1 1 
P(C) = P({P1:S2, P3:S2}) = 6 + 3 = 2 

and so 
P(BnC) 1/3 2 

P(BJC) = P(C) = 1/2 = 3· 

Therefore it is twice as likely that the contestant will win the big prize by switching 

doors than by staying with the original choice. 

Recap 

We introduced the notion of conditional probability. If A and B are events [with 

P(B) > 0], then P(AJB) is the probability that A occurs given that B occurs. We 

define P(AJB) = P(A n B)/ P(B). We discussed independent events. We say A 

and Bare independent provided P(A n B) = P(A)P(B). In the case where B has 

nonzero probability, this implies that P(AIB) = P(A). We showed how to extend 

a sample space (S, P) into a repeated-trial sample space (Sn, P). We concluded 

with an analysis of the Monty Hall problem. 

31 Exercises 31.1. Let (S, P) be a sample space with S = { 1, 2, 3, 4, 5} and 

P(l) = 0.1, P(2) = 0.1, P(3) = 0.2, P(4) = 0.2, and P(5) = 0.4. 

Here we list several pairs of events A and B. In each case, please calculate 

P(AIB). 
a. A = {1, 2, 3} and B = {2, 3, 4}. 

b. A= {2, 3, 4} and B = {1, 2, 3}. 

c. A= {1, 5} and B = {1, 2, 5}. 

d. A = { 1, 2, 5} and B = { 1, 5}. 

e. A={1,2,3}andB={1,2,3}. 

f. A = {1, 2, 3} and B = {4, 5}. 

g. A = 0 and B = { 1, 3, 5}. 

h. A= {1, 3, 5} and B = 0. 

i. A={1,2,3,4,5}andB={1,3}. 

j. A= {1, 3} and B = {1, 2, 3, 4, 5}. 
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31.2. A pair of dice are rolled. What is the probability that neit r die shows a 2 

given that they sum to 7? ~~ " 
31.3. A pair of dice are rolled. What is the probability that they sum to 7 given 

that neither die shows a 2? 
31.4. A coin is flipped ten times. What is the probability that the first three flips 

are all HEADS given that an equal number of HEADS and TAILS are flipped? 
How does this conditional probability compare with the simple prob-

ability that the first three flips are HEADS? 
31.5. Prove Proposition 31.4. 
31.6. Are disjoint events independent? Please give a proof or a counterexample. 

31.7. Let A and B be events in a sample space with P(A n B) -=1- 0. Prove that 

P(AIB) = P(BIA) if and only if P(A) = P(B). 

31.8. Let A and B be events in a sample space for which P(A) > 0, P(B) > 0, 

but P(A n B) = 0. Prove that P(AIB) = P(BIA). 

Give an example oftwo such events with P(A) -=/=- P(B). 

31.9. LetAandBbeeventsinasamplespace(S, P)andsupposeO < P(B) < 1. 

Please prove: 

P(AIB)P(B) + P(AIB)P(ii) = P(A). 

31.10. Let A and B be events with nonzero probability in a sample space. 
Suppose P(AIB) > P(A). Must it be the case that P(BIA) > P(B)? 

Suppose P(AIB) < P(A). Must it be the case that P(BIA) < P(B)? 

Please prove your answers. 
31.11. Let A and B be events in a sample space with P (B) -=/=- 0. Suppose 

P(AIB) > 0. Must it be the case that P(A) > 0? (Prove your answer.) 

31.12. Let A, B, and C be events in a sample space and suppose P(A n B) -=/=- 0. 

Please prove: 

P(A n B n C)= P(A)P(BIA)P(CIA n B). 

31.13. A card is drawn from a well-shuffled standard deck of 52 cards. 
a. What is the probability that it is a spade ( ~ )? 
b. What is the probability that it is a king? 
c. What is the probability that it is the king of spades? 
d. Are the events in parts (a) and (b) independent? 

31.14. Two cards are sequentially drawn (without replacement) from a well­

shuffled standard deck of 52 cards. Let A be the event that the two cards 
drawn have the same value (e.g., both 4s) and let B be the event that the 

first card drawn is an ace. Are these events independent? 

31.15. Two cards are sequentially drawn (without replacement) from a well­

shuffled standard deck of 52 cards. Let A be the event that the two cards 

drawn have the same value (e.g., both 4s) and let B be the event that the 

two cards have the same suit (e.g., both diamonds [~]).Are these events 

independent? 
31.16. Two cards are sequentially drawn (without replacement) from a well­

shuffled standard deck of 52 cards. Let A be the event that the first card 

drawn is a club ( ®) and let B be the event that the second card drawn is 

also a club. Are these events independent? 
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31.17. Let A and B be events in a sample space. Prove or disprove the following 

statements. 
a. If A and B are independent, then A and B are independent. 

b. If A and B are independent, then A and B are independent. 

31.18. Let A and B be events in a sample space. Prove or disprove: 

a. If P(A) = 0, then A and Bare independent. 

b. If P(A) = 1, then A and Bare independent. 

31.19. Let A, B, and C be events in a sample space. Prove or disprove: 

a. If A and B are independent, and B and C are independent, then A and 

C are independent. 
b. If P(A n B n C) = P(A)P(B)P(C), then A and Bare independent, 

A and C are independent, and B and C are independent. 

c. If A and B are independent, A and C are independent, and B and C are 

independent, then P(A n B n C)= P(A)P(B)P(C). 

31.20. Recall the spinner sample space (S, P) from Examples 29.3 and 31.2. 

Write down all the elements in (S2
, P) as well as the value of P(·) for 

every member of S2
. 

31.21. The spinner from Examples 29.3 and 31.2 is spun twice. What is the prob­

ability that the sum of the two numbers is 6? 

31.22. The spinner from Examples 29.3 and 31.2 is spun five times. What is the 

probability the number 4 is never spun? 

31.23. An unfair coin shows HEADS with probability p and TAILS with probability 

1 - p (see Example 31.9). Suppose this coin is tossed five times. Let A be 

the event that HEADS comes up exactly twice. 

a. Write down A as a set. 
b. Find P(A). 

31.24. An unfair coin shows HEADS with probability p and TAILS with probability 

1 - p (see Example 31.9). Suppose this coin is tossed n times. Let A be 

the event that HEADS comes up exactly h times. Find P(A). 

31.25. An unfair coin shows HEADS with probability p and TAILS with probability 

1 - p (see Example 31.9). Suppose this coin is tossed twice. Let A be the 

event that the coin comes up first HEADS and then TAILS, and let B be the 

event that the coin comes up first TAILS and then HEADS. 

a. Calculate P (A). 

b. Calculate P (B). 
c. Calculate P(AiA U B). 

d. Calculate P(BIA U B). 

e. Explain how to use an unfair coin to make a fair decision (choose be­

tween two alternatives with equal probability). 

31.26. Penelope the Pessimist and Olivia the Optimist are two of ten finalists in 

a contest. One of these ten finalists will be randomly chosen to receive the 

grand prize (all finalists have the same chance of winning). Just before the 

grand prize is awarded, a judge tells eight of the finalists that they have not 

won the grand prize, and only Penelope and Olivia remain. 

Penelope thinks: Even before the judge eliminated the eight contes­

tants, I knew that at least eight of the other people were losers. That I now 
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32 
The term mndom variable 
is, perhaps. one of the 
greatest misnomers in all 
of mathematics: A random 
variable is neither random 
nor variahle 1 It is a 
function dt'lined on a 

sample space. Random 
variables are used to model 
quantities whose value is 
random. 

know that those eight are losers doesn't tell me anyth\ng. My chance of 
~ 

winning is still only 10%. What rotten luck! 
Olivia thinks: Now that those eight have been eliminated, there are 

only two of us left in the contest. So now I have a 50% chance of winning. 
What wonderful luck! 

Whose analysis is correct? 
31.27. Alice and Bob play the following game. Both players start with a pile of 

n chips. On each tum, they flip a coin. With probability p, Alice wins the 
toss and Bob gives her a chip; conversely, with probability 1- p, Bob wins 
the toss and Alice gives him a chip. The game is over when one player (the 
winner) has all 2n chips. 

What is the probability that Alice wins this game? 
To help you work this out, please do the following: 

a. Let ak denote the probability that Alice wins the game when she has k 
chips and Bob has 2n - k. What are the values of a0 and a2n? 

b. Find an expression for ak in terms of ak-l and ak+l· This expression is 
valid when 0 < k < 2n. 

c. Using the techniques of Section 22, solve the recurrence relation from 
part (b) using the boundary conditions you deduced in part (a). 

(If you have not studied Section 22, please see the hints in Ap­
pendix A.) 

d. Your answer to part (c) should be a formula for ak. Substitute k = n 

into that formula to find the probability that Alice wins. 
In expressing your answers to (b), (c), and (d), it is useful to let q = 1- p. 

Random Variables 
Let (S, P) be a sample space. Although we may be interested in the individual 
outcomes listed in S, we are often more interested in events. For example, in the 
pair-of-dice sample space, we may want to know the probability that the numbers 
on the two dice are different. Or if we flip a coin ten times, we may want to know 
the probability that we flip an equal number of HEADS and TAILS. We have studied 
such "compound outcomes"-they are called events. 

We might not be interested in the specific outcomes in a sample space, but 
we might be interested in some quantity derived from the outcome. For example, 
we might want to know the sum of the numbers on two dice. Or we might want to 
know the number of HEADS observed in ten throws of a fair coin. 

In this section we consider the concept of a random variable. A typical random 
variable associates a number with each outcome in a sample space (S, P). That 
is, X (s) is a number that depends on s E S. For example, X might represent the 
number of HEADS observed in ten flips of a coin, and if s = HHTHTTTTHT then 
X(s) = 4. 

The proper way to express this idea is to say that X is a function. The domain 
of X is the setS or a sample space (S, P). Each outcomes E S has a value X(s) 
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that is usually (but not always) a real number. In this case, we have X : S ----+ JR. 

More generally, a random variable is any function defined on a sample space. 

Definition 32.1 (Random variable) A random variable is a function defined on a probability 

space; that is, if (S, P) is a sample space, then a random variable is a function 

X : S ----+ V (for some set V). 

Example 32.2 (Pair of dice) Let (S, P) be the pair-of-dice sample space (Example 29.4). Let 

X : S ----+ N be the random variable that gives the sum of the numbers on the two 

dice. For example, 

X[(l, 2)] = 3, X[(5, 5)] = 10, and X[(6, 2)] = 8. 

Example 32.3 (Heads minus tails) Let (S, P) be the sample space representing ten tosses of a 

fair coin. Let X : S ----+ Z be the random variable that gives the number of HEADS 

minus the number of TAILS. For example, 

X (HHTHTTTTHT) = -2. 

We can also define random variables X H and X T as the number of HEADS and the 

number of TAILS in an outcome. For example, 

X H (HHTHTTTTHT) = 4 and XT(HHTHTTTTHT) = 6. 

NoticethatX = XH-XT.Thismeansthatforanys E S,X(s) = XH(s)-XT(s). 

Exam pIe 32.4 Here is an example of a random variable whose values are not numbers. Let ( S, P) 

be the sample space representing ten tosses of a fair coin. For s E S, let Z (s) denote 

the set of positions where HEADS is observed. For example, 

Z(HHTHTTTTHT) = {1, 2, 4, 9} 

because the HEADS are in positions 1, 2, 4, and 9. We call Z a set-valued random 

variable because Z(s) is a set. 

The random variable X H from the previous example is closely related to Z. 

We have XH = IZI. This means that for all s E S, XH(s) = IZ(s)l. 

Random Variables as Events 

Let X be a random variable defined on a sample space (S, P). We might like to 

know the probability that X takes on a particular value v. For example, if we roll 

a pair of dice, what is the probability that the sum of the numbers is 8? We can 

express this question in two ways. First, we can let A be the event that the two 

dice sum to 8; that is, A= {(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)}. We then ask: What 

is P(A)? Alternatively, we can define a random variable X to be the sum of the 
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numbers on the dice. We can then ask: What is the probability that X = 8? We 
write this as P(X = 8). r 

Writing P(X = 8) extends the P(·) notation beyond its previous scope. So 
far, we allowed two sorts of objects to follow the P. We may write P (s) where s 
is an element of a sample space, and we may write P (A) where A is an event (i.e., 
a subset of a sample space). 

The way to read the expression P(X = 8) is to interpret the "X = 8" as an 
event. The X = 8 is shorthand for the event 

{s E S: X(s) = 8}. 

In this case, 

P(X = 8) = P({s E S: X(s) = 8}) 
5 = P({(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)}) = 

36
. 

What does P(X ~ 8) mean? The "X ~ 8" is shorthand for the event {s E S: 
X(s) ~ 8}, so 

5 + 4 + 3 + 2 + 1 15 5 P(X ~ 8) = P({s E S: X(s) ~ 8}) = 
36 

= 
36 

= 
12

. 

We can insert even more complicated algebraic expressions involving random 
variables into the P ( ·) notation. The notation asks for the probability of an implicit 
event; the event is the set of all s that satisfy the given expression. For example, 
recall the random variables X H and X r from Example 32.3. (These count the 
number of HEADS and the number of TAILS, respectively, in ten flips of a fair coin.) 
We might ask: What is the probability that there are at least four HEADS and at 
least four TAILS in ten flips of the coin? This question can be expressed in these 
various ways: 

P(XH ~ 4 and Xr ~ 4) 

P(XH ~ 4 A Xr ~ 4) 

P(XH~4nXr~4) 

P(4.::: XH.::: 6). 

In every case, we seek the probability of the following event: 

{s E S: XH(s) ~ 4 and Xr(s) ~ 4}. 

Incidentally, the answer to this question is 

(10) + co) + (10) 
P (X > 4 A X > 4) = 4 5 6 

H- T - 210 
672 21 

= 
1024 32 

Example 32.5 (Binomial random variable) Recall the unfair coin of Example 31.9. Suppose 
this coin produces HEADS with probability p and TAILS with probability 1 - p. 
The coin is flipped n times. Let X denote the number of times that we see HEADS. 

Let h be an integer. What is P(X =h)? 
If h < 0 or h > n, it is impossible for X(s) = h, so P(X =h)= 0. Thus we 

narrow our attention to the case with 0 _::: h _::: n. 
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There are exactly G) sequences of n flips with exactly h HEADS. All of these 
sequences have the same probability: ph (1 - p y-h. Therefore 

P(X =h)= G) ph(l- p)"-h 

We call X a binomial random variable for the following reason. Expand the ex­
pression (p + q Y using the binomial theorem. One of the terms in the expansion is 
G) phqn-h. If we set q = 1- p, this is exactly P(X = h). See also Exercise 31.24. 

Independent Random Variables 

Recall the pair-of-dice sample space (Example 29.4). For this sample space, we 
define two random variables, X 1 and X2. The value of X 1 (s) is the number on the 
first die and X2 (s) is the number on the second die. For example, 

X1 [(5, 3)] = 5 and 

Finally, let X = X 1 + X2 • This means X (s) = X 1 (s) + X2 (s); that is, X is the sum 
of the numbers on the dice. For example, X[(5, 3)] = 8. Knowledge of X2 tells us 
some information about X. For example, if we know that X 2 (s) = 4, then X (s) = 4 
is impossible. If we know that X 2 (s) = 4, then the probability that X (s) = 5 is i 
(as opposed to~). We can express this as P(X = 5JX2 = 4) = i· The meaning 
of P(X = 5JX2 = 4) is the usual meaning of conditional probability. The events 
in this case are X = 5 and X2 = 4. We can calculate this in the usual way: 

P(X = 5 and X2 = 4) 1/36 1 
P(X = 5IX2 = 4) = = - = -. 

P(X2 = 4) 1/6 6 

However, knowledge of X2 tells us nothing about X1. Indeed, if a and bare 
integers from 1 to 6, we have 

P(X1 =a and X2 =b) 1/36 1 
P(X1 = aJX2 =b)= = -- =- = P(X1 =a). 

P(X2 =b) 1/6 6 

We can say even more. Since 

1 1 1 
P(X1 =a and X2 =b)= 

36 
= 6 · 6 = P(X1 = a)P(X2 =b) (39) 

the events "X1 =a" and "X2 = b" are independent. Furthermore, if either a orb 

is not an integer from 1 to 6, then both sides of Equation (39) are zero. So we have 

'Va, bE Z, P(X1 =a and X2 =b)= P(X1 = a)P(X2 =b). 

The events X 1 = a and X2 = bare independent for all a and b. This is precisely 
what it means to say that X 1 and X2 are independent random variables. 

Definition 32.6 (Independent random variables) Let (S, P) be a sample space and let X andY 

be random variables defined on (S, P). We say that X andY are independent if, 
for all a, b, 

P (X = a and Y = b) = P (X = a) P (Y = b). 
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Let us expand on the phrase "for all a, b" in this defil).ition. The random 

variables X andY are functions defined on (S, P). Therefore we may write X : 

S ----+ A and Y : S ----+ B for some sets A and B. It is not possible for X to take on 

a value outside of A or for Y to take on a value outside of B. So the phrase "for 

all a, b" can be written more extensively as "for all a E A and all b E B." We can 

rewrite the condition in the definition as 

\Ia E A, Vb E B, P(X =a andY =b) = P(X = a)P(Y =b). 

Recap 

A random variable is neither random nor variable. Rather, a random variable is a 

function defined on a sample space (S, P). That is, for every s E S, the random 

variable X returns a value X (s). This value is often a number. We expanded the P ( ·) 

notation to include events described by random variables; for example, P(X = 3) 

is the probability of the event { s E S : X (s) = 3}. Random variables X and Y are 

independent if the events X = a and Y = b are independent for all a and b. 

--------------------------------------------

32 Exercises 32.1. Let (S, P) be a sample space with S = {a, b, c, d} and 

P(a) = 0.1, P(b) = 0.2, P(c) = 0.3, and P(d) = 0.4. 

Define random variables X and Y on this sample space according to the 

following table. 

s X(s) Y(s) 

a 1 -1 

b 3 3 
c 5 6 
d 8 10 

Please answer the following questions. 

a. Write down the event "X > 3" as a set of outcomes (i.e., a subset of S) 

and calculate P (X > 3). 

b. Write down the event "Y is odd" as a set of outcomes and calculate 

P(Y is odd). 
c. Write down the event "X > Y" as a set of outcomes and calculate 

P(X > Y). 

d. Write down the event "X= Y" as a set of outcomes and calculate 

P(X = Y). 

e. Calculate P(X = m andY = n) for all integers m and n. 

Note that for all but finitely many choices of m and n, this probability 

is zero. 
f. Are X and Y independent? 

g. Define a new random variable Z = X + Y. Find P ( Z = n) for all inte­

gers n. 
Note that for all but finitely values of n, this probability is zero. 

32.2. Recall the spinner from Examples 29.3 and 31.2. Suppose a prize of $10 

is awarded for spinning an odd number and $20 is awarded for spinning 

an even number. 
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a. Let X be the random variable that represents the amount of money 

won in this game. Express X explicitly as a function defined on a 

sample space. 
b. Write down the event "X= 10" as a set. 
c. Calculate P(X =a) for all positive integers a. 

32.3. A fair coin is flipped three times. This is modeled by a sample space (S, P) 

where S contains the eight lists from HHH to TTT, all with probability i. 
Let X denote the number of times we see TAILS. 

a. Write X explicitly as a function defined on S. 
b. Write the event "X is odd" as a set. 
c. Calculate P(X is odd). 

32.4. A pair of dice are rolled. Let X be the (absolute value of the) difference 

between the numbers on the dice. 
a. What is X[(2, 5)]? 
b. Evaluate P (X = a) for all integers a. 

32.5. Two unfair coins are tossed. The first lands HEADS side up with probability 

p 1, and the second lands HEADS side up with probability p2 . Let X be the 

random variable that gives the number of HEADS that appear when these 

two coins are flipped. 
Please calculate P(X =a) for a= 0, 1, 2. 

32.6. A die is rolled ten times. Let X be the number of times the number 1 is 

rolled. Find P (X = a) for all integers a. 

32.7. A coin is flipped ten times. Let XH be the number of times HEADS is 

produced and let X T be the number of times TAILS is produced. Are X H 

and X T independent random variables? 
32.8. A coin is flipped ten times. Let X 1 be the number of times we see HEADS 

immediately before TAILS and let X 2 be the number of times we see TAILS 

immediately before we see HEADS. 

For example, if we flip THHTTHHTHH, then X 1 = 2 and X 2 = 3 

because we have H-T twice and T-H three times in THHTTHHTHH. 

Are X 1 and X2 independent random variables? 

32.9. A card is drawn at random from a standard deck of 52 cards. Let X be the 

value of the card (from 2 to ace) and let Y be the suit of card. Are X and 

Y independent random variables? 
32.1 0. Two cards are drawn (without replacement) at random from a standard deck 

of 52 cards. Let X be the value (from 2 to ace) of the first card and let Y be 

the value of the second card. Are X and Y independent random variables? 

32.11. Let X be a random variable defined on a sample space (S, P). Is it possible 

for X to be independent of itself? 

33 Expectation 
Most of the random variables we have considered give numerical results such as 

the number of HEADS in a series of coin flips or the sum of values on a pair of dice. 

When a random variable yields numerical results, we can ask questions such as: 

What is the average value this random variable might take? And we might ask: 

How widely spread are its values? 
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Not all random variables 

yield results that are 

numbers. For example, if a 

card is drawn at random 

from a deck. we can define 

a random variable X as the 

suit of the card. In this 

case, the random variable 

is not real-valued. Rather, 

its values lie in the set 

{6P.<>.v.c;ol 

In this section, we consider the expected value of real-valued r~ndom variables. 

The expected value can be interpreted as the average value of a r~ndom variable. 

Recall the spinner from Examples 29.3 and 31.2. Define the random variable 

X to be simply the number of the region in which the pointer lands. Thus 

1 
P(X = 1) = -, 

2 

1 
P(X=2)=-, 

4 

What is the average value of X? 

1 
P(X = 3) = -, 

8 
and 

1 
P(X=4)=-. 

8 

A plausible (but incorrect) reply would be the following. The random variable 

X can take on only four values: 1, 2, 3, and 4. The average of these is 1+
2! 3+4 = 

.!p = ~. So the average value of X is ~. 
However, the needle lands in region 1 far more often than in region 4. So 

if we were to spin the pointer many times and average the result, we would be 

averaging many more 1 s and 2s than 3s and 4s. So we would get an average value 

less than 2.5. 
If we were to spin the pointer a huge number N times, we would expect to see 

(roughly) If ones, ~ twos, ~ threes, and ~ fours. If we add these up and divide 

by N, we get 

If X 1 + ~ X 2 + ~ X 3 + ~ X 4 1 1 3 1 15 
-"'-----~-N----'"--------"'-- = 2 + 2 + S + 2 = S = 1. 87 5 

which is less than 2.5. 
A straight average of the values of X is not what we want. What we have 

calculated is a weighted average of the values of X. The value a is counted a 

number of times that is proportional to how often a appears. We call this weighted 

average of the values of X the expected value or expectation of X. 

Definition 33.1 (Expectation) Let X be a real-valued random variable defined on a sample space 

(S, P). The expectation (or the expected value) of X is 

E(X) = L X(s)P(s). 
sES 

The expected value of X is also called the mean value of X. The letter J.L is 

often used to denote the expected value of a random variable. 

Example 33.2 (Expected value of the spinner) Let X be the number that appears on the spinner 

of Example 29.3. Its expected value is 

4 

E(X) = L X(a)P(a) 
a=l 

= X(l)P(l) + X(2)P(2) + X(3)P(3) + X(4)P(4) 

1 1 1 1 
= 1·-+2·-+3·-+4·-

2 4 8 8 
15 

8 
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Example 33.3 (Expected value on a die) A die is tossed. Let X denote the number that we see. 

What is the expected value of X? 

The expected value is 

6 

E(X) = L X(a)P(a) 

= X(1)P(l) + X(2)P(2) + X(3)P(3) 

+ X(4)P(4) + X(5)P(5) + X(6)P(6) 
1 1 1 1 1 1 

=1·-+2·-+3·-+4·-+5·-+6·-
6 6 6 6 6 6 

1 + 2 + 3 + 4 + 5 + 6 21 7 
-------- = - = - = 3.5. 

6 6 2 

Suppose we roll a pair of dice. Let X be the sum of the numbers on the two 

dice. What is the expected value of X? In principle, to calculate E(X), we need to 

calculate 

E(X) = L X(s)P(s). 
sES 

However, in this case, there are 36 different outcomes in the set S. This makes the 

''above calculation quite unpleasant. Fortunately, there are alternative methods to 

calculate expectation. We present two methods that show that E(X) = 7. 

Imagine that we wrote out all36 terms in the sum 'L:sES X (s) P (s). To simplify 

this mess, we can collect like terms. For example, we could collect all the terms 

for which X (s) = 10. There are three such terms: 

· · · + 10P[(4, 6)] + 10P[(5, 5)] + 10P[(4, 6)] + · · ·. 

Since all three probabilities equal~. this equals 10 ·-ft. Notice that the outcomes 

in these three terms are exactly those s E S for which X (s) = 10. So we can 

rewrite these terms as 

· · · + 10P(X = 10) + · · ·. 

If we collect all like terms, we have 

E(X) = 2P(X = 2) + 3P(X = 3) + .. · + 11P(X = 11) + 12P(X = 12). 

We can use this simplification to complete the calculation of E(X). We have 

E(X) = 2P(X = 2) + 3P(X = 3) + · · · + 11P(X = 11) + 12P(X = 12) 

1 2 3 4 5 
=2·- +3·- +4·- +5.- +6·- + 

36 36 36 36 36 
6 5 4 3 2 1 

+ 7. - + 8. - + 9. - + 10. - + 11 . - + 12. -
36 36 36 36 36 36 

2+6+12+W+30+~+~+36+m+TI+12 

252 
---7 - 36 - . 

36 
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This was still a great deal of work, but better than expanding ovt 36 terms in the 

sum 'L:: X (s)P(s). We shall present an even more efficient technfque to find E(X), 

but first let us generalize what we have learned. 

Proposition 33.4 Let (S, P) be a sample space and let X be a real-valued random variable defined 

on S. Then 

E(X) = 2: aP(X =a). 
aElR 

Notice that the summation in Proposition 33.4 is over all real numbers a. This, 

of course, is ridiculous. It seems we have exchanged a reasonable, finite sum­

namely, 'EsES X (s) P (s )-for an unreasonable, infinite sum. However, because S 

is finite, there are only finitely many different values that X (s) can actually take. 

For all other numbers a, P(X =a) is zero, and so we do not need to include them 

in the sum. So the apparently infinite sum in Proposition 33.4 is, in fact, only a 

finite sum over just those real numbers a for which P (X = a) > 0. 

Proof (of Proposition 33.4) 

Let X be a real-valued random variable defined on a sample space (S, P). The 

expected value of X is 

E(X) = L X(s)P(s). 
sES 

We can rearrange the order of the terms in this sum by collecting those terms with 

a common value for X (s). We have 

E(X) = ~ lJtl= X(s)P(s)] . 

The inner sum is just over those s for which X (s) is a. There are only finitely many 

values a for which the inner sum is not empty. 

The inner sum can be rewritten. Because X (s) = a for all s in the inner sum, 

we can replace X (s) by a. This gives 

Notice that we moved a out of the inner sum (by the distributive property). 

The inner sum is now simply 

L P(s) 
sES:X(s)=a 

which is precisely P(X =a). We make this final substitution to yield 

E(X) = L [a L P(s)] = L aP(X =a). 

aElR sES:X(s)=a aElR 
• 
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Example 33.5 In Exercise 32.2 we considered a game in which we spin the spinner from Exam­

ple 29.3, receiving $10 for spinning an odd number and $20 for spinning an even 

number. Let X be the payout from this game. What is the expected value of X? 

In other words, how much money do we expect to receive per spin if we play this 

game many times? 
We calculate the answer in two ways. By Definition 33.1, this is 

E(X) = L X(s)P(s) 
sES 

= X(l)P(l) + X(2)P(2) + X(3)P(3) + X(4)P(4) 

1 1 1 1 
= 10 . - + 20 . - + 10 . - + 20 . -

2 4 8 8 
110 

=- = 13.75. 
8 

Alternatively, we can use Proposition 33.4. In this case, we get 

E(X) = L aP(X =a) 
aElR 

= 10 · P(X = 10) + 20 · P(X = 20) 

5 3 
= 10.- + 20.-

8 8 
110 

= -8- = 13.75. 

If we play this game repeatedly, we expect to receive an average of $13.75 per 

spin. 

Exam pIe 33.6 In Exercise 32.4, we defined a random variable X for the pair-of-dice sample space. 

The value of X is the absolute value of the difference of the numbers on the two 

dice. What is the expected value of X? 

We use Proposition 33.4: 

E(X) = L aP(X =a) 

= 0 · P(X = 0) + 1 · P(X = 1) + 2 · P(X = 2) 

+ 3 · P(X = 3) + 4 · P(X = 4) + 5 · P(X = 5) 

6 10 8 6 4 2 
=0·- + 1·- +2·- +3·- +4·- +5·-

36 36 36 36 36 36 

10 + 16 + 18 + 16 + 10 70 35 
-------- =- =- ~ 1.944. 

36 36 18 
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Linearity of Expectation 

Suppose X and Y are real-valued random variables defined on a sample space 

(S, P). We can form a new random variable Z by adding X andY; that is, Z = 

X + Y. Since X and Y are functions, we need to be precise about what this means. 

This means that the value of Z evaluated at s is simply the sum of the values X (s) 

and Y(s). 

For example, suppose (S, P) is the pair-of-dice sample space. Define X 1 to 

be the number on the first die and X2 to be the number on the second die. Let Z = 
X 1 +X 2 . Then Z is simply the sum of the numbers on the two dice. For example, if 

s = (3, 4), then X 1(s) = 3, X2(s) = 4, and Z(s) = X 1(s) + X 2(s) = 3 + 4 = 7. 

We can perform other operations on random variables. If X and Y are real­

valued random variables on a sample space (S, P), then XY is the random variable 

whose value at s is X (s) Y (s). Likewise we can define X - Y and so on. 

If cis a number and X is a real-valued random variable, then eX is the random 

variable whose value at s is c X (s). 
We now address the question: If we know the expected value of X and Y, 

can we determine the expected value of X + Y, XY, or some other algebraic 

combination of X and Y? 
Let us begin with the simplest case: addition. Let (S, P) be the pair-of-dice 

sample space, X1 (s) the number on the first die, X2 (s) the number on the second 

die, and Z = X 1 + X 2. We previously calculated that E(Xr) = E(X2) = ~and 

E(Z) = 7. Notice that E(Z) = E(X1) + E(X2). This is not a coincidence. 

Proposition 33.7 Suppose X and Y are real-valued random variables defined on a sample space 

(S, P). Then 

E(X + Y) = E(X) + E(Y). 

Proof. Let Z = X + Y. We have 

E(Z) = 2.:= Z(s)P(s) 
sES 

= 2:)X(s) + Y(s)]P(s) 

sES 

= l.:=[X(s)P(s) + Y(s)P(s)] 

sES 

= 2.:= X(s)P(s) + 2.:= Y(s)P(s) 

sES sES 

= E(X) + E(Y). • 

Example 33.8 Let (S, P) be the pair-of-dice sample space and let Z be the random variable giving 

the sum of the values on the two dice. What is E (X)? 



The sum of the integers 

from 1 to 100 is 

c~1) = 101~100 = 5050_ 

See Proposition 16.5. 
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Let X1 be the value on the first die and X2 the value on the second. Note that 

Z = X1 + Xz. We know that E(X1) = E(Xz) =~,so 

7 7 
E(Z) = E(X1) + E(Xz) = 2 + 2 = 7. 

Next we apply Proposition 33.7 to a more complicated problem. 

A basket holds 100 chips that are labeled with the numbers 1 through 100. 

Two chips are drawn at random from the basket (without replacement). What is 

the expected value of their sum, X? 

There are three ways we can approach this problem. 

First, we can apply the definition of expectation to find E (X) = 

.l:sES X(s)P(s). This summation involves 9900 terms (there are 100 choices for 

the first chip times 99 choices for the second chip). 

Second, we can apply Proposition 33.4 to compute E (X) = l:a E JR a P (X= a). 

The possible sums range from 3 to 199, so this sum has nearly 200 terms. 

Third, we can use Proposition 33.7. Let X1 be the number on the first chip 

and X2 the number on the second chip. Note that X1 can be any value from 1 to 

100 and these are all equally likely. Furthermore, X2 can also be any value from 1 

to 100 and these, too, are equally likely. Therefore 

1 + 2 + ... + 100 5050 

E(X1) = E(X2) = 100 
= 

100 
= 50.5. 

Since X = X 1 + Xz, we have E(X) = E(X1 + X2 ) = E(XJ) + E(Xz) 

50.5 + 50.5 = 101. 

It is important to note that X 1 and X 2 are dependent random variables. This 

does not prevent us from applying Proposition 33.7, which does not require that 

the random variables in question be independent. 

It is also interesting to consider the expected value of the sum of the two chips 

if we replace the first chip before drawing the second (see Exercise 33.5). 

We have seen that the expected value of a sum equals the sum of the expected 

values. What happens in the case of multiplication? We begin with a special case. 

Suppose X is a real-valued random variable on a sample space (S, P), and suppose 

c is a real number. What can we say about E ( c X). First, what does c X mean? The 

symbols c X stand for the random variable whose value at s is c · X (s). We can 

express this as (cX)(s) = c[X(s)]. Now we compute the expected value of eX. 

It is 

E(cX) = I:(cX)(s)P(s) 

sES 

= I:c[X(s)]P(s) 

sES 

= c L X(s)P(s) 

sES 

= cE(X). 

-----------------------
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We have proved the following: 

Proposition 33.9 Let X be a real-valued random variable on a sample space (S, P) and let c be a 

real number. Then 

E(cX) = cE(X). 

Proposition 33.9 can be restated this way: If the average value of X is some 

number a, then the average value of eX is ca. 

We combine Propositions 33.7 and 33.9 into one result as follows: 

Theorem 33.10 (Linearity of expectation) Suppose X and Y are real-valued random variables 

on a sample space (S, P) and suppose a and b are real numbers. Then 

E(aX +bY) = aE(X) + bE(Y). 

Proof. We have 

E(aX +bY) = E(aX) + E(bY) by Proposition 33.7, ahd 

= aE(X) + bE(Y) by Proposition 33.9 (twice). • 

Theorem 33.10 can be extended to apply to a longer sequence of random 

variables. Suppose X1, X2 , ... , Xn are random variables defined on a sample space 

(S, P), and c1 , c2 , ... , Cn are real numbers. Then it is easy to prove by induction 

that 

We apply this to the following problem. A coin is tossed 10 times. Let X be 

the number of times we observe TAILS immediately after seeing HEADS. What is 

the expected value of X? 

To compute E(X), we express X as the sum of other random variables whose 

expectations are easier to calculate. Let X 1 be the random variable whose value 

is one if the first two tosses are HEADS-TAILS and is zero otherwise. The random 

variable X 1 is called an indicator random variable; it indicates whether or not 

some event occurs by taking the value one if the event occurs and the value zero 

if it does not. Similarly, we let X2 be the random variable that is one if the second 

and third tosses come up HEADS-TAILS and is zero otherwise. More generally, let 

xk be the random variable defined as follows: 

Then 

X _ { 1 if toss k is HEADS and toss k + 1 is TAILS, and 

k - 0 otherwise. 
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Thus, to calculate E(X), it is enough to calculate E(Xk) fork = 1, ... , 9. The 

advantage is that E(Xk) is easy to compute. 
The random variable Xk can take on only two values, one and zero, so 

E(Xk) = 0 · P(X = 0) + 1 · P(X = 1) 

= P(X = 1) 

and the probability we see HEADS-TAILS in positions k, k + 1 is exactly ~. Therefore 

E(Xk) = ~for each k with 1 .:::::: k .:::::: 9. Therefore 

Indicatorrandom variables take on only two values: zero and one. Such random 

variables are often called zero-one random variables. 

Proposition 33.11 Let X be a zero-one random variable. Then E(X) = P(X = 1). 

Example 33.12 (Fixed points of a random permutation) Let n be a random permutation of 

the numbers {1, 2, ... , n}. In other words, the sample space is (S17 , P) where all 

permutations n E S11 have probability P (n) = ~. Let X (n) be the number 

of values k such that n (k) = k. (Such a value k is called a fixed point of the 

permutation.) What is the expected value of X? 

Fork with 1 .:::::: k .:::::: n, let Xk(n) = 1 if n(k) = k and let Xk(n) = 0 

otherwise. Note that X= X1 + Xz + · · · + Xn. 

Since X k is a zero-one random variable, E (X k) = P (X k = 1) = l. Therefore 
11 

1 
E(X) = E(XI) + · · · + E(Xn) = n ·- = 1. 

n 

On average, a random permutation has exactly one fixed point. 

If the expected values of X and Y are known, we can easily find the expected 

value of X + Y. Next we consider the expected value of X Y. 

Product of Random Variables 

A pair of dice are tossed. Let X be the product of the numbers on the two dice. 

What is the expected value of X? 
We can express X as the product of X1 (the number on the first die) and X2 

(the number on the second die). We know that E(X1) = E(X2) = ~·It seems 

reasonable to guess that E(X1X2 ) = E(XI)E(Xz) = G) 2
• 

We evaluate E(X) by computing ~aEIR aP(X = a). The calculations we 

need are summarized in the following chart. 
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a P(X =a) aP(X =a) 

1 1/36 1/36 
2 2/36 4/36 
3 2/36 6/36 
4 3/36 12/36 
5 2/36 10/36 
6 4/36 24/36 
8 2/36 16/36 
9 1/36 9/36 
10 2/36 20/36 
12 4/36 48/36 
15 2/36 30/36 
16 1/36 16/36 
18 2/36 36/36 
20. 2/36 40/36 
24 2/36 48/36 
25 1/36 25/36 
30 2/36 60j36 
36 1/36 36j36 

Total: 441/36 

Therefore E(X) = ~~~ = ¥ · ¥ = (~) 2 . This confirms our guess that E(X) = 

E(X1X2) = E(X1)E(X2). 
This example emboldens us to conjecture that E(XY) = E(X)E(Y). Unfor­

tunately, this conjecture is incorrect, as the following example shows. 

Example 33.13 A fair coin is tossed twice. Let XH be the number of HEADS and let Xr be the 

number of TAILS observed. Let Z = XHXr. What is E(Z)? 

Note that E(XH) = E(Xr) = 1, so we might guess that E(Z) = 1. However, 

E(Z) = L aP(Z =a) 
aElR 

= 0 · P(Z = 0) + 1 · P(Z = 1) 

2 2 
=0·-+1·-

4 4 
1 

= 2 

Example 33.13 shows that the conjecture E(XY) = E(X)E(Y) is incorrect. 

It is therefore surprising that for the dice-rolling example we have E(X1X2) = 
E(X1)E(X2). We might wonder why this works for the numbers on the two dice, 

but a similar equation does not hold for X H and X r (the numbers of HEADS and 

TAILS). Notice that X1 and X2 are independent random variables, but XH and Xr 

are dependent. Perhaps the conjectured relationship E(XY) = E(X)E(Y) holds 

for independent random variables. This revised conjecture is correct. 
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Theorem 33.14 Let X and Y be independent, real-valued random variables defined on a sample 

space (S, P). Then 

E(XY) = E(X)E(Y). 

Proof. Let Z = X Y. Then 

E(Z) = :LaP(Z =a). (40) 

aElR 

Let us focus on the term aP(Z =a). Since Z = XY, the only way we can have 

Z =a is to have X= bandY= c with be= a. So we can write P(Z =a) as 

P(Z =a) = L P(X = b 1\ Y =c). (41) 

b,cERbc=a 

The sum is over all numbers band c so that be= a. Since X andY take on at most 

finitely Il}any values, this sum has only finitely many nonzero terms. Since X and 

Yare independent, we can replace P(X = b 1\ Y =c) with P(X = b)P(X =c) 

in Equation (41), which yields 

P(Z =a)= L P(X = b)P(Y =c). 
b,cElR:bc=a 

We substitute this expression for P(Z =a) into Equation (40) and calculate 

E(Z) =~a lJ~c~a P(X = b)P(Y =c)] 

= ~ [bJ~c~a aP(X = b)P(Y =c)] 
= ~ L,l=.,~a bcP(X = b)P(Y =c)] 
= L bcP(X = b)P(Y =c) 

b,cERbc 

= L [:LbP(X = b)cP(Y =c)] 
bEJR cEJR 

= LbP(X =b) [:LcP(Y =c)] 
bEJR cEJR 

= [LbP(X =b)] [:LcP(Y =c)] 
bEJR cEJR 

= E(X)E(Y). • 
If X and Y are independent, then E (X Y) = E (X) E ( Y). Is the converse of this 

statement true? If X andY satisfy E(XY) = E(X)E(Y), then may we conclude 
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that X and Y are independent? Surprisingly, the answer is po, as the following 
f' 

example shows. 

Example 33.15 Let (S, P) be the sample space with S ={a, b, c} in which all three elements have 

probability ~. Define random variables X and Y according to the following chart. 

s X(s) 

a 1 
b 0 
c -1 

Note that X andY are not independent because 

1 
P(X=0)= 3, 

2 
P(Y =0) = 3, and 

2 

Y(s) 

0 
1 
0 

P(X = 01\ Y = 0) = 0 # 9 = P(X = O)P(Y = 0). 

Note that for all s E S, we have X(s)Y(s) = 0. Therefore 

E(X) = 0 
1 

E(Y) = 3 
E(XY) = 0 = E(X)E(Y). 

Expected Value as a Measure of Centrality 

The expected value of areal-valued random variable is in the "middle" of all the val­
uesX(s).Forexample,considerthesamplespace(S, P)whereS = {1, 2, ... , 10} 
and P(s) = to for all s E S. Define a random variable X by the following chart. 

s X(s) s X(s) 

1 1 6 2 
2 1 7 8 
3 1 8 8 
4 1 9 8 
5 2 10 8 

Note that 

E(X) = 2:aP(X =a)= 1 x 0.4 + 2 x 0.2 + 8 x 0.4 = 4. 
aElR 

We illustrate this with a physical model. Imagine a seesaw-a long horizontal 
plank-along which we place weights. We place a weight at position a provided 
P(X =a) > 0. The weight we place at a is P(X =a) kilograms. For the random 
variable X described in the table above, we place a total of 0.4 kg at 1 because 
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P(X = 1) = 0.4. We illustrate this in the figure-each circle represents a mass of 

100g. 

At what point does this device balance (we ignore the mass of the seesaw)? Suppose 

the seesaw balances at a point .e. Masses to the right of.£ twist the seesaw clockwise, 

and masses to the left twist it counterclockwise. The greater the distance of a mass 

from the center, the greater the amount of twist-torque-applied to the seesaw. 

More precisely, if there is mass m at location x, the amount of torque it applies 

to the plank is m(x - .£). The seesaw is in balance if the sum of all the torques is 

zero. This means we need to solve the equation 

2: P(X = a)(a- .£) = 0. 
aElR 

This equation can be rewritten as 

aElR aEIR 

and since l:a P(X =a) is 1, we have 

.£ = 2: aP(X =a) = E(X). 
aEIR 

In the figure, the balancing point is at .£ = 4, the expected value of X. 

Variance 

The expected value of a real-valued random variable is a measure of the centrality 

of the values X (s). Let us consider three random variables X, Y, and Z. They take 

on real values as follows: 

{ 
-2 with probability ~ 

X= 
2 with probability ~ 

{ 

-10 

Y= 0 
10 

{ 

-5 

Z= ~ 

with probability 0.001 
with probability 0.998 
with probability 0.001 

with probability ~ 

with probability ~ 

with probability ~. 
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The expression 

measures how far 
away X i.~ from its mean. 
~L. It is a weighted average 
of the distance from X to 
fl. At tirst glance. it would 
appear that when X's 
values are widely spread 
out. this weighted average 
would be large. However. 
in all case~. it sums to zero. 

Notice that all three of these random variables have an expected~value equal to zero; 
the "centers" of these random variables are all the same. Yet the random variables 
are quite different. We consider: Which of these is more "spread out"? At first 
glance, it appears that Y is the most spread out because its values range from -10 
to + 10, whereas X is the most "compact" because its values are restricted to the 
narrowest range (from -2 to +2). 

However, Y's extreme values at ±10 are exceedingly rare. It can be argued 
that Y is more concentrated near 0 than X because Y is almost always equal to 
zero, whereas X can be only at ±2. 

To better describe how spread out the values of a random value are, we need 
a precise mathematical definition. Here is an idea: Let 11- = E(X). Let us calcu­
late how far away each value of X is from f-1-, but count it only proportional to 
its probability. That is, we add up [X(s)- 11-]P(s). Unfortunately, this is what 
happens: 

L[X(s)- M]P(s) = [:Lx(s)P(s)] - [LMP(S)] = E(X)- 11- = 0. 
sES sES sES 

The problem is that values to the right of 11- are exactly canceled by values to the left. 
To prevent this cancellation, we can square the distances between X and f-1-, counting 
them proportional to their probability. That is, we add up [X(s)- 11-] 2 P(s). We 
can think of the sum 

I)x(s)- 11-] 2 P(s) 
sES 

as the expected value of a random variable Z = (X - 11-) 2
. That is, Z(s) = 

[X(s)- 11-]2
, and the expected value of Z is exactly the measure of "spread" we 

are creating. This value is called the variance of X. 

Definition 33.16 (Variance) Let X be a real-valued random variable on a sample space (S, P). Let 
11- = E(X). The variance of X is 

Var(X) = E[(X- M) 2
]. 

Example 33.17 Let X, Y, and Z be the three random variables we introduced at the beginning 
of this discussion of variance. All three of these random variables have expected 
value 11- = 0. We calculate their variances as follows: 

Var(X) = E[(X- 11-)2
] = E(X 2

) 

= (-2) 2
. 0.5 + 22

. 0.5 

= 4, 

Var(Y) = E[(Y- 11-) 2
] = E(Y 2

) 

= ( -10)2 
. 0.001 + 02 

. 0.998 + 102 
. 0.001 

= 0.2, and 
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Var(Z) = E[(Z- Jk) 2
] = E(Z2

) 

2 1 2 1 2 1 
= ( -5) . 3 + 0 . 3 + 5 . 3 

50 
=- ~ 16.67. 

3 

By this measure, Z is the most spread out and Y is the most concentrated. 

Example 33.18 A die is tossed. Let X denote the number that appears on the die. What is the 

variance of X? 
Let Jk = E(X) = ~-Then 

Var(X) = E[(X- 1-')
21 = E [ (x- D '] 

(~-D,~+(2-D,~+(3-D' ~ 

+(4-D
2

~+(5-~f~+(6-D
2

~ 
25 3 1 1 3 25 

= 24 + 8 + 24 + 24 + 8 + 24 

35 
=- ~ 2.9167. 

12 

The following result gives an alternative method for calculating the variance 

of a random variable. 

Proposition 33.19 Let X be a real-valued random variable. Then 

Var(X) = E[X2
] - E[Xf. 

Please note that E[X2 ] is quite different from E[X] 2 . The first is the expected 

value of the random variable X 2 , and the second is the square of the expected value 

of X. These quantities need not be the same. 

Proof. Let tJ = E(X). By definition, Var(X) = E[(X- /k) 2
]. We can write 

(X - /k) 2 = X 2 - 2tJX + !J2• We can think of this as the sum of three random 

variables: X 2 , -2JkX, and tJ2 . If we evaluate these at an elements of the sample 

space, we get [X(s)f, -2JkX(s), and fk 2
, respectively. Here we are thinking of 

Jk 2 both as a number and as a random variable. As a random variable, its value at 
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every sis simply f-1,2. Therefore E(f-1,2) = f-1, 2. We calculate 

Var(X) = E[(X - f-1,) 2] 

= E[X2 - 2fl,X + f-1,2] 

= E[X2]- 2fl,E[X] + E[f-1,2] 

= E[X2] - 2f-1,2 + f-1,2 

= E[Xz] - f-1,2 

= E[X2]- E[X]2. 

by Theorem 33.10 

• 

Example 33.20 Let X be the number showing on a random toss of a die. What is Var(X)? 

The variance of a binomial 
random variable. 

We apply Proposition 33.19, Var(X) = E[X2]- E[X]2. Note that E[X]2 = 
( 

7) 2 49 
2 = 4 . Also, 

Therefore 

2 2 1 2 1 2 1 2 1 2 1 2 1 
E[X ] = 1 · 6 + 2 · 6 + 3 · 6 + 4 · 6 + 5 · 6 + 6 · 6 

12 + 22 + 32 + 42 +52 + 62 

91 

6 

6 

2 2 91 49 35 
Var(X) = E[X ] - E[X] = - - - = -. 

6 4 12 

This agrees with Example 33.18. 

Recall Example 32.5, in which an unfair coin is flipped n times. The coin 
produces HEADS with probability p and TAILS with probability 1- p. Let X denote 
the number of times we see HEADS. We have E(X) = np (see Exercise 33.9). What 
is the variance of X? 

We can express X as the sum of zero-one indicator random variables. Let 
X1 = 1 if the jth flip comes up HEADS and X1 = 0 if the jth flip comes up TAILS. 

Then X = X 1 + X 2 + · · · + Xn. 
By Proposition 33.19, Var(X) = E[X2]- E[X]2. The term E[X]2 is simple 

to calculate. Since E[X] = np, we have E[X]2 = n2p 2. The calculation of E[X2] 

is more complicated. Since 

we have 

X 2 = [X 1 + Xz + · · · + Xn] 2 

= X1X1 + X1X2 + · · · + X1Xn + XzX1 + · · · · · · + XnXn. 

There are two kinds of terms in this expansion. There are n terms where the 
subscripts are the same (e.g., X1X1), and there are n(n - 1) terms where the 
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subscripts are different (e.g., X 1 X2). We can express this as 

n 

x2 = I:x; + I:xixj. 
i=l i#j 

To find E[X2
], we apply linearity of expectation. Note that E[Xll = E[XJ = p 

(see Proposition 33.11 and Exercise 33.8). If i =1= j, then Xi and Xj are indepen­

dent random variables. Therefore E[XiXj] = E[XdE[Xj] = p 2 (see Proposi­

tion 33.14). Therefore 

E[X
2

] = E [txf+ ~X;Xj] 
n 

= L E [x;] + L E[XiXj] 
i=l i#j 

= np + n(n- l)p2
. 

We now have that E[X2
] = np + n(n- 1)p2 and E[X]2 = n2p2. Therefore 

Recap 

Var[X] = E[X 2
] - E[X]2 

= np +n(n -1)p2
- n2p2 

= np + n2p2 _ np2 _ n2p2 

= np- np2 

= np(l- p). 

The expected value of a real-valued random variable X is the average value of X 

over many trials. Specifically, E (X) = LsES X (s) P (s). By rearranging terms, we 

can write this as LaEJP?. aP(X =a). If X andY are real-valued random variables, 

then E(X + Y) = E(X) + E(Y). If a and bare real numbers, this can be extended 

to E(aX +bY) = aE(X)+bE(Y). This result is known as linearity of expectation. 

We can often use linearity of expectation to simplify the calculation of expected 

values. If X represents the number of times something happens, we can often 

express X as the sum of indicator random variables whose expectations are easy to 

calculate. This enables us to calculate E(X). If X andY are independent random 

variables, we have E(XY) = E(X)E(Y). We showed how the expected value of 

X is at the "center" of the values of X, and we introduced the variance as a measure 

of how spread out the values of X are. 

33.1. Find the expected value of the random variables X, Y, and Z in Exer­

cise 32.1. 
33.2. Let (S, P) be the sample space with S = {a, b, c} and P(s) = ~ for all 

s E S. Find the expected value of each of the following random variables: 

a. X, where X(a) = 1, X(b) = 2, and X(c) = 10. 

b. Y, where Y(a) = Y(b) = -1 and Y(c) = 2. 

c. Z, where Z = X + Y. 
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33.3. A pair of tetrahedral dice are rolled (see Exercise 29:4). Let X be the sum 
of the two numbers and let Y be the product. ~ 

Find E(X) and E(Y). 

33.4. You play a game in which you roll a die and you win (in dollars) the square 
of the number on the die. For example, if you roll a 5, then you win $25. 
On average, how much money would you expect to receive per play of this 
game? 

33.5. A basket holds 100 chips that are labeled with the numbers 1 through 100. 
A chip is drawn at random from the basket, it is replaced, and a second 
chip is drawn at random (it might be the same chip). Let X be the sum of 
the numbers on the two chips. What is the expected value of X? 

33.6. A coin is flipped 100 times. Let X H be the number of HEADS and X T the 
number of TAILS. Please do the following: 
a. Let Z = X H + X T. What is Z (s)? Here s represents an element of the 

flip-a-coin-one-hundred-times sample space. 
b. Evaluate E ( Z). 
c. Is it true that XH = XT? 
d. Is it true that E(XH) = E(XT )? 
e. Evaluate E (X H) and E (X T) using what you have learned from parts (b) 

and (d). 
f. Evaluate E(XH) by expressing XH as the sum of 100 indicator random 

variables. 
33.7. Prove Proposition 3 3 .11. 
33.8. Suppose X is a zero-one random variable. Prove that E(X) = E(X 2). 

33.9. Let X be a binomial random variable as in Example 32.5. Prove that 
E(X)=np. 

33.10. Let X and Y be real-valued random variables defined on a sample space 
(S, P). Suppose X(s)::: Y(s) for all s E S. Prove that E(X)::: E(Y). 

33.11. Let (S, P) be a sample space and let A s; S be an event. Define a random 
variable /A whose value at s E Sis 

1 (s) = { 1 if s E ~' and 
A 0 otherwise. 

The random variable I A is called an indicator random variable because its 
value indicates whether or not an event occurred. 

Prove: E(X) = P(A). 
33.12. Markov's inequality. Let (S, P) be a sample space and let X : S ---+ N be 

a nonnegative-integer-valued random variable. Let a be a positive integer. 
Prove that 

E(X) 
P(X;::: a) :S --. 

a 
A special case of this result is that P(X > 0) :S E(X). 

33.13. Find the variance of the random variables X, Y, and Z in Exercise 32.1. 
33.14. Let X be the number produced in a toss of a tetrahedral die. Calculate 

Var(X). 
33.15. Suppose X and Y are independent random variables defined on a sample 

space (S, P). Prove that Var(X + Y) = Var(X) + Var(Y). 
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Give an example to show that the hypothesis that the random variables 

are independent is necessary. 

33.16. A pair of dice are tossed. Let X be the sum of the numbers on the two dice. 

Evaluate Var(X). 

33.17. Chebyshev's inequality. Let X be a nonnegative-integer-valued random 

variable. Suppose E(X) = JL and Var(X) = a 2• Let a be a positive 

integer. 
Prove: 

Chapter 6 Self Test 

1. Let (S, P) be a sample space with S = {1, 2, 3, ... , 10}. For a E S, suppose 

we have 

P(a) = { ~ 
Find x. 

if a is even and 
if a is odd. 

2. Three dice are dropped at random into a frame where they sit snuggly in a 

row (see the figure). We wish to model this experiment using a sample space, 

(S, P). 

a. How many outcomes are in S if we think of the dice as being identical? 

b. How many outcomes are in S if we think of the dice as being distinct (e.g., 

each of the three dice is a different color). 

3. Let (S, P) be a sample space where S = {1, 2, 3, ... , 10} and P(j) = j j55 

for 1 ::; j ::; 10. Let A be the event A = 1, 4, 7, 9. What is the probability 

of A? 
4. Ten children (five boys and five girls) are standing in line. Assume that all 

possible ways in which they might line up are equally likely. 

a. What is the probability that they appear in line in alphabetical order by 

name? Please assume no two of the children have the same name. 

b. What is the probability that all the girls precede all the boys? 

c. What is the probability that between any two girls there are no boys (i.e., 

the girls stand together in an uninterrupted block)? 

d. What is the probability that they alternate by gender in the line? 

e. What is the probability that neither the boys nor the girls stand together in 

an uninterrupted block? 

5. Thirteen cards are drawn (without replacement) from a standard deck of cards. 

a. What is the probability they are all spades ( ~ )? 

b. What is the probability they are all black? 

c. What is the probability they are not all of one color? 

d. What is the probability that none of the cards is an ace? 

e. What is the probability that none of the cards is an ace and none is a heart 

(v)? 
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In fact, aces may be taken 

to have the value I or II, 
but for this problem we 

simplify matters by 

considering only the 

value II. 

Your answer to problem 8 
should begin "'Let A be an 
event in a sample space 
(5. P). Events A and A are 
independent if and only 
if .... " 

6. In the card game blackjack, each card in the deck h¥ a numerical value. 
Number cards (2 through 10) have the value printed on the card. Face cards 
(jacks, queens, and kings) have the value 10, and aces have the value 11. 

Two cards are drawn (without replacement) from a well-shuffled deck. 
a. What is the probability that the sum of the values on the cards is 21? 
b. What is the probability that the sum of the values on the cards is 16 or 

higher? 
c. What is the probability the second card is a face card given that the first 

card is an ace? 
7. A standard deck of cards is shuffled. What is the probability that the color of 

the last card is red given that the color of the first card is black? Are the colors 
of the first and last cards independent; that is, are the events "first card black" 
and "last card red" independent? 

8. Let A be an event for a sample space (S, P). Under certain circumstances it 
is possible for the events A and A to be independent. Formulate and prove an 
if-and-only-if theorem for an event and its complement to be independent. 

9. Two squares are chosen (with replacement) from among the 64 squares of 
a standard chess board; all such choices are equally likely. We consider the 
following events: 

R is the event that the two squares are in the same row of the chess board, 
C is the event that the two squares are in the same column of the chess 
board, and 
B is the event that both squares are black. 

Which pairs of these events are independent? 
10. Repeat the previous problem, this time assuming the squares are chosen with­

out replacement where all 64 x 63 possible sequences of choices are equally 
likely. 

11. An unfair coin is tossed twice in a row. What is the probability that the outcome 
is HEADS and then TAILS, given that the two flips give different results (i.e., 
not HEADS-HEADS and not TAILS-TAILS)? 

12. Let A and B be events for a sample space (S, P). Suppose that A ~ B and 
P(A) =f. 0. Prove that P(A) = P(AIB)P(B). 

13. Consider the sample space (S, P) where S = {a, b, c} and P(a) = 0.4, 
P(b) = 0.4, and P(c) = 0.2. Let X be a real-valued random variable, and 
suppose X(a) = 1, X(b) = 2, and E(X) = 0. Find X(c). 

14. A card is drawn from a well-shuffled deck. Let X be the blackjack value of 
the first card in the deck and let Y be the value of the second card. (Recall that 
face cards are worth 10 and aces are worth 11; see problem 6). 

Please do the following: 
a. Calculate P(X is even). 
b. Calculate E(X). 
c. Calculate E (Y). 
d. Are X and Y independent? Justify your answer. 
e. Calculate E(X + Y). 
f. Calculate P(X = Y). 
g. Calculate Var(X). 
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15. Simplified stock market. Suppose there are three kinds of days: GOOD, GREAT, 

and ROTTEN. The following chart gives the frequency of each of these types 

of days and the effect on the price of a certain stock on that day. 

Type of day Frequency Change in stock value 

GOOD 60% +2 
GREAT 10% +5 

ROTTEN 30% -4 

The type of a given day is independent of the type of any other day. Let 

X be the random variable giving the change in value of the stock after five 

consecutive days. 
Please answer: 

a. What is the expected change in the stock price? (That is, find E(X).) 

b:, Calculate Var(X). 
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34 
Does this sound like you're 
back in grade school? 
Sorry! Please bear with us. 

Theorem 34.1 

Number Theory 

Number theory is one of the oldest branches of mathematics and continues to be 
a vibrant area of research. It was considered, for some time, to be quintessential 
pure mathematics-a subject enjoyed for its own sake without any applications. 
Recently, number theory has become central in the world of cryptography (see 
Sections 43-45) and computer security. 

Dividing 
Six children find a bag containing 25 marbles. How should they share them? 

The answer is that each child should get 4 marbles, and there will be 1 left 
over. The problem is to divide 25 by 6. The quotient is 4 and the remainder is 1. 
Here is a formal statement of this process. 

(Division) Let a, b E Z with b > 0. There exist integers q and r such that 

a= qb + r and 0 ~ r <b. 

Moreover, there is only one such pair of integers (q, r) that satisfies . these 
conditions. 

The integer q is called the quotient and the integer r is called the remainder. 

Example 34.2 Let a = 23 and b = 10. Then the quotient is q = 2 and the remainder r = 3 
because 

23 = 2 X 10 + 3 and 0::::; 3 < 10. 

Example 34.3 Let a = -37 and b = 5. Then q = -8 and r = 3 because 

-37 = -8 X 5 + 3 and 0 ~ 3 < 5. 

293 
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Remember: The 
Well-Ordering Principle 
states that every nonempty 
~uh~cl of contains a least 

clement. 

Fcir cxalllplc. ir u = II and 
h = tilL'n A c= { .... -4. 
-1. .?.. :1. ~. II ... } and 
8 = ,\ . = {2. 5. 8. II. 

1-L. l 

In our example. 11 = II > 

0SOII fj {2.5.~.11. 

14 ... ). 

The lca\l clement of 
B = {2. ). :S. II .... } is 

r = 2. Since r E A. we 
can express r = II -- 3q. 
(i.e .. when 1/ = 3). 

The remainder is the smallest natural number we can form by subtracting 
multiples of b from a. This observation gives us the key idea in~the proof. Consider 
all natural numbers of the form a-kb and let r be the smallest such natural number. 
We use the Well-Ordering Principle. 

Proof (of Theorem 34.1) 

Let a and b be integers with b > 0. The first goal is to show that the quotient and 
remainder exist; that is, there exist integers q and r that satisfy the three conditions 

Let 

a=qb+r, 
r ~ 0, and 
r <b. 

A = {a - bk : k E .Z}. 

We want the remainder to be nonnegative, so we consider only the nonnegative 
elements of A. Let 

B =AnN= {a- bk: k E Z, a- bk ~ 0}. 

We want to select the least element of B. Note that the Well-Ordering Principle 
applies to nonempty subsets of N. Thus we need to check that B =1- 0. 

The simplest thing to do is to choose k = 0 in the expression a - bk. This 
shows that a E A and, if a is nonnegative, then a E B, soB =1- 0. But it might be 
the case that a < 0. We know, however, that b > 0, so if we take k to be a very 
negative number, we can certainly make a - bk positive. (As long as we choose k 
to be any integer less than~· we know that a- bk ~ 0.) 

Therefore, regardless of whether a is positive, negative, or zero, the set B is 
nonempty. 

Since B =1- 0, by the Well-Ordering Principle (Statement 20.6) we can choose 
r to be the least element of B. Since · 

r E B ~ A = {a - bk : k E .Z} 

we know that there is an integer, and we call it q, such that r = a - bq. This can 
be rewritten 

a= qb + r. 
Since r E B ~ N, we also know that 

r ~ 0. 

We still need to show that r < b. To prove this, suppose, for the sake of contra­
diction, that r ~ b. 

Let's think about this for a moment. We are subtracting multiples of b from 
a until we reach r, and r ~ b. This means we can still subtract another b from r 
without making a negative result. We have 

r =a- qb ~b. 



Section 34 Dividing 295 

Let r' =(a- qb)- b = r- b ::=:: 0, so 

r' =a - (q + 1)b ::=:: 0. 

Therefore r' E B and r' = r - b < r. This contradicts the fact that r is the smallest 

element of B.=}{= Therefore r <b. 

We have proved that the integers q and r exist. We now have to prove that 

they are unique. Uniqueness is proved by contradiction (see Proof Template 14). 

Suppose, for the sake of contradiction, there are two different pairs of numbers 

(q, r) and (q', r') that satisfy the conditions of the theorem; that is, 

a = qb + r 0 ~ r < b and 
a = q'b + r' 0 ~ r' < b. 

Combining the two equations on the left gives 

qb+r=q'b+r' ==} r-r'=(q'-q)b. 

This means that r - r' is a multiple of b. But recall that 0 ~ r, r' < b. The 

difference of two numbers in {0, 1, ... , b - 1} can be at most b - 1. So the only 

way that r - r' can be a multiple of b is if r - r' = 0 (i.e., r = r'). 

Now that we know r = r', we tum to q and q'. Since 

qb+r =a =q'b+r' =q'b+r, 

we can subtract r from both sides to give 

qb = q'b, 

and since b =f. 0, we can cancel b from both sides, which yields 

q = q'. 

We have shown that these two different pairs of numbers (q, r) and (q', r') have 

q = q' and r = r', a contradiction.=}{= Therefore, the quotient and remainder 

are unique. • 

Armed with Theorem 34.1, we can prove the following: 

Corollary 34.4 Every integer is either even or odd, but not both. 

Proof. We have previously shown (Proposition 19.3) that no integer can be both 

even and odd. Thus it remains to show that every integer is one or the other (i.e., 

there is no integer that is neither). 
Let n be any integer. By Theorem 34.1 we can find integers q and r such that 

n = 2q + r where 0 ~ r < 2. Note that if r = 0 then n is even, and if r = 1 then 

n~odd. • 

Corollary 34.5 Two integers are congruent modulo 2 if and only if they are both even or both odd. 
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Proof. (===>)Let a and b be integers and suppose a = b (mod 2). This means 
that a- b is divisible by 2, say a- b = 2n for some integer n.~By Corollary 34.4, 
a is either even or odd. 

• If a is even, then a = 2k for some integer k. Since a - b = 2n, we have 
b = a - 2n = 2k - 2n = 2(k - n) and so b is even. 

• If a is odd, then a = 2k + 1 for some integer k. Since a - b = 2n, we have 
b = a - 2n = 2k + 1 - 2n = 2(k - n) + 1; thus b is odd. 

In either case, a and b are either both even or both odd. 
( {=) Suppose a and b are integers that are both even or both odd. 
If a and b are both even, then a = 2n and b = 2m for some integers n and m. 

Then a- b = 2n- 2m= 2(n- m) and so a= b (mod 2). 
If a and b are both odd, then a = 2n + 1 and b = 2m + 1 for some integers 

nand m. Then a- b = (2n + 1)- (2m+ 1) = 2(n- m) and so a = b (mod 2). 
Thus if a and bare both even or both odd, then a = b (mod 2). • 

Div and Mod 

We define two operations associated with the division process. Given a and b, these 
operations give the quotient and remainder of the division problem. Now it would 
be quite sensible if mathematicians named these operations with words such as 
quot and rem, but we're a mischievous lot; we call them div and mod. Thus, not 
only are we guilty of creating new names where perfectly good old names suffice, 
but we use the word mod in two different ways: as an operation and as a relation. 

Definition 34.6 (div and mod) Let a, bE Z with b > 0. By Theorem 34.1, there exists a unique 
pair of numbers q and r with a = q b + r and 0 ::;: r < b. We define the operations 
div and mod by 

a div b = q and a mod b = r. 

Example 34.7 These calculations illustrate the div and mod operations. 

11 div 3 = 3 
23 div 10 = 2 
-37 div 5 = -8 

11 mod 3 = 2 
23 mod 10 = 3 
-37 mod 5 = 3 

Pay close attention to the last example. The remainder is never negative. So 
although -37 -;-5 = -7 .4, we have -37 div 5 = -8 and -37 mod 5 = 3 because 
-37 = -8 x 5 + 3 and 0::;: 3 < 5. 

A second meaning of mod. We now need to pay special attention to the overworked word mod. We have 
used this word in two different ways. The two meanings of mod are closely related 
but different. 

When we first introduced the word mod (see Definition 14.3) it was used as 
the name of an equivalence relation. For example, 

53 = 23 (mod 10). 
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The meaning of a = b (mod n) is that a - b is a multiple of n. We have 53 = 
23 (mod 10) because 53 - 23 = 30, a multiple of 10. 

In the new meaning of this section, mod is a binary operation. For example, 

53 mod 10 = 3. 

In this context, mod means "divide and take the remainder." 

What is the connection between these two meanings of the word mod? We 

have the following result. 

Proposition 34.8 Let a, b, n E Z with n > 0. Then 

a= b (mod n) a mod n = b mod n. 

The use of mod on the left is as a relation. The use of mod on the right is as a 

binary operation. 
From the example, notice that 53 mod 10 = 3 and 23 mod 10 = 3. 

This if-and-only-if result is not too hard to prove. It sets up as follows: 

Let a, b, n E Z with n > 0. 
( =>) Suppose a = b (mod n) .... Therefore a mod n = b mod n. 

({::::)Suppose a mod n = b mod n .... Therefore a= b (mod n). • 

We leave the definition unraveling and the rest of the proof to you (Exercise 34.5). 

Recap 

We formally developed the process of integer division resulting in quotients and 

remainders and introduced the binary operations div and mod. 

34 Exercises 34.1. For the pairs of integers a, b given below, find the integers q and r such that 

a = q b + r and 0 ::::; r < b. 
a. a = 100, b = 3. 
b. a = -100, b = 3. 
c. a = 99, b = 3. 
d. a = -99, b = 3. 
e. a= 0, b = 3. 

34.2. For each of the pairs of integers a, b in the previous problem, compute 

a div b and a mod b. 
34.3. Explain why Theorem 34.1 does not make sense with b = 0 or with b < 0. 

The case b = 0 is hopeless. Develop (and prove) an alternative to 

Theorem 34.1 that allows b < 0. 
34.4. What is wrong with the following statements? Repair these statements and 

prove your revised versions. 
a. For all integers a, b, we have bla iff a div b = ~. 

b. For all integers a, b, we have bla iff a mod b = 0. 
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34.5. Prove Proposition 34.8. . 

34.6. Prove that the sum of any three consecutive integers is divisible by 3. 

34.7. Many computer programming languages have the mod operation as a built­

in feature. For example, the % sign in C is the mod operation. In C the result 

of x = 53%10; is to assign the value 3 to the variable x. 

Investigate how various languages deal with the mod operation in cases 

where the second number is zero or negative. 

34.8. Computer programming languages allow you to divide two integer type 

numbers and always return an integer answer. For example, inC the result 

of x = 11/5; is to assign the value 2 to the variable x. (Here, xis of type 

int.) 
Investigate how various languages deal with integer division. In particu­

lar, is their implementation of integer division the same as the div operation? 

34.9. Dividing polynomials. The degree of a polynomial is the exponent on the 

highest power of x. For example, x 10 - 5x2 + 6 has degree 10, and the degree 

of 3x - ~ is 1. When the polynomial is just a number (there are no x terms), 

we say the degree is 0. The polynomial 0 is exceptional; we say its degree 

is -1. If p is a polynomial, we write deg p to stand for its degree. 

You may assume that the coefficients of the polynomials we consider 

in this problem are rational numbers. 

a. Suppose p and q are polynomials. Write a careful definition of what it 

means for p to divide q (i.e., pjq ). 

Please verify that 

(2x- 6)j(x 3
- 3x2 + 3x- 9) 

is true in your definition. 

b. Give an example of two polynomials p and q with p =/=- q but p jq and 

qjp. 
c. What is the relationship between polynomials that divide each other? 

d. Prove the following analogue of Theorem 34.1: 

Let a and b be polynomials, with b nonzero. Then there exist polynomials 

q and r so that a = q b + r with deg r < deg b. 

For example, if a = x 5 - 3x2 + 2x + 1 and b = x 2 + 1, then we can 

take q = x 3 - x - 3 and r = 3x + 4. 

e. In this generalized version of Theorem 34.1, are the polynomials q and 

r uniquely determined by a and b? 

35 Greatest Common Divisor 

This section deals with the concept of greatest common divisor. The term is virtu­

ally self-defining. 

Definition 35.1 (Common divisor) Let a, bE Z. We call an integer d a common divisor of a and 

b provided dja and djb. 
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For example, the common divisors of 30 and 24 are -6, -3, -2, -1, 1, 2, 3, 

and 6. 

Definition 35.2 (Greatest common divisor) Let a, b E Z. We call an integer d the greatest 

common divisor of a and b provided 

An algorithm is a precisely 

defined computational 

procedure. 

1. d is a common divisor of a and b and 

2. if e is a common divisor of a and b, then e ::::d. 

The greatest common divisor of a and b is denoted gcd(a, b). 

For example, the greatest common divisor of 30 and 24 is 6, and we write 

gcd(30, 24) = 6. Also gcd(-30, -24) = 6. 

Nearly every pair of integers has a greatest common divisor (see Exercise 35.3), 

and if a and b have a gcd, it is unique (Exercise 35.5). This justifies our use of the 

definite article when we call gcd(a, b) the greatest common divisor of a and b. 

In this section, we explore the various properties of greatest common divisors. 

Calculating the gcd 

In the foregoing example, we calculated the greatest common divisor of 30 and 

24 by explicitly listing all their common factors and choosing the largest. This 

suggests an algorithm for computing gcd. The algorithm is as follows: 

Suppose a and b are positive integers. 

• For every positive integer k from 1 to the smaller of a and b, see whether k Ia 

and klb. If so, save that number k on a list. 

• Choose the largest number on the list. That number is gcd(a, b). 

This procedure works: Given any two positive integers a and b, it finds their 

gcd. However, it is a dreadful algorithm because even for moderately large num­

bers (e.g., a= 34902 and b = 34299883), the algorithm needs to do many, many 

divisions. So although correct, this algorithm is terribly slow. 

There is a clever way to calculate the greatest common divisor of two positive 

integers; this procedure was invented by Euclid. It is not only very fast, but it is 

not difficult to implement as a computer program. 

The central idea in Euclid's Algorithm is the following result. 

Proposition 35.3 Let a and b be positive integers and let c = a mod b. Then 

gcd(a, b) = gcd(b, c). 

In other words, for positive integers a and b, we have 

gcd(a, b)= gcd(b, a mod b). 

Proof. We are given that c 

0:::: c <b. 

a mod b. This means that a qb + c where 
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689 

+ 
234 

t 
221 

+ 
13 

t 
0 

Let d = gcd(a, b) and let e = gcd(b, c). Our goal is to prove that d = e. To 
do this, we prove that d .::::; e and d ~ e. r 

First, we show d.::::; e. Since d = gcd(a, b), we know thatdla and dlb. We can 
write c = a - qb. Since a and b are multiples of d, so is c. Thus d is a common 
divisor of b and c. However, e is the greatest common divisor of b and c, so 
d.::::; e. 

Next, we show d ~ e. Since e = gcd(b, c), we know that elb and elc. Now 
a = qb + c, and hence ela as well. Since ela and elb, we see that e is a common 
divisor of a and b. However, d is the greatest common divisor of a and b, so 
d ~e. 

We have shown d .::::; e and d ~ e, and hence d = e; that is, gcd(a, b) 
gcd(b,c). • 

To illustrate how Proposition 35.3 enables us to calculate greatest common 
divisors efficiently, we compute gcd(689, 234). The simple, inefficient divide-and­
check algorithm we considered first would have us try all possible common divisors 
from 1 to 234 and select the largest. This implies we would perform 234 x 2 = 468 
division problems! 

Instead, we use Proposition 35.3. To find gcd(689, 234), let a = 689 and 
b = 234. We find c = 689 mod 234. This requires us to do a division. The result is 
c = 221. To find gcd(689, 234), it is enough to find gcd(234, 221) because these 
two values are the same. Let's record this step here: 

689 mod 234 = 221 gcd(689, 234) = gcd(234, 221). 

Now all we have to do is calculate gcd(234, 221). We use the same idea. 
We apply Proposition 35.3 as follows. To find gcd(234, 221), we calculate 234 
mod 221 = 13. Thus gcd(234, 221) = gcd(221, 13). Let's record this step (divi­
sion #2). 

234 mod 221 = 13 gcd(234, 221) = gcd(221, 13). 

Now the problem is reduced to gcd(221, 13). Notice that the numbers are 
significantly smaller than the original689 and 234. We again use Proposition 35.3 
and calculate 221 mod 13 = 0. What does that mean? It means that when we 
divide 221 by 13, there is no remainder. In other words, 131221. So clearly the 
greatest common divisor of 221 and 13 is 13. Let's record this step (division #3). 

221 mod 13 = 0 gcd(221, 13) = 13. 

We are finished! We have done three divisions (not 468 ©),and we found 

gcd(689, 234) = gcd(234, 221) = gcd(221, 13) = 13. 

The steps we just performed are precisely the Euclidean algorithm. Here is a 
formal description: 
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Euclid's Algorithm for Greatest Common Divisor 

Input: Positive integers a and b. 
Output: gcd(a, b). 

• Let c = a mod b. 
• If c = 0, then we return the answer b and stop. 
• Otherwise (c # 0), we calculate gcd(b, c) and return this as the answer. 

This algorithm for gcd is defined in terms of itself. This is an example of 
a recursively defined algorithm (see Exercise 21.8, where recursion is explored). 
Let's see how the algorithm works for the integers a = 63 and b = 75. 

• The first step is to calculate c =a mod b, and we get c = 63 mod 75 = 63. 
• Next we check whether c = 0. It's not, so we go on to compute gcd(b, c) = 

gcd(75, 63). 
Very little progress has been made so far! All the algorithm has done is 

reverse the numbers. The next pass through, however, is more interesting. 
• Now we restart the process with a' = 75 and b' = 63. We calculate c' = 

75 mod 63 = 12. Since 12 # 0, we are told to calculate gcd(b', c') = 
gcd(63, 12). 

• We restart again with a" = 63 and b" = 12. We calculate c" = 63 mod 12 = 
3. Since this is not zero, we need to go on and to calculate gcd(b", c") = 

gcd(12, 3). 
• We restart yet again with a"' = 12 and b"' = 3. Now we are told to calculate 

c"' = 12 mod 3 = 0. Aha! Now c"' = 0, so we return the answer b"' = 3 and 
we are finished. 

The final answer is that gcd(63, 75) = 3. 

Here is an overview of the calculation in chart form: 

a 

63 
75 
63 
12 

b 

75 
63 
12 
3 

c 

63 
12 
3 
0 

With only four divisions, the answer is produced. 
Here is another way to visualize this computation. We create a list whose first 

two entries are a and b. Now we extend the list by computing mod of the last two 
entries of the list. When we reach 0, we stop. The next-to-last entry is the gcd of 
a and b. In this example, the list would be 

(63, 75, 63, 12, 3, 0). 

Correctness 

Just because someone writes down a procedure to calculate gcd does not make it 
correct. The point of mathematics is to prove its assertions; the correctness of an 
algorithm is no exception. 
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Proposition 35.4 (Correctness of Euclid's Algorithm for gcd) Euclid's Algotfithm correctly com­

putes gcd(a, b) for any positive integers a and b. 

Proof. Suppose, for the sake of contradiction, that Euclid's Algorithm did not 

correctly compute gcd. Then there is some pair of positive integers a and b for 

which it fails. Choose a and b such that a + b is as small as possible. (We are using 

the smallest -counterexample method.) 

It might be the case that a < b. If this is so, then the first pass through 

Euclid's Algorithm will simply interchange the values a and b [as we saw when 

we calculated gcd(63, 75)] because if a < b then c =a mod b =a, and Euclid's 

Algorithm directs us to calculate gcd(b, c) = gcd(b, a). 

Thus we may assume that a :::::= b. 

The first step of the algorithm is to calculate c = gcd(a, b). Two outcomes 

are possible: either c = 0 or c # 0. 
In the case c = 0, a mod b = 0, which implies bia. Since b is the largest 

divisor of b (since b > 0 by hypothesis) and since bia, we have b is the greatest 

common divisor of a and b. In other words, the algorithm gives the correct result, 

contradicting our supposition that it fails for a and b. 

So it must be the case that c # 0. To get c, we calculated the remainder when 

dividing a by b. By Theorem 34.1, we have a = qb + c where 0 < c < b. We 

also know that b :::::a. We add the inequalities: 

c<b 

+ b-:::_a 

=} b+c<a+b 

Thus b, care positive integers with b + c <a+ b. 

This means that band care not a counterexample to the correctness of Euclid's 

Algorithm because b + c <a+ b, and among all counterexamples, a and b was 

a counterexample with the smallest sum. Thus the algorithm correctly computes 

gcd(b, c) and returns its value as the answer. However, by Proposition 35.3, this is 

the right answer! This contradicts the supposition that Euclid's Algorithm fails on 

a, b.=}{= Hence Euclid's Algorithm always returns the greatest common divisor 

of the positive integers it is given. • 

How Fast? 

How many times do we have to divide to calculate the greatest common divisor of 

two positive integers? We claim that after two rounds of Euclid's Algorithm, the 

integers with which we are working have decreased by at least 50%. This is the 

main tool. 

Proposition 35.5 Let a, bE Z with a :::::= b > 0. Let c =a mod b. Then c < ~· 
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Proof. We consider two cases: (1) a < 2b and (2) a ::: 2b. 

Case (1): a < 2b. 
We know that 2b > a > 0, so a > 0 and a- b ::: 0, but a- 2b < 0. 

Hence the quotient when a is divided by b is 1. So the remainder in a divided 
by b is c = a - b. 

Now we can rewrite a < 2b as b > ~'and so 

a a 
c=a-b<a--=-

2 2 
which is what we wanted. 
Case (2): a ::: 2b, which can be rewritten b :S: ~. 

The remainder, upon division of a by b, is less than b. Soc < b, and we 

have b :S: ~, so c < ~. 

In both cases, we found c < ~. • 
We may assume that we start Euclid's Algorithm with a ::: b; if not, the algo­

rithm reverses a and b on its first pass, and from there on, the numbers come in de-· 
creasing order. That is, if the numbers produced by Euclid's Algorithm are listed as 

(a,b,c,d,e, f, ... ,0) 

then, assuming a ::: b, we have 

a ::: b ::: c ::: d ::: e ::: f ::: · · · ::: 0. 

By Proposition 35.5, the numbers c and d are less than half as large as a and b, 

respectively. Likewise, two steps later, the numbers e and f are less than half as 
large as c and d, respectively, and less than one-fourth of a and b, respectively. Thus 

Every two steps of Euclid's Algorithm decreases the integers with which we 
are working to less than half their current values. 

If we begin with (a, b), then two steps later, the numbers are less than (4a, 4b), 

and four steps later, less than ( i a, i b), and six steps later, less than ( i a, i b). How 
large are the numbers after 2t passes of Euclid's Algorithm? Since every two steps 
decrease the numbers by more than a factor of 2, we know that after 2t steps the 
numbers drop by more than a factor of 2t; that is, the two numbers are less than 
(2-ta, 2-rb). 

Euclid's Algorithm stops when the second number reaches zero. Since the 
numbers in Euclid's Algorithm are integers, this is the same as when the second 
number is less than 1. This means that as soon as we have 

2-tb :s: 1, 

the second number must have reached zero. Taking base-2 logs of both sides, we 
have 

log2[2-t b] :S: log2 1 

- t + log2 b :S: 0 

log2 b ::=: t. 
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In other words, once t ~ log2 b, the algorithm must be finis~ed. So after 2log2 b 
passes, the algorithm has completed its work. 

How many divisions might this be if, say, a and b were enormous numbers 
(e.g., 1000 digits each). If b ~ 101000

, then the number of steps is bounded by 

2log2 (101000
) = 2000 log2 10 < 2000 x 3.4 = 6800. 

(Note: log2 10 ~ 3.3219 < 3.4.) So in under 7000 steps, we have our answer. 
Compare this to doing 101000 divisions (see Exercise 35.8)! 

I hope you do not think I am trying your patience by considering such a 
ridiculous example. Why on earth would anyone want to compute the gcd of two 
1 000-digit numbers!? Well, the fact is that this is a practical, important problem 
with both industrial and military applications. More on this later! 

An Important Theorem 

The following theorem is central to the study of the greatest common divisor (and 
beyond). 

Theorem 35.6 Let a and b be integers, not both zero. The smallest positive integer of the form 
ax+ by, where x andy are integers, is gcd(a, b). 

Let a and b be integers. An 
integer linear combination 
of a and b is any number 
of the form ax+ by where 
x and y are also integers. 
Theorem 35.6 tells us that 
the smallest 
positive-integer linear 
combination of a and b is 
gcd(a. b). 

For example, suppose a = 30 and b = 24. We can make a chart of the values 
ax + by for integers x and y between -4 and 4. We get the following table: 

y 

-4 -3 -2 -1 0 1 2 3 4 

-4 -216 -192 -168 -144 -120 -96 -72 -48 -24 
-3 -186 -162 -138 -114 -90 -66 -42 -18 6 
-2 -156 -132 -108 -84 -60 -36 -12 12 36 
-1 -126 -102 -78 -54 -30 -6 18 42 66 

X 0 -96 -72 -48 -24 0 24 48 72 96 
1 -66 -42 -18 6 30 54 78 102 126 
2 -36 -12 12 36 60 84 108 132 156 
3 -6 18 42 66 90 114 138 162 186 
4 24 48 72 96 120 144 168 192 216 

What is the smallest positive value on this chart? We see the number 6 at x = 
-3, y = 4(because30x-3+24x4 = -90+96 = 6)andagainatx = 1, y = -1 
(because 30 x 1 + 24 x -1 = 30 - 24 = 6). 

Now we have shown only a relatively small portion of all the possible values 
of ax + by. Is it possible, if we were to extend this chart, that we might find a 
smaller positive value for 30x + 24y? The answer is no. Notice that both 30 and 24 
are divisible by 6. Therefore any integer of the form 30x + 24 y is also divisible by 
6 (see Exercise 4.8). So even if we extended this chart out forever, 6 is the smallest 
positive integer we would find. 



The set D is the set of all 
positive integers of the 
form ax + by (i.e., the set 
of all positive numbers on 
the chart we considered 
above). 
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Let a and b be any integers (not both zero). It is impossible to find integers x 

andy with 

0 < ax +by < gcd(a, b) 

because ax+ by is divisible by gcd(a, b). The point of Theorem 35.6 is that we 
can find integers x andy such that ax+ by = gcd(a, b). Here is the proof: 

Proof (of Theorem 35.6) 

Let a and b be integers (not both zero) and let 

D = {ax +by : x, y E Z, ax +by > 0}. 

We want to examine the smallest member of D (i.e., we are about to invoke the 
Well-Ordering Principle). First, we must be sure that Dis nonempty. 

To see that D =1- 0, we just have to prove that there is at least one integer in 
D. Can we select integers x andy to make ax+ by positive? If we take x =a and 
y = b, we find that ax +by = a2 + b2 , and this is positive (unless a = b = 0, 
which is forbidden by hypothesis). Therefore D =1- 0. 

Applying the Well-Ordering Principle to D, a nonempty set of natural num­
bers, we know that D contains a least element; call that least element d. 

Our goal is to show that d = gcd(a, b). How do we prove that dis the greatest 
common divisor of a and b? We consult Definition 35.2. We need to show three 

things: (1) dla, (2) dlb, and (3) if eia and eib, then e s d. We do each of these in 
tum. 

• Claim (1): dia. 
Suppose, for the sake of contradiction, that a is not divisible by d. Then 

when we divide a by d, we get a nonzero remainder: 

a = qd + r with 0 < r <d. 

Now d =ax+ by, so we can solve for r in terms of a and bas follows: 

r =a- qd =a- q(ax +by)= a(l- qx) + b(-qy) =aX+ bY 

where X= 1- qx andY= -qy. Notice that 0 < r < d and r =aX+ bY. 

This means that r E D and r < d, contradicting the fact that d is the least 
element of D.=}{= Therefore dla. 

· Claim (2): dib. 
This proof is analogous to dia. 

· Claim (3): If eia and eib, then e s d. 
Suppose eia and eib. Then ei(ax +by) (Exercise 4.8). Therefore eid, so 

e s d (because dis positive). 

Therefore d is the greatest common divisor of a and b. • 
Example 35.7 Earlier we found that gcd(689, 234) = 13. Note that 

689 X -1 + 234 X 3 = -689 + 702 = 13 = gcd(689, 234). 

Here is another example. Note that gcd( 431, 29) = 1. And note that 

431 X 7 + 29 X -104 = 3017 - 3016 = 1. 
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Given a and b, how do we find integers x andy such thata;r+by = gcd(a, b)? 
Perhaps it is not too hard to try a few values to guess that 689 x -1 + 234 x 3 = 
13 = gcd(689, 234), but it seems to be hard to find the right x and y to get 
431x + 29y = 1 (try it!). 

The proof of Theorem 35.6 is not of any help. The step that proves that the 
numbers x andy exist is nonconstructive-the Well-Ordering Principle shows that 
such integers exist but gives us no clue how to find them. The key to finding x and 
yin ax+ by = gcd(a, b) is to extend Euclid's Algorithm. 

Earlier we used Euclid's Algorithm to calculate gcd(a, b). Each time we 
did a division, the only information we retained was the remainder (the central 
computational step is c = a mod b). By keeping track of the quotients, too, we 
will be able to find the integers x and y. Here is how this works. 

We illustrate this method by finding x and y such that 431x + 29y = 
gcd(431, 29) = 1. 

Here are the steps in calculating gcd(431, 29) by Euclid's Algorithm: 

431 = 14 X 29 + 25 

29 = 1 X 25 + 4 

25 = 6 X 4 + 1 

4 = 4 X 1 + 0. 

In all of these equations (except the last), we solve for the remainder (that is, we 
put the remainders on the left). 

25 = 431 - 14 X 29 

4 = 29- 1 X 25 

1 = 25-6 X 4. 

Now we work from the bottom up. Notice that the last equation has 1 in the form 
25x + 4 y. We substitute for 4 using the previous equation: 

1 = 25-6 X 4 

= 25 - 6 X (29 - 1 X 25) 

= -6 X 29 + 7 X 25. 

Now we use 25 = 431 - 14 x 29 to replace the 25 in 1 = -6 x 29 + 7 x 25: 

1 = -6 X 29 + 7 X 25 

= -6 X 29 + 7 X ( 431 - 14 X 29) 

= 7 X 431 + [-6+7 X (-14)]29 

= 7 X 431 + (-104) X 29. 

This ishowwefoundx = 7 andy= -104to get431x+29y = gcd(431, 29) = 1. 
Pairs of numbers whose greatest common divisor is 1 have a special name. 

Definition 35.8 Let a and b be integers. We call a and b relatively prime provided gcd(a, b) = 1. 
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In other words, integers are relatively prime provided the only divisors they 

have in common are 1 and -1. 

Corollary 35.9 Let a and b be integers. There exist integers x andy such that ax+ by = 1 if and 

only if a and bare relatively prime. 

Theorem 35.6 and its consequence, Corollary 35.9, are extremely useful tools 

for proving results about gcd and relatively prime numbers. Here is an example. 

Try proving this without using Theorem 35.6, and then you will appreciate its 

usefulness. 

Proposition 35.10 Let a, b be integers, not both zero. Let d = gcd(a, b). If e is a common divisor of 

a and b, then e!d. 

We know, since d = gcd(a, b), that e ::; d, but that does not immediately 

imply that e!d. Here is the proof. 

Proof. Let a, b be integers, not both zero, and let d = gcd(a, b). Suppose ela 

ahd e!b. Now, by Theorem 35.6, there exist integers x andy such thatd =ax +by. 

Since ela and elb, we have el(ax +by) (see Exercise 4.8), and so eld. • 

Recap 

In this section we examined the greatest common divisor of a pair of integers. 

We discussed how to compute the gcd of two integers using Euclid's Algorithm, 

and we analyzed the efficiency of the Euclidean Algorithm. We showed that for 

integers a, b (not both zero), the smallest positive value of ax+ by (with x, y E Z) 

is gcd(a, b). When two integers' gcd is 1, we call those integers relatively prime. 

