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To the Student

Welcome.
This book is an introduction to mathematics. In particular, it is an introduction
to discrete mathematics. What do these terms—discrete and mathematics—mean?
Continuous versus discrete The world of mathematics can be divided roughly into two realms: the con-
mathematics. tinuous and the discrete. The difference is illustrated nicely by wristwatches.
Continuous mathematics corresponds to analog watches—the kind with separate
hour, minute, and second hands. The hands move smoothly over time. From an ana-
log watch perspective, between 12:02 P.M. and 12:03 .M. there are infinitely many
possible different times as the second hand sweeps around the watch face. Contin-
uous mathematics studies concepts that are infinite in scope, in which one object
blends smoothly into the next. The real-number system lies at the core of con-
tinuous mathematics, and—just as on the watch—between any two real numbers,
there is an infinity of real numbers. Continuous mathematics provides excellent
models and tools for analyzing real-word phenomena that change smoothly over
time, including the motion of planets around the sun and the flow of blood through
the body.
Discrete mathematics, on the other hand, is comparable to a digital watch.
On a digital watch there are only finitely many possible different times between
12:02 p.M. and 12:03 P.M. A digital watch does not acknowledge split seconds!
There is no time between 12:02:03 and 12:02:04. The watch leaps from one time
to the next. A digital watch can show only finitely many different times, and the
transition from one time to the next is sharp and unambiguous. Just as the real
numbers play a central role in continuous mathematics, integers are the primary
tool of discrete mathematics. Discrete mathematics provides excellent models
and tools for analyzing real-world phenomena that change abruptly and that lie
clearly in one state or another. Discrete mathematics is the tool of choice in a
host of applications, from computers to telephone call routing and from personnel
assignments to genetics.
What is mathematics? A Let us turn to a harder question: What is mathematics? A reasonable answer
more sophisticated answer g that mathematics is the study of numbers and shapes. The particular word in

is that mathematics is the  yhig definition we would like to clarify is study. How do mathematicians approach
study of sets, functions, thei K9

and concepts built on these CIr WOrK: . L. L. . -
fundamental notions. Every field has its own criteria for success. In medicine, success is healing and

the relief of suffering. In science, the success of a theory is determined through
experimentation. Success in art is the creation of beauty. Lawyers are successful
when they argue cases before juries and convince the jurors of their clients’ cases.
Players in professional sports are judged by whether they win or lose. And success
in business is profit.

XV



XVi To the Student

Proof writing.

Proof templates.

What is successful mathematics? Many people lump mathematics together
with science. This is plausible, because mathematics is incredibly useful for
science, but of the various fields just described, mathematics has less to do with
science than it does with law and art!

Mathematical success is measured by proof. A proof is an essay in which an
assertion, such as “There are infinitely many prime numbers,” is incontrovertibly
shown to be correct. Mathematical statements and proofs are, first and foremost,
judged in terms of their correctness. Other, secondary criteria are also important.
Mathematicians are concerned with creating beautiful mathematics. And mathe-
matics is often judged in terms of its utility; mathematical concepts and techniques
are enormously useful in solving real-world problems.

One of the principal aims of this book is to teach you, the student, how to
write proofs. Long after you complete this course in discrete mathematics, you
may find that you do not need to know how many k-element subsets an n-element
set has or how Fermat’s Little Theorem can be used as a test for primality. Proof
writing, by contrast, will always serve you well. It trains us to think clearly and
present our case logically.

Many students find proof writing frightening and difficult. They might freeze
after writing the word proof on their paper, unsure what to do next. The anti-
dote to this proof phobia can be found in the pages of this book! We demystify
the proof-writing process by decoding the idiosyncrasies of mathematical English
and by providing proof templates. The proof templates, scattered throughout this
book, provide the structure (and boilerplate language) for the most common vari-
eties of mathematical proofs. Do you need to prove that two sets are equal? See
Proof Template 5! Trying to show that a function is one-to-one? Consult Proof
Template 20!

How to Read a Mathematics Book

Reading a mathematics book is an active process. You should have a pad of paper
and a pencil handy as you read. Work out the examples and create examples of
your own. Before you read the proofs of the theorems in this book, try to write
your own proof. Then, if you get stuck, read the proof in the book.

One of the marvelous features of mathematics is that you need not (perhaps,
should not!) trust the author. If a physics book refers to an experimental result, it
might be difficult or prohibitively expensive for you to do the experiment yourself.
If a history book describes some events, it might be highly impractical to consult
the original sources (which may be in a language you do not understand). But with
mathematics, all is before you to verify. Have a reasonable attitude of doubt as you
read; demand of yourself to verify the material presented. Mathematics is not so
much about the truths it espouses but about how those truths are established. Be
an active participant in the process.

One way to be an active participant is to work on the hundreds of exercises
found in this text. If you run into difficulty, you may be helped by the many hints
and occasional answers in Appendix A. However, I hope you will not treat this book
as just a collection of problems with some stuff thrown in to keep the publisher
happy. I tried hard to make the exposition clear and useful to students. If you find it
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otherwise, please let me know. | hope to improve this book continually, so send your
comments to me by email at ers@jhu.edu or by conventional letter to Professor
Edward Scheinerman, Department of Applied Mathematics and Statistics, The
Johns Hopkins University, Baltimore, Maryland 21218, USA. Thank you.

I hope you enjoy.

Exercises

1. On a digital watch there are only finitely many different times that can be
displayed. How many different times can be displayed on a digital watch that
shows hours, minutes, and seconds and that distinguishes between A.M. and
P.M.?

2. Anice cream shop sells ten different flavors of ice cream. You order a two-
scoop sundae. In how many ways can you choose the flavors for the sundae if
the two scoops in the sundae are different flavors?






Please also read the
“To the Student.”

Serving the computer
science/engincering
student.

To the Instructor

Why do we teach discrete mathematics? 1 think there are two good reasons. First.
discrete mathematics is useful, especially to students whose interests lie in com-
puter science and engineering, as well as those who plan to study probability,
statistics, operations research, and other areas of modern applied mathematics.
But I believe there is a second, more important reason to teach discrete mathe-
matics. Discrete mathematics is an excellent venue for teaching students to write
proofs.
Thus this book has two primary objectives:

. to teach students fundamental concepts in discrete mathematics (from count-
ing to basic cryptography to graph theory) and
. to teach students proof-writing skills.

Audience and Prerequisites

This text is designed for an introductory-level course on discrete mathematics.
The aim is to introduce students to the world of mathematics through the ideas and
topics of discrete mathematics.

A course based on this text requires only core high school mathematics: algebra
and geometry. No calculus is presupposed or necessary.

Discrete mathematics courses are taken by nearly all computer science and
computer engineering students. Consequently, some discrete mathematics courses
focus on topics such as logic circuits, finite state automata, Turing machines, algo-
rithms, and so on. Although these are interesting, important topics, there is more
that a computer scientist/enginéer should know. We take a broader approach. All of
the material in this book is directly applicable to computer science and engineering,
but it is presented from a mathematician’s perspective. As college instructors, our
job is to educate students, not just to train them. We serve our computer science and
engineering students better by giving them a broader approach, by exposing them
to different ideas and perspectives, and, above all, by helping them to think and
write clearly. To be sure, in this book you will find algorithms and their analysis,
but the emphasis is on mathematics.

Topics Covered and Navigating the Sections
The topics covered in this book include

. the nature of mathematics (definition, theorem, proot, and counterexample),
- basic logic,
- lists and sets,

Xix
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To the Instructor

+ relations and partitions,

+ advanced proof techniques,
. recurrence relations,

. functions and their properties,
- permutations and symmetry,
- discrete probability theory,

« number theory,

« group theory,

» public-key cryptography,

» graph theory, and

. partially ordered sets.

Furthermore, enumeration (counting) and proof writing are developed throughout
the text. Please consult the table of contents for more detail.

Each section of this book corresponds (roughly) to one classroom lecture.
Some sections do not require this much attention, and others require two lectures.

There is enough material in this book for a year-long course in discrete math-
ematics. If you are teaching a year-long sequence, you can cover all the sections.

A semester course based on this text can be roughly divided into two halves.
In the first half, core concepts are covered. This core consists of Sections 2 through
23 (optionally omitting Sections 17 and 18).

From there, the choice of topics depends on the needs and interests of the
students. Sample course outlines are given below. The interdependence of the
various sections is depicted in the following diagram.

Fundamentals Collections Counting and Relations More Proof
[=>2=>3>4->5-26 7==8>=9->10->11 13>14>15>16 1920121
12 17 .18 22
i Functions
i 4647 48> 49> 51> 52
i 2428 Graphs
L 293+ 252627 0
AN
P
Number Theory - 5355455+ 5657
34->35->3$-*37— 58
T L At S Partially Ordered Sets
———
Probability Algebra ]
- YOI
29303132733 3940+ 41-->42 4344

45
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Sample Course Outlines

Thanks to its plentiful selection of topics, this book can serve a variety of dis-
crete mathematics courses. The following outlines provide some ideas on how to
structure a course based on this book.

Computer science/engineering focus: Cover sections 1-16, 19-23, 28, 29--
33, 34-36, 4649, and 51. This plan covers the core material, special com-
puter science notation, discrete probability, essential number theory, and graph
theory. ,

Abstract algebra focus: Cover sections 1-16, 19-27, and 34-45. This plan
covers the core material, permutations and symmetry, number theory, group
theory, and cryptography.

Discrete structures focus: Cover sections 1-26, 4656, and 58. This plan
includes the core material, inclusion-exclusion, multisets, permutations, graph
theory, and partially ordered sets.

Broad focus: Cover sections 1-16, 19-23, 25-26, 34-38, 4245, and 46-52.
This plan covers the core material, permutations, number theory, cryptogra-
phy, and graph-theory. It most closely resembles the course I teach at Johns
Hopkins.

Special Features

Proof templates: Many students find proof writing difficult. When presented
with a task such as proving two sets are equal, they have trouble structuring
their proof and don’t know what to write first. (See Proof Template 5 on
page 51.) The proof templates appearing throughout this book give students
the basic skeleton of the proof as well as boilerplate language. A list of the
proof templates appears on the inside front cover.

Growing proofs: Experienced mathematicians can write proofs sentence by
sentence in proper order. They are able to do so because they can see the entire
proof in their minds before they begin. Novice mathematicians (our students)
often cannot see the whole proof before they begin. It is difficult for a student to
learn how to write a proof simply by studying completed examples. I instruct
students to begin their proofs by first writing the first sentence and next writing
the last sentence. We then work the proof from both ends until we (ideally)
meet in the middle.

This approach is presented in the text through ever-expanding proofs

in which the new sentences appear in color. See, for example, the proof of
Proposition 11.11 (pages 69-73).
Mathspeak: Mathematicians write well. We are concerned with expressing
our ideas clearly and precisely. However, we change the meaning of some
words (e.g., injection and group) to suit our needs. We invent new words (e.g.,
poset and bijection), and we change the part of speech of others (e.g., we use
the noun maximum and the preposition onto as adjectives). I point out and
explain many of the idiosyncrasies of mathematical English in marginal notes
flagged with the term Mathspeak.
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To the Instructor

Hints: Appendix A contains an extensive collection of hints (and some an-
swers). It is often difficult to give hints that point a student in the correct
direction without revealing the full answer. Some hints may give away too
much, and others may be cryptic, but on balance, students will find this sec-
tion enormously helpful. They should be instructed to consult this section only
after mounting a hearty first attack on the problems.

Answers: An Instructor’s Guide and Solutions book is available from
Brooks/Cole. Not only does this supplement give solutions to all the problems,
it also gives helpful tips for teaching each of the sections.

Self tests: Every chapter ends with a self test for students. Complete answers
appear in Appendix B. These problems are of varying degrees of difficulty.
Instructors may wish to specify which problems students should attempt in
case not all sections of a chapter have been covered in class.




\VWhat's New In This
Second Edition

In addition to correcting various errors (thank you to all those who wrote!), the
following new features have been added:

Self tests: These are described at the end of the previous section.

A new example proof in Section 4: A number of instructors remarked that the
first statements proved (sum of evens is even and transitivity of divisibility)
are too simplistic. A new example has been added that is moderately more
complicated.

Section 12 is entirely new and gives a more thorough introduction to combi-
natorial proof via two nontrivial examples.

Section 21 on induction has been expanded and made essentially independent
of Section 20 on proof by smallest counterexample.

Section 22 on recurrence relations is entirely new. We develop methods (with
full supporting theory) to solve first- and second-order homogeneous constant
coefficient recurrence relations. First-order recurrence relations are solved in
both the homogeneous and nonhomogeneous cases, whereas the second-order
equations are solved only in the homogeneous case (but the more general case
is explored in an exercise).

We also show how to find the formula for the nth term of a sequence of
numbers if that sequence is generated by a polynomial function of n.
Section 26 includes a new proof that two decompositions of a permutation into
transpositions must have the same parity. The new proof avoids the tedious
consideration of inversions in a permutation and is based on T. L. Bartlow,
“An historical note on the parity of permutations,” American Mathematical
Monthly 79 (1972) 766-769 and S. Nelson, “Defining the sign of a permuta-
tion,” American Mathematical Monthly 94 (1987) 543-545.

There is a new opening section that describes the pleasure of doing mathe-
matics.

xxiii






Acknowledgments

This New Edition

I have many people to thank for their help in the preparation of this second edition.

My colleagues at Harvey Mudd College, Professor Arthur Benjamin and An-
drew Bemoff, have used preliminary drafts of this second edition in their class-
rooms and have provided valuable feedback. A number of their students sent me
comments and suggestions; many thanks to Jon Azose, Alan Davidson, Rachel
Harris, Christopher Kain, John McCullough, and Hadley Watson.

For a number of years, my colleagues at Johns Hopkins University have been
teaching our discrete mathematics course using this text. I especially want to thank
Donniell Fishkind and Fred Torcaso for their helpful comments and encourage-
ment.

It has been a pleasure working with Bob Pirtle, my editor at Brooks/Cole. 1
greatly value his support, encouragement, patience, and flexibility.

Brooks/Cole arranged for independent reviewers to provide feedback on this
revision. Their comments were valuable and helped improve this new edition.
Many thanks to Mike Daven (Mount Saint Mary College), Przemo Kranz (Univer-
sity of Mississippi), Jeff Johannes (The State University of New York Geneseo),
and Michael Sullivan (San Dicgo State University).

The beautiful cover photograph is by my friend and former neighbor (and
bridge partner) Albert Kocourek. This glorious image. entitled New Wharf, was
taken in Maryland on the eastern shore of the Chesapeake Bay. Thank you, Al!
More of Al’s artwork can be seen on his website, www.albertkocourek. com.
Thanks also to Jeanne Calabrese for the beautiful design of the cover.

The first edition had a number of errors. I greatly appreciate feedback from var-
ious students and instructors for bringing these mistakes to my attention. In particu-
lar, 1 thank Seema Aggarwal, Ben Babcock, Richard Belshoff, Kent Donnelly, Usit
Duongsaa, Donniell Fishkind, George Huang, Sandi Klavzar, Peter Landweber,
George Mackiw, Ryan Mansfield, Gary Morris, Evan O’Dea, Levi Ortiz, Russ Rut-
ledge, Rachel Scheinerman, Karen Seyffarth, Douglas Shier, and Kimberly Tucker.

From the First Edition

These acknowledgments appeared in the first edition of this book; I still owe the
individuals mentioned below a debt of gratitude.

During academic year 1998-99, students at Harvey Mudd College, Loyola
College in Maryland, and the Johns Hopkins University used a preliminary version
of this text. I am grateful to George Mackiw (Loyola) and Greg Levin (Harvey
Mudd) for test-piloting this text. They provided me with many helpful comments,
corrections, and suggestions. '

XXV



XXVi Acknowledgments

I would especially like to thank the many students at these various institutions
who had to endure typo-ridden first drafts. They offered many vatuable suggestions
that improved the text. In particular, I received helpful comments from all of the
following:

Harvey Mudd: Tesse Abrams, Rob Adams, Gillian Allen, Matt Brubeck, Zeke
Burgess, Nate Chessin, Jocelyn Chew, Brandon Duncan, Adam Fischer, Brad
Forrest, Jon Erickson, Cecilia Giddings, Joshdan Griffin, David Herman, Doug
Honma, Eric Huang, Keith Ito, Masashi Ito, Leslie Joe, Mike Lauzon, Colin Little,
Dale Lovell, Steven Matthews, Laura Mecurio, Elizabeth Millan, Joel Miller, Greg
Mulert, Bryce Nichols, Lizz Norton, Jordan Parker, Niccole Parker, Jane Pratt,
Katie Ray, Star Roth, Mike Schubmehl, Roy Shea, Josh Smallman, Virginia Stoll,
Alex Teoh, Jay Trautman, Richard Trinh, Kim Wallmark, Zach Walters, Titus
Winters, Kevin Wong, Matthew Wong, Nigel Wright, Andrew Yamashita, Steve
Yan, and Jason Yelinek.

Loyola: Richard Barlcy and Deborah Kunder.

Johns Hopkins: Adam Cannon, William Chang, Lara Diamond, Elias Fenton,
Eric Hecht, Jacqueline Huang, Brian lacoviello, Mark Schwager, David Tucker,
Aaron Whittier, and Hani Yasmin.

Art Benjamin (Harvey Mudd College) contributed a collection of problems he
uses when he teaches discrete mathematics; many of these problems appear in this
text. Many years ago, Art was my teaching assistant when I first taught discrete
mathematics. His help in developing that course undoubtedly has an echo in this
book.

Thanks to Ran Libeskind-Hadas (also from Harvey Mudd) for contributing
his collection of problems.

I had many enjoyable philosophical discussions with Mike Bridgland (Center
for Computer Sciences) and Paul Tanenbaum (Army Research Laboratory). They
kept me logically honest and gave excellent advice on how to structure my ap-
proach. Paul carefully read through an early draft of the book and made many
helpful suggestions.

Thanks to Laura Tateosian, who drew the cartoon for the hint to Exercise 47.7.

Brooks/Cole arranged for an early version of this book to be reviewed by vari-
ous mathematicians. [ thank the following individuals for their helpful suggestions
and comments: Douglas Burke (University of Nevada—Las Vegas), Joseph Gallian
(University of Minnesota), John Gimbel (University of Alaska—Fairbanks), Henry
Gould (West Virginia University), Arthur Hobbs (Texas A&M University), and
George MacKiw (Loyola College in Maryland).

Lara Diamond painstakingly read through every sentence, uncovering numer-
ous mathematical errors; I appreciate this tremendous support. Thank you, Lara.

I would like to believe that with so many people looking over my shoulder, ali
the errors have been found, but this is ridiculous. I am sure I have made many more
errors than these people could find. This leaves some more for you, my reader, to
find. Please tell me about them. (Send email to ers@jhu. edu.)

I am lucky to work with wonderful colleagues and graduate students in the
Department of Applied Mathematics and Statistics at Johns Hopkins. In one way
or another, they all have influenced me and my teaching and in this way contributed
to this book. I thank them all and would like to add particular mention to these.




Acknowledgments XXvii

Bob Serfling was department chair when 1 first came to Hopkins; he empowered
and trusted me to develop the discrete mathematics curriculum for the department.
Over more than a decade, I have received tremendous support, encouragement,
and advice from my current department chair, John Wierman. And Lenore Cowen
not only contributed her enthusiasm, but also read over various portions of the text
and made helpful suggestions.

Thanks also to Gary Ostedt, Carole Benedict, and their colleagues at Brooks/
Cole. It was a pleasure working with them. Gary’s enthusiasm for this project often
exceeded my own. Carole was my main point of contact with Brooks/Cole and
was always helpful, reliable, and cheerful.

Finally, thanks (and hugs and kisses) to my wife, Amy, and to our children,
Rachel, Danny, Naomi, and Jonah, for their patience, support, and love throughout
the writing of this book.

Edward R. Scheinerman






Fundamentals

The cornerstones of mathematics are definition, theorem, and proof. Definitions
specify precisely the concepts in which we are interested, theorems assert exactly
what is true about these concepts, and proofs irrefutably demonstrate the truth of
these assertions.

Before we get started, though, we ask a question: Why?

Pleasc also read the To the
Student preface, where we
briefly address the
questions: What is
mathematics, and what is
discrete mathematics? We
also give important advice
on how to read a
mathematics book.

Joy
Why?

Before we roll up our sleeves and get to work in earnest, I want to share with you
a few thoughts on the question: Why study mathematics?

Mathematics is incredibly useful. Mathematics is central to every facet of
modern technology: the discovery of new drugs, the scheduling of airlines, the
reliability of communication, the encoding of music and movies on CDs and
DVDs, the efficiency of automobile engines, and on and on. Its reach extends
far beyond the technical sciences. Mathematics is also central to all the social
sciences, from understanding the fluctuations of the economy to the modeling of
social networks in schools or businesses. Every branch of the fine arts—including
literature, music, sculpture, painting, and theater—has also benefited from (or been
inspired by) mathematics.

Because mathematics is both flexible (new mathematics is invented daily) and
rigorous (we can incontrovertibly prove our assertions are correct), it is the finest
analytic tool humans have developed.

The unparalleled success of mathematics as a tool for solving problems in
science, engineering, society, and the arts is reason enough to engage actively this
wonderful subject. We mathematicians are immensely proud of the accomplish-
ments that are fueled by mathematical analysis. However, for many of us, this is
not the primary motivation in studying mathematics.
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Conversely. if you have
solved this problem. do not
offer your assistance to
others; you don’t want to
spoil their fun.

Fundamentals

The Agony and the Ecstasy

¢
Why do mathematicians devote their lives to the study of mathematics? For most
of us, it is because of the joy we experience when doing mathematics.

Mathematics is difficult for everyone. No matter what level of accomplishment
or skill in this subject you (or your instructor) have attained, there is always a
harder, more frustrating problem waiting around the bend. Demoralizing? Hardly!
The greater the challenge, the greater the sense of accomplishment we experience
when the challenge has been met. The best part of mathematics is the joy we
experience in practicing this art.

Most art forms can be enjoyed by spectators. I can delight in a concert per-
formed by talented musicians, be awestruck by a beautiful painting, or be deeply
moved by literature. Mathematics, however, releases its emotional surge only for
those who actually do the work.

I want you to feel the joy, too. So at the end of this brief section there is a single
problem for you to tackle. In order for you to experience the joy, do not under
any circumstances let anyone help you solve this problem. 1 hope that when
you first look at the problem, you do not immediately see the solution but, rather,
have to struggle with it for a while. Don’t feel bad: I've shown this problem to
extremely talented mathematicians who did not see the solution right away. Keep
working and thinking—the solution will come. My hope is that when you solve
this puzzle, it will bring a smile to your face. Here’s the puzzle:

1 Exercise

1.1. Simplify the following algebraic expression:

x—a)yx—>b)(x—c)---(x —2z2).

Definition

Mathematics exists only in people’s minds. There is no such “thing” as the num-
ber 6. You can draw the symbol for the number 6 on a piece of paper, but you can’t
physically hold a 6 in your hands. Numbers, like all other mathematical objects,
are purely conceptual.

Mathematical ohjects come into existence by definitions. For example, a num-
ber is called prime or even provided it satisfies precise, unambiguous conditions.
These highly specific conditions are the definition for the concept. In this way,
we are acting like legislators, laying down specific criteria such as eligibility for a
government program. The difference is that laws may allow for some ambiguity,
whereas a mathematical definition must be absolutely clear.

Let’s take a look at an example.

Definition 2.1

In a definition. the word(s)
being detined are set in
italic type.

(Even) An integer is called even provided it is divisible by two.

Clear? Not entirely. The problem is that this definition contains terms that we
have not yet defined, in particular integer and divisible. If we wish to be terribly
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fussy, we can complain that we haven’t defined the term swo. Each of these terms-—
integer, divisible, and rwo—can be defined in terms of simpler concepts, but this is
a game we cannot entirely win. If every term is defined in terms of simpler terms,
we will be chasing definitions forever. Eventually we must come to a point where
we say, “This term is undefined, but we think we understand what it means.”

The situation is like building a house. Each part of the house is built up from
previous parts. Before roofing and siding, we must build the frame. Before the
frame goes up, there must be a foundation. As house builders, we think of pouring
the foundation as the first step, but this is not really the first step. We also have to
own the land and run electricity and water to the property. For there to be water,
there must be wells and pipes laid in the ground. STOP! We have descended to a
level in the process that really has little to do with building a house. Yes, utilities
are vital to home construction, but it is not our job, as home builders, to worry
about what sorts of transformers are used at the electric substation!

Let us return to mathematics and Definition 2.1. It is possible for us to define
the terms integer, two, and divisible in terms of more basic concepts. It takes
a great deal of work to define integers, multiplication, and so forth in terms of
simpler concepts. What are we to do? Ideally, we should begin from the most
basic mathematical object of all—the set—and work our way up to the integers.
Although this is a worthwhile activity, in this book we build our mathematical
house assuming the foundation has already been formed.

Where shall we begin? What may we assume? In this book, we take the integers
as our starting point. The integers are the positive whole numbers, the negative
whole numbers, and zero. That is, the set of integers, denoted by the letter Z, is

Z={...,-3,-2,-1,0,1,2,3,...}.

We also assume that we know how to add, subtract, and multiply, and we need
not prove basic number facts such as 3 x 2 = 6. We assume the basic algebraic
properties of addition, subtraction, and multiplication and basic facts about order
relations (<, <, >, and >). See Appendix D for more details on what you may
assume.

Thus, in Definition 2.1, we need not define integer or two. However, we still
need to define what we mean by divisible. To underscore the fact that we have not
made this clear yet, consider the question: Is 3 divisible by 27 We want to say that
the answer to this question is no, but perhaps the answer is yes since 3 = 2 is 1%.
So it is possible to divide 3 by 2 if we allow fractions. Note further that in the
previous paragraph we were granted basic properties of addition, subtraction, and
multiplication, but not—and conspicuous by its absence—division. Thus we need
a careful definition of divisible.

Definition 2.2

(Divisible) Let a and b be integers. We say that a is divisible by b provided there
is an integer ¢ such that bc = a. We also say b divides a, or b is a factor of a, or
b is a divisor of a. The notation for this is bla.

This definition introduces various terms (divisible, factor, divisor, and divides)
as well as the notation b|a. Let’s look at an example.
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Example 2.3

Is 12 divisible by 4?7 To answer this question, we examine the definition. It says
that a = 12 is divisible by » = 4 if we can find an integer ¢ so that 4¢ = 12. Of
course, there is such an integer, namely, ¢ = 3.

In this situation, we also say that 4 divides 12 or, equivalently, that 4 is a factor
of 12. We also say 4 is a divisor of 12.

The notation to express this fact is 4]12.

On the other hand, 12 is not divisible by 5 because there is no integer x for
which 5x = 12; thus 5|12 is false.

Now Definition 2.1 is ready to use. The number 12 is even because 2|12, and
we know 2|12 because 2 x 6 = 12. On the other hand, 13 is not even, because 13
is not divisible by 2; there is no integer x for which 2x = 13. Note that we did not
say that 13 is odd because we have yet to define the term odd. Of course, we know
that 13 is an odd number, but we simply have not “created” odd numbers yet by
specifying a definition for them. All we can say at this point is that 13 is not even.
That being the case, let us define the term odd.

Definition 2.4

(Odd) An integer a is called odd provided there is an integer x such that
a=2x+1.

Thus 13 is odd because we can choose x = 6 in the definition to give 13 =
2 x 6 + 1. Note that the definition gives a clear, unambiguous criterion for whether
or not an integer is odd.

Please note carefully what the definition of odd does not say: It does not say
that an integer is odd provided it is not even. This, of course, is true, and we prove
it in a subsequent chapter. “Every integer is odd or even but not both™ is a fact that
we prove. :

Here is a definition for another familiar concept.

Definition 2.5

(Prime) An integer p is called prime provided that p > 1 and the only positive
divisors of p are 1 and p.

For example, 11 is prime because it satisfies both conditions in the definition:
First, 11 is greater than 1, and second, the only positive divisors of 11 are 1 and 11.

Is 1 a prime? No. To see why, take p = 1 and see if p satisfies the definition
of primality. There are two conditions: First we must have p > 1, and second, the
only positive divisors of p are 1 and p. The second condition is satisfied: the only
divisors of 1 are 1 and itself. However, p = 1 does not satisfy the first condition
because 1 > 1 is false. Therefore, 1 is not a prime.

We have answered the question: Is 1 a prime? The reason why 1 isn’t prime
is that the definition was specifically designed to make 1 nonprime! However, the
real “why question” we would like to answer is: Why did we write Definition 2.5
to exclude 17

I will attempt to answer this question in a moment, but there is an important
philosophical point that needs to be underscored. The decision to exclude the
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number 1 in the definition was deliberate and conscious. In effect, the reason I is
not prime is “because I said so!” In principle, you could define the word prime
differently and allow the number 1 to be prime. The main problem with your
using a different definition for prime is that the concept of a prime number is well
established in the mathematical community. If it were useful to you to allow 1 as
a prime in your work, you ought to choose a different term for your concept, such
as relaxed prime or alternative prime.

Now, let us address the question: Why did we write Definition 2.5 to
exclude 1? The idea is that the prime numbers should form the “building blocks”
of multiplication. Later, we prove the fact that every positive integer can be fac-
tored in a unique fashion into prime numbers. For example, 12 can be factored as
12 = 2 x 2 x 3. There is no other way to factor 12 down to primes (other than
rearranging the order of the factors). The prime factors of 12 are precisely 2, 2,
and 3. Were we to allow 1 as a prime number, then we could also factor 12 down
to “primes” as 12 = 1 x 2 x 2 x 3, a different factorization.

Since we have defined prime numbers, it is appropriate to define composite
numbers.

Definition 2.6

(Composite) A positive integer a is called composite provided there is an integer
bsuchthat 1 < b < a and bla.

For example, the number 25 is composite because it satisfies the condition of
the definition: There is a number b with 1 < b < 25 and b|25; indeed, b = 5 is
the only such number.

Similarly, the number 360 is composite. In this case, there are several numbers
b that satisfy 1 < b < 360 and b|360.

Prime numbers are not composite. If p is prime, then, by definition, there can
be no divisor of p between 1 and p (read Definition 2.5 carefully).

Furthermore, the number 1 is not composite. (Clearly, there is no number »
with 1 < b < 1.) Poor number 1! It is neither prime nor composite! (There is,
however, a special term that is applied to the number 1—the number 1 is called a
unit.)

Recap

In this section, we introduced the concept of a mathematical definition. Definitions
typically have the form “An object X is called the term being defined provided it
satisfies specific conditions.” We presented the integers 7 and defined the terms
divisible, odd, even, prime, and composite.

2 Exercises

2.1. Please determine which of the following are true and which are false; use
Definition 2.2 to explain your answers.
a. 3{100.
b. 3{99.
c. —3|3.
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d. -5—5. .
e. —2|—7. '
f. 0|4.
g. 4/0.
h. 0]0.

2.2. Here is a possible alternative to Definition 2.2: We say that a is divisible by
b provided  is an integer. Explain why this alternative definition is different
from Definition 2.2.

Here, different means that Definition 2.2 and the alternative definition
specify different concepis. So, to answer this question, you should find
integers a and b such that a is divisible by b according to one definition, but
a is not divisible by b according to the other definition.

2.3. None of the following numbers is prime. Explain why they fail to satisfy
Definition 2.5. Which of these numbers is composite?

21. :
0.

- g

by

2.
f. —1.
2.4. The natural numbers are the nonnegative integers; that is,

p R0 TP

The symbol 1§ stands for
the natural numbers. N = {0 1.2.3 }
IR LI IR

Use the concept of natural numbers to create definitions for the following
relations about integers: less than (<), less than or equal to (<), greater
than (>), and greater than or equal to (=).
Note: Many authors define the natural numbers to be just the positive in-.
tegers; for them, zero is not a natural number. To me, this seems unnatural ©.
The concepts positive integers and nonnegative integers are unambiguous
and universally recognized among mathematicians. The term natural num-
ber, however, is not 100% standardized.
2.5. A rational number is a number formed by dividing two integers a /b where
b # 0. The set of all rational numbers is denoted Q.
Explain why every integer is a rational number, but not all rational
numbers are integers.
2.6. Define what it means for an integer to be a perfect square. For example, the
integers 0, 1,4, 9, and 16 are perfect squares. Your definition should begin

The symbol ¢ stands for
the rational numbers.

An integer x is called a perfect square provided. ...

2.7. This problem involves basic geometry. Suppose the concept of distance
between points in the plane is already defined. Write a careful definition for
one point to be between two other points. Your definition should begin

Suppose A, B, C are points in the plane. We say that C is between A
and B provided. . ..

Note: Since you are crafting this definition, you have a bit of flexibility.
Consider the possibility that the point C might be the same as the point A or




2.8.

2.9.

2.10.
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B, oreven that A and B might be the same point. Personally, if A and C were
the same point, I would say that C is between A and B (regardless of where
B may lie), but you may choose to design your definition to exclude this
possibility. Whichever way you decide is fine, but be sure your definition
does what you intend.

Note further: You do not need the concept of collinearity to define benween.
Once you have defined benween, please use the notion of between to define
what it means for three points to be collinear. Your definition should begin

Suppose A, B, C are points in the plane. We say that they are collinear
provided. ...

Note even further: Now if, say, A and B are the same point, you certainly
want your definition to imply that A, B, and C are collinear.
Discrete mathematicians especially enjoy counting problems: problems that
ask how many. Here we consider the question: How many positive divisors
does a number have? For example, 6 has four positive divisors: 1, 2, 3,
and 6.

How many positive divisors does each of the following have?

a. 8.

b. 32.

¢. 2" where n is a positive integer.

d. 10.

e. 100.

f. 1,000,000.

g. 10" where n is a positive integer.

h. 30=2x3 x 5.

i. 42 =2 x 3 x 7. (Why do 30 and 42 have the same number of positive
divisors?)

jo 2310=2x3 x5x7x11.
ki 1x2x3x4x5x6x7x8.
L. 0. ‘
An integer # is called perfect provided it equals the sum of all its divisors
that are both positive and less than n. For example, 28 is perfect because
the positive divisors of 28 are 1,2, 4, 7, 14, and 28. Note that 1 +2+4 + 7+
14 = 28.
a. There is a perfect number smaller than 28. Find it.
b. Write a computer program to find the next perfect number after 28.
At a Little League game there are three umpires. One Is an engineer, one is
a physicist, and one is a mathematician. There is a close play at home plate,
but all three umpires agree the runner is out.
Furious, the father of the runner screams at the umpires, “Why did you
call her out?!”
The engineer replies, “She’s out because I call them as they are.”
The physicist replies, “She’s out because I call them as I see them.”
The mathematician replies, “She’s out because I called her out.”
Explain the mathematician’s point of view.
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Theorem v
A theorem is a declarative statement about mathematics for which there is a
proof.

The notion of proof is the subject of the next section—indeed, it is a cen-
tral theme of this book. Suffice it to say for now that a proof is an essay that
incontrovertibly shows that a statement is true.

In this section we focus on the notion of a theorem. Reiterating, a theorem is
a declarative statement about mathematics for which there is a proof.

What is a declarative statement? In everyday English we utter many types of
sentences. Some sentences arc questions: Where is the newspaper? Other sentences
are commands: Come to a complete stop. And perhaps the most common sort of
sentence is a declarative statement—a sentence that expresses an idea about how
something is, such as: It’s going to rain tomorrow or The Yankees won last night.

Practitioners of every discipline make declarative statements about their sub-
ject matter. The economist says, “If the supply of a commodity decreases, then its
price will increase.” The physicist asserts, “When an object is dropped near the
surface of the earth, it accelerates at a rate of 9.8 meter/sec?”

Mathematicians also make statements that we believe are true about mathe-
matics. Such statements fall into three categories:

« Statements we know to be true because we can prove them—we call these
theorems.

. Statements whose truth we cannot ascertain—we call these conjectures.

- Statements that are false—we call these mistakes!

There is one more category of mathematical statements. Consider the sentence
“The square root of a triangle is a circle.” Since the operation of extracting a square °
root applies to numbers, not to geometric figures, the sentence doesn’t make sense.
We therefore call such statements nonsense!

The Nature of Truth

To say that a statement is true asserts that the statement is correct and can be
trusted. However, the nature of truth is much stricter in mathematics than in any
other discipline. For example, consider the following well-known meteorological
fact: “In July, the weather in Baltimore is hot and humid.” Let me assure you, from
personal experience, that this statement is true! Does this mean that every day in
every July is hot and humid? No, of course not. It is not reasonable to expect such
arigid interpretation of a general statement about the weather.

Consider the physicist’s statement just presented: “When an object is dropped
near the surface of the earth, it accelerates at a rate of 9.8 meter/sec®.” This state-
ment is also true and is expressed with greater precision than our assertion about
the climate in Baltimore. But this physics “law” is not absolutely correct. First, the
value 9.8 is an approximation. Second, the term near is vague. From a galactic per-
spective, the moon is “near” the earth, but that is not the meaning of near that we in-
tend. We can clarify near to mean “within 100 meters of the surface of the earth,” but
this leaves us with a problem. Even at an altitude of 100 meters, gravity is slightly
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less than at the surface. Worse yet, gravity at the surface is not constant; the grav-
itational pull at the top of Mount Everest is a bit smaller than the pull at sea level!

Despite these various objections and qualifications, the claim that objects
dropped near the surface of the earth accelerate at a rate of 9.8 meter/ sec? is true,
As climatologists or physicists, we learn the limitations of our notion of truth.
Most statements are limited in scope, and we learn that their truth is not meant to
be considered absolute and universal.

However, in mathematics the word frue is meant to be considered absolute,
unconditional, and without exception.

Let us consider an example. Perhaps the most celebrated theorem in geometry
is the following classical result of Pythagoras.

Theorem 3.1

(Pythagorean) If @ and b are the lengths of the legs of a right triangle and ¢ is the
length of the hypotenuse, then
a4+ b =2

The relation a? + b> = ¢? holds for the legs and hypotenuse of every right
triangle, absolutely and without exception! We know this because we can prove
this theorem (more on proofs later).

Is the Pythagorean Theorem really absolutely true? We might wonder: If we
draw a right triangle on a piece of paper and measure the lengths of the sides down
to a billionth of an inch, would we have exactly a> + »* = ¢*? Probably not,
because a drawing of a right triangle is not a right triangle! A drawing is a helpful
visual aid for understanding a mathematical concept, but a drawing is just ink on
paper. A “real” right triangle exists only in our minds.

On the other hand, consider the statement, “‘Prime numbers are odd.” Is this
statement true? No. The number 2 is prime but not odd. Therefore, the statement
is false. We might like to say it is nearly true since all prime numbers except 2 are
odd. Indeed, there are far more exceptions to the rule “July days in Baltimore are
hot and humid” (a sentence regarded to be truc) than there are to “Prime numbers
are odd.”

Mathematicians have adopted the convention that a statement is called true
provided it is absolutely true without exception. A statement that is not absolutely
true in this strict way is called false.

An engineer, a physicist, and a mathematician are taking a train ride through
Scotland. They happen to notice some black sheep on a hillside.

“Look,” shouts the engineer. *‘Sheep in this part of Scotland are black!™

“Really,” retorts the physicist. “You mustn’t jump to conclusions. All we can
say is that in this part of Scotland there are some black sheep.”

“Well, at least on one side,” mutters the mathematician.

if-Then

Mathematicians use the English language in a slightly different way than ordinary
speakers. We give certain words special meanings that are different from that of
standard usage. Mathematicians take standard English words and use them as
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technical terms. We give words such as set, group, and graph new meanings. We
also invent our own words, such as bijecrion and poser. (All these words are defined
later in this book.)

Not only do mathematicians expropriate nouns and adjectives and give them
new meanings, we also subtly change the meaning of common words, such as or,
for our own purposes. Although we may be guilty of fracturing standard usage,
we are highly consistent in how we do it. I call such altered usage of standard
English mathspeak, and the most important cxample of mathspeak is the if-then
construction.

The vast majority of theorems can be expressed in the form “If A, then B.”
For example, the theorem “The sum of two even integers is even” can be rephrased
“If x and y are even integers, then x + y is also even.”

In casual conversation, an it-then statement can have various interpretations.
For example, I might say to my daughter, “If you mow the lawn, then I will pay
you $10.” If she does the work, she will expect to be paid. She certainly wouldn’t
object if I gave her $10 when she didn’t mow the lawn, but she wouldn’t expect it.
Only one consequence is promised.

On the other hand, if I say to my son, “If you don’t finish your lima beans,
then you won’t get dessert,” he understands that unless he finishes his vegetables,
no sweets will follow. But he also understands that if he does finish his lima beans,
then he will get dessert. In this case two consequences are promised: one in the
event he finishes his lima beans and one in the event he doesn’t.

The mathematical use of if-then is akin to that of “If you mow the lawn, then
I will pay you $10.” The statement “If A, then B” means: Every time condition
A is true, condition B must be true as well. Consider the sentence “If x and y are
even, then x 4 y is even.” All this sentence promises is that when x and y are both
even, it must also be the case that x + y is even. (The sentence does not rule out
the possibility of x + y being even despite x or ¥ not being even. Indeed, if x and
y are both odd, we know that x + y is also even.)

In the statement “If A, then B,” we might have condition A true or false, and
we might have condition B true or false. Let us summarize this in a chart. If the
statement “If A, then B is true, we have the following.

Condition A Condition B
True True Possible
True False Impossible
False True Possible
False False Possible

All that is promised is that whenever A is true, B must be true as well. If A is not
true, then no claim about B is asserted by “If A, then B.”

Hereis an example. Imagine I am a politician running for office, and 1 announce
in public, “IfTam elected, then I will lower taxes.” Under what circumstances would
you call me a liar?

« Suppose 1 am elected and I lower taxes. Certainly you would not call me a
liar—I kept my promise.
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. Suppose I am elected and I do not lower taxes. Now you have every right to
call me a liar—I have broken my promise.

+ Suppose I am not elected, but somehow (say, through active lobbying) I man-
age to get taxes lowered. You certainly would not call me a liar—I have not
broken my promise.

- Finally, suppose I am not elected and taxes are not lowered. Again, you would
not accuse me of lying—I promised to lower taxes only if I were elected.

The only circumstance under which “If (A) I am elected, then (B) I will lower
taxes” is a lie is when A is true and B is false.

In summary, the statement “If A, then B” promises that condition B is true
whenever A is true but makes no claim about B when A is false.

If-then statements pervade all of mathematics. It would be tiresome to use
the same phrases over and over in mathematical writing. Consequently, there is
an assortment of alternative ways to express “If A, then B.” All of the following
express exactly the same statement as “If A, then B.”

.« “A implies B This can also be expressed in passive voice: “B is implied
by A
«  “Whenever A, we have B.” Also: “B, whenever A.”
. “Ais sufficient for B.” Also: “A is a sufficient condition for B.”
This is an example of mathspeak. The word sufficient can carry, in standard
English, the connotation of being “just enough.” No such connotation should
be ascribed here. The meaning is “Once A is true, then B must be true as
well.”
« “In order for B to hold, it is enough that we have A.”
« “Bisnecessary for A.”
This is another example of mathspeak. The way to understand this wording
is as follows: In order for A to be true, it is necessarily the case that B is also
true.
+ “A,onlyif B” ,
The meaning is that A can happen only if B happens as well.
» “A=— B’
The special arrow symbol = is pronounced “implies.”
« “B &= A"
The arrow < is pronounced “is implied by.”

If and Only If

The vast majority of theorems are—or can readily be expressed—in the if-then
form. Some theorems go one step further; they are of the form “If A then B, and
if B then A For example, we know the following is true:

If an integer x is even, then x + 1 is odd, and if x + 1 is odd, then x Is even.

This statement is verbose. There are concise ways to express statements of the
form “A implies B and B implies A” in which we do not have to writc out the
conditions A and B twice each. The key phrase is if and only if. The statement
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“If A then B, and if B then A” can be rewritten as “A if and only if B.” The
example just given is more comfortably written as follows: 4

An integer x 1s even if and only if x 4 1 is odd.

What does an if-and-only-if statement mean? Consider the statement “A if
and only if B.” Conditions A and B may each be either true or false, so there are
four possibilities that we can summarize in a chart. If the statement “A if and only
if B” is true, we have

Condition A Condition B
True True Possible
True False Impossible
Falsc True Impossible
False False Possible

It is impossible for condition A to be true while B is false, because A —> B.

Likewise, it is impossible for condition B to be true while A is false, because

B = A. Thus the two conditions A and B must be both true or both false.
Let’s revisit the example statement.

An integer x is even if and only if x + 1 is odd.

Condition A is “x is even” and condition B is “x 4 1 is odd.” For some integers
(e.g., x = 6), conditions A and B are both true (6 is even and 7 is odd), but for
other integers (e.g., x = 9), both conditions A and B are false (9 is not even and
10 is not odd).

Just as there are many ways to express an if-then statement, so too are there
several ways to express an if-and-only-if statement.

- “Aifft B”
Because the phrase “if and only if” occurs so frequently, the abbreviation “iff”
is often used.

«  “A is necessary and sufficient for B.”

« “Aisequivalent to B”.
The reason for the word equivalent is that condition A holds under exactly
the same circumstances under which condition B holds.

+ “A<= B".
The symbol «+ is an amalgamation of the symbols <= and ==

And, Or, and Not

Mathematicians use the words and, or, and not in very precise ways. The mathe-
matical usage of and and not is essentially the same as that of standard English.
The usage of or is more idiosyncratic.

The statement “A and B” means that both statements A and B are true. For
example, “Every integer whose ones digit is 0 is divisible by 2 and by 5.” This
means that a number that ends in a zero, such as 230, is divisible both by 2 and by
5. The use of and can be summarized in the following chart.
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The word theorem should
not be confused with the
word theory. A theorem is
a specific statement that 4
can be proved. A theory is
a broader assembly of

ideas on a particular issue.
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A B A and B
True True True
True False False
False True False
False False False

The statement “not A” is true if and only if A is false. For example, the
statement “All primes are odd” is false. Thus the statement “Not all primes are
odd” is true. Again, we can summarize the use of nor in a chart.

A not A
True False
False True

Thus the mathematical usage of and and not corresponds closely with standard
English. The use of or, however, does not. In standard English, or often suggests
a choice of one option or the other, but not both. Consider the question “Tonight,
when we go out for dinner, would you like to have pizza or Chinese food?” The
implication is that we’ll dine on one or the other, but not both.

In contradistinction, the mathematical or allows the possibility of both. The
statement “A or B” means that A is true, or B is true, or both A and B are true.
For example, consider the following:

Suppose x and y are integers with the property that x|y and y|x. Thenx = v
orx = —y.

The conclusion of this result says that we may have any one of the following:

«+ x=ybutnotx = —y(e.g.,take x =3 and y = 3).
« x=—ybutnotx =y (e.g., takex = —5and y = 5).
+ x = yand x = —y, which is possible only when x =0 and y = 0.

Here is a chart for or statements.

A B AorB
True True True
True False True
False True True
False False False

What Theorems Are Called

Some theorems are more important or more interesting than others. There are
alternative nouns that mathematicians use in place of theorem. Each has a slightly
different connotation. The word theorem carries the connotation of importance and
generality. The Pythagorean Theorem certainly deserves to be called a theorem.
The statement “The square of an even integer is also even” is also a theorem, but
perhaps it doesn’t deserve such a profound name. And the statement “6 + 3 = 9”
is technically a theorem but does not merit such a prestigious appellation.
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Here we list words that are alternatives to theorem and offer a guide to their
[
usage.

Result A modest, generic word for a theorem. There is an air of humility in
calling your theorem merely a “result”” Both important and unimportant
theorems can be called results.

Fact A very minor theorem. The statement “6 4+ 3 = 97 is a fact.

Proposition A minor theorem. A proposition is more important or more gen-
eral than a fact but not as prestigious as a theorem.

Lemma A theorem whose main purpose is to help prove another, more im-
portant theorem. Some theorems have complicated proofs. Often one can
break the job of proving a complicated theorem down into smaller parts.
The lemmas are the parts, or tools, used to build the more complicated
proof.

Corollary A result with a short proof whose main step is the use of another,
previously proved theorem.

Claim Similar to lemma. A claim is a theorem whose statement usually ap-
pears inside the proof of a theorem. The purpose of a claim is to help
organize key steps in a proof. Also, the statement of a claim may involve
terms that make sense only in the context of the proof.

Vacuous Truth

What are we to think of an if-then statement in which the hypothesis is impossiblé”
Consider the following:

Statement 3.2

(Vacuous) If an integer is both a perfect square and prime, then it is negative.

Is this statement true or false?

The statement is not nonsense. The terms perfect square (see Exercise 2.6),
prime, and negative properly apply to integers.

We might be tempted to say that the statement is false because square numbers
and prime numbers cannot be negative. However, for a statement of the form “If
A, then B” to be declared false, we need to find an instance in which clause A is
true and clause B is false. In the case of Statement 3.2, condition A is impossible;
there are no numbers that are both a perfect square and prime. So we can never
find an integer that renders condition A true and condition B false. Therefore,
Statement 3.2 is true!

Statements of the form “If A, then B” in which condition A is impossible are
called vacuous, and mathematicians consider such statements true because they
have no exceptions.

Recap

This section introduced the notion of a theorem: a declarative statement about
mathematics that has a proof. We discussed the absolute nature of the word zrue
in mathematics. We discussed extensively the if-then and if-and-only-if forms of
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theorems, as well as alternative language to express such results. We clarified the
way in which mathematicians use the words and, or, and not. We presented a
number of synonyms for theorem and explained their connotations. Finally, we
discussed vacuous if-then statements and noted that mathematicians regard such
statements as true.

3 Exercises

The statement “If B, then
A” is called the converse
of the statement “If A,
then B.”

The statement “If (not B),
then (not A" is called the
contrapositive of the
statement “if A, then B

A side of a spherical
triangle is an arc of a great
circle of the sphere on
which it is drawn.

3.1.

3.2

3.3.

34.

3.5.

3.7.

3.8.

3.9,

3.10.

Each of the following statements can be recast in the if-then form. Please
rewrite each of the following sentences in the form “If A, then B.”
a. The product of an odd integer and an even integer is even.
b. The square of an odd integer is odd.
¢. The square of a prime number is not prime.
d. The productof two negative integers is negative. (This, of course, is false.)
It is a common mistake to confuse the following two statements:
a. If A, then B.
b. If B, then A.
Find two conditions A and B such that statement (a) is true but statement
(b) is false.
Consider the two statements
a. If A, then B.
b. (not A) or B.
Under what circumstances are these statements true? When are they false?
Explain why these statements are, in essence, identical.
Consider the two statements
a. If A, then B.
b. If (not B), then (not A).
Under what circumstances are these statements true? When are they false?
Explain why these statements are, in essence, identical.
Consider the two statements
a. Aiff B. :
b. (not A) iff (not B).
Under what circumstances are these statements true? Under what circum-
stances are they false? Explain why these statements are, in essence, identical.
Consider an equilateral triangle whose side lengths are a = b = ¢ = 1.
Notice that in this case a® + b* # ¢*. Explain why this is not a violation of
the Pythagorean Theorem.
Explain how to draw a triangle on the surface of a sphere that has three right
angles. Do the legs and hypotenuse of such a right triangle satisfy the con-
dition a? 4+ b? = ¢?? Explain why this is not a violation of the Pythagorean
Theorem.
Consider the sentence “A line is the shortest distance between two points.”
Strictly speaking, this sentence is nonsense.

Find two errors with this sentence and rewrite it properly.
Consider the following rather grotesque claim: “If you pick a guinea pig up
by its tail, then its eyes will pop out.” Is this true?
What are the two plurals of the word lemma?
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We create mathematical concepts via definitions. We then posit assertions about
mathematical notions, and then we try to prove our ideas are cotrect.

What is a proof?

In science, truth is borne out through experimentation. In law, truth is ascer-
tained by a trial and decided by a judge and/or jury. In sports, the truth is the ruling
of referees to the best of their ability. In mathematics, we have proof.

Truth in mathematics is not demonstrated through experimentation. This is
not to say that experimentation is irrelevant for mathematics—quite the contrary!
Trying out ideas and examples helps us to formulate statements we believe to
be true (conjectures); we then try to prove these statements (thereby converting
conjectures to theorems).

For example, recall the statement “All prime numbers are odd.” If we start
listing the prime numbers from 3, we find hundreds and thousands of prime num-
bers, and they are all odd! Does this mean all prime numbers are odd? Of course
not! We simply missed the number 2.

Let us consider a far less obvious example.

Conjecture 4.1

Mathspeak!

A proof @ often called an
argumieni. i siandard
English, the word
argunment Carries a
connotation of
disagreement or
controversy. No such
gegative connofarion
should be ussociated with a
mathematical argument.
Indeed. mathematicians
are honored when their
proofs are called “beautiful
arguments.”’

(Goldbach) Every even integer greater than two is the sum of two primes.

Let’s see that this statement is true for the first few even numbers. We have

#
4=2+42 6=3+43 10=3+7 .
12=5+7 14=7+7 18=11+7.

8=345
l6e=11+5

One could write a computer program to verify that the first few billion even numbers
(starting with 4) are each the sum of two primes. Does this imply Goldbach’s
Conjecture is true? No! The numerical evidence makes the conjecture believable,
but it does not prove that it is true. To date, no proof has been found for Goldbach’s
Conjecture, so we simply do not know whether it is true or false.

A proof is an essay that incontrovertibly shows that a statement is true. Math-
ematical proofs are highly structured and are written in a rather stylized manner.
Certain key phrases and logical constructions appear frequently in proofs. In this
and subsequent sections, we show how proofs are written.

The theorems we prove in this section are all rather simple. Indeed, you won’t
learn any facts about numbers you probably didn’t already know quite well. The
point in this section is not to learn new information about numbers; the point is to
learn how to write proofs. So without further ado, let’s start writing proofs!

We prove the following:

Proposition 4.2

The sum of two even integers is even.

I will write the proof here in full, and then we will discuss how this proof was
created. In this proof, I have numbered each sentence so we can examine the proof
piece by piece. Normally we would write this short proof out in a single paragraph
and not number the sentences.
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Proof (of Proposition 4.2)

1.
2.

new

© 9 3

10.

We show that if x and y are even integers, then x + y is an even integer.

Let x and y be even integers.

Since x is even, we know by Definition 2.1 that x is divisible by 2 (i.e.. 2|x).
Likewise, since y is even, 2|y.

Since 2|x, we know, by Definition 2.2, that there is an integer a such that
x =2a.

Likewise, since 2|y, there is an integer b such that y = 2b.

Observe that x +y = 2a + 2b = 2(a + b).

Therefore there is an integer ¢ (namely, a + b) such that x + y = 2¢c.
Therefore (Definition 2.2) 2|(x + ¥).

Therefore (Definition 2.1) x + y is even. [ |

Let us examine exactly how this proof was written,

The first step is to convert the statement of the proposition into the if-then
form.

The statement reads, “The sum of two even integers is even.”

We convert the statement into if-then form as follows:

“If x and y are even integers, then x + y is an even integer.”

Note that we introduced letters (x and y) to name the two even intcgers.
These letters come in handy in the proof.

Observe that the first sentence of the proof spells out the proposition in
if-then form.

Sentence 1 announces the structure of this proof. The hypothesis (the “if”
part) tells the reader that we will assume that x and v are even integers, and
the conclusion (the “then” part) tells the reader that we are working to prove
that x + y is even.

Sentence 1 can be regarded as a preamble to the proof, The proof starts
in earnest at sentence 2.

The next step is to write the very beginning and the very end of the proof.

The hypothesis of sentence 1 tells us what to write next. It says, .. .if x
and y are evenintegers. . .,” so we simply write, “Let x and y be even integers.”
(Sentence 2)

Immediately after we write the first sentence, we write the very last sen-
tence of the proof. The last sentence of the proof is a rewrite of the conclusion
of the if-then form of the statement.

“Therefore, x + y is even.” (Sentence 10)

The basic skeleton of the proof has been constructed. We know where we
begin (x and y are even), and we know where we are heading (x + v is even).
The next step is to unravel definitions. We do this at both ends of the proof.

