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xix

Preface

Courses on mathematical methods of physics are among the essential courses
for graduate programs in physics, which are also offered by most engineering
departments. Considering that the audience in these courses comes from
all subdisciplines of physics and engineering, the content and the level of
mathematical formalism has to be chosen very carefully. Recently, the growing
interest in interdisciplinary studies has brought scientists together from
physics, chemistry, biology, economy, and finance and has increased the
demand for these courses in which upper-level mathematical techniques are
taught. It is for this reason that the mathematics departments, who once
overlooked these courses, are now themselves designing and offering them.

Most of the available books for these courses are written with theoretical
physicists in mind and thus are somewhat insensitive to the needs of this new
multidisciplinary audience. Besides, these books should not only be tuned
to the existing practical needs of this multidisciplinary audience but should
also play a lead role in the development of new interdisciplinary science by
introducing new techniques to students and researchers.

About the Book

We give a coherent treatment of the selected topics with a style that makes
advanced mathematical tools accessible to a multidisciplinary audience. The
book is written in a modular way so that each chapter is actually a review of its
subject and can be read independently. This makes the book very useful not only
as a self-study book for students and beginning researchers but also as a refer-
ence for scientists. We emphasize physical motivation and the multidisciplinary
nature of the methods discussed. Whenever possible, we prefer to introduce
mathematical techniques through physical applications. Examples are often
used to extend discussions of specific techniques rather than as mere exercises.

Topics are introduced in a logical sequence and discussed thoroughly. Each
sequence climaxes with a part where the material of the previous chapters is
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unified in terms of a general theory, as in Chapter 7 on the Sturm–Liouville
theory, or as in Chapter 18 on Green’s functions, where the gains of the
previous chapters are utilized. Chapter 8 is on factorization method. It is a
natural extension of our discussion on the Sturm–Liouville theory. It also
presents a different and an advanced treatment of special functions. Similarly,
Chapter 19 on path integrals is a natural extension of our chapter on Green’s
functions. Chapters 9 and 10 on coordinates, tensors, and continuous groups
have been located after Chapter 8 on the Sturm–Liouville theory and the
factorization method. Chapters 11 and 12 are on complex techniques, and they
are self-contained. Chapter 13 on fractional calculus can either be integrated
into the curriculum of the mathematical methods of physics courses or used
independently to design a one-semester course.

Since our readers are expected to be at least at the graduate or the advanced
undergraduate level, a background equivalent to the contents of our under-
graduate text book Essentials of Mathematical Methods in Science and
Engineering (Bayin, 2008) is assumed. In this regard, the basics of some of the
methods discussed here can be found there. For communications about the
book, we will use the website http://users.metu.edu.tr/bayin/

The entire book contains enough material for a three-semester course
meeting three hours a week. The modular structure of the book gives
enough flexibility to adopt the book for two- or even a one-semester course.
Chapters 1–7, 11, 12, and 14–18 have been used for a two-semester compul-
sory graduate course meeting three hours a week at METU, where students
from all subdisciplines of physics meet. In other universities, colleagues have
used the book for their two or one semester courses.

During my lectures and first reading of the book, I recommend that read-
ers view equations as statements and concentrate on the logical structure of
the arguments. Later, when they go through the derivations, technical details
will be understood, alternate approaches will appear, and some of the questions
will be answered. Sufficient numbers of problems are given at the back of each
chapter. They are carefully selected and should be considered an integral part
of the learning process. Since some of the problems may require a good deal
of time, we recommend the reader to skim through the entire problem section
before attempting them. Depending on the level and the purpose of the reader,
certain parts of the book can be skipped in first reading. Since the modular
structure of the book makes it relatively easy for the readers to decide on which
chapters or sections to skip, we will not impose a particular selection.

In a vast area like mathematical methods in science and engineering, there
is always room for new approaches, new applications, and new topics. In fact,
the number of books, old and new, written on this subject shows how dynamic
this field is. Naturally, this book carries an imprint of my style and lectures.
Because the main aim of this book is pedagogy, occasionally I have followed
other books when their approaches made perfect sense to me. Main references
are given at the back of each chapter. Additional references can be found at
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the back. Readers of this book will hopefully be well prepared for advanced
graduate studies and research in many areas of physics. In particular, as we use
the same terminology and style, they should be ready for full-term graduate
courses based on the books: The Fractional Calculus by Oldham and Spanier
and Path Integrals in Physics, Volumes I and II by Chaichian and Demichev, or
they could jump to the advanced sections of these books, which have become
standard references in their fields. Our list of references, by all means, is not
meant to be complete or up to date. There are many other excellent sources
that nowadays the reader can locate by a simple internet search. Their exclusion
here is simply ignorance on my part and not a reflection on their quality or
importance.

About the Second Edition

The challenge in writing a mathematical methods text book is that for almost
every chapter an entire book can be devoted. Sometimes, even sections could
be expanded into another book. In this regard, it is natural that books with such
broad scope need at least another edition to settle down. The second edition
of Mathematical Methods in Science and Engineering corresponds to a major
overhaul of the entire book. In addition to 34 new examples, 34 new figures,
and 48 new problems, over 60 new sections/subsections have been included
on carefully selected topics that make the book more appealing and useful to
its multidisciplinary audience.

Among the new topics introduced, we have the discrete and fast Fourier
transforms; Cartesian tensors and the theory of elasticity; curvature; Caputo
and Riesz fractional derivatives; method of steepest descent and saddle-point
integrals; Padé approximants; Radon transforms; optimum control theory and
controlled dynamics; diffraction; time independent perturbation theory; the
anharmonic oscillator problem; anomalous diffusion; Fox’s H-functions and
many others. As Socrates has once said education is the kindling of a flame, not
the filling of a Vessel, all topics are selected and written, not to fill a vessel but
to inform, provoke further thought, and interest among the multidisciplinary
audience we address.

Besides these, throughout the book, countless changes have been made to
assure easy reading and smooth flow of the complex mathematical arguments.
Derivations are given in sufficient detail so that the reader will not be distracted
by searching for results in other parts of the book or by needing to write down
equations. We have shown carefully selected keywords in boldface and framed
key results so that information can be located easily as the reader scans through
the pages. Also, using the new Wiley style and a more efficient way of displaying
equations, we were able to keep the book at an optimum size.
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Legendre Equation and Polynomials

Legendre polynomials, Pn(x), are the solutions of the Legendre equation:

d
dx

[
(1 − x2)

dPl(x)
dx

]
+ n(n + 1)Pn(x) = 0, n = 0, 1, 2,… . (1.1)

They are named after the French mathematician Adrien-Marie Legendre
(1752–1833). They are frequently encountered in physics and engineering
applications. In particular, they appear in the solutions of the Laplace equation
in spherical polar coordinates.

1.1 Second-Order Differential Equations of Physics

Many of the second-order partial differential equations of physics and engi-
neering can be written as

−→∇2Ψ(x, y, z) + k2(x, y, z)Ψ(x, y, z) = F(x, y, z), (1.2)

where some of the frequently encountered cases are:

1. When k(x, y, z) and F(x, y, z) are zero, we have the Laplace equation:

−→∇2Ψ(x, y, z) = 0, (1.3)

which is encountered in many different areas of science like electrostatics,
magnetostatics, laminar (irrotational) flow, surface waves, heat transfer and
gravitation.

2. When the right-hand side of the Laplace equation is different from zero, we
have the Poisson equation:

−→∇2Ψ = F(x, y, z), (1.4)

where F(x, y, z) represents sources or sinks in the system.

Mathematical Methods in Science and Engineering, Second Edition. Selçuk Ş. Bayın.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.



2 1 Legendre Equation and Polynomials

3. The Helmholtz wave equation is written as

−→∇2Ψ(x, y, z) ± k2
0Ψ(x, y, z) = 0, (1.5)

where k0 is a constant.
4. Another important example is the time-independent Schrödinger

equation:

− ℏ2

2m
−→∇2Ψ(x, y, z) + V (x, y, z)Ψ(x, y, z) = EΨ(x, y, z), (1.6)

where F(x, y, z) in Eq. (1.2) is zero and k(x, y, z) is given as

k(x, y, z) =
√
(2m∕ℏ2)[E − V (x, y, z)]. (1.7)

A common property of all these equations is that they are linear and
second-order partial differential equations. Separation of variables, Green’s
functions and integral transforms are among the frequently used analytic
techniques for obtaining solutions. When analytic methods fail, one can
resort to numerical techniques like Runge–Kutta. Appearance of similar
differential equations in different areas of science allows one to adopt tech-
niques developed in one area into another. Of course, the variables and
interpretation of the solutions will be very different. Also, one has to be
aware of the fact that boundary conditions used in one area may not be
appropriate for another. For example, in electrostatics, charged particles can
only move perpendicular to the conducting surfaces, whereas in laminar
(irrotational) flow, fluid elements follow the contours of the surfaces; thus
even though the Laplace equation is to be solved in both cases, solutions
obtained in electrostatics may not always have meaningful counterparts in
laminar flow.

1.2 Legendre Equation

We now solve Eq. (1.2) in spherical polar coordinates using the method of
separation of variables. We consider cases where k(x, y, z) is only a function
of the radial coordinate and also set F(x, y, z) to zero. The time-independent
Schrödinger equation (1.6) for the central force problems, V (x, y, z) = V (r), is
an important example for such cases. We first separate the radial, r, and the
angular (𝜃, 𝜙) variables and write the solution as Ψ(r, 𝜃, 𝜙) = R(r)Y (𝜃, 𝜙). This
basically assumes that the radial dependence of the solution is independent of
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the angular coordinates and vice versa. Substituting this in Eq. (1.2), we get
1
r2

𝜕

𝜕r

[
r2 𝜕

𝜕r
R(r)Y (𝜃, 𝜙)

]
+ 1

r2 sin 𝜃

𝜕

𝜕𝜃

[
sin 𝜃

𝜕

𝜕𝜃
R(r)Y (𝜃, 𝜙)

]
+ 1

r2 sin2𝜃

𝜕2

𝜕𝜙2 R(r)Y (𝜃, 𝜙) + k2(r)R(r)Y (𝜃, 𝜙) = 0.

(1.8)

After multiplying by r2∕R(r)Y (𝜃, 𝜙) and collecting the (𝜃, 𝜙) dependence on the
right-hand side, we obtain

1
R(r)

𝜕

𝜕r

[
r2 𝜕

𝜕r
R(r)
]
+ k2(r)r2 = − 1

sin 𝜃

1
Y (𝜃, 𝜙)

𝜕

𝜕𝜃

[
sin 𝜃

𝜕

𝜕𝜃
Y (𝜃, 𝜙)

]
− 1

sin2𝜃Y (𝜃, 𝜙)
𝜕2Y (𝜃, 𝜙)

𝜕𝜙2 . (1.9)

Since r and (𝜃, 𝜙) are independent variables, this equation can be satisfied for all
r and (𝜃, 𝜙) only when both sides of the equation are equal to the same constant.
We show this constant with 𝜆, which is also called the separation constant.
Now Eq. (1.9) reduces to the following two equations:

d
dr

(
r2 dR(r)

dr

)
+ r2k2(r)R(r) − 𝜆R(r) = 0, (1.10)

1
sin 𝜃

𝜕

𝜕𝜃

[
sin 𝜃

𝜕Y (𝜃, 𝜙)
𝜕𝜃

]
+ 1

sin2𝜃

𝜕2Y (𝜃, 𝜙)
𝜕𝜙2 + 𝜆Y (𝜃, 𝜙) = 0, (1.11)

where Eq. (1.10) for R(r) is an ordinary differential equation. We also separate
the 𝜃 and the 𝜙 variables in Y (𝜃, 𝜙) as Y (𝜃, 𝜙) = Θ(𝜃)Φ(𝜙) and call the new
separation constant m2, and write

sin 𝜃

Θ(𝜃)
d

d𝜃

[
sin 𝜃

dΘ
d𝜃

]
+ 𝜆 sin2𝜃 = − 1

Φ(𝜙)
d2Φ(𝜙)

d𝜙2 = m2. (1.12)

The differential equations to be solved for Θ(𝜃) and Φ(𝜙) are now found,
respectively, as

sin2𝜃
d2Θ(𝜃)

d𝜃2 + cos 𝜃 sin 𝜃
dΘ(𝜃)

d𝜃
+ [𝜆 sin2𝜃 − m2]Θ(𝜃) = 0, (1.13)

d2Φ(𝜙)
d𝜙2 + m2Φ(𝜙) = 0. (1.14)

In summary, using the method of separation of variables, we have reduced the
partial differential equation [Eq. (1.8)] to three ordinary differential equations
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[Eqs. (1.10), (1.13), and (1.14)]. During this process, two constant parameters, 𝜆
and m, called the separation constants have entered into our equations, which
so far have no restrictions on them.

1.2.1 Method of Separation of Variables

In the above discussion, the fact that we are able to separate the solution is
closely related to the use of the spherical polar coordinates, which reflect
the symmetry of the central force problem, where the potential, V (r),
depends only on the radial coordinate. In Cartesian coordinates, the potential
would be written as V (x, y, z) and the solution would not be separable as
Ψ(x, y, z) ≠ X(x)Y (y)Z(z). Whether a given partial differential equation is
separable or not is closely linked to the symmetries of the physical system.
Even though a proper discussion of this point is beyond the scope of this book,
we refer the reader to [9] and suffice by saying that if a partial differential
equation is not separable in a given coordinate system, it is possible to check
the existence of a coordinate system in which it would be separable. If such a
coordinate system exists, then it is possible to construct it from the generators
of the symmetries.

Among the three ordinary differential equations [Eqs. (1.10), (1.13), and
(1.14)], Eq. (1.14) can be solved immediately with the general solution

Φ(𝜙) = Aeim𝜙 + Be−im𝜙, (1.15)

where the separation constant, m, is still unrestricted. Imposing the periodic
boundary condition Φ(𝜙 + 2𝜋) = Φ(𝜙), we restrict m to integer values:
0,±1,±2,… . Note that in anticipation of applications to quantum mechanics,
we have taken the two linearly independent solutions as e±im𝜙. For the other
problems, sin m𝜙 and cos m𝜙 could be used.

For the differential equation to be solved forΘ(𝜃) [Eq. (1.13)], we define a new
independent variable, x = cos 𝜃, Θ(𝜃) = Z(x), 𝜃 ∈ [0, 𝜋], x ∈ [−1, 1], and write

(1 − x2)d2Z(x)
dx2 − 2x dZ(x)

dx
+
[
𝜆 − m2

(1 − x2)

]
Z(x) = 0. (1.16)

For m = 0, this equation is called the Legendre equation. For m ≠ 0, it is
known as the associated Legendre equation.

1.2.2 Series Solution of the Legendre Equation

Starting with the m = 0 case, we write the Legendre equation as

(1 − x2)d2Z(x)
dx2 − 2x dZ(x)

dx
+ 𝜆Z(x) = 0, x ∈ [−1, 1]. (1.17)

This has two regular singular points at x = −1 and 1. Since these points are
at the end points of our interval, we use the Frobenius method [8] and try a
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series solution about the regular point x = 0 as Z(x) =
∑∞

k=0 akxk+𝛼 , where 𝛼 is
a constant. Substituting this into Eq. (1.17), we get

∞∑
k=0

ak(k + 𝛼)(k + 𝛼 − 1)xk+𝛼−2

−
∞∑

k=0
xk+𝛼 [(k + 𝛼)(k + 𝛼 − 1) + 2(k + 𝛼) − 𝜆

]
ak = 0. (1.18)

We now write the first two terms of the first series explicitly:

a0𝛼(𝛼 − 1)x𝛼−2 + a1(𝛼 + 1)𝛼x𝛼−1 +
∞∑

k′=2
ak′ (k′ + 𝛼)(k′ + 𝛼 − 1)xk′+𝛼−2

(1.19)

and make the variable change k′ = k + 2, to write Eq. (1.18) as
a0𝛼(𝛼 − 1)x𝛼−2 + a1(𝛼 + 1)𝛼x𝛼−1

+
∞∑

k=0
xk+𝛼 {ak+2(k + 2 + 𝛼)(k + 1 + 𝛼) − ak

[
(k + 𝛼)(k + 𝛼 + 1) − 𝜆

]}
= 0.

(1.20)
From the uniqueness of power series, this equation cannot be satisfied for all x
unless the coefficients of all the powers of x vanish simultaneously. This gives
the following relations among the coefficients:

a0𝛼(𝛼 − 1) = 0, a0 ≠ 0, (1.21)

a1(𝛼 + 1)𝛼 = 0, (1.22)

ak+2

ak
=
[
(k + 𝛼)(k + 𝛼 + 1) − 𝜆

]
(k + 1 + 𝛼)(k + 𝛼 + 2)

, k = 0, 1, 2,… . (1.23)

Equation (1.21), which is obtained by setting the coefficient of the lowest power
of x to zero, is called the indicial equation. Assuming a0 ≠ 0, the two roots
of the indicial equation give the values 𝛼 = 0 and 𝛼 = 1, while the remaining
Eqs. (1.22) and (1.23) give the recursion relation among the coefficients.

Starting with the root 𝛼 = 1, we write

ak+2 = ak
(k + 1)(k + 2) − 𝜆

(k + 2)(k + 3)
, k = 0, 1, 2,… , (1.24)

and obtain the remaining coefficients as

a2 = a0
(2 − 𝜆)

6
, (1.25)
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a3 = a1
(6 − 𝜆)

12
, (1.26)

a4 = a2
(12 − 𝜆)

20
, (1.27)

⋮ (1.28)

Since Eq. (1.22) with 𝛼 = 1 implies a1 = 0, all the odd coefficients vanish, a3 =
a5 = · · · = 0, thus yielding the following series solution for 𝛼 = 1:

Z1(x) = a0

[
x + (2 − 𝜆)

6
x3 + (2 − 𝜆)(12 − 𝜆)

120
x5 + · · ·

]
. (1.29)

For the other root, 𝛼 = 0, Eqs. (1.21) and (1.22) imply a0 ≠ 0 and a1 ≠ 0,
thus the recursion relation:

ak+2 = ak
k(k + 1) − 𝜆

(k + 1)(k + 2)
, k = 0, 1, 2,… , (1.30)

determines the nonzero coefficients as

a2 = a0

(
−𝜆

2

)
,

a3 = a1

(2 − 𝜆

6

)
,

a4 = a2

(6 − 𝜆

12

)
, (1.31)

a5 = a3

(12 − 𝜆

20

)
,

⋮

Now the series solution for 𝛼 = 0 is obtained as

Z2(x) = a0

[
1 − 𝜆

2
x2 − 𝜆

2
(6 − 𝜆)

12
x4 + · · ·

]
+ a1

[
x + (2 − 𝜆)

6
x3 + (2 − 𝜆)(12 − 𝜆)

120
x5 + · · ·

]
. (1.32)

The Legendre equation is a second-order linear ordinary differential equation,
which in general has two linearly independent solutions. Since a0 and a1 are
arbitrary, we note that the solution for 𝛼 = 0 also contains the solution for
𝛼 = 1; hence the general solution can be written as

Z(x) = C0

[
1 −
(
𝜆

2

)
x2 −
(
𝜆

2

)(6 − 𝜆

12

)
x4 + · · ·

]
+ C1

[
x + (2 − 𝜆)

6
x3 + (2 − 𝜆)(12 − 𝜆)

120
x5 + · · ·

]
,

(1.33)

where C0 and C1 are two integration constants to be determined from the
boundary conditions. These series are called the Legendre series.
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1.2.3 Frobenius Method – Review

A second-order linear homogeneous ordinary differential equation with two
linearly independent solutions may be put in the form

d2y
dx2 + P(x)

dy
dx

+ Q(x)y(x) = 0. (1.34)

If x0 is no worse than a regular singular point, that is, when

lim
x→x0

(x − x0)P(x) → finite (1.35)

and

lim
x→x0

(x − x0)2Q(x) → finite, (1.36)

we can seek a series solution of the form

y(x) =
∞∑

k=0
ak(x − x0)k+𝛼, a0 ≠ 0. (1.37)

Substituting this series into the above differential equation and setting the
coefficient of the lowest power of (x − x0) with a0 ≠ 0 gives us a quadratic
equation for 𝛼 called the indicial equation. For almost all the physically
interesting cases, the indicial equation has two real roots. This gives us
the following possibilities for the two linearly independent solutions of the
differential equation [8]:

1. If the two roots (𝛼1 > 𝛼2) differ by a noninteger, then the two linearly inde-
pendent solutions, y1(x) and y2(x), are given as

y1(x) = |x − x0|𝛼1

∞∑
k=0

ak(x − x0)k , a0 ≠ 0, (1.38)

y2(x) = |x − x0|𝛼2

∞∑
k=0

bk(x − x0)k , b0 ≠ 0. (1.39)

2. If (𝛼1 − 𝛼2) = N , where 𝛼1 > 𝛼2 and N is a positive integer, then the two lin-
early independent solutions, y1(x) and y2(x), are given as

y1(x) = |x − x0|𝛼1

∞∑
k=0

ak(x − x0)k , a0 ≠ 0, (1.40)
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y2(x) = |x − x0|𝛼2

∞∑
k=0

bk(x − x0)k + Cy1(x) ln |x − x0|, b0 ≠ 0.

(1.41)

The second solution contains a logarithmic singularity, where C is a con-
stant that may or may not be zero. Sometimes, 𝛼2 will contain both solutions;
hence it is advisable to start with the smaller root with the hopes that it might
provide the general solution.

3. If the indicial equation has a double root, 𝛼1 = 𝛼2, then the Frobenius
method yields only one series solution. In this case, the two linearly
independent solutions can be taken as

y(x, 𝛼1) and
𝜕y(x, 𝛼)

𝜕𝛼

||||𝛼=𝛼1

, (1.42)

where the second solution diverges logarithmically as x → x0. In the pres-
ence of a double root, the Frobenius method is usually modified by taking
the two linearly independent solutions, y1(x) and y2(x), as

y1(x) = |x − x0|𝛼1

∞∑
k=0

ak(x − x0)k , a0 ≠ 0, (1.43)

y2(x) = |x − x0|𝛼1+1
∞∑

k=0
bk(x − x0)k + y1(x) ln |x − x0|. (1.44)

In all these cases, the general solution is written as y(x) = A1y1(x) + A2y2(x).

1.3 Legendre Polynomials

Legendre series are convergent in the interval (−1, 1). This can be checked easily
by the ratio test. To see how they behave at the end points, x = ±1, we take
the k → ∞ limit of the recursion relation in Eq. (1.30) to obtain ak+2

ak
→ 1. For

sufficiently large k values, this means that both series behave as

Z(x) = · · · + akxk (1 + x2 + x4 + · · ·
)
. (1.45)

The series inside the parentheses is nothing but the geometric series:(
1 + x2 + x4 + · · ·

)
= 1

1 − x2 . (1.46)
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Hence both of the Legendre series diverge at the end points as 1∕(1 − x2). How-
ever, the end points correspond to the north and the south poles of a sphere.
Because the problem is spherically symmetric, there is nothing special about
these points. Any two diametrically opposite points can be chosen to serve as
the end points. Hence we conclude that the physical solution should be finite
everywhere on a sphere. To avoid the divergence at the end points we termi-
nate the Legendre series after a finite number of terms. This is accomplished by
restricting the separation constant 𝜆 to integer values:

𝜆 = l(l + 1), l = 0, 1, 2,… . (1.47)

With this restriction on 𝜆, one of the Legendre series in Eq. (1.33) terminates
after a finite number of terms while the other one still diverges at the end points.
Choosing the coefficient of the divergent series in the general solution as zero,
we obtain the polynomial solutions of the Legendre equation as

Z(x) = Pl(x), l = 0, 1, 2,… . (1.48)

These polynomials are called the Legendre polynomials, which are finite
everywhere on a sphere. They are defined so that their value at x = 1 is one. In
general, they can be expressed as

Pl(x) =
[l∕2]∑
n=0

(−1)n(2l − 2n)!
2l(l − 2n)!(l − n)!n!

xl−2n, (1.49)

where [l∕2]means the greatest integer in the interval
(

l
2
,

l
2
− 1
]
. Restriction of

𝜆 to certain integer values for finite solutions everywhere is a physical (bound-
ary) condition and has very significant physical consequences. For example,
in quantum mechanics, it means that magnitude of the angular momentum is
quantized. In wave mechanics, like the standing waves on a string fixed at both
ends, it means that waves on a sphere can only have certain wavelengths.

Legendre Polynomials
P0(x) = 1,

P1(x) = x,
P2(x) = (1∕2)[3x2 − 1],

P3(x) = (1∕2)[5x3 − 3x],
P4(x) = (1∕8)[35x4 − 30x2 + 3],

P5(x) = (1∕8)[63x5 − 70x3 + 15x].

(1.50)
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1.3.1 Rodriguez Formula

Another definition of the Legendre polynomials is given by the Rodriguez
formula:

Pl(x) =
1

2ll!
dl

dxl

(
x2 − 1

)l
. (1.51)

To show that this is equivalent to the previous definition in Eq. (1.49), we use
the binomial formula [4]:

(x + y)m =
∞∑

n=0

m!
n!(m − n)!

xnym−n, (1.52)

to write Eq. (1.51) as

Pl(x) =
1

2ll!
dl

dxl

l∑
n=0

l!(−1)n

n!(l − n)!
x2l−2n. (1.53)

We now use the formula
dlxm

dxl
= m!

(m − l)!
xm−l, (1.54)

to obtain

Pl(x) =

[
l
2

]∑
n=0

(−1)n

2l
(2l − 2n)!

n!(l − n)!(l − 2n)!
xl−2n, (1.55)

thus proving the equivalence of Eqs. (1.51) and (1.49).

1.3.2 Generating Function

Another way to define the Legendre polynomials is using a generating
function, T(x, t), which is given as

T(x, t) = 1√
1 − 2xt + t2

=
∞∑

l=0
Pl(x)tl, |t| < 1. (1.56)

To show that T(x, t) generates the Legendre polynomials, we write T(x, t) as

T(x, t) = 1
[1 − t (2x − t)]

1
2

(1.57)

and use the binomial expansion

(1 − x)−
1
2 =

∞∑
l=0

(−1∕2)!(−1)lxl

l!
(
− 1

2
− l
)
!
. (1.58)
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Deriving the useful relation:(
− 1

2

)
!(

− 1
2
− l
)
!
=

(
− 1

2

)(
− 1

2
− 1
)(

1
2
− 2
)
· · ·(

− 1
2
− l
)(

− 1
2
− l − 1

)
· · ·

(1.59)

=
(−1)l

[(
1
2

)(
1
2
+ 1
)
· · ·
(
− 1

2
− l
)(

− 1
2
− l − 1

)
· · ·
]

[(
− 1

2
− l
)(

− 1
2
− l − 1

)
· · ·
]

(1.60)

= (−1)l
[(1

2

)(1
2
+ 1
)(1

2
+ 2
)
· · ·
(1

2
+ l − 1

)]
(1.61)

= (−1)l 1 ⋅ 3 ⋅ 5 · · · (2l − 1)
2l

= (−1)l (2l)!
22ll!

, (1.62)

we write Eq. (1.58) as

(1 − x)−
1
2 =

∞∑
l=0

(2l)!(−1)2l

22l(l!)2
xl, (1.63)

which after substituting in Eq. (1.57) gives

1
(1 − t(2x − t))

1
2

=
∞∑

l=0

(2l)!(−1)2ltl

22l(l!)2
(2x − t)l. (1.64)

Employing the binomial formula once again to expand the factor (2x − t)l, we
rewrite the right-hand side as

∞∑
l=0

(2l)!(−1)2ltl

22l(l!)2

l∑
k=0

l!
k!(l − k)!

(2x)l−k(−t)k

=
∞∑

l=0

l∑
k=0

(2l)!(−1)k(2x)l−ktk+l

22ll!k!(l − k)!
. (1.65)

We now rearrange the double sum by the substitutions k → n and l → l − n to
write the generating function as

T(x, t) =
∞∑

l=0

[[l∕2]∑
n=0

(−1)n(2l − 2n)!
2l(l − n)!n!(l − 2n)!

xl−2n

]
tl. (1.66)

Comparing this with the right-hand side of Eq. (1.56), which is
∞∑

l=0
Pl(x)tl, we

obtain the desired result:

Pl(x) =
[l∕2]∑
n=0

(−1)n(2l − 2n)!
2l(l − n)!n!(l − 2n)!

xl−2n. (1.67)



12 1 Legendre Equation and Polynomials

1.3.3 Recursion Relations

Recursion relations are very helpful in operations with Legendre polynomials.
Let us differentiate the generating function [Eq. (1.56)] with respect to t:

𝜕

𝜕t
T(x, t) = − −2(x − t)

2(1 − 2xt + t2)
3
2

(1.68)

=
∞∑

l=1
Pl(x)l tl−1. (1.69)

We rewrite this as

(x − t)
∞∑

l=0
Pl(x)tl =

∞∑
l=1

Pl(x)l tl−1 (1 − 2xt + t2) (1.70)

and expand in powers of t to get
∞∑

l=0
tl(2l + 1)xPl(x) =

∞∑
l′=1

Pl′ l′tl′−1 +
∞∑

l′′=0
tl′′+1(l′′ + 1)Pl′′ (x). (1.71)

We now make the substitutions l′ = l + 1 and l′′ = l − 1 and collect equal pow-
ers of tl to write

∞∑
l=0

[
(2l + 1)xPl(x) − Pl+1(x)(l + 1) − lPl−1(x)

]
tl = 0. (1.72)

This equation can only be satisfied for all values of t when the expression inside
the square brackets is zero for all l, thus giving the recursion relation

(2l + 1)xPl(x) = (l + 1)Pl+1(x) + lPl−1(x). (1.73)

Another useful recursion relation is obtained by differentiating T(x, t) with
respect to x and following similar steps as

Pl(x) = P′
l+1(x) + P′

l−1(x) − 2xP′
l (x). (1.74)

It is also possible to find other recursion relations.

1.3.4 Special Values

In various applications, one needs special values of the Legendre polynomials
at the points x = ±1 and x = 0. If we write x = ±1 in the generating function
[Eq. (1.56)], we find

1∕(1 ∓ t) =
∞∑

l=0
Pl(1)tl(±1)l. (1.75)
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Expanding the left-hand side using the binomial formula and comparing equal
powers of t, we obtain

Pl(1) = 1, Pl(−1) = (−1)l. (1.76)

We now set x = 0 in the generating function:

1√
1 + t2

=
∞∑

l=0
Pl(0)tl =

∞∑
t=0

(−1)l (2l)!
22l(l!)2

t2l, (1.77)

to obtain the special values:

P2s+1(0) = 0, P2l(0) =
(−1)l(2l)!

22l(l!)2
. (1.78)

1.3.5 Special Integrals

1. In applications, we frequently encounter the integral ∫ 1
0 dx Pl(x). Using the

recursion relation in Eq. (1.74), we can rewrite this integral as

∫
1

0
dx Pl(x) = ∫

1

0
dx
[
P′

l+1(x) + P′
l−1(x) − 2xP′

l (x)
]
. (1.79)

The right-hand side can be integrated to write

∫
1

0
dx Pl(x) = Pl+1(1) + Pl−1(1) − Pl+1(0) − Pl−1(0) − 2xPl(x)|10

+ 2∫
1

0
dx Pl(x). (1.80)

This is simplified using the special values and leads to ∫ 1
0 dx Pl(x) =

Pl+1(0) + Pl−1(0), thus yielding

∫
1

0
dx Pl(x) =

⎧⎪⎨⎪⎩
0, l ≥ 2 and even,
1, l = 0,

1
2(s + 1)

P2s(0), l = 2s + 1, s = 0, 1,… .

(1.81)

2. Another integral useful in dipole calculations is ∫ 1
−1 dx xPl(x)Pk(x).Using the

recursion relation in Eq. (1.73), we can rewrite this as

∫
1

−1
dx xPl(x)Pk(x) = ∫

1

−1
dx

Pl(x)
(2k + 1)

[
(k + 1)Pk+1(x) + kPk−1(x)

]
,

(1.82)
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which leads to

∫
1

−1
dx xPl(x)Pk(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0, k ≠ l ± 1,

l
(2l − 1)

2
(2l + 1)

, k = l − 1,

l + 1
(2l + 3)

2
(2l + 1)

, k = l + 1.

(1.83)

One can also show the useful integral

∫
1

−1
dx xlPn(x) =

2n+1l!
(

l + n
2

)
!

(l + n + 1)!
(

l − n
2

)
!
, l − n = |even integer|. (1.84)

1.3.6 Orthogonality and Completeness

We can also write the Legendre equation [Eq. (1.17)] as

d
dx

[(
1 − x2) dPl(x)

dx

]
+ l(l + 1)Pl(x) = 0. (1.85)

Multiplying this with Pl′ (x) and integrating over x in the interval [−1, 1], we get

∫
1

−1
Pl′ (x)

{
d

dx

[(
1 − x2) dPl(x)

dx

]
+ l(l + 1)Pl(x)

}
dx = 0. (1.86)

Using integration by parts, this can be written as

∫
1

−1

[(
x2 − 1

) dPl(x)
dx

dPl′ (x)
dx

+ l(l + 1)Pl′ (x)Pl(x)
]

dx = 0. (1.87)

Interchanging l and l′ and subtracting from Eq. (1.87), we get[
l(l + 1) − l′(l′ + 1)

]
∫

1

−1
Pl′ (x)Pl(x) dx = 0. (1.88)

For l ≠ l′, this gives ∫ 1
−1 Pl′ (x)Pl(x) dx = 0 and for l = l′, it becomes

∫
1

−1

[
Pl(x)
]2dx = Nl, (1.89)

where Nl is a finite normalization constant.
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We can evaluate Nl using the Rodriguez formula [Eq. (1.51)]. We first write

Nl = ∫
1

−1
P2

l (x) dx = 1
22l(l!)2 ∫

1

−1

dl

dxl

(
x2 − 1

)l dl

dxl

(
x2 − 1

)ldx (1.90)

and after l-fold integration by parts, we obtain

Nl =
(−1)l

22l(l!)2 ∫
1

−1

(
x2 − 1

)l d2l

dx2l

(
x2 − 1

)ldx. (1.91)

Using the Leibniz formula:

dm

dxm A(x) B(x) =
m∑

s=0

m!
s!(m − s)!

dsA
dxs

dm−sB
dxm−s , (1.92)

we evaluate the 2l-fold derivative of (x2 − 1)l as (2l)!, thus Eq. (1.91) becomes

Nl =
(2l)!

22l(l!)2 ∫
1

−1

(
1 − x2)ldx. (1.93)

We now write (1 − x2)l as(
1 − x2)l =

(
1 − x2) (1 − x2)l−1 =

(
1 − x2)l−1 + x

2l
d

dx
(
1 − x2)l (1.94)

to obtain

Nl =
(2l − 1)

2l
Nl−1 +

(2l − 1)!
22l(l!)2 ∫

1

−1
xd
[
(1 − x2)l] , (1.95)

which gives

Nl =
(2l − 1)

2l
Nl−1 −

1
2l

Nl, (1.96)

or

(2l + 1)Nl = (2l − 1)Nl−1. (1.97)

This means that the value of (2l + 1)Nl is a constant independent of l. Evaluating
the integral in Eq. (1.93) for l = 0 gives 2, which determines the normalization
constant as

Nl =
2

(2l + 1)
. (1.98)

Using Nl, we can now define the set of polynomials

{Ul(x), l = 0, 1,…},Ul(x) =
√

2l + 1
2

Pl(x), (1.99)
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which satisfies the orthogonality relation

∫
1

−1
Ul′ (x)Ul(x) dx = 𝛿l′l. (1.100)

At this point, we suffice by saying that this set is also complete, that is, in terms
of this set any sufficiently well-behaved and at least piecewise continuous func-
tion, Ψ(x), can be expressed as an infinite series in the interval [−1, 1] as

Ψ(x) =
∞∑

l=0
ClUl(x). (1.101)

We will be more specific about what is meant by sufficiently well-behaved when
we discuss the Sturm–Liouville theory in Chapter 7. To evaluate the expan-
sion constants Cl, we multiply both sides by Ul′ (x) and integrate over [−1, 1]
:

∫
1

−1
Ul′ (x)Ψ(x) dx =

∞∑
l=0

Cl ∫ Ul′ (x)Ul(x) dx. (1.102)

Using the orthogonality relation [Eq. (1.100)], we can free the constants Cl
under the summation sign and obtain

Cl = ∫
1

−1
Ul(x)Ψ(x) dx. (1.103)

Orthogonality and the completeness of the Legendre polynomials are very use-
ful in applications.

Example 1.1 Legendre polynomials and electrostatics problems
To find the electric potential in vacuum, we solve the Laplace equation:

−→∇2Ψ(−→r ) = 0, (1.104)

with the appropriate boundary conditions. For problems with azimuthal
symmetry, it is advantageous to use the spherical polar coordinates, where the
potential does not have any 𝜙 dependence. Therefore, in the 𝜙-dependent part
of the solution [Eq. (1.15)], we set m = 0. The differential equation to be solved
for the r-dependent part is now found by setting k = 0 in Eq. (1.10) as

d2R
dr2 + 2

r
dR
dr

− l(l + 1)
r2 R(r) = 0. (1.105)

The linearly independent solutions of this equation are easily found as rl and
1

rl+1 , thus giving the general solution of Eq. (1.104) as

Ψ(r, 𝜃) =
∞∑

l=0

[
Alrl +

Bl

rl+1

]
Pl(x), x = cos 𝜃, (1.106)
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where the constants Al and Bl are to be determined from the boundary
conditions. For example, let us calculate the electric potential outside two
semi-spherical conductors with radius a and that are connected by an insulator
at the center, where the upper hemisphere is held at potential V0 and the lower
hemisphere is held at potential −V0. Since the potential cannot diverge at
infinity, we set the coefficients Al to zero and write the potential for the outside
as

Ψ(r, 𝜃) =
∞∑

l=0

Bl

rl+1 Pl(x), r ≥ a. (1.107)

To find the coefficients Bl, we use the boundary conditions at r = a as

Ψ(a, 𝜃) =
∞∑

l=0

Bl

al+1 Pl(x) =
{

V0, 0 < x ≤ 1,
−V0, −1 ≤ x < 0. (1.108)

We multiply both sides by Pl′ (x) and integrate over x and use the orthogonality
relation to get

∫
1

−1
Ψ(a, x)Pl(x) dx =

Bl

al+1
2

(2l + 1)
, (1.109)

V0 ∫
1

0
dx Pl(x) − V0 ∫

0

−1
dx Pl(x) =

2Bl

(2l + 1)al+1 , (1.110)

Bl =
(2l + 1)al+1

2
V0 ∫

1

0

[
1 − (−1)l]Pl(x) dx. (1.111)

For the even values of l, the expansion coefficients are zero, B2s = 0. For the odd
values of l, we use the result in Eq. (1.81) to write

B2s+1 = (4s + 3)
2

P2s(0)
(2s + 2)

a2s+2(2V0), s = 0, 1, 2,… . (1.112)

Substituting B2s+1 in Eq. (1.107), we finally obtain the potential outside the
sphere as

Ψ(r, 𝜃) = V0

∞∑
s=0

(4s + 3)
P2s(0)
(2s + 2)

a2s+2

r2s+2 P2s+1(cos 𝜃). (1.113)

Potential inside can be found similarly.

1.3.7 Asymptotic Forms

In many applications and in establishing the convergence properties of the
Legendre series, we need the asymptotic form of the Legendre polynomials
for large l. We first write the Legendre Eq. (1.13) with Θ(𝜃) = Pl(cos 𝜃),
𝜆 = l(l + 1), and m = 0 as

P′′
l (cos 𝜃) + cot 𝜃P′

l (cos 𝜃) + l(l + 1)Pl(cos 𝜃) = 0, (1.114)
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and substitute Pl(cos 𝜃) = u(𝜃)∕
√

sin 𝜃, to obtain

u′′(𝜃) +
[(

l + 1
2

)2
+ 1

4 sin2𝜃

]
u(𝜃) = 0. (1.115)

For sufficiently large values of l, we can neglect 1∕4 sin2𝜃 and write the above
equation as

u′′(𝜃) +
(

l + 1
2

)2
u(𝜃) ≈ 0, (1.116)

the solution of which is

Pl(cos 𝜃) ≈
Al cos

[(
l + 1

2

)
𝜃 + 𝛿l

]
√

sin 𝜃

. (1.117)

In this asymptotic solution, the amplitude, Al, and the phase, 𝛿l, may depend
on l. To determine Al, we use the asymptotic solution in the normalization
condition [Eq. (1.89)]:

∫
𝜋

0
sin 𝜃
[
Pl(cos 𝜃

]2d𝜃 = 2
2l + 1

, (1.118)

to find Al ≈
√

2
𝜋l
. To determine the phase, 𝛿l, we make use of the generating

function definition [Eq. (1.56)] for 𝜃 = 𝜋∕2:

1√
1 + t2

=
∞∑

l=0
Pl(0)tn. (1.119)

If we use the binomial expansion for the left-hand side, for the odd values of
l, we find Pl(0) = 0 and for the even values of l, the sign of Pl(0) alternates.
This allows us to deduce the value of 𝛿l as −𝜋∕4, thus allowing us to write the
asymptotic solution for the sufficiently large values of l and for a given 𝜃 as

Pl(cos 𝜃) ≈
√

2
l𝜋 sin 𝜃

cos
[(

l + 1
2

)
𝜃 − 𝜋

4

]
. (1.120)

1.4 Associated Legendre Equation and Polynomials

We now consider the associated Legendre equation (1.16):

(1 − x2)d2Z(x)
dx2 − 2x dZ(x)

dx
+
[
𝜆 − m2

(1 − x2)

]
Z(x) = 0 (1.121)
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and try a series solution around x = 0 of the form Z(x) =
∑∞

k=0 akxk , which
yields the following recursion relation:

(k + 4) (k + 3) ak+4 +
[(
𝜆 − m2) − 2(k + 2)2] ak+2 +

[
k (k + 1) − 𝜆

]
ak = 0.

(1.122)

Compared with the two-term recursion relation of the Legendre equation
[Eq. (1.23)], this has three terms, which makes it difficult to manipulate.

In such situations, in order to get a two-term recursion relation, we study the
behavior of the differential equation near the end points. For points near x = 1,
we introduce a new variable y = (1 − x). Now Eq. (1.121) becomes

(2 − y)y
d2Z(y)

dy2 + 2(1 − y)
dZ(y)

dy
+
[
𝜆 − m2

y(2 − y)

]
Z(y) = 0. (1.123)

In the limit as y → 0, this equation can be approximated by

2y
d2Z(y)

dy2 + 2
dZ(y)

dy
− m2 Z(y)

2y
= 0. (1.124)

To find the solution, we try a power dependence of the form Z(y) = yn and
determine n as ±m∕2. Hence, the two linearly independent solutions are ym∕2

and y−m∕2. For m ≥ 0, the solution that remains finite as y → 0 is y
m
2 . Similarly,

for points near x = −1, we use the substitution y = (1 + x) and obtain the finite
solution in the limit y → 0 as y

m
2 . We now substitute in the associated Legendre

Eq. (1.121), a solution of the form

Z(x) = (1 + x)m∕2(1 − x)m∕2f (x) (1.125)
= (1 − x2)m∕2f (x), (1.126)

which gives the differential equation to be solved for f (x) as

(1 − x2)
d2f
dx2 − 2x(m + 1)

df (x)
dx

+ [𝜆 − m(m + 1)] f (x) = 0. (1.127)

Note that this equation is valid for both the positive and the negative values of
m. We now try a series solution in this equation, f (x) =

∑
k

akxk+𝛼, and obtain a

two-term recursion relation as

ak+2 = ak

[
(k + m)(k + m + 1) − 𝜆

]
(k + 2)(k + 1)

. (1.128)

Since in the limit as k goes to infinity, the ratio of two successive terms, ak+2

ak
,

goes to 1, this series also diverges at the end points. For a finite solution, we
restrict the separation constant 𝜆 to the values

𝜆 = (k + m)
[
(k + m) + 1

]
. (1.129)
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Defining a new integer, l = k + m, we obtain

𝜆 = l(l + 1) and k = l − m. (1.130)

Since k takes only positive integer values, m can only take the values
m = −l,… , 0,… , l.

1.4.1 Associated Legendre Polynomials Pm
l
(x)

To obtain the associated Legendre polynomials, we start with the equation that
the Legendre polynomials satisfy as

(1 − x2)
d2Pl(x)

dx2 − 2x
dPl(x)

dx
+ l(l + 1)Pl(x) = 0. (1.131)

Using the Leibniz formula:

dm

dxm [A(x)B(x)] =
m∑

s=0

m!
s!(m − s)!

[
dsA
dxs

] [
dm−sB
dxm−s

]
, (1.132)

m-fold differentiation of Eq. (1.131) yields

(1 − x2)P(m+2)
l (x) − 2xmP(m+1)

l (x) − 2m(m − 1)
2

P(m)
l (x)

= 2xP(m+1)
l (x) + 2mP(m)

l (x) − l(l + 1)P(m)
l (x). (1.133)

After simplification, this becomes

(1 − x2)P(m+2)
l (x) − 2x(m + 1)P(m+1)

l (x) +
[
l(l + 1) − m(m + 1)

]
P(m)

l (x) = 0,
(1.134)

where

P(m)
l (x) = dm

dxm Pl(x). (1.135)

Comparing Eq. (1.134) with Eq. (1.127), we obtain f (x) as

f (x) = dm

dxm Pl(x). (1.136)

Using Eq. (1.126), we can now write the finite solutions of the associated
Legendre equation [Eq. (1.121)] as

Pm
l (x) = (1 − x2)m∕2 dm

dxm Pl(x), m ≥ 0, (1.137)

where the polynomials Pm
l (x) are called the associated Legendre polynomials.

For the negative values of m, the associated Legendre polynomials are defined
as

P−m
l (x) = (−1)m (l − m)!

(l + m)!
Pm

l (x), m ≥ 0. (1.138)
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We will see how this is obtained in Section 1.4.5.

1.4.2 Orthogonality

To derive the orthogonality relation of the associated Legendre polynomials, we
use the Rodriguez formula [Eq. (1.51)] for the Legendre polynomials to write

∫
1

−1
Pm

l (x)P
m
l′ (x)dx = (−1)m

2l+l′ l!l′!

{
∫

1

−1
Xm
[

dl+m

dxl+m
Xl
] [

dl′+m

dxl′+m
Xl′
]

dx
}

(1.139)

= (−1)m

2l+l′ l!l′!
I, (1.140)

where

I = ∫
1

−1
Xm
[

dl+m

dxl+m
Xl
] [

dl′+m

dxl′+m
Xl′
]

dx, X = x2 − 1, (1.141)

Pm
l (x) =

(
1 − x2) m

2 dm

dxm Pl(x); Pl(x) =
1

2ll!
dl

dxl

(
x2 − 1

)l
. (1.142)

The integral, I, in Eq. (1.141), after (l′ + m)-fold integration by parts, becomes

I = (−1)l′+m ∫
1

−1

dl′+m

dxl′+m

[
Xm dl+m

dxl+m
Xl
]

Xl′ dx. (1.143)

Using the Leibniz formula [Eq. (1.132)], we get

I = (−1)l′+m ∫
1

−1
Xl′
∑
𝜆

(
l′ + m
𝜆

)[
dl′+m−𝜆

dxl′+m−𝜆
Xm
] [

dl+m+𝜆

dxl+m+𝜆
Xl dx

]
.

(1.144)

Since the highest power in Xm is x2m and the highest power in Xl is x2l, the
summation is empty unless the inequalities

l′ + m − 𝜆 ≤ 2m and l + m + 𝜆 ≤ 2l (1.145)

are simultaneously satisfied. The first inequality gives 𝜆 ≥ l′ − m, while the
second one gives 𝜆 ≤ l − m. For m ≥ 0, if we assume l < l′, the summation
[Eq. (1.144)] does not contain any term that is different from zero; hence the
integral is zero. Since the expression in Eq. (1.139) is symmetric with respect to
l′ and l, this result is also valid for l > l′. When l = l′, these inequalities can be
satisfied only for the single value of 𝜆 = l − m. Now the summation contains
only one term, and Eq. (1.144) becomes

I = (−1)l+m ∫
1

−1
Xl
(

l + m
l − m

)[
d2m

dx2m Xm
] [

d2l

dx2l
Xl
]

dx (1.146)

= (−1)l+m
(

l + m
l − m

)
(2l)!(2m)!∫

1

−1
Xl dx. (1.147)
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The integral in I can be evaluated as

∫
1

−1
Xl dx = ∫

1

−1
(x2 − 1)ldx (1.148)

= 2(−1)l ∫
𝜋∕2

0
(sin 𝜃)2l+1d𝜃 (1.149)

= (−1)l2l+1l!
3.5…(2l + 1)

(1.150)

= (−1)l22l+1(l!)2

(2l + 1)!
. (1.151)

Since the binomial coefficients are given as(
l + m
l − m

)
= (l + m)!

(l − m)!(2m)!
, (1.152)

we write

∫
1

−1
Pm

l (x)P
m
l′ (x)dx = (−1)m

22l(l!)2

(l + m)!(−1)l+m

(l − m)!(2m)!
(2l)!(2m)! (−1)l22l+1(l!)2

(2l + 1)!
𝛿ll′ ,

(1.153)
which after simplifying gives the orthogonality relation of the associated Leg-
endre polynomials as

∫
1

−1
Pm

l (x)P
m
l′ (x)dx = (l + m)!

(l − m)!

[
2

(2l + 1)

]
𝛿ll′ . (1.154)

Associated Legendre Polynomials
P0

0(x) = 1,
P1

1(x) = (1 − x2)1∕2 = sin 𝜃,

P1
2(x) = 3x(1 − x2)1∕2 = 3 cos 𝜃 sin 𝜃,

P2
2(x) = 3(1 − x2) = 3 sin2𝜃,

P1
3(x) =

3
2
(5x2 − 1)(1 − x2)1∕2 = 3

2
(5 cos2𝜃 − 1) sin 𝜃,

P2
3(x) = 15x(1 − x2) = 15 cos 𝜃 sin2𝜃,

P3
3(x) = 15(1 − x2)3∕2 = 15 sin3𝜃.

(1.155)

1.4.3 Recursion Relations

Operating on the recursion relation [Eq. (1.73)]:
(l + 1)Pl+1(x) − (2l + 1)x Pl(x) + lPl−1(x) = 0 (1.156)
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with

(1 − x2)m∕2 dm

dxm (1.157)

and using the relation

(1 − x2)m∕2 dmPl

dxm = Pm
l (x), (1.158)

we obtain a recursion relation for Pm
l (x) as

(l + 1)Pm
l+1(x) − (2l + 1)xPm

l (x) + lPm
l−1(x)

+ m(2l + 1)
√

1 − x2Pm−1
l−1 (x) = 0. (1.159)

Two other useful recursion relations for Pm
l (x) can be obtained as follows:

(l + 1 − m)Pm
l+1(x) − (2l + 1)xPm

l (x) + (l + m)Pm
l−2(x) = 0, (1.160)

Pm+2
l + 2(m + 1)x√

1 − x2
Pm+1

l (x) + (l − m)(l + m + 1)Pm
l (x) = 0. (1.161)

To prove the first recursion relation [Eq. (1.160)], we write

d
dx
[
Pl+1(x) − Pl−1(x)

]
=

l∑
k=0

akPk(x), (1.162)

which follows from the fact that the left-hand side is a polynomial of order l.
Using the orthogonality relation of the Legendre polynomials [Eq. (1.100)], we
can evaluate ak as

ak = 2k + 1
2 ∫

1

−1
Pk(x)

d
dx
[
Pl+1(x) − Pl−1(x)

]
dx. (1.163)

After integration by parts and using the special values [Eq. (1.76)]:

Pl(1) = 1, Pl(−1) = (−1)l, (1.164)

we obtain

ak = −2k + 1
2 ∫

1

−1
P′

k(x)
[
Pl+1(x) − Pl−1(x)

]
dx. (1.165)

In this expression, P′
k(x) is of order k − 1. Since Pl+1(x) and Pl−1(x) are orthog-

onal to all polynomials of order l − 2 or lower, ak = 0 for k = 0, 1,… , (l − 1),
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hence we obtain

al = −2l + 1
2 ∫

1

−1
P′

l (x)[Pl+1(x) − Pl−1(x)]dx (1.166)

= 2l + 1
2 ∫

1

−1
P′

l (x)Pl−1(x)dx (1.167)

= 2l + 1
2

[
Pl(x)Pl−1(x)|1−1 − ∫

1

−1
Pl(x)P′

l−1(x)dx
]

(1.168)

= 2l + 1. (1.169)

Substituting this into Eq. (1.162) gives
d

dx
[
Pl+1(x) − Pl−1(x)

]
= (2l + 1)Pl(x). (1.170)

Operating on this with dm−1∕dxm−1 and multiplying with (1 − x2)m∕2, we finally
obtain the desired result:

(l + 1 − m)Pm
l+1(x) − (2l + 1)xPm

l (x) + (l + m)Pm
l−2(x) = 0. (1.171)

The second recursion relation [Eq. (1.161)] can be obtained using the Legendre
Eq. (1.131):

(1 − x2)P′′
l (x) − 2xP′

l (x) + l(l + 1)Pl(x) = 0, (1.172)

and by operating on it with (1 − x2)m∕2dm∕dxm.

1.4.4 Integral Representations

1) Using the Cauchy integral formula:
dnf (z0)

dzn
0

= n!
2𝜋i∮C

f (z)dz
(z − z0)n+1 , (1.173)

where f (z) is analytic on and within the closed contour C, and where z0 is a
point within C, we can obtain an integral representation of Pl(x) and Pm

l (x).
Using any closed contour C enclosing the point z0 = x on the real axis and
the Rodriguez formula for Pl(x) [Eq. (1.51)]:

Pl(x) =
1

2ll!
dl

dxl
(x2 − 1)l, (1.174)

we can write

Pl(x) =
2−l

2𝜋i∮C

(z2 − 1)l

(z − x)l+1 dz. (1.175)

Using the definition [Eq. (1.142)]:

Pm
l (x) = (1 − x2)m∕2 dm

dxm Pl(x), (1.176)
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we finally obtain

Pm
l (x) =

(l + m)!(1 − x2)m∕2

2l(2𝜋i)l! ∮C

(z2 − 1)l

(z − x)l+m+1 dz. (1.177)

2) In Eq. (1.173), C is any closed contour enclosing the point x. Now let C be a
circle with the radius

√
1 − x2 and centered at x with the parametrization

z = cos 𝜃 + i sin 𝜃ei𝜙. (1.178)

Using 𝜙 as the new integration variable, we obtain the following integral
representation:

Pm
l (cos 𝜃) = (−1)mim(l + m)!

2𝜋l! ∫
𝜋

−𝜋
[cos 𝜃 + i sin 𝜃 cos𝜙]le−im𝜙 d𝜙.

(1.179)

The advantage of this representation is that the definite integral is taken over
the real domain.

Proof : Using Eq. (1.178), we first write the following relations:
(z − cos 𝜃)l+m+1 = il+m+1sinl+m+1𝜃ei(l+m+1)𝜙, (1.180)

(z2 − 1) = 2i sin 𝜃ei𝜙 [cos 𝜃 + i sin 𝜃 cos𝜙] , (1.181)
dz = − sin 𝜃ei𝜙 d𝜙, (1.182)

which when substituted into Eq. (1.177) gives the desired result [Eq. (1.179)].
Note that x = cos 𝜃.

Example 1.2 Integral representation
Show that the function V (x, y, z) = [z + ix cos u + iy sin u]l, where (x, y, z) are
the Cartesian coordinates of a point and u is a real parameter, is a solution of
the Laplace equation. Next, show that an integral representation of Pm

l (cos 𝜃)
given in terms of the angles, 𝜃 and 𝜙, of the spherical polar coordinates also
yields Eq. (1.179) up to a proportionality constant.

Solution
First evaluate the derivatives Vxx,Vyy, and Vyy to show that

−→∇2V = Vxx + Vyy + Vzz = 0. (1.183)

Since u is just a real parameter,

∫
𝜋

−𝜋
[z + ix cos u + iy sin u]leimu du (1.184)
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is also a solution of the Laplace equation. We now transform Cartesian coordi-
nates (x, y, z) to spherical polar coordinates (r, 𝜃, 𝜙) and let𝜙 − u = 𝜓, to obtain

rleim𝜙 ∫
+𝜋

−𝜋
[cos 𝜃 + i sin 𝜃 cos𝜓]le−im𝜓 (−d𝜓). (1.185)

Comparing with the solution of the Laplace equation, rleim𝜙Pm
l (cos 𝜃), we see

that the integral

∫
+𝜋

−𝜋
[cos 𝜃 + i sin 𝜃 cos𝜓]le−im𝜓 d𝜓, (1.186)

must be proportional to Pm
l (cos 𝜃). Inserting the proportionality constant

[Eq. (1.179)] gives

Pm
l (cos 𝜃) = (−1)mim

2𝜋
(l + m)!

l! ∫
+𝜋

−𝜋
[cos 𝜃 + i sin 𝜃 cos𝜓]le−im𝜓 d𝜓.

(1.187)

If we write e−im𝜓 = cos m𝜓 − i sin m𝜓, from symmetry, the integral corre-
sponding to −i sin m𝜓 vanishes, thus allowing us to write

Pm
l (cos 𝜃) = (−1)mim

2𝜋
(l + m)!

l! ∫
+𝜋

−𝜋
[cos 𝜃 + i sin 𝜃 cos𝜓]l cos m𝜓 d𝜓.

(1.188)

1.4.5 Associated Legendre Polynomials for m < 0

The differential equation that Pm
l (x) satisfies [Eq. (1.16)], where 𝜆 = l(l + 1),

depends on l as l(l + 1), which is unchanged when we let l → −l − 1. In other
words, if we replace l with−l − 1 in the right-hand side of Eq. (1.188), we should
get the same solution. Under the same replacement,

(l + m)!
l!

= (l + m)(l + m − 1) · · · (l + 1) (1.189)

becomes

(−l − 1 + m)(−l − 1 + m − 1) · · · (−l) = (−1)m l!
(l − m)!

, (1.190)

hence we can write

Pm
l (x) =

(−1)m(−i)ml!
2𝜋(l − m)! ∫

+𝜋

−𝜋

cos m𝜓 d𝜓
[cos 𝜃 + i sin 𝜃 cos𝜓]l+1 . (1.191)

Since m appears in the differential equation [Eq. (1.16)] as m2, we can also
replace m by −m in Eq. (1.188), thus allowing us to write

P−m
l (x) = (−1)mi−m

2𝜋
(l − m)!

l! ∫
+𝜋

−𝜋
[cos 𝜃 + i sin 𝜃 cos𝜓]l cos m𝜓 d𝜓 (1.192)
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= (−1)m(i)ml!
2𝜋(l + m)! ∫

+𝜋

−𝜋

cos m𝜓 d𝜓
[cos 𝜃 + i sin 𝜃 cos𝜓]l+1 . (1.193)

Comparing Eq. (1.193) with Eq. (1.191), we obtain

P−m
l (x) = (−1)m (l − m)!

(l + m)!
Pm

l (x). (1.194)

1.5 Spherical Harmonics

We have seen that the solution of Eq. (1.14) with respect to the independent
variable 𝜙 is given as

Φ(𝜙) = Aeim𝜙 + Be−im𝜙. (1.195)

Imposing the periodic boundary condition:

Φm(𝜙 + 2𝜋) = Φm(𝜙), (1.196)

we see that the separation constant m has to take ±integer values. However, in
Section 1.4, we have also seen that m must be restricted further to the integer
values −l,… , 0,… , l. We can now define another complete and orthonormal
set as {

Φm(𝜙) =
1√
2𝜋

eim𝜙, m = −l,… , 0,… , l

}
. (1.197)

This set satisfies the orthogonality relation

∫
2𝜋

0
d𝜙Φm′ (𝜙)Φ∗

m(𝜙) = 𝛿mm′ . (1.198)

We now combine the two sets, {Φm(𝜙)} and {Pm
l (𝜃)}, to define a new com-

plete and orthonormal set called the spherical harmonics as

Y m
l (𝜃, 𝜙) = (−1)m

√
2l + 1

4𝜋
(l − m)!
(l + m)!

eim𝜙Pm
l (cos 𝜃), m ≥ 0. (1.199)

In conformity with applications to quantum mechanics and atomic spec-
troscopy, we have introduced the factor (−1)m. It is also called the
Condon-Shortley phase. The definition of spherical harmonics can be
extended to the negative m values as

Y−m
l (𝜃, 𝜙) = (−1)mY m∗

l (𝜃, 𝜙), m ≥ 0. (1.200)
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The orthogonality relation of Y m
l (𝜃, 𝜙) is given as

∫
2𝜋

0
d𝜑∫

𝜋

0
d𝜃 sin 𝜃Y m′∗

l′ (𝜃, 𝜙)Y m
l (𝜃, 𝜙) = 𝛿m′

m 𝛿l′
l . (1.201)

Since they also form a complete set, any sufficiently well-behaved and at least
piecewise continuous function g(𝜃, 𝜙) can be expressed in terms of Y m

l (𝜃, 𝜙) as

g(𝜃, 𝜙) =
∞∑

l=0

m=l∑
m=−l

Al
mY m

l (𝜃, 𝜙), (1.202)

where the expansion coefficients Al
mare given as

Al
m = ∫ ∫ d𝜙 d𝜃 sin 𝜃g(𝜃, 𝜙)Y m∗

l (𝜃, 𝜙). (1.203)

Looking back at Eq. (1.11) with 𝜆 = l(l + 1), we see that the spherical har-
monics satisfy the differential equation

1
sin 𝜃

𝜕

𝜕𝜃

[
sin 𝜃

𝜕Y m
l (𝜃, 𝜙)
𝜕𝜃

]
+ 1

sin2𝜃

𝜕2Y m
l (𝜃, 𝜙)
𝜕𝜙2 + l(l + 1)Y m

l (𝜃, 𝜙) = 0.

(1.204)

If we rewrite this equation as[
1

sin 𝜃

𝜕

𝜕𝜃

[
sin 𝜃

𝜕

𝜕𝜃

]
+ 1

sin2𝜃

𝜕2

𝜕𝜙2

]
Y m

l (𝜃, 𝜙) = −l(l + 1)Y m
l (𝜃, 𝜙),

(1.205)

aside from a factor of ℏ, the left-hand side is nothing but the square of the
angular momentum operator in quantum mechanics:

−→L
2
= (−→r × −→p )2 =

(−→r × ℏ

i
−→∇
)2
, (1.206)

where in spherical polar coordinates

−→L
2
= −ℏ2

[
1

sin 𝜃

𝜕

𝜕𝜃

[
sin 𝜃

𝜕

𝜕𝜃

]
+ 1

sin2𝜃

𝜕2

𝜕𝜙2

]
. (1.207)

The fact that the separation constant 𝜆 is restricted to integer values, in
quantum mechanics means that the magnitude of the angular momentum is
quantized. From Eq. (1.205), it is seen that the spherical harmonics are also
the eigenfunctions of the −→L

2
operator.
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Spherical Harmonics Y m
l (𝜃, 𝜙)

l = 0

{
Y 0

0 = 1√
4𝜋

,

l = 1

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Y 1
1 = −

√
3

8𝜋
sin 𝜃ei𝜙,

Y 0
1 = +

√
3

4𝜋
cos 𝜃,

Y−1
1 = +

√
3

8𝜋
sin 𝜃e−i𝜙,

l = 2

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Y 2
2 = +1

4

√
15
2𝜋

sin2𝜃e2i𝜙,

Y 1
2 = −

√
15
8𝜋

sin 𝜃 cos 𝜃ei𝜙,

Y 0
2 = +

√
5

4𝜋

(3
2

cos2𝜃 − 1
2

)
,

Y−1
2 = +

√
15
8𝜋

sin 𝜃 cos 𝜃e−i𝜙,

Y−2
2 = +1

4

√
15
2𝜋

sin2𝜃e−2i𝜙,

l = 3

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y 3
3 = −1

4

√
35
4𝜋

sin3𝜃e3i𝜙,

Y 2
3 = +1

4

√
105
2𝜋

sin2𝜃 cos 𝜃e2i𝜙,

Y 1
3 = −1

4

√
21
4𝜋

sin 𝜃
(
5 cos2𝜃 − 1

)
ei𝜙,

Y 0
3 = +

√
7

4𝜋

(5
2

cos3𝜃 − 3
2

cos 𝜃
)
,

Y−1
3 = +1

4

√
21
4𝜋

sin 𝜃
(
5 cos2𝜃 − 1

)
e−i𝜙,

Y−2
3 = +1

4

√
105
2𝜋

sin2𝜃 cos 𝜃e−2i𝜙,

Y−3
3 = +1

4

√
35
4𝜋

sin3𝜃e−3i𝜙.



30 1 Legendre Equation and Polynomials

1.5.1 Addition Theorem of Spherical Harmonics

Spherical harmonics are defined as [Eq. (1.199)]

Y m
l (𝜃, 𝜙) = (−1)m

√
(2l + 1)

4𝜋
(l − m)!
(l + m)!

eim𝜙Pm
l (cos 𝜃), (1.208)

where the orthogonality relation is given as

∫
2𝜋

0 ∫
𝜋

0
d𝜙′ d𝜃′ sin 𝜃′Y m∗

l (𝜃′, 𝜙′)Y m′

l′ (𝜃′, 𝜙′) = 𝛿mm′𝛿ll′ . (1.209)

Since the spherical harmonics form a complete and an orthonormal set, any
sufficiently smooth function g(𝜃, 𝜙) can be represented as the series

g(𝜃, 𝜙) =
∞∑

l=0

l∑
m=−l

Al
mY m

l (𝜃, 𝜙), (1.210)

where the expansion coefficients are given as

Al
m = ∫

2𝜋

0 ∫
𝜋

0
d𝜙 d𝜃 sin 𝜃g(𝜃, 𝜙)Y m∗

l (𝜃, 𝜙). (1.211)

Substituting Al
m back into g(𝜃, 𝜙), we write

g(𝜃, 𝜙) = ∫
2𝜋

0 ∫
𝜋

0
d𝜙′ d𝜃′ sin 𝜃′g(𝜃′, 𝜙′)

∞∑
l=0

l∑
m=−l

Y m
l (𝜃, 𝜙)Y m∗

l (𝜃′, 𝜙′).

(1.212)

Substituting the definition of spherical harmonics, this also becomes

g(𝜃, 𝜙) = ∫
2𝜋

0 ∫
𝜋

0
d𝜙′ d𝜃′ sin 𝜃′g(𝜃′, 𝜙′)

×
∞∑

l=0

l∑
m=−l

(2l + 1)
4𝜋

(l − m)!
(l + m)!

eim𝜙Pm
l (cos 𝜃)e−im𝜙′Pm

l (cos 𝜃′), (1.213)

g(𝜃, 𝜙) = ∫
2𝜋

0 ∫
𝜋

0
d𝜙′ d𝜃′ sin 𝜃′g(𝜃′, 𝜙′)

×
∞∑

l=0

(2l + 1)
4𝜋

l∑
m=−l

(l − m)!
(l + m)!

eim(𝜙−𝜙′)Pm
l (cos 𝜃)Pm

l (cos 𝜃′). (1.214)

In this equation, angular coordinates (𝜃, 𝜙) give the orientation of the posi-
tion vector −→r = (r, 𝜃, 𝜙) which is also called the field point and −→r ′ = (r′, 𝜃′, 𝜙′)
represents the source point. We now orient our axes so that the field point −→r
aligns with the z-axis of the new coordinates. Hence, 𝜃 in the new coordinates
is 0 and the angle 𝜃′ that −→r ′ makes with the z-axis is 𝛾 (Figure 1.1).
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Figure 1.1 Addition theorem. z

r

rʹ

θ γ

y

x

z

y

x

We first make a note of the following special values:

Pl(cos 0) = Pl(1) = 1, (1.215)
Pm

l (cos 0) = Pm
l (1) = 0, m > 0. (1.216)

From spherical trigonometry, the angle 𝛾 between the vectors −→r and −→r ′ is
related to (𝜃, 𝜙) and (𝜃′, 𝜙′) as cos 𝛾 = cos 𝜃 cos 𝜃′ + sin 𝜃 sin 𝜃′ cos(𝜙 − 𝜙′). In
terms of the new orientation of our axes, we now write Eq. (1.214) as

g(0,−) = ∫
2𝜋

0 ∫
𝜋

0
d𝜙′ d𝜃′ sin 𝜃′g(𝜃′, 𝜙′)

∞∑
l=0

(2l + 1)
4𝜋

{
P0

l (cos 0)P0
l (cos 𝜃′)

+
l∑

m=1

(l − m)!
(l + m)!

e−im𝜙′Pm
l (cos 0)Pm

l (cos 𝜃′) (1.217)

+
−1∑

m=−l

(l − m)!
(l + m)!

e−im𝜙′Pm
l (cos 0)Pm

l (cos 𝜃′)
}
.

Note that in the new orientation of our axes, we are still using primes to denote
the coordinates of the source point −→r ′. In other words, the angular variables,
𝜃′ and 𝜙′, in Eq. (1.217) are now measured in terms of the new orientation of
our axes. Naturally, rotation does not affect the magnitudes of −→r and −→r ′

. Since
g(𝜃, 𝜙) is a scalar function on the surface of a sphere, its numerical value at a
given point on the sphere is also independent of the orientation of our axes.
Hence, in the new orientation of our axes, the numerical value of g, that is,
g(0,−), is still equal to g(𝜃, 𝜙),where in g(𝜃, 𝜙) the angles are measured in terms
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of the original orientation of our axes. Hence we can write

g(𝜃, 𝜙) = g(0,−) =∫
2𝜋

0 ∫
𝜋

0
d𝜙′ d𝜃′ sin 𝜃′g(𝜃′, 𝜙′)

∞∑
l=0

(2l + 1)
4𝜋

{
Pl(1)Pl(cos 𝛾)

+
l∑

m=1

(l − m)!
(l + m)!

e−im𝜙′Pm
l (1)P

m
l (cos 𝛾)

+
−1∑

m=−l

(l − m)!
(l + m)!

e−im𝜙′Pm
l (1)P

m
l (cos 𝛾)

}
. (1.218)

Substituting the special values in Eqs. (1.215) and (1.216), this becomes

g(𝜃, 𝜙) = ∫
2𝜋

0 ∫
𝜋

0
d𝜙′ d𝜃′ sin 𝜃′g(𝜃′, 𝜙′)

∞∑
l=0

(2l + 1)
4𝜋

Pl(cos 𝛾). (1.219)

Comparison of Eqs. (1.219) and (1.212) gives the addition theorem of spherical
harmonics:

(2l + 1)
4𝜋

Pl(cos 𝛾) =
l∑

m=−l
Y m

l (𝜃, 𝜙)Y m∗
l (𝜃′, 𝜙′). (1.220)

Sometimes we need the addition theorem written in terms of Pm
l (cos 𝜃) as

Pl(cos 𝛾) = Pl(cos 𝜃)Pl(cos 𝜃′)

+ 2
l∑

m=1

(l − m)!
(l + m)!

Pm
l (cos 𝜃)Pm

l (cos 𝜃′) cos m(𝜙 − 𝜙′). (1.221)

If we set 𝛾 = 0, the result is the sum rule:

(2l + 1)
4𝜋

=
l∑

m=−l
|Y m

l (𝜃, 𝜙)|2. (1.222)

Another derivation of the addition theorem using the rotation matrices is given
in Section 10.8.13.

Note: In spherical coordinates, a general solution of Laplace equation,
−→∇2Φ(r, 𝜃, 𝜙) = 0, can be written as

Φ(r, 𝜃, 𝜙) =
∞∑

l=0

m=l∑
m=−l

[
Almrl + Blmr−(l+1)]Ylm(𝜃, 𝜙), (1.223)

where Alm and Blm are to be evaluated using the appropriate boundary con-
ditions and the orthogonality condition of the spherical harmonics. The fact
that under rotations Φ(r, 𝜃, 𝜙) remains to be solution of the Laplace operator
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follows from the fact that the Laplace operator, −→∇2 = −→∇ ⋅
−→∇, is invariant under

rotations. That is, −→∇2 = −→∇
′2
. On the surface of a sphere, r = R, the angular part

of the Laplace equation reduces to[
1

sin 𝜃

𝜕

𝜕𝜃

(
sin 𝜃

𝜕

𝜕𝜃

)
+ 1

sin2𝜃

𝜕2

𝜕𝜙2

]
Ylm(𝜃, 𝜙) + l(l + 1)Ylm(𝜃, 𝜙) = 0,

(1.224)

which is the differential equation that the spherical harmonics satisfy.

1.5.2 Real Spherical Harmonics

Aside from applications to classical physics and quantum mechanics, spherical
harmonics have found interesting applications in computer graphics and cin-
ematography in terms of a technique called the spherical harmonic lighting.
As in spherical harmonic lighting, in some applications, we require only the
real-valued spherical harmonics:

ym
l =

⎧⎪⎪⎨⎪⎪⎩

√
2Re(Y m

l ) =
√

2Nm
l cos(m𝜙)Pm

l (cos 𝜃), m > 0,

Y 0
l = N0

l P0
l (cos 𝜃), m = 0,√

2Im(Y m
l ) =

√
2N |m|l sin(|m|𝜙)P|m|l (cos 𝜃), |m| < 0,

(1.225)

where

Nm
l =

√
2l + 1

4𝜋
(l − m)!
(l + m)!

. (1.226)

Since the spherical harmonics with m = 0 define zones parallel to the equa-
tor on the unit sphere, they are called zonal harmonics. Spherical harmonics
of the form Y m|m| are called sectoral harmonics, while all the other spherical
harmonics are called tesseral harmonics, which usually divide the unit sphere
into several blocks in latitude and longitude.
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Problems

1 Locate and classify the singular points of each of the following differential
equations:

(i) Laguerre equation:

x
d2yn

dx2 + (1 − x)
dyn

dx
+ nyn = 0.

(ii) Quantum harmonic oscillator equation:
d2Ψ𝜀(x)

dx2 +
(
𝜀 − x2)Ψ𝜀(x) = 0.

(iii) Bessel equation:

x2J ′′m(x) + xJ ′m(x) +
(
x2 − m2) Jm(x) = 0.

(iv)
(
x2 − 4x

) d2y
dx2 + (x + 8)

dy
dx

+ 2y = 0.

(v)
(
x4 − 2x3 + x2) d2y

dx2 + (x − 1)
dy
dx

+ 2x2y = 0.

(vi) Chebyshev equation:(
1 − x2) d2y

dx2 − x
dy
dx

+ n2y = 0.

(vii) Gegenbauer equation:(
1 − x2) d2C𝜆

n(x)
dx2 − (2𝜆 + 1)x

dC𝜆
n(x)

dx
+ n(n + 2𝜆)C𝜆

n(x) = 0.
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(viii) Hypergeometric equation:

x(1 − x)
d2y(x)

dx2 + [c − (a + b + 1)x]
dy(x)

dx
− aby(x) = 0.

(ix) Confluent Hypergeometric equation:

z
d2y(z)

dz2 + [c − z]
dy(z)

dz
− ay(z) = 0.

2 For the following differential equations, use the Frobenius method to find
solutions about x = 0:

(i) 2x3 d2y
dx2 + 5x2 dy

dx
+ x3y = 0.

(ii) x3 d2y
dx2 + 3x2 dy

dx
+
(

x3 + 8
9

x
)

y = 0.

(iii) x3 d2y
dx2 + 3x2 dy

dx
+
(

x3 + 3
4

x
)

y = 0.

(iv) x2 d2y
dx2 + 3x

dy
dx

+ (2x + 1) y = 0.

(v) x3 d2y
dx2 + x2 dy

dx
+
(
8x3 − 9x

)
y = 0.

(vi) x2 d2y
dx2 + x

dy
dx

+ x2y = 0.

(vii) x
d2y
dx2 + (1 − x)

dy
dx

+ 4y = 0.

(viii) 2x3 d2y
dx2 + 5x2 dy

dx
+
(
x3 − 2x

)
y = 0.

3 In the interval x ∈ [−1, 1] for n = integer, find finite solutions of the
equation(

1 − x2) d2y
dx2 − x

dy
dx

+ n2y = 0.

4 Consider a spherical conductor with radius a, with the upper hemisphere
held at potential V0 and the lower hemisphere held at potential−V0, which
are connected by an insulator at the center. Show that the electric poten-
tial inside the sphere is given as

Ψ(r, 𝜃) = V0

∞∑
l=0

(−1)l
( r

a

)2l+1 (2l)!
(2ll!)2

4l + 3
2l + 2

P2l+1(cos 𝜃).
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5 Using the Frobenius method, show that the two linearly independent solu-
tions of

d2R
dr2 + 2

r
dR
dr

− l(l + 1)
r2 R = 0

are given as rl and r−(l+1).

6 The amplitude of a scattered wave is given as

f (𝜃) = 𝛾

∞∑
l=0

(2l + 1)(ei𝛿l sin 𝛿l)Pl(cos 𝜃),

where 𝜃 is the scattering angle, l is the angular momentum, and 𝛿l is the
phase shift caused by the central potential causing the scattering. If the
total scattering cross section is 𝜎total = ∫ 2𝜋

0 ∫ 𝜋

0 d𝜙 d𝜃 sin 𝜃|f (𝜃)|2, show
that

𝜎total = 4𝜋𝛾2
∞∑

l=0
(2l + 1) sin2𝛿l.

7 Prove the following recursion relations:

(i) Pl(x) = P′
l+1(x) + P′

l−1(x) − 2xP′
l (x).

(ii) P′
l+1(x) − P′

l−1(x) = (2l + 1)Pl(x).

(iii) P′
l+1(x) − xP′

l (x) = (l + 1)Pl(x).

8 Use the Rodriguez formula to prove the following recursion relations:

(i) P′
l (x) = xP′

l−1(x) + lPl−1(x), l = 1, 2,… .

(ii) Pl(x) = xPl−1(x) +
x2 − 1

l
P′

l−1(x), l = 1, 2,… .

9 Show that the Legendre polynomials satisfy the following relations:

(i)
d

dx
[
(1 − x2)P′

l (x)
]
+ l(l + 1)Pl(x) = 0.

(ii) Pl+1(x) =
(2l + 1)xPl(x) − lPl−1(x)

l + 1
, l ≥ 1.

10 Derive the normalization constant, Nl, in the orthogonality rela-
tion, ∫ 1

−1 Pl′ (x)Pl(x)dx = Nl𝛿ll′ , of the Legendre polynomials using the
generating function.
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11 Show the integral

∫
1

−1
dx xlPn(x) =

2n+1l!
(

l+n
2

)
!

(l + n + 1)!
(

l−n
2

)
!
, (l − n) = |even integer|.

12 Show that the associated Legendre polynomials with negative m values
are given as

P−m
l (x) = (−1)m (l − m)!

(l + m)!
Pm

l (x), m ≥ 0.

13 Expand the Dirac delta function in a series of Legendre polynomials in the
interval [−1, 1].

14 A metal sphere is cut into sections that are separated by a very thin insu-
lating material. One section extending from 𝜃 = 0 to 𝜃 = 𝜃0 at potential
V0 and the second section extending from 𝜃 = 𝜃0 to 𝜃 = 𝜋 is grounded.
Find the electrostatic potential outside the sphere.

15 The equation for the surface of a liquid drop (nucleus) is given by

r2 = a2
(

1 + 𝜀2
Z2

r2 + 𝜀4
Z4

r4

)
,

where Z, 𝜀2, and 𝜀4 are given constants. Express this in terms of the Leg-
endre polynomials as r2 = a2∑

lClPl(cos 𝜃).

16 Show that the inverse distance between two points in three dimensions
can be expressed in terms of the Legendre polynomials as

1|−→x − −→x ′| = 1√
r2 + r′2 − 2rr′ cos 𝜃

=
∑
l=0

rl
<

rl+1
>

Pl(cos 𝜃),

where r< and r> denote the lesser and the greater of r and r′, respectively.

17 Evaluate the sum

S =
∞∑

l=0

xl+1

l + 1
Pl(x).

Hint: Try using the generating function of the Legendre polynomials.

18 If two solutions, y1(x) and y2(x), are linearly dependent, then their Wron-
skian, W [y1(x), y2(x)] = y1(x)y′2(x) − y′1(x)y2(x), vanishes identically. What
is the Wronskian of the two solutions of the Legendre equation?
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19 The Jacobi polynomials P(a,b)
n (cos 𝜃), where n = positive integer and a, b

are arbitrary real numbers, are defined by the Rodriguez formula

P(a,b)
n (x) = (−1)n

2nn!(1 − x)a(1 + x)b
dn

dxn

[
(1 − x)n+a(1 + x)n+b] , |x| < 1.

Show that the polynomial can be expanded as

P(a,b)
n (cos 𝜃) =

n∑
k=0

A(n, a, b, k)
(

sin 𝜃

2

)2n−2k(
cos 𝜃

2

)2k
.

Determine the coefficients A(n, a, b, k) for the special case, where a and b
are both integers.

20 Find solutions of the differential equation

2x(x − 1)
d2y
dx2 + (10x − 3)

dy
dx

+
[
8 + 1

x
− 2𝜆
]

y(x) = 0,

satisfying the condition y(x) = finite in the entire interval x ∈ [0, 1]. Write
the solution explicitly for the third lowest value of 𝜆.

21 Show that the Jacobi polynomials:

P(a,b)
n (x) = 2−n

n∑
k=0

(n + a
k

)(n + b
n − k

)
(x − 1)n−k(x + 1)k , |x| < 1,

satisfy the differential equation

(1 − x2)
dy2

dx2 +
[
b − a − (a + b + 2)x

] dy
dx

+ n(n + a + b + 1)y(x) = 0.

22 Show that the Jacobi Polynomials satisfy the orthogonality condition

∫
1

−1
(1 − x)a(1 + x)bP(a,b)

n (x)P(a,b)
m (x)dx

= 2a+b+1

2n + a + b + 1
Γ(n + a + 1)Γ(n + b + 1)
Γ(n + 1)Γ(n + a + b + 1)

𝛿nm.