35 Exercises 35.1. Plea~calculate: 
/ 

a~ gcd(20, 25). 

b. gcd(O, 1 0). 

c. gcd(123, -123). 

d. gcd( -89, -98). 

e. gcd(54321, 50). 

f. gcd(1739, 29341). 

35.2. For each pair of integers a, bin the previous problem, find integers x and 

y such that ax+ by= gcd(a, b). 

35.3. Find integers a and b that do not have a greatest common divisor. Prove 

that the pair you found are the only pair of integers that do not have a gcd. 

35.4. Let a and b be positive integers. Find the sum of all the common divisors 

of a and b. 

35.5. Prove that if a and b have a greatest common divisor, it is unique (i.e., they 

cannot have two greatest common divisors). 

35.6. In Proposition 35.3, we did not require that c =I= 0. Is Proposition 35.3 (and 

its proof) correct even in the case c = 0? 
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35.7. Suppose a ~band running Euclid's Algorithm yields thynumbers (in list 
form) ~ 

(a, b, c, d, e, f, ... , 0). 

Prove that 

a ~ b ~ c ~ d ~ e ~ f ~ · · · ~ 0. 

35.8. Suppose we want to compute the greatest common divisor of two 1000-
digit numbers on a very fast computer-a computer that can do 1 billion 
divisions per second. Approximately how long would it take to compute 
the gcd by the trial division method? (Choose an appropriate unit of time, 
such as minutes, hours, days, years, centuries, or millennia.) 

35.9. We can extend the definition of the gcd of two numbers to the gcd of three 
or more numbers. 
a. Give a careful definition of gcd(a, b, c) where a, b, care integers. 
b. Prove or disprove: For integers a, b, c, we have gcd(a, b, c) = 1 if and 

only if a, b, care pairwise relatively prime. 
c. Prove or disprove: For integers a, b, c, we have 

gcd(a, b, c) = gcd(a, gcd(b, c)). 

d. Prove that gcd(a, b, c)= dis the smallest positive integer of the form 
ax + by + cz where x, y, z E Z. 

e. Find integers x, y, z such that 6x +lOy+ 15z = 1. 
f. Is there a solution to part (e) in which one of x, y, or z is zero? Prove 

your answer. 
35.10. Prove that consecutive integers must be relatively prime. 
35.11. Let a be an integer. Prove that 2a + 1 and 4a2 + 1 are relatively prime. 
35.12. Suppose n and m are relatively prime. Prove that n and m + j n are relatively 

prime for any integer j. 
Conclude that if n and m are relatively prime, and m' = m mod n, 

then n and m' are relatively prime. 
35.13. Suppose that a and bare relatively prime and that ale and hie. Prove that 

(ab)lc. 
35.14. Suppose a, b, n E Z with n > 0. Suppose that ab = 1 (mod n). Prove 

that both a and bare relatively prime ton. 
35.15. Suppose a, n E Z with n > 0. Suppose that a and n are relatively prime. 

Prove that there is an integer b such that ab = 1 (mod n). 
35.16. Suppose a, b E Z are relatively prime. Corollary 35.9 implies that there 

exist integers x, y such that ax + by = 1. Prove that these integers x and 
y must be relatively prime. 

35.17. Let x be a rational number. This means there are integers a and b =f 0 such 
that x = ~. Prove that we can choose a and b to be relatively prime. 

35.18. A class of n children sit in a circle. The teacher walks around the outside of 
the circle and pats every kth child on the head. Find and prove a necessary 
and sufficient condition on n and k for every child to receive a pat on the 
head. 
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35.19. You have two measuring cups. One holds 8 ounces and the other holds 13 
ounces. These cups have no marks to show individual ounces. All you can 
measure is either a full 13 or a full 8 ounces. If you want to measure, say, 
5 ounces, you can fill the 13-ounce measuring cup, use it to fill the 8-ounce 
cup, and you will have 5 ounces left in the larger cup. 
a. Show how to use the 13-ounce and 8-ounce cups to measure exactly 

1 ounce. You may assume you have a large bowl for holding liquid, but 
this large bowl has no marks for measuring. At the end, the bowl should 
contain exactly 1 ounce. 

b. Generalize this problem. Suppose the measuring cups hold a and b 

ounces where a and b are positive integers. Give and prove necessary 
and sufficient conditions on a and b such that it is possible to measure 
out exactly 1 ounce using these cups. 

35.20. In Exercise 34.9, we considered polynomial division. In this problem, you 
are asked to develop the concept of polynomial gcd. 

Polynomials in this problem may be assumed to have rational 
coefficients. 
a. Let p and q be nonzero polynomials. Write a careful definition for 

common divisor and greatest common divisor of p and q. 

· In this context, greatest refers to the degree of the polynomial. 
b. Show, by giving an example, that there need not be a unique gcd of two 

nonzero polynomials. 
c. Let d be a greatest common divisor of nonzero polynomials p and q. 

Prove that there exist polynomials a and b such that ap + bq = d. 

d. Give a careful definition of relatively prime for nonzero polynomials. 
e. Prove that two nonzero polynomials p and q are relatively prime if and 

only if there exist polynomials a and b such that ap + bq = 1. 
f. Let p = x 4

- 3x2
- 1 and q = x 2 + 1. Show that p and q are relatively 

prime by finding polynomials a and b such that ap + bq = 1. 

36 Modular Arithmetic 
A New Context for Basic Operations 

Arithmetic is the study of the basic operations: addition, subtraction, multiplica­
tion, and division. The usual contexts for studying these operations are number 
systems such as the integers, Z, or the rationals, Q. 

Division is, perhaps, the most interesting example. In the context of the rational 
numbers, we can calculate x --;- y for any x, y E Q except when y = 0. In the 
context of the integers, however, x --;- y is defined only when y =I= 0 and y lx. 

The point is that in the two different contexts, Q and Z, the operation --;- takes 
on slightly different meanings. In this section, we introduce a new context for 
the symbols +, -, x, and --;- where their meanings are quite different from the 
traditional context. The difference is so significant, that we use alternative symbols 
for these operations. We use the symbols EB, 8, 0, and 0. 
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Mathspeak! 
This is a third use of 

the word mod! We have 

mod a:- a relation, as in 

13 = 1\ (mod 5), and we 

have mod as an operation, 

as in l J mod 5 = 3. Now 

we have the integers mod 

11. The three uses are 

different, but closely 

related. 

Definition 36.1 

Instead of consisting of integers or rationals, the new set in which we perform 

arithmetic is denoted Zn where n is a positive integer. The set~n is defined to be 

Zn = {0, 1,2, ... ,n -1}; 

that is, Zn contains all natural numbers from 0 to n - 1 inclusive. 

We call this number system the integers mod n. 

To distinguish EB, e, ®, and 0 from their uncircled cousins, we refer to 

these operations as addition mod n, subtraction mod n, multiplication mod n, and 

division mod n. 

Modular Addition and Multiplication 

How are the modular operations defined? We begin with EB and®. 

(Modular addition, multjplication) Let n be a positive integer. Let a, b E Zn. 

We define 

a EBb = (a+ b) mod n and 

a® b = (ab) mod n. 

The operations on the left are operations defined for Zn. The operations on 

the right are ordinary integer operations. 

Example 36.2 Let n = 10. We have the following: 

5EB5=0 

5®5=5 
9EB8=7 
9 ® 8 = 2. 

Notice that the symbols EB and® depend on the context. If we are working in 

Z 10, then 5 EB 5 = 0, but if we are working in Z9 , then 5 EB 5 = 1. It might be better 
n 

to create a more baroque symbol, such as EB to denote mod n addition, but in most 

situations, the modulus (n) does not change. We simply must remain vigilant and 

know the current context. 

Notice that if a, b E Zn, the results of the operations a EBb and a ® b are 

always defined and are elements of Zn 

Given two elements in Zn, the results of EB and ® are also in Zn. 

Proposition 36.3 Let a, bE Zn. Then a EBb E Zn and a® bE Zn. (Closure.) 

Proof. Exercise 36.7. 

The operations EB and® exhibit the usual algebraic properties: 

Proposition 36.4 Let n be an integer with n 2: 2. 

• For all a, b E Zn, a EBb = b EB a and a® b = b ®a. (Commutative.) 

• Foralla,b,c E Zn,aEB(bEBc) = (aEBb)EBc,anda®(b®c) = (a®b)®c. 

(Associative.) 
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• For all a E Zn, a EB 0 =a, a® 1 =a, and a® 0 = 0. (Identity elements.) 

• For all a, b, c E Zn, a® (b EB c) = (a® b) EB (a® c). (Distributive.) 

The proofs of these are quite similar to each other. We prove only one as an 

example. Since a EBb= (a+ b) mod n, and a® b = (ab) mod n, the basic step 

in all of these proofs is to write 

a EB b = a + b + kn or a ®b = ab + kn 

where k is an integer. 

Proof. We show that EB is associative. Let a, b, c E Zn. We want to show that 

a EB (b EB c) = (a EBb) EB c. 

Now 

a EB (b EB c) E Z,n (by Proposition 36.3) 

and a EB (b EB c) =a EB (b + c + kn) 

= [a + (b + c + kn)] + jn 

= (a + b +c) + sn 

where k, j, s E Z. Since, obviously, 

a+ b + c + sn =a+ b + c (mod n), 

wehave(a+b+c) modn = (a+b+c+sn) modn = (a+b+c+sn)because 

a + b + c + sn E Zn. (We used Proposition 34.8.) 

In short, a EB (b EB c) = (a + b +c) mod n. 

By a similar argument, (a EBb) EB c = (a+ b +c) mod n. Thus a EB (b EB c) = 
(a + b + c) mod n = (a EB b) EB c. 

The rest of this proof is left to you (Exercise 36.8). • 

Modular Subtraction 

What is subtraction? We can define ordinary subtraction in a number of different 

ways. Here is one way based on addition. Let a, b E Z. We define a - b to be 

the solution to the equation a = b + x. We then would prove two things: (1) the 

equation a = b + x has a solution, and (2) the equation a = b + x has only one 

solution. 
We use the same approach to define modular subtraction. We start by proving 

that an equation of the form a = b EB x has a solution, and only one solution. 

Proposition 36.5 Let n be a positive integer, and let a, b E Zn. Then there is one and only one 

x E Zn such that a = b EB x. 

Proof. To show that x exists, let x = (a - b) mod n. We need to check that 

x E Zn and that x satisfies the equation a = b + x. 



312 Chapter 7 Number Theory 

By definition of (the binary operation) mod, xis the rem(Vinder when we divide 

a - b by n, so 0 :::::; x < n, i.e., x E Zn. Note that x = (a -b) + kn for some 

integer k. 
We calculate 

b EB x = (b + x) mod n = [b +(a- b + kn)] mod n =(a+ kn) mod n =a 

because 0 :::::; a < n. Therefore x satisfies the equation a = b EB x. 
Now we turn to showing uniqueness (see Proof Template 14). Suppose, for 

the sake of contradiction, there were two solutions; that is, there exist x, y E Zn 
(with x =j=. y) for which a = b EB x and a = b EB y. This means that 

b EB x = (b + x) mod n = b + x + kn =a, and 

b EB y = (b + y) mod n = b + y + jn =a 

for some integers k, j. Combining these, we have 

b + x + kn = b + y + jn =} x = y + (k- j)n 

=} x = y (mod n) 

=} x mod n = y mod n 

=} x=y 

because 0:::::; x, y < n. We have shown x = y, but x =j=. y.=}{= • 
Now that we know that the equation a = b EB x has a unique solution, we can 

use this to define a e b. 

Definition 36.6 (Modular subtraction) Let n be a positive integer and let a, b E Zn. We define 

a e b to be the unique X E Zn such that a = b EB X. 

Alternatively, we could have defined a e b to be (a -b) mod n. We prove 

that this would give the same result. 

Proposition 36.7 Let n be a positive integer and let a, b E Zn. Then a e b = (a- b) mod n. 

Proof. To prove that a e b = (a- b) mod n, we consult the definition. We need 
to show (1) that [(a -b) mod n] E Zn and (2) that if x = (a -b) mod n, then 

a=bEBx. 
Note that (1) is obvious because (a- b) mod n is an integer in Zn· 
To show (2), we first note that x =a - b + kn for some integer k. Then 

b EB x = (b +(a- b + kn)) mod n =(a+ kn) mod n =a. • 

We could have used Proposition 36.7 as the definition of e and then proved 

the assertion in Definition 36.6 as a theorem. See Exercise 36.9. 
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Modular Division 

Modular arithmetic is ~ easy. We now come to the difficult i. Modular division is 

significantly different from the other modular operations. For example, in ordinary 

integer arithmetic, we have cancellation laws. If a, b, c are integers with a =f. 0, 

then 

ab = ac ==} b = c. 

However, in Zw, 

5 ® 2 = 5 ® 4 but 2 =f. 4. 

Despite the fact that 5 =f. 0, we cannot cancel, or divide, both sides by 5. 

Motivated by the definition of 8, we might like to define a 0b to be the unique 

x E Zn so that a = b ® x. This is problematic. Consider 6 0 2 in Z 10 . This should 

be the unique x E Z 1 0 so that 2 ® x = 6. Is x = 3? That would be nice. And we are 

encouraged by the fact that 2 ® 3 = 6. However, observe that 2 ® 8 = 6. Should 

we have 6 0 2 = 8? The problem is that there might not be a unique solution to 

6 = 2®x. 

Example 36.8 Given a, b E Z 10 (with b =f. 0), must there be a solution to a = b ® x? If so, is it 

unique? 
Consider the following three cases. 

• Let a = 6 and b = 2. There are two solutions to 6 = 2 ® x, namely x = 3 

andx = 8. 
• Let a = 7 and b = 2. There are no solutions to 7 = 2 ® x. 

• Let a = 7 and b = 3. There is one and only one solution to 7 = 3 ®x, namely 

x = 9. In this case it makes sense to write 7 0 3 = 9. 

Each of the assertions above can be verified simply by considering all possible 

values of x; since there are only ten possible values for x, this is not terribly 

time-consuming. 

The situation looks hopelessly muddled. Let's try another approach. In Q, we 

can define a-;- b to be a · b -I; that is, division by b is defined to be multiplication by 

b's reciprocal. This explains why division by zero is undefined; zero does not have 

a reciprocal. Let's be precise about what we mean by reciprocal. The reciprocal 

of a rational number x is a rational number y such that x y = 1. 

We can use this as our basis for defining division in Zn. We begin by defining 

reciprocals. 

Definition 36.9 (Modular reciprocal) Let n be a positive integer and let a E Zn. A reciprocal of 

a is an element b E Zn such that a ® b = 1. An element of Zn that has a reciprocal 

is called invertible. 
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Let's investigate reciprocals in Z 10 . Here is the multiplication table for Z 10 : 
f' 

0 0 1 2 3 4 5 6 7 8 9 

0 0 0 0 0 0 0 0 0 0 0 

1 0 1 2 3 4 5 6 7 8 9 

2 0 2 4 6 8 0 2 4 6 8 

3 0 3 6 9 2 5 8 1 4 7 

4 0 4 8 2 6 0 4 8 2 6 

5 0 5 0 5 0 5 0 5 0 5 

6 0 6 2 8 4 0 6 2 8 4 

7 0 7 4 1 8 5 2 9 6 3 

8 0 8 6 4 2 0 8 6 4 2 

9 0 9 8 7 6 5 4 3 2 1 

Several comments are in order. 

• Element 0 does not have a reciprocal; this is not surprising. 

• Elements 2, 4, 5, 6, and 8 do not have reciprocals. This explains why our 

attempts to divide by 2 were strange. 

• Elements 1, 3, 7, and 9 are invertible (have reciprocals). Furthermore, they 

have only one reciprocal each. 

• Notice the elements of Z 10 that have reciprocals are precisely those integers 

in Z 10 that are relatively prime to 10. 

• The reciprocal of 3 is 7, and the reciprocal of 7 is 3; both 1 and 9 are their 

own reciprocals. 

These observations give us some ideas to develop into theorems. 

We observed that not all elements have reciprocals. However, those that do 

have only one reciprocal. Notice that in Definition 36.9 we used the indefinite 

article. We wrote "A reciprocal of .... " We did not write "The reciprocal of ... " 

because we had not yet established uniqueness. Let's do that now. 

Proposition 36.10 Let n be a positive integer and let a E Zn. If a has a reciprocal in Zn, then it has 

only one reciprocal. 

The overworked 

superscript -1. 

Proof. Suppose a had two reciprocals, b, c E Zn with b =I= c. Consider b 0 a 0 c. 

Using the associative property (see Proposition 36.4) for 0 yields 

b = b 0 1 = b 0 (a 0 c) = (b 0 a) 0 c = 1 0 c = c, 

contradicting b =I= c.=}{= • 
Thus it makes sense to speak of the reciprocal of a. We also call the reciprocal 

of a the inverse of a. The notation for the reciprocal of a is a-1
• We are overtaxing 

the superscript - 1 and trying your patience as a reader here. The symbol a -l 

has three different meanings that depend on context. Please be careful! The three 

meanings are as follows: 

• In the context of integers or rational numbers, a -l refers to the rational 

number l. 
a 
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• In the context of relations or functions, R- 1 stands for the relation formed by 
reversing all the ordered pairs in R (see Section 13). 

• In the context of Zn, a- 1 is the reciprocal of a. It is not (and you should never 

write) ~·For example, in the context of Z 10 , we have 3-1 = 7. 

Note that 3 and 7 are reciprocals of each other in Z 10 . We have the following: 

Proposition 36.11 Let n be a positive integer and let a E Zn. Suppose a is invertible. If b = a- 1
, then 

b is invertible and a = b-1• In other words, (a- 1 )- 1 =a. 

The proof is left to you (Exercise 36.11 ). 
We use reciprocals to define modular division. 

Definition 36. 12 (Modular division) Let n be a positive integer and let b be an invertible element 
of Zn. Let a E Zn be arbitrary. Then a 0 b is defined to be a 0 b- 1

• 

Notice that a 0 b is defined only when b is invertible; this is analogous to the 
fact that, for rational numbers, a--;-- b is defined only when b is invertible-that is, 
nonzero. 

Example 36.13 In Z 10 , calculate 2 0 7. Note that 7- 1 = 3, so 2 0 7 = 2 0 3 = 6. 

We still have some work to do. We need to address the following issues: 

• In Zn, which elements are invertible? 
• In Zn, given that a is invertible, how do we calculate a -I? 

We solved these problems for Z 10 by writing out the entire 0 table for Z 10 . 

We would not want to do that for Z 1000 ! 
We noticed that the only invertible elements in Z 10 are 1, 3, 7, and 9-precisely 

those elements relatively prime to 10. Does this pattern continue? Let's examine 
Z9 . Here is the 0 table for Z9 : 

® 0 1 2 3 4 5 6 7 8 

0 0 0 0 0 0 0 0 0 0 
1 0 1 2 3 4 5 6 7 8 
2 0 2 4 6 8 1 3 5 7 
3 0 3 6 0 3 6 0 3 6 
4 0 4 8 3 7 2 6 1 5 
5 0 5 1 6 2 7 3 8 4 
6 0 6 3 0 6 3 0 6 3 
7 0 7 5 3 1 8 6 4 2 
8 0 8 7 6 5 4 3 2 I 
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The invertible elements of Z9 are 1, 2, 4, 5, 7, and 8 (these are all relatively 
prime to 9), and the noninvertible elements are 0, 3, and 6 (none of these are 
relatively prime to 9). 

This suggests the following. 

Theorem 36.14 (Invertible elements of Zn) Let n be a positive integer and let a E Zn. Then a is 
invertible if and only if a and n are relatively prime. 

At first glance, this may seem like a difficult theorem to prove. And if you 
attempt to prove it by simply unraveling definitions, it is hard. However, we have 
a power tool for dealing with pairs of numbers that are relatively prime. Corol­
lary 35.9 tells us that a and bare relatively prime if and only if there is an integer 
solution to ax + by = 1. When we are armed with this tool, the proof of Theo­
rem 36.14 almost writes itself. 

Here is an outline for the proof. 

Let n be a positive integer and let a E Zn. 
( =}) Suppose a is invertible .... Therefore a and n are relatively prime. 
( {=) Suppose a and n are relatively prime .... Therefore a is an invertible 

element of Zn. • 

For the forward ( =}) direction, we unravel the definition of invertible and keep 
unraveling. 

Let n be a positive integer and let a E Zn. 
( =}) Suppose a is invertible. This means there is an element b E Z11 

such that a 0 b = 1. In other words, (ab) mod n = 1. Thus ab + kn = 1 
for some integer k . ... Therefore a and n are relatively prime. 

( {=) Suppose a and n are relatively prime .... Therefore a is an invertible 
element of Zn. • 

The first part of the proof is 99% done! We have ab + kn = 1. We apply 
Corollary 35.9 to a and n to conclude gcd(a, n) = 1. This finishes the first part of 
the proof. 

Let n be a positive integer and let a E Zn. 
( =}) Suppose a is invertible. This means there is an element b E Zn 

such that a 0 b = 1. In other words, (ab) mod n = 1. Thus ab + kn = 1 
for some integer k. By Corollary 35.9, a and n are relatively prime. 

( {=) Suppose a and n are relatively prime .... Therefore a is an invertible 
element of Zn. • 
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For the second half (¢=)of the proof, we start right in with Corollary 35.9. 

Let n be a positive integer and let a E Zn. 
( ==?) Suppose a is invertible. This means there is an element b E Z11 

such that a 0 b = 1. In other words, (ab) mod n = 1. Thus ab + kn = 1 

for some integer k. By Corollary 35.9, a and n are relatively prime. 

(¢=)Suppose a and n are relatively prime. By Corollary 35.9, there are 

integers x and y such that ax + ny 1 .... Therefore a is an invertible 

element of Zn. • 

We have ax+ ny = 1. This can be rewritten ax = 1 - ny. We want b such that 

a 0 b = 1. The integer x is a likely candidate, but perhaps x ~ Zn. Of course, we 

can adjust x up or down by a multiple of n without changing anything important. 

We can let b = x mod n. Let's work this into the proof. 

Let n be a positive integer and let a E Z 11 • 

( =}) Suppose a is invertible. This means there is an element b E Z 11 

such that a 0 b = 1. In other words, (ab) mod n = 1. Thus ab + kn = 1 

for some integer k. By Corollary 35.9, a and n are relatively prime. 

(¢=)Suppose a and n are relatively prime. By Corollary 35.9, there are 

integers x andy such that ax+ ny = 1. Let h = x mod n. Sob = x + kn 

for some integer k. Substituting into ax+ ny = 1, we have 

1 =ax+ ny = a(b- kn) + ny = ab + (y- ka)n. 

Therefore a 0 b = ab (mod n) = 1. Thus h is the reciprocal of a and 

therefore a is an invertible element of Zn. • 

We now know that the invertible elements of Zn are exactly those that are 

relatively prime to n. Also, the proof of Theorem 36.14 gives us a method to 

calculate inverses. 
Let a E Zn and suppose gcd(a, n) = 1. Thus there are integers x andy such 

that ax+ ny = 1. To find the numbers x andy, we use back substitution in Euclid's 

Algorithm (see Section 35). 

Example 36.15 In Z431 , find 29-1. 

Solution. In Section 35, we found integers x and y such that 431x + 29y = 1, 

namely x = 7 andy= -104. Therefore ( -104 · 29) mod 431 = 1. 

However, -104 ~ Z43 1. Instead we can take 

b = -104 mod 431 = 327. 

Now 29 0 327 = (29 · 327) mod 431 = 9483 mod 431 = 1. Therefore 29-- 1 

327. 
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Example 36.16 In Z 431 , calculate 30 0 29. 

36 Exercises 

Solution. In the previous example, we found 29-1 = 327. Therefore 

30 0 29 = 30 0 327 = (30 · 327) mod 431 = 9810 mod 431 = 328. 

A Note on Notation 

In this book we use different symbols for ordinary addition+ and modular addition 

E9. This is important because when proving theorems about E9, we often have both 

a + b and a E9 b in the same equation. It would be terribly confusing to write a + b 

for both. 
The good news is that throughout this book, we are consistent in using E9 for 

addition in Zn and + for addition in Z or Q. It is still your responsibility to be 

aware of the modulus (n) currently under discussion. 
The bad news is that this E9 notation is not standard. When mathematicians 

work in Zn, they just write a + b or ab in place of a E9 b and a 0 b, respectively. 

The mathematician typically writes a phrase such as "working in Zn" or 

"working modulo n" and then uses the conventional operation symbols. 

Recap 

We introduced the number system Zn. This is the set {0, 1, ... , n - 1} together 

with the operations E9, e, 0, and 0. 
The operations E9, e, and 0 are similar to +, -, and x, respectively; one 

simply operates on the integers in the usual way and then reduces mod n. 

The operation 0 is more subtle. We defined reciprocals in Zn and showed 

that an element of Zn is invertible if and only if it is relatively prime to n. We 

can use Euclid's gcd algorithm to compute reciprocals in Zn. We then defined 

a 0 b = a 0 b- 1 just when b is invertible. If b is not invertible, then a 0 b is 

undefined. 

36.1. In the context of Z 10 , please _s::alculate: 
a. 3 E9 3. 
b. 6 E9 6. 
c. 7 E9 3. 
d. 9 E9 8. 
e. 12 E9 4. [Be careful. The answer is not 6.] 

f. 3 0 3. 
g. 404. 
h. 7 03. 
i. 50 2. 
j. 60 6. 
k. 406. 
1.401. 

m. 12 0 5. 
n. 5 e 8. 



The order of operations in 

Zn is the same as in 

ordinary arithmetic. The 

expression x 0 x EB 1 

should be parenthesized as 

(x 0 x) EB 1. In essence, 

this problem is asking you 

to determine whether or 

not there is a R in Z" 

for various prime numbers 

p. 
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o. 885. 
p. 807. 
q. 5 09. 

36.2. Solve the following equations for x in the 7l 11 specified. 

a. 3 0 x = 4 in 'llu. 

b. 4 0 X 8 8 = 9 in ?l11 . 

c. 3 0 x EB 8 = 1 in 7l 10 . 

d. 342 0 x EB 448 = 73 in ?l 1003. 

36.3. Solve the following equations for x in the 7l11 specified. Note: These are 

quite different from the previous set of problems. Why? Be sure you find 

all solutions. 

a. 2 0 x = 4 in 'llw. 

b. 2 0 x = 3 in 'llw. 

c. 9 0 x = 4 in 7l12 . 

d. 9 0 x = 6 in 'll12. 

36.4. Here are a few more equations for you to solve in the 7l 11 specified. Be sure 

to find all solutions. 

a. x 0 x = 1 in 7l 13 . 

b. X 0 X = 11 in 7l 13 . 

C. X 0 X = 12 in 7l 13 . 

d. x ® x = 4 in 'llts· 

e. x 0 x = 1 0 in 'llts. 

f. x ® x = 14 in 'llts. 

36.5. For some prime numbers p, the equation x ® x E5l 1 = 0 has a solution in 

7l P. For other primes it does not. For example, in 7l17 we have 4 ® 4 E5l 1 = 0, 

but in Z 19 there is no solution. The equation has a solution for p = 2, but 

this is not a particularly interesting example. 

Investigate the first several (say, to 103) odd prime numbers p and 

divide them into two categories: those for which x ® x EB 1 = 0 has a 

solution in 7l P and those for which it does not. I recommend that you write 

a computer program to do this. 

State a conjecture based on your evidence. 

36.6. Prove: For all a, b E Z 11 , (a 8 b) EB (b 8 a) = 0. 

36.7. Prove that the operations EB, ®, and e are closed. This means that if 

a, b E Z11 , then a EBb, a® b, a e bare all elements of Z 11 • 

36.8. Prove Proposition 36.4. Why is this proposition restricted to n ::=:: 2? 

36.9. Use Proposition 36.7 as the definition of e and then prove the assertion in 

Definition 36.6 as a theorem. 

36.10. For ordinary integers, the following is true. If ab = 0, then a = 0 orb = 0. 

The analogous statement for 7l11 is not necessarily true. For example, in Z10, 

2®5 = 0 but 2 =J 0 and 5 =J 0. However, for some values ofn (e.g., n = 5) 

it is true that a® b = 0 implies a = 0 orb= 0. 

For which values of n ::=:: 2 does the implication 

a= 0 orb= 0 

hold in Z 11 ? 
Prove your answer. 
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36.11. Prove Proposition 36.11. 
36.12. Let n be a positive integer and suppose a, b E 7L11 are lfoth invertible. Prove 

or disprove each of the following statements. 
a. a E9 b is invertible. 
b. a e b is invertible. 
c. a ® b is invertible. 
d. a 0 b is invertible. 

36.13. Let n be an integer with n 2:: 2. Prove that in 7L11 the element n - 1 is its 
own inverse. 

36.14. Modular exponentiation. Let b be a positive integer. The notation ab means 
to multiply a by itself repeated, with a total of b factors of a; that is, 

ab = a x a x · · · x a . 

b times 

The notation for 7L11 is the same. If a E 7L11 and b is a positive integer, in the 
context of Zn we define 

ab = a ® a ® · · · ® a . 

b times 

Please do the following: 
a. In the context of Zn, prove or disprove: ab = ab mod n. 
b. Without the aid of a computer or a calculator, find, in 7L 100 , the value 

of 364
. 

The most horrible way to do this problem is to fully calculate 364 and 
then reduce mod 100 (although this will give the correct answer­
why?). 
A less horrible way is to multiply 3 by itself 64 times, reducing mod 100 
at each stage. This requires you to do 63 multiplication problems. 
Try to do this calculation using only 6 multiplications, including the 
very first 3 x 3 = 9. 

c. Estimate how many multiplications you need to do to calculate ab in 

Zn. 
d. Give a sensible definition for a0 in 7L 11 • 

e. Give a sensible definition for ab in 7L 11 when b < 0. Should you be upset 
that a- 1 already has a meaning? 

37 The Chinese Remainder Theorem 
In this section, we investigate how to solve equations that involve modular equiv­

alences. 

Solving One Equation 

We start with an easy example. 
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Example 37.1 Solve the equation 

x = 4 (mod 11). 

Solution. This asks for all integers x such that x - 4 is a multiple of 11 (i.e., 

x - 4 = 11k for some integer k). We can rewrite this as x = 4 + 11k where k can 

be any integer. 
So the solutions are ... , -18, -7, 4, 15, 26, .... 

Let's now work on a more complicated example. 

Example 37.2 Solve the equation 

3x = 4 (mod 11). (42) 

Suppose, just for a moment, that we had a solution x0 to the equation 3x = 

4 (mod 11). Now consider the integer x 1 = x0 + 11. If we substitute x 1 for x in 

Equation ( 42), we get 

3x1 = 3(x0 + 11) = 3xo + 33 = 3x0 = 4 (mod 11) 

so x1 is also a solution. Thus, if we add or subtract any multiple of 11 to a solution 

to Equation ( 42), we obtain another solution to Equation (42). So if there is a 

solution, then there is a solution in {0, 1, 2, ... , 1 0} = Z 11 • Once we find all the 

solutions in Z 11 , we have found all solutions to the equation. 

Now there are only 11 possible values of x we need to try, and it might 

be simplest just to try all the possibilities to find the answer. However, we want 

to generalize this method to problems where the modulus is a great deal larger 

than 11. 
We seek a number x E Z 11 for which 3x = 4 (11). But note that 

3x = 4 (11) ( 3x) mod 11 = 4 {::=::::} 30x=4 

where 0 is modular multiplication in Z 11 . How do we solve the equation 3 0 x = 4 

in Z11 ? We would like to divide both sides by 3. Do we get x = ~?Nonsense!· 

That is not how we divide in Z 11 . We multiply both sides of 3 0 x = 4 by 3-t. By 

the methods of Section 36, we can calculate 3-1 = 4, and so 

(because 12 mod 11 = 1 and 16 mod 11 = 5). 

Let's check this answer in Equation (42). We substitute x = 5 and calculate 

3x = 15 = 4 (mod 11) 

and so 5 is a solution. Furthermore, there are no other solutions in Z 11. If x' E Z11 

were another solution, we would have 3 0 x' = 4, and when we 0 both sides by 

? 4, we would find x' = 5. 
Although 5 is the only solution in Z 11 , it is not the only solution to Equa­

tion (42). If we add any multiple of 11 to 5, we get another solution. The full set 
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of solutions is {5 + llk : k E Z} = { ... , -17, -6, 5, 16, 27, .. J This completes 

the solution to Example 37 .2. 
We summarize what we have learned in the following result. 

Proposition 37.3 Let a, b, n E Z with n > 0. Suppose a and n are relatively prime and consider the 

equation 

ax= b (mod n) 

The set of solutions to this equation is 

{xo + kn : k E Z} 

where x0 = a0
1 0 b0 , ao = a mod n, b0 = b mod n, and 0 is modular multipli­

cation in Zn. The integer x0 is the ... only solution to this equation in Zn. 

We have essentially done the proof by solving Equation ( 42). Please write out 

the proof yourself, using our solution to Equation ( 42) as a guide. 

It is not hard to extend Proposition 37.3 to solve equations of the form 

ax+ b = c (mod n) 

where a and n are relatively prime. 

Solving Two Equations 

Now we solve a pair of congruence equations in different moduli. The type of 

problem we solve is 

x =a (mod m), and 

x = b (mod n). 

Let's work out the solution to the following problem. 

Example 37.4 Solve the pair of equations 

We can check that 7- 1 = 8 

by calculating 7 ® 8 = 
(7 · 8) mod l 1 = 
56 mod II = I. 

x = 1 (mod 7), and 

x = 4 (mod 11). 

In other words, we want to find all integers x that satisfy both of these 

equations. 
Let's begin with the first equation. Since x = 1 (7), we can write 

X= 1 + 7k 

for some integer k. We can substitute 1 + 7 k for x in the second equation: x = 
4 (11). This gives 

1 + 7k = 4 (mod 11) =} 7k = 3 (mod 11). 

The problem now reduces to a single equation ink. We apply Proposition 37.3. 

To solve this equation, we need to 0 both sides by 7-I working in Z11 . In Zn we 



Section 37 The Chinese Remainder Theorem 323 

find that 7-1 = 8. We calculate, in Z 11 , 

7 ® k = 3 ==> 8 ® 7 ® k = 8 ® 3 ==> k = 2. 

Furthermore, if we increase or decrease k = 2 by any multiple of 11, we again 

have a solution to 1 + 7k = 4 (11). 

We are nearly finished. Let's write down what we have. We know that we want 

all values of x with 

X= 1 + 7k 

and k can be any integer of the form 

k = 2 + llj 
where j is any integer. Combining these two, we have 

X = 1 + 7k = 1 + 7(2 + llj) = 15 + 77 j (V j E Z). 

In other words, the solution set to the equations in Example 37.4 is {x E Z : x = 
15 (77)}. 

To check that this is correct, notice that 

15 = 1 (mod 7) and 15 = 4 (mod 11). 

Furthermore, if x is increased or decreased by any multiple of 77, both equations 

remain valid because 77 is a multiple of both 7 and 11. 

Theorem 37.5 (Chinese Remainder) Let a, b, m, n be integers with m and n positive and rela­

tively prime. There is a unique integer x0 with 0 .::::: x0 < mn that solves the pair 

of equations 

x =a (mod m), and 

x = b (mod n). 

Furthermore, every solution to these equations differs from x0 by a multiple of mn. 

We saw all the steps to prove the Chinese Remainder Theorem when we solved 

the system in Example 37 .4. The general proof follows the method of that example. 

Proof. From the equation x =a (m), we know that x =a+ km where k E Z. 

We substitute this into the second equation x = b (n) to get 

a+ km = b (n) ==> km = b- a (n) 

and we want to solve this fork. Note that adding or subtracting a multiple of n to 

b - a or to m does not change this equation. So we let 

m'=mmodn, and 

c = (b -a) modn 

Since m and n are relatively prime, so are m' and n (see Exercise 35.12). Thus 

solving km = b- a (n) is equivalent to solving km' = c (n). To find a solution 
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k0m' =c. 

Since m' is relatively prime ton, we can 0 both sides by its reciprocal to get 

k = (m')- 1 0 c. 

Let d = (m')- 1 0 c, so the values for k that we want are k = d + jn for all 
integers j. 

Finally, we substitute k = d + jn into x =a+ km to get 

x =a+ km =a+ (d + jn)m =a+ dm + jnm 

where j E Z is arbitrary. We have shown that the original system of two equations 
reduces to the single equation 

x =a +dm (mod mn) 

and the conclusions follow. • 

Example 37.6 Suppose we want to solve a system of three equations. For example, solve for 
all x: 

x = 3 (mod 9), 

x = 5 (mod 10), and 

x = 2 (mod 11). 

Solution: We can solve the first two equations by the usual method 

X= 3 (9) } 
X = 5 (IO) =} X = 75 (90). 

Now we combine this result with the last equation and solve again by the usual 
method. 

X= 
75 (90)} =} X= 255 (990). 

X= 2 (11) 

Recap 

We investigated how to solve equations of the form ax + b = c (n) as well as 
systems of equations of the form x = a (m) and x = b (n) where m and n are 
relatively prime. 

37 Exercises 37.1. Solve the following for all integers x. 
a. 3x = 17 (mod 20). 
b. 2x + 5 = 7 (mod 15). 
c. 10- 3x = 2 (mod 23). 
d. 100x = 74 (mod 127). 

37.2. Prove Proposition 37.3. 



These inverses exist 

because m 1 and m 2 are 

relatively prime. 

38 
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37 .3. Solve the following systems of equations. 

a. x = 4 (5) and x = 7 (11). 

b. x = 34 (100) and x = -1 (51). 

c. x = 3 (7), x = 0 (4), andx = 8 (25). 

d. 3x = 8 (10) and 2x + 4 = 9 (11). 

37 .4. Explain why it is important for a and n to be relatively prime in the equation 

ax = b (n). Specifically, you should do the following: 

a. Create an equation of the form ax = b (n) that has no solutions. 

b. Create an equation of the form ax = b (n) that has more than one 

solution in Zn. 
37.5. For the pair of equations x =a (m) and x = b (n), explain why it is im­

portant that m and n be relatively prime. Where in the proof of Theorem 37.5 

did we use this fact? 
Give an example of a pair of equations x = a (m) and x = b (n) that 

has no solution. 
Give an example of a pair of equations x = a (m) and x = b (n) that 

has more than one solution in Znm. 

37 .6. Consider the system of congruences 

x = a 1 (mod m1) 

x = a2 (mod m2) 

where m 1 and m 2 are relatively prime. Let b1 and h be integers where 

b -1 
1 =m1 

b -1 
2 = m2 

Finally, let 

xo = m1b1a2 + m2ha1. 

Please prove that x0 is a solution to the system of congruences. 

37.7. Use the technique of the previous problem to solve the following systems 

of congruences. 
a. x = 3 (mod 8) and x = 2 (mod 19). 

b. x = 1 (mod 10) and x = 3 (mod 21). 

Factoring 
In this section we prove the following well-known fact: Every positive integer can 

be factored into primes in (essentially) a unique fashion. For example, the integer 

60 can be factored into primes as 60 = 2 x 2 x 3 x 5. It can also be factored 

as 60 = 5 x 2 x 3 x 2, but notice that the primes in the two factorizations are 

exactly the same; the only difference is the order in which we listed them. This is 

true of all positive integers (we can treat 1 as the empty product of primes-see 

Section 8). We can consider prime numbers to be already factored into primes: a 

prime, say 17, is the product of just one prime: 17. Composite numbers are the 

product of two or more primes. 
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Theorem 38.1 (Fundamental Theorem of Arithmetic) Let n be a positive integer. Then n fac­

tors into a product of primes. Furthermore, the factorization of n into primes is 

unique up to the order of the primes. 

The phrase "up to the order of the primes" means that we treat 2 x 3 x 5 the 

same as 5 x 2 x 3. 
A key tool in the proof of this theorem is the following result. 

Lemma 38.2 Suppose a, b, p E Z and pis a prime. If piab, then pia or pi b. 

Note: If we already had a proof of Theorem 38.1, this lemma would be simple 

to prove (see Exercise 38.5). 

Proof. Let a, b, p be integers with p prime and suppose piab. Suppose, for the 

sake of contradiction, that p divides neither a nor b. 

Since p is a prime, the only divisors of p are ± 1 and ± p. Since p is not a 

divisor of a, thelargestdivisortheyhaveincommonis 1. Thereforegcd(a, p) = 1 

(i.e., a and p are relatively prime). Thus, by Corollary 35.9, there are integers x 

andy such that ax+ py = 1. 
Similarly, band p are relatively prime. By Corollary 35.9, there are integers 

wand z such that bz + pw = 1. 

We have found that ax + py = 1 and bz + pw = 1. Multiplying these two 

equations together, we get 

1 = (ax+ py)(bz + pw) = abxz + pybz + paxw + p2yw. 

Notice that all four of these terms are divisible by p (the first term is a multiple of 

ab, which in turn is a multiple of p by hypothesis). We have shown that pll, but 

this is clearly false.=}{= • 

Lemma 38.3 Suppose p, q1, q2 , ••. , qt are prime numbers. If 

then p = q i for some 1 :::: i :=:: t. 

You can prove Lemma 38.3 by induction on t (or by the smallest­

counterexample method). See Exercise 38.6. 

Proof (of Theorem 3 8.1) 

Suppose, for the sake of contradiction, that not all positive integers factor into 

primes. Let X be the set of all positive integers that do not factor into primes. Note 

that 1 tj. X because we can factor 1 into an empty product of primes. Also 2 tj. X 

because 2 is a prime (and factors 2 = 2). 
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By the Well-Ordering Principle, there is a least element of X; let's call itx. The 

integer xis the smallest positive integer that does not factor into primes. Note that 

x =f. 1 (discussed in the previous paragraph). Furthermore, x is not prime, since 

every prime is the product of just one number (itself). Therefore x is composite. 

Since x is composite, there is an integer a with 1 < a < x and a lx. This 

means there is an integer b with ab = x. Since a < x, we may divide both sides 

of ab = x by a to get 1 < ~ = b. Because 1 < a, we may multiply both sides 

by b to get b < ab = x. Thus 1 < b < x. Therefore a and b are both positive 

integers less than x. Since x is the least element of X, we know that neither a nor 

b is in X, so both a and b can be factored into primes. Suppose the factorizations 

of a and bare 

a = PI P2 · · · Ps and b = q1 q2 · · · qt 

where the ps and qs are prime. Then 

is a factorization of x into primes, contradicting x E X.=>{:::: Therefore all positive 

integers can be factored into primes. 

Now we work to show uniqueness. Suppose, for the sake of contradiction, 

that some positive integers can be factored into primes in two distinct ways. Let 

Y be the set of all such integers with two (or more) distinct factorizations. Note 

that 1 ¢: Y because 1 can be factored only as the empty product of primes. The 

supposition is that Y =f. 0, and therefore Y contains a least element y. Thus y can 

be factored into primes in two distinct ways: 

Y = P1 P2 · · · Ps and 

y=qlq2···qt 

where the ps and qs are primes and the two lists of primes are not rearrangements 

of one another. 
Claim: The list (p1, p2, ... , Ps) and the list (q1, q2, ... , qt) have no elements in 

common(i.e., Pi =f. qjforalli andj). Ifthetwolistshadaprimeincommon-say, 

r-then y I r would be a smaller integer (than y) that factors into primes in two 

distinct ways, contradicting the fact that y is smallest in Y. 

Now consider Pl· Notice that P1iy, so P1i(q1q2···qt). However, by 

Lemma 38.3, p 1 must equal one of the qs, contradicting the claim we just 

proved.=:>{= 
• 

Infinitely Many Primes 

How many primes are there? At first, it is very easy to find primes; almost every 

other number is prime: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, and so on. This suggests 

that there could be infinitely many primes. However, this pattern does not continue. 

In Exercise 8.9 you found a sequence of 1001 consecutive composite numbers. 

Perhaps, after a point, there are no more primes. 

Although the prime numbers thin out as we look deeper into the positive 

integers, they never die out completely. There are infinitely many primes. 
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Theorem 38.4 

This proof can also be 

viewed as a]s:orithm for 

generatint: pnmes. Given 

that we !;!Cnerated 

primes from 2 to p. the 

prime fa-:~,w, of 

n=2 
be new 

11 ·T- 1 must 

The notat1:1111nin{u. h} 

stanJ~ 1m ~mallcr of o 

or b. Tha1 if u S h. then 

min(a./•) otherwise 

min{u. h) h. 

(Infinitude of primes) There are infinitely many prime numbers\c 

Proof. Suppose, for the sake of contradiction, that there are only finitely many 

prime numbers. In such a case, we could (in principle) list them all: 

2, 3, 5, 7' ... 'p 

where pis the (alleged) last prime number. Let 

n = (2 X 3 X 5 X · · · X p) + 1. 

That is, n is the positive integer formed by multiplying together all the prime 

numbers and then adding 1. 
Is n a prime? 
The answer is no. Clearly n is greater than the last prime p, son is not prime. 

Since n is not prime, n must be composite. 

Let q be any prime. Because 

n = (2 X 3 X · • · X q X · • · X p) + 1, 

when we divide n by q, we are left with a remainder of 1. We see that there is no 

prime number q with qln, contradicting Theorem 38.1.==?--¢:= • 

A Formula for Greatest Common Divisor 

Suppose a and bare positive integers. By Theorem 38.1, we can factor them into 

primes as 

and (43) 

For example, if a = 24 we would have 

24= 23315°7°···. 

Suppose a I b. Let p be a prime and suppose it appears e P times in the prime 

factorization of a. Since pep Ia and alb, we have (by Proposition 4.3) pep lb, and 

therefore peP lpfp. Thus e P ::: fp· In other words, if alb, then the number of factors 

of p in the prime factorization of a is less than or equal to the number of factors 

of p in the prime factorization of b. 

Thus, if a and bare as in Equation (43) and if d = gcd(a, b), then 

where x 2 

example, 

and so 

min{e2, h}, X3 = min{e3, /3}, xs = min{es, fs}, and so on. For 

and 

gcd(24, 30) = 2min{3,1}3min{1,1}5min{O,l}7min{O,O] ... = 21315o7o ... = 6. 

Let us summarize what we have observed in the following result. 
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Theorem 38.5 (GCD formula) Let a and b be positive integers with 

and 

Then 

Irrationality of ,J2 

Is there a square root of 2? In other words, is there a number x such that x 2 = 2? 

This is actually a subtle question. In this section, we show that there is no rational 

number x such that x 2 = 2. 

Proposition 38.6 There is no rational number x such that x 2 = 2. 

In effect, this is asking us to show that the set {x E Q : x 2 = 2} is empty. To 

show that something does not exist, we use Proof Template 13. 

Proof. Suppose, for the sake of contradiction, that there is a rational number x 

such that x 2 = 2. This means there are integers a and b such that x = ~. 

We therefore have ( ~) 2 
= 2. This can be rewritten 

a2 = 2b2
• 

Consider the prime factorization of the integer n = a2 = 2b2 • On the one hand, 

since n = a2 , the prime 2 appears an even number (perhaps zero) of times in the 

prime factorization of n. On the other hand, since n = 2b2, the prime 2 appears an 

odd number of times in the prime factorization of n. ==}{=Therefore, there is no 

rational number x such that x 2 = 2. • 

There is a real number :X that satisfies x 2 = 2, but the proof of this fact is 

complicated. First, we need to define real number. Second, we need to define what 

it means to multiply two real numbers. Finally, we have to show that x 2 = 2 has a 

solution. All of these are a job for continuous mathematics, and we do not venture 

into that realm here. 
There are many lovely proofs that -J2 is irrational. Here is another. 

Proof (of Proposition 38.6) 

Suppose there is a rational number x such that x 2 = 2. Write x = ~·By Exer­

cise 35.17, we may choose a and b to be relatively prime. 

Because a and b are relatively prime, there is no prime that divides both. 

Since ~ = 2, we have 
a 

Factor both sides of this equation into primes; the two sides of this equation are 

integers that are greater than or equal to 2. Let p be one of the primes in the 
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Geometry abbreviations: 

The HL theorem asserts 

that given two right 
triangles, if the hypotenuse 

and a leg of one triangle 

are congruent to the 
hypotenuse and a leg of a 

second triangle, then the 

triangles are congruent. 

The abbreviation CPCTC 

stands for corresponding 

parts of congruent 

triangles are congruent. 

factorization. Looking at the left-hand side, we see that the l)Jrime factorization 

of b2 is simply the prime factorization of b with every prime appearing twice as 

often. So if p 1 b2, clearly p is a divisor of b and not a divisor of a. Looking at the 

right-hand side, we see that p must be a divisor of 2, sop = 2. We have shown 

that the only prime divisor of b2 = 2a2 is 2. Since 21b and gcd(a, b) = 1, we see 

that a does not have any prime divisors! Thus a = ± 1 and we have 

In other words, there is an integer b with b2 

integer. 

Here is yet another proof that uses geometry. 

Proof (of Proposition 38.6) 

2, and clearly there is no such 

• 

Suppose, for the sake of contradiction, there is a rational number x such that 

x 2 = 2. We may assume x is positive, for otherwise we could simply use -x 

instead [since ( -x)2 = x 2 = 2]. 
Since x is rational, write x = !!. where a and b are both positive and are as 

a 

small as possible. 
Write x 2 = 2 as a2 + a2 = b2

. Construct an isosceles right triangle XYZ (with 

right angle at Y) whose legs have length a and whose hypotenuse has length b. 

See the figure. 

~--------::.~~o,··/ """" :z 
~--------------a 

Swing an arc centered at Z from Y meeting the hypotenuse at point P. Because 

the segment ZP has length a (it is a radius of the arc), the segment XP has length 

b -a. 
Erect a perpendicular at P that meets leg XY at the point Q. Notice that XPQ 

is also an isosceles right triangle (angle X is 45°) and so segment PQ has length 

b -a. 
Now triangles ZPQ and ZYQ are congruent because they are right triangles 

with the same hypotenuse (QZ) and congruent legs YZ and PZ (use the HL theorem 

from geometry). Therefore, by CPCTC, PQ and YQ are congruent. Since the length 

of PQ isb-a, the length of YQ is the same. 
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Thus, since the length of YQ isb-a and the length of XY is a, the length of 

XQ is a - (b- a) = 2a -b. 

Claim: b >a, and hence b- a> 0. 

This is because ( ~) 2 
= 2, and if b s a, we would have ( ~) 2 s 1. (Also, 

the length of the hypotenuse of a right triangle is greater than that of its legs.) 

Claim: 2a - b > 0. 
If this were not so, we would have 

contradicting ; = 2. 
a 

Claim: (b- a) 2 + (b- a)2 = (2a- b)2 . 

b2 
- >4 

2 -a 

This follows by the Pythagorean Theorem applied to triangle XPQ. 

Therefore 

(
2a- b) 2 

= 2 
b-a 

where b' = 2a - b and a' = b -a. Since triangle XQP is strictly inside triangle 

XYZ, we have a' < a and b' < b, contradicting the choice of a and bas small as 

possible. • 

Recap 

We showed that every positive integer factors uniquely into a product of primes. 

We proved there are infinitely many primes, and we used prime factorization to 

develop a formula for the greatest common divisor of two positive integers. We 

proved that there is no rational number whose square is 2. 

38.1. Suppose you wish to factor a positive integer n. You could write a computer 

program that tries to divide n by all possible divisors between 1 and n. If n 

is around one million, this means performing around one million divisions. 

Explain why this is not necessary and that it is enough to check all 

possible divisors from 2 up to (and perhaps including) .jii. 
If n is around one million, then .jii is around one thousand. 

38.2. Factor the following positive integers into primes. 

a. 25. 
b. 4200. 
c. 1010 . 

d. 19. 
e. 1. 

38.3. Let x be an integer. Prove that 21x and 31x if and only if 61x. 
Generalize and prove. 

38.4. Suppose a is a positive integer and p is a prime. Prove that pIa if and only 

if the prime factorization of a contains p. 



332 Chapter 7 Number Theory 

Euler's totient, <p(n). 

38.5. Prove Lemma 38.2 using Theorem 38.1. " 
38.6. Prove Lemma 38.3 by induction (or Well-Ordering Principle) using Lemma 

38.2. 
38.7. Suppose we wish to compute the greatest common divisor of two 1 000-digit 

numbers using Theorem 38.5. How many divisions would this take? (As­
sume we factor using trial division up to the square roots of the numbers.) 

How would this compare to using Euclid's Algorithm? 
38.8. Let a and b be integers. A common multiple of a and b is an integer n for 

which aln and bin. We call an integer m the least common multiple of n 
provided (1) m is positive, (2) m is a common multiple of a and b, and 
(3) if n is any other positive common multiple of a and b, then n ~ m. 

The notation for the least common multiple of a and b is lcm(a, b). 
For example, lcm(24, 30) = 120. 

Please do the following: 
a. Develop a formula for the least common multiple of two positive in­

tegers in terms of their prime factorizations; your formula should be 
similar to the one in Theorem 38.5. 

b. Use your formula to show that if a and b are positive integers, then 

ab = gcd(a, b)lcm(a, b). 

38.9. Let a E Z and suppose a 2 is even. Prove that a is even. 
38.10. Generalize the previous exercise. Prove that if a, p E Z with p a prime 

and pla 2
, then pia. 

38.11. Prove that consecutive perfect squares are relatively prime. 
38.12. Let n be a positive integer and suppose we factor n into primes as follows: 

where the pjs are distinct primes and the ejs are natural numbers. 
Find a formula for the number of positive divisors of n. For example, 

if n = 18, then n has six positive divisors: 1, 2, 3, 6, 9, and 18. 
38.13. Recall (see Exercise 2.9) that an integer n is called peifect if it equals the 

sum of all its divisors d with 1 _:::: d < n. For example, 28 is perfect because 
1 + 2 + 4 + 7 + 14 = 28. 

Let a be a positive integer. Prove that if 2a - 1 is prime, then n = 
2a-l (2a - 1) is perfect. 

38.14. In this problem we consider the question: How many integers, from 1 ton 
inclusive, are relatively prime ton? For example, suppose n = 10. There 
are ten numbers in {1, 2, ... , 10}. Of them, the following are relatively 
prime to 10: {1, 3, 7, 9}. So there are four numbers from 1 to 10 that are 
relatively prime to 10. 

The notation cp (n) stands for the answer to this counting problem; that 
is, cp(n) is the number of integers from 1 ton (inclusive) that are relatively 
prime to n. From our example, cp(lO) = 4. The symbol cp is a Greek 
lowercase letter phi. The function cp is known as Euler's totient. 

Please evaluate the following: 
a. cp(14). 
b. cp(15). 



Section 38 Factoring 333 

c. cp(16). 
d. cp(17). 
e. cp(25). 
f. cp(5041). Note: 5041 = 71 2 and 71 is prime. 
g. cp(21o). 

Note: You could do all of these by listing all the possibilities, but the last two 
would be painful. Try to develop general methods (or see the next problem). 

38.15. Euler's totient, continued. Suppose p and q are unequal primes. Prove the 
following: 
a. cp (p) = P - 1. 
b. cp(p2) = p2- p. 
c. cp(pn) = pn - pn-l where n is a positive integer. 

d. cp(pq) = pq- q- p + 1 = (p- 1)(q- 1). 

38.16. Euler's totient, continued further. Suppose n = P1P2 · · · p 1 where the PiS 
are distinct primes (i.e., no two are the same). For example, n = 2 x 3 x 

11 = 66 is such a number. Prove that 
n n n 

cp(n) = n - - - - - · · · - -

For example, 

P1 Pz Pt 
n n n 

+--+--+ .. ·+--
P1P2 P1P3 Pt-lPt 

n n n 
---------···-----

n + ...... ±----­
P1P2P3 · · · Pt 

Pt-2Pr-1Pr 

66)-66-66_66_66 66 ~ ~- 66 
cp( - 2 3 11 + 2. 3 + 2. 11 + 3. 11 2. 3. 11 

= 66 - 33 - 22 - 6 + 11 + 3 + 2 - 1 

= 20. 

Note that this formula simplifies to 

~(n)=n(l- ;J (1- ;J··(l- ;} 
For example, cp(66) = 66(1- !)(1- ~)(1-ti) = 20. 

38.17. Again with Euler's totient. Now suppose n is any positive integer. Factor 
n into primes as 

n = pft p~2 ... p~' 
where the Pis are distinct primes and the exponents ai are all positive inte­

gers. Prove that the formulas from the previous problem are valid for this 

general n. 
38.18. Rewrite the second proof of Proposition 38.6 to show the following: 

Let n be an integer. If -J1i is not an integer, then there is no rational 

number x such that x 2 = n. 
38.19. Explain why we may assume a and bare both positive in the third proof 

of Proposition 38.6. 
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38.20. Prove that log2 3 is irrational. v 
38.21. Sieve of Erasothenes. Here is a method for finding many prime numbers. 

Write down all the numbers from 2 to, say, 1000. Notice that the smallest 
number on this list (2) is a prime. Cross off all multiples of 2 (except 2). 
The next smallest number on the list is a prime (3). Cross off all multiples 
of 3 (except 3 itself). The next number on the list is 4, but it's crossed off. 
The next smallest number on the list that isn't crossed off is 5. Cross off 
all multiples of 5 (except 5 itself). 
a. Prove that this algorithm crosses off all composite numbers on the list 

but retains all the primes. 
b. Implement this algorithm on a computer. 
c. Let n(n) denote the number of primes that are less than or equal ton. 

For example, n (19) = 8 because there are eight primes that are less 
than or equal to 19-namely 2, 3, 5, 7, 11, 13, 17, and 19. 
Use your program from part (b) to evaluate n(lOOOOOO). 

d. The Prime Number Theorem states that n(n) ~ nj Inn. How good is 
this approximation when n = 1 ,000,000? 

38.22. In this and the subsequent problems, you will be working in a different 
number system. The goal is to illustrate that unique factorization of prime 
numbers is a special feature of the integers. 

We consider all numbers of the form 

a+b~ 

where a and b are integers. For example, 5 - 2J=3 is a number in this 
system, but ~ is not. 

This number system is denoted Z[ J=3]. That is, Z[ J=3] is the set 

Z[~J ={a +b~: a,b E Z}. 

Please do the following: 
a. Prove that if w, z E Z[J="j"], then w + z E Z[J=3]. 
b. Prove that if w, z E Z[ J=3], then w - z E Z[ J=3]. 
c. Prove that if w, z E Z[ J=3], then wz E Z[ J=3]. 
d. Find all numbers w such that both wand w- 1 are in Z[ J=3]. 

38.23. Let w = a + bJ=3 E Z[ J=3]. Define the norm of w to be 

N(w) = a 2 + 3b2
• 

Please do the following: 
a. Prove that if w, z E Z[ J=3], then N(wz) = N(w)N(z). 
b. Find all wE Z[J=3] with N(w) = 0, with N(w) = 1, with N(w) = 

2, with N(w) = 3, and with N(w) = 4. 
38.24. Let w, z E Z[J=3]. We say that w divides z provided there is a q E 

Z[ J=3] with wq = z. In this case, we call w a factor of z. 
We call p E Z[ -J=3"] irreducible if and only if (1) p =f. 1 and p =f. -1 

and (2) the only factors of p are ±1 and ±p. Irreducible elements of 
Z[ -J=3"] are much like primes in Z (only we do not consider negative 
integers to be prime). 
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Determine which of the following elements ofZ[ -J='3] are irreducible. 

a. 1 + 2-J=3. 
b. 2 + -J=3. 
c. 2. 
d. 1 + -J=3. 
e. 3. 
f. 7. 
g. -1. 
h. 0. 

38.25. Let w E Z[ -J='3] with w =!= 0, ± 1. Prove that w can be factored into 

irreducible elements of Z[ -J='3]; that is, we can find irreducible elements 

P1, P2,. · ·, Pt with w = PtP2 · · · Pt· 
38.26. We have reached the main point of this series of problems about Z[ -J='3]. 

Our goal is to make a statement about unique factorization in Z[ ,J=3"]. 
Suppose we factor a into irreducibles as 

a= (p1)(p2)(p3) · · · (p,) 

and consider the factorization 

a= (-p2)(-pJ)(p3) · · · (Pr). 

We consider these factorizations to be the same. We do not care about the 

order of the factors (this is the same as for factoring positive integers into 

primes), and we do not care about stray factors of -1. For example, we con­

sider the following two factorizations of 6 into irreducibles to be the same: 

6 = (2)(V'=3)(-V'=3) and 

6 = (-2)(v-=3)(v-=3). 

These are the same despite the fact that we use 2 in the first factorization 

and -2 in the second-we do not care about sign changes in the factors. 

Thus the following two factorizations of 4 into irreducibles are the 

same: 

4 = (2)(2) = ( -2)( -2). 

Here is the surprise and your job for this problem: Find another factorization 

of 4 into irreducibles. 
Therefore, in the number system Z[ ,J="3], we can factor numbers into 

irreducibles, but the factorization need not be unique! 

Chapter 7 Self Test 

1. Find integers q and r such that 23 = 5q + r with 0 :::; r < 5, and calculate 

23 div 5 and 23 mod 5. 

2. Let a and b be positive integers. Prove that if bja, then a div b = ~· 
3. Let a 2: 2 and b be positive integers and suppose a I ( b! + 1). Prove that a > b. 

4. Let p and q be primes. Prove that gcd(p, q) = 1 if and only if p =!= q. 

5. Find integers x andy such that IOOx + 57y = gcd(lOO, 57). 
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6. Find the reciprocal of 57 in Z 100 . . 

7. Prove that consecutive Fibonacci numbers must be relatively prime; that is, 
gcd(Fn, Fn+l) = 1 for all positive integers n. 

8. Let p be a prime and let n be a positive integer. Prove that if n is not divisible 
by p, then gcd(n, n + p) = 1. 

9. Let p be a prime and let n be a positive integer. Find, in simplest possible 
terms, the sum of the positive divisors of pn. 

10. In Z 101 , please calculate the following: 
a. 55 E9 66. 
b. 55 e 66. 
c. 55® 66. 
d. 55 066. 

11. Let n be an integer with n :::: 2. Prove that n is prime if and only if all nonzero 
elements of Zn are invertible. 

12. Find all integers x that satisfy the following pair of congruences: 

x = 21 (mod 64) and 

x = 12 (mod 51). 

13. Let a and b be positive integers. Prove that a = b if and only if gcd(a, b) = 
lcm(a, b). 

14. Let n = 1010
• 

a. How many positive divisors does n have? 
b. What is <p(n)? 

15. Let n be a positive integer. Prove that n has an odd number of positive divisors 
if and only if n is a perfect square. 

16. Let a, b, c be positive integers. Prove that if albc and gcd(a, b) = 1, then ale. 
17. Let a be a positive integer. Prove that the sum of a consecutive integers is 

divisible by a if and only if a is odd. 
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The word algebra means various things to different people. On the one hand, 
algebra is a high school subject, often studied in conjunction with trigonometry, 
in which students learn how to deal with variables and algebraic expressions. An 
important focus of such a course is solving various types of equations. 

The word algebra also refers to a more advanced, theoretical subject. Math­
ematicians often call this subject abstract algebra to distinguish it from its more 
elementary cousin. 

This chapter is an introduction to the ideas of abstract algebra. We are primarily 
concerned with algebraic systems called groups, but abstract algebra studies other 
exotic systems known as rings, fields, vector spaces, and so on. 

Abstract algebra has a practical side: We combine ideas from number theory 
and group theory in our study of public-key cryptography. 

39 Groups 
Operations 

The first operation we learn as children is addition. Later \X{e move on to more 
complex operations such as division, and in this book, we hav~inves.tigated more 
exotic examples, including 1\ and v defined on the set {TRUE, ~E}, EB and® 
defined on Zn, and o defined on Sn. 

In this section, we take a broader look at operations defined on sets and their 
algebraic properties. First, we present a formal definition of operation. 

Definition 39.1 (Operation) Let A be a set. An operation on A is a function whose domain 
contains A x A. 
-------------------------- ·-·------·-··--·-·--

Recall that A x A is the set of all ordered pairs (two-element lists) whose 
entries are in A. Thus an operation is a function whose input is a pair of elements 
from A. 

337 



338 Chapter 8 Algebra 

Notice that we write 

f(a, b), although it would 

be more proper to write 

fl(a, b)] because we are 

applying the function f to 

the object (a, b). The extra 

brackets, however, tend to 

be a distraction. 

Alternatively, we can think 

of a function defined on 

A x A as a function of two 

variables. 

Example 39.2 

For example, consider the following function f : Z x Z -;-+ Z defined by 
f' 

f(a, b)= Ia- bi. 

In words, f(a, b) gives the distance between a and bon a number line. 

Although the notation f (a, b) is formally correct, we rarely write the operation 

symbol in front of the two elements on which we are operating. Rather, we write a 

symbol for the operation between the two elements of the list. Instead of f (a, b), 

we write a f b. 
Furthermore, we usually do not use a letter to denote an operation. Instead, 

we use a special symbol such as+ or 0 oro. The symbols+ and x have preset 

meanings. A common symbol for a generic operation is*· Thus, instead of writing 

f(a, b)= Ia- hi, we could write a* b = Ia- bj. 

Which of the following are operations on N: +, -, x, and -;-? 

Solution. Certainly addition+ is an operation defined on N. Although+ is more 

broadly defined on any two rational (or even real or complex numbers), it is a func­

tion whose domain includes any pair of natural numbers. Likewise multiplication 

x is an operation on N. 
Furthermore, - is an operation defined on N. Note, however, that the result 

of - might not be an element of N. For example, 3, 7 E N, but 3 - 7 fj. N. 

Finally, division -;- does not define an operation on N because division by zero 

is undefined. However, -;- is an operation defined on the positive integers. 

Properties of Operations 

Operations may satisfy various properties. For example, an operation * on a set 

A is said to be commutative on A if a * b = b * a for all a, b E A. Addition of 

integers is commutative, but subtraction is not. Here we present formal definitions 

of some important properties of operations. 

Definition 39.3 (Commutative property) Let * be an operation on a set A. We say that * is 

commutative on A provided 

'Va, b E A, a * b = b *a. 

Definition 39.4 (Closure property) Let* be an operation on a set A. We say that* is closed on 

A provided 

'Va, bE A, a* bE A. 

Let* be an operation defined on a set A. Note that Definition 39.1 does not 

require that the result of * be an element of the set A. For example, - is an 

operation defined on N, but the result of subtracting two natural numbers might 

not be a natural number. Subtraction is not closed on N; it is closed on Z. 
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Definition 39.5 (Associative property) Let* be an operation on a set A. We say that* is asso­

ciative on A provided 

Va, b, c E A, (a* b)* c =a* (b *c). 

For example, the operations + and x on Z are associative, but - is not. For 

example, (3 - 4) - 7 = -8, but 3 - (4- 7) = 6. 

Definition 39.6 (Identity element) Let* be an operation on a set A. An element e E A is called 

an identity element (or identity for short) for* provided 

Identity elements must 

work on both sides of the 

operation. 

Proposition 39.7 

Va E A, a* e = e *a =a. 

For example, 0 is an identity element for +, and 1 is an identity element for 

x. An identity element for o on Sn is the identity permutation l. 

Not all operations have identity elements. For example, subtraction of integers 

does not have an identity element. It is true that a - 0 = a for all integers a, so 

0 partially satisfies the requirements of being an identity element for subtraction. 

However, for 0 to merit the name identity element for subtraction, we would need 

that 0 - a = a for all integers, and this is false. Subtraction does not have an 

identity element. 
Is it possible for an operation on a set to have more than one identity element? 

Let *be an operation defined on a set A. Then * can have at most one identity 

element. 

Proof. We use Proof Template 14 for proving uniqueness. 

Suppose, for the sake of contradiction, that there are two identity elements, e 

and e', in A withe =f. e'. 
Consider e * e'. On the one hand, since e is an identity element, e * e' = e'. 

On the other hand, since e' is an identity element, e * e' = e. Thus we have shown 

e' = e * e' = e, a contradiction toe =f. e'.=}{= • 

Definition 39.8 (Inverses) Let* be an operation on a set A and suppose that A has an identity 

element e. Let a E A. We call element ban inverse of a provided a* b += b *a = e. 

For example, consider the operation + on the integers. The-identity element 

for+ is 0. Every integer a has an inverse: The inverse of a is simply -a because 

a+(-a) = (-a)+a =0. 
Now consider the operation x on the rational numbers. The identity element 

for multiplication is 1. Most, but not all, rational numbers have inverses. If x E r!J, 

then.!. is x's inverse, unless, of course, x = 0. 
X 

Notice that we require that an element's inverse work on both sides of the 

operation. 
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Must inverses be unique? Consider the following example. 
~ 

Example 39.9 Consider the operation* defined on the set {e, a, b, c} given in the following chart. 

Mathspeak! 
The word fvoup is a 
technical mathematical 
term. Its meaning in 
mathematics is far 
removed from its standard 
English usage. 

* e a b c 

e e a b c 
a a a e e 
b b e b e 
c c e e c 

Notice that e is an identity element. Notice further that both b and c are inverses 
of a because 

and a* c = c *a= e. 

Groups 

Example 39.9 is strange. We know that if an operation has an identity element, it 
must be unique. And it would be quite natural for us to expect "the" inverse of 
an element be unique. However, we cannot say the inverse because we saw that 
an element might have more than one inverse. For most operations we encounter, 
elements have at most one inverse. Some examples: 

If a E Z, there is exactly one integer b such that a + b = 0. 
If a E Q, there is at most one rational number b such that ab = 1. 
If n E Sn, there is exactly one permutation a E Sn such that n o a = a on = t 
(see Exercise 26.15). 

Most operations we encounter in mathematics are associative, and, as we shall 
show, associativity implies uniqueness of inverses. Note that the operation in Ex­
ample 39.9 is not associative (see Exercise 39.4). 

This brings us to the notion of a group. A group is a common generalization 
of the following operations and sets: 

+onZ, 
x on the positive rationals, 
EB on Zn, 
o on Sn, and 
o on symmetries of a geometric object. 

In each of these cases, we have an operation that behaves nicely; for example, in 
all these cases, elements have unique inverses. Here is the definition of a group: 

Definition 39.10 (Group) Let* be an operation defined on a set G. We call the pair (G, *)a group 
provided: 

(1) The set G is closed under*; that is, Vg, h E G, g * h E G. 
(2) The operation* is associative; that is, Vg, h, k E G, (g *h)* k = g * (h * k). 



Mathspeak! 
Our use of the word 
Abelian honors Niels 
Henrik Abel, a Norwegian 
mathematician 
(1802-1829). Abelian 
groups are sometimes 
called additive or 
commutative. 

Definition 39.11 
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(3) There is an identity element e E G for *; that is, :3e E G, V g E G, g * e = 
e * g =g. 

( 4) For every element g E G, there is an inverse element h E G; that is, V g E 

G, 3h E G, g * h = h * g =e. 

Notice that a group is a pair of objects: a set G and an operation*· For example, 

(Z, +) is a group. We can pronounce the symbols (Z, +) aloud as "integers with 

addition." 
Sometimes, however, the operation under consideration is obvious. For exam­

ple, (Sn, o) is a group (we proved this in Proposition 26.4 ). The only operation on 

Sn we consider in this book (and virtually the only operation most mathematicians 

consider on Sn) is composition o. Thus we may refer to Sn as a group, where we 

understand that this is shorthand for the pair ( Sn, o). 

Similarly, if we write, "Let G be a group ... ," we understand that G has a 

group operation, which, in this book, is denoted by *· Please be aware that the 

symbol * is not customary as the generic group operation. Mathematicians use · or 

no symbol at all to denote a general group operation. This is the same convention 

we use for multiplication. To avoid confusion, in this book we use * or * as the 

operation symbol of a generic group. 
The group operation * need not be commutative. For example, we saw in 

Section 26 that o is not a commutative operation on Sn. Groups in which the 

operation is commutative have a special name. 

(Abelian groups) Let (G, *)be a group. We call this group Abelian provided* 

is a commutative operation on G (i.e., V g, h E G, g * h = h * g). 

For example, (Z, +) and (Z10 , EB) are Abelian, but (Sn, o) is not. 

In Example 39.9, we considered an operation in which inverses are not unique. 

This does not happen in groups; in a group, every element has an inverse, and that 

inverse is unique. 

Proposition 39.12 Let (G, *)be a group. Every element of G has a unique inverse in G. 

Proof. We know, by definition, that every element in G has an inverse. At issue 

is whether or not it is possible for an element of G to have two (or more) inverses. 

Suppose, for the sake of contradiction, that g E G has two (or more) distinct 

inverses. Let h, k E G be inverses of g with h =I= k. This means 

g*h=h*g=g*k=k*g=e 

where e E G is the identity element for*· By the associative property, 
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Notice that we are using 
the facts that k and h are 
inverses of g and the fact 
that e is an identity 
element. 

The inverse of g in a group 
(G, *)is denoted g- 1

• 

Furthermore, 

h * (g * k) = h * e = h 

(h *g)* k = e * k = k. 

Hence h = k, contradicting the fact that h =j:. k.~{= 

and 

• 
Proposition 39.12 establishes that if g is an element of a group, then g has 

a unique inverse. We may speak of the inverse of g. The notation for g's inverse 
is g- 1• The superscript -1 notation is in harmony with taking reciprocals in the 
group of positive rational numbers (with multiplication), or inverse permutations 
in Sn. It is not a good notation for (Z, + ). 

Examples 

The concept of a group is rather abstract. It is helpful to have several specific 
examples. Some of the examples that we present here we have considered before; 
others are new. 

(Z, + ): Integers with addition is a group. 
(Q, +):Rational numbers with addition is a group. 
(Q, x): Rational numbers with multiplication is not a group. It nearly satisfies 
Definition 39.1 0, except that 0 E Q does not have an inverse. We can repair 
this example in two ways. First, we can consider only the positive rational 
numbers: (Q+, x) is a group. 

Another way to repair this example is simply to eliminate the number 0. 
(Q- {0}, x) is a group. 
(Sn, o) is a group called the symmetric group. 

• Let An be the set of all even permutations in Sn. Then (An, o) is a group called 
the alternating group. 

• The set of symmetries of a square with o is a group. This group is called a 
dihedral group. 

In general, if n is an integer with n ::=::: 3, the dihedral group D 2n is the set 
of symmetries of a regular n-gon with the operation o (see Section 27). 
(Zn, EB) is a group for all positive integers n. 

• Let G = {(0, 0), (0, 1), (1, 0), (1, 1)}. Define an operation* on G by 

(a, b)* (c, d) = (a E9 c, b E9 d) 

where E9 is addition mod 2 (i.e., E9 in 232). 

The* table for this group is this: 

* (0, 0) (0, 1) (1, 0) (1,1) 

(0, 0) (0, 0) (0, 1) (1, 0) (1, 1) 
(0, 1) (0, 1) (0, 0) (1, 1) (1, 0) 
(1, 0) (1, 0) (1, 1) (0, 0) (0, 1) 

(1' 1) (1, 1) (1, 0) (0, 1) (0, 0) 



D. stands for symmetric 
difference of sets. 
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This group is known as the Klein 4-group. Notice that (0, 0) is the identity 
element and every element is its own inverse. 

• Let A be a set. Then (2A, ~) is a group (Exercise 39.9). 
(Z10 , ®)is not a group. The problem is similar to (Q, x): Zero does not have 
an inverse. The remedy in this case is a bit more complicated. We cannot just 
throw away the element 0. Notice that in (Z10 - {0}, ®) the operation ® is 
no longer closed. For example, 2, 5 E Z 10 - {0}, but 2 ® 5 = 0 rJ_ Z 10 - {0}. 
Also, elements 2 and 5 do not have inverses. 

In addition to eliminating the element 0, we can discard those elements 
that do not have inverses. By Theorem 36.14, we are left with the elements in 
Z 10 that are relatively prime to 1 0; we are left with { 1, 3, 7, 9}. 

These four elements together with ® form a group. The ® table for them 
is this: 

® 1 3 7 9 

1 1 3 7 9 
3 3 9 1 7 

7 7 1 9 3 
9 9 7 3 1 

The last example is worth exploring in a bit more depth. We observed that 
(Z10 , ®) is not a group and then we eliminated from Z 10 those elements that do 
not have an inverse. We saw, in Theorem 36.14, that the invertible elements of 
(Zn, ®) are precisely those that are relatively prime to n. 

Definition 39.13 (Z~) Let n be a positive integer. We define 

Z~ ={a E Zn : gcd(a, n) = 1}. 

Example 39.14 Consider z;4 . The invertible elements in Z74 (i.e., the elements relatively prime to 
14) are 1, 3, 5, 9, 11, and 13. Thus 

zr4 = {1, 3, 5, 9, 11, 13}. 

The® table for z;4 is this: 

® 1 3 5 9 11 13 

1 1 3 5 9 11 13 
3 3 9 1 13 5 11 
5 5 1 11 3 13 9 
9 9 13 3 11 1 5 

11 11 5 13 1 9 3 
13 13 11 9 5 3 1 

The inverses of the elements in z;4 can be found in this table. Wehave 

1-1 = 1 3-1 = 5 5-t = 3 
9-1 = 11 11 - 1 = 9 13-1 = 13. 
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Proposition 39.15 Let n be a positive integer. Then (Z~, ®) is a group. 

To prove that (G, *)is a group, we need to check Definition 39.10. We sum­
marize this in Proof Template 23. 

ProofTemplate23 Proving (G,*) is a group. 

To prove that (G, *)is a group: 

• Prove that G is closed under *: Let g, h E G .... Therefore g * h E G. 
• Prove that* is associative: Let g, h, k E G .... Therefore g * (h * k) = 

(g *h)* k. 
• Prove that G contains an identity element for*: Let e be some specific 

element of G. Let g E G be arbitrary. . . . Therefore g * e = e * g = g. 
• Prove that every element of G has a *-inverse in G: Let g E G. Construct 

an element h such that g * h = h * g = e. 

Therefore ( G, *) is a group. • 

Proof (of Proposition 39.15) 

First, we prove that Z~ is closed under®. Let a, b E Z~. We need to prove that 
a 0 bE Z~. Recall that a 0 b = (ab) mod n. 

We know that a, b E Z~. This means that a and bare relatively prime ton. 
Therefore, by Corollary 35.9, we can find integers x, y, z, w such that 

ax+ ny = 1 

Multiplying these equations gives 

and bw + nz = 1. 

1 = (ax+ ny)(bw + nz) = (ax)(bw) + (ax)(nz) + (ny)(bw) + (ny)(nz) 

= (ab)(wx) + (n)[axz + ybw + ynz] 

= (ab)(X) + (n)(Y) 

for some integers X andY. Therefore ab is relatively prime ton. By Exercise 35.12, 
we may increase or decrease ab by a multiple of n, and the result is still relatively 
prime ton. Therefore gcd(a 0 b, n) = 1, and so a® bE Z~. 

Second, we show that ® is associative. This was proved in Proposition 36.4. 
Third, we show that (Z~, ®)has an identity element. Clearly gcd(l, n) = 1, 

so 1 E Z~. Furthermore, for any a E Z~, we have 

a® 1 = 1 ®a = (a · 1) mod n =a 

and therefore 1 is an identity element for®. 
Fourth, we show that every element in Z~ has an inverse in Z~. Let a E Z~. 

We know, by Theorem 36.14, that a has an inverse a- 1 E Zn. The only issue is: Is 
a- 1 in Z~? Since a- 1 is itself invertible, by Theorem 36.14 again, a- 1 is relatively 
prime ton, and so a- 1 E Z~. 

Therefore (Z~, ®) is a group. • 
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How many elements are in Z~? This is a problem we have already solved (see 

Exercises 38.14-17). We recall and record the answer here for later reference. 

Proposition 39.16 Let n be an integer with n ::: 2. Then 

39 Exercises 

IZ~I = cp(n) 

where cp (n) is Euler's totient. 

Recap 

We began with a formal description of an operation on a set and listed various 

properties an operation might exhibit. We then focused on four particular proper­

ties: closure, associativity, identity, and inverses. We developed the concept of a 

group and discussed several examples. 

39.1. Let (G, *)be a group with G ={a, b, c}. Here is an incomplete operation 

table for*: 

* a b c 

a a b c 

b ? ? ? 

c ? ? ? 

Find the missing entries. 
39.2. Explain why (Z5 , 8) is not a group. Give at least two reasons. 

39.3. Consider the operations /\, v, andy_ defined on the set {TRUE, FALSE}. 

Which of the various properties of operations do these operations exhibit? 

(Consider the properties closure, commutativity, associativity, identity, and 

inverses.) 
Which (if any) of these operations define a group on {TRUE, FALSE}? 

39.4. Show that the operation in Example 39.9 is not associative. 

39.5. Prove that if (G, *)is a group and g E G, then (g- 1) -
1 

=g. 
39.6. Prove that if (G, *)is a group, then e-1 =e. 
39.7. We saw that ((Q+, x) is a group (positive rational numbers with multipli­

cation). Is ((Q-, x) (negative rationals with multiplication) a group? Prove 

your answer. 
39.8. This problem is only for those who have studied linear algebra. Let G be 

the set of 2 x 2 real matrices [ ~ ~) with ad - be~ 0. Prove that G, 

together with the operation of matrix multiplicatj6h, is a group. 

Note that the set of all 2 x 2 real matrice£ do not form a group be-

cause some matrices, such as [: :] , are J;iot invertible. We discard the 

noninvertible matrices, and what remains is .a group. This is analogous to 

our transformation from Zn to Z~. 
39.9. Let A be a set. Prove that (2A, .6.) is a group. 
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39.10. Let G be a group and let a E G. Define a function f : G ~ G by 
f (g) = a * g. Prove that f is a permutation of G. fc 

39.11. Let G be a group. Define a function f : G ~ G by f(g) = g-1
• Prove 

that f is a permutation of G. 
39.12. Let * be an operation on a finite set G. Form the * operation table. Prove 

that if ( G, *) is a group, then in every row and in every column, each 
element of G appears exactly once. 

Show that the converse of this assertion is false; that is, construct an 
operation * on a finite set G such that in every row and in every column, 
each element of G appears exactly once, but ( G, *) is not a group. 

39.13. Let (G, *)be a group and let g, h E G. Prove that (g * h)- 1 = h- 1 * g- 1• 

39.14. Let (G, *)be a group. Prove that G is Abelian if and only if (g * h)- 1 

g-1 * h-1 for all g, hE G. 
39.15. Let ( G, *) be a group. Define a new operation * on G by 

Prove that ( G, *) is a group. 
39.16. Let (G, *)be a group. Notice that e- 1 =e. Prove that if IGI is finite and 

even, then there is another element g E G with g-1 =g. 
Give an example of a finite group with five or more elements in which 

no element (other than the identity) is its own inverse. 
39.17. Let* be an operation defined on a set A. We say that* has the left cancel­

lation property on A provided 

\fa, b, c E A, a* b =a* c ====}' b =c. 

a. Prove that if ( G, *) is a group, then * has the left cancellation property 
on G. 

b. Give an example of a set A with an operation * that has the left cancel­
lation property but is not a group. 

39.18. Reverse Polish Notation. We remarked at the beginning of this section that 
mathematicians usually put the operation symbol between the two objects 
(operands) to which the operation applies. There is, however, an alternative 
notation in which the operation symbol comes after the two operands. 
This notation is called reverse Polish notation (RPN for short) or postfix 
notation. For example, in RPN, instead of writing 2 + 3, we write 2 3 +. 

Consider the RPN expression 2, 3, 4, +, x. There are two operation 
symbols, and each operates on the two operands to its left. What do the 
+and x operate on? The+ sign immediately follows 3, 4, so it means to 
add those two numbers. This reduces the problem to 2, 7, x. Now the x 
operates on the 2 and the 7 to give 14. Overall, the expression 2, 3, 4, +, x 
in standard notation is 2 x (3 + 4). 

On the other hand, the RPN expression 2, 3, +, 4, x stands for (2 + 
3) x 4, which evaluates to 20. 

Evaluate each of the following. 
a. 1 , 1 , 1, 1, +, +, +. 
b. 1, 2, 3, 4, X, +, +. 
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C. 1, 2, +, 3, 4, X, +. 
d. 1, 2, +, 3, 4, +, X. 

e. 1, 2, +, 3, +, 4, x. 
39.19. RPN continued. Convert the following expressions from standard notation 

to RPN. Do not evaluate. 

a. (2 + 3) x ( 4 + 5). 

b. (2 + (3 X 4)) + 5. 

C. ( (2 + 3) X 4) + 5. 

39.20. RPN continued. Suppose we have a list of numbers and operations ( + and 

x) symbols representing an RPN expression. Some such expressions are 

invalid, such as 2, +, +or+, 3, x, 4, 4 or 2, 3, +, 4. 

State and prove a theorem describing when a list of numbers and 

operation symbols forms a valid RPN expression. 

39.21. RPN continued. Write a computer program to evaluate RPN expressions. 

40 Group Isomorphism 

The Same? 

The main diagonal of 

these tables is the diagonal 

running from the upper left 

to the lower right. 

EB 

0 
1 
2 
3 

What does it mean for two groups to be the same? 

A simple answer to this question is that ( G, *) = ( H, *) provided G = H 

and*=* (i.e.,* and* are the same operation). This would certainly be a proper 

definition for two groups to be equal, but we asked a vaguer question. 

Consider the following three groups: (Z4 , EB ), (Z~, ®),and the Klein 4-group. 

Their operation tables are as follows: 

0 1 2 3 ® 1 2 3 4 * (0, 0) (0, I) (1, 0) (1. l) 

0 1 2 3 1 1 2 3 4 (0, 0) (0, 0) (0, I) (l' 0) ( l, I) 

1 2 3 0 2 2 4 1 3 (0, l) (0, I) (0, 0) (l, l) (1. 0) 

2 3 0 1 3 3 1 4 2 (1' 0) (1, 0) (I' 1) (0, 0) (0, I). 

3 0 1 2 4 4 3 2 1 (I' 1) (1, I) (1' 0) (0, I) (0, 0) 

These three groups are different because they are defined on different sets. How­

ever, two of them are, in essence, the same group. Look carefully at the three 

operation tables and try to distinguish one from the other two. 

The Klein 4-group (right) has a property that the other two don't share. Notice 

that every element in the Klein 4-group is its own inverse; you can see this by 

noting the identities running down the main diagonal. However, in the other two 

groups, there are elements that are not their own inverses. For example, 1 and 3 

are inverses of one another in (Z4 , EB), and 2 and 3 are inverses of one another in 

(Z5, 0). Other than the identity, only 2 is its own inverse in (Z4 , EB) and only 4 is 

its own inverse in cz;, 0). / 

We can superimpose the operation tables for,fhe two groups (Z4 , EB) and 

(Z5, 0) on top of one another so they look the sam(f~ We pair the identity elements 

in the two groups with one another. We also pair the other elements (2 E 2 4 and 
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4 E z;) that are their own inverses. Then we have a choice f9r the other two pairs 
• • • f' 

of elements. Here 1s a pa1nng: 

(Z4, EB) cz;, ®) 

0 +---+ 1 
1 +---+ 2 
2 +---+ 4 
3 +---+ 3 

Next we superimpose their operation tables. 

E9 0 0 1 1 2 2 4 3 3 

0 1 0 1 1 2 2 4 3 3 
1 2 1 2 2 4 3 3 0 1 
2 4 2 4 3 3 0 1 1 2 
3 3 3 3 0 1 1 2 2 4 

The tables for both (Z4, EB) and (Z;, ®) are correct [although the table for (Z;, ®) 
is twisted around a bit because we swapped the rows and columns for elements 3 
and 4]. The important thing to note is that every element of (Z4 , EB) (in black) sits 
next to its mate from cz;, ®)(color). 

More formally, let f : Z4 ~ z; defined by 

Clearly f is a bijection and 

f(O) = 1 
f(l) = 2 

/(2) = 4 
/(3) = 3. 

f(x EB y) = f(x) ® f(y) 

where EB is mod 4 addition and ® is mod 5 multiplication. 
In other words, if we rename the elements of Z4 using the rule f, we get 

elements in Z5. The operation EB for Z4 and the operation ® for Z5 give the exact 
same results once we rename the elements. 

To put it another way, imagine we made a group of four elements {e, a, b, c} 
with the following operation table: 

* e a b c 

e e a b c 

a a b c e 
b b c e a 

c c e a b 

We then tell you that, in reality, these four elements { e, a, b, c} are either ( 1) aliases 
for elements of Z4 with operation EB or (2) aliases for elements of z; with operation 
®.Would you be able to distinguish case (1) from (2)? No. The relabeling f shows 
that either group fits the pattern in this table. The groups (Z4 , EB) and (Z;, ®) are, 
in essence, the same. They are called isomorphic. 
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Definition 40.1 (Isomorphism of groups) Let (G, *)and (H, *)be groups. A function f: G---+ 

H is called a (group) isomorphism provided f is one-to-one and onto and satisfies 

Vg, h E G, f(g *h) = f(g) * f(h). 

When there is an isomorphism from G to H, we say G is isomorphic to H and we 

write G ~H. 

The is-isomorphic-to relation for groups is an equivalence relation (see Sec­

tion 13); that is, 

• for any group G, G ~ G, 
• for any two groups G and H, if G ~ H, then H ~ G, and 

• for any three groups G, H, and K, if G ~Hand H ~ K, then G ~ K. 

Cyclic Groups 

The groups (Z4 , E:B) and (Z~, ®)have everything in common except for the names 

of their elements. Element 1 of (Z4 , EB) has a special feature; it generates all the 

elements of the group (Z4 E:B) as follows: 

1 = 1 

1E:Bl=2 

1E:B1E:B1=3 

1 E:B 1 E:B 1 E:B 1 = 0. 

The element 3 also generates all the elements of (Z4 , E:B); please do these calcula­

tions yourself. 
Of course, because cz;, ®) is isomorphic to (Z4 , E:B), it, too, must have a 

generator. Since 1 E Z4 corresponds (according to the isomorphism we found 

previously) to 2 E Z~, we calCulate 

2=2 

2®2=4 

2®2®2=3 

2®2®2®2=1. 

Thus element 2 E Z~ generates the group. 
The Klein 4-group does not have an element that generates the entire group. 

In this group, every element g has the property that g * g = e = (0, 0), so there is 

no way that g, g * g, g * g * g, ... can generate all the elements of the group. 

By this pattern, there is no element of Z that generates (Z, +).However, we 

have not formally defined generator, so we are going to extend the rules in this 

case. The element 1 generates all the positive elements of Z: 1, 1 + 1, 1 + 1 + 1, and 

so forth. By this system, we never get 0 or t96 negative integers. If, however, we 

allow 1 's inverse, -1, to participate in the ge~eration process, then we can get 0 [as 

1 + ( -1)] and all the negative numbers -1, (+I)+ ( -1), ( -1) + ( -1) + ( -1), etc. 
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Definition 40.2 (Generator, cyclic group) Let (G, *)be a group. An elemoot g E G is called a 
generator for G provided every element of G can be expressed just in terms of g 
and g -l using the operation *. 

If a group contains a generator, it is called cyclic. 

The special provision for g- 1 is necessary only for groups with infinitely many 
elements. If ( G, *) is a finite group and g E G, then we can always find a way to 
write g -l = g * g * · · · * g. 

Proposition 40.3 Let (G, *)be a finite group and let g E G. Then, for some positive integer n, we 
have 

g-l = g * g * ... *g. 
'-...,...-' 

n times 

It is inconvenient to write 

g*g*•••*g. 
'-...,...-' 

n times 

Instead, we can write gn; this notation means we * together n copies of g. 