Sentence 2 tells us that x is even. What does this mean? To find out, we
check (or we remember) the definition of the word even. (Take a quick look at
Definition 2.1 on page 2.) It says that an integer is even provided it is divisible
by 2. So we know that x is divisible by 2, and we can also write that as 2|x;
this gives sentence 3.
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Sentence 4 does the same job as sentence 3. Since the reasoning in sen-
tence 4 is identical to that of sentence 3, we use the word likewise to flag this
parallel construction.

We now unravel the definition of divisible. We consult Definition 2.2 to
learn that 2|x means there is an integer—we need to give that integer a name
and we call it e—such that x = 2a. So sentence 5 just unravels sentence 3.
Similarly (likewise!) sentence 6 unravels the fact that 2|y (sentence 4), and
we know we have an integer b such that y = 2b.

At this point, we are stuck. We have unraveled all the definitions at the
beginning of the proof, so now we return to the end of the proof and work
backward!

We are still in the “unravel definitions” phase of writing this proot. The
last sentence of the proof says, “Therefore x + y is even.” How do we prove
an integer is even? We turn to the definition of even, and we see that we need
to prove that x +y is divisible by 2. So we know that the penultimate sentence
(number 9) should say that x + y is divisible by 2.

How do we get to sentence 97 To show that an integer (namely, x + y) 18
divisible by 2, we need to show there is an integer—let’s call it c—such that
(x 4+ y) = 2c. This gives sentence 8.

Now we have unraveled definitions from both ends of the proof. Let’s
pause a moment to see what we have. The proof (written more tersely here)
reads:

—

We show that if x and y are even integers, then x + y is an even integer.

Let x and y be even integers. By definition of even, we kwow that
2|x and 2|y. By definition of divisibility, we know there are’integers a
and b such that x = 2a and y = 2b.

Therefore there is an integer ¢ such that x + y = 2c; hence 2|(x + v),
und therefore x + y is even.

The next step is to think. What do we know and what do we need?

We know x = 2a and y = 2b. We need an integer ¢ such that x +y = 2¢.
So in this case, it is easy to see that we can take ¢ = a + b because the sum of
two integers is an integer. We fill in the middle of the proof with sentence 7
and we are finished! To celebrate, and to mark the end of the proof, we append
an end-of-proof symbol to the end of the proof: ]

This middle step—which was quite easy——is actually the hardest part of
the proof. The translation of the statement of the proposition into if-then form
and the unraveling of definitions are routine; once you have written several
proofs, you will find these steps are easily produced. The hard part comes
when you try to make ends meet!

e
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The proof of Proposition 4.2 is the most basic type of proof; it is called a direct
proof. The steps in writing a direct proof of an if-then statement are summarized
in Proof Template 1.

Proof Template 1 Direct proof of an if-then theorem.

+ - Write the first sentence(s) of the proof by restating the hypothesis of the
result. Invent suitable notation (e.g., assign letters to stand for variables).

+ ' Write the last sentence(s) of the proof by restating the conclusion of the
result.

« Unravel the definitions, working forward from the beginning of the proof
and backward from the end of the proof.

« -:Figure out what you know and what you need. Try to forge a link between
the two halves of your argument.

Let’s use the direct proof technique to prove another result.

Proposition 4.3 Leta, b, and ¢ be integers. If a|b and b|c, then alc.

The first step in creating the proof of this proposition is to write the first and
last sentences based on the hypothesis and conclusion. This gives

Suppose a, b, and ¢ are integers with alb and b|c.

Therefore alc. L

Next we unravel the definition of divisibility.

Suppose a, b, and ¢ are integers with a|b and b|c. Since a|b, there is an
integer x such that b = ax. Likewise there is an integer v such that ¢ = by.

Therefore there is an integer z such that ¢ = az. Therefore ajc. |

‘We have unraveled the definitions. Let’s consider what we have and what we
need.

We have a, b, ¢, x, and y such that: b =ax and c = by.
We want to find z such that: ¢ =az.
Now we have to think, but fortunately the problem is not hard. Since b = ax, we

can substitute ax for b in ¢ = by and get ¢ = axy. So the z we need is 7 = xYy.
We can use this to finish the proof of Proposition 4.3.
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Suppose a, b, and ¢ are integers with a|b and b|c. Since‘alb, there is an
integer x such that b = ax. Likewise there is an integer y such that ¢ = by.
Let z = xy. Then az = a(xy) = (ax)y = by = c.

Therefore there is an integer z such that ¢ = az. Therefore a|c. |

A More Involved Proof

Propositions 4.2 and 4.3 are rather simple and not particularly interesting. Here
we develop a more interesting proposition and its proof.

One of the most intriguing and most difficult issues in mathematics is the
pattern of prime and composite numbers. Here is one pattern for you to consider.
Pick a posititive integer, cube it, and then add one. Some examples:

3P4 1=274+1=28,

£ 4+1=64+1=65,

5 4+1=125+1=126, and
6°+1=216+1=217.

Notice that the results are all composite. (Note that 217 = 7 x 31.) Try a few more
examples on your own.

Let us try to convert this observation into a proposition for us to prove. Here’s a
first (but incorrect) draft: “If x is an integer, then x*+ 1 is composite.” Thisis a good
start, but when we examine Definition 2.6, we note that the term composite applies
only to positive integers. If x is negative, then x* + 1 is either negative or zero.

Fortunately, it’s easy to repair the draft statement; here is a secoid version:
“If x is a positive integer, then x* + 1 is composite.”” This looks better, but we’re
in trouble already when x = 1 because, in this case, x* + 1 = 1° + 1 = 2, which
is prime. This makes us worry about the entire idea, but we note that when x = 2,
x>+ 1 =2%+1 =09, which is composite, and we can try many other examples
with x > | and always meet with success. The case x = 1 turns out to be the only
exception, and this leads us to a third (and correct) version of the proposition we
wish to prove.

Proposition 4.4 Let x be an integer. If x > 1, then x> + 1 is composite.

Let’s write down the basic outline of the proof.

Let x be an integer and suppose x > 1.

Therefore x* + 1 is composite. [ |

To reach the conclusion that x* + 1 is composite, we need to find a factor of
x* + 1 that is strictly between 1 and x* + 1. With luck, the word factor makes us
think about factoring the polynomial x* + 1 as a polynomial. Recall from basic




You might have the
following concern: “1
forgot that x* + 1 factors.
How would I ever come up
with this proof?” One idea
is to look for patterns in
the factors. We saw that
6'+1=7x31506+1
is divisible by 7. Trying
more examples, you may
notice that 77 + 1 is
divisible by 8, 8* + 1 is
divisible by 9, 9% + 1 is
divisible by 10, and so on.
With luck, that will help
you realize that x* + 1 s
divisible by x + 1, and
then you can complete
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algebra that
Pl =x+DE*P—-x+1).
This is the “Aha!” insight we need. Both x + 1 and x* — x + 1 are factors of x4+,

For example, when x = 6, the factors x + 1 and x? — x 4 1 evaluate to 7 and 31,
respectively. Let’s add this insight to our proof.

Let x be aninteger and suppose x > 1.Notethat x>+ 1 = (x+ D (x*—x+1).

Since x + 1 is a divisor of x> + 1, we have that x* + 1 is composite. B

To correctly say that x + 1 is a divisor of x* + 1, we need the fact that both
x + 1 and x? — x + 1 are integers. This is clear, because x itself is an integer. Let’s
be sure we include this detail in our proof.

Let x be aninteger and suppose x > 1. Notethat x*+1 = (x+1)(x*—x+1).
Because x is an integer, both x + 1 and x? — x + 1 are integers. Therefore
(x + D+ 1).

Since x + 1 is a divisor of x> + 1, we have that x° 4 | is composite. H

The proof isn’t quite finished yet. Consult Definition 2.6; we need that the
divisor be strictly between | and x* + 1, and we have not proved that yet. So let’s
figure out what we need to do. We must prove

l<x+1<x’4+1
The first part is easy. Since x > 1, adding 1 to both sides gives
X+1>141=2>1.

Showing that x4+1 < x*+ 1 is only slightly more difficult. Working backward,
to show x + 1 < x* + 1, it will be enough if we can prove that x < x°. Notice that
since x > 1, multiplying both sides by x gives x* > x, and since x > 1, we have
x2 > 1. Multiplying both sides of this by x gives x* > x.

Let’s take these ideas and add them to the proof.

Letx be an integer and suppose x > |. Notethatx®+1 = (x+1)(x?—x+1).
Because x is an integer, both x + 1 and x> — x + 1 are integers. Therefore
(x + D] + 1.

Sincex > l,wehavex +1>14+1=2> 1.

Also x > 1 implies x> > x, and since x > 1, we have x* > 1. Multiplying
both sides by x again yields x> > x. Adding 1 to both sides gives x* + 1 >
x+ 1.

Thus x + 1 is aninteger with 1 < x + 1 < x* + 1.

Since x + 1 isadivisorof x® +1and1 < x + 1 < x¥ + 1, we have that
x? + 1 is composite. [
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Proving If-and-Only-Iif Theorems

The basic technique for proving a statement of the form “A iff B” is to prove two
if-then statements. We prove both “If A, then B and “If B, then A.” Here is an

example:

e

Proposition 4.5 Let x be an integer. Then x is even if and only if x + 1 is odd.

The basic skeleton of the proof is as follows:

Let x be an integer.
(=) Suppose x is even. ... Therefore x + 1 is odd.

(<) Suppose x -+ 1 is odd. ... Therefore x is even. ]

Notice that we flag the two sections of the proof with the symbols (=) and
(<). This lets the reader know which section of the proof is which.

Now we unravel the definitions at the front of each part of the proof. (Recall
the definition of odd; see Definition 2.4 on page 4.)

Let x be an integer.
(=) Suppose x is even. This means that 2|x. Hence there is an integer

a such that x = 2a. ... Therefore x + 1 is odd.
(<) Suppose x -+ 1 is odd. So there is an integer b such that x + 1 =
2b + 1. ...Therefore x is even. n

The next steps are clear. In the first part of the proof, we have x = 2a, and
we want to prove x + 1 is odd. We just add 1 to both sides of x = 2a to get
x + 1 =2a + 1, and that shows that x 4 1 is odd.

In the second part of the proof, we know x + 1 = 2b + 1, and we want to
prove that x is even. We subtract 1 from both sides and we are finished.

Let x be an integer.
(=) Suppose x is even. This means that 2|x. Hence there is an integer

a such that x = 2a. Adding 1 to both sides gives x + 1 = 2a + 1. By the

definition of odd, x + 1 is odd.
(<) Suppose x + 1 is odd. So there is an integer b such that x + 1 =

2b + 1. Subtracting 1 from both sides gives x = 2b. This shows that 2|x
and therefore x is even. ]

Proof Template 2 shows the basic method for proving an if-and-only-if
theorem.
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Proof Template 2 = Direct proof of an if-and-only-if theorem.

To prove a statement of the form “A iff B

« (=) Prove “If A, then B.”
+ (¢) Prove “If B, then A"

As you become more comfortable writing proofs, you may find yourself get-
ting bored writing the same steps over and over again. We have seen the sequence
(1) x is even, so (2) x is divisible by 2, so (3) there is an integer a such that x = 2a
several times already. You may be tempted to skip step (2) and just write “x is
even, so there is an integer a such that x = 2a.” The decision about skipping steps
requires some careful judgment, but here are some guidelines.

When is it safe to skip
steps?

. Would it be easy (and perhaps boring) for you to fill in the missing steps? Are
the missing steps obvious? If you answer yes, then omit the steps.
. Does the same sequence of steps appear several times in your proof(s). but the
sequence of steps is not very easy to reconstruct? Here you have two choices:
— Write the sequence of steps out once, and the next time the same sequence
appears, use an expression such as “as we saw before” or “likewise.”
— Alternatively, if the consequence of the sequence of steps can be described
in a statement, first prove that statement, calling it a lemma. Then invoke
(refer to) your lemma whenever you need to repeat those steps.
«  When in doubt, write it out.

Let us illustrate the idea of explicitly separating off a portion of a proof into
a lemma. Consider the following statement.

Proposition 4.6 Leta, b, ¢, and d be integers. If a|b, bic, and c|d, then ald.

Here is the proof as suggested by Proof Template 1.

Let a, b, ¢, and d be integers with a|b, b|c, and c|d.
Since a|b, there is an integer x such that ax = b.
Since b|c, there is an integer y such that by = c.
Since c|d, there is an integer z such that ¢z = d.
Note that a(xyz) = (ax)(yz) = b(yz) = (by)z = cz = d.
Therefore there is an integer w = xyz such that aw = d.
Therefore ald. |

There is nothing wrong with this proof, but there is a simpler, less verbose
way to handle it. We have already shown that a[b, b|c = alc in Proposition 4.3.
Let us use this proposition to prove Proposition 4.6.

Here is the alternative proof.

Leta, b, ¢, and d be integers with a|b, b|c, and c|d.
Since a|b and b|c, by Proposition 4.3 we have alc.
Now, since a|c and c|d, again by Proposition 4.3 we have ald. ]
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We need to comment that
x i$ positive because
multiplying both sides of
an inequality by a negative
number reverses the
inegnality.

Fundamentais

The key idea was to use Proposition 4.3 twice. Once it was applied to ¢, b, and
¢ to get alc. When we have alc, we can use Proposition 4.3 again on the integers
a, ¢, and d to finish the proof.

Proposition 4.3 serves as a lemma in the proof of Proposition 4.6.

Proving Equations and Inequalities

The basic algebraic manipulations you already know are valid steps in a proof. It
is not necessary for you to prove that x +x = 2x orthat x*> — y2 = (x — y)(x + ¥).
In your proofs, feel free to use standard algebraic steps without detailed comment.

However, even these simple facts can be proved using the fundamental prop-
erties of numbers and operation (see Appendix D). We show how here, simply
to illustrate that algebraic manipulations can be justified in terms of more basic

principles.
For x + x = 2x:
x+x=1-x+1-x 1 is the identity element for multiplication
=+ x distributive property
=2x because 1 +1 = 2.
For (x — y)(x + y) = x? — y%
*
x=yx+y)=x(x+y)—yx+y distributive property
= x>+ xy— yx —y? distributive property
=x>4+xy—xy—y? commutative property for
multiplication
=x>4 lxy — lxy — y>  1is the identity element for
multiplication
=x2+ (1 — Dxy —»? distributive property
=x? 4+ 0xy — y* because | — 1 =0
=x?+0—y? because anything multiplied
by 0is 0
=x>—y? 0 is the identity element for addition.

Working with inequalities may be less familiar, but the basic steps are the
same. For example, suppose you are asked to prove the following statement: If
x > 2then x? > x + 1. Here is a proof:

Proof. We are given that x > 2. Since x is positive, multiplying both sides by x
gives x? > 2x. So we have

x? > 2x
=Xx+x
>x+2 because x > 2
>x+4+1 because 2 > 1.

Therefore x2 > x + 1. ]
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Recap

We introduced the concept of proof and presented the basic technique of writing a
direct proof for an if-then statement. For if-and-only-if statements, we apply this
basic technique to both the forward (=) and the backward (<) implications.

4 Exercises

4.1. Prove that the sum of two odd integers is even.
4.2. Prove that the sum of an odd integer and an even integer is odd.
4.3. Prove that the product of two even integers is even.
4.4. Prove that the product of an even integer and an odd integer is even.
4.5. Prove that the product of two odd integers is odd.
4.6. Suppose a, b, and ¢ are integers. Prove that if alb and a|c, then a|(b + ¢).
4.7. Suppose a, b, and ¢ are integers. Prove that if a|b, then a|(bc).
4.8. Suppose a, b, d, x, and y are integers. Prove that if dja and d|b, then
d|(ax + by).
4.9. Suppose a, b, ¢, and d are integers. Prove that if a|b and c|d, then (ac)|(bd).
4.10. Let x be an integer. Prove that x is odd if and only if x + 1 is even.
4.11. Let x be an integer. Prove that O}x if and only if x = 0.
4.12. Let a and b be integers. Prove that ¢ < bifand only ifa < b — 1.
4.13. Prove that an integer is odd if and only if it is the sum of two consecutive
integers.
4.14. Suppose you are asked to prove a statement of the form “If A or B, then C.”
Explain why you need to prove (a) “If A, then C” and also (b) “If B, then
C”” Why is it not enough to prove only one of (a) and (b)?
4.15. Suppose you are asked to prove a statement of the form “A iff B.”” The
standard method is to prove both A = B and B = A.
Consider the following alternative proof strategy: Prove both A = B
and (not A) = (not B). Explain why this would give a valid proof.

3

Counterexample

In the previous section, we developed the notion of proof: a technique to demon-
strate irrefutably that a given statement is true. Not all statements about mathemat-
ics are true! Given a statement, how do we show that it is false? Disproving false
statements is usually simpler than proving theorems. The typical way to disprove
an if-then statement is to create a counterexample. Consider the statement “If A,
then B.” A counterexample to such a statement would be an instance where A is
true but B is false.

For example, consider the statement “If x is a prime, then x is odd.” This
statement is false. To prove that it is false, we just have to give an example of an
integer that is prime but is not odd. The integer 2 has the requisite properties.

Let’s consider another false statement.

Statement 5.1

(false) Leta and b be integers. If a|b and bla, thena = b.
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Proof Template 3

A strategy for finding
countercxamples.

Fundamentals

This statement appears plausible. 1t seems that if a|b, then @ < b, and if ba,
then b < a. and so ¢ = b. But this reasoning is incorrect.

To disprove Statement 5.1, we need to find integers « and b that, on the one
hand, satisfy a}b and k|a but, on the other hand, do not satisfy a = b.

Here is a counterexample: Take ¢ = 5 and b = —5. To check that this is a
counterexample, we simply note that, on the one hand, 5| — 5 and —5|5 but, on
the other hand, 5 # —5.

Refuting a false if-then statement via a counterexample.

To disprove a statement of the form “If A, then B’
Find an instance where A is triie but B is false.

Refuting false statements is usually easier than proving true statements. How-
ever, finding counterexamples can be tricky. To create a counterexample, I recom-
mend you try creating several instances where the hypothesis of the statement is
true and check each to see whether or not the conclusion holds. All it takes is one
counterexample to disprove a statement.

Unfortunately, it is easy to get stuck in a tf{inking rut. For Statement 5.1, we
might consider 3|3 and 4|4 and 5|5 and never think about making one number
positive and the other negative.

Try to break out of such a rut by creating strange examples. Don’t forget about
the number O (which acts strangely) and negative numbers. Of course, following
that advice, we might still be stuck in the rut 0|0, —1| — 1, —2| — 2, and so on.

Here is a strategy for finding counterexamples. Begin by trying to prove the
statement; when you get stuck, try to figure out what the problem is and look there
to build a counterexample.

Let’s apply this technique to Statement 5.1. We start, as usual, by converting
the hypothesis and conclusion of the statement into the beginning and end of the
proof.

Let a and b be integers with a|b and b|a. ... Therefore a = b. |

Next we unravel definitions.

Let a and b be integers with a|b and b|a. Since a|b, there is an integer x such
that b = ax. Since b|a, there is an integer y such that @ = by. ... Therefore
a=b. [ ]

Now we ask: What do we know? What do we need? We know
b=ax and a=by

and we want to show @ = b. To get there, we can try to show that x = y = L.
Let’s try to solve for x or y.
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Since we have two expressions in terms of a and b, we can try substituting
one in the other. We use the fact that » = ax to eliminate b from @ = by. We get

a=by = a=(ax)y = a=(xy)a.

It now looks quite tempting to divide both sides of the last equation by «, but
we need to worry that perhaps, a = 0. Let’s ignore the possibility of ¢ = 0 for
just a moment and go ahead and write xy = 1. We see that we have two integers
whose product is 1. And we realize at this point that there are two ways that can

happen: either I = 1 x 1 or 1 = —1 x —1. So although we know xy = 1, we
can’t conclude that x = y = 1 and finish the proof. We’re stuck and now we
consider the possibility that Statement 5.1 is false. We ask: Whatif x = y = —1?
We see that this would imply that ¢ = —b; for example, a = 5 and b = —5.

And then we realize that in such a case, a|b and bla but ¢ ## b. We have found a
counterexample. Do we need to go back to our worry that perhaps ¢ = 0? No! We
have refuted the statement with our counterexample. The attempted proof served
only to help us find a counterexample.

Recap

This section showed how to disprove an if-then statement by finding an example
that satisfies the hypothesis of the statement but not the conclusion.

5 Exercises

5.1. Disprove: If @ and b are integers with alb, then a < b.
5.2. Disprove: If a and b are nonnegative integers with alb, thena < b.
Note: A counterexample to this statement would also be a counterex-
ample for the previous problem, but not necessarily vice versa.
5.3. Disprove: If a, b, and c are positive integers with a|(bc), then a|b or alc.
5.4. Disprove: If a, b, and ¢ are positive integers, then a®” = (a®)°.
5.5. Consider the polynomial n? 4 n 441. Calculate the value of this polynomial
forn =1, 2,3, ..., 10 Notice that all the numbers you computed are prime.
Disprove: If n is a positive integer, then n? + n + 41 is prime.
5.6. What does it mean for an if-and-only-if statement to be false? What prop-
erties should a counterexample for an if-and-only-if statement have?
5.7. Disprove: An integer x is positive if and only if x + 1 is positive.
5.8. Disprove: Two right triangles have the same area if and only if the lengths
of their hypotenuses are the same.
5.9. Disprove: A positive integer is composite if and only if it has two different
prime factors.

Boolean Algebra

Algebra is useful for reasoning about numbers. An algebraic relationship, such
as x> — y? = (x — ¥)(x + y), describes a general relationship that holds for any
numbers x and y.
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Variables stand for TRUR
and FALSE.

The basic operations of
Boolean algebra are A, V.,
and —. These operations
are also present in many
computer languages. Since
computer keyboards
typically do not have these
symbols, the symbols &
(for A} | (for v), and ~
(for =) are often used
instead.

Fundamentals

In a similar way, Boolean algebra provides a framework, for dealing with
statements. We begin with basic statements, such as “x is prime,” and combine
them using connectives such as if-then, and, or, not, and so on.

For example, in Section 3 you were asked (see Exercise 3.3) to explain why
the statements “If A, then B” and “(not A) or B” mean essentially the same thing.
In this section, we present a simple method for showing that such sentences have
the same meaning.

In an ordinary algebraic expression, such as 3x — 4, letters stand for numbers,
and the operations are the familiar ones of addition, subtraction, multiplication,
and so forth. The value of the expression 3x — 4 depends on the number x. When
x = 1, the value of the expression is —1, and if x = 10, the value is 26.

Boolean algebra also has expressions containing letters and operations. Letters
(variables) in a Boolean expression do not stand for numbers. Rather, they stand
for the values TRUE and FALSE. Thus letters in a Boolean algebraic expression can
only have two values!

There are several operations we can perform on the values TRUE and FALSE.
The most basic operations are called and (symbol: A), or (symbol: V), and not
(symbol: —).

We begin with A. To define A, we need to define the value of x A y for all
possible values of x and y. Since there are only two possible values for each of x
and y, this is not hard. Withouf further ado, here is the definition of the operation A.

TRUE A TRUE = TRUE
TRUE A FALSE = FALSE
FALSE A TRUE = FALSE

FALSE A FALSE = FALSE.

In other words, the value of the expression x A y is TRUE when both x and y
are TRUE and is FALSE otherwise. A convenient way to write all this is in a rruth
table, which is a chart showing the value of a Boolean expression depending on
the values ol the variables. Here is a truth table for the operation A.

x y XAY
TRUE TRCUE TRUE
TRUE FALSE FALSE
FALSE TRUE FALSE
FALSE FALSE FALSE

The definition of the operation A is designed to mirror exactly the mathemati-
cal use of the English word and. Similarly, the Boolean operation V is designed to
mirror exactly the mathematical use of the English word or. Here is the definition
of v.

TRUE V TRUE = TRUE
TRUE V FALSE = TRUE

FALSE vV TRUE = TRUE
FALSE V FALSE = FALSE.
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In other words, the value of the expression x v v is TRUE in all cases except when
both x and y are FALSE. We summarize this in a truth table.

X ¥ XVy
TRUE TRUE TRUE
TRUE FALSE TRUE

FALSE TRUE TRUE
FALSE FALSE FALSE

The third operation, —, is designed to reproduce the mathematical use of the
English word not:

—IRUE = FALSE
—FALSE = TRUE.

In truth table form, — is as follows:

X X
TRUE FALSE
FALSE TRUE

Ordinary algebraic expressions (e.g.. 3 x 2 — 4) may combine several opcra-
tions. Likewise we can combine the Boolean operations. For example, consider

TRUE A ((—FALSE) V FALSE).
Let us calculate the value of this expression step by step:

TRUE A ((—FALSE) V FALSE) = TRUE A (TRUE V FALSE)
= TRUE A TRUE
= TRUE.

In algebra we learn how to manipulate formulas so we can derive identities
such as

(x + )7 = x4+ 2xy + 3%

In Boolean algebra we arc interested in deriving similar identities. Let us begin
with a simple example:

XAY=YyAX.

What does this mean? The ordinary algebraic identity (x + y)? = x? + 2xy + y°
means that once we choose (numeric) values for x and y, the two expressions
(x 4+ y)? and x? + 2xy + y* must be equal. Similarly, the identity x A y = y A x
means that once we choose (truth) values for x and v, the results x A y and y A x
must be the same.

Now it would be ridiculous to try to prove an identity such as (x + y)* =
x2 4+ 2xy + y? by trying to substitute all possible values for x and y—there are
infinitely many possibilities! However, it is not hard to try all the possibilities to
prove a Boolean algebraic identity. In the case of x A y = y A x, there are only
four possibilities. Let us summarize these in a truth table.
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Logical equivalence.

Fundamentals

X v XAY VAX ¢
TRUE TRUE TRUE TRUE
TRUE FALSE FALSE FALSE
FALSE TRUE FALSE FALSE
FALSE FALSE FALSE FALSE

By running through all possible combinations of values for x and y, we have a

proof thatx Ay =y AX.

When two Boolean expressions, such as x A y and y A x, are equal for all
possible values of their variables, we call these expressions logically equivalent.
The simplest method to show that two Boolean expressions are logically equivalent
is to run through all the possible values for the variables in the two expressions
and to check that the results are the same in every case.

Let us consider a more interesting example.

Proposition 6.1

Proof Template 4

The Boolegn expressions —(x A y) and (—x) V (—y) are logically equivalent.

Proof. To show this is true, we construct a truth table for both expressions. To

save space, we write T for TRUE and F for FALSE.

X v XAy =(x A y) —x -y {(—x) v (—y)
T T T F F F F
T F F T F T T
F T F T T F T
F F F T T T T

The important thing to notice is that the columns for —(x A y) and (—x) Vv (=y)
are exactly the same. Therefore, no matter how we choose the values for x and
y, the expressions —(x A y) and (—x) Vv (—y) evaluate to the same truth value.
Therefore the expressions —=(x A y) and (—x) Vv (—y) are logically equivalent. B

Truth table proof of logical equivalence.

To show that two Boolean expressions are logically equivalent:

Construct a truth table showing the values of the two expressions for
all'possible values of the variables:

Check to see that the two Boolean expressions always have the same value.

Proofs by means of truth tables are easy but dull. The following result sum-
marizes the basic algebraic properties of the operations A, Vv, and —. In several

cases, we give names for the properties.

;
E
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Theorem 6.2

« xAy=yAxandxVvy=yVx. (Commutative properties)

c AMAz=xA(GADad (x VYY) Vz=xV(yVzI). (Associative
properties)

+ X ATRUE = x and x V FALSE = x. (Identity elements)

« —(—x) =x.

- xAx=xandxVx=x.

o xA(YVZ) = (xAY)VxAZ) andx V(yAZ) = (x Vy)A(x V7). (Distributive
properties)

« x A (—x) = FALSE and x V (—x) = TRUE.

- —(xAy) = (mx)V(—y)and ~(x V y) = (mx) A (Ty). (DeMorgan’s Laws)

All of these logical equivalences are easily proved via truth tables. In some
of these identities, there is only one variable (e.g., x A —x = FALSE), in this case,
there would be only two rows in the truth table (one for x = TRUE and one for
x = FALSE). In the cases where there are three variables, there are eight rows in the
truth table as (x, v, z) take on the possible values (T, T, T), (T, T, F), (T,F, T),
(T.F,F),(F, T,T),(F, T,F), (F,F, T),and (F, F, F).

More Operations

The operations A, V, and — were created to replicate mathematicians® use of
the words and, or, and not. We now introduce two more operations, — and <,
designed to model statements of the form “If A, then B” and “A if and only if B.”
respectively. The simplest way to define these is through truth tables.

X hj x—=y X y Xy
TRUE TRUE TRUE d TRUE TRUE TRUE
TRUE FALSE FALSE an TRUE FALSE FALSE
FALSE TRUE TRUE FALSE TRUE FALSE
FALSE FALSE TRUE FALSE FALSE TRUE

The expression x — y models an if-then statement. We have x — v = TRUE
except when x = TRUE and y = FALSE. Likewise the statement “If A, then B”
is true unless there is an instance in which A is true but B is false. Indeed, the
arrow — reminds us of the implication arrow =.

Similarly, the expression x <> y models the statement “A if and only if B”
The expression x <> v is true provided x and y are either both true or both false.
Likewise the statement “A <= B’ is true provided that in every instance A and
B are both true or both false.

Let us revisit the issue that the statements “If A, then B” and “(not A) or B”
mean the same thing (see Exercise 3.3).

Proposition 6.3

The expressions x — y and (—x) V y are logically equivalent.
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Proof. We construct a truth table for both expressions.

X ¥ X =y —x ¥ (—x)Vy
TRUE TRUE TRUE FALSE TRUE TRUE
TRUE FALSE FALSE FALSE FALSE FALSE
FALSE TRUE TRUE TRUE TRUE TRUE
FALSE FALSE TRUE TRUE FALSE TRUE

The columns for x — v and (—x) V y are the same, and therefore these expressions
are logically equivalent. n

Proposition 6.3 shows how the operation — can be reexpressed just in terms
of the basic operations Vv and —. Similarly, the operation < can be expressed in
terms of the basic operations A, Vv, and — (see Exercise 6.14).

Recap

This section presented Boolean algebra as “arithmetic” with the values TRUE and
FALSE. The basic operations are A, Vv, and —. Two Boolean expressions are logically
equivalent provided they always yield the same values when we substitute for their
variables. We can prove Boolean expressions are logically equivalent using truth
tables. We concluded this section by defining the operations — and <.

6 Exercises

Exercise 4 shows that

an if-then statement is
logically equivalent to its
contrapositive.

6.1. Do the following calculations:
a. TRUE A TRUE A TRUE A TRUE A FALSE.
b. (—TRUE) V TRUE.
¢. —(TRUE V TRUE).
d. (TRUE V TRUE) A FALSE.
e. TRUE V (TRUE A FALSE).
The point of the last four is that the order in which you do the operations
matters! Compare the expressions in (b)—(c) and (d)—(e) and note that they
are the same except for the placement of the parentheses.
Now rethink your answer to (a). Does your answer to (a) depend on the
order in which you do the operations?

6.2. Prove by use of truth tables as many parts of Theorem 6.2 as you can tolerate.

6.3. Prove: (x A y) V (x A —y) is logically equivalent to x.

6.4. Prove: x — y is logically equivalent to (—y) — (—x).

6.5. Prove: x < y is logically equivalent to (—x) < (—y).

6.6. Prove: x <> y is logically equivalent to (x — y) A (y — x).

6.7. Prove: x <> y is logically equivalent to (x — y) A ((—x) — (—y)).

6.8. Prove: (x v y) — zis logically equivalentto (x — z) A (¥ — 2).

6.9. Suppose we have two Boolean expressions that involve ten variables. To
prove that these two expressions are logically equivalent, we construct a
truth table. How many rows (besides the “header” row) would this table
have?




An if-then statement is not
logically equivalent to its
converse.

The phrase exclusive or is
sometimes written as xor.

6.10.

6.11

6.12.

6.13.

6.14.

6.15.
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How would you disprove a logical equivalence? Show the following:

a. x — y is not logically equivalent to y — x.

b. x — y is not logically equivalent to x < v.

¢. x Vv y is not logically equivalent to (x A —y) V ((—x) A y).

A tautology is a Boolean expression that evaluates to TRUE for all possible

values of its variables. For example, the expression x v —x is TRUE both

when x = TRUE and when x = FALSE. Thus x v —x is a tautology.
Explain how to use a truth table to prove that a Boolean expression is a

tautology and prove that the following are tautologies.

a (xVvyVv(xv-oy).

b. (x A (x = y)) = y.

Cc. (m(—x)) < x.

d. x — x.

& (x=>NAQY—=>2)—=>x—=2).

f. FALSE — x.

A contradiction is a Boolean expression that evaluates to FALSE for all

possible values of its variables. For example, x A —x is a contradiction.
Prove that the following are contradictions:

a. (xVy)AxvV-oy A

b. x A (x = y) A (—y).

C (x = I A((—x) = y) A=y,

Suppose A and B are Boolean expressions—that is, A and B are formulas

involving variables (x, y, z, etc.) and Boolean operations (A, Vv, —, etc.).
Prove: A islogically equivalent to B if and only if A <> B is atautology.

The expression x — y can be rewritten in terms of only the basic operations

A, V,and —; thatis, x — y = (—x) V y.
Find an expression that is logically equivalent to x <> y and uses only

the basic operations A, Vv, and — (and prove that you are correct).

Here is another Boolean operation called exclusive or; it is denoted by the

symbol V. It is defined in the following table.

X ! XVYy
TRUE TRUE FALSE
TRUE FALSE TRUE
FALSE TRUE TRUE
FALSE FALSE FALSE

Please do the following:

a. Prove that v obeys the commutative and associative properties; that is,
provethelogical equivalencesx Vy = yvxand(x Vy)Vz=x VvV (y V7).

b. Prove that x Vv y is logically equivalent to (x A —y) V ({(—x)} A v). (Thus
Vv can be expressed in terms of the basic operations A, Vv, and —.)

c¢. Prove that x Vv y is logically equivalent to (x v ¥) A (—(x A ¥)). (This is
another way that v can be expressed in terms of A, v, and —.)

d. Explain why the operation V is called exclusive or.
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A binary operation is an
operation that combines
two values. The operation
- is not binary because it
works on just one value at
atime: it is called unary.

Nand.

Fundamentals

6.16.

6.17.

6.18.

6.19.

We have discussed scveral binary Boolean operations: A, V, —, <>, and (in
the previous problem) v . How many different binary Boolean operations
can there be? In other words, in how many different ways can we complete
the following chart?

X y X kY
TRUE TRUE ?
TRUE FALSE ?
FALSE TRUE ?
FALSE FALSE ?

There aren’t too many possibilities, and, in worst case, you can try writing

out all of them. Be sure to organize your list carefully so you don’t miss any

or accidentally list the same operation twice.

We have seen that the operations —, <>, and Vv can be reexpressed in terms

of the basic operations A, Vv, and —. Show that all binary Boolean operations

(see the previous problem) can be expressed in terms of these basic three.

Prove that x Vv y can be reexpressed in terms of just A and — so all binary

Boolean operations can be reduced to just two basic operations.

Here is yet another Boolean operation called nand; it is denoted by the

symbol A. We define x Ay to be =(x A y).

Please do the following:

a. Construct a truth table for A.

b. Is the operation A commutative? Associative?

c. Show how the operations x A y and —x can be reexpressed just in terms
of A.

d. Conclude that all binary Boolean operations can be reexpressed just in
terms of A alone.

Chapter 1 Self Test ,

It is not known whether
every perfect number is
even, but 1t is conjectured
that there are no odd
perfect numbers.

1.

N

&

True or false: Bvery positive integer is either prime or composite. Explain
your answer.

Find all integers x for which x|(x 42). You do not need to prove your answer.
Let a and b be positive integers. Explain why the notation alb + 1 can be
interpreted only as a|(b + 1) and not as (a{b) + 1.

Write the following statement in if-then form: “Every perfect integer is even.”
What is the converse of the statement “If you love me, then you will marry

LE

me.

. Determine which of the following statements are true and which are false.

You should base your reply on your common knowledge of mathematics;
you do not need to prove your answers.

a. Every integer is positive or negative.

b. Every integer is even and odd.

c. If x is an integer and x > 2 and x is prime, then x is odd.




10.

11.
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d. Letx and y be integers. We have x? = y* if and only if x = y.

“ e. The sides of a triangle are all congruent to each other if and only if its

three angles are all 60°.
f. If an integer x satisfies x = x + 1, then x = 6.
Consider the following statement (which you are not expected to understand):
“If a matroid is graphic, then it is representable.”

Write the first and last lines of a direct proof of this statement. It is

customary to use the letter M to stand for a matroid.
The following statement is false: If x, y, and z are integers and x > v, then
xz > yz. Please do the following:
a. Find a counterexample.
b. Modify the hypothesis of the statement by adding a condition concerning

z so that the edited statement is true.
Prove or disprove the following statements:
a. Leta, b, c be integers. If a|c and b|c, then (a + b)ic.
b. Leta, b, c be integers. If a|b, then (ac)|(bc).
Consider the following proposition. Let N be a two-digit number and let M
be the number formed from N by reversing N’s digits. Now compare N 2and
M?. The digits of M? are precisely those of N 2, but reversed. For example:

10? = 100 012 = 001
112 = 121 112 = 121
122 = 144 217 = 441
132 = 169 312 =961

and so on.
Here is a proof of the proposition:

Proof. Since N is a two-digit number, we can write N = 10a + b where
a and b are the digits of N. Since M is formed from N by reversing digits,
M = 10b + a. )

Note that N2 = (10a + b)? = 100a? + 20ab + b2 = (a®) < 100 + Qab) x
10 + (b%) x 1, so the digits of N are, in order, a*, 2ab, b*.

Likewise, M2 = (106 +a)2 = (b*) x 100+ (2ab) x 10+ (a*) x 1,50
the digits of M? are, in order, b%, 2ab, a*, exactly the reverse of N 2, ]

Your job: Show that the proposition is false and explain why the proof is
invalid.
Suppose we are asked to prove the following identity:

xx+y—D—yx+D=x(x—-1)—y.

The identity is true (i.e., the equation is valid for all real numbers x and y).
The following “proof™ is incorrect. Explain why.

Proof. We begin with
xx+y—-D—-—yx+D=x(x—1—y
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See Exercise 2.6 and its

solution on page 487 for
the definition of perfect

square.

Fundamentals
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13.

14.
15.

16.
17.
18.

19.

20.

and expand the terms (using the distributive property)
i
x2+xy—x —yx —y :x2—x~y.

We cancel the terms x2, —x, and — y from both sides to give

xy —yx =0,
and finally xy and —yx cancel to give
0=0,

which is correct. u

Are the Boolean expressions x — —y and —(x — ) logically equivalent?
Justify your answer.
Is the Boolean expression (x — y) Vv (x — —v) a tautology? Justify your
answer. :
Prove that the sum of any three consecutive integers is divisible by three.
In the previous problem you were asked to prove that the sum of any three
consecutive integers is divisible by three. Note, however, that the sum of any
four consecutive integers is never divisible by four. For example, 10 4 11 +
12 + 13 = 46, which is not divisible by four.

For which positive integers « is the sum of a consecutive integers divis-
ible by «? That is, complete the following sentence to give a true statement:

Let a be a positive integer. The sum of a consecutive integers is divisible by
aifandonlyif....

You need not prove your conjecture.

Let a be an integer. Prove: If ¢ > 3, then a’ > 2a + 1.

Suppose a is a perfect square and @ > 9. Prove that ¢ — 1 is composite.
Consider the following definition:

A pair of positive integers, x and y, are called square mates if their sum,
x + v, is a perfect square. (The concept of square mates was contrived just
for this test, problems 18 to 20.)

For example, 4 and 5 are square mates because 4 +5 = 9 = 32, Like-
wise, 8 and 8 are square mates because 8 +8 = 16 = 42. However, 3 and 8
are not square mates.

Explain why 10 and —1 are not square mates.

Let x be a positive integer. Prove that there is an integer y that is greater than
x such that x and y are square mates.

Prove that if x is an integer and x > 5, then x has a square mate y with
V< X.

You may use the following fact in your proof. If x is a positive integer,
then x lies between two consecutive perfect squares; that is, there is a positive
integer @ such that a® < x < (@ + 1)%.



CHAPTER

Collections

This chapter deals with collections. We consider two types of collections: ordered
collections (lists) and unordered collections (sets).

What it means for two lists
to be equal.

Mathspeak!

Another word
mathematicians use for
lists is tuple. A listof n
elements is known as an

n-tuple.

4

Lists

A list is an ordered sequence of objects. We write lists by starting with an open
parenthesis, following with the elements of the list separated by commas, and
finishing with a close parenthesis. Forexample, (1, 2, Z) is alist whose firstelement
is the number 1, whose second element is the number 2, and whose third element
is the set of integers.

The order in which elements appear in a list is significant. The list (1, 2, 3) is
not the same as the list (3, 2, 1).

Elements in a list might be repeated, as in (3, 3, 2).

The number of elements in a list is called its length. For example, the list
(1,1,2, 1) is a list of length four.

A list of length two has a special name; it is called an ordered pair.

A list of length zero is called the empty list and is denoted ().

Two lists are equal provided they have the same length, and elements in the
corresponding positions on the two lists are equal. Lists (a, b, ¢) and (x, y, z) are
equal iffa =x, b=y, andc = z.

Lists are all-pervasive in mathematics and beyond. A point in the plane is
often specified by an ordered pair of real numbers (x, y). A natural number, when
written in standard notation, is a list of digits; you can think of the number 172 as
the Tist (1, 7, 2). An English word is a list of letters. An identifier in a computer
program is a list of letters and digits (where the first element of the list is a
letter).

Counting Two-element Lists

In this section, we address questions of the form “How many lists can we make?”

Example 7.1

Suppose we wish to make a two-element list where the entries in the list may be
any of the digits 1, 2, 3, and 4. How many such lists are possible?

37
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Mathspeak!

The mathemauicad use of

the word

o Is shrange.

fras @ menu
with onby o cotrde. the
mathematictin would say

that this imenu offers one
choice, The rest of the
world would probubly say
that the menu offers no
choices! Phe mathematical
use of the word choice is

stmlar to option,

The most direct approach to answering this question is to write out all the
possibilities. y

(1, 1) (1,2) (1,3) (1,4)
2,1 (2,2) (2,3) (2,4)
3.1 (3,2) (3,3) 3.4
4,1 4,2) 4, 3) 4, 4)

There are 16 such lists.

We organized the lists in a manner that ensures we have neither repeated nor
omitted a list. The first row of the chart contains all the possible lists that begin
with 1, the second row those that begin with 2, and so on. Thus there are 4 x4 = 16
length-two lists whose elements are any one of the digits 1 through 4.

Let’s generalize this example alittle bit. Suppose we wish to know the number
of two-clement lists where there are n possible choices for each entry in the list.
We may assume the possible elements are the integers | through n. As before, we
organize all the possible lists into a chart.

ILn @1,2) - (1,n)
2.0 @22 - 2n

(n,.l) (n,.2) (n,.n)

The first row contains all the lists that begin with 1, the second those that begin
with 2, and so forth. There are n rows in all. Each row has exactly # lists. Therefore
there are n x n = n? possible lists.

When a list is formed, the options for the second position may be different
from the options for the first position. Imagine that a meal is a two-element list
consisting of an entrée followed by a dessert. The number of possible entrées might
be different from the number of possible desserts.

Therefore let us ask: How many two-element lists are possible in which there
are n choices for the first element and m choices for the second element? Suppose
that the possible entries in the first position of the list are the integers 1 through n,
and the possible entries in the second position are 1 through .

We construct a chart of all the possibilities as before.

(L, 1,2) -+ (1,m)
@1 2.2 - Cm)
M 1) 2) e (n,m)

There are n rows (for each possible first choice), and each row contains m entries.
Thus the number of possible such lists is

m+m—+---+m=mxn.
—_————

n times
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Sometimes the elements of a list satisfy special properties. In particular, the
choice of the second element might depend on what the first element is. For
example, suppose we wish to count the number of two-element lists we can form
from the integers 1 through 5, in which the two numbers on the list must be
different. For example, we want to count (3, 2) and (2, 5) but not (4, 4). We make
a chart of the possible lists.

— (1,2) (1,3 (I,4 (1.5

2,1 — 2,3 2.4 2.5
3.1 (3,2 — 3.4 (3.3
4,1 42 4.3 - (4.5)

5,1 5,2y 5,3 5.4 -

As before, the first row contains all the possible lists that begin with 1, the second
row those lists that start with 2, and so on, so there are 5 rows. Notice that each
row contains exactly 5 — 1 = 4 lists, so the number of lists is 5 x 4 = 20.

Let us summarize and generalize what we have learned in a general principle.

Theorem 7.2

(Multiplication Principle) Consider two-clement lists for which there are n
choices for the first element, and for each choice of the first element there are
m choices for the second element. Then the number of such lists is nm.

Proof. Construct a chart of all the possible lists. Each row of this chart contains
all the two-element lists that begin with a particular element. Since there are n
choices for the first element, there are # rows in the chart. Since, for each choice of
the first element, there are m choices for the second element, we know that every
row of the chart has m entries. Therefore the number of lists is

m4+m-+---+m=nxm.
N — e’

n times

Let us consider some examples.

Example 7.3

A person’s initials are the two-element list consisting of the initial letters of their
first and last names. For example, the author’s initials are ES. In how many ways
can we form a person’s initials? In how many ways can we form initials where the
two letters are different?

The first question asks for the number of two-element lists where there are 26
choices for each element. There are 26° such lists.

The second question asks for the number of two-element lists where there are
26 choices for the first element and, for each choice of first element, 25 choices
for the second element. Thus there are 26 x 25 such lists.

Another way to answer the second question in Example 7.3 is as follows:
There are 26 ways to form initials (repetitions allowed). Of these, there are 26
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“bad” sets of initials in which there is a repetition, namely, AA, BB, CC, ...,
ZZ. The remaining lists are the ones we want to count, so there are 26% — 26
possibilities. Since 26 x 25 = 26 x (26 — 1) = 267 — 26, the two answers
agree.

Please note that we reported the answers to these questions as 26% and 26 x 25,
and not as 676 and 650. Although the latter pair of answers are correct, the answers
26% and 26 x 25 are preferred because they retain the essence of the reasoning
used to derive them. Furthermore, the conversion of 26° and 26 x 25 to 676
and 650, respectively, is not interesting and can be done easily by anyone with a
calculator.

Example 7.4

A club has ten members. The members wish to elect a president and to elect
someone else as a vice president. In how many ways can these posts be filled?

We recast this question as a list-counting problem. How many two-element
lists of people can be formed in which the two people in the list are selected
from a collection of ten candidates and the same person may not be selected
twice?

There are ten choices for the first element of the list. For each choice of the
first clement (for each president), there are nine possible choices for the second
element of the list (vice president). By the Multiplication Principle, there are 10 x 9
possibilities.

Longer Lists

Let us explore how to use the Multiplication Principle to count longer lists.

Consider the following problem. How many lists of three elements can we
make using the numbers 1, 2, 3, 4, and 5?7 Let us write out all the possibilities.
Here is a way we might organize our work:

(1,1, (1,1,2) (1,1,3) (1,1,4) (1,1,5)
(1,2,1) (1,2,2) (1,2,3) (1,2,4) (1,2,5)
(1,3,1) (1,3,2) (1,3,3) (1,3,4) (1,3,5)
(1.4, (1,4,2) (1,4,3) (1,4,4) (1.4,5)
(1,5.1) (1,5,2) (1,5,3) (1,5.4) (1,5,5)
2,1, 2,1.2) (2,1,3) (2,1,4) (2,1,5)
2,2,1) (2,2,2) (2,2,3) (2,2,4) (2,2,5)
and so forth until
(5,5,1) (5,5,2) (5,5,3) (5.5.4) (5,5,3)

The first line of this chart contains all lists that begin (1, 1, ...). The second line
is all lists that begin (1, 2, ...) and so forth. Clearly, each line has five lists. The
question becomes:

How many lines are there in this chart?

This is a problem we have already solved! Notice that each line of the chart begins,
effectively, with a different two-element list; the number of two-elementlists where



Suppose A and B are lists.

Their concatenation is the
new list formed by listing
first the elements of A and
then the elements of B.
The concatenation of the
lists (1,2, 1) and (1, 3, 5)
isthelist (1,2, 1,1, 3,5).
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each element is one of five possible values is 5 x 5, so this chart has 5 x 5 lines.
Therefore, since each line of the chart has five entries, the number of three-element
lists is (5 x 5) x 5 =53,

We can think of a three-element list as the concatenation of a two-element list
and a one-element list. In this problem, there are 25 possible two-element lists to
occupy the front of the three-element list, and for each choice of the front part,
there are five choices for the back.

Next, let us count three-element lists whose elements are the integers 1 through
5 in which no number is repeated. As before, we make a chart.

(1,2,3) (1,2,4) (1,2,5)
(1,3,2) (1,3,4) (1,3.5)
(1,4,2) (14,3 (1,4.,5)
(1,5,2) (1,5.3) (1,5.4)
(2,1,3) 2,1.4) (2,1,5)
and so forth until
54,1 (5.4.2) (5.4,3)

The first line of the chart contains all the lists that begin (1, 2, ...). (There can be
no lines that begin (1, 1, . ..) because repetitions are disallowed.) The second line
contains all lists that begin (1, 3, ...), and so on. Each line of the chart contains
just three lists; once we have chosen the first and second elements of the list (from
a world of only five choices), there are exactly three ways to finish the list. So, as
before, the question becomes: How many lines are on this chart? And as before,
this is a problem we have already solved!

The first two elements of the list form, unto themselves, a two-clement list
with each element chosen from a list of five possible objects and without repetition.
So, by the Multiplication Principle, there are 5 x 4 lines on the chart. Since each
line has three elements, there is a total of 5 x 4 x 3 possible lists in all.

These three-element lists are a concatenation of a two-element list (20 choices),
and, for each two-element list, a one-element list (3 choices), giving a total of
20 x 3 lists.

We extend the Multiplication Principle to count longer lists. Consider length-
three lists. Suppose we have a choices for the first element of the list, and for each
choice of first element, there are b choices for the second clement, and for each
choice of first and second elements, there are ¢ choices for the third element. Thus,
in all, there are abc possible lists. To see why, imagine that the three-clement list
consists of two parts: the initial two elements and the final element. There are ab
ways to fill in the first two elements (by the Multiplication Principle!) and there
are ¢ ways to complete the last element once the first two are specified. So, by
the Multiplication Principle again, there are (ab)c ways to make the lists. The
extension of these ideas to lists of length-four or more is analogous.

A useful way to think about list-counting problems is to make a diagram with
boxes. Each box stands for a position in the list, so if the length of the list is four,
there will be four boxes on the list. We write the number of possible entries in
each box. The number of possible lists is computed by multiplying these numbers
together.
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Example 7.5

The number of lists of
fength & where there are n
possible entries in each
position of the list and
repetitions are allowed.

Lists withoul repetitions
are sometimes called
permutations. However, in
this book. the word
permuiation has another
meaning described later.

The number of lists of
length £ where the
elements are chosen from a
pool of # possibilities and
no two elements on the list

are the same.

Let us revisit Example 7.4. We have a club with ten membegs. We want to elect
an executive board consisting of a president, a vice president, a secretary, and a
treasurer. In how many ways can we do this (assuming no member of the club can
fill two offices)? We draw the following diagram.

V.P. Sec.

Pres. Treas.

101911817

This shows there are ten choices for president. Once the president is selected, there
are are nine choices for vice president, so there are 10 x 9 ways to fill in the first
two clements of the list. Once these are filled, there are eight ways to fill in the
next element of the list (secretary), so there are (10 x 9) x 8 ways to complete the
first three slots. Finally, once the first three offices are filled, there are seven ways
to sclect a treasurer, so there are (10 x 9 x 8) x 7 ways to select the entire slate
of officers.

Two particular list-making problems recur often enough to warrant special
attention. These problems both involve making a list of length £ in which each
element of the list is selected from among n possibilities. In the first problem,
we count all such lists; in the second problem, we count those without repeated
elements.

When repetitions are allowed, we have n choices for the first element of the
list, n choices for the second element of the list, and so on, and # choices for the
last element of the list. All told, there are

RXAX- - xXn=nF (D)
— —

k times

possible lists.

Now suppose we fill in the length-k list with n possible values, but in this
case, repetition is not allowed. There are n ways to select the first element of the
list. Once this is done, there are # — 1 choices for the second element of the list.
There are n — 2 ways to fill in position three, # — 3 ways to fill in position four,
and so on, and finally, there are n — (kK — 1) = n — k + 1 ways to fill in position k.
Therefore, the number of ways to make a list of length & where the elements are
chosen from a pool of # possibilities and no two elements on the list may be the
same is

nxn—1lx[nrn—-2]x ---x|n—(k—1)] (2)

This formula is correct, but there is a minor mistake in our reasoning! How many
length-six lists can we make where each element of the list is one of the digits
1, 2, 3, or 4 and repetition is not allowed? The answer, obviously, is zero; you
cannot make a length-six list using only four possible elements and not repeat an
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The special notation for
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(1);. An alternative
notation, still in use on
some calculators, is , £y.
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element! What does the formula give? Equation (2) says the number of such lists is
4x3x2x1x0x-—1

which equals 0. However, the reasoning behind the formula breaks down. Although
it is true that there are 4, 3, 2, 1, and 0 choices for positions one through five,
it does not make any sense to say there are —1 choices for the last position!
Formula (2) gives the correct answer, but the reasoning used to arrive there needs
to be rechecked.

If the number of elements from which we select entries in the list, n, is less
than the length of the list, &, no repetition-free list is possible. But since n < k, we
know thatn —k < Oandson —k+1 < 1. Since n — k + 1 is an integer, we know
that » — k + 1 < 0. Therefore, in the productn x (n — 1) x --- x (n —k + 1),
we know that at least one of the factors is zero. Therefore the whole expression
evaluates to zero, which is what we wanted!

On the other hand, if n > &, our reasoning makes sense (all the numbers are
positive), and the formula in (2) gives the correct ariswer.

Because the expression n(n — 1)(n — 2) --- (n — k + 1) occurs fairly often,
there is a special notation for it. The notation is

(my=nn—-Dn—-2)---(n—k+1).

This notation is called falling factorial. We summarize our results on lists with or
without repetition concisely using this notation.

Theorem 7.6

The number of lists of length k£ whose elements are chosen from a pool of n possible
elements

_ fr*  ifrepetitions are permitted
“ 1 (n); if repetitions are forbidden.

I do not recommend that you memorize this result because it is too easy to get
confused between the meanings of n and k. Rather, rederive it in your mind when
you need it. Imagine the k boxes written out in front of you, put the appropriate
numbers in the boxes, and multiply.

Recap

This section deals with counting lists of objects. The central tool is the Multi-
plication Principle. A general formula is developed for counting length-k lists of
elements selected from a pool of » elements either with or without repetitions.

7 Exercises

7.1. A bit string is alist of Os and 1s. How many length-k bit strings can be made?

7.2. Airports have names, but they also have three-letter codes. For example, the
airport serving Baltimore is BWT, and the code YYY is for the airport in Mont
Joli, Québec, Canada. How many different airport codes are possible?

7.3. A car’s ventilation system has various controls. The fan control has four
settings: off, low, medium, and high. The air stream can be set to come out
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The word characrer means
a letter or a digit.

7.4.

7.5.

7.6.

7.7.

7.8.

7.9.

7.10.

at the floor, through the vents, or through the defroster. The air conditioning
button can be either on or off. The temperature control ¢an be set to cold,
cool, warm, or hot. And finally, the recirculate button can be either on or off.

In how many different ways can these various controls be set?

Note: Several of these settings result in the same effect since nothing
happens if the fan control is off. However, the problem asks for the number
of different settings of the controls, not the number of different ventilation
effects possible.

My compact disc player has space for 5 CDs; there are five trays numbered

1 through 5 into which I load the CDs. T own 100 CDs.

a. In how many ways can the CD player be loaded if all five trays are filled
with CDs?

b. In how many ways can the CD player be loaded if only one CD is placed
in the machine?

You own three different rings. You wear all three rings, but no two of the

rings are on the same finger, nor are any of them on your thumbs. In how

many ways can you wear your rings? (Assume any ring will fit on any finger.)