Note that the Jacobi polynomials are normalized so that

P(a,b)
n (1) =

(n + a
n

)
.
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2

Laguerre Polynomials

Laguerre polynomials, Ln(x), are named after the French mathematician
Edmond Laguerre (1834–1886). They are the solutions of the Laguerre
equation:

xL′′
n (x) + (1 − x)L′

n(x) + nLn(x) = 0, (2.1)
where nonsingular solutions exist only for the non-negative integer values of n.
We encounter them in quantum mechanics in the solutions of the hydrogen
atom problem.

2.1 Central Force Problems in Quantum Mechanics

For the central force problems solutions of the time-independent Schrödinger
equation:

− ℏ2

2m
−→∇2Ψ(x, y, z) + V (x, y, z)Ψ(x, y, z) = EΨ(x, y, z), (2.2)

can be separated in spherical polar coordinates as Ψ(r, 𝜃, 𝜙) = Rl(r)Y m
l (𝜃, 𝜙).

The angular part of the solution, Y m
l (𝜃, 𝜙), is the spherical harmonics and the

radial part, Rl(r), comes from the solutions of the differential equation

d
dr

(
r2 dRl(r)

dr

)
+ r2k2(r)Rl(r) − l(l + 1)Rl(r) = 0, k2(r) = 2m

ℏ2 [E − V (r)].

(2.3)
Here, m is the mass of the particle, V (r) is the potential, E is the energy, and ℏ

is the Planck constant. Substituting Rl(r) = uE,l(r)∕r, the differential equation
to be solved for uE,l(r) is obtained as

− ℏ2

2m
d2uE, l

dr2 +
[
ℏ2l(l + 1)

2mr2 + V (r)
]

uE, l(r) = EuE, l(r). (2.4)

Mathematical Methods in Science and Engineering, Second Edition. Selçuk Ş. Bayın.
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To indicate that the solutions depend on the energy and the angular momentum
values, we have written uE,l(r).

For single-electron atoms, the potential energy is given as the Coulomb’s
law, V (r) = −Ze2∕r, where Z is the atomic number and e is the electron charge.
A series solution in Eq. (2.4) yields a three-term recursion relation, which is
not easy to manipulate. For a two-term recursion relation, we investigate the
behavior of the differential equation near the end points, 0 and ∞, and try a
solution of the form

uE,l(𝜌) = 𝜌l+1e−𝜌𝑤(𝜌), (2.5)

where 𝜌 = (2m|E|∕ℏ2)1∕2r is a dimensionless variable. Since electrons in
an atom are bounded, their energy values are negative, hence we can
simplify the differential equation for 𝑤(𝜌) further with the definitions
𝜌0 =

√
2m∕|E|(Ze2∕ℏ) and E∕V = 𝜌∕𝜌0, to write

𝜌
d2𝑤

d𝜌2 + 2(l + 1 − 𝜌)d𝑤
d𝜌

+ [𝜌0 − 2(l + 1)]𝑤(𝜌) = 0. (2.6)

We now try the following series solution in Eq. (2.6):

𝑤(𝜌) =
∞∑

k=0
ak𝜌

k , (2.7)

which has a two-term recursion relation:

ak+1

ak
=

2(k + l + 1) − 𝜌0

(k + 1)(k + 2l + 2)
. (2.8)

In the limit as k → ∞, the ratio of two successive terms, ak+1∕ak , goes as 2∕k;
hence the infinite series in Eq. (2.7) diverges as e2𝜌, which also implies that RE,l(r)
diverges as rle(2m|E|∕ℏ2)1∕2r. Although the wave function Ψ(r, 𝜃, 𝜙) is complex,|Ψ(r, 𝜃, 𝜙)|2 = |RE,l(r)|2|Y m

l (𝜃, 𝜑)|2 (2.9)
is real and represents the probability density of the electron. Therefore, for
physically acceptable solutions, RE,l(r) must be finite everywhere. In particular,
as r → ∞, probability should vanish. Hence for a finite solution, in the interval
[0,∞), we terminate the series [Eq. (2.7)] by restricting 𝜌0 to integer values as

𝜌0 = 2(N + l + 1), N = 0, 1, 2,… . (2.10)
Since l takes integer values, we introduce a new quantum number, n, and write
the energy levels of a single-electron atom as

En = −Z2me4

2ℏ2n2 , n = 1, 2,… . (2.11)

These are nothing but the Bohr energy levels.
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Substituting 𝜌0 [Eq. (2.10)] in Eq. (2.6), the differential equation to be solved
for 𝑤(𝜌) becomes

𝜌

2
d2𝑤

d𝜌2 + (l + 1 − 𝜌)d𝑤
d𝜌

+ N𝑤(𝜌) = 0. (2.12)

The solutions of this equation can be expressed in terms of the associated
Laguerre polynomials.

2.2 Laguerre Equation and Polynomials

The Laguerre equation is defined as

x
d2y
dx2 + (1 − x)

dy
dx

+ ny = 0, (2.13)

where n is a constant. Using the Frobenius method, we substitute a series solu-
tion about the regular singular point x = 0 as

y(x, s) =
∞∑

r=0
arxs+r (2.14)

and obtain a two-term recursion relation:

ar+1 = ar
(s + r − n)
(s + r + 1)2 . (2.15)

In this case, the indicial equation has a double root, s = 0,where the two linearly
independent solutions are given as

y(x, 0) and
𝜕y(x, s)

𝜕s
||||s=0

. (2.16)

The second solution diverges logarithmically as x → 0 (Section 1.2.3). Hence
for finite solutions everywhere, we keep only the first solution, y(x, 0), which
has the recursion relation

ar+1 = −ar
(n − r)
(r + 1)2 . (2.17)

This gives the infinite series solution as

y(x) = a0

{
1 − nx

12 + n(n − 1)
(2!)2 x2 + · · · +

(−1)rn(n − 1) · · · (n − r + 1)
(r!)2 xr + · · ·

}
. (2.18)

From the recursion relation [Eq. (2.17)], it is seen that in the limit as r → ∞,

the ratio of two successive terms has the limit ar+1∕ar → 1∕r, hence this series
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diverges as ex for large x. We now restrict n to integer values to obtain finite
polynomial solutions as

y(x) = a0

n∑
r=0

(−1)r n(n − 1) · · · (n − r + 1)
(r!)2 xr

= a0

n∑
r=0

(−1)r n!xr

(n − r)!(r!)2 . (2.19)

Laguerre polynomials are defined by setting a0 = 1 in Eq. (2.19) as

Ln(x) =
n∑

r=0
(−1)r n!xr

(n − r)!(r!)2 . (2.20)

2.2.1 Generating Function

The generating function, T(x, t), of the Laguerre polynomials is defined as

T(x, t) = e−xt∕(1−t)

(1 − t)
=

∞∑
n=0

Ln(x)tn, |t| < 1. (2.21)

To see that this gives the same polynomials as Eq. (2.20), we expand the
left-hand side as power series:

e−xt∕(1−t)

(1 − t)
= 1

(1 − t)

∞∑
r=0

1
r!

[
− xt

1 − t

]r

=
∞∑

r=0

(−1)r

r!
xrtr

(1 − t)r+1 . (2.22)

Using the binomial formula:

1
(1 − t)r+1 = 1 + (r + 1)t + (r + 1)(r + 2)

2!
t2 + · · ·

=
∞∑

s=0

(r + s)!
r!s!

ts, (2.23)

Equation (2.22) becomes

1
(1 − t)

exp
{
− xt
(1 − t)

}
=

∞∑
r,s=0

(−1)r (r + s)!
(r!)2s!

xrtr+s. (2.24)

Defining a new dummy variable:

n = r + s, (2.25)
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we now write
∞∑

n=0

[ ∞∑
r=0

(−1)r n!
(r!)2(n − r)!

xr

]
tn =

∞∑
n=0

Ln(x)tn (2.26)

and compare equal powers of t. Since s = n − r ≥ 0, r ≤ n, we obtain the
Laguerre polynomials Ln(x) as

Ln(x) =
n∑

r=0
(−1)r n!

(r!)2(n − r)!
xr. (2.27)

2.2.2 Rodriguez Formula

Another definition of the Laguerre polynomials is given in terms of the
Rodriguez formula:

Ln(x) =
ex

n!
dn

dxn (x
ne−x). (2.28)

To show the equivalence of this formula with the other definitions, we use the
Leibniz formula:

dn

dxn

(
f g

)
=

n∑
r=0

n!
(n − r)!r!

dn−rf
dxn−r

drg
dxr , (2.29)

to write

ex

n!
dn

dxn (x
ne−x) = ex

n!

n∑
r=0

n!
(n − r)!r!

dn−rxn

dxn−r
dre−x

dxr . (2.30)

We now use
dpxq

dx p = q(q − 1) · · · (q − p + 1)xq−p

=
q!

(q − p)!
xq−p, (2.31)

to obtain

ex

n!
dn

dxn (x
ne−x) = ex

n!

n∑
r=0

n!
(n − r)!r!

n!
r!

xr(−1)re−x

=
n∑

r=0
(−1)r n!xr

(r!)2(n − r)!
(2.32)

= Ln(x).
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2.2.3 Orthogonality

To show that the Laguerre polynomials form an orthogonal set, we evaluate
the integral

Inm = ∫
∞

0
e−xLn(x)Lm(x)dx. (2.33)

Using the generating function definition of the Laguerre polynomials, we write

1
1 − t

exp
{
− xt
(1 − t)

}
=

∞∑
n=0

Ln(x)tn (2.34)

and

1
1 − s

exp
{
− xs
(1 − s)

}
=

∞∑
n=0

Lm(x)sm. (2.35)

We first multiply Eq. (2.34) with Eq. (2.35) and then the result with e−x to write

∞∑
n,m=0

e−xLn(x)Lm(x)tnsm =
e−x exp

{
− xt

(1−t)

}
(1 − t)

exp
{
− xs

(1−s)

}
(1 − s)

. (2.36)

Interchanging the integral and the summation signs and integrating with
respect to x gives

∞∑
n,m=0

[
∫

∞

0
e−xLn(x)Lm(x)dx

]
tnsm = ∫

∞

0

e−x exp
{
− xt

(1−t)

}
(1 − t)

exp
{
− xs

(1−s)

}
(1 − s)

dx.

(2.37)

It is now seen that the value of the integral, Inm, in Eq. (2.33) can be obtained
by expanding

I = ∫
∞

0

e−x exp
{
− xt

(1−t)

}
(1 − t)

exp
{
− xs

(1−s)

}
(1 − s)

dx (2.38)

in powers of t and s and then by comparing the equal powers of tnsm with the
left-hand side of Eq. (2.37). If we write I as

I = 1
(1 − t)(1 − s) ∫

∞

0
exp

{
−x

(
1 + t

1 − t
+ s

1 − s

)}
dx, (2.39)

the integral can be taken to yield

I = 1
(1 − t)(1 − s)

⎡⎢⎢⎢⎣
− exp

{
−x

(
1 + t

1−t
+ s

1−s

)}
1 +

[
t

(1−t)

]
+
[

s
(1−s)

] ⎤⎥⎥⎥⎦
∞

0

(2.40)
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= 1
(1 − t)(1 − s)

⎡⎢⎢⎢⎣
1

1 +
[

t
(1−t)

]
+
[

s
(1−s)

]⎤⎥⎥⎥⎦ (2.41)

= 1
1 − st

(2.42)

=
∞∑

n=0
sntn. (2.43)

This leads us to the orthogonality relation of the Laguerre polynomials as

∫
∞

0
e−xLn (x) Lm (x) dx = 𝛿 nm.

Compared with the Legendre polynomials, we say that the Laguerre polynomi-
als are orthogonal with respect to the weight function e−x.

2.2.4 Recursion Relations

Using the method that we used for the Legendre polynomials, we can obtain
two recursion relations for the Laguerre polynomials. We first differentiate
the generating function with respect to t to obtain

(n + 1)Ln+1(x) = (2n + 1 − x)Ln(x) − nLn−1(x). (2.44)

Differentiating the generating function with respect to x gives the second recur-
sion relation:

xL′
n (x) = nLn (x) − nLn−1 (x) . (2.45)

Another useful recursion relation is given as

L′
n(x) = −

n−1∑
r=0

Lr(x). (2.46)

Laguerre polynomials
L0(x) = 1,

L1(x) = −x + 1,
L2(x) = (1∕2!)(x2 − 4x + 2),

L3(x) = (1∕3!)(−x3 + 9x2 − 18x + 6),
L4(x) = (1∕4!)(x4 − 16x3 + 72x2 − 96x + 24),

L5(x) = (1∕5!)(−x5 + 25x4 − 200x3 + 600x2 − 600x + 120). (2.47)
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2.2.5 Special Values

In the generating function, we set x = 0:
∞∑

n=0
Ln(0)tn = 1

1 − t
=

∞∑
n=0

tn. (2.48)

This gives the special value

Ln(0) = 1. (2.49)

Another special value is obtained by writing the Laguerre equation at x = 0:[
x

d2Ln(x)
dx2 + (1 − x) d

dx
Ln(x) + nLn(x)

]
x=0

= 0, (2.50)

which gives

L′
n(0) = −n. (2.51)

2.3 Associated Laguerre Equation and Polynomials

The associated Laguerre equation is given as

x
d2y
dx2 + (k + 1 − x)

dy
dx

+ ny = 0. (2.52)

This reduces to the Laguerre equation for k = 0. Solution of Eq. (2.52) can be
found by the following theorem:

Theorem 2.1 Let Z(x) be a solution of the Laguerre equation of order (n + k),
then dk Z(x)

dxk satisfies the associated Laguerre equation.

Proof : We write the Laguerre equation of order (n + k) as

x d2Z
dx2 + (1 − x)dZ

dx
+ (n + k)Z(x) = 0. (2.53)

Using the Leibniz formula [Eq. (2.29)], k-fold differentiation of Eq. (2.53) gives

x dk+2Z
dxk+2 + k dk+1Z

dxk+1 + (1 − x)dk+1Z
dxk+1 + k(−1)dkZ

dxk
+ (n + k)dkZ

dxk
= 0.

(2.54)

Rearranging this, we obtain the desired result:

x d2

dx2

[
dkZ
dxk

]
+ (k + 1 − x) d

dx

[
dkZ
dxk

]
+ n

[
dkZ
dxk

]
= 0. (2.55)
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Using the definition of the Laguerre polynomials [Eq. (2.27)], we can now
write the associated Laguerre polynomials as

Lk
n(x) = (−1)k dk

dxk

n+k∑
r=0

(−1)r (n + k)!xr

(n + k − r)!(r!)2 . (2.56)

Since k-fold differentiation of xr is going to give zeroes for the r < k values, we
can write

Lk
n(x) = (−1)k dk

dxk

n+k∑
r=k

(−1)r (n + k)!xr

(n + k − r)!(r!)2 , (2.57)

Lk
n(x) = (−1)k

n+k∑
r=k

(−1)r (n + k)!
(n + k − r)!(r!)2

r!
(r − k)!

xr−k . (2.58)

Defining a new dummy variable s as s = r − k, we find the final form of the
associated Laguerre polynomials:

Lk
n(x) =

n∑
s=0

(−1)s (n + k)!xs

(n − s)!(k + s)!s!
. (2.59)

Example 2.1 Associated Laguerre Polynomials
In quantum mechanics, the radial part of the Schrödinger equation for the
three-dimensional harmonic oscillator is given as

d2R(x)
dx2 + 2

x
dR(x)

dx
+
(
𝜖 − x2 − l(l + 1)

x2

)
R(x) = 0, (2.60)

where l = 0, 1, 2… and x and 𝜖 are defined in terms of the radial distance r and
the energy E as

x = r√
ℏ∕m𝜔

, 𝜖 = E
ℏ𝜔∕2

. (2.61)

A series solution about the regular singular point at x = 0 gives a three-term
recursion relation. To obtain a two-term recursion relation, we analyze the
behavior of the differential equation about the singular points x = 0 and x = ∞,
and try a solution of the form

R(x) = xle−x2∕2𝑤(x). (2.62)

Substituting this into Eq. (2.60) gives the differential equation to be solved for
𝑤(x) as

𝑤′′ +
(

2(l + 1)
x

− 2x
)
𝑤′ + (−3 + 𝜖 − 2l)𝑤 = 0. (2.63)
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Associated Laguerre polynomials with the argument x2 satisfies

d2

dx2 Lk
n(x2) +

[
(2k + 1)1

x
− 2x

] d
dx

Lk
n(x2) + nLk

n(x2) = 0, (2.64)

which when compared with Eq. (2.63) allows us to write the solution for
𝑤(x) as

𝑤(x) = Ll+1∕2
−3+𝜖−2l(x

2). (2.65)

Thus the solution for Eq. (2.60) is obtained as

R(x) = xle−x2∕2Ll+1∕2
−3+𝜖−2l(x

2). (2.66)

2.3.1 Generating Function

The generating function of the associated Laguerre polynomials is defined as

T(x, t) =
exp

[
− xt

(1−t)

]
(1 − t)k+1 =

∑
n=0

Lk
n(x)tn, |t| < 1. (2.67)

To prove this, we write the generating function of the Laguerre polynomials:

exp
[
− xt

(1−t)

]
(1 − t)k+1 =

∞∑
n=0

Ln(x)tn, (2.68)

which after k-fold differentiation:

dk

dxk

⎡⎢⎢⎢⎣
exp

[
− xt

(1−t)

]
(1 − t)

⎤⎥⎥⎥⎦ =
dk

dxk

∞∑
n=k

Ln(x)tn, (2.69)

yields [
−t

(1 − t)

]k exp
[
− xt

(1−t)

]
(1 − t)

=
∞∑

n=0

dk

dxk
Ln+k(x)tn+k . (2.70)

We now use the relation

Lk
n(x) = (−1)k dk

dxk
Ln+k(x), (2.71)

to write

(−1)k tk

(1 − t)k+1 exp
[
− xt
(1 − t)

]
=

∞∑
n=0

(−1)kLk
n(x)tn+k , (2.72)
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which leads to the desired result:

exp
[
− xt

(1−t)

]
(1 − t)k+1 =

∞∑
n=0

Lk
n(x)tn. (2.73)

2.3.2 Rodriguez Formula and Orthogonality

The Rodriguez formula for the associated Laguerre polynomials is given as

Lk
n(x) =

exx−k

n!
dn

dxn

[
e−xxn+k] . (2.74)

Their orthogonality relation is

∫
∞

0
e−xxkLk

n(x)Lk
m(x)dx = (n + k)!

n!
𝛿nm, (2.75)

where the weight function is given as (e−xxk).

2.3.3 Recursion Relations

Some frequently used recursion relations of the associated Laguerre polyno-
mials are given as follows:

(n + 1)Lk
n+1(x) = (2n + k + 1 − x)Lk

n(x) − (n + k)Lk
n−1(x), (2.76)

x d
dx

Lk
n(x) = nLk

n(x) − (n + k)Lk
n−1(x), (2.77)

Lk
n−1(x) + Lk−1

n (x) = Lk
n(x). (2.78)
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Problems

1 We have seen that the Schrödinger equation for a single-electron atom is
written as

− ℏ2

2m
d2uE,l

dr2 +
[
ℏ2l(l + 1)

2mr2 − Ze2

r

]
uE,l(r) = EuE,l(r).

(i) Without any substitutions, convince yourself that the above equation
gives a three-term recursion relation and then derive the substitution

uE,l(𝜌) = 𝜌l+1e−𝜌𝑤(𝜌),

which leads to a differential equation with a two-term recur-
sion relation for 𝑤(𝜌). We have defined a dimensionless variable
𝜌 = r

√
2m|E|∕ℏ2. Hint: Study the asymptotic forms and the solutions

of the differential equation at the end points of the interval [0,∞).
(ii) Show that the differential equation for 𝑤(𝜌) has the recursion relation

ak+1

ak
=

2(k + l + 1) − 𝜌0

(k + 1)(k + 2l + 2)
, 𝜌0 =

√
2m|E| Ze2

ℏ
.

2 Derive the following recursion relations:
(i) (n + 1)Ln+1(x) = (2n + 1 − x)Ln(x) − nLn−1(x),

(ii) xL′
n(x) = nLn(x) − nLn−1(x),

(iii) L′
n(x) = −

n−1∑
r=0

Lr(x).

3 Show that the associated Laguerre polynomials satisfy the orthogonality
relation

∫
∞

0
e−xxkLk

n(x)Lk
m(x)dx = (n + k)!

n!
𝛿nm.

4 Write the normalized wave function of the hydrogen atom in terms of the
spherical harmonics and the associated Laguerre polynomials.

5 Using the generating function

exp
[
− xt

(1−t)

]
(1 − t)k+1 =

∞∑
n=0

Lk
n(x)tn,

derive the Rodriguez formula for Lk
n(x).

6 Find the expansion of exp(−kx) in terms of the associated Laguerre
polynomials.
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7 Show the special value

Lk
n(0) =

(n + k)!
n!k!

for the associated Laguerre polynomials.

8 (i) Using the Frobenius method, find a series solution about x = 0 to the
differential equation

x d2C
dx2 + dC

dx
+ (𝜆 − x

4
)C = 0, x ∈ [0,∞].

(ii) Show that solutions regular in the entire interval [0,∞) must be of
the form

Cn(x) = e−x∕2Ln(x),

with 𝜆 = n + 1∕2, n = 0, 1, 2,…, where Ln(x) satisfies the differential
equation

x
d2Ln

dx2 + (1 − x)
dLn

dx
+ nLn = 0.

(iii) With the integration constant

an = (−1)n,

find the general expression for the coefficients an−j of Ln(x).
(iv) Show that this polynomial can also be defined by the generating

function

T(x, t) =
exp

[
− xt

(1−t)

]
(1 − t)

=
∞∑

n=0

Ln(x)
n!

tn

or the Rodriguez formula

Ln(x) = ex dn

dxn (x
ne−x).

(v) Derive two recursion relations connecting

Ln+1, Ln and Ln−1

and

L
′
n with Ln, Ln−1.

(vi) Show that Cn(x) form an orthogonal set, that is,

∫
∞

0
dxe−xLn(x)Lm(x) = 0 for n ≠ m
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and calculate the integral

∫
∞

0
dxe−x[Ln(x)]2.

Note: Some books use Ln for their definition of Laguerre polynomi-
als.

9 Starting with the generating function definition:

exp(−xt∕(1 − t))∕(1 − t) =
∞∑

n=0
Ln(x)tn,

derive the Rodriguez formula, Ln(x) =
ex

n!
dn

dxn (x
ne−x), for the Laguerre

polynomials.

10 Using the series definition of the Laguerre polynomials show that

L′
n(0) = −n and L′′

n (0) =
1
2

n(n − 1).

11 In quantum mechanics, the radial part of Schrödinger’s equation for the
three-dimensional harmonic oscillator is given as

d2R(x)
dx2 + 2

x
dR(x)

dx
+
(
𝜖 − x2 − l(l + 1)

x2

)
R(x) = 0,

where x and 𝜖 are defined in terms of the radial distance r and the energy
E as

x = r∕
√
ℏ𝜔∕2 and 𝜖 = E∕ℏ𝜔∕2.

l takes the integer values l = 0, 1, 2… . Analyze the behavior of this
equation about its singular points and show that its solution can be
expressed in terms of the associated Laguerre polynomials.
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3

Hermite Polynomials

Hermite polynomials appear in many different branches of science like the
probability theory, combinatorics, and numerical analysis. We also encounter
them in quantum mechanics in conjunction with the harmonic oscillator
problem and in systems theory in connection with Gaussian noise. They are
named after the French mathematician Charles Hermite (1822–1901).

3.1 Harmonic Oscillator in Quantum Mechanics

In terms of the Hamiltonian operator, H, the time-independent Schrödinger
equation is written as

HΨ(−→x ) = EΨ(−→x ), (3.1)

where Ψ(−→x ) is the wave function and E stands for the energy eigenvalues. In
general, H is obtained from the classical Hamiltonian by replacing the position,
−→x , and the momentum, −→p , with their operator counterparts:

−→x → −→x , −→p →
ℏ

i
−→∇. (3.2)

In one-dimension, the Hamiltonian operator for the harmonic oscillator is
obtained from the classical Hamiltonian, H = p2∕2m + m𝜔2x2∕2, as

H(x) = − ℏ2

2m
d2

dx2 + m𝜔2x2

2
. (3.3)

This leads us to the following Schrödinger equation:

d2Ψ(x)
dx2 + 2m

ℏ2

(
E − m𝜔2x2

2

)
Ψ(x) = 0. (3.4)

Defining two dimensionless variables, x′ = x∕
√
ℏ∕m𝜔, 𝜀 = E∕(ℏ𝜔∕2), and

dropping the prime in x′, we obtain the differential equation to be solved for
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the wave function as

d2Ψ(x)
dx2 + (𝜀 − x2)Ψ(x) = 0, x ∈ (−∞,∞). (3.5)

This is closely related to the Hermite equation, and its solutions are given in
terms of the Hermite polynomials.

3.2 Hermite Equation and Polynomials

We seek a finite solution to the above differential equation (3.5) in the entire
interval (−∞,∞). However, direct application of the Frobenius method gives
a three-term recursion relation. To get a two-term recursion relation, we look
at the behavior of the solution near the singularity at infinity.

First, we make the substitution x = 1∕𝜉, which transforms the differential
equation into the form

d2Ψ(𝜉)
d𝜉2 + 2

𝜉

dΨ(𝜉)
d𝜉

+ 1
𝜉4

[
𝜀 − 1

𝜉2

]
Ψ(𝜉) = 0. (3.6)

It is clear that the singularity at infinity is essential. However, since it is at
the end points of our interval, it does not pose any difficulty in finding a series
solution about the origin. We now consider the differential equation (3.5) in the
limit as x → ∓∞, where it behaves as

d2Ψ(x)
dx2 − x2Ψ(x) = 0. (3.7)

This has two solutions, exp(−x2∕2) and exp(x2∕2). Since exp(x2∕2) blows up at
infinity, we use the first solution and substitute into Eq. (3.5) a solution of the
form Ψ(x) = h(x) exp(−x2∕2), which leads to the following differential equation
for h(x):

d2h
dx2 − 2x dh

dx
+ (𝜀 − 1)h(x) = 0. (3.8)

We now try a series solution, h(x) =
∑∞

k=0 akxk , which gives a two-term
recursion relation:

ak+2 = ak
(2k + 1 − 𝜀)
(k + 2)(k + 1)

. (3.9)

Since the ratio of two successive terms, ak+2∕ak , has the limit 2k as k goes to
infinity, this series asymptotically behaves as ex2 . Thus the wave function Ψ(x)
diverges as ex2∕2 as x → ∓∞. A physically meaningful solution must be finite in
the entire interval (−∞,∞); hence we terminate the series after a finite num-
ber of terms. This is accomplished by restricting the energy of the system to
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certain integer values as 𝜀 − 1 = 2n, n = 0, 1, 2,… . Now the recursion relation
[Eq. (3.9)] becomes

ak+2 = ak
(2k − 2n)

(k + 2)(k + 1)
, (3.10)

which yields the polynomial solutions of Eq. (3.8) as
n = 0 h0(x) = a0,

n = 1 h1(x) = a1x,
n = 2 h2(x) = a0(1 − 2x2),
⋮ ⋮ ⋮

(3.11)

Using the recursion relation [Eq. (3.10)], we can write the coefficients of the
decreasing powers of x for the nth-order polynomial as

an−2j = (−1)j n(n − 1)(n − 2)(n − 3) · · · (n − 2j + 1)
2j2.4…(2j)

an, (3.12)

an−2j =
(−1)jn!
(n − 2j)!

1
2j2jj!

an. (3.13)

When we take an as an = 2n, we obtain the Hermite polynomials:

Hn(x) =
[n∕2]∑
j=0

(−1)j2n−2jn!
(n − 2j)!j!

xn−2j, (3.14)

which satisfy the Hermite equation:

H ′′

n (x) − 2xH ′

n(x) + 2nHn(x) = 0. (3.15)

Hermite Polynomials
H0(x) = 1,
H1(x) = 2x,

H2(x) = −2 + 4x2,

H3(x) = −12x + 8x3,

H4(x) = 12 − 48x2 + 16x4,

H5(x) = 120x − 160x3 + 32x5.

Going back to the energy parameter E, we find

E = ℏ𝜔

2
𝜀 = ℏ𝜔

(
n + 1

2

)
, n = 0, 1, 2,… . (3.16)

This means that in quantum mechanics, the energy of the harmonic oscillator
is quantized, hence a one-dimensional harmonic oscillator can only oscillate
with the energy values given above.
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3.2.1 Generating Function

The generating function for the Hermite polynomials is given as

T(t, x) = e−t2+2xt =
∞∑

n=0

Hn(x)
n!

tn. (3.17)

To show that this is equivalent to our former definition [Eq. (3.14)], we write
the left-hand side as

et(2x−t) =
∞∑

n=0

tn(2x − t)n

n!
=

∞∑
n=0

∞∑
m=0

(−1)m n!2n−m

m!(n − m)!n!
xn−mtn+m. (3.18)

Making the replacement n + m → n′ and dropping primes, we obtain

et(2x−t) =
∞∑

n=0

[n∕2]∑
m=0

(−1)m 2n−2mxn−2m

m!(n − 2m)!
tn. (3.19)

Comparing this with the right-hand side of Eq. (3.17), we see that Hn(x) is the
same as given in Eq. (3.14).

3.2.2 Rodriguez Formula

Another definition for the Hermite polynomials is given by the Rodriguez
formula:

Hn(x) = (−1)nex2 dn

dxn

[
e−x2]

. (3.20)

To see that this is equivalent to the generating function [Eq. (3.17)], we write
the Taylor series expansion of an arbitrary function F(t) as

F(t) =
∞∑

n=0

dnF(t)
dtn

||||t=0

tn

n!
. (3.21)

Comparing this with Eq. (3.17), we obtain

Hn(x) =
[
𝜕n

𝜕tn e2tx−t2
]

t=0
(3.22)

= 𝜕n

𝜕tn ex2−(x−t)2 ||||t=0
(3.23)

= ex2 𝜕n

𝜕tn e−(x−t)2 ||||t=0
. (3.24)

For an arbitrary differentiable function, we can write 𝜕

𝜕t
f (x − t) = − 𝜕

𝜕x
f (x − t),

hence
𝜕n

𝜕tn f (x − t) = (−1)n 𝜕n

𝜕xn f (x − t). (3.25)
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Applying this to Eq. (3.24), we obtain the Rodriguez formula as

Hn(x) = (−1)nex2 𝜕n

𝜕xn e−(x−t)2 ||||t=0
= (−1)nex2 dn

dxn e−x2
. (3.26)

3.2.3 Recursion Relations and Orthogonality

Differentiating the generating function of the Hermite polynomials
[Eq. (3.17)], first with respect to x and then with respect to t, we obtain two
recursion relations:

Hn+1(x) = 2xHn(x) − 2nHn−1(x), n ≥ 1, H1(x) = 2xH0(x), (3.27)

H′
n(x) = 2nHn−1(x), n ≥ 1, H ′

0(x) = 0. (3.28)

To show the orthogonality of the Hermite polynomials, we evaluate the
integral

Inm = ∫
∞

−∞
dx e−x2 Hn(x)Hm(x), n ≥ m. (3.29)

Using the Rodriguez formula, we write Eq. (3.29) as

Inm = (−1)n ∫
∞

−∞
dx e−x2 ex2

[
dn

dxn e−x2

]
Hm(x). (3.30)

After n-fold integration by parts and since n > m, we obtain

Inm = (−1)n dn−1

dxn−1 (e
−x2)Hm(x)

||||∞−∞ + (−1)n+1 ∫
∞

−∞
dx

[
dn−1

dxn−1 e−x2

]
H ′

m(x),

⋮ (3.31)

= (−1)2n ∫
∞

−∞
dx e−x2 dn

dxn Hm.

Since the x dependence of the mth-order Hermite polynomial goes as

Hm(x) = 2mxm + am−2xm−2 + · · · , (3.32)

we obtain

Inm =

{
0, n > m,

2nn!
√
𝜋, n = m,

(3.33)

where we have used dnHn(x)
dxn = 2nn!, and 2 ∫ ∞

0 dx e−x2 =
√
𝜋. We now write the

orthogonality relation as

∫
∞

−∞
dx e−x2 Hn(x)Hm(x) = 2nn!

√
𝜋𝛿nm. (3.34)
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Using Eq. (3.34), we can define a set of polynomials, {𝜙n(x)}, where 𝜙n(x) are
defined as

𝜙n(x) =
1√

2nn!
√
𝜋

e−x2∕2Hn(x), n = 0, 1, 2,… , (3.35)

and which satisfies the orthogonality relation ∫ ∞
−∞ dx𝜙n(x)𝜙m(x) = 𝛿nm. Since

this set is also complete, any sufficiently well-behaved function in the interval
(−∞,∞) can be expanded in terms of {𝜙n(x)} as f (x) =

∑∞
n=0 Cn𝜙n(x), where

the coefficients Cn are found as

Cn = ∫
∞

−∞
dx′f (x′)𝜙n(x′). (3.36)

Example 3.1 Gaussian and the Hermite polynomials
In quantum mechanics, the wave function of a particle localized around x0 can
be given as a Gaussian, f (x) = Ae−

1
2
(x−x0)2

, where A is the normalization con-
stant, which is determined by requiring the area under f (x) to be unity. Let us
find the expansion of this function in terms of the Hermite polynomials as

f (x) =
∞∑

n=0
Cn

e−x2∕2Hn(x)√
2nn!

√
𝜋

. (3.37)

This expansion corresponds to the representation of the wave function of a
particle under the influence of a harmonic oscillator potential in terms of the
harmonic oscillator energy eigenfunctions. Expansion coefficients Cn are deter-
mined from the integral

Cn = A√
2nn!

√
𝜋
∫

∞

−∞
d𝜉 exp

[
−
(𝜉 − x0)2

2
− 𝜉2

2

]
Hn(𝜉). (3.38)

Writing this as

Cn = A√
2nn!

√
𝜋
∫

∞

−∞
d𝜉 e−𝜉2 exp

[
2𝜉

(x0

2

)
−
(x0

2

)2]
Hn(𝜉)e−x2

0∕4

(3.39)

and defining a new parameter x0∕2 = t, and using the generating function
[Eq. (3.17)], we obtain

Cn = A√
2nn!

√
𝜋

e−x2
0∕4 ∫

∞

−∞
d𝜉 e−𝜉2

[ ∞∑
m=0

Hm(𝜉)
m!

(x0

2

)m
]

Hn(𝜉). (3.40)
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We now use the orthogonality relation [Eq. (3.34)] of the Hermite polynomials
to obtain

Cn = A√
2nn!

√
𝜋

e−x2
0∕4

(x0

2

)n 1
n! ∫ d𝜉 e−𝜉2[Hn(𝜉)]2 (3.41)

= A√
2nn!

√
𝜋

e−x2
0∕4

(x0

2

)n 1
n!

2nn!
√
𝜋 (3.42)

= Ae−x2
0∕4

(x0

2

)n
√

2n√
n!

𝜋
1
4 . (3.43)

The probability of finding a particle in the nth energy eigenstate is given as |Cn|2.

Example 3.2 Dipole calculations in quantum mechanics
In quantum mechanics and in electric dipole calculations, we encounter inte-
grals like

Inm = e∫
∞

−∞
x𝜙n(x)𝜙m(x)dx, (3.44)

where e is the electric charge. Let us write this as

Inm = e√
2nn!

√
𝜋

√
2mm!

√
𝜋

[
∫

∞

−∞
dx e−x2 Hn(x)Hm(x)x

]
. (3.45)

We now use the generating function definition of the Hermite polynomials to
write

∫
∞

−∞
dx T(t, x)S(s, x)e−x2 x

=
∞∑

n=0

∞∑
m=0

1
n!m!

[
∫

∞

−∞
dx e−x2 Hn(x)Hm(x)x

]
tnsm. (3.46)

If we show the expression inside the square brackets on the right-hand side as
Jnm, the integral Inm will be given as

Inm = e√
2nn!

√
𝜋

√
2mm!

√
𝜋

Jnm. (3.47)

We now evaluate the left-hand side of Eq. (3.46) as

∫
∞

−∞
dx e−t2+2txe−s2+2sxe−x2 x

= ∫
∞

−∞
dx e−(x−(s+t))2 e2st{[x − (s + t)] + (s + t)} (3.48)
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= e2st
{
∫

∞

−∞
ue−u2 du + (s + t)∫

∞

−∞
du e−u2

}
(3.49)

= e2st(s + t)
√
𝜋, (3.50)

where we have defined u = x − (s + t). Expanding this in power series of t and
s gives

∫
∞

−∞
dx e−t2+2txe−s2+2sxe−x2 x =

√
𝜋

∞∑
k=0

2ksktk+1

k!
+
√
𝜋

∞∑
k=0

2ksk+1tk

k!
.

(3.51)

Finally, comparing with
∑∞

n=0

∞∑
m=0

1
n!m!

[ Jnm]tnsm, we obtain the desired result:

Jnm = 0 ⇒ Inm = 0
Jn,n+1 =

√
𝜋2n(n + 1)! ⇒ In,n+1 = e[(n + 1)∕2]1∕2

Jn,n−1 =
√
𝜋2n−1n! ⇒ In,n−1 = e

√
n∕2

for
for
for

m ≠ n ∓ 1,
m = n + 1,
m = n − 1.

(3.52)

We can also write this result as

Jnm =
√
𝜋2n−1n!𝛿n−1,m +

√
𝜋2n(n + 1)!𝛿n+1,m. (3.53)

Example 3.3 Operations with Hermite polynomials
Evaluate the following integral:

I = ∫
∞

−∞
xe−x2 Hn(x)Hm(x)dx. (3.54)

Solution
We use the following recursion relation [Eq. (3.27)]:

Hn(x) =
1
x

[1
2

Hn+1(x) + nHn−1(x)
]
, (3.55)

to write

I = ∫
∞

−∞
xe−x2 1

x

[1
2

Hn+1(x) + nHn−1(x)
]

Hm(x)dx

= ∫
∞

−∞
e−x2

[1
2

Hn+1Hm + nHn−1Hm

]
dx. (3.56)

Finally, using the orthogonality relation [Eq. (3.34)]:

∫
∞

−∞
e−x2 Hn(x)Hm(x)dx =

√
𝜋2nn!𝛿nm, (3.57)
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we obtain the desired result as

∫
∞

−∞
xe−x2 Hn(x)Hm(x)dx =

√
𝜋2n−1n![2(n + 1)𝛿m,n+1 + 𝛿m,n−1]. (3.58)

Example 3.4 Operations with Hermite polynomials
Verify the relation

dm

dxm Hn(x) =
2nn!

(n − m)!
Hn−m(x), m < n. (3.59)

Solution:
Using the generating function,

∑∞
n=0 Hn(x)

tn

n!
= e−t2+2xt, we write

∞∑
n=0

[
dm

dxm Hn(x)
]

tn

n!
= dm

dxm [e−t2+2xt] (3.60)

= (2t)me−t2+2xt (3.61)

= 2mtm
∞∑

n=0
Hn(x)

tn

n!
(3.62)

= 2m
∞∑

n=0
Hn(x)

tn+m

n!
. (3.63)

Let n + m = k to get
∞∑

n=0

[
dm

dxm Hn(x)
]

tn

n!
= 2m

∞∑
k=m

Hk−m(x)
tk

(k − m)!
, (3.64)

which implies

dm

dxm Hn(x) =
2nn!

(n − m)!
Hn−m(x), m < n. (3.65)
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Problems

1 For the Hermite polynomials, using the recursion relation

ak+2 = ak
(2k − 2n)

(k + 2)(k + 1)
,

show that one can write the coefficients of the decreasing powers of x for
the nth-order polynomial as

an−2j = (−1)j n(n − 1)(n − 2)(n − 3) · · · (n − 2j + 1)
2j2.4…(2j)

an,

or as

an−2j =
(−1)jn!
(n − 2j)!

1
2j2jj!

an.

2 For a three-dimensional harmonic oscillator, the Schrödinger equation is
given as

− ℏ2

2m
−→∇

2
Ψ(−→r ) + 1

2
m𝜔2r2Ψ(−→r ) = EΨ(−→r ).

Using the separation of variables technique, find the ordinary differential
equations to be solved for r, 𝜃, and 𝜙.

3 Quantum mechanics of the three-dimensional harmonic oscillator leads
to the following differential equation for the radial part of the wave
function:

d2R(x)
dx2 + 2

x
dR(x)

dx
+
[
𝜖 − x2 − l(l + 1)

x2

]
R(x) = 0,

where x and 𝜖 are defined in terms of the radial distance r and the
energy E as x = r∕

√
ℏ∕m𝜔 and 𝜖 = E∕(ℏ𝜔∕2), and l takes integer values

l = 0, 1, 2,… .

(i) Examine the nature of the singular point at x = ∞.
(ii) Show that in the limit as x → ∞, R(x) behaves as R → e−x2∕2.

(iii) Using the Frobenius method, find an infinite series solution about
x = 0 in the interval [0,∞]. Check the convergence of your solution.
Should the solution be finite everywhere including the end points,
why?

(iv) For finite solutions everywhere in the interval [0,∞], what restric-
tions do you have to impose on the physical parameters of the system.

(v) For l = 0, 1, and 2, find explicitly the solutions corresponding to the
three smallest values of 𝜖.
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4 Show the integral

∫
∞

−∞
x2e−x2 Hn(x)Hn(x)dx = 𝜋1∕22nn!

(
n + 1

2

)
.

5 Prove the orthogonality relation

∫
∞

−∞
e−x2 Hm(x)Hn(x)dx = 2nn!

√
𝜋𝛿mn

using the generating function definition of Hn(x).

6 Expand x2k and x2k+1 in terms of the Hermite polynomials, to establish the
results

(i) x2k = (2k)!
22k

k∑
n=0

H2n(x)
(2n)!(k − n)!

, k = 0, 1, 2,… ,

(ii) x2k+1 = (2k + 1)!
22k+1

k∑
n=0

H2n+1(x)
(2n + 1)!(k − n)!

, k = 0, 1, 2,… .

7 Show the following integrals:

(i) ∫
∞

−∞
xe−x2∕2Hn(x)dx =

⎧⎪⎨⎪⎩
0√

2𝜋(n + 1)!
[(n + 1)∕2]!

⎫⎪⎬⎪⎭ for
{

n even
n odd

}
,

(ii) ∫
∞

−∞
e−x2∕2Hn(x)dx =

{√
2𝜋n!∕(n∕2)!

0

}
for

{
n even
n odd

}
.

8 Show that

Hn(0)dx =

{ 0

(−1)m (2m)!
m!

}
for

{
n odd

n = 2m

}
.

9 For positive integers k,m, and n, show that

∫
∞

−∞
xke−x2 Hm(x)Hm+n(x)dx

=

{
0√

𝜋2m(m + k)!

}
for

{
n > k
n = k

}
.

10 Prove that

∫
∞

−∞
e−a2x2 H2n(x)dx = (2n)!

n!

√
𝜋

a

[
1 − a2

a2

]n

,

Re a2 > 0 and n = 0, 1, 2,… .
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11 Prove the expansions

(i) et2 cos 2xt =
∞∑

n=0

(−1)nH2n(x)
(2n)!

t2n, |t| < ∞,

(ii) et2 sin 2xt =
∞∑

n=0

(−1)nH2n+1(x)
(2n + 1)!

t2n+1, |t| < ∞.

Note that these can be regarded as the generating functions for the
even and the odd Hermite polynomials.

12 Show that for m integer the integral

∫
∞

−∞
xme−x2 Hn(x)dx = 0, 0 ≤ m ≤ n − 1.

13 The hypergeometric equation is given as

x(1 − x)
d2y
dx2 + [𝛾 − (𝛼 + 𝛽 + 1)x]

dy
dx

− 𝛼𝛽y(x) = 0,

where 𝛼, 𝛽, and 𝛾 are arbitrary constants (𝛾 ≠ integer and 𝛾 ≠ 0).
(i) Show that it has the general solution

y(x) = C0F(𝛼, 𝛽, 𝛾; x) + C1F(𝛼 − 𝛾 + 1, 𝛽 − 𝛾 + 1, 2 − 𝛾; x),

valid for the region |x| < 1 and C0 and C1 are arbitrary integration
constants, and the hypergeometric function is defined by

F(𝛼, 𝛽, 𝛾; x) =
∞∑

k=0

(𝛼)k(𝛽)k

(𝛾)k

xk

k!

with (𝛼)k = 𝛼(𝛼 + 1)(𝛼 + 2) · · · (𝛼 + k − 1).
(ii) If a regular series solution is required for the entire interval [−1, 1],

the above series will not serve as the solution. What conditions do
you have to impose on 𝛼, 𝛽 to ensure a regular solution in this case?

(iii) Show that Legendre polynomials can be expressed as Pl(x) = F(−l,
l + 1, 1; (1 − x)∕2).

14 Establish the following connections between the Hermite and the
Laguerre polynomials:
(i) L−1∕2

n (x) = (−1)n H2n
(√

x
)
∕22nn!,

(ii) L1∕2
n (x) = (−1)nH2n+1

(√
x
)
∕22n+1n!

√
x.

15 Derive the following recursion relations:
(i) Hn+1(x) = 2xHn(x) − 2nHn−1(x),

(ii) H′
n(x) = 2nHn−1(x).
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4

Gegenbauer and Chebyshev Polynomials

The sine and cosine functions play a central role in the study of oscillations
and waves. They come from the solutions of the Helmholtz wave equation
in Cartesian coordinates with the appropriate boundary conditions. The sine
and cosine functions also form a basis for representing general waves and
oscillations of various types, shapes, and sizes. On the other hand, solutions
of the angular part of the Helmholtz equation in spherical polar coordinates
are the spherical harmonics. Analogous to the oscillations of a piece of string,
spherical harmonics correspond to the oscillations of a two-sphere, that is,
the surface of a sphere in three dimensions. Spherical harmonics also form a
complete set of orthonormal functions; hence they are very important in many
theoretical and practical applications. For the oscillations of a three-sphere
(hypersphere), along with the spherical harmonics, we also need the Gegen-
bauer polynomials. Gegenbauer polynomials are very useful in cosmology and
quantum field theory in curved backgrounds. Both the spherical harmonics
and the Gegenbauer polynomials are combinations of sines and cosines.
Chebyshev polynomials form another complete and orthonormal set of
functions, which are closely related to the Gegenbauer polynomials.

4.1 Wave Equation on a Hypersphere

Friedmann Robertson Walker models in cosmology, which are also called the
standard models, are generally accepted as accurately describing the global
properties of the universe like homogeneity, isotropy, and expansion. Among
the standard models, closed universes correspond to the surface of a hyper-
sphere (three-sphere), where the spacetime geometry is described by the line
element

ds2 = dt2 − R(t)2 [d𝜒2 + sin2𝜒d𝜃2 + sin2𝜒 sin2 𝜃d𝜙2] . (4.1)

Here, t is the universal time and R(t) is the time-dependent radius of the hyper-
sphere. Angular coordinates have the ranges 𝜒 ∈ [0, 𝜋], 𝜃 ∈ [0, 𝜋], 𝜙 ∈ [0, 2𝜋].

Mathematical Methods in Science and Engineering, Second Edition. Selçuk Ş. Bayın.
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We now consider the wave equation for the massless conformal scalar field
in a closed static universe, R(t) = R0, also known as the Einstein model:

◽Φ(t, 𝜒, 𝜃, 𝜙) + 1
R2

0
Φ(t, 𝜒, 𝜃, 𝜙) = 0. (4.2)

Here, ◽ stands for the d’Alembert or the wave operator, ◽ = g𝜇𝜈∇𝜇∇𝜈 , where
∇𝜇 stands for the covariant derivative. Explicit evaluation of Eq. (4.2) is beyond
the scope of this chapter; hence we suffice by saying that a separable solution
of the form

Φ(t, 𝜒, 𝜃, 𝜙) = T(t)X(𝜒)Y (𝜃, 𝜙) (4.3)

reduces Eq. (4.2) to[
1

T(t)
d2T(t)

dt2

]
−

[
1

R2
0X(𝜒)

(
d2X(𝜒)

d𝜒2 +
2 cos𝜒
sin𝜒

dX(𝜒)
d𝜒

− 1
)]

− 1
R2

0sin2𝜒

×
[

1
Y (𝜃, 𝜙)

(
𝜕2Y (𝜃, 𝜙)

𝜕𝜃2 + cos 𝜃
sin 𝜃

𝜕Y (𝜃, 𝜙)
𝜕𝜃

+ 1
sin2𝜃

𝜕2Y (𝜃, 𝜙)
𝜕𝜙2

)]
= 0, (4.4)

where we have set c = 1.
Since t, 𝜒, 𝜃, 𝜙 are independent coordinates, this equation can be satisfied for

all (t, 𝜒, 𝜃, 𝜙) only when the expressions inside the square brackets are equal to
constants. Introducing two separation constants, −𝜔2 and 𝜆, we obtain the
differential equations to be solved for T(t), X(𝜒), and Y (𝜃, 𝜙), respectively, as

1
T(t)

d2T(t)
dt2 = −𝜔2, (4.5)

1
Y (𝜃, 𝜙)

(
𝜕2Y (𝜃, 𝜙)

𝜕𝜃2 + cos 𝜃
sin 𝜃

𝜕Y (𝜃, 𝜙)
𝜕𝜃

+ 1
sin2𝜃

𝜕2Y (𝜃, 𝜙)
𝜕𝜙2

)
= 𝜆, (4.6)

sin2𝜒
d2X(𝜒)

d𝜒2 + 2 sin𝜒 cos𝜒
dX(𝜒)

d𝜒
+

(
𝜔2 − 1

R2
0

)
R2

0sin2𝜒X(𝜒)

= − 𝜆X(𝜒). (4.7)

The two linearly independent solutions of Eq. (4.5) can be written imme-
diately as T(t) = ei𝜔t and e−i𝜔t, while the second Eq. (4.6) is nothing but the
differential equation that the spherical harmonics, Y m

l (𝜃, 𝜙), satisfy with 𝜆 and
m given as

𝜆 = −l(l + 1), l = 0, 1, 2,… and m = 0,±1,… ,±l. (4.8)
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Before we try a series solution in the equation to be solved for X(𝜒) [Eq. (4.7)],
we make the substitutions

X(𝜒) = C0sinl𝜒C(cos𝜒), x = cos𝜒, x ∈ [−1, 1], (4.9)

to obtain the following differential equation for C(x):

(1 − x2)d2C(x)
dx2 − (2l + 3)x dC(x)

dx
+

[
−l(l + 2) +

(
𝜔2 − 1

R2
0

)
R2

0

]
C(x) = 0.

(4.10)

The substitution in Eq. (4.9) is needed to ensure a two-term recursion rela-
tion with the Frobenius method. This equation has two regular singular
points at the end points, x = ±1, hence we try a series solution of the form
C(x) =

∑∞
k=0 akxk+𝛼 to write

a0𝛼(𝛼 − 1)x𝛼−2 + a1𝛼(𝛼 + 1)x𝛼−1 +
∞∑

k=0
{ak+2(k + 𝛼 + 2)(k + 𝛼 + 1)

− ak[(k + 𝛼)(k + 𝛼 − 1) + (2l + 3)(k + 𝛼) − A]}xk+𝛼 = 0, (4.11)

where A = −l(l + 2) + (𝜔2 − 1
R2

0
)R2

0. Equation (4.11) cannot be satisfied for all x
unless the coefficients of all the powers of x are zero, that is,

a0𝛼(𝛼 − 1) = 0, a0 ≠ 0, (4.12)
a1𝛼(𝛼 + 1) = 0, (4.13)

ak+2 = ak

[
(k + 𝛼)(k + 𝛼 − 1) + (2l + 3)(k + 𝛼) − A

(k + 𝛼 + 2)(k + 𝛼 + 1)

]
, k = 0, 1, 2,… .

(4.14)

The indicial equation [Eq. (4.12)] has two roots as 0 and 1. Using the smaller
root, 𝛼 = 0, we obtain the general solution as

C(x) = a0

[
1 − A

2
x2 −

(
2 + 2(2l + 3) − A

3.4

)
A
2

x4 + · · ·
]

+ a1

[
x + (2l + 3) − A

2.3
x3 + · · ·

]
. (4.15)

Here, a0 and a1 are two integration constants and the recursion relation for
the coefficients is given as

ak+2 = ak

[
k(k − 1) + (2l + 3)k − A

(k + 2)(k + 1)

]
, k = 0, 1, 2,… . (4.16)
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From the limit ak+2∕ak → 1 as k → ∞, we see that both of these series diverge
at the end points x = ±1 as 1∕(1 − x2). To avoid the divergence at the end
points, we terminate the series by restricting 𝜔R0 to integer values as

𝜔N = (N + 1)∕R0, N = 0, 1, 2,… . (4.17)

Polynomial solutions obtained this way can be expressed in terms of the
Gegenbauer polynomials.

Note that these frequencies mean that one can only fit integer multiples
of full wavelengths around the circumference, 2𝜋R0, of the universe, that is,
(1 + N)𝜆N = 2𝜋R0, N = 0, 1, 2,… . Using the relation 𝜔N = 2𝜋∕𝜆N , we again
obtain the frequencies of Eq. (4.17).

4.2 Gegenbauer Equation and Polynomials

In general, the Gegenbauer equation is written as

(1 − x2)
d2C𝜆

n(x)
dx2 − (2𝜆 + 1)x

dC𝜆
n(x)

dx
+ n(n + 2𝜆)C𝜆

n(x) = 0. (4.18)

For 𝜆 = 1∕2, this equation reduces to the Legendre equation. For the integer
values of n, its solutions reduce to the Gegenbauer polynomials:

C𝜆
n(x) =

[n∕2]∑
r=0

(−1)r Γ(n − r + 𝜆)
Γ(𝜆)r!(n − 2r)!

(2x)n−2r. (4.19)

4.2.1 Orthogonality and the Generating Function

Orthogonality relation of the Gegenbauer polynomials is given as

∫
1

−1
(1 − x2)𝜆−

1
2 C𝜆

n(x)C𝜆
m(x)dx = 21−2𝜆 𝜋Γ(n + 2𝜆)

(n + 𝜆)Γ2(𝜆)Γ(n + 1)
𝛿nm.

(4.20)

Gegenbauer polynomials can also be defined by the following generating func-
tion:

1
(1 − 2xt + t2)𝜆

=
∞∑

n=0
C𝜆

n(x)tn, |t| < 1, |x| ≤ 1, 𝜆 > −1∕2. (4.21)
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We can now write the solution of Eq. (4.10) in terms of the Gegenbauer poly-
nomials as C(x) = Cl+1

N−l(x), thus obtaining the complete solution of the wave
equation [Eq. (4.2)] as

Φ(t, 𝜒, 𝜃, 𝜙) = (c1ei𝜔N t + c2e−i𝜔N t)(sinl𝜒)Cl+1
N−l(cos𝜒)Y m

l (𝜃, 𝜙). (4.22)

4.2.2 Another Representation of the Solution

We now show that the function

1ΠN
l (𝜒) = sinl𝜒

dl+1(cos N𝜒)
d(cos𝜒)l+1 (4.23)

is another useful representation of the solution of the differential equation
[Eq. (4.7)] for X(𝜒):

sin2𝜒
d2X
d𝜒2 + 2 sin𝜒 cos𝜒 dX

d𝜒
+

[(
𝜔2 − 1

R2
0

)
R2

0sin2𝜒 − l(l + 1)

]
X(𝜒) = 0,

(4.24)

with 𝜔 = N∕R0, N = 1, 2,… . We first write Eq. (4.24) as

d
d𝜒

[
sin2𝜒

dX
d𝜒

]
+

[(
𝜔2 − 1

R2
0

)
R2

0sin2𝜒 − l(l + 1)

]
X(𝜒) = 0 (4.25)

and then make the transformation x = cos𝜒 to obtain

(1− x2)2 d2X
dx2 − 3x(1− x2)dX

dx
+
[
(𝜔2R2

0 − 1)(1− x2)− l(l + 1)
]

X(x) = 0.

(4.26)

First, substitute

1ΠN
l (𝜒) = (1 − x2)l∕2 dl+1(cos N𝜒)

dxl+1 (4.27)

into the above differential equation to write

(1 − x2)
dl+3(cos N𝜒)

dxl+3 − (2l + 3)x
dl+2(cos N𝜒)

dxl+2

+
[
−l2 − 2l − 1 + 𝜔2R2

0
] dl+1(cos N𝜒)

dxl+1 = 0. (4.28)
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Now we need to show that dl+1(cos N𝜒)∕dxl+1 satisfies the following
second-order differential equation for 𝜔 = N∕R0:

(1 − x2) d2

dx2

[
dl+1(cos N𝜒)

dxl+1

]
− (2l + 3)x d

dx

[
dl+1(cos N𝜒)

dxl+1

]
+
[
−(l + 1)2 + 𝜔2R2

0
] [dl+1(cos N𝜒)

dxl+1

]
= 0. (4.29)

We first show that the above equation is true for l = 0:

(1 − x2)
d3(cos N𝜒)

dx3 − 3x
d2(cos N𝜒)

dx2 +
[
−1 + 𝜔2R2

0
] d(cos N𝜒)

dx
= 0.

(4.30)

Evaluating the derivatives explicitly gives 𝜔 = N∕R0. Finally, the l-fold differen-
tiation of Eq. (4.30) and the Leibnitz rule:

dl(u𝑣)
dxl

=
l∑

r=0

(
l
r

)
dru
dxr

dl−r𝑣

dxl−r
, (4.31)

gives the desired result. Note that N is not quantized yet, however, for finite
solutions everywhere in the interval x ∈ [−1, 1], we restrict N to integer values,
N = 1, 2,… .

4.2.3 The Second Solution

The second solution of Eq. (4.24) can be written as

2ΠN
l (𝜒) = sinl𝜒

dl+1(sin N𝜒)
d(cos𝜒)l+1 . (4.32)

To prove that the above function is indeed a solution of Eq. (4.24), we use
the same method used for 1ΠN

l (𝜒). Their linear independence can be estab-
lished by showing that the Wronskian, which is defined by the determinant
W [u1(x),u2(x)] = u1u′

2 − u2u′
1, is different from zero. The general solution can

now be given as the linear combination:

X(𝜒) = c01ΠN
l (𝜒) + c12ΠN

l (𝜒), (4.33)

where c0 and c1 are two integration constants. Since the second solution
diverges at the end points, for finite solutions everywhere in the interval
𝜒 ∈ [0, 𝜋], or x ∈ [−1, 1], we set its coefficient in the general solution to zero.
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4.2.4 Connection with the Gegenbauer Polynomials

To establish the connection of Eq. (4.23) with the Gegenbauer polynomials, we
make use of the trigonometric expansion [3]:

cos N𝜒 =
[N∕2]∑

j=0

N(N − j − 1)!(−1)j2N−(2j+1)

(N − 2j)!j!
(cos𝜒)N−2j, (4.34)

which terminates when a coefficient is zero. Using the substitution x = cos𝜒,
we can write

dl+1(cos N𝜒)
dxl+1 = N

[(N−l−1)∕2]∑
j=0

(−1)j 2N−(2j+1)(N − j − 1)!
(N − 2j − l − 1)!j!

xN−2j−l−1, (4.35)

where N = 1, 2,… and where we have used the formula dmxn

dxm = n!
(m−n)!

xm−n.

Comparing this with the Gegenbauer polynomials [Eq. (4.19)]:

C𝜆
n(x) =

[n∕2]∑
r=0

(−1)r Γ(n − r + 𝜆)
Γ(𝜆)r!(n − 2r)!

(2x)n−2r, (4.36)

which satisfies the differential equation [Eq. (4.18)]:

(1 − x2)
d2C𝜆

n(x)
dx2 − (2𝜆 + 1)x

dC𝜆
n(x)

dx
+ n[n + 2𝜆]C𝜆

n(x) = 0, (4.37)

we see that the function dl+1(cos Nx)∕dxl+1 is proportional to the Gegenbauer
polynomial Cl+1

N−l−1(x), N = 1, 2,… . That is,

Cl+1
N−l−1(x) =

[(N−l−1)∕2]∑
j=0

(−1)j Γ(N − j)2N−2j−1−l

j!Γ(l + 1)(N − 2j − l − 1)!
xN−2j−l−1 (4.38)

=
[(N−l−1)∕2]∑

j=0
(−1)j (N − j − 1)!2−l2N−2j−1

j!l!(N − 2j − l − 1)!
xN−2j−l−1 (4.39)

=
(

2−l

l!

) [(N−l−1)∕2]∑
j=0

(−1)j 2N−2j−1(N − j − 1)!
j!(N − 2j − l − 1)!

xN−2j−l−1 (4.40)

=
(

2−l

l!

)
1
N

[
dl+1(cos N𝜒)

dxl+1

]
. (4.41)

Hence, they both satisfy the same differential equation [Eq. (4.29)]. We can now
write the solution of Eq. (4.24) as

X(𝜒) = c0 1ΠN
l (𝜒) = c0sinl𝜒

dl+1(cos N𝜒)
d(cos𝜒)l+1 , (4.42)
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or as

X(𝜒) = C0sinl𝜒Cl+1
N−l−1(cos𝜒). (4.43)

For finite solutions everywhere in the interval 𝜒 ∈ [0, 𝜋], we restrict N to inte-
gers, N = 1, 2,… .

4.2.5 Evaluation of the Normalization Constant

Using the orthogonality condition of the Gegenbauer polynomials [Eq. (4.20)],
we can write

∫
+1

−1
(1 − x2)l+1∕2[Cl+1

N−l−1(x)]
2dx = 𝜋

22l+1N(l!)2

(N + l)!
(N − l − 1)!

. (4.44)

We can also write the ratio
(N + l)!

(N − l − 1)!
= (N + l) · · ·N · · · (N − l)(N − l − 1)!

(N − l − 1)!
(4.45)

= (N2 − l2) · · · (N2 − 1)N , (4.46)

which gives

∫
+1

−1
(1 − x2)l+1∕2[Cl+1

N−l−1(x)]
2 dx = 𝜋(N2 − l2) · · · (N2 − 1)

22l+1(l!)2
. (4.47)

This gives C0 in Eq. (4.43) as

C0 = 2(2l+1)∕2l![𝜋(N2 − l2)… (N2 − 1)]−1∕2. (4.48)

We now use Eqs (4.35) and (4.38) to establish the relation

Cl+1
N−l−1(cos𝜒) = l!2lN

[
dl+1(cos N𝜒)
d(cos𝜒)l+1

]
, (4.49)

which yields c0 in Eq. (4.42) as c0 =
[
𝜋

2
(N2 − l2) · · · (N2 − 1)N2

]−1∕2
.

4.3 Chebyshev Equation and Polynomials

4.3.1 Chebyshev Polynomials of the First Kind

Polynomials defined as

Tn(cos𝜒) = cos(n𝜒), n = 0, 1, 2… (4.50)
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are called the Chebyshev polynomials of the first kind. They satisfy the
Chebyshev equation:

(1 − x2)
d2Tn(x)

dx2 − x
dTn(x)

dx
+ n2Tn(x) = 0, x = cos𝜒. (4.51)

4.3.2 Chebyshev and Gegenbauer Polynomials

The Chebyshev equation after (l + 1)-fold differentiation yields

(1 − x2)
dl+3(cos n𝜒)

dxl+3 − (2l + 3)x
dl+2(cos n𝜒)

dxl+2

+
[
−l2 − 2l − 1 + n2] dl+1(cos n𝜒)

dxl+1 = 0, (4.52)

where n = 1, 2,… . We now rearrange this as{
(1 − x2) d2

dx2 − (2l + 3)x d
dx

+ [−l(l + 2) + n2 − 1]
}[

dl+1(cos n𝜒)
dxl+1

]
= 0,

(4.53){
(1 − x2) d2

dx2 − [2(l + 1) + 1]x d
dx

+ (n − l − 1)[(n − l − 1) + 2(l + 1)]
}

×
[

dl+1(cos n𝜒)
dxl+1

]
= 0 (4.54)

and compare with Eq. (4.18) to obtain the following relation between the
Gegenbauer and the Chebyshev polynomials of the first kind:

Cl+1
n−l−1(x) =

dl+1(cos nx)
dxl+1 , (4.55)

that is,

Cl+1
n−l−1(x) =

dl+1Tn(x)
dxl+1 , n = 1, 2,… . (4.56)

4.3.3 Chebyshev Polynomials of the Second Kind

Chebyshev polynomials of the second kind are defined as

Un(x) = sin(n𝜒), n = 0, 1, 2… , (4.57)

where x = cos𝜒 . Chebyshev polynomials of the first and second kinds are
linearly independent and they both satisfy the Chebyshev equation (4.51).
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In terms of x, the Chebyshev polynomials are written as

Tn(x) =
[n∕2]∑
r=0

(−1)r n!
(2r)!(n − 2r)!

(1 − x2)rxn−2r,

Un(x) =
[(n−1)∕2]∑

r=0
(−1)r n!

(2r + 1)!(n − 2r − 1)!
(1 − x2)r+ 1

2 xn−2r−1. (4.58)

For some n values, the Chebyshev polynomials are given as follows:

Chebyshev polynomials of the first kind
T0 = 1,

T1(x) = x,
T2(x) = 2x2 − 1,

T3(x) = 4x3 − 3x,
T4(x) = 8x4 − 8x2 + 1,

T5(x) = 16x5 − 20x3 + 5x.

Chebyshev polynomials of the second kind
U0 = 0,

U1(x) =
√
(1 − x2),

U2(x) =
√
(1 − x2)(2x),

U3(x) =
√
(1 − x2)(4x2 − 1),

U4(x) =
√
(1 − x2)(8x3 − 4x),

U5(x) =
√
(1 − x2)(16x4 − 12x2 + 1).

4.3.4 Orthogonality and Generating Function

Generating functions of the Chebyshev polynomials are given as

1 − t2

1 − 2tx + t2 = T0(x) + 2
∞∑

n=1
Tn(x)tn, |t| < 1, |x| ≤ 1,√

1 − x2

1 − 2tx + t2 =
∞∑

n=0
Un+1(x)tn. (4.59)
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and their orthogonality relations are

∫
1

−1

Tm(x)Tn(x)√
1 − x2

dx =
⎧⎪⎨⎪⎩

0 m ≠ n
𝜋∕2 m = n ≠ 0
𝜋 m = n = 0

⎫⎪⎬⎪⎭ ,

∫
1

−1

Um(x)Un(x)√
1 − x2

dx =
⎧⎪⎨⎪⎩

0 m ≠ n
𝜋∕2 m = n ≠ 0

0 m = n = 0

⎫⎪⎬⎪⎭ . (4.60)

4.3.5 Another Definition

Sometimes the polynomials defined as

U0(x) = 1,
U1(x) = 2x,

U2(x) = 4x2 − 1,
U3(x) = 8x3 − 4x,

U4(x) = 16x4 − 12x2 + 1,

(4.61)

are also referred to as the Chebyshev polynomials of the second kind. They
are related to Un(x) by the relation√

1 − x2Un(x) = Un+1(x), n = 0, 1, 2,… . (4.62)

They satisfy the differential equation

(1 − x2)
d2Un(x)

dx2 − 3x
dUn(x)

dx
+ n(n + 2)Un(x) = 0 (4.63)

and their orthogonality relation is given as

∫
1

−1
dx

√
1 − x2Um(x)Un(x) =

𝜋

2
𝛿mn. (4.64)

Note that even though Um(x) are polynomials, Um(x) are not. The generating
function for Um(x) is given as

1
(1 − 2xt + t2)

=
∞∑

m=0
Um(x)tm, |t| < 1, |x| < 1, (4.65)

where Tn(x) and Un(x) satisfy the following recursion relations:

(1 − x2)T ′
n(x) = −nxTn(x) + nTn−1(x), (4.66)

(1 − x2)U
′
n(x) = −nxUn(x) + (n + 1)Un−1(x). (4.67)
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Special values of the Chebyshev polynomials
Tn(1) = 1,

Tn(−1) = (−1)n,

T2n(0) = (−1)n,

T2n+1(0) = 0,
Un(1) = 0,

Un(−1) = 0,
U2n(0) = 0,

U2n+1(0) = (−1)n.

(4.68)

Bibliography

1 Bayin, S.S. (2008) Essentials of Mathematical Methods in Science and Engi-
neering, John Wiley & Sons.

2 Bell, W.W. (2004) Special Functions for Scientists and Engineers, Dover Publi-
cations.

3 Dwight, H.B. (1961) Tables of Integrals and Other Mathematical Data, 4th
edn, Prentice-Hall, Englewood Cliffs, NJ.

4 Lebedev, N.N. (1965) Special Functions and Their Applications, Prentice-Hall,
Englewood Cliffs, NJ.

Problems

1 By inspection, observe that the equation

sin2𝜒
d2X(𝜒)

d𝜒2 + 2 sin𝜒 cos𝜒
dX(𝜒)

d𝜒
+

(
𝜔2 − 1

R2
0

)
R2

0sin2𝜒X(𝜒) =−𝜆X(𝜒)

gives a three-term recursion relation and then drive the transformation
X(𝜒) = C0sinl𝜒C(cos𝜒), which gives a differential equation for C(cos𝜒)
with a two-term recursion relation.

2 Using the line element ds2 = c2dt2 − R(t)2[d𝜒2 + sin2𝜒d𝜃2 + sin2𝜒

sin2𝜃d𝜙2], find the spatial volume of a closed universe. What is the
circumference?
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3 Show that the solutions of

(1 − x2)d2C(x)
dx2 − (2l + 3)x dC(x)

dx
+

[
−l(l + 2) +

(
𝜔2

N − 1
R2

0

)
R2

0

]
C(x) = 0

can be expressed in terms of the Gegenbauer polynomials as
C(x) = Cl+1

N−l(x), where 𝜔N = (N + 1)∕R0, N = 0, 1, 2,… .

4 Show the orthogonality relation of the Gegenbauer polynomials:

∫
1

−1
(1 − x2)𝜆−

1
2 C𝜆

n(x)C𝜆
m(x)dx = 21−2𝜆 𝜋Γ(n + 2𝜆)

(n + 𝜆)Γ2(𝜆)Γ(n + 1)
𝛿nm.

5 Show that the generating function

1
(1 − 2xt + t2)𝜆

=
∞∑

n=0
C𝜆

n(x)tn, |t| < 1, |x| ≤ 1, 𝜆 > −1∕2

can be used to define the Gegenbauer polynomials.

6 Using the Frobenius method, find a series solution to the Chebyshev
equation:

(1 − x2)
d2y(x)

dx2 − x
dy(x)

dx
+ n2y(x) = 0, x ∈ [−1, 1].

For finite solutions in the entire interval [−1, 1], do you have to restrict n
to integer values?

7 Show the following special values:
(i) Tn(1) = 1,

(ii) Tn(−1) = (−1)n,

(iii) T2n(0) = (−1)n,

(iv) T2n+1(0) = 0,

(v) Un(1) = n + 1,
(vi) Un(−1) = (−1)n(n + 1),

(vii) U2n(0) = (−1)n,

(viii) U2n+1(0) = 0.

8 Show that the following relations are true:
(i) Tn(−x) = (−1)nTn(x),

(ii) Un(−x) = (−1)nUn(x).

9 Using the generating function, 1∕(1 − 2xt + t2) =
∑∞

m=0 Um(x)tm, |t| < 1,|x| < 1, show that Um(x) are defined as

Um(x) =
[m∕2]∑
k=0

(−1)k (m − k)!
k!(m − 2k)!

(2x)m−2k .
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10 Show that Tn(x) and Un(x) satisfy the recursion relations
(i) (1 − x2)T ′

n(x) = −nxTn(x) + nTn−1(x),
(ii) (1 − x2)U ′

n(x) = −nxUn(x) + nUn−1(x).

11 Let x = cos𝜒 and find a series expansion of C(x) = dl+1(cos N𝜒)∕
d(cos𝜒)l+1 in terms of x. What happens when N is an integer.

12 Show that y(x) = dl+1(cos N𝜒)∕dxl+1 satisfies the following second-order
ordinary differential equation with 𝜔2R2

0 = N :

(1 − x2)
d2y
dx2 − (2l + 3)x

dy
dx

+ [−(l + 1)2 + 𝜔2R2
0]y(x) = 0, x = cos𝜒.

13 Verify that the second solution:

2ΠN
l = (1 − x2)l∕2 dl+1(sin N𝜒)

dxl+1 ,

satisfies the following differential equation for 𝜔2R2
0 = N and x = cos𝜒 :

(1 − x2)2 d2X
dx2 − 3x(1 − x2)dX

dx
+ [(𝜔2R2

0 − 1)(1 − x2) − l(l + 1)]X(x) = 0,

14 Show that

1ΠN
l = (1 − x2)l∕2 dl+1(cos N𝜒)

dxl+1 ,

2ΠN
l = (1 − x2)l∕2 dl+1(sin N𝜒)

dxl+1 ,

where x = cos𝜒, are linearly independent and examine their behavior at
the end points of the interval x ∈ [−1, 1]. What restriction do you need to
put on N for finite solutions everywhere.

15 Evaluate the normalization constants c0 and C0 in X(𝜒), where X(𝜒) is
given as

X(𝜒) = c0 1ΠN
l (𝜒) = c0sinl𝜒

dl+1(cos N𝜒)
d(cos𝜒)l+1 ,

or as

X(𝜒) = C0sinl𝜒Cl+1
N−l−1(cos𝜒),

so that ∫ 𝜋

0 |X(𝜒)|2sin2𝜒 d𝜒 = 1.
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16 Using

C𝜆
n(x) =

[n∕2]∑
r=0

(−1)r Γ(n − r + 𝜆)
Γ(𝜆)r!(n − 2r)!

(2x)n−2r,

show that for 𝜆 = 1∕2 Gegenbauer polynomials reduce to the Legendre
polynomials, that is, C1∕2

n (x) = Pn(x).

17 Prove the recursion relations
(i) Tn+1(x) − 2xTn(x) + Tn−1(x) = 0,

(ii) Un+1(x) − 2xUn(x) + Un−1(x) = 0.

18 Chebyshev polynomials Tn(x) and Un(x) can be related to each other.
Show the relations
(i) (1 − x2)1∕2Tn(x) = Un+1(x) − xUn(x),

(ii) (1 − x2)1∕2Un(x) = xTn(x) − Tn+1(x).

19 Obtain the Chebyshev expansion:

(1 − x2)1∕2 = 2
𝜋

[
1 − 2

∞∑
s=1

(4s2 − 1)−1T2s(x)

]
.
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Bessel Functions

The important role that trigonometric and hyperbolic functions play in the
study of oscillations is well known. The equation of motion of a uniform rigid
rod of length 2l suspended from one end and oscillating freely in a plane is
given as I�̈� = −mgl sin 𝜃, where I is the moment of inertia, m is the mass, g is
the acceleration of gravity, and 𝜃 is the angular displacement of the rod from its
equilibrium position. For small oscillations, using the approximation sin 𝜃 ≃ 𝜃,

we obtain the general solution in terms of trigonometric functions as
𝜃(t) = A cos𝜔0t + B sin𝜔0t, 𝜔2

0 = mgl∕I. (5.1)
Suppose the rod is oscillating inside a viscous fluid exerting a drag force pro-

portional to �̇� with the proportionality constant k as the drag coefficient. Now
the equation of motion becomes I�̈� = −k�̇� − mgl𝜃. For fluids with low viscosity,
oscillations die out exponentially but the general solution is still expressed in
terms of trigonometric functions. However, for highly viscous fluids, where the
inequality (k∕2I)2 > 𝜔2

0 holds, one needs the hyperbolic functions to express
the solution as

𝜃(t) = e−(k∕2I)t [A cosh q0t + B sinh q0t
]
, q2

0 = (k∕2I)2 − 𝜔2
0. (5.2)

Now consider small oscillations of a flexible chain with uniform density 𝜌0,
length l, and with loops very small compared to the length of the chain. The
distance upwards from the free end of the chain is x and the displacement of
the chain from its equilibrium position is y(x, t) (Figure 5.1). For small oscilla-
tions, assuming the change in y(x, t) with x is small: 𝜕y∕𝜕x ≪ 1, we can write
the y-component of the tension along the chain as Ty(x) = 𝜌0gx(𝜕y∕𝜕x). This
gives the restoring force on a mass element of length Δx as

Ty(x + Δx) − Ty(x) =
𝜕

𝜕x

(
𝜌0gx

𝜕y
𝜕x

)
Δx. (5.3)

We can now write the equation of motion of a mass element of length Δx as

(𝜌0Δx)
𝜕2y(x, t)

𝜕t2 = 𝜕

𝜕x

[
𝜌0gx

𝜕y(x, t)
𝜕x

]
Δx, (5.4)
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x

y (x,t)

0

Figure 5.1 Flexible chain.

𝜕2y(x, t)
𝜕t2 Δx = g 𝜕

𝜕x

[
x
𝜕y(x, t)
𝜕x

]
Δx. (5.5)

Since Δx is small but finite, we obtain the differential equation to be solved for
y(x, t) as

𝜕2y(x, t)
𝜕t2 = g 𝜕

𝜕x

[
x
𝜕y(x, t)
𝜕x

]
. (5.6)

Separating the variables as y(x, t) = u(x)𝑣(t), we write

�̈�(t)
𝑣(t)

=
g

u(x)

[
du
dx

+ x d2u
dx2

]
= −𝜔2, (5.7)

where 𝜔 is the separation constant. The solution for 𝑣(t) can be written imme-
diately as

𝑣(t) = c0 cos(𝜔t − 𝛿), (5.8)

while u(x) satisfies the differential equation

x d2u
dx2 + du

dx
+ 𝜔2

g
u(x) = 0. (5.9)

After defining a new independent variable, z = 2
√

x∕g, the differential equation
to be solved for u(z) becomes

d2u
dz2 + 1

z
du
dz

+ 𝜔2u(z) = 0. (5.10)
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To express the solutions of this equation, we need a new type of function called
the Bessel function. This problem was first studied by Bernoulli, in 1732, how-
ever, he did not recognize the general nature of these functions. As we shall see,
this equation is a special case of the Bessel’s equation.

5.1 Bessel’s Equation

If we write the Laplace equation in cylindrical coordinates:

𝜕2Ψ
𝜕𝜌2 + 1

𝜌

𝜕Ψ
𝜕𝜌

+ 1
𝜌2

𝜕2Ψ
𝜕𝜙2 + 𝜕2Ψ

𝜕z2 = 0, (5.11)

and try a separable solution of the form Ψ(𝜌, 𝜙, z) = R(𝜌)Φ(𝜙)Z(z), we obtain
three ordinary differential equations to be solved for R(𝜌), Φ(𝜙), and Z(z):

d2Z(z)
dz2 − k2Z(z) = 0, (5.12)

d2Φ(𝜙)
d𝜙2 + m2Φ(𝜙) = 0, (5.13)

d2R(𝜌)
d𝜌2 + 1

𝜌

dR(𝜌)
d𝜌

+
(

k2 − m2

𝜌2

)
R(𝜌) = 0. (5.14)

Solutions of the first two equations can be written immediately as

Z(z) = c1ekz + c2e−kz, (5.15)
Φ(𝜙) = c1eim𝜙 + c2e−im𝜙. (5.16)

The remaining Eq. (5.14) is known as the Bessel equation, which with the
definitions x = k𝜌 and R(𝜌) = Jm(x) can be written as

J ′′m(x) +
1
x

J ′m(x) +
(

1 − m2

x2

)
Jm(x) = 0. (5.17)

Solutions of this equation are called the Bessel functions of order m and they
are shown as Jm(x).

5.2 Bessel Functions

Series solution of the Bessel’s equation is given as

Jm(x) =
∞∑

r=0

(−1)r

r!Γ(m + r + 1)

(x
2

)m+2r
, (5.18)
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which is called the Bessel function of the first kind of order m. A second
solution can be written as

J−m(x) =
∞∑

r=0

(−1)r

r!Γ(−m + r + 1)

(x
2

)−m+2r
. (5.19)

However, the second solution is independent of the first solution only for
the noninteger values of m. For the integer values of m, the two solutions are
related by

J−m(x) = (−1)mJm(x). (5.20)

When m takes integer values, the second and linearly independent solution
can be taken as

Nm(x) =
cos m𝜋Jm(x) − J−m(x)

sin m𝜋
, (5.21)

which is called the Neumann function, or the Bessel function of the second
kind. Note that Nm(x) and Jm(x) are linearly independent even for the integer
values of m. Hence it is common practice to take Nm(x) and Jm(x) as the two
linearly independent solutions for all m.

Other linearly independent solutions of Bessel’s equation are given as the
Hankel functions:

H (1)
m (x) = Jm(x) + iNm(x), (5.22)

H (2)
m (x) = Jm(x) − iNm(x). (5.23)

They are also called the Bessel functions of the third kind.

5.2.1 Asymptotic Forms

In the limit as x → 0, Bessel function Jm(x) is finite for m ≥ 0 and behaves as

lim
x→0

Jm(x) →
1

Γ(m + 1)

(x
2

)m
. (5.24)

All the other functions diverge as

lim
x→0

Nm(x) →
⎧⎪⎨⎪⎩

2
𝜋

[
ln
(x

2

)
+ 𝛾

]
, m = 0,

−Γ(m)
𝜋

(
2
x

)m
, m ≠ 0,

(5.25)
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where 𝛾 = 0.5772… . In the limit as x → ∞, functions Jm(x),Nm(x),H (1)
m (x), and

H (2)
m (x) behave as

Jm(x) →
x→∞

√
2
𝜋x

cos
(

x − m𝜋

2
− 𝜋

4

)
, (5.26)

Nm(x) →
x→∞

√
2
𝜋x

sin
(

x − m𝜋

2
− 𝜋

4

)
, (5.27)

H (1)
m (x) →

x→∞

√
2
𝜋x

exp
[
i
(

x − m𝜋

2
− 𝜋

4

)]
, (5.28)

H (2)
m (x) →

x→∞

√
2
𝜋x

exp
[
−i

(
x − m𝜋

2
− 𝜋

4

)]
. (5.29)

Example 5.1 Bessel function J0(x)
Show the following integral:

∫
𝜋∕2

0
J0(x cos t) cos t dt = sin x

x
. (5.30)

Solution
Use the expansion

J0(x cos t) =
∞∑

r=0

(−1)r

(r!)2

(x cos t
2

)2r
(5.31)

to obtain the desired result as

∫
𝜋∕2

0
J0(x cos t) cos t dt =

∞∑
r=0

∫
𝜋∕2

0

(−1)r

(r!)2

(x cos t
2

)2r
cos t dt (5.32)

=
∞∑

r=0

(−1)r

(r!)2

(x
2

)2r

∫
𝜋∕2

0
(cos t)2r+1 dt (5.33)
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=
∞∑

r=0

(−1)r

(r!)2

(x
2

)2r (2r)(2r − 2)… 4.2
(2r + 1)(2r − 1)… 3.1

(5.34)

=
∞∑

r=0

(−1)r

(r!)2

(x
2

)2r 2rr!r!
(2r + 1)!