Proof. Let ( G, *) be a finite group and let g E G. Consider the sequence 

Since the group is finite, this sequence must, at some point, repeat itself. Suppose 
the first repeat is at ga = gb where a < b. 
Claim: a= 1. 

Suppose, for the sake of contradiction, a > 1. Then we have 

ga = gb 

g*g*•••*g=g*g*•••*g. 
'-...,...-' '-...,...-' 

a times b times 

We operate on the left by g- 1 to get 

g-l * ga = g-1 * gb 

g -l * (g * g * ... * g) = g -l * (g * g * ... * g) 
'-...,...-' '-...,...-' 

a times b times 

(g- I * g) * (g * g * ... * g) = (g -1 * g) * (g * g * ... * g) 
'-...,...-' '-...,...-' 

a-1 times b-l times 

e * (g * g * · · · * g) = e * (g * g * · · · * g) 
'-...,...-' '-...,...-' 

a-1 times b-l times 

g*g*•••*g=g*g*•••*g 
'-...,...-' '-...,...-' 

a-1 times b-1 times 
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which shows that the first repeat is before ga = gb, a contradiction. Therefore 

a=l. 
We now know that if we stop at the first repeat, the sequence is 

Notice that since g = gb, if we operate on the left by g - 1 , we get e = gb-l . 

It may be the case that b = 2, so g 2 =g. In this case, g = e and so g 1 = g- 1, 

proving the result. 
Otherwise, b > 2. In this case, we can write 

e = gb-1 = gb-2 * g 

and therefore gb-2 = g-1. • 

Theorem 40.4 Let (G, *)be a finite cyclic group. Then (G, *) is isomorphic to (Z,n EB) where 

n = IGI. 

Proof. Let ( G, *) be a finite cyclic group. Suppose I G I = n and let g E G be a 

generator. We claim that ( G, *) ~ (Z 11 , EB). To this end, we define f : Z11 --+ G by 

f(k) = gk 

where gk means g * g * · · · * g (with k copies of g and g 0 =e). 

To prove that f is an isomorphism, we must show that f is one-to-one and 

onto and that f(j EB k) = f(j) * f(k). 

f is one-to-one. 
Suppose f(j) = f(k). This means that gi = gk. We want to prove that 

j = k. Suppose that j f=. k. Without loss of generality, 0 ~ j < k < n (with 

< in the usual sense of integers). We can * the equation gi = gk on the left 

by (g-1 )i to get 

(g-l)j *gi = (g-l)j *l 

e = gk-J. 

Since k- j < n, this means that the sequence 

g, g2, g3' 

repeats after k - j steps, and therefore g does not generate the entire group 

(but only k- j of its elements). However, g is a generator.=}{= Therefore f 
is one-to-one. 

• f is onto. 
Let h E G. We must find k E Zn such that f (k) = h. We know that the 

sequence 

e = go, g = g 1, g2, g3, 

must contain all elements of G. T,fu;s h is ~omewhere on this list-say, at 

position k (i.e., h = gk). Therefore f(k) =has req~~d. Hence f is onto. 
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In this calculation, tn 
might be zero (in which 

case J? 0 = e is fine) or tn 
might be negative. The 
meaning of. say, g-" is 
simply (g···')" = (g")- 1

• 

For all j, k E Zn, we have f(j EB k) = f(j) * f(k). 
Recall that j EB k = (j + k) mod n = j + k + tn for some integer t. 

Therefore 

as required. 

j(j E£) k) = gj+k+tn = gj * gk * ln 

= gj * gk * ln = gj * gk * (gn )t 

= gj * gk * et = gj * gk 

= f(j) * f(k) 

Therefore f : Zn ~ G is an isomorphism, and so (Zn, EB) ~ ( G, *). • 

Recap 

In this section we discussed the notion of group isomorphism. Roughly speaking, 
two groups are isomorphic if they are exactly the same except for the names of their 
elements. We also discussed the concepts of group generators and cyclic groups. 

40 Exercises 40.1. Find an isomorphism from (Zw, EB) to (Zt1, 0). 
40.2. Let (G, *)be the following group. The set G is {0, 1} x {0, 1, 2}; that is, 

G = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)}. 

The operation * is defined by 

(a, b)* (c, d) = (a+ c mod 2, b + d mod 3). 

For example, (1, 2) * (1, 2) = (0, 1). 
Find an isomorphism from ( G, *) to (Z6 , EB). 

40.3. Let (G, *)be the following group. The set G is {0, 1, 2} x {0, 1, 2}; that is, 

G = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)}. 

The operation * is defined by 

(a, b)* (c, d) = (a+ c mod 3, b + d mod 3). 

For example, (1, 2) * (1, 2) = (2, 1). 
Show that ( G, *) is not isomorphic to (Z9 , EB). 

40.4. Suppose (G, *) and (H, *) are isomorphic groups. Let e be the identity 
element for ( G, *) and let e' be the identity element for ( H, *). Let f : 
G ~ H be an isomorphism. 

Prove that f(e) = e'. 

40.5. Suppose (G, *)and (H, *)are isomorphic groups. Let f : G ~ H be an 
isomorphism and let g E G. 

Prove that f(g- 1) = f(g)- 1. 

40.6. We showed that (Z4 , EB) and (Z~, 0) are isomorphic. The isomorphism we 
found was f(O) = 1, f(1) = 2, f(2) = 4, and f(3) = 3. There is another 
isomorphism (a different function) from (Z4 , EB) to (Z~, 0). Find it. 
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40.7. Let (G, *)and (H, *)be isomorphic groups. Prove that (G, *)is Abelian 

if and only if (H, *) is Abelian. 
40.8. The group S4 (permutations of the numbers {1, 2, 3, 4} with the operation 

o) has 24 elements. Is it isomorphic to (Z24 , EB)? Prove your answer. 

40.9. Find an isomorphism from the Klein 4-group to the group (21 1·21, ~). 

40.10. Let (G, *) be a group and let a E G. Define a function fa : G --+ G by 

fa (x) = a * x. In Exercise 39.1 0, you showed that the functions fa are 

permutations. 
Let H ={fa: a E G}. Prove that (G, *) ~ (H, o) where o is composition. 

40.11. Which elements of Z 10 are generators of the cyclic group (Z10 , EB)? 

Generalize your answer and prove your result. 

40.12. Let ( G, *) and ( H, *) be finite cyclic groups and let f : G --+ H be an 

isomorphism. Prove that g is a generator of ( G, *) if and only if f (g) is a 

generator of ( H, *). 
40.13. It is an advanced theorem that the group z; is a cyclic group for all primes p. 

Verify this for p = 5, 7, 11, 13, and 17 by finding a generator for these z;. 

41 Subgroups 
A subgroup is a group within a group. Consider the integers as a group: (Z, + ). 

Within the set of integers, we find the set of even integers, E = {x E Z : 21x }. 

Notice that (E, +) is also a group; it satisfies the four required properties. The 

operation+ is closed on E (the sum of two even integers is again even), addition is 

associative, E contains the identity element 0, and if x is an even integer, then - x is, 

too, so every element of E has an inverse in E. We call (E, +)a subgroup of (Z, +). 

Definition 41.1 (Subgroup) Let (G, *Jbe a group and let H ~ G. If (H, *) is also a group, we 

call it a subgroup of (G, *). 

Notice that the operation for the group and the operation for its subgroup must 

be the same. It is incorrect to say that (Z10 , EB) is a subgroup of (Z, +); it is true 

that Z 10 ~ Z, but the operations EB and + are different. 

Example 41.2 (Subgroups of (Z10 , ffi)) List all the subgroups of (Z10 , EB). 

Solution: They are 

{0} {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} 
{0, 5} {0, 2, 4, 6, 8}. 

In all four cases, the operation is EB. 

Is the solution to Example 41.2 correct? There are two issues to consider: 

? • For each of the four subsets H we listed, is it the case that (H, EB) is a group? 

• Are there other subsets H ~ Z 10 that we neglected to include? 

We consider these two questions in tum. 
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If (G, *) is a group and H ~ G, how do we determin~ whether (H, *)is a 
f' 

subgroup? 
Definition 41.1 tells us what to do. First, we need to be sure that H ~ G. 

Second, we need to be sure that (H, *)is a group. The most direct way to do this is 

to check that ( H, *) satisfies the four conditions listed in Definition 39.10: closure, 

associativity, identity, and inverses. 
To check closure, we need to prove that if g, h E H, then g * h E H. For 

example, the even integers form a subgroup of (Z, + ), but the odd integers do 

not-they do not satisfy the closure property. If g and h are odd integers, then 

g + h is not odd. 
Next, we do not have to check associativity. Reread that sentence! We wrote: 

we do not have to check associativity. We know that ( G, *) is a group and therefore 

*isassociativeonG;thatis,Vg,h,k E G, g*(h*k) = (g*h)*k.SinceH ~ G, 

we must have that * is already associative on H. We get associativity for free! 

Next, we check that the identity element is in H. This step is usually easy. 

Finally, we know that every element of H has an inverse (because every 

element of G 2 H has an inverse). The issue is as follows: If g E H, show that 
g- 1 E H. 

These steps for proving that a subset of a group is a subgroup are listed in 

Proof Template 24. 

Proof Template 24 Proving a subset of a group is a subgroup. 

Let (G, *)be a group and let H ~ G. To prove that (H, *)is a subgroup of 

(G, *): 

• Prove that His closed under* (i.e., Vg, h E H, g *hE H). 

"Let g, h E H .... Therefore g * h E H." 
• Prove that e (the identity element for *) is in H. 
• ProvethattheinverseofeveryelementofHisinH(i.e.,Vh E H, h- 1 EH). 

"Let h E H . ... Therefore h -l E H.'' 

We now reconsider the question: Are the four subsets in Example 41.2 truly 

subgroups of (Z10 , EB)? We check them all. 

• H = {0} is a subgroup of (Zw, EB). 
The only element of this set is the identity element for EB. Since 0 EB 0 = 0, 

we see that H is closed under EB, that it contains the identity, and that since 

O's inverse is 0, the inverse of every element in His also in H. Therefore {0} 

is a subgroup. 
In general, if (G, *)is any group, then H = {e} is a subgroup (where e 

is the *-identity element). 
• H = Z 10 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} is a subgroup of (Z10 , EB). 

Since (Z10 , EB) is a group, it is a subgroup of itself. 

In general, if ( G, *) is any group, then G is a subgroup of itself. 
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H = {0, 5} is a subgroup of (Z10 , EB). 
It is easy to check that H is closed under EB since 

0 EB 0 = 5 EB 5 = 0 and 0 EB 5 = 5 EB 0 = 5. 

Clearly 0 E H, and finally 0 and 5 are their own inverses. Therefore H is a 
subgroup of (Z 10 , EB). 
H = {0, 2, 4, 6, 8} is a subgroup of (Z10 , EB). 

Notice that H contains the even elements of Z 10 . If we add any two even 
numbers, the result is even, and when we reduce the result mod 10, the answer 
is still even (Exercise 41. 7). We see that 0 E H and the inverses of 0, 2, 4, 6, 8 
are 0, 8, 6, 4, 2, respectively. Therefore His a subgroup of (Z10 , EB). 

This shows that the four subsets in Example 41.2 are subgroups of (Z 10 , EB). 
We now turn to the other issue: Are there other subgroups of (Z10 , EB)? There 

are 210 = 1024 subsets of Z 10 ; we could list them and check them all, but there is 
a shorter method. 

Let H s; Z 10 and suppose that (H, EB) is a subgroup of (Z10 , EB). Since (H, EB) 
is a group, we must have the identity element 0 in H. If the only element of H is 
0, we have H = {0}. Otherwise there must be one, or more, additional elements. 
We consider them in turn. 

• Suppose 1 E H. 
Then, by closure, we must also have 1 EB 1 = 2 in H. By closure again, 

we must also have 1 EB 2 = 3 in H. Continuing in this fashion, we see that 

H = Zw. 
We have shown that 1 E H implies H = Z 10 , so now we consider only 

the cases with 1 rj_ H. 
• Suppose 3 E H. 

Then J\f73 = 6 E H and 3 EB 6 = 9 E H. Since 9 E H, so is its inverse, 
1 E H. And we know that if 1 E H, then H = Z 10 . 

So we may assume 3 rj_ H. 
• Likewise, if 7 E H or if 9 E H, then we can show that 1 E H, and then 

H = Z 10 . (Please verify these for yourself.) 
We may therefore assume that none of 1, 3, 7, or 9 is in H. 

• Suppose 5 E H. 
We have H 2 {0, 5}. We know that 1, 3, 7, 9 rj_ H. Might an even integer 

be in H? If 2 E H, then 2 EB 5 = 7 E H, and that leads to H = Z 10 . Likewise, 
if any other even number is also in H, then H = Z 10 . 

So if 5 E H, then either H = {0, 5} or H = Z 10 . 

We have exhausted all possible cases in which an odd integer is in H. 
Henceforth we may assume that all elements in H are even. 

• Suppose 2 E H. By closure, we have 4, 6, and 8 also in H, so H = 

{0, 2, 4, 6, 8}. 
• If 4 E H, then 4 EB 4 EB 4 = 2 E H, and we're back to H = {0, 2, 4, 6, 8}. 

By a similar argument, if 6 or 8 is in H, we again arrive at H 
{0, 2, 4, 6, 8}. 
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In summary, our analysis shows the following: We kno"Z that 0 E H. If any of 
1, 3, 7, or 9 is in H, then H = Z 10 . If 5 E H, then either H ~ {0, 5} or H = Z 10 . 

If H contains any of 2, 4, 6, or 8, then H = {0, 2, 4, 6, 8} or H = Z 10 . In all cases, 
we have that His one of {0}, Z 10 , {0, 5}, or {0, 2, 4, 6, 8}, showing that the list in 
Example 41.2 is exhaustive. 

Lagrange's Theorem 

In Example 41.2, we found four subgroups of (Z10 , EB). The cardinalities of these 
four subgroups are 1, 2, 5, and 10. Notice that these four numbers are divisors of 
10. Here is another example: 

Example 41.3 (Subgroups of S3) List all the subgroups of (S3 , o). 
Solution: Recall that S3 is the set of all permutations of { 1, 2, 3}; that is, 

s3 = {(1)(2)(3), (12)(3), (13)(2), (1)(23), (123), (132)}. 

Its subgroups are 

{(1)(2)(3), (12)(3)} 

{(1)(2)(3)} 

{(1)(2)(3), (13)(2)} 

{(1)(2)(3), (123), (132)} 

{(1)(2)(3), (1)(23)} 

{(1)(2)(3), (12)(3), (13)(2), (1)(23), (123), (132)}. 

The cardinalities of these subgroups are 1, 2, 3, and 6-all of which are divisors 
of6. 

Examples 41.2 and 41.3 suggest that if (G, *)is a subgroup of (H, *) (and 
both are finite), then I G I is a divisor of I H 1. 

Theorem 41.4 (Lagrange) Let (H, *) be a subgroup of a finite group (G, *) and let a = IHI 
and b = IGI. Then alb. 

The central idea in the proof is to partition G into subsets, all of which are the 
same size as H. Since the parts in a partition are pairwise disjoint, we have divided 
G into nonoverlapping parts of size I H 1. This implies that I HI divides I G 1. (This 
approach is akin to using Theorem 15.6.) 

The partition we create consists of equivalence classes of an equivalence 
relation which is defined as follows: 

Definition 41.5 (Congruence modulo a subgroup) Let (G, *) be a group and let (H, *) be a 
subgroup. Let a, b E G. We say that a is congruent to b modulo H if a * b -l E H. 
We write this as 

a= b (mod H). 

This is yet another meaning for the overused word mod! We consider an 
example. 



Lemma 41.6 

It is interesting to note that 

the three portions of this 

proof correspond precisely 

to the three conditions we 

must check to prove a 

subset of a group is a 

subgroup (Proof 
Template 24 ). The 

reflexive property follows 

from the fact that e E H. 

The symmetry property 

follows from the fact that 

the inverse of an element 

of H must also be in H.? 
And transitivity follows 

from the fact that H is 

closed under *· 
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Consider the group (Z25 , 0). The elements of Z25 are 

z;5 = {1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 21, 22, 23, 24}. 

Let H = { 1, 7, 18, 24}. The operation table for 0 restricted to H is 

0 1 7 18 24 

1 1 7 18 24 
7 7 24 1 18 
18 18 1 24 7 

24 24 18 7 1 

Notice that H is closed under 0, the identity element 1 E H, and since 

24- 1 = 24, 

the inverse of every element of H is again a member of H. Therefore H is a 

subgroup of Z25 . 

For this group and subgroup, do we have 2 = 3 (mod H)? The answer is no. 

To see why, we calculate 

2 0 3-1 = 2 0 17 = 9 ¢:. H 

so 2 ¥= 3 (mod H). (Note that 3- 1 = 17 because 3 0 17 = 1.) 

On the other hand, we do have 2 = 11 (mod H). To see why, we calculate 

2 0 11-1 = 2 0 16 = 7 E H 

so 2 = 11 (mod H). (Note that 11-1 = 16 because 11 0 16 = 176 mod 25 = 1.) 

Congruence modulo a subgroup is an equivalence relation on the group. 

Let (G, *)be a group and let (H, *)be a subgroup. Then congruence modulo H 

is an equivalence relation on G. 

Proof. To check that congruence modulo H is an equivalence relation on G, we 

need to show that it is reflexive, symmetric, and transitive. 

Congruence modulo His reflexive. 

Let g E G. We need to show that g = g (mod H). To do that, we 

need to show g * g- 1 E H. Since g * g- 1 = e and since e E H, we have 

g = g (mod H). 
Congruence modulo His' symmetric. 

Suppose a = b (mod H). This means that a * b- 1 E H. Therefore 

(a* b- 1 )-1 E H. Note that 

(a* b- 1
)-

1 = (b- 1
)-

1 * a- 1 = b * a-1 

and sob* a- 1 E H. Thus we have b.~-a-inl~d H). 
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• Congruence modulo His transitive. 
Suppose a= b (mod H) andb = c (mod H). Thula*b- 1

, b*c-1 E H. 
It follows that 

because His a subgroup and therefore closed under*· Note that 

(a * b- 1
) * (b * c- 1

) =a * (b- 1 *b) * c- 1 =a * c-1 

and so a* c- 1 E H. Therefore a= c (mod H). 

Therefore congruence modulo H is an equivalence relation on G. • 
Since congruence mod H is an equivalence relation, we may consider the 

equivalence classes of this relation. Recall the group (Z~5 , ®) and its subgroup 
H = {1, 7, 18, 24} we considered earlier. For the congruence mod H relation, 
what is the equivalence class [2]? This is the set of all elements of Z~5 that are 
related to 2; that is, 

[2] ={a E z;5 :a= 2 (mod H)}. 

We can test all 20 elements of Z~5 to see which are and which are not congruent 
to 2 modulo H. We find that 

[2] = {2, 11, 14, 23}. 

In this manner, we can find all the equivalence classes. They are 

[ 1] = { 1 ' 7' 18' 24}, 
[2] = {2, 11, 14,23}, 

[3] = {3, 4, 21, 22}, 

[6] = {6, 8, 17, 19}, and 

[9] = {9, 12, 13, 16}. 

Several comments are in order. 
First, these are all the equivalence classes of congruence mod H. Every 

element of Z~5 is in exactly one of these classes. You might ask: Did we ne­
glect the class [4]? The equivalence class [4] is exactly the same as [3] because 
4 = 3 (mod H) (because 3 ® 4- 1 = 3 ® 19 = 7 E H). 

Second, because these are equivalence classes, we know (by Corollary 14.13) 
that they form a partition of the group (in this case, of Z~5 ). 

Third, the class [ 1] equals the subgroup H = { 1, 7, 18, 24}. This is not a 
coincidence. Let ( G, *) be any group and let ( H, *) be a subgroup. The equivalence 
class of the identity element, [e ], must equal H. Here's the one-line proof: 

a E [e] {=::=} a= e (mod H) {=::=} a* e-1 E H {=::=} a E H. 

Fourth, the equivalence classes all have the same size (in this example, they 
all have four elements). This observation is the key step in proving Theorem 41.4, 
and so we prove it here as a lemma. 
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Lemma 41.7 Let (G, *)be a group and let (H, *)be a finite subgroup. Then any two equivalence 

classes of the congruence mod H relation have the same size. 

41 Exercises 

Proof. Let g E G be arbitrary. It is enough to show that [g] and [ e] have the 

same size. As we noted above, [e] = H. To show that [g] and H have the same 

size, we define a function f : H --+ [g] and we prove that f is one-to-one and 

onto. From this, it follows that IHI = l[g]l. 

For h E H, define f (h) = h * g. Clearly f is a function defined on H, but 

is f : H --+ [g]? We need to show that f(h) E [g]. In other words, we need to 

prove that f (h) = g (mod H). This is true because 

f(h) * g-1 = (h *g)* g-1 = h * (g * g-1
) =hE H. 

Therefore f is a function from H to [g]. 

Nextweshowthatf is one-to-one. Suppose f(h) = f(h'). Thenh*g = h'*g. 

Operating on the right by g-1 gives 

and so f is one-to-one. 

(h*g)*g-1 = (h'*g)*g-1 

h * (g * g-]) = hI * (g * g -1) 

h = h' 

Finally, we show that f is onto. Let b E [g]. This means that b = g (mod H), 

and so b * g - 1 E H. Let h = b * g - 1. Then 

f (h) = f ( b * g -l) = ( b * g - 1
) * g = b * (g * g -!) = b 

and so f is onto [g]. 

Therefore H and [g] have the same cardinality and the result is proved. • 

We now have the tools necessary to prove Lagrange's Theorem. 

Proof (of Theorem 41.4) 

Let ( G, *) be a finite group and let ( H, *) be a subgroup. The equivalence classes 

of the is-congruent-to-mod-H relation all have the same cardinality as H. Since 

the equivalence classes form a partition of G, we know that I HI is a divisor 

ofiGI. • 

Recap 

In this section, we introduced the notion of a subgroup of a group, and we proved 

that if H is a finite subgroup of G, then I HI is a divisor of I G 1. 

41.1. Find all subgroups of (Z6 , EB). 

41.2. Find all subgroups of (Z9 , EB). 

41.3. Find all subgroups of the Klein 4-group. 
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41.4. Let ( G, *) be a group and suppose H is a nonempty subset of G. 
Prove that ( H, *) is a subgroup of ( G, *) provided thait H is closed 

under* and that for every g E H, we have g-1 E H. 
This gives an alternative proof strategy to Proof Template 24. You do 

not need to prove that e E H. You need only prove that His nonempty. 
41.5. Let ( G, *) be a group and suppose H is a nonempty subset of G. 

Prove that (H, *)is a subgroup of ( G, *)provided for every g, h E H, 
we have g * h-1 E H. 

This gives yet another alternative to Proof Template 24, although of 
limited utility. 

41.6. Find, with proof, all the subgroups of (Z, + ). 
41.7. Prove that if x andy are even, then so is [(x + y) mod 10]. Conclude that 

{0, 2, 4, 6, 8} is closed under mod 10 addition. 
41.8. In (Z~5 , 0) the setH = {1, 6, 11, 16, 21} is a subgroup. Find the equiva­

lence classes of the congruence mod H relation. 
41.9. Consider the group (S3 , o) and the subgroup H = {(1)(2)(3), (12)(3)}. 

Find the equivalence classes of the mod H relation. 
41.10. Let ( G, *) be a finite group and let g E G. 

a. Prove that there is a positive integer k such that 

gk = g * g * ... * g = e. 
~ 

k times 

By the Well-Ordering Principle, there is a least positive integer k such 
that gk = e. We define the order of the element g to be the smallest 
such positive integer. 

b. Prove that { e, g, g2, g3, ... } is a subgroup of G whose cardinality is the 
order of g. 

c. Prove that the order of g divides I G 1. 
d. Conclude that giGI =e. 

41.11. Let (G, *)be a group and let (H, *) and (K, *) be subgroups. Prove or 
disprove each of the following assumptions. 
a. H n K is a subgroup of (G, *). 
b. H UK is a subgroup of (G, *). 
c. H- K is a subgroup of (G, *). 
d. H Ll K is a subgroup of (G, *). 

41.12. Why did we reuse the word mod for the new equivalence relation in this 
section? The new relations are a generalization of the more familiar x = 
y (mod n) for integers. Here is the connection: 

Consider the group (Z, +) and let n be a positive integer. Let H be 
the subgroup consisting of all multiples of n; that is, 

H ={a E Z: nla}. 

Prove that for all integers x and y, 

x = y (mod H) x = y (mod n). 



This problem introduces 
the concept of a coset. 

Given a group (G.*), a 
subgroup H, and an 
element g E G, the sets 

g * H and H * g are called 
cosets of H. More 

specifically, g * H is called 

a left coset and H * g is 
called a right coset. 

See the previous problem 

for the definition of g * H 

and H *g. 

Section 41 Subgroups 361 

41.13. Let (G, *)be a group and let (H, *)be a subgroup. 

Let a, b, c, d E G. We would like to believe that 

if a:=b 

c:=d 
(mod H) and 
(mod H), 

then a* c = b * d (mod H) 

but this is not true. Give a counterexample. 

41.14. Let ( G, *) be a group. Although the operation * operates on two elements 

of G, in this and the next problem we extend the use of the operation 

symbol* as follows: 
Let g E G and let (H, *)be a subgroup of G. Define the sets H * g 

and g * H as follows: 

H * g = {h * g : h E H}, and 

g * H = {g * h: hE H}. 

In other words, H * g is the set of all elements of G that can be formed 

by operating on an element of H (called h) with g to form h * g. If 

H = {h1, h2, h3, ... }, then 

H * g = {h1 * g, h2 * g, h3 * g, .. . } and 

g*H = {g*h1,g*h2,g*h3, ... }. 

For example, suppose the group G is S3 and the subgroup is H = 
{(1)(2)(3), (1, 2, 3), (1, 3, 2)}. Let g = (1, 2)(3). Then 

Hog= H o (1, 2)(3) 

= {(1)(2)(3) 0 (1, 2)(3), (1, 2, 3) 0 (1, 2)(3), (1, 3, 2) 0 (1, 2)(3)} 

= {(1, 2)(3), (1, 3)(2), (1)(2, 3)}. 

Please do the following: 

a. Prove that g E H * g and g E g * H. 

b. Prove that g * H = H {::::=:::> H * g = H {::::=:::> g E H. 

c. Prove that if (G, *)is Abelian, then g * H = H *g. 

d. Give an example of a group G, subgroup H, and element g such that 

g*H#H*g 
41.15. We call a subgroup (H, *)of (G, *)normal provided, for all g E G, we 

have g * H = H * g. 

Prove that if H is normal and a, b, c, d E G, the implication 

is true. 

if a = b (mod H) and 
c = d (mod H), 

then tr*-~ b * d (mod H) 

~. 
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42 Fermat's Little Theorem 
This section is devoted to proving the following result. 

Theorem 42.1 (Fermat's Little Theorem) Let p be a prime and let a be an integer. Then 

aP =a (mod p). 

For example, if p = 23, then the powers of 5 taken modulo 23 are 

5 1 = 5 
56 = 8 

5 11 = 22 
516 = 3 

521 = 14 

52 = 2 
57 = 17 

512 = 18 
5 17 = 15 
522 = 1 

where all congruences are mod 23. 

53 = 10 
58 = 16 

513 = 21 
518 = 6 
523 = 5 

54 = 4 
59 = 11 

514 = 13 
519 = 7 
524 = 2 

We give three rather different proofs of this lovely result. 

First Proof 

Proof (of Theorem 42.1) 

55 = 20 
510 = 9 

515 = 19 
520 = 12 
525 = 10 

We first prove (using induction) the result in the special case that a ::::: 0. We finish 
by showing that the special case implies the full theorem. 

We prove, by induction on a, that if pis prime and a E N, then aP =a (p). 
Basis case: In the case a = 0, we have aP = OP = 0 = a, soaP = a (p) 

holds for a = 0. 
Inductionhypothesis:Supposetheresultholdsfora = k;thatis,kP = k (p). 

We need to prove that (k + 1)P = k + 1 (p ). 
By the Binomial Theorem (Theorem 16.8), we have 

(k + w = kP + G)kP-1 + (~)kp-2 + ... + c ~ 1)k +I. (44) 

Notice that the intermediate terms (all but the very first and very last) on the right­
hand side of Equation (44) are all of the form (~)kP-J where 0 < j < p. The 

binomial coefficient (~) is an integer that we can write as (Theorem 16.12): 

(p) p! P(p-1)! 
j - j ! (p - j) ! - j ! (p - j) ! . 

(45) 

The fraction in Equation ( 45) is an integer. Imagine we factor the numerator and the 
denominator of this fraction into primes (by Theorem 38.1). Because this fraction 
reduces to an integer, every prime factor in the denominator cancels a matching 
prime factor in the numerator. However, notice that p is a prime factor of the 
numerator, but p is not a prime factor of the denominator; both j and p - j are 
less than p (because 0 < j < p ), and so the prime factors in j! and (p - j)! 
cannot include p. Thus, after we reduce the fraction in Equation ( 45) to an integer, 
that integer must be a multiple of p. 



Note that 

a=- a (mod 2); 

see Exercise 14.3. 
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Therefore the middle terms in Equation (44) are all multiples of p, so we can 

write 

k" + (~)k"-' + G)k"-2 + ... + C ~ 1)k +I= k" +I (mod p). (46) 

Finally, by induction we know that kP = k (p), so combining Equations (44) and 

( 46), we have 

(k + l)P = kP + 1 = k + 1 (mod p) 

completing the induction. 
Thus we have proved Theorem 42.1 for all a E N; we finish by showing that 

the result also holds for negative integers; that is, we need to prove 

( -a)P = (-a) (mod p) 

where a > 0. The case p = 2 is different from the case for odd primes. 

In the case p = 2, we have 

(-a)2 = a2 =a= -a (mod 2) 

because -a = a (2) for all integers a. 

In the case p > 2 (and therefore pis odd), we have 

(-a )P = ( -1 )PaP = - (aP) = -a (mod p) 

completing the proof. • 

Second Proof 

Proof (of Theorem 42.1) 

As in the previous proof, we first prove a restricted special case. In this proof, we 

assume a is a positive integer. The case a = 0 is trivial, and the case when a < 0 

is handled as in the previous proof. 
Thus we assume p is a prime and a is a positive integer. We consider the 

following counting problem. 

How many length-p lists can we form in which the elements of the list are 
chosen from {1, 2, ... , a}? 

The answer to this question is, of course, aP (see Theorem 7.6). 

Next we define an equivalence relation R on these lists. We say that two lists 

are equivalent if we can get one from the other by cyclically shifting its entries. 

In a cyclic shift we move the last element to the first position on the list. Two lists 

are related by R if we can form one from the other by performing one (or more) 

cyclic shifts. For example, the following lists are all equivalent: 

12334 R 41233 R 34123 R 33412 R 23341. 

We now consider a new problem: 

How many nonequivalent length-p lists can w'~ form in which the elements 
of the list are chosen from { 1, 2, ... , a}? 
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By nonequivalent we mean not related by R. In other words, we want to count the 
number of R -equivalence classes. " 

Example 42.2 Consider the case a = 2 and p = 3. There are eight lists we can form: 111, 112, 
121, 122, 211, 212, 221, 222. These fall into four equivalence classes: 

{111}, {222}, {112, 121, 211}, and {122, 212, 221}. 

Example 42.3 Consider the case a = 3 and p = 5. There are 35 = 243 possible lists (from 11111 
to 33333). There are three equivalence classes that contain just one list, namely 

{ 11111}, {22222}, and {33333}. 

The remaining lists fall into.equivalence classes containing more than one element. 
For example, the list 12113 is in the following equivalence class: 

[12113] = {12113, 31211, 13121, 11312, 21131}. 

By experimenting with other lists, please notice that all the equivalence classes 
with more than one list contain exactly five lists. (We prove this below.) 

Thus there are three equivalence classes that contain only one list. The 
remaining 35 - 3 lists fall into classes containing exactly five lists each; there 
are (35 - 3) /5 such lists. Thus, all told, there are 

35 -3 
3+-5-=51 

different equivalence classes. 
The punch line is this: The number (35 - 3) /5 is an integer. Therefore 35 - 3 

is divisible by 5; that is, 35 = 3 (5). 

How do we count the number of equivalence classes in general? If the equiv­
alence classes all had the same size, then we could use Theorem 15.6; we would 
simply divide the number of lists by the (allegedly) common number of lists in 
each class. However, as the examples show, the classes might contain different 
numbers of lists. 

Let's explore how many elements an equivalence class might contain. We 
begin with the simple special case oflists all of whose elements are the same (e.g., 
222 · · · 2 or aaa · · ·a); such lists are equivalent only to themselves. There are a 
equivalence classes that contain exactly one list-namely, {Ill · · · 1 }, {222 · · · 2}, 
... , {aaa ···a}. 

Now consider a list with (at least) two different elements, such as 12113. How 
many lists are equivalent to this list? We saw in Example 42.3 that there are five 
lists in !2113's equivalence class. 

In general, consider the list 
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where the elements of the list are drawn from the set { 1, 2, ... , a}. The equivalence 

class of this list contains the following lists: 

List 1 : 

List 2: 

List 3 : 

List p : 

X]X2X3 · · · Xp-!Xp (original) 

X2X3 · · · Xp-IXpXI 

X3 • · · Xp-1XpX]X2 

It appears that there are p lists in this equivalence class, but we know this is not 

quite right; if all the xis are the same, these p "different" lists are all the same. We 

need to worry that even in the case where the Xis are not all the same, there still 

might be a repetition. 
We claim: If the elements of the list x 1x 2x 3 · · · Xp_ 1xp are not all the same, 

then the p lists above are all different. Suppose, for the sake of contradiction, that 

two of the lists are the same. That is, there are two lists, say List i and List j, with 

1 :::S i < j :::S p, with 

What does it mean that these lists are equal? It means that, element by element, 

they are equal; that is, 

Xi= Xj 

Xi+! = Xj+l 

Xi-1 = Xj-1· 

These equations imply the following: If we cyclically shift the list x 1 x 2x 3 · · · x p-Ix P 

by j - i steps, the resulting sequence is identical to the original. In particular, this 

means that 

XI = XJ+(j-i) · 

If we shift the list another j - i steps, we again return to the original, so 

We need to be careful. Perhaps the subscript 1 + 2(}- i) is larger than p. Although 

there is no element, say, Xp+I (it would be past the end of the list), since we are 

cyclically shifting we can consider element x P+ I to be the same as element xI. In 

general, we can always add or subtract a multiple of p so that the subscript on x 

lies in the set { 1, 2, ... , p}. In other words, we consider two subscripts to be the 

same if they are congruent mod p. Thus the equation x 1 = XJ+CJ-il = XJ+2(J-il 

now makes sense. 
We continue the analysis. We have the equation x 1 = XJ+CJ-il = XJ+2(J-il by 

considering two cyclic shifts of the list x 1 x 2x 3 · · · x p-Ix P by j - i steps. If we shift 
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another j - i steps, we have 

XI = XI+(J-i) = XI+2(j-i) = XI+3(j-i)· 

Clearly we have 

XI = XI+(J-i) = XI+2(j-i) = Xl+3(J-i) = · · · = Xl+(p-l)(j-i) (47) 

where subscripts are taken modulo p. We claim that Equation (47) says 

To see why, we note that in Equation (47) all subscripts (from 1 top) appear. This 
was shown in Exercise 35.18. 

It is time to draw these various threads together. We are considering the set of 
lists equivalent to x 1x2x3 · · · Xp-IXp· We know that if all the xs are the same, there 
is only one list equivalent tox1x2x3 • • • Xp-IXp (namely, itself). Otherwise, if there 
are at least two different elements on this list, then there are exactly p different 
lists equivalent to x 1x2x 3 · · • Xp-IXp (if there were any fewer, then we would have 
x 1 = x 2 = · · · = Xp by the above analysis). 

Thus there are a equivalence classes of size 1, corresponding to the lists 
111 · · · 1 through aaa ···a. The remaining aP -a lists form equivalence classes 
of size p. Thus, all together, there are 

aP- a 
a+--­

p 

different equivalence classes. Since this number must be an integer, we know that 
(aP -a) j p must be an integer (i.e., aP -a is divisible by p ). This can be rewritten 
asaP =a (mod p). • 

Third Proof 

Proof (of Theorem 42.1) 

For this third proof, we work in the group (Z;, 0). We begin by making some 
simplifications. 

We want to prove aP = a (mod p) where pis a prime and a is any integer. 
We saw in the previous proofs that we need to prove this result only for a > 0; the 
case a = 0 is trivial, and the case a < 0 follows from the case when a is positive. 

Let us narrow even further the range of values of a we need to consider. First, 
not only is the case a = 0 trivial, it is also easy to prove aP = a (p) when a is a 
multiple of p (Exercise 42.3). 

Second, if we increase (or decrease) a by a multiple of p, there is no change 
(modulo p) in the value of aP: 

(a+ kp) 1
' = aP + (~)ap-l(kp) 1 + (~)a'-2 (kp)2 + · · · + (;)a0(kp)' 

= aP (mod p) 

because all the (~)aP-i(kp)i (with j > 0) are multiples of p. 
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Therefore we may assume that a is an integer in the set { 1, 2, ... , p- 1} = z;. 
Furthermore the equation aP =a (p) is equivalent to 

a®a® .. ·®a=a 

p times 

where the computations are in z;. This can be rewritten aP = a where, again, the 

computations are in z;. If we 0 both sides by a- 1, we have aP- 1 = 1 (in z;). 
Conversely, if we can prove aP- 1 = 1 in z;, then our proof of Theorem 42.1 

will be complete. 
The good news is that you have already solved this problem! Exercise 41.1 0( d) 

asserts that for any group G and for any element g E G, we have giGI =e. In our 

case, the group is z;, the element is a, and 1z; 1 = p- 1. Therefore aP-1 = 1 and 

we are finished. • 

Euler's Theorem 

We can extend the third proof of Fermat's Little Theorem to a broader context. 

Does the result hold for nonprime moduli? Perhaps we can prove a11 = a (mod n) 

for any positive integer n. An example shows that this is not the correct extension 

of Fermat's Little Theorem. 

Example 42.4 Does an =a (mod n) for nonprime values of n? Consider n = 9. We have 

19 = 1 
49 = 1 ¥= 4 
79 = 1 ¥= 7 

29 = 8 ¥= 2 
59 = 8 ¥= 5 
89 = 8 

39 = 0 ¥= 3 
69 = 0 ¥= 6 

99 = 0 = 9 

where all congruences are modulo 9. The formula aP = a (mod p) does not 

extend to non prime values of p. 

Let us return to the inner workings of the third proof. The key was to prove 

aP-1 = 1 in z;. There are two reasons why this equation holds. 

First, a E z;; if a were a multiple of p, then any power of a would also be a 

multiple of p, and there is no power of a that would give us 1 modulo p. 

Second, the exponent p - 1 is the number of elements in z;. The number of 

elements in z~ is not, in general, n- 1. Rather, IZ~I = cp(n), Euler's totient. (See 

Exercises 3 8.14-17.) 
Let us revisit Example 42.4, this time replacing the exponent 9 with the ex­

ponent cp (9) = 6. 

Example 42.5 Note that Z~ = {1, 2, 4, 5, 7, 8} and cp(9) = 6. Raising the integers 1 through 9 to 

the power 6 (mod 9) gives 

16 = 1 
46 = 1 
76 = 1 

26 = 1 
56 = 1 
86 = 1 

36 = 0 
66 = 0 
96 = 0. 
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This is much better! For those values of a E Z9, we have a6 = 1. Of course, if 
a is increased or decreased by a multiple of 9, the results in Example 42.5 remain 
the same. 

By Exercise 41.10(d), we know that if a E Z~, then 

aiZ~I = 1 

and since IZ~I = q;(n), this can be rewritten 

arp(n) = 1 

where the computations are performed in Z~ (i.e., using ® ). Restated, this says, 

arp(n) = 1 (mod n) 

with ordinary integer multiplications. The generalization of Fermat's Little Theo­
rem is the following result, which we owe to Euler. 

Theorem 42.6 (Euler's Theorem) Let n be a positive integer and let a be an integer relatively 
prime to n. Then 

arp(n) = 1 (mod n). 

Proof. We have seen the main steps in this proof already. Let a be relatively 
prime ton. Dividing a by n, we have 

a= qn + r 

where 0 :::; r < n. Since a is relatively prime ton, so is r (see Exercise 35.12). 
Thus we may assume that a E Z~. 

To show that arp(n) = 1 (mod n) is equivalent to showing that arp(n) 1 in 
Z~, and this follows immediately from Exercise 41.1 0( d). • 

Primality Testing 

Fermat's Little Theorem states that if pis a prime, then aP =a (mod p) for any 
integer a. We can write this symbolically as 

pis a prime :::} Va E Z, aP =a (mod p). 

The contrapositive of this statement is 

-.[Va E Z, aP =a (mod p)] :::} pis not a prime 

which can be rewritten 

3a E Z, aP ¢a (mod p) :::} pis not a prime. 

In other words, if there is some integer a such that aP ¢a (mod p), then pis not 
a prime. We have the following: 

Theorem 42.7 Let a and n be positive integers. If an ¢a (mod n), then n is not prime. 
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Example 42.8 Let n = 3007. Is n prime? We compute 23007 mod 3007 and the result is 33. If 

3007 were prime, we would have 23007 = 2 (mod 3007). Thus 3007 is not prime. 

42 Exercises 

? 

Notice that we have shown that 3007 is not prime without factoring. This may 

seem a rather complicated way to check whether a number is prime. The number 

3007 factors simply as 31 x 97. Isn't it simpler and faster just to factor 3007 than 

to compute 23007 mod 3007? 
How much effort is involved in factoring 3007? The simplest method is trial 

division. We can test divisors of 3007 starting from 2 and continuing until just 

after we pass ,J3007 ~ 54.8. This method can, in the worst case, involve around 

50 divisions. 
On the other hand, computing 23007 seems to demand thousands of multipli­

cations. However, as we saw in Exercise 36.14, the computation ab mod c can be 

performed very efficiently. The computation 23007 (mod 3007) is accomplished 

with about 20 multiplications and 20 reductions mod 3007 (i.e., 20 divisions). 

The computational efforts of the two methods appear to be roughly the same. 

However, suppose we use trial division to see whether a 1 000-digit number is 

prime. Since n ~ 101000 , we have Vii ~ 10500 . Thus we would be performing on the 

order of 10500 divisions, and this would take a very long time. (See Exercise 42.4.) 

On the other hand, computing an mod n requires only a few thousand multi-

plications and divisions; this computation can be done in less than a minute on a 

desktop computer. 
Theorem 42.7 is a terrific tool for showing that an integer is not prime. How­

ever, suppose we have positive integers a and n with an = a (mod n). Does this 

imply that n is prime? No. Theorem 42.7 only guarantees that certain numbers are 

not prime. 
Thus an = a (mod n) does not imply n is prime. Computing, say, 2n mod n 

is not a sure-fire way to check whether n is prime. You might wonder, suppose we 

find that 2n mod n = 2, 3n mod n = 3, and 4n mod n = 4, and so on. Do these 

imply that n is prime? No. This is explored in Exercise 42.6. 

Recap 

We presented Fermat's Little Theorem [if pis prime, then aP =a (mod p)] and 

gave three different proofs. We also proved a generalization of this result known 

as Euler's Theorem. Finally, we showed how Fermat's Little Theorem can be used 

as a primality test. 

42.1. 
42.2. 
42.3. 

42.4. 

For all a E Z 13 , calculate a 12 and a 13 . 

For all a E Zt5 , calculate a 14 , a 15 , and aifl< 15
). 

Without using Theorem 42.1, prove that if p is a prime and a is a multiple 

of p, then aP =a (mod p). 

Estimate how long it would take to factor a 1 000-digit number using trial 

divisions. Assume that we try all divisors up to the square root of the number 

and that we can perform 10 billion trial divisions per second. 

Choose a reasonable unit of time for your answer. 
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42.5. One of the following two integers is prime: 332,461,5,61 or 332,462,561. 
" Which one is it? 

42.6. Find a positive integer n with the following properties: 
n is composite, but 
for all integers a with 1 < a < n, an =a (mod n). 

Such an integer is called a Carmichael number. It always passes our primality 
test but is not prime. 

The point is this: Even if an integer passes our primality test, it is not 
necessarily prime. However, if it fails the primality test, then it must be 
composite. 

43 Public Key Cryptography 1: Introduction 
The Problem: Private Communication in Public 

This problem is not 
contrived. Imagine you 
wish to purchase a product 

over the World Wide Web. 
You visit the company's 

website and place your 

order. To pay for the order, 

you enter your credit card 
number. You do not want 

anyone else on the Internet 
to receive your credit card 
number-only the 
mercham should receive 
this sensitive information. 

When you press the SEND 

button. your credit card 
information is sent out 
over the Internet. On its 

way to the merchant, it 

passes through various 
other computers (e.g .. 
from the computer in your 
home. the information first 
passes to your Internet 
service provider's 

computer). You want to be 

sure that an unscrupulous 
computer operator 

(between you and the 
merchant) cannot intercept 

your credit card number. In 
this scenario. you (the 
customer) correspond to 
Alice, the merchant 
corresponds to Bob, and 
the unscrupulous hacker 
on the Internet is Eve. 

Alice wants to tell Bob a secret. The problem is that everything they say to one 
another is heard by an eavesdropper named Eve. Can Alice tell Bob the secret? 
Can they hold a private conversation? Perhaps they can create a secret code and 
converse only in this code. The problem is that Eve can overhear everything they 
say to each other-including all the details of their secret code! One option is for 
Alice and Bob to make up their code in private (where Eve can't hear). This option 
could be impractical, slow, and expensive (e.g., if Alice and Bob live far apart). It 
seems impossible for Alice and Bob to hold a private conversation while Eve is 
listening to everything they say. Their attempts to pass private messages could be 
thwarted by the fact that Eve knows their coding system. 

It is therefore an amazing fact that private communication in a public forum is 
possible! The key is to develop a secret code with the following property: Reveal­
ing the encryption procedure does not undermine the secrecy of the decryption 
procedure. The idea is to find a procedure that is relatively easy to do, but extraor­
dinarily difficult to undo. For example, it is not hard (at least for a computer) to 
multiply two enormous prime numbers. However, factoring the resulting product 
(if we don't know the prime factors) is extremely hard. 

Factoring 

Suppose p and q are large prime numbers-say, around 500 digits each. It is not 
difficult to multiply these numbers. The result, n = pq, is a 1000-digit composite 
number. On a computer, this computation takes less than a second. Indeed, if you 
were compelled to multiply two 500-digit numbers with only pencil and paper 
(lots of paper!), you would be able to do this task in a matter of hours or days. 

Suppose that instead of being given the primes p and q, you are given their 
product n = pq. You are asked to factor n to recover the prime factors p and q. You 
do not know p and q-you know only n. If you try to factor n using trial division, 
you will need to do about 10500 divisions, and this would take an unimaginably 
long period of time even on a blazingly fast computer (see Exercise 42.4). 
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The term public key refers 
to the fact that the 
encryption procedure is 
known to everyone, 
including the 
eavesdropper. 
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There are more sophisticated algorithms for factoring that work much faster 

than trial division. We do not discuss these more complicated, but faster, methods 

in this book. The relevant fact is that although these techniques are much faster than 

trial division, they are not so tremendously fast that they can factor a 1 000-digit 

number in a reasonable period of time (e.g., under a century). 
Furthermore, running these techniques on faster computers does not make 

factoring significantly easier. Instead of using 500-digit primes p and q, we can 

use 1000-digit primes (son = pq increases from 1000 to 2000 digits). The time to 

multiply p and q rises modestly (about 4 times longer). However, the time to factor 

n = pq increases enormously. The number n is not twice as big as before-it's 

101000 times bigger! 
The point of this discussion is to convince you that it is extremely difficult to 

factor large integers. However, this might not be true. All I can say is that to date, 

there are no efficient factoring algorithms known. Mathematicians and computer 

scientists believe there are no efficient factoring algorithms, but to date, there is 

no proof that such an algorithm cannot be created. 

There is no computationally efficient procedure for factoring positive integers. 

(We have not defined the term computationally efficient procedure, so this 

conjecture's precise meaning has not been made clear. The imprecise meaning of 

this conjecture-"Factoring is hard!"-suffices for our purposes.) 
This brings us to the second amazing fact for this section. The two techniques 

we present for sending private messages over public channels are based on this 

unproven conjecture! 
The security of public-key cryptosystems is based on ignorance, not on knowl­

edge. Both of the public-key systems we present, Rabin's system (Section 44) and 

the RSA system (Section 45), can be broken by an efficient factoring algorithm. 

Details follow. 

Words to Numbers 

Alice's message to Bob will be a large integer. People normally communicate with 

words, so we need a system for converting a message into a number. Suppose her 

message is 

Dear Bob, Do you want to go to the movies tonight? Alice 

First, Alice converts this message into a positive integer. There is a standard way to 

convert the Roman alphabet into numbers; this encoding is called the ASCII code. 

There is nothing secret about this code. It is a standard way to represent the letters 

A-Z (lower and upper cases), numerals, punctuation, and so on, using numbers in 

the set {0, 1, 2, ... , 255}. For example, the letter Din ASCII is the number 68. The 

letter e is 101. The space character is 32. Alice's message, rendered as numbers, is 

D e a r spc B o b spc D o spc y o u 

068 101 097 114 032 066 111 098 044 032 068 111 032 121 111 117 
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CD 

Alice 

In private, Alice writes her 
message in ASCII, M. She 
uses Bob's function E to 
calculate N = E(M). 

Alice sends N to Bob. 

Eve Bobv 

In private, Bob creates a 
public encryption function 
E and a secret decryption 
function D. 

E Bob sends his public 
..,... _______ encryption function E to 

N 

Eve sees E and N, but 
cannot calculate M from 
these. 

Alice. 

In private, Bob uses his 
decryption function D to 
calculate M = D(N). He now 
has Alice's message. 

Next, Alice combines these separate three-digit numbers into one large inte­
ger, M: 

M = 68,101,097,114,032,066,111,098, ... ,099,101. 

Since Alice's original message is about 50 characters long, this message is about 
150 digits long. This is how Alice sends her message to Bob: 

In the privacy of his home, Bob creates a pair of functions, D and E; these 
functions are inverses of one another; that is, D ( E ( M)) = M. 
Bob tells Alice the function E. At this point, Eve gets to see the function E. 
The function is fairly easy to compute, but it is very hard for Eve to figure out 
D knowing only E. 
Alice uses Bob's public encryption function E. In the privacy of her own 
home, she computes N = E(M) (where M is the message she wants to send). 
She now sends the integer N to Bob. Eve gets to see this integer as well. 
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• Bob now uses his private decryption function D to compute D ( N). The result is 

D(N) = D(E(M)) = M 

so now Bob knows the message M. Since Eve does not know D, she cannot 

figure out what M is. 

The challenge is to create functions E and D that work for this protocol. In 

the next two sections, we present two methods to accomplish this. 

Cryptography and the Law 

I am most certainly not an expert on law. Nonetheless, let me share some advice 

about the material in the next two sections. 
The techniques in the next two sections are not hard to implement on a com­

puter. Let's suppose you reside in the United States and you write a computer 

program that implements these cryptographic methods. Indeed, it might beater­

rific software package that lots of people would like to use. You realize that since 

people value your work, they would be willing to pay you for this program. So 

you sell your program to various people, including individuals outside the United 

States. 
Now, I hope you have an excellent lawyer, because you could be in heap of 

trouble. You may have violated copyright and patent laws (the RSA system is so 

protected) as well as U.S. export control laws (because cryptography is of military 

value, there are export controls restricting its sale). 

The point is that you must be careful if you decide to implement the techniques 

we are about to present. Get knowledgeable legal advice before you start. 

Recap 

We introduced the central problem in public-key cryptography: How can two 

people, who have never met, send private messages to each other over a nonsecure 

channel? 

43 Exercises 43.1. Write a computer program to convert ordinary text into ASCII and a sequence 

of ASCII numbers into ordinary text. 
43.2. A message, when converted to ASCII, reads as follows: 

71 111 111 100 32 119 111 114 107 

What is the message? 

44 Public Key Cryptography II: Rabin's Method 

The challenge in public-key cryptography is to create good encryption and de­

cryption functions. The functions should be relatively easy to compute, and (this 

is the central point) revealing E should not provide enough information about D 

for Eve to figure D out. 
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In this section, we present a public-key cryptosystem devised by Michael 
Rabin. The encryption function is especially simple. Let n be a large (e.g., 200-
digit) integer. The encryption function is 

E(M) = M 2 mod n. 

Decryption involves taking a square root (in Zn). The integer n needs to be chosen 
in a special manner (described below). To understand how to decrypt messages 
and why Rabin's method is secure, we need to understand how to take square roots 
in Zn. 

Square Roots Modulo n 

Most hand-held calculators have a square root button. In the blink of an eye, your 
calculator can tell you that -JI7 ~ 4.1231056. Most calculators, however, cannot 
give you -JI7 in Z 59 . What does this mean? When we say that 3 is the square root 
of9, we mean that 3 is the root of the equation x 2 = 9. Now the use of the word the 
is inappropriate because 9 has two different square roots: +3 and -3. However, 
the positive square root usually enjoys preferential treatment. 

In Z 59 the situation is similar. When we ask for the square roots of 17, we 
seek those elements x E Z59 for which x 2 = x ® x = 17. The calculator's value 
of 4.1231056 ... is not of any help here. 

There are only 59 different elements in Z 59 . We can simply square all of them 
and see which (if any) gives 17 as a result. This is painful to do by hand but fast 
on a computer. We find that 17 has two square roots in Z 59 : 28 and 31. 

What is .Jl8 in Z 59 ? After we try all the possible values, we find that 18 does 
not have a square root in Z 59 . 

Stranger still, when we search for square roots of 17 in Z 1121 , we find four 
answers: 146, 500, 621, and 975. 

For this cryptographic application, we need to take square roots modulo num­
bers that are hundreds of digits long. Trying all the possibilities is not practical! 
We need a better understanding of square roots in Zn. 

Integers whose square roots are themselves integers are called peifect squares. 
In Zn there is a different term. 

Definition 44.1 (Quadratic residue) Let n be a positive integer and let a E Zn. If there is an 
element b E Zn such that a = b ® b = b2

, we call a a quadratic residue modulo 
n. Otherwise (there is no such b) we call a a quadratic nonresidue. 

We do not make a comprehensive study of quadratic residues here. We limit 
our investigation to those facts that we need to understand the Rabin cryptosystem. 
We begin by studying square roots in Zp where pis a prime. 

Proposition 44.2 Let p be a prime and let a E Zp. Then a has at most two square roots in Zp. 



Lemma 38.2 states that if 

pis prime and plah, then 

pia or plb. 

Proposition 44.3 
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Proof. Suppose, for the sake of contradiction, that a has three (or more) square 

roots in 7lp. Notice that if xis a square root of a, then so is -x = p- x because 

(p- x) 2 = p 2
- 2px + x 2 = x 2 =a (mod p). 

Since a has three (or more) square roots, we can choose two square roots, x, y E Z P, 

such that x # ±y. Now let's calculate (x- y)(x + y). We get 

(x - y)(x + y) = x 2
- y 2 =a- a = 0 (mod p). 

Now the condition x # ±y implies that x + y =/= 0 (p) and x- y =/= 0 (p) (i.e., 

neither x + y nor x- y is a multiple of p ). This means that pis not a factor of either 

x + y or x- y. Yet pis factor of (x + y)(x- y), contradicting Lemma 38.2.::::?{::: 

Therefore a has at most two square roots in 7l P. • 

Let p be a prime with p = 3 (mod 4). Let a E 7l P be a quadratic residue. Then 

the square roots of a in 7lP are 

[ ± a(p+I)/4] mod p. 

Proof. Let b = aCp+I)/4 mod p. We need to prove that b2 =a. 

By hypothesis, a is a quadratic residue in 7lP, so there is an x E 7lp such that 

a= x ® x = x 2 . We now calculate 

b2 = [a(p+I)/4]2 

= [(x2)(p+I)/4]2 

= [x(p+I)/2f 

= xP+I 

= xPxl 

= x2 

=a (mod p). 

(substitute a -+ x 2
) 

The step xPx1 = x 2 follows from Theorem42.1 because xP = x (p) for a prime p. 

Of course, if b2 =a (mod p), then also ( -b)2 =a (mod p). By the proof 

of Proposition 44.2, there can be no other square roots in 7lp. • 

In reading through this proof, you may have noticed that we did not explicitly 

use the hypothesis that p = 3 (mod 4). However, this hypothesis is important and 

is used implicitly in the proof (see Exercise 44.2). 

Example 44.4 Notice that 59 is prime and 59= 3 ·(mod 4). In 7ls9 we have 

17(p+l)/4 = 17 15 = 28 

and notice that 282 

31 ® 31 = 17. 
28 ® 28 = 17. Also -28 _ 31, and we have 31 2 
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As we have discussed (see Exercise 36.14), the computation ab mod c can be 
done efficiently on a computer, so Proposition 44.3 gives us an efficient way to 
find square roots in 'llp (for primes congruent to 3 mod 4). 

We mentioned earlier that 17 has four square roots in 7!.1121 . This is not a 
contradiction to Proposition 44.2 because 1121 is not prime; it factors 1121 = 
19 X 59. 

Here we describe how to find the four square roots of 17. But first, some 
analysis. Suppose x is a square root of 17 in 7!. 1121 . This means 

X@ X= 17 

which can be rewritten 

x 2 = 17 (mod 1121) 

and that's the same as 

x 2 = 17 + 1121k 

for some integer k. We can write this (yet again!) in the following two ways: 

x 2 = 17 + 19(59k) and x 2 = 17 + 59(19k) 

and so 

x 2 = 17 (mod 19) and x 2 = 17 (mod 59). 

This suggests that to solve x 2 = 17 (1121), we should first solve the two 
equations 

x 2 = 17 (19) and x 2 = 17 (59). 

We have already solved the second equation: In 7!.59 the square roots of 17 are 28 
and 31. 

Fortunately, 19 = 3 (mod 4), so we can use the formula in Proposition 44.3: 

17(19+1)/4 = 175 = 6 (mod 19). 

The other square root is -6 = 13. 
Let's summarize what we know so far. 

• We want to find JI7 in 'll1121· 

• We have 1121 = 19 x 59. 
• In 7!.19 the square roots of 17 are 6 and 13. 
• In 7!.59 the square roots of 17 are 28 and 31. 

Furthermore, if x is square root of 17 in 7!.1121 , then (after we reduce x modulo 59) 
it is also a square root of 17 in 7!.59 , and (after we reduce x modulo 19) it is also a 
square root of 17 in 7!. 19 • Thus x must satisfy the following: 

x = 6 or 13 (mod 19) and x = 28 or 31 (mod 59). 



Section 44 Public Key Cryptography II: Rabin's Method 377 

This gives us four problems to solve: 

x=6 
X= 28 

X= 13 
X= 28 

(mod 19) 
(mod 59) 

(mod 19) 
(mod 59) 

x=6 
X= 31 

X= 13 
X= 31 

(mod 19) 
(mod 59) 

(mod 19) 
(mod 59). 

We can solve each of these four problems via the Chinese Remainder Theorem 

(Theorem 37 .5). Here we do one of the calculations. Let us solve the first system 

of congruences: 

x=6 

X= 28 

(mod 19) 

(mod 59). 

Since x = 6 (19), we can write x = 6 + 19k for some integer k. Substituting this 

into the second congruence x = 28 (59), we get 

6 + 19k = 28 (59) 19k = 22 (59). 

We multiply both sides of the latter equation by 19- 1 = 28 (in Z59 ) to get 

28 X 19k = 28 X 22 (59) k = 26 (59). 

Thus we can write k = 26 +59 j. Substituting this fork in x = 6 + 19k, we have 

X= 6 + l9k = 6 + 19(26 +59})= 500 + 1121} 

so we find that x = 500 is one of the four square roots of 17 (in Z 1121 ). 

The other three square roots of 17 are 621, 146, and 975. 

Let us recap the steps we took to find the square roots of 17 in Z 1121 • 

• We factored 1121 = 19 x 59. 
• We found the two square roots of 17 in Z 19 (they are 6 and 13) as well as the 

square roots of 17 in Z59 (they are 28 and 31). 
Because 19 and 59 are congruent to 3 modulo 4, we can use the formula 

from Proposition 44.3 to compute these square roots. 
• We solve four Chinese Remainder Theorem problems corresponding to the 

four possible pairs of values that -JU might take in Z 19 and Z59 . 

• The four answers to these Chinese Remainder Theorem problems are the four 

square roots of 17 modulo 1121. 

Only one of these four steps is computationally difficult: the factoring step. The 

other steps (finding square roots in Zp and using the Chinese Remainder Theorem) 

may be more novel to you, but they can be done efficiently on a computer. 

This procedure can be used to find the square roots of numbers in Z 11 provided 

the integer n is of the form n = pq where p and q are primes with p = q = 
3 (mod 4). However, if p and q are, say, 100-digit primes, then the factoring step 

makes this procedure utterly impractical. 
Does this imply that there is no other procedure for finding square roots? 

No, but let us show that finding square roots in this context is just as hard as 

factoring. 
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Theorem 44.5 Let n = pq where p and q are primes. Suppose x E Zn his four distinct square 

roots, a, b, c, d. If these four square roots are known, then there is an efficient 

computational procedure to factor n. 

Proof. Suppose x E Zn where n = pq with p, q prime, and suppose x has four 

distinct square roots. For example, 

x = a2 = b2 = c2 = d 2 

in Z11 • Of course, since a is a square root of x, so is -a. Because there are four 

distinct square roots, we may assume that b = -a, but c =f. ±a. Notice that 

(a- c)(a +c)= a2
- c2 = x- x = 0 (mod n). 

This means that (a-c) (a+ c) = kpq = kn where k is some integer. Furthermore, 

since c =f. ±a (in Z11 ), we know that a- c =f= 0 and a+ c =f= 0 (n). 

Therefore gcd(a- c, n) =f. n because a-cis not a multiple of n. Is it possible 

that gcd(a- c, n) = 1? If so, then neither p nor q is a divisor of a- c, and since 

(a -c)(a+c) = kpq = kn, we see that p andq must be factors of a+c, but this is a 

contradiction because a +c is not a multiple of n. If gcd (a- c, n) =f. n and gcd (a- c, 

n) =f. 1, what possible values remain for gcd(a- c, n)? The only other divisors of 

n are p and q, and therefore we must have gcd(a- c, n) = p or gcd(a- c, n) = q. 

Since gcd can be computed efficiently, given the four square roots of x in :2::11 , 

we can efficiently find one of the factors of n = pq and then get the other factor 

by division into n. • 

Example 44.6 Let n = 38989. The four square roots of 25 in Z 11 are a = 5, b = -5 = 38984, 

c = 2154, and d = -2154 = 36835. [Please check these yourself on a computer. 

For example, verify that 21542 = 25 (38989).] Now we calculate 

gcd(a __: c, n) = gcd(-2149, 38989) = 307 

gcd(a + c, n) = gcd(2159, 38989) = 127 

and, indeed, 127 x 307 = 38989. 

Although there may be other procedures to find square roots in Z pq, an efficient 

procedure would be a contradiction to Conjecture 43 .1. Therefore we believe there 

is no computationally efficient procedure to find square roots in Z pq. 

The Encryption and Decryption Procedures 

Alice wants to ,send a message to Bob. To prepare for this, Bob, in the privacy 

of his home, finds two large (say, 100 digits each) prime numbers p and q with 

p = q = 3 (mod 4). He calculates n = pq. He then sends the integer n to Alice. 

Of course, Eve now knows n as well, but because factoring is difficult, neither 

Alice nor Eve knows the factors p and q. 

Next, Alice, in the privacy of her home, forms the integer M by converting 

her words into ASCII and using the ASCII codes as the digits of her message number 

M. She calculates N = M 2 mod n. 
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Now Alice sends N to Bob. Eve receives the number N as well. 

To decrypt, Bob computes the four square roots of N (in Zn). Because Bob 

knows the factors of n (namely, p and q ), he can compute the square roots. This 

gives four possible square roots, only one of which is the message M that Alice sent. 

Presumably, however, only one of the four square roots is the ASCII representation 

of words; the other three square roots give nonsense. 

Eve cannot decrypt because she does not know how to find square roots. 

Thus Alice has sent Bob a message that only Bob can decrypt, and all their 

communication has been in public! 

Recap 

In this section, we discussed Rabin's public-key cryptosystem. In this system, 

messages are encrypted by squaring and decrypted by finding square roots. These 

calculations take place in z;q where p and q are primes congruent to 3 modulo 4. 

We explained how to find square roots in this context and noted the connection to 

factoring. 

44 Exercises 44.1. Suppose it takes about 1 second to multiply two 500-digit numbers on a 

computer. Explain why we should expect it to take about 4 seconds to 

multiply two 1 000-digit numbers. 
44.2. Proposition 44.3 includes the hypothesis p = 3 (mod 4). This fact is not 

explicitly used in the proof. Explain why this hypothesis is necessary and 

where in the proof we (implicitly) use this condition. 

44.3. Find the four square roots of 500 in Z589 . 

44.4. Find all values of J 17985 in Z34751. 

44.5. The first step in all public-key cryptosystems is to convert the English­

language message into a number, M. This is typically done with the ASCII 

code. In this problem, we use a simpler method. 

We write our messages using only the 26 uppercase letters. We use 01 

to stand for A, 02 to stand forB, etc., and 26 to stand for Z. The word LOVE 

would be rendered as 12152205 in this encoding. 
Suppose Bob's public key is n = 328419349. Alice encrypts hermes­

sage Musing Rabin's system as M 2 mod n. For example, if her message is 

LOVE, this is encrypted as 

121522052 mod 328419349 = 27148732 

and so she transmits 27148732 to Bob. 
Alice encrypts four more words to Bob. Their encryptions are as follows: 

a. 249500293. 

b. 29883150. 

c. 232732214. 

d. 98411064. 

Decrypt these four words. 
44.6. Long and short messages. Suppose Bob's public key is a 1000-digit com­

posite number n, and Alice encodes her message Mas E (M) = M 2 mod n. 
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When Alice wants to send a message containing c characters, she creates 
an integer with 3c digits (using the ASCII code). fo 

a. Suppose 3c > 1000. What should Alice do? 
b. Suppose 3c < 500. What should Alice be concerned about? What should 

she do in this situation? 
44.7. Let n = 171121; this number is the product of two primes. 

The four square roots of 56248 in Zn are 68918, 75406, 95715, and 
102203. 

Without using trial division, factor n. 
44.8. Let n = 5947529662023524748841; this number is the product of two 

primes. 
The four square roots of 5746634461808278371316 in Zn are 

Factor n. 

602161451924, 

1909321100318787504165, 

4038208561704737244676, and 

5947529661421363296917. 

44.9. The method we presented in this section is a simplified version of Rabin's 
method. In the complete version, the encryption function is slightly more 
complicated. 

As in the simplified system, Bob chooses two prime numbers p and q 
with p = q = 3 ( 4), and he calculates n = pq. He also chooses a value 
k E Zn. Bob's encryption function is 

E(M) = M(M + k) mod n. 

In the simplified version, we took k = 0. 
a. Explain how Bob decrypts messages sent to him using this encryption 

function. 
b. Suppose n = 589 and k = 321. If Alice's message isM = 100, what 

value does she send to Bob? Call this number N. 
c. Bob receives the value sent by Alice [N from part (b)]. What are the 

(four) possible messages Alice might have sent? 

45 Public Key Cryptography Ill: RSA 
Another public-key cryptosystem is known as the RSA cryptosystem, named after 
its inventors, R. Rivest, A. Shamir, and L. Adleman. This method is based on 
Euler's extension (Theorem 42.6) to Fermat's Little Theorem 42.1; we repeat 
Euler's result here. 

Let n be a positive integer and let a be an integer relatively prime ton. Then 

a({J(n) = 1 (mod n). 
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Here <p is Euler's totient: <p(n) is the number of integers from 1 to n that are 

relatively prime ton. For use with the RSA system, we are especially interested in 

<p (n) with n = pq where p and q are distinct prime numbers. In this case, recall 

that 

<p(n) = <p(pq) = pq- p- q + 1 = (p- 1)(q- 1) 

(see Exercise 38.15). 

The RSA Encryption and Decryption Functions 

We begin our study of the RSA cryptosystem by introducing its encryption and 

decryption functions. In the privacy of his home, Bob finds two large (e.g., 500-

digit) prime numbers p and q and calculates their product n = pq. He also finds 

two integers e and d. The numbers e and d have special properties that we explain 

below. 
The encryption and decryption functions are 

E(M) =Me mod n and D(N) = Nd mod n. 

These calculations can be done efficiently on a computer (see Exercise 36.14). 

Bob tells Alice his encryption function E. In so doing, he reveals the numbers 

n and e not only to Alice but also to Eve. He keeps the function D secret; that is, 

he does not reveal the number d. 
In the privacy of her home, Alice forms her message M, calculates N = E (M), 

and sends the result to Bob. Eve gets to see N, but not M. 

In the privacy of his home, Bob calculates 

D(N) = D(E(M)) ~ M. 

For Bob to be able to decrypt the message, it is important that we have D ( E ( M)) = 

M. Working in 7ln, we want 

D(E(M)) = D(Me) = (Me)d = Med ~ M. 

How can we make this work? Euler's theorem helps. Euler's theorem tell us that 

if M E 7l~, then 

M<p(n) = 1 in 7l~. 

Raising both sides of this equation to a positive integer k gives 

Mk<p(n) = 1. 

If we multiply both sides of the last equation by M, we get 

Mk<p(n)+l = M 

so if ed = kcp(n) + 1, then we have D(E(M)) = Med = M. In other words, we 

want 

ed = 1 (mod <p(n)). 

Now we are ready to explain how to choose e and d. 
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Bob selects e to be a random value in z;Cn); that is, e is ~n integer between 1 
and cp(n) that is relatively prime to cp(n). Note that because Bob knows the prime 
factors of n, he can calculate cp(n). 

Next he computes d = e- 1 in z;Cn) (see Section 36). Now we have 

D(E(M)) = Med = Mkcp(n)+l = (Mcp(n)/ 0 M = 1k 0 M = M in Z~ 

and therefore, with this choice of e and d, Bob can decrypt Alice's message. 

Example 45.1 Bob picks the prime numbers p = 1231 and q = 337, and computes n = pq = 
41484 7. He can also compute 

cp(n) = (p- 1)(q - 1) = 1230 x 336 = 413280. 

He chooses e at random in z:13280-say, e = 211243. Finally, he calculates (in 
z:l32so) 

d = e- 1 = 166147. 

Let us review the steps in this procedure. 

• In the privacy of his home, Bob finds two very large prime numbers, p and q. 
He calculates n = pq and cp(n) = (p- l)(q - 1). 

• Still in private, Bob chooses a random number e E z;(n) and calculates 
d = e- 1 where the inverse is in the group z;Cn). He does this using Euclid's 
Algorithm. 

• Bob tells Alice the numbers nand e (but keeps the number d secret). Eve gets 
to seen and e. 

• In the privacy of her home, Alice forms her message M and calculates N = 
E(M) =Me mod n. 

• Alice sends the number N to Bob. Eve gets to see this number as well. 
• In the privacy of his home, Bob calculates D(N) = Nd = (Me)d = M and 

reads Alice's message. 

Note: The decryption assumes M to be relatively prime to n (otherwise Euler's 
theorem does not apply). See Exercise 45.6 in the case that M is not relatively 
prime ton. 

Example 45.2 (Continued from Example 45.1.) Bob's encryption/decryption functions are 

E(M) = M211243 mod 414847 and D(N) = N 166147 mod 414847. 

Suppose Alice's message isM = 224455. In private, she computes, 

E(M) = 224455211243 mod 414847 = 376682 

and sends 376682 to Bob. 
In private, Bob calculates 

D(376682) = 376682166147 mod 414847 = 224455 

and recovers Alice's message. 
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Security 

Can Eve decrypt Alice's message? Let's consider what she knows. She knows 

Bob's public encryption function E(M) = Me mod n, but she does not know 

the two prime factors of n. She also knows E(M) (the encrypted form of Alice's 

message), but she does not know M. 

If Eve can guess the message M, then she can check her guess because she 

too can compute E(M). If Alice's message is very short (e.g., Yes), this might be 

feasible. 
Otherwise Eve can try to break Bob's code. One way she can do this is to 

factor n. Once she has n, she can compute cp(n) and then get d = e-1 (in z;(n)). 

However, our supposition is that factoring is too hard for this to be feasible. 

Note that Eve does not really need to know the prime factors of n. She would 

be happy just knowing cp (n), so she can calculate d. This is not practical either. 

Proposition 45.3 Let p and q be primes and let n = pq. Suppose we are given n, but we do not 

know p or q. If we are also given cp (n), then we can efficiently calculate the prime 

factors of n. 

Proof. We know that 

n = pq, and 

cp(n) = (p- 1)(q - 1). 

This is a system of two equations in two unknowns (p and q) that we can simply 

solve. We write q = nIp and substitute this into the second equation, which we 

solve via the quadratic formula. • 

Thus, if Eve could efficiently calculate cp(n) from n, then she could efficiently 

factor n, contradicting Conjecture 43.1. 

Example 45.4 If n = 414847, then cp(n) = 413280. We want to solve 

pq = 414847 and (p- 1)(q- 1) = 413280. 

We substitute q = 414847 I pinto 

to get 

which expands to 

which rearranges to 

(p- 1)(q- 1) = 413280 

(p- 1)(414847 1 p- 1) = 413280 

414847 
414848---- p = 413280 

p 

p 2
- 1568p + 414847 = 0 

whose roots are p = 337 and 1231 (by the quadratic formula). The prime factors 

of 414847 are, indeed, 337 and 1231. 
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Now Eve does not, in point of fact, need cp(n). She will be happy just to know 
d. Is there an efficient procedure for Eve to find d given n at\d e? Probably not. 

Proposition 45.5 Let p, q be large primes and then = pq. Suppose there is an efficient procedure 
that, given e with gcd(e, cp(n)) = 1, produces d with ed = 1 (mod cp(n)). Then 
there is an efficient procedure to factor n. 

The proof is beyond the scope of this text, but it can be found in more advanced 
books on cryptology. The point is that if we believe factoring is intractable, then 
there is no way for Eve to recover the exponent d just from knowing e and n. 

This, however, does not completely settle the issue. To break Bob's code, Eve 
needs to solve the equation 

Me= N (mod n) 

where she knows e, N, and n. We have been thinking about the possibility that 
Eve would recover the decryption function (especially the integer d) and compute 
M from N the same way Bob might. However, there may be other ways to solve 
this equation that we have not considered. It is an unsolved problem to prove that 
breaking RSA is as hard as factoring. 

Recap 

The RSA cryptosystem is a public-key system. Bob (the recipient) chooses two 
large primes, p and q, and calculates n = pq. He also finds e and d with ed = 
1 (cp(n)). He then (publicly) tells Alice his encryption function E(M) =Me mod 
n, while holding confidential his decryption function D(N) = Nd mod n. 

In private, Alice forms her message M, computes N = E(M), and transmits 
N to Bob. 

Finally, in private, Bob takes the value he received, N, and computes D(N) = 
D[E(M)] = M to recover Alice's message M. 

45 Exercises 45.1. Suppose n = 589 = 19 x 31 and let e =53. Bob's encryption function is 
E(M) =Me mod n. What is his decryption function? 

45.2. Suppose n = 589 = 19 x 31 and let d = 53. Bob's decryption function is 
D(N) = Nd mod n. What is his encryption function? 

45.3. Suppose Bob's encryption function is E (M) = M 53 (mod 589). Alice 
encrypts a message M, calculates E ( M) = 289, and sends the value 289 to 
Bob. What was her message M? 

45.4. The first step in all public-key cryptosystems is to convert the English­
language message into a number, M. This is typically done with the ASCII 

code. In this problem, we use a simpler method. 
We write our messages using only the 26 uppercase letters. We use 01 

to stand for A, 02 to stand forB, etc., and 26 to stand for Z. The word LOVE 

would be rendered as 12152205 in this encoding. (This is the same method 
as in Exercise 44.5.) 
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Suppose Bob's RSA public key is (n, e) = (328419349, 220037467). 

To encrypt the word LOVE, Alice calculates 

12152205220037467 mod 328419349 = 76010536 

and sends 7 60 10536 to Bob. 
Alice encrypts four more words to Bob. Their encryptions are as follows: 

a. 322776966. 

b. 43808278. 

c. 166318297. 

d. 18035306. 
Decrypt these four words. 

45.5. Suppose Bob creates two RSA encryption algorithms as follows: First, he 

picks large primes p and q and calculates n = pq. Next he chooses two 

integers e1 and e2 with gcd(e1, cp(n)) = gcd(e2 , cp(n)) = 1 to make two 

encryption functions: 

E 1 (M) = Me 1 mod n, and 

E2 (M) = Me2 mod n 

When Alice puts her message into code, she double-encrypts it by calculating 

N = E1 (E2(M)) 

and sends N to Bob. 
Please answer the following: 

a. How should Bob decrypt the message he receives from Alice? 

b. Suppose, by mistake, Alice calculates N' = E2 (£1 (M)) and, unbe­

knownst to Bob, sends N' instead of N to him. What will happen when 

Bob decrypts N'? 

c. How much harder is it, using this double-encryption method, for Eve to 

decrypt Alice's message (compared to standard single encryption)? 

45.6. Let Bob's encryption function be E(M) = Me mod n where n = pq for 

distinct primes p and q. His decryption function is D(N) = Nd mod n 

where ed = 1 (mod cp(n)). 

Suppose Alice forms a message M (with 1 ~ M < n) that is not rei:.. 

atively prime to n. You may suppose that M is a multiple of p, but not 

of q. 
Prove that D(E(M)) = M. 

Chapter 8 Self Test 

1. For real numbers x and y, define an operation x * y by 

X*Y=)x2+y2. 

Please answer the following questions and justify your responses. 

a. Evaluate 3 * 4. 
b. Is the operation* closed for real numbers? 

c. Is the operation* commutative? 
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d. Is the operation * associative? 
e. Does the operation * have an identity element? 

2. List the elements in Z~2 and find cp(32). 
3. Consider the group (Zt5 , 0). Find the following subsets of ZT5 : 

a. H = {x E ZT5 : x 0 x = 1}, and 
b. K = {x E Zt5 : x = y 0 y for some y E Zt5}. 

4. Let ( G, *) be an Abelian group. Define the following two subsets of G: 
a. H = {x E G : x * x = e}, and 
b. K = { x E G : x = y * y for some y E G}. 
Prove that (H, *)and (K, *)are subgroups of (G, *). 

Furthermore, give examples to demonstrate that if the requirement that 
( G, *)be Abelian is deleted, Hand K do not necessarily constitute subgroups. 

5. Let ( G, *) be a group with exactly three elements. Prove that G is isomorphic 
to (.£3, EB). 

6. Find an isomorphism between (Zt3 , 0) and (.£12, EB). 
7. Let (G, *)be a group and let (H, *)and (K, *)be subgroups. Define the set 

H * K to be the set of all elements for the form h * k where h E H and k E K; 
that is, 

H * K = {g E G : g = hk for some h E H and k E K}. 

a. In (.£ 100 , EB) let H = {0, 25, 50, 75} and K = {0, 20, 40, 60, 80}. 
Find the set H EB K. 

b. Prove: If ( G, *) is an Abelian group and H and K are subgroups, then 
H * K is also a subgroup. 

c. Show that the result in part (b) is false if the word Abelian is deleted. 
8. Show that for all elements g of (ZT5 , 0), we have g4 = 1. 

use this to prove that the group czr5' 0) is not cyclic. 
9. Without the use of any computational aid, calculate 290 mod 89. 

10. Let n = 3 8168467. Use the fact that 

2n = 6178104 (mod n) 

to determine whether n is prime or composite. 
11. Let n = 38168467. Given that cp(n) = 38155320, calculate (without the 

assistance of a computational aid) 

238155321 mod 38168467. 

12. Using only a basic handheld calculator, compute 

874256 mod 9432. 

13. Find all values of -J7I in .£883 . 

14. Find all values of v'I in .£440617 . Note that 440617 factored into primes is 
499 X 883. 

15. Let n = 546094 7. In Zn we have 

12359072 = 18424122 = 36185352 = 42250402 = 1010120. 

Use this information to factor n. 
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Note: You should find that n is the product of two distinct primes. 
16. Alice and Bob communicate using the Rabin public-key cryptosystem. Bob's 

public key is n = 713809. 
Alice sends a message to Bob. She first converts her message (a three­

letter word) to a number by taking A to be 01, B to be 02, and so on. Then she 
encrypts her message using Bob's public key and sends the result, 496410, to 
Bob. 

Given that 713809 = 787 x 907, decrypt Alice's message. 
17. Alice and Bob switch to using the RSA public-key cryptosystem. Alice's 

public key is (n, e) = (453899, 449). Given that 453899 = 541 x 839, find 
Alice's private decryption exponent, d. 

18. Bob sends Alice a message using Alice's RSA public key (as described in the 
previous problem). Using A is 01, B is 02, etc., Bob converts his message (a 
three-letter word) into an integer M, and encrypts using Alice's encryption 
function. The result is EA (M) = 105015. 

What was Bob's message? 
19. Given that n = 40119451 is the product of two distinct primes and cp(n) = 

40106592, factor n. 





CHAPTER 

9 Graphs 

The word graph has several meanings. In nonmathematical English, it refers to a 

method of representing an idea or concept with a picture or in writing. In both math­

ematics and in English, it often refers to a diagram used to show the relationship 

of one quantity to another. 
In this chapter, we introduce an entirely different mathematical meaning for 

the word graph. For us, a graph is not a picture drawn on x andy axes. 

46 Fundamentals of Graph Theory 

Before we say just what a graph is or give a formal definition of the word graph, 

we consider some interesting problems. 

Map Coloring 

Imagine a map of a mythical continent that has several countries. You are a car­

tographer charged with designing a map of your continent. To show the different 

countries clearly, you fill their regions using various colors. However, if you were 

to make every country a different color, the map would be garish. 

To make the map clear, but not gaudy, you decide to use as few colors as 

possible. However, to maintain clarity, you insist that neighboring countries should 

not receive the same color. 
The question is: What is the smallest number of colors you need to color your 

map? 
The question refers not just to the map in the figure, but to any map that might 

be drawn. Well, not quite any map We do not allow countries that are disconnected. 

(For example, Russia includes a region north of Poland and west of Lithuania that 

is disconnected from the rest of Russia. The United States is in multiple pieces, 

and the U.S. state Michigan is in two pieces: the upper and lower peninsulas.) 

Furthermore, regions that touch at just one point need not receive different colors. 

(For example, the U.S. states Arizona and Colorado may be the same color.) 

389 
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We can color the map in the figure with just four colors, as shown. This raises 
a few questions. ~ 

Can this map be colored with fewer than four colors? (Notice that we have 
only one country that is gray; perhaps if we are clever, we can color this map 
with only three colors.) 
Is there another map that can be colored with fewer than four colors? 
Is there a map that requires more than four colors? 

The answer to the first question is no; this map cannot be colored with fewer 
than four colors. Can you prove this yourself? We shall return to this specific 
question in a later section, but try this on your own now. 

The answer to the second question is yes. This is an easy question. Try drawing 
a map that requires only two colors. (Hint: Make your life easy and build a continent 
with only two countries!) 

The third question, however, is notoriously difficult. This problem is known 
as the four color map problem. It was first posed in 1852 by Francis Guthrie and 
remained unsolved for about a century until, in the mid-1970s, Appel and Haken 
proved that every map can be colored using at most four colors. We discuss this 
further in Sections 51 and 52. 

Map coloring might seem like a frivolous problem. Instead, let us consider 
the following: Imagine a university in which there are thousands of students and 
hundreds of courses. As in most universities, at the end of each term there is an 
examination period. Each course has a 3-hour final exam. On any given day, the 
university can schedule two final exams. 

Now it would be quite impossible for a student enrolled in two courses to take 
both final exams if they were held during the same time slot. Recognizing this, the 
university wishes to devise a final examination schedule with the condition that if 
a student is enrolled in two courses, these courses must get different examination 
periods. 

A simple solution to this problem is to hold only one examination during any 
time slot. The problem, of course, is that if the examination period begins in May, 
it won't end until November! 

The solution the university prefers is to have the smallest possible number 
of examination slots. This way, students (and faculty©) can go on their summer 
vacations as soon as possible. 

At first glance, this examination-scheduling problem seems to have little in 
common with map coloring, but we assert that these problems are essentially the 
same. In map coloring, we seek the least number of colors, subject to a special 
condition (countries that share a common border receive different colors). In exam 
scheduling, we seek the least number of time slots subject to a special condition 
(courses that share a common student receive different time slots). 

Problem Map Coloring Exam Scheduling 

Assign colors time slots 
to countries courses 

condition common border ==> different colors common student ==> different slots 
objective fewest colors fewest time slots 
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Both problems-map coloring and exam scheduling-have the same basic 

structure. 

Three Utilities 

The following is a classic puzzle. Imagine a "city" containing three houses and 

three utility plants. The three utilities supply gas, water, and electricity. As an 

urban planner, your job is to run connections from every utility plant to every 

home. You need to have three electric wires (from the electric plant to each of the 

three houses), three water pipes (from the water plant to the houses), and three gas 

lines (from the gas facility to the houses). You may place the houses and the utility 

plants anywhere you desire. However, you may not allow two wires/pipes/lines to 

cross! The diagram shows a failed attempt to construct a suitable layout. 

I highly recommend you try this problem yourself. After many tries, you may 

come to believe that no solution is possible. This is correct. It is impossible to 

construct a gas/water/electric layout to three houses without at least one pair of 

crossing lines. Later we prove this. 
This may seem like a frivolous problem. However, consider the following: A 

printed circuit board is a fiat piece of plastic on which various electronic devices 

(resistors, capacitors, integrated circuits, etc.) are mounted. Connections between 

these devices are made by printing bare metal wires onto the surface of the board. 

If two of these wires were to cross, there would be a short circuit. The problem is: 

Can we print the various connecting wires onto the board in such a way that there 

are no crossings? 
If there must be crossings, then the circuit board can be constructed in layers, 

but this is more expensive. Finding a noncrossing layout saves production costs 

and therefore is worthwhile (especially for a mass-produced device). 

The gas/water/electric layout problem is a simplified version of the more 

complicated "printed circuit board" problem. 

Seven Bridges 

The following is another classic puzzle. In the late 1700s, in the city of Konigsburg 

(now called Kaliningrad) located in the aforementioned disconnected section of 

Russia, there were seven bridges connecting various parts of the city; these were 

configured as shown in the figure. 
The townspeople enjoyed strolling through their city in the evening. They 

wondered: Is there a tour we can take through our city so that we cross every 

bridge exactly once? 
I recommend you try solving this problem yourself. After a number of frus­

trating false starts, you may decide that no such tour is possible. This is correct. The 

proof of this fact is attributed to Euler. Euler abstracted the problem into a diagram 

akin to the one shown in the figure. Each line in the diagram represents a bridge 

in Konigsburg. The problem of walking the seven bridges is now replaced by the 

problem of drawing the abstract figure without lifting your pencil from the paper 

and without redrawing a line. Can this figure be so drawn? In the diagram, there 

are four places where lines come together; at each of these places, the number of 

lines is odd. We claim: If we could draw this figure in the manner described, a point 
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where an odd number of lines meet must be either the starting point or the finishing 
point of the drawing. Think about an intermediate point of tfie drawing-that is, 
any junction other than where we start or where we end. At this junction, there 
must be an even number of lines because every time we enter this point along one 
line, we leave it along another (recall that we are not allowed to retrace a line). So 
every point in the diagram must be either the first or the last point in the drawing. 
Of course, this is not possible because there are four such points. Therefore it is 
impossible to draw the diagram without retracing a line or lifting your pencil, and 
therefore it is impossible to tour the city of Konigsburg and cross each of the seven 
bridges exactly once. 

This is a nice puzzle, but again, it seems a bit frivolous. Here is the same 
problem again in a more serious setting. Once again, don your urban-planning 
hat. Now, instead of distributing utility services, you are charged instead with the 
glamorous job of overseeing garbage collection. Your small city can afford only 
one garbage truck. Your job is to set the route the garbage truck is to follow. It needs 
to collect along every street in your city. It would be wasteful if the truck were to 
traverse the same street more than once. Can you find a route for the garbage truck 
so that it travels only once down every street? 

If your city has more than two intersections where an odd number of roads 
meet, then such a tour is not possible. 

What Is a Graph? 

The three problems we considered are modeled best by using the mathematical 
notion of a graph. 

Definition 46.1 (Graph) A graph is a pair G = (V, E) where Vis a finite set and Eisa set of 
two-element subsets of V. 

This definition is tricky to understand and may appear to have nothing to do 
with the motivational problems we introduced. Let us study it carefully, beginning 
with an example. 

Example 46.2 Let 

G = ({1, 2, 3, 4, 5, 6, 7}, {{1, 2}, {1, 3}, {2, 3}, {3, 4}, {5, 6}}). 

Here V is the finite set { 1, 2, 3, 4, 5, 6, 7} and E is a set containing 5 two-element 
subsets of V: {1, 2}, {1, 3}, {2, 3}, {3, 4}, and {5, 6}. Therefore G = (V, E) is a 
graph. 

The elements of V are called the vertices (singular: vertex) of the graph, and 
the elements of E are called the edges of the graph. Remember, the elements of 
E are subsets of V, each of which contains exactly two vertices. The graph in 
Example 46.2 has seven vertices and five edges. 

There is a nice way to draw pictures of graphs. These pictures make graphs 
much easier to understand. It is vital, however, that you realize that a picture of a 
graph is not the same thing as the graph itself! 
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To draw a picture of a graph, we draw a dot for each vertex (element of V). 

For the graph in Example 46.2, we would draw seven dots and label them with 

the integers 1 through 7. Each edge in E is drawn as a curve in the diagram. For 

example, if e = {u, v} E E, we draw the edge e as a curve joining the dot for 

u to the dot for v. The following three pictures all depict the same graph from 

Example 46.2. 

2 3 

1 2 3 4 5 6 7 
~o-oo 

The middle picture is a perfectly valid drawing of the graph. Three pairs of edges 

cross each other; this is not a problem. The dots in the pictures represent the vertices, 

and the curves in the pictures represent the edges. We can "read" the pictures and, 

from them, determine the vertices and edges of the graph. The crossings may make 

the picture harder to understand, but they do not change the basic information the 

picture conveys. The first and third pictures are better only because they are clearer 

and easier to understand. 

Adjacency 

Definition 46.3 (Adjacent) Let G = (V, E) be a graph and let u, v E V. We say that u is adjacent 

to v provided {u, v} E E. The notation u""" v means that u is adjacent to v. 

WARNING! DANGER!-+ We, most emphatically, do not say that u is "connected" to v. The phrase is 

connected to has an entirely different meaning (discussed later). We may say that 

u is joined to v. 

Endpoint. If { u, v} is an edge of G, we call u and v the endpoints of the edge. This 

language is suggestive of the drawing of G: the endpoints of the curve that repre­

sents the edge { u, v} are the dots that represent the vertices u and v. However, it 

is important to remember always that an edge of a graph is not a curve or a line 

segment; it is a two-element subset of the vertex set. 