In how many ways can a black rook and a white rook be placed on different

squares of a chess board such that neither is attacking the other? (In other

words, they cannot be in the same row or the same column of the chess

board. A standard chess board is 8 x 8.)

License plates in a certain state consist of six characters: The first three

characters are uppercase letters (A~Z), and the last three characters are

digits (0-9).

a. How many license plates are possible?

b. How many license plates are possible if no character may be repeated on
the same plate?

A telephone number (in the United States and Canada) is a ten-digit number

whose first digit cannot be a 0 or a 1. How many telephone numbers are

possible?

A U.S. Social Security number is a nine-digit number. The first digit(s) may

be 0.

How many Social Security numbers are available?

How many of these are even?

How many have all of their digits even?

How many read the same backward and forward (e.g., 122979221)?

How many have none of their digits equal to 87

How many have at least one digit equal to 87

g. How many have exactly one 87

A computer operating system allows files to be named using any combination

of uppercase letters (A—Z) and digits (0-9), but the number of characters in

the file name is at most eight (and there has to be at least one character in the

file name). For example, X23, W, 4AA, and ABCD1234 are valid file names,

but W-23 and WONDERFUL are not valid (the first has an improper character,

and the second is too long).

How many different file names are possible in this system?

-0 e P
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7.11. How many five-digit numbers are there that do not have two consecutive
digits the same? For exarple, you would count 12104 and 12397 but not
6321 (it is not five digits) or 43356 (it has two consecutive 3s).

Note: The first digit may not be a zero.

7.12. A padlock has the digits O through 9 arranged in a circle on its face. A
combination for this padlock is four digits long. Because of the internal
mechanics of the lock, no pair of consecutive numbers in the combination
can be the same or one place apart on the face. For example 0-2-7-1 is a valid
combination, but neither 0-4-4-7 (repeated digit 4) nor 3-0-9-5 (adjacent
digits 0-9) are permitted. How many combinations are possible?

7.13. A bookshelf contains 20 books. In how many different orders can these
books be arranged on the shelf?

7.14. A class contains ten boys and ten girls. In how many different ways can they
stand in a line if they must alternate in gender (no two boys and no two girls
are standing next to one another)?

7.15. Four cards are drawn from a standard deck of 52 cards. In how many ways
can this be done if the cards are all of different values (e.g., no two 5s or
two jacks) and all of different suits? (For this problem, the order in which
the cards are drawn matters, so drawing A®-KO-3$-66% is not the same as
drawing 6¢2-KQ-3$-A even though the same cards are selected.)

Factorial

In Section 7, we counted lists of elements of various lengths in which we were
either allowed or forbidden to repeat elements. A special case of this problem is
to count the number of length-n lists chosen from a pool of n objects in which
repetition is forbidden. In other words, we want to arrange # objects into a list,
using each object exactly once. By Theorem 7.6, the number of such lists is

ny,=nn—-—DHn-2)---n—n+1)=nn—Hn-2)---(1).

The quantity (n), occurs frequently in mathematics and has a special name
and notation; it is called » factorial and is written n!. For example, 5! =5 x 4 x
3x2x1=120.

Two special cases of the factorial function require special attention.

First, let us consider 1!. This is the result of multiplying all the numbers
starting from 1 all the way down to, well, 1. The answer is 1. Just in case this isn’t
clear, let’s return to the list-counting application. In how many ways can we make
a length-1 list where there is only one possible element to fill the first (and only!)
position? Obviously, there is only one possible list. So 1! = 1.

The other special case is O!.
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Much Ado About 0!

0! is 1. Students’ reactions to this statement typically range from “That doesn’t
make sense” to “That’s wrong!” There seems to be an overwhelming urge to
evaluate 0! as 0.

Because of this confusion, I feel I owe you a clear and unambiguous expla-
nation of why 0! = 1. Here it is: Because I said so!

No, that wasn’t a terribly satisfying answer, and I will endeavor to do a better
job in a moment, but the simple fact is that mathematicians have defined 0! to be 1,
and we are all in agreement on this point. Just as we declared (via our definition)
that the number 1 is not prime, we can also declare 0! = 1. Mathematics is a
human invention, and as long as we are consistent, we can set things up pretty
much however we please.

So now the burden falls on me to explain why it is a good idea to have 0! = 1
and a bad idea for it to be 0, +/17, or anything else.

To begin, let us rethink the list-counting problem. The number (! ought to be
the answer to the following problem:

3

In how many ways can we make a length-0 list whose elements come from a pool
of 0 elements in which there is no repetition?

It is tempting to say that no such list is possible, but this is not correct. There is
a list whose length is zero: the empty list (). The empty list has zero length, and
(vacuously!) its elements satisfy the conditions of the problem. So the answer to
the problem is 0! = 1.

Here is another explanation why 0! = 1. Consider the equation

nl=nx(n-—1) (3)

For example, 5! = 5 x (4 x 3 x 2 x 1) = 5 x 4!. Equation (3) makes sense for
n = 2 since 2! = 2 x 1! = 2 x 1. The question becomes: Does Equation (3)
make sense for n = 17 If we want Equation (3) to work when » = 1, we need
1! = 1 x O!. This forces us to choose 0! = 1.

Here is another explanation why 0! = 1. We can think of n! as the result
of multiplying » numbers together. For example, 5! is the result of multiplying
the numbers on the list (5, 4, 3, 2, 1). What should it mean to multiply together
the numbers on the empty list ()? Let me try to convince you that the sensible
answer is 1. We begin by considering what it means to add the numbers on the
empty list.

Alice and Bob work in a number factory and are given a list of numbers to
add. They are both quite adept at addition, so they decide to break the list in two.
Alice will add her numbers, Bob will add his numbers, and then they will add their
results to get the final answer. This is a sensible procedure, and they ask Carlos to
break the list in two for them.

Carlos, perhaps because he is feeling mischievous, decides to give Alice all
of the numbers and Bob none of the numbers. Alice receives the full list and Bob
receives the empty list. Alice adds her numbers as usual, but what is Bob to report
as the sum of the numbers on his list? If Bob gives any answer other than 0, the
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final answer to the problem will be incorrect. The only sensible thing for Bob to
say is that his list—the empty list—sums to 0.

The sum of the numbers in the empty list is 0.

Now, all three of them have received a promotion and are working on multi-
plication. Their multiplication procedure is the same as their addition procedure.
They are asked to multiply lists of numbers. When they receive a list, they ask
Carlos to break the list into two parts. Alice multiplies the numbers on her list, and
Bob multiplies the numbers on his. They then multiply together their individual
results to get the final answer.

But of course Carlos decides to have some fun and gives all the numbers to
Bob; to Alice, he gives the empty list. Bob reports the product of his numbers as
usual. What should Alice say? What is the product of the numbers on ()? If she
says 0, then when her answer is multiplied by Bob’s answer, the final result will
be 0, and this is likely to be the wrong answer. Indeed, the only sensible reply that
Alice can give is 1.

The product of the numbers in the empty list is, 1. Since 0! “asks™ you to
multiply together a list containing no numbers, the sensible answer is 1.

This reasoning is akin to taking 2° = 1. '

The final reason why we declare 0! = 1 is that as we move on, other formulas
work out better if we take 0! = 1. If we did not set 0! = 1, these other results
would have to treat 0 as a special case, different from other natural numbers.

Product Notation

Here is another way to write n!:

What does this mean? The symbol IT is the uppercase form of the Greek letter pi
(), and it stands for product (i.e., multiply). This notation is similar to using X
for summation.

The letter & is called a dummy variable and is a place holder that ranges from
the lower value (written below the IT symbol) to the upper value (written at the
top). The variable & takes on the values 1, 2, ..., n.

To the right of the IT symbol are the quantities we multiply. In this case, it
is simple: We just multiply the values of £ as &k goes from 1 to n; that is, we
multiply

I x2X+--Xn.

The expression on the right of the T1 symbol can be more complex. For
example, consider the product

5
H(Zk +3).

k=1
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This specifies that we multiply together the various values of (2k + 3) for k =
1,2, 3, 4, 5. In other words, '

5
H(2k+3)=5x7x9><11x13.

k=1

The expression on the right of the IT can be simpler. For example,

IE
k=1

is a fancy way to write 2.

Consider the following way of writing 0!
0
11
b=t
2 P
k=1

This means that k starts at 1 and goes up to 0. Since there is no possible value of
k with 1 < k < 0, there are no terms to multiply. Therefore the product is empty
and evaluates to 1.

Recap

In this section, we introduced factorial, discussed why 0! = 1, and presented
product notation.

8 Exercises

8.1. There are six different French books, eight different Russian books, and five
different Spanish books.
a. In how many different ways can these books be arranged on a bookshelf?
b. In how many different ways can these books be arranged on a bookshelf

if all books in the same language are grouped together?

8.2. Give an Alice-and-Bob discussion about what it means to add (and to mul-
tiply) a list of numbers that only contains one number.

8.3. Consider the formula

n!

(n—k)!
This formula is mostly correct. For what values of n and k is it correct? Prove
the formula is correct under a suitable hypothesis; that is, this problem asks
you to find and prove a theorem of the form “If (conditions on »# and k), then
() =nt/(n -7

8.4. Evaluate XX without calculating 100! or 98!.

8.5. Order the following integers from least to greatest: 2'%?, 1007, 100", 100!,
101°.

8.6. The Scottish mathematician James Stirling found an approximation formula
for n!. Stirling’s formula is

(i =

~ A 2man"e™"

n
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where m = 3.14159 ... and e = 2.71828 .. .. (Scientific calculators have a
key that computes ¢*; this key might be labeled .)
Compute n! and Stirling’s approximationton ! forr = 10, 20, 30, 40, 50.
What is the relative error in the approximations?
8.7. Calculate the following products:

a. [Ii_, 2k +1).
4
b. [[;_ sk
c [T, k—:—l where 7 is a positive integer.
d. [[,_, ;. where n is a positive integer.
8.8. When 100! is written out in full, it equals

100! = 9332621 ...000000.

Without using a computer, determine the number of 0 digits at the end of
this number.
8.9. Prove that all of the following numbers are composite: 1000!+2, 1000! + 3,
1000! + 4, ..., 1000! 4 1002.
The pomt of this problem is to present a long list of consecutive numbers,

all of which are composite. '

8.10. Can factorial be extended to negative integers? On the basis of Equation (3),
what value would you assign to (—1)!7

8.11. This problem is only for those who have studied calculus. Evaluate the
following integral forn =0, 1, 2, 3, 4:

X0
/ x"e " dx.
0

Note: The case n = 0 is easiest. Do the remaining values of # in order
(first 1, then 2, etc.) and use integration by parts.
What is the value of this integral for an arbitrary natural number n?

Extra for experts: Evaluate the integral with n = %

Sets I: Introduction, Subsets

A sel is arepetition-free, unordered collection of objects. A given object eitheris a
member of a set or it is not—an object cannot be in a set “more than once.” There
is no order to the members of a set. The simplest way to specify a set is to list its
elements between curly braces. For example, {2, 3, %} is a set with exactly three
members: the integers 2 and 3, and the rational number 5. No other objects are in
this set. All of the following sets are the same: i

I 1 1

{2.3.5} {3320 {2233}
It does not matter in what order we list the objects, nor does it matter if we repeat
an object. All that matters is what objects are members of the set and what objects
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Absolute value bars
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curdinafite ot size of the
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Set-budder notation.

are not. In this example, exactly three objects are members of the set; no other
objects are members. '

Earlier, we introduced three special sets of numbers. These sets are Z (the
integers), N (the natural numbers), and Q (the rational numbers).

An object that belongs to a set is called an element of the set.

Membership in a set is denoted with the symbol €. The notation x € A means
that the object x is a member of the set A. For example, 2 € {2, 3, %} is true, but
5€{2,3, },} is false. In the latter case, we can write 5 ¢ {2, 3, %}; the notation
x ¢ A means x is not an element of A.

When read aloud, € is pronounced “is a member of” or “is an element of”* or
“is in.” Often mathematicians write, “If x € Z, then....” This means exactly the
same thing as “If x is an integer, then....”

However, the € symbol can also stand for “be a member of” or “be in.”” For
example, if we write “Let x € Z,” we mean “Let x be a member of Z” or, more
prosaically, “Let x be an integer.”

The number of elements in a set A is denoted |A|. The cardinality of A is
simply the number of objects in the set. The cardinality of the set {2, 3, 1} is 3.
The cardinality of Z is infinite. We also call |A| the size of the set A. i

A set is called finite if its cardinality is an integer (i.e., is finite). Otherwise, it
is called infinite.

The empty set is the set with no members. The empty set may be denoted
{ 1. but it is better to use the special symbol . The statement “x € ¥” is false
regardless of what object x might represent. The cardinality of the empty set is
zero (i.e., |¥] = 0).

Please note that the symbol @ is not the same as the Greek letter phi: ¢ or .

There are two principal ways of specifying a set. The most direct way is to
list the elements of the set between curly braces, as in {3, 4, 9}. This notation is
appropriate for small sets. More often, set-builder notation is used. The form of
this notation is

{dummy variable : conditions} .
For example, consider
x:xeZ, x >0}.

This is the set of all objects x that satisfy two conditions: (1) x € Z (i.e., x must
be an integer) and (2) x > 0 (i.e., x is nonnegative). In other words, this set is N,
the natural numbers.

An alternative way of writing set-builder notation is

{dummy variable € set : conditions} .

This is the set of all objects drawn from the set mentioned and subject to the
conditions specified. For example,

{x e Z: 2|x}

is the set of all integers that are divisible by 2 (i.e., the set of even integers).
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It is often tempting to write a set by establishing a pattern to the elements and
then using three dots (.. .) to indicate that the pattern continues. For example, we
might write {1, 2, 3, ..., 100} to denote the set of integers from 1 to 100 inclusive.
In this case, the notation is clear, but it would be bettertowrite {(x € Z:1 < x <
100}.

Here is another example, which is less clear: {3, 5,7, ...}. What is intended?
We have to guess whether we mean the set of odd integers greater than 1 or the set
of odd primes. Use the “...” notation sparingly and only when there is absolutely
no chance of confusion.

Equality of Sets

What does it mean for two sets to be equal? It means that the two sets have exactly
the same elements. To prove that sets A and B are equal, one shows that every
element of A is also an element of B, and vice versa.

Proving two sets are equal.

N
Iet A and B be the sets. To show A = B, we have the following template:

«.Suppose x € A. ... Therefore x € B.
» Suppose x € B....Therefore x € A.

Therefore A = B. ]

Let us illustrate the use of Proof Template 5 on a simple statement.

Proposition 9.1

The following two sets are equal:

E ={xeZ:xiseven}, and
F ={zeZ:z=a+ bwhere q and b are both odd}.

In other words, the set F is the set of all integers that can be written as the
sum of two odd numbers. Using the template, the proof looks like this:

LetE={xeZ:xiseven}and F = {z € Z : z = a + b where a and b are
both odd}. We seek to prove that E = F.

Suppose x € E. ... Therefore x € F.

Suppose x € F....Therefore x € E. E®

S ———— |

Start with the first half by unraveling definitions.
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LetE={xeZ:xisevenjand F ={z € Z: z=a+bwﬁereaandbare
both odd}. We seek to prove that E = F.

Suppose x € E.Therefore x is even, and hence divisible by2,s0x = 2y
for some integer y. ... Therefore x is the sum of two odd numbers and so
xefl.

Suppose x € F....Therefore x € E. n

We have that x = 2y, and we want x as the sum of two odd numbers. Here’s
a simple way to do this: 2y + 1 is odd (see Definition 2.4) and so is —1 (because
—1 =2 x (=1) + 1). So we can write

x=2y=Q2y+ D+ (D

Let’s fold these ideas into the proof.

LetE ={xeZ:xisevenjand F ={z€Z:z = a4+ b where a and b are
both odd}. We seek to prove that E = F.

Suppose x € E. Therefore x is even, and hence divisible by 2, so
x = 2y for some integer y. Note that 2y + 1 and —1 are both odd, and since
x =2y = (2y + 1) + (—1), we see that x is the sum of two odd numbers.
Therefore x € F.

Suppose x € F....Therefore x € E. n

The second part of the proof was already considered in Exercise 4.1 (and the
solution to that exercise can be found in Appendix A). So we simply refer to that
previously worked problem to complete the proof.

LetE ={x € Z:xisevenjand F = {z € Z:z= a + b where a and b
are both odd}. We seek to prove that E = F.

Suppose x € E. Therefore x is even, and hence divisible by 2, so
x = 2y for some integer y. Note that 2y + 1 and —1 are both odd, and since
x =2y = 2y + 1) + (—1), we see that x is the sum of two odd numbers.
Therefore x € F.

Suppose x € F. Therefore x is the sum of two odd numbers. As we
showed in Exercise 4.1, x must be even and so x € E. |

Note that Proposition 9.1 can be rewritten as follows: An integer is even ifand
only if it can be expressed as the sum of two odd numbers.
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Subset

Next we define subset.

Definition 9.2

C and € have related but
different meanings. They
cannot be interchanged!

(Subset) Suppose A and B are sets. We say that A is a subset of B provided every
element of A is also an element of B. The notation A € B means A is a subset
of B.

For example, {1, 2, 3}isasubsetof {1, 2, 3, 4}. Forany set A, wehave A C A
because every element of A is (of course) in A.

Furthermore, for any set A, we have # C A. This is because every element of
{ is in A—since there are no elements in @, there are no elements of ¢ that fail to
be in A. This is an example of a vacuous statement, but a useful one.

The symbol C is often used for subset as well, but we do not use it in this
book. We prefer C because it looks more like <, and we want to emphasize that a
set is always a subset of itself. (The symbol  is a hybrid of the symbols C and =.)
If we want to rule out the equality of the two sets, we may say that A is a strict or
proper subset of B; this meansthat A € B and A # B. It would be tempting to let
C denote proper subset (because it looks like <), but the use of C to mean ordinary
subset has not completely fallen out of fashion in the mathematics community. We
avoid controversy by not using the symbol C.

It is important to distinguish between € and C. The notation x € A means that
x is an element (or member) of A. The notation A C B means that every element
of A is also an element of B. Thus ¢ C {1, 2, 3} is true, but ¥ € {1, 2, 3} is false.

The difference between € and C is analogous to the difference between x and
{x}. The symbol x refers to some object (a number or whatever), and the notation
{x} means the set whose one and only element is the object x. It is always correct
to write x € {x}, but it is incorrect to write x = {x} or x C {x}. (Well, it usually
is incorrect to write x C {x}; see Exercise 9.9.)

To prove that one set is a subset of another, we need to show that every element
of the first set is also a member of the second set.

Proposition 9.3

Let x be anything and let A be a set; then x € A if and only if {x} C A.

Proof. Let x be any object and let A be a sct.

(=) Suppose that x € A. We want to show (x} € A. To do this, we need to
show that every element of {x} is also an element of A. But the only element of
{x}is x, and we are given that x € A. Therefore {x} C A.

(<) Suppose that {x} € A. This means that every element of the first set ({x})
is also a member of the second set (A). But the only clement of {x} is certainly x
and so x € A. [ ]

The general method for showing that one set is a subset of another is outlined
in Proof Template 6.
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Proof Template 6 Proving one set is a subset of another.

To show A C B:
Letx € A....Therefore x € B. Therefore A C B. [ ]

We illustrate the use of Proof Template 6 using the following concept.

Definition 9.4  (Pythagorean Triple) A list of three integers (a, b, ¢) is called a Pythagorean
triple provided a® + b* = 2.

Please note that

(+v2. V3. V5 isnota
Pythagorean triple because For example, (3, 4, 5) is a Pythagorean triple because 32 + 4% = 52, Pytha-
fot inteeers: the term gorean triples are so named because they are the lengths of the sides of a right
Pyithagorean triple only triangle.

applies to lists of integers.

the numbers in the list are

Proposition 9.5 Let P be the set of Pythagorean triples; that is,
P={(a,b,c):a,b,ccZ and a*®+b* =c?}
and let T be the set
T={(p,g,r): p=x"—y* g=2xy, andr = x> + y* where x, y € Z}.
Then T C P.

For example, if we let x = 3 and y = 2 and we calculate
p=x*—y'=9-4=35, g =2xy = 12, r=x*+3y"=944=13

we find that (5, 12, 13) € T. Proposition 9.5 asserts that T € P, which implies
(5,12, 13) € T. Indeed, this is correct since

524122 =25+ 144 = 169 = 132

We now develop the proof of Proposition 9.5 by utilizing Proof Template 6.

Let P and T be as in the statement of Proposition 9.5.
Let(p,q.r) € T....Therefore (p,q,r) € P. [ |

Unravel the meaning of (p,gq,r) € T.

Let P and T be as in the statement of Proposition 9.5.
Let (p,g,r) € T. Therefore there are integers x and y such that p =
x?—yv%, g = 2xy,and r = x> + y2....Therefore (p,q,r) € P. [ ]

To verify that (p,q,r) € P, we simply have to check that all three are
integers (which is clear) and that p? + g* = r2. We can write p, ¢, and r in terms
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of x and vy, so the problem reduces to an algebraic computation. We finish the
proof.

Let P and 7 be as in the statement of Proposition 9.5.

Let (p,q,r) € T. Therefore there are integers x and y such that p =
x2—y% g = 2xy,andr = x>+ y*. Note that p, ¢, and r are integers because
x and y are integers. We calculate

PPt = =)+ 2ry)?
= (x* =207y 4+ vh) 4 4xfy?
T PR

= () = P2

Therefore (p, g, r) is a Pythagorean triple and so (p, q,r) € P. [ ]

The symbols € and € may be written backward: > and 2. The notation A > x
means exactly the same thing as x € A. The symbol > can be read, “contains the
element.” The notation B O A means exactly the same thing as A € B. We say
that B is a superset of A. '

(We also say that B contains A and A is contained in B, but the word contains
can be a bit ambiguous. If we say “B contains A,” we generally meanthat B 2 A,
but it might mean B > A. We avoid this term unless the meaning is utterly clear
from context.)

Counting Subsets

How many subsets does a set have? Let us consider an example.

Example 9.6

How many subsets does A = {1, 2, 3} have?

The easiest way to do this is to list all the possibilities. Since |A| = 3, a subset
of A can have anywhere from zero to three elements. Let’'s write down all the
possibilities organized this way.

Number of elements Subsets Number
0 ] 1
1 {1}, {2}, {3} 3
2 {1, 2}, {1, 3}, {2, 3} 3
3 {1,2, 3} 1
Total: 8

Therefore, there are eight subsets of {1, 2, 3}.

There is another way to analyze this problem. Each element of the set {1, 2, 3}
either is a member of or is not a member of a subset. Look at the following diagram.
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(1,23} ¢

{12}

{1.3}

{1}

{2.3}

(2}

{3}

For each element, we have two choices: to include or not to include that element
in the subset. We can “ask” each element if it “wants” to be in the subset. The list
of answers uniquely determines the subset. So if we ask elements 1, 2, and 3 in
turn if they are in the subset and the answers we receive are (yes, yes, no), then
the subset is {1, 2}.

The problem of counting subsets of {1, 2, 3} reduces to the problem of counting
lists, and we know how to count lists! The number of lists of length three where
each entry on the list is either “yes” or “no”is 2 x 2 x 2 = &.

This list-counting method gives us the solution to the general problem.

Theorem 9.7

Let A be a finite set. The number of subsets of A is 24l

Proof. Let A be a finite set and let n = |A|. Let the n elements of A be named
ap, az, ..., a,. To each subset B of A we can associate a list of length #; each
element of the list is one of the words “yes” or “no.” The kth element of the
list is “yes” precisely when a; € B. This establishes a correspondence between
length-n yes-no lists and subsets of A. Observe that each subset of A gives a
yes-no list, and every yes-no list determines a different subset of A. Therefore
the number of subsets of A is exactly the same as the number of length-n yes-no
lists. The number of such lists is 2", so the number of subsets of A is 2" where
n =|A|. ]

This style of proof is called a bijective proof. To show that two counting
problems have the same answer, we establish a one-to-one correspondence between
the two sets we want to count. If we know the answer to one of the counting
problems, then we know the answer to the other.
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Power Set

A set can be an element of another set. For example, {1, 2, {3, 4)}]} is a set with
three elements: the number 1, the number 2, and the set {3, 4}. A special example
of this is called the power set of a set.

Definition 9.8

The power set of A is
denoted 24.

(Power set) Let A be a set. The power set of A is the set of all subsets of A.

For example, the power set of {1, 2, 3} is the set
{0, {1}, {2}, (3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

Theorem 9.7 tells us that if a set A has n elements, its power set contains 27"
elements (the subsets of A). As a mnemonic, the notation for the power set of A
is 24, This is a special notation; there is no general meaning for raising a number
to a power that is a set. The only case in which this makes sense is writing the set
as a superscript on the number 2; the meaning of the notation is the power set of
A. This notation was created so that we would have

24] = 24

for any finite set A. The left side of this equation is the cardinality of the power set
of A; the right side is 2 raised to the cardinality of A. On the left, the superscript
on 2 is a set, so the notation means power set; on the right, the superscript on 2 is
a number, so the notation means ordinary exponentiation.

Recap

In this section, we introduced the concept of a set and the notation x € A. We
presented the set-builder notation {x € A : ...}. We discussed the concepts of
empty set (), subset (<), and superset (2). We distinguished between finite and
infinite sets and presented the notation | A| for the cardinality of A. We considered
the problem of counting the number of subsets of a finite set and defined the power
set of a set, 2.

9 Exercises

9.1. Write out the following sets by listing their elements between curly braces.
a. {xr e N:x < 10and 3|x}.

b. {x € Z : x is prime, and 2|x}.

e {xeZ:x>=4).

d. {x e Z:x*=5).

e. 2%,

f. {x € Z:10|x and x[100}.

g {r:xC{1,2,3,4,5}and |x] < 1}.
Find the cardinality of the following sets.
a. {x €eZ:|x| <10}

b. xeZ:1<x?=<2}.

. {xeZ:x e}

(xeZ:0ex}

9.2.

an
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e. (xeZ:0C{x})

£ 22(1.2.3).

g x ey = 1)
h. {{L,2},{3,4,5}}.

9.3. Complete each of the following by writing either € or C in place of the O.
a. 2(O{1,2,3}.
b. {2} O (!, 2, 3}.
c. 21O {11 {21 {31}
d. 1O {1,2,3}
e. NOZ.
f. 21O Z.
g {21 O2%.
9.4. Let A and B be sets. Prove that A = Bifandonlyif A C Band B C A.
(This gives a slightly different proof strategy for showing two sets are
equal; compare to Proof Template 5.)

95. LetA={xeZ: :4|x}andlet B={x € Z: 2|x}. Prove that A C B.

9.6. Generalize the previous problem. Let @ and b be integers and let A = {x €
Z :a|x}and B = {x € Z : b|x}. Find and prove a necessary and sufficient
condition for A C B. In other words, given the notation developed, find and
prove a theorem of the form “A € B if and only if some condition involving
aandb”

97. LetC ={x e€Z:x|12}andlet D = {x € Z : x|36}. Prove that C C D.

9.8. Generalize the previous problem. Let ¢ and d be integers and let C = {x €
Z:x|cyand D = {x € Z : x|d}. Find and prove a necessary and sufficient
condition for C C D.

9.9. Give an example of an object x that makes the sentence x < {x} true.

9.10. Please refer to Proposition 9.5, in which we proved that 7 € P. Show that
T #P.
10 Quantifiers

There are certain phrases that appear frequently in theorems, and the purpose of
this section is to clarify and formalize those phrases. At first glance, these phrases
are simple, but we’ll do our best to try to make them complicated. The expressions
are there is and every.

There Is

Consider a sentence such as the following:

There is a natural number that is prime and even.

The general form of this sentence is “There is an object x, a member of set A, that
has the following properties.”” The example sentence can be rewritten to adhere
more strictly to this form as follows:

There is an x, a member of N, such that x is prime and even.
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The meaning of the sentence is, we hope, clear. It says that at least one clement in
N has the required properties. In this case, there is only one possible x (the number
2), but the phrase there is does not rule out the possibility that there can be more
than one object with the requisite properties.

The phrase there exists is synonymous with there is.

Because the phrase there is occurs so often, mathematicians have developed
a formal notation for statements of the form “There is an x in set A such that....”
We write a backward, uppercase E (i.e., 3) that we pronounce there is or there
exists. The general form for using this notation is

dx € A, assertions about x.

This is read, “There is an x, a member of the set A, for which the assertions hold.”
The sentence “There is a natural number that is prime and even” would be written

dx € N, x is prime and even.

The letter x is a dummy variable—simply a placeholder. It is similar to the index
of summation in X notation.

At times, we abbreviate the statement “Jdx € A, assertions about x”’ to “Jx,
assertions about x” when context makes it clear what sort of object x ought to be.

The backward E is called the existential guantifier.

To prove a statement of the form “Jx € A, assertions about x,” we have to
show that some element in A satisfies the assertions. The general form for such a
proof is given in Proof Template 7.

Proving existential statements.

To prove 3x € A, assettions about x:

Let x be (give an explicit example) ... (Show that x satisfies the
assertions.) ... Therefore x satisfies the required assertions. |

Proving an existential statement is akin to finding a counterexample. We sim-
ply have to find one object with the required properties.

Example 10.1

Here is a proof (very short!) that there is an integer that is even and prime.
Statement: 3x € Z, x is even and x is prime.
Proof. Consider the integer 2. Clearly 2 is even and 2 is prime. n

For All

The other phrase we consider in this section is every, as in “Every integer is even
or odd.” There are alternative phrases we use in place of every, including all, each,
and any. All of the following sentences mean the same thing:

+ Every integer is either even or odd.
» All integers are either even or odd.
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«  Each integer is either even or odd.
« Let x be any integer. Then x is even or odd.

In all cases, we mean that the condition applies to all integers without exception.

There is a fancy notation for these types of sentences. Just as we used the
backward E for there is, we use an upside-down A (V) as a notation for all. The
general form for this notation is

Vx € A, assertions about x.
This means that all elements of the set A satisfy the assertions, as in

Vx € Z, x is odd or x is even.

When the context makes clear what sort of object x is, the notation may be shortened
to “Yx, assertions about x.”

The upside-down A is called the universal quantifier.

To prove an “all” theorem, we need to show that every element of the set
satisfies the required assertions. The general form for this sort of proof is given in
Proof Template 8.

Proof Template 8 Proving universal statements.

To prove Yx € A, assertions about x:
Let x be any element of A.. .. (Show that x satisfies the assertions
using only the fact that x € A and no further assumptions onx.}. ..
Therefore x satisfies the required assertions, "

Example 10.2 To prove: Every integer that is divisible by 6 is even.
More formally, let A = {x € Z : 6{x}. Then the statement we want to prove is
Vx € A, xiseven.
Proof. Letx € A;thatis, x is an integer that is divisible by 6. This means there
Mathspeak! is an integer y such that x = 6y, which can be rewritten x = (2 - 3)y = 2(3y).

Mathematicians use the
word arbitrary in a slightly
nonstandard way. When
wce say that x is an
arbitrary element of a set
A, we mean that x might
be any element of A, and
one should not assume
anything about x other
than it is an element of A.
To say x is an arbitrary
even number means that x
is even. but we make no
further assumptions

about .v.

Therefore x is divisible by 2 and therefore even. ]

Note that this proof is not really any different from proving an ordinary if-
then: “If x is divisible by 6, then x is even.” The point we are trying to stress is
that in the proof, we assume that x is an arbitrary element of A and then move on
to show that x satisfies the condition.

Negating Quantified Statements
Consider the statements

+ There is no integer that is both even and odd.
- Not all integers are prime.
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Symbolically, these can be written

« = (dx € Z, x is even and x is odd).
« = (Vx € Z, x is prime).

In both cases, we have negated a quantified statement. What do these negations
mean?
Let us first consider a statement of the form

—(dx € A, assertions about x) .

This means that none of the elements of A satisfy the assertions, and this is equiv-
alent to saying that all of the elements of A fail to satisfy the assertions. In other
words, the following two sentences are equivalent:

= (dx € A, assertions about x)

Vx € A, — (assertions about x) .

For example, the statement “There is no integer that is both even and odd” says
the same thing as “Every integer is not both even and odd.”

Next we consider the negation of univers\al\statements. Consider a statement
of the form

—(¥x € A, assertions about x) .

This means that not all of the elements of x have the requisite assertions (i.e., some
don’t). Thas the following two statements are equivalent:

—(Vx € A, assertions about x)

dx € A, —(assertions about x) .

For example, the statement “Not all integers are prime” is equivalent to the state-
ment “There is an integer that is not prime.”
The mnemonic I use to remember these equivalences is

V... =3-... and -3, =V ...

When the — “moves” inside the quantifier, it toggles the quantifier between ¥V and 3.

Combining Quantifiers

Quantified statements can become difficult and confusing when there are two (or
more!) quantifiers in the same statement. For example, consider the following
statements about integers:

« Forevery x, there isa y such that x + y = 0.
« There is a y such that for every x, we have x +y = 0.

In symbols, these statements are written

« Vx,3dy,x+y=0.
« dy,Vx,x+y=0.

‘What do these mean?
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The first sentence makes a claim about an arbitrary integer x. It says that no
matter what x is, something is true—namely, we can find an integer y such that
x4+ v =0.Let’s say x = 12. Can we find a y such that x + y = 07 Of course!
We just want v = —12. Say x = —53. Can we find a y such that x + y = 07 Yes!
Take y = 53. Notice that the y that satisfies x = 12 is different from the y that
satisfies x = —53. The statement just requires that no matter how we pick x (Vx),
we can find a y (3y) such that x + y = 0. And this is a true statement. Here is the
proof:

Let x be any integer. Let y be the integer —x. Then x +y = x + (—x) = 0.
|

Since the overall statement begins Vx, we begin the proof by considering an arbi-
trary integer x. We now have to prove something about this number x-—namely,
we can find a number v such that x + y = 0. The choice for y is obvious, just take
y = —x. The statement Vx, 3y, x + y = 0 is true.

Now let us examine the similar statement

dy, Vx, x +y=0.

This sentence is similar to the previous sentence; the only difference is the order
of the quantifiers. This sentence alleges that there is an integer y with a certain
property—namely, no matter what number we add to y (Vx), we get0 (x +y = 0).
This sentence is blatantly false! There is no such integer y. No matter what integer
y you might think of, we can always find an integer x such that x + y is not
zZero.

The statements Vx, y, x + y = 0 and Iy, Vx, x + y = 0 are made a bit
clearer through the use of parentheses. They may be rewritten as follows:

Vx, @y, x+y=0)
dy, (Vx, x+y=0).
These additional parentheses are not strictly necessary, but if they make these

statements clearer to you, please feel free to use them.
In general, the two sentences

Vx, dy, assertions about x and y
dy, Vx, assertions about x and y

are not equivalent to one another.

Recap

We analyzed statements of the form “For all . ..” and “There exists ...” and intro-
duced the formal quantifier notation for them. We presented basic proof templates
for such sentences. We examined the negation of quantified sentences, and we
studied statements with more than one quantifier.
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10 Exercises 10.1.

10.2.

10.3.

10.4.

10.5.

Write the following sentences using the quantifier notation (i.e., use the
symbols 3 and/or V). Note: We do not claim these statements are true, so
please do not try to prove them!
. Every integer is prime.
. There is an integer that is neither prime nor composite.
. There is an integer whose square is 2.
All integers are divisible by 5.
Some integer is divisible by 7.
The square of any integer is nonnegative.
For every integer x, there is an integer y such that xy = 1.
There are an integer x and an integer y such that x/y = 10.
There is an integer that, wﬁep multiplied by any integer, always gives
the result 0. )
Jj- No matter what integer you choose, there is always another integer that
is larger.
k. Everybody loves somebody sometime.
Write the negation of each of the sentences in the previous problem. You
should “move” the negation all the way inside the quantifiers. Give your
answer in English and symbolically. For example, the negation of part (a)
would be “There is an integer that is not prime” (English) and “3x € Z, x is
not prime” (symbolic).
What does the sentence “Everyone is not invited to my party” mean?
Presumably the meaning of this sentence is not what the speaker in-
tended. Rewrite this sentence to give the intended meaning.
True or False: Please label each of the following sentences about integers
as either true or false. (You do not need to prove your assertions.)
. Vx, Vy, x+y=0.
. Vx, 3y, x +y=0.
3dx, Yy, x+y=0.
. 3x, vy, x+y=0.
. Vx, Vy, xy =0.
. Vx, 3y, xy =0.
dx, Yy, xy = 0.
. dx, Jy, xy =0.
For each of the following sentences, write the negation of the sentence, but
place the — symbol as far to the right as possible. Then rewrite the negation
in English.
For example, for the sentence

Yx € Z,x is odd

~FR e 2o T

=‘U‘Q - D R TR

the negation would be

dx € Z, —(x is odd),
which in English is “There is an integer that is not odd.”
a. VxeZ,x <.

b. IxeZ,x =x+1.
¢. dx e N, x > 10,
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d. Vx e Nyx +x = 2x.

e. IxeZ,VyeZ,x > y.

f. VxeZ,YyeZ,x=1y.

g VxeZ,AyeZ,x+y=0.

10.6. Do the following two statements mean the same thing?

Vx, Vy, assertions about x and y
Yy, Vx, assertions about x and y

Explain.

Likewise, do the following two statements mean the same thing?

dx, Jy, assertions about x and y

dy, dx, assertions about x and y

Explain.

1"

Sets lI: Operations
Just as numbers can be added or multiplied, and truth values can be combined
with A and Vv, there are various operations we perform on sets. In this section, we
discuss several set operations.

Union and Intersection

The most basic set operations are union and intersection.

Definition 11.1

(Union and intersection) Let A and B be sets.

The union of A and B is the set of all elements that are in A or B. The union
of A and B is denoted A U B.

The intersection of A and B is the set of all elements that are in both A and
B. The intersection of A and B is denoted A N B.

In symbols, we can write this as follows:
AUB={x:x€Aorx € B}, and
ANB={x:xe Aandx € B}.

Example 11.2

Suppose A = {1,2,3,4}and B = (3,4,5,6}. Then AUB = {1,2,3,4,5, 6} and
AN B ={3,4}.

It is useful to have a mental picture of union and intersection. A Venn diagram
depicts sets as circles or other shapes. In the figure, the shaded region in the upper
diagram is A U B, and the shaded region in the lower diagram is A N B.

The operations of U and M obey various algebraic properties. We list some of
them here.
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Theorem 11.3  Let A, B, and C denote sets. The following are true:

« AUB=BUAand AN B = BN A. (Commutative properties)

« AUMBUC)=(AUB)UCand AN(BNC) = (AN B)NC. (Associative
properties)

« AUB=AandANP=20.

« AUBNCO)=(AUBNAUC)and ANBUC)=(ANB)UANC).
(Distributive properties)

Proof. Most of the proofis left as Exercise 11.2. Theorem 6.2 is extremely useful
in proving this result.

Here we prove the associative property for union. You may use this as a
template for proving the other parts of this theorem.

Let A, B, and C be sets. We have the following:

AUBUCO) ={x:(xeA)Vvxe BUQO)} definition of union
={x:(xe A v ({(xeB)Vv(xe(C)}] definition of union
={x:(xeAdA)vixeB)Vvix € ‘). associative property of V
={x:(xe AUB)V{x e ()} definition of union
=(AUBYUC definition of union. M

How did we think up this proof? We used the technique of writing the beginning
and end of the proof and working toward the middle. Imagine a long sheet of paper.
On the left, we write AU(BUC) = .. .; on the right, we write ... = (AU B)UC.
On the left, we unravel the definition of U for the first U, obtaining AU(BUC) =
{x : (x € A) v (x € BU C)}. We unravel the definition of U again (this time on
the B U C) to transform the set into

x:(xeA)v{{xeB)vixel)l

Meanwhile, we do the same thing on the right. We unravel the second U in
(AUB)UCtoyield{x: (x € AUB) Vv (x € C)} and then unravel A U B to get
{x: ((xe A)yv(x e B))V(xe()l.

Now we ask: What do we have and what do we want? On the left, we have

x:xeAv{xeB)Vvixel))
and on the right, we need
x:(xeAdAvixeB)Vvixe)l

Finally, we stare at these two sets and realize that the conditions after the colon
are logically equivalent (by Theorem 6.2) and we have our proof.

Venn diagrams are also useful for visualizing why these properties hold. For
example, the following diagrams illustrate the distributive property AU(BNC) =
(AUB)YN(ALC).

First examine the top row of pictures. On the left, we see the set A highlighted;
in the center, the region for B N C is shaded; and finally, on the right, we show
AU(BNCO).
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AU(BNC)

AUB AuC AUBNAUO)

Next examine the bottom row. The left and center pictures show A U B and
A U C highlighted, respectively. The rightmost picture superimposes the first two,
and the darkened region shows (A U B) N (AU Q).

Notice that exactly the same two shapes on the right panels (top and bottom)
are dark, illustrating that AU (BN C) = (AUBYN(AUC(O).

The Size of a Union

Suppose A and B are finite sets. There is a simple relationship between the quan-
tities |Al, |B], |A U B, and |A N B|. :

Proposition 11.4

Let A and B be finite sets. Then
Al +|B| = |AUB|+1]ANB|

Proof. Imagine we assign labels to every object. We attach a label A to objects
in the set A, and we attach a label B to objects in B.

Question: How many labels have we assigned?

On the one hand, the answer to this question is |A| + | B| because we assign
|A| labels to the objects in A and | B| labels to the objects in B.

On the other hand, we have assigned at least one label to the elements in
|A U B|. So |A U Bj counts the number of objects that get at least one label.
Elements in A N B receive two labels. Thus |[AU B| + |A N B| counts all elements
that receive a label and double counts those elements that receive two labels. This
gives the number of labels.

Since these two quantities, |A| + |B] and JAU B| + |AN B|, answer the same
question, they must be equal. n

This proof is an example of a combinatorial proof. Typically a combinatorial
proof is used to demonstrate that an equation (such as the one in Proposition 11.4)
is true. We do this by creating a question and then arguing that both sides of the
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equation give a correct answer to the question. It then follows, since both sides
are correct answers, that the two sides of the alleged equation must be equal. This
‘technique is summarized in Proof Template 9.

Proof Template9 Combinatorial proof.

To prove an equation of the form LHS = RHS:

Pose a question of the form, “In how many ways ... 7"
On the one hand, argue why LHS is a correct answer to the question.
On the other hand, argue why RHS is a correct answer.

Therefore LHS = RHS. [ ]

Finding the correct question to ask can be difficult. Writing combinatorial
proofs is akin to playing the television game Jeopardy!. You are given the answer
(indeed, two answers) to a counting question; your job is to find a question whose
answers are the two sides of the equation you are trying to prove.

We shall do more combinatorial proofs, but for now, let us return to Proposi-

e ) tion 11.4. One useful way to rewrite this result is as follows:
Basic inclusion-exclusion. -

lAUB|=]A|+|B| - |AN B|. 4

This is a special case of a counting method called inclusion-exclusion. It can be
interpreted as follows: Suppose we want to count the number of things that have
one property or another. Imagine that set A contains those things that have the
one property and set B contains those that have the other. Then the set AU B
contains those things that have one property or the other, and we can count those
things by calculating |A| 4+ |B| — |A N B|. This is useful when calculating [A],
|B], and |A N B| is easier than calculating |A U B|. We develop the concept of
inclusion-exclusion more extensively in Section 18.

Example 1.5 How many integers in the range 1 to 1000 (inclusive) are divisible by 2 or by 57
Let

A={xeZ:1<x <1000and2|x}, and
B={xeZ:1=<x <1000and 5|x}.

The problem asks for |[A U B|.

It is not hard to see that |A] = 500 and |B| = 200. Now A M B are those
numbers (in the range from 1 to 1000) that are divisible by both 2 and 5. Now an
integer is divisible by both 2 and 5 if and only if it is divisible by 10 (this can be
shown rigorously using ideas developed in Section 38; see Exercise 38.3), so

ANB={xeZ:1<x <1000 and 10|x}
and it follows that |A N B| = 100. Finally, we have
{AU B| =]A|+ [B] —|A N B| =500+ 200 — 100 = 600.
There are 600 integers in the range 1 to 1000 that are divisible by 2 or by 5.
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In case AN B = @, Equation (4) simplifies to |A U B] = |A|+[B]. In words,
if two sets have no elements in common, then the size of their union equals the
sum of their sizes. There is a special term for sets with no elements in common.

Definition 11.6

(Disjoint, pairwise disjoint) Let A and B be sets. We call A and B disjoint
provided AN B =@

Let A, A, ..., A, be a collection of sets. These sets arc called pairwise
disjoint provided A; N A; = ¥) whenever i # j. In other words, they are pairwise
disjoint provided no two of them have an element in common.

Example 1.7

Let A = {1,2,3}, B = {4,5,6},and C = {7, 8,9}. These sets are pairwise
disjoint becausse ANB=ANC=BNC = .

However, let X = {1,2.3}, Y = {4,5,6,7}, and Z = {7,8.9,10}. This
collection of sets is not pairwise disjoint because ¥ N Z # @ (all other pairwise
intersections are empty).

Corollary 1.8

(Addition Principle) Let A and B be finite sets. If A and B are disjoint, then
|A U B| = {A| + |B].

Corollary 11.8 follows immediately from Proposition 11.4. There is an exten-
sion of the Addition Principle to more than two sets.
If A, Aa. ..., A, are pairwise disjoint sets, then

Ay U AU U A, = Al + Az +--- + [Aal.

This can be shown formally using the methods from Section 20; see Exercise 20.9.
A fancy way to write this is

U
k=1

The big | is analogous to the > and I1 symbols. It means, as k goes from 1 to
n (the lower and upper values), take the union of the expression to the right (in
this case A;). So the big | notation is just a shorthand for A; U Ay U UA,.
This is surrounded by vertical bars, so we want the size of that set. On the right,
we see an ordinary summation symbol telling us to add up the cardinalities of A,
Ay, A

n

:ZlAkl.

k=1

Difference and Symmetric Difference

Definition 11.9

(Set difference) Let A and B be sets. The ser difference, A — B, is the set of all
elements of A that are not in B:

A—-B={x:xc Aandx ¢ B}.
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The symmetric difference of A and B, denoted A A B, is the set of all elements
in A but not B or in B but not A. That is,

AAB=(A—-B)U(B—A).

Example 11.10

Suppose A = {1,2,3,4} and B = {3,4,5,6}. Then A — B ={1,2}, B—A=
{5,6},and A A B ={1,2,5,6}.

The figures show Venn diagram for these operations.
In general, the sets A — B and B — A are different (but see Exercise 11.14).
Here is another way to express symmetric difference:

Proposition 11.11

AAB

Let A and B be sets. Then

AAB=(AUB) - (ANB).

Let us illustrate the various proof techniques by developing the proof of Propo-
sition 11.11 step by step. The proposition asks us to prove that two sets are equal,
namely, A A B and (A U B) — (A N B). We use Proof Template 5 to form the
skeleton of the proof.

Let A and B be sets.

.

~

(1) Supposex € A A B....Therefore x € (AU B) — (AN B).
(2) Supposex € (AU B) — (AN B)....Thereforex € A A B.

Thereforce AAB=(AUB)— (AN B). |

We begin with part (1) of the proof. We unravel definitions from both ends.
We know that x € A A B. By definition of A, this means x € (A — B)U (B — A).
The proof now reads as follows:

Let A and B be sets.

(1) Suppose x € A A B. Thus x € (A — B)U (B — A). ... Therefore
xe€(AUB)—-(ANB).
(2) Suppose x € (AU B) — (AN B).... Therefore x € A A B.

Therefore AA B=(AUB)—-(ANB). |

Now we know that x € (A — B) U (B — A). What does this mean? By
definition of union, it means that x € (A — B) or x € (B — A). We have to
consider both possibilities since we don’t know in which of these sets x lies. This
means that part (1) of the proof breaks into cases depending on whetherx € A — B
orx € B — A. Inboth cases, we need to show that x € (AU B) — (AN B).
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3

Let A and B be sets.

(1) Suppose x € A A B. Thusx € (A — B) U (B — A). This means either
x € A— Borx € B— A. We consider both cases.
« Suppose x € A — B....Therefore x € (AU B) — (AN B).
+ Suppose x € B — A....Thereforex e (AUB) - (ANB). *

... Therefore x € (AU B) — (AN B).
(2) Supposex € (AUB) — (AN B).... Thereforex € A A B.
Therefore AAB=(AUB)— (AN B). |

Let’s focus on the first case, x € A — B. This means that x € A and x ¢ B.
We put that in.

Let A and B be sets.

(1) Suppose x € A A B. Thusx € (A — B) U (B — A). This means either
x € A— Borx € B— A. We consider both cases.
+ Suppose x € A — B.Sox € Aand x ¢ B....Therefore x €
(AUB)—(ANB).
+ Suppose x € B— A....Therefore x € (AU B) — (AN B).

... Therefore x € (AU B) — (AN B).
(2) Suppose x € (AU B) — (AN B)....Therefore x € A A B.
Therefore AAB=(AUB)— (AN B). [ ]

We appear to be stuck. We have unraveled definitions down to x € A and
x ¢ B. To proceed, we work backward from our goal; we want to show that
x € (AU B) — (AN B). To do that, we need to show that x € A U B and
x ¢ AN B. We add this language to the proof.

Let A and B be sets.

(1) Suppose x € A A B. Thus x € (A — B) U (B — A). This means either
x € A— Borx € B— A. We consider both cases.
« Supposex € A—B.Soxe€Aandx ¢ B....
Thusx € AUB,butx ¢ AN B. Thereforex € (AUB)— (AN B).
+ Supposex € B— A....Thereforex € (AUB) — (AN B).

... Therefore x € (AU B) — (AN B).
(2) Suppose x € (AU B)— (AN B)....Thereforex € A A B.
Therefore AA B=(AUB)— (AN B). [ ]
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Now the two parts of this proof are moving closer together. Let’s record what
we know and what we want.

We already know: x € Aandx ¢ B.
We want to show: xeAUBandx ¢ AN B.

The gap is now easy to close! Since we know x € A, certainly x is in A or B (we
just said it’s in A!), sox € AU B. Since x ¢ B, x isnot in both A and B (we just
said it’s notin B!), so x ¢ A N B. We add this to the proof.

Let A and B be sets.

(1) Suppose x € A A B. Thus x € (A — B) U (B — A). This means either
x € A— Borx € B— A. We consider both cases.
+ Supposex € A— B.SoxeAandx ¢ B.
Since x € A,wehavex € AUB.Since x ¢ B,wehavex ¢ ANB.
Thusx € AUB,butx ¢ AN B. Thereforex € (AUB)—(ANB).
« Suppose x € B— A....Thereforex € (AU B) — (AN B).

... Therefore x € (AU B) — (AN B).
(2) Suppose x € (AU B) — (AN B).... Therefore x € A A B.
Therefore AAB=(AUB)— (AN B). n

We can now return to the second case of part (1) of the proof: “Suppose
x € B~ A....Therefore x € (AU B) — (AN B).” We have good news! This
case looks just like the previous case, except we have A and B switched around.
The argument in this case is going to proceed exactly as before. Since the steps
are (essentially) the same, we don;t really have to write them out. (If you are not
100% certain that the steps in this second case are exactly the same as before, I
urge you to write out this portion of the proof for yourself using the previous case
as a guide.) We can now complete part (1) of the proof.

Let A and B be sets.

(1) Suppose x € A A B. Thus x € (A — B) U (B — A). This means either
x € A— Borx € B— A. We consider both cases.
Suppose x € A — B.Sox € Aand x ¢ B. Since x € A, we have
x € AUB.Sincex ¢ B,wehavex ¢ ANB.Thusx € AU B, but
x ¢ AN B. Thereforex € (AU B) — (AN B).
. Suppose x € B — A. By the same argument as above, we have
xe(AUB)—(ANB).

Therefore x € (AU B) — (AN B).
(2) Suppose x € (AU B) — (AN B).... Therefore x € A A B.
Therefore AA B =(AUB)— (AN B). n
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Now we are ready to work on part (2). We begin by unravelingx € (AU B) —
(A N B). This means that x € AU B, butx ¢ AN B (by the definition of set
difference).

Let A and B be sets.

(1) Suppose x € A A B. Thus x € (A — B) U (B — A). This means either
x ¢ A— Borx € B— A. We consider both cases.
- Supposex € A—B.Sox € Aand x ¢ B. Since x € A, we have
x € AUB.Sincex ¢ B,wehavex ¢ ANB.Thusx € AUB, but
x ¢ AN B. Therefore x € (AU B) - (AN B).
- Suppose x € B — A. By the same argument as above, we have
x€(AUB)—(ANB).

Therefore x € (AU B) — (AN B).

(2) Supposex € (AUB)—(ANB). Thusx € AUBandx ¢ AN B.
... Therefore x € A A B.

Therefore AAB=(AUB)— (ANB). ]

Now let’s work backward from the end of part (2). We wanttoshowx € AA B,
so we needtoshowx € (A — B)U (B — A).

Let A and B be sets.

(1) Supposex € A A B. Thusx € (A — B) U (B — A). This means either
x € A— Borx € B— A. We consider both cases.
« Supposex € A—B.Sox € Aandx ¢ B. Since x € A, we have
x € AUB.Sincex ¢ B,wehavex ¢ ANB. Thusx € AU B, but
x ¢ AN B. Therefore x € (AU B) — (AN B).
« Suppose x € B — A. By the same argument as above, we have
x€(AUB)—(ANB).

Therefore x € (AU B) — (AN B).

(2) Supposex € (AUB)—(ANB).Thusx € AUBandx ¢ ANB....So
xe€(A—-B)U(B — A). Thereforex € A A B.

Therefore AAB=(AUB)~ (AN B). - [}

To show x € (A — B) U (B — A), we need to show that eitherx € A — B or
x € B — A. Let’s pause and write down what we know and what we want.

We already know: x€eAUBandx ¢ ANB.
We want to show: xeA—BorxeB— A

What we know says: x is in A or B but not both. In other words, either x is in A, in
which case it’s notin B, or x is in B, in which case it’s not in A. In other words, x €
A—Borx € B- A, and that’s what we want to show! Let’s work this into the proof.
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Let A and B be sets.

(1) Suppose x € A A B. Thus x € (A — B) U (B — A). This means either
x € A— Borx € B— A. We consider both cases.
« Suppose x € A— B.Sox € Aand x ¢ B. Since x € A, we have
x e AUB.Sincex ¢ B,wehavex ¢ ANB. Thusx € AU B, but
x ¢ AN B. Therefore x € (AU B) — (AN B).
. Suppose x € B — A. By the same argument as above, we have
xe€(AUB)—(ANB).

Therefore x € (AU B) — (AN B).

(2) Suppose x € (AUB)—(ANB). Thusx € AUBandx ¢ AN B.
This means that x is in A or B but not both. Thus either x is in A but
not B or x is in B but not A. Thatis,x € (A — B)orx € (B — A).So
x € (A—B)U(B— A). Therefore x € A A B.

Therefore AAB=(AUB)~ (AN B). ]

And this completes the proof.
More properties of difference and symmetric difference are developed in the
exercises. One particularly worthwhile result, however, is the following:

Proposition 11.12

(DeMorgan’s Laws) Let A, B, and C be sets. Then
A—(BUCO)=(A—B)NA-C) and A-(BNC)y=(A-B)u(A-0C).

The proof is left to you (Exercise 11.15).

Cartesian Product

We close this section with one more get operation.

Definition 11.13

(Cartesian product) Let A and B be sets. The Cartesian product of A and B,
denoted A x B, is the set of all ordered pairs (two-element lists) formed by taking
an element from A together with an element from B in all possible ways. That is,

AxB={(a,b):ac A be B}

Example 11.14

Suppose A = {1, 2,3} and B = {3, 4, 5}. Then

Ax B=1{(1,3),(1,4),(1,5,(2,3).,(2,4,2,5,3,3),3,4,3,5}, and
BxA=1{(31,32,33,41.42),43),5,1),5,2), 5 3}

Notice that for the sets in Example 11.14, A x B # B x A, so Cartesian
product of sets is not a commutative operation.
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In what sense does Cartesian product “multiply” the sety? Why do we use a
times sign x to denote this operation? Notice, in the example, that the two sets
both had three elements, and their product had 3 x 3 = 9 elements. In general, we
have the following:

Proposition 11.15

Let A and B be finite sets. Then |A x B| = |A] x |B|.

The proof is left for Exercise 11.24.