(5.35)

= 1
x

∞∑
r=0

(−1)r x2r+1

(2r + 1)!
(5.36)

= sin x
x

. (5.37)

5.3 Modified Bessel Functions

If we take the argument of the Bessel functions Jm(x) and H (1)
m (x) as imaginary,

we obtain the modified Bessel functions:

Im(x) =
Jm(ix)

im , (5.38)

Km(x) =
𝜋i
2
(i)mH (1)

m (ix). (5.39)

These functions are linearly independent solutions of the differential equation

d2R(x)
dx2 + 1

x
dR(x)

dx
−
(

1 + m2

x2

)
R(x) = 0. (5.40)

Asymptotic forms of Im(x) and Km(x) as x → 0 and x → ∞ are given as (real
m ≥ 0)

lim
x→0

Im(x) →
xm

2mΓ(m + 1)
, (5.41)

lim
x→0

Km(x) →

⎧⎪⎪⎨⎪⎪⎩
−
[
ln
(x

2

)
+ 𝛾

]
, m = 0

Γ(m)
2

(2
x

)m
, m ≠ 0

⎫⎪⎪⎬⎪⎪⎭
, (5.42)

and

lim
x→∞

Im(x) →
1√
2𝜋x

ex
[
1 + 0

(1
x

)]
, (5.43)
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lim
x→∞

Km(x) →
√

𝜋

2x
e−x

[
1 + 0

(1
x

)]
. (5.44)

5.4 Spherical Bessel Functions

Spherical Bessel functions, jl(x), nl(x), and h(1,2)
l (x), are defined as

jl(x) =
√

𝜋

2x
Jl+ 1

2
(x),

nl(x) =
√

𝜋

2x
Nl+ 1

2
(x),

h(1,2)
l (x) =

(
𝜋

2x

)1∕2 [
Jl+ 1

2
(x) ± iNl+ 1

2
(x)

]
.

(5.45)

Bessel functions with half integer indices, Jl+ 1
2
(x) and Nl+ 1

2
(x), satisfy the

differential equation

d2y(x)
dx2 + 1

x
dy(x)

dx
+
[

1 −
(l + 1∕2)2

x2

]
y(x) = 0, (5.46)

while the spherical Bessel functions, jl(x), nl(x), and h(1,2)
l (x), satisfy

d2y(x)
dx2 + 2

x
dy(x)

dx
+
[

1 − l(l + 1)
x2

]
y(x) = 0. (5.47)

Spherical Bessel functions can also be defined as

jl(x) = (−x)l
(

1
x

d
dx

)l sin x
x

, (5.48)

nl(x) = (−x)l
(

1
x

d
dx

)l (
−cos x

x

)
. (5.49)
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Asymptotic forms of the spherical Bessel functions are given as

jl(x) →
xl

(2l + 1)!!

(
1 − x2

2(2l + 1)
+ · · ·

)
, x ≪ 1,

nl(x) → −(2l − 1)!!
xl+1

(
1 − x2

2(1 − 2l)
+ · · ·

)
, x ≪ 1,

jl(x) =
1
x

sin
(

x − l𝜋
x

)
, x ≫ 1,

nl(x) = −1
x

cos
(

x − l𝜋
x

)
, x ≫ 1,

(5.50)

where (2l + 1)!! = (2l + 1)(2l − 1)(2l − 3)… 5 ⋅ 3 ⋅ 1.

5.5 Properties of Bessel Functions

5.5.1 Generating Function

Bessel function, Jn(x), can be defined by a generating function, T(x, t), as

T(x, t) = exp
[1

2
x
(

t − 1
t

)]
=

∞∑
n=−∞

tnJn(x). (5.51)

Example 5.2 Generating function
Using the generating function definition [Eq. (5.51)], we can show that Jn(x) =
(−1)nJn(−x). We first write

∞∑
n=−∞

Jn(−x)tn = exp
{1

2
[−x(t − 1∕t)]

}
(5.52)

= e
x
2
[−t−1∕(−t)] (5.53)

=
∞∑

n=−∞
Jn(x)(−t)n (5.54)

=
∞∑

n=−∞
(−1)nJn(x)tn. (5.55)

Comparing the equal powers of t, we obtain the desired result.
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Example 5.3 Generating function
To prove

Jn(x + y) =
∞∑

r=−∞
Jr(x)Jn−r(x), (5.56)

we use the generating function [Eq. (5.51)] to write

e
x
2
(t−1∕t)e

y
2
(t−1∕t) =

∞∑
n=−∞

Jn(x + y)tn. (5.57)

Rewriting the left-hand side as( ∞∑
r=−∞

Jr(x)tr

)( ∞∑
s=−∞

Js(y)ts

)
=

∞∑
n=−∞

Jn(x + y)tn, (5.58)

and calling s = n − r, we get
∞∑

n=−∞

[ ∞∑
r=−∞

Jr(x)Jn−r(y)

]
tn =

∞∑
n=−∞

Jn(x + y)tn, (5.59)

which yields the desired result.

5.5.2 Integral Definitions

Bessel function Jn(x) also has the following integral definitions:

Jn(x) =
1
𝜋 ∫

𝜋

0
cos[n𝜑 − x sin𝜑]d𝜑, n = 0, 1, 2,… , (5.60)

Jn(x) =
(x∕2)n√

𝜋Γ(n + 1∕2) ∫
1

−1
(1 − t2)n− 1

2 cos xt dt, n > −1
2
. (5.61)

5.5.3 Recursion Relations of the Bessel Functions

Using the series definitions of the Bessel functions, we can obtain the following
recursion relations:

Jm−1(x) + Jm+1(x) =
2m
x

Jm(x), (5.62)

Jm−1(x) − Jm+1(x) = 2J ′m(x). (5.63)
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First by adding and then by subtracting these equations, we also obtain the
following two relations:

Jm−1(x) =
m
x

Jm(x) + J ′m(x), (5.64)

Jm+1(x) =
m
x

Jm(x) − J ′m(x). (5.65)

Other Bessel functions, Nn, H (1)
n , and H (2)

n , satisfy the same recursion relations.

5.5.4 Orthogonality and Roots of Bessel Functions

From the asymptotic form [Eq. (5.26)] of the Bessel function, it is clear that it
has infinitely many roots:

Jn(xnl) = 0, l = 1, 2, 3,… . (5.66)

Here, xnl stands for the lth root of the nth-order Bessel function. When n takes
integer values, the first three roots are given as

n = 0 x0l = 2.405 5.520 8.654 · · · ,
n = 1 x1l = 3.832 7.016 10.173 · · · ,
n = 2 x2l = 5.136 8.417 11.620 · · · .

(5.67)

Higher-order roots are approximately given by the formula

xnl ⋍ l𝜋 +
(

n − 1
2

)
𝜋

2
. (5.68)

Orthogonality relation of the Bessel functions, in the interval [0, a], is given
as

∫
a

0
𝜌Jn

(
xnl

𝜌

a

)
Jn

(
xnl′

𝜌

a

)
d𝜌 = a2

2
[
Jn+1(xnl)

]2
𝛿ll′ , n ≥ −1. (5.69)

Since Bessel functions also form a complete set, any sufficiently smooth func-
tion, f (𝜌), in the interval 𝜌 ∈ [0, a] can be expanded as

f (𝜌) =
∞∑

l=1
AnlJn

(
xnl

𝜌

a

)
, n ≥ −1, (5.70)

where the expansion coefficients Anl are found from

Anl =
2

a2J2
n+1(xnl) ∫

a

0
𝜌f (𝜌)Jn

(
xnl

𝜌

a

)
d𝜌. (5.71)
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5.5.5 Boundary Conditions for the Bessel Functions

For the roots given in Eq. (5.67), we have used the Dirichlet boundary
condition:

R(a) = 0. (5.72)

In terms of the Bessel functions, this condition implies

Jn(ka) = 0 (5.73)

and gives us the infinitely many roots [Eq. (5.67)] shown as xnl. Now the
functions{

Jn

(
xnl

𝜌

a

)}
, n ≥ 0, (5.74)

form a complete and orthogonal set with respect to the index l. The same
conclusion holds for the Neumann boundary condition:

dR(𝜌)
d𝜌

||||𝜌=a
= 0, (5.75)

and the general boundary condition[
A0

dR(𝜌)
d𝜌

+ B0R(𝜌)
]
𝜌=a

= 0. (5.76)

In terms of the Bessel function, Jn(kr), the Neumann and the general boundary
conditions are written, respectively, as

k
dJn(x)

dx
||||x=ka

= 0 (5.77)

and [
A0 Jn(x) + B0k

dJn(x)
dx

]
x=ka

= 0. (5.78)

For the Neumann boundary condition [Eq. (5.77)], there exist infinitely many
roots, which can be found from tables. However, for the general boundary con-
dition, roots depend on the values that A0 and B0 take; thus each case must
be handled separately by numerical analysis. From all three types of boundary
conditions, we obtain a complete and orthogonal set as{

Jn

(
xnl

r
a

)}
, l = 1, 2, 3,… . (5.79)

Example 5.4 Flexible chain problem
We now return to the flexible chain problem, where the equation of motion is
written as [Eq. (5.10)]

d2u
dz2 + 1

z
du
dz

+ 𝜔2u = 0. (5.80)
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Figure 5.2 J0 and N0
functions.

The general solution of this equation is given as

u(z) = a0 J0(𝜔z) + a1N0(𝜔z), z = 2
√

x∕g. (5.81)

Since N0(𝜔z) diverges at the origin, we choose a1 as zero and obtain the dis-
placement of the chain from its equilibrium position as (Figure 5.2)

y(x, t) = a0J0(2𝜔
√

x∕g) cos(𝜔t − 𝛿). (5.82)

If we impose the condition

y(l, t) = J0(2𝜔n

√
l∕g) = 0,

we find the normal modes of the chain as

2𝜔n

√
l∕g = 2.405, 5.520,… , n = 1, 2,… . (5.83)

If the shape of the chain at t = 0 is given as f (x), we can write the solution as

y(x, t) =
∞∑

n=1
AnJ0(2𝜔n

√
x∕g) cos(𝜔nt − 𝛿), (5.84)

where the expansion coefficients are given as

An = 2
J2
1 (𝜔n) ∫

1

0
zf

( g
4

z2
)

J0(𝜔nz)dz.

Example 5.5 Tsunamis and wave motion in a channel
The equation of motion for one-dimensional waves in a channel with breadth
b(x) and depth h(x) is given as

𝜕2𝜂

𝜕t2 =
g
b
𝜕

𝜕x

(
hb𝜕𝜂

𝜕x

)
, (5.85)
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where 𝜂(x, t) is the displacement of the water surface from its equilibrium posi-
tion and g is the acceleration of gravity. If the depth of the channel varies uni-
formly from the end of the channel, x = 0, to the mouth, x = a, as

h(x) = h0x∕a, (5.86)

we can try a separable solution of the form

𝜂(x, t) = A(x) cos(𝜔t + 𝛼), (5.87)

to find the differential equation that A(x) satisfies as

d
dx

(
x dA

dx

)
+ kA = 0, k = 𝜔2a∕gh0. (5.88)

Solution that is finite at x = 0 can be obtained as

A(x) = A0

(
1 − kx

12 + k2x2

12 ⋅ 22 − · · ·
)
, (5.89)

or as

A(x) = A0J0(2k1∕2x1∕2). (5.90)

After evaluating the constant A0, we write the final solution as

𝜂(x, t) = C
J0(2k1∕2x1∕2)
J0(2k1∕2a1∕2)

cos(𝜔t + 𝛼). (5.91)

With an appropriate normalization, a snapshot of this wave is shown in
Figure 5.3. Note, how the amplitude increases and the wavelength decreases as
shallow waters is reached. If hb is constant or at least a slow varying function
of position, we can take it outside the brackets in Eq. (5.85), thus obtaining the
wave velocity as

√
hg. This is characteristic of tsunamis, which are wave trains

Figure 5.3 Channel waves. y

x



94 5 Bessel Functions

caused by sudden displacement of large amounts of water by earthquakes,
volcanoes, meteors, etc. Tsunamis have wavelengths in excess of 100 km and
their period is around 1 h. In the Pacific Ocean, where typical water depth
is 4000 m, tsunamis travel with velocities over 700 km/h. Since the energy
loss of a wave is inversely proportional to its wavelength, tsunamis could
travel transoceanic distances with little energy loss. Because of their huge
wavelengths, they are imperceptible in deep waters; however, in reaching
shallow waters, they compress and slow down. Thus to conserve energy, their
amplitude increases to several or tens of meters in height as they reach the
shore.

When both the breadth and the depth vary as

b(x) = b0x∕a and h(x) = h0x∕a, (5.92)

respectively, the differential equation to be solved for A(x) becomes

x d2A
dx2 + 2 dA

dx
+ kA = 0, (5.93)

where

k = 𝜔2a∕gh0. (5.94)

The solution is now obtained as

𝜂(x, t) = A0

(
1 − kx

(1 ⋅ 2)
+ k2x2

(1 ⋅ 2) ⋅ (2 ⋅ 4)
− · · ·

)
cos(𝜔t + 𝛼), (5.95)

which is

𝜂(x, t) = A0
J1(2k1∕2x1∕2)

k1∕2x1∕2 cos(𝜔t + 𝛼). (5.96)

5.5.6 Wronskian of Pairs of Solutions

The Wronskian of a pair of solutions of a second-order linear differential
equation is defined by the determinant

W [u1(x),u2(x)] =
||||u1(x) u2(x)
u′

1(x) u′
2(x)

|||| = u1u′
2 − u2u′

1. (5.97)

The two solutions are linearly independent if and only if their Wronskian does
not vanish identically. We now calculate the Wronskian of a pair of solutions of
Bessel’s equation:

u′′(x) + 1
x

u′(x) +
(

1 − m2

x2

)
u(x) = 0, (5.98)
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thus obtaining a number of formulas that are very helpful in various
calculations. For two solutions, u1 and u2, we write

d
dx

(xu′
1) +

(
1 − m2

x2

)
u1(x) = 0, (5.99)

d
dx

(xu′
2) +

(
1 − m2

x2

)
u2(x) = 0. (5.100)

We now multiply the second equation by u1 and subtract the result from the
first equation multiplied by u2 to get

d
dx

{
xW

[
u1(x),u2(x)

]}
= 0. (5.101)

This means

W
[
u1(x),u2(x)

]
= C

x
, (5.102)

where C is a constant independent of x but depends on the pair of functions
whose Wronskian is calculated. For example,

W
[
Jm(x),Nm(x)

]
= 2

𝜋x
, (5.103)

W
[
Jm(x),H

(2)
m (x)

]
= − 2i

𝜋x
, (5.104)

W
[
H (1)

m (x),H (2)
m (x)

]
= − 4i

𝜋x
. (5.105)

Since C is independent of x, it can be calculated using the asymptotic forms of
these functions in the limit x → 0 as

C = lim
x→0

xW
[
u1(x),u2(x)

]
. (5.106)

5.6 Transformations of Bessel Functions

Sometimes we encounter differential equations, solutions of which can be writ-
ten in terms of Bessel functions. For example, consider the function

y(x; 𝛼, 𝛽, 𝛾) = x𝛼Jn(𝛽x𝛾 ), (5.107)

where 𝛼, 𝛽, and 𝛾 are three constant parameters. To find the differential
equation that y(x; 𝛼, 𝛽, 𝛾) satisfies, we substitute g = y∕x𝛼, 𝑤 = 𝛽x𝛾 , to write
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g(𝑤) = Jn(𝑤). Hence, g(𝑤) satisfies Bessel’s equation [Eq. (5.17)]:

𝑤2 d2g
d𝑤2 +𝑤

dg
d𝑤

+ (𝑤2 − n2)g(𝑤) = 0, (5.108)

which can also be written as

𝑤
d

d𝑤

(
𝑤

dg
d𝑤

)
+ (𝑤2 − n2)g(𝑤) = 0. (5.109)

We now write

𝑤
dg
d𝑤

= 𝑤
dg∕dx
d𝑤∕dx

= x
𝛾

dg
dx

, (5.110)

hence the first term in Eq. (5.109) becomes

𝑤
d

d𝑤

(
𝑤

dg
d𝑤

)
= 1

𝛾2 x d
dx

(
x

dg
dx

)
. (5.111)

Using g = y∕x𝛼 we can also write

x
dg
dx

=
y′

x𝛼−1 −
𝛼y
x𝛼

, (5.112)

which leads to

x d
dx

(
x

dg
dx

)
= x d

dx

([
y′

x𝛼−1 −
𝛼y
x𝛼

])
=

y′′

x𝛼−2 −
(2𝛼 − 1)y′

x𝛼−1 +
𝛼2y
x𝛼

. (5.113)

Using Eqs (5.111) and (5.113) in Eq. (5.109), we obtain the differential equation
that y(x; 𝛼, 𝛽, 𝛾) satisfies as

d2y
dx2 −

(2𝛼 − 1
x

) dy
dx

+
(
𝛽2𝛾2x2𝛾−2 + 𝛼2 − n2𝛾2

x2

)
y(x) = 0. (5.114)

The general solution of Eq. (5.114) can be written as

y(x) = x𝛼
[
C0 Jn(𝛽x𝛾 ) + C1Nn(𝛽x𝛾 )

]
. (5.115)

5.6.1 Critical Length of a Rod

When a thin uniform vertical rod is clamped at one end, its vertical position is
stable granted that its length is less than a critical length. When the rod has the
critical length, the vertical position is only a neutral equilibrium position. That
is, the rod stays in the displaced position after it has been displaced slightly [3].
Let the rod be in equilibrium when deviating slightly from the vertical position
(Figure 5.4). Let l be the length of the rod, a be the radius of its cross section,
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Figure 5.4 Bending of a rod.

Pʹ
xʹ

yʹ y

P

x

O

l

and 𝜌0 be the uniform density. Let P be an arbitrary point on the rod and P′ be a
point above it (Figure 5.4). We now consider the part of the rod in equilibrium
above the point P. If we take a mass element, 𝜌0 dx′, at P′, the torque acting on
it due to the weight of the upper part of the rod will be will be the integral

∫
x

0
𝜌0g(y′ − y)dx, (5.116)

where g is the acceleration of gravity. This will be balanced by the torque from
the elastic forces acting on the rod. From the theory of elasticity, this torque is
equal to

EI
d2y
dx2 , (5.117)

where E is Young’s modulus and we take I = 1
4
𝜋a2. Equating the two torques

gives

EI
d2y
dx2 = ∫

x

0
𝜌0g(y′(x′) − y(x))dx′. (5.118)

Using the formula

d
dx ∫

B(x)

A(x)
F(x, 𝜉)d𝜉 = ∫

B(x)

A(x)

𝜕F(x, 𝜉)
𝜕x

d𝜉 + F(x,B(x))dB(x)
dx

− F(x,A(x))dA(x)
dx

,

(5.119)

we differentiate Eq. (5.118) with respect to x:

EI
d3y
dx3 = −𝜌0gx

dy
dx

, (5.120)
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and rewrite to obtain
d3y
dx3 + k2 dy

dx
= 0, k2 =

𝜌0g
EI

. (5.121)

Comparing with Eq. (5.114), we see that the solution for dy
dx

can be written in
terms of the Bessel functions as

dy
dx

=
√

x
(

C0J−1∕3

(
2k
3

x2∕3
)
+ C1J1∕3

(
2k
3

x2∕3
))

. (5.122)

For the desired solution, we have to satisfy the following boundary conditions:

(i) Since there is no torque at the top, where x = 0, we need to have(
d2y
dx2

)
x=0

= 0. (5.123)

(ii) At the bottom, where the rod is fixed and vertical, we need to satisfy(
dy
dx

)
x=l

= 0. (5.124)

To satisfy the first boundary condition, we set C1 = 0, thus obtaining
dy
dx

= C0
√

xJ−1∕3

(
2k
3

x2∕3
)
. (5.125)

The second condition can be satisfied with C0 = 0, which is the trivial solution.
For a nontrivial solution, C0 ≠ 0, we set

J−1∕3

(
2k
3

l2∕3
)

= 0 (5.126)

and take the smallest root as the physical solution:
2k
3

l3∕2 = 1.8663. (5.127)

For a steel rod of radius 0.15 cm, E = 84,000 tons/cm2 and density 7.9 g/cm3,

we find l ≅ 1.15 m.
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Problems

1 Drive the following recursion relations:
(i) Jm−1(x) + Jm+1(x) =

2m
x

Jm(x), m = 1, 2,… ,

(ii) Jm−1(x) − Jm+1(x) = 2J ′m(x), m = 1, 2,… .

Use the first equation to express a Bessel function of arbitrary order
(m = 0, 1, 2,…) in terms of J0 and J1. Show that for m = 0, the second
equation is replaced by J ′0(x) = −J1(x).

2 Write the wave equation, ∇2Ψ( r⃗, t) − 1
c2

𝜕2

𝜕t2 Ψ(r⃗, t) = 0, in spherical polar
coordinates. Using the method of separation of variables, show that the
solutions for the radial part are given in terms of the spherical Bessel
functions.

3 Use the result in Problem 2 to find the solutions for a spherically split
antenna. On the surface, r = a, take the solution as

Ψ( r⃗, t)|r=a =
⎧⎪⎨⎪⎩

V0e−i𝑤0t , 0 < 𝜃 < 𝜋∕2,

−V0e−i𝑤0t ,
𝜋

2
< 𝜃 < 𝜋,

and assume that in the limit as r → ∞ solution behaves as

𝜓 ≈ 1
r

ei(k0r−𝜔0t), k = k0 = 𝜔0∕c.

4 Solve the wave equation

∇⃗2Ψ − 1
𝑣2

𝜕2Ψ
𝜕t2 = 0, k = 𝜔

c
.

for the oscillations of a circular membrane with radius a and clamped at
the boundary. What boundary conditions did you use? What are the lowest
three modes?

5 Verify the following Wronskians:
(i) W

[
Jm(x),Nm(x)

]
= 2

𝜋x
,

(ii) W
[
Jm(x),H

(2)
m (x)

]
= − 2i

𝜋x
,

(iii) W
[
H (1)

m (x),H (2)
m (x)

]
= − 4i

𝜋x
.
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6 Find the constant C in the Wronskian

W
[
Im(x),Km(x)

]
= C

x
.

7 Show that the stationary distribution of temperature, T(𝜌, z), in a cylinder
of length l and radius a with one end held at temperature T0 while the rest
of the cylinder is held at zero is given as

T(𝜌, z) = 2T0

∞∑
n=1

J0

(
xn

𝜌

a

)
sinh

(
xn

l−z
a

)
xnJ1(xn) sinh

(
xn

l
a

) .

Hint: Use cylindrical coordinates and solve the Laplace equation,
−→∇2T(𝜌, z) = 0,

by the method of separation of variables.

8 Consider the cooling of an infinitely long cylinder heated to an initial tem-
perature f (𝜌). Solve the heat transfer equation:

c𝜌0
𝜕T(𝜌, t)

𝜕t
= k∇⃗2T(𝜌, t)

with the boundary condition

𝜕T
𝜕𝜌

+ hT
||||𝜌=a

= 0

and the initial condition

T(𝜌, 0) = f (𝜌) (finite).

T(𝜌, t) is the temperature distribution in the cylinder and the physical
parameters of the problem are defined as

k − thermal conductivity
c − heat capacity
𝜌0 − density
𝜆 − emissivity

and h = 𝜆∕k.
Hint: Use the method of separation of variables and show that the solution
can be expressed as

T(𝜌, t) =
∞∑

n=1
CnJ0

(
xn

𝜌

a

)
e−x2

nt∕a2b, b = c𝜌0∕k,
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then find Cn so that the initial condition

T(𝜌, 0) = f (𝜌)

is satisfied. Where does xn come from?
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6

Hypergeometric Functions

Hypergeometric function, F(a, b, c; x), is a special function defined by the
hypergeometric series. It is the solution of a linear second-order ordinary
differential equation called the hypergeometric equation:

x(1 − x)
d2y(x)

dx2 + [c − (a + b + 1)x]
dy(x)

dx
− aby(x) = 0. (6.1)

Majority of the second-order ordinary linear differential equations encoun-
tered in science and engineering can be expressed in terms of the three param-
eters (a, b, c) of the hypergeometric equation and its transformations.

6.1 Hypergeometric Series

The hypergeometric equation has three regular singular points at x = 0, 1 and
∞; hence we can find a series solution about the origin using the Frobenius
method. Substituting the series

y =
∞∑

r=0
arxs+r, a0 ≠ 0, (6.2)

into Eq. (6.1) gives

x(1 − x)
∞∑

r=0
ar(s + r)(s + r − 1)xs+r−2

+ {c − (a + b + 1)x}
∞∑

r=0
ar(s + r)xs+r−1 − ab

∞∑
r=0

arxs+r = 0, (6.3)

Mathematical Methods in Science and Engineering, Second Edition. Selçuk Ş. Bayın.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.
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which we write as
∞∑

r=0
ar(s + r)(s + r − 1)xs+r−1 −

∞∑
r=0

ar(s + r)(s + r − 1)xs+r (6.4)

+ c
∞∑

r=0
ar(s + r)xs+r−1 − (a + b + 1)

∞∑
r=0

ar(s + r)xs+r − ab
∞∑

r=0
arxs+r = 0.

After rearranging, we obtain
∞∑

r=0
[(s + r)(s + r − 1) + c(s + r)]arxs+r−1 (6.5)

−
∞∑

r=1
[(s + r − 1)(s + r − 2) + (a + b + 1)(s + r − 1) + ab]ar−1xs+r−1 = 0.

Writing the first term explicitly:

[s(s − 1) + sc]a0xs−1 +
∞∑

r=1
{[(s + r)(s + r − 1) + c(s + r)]ar

− ar−1[(s + r − 1)(s + r − 2) + ab + (a + b + 1)(s + r − 1)]}xs+r−1 = 0,
(6.6)

and setting the coefficients of all the powers of x to zero, we obtain the indicial
equation:

[s(s − 1) + sc]a0 = 0, a0 ≠ 0, (6.7)

and the recursion relation:

ar =
(s + r − 1 + a)(s + r − 1 + b)

(s + r)(s + r − 1 + c)
ar−1, r ≥ 1. (6.8)

Roots of the indicial equation are s = 0 and s = 1 − c. Starting with the first
root, s = 0, we write the recursion relation as

ar =
(r − 1 + a)(r − 1 + b)

(r − 1 + c)r
ar−1, r ≥ 1, (6.9)

and obtain the following coefficients for the series:

a1 = ab
c

a0,

a2 = (a + 1)(b + 1)
(c + 1)2

a1,

a3 = (a + 2)(b + 2)
(c + 2)3

a2,

a4 = (a + 3)(b + 3)
(c + 3)4

a3,

⋮
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Writing the general term:

ak = a0
a(a + 1)(a + 2) · · · (a + k − 1)b(b + 1) · · · (b + k − 1)

c(c + 1) · · · (c + k − 1)1 ⋅ 2 ⋅ 3 · · · k
, (6.10)

we obtain the series solution as

y1(x) = a0

[
1 + ab

c
x
1!

+ a(a + 1)b(b + 1)
c(c + 1)

x2

2!
+ · · ·

]
, (6.11)

y1(x) = a0
Γ(c)

Γ(a)Γ(b)

∞∑
k=0

Γ(a + k)Γ(b + k)
Γ(c + k)

xk

k!
, c ≠ 0,−1,−2,… .

(6.12)

Similarly, for the other root, s = 1 − c, the recursion relation becomes

ar = ar−1
(r + a − c)(r + b − c)

r(1 − c + r)
, r ≥ 1, (6.13)

which gives the following coefficients for the second series:

a1 = a0
(a − c + 1)(b − c + 1)

(2 − c)
,

a2 = a1
(a − c + 2)(b − c + 2)

2(3 − c)
,

a3 = a2
(a − c + 3)(b − c + 3)

3(4 − c)
,

⋮

Writing the general term:

ak = a0

[
(a − c + 1)(a − c + 2) · · · (a − c + k)(b − c + 1) · · · (b − c + k)

(2 − c)(3 − c) · · · (k + 1 − c)k!

]
,

(6.14)

we obtain the second series solution as

y2(x) = a0x1−c
∞∑

k=0
akxk , (6.15)

y2(x) = a0x1−c
[

1 + (a + 1 − c)(1 + b − c)
(2 − c)

x
1!

+ · · ·
]
, c ≠ 2, 3, 4,… .

(6.16)
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If we set a0 to 1 in the first series solution [Eq. (6.12)], then y1(x) becomes the
hypergeometric function (or series):

y1(x) = F(a, b, c; x). (6.17)

The hypergeometric function is convergent in the interval |x| < 1. For conver-
gence at the end point x = 1 one needs c > a + b, and for convergence at x = −1
one needs c > a + b − 1. The second solution, y2(x), can be expressed in term
of the hypergeometric function as

y2(x) = x1−cF(a − c + 1, b − c + 1, 2 − c; x), c ≠ 2, 3, 4,… . (6.18)

The general solution of the hypergeometric equation is now written as

y(x) = AF(a, b, c; x) + Bx1−cF(a − c + 1, b − c + 1, 2 − c; x). (6.19)

Sometimes the hypergeometric function, F(a, b, c; x), is also written as

2F1(a, b, c; x). (6.20)

One can also find series solutions about the regular singular point x = 1 as

y3(x) = F(a, b, a + b + 1 − c; 1 − x), (6.21)

y4(x) = (1 − x)c−a−bF(c − a, c − b, c − a − b + 1; 1 − x). (6.22)

The interval of convergence of these series is 0 < x < 2. Series solutions appro-
priate for the singular point at infinity are given as

y5(x) = (−x)−aF(a, a − c + 1, a − b + 1; x−1), (6.23)

y6(x) = (−x)−bF(b − c + 1, b, b − a + 1; x−1), (6.24)

which converge for |x| > 1.
These constitute the six solutions found by Kummer [1, 2]. Since the hyperge-

ometric equation can only have two linearly independent solutions, any three
of the solutions, y1,… , y6, are connected by linear relations with constant coef-
ficients [2]. For example,

y1(x) =
Γ(c)Γ(c − a − b)
Γ(c − a)Γ(c − b)

y3(x) +
Γ(c)Γ(a + b − c)

Γ(a)Γ(b)
y4(x) (6.25)

= Γ(c)Γ(b − a)
Γ(c − a)Γ(b)

y5(x) +
Γ(c)Γ(a − b)
Γ(c − b)Γ(a)

y6(x). (6.26)
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The basic integral representation of the hypergeometric function is:

F(a, b, c; x) = Γ(c)
Γ(b)Γ(c − b) ∫

1

0

tb−1(1 − t)c−b−1dt
(1 − tx)a , Re c > Re b > 0.

(6.27)

This integral, which can be proven by expanding (1 − tx)−a in binomial series
and then integrating term by term, transforms into an integral of the same type
by the Euler’s hypergeometric transformations [2]:

t → t,
t → 1 − t,
t → (1 − t)∕(1 − tx),
t → t∕(1 − x + tx).

(6.28)

Applications of the four Euler transformations to the six Kummer solutions
give all the possible 24 forms of the solutions of the hypergeometric equation.
These solutions and a list of 20 relations among them can be found in
Erdelyi et al. [2].

6.2 Hypergeometric Representations
of Special Functions

Majority of the special functions can be represented in terms of hypergeometric
functions. If we change the independent variable in Eq. (6.1) to

x = (1 − 𝜉)
2

, (6.29)

the hypergeometric equation becomes

(1 − 𝜉2)
d2y
d𝜉2 + [(a + b + 1 − 2c) − (a + b + 1)𝜉]

dy
d𝜉

− aby = 0. (6.30)

Choosing the parameters a, b, and c as

a = −𝜈, b = 𝜈 + 1, c = 1, (6.31)

Eq. (6.30) becomes

(1 − 𝜉2)
d2y
d𝜉2 − 2𝜉

dy
d𝜉

+ 𝜈(𝜈 + 1)y = 0. (6.32)
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This is nothing but the Legendre equation, whose finite solutions are given as
the Legendre polynomials:

y𝜈(𝜉) = P𝜈(𝜉). (6.33)

Hence, the Legendre polynomials can be expressed in terms of the hypergeo-
metric functions as

P𝜈(𝜉) = F
(
−𝜈, 𝜈 + 1, 1; 1 − 𝜉

2

)
, 𝜈 = 0, 1, 2,… . (6.34)

Similarly, we can write the associated Legendre polynomials as

Pm
n (x) =

(n + m)!
(n − m)!

(1 − x2)m∕2

2mm!
F
(

m − n,m + n + 1,m + 1; 1 − x
2

)
(6.35)

and the Gegenbauer polynomials as

C𝜆
n(x) =

Γ(n + 2𝜆)
n!Γ(2𝜆)

F
(
−n, n + 2𝜆, 𝜆 + 1

2
; 1 − x

2

)
. (6.36)

The main reason for our interest in hypergeometric functions is that the
solutions of so many of the second-order ordinary linear differential equations
encountered in science and engineering can be expressed in terms of
F(a, b, c; x).

6.3 Confluent Hypergeometric Equation

Hypergeometric equation:

z(1 − z)
d2y(z)

dz2 + [c − (a + b + 1)z]
dy(z)

dz
− aby(z) = 0 (6.37)

has three regular singular points at z = 0, 1, and ∞. By setting z = x∕b and tak-
ing the limit as b → ∞ we can merge the singularities at b and infinity. This
gives us the confluent hypergeometric equation:

x
d2y
dx2 + (c − x)

dy
dx

− ay = 0, (6.38)
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whose solutions are the confluent hypergeometric functions M(a, c; x). The
confluent hypergeometric equation has a regular singular point at x = 0 and
an essential singularity at infinity. Bessel functions, Jn(x), and the Laguerre
polynomials, Ln(x), can be written in terms of the solutions of the confluent
hypergeometric equation, respectively, as

Jn(x) =
e−ix

n!

(x
2

)n
M

(
n + 1

2
, 2n + 1; 2ix

)
, (6.39)

Ln(x) = M(−n, 1; x). (6.40)

Linearly independent solutions of Eq. (6.38) are given as

y1(x) = M(a, c, x) = 1 + a
c

x
1!

+ a(a + 1)
c(c + 1)

x2

2!
+ a(a + 1)(a + 2)

c(c + 1)(c + 2)
x3

3!
+ · · · ,

c ≠ 0,−1,−2,… (6.41)

and

y2(x) = x1−cM(a + 1 − c, 2 − c; x), c ≠ 2, 3, 4,… . (6.42)

The basic integral representation of the confluent hypergeometric functions,
which are also shown as

1F1(a, c; x), (6.43)

can be given as

M(a, c; x) = Γ(c)
Γ(a)Γ(c − a) ∫

1

0
dt extta−1(1 − t)c−a−1, Re c > Re a > 0.

(6.44)

6.4 Pochhammer Symbol and Hypergeometric
Functions

Using the Pochhammer symbol:

(𝛼)r = 𝛼(𝛼 + 1) · · · (𝛼 + r − 1), (6.45)

(𝛼)r =
Γ(𝛼 + r)
Γ(𝛼)

, (6.46)
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where r is a positive integer and (𝛼)0 = 1, we can write the hypergeometric
function [Eq. (6.12)] as

F(a, b, c; x) =
∞∑

r=0

(a)r(b)r

(c)r

xr

r!
. (6.47)

We have mentioned that the hypergeometric functions are also written as
2F1(a, b, c; x). This follows from the general definition:

mFn(a1, a2,… , am, b1, b2,… , bn; x) =
∞∑

r=0

(a1)r · · · (am)r

(b1)r · · · (bn)r

xr

r!
, (6.48)

where m = 2, n = 1 and the m = 1, n = 1 cases correspond to the hyper-
geometric and the confluent hypergeometric functions, respectively.
The m = 0, n = 1 case is also called the hypergeometric limit function
0F1(−, b; x). Hypergeometric function 2F1(a, b, c; x) satisfies the hypergeomet-
ric equation [Eq. (6.1)]:

x(1 − x)y′′ + [c − (a + b + 1)x]y′ − aby(x) = 0. (6.49)

Many of the special functions of physics and engineering can be written in
terms of the hypergeometric function:

Pl(x) = 2F1

(
−l, l + 1, 1; 1 − x

2

)
,

Pm
l (x) =

(l + m)!
(l − m)!

(1 − x2)m∕2

2mm! 2F1

(
m − l,m + l + 1,m + 1; 1 − x

2

)
,

C𝜆
n(x) =

Γ(n + 2𝜆)
n!Γ(2𝜆) 2F1

(
−n, n + 2𝜆, 𝜆 + 1

2
; 1 − x

2

)
,

Un(x) = n
√

1 − x2
2F1

(
−n + 1, n + 1, 3

2
; 1 − x

2

)
,

Tn(x) = 2F1

(
−n, n, 1

2
; 1 − x

2

)
.

(6.50)

The confluent hypergeometric function, M(a, c; x), which is also written as
1F1(a, c; x), satisfies

xy′′ + (c − x)y′ − ay(x) = 0. (6.51)
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In terms of the Pochhammer symbols 1F1(a, c; x) is given as

1F1(a, c; x) =
∞∑

r=0

(a)r

(c)r

xr

r!
. (6.52)

Some of the special functions, which could be expressed in terms of the con-
fluent hypergeometric function, are given below:

Jn(x) =
e−ix

n!

(x
2

)n

1F1

(
n + 1

2
, 2n + 1; 2ix

)
,

H2n(x) = (−1)n (2n)!
n! 1F1

(
−n, 1

2
; x2

)
,

H2n+1(x) = (−1)n 2(2n + 1)!x
n! 1F1

(
−n, 3

2
; x2

)
,

Ln(x) = 1F1(−n, 1; x),

Lk
n(x) =

Γ(n + k + 1)
n!Γ(k + 1) 1F1(−n, k + 1; x).

(6.53)

To prove these relations we can write the series expressions for the hyper-
geometric function and then compare with the series representation of the
corresponding function. For example, consider

Pl(x) = 2F1

(
−l, l + 1, 1; 1 − x

2

)
. (6.54)

We write the hypergeometric function as

2F1

(
−l, l + 1, 1; 1 − x

2

)
=

∞∑
r=0

(−l)r(l + 1)r

(1)r

[(1 − x)∕2]r

r!
. (6.55)

Using

(−l)r =
⎧⎪⎨⎪⎩
(−1)r l!

(l − r)!
, r ≤ l,

0, r ≥ (l + 1),
(6.56)

and

(l + 1)r =
(l + r)!

l!
, (1)r = r! , (6.57)

we obtain

2F1

(
−l, l + 1, 1; 1 − x

2

)
=

∞∑
r=0

(l + r)!
2r(l − r)!(r!)2 (x − 1)r. (6.58)
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To obtain the desired result, we need the Taylor series expansion of Pl(x) around
x = 1 as

Pl(x) =
∞∑

r=0
P(r)

l (1) (x − 1)r

r!
, (6.59)

where P(r)
l (1) stands for the rth derivative of Pl(x) evaluated at x = 1. Using the

Rodriguez formula of Pl(x):

Pl(x) =
1

2ll!
dl

dxl
(x2 − 1)l, (6.60)

we can evaluate these derivatives as

P(r)
l (1) =

⎧⎪⎨⎪⎩
1

2rr!
(r + l)!
(l − r)!

, l ≥ r,

0, l < r,
(6.61)

which when substituted into Eq. (6.59) and compared with Eq. (6.58) yields the
desired result. Of course, we can also use the method in Section 6.2. That is,
by making an appropriate transformation of the independent variable in the
hypergeometric equation and then by comparing the result with the equation
at hand to find the parameters.

Pochhammer symbols are very useful in manipulations with hypergeometric
functions. For example, to prove the integral representation of the hypergeo-
metric function [Eq. (6.27)], we start with the basic series definition [Eq. (6.47)]
and write

2F1(a, b, c; x) =
∞∑

r=0

(a)r(b)r

(c)r

xr

r!
(6.62)

=
∞∑

r=0

Γ(a + r)Γ(b + r)Γ(c)
Γ(a)Γ(b)Γ(c + r)

xr

r!
. (6.63)

Using the following relation between the beta and the gamma functions:

B(p, q) =
Γ(p)Γ(q)
Γ(p + q)

, (6.64)

we write this as

2F1(a, b, c; x) = Γ(c)
Γ(a)Γ(b)Γ(c − b)

∞∑
r=0

Γ(a + r)
[

Γ(c − b)Γ(b + r)
Γ(c + r)

]
xr

r!
(6.65)

= Γ(c)
Γ(a)Γ(b)Γ(c − b)

∞∑
r=0

Γ(a + r)B(b + r, c − b)xr

r!
. (6.66)
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We now use the integral definition of the beta function:

B(p, q) = ∫
1

0
tp−1(1 − t)q−1dt, p > 0, q > 0, (6.67)

to write

2F1(a, b, c; x) = Γ(c)
Γ(a)Γ(b)Γ(c − b)

∞∑
r=0

Γ(a + r)∫
1

0
tb+r−1(1 − t)c−b−1dt xr

r!
.

(6.68)

Finally, rearranging and using the binomial expansion:

(1 − xt)−a =
∞∑

r=0

Γ(a + r)
Γ(a)

(xt)r

r!
, (6.69)

we obtain the desired result:

2F1(a, b, c; x) = Γ(c)
Γ(b)Γ(c − b) ∫

1

0

tb−1(1 − t)c−b−1dt
(1 − tx)a , Re c > Re b > 0.

(6.70)

6.5 Reduction of Parameters

Pochhammer notation is also very useful in getting rid of a parameter in the
numerator or the denominator of the hypergeometric function. For example,
in the confluent hypergeometric series:

1F1(a, b; x) =
∞∑

k=0

(a)k

(b)k

xk

k!
, (6.71)

(a)k = a(a + 1) · · · (a + k − 1), a ≠ 0, (a)0 = 1, (6.72)

note that
(a)k

ak
= a

a
(a + 1)

a
· · · (a + k − 1)

a
(6.73)

= 1
(

1 + 1
a

)(
1 + 2

a

)
· · ·

(
1 + k − 1

a

)
, (6.74)

thus, for finite k, we have the limit

lim
a→∞

(a)k

ak
→ 1. (6.75)

Similarly,

lim
b→∞

bk

(b)k
→ 1. (6.76)
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Using these limits, we can write

lim
a→∞ 1F1

(
a, b; x

a

)
= 0F1(−, b; x). (6.77)

Using this procedure, we can write the binomial function as

lim
b→∞ 1F0(a, b; bz) = 1F0(a,−; x) = (1 − x)−a, |x| < 1. (6.78)

We can also write the exponential function as
lim
b→∞ 0F1(−, b; bx) = 0F0(−,−; x) = ex, (6.79)

lim
a→∞ 1F0

(
a,−; x

a

)
= 0F0(−,−; x) = ex. (6.80)

Example 6.1 Confluent hypergeometric series
Using the fact that confluent hypergeometric series is convergent for all x,
which can be verified by standard methods, find the solutions of

x2y′′ +
{
−x2

4
+ kx + 1

4
− m2

}
y(x) = 0 (6.81)

for the interval x ∈ [0,∞).

Solution
First obtain the transformation,

y(x) = x
(

1
2
−m

)
e−x∕2𝑤(x), (6.82)

which reduces the above differential equation into a differential equation with
a two-term recursion relation and then find the solution for 𝑤(x) in terms of
the hypergeometric functions.

Example 6.2 Hypergeometric series
Show that the transformation t → 1 − t transforms the basic integral represen-
tation of the hypergeometric function [Eq. (6.27)]:

2F1(a, b, c; x) = Γ(c)
Γ(b)Γ(c − b) ∫

1

0

tb−1(1 − t)c−b−1dt
(1 − tx)a , Re c > Re b > 0,

(6.83)

into an integral of the same form and then prove

2F1(a, b, c; x) = (1 − x)−a
2F1

(
a, c − b, c; x

x − 1

)
. (6.84)

Solution
Substituting t → 1 − t in the integral definition [Eq. (6.83)]:

2F1(a, b, c; x) = Γ(c)
Γ(b)Γ(c − b) ∫

1

0

(1 − t)b−1tc−b−1 dt
(1 − (1 − t)x)a , (6.85)
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and rearranging terms yields the desired result [Eq. (6.84)]:

2F1(a, b, c; x) = Γ(c)
Γ(b)Γ(c − b) ∫

1

0
(1 − t)b−1tc−b−1(1 − x)−a

(
1 − xt

x − 1

)−a
dt

(6.86)

= (1 − x)−a Γ(c)
Γ(b)Γ(c − b) ∫

1

0
(1 − t)b−1tc−b−1

(
1 − xt

x − 1

)−a
dt (6.87)

= (1 − x)−a
2F1

(
a, c − b, c; x

x − 1

)
. (6.88)

Bibliography

1 Abramowitz, M. and Stegun, I.A. (eds) (1965) Handbook of Mathematical
Functions with Formulas Graphs and Mathematical Tables, Dover Publica-
tions.

2 Erdelyi, A., Oberhettinger, M.W., and Tricomi, F.G. (1981) Higher Transcen-
dental Functions, vol. I, Krieger, New York.

Problems

1 Show that the Hermite polynomials can be expressed as

(i) H2n(x) = (−1)n (2n)!
n!

M
(
−n, 1

2
; x2

)
,

(ii) H2n+1(x) = (−1)n 2(2n + 1)!
n!

xM
(
−n, 3

2
; x2

)
.

2 Show that associated Legendre polynomials can be written as

Pm
n (x) =

(n + m)!
(n − m)!

(1 − x2)m∕2

2mm!
F
(

m − n,m + n + 1,m + 1; 1 − x
2

)
.

3 Derive the Kummer formula

M(a, c, x) = exM(c − a, c; −x).

4 Show that the associated Laguerre polynomials can be written as

Lk
n(x) =

(n + k)!
n!k!

M(−n, k + 1; x).
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5 Show that the modified Bessel functions can be expressed as

In(x) =
e−x

n!

(x
2

)n
M

(
n + 1

2
, 2n + 1; 2x

)
.

6 Write the Chebyshev polynomials in terms of the hypergeometric
functions.

7 Show that Gegenbauer polynomials can be expressed as

C𝜆
n(x) =

Γ(n + 2𝜆)
n!Γ(2𝜆)

F
(
−n, n + 2𝜆, 𝜆 + 1

2
; 1 − x

2

)
.

8 Express the solutions of

t(1 − t2)
d2y
dt2 + 2

[
𝛾 − 1

2
−
(
𝛼 + 𝛽 + 1

2

)
t2
] dy

dt
− 4𝛼𝛽ty(t) = 0

in terms of the hypergeometric functions.
Hint: Try the substitution x = t2.

9 Show the following relations:
(i) (1 − x)−𝛼 = F(𝛼, 𝛽, 𝛽; x), (ii) ln(1 − x) = −xF(1, 1, 2; x),

(iii) sin−1x = xF
(1

2
,

1
2
,

3
2
; x2

)
, (iv) ex = M(𝛼, 𝛼; x).

10 Derive the following integral representation of the confluent hypergeo-
metric function:

M(a, c; x) = Γ(c)
Γ(a)Γ(c − a) ∫

1

0
dt extta−1(1 − t)c−a−1, Re c > Re a > 0.

11 Using the integral definition of the hypergeometric function:

F(a, b, c; x) = Γ(c)
Γ(b)Γ(c − b) ∫

1

0

tb−1(1 − t)c−b−1dt
(1 − tx)a , Re c > Re b > 0,

show that

2F1(a, b, c; 1) = Γ(c)Γ(c − a − b)
Γ(c − a)Γ(c − b)

.

Hint: Use the relation between the beta and the gamma functions:
B(p, q) = Γ(p)Γ(q)∕Γ(p + q), and the integral definition of the beta
function:

B(p, q) = ∫
1

0
tp−1(1 − t)q−1dt, p > 0, q > 0.



Problems 117

12 Using the Pochhammer symbols show

lim
q→1 0F1

(
−, 1

q − 1
; − z

q − 1

)
= e−x,

and

lim
q→1 1F0

(
1

q − 1
,−;−(q − 1)x

)
= lim

q→1
[1 + (q − 1)x]−1∕(q−1) = e−x.

A result, which plays an important role in Tsallis thermodynamics.
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7

Sturm–Liouville Theory

Majority of the frequently encountered partial differential equations in physics
and engineering can be solved by the method of separation of variables. This
method helps us to reduce a second-order partial differential equation into
a set of ordinary differential equations with some new parameters called the
separation constants. We have seen that solutions of these equations with the
appropriate boundary conditions have properties reminiscent of an eigenvalue
problem. In this chapter, we study these properties systematically in terms of
the Sturm–Liouville theory.

7.1 Self-Adjoint Differential Operators

We define a second-order linear differential operator £ as

£ = P0(x)
d2

dx2 + P1(x)
d

dx
+ P2(x), x ∈ [a, b], (7.1)

where Pi(x), i = 0, 1, 2, are real functions with the first (2 − i) derivatives
continuous. In addition, in the open interval (a, b), P0(x) does not vanish even
though it could have zeroes at the end points. We now define the adjoint
operator £ as

£u(x) = d2

dx2 [P0(x)u(x)] −
d

dx
[P1(x)u(x)] + P2(x)u(x), (7.2)

£u(x) =
[

P0
d2

dx2 + (2P′
0 − P1)

d
dx

+ P′′
0 (x) − P′

1(x) + P2(x)
]

u(x). (7.3)

The sufficient and necessary condition for an operator, £, to be self-adjoint,
that is, £ = £ is now found as

P′
0(x) = P1(x). (7.4)
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A self-adjoint operator can also be written in the form

£u(x) = £u(x) = d
dx

[
p(x)du(x)

dx

]
+ q(x)u(x), (7.5)

where p(x) = P0(x), q(x) = P2(x). This is also called the first canonical form.
An operator that is not self-adjoint can always be made self-adjoint by
multiplying with

1
P0(x)

exp
[
∫

x P1(x)
P0(x)

dx
]
. (7.6)

Among the equations we have seen, the Legendre equation is self-adjoint,
whereas the Hermite and the Laguerre equations are not.

7.2 Sturm–Liouville Systems

The operator, £, defined in Eq. (7.5) is called the Sturm–Liouville operator.
Using this operator, we can define a differential equation:

£u(x) = −𝜆𝜔(x) u(x), (7.7)

which is called the Sturm–Liouville equation. This equation defines an eigen-
value problem for the operator £ with the eigenvalue −𝜆 and the eigenfunction
u(x). The weight function, 𝜔(x), satisfies the condition 𝜔(x) > 0, except for a
finite number of isolated points, where it could have zeroes.

A differential equation alone cannot be a complete description of a physical
problem. Therefore, one also needs the boundary conditions to determine the
integration constants. We now supplement the above differential equation with
the following boundary conditions:

𝑣(x)p(x)u′(x)|x=a = 0, (7.8)
𝑣(x)p(x)u′(x)|x=b = 0, (7.9)

where u(x) and 𝑣(x) are any two solutions of Eq. (7.7) with the same or different
𝜆 values. Now the differential equation [Eq. (7.7)] plus the boundary conditions
[Eqs. (7.8) and (7.9)] is called a Sturm–Liouville system. However, we could
also work with something less restrictive as

𝑣(x)p(x)u′(x)|x=a = 𝑣(x)p(x)u′(x)|x=b, (7.10)

which in general corresponds to one of the following cases:
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1. Cases where the solutions, u(x) and 𝑣(x), are zero at the end points; x = a and
x = b. Such conditions are called the (homogeneous) Dirichlet conditions.
Boundary conditions for the vibrations of a string fixed at both ends are of
this type.

2. Cases where the derivatives, u′(x) and 𝑣′(x), are zero at the end points; x = a
and x = b. Acoustic wave problems require this type of boundary conditions.
They are called the (homogeneous) Neumann conditions.

3. Cases where

[u(x) + 𝛼u′(x)]x=a = 0 (7.11)

and

[𝑣(x) + 𝛽𝑣′(x)]x=b = 0, (7.12)

where 𝛼 and 𝛽 are constants independent of the eigenvalues. An example for
this type of boundary conditions, which are called general unmixed, is the
vibrations of a string with elastic connections.

4. Cases where one type of boundary conditions is satisfied at x = a and
another type at x = b.

A common property of all these conditions is that the value of u′(x) and the
value of u(x) at the end point a are independent of their values at the other
end point b; hence they are called unmixed boundary conditions. Depend-
ing on the problem, it is also possible to impose more complicated boundary
conditions.

Even though the operator £ is real, solutions of Eq. (7.7) could involve com-
plex functions; thus we write Eq. (7.10) as

𝑣∗pu′|x=a = 𝑣∗pu′|x=b (7.13)

along with its complex conjugate:

𝑣pu′∗|x=a = 𝑣pu′∗|x=b. (7.14)

Since all the eigenfunctions satisfy the same boundary conditions, we can inter-
change u and 𝑣 to write

𝑣′∗pu|x=a = 𝑣′∗pu|x=b. (7.15)

7.3 Hermitian Operators

We now show that the self-adjoint operator £ and the differential equation

£u(x) + 𝜆𝜔(x)u(x) = 0, (7.16)
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along with the boundary conditions [Eqs. (7.13) and (7.15)] have an interesting
property. We first multiply £u(x) from the left with 𝑣∗ and integrate over [a, b]:

∫
b

a
𝑣∗£udx = ∫

b

a
𝑣∗(pu′)′dx + ∫

b

a
𝑣∗qudx. (7.17)

Integrating the first term on the right-hand side by parts gives

∫
b

a
𝑣∗(pu′)′dx = 𝑣∗pu′|ba − ∫

b

a
(𝑣∗′p)u′dx. (7.18)

Using the boundary condition (7.13), the integrated term is zero. Integrating
the second term in Eq. (7.18) by parts again and using the boundary condition
(7.15), we see that the integrated term is again zero, thus obtaining

∫
b

a
𝑣∗(pu′)′dx = ∫

b

a
u(p𝑣∗′ )′dx. (7.19)

Substituting this result in Eq. (7.17), we obtain

∫
b

a
𝑣∗£udx = ∫

b

a
u£𝑣∗dx. (7.20)

Operators that satisfy this relation are called Hermitian with respect to the
functions u and 𝑣 satisfying the boundary conditions in Eqs. (7.13) and (7.15).
In other words, hermiticity of an operator is closely tied to the boundary con-
ditions imposed.

7.4 Properties of Hermitian Operators

Hermitian operators have the following very useful properties:

1. Eigenvalues are real.
2. Eigenfunctions are orthogonal with respect to a weight function 𝑤(x).
3. Eigenfunctions form a complete set.

7.4.1 Real Eigenvalues

Let us write the eigenvalue equations for the eigenvalues 𝜆i and 𝜆j as

£ui + 𝜆i𝜔(x)ui = 0, (7.21)
£uj + 𝜆j𝜔(x)uj = 0. (7.22)

In these equations even though the £ operator and the weight function 𝜔(x)
are real, the eigenfunctions and the eigenvalues could be complex. Taking the
complex conjugate of Eq. (7.22), we write

£u∗
j + 𝜆∗j 𝑤(x)u∗

j = 0. (7.23)
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We multiply Eq. (7.21) by u∗
j and Eq. (7.23) by ui and subtract to get

u∗
j £ui − ui£u∗

j = (𝜆∗j − 𝜆i)𝜔(x)uiu∗
j . (7.24)

We now integrate both sides:

∫
b

a
u∗

j £uidx − ∫
b

a
ui£u∗

j dx = (𝜆∗j − 𝜆i)∫
b

a
uiu∗

j 𝜔(x)dx. (7.25)

For Hermitian operators, the left-hand side of the above equation is zero, thus
we obtain

(𝜆∗j − 𝜆i)∫
b

a
uiu∗

j 𝜔(x)dx = 0. (7.26)

Since 𝜔(x) ≠ 0, except for a finite number of isolated points, for i = j, we con-
clude that

𝜆∗i = 𝜆i. (7.27)

That is, the eigenvalues of Hermitian operators are real. In quantum mechanics,
eigenvalues correspond to precisely measured quantities; thus observables like
energy and momentum are represented by Hermitian operators.

7.4.2 Orthogonality of Eigenfunctions

When i ≠ j and when the eigenfunctions are distinct, 𝜆i ≠ 𝜆j, Eq. (7.26) gives

∫
b

a
ui(x)u∗

j (x)𝜔(x)dx = 0, i ≠ j. (7.28)

We say that the eigenfunctions are orthogonal with respect to the weight func-
tion 𝜔(x) in the interval [a, b]. In the case of degenerate eigenvalues, that is,
when two different eigenfunctions have the same eigenvalue, i ≠ j but 𝜆i = 𝜆j,
then the integral ∫ b

a uiu∗
j 𝜔dx does not have to vanish. However, in such cases

we can always use the Gram–Schmidt orthogonalization method to choose
the eigenfunctions as orthogonal. In summary, in any case, we can normalize
the eigenfunctions to define an orthonormal set with respect to the weight
function 𝑤(x) as

∫
b

a
ui(x)u∗

j (x)𝜔(x)dx = 𝛿ij. (7.29)

7.4.3 Completeness and the Expansion Theorem

Proof of completeness of the set of eigenfunctions is rather technical and can
be found in Courant and Hilbert [3]. What is important in most applications
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is that any sufficiently well-behaved and at least piecewise continuous function
can be expressed as an infinite series in terms of the set {um(x)} as

F(x) =
∞∑

m=0
amum(x). (7.30)

For a Sturm–Liouville system, using variational analysis, it can be shown that
the limit

lim
N→∞∫

b

a

[
F(x) −

N∑
m=0

amum(x)

]2

𝜔(x)dx → 0 (7.31)

is true [4, p. 338]. This means that in the interval [a, b], the series
∑∞

m=0 amum(x)
converges to F(x) in the mean. However, convergence in the mean does not
imply uniform or pointwise convergence, which requires

lim
N→∞

N∑
m=0

amum(x) → F(x). (7.32)

For most practical situations, convergence in the mean accompanies uniform
convergence and is sufficient. Note that uniform convergence also implies
pointwise convergence but not vice versa. We conclude this section by stating
a theorem from Courant and Hilbert [3, p. 427, vol. I].

The expansion theorem: Any piecewise continuous function defined in the
fundamental interval [a, b] with a square integrable first derivative, that is,
sufficiently smooth, could be expanded in an eigenfunction series:

F(x) =
∞∑

m=0
amum(x), (7.33)

which converges absolutely and uniformly in all subintervals free of points of
discontinuity. At the points of discontinuity, this series represents, as in the
Fourier series, the arithmetic mean of the right- and the left-hand limits.

In this theorem, the function F(x) does not have to satisfy the boundary
conditions. This theorem also implies convergence in the mean and pointwise
convergence. The derivative is square integrable means that the integral of the
square of the derivative is finite for all the subintervals of the fundamental
domain [a, b] in which the function is continuous.



7.5 Generalized Fourier Series 125

7.5 Generalized Fourier Series

Series expansion of a sufficiently smooth F(x) in terms of the set {um(x)} can
now be written as

F(x) =
∞∑

m=0
amum(x), (7.34)

which is called the generalized Fourier series of F(x). Expansion coefficients,
am, are found by using the orthogonality relation of {um(x)} as

∫
b

a
F(x)u∗

m(x)𝜔(x)dx = ∫
b

a

∑
n

anun(x)u∗
m(x)𝜔(x)dx (7.35)

=
∑

n
an

[
∫

b

a
un(x)u∗

m(x)𝜔(x)dx
]

(7.36)

=
∑

n
an𝛿nm, (7.37)

thus

am = ∫
b

a
F(x)u∗

m(x)𝜔(x)dx. (7.38)

Substituting am in Eq. (7.34) we get

F(x) =
∞∑

m=0
∫

b

a
F(x′)u∗

m(x′)𝜔(x′)um(x)dx′ (7.39)

= ∫
b

a
F(x′)

[ ∞∑
m=0

u∗
m(x′)𝜔(x′)um(x)

]
dx′. (7.40)

Using the basic definition of the Dirac-delta function:

g(x) = ∫ g(x′)𝛿(x − x′)dx′, (7.41)

we can give a formal expression of the completeness of the set {𝜙m(x)} as

∞∑
m=0

u∗
m(x′)𝜔(x′)um(x) = 𝛿(x − x′). (7.42)

It is needless to say that this is not a proof of completeness.
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7.6 Trigonometric Fourier Series

The trigonometric Fourier series are defined with respect to the eigenvalue
problem:

d2y
dx2 + n2y(x) = 0, (7.43)

where the operator, £, is given as

£ = d2∕dx2. (7.44)

This could correspond to a vibrating string. Using the periodic boundary con-
ditions:

u(a) = u(b), 𝑣(a) = 𝑣(b), (7.45)

we find the eigenfunctions as

un = cos nx, n = 0, 1, 2,… ,

𝑣m = sin mx, m = 1, 2,… .
(7.46)

Orthogonality of the eigenfunctions is expressed as

∫
x0+2𝜋

x0

sin mx sin nxdx = An𝛿nm, (7.47)

∫
x0+2𝜋

x0

cos mx cos nxdx = Bn𝛿nm, (7.48)

∫
x0+2𝜋

x0

sin mx cos nxdx = 0, (7.49)

where

An =
{
𝜋 n ≠ 0,
0 n = 0, (7.50)

Bn =
{

𝜋 n ≠ 0,
2𝜋 n = 0. (7.51)

Now the trigonometric Fourier series of any sufficiently well-behaved function
becomes

f (x) =
a0

2
+

∞∑
n=1

[an cos nx + bn sin nx], (7.52)

where the expansion coefficients are given as

an = 1
𝜋 ∫

𝜋

−𝜋
f (t) cos ntdt, n = 0, 1, 2,… , (7.53)



7.7 Hermitian Operators in Quantum Mechanics 127

and

bn = 1
𝜋 ∫

𝜋

−𝜋
f (t) sin ntdt, n = 1, 2,… . (7.54)

Example 7.1 Trigonometric Fourier series
The trigonometric Fourier series of a square wave:

f (x) =

⎧⎪⎪⎨⎪⎪⎩
+d

2
, 0 < x < 𝜋,

−d
2
, −𝜋 < x < 0,

(7.55)

can now be written as

f (x) = 2d
𝜋

∞∑
n=0

sin(2n + 1)x
(2n + 1)

, (7.56)

where we have substituted the coefficients

an = 0, (7.57)

bn = d
n𝜋

(1 − cos n𝜋) =

{
0, n = even,
2d
n𝜋

, n = odd. (7.58)

7.7 Hermitian Operators in Quantum Mechanics

In quantum mechanics, the state of a system is completely described by a com-
plex valued function,Ψ(x), in terms of the real variable x.Observable quantities
are represented by differential operators acting on the wave function. These
operators are not necessarily second-order and are usually obtained from their
classical expressions by replacing position, momentum, and energy with their
operator counterparts:

−→x → −→x ,
−→p → −iℏ−→∇,

E → iℏ 𝜕

𝜕t
.

(7.59)

For example, the angular momentum operator, −→L , is obtained from its classical
expression, −→L = −→r × −→p , as

−→L = −iℏ(−→r × −→∇). (7.60)
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Similarly, the Hamiltonian operator, H, is obtained from its classical expression,
H = p2∕2m + V (x), as

H = − 1
2m

∇⃗2 + V (x). (7.61)

The observable value of a physical property is given by the expectation value of
the corresponding operator, £, as ⟨£⟩ = ∫ Ψ∗£Ψdx.Because ⟨£⟩ corresponds to
a measurable quantity, it has to be real; hence observable properties in quantum
mechanics are represented by Hermitian operators.

For the real Sturm–Liouville operators, hermiticity [Eq. (7.20)] was defined
with respect to the eigenfunctions, u and 𝑣, which satisfy the boundary condi-
tions in Eqs. (7.13) and (7.15). To accommodate complex operators in quantum
mechanics, we modify this definition as

∫ Ψ∗
1£Ψ2dx = ∫ (£Ψ1)∗Ψ2dx, (7.62)

where Ψ1 and Ψ2 do not have to be the eigenfunctions of the operator £. The
fact that Hermitian operators have real expectation values can be seen from

⟨£⟩ = ∫ Ψ∗£Ψdx (7.63)

= ∫ (£𝚿)∗Ψdx (7.64)

= ⟨£⟩∗. (7.65)

A Hermitian Sturm–Liouville operator must be second-order. However, in
quantum mechanics, the order of the Hermitian operators is not restricted.
Remember that the momentum operator is first order, but it is Hermitian
because of the presence of i in its definition:

⟨p⟩ = ∫
∞

−∞
Ψ∗

(
−iℏ 𝜕

𝜕x

)
Ψdx (7.66)

= ∫
∞

−∞

(
−iℏ 𝜕

𝜕x
Ψ
)∗

Ψdx (7.67)

= iℏΨ∗Ψ|∞−∞ − ∫
∞

−∞
Ψ∗

(
iℏ 𝜕

𝜕x

)
Ψdx (7.68)

= ∫
∞

−∞
Ψ∗

(
−iℏ 𝜕

𝜕x

)
Ψdx. (7.69)

In proving that the momentum operator is Hermitian, we have also imposed
the boundary condition that Ψ is sufficiently smooth and vanishes at large
distances.

A general boundary condition that all wave functions must satisfy is that
they have to be square integrable, and thus normalizable. Space of all square
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integrable functions actually forms an infinite dimensional vector space called
L2 or the Hilbert space. Functions in this space can be expanded as general-
ized Fourier series in terms of the complete and orthonormal set of eigenfunc-
tions, {um(x)}, of a Hermitian operator. Eigenfunctions satisfy the eigenvalue
equation

£um(x) = 𝜆mum(x), (7.70)

where 𝜆m represents the eigenvalues. In other words, {um(x)} spans the infinite
dimensional vector space of square integrable functions. The inner product,
which is the analog of the dot product in Hilbert space, is defined as

(Ψ1,Ψ2) = ∫ Ψ∗
1(x)Ψ2(x)dx. (7.71)

The inner product has the following properties:

(Ψ1, 𝛼Ψ2) = 𝛼(Ψ1,Ψ2), (7.72)
(𝛼Ψ1,Ψ2) = 𝛼∗(Ψ1,Ψ2), (7.73)
(Ψ1,Ψ2)∗ = (Ψ2,Ψ1), (7.74)

(Ψ1 + Ψ2,Ψ3) = (Ψ1,Ψ3) + (Ψ2,Ψ3), (7.75)

where 𝛼 is a complex number. The inner product also satisfies the triangle
inequality:|Ψ1 + Ψ2| ≤ |Ψ1| + |Ψ2| (7.76)

and the Schwartz inequality:|Ψ1||Ψ2| ≥ |(Ψ1,Ψ2)|. (7.77)

An important consequence of the Schwartz inequality is that the convergence
of (Ψ1,Ψ2) follows from the convergence of (Ψ1,Ψ1) and (Ψ2,Ψ2).
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Problems

1 Show that the Laguerre equation,

x
d2y
dx2 + (1 − x)

dy
dx

+ ny = 0,

can be brought into the self-adjoint form by multiplying it with e−x .

2 Write the Chebyshev equation:

(1 − x2)T ′′
n (x) − xT ′

n(x) + n2Tn(x) = 0,

in the self-adjoint form.

3 Find the weight function for the associated Laguerre equation:

x
d2y
dx2 + (k + 1 − x)

dy
dx

+ ny = 0.

4 A function y(x) is to be a finite solution of the differential equation

x(1 − x)
d2y
dx2 +

(3
2
− 2x

) dy
dx

+
[
𝜆 − (2 + 5x − x2)

4x(1 − x)

]
y(x) = 0,

in the entire interval x ∈ [0, 1].
(i) Show that this condition can only be satisfied for certain values of 𝜆

and write the solutions explicitly for the lowest three values of 𝜆.
(ii) Find the weight function 𝑤(x).

(iii) Show that the solution set {y𝜆(x)} is orthogonal with respect to the
𝑤(x) found above.

5 Show that the Legendre equation can be written as

d
dx

[
(1 − x2)P′

l
]
+ l(l + 1)Pl = 0.

6 For following the Sturm–Liouville equation:

d2y
dx2 + 𝜆y = 0,

using the boundary conditions:

y(0) = 0, y(𝜋) − y′(𝜋) = 0,

find the eigenvalues and the eigenfunctions.
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7 Find the eigenvalues and the eigenfunctions of the Sturm–Liouville
system

d
dx

[
(x2 + 1)

dy
dx

]
+ 𝜆

x2 + 1
y = 0, y(0) = 0, y(1) = 0.

Hint: Try the substitution x = tan t.

8 Show that the Hermite equation can be written as
d

dx
[e−x2 H′

n] + 2ne−x2 Hn = 0.

9 Given the Sturm–Liouville equation

d
dx

[
p(x) d

dx
y(x)

]
+ 𝜆n𝑤(x)y(x) = 0.

If yn(x) and ym(x) are two orthogonal solutions and satisfy the appropriate
boundary conditions, then show that y′n(x) and y′m(x) are orthogonal with
the weight function p(x).

10 Show that the Bessel equation can be written in the self-adjoint form as

d
dx

[xJ ′n] +
(

x − n2

x

)
Jn = 0.

11 Find the trigonometric Fourier expansion of

f (x) =
⎧⎪⎨⎪⎩
𝜋, −𝜋 ≤ x < 0,

x, 0 < x ≤ 𝜋.

12 Show that the angular momentum operator,
−→L = −iℏ(−→r × −→∇),

and L⃗2 are Hermitian.

13 (i) Write the operators −→L 2 and Lz in spherical polar coordinates and
show that they have the same eigenfunctions.

(ii) What are their eigenvalues?
(iii) Write the Lx and Ly operators in spherical polar coordinates.

14 For a Sturm–Liouville operator:

£ = d
dx

[
p(x) d

dx

]
+ q(x),
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let u(x) be a nontrivial solution satisfying £u = 0 with the boundary
condition at x = a, and let 𝑣(x) be another nontrivial solution satisfying
£𝑣 = 0 with the boundary condition at x = b. Show that the Wronskian is
given as

W [u, 𝑣] =
||||u 𝑣

u′ 𝑣′
|||| = u𝑣′ − 𝑣u′ = A(constant)

p(x)
.

15 For the inner product defined as

(Ψ1,Ψ2) = ∫ Ψ∗
1(x)Ψ2(x)dx,

prove the following properties, where 𝛼 is a complex number:

(Ψ1, 𝛼Ψ2) = 𝛼(Ψ1,Ψ2),
(𝛼Ψ1,Ψ2) = 𝛼∗(Ψ1,Ψ2),
(Ψ1,Ψ2)∗ = (Ψ2,Ψ1),

(Ψ1 + Ψ2,Ψ3) = (Ψ1,Ψ3) + (Ψ2,Ψ3).

16 (i) Prove the triangle inequality:|Ψ1 + Ψ2| ≤ |Ψ1| + |Ψ2|.
(ii) Prove the Schwartz inequality:|Ψ1||Ψ2| ≥ |(Ψ1,Ψ2)|.

17 Show that the differential equation

y′′ + p1(x)y′ + [p2(x) + 𝜆r(x)]y(x) = 0

can be put into self-adjoint form as

d
dx

[
e[∫

xp1(x)dx] dy(x)
dx

]
+ p2(x)e[∫

xp1(x)dx]y(x)

+ 𝜆r(x)e[∫
xp1(x)dx]y(x) = 0.
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8

Factorization Method

Factorization method is an elegant way to solve Sturm–Liouville systems.
It basically allows us to replace a Sturm–Liouville equation, a second-order
linear differential equation, with a pair of first-order differential equations.
For a large class of problems the method immediately yields the eigenvalues
and allows us to write the ladder operators for the problem. These operators
are then used to construct the eigenfunctions from a base function. Once
the base function is normalized, the manufactured eigenfunctions are also
normalized and satisfy the same boundary conditions as the base function. We
first introduce the method of factorization and its basic features in terms of
five theorems. Next, we show how the eigenvalues and the eigenfunctions are
obtained and introduce six basic types of factorization. In fact, factorization
of a given second-order differential equation is reduced to identifying the
type it belongs to. To demonstrate the usage of the method, we discuss the
associated Legendre equation and the spherical harmonics in detail. We also
discuss the radial part of the Schrödinger equation for the hydrogen-like
atoms. The Gegenbauer polynomials, symmetric top, Bessel functions, and
the harmonic oscillator problem are the other examples we discuss in terms of
the factorization method. Further details and an extensive table of differential
equations that can be solved by this technique is given by Infeld and Hull [3],
where this method was introduced for the first time.

8.1 Another Form for the Sturm–Liouville Equation

The Sturm–Liouville equation is usually written in the first canonical
form as

d
dx

[
p(x)dΨ(x)

dx

]
+ q(x)Ψ(x) + 𝜆𝑤(x)Ψ(x) = 0, x ∈ [𝛼, 𝛽], (8.1)

Mathematical Methods in Science and Engineering, Second Edition. Selçuk Ş. Bayın.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.
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where p(x) is different from zero in the open interval (𝛼, 𝛽); however, it could
have zeroes at the end points of the interval. We also impose the boundary
conditions

Ψ∗pΦ′ |x=𝛼 = Ψ∗pΦ′ |x=𝛽 , (8.2)

Ψ′∗pΦ |x=𝛼 = Ψ′∗pΦ |x=𝛽 , (8.3)

where Φ and Ψ are any two solutions corresponding to the same or different
eigenvalue. Solutions also satisfy the orthogonality relation:

∫
𝛽

𝛼

dx𝑤(x)Ψ∗
𝜆l
(x)Ψ𝜆l′

(x) = 0, 𝜆l′ ≠ 𝜆l. (8.4)

If p(x) and 𝑤(x) are never negative and 𝑤(x)∕p(x) exists everywhere in (𝛼, 𝛽),
using the transformations

y(z) = Ψ(x)
[
𝑤(x)p(x)

]1∕4 (8.5)

and

dz = dx
[
𝑤(x)
p(x)

]1∕2

, (8.6)

we can cast the Sturm–Liouville equation into another form, also known as the
second canonical form:

d2ym
𝜆
(z)

dz2 + {𝜆 + r(z,m)}ym
𝜆
(z) = 0, (8.7)

where

r(z,m) =
q
𝑤

+ 3
16

[
1
𝑤

d𝑤
dz

+ 1
p

dp
dz

]2

− 1
4

[
2

p𝑤
dp
dz

d𝑤
dz

+ 1
𝑤

d2𝑤

dz2 + 1
p

d2p
dz2

]
.

(8.8)

Here, m and 𝜆 are two constant parameters that usually enter into our equations
through the process of separation of variables. Their values are restricted by the
boundary conditions and in most cases take discrete (real) values like

𝜆0, 𝜆1, 𝜆2,… , 𝜆l,… (8.9)

and

m = m0,m0 + 1,m0 + 2,… . (8.10)
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However, we could take m0 = 0 without any loss of generality. The
orthogonality relation is now given as

∫
b

a
dzy∗m

𝜆l′
(z)ym

𝜆l
(z) = 0, 𝜆l′ ≠ 𝜆l. (8.11)

8.2 Method of Factorization

We can write Eq. (8.7) in operator form:

£(z,m)ym
𝜆l
(z) = −𝜆lym

𝜆l
(z), (8.12)

where

£(z,m) = d2

dz2 + r(z,m). (8.13)

We now define two operators O+(z,m) and O−(z,m) as

O±(z,m) = ± d
dz

− k(z,m) (8.14)

so that

£(z,m) = O+(z,m)O−(z,m). (8.15)

We say Eq. (8.7) is factorized if we could replace it by one of the following
equations:

O+(z,m)O−(z,m)ym
𝜆l
(z) = [𝜆 − 𝜇(m)]ym

𝜆l
(z) (8.16)

or

O−(z,m + 1)O+(z,m + 1)ym
𝜆l
(z) = [𝜆 − 𝜇(m + 1)]ym

𝜆l
(z). (8.17)

Substituting the definitions of O+(z,m) and O−(z,m) into Eqs. (8.16)
and (8.17), we obtain two equations that k(z,m) and 𝜇(m) should satisfy
simultaneously as

−dk(z,m)
dz

+ k2(z,m) = −r(z,m) − 𝜇(m), (8.18)

dk(z,m + 1)
dz

+ k2(z,m + 1) = −r(z,m) − 𝜇(m + 1). (8.19)
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8.3 Theory of Factorization and the Ladder Operators

We now summarize the fundamental ideas of the factorization method in
terms of five basic theorems. The first theorem basically tells us how to
generate the solutions with different m given ym

𝜆l
(z).

Theorem 8.1 If ym
𝜆l
(z) is a solution of Eq. (8.12) corresponding to the eigen-

values 𝜆 and m, then

O+(z,m + 1)ym
𝜆l
(z) = ym+1

𝜆l
(z), (8.20)

O−(z,m)ym
𝜆l
(z) = ym−1

𝜆l
(z) (8.21)

are also solutions corresponding to the same 𝜆 but different m as indicated.

Proof : Multiply Eq. (8.17) by O+(m + 1) ∶

O+(z,m + 1)[O−(z,m + 1)O+(z,m + 1)ym
𝜆l
(z)]

= O+(z,m + 1)[𝜆 − 𝜇(m + 1)]ym
𝜆l
(z). (8.22)

This can be written as

O+(z,m + 1)O−(z,m + 1)[O+(z,m + 1)ym
𝜆l
(z)]

= [𝜆 − 𝜇(m + 1)][O+(z,m + 1)ym
𝜆l
(z)]. (8.23)

We now let m → m + 1 in Eq. (8.16) to write

O+(z,m + 1)O−(z,m + 1)ym+1
𝜆l

(z) = [𝜆 − 𝜇(m + 1)]ym+1
𝜆l

(z) (8.24)

and compare this with Eq. (8.23) to get Eq. (8.20). Thus, the theorem is proven.
Proof of Eq. (8.21) is accomplished by multiplying Eq. (8.16) with O−(z,m) and
by comparing it with the equation obtained by letting m → m − 1 in Eq. (8.17).

This theorem says that if we know the solution ym
𝜆l
(z), we can use O+(z,m + 1)

to generate the solutions corresponding to the eigenvalues

(m + 1), (m + 2), (m + 3),… . (8.25)

Similarly, O−(z,m) can be used to generate the solutions with the eigenvalues

… , (m − 3), (m − 2), (m − 1). (8.26)

O±(z,m) are also called the step-up/-down or ladder operators.

Theorem 8.2 If y1(z) and y2(z) are two solutions satisfying the boundary
condition

y∗1y2|b = y∗1y2|a, (8.27)
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then

∫
b

a
dzy∗1(z)[O−(z,m)y2(z)] = ∫

b

a
dzy2(z)[O+(z,m)y1(z)]∗. (8.28)

We say that O− and O+ are Hermitian, that is, O− = O†
+ with respect to y1(z)

and y2(z). Note that the boundary condition [Eq. (8.27)] needed for the fac-
torization method is more restrictive than the boundary conditions [Eqs. (8.2)
and (8.3)] used for the solutions of the Sturm–Liouville problem. Condition in
Eq. (8.27) includes the periodic boundary conditions as well as the cases where
the solutions vanish at the end points.

Proof : Proof can easily be accomplished by using the definition of the ladder
operators and integration by parts:

∫
b

a
dzy∗1(z)[O−(z,m)y2(z)] = ∫

b

a
dzy∗1(z)

[(
− d

dz
− k(z,m)

)
y2(z)

]
(8.29)

= −∫
b

a
dzy∗1(z)

dy2(z)
dz

− ∫
b

a
dzy∗1(z)k(z,m)y2(z)

(8.30)

= −y∗1y2|b
a + ∫

b

a
dzy2

dy∗1
dz

− ∫
b

a
dzy∗1k(z,m)y2.

(8.31)

Finally, using the boundary condition [Eq. (8.27)], we write this as

∫
b

a
dzy∗1(z)[O−(z,m)y2(z)] = ∫

b

a
dzy2(z)

[(
d
dz

− k(z,m)
)

y1(z)
]∗

(8.32)

= ∫
b

a
dzy2(z)[O+(z,m)y1(z)]∗. (8.33)

Theorem 8.3 If

∫
b

a
dz

[
ym
𝜆l
(z)

]2
(8.34)

exists and if 𝜇(m) is an increasing function of m (m > 0), then

∫
b

a
dz

[
O+(z,m + 1)ym

𝜆l
(z)

]2
(8.35)

also exists. If 𝜇(m) is a decreasing function of m (m > 0), then

∫
b

a
dz

[
O−(z,m)ym

𝜆l
(z)

]2
(8.36)
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also exists. O+(z,m + 1)ym
𝜆l
(z) and O−(z,m)ym

𝜆l
(z) also satisfy the same boundary

condition as ym
𝜆l
(z).