Dropping the curly braces. It is sometimes cumbersome to write the curly braces for an edge { u, v}. 

Provided there is no chance for confusion, it is acceptable to write u v in place of 

{u, v}. 

Incident. Suppose v is a vertex and an endpoint of the edge e. We can express this fact 

as v E e since e is a two-element set, one of whose elements is v. We also say that 

v is incident on (or incident with) e. 
Notice that is-adjacent-to (""") is a relation defined on the vertex set of a graph 

G. Which of the various properties of relations does is-adjacent-to exhibit? 
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Mathspeak! 
The word gmph is not 

I 009c standardized. What 
we call a graph is often 
called a si111plc graph. 
There arc other. more 
exotic. forms of graphs. 

Is '"'"' reflexive? 
No. 
This would mean that u '"'"' u for all vertices in V. This means that { u, u} 

is an edge of the graph. However, by Definition 46.1, an edge is a two-element 
subset of V. Note that although we have written u twice between curly braces, 
{u, u} is a one-element set. An object either is or is not an element of a set; it 
cannot be an element "twice." 
Is '"'"' irreflexive? 

Yes, but. 
By the previous discussion, it is never the case that {u, u} is an edge of a 

graph. Thus a vertex is never adjacent to itself and therefore ,....___ is irreflexive. 
Then why, you may wonder, did we answer this question "Yes, but"? We 

were quite emphatic (and remain so) that a vertex can never be considered 
adjacent to itself. The issue is over the very word graph. According to Def­
inition 46.1, an edge of a graph is a two-element subset of V-end of story. 
However, some mathematicians use the word graph in a different way and 
allow the possibility that a vertex could be adjacent to itself; an edge joining 
a vertex to itself is called a loop. For us, graphs are not allowed to have loops. 
Some authors also allow more than one edge with the same endpoints; such 
edges are called parallel edges. Again, for us, graphs may not have parallel 
edges. The set {u, v} either is or is not an edge-it can't be an edge "twice." 

When we want to be perfectly clear, we use the term simple graph. If we 
wish to discuss a "graph" that may have loops and multiple edges, we use the 
word multigraph. 
Is,....___ symmetric? 

Yes. 
Suppose u and v are vertices of a graph G. If u '"'"' v in G, this means that 

{ u, v} is an edge of G. Of course, { u, v} is the exact same thing as { v, u}, so 
v '"'"' u. Therefore ,....___ is symmetric. 
Is '"'"' antisymmetric? 

In general, no. 
Consider the graph from Example 46.2. In this graph, 1 ,....___ 2 and 2 "' 1 

but, of course, 1 =I= 2. Therefore '"'"' is not antisymmetric. 
However, it is possible to construct a graph in which '"'"' is antisymmetric 

(see Exercise 46. 1 0). 
Is ,....___transitive? 

In general, no. 
Consider the graph from Example 46.2. Notice that 2'"'"' 3 and 3 "'4, but 

2 is not adjacent to 4. 
However, it is possible to construct a graph in which'"'"' is transitive (see 

Exercise 46.10). 

A Matter of Degree 

Let G = (V, E) be a graph and suppose u and v are vertices of G. If u and v 
are adjacent, we also say that u and v are neighbors. The set of all neighbors of a 



Definition 46.4 

Some graph theorists call 

the degree of a vertex its 

valence. This is a lovely 

term! The word was 

chosen because graphs 

serve as models of organic 

molecules. The valence of 

an atom in a molecule is 

the number of bonds it 
forms with its neighbors. 

The notation 

Ld(v) 

means we add the quantity 

d ( v) for all vertices v E V. 
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vertex v is called the neighborhood of v and is denoted N ( v). That is, 

N(v) = {u E V: u ""'v}. 

For the graph in Example 46.2, we have 

N(l) = {2, 3} 
N(5) = {6} 

N(2) = {1, 3} 
N(6) = {5} 

N(3) = {1, 2, 4} 

N(7) = 0. 

The number of neighbors of a vertex is called its degree. 

N(4) = {3} 

(Degree) Let G = (V, E) be a graph and let v E V. The degree of vis the number 

of edges with which v is incident. The degree of v is denoted de ( v) or, if there is 

no risk of confusion, simply d(v). 

In other words, 

d(v) = IN(v)l. 

For the graph in Example 46.2, we have 

d(1) = 2 
d(5) = 1 

d(2) = 2 
d(6) = 1 

d(3) = 3 
d(7) = 0. 

d(4) = 1 

Something interesting happens when we add the degrees of the vertices of a 

graph. For Example 46.2, we have 

L d(v) = d(l) + d(2) + d(3) + d(4) + d(5) + d(6) + d(7) 

vEV 

=2+2+3+1+1+1+0=10 

which, you might notice, is exactly twice the number of edges in G. This is not a 

coincidence. 

Theorem 46.5 Let G = (V, E). The sum of the degrees of the vertices in G is twice the number 

of edges; that is, 

Ld(v) = 21EI. 
vEV 

Proof. Suppose the vertex set is V = { v1, v2 , ... , Vn}. We can create an n x n 

chart as follows. The entry in row i and column j of this chart is 1 if vi ""' v J and 

is 0 otherwise. For the graph from Example 46.2, the chart would look like this: 

0 1 1 0 0 0 0 
1 0 1 0 0 0 0 
1 0 1 0 0 0 
0 0 1 0 0 0 0 
0 0 0 0 0 1 0 
0 0 0 0 0 0 
0 0 0 0 0 0 0 

This chart is called the adjacency matrix of the graph. 
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The terms \'ertex and edge 
are not I 009c standardized. 
Some authors refer to 
vertices as nodes. and 
others call them points. 
Similarly, edges are 
variously called arcs, links, 
and lines. 

Our technique for proving Theorem 46.5 is combinatorial proof (see Proof 
to Template 9). We ask, 

How many 1 s are in this chart? 

We give two answers to this question. 

• First answer: Notice that for every edge of G there are exactly two 1s in the 
chart. For example, if Vi v j E E, then there is a 1 in position i j (row i, column j) 
and a 1 in position j i. Thus the number of 1 s in this chart is exactly 21 E 1. 

• Second answer: Consider a given row of this chart-say, the row correspond­
ing to some vertex vi. There is a 1 in this row exactly for those vertices adjacent 
to vi (i.e., there is a 1 in the jth spot of this row exactly when there is an edge 
from vi to vj)· Thus, the number of Is in this row is exactly the degree of the 
vertex-that is, d(vJ. 

The number of 1 s in the entire chart is the sum of the row subtotals. In 
other words, the number of 1 s in the chart equals the sum of the degrees of 
the vertices of the graph. 

Because these two answers are both correct solutions to the question "How many 
1 s are in this chart?" we conclude that the sum of the degrees of the vertices of G 
(answer 2) equals twice the number of edges of G (answer 1). • 

Further Notation and Vocabulary 

There are many new terms to learn when studying graphs. Here we introduce more 
terms and notation that are often used in graph theory. 

• Maximum and minimum degree. 
The maximum degree of a vertex in G is denoted ~(G). The minimum 

degree of a vertex in G is denoted 8 (G). The letters ~ and 8 are upper- and 
lowercase Greek deltas, respectively. For the graph in Example 46.2, we have 
~(G) = 3 and 8(G) = 0. 

• Regular graphs. 
If all vertices in G have the same degree, we call G regular. If a graph 

is regular and all vertices have degree r, we also call the graph r-regular. The 
graph in the figure is 3-regular. 
Vertex and edge sets. 

Let G be a graph. If we neglect to give a name to the vertex and edge 
sets of G, we can simply write V (G) and E (G) for the vertex and edge sets, 
respectively. 
Order and size. 

Let G = (V, E) be a graph. The order of G is the number of vertices in 
G-that is, IV 1. The size of G is the number of edges-that is, IE (G) 1. 

It is customary (but certainly not mandatory) to use the letters nand m to 
stand for IV I and IE I, respectively. 

Various authors invent special symbols to stand for the number of vertices 
and the number of edges in a graph. Personally, I like the following: 

v(G) = IV(G)I and c(G) = IE(G)I. 
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You should think of v and£ as functions that, given a graph, return the number 

of vertices and edges, respectively. 
The Greek letter v (nu) corresponds to the Roman letter n (the usual letter 

for the number of vertices in a graph), and it looks like a v (for vertices). The 

Greek letter£ (a stylized epsilon) corresponds to the Roman e (for edges). 

• Complete graphs. 
Let G be a graph. If all pairs of distinct vertices are adjacent in G, we 

call G complete. A complete graph on n vertices is denoted Kn. The graph in 

the figure is a K 5 . 

The opposite extreme is a graph with no edges. We call such graphs 

edge less. 
A graph with no vertices (and hence no edges) is called an empty graph. 

Recap 

We began by motivating the study of graph theory with three classic problems 

(and nonfrivolous variations thereof). We then formally introduced the concept of 

a graph, being careful to distinguish between a graph and its drawing. We studied 

the adjacency relation, concluding with the result that the sum of the degrees of 

the vertices in a graph equals twice the number of edges in the graph. Finally, we 

introduced additional graph theory terminology. 

46.1. The following pictures represent graphs. Please write each of these graphs 

as a pair of sets (V, E). 

(a) (b) (c) 

1 2 3 co 
4 5 6 

1 2 

D 
4 5 

2 

3 

46.2. Draw pictures of the following graphs. 
a. ( {a, b, c, d, e}, { {a, b}, {a, c}, {a, d}, { b, e}, { c, d}}). 

b. ( {a, b, c, d, e}, { {a, b}, {a, c}, { b, c}, { b, d}, { c, d}}). 

c. ( {a, b, c, d, e}, { {a, c}, { b, d}, { b, e}}). 

3 
0 

0 
6 

46.3. In the map-coloring problem, why do we require that countries be con­

nected (and not in multiple pieces like Russia or Michigan)? 
Draw a map, in which disconnected countries are permitted, that re­

quires more than four colors. 
46.4. In the map-coloring problem, why do we allow countries that meet at only 

one point to receive the same color? 
Draw a map that requires more than four colors if countries that meet 

only at one point must get different colors. 
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46.5. If three countries on a map all border each other, then the map certainly 
requires at least three colors. (For example, look at Br~zil, Venezuela, and 
Colombia or at France, Germany, and Belgium.) 

Devise a map in which no three countries border each other, and yet 
the map cannot be colored with fewer than three colors. 

46.6. Imagine creating a map on your computer screen. This map wraps around 
the screen in the following way. A line that moves off the right side of 
the screen instantly reappears at the corresponding position on the left. 
Similarly, a line that drops off the bottom of the screen instantly reappears 
at the corresponding position at the top. Thus it is possible to have a country 
on this map that has a little section on the left and another little section on 
the right of the screen, but is still in one piece. 

Devise such a computer-screen map that requires more than four colors. 
Try to create such a map that requires seven colors! (It is possible.) 

46.7. Refer to the previous problem about drawing on your computer screen. 
On this screen, can you solve the gas/water/electricity problem? That is, 
find a way to place the three utilities and the three houses such that the 
connecting lines don't cross. You may, of course, take advantage of the 
fact that a pipe can wrap from the left side of the screen across to the exact 
same point on the right or from top to bottom. 

46.8. Continued from the previous problem. Suppose now you wish to add a 
cable television facility to your computer screen city. Can you run three 
television cables from the cable TV headquarters to each of the three houses 
without crossing any of the gas/water/electric lines? 

46.9. Recall the university examination-scheduling problem. Create a list of 
courses and students such that more than four final examination periods 
are required. 

46.10. Construct a graph G for which the is-adjacent-to relation, '"", is 
antisymmetric. 

Construct a graph G for which the is-adjacent-to relation, "', is 
transitive. 

46.11. In Definition 46.4 (degree), we defined d(v) to be the number of edges 
incident with v. However, we also said that d ( v) = IN ( v) 1. Why is this so? 

Is d(v) = IN(v)l true for a multigraph? 
46.12. Let G be a graph. Prove that there must be an even number of vertices 

of odd degree. (For example, the graph in Example 46.2 has exactly two 
vertices of odd degree.) 

46.13. Prove that in any graph with two or more vertices, there must be two 
vertices of the same degree. 

46.14. Let G be an r-regular graph with n vertices and m edges. Find (and prove) 
a simple algebraic relation between r, n, and m. 

46.15. Find all 3-regular graphs on nine vertices. 
46.16. How many edges are in Kn, a complete graph on n vertices? 
46.17. How many different graphs can be formed with vertex set V = {1, 2, 

3, ... , n}? 
46.18. What does it mean for two graphs to be the same? Let G and H be graphs. 

We say that G is isomorphic to H provided there is a bijection f : V (G) --+ 

V(H) such that for all a, b E V(G) we have a ,...._, b (in G) if and only 



a b c 

~ 
d e f 

Section 47 Subgraphs 399 

if f(a) '"'-' f(b) (in H). The function f is called an isomorphism of G 

to H. 
We can think off as renaming the vertices of G with the names of the 

vertices in H in a way that preserves adjacency. Less formally, isomorphic 

graphs have the same drawing (except for the names of the vertices). 

Please do the following: 
a. Prove that isomorphic graphs have the same number of vertices. 

b. Prove that iff: V(G)-+ V(H) is an isomorphism of graphs G and H 

and if v E V (G), then the degree of v in G equals the degree off ( v) in H. 

c. Prove that isomorphic graphs have the same number of edges. 

d. Give an example of two graphs that have the same number of vertices 

and the same number of edges but are not isomorphic. 
e. Let G be the graph whose vertex set is {1, 2, 3, 4, 5, 6}. In this graph, 

there is an edge from v to w if and only if v - w is odd. Let H be the 

graph in the figure. 
Find an isomorphism f: V(G)-+ V(H). 

47 Subgraphs 
Informally, a sub graph is a graph contained inside another graph. Here is a careful 

definition: 

Definition 47.1 (Subgraph) LetGandHbegraphs.WecallGasubgraphofHprovided V(G) ~ 

V(H) and E(G) ~ E(H). 

Example 47.2 Let G and H be the following graphs: 

V(G) = {1, 2, 3, 4, 6, 7, 8} 

E(G) = {{1, 2}, {2, 3}, {2,6}, {3, 6}, 

{4, 7}, {6, 8}, {7, 8}} 

V(H) = {1, 2, 3, 4, 5, 6, 7, 8, 9} 

E(H) = {{1, 2}, {1, 4}, {2, 3}, {2, 5}, 

{2, 6}, {3, 6}, {3, 9}, {4, 7}, 

{5, 6}, {5, 7}, {6, 8}, {6, 9}, 

{7, 8}, {8, 9}} 

Notice that V(G) ~ V(H) and E(G) c E(H), and so G is a subgraph of H. 

Pictorially, these graphs are 

G H 

3 

Naturally, if G is a sub graph of H, we call H a supergraph of G. 
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Edge Jeletton. 

Induced and Spanning Subgraphs 

We form a sub graph G from a graph H by deleting various parts of H. For example, 
if e is an edge of H, then removing e from H results in a new graph that we denote 
H - e. Formally, we can write this as 

V(H- e)= V(H) 

E(H- e) = E(H)- {e}. 

If we form a subgraph of H solely by use of edge deletion, the resulting 
sub graph is called a spanning sub graph of H. Here is another way to express this: 

Definition 47.3 (Spanning subgraph) Let G and H be graphs. We call G a spanning subgraph 
of H provided G is a subgraph of H, and V(G) = V(H). 

When G is a spanning sub graph of H, the defini~ion requires that V (G) = 
V (H); that is, G and H have all the same vertices. Thus the only allowable deletions 
from H are edge deletions. 

Example 47.4 Let H be the graph from Example 47.2 and let G be the graph with 

Vertex. deletion. 

V(G) = {1, 2, 3, 4, 5, 6, 7, 8, 9}, and 

E(G) = {{1, 2}, {2, 3}, {2, 5}, {2, 6}, {3, 6}, {3, 9}, {5, 7}, {6, 8}, {7, 8}, {8, 9}}. 

Note that G is a sub graph of H and, furthermore, that G and H have the same 
vertex set. Therefore G is a spanning sub graph of H. 

Pictorially, these graphs are 

G H 

Deleting vertices from a graph is a more subtle process than deleting edges. 
Suppose v is a vertex of a graph H. How shall we define the graph H - v? One 
idea (incorrect) is to let 

V(H- v) = V(H)- {v}, and 

E(H- v) = E(H). ~WARNING! INCORRECT!! 

This looks just like the definition of H - e. What is the problem? The problem 
with this definition is that there may be edges of H that are incident with v. After 
we delete v from H, it does not make sense to have "edges" in H - v that involve 
the vertex v. Remember: The edge set of a graph consists of two-element subsets 



Section 47 Subgraphs 401 

of the vertex set. So an edge with v as an endpoint is not legal in a graph that does 

not include v as a vertex. 
Let's try defining H - v again. When we delete v from H, we must delete 

all edges that are incident with v; they are not legal to keep once v is gone. 

Otherwise we retain all the edges that are not incident with v. Here is the correct 

definition: 

V(H- v) = V(H)- {v}, and 

E(H- v) = {e E E(H) : v tJ. e}. 

In other words, the vertex set of H- v contains all the vertices of H except v. The 

edge set of H - v contains all those edges of H that are not incident with v. The 

notation v tj:. e is a terse way to write "v is not incident with e." Recall that e is a 

two-element set, and v tj:. e means v is not an element of e (i.e., not an end point 

of e). 
If we form a subgraph of H solely by means of vertex deletion, we call the 

sub graph an induced subgraph of H. 

Definition 47.5 (Induced subgraph) Let H be a graph and let A be a subset of the vertices of H; 

that is, A ~ V(H). The subgraph of H induced on A is the graph H[A] defined 

by 

V(H[A]) =A, and 

E(H[A]) = {xy E E(H) : x E A andy E A}. 

The set A is the set of vertices we keep. The induced subgraph H[A] is the 

graph whose vertex set is A and whose edges are all those edges of H that are 

legally possible (i.e., have both end points in A). 

When we say that G is an induced subgraph of H, we mean that G = H[A] 

for some A~ V(H). 
The graph H - v is an induced sub graph of H. If A = V (H) - { v}, then 

H- v = H[A]. 

Example 47.6 Let H be the graph from Example 47.2 and let G be the graph with 

V(G) = {1, 2, 3, 5, 6, 7, 8}, and 

E(G) = {{1, 2}, {2, 3}, {2, 5}, {2, 6}, {3, 6}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}. 

Note that G is a subgraph of H. From H we deleted vertices 4 and 9. We have 

included in G every edge of H except, of course, those edges incident with vertices 

4 or 9. Thus G is an induced subgraph of H and 

G = H[A] where A= {1, 2, 3, 5, 6, 7, 8}. 

We can also write G = (H - 4) - 9 = (H - 9) - 4. 
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Pictorially, these graphs are 

G H 

3 

Cliques and Independent Sets 

Definition 47.7 (Clique, clique number) Let G be a graph. A subset of vertices S s; V(G) is 
called a clique provided any two distinct vertices inS are adjacent. 

The clique number of G is the size of a largest clique; it is denoted w(G). 

In other words, a setS s; V (G) is called a clique provided G[S] is a complete 
graph. 

Example 47.8 Let H be the graph from the earlier examples in this section, shown again here. 

Mathspeak! 
In proper English, 
maxinnnn and maximal are 
closely related, but not 
interchangeable, words. 
The diflerence is that 
maximum is a noun and 
maximal is an adjective. In 
common usage. people 
often use maximum as both 
a noun and an adjective. In 
mathematics. we use both 
maximal and maximum as 
adjectives with slightly 
different meanings. This 
difference is explored 
furtqer in Section 54. 
An alternative term for an 
independent set in a graph 
is stable set. and a(G) is 
also known as the stability 
number of G. 

Definition 47.9 

This graph has many cliques. Here we list some of them: 

{1' 4} {2, 5, 6} {9} {2, 3, 6} {6,8,9} {4} 0. 

The largest size of a clique in His 3, so w(H) = 3. 

The clique { 1, 4} in the above example is interesting. It only contains two 
vertices, so it does not have the largest possible size for a clique in H. However, 
it cannot be extended. It is a maximal clique that does not have maximum size. By 
maximal we mean "cannot be extended." By maximum we mean "largest." Thus 
{ 1, 4} is a maximal clique that is not clique of maximum size. 

(Independent set, independence number) Let G be a graph. A subset of vertices 
S s; V (G) is called an independent set provided no two vertices in S are adjacent. 

The independence number of G is the size of a largest independent set; it is 
denoted a(G). 
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In other words, a setS s; V(G) is independent provided G[S] is an edgeless 
graph. 

Example 47.10 Let H be the graph from the earlier examples in this section. 

2 

3 

This graph has many independent sets. Here we list some of them: 

{1, 3, 5} {1, 7, 9} {4} {1, 3, 5, 8} {4, 6} {1,3,7} 0. 

The largest size of an independent set in His 4, so a(H) = 4. 

The independent set { 4, 6} is interesting. It is not a largest independent set, but 
it is a maximal independent set. If you carefully examine the graph H, you should 
note that each of the other seven vertices is adjacent to vertex 4 or to vertex 6. Thus 
{4, 6} is independent but cannot be extended. It is a maximal independent set that 
is not of maximum size. 

Complements 

The two notions of clique and independent sets are flip sides of the same coin; 
here we discuss what it means to "flip the coin." 

The complement of a graph G is a new graph formed by removing all the 
edges of G and replacing them by all possible edges that are not in G. Formally, 
we state this as follows: 

Definition 47.11 (Complement) Let G be a graph. The complement of G is the graph denoted G 
defined by 

V(G) = V(G), and 

E(G) = {xy: x, y E V(G), x =1- y, xy tf. E(G)}. 

The two graphs in the figure are complements of one another. 
The following immediate result makes explicit our assertion that cliques and 

independent sets are flip sides of the same coin. 
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Proposition 47.12 Let G be a graph. A subset of V(G) is a clique ofG ifandonlyifitis an independent 
set of G. Furthermore, 

w(G) = a(G) and a(G) = w(G). 

Let G be a "very large" graph (i.e., a graph with a great many vertices). A 
celebrated theorem in graph theory (known as Ramsey's Theorem) implies that 
either G or its complement, G, must have a "large" clique. Here we prove a special 
case of this result; the full statement and general proof of Ramsey's Theorem can 
be found in more advanced texts. (See also Exercise 47.10.) 

Proposition 47.13 Let G be a graph with at least six vertices. Then w(G) ;::: 3 or w(G) ;::: 3. 

X 
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The conclusion may also be written as follows: Then w(G) ~ 3 or a(G) ~ 3. 

Proof. Let v be any vertex of G. We consider two possibilities: either d ( v) ~ 3 
or else d(v) < 3. 

Consider first the cased ( v) ;::: 3. This means that v has at least three neighbors: 
Let x, y, z be three of v 's neighbors. See the figure. 

If one (or more) of the possible edges xy, yz, or xz is actually an edge of G, 
then G contains a clique of size 3, and so w(G) ;::: 3. 

However, if none of the possible edges x y, y z, or x z is present in G, then all 
three are edges of G, and so w (G) ;::: 3. 

On the other hand, supposed ( v) .::=:: 2. Since there are at least five other vertices 
in G (because G has six or more vertices), there must be three vertices to which v 
is not adjacent: Call these three nonneighbors x, y, and z. See the figure. 

Now if all of xy, yz, xz are edges of G, then clearly G has a clique of size 3, 
so w(G) ;::: 3. On the other hand, if one (or more) of xy, yz, or xz is notinG, then 
we have a clique of size 3 in G, so w(G) ;::: 3. 

In all, there have been four cases, and in every case, we concluded either 
w(G) ~ 3 or w(G) ~ 3. • 

Recap 

We introduced the concept of subgraph and the special forms of subgraph: span­
ning and induced. We discussed cliques and independent sets. We presented the 
concept of the complement of a graph. Finally, we presented a simplified version 
of Ramsey's Theorem. 

47 .1. Let G be the graph in the figure. Draw pictures of the following sub graphs. 
a. G -1. 
b. G -3. 
c. G -6. 
d. G- {1, 2}. 
e. G- {3, 5}. 
f. G- {5, 6}. 
g. G[{l, 2, 3, 4}]. 
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h. G[{2, 4, 6}]. 
i. G[{1, 2, 4, 5}]. 

47 .2. Which of the various properties of relations does the is-a-subgraph-of re­

lation exhibit? Is it reflexive? Irreflexive? Symmetric? Antisymmetric? 

Transitive? 
47 .3. Let G be a complete graph on n vertices. 

a. How many spanning subgraphs does G have? 

b. How many induced subgraphs does G have? 

47.4. Let G and H be the two graphs in the figure. 

G H 

Please find a(G), w(G), a(H), and w(H). 

47.5. Find a graph G with a(G) = w(G) = 5. 

47 .6. Suppose that G is a sub graph of H. Prove or disprove: 

a. a(G) :::; a(H). 

b. a(G) ::: a(H). 

c. w(G) :::: w(H). 

d. w(G) ::: w(H). 

47.7. Self-complementary graphs. Recall the definition of graph isomorphism 

from Exercise 46.18. We call a graph G self-complementary if G is iso­

morphic to G. 
a. Show that the graph G =({a, b, c, d}, {ab, be, cd}) is self­

complementary. 
b. Find a self-complementary graph with five vertices. 

c. Prove that if a self-complementary graph has n vertices, then n = 0 

(mod 4) or n = 1 (mod 4). 

47.8. Find a graph G on five vertices for which w(G) < 3 and w(G) < 3. T~is 

shows that the number six in Proposition 47.13 is best possible. 

47 .9. Let G be a graph with at least two vertices. Prove that a (G) ::: 2 or w (G) ::: 2. 

47.10. Ramsey arrow notation. Let n, a, b ::: 2 be integers. The notation n ~ 

(a, b) is an abbreviation for the following sentence: 

Every graph G on n vertices has a(G) :::a or w(G) :::b. 

For example, Proposition 4 7.13 says that if n ::: 6, then n ~ (3, 3) is true. 

However, Exercise 47.8 asserts that 5 ~ (3, 3) is false. 

Please prove the following: 

a. If n ::: 2, then n ~ (2, 2). 

b. For any integer n ::: 2, n ~ (n, 2). 

c. If n ~ (a, b) and m ::: n, then m ---+ (a, b). 

d. If n ---+ (a, b), then n ---+ (b, a). 

e. The least n such that n ---+ (3, 3) is n = 6. 

f. 10 ---+ (3, 4). 
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6~ 

g. Suppose a, b :=:: 3. If n ~ (a - 1, b) and m ~ (a, b - 1), then 
(n +m) ~(a, b). 

h. 20 ~ (4, 4). 

48 Connection 

3 

Graphs are useful in modeling communication and transportation networks. The 
vertices of a graph can represent major cities in a country, and the edges in the 
graph can represent highways that link them. A fundamental question is: For a 
given pair of sites in the network, can we travel from one to the other? 

For example, in the United States, we can travel by interstate from Baltimore 
to Denver, but we cannot get to Honolulu from Chicago, even though both of these 
cities are serviced by interstates. (Some so-called "interstate" highways actually 
reside entirely within one state, such as I-97 in Maryland and H-1 in Hawaii.) 

In this section, we consider what it means for a graph to be connected and 
related issues. The intuitive notion is clear. The graph in Example 46.2 (reproduced 
in the figure) is not connected, but it does contain three connected components. 
These ideas are made explicit next. 

Walks 

Definition 48.1 (Walk) Let G = (V, E) be a graph. A walkinG is a sequence (orlist) of vertices, 
with each vertex adjacent to the next; that is, 

W=(vo,VI, ... ,ve) with Vo""'VI""'Vz""'···""'Ve. 

The length of this walk is .e. Note that we started the subscripts at zero and that 
there are .e + 1 vertices on the walk. 

For example, consider the graph in the figure. The following sequences of 
vertices are walks: 

1 "-' 2 "-' 3 "'-' 4. 
This is a walk of length three. It starts at vertex 1 and ends at vertex 4, 

and so we call it a (1, 4)-walk. 
In general, a (u, v)-walk is a walk in a graph whose first vertex is u and 

whose last vertex is v. 
1 "'-' 2 "'-' 3 "'-' 6 "'-' 2 "'-' 1 "'-' 5. 

This is a walk of length six. There are seven vertices on this walk (counting 
vertices 1 and 2 twice, because they are visited twice by this walk). 

We are permitted to visit a vertex more than once on a walk. 
• 5rv1rv2rv6rv3rv2rvl, 

This is also a walk of length six. Notice that this sequence is exactly the 
reverse of that of the previous example. 

If W = Vo "'"' VI "'"' · · · "'"' Ve-l "'"' Ve, then its reversal is also a Walk 

(because rv is symmetric). The reversal of w is w-l = Ve rv Ve-l "' ... "' 

VI "'"' Vo. 



Section 48 Connection 407 

9. 
This is a walk of length zero. A singleton vertex is considered a walk. 

l"-'5'"'-'l'"'-'5'"'-'1. 
This is a walk of length four. This walk is called closed because it begins 

and ends at the same vertex. 

However, the sequence (1, 1, 2, 3, 4) is not a walk because 1 is not adjacent 

to 1. Likewise the sequence ( 1, 6, 7, 9) is not a walk because 1 is not adjacent to 6. 

Definition 48.2 (Concatenation) Let G be a graph. Suppose W 1 and W2 are the following walks: 

W1 = v 0 '"'"' VI '"'"' · · · '"'"' Ve 

W2 = Wo '"'"' WJ '"'"' · · · '"'"' Wk 

and suppose ve = w0 . Their concatenation, denoted W1 + W2 , is the walk 

Continuing the example from above, the concatenation of the walks 1 '"'"' 2 "" 

3 '"'"' 4 and 4 '"'"' 7 "'"' 3 '"'"' 2 is the walk 1 '"'"' 2 '"'"' 3 '"'"' 4 '"'"' 7 '"'"' 3 "'"' 2. 

Paths 

Definition 48.3 (Path) A path in a graph is a walk in which no vertex is repeated. 

3 For example, for the graph in the figure, the walk 1 '"'"' 2 "'"' 6 '"'"' 7 '"'"' 3 '"'"' 4 

is a path. It is also called a (1, 4)-path because it begins at vertex 1 and ends at 

vertex 4. In general, a (u, v)-path is a path whose first vertex is u and whose last 

vertex is v. 
Note that the definition of path explicitly requires that no vertex of the graph be 

repeated. Implicit in this condition is that no edge be used twice on the path. What 

do we mean by using an edge? If a walk (or path) is of the form · · · '"'"' u "" v "" · · · ·, 

then we say that the walk used or traversed the edge u v. 

Proposition 48.4 Let P be a path in a graph G. Then P does not traverse any edge of G more than 

once. 

Proof. Suppose, for the sake of contradiction, that some path P in a graph G 

traverses the edge e = u v more than once. Without loss of generality, we have 

P = · · · '"'"' u '"'"' v "" · · · '"'"' u "'"' v '"'"' · · · or 

P=···'"'-'U'"'-'V"'···'"'-'V'"'-'U'"'"'·"". 

In the first case, we clearly have repeated both vertices u and v, contradicting the 

fact that P is a path. In the second case, it is conceivable that the first and second 
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v we wrote are really one in the same; that is, the path is of the form 
~ 

P=···"-'U"-'V"-'U"-'··· 

but as in the previous case, we have repeated vertex u, contradicting the fact that 
P is a path. Therefore P does not traverse any edge more than once. • 

Thus a path oflength k contains exactly k + 1 (distinct) vertices and traverses 
exactly k (distinct) edges. The word path in graph theory has an alternative mean­
ing. Properly speaking, a path is a sequence of vertices. However, we often think 
of a path as a graph or as a subgraph of a given graph. 

Definition 48.5 (Path graph) A path is a graph with vertex set V = {v1, v2 , ... , vn} and edge set 

A P, graph: 

o---o--o-o-o 

Definition 48.6 

Is-connected-to is 

reflexive ... 

... and symmetric ... 

... and transitive. 

A path on n vertices is denoted Pn. 

Given a sequence of vertices in G constituting a path, we can also view that 
sequence as a sub graph of G; the vertices of this subgraph are the vertices of the 
path, and the edges of this sub graph are the edges traversed by the path. 

Note that Pn stands for a path with n vertices. Its length is n - 1. 
We use paths to define what it means for one vertex to be connected to another. 

(Connected to) Let G be a graph and let u, v E V (G). We say that u is connected 
to v provided there is a (u, v)-path in G (i.e., a path whose first vertex is u and 
whose last vertex is v ). 

Note that the is-connected-to relation is different from the is-adjacent-to rela­
tion. For example, a vertex is always connected to itself: If v is a vertex, then the 
path ( v )-yes, one vertex by itself makes a perfectly legitimate path-is a ( v, v )­
path, so v is connected to v. However, a vertex is never adjacent to itself. In the 
language of relations, is-connected-to is reflexive, and is-adjacent-to is irreflexive. 

The is-connected-to relation is reflexive. What other properties does it ex­
hibit? It is not hard to check that is-connected-to is not (in general) irreflexive or 
antisymmetric. (See Exercise 48.8.) 

Is the is-connected-to a relation symmetric? Suppose, in a graph G, vertex u 
is connected to vertex v. This means there is a (u, v)-path in G; call this path P. 
Its reversal, p-I, is a (v, u)-path, and so vis connected to u. Thus is-connected-to 
is a symmetric relation. 

Is the is-connected-to relation transitive? Suppose, in a graph G, we know 
that x is connected to y and that y is connected to z. We want to prove that xis 
connected to z. 

Since xis connected toy, there must be an (x, y)-path; let's call it P. And 
since y is connected to z, there must be a (y, z)-path. Let's call it Q. Notice that the 
last vertex of Pis the same as the first vertex of Q (it's y). Therefore we can form 
the concatenation P + Q, which is an (x, z)-path. Therefore x is connected to z. 
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Nice proof, huh? Not really. The above proof is incorrect! What went wrong? 

Try to figure out the difficulty yourself. The figure gives you a big hint. 

The problem with the proof is that although P and Q are paths, and it is true 

that the last vertex of P and the first vertex of Q are the same, we do not know 

that P + Q is a path. All we can say for certain is that P + Q is an (x, y)-walk. 

To complete our argument that is-connected-to is transitive, we need to prove 

that the existence of an (x, y)-walk implies the existence of an (x, y)-path. Let's 

state this formally and prove it. 

Lemma 48.7 Let G be a graph and let x, y E V(G). If there is an (x, y)-walk in G, then there 

is an (x, y)-path in G. 

There may be more than 
one shortest (x, y )-walk; 
let P be any one of them. 

The truth of this lemma is not too hard to see. If there is a walk and if this 

walk contains a repeated vertex, we can shorten the walk by removing the portion 

of the walk between the repeated vertex. Of course, this might not be a walk, so 

we may need to do this operation again. This analysis can lead to a mushy proof. 

Here is a crisp way to express the same basic idea. 

Proof. Suppose there is an (x, y)-walk in a graph G. Note that the length of an 

(x, y)-walk is a natural number. Thus, by the Well-Ordering Principle, there is a 

shortest (x, y )-walk, P. 
We claim that P is, in fact, an (x, y )-path. Suppose, for the sake of contra­

diction, that P is not an (x, y )-path. If P is not a path, then there must be some 

vertex, u, that is repeated on the path. In other words, 

p = X "' · · • "-'? "' U"' • • • "' U "'-'?? "'-' · · · "'-' y. 

--------Note: We do not rule out the possibility that u = x and/or u = y. We only assume 

that vertex u appears at least twice, so the second (colored) u appears later in the 

sequence than the first. Form a new walk P' by deleting the portion of the walk 

marked in color. Note that this results in a new walk. Note that vertices? and?? are 

both adjacent to u, so the shortened sequence P' is still an (x, y)-walk. However, 

by construction P is a shortest (x, y )-walk, contradicting the fact that P' is an 

even shorter (x, y )-walk.:::}-¢= 
Therefore P is an (x, y )-path. • 

We return to where we left off before we proved this lemma. We were trying 

to show that the relation is-connected-to is transitive. Let's try the proof again. 

Suppose, in a graph G, we know that x is connected to y and that y is connected to 

z. By definition, this means there are an (x, y)-path Panda (y, z)-path Q. Form 

the walk W = P + Q. This is an (x, z)-walk, so by Lemma 48.7, there must be 

an (x, z)-path in G. Therefore xis connected to z. 

We have shown that is-connected-to is reflexive, symmetric, and transitive. In 

other words, we have proved the following: 

Theorem 48.8 Let G be a graph. The is-connected-to relation is an equivalence relation on V(G). 
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Whenever we have an equivalence relation, we also J:lave a partition: the 
equivalence classes of the relation. What can we say about the equivalence classes 
of the is-connected-to relation? 

Let u and v be vertices of a graph G. If u and v are in the same equivalence 
class of the is-connected-to relation, then there is a path joining them (from u to 
v, as well as its reversal, from v to u). On the other hand, if u and v are in different 
equivalence classes, then u and v are not related by the is-connected-to relation. 
In this case, we know there is no path joining u to v, or vice versa. 

Consider the graph in the figure (the same graph from Example 46.2). The 
equivalence classes of the is-connected-to relation on this graph are 

{1, 2, 3, 4}, {5, 6}, and {7}. 

The equivalence classes of is-connected-to decompose a graph into what we 
call components. 

Definition 48.9 (Component) A component of G is a subgraph of G induced on an equivalence 
class of the is-connected-to relation on V (G). 

In other words, we partition the vertices; two vertices are in the same part 
exactly when there is a path from one to the other. For each part of this partition, 
there is a component of the graph. The component is the subgraph formed by 
taking all vertices in one of these parts and all edges of the graph that involve those 
vertices. 

The graph we have been considering (from Example 46.2) has three compo­
nents: 

G[{l, 2, 3, 4}], G[{5, 6}], and G[{7}].' 

The first component has four vertices and four edges. The second component has 
two vertices and one edge. And the third component has just one vertex and no 
edges. 

If a graph is edgeless, then each of its vertices forms a component unto itself. 
At the other extreme, it is possible that there is only one component. In this case, 
we call the graph connected. Here is another way to state this: 

Definition 48.10 (Connected) A graph is called connected provided each pair of vertices in the 
graph are connected by a path; that is, for all x, y E V (G), there is an (x, y )-path. 

Disconnection 

Definition 48.11 (Cut vertex, cut edge) Let G be a graph. A vertex v E V(G) is called a cut vertex 
of G provided G - v has more components than G. 
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Similarly, an edge e E E (G) is called a cut edge of G provided G - e has 

more components than G. 

In particular, if G is a connected graph, a cut vertex v is a vertex such that 

G - v is disconnected. Likewise e is a cut edge if G - e is disconnected. The graph 

in the figure has two cut edges and four cut vertices (highlighted). 

Theorem 48.12 Let G be a connected graph and suppose e E E (G) is a cut edge of G. Then G- e 

has exactly two components. 

y 
y 

Proof. Let G be a connected graph and let e E E (G) be a cut edge. Because G 

is connected, it has exactly one component. Because e is a cut edge, G - e has 

more components than G (i.e., G- e has at least two components). Our job is to 

show that it does not have more than two components. 
Suppose, for the sake of contradiction, G - e has three (or more) components. 

Let a, b, and c be three vertices of G - e, each in a separate component. This 

implies that there is no path joining any pair of them. 
Let P be an (a, b)-path in G. Because there is no (a, b)-path in G- e, we 

know P must traverse the edge e. Suppose x and y are the endpoints of the edge e, 

and without loss of generality, the path P traverses e in the order x, then y; that is, 

P =a "' · · · "'x "'y "' · · · "'b. 

Similarly, since G is connected, there is a path Q from c to a that must use the 

edge e = xy. Which vertex, x or y, appears first on Q as we travel from c to a? 

• If x appears before yon the (c, a)-path Q, then notice that we have, in G- e, 

a walk from c to a. Use the (c, x)-portion of Q, concatenated with the (x, a)­

portion of p-l. This yields a (c, a)-walkinG- e and hence a (c, a)-path in 

G - e (by Lemma 48.7). This, however, is a contradiction, because a and c 

are in separate components of G - e. 
• If y appears before x on the ( c, a) -path Q, then notice that we have, in G - e, a 

walk from c to b. Concatenate that (c, y)-section of Q with the (y, b)-section 

of P. This walk does not use the edge e. Therefore there is a (c, a)-walk in 

G- e and hence (Lemma 48.7) a (c, a)-walkinG -e. This contradicts the 

fact that in G - e we have c and b in separate components. 

Therefore G - e has at most two components. • 
Recap 

We began with the concepts of walk and path. From there, we defined what it 

means for a graph to be connected and what its connected components are. We 

discussed cut vertices and cut edges. 
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48 Exercises 48.1. Let G be the graph in the figure. 
a. How many different paths are there from a to b? 
b. How many different walks are there from a to b? 

48.2. Is concatenation a commutative operation? 
48.3. Prove that Kn is connected. 
48.4. Let n :=:::: 2 be an integer. Form a graph G n whose vertices are all the two­

element subsets of { 1, 2, ... , n}. In this graph we have an edge between 
distinct vertices {a, b} and {c, d} exactly when {a, b} n {c, d} = 0. 

Please answer: 
a. How many vertices does Gn have? 
b. How many edges does Gn have? 
c. For which values of n :=:::: 2 is Gn connected? Prove your answer. 

48.5. Consider the following (incorrect) restatement of the definition of con­
nected: "A graph G is connected provided there is a path that contains 
every pair of vertices in G." 

What is wrong with this sentence? 
48.6. Let G be a graph. A path P in G that contains all the vertices of G is 

called a Hamiltonian path. Prove that the following graph does not have a 
Hamiltonian path. 

48.7. Mouse and cheese. A block of cheese is made up of 3 x 3 x 3 cubes as in 
the figure. Is it possible for a mouse to tunnel its way through this block of 
cheese by (a) starting at a comer, (b) eating its way from cube to adjacent 
cube, (c) never passing though any cube twice, and, finally, (d) finishing at 
the center cube? Prove your answer. 

48.8. Consider the is-connected-to relation on the vertices of a graph. Show that 
is-connected-to need not be irreflexive or antisymmetric. 

48.9. Let G be a graph. Prove that G or G (or both) must be connected. 
48.10. Let G be a graph with n :=:::: 2 vertices. Prove that if o(G) :::: ~n, then G is 

connected. 
48.11. Let G be a graph with n :=:::: 2 vertices. 

a. Prove that if G has at least (n; 1) + 1 edges, then G is connected. 
b. Show that the result in (a) is best possible; that is, for each n :::: 2, prove 

there is a graph with (n;1
) edges that is not connected. 

48.12. For those who have studied linear algebra. Let A be the adjacency matrix 
of a graph G. That is, we label the vertices of G as v 1, v2 , •.. , Vn. The 
matrix A is an n x n matrix whose i, j -entry is 1 if vi v 1 E E (G) and is 0 
otherwise. 

Let k E N. Prove that the i, j-entry of Ak is the number of walks of 
length k from vi to v 1. 
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48.13. Let n and k be integers with 1 :::: k < n. Form a graph G whose vertices 

are the integers {0, 1, 2, ... , n - 1}. We have an edge joining vertices a 

and b provided 

a - b = ±k (mod n). 

For example, if n = 20 and k = 6, then vertex 2 would be adjacent to 

vertices 8 and 16. 
a. Find necessary and sufficient conditions on n and k such that G is 

connected. 
b. Find a formula involving n and k for the number of connected compo­

nents of G. 

49 Trees 

Definition 49.1 

~ 
0 
Definition 49.2 

Perhaps the simplest family of graphs are the trees. Graph theory problems can be 

difficult. Often, a good way to begin thinking about these problems is to solve them 

for trees. Trees are also the most basic connected graph. What are trees? They are 

connected graphs that have no cycles. We begin by defining the term cycle. 

Cycles 

(Cycle) A cycle is a walk of length at least three in which the first and last vertex 

are the same, but no other vertices are repeated. 

The term cycle also refers to a (sub )graph consisting of the vertices and edges 

of such a walk. In other words, a cycle is a graph of the form G = (V, E) where 

V = {v1, Vz, ... , v,J, and 

E = {vl Vz, V2V3, ... , Vn-1 V11 , V11 VJ}. 

A cycle (graph) on n vertices is denoted Cn. 

In the upper figure we see a cycle of length six as a walk in a graph. The lower 

figure shows the graph C6• 

Forests and Trees 

(Forest) Let G be a graph. If G contains no cycles, then we call G acyclic. 

Alternatively, we call G a forest. 

The term acyclic is more natural and (almost) does not need a definition-its 

standard English meaning is a perfect match for its mathematical usage. The term 

forest is widely used as well. The rationale for this word is that here, just as in real 

life, a forest is a collection of trees. 
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Definition 49.3 

Theorem 49.4 

JX ..•... 
b 

(Tree) A tree is a connected, acyclic graph. 

In other words, a tree is a connected forest. 
The forest in the figure contains four connected components. Each component 

of a forest is a tree. 
Note that a single isolated vertex (e.g., the graph KI) is a tree; it is the simplest 

tree possible. 
There is only one possible structure for a tree on two vertices: Since a tree on 

two vertices must be connected, there must be an edge joining the two vertices. 
This is the only possible edge in the graph, and a graph on two vertices cannot 
have a cycle (a cycle requires at least three distinct vertices). Therefore any tree 
on two vertices must be a K 2 . 

There is also only one possible structure for a tree on three vertices. Since the 
graph is connected, there certainly must be at least one edge-say, joining vertices 
a and b. However, if there were only one edge, then the third vertex, c, would not 
be connected to either a orb, and so the graph would not be connected. Thus there 
must be at least one more edge-without loss of generality, let us say that it is 
the edge from b to c. So far we have a '"'"'b '"'"' c, but ac tf. E. Now the graph is 
connected. Might we also add the edge ac? If we do, the graph is connected, but 
it is no longer acyclic, as we would have the cycle a '"'"' b '"'"' c ,...._, a. Any tree on 
three vertices must be a P3 . 

However, on four vertices, we can have two different sorts of trees. We can 
have the path P4 and we can have a star: a graph of the form G = (V, E) where 

V = {a, x, y, z} and E ={ax, ay, az}. 

Properties of Trees 

Trees have a number of interesting properties. Here we explore several of them. 

LetT be a tree. For any two vertices a and bin V (T), there is a unique (a, b)-path. 
Conversely, if G is a graph with the property that for any two vertices u, v, 

there is exactly one (u, v)-path, then G must be a tree. 

Proof. This is an if-and-only-if style theorem. It can be rephrased: A graph is a 
tree if and only if between any two vertices there is a unique path. 

( ==?) Suppose T is a tree and let a, b E V (T). We need to prove that there is 
a unique (a, b)-path in T. We have two things to prove: 

• Existence: The path exists. 
Uniqueness: There can be only one such path. 

The first task is easy. There exists an (a, b)-path because (by definition) trees are 
connected. 

The second task is more complicated. To prove uniqueness, we use Proof 
Template 14. 
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Suppose, for the sake of contradiction, there were two (or more) different 

(a, b)-paths in T; let us call them P and Q. It would be tempting at this point to 

reason as follows: "Follow that path P from a to band then the path Q from b to 

a; this gives a cycle-contradiction! Therefore there can be only one (a, b)-path." 

However, this reasoning is incorrect. As the figure suggests, the paths P and Q 

might overlap or cross each other; we cannot say that P + Q- 1 is a cycle. We need 

to be more careful. 
Since P and Q are different paths, we know that at some point one of them 

traverses a different edge than the other. Let us say that from a to x the paths are 

the same (perhaps a = x) but then they traverse different edges; that is, 

P: a""'"'···""'"'X""'"'Y,....___···,....___b 

Q : a ,....___ · · · ,....___ x ,....___ z ,....___ · · · ,....___ b. 

This implies that xy is an edge of P and not an edge of Q (because Q cannot 

repeat vertices-it's a path!-the vertex x does not appear again on Q and so there 

is no opportunity to see the edge xy on Q). 

Now consider the graph T- xy (delete the edge xy from T). We claim there 

is an (x, y)-path in T- xy. Why? Notice that there is an (x, y)-walk in T- xy: 

Start at x, follow p-l from x to a, follow Q from a to b, and then follow p-l 

from b toy. Notice that on this walk we never traverse the edge xy. Thus there 

is an (x, y)-walk in T- xy. Therefore, by Lemma 48.7, there is an (x, y)-path 

in T - xy; let us call this path R. The path R must contain at least one vertex in 

addition to x andy because R does not use the edge xy to get from x toy. Now, if 

we add the edge xy to the path R, we have a cycle (traverseR from x toy and then 

back to x along the edge yx). This, at long last, is the contradiction we sought: a 

cycle in the tree T. =} {= Therefore there can be at most one (a, b)-path. 

( {=) Let G be a graph with the property that between any two vertices 

there is exactly one path. We must prove that G is a tree. We leave this for you 

(Exercise 49.5). • 

Theorem 49.4 gives an alternative characterization of trees. We can prove 

that a graph is a tree directly by the definition: show that it is connected an:d 

acyclic. Alternatively, we can prove that a graph is a tree by showing that between 

any two vertices of G there is a unique path. The next theorem gives yet another 

characterization of trees. 

Theorem 49.5 Let G be a connected graph. Then G is a tree if and only if every edge of G is a 

cut edge. 

Proof. Let G be a connected graph. 

( =}) Suppose G is a tree. Let e be any edge of G. We must prove that e is a cut 

edge. Suppose the endpoints of e are x and y. To prove that e is a cut edge, we 

must prove that G - e is disconnected. 

Notice that in G there is an (x, y)-path-namely, x ,....___ y (traverse just the 

edge e). By Theorem 49.4, this path is unique-there can be no other (x, y)-paths. 
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Thus, if we delete the edge e = xy from G, there can be .no (x, y )-paths (i.e., 
G - e is disconnected). Therefore e is a cut edge. ~ 

(-{==) Suppose every edge of .G is a cut edge. We must prove that G is a tree. 
By assumption, G is connected, so we must show that G is acyclic. 

Suppose, for the sake of contradiction, that G contains a cycle C. Let e = xy 
be an edge of this cycle. Notice that the vertices and other edges of C form an 
(x, y )-path, which we call P. 

Since e is a cut edge of G, we know that G - e is disconnected. This means 

· ·. G, there is an (a, b)-path Q; hence Q must traverse the edge e. Without loss of Q
·. p there exist vertices a, b for which there is no (a, b)-path in G- e. However, in 

. . x •• ~ ••• Y '' ,., ··~ generality, we traverse e from x to y as we step along Q: 

Q =a r-v • • • r-v x r-v y r-v • • • r-v b. 

We are nearly finished. Notice that in G -e there is an (a, b)-walk. We traverse 
Q from a to x, then P from x toy, and then Q from y to b (see the figure). By 
Lemma 48.7, this implies that in G - e there is an (a, b)-path, contradicting the 
fact that there is no such path.===?--{= 

Thus G has no cycles and is therefore a tree. • 

Leaves 

In biology, a leaf is a part of the tree that hangs at the "ends" of the tree. We use 
the same word in graph theory to convey a similar idea. 

Definition 49.6 (Leaf) A leaf of a graph is a vertex of degree 1. 

Leaves are also called end vertices or pendant vertices. The tree in the figure 
has four leaves (marked). 

Does every tree have leaves? No. However, the counterexamples are a little 
silly. The empty graph and the graph K 1 are trees, and they have no vertices of 
degree 1. However, other than these, every tree has a leaf. 

Theorem 49.7 Every tree with at least two vertices has a leaf. 

Proof. Let T be a tree with at least two vertices. Let P be a longest path in T (i.e., 
P is a path in T and there are no paths in T that are longer). Since Tis connected 
and contains at least two vertices, P has two or more vertices. Say, 

p = VQ r-v Vt r-v • • • r-v Ve 

where e:::::: 1. 
We claim that the first and last vertices of P ( v0 and ve) are leaves of T. 
Suppose, for the sake of contradiction, that v0 is not a leaf. Since v0 has at 

least one neighbor (v1), we have that d(v0 ) ::=::: 2. Let x be another neighbor of v0 
(i.e., X -::j:. VJ ). 
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Note that xis not a vertex on P, for otherwise we would have a cycle: 

Thus we can prepend x to the path P to form the path Q: 

Q = x ,....._, v0 ,....._, v1 ,....._, · · · ,....._, ve . 

p 

However, notice that Q is a path in T that is longer than P .==}-<=:Therefore v0 is a 

leaf. 
Likewise ve is a leaf. Therefore T has at least two leaves. • 

In fact, we proved that a tree with at least two vertices must have two (or more) 

leaves. 
Next we prove that plucking a leaf off a tree leaves behind a smaller tree. 

Proposition 49.8 LetT be a tree and let v be a leaf ofT. Then T-v is a tree. 

A converse of this statement is also true; we leave the proof of the converse 

to you as an exercise (Exercise 49.7). 

Proof. We need to prove that T - v is a tree. Clearly T - v is acyclic: If T - v 

contained a cycle, that cycle would also exist in T. Thus we must show that T - v 

is connected. 
Let a, b E V(T - v). We must show there is an (a, b)-path in T - v. We 

know, since Tis connected, that there is an (a, b)-path PinT. We claim that P 

does not include the vertex v. Otherwise we would have 

P=a,-....,···,...._,V,...._,···,...._,b 

and since v is neither the first nor the last vertex on this path, it has two distinct 

neighbors on the path, contradicting the fact that d ( v) = 1. Therefore P is an 

(a, b)-path in T-v, and soT-vis connected and a tree. • 

Proposition 49.8 forms the basis of a proof technique for trees. Many proofs 

about trees are by induction on the number of vertices. Proof Template 25 gives 

the basic form for such a proof. 

We demonstrate this proof technique for the following result. 

Theorem 49.9 LetT be a tree with n 2: 1 vertices. Then T has n - 1 edges. 
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Proof Template 25 Proving theorems about trees by leaf deletion. 

To prove: Some theorem about trees. 

Proof. We prove the result by induction on the number of vertices in T. 
Basis case: Claim the theorem is true for all trees on n = 1 vertices. (This 

should be easy!) 
Induction hypothesis: Suppose the theorem is true for all trees on n = k 

vertices. 
LetT be a tree on n = k + 1 vertices. Let v be a leaf ofT. LetT'= T-v. 

Note that T' is a tree with k vertices, so by induction T' satisfies the theorem. 
Now we use the fact that the theorem is true forT' to somehow prove that 

the conclusion of the theorem holds for T. (This might be tricky.) 
Thus the result is proved by induction. • 

We use Proof Template 25 to prove this result. 

Proof. We prove Theorem 49.9 by induction on the number of vertices in T. 
Basis case: Claim the theorem is true for all trees on n = 1 vertices. If T has 

only n = 1 vertex, then clearly it has 0 = n- 1 edges. 
Induction hypothesis: Suppose Theorem 49.9 is true for all trees on n = k 

vertices. 
Let T be a tree on n = k + 1 vertices. We need to prove that T has n - 1 = k 

edges. 
Let v be a leaf ofT and letT'= T-v. Note that T' is a tree with k vertices, 

so by induction T' satisfies the theorem (i.e., T' has k - 1 edges). 
Since v is a leaf of T, we have d ( v) = 1. This means that when we deleted 

v from T, we deleted exactly one edge. Therefore T has one more edge than T'; 
that is, T has (k- 1) + 1 =kedges. 

Thus the result is proved by induction. I 

Spanning Trees 

Trees are, in a sense, minimally connected graphs. By definition, they are con­
nected, but (see Theorem 49.5) the deletion of any edge disconnects a tree. 

Definition 49.10 (Spanning tree) Let G be a graph. A spanning tree of G is a spanning subgraph 
of G that is a tree. 

(Recall that a spanning sub graph of G is a sub graph that has the same vertices 
as G. See Definition 47.3.) 

The definition appears not to say anything because the words spanning tree 
are perfectly descriptive. A spanning tree of G is a tree sub graph of G that includes 
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Theorem 49.11 

Note: G is, itself, a 

spanning connected 

sub graph of G. Thus there 

is at least one such 

subgraph. Among all 

spanning connected 

subgraphs, we choose one 

with the least number of 

edges and we call it T. 
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all the vertices of G. For the graph in the figure, we have highlighted one of its 

many spanning trees. 

A graph has a spanning tree if and only if it is connected. 

Proof. (:::::}) Suppose G is connected. Let T be a spanning connected sub graph 

of G with the least number of edges. 

We claim that Tis a tree. By construction, T is connected. Furthermore, we 

claim that every edge ofT is a cut edge. Otherwise, if e E E(T) were not a cut 

edge ofT, then T - e would be a smaller spanning connected subgraph of G.:::::}{= 

Therefore every edge ofT is a cut edge. Hence (Theorem 49.5) Tis a tree, and so 

G has a spanning tree. 
( {=) Suppose G has a spanning tree T. We want to show that G is connected. Let 

u, v E V(G). Since Tis spanning, we have V(T) = V(G), and sou, v E V(T). 

Since Tis connected, there is a (u, v)-path PinT. Since Tis a subgraph of G, P 

is a (u, v)-path of G. Therefore G is connected. • 

We can use this result to provide yet another characterization of trees. 

Theorem 49.12 Let G be a connected graph on n :::=:: 1 vertices. Then G is a tree if and only if G 

has exactly n- 1 edges. 

Proof. (:::::}) This was shown in Theorem 49.9. 

( {=) Suppose G is a connected graph with n vertices and n - 1 edges. By Theo­

rem49.11, we know that G has a spanning tree T; that is, Tis a tree, V (T) = V (G), 

and E(T) ~ E(G). Note, however, that 

IE(T)I = IV(T)I- 1 = IV(G)I- 1 = IE(G)I 

so we actually have E(T) = E(G). Therefore G = T (i.e., G is a tree). • 

Recap 

We introduced the notions of cycle, forest, and tree. We proved that the following 

statements about a graph G are equivalent: 

G is a tree. 
G is connected and acyclic. 

G is connected and every edge of G is a cut edge. 

• Between any two vertices of G there is a unique path. 

G is connected and IE( G) I= IV(G)I- 1. 

We also introduced the concept of spanning tree and proved that a graph has 

a spanning tree if and only if it is connected. 
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49 Exercises 49.1. Let G be a graph in which every vertex has degree fl. Is G necessarily a 
cycle? 

49.2. Let T be a tree. Prove that the average degree of a vertex in T is less than 2. 
49 .3. Let d 1 , d2 , ... , dn be n ~ 2 positive integers (not necessarily distinct). 

Prove that d 1, ..• , dn are the degrees of the vertices of a tree on n vertices 
if and only if 2:::~= 1 di = 2n - 2. 

49.4. Let e be an edge of a graph G. Prove that e is not a cut edge if and only if 
e is in a cycle of G. 

49.5. Complete the proof of Theorem 49 .4. That is, prove that if G is a graph in 
which any two vertices are joined by a unique path, then G must be a tree. 

49.6. Why is the empty graph a tree? 
49.7. Prove the following converse to Proposition 49.8: 

Let T be a tree with at least two vertices and let v E V (T). If T - v 
is a tree, then v is a leaf. 

49.8. Let T be a tree whose vertices are the integers 1 through n. We call T a 
recursive tree if it has the following special property. Let P be any path 
in T starting at vertex 1. Then, as we move along the path P, the vertices 
we encounter come in increasing numerical order. The tree in the figure 
is an example of a recursive tree. Notice that all paths starting at vertex 1 
encounter the vertices in increasing order. For example, the highlighted 
path encounters the vertices 1 < 4 < 8 < 9. 

Please do the following: 
a. Prove: If T is a recursive tree on n vertices, then vertex n is a leaf 

(provided n > 1). 
b. Prove: If Tis a recursive tree on n > 1 vertices, then T- n (the tree T 

with vertex n deleted) is also a recursive tree (on n - 1 vertices). 
c. Prove: If T is a recursive tree on n vertices and a new vertex n + 1 is 

attached as a leaf to any vertex ofT to form a new tree T', then T' is 
also a recursive tree. 

d. How many different recursive trees on n vertices are there? Prove your 
answer. 

49.9. Let G be a forest with n vertices and c components. Find and prove a 
formula for the number of edges in G. 

49.10. Prove that a graph is a forest if and only if all of its edges are cut edges. 
49.11. In this problem, you will develop a new proof that every tree with two or 

more vertices has a leaf. Here is an outline for your proof. 
a. First prove, using strong induction and the fact that every edge of a tree 

is a cut edge (Theorem 49 .5), that a tree with n vertices has exactly 
n- 1 edges. 

Please note that our previous proof of this fact (Theorem 49.9) used 
the fact that trees have leaves; that is why we need an alternative proof. 

b. Use (a) to prove that the average degree of a vertex in a tree is less 
than 2. 

c. Use (b) to prove that every tree (with at least two vertices) has a leaf. 
49.12. LetT be a tree with u, v E V(T), u # v, and uv tJ_ E(T). Prove that if we 

add the edge e to T, the resulting graph has exactly one cycle. 
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49.13. Let G be a connected graph with IV (G) I = IE (G) 1. Prove that G contains 
exactly one cycle. 

49.14. Prove: 
a. Every cycle is connected. 
b. Every cycle is 2-regular. 
c. Conversely, every connected, 2-regular graph must be a cycle. 

49.15. Let e be an edge of a graph G. Prove that e is a cut edge if and only if e is 
not in any cycle of G. 

49.16. Let G be a graph. A cycle of G that contains all the vertices in G is called 
a Hamiltonian cycle. 
a. Show that if n ::=: 5, then Cn has a Hamiltonian cycle. 
b. Prove that the graph in the figure does not have a Hamiltonian cycle. 

49.17. Consider the following algorithm. 
· Input: A connected graph G. 
• Output: A spanning tree of G. 

(1) Let T be a graph with the same vertices as G, but with no edges . 
(2) Let e 1, e2 , ... , em be the edges of G. 
(3) Fork= 1, 2, ... , m, do: 

(3a) If adding edge ek to T does not form a cycle with edges 
already in T, then add edge ek to T. 

(4) Output T. 
Prove that this algorithm is correct. In other words, prove that whenever 

the input to this algorithm is a connected graph, the output of this algorithm 
is a spanning tree of G. 

49.18. Consider the following algorithm. 
· Input: A connected graph G. 
· Output: A spanning tree of G. 

(1) LetT be a copy of G. 
(2) Let e1, e2 , ... , em be the edges of G. 
(3) Fork=1,2, ... ,m,do: 

(3a) If edge ek is not a cut edge of T, then delete ek from T 
(4) Output T. 

Prove that this algorithm is correct. In other words, prove that whenever 
the input to this algorithm is a connected graph, the output of this algorithm 
is a spanning tree of G. 

50 Eulerian Graphs 
Earlier (in Section 46) we presented the classic Seven Bridges of Konigsburg 
problem. We explained that it is impossible to walk all seven bridges without 
retracing a bridge (or taking a swim across the river) because the multigraph that 
represents the bridges has more than two vertices of odd degree. 
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Definition 50.1 

An isolu1ed vertex is a 
vertex of degree 0. 

Consider the two figures shown. The figure on the left has four comers where 
an odd number of lines meet. Therefore, it is impossible to drd'w this figure without 
lifting your pencil or redrawing a line. The odd comers must be the first or last 
points on such a drawing. 

The figure on the right, however, has only two comers with an odd number 
of lines (the lower two). These points must be the first/last points in a drawing. 
Can this figure be drawn without lifting your pencil or retracing a line? Try it! You 
have an important hint. You must start at one of the lower two comers. With that 
hint, it is simple to draw this figure. 

In this section, we recast this bridge-walking/figure-drawing problem as a 
graph theory problem. 

(Eulerian trail, tour) Let G be a graph. A walk in G that traverses every edge 
exactly once is called an Eulerian trail. If, in addition, the trail begins and ends at 
the same vertex, we call the walk an Eulerian tour. Finally, if G has an Eulerian 
tour, we call G Eulerian. 

The problems we consider are the following: Which graphs have Eulerian 
trails? Which graphs have Eulerian tours (i.e., are Eulerian)? In this section, we 
give a complete answer. 

Necessary Conditions 

If a graph G has an Eulerian trail, then it is (almost) necessary that G be connected. 
If the graph has two (or more) components, it would be impossible for the trail to 
visit more than one component, so there is no way 'Ye can traverse all the edges 
of the graph. Impossible, that is, unless those additional components did not have 
any edges to traverse! This can happen if all (but one) of the components consist 
of just a single isolated vertex. 

Let us call a component of a graph trivial if it contains only one vertex. 
Otherwise we call the component nontrivial. Thus the first necessary condition for 
the existence of an Eulerian trail is the following: 

• If G is Eulerian, then G has at most one nontrivial component. 

We revisit the degree conditions. Suppose v is a vertex of a graph G in which 
there is an Eulerian trail W. If v is neither the first nor the last vertex on this trail, 
then we observe that v must have even degree: 

Since every edge of the graph is traversed exactly once, and since for every edge 
entering von this tour there is another edge exiting v, it must be the case that d(v) 
is even. 

We therefore have the following: 

• If G has an Eulerian trail, then it has at most two vertices of odd degree. 

What can we say about the degrees of the first and last vertices on the trail? 
Suppose that the first and last vertices on the trail are different. The degree of 



Another reason d (a) is 

even: If d(a) were odd, it 

would be the only vertex of 

odd degree, contradicting 

Exercise 46.12. 

Theorem 50.2 

Theorem 50.3 
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the first vertex on the trail must be odd by the following reasoning. There is one 

edge traversed from this vertex when the trail begins. Then, every other time we 

visit the first vertex, an entering edge is paired with an exiting edge. Therefore, its 

degree must be odd. The same is true for the last vertex on the trail; its degree must 

be odd. 

If G has an Eulerian trail that begins at a vertex a and ends a vertex b (with 

a =/:- b), then vertices a and b have odd degree. 

If the trail begins and ends at the same vertex a, we observe that d (a) must be 

even. We have one edge exiting a at the start of the tour which matches the final 

edge entering a at the end of the tour. Every other time we visit a, entering and 

exiting edges pair up, and so, all told, the number of edges incident with a must 

be even. We therefore have the following: 

If G has an Eulerian tour (i.e., if G is Eulerian), then all vertices in G have 

even degree. 

We have one last remark to make about Eulerian tours before we present the 

main theorems for this section. Suppose we have an Eulerian tour in a connected 

graph that begins and ends at a vertex a, and suppose b is the second vertex on this 

tour: 

W =a'"'"' b'"'"' ······'"'"'a. 

We can, instead, begin the tour at b, follow the original tour until we get to the last 

visit to a, and finish at b; that is, 

W' = b'"'"' ······'"'"'a'"'"' b 

is also an Eulerian tour starting/ending at b. If we shift the tour repeatedly, we see 

that we can begin an Eulerian tour at any vertex we choose. 

If G is a connected Eulerian graph, then G has an Euler tour that begins/ends 

at any vertex. 

Main Theorems 

The necessary conditions we just delineated motivate what we seek to prove. 

Let G be a connected graph all of whose vertices have even degree. For every 

vertex v E V (G), there is an Eulerian tour that begins and ends at v. 

Let G be a connected graph with exactly two vertices of odd degree: a and b. Then 

G has an Eulerian trail that begins at a and ends at b. 

A traditional way to prove these results is first to prove Theorem 50.2 and 

then use it to prove Theorem 50.3. We take a different, more interesting approach. 

We establish these two theorems with a single proof! The proof is by induction 
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on the number of edges in the graph. To prove the two resqlts at the same time, 
f' 

we require a more elaborate induction hypothesis, but this makes the induction 
easier-an example of induction loading. 

Proof. We prove both Theorems 50.2 and 50.3 by induction on the number of 
edges in G. 

Basis case: Suppose G has 0 edges. Then G consists of just 1 isolated vertex, 
v. The walk ( v )-remember: a single vertex by itself is a walk-is an Eulerian 
trail of G. 

(This is a perfectly valid basis case, but it is so simple we do one more 
unnecessary basis step to make sure nothing strange is happening here. It also 
appears to have nothing to do with Theorem 50.3.) 

Another basis case: Suppose G has one edge. Since G is connected, the graph 
must consist of just two vertices, a and b, and a single edge joining them. Now 
G has exactly two vertices of odd degree, and clearly a "'"' b is an Eulerian trail 
starting at one and ending at the other. 

Induction hypothesis: Suppose a connected graph has m edges. If all of its 
vertices have even degree, then there is an Eulerian tour beginning/ending at any 
vertex. If exactly two of its vertices have odd degree, then there is an Eulerian trail 
that begins at one of these vertices and ends at the other. 

Let G be a connected graph with m + 1 edges. 

Case 1: All of G 's vertices have even degree. , 
In this case, we must show that we can form an Eulerian tour starting at 

any vertex of G. Let v be an arbitrary vertex of G. 
Let w be any neighbor of v. Consider the graph G' = G- vw. Notice 

that in G' all vertices have exactly the same degree that they had in G, except 
for v and w; their degrees have decreased by exactly 1. Thus G' has exactly 
two vertices of odd degree. 

We also assert that G' is connected. We defer this part of the proof to 
Lemma 50.4 (see the "Unfinished business" section), which assures us that if 
all vertices in a graph have even degree, then no edge is a cut edge. 

Here is the lovely part: Since G' is connected and has exactly two vertices 
of odd degree, it has (by induction) an Eulerian trail that begins at w and ends 
at v. 

If we add the edge v w to the beginning of W, the result is an Eulerian 
tour of G that begins/ends at v! 
Case 2: Exactly two of G's vertices, a and b, have odd degree. 

We must show there is an Eulerian trail that begins at a and ends at b. 
- Subcase 2a: Suppose d(a) = 1. 

In this case, a has exactly one neighbor, x. It is possible that x = b or 
x =f. b. We check both possibilities. 

Let G' = G -a; that is, delete vertex a (and the one edge incident 
thereon) from G. Notice that d (x) drops by 1, while all other vertices 
have the same degree as before. Also note that G' has m edges and is 
connected (see the proof of Proposition 49.8). 
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If x = b, then all vertices in G' have even degree (a is gone and b's 

degree has changed by 1 ). Therefore, by induction, G' has an Eulerian 

tour W that begins and ends at vertex b. If we insert the edge ab at the 

beginning of W, we have constructed an Eulerian trail that begins at a 

and ends at b. 
If x =I- b, then G' has exactly two vertices of odd degree (the degree 

of x in G' is now odd, and b still has odd degree). Therefore, by induction, 

there is an Eulerian trail W that begins at x and ends at b. If we prepend the 

edge ax to W, we have an Eulerian trail in G that begins at a and ends at b. 

- Subcase 2b: Suppose d(a) > 1. 
Since d(a) is odd, we have d(a) ~ 3. We claim that at least one of the 

edges incident with a is not a cut edge (this is proved in Lemma 50.5 in 

"Unfinished business,"). 
Let ax be an edge incident with a that is not a cut edge of G. Let 

G' = G - ax. Notice that, just as in subcase 2a, we might have x = b or 

X =j=. b. 
In the case x = b, then, just as before, all vertices of G' have even 

degree, and we can form, by induction, an Eulerian tour in G' that be­

gins/ends at b and then prepend the edge ab to form an Eulerian trail in 

G that begins at a and ends at b, as required. 

In the case x =I- b, then, just as before, we have exactly two vertices 

of odd degree in G', namely, x and b. By induction, we form, in G', an 

Eulerian trail that starts at x and ends at b. We prepend the edge ax to 

yield the requisite Euler trail in G. 

In all cases, we find the required Eulerian trail/tour in G. • 
The proof of Theorems 50.2 and 50.3 implicitly gives an algorithm for finding 

Eulerian trails in graphs. The algorithm can, rather imprecisely, be expressed as 

follows: Don't make any blatant mistakes. What do we mean by this? 

First, if the graph has two vertices of odd degree, you must begin the trail at 

one of these vertices. 
Second, imagine you are part way through drawing the graph. You are currently 

at vertex v, and let us suppose H represents the subgraph of the original graph 

consisting of those edges you have not yet traversed. Which edge from v should 

you take? The proof shows that you can take any edge you like, just as long as it is 

not a cut edge. Of course, if there is only one edge of H incident with v, you must 

take it, but this isn't a problem; you will never need to revisit that vertex again! 

Unfinished Business 

The proof of Theorems 50.2 and 50.3 used the following two results. 

Lemma 5-().4 Let G be a graph all of whose vertices have even degree. Then no edge of G is a 

cut edge. 
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Proof. Suppose, for the sake of contradiction, e = xy is '}.cut edge of such a 
graph. Notice that G - e has exactly two components (by Theorem 48.12), and 
each of these components contains exactly one vertex of odd degree, contradicting 
Exercise 46.12. • 

Lemma 50.5 Let G be a connected graph with exactly two vertices of odd degree. Let a be a 
vertex of odd degree and supposed (a) -=!=- 1. Then at least one of the edges incident 
with a is not a cut edge. 

Proof. Suppose, for the sake of contradiction, that all edges incident at a are cut 
edges. Let b be the other vertex of odd degree in G. 

Since G is connected, there is an (a, b)-path PinG. Exactly one edge incident 
at a is traversed by P. Let e be any other edge incident at a. 

Now consider the graph G' = G- e. This graph has exactly two components 
(Theorem 48.12). Since the path P does not use the edge e, vertices a and bare 
in the same component. Notice also that, in G', vertex a has even degree, and all 
other vertices in its component have not changed degree. This means that, in G', the 
component containing vertex a has exactly one vertex of odd degree, contradicting 
Exercise 46.12. • 

Recap 
-

Motivated by the Seven Bridges of Konigsburg problem, we defined Eulerian 
trails and tours in graphs. We showed that every connected graph with at most two 
vertices of odd degree has an Eulerian trail. If there are no vertices of odd degree, 
it has an Eulerian tour. 

50 Exercises 50.1. We noticed that a graph with more than two vertices of odd degree cannot 
have an Eulerian trail, but connected graphs with zero or two vertices of odd 
degree do have Eulerian trails. The missing case is connected graphs with 
exactly one vertex of odd degree. What can you say about those graphs? 

50.2. A domino is a 2 x 1 rectangular piece of wood. On each half of the domino is 
a number, denoted by dots. In the figure, we show all (;) = 10 dominoes we 
can make where the numbers on the dominoes are all pairs of values chosen 
from { 1, 2, 3, 4, 5} (we do not include dominoes where the two numbers are 
the same). Notice that we have arranged the ten dominoes in a ring such 
that, where two dominoes meet, they show the same number. 

For what values of n 2: 2 is it possible to form a domino ring using 
all(;) dominoes formed by taking all pairs of values from {1, 2, 3, ... , n}? 
Prove your answer. 

Note: In a conventional box of dominoes, there are also dominoes both 
of whose squares have the same number of dots. You may either ignore these 
"doubles" or explain how they can easily be inserted into a ring made with 
the other dominoes. 
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50.3. Let G be a connected graph that is not Eulerian. Prove that it is possible to 

add a single vertex to G, together with some edges from this new vertex to 

some old vertices such that the new graph is Eulerian. 

50.4. Let G be a connected graph that is not Eulerian. In G there must be an even 

number of odd-degree vertices (see Exercise 46.12). Let a1, b1, a2 , b2 , ••• , 

a,, ht be the vertices of odd degree in G. 
If we add edges a1b1, a2b2 , ••• , a,b, toG, does this give an Eulerian 

graph? 
50.5. Let G be an Eulerian graph. Prove that it is possible to partition the edge set 

of G such that the edges in each part of the partition form a cycle of G. 

The figure shows such a partition in which the edges from different 

parts of the partition are drawn in different colors and line styles. 

50.6. Is it possible to walk the seven bridges of Konigsburg so that you cross every 

bridge exactly twice, once in each direction? 

51 Coloring 
The four color map problem and the exam-scheduling problem are both examples 

of graph-coloring problems. The general problem is as follows: Let G be a graph. 

To each vertex of G, we wish to assign a color. The restriction is that adjacent 

vertices must receive different colors. Of course, we could give every vertex its 

own color, but this is not terribly interesting and not relevant to applications. The 

objective is to use as few colors as possible. 
For example, consider the map-coloring problem from Section 46. We can 

convert this problem into a graph-coloring problem by representing each country 

as a vertex of a graph. Two vertices in this graph are adjacent exactly when the 

countries they represent share a common border. Thus coloring the countries on 

the map corresponds exactly to coloring the vertices of the graph. 

We can also convert the exam-scheduling problem into a graph-coloring prob­

lem. The vertices of this graph represent the courses at the university. Two vertices 

are adjacent when the courses they represent have a common student enrolled. 

The colors on the vertices represent the different examination time slots. Minimiz­

ing the number of colors assigned to the vertices corresponds to minimizing the 

number of exam periods. 

Core Concepts 

Colors are phenomena of the physical world, and graphs are mathematical objects. 

It is mildly illogical to speak of applying colors (physical pigments) to vertices 

(abstract elements). 
The careful way to define graph coloring is to give a mathematical definition 

of coloring. 
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Definition 51.1 (Graph coloring) Let G be a graph and let k be a positive integer. A k-coloring 

of G is a function 

f: V(G)---+ {1, 2, ... , k}. 

We call this coloring proper provided 

Vxy E E(G), f(x) =J f(y). 

If a graph has a proper k-coloring, we call it k-colorable. 

The central idea in the definition is the function f. To each vertex v E V (G), 
the function f associates a value f ( v). The value f ( v) is the color of v. The palette 
of colors we use is the set { 1, 2, ... , k}; we are using positive integers as "colors." 
Thus f ( v) = 3 means that vertex v is assigned color 3 by the coloring f. 

The condition Vxy E E(G), f(x) =J f(y) means that whenever vertices x 

andy are adjacent (form an edge of G), then f(x) =J f(y) (the vertices must get 
different colors). In a proper coloring, adjacent vertices are not assigned the same 
color. 

Notice what the definition does not require: It does not say that all the colors 
must be used; that is, it does not require f to be onto. The number k refers to the 
size of the palette of colors available-it is not a demand that all k colors be used. 
If, say, a graph is five-colorable, then it is also six-colorable. We can simply add 
color 6 to the palette and then not use it. _ 

Although the formal definition of coloring specifies that the colors we use are 
integers, we often refer to real colors when describing graph coloring. 

The goal in graph coloring is to use as few colors as possible. 

Definition 51.2 (Chromatic number) Let G be a graph. The smallest positive integer k for which 
G is k-colorable is called the chromatic number of G. The chromatic number of 
G is denoted x(G). 

The symbol x is not an x. It is a lowercase Greek chi. 

Example 51.3 Consider the complete graph Kn· We can properly color Kn with n colors by giving 
every vertex a different color. Can we do better? No. Since every vertex is adjacent 
to every other vertex in Kn, no two vertices may receive the same color, and son 
colors are required. Therefore x (Kn) = n. 

Notice that for any graph G with n vertices, we have x (G) .S n because we 
can always give each vertex a separate color. This means that among all graphs 
with n vertices, Kn has the largest chromatic number. We can say a little bit more. 

Proposition 51.4 Let G be a subgraph of H. Then x (G) .S x (H). 
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Proof. Given a proper coloring of H, we can simply copy those colors to the 
vertices of G to achieve a proper coloring of G. So if we used only x (H) colors 
to color the vertices of H, we have used at most x (H) colors in a proper coloring 

ofG. • 

Proposition 51.5 Let G be a graph with maximum degree~. Then x(G)::::: ~ + 1. 

Proof. Suppose the vertices of G are {VI, v2 , ... , Vn} and we have a palette of 
~ + 1 colors. We color the vertices of G as follows: 

To begin, no vertex in G is assigned a color. Assign any color from the palette 
to vertex VI. Next we color vertex v2• We take any color we wish from the palette, 
as long as the coloring is proper. In other words, if VI v2 is an edge, we may not 
assign the same color to v2 that we gave to VI. We continue in exactly this fashion 
through all the vertices. That is, when we come to vertex v j, we assign to vertex 
v j any color from the palette we wish, just making certain that the color on vertex 
v j is not the same as any of its already-colored neighbors. 

The issue is whether there are sufficiently many colors in the palette so that 
this procedure never gets stuck (i.e., we never reach a vertex where there is no 
legal color left to choose). Since every vertex has at most ~ neighbors and since 
there are ~ + 1 colors in the palette, we can never get stuck. Thus this procedure 
produces a proper ~ + !-coloring of the graph. Hence x (G) ::::= ~ + 1. • 

Exam pie 51.6 What is the chromatic number of the cycle Cn? If n is even, then we can alternate 
colors (black, white, black, white, etc.) around the cycle. When n is even, this 
yields a valid coloring. However, if n is odd, then vertex 1 and vertex n would 
both be black if we alternated colors around the cycle. See the figure. Thus, for 
n-odd, Cn is not two-colorable. It is, however, three-colorable. We can alternately 
color vertices 1 through n - 1 with black and white and then color vertex n with, 
say, blue. This gives a proper three-coloring of Cn. [Also, by Proposition 51.5, we 
have x(Cn)::::: ~(Cn) + 1 = 2 + 1 = 3.] Thus 

( C ) = { 2 if n is even, and 
X n 3 if n is odd. 

Note the following interesting point about this example: The chromatic num­
ber of C9 is 3, but C9 does not contain K 3 as a subgraph. 

Bipartite Graphs 

Which graphs are one-colorable? That is, can we describe the class of all graphs 
G for which x (G) = 1? 

Notice that x (G) = 1 means that we can properly 1-color the graph G. This 
means that if we assign all vertices the same color, this is a proper coloring. How 
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can this be? It implies that both endpoints of any edge in G are the same color, 
~ 

which is a blatant violation! The answer is: There can be no edges in G. In other 
words, we have the following: 

Proposition 51.7 A graph G is one-colorable if and only if it is edgeless. 

That was easy! Let's move on to characterizing two-colorable graphs-that 
is, graphs G for which x (G) =:-: 2. These graphs have a special name. 

Definition 51.8 (Bipartite graphs) A graph G is called bipartite provided it is 2-colorable. 

Here is another useful way to describe bipartite graphs. Let G = (V, E) be 
a bipartite graph and select a proper two-coloring. Let X be the set of all vertices 
that receive one of the two colors, and let Y be the set of all vertices that receive the 
other color. Notice that {X, Y} forms a partition of the vertex set V. Furthermore, 
if e is any edge of G, then e has one of its endpoints in X and its other endpoint 
in Y. 

The partition of V into the sets X and Y such that every edge of G has one end 
in X and one end in Y is called a bipartition of the bipartite graph. When writing 
about bipartite graphs, it is customary to write sentences such as the following: 
Let G be a bipartite graph with bipartition V = X U Y . ... This means that X and 
Y are the two parts of the bipartition. The sets X and Y are called by some authors 
(this author not included) the partite sets of the bipartite graph. 

The problem we address here is: Which graphs are bipartite? For example, 
on the basis of Example 51.6, we conclude that even cycles are bipartite, but odd 
cycles are not. The following result gives another wide class of examples. 

Proposition 51.9 Trees are bipartite. 

We prove this using the method in Proof Template 25. 

Proof. The proof is by induction on the number of vertices in the tree. 
Basis case: Clearly a tree with only one vertex is bipartite. Indeed, x(KI) = 

1 ::: 2. 
Induction hypothesis: Every tree with n vertices is bipartite. 
LetT be a tree with n + 1 vertices. Let v be a leaf ofT and letT' = T-v. 

Since T is a tree with n vertices, by induction T' is bipartite. Properly color T' 
using the two colors black and white. 

Now consider v's neighbor-call it w. Whatever color w has, we can give v 

the other color (e.g., if w is white, we color v black). 
Since v has only one neighbor, this gives a proper two-coloring of T. • 

Trees and even cycles are bipartite. What other graphs are bipartite? Here is 
another important class of bipartite graphs: 
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Definition 51.10 (Complete bipartite graphs) Let n, m be positive integers. The complete bipar­

Theorem 51.11 

This is an example of a 
characterization theorem. 

Definition 51.12 

tite graph Kn,m is a graph whose vertices can be partitioned V = X U Y such that 

lXI =n, 
IYI =m, 

• for all x E X and for ally E Y, xy is an edge, and 
• no edge has both its endpoints in X or both its endpoints in Y. 

The graph in the figure is K4,3 . 

The following theorem describes precisely which graphs are bipartite. 

A graph is bipartite if and only if it does not contain an odd cycle. 

The proof of this result is a bit complicated. We present it in a moment, but 

first, we explain why this is a wonderful theorem. 
Suppose I have a graph and I want to convince you that it is bipartite. I can do 

this by coloring the vertices and then showing you my coloring. You can patiently 

inspect each edge and notice that the two endpoints of every edge have different 

colors. You will be certain that the graph is bipartite. 
On the other hand, suppose I present you with a complicated graph that is not 

bipartite. The following argument is not terribly persuasive: "I tried for days to 

two-color this graph, and I really worked quite hard. Trust me! There is no way 

this graph can be two-colored." 
Theorem 51.11 guarantees that I will always be able to present a much better 

and simpler argument. I can find an odd cycle in the graph and show it to you, and 

then you will be convinced that the graph is not bipartite. 
The proof of Theorem 51.11 requires the following concept. 

(Distance) Let G be a graph and let x, y be vertices of G. The distance from x to 

y in G is the length of a shortest (x, y )-path. In cases where there is no such path, 

we may either say that the distance is undefined or oo. 
The distance from x to y is denoted d (x, y). 

For the graph in the figure, there are several (x, y )-paths; the shortest among 

them have length 2. Thus d (x, y) = 2. 

Proof (of Theorem 51.11) 

( =}) Let G be a bipartite graph. Suppose, for the sake of contradiction, that G 

contains an odd cycle C as a subgraph. By Proposition 51.4, we have 

3 = X (C) ::::; X (G) ::::; 2, 

a contradiction. Therefore G does not contain an odd cycle. 
( {=) Next we show that if G does not contain an odd cycle, then G is bipartite. 

We begin by proving a special case of this result. We show that if G is connected 

and does not contain an odd cycle, then G is bipartite. 
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Suppose G is connected and does not contain an odd cycle. Let u be any vertex 
in V (G). Define two subsets of V (G) as follows: ~ 

X= {x E V(G) : d(u, x) is odd}, and 

Y = {y E V(G) : d(u, y) is even}. 

In words, X and Y contain those vertices in G that are at odd and even distance from 
u,respectively.Notethatu E Ybecaused(u, u) = O.Alsonotethat V(G) = XUY 

(every vertex is some finite distance from u because, by hypothesis, G is connected) 
and X n Y = 0 (because the distance from a given vertex to u cannot be both odd 
and even). 

We color the vertices in X black and the vertices in Y white. We claim that 
this gives a proper two-coloring of G. To prove this, we must show that there are 
no two vertices in X that are adjacent and no two vertices in Y that are adjacent. 

Suppose, for the sake of contradiction, there are two vertices x1, x 2 E X with 
x1 "'"'x2 • Let P1 be a shortest path from u to x1. Because x1 E X, we know that 
d(u, x1) is odd, so the length of P1 is odd. Likewise let P2 be a shortest (u, x2 )-path; 
its length is also odd. 

It is tempting (but incorrect!) to conclude as follows: Concatenate 

P1 + (x1 "'"'xz) + P21
. 

That is, traverse P1 from u to x1 (odd distance), go from x1 to x 2 (odd distance), 
and, finally, go back to u along P2 (odd again). The total distance is odd, so we 
have an odd cycle. 

The error is that P1 + (x1 "'"'x2 ) + P2-
1 might not be a cycle (see the figure). 

The paths P1 and P2 might have vertices and edges in common. 
To fix this problem, let u' denote the last vertex that P1 and P2 have in common. 

That is, as we traverse P1 from u to x1, we know that P1 and P2 have at least one 
vertex in common-namely, u. Perhaps they have other vertices in common. In any 
case, since P1 ends at x1 and P2 ends at x 2 , eventually along P1 we reach the last 
vertex these two paths have in common. After u', there are no further P2 vertices 
on P1• Therefore, if we traverse P1 from u' to x1, then traverse the edge x 1x2, and 
finally return to u' along P2-

1
, we have a cycle. The question is: Is this an odd cycle? 

We note that the section of P1 from u to u' is as short as possible. Otherwise, 
if there were a shorter path Q from u to u', then we could concatenate Q with the 
(u', x1)-section of P1 and achieve a (u, xJ)-walk that is shorter than P1, from which 
we could construct a (u, x1)-path that is shorter than P1; this is a contradiction. So 
the (u, u')-section of P1 is as short as possible. Likewise the (u, u')-section of P2 

is as short as possible. Hence the (u, u')-sections of P1 and P2 must have the same 
length. 

Now consider the (u, xi)- and (u, x2)-sections of P1 and P2, respectively. We 
know that P1 and P2 both have odd length. From them, we delete the same length: 
their (u, u')-sections. Thus the two sections that remain are either both odd or both 
even-they have the same parity. 

We now conclude that the cycle C is an odd cycle. The cycle consists of the 
edge x 1x 2 (length 1) and the two sections from u' of P1 and P2 (same parity). Since 
1 + odd + odd and 1 + even + even are both odd, we conclude that C is an odd 



Section 51 Coloring 433 

cycle. But by hypothesis, G has no odd cycles.=}{= Therefore there is no edge in 

G both of whose endpoints are in X. 

Might there be an edge with both ends in Y? No. The argument is exactly 

the same as before. The only fact we used about the paths P1 and P2 is that their 

lengths had the same parity; it didn't really matter that they were both odd. If they 

were both even, the exact same argument applies. There are no edges between any 

pair of vertices of Y. 

Therefore we have a proper two-coloring of G, and hence G is bipartite. 

To finish the proof, we need to consider the case when G is disconnected. 

Suppose G is a disconnected graph that contains no odd cycles. Let H1, H2 , ... , He 

be its connected components. Note that since G does not contain an odd cycle, 

neither do any of its components. Hence, by the argument above, they are bipartite. 

Let Xi U Yi be a bipartition of V(Hi) (with 1 ::S i ::S c). Finally, let 

X = XI u x2 u ... u Xc and 

Y = Y1 U Y2 U · · · U Yc. 

We claim that XU Y is a bipartition of V(G). 

Please observe that X and Y are pairwise disjoint and their union is V (G). 

There can be no edge between two vertices in Xi because Xi U Y1 is a bipartition, 

and there can be no edge between vertices of Xi and X1 (with i =f. j) because these 

vertices are in separate components of G. Therefore no edge has both ends in X. 

Similarly, no edge has both ends in Y. Therefore X U Y is a bipartition of V (G), 

and so G is bipartite. • 

The Ease of Two-Coloring and the Difficulty of Three-Coloring 

The proof of Theorem 51.11 gives us a method for determining whether or not a 

graph is bipartite, and the statement itself gives us an efficient way to convince 

others that we have correctly determined whether or not a graph is bipartite. 

We begin with a graph, all of whose vertices are uncolored. We arbitrarily 

color one vertex white. Then we color all its neighbors black. Now we color all 

neighbors of black vertices white, and then all neighbors of white vertices black. 

At some point in this procedure, we may color two adjacent vertices the same 

color. If we do, we can retrace our steps and find an odd cycle, proving the graph 

is not bipartite. 
We may also find that this coloring procedure finds no new vertices to color, 

but yet, there remain uncolored vertices. In this case, we realize the graph is not 

connected, and we restart this procedure in another component. 

If, after doing this procedure in every component, we never find adjacent 

vertices with the same color, then we have found a bipartition of the graph. 

This procedure is simple and efficient. We know that once we color a vertex, 

say, black, all its neighbors must be white. There is no choice in this matter because 

there are only two colors. 