Recap

In this section we discussed the following set operations:

. Union: A U B is the set of all elements in A or B (or both).
. Intersection: A N B is the set of all elements in both A and B.
Set difference: A — B is the set of all elements in A but not B.
Symmetric difference: A A B is the set of all elements in A or B, but not both.
.+ Cartesian product: A x B is the set of all ordered pairs of the form (a, b)
wherea € Aand b € B.

M

Exercises

11.1. Let A ={1,2,3,4,5}and let B = {4, 5, 6, 7}. Please compute:
AUB.
ANB.
A—B.
B— A
AAB.
A X B.
g. B x A.

11.2. Prove Theorem 11.3.

11.3. Earlier we presented a Venn diagram illustration of the distributive property
AU(BNC) = (AUB)YN(AUC). Please give a Venn diagram illustration
of the other distributive property, AN(BUC) = (ANB)U(ANC).

11.4. Is a Venn diagram illustration a proof? (This is a philosophical question.)

11.5. Suppose A, B, and C are sets with A N BN C = @. Prove or disprove:
AU BUC| = |A|+|B| +IC].

11.6. Suppose A, B, and C are pairwise disjoint sets. Prove or disprove: |A U
BUC| = Al + Bl +IC].

11.7. Let A and B be sets. Prove or disprove: AU B = AN B if and only if
A=B.

11.8. Let A and B be sets. Prove or disprove: |A A B| = |A|+ [B| —|AN B|.

11.9. Let A and B be sets. Prove or disprove: |[A A B|=|A — B|+ |B — A|.

11.10. Let Abeaset. Prove: A— @ =Aand ¥ — A =

11.11. Let Abeaset. Prove: AAA=0and A AP = A.

11.12, Prove that A C Bifandonlyif A - B =0.

11.13. Let A and B be nonempty sets. Prove: A x B=B x Aifandonlyif A= B.
Why do we need the condition that A and B are nonempty?

-e o T



Set complement.

The notation I/ — A is
much clearer than A.

11.14.

11.15.

11.16.

11.17.

11.18.
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State and prove necessary and sufficient conditions for A— B = B—A.In
other words, create a theorem of the form “Let A and B be sets. We have
A — B = B — Aif and only if (a condition on A and B).” Then prove your
result.
Give a standard proof of Proposition 11.12 and illustrate it with a Venn
diagram.
True or False: For each of the following statements, determine whether the
statement is true or false and then prove your assertion. That is, for each
true statement, please supply a proof, and for each false statement, present
a counterexample (with explanation).

In the following, A, B, and C denote sets.
A—-(B—-C)=(A-B)—-C.
(A-B)—-C=(A—-C)—B.
(AUB)—C=(A-C)n(B-0).
IfA=B—-C,then B=AUC.
IfB=AUC,thenA =B -C.

|A— B| = Al — |B].
(A-B)UB=A.
. (AUB)— B =A.
Let A be a set. The complement of A, denoted A, is the set of atl objects that
are not in A. STOP! This definition needs some amending. Taken literally,
the complement of the set {1, 2, 3} includes the number —3, the ordered
pair (3, 4), and the sun, moon, and stars! After all, it says “...all objects
that are not in A.” This is not what is intended.

When mathematicians speak of set complements, they usually have
some overarching set in mind. For example, during a given proof or dis-
cussion about the integers, if A is a set containing just integers, A stands
for the set containing all integers not in A.

If U (for “universe”) is the set of all objects under consideration and
A C U, then the complement of A is the set of all objects in U that are not
in A.In other words, A = U — A. Thus ¥ = U.

Prove the following about set complements. Here the letters A, B, and
C denote subsets of a universe set U.

a. A= Bifandonlyif A = B.
b. A = A.
c. AUBUC=ANBNC. \

The notation A is handy, but it can be ambiguous. Unless itis perfectly
clear what the “universe” set U should be, itis better to use the set difference
notation rather than complement notation.

Design a four-set Venn diagram. Notice that the three-set Venn diagram we
have been using has eight regions (including the region surrounding the four
circles) corresponding to the eight possible memberships an object might
have. An object might be in or not in A, in or not in B, and in or notin C.

Explain why this gives eight possibilities.

Your Venn diagram should show four sets, A, B, C, and D. How many
regions should your diagram have?

On your Venn diagram, shade intheset AA BACAD.

F®R e B0 5P
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Note: Your diagram does not have to use circles to demark sets. Indeed,
it is impossible to create a Venn diagram for four sets using circles! You
need to use other shapes.

) ) 11.19. Let A, B, and C be sets. Prove that
An expanded version of
inclusion-exclusion. AU BU Cl=|Al+ |B| + |C]
—JANB|—1ANC|—|BNC|
+|ANBNCI.
. 11.20. There is an intimate connection between set concepts and Boolean algebra
The connection between . . N
sel operations and Boolean concepts. The symbols A and Vv are pointy versions of M and U, respectively.
aleebra, This is more than a coincidence. Consider:
xeANB < (x € A)A(x € B)
xe AUB & (xe Ayv{xeB)
Find similar relations between the set-theoretic notions of € and A
and notions from Boolean algebra.
11.21. Prove that symmetric difference is a commutative operation; that is, for
sets Aand B, wehave AAB=B A A.
11.22. Prove that symmetric difference is an associative operation; that is, for any
sets A, B,and C,wehave AA(BAC)=(AAB)AC.
11.23. Give a Venn diagram illustration of A A(BAC)=(AAB)AC.
11.24. Prove Proposition 11.15.
11.25. Let A, B, and C denote sets. Prove the following:
a AXx(BUC)=(Ax B)UAxC(C).
b. Ax(BNC)=(AxB)YN(A xC).
c. Ax(B-—C)=(AxB)—(AxC(C)
d. Ax(BAC)=(AxB)YA(AxC).
12 Combinatorial Proof: Two Examples

In Section 11 we introduced the concept of combinatorial proof of equations.
This technique works by showing that both sides of an equation are answers to a
common question. This method was used to prove Proposition 11.4 (for finite sets
A and B we have |A| + |B] = |A U B| + |A N B)). See Proof Template 9.

In this section we give two examples that further illustrate this technique. One
is based on a set-counting problem and the other on a list-counting problem.

Proposition 12.1

Let n be a positive integer. Then

20+21+'_.+2n71:2n_l.

Forexample, 20 +2! +22 +2* + 2 = 1 +24+4+8+16=31=2"— 1.
We seek a question to which both sides of the equation give a correct answer.
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The right-hand side is simpler, so let us begin there. The 2" term answers the
question “How many subsets does an n-element set have?” However, the term is
2" — 1, not 2. We can modify the question to rule out all but one of the subsets.
Which subset should we ignore? A natural choice is to skip the empty set. The
rephrased question is “How many nonempty subsets does an n-element set have?”
Now it is clear that the right-hand side of the equation, 2" — 1, is a correct answer.
But what of the left?

The left-hand side is a long sum, with each term of the form 2/, This is a hint
that we are considering several subset-counting problems. Somehow, the question
of how many nonempty subsets an n-element set has must be broken down into
disjoint cases (each a subset-counting problem unto itself) and then combined to
give the full answer.

We know we are counting nonempty subsets of an n-element set. For the
sake of specificity, suppose the set is {1,2, ..., n}. Let’s start writing down the
nonempty subsets of this set. It’s natural to start with {1}. Next we write down
{1, 2} and {2}—these are the sets whose largest element is 2. Next we write down
the sets whose largest element is 3. Let’s organize this into a chart.

Largest element Subsets of {1, 2, ..., n}
1 {n
2 {2}, {1, 2}
3 {3}, {1,3}, {2,3},{1,2,3})
4 {4), (1,4}, (2,4}, {1, 2,4}, ..., {1,2.3,4)
1;. .{n}, {1,n}, 12,0} {1,2,n},...,{1,2,3,....n}

We neglected to write out all the subsets on line 4 of the chart. How many are
there? The sets on this line must contain 4 (since that’s the largest element). The
other elements of these sets are chosen from among 1, 2, and 3. Because there are
2P =8 possible ways to form a subset of {1, 2, 3}, there must be 8 sets on this line.
Please take a moment to verify this for yourself by completing line 4 of the chart.

Now skip to the last line of the chart. How many subsets of {1, 2, ..., n} have
largest element n? We must include » together with any subsetof {1, 2, ..., n—1},
for a total of 2" ! choices.

Notice that every nonempty subset of {1, 2, ..., n} must appear exactly once

in the chart. Totaling the row sizes gives
14+24+44+8+--+2"",

Aha! This is precisely the lefthand side of the equation we seek to prove.
Arriied with these insights, we are ready to write the proof.

Proof (of Proposition 12.1)

Letn be a positive integer, and let N = {1, 2, ..., n}. How many nonempty subsets
does N have?

Answer 1: Since N has 2" subsets, when we disregard the empty set, we see
that N has 2" — 1 nonempty subsets,
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Answer 2: We consider the number of subsets of N whose largest element is
jwherel < j <n. Such subsets must be of the form {. .. ,’ j} where the other
elements are chosen from {1, ..., j — 1}. Since this latter set has 2771 subsets, N
has 2/~! subsets whose largest element is j. Summing these answers over all j
gives

20+21+22+._.+2n—1

nonempty subsets of N.
Since answers 1 and 2 are both correct solutions to the same counting problem,

we have

042t 42242 =2 n

We now turn to a second example.

Proposition 12.2

Let n be a positive integer. Then

1142204 dn-nl=@m+DI -1

For example, with n = 4, observe that

1 114221433 +4-41=1-142-2+3-6+4.24
=1+4+184+96
—119=120—1=5!—1.

The key to proving Proposition 12.2 is to find a question to which both sides
of the equation give a correct answer. As with the first example, the righthand side
is simpler, so we begin there.

The (n + 1)! term reminds us of counting lists without replacement. Specifi-
cally, it answers the question “How many lists can we form using the elements of
{1,2,...,n+ 1} in which every element is used exactly once?” Because the right-
hand side also includes a —1 term, we need to discard one of these lists. Which?
A natural choice is to skip the list (1,2,3,..., 72+ 1); this is the only list in which
every element j appears in position j for every j = 1,2, ..., n. Inevery other list,
some element j is not in the jth position on this list. Alternatively, the discarded
list is the only one in which the elements appear in increasing order.

We therefore consider the question “How many lists can we form using the
elements of {1, 2, ..., n + 1} in which every element appears exactly once and in
which the elements do not appear in increasing order?”

Clearly (n 4+ 1)! — 1 is one solution to this problem; we need to show that the
lefthand side is also a correct answer. If the elements in the list are not in increasing
order, then some element, say k, will not be in position k. We can organize this
counting problem by considering where this first happens.

Let us consider the case n = 4. We form a chart containing all length-5
repetition-free lists we can form from the elements of {1, 2, 3, 4, 5} that are not
in increasing order. We organize the chart by considering the first time slot k is
not element k. For example, when k = 3 the lists are 12435, 12453, 12534, and
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12543 since the entries in positions 1 and 2 are elements 1 and 2, respectively, but
entry 3 is not 3. (We have omitted the commas and parentheses for the sake of

clarity.)
The chart for n = 4 follows.

first “misplaced” element at position £

21345 21354 21435 21453 21534 21534
2413524153 24315 24351 24513 24531
31245 31254 31425 31452 31524 31542
34125 34152 34215 34251 34512 34521
41235 41253 41325 41352 41523 41532
4312543152 43215 43251 43512 43521
51234 51243 51324 51342 51423 51432
53124 53142 53214 53241 53412 53421

2314523154 23415 23154 23514 23541
25134 25143 25314 25341 25413 25431
32145 32154 32415 32451 32514 32541
35124 35142 35214 35241 35412 35421
42135 42153 42315 42351 42513 42531
45123 45132 45213 45231 45312 45321
52134 52143 52314 52341 52413 52431
54123 54132 54213 54231 54312 54321

13245 13254 13425 13452 13524 13542
14235 14253 14325 14352 14523 14532
15234 15243 15324 15342 15423 15432

[U8)

12435 12453 12534 12543

B

12354

Notice that row 5 of the chart is empty; why? This row should contain all repetition-
free lists in which the first slot & that does not contain element & is £ = 5. Such a
list must be of the form (1, 2, 3, 4, 7), but then there is no valid way to fill in the
last position.

Next, count the number of lists in each portion of the chart. Working from
the bottom, there are 1 + 4 + 18 + 96 = 119 lists (all 5! = 120 except the
list (1,2, 3,4.5)). The sum 1 + 4 + 18 + 96 should be familiar; it is precisely
1-114+2.2'4+3.314+4.4! Of course, this is not a coincidence. Consider the first
row of the chart. The lists in this row must not begin with a 1 but may begin with
any element of {2, 3, 4, 5}; there are 4 choices for the first element. Once the first
element is chosen, the remaining four elements in the lists may be chosen in any
way we like. Since there are 4 elements remaining (after selecting the first), these
4 elements can be arranged in 4! ways. Thus, by the Multiplication Principle, there
are 4 - 4! lists in which the first element is not 1.

The same analysis works for the second row. Lists on this row must begin
with a 1, and then the second element must not be a 2. There are 3 choices for
the second element because we must choose it from {3, 4, 5}. Once the second
element has been selected, the remaining three elements may be arranged in any
way we wish, and there are 3! ways to do so. Thus the second row of the chart
contains 3 - 3! = 18 lists.

We are ready to complete the proof,

/
/

Proof (of F‘i‘oposition 12.2)

Let n be a positive integer. We ask, “How many repetition-free lists can we form
using all the elements in {1, 2, ..., n 4+ 1} in which the elements do not appear in
increasing order?”
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Answer I: There are (n + 1)! repetition-free lists, and in oply one such list do
the elements appear in order, namely (1, 2, ..., n, n + 1). Thus the answer to the
questionis (n + 1)! — 1.

Answer 2: Let j be an integer between 1 and n, inclusive. Let us consider
those lists in which the first j — 1 elements are 1,2, ..., j — 1, respectively, but
for which the jth element is not j. How many such lists are there? For element j
there are n + 1 — j choices because elements 1 through j — 1 have already been
chosen and we may not use element j. The remaining n + 1 — j elements may
fill in the remaining slots on the list in any order, giving (n + 1 — j)! possibilities.
By the Multiplication Principle, there are (n + 1 — j) - (n +1 —J )! such lists.
Summing over j = 1,2, ..., n gives

neonl+—=1 -(n—DI+ . 4+3.314+2.214+1-11.

Since answers 1 and 2 are both correct solutions to the same counting problem,
we have

1-11+2.21 4+ dn-nt=r+ DI -1 ]

Recap

In this section we illustrated the concept of combinatorial proof by applying the
technique to demonstrate two identities.

12 Exercises 12.1. Give an alternative proof of Proposition 12.1 in which you use list counting
instead of subset counting.
12.2. Letn be a positive integer. Use algebra to simplify the following expression:

(x—DA+x+x2+-+x"H.

Use this to give another proof of Proposition 12.1.
12.3. Substituting x = 3 into your expression in the previous problem yields

2.3042.3142.32 ... 423" =3" 1.

Prove this equation combinatorially.
Next, substitute x = 10 and illustrate the result using ordinary base-10
numbers.
12.4. Let a and b be positive integers with a > b. Give a combinatorial proof of
the identity (a + b)(a — b) = a* — b™.
12.5. Letn be apositive integer. Give a combinatorial proof that n?> =nn~—1)+n.

| Chapter 2 Self Test

1. The call sign for a radio station in the United States is a list of three or four
letters, such as WIHU or WIZ. The first letter must be a W or a K, and there
is no restriction on the other letters. In how many ways can the call sign of a
radio station be formed?
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. In how many ways can we make a list of three integers (a, b, ¢) where

O<a,b,c<9anda+ b+ ciseven?

. In how many ways can we make a list of three integers (a, b, ¢) where

0<a,b, c <9andabciseven?

. Without the use of any computational aid, simplify the following

expression:

20!
17! 3!

. In how many ways can we arrange a standard deck of 52 cards so that all cards

in a given suit appear contiguously (e.g., first all the spades appear, then all
the diamonds, then all the hearts, and then all the clubs)?

. Ten married couples are waiting in line to enter a restaurant. Husbands and

wives stand next to each other, but either one might be ahead of the other. How
many such arrangements are possible?
Evaluate the following:

k=0

Let A = {x € Z: |x| < 10}. Evaluate [A].

Let A = {1, 2, {3, 4}}. Which of the following are true and which false? No
proof is required.

a. 1 €A

b. {1} € A.

c. 3e A

d. {3} € A

e. {3} € A

Let A and B be finite sets. Determine whether the following statements are true
or false. Justify your answer with a proof or counterexample, as appropriate.
a. 24N5 = 24 N 28

b. 24Y8 =24 425,

c. 2488 =24 A QB

Let A be a set. Which of the following are true and which false?

a. x € Aiff x € 2%,

b. T C Aiff T €2”.

c. x € Aiff {x} € 2~

d. {x} € Aiff {{x}} € 24

Which of the following statements about integers are true and which false?
No proof is required.

a. Vx, Yy, x > y.

b. 3x, Vy, x > y.

c. Yx, 3y, x > y.

d. Fx, 3y, x > y.

Lét p(x, y) stand for a sentence about two integers, x and y. For example,
plx, y) could mean “x — y is a perfect square.”
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14.

15.

16.

17.

18.

Assume the statement Vx, 3y, p(x, y) is true. Which of the following
statements about integers must also be true? '
a. Vx, dy, —p(x, y).
b. =(3x, Vy. —p(x, y)).
¢. dx, 3y, plx, v).
Let A and B be sets and suppose A x B = {(1, 2), (1, 3), (2, 2), (2, 3)}. Find
AUB,ANB,and A — B.
Let A, B, and C denote sets. Prove that ( AUB) —C=(A - COYU(B - C)
and give a Venn diagram illustration.
Suppose A and B are finite sets. Given that |A| = 10, |[A U B} = 15, and
|A N B| = 3, determine | B|.
Let A and B be sets. Create an expression that evaluates to AN B and uses only
the operations union and set difference. That is, find a formula that uses only
the symbols A, B, U, —, and parentheses; this formula should equal A N B for
all sets A and B.
Let n be a positive integer. Give a combinatorial proof of the identity

=nn—Dn-—-2)+3nm—1D+n.




CHAPTER

Counting and Relations

13

Relations

Mathematics is teeming with relations. Intuitively, a relation is a comparison be-
tween two objects. The two objects either are or are not related according to some
rule. For example, less than (<) is a relation defined on integers. Some pairs of
numbers, such as (2, 8), satisfy the less-than relation (since 2 < 8), but other pairs
of numbers do not, such as (10, 3) (since 10 £ 3).

There are other relations defined on the integers, such as divisibility, greater
than, equality, and so on. Furthermore, there are relations on other sorts of objects.
We can ask whether a pair of sets satisfies the < relation or whether a pair of
triangles satisfies the is-congruent-to relation.

Typically we use relations to study objects. For example, the is-congruent-to
relation is a central tool in geometry in the study of triangles. In this section, we
take a different point of view. Our purpose is to study the relations themselves.

What is a relation? The precise definition follows. Beware! At first glance,
it may seem utterly perplexing and bear little resemblance to what you under-
stand relations, such as <, to be. Rest assured that we will explain this definition
thoroughly.

Definition 13.1

(Relation) A relation is a set of ordered pairs.

A set of ordered pairs??? Yes, we mean a set of two-element lists. For example,
R = {(1,2), (1, 3), (3, 0} is a relation, though not a particularly interesting one.
This seems to have little to do with familiar relations such as < and C and |.

In truth, when mathematicians think about relations, we rarely think about
thiern as sets of ordered pairs. We think of a relation R as a “test.” If x and y are
related by R—if they pass the test—then we write x R y. Otherwise, if they are not
related by the relation R, we put a slash through the relation symbol, as in x # y
or A € B (A is not a subset of B).

How can we understand Definition 13.1 in this way? The set of ordered pairs
is a complete listing of all pairs of objects that “satisfy” the relation.
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YRy &= (x,y)€R.

Let’s return to the example R = {(1, 2), (1. 3), (3, 0)}. This says that, for the
relation R, 1 is related to 2, 1 is related to 3, and 3 is related to O, and for any other
objects x, y, it is not the case that x is related to y. We can write,

(1,2)e R, (1,3)eR, (3.00cR, (560¢R

and this means that {1, 2), (1, 3), and (3, 0) are related by R, but (5, 6) is not.
Although this is a formally correct way to express these facts, it is not how math-
ematicians write. We would rather write,

1R2, 1R3 3RO, 5R6.

In other words, the symbols x R y mean (x, y) € R. Read aloud, x R y can be
spoken “x is related by the relation R to y,” o, if everyone knows what relation is
under consideration at the moment, we can simply say, “x is related to y.”

The familiar relations of mathematics can be thought of in these terms. For
example, the less-than-or-equal-to relation on the set of integers can be written as
follows:

{((x,y):x,y€Zand y —x € N}.

This says that (x, v) is in the relation provided y —x € IN—that is, provided y — x
is a nonnegative integer, which in turn is equivalent to x < y.
Let’s reiterate the two salient points:

. A relation R is a set of ordered pairs (x, ¥); we include an ordered pair in R
just when (x, y) “satisfies” the relation K. Any set of ordered pairs constitutes
a relation, and a relation does not have to be specified by a general “rule” or
special principle.
Even though relations are sets of ordered pairs, we usually donotwrite (x, y) €
R. Rather, we write x R y and say, “x is related to y by the relation R”
Next we extend Definition 13.1 a bit.

Definition 13.2

(Relation on, between sets) Lct R be a relation and let A and B be sets. We say
R is a relation on A provided R € A x A, and we say Risa relation from A to B
provided R € A x B.

Example 13.3

Let A =1{1,2.3,4} and B ={4,5,6,7}. Let

R={(1,1),(2,2).G,3), 4D}
§=1{(1.2), 3, D}

T ={1.4, (15, &D}
U=1{#4%),(5,2),(6,2),(73), and
vV ={(1,7), 7, D}

All of these are relations.

. R is arelation on A. Note that it is the equality relation on A.
S is a relation on A. Note that element 4 is never mentioned.
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+ T isarelation from A to B. Note that elements 2, 3 € A, and 6 € B are never
mentioned.

+ U isarelation from B to A. Note that 1 € A is never mentioned.

« V is a relation, but it is neither a relation from A to B nor a relation from
B to A.

Since, formally, a relation is a set, all the various set operations apply to
relations. For example, if R is a relation and A is a set, then R M (A x A) is the
relation R restricted to the set A. [We can also consider R N (A x B), in which
case we have restricted R to be a relation from A to B.}

Here is another operation we can perform on relations.

Definition 13.4

(Inverse relation) Let R be a relation. The inverse of R, denoted R™', is the
relation formed by reversing the order of all the ordered pairs in R.

In symbols,

R"={(x.y): (y.x) € R}

Example 13.5

Let
R=1{(1.5).2,6),(3.7), (3,8}
Then

R ={(5,1).(6,2),(7,3), (8,3}

If Risarelationon A, sois R~!.If R is arelation from A to B, then R"'isa

relation from B to A.

Note that writing 1/R is nonsense. To form the inverse of a relation simply
means to reverse all the ordered pairs in the relation; it has nothing to do with
division. The —1 superscript is a convenient notation. We have not defined a
general operation of raising a relation to a power.

Since the inverse operation reverses the ordered pairs in a relation, it is clear
that (R~1)~™' = R. Here are a formal statement and proof.

Proposition 13.6

Let R be a relation. Then (R™)~! = R.

Note that R, R~1, and (R~1)~! are all sets. Thus, to prove that (R~1)~! = R,
we use Proof Template 5.

Proof. Suppose (x,y) € R. Then (y, x) € R~ and thus (x.y) € (R )™
Now suppose (x, y) € (R™)~'. Then (v, x) € R~' and so (x, y) € R.
We have shown that (x,y) ¢ R &= (x,y) € (R™")7!; therefore
R=(RH L n



86

Chapter 3 Counting and Relations

Properties of Relations

We introduce special terms to describe relations.

Definition 13.7

(Properties of relations) Let R be a relation defined on a set A.

« Ifforall x € A we have x R x, we call R reflexive.

« Ifforall x € A we have x R x, we call R irreflexive.

« Ifforallx,y € Awehavex Ry =—> y R x, we call R symmetric.

« Ifforall x,y € Awehave x RyAyRx) = x = y, wecall R
antisymmetric.

« Ifforallx,y, z € Awehave (x Ry Ay Rz) = x Rz, we call R transitive.

We present several examples to illustrate this vocabulary.

Example 13.8

Consider the relation = (equality) on the integers. It is reflexive (any integer is
equal to itself), symmetric (if x = y, then y = x), and transitive (if x = y and
y = z, then we must have x = z).

The relation = is antisymmetric, though this is not an interesting example of
antisymmetry. See the subsequent examples.

However, the relation = is not irreflexive (which would say that x # x for all
x € 7).

Example 13.9

Consider the relation < (less than or equal to) on the integers. Note that < is
reflexive because for any integer x, it is true that x < x. It is also transitive, since
x <yand y < zimply that x < z.

The relation < is not symmetric because that would mean that x < y =
y < x. This is false; for example, 3 < 9, but 9 £ 3.

However, < is antisymmetric: If we know x < y and y < x, it must be the
case that x = y.

Finally, < is not irreflexive; for example, 5 < 5.

Example 13.10

Consider the relation < (strict less than) on the integers. Note that < is not reflexive
because, for example, 3 < 3 is false. Further, < is irreflexive because x < x is
never true.

The relation < is not symmetric because x < y does not imply y < x; for
example, 0 < 5but5 £ 0.

The relation < is antisymmetric, but it fulfills the condition vacuously. The
condition states

(x<yandy <x)=—x=y.

However, it is impossible to have both x < y and y < x, so the hypothesis of this
if-then statement can never be satisfied. Therefore it is true.
Finally, < is transitive.
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Example 13.11

Consider the relation | (divides) on the natural numbers. Note that | is antisymmetric
because, if x and y are natural numbers with x|y and y|x, then x = y.

However, the relation | on the integers is not antisymmetric. For example,
3] —3 and —3|3, but 3 £ 3.

Also notice that | is not symmetric (e.g., 3|9, but 9 does not divide 3).

The properties in Definition 13.7 depend on the context of the relation. The |
(divides) relation on the integers is different from the | relation when restricted to
the natural numbers.

This example also shows that a relation can be neither symmetric nor
antisymmetric.

The terms in Definition 13.7, such as reflexive, are attributes of a relation R
defined on a set A. Consider the relation R = {(1, 1), (1, 2), (2, 2), (2, 3), (3, 3)}.
We ask: Is R reflexive? This question does not have a definitive answer. If we think
of R as arelation on the set {1, 2, 3}, then the answer is yes. However, we can also
consider R as a relation on all of Z; in this context, the answer is no. One can only
say that a relation R is reflexive if we are presented with the set A on which Risa
relation. In most cases, the set A will either be explicitly mentioned or be obvious
from context.

Recap

We introduced the notion of a relation in both the intuitive sense as a “‘condition”
and in the formal sense as a set of ordered pairs. We presented the concept of
an inverse relation and defined the following properties of relations: reflexive,
irreflexive, symmetric, antisymmetric, and transitive.

13 Exercises

13.1. For each of the following relations defined on the set {1, 2, 3, 4, 5}, deter-
mine whether the relation is reflexive, irreflexive, symmetric, antisymmet-
ric, and/or transitive.

a. R=1{(1,1),2,2),3,3), & 4, (5, 5}
b. R={(1,2),(2,3), (3,4, 4,5}

c. R={(1,1,(1,2),(1,3),.4),,5)).
d R={1,1,(1,2),2.1D,3,4, 4, 3)}
e. R=1{1,2,3,4,5} x{1,2,3,4,5}.

13.2. Let us say that two integers are near one another provided their difference
is 2 or smaller (i.e., the numbers are at most 2 apart). For example, 3 is near
to 5, 10 is near to 9, but 8 is not near to 4. Let R stand for this is-near-to
relation. Please do the following:

a. Write down R as a set of ordered pairs. Your answer should look like
this:

R={(x,y:...}

b. Prove or disprove: R is reflexive.
c. Prove or disprove: R is irreflexive.
d. Prove or disprove: R is symmetric.
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13.3.

13.4.

13.5.

13.6.

13.7.

13.8.
13.9.

13.10.

13.11.

13.12.

13.13.

e. Prove or disprove: R is antisymmetric.

f. Prove or disprove: R is transitive.

For each of the following relations, find R~'.

a. R=1{(1,2),(2,3).3,4).

b. R=1{(1,1),(2,2),3,3)}.

. R={(x,y):x,yveZ, x—y=1}

d R={x,y):x.yeN, x|y}

e. R={{x,y):x,yeZ, xy > 0L

Suppose that R and S are relations and R = S~*. Prove that § = R~

Let R be a relation on a set A. Prove or disprove: If R is antisymmetric,

then R is irreflexive.

Let R be the relation has-the-same-size-as defined on all finite subsets of Z

(i.e., AR Biff |A] = | B|). Which of the five properties (reflexive, irreflexive,

symmelric, antisymmetric, transitive) does R have? Prove your answers.

Consider the relation C on 2% (i.e., the is-a-subset-of relation defined on all

sets of integers). Which of the properties in Definition 13.7 does < have?

Prove your answers.

What is <~ 1?

The property irreflexive is not the same as being not reflexive. To illustrate

this, please do the following:

a. Give an example of a relation on a set that is neither reflexive nor
irreflexive.

b. Give an example of arelation on aset that is bothreflexive and irreflexive.

Part (a) is not too hard, but for (b), you will need to create a rather strange

example.

A fancy way to say R is symmetric is R = R™'. Prove this (i.e., prove that

a relation R is symmetric if and only if R = R™").

Prove: A relation R on a set A is antisymmetric if and only if

RNR'C{(a,a):ac A}

Give an example of a relation on a set that is both symmetric and transitive
but not reflexive.
Explain what is wrong with the following “proof.”

Statement: If R is symmetric and transitive, then R is reflexive.

“Proof”: Suppose R is symmetric and transitive. Symmetric means
that x R y implies y R x. We apply transitivity tox R y and y R x to
give x R x. Therefore R is reflexive. n

Drawing pictures af relations. Pictures of mathematical objects are won-
derful aids in understanding concepts. There is a nice way to draw a picture
of a relation on a set or of a relation from one set to another.

To draw a picture of a relation R on a set A, we make a diagram in
which each element of A is represented by a dot. If a R b, then we draw
an arrow from dot a to dot b. If it should happen that & is also related to a,
we draw another arrow from b to a. And if @ R a, then we draw a looping
arrow from a to itself.
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For example, let A = {1,2,3,4,5} and R = {(1. 1), (1, 2), (1, 3),
(4, 3), (3, 1)}. A picture of the relation R on A is given in the first figure.
To draw a picture of a relation from A to B, we draw two collections of
dots. The first collection of dots corresponds to the elements in A, and we
place these on the left side of the figure. The dots for B go on the right. We
then draw an arrow froma € A to b € B just when (a, b) is in the relation.
For example, let A = {1,2,3,4,5}and B = {4,5,6,7} and let S be
the relation {(1, 4), (1, 5), (2, 5), (3, 6)}. A picture of the relation S is given
in the second figure.
Please draw pictures of the following relations.
a. Let A = {a € N : a|10} and let R be the relation | (divides) restricied
to A.
b. Let A = {1, 2, 3, 4, 5} and let R be the less-than relation restricted to A.
c. Let A ={1,2,3,4,5} and let R be the relation = (equals) restricted
to A. .
d. Let A=1{1,2,3,4,5}and let B = {2, 3,4, 5}. Let R be the relation >
(greater than or equal to) from A to B.
e. Let A = [—1,-2,-3,—4,—5} and let B = {1,2,3,4,5} and let
R={(a,b).:ae A, be B, alb}.

Equivalence Relations

As we proceed with our study of discrete mathematics, we shall encounter various
relations. Certain relations bear a strong resemblance to the relation equality.
A good example (from geometry) is the is-congruent-to relation (often denoted
by =) on the set of triangles. Roughly speaking, triangles are congruent if they
have exactly the same shape. Congruent triangles are not equal (i.e., they might be
in different parts of the plane), but in a sense, they act like equal triangles. Why?
What is special about = that it acts like equality?

Of the five properties listed in Definition 13.7, = is reflexive, symmetric, and
transitive (but it is neither irreflexive nor antisymmetric). Relations with these three
properties are akin to equality and are given a special name.

Definition 14.1

(Equivalence relation) Let R be arelation on a set A. We say R is an equivalence
relation provided it is reflexive, symmetric, and transitive.

Example 14.2

4

Consider the has-the-same-size-as relation on finite sets (see Exercise 13.6): For
finite sets of integers A and B, let A R B provided |A| = |B|. Note that R is
reflexive, symmetric, and transitive and therefore is an equivalence relation.

It is not the case that two sets with the same size are the same. For example,
{1,2,3} R {2, 3,4}, but {1,2,3} # {2, 3, 4}. Nonetheless, sets related by R are
“like” each other in that they share a common property: their size.
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The following equivalence relation plays a central role in nurpber theory.

Definition 14.3

(Congruence modulo n) Let n be a positive integer. We say that integers x and

vy are congruent modulo n, and we write
x =y {(modn)

provided n|(x — ¥).

Inother words,x = y (mod n)if and only if x and y differ by a multiple of n.

Example 14.4

Congruence of numbers
(modulo #) is different
from congruence of
geometric figures. They
are both equivalence
relations. Unfortunately,
mathematicians do use the
same word with different
meanings. We try.
however, to make sure the
meaning is always clear
from context.

Two numbers that are both
even or both odd are said
to have the same parity.

3=13 (mod3)
4=4 (mod?3)
16 %3 (mod 5)

because 3 — 13 = —10 is a multiple of 5.
because 4 — 4 = 0 is a multiple of 5.
because 16 — 3 = 13 is not a multiple of 5.

We often abbreviate the word modulo to just mod. If the integer n is known
and unchanging throughout the discussion, we may omit the (mod n) on the right.
Also, the (mod n) is often shortened to just ().

The simplest case for this definition is whenn = 1. Inthis case, wehave x = y
provided the integer x — y is divisible by 1. However, all integers are divisible by
1, so any two integers are congruent modulo 1. This is not interesting.

The next case is when n = 2. Two numbers are congruent mod 2 provided
their difference is divisible by 2 (i.e., they differ by an even number). For example,

3=15 (mod 2), 0= —14 (mod 2), and 3=3 (mod?2).

However,
—1#0 (mod 2).

Please notice that two numbers are congruent mod 2 iff they are both even or both
odd (we prove this later).

3#£12 (mod 2) and

Theorem 14.5

Let n be a positive integer. The is-congruent-to-mod-n relation is an equivalence
relation on the set of integers.

The proof of this result is not hard if we use the proof techniques we have
developed. Our goal is to prove that a relation is an equivalence relation. This
means the proof should look like this:

Let 1 be a positive integer and let = denote congruence mod n. We need to
show that = is reflexive, symmetric, and transitive.

. Claim: = is reflexive. ... Thus = is reflexive.
« Claim: = is symmetric. . .. Thus = is symmetric.
. Claim: = is transitive. ... Thus = is transitive.

Therefore = is an equivalence relation. [ ]
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Note that the proof breaks into three parts corresponding to the three conditions
in Definition 14.1. Each section is announced with the word claim. A claim is a
statement we plan to prove during the course of a proof. This helps the reader
know what’s coming next and why.

We can now start unraveling each part of the proof. For example, to show
that = is reflexive, we have to show Vx € Z, x = x (see Definition 13.7). Let’s
put that into the proof.

Let n be a positive integer and let = denote congruence mod #n. We need to
show that = is reflexive, symmetric, and transitive.

» Claim: = is reflexive. Let x be an arbitrary integer, . .. Therefore x = x.
Thus = is reflexive.

» Claim: = is symmetric, . .. Thus = is symmetric.

- Claim: = is transitive, . . . Thus = is transitive.

Therefore = is an equivalence relation. ]

Now we want to prove x = x. What does this mean? It means n|(x —x)—that
is, n|0—and this is obvious! Clearly 0 is a multiple of n since n - 0 = 0. We add
this to the proof:

Let n be a positive integer and let = denote congruence mod n. We need to
show that = is reflexive, symmetric, and transitive,

« Claim: = is reflexive. Let x be an arbitrary integer. Since 0 - n = 0, we
have 1|0, which we can rewrite as n|(x — x). Therefore x = x. Thus =
is reflexive.

+ Claim: = is symmetric. ... Thus = is symmetric.

+ Claim: == is transitive. ... Thus = is transitive.

Therefore = is an equivalence relation. [ ]

Now we tackle the symmetry of =. To show symmetry, we consult Defini-
tion 13.7 to see that we must prove x = y = y = x. This is an if-then statcment,
SO we write:

Let n be a positive integer and let = denote congruence mod #. We need o
show that = is reflexive, symmetric, and transitive.

» Claim: = is reflexive. Let x be an arbitrary integer. Since 0 - n = 0, we
have 110, which we can rewrite as n}(x — x). Therefore x = x. Thus =
is reflexive.

+ Claim: = is symmetric. Let x and y be integers and suppose x =
v. ... Therefore y = x. Thus = is symmetric.

+ Claim: = is transitive. . .. Thus = is transitive.

Therefore = is an equivalence relation. ]
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Next we unravel definitions.

]
Let n be a positive integer and let = denote congruence mod n. We need to
show that = is reflexive, symmetric, and transitive.

. Claim: = is reflexive. Let x be an arbitrary integer. Since 0.-n=0,we
have n|0, which we can rewrite as n|(x — x). Therefore x = x. Thus =
is reflexive.

. Claim: = is symmetric. Let x and y be integers and suppose x = V.
This means that 7](x — ¥). ... And so n|(y — x). Therefore y = x. Thus
= is symmetric.

. Claim: = is transitive. ... Thus = is transitive.

Therefore = is an equivalence relation. |

L

We’re nearly done. We know n|(x — y). We want n|(y — x). We can unravel
the definition of divisibility and complete this section of the proof. (Alternatively,
we can use Exercise 4.7.)

Let n be a positive integer and let = denote congruence mod n. We need to
show that = is reflexive, symmetric, and transitive.

. Claim: = is reflexive. Let x be an arbitrary integer. Since 0-n =0, we
have n|0, which we can rewrite as n|(x — x). Therefore x = x. Thus =
is reflexive.

. Claim: = is symmetric. Let x and y be integers and suppose x = y. This
means that 72|(x — y). So there is an integer k such that (x — y) = kn.
But then (v — x) = (—k)n. And so n|(y — x). Therefore y = x. Thus
= is symmetric.

. Claim: = is transitive. . . . Thus = is transitive.

Therefore = is an equivalence relation. [ |

The proof of the third section nearly writes itself and we leave it to you
(Exercise 14.4).

Equivalence Classes

We noted earlier that two numbers are congruent mod 2 if and only if they are
either (1) both odd or (2) both even. (We have not proved this yet; we will. See
Corollary 34.5.)

We have two classes of numbers: odd and even. Any two odd numbers are
congruent modulo 2 (this you can prove), and any two even numbers are congruent
modulo 2. The two classes are disjoint (have no elements in common) and, taken
together, contain all the integers.

Similarly, let R denote the has-the-same-size-as relation on the finite subsets
of 7. We noted that R is an equivalence relation. Notice that we can categorize
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finite subsets of Z according to their cardinality. There is just one finite subset of
7. that has cardinality zero—namely, the empty set. The only set related by R to
is @. Next, there are the subsets of size one:

=20 {1140, {1 {2, .

These are all R-related to one another but not to other sets. There is also the class
of all subsets of Z of size two; again, these are related to one another but not to
any other sets.

This decomposition of a set by an equivalence relation is an important idea
we now formalize.

Definition 14.6

(Equivalence class) Let R be an equivalence relation on a set A and leta € A.
The equivalence class of a, denoted [a], is the set of all elements of A related (by
R) to a; that is,

[al={x € A:x Ra}.

Example 14.7

Consider the equivalence relation congruence mod 2. What is [1]? By definition,
[Mf={xecZ:x=1 (mod?2)}.

This is the set of all integers x such that 2|[(x — 1) (i.e., x — 1 = 2k for some k),
sox =2k + 1 (i.e., x is odd)! The set [1] is the set of odd numbers.

It’s not hard to see (you should prove) that [0] is the set of even numbers.

Consider [3]. You should also prove that [3] is the set of odd numbers, so
[1] = [3]. (See Exercise 14.6.)

The equivalence relation congruence mod 2 has only two equivalence classes:
the set of odd integers [1] and the set of even integers [0].

Example 14.8

Let R be the has-the-same-size-as relation defined on the set of finite subsets of
Z. What is [#]? By definition,

B1={ACZ:|Al=0]={0}

since { is the only set of cardinality zero.
What is [{2, 4, 6, 8}]? The set of all finite subsets of Z related to {2, 4, 6, &}
are exactly those of size 4:

[{2.4,6.8)]={ACZ:|A| =4}

The relation R separates the set of finite subsets of Z into infinitely many equiva-
lence classes (one for each element of N). Every class contains sets that are related
to each other but not to anything not in that class.

‘We now present several propositions describing the salient features of equiv-
alence classes.
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Proposition 14.9

Let R be an equivalence relation on a set A and leta € A. Then a € [a].

Proof. Note that [a] = {x € A : x R a}. To show that a € [al, we just need to
show that a R a, and that is true by definition (R is reflexive). ]

One consequence of Proposition 14.9 is that equivalence classes are not empty.
A second consequence is that the union of all the equivalence classes is A (see
Exercise 14.7).

Proposition 14.10

Let R be an equivalence relation on a set A and leta, b € A. Thena R b if and
only if la| = [b].

Proof. (=) Suppose a R b. We need to show that the sets [a] and [b] are the
same (see Proof Template 5).

Suppose x € [a]. This means that x R a. Since a R b, we have (by transitivity)
x R b. Therefore x € [b].

On the other hand, suppose y € [b]. This means that y R b. We are given
@ R b, and this implies b R a (symmetry). By transitivity (applied to y R b and
b R a), we have y R a. Therefore y € [a].

Hence [a] = [b].
(<=) Suppose [a] = [b]. We know (Proposition 14.9) thata € [a]. But [a] = [b],
so a € [b]. Therefore a R b. m

Proposition 14.11

Let R be an equivalence relation on a set A andleta, x, y € A. If x, y € {a], then
xXRy.

You are asked to prove Proposition 14.11 in Exercise 14.9.

Proposition 14.12

Let R be an equivalence relation on A and suppose [a] N [b] # #. Then [a] = [b].

Before we work on the proof of this result, let us understand clearly what it
is telling us. It says that either two equivalence classes have nothing in common
or else (if they do have a common element) they are identical. In other words,
equivalence classes must be pairwise disjoint.

Now we develop the proof of Proposition 14.12. This proposition asks us to
prove that two sets ([¢] and [b]) are the same. We could use Proof Template 5, and
the proof would not be too hard to do (you can try this for yourself).

However, please notice that Proposition 14.10 gives us a necessary and suf-
ficient condition to prove that two equivalence classes are the same. To show that
[a] = [P], it is enough to show a R b. The proof skeleton is as follows:

Let R be an equivalence relation on A and suppose [a] and | ] are equivalence
classes with [a] N [#] # @....Therefore a R b. By Proposition 14.10, we
therefore have [a] = [b]. ||
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Now we need to unravel the fact that [a] N [b] # @. The fact that two sets
have a nonempty intersection means there is some clement that is in both.

Let R be an equivalence relation on A and suppose [a] and [#] are equivalence
classes with [a]N[b] # @. Hence thereisan x € [a]N[b]—thatis, anelement
x with x € [a] and x € [b]. ... Therefore a R b. By Proposition 14.10, we
therefore have [a] = [b]. a

We can now unravel the facts x € [a] and x € |b] to give x Ra and x R b (by
Definition 14.6).

Let R be anequivalence relation on A and suppose [a] and [b] are equivalence
classes with [a]N[b] # ¥. Hence there is an x € [a]N[b]—thatis, an element
x withx € [a]and x € [b]. Sox Ra and x R b....Therefore a R b. By
Proposition 14.10, we therefore have [a] = [b]. [ |

Now we are almost finished.

We know: xRaandx Rb.
We want: a Rb.

We can switch x Ra to a R x (by symmetry) and then use transitivity ona R x
and x R b to get a R b, completing the proof.

Let R be an equivalence relation on A and suppose [«] and [b] are equivalence
classes with [a]N[h] # ¥. Hence there isan x € [a]N[b]—thatis, an element
x withx € [@] and x € [b]. Sox Ra and x R b. Since x R a, we have
a R x (symmetry), and since ¢ R x and x R b, we have (transitivity) a R b.
By Proposition 14.10, we therefore have [a] = [b]. [ |

The proof is finished.
Let us reiterate some of what we have learned.

Corollary 14.13

Let R be an equivalence relation on a set A. The equivalence classes of R are
nonempty, pairwise disjoint subsets of A whose union is A.

Recap

An equivalence relation is a relation on a set that is reflexive, symmetric, and tran-
sitive. We discussed the important equivalence relation congruence modulo # on Z.
We developed the notion of equivalence classes and discussed various properties
of equivalence classes.
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14 Exercises

14.1.

14.2.

14.3.
14.4,

14.5.

14.6.

14.7.

Which of the following are equivalence relations?
R={(1,1),0,2),(2,1),(2.2),(3,3)} onthe set {1, 2, 3}.
R =1{(1,2),(2,3), (3, 1)} on the set {1, 2, 3}.
| on Z.
< on Z.
{1,2,3} x {1, 2, 3} on the set {1, 2, 3}.
(1,2, 3} x {1, 2,3} on the set {1, 2, 3, 4}.
Is-an-anagram-of on the sct of English words. (For example, STOP is an
anagram of POTS because we can form one from the other by rearranging
its letters.)
Prove that if x and y are both odd, then x =y (mod 2).

Prove that if x and y are both even, thenx =y (mod 2).
Prove: If a is an integer, then ¢ = —a  (mod 2).
Complete the proof of Theorem 14.5; that is, prove that congruence mod-
ulo » is transitive. -
For each equivalence relation, find the requested equivalence class.
a. R={(1,1),(,2),2,1),(2,2),(3,3), 4, H}on(l, 2,3, 4}.Find [1].
b. R={(1.1),(01,2),(2,1),(2,2), (3,3), &, H}on{l, 2,3, 4}.Find |4].
¢. R is has-the-same-tens-digit-as on the set {x € Z : 100 < x < 200}.

Find [123].

d. R is has-the-same-parents-as on the set of all human beings. Find [you].
e. Rishas-the-same-birthday-as on the set of all human beings. Find [youl].
f. R is has-the-same-size-as on 212345 Find [{1, 3}].
Please refer to the Example 14.7, in which we discussed the congruence
modulo 2 relation on the integers. For that relation, prove that [1] = [3].
Iet R be an equivalence relation on a set A. Prove that the union of all of
R’s equivalence classes is A.

In symbols this is

™= R0 T

Jta1= 4.
aeA
The big | notation on the left is worthy of comment. It is akin to the
notation developed in Section 9. There, however, we had an index that ran
between two integers, as in
n
U (sets depending on k)
k=1
The dummy variable is &k, and we take a union of sets that depend on k as
k ranges over the integers 1, 2, ..., n.
The situation here is slightly different. The dummy variable is not
necessarily an integer. The notation is of the form

U (sets depending on a).

aeA

This means we take the union over all possible (sets depending on a) as a
ranges over the various members of A.




14.8.

14.9.
14.10.

14.11.

14.12.

14.13.

14.14.
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Notice that in this problem the union may be redundant. It is possible
for [a] = [a’] where a and ' are different members of A. For example, if
R is congruence mod 2 and A = Z, then

U[a]:~--U[—2]U[—l]U[O]U[I]U[Z]U~~=[O]U[l]zZ
aeZ
because --- =[-2]=[0]=[2]=---and --- =[-3] = [-1] = [l] =
[3]=---
Suppose R is an equivalence relation on a set A and suppose a, b € A.
Prove: a € [b] < b € [a].
Prove Proposition 14.11.
Let R and S be equivalence relations on a set A. Prove that R = S if and
only if the equivalence classes of R are the same as the equivalence classes
of §.
Please refer to Exercise 13.13 on drawing pictures of relations.
Let A=1{1,2,3,...,10}. Do the following:
a. Draw three pictures of different equivalence relations on A.
b. For each equivalence relation, list all of its equivalence classes.
¢. Describe what equivalence relations “look like.”
Here is another way to draw a picture of an equivalence relation: Draw
the equivalence classes. For example, consider the following equivalence
relationon A = {1,2,3,4, 5, 6}:

R={(1,1,(1,2),2,1),(2,2),3,3),
4,4),(4,5),(4.6),(5,4), (5,5), (5,6), (6,4), (6, 5), (6, 6)}.

The equivalence classes of this relation on A are
[(Ml=0[R2]1=1{1,2}, (3]={3}, and [4]=[5]1=1[6]= {45, 6}

The picture of the relation R, rather than showing relation arrows, simply
shows the equivalence classes of A. The elements of A are enclosed in a
circle, and we subdivide the circle into regions to show the equivalence
classes. By Corollary 14.13, we know that the equivalence classes of R are
nonempty, are pairwise disjoint, and contain all the elements of A. So in
the picture, the regions are nonoverlapping, and every element of A ends
up in exactly one region.

For each of the equivalence relations you found in the previous prob-
lem, draw a diagram of the equivalence classes.
There is only one possible equivalence relation on a one-element set: If
A = {1}, then R = {(1, 1)} is the only possible equivalence relation.

There are exactly two possible equivalence relations on a two-element
set:If A = {1,2},then Ry ={(1, 1), 2,2)}and R, ={(1, 1), (1,2), (2, 1),
(2, 2)} are the only equivalence relations on A.

How many different equivalence relations are possible on a three-
element set? ... on a four-element set?
Describe the equivalence classes for the is-similar-to relation on the set of
all triangles.
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15

’0

Partitions ¢
We ended the previous section with Corollary 14.13. Let us repeat that result here.

Let R be an equivalence relation on a set A. The equivalence classes of R are
nonempty, pairwise disjoint subsets of A whose union is A.

This corollary is illustrated nicely by the diagrams you drew in Exercise 14.12. The
equivalence classes of R are drawn as separate regions inside a circle containing
the elements of A.

The technical language for this property is that the equivalence classes of R
partition A.

Definition 15.1

The parts of a partition are
also called blocks.

(Partition) Let A be a set. A partition of (or on) A is a set of nonempty, pairwise
disjoint sets whose union is A.

There are four key points in this definition, and we shall examine them closely
in an example. The four points are

. A partition is a set of sets; each member of a partition is a subset of A. The
members of the partition are called parts.

- The parts of a partition are nonempty. The empty set is never a part of a
partition.

« The parts of a partition are pairwise disjoint. No two parts of a partition may
have an element in common.

+ The union of the parts is the original set.

Example 15.2

We often use a fancy letter
P to denole a partition. We
do this because P is a set
of sets. The elements of P
are subsets of A. This
hierarchy of
letters—Ilowercase,
uppercase, fancy—is a
useful convention for
distinguishing elements,
sets, and sets of sets,
respectively.

Forming an equivalence
relation from a partition.

LetA=1{1,2,3,4,5,6} and let
P ={{1, 2}, {3}, {4, 5, 6}}.

This is a partition of A into three parts. The three parts are {1, 2}, {3}, and {4, 5, 6}.
These three sets are (1) nonempty, (2) they are pairwise disjoint, and (3) their union
is A.

The partition {{1. 2}, {3}, {4,5,6}} is not the only partition of A =
{1,2,3,4,5, 6}. Here are two more that are worthy of note:

{{1,2,3,4,5,6}}  and  {{1}, {2}, {3}, {4}, {5}, {6}}.

The first is a partition of A into just one part containing all the elements of A, and
the second is a partition of A into six parts, each containing just one element.
Corollary 14.13 can be restated as follows:

Let R be an equivalence relation on a set A. The equivalence classes of R form a
partition of the set A.

Given an equivalence relation on a set, the equivalence classes of that relation
form a partition of the set. We start with an equivalence relation, and we form a
partition. We can also go the other way; given a partition, there is a natural way to
construct an equivalence relation. ”
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Let P be a partition of a set A. We use P to form a relation on A. We call
this relation the is-in-the-same-part-as relation and denote it by =. It is defined as

follows. Leta, b € A. Then

il

a=hb < 3P e P, a,b e P.

In words, a and b are related by Z provided there is some part of the partition P
that contains both @ and .

Proposition 15.3

i

Let A be a set and let P be a partition on A. The relation = is an equivalence

relation on A.

P . . . .
Proof. To show that = is an equivalence relation, we must show that it is (1) re-
flexive, (2) symmetric, and (3) transitive.

. Claim: Z is reflexive.

Let a be an arbitrary element of A. Since P is a partition, there must be a
part P € P that contains « (the union of the parts is A). We have aéa, since
a,ac PeP.

. Claim: £ is symmetric.

Suppose aZb for a,b € A. This means there is a P € P such that

a,b € P. Since b and g are in the same part of P, we have béa.
. Claim: Z is transitive. (This step is more interesting.)
Let a,b,c € A and suppose a;b and bgc. Since a;zi)_b, there is a part

P € ‘P containing both a and b. Since béc, there is a part Q € P with
b.c € Q. Notice that b is in both P and Q. Thus parts P and Q have a
common element. Since parts of a partition must be pairwise disjoint, it must
be the case that P = Q. Therefore all three of a, b, ¢ are together in the same

part of P. Since a, ¢ are in a common part of P, we have a=c. [ ]

=

We have confirmed that = is an equivalence relation on A. What are its

equivalence classes?

Proposition 15.4

- P . -
Let P be a partition on a set A and let = be the is-in-the-same-part-as relation.
. P .
The equivalence classes of = are exactly the parts of P.

We leave the proof for you (Exercise 15.5).

The salient point here is that equivalence relations and partitions are flip sides
of the same mathematical coin. Given a partition, we can form the in-the-same-part-
as equivalence relation. Given an equivalence relation, we can form the partition
into equivalence classes.
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Counting Classes/Parts

i
In discrete mathematics, we often encounter counting problems of the form “In
how many different ways can . .. ” The word on which we wish to focus is different.

For example, in how many different ways can the letters in the word HELLO
be rearranged? The difficult part of this problem is the repeated L. So let us begin
with an easier word.

Example 15.5

Anagrams of HELLO.

In how many ways can the letters in the word WORD be rearranged? A word is
simply a list of letters. We have a list of four possible letters, and we want to count
lists using each of them exactly once. This is a problem we have already solved
(see Sections 7 and 8). The answer is 4! = 24. Here they are:

WORD WODR WROD WRDO WDOR WDRO
OWRD OWDR ORWD ORDW ODWR ODRW
RWOD RWDGO - ROWD RODW RDWO RDOW
DWOR DWRO DOWR DORW DRWO DROW

Let us return to the problem of counting the number of ways it is possible to
rearrange the letters in the word HELLO. If there were no repeated letters, then the
answer would be 5! = 120. Imagine for a moment that the two Ls are different
letters. Let us write one larger than the other: HELLO. If we were to write down all
120 different ways to rearrange the letters in HELLO, we would have a chart that
looks like this:

HELLO HELOL HELLO HELOL HEOLL HEOLL
HLELO HLEOL HLLEO HLLOE HLOLE HLOEL
many lines omitted
LLHEO LLHOE LLEHO LLEOH LLOHE LLOEH
LLHEO LLLHOE LLEHO LLEOH LLOHE LLOEH

Now we shrink the large Ls back to their proper size. When we do, we can no
longer distinguish between HELLO and HELLO, or between LEHLO and LEHL.O.

I hope at this point it is clear that the answer to the counting problem is 60:
There are 120 entries in the chart (from HELLO to LLOEH), and each rearrangement
of HELLO appears exactly twice on the chart.

Let’s think about this by using equivalence relations and partitions. The set
A is the set of all 120 different rearrangements of HELLO. Suppose a and b are
elements of A (anagrams of HELLO). Define a relation R with ¢ R b provided that
a and b give the same rearrangement of HELLO when we shrink the large L. to a
small L. For example, (HELOL) R (HELOL).