Proof : We take y2 = ym
𝜆l
(z) and y1 = ym−1

𝜆l
(z) in Theorem 8.2 to write

∫
b

a
dzy∗m−1

𝜆l
(z)[O−(z,m)ym

𝜆l
(z)] = ∫

b

a
dzym

𝜆l
(z)[O+(z,m)ym−1

𝜆l
(z)]∗. (8.37)

Solution O−(z,m)ym
𝜆l
(z) in Eq. (8.21) is equal to ym−1

𝜆l
(z) only up to a constant

factor. Similarly, O+(z,m)ym−1
𝜆l

(z) is only equal to ym
𝜆l
(z) up to another constant

factor. Thus, we can write

∫
b

a
dzym

𝜆l
(z)ym

𝜆l
(z)∗ = C(l,m)∫

b

a
dzy∗m−1

𝜆l
(z)ym−1

𝜆l
(z), (8.38)

∫
b

a
dz[ym

𝜆l
(z)]2 = C(l,m)∫

b

a
dz[ym−1

𝜆l
(z)]2, (8.39)

where C(l,m) is a constant independent of z but dependent on l and m. We are
interested in differential equations, the coefficients of which may have singu-
larities only at the end points of our interval. Square integrability of a solution
actually depends on the behavior of the solution near the end points. Thus,
it is a boundary condition. Hence, for a given square integrable eigenfunction
ym
𝜆l
(z), the manufactured eigenfunction ym−1

𝜆l
(z) is also square integrable as long

as C(l,m) is different from zero. Because we have used Theorem 8.2, ym−1
𝜆l

(z)
also satisfies the same boundary condition as ym

𝜆l
(z). A parallel argument is given

for ym+1
𝜆l

(z). In conclusion, if ym
𝜆l
(z) is a square integrable function satisfying the

boundary condition [Eq. (8.27)], then all other eigenfunctions manufactured
from it by the ladder operators O±(z,m) are square integrable and satisfy the
same boundary condition. For a complete proof C(l,m) must be studied sep-
arately for each factorization type. For our purposes, it is sufficient to say that
C(l,m) is different from zero for all physically meaningful cases.

Theorem 8.4 If 𝜇(m) is an increasing function and m > 0, then there exists
a maximum value for m, say mmax = l, and 𝜆 is given as 𝜆 = 𝜇(l + 1). If 𝜇(m) is
a decreasing function and m > 0, then there exists a minimum value for m, say
mmin = l′, and 𝜆 is 𝜆 = 𝜇(l′).

Proof : Assume that we have some function ym
𝜆l
(z), where m > 0, which satisfies

the boundary condition [Eq. (8.27)]. We can then write

∫
b

a
dz[ym+1

𝜆l
(z)]2 = ∫

b

a
dz[O+(z,m + 1)ym

𝜆l
(z)][O+(z,m + 1)ym

𝜆l
(z)]∗

(8.40)
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= ∫
b

a
dzy∗m

𝜆l
(z)[O−(z,m + 1)O+(z,m + 1)ym

𝜆l
(z)] (8.41)

= [𝜆 − 𝜇(m + 1)]∫
b

a
dz[ym

𝜆l
(z)]2, (8.42)

where we have first used Eq. (8.28) and then Eq. (8.17). Continuing this process
k times we get

∫
b

a
dz[ym+k

𝜆l
(z)]2 = [𝜆 − 𝜇(m + k)] · · · [𝜆 − 𝜇(m + 2)][𝜆 − 𝜇(m + 1)]

× ∫
b

a
dz[ym

𝜆l
(z)]2. (8.43)

If 𝜇(m) is an increasing function of m, eventually we are going to reach a value
of m, say mmax = l, that leads us to the contradiction

∫
b

a
dz[yl+1

𝜆l
(z)]2 < 0, (8.44)

unless yl+1
𝜆l

(z) = 0, that is,

O+(z, l + 1)yl
𝜆l
(z) = 0. (8.45)

Since ∫ b
a dz[yl

𝜆l
(z)]2 ≠ 0, using Eq. (8.42) with m = l, we determine 𝜆 as

𝜆 = 𝜆l = 𝜇(l + 1). (8.46)

Similarly, it could be shown that if 𝜇(m) is a decreasing function of m, then
there exists a minimum value of m, say mmin = l, such that

O−(z, l)yl
𝜆l
(z) = 0. (8.47)

𝜆 in this case is determined as

𝜆 = 𝜆l = 𝜇(l). (8.48)

Cases for m < 0 are also shown in Figure 8.1.

We have mentioned that the square integrability of the solutions is itself a
boundary condition, which is usually related to the symmetries of the problem.
For example, in the case of the associated Legendre equation the end points
of our interval correspond to the north and south poles of a sphere. For
a spherically symmetric problem, location of the poles is arbitrary. Hence
useful solutions should be finite everywhere on a sphere. In the Frobenius
method this forces us to restrict 𝜆 to certain integer values (Chapter 1). In the
factorization method we also have to restrict 𝜆, this time through Eq. (8.42) to
ensure the square integrability of the solutions for a given 𝜇(m).
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μ

μ μ

μ

λ = μ (l)
λ = μ (l + 1)

λ = μ (mmax + 1)
λ = μ (mmin)

mmin = l

m > 0

m < 0

m

mmax mminm m

mmax = l m

Figure 8.1 Different cases for 𝜇(m).

Theorem 8.5 When Theorem 8.3 holds, we can arrange the ladder operators
to preserve not just the square integrability but also the normalization of the
eigenfunctions. When 𝜇(m) is an increasing function of m, we can define new
normalized ladder operators:

£±(z, l,m) =
[
𝜇(l + 1) − 𝜇(m)

]−1∕2O±(z,m), (8.49)

which ensures us the normalization of the manufactured solutions.
When 𝜇(m) is a decreasing function, normalized ladder operators are

defined as

£±(z, l,m) =
[
𝜇(l) − 𝜇(m)

]−1∕2O±(z,m). (8.50)

Proof : Using Eq. (8.42) we write

∫
b

a

[
ym+1
𝜆l

(z)
]2

dz = [𝜆 − 𝜇(m + 1)]∫
b

a

[
ym
𝜆l
(z)

]2
dz, (8.51)

∫
b

a

[
ym+1
𝜆l

(z)
]2

[𝜆 − 𝜇(m + 1)]
dz = ∫

b

a

[
ym
𝜆l
(z)

]2
dz. (8.52)
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Since

ym+1
𝜆l

(z) = O+(z,m + 1)ym
𝜆l
(z), (8.53)

we write

∫
b

a

[ O+(z,m + 1)
[𝜆 − 𝜇(m + 1)]1∕2 ym

𝜆l
(z)

]2

dz = ∫
b

a
[ym

𝜆l
(z)]2dz. (8.54)

Define a new operator £+(z, l,m); then Eq. (8.54) becomes

∫
b

a

[
£+(z, l,m + 1)ym

𝜆l
(z)

]2
dz = ∫

b

a

[
ym
𝜆l
(z)

]2
dz. (8.55)

Thus, if ym
𝜆l
(z) is normalized, then the eigenfunction manufactured from ym

𝜆l
(z)

by the operator £+ is also normalized. Similarly, one could show that

∫
b

a

[
O−(z, l,m)

[𝜆 − 𝜇(m)]1∕2 ym
𝜆l
(z)

]2

dz = ∫
b

a
[£−(z, l,m)ym

𝜆l
(z)]2dz (8.56)

= ∫
b

a
[ym−1

𝜆l
(z)]2dz = ∫

b

a
[ym

𝜆l
(z)]2dz.

(8.57)

In conclusion, once ym
𝜆l
(z) is normalized, the manufactured eigenfunctions

ym+1
𝜆l

(z) = £+(z, l,m + 1)ym
𝜆l
(z), (8.58)

ym−1
𝜆l

(z) = £−(z, l,m)ym
𝜆l
(z) (8.59)

are also normalized. Depending on the functional forms of 𝜇(m), £±(z, l,m) are
given in Eqs. (8.49) and (8.50).

8.4 Solutions via the Factorization Method

We can now manufacture the eigenvalues and the eigenfunctions of an equation
once it is factored, that is, once the k(z,m) and the 𝜇(m) functions correspond-
ing to a given r(z,m) are known. For m > 0, depending on whether 𝜇(m) is an
increasing or a decreasing function, there are two cases.

8.4.1 Case I (m > 0 and 𝝁(m) is an increasing function)

In this case, from Theorem 8.4 there is a maximum value for m,

m = 0, 1, 2,… , l, (8.60)

and the eigenvalues 𝜆l are given as

𝜆 = 𝜆l = 𝜇(l + 1). (8.61)
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Since there is no eigenstate with m > l, we can write

O+(z, l + 1)yl
l(z) = 0. (8.62)

Thus, we obtain the differential equation{
d
dz

− k(z, l + 1)
}

yl
l(z) = 0. (8.63)

Note that we have written yl
𝜆l
(z) = yl

l(z). Integrating Eq. (8.63) we get
dyl

l

yl
l

= k(z, l + 1)dz, (8.64)

ln yl
l(z) = ∫

z
k(z, l + 1)dz, (8.65)

or
yl

l(z) = C exp
{
∫

z
k(z, l + 1)dz

}
. (8.66)

Here, C is a constant to be determined from the normalization condition
∫ b

a dz[yl
l(z)]

2 = 1. For a given l, once ym=l
l (z) is found, all the other normal-

ized eigenfunctions with m = l, l − 1, l − 2,… , 2, 1, 0, can be constructed by
repeated applications of the step-down operator £−(z, l,m) as

ym−1
l (z) = [𝜇(l + 1) − 𝜇(m)]−1∕2O−(z,m)ym

l (z) (8.67)
= £−(z, l,m)ym

l (z). (8.68)

8.4.2 Case II (m > 0 and 𝝁(m) is a decreasing function)

In this case, from Theorem 8.4 there is a minimum value for m, where
m = l, l + 1, l + 2,… . (8.69)

For this case, we can write

O−(z, l)yl
l(z) = 0, (8.70){

− d
dz

− k(z, l)
}

yl
l(z) = 0. (8.71)

Thus,

ym=l
l (z) = C exp

{
−∫

z
k(z, l)dz

}
, (8.72)

where C is determined from the normalization condition ∫ b
a dz[yl

l(z)]
2 = 1.

Now all the other normalized eigenfunctions for m = l, l + 1, l + 2,… are
obtained from yl

l(z) by repeated applications of the formula
ym+1

l (z) = [𝜇(l) − 𝜇(m + 1)]−1∕2O+(z,m + 1)ym
l (z) (8.73)

= £+(z, l,m)ym
l (z). (8.74)
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Cases with m < 0 are handled similarly. In Section 8.6, we see how such a case
is treated with spherical harmonics.

8.5 Technique and the Categories of Factorization

In Section 8.2, we saw that in order to accomplish factorization we need to
determine the two functions k(z,m) and 𝜇(m), which satisfy the following two
equations:

dk(z,m + 1)
dz

+ k2(z,m + 1) = −r(z,m) − 𝜇(m + 1), (8.75)

−dk(z,m)
dz

+ k2(z,m) = −r(z,m) − 𝜇(m). (8.76)

Here, r(z,m) is known from the equation for which the factorization is sought,
that is, from[

d2

dz2 + r(z,m)
]

ym
𝜆l
(z) = −𝜆lym

𝜆l
(z). (8.77)

However, following Infeld and Hull [3] we subtract Eq. (8.76) from Eq. (8.75) to
obtain the difference equation:

−k2(z,m) + k2(z,m + 1) + dk(z,m)
dz

+ dk(z,m + 1)
dz

= 𝜇(m) − 𝜇(m + 1).

(8.78)

This is the necessary equation that k(z,m) and 𝜇(m) should satisfy. This is also
a sufficient condition, because k(z,m) and 𝜇(m) satisfying this equation give a
unique r(z,m) from Eq. (8.75) or (8.76). We now categorize all possible forms
of k(z,m) and 𝜇(m) that satisfy Eq. (8.78).

8.5.1 Possible Forms for k(z,m)

8.5.1.1 Positive powers of m
We first consider k(z,m) with the m dependence given as

k(z,m) = k0(z) + mk1(z). (8.79)

To find 𝜇(m) we write Eq. (8.78) for successive values of m as (we suppress
the z dependence of k(z,m))

k2(m) − k2(m − 1) + k′(m) + k′(m − 1) = 𝜇(m − 1) − 𝜇(m),
k2(m − 1) − k2(m − 2) + k′(m − 1) + k′(m − 2) = 𝜇(m − 2) − 𝜇(m − 1),
k2(m − 2) − k2(m − 3) + k′(m − 2) + k′(m − 3) = 𝜇(m − 3) − 𝜇(m − 2),

⋮

k2(1) − k2(0) + k′(1) + k′(0) = 𝜇(0) − 𝜇(1).
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Addition of these equations gives

k2(m) − k2(0) + 2mk′
0 + k′

1

[ m∑
m′=1

m′ +
m−1∑
m′=0

m′

]
= 𝜇(0) − 𝜇(m), (8.80)

where we have used k′(z,m) = k′
0(z) + mk′

1(z). Also using
m∑

m′=1
m′ +

m−1∑
m′=0

m′ = m(m + 1)
2

+ m(m − 1)
2

(8.81)

= m2, (8.82)
and since from Eq. (8.79) we can write

k2(m) − k2(0) = [k0 + mk1]2 − k2
0 , (8.83)

we finally obtain
𝜇(m) − 𝜇(0) = −m2(k2

1 + k′
1) − 2m(k0k1 + k′

0). (8.84)
Since 𝜇(m) is only a function of m, this could only be satisfied if the coefficients
of m are constants:

k2
1 + k′

1 = const. = −a2, (8.85)
k0k1 + k′

0 = const. = −a2c if a ≠ 0, (8.86)
k0k1 + k′

0 = const. = b if a = 0. (8.87)
This determines 𝜇(m) as

𝜇(m) = 𝜇(0) + a2(m2 + 2mc) for a ≠ 0, (8.88)
𝜇(m) = 𝜇(0) − 2mb for a = 0. (8.89)

In these equations, we could take 𝜇(0) = 0 without any loss of generality.
Using these results, we now obtain the following categories:

(A) For a ≠ 0, Eq. (8.85) gives
dk1

k2
1 + a2

= −dz, (8.90)

k1 = a cot a(z + p). (8.91)
Substituting this into Eq. (8.86) and integrating gives

k0(z) = ca cot a(z + p) + d
sin a(z + p)

, (8.92)

where p and d are integration constants.
With these k0 and k1 functions in Eq. (8.79) and the𝜇(m) given in Eq. (8.88),
we obtain r(z,m) from Eq. (8.75) or (8.76) as

r(z,m) = −
a2(m + c)(m + c + 1) + d2 + 2ad(m + c + 1

2
) cos a(z + p)

sin2a(z + p)
. (8.93)
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We now obtain our first factorization type as

k(z,m) = (m + c)a cot a(z + p) + d
sin a(z + p)

, (8.94)

𝜇(m) = a2(m + c)2,we set 𝜇(0) = a2c2. (8.95)

(B)
k1 = const. = ia, (8.96)
k0 = ica + de−iaz. (8.97)

For this type, after writing a instead of ia and adding −a2c2 to 𝜇(m), we get

r(z,m) = −d2e2az + 2ad
(

m + c + 1
2

)
eaz, (8.98)

k(z,m) = deaz − m − c, (8.99)
𝜇(m) = −a2(m + c)2. (8.100)

(C)

k1 = 1
z

, a = 0, (8.101)

k0 = b
2

z + d
z
. (8.102)

After writing c for d and adding b∕2 to 𝜇(m) we obtain

r(z,m) = −(m + c)(m + c + 1)
z2 − b2z2

4
+ b(m − c), (8.103)

k(z,m) = (m + c)∕z + bz∕2, (8.104)
𝜇(m) = −2bm + b∕2. (8.105)

(D)
k1 = 0, a = 0, (8.106)
k0 = bz + d. (8.107)

In this case, the operators O+ and O− are independent of m. The functions
r(z,m), k(z,m), and 𝜇(m) are now given as

r(z,m) = −(bz + d)2 + b(2m + 1), (8.108)
k(z,m) = bz + d, (8.109)
𝜇(m) = −2bm. (8.110)

We can also try higher positive powers of m in k(z,m) as

k(z,m) = k0(z) + mk1(z) + m2k2(z) + · · · . (8.111)

However, no new categories result (see Problems 5 and 6). Also note that the
types B, C, and D can be viewed as the limiting forms of type A.
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8.5.1.2 Negative powers of m
We now try negative powers of m as

k(z,m) =
k−1(z)

m
+ k0(z) + k1(z)m. (8.112)

We again write Eq. (8.78) for successive values of m as

k2(m) − k2(m − 1) + k′(m) + k′(m − 1) = 𝜇(m − 1) − 𝜇(m),
k2(m − 1) − k2(m − 2) + k′(m − 1) + k′(m − 2) = 𝜇(m − 2) − 𝜇(m − 1),
k2(m − 2) − k2(m − 3) + k′(m − 2) + k′(m − 3) = 𝜇(m − 3) − 𝜇(m − 2),

⋮
k2(2) − k2(1) + k′(2) + k′(1) = 𝜇(1) − 𝜇(2),

where we have suppressed the z dependence of k(z,m). Adding these equations
and using

k′(z,m) =
k′
−1(z)
m

+ k′
0(z) + k′

1(z)m, (8.113)

give

k2(m) − k2(1) + k′
−1

[ m∑
m′=2

1
m′ +

m−1∑
m′=1

1
m′

]
+ k′

0[2m − 2]

+ k′
1

[ m∑
m′=2

m′ +
m−1∑
m′=1

m′

]
= 𝜇(1) − 𝜇(m). (8.114)

Since the series[ m∑
m′=2

1
m′ +

m−1∑
m′=1

1
m′

]
, (8.115)

which is the coefficient of k′
−1, contains a logarithmic dependence on m, we set

k−1 to a constant:

k−1 = q ≠ 0. (8.116)

Also using
m∑

m′=2
m′ +

m−1∑
m′=1

m′ = m2 − 1 (8.117)

and Eq. (8.112) we write

k2(m) − k2(1) =
k2
−1

m2 + k2
1m2 +

2k−1k0

m
+ 2k0k1m − k2

−1 − k2
1 − 2k−1k0 − 2k0k1.

(8.118)
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Now Eq. (8.114) becomes
k2
−1

m2 + k2
1m2 +

2k−1k0

m
+ 2k0k1m − k2

−1 − k2
1 − 2k−1k0 − 2k0k1

+ k′
0[2m − 2] + k′

1[m
2 − 1] = 𝜇(1) − 𝜇(m). (8.119)

After some simplification and setting 𝜇(1) = 0, which we can do without any
loss of generality, Eq. (8.119) gives

k2
−1

m2 +
2k0k−1

m
+ m(2k0k1 + 2k′

0) + m2(k2
1 + k′

1)

+
[
−(k2

1 + k′
1) − k2

−1 − 2k′
0 − 2(k1 + k−1)k0

]
= −𝜇(m). (8.120)

We now have two new categories corresponding to the cases a ≠ 0 and a = 0
with

k−1 = q, (8.121)
k0 = 0, (8.122)

k2
1 + k′

1 = −a2. (8.123)

(E)
k1 = a cot a(z + p), k0 = 0, k−1 = q for a ≠ 0. (8.124)

r(z,m), k(z,m), and 𝜇(m) are now given as

r(z,m) = −m(m + 1)a2

sin2a(z + p)
− 2aq cot a(z + p), (8.125)

k(z,m) = ma cot a(z + p) + q∕m, (8.126)
𝜇(m) = a2m2 − q2∕m2. (8.127)

(F) Our final category is obtained for a = 0 as
k1 = 1∕z, k0 = 0, k−1 = q, (8.128)

where
r(z,m) = −2q∕z − m(m + 1)∕z2, (8.129)
k(z,m) = m∕z + q∕m, (8.130)
𝜇(m) = −q2∕m2. (8.131)

Further generalization of these cases by considering higher negative powers
of m leads to no new categories as long as we have a finite number of terms
with negative powers in k(z,m). Type F can also be viewed as the limiting
form of type E with a → 0. Entries in the table of factorizations given by Infeld
and Hull [3] can be used, with our notation with the replacements x → z and
L(m) = 𝜇(m).
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8.6 Associated Legendre Equation (Type A)

The Legendre equation is given as

d2Θ(𝜃)
d𝜃2 + cot 𝜃dΘ(𝜃)

d𝜃
+

[
𝜆l −

m2

sin2𝜃

]
Θ(𝜃) = 0, (8.132)

where 𝜃 ∈ [0, 𝜋] and m = 0,±1,±2,… . We can put this into the first canonical
form by the substitutions x = cos 𝜃 and Θ(𝜃) = P(x) as(

1 − x2) d2P(x)
dx2 − 2x dP(x)

dx
+

[
𝜆l −

m2

(1 − x2)

]
P(x) = 0, (8.133)

d
dx

[(
1 − x2) dP(x)

dx

]
+

[
𝜆l −

m2

(1 − x2)

]
P(x) = 0, x ∈ [−1, 1].

(8.134)
We now make the following substitutions:

𝑤(x) = 1, p(x) =
(
1 − x2) , dz = dx∕

(
1 − x2)1∕2

, y(x) = P(x)(1 − x2)1∕4,

(8.135)

which in terms of 𝜃 means:

𝑤(x) = 1, p(x) = sin2𝜃, dz = −d𝜃, y(𝜃) = P
(

cos 𝜃
)

sin1∕2𝜃, (8.136)

and thus leads us to the second canonical form:

d2y(𝜃)
d𝜃2 +

⎡⎢⎢⎢⎣
(
𝜆l +

1
4

)
−

(
m2 − 1

4

)
sin2𝜃

⎤⎥⎥⎥⎦ y(𝜃) = 0. (8.137)

If we call

𝜆 =
(
𝜆l +

1
4

)
(8.138)

and compare with
d2ym

𝜆
(z)

dz2 + {𝜆 + r(z,m)}ym
𝜆
(z) = 0, (8.139)

we obtain

r(z,m) =

(
m2 − 1

4

)
sin2z

. (8.140)

This is exactly type A with the coefficients read from Eq. (8.93) as

a = 1, c = −1∕2, d = 0, p = 0, z = 𝜃. (8.141)
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Thus, from Eqs. (8.94) and (8.95), we obtain the factorization of the associated
Legendre equation as

k(z,m) =
(

m − 1
2

)
cot 𝜃, (8.142)

𝜇(m) =
(

m − 1
2

)2
. (8.143)

For convenience, we have taken 𝜇(0) = a2c2 rather than zero in Eq. (8.95).

8.6.1 Determining the Eigenvalues, 𝝀l

For m > 0,

𝜇(m) =
(

m − 1
2

)2
. (8.144)

Thus, 𝜇(m) is an increasing function of m and from Theorem 8.4, we know that
there exists a maximum value for m, say mmax = l. This determines 𝜆 as

𝜆 = 𝜇(l + 1) (8.145)

=
(

l + 1
2

)2
. (8.146)

On the other hand, for m < 0 we could write

𝜇(m) =
(|m| + 1

2

)2
. (8.147)

Again from the conclusions of Theorem 8.4, there exists a minimum value,
mmin, thus determining 𝜆 as

𝜆 = mmin (8.148)

=
(|mmin| + 1

2

)2
. (8.149)

To find mmin we equate the two expressions [Eqs. (8.146) and (8.149)] for 𝜆 to
obtain(

l + 1
2

)2
=

(|mmin| + 1
2

)2
, (8.150)|mmin| = l, (8.151)

mmin = −l. (8.152)

Since m changes by integer amounts, we could write

mmin = mmax − integer, (8.153)
−l = l − integer, (8.154)
2l = integer. (8.155)
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This equation says that l could only take integer values l = 0, 1, 2,… . We can
now write the eigenvalues 𝜆l as

𝜆l +
1
4
= 𝜆 (8.156)

=
(

l + 1
2

)2
(8.157)

= l2 + l + 1
4
, (8.158)

𝜆l = l(l + 1). (8.159)

Note that Eq. (8.155) also has the solution l = integer∕2. We will elaborate this
case in Chapter 10 in Problem 11.

8.6.2 Construction of the Eigenfunctions

Since mmax = l, there are no states with m > l. Thus,

O+(z, l + 1)yl
𝜆l
(z) = 0, (8.160){

d
dz

− k(z, l + 1)
}

yl
𝜆l
(z) = 0. (8.161)

This gives

ln yl
𝜆l
(z) − ln N = ∫

z
k(z′, l + 1)dz′ (8.162)

=
(

l + 1
2

)
∫ cot 𝜃d𝜃 (8.163)

=
(

l + 1
2

)
ln(sin 𝜃) (8.164)

= ln (sin 𝜃)
(

l+ 1
2

)
. (8.165)

Hence, the state with mmax = l is determined as

yl
𝜆l
(𝜃) = N(sin 𝜃)

(
l+ 1

2

)
. (8.166)

N is a normalization constant to be determined from

∫
𝜋

0
[yl

𝜆l
(𝜃)]2d𝜃 = 1, (8.167)

N2 ∫
𝜋

0
(sin 𝜃)2l+1d𝜃 = 1, (8.168)

which gives

N = (−1)l
[
(2l + 1)!
22l+1l!2

]1∕2

. (8.169)
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The factor of (−1)l, which is called the Condon–Shortley phase, is introduced
for convenience. Thus, the normalized eigenfunction corresponding to
mmax = l is

yl
𝜆l
(𝜃) = (−1)l

[
(2l + 1)!
22l+1l!2

]1∕2

(sin 𝜃)
(

l+ 1
2

)
. (8.170)

Using this eigenfunction (eigenstate), we can construct the remaining eigen-
states by using the normalized ladder operators [Eqs. (8.49) and (8.50)]. For
moving down the ladder we use

£−(𝜃,m) =
O−(𝜃,m)√

𝜇(l + 1) − 𝜇(m)
(8.171)

= 1√(
l + 1

2

)2
−

(
m − 1

2

)2

[
− d

d𝜃
−

(
m − 1

2

)
cot 𝜃

]
(8.172)

= 1√
(l + m)(l − m + 1)

[
− d

d𝜃
−

(
m − 1

2

)
cot 𝜃

]
(8.173)

and for moving up the ladder

£+(𝜃,m + 1) =
O+(𝜃,m + 1)√

𝜇(l + 1) − 𝜇(m + 1)
(8.174)

= 1√(
l + 1

2

)2
−

(
m + 1

2

)2

[
d

d𝜃
−

(
m + 1

2

)
cot 𝜃

]
(8.175)

= 1√
(l − m)(l + m + 1)

[
d

d𝜃
−

(
m + 1

2

)
cot 𝜃

]
. (8.176)

Needless to say, the eigenfunctions generated by the operators £± are also nor-
malized (Theorem 8.5).

Now the normalized associated Legendre polynomials are related to
yl
𝜆l
(𝜃) by

Pm
l (cos 𝜃) =

ym
𝜆l
(𝜃)√

sin 𝜃

. (8.177)

8.6.3 Ladder Operators for m

Spherical harmonics are defined as

Y m
l (𝜃, 𝜙) = Pm

l (cos 𝜃) eim𝜙√
2𝜋

. (8.178)
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Using Eq. (8.177), we write

Y m
l (𝜃, 𝜙) =

ym
𝜆l
(𝜃)√

sin 𝜃

eim𝜙√
2𝜋

. (8.179)

Using

ym−1
𝜆l

(𝜃) = £−(𝜃,m)ym
𝜆l
(𝜃) (8.180)

and Eq. (8.171) we could also write√
sin 𝜃Pm−1

l (𝜃)ei(m−1)𝜙√
2𝜋

= e−i𝜙£−(𝜃,m)

[√
sin 𝜃Pm

l (𝜃)
eim𝜙√

2𝜋

]
(8.181)

=
e−i𝜙

[
− d

d𝜃
−

(
m − 1

2

)
cot 𝜃

] [√
sin 𝜃Pm

l (𝜃)
eim𝜙√

2𝜋

]
√
(l + m)(l − m + 1)

(8.182)

=
e−i𝜙 eim𝜙√

2𝜋

[
− d

√
sin 𝜃Pm

l (𝜃)
d𝜃

−
(
m − 1

2

)
cot 𝜃

√
sin 𝜃Pm

l (𝜃)
]

√
(l + m)(l − m + 1)

(8.183)

=

√
sin 𝜃e−i𝜙 eim𝜙√

2𝜋

[
− d

d𝜃
− m cot 𝜃

]
Pm

l (𝜃)√
(l + m)(l − m + 1)

(8.184)

=
√

sin 𝜃e−i𝜙√
(l + m)(l − m + 1)

[
− d

d𝜃
− m cot 𝜃

](
Pm

l (𝜃)
eim𝜙√

2𝜋

)
. (8.185)

Cancelling
√

sin 𝜃 on both sides and noting that
𝜕Y m

l (𝜃, 𝜙)
𝜕𝜙

= imPm
l (𝜃)

eim𝜙√
2𝜋

, (8.186)

and using Eq. (8.179), we finally write

Y m−1
l (𝜃, 𝜙) = e−i𝜙√

(l + m)(l − m + 1)

[
− 𝜕

𝜕𝜃
+ i cot 𝜃 𝜕

𝜕𝜙

]
Y m

l (𝜃, 𝜙).

(8.187)Similarly,

Y m+1
l (𝜃, 𝜙) = ei𝜙√

(l − m)(l + m + 1)

[
𝜕

𝜕𝜃
+ i cot 𝜃 𝜕

𝜕𝜙

]
Y m

l (𝜃, 𝜙).

(8.188)
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We now define the ladder operators L+ and L− for the m index of the spherical
harmonics as

L− = e−i𝜙
[
− 𝜕

𝜕𝜃
+ i cot 𝜃 𝜕

𝜕𝜙

]
, (8.189)

L+ = ei𝜙
[
+ 𝜕

𝜕𝜃
+ i cot 𝜃 𝜕

𝜕𝜙

]
, (8.190)

thus

Y m−1
l (𝜃, 𝜙) =

L−Y m
l (𝜃, 𝜙)√

(l + m)(l − m + 1)
, (8.191)

Y m+1
l (𝜃, 𝜙) =

L+Y m
l (𝜃, 𝜙)√

(l − m)(l + m + 1)
. (8.192)

We can now construct the spherical harmonics from the eigenstate:

Y 0
l (𝜃, 𝜙) =

√
2l + 1

2
Pl(cos 𝜃) 1√

2𝜋
, (8.193)

by successive operations of the ladder operators as

Y m
l (𝜃, 𝜙) =

√
2l + 1

2
(l − m)!
(l + 1)!

1
2𝜋

[L+]mPl(cos 𝜃), (8.194)

Y−m
l (𝜃, 𝜙) =

√
2l + 1

2
(l − m)!
(l + 1)!

1
2𝜋

[L−]mPl(cos 𝜃). (8.195)

Note that Pm=0
l (cos 𝜃) = Pl(cos 𝜃) is the Legendre polynomial and [L−]∗ =

−[L+], and

Y ∗m
l (𝜃, 𝜙) = (−1)mY−m

l (𝜃, 𝜙). (8.196)

8.6.4 Interpretation of the L+ and L− Operators

In quantum mechanics, the angular momentum operator (we setℏ = 1) is given
as −→L = −i−→r × −→∇. We write this in spherical polar coordinates:

−→L = −i

⎛⎜⎜⎜⎜⎝
êr ê𝜃 ê𝜙

r 0 0
𝜕

𝜕r
1
r
𝜕

𝜕𝜃

1
r sin 𝜃

𝜕

𝜕𝜙

⎞⎟⎟⎟⎟⎠
(8.197)
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= −i
[
−ê𝜃

(
1

sin 𝜃

𝜕

𝜕𝜙

)
+ ê𝜙

(
𝜕

𝜕𝜃

)]
. (8.198)

The basis vectors, ê𝜃 and ê𝜙, in spherical polar coordinates are written in terms
of the basis vectors (êx, êy, êz) of the Cartesian coordinates as

ê𝜃 = (cos 𝜃 cos𝜙)êx + (cos 𝜃 sin𝜙)êy − (sin 𝜃)êz, (8.199)
ê𝜙 = −(sin 𝜃)êx + (cos𝜙)êy. (8.200)

Thus, the angular momentum operator in Cartesian coordinates becomes
−→L = Lxêx + Lyêy + Lzêz (8.201)

= êx

(
i cot 𝜃 cos𝜙 𝜕

𝜕𝜙
+ i sin𝜙

𝜕

𝜕𝜃

)
+ êy

(
i cot 𝜃 sin𝜙

𝜕

𝜕𝜙
− i cos𝜙 𝜕

𝜕𝜃

)
(8.202)

+ êz

(
−i 𝜕

𝜕𝜙

)
.

It is now clearly seen that
L+ = Lx + iLy, (8.203)
L− = Lx − iLy, (8.204)

and

Lz = −i 𝜕

𝜕𝜙
. (8.205)

Also note that
−→L

2
= L2

x + L2
y + L2

z (8.206)

= 1
2
(L+L− + L−L+) + L2

z (8.207)

= −
[

1
sin 𝜃

𝜕

𝜕𝜃

[
sin 𝜃

𝜕

𝜕𝜃

]
+ 1

sin2𝜃

𝜕2

𝜕𝜙2

]
. (8.208)

From the definition of Lz, it is seen that
LzY m

l = mY m
l , m = −l,… , 0,… , l. (8.209)

Also using the L+ and L− operators defined in Eqs. (8.189) and (8.190) and
Eqs. (8.191) and (8.192), we can write

−→L
2
Y m

l = 1
2
(L+L− + L−L+)Y m

l + L2
z Y m

l (8.210)

= l(l + 1)Y m
l , l = 0, 1, 2, 3… . (8.211)

Thus, Y m
l are the simultaneous eigenfunctions of the −→L

2
and the Lz operators.

To understand the physical meaning of the angular momentum operators, con-
sider a scalar function, Ψ(r, 𝜃, 𝜙), which may represent some physical system or
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could be a wave function. We now operate on this function with an operator R,
the effect of which is to rotate a physical system by 𝛼 counterclockwise about
the z-axis. RΨ(r, 𝜃, 𝜙) is now a new function representing the physical system
after it has been rotated. This is equivalent to replacing 𝜙 by 𝜙 + 𝛼 in Ψ(r, 𝜃, 𝜙).
After making a Taylor series expansion about 𝛼 = 0, we get

RΨ(r, 𝜃, 𝜙) = Ψ(r, 𝜃, 𝜙′) = Ψ(r, 𝜃, 𝜙 + 𝛼) (8.212)

= Ψ(r, 𝜃, 𝜙) + 𝜕Ψ
𝜕𝛼

||||𝛼=0
𝛼 + 1

2!
𝜕2Ψ
𝜕𝛼2

||||𝛼=0
𝛼2 + · · · + 1

n!
𝜕nΨ
𝜕𝛼n

||||𝛼=0
𝛼n … .

(8.213)

In terms of the coordinate system (r, 𝜃, 𝜙), this corresponds to a rotation about
the z-axis by −𝛼. Thus, with the replacement d𝛼 → −d𝜙, we get

RΨ(r, 𝜃, 𝜙)

= Ψ(r, 𝜃, 𝜙) − 𝜕Ψ
𝜕𝜙

||||𝛼=0
𝛼 + 1

2!
𝜕2Ψ
𝜕𝜙2

||||𝛼=0
𝛼2 + · · · + (−1)n

n!
𝜕nΨ
𝜕𝜙n

||||𝛼=0
𝛼n …

(8.214)

=
[

1 − 𝜕

𝜕𝜙

||||𝛼=0
𝛼 + 1

2!
𝜕2

𝜕𝜙2

||||𝛼=0
𝛼2 + · · · + (−1)n

n!
𝜕n

𝜕𝜙n

||||𝛼=0
𝛼n · · ·

]
Ψ(r, 𝜃, 𝜙)

(8.215)

=
[

exp
(
−𝛼 𝜕

𝜕𝜙

)]
Ψ(r, 𝜃, 𝜙) = [exp(−i𝛼Lz)]Ψ(r, 𝜃, 𝜙). (8.216)

For a rotation about an arbitrary axis along the unit vector n̂ this becomes

RΨ(r, 𝜃, 𝜙) = [exp(−i𝛼−→L ⋅ n̂)]Ψ(r, 𝜃, 𝜙). (8.217)

Thus, the angular momentum operator −→L is related to the rotation operator R
by

R = exp(−i𝛼−→L ⋅ n̂). (8.218)

8.6.5 Ladder Operators for l

We now write 𝜆l = l(l + 1) and −m2 = 𝜆 in Eq. (8.132) to obtain

d2Θ(𝜃)
d𝜃2 + cot 𝜃dΘ(𝜃)

d𝜃
+

[
l(l + 1) + 𝜆

sin2𝜃

]
Θ(𝜃) = 0. (8.219)

We can put this equation into the second canonical form by the transforma-
tion

z = ln
(

tan 𝜃

2

)
, Θ(𝜃) = V (z), z ∈ [−∞,∞], (8.220)
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as

d2V (z)
dz2 +

[
𝜆 + l(l + 1)

cosh2
𝜃

]
V (z) = 0. (8.221)

Because the roles of l and m are interchanged, we can vary l for fixed m.

Comparing Eq. (8.221) with

d2V (z)
dz2 + [𝜆 + r(z, l)]V (z) = 0 (8.222)

and Eq. (8.93), we see that this is of type A with

a = i, c = 0, p = i𝜋∕2, and d = 0. (8.223)

Its factorization is, therefore, obtained as

O+(z, l)O−(z, l)V
𝜆m
l (z) = [𝜆m − 𝜇(l)]V 𝜆m

l (z) (8.224)

with

k(z, l) = l tanh z, (8.225)
𝜇(l) = −l2. (8.226)

Thus, the ladder operators are

O±(z, l) = ± d
dz

− l tanh z. (8.227)

Because 𝜇(l) is a decreasing function, from Theorem 8.4 we obtain the top of
the ladder for some minimum value of l, say m, thus 𝜆 = −m2. We can now
write

O+(z, l)O−(z, l)V
𝜆m
l (z) = [−m2 + l2]V 𝜆m

l (z), (8.228)

O−(z, l + 1)O+(z, l + 1)V 𝜆m
l (z) = [−m2 + (l + 1)2]V 𝜆m

l (z). (8.229)

Using

∫
+∞

−∞
[V 𝜆m

l−1(z)]
2dz = ∫

+∞

−∞
[O−(z, l)V

𝜆m
l (z)]2dz (8.230)

= ∫
+∞

−∞
V 𝜆m

l (z)[O+(z, l)O−(z, l)V
𝜆m
l (z)]dz (8.231)

= [−m2 + l2]∫
+∞

−∞

[
V 𝜆m

l (z)
]2

dz, (8.232)

we again see that lmin = m, so that

O−(z, l)V
𝜆m
m (z) = 0. (8.233)
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Because we do not have a state lower than l = m, using the definition of O−(z, l),
we can use Eq. (8.71) to find V 𝜆l

l (z) as[
− d

dz
− m tanh z

]
V 𝜆m

m (z) = 0, (8.234)

∫
dV 𝜆m

m (z)
V 𝜆m

m (z)
= −m∫

sinh z
cosh z

dz, (8.235)

V 𝜆m
m (z) = N ′ 1

coshmz
, (8.236)

where N ′ is a normalization constant in the z-space. Using the transformation
given in Eq. (8.220) and, since l = m, we write V 𝜆m

m (z) as

V m
m (𝜃) = V l

l (𝜃) = N sinl𝜃. (8.237)

From Eqs. (8.177) and (8.166), we note that for m = l

yl
l(𝜃) =

√
sin 𝜃Pl

l ∝ (sin 𝜃)(l+
1
2
)
, (8.238)

V l
l (𝜃) ∝ yl

l(𝜃)∕
√

sin 𝜃. (8.239)

Thus, for general m

V m
l (𝜃) = Clm

ym
l (𝜃)√
sin 𝜃

, (8.240)

where Clm is needed to ensure normalization in 𝜃-space. Using Eq. (8.50) of
Theorem 8.5 and Eq. (8.20), we now find the step-up operator for the l index as

V m
l+1(𝜃) =

1√
(l + 1)2 − m2

{
d
dz

− (l + 1) tanh z
}

V m
l (𝜃), (8.241)

Cl+1,m
ym

l+1(𝜃)√
sin 𝜃

=
Clm√

(l + 1)2 − m2

{
d
dz

− (l + 1) tanh z
} ym

l (𝜃)√
sin 𝜃

.

(8.242)

Taking tanh of both sides in Eq. (8.220), we write

tanh z = − cos 𝜃, (8.243)
d
dz

= sin 𝜃
d

d𝜃
(8.244)

and obtain

ym
l+1(𝜃)Cl+1,m =

Clm√
(l + 1 + m)(l + 1 − m)

{
sin 𝜃

d
d𝜃

+
(

l + 1
2

)
cos 𝜃

}
ym

l (𝜃),

(8.245)
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Similarly for the step-down operator, we find

ym
l−1(𝜃)Cl−1,m =

Clm√
(l − m)(l + m)

{
− sin 𝜃

d
d𝜃

+
(

l + 1
2

)
cos 𝜃

}
ym

l (𝜃).

(8.246)

Using our previous results [Eqs. (8.171) and (8.174)], ladder operators for the
m index in ym

l (𝜃) can be written as

ym+1
l (𝜃) = 1√

(l − m)(l + m + 1)
×
{

d
d𝜃

−
(

m + 1
2

)
cot 𝜃

}
ym

l (𝜃),

(8.247)

ym−1
l (𝜃) = 1√

(l + m)(l − m + 1)
×
{
− d

d𝜃
−

(
m − 1

2

)
cot 𝜃

}
ym

l (𝜃).

(8.248)

To evaluate the normalization constant in 𝜃-space, first we show that the ratio
Clm∕Cl+1,m is independent of m. Starting with the state (l,m) we can reach
(l + 1,m + 1) in two ways.

Path I. (l,m) → (l,m + 1) → (l + 1,m + 1)∶ For this path, using Eqs. (8.245)
and (8.247) we write

ym+1
l+1 (𝜃)

Cl+1,m+1

Cl,m+1
=

{
sin 𝜃

d
d𝜃

+
(

l + 1
2

)
cos 𝜃

}{
d

d𝜃
−

(
m + 1

2

)
cot 𝜃

}
ym

l (𝜃)√
(l − m)2(l + m + 1)(l + m + 2)

.

(8.249)

The numerator on the right-hand side is{[
sin 𝜃

d2ym
l

d𝜃2

]
+ (l − m) cos 𝜃

dym
l

d𝜃
+

m + 1
2

sin 𝜃

[
1 −

(
l + 1

2

)
cos2𝜃

]
ym

l

}
.

(8.250)

Using Eq. (8.137) with 𝜆l = l(l + 1) and simplifying, we obtain

ym+1
l+1 (𝜃) =

Cl,m+1

Cl+1,m+1

1
(l − m)

(l − m)√
(l + m + 1)(l + m + 2)

×

{
cos 𝜃 d

d𝜃
−

m + 1
2

sin 𝜃
−

(
l + 1

2

)
sin 𝜃

}
ym

l (𝜃). (8.251)
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Path II. (l,m) → (l + 1,m) → (l + 1,m + 1)∶ Following the same procedure
as in the first path, we obtain

ym+1
l+1 (𝜃) =

Cl,m

Cl+1,m

1
(l + 1 − m)

(l + 1 − m)√
(l + m + 1)(l + m + 2)

×

{
cos 𝜃 d

d𝜃
−

m + 1
2

sin 𝜃
−

(
l + 1

2

)
sin 𝜃

}
ym

l (𝜃). (8.252)

Thus, we obtain
Cl,m+1

Cl+1,m+1
=

Cl,m

Cl+1,m
, (8.253)

which means that Cl,m∕Cl+1,m is independent of m. Using this result, we can
now evaluate Clm∕Cl+1,m. First using Eq. (8.170), we write

yl
l+1(𝜃)

=
Cll

Cl+1,l

{
sin 𝜃

d
d𝜃

+
(

l + 1
2

)
cos 𝜃

}
sinl+1∕2𝜃√

2l + 1
(−1)l

√
1 ⋅ 3 ⋅ 5 · · · (2l + 1)
2[2 ⋅ 4 ⋅ 6 · · · (2l)]

(8.254)

=
Cll

Cl+1,l
sinl+1∕2𝜃 cos 𝜃

√
2l + 1(−1)l

√
1 ⋅ 3 ⋅ 5 · · · (2l + 1)
2[2 ⋅ 4 ⋅ 6 · · · (2l)]

. (8.255)

Using Eqs. (8.170) and (8.171), we can also write

yl
l+1(𝜃) = £−(𝜃, l + 1)yl+1

l+1(𝜃) (8.256)

= £−(𝜃, l + 1)
⎡⎢⎢⎣sinl+3∕2𝜃(−1)l+1

√
1 ⋅ 3 ⋅ 5 · · · (2l + 3)

2[2 ⋅ 4 ⋅ 6 · · · 2(l + 1)]

⎤⎥⎥⎦ (8.257)

=
√
(2l + 3)(−1)l

√
1 ⋅ 3 ⋅ 5 · · · (2l + 1)
2[2 ⋅ 4 ⋅ 6 · · · (2l)]

sinl+1∕2𝜃 cos 𝜃. (8.258)

Comparing these we get

Cll

Cl+1,l
=

Clm

Cl+1,m
=

√
2l + 3
2l + 1

. (8.259)

8.6.6 Complete Set of Ladder Operators

Finally, using

Y m
l (𝜃, 𝜙) =

ym
l (𝜃)√
sin 𝜃

eim𝜙√
2𝜋

, (8.260)
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we write the complete set of normalized ladder operators of the spherical har-
monics for the indices l and m as

Y m
l+1(𝜃, 𝜙) =

√
(2l + 3)

(2l + 1)(l + 1 + m)(l + 1 − m)

×
{

sin 𝜃
𝜕

𝜕𝜃
+ (l + 1) cos 𝜃

}
Y m

l (𝜃, 𝜙), (8.261)

Y m
l−1(𝜃, 𝜙) =

√
(2l − 1)

(2l + 1)(l − m)(l + m)

×
{
− sin 𝜃

𝜕

𝜕𝜃
+ l cos 𝜃

}
Y m

l (𝜃, 𝜙). (8.262)

and

Y m−1
l (𝜃, 𝜙) =

e−i𝜙
[
− 𝜕

𝜕𝜃
+ i cot 𝜃 𝜕

𝜕𝜙

]
√
(l + m)(l − m + 1)

Y m
l (𝜃, 𝜙), (8.263)

Y m+1
l (𝜃, 𝜙) =

e+i𝜙
[

𝜕

𝜕𝜃
+ i cot 𝜃 𝜕

𝜕𝜙

]
√
(l − m)(l + m + 1)

Y m
l (𝜃, 𝜙). (8.264)

Adding Eqs. (8.261) and (8.262), we also obtain a useful relation

cos 𝜃Y m
l (𝜃, 𝜙)

=

√
(l + 1 + m)(l + 1 − m)

(2l + 1)(2l + 3)
Y m

l+1(𝜃, 𝜙) +

√
(l − m)(l + m)

(2l + 1)(2l − 1)
Y m

l−1(𝜃, 𝜙).

(8.265)

8.7 Schrödinger Equation and Single-Electron Atom
(Type F)

The radial part of the Schrödinger equation for a single-electron atom is
given as

d
dr

(
r2 dRl(r)

dr

)
+ r2k2(r)Rl(r) − l(l + 1)Rl(r) = 0, (8.266)

where

k2(r) = 2m
ℏ2

[
E + Ze2

r

]
, (8.267)

Z is the atomic number, and e is the electron’s charge. Because the elec-
trons in an atom are bounded, their energy values should satisfy E < 0. In
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this equation, if we change the dependent variable as Rl(r) = uE,l(r)∕r, the
differential equation to be solved for uE,l(r) becomes

− ℏ2

2m
d2uE,l

dr2 +
[
ℏ2l(l + 1)

2mr2 − Ze2

r

]
uE,l(r) = EuE,l(r). (8.268)

We have seen in Chapter 2 that the conventional method allows us to express
the solutions of this equation in terms of the Laguerre polynomials. To solve
this problem with the factorization method we first write Eq. (8.268) as

d2uE,l

d
(

r∕ ℏ2

mZe2

)2 +
⎡⎢⎢⎢⎣

2(
r∕ ℏ2

mZe2

) − l(l + 1)(
r∕ ℏ2

mZe2

)2

⎤⎥⎥⎥⎦uE,l(r) +
(

2ℏ2E
mZ2e4

)
uE,l(r) = 0.

(8.269)

Taking the unit of length as ℏ2∕mZe2 and defining 𝜆 = 2ℏ2E∕mZ2e4, Eq. (8.269)
becomes

d2ul
𝜆

dr2 +
[
𝜆 +

(
2
r
− l(l + 1)

r2

)]
ul
𝜆
= 0. (8.270)

This is Type F with

q = −1 and m = l.

Thus, we determine k(r, l) and 𝜇(l) as

k(r, l) = l
r
− 1

l
, (8.271)

𝜇(l) = − 1
l2 . (8.272)

Because 𝜇(l) is an increasing function, we have lmax, say n′; thus, we obtain 𝜆 as

𝜆 = − 1
(n′ + 1)2 , n′ = 0, 1, 2, 3,… (8.273)

= − 1
n2 , n = 1, 2, 3,… . (8.274)

Note that l ≤ n = 1, 2, 3,… . We also have

ul=n
n = (2∕n)n+1∕2[(2n)!]−1∕2rn exp

(
− r

n

)
, (8.275)

where
ul−1

n = [£−(r, l)]un
n, (8.276)

ul+1
n = [£+(r, l + 1)]un

n. (8.277)

The normalized ladder operators are defined by Eq. (8.49) as

£±(r, l) =
[
− 1

n2 + 1
l2

]−1∕2 {
± d

dr
− l

r
+ 1

l

}
. (8.278)
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Using (8.274), the energy levels are obtained as

En = −mZ2e4

2ℏ2n2 , n = 1, 2, 3,… , (8.279)

which are the quantized Bohr energy levels.

8.8 Gegenbauer Functions (Type A)

The Gegenbauer equation is in general given as

(1 − x2)
d2C𝜆′

n (x)
dx2 − (2𝜆′ + 1)x

dC𝜆′

n (x)
dx

+ n(n + 2𝜆′)C𝜆′

n (x) = 0. (8.280)

For 𝜆 = 1∕2, this equation reduces to the Legendre equation. For integer values
of n its solutions reduce to the Gegenbauer or the Legendre polynomials:

C𝜆′

n (x) =
[n∕2]∑
r=0

(−1)r Γ(n − r + 𝜆′)
Γ(𝜆′)r!(n − 2r)!

(2x)n−2r. (8.281)

In the study of surface oscillations of a hypersphere one encounters the
equation

(1 − x2)
d2Um

𝜆
(x)

dx2 − (2m + 3)x
dUm

𝜆
(x)

dx
+ 𝜆Um

𝜆
(x) = 0, (8.282)

solutions of which could be expressed in terms of the Gegenbauer polynomials
as

Um
𝜆
(x) = Cm+1

l−m (x), (8.283)

where 𝜆 = (l − m)(l + m + 2). Using

x = − cos 𝜃, (8.284)
Um

𝜆
(x) = Zm

𝜆
(𝜃)(sin 𝜃)−m−1, (8.285)

we can put Eq. (8.282) into the second canonical form as
d2Zm

𝜆
(𝜃)

d𝜃2 +
[
−m(m + 1)

sin2𝜃
+ (𝜆 + (m + 1)2)

]
Zm
𝜆
(𝜃) = 0. (8.286)

On the introduction of 𝜆′′ = 𝜆 + (m + 1)2 and comparing with Eq. (8.93), this
is of type A with

c = p = d = 0, a = 1, z = 𝜃, (8.287)

thus, its factorization is obtained as

k(𝜃,m) = m cot 𝜃, (8.288)
𝜇(m) = m2. (8.289)
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The solutions are found by using

Zm=l
𝜆

(𝜃) = 𝜋−1∕4
[

Γ(l + 2)
Γ(l + 3∕2)

]1∕2

sinl+1𝜃 (8.290)

and the formula

Zm−1
l = [(l + 1)2 − m2)]−1∕2

{
− d

d𝜃
− m cot 𝜃

}
Zm

l . (8.291)

Note that Zm
l is the eigenfunction corresponding to the eigenvalue

𝜆′′ = (l + 1)2, l − m = 0, 1, 2,… , (8.292)

that is, to
𝜆 = (l + 1)2 − (m + 1)2 (8.293)
= (l − m)(l + m + 2). (8.294)

8.9 Symmetric Top (Type A)

The wave equation for a symmetric top is encountered in the study of simple
molecules. If we separate the wave function as

U = Θ(𝜃) exp(i𝜅𝜙) exp(im𝜓), (8.295)

where 𝜃, 𝜙, and 𝜓 are the Euler angles and 𝜅 and m are integers, Θ(𝜃) satisfies
the second-order ordinary differential equation

d2Θ(𝜃)
d𝜃2 + cot 𝜃dΘ(𝜃)

d𝜃
− (m − 𝜅 cos 𝜃)2

sin2𝜃
Θ(𝜃) + 𝜎Θ(𝜃) = 0, (8.296)

where

𝜎 = 8𝜋2AW
h2 − A𝜅2

C
. (8.297)

A, W , C, and h are the other constants that come from the physics of the prob-
lem. With the substitution Y = Θ(𝜃)sin1∕2𝜃, Eq. (8.296) becomes

d2Y
d𝜃2 −

[
(m − 1∕2)(m + 1∕2) + 𝜅2 − 2m𝜅 cos 𝜃

sin2𝜃

]
Y + (𝜎 + 𝜅2 + 1∕4)Y = 0.

(8.298)

This equation is of type A, and we identify the parameters in Eq. (8.93) as

a = 1, c = −1∕2, d = −𝜅, p = 0.

The factorization is now given by
k(𝜃,m) = (m − 1∕2) cot 𝜃 − 𝜅∕ sin 𝜃, (8.299)
𝜇(m) = (m − 1∕2)2. (8.300)
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Eigenfunctions can be obtained from

Y J
J𝜅 =

[
Γ(2J + 2)

Γ(J − 𝜅 + 1)Γ(J + 𝜅 + 1)

]1∕2

sinJ−𝜅+1∕2 𝜃

2
cosJ+𝜅+1∕2 𝜃

2
(8.301)

by using

Y m−1
J𝜅 =

[(
J + 1

2

)2
−

(
m − 1

2

)2]−1∕2 {
− d

d𝜃
− (m − 1∕2) cot 𝜃 + 𝜅

sin 𝜃

}
Y m

J𝜅 .

(8.302)

The corresponding eigenvalues are
𝜎 + 𝜅 + 1∕4 = (J + 1∕2)2, (8.303)

J − |m| and J − |𝜅| = 0, 1, 2,… , (8.304)

so that

W = J(J + 1)h2

8𝜋2A
+

( 1
C

− 1
A

)
𝜅2h2

8𝜋2 . (8.305)

8.10 Bessel Functions (Type C)

Bessel’s equation:

x2J ′′m(x) + xJ ′m(x) + (𝜆x2 − m2)Jm(x) = 0, (8.306)

multiplied by 1∕x, gives the first canonical form as

d
dx

[
x

dJm(x)
dx

]
+

(
𝜆x − m2

x

)
Jm(x) = 0, (8.307)

where p(x) = x and 𝑤(x) = x. A second transformation:
dz
dx

=
√

𝑤

p
= 1, (8.308)

Jm = Ψ
[𝑤p]1∕4 = Ψ√

x
, (8.309)

gives us the second canonical form:

d2Ψ
dx2 +

[
𝜆 −

(m2 − 1∕4)
x2

]
Ψ = 0. (8.310)

This is type C, and its factorization is given as

k(x,m) =

(
m − 1

2

)
x

, (8.311)

𝜇(m) = 0. (8.312)
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Because 𝜇(m) is neither a decreasing nor an increasing function of m, we have
no limit, upper or lower, to the ladder. We have only the recursion relations

Ψm+1 = 1√
x

{
d

dx
−

(m + 1∕2)
x

}
Ψm, (8.313)

Ψm−1 = 1√
x

{
− d

dx
−

(m − 1∕2)
x

}
Ψm, (8.314)

where

Ψm = x1∕2Jm(𝜆1∕2x). (8.315)

8.11 Harmonic Oscillator (Type D)

The Schrödinger equation for the harmonic oscillator is written as

d2Ψ
d𝜉2 − 𝜉2Ψ + 𝜆Ψ = 0, (8.316)

where the physical variables, 𝜉 and 𝜆, are given as 𝜉 = (ℏ∕𝜇𝜔)1∕2x, 𝜆 = 2E∕ℏ𝜔.
This equation can be written in either of the two forms (see Problem 14)

O−O+Ψ𝜆 = (𝜆 + 1)Ψ𝜆, (8.317)
O+O−Ψ𝜆 = (𝜆 − 1)Ψ𝜆, (8.318)

and where

O± = ± d
d𝜉

− 𝜉 . (8.319)

Operating on Eq. (8.317) with O+ and on Eq. (8.318) with O− we obtain the
analog of Theorem 8.1 as

Ψ𝜆+2 ∝ O+Ψ𝜆, (8.320)
Ψ𝜆−2 ∝ O−Ψ𝜆. (8.321)

Moreover, corresponding to Theorem 8.4, we find that we cannot lower the
eigenvalue 𝜆 indefinitely. Thus, we have a bottom of the ladder as

𝜆 = 2n + 1, n = 0, 1, 2,… . (8.322)

Hence, the ground state must satisfy

O−Ψ0 = 0, (8.323)

which determines Ψ0 as

Ψ0 = 𝜋−1∕4 exp(−𝜉2∕2). (8.324)
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Now the other eigenfunctions can be obtained from

Ψn+1 = [2n + 2]−1∕2O+Ψn, (8.325)
Ψn−1 = [2n]−1∕2O−Ψn. (8.326)

8.12 Differential Equation for the Rotation Matrix

We now consider the following differential equation that the rotation matrix,
dl

mm′ (𝛽), satisfies:{
d2

d𝛽2 + cot 𝛽 d
d𝛽

+
[

l(l + 1) −
(

m2 + m′2 − 2mm′ cos 𝛽
sin2𝛽

)]}
dl

m′m(𝛽) = 0.

(8.327)

A detailed discussion of the rotation matrix will be presented in Chapter 10;
however, here we look at it entirely from the point of view of the factorization
method as a second-order differential equation.

8.12.1 Step-Up/Down Operators for m

Considering m as a parameter, we now find the normalized step-up and
step-down operators, £+(m + 1) and £−(m), that change the index m while
keeping the index m′ fixed. We first put the above differential equation into
first canonical form:

d
dx

[
p(x)du(x)

dx

]
+ q(x)u(x) = −𝜆𝑤(x)u(x), (8.328)

as
d

d𝛽

[
sin 𝛽

d
d𝛽

dl
m′m(𝛽)

]
−

(
m2 + m′2 − 2mm′ cos 𝛽

sin 𝛽

)
dl

m′m(𝛽)

= −l(l + 1) sin 𝛽dl
m′m(𝛽), (8.329)

where

𝜆 = l(l + 1), (8.330)
p(𝛽) = sin 𝛽, (8.331)

q(𝛽) = −m2 + m′2 − 2mm′ cos 𝛽
sin 𝛽

, (8.332)

𝑤(𝛽) = sin 𝛽. (8.333)

Making the substitutions [Eqs. (8.5) and (8.6)]:

dl
m′m(𝛽) =

y(𝜆l,m′,m, 𝛽)√
sin 𝛽

, dz = d𝛽, (8.334)
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we obtain the second canonical form [Eq. (8.7)]:
d2y
d𝛽2 + [𝜆l + r(z,m)]y(z) = 0, (8.335)

where

𝜆l = l(l + 1) + 1
4
, (8.336)

r(z,m) = −
m2 + m′2 − 2mm′ cos 𝛽 − 1

4

sin2𝛽
. (8.337)

Comparing r(z,m) with Eq. (8.93), this is type A in Section 8.5. We determine
the coefficients in Eq. (8.93) and write k(𝛽,m) and 𝜇(m) as

k(𝛽,m) = (m − 1∕2) cot 𝛽 − m′

sin 𝛽
, (8.338)

𝜇(m) = (m − 1∕2)2. (8.339)

Now the ladder operators [Eq. (8.14)] become

O±(m) = ± d
d𝛽

− k(𝛽,m) (8.340)

= ± d
d𝛽

−
(

m − 1
2

)
cot 𝛽 + m′

sin 𝛽
. (8.341)

Using 𝜇(m):

𝜇(m) =
(

m − 1
2

)2
, (8.342)

and Theorem 8.1, we can show that |m| ≤ l. We now construct the eigenfunc-
tions starting from the top of the ladder, m = l, and write

O+(l + 1)y(𝜆l,m′, l, 𝛽) = 0, (8.343)(
+ d

d𝛽
−

(
l + 1

2

)
cot 𝛽 + m′

sin 𝛽

)
y(𝜆l,m′, l, 𝛽) = 0. (8.344)

Integrating Eq. (8.344) gives

y(𝜆l,m′, l, 𝛽) = sinl+1∕2𝛽 tan−m′ (𝛽∕2). (8.345)

Using Eq. (8.334), we obtain

dl
m′l = sinl𝛽 tan−m′ (𝛽∕2). (8.346)

8.12.2 Step-Up/Down Operators for m′

Keeping m as fixed and treating m′ as a parameter, we follow similar steps to
determine that this is still a type A problem (Section 8.5). We first find k(𝛽,m′)
and𝜇(m′) to write the ladder operators, and then show that m′ satisfies |m′| ≤ l.
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Note that r(z,m,m′, 𝛽) is symmetric in m and m′. From the definition of
dl

m′m(𝛽) [Eq. (10.295)]:

dl
m′m(𝛽) = ∫ ∫ dΩY ∗

lm′ (𝜃, 𝜙)e−i𝛽Ly Ylm(𝜃, 𝜙), (8.347)

it is seen that the dl
m′m(𝛽) are the elements of unitary matrices, furthermore,

they are real; hence,

dl
m′m(𝛽) = dl

mm′ (−𝛽) (8.348)

is true (Problem 16). In order to satisfy this relation, we introduce a factor of
−1 into the definition of the ladder operators O±(m′) as

O±(m′) = −
[
± d

d𝛽
− K(𝛽,m′)

]
(8.349)

= −
[
± d

d𝛽
−

(
m′ − 1

2

)
cot 𝛽 + m

sin 𝛽

]
. (8.350)

Using [Eq. (8.345)]

y(l,m′,m = l, 𝛽) = sinl+1∕2𝛽 tan−m′ (𝛽∕2) (8.351)

in the definition

dl
m′m(𝛽) =

y(l,m,m′, 𝛽)√
sin 𝛽

, (8.352)

we can write

dl
ll(𝛽) = (1 + cos 𝛽)l. (8.353)

8.12.3 Normalized Functions with m = m′ = l

Using the weight function [Eq. (8.333)], 𝑤(𝛽), we evaluate the normalization
constant for m = m′ = l as

∫
𝜋

0
𝑤(𝛽)[dl

ll(𝛽)]
2d𝛽 = 22l+1

2l + 1
, (8.354)

which allows us to write the normalized dl
ll(𝛽) as

dl
ll(𝛽) =

(
2l + 1
22l+1

)1∕2

(1 + cos 𝛽)l. (8.355)

8.12.4 Full Matrix for l = 2

To construct the full matrix d2
m′m(𝛽), we use the eigenfunctions

dl
m′l(𝛽) = Cl

m′l sinl 𝛽 tan−m′

(
𝛽

2

)
, (8.356)
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where Cl
m′l are the normalization constants and write

d2
m′2(𝛽) = C2

m′2 sin2 𝛽 tan−m′

(
𝛽

2

)
. (8.357)

Hence, the components of d2
m′2(𝛽) are obtained as

d2
22(𝛽) =

(5
2

)1∕2(1 + cos 𝛽
2

)2

,

d2
12(𝛽) = −

(5
2

)1∕2 sin 𝛽

2
(1 + cos 𝛽),

d2
02(𝛽) =

(15
16

)1∕2
sin2𝛽, (8.358)

d2
−1,2(𝛽) = −

(5
2

)1∕2 sin 𝛽

2
(1 − cos 𝛽),

d2
−2,2(𝛽) =

(5
2

)1∕2(1 − cos 𝛽
2

)2

.

As the reader can check, we can also generate these functions by acting on
the normalized d2

22(𝛽) with the normalized ladder operator £−(m′), which acts
on m′ and lowers it by one while keeping m fixed. Equation (8.358) gives only
the first column of the 5 × 5 matrix, d2

m′m(𝛽), where m = 2 and m′ takes the
values 2, 1, 0,−1,−2. For the remaining columns, we use the normalized ladder
operator:

£−(m) =
− d

d𝛽
−

(
m − 1

2

)
cot 𝛽 + m′

sin 𝛽√
(l + m)(l − m + 1)

, (8.359)

which keeps m′ fixed and lowers m by one as

£−(m) y(𝜆,m′,m, 𝛽) = y(𝜆,m′,m − 1, 𝛽). (8.360)

Similarly, we can write the other normalized ladder operator £+(m).
We now use√

sin 𝛽dl
m′m = y(𝜆,m′,m, 𝛽) (8.361)

in Eqs. (8.359) and (8.360) to obtain

dl
m′,m−1 = 1√

(l + m)(l − m + 1)

[
− d

d𝛽
− m cot 𝛽 + m′

sin 𝛽

]
dl

m′m. (8.362)

In conjunction with the normalized eigenfunctions [Eq. (8.358)], each of which
is the top of the ladder for the corresponding row, we use this formula to gen-
erate the remaining 20 elements of the dl

m′m matrix.
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Note: You can use the symmetry relation in Eq. (8.348) to check your algebra.
Also show the relation (Problem 17)

dl
m′m(𝛽) = (−1)m′−mdl

mm′ (𝛽). (8.363)

8.12.5 Step-Up/Down Operators for l

To find the step-up/-down operators that shift the index l for fixed m and
m′ that give the normalized functions dl

mm′ (𝛽), we transform the differential
equation for dl

mm′ (𝛽) into an appropriate form. We start with the equation that
dl

m′m(𝛽) satisfies:{
d2

d𝛽2 + cot 𝛽 d
d𝛽

+
[

l(l + 1) − m2 + m′2 − 2mm′ cos 𝛽
sin2𝛽

]}
dl

m′m(𝛽) = 0,

(8.364)

and substitute

z = ln(tan 𝛽∕2), (8.365)
dl

m′m(𝛽) = Kl
m′m(z), (8.366)

to obtain
d2Kl

m′m

dz2 +
[
−(m2 + m′2) + l(l + 1)

cosh2z
− 2mm′ tanh z

]
Kl

m′m(z) = 0, (8.367)

which is in second canonical form. We now proceed similar to the previous
case. Comparing with type E in Section 8.5, we obtain

O±(l) = ± d
dz

−
(

l tanh z + mm′

l

)
. (8.368)

The normalized ladder operators, £±(l) for the normalized eigenfunctions
become

dl−1
m′m(𝛽) =

[
l
√
(2l − 1)∕(2l + 1)√

[l2 − m2][l2 − m′2]

][
− sin 𝛽

d
d𝛽

+ l cos 𝛽 − m′m
l

]
dl

m′m(𝛽)

(8.369)

and

dl+1
m′m(𝛽) =

[
(l + 1)

√
(2l + 3)∕(2l + 1)√

[(l + 1)2 − m2][(l + 1)2 − m′2]

]
×
[

sin 𝛽
d

d𝛽
+ (l + 1) cos 𝛽 − m′m

(l + 1)

]
dl

m′m(𝛽). (8.370)

For a recursion relation, we simply add the above expressions.
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Problems

1 Starting from the first canonical form of the Sturm–Liouville equation:

d
dx

[
p(x)dΨ(x)

dx

]
+ q(x)Ψ(x) + 𝜆𝑤(x)Ψ(x) = 0, x ∈ [a, b],

derive the second canonical form:
d2ym

𝜆
(z)

dz2 + {𝜆 + r(z,m)}ym
𝜆
(z) = 0,

where

r(z,m) =
q
𝑤

+ 3
16

[
1
𝑤

d𝑤
dz

+ 1
p

dp
dz

]2

− 1
4

[
2

p𝑤
dp
dz

d𝑤
dz

+ 1
𝑤

d2𝑤

dz2 + 1
p

d2p
dz2

]
,

by using the transformations y(z) = Ψ(x)[𝑤(x)p(x)]1∕4 and dz =

dx
[
𝑤(x)
p(x)

]1∕2
.

2 Derive the normalization constants in

Y m
l (𝜃, 𝜙) =

√
2l + 1

2
(l − m)!
(l + 1)!

1
2𝜋

[L+]mPl(cos 𝜃)

and

Y−m
l (𝜃, 𝜙) =

√
2l + 1

2
(l − m)!
(l + 1)!

1
2𝜋

[L−]mPl(cos 𝜃).

3 Derive the normalization constant in

y𝜆l
l (𝜃) = (−1)l

[
(2l + 1)!
22l+1l!2

]1∕2

(sin 𝜃)
(

l+ 1
2

)
.
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4 Derive Eq. (8.221), which is given as
d2V (z)

dz2 +
[
𝜆 + l(l + 1)

cosh2
𝜃

]
V (z) = 0.

5 The general solution of the differential equation
d2y
dx2 + 𝜆y = 0

is given as the linear combination
y(x) = C0 sin

√
𝜆x + C1 cos

√
𝜆x.

Show that factorization of this equation leads to the trivial result with
k(x,m) = 0, 𝜇(m) = 0,

and the corresponding ladder operators just produce other linear combi-
nations of sin

√
𝜆x and cos

√
𝜆x.

6 Show that taking
k(z,m) = k0(z) + k1(z)m + k2(z)m2

does not lead to any new categories, except the trivial solution given in
Problem 5. A similar argument works for higher powers of m.

7 Show that as long as we admit a finite number of negative powers of m in
k(z,m), no new factorization types appear.

8 Show that
𝜇(m) + m2(k2

1 + k′
1) + 2m(k0k1 + k′

0)
is a periodic function of m with the period 1.
Use this result to verify

𝜇(m) − 𝜇(0) = −m2(k2
1 + k′

1) − 2m(k0k1 + k′
0).

9 Derive the step-down operator in

yl−1
m (𝜃)Cl−1,m =

Clm√
(l − m)(l + m)

{
− sin 𝜃

d
d𝜃

+
(

l + 1
2

)
cos 𝜃

}
yl

m(𝜃).

10 Follow the same procedure used in Path I in Section 8.6.5 to derive the
equation

ym+1
l+1 (𝜃) =

Cl,m

Cl+1,m

1
(l + 1 − m)

(l + 1 − m)√
(l + m + 1)(l + m + 2)

×

{
cos 𝜃 d

d𝜃
−

m + 1
2

sin 𝜃
−

(
l + 1

2

)
sin 𝜃

}
ym

l (𝜃).
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11 Use the factorization method to show that the spherical Hankel functions
of the first kind:

h(1)
l = jl + inl,

can be expressed as

h(1)
l (x) = (−1)lxl

[
1
x

d
dx

]l

h(1)
0 (x)

= (−1)lxl
[

1
x

d
dx

]l (−ieix

x

)
.

Hint: Introduce ul(x) = yl(x)∕xl+1 in

y′′l +
[

1 − l(l + 1)
x2

]
yl = 0.

12 Using the factorization method, find a recursion relation relating the nor-
malized eigenfunctions y(n, l, r) of the differential equation

d2y
dr2 +

[
2
r
− l(l + 1)

r2

]
y − 1

n2 y = 0

to the eigenfunctions with l ± 1.
Hint: First show that l = n − 1, n − 2,… , l = integer and the normaliza-
tion is ∫ ∞

0 y2(n, l, r)dr = 1.

13 The harmonic oscillator equation
d2Ψ
dx2 + (𝜀 − x2)Ψ(x) = 0

is a rather special case of the factorization method because the operators
O± are independent of any parameter.

(i) Show that the above equation factorizes as

O+ = d
dx

− x,

O− = − d
dx

− x.

(ii) In particular, show that ifΨ𝜀(x) is a solution for the energy eigenvalue
𝜀, then

O+Ψ𝜀(x)
is a solution for 𝜀 + 2, while

O−Ψ𝜀(x)
is a solution for 𝜀 − 2.
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(iii) Show that 𝜀 has a minimum
𝜀min = 1,

with
𝜀n = 2n + 1, n = 0, 1, 2,…

and show that the 𝜀 < 0 eigenvalues are not allowed.
(iv) Using the factorization technique, find the eigenfunction cor-

responding to 𝜀min and then use it to express all the remaining
eigenfunctions.
Hint: Use the identity[

d
dx

− x
]
Φ(x) = ex2∕2 d

dx

(
e−

x2

2 Φ(x)
)
.

14 Show that the standard method for the harmonic oscillator problem leads
to a single ladder with each function on the ladder corresponding to a dif-
ferent eigenvalue 𝜆. This follows from the fact that r(z,m) is independent
of m. The factorization we have introduced in Section 8.11 is simpler, and
in fact the method of factorization originated from this treatment of the
problem.

15 The spherical Bessel functions, jl(x), are related to the solutions of
d2yl

dx2 +
[

1 − l(l + 1)
x2

]
yl(x) = 0,

(regular at x = 0) by

jl(x) =
yl(x)

x
.

Using the factorization technique, derive recursion formulae
(i) relating jl(x) to jl+1(x) and jl−1(x),

(ii) relating j′l(x) to jl+1(x) and jl−1(x).

16 Show that the relation in Eq. (8.348):
dl

m′m(𝛽) = dl
mm′ (−𝛽),

is true.

17 Use the symmetry relation in Eq. (8.348) to check your algebra in
Section 8.12.4. Also show the relation in Eq. (8.363):

dl
m′m(𝛽) = (−1)m′−mdl

mm′ (𝛽).

18 Complete the details of the derivation that lead to Eqs. (8.369) and (8.370).
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9

Coordinates and Tensors

Using a coordinate system is probably the fastest way to introduce mathemat-
ics into the study of nature. A coordinate system in tune with the symmetries
of the physical system at hand, not only simplifies the algebra but also makes
the interpretation of the solution easier. Once a coordinate system is defined,
physical processes can be studied in terms of operations among mathematical
symbols like scalars, vectors, tensors, etc. that represents the physical proper-
ties of the system. Regularities and symmetries among the physical phenomena
can now be expressed in terms of mathematical expressions as laws of nature.
Naturally, the true laws of nature should not depend on what coordinate sys-
tem is being used. Therefore, it should be possible to express the laws of nature
in coordinate independent formalism. In this regard, tensor equations, which
preserve their form under general coordinate transformations, have proven to
be very useful. In this chapter, we start with the Cartesian coordinates and their
transformations. We also introduce Cartesian tensors and their application to
the theory of elasticity. We then generalize our discussion to generalized coor-
dinates and general tensors. Curvature, parallel transport, geodesics are other
interesting topics discussed in this chapter. The next stop in our discussion is
coordinate systems in Minkowski spacetime and their transformation prop-
erties. We also introduce four-tensors in spacetime and discuss covariance of
laws of nature. We finally discuss Maxwell’s equations and their transformation
properties.

9.1 Cartesian Coordinates

In three-dimensional Euclidean space, a Cartesian coordinate system can be
constructed by choosing three mutually orthogonal straight lines. A point,
P, can be defined either by giving its coordinates (x1, x2, x3) or by using the
position vector −→r = (x1, x2, x3):

−→r = x1ê1 + x2ê2 + x3ê3, (9.1)

Mathematical Methods in Science and Engineering, Second Edition. Selçuk Ş. Bayın.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.
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x1

x3

x2
e2
^

e1
^

e3
^ r

P (x1, x2, x3)

Figure 9.1 Cartesian coordinate system.

where êi are the unit basis vectors along the coordinate axis (Figure 9.1).
Similarly, an arbitrary vector, −→a , in Euclidean space can be defined in terms of
its coordinates (a1, a2, a3) as

−→a = a1ê1 + a2ê2 + a3ê3, (9.2)

where the magnitude, a or |−→a |, is given as

a = |−→a | = √
a2

1 + a2
2 + a2

3. (9.3)

9.1.1 Algebra of Vectors

i) Multiplication of a vector with a constant, c, is done by multiplying each
component with that constant:

c−→a = (ca1, ca2, ca3). (9.4)

ii) Addition or subtraction of vectors is done by adding or subtracting the
corresponding components:

−→a ±
−→
b = (a1 ± b1, a2 ± b2, a3 ± b3). (9.5)

iii) Vector multiplication:
a) The dot product or the scalar product of two vectors, −→a and

−→
b , is a

scalar defined as

(a, b) = −→a ⋅
−→
b = ab cos 𝜃ab, (9.6)

or as

(a, b) = a1b1 + a2b2 + a3b3, (9.7)

where 𝜃ab is the angle between the two vectors (Figure 9.2).
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b) The cross product or the vector product, −→a ×
−→
b , of two vectors is

another vector defined as

−→a ×
−→
b = (a2b3 − a3b2)ê1 + (a3b1 − a1b3)ê2 + (a1b2 − a2b1)ê3. (9.8)

Using the permutation symbol, we can write the components of a vec-
tor product as(−→a ×

−→
b
)

i
=
∑3

j,k=1
𝜖ijkajbk , (9.9)

where the permutation symbol takes the values

𝜖ijk =
⎧⎪⎨⎪⎩
+1 for cyclic permutations,

0 when any two indices are equal,
−1 for anticyclic permutations.

(9.10)

The magnitude of a vector product is given as

|||−→a ×
−→
b ||| = ab sin 𝜃ab, (9.11)

where the direction is conveniently found by the right-hand rule
(Figure 9.2).

9.1.2 Differentiation of Vectors

In Cartesian coordinates, motion of a particle is described by giving its position
as a function of time (Figure 9.3):

−→r (t) = (x1(t), x2(t), x3(t)). (9.12)

Figure 9.2 Scalar and vector
products.

a

b

a

abcosθab = a·b

b
c = a × b

θab

θab
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x1

x2

x3

r (t)

Figure 9.3 Motion in Cartesian
coordinates.

Velocity, −→𝑣 , and acceleration, −→a , are now defined as the derivatives

−→
𝑣 = d−→r

dt
= limΔt→0

−→r (t + Δt) − −→r (t)
Δt

=
dx1

dt
ê1 +

dx2

dt
ê2 +

dx3

dt
ê3,

(9.13)

and

−→a = d−→𝑣
dt

= limΔt→0

−→
𝑣 (t + Δt) − −→

𝑣 (t)
Δt

=
d𝑣1

dt
ê1 +

d𝑣2

dt
ê2 +

d𝑣3

dt
ê3.

(9.14)

Similarly, the derivative of a general vector, −→A , with respect to a parameter, t, is
defined as

d−→A
dt

= lim
Δt→0

−→A(t + Δt) − −→A(t)
Δt

, (9.15)

thus

d−→A
dt

=
dA1

dt
ê1 +

dA2

dt
ê2 +

dA3

dt
ê3. (9.16)

Generalization of these equations to n dimensions is obvious.

9.2 Orthogonal Transformations

There are many ways to choose the orientation of the Cartesian axes. Symme-
tries of the physical system often make certain orientations more advantageous
than the others. In general, we need a dictionary to translate the coordinates
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Figure 9.4 Unit basis vectors.

x2

x1

0

x1

r (t)

x2

x3

ê3

ê1

ê2

ê2ê1

ê3

x3

assigned in one Cartesian system to another. A connection between the com-
ponents of the position vector, −→r , assigned by two sets of Cartesian axes with
a common origin (Figure 9.4),

−→r = x1ê1 + x2ê2 + x3ê3, (9.17)
−→r = x1ê1 + x2ê2 + x3ê3, (9.18)

can be obtained as

x1 = (ê1 ⋅
−→r ) = x1(ê1 ⋅ ê1) + x2(ê1 ⋅ ê2) + x3(ê1 ⋅ ê3),

x2 = (ê2 ⋅
−→r ) = x1(ê2 ⋅ ê1) + x2(ê2 ⋅ ê2) + x3(ê2 ⋅ ê3),

x3 = (ê3 ⋅
−→r ) = x1(ê3 ⋅ ê1) + x2(ê3 ⋅ ê2) + x3(ê3 ⋅ ê3),

(9.19)

which can also be written as

x1 = (cos 𝜃11) x1 + (cos 𝜃12)x2 + (cos 𝜃13)x3,

x2 = (cos 𝜃21) x1 + (cos 𝜃22)x2 + (cos 𝜃23)x3,

x3 = (cos 𝜃31) x1 + (cos 𝜃32)x2 + (cos 𝜃33)x3.

(9.20)

In these equations, cos 𝜃ij are called the direction cosines defined as

cos 𝜃ij = êi ⋅ êj. (9.21)

Note that the first unit basis vector is always taken as the barred system, that is,

cos 𝜃ji = êj ⋅ êi. (9.22)



180 9 Coordinates and Tensors

The transformation equations obtained for the position vector are also true
for an arbitrary vector, −→a , as

a1 = (cos 𝜃11) a1 + (cos 𝜃12)a2 + (cos 𝜃13)a3,

a2 = (cos 𝜃21) a1 + (cos 𝜃22)a2 + (cos 𝜃23)a3,

a3 = (cos 𝜃31) a1 + (cos 𝜃32)a2 + (cos 𝜃33)a3.

(9.23)

The transformation equations given in Eq. (9.23) are the special case of general
linear transformation, which can be written as

x1 = a11x1 + a12x2 + a13x3,

x2 = a21x1 + a22x2 + a23x3,

x3 = a31x1 + a32x2 + a33x3,

(9.24)

where aij are constants independent of −→r and
−→
r . Using the Einstein summa-

tion convention, Eq. (9.24) can also be written as

xi = aijxj, (9.25)

where summation over the repeated indices, which are also called the dummy
indices, is implied. In other words, Eq. (9.25) means

xi = aijxj (9.26)

=
3∑

j=1
aijxj. (9.27)

In Eq. (9.26), the free index, i, can take the values 1, 2, 3. Unless otherwise
stated, we will use the Einstein summation convention. Magnitude of −→r in this
notation is shown as r =

√
xixi.

Using matrix notation [1], transformation equations (9.24) can also be
written as

r = Ar, (9.28)

where r and r are represented by the column matrices:

r =
⎡⎢⎢⎣
x1
x2
x3

⎤⎥⎥⎦ , r =
⎡⎢⎢⎣
x1
x2
x3

⎤⎥⎥⎦ , (9.29)

and the transformation matrix, A, is represented by the square matrix

A =
⎡⎢⎢⎢⎣
a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤⎥⎥⎥⎦ . (9.30)
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We use both boldface letter r and −→r to denote a vector. Generalization of
these formulas to n dimensions is again obvious. The transpose of a matrix is
obtained by interchanging its rows and columns. For example, the transpose
of r is a row matrix:

r̃ =
[
x1 x2 x3

]
(9.31)

and the transpose of A is written as

Ã =
⎡⎢⎢⎢⎣
a11 a21 a31

a12 a22 a32

a13 a23 a33

⎤⎥⎥⎥⎦ . (9.32)

We can now write the square of the magnitude of r as

r2 = r̃r =
[
x1 x2 x3

] ⎡⎢⎢⎣
x1
x2
x3

⎤⎥⎥⎦ (9.33)

= x2
1 + x2

2 + x2
3.