The situation for three-coloring graphs is more complicated. Let's suppose 

the three colors are red, blue, and green. We color one vertex red. Now, what shall 

we color its neighbors? We have choices, and in this case, choices complicate our 

lives. 
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51 Exercises 

We do not have a result akin to Theorem 51.11 for three-colorable graphs. If 
I have a three-coloring for a graph G, I can convince you that ~G is three-colorable 
simply by showing you the coloring. However, if G is not three-colorable, how 
can I readily convince you that no such coloring is possible? There is no known 
answer to this problem. 

We ask: 

Is it difficult to three-color graphs? 

This question itself is difficult! Most computer scientists and mathematicians be­
lieve that it is difficult to color a graph properly with three colors or to show that 
no such coloring exists. However, there is no proof that this is a hard problem. 

Computer scientists have identified a wide collection of problems that are 
on a par with graph coloring. That is, they have shown that if any one problem 
in this special collection has an efficient solution, then they all do. Problems in 
this category are known as NP-complete. A full description of what it means for a 
problem to be in this category is beyond the realm of this book. Our point is that 
there are no known efficient procedures to determine whether or not a graph is 
three-colorable (or k-colorable for any fixed value of k > 2), and so there is no 
known efficient procedure for calculating x (G). There are, however, heuristic and 
approximate methods that often give good results. 

Recap 
We introduced the concepts of a proper coloring of a graph and the chromatic num­
ber. We analyzed the class of bipartite (two-colorable) graphs and characterized 
such graphs by the fact that they do not contain odd cycles. 

51.1. Let G and H be the graphs in the following figure. 

G H 

Please find x(G) and x(H). 
51.2. Let G be a graph with just one vertex. It is correct to say that G is three­

colorable. How can this be if G has only one vertex? 
51.3. Let G be a properly colored graph and let us suppose that one of the colors 

used is red. The set of all red-colored vertices have a special property. What 
is it? 

Graph coloring can be thought of as partitioning V (G) into subsets 
with this special property. 
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51.4. Let G be a graph with n vertices that is not a complete graph. Prove that 

x(G) < n. 

51.5. Let G be a graph with n vertices. Prove that x (G) ~ w (G) and x (G) ~ 

nja(G). 

51.6. Let G = Kn,m· Determine JV(G)i and IE(G)J. 

51.7. Let G be a graph with n vertices. Prove that x (G)x (G) ~ n. 

51.8. Let G be the graph in the figure. Prove that x (G) = 4. 

51.9. Let G be a graph with exactly one cycle. Prove that x (G) s 3. 

51.10. Let n be a positive integer. The n-cube is a graph, denoted Qn, whose 

vertices are the 2n possible length-n lists of Os and 1 s. For example, the 

vertices of Q3 are 000, 001, 010, 011, 100, 101, 110, and 111. 

Two vertices of Qn are adjacent if their lists differ in exactly one 

position. For example, in Q4, vertices 1101 and 1100 are adjacent (they 

differ only in their fourth element) but 1100 and 0110 are not adjacent 

(they differ in positions 1 and 3). 

Please do the following: 

a. Show that Q2 is a four-cycle. 

b. Draw a picture of Q3 and explain why this graph is called a cube. 

c. How many edges does Qn have? 

d. Prove that Qn is bipartite. 

51.11. Suppose G has maximum degree .6. > 1, but it has only one vertex of 

degree Ll. Prove that x (G) s .6.. 

51.12. Let G be a graph with the property that 8 (H) s d for all induced subgraphs 

H of G. Prove that x(G) s d + 1. 

51.13. Consider the graph in the figure. Notice that it does not contain K 3 as a 

subgraph. Please do the following: 

a. Show that this graph is four-colorable. 

b. Show that this graph has chromatic number equal to 4. 

c. Show that if we delete any edge from this graph, the resulting graph 

has chromatic number 3. 

51.14. Suppose G is a graph with 100 vertices. One way to determine whether 

G is three-colorable is to examine all possible three-colorings of G. If a 

computer can check 1 million colorings per second, about how long would 

it take to check all possible three-colorings? 

52 Planar Graphs 

In this section, we study graph drawings. We are especially interested in graphs 

that can be drawn without crossing edges. 

Dangerous Curves 

A graph and its drawing are very different objects. A graph is, by Definition 46.1, 

a pair of finite sets (V, E) that satisfy certain properties. Its drawing is ink on 
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Theorem 52.1 

paper; it is notational shorthand that is often easier to grasp .than writing out the 

two sets V and E in full. .. 

In this section, we take a different approach. We study not only graphs, but 

their drawings as well. A drawing is ink on paper-it is not a mathematical object. 

(A picture of a circle is not a circle.) Thus our first order of business ought to 

be a careful mathematical definition of a graph drawing. Unfortunately, this is 

complicated. The difficulty lies primarily in defining just what we mean by a curve 

in the plane. The precise definition of curve requires concepts from continuous 

mathematics that we have not developed and are beyond the scope of this book. 

Instead, we shall just live dangerously. We proceed with our intuitive un­

derstanding of what a curve is. Note that a curve may have corners and straight 

sections. Indeed, a line segment is a curve. It must, however, be all in one piece. 

The figure in the margin shows three separate curves. A simple curve is a curve 

that joins two distinct points in the plane and does not cross itself. The top curve 

in the figure is simple; the other two are not. 
If a curve returns to its starting point, we call the curve closed. If the first/last 

point of the curve is the only point on the curve that is repeated, then we call the 

curve a simple closed curve. The middle curve in the diagram is a simple closed 

curve. The third curve is neither simple nor closed. 
Before we get to work on planar graphs, we need to present a word of warning. 

Some of the proofs in this section are not rigorous. We shall be honest with you 

concerning where we are not using full rigor. The problem is that fully proving 

these results requires a deep understanding of curves, and we have not even given a 

proper definition of curve. For example, we use (implicitly) the following theorem. 

(Jordan Curve) A simple closed curve in the plane divides the plane into two 

regions: the inside of the curve and the outside of the curve. 

Many students' reaction to the Jordan Curve Theorem is that it is so obvious 

that it does not require a proof. Ironically, this "simple" and "obvious" statement 

is difficult to prove. We shall accept it and use it nevertheless. 

Embedding 

A drawing is a diagram made of ink on paper. The mathematical abstraction of a 

drawing is called an embedding. An embedding of a graph is a collection of points 

and curves in a plane that satisfies the following conditions: 

Each vertex of the graph is assigned a point in the plane; distinct vertices 

receive distinct points (i.e., no two vertices share the same point). 

Each edge of the graph is assigned a curve in the plane. If the edge is e = xy, 

then the endpoints of the curve fore are exactly the points assigned to x andy. 

Furthermore, no other vertex point is on this curve. 

If all the curves are simple (do not cross themselves) and if the curves from two 

edges do not intersect (except at an endpoint if they both are incident with the 

same vertex), then we call the embedding crossing-free. 
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The figure shows two embeddings of the graph K4 . Note that we greatly 

exaggerated the points, drawing them as large round dots. The drawing on the 

right represents a crossing-free embedding on K 4 . 

Not all graphs have crossing-free embeddings in the plane. Those that do have 

a special name. 

(Planar graph) A planar graph is a graph that has a crossing-free embedding in 

the plane. 

For example, the graph K 4 is planar. However, the graph K 5 is not planar. How 

do we know? We can try to find a crossing-free drawing of K5 and not succeed, 

but that is not much of a proof. Alternatively, we study properties of planar graphs 

and use that knowledge to prove that K 5 is not planar. The first step toward this 

goal is a classic result of Euler. 

Euler's Formula 

Let G be a planar graph and consider a crossing-free embedding of G, as in the 

figure. In this drawing, we see the points and curves of the embedding. We also 

This definition of face is see another feature: faces. A face is a portion of the plane cut off by the drawing. 

not rigorous. Imagine the graph drawn on a physical piece of paper. If we cut along the curves 

representing the edges of G, the paper falls apart into various pieces. Each of these 

pieces is called a face (or region) of the embedding. 

The drawing of the graph in the figure has five faces. Yes, five is the cor­

rect number. There are four bounded faces (faces with only finite area) and one 

unbounded face that surrounds the graph. 

The graph in this figure has n = 9 vertices, m = 12 edges, and f = 5 faces. 

I encourage you to make a number of other crossing-free drawings of connected 

planar graphs and, for each, record how many vertices, edges, and faces each 

drawing has. Stare at your numbers and see whether you discover the following 

result (don't peek). 

Theorem 52.3 (Euler's formula) Let G be a connected planar graph with n vertices and m edges. 

This proof is not l 00% 

rigorous. There are no 

untrue statements, but 

some of our claims are 

unsupported. In particular, 

when we delete a noncut 

edge from the grap!+ we 

assert, but do not prove, 

that two faces collapse into 

a single face. 

Choose a crossing-free embedding for G, and let f be the number of faces in the 

embedding. Then 

n -m + f = 2. 

Please note that the hypothesis connected is important. An extension to this 

result covers the cases when the graph is not connected (see Exercise 52.3). 

Proof. This proof is by induction on the number of edges in the planar graph G. 

Suppose G has n vertices. The basis case for this proof is when the number 

of edges is n - 1 since a connected graph with n vertices must have at least n - 1 

edges (see Section 49). 

~----------~-
---
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Basis case: Since G is connected and has m = n - 1 edges, we know that G 
is a tree. In a drawing of a tree, there is only one face (the unbbunded face) because 
there are no cycles to enclose additional faces. Thus f = 1. We therefore have 

n - m + f = n - (n - 1) + 1 = 2 

as required. 
Induction hypothesis: Suppose all connected planar graphs with n vertices 

and m edges satisfy Euler's formula. 
Let G be a planar graph with n vertices and m + 1 edges. Choose a crossing­

free embedding of G and let f be the number of faces in this embedding. We need 
to prove that n - (m + 1) + f = 2. 

Let e be an edge of G that is not a cut edge. Because G has more than n - 1 
edges, it is not a tree, and therefore (Theorem 49.5) not all of its edges are cut 
edges. Therefore G - e is connected. 

If we erase e from the drawing of G, we have a crossing-free embedding of 
G- e, and so G- e is planar. Notice that G- e has n vertices and (m + 1)- 1 = m 
edges. The drawing, we claim, has f - 1 faces. The edge we deleted causes the 
two faces on either side of it to merge into a single face, so G - e's drawing has 
one less face than G 's. 

Now, by induction, we have 

n - m + (f - 1) = 2 

which rearranges to 

n - (m + 1) + f = 2 

which is what we needed to prove. • 
Let G be a connected planar graph with n vertices and m edges. We can solve 

the equation n - m + f = 2 for f and we get f = 2- n + m. This has an important 
consequence. The number of vertices and edges are quantities that depend only on 
the graph G-they have nothing to do with how the graph is drawn in the plane. On 
the other hand, the quantity f is the number of faces in a particular crossing-free 
drawing of G. There may be many different ways to draw G without crossings. 
The implication of Euler's formula is that regardless of how we draw the graph, 
the number of faces is always the same. 

For example, consider the two drawings of the graph in the figure. In both 
cases, the graph has f = 2- n + m = 2- 9 + 12 = 5 faces. 

Notice that we wrote a number inside each face. This indicates the number of 
edges that are on the boundary of that face; it is called the degree of the face. In 
the upper figure, the face with degree equal to 7 is noteworthy. Observe there are 
only six edges that touch that face. Why, then, do we say this face has degree 7? 
The edge to the leaf has both sides on the boundary of the face; therefore this edge 
counts twice when we calculate the degree. The concept of side of an edge has 
no meaning whatsoever when we are considering only graphs. However, it makes 
sense when we consider a graph's embedding. 
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Since every edge has two sides, it contributes a total value of 2 to the degrees 
of the faces it touches. If an edge only touches one face, then it counts twice toward 
that face's degree. If it touches two faces, it counts once toward each of the two 
faces' degrees. Therefore, if we add the degrees of all the faces in the embedding, 
we get twice the number of edges in the graph. We have shown the following: 

Proposition 52.4 Let G be a planar graph. The sum of the degrees of the faces in a crossing-free 
embedding of Gin the plane equals 21E(G)I. 

How small can the degree of a face be? If the graph is simply K 1, then the 
embedding is just one point, and there is just one face (the entire plane minus the 
one point). This face is bounded by zero edges, so it has degree equal to 0. 

If the graph has just one edge, then, as before, there is only one face. The 
"boundary" of this face is just the one edge-it counts twice to the degree, and so 

this face has degree 2. 
As soon as a planar graph has two (or more) edges, then all faces have degree 3 

or greater. (Technically, we should prove this, but we are taking a less than rigorous 
approach to planar graphs just for this section. Draw pictures to convince yourself 

of this fact.) 
We use the face-degree concept to prove the following corollary to Euler's 

formula. 

Corollary 52.5 Let G be a planar graph with at least two edges. Then 

IE(G)I ::; 31V(G)I- 6. 

Furthermore, if G does not contain K 3 as a subgraph, then 

IE(G)I::: 21V(G)I- 4. 

Proof. First note that, without loss of generality, G is connected. If G is not 
connected, we can add single edges between components to make it connected, 
and the resulting graph is still planar with more edges than the original graph. If 
the larger graph satisfies the inequality IE (G) I ::; 31 V (G) 1-6, so does the original 

graph. 
Let G be a connected planar graph with at least two edges. Pick a crossing-

free embedding of G; this embedding has f faces. By Euler's formula, f = 

2- IV(G)I + IE(G)I. 
We calculate the sum of the degrees of the faces in this embedding. 
On the one hand, by Proposition 52.4, the sum of the face degrees is 21E(G)I. 
On the other hand, every face has degree at least 3, so the sum of the face 

degrees is at least 3 f. Therefore we have 

21E(G)I ~ 3f 

which we can rearrange to read f ::; ~IE (G) 1. 
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Substituting this into Euler's formula, we get 

2 
2 -IV(G)I + IE(G)I = f ~ 3IE(G)I, 

which rearranges to 2 - IV (G) I + ~IE (G) I ~ 0, which yields 

IE(G)I ~ 31V(G)I- 6. 

The proof of the second inequality is left for you in Exercise 52.4. 

Here is another consequence of Euler's formula: 

• 

Corollary 52.6 Let G be a planar graph with minimum degree 8. Then 8 ~ 5. 

Proposition 52.7 

Corollary 52.5 is not an 
if-and-only-if result. The 

graph in the figure 
sati~ties the inequality 

lEI ::= 31VI- 6 but is not 
planar. 

Proof. Let G be a planar graph. If G has fewer than two edges, clearly 8 ~ 5. 
So we may assume that G has at least two edges. 

Thus, by Corollary 52.5, we have IE(G)I ~ 31 V(G)I - 6. 
The minimum degree 8 cannot be greater than the average degree. Let a denote 

the average degree in G. So 8 ~ a. 
We now calculate 

- LvEV(G) d(v) 21E(G)I 2(31V(G)I- 6) 12 
8 ~ d = IV(G)I = IV(G)I ~ IV(G)I = 

6
- IV(G)I < 

6 

but since 8 is an integer, we have 8 ~ 5. • 
Nonplanar Graphs 

A graph that is not planar is called nonplanar. We can use Corollary 52.5 to prove 
that certain graphs are nonplanar. 

The graph K 5 is nonplanar. 

Proof. Suppose, for the sake of contradiction, that K 5 were planar. By Corol­
lary 52.5, we would have 

10 = IE(G)I ~ 31V(G)I- 6 = 3 X 5-6= 9, 

a contradiction.=}{= Therefore K 5 is nonplanar. • 
Consider the graph in the figure: Is it planar? Note that it has 7 vertices and 

12 edges. Does it satisfy the formula IE(G)I ~ 31V(G)I - 6? Yes: Note that 
12 ~ 15 = 3 X 7 - 6. 

We claim the graph in the figure is nonplanar. Suppose it were planar. Then it 
would have a crossing-free embedding. Given such an embedding, we can ignore 
the two vertices of degree 2. The path between the lower left and lower right 
vertices is represented by a three-section curve that we can think of as a single 
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curve. Thus, if the graph in the figure had a crossing-free planar embedding, so 

would K 5 • However, since K 5 has no such embedding, neither does the graph in 

the figure. 
The graph in the figure is an example of a subdivision of K 5 . A subdivision of 

G is formed from G by replacing edges with paths. Clearly if a graph is planar, so 

are its subdivisions. And the converse of this statement is also true: If a graph is 

non planar, then all of its subdivisions are also nonplanar. Therefore any subdivision 

of K 5 is nonplanar. 
Moreover, any graph that contains a subdivision of K 5 as a subgraph must 

also be nonplanar. 
Next let us consider the complete bipartite graph K3,3 . It has six vertices 

and nine edges, and so it satisfies the inequality 9 = IE (G) I :=: 31 V (G) I - 6 = 
3 x 6- 6 = 12. However, because K3,3 is bipartite, it contains no odd cycles. 

In particular, it does not contain K3 as a subgraph. We can therefore consider the 

stronger inequality IE(G)I :=: 21V(G)I- 4 in Corollary 52.5. 

Proposition 52.8 The graph K3,3 is nonplanar. 

Proof. Suppose, for the sake of contradiction, that K3,3 were planar. Since it does 

not contain K3 as a subgraph, we would have 

9 = IE(G)I ::: 21V(G)I- 4 = 2 X 6-4 = 8 

which is a contradiction.=>-¢= Therefore K 3,3 is nonplanar. • 
This solves the gas/water/electricity problem from Section 46. It is impossible 

to run noncrossing utility lines between the three utilities and the three homes-if 

we could, we would have a crossing-free embedding of K3,3 , and that is impossible l 

Not only is K3,3 nonplanar, but so is any subdivision graph we can form from 

K 3,3 . Furthermore, any graph that contains a subdivision of K3,3 as a subgraph 

must be nonplanar as well. 

The following remarkable result of Kuratowski says that K5 and K3,3 are the 

"only" nonplanar graphs. Here is what we mean: 

Theorem 52.9 (Kuratowski) A graph is planar if and only if it does not contain a subdivision 

of K 5 or K3,3 as a subgraph. 

We have shown the easier half of Kuratowski's Theorem. If G contains a 

subdivision of K 5 or K3,3 as a subgraph, then G cannot be planar-if G were 

planar, we would be able to create a crossing-free embedding of K5 or K3,3 , and 

that's impossible. 
The more difficult part of this result is to prove that if a graph does not contain 

a subdivision of K 5 or K3,3 as a subgraph, then the graph must be planar. For the 

proof, please see an advanced text on graph theory. 

Kuratowski 's Theorem is a marvelous characterization of planarity. If a graph 

is planar, I can convince you of this fact by presenting you with a crossing-free 
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drawing. On the other hand, if a graph is non planar, I can Cot]Vince you of this fact 
by finding a subdivision of K 5 or K 3,3 as a sub graph of my graph. 

Coloring Planar Graphs 

We return to the map-coloring problem of Section 46. As we discussed in 
Section 51, the problem of coloring a map is equivalent to the problem of col­
oring a graph. What we did not consider previously is that the graph that arises 
from a map has a special property: It must be planar. To see why, we begin with 
a map. We locate one vertex for each country at the capital city of that country. 
From that capital city, we draw curves out to its various borders. These curves fan 
out in a starlike pattern and do not cross each other. We send each curve to the 
midpoint of the border where it connects to the curve emanating from the capital 
city of its neighbor. In this way, we have constructed a planar embedding of the 
graph we want to color. 

Thus the map-coloring problem becomes: Is every planar graph four-colorable? 
The answer is yes. This was proved in the 1970s by Appel and Haken. 

Theorem 52.10 (Four color) If G is a planar graph, then x (G) s 4. 

This theorem is best possible in the sense that the number 4 cannot be replaced 
by a smaller value. The graph K 4 is planar, and x ( K 4) = 4 (Example 51.3). 

The proof of the Four Color Theorem is long and complicated. One of the 
interesting aspects of the proof is that it requires a large amount of computation. 
Roughly speaking, Appel and Haken showed how to reduce the four color problem 
to about 2000 cases. They also proved how each case can be checked by a computer 
program. They then created and ran the necessary programs to check each of these 
cases. 

In this section, we prove a simpler version of the Four Color Theorem. We 
show that every planar graph is five-colorable. We start by proving that every 
planar graph is six-colorable. 

Proposition 52.11 (Six color) If G is a planar graph, then x (G) :::: 6. 

Proof. The proof is by induction on the number of vertices in the graph. 
Basis case: The theorem is obviously true for all graphs on six or fewer 

vertices, because we can give each vertex a separate color. 
Induction hypothesis: Suppose the theorem is true for all graphs on n vertices 

(i.e., all planar graphs with n vertices are six-colorable). 
Let G be a planar graph with n + 1 vertices. By Corollary 52.6, G contains 

a vertex, v, with d(v) :::: 5. Let G' = G - v. Notice that G' is planar and has n 

vertices. By induction, G' is six-colorable. Properly color the vertices of G' using 
just six colors. We can extend this coloring toG by giving v a color. Notice that v 
has at most five neighbors, and so there is some other color that we can assign to v 
that is different from the colors of its neighbors. This yields a proper six-coloring 
of G, and so x(G):::: 6. • 
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The overall logic in proving that x (G) ::::: 5 for planar graphs is similar. The 

difficult part comes when there are five neighbors of vertex v, and they all have 

different colors. 

Theorem 52.12 (Five color) If G is a planar graph, then x (G) ::::: 5. 

Proof. The proof is by induction on the number of vertices in the graph. 

Basis case: The theorem is obviously true for all graphs on five or fewer 

vertices, because we can give each vertex a separate color. 

Induction hypothesis: Suppose the theorem is true for all graphs on n vertices 

(i.e., all planar graphs with n vertices are five-colorable). 

Let G be a planar graph with n + 1 vertices. By Corollary 52.6, G contains 

a vertex, v, with d(v) ::S 5. Let G' = G - v. Notice that G' is planar and has n 

vertices. By induction, G' is five-colorable. Properly color the vertices of G' using 

just five colors. 
We want to extend this coloring to G by giving v a color. Consider the neigh­

bors of v. If among the neighbors of v there are only four different colors, then 

there is a left over color that we can assign to v. This yields a proper five-coloring 

of G. 
The problem has been reduced to the case where d(v) = 5 and all five of 

its neighbors are different colors. There is no way to extend this coloring to v; 

whatever color we might choose for v would be the same color as one of its 

neighbors. So to extend the coloring to vertex v, we need to recolor some vertices. 

Since G is planar, choose a crossing-free embedding of G. Every vertex of G, 

except v, has been colored with colors from the set { 1, 2, 3, 4, 5}. Let u 1 , u2 , .•. , 

u5 be the five neighbors of v in clockwise order, and, without loss of generality, 

let us assume that ui has color i (fori = 1, 2, ... , 5). 
The basic idea is to change the color on one of v's neighbors. Let's change 

the color of u1 from 1 to 3. Now we can simply color v with color 1 and celebrate. 

The problem, however, is that u 1 might have a neighbor that has color 3; in that 

case, changing u1 to color 3 creates an edge both of whose endpoints have the 

same color, and so the coloring would not be proper (see the figure). 

Simply changing the color of u1 from l to 3 does not solve this problem. We 

need to be more aggressive! 
Let Hu be the subgraph of G induced by all vertices with color 1 or 3. In 

other words, we take only those vertices with color 1 or 3, and all edges that join 

such vertices, and call that subgraph Hu. Notice that if in one component of Hu, 

we exchange colors 1 and 3, then we still have a proper coloring of G' (remember: 

v is not colored yet). 
We therefore exchange colors 1 and 3 in the component of Hu that contains 

vertex u 1• This color exchange results in a proper coloring of G' in which vertex 

u 1 has color 3. We are all set to color vertex v with color 1. The problem, how­

ever, is that vertex u3 might also be in the same component of H~, 3 as vertex u 1. 

Then, despite a 1-for-3 color exchange, v still has all five colors present on its 

neighbors. 
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Ifu 1 and u3 are in separate components of H1,3, then the 1-lor-3 color exchange 
works fine. We exchange colors 1 and 3 in the component of H 1,3 that includes 
u1 (but not u3). This gives a modified (but proper) five-coloring of G' in which 
color 3 is not present on any of v 's neighbors, and so we may color v with color 1. 

It remains to consider the case where u 1 and u3 are in the same component of 
H1,3 (i.e., there is a path Pin H 1,3 from u1 to u 3 as in the figure). 

If u1 and u 3 are in the same component of H1,3, we proceed as follows: We 
argue as before, but now we attempt to recolor vertex u 2 with color 4. Let H2.4 

denote the subgraph of G induced on the vertices of color 2 or color 4. If u2 

and u4 are in separate components of H2,4, then we can recolor u 2 's component, 
exchanging colors 2 and 4. The resulting modified coloring is a proper five-coloring 
of G' in which no neighbor of v has color 2. In this case, we can simply give vertex 
v color 2 and have a proper five-coloring of G. 

The problem, as before, is that perhaps u2 and u4 are in the same component 
of H2 ,4. We claim, however, that this cannot happen! Suppose there is a path, Q, 
from u2 to u4 . Note that the vertices along Q are colored with colors 2 and 4, 
and the vertices on P are colored with colors 1 and 3. Thus P and Q have no 
vertices in common. Furthermore, path P, together with vertex v, forms a cycle. 
This cycle becomes a simple closed curve in the plane. Notice that vertices u2 and 
u4 are on different sides of this curve! Therefore the path Q from u2 to u4 must 

P pass from the inside of this simple closed curve to the outside, and where it does, 

52 Exercises 

there is an edge crossing. However, by construction, this embedding has no edge 
crossings! Therefore vertices u2 and u 4 must be in separate components of H2,4, 

and the 2-for-4 recoloring technique may be used. Finally, we color vertex v with 
color 2, giving a proper five-coloring of G. • 

Recap 

We introduced the concept of planar graphs: graphs that can be drawn in the plane 
without edges crossing. We presented Euler's formula that relates the number of 
vertices, edges, and faces of a connected planar graph and used it to find bounds on 
the number of edges in a planar graph. We showed that K 5 and K 3,3 are nonplanar 
and discussed Kuratowski 's Theorem, which says, in essence, that these two graphs 
are the only "fundamental" nonplanar graphs. We then discussed the Four Color 
Theorem and proved the simpler result that all planar graphs are five-colorable. 

52.1. Give an example of a curve that is closed but not simple. 
52.2. Each of the graphs in the figure is planar. Redraw these graphs without 

crossings. 
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52.3. Let G be a planar graph with n vertices, m edges, and c components. Let 

f be the number of faces in a crossing-free embedding of G. Prove that 

n-m+f-c=l. 

52.4. Complete the proof of Corollary 52.5. That is, prove that if G is planar, has 

at least two edges, and does not contain K3 as a subgraph, then IE (G) I .::S 

21V(G)I- 4. 
52.5. Let G be a graph with 11 vertices. Prove that G or G must be nonplanar. 

52.6. Let G be a 5-regular graph with ten vertices. Prove that G is nonplanar. 

52.7. For which values of n is then-cube Q11 planar? (See Exercise 51.1 0.) Prove 

your answer. 
52.8. The graph in the figure is known as Petersen's graph. Prove that it is 

nonplanar by finding either a subdivision of K 5 or a subdivision of K3.3 as 

a subgraph. 
52.9. Let G = (V, E) be a planar graph in which every cycle has length 8 or 

greater. 
a. Prove that IE I .:::: ~IV I - ~. (You may assume the graph has at least one 

cycle.) 
b. Prove that 8 (G) .:::: 2. 
c. Prove that x (G) .::S 3. 

52.10. A Platonic graph is a connected planar graph in which all vertices have the 

same degree r (with 3 :::=: r .::S 5) and in whose crossing-free embedding all 

faces have the same degrees (with 3 .::s s :::=: 5). Let G be a Platonic graph 

with v vertices, e edges, and f faces. 

a. Prove that vr = f s. How is this quantity related to e? 

b. Prove that if r = s = 3, then v = f = 4. Conclude that K 4 is the only 

Platonic graph with r = s = 3. 

c. Prove that 

2 

d. In all, there are nine ordered pairs (r, s) with 3 :::=: r, s :::=: 5. Use the 

equation in part (c) to rule out the existence of Platonic graphs with 

some of these values. 
e. For the pairs (r, s) that were not ruled out in part (d), find a Platonic 

graph with vertex degree r and face degree s. 

52.11. A soccer ball is formed by stitching together pieces of material that are 

regular pentagons and regular hexagons. The lengths of the sides of these 

polygons are all the same, so the edges match up exactly. Each corner of a 

polygon is the meeting place for exactly three polygons. 

Prove that there must be exactly 12 pentagons . 
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Chapter 9 Self Test 

1. Draw a picture of the following graph: 

({1, 2, 3, 4, 5}, {{1, 2}, {1, 3}, {3, 4}}). 

2. Find a graph on ten vertices whose degrees are 6, 5, 5, 5, 4, 4, 4, 4, 3, and 3, 
or prove that no such graph exists. 

3. Let G be a graph with 100 vertices. The vertex set of G can be partitioned 
into ten sets of ten vertices each; thus, 

V(G) = W1 u W2 u ... u w10. 

The W1 s are pairwise disjoint and all have cardinality 10. 
In G there are no edges between vertices in the same Wi, but between Wi 

and Wj (with i =1= j) all possible edges are present. 
How many edges does G have? 

4. Let G be a graph with 10 vertices and 15 edges. 
a. How many induced subgraphs does G have? 
b. How many spanning subgraphs does G have? 

5. Let a and b be distinct vertices in a complete graph on ten vertices, K 10 . How 
many paths of length 5 are there from a to b? 

6. Let a and b be distinct vertices in a complete graph on ten vertices, K 10 . How 
many walks of length 5 are there from a to b? 

This question is more difficult than the one posed in Problem 5. To assist 
you in answering this question, use the following steps: 
a. Define f (k) to be the number of length-k walks between distinct vertices 

in K 10 and g(k) to be the number of length-k walks in K 10 from a vertex 
back to itself. 
Deduce the values of .f(O), g(O), .f(l), and g(l). 

b. Suppose k > 1. Express f(k) in terms of f(k- 1) and g(k- 1). 
c. Suppose k > 1. Express g(k) in terms of f(k- 1) and g(k- 1). 
d. Use your answers to the previous parts to work out .f(5). 

7. Let G be a graph with n vertices. Suppose 8(G) ::=: nj2. Prove that G is 
connected. 

8. Among the various subgraphs of K 5 , how many are cycles? 
Note: Since you are asked to count subgraphs, do not consider the orien­

tation or the starting vertex of the cycle. 
9. Let G be a connected graph in which the average degree of a vertex is less 

than 2. Prove that G is a tree. 
Note: This is the converse of Exercise 49.2. 

10. Suppose that T1 and T2 are trees on a common vertex set; that is, V (T1) = 
V (T2). Suppose further that for any vertex v, the degree of v in the two trees 
is the same (i.e., dT, ( v) = dT2 ( v) ). 

Please answer, with proof, the following question: Is it the case that T1 

and T2 must be isomorphic graphs? 
11. What is the maximum number of edges that a disconnected graph on ten 

vertices can have? 
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12. Recall that a Hamiltonian path of a graph is a path that includes all the vertices 

of the graph. Show that the edges of K8 can be partitioned into Hamiltonian 

paths, but the edges of K 9 cannot be so partitioned. 

Note: A partition of E (K8) into Hamiltonian paths is a collection of paths 

that includes each of the edges of K8 exactly once. 

13. Let T be a tree containing three distinct vertices a, b, and c. By Theorem 49 .4, 

there is a unique path from a to b (call it P), a unique path from b to c (call 

it Q), and a unique path from a to c (call it R). 

Prove that P, Q, and R have exactly one vertex in common. 

14. Let G be a graph. Prove that G is Eulerian if and only if for every partition 

of V(G) =AU B (with An B = 0 and A and B nonempty), the number of 

edges with one end in A and one end in B is even but not zero. 

15. Let G be the graph in the following figure. 

Find, with proof, x(G). 

16. A wheel is a graph formed from a cycle by the addition of a new vertex that 

is adjacent to all the vertices on the cycle. A wheel with n vertices is denoted 

Wn; the graph W6 is shown in the figure. Note that W6 is based on a 5-cycle 

plus an additional vertex. 
For n 2: 3, find, with proof, X ( Wn). 

17. Let n be an integer with n 2: 4. Find, with proof, x(C11 ). 

18. Let G be a graph and let k be a positive integer. We write x ( G, k) to stand 

for the number of proper k-colorings of G. For example, if G = K 3 , then 

x (G, k) = k(k- l)(k- 2) because there are k choices for coloring vertex 1, 

and for each such choice, k - 1 choices for coloring vertex 2, and, finally, for 

each choice of colors for vertices 1 and 2, there are k- 2 choices for vertex 3. 

a. Prove that x (G) 2: kif and only if x (G, k) > 0. 

b. Prove that if Tis a tree with n vertices, then x (T, k) = k(k- 1y-1
• 

19. From the graph K 6 delete three edges that have no endpoints in common. That 

is, if V (K6) = {1, 2, 3, 4, 5, 6}, delete the edges 12, 34, and 56. Show that the 

resulting graph is planar. 

20. Prove that the graphs C7 and C8 are nonplanar. 

21. A planar graph has vertices only of degree 5 and 7. If there are 10 vertices of 

degree 7, prove that there are at least 22 vertices of degree 5. 





CHAPTER 

10 Partially Ordered Sets 

We have studied various kinds of relations in this book: equivalence relations, 

function relations, and adjacency relations (for graphs). In this final chapter, we 

study another important class of relations: partial orders. 

An equivalence relation Ron a set A is a relation that satisfies three conditions: 

It is reflexive, symmetric, and transitive (see Section 14). In graph theory, the 

adjacency relation (""") on the vertex set of a graph is irreflexive and symmetric 

(see Section 46). Now we explore a new class of relations that satisfies a different 

suite of relation properties. We study relations that are reflexive, antisymmetric, 

and transitive. 

53 Fundamentals of Partially Ordered Sets 

What Is a Po set? 

Please review Section 13, 

where the concepts of 

reflexive, antisymmetric, 

and transitive are 

introduced. 

Definition 53.1 

.1 

Consider the following relations defined on sets: 

• the less-than-or-equal-to relation :::=:defined on the integers, Z, 

• the divides relation I defined on the natural numbers, N, and 

• the is-a-subset-of relation~ defined on 2A for some set A. 

In all three cases, the relation R captures the flavor of is smaller than for the 

elements of the set X on which it is defined. Notice also that all three relations 

are reflexive, antisymmetric, and transitive on the sets on which they are defined. 

A partially ordered set is a set together with a relation that satisfies these three 

conditions. 

(Partially ordered set, poset) A partially ordered set is a pair P = (X, R) where 

X is a set and R is a relation on X that satisfies the following: 

R is reflexive: Vx E X, x R x, 

R is antisymmetric: Vx, y EX, if x R y andy R x, then x = y, and 

R is transitive: Vx, y, z EX, if x R y, andy R z, then x R z. 

449 

~------------
--~ 
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The set X is called the ground set of P. The elements of X are simply called 
f' 

elements of the partially ordered set. The relation R is called a partial order 
relation. 

The term poset is an abbreviation for partially ordered set. 

Example 53.2 Let P = (X, R) where X= {1, 2, 3, 4} and 

This is a diagram depicting 

the poset from 

Example 53.2. 
4 

2 3 

Although poset diagrams 
(called Hasse diagrams) 

look much like drawings 
of graphs, they represent 

rather different 
mathematical objects. 

R = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (3, 3), (3, 4), (4, 4)}. 

It is not hard to see that R is reflexive [all of (1, 1) through (4, 4) are in R] and 
anti symmetric [the only time we have both (x, y) and (y, x) in R is when x = y ]. 
Checking transitivity is tedious. The only interesting case is that we have both 
1 R 3 and 3 R 4, and note that we also have (1, 4) E R. 

Thus P is a poset. 

The poset in Example 53.2 is nearly incomprehensible. It is difficult to 
understand relations when they are written out as a list of ordered pairs. It is 
often easier to understand mathematical concepts when we can draw pictures of 
them. 

The figure shows a diagram for the poset in Example 53.2. Each element of 
X, the ground set of the poset, is represented by a dot in the diagram. If x R y in 
the poset, then we draw x 's dot below y 's and draw a line segment (or curve) from 
x toy. For example, in the figure, we position 1 's dot below 2's dot, and we draw 
a line between them because 1 R 2. 

We do not need to draw a curve from a dot to itself. We know that partial order 
relations are reflexive; we don't need the diagram to remind us of this fact. 

If you look carefully at the figure, it appears that we have neglected to draw 
one of the connecting lines. Notice that (1, 4) E R, but we did not draw a line from 
1 's dot to 4's. 

The relationships (1, 3) and (3, 4) are explicit in the figure. The relationship 
(1, 4) is implicit. Because partial order relations are transitive, we can infer 1 R 4 
from the diagram. We can read this in the diagram by following an upward path 
from 1 through 3 to 4. By not drawing a curve from 1 to 4, we keep the diagram 
less cluttered and easier to read. 

These diagrams of posets are known as Hasse diagrams. 
For better or for worse, Hasse diagrams look exactly like (pictures of) graphs. 

It is important to remember, however, that posets and graphs are different ~he­
matical objects. Their pictures look remarkably similar, but these pictures are just 
notational shorthand for the true underlying mathematical structures. Also, in a 
graph drawing, the geometric positions of the vertices are irrelevant. However, in 
a Hasse diagram, the vertical positioning of the dots is important. 
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Example 53.3 Problem:DrawtheHassediagramoftheposetwhosegroundsetis {1, 2, 3, 4, 5, 6} 

and whose relation is I (divides). 
Solution: 

116 

<~ 2w 
Example 53.4 Problem: Draw the Hasse diagram for the poset whose ground set is 21 1·2·3} and 

whose relation is ~. 
Solution: 

{ 1,2} {2,3} 

{1} {3} 

0 

There is a natural way in which we can partially order the partitions of a set 

(see Section 15). 

Definition 53.5 (Refinement) Let P and Q be partitions of a set A. We say that P refines Q, if 

every part in P is a subset of some part in Q. We also say that P is finer than Q. 

For example, let A= {1, 2, 3, 4, 5, 6, 7}, and let 

P = {{1, 2}, {3}, {4}, {5, 6}, {7}}, and, 

Q = {{1, 2, 3, 4}, {5, 6, 7}}. 

Notice that every part of P is a subset of a part of Q. Thus we say that P is a 

refinement of Q or that P is finer than Q. 
It is not hard to see that every partition of a set is finer than itself (since every 

part of P is a subset of itself). Thus refines is reflexive. Furthermore, refines is 

antisymmetric, because if every part of P is contained in a part of Q and vice 

versa, you can prove (Exercise 53.6) that they must contain exactly the same parts 

(i.e., P = Q). Furthermore, refines is transitive. Therefore, refines is a partial order 

on the set of all partitions of A. 
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Example 53.6 (Partitions poset) Problem: Draw the Hasse diagram of the re.fmes partial order 
on all partitions of {1, 2, 3, 4}. 
Solution: It is convenient to write 1/2/34 in lieu of {{1}, {2}, {3, 4}}. Here is the 
Hasse diagram: 

Notation and Language 

A partially ordered set is a pair P = (X, R) where X is a set and R is a relation. 
Mathematicians rarely use the letter R to stand for a poset's relation. For some 
posets, there is a natural symbol to use. For the poset in Example 53.4, it is natural 
to use the symbol s; to denote the partial order relation. 

However, for a general poset such as the one in Example 53.2, the symbol 
most often used for the partial order relation is _::::. The use of this symbol is both 
good and bad. It is bad because the symbol _:::: already has a meaning: ordinary 
less than or equal to. We need to infer from context what meaning _:::: has: the 
ordinary or some partial order relation. However, there are some good features 
to this notation. A partial order relation is a generalization of ordinary .:::;. We 
may also use the symbols <, :=:::, and > as follows: Let P = (X,_::::) be a poset 
(now we are using _:::: to stand for a generic partial order relation). We define the 
following: 

• x < y means x _:::: y and x =f. y, 
• x :=::: y means y _:::: x, and 
• x > y means y _:::: x and y =f. x. 

We may also put a slash through any of these symbols to mean that the given 
relationship does not hold. For example, x t y means y _:::: x is false. 

When we read the symbols such as _:::: aloud, it is awkward to pronounce _:::: as 
"less than or equal to." Further, we want to distinguish poset _:::: from ordinary:::::. 
One comfortable way to pronounce the symbol _:::: is to read it as "is below." For 
the other symbols, we read < as "is strictly below," :=::: as "is above," and > as "is 
strictly above." 
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Some mathematicians use a different -shaped ::: symbol for partial orders, such 

as ::S. This is a reasonable approach in printed work, but it can be annoying when 

writing mathematics by hand. 
There is only one symbol:::, and we may have occasion to discuss two different 

posets at once. We cannot use the same symbol for both partial orders! One solution 

is to attach various decorations to the ::: symbol, such as a prime mark :::' or 

subscripts :::2. 
Why do we need separate symbols for< and fort_? Don't these two mean 

the same thing? 
For ordinary less than or equal to, x < y is true if and only if x t y is true. 

So in that context, the symbols < and t carry the same meaning. 

However, for a poset, < and t mean different things. For the poset in Exam­

ple 53.2 (see the figure), we have 2 t 4 is true (since 2 is not above 4) but 2 < 4 

is false (since 2 is not strictly below 4). 

For the poset in this example, all three of the following are false: 2 < 4, 

2 = 4, and 2 > 4. This cannot happen for ordinary:::. Elements 2 and 4 cannot be 

compared by the relation :::. Neither 2 ::: 4 nor 4 ::: 2 is true. We call such a pair 

of elements incomparable. 

(Comparable, incomparable) Let P = (X, :::) be a poset. Let x, y E X. We call 

elements x and y comparable provided x ::: y or y ::: x. 

We call the elements x and y incomparable if x i. y and y 1:. x. 

In the example poset, elements 2 and 4 are incomparable, whereas elements 

1 and 4 are comparable. 

Definition 53.8 (Chain, antichain) Let P = (X, ::::;) be a poset and let C ~ X. We call C a chain 

of P provided every pair of elements in C are comparable. 

Let A ~ X. We call A an antichain of P provided every pair of distinct 

elements of A are incomparable. 

Consider the poset P from Example 53.2. The following sets are some of the 

chains of P: 

{1}, {1,2}, {1,4}, {1,3,4}, 0. 

Note that in the Hasse diagram for this poset, elements 1 and 4 are not joined by 

a line. Nonetheless, {1, 4} is a chain because 1 and 4 are comparable. 

The following sets are some of the anti chains of P: 

{3}, {2, 3}, {2, 4}, 0. 

Definition 53.9 (Height, width) Let P be a poset. The height of Pis the maximum size of a chain. 

The width of P is the maximum size of an antichain. 
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53 Exercises 

a b 

See Detinition 13.4 for the 
definition of the inverse of 
a relation. 

The largest chain in the poset of Example 53.2 is {1, 3, 4}, so this poset has 
height equal to 3. " 

The largest antichains in this poset are {2, 3} and {2, 4}, this poset has width 
equal to 2. 

Recap 

We introduced the concept of partially ordered set (or poset for short) and gave 
several examples. We often use the symbol ::::: for the partial order relation despite 
the fact that it also stands for ordinary less than or equal to. 

We showed how to draw a picture of a poset. We introduced a number of 
terms, including comparable/incomparable, chain/antichain, and height/width. 

53.1. Let P be the poset in the figure. For each pair of elements x, y listed below, 
determine whether x < y, y < x, or x and y are incomparable. 
a. a, b. 
b. a, c. 
c. c, g. 
d. b, h. 
e. c, i. 
f. h, d. 

53.2. For the poset from the previous problem, please find the following: 
a. The height of the poset and a chain of largest size. 
b. The width of the poset and an antichain of largest size. 
c. A chain containing three elements that cannot be extended to a larger 

chain. 
d. A chain containing two elements that cannot be extended to a larger 

chain. 
e. An antichain containing three elements that cannot be extended to a 

larger antichain. 
53.3. Let Pn denote the set of all positive divisors of the positive integer n ordered 

by divisibility. In other words, I is the partial order relation. 
Draw the Hasse diagram of Pn for the following values of n: 

a. n = 6. 
b. n = 10. 
c. n = 12. 
d. n = 16.· 
e. n = 18. 

53.4. For each of the posets in the previous problem, find a largest chain, a largest 
anti chain, the height of the poset, and the width. 

53.5. Suppose P = (X, R) is a partially ordered set. Prove that P = (X, R-1) 

is also a partially ordered set. We call P the dual of P. 
If the partial order relation is denoted by :::::, what is a better way to 

write :::::- 1? 
53.6. Prove that refines is a partial order relation on the set of all partitions of a 

set A. 
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53.7. Let x and y be elements of a poset. Prove that we cannot have both x < y 

andx > y. 

53.8. True or false: Please label each of the following statements as either true 

or false and then give a proof. 

a. Let x andy be elements of a poset. It must be the case that exactly one 

of the following is true: x < y, x = y, or x > y. 

b. Let x and y be elements of a poset and suppose there is a chain that 

contains both x and y. Then it must be the case that exactly one of the 

following is true: x < y, x = y, or x > y. 

c. Let C and D be chains in a poset. Then C U D is also a chain. 

d. Let C and D be chains in a poset. Then C n D is also a chain. 

e. Let A and B be antichains in a poset. Then A U B is also an antichain. 

f. Let A and B be antichains in a poset. Then A n B is also an antichain. 

g. Let A be an antichain and C be a chain in a poset. Then A n C must be 

empty. 
h. Two points in a Hasse diagram (representing two elements of a poset) 

can never be joined by a horizontal line segment. 

i. Let A be a set of elements in a poset. If no two elements of A are joined 

by a curve in the Hasse diagram, then A is an antichain. 

j. Let A be a set of elements in a poset. If A is an antichain, then no two 

elements of A are joined by a curve in the Hasse diagram. 

53.9. Which of the various properties of relations does is comparable to ex­

hibit? That is, determine (with proof) whether or not it is always reflexive, 

irreflexive, symmetric, antisymmetric, and/or transitive. 

53.10. Which of the various properties of relations does is incomparable to ex­

hibit? That is, determine (with proof) whether or not it is always reflexive, 

irreflexive, symmetric, antisymmetric, and/or transitive. 

53.11. What does it mean to delete an element from a poset? Let P = (X, :S) and 

let x E X. Create a sensible definition for P - x. 

Let P be the poset in the figure. Draw the Hasse diagram of P - x. 

54 Max and Min 

Definition 54.1 

In this section, we discuss various notions of largest and smallest in partially 

ordered sets. 

(Maximum, minimum) Let P = (X,.:::;) be a partially ordered set. An element 

x E X is called maximum if, for all a E X, we have a .:::; x. 

We call x minimum if, for all b E X, we have x .:::; b. 

In other words, x is maximum if all other elements of the poset are below x, 

and x is minimum if all other elements of the poset are above x. 

For example, consider the poset consisting of the positive divisors of 36 

ordered by divisibility (see the figure on the left). In this poset, element 1 is 

minimum because it is strictly below all other elements of the poset. Element 36 

is maximum because it is strictly above all other elements. 
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However, consider the poset consisting of the integers 1 through 6 ordered by 
divisibility (see the figure on the right). In this poset, elemedt 1 is minimum, but 
there is no maximum element. 

4 

2 

It is possible to construct an example of a poset that has neither a maximum 
nor a minimum element (Exercise 54.3). 

An alternative concept of largest (or smallest) is presented in the next 
definition. 

Definition 54.2 (Maximal, minimal) Let P = (X,::::;) be a partially ordered set. An element 
x E X is called maximal if there is nob E X with x < b. 

Element x is called minimal if there is no a E X with a < x. 

In other words, x is maximal if there is no element strictly above x and 
minimal if there is no element strictly below it. In the poset consisting of the 
integers 1 through 6 ordered by divisibility (lower figure), elements 4, 5, and 6 are 
maximal, and element 1 is minimal. 

The concepts of maximum and minimum are similar to, but not the same as, 
those of minimal and maximal. Use the following chart to help you remember the 
definitions. 

Term Meaning 

maximum all other elements are below 
maximal no other element is above 

minimum all other elements are above 
minimal no other element is below 

It is also helpful to have an interpretation of not maximal and not minimal. 
Element x is not maximal if there is some other element y with y > x. Likewise, 
element x is not minimal if there is another element strictly below x. 

We have seen an example of a poset that has no maximum element; instead, it 
has three maximal elements. Is it possible for a poset to have no maximal elements? 
Yes! Consider the poset (Z, ::;)-the integers ordered by ordinary less than or equal 
to. This poset has no maximal and no minimal elements. However, finite posets 
must have maximal (and minimal) elements. 

Proposition 54.3 Let P = (X, :S) be a finite, nonempty poset. Then P has maximal and minimal 
elements. 

When we say that Pis finite and nonempty, we mean that X is a finite set and 
X=f:0. 



The value u (x) is called 

the up-degree of x. 

54 Exercises 

a b 
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Proof. Let x be any element of P. Let us write u (x) to stand for the number of 

elements of P that are strictly above x; that is, 

u (x) = I {a E X : a > x} 1. 

Because Pis finite, u(x) is a natural number (i.e., is finite). 

Choose an element m such that u(m) is as small as possible (since P is 

nonempty, there must be such an element). We claim that m is a maximal element 

of P. 
Suppose, for the sake of contradiction, that m is not maximal. This means 

that there is an element a with m < a. By transitivity, every element that is 

strictly above a is also strictly above m. Furthermore, a is strictly above m, so 

u(m) ;::: u(a) + 1, so u(m) > u(a). However, m was selected to have smallest 

up-degree.=*{= Therefore m is maximal. 

A similar argument shows that every finite, nonempty poset has a minimal 

element. • 

Recap 

We introduced the concepts of maximum, maximal, minimum, and minimal ele­

ments in a poset. We proved that every finite, nonempty poset must have maximal 

and minimal elements. 

54.1. Let P be the poset in the figure. Determine which elements are maximal, 

maximum, minimal, and minimum. 

54.2. For each of the following partially ordered sets, determine which elements 

are maximum, maximal, minimum, and minimal. 

a. The integers {1, 2, 3, 4, 5} ordered by ordinary less than or equal to, :::=. 

b. The integers {1, 2, 3, 4, 5} ordered by divisibility, 1. 

c. (2P·2•3}, s;), that is, the set of all subsets of { 1, 2, 3} ordered by is-a­

subset-of (see Example 53.4). 

d. Let X = {n E Z : n ;::: 2}. Let P = (X, I); that is, P is the poset of all 

integers that are greater than 1, ordered by divisibility. 

e. Let X be the set of all people who are currently living. Form a partial 

order on X with a < b provided a is a descendant of b. (In other words, 

a is the child, grandchild, or great grandchild, etc. of b.) 

54.3. Find a poset that has neither a maximum nor a minimum element. 

54.4. Prove or disprove each of the following statements. 

a. If a poset has a maximum element, then it must be unique. 

b. It is possible for a poset to have an element that is both maximum and 

minimum. 
c. It is possible for a poset to have an element that is both maximal and 

minimal but is neither maximum nor minimum. 

d. If a poset has exactly one maximal element, then it must be a maximum. 

e. If x is a minimal element in a poset and y is a maximal element in a 

poset, then x :::= y. 

f. If x andy are incomparable, then neither is a minimum. 

g. Distinct (i.e., unequal) maximal elements must be incomparable. 
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54.5. Let P be a finite, nonempty poset. We know (Proposition 54.3) that P 
must have a minimal and a maximal element. Prove the 1ollowing stronger 
statement. 

Let P be a finite, nonempty poset. Prove that P must contain a minimal 
element x and a maximal element y with x :::; y. 

55 Linear Orders 
Partially ordered sets can contain incomparable elements. This feature makes the 
order relation :::; partial: Only some of the elements can be compared using:::;. 

There are two ways we can think about incomparable elements: On the one hand, it may 
not make sense to say which is "bigger" for a given pair of objects. For example, in terms 
of divisibility, we cannot compare 10 and 12: Neither is a divisor of the other. Another 
example comes from psychology in the study of preference. We may be able to say that 
we prefer going to the movies to going to the dentist, but there may be pairs of activities 
(say. movie-going versus eating a candy bar) where we might not have a clear preference. 

On the other hand. two objects may be incomparable because we cannot determine 
which is larger. We might want to rank-order sports teams, and at some point we might 
ask. "Which team is better: the Baltimore Orioles (baseball) or the Baltimore Ravens 
(American football)?" A reasonable answer is that they cannot be compared because 
they play different sports. Or we might not be able to compare some objects simply 
because we do not have enough information. 

In this section, we consider total (or linear) orders: These are partially ordered 
sets that do not have incomparable elements. 

Definition 55.1 (Total/linear order) Let P = (X,:::;) be a partially ordered set. We call P a total 
or linear order provided P does not contain incomparable elements. 

For example, (Z, :S) is a total order. 
If x and y are elements of a total order, then we must have either x :::; y or 

y :::; x. Another way to state this is that total orders satisfy the trichotomy rule: For 
all x and y in the poset, exactly one of the following is true: 

X< y, 

x = y,or 
X> y. 

Example 55.2 Let P be the poset ({1, 2, 3, 4, 5}, ::;)-that is, the integers 1 through 5 ordered 
by ordinary less than or equal to. This is a total order whose Hasse diagram looks 
like this: 



Definition 55.3 

Compare this definition 

with the definitions of 

group isomorphism 

(Definition 40.1) and 

graph isomorphism 

(Exercise 46.18). 

Theorem 55.4 
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Let Q be the partially ordered set consisting of the positive divisors of 81 

ordered by divisibility. In other words, the elements of Q are 1, 3, 9, 27, and 81, 

and they are totally ordered 11319127181. Notice that this poset has the same Hasse 

digram asP. 

This example is interesting because we have two different total orders that, in 

essence, are "the same." A few moments thinking and doodling might convince 

you that all total orders on five elements are "the same." This is correct. Let us 

pause to consider the precise meaning of "the same." The proper term is that these 

posets are isomorphic. 

(Isomorphism ofposets) Let P = (X,:::;) and Q = (Y, s') be posets. A function 

f : X --+ Y is called a (poset) isomorphism provided f is a bijection and 

Va, bE X, as b {::::::} f(a) ::::' f(b). 

In the case when there is an isomorphism from P to Q, we say that P is isomorphic 

to Q and we write P ~ Q. 

The condition 

a s b {::::::} f(a) ::::' f(b) 

means that the function f is order-preserving; that is, whatever order relation holds 

between a and b in P, we must have the corresponding relation between f (a) and 

f(b) in Q (see Exercise 55.4). 

We now show that any two finite total orders with the same number of elements 

are isomorphic. We do this by showing that they are isomorphic to a common 

reference poset. 

Let P = (X, ::::;) be a finite total order containing n elements. Let Q = 

({1, 2, ... , n}, s) (the integers 1 through n in their standard order). Then P ~ Q. 

Proof. The proof is by induction on n. The basis case n = 0 is trivial (as is the 

basis case n = 1 in case you dislike empty posets). 

We assume that the result is true for n = k and suppose P = (X, ::::;) is a total 

order on k + 1 elements. Let Q = ({1, 2, ... , k + 1}, s). We must show that Pis 

isomorphic to Q. 
By Proposition 54.3, we know that P has a maximal element x. Let P' be the 

poset P - x, the poset formed by deleting x from P (see Exercise 53.11). Let Q' 

be the poset ({1, 2, ... , k}, s). 

By induction, P' is isomorphic to Q' so we can find an order-preserving 

bijection f' between their ground sets. 

We define f : X --+ { 1, 2, ... , k + 1} by 

f (a) = { f' (a) if a =1- x , 
k+1 ifa=x. 

We must show that f is a bijection and is order-preserving. 
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Note that this is the first 
(and only) place in the 

proof where we use the 

fact that P is a total order. 

To show that f is a bijection, we first check that f is one-to-one. Suppose 
f(a) = f(b). ~ 

• If neither a nor b equals x, then f(a) = f'(a) and f(b) = f'(b), so f'(a) = 
f'(b). Since f' is one-to-one, we have a= b. 

• If both a and b are x, then clearly a = b. 
• Finally, note that if f(a) = f(b), it is impossible for one of a orb to be x 

and the other one not x; in this case, one of f (a) or f (b) evaluates to k + 1 
and the other does not. 

Therefore f is one-to-one. 
Next we check that f is onto. Let bE {1, 2, ... , k + 1}, the ground set of Q. 

• If b = k + 1, then note that f(x) =b. 
• If b # k + 1, then (since f' is onto {1, ... , k}) we can find a EX- {x} with 

f'(a) =b. But then f(a) = f'(a) =bas required. 

Thus f is onto. 
Therefore f is a bijection. 
Next we need to show that f is order-preserving; that is, for all a, b E X, 

a ::5 b ~ f(a) :S f(b). 

(:::}) Suppose a, b E X and a ::::; b. We must show that f(a) :=: f(b). 

• If neither a nor b is equal to x, then f(a) = f'(a) and f(b) = f'(b). Since 
f'(a)::: f'(b) (because f' is order-preserving), we have f(a)::: f(b). 

• If both a and b equal x, then f(a) = f(b) = k + 1, so clearly f(a)::: f(b). 
• If a# x andb = x, then f(a) = f'(a) ::: k < k+ 1 = f(b), so f(a) ::: f(b). 
• Finally, we cannot have a = x and b # x because that would give x -< b, and 

x is maximal in P. 

Thus, in all possible cases, we have a ::::; b :::} f(a) ::: f(b). 
({=)Suppose f(a) ::: f(b). We must show that a ::::; b. 

If neither a nor b is x, then f(a) = f'(a) and f(b) = f'(b). Thus f'(a) ::::; 
f' (b) and so a ::::; b (because f' is order-preserving). 
If both a and b are x, then a ::::; b. 
Note that we cannot have a = x and b # x because then k + 1 = f(a) ::::; 
f(b) ::: k, which is a contradiction. 
Thus the only remaining case is a # x and b = x. Since b = x is maximal, 
we know that a >f b. Since Pis a total order, we must have a ::::; b. 

Thus, in all cases, we have a ::::; b. 
Therefore f is an order-preserving bijection between P and Q, and therefore 

f is an isomorphism, and P and Q are isomorphic. • 

Recap 

We defined the notions of total (linear) orders and isomorphism of posets. We 
showed that any two finite total orders on n elements must be isomorphic; indeed, 
they are isomorphic to the poset ( { 1, 2, ... , n}, :S). 
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55 Exercises 55.1. What is the width of a nonempty total order? 
55.2. Let n be a positive integer. 

a. How many different (unequal) linear orders can be formed on the ele­
ments {1, 2, ... , n}? 

b. How many different (nonisomorphic) linear orders can be formed on the 
elements {1, 2, ... , n}? 

55.3. Prove that a minimal element of a total order is a minimum element. (Like­
wise, a maximal element of a total order is maximum.) 

55.4. Suppose f is an isomorphism between posets P and Q, and let x and y be 
elements of P. Prove that x and y are incomparable (in P) if and only if 
f(x) and f(y) are incomparable (in Q). 

55.5. Let P and Q be isomorphic posets and let f be an isomorphism. Let x be 
an element of the ground set of P. Please prove: 
a. x is minimum in P iff f (x) is minimum in Q. 
b. xis maximum in P iff f(x) is maximum in Q. 
c. x is minimal in P iff f (x) is minimal in Q. 
d. x is maximal in P iff f (x) is maximal in Q. 

55.6. Prove that (N, .S) and (Z, s) are not isomorphic. 
Note: This exercise shows that infinite total orders need not be iso­

morphic; there can be no analogue to Theorem 55.4 if the posets are not 
finite. Furthermore, these two posets have the same size (transfinite cardi­
nality): ~0 . 

56 Linear Extensions 
There are two ways to think about a partially ordered set. On the one hand, there 
may truly be incomparabilities among the elements ofthe set-we cannot compare 
8 and 11 with respect to divisibility. On the other hand, we can think of a partially 
ordered set as representing partial information about an ordered set. 

For example, consider the poset in the left portion of the figure. We see that 
a is a minimum element, e is a maximum element, and we have a < b < c < e 

and a < d <e. However, dis-so far-incomparable to band c. We can imagine 
that we simply do not yet know the order relation between b and d (or c and d). 

e e e 

d c c 

c d b 

b b d 

a a a 

Given that elements {a, b, c, d, e} are partially ordered, we can ask: What lin­
ear orders are consistent with the partial ordering already given on these elements? 
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For consistency, we must have a below all the other element~ and e above all the 

other elements. We also must have b < c. The figure on the tight shows the three 

possibilities: d might be above both b and c, d might be between b and c, or d 

might be below both b and c. The three linear orderings on the right are called 

linear extensions of the poset. 

Definition 56.1 (Linear extension) Let P = (X, :S) be a partially ordered set. A linear extension 

of Pis a linear order L = (X,:::=:) with the property that 

'Vx, y EX, X :S y ===}X ::::: y. 

It is important to notice three things about a linear extension L of a poset P: 

• The posets P and L have the same ground set, X. That is, they are both partial 

orders on the same set of elements. 
• The poset L is a linear (total) order. 
• The poset L is an extension of P. This means that if x ::::; y in P (if x and y 

are related in P), then x :::=: y (then they must also be related in L). 

No claim is made about incomparable elements of P. If x and y are 

incomparable in P, we might have either x < y or x > y in L. (We cannot 

have x andy incomparable in L because Lis a total order.) 

The condition x ::::; y => x :::=: y can be written in the following interesting 

way: 

Remember: The relations :::; and :::=: are relations and, as such, are sets of ordered 

pairs. The condition"::::; s; :::=:"means "if (x, y) E :::;, then (x, y) E :::=:,"which 

is more sensibly written "if x ::::; y, then x :::=: y ." 

Example 56.2 Let P = (X,:::=:) be an antichain containing n elements. Then all possible linear 

orders on those n elements are linear extensions of P. Thus there are n! possible 

linear extensions of P. 

We now consider the following problem: Does every poset have a linear 

extension? We prove that every finite poset has a linear extension. We actually 

prove a stronger result. 
If P is a linear order, then it is already its own linear extension. Otherwise, 

suppose x and y are incomparable in a finite poset P. Then we can find a linear 

extension Lin which x < y (and another linear extension L' in which y <' x). 

Theorem 56.3 Let P be a finite partially ordered set. Then P has a linear extension. Moreover, if 

x and y are incomparable elements of P, then there is a linear extension L of p 

in which x < y. 

Proof. Let P = (X, :S) where X is a finite set. If Pis a total order, then Pis its 

own linear extension. Henceforth, we assume P is not a total order. 
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Suppose x and y are incomparable elements of P. We define a new relation, 
~',on X as follows. The basic idea is to "add" the relation (x, y) to~. 

For example, consider the poset on the left in the figure. Notice that elements 
x and y are incomparable. We now wish to extend :::::; so that x is below y. 

X 

a 

X 

a 

We cannot simply add the pair (x, y) to ~ because the resulting relation might not 
be a partial order. In particular, since a ~ x, if we add the pair (x, y), we also need 
to add the pair (a, y). Thus we want:::::;' to do three things: 

:::::;'should extend~ (i.e., if u :::::; v then u ::::=;' v), 

(x, y) should be in :::::;' (i.e., x ::::=;' y ), and 
~' should be a partial order on X. 

To this end, we define ~' as follows. Let s, t E X. We have s :::::;' t provided 
either of the following conditions holds: 

(A) s ~tor 
(B) s ~ x and y ~ t. 

The poset on the right in the figure above shows the relation ~' formed from :::::; 
(on the left). 

Condition (A) guarantees that :::::;' extends :::::; : If two elements of P are related 
by ~. then they are also related by :::::;'. Condition (B) guarantees that x ::::=;' · y 
because we can take s = x and t = y in the definition; since x ~ x and y :::::; y, 
we have x ~' y. 

Now we check that~' is a partial order. To do this, we need to show that:::::;' 
is reflexive, antisymmetric, and transitive. 

~' is reflexive. 
Let a E X be any element of the poset P. Since a ~ a (because :::::; is 

reflexive), we have, by condition (A) a ::::=;' a. Therefore ::::_'is reflexive. 
:::::;' is antisymmetric. 

Suppose a ~' band b ~'a. We must prove that a = b. There are two 
possible ways we might have a ::::=;' b: either by condition (A) or by condition 
(B). Likewise there are two ways we might have b ::::=;' a. This gives four cases. 

- Suppose a ::::=;' b because a :::::; b (A), and b ~'a because b ~a (A). 
Since ~ is antisymmetric, and because we have a ~ b and b :5:. a, we 
have a= b. 
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- Suppose a ~~ b because a ~ b (A), and b ~~ a qecause b ~ x and 
y ~a (B). 

~ 

We claim this case cannot happen! Notice that we have y ~ a ~ b ::::; x, 
implying that y ~ x. However, x and y are incomparable in P .:::::}{= 
Therefore this case cannot arise. 

- Suppose a ~~ b because a ~ x andy ~ b (B), and b ~~a because b::::; a. 

This case is just like the previous case and cannot occur. 
- Finally, suppose a ~~ b because a ~ x andy ~ b (B), and b ~~a because 

b ~ x andy ~ a (B). 
In this case, we have y ~ b ~ x, contradicting the fact that x and y are 
incomparable.:::}{= Therefore this case cannot occur. 

Therefore, in all possible cases, we have a ~~band b ~~a imply that a =b. 

Thus ~~ is antisymmetric. 
:::S 1 is transitive. 

Suppose a ~~ b and b ~~ c. We must show that a ~~ c. As in the 
demonstration of antisymmetry, there are two possible cases for a ~~ b and 
two possible cases for b :::S 1 c. This gives us four cases to consider. 

- Suppose a ~~ b because a ~ b (A), and b ~~ c because b ~ c (A). 
Then a ::::; c (since ~ is transitive) and so a ~~ c by (A). 

- Suppose a ~~ b because a ~ b (A), and b ~~ c because b ~ x and 
y ~ c (B). 
In this case, we have a ~ b ~ x, so a ~ x. We also have y ~ c, so a :::S 1 c 

by (B). 
- Suppose a :::S 1 b because a ~ x andy ~ b (B), and b ~~ c because 

b::::; c (A). 
In this case, we have y ~ b ~ c, soy ~ c. Since a ::::; x, we have a :::S 1 c 

by (B). 
- Finally, suppose a ~~ b because a ::::; x andy ::::; b (B), and b ~~ c because 

b::::; x andy ~ c (B). 
We claim this case cannot occur. Notice that we have y ~ b ~ x, and so 
y ~ x. However, x and y are incomparable.:::}{= Thus this case cannot 
occur. 

In all cases, have a ~~ c, and so ~~ is transitive. 

Therefore P 1 = (X, ~1) is a poset. It has the following properties. First, a ::::; b ===} 

a ~~ b for all a, b E X. Second, x ~~ y, but x and y are incomparable in P. 

Thus the number of pairs of elements related by ~~ is strictly greater than the 
number of pairs of elements related by ~. 

It is conceivable that ~~ is a linear order. In this case, P 1 is the desired linear 
extension of P. However, if P 1 is not a linear order, then it contains incomparable 
elements X

1 and y1
• We can extend ~~ to form ~~~ in precisely the same way as 

before. The relation~~~ will include all relations in~~ and will also have the relation 
xl ~~~ y~. 

In this way, we create a sequence of partial order relations each containing 
more pairs than the previous: ~, ~~, ~~~, ~"1 , •••• 

Because X is finite, this process cannot go on forever. Eventually, we will 
reach a relation in this sequence that is a total order. Let that relation be _:::::. Since 



A data record is a 
collection of data about 
one object. In a company's 
personnel database, one 
data record might include 
the employee's name, 
Social Security number, 
salary, phone number, age, 
etc. Each of these 
categories is called afield. 
The goal of a sorting 
algorithm is to arrange the 
records in the natural order 
of one of its fields (e.g., 
numerically by age). 

How does (;) compare to 
n 1og2 n? When n = 1000 
(a modest-sized collection 
of data), (;) is about 
500,000 and n 1og2 n is 

\ about 10,000, or about fri 
the size. 
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x ~' y, and all subsequent relations are extensions of~', we see that x ::::; y (see 
the figure). 

d 

e 

X(( c 

y 

a ~ y 
X b 

\ / b 
~ .. ,.,. 

X a 

a 

Thus we have constructed a linear extension of P in which x ::::; y. • 

Sorting 

The term sorting refers to the process of taking a collection of data and plac­
ing it in numerical or alphabetical order. For example, imagine a company with 
many employees. We can create various lists of the employees. A phone roster 
might list all employees alphabetically by name. The accountant might list all 
the employees numerically by Social Security number or by salary. The telecom­
munications department might want a list sorted by the employees' telephone 
numbers. And the security department might want a roster ordered by office 
number. 

There are a variety of techniques for sorting data. The typical methods involve 
making comparisons between the various data records and, from there, placing the 
records in their proper order. 

When such an algorithm begins, the computer has no information about the 
order of any of the records. It starts by comparing two records. Then it compares 
another pair of records, and then another, and then another, and so on. On the basis 
of these comparisons, the computer places the records in their proper order. 

The question we address here is: How many comparisons do we need to make 
in order to sort the data? 

For example, we could compare every record to every other. If there are n 

data records, this method takes (~) comparisons. But this does not mean that (~) 
comparisons are necessary. Indeed, there are a variety of sorting algorithms that 
require only n log2 n comparisons. 

We might wonder whether it is possible to develop a sorting algorithm that uses 
fewer than n log2 n comparisons. For example, a sorting algorithm might begin by 
checking whether the n records are already sorted. If they are, the algorithm is 
finished after only n - 1 comparisons (check record 1 against 2, then 2 against 3, 
etc.). However, such an algorithm is not guaranteed to complete its work with only 
n - 1 comparisons. We want to know: Is there a sorting algorithm that can sort n 

records with fewer than n log2 n comparisons in all cases? The answer is no. Here 
is the analysis. 
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The state of a sorting 

algorithm can be modeled 

as a partially ordered set. 
The elements of the poset 

correspond to the data 

records. The partial order 
contains all the order 
relations between the 
records that we have tested 
or that we can deduce from 

our tests. 

There is no reason to 
compare comparable 
elements because we 

already know their 
relative order. 

In the beginning (when the algorithm starts), the comput~r has no information 
on the order of the records. We can represent this state of knotvledge as a poset all 
of whose elements are incomparable to each other. The first thing the computer 
does is to compare two records to see which is larger. Then it compares another 
pair, and another, and so on. At each stage of the algorithm, the knowledge the 
computer has of the order of the record is partial. We can represent this information 
as a poset! At each stage of the sorting procedure, there is a poset P representing 
all we know about the relative order of the records. The linear extensions of P are 
all the possible ways the records might be sorted based on what we know so far. 

At the start of the algorithm, all n! linear extensions are feasible: We have 
no information (yet) about the order of the records, and so none of the n! linear 

extensions can be ruled out. 
At each stage of the algorithm, we have a poset P based on our partial knowl­

edge of the order, and all linear extensions of P are possible outcomes of the sorting 
algorithm. At the next step of the sorting algorithm, the computer compares two 
records x and y. These records correspond to incomparable elements of P. When 
we compare x and y, we may learn either that x < y or that x > y. If x < y, some 
of the linear extensions of P (those in which x < y) will remain feasible, and the 
others (those in which x > y) will become infeasible. Conversely, if x > y, then 
the situation is reversed-those linear extensions with x > y are feasible, and the 

others are not. 
In short, there are linear extensions of P with x < y and linear extensions with 

x > y; both are consistent with what we know so far. If P has k linear extensions, 
then there are at least k /2 possibilities with one order for x and y (and at most k 12 
with the other order). If we take a worst-case outlook, the comparison of x andy 
yields a new poset that still has at least k /2 linear extensions. 

In other words, each comparison in the sorting algorithm might rule out only 
half (or fewer) of the possible linear extensions. Since we begin with n! linear 
orders possible at the start of the algorithm, after c comparisons, there can still 
be n! /2c (or more) linear orders feasible. Note that if n! /2c > 1, then the sorting 
algorithm has not completed its work-there is more than one possible order, and 

so we do not yet know the actual order of the records. Thus the algorithm cannot 
be guaranteed to finish unless we have n! /2c ::S 1. 

We can solve the inequality n! /2c ::S 1 for c as follows. First, we rewrite the 
inequality as 

and take base-2logarithms of both sides to get 

c ::: log2 (n !) . 

Next, we substitute Stirling's formula (see Exercise 8.6) n! ~ ,J2iiii nne-n for the 
n ! term and we have 
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which, by the rules of logarithms, gives 

1 
c :=::: log2 ( ,J2;T) + 21og2 n + n log2 n- n log2 e. 

The dominant term in this expression is n log2 n. Indeed, we can write this as 

c :=::: n log2 n + 0 (n). 

[See Section 28 for an explanation of the O(n) term.] 

Since c is the number of comparisons we need to make in order to find the true 

order of the records, we see that we need n log2 n comparisons to sort the data. 

Linear Extensions of Infinite Posets 

We proved that every finite partially ordered set has a linear extension. We now 

consider the same issue for infinite posets: Must they have linear extensions as 

well? The bizarre answer to this question is yes and no. 

How is this possible? Surely the statement "Every poset has a linear extension" 

is either true or false-it can't be both! 
Recall the Pythagorean Theorem (Theorem 3.1). In Exercise 3.7, we noted 

that right triangles on the surface of a sphere do not observe the Pythagorean 

Theorem. This does not undermine the truth of the Pythagorean Theorem because 

right triangles on the surface of the sphere are not the sort of right triangles to 

which the Pythagorean Theorem applies. 
Thus the Pythagorean Theorem is true for some sorts of right triangles (the 

"real" right triangles in the plane) and not for others (the "fake" right triangles on 

the sphere). The Pythagorean Theorem is definitive once we are precise about the 

term right triangle. 
The situation for linear extensions of infinite posets is similar. The truth of the 

statement "Every poset has a linear extension" depends on the precise meaning of 

the word set. In this book, we have been deliberately vague about what a set is. We 

rely on our readers' intuition that a set is a "collection of things." It is not necessary, 

however, to work with a vague notion of sets. A branch of mathematics, known 

as set theory, directly addresses the issue of what is a set. Set theory provides the 

foundation for all of mathematics. 
Surprisingly, there is no single, unequivocal concept of set. In laying down 

the defining properties of sets, there are various conditions, called axioms, that we 

demand be satisfied by sets. For example, one axiom states that if X and Y are 

sets, then there is a set that contains all the elements in X and all the elements in 

Y. In essence, this axiom says that if X and Y are sets, so is X U Y. 

A more exotic axiom is known as the Axiom of Choice. There are a number 

of different ways to state this axiom. One way is as follows: Given a collection 

of pairwise disjoint sets, there is another set X that contains exactly one element 

from each set in the collection. 
If one accepts this axiom as part of the definition of set, then one can prove 

that every poset (finite or infinite) has a linear extension. However, if one denies 

the Axiom of Choice, then there are posets that do not have linear extensions. 
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Does this mean that the statement "Every poset has a linear extension" is both 

true and false? No. It is true or false depending on what vfe mean by set. The 

strange issue here is that there is more than one way to define set, and, depending 

on which definition you choose, different mathematical results follow. 
The Axiom of Choice is (mostly) a nonissue in discrete mathematics. Results 

about finite collections of finite sets do not depend upon it. Thus all of the theorems 

in this book are true irrespective of which concept of set we use. It is only when 
we consider infinite sets, or infinite collections of sets, that these issues come into 

play. 

Recap 

We proved that every finite partially ordered set has a linear extension. Indeed, 

we showed that if P contains incomparable elements x and y, then P has a linear 
extension in which x is below y and another linear extension in which x is above 

y. We then used linear extensions to discuss the number of comparisons necessary 
to sort n data records. Finally, we considered the issue of whether or not infinite 

posets have linear extensions and discussed the fact that the answer to this question 

depends on our fundamental notion of precisely what a set is. 

56 Exercises 56.1. Let P be the poset in the figure. Which, if any, of the following are linear 

a b 

extensions of P? 
a. a < b < c < d < e < f < g < h < i < j. 
b. b < a < e < g < d < c < f < j < i < h. 
c. a< c < f < j. 
d. a < b < c < e < f < h < i < j < h < g. 

56.2. Find the number of linear extensions of each of these three posets. 

(a) (b) (c) 

7 8 9 10 11 5 10 

2N4 4 9 

3 8 

I 3 2 7 

2 3 4 5 6 

56.3. Let P = (X, ::S) be a poset with incomparable elements x andy. Show that 
the relation -::;_' defined by 

-::::_' = ::S U {(x, y)} 

must be reflexive and antisymmetric. 
Give an example of a poset P = (X,-::;_) with incomparable elements x 

andy where-::;_' (as defined above) is not a partial order relation. 

scq 



Section 57 Dimension 469 

56.4. Let P = (X, :S) be a finite poset that is not a total order. Prove that P 

contains incomparable elements x and y such that 

::::' = :::: U { (x, y)} 

is a partial order relation. 

Such a pair of elements is called a critical pair. 

56.5. Find all critical pairs in the poset from Exercise 56.1 that include the 

element g. 

57 Dimension 

Realizers 

We return to the example at the beginning of the previous section. We examined 

the following partially ordered set and its linear extensions. 

e e e 

d c c 

c d b 

b b d 

a a a 

We make the following claim: The three linear extensions of the poset P contain 

enough information to reconstruct the poset. Consider elements b and c. Notice 

that b < c in all three linear extensions. By Theorem 56.3, this can happen only if 

b < c in P itself. On the other hand, consider elements b and d. In the first linear 

extension, we have b < d, but in the third, we have b > d. Were it the case that 

b < d in P, then we would have b < d in all linear extensions. So we can deduce 

that b and d are incomparable in P. 

We formalize these remarks as follows: 

Corollary 57.1 Let P be a finite partially ordered set, and let x andy be distinct elements of P. If 

x < y in all linear extensions of P, then x < y in P. Conversely, if x < y in one 

linear extension, but x > y in another, then x and y are incomparable in P. 

The proof is left to you (Exercise 57.2). 

This observation gives us a way to store a partially ordered set in a computer. 

We can save, as lists, the linear extensions of P. To see whether x < y in P, we 

simply check that x is below y in all of the linear extensions. 

However, some partially ordered sets have a large number oflinear extensions. 

For example, consider an antichain on ten elements (see Example 56.2). It contains 

10! (over 3 million) linear extensions. However, we do not need all 10! linear 
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Definition 57.2 

Another way to express 
Corollary 57.1 is as 
follows: Let P be a finite 
partially ordered set and 
let R be the set of all 
linear extensions of P. 
Then R is a realizer of P. 

Here the notation x ~; y 
means x ~yin L;. 

Proposition 57.3 

extensions to represent this antichain in our computer. Instead, we can use just the 
two linear orders: fc 

1 < 2 < 3 < 4 < 5 < 6 < 7 < 8 < 9 < 10, and 

10 < 9 < 8 < 7 < 6 < 5 < 4 < 3 < 2 < 1. 

Notice that for any two elements x andy of the antichain, we have x < yin one 
of the orders and x > y in the other. 

The same idea works for the five-element poset we considered earlier. We do 
not need all three of its linear extensions to serve as a representation. Consider just 
the first and third linear extensions: 

a < b < c < d < e and a < d < b < c < e. 

Notice that if x < y in the poset, then we have x < y in both of these linear 
extensions, but if x and y are incomparable (e.g., x = b and y = d), then we have 
x < y in one extension and x > y in another. So it is enough just to hold these 
two linear extensions in the computer. 

Let us be more precise. A set of linear extensions that captures all the infor­
mation in a poset is called a realizer, and this is the proper definition: 

(Realizer) Let P = (X, :::S) be a partially ordered set. Let R be a set of linear 
extensions of P. We call R a realizer of P, provided that for all x, y E X we have 
x ::::: y in P if and only if x ::::: y in all linear extensions in R. 

We say that R realizes P. 

If R = {L 1, L 2 , •.. , Lt} is a realizer for a poset P, then we know that x :::::; 
y {=:} x ::Si y for all i = 1, 2, ... , t. Half of this statement (the =} implication) 
always holds by virtue of the fact that the Li are linear extensions. If x :::=: yin P, 
then, because the Li are linear extensions of P, we must have x ::Si y for all i. 

The other implication (the {=: half) is the important feature. This says that 
if x i. y, then we do not have x ::Si y for all i. Of course, if y < x, this is 
obvious, for then we have y <i x for all i. The interesting case is when x and y 
are incomparable. Since x i. y, there is an i with x > i y. And since y 1:. x, there 
is a j with x <j y. 

We have the following: 

Let P be a poset and let R = { L 1, L 2 , ••. , Lt} be a set of linear extensions of P. 
Then R is a realizer of P if and only if for all pairs of incomparable elements of 
P, x andy, there are indices i and j so that x <i y and x > j y. 

We gave virtually the entire proof in the preceding discussion, and we leave 
it to you to write this out carefully (Exercise 57.3). 

-
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Example 57.4 Let P be the poset whose Hasse diagram is shown here: 

x d e f 

·~ 
a h c 

Let L 1, L 2 , and L 3 be the following linear extensions of P: 

L1 : b < c < e < f <a< x < d, 

L2 : a < c < d < f < b < x < e, and 

L 3 : a < b < d < e < c < x < f. 

Let R = {L 1, L 2 , L3}. We claim that R is a realizer of P. 

Checking that R is a realizer for the poset in Example 57.4 is tedious. 

First, we need to make sure that all three L 1 are linear extensions of P (i.e., 

if u < v in P, then we must have u < v in all three L 1 ). Observe that a < x and 

a < d in all three Li. Then check that b < x and b < e in all three. Finally, note 

that c < x and c < f in all three. 

Second, we check that if u and v are incomparable in P, then u < v in one 

linear extension and u > v in another. There are several cases, but we can check 

these systematically as well. Consider first the incomparabilities among a, b, and 

c. Note that we have a < b in L3 and a > b in L 1 . The incomparabilities between 

a and c and between b and c are checked in the same way. 

We also see that d < e in L 2 and d > e in L 1• The other incomparabilities 

among {d, e, f} are checked in the same way. 

Next, x < din L1 and x > din L 2 . The other incomparabilities involving x 

are checked in the same manner. 
Finally, notice that a < e in L 2 and a > e in L 1• The incomparabilities a- f, 

b-d, b- f, c-d, and c-e are checked in a similar manner. 

Therefore R is a realizer. 

Dimension 

Let P be an antichain on ten elements. We can form a realizer of P using all 

10! linear extensions, and we can also form a realizer of P using just two linear 

extensions. Clearly the latter is more efficient (especially if we wish to use linear 

extensions to store a poset in a computer). 

It is not difficult to realize a poset when we use all its linear extensions. The 

tricky (and interesting) problem is to realize a poset with as few linear extensions 

as possible. For example, the poset at the beginning of this section (see the figure) 

can be realized using all three of its linear extensions or with just two. 

Can we realize this poset with just one linear extension? No. Because this 

poset has incomparable elements (call them x and y ), we n~ed at least two linear 
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extensions: one in which x < y and another in which x > y. This poset can be 
realized with two linear extensions, but no fewer. f' 

The technical terminlogy that applies here is that the poset has dimension 
equal to 2. 

Definition 57.5 (Dimension) Let P be a finite poset. The smallest size of a realizer of Pis called 
the dimension of P. The dimension of P is denoted dim P. 

An antichain on ten elements and the poset in the figure both have dimension 
equal to 2.· 

Recall the poset P from Example 57 .4. We showed that this poset has a realizer 
containing three linear extensions. Because P is not a linear order, it cannot be 
realized by a single linear extension. The question becomes: Can P be realized 
using just two linear extensions? We claim that it cannot. 

Suppose, for the sake of contradiction, that P (the poset in Example 57.4) 
can be realized with just two linear extensions L' and L". Consider the pairwise 
incomparable elements a, b, and c. By symmetry, and without loss of generality, 
we have a < b < c in L' and a > b > c in L". Since xis above all of a, b, and c, 
we also know that x is above them in L' and L". So far we have 

a<b<C<X 

c<b<a<x 

in L' and 

in L". 

Now consider element e. We know that e and x are incomparable, so e < x in 
one of L' or L" and e > x in the other. Since the situation is still symmetrical, 
we assume e > x in L' (so in L' we have a < b < c < x < e). In L" we know 
that e < x, but we also know that e > b (because e > bin P). So in L" we have 
c < b < e < x. The point is that in both L' and L" we have c < e, despite the 
fact that c and e are incomparable. Therefore { L', L"} is not a realizer for P, and 
so there can be no realizer of size 2. In Example 57 .4, we presented a realizer of 
size 3. Therefore dim P = 3. 

Here is another family of posets whose dimension we calculate: 

Example 57.6 (Standard example) Let n be an integer with n ~ 2 and let Pn denote the follow­
ing poset. The ground set of Pn consists of 2n elements: {a 1 , a2 , ... , an, b 1 , b2 , ••. , 

bn}. The only strict order relations in Pn are those of the form ai < b 1 where i f. j. 

The poset P4 is shown in the figure. 

G 
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Proposition 57.7 Let n be an integer with n 2: 2 and let Pn be the poset defined in Example 57.6. 

The dimension of Pn is n. 

The proof has two parts. First, we show that Pn has a realizer of size n. Second, 

we show that Pn cannot have a realizer with fewer than n linear extensions. 

Proof. Let i be an integer with 1 ::=:; i ::=:; n. Let L; be a linear order on the ground 

set of Pn of the following form: 

(other as) < b; <a; < (other bs). 

The "other as" means we place all aj (except a;) before b; in this linear order. 

Similarly, the "other bs" means we place all b j (except b;) after a;. We claim 

that regardless of how we arrange the "other as" and "other bs," L; is a linear 

extension of Pn. We just need to check that aj < bk whenever j =1- k. Indeed, we 

have a j < bk for all j and k except for j = k = i. Thus L; is a linear extension 

(for each i = 1 , 2, ... , n). 
Let R = { L 1 , L 2 , .•• , Ln}. We claim that R is a realizer for Pn. There are 

three types of incomparable pairs in Pn: two as, two bs, and a; -b; for some i. 

• Incomparable pairs of the form a; -a j: Notice that a; < a j in L j and a; > a j 

in L;. 

• Incomparable pairs of the form b;-b{ Notice that b; < bj in L; and b; > bj 

in Lj. 
• Incomparable pairs of the form a;-b;: Notice that a; > b; in L;, but a; < b; 

in any other Lk (k =1- i). 

Therefore R is a realizer of Pn. 
We now show that Pn cannot have a realizer with fewer than n linear extensions. 

Suppose, for the sake of contradiction, there is a realizer R of Pn with IRI < n. For 

each k (with 1 ::=:; k ::=:; n ), there must be a linear extension L E R in which ak > bk 

(because ak and bk are incomparable). There are n such incomparable pairs, but at 

most n - 1 linear extensions in R. Therefore (by the Pigeonhole Principle-see 

Section 24 ), there must be a linear extension L and two distinct indices i and j 

such that a; > b; and aj > bj in L. Since bj > a; and b; > bj in Pn, we must also 

have these relations in L. Thus in L we have 

which is impossible.=?-{= Therefore R is not a realizer of Pn, and so we cannot 

realize Pn with fewer than n linear extensions. 

Therefore dim Pn = n. • 

1 Embedding 

Hasse diagrams are helpful geometric representations for partially ordered sets. In 

this section, we consider an alternative geometric representation. 
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The symbol.!R" stands for 

n-dimensional space. 

b 
• 

a ---------------

Definition 57.8 

Example 57.9 

Every point in the plane can be represented by a pair. of real numbers: the 
(x, y)-coordinates of the point. This is why the plane is often referred to as IR.2• 

Likewise, every point in three-dimensional space can be described as an ordered 
triple: (x, y, z). We write IR.3 to stand for three-dimensional space. We do not 
need to stop at three dimensions. Four-dimensional space is simply the set of all 
points of the form (x, y, z, w) and we denote this set as IR.4 . In general IR_n stands 
for the set of all ordered n-tuples of real numbers and represents n-dimensional 
space. 

The goal of this section is to show the connection between the two uses 
(geometry and posets) of the word dimension. 

Let p and q be two points inn-dimensional space IR.n. We say that p dominates 
q provided each coordinate of p is greater than or equal to the corresponding 
coordinate of q. In other words, if the coordinates of p and q are 

P = (p1, P2, · · ·, Pn) 

q = (q1,q2, · · .,qn) 

then P1 2: q1, P2 2: q2, ... , Pn 2: qn. Let us write p ~ q in the case where p 
dominates q. We also write q ::S p, and we say that q is dominated by p. 

For example, suppose p and q are points in the plane. If p ~ q, then both of 
p's coordinates are at least as large as those of q. Thus q must lie to the "northeast" 
of P-In the figure, a is dominated by both band c (i.e., a ::S band a ::S c), but b 
and c are incomparable. 

(Embedding in IR.n) Let P = (X, :::;) be a poset and let n be a positive integer. 
An embedding of P in IR.n is a one-to-one function f : X ---+ IR.n such that x s y 
(in P) if and only if f(x) ::S f(y) (in IR.n). 

The following figure shows a poset on the left and an embedding in IR.2 on the right. 

The embedding is a ~---+ a, b ~---+ b, c ~---+ c, d ~---+ d, and e ~---+ e. Notice that 
the chain a < b < c < e corresponds to the sequence of points a, b, c, e where 
each point is to the northeast of the previous point. Also note that since b and d 
are incomparable, their points b and d are also incomparable in the dominance (::S) 
order_ 



1 

Theorem 57.10 

Equivalently, we know 

that L; is a finite linear 

order and thus that it is 

isomorphic to { 1, 2, ... , 

[X[} ordered by ordinary::=:: 

(see Theorem 55.4). The 

function h; is simply the 

poset isomorphism from 

L; to {1, 2, 3, ... , [X[}. 
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Let P be a finite poset and let n be a positive integer. Then P has a realizer of size 

n if and only if P embeds in IRn. Thus dim P is the least positive integer n such 

that P embeds in IRn. 

Proof. (==>) Suppose that P =(X, ::S) has a realizer of size n-say, R = 

{L 1, L 2, ... , L 11 }. For x E X, let hJx) denote the height of x in L,.; that is, 

hi (x) is the number of elements less than or equal to x in Li. Thus h; (x) = 1 if x 

is the least element of Li, hi (x) = 2 if it is next to bottom, and so on. 

Let f: P ~ IRn be defined by 

f(x) = (hr (x), hz(x), ... , hn (x)). 

Clearly f is one-to-one: If x =f. y, then h 1 (x) =f. h 1 (y) (because x and y are at 

different heights in L 1), and so f(x) =f. f(y). 

We must show that x ::: y (in P) iff .f(x) :::S f(y). 

• Suppose x ::: y in P. Then h; (x) ::: hJy) (because x ::: y in all the linear 

extensions, Li ). Hence f (x) is, coordinate by coordinate, less than or equal 

to f(y), and so f(x) :::S .f(y). 

• Suppose f(x) :::S .f(y). This means that hJx):::: h,.(y) for all i. Thus x:::: y 

in all linear extensions L;, and so (by definition of realizer) x ::: y in P. 

(-<=)Suppose P = (X, ::S) can beembeddediniRn. This means there is a one-to-one 

mapping/: X~ IR11 sothatforallx, y E Xwehavex :=:: y {====> f(x) :::S f(y). 