Is R an equivalence relation? Clearly R is reflexive, symmetric, and transitive
(if in doubt, think this out), and so, yes, R is an equivalence relation. The equiv-
alence classes of R are all the different ways of rearranging HELLO that look the
same when we shrink the large L. For example,

[HLEOL] = {HLEOL, HLEOL.}

since HLEOL and HLEOL both give HLEOL when we shrink the big L.
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Here is the important poini: The number of ways to rearrange the letters in
HELLO is exactly the same as the number of equivalence classes of R.

Now let’s do the arithmetic: There are 120 different ways to rearrange the
letters in HELLO (i.e., |A| = 120). The relation R partitions the set A into a certain
number of equivalence classes. Each equivalence class has exactly two elements
init. So all told, there are 120 =2 = 60 different equivalence classes. Hence there
are 60 different ways to rearrange HELLO.

Let us consider another example. How many different ways can we rearrange
the letters in the word AARDVARK? This eight-letter word features two Rs and three
As. Let us use two styles of R (say, R and R) and three styles of A (say, a, A, and
A), so the word is AARDVaRK.

Let X be the set of all rearrangements of AARDVaRK. We consider two
spellings to be related by relation R if they are the same once their letters are
restored to normal size. Clearly R is an equivalence relation on X, and we want to
count the number of equivalence classes.

The problem becomes: How large are the equivalence classes? Let us consider
the size of the equivalence class [RADaKRAV]. These are all the rearrangements that
become RADAKRAV when their letters are all the same style. How many are there?
This is a list-counting problem'! We want to count the number of lists wherein the
entries on the list satisfy the following restrictions:

. Elements 3, 5, and 8 of the list must be D, K, and V.
. Elements 1 and 6 must be one each of two different styles of R.
. Elements 2, 4, and 7 must be one each of three different styles of A.

See the figure.

2 x3x1x2x1

|

4 5

LZ! choices for Rs |—3! choices for As

The letters R and A in the figure are dimmed to show that their final form is to be
determined.

Now let’s count how many ways we can build this list. There are two choices
for the first position (we can user either R). There are three choices for the second
position (we can use any A). There is only one choice for position 3 (it must be
D). Now, given the choices thus far, there are only two choices for position 4 (the
first A has already been selected, and so there are only two choices of A left at this
point). For each of the remaining positions, there is only one choice (the K and v
are predetermined, and we are down to only one choice each on the remaining A
and R).

Therefore, the number of rearrangements of AARDVaRK in [RADaKRAV] is
2x3x1x2x1x1x1x1=3x2=12
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And now for a critical comment: All equivalence classes have the same size!
No matter how we rearrange the letters in AARDVaRK, the analysis we just con-
ducted remains the same. Regardless of where the As may fall, there will be exactly
3! ways to fill them in, and regardless of where the Rs are, there are 2! ways to
select their styles. And there is only one choice each for the style of D, K, and V.
So all of the equivalence classes have size twelve.

Therefore the number of rearrangements of AARDVARK is

—21 = 4——0320 = 3360.
o3 12

Itis worth summarizing the central idea of this counting technique in an official

statement.

Theorem 15.6

(Counting equivalence classes) Let R be an equivalence relation on a finite set
A. If all the equivalence classes of R have the same size, m, then the number of
equivalence classes is |A|/m.

There is an important hypothesis in this result: The equivalence classes must
all be the same size. This does not always happen.

Example 15.7

Let A = 2112341 __hat is, the set of all subsets of {1, 2, 3, 4]. Let R be the has-the-
same-size-as relation. This relation partitions A into five parts (subsets of size 0
through 4). The sizes of these equivalence classes are not all the same. For example,
[#] contains only @, so that class has size 1. However, [{1}1] = {{1}, {2}, {3}, {41},
so this class contains four members of A. Here is a full chart.

Equivalence Size of
class the class
(4] 1
[{1}] 4
[{1,2}] 6
[{1,2,3}] 4
[{1.2,3,4}] 1

Recap

A partition of a set A is a set of nonempty, pairwise disjoint subsets of A whose
union is A. We explored the connection between partitions and equivalence rela-
tions. We applied these ideas to counting problems where we seek to count the
number of equivalence classes when all the equivalence classes have the same
size.

15 Exercises

15.1. There are only two possible partitions of the set {1, 2}. They are {{1}, {2}}
and {{1, 2}}. Find all possible partitions of {1, 2, 3} and of {1,2,3,4}.
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How many different anagrams (including nonsensical words) can be made
from each of the following?

STAPLE

DISCRETE

MATHEMATICS

SUCCESS

. MISSISSIPPI

How many different anagrams (including nonsensical words) can be made
from SUCCESS if we require that the first and last letters must both be S.
How many different anagrams (including nonsensical words) can be made
from FACETIOUSLY if we require that all six vowels must remain in alpha-
betical order (but not necessarily contiguous with each other).

pRpTD

. Prove Proposition 15.4.
. Prove Theorem 15.6. You may assume the generalized Addition Principle

(see after Corollary 11.8).
Twelve people join hands for a circle dance. In how many ways can they
do this?
Continued from the previous problem. Suppose six of these people are men,
and the other six are women. In how many ways can they join hands for a
circle dance, assuming they alternate in gender around the circle?
You wish to make a necklace with 20 different beads. In how many different
ways can you do this?
The integers 1 through 25 are arranged ina 5 x 5 array (we use each number
from 1 to 25 exactly once). All that matters is which numbers are in each
column and how they are arranged in the columns. It does not matter in
what order the columns appear. (See the figure. The two arrays shown
should be considered to be the same.)
How many different such arrays can be formed?
Twenty people are to be divided into two teams with ten players on each
team. In how many ways can this be done?
. One hundred people are to be divided into ten discussion groups with ten
people in each group. In how many ways can this be done?
. How many different partitions with exactly two parts can be made of the
set {1,2,3,4}?

Answer the same question for the set {1,2,3,..., 100}.

. Two different coins are placed on squares of a standard 8 x 8 chess board;
they may both be placed on the same square.

Let us call two arrangements of these coins on the chess board equiv-
alent if we can move the coins diagonally to get from one arrangement to
another. For example, the two positions shown on the two boards in the
figure are equivalent.

How many different (inequivalent) ways can the coins be placed on
the chess board?

. Please redo the previous problem, this time assuming the coins are identical.
. Let A be a set and let P be a partition of A. Is it possible to have A = P?
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16

The netation (k)

ix pronouiced 7 choose
£ Another form of

this netation. still in use on
some calculators, i, Cy.
Oceasionally people write
Cn, k). An alternative
WAy [0 eXpress (A) 18 as the
number of “combinations”
a7 things taken k at a time.
The word combinatorics (a
term that refers to counting
prebiems in discrete
mathematics) comes

from “combinations.”

I disiike the use of the
word “combinations™ and
believe it is clearer to say
(J stands tor the number
ot k-clement subsets

of an »-element set.

Binomial Coefficients .

We ended the previous section with Example 15.7, in which we counted the number
of equivalence classes of the has-the-same-size-as relation on the set of subsets
of {1.2, 3, 4}. We found five different equivalence classes (corresponding to the
five integers from 0 to 4), and these equivalence classes have various sizes. Their
sizes are, in order, 1, 4, 6, 4, and 1. These numbers may be familiar to you.
Observe:

(x + ' =1x* +4xPy +6x%y7 +4xy* +1y%

These numbers are the coefficients of (x 4 y)* after it is expanded. You may also
recognize these numbers as the fourth row of Pascal’s triangle. In this section, we
explore these numbers in detail.

The central problem we consider in this section is the following:

How many subsets of size k does an n-element set have?

There is a special notation for the answer to this question: (7).

Definition 16.1

(Binomial coefficient) Let n,k € N. The symbol (}) denotes the number of
k-element subsets of an n-element sef.

We call the number (}) a binomial coefficient. The reason for this nomenclature

is that the numbers (}) are the coefficients of binomial (x + y)". This is explained
more thoroughly below.

Example 16.2

Evaluate ((5))
Solution: We need to count the number of subsets of a five-element set that have
zero elements. The only possible such set is @, so the answer is (8) =1.

Clearly there is nothing special about the number 5 in this example. The
number of zero-element subsets of any set is always 1. So we have, forall n € N,

)

Example 16.3

Evaluate (3).

Solution: This asks for the number of one-element subsets of a five-element set.
For example, consider the five-element set {1, 2, 3, 4, 5}. The one-element subsets
are {1}, {2}, {3}, {4}, and {5}, so () = 5. The number of one-element subsets of
an n-element set is exactly #:
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Example 16.4

Evaluate (3).
Solution: The symbol (3) stands for the number of two-element subscts of a
five-element set. The simplest thing to do is to list all the possibilities.

{1, 2} {1, 3} {1, 4} {1, 5}

{2,3} {2, 4} {2,5}

{3, 4} {3, 5}

{4.5}

Therefore, there are 10 two-element subsets of a five-element set, so (;) =4+
3+24+1=10

There is an interesting pattern in Example 16.4. Let us try to generalize it.
Suppose we want to know the number of two-glement subsets of an n-element set.
Let’s say that the n-element set is {1, 2, 3, ..., n}. We can make a chart as in the
example. The first row of the chart lists the two-element subsets whose smaller
elementis 1. The second row lists those two-element subsets whose smaller element
is 2, and so on, and the last row of the chart lists the (one and only) two-element
subset whose smaller elementisn — 1 (ie., {n — 1, n}).

Notice that our chart exhausts all the possibilities (the smaller element must
be one of the numbers from 1 to 1 — 1), and no duplication takes place (subsets
on different rows of the chart have different smaller elements).

The number of sets in the first row of this hypothetical chart is n — 1, because
once we decide that the smaller element is 1, the subset looks like this: {1, _}.
The second element must be larger than 1, and so it is chosen from {2,...,n};
there are n — 1 ways to complete the set {1, _}.

The number of sets in the second row of this chart is n — 2. All subsets in
this row look like this: {2, __}. The second element needs to be chosen from the
numbers 3 to n, so there are n — 2 ways to complete this set.

In general, the number of sets in row & of this hypothetical chart is n — k.
Subsets on this row look like {k, —}, the second element of the set needs to be an
integer from k + 1 to n, and there are n — & possibilities.

This discussion is the proof of the following result.

Proposition 16.5

Let n be an integer with z > 2. Then

n—1
(Z) 14243+ +@-1=> k
k=1

So far we have evaluated (g), (?), and (;) Let us continue this exploration.

Example 16.6

Evaluate (g)

Solution: We simply list the three-element subsets of {1, 2, 3, 4, 5}
{1,2,3]} {1,2, 4} {1,2,5} {1, 3, 4} {1, 3,5}
{1,4, 5} {2, 3, 4} {2,3,5} {2,4,5)} {3,4,5}

There are ten such sets, so (g) = 10.
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Notice that (3) = (3) = 10. This equality is not a coincidence. Let’s see
why these numbers are equal. The idea is to find a natural way to match up the
two-element subsets of {1, 2, 3, 4, 5} with the three-element subsets. We want a
one-to-one correspondence between these two kinds of sets. Of course, we could
just list them down two columns of a chart, but this is not necessarily “natural.”
The idea is to take the complement (see Exercise 11.17) of a two-element subset

to form a three-element subset, or vice versa. We do this here:

A A A A
1,2} (3.4, 5) 2,4} {1, 3,5}
{1,3) (2,4, 5) {2,5) (1,3,4)
(1,4} {2,3,5) {3, 4} (1,2, 5}
(1,5} 2.3, 4} {3, 5) {1,2,4}
(2,3} (1,4,5} {4.5) {1,2,3)

Each two-element subset A is paired up with {1, 2, 3, 4, 5} — A (which we denote
A since {1, 2, 3, 4, 5} is the “universe” we are considering at the moment).

This pairing, A < ‘A, is a one-to-one correspondence between the two-
element and three-element subsets of {1, 2, 3, 4, 5}. If A, and A, are two different
two-element subsets, then A and A, are two different three-element subsets. Ev-
ery two-element subset is paired up with exactly one three-element subset, and no
sets are left unpaired. This thoroughly explains why (3) = (3) and gives us an
avenue for generalization.

We might guess (5) = (3), but this is not right. Let’s apply our comple-
ment analysis to () and see what we learn. Let A be a two-element subset of
{1,2, ..., n}. In this context, A means {1, 2,...,n} — A. The pairing A < A
does not pair up two-element and three-element subsets. The complement of a
two-element subset would be an (n — 2)-element subset of {1,2,...,n}. Aha!
Now we have the correct result: (5) = (,",).

We can push this analysis further. Instead of forming the complement of the
two-element subsets of {1, 2, ..., n}, we can form the complements of subsets of
another size. What are the complements of the k-element subsets of {1, 2, ..., n}?
They are precisely the (# — k)-element subsets. Furthermore, the correspondence
A < A gives a one-to-one pairing of the k-element and (n — k)-element subsets
of {1,2,...,n}. This implies that the number of k- and (» — k)-element subsets
of an n-element set must be the same. We have shown the following:

Proposition 16.7

Letn, k € Nwith0 <k < n. Then
ny n
k) \n—k)

Here is another way to think about this result. Imagine a class with # children.
The teacher has & identical candy bars to give to exactly & of the children. In how
many ways can the candy bars be distributed? The answer is ( ) because we are
selecting a set of £ lucky children to get candy. But the pessimistic view is aiso
interesting. We can think about selecting the unfortunate children who will not be
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receiving candy. There are n — k children who do not get candy, and we can select
that subset of the class in (nf k) ways. Since the two counting problems are clearly

the same, we must have (}) = (,",)-
Thus far we have evaluated (3), (I), (;), and (:) Let us continue. We can use

Proposition 16.7 to evaluate (3); the proposition says that

5 5 5
(4) - (5 —4) N (1)
and we already know that (*) = 5.So () = 5.
Next s (7). We can use Proposition 16.7 and reason =)= =1
or we can realize that there can be only one five-element subset of a five-element
set—namely, the whole set!

Next comes (2) We can try to use Proposition 16.7, but we run into a snag.

T -)-0)

but we don’t know what () is. Actually, the situation is worse: ( ) is nonsense.
It does not make sense to ask for the number of subsets of a five-element set that
have —1 elements; it does not make sense to consider sets with a negative number
of elements! (This is why we included the hypothesis 0 < £ < n in the statement
of Proposition 16.7.)

However, a set can have six elements, so (2) is not nonsense; it is simply zero.
A five-clement set cannot have any six-element subsets, so (2) = 0. Similarly,
G=@==0

Let us summarize what we know so far:

+  We have evaluated (Z) for all natural numbers k. The values are 1, 5, 10, 10,
5,1,0,0,...,fork =0,1,2,..., respectively.

+  We have (8) =1 and (’11) = 7.
- Wehave (5) =1424---+xn—1).
+ Wehave (}) = (,",)-

Calculating ()

Thus far we have calculated various values of (Z) but our work has been ad hoc.
We do not have a general method for obtaining these values. We found that the
nonzero values of (Z) are

1,5,10,10,5, 1.
If we expand (x + y)°, we get
(x +v) = 1e° +5x*y + 10c°y? + 1052y + Sxy* + 1y°

5 5 5 4 5 3.2 5 2.3 5 4 5 5
BINGRNY RN R R
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This suggests a way to calculate (}): Expand (x + y)" and () is the coefficient of
x"~ky¥. This is marvelous! Let’s prove it.

Theorem 16.8

(Binomial) Letn ¢ N. Then

s =35 (e

k=0

This result explains why (}) is called a binomial coefficient. The numbers (5
are the coefficients that appear in the expansion of (x + ).

Proof. The key to proving the Binomial Theorem is to think about how we
multiply polynomials. When we multiply (x + y)2, we calculate as follows:

x+Y =@+ N+ =xx4xy+yxr+yy

and then we collect like terms to get x2 + 2xy + y2,
The procedure for (x + )" is much the same. We write out » factors of (x-+y):

X+ E+E+y) - x+y).
1 2 3 n

We then form all possible terms by taking either an x or a y from factors 1, 2,
3, ..., n. This is like making lists (see Section 7). We are forming all possible
n-element lists where each element is either an x or a y. For example,

(X + ¥} + y}x + y) = XXX + XXy + Xyx + XYy + yxx + yxy + yyx + yyy.

The next step is to collect like terms. In the example (x + y)? there is one term
with three xs and no ys, three terms with two xs and one v, three terms with one
x and two ys, and one term with no xs and three ys. This gives

(x + )7 = 1x® + 3x%y + 3xy% + 152,

The question now becomes: How many terms in (x + ¥)" have precisely k ys
(and n — k xs)? Let us think of this as a list-counting question. We want to count
the number of n-element lists with precisely n —k xs and k ys. And we know what
we want the answer to be: (Z) We need to justify this answer.

We can specify all the lists with & ys (and n — k xs) by reporting the positions
of the ys (and the xs fill in the remaining positions). For example, if n = 10 and we
say that the set of y positions is {2, 3, 7}, then we know we are speaking of the term
(list) xyyxxxyxxx. We could make a chart: On the left of the chart would be all the
lists with & ys and n — k xs, and on the right we would write the set of ¥ positions
for each list. The right column of the chart would simply be the k-element subsets
of {1,2, ..., n}. Aha! The number of lists with & ys and n — k xs is exactly the
same as the number of k-element subsets of {1,.2, ..., n}. Therefore the number
of x"~* y* terms we collect is (7). And this completes the proof! ]

Example 16.9

Expand (x + y)® and find all the terms with two ys and three xs. Pair these terms
up with the two-element subsets of {1,2,3,4,5}.




n=0 ]« .

n=1 1 ]\‘// .
12 19
=103 3T
il 4874 1Y,

............. 4

=51 510105 1~

)
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Solution:
yyxxx < {1,2} xyxvx < {2,4}
yxyxx < {1, 3} xyxxy < {2,5}
yxxyx < {1, 4} xxyyx < {3,4}
yxxxy < {1, 5} xxyxy < {3, 5}
xyyxx < {2,3} xxxyy < {4,5}

We now have a procedure to calculate, say, Gg) All we have to do is expand
out (x 4+ ¥)* and find the coefficient of x%y'%. To do that, we just write down
all the terms from xxx - - - xx to yyy - - - yy and collect like terms. There are only
220 = 1,048,576 terms. Sounds like fun!

No? You are right. This is not a good way to find (3)). It is no better than
writing out all the possible ten-element subsets of {1, 2, ..., 20}. And there are a
lot of them. How many? We don’t know! That’s what we’re trying to find out. We
need another method (see also Exercise 16.29).

Pascal’s Triangle

Recall from your algebra class that the coefficients of (x 4 y)" form the nth row of
Pascal’s triangle. The figure shows Pascal’s triangle. The entry in row n = 4 and
diagonal k = 2 is () = 6, as shown (we count the rows and diagonals starting
from 0).

How is Pascal’s triangle generated? Here is a complete description:

« The zeroth row of Pascal’s triangle contains just the single number 1.

« Each successive row contains one more number than its predecessor.

« The first and last number in every row is 1.

. Anintermediate number in any row is formed by adding the two numbers just
to its left and just to its right in the previous row. For example, the first 10 in
row n = 5 (and diagonal k = 2) is formed by adding the 4 to its upper leit (at
n =4,k = 1) and the 6 to its upper right (at n» = 4, k = 2 as shown circled
in the figure).

How do we know that Pascal’s triangle generates the binomial coefficients?
How do we know that the entry in row  and column & is (})?

To see why this works, we need to show that the binomial coefficients follow
the same four rules we just listed.

Tn other words, we form a triangle containing (J) on the zeroth row: (). (;)
on the first row, ((2)) (f), (;) on the second row, and so on. We then need to prove
that this triangle of binomial coefficients is generated by exactly the same four
rules as Pascal’s triangle! This is three-fourths easy plus one-fourth tricky. Here

we go.
« The zeroth row of the binomial coefficient triangle contains the single

number 1.
This is easy: The zeroth row of the binomial coefficients triangle is

O =1

« Each successive row contains one more number than its predecessor.
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This is easy: Row n of the binomial coefficient triangle cogltains exactly
n + 1 numbers: (3), (1), -+ ().
o The first and last number in every row is 1.
This is easy: The first and last numbers in row 7 of the binomial coefficient
triangle are (J) = (1) = L.
. The intermediate number in any row is formed by adding the two numbers
just to its left and just to its right in the previous row.

This is tricky! The first thing we need to do is write down a careful
statement of what we need to prove about binomial coefficients. We need an
intermediate number in any row. This means we do not need to worry about
(7) or (I); we already know those are 1. An intermediate number in row n

would be (}) with0 < k < n.

What are the numbers just above (})? To find the upper left neighbor, we
move up to row n — 1 and up to diagonal k — 1. So the number to the upper
left is (- 1) To find the upper right neighbor, we move up to row n — 1 but
stay on diagonal k. So the number to the upper right is ( )

We need to prove the following:

Theorem 16.10

(Pascal’s Identity) Let n and k be integers with O < k < n. Then
ny (n—1 i n—1
k) \k—1 k)

How can we prove this? We don’t have a formula for ( ) The idea is to use
combinatorial proof (see Proof Template 9). We need to ask a question and then
prove that the left and right sides of the equation in Theorem 16.10 both give
correct answers to this question. What question has these answers? There is a clear

question to which the left-hand side gives an answer. The question is: How many
k-clement subsets does an n-element set have?

Proof. To prove (;) = (;7,) + (" kl) we consider the question: How many

k-element subsets does the set {1,2, 3, ..., n} have?
- Answer 1: ( ) by definition.

Now we need another answer. The right-hand side of the equation gives us
some hints. It contains the numbers n — 1, k — 1, and k. It is telling us to pick either
k — 1 or k elements from an (n — 1)-element set. But we have been thinking about
an n-element set, so let’s throw away one of the elements; let’s say that element n
is a “weirdo.” The right-hand side is telling us to pick either Xk — 1 or k elements
from among the normal elements 1,2, ....n — 1. If we only pick £ — 1 elements,
that doesn’t make a full k-element subset—in this case, we can add the weirdo to
the (k — 1)-element subset. Or we pick k elements from the normal elements. Now
we have a full k-element subset, and no room is left for the weirdo.

We now have all the ideas in place; let’s express them clearly.

Let # be called the “weird” element of {1,2,...,n}. When we form a
k-element subset of {1, 2, ..., n}, there are two possibilities. Either we have a
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subset that includes the weirdo, or we have a subset that does not include the
weirdo—these mutually exclusive possibilities cover all cases.

If we put the weird element in the subset, then we have (Z:ll) choices for how to

complete the subset because we must choose k — 1 elements from {1, 2, ..., n—1}.
If we do not put the weird element in the subset, then we have (";') ways to
make the subset because we must choose all k elements from {1,2,...,n — 1}.

Thus we have another answer.

- Answer2: (I7)) + ("))

Since Answer 1 and Answer 2 are correct answers to the same question, they
must be equal, and we are finished. n

Example 16.11

We show that (g) = (?) + (;) by listing all the two-element subsets of {1, 2,3, 4,
5,6}
There are (?) = 5 two-element subsets that include the weirdo 6:

{1,6} {2,6] {3,6} {4,6} {5,6}
and there are (;) = 10 two-element subsets that do not include 6:

{1,2} {1, 3} {1, 4} {1.5} {2, 3}
{2,4} {2, 5} {3, 4} (3.5} {4, 5}.

We now want to calculate (fg) The technique we could follow is to generate
Pascal’s triangle down to the 20th row and look up the entry on diagonal 10. How
much work would this be? The 20th row of Pascal’s triangle contains 21 numbers.
The previous row contains 20, and the one before that has 19. There are only
1+2+3+---+4+21 = 231 numbers. We get most of them by simple addition
and we need to do about 200 addition problems. (We can be more efficient; see
Exercise 16.30.) If you were to implement this procedure on a computer, you would
not need to save all 210 numbers. You would only need to save about 40. Once
you have calculated a row of Pascal’s triangle, you can discard the previous row.
So at any time, you would only keep the previous row and the current row. And if
you are clever, you can save even more memory.

In any case, if you follow this procedure, you will find that (fg) = 184,756.

A Formula for (})

The technique of generating Pascal’s triangle to calculate binomial coefficients is
a good one. We can calculate (fg) by performing roughly 200 addition problems
instead of sifting through a million terms in a polynomial (sec also Exercise 16.29).

There is something a bit unsatisfying about this answer. We like formulas! We

want a nice way to express (Z) in a simple expression using familiar operations.

We have an expression for (;) Proposition 16.5 says

(Z) =1+2+3+--+m—1).
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This is not bad, but it suggests that we still need to do a lot of addition to get the
answer. There is, however, a nice trick for simplifying this sum. Write the integers
1 through # — 1 forward and backward, and then add:

M= 1 + 2 + 3 + .

+n—-2+n—1

+)=n-1+n-2+n=3+ -+ 2 + |1

2(;)= n + n + n + -+ n + n =nn-1

and therefore
n nn—1)
() ="

This equation is a special case of a more general result. Here is another way
to count k-element subsets of an n-element set.

Let us begin by counting all k-element lists, without repetition, whose elements
are selected from an n-element set. This is a problem we have already solved (see
Section 7)! The number of such lists is (7).

For example, there are (5); = 5-4-3 = 60 three-clement, repetition-free lists
we can form from the members of {1, 2, 3, 4, 5}

123 132 213 231 312 321

124 142 214 241 412 421

125 152 215 251 512 521
and so on, until

345 354 435 453 534 543

Notice how we have organized our chart. All lists on the same row contain exactly
the same elements, just in different orders. Let us define a relation R on these
lists. The relation is “has-the-same-elements-as”—two lists are related by R just
when their elements are the same (but their orders might be different). Clearly R
is an equivalence relation. Each row of the chart gives an equivalence class. We
want to count the equivalence classes. There are 60 elements of the set (all three-
element lists). Each equivalence class contains six lists. Therefore the number of
equivalence classes is ® = 10 = (}) by Theorem 15.6.

Let’s repeat this analy51s for the general problem. We want to count the num-
ber of k-eclement subsets of {1,2,...,n}. Instead, we consider the k-element,
repetition-free lists we can form from {1, 2, ..., n}. We declare two of these lists
equivalent if they contain the same members. Finally, we compute the number of
equivalence classes to calculate ().

The number of k-element, repetition-free lists we can form from {1, 2, ..., n}
is a problem we already solved (Theorem 7.6); there are (n), such lists.

Therefore the number of equivalence classes is (1), / k! = (Z) . We can rewrite
(), as n'/(n — k)! (provided k < n), and we have the following result.

Theorem 16.12

(Formula for (7)) Let n and k be integers with 0 < k < n. Then

(n _ n!
k>_mm—mr
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We have found a “formula” for (Z) Are we happy? Perhaps. If we want to

compute (3), what does this theorem tell us to do? It asks us to calculate
20N 2019 x18x - x3x2x1
10/ 10x9x8x -+ x2x1x10x9x8x---x2x1

This entails about 40 multiplications and 1 division. Also, the intermediate results
(the numerator and denominator) are very large (more digits than most calculators
can handle).

Of course, we can cancel some terms between the numerator and the denom-
inator to speed things up. The last ten terms of the numerator are 10 x - - - x 1, and
that cancels out one of the 10!s in the denominator. So now the problem reduces to

20 __20x19x18><-~-x11
10/ 10x9x8x---x1 °
We can hunt for more cancellations, but now it requires us to think about the
numbers involved. The cancellation of one 10! in the denominator was mindless;
we could build that easily into a computer program. Other cancellations may be

tricky to find. If we're doing this on a computer, we may as well just do the
remaining multiplications and final division, which would be

670442572800
3628800

= 184756.

Recap

This section dealt entirely with the binomial coefficient (2) the number of

k-element subsets of an n-element set. We proved the Binomial Theorem, we
showed that the binomial coefficients are the entries in Pascal’s triangle, and we
developed a formula to express (}) in terms of factorials.

16 Exercises 16.1. Mixed Matched Marvin has a drawer full of 30 different socks (no two are
the same). He reaches in and grabs two. In how many different ways can
he do this? Now he puts them on his feet (presumably, one on the left and
the other on the right). In how many different ways can he do that?

16.2. Twenty people attend a party. If everyone shakes everyone else’s hand
exactly once, how many handshakes take place?
16.3. a. How many n-digit binary (0,1) sequences contain exactly k 157
b. How many n-digit ternary (0,1,2) sequences contain exactly k 1s?
To make this problem 16.4. Fifty runners compete in a 10K race. How many different outcomes are
tractable, assume that there possible?
are no ties, The answer to this question depends on what we are judging. Find
different answers to this question depending on the context.
a. We want to know in what place every runner finished.
) b. The race is a qualifying race, and we just want to pick the ten fastest
' runners.
c. The race is an Olympic final event, and we care only about who gets
the gold, silver, and bronze medals.
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16.5.

16.6.

16.7.

16.8.

16.9.
16.10.

16.11.

16.12.

16.13.

Write out all the three- and four-element subsets of {il, 2,3,4,5,6,7}in
two columns. Pair each three-element subset with its complement. Your
chart should have 35 rows.
A special type of door lock has a panel with five buttons labeled with the
digits 1 through 5. This lock is opened by a sequence of three actions. Each
action consists of either pressing one of the buttons or pressing a pair of
them simultaneously.
For example, 12-4-3 is a possible combination. The combination 12-
4-3 is the same as 21-4-3 because both the 12 and the 21 simply mean to
press buttons 1 and 2 simultaneously.
a. How many combinations are possible?
b. How many combinations are possible if no digit is repeated in the
combination?
In how many different ways can we partition an #-element set into two parts
if one part has four elements and the other part has all the remaining
elements?
Look down the middle column of Pascal’s triangle. Notice that, except for
the very top 1, all these numbers are even. Why?
Use Theorem 16.12 to prove Proposition 16.7.
Prove that the sum of the numbers in the nth row of Pascal’s triangle is 2".
One easy way to do this is to substitute x = y = 1 into the Binomial
Theorem (Theorem 16.8).
However, please give a combinatorial proof. That is, prove that

-£()

k=0
by finding a question that is correctly answered by both sides of this
equation.

Use the Binomial Theorem (Theorem 16.8) to prove

(6) - ()G~ () += ()=

provided n > 0.
Move all the negative terms over to the right-hand side to give

(©)# ()= ()= () +() () -

Give a combinatorial description of what this means and convert it into a
combinatorial proof. Use the “weirdo” method.
Consider the following formula:

n n—1
k = .
(k ) " <k - 1)
Give two different proofs. One proof should use the factorial formula for
(1) (Theorem 16.12). The other proof should be combinatorial; develop a

question that both sides of the equation answer.
Letn > k > m > 0 be integers. Consider the following formula:

() -GG
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Give two different proofs. One proof should use the factorial formula for
(1) (Theorem 16.12). The other proof should be combinatorial. Try to
develop a question that both sides of the equation answer.

. How many rectangles can be formed from an m x n chess board? For

example, for a 2 x 2 chess board, there are nine possible rectangles.

. Let # be a natural number. Give a combinatorial proot of the following:

16.16.

16.17.

16.18.

16.19.

16.20.

16.21.
16.22.

16.23.

16.24.

2n+2 2n 2n 2n
= +2 + .

n+1 n+1 n n—1
Use Stirling’s formula (see Exercise 8.6) to develop an approximation
formula for (*). Without using Stirling’s formula, give a direct proof that
() < 4.
Use the factorial formula for (Z) (Theorem 16.12) to prove Pascal’s Identity
(Theorem 16.10).

00 O (3

Hint: Mimic the argument for Proposition 16.5.

Continued from the previous problem. Proposition 16.5 says (3) = 1+ 2
4+ ...+ (n — 1). Make a large copy of Pascal’s triangle and mark the
numbers (;), 6,5,4,3,2, and 1. You have several choices—do this “right.”
What's the pattern?

The previous exercise asks you to prove (1) = () + (3) + )+ +
(";l). On a large copy of Pascal’s triangle, mark the numbers (;) (g) (3),
(‘;), (3), and (g) What’s the pattern?

Now generalize these forntulas and prove your assertion.

Give a geometric and an algebraic proof that

14243+ +@m—-D+n+@—D+m -2+ +2+1=n".

Prove: (5)(7) + (1) (%) + () (20) + -+ () () + () (§) = ()
How many Social Security numbers (see Exercise 7.9) have their nine
digits in strictly increasing order?
The following series of problems introduce the concept of multinomial
coefficients.
The binomial coefficient (}) is the number of k-element subsets of an
n-element set. Here is another way to think of (Z) Let A be an n-element
set and suppose we have a supply of labels; we have k labels that say
“good” and n — k labels that say “bad.” In how many ways can we affix
exactly one label to each element of A?
Let A be an n-element set. Suppose we have three types of labels to assign
to the elements of A. We can call these labels “good,” “bad,” and “ugly” or
give them less interesting names such as “Type 1,” “Type 2,” and “Type 3.”
Leta, b, ¢ € N. Define the symbol (% ) to be the number of ways to
label the elements of an n-element set with three types of labels in which
we give exactly a of the elements labels of Type 1, b of the elements labels
of Type 2, and ¢ of the elements labels of Type 3.
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Chapter 6.

16.25.

16.26.

16.27.

16.28.

16.29.

16.30.

Evaluate the following from first principles:

G
(10
-
-

—

25
5
050

B e T op

10
730
10

e (523 —(,55)-

Letn, a, b. ¢ € N witha + b 4 ¢ = n. Please prove the following:
a. (a ’117 E‘) = (Z) (”;‘1).

b. (aillyc) = #

¢ Ifa+b+c#n,then (] )=0.

Let n € N. Prove

n
x+y+2)'= Z (a b C>xaybzc

a+b+c=n

where the sum is over all natural numbers a, b, c witha + b + ¢ = n.

A poker hand consists of 5 cards chosen from a standard deck of 52 cards.

How many different poker hands are possible?

Poker continued. There are a variety of special hands that one can be dealt

in poker. For each of the following types of hands, count the number of

hands that have that type.

a. Four of a kind: The hand contains four cards of the same numerical
value (e.g., four jacks) and another card.

b. Three of a kind: The hand contains three cards of the same numerical
value and two other cards with two other numerical values.

¢. Flush: The hand contains five cards all of the same suit.

d. Full house: The hand contains three cards of one value and two cards
of another value.

e. Straight: The five cards have consecutive numerical values, such as
7-8-9-10-jack. Treat ace as being higher than king but not less than 2.
The suits are irrelevant.

f. Straight flush: The hand is both a straight and a flush.

It is silly to compute (x + ¥)** by expanding it to a million terms and then

collecting like terms. A much better way is to calculate (x + y)?* and collect

like terms. Then multiply that result by (x + y) and collect like terms to
give (x + y)>. Now multiply that again by (x + y) and so on until you
reach (x + y)*. Compare this method to the method of generating all of

Pascal’s triangle down to the 20th row.

To compute (7) by generating Pascal’s triangle, it is not necessary to gener-

ate the entire triangle down to row 7; you need only the part of the triangle

in a 90° wedge above (}).

Estimate how many addition problems you would need to perform to
calculate (13(:)0) by this method. How many addition problems would you
need to perform if you were to compute the entire Pascal’s triangle down to
row 30?7
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16.31. Use a computer to print out a very large copy of Pascal’s triangle, but with
a twist. Instead of printing the number, print a dot if the number is odd and
leave the location blank if the number is even. Produce at least 64 rows.

Note that the computer doesn’t actually need to compute the entries
in Pascal’s triangle; it needs only to calculate their parity. (Explain.) What
do you see?

17

Subsets as unordered lists.

There is no standard
notation for multisets. Our
notation {- - -} is not widely
used. The delimiters { and )
are called angle brackets
and should not be confused
with the less-than < and
greater-than > symbols.
Some mathematicians 4
simply use curly braces

{-- -} for both sets and
multisets.

Counting Multisets

We have considered two kinds of counting problems: lists and sets. The list-
counting problems (see Section 7) come in two flavors: we either allow or forbid
repetition of the members of the lists. The number of lists of length k whose
memnbers are drawn from an n-element set is either n* (if repetition is allowed) or
(n); (if repetition is forbidden).

Sets may be thought of as unordered lists (i.e., lists of elements where the
order of the members does not matter). As we saw in Section 16, the number of
unordered lists of length k whose members are drawn without repetition from an
n-element set is (7). This is a set-counting problem.

The goal of this section is to count the number of unordered lists of length
k whose elements are drawn from an n-element set with repetition allowed. It is
difficult, however, to express this idea in the language of sets. We need the more
general concept of multiset.

Multisets

A given object either is or is not in a set. An element cannot be in a set “twice.”
The following sets are all identical:

{1,2,3}=1{3,1,2} ={1,1,2,2,3,3} ={1,2,3,1,2,3, 1, 1, 1, 1}.

A multiset is a generalization of a set. A multiset is, like a set, an unordered
collection of elements. However, in a multiset, an object may be considered 1o be
in the multiset more than once.

In this book, we write a multiset as follows: (1, 2, 3, 3). This multiset contains
four elements: the element 1, the element 2, and the element 3 counted twice. We
say that element 3 has multiplicity equal to 2 in the muliiset (1,2, 3, 3). The
mudtiplicity of an element is the number of times it is a member of the multiset.

Two multisets are the same provided they contain the same elements with
the same multiplicities. For example, (1.2,3,3) = (3,1, 3,2), but (1,2,3,3) #
(1,2,3,3,3).

The cardinality of a multiset is the sum of the multiplicities of its elements. In
other words, it is the number of elements in the multiset where we take into account
the number of times each element is present. The notation is the same as for sets. If
M is a multiset, then | M| denotes its cardinality. For example, | (1,2, 3,3) | = 4.
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The notation (\[”)) is
pronounced "
multichoose k. The
doubled parentheses
remind us that we may
include elements more
than once.

Counting and Relations

The counting problem we consider is: How many k-element multisets can we
form by choosing elements from an n-element set? In other wbrds, how many un-
ordered length-k lists can we form using the elements {1, 2, ..., n} with repetition
allowed?

Just as we defined (};) to represent the answer to a set-counting problem, we
have a special notation for the answer to this multiset-counting problem.

Definition 17.1

Let n. k € N. The symbol ((})) denotes the number of multisets with cardinality
equal to k whose elements belong to an n-element set such as {1, 2, ..., n}.

Example 17.2

Let n be a positive integer. Evaluate ((})).
Solution: This asks for the number of one-element multisets whose elements are
selected from {1, 2, ..., n}. The multisets are

and so (7)) = n.

Example 17.3

Let k be a positive integer. Evaluate ((})).

Solution: This asks for the number of k-element multisets whose elements are
selected from {1}. Since there is only one possible member of the multiset, and the
multiset has cardinality &, the only possibility is

{,1,..., 1)
and so ((;)) =1.

Example 17.4

Evaluate ((g))
Solution: We need to count the number of two-element multisets whose elements
are selected from the set {1, 2}. We simply list all the possibilities. They are

(I, 1y, (1,2), and, {(2,2).
Therefore ((2» =3.

2 2
In general, consider ((;)). We need to form a k-element multiset using only
the elements 1 and 2. We can decide how many s are in the multiset (anywhere
from O to k, giving k + 1 possibilities), and then the remaining elements of the

multiset must be 2s. Therefore ((z)) =k+1.

Example 17.5

Evaluate ((3)).

Solution: We need to count the number of three-element multisets whose elements
are selected from the set {1, 2, 3}. We list all the possibilities. They are

(1,1, 1) (1,1,2) (1,1,3y (1,2,2) (1,2,3)
(1,3,3) (2,2,2) (2,2,3) (2,3.3) (3,3,3)

Therefore ((;)) = 10.
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Formulas for ((}))

In the foregoing examples, we calculated ((7)) by explicitly listing all possible
multisets. This, of course, is not practical if we want to calculate ((Z)) for large
values of n and k. We need a better way to perform this computation.

For ordinary binomial coefficients, we have two methods to calculate (’Z) We
can generate Pascal’s triangle using the relation () = (",') + (;7;) or we can
use the formula (}) = 5l
Let’s look for patterns in the values of ((})). Here is a table of values of ((}))

forO<n,k <6.

k

0 1 2 3 4 5 6

0 1 0 0 0 0 0 0

1 1 1 1 1 1 1 1

2 1 2 3 4 5 6 7

n 3 1 3 6 10 15 21 28
4 1 4 10 20 35 56 84

5 1 5 15 35 70 126 210

6 1 6 21 56 126 252 462

In Pascal’s triangle, we found that the value of (}) can be computed by adding

two values in the previous row. Does a similar relationship hold here?

Look at the value 56 in row n = 6 and column ¥ = 3. The number just above
this 56 is 35. Is 21 next to 35 so we can get 56 by adding 21 and 357 There is no
21 in row 5, but just to the left of the 56 in row 6 there is a 21.

Examine other numbers in this chart. Each is the sum of the number just above
and just to the left. The number to the left of ((})) is ((,",)) and number above is
).

We have observed the following:

Proposition 17.6

Let n, k be positive integers. Then

G)-C)-62)

The proof of this result is similar to that of Theorem 16.10. T recommend you
reread that proof now. The essential idea of that proof and the one we are about to
present is to consider a weird element. We count [multi]sets of size k that either
include or exclude the weirdo.

Proof. We use a combinatorial proof to prove this result (see Proof Template 9).
We ask a question that we expect will be answered by both sides of the equation:

How many multisets of size k can we form using the elements {1, 2, ..., n}?

A simple answer to this question is ((})).
For a second answer, we analyze the meanings of ((";')) and ((,",)).



120

Chapter 3 Counting and Relations

The first has an easy interpretation. The number ((";')) is the number of

k-element multisets using the members of {1, 2, ..., n} in which we never use
element n.

How should we interpret ((kfl)) ? What we want to say is that this represents
the number of k-element multisets using the members of {1, 2, . . ., n} in which we
must use element #. To see why this is true, suppose we must use element n when
forming a k-element multiset. So we throw element » into the multiset. Now we
are free to complete this multiset in any way we wish. We need to pick £ — 1 more
elements from {1, 2, ..., n}; the number of ways to do that is precisely ((,”,)).

Since element n either is or is not in the multiset, we have ((})) = (", ')) +
| ]

()

Example 17.7

We illustrate the proof of Proposition 17.6 by considering ((i)) = ((i)) + (@))
We list all the multisets of size 4 we can form using the elements {1, 2, 3}.
First, we list all the multisets of size 4 we can form from the elements in

{1, 2, 3} that do not use element 3. In other words, we want all the multisets of

size 4 we can form that use just elements {1, 2}. There are (7)) = 5 of them. They

are

(1,1,1,1) {1,1,1,2) (1.1,2,2) {1,2,2,2) (2,2,2, 2)
Second, we list all the multisets of size 4 that include the element 3 (at least
once). They are
(1,1,1,3) (1,1,2,3)(1,1,3,3) (1,2,2,3){1,2,3, 3)
(1,3,3,3 (2,2,2,3)(2,2,3,3) (2,3,3,3) {(3,3,3, 3)

Notice that if we ignore the mandatory 3 (in color), we have listed all the three-
element multisets we can form from the elements in {1, 2, 3}. There are ((;)) =10
of them.

This result, (7)) = (")) + ((,”,)). and its proof are quite similar to The-
orem 16.10, (}) = (Zj) + (";1). The table of ((})) values is similar to Pascal’s
triangle in another way. If we read the table of ((2)) values diagonally from the
lower-left corner to the upper-right corner, we read off the values

1 5 10 10 5 1

and this is the fifth row of Pascal’s triangle. We can write this as follows:

1 5 10 10 5 1
P ¢+ ¢ ¢ ¢

(( ) (( ) (G G @) @)
P 1 ¢

o (T) G 6 @ ¢

Observe that ((!)) = (;). What number should we fill in for the question
mark? A bit of guesswork and we see that 7 = n 4+ k& — 1 fits the pattern we
observed. For example, (( ) = ( )= (4+2 1)

€S> O o>

<
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We assert the following:

Theorem 17.8

This one-to-one pairing of
multiscts and
stars-and-bars encodings is
an example of a bijective
proof.

Letn, k € N. Then
ny\ n+k—1
k)] k '

Proof. The idea of this proof is to develop a way to encode multisets and then
count their encodings. To find ((})), we list all (encodings of) the k-element mul-
tisets we can form using the integers 1 through n. Before we present the encoding
scheme, we need to deal with the special case n = 0.

Ifboth n = 0 and k = 0, then ((8)) 1 (the empty multiset). However,
the formula gives (**07") = (5 ) Although this is nonsense (it is not possible to
have a set with —1 elements), it is possible to extend the definition of ( ) to allow
the upper index, #, to be any real number; see Exercise 17.10. In the extended
definition, (Bl) = 1 as desired.

Ifn = 0and k > 0, then ((})) = O (there are no multisets of cardinality
whose elements are chosen from the empty set). In this case, (*"7') = (') =0,
as required.

Hence, from this point on, we may assume # is a positive integer. We now
present the scheme for encoding multisets as lists.

Suppose, for the moment, thatn = 5 and the multisetis M = {1,1,1,2,3,3,5).
We encode this multiset with a sequence of stars * and bars |. We have a star for
each element and a bar to make separate compartments for the elements. For this
multiset, the stars-and-bars encoding is as follows:

(1,1,1,2,3,3,5) <« kxx|x]*xx]||*

The first three xs stand for the three 1s in M. Then there is a | to mark the end of
the 1s section. Next there is a single * to denote the single 2 in M, and another |
to signal the end of the 2s. Two more *s follow for the two 3s in the multiset. Now
notice that we have two |s in a row. Since there are no 4s in M, there are no *s in
this compartment. Finally, the last * is for the single 5 in M.

In the general case, let M be a k-element multiset formed using the integers |
through n. Its stars-and-bars notation contains exactly £ *s (one for each element
of M) and exactly n — 1 |s (to separate n different compartments).

Notice that given any sequence of k *s and n — 1 |s, we can recover a unique
multiset of cardinality k whose elements are chosen from the integers 1 through .
Thus there is a one-to-one correspondence between k-element multisets of integers
chosen from {1, 2, ..., n} and lists of stars and bars with k& *s and n — 1 |s. The
good news is that it is easy to count the number of such stars-and-bars lists.

Each stars-and-bars list contains exactly n + k — 1 symbols, of which exactly
k are *s. The number of such lists is ("*k 1) because we can think of choosing
exactly k positions on the length-(n + k — 1) list to be *s. In other words, there
are n + k — 1 positions on this list. We want to select a k-element subset of those
n + k — 1 positions in all possible ways. There are ("";™') ways to do this.

Therefore (1)) = ("% ). -
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Example 17.9

In Example 17.5, we explicitly listed all possible size-three mulfisets formed using
the integers 1, 2, and 3. Here we list them with their stars-and-bars notation.

Multiset Stars-and-bars Subset
(1,1, 1) *kx | | 1,2, 3}
(1,1,2) dok |k | 1,2, 4}
{1,1,3) *%| | * {1,2,5}
(1,2,2) * | ok | {1,3,4}
{1,2,3) * || % {1,3.5)}
{1,3,3) * | | *x {1,4,5)}
(2,2,2) Pk | {2,3,4)
(2,2,3) | %% | * {2,3,5}
{2,3,3) EXES {2,4,5}
(3,3,3) EL {3,4, 5%

The column labeled Subset shows which of the five positions in the stars-and-bars
encoding are occupied by *s. Notice that the ((])) multisets correspond to the (3)

subsets. Thus ((2)) = (3+§_1) = @)

Recap

In this section, we considered the following counting problem: How many
k-element multisets can we form whose elements are selected from {1, 2, ..., n}?
We denoted the answer by ((})). We proved various properties of (7)), most no-

@y

We have studied four counting problems: counting lists (with or without rep-
etitions), counting subsets, and counting multisets. The answers to these four
counting problems are summarized in the following chart.

Counting collections

Repetition Repetition
allowed forbidden
Ordered nk (n)
Unordered ((',:)) (Z)
Size of collection: k
Size of universe: "

17 Exercises

17.1. Evaluate ((})) and ((3)) by explicitly listing all possible multisets of the
appropriate size. Check that your answers agree with the formula in The-
orem 17.8.

Give a stars-and-bars representation for all the sets you found in the pre-
vious problem.

17.3. Letn be a positive integer. Evaluate the following from first principles (i.e.,

don’t use Proposition 17.6).

17.2,
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a (()-
b. ((5)-
e (()-

Explain your answers.
17.4. What multiset is encoded by the stars-and-bars notation *1
17.5. Express ((})) using factorial notation.

e

17.7. Let [[{]] denote the number of multisets of cardinality k we can form
choosing the elements in {1, 2, 3, ..., n} with the added condition that we
must use each of these n elements at least once in the multiset.

a. Evaluate from first principles, [["1].

b. Prove: [[{]] = ((;",))-

17.8. Let n, k be positive integers. Prove:

=)Dz 7))

17.9. Let n, k be positive integers. Prove:

()R (O R (5 A Y

17.10. Let x be a positive integer. We can write

X x(x—=1) 1, 1
= —— = —Xx" — =X.
2 2 2 2

In this way, we can think of (;) as a polynomial in x. Thus, although it does

ok

. L .
not make sense as a counting problem, we can write (;) and this evaluates
Lelya _1edy _ 1 -
033" —3(3) = —3

a. Write ((3)) as a polynomial in x.
b. As silly as it looks, evaluate
1

c. Write (3) and ((})) as polynomials in x.
d. Let & € N. Find (and prove) a relationship betwcen the polynomials

(z) and ((}))-

18 Inclusion-Exclusion

1 In Section 11 we learned that for finite sets A and B, we have |A| + [B] =
|A U B| + |A N B|. We can rewrite this as

[AUB|=|A| +|B| —|AN B|
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[see Proposition 11.4 and Equation (4)]. The equation expresses the size of aunion
of two sets in terms of the sizes of the individual sets and their intersection. In
Exercise 11.19, you were asked to extend this result to three sets A, B, and C—that
is, to prove that

[AUBUC| = |A|+|B|+ IC|
—JANB|—|ANC|—|BNC|
+{ANBNCI.

Again, the size of the union is expressed in terms of the sizes of the individual

sets and their various intersections. These equations are called inclusion-exclusion

formulas.
In this section, we prove a general inclusion-exclusion formula.

Theorem 18.1

(Inclusion-Exclusion) Let Ay, Ao, ..., A, be finite sets. Then
A U A U= U A, = A+ Ao + - 4 [A4]
— AL N Ay — A1 N As] — - — [Ap1 D Ayl
+iA N AN A3+ AN AN Agl + -+
+ A2 N Ay N Ayl
— + .........
+[A NA NN AL

To find the size of a union, we add the sizes of the individual sets (inclusion),
subtract the sizes of all the pairwise intersections (exclusion), add the sizes of all
the three-way intersections (inclusion), and so on.

The idea is that when we add up all the sizes of the individual sets, we have
added too much because some elements may be in more than one set. So we
subtract off the sizes of the pairwise intersections to compensate, but now we may
have subtracted too much. Thus we correct back by adding in the sizes of the triple
intersections, but this overcounts, so we have to subtract, and so on. Amazingly,
at the end, everything is in perfect balance (we prove this in a moment).

The repeated use of ellipsis (- - ) in the formula is unfortunate, but it is difficult
to express this formula using the notations we have thus far developed. For four
sets (A through D) the formula is

|JAUBUCUD| = |A|+[B| +IC|+|D|
—|ANB|—|ANC|—|AND|—|BNC]|
—|BND|—|CND|
+IANBNC|+|ANBND|+|ANCND|
+|BNCNDJ
—|ANBNCNDI.

Example 18.2  Atan art academy, there are 43 students taking ceramics, 57 students taking paint-

ing, and 29 students taking sculpture. There are 10 students in both ceramics and
painting, 5 in both painting and sculpture, 5 in both ceramics and sculpture, and
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2 taking all three courses. How many students are taking at least one course at the
art academy?

Solution: Let C, P, and S denote the sets of students taking ceramics, painting,
and sculpture, respectively. We want to calculate |C U P U S|. We apply inclusion-
exclusion:

ICUPUS| = |C|+|P|+IS|—ICNP —|CNS|—|PNS|+ICNPNS]
—43+57429-10-5-5+2=111.

Proof (of Theorem 18.1)

Let the n sets be Ay, As, ..., A, and let the elements in their union be named xy,
X2, ..., Xm. We create a large chart. The rows of this chart are labeled by the
elements x; through x,. The chart has 2" — 1 columns that correspond to all
the terms on the right-hand side of the inclusion-exclusion formula. The first n
columns are labeled A, through A,. The next () columns are labeled by all the
pairwise intersections from A; N A, through A,_; N A,,. The next (’;) columns are
labeled by the triple intersections, and so on.

The entries in this chart either are blank or contain a + or — sign. The entries
depend on the row label (element) and column label (set). If the element is not in
the set, the entry in that position is blank. If the element is a member of the set, we
put a + sign when the column label is an intersection of an odd number of sets or
else a — sign when the column label is an intersection of an even number of sets.
For the three sets in the Venn diagram in the figure and their elements, the chart
would be:

El't Ay | A | A3 A1NAY | AlNAz | A2N A3 AN Ay M Az
1 +

2 +

3 + + —

4 + + -

5 +

6 + + —

7 + + + - — - +
8 + + + — — — +
9 + + —

10 + + —

11 + + —

12 +

There are three things to notice about this chart.

. First, the number of marks in each column is the cardinality of that column’s
set; we make a mark in a column just for that set’s elements. In the example,
there are five marks in the A, N Az column (corresponding to elements 7, 8,
9,10, and 11).
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+ Second, the sign of the mark (4- or —) corresponds to whether we are adding
or subtracting that set’s cardinality in the inclusion-exclugion formula. Thus,
if we add 1 for every + sign in the chart and subtract 1 for every — sign, we
get precisely the right-hand side of the inclusion-exclusion formula.

- Third, look at the number of 4s and —s in each row. In the example, notice
that there is always one more + than —. If we can prove this always works,
we will be finished because then the net effect of all the +s and —s is to count
1 for each element in the union of the sets A; U A, U ... U A,,. So, if we can
prove this works in general, we have completed the proof.

The problem now reduces to proving that every row has exactly one more +
than —.

Letx be an element of A; U Ay U - U A,. It is in some (perhaps all) of the
A;. Let us say it is in exactly k& of them (with 1 < & < n). Let us calculate how
many +s and —s are in x’s row.

In the columns indexed by single sets, there will be k +s; let’s write (II) in
place of k (you will see why in a moment).

In the columns indexed by pairwise intersections, there will be (5) —s. This
is because x is in k of the A;s, and the number of pairs of sets to which x belongs
is 4).

In the columns indexed by triple intersections, there will be (';) +s.

In general, in the columns indexed by j-fold intersections, there will be (i)
marks. The marks are + if j is odd and — if j is even. Thus

. k k k
the number of +s is ) + 3 + 5 +--., and
the number of —s is k + k + k +
u I' —— vee
2 4 6

Note that these sums do not go on forever; they include only those binomial coef-

ficients whose lower index does not exceed k. Also note that the term (f)) is absent.

In Exercise 16.11, you proved
k
Lt < ) _0
k

B Al
)+ () () =)+ () ()

number of — signs number of + signs

We therefore see that the number of +s is exactly () = | more than the number
of —s in x’s row. [ ]

How to Use Inclusion-Exclusion

Inclusion-exclusion takes one counting problem (How many elements are in
AU UA,7) and replaces it with 2" — 1 new counting problems (How many ¢l-
ements are in the various intersections?). Nevertheless, inclusion-exclusion makes
certain counting problems easier. Here is an example.
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Example 18.3

It is convenient to use # to
stand for “number of.”

B, ={222,223,232, 233,
322,323,332, 333).

By = {111,113, 131, 133,
311,313, 331, 333}

B/ N By = {333}

(A list-counting problem) The number of length-k lists whose elements are cho-
sen fromthe set {1,2, ..., n}is n*. How many of these lists use all of the elements
in {1, 2,...,n} at least once?