The magnitude squared of r is now given as

r̃ r = r̃
(

ÃA
)

r, (9.34)

where we have used the matrix property

ÃB = B̃Ã. (9.35)

From Eq. (9.34), it is seen that linear transformations that preserve the length
of a vector must satisfy the condition

ÃA= I, (9.36)

where I is the identity matrix:

I =
⎡⎢⎢⎢⎣
1 0 0
0 1 0
0 0 1

⎤⎥⎥⎥⎦ . (9.37)

Such transformations are called orthogonal transformations. In terms of
components, the orthogonality condition [Eq. (9.36)] can be written as

[Ã]ik[A]kj = akiakj = 𝛿ij. (9.38)
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Taking the determinant of the orthogonality relation, we see that the determi-
nant of transformations that preserve the length of a vector satisfies

[det A]2 = 1, (9.39)

thus

det A = ±1. (9.40)

Orthogonal transformations are basically transformations among Cartesian
coordinates without a scale change. Transformations with det A = 1 are called
proper transformations. They are composed of rotations and translations.
Transformations with det A = −1 are called improper transformations,
which involve reflections.

9.2.1 Rotations About Cartesian Axes

For rotations about the x3-axis, the rotation matrix takes the form

R3 =
⎡⎢⎢⎣
a11 a12 0
a21 a22 0
0 0 1

⎤⎥⎥⎦ . (9.41)

Using the direction cosines [Eqs. (9.20) and (9.21)], we can write R3(𝜃) for coun-
terclockwise rotations as (Figure 9.5)

R3(𝜃) =
⎡⎢⎢⎣

cos 𝜃 sin 𝜃 0
− sin 𝜃 cos 𝜃 0

0 0 1

⎤⎥⎥⎦ . (9.42)

Similarly, the rotation matrices corresponding to counterclockwise rotations
about the x1- and x2-axis can be written, respectively, as

R1(𝜙) =
⎡⎢⎢⎣
1 0 0
0 cos𝜙 sin𝜙

0 − sin𝜙 cos𝜙

⎤⎥⎥⎦ , R2(𝜓) =
⎡⎢⎢⎣
cos𝜓 0 − sin𝜓

0 1 0
sin𝜓 0 cos𝜓

⎤⎥⎥⎦ . (9.43)

x2

x1

x1

θ11 = θ

θ22 = θ

x2

ê1

ê2

ê1

ê2

θ21 =   + θπ
2

θ12 =   – θπ
2

Figure 9.5 Angles for the direction
cosines in R3(𝜃).
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9.2.2 Formal Properties of the Rotation Matrix

(i) Two sequentially performed rotations, A and B, are equivalent to another
rotation, C, as

C = AB. (9.44)

(ii) Because matrix multiplications do not commute, the order of rotations is
important, that is, in general

AB ≠ BA. (9.45)

However, the associative law holds between any three rotations A,B,
and C∶

A(BC) = (AB)C. (9.46)

(iii) The inverse transformation matrix A−1 exists, and from the orthogonality
relation [Eq. (19.36)], it is equal to the transpose of A, that is,

A−1 = Ã. (9.47)

Thus for orthogonal transformations, we can write

ÃA=AÃ = I. (9.48)

9.2.3 Euler Angles and Arbitrary Rotations

The most general rotation matrix has nine components [Eq. (9.30)]. However,
the orthogonality relation, AÃ = I, written explicitly as

a2
11 + a2

12 + a2
13 = 1,

a2
22 + a2

21 + a2
23 = 1,

a2
33 + a2

31 + a2
32 = 1,

a11a21 + a12a22 + a13a23 = 0,

a11a31 + a12a32 + a13a33 = 0,

a21a31 + a22a32 + a23a33 = 0,

(9.49)

gives six relations among these components. Hence, only three of them can
be independent. In the study of rotating systems, to describe the orientation
of a system, it is important to define a set of three independent parameters.
There are a number of choices. The most common and useful are the three
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Euler angles. They correspond to three successive rotations about the Carte-
sian axes so that the final orientation of the system is obtained. The conven-
tion we follow is the most widely used one in applied mechanics, in celestial
mechanics, and frequently, in molecular and solid-state physics. For different
conventions, we refer the reader to Goldstein et al. [4].

The sequence starts with a counterclockwise rotation by 𝜙 about the x3-axis
of the initial state of the system as

B(𝜙)∶ (x1, x2, x3) → (x′
1, x

′
2, x

′
3). (9.50)

This is followed by a counterclockwise rotation by 𝜃 about the x′
1 of the

intermediate axis as

C(𝜃)∶ (x′
1, x

′
2, x

′
3) → (x′′

1 , x
′′
2 , x

′′
3 ). (9.51)

Finally, the desired orientation is achieved by a counterclockwise rotation about
the x′′

3 -axis by 𝜓 as

D(𝜓)∶ (x′′
1 , x

′′
2 , x

′′
3 ) → (x1, x2, x3). (9.52)

Here, A(𝜙), B(𝜃), and C(𝜓) are the rotation matrices for the corresponding
transformations, which are given as

B(𝜙) =
⎡⎢⎢⎣

cos𝜙 sin𝜙 0
− sin𝜙 cos𝜙 0

0 0 1

⎤⎥⎥⎦ , (9.53)

C(𝜙) =
⎡⎢⎢⎣
1 0 0
0 cos 𝜃 sin 𝜃

0 − sin 𝜃 cos 𝜃

⎤⎥⎥⎦ , (9.54)

D(𝜓) =
⎡⎢⎢⎣

cos𝜓 sin𝜓 0
− sin𝜓 cos𝜓 0

0 0 1

⎤⎥⎥⎦ . (9.55)

In terms of the individual rotation matrices, the complete transformation
matrix, A, can be written as the product A = DCB, thus

A =
⎡⎢⎢⎢⎣

cos𝜓 cos𝜙 − cos 𝜃 sin𝜙 sin𝜓 cos𝜓 sin𝜙 + cos 𝜃 cos𝜙 sin𝜓 sin𝜓 sin 𝜃

− sin𝜓 cos𝜙 − cos 𝜃 sin𝜙 cos𝜓 − sin𝜓 sin𝜙 + cos 𝜃 cos𝜙 cos𝜓 cos𝜓 sin 𝜃

sin 𝜃 sin𝜙 − sin 𝜃 cos𝜙 cos 𝜃

⎤⎥⎥⎥⎦ .
(9.56)
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The inverse of A is A−1 = Ã. We can also consider the elements of the rotation
matrix as a function of some single parameter, t, and write

𝜙 = 𝜔𝜙t, 𝜔 = 𝜔𝜃t, 𝜓 = 𝜔𝜓 t. (9.57)

If t is taken as time, 𝜔 can be interpreted as the constant angular velocity about
the axis of rotation.

In general, the rotation matrix can be written as

A(t) =
⎡⎢⎢⎣
a11(t) a12(t) a13(t)
a21(t) a22(t) a23(t)
a31(t) a32(t) a33(t)

⎤⎥⎥⎦ . (9.58)

Using trigonometric identities, it can be shown that

A(t2 + t1)=A(t2)A(t1). (9.59)

Differentiating with respect to t2 and putting t2 = 0 and t1 = t, we obtain a result
that will be useful shortly as

A′(t)=A′(0)A(t). (9.60)

9.2.4 Active and Passive Interpretations of Rotations

It is possible to view the rotation matrix, A, in

r = Ar (9.61)

as an operator acting on r and rotating it in the opposite direction (clockwise),
while keeping the coordinate axes fixed (Figure 9.6b).

x2

x1

r

r

(a) (b)

r

x1
x1

x2
x2

θ

θ

θ

Figure 9.6 Passive and active views of the rotation matrix.
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This is called the active view. The case where r is fixed but the coordinate
axes are rotated counterclockwise is called the passive view (Figure 9.6a). In
principle, both the active and passive views lead to the same result. However, as
in quantum mechanics, sometimes the active view may offer some advantages
in studying the symmetries of a physical system.

In the case of the active view, we also need to know how an operator, A,
transforms under coordinate transformations. Considering a transformation
represented by the matrix B, we multiply both sides of Eq. (9.61) by B to write

Br = BAr. (9.62)

Using BB−1 = B−1B = I, we now write Eq. (9.62) as

Br = BAB−𝟏Br, (9.63)
r′ = A′r′. (9.64)

In the new coordinate system, r and r are related by r′ = Br and r′ = Br. Thus
the operator A′ becomes

A′ = BAB−𝟏. (9.65)

This is called similarity transformation. If B is an orthogonal transforma-
tion, we then write

A′ = BAB̃. (9.66)

In terms of components, this can also be written as

a′
ij = bikaklbjl. (9.67)

9.2.5 Infinitesimal Transformations

A proper orthogonal transformation depending on a single continuous param-
eter t can be shown as

r(t) = A(t)r(0). (9.68)

Differentiating and using Eq. (9.60), we obtain
dr(t)

dt
= A′(t)r(0) (9.69)

= A′(0)A(t)r(0) (9.70)
= Xr(t), (9.71)

where

X=A′(0). (9.72)
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Differentiating Eq. (9.71), we can now obtain the higher-order derivatives as

d2r(t)
dt2 = X2r(t),

d3r(t)
dt3 = X3r(t),

⋮

(9.73)

Using these in the Taylor series expansion of r(t) about t = 0, we write

r(t) = r(0) + dr(0)
dt

t + 1
2!

d2r(0)
dt2 t2 + · · · , (9.74)

thus obtaining

r(t) =
(

I+Xt + 1
2!

X2t2 + · · ·
)

r(0). (9.75)

This series converges, yielding

r(t) = exp(Xt)r(0). (9.76)

This is called the exponential form of the transformation matrix. For infinites-
imal transformations, t is small; hence, we can write

r(t) ≃ (I+Xt)r(0), (9.77)
r(t) − r(0) ≃ Xtr(0), (9.78)

𝛿r ≃ Xtr(0), (9.79)

where X is called the generator of the infinitesimal transformation.
Using the definition of X in Eq. (9.72) and the rotation matrices [Eqs. (9.42)

and (9.43)], we can write the generators as

X1 =
⎡⎢⎢⎣
0 0 0
0 0 1
0 −1 0

⎤⎥⎥⎦ , X2 =
⎡⎢⎢⎣
0 0 −1
0 0 0
1 0 0

⎤⎥⎥⎦ , X3 =
⎡⎢⎢⎣

0 1 0
−1 0 0
0 0 0

⎤⎥⎥⎦ . (9.80)

An arbitrary infinitesimal rotation by the amounts t1, t2, and t3 about their
respective axes can be written as

r = (I+X3t3)(I+X2t2)(I+X1t1)r(0) (9.81)
= (I+X3t3 + X2t2 + X1t1)r(0). (9.82)

Defining the vector

X = X1ê1 + X2ê2 + X3ê3 (9.83)
= (X1,X2,X3) (9.84)
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and the unit vector

n̂ = 1√
t2

1 + t2
2 + t2

3

⎡⎢⎢⎣
t1
t2
t3

⎤⎥⎥⎦ , (9.85)

we can write Eq. (9.82) as

r(t) = (I + X ⋅ n̂t)r(0), (9.86)

where t =
√

t2
1 + t2

2 + t2
3 . This is an infinitesimal rotation about an axis in the

direction n̂ by the amount t. For finite rotations, we write

r(t) = eX⋅n̂tr(0). (9.87)

9.2.6 Infinitesimal Transformations Commute

Two successive infinitesimal transformations by the amounts t1 and t2 can be
written as

r = (I+X2t2)(I+X1t1)r(0) (9.88)
= [I+(t1X1 + t2X2)]r(0). (9.89)

Because matrices commute with respect to addition and subtraction, infinites-
imal transformations also commute, that is,

r = [I+(t2X2 + t1X1)] r(0) (9.90)
= (I+X1t1)(I+X2t2)r(0). (9.91)

For finite rotations, this is clearly not true. Using Eq. (9.43), we can write the
rotation matrix for a rotation about the x2-axis followed by a rotation about the
x1-axis as

R1R2 =
⎡⎢⎢⎣

cos𝜓 0 − sin𝜓

sin𝜙 sin𝜓 cos𝜙 sin𝜙 cos𝜓
cos𝜙 sin𝜓 − sin𝜙 cos𝜙 cos𝜓

⎤⎥⎥⎦ . (9.92)

Reversing the order, we get

R2R1 =
⎡⎢⎢⎣
cos𝜓 sin𝜓 sin𝜙 − sin𝜓 cos𝜙

0 cos𝜙 sin𝜙

sin𝜓 − cos𝜓 sin𝜙 cos𝜓 cos𝜙

⎤⎥⎥⎦ . (9.93)

It is clear that for finite rotations, these two matrices are not equal:

R1R2 ≠ R2R1. (9.94)
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However, for small rotations by the amounts 𝛿𝜓 and 𝛿𝜙, we can use the
approximations

sin 𝛿𝜓 ≃ 𝛿𝜓, sin 𝛿𝜙 ≃ 𝛿𝜙, (9.95)
cos 𝛿𝜓 ≃ 1, cos 𝛿𝜙 ≃ 1, (9.96)

to find

R1R2 =
⎡⎢⎢⎣

1 0 −𝛿𝜓
𝛿𝜓 1 𝛿𝜙

𝛿𝜓 −𝛿𝜙 1

⎤⎥⎥⎦ = R2R1. (9.97)

Note that in terms of the generators [Eq. (9.80)], we can also write this as

R1R2 =
⎡⎢⎢⎣
1 0 0
0 1 0
0 0 1

⎤⎥⎥⎦ + 𝛿𝜓

⎡⎢⎢⎣
0 0 −1
0 0 0
1 0 0

⎤⎥⎥⎦ + 𝛿𝜙

⎡⎢⎢⎣
0 0 0
0 0 1
0 −1 0

⎤⎥⎥⎦ (9.98)

= I+ 𝛿𝜓X1 + 𝛿𝜙X2 (9.99)

= I + 𝛿𝜙X2 + 𝛿𝜓X1 (9.100)

= R2R1, (9.101)

which again proves that infinitesimal rotations commute.

9.3 Cartesian Tensors

Certain physical properties like temperature and mass can be described com-
pletely by giving a single number. They are called scalars. Under orthogonal
transformations, scalars preserve their value. Distance, speed, and charge are
other examples of scalars. On the other hand, vectors in three dimensions
require three numbers for a complete description, that is, their components
(a1, a2, a3). Under orthogonal transformations, we have seen that vectors trans-
form as a′

i = Aijaj.

There are also physical properties that in three dimensions require nine com-
ponents for a complete description. For example, stresses in a solid have nine
components that can be conveniently represented as a 3 × 3 matrix:

tij =
⎡⎢⎢⎣
t11 t12 t13
t21 t22 t23
t31 t32 t33

⎤⎥⎥⎦ . (9.102)

Components of the stress tensor, tij, correspond to the forces acting on a unit
area element, where tij is the ith component of the force acting on the unit
area element when the normal is pointing along the jth axis. Under orthogonal
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transformations, stresses transform as t′ij = AikAjltkl. Stresses, vectors, and
scalars are special cases of a more general type of objects called tensors.

In general, Cartesian tensors are defined in terms of their transformation
properties under orthogonal transformations as

Tijk… = Aii′Ajj′Akk′ …Ti′j′k′…. (9.103)

All indices take the values 1, 2, 3,… , n, where n is the dimension of space. An
important property of tensors is their rank, which is equal to the number of free
indices. In this regard, scalars are tensors of zeroth-rank, vectors are tensors
of first-rank, and stress tensor is a second-rank tensor.

9.3.1 Operations with Cartesian Tensors

For operations with Cartesian tensors, the following rules apply:

(i) Multiplication with aconstant is accomplished by multiplying each com-
ponent of the tensor with that constant.

(ii) Addition or subtraction of tensors of equal rank can be done by adding
or subtracting the corresponding tensors term by term.

(iii) Rank of a composite tensor is equal to the number of its free indices. For
example, AikjBjlm is a fourth-rank tensor, since there is summation over the
index j. Similarly, AijkBijk is a scalar, and AijklBjkl is a vector.

(iv) We can obtain a lower-rank tensor by contracting, in other words, by sum-
ming over some of the indices of a tensor or by contracting the indices of
a tensor with another tensor:

Aij = Aikkj,

Aijk = DijklmBlm,

Aij = CijkDk .

(9.104)

For a second-rank tensor, by contracting the two indices, we obtain a scalar
called the trace:

A = Aii = A11 + A22 + A33 + · · · + Ann. (9.105)

(v) In a tensor equation, rank of both sides must match, that is,

Aij…n = Bij…n. (9.106)

(vi) We have seen that tensors are defined with respect to their transformation
properties. For example, from two vectors, ai and bj, we can form a
second-rank tensor tij as tij = aibj. This is also called the outer product
of two vectors. The fact that tij is a second-rank tensor can easily be
verified by checking its transformation properties under orthogonal
transformations.
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9.3.2 Tensor Densities or Pseudotensors

Let us now consider the Kronecker delta, which is defined in all coordinates
as

𝛿ij =

{
1, for i = j,
0, for i ≠ j.

(9.107)

To see that it is a second-rank tensor, we check how it transforms under orthog-
onal transformations, that is,

𝛿′ij = aikajl𝛿kl (9.108)
= aikajk . (9.109)

From the orthogonality relation [Eq. (9.48)], this gives 𝛿′ij = 𝛿ij. Hence the
Kronecker delta is a second-rank tensor.

Let us now investigate the tensor property of the permutation symbol or the
Levi-Civita symbol. It is defined in all coordinates as

𝜖ijk =
⎧⎪⎨⎪⎩
+1

0
−1

for cyclic permutations,
when any two indices are equal,
for anticyclic permutations.

(9.110)

For 𝜖ijk to be a third-rank tensor, it must transform as

𝜖′ijk = ailajmakn𝜖lmn (9.111)
= 𝜖ijk . (9.112)

However, using the definition of a determinant, one can show that the
right-hand side is

𝜖′ijk = 𝜖ijk det a, (9.113)

thus if we admit improper transformations where det a = −1, 𝜖ijk is not a tensor.
A tensor that transforms according to the law

T ′
ijk... = ailajmakn · · ·Tlmn… det a (9.114)

is called a pseudotensor or a tensor density.
The cross product of two vectors,−→c = −→a ×

−→
b , which in terms of coordinates

can be written as ci = 𝜖ijkajbk , is a pseudovector, whereas the triple product:

−→c ⋅ (−→a ×
−→
b ) = 𝜖ijkci ajbk , (9.115)

is a pseudoscalar.
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9.4 Cartesian Tensors and the Theory of Elasticity

We now elaborate the basic features of Cartesian tensors through their
application to the theory of elasticity.

9.4.1 Strain Tensor

All bodies deform under stress, where every point, −→r , of the undeformed body
is translated into another point, −→r ′, of the deformed body (Figure 9.7):

−→r ′ = −→r + −→
𝜂 (−→r ). (9.116)

We can also write

x′
i = xi + 𝜂i, i = 1, 2, 3. (9.117)

The distance between two infinitesimally close points is given as

d−→r 2 = (dx2
1 + dx2

2 + dx2
3)

1∕2, (9.118)

which after deformation becomes

d−→r ′2 = (dx′2
1 + dx′2

2 + dx′2
3 )

1∕2. (9.119)

Using Eq. (9.117), we can write

dx′
i = dxi + d𝜂i (9.120)

= dxi +
3∑

k=1

𝜕𝜂i

𝜕xk
dxk . (9.121)

Adopting the Einstein summation convention, where repeated indices are
summed over, we can ignore the summation sign in Eq. (9.121):

dx′
i = xi +

𝜕𝜂i

𝜕xk
dxk , (9.122)

Oʹrʹ

ηr

O Figure 9.7 In a general deformation, every point is
displaced.
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which allows us to write the distance between two infinitesimally close points
after deformation as

d−→r ′2 = dx′
idx′

i =
(

dxi +
𝜕𝜂i

𝜕xk
dxk

)(
dxi +

𝜕𝜂i

𝜕xl
dxl

)
(9.123)

= dxidxi +
𝜕𝜂i

𝜕xl
dxidxl +

𝜕𝜂i

𝜕xk
dxidxk +

𝜕𝜂i

𝜕xk

𝜕𝜂i

𝜕xl
dxkdxl. (9.124)

This can also be written as

d−→r ′2 = d−→r 2 + 2ekldxkdxl, (9.125)

where

ekl =
1
2

(
𝜕𝜂k

𝜕xl
+

𝜕𝜂l

𝜕xk
+

𝜕𝜂i

𝜕xk

𝜕𝜂i

𝜕xl

)
. (9.126)

For small deformations, 𝜂i ≪ xi, we can ignore the second-order terms to define
the strain tensor as

ekl =
1
2

(
𝜕𝜂k

𝜕xl
+

𝜕𝜂l

𝜕xk

)
, (9.127)

which is a second-rank symmetric tensor, ekl = elk .

9.4.2 Stress Tensor

Let −→F be the force per unit volume and −→F dV be the force acting on an infinites-
imal portion of the body, which when integrated over a given volume, ∫V

−→F dV ,
gives the total force acting on that volume of the body. We now assume that the
force −→F can be written as the divergence of a second-rank tensor, 𝜎ik , as

Fi =
𝜕𝜎ik

𝜕xk
. (9.128)

Using the divergence theorem, we can write the ith component of the force as

∫V
FidV = ∫V

𝜕𝜎ik

𝜕xk
dV = ∮S

𝜎ikdsk , (9.129)

where S is a surface that encloses the volume V and such that the area element,
d−→s , is oriented in the direction of the outward normal to S. The second-rank
tensor, 𝜎ik , is called the stress tensor. In the above equation, 𝜎ikdsk gives the ith
component of the force acting on the surface element when the normal to the
surface points in the kth direction. In other words, 𝜎ik is the ith component of
the force acting on a unit test area when the normal points in the kth direction.
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We now write the torque, Mik , acting on a volume V of the body due to −→F as
the integral

Mik = ∫V
mikdV = ∫V

(
𝜕𝜎il

𝜕xl
xk −

𝜕𝜎kl

𝜕xl
xi

)
dV , (9.130)

where the torque per unit volume, mik , is defined as

mik = Fixk − Fkxi =
(
𝜕𝜎il

𝜕xl
xk −

𝜕𝜎kl

𝜕xl
xi

)
. (9.131)

We can also write Mik as

Mik = ∫V

𝜕(𝜎ilxk − 𝜎klxi)
𝜕xl

dV − ∫
(
𝜎il

𝜕xk

𝜕xl
− 𝜎kl

𝜕xi

𝜕xl

)
dV , (9.132)

which after using the partial derivatives:

𝜕xk

𝜕xl
= 𝛿kl,

𝜕xi

𝜕xl
= 𝛿il, (9.133)

and the divergence theorem for the first integral, yields

Mik = ∮S
(𝜎ilxk − 𝜎klxi)dsl + ∫V

(𝜎ki − 𝜎ik)dV . (9.134)

Assuming that the stress tensor is symmetric, we now obtain Mij as

Mik = ∫V
mijdV , (9.135)

Mik = ∮S
(𝜎ilxk − 𝜎klxi)dsl. (9.136)

9.4.3 Thermodynamics and Deformations

Under external stresses all bodies deform. However, for sufficiently small
strains, when the stresses are removed they all return to their original shapes.
Such deformations are called elastic. When a body is strained beyond its
elastic domain, there is always some residual deformation left when the
stresses are removed, which is called plastic deformation.

In practice, we are interested in the stress–strain relation. To find such a
relation, we confine ourselves to the elastic domain. Furthermore, we assume
that the deformation is performed sufficiently slowly, so that the entire process
is reversible. Hence we can write the first law of thermodynamics as

dU = T dS − dW ,
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where the infinitesimal work done, dW , for infinitesimal deformations can be
written as

dW =
(
𝜕𝜎ik

𝜕xk

)
𝛿𝜂idV . (9.137)

For a finite deformation, we integrate over the region of interest:

∫V
dW = ∫V

(
𝜕𝜎ik

𝜕xk

)
𝛿𝜂idV , (9.138)

which after integration by parts becomes

∫V
dW = ∮S

𝜎ik𝛿𝜂idsk − ∫V
𝜎ik

𝜕(𝛿𝜂i)
𝜕xk

dV . (9.139)

We let the surface, S, be at infinity. Assuming that there are no stresses on the
body at infinity, the surface term in the above integral vanishes. In addition
using the symmetry of the strain tensor, we can write

∫V
dW = −1

2∫V
𝜎ik

(
𝜕(𝛿𝜂i)
𝜕xk

+
𝜕(𝛿𝜂k)
𝜕xi

)
dV (9.140)

= −1
2∫V

𝜎ik𝛿

(
𝜕𝜂i

𝜕xk
+

𝜕𝜂k

𝜕xi

)
dV (9.141)

= −∫V
𝜎ik𝛿eikdV . (9.142)

In other words, the work done per unit volume, 𝑤, is

𝑤 = −𝜎ik𝛿eik . (9.143)

From now on, we consider all thermodynamic quantities like the entropy, s,
work, 𝑤, internal energy, u, etc. in terms of their values per unit volume of the
undeformed body and denote them with lower case letters. Now the first law
of thermodynamics becomes

du(s, eik) = T ds + 𝜎ikdeik , (9.144)

where the scalar function u(s, eik) is called the thermodynamic potential. The
Helmholtz free energy, f (T , eik), is defined as

f (T , eik) = u − Ts, (9.145)

which allows us to write the differential

df = −sdT + 𝜎ikdeik . (9.146)

Similarly, we write the Gibbs free energy, g(T , 𝜎ik), as
g(T , 𝜎ik) = u − Ts − 𝜎ikeik (9.147)

= f − 𝜎ikeik , (9.148)
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which gives the differential

dg = −sdT − eikd𝜎ik . (9.149)

We can now obtain the stress tensor using the partial derivative

𝜎ik =
(
𝜕u(s, eik)
𝜕eik

)
s
, (9.150)

or,

𝜎ik =
(
𝜕f (T , eik)

𝜕eik

)
T
. (9.151)

Similarly, the strain tensor can be obtained as

eik = −
(
𝜕g(T , 𝜎ik)

𝜕𝜎ik

)
T
. (9.152)

In these expressions, the subscripts outside the parentheses indicate the vari-
ables held constant.

9.4.4 Connection between Shear and Strain

Pure shear is a deformation that preserves the volume but alters the shape of
the body. Since the fractional change in volume is

ΔV
V

= tr(eij) = eii, (9.153)

for pure shear the strain tensor is traceless. In hydrostatic compression, bodies
suffer equal compression in all directions, hence the corresponding strain ten-
sor is proportional to the identity tensor, eik ∝ 𝛿ik , and the stress tensor is given
as 𝜎ik = −P𝛿ik , where P is the hydrostatic pressure. A general deformation
can be written as the sum of pure shear and hydrostatic compression as

eik =
(

eik −
1
3
𝛿ikell

)
+ 1

3
𝛿ikell. (9.154)

Note that the first term on the right-hand side is traceless, hence represents
pure shear while the second term corresponds to hydrostatic compression.

We consider isotropic bodies deformed at constant temperature, thus elimi-
nating the contribution due to thermal expansion. To obtain a relation between
the shear and the stress tensors, we first need to find the Helmholtz free energy,
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f (T , eik), and then expand it in powers of eik about the undeformed state of the
body, that is, eik = 0. Since when the body is undeformed the stresses vanish:

𝜎ik|eik=0 =
(
𝜕f (T , eik)

𝜕eik

)
T

|||||eik=0

= 0, (9.155)

there is no linear term in the expansion of f (T , eik). In addition, since f (T , eik)
is a scalar function, the most general expression for f (T , eik) valid up to
second-order can be written as

f (T , eik) =
1
2
𝜆(eii)2 + 𝜇(eik)2, (9.156)

where 𝜆 and 𝜇 are called the Lamé coefficients and e2
ii and e2

ij = eikeki are the
only second-order scalars composed of the strain tensor. We now write the
differential of f (T , eik) as

df = 𝜆eiideii + 2𝜇eikdeik (9.157)

and substitute deii = 𝛿ikdeik to get

df = 𝜆eii𝛿ikdeik + 2𝜇eikdeik (9.158)
=
(
𝜆eii𝛿ik + 2𝜇eik

)
deik . (9.159)

This gives the partial derivative(
𝜕f (T , eik)

𝜕eik

)
T
= 𝜆eii𝛿ik + 2𝜇eik , (9.160)

which is also equal to the stress tensor [Eq. (9.151)]:

𝜎ik = 𝜆eii𝛿ik + 2𝜇eik . (9.161)

We can also obtain a formula that expresses the strain tensor in terms of the
stress tensor. Using Eq. (9.161), we first write the following relation between
the traces:

𝜎ii = 3𝜆eii + 2𝜇eii (9.162)
= (3𝜆 + 2𝜇)eii, (9.163)

which when substituted back into Eq. (9.161) gives

𝜎ik = 𝜆
𝜎ii

(3𝜆 + 2𝜇)
𝛿ik + 2𝜇eik (9.164)

and then yields the desired expression as

eik = 1
2𝜇

𝜎ik −
𝜆𝜎ii

2𝜇(3𝜆 + 2𝜇)
𝛿ik . (9.165)
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Figure 9.8 Hydrostatic compression.

By considering specific deformations, it is possible to relate the Lamé
coefficients to the directly measurable quantities like the bulk modulus, K ,
shear modulus, G, Young’s modulus, Y , etc. For example, the bulk modulus
is defined as (Figure 9.8)

P = −K ΔV
V

, (9.166)

where P is the hydrostatic pressure and ΔV
V

is the fractional change in volume.
Using

ΔV
V

= eii and 𝜎ii = −3P, (9.167)

which follows from the stress tensor for hydrostatic compressions:

𝜎ik = −P𝛿ik , (9.168)

we can write [Eq. (9.163)]

−3P = (3𝜆 + 2𝜇)ΔV
V

, (9.169)

P = −
(
𝜆 + 2

3
𝜇

) ΔV
V

, (9.170)

thus obtaining the relation

K =
(
𝜆 + 2

3
𝜇

)
. (9.171)

We now consider a long bar of length L with the cross-sectional area A pulled
longitudinally with the force (Figure 9.9)

T = 𝜎33A. (9.172)

Note that 𝜎33 is the only non-zero component of the stress tensor and the
Young’s modulus is defined as

𝜎33 = Y ΔL
L

. (9.173)
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2

1

3
σ33 σ33

Figure 9.9 Longitudinally stretched bar.

As the bar stretches along the longitudinal direction, it gets thinner along the
transverse directions by the relation⎛⎜⎜⎝

Δx1∕x1
or

Δx2∕x2

⎞⎟⎟⎠ = −𝜎ΔL
L

, (9.174)

where 𝜎 is called the Poisson’s ratio. We now write the displacements as

𝜂1 = x1

(
−𝜎ΔL

L

)
, (9.175)

𝜂2 = x2

(
−𝜎ΔL

L

)
, (9.176)

𝜂3 = x3

(ΔL
L

)
, (9.177)

which yields the nonzero components of the strain tensor as

e11 = e22 = −𝜎ΔL
L

(9.178)

= −𝜎e33, (9.179)

e33 = ΔL
L

. (9.180)

Using Eq. (9.161) for 𝜎33:

𝜎33 = 𝜆ekk + 2𝜇e33, (9.181)

we obtain the relation

Y = (−2𝜎 + 1)𝜆 + 2𝜇. (9.182)

Similarly, using 𝜎11 = 𝜎22 = 0, Eq. (9.161) gives another relation as

0 = (−2𝜎 + 1)𝜆 + 2𝜇(−𝜎). (9.183)

We now consider a metal plate sheared as shown in Figure 9.10a, where the
deformations are given as

𝜂1 = 𝜃

2
x2, 𝜂2 = 𝜃

2
x1, 𝜂3 = 0. (9.184)
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Figure 9.10 Pure shear.

In this case, the only nonvanishing components of the strain tensor [Eq. (9.127)]
are

e12 = e21 = 𝜃∕2. (9.185)

Inserting these into Eq. (9.161), we obtain

𝜎12 = 𝜇

(
𝜃

2
+ 𝜃

2

)
= 𝜇𝜃. (9.186)

In engineering shear modulus, G, is defined in terms of the total angle of defor-
mation (Figure 9.10b) as 𝜎12 = G𝜃, hence 𝜇 = G. Using Eqs. (9.171), (9.182),
and (9.183), we can express the Lamé coefficients, 𝜆 and 𝜇, and the Poisson’s
ratio, 𝜎, in terms of the Bulk modulus, K , Young’s modulus, Y , and the shear
modulus, G, which are experimentally easy to measure.

9.4.5 Hook’s Law

We can also obtain the relation between the stress and the strain tensors
[Eq. (9.161)] by writing the Hook’s law in covariant form as

𝜎ij = Eijklekl, (9.187)

where Eijkl is a fourth-rank tensor called the elasticity tensor. It obeys the
following symmetry properties:

Eijkl = Eklij = Ejikl = Eijlk . (9.188)

For an isotropic body, the most general tensor with the required symmetries
can be written as

Eijkl = 𝜆𝛿ij𝛿kl + 𝜇(𝛿ik𝛿jl + 𝛿il𝛿jk), (9.189)
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where 𝜆 and 𝜇 are the Lamé coefficients. Substituting Eq. (9.189) into (9.187)
gives

𝜎ij = 𝜆𝛿ijekk + 2𝜇eij, (9.190)

which is Eq. (9.161).

9.5 Generalized Coordinates and General Tensors

So far we have confined our discussion to Cartesian tensors, which are defined
with respect to their transformation properties under orthogonal transfor-
mations. However, the presence of symmetries in the physical system often
makes other coordinate systems more practical. For example, in central force
problems, it is advantageous to work with the spherical polar coordinates,
which reflect the spherical symmetry of the system best. For axially symmetric
problems, use of the cylindrical coordinates simplifies equations significantly.
Usually, symmetries indicate which coordinate system to use. However, in less
obvious cases, finding the symmetries of a given system and their generators
can help us to construct the most advantageous coordinate system. We now
extend our discussion of Cartesian coordinates and Cartesian tensors to
generalized coordinates and general tensors. These definitions can also be
used for defining tensors in spacetime and also for tensors in curved spaces.

A general coordinate transformation can be defined as

xi = xi(x1, x2,… , xn), i = 1,… , n. (9.191)

In short, we write this as

xi = xi(xk). (9.192)

The inverse transformation is defined as

xk = xk(xi)
, (9.193)

where the indices take the values i, k = 1,… , n. For reasons to become clear
later, we have written all the indices as superscripts. Differentiating Eq. (9.192),
we can write the transformation law for infinitesimal displacements as

dxi =
n∑

k=1

[
𝜕xi

𝜕xk

]
dxk . (9.194)

We now consider a scalar function, 𝜙(xi), and differentiate with respect to xi to
write

𝜕𝜙

𝜕xi =
n∑

k=1

[
𝜕xk

𝜕xi

]
𝜕𝜙

𝜕xk
. (9.195)
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Until we reestablish the Einstein summation convention for general tensors, we
write the summation signs explicitly.

9.5.1 Contravariant and Covariant Components

Using the transformation properties of the infinitesimal displacements and
the gradient of a scalar function, we now define contravariant and covariant
components. A contravariant component is defined with respect to the
transformation rule

ai =
n∑

k=1

[
𝜕xi

𝜕xk

]
ak , (9.196)

where the inverse transformation is defined as

ak =
n∑

i=1

[
𝜕xk

𝜕xi

]
ai
. (9.197)

We also define a covariant component according to the transformation rule

ai =
n∑

k=1

[
𝜕xk

𝜕xi

]
ak , (9.198)

where the components are now shown as subscripts. The inverse transforma-
tion is written as

ak =
n∑

i=1

[
𝜕xi

𝜕xk

]
ai. (9.199)

A second-rank tensor can be contravariant, covariant, or with mixed indices
with the following transformation properties:

T
ij
=

n∑
k=1

n∑
l=1

[
𝜕xi

𝜕xk
𝜕xj

𝜕xl

]
Tkl, (9.200)

Tij =
n∑

k=1

n∑
l=1

[
𝜕xk

𝜕xi
𝜕xl

𝜕xj

]
Tkl, (9.201)

T
i
j =

n∑
k=1

n∑
l=1

[
𝜕xi

𝜕xk
𝜕xl

𝜕xj

]
Tk

l . (9.202)
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Similarly, a general tensor can be defined with mixed indices as

T
i1i2...

j1j2...
=

n∑
k1=1

n∑
k2=1

· · ·
n∑

l1=1

n∑
l2=1

· · ·
[
𝜕xi1

𝜕xk1

𝜕xi2

𝜕xk2
· · · 𝜕xl1

𝜕xj1

𝜕xl2

𝜕xj2
· · ·

]
Tk1k2…

l1l2…
.

(9.203)
Using Eqs. (9.199) and (9.198), we write

ak =
n∑

i=1

[
𝜕xi

𝜕xk

]
ai (9.204)

=
n∑

k′=1

[ n∑
i=1

𝜕xi

𝜕xk
𝜕xk′

𝜕xi

]
ak′ (9.205)

=
n∑

k′=1
𝛿k′

k ak′ (9.206)

= ak , (9.207)

where 𝛿k′

k is the Kronecker delta, which is a second-rank tensor with the trans-
formation property

𝛿
i
j =

n∑
k=1

n∑
l=1

[
𝜕xi

𝜕xk
𝜕xl

𝜕xj

]
𝛿k

l = 𝛿i
j . (9.208)

It is the only second-rank tensor with this property.

9.5.2 Metric Tensor and the Line Element

Let us now see how the distance between two infinitesimally close points trans-
forms under general coordinate transformations. We take our unbarred coor-
dinate system as the Cartesian coordinates; hence, the line element that gives
the square of the distance between two infinitesimally close points is

ds2 =
n∑

k=1
dxkdxk . (9.209)

Because distance is a scalar, its value does not change under general coordinate
transformations, ds2 = ds2, hence we can write

ds2 =
n∑

k=1

[ n∑
i=1

𝜕xk

𝜕xi dxi

][ n∑
j=1

𝜕xk

𝜕xj dxj

]
, (9.210)

ds2 =
n∑

i=1

n∑
j=1

[ n∑
k=1

𝜕xk

𝜕xi
𝜕xk

𝜕xj

]
dxidxj

, (9.211)
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ds2 =
n∑

i=1

n∑
j=1

gijdxidxj
, (9.212)

where the symmetric second-rank tensor, gij, is called the metric tensor or the
fundamental tensor:

gij =
n∑

k=1

𝜕xk

𝜕xi
𝜕xk

𝜕xj . (9.213)

The metric tensor is the singly most important tensor in the study of curved
spaces and spacetimes. If we write the line element [Eq. (9.209)] in Cartesian
coordinates as ds2 =

∑n
i=1

∑n
j=1 𝛿ijdxidxj, we see that the metric tensor is the

identity matrix gij = I = 𝛿ij.
Given an arbitrary contravariant vector ui, let us see how[ n∑

j=1
gijuj

]
(9.214)

transforms. We first write
∑n

j=1

[
giju

j
]

as

n∑
j=1

[
giju

j
]
=

n∑
j=1

[ n∑
k=1

n∑
l=1

𝜕xk

𝜕xi
𝜕xl

𝜕xj gkl

][ n∑
m=1

𝜕xj

𝜕xm um

]
(9.215)

=
n∑

m=1

n∑
k=1

n∑
l=1

[
𝜕xk

𝜕xi

( n∑
j=1

𝜕xl

𝜕xj
𝜕xj

𝜕xm

)]
gklum (9.216)

=
n∑

m=1

n∑
k=1

n∑
l=1

[
𝜕xk

𝜕xi 𝛿
l
m

]
gklum (9.217)

=
n∑

k=1

[
𝜕xk

𝜕xi

][ n∑
m=1

gkmum

]
. (9.218)

Comparing with Eq. (9.198), we see that the expression[ n∑
m=1

gkmum

]
(9.219)

transforms like a covariant vector; thus we define the covariant components
of ui as

ui =
n∑

j=1
gijuj. (9.220)
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Similarly, we can define the metric tensor [Eq. (9.213)] with contravariant
components as

gkl =
n∑

i=1

[
𝜕xk

𝜕xi
𝜕xl

𝜕xi

]
, (9.221)

where
n∑

k=1
gklgkl′ =

n∑
k=1

[ n∑
i=1

𝜕xi

𝜕xk
𝜕xi

𝜕xl

][ n∑
i′=1

𝜕xk

𝜕xi′
𝜕xl′

𝜕xi′

]
(9.222)

=
n∑

i=1

n∑
i′=1

[ n∑
k=1

𝜕xi

𝜕xk
𝜕xk

𝜕xi′

][
𝜕xi

𝜕xl
𝜕xl′

𝜕xi′

]
(9.223)

=
n∑

i=1

n∑
i′=1

𝛿i
i′

[
𝜕xi

𝜕xl
𝜕xl′

𝜕xi′

]
(9.224)

=
n∑

i=1

[
𝜕xi

𝜕xl
𝜕xl′

𝜕xi

]
(9.225)

= 𝛿l′
l . (9.226)

Using the symmetry of the metric tensor, we can write
n∑

k=1
glkgkl′ = gl′

l = 𝛿l′
l . (9.227)

We see that the metric tensor can be used to lower and raise indices of a given
tensor. Thus a given vector, −→u , can be expressed in terms of either its covariant
or its contravariant components. In general, the two types of components are
different, and they are related by

ui =
n∑

j=1
gijuj, (9.228)

ui =
n∑

j=1
gijuj. (9.229)

For the Cartesian coordinates, the metric tensor is the Kronecker delta; thus
we can write

gij = 𝛿ij = 𝛿
j
i = 𝛿i

j = 𝛿ij = gij. (9.230)

Hence, both the covariant and the contravariant components are equal
in Cartesian coordinates, there is no need for distinction between them.
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Contravariant components of the metric tensor are also given as [1, 3]

gij = ▵ji

g
, (9.231)

where

▵ji = cofactor[ gji] and g = det gij. (9.232)

9.5.3 Geometric Interpretation of Components

Covariant and contravariant indices can be geometrically interpreted in terms
of oblique axis. A vector −→a in the coordinate system shown in Figure 9.11 can
be written as

−→a = a1ê1 + a2ê2, (9.233)

where êi are the unit basis vectors along the coordinate axes. As seen, the con-
travariant components are found by drawing parallel lines to the coordinate
axes. However, we can also define components by dropping perpendiculars to
the coordinate axes as

ai =
−→a ⋅ êi, i = 1, 2. (9.234)

The scalar product of two vectors is given as
−→a ⋅

−→
b = (a1ê1 + a2ê2) ⋅ (b1ê1 + b2ê2) (9.235)
= a1b1(ê1 ⋅ ê1) + a1b2(ê1 ⋅ ê2) + a2b1(ê2 ⋅ ê1) + a2b2(ê2 ⋅ ê2).

(9.236)
Defining a symmetric matrix

gij = êi ⋅ êj, i, j = 1, 2, (9.237)

x2

a2

e2

e1

a1

a1

0

a2

x1

a

Figure 9.11 Covariant and
contravariant components.
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we can write Eq. (9.236) as

−→a ⋅
−→
b =

2∑
i=1

2∑
j=1

gijaibj. (9.238)

We can also write
−→a ⋅

−→
b = −→a ⋅ (b1ê1 + b2ê2) (9.239)
= b1(−→a ⋅ ê1) + b2(−→a ⋅ ê2) (9.240)

= b1a1 + b2a2 =
2∑

i=1
biai =

2∑
i=1

aibi. (9.241)

All these remind us tensors. To prove that −→a ⋅
−→
b is a tensor equation, we have

to prove that it has the same form in another coordinate system. It is clear that
in another coordinate system with the basis vectors ê′

1 and ê′
2, −→a ⋅

−→
b will have

the same form as

−→a ⋅
−→
b =

2∑
k=1

2∑
l=1

g′kla
′kb′l =

2∑
i=1

2∑
j=1

gijaibj, (9.242)

where g′kl = ê′
k⋅ ê′

l , thus proving its tensor character. Because −→a and
−→
b are arbi-

trary vectors, we can take them as the infinitesimal displacement vector as
ai = bi = dxi, thus

ds2 =
2∑

i=1

2∑
j=1

gijdxidxj (9.243)

gives the line element with the metric

gij = êi ⋅ êj, i, j = 1, 2. (9.244)

Hence ai and ai are indeed the contravariant and the covariant components
of an arbitrary vector, and the difference between the covariant and the con-
travariant components is real.

In curved spaces dxi corresponds to the coordinate increments on the sur-
face. The metric tensor gij can now be interpreted as the product êi ⋅ êj of the
unit tangent vectors along the coordinate axis.

9.5.4 Interpretation of the Metric Tensor

In classical physics, space is an endless continuum, where everything in the uni-
verse exists. In other words, space is the arena in which all processes take place.
We use coordinate systems to assign numbers called coordinates to every point
in space, which in turn allow us to study physical processes in terms of sepa-
rations and directions. Obviously, there are infinitely many possibilities for the
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coordinate system that one can use. In this regard, tensors, defined in terms
of their transformation properties under general coordinate transformations,
have proven to be very useful in physics. Since the metric tensor contains cru-
cial information regarding the intrinsic properties of the physical space, it plays
a fundamental role in physics. However, this information is not always easily
revealed by the metric tensor.

Let us consider a two-dimensional universe with two-dimensional intelligent
bugs living in it. A group of bugs in this universe use a coordinate system that
allows them to write the line element as (Figure 9.12)

ds2 = dx2 + dy2, x, y ∈ (−∞,∞), (9.245)

while the others prefer to work with a different coordinate system and express
the line element as

ds2 = dr2 + r2d𝜃2, r ∈ [0,∞), 𝜃 ∈ [0, 2𝜋]. (9.246)

In the first coordinate system, the metric tensor is obviously the identity ten-
sor:

gij = I =
(

1 0
1 1

)
, (9.247)

while in the second coordinate system, it is a function of position:

gij =
(

1 0
0 r2

)
. (9.248)

A path connecting two points in space can be written in the first coordinate
system as y = y(x), while in the second coordinate system it will be expressed
as r = r(𝜃). Since the path length, l = ∫ 2

1 ds, is a scalar, its value does not
depend on the coordinate system used. Since l is basically the length that the

2

1

0
x

r

y

θ

Figure 9.12 Cartesian and plane
polar coordinates.
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bugs will measure by laying their rulers end to end along the path, it is also
called the proper length. Since one can also calculate l, the first group of bugs
[Eq. (9.245)] will use the formula

l = ∫
2

1
ds = ∫

2

1
dx

√
1 +

(
dy
dx

)2

, (9.249)

while the second group of bugs [Eq. (9.246)] will use

l = ∫
2

1
ds = ∫

2

1
d𝜃

√
r2 +

(
dr
d𝜃

)2

. (9.250)

A group of bugs immediately set out to investigate the properties of their
space by taking direct measurements using rulers and protractors. They draw
circles of various sizes at various locations in their universe and measure their
circumference to radius ratios. Operationally, this is a well-defined procedure;
first, they pick a point and connect all points equidistant from that point and
then measure the (proper) circumference by laying their rulers end to end along
the periphery. To measure the (proper) radius, they lay their rulers from the
center onwards along one of the axes. Their measurements turn out to be in
perfect agreement with their calculations. For the first group of bugs using the
first coordinate system [Eq. (9.245)], equation of a circle is given by

x2 + y2 = r2
0 , r0 = radius. (9.251)

For the second group using Eq. (9.246), a circle is simply written as r = r0.
In the first coordinate system, the circumference is calculated as

c = ∫ ds(x2+y2=r2
0 )
= ∫ dx

√
1 +

(
dy
dx

)2

(9.252)

= 4∫
r0

0

dx(
1 − x2

r2
0

)1∕2 = 2𝜋r0, (9.253)

while in the second coordinate system, the circumference is found as

c = ∫ ds(r=r0) = ∫ d𝜃

√
r2 +

(
dr
d𝜃

)2

(9.254)

= r0 ∫
2𝜋

0
d𝜃 = 2𝜋r0. (9.255)
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On the other hand, in the first coordinate system, the radius is calculated as

radius = ∫ ds(y=0) = ∫
r0

0
dx

√
1 +

dy
dx

(9.256)

= ∫
r0

0
dx = r0, (9.257)

while in the second coordinate system, it is found as

radius = ∫ ds(𝜃=𝜃0) = ∫
r0

0
dr
√

1 + r2 d𝜃
dr

(9.258)

= ∫
r0

0
dr = r0. (9.259)

In conclusion, no matter how large or small circles the bugs draw and regard-
less of the location of these circles, they always find the same number for the
circumference to radius ratio, c∕r0, which is twice a mysterious number they
called 𝜋. Furthermore, when they draw triangles of various sizes and orienta-
tions, regardless of the location of these triangles, they always find the sum of
the interior angles equal to the same mysterious number 𝜋. Being intelligent
creatures capable of abstract thought, these bugs immediately notice that they
are living in a flat universe. In fact, the first metric is nothing but the Pythagoras’
theorem in Cartesian coordinates, while the second metric is the same metric
written in plane polar coordinates. The two coordinate systems are related by
the transformation equations

x = r cos 𝜃, (9.260)
y = r sin 𝜃. (9.261)

In fact, these conclusions would remain intact even if they had used another
coordinate system. Such as the following somewhat strange looking coordinate
system (𝜂, 𝜉):

ds2 = (𝜂2 + 𝜉2)(d𝜂2 + d𝜉2), (9.262)

gij =
(
𝜂2 + 𝜉2 0

0 𝜂2 + 𝜉2

)
, (9.263)

where the two metrics [Eqs. (9.263) and (9.247)] are related by the coordinate
transformation x = 𝜂𝜉, y = (1∕2)(𝜂2 − 𝜉2).

Now consider another two-dimensional universe, where this time the line
element is given as

ds2 = dr2(
1 − r2

R2

) + r2d𝜙2, r ∈ [0,R], 𝜙 ∈ [0, 2𝜋]. (9.264)

A circle in this universe is defined by
r = r0. (9.265)
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The proper radius, rp, and the proper circumference, cp, that the bugs will mea-
sure in this universe are calculated, respectively, as

rp = ∫ ds(𝜙=𝜙0) = ∫
r0

0

dr(
1 − r2

R2

)1∕2 = R sin−1(r0∕R). (9.266)

cp = ∫ ds(r=r0) = r0 ∫
2𝜋

0
d𝜙 = 2𝜋r0, (9.267)

thus yielding the ratio
cp

rp
=

2𝜋r0

Rsin−1(r0∕R)
. (9.268)

Clearly, this ratio depends on the size of the circle and only in the limit as the
radius of the circle goes to zero, r0 → 0, or as R → ∞, goes to 2𝜋. Expansion of
cp∕rp in powers of r0∕R,

cp

rp
= 2𝜋

[
1 − 1

6

( r0

R

)2
+ · · ·

]
(9.269)

shows that in general these bugs will measure a cp∕rp ratio smaller than 2𝜋.
To the bugs, this looks rather strange and they argue that there must be a

force field that effects the rulers to give this cp∕rp < 2𝜋 ratio. In fact, one of the
bugs uses the transformation

r = 𝜌

(1 + 𝜌2∕4R2)
(9.270)

to write the line element [Eq. (9.264)] as

ds2 = 1
(1 + 𝜌2∕4R2)2 [d𝜌

2 + 𝜌2d𝜙2], (9.271)

which demonstrates that the proper lengths, hence the rulers, in their universe
are indeed shortened by the factor 1∕(1 + 𝜌2∕4R2) with respect to a flat uni-
verse. They even develop a field theory, where there is a force field that shortens
the rulers by the factor 1∕(1 + 𝜌2∕4R2). Like the electric field, which effects
only electrically charged objects, this field may also effect only certain types of
matter possessing a new type of charge. To check this, they repeat their mea-
surements with different rulers made from all kinds of different materials they
could find. No matter how hard they try and how precise their measurements
are made, to their surprise, they always find the same circumference to radius
ratio [Eq. (9.268)]. Whatever this field is, apparently it is effecting everything
precisely the same way. In other words, it is a universal force field. This fact
continues to intrigue them, but not knowing what to do with it, they continue
with the force field concept, which after all appears to work fine in terms of
their existing data.
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Then comes a brilliant scientist and says that all these years they have been
mesmerized by the beauty and the simplicity of the geometry on flat space, but
the measurements they have been getting actually could indicate that they may
be living on the surface of a sphere in a hyperspace with three dimensions. Then
the brilliant bug shows them that the transformation

r
R
= sin 𝜃 (9.272)

transforms their line element [Eq. (9.264)] into the form

ds2 = R2d𝜃2 + R2 sin2 𝜃d𝜙2, (9.273)

which when compared with the line element in three-dimensional space in
spherical coordinates:

ds2 = dr2 + r2d𝜃2 + r2 sin2 𝜃d𝜙2, (9.274)

corresponds to the line element on the surface of a sphere with radius r = R
(Figure 9.13).

In summary, these bugs do not need a force field to explain their observations.
All they have to do is to accept that they are living on the two-dimensional sur-
face of a sphere in three dimensions. Since the geometry of space is something
experimentally detectable, the fact that they have been getting the same geom-
etry regardless of the internal structure of their measuring instruments: rulers,
protractors, etc., indicates that this new geometry is universal. That is, it is the
geometry of the physical space that everything exists in.

z

l

R

1

2

0

θ

rc
ϕ

Figure 9.13 Bugs living on a sphere.
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There is actually another possible geometry for the two-dimensional bugs,
where the line element is this time given as

ds2 = dr2(
1 + r2

R2

) + r2d𝜙2, r ∈ [0,∞], 𝜙 ∈ [0, 2𝜋]. (9.275)

In this case, the ratio of the circumference to the radius of a circle is greater
than 2𝜋:

cp

rp
=

2𝜋r0

R sinh−1(r0∕R)
= 2𝜋

[
1 + 1

6

( r0

R

)2
+ · · ·

]
, (9.276)

and the interior angles of triangles are less than 𝜋. Such surfaces can be visual-
ized as the surface of a saddle (Figure 9.14). These are the three basic geometries
for the surfaces in three dimensions. Of course, in general, the surfaces could
be something rather arbitrary with lots of bumps and dimples like the surface
of an orange or an apple.

Figure 9.14 Geometry is
an experimental science. r

c

r

c

r

c
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9.6 Operations with General Tensors

9.6.1 Einstein Summation Convention

Algebraic operations like addition, subtraction, and multiplication are accom-
plished the same way as in Cartesian tensors. For general tensors, the Ein-
stein summation convention, which implies summation over repeated indices,
is used by writing one of the indices as covariant and the other as contravariant.
For example, the line element can be written in any one of the following forms:

ds2 = gijdxidxj = dxjdxj = dxidxi (9.277)
= gijdxidxj = dxjdxj = dxidxi. (9.278)

From now on, unless otherwise stated, we use this version of the Einstein sum-
mation convention.

9.6.2 Contraction of Indices

We can lower the rank of a tensor by contracting some of its indices as

Eij = Tijk
k , (9.279)

Ci = Dijk
jk . (9.280)

We can also lower the rank of a tensor by contracting it with another tensor:

Fij = DijkEk , (9.281)
A = BiCi. (9.282)

9.6.3 Multiplication of Tensors

We can obtain tensors of higher rank by multiplying two lower-rank tensors:

Cijk = AijDk , (9.283)
Tij = AiBj, (9.284)

Flm
ij = BiClDm

j . (9.285)

This is also called the outer product.

9.6.4 The Quotient Theorem

A very useful theorem in tensor operations is the quotient theorem. Suppose
Ti1…in

j1…jm
is a given matrix and Ajl…jm

ik…in
is an arbitrary tensor. Suppose that it is also

known that

Si1…ik−1
j1…jl−1

= Ti1…ik−1ik…in
j1…jl−1jl…jm

Ajl….jm
ik…in

(9.286)
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is a tensor. Then, by the quotient theorem,

Ti1…in
j1…jm

(9.287)

is also a tensor. This could be easily checked by using the transformation
properties of tensors.

9.6.5 Equality of Tensors

Two tensors are equal, if and only if all their corresponding components are
equal. For example, two third-rank tensors, A and B, are equal if and only if

Aij
k = Bij

k , for all i, j, and k. (9.288)

As a consequence of this, a tensor is not zero unless all of its components vanish.

9.6.6 Tensor Densities

A tensor density of weight 𝑤 transforms according to the law

T
i1i2…
j1j2… =

[
𝜕xi1

𝜕xk1

𝜕xi2

𝜕xk2
· · · 𝜕xl1

𝜕xj1

𝜕xl2

𝜕xj2
· · ·

]
Tk1k2…

l1l2…

||||𝜕x
𝜕x

||||𝑤 (9.289)

where ||| 𝜕x
𝜕x
||| is the Jacobian of the transformation, that is,

||||𝜕x
𝜕x

|||| = det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕x1

𝜕x1
𝜕x1

𝜕x2 ...
𝜕x1

𝜕xn

𝜕x2

𝜕x1 ... ... ...

⋮ ⋮ ⋮ ⋮

... ... ...
𝜕xn

𝜕xn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (9.290)

The permutation symbol 𝜖ijk is a third-rank tensor density of weight −1. The
volume element,

dnx = dx1dx2 … dxn, (9.291)

transforms as

dnx = dnx
||||𝜕x
𝜕x

||||−1
, (9.292)

hence it is a scalar density of weight −1.
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The metric tensor is a second-rank tensor that transforms as

gij =
𝜕xk

𝜕xi
𝜕xl

𝜕xj gkl. (9.293)

Using matrix multiplication, determinant of the metric tensor transforms as

g = g
||||𝜕x
𝜕x

||||2, or
√|g| = √|g| ||||𝜕x

𝜕x
||||. (9.294)

In the last equation, we have used absolute values in anticipation of applica-
tions to relativity, where the metric has signature (− + ++) or (+ − −−). From
Eqs. (9.292) and (9.294), it is seen that

√|g|dnx is a scalar:√|g|dnx =
√|g|dnx. (9.295)

9.6.7 Differentiation of Tensors

We start by taking the derivative of the transform of a covariant vector,
ui =

𝜕xj

𝜕xi uj, as

𝜕ui

𝜕xk
= 𝜕2xj

𝜕xk
𝜕xi

uj +
𝜕xj

𝜕xi

[
𝜕uj

𝜕xl
𝜕xl

𝜕xk

]
. (9.296)

If we write this as
𝜕ui

𝜕xk
= 𝜕2xj

𝜕xi
𝜕xk

uj +
𝜕xj

𝜕xi
𝜕xl

𝜕xk

𝜕uj

𝜕xl
(9.297)

and if the first term on the right-hand side was absent, then the derivative of uj
would simply be a second-rank tensor. Rearranging this equation as

𝜕ui

𝜕xk
= 𝜕

𝜕xi

[
𝜕xj

𝜕xk

]
uj +

𝜕xj

𝜕xi
𝜕xl

𝜕xk

𝜕uj

𝜕xl
(9.298)

=
𝜕[aj

k]

𝜕xi uj +
𝜕xj

𝜕xi
𝜕xl

𝜕xk

𝜕uj

𝜕xl
, (9.299)

we see that the problem is due to the fact that in general the transformation
matrix, [aj

k], changes with position. For transformations between the Cartesian
coordinates, the transformation matrix is independent of coordinates; thus this
problem does not arise. However, we can still define a covariant derivative that
transforms like a tensor.

We first consider the metric tensor, which transforms as

gij =
𝜕xk

𝜕xi
𝜕xl

𝜕xj gkl, (9.300)
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and differentiate it with respect to xm:

𝜕gij

𝜕xm = 𝜕2xk

𝜕xi
𝜕xm

𝜕xl

𝜕xj gkl +
𝜕xk

𝜕xi
𝜕2xl

𝜕xj
𝜕xm gkl +

𝜕xk

𝜕xi
𝜕xl

𝜕xj
𝜕xn

𝜕xm
𝜕gkl

𝜕xn . (9.301)

Permuting the indices, (ijm) → (mij) → (jmi), we obtain two more equations:

𝜕gmi

𝜕xj = 𝜕2xk

𝜕xm
𝜕xj

𝜕xl

𝜕xi gkl +
𝜕xk

𝜕xm
𝜕2xl

𝜕xi
𝜕xj gkl +

𝜕xk

𝜕xm
𝜕xl

𝜕xi
𝜕xn

𝜕xj

𝜕gkl

𝜕xn , (9.302)

𝜕gjm

𝜕xi = 𝜕2xk

𝜕xj
𝜕xi

𝜕xl

𝜕xm gkl +
𝜕xk

𝜕xj
𝜕2xl

𝜕xm
𝜕xi gkl +

𝜕xk

𝜕xj
𝜕xl

𝜕xm
𝜕xn

𝜕xi

𝜕gkl

𝜕xn . (9.303)

Adding the first two equations and subtracting the last one from the result and
after some rearrangement of indices, we obtain

1
2

[
𝜕gik

𝜕xj +
𝜕gjk

𝜕xi −
𝜕gij

𝜕xk

]
= 𝜕xl

𝜕xi
𝜕xm

𝜕xj
𝜕xn

𝜕xk
1
2

[
𝜕gln

𝜕xm +
𝜕gmn

𝜕xl
−

𝜕glm

𝜕xn

]
+ glm

𝜕xl

𝜕xk
𝜕2xm

𝜕xi
𝜕xj . (9.304)

Defining Christoffel symbols of the first kind as

[ij, k] = 1
2

[
𝜕gik

𝜕xj +
𝜕gjk

𝜕xi −
𝜕gij

𝜕xk

]
, (9.305)

we write Eq. (9.304) as

[ij, k] = 𝜕xl

𝜕xi
𝜕xm

𝜕xj
𝜕xn

𝜕xk
[lm, n] + glm

𝜕xl

𝜕xk
𝜕2xm

𝜕xi
𝜕xj , (9.306)

where

[ij, k] = 1
2

[
𝜕gik

𝜕xj +
𝜕gjk

𝜕xi −
𝜕gij

𝜕xk

]
. (9.307)

We can easily solve this equation for the second derivative to obtain

𝜕2xh

𝜕xi
𝜕xj =

𝜕xh

𝜕xp

{
p
ij

}
− 𝜕xl

𝜕xi
𝜕xm

𝜕xj

{
h

lm

}
, (9.308)

where we have defined the Christoffel symbols of the second kind as{
i

jk

}
= gil[jk, l]. (9.309)
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Substituting Eq. (9.308) in Eq. (9.297), we get

𝜕ui

𝜕xk
= 𝜕xj

𝜕xl

{
l

ik

}
uj −

𝜕xl

𝜕xi
𝜕xm

𝜕xk

{
j

lm

}
uj +

𝜕xj

𝜕xi
𝜕xl

𝜕xk

𝜕uj

𝜕xl
. (9.310)

Rearranging, and using the symmetry property of the Christoffel symbol of the
second kind:{

i
jk

}
=
{

i
kj

}
, (9.311)

this becomes
𝜕ui

𝜕xk
−
{

l
ik

}[
𝜕xj

𝜕xl
uj

]
= 𝜕xj

𝜕xi
𝜕xl

𝜕xk

[
𝜕uj

𝜕xl
−
{

m
jl

}
um

]
, (9.312)[

𝜕ui

𝜕xk
−
{

l
ik

}
ul

]
= 𝜕xj

𝜕xi
𝜕xl

𝜕xk

[
𝜕uj

𝜕xl
−
{

m
jl

}
um

]
. (9.313)

The above equation shows that[
𝜕uj

𝜕xl
−
{

m
jl

}
um

]
transforms like a covariant second-rank tensor. Thus we define the covariant
derivative of a covariant vector, ui, as

ui;j =
𝜕ui

𝜕xj −
{

k
ij

}
uk . (9.314)

Similarly, the covariant derivative of a contravariant vector is defined as

ui
;j =

𝜕ui

𝜕xj +
{

i
jk

}
uk . (9.315)

The covariant derivative is also shown as 𝜕i, that is, 𝜕jui = ui;j. The covariant
derivative of a higher-rank tensor is obtained by treating each index at a time
as

Ti1i2…
j1 j2…; k =

𝜕Ti1i2…
j1j2…

𝜕xk
+
{

i1

kl

}
Tli2…

j1 j2…
+ · · · −

{
m
kj1

}
Ti1i2…

mj2…
− · · · . (9.316)

Covariant derivatives obey the same distribution rules as ordinary derivatives:

(AB);i = A;iB + AB;i, (9.317)

(aA + bB);i = aA;i + bB;i, (9.318)

where A and B are tensors of arbitrary rank and a and b are scalars.
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9.6.8 Some Covariant Derivatives

In the following, we also show equivalent ways of writing certain operations.

1. We can write the covariant derivative or the gradient of a scalar function,
Ψ, as an ordinary derivative:

−→𝛁𝚿 = Ψ;j = 𝜕jΨ = 𝜕Ψ
𝜕xj . (9.319)

This is also the covariant component of the gradient(−→𝛁Ψ
)

i
. (9.320)

2. Using the symmetry of Christoffel symbols, curl of a vector field, −→𝑣 , can be
defined as the second-rank tensor(−→𝛁 ×−→

𝑣

)
ij
= 𝜕j𝑣i − 𝜕i𝑣j = 𝑣i;j − 𝑣j;i, (9.321)

(−→𝛁 ×−→
𝑣

)
ij
=

𝜕𝑣i

𝜕xj −
𝜕𝑣j

𝜕xi . (9.322)

Note that because we have used the symmetry of the Christoffel symbols,
the curl operation can only be performed on the covariant components of a
vector.

3. The covariant derivative of the metric tensor is zero:

𝜕kgij = gij;k = 0, (9.323)

where with Eq. (9.316) and the definition of Christoffel symbols the proof is
straightforward.

4. A frequently used property of the Christoffel symbol of the second kind is

{ i
ik

}
= 1

2
gil 𝜕gil

𝜕xk
=

𝜕(ln
√|g|)
𝜕xk

. (9.324)

In the derivation, we use the result:
𝜕g
𝜕xk

= ggil 𝜕gil

𝜕xk
, (9.325)

from the theory of matrices, where g = det gij.
5. We can now define covariant divergence as

−→𝛁 ⋅−→𝑣 = 𝜕i𝑣
i = 𝑣i

;i =
𝜕𝑣i

𝜕xi +
{ i

ik

}
𝑣k , (9.326)
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−→𝛁 ⋅−→𝑣 = 1|g|1∕2
𝜕

𝜕xk
[|g|1∕2𝑣k]. (9.327)

If 𝑣i is a tensor density of weight +1, divergence becomes
−→𝛁 ⋅−→𝑣 = 𝑣i

;i (= 𝜕i𝑣
i), (9.328)

which is again a scalar density of weight +1.
6. Using Eq. (9.320), we write the contravariant component of the gradient of

a scalar function as(−→𝛁Ψ
)i

= gijΨ;j = gij 𝜕Ψ
𝜕xj . (9.329)

We can now define the Laplacian,
−→𝛁

2
Ψ, as a scalar field:

−→𝛁 ⋅ (
−→𝛁Ψ) = (

−→𝛁Ψ)i
;i = 𝜕i𝜕

iΨ = 1|g|1∕2
𝜕

𝜕xi

[|g|1∕2gik 𝜕Ψ
𝜕xk

]
. (9.330)

9.6.9 Riemann Curvature Tensor

Let us take the covariant derivative of 𝑣i twice. The difference, 𝑣i;jk − 𝑣i;kj, can
be written as

𝑣i;jk − 𝑣i;kj = Rl
ijk𝑣l, (9.331)

where Rl
ijk is the fourth-rank Riemann curvature tensor, which plays a central

role in the structure of Riemann spaces:

Rl
ijk =

{
l

mj

}{m
ik

}
−
{

l
mk

}{
m
ij

}
+ 𝜕

𝜕xj

{
l

ik

}
− 𝜕

𝜕xk

{
l
ij

}
.

(9.332)

The Riemann curvature tensor satisfies the following symmetry properties:

Rijkl = −Rijlk , (9.333)
Rijkl = −Rjikl, (9.334)
Rijkl = Rklij. (9.335)

The significance of the Riemann curvature tensor is that all of its components
vanish only in flat space, that is, we cannot find a coordinate system where
Rijkl = 0 unless the space is truly flat.
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An important scalar in Riemann spaces is the Riemann curvature scalar,
which is obtained from Rijkl by contracting its indices as

R = gjlgikRijkl = gjlRk
jkl = Rk j

jk . (9.336)

Note that Rijkl = 0 implies R = 0, but not vice versa.

9.7 Curvature

We have seen that from the appearance of a metric tensor one cannot tell
whether the underlying space is curved or not. A complicated looking metric
with all or some of its components depending on position may very well be
due to an unusual choice of coordinates. Still, the metric tensor possesses all
the necessary information regarding the intrinsic properties of the underlying
space. Intrinsic curvature is defined entirely in terms of measurements that
can be carried out in the space itself and not on how the space is embed-
ded in a higher dimension. Our task is now to find a way to extract this
information from the metric tensor. Furthermore, we would like to find a
way that works not just for two-dimensional surfaces, but also for surfaces
with any number of dimensions and for any shape. In other words, we need
a criteria more sophisticated than just the circumference to radius ratio of
a circle.

Let the intelligent bugs living on the two-dimensional surface of a sphere,
transport a small vector over a closed path always pointing in the same direc-
tion so that it remains parallel to itself. This is called parallel transport. When
the vector comes back to its starting point, it will be seen that the vector has
turned a certain angle 𝜗 (Figure 9.15). This angle, which is zero in flat space,
for a sufficiently small area enclosed by the path, 𝛿A, is proportional to the
area:

𝛿𝜗 = K𝛿A. (9.337)

The proportionality constant, K , is called the Gaussian curvature. For a sphere,
K = 1∕R2. In fact, for a triangular path, this angle is precisely the excess over 𝜋
for the sum of the interior angles of the triangle. For a flat space, we can take
R as infinity, thus obtaining K = 0. For the saddle like surface in Figure 9.14,
the Gaussian curvature is negative: K = −1∕R2. Gaussian curvature can be
defined locally in terms of the radii of curvature in two perpendicular planes as
K = 1∕R1R2, where for a sphere R1 = R2 = R, hence K = 1∕R2. For a cylinder,
K = 0, since R1 = R and R2 = ∞.
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Figure 9.15 Parallel transport.

The general description of curvature in many-dimensional surfaces is still
based on parallel transport over closed paths. However, this time 𝛿𝜗 will also
depend on the orientation of the path. The fact that the parallel transported
vectors over closed paths in general do not coincide with themselves is due to
the fact that the covariant derivatives with respect to j and k in 𝑣i;jk do not com-
mute, 𝑣i;jk ≠ 𝑣i;kj, unless the space is flat. We have mentioned that the difference
between 𝑣i;jk and 𝑣i;kj is given in terms of a fourth-rank tensor, Rl

ijk , called the
Riemann curvature tensor, or in short, the curvature tensor [Eqs. (9.331) and
(9.332)]:

𝑣i;jk − 𝑣i;kj = Rl
ijk𝑣l, (9.338)

Rl
ijk =

{
l

mj

}{m
ik

}
−
{

l
mk

}{
m
ij

}
+ 𝜕

𝜕xj

{
l

ik

}
− 𝜕

𝜕xk

{
l
ij

}
.

(9.339)
To understand the properties of the curvature tensor, we now discuss parallel
transport in detail.

9.7.1 Parallel Transport

Covariant differentiation [Eq. (9.315)] over the entire space is defined as

𝑣i
;j =

𝜕𝑣i

𝜕xj +
{

i
jk

}
𝑣k , (9.340)

where the Chrisfoffel symbols of the second kind are defined as [Eq. (9.309)]{
i

jk

}
=

gil

2

(
𝜕gjl

𝜕xk
+

𝜕gkl

𝜕xj −
𝜕gjk

𝜕xl

)
. (9.341)
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However, we are frequently interested in covariant differentiation along a path
parametrized as xi(𝜏). Along xi(𝜏), we can also parametrize a vector in terms of
𝜏 as 𝑣i(𝜏). Now the covariant derivative of 𝑣i over the path xi(𝜏) becomes

D𝑣i

D𝜏
= 𝑣i

;j
dxj

d𝜏
= 𝜕𝑣i

𝜕xj
dxj

d𝜏
+
{

i
jk

}
dxj

d𝜏
𝑣k , (9.342)

D𝑣i

D𝜏
= d𝑣i

d𝜏
+
{

i
jk

}
dxj

d𝜏
𝑣k . (9.343)

Note that D𝑣i

D𝜏
is a covariant expression, hence valid in all coordinate systems.

A vector parallel transported along a curve satisfies

D𝑣i

D𝜏
= 0, (9.344)

that is,

d𝑣i

d𝜏
= −

{
i

jk

}
dxj

d𝜏
𝑣k . (9.345)

For a covariant vector, the parallel transport equation becomes
d𝑣i

d𝜏
=
{

k
ij

}
dxj

d𝜏
𝑣k . (9.346)

Parallel transport is what comes closest to a constant vector along a curve in
curved space (Figure 9.15).

9.7.2 Round Trips via Parallel Transport

We have obtained the formula [Eq. (9.346)] that tells us how a vector changes
when parallel transported along a curve. We now apply this result to see
whether a given vector returns to its initial state when parallel transported
along a small but closed path. If the curve is sufficiently small, we can expand
the Christoffel symbols:

Γk
ij(x) =

{
k
ij

}
, (9.347)

and the vector 𝑣i around some point X = x(𝜏0) as

Γk
ij(x) = Γk

ij(X) + (xl(𝜏) − Xl) 𝜕

𝜕Xl
Γk

ij(X) + · · · , (9.348)

𝑣i(𝜏) = 𝑣i(𝜏0) + Γk
ij(X)(xj(𝜏) − Xj)𝑣k(𝜏0) + · · · , (9.349)

where we have used Eq. (9.346) to first order in (xj(𝜏) − Xj) to write Eq. (9.349).
Substituting Eqs. (9.348) and (9.349) into Eq. (9.346) and only keeping terms of
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up to second-order, we get

𝑣i(𝜏) ≃ 𝑣i(𝜏0) + ∫
𝜏

𝜏0

[
Γk

ij(X) + (xl(𝜏) − Xl) 𝜕

𝜕Xl
Γk

ij(X) + · · ·
]

× [𝑣k(𝜏0) + 𝑣m(𝜏0)Γm
kl(X)(xl(𝜏) − Xl) + · · · ]dxj(𝜏)

d𝜏
d𝜏. (9.350)

We could simplify this further to write

𝑣i(𝜏) ≃ 𝑣i(𝜏0) + Γk
ij(X)𝑣k(𝜏0)∫

𝜏

𝜏0

dxj(𝜏)
d𝜏

d𝜏

+
[

𝜕

𝜕Xl
Γm

ij (X) + Γk
ij(X)Γm

kl(X)
]
𝑣m(𝜏0)∫

𝜏

𝜏0

(xl(𝜏) − Xl)dxj

d𝜏
d𝜏.

(9.351)
Since for a closed path xi returns to its initial value Xi for some 𝜏1:

∫
𝜏1

𝜏0

dxj

d𝜏
d𝜏 = 0. (9.352)

This gives the change in value, Δ𝑣i, of the vector 𝑣i when parallel transported
over a sufficiently small closed path as

Δ𝑣i =
[

𝜕

𝜕Xl
Γm

ij (X) + Γk
ij(X)Γm

kl(X)
]
𝑣m(𝜏0)∫

𝜏1

𝜏0

xl(𝜏)dxj

d𝜏
d𝜏, (9.353)

or as

Δ𝑣i =
[

𝜕

𝜕Xl
Γm

ij (X) + Γk
ij(X)Γm

kl(X)
]
𝑣m(𝜏0)∮ xl(𝜏)dxj. (9.354)

The integral, ∮ xl(𝜏)dxj, is in general nonzero and antisymmetric:

∮ xl(𝜏)dxj = ∫
𝜏1

𝜏0

d(xlxj)
d𝜏

d𝜏 − ∫
𝜏1

𝜏0

xj dxl

d𝜏
d𝜏 (9.355)

= −∮ xj(𝜏)dxl, (9.356)

hence, we can also write Δ𝑣i as

Δ𝑣i =
[

𝜕

𝜕Xj Γ
m
il (X) + Γk

il(X)Γm
kj (X)

]
𝑣m(𝜏0)∮ xj(𝜏)dxl (9.357)

= −
[

𝜕

𝜕Xj Γ
m
il (X) + Γk

il(X)Γm
kj (X)

]
𝑣m(𝜏0)∮ xl(𝜏)dxj. (9.358)

Adding Eqs. (9.354) and (9.358), we write

2Δ𝑣i =
[

𝜕

𝜕Xl
Γm

ij (X) − 𝜕

𝜕Xj Γ
m
il (X) + Γk

ij(X)Γm
kl(X) − Γk

il(X)Γm
kj (X)

]
× 𝑣m(𝜏0)∮ xl(𝜏)dxj. (9.359)
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The quantity inside the square brackets is nothing but Rm
ilj, that is, the curvature

tensor, hence

Δ𝑣i =
1
2

Rm
ilj𝑣m(𝜏0)∮ xl(𝜏)dxj. (9.360)

This result indicates that a vector, 𝑣i, parallel transported over a small
closed path does not return to its initial value unless Rm

ilj vanishes at X. If
we take our closed path as a small parallelogram with the sides Δ1xi and
Δ2xj, then ∮ xl(𝜏)dxj are the components of the area of the parallelogram
(Figure 9.16):

∮ xl(𝜏)dxj = Δ1xlΔ2xj − Δ1xjΔ2xl. (9.361)

For a finite closed path C enclosing an area A, we can subdivide A into small
cells each bounded by cN . The change in 𝑣i when parallel transported around C
can then be written as the sum

Δ𝑣i =
∑

N
ΔN𝑣i. (9.362)

This follows from the fact that the change in 𝑣i around the neighboring cells
are cancelled, thus leaving only the outermost cell boundaries making up the
path C.

9.7.3 Algebraic Properties of the Curvature Tensor

To reveal the algebraic properties of the curvature tensor, we write it as
Rijkl = gimRm

jkl. Using Eq. (9.332), this can be written as

Rijkl =
1
2

[
𝜕2gjk

𝜕xl𝜕xi
−

𝜕2gik

𝜕xl𝜕xj
+

𝜕2gil

𝜕xk𝜕xj
−

𝜕2gjl

𝜕xk𝜕xi

]
+ gnm[Γn

liΓ
m
jk − Γn

kiΓ
m
jl ].

(9.363)

Figure 9.16 Parallelogram.
–Δ1xi

Δ1xi

Δ2xi

–Δ2xi



226 9 Coordinates and Tensors

From this equation, the following properties are evident:
(i) Symmetry:

Rijkl = Rklij. (9.364)
(ii) Antisymmetry:

Rijkl = −Rjikl = −Rijlk = Rjilk . (9.365)
(iii) Cyclicity:

Rijkl + Riljk + Riklj = 0. (9.366)
There is one more symmetry called the Bianchi identity, which is not
obvious but could be shown by direct substitution:

(iv) Bianchi identity:
Rijkl;m + Rijmk;l + Rijlm;k = 0. (9.367)

9.7.4 Contractions of the Curvature Tensor

Using the symmetry property, we can contract the first and the third indices to
get a very important symmetric second-rank tensor called the Ricci tensor:

gikRijkl = Rjl, (9.368)

where Rjl = Rlj. The antisymmetry property of the curvature tensor indicates
that this is the only second-rank tensor that can be constructed by contract-
ing the indices of the curvature tensor. Contracting the first and the third, and
then the second and the fourth indices of the curvature tensor gives us the
only scalar, R, the Riemann curvature scalar, that can be constructed from the
curvature tensor as

gjlgikRijkl = gjlRjl = Rj
j = R. (9.369)

Finally, contracting the Bianchi identity gives
gikRijkl;m + gikRijmk;l + gikRijlm;k = 0, (9.370)

Rjl;m − Rjm;l + Rk
jlm;k = 0. (9.371)

Contracting once more yields
R;m − Rj

m;j − Rk
m;k = 0, (9.372)(

Rj
m − 1

2
R𝛿j

m

)
;j
= 0, (9.373)

which can also be written as(
Rij − 1

2
Rgij

)
;j
= 0. (9.374)
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9.7.5 Curvature in n Dimensions

The curvature tensor, Rijkl, in n dimensions has n4 components. In four
dimensions it has 256, in three dimensions 81, and in two dimensions 16
components. However, due to its large number of symmetries expressed in
Eqs. (9.364)–(9.367), it has only

Cn = 1
12

N2(N2 − 1) (9.375)

independent components. In four dimensions, this gives the number of inde-
pendent components as 20, in three dimensions as 6, and in two dimensions
as 1.

In one dimension, the curvature tensor has only one component, R1111, which
due to Eq. (9.366) or (9.367) is always zero. In other words, in one dimension,
we cannot have intrinsic curvature. It sounds odd that a curved wire has zero
curvature. However, curvature tensor reflects the inner properties of the space
and not how it is embedded or viewed from a higher dimension. Indeed, in one
dimension, we can always transform the line element, ds2 = g11(x)dx2, every-
where into the form ds2 = dx′2, via the coordinate transformation

x′ = ∫
√

g11dx. (9.376)

Another way to see this is that we can always straighten a bent wire without
cutting it.

In two dimensions, Rijkl has only one independent component, which can be
taken as R1212. Using Eqs. (9.363)–(9.367), we can write all the components of
Rijkl as

R1212 = −R2112 = −R1221 = R2121,

R1111 = R1112 = R1121 = R1122 = 0,
R1211 = R1222 = R2111 = R2122 = 0,
R2211 = R2212 = R2221 = R2222 = 0.