Let i be an integer with 1 ::: i ::: n. We define a linear extension L; on P 

as follows: Let fJx) be the ith coordinate of f(x). We form L; by arranging 

the elements of X in increasing order of .f,.. That is, we have x ::S; y provided 

Ji (x) s fi (y). This would give a total order on the elements X were it not for 

the annoying problem of elements with equal ith coordinate. We break such ties 

as follows: Suppose fi (x) = .f; (y) for some x =f. y. Since f is a one-to-one 

function, there must be some other coordinate j where fi (x) =f. fi (y). In this 

case, we declare the order of x and y in Li to be determined by lowest index j 

where /j(x) =f. J1(y) (see Example 57.11). 

We claim that L; is a linear extension of P. Clearly L; is a linear order. Suppose 

x < yin P. Then f(x) -< .f(y) and so fi(x) ::: fi(y). In case fi(x) = .f,.(y) 

and x < y, we note that for all j, j 1 (x) ::: f 1 (y) and for some indices j, the 

inequality is strict. Thus x < yin P implies x <; y, and soL; is a linear extension 

of P. 
Now we claim that R = {L 1, .•. , Ln} is a realizer. We must show that if x 

andy are incomparable, then there are indices i and j with x <; y and x > 1 y. 

Since f(x) is incomparable to .f(y) (by definition of embedding in IR11
), we know 

that there are indices i and j with .fi (x) < fi (y) and ! 1 (x) > .t1 (y), and this gives 

X < i y and X > j y. 
• 
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Example 57.11 Let P be the poset in the figure (left) and let a r--+ a, b r--+ bi;· ... , f r--+ f (on the 

right) be an embedding of P in JR/.2 . 

c e 

b d 

a 

I I I I I 
I I I I I 

3 --td-:--te--:--tf-
2 --~--~--~--~--~--

-~a-~-~--~-~--
I I lb I IC 

1 2 3 4 5 

For example, d is embedded at d = ( 1, 3). 
The two linear extensions we extract from this embedding are 

L1 : a < d < b < e < c < f 
L 2 : a < b < c < d < e < f. 

We found L 1 by sorting the six points by their first coordinate (and breaking ties 
using the second coordinate). Likewise we found L 2 by sorting the points by their 
second coordinate (and breaking ties using the first coordinate). 

Observe that R = {L 1, L2} is a realizer for P. 

Recap 

We introduced the notion of a realizer of a partially ordered set. We defined the 
dimension of a poset to be the size of a smallest realizer. We showed that the concept 
of a poset dimension is closely linked to the geometric concept of dimension by 
studying embeddings of posets in JR/.n. 

57 Exercises 57.1. Let P be the poset in the figure. 

57.2. 
57.3. 
57.4. 

a b 

57.5. 

a. Find d =dim P. 
b. Find a realizer of P containing d linear extensions. 
c. Give an embedding of P in JR!.d (either via a picture or by specifying 

coordinates). 
Prove Corollary 57 .1. 
Prove Proposition 57.3. 
Let P be a subposet of Q. This means that the elements of P are a subset of 
the elements of Q, and the relation between elements of P are exactly the 
same as their relation in Q (i.e., x s y in P iff x s y in Q). 

Prove that dim P s dim Q. 
Let n be an integer with n :=:: 3. A fence is a poset on 2n elements a0 , a 1, ••• , 

an-I, b0 , b1, •.. , bn_ 1 where the only strict relations are of the form ai < bi 
and ai < bi+ 1 (where subscript addition is modulo n, so an_ 1 < b0). The 
figure shows a fence with n = 5. 

Prove that fences have dimension equal to 3. 

.... 
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58 Lattices 
We have seen that subset(~), ordinary less than or equal to (:S), and divides (I) 

share three essential features: They are reflexive, antisymmetric, and transitive, 

and hence they are partial order relations. 

In this section, we show that the operations n (intersection), 1\ (Boolean and), 

and gcd (greatest common divisor) are similarly related. 

Meet and Join 

The usual way to define the intersection of two sets, A and B, is to say that A n B 

is the set of all elements that are in both A and B. Now consider the following 

challenge: Can we describe the intersection of two sets, A n B, without using the 

word element? 

Notice first that A n B is a subset of both A and B. Of course, there may be 

many sets X with X ~ A and X ~ B, so this does not uniquely specify A n B. 

However, among subsets of both A and B, we know that A n B is the "biggest." 

By this we mean that if X~ A and X s-;; B, then we must have X s-;; An B. 

Let's show this rigorously. 

Proposition 58.1 Let A and B be sets. Let Z be a set with the following properties: 

• Z s-;; A and Z s-;; B and 

• if X ~ A and X ~ B, then X s-;; Z. 

Then Z =An B. 

Proof. First, suppose x E Z. Since Z s-;; A, we have x E A. Likewise Z ~ B 

implies X E B. Therefore X E A n B. 

Second, suppose x E A n B. This means that x E A and x E B, and so 

X = {x} is a subset of both A and B. Therefore X = {x} is a subset of Z (by the 

second property). Thus x E Z. 

We have shown that X E z ~ X E A n B' and so z = A n B. • 

A similar result holds for the greatest common divisor of two positive integers. 

Proposition 58.2 Let a, b be positive integers. Let d be a positive integer with the following 

properties: 

. ? 

• dla and dJb, and 

• if e E N with eja and eJb, then ejd. 

Then d = gcd(a, b) . 

The proof is left for you (Exercise 58.4). 

These Propositions suggest an alternative way to define intersection and great­

est common divisor. We can define An B to be the largest set that is below both 
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A and B where largest and below are in terms of the subs.et (s;) partial order. 
Similarly, we can define gcd(a, b) to be the largest positive tnteger that is below 
both a and b where largest and below are in terms of the divisibility order (I). 

We extend these ideas to other posets. 

Definition 58.3 (Lower and upper bounds) Let P = (X, s) be a poset and let a, b E X. 

Definition 58.4 

Some authors abbreviate 
greatest/ower hound as 

glb and least upper hound 

as lub. 

We say that x E X is a lower bound for a and b provided x sa and x :s b. 
Similarly, we say that x E X is an upper bound for a and b provided a :s x 

and b :S x. 

The lower bound concept is an extension of the common divisor concept: Let 
a, b E N. In the poset (N, I), the lower bounds of a and b are precisely the common 
divisors of a and b. 

Next, we define the notions of greatest lower bound and least upper bound. 

(Greatest lower bound/least upper bound) Let P = (X, s) be a poset and let 
a,b EX. 

We say that x E X is a greatest lower bound for a and b provided ( 1) x is a 
lower bound for a and band (2) if y is lower bound for a and b, then y :s x. 

Similarly, we say that x E X is a least upper bound for a and b provided (1) x 

is an upper bound for a and b and (2) if y is an upper bound for a and b, then 
y::: X. 

Example 58.5 Let P be the following poset. 

• Consider elements 8 and 9. Notice that 1, 2, and 5 are upper bounds for 8 
and 9. Since 5 < 1 and 5 < 2, we have that 5 is the least upper bound of 8 
and 9. On the other hand, 8 and 9 have no lower bounds and consequently no 
greatest lower bound. 

• Elements 4 and 7 have 11 as their only lower bound; thus 11 is their greatest 
lower bound. Elements 4 and 7 have no upper bound and hence no least upper 
bound. 

• Elements 5 and 6 have 2 as the least (and only) upper bound. They have 
incomparable lower bounds 9 and 11, so they do not have a greatest lower 
bound. 

2Q 



Greatest lower bounds and 

least upper bounds, if they 

exist, are unique. 

Definition 58.6 

r: 
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• Elements 9 and 10 have no greatest lower bound and no least upper bound. 

• Elements 4 and 5 have 2 as their least upper bound and 8 as their greatest 

lower bound. 

If a pair of elements of a poset have a greatest lower bound, it must be unique. 

Suppose x andy are both greatest lower bounds of a and b. We have x .:::: y because 

y is greatest and we have y .:::: x because x is greatest. Therefore x = y. Likewise, 

if a and b have a least upper bound, it must be unique. 

There are alternative terms for least upper bound and greatest lower bound 

and a special notation for them as well. 

(Meet and join) Let P =(X,:::::) be a poset and let a, bE X. 

If a and b have a greatest lower bound, it is called the meet of a and b, and it 

is denoted a A b. 
If a and b have a least upper bound, it is called the join of a and b, and it is 

denoted a v b. 

We use the symbols A and v for the meet and join operations because A is 

an abstraction of nand vis an abstraction of U. Unfortunately, we have used the 

symbols A and v in two different ways. In Section 6 these symbols stand for the 

Boolean operations and and or. Here they stand for the poset operations meet and 

join. Fortunately, we can reach a peaceful resolution to this crisis. Consider the 

poset P whose ground set is {TRUE, FALSE}. We make the mathematical (as well 

as ethical) decision to place truth above falsehood; that is, we have FALSE < TRUE 

in this poset-see the figure. 
Notice that in this poset we have T A F = F because FALSE is the greatest 

(and only) lower bound for TRUE and FALSE. Indeed, all of the following are true: 

TAT=T TAF=F FAT=F FAF=F 

Tv T = T Tv F = T F v T = T F v F =F. 

Therefore the operations A and v on {T, F} are exactly the same whether we 

interpret them as and and or or as meet and join. 

Example 58.7 The results from Example 58.5 can be expressed as follows: 

8 A 9 is undefined and 8 v 9 = 5. 

• 4 A 7 = 11 and 4 v 7 is undefined. 

• 5 A 6 is undefined and 5 v 6 = 2. 
• Both 9 A 10 and 9 v 10 are undefined. 

• 4 A 5 = 8 and 4 v 5 = 2. 

Lattices 

Note that for some pairs of elements, meet or join might be undefined. However, in 

some posets, meet and join are defined for all pairs of elements. There is a special 

name for such posets. 
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Definition 58.8 (Lattice) Let P be a poset. We call P a lattice provided that, for all elements x 

andy of P, x A y and x v yare defined. 

Let us look at some examples of lattices. 

Example 58.9 Let P be the poset in the figure. The A and v operation tables are given as well. 

A a b c d e v a b c d e 

a a a a a a a a b c d e 

b a b b a b b b b c e e 
c a b c a c c c c c e e 
d a a a d d d d e e d e 

e a b c d e e e e e e e 

Since A and v are defined for every pair of elements, this poset is a lattice. 

Example 58.10 (Subsets of a set) Let A be a set and let P = (2A, s;); that is, Pis the poset of all 
subsets of A ordered by containment. In this poset we have, for all x, y E 2A, 

xAy=xny 

Therefore P is a lattice. 

and XV y =XU y. 

Example 58.11 (Natural numbers/positive integers ordered by divisibility) Consider the poset 
(N, I) (i.e., the set of natural numbers ordered by divisibility). Let x, y E N. Then 
x A y is the greatest common divisor of x and y, and x v y is their least common 
multiple. However, (N, I) is not a lattice because 0 A 0 = gcd(O, 0) is not defined. 

However, the poset (£+, I) is a lattice. Here z+ stands for the set of positive 

integers which we order by divisibility. In this case, A and v (gcd and Icm) are 
defined for all pairs of positive integers, and so (£+, I) is a lattice. 

Example 58.12 (Linear orders) Let P = (X,::_::) be a linear (total) order. Note that for any 
x,y EX, 

XA = . 
{

X if X ::_:: y 
y y If X 2::: y. 

aq 



Look at the !\ and v tables 

in Example 58.9, and look 

at the diagonal entries 

running from the upper left 

to the lower right. 
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We can rewrite this as x 1\ y = min{x, y} where min{x, y} stands for the smaller 

of x andy. 
Likewise x v y = max{x, y} (i.e., the larger ofthe pair). Thus all linear orders 

are lattices. 

What algebraic properties do 1\ and v exhibit? For example, it is easy to see 

that x 1\ x = x. Let us prove this. First, x is a lower bound of both x and x because 

x ,::: x and x ,::: x. Second, if y is any other lower bound of x and x, we have y ,::: x 

(because y is a lower bound!). Therefore x is the greatest lower bound of x and x. 

Likewise, x v x = x. 

Also, 1\ and v are commutative operations: x 1\ y = y 1\ x and x v y = y v x. 

The following result covers the significant algebraic properties exhibited by meet 

and join. 

Theorem 58.13 Let P =(X,,:::) be a lattice. For all x, y, z EX, the following hold: 

• X/\X=XVX=X. 

• x 1\ y = y 1\ x and x v y = y v x. (Commutative) 

(x 1\ y) 1\ z = x 1\ (y 1\ z) and (x v y) v z = x v (y v z). (Associative) 

• X 1\ y =X ~ XV y = y ~ X,::: y. 

Proof. The first property was shown earlier, and the second and fourth are easy 

to prove (we leave them for you). 

Here we prove that 1\ is associative. The proof that v is associative is similar. 

Let a = (x 1\ y) 1\ z and let b = x 1\ (y 1\ z). We must show that a = b. To 

this end, we first prove a ,::: b. 

Since a = (x 1\ y) 1\ z, we know that a is a lower bound for x 1\ y and for z. 

Thus a ,::: x 1\ y and a ,::: z. Since a ::: x 1\ y and since x 1\ y ::: x and x 1\ y ::: y, 

we have that a ,::: x and a ,::: y. Thus a is below x, y, and z. 

Symbolically, the argument of the preceding paragraph can be written as 

follows: 

a = (x 1\ y) 1\ z a,:::x/\y and a=:::z 

-U-
a ,::: x and a ::: y. 

Since a _::: y and a ,::: z, we see that a is a lower bound for y and z. Therefore 

a ,::: y 1\ z since y 1\ z is the greatest lower bound of y and z. 

Since a ::: x and a _::: y 1\ z, we see that a is a lower bound for x and y 1\ z. 

But b is the greatest lower bound for x andy 1\ z, so a ::: b. 

By an identical argument, we have b ,::: a, and so a = b-that is, (x 1\ y) 1\ z = 

x 1\ (y 1\ z). 
• 

1 Recap 

We introduced the concepts of lower bound, greatest lower bound, upper bound, 

and least upper bound. The greatest lower bound of two elements is called their meet 
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(A), and the least upper bound is called their join (v). Meet and join are abstract 
versions of intersection and union (and of gcd and lcm). Fina;ly, we presented the 
notion of a lattice and discussed some of the algebraic properties of meet and join. 

58 Exercises 58.1. Let P be the poset in the figure. Please calculate: 

a b 

a. a!\ b. 
b. a v b. 
c. c !\ i. 
d. c vi. 
e. e !\d. 
f. e v d. 
g. ( c !\ d) v g. 

h. c !\ ( d v g). 

Is this poset a lattice? 
58.2. Consider the poset (Z, :S) (ordinary less than or equal to). For x, y E Z, 

explain in simple terms what x !\ y and x v y are. 
58.3. Let P = (X, :S) be a lattice. Prove that P is a linear order if and only if 

{X !\ y, X V y} = {X, y} for all X, y E X. 

58.4. Prove Proposition 58.2. 
58.5. The following statement is false: Every lattice has a maximum element 

and a minimum element. Show, by presenting a counterexample, that this 
statement is false. However, by inserting one word into the statement, we 
can make it a true statement. Show how to repair the statement, and prove 
the true version. 

58.6. Let P = (X, :S) be a lattice and let m be an element of the lattice. Prove 
that m is maximum in P if and only if Vx E X, x v m = m if and only if 
'v'x EX, x !\ m = x. 

What is the analogous statement for a minimum element? 
58.7. In Theorem 11.3, we showed that U and n satisfy the distributive properties: 

AU (B n C) = (AU B) n (AU C), and 

An (B U C) = (An B) U (An C). 

These equations can be rewritten with!\ in place of nand v in place of U: 

a v (b !\c) = (a v b)!\ (a v c), and 

a!\ (b v c) = (a!\ b) v (a!\ c). 

Give an example of a lattice for which the distributive laws are false. 
58.8. Consider the following infinite poset P. The elements of P are various 

subsets of the plane. These subsets are (a) the entire plane itself, (b) all lines 
in the plane, (c) all single points in the plane, and (d) the empty set. The 
partial order is containment. This poset is a lattice. Explain, in geometric 
terms, the effect of the meet and join operations in this lattice. 

58.9. Let P be a lattice with minimum element band maximum element t. 
a. What is the identity element for !\? 

b. What is the identity element for v? 
c. Show, by means of an example, that elements of P need not have inverses 

for either !\ or v. 

-



For real numbers a < b, 

the interval [a, b] is the set 

of all real numbers 

between a and b inclusive. 

That is, [a, b] = {x E lR1: 

a_:::: x _:::: b}. 
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Chapter 10 Self Test 

1. Let P = ( { 1, 2, 3, ... , 20}, 1); that is, P is the poset whose elements are the 

integers from 1 to 20 ordered by divisibility. 

a. Draw a Hasse diagram of P. 

b. Find a largest chain in P. 

c. Find a largest antichain in P. 

d. Find the set of all maximal elements of P. 

e. Find the set of all minimal elements of P. 

f. Find the set of all maximum elements of P. 

g. Find the set of all minimum elements of P. 

2. Let C be a chain and A be an antichain of a poset P = (X,~). Prove that 

IC n AI~ 1. 
3. Let P = (X, ~) be a poset. Suppose there are chains C 1 and C2 in P such 

that X = C1 U C2 . Prove that the width of Pis at most 2. 

4. Let P = (X,~) be a poset. Prove that P is an antichain if and only if every 

element of X is both maximal and minimal. 

5. Let P = (X, ~) be a finite poset. We say that P is a weak order if we can 

partition X into disjoint antichains 

such that for all x E Ai andy E Aj, if i < j then x < y. One may think of 

the Ai s as "levels" in the weak order; two elements on the same level must be 

incomparable, but an element on a lower-numbered level must be less than an 

element on a higher-numbered level. 

a. Show that (finite) chains and antichains are weak orders. 

b. Prove that a poset is a weak order if and only if it does not contain the 

subposet shown in the figure. 

c. Suppose P = (X, ~) is a weak order in which X = A1 U · · · U Ah where 

all of the anti chains Ai have k elements. Thus X has hk elements in total. 

How many linear extensions does P have? 

d. Prove that if P is a weak order, then the dimension of P is at most 2. 

6. Let P = (X,~) be a poset. We say that P is an interval order provided we 

can assign to each element x E X a real interval [ax, hx] such that x < y 

in P if and only if the interval [ax, hx] is entirely to the left of [ay, b"] (i.e., 

hx < ay). Note that this implies that if x andy are incomparable, then [at, bJ 

and [ay, by] must overlap (have nonempty intersection). 

a. Show that finite chains and antichains are interval orders. 

b. Prove that weak orders are interval orders (see Problem 5 for the definition 

of a weak order). 

I 
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c. Show that the poset in the following figure is not an interval order. 
fc 

] [ 
d. Show that the poset in the following figure is an interval order, but the 

lengths of the intervals used to represent this poset cannot all be the same. 

7. Let P be the poset whose Hasse diagram is shown in the figure. 

How many linear extensions does P have? 
8. Let P be the poset whose Hasse diagram is shown in the figure. 

e 

d0f 
aH, 

Please do the following: 
a. List all pairs of elements that are incomparable in P. 

b. Find three linear extensions of P that form a realizer of P. 

Verify that your solution is correct by finding, for each incomparable pair 

{ x, y}, one extension in which x < y and another in which y < x. 

c. Prove that there can be no linear extension of P in which f < a and d < c. 

Prove that there can be no linear extension of P in which b < f and f < a. 

Prove that there can be no linear extension of P in which b < d and d < c. 
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Prove that there can be no linear extension of P in which e < b and b < d. 

Prove that there can be no linear extension of P in which e < b and b < f. 

d. In a realizer of P, there must be linear extensions in which f <a, d < c, 

b < d, e < b, and b < f. Show that no more than two of these can hold 

in a single linear extension. 
e. Show that dim P = 3; that is, show that P does not have a realizer of 

size 2. 
9. Let P = (X, :=::) be a lattice, and suppose that for all x, y E X, we have 

x 1\ y = x v y. Prove that P contains at most one element. 

10. Recall from Definition 53.5 and Example 53.6 that the set of all partitions of a 

given set, together with the refines relation, forms a poset. Please answer the 

following: 
a. Let P = {{1, 2, 3, 4}, {5, 6, 7, 8, 9}} and Q = {{1, 3, 5, 7, 9}, {2, 4, 6, 8}}. 

Calculate P 1\ Q and P v Q. 
b. Let P, Q, and R be partitions of ann-element set for which 

P = {XJ, X2, ... , Xp}, 

Q = {YJ, Y2 , ... , Yq}, and 

R = P 1\ Q = {Z1, Z2, ... , Zr }. 

Show that every Zk in R is of the form Xi n Y1. 

11. LetP =(X, :S)bealattice.Leta,x1,x2 , ... ,Xn E Xandsupposethata :=:X; 

for alll :=: i :S n. Prove that a:=: x1 1\ x 2 1\ · · · 1\ Xn. 

12. Let P = (X, :S) be a finite poset. Let a, b E X and define U(a, b) = {x E 

X : a :=:: x and a :=: y}; that is, U (a, b) is the set of all elements above both a 

and b. 
Prove the following: If a v b is defined and U (a, b) is nonempty with 

U(a, b)= {u1, Uz, ... , un}, then a V b = u1 1\ Uz 1\ · · · 1\ Un. 





Appendices 

A Lots of Hints and Comments; Some Answers 

1.1 Sorry, there is no hint for this problem; that Here is the full answer: 

would utterly defeat the purpose! Trust your- An integer x is called a perfect square 

self and keep thinking about this. You will provided there is an integer y such that 

succeed, and when you have the answer, you X= y2. 

will be absolutely sure you are right-you 2.7 Use the notation d(A, B) to denote the dis-

won't need the back of the book to tell you! tance between the points A and B. Deter-

2.1 To determine whether a ib is true, see if you mine a relation between d(A, B), d(B, C), 

can find an integer x such that ax =b. and d (A, C) that determines whether C is 

2.2 In the previous problem there are integers between A and B. 

a and b where bia is true but ~ is not an 2.8 For small numbers, the easiest thing to do 

integer. is simply write out all the possibilities. 

2.3 Read Definition 2.6 carefully. Check each For larger numbers, try to develop a bet-

number to see if it fulfills all the require- ter method. Try factoring the numbers into 

ments set forth in the definition. primes. Factoring and prime numbers are 

2.4 Your definition for~ (less than or equal to) discussed at length in Section 38. 

should look like this: 2.9 The answer to (a) is best found by start-

Let x andy be integers. We say that xis less 
ing with 2 and checking each number. You 

should find the answer fairly quickly. 

than or equal toy (written x ~ y) provided The hardest part for (b) is to write a 

subroutine to check whether, given integers 

where the ... represents a condition involv- a and b, alb is true. One way to do this is to 

ing x, y, and the natural numbers. calculate a I b and then round down to the 

Once you define ~' you may use this nearest integer giving the integer c. Then 

concept to define <, >, and 2:. check whether ac = b. Beware that this idea 

2.5 You need to do two things: works well when a and b are positive, and 

( 1) Explain why integers are rational that is sufficient for the problem at hand. 

numbers. You must explain why if x is an However, if you plan to use this subroutine 

integer, then you can find integers a and b in other projects, it is worth your while to 

such that x = ~. The integers a and b de- write a subroutine that will work correctly 

pend on x, and you can find simple values for any pair of integers a and b. 

for these. Beware not to choose b = 0. 3.1 An answer to (a) is: If x is an odd integer 

(2) Explain why some rational numbers and y is an even integer, then x y is an even 

are not integers. All that is required is that integer. 

you find a rational number that is not an Note that statement (d) is false. 

integer. 
1 

3.2 There are many possible correct answers. 

2.6 The number 169 is square. How would you For example, the statement "If (A) an ani-

convince someone this is true? You would mal is a cat, then (B) it is a mammal" is true, 

need to tell them about the number 13. 
487 
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but "If (B) an animal is a mammal, then (A) 
it is a cat" is false. 

Now create your own example. 

3.3 The statement "If A, then B" is true unless 
A is true and B is false. 

An "or" statement is true unless both 
conditions are false. This tells you when 
"(not A) or B" is true and when it is false. 
Compare to "If A, then B." 

3.6 To what kind of triangles does the 
Pythagorean Theorem apply? 

3. 7 To what kind of triangles does the 
Pythagorean Theorem apply? 

3.8 A distance is a number and lines are in­
finite. In your rewrite, use the term line 
segment. 

3.9 Check out guinea pig anatomy. 

3.10 Lemmas is one, and there is another. 

4.1 Here is a full answer: 
Converted to if-then form, the problem 

asks you to prove: If x andy are odd integers, 
then x + y is even. 

Proof. Let x and y be odd integers. By the 
definition of odd, there is an integer a such 
that x = 2a + 1. Likewise, there is an integer 
b such that y = 2b + 1. Therefore 

x + y = (2a + 1) + (2b + 1) 

= 2a + 2b + 2 

= 2(a + b + 1). 

Since a and b are integers, so is a + b + 1. 
Therefore, by the definition of divisible, 
x + y is divisible by 2. Therefore, by the 
definition of even, x + y is even. 

4.2 The first line of the proof is: Let x be an odd 
integer and let y be an eten integer. 

The last line of the proof is: Therefore 
x + y is odd. 

4.3 One line, in the middle of this proof, is 

xy = (2a)(2b) = 4ab = 2(2ab). 

4.5 (2a + 1)(2b + 1) = 2(2ab +a+ b)+ 1. 

4.6 It may be more work, but if you do Ex­
ercise 4.8 first, you can derive this as a 
corollary. 

4.7 See the previous hint. 

4.8 If you did the previous two problems without 
first doing this problem, you can use them 
to do this. 

4.10 ( ==}) Suppose x is odd .... Therefore x + 1 
is even. 

(-¢=:) Suppose x + 1 is even .... There­
fore x is odd. 

Algebraic trick: 2b- 1 = 2(b- 1) + 1. 

4.12 The smallest positive integer is 1, and a < b 
implies b - a > 0. Be sure you prove both 
halves of this if-and-only-if statement. 

4.13 2a + 1 =(a)+ (a+ 1). 

4.14 Construct a statement of the form "If A or 
B, then C" that is false, but "If A, then C" 
is true. 

4.15 Are we sure now that whenever A is true, so 
is B, and whenever B is true, so is A? 

5.1 Negative integers. 

5.3 Don't choose a to be a prime number. 

5.5 There is no very small value of n for which 
n2 + n + 41 is not prime. You have to taken 
to be modestly large. If you choose the cor­
rect n, you won't need to do any calculations 
to see that n2 + n + 41 is composite. 

6.1 (b) TRUE. (c) FALSE. 

6.3 Make a truth table for (x 1\ y) v (x 1\ -.y) and 
check that the column for x exactly matches 
the column for (x 1\ y) v (x 1\ -.y). 

6.4 Make a truth table for both and make sure 
they are the same. 

6.9 More than 1000. Try some smaller examples 
first. 

------
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6.10 Answer to (b): Take x = FALSE andy = 
TRUE. Then x --+ y evaluates to TRUE, 

whereas x *+ y evaluates to FALSE. 

6.11 To show that (a) is a tautology, we construct 

the following truth table. 

(x v y)v 

X y xvy XV --,y (x v --,y) 

T T T T T 
T F T T T 
F T T F T 
T F F T T 

6.12 Here is a truth table for part (a): 

XV XV (x v y)A 

X y y --,y -,X (x v --,y) A -,X 

T T T T F F 
T F T T F F 
F T T F T F 
F F F T T F 

6.13 ( =}) Suppose A is logically equivalent to B . 

. . . Therefore A *+ B is a tautology. 
( {=) Suppose A ++ B is a tautology. 

. . . Therefore A is logically equivalent to B. 

6.15 For(c)weshowxy_y = (xvy)A(-.(x/\y)) 

via the following truth table. 

(x v y)A 

X y x::{y xvy -,(X;\ y) (-,(X;\ y)) 

T T F T F F 
T F T T T T 
F T T T T T 
F F F F T F 

6.17 If necessary, you can write down all possible 
tables and find ways to express each. How­
ever, there is a mechanical way to convert an 

arbitrary binary Boolean operation using/\, 
v, and-.. 

7.1 2k. 

7.6 Try a smalJer version of this problem first. 

For instanc'e, show that there are 36 ways to 

place pairwise nonattacking rooks on a 3 x 3 
chess board. 

7.9 (a) 109 . (c) 59 . (e) 99 . 

7.10 Break this problem into 8 cases depending 
on the length of the name, and total your 

answer. 

7.13 The answer is 20 x 19 x 18 x · · · x 2 x 1. 

7.14 The answer is not (10 x 9 x · · · x 2 x 1)2
• 

8.1 Here is an answer to a question we didn't 

ask. There are 6! x 8! x 5! ways to place 
the books on the shelf if the French books 
must be to the left, the Russian books in the 
middle, and the Spanish books to the right. 

8.2 The point of this discussion is that the prod­
uct of a list containing just one number ought 

to be the number on the list. No actual mul­
tiplication takes place. 

8.3 Try to use the formula (nh = (n~~)! to cal­
culate (3)6. 

8.5 2100 = (24)25 = 1625. 

8.6 Approximate error is computed as 

approximate value- true value 

true value 

8.7 (a) 945; (b) 0. 

8.8 The answer is not 20 . 

8.9 The last two on this list work slightly differ­
ently from the others. 

8.10 n! = n x (n - 1)!. 

9.1 (a) {0, 3, 6, 9}. 
(f) { -10, 10, -20, 20, -50, 50, -100, 100}. 

9.2 (a) 21. 

9.3 (a) 2 E {1, 2, 3}. 
(b) { 2} s; { 1 ' 2, 3} . 
(c) {2} E {{1}, {2}, {3}}. 

9. 7 Let X E C = {X E Z : X 112}, SO X is a 
divisor of 12; i.e., 12 = xa for some inte­
ger a. Multiply both sides by 3 and we have 
36 = 3xa = (3a )x. Therefore x is a divisor 

of 36 and so x E D. Therefore C s; D. 

9.10 You need to find a triple (a, b, c) that is 

in one of the sets, but not the other. Since 

T s; P, you should try to find a Pythagorean 

triple (a, b, c) E P for which (a, b, c) ¢: T. 
As an extra hint: What can you say about 

the middle term of the triples (p, q, r) E T? 
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10.1 (a) Vx E Z, x is prime. 
(g) 'V X E Z, :J y E Z, X y = 1. 

10.2 (a) :Jx E Z, x is not prime. "There is an 
integer that is not prime." 

(g) :Jx E Z, Vy E Z, xy =f. 1. "There is 
an integer x such that no matter what 
integer we multiply x by, the answer is 
never 1." 

10.4 (a) False. (g) True. 

10.5 (a) :Jx E Z, x f:. 0: There is an integer that 
is not negative. 

(g) :Jx E Z, Vx E Z, x + y =f. 0: There is 
an integer x with the property that for 
any integer y, the sum of x and y is not 
zero. 

11.1 (b) {4,5}.(c) {1,2,3}.(e) {1,2,3,6,7}. 

11.5 This is false. Find a counterexample. 

11.7 This is true. Here is an outline for your proof: 
(=?)Suppose AU B =An B. We want 

to prove A= B. 
Suppose x EA .... Therefore x E B. 
Suppose x E B .... Therefore x EA. 

Therefore A = B. 
( {=) Suppose A = B. . .. Therefore 

AUB=AnB. • 
11.12 ({=)If A- B = 0, then if x E A, then x 

must also be in B (otherwise A- B wouldn't 
be empty), so A s; B. 

( =}) On the other hand, if A s; B, 
clearly there are no elements in A that are 
not in B, so A - B = 0. 

11.15 Use DeMorgan's Law from Boolean 
algebra. 

11.16 Most of these are false. Venn diagrams will 
help you figure out which are true and which 
are false. Then construct small counterex­
amples (for the false ones). 

11.18 One way to do this: Start with a standard 
Venn diagram with three circles (for sets A, 
B, and C) and then add a complicated shape 
for D. 

Note that there must be at least 16 re­
gions in the final figure. 

11.19 Let X = A U B. Apply Equation ( 4) to 
IX U Cl. You now have 

f' 

IAUBUCI = IXUCI = IXI+ICI-IXnq. 

Applywhatyouknowtofind lXI and IXnCI 
and substitute into the above equation to 
finish the proof. 

11.20 Be sure you have done Exercise 6.15. 

11.21 Union (U) is commutative. 

11.22 Be sure you have done Exercise 11.20 and 
use properties of the corresponding idea 
from Boolean algebra. 

11.24 Use the Multiplication Principle (Theo­
rem 7.2). 

11.25 Here is a template for a proof of part (a). 
To show that two sets are equal, we use 

Proof Template 5. 

Suppose first that x E A x (B U C). 
... Therefore x E (A x B) U (A x C). 

Suppose second that x E (A x B) U 
(Ax C) .... Therefore x E Ax (B U C). 

Therefore Ax (B U C)= (Ax B) U 

(A X C). • 

We expand this a little as follows. 

Suppose first that x E A x (B U C). 
This means x = (a, z) where a E A and 
z E B U C .. .. Therefore x E (A x B) U 

(A X C). 
Suppose second that x E (A x B) U 

(A x C). Thus either x E A x B or 
x E AxC .... Thereforex E Ax(BUC). 

Therefore Ax (B U C)= (Ax B) U 
(A X C). • 

And we can expand still further to give 
the following structure for you to complete. 

Suppose first that x E A x ( B U C). 
This means x = (a, z) where a E A and 
z E B U C. We have two cases: 
- If z E B, then .. . 
- If z E C, then .. . 

. . . Therefore x E (Ax B) U (Ax C). 
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Suppose second that x E (Ax B) U (Ax 

C). Thus either x E A x B or x E A x C. 

We have two cases: 
- If x E A x B, then .. . 
- If x E A x C, then .. . 

. . . Therefore x E A x (B U C). 

Therefore Ax (B U C)= (Ax B) U 

(A X C). • 

12.1 Use the following question: How many 

length-n lists can we form using the ele­

ments 0 and 1 (repetition allowed) in which 

the elements are not all zero? 

12.2 For the first part, the expression should sim­

plify to xn - 1. 
For the second part, let x = 2. 

12.3 For the first part, use the question "How 

many length-n lists can we form using the 

elements in { 1, 2, 3} in which the elements 

are not all 3?" 
For the second part, note that 99 + 1 = 

100, 999 + 1 = 1000, and so on. 

12.4 Create two patterns of dots. In the first pat­

tern, the dots are laid out in a rectanglular 

grid of a-brows and a+ b columns. Clearly 

this pattern has (a -b)(a +b) dots. Now find 

a rearrangement of the dots that clearly has 

a 2
- b2 dots. 

12.5 Do not use algebra! Give two different an­

swers to the question "How many length-2 

lists can we make from n elements?" 

13.1 (a) reflexive, symmetric, antisymmetric, 

transitive 
(b) irreflexive, anti symmetric 

13.2 (d) is true. Here is a proof: Suppose x R y. 

Then lx-yl ::::; 2. Note that lx-yl = ly-xl, 

so ly- xl ::::; 2. Therefore y R x. 

(f) is false. You should find three numbers 

a, b, and c with a R b, b R c, but a 1J c. 

13.3 (a) R- 1 = {(2, 1), (3, 2), (4, 3)}. 

(c) R-1 = {(x, y): x, y E Z, x-y = -1} 

or R- 1 = {(x, y): x, y E Z, y-x = 1}. 
1 

13.4 Remember that R, S, R- 1, and s- 1 are sets. 

13.5 This is false. Find a counterexample with 

A={l,2}. 

13.6 All proofs and counterexamples for this 

problem are quite short. For example, here 

is the proof that the "has-the-same-size-as" 

relation R is transitive . 
Let A, B, and C be finite sets of inte­

gers and suppose A R B and B R C. This 

means that IAI = IBI and IBI = ICI. There­

fore IAI = ICI and soAR C. Therefore R 

is transitive. 

13.7 For one part of this problem, Exercise 9.4 is 

useful. 

13.9 For part (b): Does this seem impossible? It 

isn't. Perhaps you are reasoning as follows: 

Let x E A. In order for R to be reflexive, 

we have to have x R x. In order for R to be 

irreflexive, we have to have x lJ x. We can't 

have it both ways (x either is or is not related 

to itself). 

The mistake in this reasoning is in the first 

sentence. 

13.10 Here is a proof template for this problem. 

( =}) Suppose R is symmetric. To show 

that R = R -J , we need to prove that the 

two sets, Rand R- 1 are the same. We use 

Proof Template 5. 
Suppose(x, y) E R .... (x, y) E R-1. 

Suppose (x, y) E R- 1 
• ••• (x, y) E 

R. Therefore R = R- 1
• 

(~) Suppose R = R- 1
• We must 

prove that R is symmetric. Suppose x R y. 

... Therefore y R x, so R is symmetric. 

• 
14.1 (a) Yes. (f) No. (g) Yes. 

14.2 Here is the proof for the first statement: 

Suppose x andy are both odd. By defi­

nition, we can find integers a and b such that 

x = 2a + 1 and y = 2b + 1. Now x - y = 

(2a + 1)- (2b + 1) = 2a- 2b = 2(a- b), 

so 21(x- y). Therefore x = y (mod 2). 

To prove that two sets are equal, use Proof 14.3 What is a - (-a)? 

Template 5. 14.4 Be sure you did Exercise 4.6. 
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14.5 (a) [1]={1,2}. 
(e) [you] is the set containing all people 

born on your birthday. 

14.6 You may use Proof Template 5 (the default 
manner to prove sets are equal), but you'll 
have an easier time if you apply Proposi­
tion 14.12. 

14.10 Here is a useful notation for this problem. 
Write [a]R for the equivalence class of R 
withrespecttotherelation Rand [a] 5 for the 
equivalence class with respect to S. That is, 

[a]R = {x E A: x R a} 

[a]s = {x E A: x Sa}. 

14.13 It is painful to write out an equivalence re- · 
lation as a full set of ordered pairs. For ex­
ample, consider the relation 

R = {(1, 1), (1, 2), (2, 1), (2, 2), 

(3, 3), (3, 4), (4, 3), (4, 4)}. 

It is simpler just to write out its equiva­
lence classes: { 1, 2} and {3, 4}. A convenient 
shorthand for this is just to write 12/34. 

15.1 Use the notation 1 j23 to stand for the parti­
tion {{1}, {2, 3}}, etc. 

The partitions of {1, 2, 3} are 1/2/3, 
1/23,2/13,3/12, and 123. 

There are 15 partitions of { 1, 2, 3, 4}. 

15.2 Answer to (d): 2!:!3!. 

15.5 Here is an outline for this proof. 
Part (1): Let [a] be an equivalence class 

p . 
of=. Prove that there IS a part P E P such 
that [a] = P (you will need to prove that 
two sets are equal here). 

Part(2):LetPbeapartofP,i.e. PEP. 
Prove there is an element a E A such that 
[a]= P. 

You have shown that every equivalence 

class of~ is a part of P and, conversely, that 

every part of P is an equivalence class of~-
15. 7 Imagine the 12 people are arranged around 

a clock face. In how many ways can you lo­
cate them around the clock? [Answer: 12!.] 
Of course, if everyone moves one position 
clockwise, the arrangement is equivalent. 

Develop an equivalence relation on the set 
of arrangements, and figure out the size of 
the equivalence classes. 

15.8 Be careful. It is easy to be off by a factor of 
2 in this problem. 

15.9 It's easy to be off by a factor of 2 in this 
problem as well. 

15.10 129260083694424883200000, but this is an 
awful way to report the answer. 

15.11 Imagine the 20 people first line up. In how 
many ways can this be done? [Answer: 20!.] 
The first 10 people on the line form a team, 
and the last 10 people on the line form the 
other team. Consider two line-ups equivalent 
if they result in the same two teams being 
formed. Count the size of the equivalence 
classes and figure out the number of classes. 
Note that if we switch all players on both 
teams, we have not really changed anything 
at all. 

Test your answer by considering the 
number of ways to divide 6 people into 
two teams of 3. The answer should be 
10: 123/456, 124/356, 125/346, 126/345, 
134/256, 135/246, 136/245, 145/236, 
146/235, and 156/234. 

15.16 Yes. Find the set A. 

16.1 The second answer is twice the first. 

16.4 The answer to (b) is (~~). 
16.5 The chart looks like this: 

{1, 2, 3} B {4, 5, 6, 7} 

{5, 6, 7} B {1, 2, 3, 4} 

16.6 For (b), consider the cases with zero, with 
one, and with two doubles separately. 

16.7 Warning: There's a little trap waiting for you. 
Be sure you don't step into it. 

16.9 Expand both G) and c:k) in terms of facto­
rials, and then use algebra to show they are 
equal. 

16.10 The question is "How many subsets does an 
n-element set have?" 

16.11 Expand (1 - l)n. 
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The equation means that the num­
ber of subsets of an n-element set with 
an even number of elements equals the 

number of subsets with an odd number of 
elements. 

16.15 Consider a set of 2n + 2 people with two 
weirdos. 

16.16 Stirling's formula is n! ~ y'2ir;inne-n. 

For the second part, note that 4n = 22n. 

16.17 Put everything over a common denominator 
and don't lose your courage. 

16.18 The question is "How many 3-element sub­
sets does {1, 2, 3, ... , n} have?" 

And consider, how many of those 3-

element subsets have largest element 3? 

... largest element 4? ... largest element n? 

16.21 Think of a classroom containing n girls and 
n boys. 

16.23 The answer is G). We can think of this la­
beling process as selecting the k elements 
of A that receive the "good" label (and the 

remainder are assigned "bad"). So there is a 

one-to-one correspondence between assign­

ing labels and selecting a k-element subset 

of A. 

16.24 (a) If in doubt, write out all the possibilities. 
There are not that many. 

(b) Note that 1 + 2 + 5 =I= 10, so there are 
not enough labels to go around. The an­
swer to this problem is a number, not 
the word "impossible." 

(d) Since there are no labels of Type 3 
available, this reduces to the pre vi­
ous problem; the answer is a binomial 
coefficient. 

(e) Changing the names of the labels 
doesn't change the number of ways to 
distribute them. 

16.25 For (a), think of the labeling process as pro­

ceeding in two stages. First we assign the 

labels of Type 1 (in how many ways?) and 

then we assign the labels of Type 2 (in how 

many ways1?). 
For (b), you may use (a) and expand 

the binomial coefficients into factorials, but 

there is a combinatorial proof. Place then el­
ements in a repetition-free list (in how many 
ways?). Then give the first a elements in the 

list Type 1 labels, the next b elements Type 2 

labels, and the last c elements Type 3 labels. 
Call two lists equivalent if they result in the 

same distribution of labels, and count the 

number of equivalence classes. 

16.26 The proof is similar to that of Theorem 16.8. 

16.27 Answer: e~). 

16.28 (a) 13 X 48. (d) 13 X (~) X 12 X (~). 

16.30 Write down the first six or seven rows of 

Pascal's triangle. In a different color, record 

next to each entry how many additions it 

takes to calculate that value. Notice that 
the 1 s on the ends of each row take 0 

calculations. 
Now, to compute an interior value, such 

as G), you calculate G=:) (that takes a cer­

tain number of additions) and ('1 ~ 1 ) (that 
takes a certain number of additions). Fi­

nally, to calculate G) you do one more 

calculation. 
Do you see a pattern? This will enable 

you to find the number of additions to com­

pute c3~0). 
17.1 For ( (~)): We list all six 2-element multi sets 

we can form with the elements in { 1, 2, 3}. 
They are (1, 1), (1, 2), (1, 3), (2, 2), (2, 3), 

(3, 3). 
Theorem 17.8 gives ((~)) = c+~- 1 ) = 

G)= 6. 
Give a similar answer for ((D). 

17.2 For((~)): **II, *1*1, *II*, 1**1, 1*1*, 
and II**· 

17.3 You can check your answers using the chart. 
The point of this problem is to verify the first 
row and the first column of the chart. 

17.4 (1,4,4,4). 

17.5 Convert to a binomial coefficient. 

17.6 You can resort to factorials if you must. 

Here's a better idea: *~I. 

17.8 This calls for a combinatorial proof. The 
question is "How many k-element multi sets 
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17.9 

18.1 

18.2 

18.3 

18.4 

can we form using the integers 1 through n ?" 
The first answer is (G)). The second answer 
depends on the multiplicity of element n in 
the multiset. 

This problem can also be solved by con­
version to binomial coefficients. 

This problem calls for a combinatorial proof. 
You must find a question that is answered 
by both the left- and right-hand sides of 
the equation. The question should be "How 
many k-element multisets can be formed us­
ing integers chosen from { 1, 2, ... , n} ?" 

The left-hand side of the equation is 
clearly one such answer. Try to figure out 
how the right-hand side is also an answer. · 
And to help you with that, answer the 
following: 

How many multi sets have size 10, 
with elements that are chosen from 
{ 1, 2, ... , 99}, whose largest element is 23? 

Answer: (C:)). 
Call the four groups of people A1, A 2 , A 3 , 

and A4. The problem gives you the sizes 
of these sets and their various intersections. 
You need to find IA 1 U A 2 U A 3 U A 4 1. 

This is true, so don't try to disprove it. Start 
from 

lA u B u Cl = IAI + IBI + ICI 
-lA n Bl- lA n Cl 

-IBn Cl + lA n B n Cl 

and cancel lA u B u Cl = lA I+ IBI + ICI. 
First count "bad" words and subtract from 
265 . 

Let B 1 denote the set of words whose 
first two letters are the same. Let B2 denote 
the set of words whose second two letters 
are the same. And so on. 

Figure out the sizes of the various in­
tersections and apply inclusion-exclusion. 

For (a), write 9n = [10 + (-l)]n. 
For (b), the combinatorial proof, you 

need the right question. Here is a good way 
to start your question: How many lists of 
length n can we make using the standard 
digits 0 through 9 in which ... ? 

19.1 

19.2 

19.4 

19.5 

19.8 

19.9 

19.10 

19.11 

20.1 

20.5 

20.6 

(a) If x 2 is not odd, thep x is not odd. 
(d) If a parallelogram is not a rhombus, then 

its diagonals are not perpendicular. 

Remember: --.--.B =B. 

(b) Let a and b be negative integers. Sup­
pose, for the sake of contradiction, that 
a + b is nonnegative. 

(d) Let p and q be primes for which p + q 
is also prime. Suppose, for the sake of 
contradiction, that neither p nor q is 
equal to 2. 

Your proof should begin as follows: 
Let x and x + 1 be consecutive integers. 

Suppose, for the sake of contradiction, that 
x and x + 1 are both even .... 

Suppose (A- B) n (B- A) -1- 0. This means 
there is an element x in both A- B and B- A. 

Argue from here to a contradiction. 

This is an if-and-only-if style theorem; be 
sure to prove both halves. Both halves can 
be proved by contrapositive. 

A direct proof here is possible. The point 
of this problem is to introduce the term 
converse. 

Answer for (a): We say that x is a smallest 

element of A provided (1) x E A and (2) if 
y E A, then x =::: y. 

First sentence for (b): Suppose, for the 
sake of contradiction, E contains a smallest 
element x. 

Comment for (c): This is quite obvious, 
but please write a careful proof by contradic­
tion using Proof Template 14. Here is a good 
start for your proof: "Let A be a subset of the 
integers with a smallest element. Suppose, 
for the sake of contradiction, A contains two 
distinct smallest elements a and b . .. " 

There is no such thing. 

It it helpful to use a computer to generate the 
first several Fibonacci numbers and the val­
ues of 1.6n, although a hand-held calculator 
will suffice. 

You should find that the inequality holds 
for all n :::=: 29. 

Here is a handy chart to get you started. 
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n Fn Fo + ··· + Fn 

0 1 1 
1 1 2 
2 2 4 
3 3 7 

4 5 12 
5 8 20 
6 13 33 
7 21 54 
8 34 88 
9 55 143 
10 89 232 

Compare the numbers in the third column 

to those in the second. 

20.8 Expressed as a theorem, you need to show: 

For every n E N, the nth row of Pascal's 

triangle is 

21.3 Here is a complete answer to (a). 

Proof. (by induction on n): 

Basis case n = 1. Both sides of the 

equation evaluate to 1, so the basis case is 

true. 
Induction hypothesis: Suppose the re­

sult is true when n = k. 
That is, we have 

1+4+7+·. ·+(3k-2) = k(
3
k2-

1
) (*). 

We want to show 

1 + 4 + 7 + ... + (3k - 2) + [3(k + 1) - 2] 
(k + 1)[3(k + 1) - 1] 

2 

Add 3(k + 1)- 2 = 3k + 1 to both sides of 

(*)to get 

1 + 4 + 7 + ... + (3k - 2) + (3k + 1) 

k(3k- 1) 
= + (3k + 1) 

2 

(3f2 
- k) + (6k + 2) 

2 

3k2 + 5k + 2 

2 

(k + 1)(3k + 2) 

2 

(k + 1)[3(k + 1)- 1] 

2 

For (c), notice that this is a fancy gen­

eralization of the fact that 999 = 1000 - 1. 

21.5 This fact is rather obvious. The point here is 

to get practice writing proofs by induction. 

Let n be the number of people on the line. 

In the basis case, n = 2. 

21.6 The proof is by induction on the number of 

disks. 

21.8 This is a full answer to (a). 
The next three terms of the sequence 

are a 4 = 31, a 5 = 63, and a6 = 127. 

To prove: a11 = 2n+l - 1. 
Basis case: When n = 0, we just need to 

notice that a0 = 1 = 2°+ 1 - 1 = 2 - 1, as 

required. 

Induction hypothesis: Suppose ak = 
2k+l - 1. 

We need to prove that ak+ 1 = 2(k+ll+I - 1. 

Notice that 

ak+1 = 2ak + I by definition 

= 2[2k+ 1 
- 1] + 1 by induction 

= 2k+2 
- 2 + 1 = 2k+2 

- 1 

as required. • 

21.9 Let a11 denote the number of possible solu­

tions. Find a recurrence relation for a11 • 

21.10 Use strong induction. If n is a Fibonacci 

number, there is nothing to prove. If n is 

not a Fibonacci number, let Fk be the largest 

Fibonacci number less than n. You will want 

to show that n- Fk < Fk. 

21.11 We use induction on n =last-first. 

The basis case is when n = 0. In this 

case, first equals last, so the program 

returns array [first], which is the only 

value under consideration. 

Induction hypothesis: Assume the result is 

true for all values of last-first that are 

less than n. 
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Suppose the program is called with 
last-first= n. Note that mid is between 

first and last, and we have mid < last, 

so, by induction, the line 

a= findMax(array,first,mid); 

sets the variable a to the largest value in 
the array from index first to index last. 

Also, mid+1 is greater than first, so, by 

induction, the line 

b = findMax(array,mid+1,last); 

sets b to the largest value in the array from 

index mid+1 to index last. 
Finally, the last two lines of the pro- · 

gram return the larger of a and b, which 
must be the largest value in the array from 

index first to index last. 

21.13 The point of this problem is that you should 

not be able to do this problem! The full, cor­

rect answer to this problem is "/give up!" 

In the proof in this book, we used the 

following induction hypothesis: 

Induction hypothesis 1: Every triangu­

lated polygon with at most k sides has at 
least two exterior triangles. 

Your job is to try to work from this 

induction hypothesis: 

Induction hypothesis 2: Every triangu­
lated polygon with at most k sides has at 

least one exterior triangle. 

Hypothesis 1 is easier to use because it 
gives you more leverage. This is known as 
induction loading. 

21.14 The proof is much like that of Theorem 21.2. 

21.15 Here are the first few lines of a proof to get 

you started. 
The basis case is 0. In this case we can 

write 0 as an empty sum. 
Let n be a positive integer and suppose 

the result has been shown for all natural 
numbers less than n. Let k be the largest 
natural number such that 2k :::::; n. (There are 

only finitely many natural numbers :::::; n and 

2° :::::; n; so k exists.) 

21.16 Here is the statement you need to prove: If A 

is a nonempty subset of~, then A contains 

a least element. 
To prove this by induction, consider the 

following alternative. Let A s; N. If n is a 

natural number in A, then A contains a least 
element. 

Now induct on n. We recommend strong 
induction. 

22.1 Here is a complete solution for (a): 

22.2 

22.3 

22.4 

ao = 1 (given) 

a1 = 2ao + 2 = 2 · 1 + 2 = 4 

a2 = 2a1 + 2 = 2 · 4 + 2 = 10 

a3 = 2a2 + 2 = 2 · 10 + 2 = 22 

a4 = 2a3 + 2 = 2 · 22 + 2 = 46 

as= 2a4 + 2 = 2 · 46 + 2 = 92. 

For the other parts, here is as: (b) 20, (c) 11, 
(d) 0, (e) 15, and (f) 16. 

(a) an 4(~)n. ag 211 j39 

2048/19683. 
(e) an = Jf3n + !· a9 = 186989. 
(h) an = 2 · 2n - 2. ag = 1022. 
(n) an= 5(-l)n- 6n(-l)n. a9 = 49. 

(o) an = ~(1 + y'3)n + ~(1 - J3)n. 
a9 = 12720. 

Here is a complete solution to (b). We write 

down the sequences an, ~an, ~ 2 an, and so 
on until we reach the all-zeros sequence: 

6 5 6 9 14 21 30 
-1 3 5 7 9 

2 2 2 2 2 
0 0 0 0 

We then use the first terms from each row 
and apply Theorem 22.17 to give 

a, =6(~) +H) C) +2(;) 
= 6 - n + n (n - 1) = n2 - 2n + 6. 

The difference operator applies to se­
quences, not to individual numbers. The 
notation (~a)n means the nth term of the 
sequence ~a; this is the intended meaning. 
The notation ~(an) is not defined since an 
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is a number and we have not assigned a 
meaning to ~ applied to a single number. 

22.5 Let k be a positive integer and let an = (~). 
We know that ~an = ~G) = c~ J. Re­
peating this, we see that ~jan = (k~ j) . So 
we have 

ao = (~) =0 

~ao = (k~ 1) =0 

~2ao = ( 0 ) 
k-2 

=0 

A k-1 
ll a0 = 

but ~ka0 = (~) = 1. 

22.6 We can express an in the form c1 r} + c2r2 
where r 1, r 2 are the roots of a quadratic 
equation. Find r1, r2 first. Then set up two 
equations and two unknowns to find c1, c2. 

22.8 Let an = F + 2t + · · · + nt. Note that 
~an = (n + l)t. Apply ~ another t + 1 
times. What do you get? Use Theorem 22.17 
to conclude that an can be written as a poly­
nomial expression. 

22.10 For example, when s = 3, we need 
to solve an = 3~an. Remember that 
~an = an+l- an, so what we really want to 
solve is an = 3(an+l- an), which can be re­
arranged to an+l = ~an. This recurrence is 
not quite in standard form but is equivalent 

4 to an = 3an-l· 

22.11 ~2an = an+2- 2an+l +an. 
22.13 (a) The answer is an = 3n- 2n + 1. 

(d) The form of the answer is an 
c15n + c2 + c3n. 

(e) The form of the answer is an = 
Ct3n + C2n3n + C3. 

(f) an is given by a quadratic polynomial. 

22.14 Here is a cqmplete solution to (a). From the 
recurrence relation an = 4an-l - an-2- 6an, 
we form the associated cubic equation 
x 3 - 4x2 + x + 6 = 0. This factors 

(x - 2)(x - 3)(x + 1) = 0; hence the 
roots are 2, 3, and -1. We therefore expect 
an tobeoftheformcl2n +c23n +c3(-1t. 

We now use the values for a0 , a1, and 
a2 to solve for c1, c2, c3: 

ao = 8 = c1 + c2 + c3 

a1 = 3 = 2c1 + 3c2 - c3 

a2 = 27 = 4ct + 9c2 + c3. 

This gives c1 = 1, c2 = 2, and c3 5. 
Therefore 

22.15 Implement this program in your favorite 
language. At the start of the procedure, add 
a debugging statement that prints out the 
argument. Something like this: 

print 'Calling get_term with argument ' n 

Now call get_ term(10) and see what hap­
pens. 

Note that to compute a0 or a1, only one 
call to get_ term is generated. To compute 
a2 , three calls are generated (the original call 
get_ term ( 2) plus the two embedded calls. 

To calculate a3 , get_term is 
called five times: once for the origi­
nal call get_term(3), and then it calls 
get_ term (2) (three calls to do that) and 
get_term(1) (one call for that). The first 
few values of bn are 1, 1, 3, 5, 9, 15, 25. 

22.16 For (a), use the recurrence to generate the 
values a1, a2, a3 , a4 , but don't perform the 
actual multiplications. 

The answer to (b) is an = 2*2"). 
For (c), write out the first several val­

ues. You will note that an does not exactly 
fit the pattern you should observe. It is fine 
to report your answer in the form 

{ 

1 if n = 0, 

an = a formula if n > 0. 

Part (d) also has the difficulty that a0 

does not fit the pattern of the subsequent 
terms. Try to find a second-order recurrence 



498 Appendices 

of the form an = s 1a 11 _ 1 + s2an-l that works 
once n ~ 3 and solve that. 

Part (e) is an unsolved problem. The 

values a 11 are called chaotic, and no reason­

able formula can be expected to exist. 

23.1 A complete answer to (a): f is a function, 

dom f = {1, 3}, and im f = {2, 4}. f is 
one-to-one and f- 1 = {(2, 1), (4, 3)}. 

23.2 There are 23 such functions, and none of 

them is one-to-one. 
One of the functions is { (1, 4), (2, 4), 

(3, 4)}; it is neither one-to-one nor onto. 

23.3 There are 32 such functions, and none of 

them is onto B. 
One of the functions is {(1, 3), (2, 3)}. 

It is neither one-to-one nor onto B. 

23.4 Here is a complete answer. 

Function One-to-one? Onto? 

{(1, 3), (2, 3)} no no 
{(1, 3), (2, 4)} yes yes 
{(1, 4), (2, 3)} yes yes 
{(1, 4), (2, 4)} no no 

23.7 In (a), there is no explicit set B to which 
the definition applies. In particular, every 

function f is onto if we think of B as being 

the image of f. 
In (b), the notation f : A ---+ B estab­

lishes a context for the phrase "f is onto." In 
this context, the issue is: Does im f equal B? 

23.9 Here is a complete answer to (a). 
First, f is one-to-one. Proof: We need 

to show that if f(a) = f(b), then a = b. 

So, suppose we have integers a, b with 

f(a) = f(b). By definition off, we have 
2a = 2b. Dividing both sides by 2 gives 

a =b. Therefore f is one-to-one. 
Second, f is not onto. Proof: We claim 

that 1 E Z, but there is no x E Z with 

f (x) = 1. Suppose, for the sake of con­
tradiction, there is an integer x such that 

f(x) = 1. Then 2x = 1, and sox = ~· 
However, ~ is not an integer, so there is no 

integer x with f (x) = 1. Therefore f is not 

onto. 

23.11 This problem requires sou to write three 
f 

proofs: 

1. If (a) and (b), then (c). 
2. If(a) and (c), then (b). 
3. If (b) and (c), then (a). 

To this end, Proposition 23.24 (the Pigeon­
hole Principle) is quite helpful. 

23.14 How many subsets of A have exactly k ele­
ments? 

23.15 See Exercises 16.24 and 16.25. 

24.1 How many different patterns of <s and >s 

are possible in a sequence of five distinct 
integers? 

24.3 Create six categories of integers based on 
their ones digits. Because there are seven 
integers in the set, two of these must be in 
the same category. 

24.4 Apply the Pigeonhole Principle by making 
pigeonholes in the square. 

24.5 Think about the parity of the coordinates. 

24.6 The number 9 should figure in your propo­
sition. 

24.7 Here is a length-nine sequence with no 
monotone subsequence of length four. 

321654987. 

Try to generalize this and use the 

Pigeonhole Principle in your proof that the 
sequence does not contain a monotone sub­

sequence of length n + 1. 

24.8 If the sequence has length n, then it has 
211 subsequences. Even for moderate val­
ues of n, it is highly inefficient to try to 
scan through all the sequences. Instead, 

use the labeling scheme in the proof of 
Theorem 24.3. 

25.1 (a) g o f = {(1, 1), (2, 1), (3, 1)} and 
f 0 g = {(2, 2), (3, 2), (4, 2)}; g 0 f f. 
fog. 

(c) go f = {(1, 1), (2, 5), (3, 3)} but fog 
is undefined. 

(h) (go f)(x) = x + 1 and (/ o g)(x) = 
x-1;gof-=/=-fog. 

25.8 What are the domain and image off o f- 1? 

-
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25.11 The answer to both is yes if the set, A, is 
finite. However, .... 

25.12 Part (a) was already dealt with in Exer­
cise 25.9. Part (b) is false; find a counterex­
ample. Part (c) is true; use Exercise 25.7. 

26.2 The answer to (a) is (1, 2, 4)(3, 6, 5). 

26.3 For n = 3 the answer is two: (1, 2, 3) and 
(1, 3, 2). For n = 4 the answer is six. 

26.4 This is a deranged problem. 

26.5 The answer to (a) is (1, 4, 7, 6, 9, 3, 2, 5, 8), 
and the answer to (b) is different. The 
answer to (d) is (1)(2, 5, 4, 3)(6, 9, 8, 7), 
although this may also be written 
(1)(5, 4, 3, 2)(9, 8, 7, 6). 

26.6 This is false. 

26.8 This was dealt with in a problem in Sec­
tion 25. 

26.11 Note that for any transposition r, we have 
r or= t. Therefore r-1 = r. 

To prove that two permutations are in­
verses of one another, just compose them 
and show that the answer must be t. 

26.14 We are given n o a = a. Composing on the 
right by a - 1 gives 

noa=a 

(no a) o a- 1 =a o a- 1 

n o (a o a- 1
) = L 

JTOL=l 

JT=L. 

26.16 The answer to (a) is that n 
(1, 2)(2, 3)(3, 4)(4, 5), it has four inver­
sions, and it is even. 

26.17 A big hint: Draw a left-to-right arrow pic­
ture of the permutation and its inverse, and 
count crossings. 

26.20 Imagine that the blank space carries the 
number 16. Then several moves of the puz­
zle result in a permutation of the numbers 1 
through 16. In particular, a single move of 
the Fifteen Puzzle is a transposition. 

27.1 Please note that 

Rgo = (1, 2, 3, 4), 

F H = (1, 2)(3, 4), and 

F\ = (1)(2, 4)(3). 

Now calculate (1, 2)(3, 4) o (1, 2, 3, 4). 

27.2 You should find four symmetries of a 
rectangle. 

27.4 There are six symmetries of an equilateral 
triangle. 

27.5 There are two symmetries. 

27.7 There are ten symmetries: an identity, four 
rotations, and five flips. 

27.8 The answer to (c): The difference is that the 
first 24 symmetries involve rotating the cube 
about. The second collection of 24 are the 
mirror images of the first 24. 

27.9 A rotation through an angle e can be repre­
sented by the matrix [ c?s e - sine J 

sme cose . 

28.1 For (b), expand 1.1 n using the Binomial 
Theorem: 

1.1 11 = (1 +0.1) 11 

=1/l+ 

G) 1"-1(0.1)1 + 

G) 1"-2(0.1)2 + ... 

and throw away the terms you don't need. 

28.2 (c) is false. For example, L0.7 + 0.8J = 

LL5J = 1, but L0.7 J + L0.8J = o + o = o. 
28.3 Here is a complete proof. 

Since f(n) is O(g(n)), there is a posi­
tive number A such that, with at most finitely 
many exceptions, 

lf(n)l :S Alg(n)!. 

Similarly, since g(n) is O(h(n)), there is a 
positive number B such that, with at most 
finitely many exceptions, 

!g(n)l :S Blh(n)!. 

Combining these two inequalities, we 
have, with at most finitely many exceptions, 

lf(n)l :S A!g(n)l :S ABih(n)i 

and so f(n) is O(h(n)). 
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28.5 

28.7 

28.8 

29.1 

29.3 

29.4 

29.5 

29.6 

29.7 

29.8 

29.9 

Use the identity 

loga n = (1ogb a) (loga n). 

The answer is either jx- ~ l or lx + ~J. 
The answer to this problem would be quite 
easy if you were allowed to use the mod 
function; it would be just n mod 10. 

X= 0.6. 

An outcome of this experiment can be 
recorded as (a, b) where a is either H or T 

(the result of the coin flip) and b is an integer 
with 1 ::::; b ::::; 6 (the up-face of the die). Thus 

S = {(H, 1), (H, 2), (H, 3), 

(H, 4), (H, 5), (H, 6), 

(T, 1), (T, 2), (T, 3), 

(T, 4), (T, 5), (T, 6)}. 

All of these 2 x 6 = 12 outcomes are equally 
likely, so P : S ---+ lR is given by P (s) = f2 
for every s E S. 

For (a): The sample space is (S, P) where 
S = {1, 2, 3, 4} and P(s) = ±for all s E S. 

A complete answer to (b): The set S 
consists of all 5-element subsets of the 
set {1, 2, ... , 20}. Thus lSI = C5°). All 
of these outcomes are equally likely, so 
P(s) = 1 / C5°) for all s E S. 

Here is the answer for region 3: P(3) = -ft. 
Explanation: The total area of the target 

(all four regions together) is 16n. The area 
of region 3 is 9n - 4n = 5n. So region 3 
covers -ft of the total area. 

Let S = {1, 2, 3} and let P(1) = 1, 
P(2) = 0, and P(3) = 0. 

LetS= {1} and let P(l) = 1. 
Note that if a sample space (S, P) has 

two (or more) elements, we cannot have 
P(s) = 1 for all s E S; if lSI > 1, then 

L P(s) = L 1 =lSI> 1 
sES sES 

which is forbidden. 

See the discussion "Much ado about 0!" in 
Section 8. 

30.1 

30.2 

30.5 

30.6 

30.9 

30.10 

30.11 

30.12 

Here is the answer fork ;= 4. We have A4 = 
{(1, 3), (2, 2), (3, 1)} and P(A4) = ft· 
A = {HHTT, HTHT, HTTH, THHT, THTH, 

TTHH}, and P(A) = -& = ~· 
Notice that IAI = (~) = 6. 

(a) A { HTHTHTHTHT, THTHTHTHTH}. 

(b) P(A) = 2/210 = 2-9 = 1/512. 

A= {(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)}. 

The set A contains 1 + 2+ 3 +4+ 5 outcomes. 

Call the boxes 1, 2, 3, ... , 10. The sample 
space S contains alllength-2 lists of boxes 
without repetition. So lSI = (lOh = 90. Let 
us assume box 1 is the least valuable, and 
so on up to box 10 being the most valuable. 
Now this problem is just like the previous 
problem. 

To compare dice 1 and 2 we make a chart. 
The rows of the chart are indexed by the 
numbers on die 1 and the columns by the 
numbers on die 2. We place a * for each 
combination where die 1 beats die 2. 

2 3 4 15 16 17 

5 * * * 
6 * * * 
7 * * * 
8 * * * 
9 * * * 

18 * * * * * * 
Notice that there are 21 ways in which 1 
beats 2, so the probability that die 1 beats 
die 2 is~ = i2. ~ 58.33%. 

Here is a complete answer to (b). There are 
13 choices for which value will be used in 
the triple, and for each such value, (~) = 4 
choices for which cards will be used in that 
triple. Given the choice of the triple, there 
are 12 choices for which value will be used 
in the pair. Given the value, there are (~) = 6 
choices for which cards we use in the pair. 
Thus, there are 13 x 4 x 12 x 6 = 3744 dif­
ferent full houses. Therefore, the probability 
of choosing a full house is 

3744 3744 6 
es2) = 2598960 = 4165 ~ O.l4%. 
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The approximate numerical answers for 
the other parts are as follows: 

(a) 2.11 %, (c) 42.26%, (d) 4.75%, and 
(e) 0.198%. 

30.13 By convention, an empty sum has value 0, 
so P(0) = 0. 

That P(S) = 1 follows from the defi­
nition of sample space. 

If AnB = 0, then P(AUB) = P(A)+ 

P(B)-P(AnB) = P(A)+P(B)-P(0) = 

P(A) + P(B). 

30.14 (a) ('2)/210 = 2
6i6 ~ 24.61%. 

(b) 27/210 = 2-3 = ~ = 12.5%. 

(c) G) /210 = 1 ~~4 ~ 2.05%. 
(d) By Proposition 30.7, the probability is 

Cso) 27 G) - 359 r-.J 

210 + 210 - 210 - 1024 r-.J 35.06%. 

30.15 This problem can get confusing, so it helps 
to have some good notation. Let A be the 
event that we see at least one 1, and let B 

be the event that we see at least one 2. The 
parts of this problem ask for the following: 
(a) P(A). 

(b) P(A) = 1- P(A). 

(c) P(B) (which is the same as P(A)). 

(d) P(A n B). Note that this is the same as 
P(A U B). 

(e) P(A U B) = 1 - P(A U B). 

(f) P(AnB) = P(A)+P(B)-P(AUB). 

30.16 Note that (An B) n (An B) = 0. Also note 
that (A n B) U (An B) = A. Therefore 

P(A) = P[(A n B) U (An B)] 

= P(A n B)+ P(A n B) - P(0) 

= P(A n B)+ P(A n B). 

30.17 Here is the proof. Note that 

P(A) = L P(s) and P(B) = L P(s). 
SEA sEB 

Since A ~ B, every term in the first sum is 
also present

1 
in the second. Since probabil­

ities are normegative, this implies that the 
second sum is at least as large as the first; 
that is, P(B) 2: P(A). • 

30.18 Use proof by contradiction. 

30.19 Use Proposition 30.8 and induction. 

30.20 P(A n A) = P(0) = 0. Interpretation: It 
is impossible for an event both to occur and 
not to occur. 

30.21 k =57. 

31.1 Complete answer to (a): P(AIB) = P(A n 
B)/ P(B) = P({2, 3})/ P({2, 3, 4}) = 
0.3/0.5 = 3/5 = 60%. 

31.2 Here is a complete answer. Let A be the 
event that neither die shows a 2, and 
let B be the event that they sum to 7. 

Note that P(B) = ~ = i· Furthermore, 
A n B = {(1, 6), (3, 4), (4, 3), (6, 1)}, so 

P(A n B) = ~ = ~· Thus P(AIB) = 
P(AnB) _ 1/9 _ 6 _ 2 
P(ij) - 176- 9- 3· 

31.3 This problem is not the same as the previous 
problem and has a different answer. In this 
problem you need to find P(BIA), whereas 
in the previous problem you found P(AIB). 

The answer is P(BIA) = -A· 
31.5 Nominally, you need to prove (I) {=::} (2), 

(1) {=::} (3), and (2) {=::} (3). However, 

it is enough to prove (1) ===> (2) ===> (3) ===> 

(1). Or simpler yet, just prove (1) {=::} (3) 

because (2) {=::} (3) has an identical 
proof. These two imply (1) {=::} (2). 

31.6 Disjoint events are not, in general, indepen­
dent. For example, consider the roll of a die. 
Let A be the event we roll an even number 
and let B be the event we roll an odd number. 

Then P(A n B)= 0 # P(A)P(B) = i· 
31.9 Two hints: First, A n B and A n B are dis­

joint events, so P(A n B) + P(A n B) = 
P[(A n B) U (An B)]. Second, (An B) U 
(An B) = An (B u B) by the distributive 
property. 

31.10 The answer is yes in both cases. Use the 
formulas P(AIB) = P(A n B)/ P(B) and 
P(BIA) = P(A n B)/ P(A) to show why. 

31.11 Yes. Suppose P(AIB) > 0. This says that 
P(A n B)/ P(B) > 0 so P(A n B) > 0. 
Since A n B ~ A, we have (see Exer­
cise 30.17) P(A):;:: P(A n B)> 0. • 
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31.12 For the equation to make sense, we need the 

fact that P(A) =j:. 0 (otherwise P(BIA) 

is undefined). This follows from Exer­

cise 30.17 because As; An B, so P(A) ~ 

P(A n B) > 0. Now just use the definition 
of conditional probability. 

31.13 (a) P(A) = H = ~· 
(b) P(B) = s1 = ~· 

(c) P(A n B)= -l2· 
(d) Yes, because P(A n B) = P(A)P(B). 

31.14 You need to calculate P(A), P(B), and 

P(AnB) andcheckif P(A)P(B) = P(An 
B). You should find that P(A n B) = 2~ 1 . 

31.15 In principle, you need to calculate P(A), 

P(B), and P(A n B) and check if 
P(A)P(B) = P(A n B). However, for 

this problem, notice that P(A n B) = 0, but 
P(A)P(B) =j:. 0. Therefore the events are 

not independent. 

31.17 Both statements are true. For (a) use Exer­

cise 30.16. For (b), use (a). 

31.19 All three are false! Here is a counterexam­

ple for (a). Suppose the sample space is the 
pair-of-dice sample space of Example 29 .4. 
Let the three events be as follows: 
- A, the dice sum to 2; i.e., A= {(1, 1)}, 

- B, the dice sum to 17; i.e., B = 0, and 

- C, the dice sum to 12; i.e., C = { (6, 6)}. 

Note that A and B are independent (be­
cause P(B) = O-see Exercise 31.18) and 

B and C are independent (again, because 

P(B) = 0). However, A and C are not 
independent because 

1 
P(A n C)= 0 =j:. 

362 
= P(A)P(C). 

31.20 s2 = {(1,1), (1,2), (1,3), (1,4), (2,1), (2,2), 
(2,3), (2,4), (3,1), (3,2), (3,3), (3,4), (4,1), 

(4,2), (4,3), (4,4)}. 
Their probabilities are as follows: 

1 
P[(l, 1)] = 4 

1 
P[(l, 3)] = 16 

1 
P[(l, 2)] = 8 

1 
P[(l' 4)] = 16 

1 
P[(2, 1)] = 8 

1 
P[(2, 3)] = 

32 
1 

P[(3, 1)] = 16 

1 
P[(3, 3)] = 

64 
1 

P[(4, 1)] = 
16 
1 

P[(4, 3)] = 
64 

1 
f-?[(2, 2)] = 16 

1 
P[(2, 4)] = 

32 
1 

P[(3, 2)] = -
32 

P[(3, 4)] = 6~ 
1 

P[(4, 2)] = 
32 

P[(4, 4)] = __.!:_ 
64 

31.21 Let A be the event that the two spins sum 

to 6. As a set, A = {(2, 4), (3, 3), (4, 2)}. 
Therefore 

11 11 11 5 
P(A) = 4 . 8 + 8 . 8 + 8 . 4 = 64. 

31.23 (a) A = {HHTTT, HTHTT,HTTHT, HTTTH, 

THHTT, THTHT,THTTH,TTHHT,TTHTH, 

TTTHH}. 

(b) P(A) = 10p2 (1- p) 3• 

31.24 The set A contains G) sequences, all of 
which have the same probability. 

31.25 Answer to (a): p(l- p). 

For (c), remember that P(AIA U B) 
P[An(AUB)] 

P(AUB) . 

31.26 Olivia. 

31.27 (a) ao = 0 and a2n = 1. 

(b) ak = pak+l +qak-1 (whereq = 1-p). 

(c) There is a formula for ak of the form 
ak = c1 + c2sk where c1, c2, and s are 
specific numbers and s =j:. 1. 
Use part (b) to finds and use part (a) to 
find c1, c2. 

32.1 Complete answer for (a): "X > 3" is the set 

{s E S: X(s) > 3} = {c, d} 

and P(X > 3) = 0.7. 
Guidance for (c): The event "X > Y" 

is the set {s E S: X(s) > Y(s)}. Which of 
a, b, c, and d are in this set? 

Hint for (f): Is it true that P(X = 
m 1\ Y = n) = P(X = m)P(Y = n) for all 
integers m and n? 

-
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32.2 Here is a complete solution. 
(a) Let (S, P) be the sample space for 

the spinner, so S = {1, 2, 3, 4}. Then 
X : S ---+ Z is defined by X (1) = 10, 
X(2) = 20, X(3) = 10, and X(4) = 
20. 

(b) The event "X= 10" is the set {1, 3}. 

(c) P(X = 10) = ~ + ~ = i and 
P (X = 20) = ~. For all other inte­
gers a (i.e., a -=J 10 and a -=J 20), we 
have P(X =a) = 0. 

32.3 The answer to (c) is~ = ~· 

32.4 The answer to (a) is 3. 

P(X = 1) = ~ = fs· P(X = -2) = 0. 

32.6 If a < 0 or a > 10 then P(X = a) is 
zero. Otherwise, this is just like a binomial 
random variable where the probability of 
success is i. 

32.7 No. Note that P(XH = 1) = P(XT = 
1) > 0, but P(XT = 1 1\ XH = 1) = 0 -=J 

P(XH = 1)P(XH = 1). 

32.8 Calculate P(X1 = 5), P(X2 = 5), and 
P(X1 = 5 and X2 = 5). 

32.9 Yes. Let a be any value in the set 

{2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A} 

and let b be any value in the set { fb, <>, Q, 

~}. Note that P(X = a) = i3 and 
P(Y =b)= ~·Finally, 

1 
P(X =a 1\ Y =b) = -

52 
1 1 

=-X-
13 4 

= P(X = a)P(Y =b). 

Therefore X and Y are independent random 
variables. 

32.10 Calculate P(X = 2), P(Y = 2), and 
P(X = Y = 2). 

33.1 E (X) = 1 X 0.1 + 3 X 0.2 + 5 X 0.3 + 8 X 

0.4 = 5.4. 

33.2 E(X) = lf~ E(Y) = 0, and E(Z) = lf. 
33.4 Let (S, P) be the sample space for a sin­

gle die; i.e., S = {1, 2, 3, 4, 5, 6}. Let 
X(s) = s2. Find E(X). 

33.5 Let X 1 be the number on the first chip and 
X 2 be the number on the second. So X = 
X1 + X2. Note that E(X1) = E(X2) = (1 + 
2+· · ·+100)/100 = 50.5,soE(X) = 101. 

33.6 Answer to (d): By symmetry, yes. 
Answer to (e): Since 100 = E(Z) = 

E(XH + XT) = E(XH) + E(XT) and 
since E(XH) = E(XT), we clearly have 
E(XH) = E(XT) =50. 

33.7 Let X be a zero-one random variable. Then 
E(X) = 0 · P(X = 0) + 1 · P(X = 1) = 
P(X = 1). 

33.8 Note that 12 = 1 and 02 = 0. 

33.9 Express X as the sum of n zero-one indica­
tor random variables and apply linearity of 
expectation. 

33.11 Apply Proposition 33.4. 

33.13 EarlierweshowedthatE(X) = 5.4. We can 
calculate 

Var (X) = E[(X- 5.4)2] 

= (1 - 5.4)2 . 0.1 + (3- 5.4)2 . 0.2 

+ (5- 5.4)2 . 0.3 + (8- 5.4)2 . 0.4 

= ( -4.4)2 . 0.1 + ( -2.4)2 . 0.2 

+ ( -0.4)2 . 0.3 + (2.6)2 

= 5.84. 

Alternatively, we can use the formula 
Var (X)= E(X2)- E(X)2. We have 

E (X2) = 12 · 0.1 + 32 · 0.2 + 52 · 0.3 + 82 · 0.4 

= 35. 

and so Var (X) = E(X2) - E(X)2 = 
35- 5.42 = 5.84. 

33.15 UsetheformulaVar (Z) = E(Z2)-E(Z)2. 
For the second part, see Exercise 33.13. 

33.16 Use Exercise 33.15. 

33.17 Use Markov's inequality (Exercise 33.12). 

34.1 The answer to (b) is q = -34 and r = 2. 

34.2 The answer to (b) is -100 div 3 = -34 and 
-100 mod 3 = 2. 

34.4 Read carefully the first sentence of Defini­
tion 34.6. 
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34.5 

34.6 

34.9 

35.1 

35.2 

35.4 

35.5 

35.6 

35.7 

35.9 

This is the more difficult half of the proof. 
(=?-) Suppose a = b (n). This means that 
nl(a- b), or, equivalently, a- b = kn for 
some integer k. If we divide a and b by n, 
we get 

a= qn + r 

b = q'n + r' 

with 0 .S r, r' < n. Note that r = a mod n 
and r' = b mod n. 

If we subtract these equations, we get 

a - b = (q - q')n + (r - r') 

and since a- b = kn, we can rewrite this as 

kn = (q - q')n + (r - r') 

=} r - r' = (k - q + q')n 

so r - r' is a multiple of n. But r and r' 
are between 0 and n - 1 so their difference 
is no more than n - 1. Thus we must have 
r - r' = 0; i.e., r = r'. Since r = a mod n 
and r' = b mod n, we have 

a mod n = b mod n. 

Bad idea: Call the three consecutive integers 
a, b, and c. 

Good idea: Call the three consecutive 
integers a, a + 1, and a + 2. 

Here is a good definition for part (a): Let p 
and q be polynomials. We say that p divides 
q (and we write piq) provided there is a 
polynomial r such that q = pr. 

The answer to (d) is gcd( -89, -98) = 1. 

The answer to (d) is ( -89)(11) + 
( -98)( -10) = 1. 

Try a few examples. 

Use Proof Template 14. 

Yes, they are still correct. Explain the equal­
ity gcd(a, b) = gcd(b, c) in this case. 

It is enough to prove that if a :=:: b > 0, then 
b :=::a mod b. 

(a) A complete answer: The greatest com­
mon divisor of three integers, a, b, and 
c, is an integer d with the following two 
properties: (1) dla, dlb, and die, and 
(2) if ela, elb, and elc, then e .S d. 

(b) The phrase a, b, c are pairwise rela­
tively prime meabs that gcd(a, b) 
gcd(a, c) = gcd(b, c) = 1. 

35.10 Use Corollary 35.9. 

35.11 Try to find integers X and Y such that 
X(2a + 1) + Y(4a 2 + 1) = 1; the inte­
gers X and Y will depend on a. 

35.12 Use proof by contradiction. 

35.13 Use the fact that we can 
x, y such that ax + by 

find integers 
1. Therefore 

c = cax + cby. 

35.14 Use Corollary 35.9. 

35.15 Use Corollary 35.9. 

35.16 Reverse the roles of a, band x, y. 

35.17 Explain why we can take b > 0 and then 
choose b to be as small as possible (thereby 
invoking the Well-Ordering Principle). 

35.18 Number the children from 0 to n - 1 and 

35.19 

36.1 

36.2 

36.3 

imagine the teacher starts by patting child 
O's head first. 

Note that if k = 4 and n = 10, the 
teacher will never pat the heads of the odd­
numbered children. 

However, if k = 3 and n = 10, then the 
children will be patted in the order 0, 3, 6, 9, 
2, 5, 8, 1, 4, and then 7, so all children will 
be patted. 

5x13-8x8=1. 

Some answers: (a) 6. (g) 6. (n) 7. 

The order of operations for modular arith­
metic is the same as that of ordinary arith­
metic, so we do® and 0 before EB and e. 

Although the first three of these can 
be done by the guess-and-check method, 
the fourth is not amenable to such a brute 
force attack. In each case, you need to com­
pute a reciprocal in Zn. You do this using 
the extended Euclidean Algorithm. 

Because the coefficient of x in each of 
these problems is noninvertible, the normal 
method for solving these equations won't 
work. For these, I recommend you resort to 
guess-and-check. It is possible that there are 
no solutions. 
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36.4 Use guess-and-check. The answer to (d) is 
2, 7, 8, and 13. 

36.6 Use the facts that 

a EBb= (a +b) modn, and 

a e b = (a- b) mod n. 

The first is from Definition 36.1, and the 
second is from Proposition 36.7. 

36.7 Use Theorem 34.1. 

36.9 You should assume thata8b =(a-b) mod 
n,andyouneedtoprovethatbEB(a8b) =a. 

36.10 The answer is that 

a0b=0 ~ a=Oorb=O 

is a theorem if and only if n is prime. 
The structure of the proof is a bit com­

plicated. 
First, suppose that n is prime and then 

prove that 

a 0 b = 0 ~ a = 0 orb = 0. 

Second, suppose n is not prime and 
prove that 

a0b=0 ~ a=Oorb=O 

is false. 

36.11 This is, actually, an easy problem. You need 
to prove that the inverse of a - 1 is a. Read 
Definition 36.9 slowly and carefully. 

36.12 Here is a complete answer to (a). False. 
Counterexample: Note that in Z5 both 2 and 
3 are invertible (2-1 = 3 and 3-1 = 2), 
however, 2 EB 3 = 0 is not invertible. 

36.14 To calculate 332
, you can first find 316 and 

then calculate 332 = 316 0 316 . 

37.3 Here is a complete solution to (a). 
We know first that x = 4 (5). This 

means we can write 

X= 4 + 5k 

where k is an integer. We substitute this into 
the second equation x = 7 ( 11) and we have 

4 + 5k = 1 (11) ==} 5k = 3 (11). 

To solve 5k = 3 (11), we multiply both 
sides by 5_1 in Z 11 . Using the extended 

GCD method, we have 5_ 1 = 9. So we 
multiply both sides by 9: 

so k 
k as 

5 (11). This means we can write 

k=5+11j 

for some integer j. Substituting this back 
into x = 4 + 5k we get 

X = 4 + 5k = 4 + 5(5 + 11j) = 29 + 55j 

and so we see that x = 29 (55). 
For (c), solve the first two equiva­

lences to obtain an intermediate answer 
of the form x =? (28) and then solve the 
system 

x =? (28) and x = 8 (25) 

by the usual method. 
For (d), first simplify the two equations 

so they are both of the form x =? (?). 

37.7 Here is a complete solution for (a). 
Let b1 = 8- 1 = 12 in Z 19 . Let 

b2 = 19- 1 = 3- 1 = 3 in Z8• Thus 

Xo = m1b1a2 + m2b2a1 

=8-12·2+19·3·3 

= 363. 

Note that 363 mod 8 = 3 and 363 mod 19 = 
2, as required. 

Since 8 x 19 = 152, we can reduce 
x0 modulo 152 to give 363 mod 152 = 59. 
Note that 59 mod 8 = 3 and 59 mod 19 = 2. 

A complete answer to this problem is 
x = 59 + 152k where k E Z. However, we 
can also write x = 363 + 152k where k E Z. 
This is exactly the same answer; it is just 
expressed in a different form. 

38.1 Here is a good way to begin your proof: 
"Suppose, for the sake of contradiction, 
there is a composite integer n all of whose 
factors (other than 1) are greater than 
-Jfi ... . " 

38.2 Answer to (b): 4200 = 23 . 3 . 52 
. 7. 
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38.3 The generalization is: Let p and q be un­
equal primes. Then p lx and q lx if and only 
if (pq) lx. 

38.5 Begin by factoring a and b (uniquely) into 
primes. 

38.8 Note that for any two numbers s and t, we 
have 

s + t = min[s, t] + max[s, t]. 

38.11 Call the consecutive perfect squares a2 and 
(a+ 1)2 (where a is an integer) and suppose 
(for the sake of contradiction) that there is a 
prime p that divides them both. 

38.12 Notice that 18 = 21 
· 32

, so every posi­
tive divisor of 18 is of the form 2a 3b where 
0 ::::: a ::::: 1 and 0 ::::; b ::::; 2. Hence there are 
2 choices for a and 3 choices for b giving 
2 x 3 = 6 positive divisors. 

3 8.13 The divisors of n are 2k and 2k (2a - 1) for 
all 0::::: k <a. 

38.14 It is easier to figure out how many numbers 
between 1 and n are not relatively prime ton. 

The answer to (f) is cp(5041) = 4970. 
To see why, note that the only numbers 
between 1 and 71 2 that are not relatively 
prime to 71 2 are the multiples of 71: 71, 
2 x 71, 3 x 71 , ... , 71 x 71. So there are 
5041 - 71 = 4970 integers from 1 to 71 2 

that are relatively prime to 71 2
• 

38.16 Use inclusion-exclusion. Let Ai denote the 
set of multiples of Pi between 1 and n. 

38.18 The following sentence is useful: If n is not 
a perfect square, then there must be a prime 
p that appears an odd number of times in 
n 's prime factorization. 

38.20 Let x = log2 3. This means that 2x = 3. 
Suppose x = ~ for some integers a and b, 
and argue to a contradiction. 

38.22 Here is a complete answer for (c). 
Suppose w, z E Z [ J=3]. This means 

that w = a + b,J=3 and z = c + d,J=3 
where a, b, c, d E Z. Notice that 

wz = (a+ bv'=3) (c + dv'=3) 

= (ac- 3bd) +(ad+ bc)v'=3 

and since ac- 3bd anq ad+ be are integers, 
we have WZ E z[-J-=3]. 

Hereisahintfor(d).Ifw = a+bJ=3, 
then 

Try to deduce: For which integers a and b 

are a2;3b2 and a2 ~~b2 also integers? 

38.23 For (a), let w = a + b,J=3 and z = c + 
d,J=3. To prove that N(wz) = N(w)N(z), 
just expand everything in terms of a, b, c, 
and d, and be careful with the algebra. 

Here is a partial answer for (b). 
There are no w E Z [ J=3] with 

N(w) = 2.Proof:SupposeN(a+bJ=3) = 
a2 + 3b2 = 2. If b -1- 0 we have N ( w) :::: 3, 
so b = 0. This leaves us with a2 = 2, which 
is impossible since a E Z. 

There are exactly six possible values 
for w with N(w) = 4. 

38.24 First prove the following lemma: If N(w) is 
prime, then w is irreducible. 

38.25 If the statement were false, we could find a 
counterexample w with N ( w) as small as 
possible. 

38.26 We want to write 4 = ab with a, b =!= 

±2, ± 1. Taking norms of both sides of 
4 = ab, we get 16 = N(4) = N(ab) = 
N(a)N(b). We cannot have N(a)N(b) = 
2 x 8 because there is no element with norm 
2. So we must have N(a) = N(b) = 4. 

39.3 Answer for A: The operation 1\ is closed, 
commutative, and associative, and TRUE 

is an identity element. However, FALSE 

does not have an mverse. Therefore, 
({TRUE, FALSE},/\) is not a group. 

39.4 Evaluate: a * b *c. 
39.5 To show that X and Y are inverses, you just 

needtoshowthatX*Y = Y*X = e.Forthis 
problem, you need to show that the inverse of 
g-1 is g. Your answer should be very short. 

39.8 Dust off your linear algebra text, and 
reread the material on the determinant of a 
matrix. 
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39.9 Remember that 2A stands for the set of all 
subsets of A and that ~ is the symmetric 
difference operation. 

To prove that (2A, ~) is a group, prove 
the four properties: closure, associativity, 
identity, and inverses. Note: One of these 
has already been proved. 

39.10 This means that you must prove that f: 
G ~ G is one-to-one and onto. Here is a 
skeleton of the proof. 

First we prove that f is one-to-one. 
Suppose f(g) = f(k) for some g, k E G . 
. . . Therefore g = k, and so f is one-to-one. 

Second we prove that f is onto. Let 
b E G. Let x E G be defined by .... There­
fore f(x) = b, and so f is onto. 

Thus f is a permutation. 

39.11 See the hint for Exercise 39.10. 

39.12 Exercise 39.10 is useful here. Note that the 
row of the * table corresponding to element 
a contains all elements of the form a * g 
where g is an arbitrary member of G. 

39.13 Remember: To prove that X and Y are in­

verses, show that X* Y = Y *X= e. 

39.15 Check that* satisfies the four requisite prop­
erties. Notice that identity and inverses for 

* and * are the same. 

39.16 Use proof by contradiction. Let G be a group 
with an even number of elements, and sup­
pose e is the only element that is its own 
inverse .... 