For example, for n = 3 and k = 3, there are 3° = 27 length-three lists using
the elements in {1, 2, 3}. Of these, the following six lists use all of the elements 1,
2, and 3:

123 132 213 231 312 321

Here is how to use inclusion-exclusion to solve this problem. We begin by
letting U (for universe) be the set of all length-k lists whose elements are chosen
from {1,2,...,n}. Thus |[U| = n*. We call some of these lists “good”—these are
the ones that contain all the elements of {1, 2, .. ., n}. And we call some of the lists
“bad”—these are the ones that miss one or more of the elements in {1, 2, ....#n}.
If we can count the number of bad lists, we’ll be finished because

# good lists = n* — # bad lists. (5)

Now a list might be bad because it fails to contain the number 1. Or it might be bad
if it misses the number 2, and so on. There are n different elementsin {1, 2, ..., n},
and there are n different ways a list might be bad. Let B be the set of all lists in
U that do not contain the element 1, let B, be the set of all lists in U that do not
contain the element 2, . .., and let B, be the set of all lists in ¢/ that do not contain
the element ». The set

BiUB,U---UB,

contains precisely all the bad lists; what we want to do is calculate the size of this
union. This is a job for inclusion-exclusion! To calculate the size of this union, we
need to calculate the sizes of each of the sets B; and all possible intersections, and
then invoke Theorem 18.1.

To begin, we calculate the size of B;. This is the number of length-k lists whose
elements are chosen from {1, 2, ..., n} with the added condition that the element
1 is never used. In other words, | B, | is the number of length-k lists whose elements
are chosen from {2, 3, ..., n} (notice we deleted element 1). Thus we have n — |
choices for each position on the list, so | B;| = (n — 1)*.

What about | B;|? The analysis is exactly the same as for | B;|. The number
of length-k lists that do not use element 2 is the number of length-k lists whose
elements are chosen from (1, 3, 4, ..., n} (we deleted 2). So |B,| = (n — D).

Indeed, for every j, {B;| = (n — 1)*. The first part of the inclusion-exclusion
formula now gives

[BiU---UB,| = |By| 4+ By — -
=nn—1DF—.-....
Now we continue to the second row of terms in Theorem 18.1. These are all

the terms of the form | B; N B;|. We begin with | B; N B,|. This is the number of lists
that (1) do not include the element 1 and (2) do not include the element 2. In other
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The fast term in the
example is
By By Y Ry = i,

words, |B; N B,| equals the number of length-k lists whose elements are chosen
from the set {3, 4, ..., n}. The number of these lists is | By 1\ By| = (n — 2).

What about | B, N B;3|? The analysis is exactly the same as before. These lists
avoid the elements 1 and 3, so they are drawn from an (n — 2)-element set. Thus
|BiNBsy| = (n—2)*. Indeed, all terms in the second row of the inclusion-exclusion
formula give (n — 2),

The question that remains is: How many terms are on the second row? We
want to pick all possible pairs of sets from B) through B, and there are (g) such
pairs. Thus far, we have

[ByU---UB,| = |Bi|+ -+ |B,—|BiNBy| —--F-eve--
= n(n — 1)k — (Z)(ﬂ—Z)k+ ...... :

Let’s think about the triple intersections before we do the general case. How
many lists are in B) N By N B37 This is the number of length-k lists that avoid all
three of the elements 1, 2, and 3. In other words, these are the length-k lists whose
elements are drawn from {4, . . ., n}. The number of such lists is (n —3)*. Of course,
this analysis applies to any triple intersection. How many triple intersections are
there? There are (). So we now have

IBlLJ--~UBn|=n(n—1)k—(Z)(n—Z)k+<§)(n—3)k— ------ )

The pattern should be emerging. To make the pattern look better, replace the
first n by (7)) in the above equation. We expect the next term to be — () (n — 4)*.

To make sure the pattern we see is correct, let us think about the size of a j-fold
intersection of the B sets. How many elements are in B; N B, N --N B;? These are
the length-£ lists that avoid all elements from 1 to j; thatis, they draw their elements
from{j+1,...,n}(asetof sizen—j).So|BiNB,N---NB,| = (n—j)*. Of course,
all j-fold intersections work exactly like this. How many j-fold intersections are
there? There are ('Il) Thus the jth term in the inclusion-exclusion is + (';) (n— jH*.
The sign is positive when j is odd and negative when j is even.

As a sanity check, let us make sure this formula applies to |[B; N --- N B},
the last term in the inclusion-exclusion. This is the number of lists of length & that
contain none of the elements | through n. If we can’t use any of the elements, we
certainly can’t make any lists. The size of this set is zero. Our formula for this term
is &({}) (n — n)*, which, of course, is 0.

‘We now have

|BiU---UB,| = (n>(n—l)k—(n)(n——2)k+(n)(n—3)k—...i<n>(n_n)k
1 2 3 n

which can be rewritten using > notation as

|BLU---UB, | =) (=D (”.)(n - ).
j=1 J

The (—1)/*! term is a device that gives a plus sign when j is odd and a minus sign
when j is even.
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We have nearly answered the question from Example 18.3. The set B, U --- U
B, counts the number of bad lists; we want the number of good lists. We simply
substitute into Equation (5) to get

# good lists = n* — # bad lists

—nk— K")(n — 1y — <'2’>(n — 2y

(';) (n—3)—.. .+ ( )(n—n)k}
- (T)(n—l)kwL Z)(n—2)
k

n

('; (n— 3+ ¢(")<n—n)"

n 1 n k
Example 18.4 is known as (n—1)"+ 2 (n—=2)
the hat-check problem. The
story is that n people go to by n k
the theater andpchsck their ( ) (=34 F (n) (n —m)
hats with a deranged clerk
The clerk hands the hats j Y
back to the patrons at ran- Z -b ( ) (n ])
dom. The problem is: What =0
is the probability that none  answering the question from Example 18.3.
of the patrons get their own
hat back? The answer to
this probability question s Derangements
the answer to Example 18.4
divided by a!. We illustrate the method of Proof Template 10 on the following classical problem.

Example 18.4 (Counting derangements) There are n! ways to make lists of length » using the
elements of {1, 2, ..., n} without repetition. Such a list is called a derangement if
the number j does not occupy position j of the list forany j = 1,2, ..., n. How
many derangements are there?

For example, if n = 8, the lists (8,7, 6, 5,4, 3, 2, ) and (6,5,7,8,1,2.3,4)
are derangements but (3,5, 1,4,8,6,7) and (2, 1,4, 3,8,6,7, 5) are not.

Proof Template 10 Using inclusion-exclusion.
Counting with inclusion-exclusion:

« Classify the objects aseither “good” (the ones you want to count) or “bad”
(the ones you don’t want to count).

+ - Decide whether you want to count the good objects directly or to count the
bad objects and subtract from the total.

+ Cast the counting problem as the size of a union of sets. Each set describes
one way the objects might be “good” or “bad.”

.. Use inclusion-exclusion (Theorem 18.1).
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Example 18.6

B, = {1234, 1243, 1324,
1342, 1423, 1432).

8, N B: = {1234, 1243},

The derangements of {1, 2, 3, 4} are i

2143 2341 2413
3142 3412 3421
4123 4312 4321

There are n! lists under consideration. The “good” lists are the derangements.
The “bad” lists are the lists in which one (or more) element j of {1,2,...,n}
appears at position j of the list.

‘We count the number of bad lists and subtract from #! to count the good lists.

We count the number of bad lists by counting a union. There are n ways in
which a list might be bad: 1 might be in position 1, 2 might be in position 2, and
so forth, and n might be in position n. So we define the following sets:

By = {lists with 1 in position 1}
B, = {lists with 2 in position 2}

B, = {lists with » in position n}.

Our goal is to count |B; U --- U B,| and finally to subtract from n!. To compute
the size of a union, we use inclusion-exclusion.

We first calculate |B;|. This is the number of lists with 1 in position 1; the
other n — 1 elements may be anywhere. There are (n — 1)! such lists. Likewise,
|B2] = (n — 1)! because element 2 must be in position 2, but the other n — 1
elements may be anywhere. We have

[BiU---UBy| = [Bi|4+ -+ |By| —---"

:n(n—])'— ...... R

Next consider |B; N B,|. These are the lists in which 1 must be in position
1, 2 must be in position 2, and the remaining # — 2 elements may be anywhere.
There are (n — 2)! such lists. Indeed, for any i # j, we have |B; N\ B;| = (n — 2)!
since element i goes in position ¢, element j goes in position j, and the remaining
n — 2 elements may go anywhere they want. There are (g) pairwise intersections,
and they all have size (n — 2)!. This gives

[BiU---UB,| = |Bi|+ -+ By = [BiNBy| =4 oen
=n(n——1)!—<§)(n—2)!+ ------ .
The (}) triple intersections all work the same, too. The size of By N B, N B

is (n — 3)! because elements 1, 2, and 3 must go into their respective positions,
but the remaining » — 3 elements go wherever they please. So far we have

|B1U---UB,,l=n(n——1)!—(;)(n—Z)!—i—(Z)(n—S)!—---.
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If we rewrite the first n as (), this becomes

BiU---UB =" V=11 = (" (n—2)'+<n)(n—3)'—~-
! 1 2 ' 3 ) '

The pattern is emerging. To see that this works, let us consider the k-fold intersec-
tions such as | By N B> M-« N By|. There are (Z) terms of this form. Each evaluates
to (n — k)! because k of the elements/positions on the list are determined, and the
remaining # — k elements can go wherever they wish. Thus we have

|B,U---UB,| = (n>(n—1)!— (”) (n—2)!—|—<n>(n—3)!— -~-:}:(n>(n—rz)!.
1 2 3 n

Note the last term is (7)0! = 1. To see this is correct, note that this is the size of
By N---N B,. This is the set of lists in which 1 must be in position 1, 2 must be
in position 2, and so on, and » must be in position n. There is exactly one such
list—namely, (1,2,3,...,n).

Finally, we subtract | B; U- - -U B,,| from n! to get the number of derangements.
This is

nt — [(T)(n —l— (Z)(n—Z)!—l— (Z)(n S — .t (:)(n —n)!}

which equals

(I(;)n' - (?)(n — D+ <Z>(n . (Z)(n —+F (Z)(n — !

or, in X notation,

BINB,NByN B, = {1234).

# derangements = Z(—l)k (:) (n—k.

k=0

We can simplify this answer. Recall that

(n> . n!
k) klin — k)

(see Theorem 16.12). Therefore

n n ,
# derangements = 3 (—1)F (") =)' =S (=D — —n— k)
2 k ; Ki(n — &)

k=0

" n!
=) (D —.
;( e

Finally, we can factor out the »#! from all the terms and just have

n (_ l)k

k!

# derangements = n!
k=0
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A Ghastly Formula

The inclusion-exclusion formula is

A} U A U---U A, = Al + A2+ + A
— A1 N Al — [AL N A3l — - — [Ag N Ay
+]AT N AN A3l + AT N AN Agl £+ -
+]A, 2N A1 N A,
— e e
FIA NA NN A
Can this be rewritten without resorting to use of ellipsis (- - -)? Here we reduce

the formula so that it contains only a single ellipsis. You decide whether this is
better.

U
k=1

Can you invent a notation that does not require even one ellipsis?

n - k
B3I Sl aP®
k=1 Jj=1

l<a|<--<ap<n|j

Recap

We extended the simple formula |A U B| = |A| + |B| — |AN Bl to deal with the
size of the union of many sets in terms of the sizes of their various intersections.
We then showed how to apply inclusion-exclusion to some complicated counting
problems.

18 Exercises

18.1. There are four large groups of people, each with 1000 members. Any two
of these groups have 100 members in common. Any three of these groups
have 10 members in common. And there is 1 person in all four groups. All
together, how many people are in these groups?

18.2. Let A, B, and C be finite sets. Prove or disprove: If [A U B U C| =
[A| + |B| + |C], then A, B, and C must be pairwise disjoint.

18.3. How many five-letter “words” can you make in which no two consecutive
letters are the same? A “word” may be any list of the standard 26 letters,
s0 WENJW is a word you would count, but NUTTY is not.

Here is an easy solution: By the list-counting methods of Section 7,
the answer is 26 x 25 x 25 x 25 x 25 = 26 x 25

Give a hard solution using inclusion-exclusion, and then show that the
two answers are the same.

18.4. This problem asks you to give two proofs for

9 = ;(—1)" (Z) 107*,

a. The first proof should use the binomial theorem (see Theorem 16.8).
b. The second should be a combinatorial proof using inclusion-exclusion.
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18.5. How many six-digit numbers do not have three consecutive digits the same?

(For this problem, you may consider six-digit numbers whose initial digits
might be 0. Thus you should count 012345 and 001 122, but not 000987 or
122234))

18.6. Note the following: [A N B| = |A|+|B| —|AU B|. Find a general formula

for the size of the intersection of several finite sets in terms of the sizes of
their unions.

Chapter 3 Self Test

1.

Let R be the relation on the set of all human beings (not just those in your

family) defined by x R y if and only if x is a parent of y.

a. If x is you, describe the set of people {y : x R y}.

b. If y is you, describe the set of people {x : x R y}.

¢. Determine which of the following properties is satisfied by R: reflexive,
irreflexive, symmetric, antisymmetric, transitive.

d. Describe R

. Which of the following relations R defined on the set of all human beings (not

just those in your family) are equivalence relations?

a. x R y provided x and y have the same mother.

b. x R y provided x and y have the same mother and the same father.

¢. x R y provided x and y have at least one parent in common.

Let A = {1, 2, 3, 4}. How many different relations on A are there?

Let x and y be integers. Suppose x = » (mod 10) and x = y (mod 11).
Do these imply that x = y?

Let R ={(x,y):x,y € Zand x| = |y]].

a. Prove that R is an equivalence relation on the integers.

b. Find the equivalence classes [5], [—2], and [0].

. LetA=1{1,2.3}, B=1{4,5),and R = (A x A) U (B x B). Note that R is

an equivalence relation on A U B. Find all the equivalence classes of R.

. Let A = {1, 2,3, 4,5} and define an equivalence relation R on 2°by X RY

if and only if | X| = |¥|. How many equivalence classes does R have?

. Let P = {N, Z, P} be a parlition of the integers, 7 defined by

« N={xeZ:x <0},

« Z =1{0},and

« P={xeZ:x >0}
Describe the equivalence relation £ Your answer should be of the following
form: “Suppose x and y are integers. Then xéy if and only if ....”
Ten married couples are seated around a large circular table. In how many
different ways can they do this, assuming husbands and wives sit next to one
another? Please note that if everyone moves one (or more) places to the left,
the arrangement is not considered to be different.

. The letters in the word ELECTRICITY are scrambled to make two, possibly

nonsensical words (e.g., TREEL CICTY). How many such anagrams are
possible?
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11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Two children are playing tic-tac-toe. In how many ways can the first two moves
be made?

One possible answer is 9 x 8 = 72 since there are 9 locations for the first
player to mark X and, for each such choice, 8 locations for the second player
to mark O.

However, because of symmetry, some of these opening pairs of moves
are the same. For example, if the first player chooses a corner square and the
second player chooses the center, it doesn’t really matter which corner the first
player chose.

Taking this into account, in how many distinct ways can the first two
moves be made?

There are 21 students in a chemistry class. The students must pair up to work
as lab partners, but, of course, one student will be left over to work alone. In
how many ways can the students be paired up?

Let A = {1,2,3,...,100}. How many 10-clement subsets of A consist of
only odd numbers?

The expression (x + 2)°° is expanded. What is the coefficient of x'7?

Let n be a positive integer. Simplify the following expression:

n+m+D+m+2)4+---4+(2n).

In a school of 200 children, 15 students are chosen to be on the school’s math
team, and of those, 2 students are chosen to be co-captains. In how many ways
can this be done?

Let n and k be positive integers with & + 2 < n. Prove the identity

n+2 n ’ n n
<k+2> h (k) * (k+l> * (k+2)

by the following two methods: combinatorially and by use of Pascal’s Identity

(Theorem 16.10).

A pizza restaurant features ten different kinds of toppings. When you order a

quadruple pie, you get to pick four toppings on your pizza.

a. How many different quadruple pizzas can be made if the four toppings
must be different?

b. How many different quadruple pizzas can be made if toppings may be
repeated (e.g., onions, olives, and double mushrooms, or triple anchovies
and garlic).

Letn be a positive integer. How many multisets can be made using the numbers

1 through n, where each is used at most three times? Be sure to justify your

answer.

For example, if n = 5, then we would count (1, 2,2, 3) and (1, 2, 3, 4,
4,4, 5), but we would not count {1,2,4,4,4,4,4,4,4) (too many 4s) or
(3, 4, 6) (6 is not in the range from 1 to n).

The squares of a 4 x 4 checkerboard are colored black or white. Use inclusion-

exclusion to find the number of ways the checkerboard can be colored so that

no row is entirely one color.

Explain why your expression simplifies to 14*.
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A4

More Proof

Thus far we have used primarily one proof technique known as direct proof. In
this method, we work from hypothesis to conclusion, showing how each statement
follows from previous statements. The central idea is to unravel definitions and
bridge the gap from what we have to what we want.

We are now ready for, and need, more sophisticated proof methods. In this
chapter, we present two powerful methods: proof by contradiction and proof by
induction (and its variant proof by smallest counterexample).

19

Contradiction

Most theorems can be expressed in the if-then form. The usual way to prove “If
A, then B” is to assume the conditions listed in A and then work to prove the
conditions in B (see Proof Template 1). In this section, we present two alternatives
to the direct proof method.

Proof by Contrapositive

The statement “If A, then B” is logically equivalent to the statement “If (not B),
then (not A).” The statement “If (not B), then (not A)” is called the contrapositive
of “If A, then B.”

Why are a statement and its contrapositive logically equivalent? For “If A,
then B” to be true, it must be the case that whenever A is true, B must also be true.
If it ever should happen that B is false, then it must have been the case that A was
false. In other words, if B is false, then A must be false. Thus we have “If (not B),
then (not A).”

Here’s another explanation, We know that “If A, then B” is logically equivalent
to “(not A) or B” (see Exercise 3.3). By the same reasoning, “If (not B), then
(not A)” is equivalent to “(not (not B)) or (not A),” but “not (not B)” is the same
as B, so this becomes “B or (not A),” which is equivalent to “(not A) or B.” In
symbols,

a—=>b = (ma)vbhb = (—E=b))V(ma) = (=b)— (—a).

135
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Proof Template 11

If these explanations are difficult to follow, here is a mechanical way to pro-
ceed. We build a truth table for a — b and (—=b) — (—aS and see the same
results.

a b a— b —b —q (=b) - (—a)
T T T F F T
T F F T F F
F T T F T T
F F T T T T

The bottom line is this: To prove “If A, then B.” it is acceptable to prove “If
(not B), then (not A).” This is outlined in Proof Template 11.

Proof by contrapositive

To prove “If A, then B”: Assume (not B) and work to prove (not A).

Let’s work through an example.

Proposition 19.1

Let R be an equivalence relation on a set A and let a, b € A. If a R b, then
[al N [b] = 0.

We have essentially proved this already (see Proposition 14.12). Our pur-
pose here is to illustrate proof by contrapositive. We set up the proof using Proof
Template 11.

Let R be an equivalence relation on a set A and let a, b € A. We prove the
contrapositive of the statement.
Suppose [a] N [b] # @. ... Therefore a R b. ]

The key point to observe is that we suppose the opposite of the conclusion
{not [a] N [0] = @) and work toward proving the opposite of the hypothesis (not
aRb;ie.,aRb).

Notice that we alerted our reader that we are not using direct proof by an-
nouncing that we are going to prove the contrapositive.

To continue the proof, we observe that [a]N{b] # @ means there is an element
in both [a] and [b]. We put this into the proof.

Let R be an equivalence relation on a set A and let a, b € A. We prove the
contrapositive of the statement.

Suppose [a] N [b] # . Thus there is an x € [¢] N [b]; that is, x € [a]
and x € [b]. ... Therefore a R b. n




Proof by contradiction is
also called indirect proof.

One mistake. Here is
another way to think about
proof by contradiction. We
assume A and (not B) and
then follow with valid
reasoning until we reach
an impossible situation.
This means there must

be a mistake. If all our
reasoning is valid, and
since we are allowed (o
assume A, the mistake
must have been in
supposing (not B). Since
(not B) is the mistake, we
must have B,

Proof Temiplate 12
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We use the definition of equivalence class to finish.

Let R be an equivalence relation on a set A and let a, b € A. We prove the
contrapositive of the statement.

Suppose [a] N [b] # @. Thus there is an x € [a] N [b]; thatis, x € [a]
and x € [b]. Hence x Ra and x R b. By symmetry a R x, and since x R b,
by transitivity we have a R b. [ ]

Is there an advantage to proof by contrapositive? Yes. Try proving Proposi-
tion 19.1 by direct proof. We would assume a R b and try to show [a] N [b] = @.
How would we unravel the hypothesis ¢ R »? How do we show that two sets have
nothing in common? We don’t have good ways of accomplishing these tasks; a di-
rect proof here looks hard. By switching to the contrapositive, we have conditions
that are easier for us to use.

Reductio Ad Absurdum

Proof by contrapositive is an alternative to direct proof. If you can’t find a direct
proof, try proving the contrapositive. Wouldn’t it be nice if there were a proof
technique that combined both direct proof and proof by contrapositive? There is!
1t is called proof by contradiction or, in Latin, reductio ad absurdum. Here is how
it works.

We want to prove “If A, then B.” To do this, we show that it is impossible
for A to be true while B is false. In other words, we want to show that “A and
(not B)” is impossible.

How do we prove that something is impossible? We suppose the impossible
thing is true and prove that this supposition leads to an absurd conclusion. If a
statement implies something clearly wrong, then that statement must have been
false!

To prove “If A, then B,” we make two assumptions. We assume the hypothesis
A and we assume the opposite of the conclusion; that is, we assume (not B). From
these two assumptions, we try to reach a clearly false statement. The general outline
is given in Proof Template 12.

Proof by contradiction:

To prove “If A, then B”;
We assume the conditions in A.
Suppose, for the sake of contradiction, not B.
Argue until we reach a.contradiction.
S& ]

(The symbol => <= is an abbreviation for the following: Thus we have reached
a contradiction: Therefore the supposition (not B) must be false. Hence B is
true.)
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Let us present a formal description of proof by contradiction and then give an
example. ¢

We want to prove a statement of the form “If A, then B.” To do this, we assume
A and (not B) and show this implies something false. Symbolically, we want to
show a — b. To do this, we prove (a A —b) — FALSE. These two are logically
equivalent,

Proposition 19.2

The Boolean formulas a — & and (a A —b) — FALSE are logically equivalent.

Proof. To see that these two are logically equivalent, we build a truth table.

a b a—b a A —b (a A —b) — FALSE
T T T F T
T F F T F
F T T F T
F F T F T
Therefore @« — b = (a A —=b) — FALSE. u

Let’s apply this method to prove the following:

Proposition 19.3

No integer is both even and odd.

Reexpressed in if-then form, Proposition 19.3 reads, “If x is an integer, then
x is not both even and odd.”
Let’s set up a proof by contradiction.

Let x be an integer.
Suppose, for the sake of contradiction, that x is both even and odd.

That is impossible. Thus we have reached a contradiction, 8o our sup-
position (that x is both even and odd) is false. Therefore x is not both even
and odd, and the proposition is proved. | |

Several comments are in order:

+ The first sentence gives the hypothesis (let x be an integer).
+  The second sentence serves two purposes.
First, it announces to the reader that this is going to be a proof by contra-
diction using the phrase “for the sake of contradiction.”
Second, it supposes the opposite of the conclusion. The supposition is
that x is both even and odd.
 The next sentence reads, “That is impossible.” We don’t know what the an-
tecedent to “That” is! What is impossible? We don’t know yet! As the proof
develops, we hope to run into a contradiction.
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«  Given that we have reached a contradiction, here is how we finish the proof. We
say that the supposition is impossible because it leads to an absurd statement.
Therefore the supposition (not B) must be false. Hence the conclusion (B)
must be true.

The last few sentences of a proof by contradiction are almost always
the same. Mathematicians use a special symbol to abbreviate a lot of words.
The symbol is =»<=. The image is that two implications are crashing into one
another.

The symbol =<« is an abbreviation for “Thus we have reached a contra-
diction; therefore the supposition is false.”

The supposition is that which we have supposed—namely, (not B).

We don’t know (yet) what contradiction we might reach. Let’s just continue
working with what we have. We know that x is both even and odd, so we unravel.

Let x be an integer.
Suppose, for the sake of contradiction, that x is both even and odd.
Since x is even, we know 2|x; that is, there is an integer a such that
x =2a.
Since x is odd, we know that therc is an integer b such that x = 26 + 1.

=<« Therefore x is not both even and odd, and the proposition is
proved. [ ]

No contradiction yet. The definitions are completely unraveled. What we
have to work with is x = 2a¢ = 2b + 1 where a and b are integers. Somehow,
we need to manipulate these into something false. Let’s try dividing the equation
x = 2a = 2b + 1 through by 2 to give § = a = b + % and this says that one
integer is just 1 bigger than another (i.e., a—b=1), buta — b is an integer and
% is not! A number (a — b) cannot be both an integer and not an integer! That’s a
contradiction. Hurray!! Let’s put it into the proof. (Notice we didn’t use 7 in the
contradiction, so we can simplify this a bit.)

Let x be an integer.
Suppose, for the sake of contradiction, that x is both even and odd.
Since x is even, we know 2|x; that is, there is an integer a such that
x =2a.
Since x is odd, we know that there is an integer b such thatx = 26 + 1.
Therefore 2a = 2b + 1. Dividing both sides by 2 gives a = b + i
soa—b = % Note that ¢ — b is an integer (since ¢ and b are integers)
but % is not an integer. =><= Therefore x is not both even and odd, and the
proposition is proved. n

This completes the proof. We did not know when we began this proof that
the absurdity we would reach is that % is an integer. This is typical in a proof
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Proof Template 13

Proof Template 14 Proving unigueness.

by contradiction; we begin with A and (not B) and see where the implications
lead.
Proposition 19.3 can also be expressed as follows. Let

X ={x e€Z:xiseven}, and
Y ={x € Z:x1isodd}.

Then X NY = 0.
Proof by contradiction is usually the best technique for showing that a set is
empty. This is worth codifying in a proof template.

Proving that a set is empty.
To prove a set is empty:

Assume the set is nonempty and argue to-a contradiction.

Proof Template 13 is appropriate to prove statements of the form “There is no
object that satisfies conditions.”

Contradiction is also the proof technique of choice when proving unigueness
statements. Such statements assert that there can be only one object that satisfies
the given conditions.

Mathspeak!

You would think that mathematicians, of all people, would use the word two correctly.
So it may come as a surprise that when mathematicians say “two” they sometimes
mean “one or two.” Here is an example. Consider the following statement: Every
positive even integer is the sum of two odd positive integers. Mathematicians consider
this statement to be true despite the fact that the only way to write 2 as the sum of two
positive odd numbers is 2 = 1 + 1. The two odd numbers in this case are 1 and 1. The
two numbers just happen to be the same.

The phrase “Let x and y be two integers . ..” allows for the integers x and y to be
the same. This is the convention, albeit a slightly dangerous one. It would be better
simply to write, “Let x and y be integers....”

Occasionally we truly wish to eliminate the possibility that x = y. In this case, we
write, “Let x and v be two different integers...” or “Let x and y be two distinct
integers....”

To prove there is at most one object that satisfies conditions:
Proof: Suppose: there. are two different objects, x and y, that sansfy
conditions.
Argue to a contradiction.

Often the contradiction in a uniqueness proof is that the two allegedly different
objects are in fact the same. Here is a simple example.

Proposition 19.4 Leta and b be numbers witha % 0. There is at most one number x withax +b = 0.
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Proof. Suppose there are two different numbers x and y such that ax +b =0
and ay 4+ b = 0. This gives ax + b = ay + b. Subtracting b from both sides gives
ax = ay. Since a # 0, we can divide both sides by a to give x = y.=<= [

A Matter of Style

Proof by contradiction of “If A, then B” is often easier than direct proof because
there are more conditions available. Instead of starting with only condition A and
trying to demonstrate condition B, we start with both A and (not B) and hunt for
a contradiction. This gives us more material with which to work.

Sometimes, when you elect to write a proof by contradiction, you may discover
that proof by contradiction was not really required and a simpler sort of proof is
possible. A proof is a proof, and you should be happy to have found a correct
proof. Nonetheless, a simpler way to present your argument is always preferable.
Here is how to tell when you can simplify a proof of “If A, then B.”

You assumed A and (not B). You used only the hypothesis A, and the contra-
diction you reached was B and (not B).

In this case, you really have a direct proof and you can remove the extra-
neous proof-by-contradiction apparatus.

« You assumed A and not B. You used only the supposition (not B), and the

contradiction you reached was A and (not A).

In this case, you really have a proof by contrapositive. Rewrite it in that
form.

Recap

We introduced two new proof techniques for statements of the form “If A, then
B In a proof by contrapositive, we assume (not B) and work to prove (not A).
In a proof by contradiction, we assume both A and (not B) and work to produce a
contradiction.

19 Exercises

19.1. Please state the contrapositive of each of the following statements:

If x is odd, then x? is odd.

If p is prime, then 27 — 2 is divisible by p.

If x is nonzero, then x? is positive.

If the diagonals of a parallelogram are perpendicular, then the parallcl-

ogram is a rhombus.

e. If the battery is fully charged, the car will start.
f. If Aor B, then C.

19.2. What is the contrapositive of the contrapositive of an if-then statement?

19.3. A statement of the form “A if and only if B” is usually proved in two parts:
one part to show A = B and another to show B = A.

Explain why the following is also an acceptable structure for a proof.
First prove A = B and then prove =A = —B.

19.4. For each of the following statements, write the first sentences of a proof
by contradiction (you should not attempt to complete the proofs). Please
use the phrase “for the sake of contradiction.”

a. fAC Band B C C,then A C C.

o gp
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b. The sum of two negative integers is a negative integer.
¢. If the square of a rational number is an integer, then the rational number
must also be an integer.
d. If the sum of two primes is prime, then one of the primes must be 2.
e. A line cannot intersect all three sides of a triangle.
f. Distinct circles intersect in at most two points.
g. There are infinitely many primes.
19.5. Prove by contradiction that consecutive integers cannot be both even.
19.6. Prove by contradiction that consecutive integers cannot be both odd.
19.7. Prove by contradiction: If the sum of two primes is prime, then one of the
primes must be 2.
You may assume that every integer is either even or odd, but never both.
19.8. Let A and B be sets. Prove by contradiction that (A — B) N (B — A) = 0.
19.9. Let A and B be sets. Prove ANB = @ifandonly if (A x B)N(Bx A) = .
19.10. Prove the converse of the Addition Principle (Corollary 11.8). The converse
of a statement “If A, then B’ is the statement “If B, then A” In other words,
your job is to prove the following:
Let A and B be finite sets. If |[A U B| = |A| + |Bl,then AN B = @.
19.11. Let A be a subset of the integers.
a. Write a careful definition for the smallest element of A.
b. Let E be the set of even integers; that is, E = {x € Z : 2|x}. Prove by
contradiction that E has no smallest element.
¢. Prove thatif A € Z has a smallest element, it is unique.

20

Proof by contradiction as
proof by lack of
counterexample.

Smallest Counterexample

In Section 19 we developed the method of proof by contradiction. Here is another
way we can think about this technique.

We want to prove a result of the form “If A, then B.” Let’s suppose this
result were false. If that were the case, there would be a counterexample to the
statement. That is, there would be an instance where A is true and B is false.
We then analyze that alleged counterexample and produce a contradiction. Since
the supposition that there is a counterexample leads to an absurd conclusion (a
contradiction), that supposition must be wrong; there is no counterexample. Since
there is no counterexample, the result must be true.

For example, we showed that no integer could be both even and odd. We can
rephrase the argument as follows:

Suppose the statement “No integer is both even and odd” were false. Then
there would be a counterexample; let’s say x were such an integer (i.e., x is
both even and odd). Since x is even, there is an integer a such that x = 2a.

Since x is odd, there is an integer b such that x = 2h + 1. Thus2a =2b+1,
which implies a — b = % Since g and b are integers, sois a — b, =& (%

is not an integer). [ |

In this section, we extend this idea by considering smallest counterexamples.
It’s a little idea that wields enormous power. The essence of the idea is that we not
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only consider an alleged counterexample to an if-then result, we consider a smallest
counterexample. This needs to be done carefully, and we explore this idea at length.

We have not yet proved a fact you know well: Every integer is even or odd.
We have shown that no integer can be both even and odd, but we have not yet ruled
out the possibility that some integer is neither. It is sensible to try to prove this by
contradiction. We would structure the proof as follows:

Suppose, for the sake of contradiction, that there were an integer x that
is neither even nor odd. ...=><= Therefore every integer is either even or
odd. .

Next we could unravel definitions as follows:

Suppose, for the sake of contradiction, that there were an integer x that is
neither even nor odd. So there is no integer a with x = 2a and there is no
integer b with x = 2b + 1.... =« Therefore every integer is either even
or odd. ]

And now we’re stuck. What do we do next? We need a new idea. The new idea is
to consider a smallest counterexample. We begin with a restricted version of what
we are trying to prove.

Proposition 20.1

Every natural number is either even or odd.

Note that we are just proving that every natural number (member of N) is
cither even or odd; we’ll extend this to all integers later. (The reason for this
restriction is presented later.)

We begin the proof using the idea of smallest counterexample.

Suppose, for the sake of contradiction, that not all natural numbers are even
orodd. Then there is a smallest natural number, x, that is neither even nor odd.
L= ]

Why did we restrict the scope of Proposition 20.1 to natural numbers? If we
were trying to prove that every integer is either even or odd, we could not rule
out the possibility that there might be infinitely many counterexamples, marching
off to —o0. Then we could not sensibly talk about the smallest counterexample. It
is akin to talking about the smallest odd integer; there is no such thing! The odd
nurobers descend forever —3, —5, —7, ... ; there is no smallest odd integer.

On the other hand, the natural numbers do not descend forever; they “stop” at
zero. It makes sense to speak of the smallest odd natural number, namely 1.

This is why we proved Proposition 20.1 only for natural numbers. We extend
this result to all integers after we complete the proof.

Let us return to the proof. We add the next sentence to the proof, and let me
warn you that the next sentence has an error! Read the sentence carefully and try
to find the mistake.
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Suppose, for the sake of contradiction, that not all natural numbers are even
or odd. Then there is a smallest natural number, x, that is neither even nor
odd. Since x — 1 < x, we see that x — 1 is a smaller natural number and
therefore is not a counterexample to Proposition 20.1.

= |

Do you see the problem? It is subtle. Let’s dissect the new sentence.

Since x — 1 < x.... No problem here. Obviously x — 1 < x.

..x — 1 ... is not a counterexample to Proposition 20.1. No problem here
either. We know x is the smallest counterexample. Because x — 1 is smaller
than x, it is not a counterexample to Proposition 20.1.

Where is the problem?
...natural number. ... How do we know x — 1 is a natural number? Here’s
the mistake. We do not know that x — 1 is a natural number because we have
not ruled out the possibility that x = 0.

Now it is not hard to rule out x = 0; we simply haven’t done it yet. Let’s take

care of this seemingly minor point.

Suppose, for the sake of contradiction, that not all natural numbers are even
or odd. Then there is a smallest natural number, x, that is neither even nor
odd.

We know x # 0 because 0 is even. Therefore x > 1.

Since 0 < x — 1 < x, we see that x — 1 is a smaller natural number and
therefore is not a counterexample to Proposition 20.1.

o= |

We can now continue the proof. We know thatx — 1 € Nand x — 1 is nota

counterexample to the proposition. What does this mean? It means that since x — 1
is a natural number, it must be either even or odd. We don’t know which of these
might be true, so we consider both possibilities.

Suppose, for the sake of contradiction, that not all natural numbers are even
or odd. Then there is a smallest natural number, x, that is neither even nor
odd.

We know x # 0 because 0 is even. Therefore x > 1.

Since 0 < x — 1 < x, we see that x — 1 is a smaller natural number and
therefore is not a counterexample to Proposition 20.1.

Therefore x — 1 is either even or odd. We consider both possibilities.

(1) Suppose x — lisodd....
(2) Suppose x — liseven....

L= ]
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Now we unravel definitions. In case (1), x — 1isodd, sox — 1 = 2a + 1 for
some integer a. In case (2), x — 1 is even, so x — 1 = 2b for some integer b.

Suppose, for the sake of contradiction, that not all natural numbers are even
or odd. Then there is a smallest natural number, x, that is neither even nor
odd.

We know x # 0 because 0 is even. Therefore x > 1.

Since 0 < x — 1 < x, we see that x — 1 is a smaller natural number and
therefore is not a counterexample to Proposition 20.1.

Therefore x — 1 is either even or odd. We consider both possibilities.

(1) Suppose x — 1 is odd. Therefore x — 1 = 2a + 1 for some integera. ...
(2) Suppose x — 1 is even. Therefore x — 1 = 2b for some integer b. ...

N O n

Incase (1),wehavex —1 =2a+1,s0x =2a+2=2(a+1),s0x is even;
this is a contradiction to the fact that x is neither even nor odd. In case (2), we get
a similar contradiction.

Suppose, for the sake of contradiction, that not all natural numbers are even
or odd. Then there is a smallest natural number, x, that is neither even nor
odd.

We know x = 0 because 0 is even. Therefore x > 1.

Since 0 < x — 1 < x, we see that x — 1 is a smaller natural number and
therefore is not a counterexample to Proposition 20.1.

Therefore x — 1 is either even or odd. We consider both possibilities.

(1) Suppose x — 1 is odd. Therefore x — 1 = 2a + 1 for some integer a.
Thus x = 2a + 2 = 2(a + 1), so x is even =><= (x is neither even nor
odd).

(2) Suppose x — 1 is even. Therefore x — 1 = 2b for some integer b. Thus
x = 2b + 1, so x is odd = <« (x is neither even nor odd).

In every case, we have a contradiction, so the supposition is false and
the proposition is proved. [ ]

Let us summarize the main points of this proof.

« Itis a proof by contradiction.
«  We consider a smallest counterexample to the result.
. We need to treat the very smallest possibility as a special case.
3 «  We descend to a smaller case for which the theorem is true and work back.

Before we present another example, let us finish the job we set out to
accomplish.
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ProofTefnplate 15  Proof by smallest counterexample.

Corollary 20.2  Every integer is either even or odd. ¥

The key idea is that either x > O (in which case we are finished by Proposi-
tion 20.1) or else x < O (in which case —x € N, and again we can use Proposi-
tion 20.1).

Proof. Let x be any integer.
If x > 0, then x € N, so by Proposition 20.1, x is either even or odd.
Otherwise, x < 0. In this case —x > 0, so —x is either even or odd.

« If —x is even, then —x = 24 for some integer a. But then x = —2a = 2(—a),
SO X is even.

. If —x is odd, then —x = 2b + 1 for some integer b. From this we have
x=-2b—-1=2(-b—-1)+ 1, so x is odd.

In every case, x is either even or odd. ]

Proof Template 15 gives the general form of this technique.

First, let x be a smallest counterexample to the result we are trying to prove: It
must be clear that there can be stch an x,

Second, rule out x being the very smallest possibility. This (usually easy)
step is called the basis step. : '

Third, consider an instance x of the result that is “just” smaller than x.
Use the fact that the result for x”is trite but the result for x is false to reach a
contradiction =<=.

Conclude that the result is true. ~ n

Here is another proposition we prove using the smallest-counterexample
method.

Proposition 20.3  Let n be a positive integer. The sum of the first n odd natural numbers is n-.

2

The first # odd natural numbers are 1,3, 5, ..., 2n — 1. The proposition claims
that

143454 +Qn—1)=n?

or, in Y notation,

Z(zk -1 =n
k=1

For example, withn = Swehave 1 +3+5+7+9 =25=5%




The absolute importance
of the basis step.
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Proof. Suppose Proposition 20.3 is false. This means that there is a smallest
positive integer x for which the statement is false (i.e., the sum of the first x odd
numbers is not x?); that is,

143454 +@Q2x—1) #x% (6)

Note that x # 1 because the sum of the first 1 odd numbers is 1 = 12. (This
is the basis step.)

So x > 1. Since x is the smallest number for which Proposition 20.3 fails and
since x > 1, the sum of the first x — | odd numbers must equal (x — 1)?; that is,

143454+ +Rx—-D—=1]=x-D% N

(So far this proof has been on “autopilot.”” We are simply using Proot Tem-
plate 15.)

Notice that the left-hand side of (7) is one term short of the sum of the first x
odd numbers. We add one more term to both sides of this equation to give

T43 45+ +RE=-D—-1+2x—D=x-1D*+Q2x - 1.
The right-hand side can be algebraically expanded; thus

1+3 454+ +R2x-D—-1]+2x—D=Gx-1D"+2x -1

=xP=2x+D+Q2x -1
:x2

contradicting (6).=>< |

In the two proofs we have considered thus far, there is a basis step. In the
proof that all natural numbers are either even or odd, we first checked that 0 was
not a counterexample. In the proof that the sum of the first # odd numbers is #?,
we first checked that 1 was not a counterexample. These steps are important. They
show that the immediate smaller case of the result still makes sense. Perhaps the
best way to convince you that this basis step is absolutely essential is to show how
we can prove an erroneous result if we omit it.

Statement 20.4

(false) Every natural number is both even and odd.

Obviously Statement 20.4 is false! Here we give a bogus proof using the
smallest-counterexample method, but omitting the basis step.

Proof. Suppose Proposition 20.4 is false. Then there is a smallest natural number
x that is not both even and odd. Consider x — !. Sincex — 1 < x,x — lisnota
counterexample to Proposition 20.4. Therefore x — 1 is both even and odd.

Since x — 1 is even, x — 1 = 2a for some integer ¢, and so x = 2a + 1, so x
is odd.
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Since x — 1 is odd, x — 1 = 2b + 1 for some integer b, and so x = 2b+ 2=
2(b + 1), s0 x is even. £
Thus x is both even and odd, but x is not both even and odd. =< ]

The proof is 99% correct. Where is the mistake? The error is in the sentence
“Therefore x — 1 is both even and odd.” Tt is correct that x — 1 is not a counterex-
ample, but we do not know that x — 1 is a natural number. We do not know this
because we have not ruled out the possibility that x — 1= —1(@e,x =0.0f
course, no natural number is both even and odd. So the smallest patural number
that is not both even and odd is zero (the exact problem case!).

Well-Ordering

Let us take a closer look at the proof—by-smallest-counterexample technique. We
saw that it was appropriate o apply this technique to showing that all natural
numbers are either even or odd, but the method is invalid for integers. The differ-
ence is that the integers contain infinitely descending negative numbers. However,
consider the following statement and its bogus proof.

Statement 20.5 (false) Every nonnegative rational number is an integer.

Recall that a rational number is any number that can be expressed as a fraction
a/b where a, b € 7 and b # 0. This statement is asserting that numbers such as
Ti are integers. Ridiculous! Notice, however, that the statement is restricted to
nonnegative rational numbers; this is analogous t0 Proposition 20.1, which was
restricted to nonnegative integers.

Let’s look at the “proof.”

Proof. Suppose Statement 20.5 were false. Let x be a smallest counterexample.

Notice that x = 0isnota counterexample because 0 1s an integer. (This is the
basis step.)

Since x is anonnegative rational, sois x /2. Furthermore, since x = 0, weknow
that x/2 < x, 80 x/2 is smaller than the smallest counterexample, x. Therefore
x/2isnota counterexample, so x/2 is an integer. Now x = 2(x/2), and 2 times
an integer is an integer; therefore x is an integer. =< | |

What is wrong with this proof? It looks like we followed Proof Template 15,
and we even remembered to do a basis step (we considered x = 0).

The problem is in the sentence “Let x be a smallest counterexample.” There
are infinitely many counterexamples to Statement 20.5, including 3. 1 5 Lo
These form an infinite descent of counterexamples, and so there can be no smallest
counterexample!

We need to worry that we do not make subtle mistakes like the “proof” of
Statement 20.5 when we use the proof—by-smallest—counterexample technique. The
central issue is: When can we be certain to find a smallest counterexample?

The guiding principle is the following.

s —
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Statement 20.6

(Well-Ordering Principle) Every nonempty set of natural numbers contains a
least element.

The term well-ordered
applies to an ordered set
ie.,aset X witha <
relation). The set X is
called well-ordered if
every nonempty subset of
X contains a least element.

Example 20.7 Let P = {x € N : xisprime}. This set is a nonempty subset of the natural
numbers. By the Well-Ordering Principle, P contains a least element. Of course,
the least element in P is 2.

Example 20.8 Consider the set

X = {x € N: x is even and odd}.

We know that this set is empty because we have shown that no natural number
is both even and odd (Proposition 20.1). But for the sake of contradiction, we
suppose that X # ; then, by the Well-Ordering Principle, X would contain a
smallest element. This is the central idea in the proof of Proposition 20.1.

Example 20.9

The Well-Ordering
Principle is an axiom of
the natural numbers.

In contradistinction, consider the set
Y={yeQ:y>0, y¢Z}.

The bogus proof of Statement 20.5 sought a least element of ¥. We subsequently
realized that ¥ has no least element, and that was the error in our “proof.” The
Well-Ordering Principle applies to N, but not to Q.

Notice that we called the Well-Ordering Principle a starement; we did not call
it a theorem. Why? The reason harks back to the beginning of this book. We could,
but did not, define exactly what the integers are. Were we to go through the difficult
task of writing a careful definition of the integers, we would begin by defining
the natural numbers. The natural numbers are defined to be a set of “objects” that
satisfy certain conditions; these defining conditions are called axioms. One of these
defining axioms is the Well-Ordering Principle. So the natural numbers obey the
Well-Ordering Principle by definition. There are other ways to define integers and
natural numbers, and in those contexts one can prove the Well-Ordering Principle.
If you are intrigued about how all this is done, I rccommend you take a course in
foundations of mathematics (such a course might be called Logic and Set Theory).

In any case, our approach has been to assume fundamental properties of the
integers; we take the Well-Ordering Principle to be one of those fundamental
properties.

The Well-Ordering Principle explains why the smallest-counterexample tech-
nique works to prove that natural numbers cannot be both even and odd, but it does
not work to prove that nonnegative rationals are integers.

Proof Template 16 gives an alternative to Proof Template 15 that explicitly
uses the Well-Ordering Principle.
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Proof Template 16 Proof by the Well-OrderingyPrinciplé. ‘

To prove a statement about natural numbers:

Proof.  Suppose, for the sake of contradiction, that the statement is false. Let
X < N be the set of counterexamples to the statement. (I‘like the letter X for
eXceptions.) Since we have supposed the statement is false, X % . By the
Well-Ordering Principle, X contains a least element, x.

(Basis step.):We know thatx = 0 because sh:ow thar the result halds for 0;
this is usually easy,

Consider x — 1. Since x > 0, we know that x —~1 = N and the statement
is true for x — 1 (because x — 1 < x). From here we argue to u contradiction,
often that x both is and is not a counterexample to the statement,=><= [ ]

Here is an example of how to use Proof Template 16.

Proposition 20.10

Letn e N.Ifa # Oand a # 1, then

0 1 2 . at =1
a +a +a+---+a Zﬁ (8)

In fancy notation, we want to prove

n+l 1

t a
E at = —T
k=0 a-—

We rule out a = 1 because the right-hand side would be s. We alsorule outa =0
to avoid worrying about 0°. If we take 0° = 1, then the formula still works.

Proof. We prove Proposition 20.10 using the Well-Ordering Principle.
Suppose, for the sake of contradiction, that Proposition 20.10 were false. Let
X be the set of counterexamples—that is, those integers n for which Equation (8)

does not hold. Hence
—1
= { nelN: E ak } .

As we have supposed that the proposition is false, there must be a counterexample,
so X #£ .

Since X is a nonempty subset of N, by the Well-Ordering Principle, it contains
a least element x.

Note that for n = 0, Equation (8) reduces to

1=al—l

a—1

and this is true. This means that » = 0 is not a counterexample to the proposition.
Thus x # 0. (This is the basis step.)
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Therefore x > 0. Nowx — 1 € Nand x — 1 ¢ X because x — 1 is smaller
than the least element of X. Therefore the proposition holds for n = x — 1, so we
have

-1
a°+a1+a2+---+a"_1=a '
a—1
We add a* to both sides of this equation to get
*—1
a0+a1+a2+--~+ax—l+ax=a 1+ax. 9
a—

Putting the right-hand side of Equation (9) over a common denominator gives
ax—1+x_ax—1+x a—1
a—1 T “\a-1

a* —1+a*t —a*

a—1
ax+| -1
T oa-—1
and so
) ax+1 -1
a+a' +at+-4a =
a—1
This shows that x satisfies the proposition and is therefore not a counterexample,
contradicting x € X.=<« [

Proof Template 16 is more rigidly specified than Proof Template 15. Often you
will need to modify Proof Template 16 to suit a particular situation. For example,
consider the following:

Proposition 20.11

For all integers n > 5, we have 2" > n”.

Notice that the inequality 2" > r® is not true for a few small values of n:

n 0 ] 2 3 4 5
on 1 2 4 8 16 32
n2 0 1 4 9 16 25

Thus Proposition 20.11 does not apply to all of N. We need to modify Proof
Template 16 slightly. Here is the proof of Proposition 20.11:

Proof. Suppose, for the sake of contradiction, Proposition 20.11 were false. Let
X be the set of counterexamples; that is,

X={neZ:n=5 2"#n?.

Since our supposition is that the proposition is false, we have X # . By the
Well-Ordering Principle, X contains a least element x.
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We claim that x 5 5. Note that 2° = 32 > 25 = 5%, 50 5,is not a counter-
example to the proposition (i.e., x ¢ X), and hence x 5. Thus x > 6.

Now consider x — 1. Since x > 6, we have x — 1 > 5. Since x is the least
element of X, we know that the proposition is true for n = x — 1; that is,

2l (x = DA (10)

We know 2¢7! = 1.2"and (x — 1)> = x* — 2x + 1, so Equation (10) can be
rewritten as

1
— 2% > x2 - 2x + 1.
5 > X X +

Multiplying both sides by 2 gives

2% > 2x% —4x + 2. (11
We will be finished once we can prove

2x% —4x +2 = X2 (12)
To prove Equation (12), we just need to prove

X2 —dx +4 > 2. (13)

We got Equation (13) from Equation (12) by adding 2 — x? to both sides. Notice
that Equation (13) can be rewritten

(x —2)? > 2. (14)

So we have reduced the problem to proving Equation (14), and to prove that, it
certainly is enough to prove

x—=2>2. (15)

and that’s true because x > 6 (all we need is x > 4). [ |

The only modification to Proof Template 16 is that the basis case was x =5
instead of x = 0.

We present another example where we need to modify slightly the Well-
Ordering Principle method. This example involves the following celebrated se-
quence of numbers.

Definition 20.12

(Fibonacci numbers) The Fibonacci numbers are the list of integers
(1, 1, 2, 3, 5, 8, .- ) = (F(), Fl, Fz, .. ) where

Fy=1,

Fi =1, and

F,=F,_+ F,_, forn> 2.

In words, the Fibonacci numbers are the sequence that begins 1, 1, 2, 3, 5,
8, ... and each successive term is produced by adding the two previous terms. We
label these numbers F,, (starting with Fp).
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Proposition 20.13

Foralln € N, we have F, < 1.7,

Proof. Suppose, for the sake of contradiction, that Proposition 20.13 were false.
Let X be the set of counterexamples; that is,

X={neN:F, £1.7%.

Since we have supposed that the proposition is false, we know that X s #. Thus,
by the Well-Ordering Principle, X contains a least element x.

Observe that x # Obecause Fy = 1 = 1.7%and x % 1 because F; =1 < 1.7%.

Notice that we have considered two basis cases: x # 0 and x # 1. Why? We
explain in just a moment.

Thus x > 2. Now we know that

Fx = Fx—l -+ Fx—2 (16)
and we know, since x — 1 and x — 2 are natural numbers less than x, that
Foo<177% and F_, <17°. (17)

This is why! We want to use the fact that the proposition is true for x — 1 and x — 2
in the proof. We cannot do this unless we are sure that x — 1 and x — 2 are natural
numbers; that is why we must rule out both x = O0and x = 1.
Combining Equations (16) and (17), we have
Fo=F_ 1+ F

< 1.7 17

=1.717+1D

= 1.7"2(2.7)
1.7572(2.89)
= 1.7%7%(1.7%)
= 1.7%,

A

(The trick was recognizing 2.7 < 2.89 = 1.7%.)
Therefore Proposition 20.13 is true for n = x, contradicting x € X. =<« ®

Recap

In this section, we extended the proof-by-contradiction method to proof by smallest
counterexample. We refined this method by explicit use of the Well-Ordering
Principle. We underscored the vital importance of the (usually easy) basis case.

20 Exercises

3

20.1. What is the smallest positive real number?

20.2. Prove by the techniques of this section that 1 +-2+3+4---+n = %(n) (n+1)
for all positive integers n.

20.3. Prove by the techniques of this section that n < 2" forall n € N.

20.4. Prove by the techniques of this section that n! < " for all positive integers 7.
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20.5. The inequality £, > 1.6" is true once n is big enough. Do somg calculations
to find out from what value » this inequality holds. Prove your assertion.

20.6. Calculate the sum of the first » Fibonacci numbers forn = 0,1,2,...,5.
In other words, calculate

FO+F1+"'+Fn

for several values of n.
Formulate a conjecture about these sums and prove it.
20.7. Criticize the following statement and proof:
Statement. All natural numbers are divisible by 3.

Proof. Suppose, for the sake of contradiction, the statement were false. Let
X be the set of counterexamples (i.e., X = {x € N : x is not divisible by 3}).
The supposition that the statement is false means that X # @. Since X is a
nonempty set of natural numbers, it contains a least element x.

Note that 0 ¢ X because 0 is divisible by 3. So x # 3.

Now consider x — 3. Since x — 3 < x, it is not a counterexample to
the statement. Therefore x — 3 is divisible by 3; that is, there is an integer
a such that x — 3 = 3a. S0 x = 3a + 3 = 3(a + 1) and x is divisible by 3,
contradicting x € X. =<« [ ]

20.8. In Section 16 we discussed that Pascal’s triangle and the triangle of binomial
coefficients are the same, and we explained why. Rewrite that discussion as
a careful proof using the method of smallest counterexample. Your proof
should contain a sentence akin to “Consider the first row where Pascal’s
triangle and the binomial coefficient triangle are not the same.”

20.9. Prove the generalized Addition Principle by use of the Well-Ordering Prin-
ciple. That is, please prove the following:

Suppose Ay, Ay, ..., A, are pairwise disjoint finite sets. Then

AU AU - UA,l = [A] + Az + -+ |Aul.

And Finally

Theorem 20.14

(Interesting) Every natural number is interesting.

Proof. Suppose, for the sake of contradiction, that Theorem 20.14 were false.
Let X be the set of counterexamples (i.e., X is the set of those natural numbers
that are not interesting). Because we have supposed the theorem to be false, we
have X # 1. By the Well-Ordering Principle, let x be the smallest element of X.

Of course, 0 is an interesting number: It is the identity element for addition, it
is the first natural number, any number multiplied by 0 is 0, and so on. So x # 0.
Similarly, x # 1 because 1 is the only unit in N, it is the identity element for
multiplication, and so on. And x # 2 because 2 is the only even prime. These are
interesting numbers! :
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What is x? It is the first natural number that isn’t interesting. That makes it
very interesting! =<« n

21

Induction

In this section, we present an alternative to proof by smallest counterexample. This
method is called mathematical induction, or induction for short.

Mathspeak!

In standard English, the word induction refers to drawing general conclusions from
examining several particular facts. For example, the general principle that the sun
always rises in the east follows by induction from the observations that every sunrise
ever seen has been in the east. This, of course, does not prove the sun will rise in the
east tomorrow, but even a mathematician would not bet against it! The mathematician’s
use of the word induction is quite ditferent and is explained in this section.

The Induction Machine

Imagine: Sitting before you is a statement to be proved. Rather than prove it your-
self, suppose you could build a machine to prove it for you. Although some progress
has been made by computer scientists to create theorem-proving programs, the
dream of a personal theorem-proving robot is still the stuff of science fiction.

Nevertheless, some statements can be proved by an imaginary theorem-proving
machine. Let us illustrate with an example.

Proposition 21.1

143+5+7=42
is true

J ACME Equation |
Machine

143+45+7+9=52
is true

Let n be a positive integer. The sum of the first # odd natural numbers is n.

(This is Proposition 20.3, repeated here for our reconsideration.)
We can think of Proposition 21.1 as an assertion that infinitely many equations
are true: i

1=17
1+3=2°
1+3+5=3

143+5+7=4

Itis neither difficult nor particularly interesting to verify any one of these equations;
we just need to add some numbers and check that we get the promised answer.