(9.377)

These can be conveniently expressed as

Rijkl = (gikgjl − gilgjk)
R1212

g
, (9.378)

where g is the determinant g = (g11g22 − g2
12). If we contract i and k in Rijkl, we

get

Rjl = gjl
R1212

g
. (9.379)
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Contracting j and l in Rjl gives the Riemann curvature scalar

R =
2R1212

g
. (9.380)

We can now write the curvature tensor as

Rijkl =
R
2
(gikgjl − gilgjk). (9.381)

The Gaussian curvature, K , introduced in Eq. (9.337) is related to the Riemann
curvature scalar R as

K = R
2
=

R1212

g
, (9.382)

which for a sphere of radius a becomes K = 1∕a2.

Example 9.1 Laplacian as a scalar field
We consider the line element

ds2 = dr2 + r2d𝜃2 + r2sin2𝜃d𝜙2, (9.383)

where

x1 = r, x2 = 𝜃, x3 = 𝜙 (9.384)

and

g11 = 1, g22 = r2, g33 = r2sin2𝜃. (9.385)

Contravariant components gij are:

g11 = 1, g22 = 1
r2 , g33 = 1

r2sin2𝜃
. (9.386)

Using Eq. (9.330) and g = r4sin2𝜃, we can write the Laplacian as

𝜕i𝜕
iΨ = 1|g|1∕2

𝜕

𝜕xi

[|g|1∕2gik 𝜕Ψ
𝜕xk

]
(9.387)

= 1|g|1∕2
𝜕

𝜕xi

[|g|1∕2
(

gi1 𝜕Ψ
𝜕x1 + gi2 𝜕Ψ

𝜕x2 + gi3 𝜕Ψ
𝜕x3

)]
(9.388)

= 1
r2 sin 𝜃

[
𝜕

𝜕r

(
r2 sin 𝜃

𝜕Ψ
𝜕r

)
+ 𝜕

𝜕𝜃

(
r2 sin 𝜃

r2
𝜕Ψ
𝜕𝜃

)
+ 𝜕

𝜕𝜙

(
r2 sin 𝜃

r2sin2𝜃

𝜕Ψ
𝜕𝜙

)]
. (9.389)

After simplifying, the Laplacian is obtained as

𝜕i𝜕
iΨ = 1

r2
𝜕

𝜕r

(
r2 𝜕Ψ

𝜕r

)
+ 1

r2 sin 𝜃

𝜕

𝜕𝜃

(
sin 𝜃

𝜕Ψ
𝜕𝜃

)
+ 1

r2sin2𝜃

𝜕2Ψ
𝜕𝜙2 . (9.390)
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Here we have obtained a well-known formula in a rather straight forward
manner, demonstrating the advantages of the tensor formalism. Note that even
though the components of the metric tensor depend on position [Eq. (9.385)],
the curvature tensor is zero:

Rijkl = 0, (9.391)
thus the space of the line element [Eq. (9.383)] is flat. However, for the metric

ds2 =

[
1

1 − r2∕R2
0

]
dr2 + r2d𝜃2 + r2sin2𝜃d𝜙2, (9.392)

it can be shown that not all the components of Rijkl vanish. In fact, this line ele-
ment gives the distance between two infinitesimally close points on the surface
of a hypersphere (S − 3) with constant radius R0.

9.7.6 Geodesics

Geodesics are defined as the shortest paths between two points in a given
geometry. In flat space, they are naturally the straight lines. We can generalize
the concept of straight lines as curves whose tangents remain constant along
the curve. However, the constancy is now with respect to the covariant
derivative. If we parametrize an arbitrary curve in terms of arclength, s, as
xi(s), its tangent vector will be given as

ti = dxi

ds
. (9.393)

For geodesics, the covariant derivative of ti must be zero; thus we obtain the
equation of geodesics as

ti
;j

dxj

ds
=
[

dti

dxj +
{

i
jk

}
tk
]

dxj

ds
= 0, (9.394)

d2xi

ds2 +
{

i
jk

}
dxj

ds
dxk

ds
= 0. (9.395)

9.7.7 Invariance Versus Covariance

We have seen that scalars preserve their value under general coordinate
transformations. Properties like the magnitude of a vector and the trace of a
second-rank tensor also do not change under general coordinate transforma-
tions. Such properties are called invariants. They are very important in the
study of the coordinate-independent properties of a system.

A very important property of tensors is that tensor equations preserve their
form under coordinate transformations. For example, the tensor equation

Aij = BijklCkl + kDij + Ek
i; jk + · · · (9.396)
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transforms into

A′
ij = B′

ijklC
′
kl + kD′

ij + E′k
i; jk + · · · . (9.397)

Under coordinate transformations, individual components of tensors change;
however, the form of the tensor equation remains the same. This is called
covariance. One of the early uses of tensors was in searching and expressing
the properties of crystals that are independent on the choice of coordinates.
However, the covariance of tensor equations reaches its full potential only
with the introduction of the spacetime concept and the special and the general
theories of relativity.

9.8 Spacetime and Four-Tensors

9.8.1 Minkowski Spacetime

In Newton’s theory, the energy of a freely moving particle is given by the
well-known expression for the kinetic energy as E = 1

2
m𝑣2. Since there is no

limit to the energy that one could pump into a system, this formula implies that
in principle, one could accelerate particles to any desired velocity. In classical
physics, this makes it possible to construct infinitely fast signals to commu-
nicate with the other parts of the universe. Another property of Newton’s
theory is that time is universal, or absolute, that is, identical clocks carried by
moving observers, uniform or accelerated, run at the same rate. Thus, once
two observers synchronize their clocks, they will remain synchronized forever.
In Newton’s theory, this allows us to study systems with moving parts in terms
of a single, universal, time parameter. With the discovery of the special theory
of relativity, it became clear that clocks carried by moving observers run at
different rates; thus rendering the usage of a single time parameter for all
observers impossible.

After Einstein’s introduction of the special theory of relativity, another
remarkable contribution toward the understanding of time came with the
introduction of the spacetime concept by Minkowski. Spacetime not only
strengthened the mathematical foundations of special relativity but also paved
the way to Einstein’s theory of gravitation.

Minkowski spacetime is obtained by simply adding a time axis orthogonal
to the Cartesian axis, thus treating time as another coordinate (Figure 9.17).
A point in spacetime corresponds to an event. It is important to note that space
and time are fundamentally different and cannot be treated symmetrically.
For example, it is possible to be present at the same place at two different
times; however, if we reverse the roles of space and time, and if space and
time were symmetric, then it would also mean that we could be present at
two different places at the same time. So far there is no evidence for this,
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x0 = ct

(x1
, x2

, x3)
0

P

Figure 9.17 A point in Minkowski spacetime.

neither in the microrealm nor in the macrorealm. In relativity, even though
space and time are treated on equal footing as independent coordinates,
they are not treated symmetrically. This is evident in the Minkowski line
element:

ds2 = c2dt2 − dx2 − dy2 − dz2, (9.398)

where the signs of the spatial and the time coordinates are different. It is for
this reason that Minkowski spacetime is called pseudo-Euclidean. In this line
element, c is the speed of light representing the maximum velocity in nature. An
interesting property of the Minkowski spacetime is that two events connected
by light rays, like the emission of a photon from one galaxy and its subsequent
absorption in another, have zero distance between them even though they are
widely separated in spacetime.
9.8.2 Lorentz Transformations and Special Relativity

In Minkowski spacetime, there are infinitely many different ways to choose the
orientation of the coordinate axis. However, a particular group of coordinate
systems, which are related to each other by linear transformations:

x0 = a0
0x0 + a0

1x1 + a0
2x2 + a0

3x3,

x1 = a1
0x0 + a1

1x1 + a1
2x2 + a1

3x3,

x2 = a2
0x0 + a2

1x1 + a2
2x2 + a2

3x3,

x3 = a3
0x0 + a3

1x1 + a3
2x2 + a3

3x3,

(9.399)



232 9 Coordinates and Tensors

and which also preserve the quadratic form

(x0)2 − (x1)2 − (x2)2 − (x3)2, (9.400)

have been extremely useful in special relativity. In these equations, we have
written x0 = ct to emphasize the fact that time is treated as another coordinate.

In 1905, Einstein [2] published his celebrated paper on the special theory of
relativity, which is based on two postulates:

First postulate of relativity: It is impossible to detect or measure uniform
translatory motion of a system in free space.

Second postulate of relativity: The speed of light in free space is the maxi-
mum velocity in the universe, and it is the same for all uniformly moving
observers.

In special relativity, two inertial observers K and K , where K is moving uni-
formly with the velocity 𝑣 along the common direction of the x1- and x1-axes
are related by the Lorentz transformations (Figure 9.18):

x0 = 1√
1 − 𝑣2∕c2

[
x0 −

(
𝑣

c

)
x1
]
,

x1 = 1√
1 − 𝑣2∕c2

[
−
(
𝑣

c

)
x0 + x1

]
,

x2 = x2,

x3 = x3.

(9.401)

Kv
x1

, x1

x2

K

x3

x2

x3

Figure 9.18 Lorentz transformations.
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The inverse transformation is obtained by replacing 𝑣 with −𝑣 as

x0 = 1√
1 − 𝑣2∕c2

[
x0 +

(
𝑣

c

)
x1
]
,

x1 = 1√
1 − 𝑣2∕c2

[(
𝑣

c

)
x0 + x1

]
,

x2 = x2
,

x3 = x3
.

(9.402)

When the axis in K and K remain parallel but the velocity−→𝑣 of frame K in frame
K is arbitrary in direction, then the Lorentz transformation is generalized as

x0 = 𝛾

[
x0 −

(−→
𝛽 ⋅ −→x

)]
,

−→
x = −→x + (𝛾 − 1)

𝛽2

(−→
𝛽 ⋅ −→x

)−→
𝛽 − 𝛾

−→
𝛽 x0.

(9.403)

We have written 𝛾 = 1∕
√

1 − 𝑣2∕c2 and −→
𝛽 = −→

𝑣 ∕c.

9.8.3 Time Dilation and Length Contraction

Two immediate and important consequences of the Lorentz transformation
equations [Eq. (9.401)] are the time dilation:

Δt = Δt
(

1 − 𝑣2

c2

)1∕2

(9.404)

and the length contraction formulas:

Δx1 = Δx1
(

1 − 𝑣2

c2

)1∕2

. (9.405)

These formulas relate the time and the space intervals measured by two inertial
observers K and K . The second formula is also known as the Lorentz con-
traction. The time dilation formula indicates that clocks carried by moving
observers run slower compared to the clocks of the observer at rest. Similarly,
the Lorentz contraction indicates that meter sticks carried by moving observers
appear shorter to the observer at rest.

9.8.4 Addition of Velocities

Another important consequence of the Lorentz transformation is the formula
for the addition of velocities, which relates the velocities measured in the K and
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K frames by the formula

u1 = u1 + 𝑣

1 + u1
𝑣∕c2

, (9.406)

where u1 = dx1

dt
and u1 = dx1

dt
are the velocities measured in the K and the

K frames, respectively. In the limit as c → ∞, this formula reduces to the
well-known Galilean result u1 = u1 + 𝑣. Equation (9.406) indicates that even
if we go to a frame moving with the speed of light, it is not possible to send
signals faster than c.

If the axes in K and K remain parallel, but the velocity −→𝑣 of frame K in frame
K is arbitrary in direction, then the parallel and the perpendicular components
of velocity transform as

u∥ =
u∥ + 𝑣

1 + −→
𝑣 ⋅

−→
u∕c2

, (9.407)

−→u⟂ =
−→
u⟂

𝛾(1 + −→
𝑣 ⋅

−→
u∕c2)

. (9.408)

In this notation, u∥ and −→u⟂ refer to the parallel and perpendicular components
with respect to −→

𝑣 and 𝛾 = (1 − 𝑣2∕c2)−1∕2.

9.8.5 Four-Tensors in Minkowski Spacetime

From the second postulate of relativity, invariance of the speed of light means

(dx0)2 −
3∑

i=1
(dxi)2 = (dx0)2 −

3∑
i=1

(dxi)2 = 0. (9.409)

This can also be written as

g𝛼𝛽dx𝛼dx𝛽 = g𝛼𝛽dx𝛼dx𝛽 = 0, (9.410)

where the metric of the Minkowski spacetime is

g𝛼𝛽 = g𝛼𝛽 =

⎡⎢⎢⎢⎢⎣
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎤⎥⎥⎥⎥⎦
. (9.411)
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We use the notation where the Greek indices take the values 0, 1, 2, 3 and the
Latin indices run through 1, 2, 3. Note that even though the Minkowski space-
time is flat, because of the reversal of sign for the spatial components it is not
Euclidean; thus the covariant and the contravariant indices differ in spacetime.
Contravariant metric components can be obtained using [3]

g𝛼𝛽 =
|g𝛽𝛼|cofactor

det g𝛼𝛽
(9.412)

as

g𝛼𝛽 =

⎡⎢⎢⎢⎢⎣
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎤⎥⎥⎥⎥⎦
. (9.413)

Similar to the position vector in Cartesian coordinates, we can define a position
vector r in Minkowski spacetime:

r = x𝛼 = (x0, x1, x2, x3) = (x0,
−→r ), (9.414)

where r defines the time and the position of an event. In terms of linear trans-
formations [Eq. (9.399)], x𝛼 transforms as

x𝛼 = a𝛼

𝛽
x𝛽 . (9.415)

For the Lorentz transformations [Eq. (9.401)], a𝛼

𝛽
is given as

a𝛼

𝛽
=

⎡⎢⎢⎢⎢⎣
𝛾 −𝛽𝛾 0 0

−𝛽𝛾 𝛾 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎦
, (9.416)

where for the general case [Eq. (9.403)] we have

a𝛼

𝛽
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛾 −𝛽1𝛾 −𝛽2𝛾 −𝛽3𝛾

−𝛽1𝛾 1 +
(𝛾 − 1)𝛽2

1

𝛽2

(𝛾 − 1)𝛽1𝛽2

𝛽2

(𝛾 − 1)𝛽1𝛽3

𝛽2

−𝛽2𝛾
(𝛾 − 1)𝛽2𝛽1

𝛽2 1 +
(𝛾 − 1)𝛽2

2

𝛽2

(𝛾 − 1)𝛽2𝛽3

𝛽2

−𝛽3𝛾
(𝛾 − 1)𝛽3𝛽1

𝛽2

(𝛾 − 1)𝛽3𝛽2

𝛽2 1 +
(𝛾 − 1)𝛽2

3

𝛽2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (9.417)



236 9 Coordinates and Tensors

For the general linear transformation [Eq. (9.399)], the matrix elements a𝛼

𝛽
can

be obtained by

a𝛼

𝛽
= dx𝛼

dx𝛽
. (9.418)

In Minkowski spacetime, the distance between two infinitesimally close points,
that is, events, can be written in the following equivalent forms:

ds2 =
⎧⎪⎨⎪⎩

dx𝛼dx𝛼,

(dx0)2 − (dx1)2 − (dx2)2 − (dx3)2,

g𝛼𝛽dx𝛼dx𝛽 .

(9.419)

In another inertial frame, ds2 becomes

ds2 = g𝛼𝛽dx𝛼dx𝛽
, (9.420)

which after using Eqs. (9.411) and (9.415) can be written as

ds2 =
[
g𝛼𝛽a𝛼

𝛾a𝛽

𝛿

]
dx𝛾dx𝛿. (9.421)

If we restrict ourselves to transformations that preserve magnitude of vectors,
we obtain the analog of the orthogonality relation [Eq. (9.38)]:

g
𝛼𝛽

a𝛼
𝛾a𝛽

𝛿
= g𝛾𝛿. (9.422)

The position vector in Minkowski spacetime is called a four-vector and its
components transform as

x𝛼 = a𝛼

𝛽
x𝛽 , (9.423)

where its magnitude is a four-scalar.
An arbitrary four-vector, A𝛼 = (A0,A1,A2,A3), is defined as a vector that

transforms like the position vector x𝛼 as

A
𝛼

= a𝛼

𝛽
A𝛽 . (9.424)

The scalar product of two four-vectors, A𝛼 and B𝛼 , is a four-scalar:

A𝛼B𝛼 = A𝛼B𝛼 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

A0B0 + A1B1 + A2B2 + A3B3,

A0B0 + A1B1 + A2B2 + A3B3,

A0B0 − A1B1 − A2B2 − A3B3,

A0B0 − A1B1 − A2B2 − A3B3,

(9.425)
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Figure 9.19 Worldline and four-velocity u𝛼 .

uα

P

x0

(x1
, x2

, x3)0

In general, all tensor operations defined for the general tensors are valid in
Minkowski spacetime with the Minkowski metric [Eq. (9.411)]. Higher-rank
four-tensors can also be defined as

T
𝛼1𝛼2…
𝛽1𝛽2… = 𝜕x𝛼1

𝜕x𝛾1

𝜕x𝛼2

𝜕x𝛾2
· · · 𝜕x𝛿1

𝜕x𝛽1

𝜕x𝛿2

𝜕x𝛽2
· · ·T 𝛾1𝛾2…

𝛿1𝛿2…
(9.426)

9.8.6 Four-Velocity

Paths of observers in spacetime are called worldlines (Figure 9.19). Since
spacetime increments form a four-vector, dx𝛼 , they transform as

dx0 = 1√
1 − 𝑣2∕c2

[
dx0 −

(
𝑣

c

)
dx1

]
,

dx1 = 1√
1 − 𝑣2∕c2

[
−
(
𝑣

c

)
dx0 + dx1

]
,

dx2 = dx2,

dx3 = dx3.

(9.427)

Dividing dx𝛼 with a scalar, d𝜏 = ds
c

, called the proper time, we obtain the
four-velocity vector as

u𝛼 = dx𝛼

d𝜏
. (9.428)

Similarly, we can define four-acceleration as

a𝛼 = du𝛼

d𝜏
= d2x𝛼

d𝜏2 . (9.429)
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From the line element [Eq. (9.398)], it is seen that the proper time:

d𝜏 = ds
c

=
(

1 − 𝑣2

c2

) 1
2

dt (9.430)

is the time that the clocks carried by moving observers measure.

9.8.7 Four-Momentum and Conservation Laws

Using four-velocity, we can define a four-momentum as

p𝛼 = m0u𝛼 = m0
dx𝛼

d𝜏
, (9.431)

where m0 is the invariant rest mass of the particle. We can now express the
energy and momentum conservation laws covariantly as the invariance of the
magnitude of the four-momentum as

p𝛼p𝛼 = m0u𝛼u𝛼 = const. (9.432)

To evaluate the constant, we use the line element and the definition of the
proper time:

ds2 = c2dt2 − (dx1)2 − (dx2)2 − (dx3)2, (9.433)

c2 =
(

dx0

d𝜏

)2

−
(

dx1

d𝜏

)2

−
(

dx2

d𝜏

)2

−
(

dx3

d𝜏

)2

(9.434)

= u𝛼u𝛼, (9.435)

to obtain

p𝛼p𝛼 = m2
0c2. (9.436)

Writing the left-hand side of Eq. (9.436) explicitly gives

p0p0 + p1p1 + p2p2 + p3p3 = m2
0c2, (9.437)

(p0)2 − (p1)2 − (p2)2 − (p3)2 = m2
0c2. (9.438)

Spatial components of the four-momentum are

pi = m0
dxi

d𝜏
, i = 1, 2, 3, (9.439)

pi = m0
𝑣i√

1 − 𝑣2∕c2
. (9.440)
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Using this in Eq. (9.438), we obtain the time component, p0, as

(p0)2 = m2
0c2 +

m2
0𝑣

2

1 − 𝑣2∕c2 (9.441)

= m2
0c2

[
1 +

𝑣2∕c2

(1 − 𝑣2∕c2)

]
, (9.442)

p0 = m0c
[

1 +
𝑣2∕c2

(1 − 𝑣2∕c2)

]1∕2

. (9.443)

To interpret p0, we take its classical limit:

p0 = m0c
[

1 + 1
2
𝑣2

c2 + · · ·
]

(9.444)

≃ 1
c
[m0c2 + 1

2
m0𝑣

2]. (9.445)

The second term inside the square brackets is the classical expression for the
kinetic energy of a particle; however, the first term is new to Newton’s mechan-
ics. It indicates that free particles, even when they are at rest, have energy due
to their rest mass. This is the Einstein’s famous formula

E = m0c2, (9.446)

which indicates that mass and energy could be converted into each other. We
can now interpret the time component of the four-momentum as E/c, where E
is the total energy of the particle; thus the components of p𝛼 become

p𝛼 = (E∕c,m0ui). (9.447)

We now write the conservation of four-momentum equation as

p𝛼p𝛼 =
E2

c2 −
m2

0𝑣
2(

1 − 𝑣2

c2

) , (9.448)

p𝛼p𝛼 = m2
0c2. (9.449)

Defining

m =
m0(

1 − 𝑣2

c2

)1∕2 (9.450)

and calling

pi = m𝑣i, (9.451)
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we obtain a relation between the energy and the momentum of a relativistic
particle as

E2 = m2
0c4 + p2c2. (9.452)

9.8.8 Mass of a Moving Particle

Another important consequence of the special theory of relativity is Eq (9.450):

m =
m0(

1 − 𝑣2

c2

)1∕2 . (9.453)

This is the mass of a particle moving with velocity v. It says that as the speed
of a particle increases, its mass, that is, inertia, also increases, thus making
it harder to accelerate. As the speed of a particle approaches the speed of
light, its inertia approaches infinity, thus making it impossible to accelerate
beyond c.

9.8.9 Wave Four-Vector

The phase of a wave, 𝜙 = 𝜔t − kixi, where there is a sum over i, is an invariant.
This is so because it is merely a number equal to the number of wave crests
getting past a given point. Therefore, we can write

𝜔t − kixi = 𝜔t − k
i
xi
, (9.454)

which immediately suggests a wave four-vector:

k𝛼 = (k0, ki), (9.455)

k𝛼 =
(
𝜔

c
,

2𝜋
𝜆i

)
, (9.456)

and 𝜆i is the wavelength along xi. Because k𝛼 is a four-vector, it transforms as

k
0
= 𝛾(k0 − −→

𝛽 ⋅
−→
k ),

k∥ = 𝛾(k∥ − 𝛽k0).
(9.457)

We have written 𝛾 = 1∕
√

1 − 𝑣2∕c2 and −→
𝛽 = −→

𝑣 ∕c.

For light waves |−→k | = k0, |−→k | = k
0
; thus we obtain the familiar equations for

the Doppler shift:
𝜔 = 𝛾𝜔(1 − 𝛽 cos 𝜃), (9.458)

tan 𝜃 = sin 𝜃∕𝛾(cos 𝜃 − 𝛽), (9.459)
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where 𝜃 and 𝜃 are the angles of
−→
k and

−→
k with respect to −→

𝑣 , respectively. Note
that because of the presence of 𝛾 , there is Doppler shift even when 𝜃 = 𝜋∕2,
that is, when light is emitted perpendicular to the direction of motion.

9.8.10 Derivative Operators in Spacetime

Let us now consider the derivative operator, 𝜕∕𝜕x𝛼 , calculated in the K frame.
In terms of another inertial frame, K , it will be given as

𝜕

𝜕x𝛼 = 𝜕x𝛽

𝜕x𝛼

𝜕

𝜕x𝛽
, (9.460)

thus 𝜕∕𝜕x𝛽 transforms like a covariant four-vector. In general, we write the
four-gradient operator as

𝜕𝛼 = 𝜕

𝜕x𝛼
=
(

𝜕

𝜕x0 ,−
−→∇
)
, (9.461)

𝜕𝛼 =
(

𝜕

𝜕x0 ,
−→∇
)
. (9.462)

The four-divergence of a four-vector is a four-scalar:

𝜕𝛼A𝛼 = 𝜕𝛼A𝛼 = 𝜕0A0

𝜕x0 + −→∇ ⋅
−→A . (9.463)

The wave operator or the d’Alembert operator in spacetime is written as

◽ = 𝜕𝛼𝜕𝛼 =
𝜕2

𝜕(x0)2 − −→∇
2
. (9.464)

9.8.11 Relative Orientation of Axes in K and K Frames

Analogous to the orthogonal coordinates, any four-vector in Minkowski space-
time can be written in terms of basis vectors, ê𝛼 , as

A = (A0,A1,A2,A3) (9.465)
= ê𝛼A𝛼. (9.466)

In terms of another Minkowski frame, the same four-vector can be written as

A = ê𝛼A
𝛼

, (9.467)

where ê𝛼 are the new basis vectors of the frame K , which is moving with respect
to K with velocity 𝑣 along the common direction of the x1- and x1-axes. Both ê𝛼

and ê𝛼 are unit basis vectors along their axes in their respective frames. Because
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A represents some physical property in Minkowski spacetime, Eqs. (9.466) and
(9.467) are just different representations of A; hence, we can write

ê𝛼A𝛼 = ê𝛼′A
𝛼′

. (9.468)

Using the transformation property of four-vectors, we write

A
𝛼′

= a𝛼′

𝛽
A𝛽 , (9.469)

thus Eq. (9.468) becomes

ê𝛼A𝛼 = ê𝛼′a𝛼′

𝛽
A𝛽 . (9.470)

We rearrange this as

A𝛼 ê𝛼 = A𝛽
(

ê𝛼′a𝛼′

𝛽

)
. (9.471)

Since 𝛼 and 𝛽 are dummy indices, we can replace 𝛽 with 𝛼 to write

A𝛼 ê𝛼 = A𝛼
(

ê𝛼′a𝛼′

𝛼

)
, (9.472)

which gives us the transformation law of the basis vectors as

ê𝛼 = ê𝛼′a𝛼′

𝛼 . (9.473)

Note that this is not a component transformation. It gives ê𝛼 as a linear combi-
nation of ê𝛼′ . Using

a𝛼′

𝛼 =

⎡⎢⎢⎢⎢⎣
𝛾 −𝛽𝛾 0 0

−𝛽𝛾 𝛾 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎦
, (9.474)

we obtain
ê0 = 𝛾 ê0 − 𝛽𝛾 ê1, (9.475)

ê1 = −𝛽𝛾 ê0 + 𝛾 ê1, (9.476)

and its inverse as
ê0 = 𝛾 ê0 + 𝛽𝛾 ê1, (9.477)

ê1 = 𝛽𝛾 ê0 + 𝛾 ê1. (9.478)

The second set gives the orientation of the K axis in terms of the K axis. Since
𝛽 < 1, relative orientation of the K axis with respect to the K axis can be shown
as in Figure 9.20.

Similarly, using the first set, we can obtain the relative orientation of the K
axis with respect to the K axis as shown in Figure 9.21.
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Figure 9.20 Orientation of the K axis with respect to the K frame.
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Figure 9.21 Orientation of the K axis with respect to the K frame.

9.9 Maxwell’s Equations in Minkowski Spacetime

Before the spacetime formulation of special relativity, it was known that
Maxwell’s equations are covariant, that is, form-invariant, under Lorentz
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transformations. However, their covariance can be most conveniently
expressed in terms of four-tensors.

First let us start with the conservation of charge, which can be expressed as

𝜕𝜌

𝜕t
+ −→∇ ⋅

−→J = 0, (9.479)

where 𝜌 is the charge density and −→J is the current density in space. Defining a
four-current density J𝛼 as

J𝛼 = (𝜌c,−→J ), (9.480)

we can write Eq. (9.479) in covariant form as

𝜕𝛼J𝛼 = 0, (9.481)

where 𝜕𝛼 stands for covariant derivative [Eq. (9.461)]. Maxwell’s field
equations

−→∇ ⋅
−→E = 4𝜋𝜌,

−→∇ ×
−→B − 1

c
𝜕
−→E
𝜕t

= 4𝜋
c
−→J ,

−→∇ ⋅
−→B = 0,

−→∇ ×
−→E + 1

c
𝜕
−→B
𝜕t

= 0,

(9.482)

determine the electric and magnetic fields for a given charge, and current
distribution. We now introduce the field-strength tensor, F𝛼𝛽 , as

F𝛼𝛽 =

⎡⎢⎢⎢⎢⎣
0 −E1 −E2 −E3
E1 0 −B3 B2
E2 B3 0 −B1
E3 −B2 B1 0

⎤⎥⎥⎥⎥⎦
, (9.483)

where the covariant components of the field-strength tensor, F𝛼𝛽 , are given as

F𝛼𝛽 = g𝛼𝛾g𝛿𝛽F𝛾𝛿 =

⎡⎢⎢⎢⎢⎣
0 E1 E2 E3

−E1 0 −B3 B2
−E2 B3 0 −B1
−E3 −B2 B1 0

⎤⎥⎥⎥⎥⎦
. (9.484)
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Using F𝛼𝛽 , the first two Maxwell’s equations can be expressed in covariant
form as

𝜕𝛼F𝛼𝛽 = 4𝜋
c

J𝛽 . (9.485)

For the remaining two Maxwell’s equations, we introduce the dual
field-strength tensor, F̂𝛼𝛽 , which is related to the field strength tensor,
F𝛼𝛽 , through

F̂𝛼𝛽 = 1
2
𝜖𝛼𝛽𝛾𝛿F𝛾𝛿 =

⎡⎢⎢⎢⎢⎣
0 −B1 −B2 −B3

B1 0 E3 −E2
B2 −E3 0 E1
B3 E2 −E1 0

⎤⎥⎥⎥⎥⎦
, (9.486)

where

𝜖𝛼𝛽𝛾𝛿 =
⎡⎢⎢⎣
+1
0
−1

⎤⎥⎥⎦
⎧⎪⎨⎪⎩

for even permutations,
when any of the two indices are equal,
for odd permutations.

(9.487)

Now the remaining two Maxwell’s equations can be written as

𝜕𝛼F̂𝛼𝛽 = 0. (9.488)

The motion of charged particles in an electromagnetic field is determined by
the Lorentz force equation:

d−→p
dt

= q
(
−→E +

−→
𝑣

c
×
−→B
)
, (9.489)

where −→p is the spatial momentum and −→
𝑣 is the velocity of the charged particle.

We can write this in covariant form by introducing the four-momentum:

p𝛼 = (p0,
−→p ) = m0u𝛼, (9.490)

where m0 is the rest mass, u𝛼 is the four-velocity, and p0 = E∕c. Using the
derivative in terms of invariant proper time, we can write the Lorentz force
equation [Eq. (9.489)] as

dp𝛼

d𝜏
= m0

du𝛼

d𝜏
, (9.491)

dp𝛼

d𝜏
=

q
c

F𝛼𝛽u𝛽 . (9.492)
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9.9.1 Transformation of Electromagnetic Fields

Because F𝛼𝛽 is a second-rank four-tensor, it transforms as

F
𝛼𝛽

= dx𝛼

dx𝛾

dx𝛽

dx𝛿
F𝛾𝛿. (9.493)

Given the values of F𝛾𝛿 in an inertial frame K , we can find it in another inertial
frame K as

F
𝛼𝛽

= a𝛼
𝛾a𝛽

𝛿
F𝛾𝛿. (9.494)

If K corresponds to an inertial frame moving with respect to K with velocity 𝑣

along the common x1- and x1-axes, the new components of −→E and −→B are

E1 = E1,

E2 = 𝛾(E2 − 𝛽B3),

E3 = 𝛾(E3 + 𝛽B2),

(9.495)

B1 = B1,

B2 = 𝛾(B2 + 𝛽E3),

B3 = 𝛾(B3 − 𝛽E2).

(9.496)

If K is moving with respect to K with −→
𝑣 , the transformation equations are given

as

−→
E = 𝛾(

−→E + −→
𝛽 ×

−→B ) − 𝛾2

1 + 𝛾

−→
𝛽 (−→𝛽 ⋅

−→E ),

−→
B = 𝛾(

−→B − −→
𝛽 ×

−→E ) − 𝛾2

1 + 𝛾

−→
𝛽 (−→𝛽 ⋅

−→B ),
(9.497)

where 𝛾 = 1∕(1 − 𝛽2)1∕2 and −→
𝛽 = −→

𝑣 ∕c. Inverse transformations are easily
obtained by interchanging −→

𝛽 with −−→𝛽 .

9.9.2 Maxwell’s Equations in Terms of Potentials

The electric and magnetic fields can also be expressed in terms of the potentials
−→A and 𝜙 as

−→E = −1
c
𝜕
−→A
𝜕t

− −→∇𝜙, (9.498)
−→B = −→∇ ×

−→A . (9.499)
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In the Lorentz gauge,

1
c
𝜕𝜙

𝜕t
+ −→∇ ⋅

−→A = 0, (9.500)

−→A and 𝜙 satisfy

1
c2

𝜕2−→A
𝜕t2 − −→∇

2−→A = 4𝜋
c
−→J (9.501)

and
1
c2

𝜕2𝜙

𝜕t2 − −→∇
2
𝜙 = 4𝜋𝜌, (9.502)

respectively. Defining a four-potential:

A𝛼 = (𝜙,
−→A), (9.503)

we can write Eqs. (9.501) and (9.502) in covariant form as

◽A𝛼 = 4𝜋
c

J𝛼, (9.504)

where the d’Alembert operator ◽ is defined as

◽ = 𝜕2

d(x0)2 − −→∇
2
. (9.505)

Now the covariant form of the Lorentz gauge [Eq. (9.500)] becomes

𝜕𝛼A𝛼 = 0. (9.506)

Field-strength tensor in terms of the four-potential can be written as

F𝛼𝛽 = 𝜕𝛼A𝛽 − 𝜕𝛽A𝛼. (9.507)

9.9.3 Covariance of Newton’s Dynamic Theory

The concept of relativity was not new to Newton. In fact, it was known that the
dynamic equation of Newton:

d−→p
dt

=
−→F , (9.508)

is covariant for all uniformly moving, that is, inertial, observers. However,
the inertial observers in Newton’s theory are related to each other by the
Galilean transformation:

t = t, (9.509)
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x1 = [x1 − 𝑣t], (9.510)
x2 = x2, (9.511)
x3 = x3. (9.512)

Note that the Lorentz transformation reduces to the Galilean transformation in
the limit c → ∞, or 𝑣 ≪ c. Before the special theory of relativity, it was already
known that Maxwell’s equations are covariant not under Galilean but under
Lorentz transformations. Considering the success of Newton’s theory, this was
a conundrum, which took Einstein’s genius to resolve by saying that Lorentz
transformations are the correct transformation law between inertial observers
that all laws of nature should obey. In this regard, we also need to write Newton’s
dynamic equation as a four-tensor equation in spacetime.

Using the definition of four-momentum:

p𝛼 = m0u𝛼 = (E∕c, pi) (9.513)

and differentiating with respect to invariant proper time, we can write the
Newton’s dynamic equation in covariant form as

dp𝛼

d𝜏
= F𝛼, (9.514)

where F𝛼 is now the four-force. Note that the conservation of energy and
momentum is now expressed covariantly as the conservation of four-
momentum, that is,

p𝛼p𝛼 =
E2

c2 − p2 = m2
0c2. (9.515)
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Problems

1 For rotations about the z-axis, the transformation matrix is given as

Rz(𝜃) =
⎡⎢⎢⎢⎣

cos 𝜃 sin 𝜃 0
− sin 𝜃 cos 𝜃 0

0 0 1

⎤⎥⎥⎥⎦ .
Show that for two successive rotations by the amounts 𝜃1 and 𝜃2, the fol-
lowing is true:

Rz(𝜃1 + 𝜃2) = Rz(𝜃2)Rz(𝜃1).

2 Show that the rotation matrix Rz(𝜃) is a second-rank tensor.

3 Using the properties of the permutation symbol and the Kronecker delta,
prove the following identities in tensor notation:

(i)
[−→A ×

−→B
]
⋅
[−→C ×

−→D
]
= (

−→A ⋅
−→C )(

−→B ⋅
−→D) − (

−→A ⋅
−→D)(

−→B ⋅
−→C ),

(ii)
[−→A ×

[−→B ×
−→C
]]

+
[−→B ×

[−→C ×
−→A
]]

+
[−→C ×

[−→A ×
−→B
]]

= 0,

(iii) −→A ×
[−→B ×

−→C
]
=
−→B (

−→A ⋅
−→C ) −

−→C (
−→A ⋅

−→B ).

4 Show that
ΔV
V

= eii = tr(eij).

5 We have written the moment (torque) of the force acting on a portion of
a body as

Mik = ∮S
(𝜎ilxk − 𝜎klxi)dsl + ∫V

(𝜎ki − 𝜎ik)dV .

When the stress tensor is symmetric, 𝜎ki = 𝜎ik , obviously the volume inte-
gral on the right-hand side is zero. However, even when the stress tensor is
not symmetric, under certain conditions it can be made symmetric. Show
that if a stress tensor can be written as the divergence of a third-rank ten-
sor antisymmetric in the first pair of indices:

𝜎ik − 𝜎ki = 2
𝜕Ψikl

𝜕xl
, Ψikl = −Ψkil,
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then a third-rank tensor,𝜒ikl = Ψkli + Ψilk − Ψikl, antisymmetric in the last
pair of indices, 𝜒ikl = −𝜒ilk , can be found to transform 𝜎ik into symmetric
form via the transformation

𝜎′ = 𝜎 +
𝜕𝜒ikl

𝜕xl

as

𝜎′
ik = 1

2
(𝜎ik + 𝜎ki) +

(
𝜕Ψilk

𝜕xl
+

𝜕Ψkli

𝜕xl

)
, 𝜎′

ik = 𝜎′
ki.

In addition, show that the forces corresponding to the two stress tensors,
𝜎′ and 𝜎, are identical.

6 Write the components of the strain tensor in
(i) Cylindrical coordinates,

(ii) Spherical coordinates.

7 The trace of a second-rank tensor is defined as tr(A) = Ai
i. Show that trace

is invariant under general coordinate transformations.

8 Under general coordinate transformations, show that the volume
element, dnx = dx1dx2 … dxn, transforms as

dnx = dnx
||||𝜕x
𝜕x

|||| = dnx
||||𝜕x
𝜕x

||||−1
,

where |𝜕x∕𝜕x| is the Jacobian of the transformation, which is defined as|𝜕x∕𝜕x| = det(𝜕xi∕𝜕xj).

9 Show the following relations between the permutation symbol and the
Kronecker delta:

(i)
3∑

i=1
𝜖ijk𝜖ilm = 𝛿jl𝛿km − 𝛿jm𝛿kl,

(ii)
3∑

i=1

3∑
j=1

𝜖ijk𝜖ijm = 2𝛿km.

10 Evaluate∑
ijk

∑
lmn

𝜖ijk𝜖lmnTilTjmTkn,

where T is an arbitrary matrix.
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11 Using the symmetry of the Christoffel symbols, show that the curl of a
vector, −→𝑣 , can be written as(−→∇ × −→

𝑣

)
ij
= 𝑣i; j − 𝑣j; i =

𝜕𝑣i

𝜕xj −
𝜕𝑣j

𝜕xi .

12 Prove that the covariant derivative of the metric tensor is zero.

13 Verify that

ui
;j =

𝜕ui

𝜕xj +
{

i
jk

}
uk

transforms like a second-rank tensor.

14 Using the following symmetry properties:

Eijkl = Ejikl, Eijkl = Eijlk , Eijkl = Eklij,

show that the elasticity tensor, Eijkl, has 21 independent components.

15 Prove the following useful relation of the Christoffel symbol of the second
kind: { i

ik

}
=

𝜕(ln
√|g|)
𝜕xk

.

16 Show the following Christoffel symbols for a diagonal metric, where
gij = 0 unless i = j:{

i
jk

}
= 0,{

i
jj

}
= − 1

2gii

𝜕gjj

𝜕xi ,{
i
ji

}
=
{

i
ij

}
= 𝜕

𝜕xj (ln
√

gii),{ i
ii

}
= 𝜕

𝜕xi (ln
√

gii).

In these equations, summation convention is not used and different letters
imply different indices.

17 Show that the following tensor equation:

Aij = c + Bkl
ij Ckl + Ek

i; jk ,
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transforms as

A′
ij = c + B′kl

ij C′
kl + E′k

i; jk .

18 Find the expressions for the div and the grad operators for the following
metrics:
(i) ds2 = dr2 + 𝜌2d𝜃2 + dz2,

(ii) ds2 =
[

1
1−kr2∕R2

]
dr2 + r2d𝜃2 + r2sin2𝜃d𝜙2, k = 0, 1,−1.

19 Write the Laplacian operator for the following metrics and discuss what
geometries they represent:

(i) ds2 = R2(d𝜒2 + sin2𝜒d𝜃2 + sin2𝜒sin2𝜃d𝜙2), 𝜒 ∈ [0, 𝜋], 𝜃 ∈ [0, 𝜋],
𝜙 ∈ [0, 2𝜋],

(ii) ds2 = R2(d𝜒2 + sinh2
𝜒d𝜃2 + sinh2

𝜒sin2𝜃d𝜙2), 𝜒 ∈ [0,∞], 𝜃 ∈
[0, 𝜋], 𝜙 ∈ [0, 2𝜋].

20 Write the line element for the elliptic cylindrical coordinates (u, 𝑣, z):
x = a cosh u cos 𝑣,
y = a sinh u sin 𝑣,

z = z.

21 Write the covariant and the contravariant components of the metric ten-
sor for the parabolic cylindrical coordinates (u, 𝑣, z):

x = (1∕2)(u2 − 𝑣2),
y = u𝑣,
z = z.

22 Write the Laplacian in the parabolic coordinates (u, 𝑣, 𝜙):
x = u𝑣 cos𝜙,
y = u𝑣 sin𝜙,

z = (1∕2)(u2 − 𝑣2).

23 Calculate all the nonzero components of the Christoffel symbols for the
metric in the line element

ds2 = dr2 + r2d𝜃2 + r2sin2𝜃d𝜙2, r ∈ [0,∞], 𝜃 ∈ [0, 𝜋], 𝜙 ∈ [0, 2𝜋].

24 Write the contravariant gradient of a scalar function in spherical polar
coordinates.
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25 Write the divergence operator in spherical polar coordinates.

26 Write the Laplace operator in cylindrical coordinates.

27 In four dimensions, spherical polar coordinates (r, 𝜒, 𝜃, 𝜙) are defined as
x = r sin𝜒 sin 𝜃 cos𝜙,
y = r sin𝜒 sin 𝜃 sin𝜙,

z = r sin𝜒 cos 𝜃,
𝑤 = r cos𝜒.

(i) Write the line element ds2 = dx2 + dy2 + dz2 + d𝑤2 in terms of
(r, 𝜒, 𝜃, 𝜙).

(ii) What are the ranges of (r, 𝜒, 𝜃, 𝜙)?
(iii) Write the metric for the three-dimensional surface (S-3) of a hyper-

sphere.

28 Which one of the following matrices are Cartesian tensors:
(i) [

y2 −xy
−xy x2

]
,

(ii) [
xy y2

x2 −xy

]
.

29 Verify Eq. (9.363).

30 Show by direct substitution that the Bianchi identities [Eq. (9.367)]
are true.

31 Verify Eqs. (9.377)–(9.381).

32 For the surface of a sphere, the metric can be written as ds2 = a2(d𝜃2 +
sin2𝜃d𝜙2), where a is the radius of the sphere. Using the definition of the
Riemann curvature tensor [Eq. (9.363)], evaluate R1212 and R, and verify
that K = 1∕a2.

33 In the standard models of cosmology, the line element for a closed uni-
verse is given as

ds2 = dt2 − R0(t)2[d𝜒2 + sin2𝜒d𝜃2 + sin2𝜒sin2𝜃d𝜙2], c = 1,
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where t is the universal time and 𝜒, 𝜃, and 𝜙 are the angular coordinates
with the ranges 𝜒 ∈ [0, 𝜋], 𝜃 ∈ [0, 𝜋], 𝜙 ∈ [0, 2𝜋].
For a static universe with constant radius, R0, the wave equation for the
massless conformal scalar field is given as

◽Φ(t, 𝜒, 𝜃, 𝜙) + 1
R2

0
Φ(t, 𝜒, 𝜃, 𝜙) = 0,

where ◽ is the d’Alembert wave operator, ◽ = g𝜇𝜈𝜕𝜇𝜕𝜈 , and 𝜕𝜈 stands for
the covariant derivative. The◽ operator can also be written as [Eq. (9.330)]

◽ = g−1∕2 𝜕

𝜕x𝜇

[
g1∕2g𝜇𝜈 𝜕

𝜕x𝜈

]
,

where g is the absolute value of the determinant of the metric tensor,
g = R6

0sin4𝜒sin2𝜃.
(i) Write the wave equation for the massless conformal scalar field as[

1
2g

𝜕g
𝜕x𝜇

g𝜇𝜈𝜕𝜈 +
𝜕g𝜇𝜈

𝜕x𝜇
𝜕𝜈 + g𝜇𝜈𝜕𝜇𝜕𝜈 +

1
R2

0

]
Φ = 0.

(ii) Using Einstein’s summation convention and the identification

x0 = t, x1 = 𝜒, x2 = 𝜃, x3 = 𝜙,

show that the wave equation becomes
𝜕2Φ
𝜕t2 − 1

R2
0

𝜕2Φ
𝜕𝜒2 − 1

R2
0sin2𝜒

𝜕2Φ
𝜕𝜃2 − 1

R2
0sin2𝜃sin2𝜒

𝜕2Φ
𝜕𝜙2

−
2 cos𝜒
R2

0 sin𝜒

𝜕Φ
𝜕𝜒

− cos 𝜃
R2

0sin2𝜒 sin 𝜃

𝜕Φ
𝜕𝜃

+ 1
R2

0
Φ = 0.

(iii) Using a separable solution of the form

Φ(t, 𝜒, 𝜃, 𝜙) = T(t)X(𝜒)Y (𝜃, 𝜙),

show that the wave equation for the massless conformal scalar field
reduces to[

1
T(t)

d2T(t)
dt2

]
− 1

R2
0

[
1

X(𝜒)
d2X(𝜒)

d𝜒2 +
2 cos𝜒
sin𝜒

1
X(𝜒)

dX(𝜒)
d𝜒

− 1
]

− 1
R2

0sin2𝜒

[
1

Y (𝜃, 𝜙)

(
𝜕2Y (𝜃, 𝜙)

𝜕𝜃2 + cos 𝜃
sin 𝜃

𝜕Y (𝜃, 𝜙)
𝜕𝜃

+ 1
sin2𝜃

𝜕2Y (𝜃, 𝜙)
𝜕𝜙2

)]
= 0.

(iv) Using the separation of variables method, write the solutions for T(t),
X(𝜒), and Y (𝜃, 𝜙). Do not solve the differential equations, just com-
pare them with the differential equations that the Gegenbauer poly-
nomials and the spherical harmonics satisfy.
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34 Using the four-current, J𝛼 = (𝜌c,−→J ), and the field-strength tensor

F𝛼𝛽 =

⎡⎢⎢⎢⎢⎣
0 −E1 −E2 −E3
E1 0 −B3 B2
E2 B3 0 −B1
E3 −B2 B1 0

⎤⎥⎥⎥⎥⎦
,

show that the Maxwell’s field equations:
−→∇ ⋅

−→E = 4𝜋𝜌,

−→∇ ×
−→B − 1

c
𝜕
−→E
𝜕t

= 4𝜋
c
−→J ,

−→∇ ⋅
−→B = 0,

−→∇ ×
−→E + 1

c
𝜕
−→B
𝜕t

= 0,

can be written in covariant form as

𝜕𝛼F𝛼𝛽 = 4𝜋
c

J𝛼,

𝜕𝛼F̂𝛼𝛽 = 0.

The dual field-strength tensor F̂𝛼𝛽 is defined as

F̂𝛼𝛽 = 1
2
𝜖𝛼𝛽𝛾𝛿F𝛾𝛿 =

⎡⎢⎢⎢⎢⎣
0 −B1 −B2 −B3

B1 0 E3 −E2
B2 −E3 0 E1
B3 E2 −E1 0

⎤⎥⎥⎥⎥⎦
,

where 𝜖𝛼𝛽𝛾𝛿 is the permutation symbol.

35 If K corresponds to an inertial frame moving with respect to K with veloc-
ity 𝑣 along the x1-axis, show that the new components of−→E and−→B become

E1 = E1,

E2 = 𝛾(E2 − 𝛽B3),

E3 = 𝛾(E3 + 𝛽B2),

B1 = B1,

B2 = 𝛾(B2 + 𝛽E3),

B3 = 𝛾(B3 − 𝛽E2).
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36 Show that the field-strength tensor can also be written as F𝛼𝛽 = 𝜕𝛼A𝛽 −
𝜕𝛽A𝛼 , where the four-potential is defined as A𝛼 = (𝜙,

−→A) and

−→E = −1
c
𝜕
−→A
𝜕t

− −→∇𝜙,

−→B = −→∇ ×
−→A .
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10

Continuous Groups and Representations

In ordinary parlance, the word symmetry is usually associated with beautiful.
In fact, recent studies have shown that people with more symmetric bodies are
more beautiful to humans. This is particularly interesting since the left–right
symmetry of the human body is almost undetectable to the naked eye. In archi-
tecture and art, symmetry is used to build beautiful structures and patterns by
distributing relatively simple building blocks according to a rule. Most of the
symmetries around us are due to rotations and reflections. Symmetry in science
usually means invariance of a given system under some operation. As in crys-
tals and molecules, symmetries can be discrete, where applications of certain
amounts of rotation, translation, or reflection produce the same structure. After
the discovery of the Lagrangian formulation of mechanics, it became clear that
the conservation laws are also due to the symmetries of the physical system.
For example, conservation of angular momentum follows from the symmetry
of a given system with respect to rotations, whereas the conservation of linear
momentum follows from symmetry with respect to translations. In these sym-
metries, a system is carried from one identical state to another continuously;
hence they are called continuous or Lie symmetries. With the discovery of
quantum mechanics, the relation between conservation laws and symmetries
has even become more important. Conservation of isospin and flavor in
nuclear and particle physics are important tools in building theories. Similarly,
gauge symmetry has become an important guide in constructing new models.

Group theory is the branch of mathematics that allows us to study symme-
tries in a systematic way. In this chapter, we discuss continuous groups and Lie
algebras and their relation to coordinate transformations. We also discuss the
representation theory and its applications. In particular, we concentrate on
the representations of the rotation group, R(3), and the special unitary group,
SU(2). An advanced treatment of spherical harmonics is given in terms of the
rotation group and its representations. We also discuss the inhomogeneous
Lorentz group and introduce its Lie algebra. We finally introduce symmetries
of differential equations and the extension or prolongation of generators. Even
though this chapter could be read independently, occasionally we refer to

Mathematical Methods in Science and Engineering, Second Edition. Selçuk Ş. Bayın.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.
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results from Chapter 9. In particular, we recommend reading the sections on
orthogonal and Lorentz transformations before reading this chapter.

10.1 Definition of a Group

The basic properties of rotations in three dimensions are just the properties
that make a group. A group is an ensemble of elements:

G ∈ {g0, g1, g2,…}, (10.1)

with the following properties:

(i) For any two elements, ga, gb ∈ G, a composition rule is defined such that

gagb ∈ G. (10.2)

(ii) For any three elements of the group, ga, gb, gc ∈ G, the associative rule is
obeyed:

(gagb)gc = ga(gbgc). (10.3)

(iii) G contains the unit element, g0, such that for any g ∈ G,

gg0 = g0g = g. (10.4)

(iv) For every g ∈ G, there exists an inverse element, g−1 ∈ G, such that

gg−1 = g−1g = g0. (10.5)

10.1.1 Nomenclature

In n dimensions, the set, {A}, of all linear transformations with det A ≠ 0,
forms a group called the general linear group in n dimensions, GL(n).

We use the letter A for the transformation and its operator or its matrix rep-
resentation. The matrix elements of A could be real or complex; thus, we also
write GL(n,R) or GL(n,C). The rotation group in two dimensions is shown as
R(2). Elements of R(2) are characterized by a single continuous parameter, 𝜃,
which is the angle of rotation. A group whose elements are characterized by a
number of continuous parameters is called a continuous group or a Lie group.
In a continuous group, the group elements can be generated continuously from
the identity element. The rotation group in three dimensions is shown as R(3).
Elements of R(3) are characterized in terms of three independent parameters,
which are usually taken as the three Euler angles. R(n) is a subgroup of GL(n)
and R(n) is also a subgroup of the group of n-dimensional orthogonal trans-
formations, O(n). Elements of O(n) satisfy |det A|2 = 1. The set of all linear
transformations with det A = 1 forms a group called the special linear group,
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SL(n,R) or SL(n,C). Elements of O(n) satisfying det A = 1 form the special
orthogonal group shown as SO(n), which is also a subgroup of SL(n,R). The
group of linear transformations acting on vectors in n-dimensional complex
space and satisfying |det A|2 = 1, is called the unitary group U(n). If the ele-
ments of the unitary group also satisfy det A = 1, we have the special unitary
group SU(n). SU(n) is a subgroup of U(n). Groups with infinite number of
elements like R(n) are called infinite groups. A group with finite number of ele-
ments is called a finite group, where the number of elements in a finite group is
called the order of the group. Elements of a group in general do not commute,
that is, gagb for any two elements need not be equal to gbga. If in a group for
every pair gagb = gbga holds, then the group is said to be commutative or
Abelian.

10.2 Infinitesimal Ring or Lie Algebra

For a continuous group or a Lie group, G, if A(t) ∈ G, we have seen that its
generator, X, [Eq. (9.72)] is given as

X = A′(0). (10.6)

The ensemble {A′(0)} of transformations is called the infinitesimal ring, or
the Lie algebra of G, and it is denoted by rG.

Differentiating A(at) ∈ G with respect to t:

A′(at) = aA′(at), (10.7)

where a is a constant and substituting t = 0 we get

aA′(0) = aX, (10.8)
A′(0) = X ∈ rG. (10.9)

Also, if A(t) and B(t) are any two elements of G, then

C(t) = A(t)B(t) ∈ G. (10.10)

Differentiating this and substituting t = 0 and using the fact that

A(0) = B(0) = I, (10.11)

we obtain

C′(0) = A′(0) + B′(0) = X + Y . (10.12)

Hence,

X + Y ∈ rG if X,Y ∈ rG. (10.13)
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Lie has proven some very interesting theorems about the relations between
continuous groups and their generators. One of these is the commutator

[Xi,Xj] = XiXj − XjXi (10.14)

=
n∑

k=1
ck

ijXk , (10.15)

which says that the commutator of two generators is always a linear combina-
tion of generators. The constants, ck

ij, are called the structure constants of the
group G, and n is the dimension of G.

10.2.1 Properties of rG

So far, we have shown the following properties of rG:
If X,Y ∈ rG, then

(i) aX ∈ rG, where a is a real number, (10.16)

(ii) X + Y=Y + X ∈ rG, (10.17)

(iii) [Xi,Xj] = XiXj − XjXi (10.18)

=
n∑

k=1
ck

ijXk ∈ rG. (10.19)

This means that rG is a vector space with the multiplication defined in (iii). The
dimension of this vector space is equal to the number, n, of the parameters
of the group G; thus, one can define a basis (X1,X2,… ,Xn) such that every
X ∈ rG can be expressed as a linear combination of the basis vectors:

X = x1X1 + x2X2 + · · · + xnXn, xn ∈ ℝ. (10.20)

From these it is clear that a continuous group completely determines the
structure of its Lie algebra. Lie has also proved the converse, that is, the local
structure in some neighborhood of the identity of a continuous group is
completely determined by the structure constants ck

ij.

10.3 Lie Algebra of the Rotation Group R(3)

We have seen that the generators of the rotation group are given as [Eq. (9.80)]

X1 =
⎡⎢⎢⎣
0 0 0
0 0 1
0 −1 0

⎤⎥⎥⎦ , X2 =
⎡⎢⎢⎣
0 0 −1
0 0 0
1 0 0

⎤⎥⎥⎦ , X3 =
⎡⎢⎢⎣

0 1 0
−1 0 0
0 0 0

⎤⎥⎥⎦ . (10.21)
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These generators satisfy the commutation relation

[Xi,Xj] = −𝜖ijkXk , (10.22)

where 𝜖ijk is the permutation (Levi–Civita) symbol. Using these generators, we
can write an arbitrary infinitesimal rotation as

r ≅ (I+X1𝜀1 + X2𝜀2 + X3𝜀3)r(0), (10.23)
𝛿r = (X1𝜀1 + X2𝜀2 + X3𝜀3)r(0). (10.24)

Defining two vectors, that is, 𝚯 with the components

𝚯 =
⎡⎢⎢⎣
𝜀1
𝜀2
𝜀3

⎤⎥⎥⎦ (10.25)

and

X=X1ê1 + X2ê2 + X3ê3, (10.26)

we can write

r ≅ (I+X ⋅𝚯)r(𝟎), (10.27)

thus, 𝛿r ≅ X ⋅𝚯. The operator for finite rotations, where 𝚯 has now the
components (𝜃1, 𝜃2, 𝜃3), can be constructed by N successive infinitesimal
rotations, each by the amount 𝚯∕N , and in the N → ∞ limit as

r = lim
N→∞

(
I+ 1

N
X ⋅𝚯

)N
r(0) (10.28)

= lim
N→∞

N∑
m=0

N!
m!(N − m)!

(X ⋅𝚯
N

)m
r(0) (10.29)

= e X ⋅𝚯r(0). (10.30)

Euler’s theorem [5] allows us to look at Eq. (10.23) as an infinitesimal rotation
about a single axis along the unit normal:

n̂ = 1√
𝜀2

1 + 𝜀2
2 + 𝜀2

3

⎡⎢⎢⎣
𝜀1
𝜀2
𝜀3

⎤⎥⎥⎦ , (10.31)

by the amount

d𝜃 =
√

𝜀2
1 + 𝜀2

2 + 𝜀2
3 , (10.32)

as

r(𝜃) ≅ (I+X ⋅ n̂d𝜃)r(0). (10.33)
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x3

x2

x1
x1

x2

x3

r (t) n

Figure 10.1 Rotation by 𝜃

about an axis along n̂.

x2

x1

f( r )

f( r ) = O3 f( r )

r θ

Figure 10.2 Effect of O3 on
f (r).

For finite rotations (Figure 10.1) we write

r(𝜃) = eX ⋅ n̂𝜃r(0). (10.34)

10.3.1 Another Approach to rR(3)

Let us approach rR(3) from the operator, that is, the active point of view. We
now look for an operator, O, which acts on a function, f (r), and rotates it clock-
wise, while keeping the coordinate axis fixed (Figure 10.2). Here f (r) could
be representing a physical system or a physical property. Instead of the Euler
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angles we use (𝜃1, 𝜃2, 𝜃3), which represent rotations about the x1- , x2- , x3-axes,
respectively. For a counterclockwise rotation of the coordinate system about
the x3-axis we write

r = R3r. (10.35)

This induces the following change in f (r):

f (r′) = f (R3r). (10.36)

If O3 is an operator acting on f (r), and since both views should agree, we write

O3 f (r)= f (r) = f (R−1
3 r). (10.37)

We now look for the generator of infinitesimal rotations of f (r) about the
x3-axis, which we show by X3. Using Eq. (9.42), we write the rotation matrix
R−1

3 as

R−1
3 (𝜃) = R3(−𝜃).

For infinitesimal rotations we write 𝜃3 = 𝜀3 and

O3 = (I − X3𝜀3). (10.38)

The minus sign in O3 indicates that the physical system is rotated clockwise
(Figure 10.2), thus,

(I − X3𝜀3)f (r) = f (x1 cos 𝜀3 − x2 sin 𝜀3, x1 sin 𝜀3 + x2 cos 𝜀3, x3), (10.39)

X3 f (r) = −
[ f (x1 cos 𝜀3 − x2 sin 𝜀3, x1 sin 𝜀3 + x2 cos 𝜀3, x3) − f (r)

𝜀3

]
,

(10.40)

X3 f (r) = −
[ f (x1 − x2𝜀3, x2 + x1𝜀3, x3) − f (r)

𝜀3

]
. (10.41)

Using Taylor series expansion about the point (x1, x2, x3) and taking the limit
𝜀3 → 0 we obtain

X3 f (r) = −
(

x1
𝜕

𝜕x2
− x2

𝜕

𝜕x1

)
f (r), (10.42)

thus,

X3 = −
(

x1
𝜕

𝜕x2
− x2

𝜕

𝜕x1

)
. (10.43)
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Similarly, or by cyclic permutations of x1, x2, and x3, we obtain the other oper-
ators as

X2 = −
(

x3
𝜕

𝜕x1
− x1

𝜕

𝜕x3

)
(10.44)

and

X1 = −
(

x2
𝜕

𝜕x3
− x3

𝜕

𝜕x2

)
. (10.45)

Note that aside from a minus sign, Xi satisfy the same commutation relations
as Xi, that is,[

Xi,Xj

]
= 𝜖ijkXk . (10.46)

An arbitrary infinitesimal rotation of f (r) can now be written as

f (r) ≅ (I − X1𝛿𝜃1 − X2𝛿𝜃2 − X3𝛿𝜃3)f (r), (10.47)

f (r) ≅ (I − X ⋅ n̂𝛿𝜃)f (r), (10.48)

where n̂ and 𝛿𝜃 are defined as in Eqs. (10.31) and (10.32). Now the finite
rotation operator becomes

O f (r) = e−X ⋅ n̂𝜃f (r). (10.49)

For applications in quantum mechanics, it is advantageous to adopt the view
that the operator O still rotates the state function f (r) counterclockwise, so that
the direction of n̂ is positive when 𝜃 is measured with respect to the right-hand
rule. In this regard, for the operator that rotates the physical system counter-
clockwise we write

O f (r) = eX ⋅ n̂𝜃f (r). (10.50)
We will come back to this point later when we discuss angular momentum and
quantum mechanics.

10.4 Group Invariants

It is obvious that for R(3) the magnitude of a vector:

r̃r = [x1, x2, x3]
⎡⎢⎢⎣
x1
x2
x3

⎤⎥⎥⎦ = x2
1 + x2

2 + x2
3, (10.51)
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is not changed through a rotation. A vector function F(r) that remains
unchanged by all g ∈ G, that is,

F(r)= F(r), (10.52)

is called a group invariant. We now determine a group whose invariant is
x2

1 + x2
2. This group will naturally be a subgroup of GL(2,R). An element of this

group can be represented by the transformation[
x1
x2

]
=
[

a b
c d

] [
x1
x2

]
. (10.53)

From the group invariant

x2
1 + x2

2 = x2
1 + x2

2, (10.54)

it follows that the transformation matrix elements must satisfy the relations

a2 + c2 = 1,
b2 + d2 = 1,
ab + cd = 0.

(10.55)

This means that only one of (a, b, c, d) could be independent. Choosing a new
parameter as

a = cos 𝜃, (10.56)

we see that the transformation matrix has the following possible two forms:[
cos 𝜃 sin 𝜃

− sin 𝜃 cos 𝜃

]
and

[
cos 𝜃 − sin 𝜃

− sin 𝜃 − cos 𝜃

]
. (10.57)

The first matrix is familiar; it corresponds to rotations, that is, R(2). However,
the determinant of the second matrix is

det
[

cos 𝜃 − sin 𝜃

− sin 𝜃 − cos 𝜃

]
= −1, (10.58)

hence, the matrix can be written as[
cos 𝜃 − sin 𝜃

− sin 𝜃 − cos 𝜃

]
=
[

cos 𝜃 sin 𝜃

− sin 𝜃 cos 𝜃

] [
1 0
0 −1

]
. (10.59)

This is the reflection:
x1 = x1,

x2 = −x2,
(10.60)

followed by a rotation. The group that leaves x2
1 + x2

2 invariant is called the
orthogonal group, O(2), where R(2) is its subgroup with the determinant of
all of its elements equal to one. R(2) is also a subgroup of SO(2), which includes
rotations and translations.
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10.4.1 Lorentz Transformations

As another example for a group invariant let us take

x2 − y2. (10.61)

We can write this as

x2 − y2 =
[
x y

] [1 0
0 −1

] [
x
y

]
. (10.62)

For a linear transformation between (x, y) and (x, y), we write[
x
y

]
=
[

a b
c d

] [
x
y

]
. (10.63)

Invariance of (x2 − y2) can now be expressed as

x2 − y2 =
[
x y

] [1 0
0 −1

] [
x
y

]
(10.64)

=
[
x y

] [a c
b d

] [
1 0
0 −1

] [
a b
c d

] [
x
y

]
(10.65)

=
[
x y

] [a2 − c2 ab − cd
ab − cd b2 − d2

] [
x
y

]
(10.66)

=
[
x y

] [1 0
0 −1

] [
x
y

]
(10.67)

= x2 − y2. (10.68)

From the above equation, we see that for (x2 − y2) to remain invariant under the
transformation [Eq. (10.63)], components of the transformation matrix must
satisfy

a2 − c2 = 1,
b2 − d2 = −1,
ab − cd = 0.

(10.69)

This means that only one of (a, b, c, d) can be independent. Defining a new
parameter, 𝜒, as

a = cosh𝜒 , (10.70)

we see that the transformation matrix in Eq. (10.63) can be written as[
cosh𝜒 sinh𝜒

sinh𝜒 cosh𝜒

]
. (10.71)
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Introducing

cosh𝜒 = 𝛾, (10.72)
sinh𝜒 = −𝛾𝛽, (10.73)
tanh𝜒 = −𝛽, (10.74)

where

𝛾 = 1√
1 − 𝛽2

, 𝛽 = 𝑣∕c, (10.75)

and along with the identification

x = ct, y = x, (10.76)

we obtain[
ct
x

]
=
[

𝛾 −𝛽𝛾
−𝛽𝛾 𝛾

] [
ct
x

]
. (10.77)

This is nothing but the Lorentz transformation [Eq. (9.401)]:

ct = 1√
1 − (𝑣∕c)2

(ct − 𝑣x∕c),

x = 1√
1 − (𝑣∕c)2

(x − 𝑣t),
(10.78)

which leaves distances in spacetime:

(c2t2 − x2), (10.79)

invariant.

10.5 Unitary Group in Two Dimensions U(2)

Quantum mechanics is formulated in complex space. Hence, the components
of the transformation matrix are in general complex numbers. The scalar
product or the inner product of two vectors in n-dimensional complex space
is defined as

(x, y) = x∗
1y1 + x∗

2y2 + · · · + x∗
nyn, (10.80)

where x∗ means the complex conjugate of x. Unitary transformations are lin-
ear transformations that leave the quadratic form

(x, x) = |x|2 = x∗
1x1 + x∗

2x2 + · · · + x∗
nxn (10.81)
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invariant. All such transformations form the unitary group U(n). An element
of U(2) can be written as

u =
[

A B
C D

]
, (10.82)

where A,B,C, and D are in general complex numbers. Invariance of (x, x) gives
the unitarity condition:

u†u = uu† = I, (10.83)

where

u† = ũ∗ (10.84)

is called the Hermitian conjugate of u. Using the unitarity condition, we can
write

u†u =
[

A∗ C∗

B∗ D∗

]
.

[
A B
C D

]
(10.85)

=
[|A|2 + |C|2 A∗B + C∗D

AB∗ + D∗C |B|2 + |D|2
]

(10.86)

=
[

1 0
0 1

]
, (10.87)

which gives|A|2 + |C|2 = 1,|B|2 + |D|2 = 1,
A∗B + C∗D = 0.

(10.88)

From elementary matrix theory [1], the inverse of u can be found as

u−1 =
[

D −B
−C A

]
. (10.89)

Since for U(2) the inverse of u is also equal to u† [Eq. (10.83)], we write

u−1 = u†, (10.90)[
D −B
−C A

]
=
[

A∗ C∗

B∗ D∗

]
. (10.91)

This gives D = A∗ and C = −B∗; thus, u becomes

u =
[

A B
−B∗ A∗

]
. (10.92)
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Taking the determinant of the unitarity condition [Eq. (10.83)] and using the
fact that

det u† = det u, (10.93)

we obtain|det u|2 = 1. (10.94)

10.5.1 Special Unitary Group SU(2)

In quantum mechanics, we are particularly interested in SU(2), a subgroup of
U(2), where the group elements satisfy the condition

det u = 1. (10.95)

For SU(2), A and B in the transformation matrix

u =
[

A B
−B∗ A∗

]
, (10.96)

satisfy

det u = |A|2 + |B|2 = 1. (10.97)

Expressing A and B as

A = a + id,
B = c + ib,

(10.98)

we see that the unitary matrix has the form

u =
[

a + id c + ib
−c + ib a − id

]
. (10.99)

This can be written as

u = aI + i(b𝜎1 + c𝜎2 + d𝜎3), (10.100)

where 𝛔i are the Pauli spin matrices:

𝜎1 =
[

0 1
1 0

]
, 𝜎2 =

[
0 −i
i 0

]
, 𝜎3 =

[
1 0
0 −1

]
, (10.101)

which satisfy

𝜎2
i = 1,

𝜎i𝜎j = −𝜎j𝜎i = i𝜎k , (10.102)
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where (i, j, k) are cyclic permutations of (1, 2, 3). The condition [Eq. (10.95)] on
the determinant u gives

a2 + b2 + c2 + d2 = 1. (10.103)

This allows us to choose (a, b, c, d) as

a = cos𝜔, b2 + c2 + d2 = sin2𝜔, (10.104)

thus, Eq. (10.100) becomes

u(𝜔) = I cos𝜔+ iS sin𝜔, (10.105)

where we have defined

S = 𝛼𝜎1 + 𝛽𝜎2 + 𝛾𝜎3 (10.106)

and

𝛼 = b
(b2 + c2 + d2)1∕2 ,

𝛽 = c
(b2 + c2 + d2)1∕2 ,

𝛾 = d
(b2 + c2 + d2)1∕2 .

(10.107)

Note that u in Eq. (10.82) has in general eight parameters. However, among
these eight parameters we have five relations, four of which come from the uni-
tarity condition [Eq. (10.83)]. We also have the condition fixing the value of
the determinant [Eq. (10.95)] for SU(2); thus, SU(2) can only have three inde-
pendent parameters. These parameters can be represented by a point on the
three-dimensional surface (S-3) of a unit hypersphere defined by Eq. (10.103).
In Eq. (10.105) we represent the elements of SU(2) in terms of 𝜔 and (𝛼, 𝛽, 𝛾),
where (𝛼, 𝛽, 𝛾) satisfies

𝛼2 + 𝛽2 + 𝛾2 = 1. (10.108)

By changing (𝛼, 𝛽, 𝛾) on S-3 we can vary 𝜔 in

u(𝜔) = I cos𝜔+ X̃ sin𝜔, (10.109)

where we have defined X̃ = iS, hence X̃2 = −S2.

10.5.2 Lie Algebra of SU(2)

In the previous section, we have seen that the elements of SU(2) are given as

u(𝜔) = I cos𝜔+ X̃ sin𝜔. (10.110)

The 2 × 2 transformation matrix, u(𝜔), transforms complex vectors:

v =
[
𝑣1
𝑣2

]
, (10.111)
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as

v = u(𝜔)v. (10.112)

The infinitesimal transformations of SU(2), analogous to R(3) [Eq. (10.33)],
can be written as

v(𝜔) ≅ (I+ X̃𝛿𝜔)v(0),
𝛿v = X̃v(0)𝛿𝜔, (10.113)

where the generator X̃ is obtained in terms of the generators X̃1, X̃2, X̃3
[Eq. (10.109)] as

X̃ = u′(0) = iS, (10.114)

X̃ = 𝛼

[
0 i
i 0

]
+ 𝛽

[
0 1
−1 0

]
+ 𝛾

[
i 0
0 −i

]
. (10.115)

Writing X̃ as

X̃ = 𝛼X̃1 + 𝛽X̃2 + 𝛾X̃3, (10.116)

we identify the generators

X̃1 =
[

0 i
i 0

]
, X̃2 =

[
0 1
−1 0

]
, X̃3 =

[
i 0
0 −i

]
, (10.117)

where X̃i satisfy the following commutation relation:

[X̃i, X̃j] = −2𝜖ijkX̃k . (10.118)

We have seen that the generators of R(3) satisfy [Eq. (10.22)]:

[Xi,Xj] = −𝜖ijkXk , (10.119)

and the exponential form of the transformation matrix for finite rotations was
[Eq. (10.34)]

r(t) = eX ⋅ n̂𝜃r(0). (10.120)

If we make the correspondence

2Xi ↔ X̃i, (10.121)

the two algebras are identical and the groups SU(2) and R(3) are called
isomorphic. Defining a unit normal vector

n̂ = (𝛼, 𝛽, 𝛾), (10.122)



272 10 Continuous Groups and Representations

we can now use Eq. (10.119) to write the exponential form of the transformation
matrix for finite rotations in SU(2) as

v(t) = e
1
2

X̃ ⋅ n̂𝜃v(0). (10.123)

Since X̃ = iS, this gives us the exponential form of the transformation matrix
for SU(2):

v(t) = e
1
2

iS ⋅ n̂𝜃v(0). (10.124)

Since in quantum mechanics the active view, where the vector is rotated
counterclockwise, is preferred, the operator is taken as

e−
1
2

iS ⋅ n̂𝜃
, (10.125)

where S corresponds to the spin angular momentum operator:

S = 𝛼𝜎1 + 𝛽𝜎2 + 𝛾𝜎3. (10.126)

In Section 10.9, we will see that the presence of the factor 1∕2 in operator
[Eq. (10.125)] is very important and it actually indicates that the correspon-
dence between SU(2) and R(3) is two-to-one.

10.5.3 Another Approach to rSU(2)

Using the generators [Eq. (10.117)] and the transformation matrix [Eq. (10.110)]
we can write

X̃ = 𝛼X̃1 + 𝛽X̃2 + 𝛾X̃ (10.127)

and

u(𝛼, 𝛽, 𝛾) = (I cos𝜔+ X̃ sin𝜔) (10.128)

=
[

cos𝜔 + i𝛾 sin𝜔 (𝛽 + i𝛼) sin𝜔

(−𝛽 + i𝛼) sin𝜔 cos𝜔 − i𝛾 sin𝜔

]
. (10.129)

The transformation

v = u(𝜔)v (10.130)

induces the following change in a function f (𝑣1, 𝑣2):

f (v) = f [u(𝛼, 𝛽, 𝛾)v]. (10.131)

Taking the active view, we define an operator O, which acts on f (v). Since both
views should agree, we write

O f (r) = f (r), (10.132)
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where

f (r) = f [u−1(𝛼, 𝛽, 𝛾)r] = f [u(−𝛼,−𝛽,−𝛾)r]. (10.133)

For a given small 𝜔, we can write u(−𝛼,−𝛽,−𝛾) in terms of 𝛼, 𝛽, 𝛾 as

u(−𝛼,−𝛽,−𝛾) =
[

1 − i𝛾𝜔 (−𝛽 − i𝛼)𝜔
(𝛽 − i𝛼)𝜔 1 + i𝛾𝜔

]
, (10.134)

thus, we obtain

𝑣1 = (1 − i𝛾𝜔)𝑣1 + (−𝛽 − i𝛼)𝜔𝑣2, (10.135)
𝑣2 = (𝛽 − i𝛼)𝜔𝑣1 + (1 + i𝛾𝜔)𝑣2. (10.136)

Writing 𝛿𝑣i = 𝑣i − 𝑣i, this becomes

𝛿𝑣1 = −i𝛾𝜔𝑣1 + (−𝛽 − i𝛼)𝜔𝑣2, (10.137)
𝛿𝑣2 = (𝛽 − i𝛼)𝜔𝑣1 + i𝛾𝜔𝑣2. (10.138)

We now write the effect of the operator O1,which induces infinitesimal changes
in a function f (𝑣1, 𝑣2), as

(I − O1𝜔)f (𝑣1, 𝑣2) = f (𝑣1, 𝑣2)+
[
𝜕f (𝑣1, 𝑣2)

𝜕𝑣1

𝜕(𝛿𝑣1)
𝜕𝛼

+
𝜕f (𝑣1, 𝑣2)

𝜕𝑣2

𝜕(𝛿𝑣2)
𝜕𝛼

]
(10.139)

= f (𝑣1, 𝑣2)+
[
−i𝜔𝑣2

𝜕f (𝑣1, 𝑣2)
𝜕𝑣1

− i𝜔𝑣1
𝜕f (𝑣1, 𝑣2)

𝜕𝑣2

]
(10.140)

= f (𝑣1, 𝑣2) − i𝜔
[
𝑣2

𝜕

𝜕𝑣1
+ 𝑣1

𝜕

𝜕𝑣2

]
f (𝑣1, 𝑣2). (10.141)

This gives the generator O1 as

O1 = i
[
𝑣2

𝜕

𝜕𝑣1
+ 𝑣1

𝜕

𝜕𝑣2

]
. (10.142)

Similarly, we write

(I − O2𝜔)f (𝑣1, 𝑣2) = f (𝑣1, 𝑣2)+
[
𝜕f (𝑣1, 𝑣2)

𝜕𝑣1

𝜕(𝛿𝑣1)
𝜕𝛽

+
𝜕f (𝑣1, 𝑣2)

𝜕𝑣2

𝜕(𝛿𝑣2)
𝜕𝛽

]
(10.143)

= f (𝑣1, 𝑣2)+
[
−𝜔𝑣2

𝜕f (𝑣1, 𝑣2)
𝜕𝑣1

+ 𝜔𝑣1
𝜕f (𝑣1, 𝑣2)

𝜕𝑣2

]
(10.144)

= f (𝑣1, 𝑣2) + 𝜔

[
−𝑣2

𝜕

𝜕𝑣1
+ 𝑣1

𝜕

𝜕𝑣2

]
f (𝑣1, 𝑣2) (10.145)
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and

(I − O3𝜔)f (𝑣1, 𝑣2) = f (𝑣1, 𝑣2)+
[
𝜕f (𝑣1, 𝑣2)

𝜕𝑣1

𝜕(𝛿𝑣1)
𝜕𝛾

+
𝜕f (𝑣1, 𝑣2)

𝜕𝑣2

𝜕(𝛿𝑣2)
𝜕𝛾

]
(10.146)

= f (𝑣1, 𝑣2)+
[
−i𝜔𝑣1

𝜕f (𝑣1, 𝑣2)
𝜕𝑣1

+ i𝜔𝑣2
𝜕f (𝑣1, 𝑣2)

𝜕𝑣2

]
(10.147)

= f (𝑣1, 𝑣2) + 𝜔i
[
𝑣2

𝜕

𝜕𝑣2
− 𝑣1

𝜕

𝜕𝑣1

]
f (𝑣1, 𝑣2). (10.148)

These give us the remaining generators as

O2 =
[
𝑣2

𝜕

𝜕𝑣1
− 𝑣1

𝜕

𝜕𝑣2

]
, (10.149)

O3 = i
[
𝑣1

𝜕

𝜕𝑣1
− 𝑣2

𝜕

𝜕𝑣2

]
, (10.150)

where Oi satisfy the commutation relation

[Oi,Oj] = 2𝜖ijkOk . (10.151)

The sign difference with Eq. (10.118) is again due to the fact that in the passive
view axes are rotated counterclockwise, while in the active view vectors are
rotated clockwise.

10.6 Lorentz Group and Its Lie Algebra

The ensemble of objects, [a𝛼
𝛾 ], which preserve the length of four-vectors in

Minkowski spacetime and which satisfy the relation

g𝛼𝛽a𝛼
𝛾a𝛽

𝛿
= g𝛾𝛿 (10.152)

form the Lorentz group. If we exclude reflections and consider only the
transformations that can be continuously generated from the identity transfor-
mation, we have the homogeneous Lorentz group. The group that includes
reflections as well as the translations is called the inhomogeneous Lorentz
group or the Poincare group. From now on we consider the homogeneous
Lorentz group and omit the word homogeneous.
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Given the coordinates of the position four-vector, x𝛼, in the K frame, elements
of the Lorentz group, [a𝛼

𝛽
], give us the components, x𝛼

, in the K frame as

x𝛼 = a𝛼

𝛽
x𝛽 . (10.153)

In matrix notation, we can write this as

X = Ax, (10.154)

where

X =

⎡⎢⎢⎢⎢⎣
x 0

x1

x2

x3

⎤⎥⎥⎥⎥⎦
, A =

⎡⎢⎢⎢⎢⎣
a0

0 a0
1 a0

2 a0
3

a1
0 a1

1 a1
2 a1

2

a2
0 a2

1 a2
2 a2

3

a3
0 a3

1 a3
2 a3

3

⎤⎥⎥⎥⎥⎦
, x =

⎡⎢⎢⎢⎢⎣
x0

x1

x2

x3

⎤⎥⎥⎥⎥⎦
. (10.155)

For transformations preserving the magnitude of four-vectors we write

x̃gx = x̃gx, (10.156)
and after substituting Eq. (10.154), we obtain the analogue of the orthogonality
condition:

ÃgA = g. (10.157)

Elements of the Lorentz group are 4 × 4 matrices, which means that they
have 16 components. From the orthogonality condition [Eq. (10.157)], which
is a symmetric matrix, we have 10 relations among these 16 components;
thus, only six of them are independent. In other words, the Lorentz group
is a six-parameter group. These six parameters can be conveniently thought
of as the three Euler angles specifying the orientation of the spatial axis and
the three components of −→𝛽 specifying the relative velocity of the two inertial
frames.

Guided by our experience with R(3), to find the generators of the Lorentz
group we start with the ansatz that A can be written in exponential form as

A = eL, (10.158)
where L is a 4 × 4 matrix. From the theory of matrices we can write [4]

det A = det eL = eTrL. (10.159)
Using this equation and considering only the proper Lorentz transformations,
where det A = 1, we conclude that L is traceless. Thus, the generator of the
proper Lorentz transformations is a real 4 × 4 traceless matrix.