39.17 This exercise is similar to Exercise 39 .12. 

39.18 The answer to (c) is 15; here's why. 

The expression we need to evaluate is 
1, 2, +, 3, 4, x, +.The 1, 2, +portion eval­
uates to 3 and the 3, 4, x portion evaluates 
to 12. The expression has been reduced to 
3, 12, +and that evaluates to 15. 

39.19 The answer to (a) is 2, 3, +, 4, 5, +, x. 

39.20 Here is a theorem you should prove: 
Let .£ be a list of numbers and opera­

tions. We cl~im that .£ is a valid RPN ex­
pression if and only if the following two 
conditions hold: (1) the number of opera­
tions in .£ is one less than the number of 

numbers, and (2) the sublists of .£, starting 
from the beginning of .£ and including all 
members of.£ up to any point in the list, must 
contain more numbers than operations. 

Prove both directions of this if-and­
only-if theorem by induction. 

40.1 You need to find a one-to-one and onto 

function 

f : {0, 1' 2, ... '9} ~ { 1' 2, 3, ... ' 11} 

with the property that 

(x + y) mod 10 = z <====> 

[f(x) x f(y)] mod 11 = f(z). 

Begin with f ( 1) = 2. From there you can 
work out f(l + 1), etc. 

40.2 Let f[(l, 1)] = 1. 

40.3 One of these groups is cyclic; the other is not. 

40.4 Consider f(e *e). 

40.5 To prove that f (g) and f (g- 1
) are in­

verses, * them together and hope you get 

the identity. 

40.7 Here is an outline of the proof. Fill in the 

blanks. 
Let f : G ~ H be an isomorphism. 
( =}) Suppose ( G, *) is Abelian. Let 

x, y E H be arbitrary .... Therefore x * y = 
y * x, and so (H, *)is Abelian. 

( ¢:::) Suppose ( H, *) is Abelian .... 

Therefore ( G, *) is Abelian. 

40.9 The Klein 4-group is defined in Section 39. 
It has four elements: (0, 0), (0, I), (1, 0), 

and (1, 1). 
Recall that the set 21 1•2l is the set of all 

subsets of { 1, 2} and that ~ is symmetric 
difference. 

40.10 Define a map F : G ~ H by F(a) = 

fa. Prove that F is a bijection and that 

F(a *b) = F(a) o F(b). 

40.11 The generators of (Z10 , EB) are 1, 3, 7, and 
9. Notice that these are exactly the elements 
of Z 10 that are relatively prime to 10. 

If you can prove your answer, the 
teacher will give you a pat on the head. 
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40.13 Here is the answer for z;. In z;, note that 

21 = 2, 22 = 4, 23 = 3, and 24 = 1. 
Therefore 2 is a generator for z;. 

41.1 The subgroups of (Z6, EB) are {0}, {0, 3}, 
{0, 2, 4}, and {0, 1, 2, 3, 4, 5}. 

41.2 There are three subgroups. 

41.3 There are five subgroups. 

41.4 Don't miss a key hypothesis: H =1- 0. 
You are given 

(1) H is closed under *. 
(2) H =j:. 0. 
(3) For all g E H, g- 1 E H. 
You need to show 
(a) H is closed under*· 
(b) e E H. 
(c) For all g E H, g- 1 E H. 
Proving (a) and (c) is trivial. So you need to 

show how (b) follows from (1), (2), and (3). 

41.5 You are given that (a) H =j:. 0 and (b) for all 

g,h E H,g*h- 1 E H. 
You should prove: (1) H is closed un-

der *, (2) e E H, and (3) if g E H, then 
g- 1 E H. 

Prove these in the order (2), then (3), 
then (1). 

41.6 Let H be a subgroup of (Z, +).Think about 
the least positive element of H (if any). 

41.8 The easiest equivalence class to find is 

[1] = [e] =H. 
To find other equivalence classes, use 

the idea from the proof of Lemma 41.7. 
Choose an element g E G and define a func-
tion f: H-+ [g] by f(h) = h*g. To com-
pute [g ], just compute f (h) for all h E H. 

For this problem, [2] = {1, 6, 11, 
16, 21}. There are three other equivalence 
classes. 

41.9 See the previous hint. 

41.10 See Proposition 40.3. 

41.11 Only one of these is true. 

41.12 Remember that in a general group, x =y 
(mod H) means x * y-1 E H. In this prob-
lem, the operation * is ordinary addition 
of integers, and the inverse of y E Z is 
simply -y. 

41.13 

41.14 

42.1 

42.5 

42.6 

43.1 

44.2 

44.3 

44.4 

Do not use an Abelian woup. 

The hardest part of this problem is swal­

lowing the definition of g * H. Remember 

that g * H is a set. Also, x E g * H means 

that x = g * h for some h E H. (Likewise, 
x E H * g means that there is an h E H 
such that x = h *g.) 

For part (b), start by proving g * H = 
H {=:=} g E H. The forward (=})direction 
is not hard [use part( a)]. For the reverse ( {=) 

direction, you need to show that two sets 

(g * H and H) are equal, so use Proof Tem­
plate 5. 

For part (d), consult your answer to the 
previous exercise. 

I recommend using a calculator or a com­
puter. You should find that a 13 = a for all 

a E Z13. 

If you do trial division, it will take tens 

of thousands of divisions to find the prime 

factors of the composite number. Compute 
2n mod n for both values of n, and see what 

you get. 
There is a technical difficulty in work­

ing with these large integers. Expressed in 
binary, they are about 30 bits long; these 
numbers can fit nicely in your computer. 

However, multiplying two 30-bit numbers 
gives a 60-bit product; it may be difficult­

using an ordinary computer programming 
language-for you to deal with numbers this 
large. 

You will need to write a computer program 
to solve this problem. The smallest answer 
to this problem is under 1000. 

Many computer languages have built-in 
functions for converting text to and from 
ASCII. 

Try to use this formula for a prime p ¢. 3 

(mod 4), such asp = 17. What goes wrong? 

To check yourself, the answers are 33, 157, 
556, and 432. 

There are eight answers. Note that 34751 = 
19 x 31 x 59 and 19 = 31 = 59 = 3 
(mod 4). 
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44.5 Factoring n into primes gives n = 45343 x 

7243. Note that both of these primes are con­

gruent to 3 modulo 4. Let M = 249500293. 

44.6 

44.7 

44.9 

45.1 

45.2 

45.3 

In £:.45343 we have 

249500293(45343+1)/4 = 12690. 

So in £:.45343, vftVi = ± 12690 = 12690 or 

32653. 
In Zn43 we have 

249500293(7243+1)14 = 2663 

so in Z7243 we have vftVi = ±2663 = 2663 

or 4580. 
We solve the following four problems 

using the Chinese Remainder Theorem. 

x = 12690 (mod 45343) 

x = 2663 (mod 7243) 

x = 32653 (mod 45343) 

x = 2663 (mod 7243) 

x = 12690 (mod 45343) 

x = 4580 (mod 7243) 

x = 32653 (mod 45343) 

x = 4580 (mod 7243) 

The solutions to these four problems are x = 

111103040,x =7151504,x = 321267845, 

andx = 217316309(allmodn). The second 

one gives 07 15 15 04, which spells GOOD. 

For (a) send more than one message. The 

concern for (b) is that M 2 mod n = M 2 

(there is no "wrapping" modulo n, and so 

Eve can find M by taking an ordinary square 

root). Figure out strategies for dealing with 

this. 

gcd(75406- 68918, 171121) = gcd(6488, 

171121) = 811. 

(a) Hint: quadratic formula. (b) Answer: 

281. 

Answer: D
1
(N) = N 377 mod 589. 

Remember: d = e-1 in Z¢cn)· 

The answer is M = 100. 

45.4 The decryption exponent is d = e- 1 

(mod cp(n)). The answer to (a) is PIGS. 

46.1 Answer to (a): ({1,2,3,4,5,6},{{1,2}, 

{1, 4}, {2, 3}, {2, 5}, {3, 6}, {4, 5}, {5, 6}}). 

46.2 Answer for (a): 
a e 

~ 
c d b 

46.4 If you are having trouble with this one, 

I recommend you take a break and order a 

pizza. Before you eat, take a good look at the 

slices. 

46.9 There is a solution with only one student. 

46.10 Do you think these are impossible? I assure 

you they are not. What is wrong with the 

following "proof" that in no graph is the 

is-adjacent-to relation antisymmetric? 

Let G be a graph. Let u v be an edge 

of G. Then u "' v and v "' u, but u :::/= v. 

Therefore "' is not antisymmetric. Thus, in 

no graph is"' antisymmetric. "•" 

Read this "proof" carefully. When you 

spot the error, you will know how to answer 

this problem. 

46.12 Use Theorem 46.5. 

46.13 Use proof l;?y contradiction. If the vertices all 

have different degrees, what must they be? 

. 46.15 Use the previous problem. 

46.16 See Section 16. 

46.17 Note that the following are two different 

graphs: 

G 1 = ({1, 2, 3, 4}, {12, 13, 14}) and 

G2 = ({1, 2, 3, 4}, {12, 23, 24}) 

even though their drawings look very much 

the same. (They have the same vertex sets, 

but different edge sets.) 
I recommend you begin with the spe­

cial cases n = 0, n = 1, n = 2, n = 3 and, 

n = 4 before you dive into the general case. 

Try writing down all the possibilities. Note, 

however, that for n = 4, you should find 

64 different graphs, so. you will need to be 

organized. 
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46.18 For (a), use Proposition 23.25. 
Here is a complete answer to (b): Let 

v E V (G). Note that u is adjacent to v if and 
only if f(u) is adjacent to f(v). Since f is a 
bijection, this gives a one-to-one correspon­
dence between the neighbors of v and the 
neighbors of f ( v). Therefore, v and f ( v) 
have the same degree (in their respective 
graphs). 

47.1 The graphs for (a), (d), and (g) are shown 
here: 

2 4 

~ 
3 5 6 

2 4 

~ 
3 5 6 

2 4 

N 
3 

4 7.2 Here is a complete proof that is-a-subgraph­
of is antisymmetric. 

Suppose G is a subgraph of H and that 
H is a sub graph of G. The first implies that 
V(G) ~ V(H) and E(G) ~ E(H) and the 
second implies the reverse containments. 
Thus V(G) = V(H) and E(G) = E(H), 
and therefore G = H. Thus is-a-subgraph­
of is antisymmetric. 

4 7.3 For example, the graph K 2 has two spanning 
subgraphs and 4 induced subgraphs. We list 
them all out here. Let a and b be the vertices 
of K2. 

The spanning subgraphs of K 2 are the 
following two graphs: 

({a, b}, {ab}) and ({a, b}, 0). 

The induced subgraphs of K 2 are the 
following four graphs: 

({a, b}, {ab}) ({a}, 0) 
({b}, 0) (0, 0). 

If you thought there were only three 
induced subgraphs of K 2 , your answer 

would be wrong, but not terrible. The graphs 
( {a}, 0) and ( { b}, 0) hav~ exactly the same 
drawing Uust one dot), but these are not the 
exact same graphs. (In one case, the sole ver­
tex is a, and in the other case the sole vertex 
is b.) This fussiness actually makes this 
problem easier to solve. There is a sense in 
which the graphs ( {a}, 0) and ( { b}, 0) are 
"the same"; see Exercise 46.18. 

For K 3 , there are eight spanning and 
eight induced subgraphs. 

47.4 a( G) = 3, w(G) = 2. 

4 7.6 Exactly one of these statements is true. Prove 
the true statement and find counterexamples 
for the other three. 

47.7 For (b), see the following figure. 

Self-Complementary Graph 
Artist: Laura Tateosian 

For (c), note that if G is self-complementary, 
then we know that G and G must have the 
same number of edges. 

47.10 (d) Let G be any graph on n vertices. 
Note that G is also a graph on n ver­
tices. Since n ---+ (a, b), we know that 
a(G) 2: a or w(H) ~ b. By Proposi­
tion 47.12, 

a(G) = w(G) ~a, or 

w(G) = a(G) ~b. 

(e) By Proposition 47.13, if n ~ 6, 
then n ---+ (3, 3). By Exercise 47.8, 
5 fr (3, 3). If n < 5 and n ---+ (3, 3), 
then by part (c) we would have 5 -+ 
(3, 3).:::::}{= Therefore 6 is the least pos­
itive integer n such that n ---+ (3, 3). 

--



Appendix A Lots of Hints and Comments; Some Answers 511 

(f) Let G be a graph on ten vertices. Let v 

be any vertex of G. 

If d(v) 2: 6, then among v's six (or 

more) neighbors we can either find (a) a 

clique of size 3 or (b) an independent 

set of size 3 (by Proposition 4 7.13). In 

the first case (a), w(G) 2: 4 because v, 

together with its three pairwise adjacent 

neighbors, forms a clique of size 4. In 

the second case (b), we clearly have 

a(G) 2: 3. 

Otherwise (d(v) i 6), we have 

d(v) =::: 5. This means there are (at 

least) four vertices w, x, y, z to which 

v is not adjacent. If they form a clique, 

we have w (G) 2: 4. But otherwise, 

some pair of them are not adjacent and 

(together with v) form an independent 

set of size 3, so a(G) 2: 3. 

In every case, a(G) > 3 or 

w(G) 2: 4. Therefore 10-+ (3, 4). 

(g) Hint: Consider an arbitrary vertex v. 

Either d ( v) 2: m or v has at least n 

vertices to which it is not adjacent. 

48.4 The answer to (a) is G). For (b), note that 

all the vertices have the same degree. 

For (c), to prove that a G n is connected, 

pick any two arbitrary vertices and prove 

there is a path that connects them. 

48.5 'v'3 is not the same as 3'v'. 

48.6 Here's a hint: 

- ----1 

48.9 Here is a detailed outline of a proof. Fill in 

the blanks. 

Suppose G is disconnected. We must 

show that G is connected. 

Because G is disconnected, there exist 

vertices x and y in different components 

of G. 
Now consider any two vertices a and 

b in G. We consider cases depending on 

which component(s) of G contain(s) a 

and b. 
- a and b are both in x 's component of G. 

. .. therefore, there is an (a, b)-path in 

G. 
One of a or b is in x 's component, and 

the other is not . 

. . . therefore, there is an (a, b)-path in 

G. 
- Neither a nor b is in x 's component. 

... therefore, there is an (a, b)-path in 

G. 
In all cases, there is an (a, b)-path in 

G. Since a and b were arbitrarily chosen 

vertices, G is connected. 

48.10 Begin your proof thus: Suppose, for the 

sake of contradiction, G is not connected. 

Let H be a component of G with the fewest 

vertices. 

48.12 Use induction on k. The i, }-entry of A1+1 

can be expressed as 

2..:)A1
]i.k Ak,J. 

k=l 

49.3 Since this problem asks you to prove an 

if-and-only-if statement, you have two jobs. 

First, suppose d 1 , .•. , dn are the degrees of 

the vertices of some tree T. You must show 

that d1 + · · · + d11 = 2n - 2; this is fairly 

easy. 
Your second, and more challenging, 

task is the following: Suppose you are 

given positive integers d1, ... , d11 for which 

d1 + · · · + d 11 = 2n - 2. You must prove 

there is a tree on n vertices whose degrees 

are precisely d 1, ••• , d11 • For this, we rec­

ommend induction. Begin by showing that 

at least one of the di is equal to 1. 

49.5 Here is an outline for your proof. 
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Let G be a graph in which every pair of 
vertices is joined by a unique path. We 
want to show that G is a tree. By Defi­
nition 49.3, we must show that G is con­
nected and acyclic. 
- Claim: G is connected. Prove that G 

is connected by direct proof 
I l - Claim: G is acyclic. Prove that G is 
1 acyclic by contradiction. 
~herefore G is a tree. • 

49.6 Your answer should use the word vacuously. 

49.7 This problem is best done as a proof by 
contrapositive (Proof Template 11 ): 

Suppose v is not a leaf. ... Therefore 
T - v is not a tree. 

49.8 The answer to (d) is (n- 1)!. Prove this by 
induction. 

49.9 The formula is n -c. 

49.10 Use Exercise 49.4. 

49.11 For (a), you also should use Theorem 48.12. 

49.12 Use Theorem 49.4. 

49.13 Use Theorems 49.9 and 49. 11 and the pre­
vious problem. 

49.14 For (c), use Exercise 49.13. 

49.15 This is an if-and-only-if statement, so be 
sure to do both directions. Here is half of 
the proof. 

(===?-)Let e = xy be a cut edge of G. 
Suppose, for contradiction, e is contained in 
a cycle C. Since e is a cut edge of G, there 
must be vertices a and b that are connected 
in G but not connected in G - e. Let P be 
an (a, b)-path in G. Necessarily, P contains 
the edge e. Without loss of generality, vertex 
x precedes vertex y as we traverse P from 
a to b. 

Notice that in G - e there is an (a, b)­
walk: Start at a, traverse P up to x, traverse 
C - e to b, and then traverse P to y. By 
Lemma 48.7, there must be an (a, b)-path 
in G- e.=?-{= Therefore e is not contained 
in any cycle of G. 

49.17 Prove that at step (4), the graph Tis con­
nected and acyclic. 

49.18 Just as for the previou~ problem, prove that 
the output graph (the final T) is connected 
and acyclic. Exercise 49.15 will help. 

50.2 Does Kn have an Euler tour? 

50.3 Add edges from this new vertex in a way 
that changes all vertices to even degree. 
Then check that the new graph you created 
is connected. 

50.4 This question is not so simple. 

51.2 The condition that G is 3-colorable means 
that G can be properly colored using at 
most three colors. We are not required to 
use all three. 

51.3 See Section 4 7. 

51.4 If G has n vertices and is not complete, 
then n > 1. Furthermore, G must contain 
two vertices that are not adjacent to each 
other. 

51.7 Given a proper coloring of G with a colors 
and a proper coloring of G with b colors, 
show how to construct a proper coloring of 
Kn with ab colors. 

51.8 First show that G is properly 4-colorable 
(this is easy). Next, suppose that G is 3-
colorable and argue to a contradiction. Give 
a color to vertex 1 and then discuss the 
colors of the other vertices in numerical 
order. 

51.11 Color the large-degree vertex first. 

51.12 Prove this by induction on the number of 
vertices in G. 

51.13 For (a), color the vertices with four colors. 
For (b), please note that you need to 

prove the graph is not 3-colorable. To do 
this, you should use proof by contradiction. 
It is also helpful to give sensible names to the 
vertices. Call the vertex in the center of the 
picture u. Call its five neighbors a 1 through 
a5 and the corresponding five vertices on the 
outer rim of the picture b1 through b5• 

For (c), although this graph has many 
edges, you should use symmetry to reduce 
this problem to just a few cases. Color each 
of those graphs with just three colors. 

52.1 There are oo-ly many answers. 
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52.3 You may use Euler's formula (Theo­
rem 52.3) and/or mimic its proof. 

52.4 If G does not contain K 3 as a subgraph, then 
every face must have degree at least 4. 

52.5 Count edges (use Corollary 52.5). 

52.8 Although the graph looks a bit like K5 , it 
does not contain a subdivision of K 5 as a 
subgraph. (If it did, it would have a vertex 
of degree at least 4.) Find a subdivision of 
K 3,3 as a subgraph. 

52.9 For (a), mimic the proof of Corollary 52.5. 
For (c), use induction. 

52.10 Part (a) has already been proved in the text. 
The quantity vr is the sum of the degrees 
and equals 2e. The quantity f s is the sum of 
the degrees of the faces and also equals 2e. 

For part (b) and (c), use Euler's formula 
(Theorem 52.3). 

For part (d), note that e must be a pos­
itive integer. 

Part (e) is a bit trickier. The case (3, 3) 
was done in part (b). The cases (3, 4) and 
(4, 3) are not too bad. Try (3, 5) next; re­
member, the unbounded face also has de­
gree 5. You should be able to calculate how 
many degree-5 faces you need (answer: 12). 
Finally, the case (5, 3) is the most compli­
cated. You need to fit 20 triangles (degree-3 
faces) together with 5 triangles meeting at 
every vertex. Good luck! 

52.11 Draw a graph on the surface of the soccer 
ball. Place one vertex in each polygon and 
join vertices by an edge if their polygons 
abut each other. Notice that this is a planar 
graph in which every face is a 3-cycle and 
all vertices have degree 5 or 6. 

Suppose there are a vertices of degree 5 
and b vertices of degree 6. Count the number 
of edges in two ways to derive a = 12. 

53.1 (a) a and bare incomparable. (e) c < i. 

53.2 For (a), the height is 4 and there are several 
chains containing four elements, including 
{b, d, f, i} aad {a, c, f, j}. 

For (c), note that {a, c, i} is a chain 
containing three elements, but it can be 

extended to {a, c, f, i}. So {a, c, i} is not a 
correct answer for (c). 

53.5 Prove that R- 1 is reflexive, antisymmetric, 
and transitive. 

53.7 Here is the full proof. Suppose, for the sake 
of contradiction, that there are two elements 
x andy with x < y and x > y. Unravel­
ing these definitions, we have ( 1) x S y, 

(2) y .s x, and (3) x =I= y. However, x S y 
and y ::::; x imply (by antisymmetry) that 
x = y, contradicting (3).::::}¢= Therefore we 
cannot have both x < y and x > y. 

53.11 Here is a good definition for P- x. Let P = 
(X,::::;). Let P- x be the poset with ground 
set X- {x} and relation::::;' where a :::=;' b if 
and only if a S b for all a, b E X- {x }. 

54.1 There are no maximum or minimum ele­
ments. There are three maximals and three 
minimals. 

54.2 Answer to (b): 1 is minimum and minimal. 3, 
4, and 5 are maximal. There is no maximum. 

54.4 Statement (d) is false. 
Statement (g) is true. Here is a complete 

proof: 
Suppose x and y are distinct maximal 

elements. Suppose, for the sake of contradic­
tion, that they are not incomparable. Then 
either x < y or y < x. If x < y, then 
x is not maximal, and if y < x, then y is 
not maximal.:::}¢= Therefore x and y are 
incomparable. 

55.2 For (a), note that 1 < 2 < 3 and 1 < 3 < 2 
are different linear orders on { 1, 2, 3}, but 
they are isomorphic. 

55.3 Here is a template for your proof. 
Let a be a minimal element of a total 

order P. Let x be any other element of 
P . ... Therefore a < x, and so a is a mini­
mum element. 

55.5 Here is half the proof of (a): 
(::::}) Suppose x is minimum in P. To 

show that f (x) is minimum in Q, we need 
to show that if b is any element of Q, then 
f (x) s b in Q. Since f is onto, there is an 
a in P with f(a) =b. Since xis minimum 
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in P, a ~ x. Thus b = f(a) ~ f(x) (since 
f is order-preserving). Therefore f (x) is 
minimum in Q. 

55.6 Use part (a) of the previous problem. 

56.2 The answers are (a) 4, (b) 14400, and 
(c) 252. You must supply the explanations. 

56.4 By the previous problem, if (x, y) is not a 
critical pair, then ~' is not transitive. This 
happens because there is an a ~ x and a b :::: 
y (other than a = x and b = y) with a i b. 

Let u (a) denote the number of elements 
strictly above a and let l (a) denote the num­
ber of elements strictly below a. 

Prove that an incomparable pair (x, y) 

with £ (x) + u (y) as small as possible is 
critical. 

56.5 Note that ( c, g) is not a critical pair because 
a < c but a I- g. Also (g, c) is not a critical 
pair because c < f but g I- f. However, 
(a, g) is a critical pair because any x < a 
is also below g (vacuously) and any y > g 
(namely, y = j) is also above a. 

57.1 The dimension is 2, but finding a realizer 
takes some work. 

57.2 Use Theorem 56.3. 

57.4 Here is a complete proof. 
Suppose P is a subposet of Q. Choose 

a realizer R = {L 1, L2, ... , Lr} of Q of 
minimum size. (Thus t = dim Q.) 

Let L; be the suborder of L i restricted to 
the elements of P. Note that for all elements 
x andy of P we have x .:::::; y (in P) iff x ~ y 
(in Q) iff x .::::;i y (in Li for all i) iff x .::::;i y 
(in L; for all i). Thus R' = {L'1, LS, ... , L~} 
is a realizer for P, and so dim P ~ t = 

dimQ. • 

57.5 This is a difficult problem. First show that 
dim P ~ 3 by constructing a realizer using 
3 linear extensions. It helps to work out the 

special cases n = 3 and n = 4 first and then 
to look for a general pahem. 

To show that dim P > 2 is tricky. Here 
is a technique that uses counting: Show 
that there are n(n - 2) incomparable' pairs 
of the form ai -b j. Then show that a linear 
extension can have ai > b j at most (n; 1) 

times. So if dim P .:::::; 2, we would need to 
have n(n- 2) ~ 2(n; 1

), and this leads to a 
contradiction. 

58.1 (b) d. (d) i . (e) a. 

58.3 Prove the ==:}- part by observing that for any 
x, y in a linear order we have one of x < y, 

x = y, or x > y. For the {=: direction, use 
contradiction and consider an incomparable 
pair x, y. 

58.4 Note that this result requires all numbers 
involved to be in N-that is, no negative 
integers allowed. Therefore xI y ==:}- x ~ y. 

58.5 The poset (Z, ~) is a lattice with no maxi­
mum and no minimum element. The poset 
(N, I) is a lattice with no maximum element 
(but it does have a minimum element, 1 ). 

To make the sentence true, insert the 
word finite. 

58.7 Show the following is not distributive. 

58.8 Start with the meet and join of two distinct 
points. Their meet is the empty set, and their 
join is the unique line that contains both of 
them. Now continue to consider the meet 
and join of two lines, or of a point and a 
line. 
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1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

False. The positive integer 1 is neither prime 
nor composite. 

xj(x + 2) for x equal to -2, -1, 1, and 2. 

The I notation means that the number on the 
left divides the number on the right. The ex­
pression (alb)+ 1 is nonsense because alb 
is a statement and 1 is a number; it is not 
possible to add a statement and an integer! 

"If an integer is perfect, then it is even" or 
"if x is a perfect integer, then x is even." 

"If you will marry me, then you love me." 

(a) false, (b) false, (c) true, (d) false, (e) true, 
and (f) true (vacuously). 

First line: "Suppose M is a graphic matroid." 
Last line: "Therefore, M is repre-

sentable." • 

(a) There are many possible counterexam­

ples, including x = 3, y = 2, and 
z = -6. Note that x > y but xz = 

-18 < -12 = yz. 
(b) If we require z to be positive, the conclu­

sion will follow. The edited statement 
should read, "If x, y, and z are integers, 
x > y, and z > 0, then xz > yz. 

9. (a) This is false. For example, 2110 and 
5110, but 7 = 2 + 5 does not divide 
10. 

(b) This is true, and here is a proof. Suppose 

a lb. Then there is an integer x such that 
ax = b. Multiplying both sides of this 
equation by e gives axe = be, which 
can be rewritten (ae)x =be. Therefore 

11. 

12. 

aelbe. • 13. 

10. Most two-digit numbers are counterexam­
ples to the proposition. For example, 152 = 

225 but 512 = 2601 i= 522. Therefore the 
proposition is false. 

The mistake in the proof is that we ne­
glected the effect of carrying in arithmetic. 
It is true that (lOa+ b)2 = (a 2

) x 100 + 
(2ab) x 10+(b2

) x 1, butthatdoesnotimply 

X 

T 
T 
F 
F 
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y 

T 
F 
T 
F 

that the digits of (lOa+ b)2 are a2
, 2ab, b2

. 

For example, if b > 3, then b2 > 10 and so 
the ones digit of ( 1 Oa + b) cannot be b2

. 

The proof is incorrect because it assumes 
what we wish to prove and then works to 
an obvious known fact (i.e., 0 = 0). The 
approach should be the opposite. 

Here is, essentially, the same proof used 
to show a = b for any two numbers a and b. 

Proof. Start with 

a=b 

from which we also have 

b =a. 

Multiplying these equations together gives 

ab =ab 

and then canceling ab from both sides gives 

0=0 

which is correct. • 
From such a "proof" follows the result 

that 3 = 4. Clearly this is incorrect. 

The two expressions are not logically equiv­
alent. Consider the following truth table: 

X y X -+ -,y -,(x -+ y) 

T T F F 
T F T T 
F T T F 
F F T F 

Since the columns for x -+ ....,y and 
....,(x-+ y) are not identical, the two ex­
pressions are not logically equivalent. 

The expression (x -+ y) v (x -+ ....,y) 

is a tautology. Consider the following truth 
table: 

x-+y X -+ -,y (x -+ y) v (x -+ -,y) 

T F T 
F T T 
T T T 
T T T 
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14. 

15. 

16. 

17. 

18. 

19. 

20. 

Since the formula evaluates to T for all pos­
sible values of its variables, it is a tautology. 

Let a, a+ 1, and a+ 2 be three consecutive in­
tegers. Theirsumisa +(a+ 1) +(a +2) = 

3a + 6. Note that 3a + 6 = 3(a + 2). Since 
a + 2 is an integer, 31 (3a + 6). Thus the sum 
of any three consecutive integers is divisible 
by 3. • 

Let a be a positive integer. The sum of a 
consecutive integers is divisible by a if and 
only if a is odd. 

Let a :=: 3 be an integer. Multiplying both 
sides by a gives a2 :=: 3a. Note that 3a = 
2a + a > 2a + 1 because a > 1. Thus 

a2 :=: 3a > 2a + 1. • 

Suppose a is a perfect square and a :=: 9. Be­
cause a is a perfect square, there is an integer 
b with a = b2

. We may assume that b > 0. 
In order for a :=: 9, we must have b :=: 3. Ob­
serve that a -1 = b2 -1 = (b -1)(b + 1). 

Since b :=: 3, we know that b - 1 :=: 2 > 1 
and b + 1 :=: 4 > 1, and so these factors of 
a - 1 are both greater than 1 hence a - 1 is 

composite. • 

The definition of square mates applies only 
to positive integers. Although 10+ ( -1) is a 
perfect square, -1 is not positive. Therefore 
10 and -1 are not square mates. 

Let x be a positive integer. Let y = x 2 + x + 
1; clearly y > x because we have added a 
positive quantity (x 2 + 1) to x. 

Note that x + y = x + (x 2 + x + 1) = 
x 2 + 2x + 1 = (x + 1)2

• Since x + 1 is an in­
teger, x + y is a perfect square, and therefore 
x and y are square mates. 

For x = 5, 6, 7, 8, 9 it is easy to find square 
mates smaller than x, to wit: 

(5, 4), (6, 3), (7, 2), (8, 1), and (9, 7). 

Thus it is enough to prove the result for 

X> 9. 
As allowed by the problem statement, 

choose a positive integer a such that a 2 _:s 

x < (a + 1)2
. Since x > 9, clearly a :=: 3. 

Let y = (a + 1)2 
- x. Clearly x + y 

is a perfect square and y > 0 because 

1. 

2. 

3. 

4. 

(a+ 1 )2 > x. Thus x andy are square mates. 
It remains to show thai y < x. To this end 
we calculate 

y =(a+ 1)2
- x 

< (a+ 1)2
- a2 

= 2a + 1 

< a 2 by Problem 16 

_:s X. 

Chapter 2 

• 

There are 2 x 26 x 26 = 1352 ways to 
form a 3-letter call sign and 2 x 26 x 26 x 

26 = 35152 ways to form a 4-letter call 
sign. Adding these gives 36,504 possible call 
signs. 

Notice that we can choose a and b arbi­
trarily and then choose c carefully so that 
a+ b + c is even. More specifically, there are 
10 choices for a and, for each such choice, 
10 choices for b and then, once a and b have 
been chosen, exactly 5 choices for c. This 
gives 10 x 10 x 5 = 500 possible choices. 

Alternatively, without the restriction on 
the sum, there are 103 = 1000 choices for 
a, b, c exactly half of which have even sum, 
giving 1000 -:- 2 = 500 choices. 

There are 103 ways to choose a, b, c regard­
less of their product. In order for abc to be 
odd, all three of a, b, c must be odd. There 
are 53 = 125 ways that might happen. Thus 
there are 1000- 125 = 875 ways to choose 
a, b, c such that abc is even. 

20! 

17!. 3! 

20. 19. 18 
-3-· -2-.-1- = 20·19·3 = 1140. 

5. There are 13! ways to arrange the cards 
within a given suit, so there are 13 !4 possible 
ways to order the cards with suits. Then there 
are 4! ways to order the suits. All together, 
this gives 4! x 13 !4 possible arrangements. 

There is no need to calculate this any 
further, but if you did, you should get the 
following result. 

36085481721713375974666734560870400000000 



6. The ten couples may appear in 10! orders. 

For each such order, there are 2 choices per 

couple, depending on whether a wife is in 15. 

front of her husband or vice versa. This gives 

7. 

8. 

a total of 1 0!210 possible arrangements. 

The answer is 0 since the first term in the 

d . ()2 0 
pro uct 1s 0+1 = . 

We can write A as { -9, -8, ... , 8, 9} and 

so IAI = 19. 

9. (a) is TRUE and (b)-(e) are FALSE. 

10. (a) TRUE. Proof Suppose X E 2An8. Then 

X :;;; A n B, and hence X :;;; A and 

X:;;; B. Therefore X E 2A and X E 28, 

and so X E 2An8. 

11. 

12. 

13. 

14. 

On the other hand, suppose X E 2An8 . 

Then X :;;; A n B, and so X :;;; A and 

X:;;; B. Therefore X E 2A and X E 28, 

sox E 2A n 28 . 

Because we have shown X E 

2An8 {:::::::::} X E 2A n 28 , we have 
2An8 = 2A n 28. • 

(b) FALSE. Counterexample: Let A 

{1,2}andB = {3,4}.Notethat2Au8 = 
2{ 1

•
2

•
3

·
41 contains 16 elements, but 2A U 

2 8 contains 4 + 4 = 8 elements. So 
2AU8 =j:. 2A U 28. 

(c) FALSE. Counterexample: Let A and B 

be any sets. We know that 0 E 2A~8 . 

However, since 0 E 2A and 0 E 28, we 

have that 0 ¢ 2A ~ 28. 

(a) FALSE, (b) TRUE, (c) TRUE, and (d) TRUE. 

(a) FALSE, (b) FALSE, (c) TRUE, and (d) TRUE. 

Statement (a) is not necessarily true; for ex-

ample, if p (x, y) is always true, this would 

be false. 
Statement (b) must be true based on the 

rules for negating quantified statements (and 

the fact that-,[ -,p(x, y)] is logically equiv­

alent to p(x, y)). 

Statement (c) must also be true. If the 

statement :3y, p (x, y) is true for all possible 

integers x, then certainly it is true for some 

integer x. 
1 

Given that A x B = {(1, 2), (1, 3), (2, 2), 

(2, 3)}, it must be the case that A = { 1, 2} 

16. 
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and B = {2, 3}. Then A U B = { 1. 2. 3}, 

An B = {2}, and A- B = {1}. 

The following figure gives a Venn diagram 

illustration of (A - C) U (B - C) = (A U 

B)-C. Notice that if we combine the shaded 

regions A- C (upper left) and B- C (upper 

right), wehavetheshadedregion (AUB)-C 

(bottom). 

Now for a standard proof. 
Suppose x E (A - C) U (B - C). This 

means that x E A - C or x E B - C. If 

x E A - C, then x E A and x ¢ C. Since 

x E A, we certainly have x E A U B. And as 

x ¢ C, we may conclude x E (AU B)- C. 

Likewise, if x E B - C, we conclude x E 

(AUB)-C. Thusifx E (A-C)U(B-C), 

then x E (AU B)- C. 
On the other hand, suppose x E (A U 

B) - C. This means x E AU B and x ¢ C. 

Because x E AU B, we know that x E A or 

x E B. In case x E A, since x ¢ C, we have 

x E A- C, and sox E (A- C) U (B --C). 

Likewise, if x E B we derive that x E (A­

C)U(B-C). Therefore,ifx E (AUB)-C, 

then x E (A - C) U (B - C). 

Since x E (A - C) U (B - C) iff 

x E (A U B) - C, we have that (A - C) U 

(B -C) = (AU B) -C. • 

From I A I + I B I = I A u B I + I A n B I we 

have the equation IO+IBI = 15+3, whence 

IBI = 8. 
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17. 

18. 

1. 

2. 

3. 

((AU B) - (A- B)) - (B -A). 

We ask: How many length-3 lists can be 
formed using n elements? 

On the one hand, there are n 3 such lists. 
On the other hand, the three elements on 

the list might be (a) all different, (b) two the 
same and one different, or (c) all the same. 
In case (a), there are (nh = n(n -l)(n- 2) 
such lists. In case (b), there are n choices 
for the repeated element, (n - I) choices for 
the nonrepeated element, and 3 choices for 
the slot the nonrepeated element can occupy, 
for a total of 3n (n - I) lists. Finally, there 
are n lists in which all three elements are the 
same. Summing these, we find the answer to. 
thequestionisn(n-l)(n-2)+3n(n-I)+n. 

Since these are both correct answers to 
the same question, we must have 

n 3 = n(n - I)(n - 2) + 3n(n - I) + n. 

• 
Chapter 3 

(a) This is the set containing your children. 
(b) This is the set containing your parents. 
(c) R is irreflexive (no one is their own 

parent) and antisymmetric (vacuously 
since x R y and y R x cannot hold for 
any x, y). The other properties (reflex­
ive, symmetric, and transitive) do not 
hold. 

(d) R- 1 is the is-the-child-of relation. 

The relations in (a) and (b) are equivalence 
relations; it is easy to see they are transitive, 
symmetric, and reflexive. 

The relation in (c) is not an equivalence 
relation. Although it is reflexive and sym­
metric, it is not transitive. For example, sup­
pose Alice and Bob have a son George (g), 

Bob and Cindy have a son Harry (h), and 
Cindy and Dave have a daughter Inga (i). 
Then g R h and h R i hold, but h R i is false. 

A relation R on A is a subset of A x A. In 
other words, R c A x A or, equivalently, 
R E 2AxA. Since lA x AI = 4 · 4 = I6, 
the cardinality of 2AxA is 2 16 , and that is 

4. 

5. 

6. 

7. 

8 . 

9. 

10. 

our answer. There are 216 relations defined 
onA. fc 

No. For example, take x = 2 andy = 112. 
Then x =yin both mod IO and 11. 

(a) R is reflexive: if x is any integer, then 
clearly lx I = lx 1. R is symmetric: if 
x R y, then lxl = lyl, hence IYI = lxl 
and so y R x. R is transitive: if x R y and 

y R z, then lxl = IYI and IYI = lzl and 
so lx I = I z 1. Therefore x R z. Therefore 
R is an equivalence relation. 

(b) [5] = { -5, 5}, [ -2] = { -2, 2}, and 
[OJ = {0}. 

The equivalence classes are [I] = [2] 
[3] = {1, 2, 3} = A and [4] = [5] 
{4, 5} =B. 

There are 6 equivalence classes depending 
on the cardinality of the sets (from 0 to 5). 

Suppose x andy are integers. Then x~y if 
and only if x andy have the same sign. 

Note that the sign of an integer xis often 
denoted sgn x and is defined by 

sgn x = { ~ 
-1 

if X> 0, 
if x = 0, and 
if X < 0. 

The answer is I0!210 /20; here's why. Imag­
ine the couples first stand in line. There are 
I 0 !210 ways for them to do this in which hus­
bands and wives are next to their respective 
spouses. See Problem 6 from Chapter Test 2 
(page 8I). 

Once they are lined up, they sit around 
the table (say, in clockwise order). Two of 
these seating arrangements are equivalent if 
one is a rotation of the other. Each equiva­
lence class has 20 seating patterns thus there 
are 10!210 /20 equivalence classes. 

The number of ordinary anagrams of ELEC­

TRICITY is 11 !/(23) because the word is 
eleven letters long and includes two each 
of E, c, and T. For each such anagram, 
there are 1 0 ways to insert a space to cre­
ate a two-word anagram. Hence the answer 
is IO · 11 !/8. 



11. 

12. 

13. 

14. 

15. 

Let us call the three types of squares on a 

tic-tac-toe board corner, side, and center. We 

count the possibilities depending on the first 

player's move. 
The first player puts an X in a comer 

square. 
In this case the second player has five 

distinct responses: near comer, far cor­

ner, near edge, far edge, center. 

- The first player puts an X in an edge 

square. 
In this case again the second player has 

five distinct responses: near comer, far 

comer, near edge, far edge, center. 

- The first player puts an X in the center. 

In this case the second player has two 

distinct responses: comer, edge. 

Therefore there are 12 distinct (inequivalent) 

opening pair of moves in tic-tac-toe. 

The answer is 21 !/(210 • 10!); here's why. 

Imagine the students stand in line, and then 

the teacher picks the lab partners by choos­

ing two students at a time from the line. 

The last student in line works alone. Two 

arrangements of the line that yield the same 

pairing are considered equivalent. 

There are 21! different ways for the 

students to line up. The size of all the 

equivalence classes is 10! · 210 because 

the first ten pairs may be rearranged and 

the students within a pair may swap their 

positions. 
Therefore there are 21 !/(210 · 10!) in­

equivalent ways for the students to line up, 

and this gives the number of pairings. 

The answer is (~~) because we are choosing a 

10-element subset of A'= {1, 3, 5, ... , 99} 

and IA'I =50. 

By the binomial theorem, the x 17 term is 

(
50)x 17250-

17 so the answer is (50
) 233 . 

17 ' 17 

The problem can be rewritten 

(n + 0) + (n + 1) + (n + 2) + · · · + (n + n) 

which eqtfals n2 + Ci1
). 

Optionally, this may be further simpli­

fied to (3n2 + n)/2. 

16. 

17. 

18. 

19. 

20. 
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The team can be chosen in (2
1°5°) ways, and 

for each such choice, there are ( 1;) ways to 
. f 1 ~f (200) (15) 

pick the co-captams, or a tota o 15 2 
possible ways to pick the team and co­

captains. 

Combinatorial proof Let N be a finite set 

with 1 N 1 = n + 2 and suppose two ele­

ments of N are considered weirdos. How 

many k + 2-element subsets of N can be 

formed? 
. . l (n+2) 

On the one hand, the answer IS Simp Y k+ 2 . 

On the other hand, we can consider how 

many weirdos are in the set: zero, one, or 

two. There are G) ways to choose a k­

element subset that contains both weirdos, 

2C:1) ways with one weirdo, and (k:2) 

ways with neither weirdo, for a total of 

G) +2C:~) + c:2). 
Therefore, c:;) =G)+ 2(k:l) + c:J. 

Proof via Pascal's Identity: Applying 

Pascal's identity to G:;) we have c:;) = 

G::) + G:D. Applying Pascal's Identity to 

each of these gives 

and then adding these two equations yields 

(n+2) _ (n) + 2 ( n ) + ( n ) . 
k+2 - k k+1 k+2 

For (a) the answer is (~0) and for (b) the 

answer is (( 14°)). 
The answer is 411

• Each potential element 

j (with 1 :::: j :::: n) may appear in the 

multi set 0, 1, 2, or 3 times. Let m i be the 

multiplicity of element j. Instead of count­

ing multisets directly, we can count lists 

of the form (m 1, m 2 , ••• , m 11 ) where each 

m i E {0, 1, 2, 3}. Thus there are 4 choices 

for each element of the list, for a total of 411 

lists. 

Let A· be the set of colorings in which row 
J 

j is entirely of one color. The set of "bad" 

colorings is A 1 U · · · U A4 • The number of 

"good" colorings is 216 - !A1 U · · · U A4j. 
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1. 

2. 

3. 

We evaluate this as follows: 

answer= 216 - IA1 U · · · U A4l 

= 216 - L IAil + L IAi n AJI 
i<j 

i<j<k 

+IA1nA2nA3nA4I 

= 216
- G) . 2 2' 2 + G) 4 2R 

_G) .g -24 + (:) -16. 

This equals (~)164 (-2)0 + (~)163 (-2) 1 + 
(~) 162( -2)2 + (~) 16 1 

( -2)3 + (1) 16°( -2)4, 
which simplifies to ( 16-2)4 by the Binomial 
Theorem. 

Alternatively, there are 16 - 2 ways to 
color each row, so there are 144 possible 
colorings. 

Chapter 4 

Suppose, for the sake of contradiction, that 
x 2 + 1 = 0 has a real root, a. Since a is a 
real number, we must have one of a < 0, 
a = 0, or a > 0, but in every case a2 2:: 0. 
Therefore a 2 =P -1, so a 2 + 1 =P 0.::=}{= • 

Suppose, for the sake of contradiction, there 
are four consecutive integers, a, a + 1, a + 
2, a + 3, whose sum is divisible by 4. That 
is, a+ (a+ 1) +(a +2) +(a +3) = 4a +6 is 
divisible by 4. Therefore, there is an integer 
b such that 4b = 4a + 6, giving b - a = ~ 
orb- a - 1 = ~.Note that b- a - 1 is an 
integer but ~ is not.=}{= • 

We are given that alb and bla. So there exist 
integers x and y with ax = b and by = a. 
Multiplying these together gives abxy = 
ab. Since a, b > 0, we know that ab # 0, 
so dividing by ab gives xy = 1. The only 
pairs of integers that multiply to give 1 are 
(x, y) = (1, 1) and (x, y) = (-1, -1). The 
latter is impossible because if a = ( -1)b, 
then a and b cannot both be positive. There­
fore (x, y) = (1, 1) and so a= b. • 

4. 

5. 

Sets (b), (c), (d), and (f) are well-ordered, 
and the others are not. fc 

The proof is by induction on n. The case 
n = 1 (basis case) is obvious because both 
sides evaluate to 1. 

Suppose (induction hypothesis) that the 
result is true when n = k; that is, 

3k2
- k 

1 + 4 + 7 + ... + (3k- 2) = -2-. 

Adding 3(k + 1)- 2 = 3k + 1 to both sides 
gives 

1 + 4 + ... + (3k - 2) + (3k + 1) 

3k2
- k 

--- +3k + 1. 
2 

Note that 

3k 2 - k 3k2 
- k + 6k + 2 --- + 3k + 1 = ------

2 2 

3(k + 1 )2 
- (k + 1) 

2 

and so 

3k2 + Sk + 2 

2 

3k2 + 6k + 3- k- 1 

2 

3k2 + Sk + 2 

2 

3(k + 1)2
- (k + 1) 

1 +4+ ... +[3(k+ 1) -2]= -----
2 

as required. • 
6. The proof is by induction on n. The basis 

case, n = 0, holds because both sides of the 
inequality evaluate to 1. 

Assume (induction hypothesis) that the 
inequality has been proved for n = k; that 
is, 0! + 1! + ··· +k! :::=:: (k + 1)!. Adding 
(k + 1)! to both sides gives 0! + 1! + · · · + 
k! + (k + 1)! ~ 2 . (k + 1)!. 

Notethat(k+2)! = (k+2)·(k+ I)!~ 
2 · (k + 1)! (because k + 2 2:: 2 since k ~ 0). 
ThereforeO!+ 1!+· · ·+(k+ 1)! :::=:: (k+2)! 
as required. • 

7. The proof is by induction on n. The basis 
case, n = 0, is true because a0 = 1 and 
(2·4°+1)/3=3/3= 1. 



8. 

9. 

10. 

Suppose the result has been proved 
when n = k (i.e., ak = (2 · 3k + 1)/3). Now 
consider ak+ 1 • We know that ak+ 1 = 4ak - 1, 
and so 

[2 . 4k + 1] 
ak+ 1 = 4ak - 1 = 4 

3 
- 1 

4. 2 . 41 + 4- 3 2 . 4k+l + 1 

3 3 
as required. • 

The proof is by induction on n. The basis 
case, n = 0, is true since 0 < 2°. 

Suppose (induction hypothesis) that 
k < 2k. We must show that k + 1 < 2k+ 1 

• To 
this end, we add 1 to both sides of k < 2k to 

find k + 1 < 2k + 1 ::: 2k + 2k = 2k+ 1 
• • 

Proof by contradiction: Suppose Pis a finite 11. 
set of points in which any three points are 
collinear but, for the sake of contradiction, 
the points do not all lie on a common line. 
Choose a line L that includes two points, 
say x and y, in P. Since L does not con-
tain all the points in P, there is a third point 
z E P that is not on L. But then x, y, z are 
three points of P that are not collinear.::::}{= 
Therefore, all points in P lie on a common 

line. • 

Proof by induction: The proof is by in­
duction on the number of points (i.e., I P 1). 
In the case where the set has only 3 points, 
the result is obvious. 

Suppose the proposition has been 
proved for all sets of k points. Let P be a 
set of k + 1 points that satisfies the hypoth­
esis of the proposition. Let a be any point in 
P, and let P' = P- {a}. Then P' also sat­
isfies the hypothesis of the proposition, and 
so, by induction, the points in P' lie on a 
common line L. Let x and y be two distinct 
points (other than a) in P; note that x, y, a 

lie on a common line, and since L contains 
x and y, all three lie on L. Hence all points 

in P lie on f. • 
The proof is by induction on n. The basis 
case, n = 1, is true because both sides of the 
inequality evaluate to 1. 
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Suppose (induction hypothesis) that the 
result is true when n = k; that is, 

To show that the result is true when n 

k + 1, we add JkTI to both sides of this 
inequality to get 

Because -Jk < Jk+T, we have 

k~+Jk+T < kJkTI +Jk+T 

= (k + l)Jk+l 

and so v1 + V"2 + · · · + -Jk + JkTI .:S 
(k + 1 )Jk+} as required. 8 

The proof is by induction on n. For the basis 
case, n = 0, we note that (x + y )0 = 1 and 
also 2:::1 (';)xiyn-J = (~)x 0y0 =_1. 

Assume (induction hypothesis) that the 
result has been proved for n = k. We seek 
to prove the case n = k + 1. Note that 
(x + y)k+l = (x + y)(x + y)k and we can 

expand the latter, giving 

k ) (x + y)k+l = (x + y) L (~ xi_,_J-J 
j=O J 

= t (~)xi+ 1 _l-J 
j=O J 

+ t (~)xi_l+ 1 -J_ 
}=0 J 

The first term of the second sum is x 0yk+ 1 

and the last term of the first sum is xk+ 1 y0
. 

Otherwise, we can collect like terms from 
the two sums and note that the coeffi­
cient of xi yk+I-J (with 1 _:=: j _:=: k) is 

( .~ 1 ) + (k), which, by Pascal's Identity (The-
1 1 (k-f I) orem 16.1 0), equals 

1
- . 

Therefore 

k+l :L:::k+l (k + 1) j k+l-j 
(x + y) = . x y 

- . J 
1 

as required. • 
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12. The proof is by induction on n. In case n = 1, 
the single line divides the plane into two re­

gions and (~) + (:) + G) = 1 + 1 + 0 = 2, 
verifying the basis case. 

Suppose (induction hypothesis) there­
sult is true for collections of k lines. Consider 
a collection of k + 1 lines that satisfies the 
hypothesis of the result. Let L be any one of 
these lines. 

Observe that the k other lines divide the 
plane into (~) + (~) + G) regions. Line L 
intersects each of the three k lines and cuts 
through k + 1 regions. Thus line L creates an 
additional k region; therefore the k + 1 lines 
cut the plane into (~) + (~) + (~) + (k + 1) 
regions. This can be rewritten as 

Note that 

(~) e; 1) 
G)+l=e~1) 

G) +k = k(k; 1) +k = (k ~ I )k = c : 1) 
and so the k + 1 lines cut the plane into 
(k~l) + (ktl) + e;2) regions. • 

13. The proof is by strong induction on n. The 
basis case, n = 0, is clear because both sides 
of the equation evaluate to 3. The equation 
is also true for n = 1 because both sides 
evaluate to 5. 

14. 

15. 

Assume (strong inquction hypothesis) 
that the equation has been shown for n = 

0, 1, 2, ... , k (where k ~ 1). In particular, 
we have 

Adding these equations together gives 

which is precisely the n = k + 1 case of the 

result. • 

We prove this by induction on n. For the ba­
sis case, n = 0, we note that F0 = F1 = 1, 
so the only positive divisor of both is 1. 

Suppose (induction hypothesis) that the 
only positive divisor of Fk and Fk+ 1 is 1. We 
must show that 1 is the only positive divisor 
of Fk+t and Fk+2• Suppose, for the sake of 
contradiction, that there is an integer d > 1 
with dl Fk+2 and dl Fk+I· Because Fk+2 = 
Fk + Fk+ 1, we have Fk = Fk+2 - Fk+ 1, 

and so if d divides both Fk+2 and Fk+ 1, we 
see that diFk. But then diFk and diFk+ 1, but 
d > 1.=}~ Therefore the only positive di­
visor of Fk+ 1 and Fk+2 is 1. • 

(a) Consider the first tile. If the tile is a 1 x 1, 
then there are 2 choices for the color of 
that tile, and the remainder of the stripe 
can be completed in an-I ways. If the 
tile is a 1 x 2, then there are 3 choices for 
its colors and an-2 ways to tile the rest of 
the stripe. Thus there are 2an-I + 3an_2 

ways to tile the stripe. 
(b) We prove this by strong induction on n. 

In the case n = 1, there are only 2 ways 
to tile the stripe, and (32 + ( -1 ) 1 )/4 = 
(9- 1)/4 = 2. In the case n- 2, there 
are 2 x 2 ways to tile using two 1 x 1 tiles 
and 3 ways to tile using a single 1 x 2 
tile, for a total of 7 possible tilings. 
Let us assume (strong induction hypoth­
esis) that the result has been proved for 
n = 1, 2, ... , k (where k ~ 2). In 



particular, we know that 

3k + ( -l)k-1 
ak-l = 

4 
and 

3k+l+(-l)k 

4 

Using the identity we proved in (a), we 

have 

ak+l = 2ak + 3ak-1 

16. 

3k+l+(-l)k 3k+(-1)k-J 
=2· +3·-----

4 4 

- (2·3k+l+3·3k)+(2·(-1)k+3·(-1)k-l) 

4 

3. 3k+l + (2- 3) . ( -l)k 

4 

3k+2 + ( -l)k+l 

4 

as required. • 
Proof. 
Existence. The proof is by the method of 

smallest counterexample. [Alternatively, we 

could write this proof using strong induc­

tion.] Suppose the result is false and let x be 

a smallest counterexample. Note that x # 1 

since we can write 1 = 2° . 1. Also observe 

that x is not odd, for then we could write 

x = 2° · x. Thus we may assume x is even. 

In this case x /2 is a smaller positive integer 

(and therefore not a counterexample), so we 

can write ~ = 2a · b where b is odd. But then 

x = 2a+l · b, undermining our supposition 

that x is a counterexample.=}{= Therefore 

every positive integer n can be expressed in 

the form n = 2a b where b is odd. 

Uniqueness. Suppose, for the sake of 

contradiction, there is an integer n and dis­

tinct pairs of nonnegative integers (a, b) and 

( c, d) such that b and d are odd and 

n = 2ab = 2cd. 

Were it th~ case that a = c, then 2a b 

2c d =} b . ~ d, contradicting the assertion 

that (a, b) and (c, d) were different pairs. 

Thus a# c. 

17. 

18. 
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Without loss of generality, a < c. 

Therefore 

where c - a > 0. Therefore b is even, but 

it is also odd.=}{= Therefore there is only a 

pair of nonnegative integers (a, b) such that 

n = 2ab and b is odd. • 

(a) We prove this by induction on the size 

of A. In the case that A has only one 

element, t, then clearly tIt, so the basis 

case is true. 
Assume (induction hypothesis) that the 

result is true for all sets of positive 

integers with k elements. Let A be 

a set with k + 1 elements that satis­

fies the condition (i.e., Vr E A, Vs E 

A, (rls or sir).) Let x be any element 

of A and let A'= A- {x }. Note that A' 

is a set of k positive integers that satis­

fies the condition. So, by induction, A' 

contains an element t' for which a it' for 

alia E A'.Now,sincex E A,eitherxlt' 

or t'lx. In the first case, note that all el­

ements of A are divisors of t', and we 

are finished. Otherwise (t'lx ), and since 

all elements of A' are divisors of t' and 

t'lx, it follows that all elements of A are 

divisors of x. • 

(b) Suppose A contains two different ele­

ments t and s with the property that all 

elements in A are divisors of s and also 

oft. This implies that sIt and tIs. Since 

s, t > 0, it follows (see Problem 3) 

that s = t .=}{= Therefore A contains a 

unique element that is a multiple of all 

elements in A. • 

(c) Let A = {-2, -1, 1, 2}. It is easy to 

check that for all a, b in A, either alb 

or bia. However, A has two distinct 

elements, -2 and 2, that are multiples 

of all. 

(a) an=~(-3)n+~(2t. 
(b) an = -4 · 2n + 8. 

(c) an = 611 
- ~ n 611

• 
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19. 

5 

1. 

2. 

3. 

4. 

5. 

We apply~ repeatedly to this sequence and 6. 
find the following: 

26 67 146 281 490 
21 41 79 135 209 

20 38 56 74 
18 18 18 

0 0 
Therefore 

= 5 + 21n + lOn(n- 1) + 3n(n- l)(n- 2) 

= 3n 3 + n2 + 17n + 5. 

Chapter 5 

(a) .f(2) = 3. 
(b) f ( 4) is undefined. 
(c) dom f = {1, 2, 3}. 

(d) im f = {2, 3, 4}. 
(e) .f- 1 = {(2, 1), (3, 2), (4, 3)}. 

(f) g- 1 = {(1, 2), (1, 3), (2, 4)} is not a 
function because it contains two distinct 
ordered pairs of the form ( 1 , ?) . (Also, 
g is not one-to-one.) 

(g) g 0 f = {(1, 1), (2, 1), (3, 2)}. 
(h) f 0 g = {(2, 2), (3, 2), (4, 3)}. 

(a) True. (b) True. (c) True. (d) False. For 
(d), note that f : A --+ B requires only that 
im f s; B. 

(a) 4 3 = 64. (b) ( 4 )3 = 4 X 3 X 2 = 24. 
(c) none. 

No, f is not necessarily onto. For example, 
let f : !Z --+ !Z by f(x) = 2x, and let g be 
the same function. Note that both f and g 

are one-to-one, but neither is onto. 7. 
However, if A and B are finite sets, then 

it would follow that f is onto. 

(a) First, f is not one-to-one. For example, 8. 
.f(-2) = 1-21 =2and.f(2) = 121 = 
2, so f (2) = .f (-2) but, of course, 
2 # -2. 

(b) Second, f is onto. Let x E N. Since 
N s::; /Z, certainly x E Z, and f (x) = 
lxl = x (sincex is nonnegative). There­
fore .f is onto. 

(a) f is one-to-one. W~offer two proofs. 
Proof 1: We claim {hat f is an increas­
ing function; that is, if x < y, then 
f (x) < f (y). To see why, we consider 
three cases: 
* x and y are both nonnegative (i.e., 

0 :::; x < y ). In this case, x < y 
implies .f(x) = f 3 = x . x 2 < 
y. x2 < y. y2 = y3 = f(y). 

* x and y are both negative (i.e., 
x < y < 0). Since x < y and both 
are negative, x 2 > y 2 > 0 and so 
x 3 < y3, so f(x) < f(y). 

* x is negative and y is nonnegative. 
In this case, f(x) = x 3 < 0 s 
y3 = f(y). 

In all cases, x < y ====> f(x) < f(y). 
Thus if x # y, we certainly have 
f(x) # f(y), and so f is one-to-one. 
Proof 2: Suppose f(x) = f(y). Thus 
x 3 = y3, and so x 3 - y3 = (x- y) (x 2 + 
xy + y2). 
We claim that x 2 + xy + y 2 cannot 
equal zero. From the quadratic formula, 

-y ± Jy2- 4y2 -y ± yyC} 
X- ------- 2 - 2 

and because -J=3 is imaginary, there 
can be no pair of integers x and y for 
which x 2 + xy + y 2 = 0. 
Since x 2 + xy + y 2 # 0 and 0 = 
x 3 - y3 = (x- y)(x2 +xy + y2) = 0, 
it follows that x - y = 0, so x = y. 

Therefore f is onto. 
(b) f is not onto because there is no integer 

x such that f(x) = x 3 = 2. 

The only function that is an equiv­
alence relation on { 1, 2, 3, 4, 5} is 
{(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)}. 

There are 64 positions for a 2 x 2 block, 
but only 24 = 16 different ways to color 
the squares in the block. Therefore, by the 
Pigeonhole Principle, two blocks must be 
identically colored. 

Moreover, suppose (for contradiction) 
that each of the 16 possible colorings occurs 
at most 3 times. This can happen only if there 



are 3 x 16 = 48 or fewer 2 x 2 blocks. How- 12. 

9. 

ever, there are 64 such blocks.=}{= There-

fore some 2 x 2 pattern must repeat four 

times. • 

Because h(l) = 3 and h(l) = f[g(l)], 

we must have g(l) = 2 or 4. Similarly, 

from h(2) = f[g(2)] = 3, we must have 

g(2) = 2 or 4. From h(3) = 2 = f[g(3)], 

we must have g(3) = 1. From h(4) = 
5 = f[g(4)], we must have g(4) = 5. 

From h(5) = 3 = f[g(5)], we must have 

g(5) = 2 or 4. 
Therefore we know that g 

{(1, ?), (2, ?), (3, 1), (4, 5), (5, ?)} where 

each ? may be either a 2 or a 4, giving eight I3. 

possible answers. 

IO. Note that 

(f o g)(x) = f(3x + 2) 

= (3x + 2)2 + (3x + 2) - I 

= 9x2 + 15x + 5 

(go h)(x) = g(x 2 +x -1) 

= 3(x 2 + x- I)+ 2 

= 3x 2 + 3x- I 

(f o g)(x)- (go f)(x) = (9x 2 + I5x + 5) 

- (3x 2 + 3x - 1) 

= 6x 2 + 12x + 6 

= 6(x + 1)2
• 

11. Note that 

and 

and so 

14. 

(fogo h)(x) = f[g(2x + 1)] = f[a(2x + 1) + b] 15. 

= f[a(2x + 1) + b] 

= f (2ax + a + b) 

= 3 (2ax + a + b) - 4 

= 6ax + 3a + 3b - 4 

= 6x + 5. 

From this it follows that a = 1 and b = 2. 

Therefore 

(hog o f)(x) = h[g(3x - 4)] 

= h[(3x - 4) + 2] = h[3x - 2] 

= 2(3x - 2) + 1 = 6x - 3. 
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A discrete mathematician would be comfort­

able with setting 0° = 1. 
First, we can consider 0° to be an empty 

product and therefore equal to I (as in 

Section 8). 
Second, we can consider 0° to be the 

number of functions from the empty set to 

itself. There is exactly one such function­

namely, the empty set. Indeed, the empty set 

is a function because it satisfies the definition 

of function, albeit vacuously. The domain 

and image of the empty set (as a function) 

are both the empty set. This is the only pos­

sible function from the empty set to itself. 

The assertion f = g- 1 is false, as the fol­

lowing counterexample shows. Let A = Z, 

let g(x) = 2x for all x E Z, and let 

f(x) = { ~ . 0 
if x is even, and 

if xis odd. 

Notice that for any integer x, ( .f o g) (x) = 

f[g(x)] = f[2x] = x,sofog = idzo;.How­

ever, f i= g- 1
• For example, (5, 0) E .f, 

but (0, 5) t1. g, or, in customary notation, 

f(5) = 0 but g(O) ::/= 5. 

(a) {(1. 3). (2. 9). (3. 2). (4. 6). (5. 5). (6. 7). 

(7. 4). (8. 1). (9, 8)}. 

(b) Jr = (1' 3, 2, 9, 8)(4, 6, 7)(5). 

(c) n- 1 = (1, 8, 9, 2, 3)(4, 7, 6)(5). 

(d) Jr 0 Jr = (1, 2, 8, 3, 9)(4, 7, 6)(5). 

(e) n = (1,8) o (1,9) o (1,2) o (1,3) o 

( 4, 7) o ( 4, 6) and son is even. 

There are only n! elements of Sll, so the se­

quence n = n (I l, n <
2l, n <

3l, ... , must re­

peat itself eventually. Let j be the smallest 

index such that nUl = n lkl for some k > j. 

We claim that j = 1. Suppose, for the 

sake of contradiction, we have n (Jl = n <kl 

with 1 < j < k. Composing both sides of 

this equation on the left by n -I gives 

Jr-1 0 Jr(j) = Jr-1 0 Jr(k) 

=} Jr(j-1) = Jr(k-1) 

contradicting the fact that j was the first in­

dex of a repeated element.=?{= Therefore 

}=1. 
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16. 

17. 

Thus n = n(kl for some k > 1. Com­
posing on the left by n - 1 gives n -I o n = 
n- 1 o n<k) whence L = n(k-1l where k- 1 > 
0. 

If k - 1 = 1, that means L = n 
and so n = pi- 1 = nOl. Otherwise (i.e., 
k -l ?: 2), we have L = n(k-l) = n on(k-2l. 

So n<k-2) = n- 1 and k- 2 is positive. • 

The sum evaluates to 0 since both the posi­
tive terms and the negative terms (in different 
orders) rearrange to 1 + 2 + · · · + n. 
(a) We know we can write n as a com­

position of transpositions (see Theo­
rem 26.11) as follows: 

Ifri =(I, xi), or, equivalently, (xi, 1), 
leave it alone. If ri = (xi, Yi) with 
xi, Yi > 1, then we can replace it with 
(1, xi) o (1, Yi) o (1, xi) since (xi, yJ = 
(1, xi) o (1, Yi) o (1, xi). After these 
substitutions, we have expressed n as 
a composition of transpositions of the 
form (1, x). 

(b) In S3 observe that 

l = (1,2)o(1,3)o(l,2)o(1,3)o(l,2)o(l,3). 

Note that both (1, 2) and (1, 3) appear 
three times. 

18. Proof I: Suppose n has f. inversions, so 
sgn n = ( -l)f. Notice that in every fac­
tor of IT 1::::i<J::::n(x1 -xi), the larger sub­
scripted term precedes the smaller. But in 
IT 1::::i<J::::n(Xrr()) - Xrr(il) there are exactly f. 
factors in which the smaller subscripted term 
precedes the larger, so to restore equality, we 
can multiply by ( -l)e. • 

Proof 2: Decompose n as the compo­
sition of transpositions, n = r 1 o · · · o ra. 
Starting with the original product 
IT 1 :Si<J:Sn (xi -xi), replace subscripts i with 
ia(i) fori = 1, ... , n. If ia = (p, q), then 
n - 2 of the terms of the form ±(xp - x1) 
become ± (xa - x 1), and another n - 2 terms 
of the form ±(xq - x 1) become ±(xq -xi); 
there is no effect on the product as the 

19. 

20. 

21. 

1. 

result of these changes. However, the term 
±(xp - Xq) becomes ±f.c(xq - Xp), resulting 
in a change of sign for the entire product. 
As each subsequent transposition is applied, 
the sign changes, so in the end we have 
changed signs a times. Therefore the re­
sulting product is ( -1 )a = sgn n times the 
original. • 
(a) Starting from a home position, vertex 1 

can be moved to any of the four corners. 
Then vertex 2 can be rotated into any of 
three positions, and finally, vertex 3 may 
be reflected into any of 2 positions, so 
there are 4 · 3 · 2 = 24 distinct symme­
tries. Hence the set of symmetries is all 
of S4. 

(b) There are only 12 possible symmetries 
of the tetrahedron (when we omit reflec­
tions), and we can explicitly list them. 

(1)(2, 3, 4) 

(3)(1' 2, 4) 
(1' 2)(3, 4) 

(1)(2, 4, 3) 

(3)(1' 4, 2) 
(1, 3)(2, 4) 

(2)(1' 3, 4) 
(4)(1' 2, 3) 
(1,4)(2,3) 

(2)(1' 4, 3) 
(4)(1, 3, 2) 
(1)(2)(3)(4) 

Notice that these are precisely the even 
permutations of S4 • 

We can conclude that x must be an integer. 
To show that 2n is 0 (311

), it is enough to note 
that 12n I .:::; 1311 1 for all positive integers n. 

Suppose, for the sake of contradiction, 
that 311 is 0 (2n). Then there is a positive 
number M such that 1311 1 .:::; Mj211 l for all 
but finitely many positive integers n. We may 
drop the absolute value bars because 211 and 
311 are always positive, and so we have 

(3) 11 

- <M 2 -

for all but finitely many n. However, the val­
ues ( ~) n get larger and larger as n grows, 
exceeding any specific number.=}{= There­
fore 311 is not 0 (211

). 

Chapter 6 

The sum of P(a) over all a E S must be 1. 
InS, there are five even numbers, for which 
P(a) = x, and five odd numbers, for which 



P(a) = 2x. Therefore 5(x) + 5(2x) = 1 so 

l5x = 1 and therefore x = fs-. 
2. (a) 63 . (b) 64 . 

3. P(A) = P(l) + P(4) + P(7) + P(9) 
I 4 7 9 21 

55+ 55+ 55+ 55 = 55· 
4. (a) There are 10! ways in which the chil­

dren may line up, and all are equally 

likely. There is only one ordering in 

which the children appear alphabeti­

cally by name, so the probability is 

1/10!. 
(b) There are 5! · 5! ways in which the chil­

dren may line up so that all the girls pre­

cede all the boys. Therefore the proba­

bility is 5! · 5!/10! = 1/252. 
(c) The first girl may be in position 1 

through 6 on the line. Once the posi­

tion for the first girl is set, there are 

5! · 5! ways for the children to take their 

places, giving a total of 6 · 5! · 5! success­

ful outcomes. Therefore the probability 

is 6 · 5! · 5!/10! = 1/42. 
(d) There are 2 · 5! · 5! ways in which the 

children may stand so that they alternate 

by gender. Therefore the probability is 

2. 5!. 5!/10! = 1/126. 
(e) Let B be the event that the boys are in a 

contiguous block, and let G be the cor­

responding event for the girls. We seek 

P(B n G). Note that 

P(B n G) = P(B U G) 

= 1- P(B U G) 

= 1- [P(B) + P(G)- P(B n G)]. 

Frompart(c)wehave P(G) = P(B) = 

1/42. To calculate P(B n G), note there 

are 2 · 5! · 5! ways in which the children 

might stand in which all the boys are to­

gether and all the girls are together, so 

P(B n G) = 2 · 5! · 5!/10! = 1/126. 

Therefore 

- - 2 1 5 
P(B fi A) = I - 42 + 126 = 126. 

5. (a) There are (i~) ways to choose the hand, 

each of which is equally likely. There is 
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only one way to select the cards if all 

13 are spades. Thus the probability is 

1 IC~). 
(b) There are G~) ways to choose the cards 

such that all are black, so the probability 

is (~~)I (i~) . 
(c) Let B be the event that all the cards are 

black and R be the event that all the 

cards are red; we seek P(R n B). We 

can rewrite this as 

P(RnB) = P(RUB) 

= 1- P(R U B) 

= 1 - [P(R) + P(B)- P(R n B)]. 

From part (b), P(R) = P(B) = 
G~)l(i~) andP(RnB) = Osincethere 
is no way to choose the cards such that 

they are all black and all red. Therefore 

2(26) 
P(RnB) = 1- 5~3 ( 13) 

580008 
= -- ~ 0.999967. 

580027 

(d) Let A be the event that one (or more) of 

the cards is an ace. There are e~~4) = 

(~~) ways to choose an aceless hand, 

so P (A) = (~~)I (i~) . This evaluates to 
approximately 30%. 

(e) Thereare52-13-4+ 1 = 36cardsin 

the deck that are neither hearts nor aces. 

Therefore the probability of drawing 13 

cards none of which is an ace or a heart 

is C~) I (i~) · 
6. (a) Theonlywaytodraw21istopickanace 

together with a face card or 10. There 

are 52 x 51 ways to pick two cards (in 

sequence) from the deck. Of these, there 

are 2 x 4 x 16 sequences in which one 

of the cards is an ace and the other is 

a ten or face card. So the probability 

is (2 · 4 · 16)/(52 ·51) = 32/663, or 

roughly 4.8%. 
(b) Of the 52 x 51 = 2652 ways to draw a 

face card, the following chart gives the 

number of ways to draw the sum 16 or 

higher, depending on the first card. 
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7. 

8. 

First card Choices for 2nd card Total 

2, 3, or 4 0 0 

5 4 (aces only) 16 

6 20 (I 0 or higher) 80 

7 24 (9 or higher) 96 

8 28 (8 or higher) 112 

9 32 (7 or higher) 128 

10 or face 36 (6 or higher) 576 

ace 40 (5 or higher) 160 

Total number of ways: 1168 

Therefore, the probability that the two 
cards drawn sum to 16 or higher is 
1168/2652 = 292/663, or approxi­
mately 44%. 

(c) Let A be the event that the first card 
is an ace, and let F be the event that 
the second card is a face card. We seek 
P(F/A). This equals P(F n A)/ P(A). 
The numerator equals (4 · 12)/(52 · 
51) and the denominator equals 4/52. 
Therefore 

(4. 12)/(52. 51) 4 
P(F/A) = 4/52 = 17· 

9. 

Let F B be the event that the first card is 10. 
black and L R be the event that the last 
card is red. We seek P(LR/FB), which 
equals P(LR n FB)/ P(FB). The numer-
ator equals (26 · 26) I (52 · 51) and the de­
nominator equals 26/52 = 1/2. Therefore 

P(LR/FB) = (26·26)/(52·51) =26/51. 
1/2 

The two events, F B and L R, are not inde­
pendent. Above we showed that P ( F B n 
LR) = (26·26)/(52·51) = 13/51, but 

P(FB) · P(LR) = ~ · ~ = *· 
Let A be an event for a sample space (S, P). 
Events A and A are independent if and only 
if P(A) = 0 or P(A) = 1. 

(Alternatively, the theorem may con­
clude " ... if and only if P(A) = 0 or 
P(A) = 0," etc.) 

Proof. ( ==}) Suppose Aand A are indepen-
- f' -

dent. Then P(A)P(A) = P(A n A), and 
these must equal 0 since An A = 0. There­
fore P(A) = 0 or P(A) = 0 and the latter 
is equivalent to P(A) = 1. 

({:::)Suppose P(A) = 0 or P(A) = 1. 
In either case, P(A)P(A) = 0 = P(0) = 
P(A n A) and so A and A are independent. 

• 
For events R and C, we have 

64.8 1 
P(R) = 642 = 8' 

1 
P(C) = 8, and 

64. 1 1 
P(R n C)= 

642 
= 

64 
= P(R) · P(C). 

Therefore R and C are independent. 
For events R and B, we have 

1 
P(R) = 8, 

322 1 
P (B) = - = -, and 

642 4 
32·4 1 

P(R n B) = 
642 

= 
32 

= P(R) · P(B). 

Therefore R and B are independent. Like­
wise, C and B are independent. 

For events R and C, we have 

64.7 1 
P(R) = 64 · 63 = 9 

1 
P(C) = -, and 

9 
P(R n C) = 0 # P(R) · P(C). 

Therefore R and C are not independent. 
For events R and B, we have 

1 
P(R) = 9, 

32 . 31 31 
P(B) = 64 · 63 = 126 and 

32. 3 1 31 
P(R n B) = 64 · 63 = 42 # 5292 

= P(R) · P(B). 

Therefore R and B are not independent. 
Likewise, C and B are not independent. 
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Alternative analysis: Instead of choos­
ing the squares in sequence, we can choose 
them as a pair in (6

2
4

) ways, all of which are 
equally likely. 

14. (a) There are 32 cards with even value (four 

For the events R and C, we have 

8 (~) 1 
P(R) = (624) = 9' 

each of 2, 4, 6, 8, 10, jack, queen, 
and king). Therefore P(X is even) = 

32/52 = 8/13. 
(b) Each sort of card appears with proba­

bility 1 I 13 so the expected value of X 
is 

1 
P(C) = -, and 

9 

E(X) 

P(R n C)= 0 # P(R) · P(C). 

For the events R and B, we have 

1 
P(R) = 9, 

C2) 31 
P(B) = (6;) = 

126
, and 

8 (~) 1 31 
P ( R n B) = (64) = - # - = P (R) · P (B). 

2 42 5292 

11. Suppose the coin produces HEADS with prob­
ability p and TAILS with probability 1 - p. 

Let A be the event that we flip HEADS-TAILS, 

and let B be the events that the two flips are 

different. We calculate as follows: 

12. 

P(AIB) = P(A n B) 
P(B) 

p(l- p) 1 

p(l-p)+(l-p)p 2 

Proof. We are given that A s; B and 

P(A) # 0. Therefore P(B) # 0. Note that 

P(AIB) _ P(A n B) _ P(A) 
P(B) P(B) 

with the last equality because A n B = A 

since A s; B. The result now follows by 
multiplying the displayed equation through 

by P(B). • 

13. Since 

0 = E(X) = X(a)P(a) + X(b)P(b) + X(c)P(c) 

= (1)(0.4) + (2)(0.4) + X(c)(0.2) 

= 1.2+0.2X(c) 

it follows that X(c) = -1.2/0.2 = -6. 

2+3+4+5+6+7+8+9+4x 10+ 11 

13 
95 

13 

(c) The expectation of Y is the same as that 

of X; that is, E(Y) = 95/13. 
(d) The random variables X and Y are not 

independent. For example, consider the 
probability that both are equal to 2. We 
have 

4 X 3 } 
p (X = l 1\ y = l) = 52 x 5 1 221 ' 

P(X = 2) = P(Y = 2) 

4 

52 

I 

I 

13' but 

P(X = 2) · P(Y = 2) = 
169 

# P(X = 2 1\ Y = 2). 

(e) Bylinearityofexpectation,E(X+Y) = 
E(X) + E(Y) = 2l + 2l = 190

. 
13 13 13 

(f) The probability X = Y can be calcu-
lated by 

P(X = 21\ Y = 2) + · · · + P(X = 11 1\ Y = 11). 

We calculate each summand as follows: 

4x3 
P(X = 2 1\ y = l) = 52 X 51 122 

1 
p (X = 9 1\ y = 9) = 1 22 

16 X 15 20 
P(X= 10/\Y=l0)=52x51 221 
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15. 

1 
P(X = 11 !\ Y = 11) = -

221 

11 29 
I: p (X = j !\ y = j) = 221 . 
)=2 

(g) We use the formula Var (X)= E (X2) -
E(X)2 . 

22 + 32 + · · · + 92 + 4 X 102 + 112 
E(X2) = 13 

805 

13 

(
95)

2 

E(X)2 = }3 
9025 

169 

Var (X) = E (X2) - E (X)2 

805 9025 1440 
----
13 169 169 

The analysis is simplest if we write X 
X1 + X2 + · · · + Xs where X 1 is the change 
in stock price on the jth day. 
(a) Note that E(X) = E(X1) + · · · + 

E (X 5 ). Each summand is given by 
E(X1) (0.6)(2) + (0.1)(5) + 
(0.3)( -4) = 0.5. Therefore E(X). = 
5(0.5) = 2.5 = ~·We expect the stock 
value to rise $2.50. 

(b) Recall that Var (X) = E(X2)- E(X)2. 
Using the fact that the Xis are indepen­
dent, we calculate as follows: 

E(X2) = E[(Xt + · · · + Xs)2] 

= E(XT+ .. ·+X;+2XtX2 

+ · · · + 2X4Xs) 

= 5E(XT) + 20E(XtX2) 

= 5E(XT) + 20E(Xt)E(X2) 

= 5(0.6(2)2 + 0.1 (5)2 

+ 0.3( -4)2) + 20(0.5)2 

= 53.5 

E (X)2 = (2.5)2 = 6.25 

Var (X) = E(X2)- E(X)2 

= 53.5- 6.25 = 47.25. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

Alternatively, we could use the fact that 
Var (X) = Var (X'i) + · · · + Var (X5) 

(because the Xis are independent). 

Chapter 7 

q = 4 and r = 3, so 23 div 5 = 4 and 
23 mod 5 = 3. 

Proof. Suppose bla. Then there is an in­
teger q such that a = qb. So we can write 
a = q b + 0, so by definition of div , we 
have q = a div b. Since q = ~' the result 
follows. • 

Proof. We are given that a, b are positive 
integers with a 2: 2 and a I (b! + 1). Suppose, 
for the sake of contradiction, that a ::s b, and 
so alb!. Since a divides both b! + 1 and b!, 
it divides their difference (b! + 1)- b! = 1, 
and so a = 1; but a 2: 2.=}{= Therefore, 

a> b. • 
( =}) Suppose gcd(p, q) = 1 but, for the 
sake of contradiction, p = q. But then 
gcd(p, q) = p = q > 1.=}{= Sop i= q. 

( {=) Suppose p i= q but, for the sake 
of contradiction, gcd(p, q) = d > 1. Then 
dip and dlq. Since d > 1, this is possi­
ble only if d = p and d = q, whence 
p = q.=?{= Therefore gcd(p, q) = 1. • 

x = 4 and y = -7. Other answers are pos­
sible, so long as 1 OOx + 57 y = 1. 

From the previous problem, we know that 
100 X 4 + 57 X ( -7) = 1, SO -7 X 

57 = 1 (mod 100). Since -7 = 93 
(mod 1 00), we have that the reciprocal of 
57 is 93. Checking: 57 x 93 = 5301 = 1 
(mod 100), so 57 0 93 = 1 in Z 100 • 

Proof. We prove that gcd( Fn, Fn+ 1) = 1 
by induction on n. 

The basis case, n = 1, is simple because 
gcd(F1, F2 ) = gcd(l, 2) = 1. 

Suppose (induction hypothesis) that Fk 
and Fk+ 1 are relatively prime; we must prove 
that Fk+ 1 and Fk+2 are also relatively prime. 

Suppose, for the sake of contradiction, 
that gcd(Fk+t, Fk+2) = d > 1. So dl Fk+ 1 



8. 

9. 

and diFk+2· Note that Fk+2 
which can be rewritten as 

Because d divides both terms on the right, 

d I Fk. Therefore d is a common divisor of 

both Fk and Fk+l·-=*~ 
Therefore Fk+l and Fk+2 are relatively 

prime. • 

Alternatively, we can complete the 

proof as follows. 
Since Fk and Fk+ 1 are relatively prime, 

there exist integers a and b such that a Fk + 
bFk+l = 1. Substituting Fk = Fk+2 - Fk+l 
gives 

1 = aFk + bFk+l 

= a(Fk+2- Fk+l) + bFk+l 

= (b- a)Fk+l + aFk+2· 

Therefore Fk+ 1 and Fk+2 are relatively prime 

by Corollary 35.9. • 

Let n, p be as given in the problem and 

let d = gcd(n, n + p). Since d is a com­

mon divisor of n + p and n, we know that 

din+ p- n; i.e., dip. Thus either d = 1 or 
d = p. The latter is impossible because we 

are given that p does not divide n. • 

Because p is prime, the sum of the positive 
divisors of pn is the (finite) geometric series 

1 + p + p2 + ... + pn 

which simplifies to 

pn+l _ 1 

p-1 

10. (a) 20, (b) 90, (c) 95, and (d) 85. 

11. Proof. We rely on Theorem 36.14 that 

a E Zn is invertible if and only if a and 

n are relatively prime. 
( =}) Suppose n is prime. If 1 ::; a ::; 

n - 1, then· a and n can have no common 

factor and hence are relatively prime. Thus 

a is invertible in Zn. 

12. 

13. 

14. 

15. 

16. 
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( ~) Suppose all nonzero elements of 

Zn are invertible but, for the sake of con­

tradiction, n is not prime. Then there exists 

an integer a such that 1 < a < nand a ln. 

This means gcd (a, n) = a, so a is not invert­

ible and yet is a nonzero element of 71..11 .=} ~ 

Therefore n is prime. • 

The congruences are satisfied by all integers 

x such that x = 981 (mod 3264). 

Proof. ( =}) This is trivial. 
(~)Suppose gcd(a, b)= lcm(a, b)= 

d. This implies that dla, aid, bid, and dlb. 
By Problem 3 in the Self Test for Chapter 4 

(page 190), we have a = d and b = d, and 

so a= b. • 

(a) Becausen = 1010 = 210510
, we see that 

n has 11 x 11 = 121 positive divisors. 

(b) Of then integers between 1 and n, there 

are n/2 that share a factor of 2 with n 

and n/5 that share a factor of 5 with n. 

Of these, we have double-counted the 

multiples of both 2 and 5, and there are 

n I 1 0 of those. Therefore 

cp(n) = cp(lOlO) 

1010 1010 1010 

= 1010
- - - - + -

2 5 10 
=4x 109

. 

Proof. Let n be a positive integer. Factor­

ing n into primes gives 

n = p~~ p~2 ... p~~~ 

where the p j are distinct primes and the a j 

are natural numbers. The number of divisors 

of n is 

D = (a1 + 1)(a2 + 1) · · · (ar + 1). 

(See Exercise 38.12.) 
We now see that D is odd if and only 

if (aj + 1) is odd for all j if and only if aj 

is even for all j if and only if n is a perfect 

square. • 

Proof. Let a, b, c be positive integers and 

supposethatalbcandgcd(a,b) = l.Factor 
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17. 

a, b, c into primes as follows: 

a = 2x1 3x2 5x3 7X4 ••• 

b = 2"13Y2 5"'7"-1 .. . 

c = 2ZI J"2 SZ'7Z-1 .. . 

Since albc, we have x1 _:::: YJ + z1. Since 
gcd(a, b) = 1, we have x 1 > 0 =} YJ = 
0 =} x1 _:::: z1. Of course, if x1 = 0, then 
xi _:::: z J. Therefore x J _:::: z J for all j, and so 

ale. • 
Note that the sum of a consecutive integers 
beginning with x is 

x + (x +I )+(x +2)+ · · ·+ (x +a-1) =ax+(~). 
The term ax is clearly divisible by a, so the 
sum is divisible by a if and only if a I(~). 

Note that (~) = a(a;l) is an integer. 
( <==) If a is odd, then a - 1 is even, so 

21(a - 1). Therefore (~) = a x a;t, and 
because a; 1 is an integer, a I (~). 

( =}) If a is not odd (i.e., a is even), 
then a - I is odd. Since a is even, a = 

2b x powers of odd primes. 
So if we factor (~) = i x (a - 1) into 

primes, we note that 

(~) = zh-l X powers of odd primes 

a = 2b x powers of odd primes 

and so a cannot divide (~). 

Chapter 8 

1. (a) 3 * 4 = J3 2 + 42 = ~ = 5. 
(b) The operation * is closed for real num­

bers. If x and y are real numbers, then 
x 2 + y 2 is a nonnegative real number, 
and sox* y = Jx 2 +y2 is a real 
number. 

(c) The operation is commutative because 

x * y = J x2 + y2 = J y2 + x2 = y * x. 

(d) The operation * is associative because 

x * (y * z) = x * J y 2 + z2 

2. 

3. 

4. 

=vxl+(~)2 
= )x2 + y2 + 2 2 

and, by a similar analysis, (x * y) * z = 

jx2 + y 2 + z2
. Thereforex * (Y*Z) = 

(X*Y)*Z. 
(e) The operation * does not have an iden­

tity element. Suppose, for the sake of 
contradiction, that e is an identity ele­
ment. Then ( -1) * e = -1, but 

and so (- 1) * e #- - 1. =} <== 
Z~2 = { 1 , 3, 5, 7, 9, 11 , 13, 15, 1 7, 1 9, 21 , 
23, 25, 27, 29, 31}. In other words, Z~2 is the 
set of odd integers between 0 and 32. Thus 
cp(32) = 16. 

(a) H = {1, 4, 11, 14} 
(b) K = { 1 , 4}. 

Suppose that ( G, *) is Abelian and that H 
and K are defined as in the statement of the 
problem. 
(a) We need to prove that His closed under 

* and inverses. 
Suppose a, bE H. Then a *a= b* 

b = e. To show that a * b E H, we note 
that (a * b) * (a * b) = a * a * b * b = 
e * e = e (valid because* is commuta­
tive by hypothesis). 

Suppose a E H. Note that a* a = 
e = a * a- 1

, from which we have 
a= a- 1, and so a- 1 E H. 

Therefore (H, *) is a subgroup of 
(G, *). • 

(b) We need to prove that K is closed under 
* and inverses. 

Suppose a, b E K. Then there exist 
x, y E G such that a = x * x and b = 
Y*y.Notethata*b = (X*X)*(Y*Y) = 
(x * y) * (x * y) (where we use the fact 
that * is commutative). Therefore we 
know that a * b = z * z for some z E G 
(namely, z = x * y) and so a* bE K. 

Suppose a E H. Then a = x * x for 
somex E G. Letb = x- 1 *x- 1; clearly 



5. 

b E K by definition of K. Observe that 
a * b = x * x * x - 1 * x - 1 = e, and so 
b = a- 1. Therefore b- 1 E K. 

Thus (K, *)is a subgroup of (G, *). • 
Next we present the counterexamples for 
non-Abelian groups. 
(a) To show that His not necessarily a sub­

group when ( G, *) is not Abelian, we let 

(G, *) = (S4, o). 
Observe that (1, 2) and (2, 3) are 

in H because (1, 2) o (1, 2) = (2, 3) o 
(2, 3) = L. However, consider n = 
(1, 2) o (2, 3) = (1, 2, 3). Note that no 
7T = (1, 2, 3)o(l, 2, 3) = (1, 3, 2) =/:- L. 

Therefore n ¢:. K. Therefore K is not 

closed under the group operation o and 

so is not a subgroup. 
(b) To show that K is not necessarily a 

subgroup when ( G, *) is not Abelian, 
we let (G, *) = (A4 , o) where A 4 is the 
set of all even permutations in S4 • The 

twelve elements of A 4 are listed here. 

(I) (2) (3) ( 4) 
(2)(1, 4, 3) 
(4)(1, 3, 2) 

(1)(2, 3, 4) 
(3)(1, 2, 4) 

(1' 2)(3, 4) 

(1)(2, 4, 3) 
(3)(1, 4, 2) 

(I' 3)(2, 4) 

(2)(1,3,4) 
(4)(1, 2, 3) 

(1, 4)(2, 3) 

We form the set K by computing n o n 
for every n E A4 . When we do this, we 
get the following results. 

(1)(2)(3)(4) 

(2)(1' 3, 4) 
(4)(1, 2, 3) 

(1)(2, 4, 3) 

(3)(1' 4, 2) 
(1) (2) (3) ( 4) 

(1)(3, 4, 2) 
(3)(1, 2, 4) 
(1)(2)(3)(4) 

(2)(1, 4, 3) 

(4)(1, 3, 2) 
(1)(2)(3)(4) 

Thus, not counting duplicates, K has 
nine elements. We claim that (K, o) 

cannot be a subgroup of (A4 , o) for oth­
erwise, by Lagrange's Theorem (Theo­
rem 41.4), we would have 9112.=}¢= 
Therefore K does not constitute a sub­
group. 

We know that G must have an identity ele­

ment, which we may call e; let a and b be 

the other two elements. 
1 

Since e is the identity, we must have 

e * e = e, a * e = e * a = a, and 

b * e = e * b =b. 

6. 

7. 

Appendix B Solutions to Self Tests 533 

Next, we work out the value of a* b. 
There are only three possibilities: e, a, and 
b. We show that a * b must equal e by ruling 

out the other two possibilities. 
If a * b = b, then operating on the right 

byb- 1 givesa*b*b- 1 =b*b- 1 =} a=e, 
which is false. Likewise, a * b = a leads 

to b = e, which is also false. Therefore, 

a* b =e. 
By a similar analysis, b * a = e. 
Now we consider a *a; it might bee, 

a, or b. If a * a = a, then operating by 
a- 1 would give a = e, a contradiction. If 

a * a = e, then operating on both sides by b 
gives 

a*a*b=e*b 

a* e = b 

a= b, 

another contradiction. Therefore a *a =b. 
Likewise b * b =a. 
Thus we have deduced the * operation 

table. 