We could write a computer program to check these equations, but we cannot
wait for the program to run forever to verify the entire list. Instead, we are going
to build a different sort of machine. Here is how the machine works.

We give the machine one of the equations that has already been proved, say
1 + 3 + 5 = 32. The machine takes this equation and uses it to prove the next
equation on the list, say 1 +3 4+ 547 = 42, That’s all the machine does. When
we give the machine one equation, it uses that equation to prove the next cquation
on the list.
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Suppose such a machine has been built and is ready to wqrk. We drop in
1+3+5+7 =4>and out pops 1 +3 +5+ 7+ 9 = 5°. Then we push in
| +3+5+74+9 = 52 and out comes | +3+5+7+9-+11 = 6°. Amazing! But it
gets tiring feeding the machine these equations, so let’s attach a pipe from the “out”
tube of the machine around to the “in” tube of the machine. As verified equations
pop out of the machine, they are immediately shuttled over to the machine’s intake
to produce the next equation, and the whole cycle repeats ad infinitum.

Our machine is all ready to work. To start it off, we put in the first equation,
1 = 12, switch on the machine and let it run. Out pops 1 + 3 = 27, and then
L + 3+ 5 = 32, and so on. Marvelous!

Would such a machine be able to prove Proposition 21.17 Won’t we need to
wait forever for the machine to prove all the equations? Certainly the machine is
fun to watch, but who has all eternity to wait?

We need one more idea. Suppose we could prove that the machine is 100%
reliable. Whenever one equation on the list is fed into the machine, we are ab-
solutely guaranteed that the machine will verify the next equation on the list. If
we had such a guarantee, then we would know that every equation on the list will
eventually be proved, so they all must be correct.

Let’s see how this is possible. The machine takes an equation that has already
been proved, say 1 +3 +5+7 = 42, The machine is now required to prove that
1 +345+7+9 =52 The machine could simply addup 1, 3, 5, 7, and 9 to get
25 and then check that 25 = 5%. But that is rather inefficient. The machine already
knows that 1 + 3 4+ 5 + 7 = 42, so it is faster and simpler to add 9 to both sides of
the equation: 1 +3+5+7+9 = 4% + 9. Now the machine just has to calculate
4 49=1649=25=5

Here are the blueprints for the machine:

1. The machine receives an equation of the form
4345+ -+Qk—D =k

through its intake tube.
Note: We are allowed to insert only equations that have already been
proved, so we trust that this particular equation is correct.
2. The next odd number after 2k — 1 is (2k — 1) +2 = 2k + 1. The machine
adds 2k + 1 to both sides of the equation. The equation now looks like
this:

143454+ Q=D+ Qk+1)=K+Qk+1).

3. The machine calculates k% 4 (2k + 1) and checks to see whether it equals
(k + 1)2. If so, it is happy and ejects the newly proved equation

14345+ +Qk—D+Qk+ D =k+1)?
through its output tube.

To be sure this machine is reliable, we need to check that whenever we feed
the machine a valid equation, the machine will always verify that the next equation
on this list is valid.
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As we examine the inner workings of the machine carefully, the only place
the machine’s gears might jam is when it checks whether k% + (2k + 1) is equal
to (k 4+ 1)2. If we can be sure that step always works, then we can have complete
confidence in the machine. Of course, we know from basic algebra that k2 +2k+1 =
(k + 1)?, and so we know with complete certainty that this machine will perform
its job flawlessly!

The proof boils down to this. It is easy to check the first equation: 1 = 12,
We now imagine this equation being fed into the machine (which we proved is
flawless) and the machine will prove all the equations on the list. We don’t need
to wait for the machine to run forever; we know that every equation on the list is
going to be proved. Therefore, Proposition 21.1 must be true.

Theoretical Underpinnings

The essence of proof by mathematical induction is embedded in the metaphor of
the equation-proving machine. The method is embodied in the following theorem.

Theorem 21.2

(Principle of Mathematical Induction) Let A be a set of natural numbers. If

« D€ A, and
« VieN keA=—k+1eA,

then A = N.

The two conditions say that (1) 0 is in the set A, and (2) whenever a natural
number k is in A, it must be the case that k + 1 is also in A. The only way these
two conditions can be met is if A is the full set of natural numbers.

First we prove this result, and then we explain how to use it as the central tool
of a proof technique.

Proof. Suppose, for the sake of contradiction, that A # N. Let X = N — A (ie.
X is the set of natural numbers not in A). Our supposition that A s N means there
is some natural number not in A (i.e., X # @).

Since X is a nonempty set of natural numbers, we know that X contains a
least element x (Well-Ordering Principle). So x is the smallest natural number not
in A.

Note that x # 0 because we are given that 0 € A, so 0 ¢ X. Therefore x > 1.
Thus x — 1 > 0, so x — 1 € N, Furthermore, since x is the smallest element not
in A, wehave x — 1 € A.

Now the second condition of the theorem says that whenever a natural number
is in A, so is the next larger natural number. Since x — 1 € A, we know that
(x—D+1=xisin A. Butx ¢ A=<« n

Proof by Induction

We can use Theorem 21.2 as a proof technique. The general kind of statement
we prove by induction can be expressed in the form “Every natural number has a
certain property.” For example, consider the following:
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Proposition 21.3  Let n be a natural number. Then ‘

Proof Template 17

2 _ 2n 4+ Din+ Dn)

O+ 1P +22 4+ +n <

(18)

The overall outline of the proof is summarized in Proof Template 17. We use
this method to prove Proposition 21.3.

Proof by induction.

To prove every natural number has some property. ,

Proof.

- Let A be the set of natural numbers for which the result is true.
+“Prove that 0 € A. This is called the basis srep. It is usually easy.
Prove thatif k € A, then k + 1 € A. This is called the inductive step. To
do this, we o
- Assume that the result is true for # = k. Thisis called the induction
hypothesis. , : 4 '
— Use the induction hypothesis to prove the result is true forn =k +£1.
+  We invoke Theorem 21.2 to conclude A = N.
- Therefore the result is true for all natural numbers. |

.

Proof (of Proposition 21.3)

We prove this result by induction on n. Let A be the set of natural numbers for
which Proposition 21.3 is true—that is, those n for which Equation (18) holds.

- Basis step: Note that the theorem is true for n = 0 because both sides of
Equation (18) evaluate to 0.
- Induction hypothesis: Suppose the result is true for n = k; that is, we may

assume
02+12+22+...+k2:(2k+1)(6k+1)(k). (19)

Now we need to prove that Equation (18) holds for n = k + 1; that is, we need

to prove

O+ 124224 K2+ (k+1)% = [+ D+ i+ D + Lk + 1]. (20)

6

+ To prove Equation (20) from Equation (19), we add (k + 1)? to both sides of
Equation (19):
_Ck+ Dk + Dk

O+ 1P +22+ P+ k+ 1) = < +k+1% @D
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To complete the proof, we need to show that the right-hand side of Equa-
tion (20) equals the right-hand side of Equation (21); that is, we have to prove

2 1 1 1
(2k + )gC+ )(k)+(k+1)2= [2(k + 1)+1][(k6+1)+ ][k+1]‘

The verification of Equation (22) is a simple, if mildly painful, algebra exercise
that we leave to you (Exercise 21.2).

+ Wehave shown0O € Aandk € A — (k + 1) € A. Therefore, by induction
(Theorem 21.2), we know that A = N; that is, the proposition is true for all
natural numbers. n

(22)

This proof can be described using the machine metaphor. We want to prove
all of the following equations:

(2-0+ DO+ DO

0=
6
042 @1 DA+ DA
N 6
1P gt 2:24DC+DO)

6
2-3+£D3+ DA
6
2.4+ DA+ D@
6

02+12+22+32:

0P+ 1°+2°+32 44 =

So we build a machine that accepts one of these equations in its input tube; the
equation entering the machine is assumed to have been proved already. The ma-
chine then uses that known equation to verify the next equation on the list. Suppose
we know that the machine is absolutely reliable, and whenever one equation is fed
into the machine, the next equation on the list will emerge from the machine as
verified.

So if we can prove that the machine is completely reliable, all we need to do is
feed in the first equation on the list and let the machine churn through the rest. Our
job reduces to this: Prove the first equation (which is easy), design the machine,
and prove it works.

The design of the machine is not particularly difficult. It simply adds the next
term in the long sum to both sides of the equation and checks for equality.

The challenging part is to verify that the machine will always work. For this,
we must have to check an algebraic identity, namely

Ck 4+ Dk + 1)(k) 1 _ [2(k + 1) + 1][(k + D) + 1][k + 1]4

6 6

In the proof of Proposition 21.3, we explicitly referred to the set A of all
natural numbers for which the result is true. As you become more comfortable
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with proofs by induction, you can omit explicit mention of this set.&The important
steps in a proof by induction are these:

. Prove the basis case; that is, prove the result is true for n = 0.
Assume the induction hypothesis; that is, assume the result forn = k.
Use the induction hypothesis to prove the next case (ie., forn =k +1).

Note that in proving the case n = k + 1, you should use the fact that the result is
true in case n = k. If you do not use the induction hypothesis, then either (1) you
can write a simpler proof of the result without induction or (2) you have made a
mistake.

The basis case is always essential and, thankfully, usually easy. If the resultyou
wish to prove does not cover all natural numbers—say, it covers just the positive
integers—then the basis step may begin at a value other than 0.

The induction hypothesis is a seemingly magical tool that makes proving
theorems easier. To prove the case n = k + 1, not only may you assume the
hypotheses of the theorem, but you also may assume the induction hypothesis; this
gives you more with which to work.

Proving Equations and Inequalities

Proof by induction takes practice. One common application of this technique is
to prove equations and inequalities. Here we present some examples for you to
study. You will find that the general outlines of the proofs are the same; the only
difference is in some of the algebra. The first two examples are results also proved
in Section 12 by the combinatorial method (see Propositions 12.1 and 12.2).

Proposition 21.4 Letnbea positive integer. Then

P42l g2t =2

Proof. We prove this by induction on 7.

Note that this induction Basis step: The case n = 1 is true because both sides of the equation, 2% and
proof begins withn =1 2! — 1, evaluate to 1.
because the Propostion is Induction hypothesis: Suppose the result is true when n = k; that is, we

asserted for positive
. assume
integers.

042t b g2t =21 (23)

We must prove that the Proposition is true when n = k + 1; that is, we must
use Equation (23) to prove

20 4 2! oo 20D = 2R (24)

Note that the left-hand side of Equation (24) can be formed from the left-
hand side of Equation (23) by adding the term 7% S0 we add 2¢ to both sides of
Equation (23) to get

20 4ot g b2kl g0k =2k — 1425 (25)
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We need to show that the right-hand side of Equation (25) equals the right-hand
side of Equation (24). Fortunately, this is easy:

2k 142k =2.2k—1 =21, (26)
Using Equations (24) and (26) gives
20 + 21 + .. + 2(k+1)—1 — 2k+1 _ 1

which is what we needed to show. [ ]

As our comfort and confidence in writing proofs by induction grow, we can
be a bit terser. The next proof is written in a more compact style.

Proposition 21.5

Let n be a positive integer. Then

1-1 4224 dn-nl=@+D -1

Proof. We prove the result by induction on n.

Basis case: The Proposition is true in the case n = 1, because both sides of
the equation, 1!- 1 and 2! — 1, evaluate to 1.

Induction hypothesis: Suppose the Proposition is true in case n = k; that is,
we have that

-1 422144k b=+ D! - 1. 27

We need to prove the Proposition for the case n = k + 1. To this end, we add
(k+ 1) - (k + D! to both sides of Equation (27) to give

U224k k(4 1) (kD! = GHDI— T+ k+ 1) (k+ 1)1 (28)
The right-hand side of Equation (28) can be manipulated as follows:

4+ —=14+G(k+D - G+DI=10+&+D-Gk+D! =1
=Gk+2) - k+D!—1
=k+2!-1=[k+1)+1]' - L
Substituting this into Equation (28) gives
Lo1t42- 204k b+ k+ 1D - k+ D! =[G+ D+ III-1. W

Inequalities can be proved by induction as well. Here is a simple example
whose proof is a bit terser still.

Proposition 21.6

Let n be a natural number. Then

10% + 10 + -+ - + 10" < 10"+,

Proof. The proof is by induction on n. The basis case, when n = 0, is clear
because 10° < 10.
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Assume (induction hypothesis) that the result holds for n = k; that is, we have
[
10° + 10" + - - + 10F < 107+,

To show that the Proposition is true when n = k + 1, we add 10¢*! to both sides
and find

1004+ 10" + -« 4+ 105 + 10M! < 104! 4 10FH
=2.10f < 10-10* = 10**".

Therefore the result holds whenn =k + 1. ]

Other Examples

With a bit of practice, proving equations and inequalities by induction will become
routine. Generally, we manipulate both sides of the given equation (assumed by
the induction hypothesis, n = k) to demonstrate the next equation (n = k + 1).
However, other kinds of results can be proved by induction. For example, consider
the following;:

Proposition 21.7

Let n be a natural number. Then 4” — 1 is divisible by 3.

Proof. The proof is by induction on »n. The basis case, # = 0, is clear since
49 — 1 =1—1 = 0is divisible by 3.

Suppose (induction hypothesis) that the Proposition is true for n = k; that is,
4¥ — 1 is divisible by 3. We must show that 4*+! — 1 is also divisible by 3.

Note that 4*7! — 1 =4.4* — 1 =4(4* — 1) +4 — 1 = 4(4* — 1) + 3. Since
4% — 1 and 3 are both divisible by 3, it follows that 4(4* — 1) + 3 is divisible by
3; hence 4¢*! — 1 is divisible by 3. ]

The next example involves some geometry. We wish to cover a chess board
with special tiles called L-shaped triominoes, or L-triominoes for short. These are
tiles formed from three 1 x 1 squares joined at their edges to form an L shape.

Itis not possible to tile a standard 8 x 8 chess board with L-triominoes becanse
there are 64 squares on the chess board and 64 is not divisible by 3. However, it is
possible to cover all but one square of the chess board, and such a tiling is shown
in the figure.

Is it possible to tile larger chess boards? A 2" x 2" chess board has 4" squares,
80, applying Proposition 21.7, we know that 4" — 1 is divisible by 3. Hence there
is a hope that we may be able to cover all but one of the squares.

Proposition 21.8

Let n be a positive integer. For every square on a 2" x 2" chess board, there is a
tiling by L-triominoes of the remaining 4" — 1 squares.

Proof. The proof is by induction on #. The basis case, n = 1, is obvious since
placing an L-triomino on a 2 x 2 chess board covers all but one of the squares, and
by rotating the triomino we can select which square is missed.
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Suppose (induction hypothesis) that the Proposition has been proved forn = k.
We are given a 28T1 x 2**1 chess board with one square selected. Divide
B the board into four 2" x 2" subboards (as shown); the selected square must lie in
one of these subboards. Place an L-triomino overlapping three corners from the
remaining subboards as shown in the diagram.

We now have four 2¢ x 2* subboards each with one square that does not need
to be covered. By induction, the remaining squares in the subboards can be tiled
by L-triominoes. ]

LT

Strong Induction

Here is a variation on Theorem 21.2.

Theorem 21.9  (Principle of Mathematical Induction—strong version) Let A be asetof natural
numbers. If

- 0e Aand
. forallk e N,if0,1,2,..., k€ A, thenk+ 1€ A

then A = N.

The proof of this theorem is left to you (see Exercise 21.14).

Why is this called strong induction? Suppose you are using induction to prove
a proposition. In both standard and strong induction, you begin by showing the
basis case (0 € A). In standard induction, you assume the induction hypothesis
(k € A; i.e., the proposition is true for n = k) and then use that to prove k + 1 € A
(i.e., the proposition is true for n = k + 1). Strong induction gives you a stronger
induction hypothesis. In strong induction, you may assume 0, 1,2, ...,k € A (the
proposition is true for all » from O to k) and use that to prove £ + 1 € A (the
proposition is true forn =k + 1).

This method is outlined in Proof Template 18.

Prcquemplat‘e‘k“la” _Proof by strong induction.
| | T prm;e every natural number has some property:
 Proof.
~+ Let A be the set of natural numbers for which the result is true.
= Prove that 0 € A. This is called the basis step. It is usually easy.
‘ »_[Provethatif(), 1,2, ...ik e A thenk+1 € A. Thisis called the inductive
 step. Todo this, we
~ — Assume that thé result is true forn =0, 1,2, ..., k. This is called the
strong induction hypothesis.
= Use the strong induction hypothesis to prove the result is true for
o om=k4 L
.« Invoke Theorem 21.9 to conclude A = N.
o ~ + Therefore the result is true for all natural numbers. |
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Let us see how to use strong induction and why it gives us more flexibility
than standard induction. We illustrate proof by strong inductidn on a geometry
problem.

Let P be a polygon in the plane. To triangulate a polygon is to draw diagonals
through the interior of the polygon so that (1) the diagonals do not cross each
other and (2) every region created is a triangle (see the figure). Notice that we have
shaded two of the triangles. These triangles are called exterior triangles because
two of their three sides are on the exterior of the original polygon.

We prove the following result using strong induction.

Proposition 21.10

If a polygon with four or more sides is triangulated, then at least two of the triangles
formed are exterior.

Proof. Let n denote the number of sides of the polygon. We prove Proposi-
tion 21.10 by strong induction on ~.

Basis case: Since this result makes sense only for n > 4, the basis case is
n = 4. The only way to triangulate a quadrilateral is to draw in one of the two
possible diagonals. Either way, the two triangles formed must be exterior.

Strong induction hypothesis: Suppose Proposition 21.10 has been proved
for all polygonsonn =4, 5, ...,k sides.

Let P be any triangulated polygon with k + 1 sides. We must prove that at
least two of its triangles are exterior.

Let d be one of the diagonals. This diagonal separates P into two polygons
A and B where (this is the key comment) A and B are triangulated polygons with
fewer sides than P. It is possible that one or both of A and B are triangles them-
selves. We consider the cases where neither, one, or both A and B are triangles.

- If A is not a triangle: Then, since A has at least four, but at most k sides, by
strong induction we know that two or more of A’s triangles are exterior. Now
we need to worry: Are the exterior triangles of A really exterior triangles of
P? Not necessarily. If one of A’s exterior triangles uses the diagonal d, then
it is not an exterior triangle of P. Nonetheless, the other exterior triangle of
A can’t also use the diagonal d, and so at least one exterior triangle of A is
also an exterior triangle of P.

. If B is not a triangle: As in the previous case, B contributes at least one
exterior triangle to P.

« If Ais atriangle: Then A is an exterior triangle of P.

« If B is a triangle: Then B is an exterior triangle of P.

In every case, both A and B contribute at least one exterior triangle to P, and
s0 P has at least two exterior triangles. ]

.

Strong induction helped us enormously in this proof. When we considered the
diagonal d, we did not know the number of sides of the two polygons A and B. All
we knew for sure was that they had fewer sides than P. To use ordinary induction,
we would need to have chosen a diagonal such that A had k sides and B had three;




Curiously, it is harder to
prove that a triangulated
polygon has one exterior
triangle than to prove that
atriangulated polygon has
two exterior triangles! See
Exercise 21.13.

Fibonacci numbers were
introduced in
Definition 20.12.
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in other words, we would have to select B to be an exterior triangle. The problem
is that we had not yet proved that a triangulated polygon has an exterior triangle!

Strong induction gives more flexibility than standard induction because the
induction hypothesis lets you assume more. It is probably best not to write your
proof in the style of strong induction when standard induction suffices. In the
cases where you need to use strong induction, you also have proof by smallest
counterexample as an alternative.

A More Complicated Example

We prove the following result by strong induction. The hard part of this example is
keeping track of the many binomial coefficients. The overall structure of the proof
is no different from the proof of Proposition 21.10. We follow Proof Template 18.

Proposition 21.11

Let n € Z and let F,, denote the nth Fibonacci number. Then
n n—1 n—2 0
=F,. 29
G720 @

Note that the last several terms in the sum are all zero. Eventually the lower
index in the binomial coefficient will exceed the upper index, and all terms from
that point on are zero. For example,

G+O+O+H+O+O+E+E) =1+6+10+4+0+04+0+0
=21=F,

In fancy notation,

"
()=~
=0~/

Before we present the formal proof of Proposition 21.11, let us look to see
why this might be true and why we need strong induction.

In general, to prove that some expression gives a Fibonacci number, we use
the fact that F, = F,_; + F,_,. If we know that the expression works for F,,, and
F,_,, then we can add the appropriate expressions and hope we get F,,. In ordinary
induction, we can only assume the immediate smaller case of the result; here we
need the two previous values, and strong induction allows us to do this.

Let’s see how we can apply this to Proposition 21.11 by examining the case
n = 8. We want to prove

a()(0) ()

0000 -
0-0)+0)+ ()

I

£
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We want to add these equations because Fg = F7 + Fs. The idpa is to interleave
the terms from the two expressions: '

Fot Fom 7 6 + 6 n 5 + 5 + 4 v 4 N 3
THFe=1o)"\o 1 i 2 2 3 3
Now we can use Pascal’s identity (Theorem 16.10) to combine pairs of terms:
6 6) N 5 N (‘3) (6 4 + 4 (5
o) /7 1) )T e 1) \3) 75
We can therefore combine every other term to get
P p = 7 n 6 6 n 5 n 5 N 4 + 4 3
THE = YRRE! 1 2 2 3173
_ (7) v 7 +' 6 4 5 n 3
~\0 1 2 3 3)
We are nearly finished. Notice that the (]) term should be (7) and the () term

should be (3) The good news is that these terms both equal 1, so we can replace
what we have by what we want to finish this example:

e ()04 ()0
=)+ ()+()+ () + ()
0)-0-0-0+0

The case Fy = Fy + F is similar, but there are some minor differences. It
is important that you write out the steps for this case yourself before reading the
proof. Be sure you see what the differences are between these two cases.

Proof (of Proposition 21.11)

We use strong induction.

Basis case: The result is true for n = 0; Equation (29) reduces to (g) =1=
F,, which is true. Notice that the result is also true forn = 1 since (é) + ((1) =

Strong induction hypothesis: Proposition 21.11 is true for all values of n
from O to k. (We may also assume k > 1 since we have already proved the result
forn =0andn =1.)

We seck to prove Equation (29) in the case n = k + 1; that is, we want to

prove
- _k+1+k+k—1+
HIT 0 1 2 '
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By the strong induction hypothesis, we know the following two equations are true:
F _k~1+k—2+k—3+
“TT o 1 2
k k—1 k=2
F = e
= (o)< ()05
We add these two lines to get
Fopn=F+ F
_k+k—1+k-—1+k—2+k——2+k»3+
\0 0 1 1 2 2
The next step is to combine terms with the same upper index using Pascal’s identity

(Theorem 16.10). First, we are going to worry about where this long sum ends.
In the case k is even, the sum ends

k k k k
3 +1 L+l ¢ 4
Fk+1=”.+<}% )+(§ ) +(k i >+ <h>
32 31 31 5
and in the case k is odd, it ends
1 I 1
stk—-—1D+1 sk—1)+1 sk —1
Fk+1=---+<§ ) )+<2(1 . )+<f( )>.
3k—1) -1 k=1 5k —1)
Now we apply Pascal’s identity, combining those pairs of terms with the same

upper entry (each black term and the color term that follows).
In the case k is even, we have

na= () |+ (3 =G50

- (3 + [0+ (5 2D+ (1)

and in the case k is odd, we have

Fk+1=<’5)+ (Ilc)+(k;l>+...+<%(;;i)$2) +C§Ez:3>
(3032 )

In both cases, we have verified Equation (29) with » = k + 1, completing the
proof. ]

The most difficult part of this proof was dealing with the upper and lower
indices of the binomial coefficients.
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A Matter of Style

Proof by induction and proof by smallest counterexample are usually interchange-
able. I prefer, however, proof by smallest counterexample. This is mostly a stylistic
preference, but there is a mathematical reason to prefer the smallest-counterexample
technique. When mathematicians try to prove statements, they may believe that
the statement is true, but they don’t know—until they have a proof-—whether or
not the statement is true. We often alternate between trying to prove the statement
and trying to find a counterexample. One way to do both activities simultane-
ously is to try to deduce properties a smallest counterexample might have. In this
way, we either reach a contradiction (and then we have a proof of the statement)
or we learn enough about how the counterexample should behave to construct a
counterexample.

¢

Recap

Proof by induction is an alternative method to proof by smallest counterexample.
The first step in a proof by induction is to prove a basis case (often that the result
you want to prove is true for » = 0). In standard induction, we make an induction
hypothesis (the proposition is true when # = k) and use it to prove the next case
(the proposition is true when n = k + 1). Strong induction is similar, but the
strong-induction hypothesis is that the proposition is true forn =0, 1,2, ..., k.

Any result you prove by induction (standard or strong) can just as well be
proved using the smallest-counterexample method. Induction proofs are more
popular.

21

Exercises

21.1. Induction is often likened to climbing a ladder. If you can master the
following two skills, then you can climb a ladder: (1) get your foot on the
first rung and (2) advance from one rung to the next.

Explain why both parts (1) and (2) are necessary, and explain what
this has to do with induction.

21.2. Prove Equation (22).

21.3. Prove the following by induction. In each case, n is a positive integer.

a l+4+74. -+ @n—2) =120

L R
€ 94+9x10+9x100+---+9x 10" =10" — 1.
1 1 1 _ 1
d. ﬁ+§-3—+“.+n(n+l) _I“m
21.4. Prove the following by induction. In each case, n is a positive integer.
a. 2" < 2n+1 _ 211—1 — 1.
b. 1-HDA-pA—g - (1—5) >+ 50
e l+i+5+i++521+4
21.5. A group of people stand in line to purchase movie tickets. The first person
in line is a woman and the last person in line is a man. Use proof by
induction to show that somewhere in the line a woman is directly in front
of a man.




The intimate connection
between recursive
definition and proof

by induction.

21.6.

21.7.

21.8.
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The Tower of Hanoi is a puzzle consisting of a board with three dowels
and a collection of # disks of n different sizes (radii). The disks have holes
drilled through their centers so that they can fit on the dowels on the board.
Initially, all the disks are on the first dowel and are arranged in size order
(from the largest on the bottom to the smallest on the top).

The object is to move all the disks to another dowel in as few moves
as possible. Each move consists of taking the top disk off one of the stacks
and placing it on another stack, with the added condition that you may not
place a larger disk atop a smaller one. The figure shows how to solve the
Tower of Hanoi in three moves when n = 2.

Prove: For every positive integer n, the Tower of Hanoi puzzle (with
n disks) can be solved in 2" — 1 moves.

Let Ay, A,, ..., A, be sets (where n > 2). Suppose for any two sets A,
and A; either A; € Ajor A; C A;.

Prove by induction that one of these n sets is a subset of all of them.
May a word be used in its own definition? Generally, the answer is no.
However, in Definition 20.12, we defined the Fibonacci numbers as the
sequence Fy, Fi, Fp, ...by setting Fyp = 1, F; = 1, and for n > 2,
F, = F,_; + F,_,. Notice that we defined Fibonacci numbers in terms of
themselves! This works because we have defined F, in terms of previously
defined Fibonacci numbers. This type of definition is called a recursive
definition.

Recursive definitions bear a strong resemblance to proofs by induc-
tion. There are typically one or a few basis cases, and then the rest of the
definition refers back to smaller cases (this is like the inductive step in a
proof by induction).

Induction is the proof technique of choice to prove statements about
recursively defined concepts.

The following sequences of numbers are recursively defined. Answer
the questions asked.

a. Letay = 1 and, forn > 0, let a, = 2a,_, + 1. The first few terms of
the sequence ag, a), a2, a3, ... are 1,3,7,15, ...
What are the next three terms?
Prove: g, = 21 — 1.

b. Letby = l and, forn > 0,let b, = 3b,-1 — 1.
What are the first five terms of the sequence by, by, bz, ...7
Prove: b, = £,

¢c. Letcg=3and, forn > 0,letc, =c,_ +n.
What are the ﬁrst five terms of the sequence cq, €1, 2, .- .?
Prove: ¢, = n +n+6

d. Letdy=2,4d; _-Sand forn > 1, letd, = 5d,_, — 6d, _».
Why did we give two basis definitions?
What are the first five terms of the sequence dy, d. ds. .. .7
Prove: d, = 2" 4 3".

e. Leteg=1,¢, =4and,forn > 1, lete, =4 (ep—1 — s 2)-
What are the first five terms of the sequence eg, €1, €2, ...7
Prove: e, = (n + 1)2".
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21.9.

21.10.

21.11.

21.12.

f. Let F, denote the nth Fibonacci number. Prove:

(M))’H‘-l _ (L—_ﬁ)ll-’-l
2 2
\/,5_ .

A flagpole is n feet tall. On this pole we display flags of the following
types: red flags that are 1 foot tall, blue flags that are 2 feet tall, and green
flags that are 2 feet tall. The sum of the heights of the flags is exactly n
feet.

Prove that there are 22" + (—1)" ways to display the flags.

Prove that every positive integer can be expressed as the sum of distinct
Fibonacci numbers.

For example, 20 = 2+ 54 13 where 2, 5, 13 are, of course, Fibonacci
numbers. Although we can write 20 = 2 +54-5+4-8, this does not illustrate
the result because we have used 5 twice.

Consider the following computer program.

F, =

function findMax(array, first, last) {
if (first == last) return array[first];
mid = first + (last-first)/2;
a = findMax(array,first,mid);
b = findMax(array,mid+1,last);
if (a<b) return b;
return a;

}

Here array is an array of integers. All other variables are integers. We
assume that first and last are between 1 and the number of elements
in array and that first < last.

The purpose of this program is to find the largest value in the ar-
ray between two indices; that is, it should return the largest value of
array[first], array[first+1],..., array[last].

Your job: Prove that this program fulfills this task.

[Technical note: If last-first is odd, then (last-first)/2 is
rounded down to the nearest integer. For example, if first is 7 and last
is 20, then (last-first)/2is6.]

Consider the following computer program.

function lookUp(array, first, last, key) {
mid = first + (last-first)/2;

if
if

(array[mid] == key) return mid;
(array[mid] > key) return lookUp(array,first,mid-1,key);

return lookUp(array,mid+1,last,key);

Here array is an array of integers; all other variables represent integers.
The values stored in array are sorted; that is, we know that

array[1] < array(2] < array[3] <.--.
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We also know that 1 < first < last and that there is some index j
between first and last for which array[j] is equal to key.
Prove that this program finds that index ;.
21.13. Try to prove, using strong or standard induction, that a triangulated polygon
has at least one exterior triangle.
What goes wrong when you try to do your proof?
The harder theorem (*. . . has at least two exterior triangles™) is easier
to prove than the easier theorem (*... has at least one exterior triangle”).
This phenomenon is known as induction loading.
21.14. Prove Theorem 21.9.
21.15. Prove, using strong induction, that every natural number can be expressed
as the sum of distinct powers of 2. For example, 21 = 2* + 2% +2°.
21.16. We showed how to prove the Principle of Mathematical Induction (The-
orem 21.2) by use of the Well-Ordering Principle. Now do the opposite.
Use induction to prove the Well-Ordering Principle (Statement 20.6).

22

Recurrence Relations

Proposition 21.3 gives a formula for the sum of the squares of the natural numbers
up to n:

C+124+2% 4 40’ = (2n+1)(6n+1)(n).
How did we derive this formula?

In Exercise 21.8d you were told that a sequence of numbers, dy, di, dz, d5, . ..
satisfies the conditions dy = 2, d = 5, and d, = 5d,_; — 6d,-, and you were
asked to prove that d, = 2" + 3". More dramatically, in the same problem, you
were asked to prove the following complicated expression for the nth Fibonacci

number:
<]+ﬁ)rz+l _ (l—ﬁ),ﬁ_l
2 2

F,=
NG

How did we create these formulas?

In this section we present methods for solving a recurrence relation: aformula
that specifies how each term of a sequence is produced from earlier terms.

For example, consider a sequence ay, ai, dz, . . . defined by

a, =3a,-1 +4a,-2, a=3 a=2.

We can now compute a; in terms of ag and a,, and then a3 in terms of a; and ay,
and so on:

a;=3a; +4aq=3x2+4x3=18

a3 =30, +4a;, =3x 18 +4x2 =062

a4 = 3a3 +4a; =3 x 62 +4 x 18 =258,
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The recurrence relations
with which we begin arc
called first order because
a, can be expressed just in
terms of the immediate
previous element of the
Sequence, d, -

Because the {irst term of
the sequence is dq, it is not
meaningt’ul 1o speak of the
term a._,. Therefore, the
recurrence relation holds
only forn > 1. The value
of ay must be given
separately.

Our goal is to have a simple method to convert the recurrence relation into an
- . .o 1/
explicit formula for the nth term of the sequence. In this case, a, = 4" +2-(=1)".

First-Order Recurrence Relations

The simplest recurrence relation is a, = dn-1. Each term is exactly equal to the
one before it, so every term is equal to the initial term, ay.

Let’s try something only slightly more difficult. Consider the recurrence rela-
tion a, = 2a,_,. Here, every term is twice as large as the previous term. We also
need to give the initial term—say, ap = 5. Then the sequence is 5, 10, 20, 40, 80,
160, .. .. It’s easy to write down a formula for the nth term of this sequence:
a, =5 x 2"

More generally, if the recurrence relation is

a, = 8SAp—1

then each term is just s times the previous term. Given ay, then nth term of this
sequence is

a, = aps”.

Let’s consider a more complicated example. Suppose we define a sequence
by

a, =2a,_1+3, ao=1.

When we calculate the first several terms of this, sequence we find the following
values:

1, 5, 13, 29, 61, 125, 253, 509,

Because the recurrence relation involves doubling each term, we might suspect
that powers of 2 are present in the formula. With this in mind, if we stare at the
sequence of values, we might realize that each term is 3 less than a power of 2. We
can rewrite the sequence like this:

4-3, 8-3, 16-3, 32-3, 64-3, 128-3, 256-3, 512-3,

With this, we obtain g, = 4 x 2" — 3.
Unfortunately, “stare and hope you recognize” is not a guaranteed procedure.
Let’s try to analyze this recurrence relation again in a more systematic fashion.
We begin with the recurrence a, = 2d,-1 + 3 but leave the initial term g
unspecified for the moment. We derive an expression for a; in terms of ag using
the recurrence relation:

a; = 2a9 + 3.

Next, let’s find an expression for a,. We know that a; = 2a; + 3, and we have an
expression for a; in terms of ap. Combining these, we get

a2=2a1+3=2(2a0+3)+3=4a0+9.
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Now that we have a,, we work out an expression for a; in terms of ay:
ay = 202 +3= 2(4@0 +9) +3= 16(10 + 21.

Here are the first several terms:

ag = ag
a; = 2ay+3
a, = 4ag +9
as; = 8ay + 21
as = 16ay + 45
as = 32ap + 93

ag = 64ay + 189.

One part of this pattern is obvious: a, can be written as 2”qo plus something. It’s
the “plus something” that is still a mystery. We can try staring at the extra terms
0,3,9,21, 45,93, 189, ... in the hope of finding a pattern, but we don’t want to
resort to that. Instead, let’s trace out how the term +189 was created in as. We
calculated ag from as:

as =2as+3 =232a,+93)+3

so the +189 term comes from 2 x 93 -+ 3. Where did the 93 term come from? Let’s
trace these terms back to the beginning:
189 =2 x93+ 3
=2x2x45+3)+3
=2x2x2x21+3)+3)+3
=2x2x2x@2x94+3)+3)+3)+3
=2x2x2xCx2x3+3)+3)+3)+3)+3.
Now let’s rewrite the last term as follows:
2x2x2x2x2x3+3)+3H+H+3)+3
=234+ x34+2x34+22x34+2'x34+20%3
=254+ 24 422 4+22421 420 x3
=20—1)x3=63x3=189
Based on what we have learned, we predict a5 to be
a; = 128ap + (27 — 1) x 3 = 2"(ap + 3) — 3 = 128a, + 381

and this is correct. .
We are now ready to conjecture the solution to the recurrence relation a,, =
261,141 + 3 It iS

a, = (ag +3)2" — 3.

Once we have the formula in hand, it is easy to prove it is correct using
induction. However, we don’t want to go through all that work every time we
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need to solve a recurrence relation; we want a much simpler method. We seek a
3 3 L4
ready-made answer to a recurrence relation of the form

ap =80,—1 +1

where s and ¢ are given numbers. Based on our experience with the recurrence
a, = 2a,_; + 3, we are in a position to guess that the formula for a, will be of the
following form:

a, = (a number) x s” + (a number).

Let’s see that this is correct by finding a,, az, etc., in terms of ag:

dg = dy

ay = sag+t

a; =sa1+t=s(ag+1)+t= sPag+ (s + Dt

a; = Sa, +t =35 (s%a0+(s+ l)t) +t=s5%a+ (F+s+ Dt

s =saz3+t=s (s3ao+(s2+s+ l)t) =s4ao+(s3+s2+s+ Dt.
Continuing with this pattern, we see that

ay, = s"ap+ (" T4 s+ Dt

We can simplify this by noticing that s"~! + s~ + - + s + 1 is a geometric
series whose sum is
s"—1

s—1

provided s # 1 (a case with which we will deal separately). We can now write

“ st -1
a, = aps + t
s—1
or, collecting the s” terms, we have

t n t
a,,:(ao—}—s——_——l)s S—l' (30)

Despite the precise nature of Equation (30), I prefer expressing the answer as
in the following result because it is easier to remember and just as useful.

Proposition 22.1

All solutions to the recurrence relation a, = sa,_1 + t where s # 1 have the form
a, =ci1s" + ¢

where ¢, and ¢, are specific numbers.

Let’s see how to apply Proposition 22.1.

Example 22.2

Solve the recurrence a, = 5a,_, + 3 whereag = 1.
Solution: We have a,, = ¢;5" + ¢;. We need to find ¢; and ¢,. Note that

ap=1=c+ec

111:8=5C1+C2.
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Solving these equations, we find ¢; = I and c; = —3, and so

AW

7
= —.5"—
=y

‘We have a small bit of unfinished business: the case s = 1. Fortunately this
case is easy. The recurrence relation is of the form
Ay =ap_y + 1

where  is some number. It’s easy to write down the first few terms of this sequence
and see the result:

ap = dp

a) =day+1t

a=a +t=(ay+t)+t=a9+ 2t

as=ay +t=(ag+2t)+t=ag+ 3t

as =az+1t = (ag+3t)+t = ag+ 4.

See the pattern? In retrospect, it’s pretty obvious.

Proposition 22.3

In a second-order
recurrence relation, a, is
specified in terms of @,,_,
and @, _». Since the
sequence begins with ag,
the recurrence relation is
valid for n > 2. The values
of ap and @; must be given
separately.

The solution to the recurrence relation a, == a, 1 +t is

a, = ap + nt.

Second-Order Recurrence Relations

A second-order recurrence relation gives each term of a sequence in terms of the
previous two terms. Consider, for example, the recurrence

a, = Sa,_| — 6a, . (3D

(This is the recurrence from Exercise 21.8d.) Let us ignore the fact that we already
know a solution to this recurrence and do some creative guesswork. A first-order
recurrence, g, = Sda,_; has a solution that’s just powers of s. Perhaps such a
solution is available for Equation (31). We can try a, = 5" or perhaps a, = 6",
but let’s hedge our bets and guess a solution of the form a, = r” for some number
r. We’ll substitute this into Equation (31) and hope for the best. Here goes:

a, = 5a,-1 — 6a,_» = r= 5" — a2
Dividing this through by 7”2 gives
rrP=5-6
a simple quadratic equation. We can solve this as follows:
P=5r-6 =  0=r'-5r+6=F-2(r-3) =  r=223.

This suggests that both 2" and 3" are solutions to Equation (31). To see that this is
correct, we simply have to check whether 2" (or 3") works in the recurrence. That
is, we have to check whether 2% = 5. 2"~! — 6 - 2772 (and likewise for 3"). Here
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are the proofs: .
s.on1 .22 =520 —3.2.2077
=5. 211—1 —3. 2n—l

=(5-3).-27"=2"

5.3 6.3 2=5.3"1-2.3.3"7
=5. 3!1—1 -2. 3n71
=(5-2-3""'=3"
We have shown that 27 and 3" are solutions to Equation (31). Are there other
solutions? Here are two interesting observations.
First, if a, is a solution to Equation (31), so is ca, where ¢ is any specific
number. To see why, we calculate

ca, = ¢ (San—l - 6an—Z) - S(Can—l) - 6(6‘6{,,_2).

Since 2" is a solution to (31), sois 5 - 2.
Second, if a, and a, are both solutions to Equation (31), then so is a, + a,.
To see why, we calculate:

an + (l; = (SanAl - 6an—2) + (561;[_1 - 60,/1_2) = S(an—l + a;_l) - 6(an—2 + a:1~2)-

Since 2" and 3" are solutions to Equation (31), so is 2" + 3",

Based on this analysis, any expression of the form ¢;2" + ¢,3" is a solution
to Equation (31). Are there any others? The answer is no; let’s see why.

We are given that @, = 5a,-1 — 6a,_». Once we have set specific values for
ap and ay, a;, as, ds, ... are all determined. If we are given ap and a;, we can set
up the equations

a=c2l+c=c+c
a; =2t + o3 =2¢ + 3¢
and solve these for ¢y, ¢; to get
cy = 3ap —a;
¢y = —2a0 + ay.
Thus, any solution to Equation (31) can be expressed as
a, = (3ag — a1) 2" + (—2ap +a1) 3".

Encouraged by this success, we are prepared to tackle the general problem

Ay = S1an-1 + $20n2 (32)
There is a rough edge in where 5, and s, are given numbers.
this caleulation: since we We guess a solution of the form a, = r”, substitute into Equation (32), and

are dividing by 7~ this

analysis is faulty in the hope for the best:

case r = 0. However, this

o dy = $1Gn—1 T $20n-2
is not a problem because

we check our work ina o= Sﬂ’"_l + szr”_z

moment by a different
method. = rr=851r+ 52
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so the r we seek is a root of the quadratic equation x? — s x — s = 0. Let’s record
this as a proposition.

Proposition 22.4

Let s1, 5, be given numbers and suppose r is a root of the quadratic equation
x2 — 5;x — s, = 0. Then a, = r" is a solution to the recurrence relation a, =

$10p—1 + S284—2.

Proof. Letr be aroot of x> — s;x — s, = 0 and observe

s;r”'1 + 5" = r”‘z(slr + 52)

=r""?r?  because r’ =s;r + 5,
=r".
Therefore r* satisfies the recurrence a, = $1a,—1 + S2d,—2. [ |

We're now in a good position to derive the general solution to Equation (32).
As we saw with Equation (31), if g, is a solution to (32), then so is any constant
multiple of a,—that is, ca,. Also, if @, and a;, are two solutions to (32), then so is
their sum a,, + a,,.

Therefore, if #; and r, are roots of the polynomial x? — 51x — 5, = 0, then

a, = ) +cory

is a solution to Equation (32).

Are these all the possible solutions? The answer is yes in most cases. Let’s
see what works and where we run into some trouble.

The expression ¢, 7] + ¢or} gives all solutions to (32) provided it can produce
ap and a;; if we can choose ¢ and ¢; so that

ag :'c]rl0 + czr£J =c¢;+C2
a) = clrll +Cgrzl = ric + ey
then every possible sequence that satisfies (32) is of the form ¢} + cor3. So all
we have to do is solve those equations for ¢; and ¢;. When we do, we get this:
a) — Qo

g =— and Ccy =
rnn—nmr n—-—n

—a, + apr

All is well unless r; = r»; we’ll deal with this difficulty in a moment. First, let’s
write down what we know so far.

Theorem 22.5

Let s, 52 be numbers and let 7y, r» be roots of the equation x2—sx —5 =0.1f
r1 # 2, then every solution to the recurrence

Qy = S1p—1 + $20y-2
is of the form

a, = C1F] + CaF5.
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Example 22.6

Find the solution to the recurrence relation &

a, = 3a,-1 + 4a, 5, ap= 3, a= 2.
Solution: Using Theorem 22.5, we find the roots of the quadratic equation x2 —
3x —4 = 0. This polynomial factors x* —3x —4 = (x —4)(x +1) so the roots of the
equation are r; = 4 and r, = —1. Therefore a, has the form a, = 4" + e (— 1"
To find ¢ and ¢;, we note that

ay = 14° + c2(—1)° = 3=c+tao
a=cd +a-n = 2=4c; -,

Solving these gives
ci=1 and ¢, =72.

Therefore a, = 4" + 2. (—1)".

Example 22.7

The Fibonacci numbers are defined by the recurrence relation F, = F,_; + F,_».
Using Theorem 22.5, we solve the quadratic equations x% —x —1 = 0 whose roots
are (1 £+ +/5) /2. Therefore there is a formula for F), of the form

e (5 (5
2 2

We can work out the values of ¢; and ¢, based on the given values of F and F.

Example 22.8

Solve the recurrence relation
ap = 2a,_1 — 20,2 where ap = 1 and a; = 3.

Solution: The associated quadratic equation is x> — 2x + 2 = 0, which, by the
quadratic formula, has two complex roots: 1. Do not panic. There is nothing in
the work we did that required the numbers involved to be real. We now just seek a
formula of the form a, = ¢;(1 + )" + (1 — #)". Examining a, and a,;, we have
ag=1l=c+ac
ar=3={0+Dc+ (1 —i)c.
Solving these gives ¢; = % —iand ¢ = % 4+ i. Therefore a,, = (% - D+ +
(3 + DA —0)".

The Case of the Repeated Root

We now consider the recurrence relations in which the associated polynomial
x2 — 5;x — 5, has only one root. We begin with the following recurrence relation:

ay =4a, 1 —4a, 2 (33)
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with @o = 1 and a, = 3. The first few values of a, are 1, 3, 8, 20, 48, 112, 256,
and 576.

The quadratic equation associated with this recurrence relation is
x% —4x +4 =0, which factors (x — 2)(x — 2). So the only root is r = 2. We
might hope that the formula for @, takes the form a, = ¢2", but this is incorrect.
Consider the first two terms:

a=1=c2" and a =3=c2"

The first equation implies ¢ = 1 and the second implies ¢ = %

We need a new idea. We hope that 2" is involved in the formula, so we try a
different approach. Let us guess a formula of the form

a, = c(n)2"

where we can think of c¢(n) as a “changing” coefficient. Let’s work out the first
few values of c{n) based on the values of a, we already calculated:

ap =1 =c(0)2° = 0 =1

ay =3 =c(1)2' = ()= %
a; =8 = c(2)2* = (=2
az =20 = ¢(3)2° = ()= ;
ay =48 = c(4)2* = =4

7
as = 112 = ¢(5)2° = 5= 5

The “changing” coefficient c(n) works out to something simple: c(n) = 1 + %n
We therefore conjecture that a, = (1 + 3n)2".
Please note that the solution has the following form: a, = ¢,2" +¢,n2". Let’s
show that all sequences of this form satisfy the recurrence relation in (33):
day ) —4a, 5 =4 (2" +ean—D2"") =4 (c)2" 7 + ea(n —2)2")
= [2¢12" — 2" + [26,n2" — cn2"] + [—4 - 2" + 8. 2772
=c2"+en2" +0=a,.
So every sequence of the form a, = ¢;2" + ¢,n2" is a solution to Equation (33).
Have we found all solutions? Yes we have, because we can choose ¢; and ¢; to
match any initial conditions a, and a,; here’s how. We solve
ap=c2"+¢,-0-2°
a=c2 +e¢-1-2
which gives
1
cp=ay and c¢; = —ap+ Eal'

Since the formula a, = 2" + %nZ” is of the form ¢;2" + c,n2", we know it
satisfies the recurrence (33). Substituting n = 0 and n = 1 in the formula gives
the correct values of ay and a, (namely, 1 and 3), it follows that we have found the
solution to Equation (33).
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Inspired by this success, we assert and prove the following statement. Notice
the requirement that r # 0; we’ll treat the case r = 0 as a special case.

Theorem 22.9

Let s,, s> be numbers so that the quadratic equation x* — s;x —s; = O has exactly
one root, ¥ # 0. Then every solution to the recurrence relation

ay = Sy + $2a,-2
is of the form

a, = 1" + conr”.

Proof. Since the quadratic equation has a single (repeated) root, it must be of
the form (x — r)(x —r) = x*> — 2rx + r*. Thus the recurrence must be a, =
2ra,,_1 - rza,l_g. .

To prove the result, we show that a, satisfies the recurrence and that ¢;, ¢ can
be chosen so as to produce all possible ag, a;.

To see that a,, satisfies the recurrence, we calculate as follows:

2rd,_1 — rla,_, = 21"(6]1""_1 +ca(n — l)r”_l) — r2(c1r”_2 + c(n — 2)r"2)
= Qcir” — ™ + Qealn — D" —caln — 2)r™)

= " + cnr” = ay.
To see that we can choose ¢;. ¢, to produce all possible dq, a1, we simply solve

a0=c1r0+62'0-r0:cl

a, =cirl e 1-r =r(c; +c2).

So long as r # 0, we can solve these. They yield

agr — a4y
cp=aq and ¢ =——.
¥

Finally, in case r = 0, the recurrence is simply a, = 0, which means that all
terms are Zero.

Sequences Generated by Polynomials

We began this section by recalling Proposition 21.3, which gives a formula for the
sum of the squares of the natural numbers up to n:

_ @+ DE+Dm)
= ¢ ,

Notice that the formula for the sum of the first n squaresis a polynomial expression.
In Exercise 21.3b you were asked to show that the sum of the first # cubes is n*(n+
1)? /4—another polynomial expression. Proving these by induction is relatively
routine, but how can we figure out the formulas in the first place?

04124224 +n?




The difference operator A
should not be confused
with the symmetric
difference operation, also
denoted by A. The
difference operator
converts a sequence of
numbers into a new
sequence of numbers,
whereas the symmetric
difference operation takes
a pair of sets and returns
another set.
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Good news: We will now develop a simple method for detecting whether
a sequence of numbers is generated by a polynomial expression and, if so, for
determining the polynomial that created the numbers.

The key is the difference operator. Letag, ay, az, . . . be a sequence of numbers.
From this sequence we form a new sequence

ay —dg,ay —ay, a3 —da, ...

in which each term is the difference of two consecutive terms of the original
sequence. We denote this new sequence as Aa. Thatis, Aa is the sequence whose
nth term is Aa, = a,.1 — a,. We call A the difference operator.

Example 22.10

The degree of a polynomiat
expression is the largest
exponent appearing in the
expression. For example,
I —n?+10isa
degree-5 polynomial in n.

Let @ be the sequence 0,2, 7, 15,26,40,57, ... The sequence Aa is 2, 5, 8, 11,
14, 17. This is easier to see if we write the sequence a on one row and Aa on a
second row with Aa, written between a, and a,41.

a. 0 2 7 15 26 40 57
Aa: 2 5 8 11 14 17

If the sequence a, is given by a polynomial expression, then we can use that
expression to find a formula for Aa. For example, if a, = n® —5n + 1, then

Aa, = ani1 —
—[m+1D=5m+D+1]—[n’ —5n+1]
=+ 43+ 1=5n—5+1—n*+5n—1
= 3n’ 4 3n — 4.

Notice that the difference operator converted a degree-3 polynomial formula, n?—
5n + 1, into a degree-2 polynomial.

Proposition 22.11

Let a be a sequence of numbers in which a, is given by a degree-d polynomial
in n where d > 1. Then Aq is a sequence given by a polynomial of degree
d—1

Proof. Suppose a, is given by a polynomial of degree 4. That is, we can write
a, = cdnd + cd_lnd'l + -4 cn+ o
where ¢; # 0 and d > 1. We now calculate Aday!

Aay, = Gpy1 — dn
= [can+ 1) +comim+ D+ F e+ D + ool
—[egn® 4+ can®™t 4o+ on + )
= leain + D? = can?) + lean(n + D' —camin
+-oo+fei(n+ 1) —cin] + leo — col-

d—]]
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Each term on the last line is of the form ¢; (n + 1)/ — c;n/. We expand the (n + 1)/
term using the Binomial Theorem (Theorem 16.8) to give ¢

ciln+ 1) —cn! =¢; [nj + ({>nj_1 + (é)nj_2+---+ C)no} —c;n’
R A AN J
~a (@) e+ ()]

Notice that ¢;(n + 1)/ — ¢;n/ is a polynomial of degree j — 1. Thus, if we look
at the full expression for Aa,, we see that the first term c;(n + 1)? — ¢qn? is a
polynomial of degree d — 1 (because c; # 0) and none of the subsequent terms
can cancel the #n¢”! term because they all have degree less than d — 1. Therefore
Aa, is given by a polynomial of degree d — 1. [

If a is given by a polynomial of degree d, then Aa is given by a polynomial of
degree d — 1. This implies that A(Aa) is given by a polynomial of degree d — 2,
and so on. Instead of A(Aa), we write A2a. In general, Afa is A(A¥1a) and Ala
is just Aa.

What happens if we apply A repeatedly to a polynomially generated sequence?
Each subsequent sequence is a polynomial of one lower degree until we reach a
polynomial of degree zero—which is just a constant. If we apply A one more time,
we arrive at the all-zero sequence!

Corollary 22.12

If a sequence a is generated by a polynomial of degree d, then A%*lg s the all-zeros
sequence.

Example 22.13

The sequence 0, 2,7, 15, 26, 40,57, ... from Example 22.10 is generated by a
polynomial. Repeatedly applying A to this sequence gives this:

a: 0 2 7 15 26 40 57
Aa: 2 5 8 11 14 17
Aa: 3 3 3 3 3
Ala: 0 0 0 0

Corollary 22.12 tells us that if a, is given by a polynomial expression, then
repeated applications of A will reduce this sequence to all zeros. We now seek to
prove the converse; that is, if there is a positive integer k such that AFa, is the
all-zeros sequence, then a, is given by a polynomial formula. Furthermore, we
develop a simple method for deducing the polynomial that generates a,.

Our first tool is the following simple proposition.

Proposition 22.14

Let a, b, and ¢ be sequences of numbers and let s be a number.

) If, forall n, ¢, = @, + b,, then Ac, = Aa, + Ab,.
(2) If, for all n, b, = sa,, then Ab, = sAa,.




For those who have studied
linear algebra. If we think
of a sequence as a vector
(with infinitely many
components), then
Proposition 22.14 says

that A is a linear
transformation.

Not only can (Z) be
expressed as a polynomial
in n, but the same is true
for all (;’) (where k is a
positive integer). Using
Theorem 16.12, when

n >k, write (}f) as

nn—1)(n=2)---(n—k+1)

k!
For the case 0 < n < &k,
observe that both (’A‘) and
the polynomial evaluate to
zero. Thus for every
positive integer k, (:) can
be written as a polynomial
of degree k.
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This proposition can be written more succinctly as follows: A(a, + b,) =
Aa, + Ab, and A(sa,) = sAa,.

Proof. Suppose first that for all », ¢, = a,, + b,. Then

Ac, = Cpy1 — Cp
= (Gny1 + bpy) — (ap + 0y)
= (Any1 — @n) + (byi1 — by)
= Aa, + Ab,.

Next, suppose that b, = sa,. Then

Ab, = bn+] — b, =5ap 1 —sa, =5 (an+l —a,) = sAay,. ]

The next step is to understand how A treats some particular polynomial se-
quences. We start with a specific example.

Leta be the sequence whose nthtermis a, = (7). Forexample,as = () = 10.
By Theorem 16.12, we can write

_(ny n!
o = 3>_(n—3)!3!

nn—-Dn—-2)(n —3)(n—4)---(2)(1)
n-3n-4---2)1)-3!

= én(n —Dn—-2)

which is a polynomial. This formula is correct, but there is a minor error. The
formula () = ;& applies only when 0 < k < n. The first few terms of

the sequence, ay, d;, @, are (g), (;), and (g) All of these evaluate to zero, but
Theorem 16.12 does not apply to them. Fortunately, the polynomial expression

%n(n — 1)(n — 2) also evaluates to zero for n = 0, 1, 2, so the formula @, =
in(n — 1)(n — 2) is correct for all values of n.