We now multiply Eq. (10.157) from the left by g−1 and from the right by A−1

to write
g−1Ãg[AA−1]= g−1gA−1

, (10.160)
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which gives

g−1Ãg = A−1. (10.161)

Since for the Minkowski metric g−1 = g, this becomes

gÃg = A−1. (10.162)

Using Eq. (10.162) and the relations

g2 = I, Ã = eL̃, A−1 = e−L, (10.163)

we can also write

gÃg = egL̃g = e−L; (10.164)

Thus,

gL̃g = −L. (10.165)

Since g̃ = g, we obtain

g̃L = −gL. (10.166)

This equation shows that gL is an antisymmetric matrix. Considering that g is
the Minkowski metric and L is traceless, we can write the general form of L as

L =
⎡⎢⎢⎢⎣

0 −L01 −L02 −L03
−L01 0 L12 L13
−L02 −L12 0 L23
−L03 −L13 −L23 0

⎤⎥⎥⎥⎦ . (10.167)

Introducing six independent parameters, (𝛽1, 𝛽2, 𝛽3) and (𝜃1, 𝜃2, 𝜃3), this can
also be written as

L = 𝛽1V1 + 𝛽2V2 + 𝛽3V3 + 𝜃1X1 + 𝜃2X2 + 𝜃3X3, (10.168)

where

V1 =

⎡⎢⎢⎢⎢⎣
0 −1 0 0

−1 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎦
, V2 =

⎡⎢⎢⎢⎢⎣
0 0 −1 0
0 0 0 0

−1 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎦
, V3 =

⎡⎢⎢⎢⎢⎣
0 0 0 −1
0 0 0 0
0 0 0 0

−1 0 0 0

⎤⎥⎥⎥⎥⎦
,

(10.169)

X1 =
⎡⎢⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

⎤⎥⎥⎥⎦ , X2 =
⎡⎢⎢⎢⎣
0 0 0 0
0 0 0 −1
0 0 0 0
0 1 0 0

⎤⎥⎥⎥⎦ , X3 =
⎡⎢⎢⎢⎣
0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

⎤⎥⎥⎥⎦ .
(10.170)
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Note that (X1,X2, and X3) are the generators of the infinitesimal rotations about
the x1-, x2-, and x3-axes [Eq. (9.80)], respectively, and (V1,V2, and V3) are the
generators of the infinitesimal Lorentz transformations or boosts from one
inertial observer to another moving with respect to each other with velocities
(𝛽1, 𝛽2, and 𝛽3) along the x1-, x2-, and x3-axes, respectively. These six generators
satisfy the commutation relations

[Xi,Xj] = −𝜖ijkXk , (10.171)
[Xi,Vj] = −𝜖ijkVk , (10.172)
[Vi,Vj] = 𝜖ijkXk . (10.173)

The first of these three commutators is just the commutation relation for the
rotation group R(3); thus, the rotation group is also a subgroup of the Lorentz
group. The second commutator shows that Vi transforms under rotation like a
vector. The third commutator indicates that boosts in general do not commute,
but more important than this, two successive boosts is equal to a boost plus a
rotation (Figure 10.3), that is,

ViVj = VjVi + 𝜖ijkXk . (10.174)

Thus, boosts alone do not form a group. An important kinematic conse-
quence of this is known as the Thomas precession.

We now define two unit three-vectors:

n̂ = 1√
𝜃2

1 + 𝜃2
2 + 𝜃2

3

⎡⎢⎢⎣
𝜃1
𝜃2
𝜃3

⎤⎥⎥⎦ , (10.175)

𝛽 = 1√
𝛽2

1 + 𝛽2
2 + 𝛽2

3

⎡⎢⎢⎣
𝛽1
𝛽2
𝛽3

⎤⎥⎥⎦ , (10.176)

x2 x2
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K
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Figure 10.3 Boost and boost plus rotation.
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and introduce the parameters

𝜃 =
√

𝜃2
1 + 𝜃2

2 + 𝜃2
3 and 𝛽 =

√
𝛽2

1 + 𝛽2
2 + 𝛽2

3 , (10.177)

so that we can summarize these results as

L = X ⋅ n̂𝜃 + V ⋅ 𝛽𝛽, (10.178)

A = eX ⋅ n̂𝜃+V ⋅ 𝛽𝛽 . (10.179)

For pure rotations, this reduces to the rotation matrix in Eq. (10.34):

Arot. = eX ⋅ n̂𝜃, (10.180)

and for pure boosts it is equal to Eq. (9.417):

Aboost(𝛽) = eV ⋅ 𝛽𝛽 (10.181)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝛾 −𝛽1𝛾 −𝛽2𝛾 −𝛽3𝛾

−𝛽1𝛾 1 +
(𝛾 − 1)𝛽2

1

𝛽2

(𝛾 − 1)𝛽1𝛽2

𝛽2

(𝛾 − 1)𝛽1𝛽3

𝛽2

−𝛽2𝛾
(𝛾 − 1)𝛽2𝛽1

𝛽2 1 +
(𝛾 − 1)𝛽2

2

𝛽2

(𝛾 − 1)𝛽2𝛽3

𝛽2

−𝛽3𝛾
(𝛾 − 1)𝛽3𝛽1

𝛽2

(𝛾 − 1)𝛽3𝛽2

𝛽2 1 +
(𝛾 − 1)𝛽2

3

𝛽2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

where 𝛽1 = 𝑣1∕c, 𝛽2 = 𝑣2∕c, 𝛽3 = 𝑣3∕c. For a boost along the x1 direction 𝛽1 = 𝛽,

𝛽2 = 𝛽3 = 0, Eq. (10.181) reduces to

Aboost(𝛽1) =
⎡⎢⎢⎢⎣

𝛾 −𝛽𝛾 0 0
−𝛽𝛾 𝛾 0 0

0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎦ . (10.182)

Using the parametrization

−𝛽1 = tanh𝜒, (10.183)
𝛾 = cosh𝜒, (10.184)

−𝛾𝛽1 = sinh𝜒, (10.185)

Equation (10.181) becomes

Aboost(𝛽1) =
⎡⎢⎢⎢⎣
cosh𝜒 sinh𝜒 0 0
sinh𝜒 cosh𝜒 0 0

0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎦ , (10.186)
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which is reminiscent of the rotation matrices [Eqs. (9.41) and (9.42)] with the
hyperbolic functions instead of the trigonometric. Note that in accordance with
our previous treatment in Section 10.2, the generator V1 can also be obtained
from V1 = A′

boost(𝛽1 = 0). The other generators can also be obtained similarly.

10.7 Group Representations

A group with the general element g is an abstract concept. It gains practical
meaning only when G is assigned physical operations, D(g), to its elements that
act in some space of objects called the representation space. These objects
could be functions, vectors, and so on. As in the rotation group R(3), group
representations can be accomplished by assigning matrices to each element of
G, which correspond to rotation matrices acting on vectors. Given a particular
representation, D(g), another representation can be constructed by a similar-
ity transformation:

D′(g) = S−1D(g)S. (10.187)

Representations that are connected by a similarity transformation are called
equivalent representations. Given two representations, D(1)(g) and D(2)(g),
we can construct another representation:

D(g) = D(1)(g)⊕ D(1)(g) =
[

D(1)(g) 0
0 D(2)(g)

]
, (10.188)

where D(g) is called the product of D(1)(g) and D(2)(g). If D(1)(g) has dimen-
sion n1, that is, composed of n1 × n1 matrices, and D(2)(g) has dimension n2,

the product representation has the dimension n1 + n2. D(g) is also called a
reducible representation. If D(g) cannot be split into the sums of smaller
representations by similarity transformations, it is called an irreducible rep-
resentation. Irreducible representations are very important and they form the
building blocks of the theory. A matrix that commutes with every element of
an irreducible representation is a multiple of the unit matrix. We now present
without proof an important lemma due to Schur for the criterion of irreducibil-
ity of a group representation.

10.7.1 Schur’s Lemma

Let D(1)(g) and D(2)(g) be two irreducible representations with dimensions n1
and n2, and suppose that a matrix A exists such that

AD(1)(g) = D(2)(g)A (10.189)

for all g in G. Then either A = 0, or n1 = n2 and det A ≠ 0, and the two repre-
sentations, D(1)(g) and D(2)(g), are equivalent.
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By a similarity transformation, if D(g) can be written as

D(g) =
⎡⎢⎢⎢⎣
D(1)(g) 0 0 0

0 D(2)(g) 0 0
0 0 D(2)(g) 0
0 0 0 D(3)(g)

⎤⎥⎥⎥⎦ , (10.190)

we write

D(g) = D(1)(g)⊕ 2D(2)(g)⊕ D(3)(g). (10.191)

If D(1)(g), D(2)(g), and D(3)(g) cannot be reduced further, they are irreducible
and D(g) is called a completely reducible representation.

Every group has a trivial one-dimensional representation, where each group
element is represented by the number one. In an irreducible representation,
say D(2)(g) as in the above case, then every element of the representation space
is transformed into another element of that space by the action of the group
elements D(2)(g). For example, for the rotation group, R(3), a three-dimensional
representation is given by the rotation matrices and the representation space
is the Cartesian vectors. In other words, rotations of a Cartesian vector always
results in another Cartesian vector.

10.7.2 Group Character

The characterization of a representation by explicitly giving the matrices that
represent the group elements is not possible, since by a similarity transforma-
tion one could always obtain a different set of matrices. Therefore, we need to
identify properties that remain invariant under similarity transformations. One
such property is the trace of a matrix. We now define the group character,
𝜒 (i)(g), as the trace of the matrices D(i)(g):

𝜒 (i)(g) =
ni∑

j=1
D(i)

jj (g). (10.192)

10.7.3 Unitary Representation

Representation of a group by unitary (transformation) matrices is called
unitary representation. Unitary transformations leave the quadratic form,

|x|2 =
n∑

i=1
|xi|2, (10.193)

invariant, which is equivalent to the inner product in complex space:

(x, y) =
n∑

i=1
x∗

i yi. (10.194)
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10.8 Representations of R(3)

We now construct the representations of the rotation group. Using Cartesian
tensors we can easily construct the irreducible representations as

⎡⎢⎢⎢⎣
D(1)(g) 0 0 0

0 D(3)(g) 0 0
0 0 D(5)(g) 0
0 0 0 ⋱

⎤⎥⎥⎥⎦ , (10.195)

where D(1)(g) is the trivial representation, the number one, that acts on
scalars. D(3)(g) are given as the 3 × 3 rotation matrices that act on vectors.
The superscript 3 indicates the degrees of freedom, in this case the three
independent components of a vector. D(5)(g) is the representation correspond-
ing to the transformation matrices for the symmetric second-rank Cartesian
tensors. In this case, the dimension of the representation comes from the
fact that a second-rank symmetric tensor has six independent components;
removing the trace leaves five. In general, a symmetric tensor of rank n has
(2n + 1) independent components; thus, the associated representation is
(2n + 1)-dimensional.

10.8.1 Spherical Harmonics and Representations of R(3)

An elegant and also useful way of obtaining representations of R(3) is to
construct them through the transformation properties of the spherical har-
monics. The trivial representation D(1)(g) simply consists of the transformation
of Y00 onto itself. D(3)(g) describes the transformations of Y(l=1)m(𝜃, 𝜙). The
three spherical harmonics:

(Y1−1,Y10,Y11), (10.196)

under rotations transform into linear combinations of each other. In general,
the transformation properties of the (2l + 1) components of Ylm(𝜃, 𝜙) generate
the irreducible representations D(2l+1)(g) of R(3).

10.8.2 Angular Momentum in Quantum Mechanics

In quantum mechanics, angular momentum, L, is a differential operator act-
ing on a wave function Ψ(x, y, z). It is obtained from the classical expression,
−→L = −→r × −→p , with the replacement of the classical variables with their operator
counterparts, −→x → −→x and −→p →

ℏ

i
−→∇, as

L = −iℏ−→r × −→∇. (10.197)
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In Cartesian coordinates, we write the components of L as (we set ℏ = 1)

Lx = iXx = −i
(

y 𝜕

𝜕z
− z 𝜕

𝜕y

)
, (10.198)

Ly = iXy = −i
(

z 𝜕

𝜕x
− x 𝜕

𝜕z

)
, (10.199)

Lz = iXz = −i
(

x 𝜕

𝜕y
− y 𝜕

𝜕x

)
. (10.200)

In Eq. (10.46), we have seen that Xi satisfy the commutation relation

[Xi,Xj] = 𝜖ijkXk , (10.201)

Thus, Li satisfy

[Li, Lj] = i𝜖ijkLk , (10.202)

where the indices i, j, and k take the values 1, 2, and 3 which correspond to x, y,
and z, respectively.

10.8.3 Rotation of the Physical System

We have seen that the effect of the operator, e−X⋅n̂𝜃n [Eq. (10.49)], is to rotate a
function clockwise about an axis pointing in the n̂ direction by 𝜃n. In quantum
mechanics, we adhere to the right-handed screw convention, that is, when we
curl the fingers of our right hand about the axis of rotation and in the direction
of rotation, our thumb points along n̂. Hence, we work with the operator
eX⋅n̂𝜃n , which rotates a function counterclockwise by 𝜃n (Figure 10.4). Using
Eqs. (10.198)–(10.200) the quantum mechanical counterpart of the rotation
operator now becomes

R = e−iL⋅n̂𝜃n . (10.203)

For a rotation about the z-axis this gives

RΨ(r, 𝜃, 𝜙) = [e−iLz𝜙]Ψ(r, 𝜃, 𝜙). (10.204)

For a general rotation about an axis in the n̂ direction by 𝜃n we write

RΨ(x, y, z) = e−iL ⋅ n̂𝜃nΨ(x, y, z). (10.205)

10.8.4 Rotation Operator in Terms of the Euler Angles

Using the Euler angles we can write the rotation operator R = e−iL ⋅ n̂𝜃n , as

R = e−i𝛾Lz2 e−i𝛽Ly1 e−i𝛼Lz . (10.206)

In this expression, we have used another convention commonly used in
modern-day quantum mechanical discussions of angular momentum. It is
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Figure 10.4 Counterclockwise
rotation of the physical system by 𝜃n
about n̂.

x2

x3

x1

θn

n

Ψ (r,θ,ϕ)

composed of the sequence of rotations, which starts with a counterclockwise
rotation by 𝛼 about the z-axis of the initial state of the system:

e−i𝛼Lz : (x, y, z) → (x1, y1, z1), (10.207)

followed by a counterclockwise rotation by 𝛽 about y1 of the intermediate axis.

e−i𝛽Ly1 : (x1, y1, z1) → (x2, y2, z2) (10.208)

and finally the desired orientation is reached by a counterclockwise rotation
about the z2-axis by 𝛾 :

e−i𝛾Lz2 : (x2, y2, z2) → (x′, y′, z′). (10.209)

10.8.5 Rotation Operator in the Original Coordinates

One of the disadvantages of the rotation operator expressed as

R = e−iL.n̂𝜃n = e−i𝛾Lz2 e−i𝛽Ly1 e−i𝛼Lz (10.210)

is that, except for the initial rotation about the z-axis, the remaining two rota-
tions are performed about different sets of axis. Because we are interested in
evaluating

RΨ(x, y, z) = Ψ(x′, y′, z′), (10.211)

where (x, y, z) and (x′, y′, z′) are two points in the same coordinate system, we
need to express R as rotations entirely in terms of the original coordinate axis.

For this we first need to find how the operator R transforms under coordi-
nate transformations. We now transform to a new coordinate system (xn, yn, zn),
where the zn-axis is aligned with the n̂ direction (Figure 10.5). We show the
matrix of this coordinate transformation with the letter R. We are interested in
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xn

yn

z

n
zn

y

x

Figure 10.5 Transformation to the
(xn, yn, zn)-axis.

expressing the operator R in terms of the (xn, yn, zn) coordinates. Action of R
on the coordinates induces the following change in Ψ(x, y, z):

RΨ(x, y, z) = Ψ(xn, yn, zn). (10.212)

Similarly, for another point we write

RΨ(x′, y′, z′) = Ψ(x′
n, y′n, z′n). (10.213)

Inverse transformations are naturally given as

R−1Ψ(xn, yn, zn) = Ψ(x, y, z) (10.214)

and

R−1Ψ(x′
n, y′n, z′n) = Ψ(x′, y′, z′). (10.215)

Operating on Eq. (10.214) with R we get

RR−1Ψ(xn, yn, zn) = RΨ(x, y, z). (10.216)

Using Eq. (10.211), this becomes

RR−1Ψ(xn, yn, zn) = Ψ(x′, y′, z′). (10.217)

We now operate on this with R to write

RRR−1Ψ(xn, yn, zn) = RΨ(x′, y′, z′) (10.218)
= Ψ(x′

n, y′n, z′n), (10.219)

where

R = e−i𝛾Lz2 e−i𝛽Ly1 e−i𝛼Lz . (10.220)
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We now observe that

e−i𝛾Lz2 = e−i𝛽Ly1 e−i𝛾Lz1 ei𝛽Ly1 (10.221)

to write

R = e−i𝛽Ly1 e−i𝛾Lz1 [ei𝛽Ly1 e−i𝛽Ly1 ]e−i𝛼Lz . (10.222)

This may take a while to convince oneself. We recommend the reader first to
plot all the axes in Eqs. (10.207)–(10.209) and then to operate on a radial vector
drawn from the origin with (10.221). Finally, trace the orbit of the tip separately
for each rotation while preserving the order of rotations. The operator inside
the square brackets is the identity operator; thus,

R = e−i𝛽Ly1 e−i𝛾Lz1 e−i𝛼Lz . (10.223)

We now note the transformation

e−i𝛽Ly1 = e−i𝛼Lz e−i𝛽Ly ei𝛼Lz (10.224)

to write

R = e−i𝛼Lz e−i𝛽Ly ei𝛼Lz e−i𝛾Lz1 e−i𝛼Lz . (10.225)

Since z1 = z, this becomes

R = e−i𝛼Lz e−i𝛽Ly[ei𝛼Lz e−i𝛼Lz ] e−i𝛾Lz . (10.226)

Again, the operator inside the square brackets is the identity operator, thus,
giving R entirely in terms of the original coordinate system (x, y, z) as

R = e−i𝛼Lz e−i𝛽Ly e−i𝛾Lz . (10.227)

We can now find the effect of R(𝛼, 𝛽, 𝛾) on Ψ(x, y, z) as

R(𝛼, 𝛽, 𝛾)Ψ(x, y, z) = Ψ(x′, y′, z′), (10.228)
e−i𝛼Lz e−i𝛽Ly e−i𝛾LzΨ(x, y, z) = Ψ(x′, y′, z′). (10.229)

In spherical polar coordinates this becomes

R(𝛼, 𝛽, 𝛾)Ψ(r, 𝜃, 𝜙) = Ψ(r, 𝜃,′𝜙′). (10.230)

Expressing the components of the angular momentum operator in spherical
polar coordinates (Figure 10.6):

x + iy = r sin 𝜃e±i𝜙, (10.231)
z = r cos 𝜃, (10.232)
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Figure 10.6 (x, y, z) and the (x′, y′, z′) coordinates.

we obtain (we set ℏ = 1)

Lx =
(

i cot 𝜃 cos𝜙 𝜕

𝜕𝜙
+ i sin𝜙

𝜕

𝜕𝜃

)
, (10.233)

Ly =
(

i cot 𝜃 sin𝜙
𝜕

𝜕𝜙
− i cos𝜙 𝜕

𝜕𝜃

)
, (10.234)

Lz = −i 𝜕

𝜕𝜙
. (10.235)

Using these we construct the operators
L± = Lx ± iLy, (10.236)
L2 = L2

x + L2
y + L2

z (10.237)
as

L± = e±i𝜙
(
± 𝜕

𝜕𝜃
+ i cot 𝜃 𝜕

𝜕𝜙

)
, (10.238)

L2 = −
[

1
sin 𝜃

(
𝜕

𝜕𝜃
sin 𝜃

𝜕

𝜕𝜃

)
+ 1

sin2𝜃

𝜕2

𝜕𝜙2

]
. (10.239)

Using Eqs. (10.233)–(10.235), we can now write Eq. (10.229) as

[e−𝛼𝜕∕𝜕𝜙e−𝛽(cos𝜙𝜕∕𝜕𝜃−sin𝜙 cot 𝜃𝜕∕𝜕𝜙)e−𝛾𝜕∕𝜕𝜙]Ψ(r, 𝜃, 𝜙) = Ψ(r, 𝜃,′𝜙′),

(10.240)
which is now ready for applications to spherical harmonics Ylm(𝜃, 𝜙).
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10.8.6 Eigenvalue Equations for Lz, L±, and L2

In Chapter 8, we have established the following eigenvalue equations [Eqs.
(8.191 and 8.192) and (8.209–8.211)]:

LzYlm(𝜃, 𝜙) = mYlm(𝜃, 𝜙), (10.241)

L−Ylm(𝜃, 𝜙) =
√
(l + m)(l − m + 1)Yl,m−1(𝜃, 𝜙), (10.242)

L+Ylm(𝜃, 𝜙) =
√
(l − m)(l + m + 1)Yl,m+1(𝜃, 𝜙), (10.243)

L2Ylm(𝜃, 𝜙) = l(l + 1)Ylm(𝜃, 𝜙). (10.244)

Using these and the definition L± = Lx ± iLy we can also write

LxYlm(𝜃, 𝜙) =
1
2
√
(l − m)(l + m + 1)Yl,m+1(𝜃, 𝜙)

+ 1
2
√
(l + m)(l − m + 1)Yl,m−1(𝜃, 𝜙), (10.245)

LyYlm(𝜃, 𝜙) = − i
2
√
(l − m)(l + m + 1)Yl,m+1(𝜃, 𝜙)

+ i
2
√
(l + m)(l − m + 1)Yl,m−1(𝜃, 𝜙). (10.246)

10.8.7 Fourier Expansion in Spherical Harmonics

We can expand a sufficiently smooth function, F(𝜃, 𝜙), in terms of spherical
harmonics, which forms a complete and an orthonormal set as

F(𝜃, 𝜙) =
∞∑

l′=0

m′=l′∑
m′=−l′

Cl′m′Yl′m′ (𝜃, 𝜙), (10.247)

where the expansion coefficients are given as

Cl′m′ = ∫ ∫ dΩY ∗
l′m′ (𝜃, 𝜙)F(𝜃, 𝜙). (10.248)

Spherical harmonics satisfy the orthogonality relation

∫ ∫ dΩY ∗
l′m′ (𝜃, 𝜙)Ylm(𝜃, 𝜙) = 𝛿ll′𝛿mm′ (10.249)

and the completeness relation
∞∑

l=0

m=l∑
m=−l

Y ∗
lm(𝜃

′, 𝜙′)Ylm(𝜃, 𝜙) = 𝛿(cos 𝜃 − cos 𝜃′)𝛿(𝜙 − 𝜙′), (10.250)

where dΩ = sin 𝜃 d𝜃 d𝜙. In the study of angular momentum in quantum
physics, we frequently need expansions of expressions like

Flm(𝜃, 𝜙) = f (𝜃, 𝜙)Ylm(𝜃, 𝜙) (10.251)



288 10 Continuous Groups and Representations

and

Glm(𝜃, 𝜙) = O
(

𝜕

𝜕𝜃
,
𝜕

𝜕𝜙
, 𝜃, 𝜙

)
Ylm(𝜃, 𝜙), (10.252)

where O
(

𝜕

𝜕𝜃
,

𝜕

𝜕𝜙
, 𝜃, 𝜙

)
is some differential operator.

For Flm(𝜃, 𝜙) we can write

Flm(𝜃, 𝜙) = f (𝜃, 𝜙)Ylm(𝜃, 𝜙) =
∞∑

l′=0

m′=l′∑
m′=−l′

Cl′m′Yl′m′ (𝜃, 𝜙), (10.253)

where the expansion coefficients are given as

Cl′m′ = ∫ ∫ dΩ Y ∗
l′m′ (𝜃, 𝜙)f (𝜃, 𝜙)Ylm(𝜃, 𝜙), (10.254)

which we rewrite as

Cl′m′,lm = ∫ ∫ dΩ Y ∗
l′m′ (𝜃, 𝜙)f (𝜃, 𝜙)Ylm(𝜃, 𝜙). (10.255)

For Glm(𝜃, 𝜙) we can write

Glm(𝜃, 𝜙) =
∞∑

l′=0

m′=l′∑
m′=−l′

Cl′m′Yl′m′ (𝜃, 𝜙), (10.256)

where

Cl′m′ = ∫ ∫ dΩ Y ∗
l′m′ (𝜃, 𝜙)

[
O
(

𝜕

𝜕𝜃
,
𝜕

𝜕𝜙
, 𝜃, 𝜙

)
Ylm(𝜃, 𝜙)

]
(10.257)

= Cl′m′,lm. (10.258)
Based on these we can also write the expansion

f1(𝜃, 𝜙)[f2(𝜃, 𝜙)Ylm(𝜃, 𝜙)] = f1(𝜃, 𝜙)

[ ∞∑
l′=0

m′=l′∑
m′=−l′

C(2)
l′m′,lmYl′m′ (𝜃, 𝜙)

]
(10.259)

=
∞∑

l′′=0

m′′=l′′∑
m′′=−l′′

∞∑
l′=0

m′=l′∑
m′=−l′

Y ∗
l′′m′′ (𝜃, 𝜙)C(1)

l′′m′′ ,l′m′C(2)
l′m′,lm

(10.260)

=
∞∑

l′′=0

m′′=l′′∑
m′′=−l′′

C(1,2)
l′′m′′ ,lmYl′′m′′ (𝜃, 𝜙), (10.261)

where

C(1,2)
l′′m′′ ,lm =

∞∑
l′=0

m′=l′∑
m′=−l′

C(1)
l′′m′′ ,l′m′C(2)

l′m′,lm. (10.262)
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10.8.8 Matrix Elements of Lx , Ly, and Lz

Using the result [Eq. (10.258)], we can now evaluate LyY(l=1)m as

LyY(l=1)m =
m′=1∑

m′=−1
Cl′m′,(l=1)mYl′m′ (𝜃, 𝜙). (10.263)

This gives the following matrix elements for the angular momentum operator
Ly(l = 1):

(Yl′=1m′ , LyYl=1m) = Cl′=1m′,l=1m (10.264)

= ∫ ∫ dΩ Y ∗
l′=1m′ (𝜃, 𝜙)LyYl=1m(𝜃, 𝜙), (10.265)

where we have dropped the brackets in the l indices. We now use Eq. (10.246):

LyYlm(𝜃, 𝜙) = − i
2
√
(l − m)(l + m + 1)Yl,m+1(𝜃, 𝜙)

+ i
2
√
(l + m)(l − m + 1)Yl,m−1(𝜃, 𝜙), (10.266)

and the orthogonality relation [Eq. (10.249)] to write
[Ly(l = 1)]mm′ = Cl′=1m′,l=1m (10.267)

=
⎡⎢⎢⎢⎣

0 − i√
2

0
i√
2

0 − i√
2

0 i√
2

0

⎤⎥⎥⎥⎦ . (10.268)

Operating on Eq. (10.263) with Ly and using Eq. (10.267), we can write

L2
yYl=1m =

m′=1∑
m′=−1

LyYl′=1m′ (𝜃, 𝜙)[Ly(l = 1)]m′m, (10.269)

to obtain the matrix elements of L2
y as

[L2
y(l = 1)]mm′ =

⎡⎢⎢⎢⎣
0 − i√

2
0

i√
2

0 − i√
2

0 i√
2

0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

0 − i√
2

0
i√
2

0 − i√
2

0 i√
2

0

⎤⎥⎥⎥⎦ (10.270)

=
⎡⎢⎢⎣

1∕2 0 −1∕2
0 1 0

−1∕2 0 1∕2

⎤⎥⎥⎦ . (10.271)

Similarly, we find the other powers as
[Ly(l = 1)]mm′ = [L3

y(l = 1)]mm′

= [L5
y(l = 1)]mm′

⋮

(10.272)
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and
[L2

y(l = 1)]mm′ = [L4
y(l = 1)]mm′

= [L6
y(l = 1)]mm′

⋮

(10.273)

Using Eqs. (10.241)–(10.244) and the orthogonality relation [Eq. (10.249)], we
can write the following matrix elements:

Lx = (Yl′m′ , LxYlm) (10.274)

= 1
2
√
(l − m)(l + m + 1)𝛿ll′𝛿m′(m+1)

+ 1
2
√
(l + m)(l − m + 1)𝛿ll′𝛿m′(m−1), (10.275)

Ly = (Yl′m′ , LyYlm) (10.276)

= − i
2
√
(l − m)(l + m + 1)𝛿ll′𝛿m′(m+1)

+ i
2
√
(l + m)(l − m + 1)𝛿ll′𝛿m′(m−1), (10.277)

Lz = (Yl′m′ , LzYlm) = m𝛿ll′𝛿mm′ , (10.278)
L2 = (Yl′m′ , L2Ylm) = l(l + 1)𝛿ll′𝛿mm′ . (10.279)

10.8.9 Rotation Matrices of the Spherical Harmonics

Since the effect of the rotation operator, R(𝛼, 𝛽, 𝛾), on the spherical harmonics
is to rotate them from (𝜃, 𝜙) to new values, (𝜃,′𝜙′), we write

R(𝛼, 𝛽, 𝛾)Ylm(𝜃, 𝜙) = e−i𝛼Lz e−i𝛽Ly e−i𝛾Lz Ylm(𝜃, 𝜙) = Ylm(𝜃,′𝜙′). (10.280)
In spherical polar coordinates this becomes

e−𝛼
𝜕

𝜕𝜙 e−𝛽
(

cos𝜙 𝜕

𝜕𝜃
−sin𝜙 cot 𝜃 𝜕

𝜕𝜙

)
e−𝛾

𝜕

𝜕𝜙 Ylm(𝜃, 𝜙) = Ylm(𝜃,′𝜙′). (10.281)
We now express Ylm(𝜃,′𝜙′) in terms of the original Ylm(𝜃, 𝜙) as

Ylm(𝜃,′𝜙′) =
∑
l′m′

Yl′m′ (𝜃, 𝜙)Cl′m′,lm, (10.282)

Cl′m′,lm = ∫ ∫ dΩ Y ∗
l′m′ (𝜃, 𝜙)R(𝛼, 𝛽, 𝛾)Ylm(𝜃, 𝜙). (10.283)

Since the spherical harmonics are defined as

Ylm(𝜃, 𝜙) =
sinm𝜃√

2𝜋
dm

d(cos 𝜃)m [Plm(cos 𝜃)]eim𝜙, (10.284)

R does not change their l value [Eqs. (10.274)–(10.278)]. Hence, only the coef-
ficients with l = l′ are nonzero in Eq. (10.283), thus, giving

Clm′ ,lm = ∫ ∫ dΩY ∗
lm′ (𝜃, 𝜙)R(𝛼, 𝛽, 𝛾)Ylm(𝜃, 𝜙) = Dl

m′m(𝛼, 𝛽, 𝛾), (10.285)
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thus,

Ylm(𝜃,′𝜙′) =
m′=l∑

m′=−l
Ylm′ (𝜃, 𝜙)Dl

m′m(𝛼, 𝛽, 𝛾). (10.286)

Dl
m′m(𝛼, 𝛽, 𝛾) is called the rotation matrix of the spherical harmonics.
Using the definition [Eq. (10.227)] of R(𝛼, 𝛽, 𝛾) we can construct the rotation

matrix as

Dl
m′m(𝛼, 𝛽, 𝛾) = ∫ ∫ dΩY ∗

lm′ (𝜃, 𝜙)e−i𝛼Lz e−i𝛽Ly[e−i𝛾Lz Ylm(𝜃, 𝜙)] (10.287)

= ∫ ∫ dΩY ∗
lm′ (𝜃, 𝜙)e−i𝛼Lz e−i𝛽Ly

[
e−𝛾

𝜕

𝜕𝜙 eim𝜙(function of 𝜃)
]

(10.288)

= ∫ ∫ dΩY ∗
lm′ (𝜃, 𝜙)e−i𝛼Lz e−i𝛽Ly

[ ∞∑
n=0

(−𝛾)n

n!
(im)nYlm(𝜃, 𝜙)

]
(10.289)

= ∫ ∫ dΩY ∗
lm′ (𝜃, 𝜙)e−i𝛼Lz e−i𝛽Ly[e−i𝛾mYlm(𝜃, 𝜙)] (10.290)

= ∫ ∫ dΩe[−i𝛼Lz Ylm′ (𝜃, 𝜙)]∗e−i𝛽Ly[e−i𝛾mYlm(𝜃, 𝜙)] (10.291)

= ∫ ∫ dΩ[ei𝛼Lz Y ∗
lm′ (𝜃, 𝜙)]e−i𝛽Ly[e−i𝛾mYlm(𝜃, 𝜙)], (10.292)

Dl
m′m(𝛼, 𝛽, 𝛾) = e−i𝛼m′

[
∫ ∫ dΩY ∗

lm′ (𝜃, 𝜙) e−i𝛽Ly Ylm(𝜃, 𝜙)
]

e−i𝛾m.

(10.293)

We have used the fact that Lz is a Hermitian operator, that is,

∫ Ψ∗
1LzΨ2dΩ = ∫ (LzΨ1)∗Ψ2dΩ. (10.294)

Defining the reduced rotation matrix dl
m′m(𝛽):

dl
m′m(𝛽) = ∫ ∫ dΩY ∗

lm′ (𝜃, 𝜙) e−i𝛽Ly Ylm(𝜃, 𝜙), (10.295)

we finally obtain

Dl
m′m(𝛼, 𝛽, 𝛾) = e−i𝛼m′dl

m′m(𝛽)e
−i𝛾m. (10.296)
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10.8.10 Evaluation of the dl
m′m

(𝜷) Matrices

For the low values of l it is relatively easy to evaluate dl
m′m(𝛽). For example, for

l = 0, d0
m′m(𝛽) = 1, which is the trivial 1 × 1 matrix.

For l = 1, we can write Eq. (10.295) as

d1
m′m(𝛽) = ∫ ∫ dΩY ∗

1m′ (𝜃, 𝜙)
⎛⎜⎜⎝

1+
−i𝛽Ly + i𝛽3L3

y∕3! + · · ·
−𝛽2L2

y∕2! + 𝛽4L4
y∕4! + · · ·

⎞⎟⎟⎠Y1m(𝜃, 𝜙).

(10.297)

Using the matrix elements of (Ly)n obtained in Section 10.8.8, we write this as

d1
m′m(𝛽) = 𝛿mm′ − i(Ly)mm′ sin 𝛽 + (L2

y)mm′ (cos 𝛽 − 1) (10.298)

=
⎡⎢⎢⎣
1 0 0
0 1 0
0 0 1

⎤⎥⎥⎦ − i sin 𝛽

⎡⎢⎢⎢⎣
0 − i√

2
0

i√
2

0 − i√
2

0 i√
2

0

⎤⎥⎥⎥⎦
+ (cos 𝛽 − 1)

⎡⎢⎢⎣
1∕2 0 −1∕2

0 1 0
−1∕2 0 1∕2

⎤⎥⎥⎦ . (10.299)

Finally adding these we find

d1
m′m(𝛽) =

m = 1 m = 0 m = −1

m′ = 1

m′ = 0

m′ = −1

⎡⎢⎢⎢⎢⎢⎢⎣

1
2
(1 + cos 𝛽) − sin 𝛽√

2
1
2
(1 − cos 𝛽)

sin 𝛽√
2

cos 𝛽 − sin 𝛽√
2

1
2
(1 − cos 𝛽) sin 𝛽√

2
1
2
(1 + cos 𝛽)

⎤⎥⎥⎥⎥⎥⎥⎦
.

(10.300)

10.8.11 Inverse of the dl
m′m

(𝜷) Matrices

To find the inverse matrices we invert

Ylm(𝜃′, 𝜙′) = R(𝛼, 𝛽, 𝛾)Ylm(𝜃, 𝜙) (10.301)

to write

Ylm(𝜃, 𝜙) = R−1(𝛼, 𝛽, 𝛾)Ylm(𝜃′, 𝜙′) = R(−𝛾,−𝛽,−𝛼)Ylm(𝜃′, 𝜙′). (10.302)

Note that we have reversed the sequence of rotations because

R−1(𝛼, 𝛽, 𝛾) = [R(𝛼)R(𝛽)R(𝛾)]−1 = R(−𝛾)R(−𝛽)R(−𝛼). (10.303)
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We can now write Ylm(𝜃, 𝜙) in terms of Ylm(𝜃′, 𝜙′) as

Ylm(𝜃, 𝜙) =
∑
m′′

Ylm′′ (𝜃′, 𝜙′)
{
∫ ∫ dΩY ∗

lm′′ [ei𝛾Lz ei𝛽Ly ei𝛼Lz ]Ylm

}
(10.304)

=
∑
m′′

Ylm′′ (𝜃′, 𝜙′)∫ ∫ dΩ[Y ∗
lm′′ei𝛾Lz ]ei𝛽Ly[ei𝛼Lz Ylm]. (10.305)

Using the fact that Lz is Hermitian, this can be written as

Ylm(𝜃, 𝜙) =
∑
m′′

Ylm′′ (𝜃′, 𝜙′)∫ ∫ dΩ[ei𝛾Lz Ylm′′ ]∗ei𝛽Ly Ylmei𝛼m. (10.306)

This leads to

Ylm(𝜃, 𝜙) =
∑
m′′

Ylm′′ (𝜃′, 𝜙′)ei𝛾m′′

[
∫ ∫ dΩY ∗

lm′′ei𝛽Ly Ylm

]
ei𝛼m (10.307)

=
∑
m′′

Ylm′′ (𝜃′, 𝜙′)ei𝛾m′′

[
∫ ∫ dΩYlme−i𝛽Ly Y ∗

lm′′

]
ei𝛼m (10.308)

=
∑
m′′

Ylm′′ (𝜃′, 𝜙′)ei𝛾m′′ [dl
mm′′ (𝛽)]∗ei𝛼m (10.309)

=
∑
m′′

Ylm′′ (𝜃′, 𝜙′)[ei𝛼m[dl
mm′′ (𝛽)]∗ei𝛾m′′ ], (10.310)

thus,

Ylm(𝜃, 𝜙) =
∑

m′′
Ylm′′ (𝜃′, 𝜙′) [Dl

mm′′ (𝛼, 𝛽, 𝛾)]∗, (10.311)

where we have used the fact that Ly is Hermitian and L∗
y = −Ly. This result can

also be written as

Ylm(𝜃, 𝜙) =
∑
m′′

Ylm′′ (𝜃′, 𝜙′) Dl
m′′m(−𝛾,−𝛽,−𝛼), (10.312)

which implies

Dl
m′′m(R

−1) = [Dl
m′′m(R)]

−1 = [Dl
mm′′ (R)]∗. (10.313)

10.8.12 Differential Equation for dl
m′m

(𝜷)

From the definition of the Euler angles (Section 10.8.4) it is clear that the rota-
tions (𝛼, 𝛽, 𝛾) are all performed about different sets of axes. Only the first rota-
tion is about the z-axis of our original coordinates, that is,

−i 𝜕

𝜕𝛼
= Lz, ℏ = 1. (10.314)
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Similarly, we can write the components of the angular momentum vector about
the other intermediate axes, that is, y1 and the z2-axis, in terms of the compo-
nents of the angular momentum about the x-, y-, and z-axes as:

Ly1
= −i 𝜕

𝜕𝛽
= − sin 𝛼Lx + cos 𝛼Ly (10.315)

and

Lz2
= −i 𝜕

𝜕𝛾
= sin 𝛽 cos 𝛼Lx + sin 𝛽 sin 𝛼Ly + cos 𝛽Lz. (10.316)

Inverting these we obtain

Lx = −i
[
− sin 𝛼

𝜕

𝜕𝛽
+ cos 𝛼

sin 𝛽

𝜕

𝜕𝛾
− cos 𝛼 cot 𝛽 𝜕

𝜕𝛼

]
, (10.317)

Ly = −i
[

cos 𝛼 𝜕

𝜕𝛽
+ sin 𝛼

sin 𝛽

𝜕

𝜕𝛾
− sin 𝛼 cot 𝛽 𝜕

𝜕𝛼

]
, (10.318)

Lz = −i 𝜕

𝜕𝛼
. (10.319)

We now construct L2 as

L2 = L2
x + L2

y + L2
z (10.320)

= −
[
𝜕2

𝜕𝛽2 + cot 𝛽 𝜕

𝜕𝛽
+ 1

sin2𝛽

(
𝜕2

𝜕𝛼2 + 𝜕2

𝜕𝛾2 − 2 cos 𝛽 𝜕2

𝜕𝛼𝜕𝛾

)]
.

(10.321)

We could use the L2 operator either in terms of (𝛼, 𝛽, 𝛾) as

L2
(

𝜕

𝜕𝛼
,
𝜕

𝜕𝛽
,
𝜕

𝜕𝛾
, 𝛼, 𝛽, 𝛾

)
(10.322)

and act on Dl
m′m(𝛼, 𝛽, 𝛾), or in terms of (𝜃, 𝜙) as

L2
(

𝜕

𝜕𝜃
,
𝜕

𝜕𝜙
, 𝜃, 𝜙

)
(10.323)

and act on Ylm(𝜃, 𝜙). We first write (we suppress derivatives in L2)

L2(𝜃, 𝜙)Ylm(𝜃′, 𝜙′) = L2(𝛼, 𝛽, 𝛾)Ylm(𝜃′, 𝜙′) (10.324)

and use Eq. (10.286) and

L2(𝜃, 𝜙)Ylm(𝜃, 𝜙) = l(l + 1)Ylm(𝜃, 𝜙), (10.325)

to write
m′=l∑

m′=−l
Ylm′ (𝜃, 𝜙)[l(l + 1)Dl

m′m(𝛼, 𝛽, 𝛾)] =
m′=l∑

m′=−l
Ylm′ (𝜃, 𝜙)[L2(𝛼, 𝛽, 𝛾)Dl

m′m(𝛼, 𝛽, 𝛾)].

(10.326)
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Since Ylm′ (𝜃, 𝜙) are linearly independent, this gives the differential equation that
Dl

m′m(𝛼, 𝛽, 𝛾) satisfies as:[
L2
(

𝜕

𝜕𝛼
,
𝜕

𝜕𝛽
,
𝜕

𝜕𝛾
, 𝛼, 𝛽, 𝛾

)]
Dl

m′m(𝛼, 𝛽, 𝛾) = l(l + 1)Dl
m′m(𝛼, 𝛽, 𝛾). (10.327)

Using Eq. (10.321) for L2
(

𝜕

𝜕𝛼
,
𝜕

𝜕𝛽
,
𝜕

𝜕𝛾
, 𝛼, 𝛽, 𝛾

)
and the derivatives

𝜕2

𝜕𝛼2 Dl
m′m = −m′2Dl

m′m, (10.328)

𝜕2

𝜕𝛾2 Dl
m′m = −m2Dl

m′m, (10.329)

𝜕2

𝜕𝛼𝜕𝛾
Dl

m′m = −m′mDl
m′m, (10.330)

which follow from Eq. (10.296), we obtain the differential equation for
dl

m′m(𝛽) as

{
d2

d𝛽2 + cot 𝛽 d
d𝛽

+
[

l(l + 1) −
(

m2 + m′2 − 2mm′ cos 𝛽
sin2𝛽

)]}
dl

m′m(𝛽) = 0.

(10.331)

Note that for

m′ = 0 or m = 0, (10.332)

this reduces to the associated Legendre equation, which has the following solu-
tions:

Dl
0m ∝ Y ∗

lm(𝛽, 𝛾), (10.333)
Dl

m′0 ∝ Y ∗
lm′ (𝛽, 𝛼). (10.334)

Also note that some books call Dl
mm′ (R) what we call [Dl

mm′ (R)]−1. Using the
transformation

dl
m′m(𝛽) =

y(𝜆l,m′,m, 𝛽)√
sin 𝛽

, (10.335)

we can put Eq. (10.331) in the second canonical form of Chapter 8 as
d2y(𝜆l,m′,m, 𝛽)

d𝛽2 (10.336)

+

[(
l(l + 1) + 1

4

)
−

(
m2 + m′2 − 2mm′ cos 𝛽 − 1

4

sin2𝛽

)]
y(𝜆l,m′,m, 𝛽) = 0.



296 10 Continuous Groups and Representations

10.8.13 Addition Theorem for Spherical Harmonics

Spherical harmonics transform as [Eq. (10.286)]

Ylm(𝜃,′𝜙′) =
m′=l∑

m′=−l
Ylm′ (𝜃, 𝜙)Dl

m′m(𝛼, 𝛽, 𝛾), (10.337)

with the inverse transformation given as

Ylm(𝜃, 𝜙) =
m′=l∑

m′=−l
D∗l

mm′ (𝛼, 𝛽, 𝛾)Ylm′ (𝜃′, 𝜙′), (10.338)

where

Dl
m′m(𝛼, 𝛽, 𝛾) = e−i𝛼m′dl

m′m(𝛽)e
−i𝛾m. (10.339)

We now prove an important theorem about spherical harmonics, which says
that the sum

m=l∑
m=−l

Y ∗
lm(𝜃1, 𝜙1)Ylm(𝜃2, 𝜙2) = Il (10.340)

is an invariant. This is the generalization of r1 ⋅ r2 and the angles are defined as
in Figure 10.7.

Before we prove this theorem, let us consider the special case l = 1, where

Yl=1,m=±1 = ∓
√

3
8𝜋

sin 𝜃e±i𝜙, (10.341)

Yl=1,m=0 =
√

3
4𝜋

cos 𝜃. (10.342)

x

y

θ12

θ2

θ1

P2

P1

z

0

Figure 10.7 Definition of the
angles in the addition theorem of
the spherical harmonics.
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Using Cartesian coordinates, we can write also these as

Yl=1,m=±1 = ∓
√

3
8𝜋

(x ± iy)
r

, (10.343)

Yl=1,m=0 =
√

3
4𝜋

z
r
. (10.344)

We now evaluate I1 as

I1 = 3
4𝜋

[cos 𝜃1 cos 𝜃2 + sin 𝜃1 sin 𝜃2 cos(𝜙1 − 𝜙2)] (10.345)

= 3
4𝜋

cos 𝜃12 (10.346)

= 3
4𝜋

x1x2 + y1y2 + z1z2

r1r2
= 3

4𝜋
r1 ⋅ r2

r1r2
. (10.347)

To prove the invariance for a general l, we write

m=l∑
m=−l

Y ∗
lm(𝜃

′
1, 𝜙

′
1)Ylm(𝜃′2, 𝜙

′
2)

=
∑

m

[∑
m′m′′

Y ∗
lm′ (𝜃1, 𝜙1)Ylm′′ (𝜃2, 𝜙2)

]
D∗l

m′m(𝛼, 𝛽, 𝛾)D
l
m′′m(𝛼, 𝛽, 𝛾)

(10.348)

=

[∑
m′m′′

Y ∗
lm′ (𝜃1, 𝜙1)Ylm′′ (𝜃2, 𝜙2)

]∑
m

D∗l
m′m(𝛼, 𝛽, 𝛾)D

l
m′′m(𝛼, 𝛽, 𝛾).

(10.349)

Using Eqs. (10.311) and (10.312), we can write

Dl
m′′m(R

−1) = [Dl
m′′m(R)]

−1 = [Dl
mm′′ (R)]∗,

where R stands for R(𝛼, 𝛽, 𝛾); hence∑
m

D∗l
m′m(𝛼, 𝛽, 𝛾)D

l
m′′m(𝛼, 𝛽, 𝛾) =

∑
m

Dl
m′′m(R)D

l
mm′ (R−1) (10.350)

=
m∑
m

Dl
m′′m(R)[D

l
mm′ (R)]−1 (10.351)

= Dl
m′′m′ (RR−1) (10.352)

= 𝛿m′′m′ . (10.353)
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We now use this in Eq. (10.349) to write
m=l∑

m=−l
Y ∗

lm(𝜃
′
1, 𝜙

′
1)Ylm(𝜃′2, 𝜙

′
2) =

∑
m′m′′

Y ∗
lm′ (𝜃1, 𝜙1)Ylm′′ (𝜃2, 𝜙2)𝛿m′′m′ (10.354)

=
∑

m
Y ∗

lm(𝜃1, 𝜙1)Ylm(𝜃2, 𝜙2) (10.355)

= Il, (10.356)

thus, proving the theorem.

10.8.14 Determination of Il in the Addition Theorem

Because Il is an invariant, we can choose our axis and the location of the points,
P1 and P2, conveniently (Figure 10.8). Thus, we can write

Il =
m=l∑

m=−l
Y ∗

lm(0,−)Ylm(𝜃12, 0) (10.357)

= Y ∗
l0(0)Yl0(𝜃12) (10.358)

=

(√
2l + 1

4𝜋

)2

Pl(0)Pl(cos 𝜃12). (10.359)

Using the value Pl(0) = 1, we complete the derivation of the addition theorem
of the spherical harmonics as

m=l∑
m=−l

Y ∗
lm(𝜃1, 𝜙1)Ylm(𝜃2, 𝜙2) =

2l + 1
4𝜋

Pl(cos 𝜃12). (10.360)

x′

x

z

z′

y′

P
1
(θ

1
′ = 0)

θ
12(ϕ

2
′ = 0)P

2

y

Figure 10.8 Evaluation of Il.
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Figure 10.9 Multipole
expansion.

z

θ
12

ρ
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r
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x

Example 10.1 Multipole expansion
We now consider the electrostatic potential of an arbitrary charge distribution
at (r, 𝜃, 𝜙) as shown in Figure 10.9. Given the charge density, 𝜌(r′, 𝜃′, 𝜙′), we can
write the electrostatic potential, Φ((r, 𝜃, 𝜙), as

Φ((r, 𝜃, 𝜙) = ∫ ∫ ∫V ′′

𝜌(r′, 𝜃′, 𝜙′)r′2 sin 𝜃′dr′d𝜃′d𝜙′√
r′2 + r2 − 2rr′ cos 𝜃12

. (10.361)

The integral is to be taken over the source variables (r′, 𝜃′, 𝜙′), while (r, 𝜃, 𝜙)
denotes the field point. For a field point outside the source, we define a new
variable, t = r′∕r, to write

Φ(r, 𝜃, 𝜙) = ∫ ∫ ∫V ′

𝜌(r′, 𝜃′, 𝜙′)r′2 sin 𝜃′dr′d𝜃′d𝜙′

r
√

1 + t2 − 2t cos 𝜃12

. (10.362)

Using the generating function definition for the Legendre polynomials:

T(x, t) = 1√
1 + t2 − 2tx

=
∞∑

l=0
Pl(x)tl, |t| < 1, (10.363)

Eq. (10.362) becomes

Φ(r, 𝜃, 𝜙) =
∞∑

l=0

1
rl+1 ∫ ∫ ∫V ′

𝜌(r′, 𝜃′, 𝜙′)r′lPl(cos 𝜃12)d𝑣′. (10.364)

Using the addition theorem [Eq. (10.360)], this can now be written as

Φ(r, 𝜃, 𝜙) =
∑
l,m

4𝜋
(2l + 1)

Ylm(𝜃, 𝜙)
rl+1

[
∫ ∫ ∫V ′

𝜌(r′, 𝜃′, 𝜙′)r′lY ∗
lm(𝜃

′, 𝜙′)d𝑣′
]
,

(10.365)
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where∑
l,m

=
∞∑

l=0

l∑
m=−l

. (10.366)

The expression

qlm = ∫ ∫ ∫V ′
𝜌(r′, 𝜃′, 𝜙′)r′lY ∗

lm(𝜃
′, 𝜙′)d𝑣′ (10.367)

is called the (lm)th multipole moment.

10.8.15 Connection of Dl
mm′ (𝜷) with Spherical Harmonics

We are now going to prove two useful relations between the rotation matrix
and the spherical harmonics:

Dl
m0(𝛼, 𝛽,−) =

√
4𝜋

(2l + 1)
Y ∗

lm(𝛽, 𝛼) (10.368)

and

Dl
0m(−, 𝛽, 𝛾) = (−1)m

√
4𝜋

(2l + 1)
Y ∗

lm(𝛽, 𝛾). (10.369)

We first establish the relation between dl
m′m(𝛽) and the Jacobi polynomials.

We have obtained the differential equation [Eq. (10.331)] that dl
m′m(𝛽) satisfies

as {
d2

d𝛽2 + cot 𝛽 d
d𝛽

+
[

l(l + 1) − m2 + m′2 − 2mm′ cos 𝛽
sin2𝛽

]}
dl

m′m(𝛽) = 0.

(10.370)

Given the solution of the above equation:

dl
m′m(𝛽) = (−1)m′+m

[
(l + m′)!(l − m′)!
(l + m)!(l − m)!

]1∕2∑
k

(
l + m

l − m′ − k

)(
l − m

k

)
× (−1)l−m′−k

(
cos 𝛽

2

)2k+m′+m(
sin 𝛽

2

)2l−2k−m′−m

, (10.371)

we can use the Jacobi polynomials:

P(a,b)
n (x) = 2−n

n∑
k=0

(n + a
k

)(n + b
n − k

)
(x − 1)n−k(x + 1)k , (10.372)
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which satisfy the differential equation

(1 − x2)
dy2

dx2 + [b − a − (a + b + 2)x]
dy
dx

+ n(n + a + b + 1)y(x) = 0,

(10.373)

to express dl
m′m(𝛽) as

dl
m′m(𝛽) = (−1)m′+m

[
(l + m′)!(l − m′)!
(l + m)!(l − m)!

]1∕2(
cos 𝛽

2

)m′+m(
sin 𝛽

2

)m′−m

× P(m′−m,m′+m)
l−m′ (cos 𝛽). (10.374)

Notes:

(i) The normalization constant of dl
m′m(𝛽) can be evaluated via the integral

∫
1

−1
(1 − x)a(1 + x)bP(a,b)

n (x)P(a,b)
m (x)dx

= 2a+b+1

2n + a + b + 1
Γ(n + a + 1)Γ(n + b + 1)
Γ(n + 1)Γ(n + a + b + 1)

𝛿nm. (10.375)

Also note that the Jacobi polynomials are normalized so that

P(a,b)
n (1) =

(n + a
n

)
. (10.376)

(ii) You can use Eq. (10.374) to check the matrix elements found in Problem 8
and in Eq. (10.300). You can use Mathematica® to obtain the needed Jacobi
polynomials via the command “JacobiP[a,b,n,x].”

(iii) To see that dl
m′m(𝛽) given in Eq. (10.374) is indeed a solution to Eq. (10.370),

substitute

dl
m′m(𝛽) = C

(
cos 𝛽

2

)m′+m(
sin 𝛽

2

)m′−m

f (cos 𝛽) (10.377)

into Eq. (10.370), where C is an appropriate normalization constant, and
then show that f (cos 𝛽) satisfies the Jacobi equation [Eq. (10.373)] with an
appropriate choice of the parameters.

For the first relation [Eq.(10.368)], we need the value of dl
m0(𝛽), which from

Eq. (10.374) can be written as

dl
m0(𝛽) = (−1)m

[
(l + m)!(l − m)!

(l!)2

]1∕2 1
2m (sinm𝛽)P(m,m)

l−m (x). (10.378)

We now use the relation

P(m,m)
l−m (x) = (−2)m l!

(l − m)!
(1 − x2)−m∕2P−m

l (x), (10.379)
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to write

dl
m0(𝛽) =

[
(l + m)!
(l − m)!

]1∕2

P−m
l (cos 𝛽) (10.380)

= (−1)m
[
(l − m)!
(l + m)!

]1∕2

Pm
l (cos 𝛽). (10.381)

Using the definition [Eq. (10.296)]:

Dl
m′m(𝛼, 𝛽, 𝛾) = e−i𝛼m′dl

m′m(𝛽)e
−i𝛾m, (10.382)

we write

Dl
m0(𝛼, 𝛽, 𝛾) = e−i𝛼mdl

m0(𝛽). (10.383)

Since the spherical harmonics are defined as [Eq. (1.199)]

Y m
l (𝜃, 𝜙) = (−1)m

√
2l + 1

4𝜋
(l − m)!
(l + m)!

eim𝜙Pm
l (cos 𝜃), (10.384)

Eqs. (10.383) and (10.381) yield the desired result in Eq. (10.368):

Dl
m0(𝛼, 𝛽) =

√
4𝜋

2l + 1
Y ∗

lm(𝛽, 𝛼). (10.385)

For the second relation [Eq. (10.369)], we first show and then use the symmetry
property:

dl
m′m(−𝛽) = dl

mm′ (𝛽). (10.386)

In Problem 9, the reader will get the chance to prove these relations via the
addition theorem of spherical harmonics.

10.9 Irreducible Representations of SU(2)

From the physical point of view a very important part of the group theory
is representing each element of the group with a linear transformation act-
ing in a vector space. We now introduce the irreducible matrix representa-
tions of SU(2). There is again the trivial one-dimensional representation D(1),
where each group element is represented by the number one. Next, we have the
two-dimensional representation D(2) provided by the matrices [Eq. (10.96)]

u =
[

A B
−B∗ A∗

]
, (10.387)
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where det u = |A|2 + |B|2 = 1. These act on two-dimensional vectors in the
complex plane, which we show as

w =
[
𝑤1
𝑤2

]
, (10.388)

or

w = 𝑤𝛼 , 𝛼 = 1, 2. (10.389)

For the higher-order representations we need to define tensors, such that each
element of the group corresponds to transformations of the various compo-
nents of a tensor into each other. Such a representation is called generated by
tensors. In this regard, D(1) is generated by scalars, D(2) is generated by vectors,
and D(3) is generated by symmetric second-rank tensors 𝑤𝛼𝛽. In general, D(n) is
generated by completely symmetric tensors with (n − 1) indices, 𝑤𝛼1𝛼2…𝛼n−1

, as

⎡⎢⎢⎢⎢⎣
D(1) 0 0 . 0

0 D(2) 0 .. 0
0 0 D(3) ... 0
. .. ... ⋱ 0
0 0 0 0 D(n)

⎤⎥⎥⎥⎥⎦
. (10.390)

If 𝑤𝛼1𝛼2···𝛼n−1
is not symmetric with respect to any of the two indices, then we

can contract those two indices and obtain a symmetric tensor of rank two less
than the original one; thus, 𝑤𝛼1𝛼2

… 𝛼n−1 is not irreducible because it contains
the smaller representation generated by the contracted tensor.

10.10 Relation of SU(2) and R(3)

We have seen that the general element, u, of SU(2) is given as Eq. (10.387). We
now define a matrix operator in this space as

P =
[

z x − iy
x + iy −z

]
, (10.391)

where (x, y, z) are real quantities. However, we will interpret them as the
coordinates of a point. Under the action of u, P transforms as

P′ = uPu−1, (10.392)

which is nothing but a similarity transformation. For unitary operators u
satisfies

u−1 = u† = ũ∗. (10.393)

Also note that P is Hermitian, P† = P, and traceless. Because of the Hermitian
property, trace and the determinant of a matrix are invariant under similarity
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transformations, hence we can write

P′ =
[

z′ x′ − iy′
x′ + iy′ −z′

]
, (10.394)

where (x′, y′, z′) are again real and satisfy

− det P′ = (x′2 + y′2 + z′2) (10.395)
= (x2 + y2 + z2) (10.396)
= − det P. (10.397)

This is just the orthogonality condition, which requires that the magnitude
of a vector, r = (x, y, z), remain unchanged. In summary, for every element of
SU(2) we can associate an orthogonal transformation in three dimensions.

We have seen that the orientation of a system in three dimensions can be
completely specified by the three Euler angles (𝜙, 𝜃, 𝜓). A given orientation
can be obtained by three successive rotations. We now find the corresponding
operators in SU(2). For convenience we first define

x+ = x + iy, (10.398)
x− = x − iy. (10.399)

This allows us to write the first transformation, which corresponds to rotation
about the z-axis as

x′
+ = e−i𝜙x+,

x′
− = ei𝜙x−,

z′ = z.
(10.400)

In SU(2) this corresponds to the transformation

P′ =
[

z′ x′
−

x′
+ −z′

]
(10.401)

=
[

A B
−B∗ A∗

] [
z x−

x+ −z

] [
A∗ −B
B∗ A

]
. (10.402)

On performing the multiplications we get

x′
+ = −2B∗A∗z − B∗2x− + A∗2x+, (10.403)

x′
− = −2ABz + A2x− − B2x+, (10.404)
z′ = (|A|2 − |B|2)z + AB∗x− + BA∗x+. (10.405)

Comparing this with Eq. (10.400) gives

B = B∗ = 0, (10.406)
A2 = ei𝜙. (10.407)
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Thus,

u𝜙 =
[

ei𝜙∕2 0
0 e−i𝜙∕2

]
. (10.408)

Similarly, we obtain the other matrices as

u𝜃 =
[

cos 𝜃∕2 i sin 𝜃∕2
i sin 𝜃∕2 cos 𝜃∕2

]
(10.409)

and

u𝜓 =
[

ei𝜓∕2 0
0 e−i𝜓∕2

]
. (10.410)

For the complete sequence we can write

u = u𝜓u𝜃u𝜙 (10.411)

=
[

ei𝜓∕2 0
0 e−i𝜓∕2

] [
cos 𝜃∕2 i sin 𝜃∕2
i sin 𝜃∕2 cos 𝜃∕2

] [
ei𝜙∕2 0

0 e−i𝜙∕2

]
, (10.412)

which is

u =
[

ei(𝜓+𝜙)∕2 cos 𝜃∕2 iei(𝜓−𝜙)∕2 sin 𝜃∕2
ie−i(𝜓−𝜙)∕2 sin 𝜃∕2 e−i(𝜓+𝜙)∕2 cos 𝜃∕2

]
. (10.413)

In terms of the three Euler angles the four independent parameters of u [Eq.
(10.99)] are now given as

A = a + id = ei(𝜓+𝜙)∕2 cos 𝜃∕2, (10.414)
B = c + ib = iei(𝜓−𝜙)∕2 sin 𝜃∕2. (10.415)

The presence of half-angles in these matrices is interesting. If we examine u𝜙,
for 𝜙 = 0 it becomes

u𝜙(0) =
[

1 0
0 1

]
, (10.416)

which corresponds to the identity matrix in R(3). However, for 𝜙 = 2𝜋, which
also gives the identity matrix in R(3), u𝜙 corresponds to

u𝜙(2𝜋) =
[
−1 0
0 −1

]
(10.417)

in SU(2). Hence, the correspondence (isomorphism) between SU(2) and R(3)
is two-to-one. The matrices (u,−u) in SU(2) correspond to a single matrix in
R(3). The complex two-dimensional vector space is called the spinor space.
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It turns out that in quantum mechanics the wave function, at least parts of it,
must be composed of spinors. The double-valued property and the half-angles
are associated with the fact that spin is half-integer.

10.11 Group Spaces

10.11.1 Real Vector Space

We have seen that the elements of R(3) act in a real vector space and transform
vectors into other vectors. A real vector space, V , where −→

𝑣 1,
−→
𝑣 2,

−→
𝑣 3 are any

three elements of V , is defined as a collection of objects, that is, vectors, with
the following properties:

1. Addition of vectors results in another vector:
−→
𝑣 1 +

−→
𝑣 2 ∈ V . (10.418)

2. Addition is commutative:
−→
𝑣 1 +

−→
𝑣 2 = −→

𝑣 2 +
−→
𝑣 1. (10.419)

3. Addition is associative:

(−→𝑣 1 +
−→
𝑣 2) +

−→
𝑣 3 = −→

𝑣 1 + (−→𝑣 2 +
−→
𝑣 3). (10.420)

4. There exists a null vector, −→0 , such that for any −→
𝑣 ∈ V

−→
𝑣 + −→0 = −→

𝑣 . (10.421)

5. For each −→
𝑣 ∈ V there exists an inverse (−−→𝑣 ) such that

−→
𝑣 + (−−→𝑣 ) = 0. (10.422)

6. Multiplication of a vector, −→𝑣 , with the number 1 leaves it unchanged:

1−→𝑣 = −→
𝑣 . (10.423)

7. A vector multiplied with a scalar, c, is another vector:

c−→𝑣 ∈ V . (10.424)

A set of vectors, −→u i ∈ V , i = 1, 2,… , n, is said to be linearly independent if
the equality

c1
−→u 1 + c2

−→u 2 + · · · + cn
−→u n = 0, ci ∈ ℝ, (10.425)

can only be satisfied for the trivial case

c1 = c2 = · · · = cn = 0. (10.426)
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In an N-dimensional vector space, we can find N linearly independent unit
basis vectors,

êi ∈ V , i = 1, 2,… , n, (10.427)

such that any vector −→𝑣 ∈ V can be expressed as a linear combination of these
vectors as

−→
𝑣 = c1ê1 + c2ê2 + · · · + cnên. (10.428)

10.11.2 Inner Product Space

In addition to the above properties, introduction of scalar or inner product
enriches the vector space concept significantly and makes physical applications
easier. In Cartesian coordinates the inner product, also called the dot product,
is defined as

(−→𝑣 1,
−→
𝑣 2) =

−→
𝑣 1 ⋅

−→
𝑣 2 = 𝑣1x𝑣2x + 𝑣1y𝑣2y + 𝑣1z𝑣2z. (10.429)

Generalization to arbitrary dimensions is obvious. The inner product makes it
possible to define the norm or magnitude, |−→𝑣 |, of a vector as

|−→𝑣 | = (−→𝑣 ⋅ −→𝑣 )1∕2, (10.430)

where 𝜃12 is the angle between two vectors:

cos 𝜃12 =
−→
𝑣 1 ⋅

−→
𝑣 2|−→𝑣 1||−→𝑣 2| . (10.431)

Basic properties of the inner product are:

1. −→
𝑣 1 ⋅

−→
𝑣 2 = −→

𝑣 2 ⋅
−→
𝑣 1, (10.432)

2. −→
𝑣 1 ⋅ (a

−→
𝑣 2 + b−→𝑣 3) = a(−→𝑣 1 ⋅

−→
𝑣 2) + b(−→𝑣 1 ⋅

−→
𝑣 3), (10.433)

where a and b are real numbers. A vector space with the definition of an
inner product is also called an inner product space.

10.11.3 Four-Vector Space

In Section 9.8, we have extended the vector concept to Minkowski spacetime
as four-vectors, where the elements of the Lorentz group act on four-vectors
and transform them into other four-vectors. For four-vector spaces properties
(1)–(7) still hold; however, the inner product of two four-vectors A𝛼 and B𝛼 is
now defined as

A𝛼B𝛼 = g𝛼𝛽A𝛼B𝛽 = A0B0 − A1B1 − A2B2 − A3B3, (10.434)

where g𝛼𝛽 is the Minkowski metric.
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10.11.4 Complex Vector Space

Allowing complex numbers, we can also define complex vector spaces in the
complex plane. For complex vector spaces properties (1)–(7) still hold; however,
the inner product in n dimensions is now defined as

−→
𝑣 1 ⋅

−→
𝑣 2 =

n∑
i=1

𝑣∗1i𝑣2i, (10.435)

where the complex conjugate must be taken to ensure a real value for the norm
(magnitude) of a vector, that is,

|−→𝑣 | = (−→𝑣 ⋅ −→𝑣 )1∕2 =

( n∑
i=1

𝑣∗i 𝑣i

)1∕2

. (10.436)

Note that the inner product in the complex plane is no longer symmetric, that
is,

−→
𝑣 1 ⋅

−→
𝑣 2 ≠ −→

𝑣 2 ⋅
−→
𝑣 1, (10.437)

however,

(−→𝑣 1 ⋅
−→
𝑣 2) = (−→𝑣 2 ⋅

−→
𝑣 1)∗ (10.438)

is true.

10.11.5 Function Space and Hilbert Space

We now define a vector space L2, whose elements are complex valued func-
tions of a real variable x, which are square integrable in the interval [a, b].
L2 is also called the Hilbert space. By square integrable it is meant that the
integral, ∫ b

a |f (x)|2dx, exists and is finite. Proof of the fact that the space of
square integrable functions satisfies the properties of a vector space is rather
technical, and we refer to books like Courant and Hilbert [3] and Morse and
Feshbach [11]. The inner product in L2 is defined as

(f1, f2) = ∫
b

a
f ∗1 (x)f2(x)dx. (10.439)

In the presence of a weight function, 𝑤(x), the inner product becomes

(f1, f2) = ∫
b

a
f ∗1 (x)f2(x)𝑤(x)dx. (10.440)
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Analogous to choosing a set of basis vectors in ordinary vector space, a
major problem in L2 is to find a suitable complete and an orthonormal set of
functions, {um(x)}, such that a given f (x) ∈ L2 can be expanded as

f (x) =
∞∑

m=0
cmum(x). (10.441)

Orthogonality of {um(x)} is expressed as

(um,un) = ∫
b

a
u∗

m(x)un(x)dx = 𝛿mn, (10.442)

where we have taken 𝑤(x) = 1 for simplicity. Using the orthogonality relation
[Eq. (10.442)] we can free the expansion coefficients, cm, under the summation
sign [Eq. (10.441)] as

cm = (um, f ) = ∫
b

a
u∗

m(x)f (x)dx. (10.443)

In physical applications {um(x)} is usually taken as the eigenfunction set of a
Hermitian operator. Substituting Eq. (10.443) back into Eq. (10.441) a formal
expression for the completeness of the set {um(x)} is obtained as

∞∑
m=0

u∗
m(x′)um(x) = 𝛿(x − x′). (10.444)

10.11.6 Completeness

Proof of the completeness of the eigenfunction set is rather technical for our
purposes and can be found in Courant and Hilbert [3, vol. 1, p. 427]. What
is important for us is that any sufficiently well behaved and at least piecewise
continuous function, F(x), can be expressed as an infinite series in terms of
the set {um(x)} as

F(x) =
∞∑

m=0
amum(x). (10.445)

Convergence of this series to F(x) could be approached via the variation
technique, and it could be shown that for a Sturm–Liouville system the limit
[9, p. 338].

lim
N→∞∫

b

a

[
F(x) −

∑N

m=0
amum(x)

]2
𝜔(x)dx → 0 (10.446)
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is true. In this case we say that in the interval [a, b] the series
∑∞

m=0 amum(x)
converges to F(x) in the mean. Convergence in the mean does not imply
point-to-point or uniform convergence:

lim
N→∞

N∑
m=0

amum(x) → F(x). (10.447)

However, for most practical situations convergence in the mean will accompany
point-to-point convergence and will be sufficient. We conclude this section by
quoting a theorem from Courant and Hilbert [3, p. 427].

Expansion theorem: Any piecewise continuous function defined in the
fundamental domain [a, b] with a square integrable first derivative could be
expanded in an eigenfunction series F(x) =

∑∞
m=0 amum(x), which converges

absolutely and uniformly in all subdomains free of points of discontinuity.
At the points of discontinuity it represents the arithmetic mean of the right-
and the left-hand limits.

In this theorem, the function does not have to satisfy the boundary condi-
tions. This theorem also implies convergence in the mean; however, the con-
verse is not true.

10.12 Hilbert Space and Quantum Mechanics

In quantum mechanics a physical system is completely described by giving its
state or the wave function, Ψ(x), in Hilbert space. To every physical observ-
able there corresponds a Hermitian differential operator acting on the functions
in Hilbert space. Because of their Hermitian nature, these operators have real
eigenvalues, which are the allowed physical values of the corresponding observ-
able. These operators are usually obtained from their classical definitions by
replacing position, momentum, and energy with their operator counterparts.
In position space the replacements

−→r → −→r , (10.448)
−→p → −iℏ−→∇, (10.449)

E → iℏ 𝜕

𝜕t
(10.450)

have been rather successful. Using these, the angular momentum operator is
obtained as

−→L = −→r × −→p = −iℏ−→r × −→∇. (10.451)
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In Cartesian coordinates components of −→L are given as

L1 = −iℏ
(

x2
𝜕

𝜕x3
− x3

𝜕

𝜕x2

)
, (10.452)

L2 = −iℏ
(

x3
𝜕

𝜕x1
− x1

𝜕

𝜕x3

)
, (10.453)

L3 = −iℏ
(

x1
𝜕

𝜕x2
− x2

𝜕

𝜕x1

)
, (10.454)

where Li satisfies the commutation relation

[Li, Lj] = iℏ𝜖ijkLk . (10.455)

10.13 Continuous Groups and Symmetries

In everyday language, the word symmetry is usually associated with famil-
iar operations like rotations and reflections. In scientific parlance, we have a
broader definition in terms of general operations performed in the parameter
space of a given system, where symmetry means that a given system is invari-
ant under a certain operation. A system could be represented by a Lagrangian,
a state function, or a differential equation. In our previous Sections, we have
discussed examples of continuous groups and their generators. The theory of
continuous groups was invented by Lie when he was studying symmetries of
differential equations. He also introduced a method for integrating differential
equations once the symmetries are known. In what follows we discuss exten-
sion or the prolongation of generators of continuous groups so that they could
be applied to differential equations.

10.13.1 Point Groups and Their Generators

In two dimensions general point transformations can be defined as

x = x(x, y),
y = y(x, y),

(10.456)

where x and y are two variables that are not necessarily the Cartesian coordi-
nates. All we require is that this transformation form a continuous group so that
finite transformations can be generated continuously from the identity element.
We assume that these transformations depend on at least on one parameter, 𝜀;
hence we write

x = x(x, y; 𝜀),
y = y(x, y; 𝜀). (10.457)
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A well-known example is the orthogonal transformation:
x = x cos 𝜀 + y sin 𝜀,

y = −x sin 𝜀 + y cos 𝜀,
(10.458)

which corresponds to counterclockwise rotations about the z-axis by the
amount 𝜀. If we expand Eq. (10.457) about 𝜀 = 0 we get

x(x, y; 𝜀) = x + 𝜀𝛼(x, y) + · · · ,
y(x, y; 𝜀) = y + 𝜀𝛽(x, y) + · · · ,

(10.459)

where

𝛼(x, y) = 𝜕x
𝜕𝜀

||||𝜀=0
, (10.460)

𝛽(x, y) =
𝜕y
𝜕𝜀

|||||𝜀=0

. (10.461)

If we define the operator

X = 𝛼(x, y) 𝜕
𝜕x

+ 𝛽(x, y) 𝜕
𝜕y

, (10.462)

we can write Eq. (10.459) as
x(x, y; 𝜀) = x + 𝜀Xx + · · · ,
y(x, y; 𝜀) = y + 𝜀Xy + · · · .

(10.463)

The operator X is called the generator of the infinitesimal point transforma-
tion. For infinitesimal rotations about the z-axis, this agrees with our previous
result [Eq. (10.43)] as

Xz = y 𝜕

𝜕x
− x 𝜕

𝜕y
. (10.464)

Similarly, the generator for the point transformation

x = x + 𝜀, y = y, (10.465)

which corresponds to translation along the x-axis, is

X = 𝜕

𝜕x
. (10.466)

10.13.2 Transformation of Generators and Normal Forms

We have given the generators in terms of the (x, y) variables [Eq. (10.462)]. How-
ever, we would also like to know how they look in another set of variables, say
(u, 𝑣):

u = u(x, y),
𝑣 = 𝑣(x, y).

(10.467)
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For this we first generalize [Eq. (10.462)] to n variables as

X = ai(xj) 𝜕

𝜕xi , i = 1, 2,… , n. (10.468)

Note that we used the Einstein summation convention for the index i. Defining
new variables by xi = xi(xj), we obtain

𝜕

𝜕xi =
𝜕xj

𝜕xi
𝜕

𝜕xj . (10.469)

When substituted in Eq. (10.468), this gives the generator in terms of the new
variables as

X =
[

ai 𝜕xj

𝜕xi

]
𝜕

𝜕xj = aj 𝜕

𝜕xj , (10.470)

where

aj = 𝜕xj

𝜕xi ai. (10.471)

Note that if we operate on xj with X we get

Xxj = ai 𝜕xj

𝜕xi = aj. (10.472)

Similarly,

Xxj = ai 𝜕xj

𝜕xi = aj
. (10.473)

In other words, the coefficients in the definition of the generator can be found
by simply operating on the coordinates with the generator; hence, we can write

X = (Xxi) 𝜕

𝜕xi (10.474)

or

X = (Xxi) 𝜕

𝜕xi . (10.475)

We now consider the generator for rotations about the z-axis [Eq. (10.464)]
in plane polar coordinates:

𝜌 = (x2 + y2)1∕2, (10.476)
𝜙 = arctan(y∕x). (10.477)
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Applying Eq. (10.474), we obtain the generator as

X = (X𝜌) 𝜕
𝜕r

+ (X𝜙) 𝜕

𝜕𝜙
(10.478)

=
[(

y 𝜕

𝜕x
− x 𝜕

𝜕y

)
(x2 + y2)

1
2

]
𝜕

𝜕r
+
[(

y 𝜕

𝜕x
− x 𝜕

𝜕y

)
arctan

( y
x

)]
𝜕

𝜕𝜙

(10.479)

= [0] 𝜕
𝜕r

+ [−1] 𝜕

𝜕𝜙
(10.480)

= − 𝜕

𝜕𝜙
. (10.481)

Naturally, the plane polar coordinates in two dimensions or in general the
spherical polar coordinates are the natural coordinates to use in rotation
problems. This brings out the obvious question: Is it always possible to find a
new definition of variables so that the generator of the one-parameter group
of transformations looks like

X = 𝜕

𝜕s
? (10.482)

We will not go into the proof, but the answer to this question is yes, where the
above form of the generator is called the normal form.

10.13.3 The Case of Multiple Parameters

Transformations can also depend on multiple parameters. For a group of trans-
formations with m parameters we write

xi = xi(xj; 𝜀𝜇), i, j = 1, 2,… , n and 𝜇 = 1, 2,… ,m. (10.483)

We now associate a generator for each parameter as

X𝜇 = ai
𝜇(xj) 𝜕

𝜕xi , i = 1, 2,… , n, (10.484)

where

ai
𝜇(xj) = 𝜕xi

𝜕𝜀𝜇

|||||𝜀𝜇=0

. (10.485)

The generator of a general transformation can now be given as a linear combi-
nation of the individual generators as

X = c𝜇X𝜇, 𝜇 = 1, 2,… ,m. (10.486)

We have seen examples of this in R(3) and SU(2). In fact, X𝜇 forms the Lie
algebra of the m-dimensional group of transformations.
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10.13.4 Action of Generators on Functions

We have already seen that the action of the generators of the rotation group
R(3) on a function f (r) are given as

f ′(r) = (I − X1𝛿𝜃1 − X2𝛿𝜃2 − X3𝛿𝜃3)f (r) (10.487)
= (I − X ⋅ n̂𝛿𝜃)f (r), (10.488)

where the generators are given as

X1 = −
(

x2
𝜕

𝜕x3
− x3

𝜕

𝜕x2

)
, (10.489)

X2 = −
(

x3
𝜕

𝜕x1
− x1

𝜕

𝜕x3

)
, (10.490)

X3 = −
(

x1
𝜕

𝜕x2
− x2

𝜕

𝜕x1

)
. (10.491)

The minus sign in Eq. (10.488) means that the physical system is rotated clock-
wise by 𝜃 about an axis pointing in the n̂ direction. Now the change in f (r) is
given as

𝛿f (r) = −(X ⋅ n̂) f (r)𝛿𝜃. (10.492)

If a system represented by f (r) is symmetric under the rotation generated by
(X ⋅ n̂), that is, it does not change, then we have

(X ⋅ n̂) f (r) = 0. (10.493)

For rotations about the z-axis, in spherical polar coordinates this means
𝜕

𝜕𝜙
f (r) = 0, (10.494)

that is, f (r) does not depend on 𝜙 explicitly.
For a general transformation, we can define two vectors

r =
⎡⎢⎢⎢⎣
x1

x2

⋮
xn

⎤⎥⎥⎥⎦ , e =
⎡⎢⎢⎢⎣
𝜀1

𝜀2

⋮
𝜀m

⎤⎥⎥⎥⎦ , (10.495)

where 𝜀𝜇 are small, so that

f ′(r) = (I − X1𝜀
1 − X2𝜀

2 − · · · − Xm𝜀
m)f (r) (10.496)

= (I − X𝜇 ⋅ ê𝜇e)f (r), (10.497)

where ê𝜇 is a unit vector in the direction of e:

ê𝜇 = e∕e, e = |e| = [(𝜀1)2 + (𝜀2)2 + · · · + (𝜀m)2]1∕2, (10.498)

and the generators are defined as in Eq. (10.484).
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10.13.5 Extension or Prolongation of Generators

To find the effect of infinitesimal point transformations on a differential
equation

D(x, y′, y′′,… , y(n)) = 0, (10.499)
we first need to find how the derivatives, y(n), transform. For the point transfor-
mation

x = x(x, y; 𝜀),
y = y(x, y; 𝜀),

(10.500)

we can write

y′ =
dy
dx

(10.501)

=
dy(x, y; 𝜀)
dx(x, y; 𝜀)

(10.502)

=
(𝜕y∕𝜕x) + (𝜕y∕𝜕y)y′

(𝜕x∕𝜕x) + (𝜕x∕𝜕y)y′
(10.503)

= y′(x, y, y′; 𝜀). (10.504)
Other derivatives can also be written as

y′′ =
dy′

dx
= y′′(x, y, y′, y′′; 𝜀),

⋮

y(n) =
dy(n−1)

dx
= y(n)(x, y, y′,… , y(n); 𝜀).

(10.505)

What is actually needed are the generators of the following infinitesimal trans-
formations:

x = x + 𝜀𝛼(x, y) + · · · ,
y = y + 𝜀𝛽(x, y) + · · · ,

y′ = y′ + 𝜀𝛽[1](x, y, y′) + · · · ,
⋮

y(n) = y(n) + 𝜀𝛽[n](x, y, y′,… , y(n)) + · · · ,

(10.506)

where

𝛼(x, y) = 𝜕x
𝜕𝜀

||||𝜀=0
, 𝛽(x, y) =

𝜕y
𝜕𝜀

|||||𝜀=0

(10.507)

and

𝛽[1] =
𝜕y′

𝜕𝜀

|||||𝜀=0

,… , 𝛽[n] =
𝜕y(n)

𝜕𝜀

|||||𝜀=0

. (10.508)
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Also note that 𝛽[n] is not the nth derivative of 𝛽. For reasons to become clear
shortly, we use X for all the generators in Eq. (10.506) and write

x = x + 𝜀Xx + · · · ,
y = y + 𝜀Xy + · · · ,

y′ = y′ + 𝜀Xy′ + · · · ,
⋮

y(n) = y(n) + 𝜀Xy(n) + · · · .