* e a b 

e e a b 

a a b e 

b b e a 

It is now easy to see that e ~---+ 0, a ~---+ 1, 

and b ~---+ 2 is an isomorphism of ( G, *) to 

(23, EB). • 

Consider the powers of 2 in (Z~3 , 0): 

20 21 22 23 24 25 

1 2 4 8 3 6 

Therefore the following function f : Z~3 --* 

2 12 is an isomorphism: 

1~---+0 

5~---+9 

9~---+8 

2~---+1 

6~---+5 

10 1---+ 10 

31---+4 
7 1---+ 11 
11 1---+ 7 

4~---+2 

8 1---+ 3 
12 1---+ 6 

(a) H EB K = {0, 5, 10, 15, ... , 95}. 
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(b) Proof. Suppose that ( G, *) is an 
Abelian group and H and K are sub­
groups. To prove that H * K is also a 
subgroup, we must show that H * K is 
closed under * and inverses. 

To show that H * K is closed under 
*, let x, y E H * K. This means there 
exist h 1, h 2 E Hand k 1, k2 E K such 
that x = h 1 * k 1 andy = h2 * k2. Note 
that 

X* y =(hi *k1) * (h2 *k2) = (hl *h2) * (kl *k2) 

and because H and K are subgroups, 
h1 *h2 E H andk1 *k2 E K. Therefore 
X*YEH*K. 

To show that H * K is closed under 
inverses, let x E H * K. Then x = h * k 
for some h E H and k E K. Note that 

x- 1 = (h*k)- 1 =k-1 *h- 1 =h-1 *k- 1
• 

Because H and K are subgroups, we 
have that h-I E H and k- 1 E K. There­
fore x- 1 E H * K. 

Thus H * K is a subgroup of (G, *). 

• 
(c) Let (G, *) = (S3, o), and let H = 

{L, (1, 2)} and K = {L, (1, 3)}. Note that 
Hand K are subgroups of (S3, o). 

Then the elements of H oK are LOL = 
L, L o (1, 3) = (1, 3), (1, 2) o L = (1, 2), 
and (1, 2) o (1, 3) = (1, 3, 2). 

Observe that although (1, 3, 2) E 

H oK, its inverse (1, 3, 2)- 1 = (1, 2, 3) 
is not in H o K. Therefore H o K is not 
a subgroup of (S3, o). 

9. 

10. 

11. 

12. 

8. TheelementsofZt5are{1,2,4, 7,8, 11, 13, 14}. 
We calculate g4 for each: 

g g4 g4 (mod 15) 

1 1 1 
2 16 I 
4 256 1 
7 2401 1 
8 4096 1 
11 14641 1 
13 28561 1 
14 38416 1 

Suppose, for the sake of contradiction, that 
(Zt5, 0) is cyclic. Then ~there is an element 
g E Zt5 such that the powers of g generate 
all the elements in Zt5. But because g4 = 1, 
the sequence 

must repeat after four (or fewer) steps 
and therefore cannot include all eight ele­
ments ofZt5.=}¢= Therefore (Zt5, 0) is not 
cyclic. • 

Because 89 is prime, Fermat's Little The­
orem (Theorem 42.1) asserts that 289 mod 
89 = 2. Since 290 = 289 x 2, we have 
290 mod 89 = 4. 

If n were prime, then Fermat's Little The­
orem (Theorem 42.1) implies that 2n = 2 
(mod n), but we are given that 2n ¢. 2 
(mod n).=}¢= Therefore n is composite. 

By Euler's Theorem (Theorem 42.6), if 
a and n are relatively prime, acp(n) = 1 
(mod n). Since 2 and 38168467 are clearly 
relatively prime, 2rp(n) = 238155320 = 1 
(mod n). However, we are asked to evalu­
ate 2rp(n)+l = 2cp(n) x 2 modulo n, and so 

238155321 mod 38168467 = 2 

874256 mod 9432 = 1296. 
The calculation can be done by squaring 

874 ten times, reducing modulo 9432 after 
each squaring. 

a= 874 square 

-+ 763876 mod 9432 

-+ a 2 = 9236 square 

-+ 85303696 mod 9432 

-+ a4 = 1077 square 

-+ 1159929 mod 9432 

-+ a 8 = 9103 square 

-+ 82864609 mod 9432 

-+ a 16 = 5137 square 

-+ 26388769 mod 9432 

-+ a32 = 4668 square 

-+ 21790224 mod 9432 



13. 

14. 

15. 

----+ a 64 = 9427 

----+ 88868329 

----+ai28=36 

----+ 1296 

----+ a 256 = 1296 

square 

mod 9432 

square 

mod 9432 

Since p = 883 is prime and p = 3 
(mod 4), we can find the square roots of 71 
using Proposition 44.3: 

m = ±71 (883+1)/4 mod 883 = ±707 

and so the square roots of 71 are 707 and 

-707 = 176. 

Let p = 499, q = 883, and n = pq = 
440617. We want to find all x E 7L 11 such 

that X 0 X= 1. 
In 7LP, we have x = ±1 (mod p) and 

likewise in 7Lq. This gives rise to the follow­
ing congruences. 

x=l (modp) 
x = 1 (mod q) 

x = 1 (mod p) 

x = -1 (mod q) 

x = -1 (mod p) x = -1 
x = 1 (mod q) x = -1 

(mod p) 
(mod q) 

These can be solved using the Chinese Re­
mainder Theorem method, but note that the 

first gives x = 1 (mod n) and the last gives 
x = -1 = n- 1 (mod n). Also, the so-· 

lutions to the second and third are simply 

negatives of each other. 
Solving x = 1 (mod p) and x = - 1 

(mod q) gives x =429139 (mod 440617). 

Therefore, the four square roots of 1 in 7L11 are 
1, -1 = 440616,429139, and -429139 = 
11478. 

We are given four square roots of 1010120 

in 7Ln (with n = 5460947): s, -s, t, and -t. 

Calculating gcd(s + t, n) (or gcd(s - t, n)) 

will reveal a prime factor of n. 

gcd(l235907 + 1842412, 5460947) 
1 

= gcd(3078319,5460947) 

= 4547. 
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Note that 454 7 is prime and 546094 7 j 
4547 = 1201, so 

5460947 = 4547 X 1201. 

16. Let m stand for the plaintext message. We 

have that m2 = 496410 in 'lL7 13809 . We find 

the four square roots of m 2 in 7L 11 , and they 

are 

160907 356083 357726 552902. 

Of these, only the first corresponds to a word, 
and the word is PIG. 

17. Since n = pq = 453899 = 541 x 839, 
we have that cp(n) = (p- 1)(q- 1) 

540 x 838 = 452520. Then d is e- 1 in 

'1L4s2s2o, which is 345689. 

18. Using the decryption exponent d = 345689 
we found in Problem 17, we find 

DA(105015) = 105015345689 (mod 453899) 

= 190625. 

The number 190625 is the word SPY. 

19. Solving the pair of equations 

1. 

2. 

3. 

pq = 40119451 

(p- 1)(q- 1) = 40106592 

for p and q gives the factors 5323 and 7537. 

Chapter 9 

One possible picture: 

o----o---c:r-o 0 
2 I 3 4 5 

No such graph exists. If there were such a 
graph G, then the sum of the degrees of the 
vertices would be 43, an odd number, but the 
sum must equal twice the number of edges, 

an even number.=}{= 

We offer two solutions. 
First solution. Between W; and W1 there 

are I 0 x 10 = 100 edges. Since there are 

( 
1

2°) = 45 ways to select the i and j, there 
are 4500 edges in G. 
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4. 

5. 

6. 

7. 

Second solution. Each vertex is adjacent 
to 90 others (the 9 x 10 in other Wjs). There­
fore, the sum of the degrees of the vertices 
in G is 9000, which is twice the number of 
edges. Therefore there are 4500 edges. 
(a) 2 to . (b) 2 15 . 

A length-5 path from a to b is of the form 

a '"'"' X J '"'"' x 2 '"'"' X 3 '"'"' x 4 "-' b 

where we can choose the xis without repe­
tition from among the vertices in K 10 other 
than a and b. There are 8 · 7 · 6 · 5 = 1680 
possible paths. 

(a) .f(O) = 0, g(O) = 1, .f(l) = 1, and 
g(l) = 0. 

(b) Consider (a, b)-paths with a #b. Start­
ing from a, the next vertex we choose 
might or might not be b. If the next ver­
tex is b, then there are g(k - 1) ways 
to complete the path. If the next vertex 
is not b (and there are 8 possible ways 
in which that can happen), then there 
are .f (k- 1) ways to complete the path. 
Therefore 

f(k) = 8.f(k- 1) + g(k- 1). 

(c) Starting from a, there are 9 choices for 
the next vertex on an (a, a) path, and 
then there are .f (k - 1) ways to com­
plete the path. Therefore 

g(k) = 9f(k- 1). 

(d) Using this information, we can build a 
chart of values for f (k) and g(k). 

k f(k) :;;(k) 

0 0 1 
I I 0 
2 8 9 
3 73 72 
4 656 657 
5 5905 5904 

Therefore, there are 5905length-5 paths 
from a to b (with a #b) in K 10 • 

Suppose, for the sake of contradiction, that 
G is not connected. Then G has two (or 

8. 

9. 

10. 

11. 

more) components. Let A be the vertices in 
a smallest component df G. Because A is 
a smallest component of G, it has no more 
than n/2 vertices. Choose x E A. Note that 
xis adjacent only to other vertices in A (and 
not to itself) and so d(x) < n/2, contradict­
ing the hypothesis that 8(G) ::::: n/2.=?-{= 
Therefore G is connected. • 

The number of 3-cycles is (;) = 10. 
There are 4!/(4 · 2) = 3 different ways 

to make a cycle on four vertices, so the num­
ber of 4-cycles is (!) · 3 = 15. 

The number of 5-cycles on 5 vertices is 
5!/(5. 2) = 12. 

Therefore the total number of cycles is 
10 + 15 + 12 = 37. 

Let G be a connected graph with n vertices. 
Suppose the average degree of a vertex a is 
less than 2. Note that 

a=~ L d(v) = _21_E(_G_)I 
n n 

vEV(G) 

The number of edges in G is therefore 
~na < n. Because G is connected, G has 
at least n - 1 edges, and since G has fewer 
than n edges, it must be the case that G has 
exactly n - 1 edges. Therefore, by Theo­
rem 49.12, G is a tree. • 

The following two trees are not isomorphic, 
but the degrees of their vertices are the same. 

1 2 3 4 5 

~ 
3 2 4 5 

~ 
A disconnected graph on 1 0 vertices can 
have up to 36 edges, but no more. Here is 
why: 

If G has 10 vertices and is disconnected, 
then G has two (or more) components. Let 
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A be the vertices in one component and let B 

be the remaining vertices. If we add edges to 

either A or B, we will not create a connected 

graph (since there are no edges between A 

and B). Thus we may assume that G[A] and 

G[B] are complete graphs. 

Suppose I A I = a where 1 :::; a :::; 9. 

Then G has (~) + co;a) edges. If we eval­

uate this expression with various values of 

a = 1, 2, ... , 9, we find the largest value 

when a = 1 or a = 9~ in this case, we find 

that G has 36 edges. 

The following is a partition of E (K8) into 

four Hamiltonian paths. 

Jrv8rv2rv7rv3rv6rv4"'--'5 

2rv}"'--'3rv8rv4rv7rv5rv6 

3rv2rv4rv}rv5rv8rv6rv7 

4rv3rv5rv2rv6rv}"-'7rv8 

Each of the (~) = 28 edges of K 8 is on one 

of these four paths. 

However, no such partition of K 9 is 

possible. The graph K 9 contains (i) = 36 

edges, and a Hamiltonian path of K9 con­

tains 8 edges. Were a partition of K 9 into p 

Hamiltonian paths possible, we would have 

8 p = 36, but 36 is not divisible by 8. There­

fore no such partition is possible. 

13. Existence. We know that P and R have ver­

tices in common since a is on both paths. 

Let x be the last vertex on P (as we traverse 

from a to b) that is also on R. Note that x is 

also the last vertex on R as we traverse from 

a to c (if there were a vertex after x on R that 

is also on P -call it y-then there would be 

two different (x, y )-paths in T). 

a 
c 

X 

b 

14. 
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Thus the (b, x)-segmentof P and the (c, x)­

segment of Q have only x in common. If 

we concatenate these segments, we have a 

(b, c)-path S (since the two segments have 

no vertices in common other than x ). Since 

there is one and only one (b, c)-path in T, 

namely R, it must be the case that R = S. 

Since x is a vertex of S, it must be a vertex 

of R, and sox is on all three paths: P, Q, 

and R. 
Uniqueness. Suppose P, Q, and R have 

two (or more) vertices in common; let us call 

them x and y. Without loss of generality. as 

we traverse P from a to b we encounter x 

before y. 
In T, there are a unique (a, x )-path and 

a unique (x, y )-path, and these must be the 

corresponding segments of P. Also, there 

is a unique (a, y )-path, and that path must 

contain x. 

Since R also contains a, x, and y, the 

(a, x) and (x, y) segments of R must be 

identical to those of P, and x must be be­

tween a and y on R. See the figure. 

a 
c 

b 

We now observe that the (b, y )-segment of P 

does not contain x and the (y, c)-segment of 

R does not contain x. Hence there is a (b, c)­

walk that does not contain x. Therefore, 

there is a shortest (b, c)-walk that does not 

contain x, and that, necessarily is a (b, c)­

path, which must be R. Therefore R does 

not contain x .=?{= Therefore the paths P, 

Q, and R have exactly one vertex common 

to all three. • 

( =>) Suppose G is Eulerian. Let A U B be a 

partition of V (G) into disjoint, nonempty 

sets. Because G is Eulerian, it must be 
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connected, and so there must be at least one 
edge from A to B. 

If we consider any Eulerian tour W, the 
number of times W takes an edge from A to 
B must equal the number of times W takes 
an edge from B to A (else the tour would not 
begin and end at the same vertex). Hence, the 
number of edges between A and B must be 
even. 

(<¢=)Suppose G is a graph such that for 
every partition AU B = V(G), the number 
of edges between A and B is even but not 
zero. Note that this implies that G is con-
nected, for otherwise we could take A to be 17. 
the vertex set of one component of G and 
B = V (G) - A; in this case there would be 
no edges between A and B. 

Let v be any vertex of G. Let A= {v} 
and B = V (G) - A. Note that the num­
ber of edges from A to B is exactly d(v), 
and so d ( v) is even. Since G is connected 
and all vertices have even degree, G is 
Eulerian. • 

It is not hard to find a proper three-coloring 
of G (for example, color the vertices in 
a checkerboard fashion, except use a third 
color for the rightmost vertex in the last row). 
Therefore x (G) .:::; 3. It is also not hard to 
find an odd cycle in G; hence G is not bipar­
tite, so x(G) > 2. Therefore x(G) = 3. 

For n 2:: 3, we have 

x(W,) = {~ if n is odd, and 
if n is even. 

Proof. If n is odd, then the cycle in Wn 

contains an even number of vertices. These 
can be colored alternately using two colors, 
leaving a third color for the additional ver­
tex; therefore X ( W11 ) .:::; 3. At least three 
colors are required because Wn contains a 
complete graph on three vertices (any two 
consecutive vertices on the cycle plus the 
additional vertex). 

If n is even, then the cycle in Wn con­
tains an odd number of vertices. This odd cy­
cle can be colored with three colors, leaving 

18. 

a fourth color for the additional vertex; there­
fore x (W,z) .:::; 4. We tlaim that Wn can­
not be colored with fewer than four col­
ors. Suppose, for the sake of contradiction, 
that such a coloring is possible. The addi­
tional vertex (which is adjacent to all oth­
ers) receives some color. Therefore none of 
the other vertices can use that color, leav­
ing at most two colors for the vertices of the 
cycle. Since that cycle has an odd number 
of vertices, it cannot be colored with only 
two colors.=}¢= Therefore x (Wn) is not less 
than 4. • 

Suppose the vertices of en are named, in 
order, 1, 2, 3, ... , n. 

Note that vertices 1, 3, 5, ... , Ln/2J 
form a clique in en, and so X (en) ~ Ln/2J. 

In the case that n is even, we can color 
en properly with n/2 colors by assigning 
color 1 to vertices 1 and 2, color 2 to ver­
tices 3 and 4, and so on. Thus, for n even, 
xCen) = n/2. 

In the case that n is odd, the color 
scheme described above will use (n + 1)/2 
colors (vertex n will be not be paired with 
another vertex of the same color). Therefore, 
if n is odd, X (en) .:::; (n + 1) /2. 

Can en (for n odd) be colored with 
fewer colors? If that were possible, there 
would be (at most) (n - 1)/2 colors avail­
able, and so three distinct vertices would re­
ceive the same color. Since n 2:: 4, three 
vertices of en cannot be pairwise adjacent 
and so cannot be given the same color in Cz. 
Thus x(G) > (n- 1)/2. 

In conclusion, for n ~ 4, 

(C) = {n/2 in case n is even, and 
X n (n + 1)/2 in case n is odd. 

This can be written more concisely as 

xce,J = l~l 
(a) (::::}) Suppose x(G) ~ k. This im­

plies that G has at least one proper k­
coloring, and hence x ( G, k) > 0. 

( <¢=) Suppose x ( G, k) > 0. This 
implies that G has at least one proper 
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k-coloring, and so G is k-colorable. 

Therefore x (G) 2: k. 
(b) We use Proof Template 25. 

The proof is by induction on n. The 

basis case is when n = 1-that is, the 

tree has just one vertex. In this case, if 

there are k colors available, there are k 

different ways to color the sole vertex. 

Hence x(G, k) = k = k(k- 1)0 , as 

required. 
Suppose (induction hypothesis) that 

the result has been proved for all trees 

with £ vertices. Let T be a tree with 

n = £ + 1 vertices. We must prove that 

X (T, k) = k(k - l)n-1 = k(k- l)e. 

Let v be a leaf of T and let T' = 

T-v. Note that T' is a tree on£ vertices. 

Therefore, by induction, x(T', k) = 
k(k - ne-1_ 

We now count proper k-colorings 

of T. Note that given a proper color­

ing of T, if we ignore vertex v, we 

have a proper coloring of T'. There are 

X (T', k) ways to k-color T' properly. 

For each such coloring, there are k - 1 

ways to color v since v may be any 
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2 3 

4 5 6 

Notice that {1, 2, 3} and {4, 5, 6} form the 

two parts of the complete bipartite graph 

K3,3· All edges of this K 3,3 are present in 

c7 except that the edge from 3 to 4 appears 

as the two-step path 3 ""' 7 ""' 4. (To verify 

that all the edges shown belong to c7 the 

edges of C7 are shown as colored, broken 

lines.) 
Because C7 contains a subdivision of 

K3.3 as a subgraph, it is nonplanar (see 

Theorem 52.9). 
The graph C 8 has n = 8 vertices and 

m = (~) - 8 = 20 edges. If C 8 were pla­

nar, we would have m :::; 3n - 6 (see Corol­

lary52.5).However,3n-6 = 3x8-6 = 18 

and 20 1:. 18. Therefore C8 is nonplanar. 

Alternatively, it is not difficult to show 

that K3.3 is a subgraph of C8. 

color except the color assigned to its 21. Suppose there are a vertices of degree 5. We 

know there are a + 10 vertices in this graph 

and (5a + 7 x 10)/2 = ~a+ 35 edges. By 

Corollary 52.5, we have 

sole neighbor. 
Thus x(T, k) = x(T', k) x (k-

1) = k(k- oe-l(k- 1) = k(k- l)e, 

as required. • · 

The following drawing demonstrates that the 

graph is planar. 

5 4 

The graph C7 contains a subdivision of K 3 3 

as illustrated in the following diagram. , 

5 2a + 35 ::::: 3(a + 10)- 6 = 3a + 24 

which simplifies to 11 :::; ~a and so a 2: 22. 

Chapter 10 

1. (a) The following figure gives the Hasse 

diagram of P. 
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(b) Thelargestchainin Pis {1, 2, 4, 8, 16}. 
(c) The largest anti chain in P is 

{11, 12, 13, 14, 15, 16, 17, 18, 19, 20}. 

(d) The set of maximal elements of P is 

{11, 12, 13, 14, 15, 16, 17, 18, 19, 20}. 

(e) The set of minimal elements of P is { 1}. 
(f) The set of maximum elements of P is 0. 
(g) The set of minimum elements of P 

is { 1}. 

Suppose, for the sake of contradiction, that 
C n A contains two distinct elements x and 
.v. Because x, y E C, we know that x < y or 
y < x; that is, x andy are comparable. How­
ever, because x, y E A, we know that x and 
y are incomparable.=>{= Therefore C n A 
cannot contain two (or more) elements, and 
so IC n AI::: 1. 

Let A be an antichain of P. We know (from 
Problem 2) that A can have at most one el­
ement in C 1 and at most one element in C2. 
Therefore A can have at most two elements, 
and so the maximum size of an antichain of 
P cannot be greater than 2. 

(==>)Suppose P =(X,:::) is an antichain. 
Let x E X. Since there is no element y such 
that y < x, we have that x is minimal. Like­
wise, x is maximal. Therefore all elements 
of X are both maximal and minimal. 

({=)Suppose every element of X is both 
maximal and minimal. We claim that P is an 
antichain. If not, there would be elements 
x f. y in X with x < y. But then x is not 
maximal andy is not minimal.=>{= There­
fore P is an antichain. • 

(a) Let P = (X, :::) be a finite chain. 
By Theorem 55.4, we may assume that 
X = {1, 2, ... , n} and ::: is ordinary 
less than or equal to. For j between I 
and n, we let A J = { j}. Because the 
A 1s contain only one element, they are 
antichains. Note that X = A 1 U · · · U An 
and if x E Ai and y E A J with i < j, 
then we must have x < y (indeed, x = i 
and y = j). Therefore P is a weak 
order. 

Let P = (X, :::;) be an antichain. 
Then simply lettin~ A 1 = X gives the 
required partition. 

(b) Let P = (X,:::;) be a finite poset and let 
Q be the three-element poset depicted 
in the figure for this problem. 

( ==>) Suppose P is a weak order but, 
for the sake of contradiction, contains 
Q as a subposet. Since P is a weak or­
der, we can partition X into antichains 
X = A 1 U · · · U Ah such that for all 
x E Ai and y E A J, if i < j then 
x < y. Now consider elements a, b, c 
of Q. Since a < b, we must have that 
a E Ai and b E A J where i < j. Sup­
pose c E Ak. Note that since i < j we 
must have that either k < j or k > i. 
If k < j we would have c < b, and 
if k > i we would have c > a; but c 
is incomparable to both a and b.=>{= 
Therefore Q is not a subposet of P. 

({=)Suppose Pis a finite poset that 
does not contain Q as a subposet. Let 
A 1 be the set of all minimal elements 
of P. Let A 2 be the set of all mini­
mal elements of P - A 1 (that is, the 
poset formed by deleting the elements 
of A 1 from P). Let A 3 be the set of all 
minimal elements in P- A1 - A2. We 
continue in this fashion, choosing A, to 
be the set of all minimal elements of 
P - A1 - A2 - · · · - Ar-1 until there 
are no elements left. Note that each A J 

is an antichain (since it is the set of min­
imal elements of some subposet of P) 
and the A 1s partition X. It remains to 
show that if x E Ai andy E A1 and 
i < j, then x < y. 

Suppose, for the sake of contradic­
tion, that x I y. Note that x is a minimal 
element of the poset P - A 1 - • • • -

Ai-l, and so we cannot have x > y. 
Therefore x and y are incomparable. 
Also, y is not a minimal element of 
P- A 1 - · · ·- A;_ 1 (because y E A1 
and j > i), and so there is some element 
z in P- A 1 - · · ·- Ai-1 withy > z. 



It cannot be the case that z < x be­

cause x is minimal, and it cannot be the 

case that z ~ x for then we would have 

y > z ~ x, implying that x and y are 

comparable. Therefore z and x are in­

comparable. That is, we have x incom­

parable to both y and z, and z < y. 

Therefore we have a copy of Q (with 

a = z, b = y, and c = x) as a subposet 

of P .=}{=Therefore x < y and soP is 

a weak order. • 

(c) In a linear extension of P we must have 

all elements in Ai below all elements of 

A 1 (where i < j), but it does not matter 

in what order the elements of Ai (or A J) 

appear among themselves. There are k! 

ways to arrange the elements of each 

Ai, and each of the h anti chains can 

be arranged in any way irrespective of 

the others. Therefore there are k !h linear 

extensions of P. 

(d) Let P = (X, :::;) be a weak order. To 

show that dim P :::; 2, we find two 

linear extensions L 1 = (X, :::;') and 

L 2 = (X,:::;") such that R = {L 1, L2} 

is a realizer of P. 

Since P is a weak order it can 

be partitioned into antichains by X = 
A 1 U · · · U Ah. Let ni be the number 

of elements in Ai and let us name the 

elements of Ai as follows: 

We define L 1 and L 2 as follows: 

The order L 1 is given by 

<
1 

a2. 1 <
1 

a2.2 <
1 

• · • <
1 

a2.n 2 <
1 

<I •••.•• <I 

I I I I 

< ah,l < ah,2 < ... < ah,nn 

and the order L 2 is given by 

a1.n 1 <" al,n 1-l <" · · · <" a1.1 <" 

<1
' a2,n2 <" a2.n2-l <" ... <" a2.1 

II II < ...... < 

6. 
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Note that both L 1 and L 2 are linear ex­

tensions of P since, for i < j, all ele­

ments of Ai are < 1 or < 11 all elements 

of A1. Thus if x :::; yin P, it must be 

the case that x :::; 1 y and x :::;" y. Con­

versely, if x and y are incomparable in 

P, then x, y E A J for some j. In this 

case we see that x < 1 y and x >" y (or 

vice versa). Therefore R is a realizer of 

P and so dim P :::; 2. 

(a) Let P = (X, :::;) be a finite chain. 

By Theorem 55.4, we may assume that 

X = {1, 2, ... , n} and :::; is ordinary 

less than or equal to. Let [ai, bi] = 

[j, j + ~] and note that if i < j, then 

[ai, bi] i~ entirely to the left of [a 1, b i] 

as required. Therefore P is an interval 

order. 
Let P = (X, :::;) be an antichain. 

For all x E X, let [a,, b\] = [0, 1]. 

Note that for all x # y in X, the ele­

ments x andy are incomparable and the 

intervals [ax, hx] and [a", bv] intersect 

as required. Therefore P is an interval 

order. 
Note: Part (a) of this problem also 

follows as a corollary of part (b). 

(b) Let P = (X,:::;) be a weak order. 

Then we can partition X into anti chains 

A 1 U · · · U A 11 so that for all x E Ai and 

y E A J with i < j, we have x < y. 

To show that P is an interval order, we 

assign intervals as follows: 

For x E AJ let[ a,, b,] = [j, j + ~]. 
Note that if x, y E A1, then x 

and y are incomparable, and [a,, hx] 

intersects [an by], as required. How­

ever, if x E Ai and y E Ai with 

i < j, then x < y, and note that 

[ax, br] = [i, i +~]is entirely to the left 

of [ar, bv] = [j,] +~],as required. 

(c) Let P be the poset in the figure. Sup­

pose, for the sake of contradiction, that 

P is an interval order and so there are 

intervals [a,, hx], [a,, bv], [aw, h11 ,], and 

[a::, b::] with the properties that 
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1. [ax, bx] is to the left of [ay, by], 
2. [aw, bw] is to the left of [a2 , b2 ], 

3. [ax, bx] intersects both [aw, bw] 
and [a 2 , b2 ], and 

4. [av, bv] intersects both [aw, bw] 
and [az, b2 ]. 

Because (by 2) [aw, bw] is to the left 
of [a 2 , b2 ] and (by 3) the interval 
[ax, bx] mustintersectboth [aw, bw] and 
[a 2 , bz]; therefore the interval [ax, bx] 
must completely span the gap between 
the two intervals [aw, bw] and [a 2 , b2 ]. 

Similarly, interval [av, by] must also 
span the gap between [ aw, bw] and 
[a2 , bz], and therefore [a,, bx] must in­
tersect [ar, by], a contradiction (to 1). 

(d) It is not hard to see that the poset in the 
figure is an interval order; use the fol­
lowing intervals: 

X ++ [0, 1] 
z ++ [4, 5] 

y ++ [2, 3] 
w ++ [0.5, 4.5]. 

Suppose, for the sake of contradiction, 
that there is some choice of the intervals 
such that they all have the same length. 
Note that we must have that [ax, b x] to 
the left of [ay, by], which in turn is to 
the left of [a~, bzl, but [aw, bw] must in­
tersect the other three; see the figure. 

In order for [aw, bw] to intersect both 
[ax, bx] and [a 2 , b2 ], it must completely 
contain [av, bv] as well as the gaps be­
tween [ax, b,], [ay, bv], and [a2 , b2 ]. 

Therefore the length of [aw, bw] must 
be greater than that of [ay, by].=><¢= 

7. 

8. 

Therefore P cann9t be represented by 
intervals that all h~ve the same length. 

The poset has 16 linear extensions. For each 
antichain of size 2, there are two choices for 
the order of the elements in the linear exten­
sion, and this choice can be made for each 
of the four size-2 antichains, for a total of 
24 = 16 linear extensions. 

(a) The pairs of elements that are incom­
parable are {a, c}, {a, f}, {c, d}, {b, d}, 

{b, f}, {b, e}, and {d, f}. 
(b) Here are three linear orders whose in-

tersection gives P: 

L 1 : c < f <a < b < d < e 

L 2 : a < b < d < c < f < e 

L3 : a < c < f < d < e < b 

The following chart shows, for each in­
comparable pair {x, y}, the extensions 
in which x < y and y < x. 

{x, y} x<y y<x 

{a, c} 2,3 1 
{a, f} 2,3 1 
{c, d} 1,3 2 
{b, d} 1,2 3 
{b, f} 2 1,3 
{b, e} 1,2 3 
{d, f} 2 1,3 

(c) Suppose there were a linear extension 
L in which f < a and d < c. Since 
a < d in P, we must have that a < d 

in L, and so, in L, f < a < d < c, 

which implies that f < c in L as well. 
But this contradicts the fact that c < f 
in P .::=><¢= Thus we cannot have both 
f <a and d <c. 

Suppose there were a linear exten­
sion in Lin which b < f and f < a. 
Then b <a in L, but a <bin P.:=><¢= 

Thus we cannot have both b < f and 
f <a. 
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Likewise, we cannot have b < d < 

c in a linear extension L, for then b < c 
in L, but c < b in P. 

Likewise, we cannot have e < b < 

din a linear extension L, for then e < d 
in L, but d < e in P. 

Finally, we cannot have e < b < f 
in a linear extension L, for then e < f 
in L, but f < e in P. 

(d) Ifanytwooftherelationsf < a,d < c, 
b < d, e < b, and b < f held in a linear 
extension L, then we would contradict 
one of the statements in part (c) of this 
problem. 

(e) From part (b) we know that dim P ::=: 3; 
hence it remains to show that dim P > 

2. Suppose, for the sake of contradic­
tion, that dim P :::; 2, so P has a realizer 
with (at most) two linear extensions. 
Then one of those linear extensions 
would satisfy at least three of f < a, 
d < c, b < d, e < b, and b < f, 

contradicting part (d).:=:}{= Therefore 
dimP = 3. 

11. 

Suppose, for the sake of contradiction, that 12. 
P contains two distinct elements x and y. 

Note that x 1\ y ::=: x :::; x v y, and since 
x 1\ y = x v y, we have that x 1\ y = x. 

Likewise x 1\ y = y, and sox = y.===}{= 

Therefore P has at most one element. • 

(a) PAQ = {{1, 3}, {2, 4}, {5, 7, 9}, {6, 8}} 
and Pv Q = {{1, 2, 3, 4, 5, 6, 7, 8, 9}}. 

(b) Let Zk E R. Because R = P 1\ Q, it 
refines both P and Q. This means that 
every part of R is a subset of a part 
of P, and likewise of Q. In particular, 
there is an Xi E P such that Zk s; X; 
and a Y1 E Q such that Zk s; Y1. Thus 
zk s; X; n Y1. 

Suppose, for the sake of contradic­
tion, that Zk -=/= X; n Yi. Then there must 
be some other part of R, say Zk' that in­
tersects Xi n Y1. This implies that Zk' 

1 
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must be a subset of both X; and YJ be­
cause every part of R must be a subset 
of a part of P and of a part of Q. 

We can now form a new partition 
from R simply by combining Zk and Zk' 
into a single part zk u zk'; call this new 
partition R'. Note that R is strictly finer 
than R', and R' refines both P and Q. 
However, this contradicts the fact that 
R = P 1\ Q (i.e., R is the coarsest 
common refinement of P and Q).:=::}{= 
Therefore Zk = X; n Y;. 

The proof is by induction on n. The basis 
case, n = 1, is obvious. Suppose (induction 
hypothesis) this result has been proved for 
n = k. Let a, x 1, ... , xk+ 1 be given such 
that a :::; xi for all 1 :::; j :::; k + 1. We 
know (by induction) that a :::; x 1 1\ · · · 1\ xk 

and we know that a :::; xk+I (by hypothe­
sis). This means that a is a lower bound for 
x 1 1\ · · · 1\ xk and xk+ 1, so the a is below the 
greatest lower bound of x 1 1\ · · · 1\ xk and 
xk+1; that is, a :::; (x 1 1\ · · · 1\ xk) 1\ xk+I, as 
required. 

To prove that a v h = u 1 1\ u 2 1\ · · · 1\ u n, 

we prove a v h ::=: u 1 1\ u2 1\ · · · 1\ U 11 and 
a V b ~ UJ 1\ U2 1\ · · · 1\ U 11 • 

To show a V b :::; u 1 1\ u2 1\ · · · 1\ U11 : We 
know, using Problem 11, that a :::; u 1 1\ u2 1\ 

· · · /\U 11 and b :::; u 1 /\u 2 1\ · · · /\U 11 • Therefore 
u 1 1\ u 2 1\ · · · 1\ U 11 is an upper bound for a 

and b. Since a v b is the least upper bound of 
a and b, we have a v b :::; u 1 1\ u 2 1\ · · · 1\ u n. 

To show a v b ~ u 1 1\ u 2 1\ · · · 1\ u n : 

We know that a :::; a v b and b :::; a v b. 

Therefore a v b E U (a, b). Without loss 
of generality, u 1 = a v b. So the expres­
sion u 1 1\ u 2 1\ · · · 1\ U 11 can be rewrit­
ten (a v b) 1\ (u 2 1\ · · · 1\ U 11 ). Note that 
this latter expression is the greatest lower 
bound of a v b and u2 1\ · · · 1\ U 11 , and so 
(a v b) 1\ (u 2 1\ · · · 1\ u11 ) ::=:a v b. Therefore 

u 1 1\ U2 1\ · · · 1\ Un :S a V b. 
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C Glossary 
This glossary provides quick reminders of concepts 
presented in the main text. Please consult the in­
dex for pages in the main text that contain a more 
thorough and rigorous presentation. 

A 
A See the. 

Abelian group A group whose operation is com­

mutative; i.e., g * h = h * g for all g and h in the 
group. 

Acyclic Having no cycles. See forest. 

Adjacent v and w are adjacent if vw is an edge. 
Notation: v ""' w. 

Algorithm A precisely defined sequence of 
calculations. 

And The statement "A and B" is true exactly when 
both A and Bare true. In Boolean algebra, a 1\ b. 

Antichain A subset of a poset all of whose ele­
ments are incomparable to each other. 

Antisymmetric A relation R is antisymmetric 
means that for all a and b, if a R b and b R a, then 

a= b. 

Arbitrary Without any restrictions, completely 
general, generic. 

Argument A proof. 

Associative property a * (b * c) = (a * b) * c for 
all a, b, c. 

B 
Basis step Part of a proof by induction in which 
the truth of the result is established in the smallest 
allowable case. 

Bernoulli trial A sample space with exactly two 

outcomes, often called success and failure. 

Bijection A one-to-one and onto function. 

Binomial coefficient The number of k-element 
subsets of an n-element set; denoted G). 
Binomial random variable The number of sue-

cesses in a finite sequence of independent Bernoulli 
trials; 

where n, a E N and 0 :::=: p :::=: 1. 

Binomial Theorem For n E N, 

Bipartite Two-colorable. 

Birthday problem What is the probability that 
among n randomly chosen people some pair of peo­
ple have the same birthday? 

Boolean algebra Calculations and expressions in­
volving the values TRUE and FALSE and the opera­
tions /\, v, --., etc. 

c 
CC The complex numbers. 

Cardinality The size of a set; i.e., the number of 
elements in that set. The cardinality of A is denoted 

I AI. 
Carmichael number A positive integer n that is 
not prime, but an = a (mod n) for all integers a 

with 1 :::=:a < n. 

Cartesian product A x B is the set of all ordered 
pairs of the form (a, b) where a E A and bE B. 

Ceiling The ceiling of x is the least integer greater 
than or equal to x; denoted I x l. See also floor. 

Chain A subset of a poset all of whose elements 
are comparable to each other. 

Characterization theorem An if-and-only-if the­
orem that gives an alternative description of a math­
ematical concept. 

Chinese Remainder Theorem Technique for solv­
ing a pair of modular congruences. 

Chromatic number The least k such that G is 
k-colorable; denoted x (G). 



Claim A statement proved during the course of a 

proof. 

Clique A set of pairwise adjacent vertices. 

Clique number Maximum size of a clique; de­

noted w(G). 

Colorable A graph is k-colorable if it has a proper 

k-coloring. 

Coloring A k-coloring of G is a function f: 

V(G) ---+ {1, 2, ... , n}, which is proper if xy E 

E(G) :=;. f(x) =f. f(y). 

Combinatorial proof A proof by counting. 

Common divisor A common divisor of a, b E Z 

is an integer d with dla and djb. 

Commutative property a* b = b *a for all a, b. 

Comparable Elements x andy in a poset for which 

x_:syory_:sx. 

Complement (graph) G is the graph with the same 

vertices as G in which distinct vertices are adjacent 

iff they are not adjacent in G. 

Complement (set) A is the set of elements not 

in A. 

Complete bipartite graph A graph V (G) = 
AU B, with An B = 0 and E(G) = {ab: a E A, 

bE B}. Denoted Ka,h where a= IAI and b = IBI. 

Complete graph A graph in which every pair of 

distinct vertices is adjacent; denoted K 11 • 

Complex number A number of the form a + bi 

where a, b E JR and i 2 = -1. 

Component A maximal connected subgraph. 

Composite A positive integer equal to the product 

of two smaller positive integers. 

Composition (go f)(x) = g[f(x)]. 

Concatenation Merging two lists together to form 

a longer list. In particular, the concatenation of walks 

in a graph is a new walk formed by combining the 

two walks. 

Conclusion The then part of an if-then statement. 

Conditional probability The probability of one 

event given another; P(AIB) = P(A n B)/ P(B). 
1 

Congruent (mod n) a= b (mod n) means a- b 

is divisible by n. 
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Conjecture A statement believed to be true, but for 

which no proof or counterexample has been found. 

Connected Vertex u is connected to vertex v means 

there is a (u, v)-path in the graph. The graph is con­

nected means every pair of vertices is connected. 

Contradiction A statement that is blatantly false. 

A Boolean expression that yields FALSE for all val­

ues of its variables. 

Contrapositive The contrapositive of "If A, then 

B" is "If not B, then not A." 

Converse The converse of "If A, then B" is "If B, 

then A." 

Corollary A statement that can be proved readily 

from another theorem. 

Counterexample An example that demonstrates 

that a statement is false. 

Cryptography The art of concealing messages in 

secret codes. 

Cube A graph whose vertices are alllength-n lists 

of Os and ls in which two vertices are adjacent 

iff their lists disagree in exactly one location. Also 

called a hypercube. 

Cut edge An edge e of G such that G - e has more 

components than G. 

Cut vertex A vertex v of G such that G - v has 

more components than G. 

Cycle A walk with at least three vertices in which 

the only repeated vertex is the first/last. Also, a graph 

of this form, Cn. 

Cycle notation A notation for writing permuta­

tions as parenthesized collections of elements. 

Cyclic group A group generated by a single 

element. 

D 
Definition A precise statement creating a new 

mathematical concept. 

Degree (face) The number of edges bounding a 

face in a planar embedding of a graph; if both sides 

of an edge are on the face, that edge counts twice. 

Degree (polynomial) The highest power on the 

variable. 
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Degree (vertex) d(v) is the number of edges inci­
dent with v. 

Derangement A permutation n with the property 
that n (x) =f. x for all x. 

Difference (set) A - B is the set of all elements of 
A that are not in B. 

Dimension The dimension of a poset is the small­
est size of a realizer for that poset. 

Direct proof A proof technique that proceeds from 
the hypothesis to the conclusion. 

Disjoint Having nothing in common; i.e., An B = 
0 .. See also pairwise disjoint. 

Distance The length of a shortest path between a 
specified pair of vertices. 

Distinct Unequal. If we say "Let x, y, and z be dis­
tinct numbers," we mean that x =f. y, x =f. z, and 

y =f. z. 

Div a div b is the quotient when we divide a by b. 

Divides alb means there is an integer c with 
b = ac. 

Domain The set of first elements of the ordered 
pairs in a function; denoted dom f. 

E 
Edgeless Having no edges. 

Element A member of a set. x E A means x is an 
element of A. 

Empty set The set with no elements; denoted 0. 

Equivalence class [a] = {x : xRa} where R is an 
equivalence relation. That is, [a] is the set of all 
elements equivalent to a by the relation R. 

Equivalence relation A relation that is reflexive, 
symmetric, and transitive. 

Equivalent statements Two (or more) statements 
are equivalent if each implies the other(s). 

Euclid's Algorithm A method to find the gcd of 
two integers. Extended version is useful for finding 
modular reciprocals. 

Euler's formula (graph theory) If a planar graph 
with n vertices, m edges, and c components is drawn 
in the plane with f faces, then n- m + f- c = 1. 

Euler's Theorem (number thepry) acp(n) _ 

(mod n). See also Fermat's Little Theorem and 
totient. 

Eulerian An Eulerian trail is a walk in a graph that 
traverses each edge exactly once. An Eulerian tour 

is such a walk that begins and ends at the same ver­
tex. An Eulerian graph is a graph in which there is 
an Eulerian tour. 

Even (integer) An integer that is divisible by 2. 

Even (permutation) A permutation equal to the 
composition of an even number of transpositions. 

Event A subset of a sample space. 

Exactly Compare the following sentences: 
There are three numbers with property X. 

There are exactly three numbers with prop­
erty X. 

The first sentence may (and often is) interpreted to 
mean that there are three or more different num­
bers with property X. However, the second sentence 
means that there are three (no more, no fewer) dif­
ferent numbers that satisfy property X. 

Exclusive or ay_b, which is true exactly when a or 
b, but not both, is true. Also written xor. 

Existential quantifier :3, meaning there is or there 

exists. 

Expected value The weighted average of a random 
variable; E(X) = L:s X(s)P(s). 

F 
Fact A simple theorem. 

Factorial n! = n(n- l)(n- 2) · · · 3 · 2 · 1. Also: 
0! = 1. 

Fermat's Little Theorem If p is a prime, then 
aP =a (mod p). 

Fibonacci numbers The sequence 1, 1, 2, 3, 5, 8, 
13, ... in which each term equals the sum of the two 
previous terms. 

Finer See refine. 

Floor The floor of x is the greatest integer less than 
or equal to x; denoted L x J . See also ceiling. 

Forest An acyclic graph. 



Four Color Theorem If G is planar, then 
X (G)::: 4. 

Function A function is a set of ordered pairs f with 
the property that if (x, y) E f and (x, z) E f, then 
y = z. (x, y) E f is usually written y = f(x). 

Fundamental Theorem of Arithmetic Every 
positive integer can be uniquely represented as a 
product of primes. 

G 
gcd The greatest common divisor. 

glb The greatest lower bound. 

Graph A pair (V, E) where Vis a finite set and E 
is a set of two-element subsets of V. 

Greatest common divisor The largest common 
divisor (factor) of a pair of integers. Abbreviated 
gcd. 

Group A set with an operation that is closed, is 
associative, has an identity, and every element of 
which has an inverse. 

Guinea pig A cute rodent of the genus Cavia hav­
ing no tail to speak of. 

H 
Hamiltonian path, cycle, graph A path [cycle] of 
a graph that contains all the vertices in the graph. 
A Hamiltonian graph is a graph with a Hamiltonian 
cycle. 

Hasse diagram A diagram representing a poset. 

Height The size of a largest chain. 

Hypercube See cube. 

Hypothesis The if part of an if-then statement. 

Identity element (group) An element e of a group 
(G, *)with the property that g * e = e * g = g for 
allgEG. 

Identity function~ permutation A function f : 
A --+ A given by j(x) = x for all x E A; denoted 
idA in general and L in the context of permutations. 
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Iff If and only if. 

Image The set of all possible outputs of a function; 
if f : A --+ B, the image of f is { f (a) : a E A} s; B. 

Incident Vertex v and edge e are incident provided 
v E e; i.e., vis an endpoint of e. 

Inclusion-exclusion A counting technique for 
finding the cardinality of a union of sets based on 
the sizes of the various intersections of these sets. 

Incomparable Not comparable; i.e., elements x 

and y for which x i y and y i x. 

Independence number The maximum size of an 
independent set; denoted a(G). 

Independent Events A and B are independent 
means that P(A n B) = P(A)P(B). Random vari­
ables X and Y are independent means that the events 
X = a and Y = b are independent for all a, b. 

Independent set A set of vertices no two of which 
are adjacent. Also called a stable set. 

Indicator random variable A random variable 
whose value is 1 if a given event occurs and is 0 
otherwise. 

Indirect proof See proof by contradiction. 

Induced subgraph A subgraph formed by vertex 
deletion. 

Induction A proof technique described in Sec­
tion 21. See Proof Templates 1 7 and 18. 

Induction hypothesis An assumption in a proof by 
induction that the result is true for a certain case size; 
it is used to establish the result for the next case 
size. 

Injection A one-to-one function. 

Integers Z = { ... , -3, -2, -1, 0, 1, 2, 3, ... }. 

Intersection A n B is the set of all elements in both 
A and B. 

Inverse (function) Iff: A--+ B is a bijection, then 
the inverse relation f- 1 is also function, f- 1 

: B--+ 

A. See inverse (relation). 

Inverse (group element) If ( G, *) is a group and 
g E G, then h is the inverse of G provided g * h = 

h * g = e where e is the identity element. The inverse 
is denoted g- 1• 

Inverse (number theory) See reciprocal. 
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Inverse (permutation) If n is a permutation, it is 
a bijection from some set to itself. Thus the inverse 
function n - 1 is also a permutation on that set. Also, 
n - 1 is the group inverse of n in the symmetric group. 
Thus no n-1 = n--l on = L. 

Inverse (relation) R- 1 is the relation formed from 
R by replacing each ordered pair (x, y) with (y, x); 

i.e., R- 1 = {(y, x) : (x, y) E R}. 

Inverse (statement) The inverse of "If A, then B" 
is "If not A, then not B." 

Inversion Given a permutation n of {1, 2, ... , n}, 
an inversion is a pair of values i < j for which 
n(i) > n(j). 

Invertible Having an inverse. 

Irrational A number that is not a rational number. 

Irreftexive A relation R is irreftexive if x R x is 
always false. 

Isolated vertex A vertex of degree 0. 

Isometry A distance-preserving function. 

Isomorphism (graphs) A bijection f between the 
vertex sets of two graphs such that x y is an edge iff 
f(x)f(y) is an edge. 

Isomorphism (group) A bijection f between two 
groups such that f(g *h)= f(g) * f(h). 

Isomorphism (posets) A bijection f between two 
posets such that x ~ y iff f(x) ~ f(y). 

J 
Join a v b is the greatest lower bound of a and b. 

K 
Kuratowski's Theorem A graph is planar iff it 
does not contain a subdivision of K 5 or K 3,3 as a 
sub graph. 

L 
Lagrange's Theorem The size of a finite group is 
divisible by the size of any of its subgroups. 

Lattice A poset in which the meet and join of every 
pair of elements are defined. 

lcm The least common multipl.e. 
t' 

Leaf A vertex of degree 1. 

Lemma A theorem chiefly used to prove another, 
more "important" theorem. 

LHS The left-hand side. 

Linear extension A total order L = (X,~) is a 
linear extension of a poset P = (X, ::S) provided 
for all x, y E X, x ::S y =} x ~ y. 

Linear order A poset in which all pairs of ele­
ments are comparable. Also called a total order. 

Linearity of expectation If X, Y are real-valued 
random variables defined on a sample space and 
if a, b E IR, then E(aX +bY) = aE(X) + bE(Y). 

List An ordered sequence of items. 

Logically equivalent Two statements, A and B, 
such that A {:::::::} B is true. Two Boolean expres­
sions whose values are the same for each possible 
substitution of its variables. 

lub The least upper bound. 

M 
Map A synonym for function. 

Maximal (general) U nextendable; cannot be made 
larger. 

Maximal (posets) x is maximal means there is no 
y with x < y. 

Maximum (general) Of largest possible size. 

Maximum (posets) x is maximum means for all y, 

y ~X. 

Mean A synonym for expected value. 

Meet a 1\ b is the least upper bound of a and b. 

Minimal (general) Unshrinkable; cannot be made 
smaller. 

Minimal (posets) x is minimal means there is no 
y withy< x. 

Minimum (general) Of smallest possible size. 

Minimum (posets) x is minimum means for all y, 

X~ y. 

Mod (operation) a mod b is the remainder when 
we divide a by b. 



Mod (relation on a group) If ( H, *) is a subgroup 

of (G, *),then a= b (mod H) means a* b-1 E H. 

Mod (relation on integers) See congruent 

(mod n). 

Modular arithmetic Arithmetic in the number 

system Zn. 

Multichoose ((~))is the number of k-element mul­

tisets we can form whose elements are taken from 

an n-element set. 

Multiplication Principle A counting theorem that 

asserts that the number of two-element lists we can 

form in which there are a choices for the first ele­

ment of the list, and, for each such choice, b choices 

for the second element of the list, is ab. 

Multiplicity The number of times an element is 

present in a multiset. 

Multiset A generalization of a set in which an ob­

ject may be present in the collection more than 

once. 

N 
N The natural numbers. 

Nand A Boolean algebra operation a7\b equivalent 

to -.(a 1\ b). 

Natural numbers N = {0, 1, 2, 3, ... }. Some au­

thors do not consider 0 to be a natural number. 

Necessary Condition A is necessary for condition 

B means B =} A. 

Neighbors Adjacent vertices 

Not The statement "not A" is true exactly when A 

is false. In Boolean algebra, -.a. 

0 
Odd (integer) Anintegeroftheform2a+ 1 where 

a is an integer. 

Odd (permutation) A permutation equal to the 

composition of an odd number of transpositions. 

One and only one
1 

Exactly one. See exactly. 

One-to-one A function is one-to-one means 

f(a) = f(b) =}a= b. 
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Onto A function f : A --+ B is onto B means that 

for all b E B, there is an a E A with .f(a) = b. 

Equivalently, im f = B. 

Or The statement "A or B" is true exactly when 

one or both of A and B are true. In Boolean algebra, 

a v b. See also exclusive or. 

Order (graph) The number of vertices in a graph. 

Outcome An element of a sample space. 

p 

Pairwise disjoint A collection of sets no two of 

which have a common element. 

Parity Even or odd. For example, the parity of 3 is 

odd, and the parity of 0 is even. Two integers with 

the same parity are either both even or both odd. 

Part A member set of a partition. 

Partial order A relation that is reflexive, antisym­

metric, and transitive. 

Partially ordered set (X, :S:) where X is a set and 

:::;: is a relation on X that is reflexive, antisymmetric, 

and transitive. Also called a poset. 

Partition A partition of A is a set of nonempty, 

pairwise disjoint subsets of A whose union is A. 

Pascal's triangle A triangular chart of numbers 

whose entry in the nth row and kth diagonal is G). 

Path A walk without a repeated vertex. Also a 

· graph of that form, Pn . 

Perfect number A positive integer equal to the 

sum of its positive divisors (other than itself). 

Perfect square An integer of the form n 2 where n 

is an integer. See also quadratic residue. 

Permutation A bijection from a set to itself. 

Pigeonhole Principle If f : A --+ B with I A I > 

I B I, then f is not one-to-one. 

Planar Can be drawn in the plane without edges 

crossing. 

Poset Partially ordered set. 

Power set The set of all subsets of a given set; 

denoted 2A. 

Prime An integer, greater than 1, whose only pos­

itive divisors are 1 and itself. 
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Probability A measure of likelihood, specifically 
the function P in a sample space (S, P) and its 
extension to events. 

Proof A precise, incontrovertible essay establish­
ing a mathematical truth. 

Proof by contradiction A proof that starts with the 
hypothesis and the negation of the conclusion and 
proceeds to a contradiction. Also known as indirect 
proof and reductio ad absurdum. 

Proper coloring A coloring in which adjacent 
vertices receive different colors. See coloring. 

Proposition A theorem of lesser generality or im­
portance. 

Public-key cryptography Cryptography in which 
the method for putting messages into code is com­
pletely revealed, but the method for decryption is 
held secret. 

a 
Q The rational numbers. 

Quadratic residue The square of an element of Zn. 
See also perfect square. 

Quantifier The symbols V (universal) and :3 (exis­
tential). 

Quod erat demonstrandum Literally, "that which 
is to be proved." Written at the end of proofs to assert 
that the proof is complete. Often abbreviated QED. 

R 
IR The real numbers. 

Random variable A function whose domain is the 
set of outcomes of a sample space. 

Rational A numberoftheformajb where a, bE Z 
and b -=f. 0. Q is the set of all rational numbers. 

Realizer A set of linear extensions { L 1, ••• , L,} is 
a realizer of a poset P = (X, :::;) provided that for 
all x, y E X, x :::; y if and only if x ::Si y for all 
i=1, ... ,t. 

Reciprocal A multiplicative inverse. For a E Zn, 
its reciprocal b satisfies a ® b = 1; denoted a -l . 

Recurrence relation Given a sequence of num­
bers, a0 , a 1, a2 , ... , a recurrence relation is a rule 

that shows how to calculate an in terms of earlier 
elements of the sequence. fc 

Reductio ad absurdum Proof by contradiction. 

Refine If P and Q are partitions of a set, we say 
P refines (or is finer than) Q if every part of P is a 
subset of some part in Q. 

Reflexive A relation R on a set A is reflexive means 
'ia E A, a R a. 

Regular graph A graph in which all vertices have 
the same degree. In a k-regular graph, all vertices 
have degree k. 

Relation A set of ordered pairs. 

Relatively prime A pair of integers whose greatest 
common divisor is 1. 

Result A theorem. 

Reverse Polish notation Notation in which opera­
tions appear after their operands. Abbreviated RPN. 

RHS The right-hand side. 

s 
Sample space A pair (S, P) where Sis a finite set 
and P is a function that gives the probability of each 
element inS. 

Sequence A list, typically of numbers. 

Set An unordered collection of objects. 

Sign (permutation) The sign of n is 1 if n is an 
even permutation and -1 if n is an odd permutation. 
Denoted sgn n. 

Size (graph) The number of edges in a graph. 

Size (set) The number of elements in the set; de­
noted I A 1. See cardinality. 

Sorting Placing in order, such as in ascending 
numerical order or in alphabetical order. 

Spanning subgraph A subgraph formed by de let­
ing edges. 

Spanning tree A subgraph that is spanning and a 
tree. 

Stable See independent. 

Stirling's formula An approximation for factorial: 
n! ~ -J2iTii nn e-n. 

Strong induction A variant form of induction 



using a more extensive induction hypothesis that 

assumes the result for all possible cases up to a 

given size. 

Subgraph A graph contained in another graph. 

Subgroup A group contained in another group. 

Subset A ~ B means that every element of A is 

also an element of B. 

Sufficient Condition A is sufficient for condition 

B means A==? B. 

Superset A 2 B means that every element of B is 

also an element of A. 

Surjection An onto function. 

Symmetric A relation R is symmetric means 

aRb==? bRa. 

Symmetric difference A ~ B is the set of all ele­

ments in A or B, but not both. 

Symmetric group Sn is the set of all permutations 

of { 1, 2, ... , n}. 

Symmetry A motion of a geometric object that 

does not change the appearance of the object. 

T 
Tautology A Boolean expression that evaluates to 

TRUE for all possible values of its variables. Infor­

mally, something that is true just by definition. 

The The definite article, suggesting uniqueness. 

Use a or an when there may be more than one 

possibility. "Let x be the solution to ... " implies 

there is one and only one solution. "Let x be a so­

lution to ... " allows for the possibility of multiple 

solutions. 

Theorem A provable statement about mathematics. 

Total order A poset in which all pairs of elements 

are comparable. Also called a linear order. 

Totient The number of integers from 1 to n that 

are relatively prime ton, denoted q;(n). 

Transitive A relation R is transitive means that for 

all x, y, z if x R y and y R z, then x R z. 

Transposition .1A permutation r for which r (a) = b, 

r(b)=a, af:.b, and for all other elements c, r(c)= c. 

Tree A connected, acyclic graph. 
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Triangle inequality Ia + b! :'S Ia! + !b!. 

Thple A list of numbers; e.g., (1, 1, 3, 7) is a 

4-tuple. 

u 
Union A U B is the set of all elements that are in 

A orB (or both). 

Unique Exactly one. 

Universal quantifier V, meaning for all or for 

every. 

v 
Vacuous An if-then statement whose hypothesis 

(if clause) is always false. Such statements are re­

garded as true. 

Venn diagram A pictorial representation in which 

sets are represented by circles or other shapes. 

w 
Walk A sequence of vertices, each adjacent to the 

next. 

Well-Ordering Principle Every nonempty subset 

of N contains a least element. 

Width Size of a largest antichain. 

Without loss of generality When there is more 

than one case in a proof, but the proofs in these 

cases are all the same, we can elect to prove just 

one of the cases. We announce this by declaring that 

the choice of this case is "without loss of generaiity." 

For example, if a proof involves two different num­

bers, x andy, and there are no further restrictions on 

x and y, we might want to break the proof into the 

cases x < y and x > y. Since x and y are, so far, 

arbitrary, we may assume without loss of generality 

that x < y. Sometimes abbreviated wlog or wolog. 

X 
Xor See exclusive or. 

z 
Z The integers. 
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D Fundamentals 
This appendix presents various properties of num­
bers, operations, and relations that you may use 
freely in any proof. 

Numbers 

The natural numbers consist of zero and the posi­
tive whole numbers. The set of natural numbers is 
denoted by N, so 

N = {0, 1, 2, 3, 4, ... }. 

The integers are the positive and negative whole 
numbers, and zero. The set of integers is denoted by 
Z, so 

z = { ... ' -3, -2, -1, 0, 1, 2, 3, ... }. 

The rational numbers are all fractions of the 
form 7; where a and b are integers and b #- 0. The 
set of all rational numbers is denoted Q. 

Two rational numbers 7; and J are equal exactly 
when ad= be. 

There are many ways to express rational num­
bers. For example, the rational number~ is equal to 
allofthefollowing: ~' ::::~, 1~, 150%, and 1.5. 

A precise definition of real number is beyond 
the scope of this book. Informally, real numbers are 
those that can be expressed as follows: Begin with 
an integer and append a decimal point and either a 
finite or an infinite sequence of digits. For example, 
the following are real numbers: 

-1.4444444444 ... 

3 

3.1415926535 ... 

-99.013 

The set of real numbers is denoted JR. 
Real numbers are mentioned on occasion in this 

book, but in nearly all cases, little is lost by allowing 
only rational numbers. 

Every natural number is an integer, every inte­
ger is a rational number, and every rational number 
is a real number. This can be expressed in symbols 

as follows: 

In every case, the subset relation is strict (i.e., no 
two of the sets listed above are equal). 

Operations 

The fundamental operations of arithmetic are addi­
tion ( +) and multiplication ( x ). Basic calculations, 
such as 3 + 4 = 7 and 7 x 3 = 21, do not require 
proof. 

If we assume that we know how to add and 
multiply integers, we can define addition and multi­
plication for rational numbers. If 7; and J are rational 
numbers (where b and d are nonzero), we have 

a c ad+ be 
b + d = bd 

and 
a c ac 

b d bd 
You may assume the following properties of 

addition and multiplication. Below, the unqualified 
word number may refer either to a rational number 
or to a real number; the statements are correct in 
either context. 

Closure property: If x and y are integers, then 
so are x + y and xy. 

Likewise, if x and y are natural/rational/ 
real numbers, then so are x + y and xy. 
Commutative property: For any numbers x and 
y, we have x + y = y + x and x y = y x. 

• Associative property: For any numbers x, y, and 
z, we have x + (y + z) = (x + y) + z and 
x(yz) = (xy)z. 
Identity elements: For any number x, x +0 = x 
and x · 1 = x. 
Inverses: For any number x, there is a number 
-x with the property that x + (-x) = 0. Fur­
thermore, if x is an integer, so is - x. 

For any nonzero number x, there is a num­
ber x- 1 with the property that x · x- 1 = 1. 

Consequently, if x and y are nonzero num­
bers, then xy is also nonzero. 



• Distributive property: For any numbers x, y, 

and z, we have x(y + z) = xy + xz. 

The operations of subtraction (-) and division 

(-;-) are defined in terms of addition and multiplica­

tion. We define a- b to be a+ (-b), and forb =1= 0, 
we define a -;- b to be a . b- 1• 

Ordering 

The less-than relation places an ordering on num­

bers. The expression x < y means that x is less than 

y. We also have the symbol :::::,which stands for less 

than or equal to. When we write x ::::: y, this means 

that x is less than or equal to y. 

Similarly, we have the symbols > and ~ which 

stand for greater than and greater than or equal to, 

respectively. 
We call a number x positive provided x > 0. 

We call x negative if x < 0. We call x nonnegative 

provided x ~ 0. 
The following are basic properties of< (and its 

relatives) that you may use without proof. 

Trichotomy property: Let x and y be num­

bers. Then exactly one of the following is true: 

X < y, X = y, Or X > y. 
Consequently, a ::::: b if and only if b ~ a. 

Similarly, a < b if and only if b > a. 

• If a < b and c < d, then a + c < b + d. 

Likewise for:::::, >,and:::::. 
Consequently, a < b if and only if b ~ a 

is positive. 
Furthermore, if a and b are positive, then 

so is a+ b. 
• Let x be a positive number. Then a < b if and 

only if ax < bx. Likewise for:::::,>, and:::::. 
Furthermore, if a and b are positive, then 

so is ab. 
• Let a and b be positive numbers. Then a < b 

if and only if a- 1 > b- 1
• Likewise for::::: 1 ~­

Likewise if a and b are both negative. 
• a < b if and only if -a > -b. Likewise for 

::::: I -::::_. 
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Consequently, if a and b are negative, then 
ab is positive. 
Transitive property: If x ::::: y and y ::::: z, then 

x ::::: z. Likewise for:::::, >,and~­
Well-Ordering Principle: If A is a nonempty 

subset of N, then A contains a least element. 

Complex Numbers 

Complex numbers are an extension of the real num­
bers. They are formed by defining a new number i 

with the property that i 2 = -1. The set of all com­

plex numbers is denoted CC and contains all num­

bers of the form a + bi where a and b are real. The 

usual operations are defined for complex numbers. 

Let a+ bi and c + di be complex numbers (where 

a, b, c, dE~); we have the following: 

(a + bi) + (c + di) = (a +c) + (b + d)i 

(a+ bi) - (c + di) = (a -c)+ (b- d)i 

(a+ bi) x (c + di) = (ac- bd) + (ad+ bc)i 

Ia + bi I = y' a2 + b2 

1 a -b 
(a+bi)- = --+--i 

a2 + b2 a2 + b2 

(a+ bi)l(c + di) = (a+ bi) x [(c + di)- 1
]. 

Of course, reciprocal and division are defined only 

in the case where c + di =I= 0. In this book, complex 

numbers are needed only in Section 22 on recur­

rence relations. 

Substitution 

The following observation is, perhaps, beyond ob­

vious, but we mention it anyway. When we say two 

mathematical objects are equal, we mean that they 

are exactly the same. Thus, if a statement involving 

a mathematical entity x is true, and if x = y, then 

a new statement formed from the first statement by 

replacing some (or all) occurrences of x with y is 

also true. 





Index 

Page numbers in boldface refer to concepts presented in a numbered definition. 

Page numbers in italics refer to enteries in the glossary. 

A 
\1,60 
a,544 
Abelian, 341, 544 
above, 452 
acyclic, 413, 544 
addition 

modular, 310 

Principle, 68, 142 

additive group, 341 

adjacency matrix, 395 

adjacent, 393, 544 
aleph null, 210, 461 

algebra, 337 
Boolean, 27, 544 

algorithm, 299, 328, 544 

Euclid's, 300,301,546 

Euler trail/tour, 425 
recursive, 299 
sorting, 465 
spanning tree, 421 

alternating group, 342 

anagram, 100 
and, 12,28,544 
angle brackets, 117 

antichain, 453, 544 
antisymmetric, 86, 394, 408, 

449,544 
arbitrary, 60, 544 
argument, 16, 544 
ASCII, 371 
associative, 31, 65, 213, 234, 

310,339,340,481, 

544, 552 
average, 271 

weighted, 2~2 
axiom, 149 

of Choice, 467 

B 
basis step, 146-147, 158, 

163,544 
below, 452 
Bernoulli trial, 262, 544 

bijection, 201, 544 
bijective proof, 56, 106, 121 

binomial 
coefficient, 104, 108, 544 

formula, 112 
random variable, 268, 544 

Theorem, 108, 191,544 

bipartite graph, 430, 544 

complete, 431, 545 

bipartition, 430 

birthday problem, 253, 544 

bit string, 43 
blackjack, 290 
block, 98 
Boolean algebra, 27, 544 

c 
C, 544,553 
Cn,413 
Cantor's Theorem, 209 

cardinality, 544 
multiset, 117 
set, 50 
transfinite, 21 0, 461 

Carmichael number, 370, 544 

Cartesian product, 73, 544 

ceiling, 241, 544 

chain, 453, 544 
characterization theorem, 415, 

419,431,544 

Chebyshev's inequality, 289 

chi(x),428 

Chinese Remainder Theorem, 

323,377,544 

choice, 38 
choose, 104 
chromatic number, 428, 544 

claim, 14, 91,545 

clique, 402, 545 
number, 402, 545 

closed, 338, 340 
walk, 406, 407 

closure, 310, 319, 338, 552 

colorable, 428, 545 
coloring, 428, 545, 550 

combinatorial proof, 66. 76-80, 

110, 119, 396,545 

combinatorics, I 04 

common divisor, 298, 545 

greatest, 299, 547 

common multiple, 332 
least, 332 

commutative, 31, 65, 213, 234, 

310,338,341,481,544, 

545,552 
comparable, 453. 545 

complement 
event, 252 
graph, 403, 545 
set, 75, 106, 545 

complete bipartite graph, 431, 545 

complete graph, 397, 545 

complex number, 178, 545, 553 

component, 410, 545 
trivial, 422 

composite, 5, 545 
composition, 211, 234, 545 

concatenation, 407, 545 

lists, 41 
conclusion, 10, 545 
conditional probability, 258, 545 

555 



556 Index 

congruent 
mod H, 356 
mod n, 90, 545 

conjecture, 8, 545 
factoring is hard, 3 71 
Goldbach, 16 

connected, 408, 410, 545 
contradiction, 33, 137, 545 
comrapositive, 15, 32, 

135.545 
converse, 15, 33, 142, 545 
corollary, 14, 545 
coset, 361 
counterexample, 25, 545 
· smallest, 142 
critical pair, 469 
crossing-free embedding, 436 
cryptography, 370, 545 

public-key, 371, 550 
cryptosystem 

Rabin's. 373 
RSA, 380 

cube,435,545 
curve, 436 

simple, 436 
simple closed, 436 

cut 
cdge,410,415,419, 

421, 545 
vertex, 410, 545 

cycle, 413, 545 
Hamiltonian, 421, 547 
notation, 218, 545 

cyclic group, 350, 545 
cyclic shift, 363 

D 
6., 68, 181 
6-(G), o(G), 396 
data record, 465 
declarative statement, 8 
definition, 2, 545 

recursive, 169, 301 
unraveling, 17 

degree 
face, 438, 545 
polynomial, 181, 298, 546 
up,456 
vertex, 395, 546 

maximum and minimum, 396 

deletion 
edge,400 
vertex, 400 

DeMorgan's Law, 31,73 
dependent events, 260 
derangement, 129, 546 
diagram 

Hasse, 450, 547 
Venn,64,257,551 

dice, 246 
nontransitive, 255 
tetrahedral, 248 

difference, 68, 546 
operator, 181 
symmetric, 68, 343, 551 

dihedral group, 342 
dimension, 472, 546 
direct proof, 19, 545 
disjoint, 68, 546 

pairwise, 68, 549 
distance, 235, 546 
distinct, 141, 546 
distributive, 31, 65, 311, 

482,553 
div, 296, 546 
divides, 3, 334, 546 
divisible, 3 
division 

modular, 315 
theorem, 293 

divisor, 3 
common, 298, 545 
greatest common, 299, 547 

domain, 195, 546 
dominance, 4 7 4 
domino ring, 426 
dual (poset), 454 
dummy variable, 47, 50, 

59,96 

E 
E(G), 396 
3,59 
edge,392 

cut, 410, 415, 419, 
421,545 

parallel, 394 
edge deletion, 400 
edgeless, 397, 546 
element, 50, 546 

embedding~436 

crossing-free, 436 
poset in n-dimensional 

space, 474 

empty 
graph, 397 
list, 37, 46 
product, 46-48, 325, 525 
set, 50, 546 

end point, 393 
end vertex, 416 
enough, 11 
equal, 553 

functions, 213 
lists, 37 
rational numbers, 552 
sets, 51 

equivalence 
class, 93, 410, 546 

number of, 102 
logical, 30, 548 
relation, 89, 409, 546 

equivalent statements, 12, 
259,546 

Erasothenes, sieve of, 334 
Erdos-Szekeres Theorem, 207 
Euclid's Algorithm, 300, 30 I, 546 
Euler's 

formula, 437, 546 
theorem, 368, 546 
totient, 332-333, 345, 

367,551 
Euler's totient, 381 
Eulerian trail/tour/graph, 422, 546 
even,2,546 

permutation, 226, 546 
event, 250, 546 

complement, 252 
dependent, 260 
implicit, 268 
independent, 260, 547 
mutually exclusive, 253 

exactly,546 
examination scheduling, 390 
exclusive or, 33, 546 
existential quantifier, 59, 546 
expectation, 272 

linearity of, 278, 548 
expected value, 272, 546 

linearity of, 278 
extension, linear, 462 



F 
face, 437 

degree, 438 
fact, 14, 546 
factor, 3, 334 
factorial, 45, 546 

falling, 43 

of~, 49 
of negative integers, 49 

of zero, 46 
factory 

number, 46 
symmetry, 232 

falling factorial, 43 

false, 9 
fence, 476 
Fermat's Little Theorem, 

362,546 
Fibonacci number, 152, 165, 

169,171,178,336,546 

Fifteen Puzzle, 230 
finer-than relation, 451 

finite, 50 
first -order recurrence 

relation, 172 
Five Color Theorem, 443 

fixed point, 279 
floor, 241, 546 
flush, 116, 256 
forest, 413, 546 
formula 

binomial coefficient, 112 

Euler's, 437 
midpoint, 206 
Stirling's, 48, 466, 550 

four children, 251 
four color map problem, 390 

Four Color Theorem, 442, 547 

four of a kind, 116, 251 

full house, 116, 256 
function, 194, 547 

composition, 211 
distance preserving, 235 

equal, 213 
graph of, 196 
identity, 214, 547 
inverse, 198 
machine, 193, 211 
notation, 194 
one-to-one, 199, 549 

onto, 200, 549 
order preserving, 459 

Fundamental Theorem of 
Arithmetic, 326, 547 

G 
garbage collection, 392 

gas/water/electricity problem, 

391,398,441 

gcd, 299,547 
generator, 350 
glb, 478, 547 
Goldbach's Conjecture, 16 

graph,389,392,547 

bipartite, 430, 544 
complete, 431, 545 

coloring, 428, 550 

complement, 403, 545 

complete, 397, 545 
component, 410 
connected, 410 
edgeless, 397 
empty, 397 
Eulerian, 422, 546 

Hamiltonian, 547 
isomorphic, 398, 548 

multi-, 394 
of a function, 196 
order, 396 
Petersen's, 445 
planar, 437, 549 
Platonic, 445 
regular, 396, 550 
self-complementary, 405 

simple, 394 
size, 396, 550 

greater than, 553 
greatest common divisor, 299, 

480,547 
polynomial, 309 

greatest lower bound, 478 

group, 547 
Abelian, 341, 353, 544 

additive, 341 
alternating, 342 

cyclic, 350, 545 
dihedral, 342 
isomorphic, 349, 548 

Klein 4-, 343, 347, 
349,359 
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sub-, 353 
symmetric, 217, 342, 551 

guinea pig, 15 

H 
Hamiltonian 

cycle, 421, 547 

graph, 547 
path, 412, 547 

Hanoi, Tower of, 169 

Hasse diagram, 450, 547 

hat-check problem, 129 

height, 453, 547 
hypercube, 547 

hypothesis, 10, 547 
induction, 158, 547 

strong induction, 163 

identity 
element, 31,234,311,339,341, 

547, 552 
function, 214, 547 

permutation, 217,547 

if and only if, 11 

if-then, 9 
alternative wordings, 11 

iff, 12, 547 
image, 195, 547 
implies, 11 
incident, 393, 547 
inclusion-exclusion, 67, 76, 

124,547 
incomparable, 453, 547 

independence number, 402, 547 

independent 
events, 260, 547 

random variables, 269 

set, 402, 547 
indicator random variable, 278, 

288,547 
indirect proof, 137, 547,550 

induced subgraph, 401, 547 

induction, 155-171,547 

hypothesis, 158, 547 

strong, 163 
loading, 171,424, 496 

machine, 155-157 

strong, 163, 551 
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inductive step, 158, 163 
inequality 

Chebyshev's, 289 
Markov's, 288 
triangle, 238 

infinite, 50 
injection, 199, 547 
integer linear combination, 304 
integers, xvii, 3, 547, 552 
interesting, 154 
intersection, 64, 547 
interval order, 483 
inverse, 234, 314, 339, 341, 

547,552 
function, 198 
permutation, 220, 548 
relation, 85, 547, 548 
statement, 548 

inversion, 223, 548 
invertible, 313, 548 
irrational, 329, 548 
irreducible, 334 
irreftexive, 86, 394, 408, 548 
isolated vertex, 422, 548 
isometry, 235, 548 
isomorphic, 349,459, 548 

J 

graphs, 398 
group, 349 
poset, 459 

Jeopardy, 67 
join, 479, 548 
joined, 393 
Jordan Curve Theorem, 436 

K 
K11 , 397 
Kn,nb 431 
k-colorable, 428, 545 
Klein 4-group, 343, 347, 349, 359 
Konigsburg, 391, 421 
Kuratowski's Theorem, 441, 548 

L 
L-shaped triomino, 162 
Lagrange's Theorem, 356, 548 
lattice, 480, 548 

lattice point, 206 
lcm, 548 
leaf, 416, 548 
least common multiple, 332, 480 
least upper bound, 478 
lemma, 14, 23,548 
length 

list, 37 
walk, 406 

less than, 553 
likewise, 18, 23 
linear 

combination, integer, 304 
extension, 462, 548 
order, 458, 462, 548 

linearity of expectation, 278, 548 
list, 37, 548 

empty, 3 7, 46 
length, 37 

logical equivalence, 30, 548 
loop, 394 
lower bound, 478 

greatest, 478 
lub, 478, 548 

M 
machine 

function, 193, 211 
induction, 155-157 

main diagonal, 347 
map, 194, 196, 548 
map coloring, 389 
Markov's inequality, 288 
mathematical induction, 155-171 

strong, 163 
mathspeak, 10 
max, 480 
maximal, 402, 456, 548 
maximum, 402, 455, 548 
mean, 272, 548 
meet, 479, 548 
midpoint, 206 
min, 480 
minimal, 456, 548 
minimum, 455, 548 
mistake, 8 
mod,90,296,310,548,549 
modular 

addition, 310 
arithmetic, 309, 549 

division, 315 
mtitiplication, 310 
reciprocal, 313 
subtraction, 312 

modulo, 90, 356 
monotone sequence, 207 
Monty Hall problem, 262 
mouse and cheese, 412 
multichoose, 118, 549 
multigraph, 394 
multinomial coefficient, 115 
multiplication 

modular, 310 
Principle, 39, 549 

multiplicity, 117, 549 
multiset, 117, 549 

cardinality, 117 
mutually exclusive, 253 

N 
N, 6, 549, 552 
nand,34,549 
natural number, 6, 549, 552 
necessary, 11, 12, 549 
negative, 553 
neighbor, 394, 549 
neighborhood, 395 
nonconstructive, 306 
nonnegative, 553 
nonplanar, 440 
nonsense, 8, 15 
nontransitive dice, 255 
nontrivial component, 422 
normal subgroup, 361 
not, 13, 29, 549 
NP-complete, 434 

0 
0, 237 
Q, 239 
o,241 
odd,4,549 

permutation, 226, 549 
oh 

big, 237 
little, 241 

one and only one, 549 
one-to-one, 199, 549 
only if, 11 



onto, 200, 549 
operation, 337 
or, 13, 28, 549 

exclusive, 33, 546 
order, 396, 549 

linear, 458, 548 
of an element in a 

group, 360 

partial, 449, 549 
preserving, 459 
total, 458, 551 

ordered pair, 3 7 
outcome, 246, 549 

versus event, 24 7, 249 

p 
P11 ,408 
pairwise disjoint, 68, 549 
parallel edge, 394 
parity, 90, 549 
part,98,549 
partial order, 449, 549 
partially ordered set, 449, 549 

partite set, 430 
partition, 98, 549 

block of, 98 
finer-than relation, 451 

part of, 98 
Pascal's 

Identity, 110 
triangle, 109, 549 

path, 407, 549 
Hamiltonian, 412, 547 

(u, v), 407 
pendantvertex,416 
perfect 

number, 7, 332, 549 
square, 6, 374, 549 

permutation, 42, 216, 549 
array notation, 218 
cycle notation, 218 
even,226,236,546 
fixed point of, 279 
identity, 217, 547 
inverse, 220, 548 
inversion in, 223 

odd,226,549 
random, 279 
sign, 226, 550 
transposition, 221 

Petersen's graph, 445 
pig, guinea, 15, 547 
Pigeonhole Principle, 202, 205, 

473,549 
planar graph, 437, 549 
Platonic graph, 445 
poker, 116, 24 7, 256 
polynomial 

degree, 181,298 
gcd,309 

poset, 449, 549 
dimension, 472 
dual, 454 
Hasse diagram of, 

450,547 
interval, 483 
isomorphic, 548 
standard example, 472 
sub-, 476 
weak, 483 

positive, 553 
postfix notation, 346 
power set, 57, 549 
prime, 4, 549 

Number Theorem, 334 
relatively, 306, 550 
test for, 368 

principle 
Addition, 68, 142 
Mathematical Induction, 157 

strong version, 163 
Multiplication, 39, 549 
Pigeonhole, 202, 205, 473, 549 

Well-Ordering, 149, 551, 553 

probability, 246, 550 
conditional, 258, 545 

product 
Cartesian, 73 
empty, 46-48, 325, 525 

notation, 4 7 
proof, xviii, 16, 550 

bijective, 56, 106, 121 
by contradiction, 137 
combinatorial, 66, 76-80, 110, 

119,396,545 
direct, 19, 545 
indirect, 137, 547, 550 

induction, 155 
strong, 163 

nonconstructive, 306 
smallest counterexample, 142 

Index 559 

proper 
coloring, 428 
subset, 53 

proposition, 14, 550 
public-key cryptography, 371, 550 

Pythagorean 
Theorem, 9, 15, 331,467 

triple, 54 

a 
Q11 ,435 
Q, 6, 550, 552 
quadratic residue, 374, 550 

quantifier, 58 
existential, 59, 546 
universal, 60, 551 

quotient, 293, 293 

R 
R 550,552 
Rabin's cryptosystem, 373 
Ramsey 

arrow notation, 405 
Theorem, 404 

random variable, 267, 550 
binomial, 268,544 

variance, 286 
expectation, 272 
independent, 269 
indicator, 278, 288, 547 
set-valued, 267 
variance, 284 
zero-one, 279 

range, 195 
rational number, 6, 148, 550, 552 

real number, 552 
realizer, 470, 550 
reciprocal, 313, 550 

notation for, 314 
record, data, 465 
recurrence relation, 171-190, 550 

first-order, 172 
second-order, 17 5 

recursive 
algorithm, 299 
definition, 169, 301 
tree, 420 

reductio ad absurdum, 137,550 
refinement, 451, 550 
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reflexive, 86, 394, 408, 449, 550 
region, 437 
regular graph, 396, 550 
relation, 83, 193, 550 

antisymmetric, 86, 394, 408, 
449,544 

between sets, 84 
equivalence, 89, 409, 546 
in-the-same-part-as, 99 
inverse, 85, 547, 548 
irreflexive,86,394,408,548 
on a set, 84 
partial order, 549 
recurrence, 171-190, 550 

. reflexive, 86, 394, 408, 449, 550 
restricted, 85 
symmetric, 86, 394, 408 
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Errata
Mathematics: A Discrete Introduction, second edition

This is a list of errors found in Mathematics: A Discrete Introduction, 2nd edition, by
Edward Scheinerman (Brooks/Cole c© 2006). If you find errors, please report them to me
at ers@jhu.edu. Thank you.

• Page xx, dependence diagram. The diagram shows that §28 depends on §25, but it
does not. However, §28 does depend on §23. [Benjamin Pierce]
• Pages 42–43: No discussion of lists of length zero is presented and it would be

appropriate to include an explanation of the value of (n)0. [Collette Coullard]
• Page 54, paragraph following Proposition 9.5. The sentence “Proposition 9.5 as-

serts that T ⊆P, which implies (5,12,13)∈T .” should end “. . . implies (5,12,13)∈
P.” [Benjamin Pierce]
• Page 78, second displayed equation (last line of the proof of Proposition 12.1). The

right-hand side reads 2n but it should be 2n−1. [Benjamin Yospe]
• Page 79, chart. The last two sequences in the first part of the first row of the chart

(just before the gap in the first line) are both the same: 21534. They should be
21534 and then 21543. [Agustin Torres]
• Page 79, chart. In the first line of the chart, the second and fourth entries after the

gap both read 23154. The latter one should read 23451. [Yan Jiao]
• Page 87, exercise 13.2. The phrase “provided their difference is 2 or smaller” is

less ambiguously written “provided the absolute value of their difference is 2 or
smaller.” [Fred Torcaso]
• Page 214, sentence before Proposition 25.9: Insert “nonzero” before “rational num-

ber.” [Kevin Byrnes]
• Page 224, first displayed equation: This should end (1,4)◦ (4,5)◦ (5,3) (i.e., insert

the composition ◦ symbol twice). [Kevin Byrnes]
• Page 311, last line. Change a = b+ x to a = b⊕ x. [Kevin Byrnes]
• Page 517, solution to Self Test problem 6. The answer reads 10!210 but it should

be 10!210. [Pam Howard]
• Page 133, Self Test problem 10: Note that the sample two-word anagram is incor-

rect because the letter I appears only once but ought to appear twice. The solution
to this problem is also incorrect (see the entry for the solution to this problem on
page 518 below). [Chris Czyzewicz]
• Page 154, exercise 20.7. The second paragraph of the “proof” ends “So x 6= 3.”

However, this should read “So x 6= 0.” This typo is the not the error that students
are supposed to find. [Glen Granzow]
• Page 162, second displayed equation. This currently reads

100 +101 + · · ·+10k +10k+1 < 10k+1 +10k+1

= 2 ·10k < 10 ·10k = 10k+1.

However, the second line should be = 2 · 10k+1 < 10 · 10k+1 = 10k+2. [Laura
Beaulieu]
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• Page 165, Proposition 21.11. The statement begins “Let n ∈ Z. . . ” but it should
begin “Let n ∈ N . . .” [Kevin Byrnes]
• Page 166, Proof of Proposition 21.11, first sentence of the basis case. The text

reads “reduces to
(0

0

)
= 1 = F1” but it should be “reduces to

(0
0

)
= 1 = F0.” [Franz

Niederl]
• Page 173, second line. This line ends 16a0 +21 but it should end 8a0 +21. [Franz

Niederl]
• Page 188, Exercise 22.1, part (l): The initial condition a3 looks out of place. The

solution given in the solutions manual does not match the given intial conditions.
The solutions manual gives a value of a9 that doesn’t agree with the formula for an.
However, if instead of specifying a3 = 6 we instead specify a1 = 6, then the value
for a9 given in the solutions manual is correct, but the formula given for an is still
wrong. [Eric Harley]
• Page 192, Chapter 4 Self Test problem 18b: The initial conditions for this recur-

rence are inconsistent. Ignore this problem. [Mary Glaser]
• Page 288, Exercise 33.11, the last line: Replace E(X) with E(IA). [Benjamin

Pierce]
• Page 289, Chapter 6 Self Test problem 2. Replace “snuggly” with the properly

spelled “snugly”. [Benjamin Pierce]
• Page 298, Exercise 34.9. In this problem, we define the degree of the zero polyno-

mial to be −1. This ought to be defined as −∞. This change has no bearing on the
exercise, but it prevents 0 from being an exception to the rule that for polynomials
p(x) and q(x) we have deg[p(x)q(x)] = deg p(x)+degq(x). [Otis Kenny]
• Page 308, Exercises 35.14 and 35.15. Although the statements are correct, it is

probably wise to replace the hypothesis n > 0 with n > 1 in both problems. The
case n = 1 is a bit unusual and not the main point of the problems. [Fred Torcaso]
• Page 398, Exercise 46.12. The parenthetical comment says that there are exactly

two vertices of odd degree in the graph in Example 46.2. However, there are four
such vertices. [Woojung Park]
• Page 414, third paragraph after Definition 49.3. This sentence asserts that K1 is the

“simplest tree possible” but, in fact, the empty graph satisfied the definition of tree
and is arguably simpler than K1. [Benjamin Pierce]
• Page 419, proof of Theorem 49.11. The direction arrows⇒ and⇐ do not corre-

spond to the statement of the theorem. [Benjamin Pierce]
• Page 420, Exercise 49.12. Change “add the edge e to T ” to “add the edge uv to T ”.

[Glen Granzow]
• Page 421, Exercise 49.13. The empty graph is a counterexample to the problem as

stated. The hypothesis should require the graph to have at least one vertex. [Samuel
Eisenberg]
• Page 445, Exercise 52.9(a): In the parenthetical remark, the word “may” should be

strengthened to “should” as the statement is false for trees with 5 or fewer vertices.
[Glen Granzow]
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• Page 447, Chapter 9 Self Test, problem 18(a). The first inequality should be re-
versed, that is: replace χ(G) ≥ k with χ(G) ≤ k. This error can also be found
(twice) in the solution on pages 538–539. [Glen Granzow]
• Page 482, Exercise 58.5: This exercise requests a one word modification of a false

sentence into a true one (and not, by inserting “not” at the beginning). However,
since the empty set is technically a lattice, it takes the insertion of two words to
repair the statement. [Danny Puller]
• Page 518, solution to Chapter 3 Self Test question 10: The solution is incorrect

because it fails to notice that I appears twice in ELECTRICITY. The correct answer
is 10 ·11!/16. [Chris Czyzewicz]
• Page 519, solution to Chapter 3 Self Test question 14: The answer given is correct,

but is not exactly the expression one would obtain by substituting n = 50 and y = 2
into Theorem 16.8 (Binomial Theorem) on page 108; that would give

(50
33

)
233. Of

course, this is equal to the answer given:
(50

17

)
233. Students might be confused to

see this other version. [Chris Czyzewicz]
• Page 519, solution to Chapter 3 Self Test question 15: The answer given is incorrect

because the sum has n+ 1 terms. The correct answer is (n+ 1)n+
(n+1

2

)
which

equals (3n2 +3n)/2. [Michael Vitale and Carol Wood]
• Pages 538–539, solution to Chapter 9 Self Test question 18(a): Replace χ(G) ≥ k

with χ(G)≤ k. This error appears twice. [Glen Granzow]
• Page 523, solution to Chapter 4 Self Test question 18(a): The solution should be

5
2(−3)n + 3

2(5)
n. [Alexa Narzikul]

• Page 523, solution to Chapter 4 Self Test question 18(b): The formula is incorrect
(and the problem it purports to solve also has errors). Ignore this problem. [Mary
Glaser]
• Page 524, solution to Chapter 5 Self Test question 6: The second proof asserts that

x2 + xy+ y2 can never equal zero. This is false as we may take x = y = 0. The
proof can be easily repaired to show that if x2 + xy+ y2 = 0 for integers x,y then
x = y = 0. Since the overall goal here is to show that x = y, the result follows. [Glen
Granzow]
• Page 553, second bullet under Ordering: The case “if a < b and c≤ d then a+c <

b+d” is missing. A sensible way to rework this is to present the standard ordered
field axioms:

– ∀a,b,c ∈ R, if a≤ b, then a+ c≤ b+ c.
– ∀a,b ∈ R, if 0≤ a and 0≤ b, then 0≤ ab.

From these follow the various standard algebraic properties of <, ≤, >, and ≥.
[Benjamin Pierce]

Errors in the Instructor’s Manual
• Page 72, solution to Exercise 22.1(l). See the comment to page 188 of the text.

[Eric Harley]
• Page 111, solution to Exercise 33.11. In the first line of the displayed equation, the

last term is 1×P(X = 1) but it should be 1×P(IA = 1).
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• Page 159, solution to Exercise 46.18(e). Change 4 7→ d to 4 7→ e. [Benjamin Pierce]
• Page 165, solution to Exercise 49.1. The last word should be “cycle,” not “tree.”

[Marie Jameson]
• Page 168, solution to Exercise 49.12. In the last sentence, “edges” should be

“edge”. [Glen Granzow]
• Page 172, solution to Exercise 51.9. In the second line, “Property” should be “Prop-

erly”. [Glen Granzow]
• Page 174, solution to Exercise 51.13(b). First, there is a confusion between the

a and b vertices; in the opening paragraph the “outer rim” vertices are named
b1, . . . ,b5, but later they are called a1, . . . ,a5. Second, in the first set of displayed
equations defining the values of f (ai) we see f (a4) = 1, but this should be f (a4) =
2. [Glen Granzow]
• Page 176, solution to Exercise 52.9(b). The proof given is valid only in the case

that the graph has at least one cycle. In case the graph is acyclic, it is easy to prove
that δ (G)< 2, but that needs to be added to the solution. [Donniell Fishkind]

Thanks to Glen Granzow and Carol Wood who pointed out some errors in this list of errors
(they have been fixed).

The latest version of this document can be found online at this URL:
http://www.ams.jhu.edu/∼ers/mdi/typos/typos.pdf

This document was last updated November 24, 2010.
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