Now let’s calculate Aa,, A%a,, and so on, until we reach the all-zeros sequence
(which, by Corollary 22.12, should be by A‘a,).

a,: 0 0 0 1 4 10 20 35 56
Aay: 0 0 1 3 6 10 15 21
Aa,: 0 1 2 3 4 5 6
Ada,: 1 1 1 1 1 1
Aa,: 0 0 0 0 0

Please note that every row of this table begins with a zero except for row Aa,,
which begins with a one.
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Since a, = (7) is a polynomial of degree 3, we know that Ag, is a polynomial

of degree 2. Let’s work this out algebraically:

Aa"’ - A(’l) - (n 3 1) - <n>
3 3 3
= ! 1 1 ! 1 2
= g(n + D -1) — g"(" —Dn—-2)

(n*—n)—(* —3n2+2n) 30" —3n
6 6

1 D= n

Having discovered that A(}) = A(3), we wonder whether there is an easier
way to prove this (there is) and whether this generalizes (it does).

We seek a quick way to prove that A7) = (4). This can be rewritten ("1 -
(#) = (4), which can be rearranged to (®) + (%) = ("3"). This follows directly

3 2 3
from Pascal’s Identity (Theorem 16.10).
Seeing that A(}) = (2). it’s not a bold leap to guess that A() = (5), or
in general A (2) = ( kfl). The proof is essentially a direct application of Pascal’s

Identity (with a bit of care in the case n < k).

Proposition 22.15

Let k be a positive integer and let a, = (}) for all n > 0. Then Aa, = (")

Proof. We need to show that A(}) = (,",) for all # > 0. This is equivalent to
(1) = (}) = (,",) which in turn is the same as

R CURENAS)

By Pascal’s Identity (Theorem 16.10), Equation (34) holds whenever 0 <k <
n + 1, so we need only concern ourselves with the case n+1 < ke,n<k-1).
In the case n < k — 1, all three terms, (":]>, (*), and (," ) equal zero, so
(34) holds.
n+1 k n k—1
In the case n = k — 1, we have ("7') = (i) = L, () = (“.) =0, and

(") = (1) =1.and 34 reduces to 1 = 0 + 1. ]

Earlier we noted that for a, = (%), we have that A/ay = 0 for all j except
j = 3,and A*ay = 1. This generalizes. Let k be a positive integer and let a,, = ().
Because a, is expressible as a degree-k polynomial, AFHlg, = 0 for all n. Using
Proposition 22.15, we have that ap = Aay = AZgy = --- = AFlgg = 0 but
Aka; = 1; see Exercise 22.5.

Thus, for the sequence a, = (}), we know (1) that A lg, = 0 for all n, (2)
the value of ag, and (3) the value of A/gg for 1 < j < k. We claim that these
three facts uniquely determine the sequence a,,. Here is a careful statement of that

assertion.
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Propositicn 22.16

Let a and b be sequences of numbers and let k be a positive integer. Suppose that

«  Akg, and A*b, are zero for all n,
« ay = by, and
o Adgyg=Albyforalll < j < k.

Then a, = b, for all n.

Proof. The proof is by induction on k.

The basis case is when & = 1. In this case we are given that Aa, = Ab, =0
for all n. This means that @, — a, = 0 for all n, which implies that a,,.; = a,
for all »n. In other words, all terms in g, are identical. Likewise for b,. Since we
also are given that ay = by, the two sequences are the same.

Now suppose (induction hypothesis) that the Proposition has been proved for
the case k = £. We seek to prove the result in the case k = £ + 1. To that end, let
a and b be sequences such that

o Aftlg, = Atlp, = 0 for all n,
e dgp = bo, and
« ANagy=Abyforalll < j<£+1.

Consider the sequences a, = Aa, and b}, = Ab,. By our hypotheses we see
that Afa) = A‘h) = Oforall n, aj = b}, and Ala) = Al forall 1 < j < L.
Therefore, by induction, a’ and »’ are identical (i.e., a, = b, for all n).

We now prove that a, = b, for all n. Suppose, for the sake of contradiction,
that @ and b were different sequences. Choose m to be the smallest subscript so
that a,, # b,,. Note that m # ( because we are given ag = bp; thus m > 0. Thus

we know a,,_; = b,,_,. We also know thata, | = b, _; here is why:
7
a, = AGy_1 = Ay — a1
'
= bm_] = Aby_y = by, — b1
ay — Qp-1 = by — b
aym — by =an_1 — b1 =0

al?l = b"l =><=

Thus a, = b, for all n. |

We are now ready to present our main result about sequences generated by
polynomial expressions.

Theorem 22.17

Let ag, ai, az, . .. be a sequence of numbers. The terms a, can be expressed as
polynomial expressions in z if and only if there is a nonnegative integer k such
that for all n > 0 we have AFtlg, = 0. In this case,

a, = ag (g) + (Aap) (rll) + (A%ap) (Z) + -+ (A*ag) (Z)




186 Chapter 4 More Proof

Proof. One half of the if-and-only-if statement has already been proved: If a, is
given by a polynomial of degree d, then A%*lg, =0foralln tCorollary 22.12).

Suppose now that a is a sequence of numbers and that there is a natural number
k such that for all n, A¥*la, = 0. We prove that a, is given by a polynomial
expression by showing that a,, is equal to

b, = ag (g) + (Aag) G) + (A%aq) (;l) + -+ (Aay) (Z)

To show that a, = b, for all n, we apply Proposition 22.16; that is, we need to
prove

(1) A*lg, = Ak b, =0forall n,
(2) ag = by, and
(3) Aja() = A]bo forall 1 < ] < k.

We tackle each in tumn.

To show (1), note that A**'a, = 0 for all n by hypothesis. Notice that b, is a
polynomial of degree k, and so A¥*'b, = 0 for all n as well (by Corollary 22.12).

It is easy to verify (2) by substituting # = 0 into the expression for b,; every
term except the first evaluates to zero, and the first term is ao (g) = ag.

Finally, we need to prove (3). The notation can become confusing as we
calculate A/p,—there will be too many As crawling around the page! To make

our work easier to read, we let

Co = o, C1 = Aao, Cyr = Aan, veey Cp = Akag

and so we can rewrite b,, as

b, =co(g) +cl(';) +c2(g> +...+ck(z).

Now, to calculate A/b, we apply Proposition 22.14, Proposition 22.15, and Corol-
lary 22.12:

Ab, = A e " + ¢ : +c " 4t "
" 0 1 2 k
= ¢y’ NETY " + e V4o ”
0 1 2 k
(n ; n e
=04+..-+0 A AT Al
+ + 0+ ¢ (j)+CJ+1 <j+1)+ + ¢ <k>

n n n
ol e )l

We substitute 7 = 0 into this, which gives
Alby=c;+0+-+0=Aa

and this completes the proof. ]
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Example 22.18

We return to the sequence presented in Examples 22.10 and 22.13: 0,2, 7, 15. 26,

40, 57, .. .. We calculated successive differences and found this:
a. 0 2 7 15 26 40 57
Aa: 2 5 8 11 14 17
Ala: 3 3 3 3 3
Aa: 0 0 0 0

By Theorem 22.17,

o fn n n\ nin—1) n@Bn+1)
an—0<0>+2(1)+3(2)—O+2-n+3~ 5 = 5 .

Example 22.19

Let us derive the following formula from Proposition 21.3:

P 412424 bn? = (2n+1)(6n+1)(n)‘

Leta, = 0 + 12 + - - . + n%. Computing successive differences, we have

a,: 0 1 5 14 30 55 91 140
Aay,: 1 4 9 16 25 36 49
Aa,: 3 5 7 9 11 13
Aa,: 2 2 2 2 2
Aa,: 0 0 0 0
Therefore

w=og)+1(5) +(3) +2(5)

:0+n+%n(n—1)+%n(n—1)(n—2)

2 +3n+n Qo+ D+ D)
B 6 - 6 '

Recap

A recurrence relation for a sequence of numbers is an equation that expresses
an element of the sequence in terms of earlier elements. We analyzed first-order
recurrence relations of the form a, = sa,_; + t and second-order recurrence
relations of the form a,, = s1a,_1 + S2d,-2:

« The recurrence a, = sda,_; + ¢ has the following solution: If s # 1, then
a, = c18' + ¢, where ¢y, ¢, are specific numbers.

« The solution to the recurrence @, = §1d,_1 + $24,—> depends on the roots ry, 73
of the quadratic equation x*—six —855 = 0.1f r( # ra, thena, = cr{ +cary
butif , = r, = r, then a, = c;7" + cynr’".
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We introduced the difference operator, Aa, = a,,1 — a,. The sequence of

. . . ¥ . .
numbers a, is generated by a polynomial expression of degree d if and only if
A“*lg, is zero for all n. In this case we can write a, = ao(y) + (Aao)(}) +

(A%ag)(5) + -+ (A%0) (}).

22 Exercises

22.1.

22.2.

22.3.

22.4,

22.5.

22.6.

22.7.
22.8.

For each of the following recurrence relations, calculate the first six terms of
the sequence (thatis, g through as). You do not need to find a formulafora,.
a, = 2(1,1_“1 + 2, dg = 1.
a, = dy_1 + 3, ag = 5.
Ay = dy_| +2a,_2,a0=0,a, = 1.
a, = 3Cl,l,] — 511n,2, ag = 0, a; = 0.
a, = dy_1 +ap_2 + 1, ap =dy = 1.
a, = d,_| +n,a9 = 1.

Solve each of the following recurrence relations by giving an explicit for-
mula for a,l For each, please calculate as.

a. a, = (ln 1,(1()—4
a, = IOan-l, ap = 3.
a, = —a,_y, ay = 5.
a, =1.2a,_1,a9 = 0.
a, = 3a,-1 — 1, ag = 10.
a, =4 —2a,_1,ay =0.
a, = a,-1 +3,ay = 0.
a, = 20,1 +2,a5 = 0.
=8a,_; — 15a, 2, a5 =1,a, =4.
dy = dy_1 + 6a,_5,a9 =4, a1 = 4.
a, =4a,_1 —3a, 2,a0=1,a; =2.
a, = —6Cln,1 - 9(1,1*2, ag = 3, a3 = 6.
d, = 2a,_1 — au_2,a9 = 5,a; = 1.
a, = —2anv1 — dy-2, Ay = 5, ay = 1.
a, =2a, 1+ 2a,,a0=3,a, = 3.
an_2an 1—5(,1” 2,610—2 ay =3,
Each of the following sequences is generated by a polynomial expression.
For each, find the polynomial expression that gives a,,.

a. 1,6,17,34,57,86, 121, 162, 209, 262, ...

b. 6,5,6,9, 14, 21,30,41, 54,69, ...

c. 4,4,10, 28, 64, 124, 214, 340, 508, 724, ...

d. 5, 16,41, 116, 301, 680, 1361, 2476, 4181, 6656, ...
Explain why the notation Aa, has implicit parentheses (Aa), and why
Al(a,) 1s not correct.

Let k be a positive integer and leta, = (). Provethatay = Aay = A’aqg =

.= A* gy = 0 and that A*qy = 1.

Suppose that the sequence a satisfies the recurrence a, = a,-1 + 12a,_,
and that ap = 6 and a5 = 4877. Find an expression for a,.
Find a polynomial formula for 1* +2* + 3% + ... 4+ n*,
Let ¢ be a positive integer. Prove that 1" 42’ 43" 4 - - 4 n' can be written
as a polynomial expression.
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Some so-called intelligence tests often include problems in which a series
of numbers is presented and the subject is required to find the next term of
the sequence. For example, the sequence might begin 1, 2, 4, 8. No doubt
the examiner is looking for 16 as the next term.

Show how to “outsmart” the intelligence test by finding a polynomial
expression (of degree 3) for a, such thatay = 1, a; = 2,0, =4,a; = 8§,
but ay = 15.

Let s be a real number with s = 0. Find a sequence a such that a, = sAa,
and ap = 1.

Solve the equation A%a, = —a, with ay = a; = 2.

Find two different sequences a and b for which Ag, = Ab, for all n.
The second-order recurrence relations we solved were of the form a, =
$1Gn_1 + $2¢,_2. In this problem we extend this to relations of the form
a, = $1ay_ + $2a,_ + 1. Typically (but not always) the solution to such
arelation is of the form a,, = c,r} + car) 4¢3 where ¢y, ¢2, ¢3 are specific
numbers, and r, r, are roots of the associated quadratic equation x2 =
s1x — 5, = 0. However, if one of these roots is 1, or if the roots are equal
to each other, another form of solution is required.

Please solve the following recurrence relations. In the cases where the
standard form does not apply, try to work out an appropriate alternative
form, but if you get stuck, please consult the Hints (Appendix A).

a. a, =5a,_1—6a, »+2,ap=1a =2

b. a, =4a,_1 +5a,_2 +4. a9=2,a =3.

¢ a, =2a,_1+ 4an—2 +6,a0 =ay = 4,

d. a, =3a,_| —2a, 2+ 5,00 =a, =3

e a, = 661,1_1 - 90,1_2 — 2, ag = -1,a; = 4,

f. a, = 261,1_1 — Gy + 2, ag = 4, a) = 2.

Extrapolate from Theorems 22.5 and 22.9 to solve the following third-order
recurrence relations.

a. a, =4a,.1 — Gy_2 — 6a,_3,a0 = 8,a =3, and a; = 27.

b. a, = 2a,_; +2ap_» — 4a,_3, a9 = 11, a; = 10, and @, = 32.

¢ a, = —a,_; + 8y + 12a,_3,a0 = 6, a1 = 19, and a; = 25.

d. a, = 6a,_1 — 12a,-2 + 8a, 1, a9 = 3,a1 = 2,and a, = 36.

Suppose you wish to generate elements of a recurrence relation using a
computer program, It is tempting to write such a program recursively.

For example, consider the recurrence a, = 3a,—y — 2a,-2, 4y = 1,
a; = 5. Here is a program to calculate the values a,:

procedure get_term(n)
if (n <O
print 'Illegal argument'
exit
end

if (@ == 0)
return 1
end
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if (o == 1)
return 5
end
return 3*get_term(n-1) - 2%get._term(n-2)
end
Although this program is easy to understand, it is extremely inefficient.
Explain why.
In particular, let b, be the number of times this routine is called when
it calculates a,. Find a recurrence—and solve it!—for b,,.

22.16. There are many types of recurrence relations that are of different forms

from those presented in this section. Try your hand at finding a formula
for a, for these:

a, = nay—1, dog = 1.

a, = a,zl_l, ag = 2.

a, =ap+ar+ay+ - +an,a0= 1.

a, =nag+ (n — Da; + (n— Nay + - -+ 2a,—2 + 1dp—1, a0 = 1.

anp = 3.961,1_1(1 — ap_1), Qg = %

pROFE
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Prove that the equation x? + 1 = 0 does not have any real solutions.
Prove that the sum of any four consecutive integers is not divisible by 4.
Let a and b be positive integers. Prove: If a|b and b|a, thena = b.
Which of the following sets are well-ordered?

a. The set of all even integers.
b. The set of all primes.
c. {—100,—99, —98, ..., 98,99, 100}.
d. 4.
e. The negative integers.
f. {m,n2, 7% 7%, ...} where 7 is the familiar real number 3.14159....
Let n be a positive integer. Prove that
n? —n
1+44+474+---+@Brn-2)= 3

. Let n be a natural number. Prove that

O+ 114214 +n! < (n+ D

Suppose ag = | and a, = 4a,_; — 1 when n > 1. Prove that for all natural
fumbers n, we have a, = (2-4" +1)/3.

Prove by induction: If n € N, thenn < 2",

Consider the following proposition.
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13.

14.

15.

16.
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Let P be a finite set of (three or more) points in the plane and suppose any
three points in P are collinear. Then all the points in £ must lie on a common
line.

Prove this two ways: by contradiction and by induction.

Let 5 be a positive integer. Prove that

V4824 +/n <ni/n.

Prove the Binomial Theorem (Theorem 16.8) by induction. That is, ifnisa
natural number, then

n
n . s
(.Xf + y)n — Z (j)xjylz-J.

j=0

Let n be a positive integer and suppose 7 distinct lines are drawn in the plane.
No two of these lines are parallel, and no three of these lines intersect at a
common point. Prove that these lines divide the plane into (7) + M+ %)
regions.

Let F, denote the nth Fibonacci number (see Definition 20.12). Prove that for
all natural numbers r, we have

F,+2F, = n+4‘Fn+2~

Let F, denote the nth Fibonacci number. If n is a natural number, then 1 is

the only positive divisor of both F,, and £, (ie.,ifd > 0,d|F,, and d| F 11,

thend = 1).

A horizontal stripe is to be tiled. The tiles come in two shapes: 1 x 1 rectangles

and 1 x 2 rectangles. The 1 x 1 tiles are available in two colors (white and

dark blue), and the 1 x 2 tiles are available in three colors (white, light blue,

and dark blue). For a positive integer 7, let a, denote the number of different

ways to tile an n-long stripe using these tiles. The figure shows one possible

tiling with n = 11.

a. Show that forn > 2, a, = 2a,— + 3.2

b. Prove that a, = (3"t' + (=1)")/4.

Let n be a positive integer. Prove there is a unique pair of nonnegative integers

a, b such that n = 2°b and b is odd.

Let A be a nonempty finite set of positive integers. Suppose that for any

two elements r,s € A, we have r|s or sir. (In symbols, Vr € A, Vs €

A, (rlsors|r).)

a. Prove that A contains an element r with the property that for all a € A,
alt. (In symbols, It € A, Va € A, ajt.)

b. Furthermore, prove that ¢ is unique (i.e., there is only one element of A
that is a multiple of all elements of A).

c. Finally, give an example to show that uniqueness does not hold if we do
not assume that all the elements of A are positive.

For each of the following recurrence relations, find a formula for the anth

term, ay.

a. a, = 2(ln_1 + 15an_2, ag = 4,a, = 0.




e

192 Chapter 4 More Proof

b. a, =2a,.1+ 15, a0=4,a; =0. &
c. a, = 12a,_1 —36a, 2, a0 =1,a1 = 2.

19. The following sequence of numbers is generated by a polynomial expression.
Find the polynomial. (The first term is ap; you should find a polynomial
expression for a,.)

The sequence is

5,26, 67, 146, 281, 490, 791, 1202, 1741, 2426, 3275, ...
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Functions

The concept of function is central to mathematics. Intuitively, a function can be
thought of as a machine. You put a number into the machine, push a button, and out
comes an answer. A key property of being a function is consistency. Every time we
put a specific number—say, 4—into the machine, the same answer emerges. We
illustrate this in the figure. Here the function takes an integer x as input and returns
the value 3x2 — 1. Thus every time the number 4 is entered into the machine, the
answer 47 is produced.

Note that the function in the figure operates on numbers. It would not make
sense to try to put a triangle down the hopper of this machine! However, we can
create a function whose inputs are triangles and whose outputs are numbers. For
example, we can define f to be the function whose inputs are triangles, and for
each triangle entered into the function, the output is the area of the triangle.

The “mechanism’” in the function “machine” need not be dictated by an alge-
braic formula. All that is required is that we carefully specify the allowable inputs
and, for each allowable input, the corresponding output. This is often done with
an algebraic expression, but there are other ways to specify a function.

In this chapter, we take a careful look at functions. We begin with a precise
definition. '

23

Functions

Intuitively, a function is a “rule” or “mechanism” that transforms one quantity
into another. For example, the function f(x) = x?-+4 takes an integer x and
transforms it into the integer x? + 4. The function g(x) = |x| takes the integer x
and returns x if x > Oand —x if x < 0.

In this section, we develop a more abstract and rigorous view of functions.
Functions are special types of relations (please review Section 13).

Recall that a relation is simply a set of ordered pairs. Just as this definition of
a relation was at first counterintuitive, the precise definition of a function may at
first seem strange.

193
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Definition 23.1 (Function) A relation f is called a function provided (a, b)¢€ f and (a, ) € f
imply b = c.
Stated in a negative fashion, a relation f is not a function if there exista, b, ¢
with (a, b) € f and (a,c) € f,and b # c.
Example 23.2 Let
Mathspeak! f = {(1, 2)’ (21 3)7 (3a 1)’ (4! 7)} and

Mathematicians often

use the word map as a
synonym for function. In
addition (o saying ** f of 1
cquals 2.” we also say ' f
maps 1 to 2" And thereis a
notation for this. We write
| — 2. The special arrow
> means /(1) = 2. The
function f is not explicitly
mentioned in the notation
{ > 2: when we use the
> notation. we need to be
certain that the reader
knows what function is
being discussed.

g=1{(1,2),(1,3), &7}

The relation f is a function, but the relation g is not because (1,2), (1,3) € g and

24 3.

When expressed as a set of ordered pairs, functions do not look like rules for
transforming one object into another, but let us look closer. The ordered pairs in f
associate “input” values (the first elements in the lists in f) with “output” values
(the second elements in the lists). In Example 23.2, the function f associates the
input value 1 with the output value 2, because (1, 2) € f. The reason why g is not
a function is that for the input value 1, there are two different output values: 2 and
3. What makes f a function is that for each input there can be at most one output.

Mathematicians rarely use the notation (1, 2) € f, eventhoughthisis formally
correct. Instead, we use the f(-) notation.

Definition 23.3

(Function notation) Let f be a function and let a be an object. The notation f(a)
is defined provided there exists an object & such that (a, &) € f.In this case, fa)
equals b. Otherwise {there is no ordered pair of the form (a, _) € f], the notation
f(a) is undefined. The symbols f(a) are pronounced “ fofa”

For the function f from Example 23.2, we have
fy=2 f@=3 fOB=1 f@ =1

but for any other object x, f(x) is undefined. The reason why we don’t call g
a function becomes clearer. What is g(1)? Since both (1,2) and (1, 3) € g, the
notation g(1) does not specify an unambiguous value.

Example 23.4

Problem: Express the integer function f(x) = x? as a set of ordered pairs.
Solution: We might write this out using ellipses:

F=1{...(-39,(-2,9,(~1,1),(0,0), (1,1), 2.4),(3.9),...}
but it is much clearer if we use set-builder notation:

f={x,y:x,y€eZ y=x}

1t is often clearer to write, “Let f be the function defined for an integer x by
f(x) = x*” than to write out f as a set of ordered pairs as in the example.
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The set-of-ordered-pairs notation for a function is similar to writing a function as
a chart:

x fx)

LG — D — O e

Domain and Image

The sets of allowable inputs and possible outputs of a function have special names.

Definition 23.5

We have avoided using the
word range. Students are
often taught that the word
range means the same

thing as our word image.
The mathematician’s use of
the word range is different
from that commonly

taught in high school.

We avoid confusion simply
by not using this word.

(Domain, image) Let f be a function. The set of all possible first elements of the
ordered pairs in f is called the domain of f and is denoted dom f. The set of all
possible second elements of the ordered pairs in f is called the image of f and is
denoted im f.

In other notation,
dom f ={a:3b, (a,d) € [} and im f =1{b:3a, (a,b) € f}.
Alternatively, we can write

dom f = {a: f(a) is defined} and im f = {b: b= f(a) for some a}.

Example 23.6

Let f = {(1,2), (2, 3), (3, 1),‘ (4,7)}. (This is the function from Example 23.2.)
Then

dom f = (1, 2,3, 4} and im f ={1,2,3,7}

Example 23.7

Let f be the function from Example 23.4; that is,
fF=lx,»:x,yeZ, y=x)

The domain of f is the set of all integers, and the image of f is the set of all perfect
squares.

Next we introduce a special notation for functions.

Definition 23.8

(f : A — B) Let f be a function and let A and B be sets. We say that f is a
function from A to B provided dom f = A and im f € B. In this case, we write
f : A —> B.Wealso say that f is a mapping from A to B.
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The notation f : A — B is read aloud “f is a function from A to B.”
The notation f : A — B makes three promises: First, f is *a function. Second,
dom f = A. And third, im f € B.

Mathspeak!

The notation f : A — B can be an entire sentence, an independent clause, or a noun
phrase. In a theorem, we might write, “If f : A — B, then....” In this case, we would
pronounce Lhe symbols as “If f is a function from A to B...”

However, we may also write, “Let f : A — B ... 2 In this case, we would read the
symbols as “Let f bea function from A to B...."

Example 23.9

Proof Template 19

Mathspeak!

Later in this book we use
the word graph in an
entirely differcnt way.
Here the word graph refers
to the diagram used to
depict the relation between
one quantity (x) and
another (v = f(x)).

Consider the sine function. This function is defined for every real number and re-
turns a real value. The domain of the sine function is all real numbers, and the image
istheset[-1,1]={x e R: -1 =x < 1}. We can write sin : R — IR because
dom sin = Randim sin € R. It would also be correct to write sin : R — [—1, 1].

To prove that f : A — B (Le., to prove that f is a function from A to B), use
Proof Template 19.

To show f A — B.
To prove that f is a function froma set A to a set B:

i Prove that-f is'a function.
+Provethatdom f = A.
. ~Prove thatim f € B.

Pictures of Functions

Graphs provide an excellent way to visnalize functions whose inputs and outputs
are real numbers. For example, the figure shows the graph of the function f(x) =
sin x cos 3x. To draw the graph of a function, we plot a point in the plane at
coordinates (x, f(x)) for every x € dom f.

Formally, the graph of a function is the set {(x,y) : ¥ = f(x)}. What is
interesting is that this set is the function! The function f is the set of all ordered
pairs (x.y) for which y = Ff(x). So to speak of “the graph of a function” is
redundant! This is not bad. When we use the word graph in this context, we are
conjuring up a geometric view of the function.

Graphs are helpful tools for understanding functions to and from the real
numbers. To verify that a picture represents a function, we can apply the vertical
line test: Every vertical line in the plane may intersect the graph of a functionin at
most one point. A vertical line may not hit the graph twice; otherwise we would
have two different points (x, y1) and (x, ¥2), both on the graph of the function.
This would mean that both (x, y1), (x, y2) € f with y, # y,. And this is forbidden
by the definition of function.




An alternative way to
count functions is to count
charts. In how many ways
can we replace the
question marks in the
following chart with
clements from B?

x o
9

2 ?

a ?

The right-hand column is a
length-a list of elements
chosen from the b-element
sct B. There are b* ways to
complete this chart.

4
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In discrete mathematics, we are particularly interested in considering functions
to and from finite sets (or N or Z). In such cases, traditional graphs of functions
are either not helpful or nonsensical. For example, let A be a finite set. We can
consider the function f : 24 — N defined by f(x) = |x|. (Alert: The vertical
value bars in this context do not mean absolute value!) To each subset x of A, the
function f assigns its size. There is no practical way to draw this as a graph on
coordinate axes.

We have an alternative way to draw pictures of functions f : A — B where A
and B are finite sets. Let A = {1,2,3,4.5, 6yand B = {1,2,3,4.5} and consider
the function f : A — B defined by

F=11,2),(2, 1. (3,2), 4 4.(5.5), 6. D}

A picture of f is created by drawing two sets of dots: one for A on the left and
one for B on the right. We draw an arrow fromadota € Atoadoth € B just
when (a, b) € f—thatis, when f(a) = b. From the picture, it is easy 1o see that
im f ={1,2,4,5}.

Now consider g defined by

e =1{(1.3),2,1),(2.4,3.,2), & 4. 5.5}

Is g a function from A = {1,2,3,4,5,6}t0 B = {1,2,3,4,5)? There are two
reasons why g : A — B is false.

First, 6 € A but6 ¢ dom g. Thus dom g # A. You can see this in the picture:
There are no arrows emanating from element 6.

Second, g is not a function (from any set to any set). Notice that (2, ,2,4) €
g, which violates Definition 23.1. You can see this in the picture as well: There
are two arrows emanating from element 2.

If f is a function from A to B(f: A — B),itspicture satisfies the following:
Every dot on the left (in A) has exactly one arrow leaving it, ending at the right
(in B).

Counting Functions

Let A and B be finite sets. How many functions from A to B are there? Without
loss of generality, we can choose A to be the set {1, 2, ....a} and B to be the set
{1,2, ..., b}. Every function f : A — B can be written out as

F={10,20.6.7, ... @}

where the ? entries are elements from B. In how many ways can we replace the 7s
with elements in B? There are b choices for the element 7 in (1, 7), and for each
such choice, there are b choices for the ? in (2, 7), etc., and finally b choices for
the 7 in (a, 7) given all the previous choices. Thus, all told, there are b” choices.
We have shown the following:

Proposition 23.10

Let A and B be finite sets with |[A] = a and |B| = b. The number of functions
from A to B is b°.
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Example 23.11

The notation B stands for

the set of all functions

f.:A— B

Let A = {1, 2, 3} and B = {4, 5}. Find all functions f : A — B.
Solution: Proposition 23.10 tells that there are 23 = § such functions. They are

{(1,4, 2,4, G} {(1,5). (2.4, 3, b}
{1,4),(2,4),3,5)} {(1,5),2,4), 3,5}
{(1,4),2,5),3.4)} {(1,5),(2,5), 3, 4}
{(1.4),(2,5), 3,5} {(1,5),(2,5), 3,5}

In Section 9 we introduced the notation 24 for the set of all subsets of A.
This notation was a mnemonic for remembering that the number of subsets of an
a-element set is 2¢. Similarly, there is a special notation for the set of all functions
from A to B. The notation is B#. This is a mnemonic for Proposition 23.10, because
we can write

|BA| = |B|'.

In this book, we do not use this notation. Furthermore, people often find it con-
fusing. It is tempting to pronounce the symbols B* as “B to the A,” whereas the
notation means the set of functions from A to B.

Inverse Functions

A function is a special type of relation. Recall that in Section 13 we defined the
inverse of a relation R, denoted R, to be the relation formed from R by reversing
all its ordered pairs.

Since a function, f, is a relation, we may also consider f~'. The problem we
consider here is: If f is a function from A to B, is f~! a function from B to A?

Example 23.12

Ty 'S
0 @5
| @] @6
ol T—ler
3@ @8
497 @9
\__A/ L/
' '
0@ @5
104 @6
20‘\»7
3.$Z‘.8
a1
4@ @9

Let A=1{0,1,2,3,4}and B = {5,6,7,8,9}. Let f : A — B be defined by
f=100,5,(1,7),(2,8),3,9, 4D}

$0
ST =1{(,0),(7,1), 8,2),9,3), (7, 9}

Is f~! a function from B to A? The answer is no for two reasons. First, f~! is
not a function. Note that both (7, 1) and (7, 4) are in f~!. Second, dom f~! =
{5,7,8,9} # B. See the figure.

In this example, f~! is not a function. Let us examine why. Consulting
Definition 23.1, we observe that for f ~! to be a function, it must, first, be a
relation. This is not an issue; since f is a relation, so is f —1 Second, whenever
(a, b), (a,c) € £, we must have b = c. Restating this in terms of f, whenever
(b, a), (c,a) € f,wemusthave b = ¢. This is what went wrong in Example 23.12;
wehad (1,7),(4,7) € f,but 1 # 4,

Pictorially, f~' is not a function because there are two f-arrows entering
element 7 on the right.
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Let us formalize this condition as a definition.

Definition 23.13

Mathspeak!

The term one-to-one is
often written as 1:1.

L Another word for a

E  one-to-one function is
L injection.

(One-to-one) A function f is called one-to-one provided that, whenever (x, b),
(y, b) € f, we must have x = y. In other words, if x # y, then fx)# f().

The function in Example 23.12 is not one-to-one because f(1) = f(4) but
1 # 4. Compare closely Definitions 23.13 (one-to-one) and 23.1 (function). The
conditions are quite similar.

Proposition 23.14

Let f be a function. The inverse relation f =1 is a function if and only if f is
one-to-one.

The proof is left to you (Exercise 23.10). While you are at it, also prove the
following:

Proposition 23.15

Proof Template 20

Let f be a function and suppose f =1 is also a function. Then dom f = im f~*
and im f = dom f~'.

It is common to want to prove that a function is one-to-one. Proof Template 20
gives strategies for proving that a function is one-to-one.

Proving a function is'one-to-one.

To show that f is one-to-one:
Direct method: Suppose f(x) = f(3). ... Therefore x = y. Therefore f
is one-to-one. [

Contrapositive method: Suppose x # y....Therefore f(x) # f(y).

Therefore fis one-to-one. [ ]
Contradiction method: Suppose f(x) = f(y)butx # y....=><=There-
fore f is one-to-one. [ ]

Example 23.16

Let f : Z — Z by f(x) = 3x + 4. Prove that f is one-to-one.

Proof. Suppose f(x) = f(y). Then 3x +4 = 3y + 4. Subtracting 4 from
both sides gives 3x = 3y. Dividing both sides by 3 gives x = y. Therefore f is
one-to-one. n

On the other hand, to prove that a function is not one-to-one typically requires
us to present a counterexample—that is, a pair of objects x and y with x # y but

fx)= 7.
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Example 23.17

- @

~®
M
e

Mathspeak!

In standard English, the
word onto is a preposition.
In mathematical English,
we use onfo as an
adjective. Another word
for an onto function is
surjection.

Let f : Z — Zby f(x) = x%. Prove that f is not one-to-one,

Proof. Notice that f(3) = f(—3) = 9, but 3 # —3. Therefore f is not one-to-
one. u

For the inverse of a function also to be a function, it is necessary and sufficient
that the function be one-to-one. Now we consider a more focused question. Let
f A — B.We want to know when f~!is a function from B to A. Recall that
we had two difficulties in Example 23.12. We have dealt with the first difficulty:
£~ ! needs to be a function. The second difficulty was that there was an element in
B that had no incoming arrow.

Consider the function f : A — B shown in the figure. Clearly f is one-to-
one, so f~! is a function. However, f~! is not a function from B to A because
there is an element » € B for which £~'(b) is undefined. For f~! : B — A, there
must be an f-arrow pointing to every element of B. Here is the careful way to say
this:

Definition 23.18

(Onto) Let f : A — B. We say that f is onto B provided that for every b € B
there is an a € A so that f(a) = b. In other words, im f = B.

The sentence “f : A — B is onto” is a promise that the following are
true. First, f is a function. Second, dom f = A. And third, im f = B (see
Exercise 23.7).

Example 23.19

Let A={1,2,3,.4,5,6}and B = {7, 8,9, 10}. Let

F={1,7,2,7,3,8),(4.9),(5.,9), (6,10)}, and
g ={L,7N, 2.7, 3,7),49),(5.9,(6,10)}.

Note that f : A — B is onto because for each element b of B, we can find one or
more elements @ € A such that f(a) = b. It is also easy to check thatim f = B.

However, g : A — B is not onto. Note that 8 € B, but there isno a € A with
g(a) = 8. Also, im g = {7, 9, 10} # B.

The condition that f : A — B is onto can be expressed using the quantifiers
Jand VY as

Vbe B,3aec A, fla) =0b.
The condition that f is not onto can be expressed
db e B,Vac A, f(a) #b.

These ways of thinking about onto functions are formalized in Proof
Template 21.
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Proving a function is onto.

To show. f: A = B-is onto:
Direct method: Let b be an arbitrary element of B. Explain how to find/construct
an element a '€ A such that £(a) = b. Therefore f is onto. ]

Set method: Show that the sets: B and im f are equal. ]

Example 23.20

Recall that @ stands for
the set of rational numbers.

Let f : @ — Qby f(x) = 3x + 4. Prove that f is onto Q.

Proof. let b € Q be arbitrary. We seek an a € Q such that f(a) = b. Let

a= %(b — 4). (Since b is a rational number, so is a.) Notice that
fl@=330-H]+4=0-H+4=0b

Therefore f :  — Q is onto. | |

How did we ever “guess” that we should take a = %(b —4)? We didn’t guess;
we worked backward!

Let f : A — B.Inorder for f -1 ta be a function, it is necessary and sufficient
that f be one-to-one. Given that, in order for f -1 B — A, itis necessary for f
to be onto B. Otherwise, if f is not onto B, we can find a b € Bsuchthat f -(b)
is undefined.

Theorem 23.21

Afunction f 1 A — 8
that is both kinds of
“jection”—an injection
and a surjection—is called
a bijection.

4

Let A and B be sets and let f : A — B. The inverse relation f ~!is a function
from B to A if and only if f is one-to-one and onto B.

Proof. letf:A — B.
(=) Suppose f is one-to-one and onto B. We need to prove that f~': B — A.
We use Proof Template 19.

. Since f is one-to-one, we know by Proposition 23.14 that f ~!is a function.
. Since f is onto B, im f = B. By Proposition 23.15, dom ft=B8B.
. Since the domain of f is A, by Proposition 23.15,im f~' = A.

Therefore f~' : B — A.

(<) Suppose f : A — Band f~' : B — A.Since f~' is a function, fis
one-to-one (Proposition 23.14). Since im f = dom f -l = B, we sec that [ is
onto B. =

A function that is both one-to-one and onto has a special name.

Definition 23.22

(Bijection) Let f : A — B. We call f a bijection provided it is both one-to-one
and onto.
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Example 23.23

Let A be the set of even integers and let B be the set of odd integers. The function
f : A — B defined by fxy=x+1lisa bijection. :

Proof. We must prove that f is both one-to-one and onto. To see that f is one-
to-one, suppose f(x) = f(¥) where x and y are even integers. Thus

S =f»n = x+1l=y+1 = x=Y.

Hence f is one-to-one.

To see that f is onto B, letb € B (ie., b is an odd integer). By definition,
b = 2k + 1 for some integer k. Let a = 2k; clearly a is even. Then f(a) =
a+1=2k+1=Db,so f isonto. Since f is both one-to-one and onto, f is a
bijection. n

Counting Functions, Again

Let A and B be finite sets with [A| = a and |B| = b. How many functions
f:A— Bare one-to-one? How many are onto?

Let’s look at two easy special cases. If [A] > | B}, then f cannot be one-to-one.
Why? Consider the function f : A — B that we hope is one-to-one. Because f
is one-to-one, for distinct elements x, y € A, f(x)and f(y) are distinct elements
of B. Solet’s say the first b elements of A are mapped by f to b different elements in
B. After that, there are no further elements in B to which we can map elements
of A!

On the other hand, if |A| < |B|, then f cannot be onto. Why? There aren’t
enough elements in A to “cover” all the elements in B!

Let’s summarize these comments.

Proposition 23.24

(Pigeonhole Principle) Let A and B be finite setsandlet f : A — B.If|Al > |B|,
then f is not one-to-one. If |A| < |BJ, then f is not onto.

Stated in the contrapositive, if f : A > B is one-to-one, then |A} < | B/, and
if f : A — Bis onto, then |A| = |B|. If f is both, we have the following:

Proposition 23.25

Counting one-to-one
functions.

Let A and B be finite sets and let f : A — B. If f is a bijection, then |A] = |BI.

Let us return to the problem of counting those functions from an a-element
set to a b-clement set that are one-to-one and those functions that are onto.

The good news is that we have solved these problems in previous sections of
this book!

Consider the problem of counting one-to-one functions. Without loss of gen-
erality, suppose A = {12, ..., a}and B = {1,2,...,b}. A one-to-one function
from A to B is of the form

f=119.2.7,6., ... @D}

where the ?s are filled in with elements of B without repetition. This is a list-
counting problem that we solved in Section 7.
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Now consider the problem of counting onto functions. Here we want to fill in
the ?s with elements of B so that every element is used at least once. The number
of length-a lists whose elements come from B and use all the elements in B at
least once was solved in Section 18.

Let us collect what we learned in those sections and summarize them in the
following result.

Theorem 23.26

Let A and B be finite sets with [A] = a and |B| = b.

(1) The number of functions from A to B is b“.
(2) If a < b, the number of one-to-one functions f : A — Bis
b!
by, =bb~-1)---(b— Hh=———.
(B =bb =1 (b —a+ 1) =F—0
If @ > b, the number of such functions is zero.
(3) If a > b, the number of onto functions f : A — B is

b /b
> =1 ( ) GRS
=0 J

If ¢ < b, the number of such functions is zero.
(4) If @ = b, the number of bijections f : A — Bisa!. If a # b, the number of
such functions is zero.

Recap

We introduced the concept of function, as well as the notation f : A — B. We
investigated when the inverse relation of a function is itself a function. We studied
the properties one-to-one and onto. We counted functions between finite sets.

23 Exercises

23.1. For each of the following relations, please answer these questions:
(1) Isitafunction? If not, explain why and stop. Otherwise, continue with
the remaining questions.
(2) What are its domain and image?
(3) Is the function one-to-one? If not, explain why and stop. Otherwise,
answer the remaining question.
(4) What is its inverse function?
{(1,2), 3,4}
{(x,y):x,y€Z, y=2x}
[(x,y):x,yeZ, x+y=0}
{(x,y):x,yeZ, xy=0)}.
{(x.V):x,yeZ, v=x}
a.
{((x,y):x,yeQ, x2+y* =1L
{(x,y) 1 x,y € Z, x|y}
{(x,y):x,y € N, x|yand y|x}.
((x,y):x,yeN, (;) =1}

S SR ol
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232. Let A = {1,2,3}and B = {4, 5} Write down all functions@_f :A— B.

Despite the fuct that the
phrase * / is onto™ does not
make sensc in isolation,
mathematicians often writc
it. It makes sense if we are
thinking about a particular
pair of sets A und B with
f:A— B.Inthis
context, ** f is onto” means
“fisonto B

23.3.

23.4.

23.5.

23.6.

23.7.

23.8.

23.9.

23.10.
23.11.

Indicate which are one-to-one and which are onto B.

Let A= {1,2)and B = {3,4,5}. Write down all functions f : A — B.
Indicate which are one-to-one and which are onto B.

Let A = {1,2} and B = (3, 4}. Write down all functions f : A — B.
Indicate which are one-to-one and which are onto B.

For each of the following functions, find f(2).

. f:{(x,y):x,yeZ,x—{—y:O}.

. =112, 2,3, 3D}

. f:N—>Nby f(x)=(x+ 1)ye+D,

. f=1{1,2,3,4,5} x {1}

. f:N— Nby f(n)=n!

Let A=1{l,2,3,4}and B = {5,6,7}. Let f be the relation

f=101.5,02,5),3,6), (7N}

where the two question marks are to be determined by you. Your job is o
find replacements for (2, 7 so that each of the following is true. [Three
different answers—one for each of (a), (b), and (c)—are expected. The
ordered pair (7, 7) should be a member of A x B.}
a. The relation f is not a function.
b. The relation £ is a function from A to B but is not onto B.
¢. The relation f is a function from A to B and is onto B.
Consider the following two sentences about a function f:
a. f isonto.
b. f: A — Bisonto.
Explain why (a) does not make sense but (b) does.
The sine function is a function to and from the real numbers; that is sin :
R — R. The sine function is neither one-to-one nor onto. Yet the arc sine
function, sin~', is known as its inverse function.
Explain.
For each of the following, determine whether the function is one-to-one,
onto, or both. Prove your assertions.
a. f:7Z — Zdefinedby f(x) = 2x.
. [ :7Z — Zdefined by f(x) = 10 + x.
. f:N— Ndefined by f(x) = 10 4+ x.
. f :7Z — Z defined by

=2 ]

e 20

e T

z if x is even
foo = { B if x is odd.
e. f:Q — Qdefinedby f(x)= x2.
Prove Propositions 23.14 and 23.15.
Let A and B be finite sets and let f : A — B. Prove that any two of the
following statements being true implies the third.
a. [ is one-to-one.
b. f isonto.
c. |Al=|B]|.
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23.12. Give an example of a set A and a function f: A— Awhere f is onto but
not one-to-one.
Give an example where f is one-to-one but not onto.
Are your examples contradictions to the previous exercise?
23.13. Suppose f : A — B is a bijection. Prove that f~' : B — A s a bijection
as well.
23.14. Let A be an n-element set and let k¢ € N. How many functions f : A —
{0, 1} are there for which there are exactly k elements a in A with fla)=1?
23.15. Let A be an n-element set and let i, j, k € Nwithi +j + k = n. How
many functions f : A — {0, 1,2} are there for which there are exactly
clements a € A with f(a) = 0, exactly j elements ¢ € A with f(a) =1,
and exactly k elementsa € A with f(a) = 2.

The Pigeonhole Principle

Proposition 23.24 is called the Pigeonhole Principle. It asserts that if A and B are
finite sets and if | A} > | B, then there can be no one-to-one function f : A — B.
The reason is clear: There are too many elements in A. What, you might ask, does
this result have to do with pigeons?

Imagine that we own a flock of pigeons and that the pigeons live in a coop.
The pigeon coop is divided into separate compartments called holes where the
pigeons nest.

Suppose we own p pigeons and our coop has h holes. If p < &, then the coop
is large enough so that pigeons do not have to share holes. However, if p > h, then
there are not enough holes to give every pigeon a private room; some pigeons will
have to share quarters.

There are a number of interesting mathematical problems that can be solved
by the Pigeonhole Principle. Here we present some examples.

Proposition 24.1 Letn € N. Then there exist positive integers a and b, witha # b, such thatn® — n?

is divisible by 10.

For example, if n = 17, then we can subtract

17¢ = 24,137,569
- 172 = 289
24,137,280

4, which is divisible by 10.
To prove this result, we use the well-known fact that a natural number is
divisible by 10 if and only if its last digit is a zero. A more careful approach would
use ideas developed in Section 34.
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Proof. Consider the 11 natural numbers

n' ot oa o on'l

The ones digits of these numbers take on values in the set {0, 1,2, ....9}. Since
there are only ten possible ones digits, and we have 11 different numbers, two
of these numbers (say #% and n®) must have the same ones digit. Therefore n® — nt
is divisible by 10. |

The next example comes from geometry. Every point in the plane can be
expressed in terms of its x- and y-coordinates. A point whose coordinates are both
integers is called a lattice point. For example, the points (1,2), (-3, 8), and the
origin are lattice points, but (1.3, 0) is not.

Proposition 24.2

Given five distinct lattice points in the plane, at least one of the line segments
determined by these points has a lattice point as its midpoint.

In other words, suppose A, B, C, D, and E are distinct lattice points. There
are (2) — 10 different line segments we can form whose endpoints are in the set
{A, B, C, D, E}. Proposition 24.2 asserts that the midpoint of one (or more) of
these line segments must also be a lattice point. For example, consider the five
points in the figure. The midpoint of segment AD is a lattice point.

To prove this result, we recall the midpoint formula from coordinate geometry.
Let (a, b) and (c, d) be two points in the plane (not necessarily lattice points). The
midpoint of the line segment determined by these points can be found using the

following formula:
at+c b+d
2 72 '

We are given five distinct lattice points in the plane. The various coordinates are
integers and hence are either even or odd. Given a lattice point’s coordinates, we
can classify it as one of the following four types:

Proof (of Proposition 24.2)

(even, even) (even, odd) (odd, even) (odd, odd)

depending on the parity of its coordinates. Notice that we have five lattice points,
but only four parity categories. Therefore (by the Pigeonhole Principle) two of these
points must have the same parity type. Suppose these two points have coordinates
(a, b) and (c, d). The midpoint of this segment is at coordinates (“—Jz“i, #) Since
a and ¢ have the same parity, a + ¢ is even, and so “—Jg—‘ is an integer. Likewise %
is an integer. This proves that the midpoint is a lattice point. |

The third example concerns sequences of integers. A sequence is simply a list.
Given a sequence of integers, a subsequence is a list formed by deleting elements
from the original list and keeping the remaining elements in the same order in
which they originally appeared.
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For example, the sequence
1 9 10 8 3 7 5 2 6 4

contains the subsequence
9 8 6 4.

Notice that the four numbers in the subsequence are in decreasing order, and so
we call it a decreasing subsequence. Similarly, a subsequence whose elements are
in increasing order is called an increasing subsequence.

We claim that every sequence of ten distinct integers must contain a subse-
quence of four elements that is either increasing or decreasing. The sequence above
has a decreasing subsequence of length four and also an increasing subsequence
of length four (find it). The sequence

09 8 7 6 5 4 3 1 2

has several length-four decreasing subsequences, but no length-four increasing
subsequence.

A sequence that is either increasing or decreasing is called monotone. Our
claim is that every sequence of ten distinct integers must contain a monotone,
length-four subsequence. This claim is a special case of a more general result.

Theorem 24.3

(Erdés-Szekeres) Let n be a positive integer. Every sequence of n? + 1 distinct
integers must contain a monotone subsequence of length n + 1.

Our example (sequences of length ten) is the case # = 3 of the Erdds-Szekeres
Theorem.

Proof. Let n be a positive integer. Suppose, for the sake of contradiction, that
there is a sequence S of n2 + 1 distinct integers that does not contain a monotone
subsequence of length n 4 1. In other words, all the monotone subsequences of S
have length 7 or less.

Let x be an element of the sequence §. We label x with a pair of integers
(uy, d,). The integer u, (u for up) is the length of a longest increasing subsequence
of S that starts at x. Similarly, d, (d for down) is the length of a longest decreasing
subsequence of S that starts at x.

For example, the sequence

1 9 10 8 3 7 5 2 6 4
would be labeled as follows:

1 9 10 8 3 7 5 2 6 4
“@H @9 A G G (L) @ @b (1, 0D

Element 4 is the last element in the sequence, so it gets the label (1, 1)—the
only sequences starting at 4 have length one. Element 9 has label (2, 5) because
the length of a longest increasing subsequence starting at 9 is two: (9, 10). The
length of a longest decreasing subsequence starting at 9 is five: (9, 8,7,5,4) or
(9,8,7,6,4).
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Returning to the proof, we make the following observations.
&

+ Because there are no monotone subsequences of length n + 1 (or longer), the
labels on the sequence S use only the integers 1 through n.

Hence, we use at most 7 labels (from (1, 1) to (r, n)).

«  We claim that two distinct elements of the sequence cannot have the same
label.

To see why, suppose x and y are distinct elements of the sequence with
x appearing before y. Their labels are (u,,d.) and (u,,d;). Because the
numbers on the list are distinct, either x < y or x > y.

If x < y, then we claim u, > u,: We know there is an increasing
subsequence of length u, starting at y. If we insert x at the beginning of
this subsequence, we get an increasing subsequence of length u, + 1. Thus
uy > uy + 1, or, equivalently, u, > u,. Thus x and y have different labels.

Similarly, if x > v, then we have d, > d, and we again conclude that x
and y have different labels.

However, these two observations lead to a contradiction. There are only n?
different labels, and S has n”® + 1 elements. By the Pigeonhole Principle, two
of the elements must have the same label. However, this contradicts the second
observation that no two elements can have the same label.=< Therefore S must
have a monotone subsequence of length n + 1. n

Cantor's Theorem

The Pigeonhole Principle asserts that if |A| > |B], there can be no one-to-one
function f : A — B. The flip side of this coin is that if | A| < |B|, there can be no
onto function f : A — B. Therefore, if f : A — B is both one-to-one and onto,
then |A| = |B|.

These assertions are meaningful only if A and B are finite sets. Of course, it
is possible to find bijections between infinite sets. For example, here is a bijection
from N onto Z. Define f : N — Z by

_ | —nj2 if n is even and
f(”)—{(n+1)/2 if n is odd.

It is a bit awkward to see that f is a bijection from N onto Z just by staring at
these formulas. However, if we compute a few values of f (for some small values
of n), the picture snaps into focus.

n o |lol 1] 23| 4!5] 67| 8109
fmilo]| 1] -1)2]|-=2]3]-3|4]| -4

Clearly, f is a one-to-one function (every integer appears at most once in the lower
row of the chart) and is onto Z (every integer is somewhere on the lower row). See
Exercise 24.9.

Since there is a bijection from N to Z, it makes a little bit of sense to write
|N| = |Z|. This means that N and Z are “just as infinite.” This often strikes people
as counterintuitive because Z ought to be “twice as infinite” as N. However, the
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bijection shows that we can match up—in a one-to-one fashion—the elements of
the two sets.

You might be tempted to reconcile this in your mind by saying |Z| = |N|
because both are infinite. This is not correct. The notation |Z| = |N| should not be
used because the sets are infinite; however, the meaning we are trying to convey is
that there is a bijection between N and Z. In this sense, the two infinite sets have
the same size despite the fact that Z superficially appears to be “twice as big” as N.

Is it possible for two infinite sets not to have the same *“size”? At first, this
seems like a silly question. If the two sets are both infinite, then they are both
infinite—end of story! But this doesn’t quite answer the question.

It is reasonable to define two sets as having the same size provided there is a
bijection between them. In this sense, N and Z have the same size. Do all infinite
sets have the same size? The surprising answer to this question is no.

We prove that Z and 2% (the set of integers and the set of all subsets of the
integers) do not have the same size. Here is the general result:

Theorem 24.4

Since f(x) is a set, indeed
asubset of A, the condition
x ¢ f(x) makes sense.

(Cantor) Let Abeaset. If f: A — 24, then f is not onto.

If A is a finite set, this result is easy. If |JA| = a, then [24| = 2¢ and we
know that a < 2¢ (see Exercise 20.3). Since 24 is a larger set, there can be no
onto function f : A — 24. This argument, however, applies only to finite sets.
Cantor’s Theorem applies to all sets.

Proof. Let Abeasetandlet f: A — 24 To show that f is not onto, we must
find a B € 2% (i.e,, B € A) for which there isno a € A with f(a) = B.In other
words, B is a set that f “misses.” To this end, let

B={xeA:x¢ f(x)}

We claim there is no a € A with f(a) = B.
Suppose, for the sake of contradiction, there is ana € A such that f(a) = B.
We ponder: Is ¢ € B?

. Ifa € B, then, since B = f(a), we have a € f(a). So, by definition of B,
a¢ f(a);thatis,a ¢ B.=><«
. Ifa ¢ B = f(a), then, by definition of B,a € B.=><«

Botha € B and a ¢ B lead to contradictions, and hence our supposition [there is
ana € A with f(a) = B] is false, and therefore f is not onto. |

Example 24.5

We illustrate the proof of Theorem 24.4 with a specific example. Let A = {1, 2,3}
Let f: A — 24 as defined in the following chart.

a f(a) a € f(a)?
1 {1, 2} yes

2 {3} no

3 % no
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NowB={xe€ A:x ¢ f(x)}.Since 1 € f(1),but2 ¢ f(2) gnd 3 ¢ f(3), we
have B = {2, 3}. Notice that there is no @ € A with f(a) = B.

The implication of Cantor’s Theorem is that |Z| # [2Z|. In a correct sense
2% is more infinite than Z. Cantor developed these notions by creating a new set
of numbers “beyond” the natural numbers; he called these numbers transfinite
cardinals. The smallest infinite sets, Cantor proved, have the same size as N. The
size of N is denoted by the transfinite number named 8, (aleph null).

Recap

There cannot be a one-to-one function from a set to a smaller set; this fact is known
as the Pigeonhole Principle. We illustrated how this fact can be used in proots. We
also know that there cannot be a function from a set onto a larger set. We showed
that for any set A, the set 24 is larger, even for infinite sets A.

24 Exercises

24.1. Let (ay, a2, a1, a4, as) be a sequence of five distinct integers. We call such
a sequence increasing if @) < ay < a3 < a1 < as and decreasing if
a; > ap > a3 > a4 > as. Other sequences may have a different pattern of
<s and >s. For the sequence (1,5,2,3,4) wehave 1l <5 > 2 < 3 < 4.
Different sequences may have the same pattern of <s and >s between
their elements. For example, (1, 5,2, 3, 4) and (0, 6, 1, 3, 7) have the same
pattern of <s and >s as illustrated here:

1<5>2<3<4

3 ¢ 3¢
0<6>1<3<7

Given a collection of 17 sequences of five distinct integers, prove that 2 of
them have the same pattern of <s and >s.

24.2. Two Social Security numbers (seec Exercise 7.9) match zeros if a digit of
one number is zero iff the corresponding digit of the other is also zero. For
example, the Social Security numbers 120-90-1109 and 430-20-5402 have
matching zeros.

Prove: Given a collection of 513 Social Security numbers, there must
be two that match zeros.

24.3. Given a set of seven distinct positive integers, prove that there is a pair
whose sum or whose difference is a multiple of 10.

You may use the fact that if the ones digit of an integer is O, then that
integer is a multiple of 10.

24.4. Consider a square whose side has length one. Suppose we select five points
from this square. Prove that there are two points whose distance is at most
V2/2.

24.5. Show that Proposition 24.2 is best possible by finding four lattice points
in the plane such that none of their midpoints are lattice points.

24.6. Find and prove a generalization of Proposition 24.2 to three dimensions.

24.7. Find a sequence of nine distinct integers that does not contain a monotone
subsequence of length four.
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Generalize your construction by showing how to construct (for every
positive integer #) a sequence of n? distinct integers that does not co