(10.509)

We now define the extension or the prolongation of the generator

X = 𝛼(x, y) 𝜕
𝜕x

+ 𝛽(x, y) 𝜕
𝜕y

(10.510)

as

X = 𝛼
𝜕

𝜕x
+ 𝛽

𝜕

𝜕y
+ 𝛽[1] 𝜕

𝜕y′
+ · · · + 𝛽[n] 𝜕

𝜕y(n)
. (10.511)

To find the coefficients, 𝛽[n],we start with Eq. (10.506) and use it in Eq. (10.503):

y′ =
dy
dx

(10.512)

=
y′ + 𝜀(d𝛽∕dx) + · · ·
1 + 𝜀(d𝛼∕dx) + · · ·

(10.513)

= y′ + 𝜀

(
d𝛽
dx

− y′ d𝛼
dx

)
+ · · · . (10.514)

Comparing with [Eq. (10.506)]:

y′ = y′ + 𝜀𝛽[1] + · · · , (10.515)

we obtain 𝛽[1] as

𝛽[1] =
(

d𝛽
dx

− y′ d𝛼
dx

)
. (10.516)

Similarly, we write

y(n) = d
dx

y(n−1) = y(n) + 𝜀𝛽[n] + · · · (10.517)

= d
dx
[
y(n−1) + 𝜀𝛽[n−1]] dx

dx
+ · · · (10.518)

= y(n) + 𝜀

(
d𝛽[n−1]

dx
− y(n) d𝛼

dx

)
+ · · · (10.519)

and obtain

𝛽[n] = d𝛽[n−1]

dx
− y(n) d𝛼

dx
. (10.520)
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This can also be written as

𝛽[n] =
dn(𝛽 − y′𝛼)

dxn + y(n+1)𝛼. (10.521)

The first two terms give

𝛽[1] =
d𝛽(x, y)

dx
− y′

d𝛼(x, y)
dx

(10.522)

= 𝜕𝛽

𝜕x
+ y′

(
𝜕𝛽

𝜕y
− 𝜕𝛼

𝜕x

)
− y′2 𝜕𝛼

𝜕y
(10.523)

and

𝛽[2] =
d2(𝛽 − y′𝛼)

dx2 + y(3)𝛼 (10.524)

= 𝜕2𝛽

𝜕x2 +
(

2 𝜕2𝛽

𝜕x𝜕y
− 𝜕2𝛼

𝜕x2

)
y′ +

(
𝜕2𝛽

𝜕y2 − 2 𝜕2𝛼

𝜕x𝜕y

)
y′2 (10.525)

− 𝜕2𝛼

𝜕y2 y′3 +
(
𝜕𝛽

𝜕y
− 2𝜕𝛼

𝜕x
− 3𝜕𝛼

𝜕y
y′
)

y′′.

For the infinitesimal rotations about the z-axis, the extended generator can
now be written as

X = y 𝜕

𝜕x
− x 𝜕

𝜕y
− (1 + y′2) 𝜕

𝜕y′
− 3y′y′′ 𝜕

𝜕y′′
− (3y′′2 + 4y′y′′′) 𝜕

𝜕y′′′
+ · · · .

(10.526)
For the extension of the generator for translations along the x-axis, we obtain

X = 𝜕

𝜕x
. (10.527)

10.13.6 Symmetries of Differential Equations

We are now ready to discuss the symmetry of differential equations under point
transformations, which depend on at least one parameter. To avoid some sin-
gular cases we confine our discussion to differential equations [12]:

D(x, y′, y′′,… , y(n)) = 0, (10.528)
which can be solved for the highest derivative as

D = y(n) − D̃(x, y′, y′′,… , y(n−1)) = 0. (10.529)
For example, the differential equation

D = 2y′′ + y′2 + y = 0 (10.530)
satisfies this property, whereas

D = (y′′ − y′ + x)2 = 0 (10.531)
does not.
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For the point transformation

x = x(x, y; 𝜀),
y = y(x, y; 𝜀),

(10.532)

we say the differential equation is symmetric, if the solutions, y(x), of
Eq. (10.529) are mapped into other solutions, y = y(x), of

D = y(n) − D̃(x, y′, y′′,… , y(n−1)) = 0. (10.533)

Expanding D with respect to 𝜀 about 𝜀 = 0 we write

D(x, y′, y′′,… , y(n); 𝜀) = D(x, y′, y′′,… , y(n); 𝜀)|𝜀=0

+
𝜕D(x, y′, y′′,… , y(n); 𝜀)

𝜕𝜀
|𝜀=0 𝜀 + · · · . (10.534)

For infinitesimal transformations we keep only the linear terms in 𝜀:

D(x, y′, y′′,… , y(n); 𝜀) − D(x, y′, y′′,… , y(n); 𝜀)|𝜀=0

= 𝜕D
𝜕x

𝜕x
𝜕𝜀

+ 𝜕D
𝜕y

𝜕y
𝜕𝜀

+ · · · + 𝜕D
𝜕y(n)

𝜕y(n)

𝜕𝜀
|𝜀=0𝜀. (10.535)

In the presence of symmetry, Eq. (10.533) must be true for all 𝜀; thus, the
left-hand side of Eq. (10.535) is zero, and we obtain a formal expression for
symmetry as[

𝛼
𝜕D
𝜕x

+ 𝛽
𝜕D
𝜕y

+ · · · + 𝛽[n] 𝜕D
𝜕y(n)

]
= 0, (10.536)[

𝛼
𝜕

𝜕x
+ 𝛽

𝜕

𝜕y
+ · · · + 𝛽[n] 𝜕

𝜕y(n)

]
D = 0, (10.537)

XD = 0. (10.538)

Note that the symmetry of a differential equation is independent of the choice
of the variables used. Using an arbitrary point transformation only changes
the form of the generator. We now summarize these results in terms of a
theorem [12].

Theorem 10.1 An ordinary differential equation, which could be written as

D = y(n) − D̃(x, y′, y′′,… , y(n−1)) = 0, (10.539)

admits a group of symmetries with the generator X, if and only if

XD ≡ 0 (10.540)

holds. Note that we have written XD ≡ 0 instead of XD = 0 to emphasize the
fact that Eq. (10.540) must hold for every solution y(x) of D = 0.
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For example, the differential equation

D = y′′ + a0y′ + b0y = 0 (10.541)

admits the symmetry transformation

x = 0,
y = (1 + 𝜀)y,

(10.542)

since D does not change when we multiply y (also y′ and y′′) with a constant
factor. Using Eq. (10.511) the generator of this transformation can be written
as

X = y 𝜕

𝜕y
+ y′ 𝜕

𝜕y′
+ y′′ 𝜕

𝜕y′′
, (10.543)

which gives

XD =
[

y 𝜕

𝜕y
+ y′ 𝜕

𝜕y′
+ y′′ 𝜕

𝜕y′′

]
(y′′ + a0y′ + b0y) (10.544)

= (y′′ + a0y′ + b0y). (10.545)

Considered with D = 0, this gives XD = 0.
We have mentioned that one can always find a new variable, say x̃, where a

generator appears in its normal form as

X = 𝜕

𝜕x̃
. (10.546)

If X generates a symmetry of a given differential equation, which can be solved
for its highest derivative as

D = y(n) − D̃(x, y′, y′′,… , y(n−1)) = 0, (10.547)

then we can write

XD = 𝜕D
𝜕x̃

= 0, (10.548)

which means that in normal coordinates D does not depend explicitly on the
independent variable x̃.

Note that restricting our discussion to differential equations that could be
solved for the highest derivative guards us from singular cases where all the
first derivatives of D are zero. For example, for the differential equation

D = (y′′ − y′ + x)2 = 0, (10.549)
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all the first-order derivatives are zero for D = 0:

𝜕D
𝜕y′′

= 2(y′′ − y′ + x) = 0, (10.550)

𝜕D
𝜕y′

= −2(y′′ − y′ + x) = 0, (10.551)

𝜕D
𝜕y

= 0, (10.552)

𝜕D
𝜕x

= 2(y′′ − y′ + x) = 0. (10.553)

Thus, XD = 0 holds for any linear operator, and in normal coordinates

even though 𝜕D
𝜕x̃

= 0, we can no longer say that D does not depend on x̃
explicitly.
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Problems

1 Consider the following linear group in two dimensions:

x′ = ax + by,
y′ = cx + dy.

Show that the four infinitesimal generators are given as

X1 = x 𝜕

𝜕x
, X2 = y 𝜕

𝜕x
, X3 = x 𝜕

𝜕y
, X4 = y 𝜕

𝜕y
and find their commutators.

2 Show that

det A = det eL = eTrL,

where L is an n × n matrix. Use the fact that the determinant and the trace
of a matrix are invariant under similarity transformations. Then make a
similarity transformation that puts L into diagonal form.

3 Verify the transformation matrix

Aboost(𝛽) = eV ⋅ 𝛽𝛽

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝛾 −𝛽1𝛾 −𝛽2𝛾 −𝛽3𝛾

−𝛽1𝛾 1 +
(𝛾 − 1)𝛽2

1

𝛽2

(𝛾 − 1)𝛽1𝛽2

𝛽2

(𝛾 − 1)𝛽1𝛽3

𝛽2

−𝛽2𝛾
(𝛾 − 1)𝛽2𝛽1

𝛽2 1 +
(𝛾 − 1)𝛽2

2

𝛽2

(𝛾 − 1)𝛽2𝛽3

𝛽2

−𝛽3𝛾
(𝛾 − 1)𝛽3𝛽1

𝛽2

(𝛾 − 1)𝛽3𝛽2

𝛽2 1 +
(𝛾 − 1)𝛽2

3

𝛽2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

where 𝛽1 =
𝑣1

c
, 𝛽2 =

𝑣2

c
, 𝛽3 =

𝑣3

c
.

4 Show that the generators Vi [Eq. (10.169)]:

V1 =
⎡⎢⎢⎢⎣

0 −1 0 0
−1 0 0 0

0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎦ , V2 =
⎡⎢⎢⎢⎣

0 0 −1 0
0 0 0 0

−1 0 0 0
0 0 0 0

⎤⎥⎥⎥⎦ , V3 =
⎡⎢⎢⎢⎣

0 0 0 −1
0 0 0 0
0 0 0 0

−1 0 0 0

⎤⎥⎥⎥⎦ ,
can also be obtained from Vi = A′

boost(𝛽i = 0).

5 Given the charge distribution, 𝜌(−→r ) = r2e−rsin2𝜃, make a multipole
expansion of the potential and evaluate all the nonvanishing multipole
moments. What is the potential for large distances?
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6 Go through the details of the derivation of the differential equation that
dl

m′m(𝛽) satisfies:{
d2

d𝛽2 + cot 𝛽 d
d𝛽

+
[

l(l + 1) −
(

m2 + m′2 − 2mm′ cos 𝛽
sin2𝛽

)]}
dl

m′m(𝛽) = 0.

7 Using the substitution dl
m′m(𝛽) =

y(𝜆l ,m′,m,𝛽)√
sin 𝛽

in Problem 6, show that the
second canonical form of the differential equation for dl

m′m(𝛽) (Chapter 8)
is given as

d2y(𝜆l,m′,m, 𝛽)
d𝛽2 +

[
l(l+1)+ 1

4
−

(
m2 + m′2 − 2mm′ cos 𝛽 − 1

4

sin2𝛽

)]
y(𝜆l,m

′,m, 𝛽) = 0.

8 Using the result of Problem 7, solve the differential equation for dl
mm′ (𝛽)

by the factorization method.
(i) Considering m as a parameter, find the normalized step-up and

step-down operators, £+(m + 1) and £−(m), which change the index
m while keeping the index m′ fixed.

(ii) Considering m′ as a parameter, find the normalized step-up and
step-down operators £′

+(m′ + 1) and £′
−(m′), which change the index

m′ while keeping the index m fixed. Show that |m| ≤ l and |m′| ≤ l.
(iii) Find the normalized functions with m = m′ = l.
(iv) For l = 2, construct the full matrix d2

m′m(𝛽).
(v) By transforming the differential equation for dl

mm′ (𝛽) into an appro-
priate form, find the step-up and step-down operators that shift the
index l for fixed m and m′, giving the normalized functions dl

mm′ (𝛽).
(vi) Using the result in part (v) derive a recursion relation for

(cos 𝛽)dl
mm′ (𝛽). That is, express this as a combination of dl′

mm′ (𝛽) with
l′ = l ± 1,… .

Note: This is a difficult problem and requires knowledge of the material
discussed in Chapter 8.

9 Show that
(i) Dl

m0(𝛼, 𝛽,−) =
√

4𝜋
(2l + 1)

Y ∗
lm(𝛽, 𝛼),

(ii) Dl
0m(−, 𝛽, 𝛾) = (−1)m

√
4𝜋

(2l + 1)
Y ∗

lm(𝛽, 𝛾).

Hint: Use the invariant
m=l∑

m=−l
Y ∗

lm(𝜃1, 𝜙1)Ylm(𝜃2, 𝜙2)
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with
(𝜃1, 𝜙1) = (𝛽, 𝛼) and (𝜃2, 𝜙2) = (𝜃, 𝜙), 𝜃12 = 𝜃′,

and
[Dl

mm′ (𝛼, 𝛽, 𝛾)]−1 = [Dl
m′m(𝛼, 𝛽, 𝛾)]

∗ = Dl
mm′ (−𝛾,−𝛽,−𝛼).

10 For l = 2 construct the matrices Lk
y = (Lk

y)mm′ for k = 0, 1, 2, 3, 4,… and
show that the matrices with k ≥ 5 can be expressed as linear combinations
of these. Use this result to check the result in part (iv) of Problem 8.

11 We have studied spherical harmonics Ylm(𝜃, 𝜙), which are single-valued
functions of (𝜃, 𝜙) for l = 0, 1, 2,… . However, the factorization method
also gave us a second family of solutions corresponding to the eigen-
values 𝜆 = J(J + 1) with M = J , (J − 1),… , 0,… ,−(J − 1),−J , where
J = 0, 1∕2, 3∕2,… .
For J = 1∕2, find the 2 × 2 matrix of the y component of the angular
momentum operator, that is, the generalization of our [Ly]mm′ . Show that
the matrices for L2

y ,L3
y ,L4

y ,… are simply related to the 2 × 2 unit matrix
and the matrix [Ly]MM′ . Calculate the d-function for J = 1∕2, dJ=1∕2

MM′ (𝛽),
with M and M′ taking values +1∕2 or −1∕2.

12 Using the definition of the Hermitian operators, ∫ Ψ∗
1£Ψ2dx =

∫ (£Ψ1)∗Ψ2dx, show that

∫ ∫ dΩY ∗
lm′′ei𝛾Lz ei𝛽Ly e−i𝛼Lz Ylm = ei𝛾m′′

[
∫ ∫ dΩYlme−i𝛽Ly Y ∗

lm′′

]
ei𝛼m.

13 Convince yourself that the relations
e−i𝛽Ly1 = e−i𝛼Lz e−i𝛽Ly ei𝛼Lz ,

e−i𝛾Lz2 = e−i𝛽Ly1 e−i𝛾Lz1 ei𝛽Ly1 ,

used in the derivation of the rotation matrix in terms of the original set of
axes are true.

14 Show that Dl
mm′′ (R) satisfy

∑
m′′ [Dl

m′m′′ (R)][Dl
m′′m(R

−1)] = 𝛿m′m.

15 Show that the extended generator of

X = x 𝜕

𝜕x
+ y 𝜕

𝜕y
is given as

X = x 𝜕

𝜕x
+ y 𝜕

𝜕y
− y′′ 𝜕

𝜕y′′
− 2y′′′ 𝜕

𝜕y′′′
+ · · · .
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16 Find the extension of

X = xy 𝜕

𝜕x
+ y2 𝜕

𝜕y
up to third order.

17 Express the generator X = x(𝜕∕𝜕x) + y(𝜕∕𝜕y) in terms of u = y∕x, 𝑣 = xy.

18 Using induction, show that

𝛽[n] = d𝛽[n−1]

dx
− y(n) d𝛼

dx
can be written as

𝛽[n] =
dn(𝛽 − y′𝛼)

dxn + y(n+1)𝛼.

19 Does the following transformation form a group?

x = x, y = ay + a2y2, a is a constant.
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11

Complex Variables and Functions

Even though the complex numbers do not exist in nature directly, they are very
useful in physics and engineering applications:

1. In the theory of complex functions, there are pairs of functions called the
conjugate harmonic functions. They are useful in finding solutions of the
Laplace equation in two dimensions.

2. The method of analytic continuation is a very important tool in finding
solutions of differential equations and evaluating definite integrals.

3. Infinite series, infinite products, asymptotic solutions, and stability calcula-
tions are other areas, where the complex techniques are very helpful.

4. Even though the complex techniques are very useful in certain problems of
physics and engineering, which are essentially defined in the real domain,
complex numbers appear as an essential part of the physical theory in
quantum mechanics.

11.1 Complex Algebra

A complex number, a + ib, where i =
√
−1, can be defined by giving a pair of

real numbers (a, b) representing the real and the imaginary parts, respectively.
A convenient way to represent complex numbers is to introduce the complex
z-plane (Figure 11.1), where a point is shown as

z = (x, y) = x + iy. (11.1)

Using plane polar coordinates, where x = r cos 𝜃 and y = r sin 𝜃, we can write
a complex number as (Figure 11.1)

z = r (cos 𝜃 + i sin 𝜃) , (11.2)

Mathematical Methods in Science and Engineering, Second Edition. Selçuk Ş. Bayın.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.
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zy

r

x

θ

z-plane Figure 11.1 A point in the complex z-plane.

which is also equal to

z = rei𝜃. (11.3)

Here, 𝜃 is called the argument and r, or |z| is the modulus given as
r =

√
x2 + y2. Algebraic manipulations with complex numbers can be done

according to the following rules:

(i) Addition:

z1 + z2 = (x1 + iy1) + (x2 + iy2) (11.4)
= (x1 + x2) + i(y1 + y2). (11.5)

(ii) Multiplication with a constant c:

cz = c(x + iy) (11.6)
= cx + icy. (11.7)

(iii) Product of complex numbers:

z1 ⋅ z2 = (x1 + iy1)(x2 + iy2) (11.8)
= (x1x2 − y1y2) + i(x1y2 + y1x2). (11.9)

(iv) Division:
z1

z2
=

(x1 + iy1)
(x2 + iy2)

(11.10)

=
(x1 + iy1)
(x2 + iy2)

(x2 − iy2)
(x2 − iy2)

(11.11)

=
[(x1x2 + y1y2) + i(y1x2 − x1y2)]

(x2
2 + y2

2)
. (11.12)

The conjugate of a complex number is defined as

z∗ = x − iy. (11.13)
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The modulus of a complex number can now be written as

r = |z| = √
zz∗ =

√
x2 + y2. (11.14)

The De Moivre’s formula:

ein𝜃 = (cos 𝜃 + i sin 𝜃)n = cos n𝜃 + i sin n𝜃 (11.15)

and the following relations:|z1| − |z2| ≤ |z1 + z2| ≤ |z1| + |z2|, (11.16)|z1z2| = |z1||z2|, (11.17)
arg

(
z1z2

)
= arg z1 + arg z2 (11.18)

are very useful in calculations with complex numbers.

11.2 Complex Functions

We can define a complex function, 𝑤, as (Figure 11.2)

𝑤 = f (z) = u(x, y) + i𝑣(x, y). (11.19)

As an example for complex functions, we can give polynomials like

f (z) = z2 = (x + iy)2 = (x2 − y2) + i(2xy), (11.20)
f (z) = 3z4 + 2z3 + 2iz. (11.21)

Trigonometric functions and some other well-known functions can also be
defined in the complex plane as

sin z, cos z, ln z, sinh z,
√

z. (11.22)

However, as we will see, one must be very careful with multivaluedness.

Figure 11.2 A point in the 𝑤-plane.
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11.3 Complex Derivatives and Cauchy–Riemann
Conditions

As in real analysis, we can define the derivative of a complex function, f (z), at
some point z as

df (z)
dz

= lim
△z→0

f (z +△z) − f (z)
△z

(11.23)

= lim
△z→0

[
△u
△z

+ i△𝑣

△z

]
. (11.24)

For this derivative to be meaningful, it must be independent of the direction
in which the limit △z → 0 is taken. If we approach z parallel to the real axis,
△z = △x, we find the derivative as

df
dz

= 𝜕u
𝜕x

+ i𝜕𝑣
𝜕x

. (11.25)

On the other hand, if we approach z parallel to the imaginary axis, Δz = iΔy,
the derivative becomes

df
dz

= −i𝜕u
𝜕y

+ 𝜕𝑣

𝜕y
. (11.26)

For the derivative to exist at z, these two expressions must agree; thus giving
the Cauchy–Riemann conditions as

𝜕u(x, y)
𝜕x

=
𝜕𝑣(x, y)

𝜕y
, (11.27)

𝜕𝑣(x, y)
𝜕x

= −
𝜕u(x, y)

𝜕y
, (11.28)

which are necessary and sufficient.

11.3.1 Analytic Functions

If the derivative of a function, f (z), exists not only at z0 but also at every other
point in some neighborhood of z0, then we say that f (z) is analytic at z0.

Example 11.1 Analytic functions
The function f (z) = z2 + 5z3, like all other polynomials, is analytic in the entire
z-plane. On the other hand, even though the function f (z) = |z| satisfies the
Cauchy–Riemann conditions at z = 0, it is not analytic at any other point in
the z-plane.
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If a function is analytic in the entire z-plane, it is called an entire function.
All polynomials are entire functions. If a function is analytic at every point
in the neighborhood of z0 except at z0, we call z0 an isolated singular
point.

Example 11.2 Analytic functions
If we take the derivative of f (z) = 1∕z, we find f ′(z) = −1∕z2, which means
that z = 0 is an isolated singular point of this function. At all other points, this
function is analytic.

Theorem 11.1 If f (z) is analytic in some domain of the z-plane, then the
partial derivatives of all orders of u(x, y) and 𝑣(x, y) exist. The u(x, y) and 𝑣(x, y)
functions of such a function satisfy the Laplace equations:

−→∇
2
xyu(x, y) =

𝜕2u(x, y)
𝜕x2 +

𝜕2u(x, y)
𝜕y2 = 0, (11.29)

−→∇
2
xy𝑣(x, y) =

𝜕2𝑣(x, y)
𝜕x2 +

𝜕2𝑣(x, y)
𝜕y2 = 0. (11.30)

Proof : We use the first Cauchy–Riemann condition [Eq. (11.27)] and
differentiate with respect to x to get

𝜕u
𝜕x

= 𝜕𝑣

𝜕y
, (11.31)

𝜕2u
𝜕x2 = 𝜕2𝑣

𝜕x𝜕y
. (11.32)

Similarly, we write the second condition [Eq. (11.28)] and differentiate with
respect to y to get

𝜕𝑣

𝜕x
= −𝜕u

𝜕y
, (11.33)

𝜕2u
𝜕y2 = − 𝜕2𝑣

𝜕y𝜕x
. (11.34)

Adding Eqs. (11.32) and (11.34) gives

𝜕2u
𝜕x2 + 𝜕2u

𝜕y2 = 𝜕2𝑣

𝜕x𝜕y
− 𝜕2𝑣

𝜕x𝜕y
= 0. (11.35)

One can show Eq. (11.30) in exactly the same way. The u(x, y) and 𝑣(x, y) func-
tions are called harmonic functions, whereas the pair of functions (u, 𝑣) are
called conjugate harmonic functions.



332 11 Complex Variables and Functions

11.3.2 Harmonic Functions

Harmonic functions have very useful properties in applications. Given an ana-
lytic function, 𝑤(z) = u(x, y) + i𝑣(x, y) ∶

1. The two families of curves defined as u = ci and 𝑣 = di, where ci and di are
real numbers, are orthogonal to each other:

−→∇u ⋅
−→∇𝑣 = 𝜕u

𝜕x
𝜕𝑣

𝜕x
+ 𝜕u

𝜕y
𝜕𝑣

𝜕y
(11.36)

= 𝜕u
𝜕x

(
−𝜕u
𝜕y

)
+
(
𝜕u
𝜕y

)(
𝜕u
𝜕x

)
= 0, (11.37)

where we have used the Cauchy–Riemann conditions [Eqs. (11.27) and
(11.28)].

2. If we differentiate an analytic function, 𝑤(z), we get

d𝑤
dz

=
(
𝜕u
𝜕x

+ i𝜕𝑣
𝜕x

) dx
dz

+
(
𝜕u
𝜕y

+ i𝜕𝑣
𝜕y

)(
dy
dz

)
(−i2) (11.38)

=
(
𝜕u
𝜕x

− i𝜕u
𝜕y

)(
dx + idy

dz

)
(11.39)

= 𝜕u
𝜕x

− i𝜕u
𝜕y

, (11.40)

the modulus of which is||||d𝑤
dz

|||| =
√(

𝜕u
𝜕x

)2
+
(
𝜕u
𝜕y

)2

. (11.41)

Harmonic functions are very useful in electrostatics. If we identify u(x, y) as
the potential, the electric field, −→E , becomes

−→E = −−→∇u, (11.42)

and the magnitude of the electric field is given by the modulus of d𝑤∕dz ∶

|−→E | = ||||d𝑤
dz

|||| . (11.43)

3. If Ψ(u, 𝑣) satisfies the Laplace equation in the 𝑤-plane:
𝜕2Ψ(u, 𝑣)

𝜕u2 + 𝜕2Ψ(u, 𝑣)
𝜕𝑣2 = 0, (11.44)

where u and 𝑣 are conjugate harmonic functions, then Ψ(x, y) will satisfy the
Laplace equation in the z-plane:

𝜕2Ψ(x, y)
𝜕x2 +

𝜕2Ψ(x, y)
𝜕y2 = 0. (11.45)
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Example 11.3 Analytic functions
Let us discuss the analyticity and the differentiability of the function

f (z) =
x2y2(x + iy)

x2 + y2 . (11.46)

We first write the u and 𝑣 functions as

u(x, y) =
x3y2

x2 + y2 , (11.47)

𝑣(x, y) =
x2y3

x2 + y2 (11.48)

and then evaluate the following partial derivatives:

𝜕u
𝜕x

=
x2y2(x2 + 3y2)
(x2 + y2)2 ,

𝜕u
𝜕y

=
2x5y

(x2 + y2)2 , (11.49)

𝜕𝑣

𝜕x
=

2xy5

(x2 + y2)2 ,
𝜕𝑣

𝜕y
=

x2y2(3x2 + y2)
(x2 + y2)2 . (11.50)

Substituting these into the Cauchy–Riemann conditions:
𝜕u
𝜕x

= 𝜕𝑣

𝜕y
,

𝜕𝑣

𝜕x
= −𝜕u

𝜕y
,

(11.51)

we obtain
x2y2(x2 + 3y2)
(x2 + y2)2 =

x2y2(3x2 + y2)
(x2 + y2)2 , (11.52)

2xy5

(x2 + y2)2 = −
2x5y

(x2 + y2)2 . (11.53)

These two conditions can be satisfied simultaneously only at the origin. In con-
clusion, the derivative exists at the origin but the function is analytic nowhere.
This is also apparent from the expression of f (z) as

f (z) = − z
16(zz∗)

(z + z∗)2(z − z∗)2, (11.54)

which depends on z∗ explicitly.

Important: Cauchy–Riemann conditions are necessary for the derivative to
exist at a given point z0. It is only when the partial derivatives of u and 𝑣 are
continuous at z0 that they become both necessary and sufficient. In this case,
one should check that the partial derivatives of u and 𝑣 are indeed continuous
at z = 0, hence the derivative of f (z) [Eq. (11.46)] exists at z = 0 [2].
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11.4 Mappings

A real function, y = f (x), which defines a curve in the xy-plane, can be inter-
preted as an operator that maps a point on the x-axis to a point on the y-axis
(Figure 11.3), which is not very interesting. However, in the complex plane, a
function,

𝑤 = f (z) = u(x, y) + i𝑣(x, y), (11.55)

maps a point (x, y) in the z-plane to another point (u, 𝑣) in the 𝑤-plane, which
implies that curves and domains in the z-plane are mapped to other curves
and domains in the 𝑤-plane. This has rather interesting consequences in
applications.

Example 11.4 Translation
Let us consider the function

𝑤 = z + z0. (11.56)

Since this means

u = x + x0, (11.57)
𝑣 = y + y0, (11.58)

a point (x, y) in the z-plane is mapped into the translated point (x + x0, y + y0)
in the 𝑤-plane.

Example 11.5 Rotation
Consider the function

𝑤 = zz0. (11.59)

Using 𝑤 = 𝜌ei𝜙, z = rei𝜃, and z0 = r0ei𝜃0 , we write 𝑤 in plane polar
coordinates as

𝜌ei𝜙 = rr0ei(𝜃+𝜃0). (11.60)

f (x2)

f (x1)

x1 x2 x

y Figure 11.3 It is not interesting to
look at real functions as mappings.
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In the 𝑤-plane, this means,
𝜌 = rr0, (11.61)
𝜙 = 𝜃 + 𝜃0. (11.62)

Two things have changed:
(i) Modulus r has increased or decreased by a factor r0.

(ii) Argument 𝜃 has changed by 𝜃0.

If we take z0 = i, this mapping (function) corresponds to a pure rotation by
𝜋∕2.

Example 11.6 Inversion
The function

𝑤(z) = 1
z

(11.63)

can be written as

𝜌ei𝜙 = 1
rei𝜃 = 1

r
e−i𝜃. (11.64)

This gives

𝜌 = 1
r
, (11.65)

𝜙 = −𝜃, (11.66)
which means that a point inside the unit circle in the z-plane is mapped to a
point outside the unit circle, plus a reflection about the u-axis in the 𝑤-plane
(Figure 11.4).

vy

(0, 1)

r

θ
x

w = 1
z

(0, 1)

u

θ

–θ

ρ =  = 1
rρ = 1
r

r

θ

Figure 11.4 Inversion maps circles to circles.
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Example 11.7 Inversion function
Let us now see how inversion:

𝑤(z) = 1
z
, (11.67)

maps curves in the z-plane to the 𝑤-plane. We first write

𝑤 = u + i𝑣 (11.68)

= 1
x + iy

(11.69)

= 1
x + iy

.
x − iy
x − iy

(11.70)

= x(
x2 + y2

) − i
y(

x2 + y2
) . (11.71)

This gives us the transformation (x, y) → (u, 𝑣) ∶

u = x
x2 + y2 , 𝑣 =

−y
x2 + y2 (11.72)

and its inverse as

x = u
u2 + 𝑣2 , y = −𝑣

u2 + 𝑣2 . (11.73)

We are now ready to see how a circle in the z-plane,

x2 + y2 = r2, (11.74)

is mapped to the 𝑤-plane by inversion. Using Eqs. (11.73) and (11.74), we see
that this circle is mapped to

u2

(u2 + 𝑣2)2 + 𝑣2

(u2 + 𝑣2)2 = r2, (11.75)

u2 + 𝑣2 = 1
r2 = 𝜌2, (11.76)

which is another circle with the radius 1∕r or 𝜌.
Next, let us consider a straight line in the z-plane:

y = c1. (11.77)

Using Eq. (11.73), this becomes

− 𝑣

u2 + 𝑣2 = c1 (11.78)

or

u2 + 𝑣2 + 𝑣

c1
+ 1

(2c1)2 = 1
(2c1)2 , (11.79)

u2 +
(
𝑣 + 1

2c1

)2

= 1
(2c1)2 . (11.80)
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w = 1
z

y

y = c1

x

v

u

– 1
2c1

Figure 11.5 Inversion maps straight lines to circles.

This is nothing but a circle with the radius 1∕2c1 and with its center located at
(0,−1∕2c1); thus inversion maps straight lines in the z-plane to circles in the
𝑤-plane (Figure 11.5).

All the mappings we have discussed so for are one-to-one mappings, that is,
a single point in the z-plane is mapped to a single point in the 𝑤-plane.

Example 11.8 Two-to-one mapping
We now consider the function

𝑤 = z2 (11.81)

and write it in plane polar coordinates as

𝑤 = 𝜌ei𝜃. (11.82)

Using z = rei𝜃, 𝜌 and 𝜙 become

𝜌 = r2, (11.83)
𝜙 = 2𝜃. (11.84)

The factor of two in front of the 𝜃 is crucial. This means that the first quarter
in the z-plane, 0 ≤ 𝜃 ≤ 𝜋

2
, is mapped to the upper half of the 𝑤-plane, 0 ≤ 𝜙 <

𝜋. On the other hand, the upper half of the z-plane, 0 ≤ 𝜃 < 𝜋, is mapped to
the entire 𝑤-plane, 0 ≤ 𝜙 < 2𝜋. In other words, the lower half of the z-plane
is mapped to the already covered (used) entire 𝑤-plane. Hence, in order to
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cover the z-plane once, we have to cover the 𝑤-plane twice. This is called a
two-to-one mapping. Two different points in the z-plane,

z0 (11.85)

and

z0e−i𝜋 = −z0 (11.86)

are mapped to the same point in the 𝑤-plane as

𝑤 = z2
0. (11.87)

We now consider the exponential function

𝑤 = ez. (11.88)

Writing

𝜌ei𝜙 = ex+iy, (11.89)

where

𝜌 = ex (11.90)

and

𝜙 = y, (11.91)

we see that in the z-plane, the 0 ≤ y < 2𝜋 band is mapped to the entire𝑤-plane;
thus in the z-plane, all the other parallel bands given as

x + i(y + 2n𝜋), n integer, (11.92)

are mapped to the already covered 𝑤-plane. In this case, we say that we have a
many-to-one mapping.

Let us now consider the function

𝑤 =
√

z, (11.93)

In plane polar coordinates, we write

𝜌ei𝜙 =
√

rei𝜃∕2, (11.94)

thus

𝜌 =
√

r and 2𝜙 = 𝜃. (11.95)

In this case, the point

r = r0, 𝜃 = 0, (11.96)

is mapped to

𝑤 =
√

r0, (11.97)
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while the point

r = r0, 𝜃 = 2𝜋, (11.98)

is mapped to

𝑤 =
√

r0ei𝜋 = −
√

r0 (11.99)

in the 𝑤-plane. However, the coordinates (11.96) and (11.98) represent the
same point in the z-plane. In other words, a single point in the z-plane is
mapped to two distinct points, except at the origin, in the 𝑤-plane. This is
called a one-to-two mapping.

To define a square root as a single-valued function so that for a given value of
z a single value of 𝑤 results, all we have to do is to cut out the 𝜃 = 2𝜋 line from
the z-plane. This line is called the cut line or the branch cut, and the point
z = 0, where this line ends, is called the branch point (Figure 11.6). What is
important here is to find a region in the z-plane where our function is single
valued and then extend this region over the entire z-plane without our function
becoming multivalued. As seen from Figures 11.7a and b, the problem is at the
origin:

z = 0. (11.100)

For any region that does not include the origin, our function will be single val-
ued. However, for any region that includes the origin, where 𝜃 changes between
[0, 2𝜋], we will run into the multivaluedness problem. In order to extend the
region in which our function is single valued, we start with a region R, where
our function is single valued, and then extend it without including the origin
so that we cover a maximum of the z-plane (Figure 11.7b–f). The only way to
do this is to exclude the points on a curve, usually taken as a straight line, that
starts from the origin and then extends all the way to infinity.

As seen from Figure 11.8, for the square root, f (z) =
√

z, for any path that
does not cross the cut line our function is single valued and the value it takes is
called the branch I value:

I. branch 𝑤1(z) =
√

re𝜃∕2, 0 ≤ 𝜃 < 2𝜋.

Figure 11.6 Cut line ends at a branch
point.

z-plane

Branch cut

Branch point
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(a) (b)z

R
z

θ

z

(c) (d)
z

z

(e) (f)z z

R R

R

θ2 θ1

R R

Figure 11.7 (a) For every point z in every region R that contains the origin, 𝜃 has the full
range [0, 2𝜋], hence

√
z is multivalued. (b) For every region R that does not include the

origin,
√

z is single valued. (b)−(f ) For a single valued definition of the function 𝑤 =
√

z, we
extend the region R in (b) without including the origin.

For the range 2𝜋 ≤ 𝜃 < 4𝜋, since the cut line is crossed once, our function will
take the branch II value given as

II. branch 𝑤2(z) = −
√

re𝜃∕2, 2𝜋 ≤ 𝜃 < 4𝜋.

Square root function has two branch values. In cases where 𝜃 increases con-
tinuously, as in rotation problems, we switch from one branch value to another
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C1

z

R

z

R C2

Figure 11.8 Each time we cross the cut line, 𝑤 = z1∕2 changes from one branch value to
another.

each time we cross over the cut line. This situation can be conveniently shown
by the Riemann sheets (Figure 11.9).

Riemann sheets for this function are two parallel sheets sewn together along
the cut line. As long as we remain in one of the sheets, our function is single
valued and takes only one of the branch values. Whenever we cross the cut
line, we find ourselves on the other sheet and the function switches to the other
branch value.

Example 11.9 w(z) = ln z function
In the complex plane, the ln function is defined as

𝑤(z) = ln z = ln r + i𝜃. (11.101)

It has infinitely many branches; thus infinitely many Riemann sheets as

branch 0 𝑤0(z) = ln r + i𝜃,
branch 1 𝑤1(z) = ln r + i(𝜃 + 1(2𝜋)),
branch 2 𝑤2(z) = ln r + i(𝜃 + 2(2𝜋)),
⋮ ⋮
branch n 𝑤n(z) = ln r + i(𝜃 + n(2𝜋)),

(11.102)

where 0 ≤ 𝜃 < 2𝜋, n = 0, 1, 2,… .

Example 11.10 w(z) =
√

z2 − 1 function
To investigate the branches of the function

𝑤(z) =
√

z2 − 1, (11.103)



342 11 Complex Variables and Functions

y

z-plane

e

b
a d

f
c

x

w-plane

(a)

(b)

(c)

v

u

bʹ

cʹ

dʹ

aʹ

fʹ

eʹ

I. sheet

II. sheet

Figure 11.9 Riemann sheets for the 𝑤 = z1∕2 function.
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we define

(z − 1) = r1ei𝜃1 , (z + 1) = r2ei𝜃2 (11.104)

and write
𝑤(z) = 𝜌ei𝜙 (11.105)

=
√
(z − 1)(z + 1) (11.106)

=
√

r1r2ei(𝜃1+𝜃2)∕2. (11.107)

This function has two branch points located at x = +1 and x = −1. We place
the cut lines along the real axis and to the right of the branch points. This choice
gives the ranges of 𝜃1 and 𝜃2 as

0 ≤ 𝜃1 < 2𝜋, (11.108)
0 ≤ 𝜃2 < 2𝜋. (11.109)

We now investigate the limits of the points A, B, C, D, F, G, H in the z-plane
as they approach the real axis and the corresponding points in the 𝑤-plane
(Figure 11.10):
Figure 11.10 Cut lines for√

z2 − 1.
z

D C
–1

B A
1

E F G H

Point ϕ z2 − 1
A 0 0 0 single valued
H 2π 2π 2π single valued
B π 0 π/2

π/2

double valued
G π 2π 3π/2

3π/2

double valued
C π 0 double valued
F π 2π double valued
D π π π single valued
E π π π single valued

θ1 θ2 √

(11.110)

Points A and H, which approach the same point in the z-plane, also go to the
same point in the 𝑤-plane. In other words, where the two cut lines overlap our
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z

–1 1

Figure 11.11 A different choice for the cut lines of
√

z2 − 1 .

function is single valued. For pairs (B, G) and (C, F), even though the corre-
sponding points approach the same point in the z-plane, they are mapped to
different points in the 𝑤-plane. For points D and E, the function is again single
valued. For this case, the cut lines are now shown as in Figure 11.10. The first
and second branch values for this function are given as

𝑤1(z) =
√

r1r2ei(𝜃1+𝜃2)∕2, (11.111)
𝑤2(z) =

√
r1r2ei(𝜃1+𝜃2+2𝜋)∕2. (11.112)

Riemann sheets for this function will be two parallel sheets sewn together in
the middle between points −1 and +1.

For this function, another choice for the cut lines is given as in Figure 11.11,
where

0 ≤ 𝜃1 < 2𝜋, (11.113)
−𝜋 ≤ 𝜃2 < 𝜋. (11.114)

Example 11.11 Mappings
We now find the Riemann surfaces on which the function

𝑤 = 3
√
(z − 1)(z − 2)(z − 3) (11.115)

is single valued. We have discussed the square root function, 𝑤 =
√

z, in detail,
which has a branch point at z = 0 and two branch values:

𝑤 =
√

rei(𝜃+2𝜋k)∕2, (11.116)

where 0 ≤ 𝜃 < 2𝜋 and k = 0, 1. In general, the function

𝑤 = z1∕n (11.117)

has a single branch point at z = 0, but n branch values given by

𝑤 = n
√

rei(𝜃+2𝜋k)∕n, 0 ≤ 𝜃 < 2𝜋, k = 0, 1,… , n − 1. (11.118)
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In the case of the square root function, there are two Riemann sheets
connected along the branch cut (Figure 11.9). For both of the above cases
[Eqs. (11.116) and (11.118)], branch cuts are chosen to be along the positive
real axis. For 𝑤 = z1∕n, there are n Riemann sheets connected along the cut
line. For the function,

𝑤 = n
√

z − z0 , (11.119)

the situation is not very different. There are n Riemann sheets connected along a
suitably chosen branch cut, which ends at the branch point z0. For the function,

𝑤 = 3
√

z − z0 , (11.120)

for a full revolution about z0 in the z-plane, where 𝜃 goes from 0 to 2𝜋, the
corresponding point in the 𝑤-plane completes only 1∕3 of a revolution, where
𝜙 changes from 0 to 2𝜋∕3. In other words, for a single revolution in the𝑤-plane,
one has to complete three revolutions in the z-plane. In this case, the three
branch values are given as

𝑤 = 3
√

rei(𝜃+2𝜋k)∕3, 0 ≤ 𝜃 < 2𝜋, k = 0, 1, 2, (11.121)

where r = |z − z0|. To avoid multiple revolutions in the z-plane, we need three
Riemann sheets. For the function at hand:

𝑤 = 3
√
(z − 1)(z − 2)(z − 3), (11.122)

we have three branch points located at the points

z1 = 1, z2 = 1, z3 = 1. (11.123)

We choose the branch cuts to be along the real axis and to the right of the
corresponding branch point as shown in Figure 11.12. We can now write

z − 1 = r1ei𝜃1 , (11.124)

C1

C2

y

x

C3

C0

z

1 2 3

θ1 θ2 θ3

Figure 11.12 Branch cuts for Example 11.11.
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z − 2 = r2ei𝜃2 , (11.125)
z − 3 = r3ei𝜃3 , (11.126)

where 0 ≤ 𝜃1, 𝜃2, 𝜃3 < 2𝜋. The corresponding branch values for the cube root
function are now given as

3
√

z − 1 = 3
√

r1 ei(𝜃1+2𝜋k)∕3, 0 ≤ 𝜃1 < 2𝜋, k = 0, 1, 2, (11.127)
3
√

z − 2 = 3
√

r2 ei(𝜃2+2𝜋l)∕3, 0 ≤ 𝜃2 < 2𝜋, l = 0, 1, 2, (11.128)
3
√

z − 3 = 3
√

r3 ei(𝜃3+2𝜋m)∕3, 0 ≤ 𝜃3 < 2𝜋, m = 0, 1, 2. (11.129)

Hence for

𝑤 = 3
√
(z − 1)(z − 2)(z − 3) = 𝜌ei𝜙, (11.130)

where

𝜌 = 3
√

r1r2r3, 𝜙 = (𝜃1 + 𝜃2 + 𝜃3)∕3, (11.131)

the branch values are given as

𝑤 = 3
√

r1r2r3 ei(𝜃+2𝜋(k+l+m))∕3, (11.132)

where k, l,m take the values

k = 0, 1, 2, (11.133)
l = 0, 1, 2, (11.134)

m = 0, 1, 2. (11.135)

For points on a closed path, C0, that does not include any of the branch points,
the function [Eq. (11.122)] is single valued and takes its first branch value, that
is, k = l = m = 0. For the path C1, only one of the branch points, z = 1, is within
the path, hence there are three branch values corresponding to the (k, l,m)
values

(k, l,m) =
⎧⎪⎨⎪⎩
(0, 0, 0),
(1, 0, 0),
(2, 0, 0).

(11.136)

For the path C2, both z = 1 and z = 2 are within the path, hence when we com-
plete a full circuit, we cross over both of the branch cuts. In this case, the three
branch values are given by

(k, l,m) =
⎧⎪⎨⎪⎩
(0, 0, 0),
(1, 1, 0),
(2, 2, 0).

(11.137)

For the third path C3, all three of the branch points are within the path, hence to
complete a full circuit, one has to cross over all three of the branch cuts. In this
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Figure 11.13 Points below
the real axis, which are
symmetric to A, B, C,D, E, F,
are A′, B′, C′,D′, E′, F′,

respectively.

x

y

1 2 3

A B D E
F

Cθ1
θ2 θ3

z

case, the function is single valued and (k, l,m) take the values

(k, l,m) =
⎧⎪⎨⎪⎩
(0, 0, 0),
(1, 1, 1),
(2, 2, 2).

(11.138)

In other words, for the points to the right of z = 3, the three branch cuts
combine to cancel each other’s effect, thus producing a single valued function
(Figure 11.13). To see the situation along the real axis, where the branch cuts
overlap, we construct the following table, where the points are defined as in
Figure 11.13:

Point\angle ϕ

A

Aʹ

π π π π

B 0 π π 2π/3
2π/3C 0 π π

D 0 0 π π/3
π/3E 0 0 π

F

Bʹ

Cʹ

Dʹ

Eʹ

Fʹ

0 0 0 0
π π π π

2π π π 4π/3
2π π π 4π/3
2π 2π π 5π/3
2π 2π π 5π/3
2π 2π 2π 6π/3

,

θ1 θ2 θ3

(11.139)
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which gives

Same pt. in the ω-plane.
Not single valued.
Not single valued.
Not single valued.
Not single valued.
Same pt. in the ω-plane.

A, Aʹ

B, Bʹ

C, Cʹ

D, Dʹ

E, Eʹ

F, Fʹ

(11.140)

From this table, we see that the 3 Riemann sheets are sewn together along the
dotted lines between the points z = 1 and z = 3 as shown in Figure 11.13.

11.4.1 Conformal Mappings

To see an interesting property of analytic functions, we differentiate

𝑤 = f (z) (11.141)

at z0, where the modulus and the arguments of the derivative are given as ||| df
dz
|||z0

and 𝛼, respectively. We now use polar coordinates to write the modulus:

lim
Δz→0

||||Δ𝑤Δz
|||| = ||||d𝑤

dz
||||z0

(11.142)

=
||||df
dz

||||z0

, (11.143)

and the argument (Figure 11.14) as

arg
df
dz

||||z0

= 𝛼 = arg lim
Δz→0

(Δ𝑤
Δz

)
, (11.144)

𝛼 = lim
Δz→0

arg[Δ𝑤] − lim
Δz→0

arg[Δz]. (11.145)

z-plane w-plane

z0
θ0

Δ z
cz w = f(z) 

w0

Δ w

cw

ϕ0 = θ0 + α

Figure 11.14 Angles in conformal mapping.



11.4 Mappings 349

Since the function f (z) maps a curve, cz, in the z-plane to another curve, c𝑤, in
the 𝑤-plane, from the arguments [Eq. (11.145)], we see that if the slope of cz at
z0 is 𝜃0, then the slope of c𝑤 at 𝑤0 is𝛼 + 𝜃0. For a pair of curves intersecting at
z0, the angle between their tangents in the 𝑤- and z-planes will be equal:

𝜙2 − 𝜙1 = (𝜃2 + 𝛼) − (𝜃1 + 𝛼) (11.146)
= 𝜃2 − 𝜃1. (11.147)

Since analytic functions preserve angles between the curves they map
(Figure 11.14), they are called conformal mappings or transformations.

11.4.2 Electrostatics and Conformal Mappings

Conformal mappings are very useful in electrostatic and laminar (irrotational)
flow problems, where the Laplace equation must be solved. Even though the
method is restricted to cases with one translational symmetry, it allows analytic
solution of some complex boundary value problems.

Example 11.12 Conformal mappings and electrostatics
Let us consider two conductors held at potentials V1 and V2 with hyperbolic
cross sections

x2 − y2 = c1 and x2 − y2 = c2. (11.148)

We want to find the equipotentials and the electric field lines. In the com-
plex z-plane, the problem can be shown as in Figure 11.15. We use the
conformal mapping

𝑤 = z2 = x2 − y2 + i(2xy), (11.149)

Figure 11.15 Two plates with
hyperbolic cross sections. z-plane

x2 – y2 = c1 x2 – y2 = c2

V1 V2
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Figure 11.16 Equipotentials and electric field lines in the 𝑤-plane.

to map these hyperbolae to straight lines,

u = c1 and u = c2, (11.150)

in the 𝑤-plane (Figure 11.16). The problem is now reduced to finding the
equipotentials and the electric field lines between two infinitely long parallel
plates held at potentials V1 and V2, where the electric field lines are given by
the family of lines:

𝑣 = Cj (11.151)

and the equipotentials are given by the lines perpendicular to these as

u = ci. (11.152)

Because the problem is in the z-plane, we make the inverse transformation to
obtain the electric field lines:

(𝑣 =) 2xy = Cj (11.153)

and the equipotentials as

(u =) x2 − y2 = ci. (11.154)

To find the equipotential surfaces in three dimensions, these curves must be
extended along the direction of the normal to the plane of the paper.

Example 11.13 Electrostatics and conformal mappings
We now find the equipotentials and the electric field lines inside two conduc-
tors with semicircular cross sections separated by an insulator and held at
potentials +V0 and −V0, respectively (Figure 11.17). The equation of a circle in
the z-plane is given as

x2 + y2 = 1. (11.155)
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Figure 11.17 Two conductors
with semicircular cross sections.
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+ ∞– ∞
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Figure 11.18 Two semicircular conductors in the w-plane.

We use the conformal mapping

𝑤(z) = ln
(1 + z

1 − z

)
, (11.156)

to map these semicircles into straight lines in the 𝑤-plane (Figure 11.18). Using
Eq. (11.156), we write

u + i𝑣 = ln
1 + x + iy
1 − x − iy

(11.157)

= ln
[

1 − x2 − y2 + 2iy
1 − 2x + x2 + y2

]
(11.158)

and express the argument of the ln function as Rei𝛼 :

u + i𝑣 = ln R + i𝛼. (11.159)
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Now the 𝑣 function is found as
𝑣 = 𝛼 (11.160)

= tan−1 2y
1 − (x2 + y2)

. (11.161)

From the limits,

lim
x2+y2→1

y>0

[
tan−1 2y

1 − (x2 + y2)

]
= 𝜋

2
(11.162)

and

lim
x2+y2→1

y<0

[
tan−1 2y

1 − (x2 + y2)

]
= −𝜋

2
, (11.163)

we see that the two semicircles in the z-plane are mapped to two straight lines
given as

𝑣 = 𝜋

2
and 𝑣 = −𝜋

2
. (11.164)

Equipotential surfaces in the 𝑤-plane can now be written easily as

V (𝑣) =
2V0

𝜋
𝑣. (11.165)

Using Eq. (11.161), we transform this into the z-plane to find the equipotentials:

V =
2V0

𝜋
tan−1

[
2y

1 − (x2 + y2)

]
(11.166)

=
2V0

𝜋
tan−1

[2r sin 𝜃

1 − r2

]
. (11.167)

Because this problem has translational symmetry perpendicular to the plane of
the paper, equipotential surfaces in three dimensions can be found by extending
these curves in that direction. The solution to this problem has been found
rather easily and in closed form. Compare this with the separation of variables
method, where the solution is given in terms of the Legendre polynomials as
an infinite series. However, applications of conformal mapping are limited to
problems with one translational symmetry, where the problem can be reduced
to two dimensions. Even though there are tables [3] of conformal mappings, it
is not always easy as in this case to find an analytic expression for the needed
mapping.

11.4.3 Fluid Mechanics and Conformal Mappings

For laminar (irrotational) and frictionless flow, conservation of mass is given as
the continuity equation

𝜕𝜌

𝜕t
+ −→∇ ⋅ (𝜌−→𝑣 ) = 0, (11.168)
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where 𝜌(−→r , t) and −→
𝑣 (−→r , t) represent the density and the velocity of a fluid

element. For stationary flow 𝜕𝜌∕𝜕t = 0, thus Eq. (11.168) becomes
−→∇ ⋅ (𝜌−→𝑣 ) = 0. (11.169)

Also, a lot of realistic situations can be approximated by the incompressible
fluid equation of state 𝜌 = constant. This further reduces Eq. (11.169) to

−→∇ ⋅ −→𝑣 = 0. (11.170)

This equation alone is not sufficient to determine the velocity field −→
𝑣 (−→r , t). If

the flow is irrotational, it will also satisfy
−→∇ × −→

𝑣 = 0, (11.171)

thus the two equations:
−→∇ ⋅ −→𝑣 = 0, (11.172)
−→∇ × −→

𝑣 = 0, (11.173)

completely specify the kinematics of laminar, frictionless flow of incompress-
ible fluids. These equations are also the expressions of the linear and angular
momentum conservation laws for the fluid elements. Fluid elements in laminar
flow follow streamlines, where the velocity, −→𝑣 (−→r , t), at a given point is tangent
to the streamline at that point.

Equations (11.172) and (11.173) are the same as Maxwell’s equations in elec-
trostatics. Following the definition of electrostatic potential, we use Eq. (11.173)
to define a velocity potential as

−→
𝑣 (−→r , t) = −→∇Φ(−→r , t). (11.174)

Substituting this into Eq. (11.172), we obtain the Laplace equation:
−→∇

2
Φ(−→r , t) = 0. (11.175)

We should note that even though Φ(−→r , t) is known as the velocity potential, it
is very different from the electrostatic potential.

Example 11.14 Flow around an obstacle of height h
Let us consider laminar flow around an infinitely long and thin obstacle of
height h. Since the problem has translational symmetry, we can treat it in two
dimensions as in Figure 11.19, where we search for a solution of the Laplace
equation in the region R.

Even though the velocity potential satisfies the Laplace equation like the elec-
trostatic potential, we have to be careful with the boundary conditions. In elec-
trostatics, electric field lines are perpendicular to the equipotentials; hence the
test particles can only move perpendicular to the conducting surfaces. In the
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z-plane

Rih

v = 1

0

Figure 11.19 Flow around a wall of height h.

laminar flow case, where the fluid elements follow the contours of the bound-
ing surfaces, motion perpendicular to the surfaces is not allowed. For points
far away from the obstacle, we take the flow lines as parallel to the x-axis. As
we approach the obstacle, the flow lines follow the contours of the surface. For
points away from the obstacle, we set 𝑣∞ = 1. We now look for a transforma-
tion that maps the region R in the z-plane to the upper half of the 𝑤-plane.
Naturally, the lower boundary of the region R in Figure 11.19 will be mapped
to the real axis of the 𝑤-plane. We now construct this transformation in three
steps: We first use

𝑤1 = z2 (11.176)

to map the region R to the entire 𝑤1-plane. Here, the obstacle is between 0 and
−h2. As our second step, we translate the obstacle to the interval between 0 and
h2 by

𝑤2 = z2 + h2. (11.177)

Finally, we map the 𝑤2-plane to the upper half of the 𝑤-plane by

𝑤 =
√
𝑤2. (11.178)

The complete transformation from the z-plane to the 𝑤-plane can be written
as (Figure 11.20)

𝑤 =
√

z2 + h2. (11.179)
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Figure 11.20 Transition from the z-plane to the 𝑤-plane.
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The Laplace equation can now be easily solved in the upper half of the 𝑤-plane,
yielding the streamlines as

𝑣 = cj. (11.180)

Curves perpendicular to the streamlines gives the velocity equipotentials as

u = bj. (11.181)

Transforming back to the z-plane, we find the streamlines as the curves

cj = Im
[√

z2 + h2
]
, (11.182)

and the velocity of the fluid elements that are tangents to the streamlines
(Figure 11.21) as

|−→𝑣 | = ||||d𝑤
dz

|||| . (11.183)

Example 11.15 Mappings
We now show that the transformation

𝑤 = z + 1
1 − z

, (11.184)

maps the following region:

x ≤ 0, −∞ < y < ∞, (11.185)

to the unit disc in the 𝑤-plane. We first use the general expression

𝑤 = az + b
cz + d

(11.186)

and its inverse

z = d𝑤 − b
−c𝑤 + a

, (11.187)

to write

z = 𝑤 − 1
𝑤 + 1

. (11.188)

v

0–h uh 0 x

y

h

Figure 11.21 Streamlines in the 𝑤 and z-planes.
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Using 𝑤 = u + i𝑣, we write

x + iy = (u − 1) + i𝑣
(u + 1) + i𝑣

.
(u + 1) − i𝑣
(u + 1) − i𝑣

(11.189)

= (u2 + 𝑣2 − 1) + i(2𝑣)
(u + 1)2 + 𝑣2 (11.190)

and obtain the following relations:

x = (u2 + 𝑣2 − 1)
(u + 1)2 + 𝑣2 , y = 2𝑣

(u + 1)2 + 𝑣2 . (11.191)

For x ≤ 0, these imply

u2 + 𝑣2 ≤ 1, (11.192)

which is the unit disc with its center located at the origin.

Example 11.16 Mappings
We now determine the image of the horizontal strip:

−𝜋∕2 < Im z < 𝜋∕2, (11.193)

under the transformation

𝑤 = ez − 1
ez + 1

. (11.194)

We first write the inverse of the above mapping:

ez = 𝑤 + 1
1 −𝑤

, (11.195)

and then rewrite it as

exeiy = (u + 1) + i𝑣
(1 − u) − i𝑣

, (11.196)

ex(cos y + i sin y) = (1 − u2 − 𝑣2) + 2i𝑣
(1 − u)2 + 𝑣2 . (11.197)

For y = ±𝜋∕2, this gives

±iex = (1 − u2 − 𝑣2) + 2i𝑣
(1 − u)2 + 𝑣2 , (11.198)

which implies the unit circle:

1 = u2 + 𝑣2. (11.199)

We can find the images of the points A,B,C,D,E, F as A′,B′,C′,D′,E′, F ′,

respectively (Figure 11.22). Also see Example 11.13.



358 11 Complex Variables and Functions

z w

E FD

B CA

Aʹ

Dʹ

Cʹ

Fʹ

Eʹ

Bʹ

π/2

–π/2

Figure 11.22 Mapping for Example 11.16.

w1

z-plane

w-plane

z1

θ1 = k1π

Figure 11.23 Schwarz–Christoffel transformation maps the inside of a polygon to the upper
half of the 𝑤-plane.

11.4.4 Schwarz–Christoffel Transformations

We have seen that analytic transformations are also conformal map-
pings, which preserve angles. We now introduce the Schwarz–Christoffel
transformations, where the transformation is not analytic at isolated number
of points. Schwarz–Christoffel transformations map the inside of a polygon in
the z-plane, to the upper half of the 𝑤-plane (Figure 11.23). To construct the
Schwarz–Christoffel transformation, let us consider the function

dz
d𝑤

= A(𝑤 −𝑤1)−k1 , (11.200)
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where A is complex, k1 is real, and 𝑤1 is a point on the u-axis. Comparing the
arguments of both sides in Eq. (11.200), we get

arg
(

dz
d𝑤

)
= lim

Δ𝑤→0
[argΔz − argΔ𝑤], (11.201)

lim
Δ𝑤→0

[argΔz − argΔ𝑤] =

{
arg A − k1𝜋, 𝑤 < 𝑤1,

arg A, 𝑤 > 𝑤1.
(11.202)

As we move along the positive u-axis

lim
Δ𝑤→0

argΔ𝑤 = arg[d𝑤] = 0, (11.203)

hence we can write

lim
Δ𝑤→0

[argΔz] = arg[dz] =

{
arg A − k1𝜋, 𝑤 < 𝑤1,

arg A, 𝑤 > 𝑤1.
(11.204)

For a constant A, this means that the transformation [Eq. (11.200)] maps the
parts of the u-axis; 𝑤 < 𝑤1 and 𝑤 > 𝑤1, to two line segments meeting at z0 in
the z-plane. Thus

A(𝑤 −𝑤1)−k1 (11.205)

corresponds to one of the vertices of a polygon with the exterior angle
k1𝜋 and located at z1. For a polygon with n-vertices, we can write the
Schwarz–Christoffel transformation as

dz
d𝑤

= A(𝑤 −𝑤1)−k1(𝑤 −𝑤2)−k2 · · · (𝑤 −𝑤n)−kn . (11.206)

Because the exterior angles of a polygon add up to 2𝜋, powers, ki, should
satisfy the condition∑

i=1
ki = 2. (11.207)

Integrating Eq. (11.206), we get

z = A∫
𝑤

(𝑤 −𝑤1)−k1(𝑤 −𝑤2)−k2 · · · (𝑤 −𝑤n)−kn d𝑤 + B, (11.208)

where B is a complex integration constant. In general, A determines the
orientation and B fixes the location of the polygon in the z-plane. In a
Schwarz–Christoffel transformation, there are all together 2n + 4 parameters,
that is, n 𝑤is, n kis, and 4 parameters from the complex constants A and B.
A polygon can be specified by giving the coordinates of its n vertices in the
z-plane. Along with the constraint [Eq. (11.207)], this determines the 2n + 1 of
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the parameters in the transformation. This means that we have the freedom to
choose the locations of the three 𝑤i on the real axis of the 𝑤-plane.

Example 11.17 Schwarz–Christoffel transformation
We now construct the Schwarz–Christoffel transformation that maps the
region shown in Figure 11.24 into the upper half of the 𝑤-plane. Such
transformations are frequently needed in applications. To construct the
Schwarz–Christoffel transformation, we define a polygon whose inside, in the
limit as z3 → −∞, goes to the desired region (Figure 11.25). Using the freedom
in defining the Schwarz–Christoffel transformation, we map the points z1, z2,

and z3 to the following points in the 𝑤-plane:

𝑤1 = −1, 𝑤2 = +1, 𝑤3 → −∞. (11.209)

We now write the Schwarz–Christoffel transformation as
dz
d𝑤

= c(𝑤 + 1)−k1(𝑤 − 1)−k2(𝑤 −𝑤3)−k3 . (11.210)

id

z-plane Figure 11.24 Region we map in Example
11.17.

k2π = π
2

+ ε

z-plane

z2 = id

k1π = π
2

z1

z3z3

k3π = π – ε

– ∞

Figure 11.25 The polygon whose interior goes to the desired region in Example 11.17 in the
limit z3 → ∞.
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Powers k1, k2, and k3 are determined from the figure as 1
2
,

1
2
, and 1,

respectively. Note, how the signs of ki are chosen as plus because of the
counterclockwise directions shown in Figure 11.25. Because the constant c is
still arbitrary, we define a new finite complex number A:

lim
𝑤3→−∞

c
(−𝑤3)k3

→ A, (11.211)

so that the Schwarz–Christoffel transformation becomes
dz
d𝑤

= A(𝑤 + 1)−
1
2 (𝑤 − 1)−

1
2 (11.212)

= A√
𝑤2 − 1

. (11.213)

This can be integrated as

z = A cosh−1
𝑤 + B, (11.214)

where the constants A and B are found from the locations of the vertices:
z = 0 → 𝑤 = −1, (11.215)
z = id → 𝑤 = +1, (11.216)

as

A = d
𝜋

and B = id. (11.217)

Example 11.18 Semi-infinite parallel plate capacitor
We now calculate the fringe effects of a semi-infinite parallel plate capacitor.
Making use of the symmetry of the problem, we can concentrate on the region
shown in Figure 11.26. To find a Schwarz–Christoffel transformation that maps
this region to the upper half of the 𝑤-plane, we choose the points on the real
𝑤-axis as

z1 → 𝑤1 → −∞,

z4 → 𝑤4 → +∞,

z2 → 𝑤2 = − 1,
z3 → 𝑤3 = 0.

(11.218)

Since k2 = −1 and k3 = 1, we can write
dz
d𝑤

= c(𝑤 + 1)−k2(𝑤 − 0)−k3 (11.219)

= c (𝑤 + 1)
𝑤

= c
(

1 + 1
𝑤

)
. (11.220)

Integrating this gives

z = c(𝑤 + ln𝑤) + D. (11.221)
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z-plane
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V = 0
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Figure 11.26 Semi-infinite parallel plate capacitor.

z1
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z4

z3
upper

z3
lower

Figure 11.27 Limit of the
point z3.

If we substitute 𝑤 = |𝑤|ei𝜙, Eq. (11.221) becomes

z = c[|𝑤|ei𝜙 + ln|𝑤| + i𝜙] + D. (11.222)

Considering the limit in Figure 11.27, we can write

zupper
3 − zlower

3 = id. (11.223)

Using Eq. (11.222), this becomes

zupper
3 − zlower

3 = c
[
0 + i

(
𝜙

upper
3 − 𝜙lower

3
)]

(11.224)
= ci(𝜋 − 0), (11.225)

thus determining the constant c as c = d∕𝜋. On the other hand, considering
that the vertex z2 = id is mapped to the point −1 in the 𝑤-plane, we write

id = d
𝜋
(−1 + i𝜋) + D (11.226)
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w-plane

w3

upper lower

w3

V = 0 w4V = V0 w3

w1 w2 = –1

Figure 11.28 𝑤-Plane for the semi-infinite parallel plate capacitor.

and determine D as D = d∕𝜋. This determines the Schwarz–Christoffel trans-
formation

z = d
𝜋
[𝑤 + ln𝑤 + 1], (11.227)

which maps the region shown in Figure 11.26 to the upper half 𝑤-plane shown
in Figure 11.28. We now consider the transformation

z = d
𝜋

ln𝑤 or 𝑤 = ez𝜋∕d, (11.228)

which maps the region in Figure 11.28 to the region shown in Figure 11.29 in
the z-plane. In the z-plane, equipotentials are easily written as

y = const. = V
V0

d or V (y) =
V0

d
y. (11.229)

z-planey

z1id

z2

V = V0

V = 0
z3

lower

z3
upper

x

Figure 11.29 z-Plane for the semi-infinite parallel plate capacitor.
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Using the inverse transformation in Eq. (11.227), we write
z = x + iy (11.230)

= d
𝜋

{
ex𝜋∕d

[
cos

(
V
V0

𝜋

)
+ i sin

(
V
V0

𝜋

)]
+ 1

}
+ x + i V

V0
d,

which gives us the parametric expression of the equipotentials in the z-plane
(Figure 11.30):

x = d
𝜋

[
ex𝜋∕d cos

(
V
V0

𝜋

)
+ 1

]
+ x, (11.231)

y = d
𝜋

ex𝜋∕d sin
(

V
V0

𝜋

)
+ V

V0
d. (11.232)

Similarly, the electric field lines in the z-plane are written as

x = const. (11.233)

Transforming back to the z-plane, with the definitions

x𝜋
d

= 𝜅 and 𝜃 =
y𝜋
d
, (11.234)

we get

x = d
𝜋
[e𝜅 cos 𝜃 + 1] + 𝜅

d
𝜋
, (11.235)

y = d
𝜋
[e𝜅 sin 𝜃 + 𝜃]. (11.236)

V = 0

–V0

V0

Figure 11.30 Equipotentials for the
semi-infinite parallel plate capacitor.
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Example 11.19 Schwarz–Christoffel transformation
Let us now find the Schwarz–Christoffel transformation that maps the
semi-infinite strip: −𝜋∕2 < x < 𝜋∕2, to the upper half 𝑤-plane, 𝑣 > 0. We
will also use this result to solve the Laplace equation within the given strip
satisfying the following boundary conditions:

V (x, 0) = 1, (11.237)
V (−𝜋∕2, y) = V (𝜋∕2, y) = 0. (11.238)

We start by mapping the points (±𝜋∕2, 0) in the z-plane to (±1, 0) in
the 𝑤-plane, respectively (Figure 11.31). We also map the point z3 to ∞.
Schwarz–Christoffel transformation can now be written as

dz
d𝑤

= A(𝑤 + 1)−k1(𝑤 − 1)−k2(𝑤 −∞)−k3 , (11.239)

where
k1 = k2 = 1∕2, k3 = 1. (11.240)

We again absorb ∞ into the arbitrary constant A and define a new constant C0
to write

dz
d𝑤

= C0(𝑤2 − 1)−1∕2, (11.241)

which upon integration yields
z = C0 cosh−1

𝑤 + C1. (11.242)
Since

z1 = (−𝜋∕2, 0) → 𝑤1 = (−1, 0),
z2 = (𝜋∕2, 0) → 𝑤2 = (1, 0) (11.243)

we determine C0 and C1 as
C0 = i, (11.244)
C1 = 𝜋∕2, (11.245)

z w

z3

z1 z2

V = 0V = 0

V = 1 V = 0 V = 0

1–1 V = 1V = 1

Figure 11.31 Schwarz–Christoffel transformation for Example 11.19.
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and write

z = i cosh−1
𝑤 + 𝜋∕2. (11.246)

From the electromagnetic theory or the potential theory, the solution of the
Laplace equation in the 𝑤-plane is given as

V (u, 𝑣) = 𝑣

𝜋 ∫
+∞

−∞

V (𝜉, 0)d𝜉
(u − 𝜉)2 + 𝑣2 , (11.247)

which can be integrated to yield

V (u, 𝑣) = 1
𝜋

tan−1
[ 2𝑣

u2 + 𝑣2 − 1

]
. (11.248)

One should check that the above V (u, 𝑣) does indeed satisfies the Laplace
equation in the 𝑤-plane with the following boundary conditions:

V (u, 0) = 1 for − 1 < u < 1, (11.249)
V (u, 𝑣) = 0 elsewhere. (11.250)

For the solution in the z-plane, we need the transformation equations from
(u, 𝑣) to (x, y). Using Eq. (11.246), we write

𝑤 = cosh
(

z − 𝜋∕2
i

)
(11.251)

= sin x cosh y + i sinh y cos x, (11.252)

thus obtaining the needed relations as

u = sin x cosh y, (11.253)
𝑣 = sinh y cos x. (11.254)

The solution in the z-plane can now be written as

V (x, y) = 1
𝜋

tan−1
[

2 sinh y cos x
sin2x cosh2y + sinh2y cos2x − 1

]
. (11.255)

Note: The transformation we obtained [Eq. (11.246)]:

z = i[cosh−1
𝑤 − i𝜋∕2] (11.256)

can in general be written as

z = −i[A cosh−1
𝑤 + B], (11.257)

where the constants, A and B, depend on the orientation and the location of
the strip in the z-plane. If you compare this with the horizontal strip used in
Example 11.17, the factor −i is essentially rotating the domain by −𝜋∕2.
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Example 11.20 Schwarz–Christoffel transformation
We now construct the Schwarz–Christoffel mapping that transforms the bent
line, A,B,C,D, in the 𝑤-plane with the points

(−2, 1), (−1, 0), (1, 0), (2,−1), (11.258)

respectively, into a straight line along the real axis in the z-plane.
We first map point B to (−1, 0) and C to (1, 0) as shown in Figure 11.32. Dif-

ferential form of the transform is written as
d𝑤
dz

= A(z − z1)−k1(z − z2)−k2 , (11.259)

where k1 and k2 are determined as

k1𝜋 = 𝜋∕4 → k1 = 1∕4, (11.260)
k2𝜋 = −𝜋∕4 → k2 = −1∕4. (11.261)

Equation (11.259) now becomes
d𝑤
dz

= A(z + 1)1∕4(z − 1)−1∕4 (11.262)

= A
(z − 1

z + 1

)1∕4
, (11.263)

which upon integration yields

𝑤 = A∫
(z − 1

z + 1

)1∕4
dz + B (11.264)

= A
[

−2u
u4 − 1

+ 1
2

ln
||||u − 1
u + 1

|||| − tan−1u
]
+ B, (11.265)

where

u =
(z − 1

z + 1

)1∕4
. (11.266)

w z

A

B
BC

1

1

–1

–1

C

D

1

–1–2
2

k2πk1π

Figure 11.32 Schwarz–Christoffel transfomation for Example 11.20.
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Using the fact that
z = 1 → 𝑤 = 1, (11.267)
z = −1 → 𝑤 = −1, (11.268)

we obtain two equations:
1 = B + A𝜋∕2, (11.269)

−1 = B + A𝜋∕2, (11.270)
hence determine the integration constants A and B as

A = 4
𝜋(i − 1)

, B = 1 + i
1 − i

. (11.271)
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Problems

1 For conjugate harmonic pairs, show that if Ψ(u, 𝑣) satisfies the Laplace
equation:

𝜕2Ψ(u, 𝑣)
𝜕u2 + 𝜕2Ψ(u, 𝑣)

𝜕𝑣2 = 0,

in the 𝑤-plane, then Ψ(x, y) satisfies
𝜕2Ψ(x, y)

𝜕x2 +
𝜕2Ψ(x, y)

𝜕y2 = 0

in the z-plane.

2 Show that
u(x, y) = sin x cosh y + x2 − y2 + 4xy

is a harmonic function and find its conjugate.

3 Show that
u(x, y) = sin 2x∕(cosh 2y + cos 2x)

can be the real part of an analytic function f (z). Find its imaginary part
and express f (z) explicitly as a function of z.
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4 Check the differentiability and the analyticity of the function

f (z) =

⎧⎪⎪⎨⎪⎪⎩
x3 − y3

x2 + y2 + i
x3 + y3

x2 + y2 , |z| ≠ 0,

0, z = 0.

5 Using cylindrical coordinates and the method of separation of variables,
find the equipotentials and the electric field lines inside two conductors
with semi-circular cross sections separated by an insulator and held at
potentials +V0 and −V0, respectively (Figure 11.17). Compare your result
with Example 11.13 and show that the two methods agree.

6 With the aid of a computer program plot the equipotentials and the elec-
tric field lines found in Example 11.18 for the semi-infinite parallel plate
capacitor.

7 In a two-dimensional potential problem, the surface ABCD is at potential
V0 and the surface EFG is at potential zero. Find the transformation (in
differential form) that maps the region R into the upper half of the𝑤-plane
(Figure 11.33). Do not integrate but determine all the constants.

G

z-plane

V = 0

iπ
d

iπE F

R

D

A B

C

R

V = V0

Figure 11.33 Two-dimensional equipotential problem.

8 Given the following two-dimensional potential problem in Figure 11.34,
The surface ABC is held at potential V0 and the surface DEF is at poten-
tial zero. Find the transformation that maps the region R into upper half
of the 𝑤-plane. Do not integrate but determine all the constants in the
differential form of the transformation.
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E x

y

F

z

d

R

D

A

B
C

R

– ∞

– ∞ ∞

∞

V0

V = O

yd

R
B

R

Figure 11.34 Schwarz–Christoffel transformation.

9 Find the Riemann surface on which√
(z − 1)(z − 2)(z − 3)

is single valued and analytic except at z = 1, 2, 3.

10 Find the singularities of

f (z) = tanh z.

11 Show that the transformation
𝑤

2
= tan−1

( iz
a

)
,

or

𝑤 = −i ln

[
1 + z

a

1 − z
a

]
,

maps the 𝑣 = const. lines to circles in the z-plane.

12 Show that the transformation

𝑤 = i 1 − z
1 + z

,

maps the upper half of the unit disc,

y ≥ 0, x2 + y2 ≤ 1,

to the first quadrant, u ≥ 0, 𝑣 ≥ 0, of the 𝑤-plane.
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13 Use the transformation given in Problem 11 to find the equipotentials and
the electric field lines for the electrostatics problem of two infinite parallel
cylindrical conductors, each of radius R and separated by a distance of d,
and held at potentials +V0 and −V0, respectively.

14 Consider the electrostatics problem for the rectangular region sur-
rounded by metallic plates as shown in Figure 11.35. The top plate is held
at potential V0,while the bottom and the right sides are grounded (V = 0).
The two plates are separated by an insulator. Find the equipotentials and
the electric field lines and plot.

id

z-plane

V = 0

V = 0

V = V0

Figure 11.35 Rectangular region surrounded by metallic plates.

15 Map the real 𝑤-axis to the triangular region shown in Figure 11.36 in the
limit

x5 → ∞
and

x3 → −∞.

Figure 11.36 Triangular
region.

y

x

1 62

3 44
5

α1

α3

α5

y = a

– ∞
∞

4
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16 Find the equipotentials and the electric field lines for a conducting circular
cylinder held at potential V0 and parallel to a grounded infinite conducting
plane (Figure 11.37). Hint: Use the transformation z = a tanh i𝑤∕2.

x

r

d

y

5 4

3

2

1

6

V = 0

V = V0

Figure 11.37 Conducting circular
cylinder parallel to infinite
metallic plate.
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12

Complex Integrals and Series

In this chapter, we first introduce the complex integral theorems. Despite
their simplicity, these theorems are incredibly powerful and establish the basis
of complex techniques in applied mathematics. Using analytic continuation,
we show how these theorems can be used to evaluate some of the frequently
encountered definite integrals in science and engineering. In conjunction with
our discussion of definite integrals, we also introduce the gamma and the
beta functions, which frequently appear in applications. Next, we introduce
complex power series, that is, the Taylor and the Laurent series and discuss
classification of singular points. Finally, we discuss the integral representations
of special functions.

12.1 Complex Integral Theorems

12.1.1 Cauchy–Goursat Theorem

Let C be a closed contour in a simply connected domain (Figure 12.1). If a given
function, f (z), is analytic within and on this contour, then the following integral
is true:

∮C
f (z)dz = 0. (12.1)

Proof : If we write the function f (z) as f (z) = u + i𝑣, the above integral
[Eq. (12.1)] becomes

∮C
(u + i𝑣)(dx + idy) = ∮ (udx − 𝑣dy) + i∮ (𝑣dx + udy). (12.2)

Using the Stokes theorem:

∮C

−→A ⋅ d
−→
l = ∫ ∫S

(−→∇ ×
−→A) ⋅ n̂ ds, (12.3)

Mathematical Methods in Science and Engineering, Second Edition. Selçuk Ş. Bayın.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.
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z

C

Figure 12.1 Contour for the
Cauchy–Goursat theorem.

we can also write this as

∮C
(u + i𝑣)(dx + idy) = ∫ ∫S

(
−d𝑣

dx
− du

dy

)
ds + ∫ ∫S

(
du
dx

− d𝑣
dy

)
ds,

(12.4)

where S is an oriented surface bounded by the closed path C. Because the
Cauchy–Riemann conditions, 𝜕u∕𝜕x = 𝜕𝑣∕𝜕y and 𝜕𝑣∕𝜕x = −𝜕u∕𝜕y, are satis-
fied within and on the closed path C, the right-hand side of Eq. (12.4) is zero,
thus proving the theorem.

12.1.2 Cauchy Integral Theorem

If f (z) is analytic within and on a closed path, C, in a simply connected domain
(Figure 12.2) and if z0 is a point inside the path C, then we can write the integral

1
2𝜋i∮C

f (z)dz
(z − z0)

= f (z0). (12.5)

z

z0

C

Figure 12.2 Contour for the Cauchy integral
theorem.
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Proof : To prove this theorem, we modify the contour in Figure 12.2 and use the
one in Figure 12.3, where we can use the Cauchy–Goursat theorem to write

∮C+L1+L2+C0

f (z)dz
(z − z0)

= 0. (12.6)

This integral must be evaluated in the limit as the radius of the path C0 goes to
zero. Since the function f (z) is analytic within and on C, the integrals over L1
and L2 cancel each other. In addition, noting that the integral over C0 is taken
clockwise, we write

1
2𝜋i∮C

f (z)dz
(z − z0)

= 1
2𝜋i∮C0

f (z)dz
(z − z0)

, (12.7)

where both integrals are now taken counterclockwise. The integral on the
left-hand side is what we want. For the integral on the right-hand side, we can
write

1
2𝜋i∮C0

f (z)dz
(z − z0)

= 1
2𝜋i

f (z0)∮C0

dz
(z − z0)

+ 1
2𝜋i∮C0

f (z) − f (z0)
(z − z0)

dz. (12.8)

Using the substitution z − z0 = R0ei𝜃 on C0, the first integral on the right-hand
side can be evaluated easily, giving

1
2𝜋i

f (z0)∮C0

dz
(z − z0)

= 1
2𝜋i

f (z0)i∫
2𝜋

0

R0ei𝜃d𝜃
R0ei𝜃 = f (z0). (12.9)

The second integral on the right-hand side of Eq. (12.8), which we call I2, can
be bounded from above as

|I2| ≤ ∫C0

|||| f (z) − f (z0)
z − z0

|||| |dz| ≤ M ⋅ L, (12.10)

where M is the maximum value that ( f (z) − f (z0))∕(z − z0) can take on C0:

M = max
|||| f (z) − f (z0)

z − z0

|||| = max
| f (z) − f (z0)||z − z0| (12.11)

Figure 12.3 The modified contour for the Cauchy
integral theorem.

z

C

z0
C0

L1L2



376 12 Complex Integrals and Series

and L is the circumference, L = 2𝜋R0, of C0. Now let 𝜖 be a given small number
such that on C0| f (z) − f (z0)| < 𝜖 (12.12)

is satisfied. Because f (z) is analytic within and on C, no matter how small an 𝜖

is given, we can always find a sufficiently small radius 𝛿:|z − z0| ≤ R0 = 𝛿, (12.13)

such that the condition (12.12) is satisfied; thus we can write|I2| ≤ M ⋅ L = 2𝜋𝜖. (12.14)

From the limit 𝜖 → 0 as 𝛿 → 0, it follows that |I2| → 0; thus the desired result
is obtained:

1
2𝜋i∮C

f (z)dz
(z − z0)

= f (z0). (12.15)

Note that the following limit:

lim
z→z0

f (z) − f (z0)
z − z0

, (12.16)

is actually the definition of the derivative of f (z) evaluated at z0. Because f (z) is
analytic within and on the contour, C, f ′(z) exists and hence M in Eq. (12.10) is
finite. Thus, |I2| → 0 as R0 → 0.

12.1.3 Cauchy Theorem

Because the position of the point z0 is arbitrary in the Cauchy integral theorem,
we can treat it as a parameter and differentiate Eq. (12.5) with respect to z0 as

f ′(z0) =
df
dz

||||z=z0

= 1
2𝜋i∮C

f (z)dz
(z − z0)2 . (12.17)

After n-fold differentiation, we obtain a very useful formula:

f (n)(z0) =
dnf
dzn

||||z=z0

= n!
2𝜋i∮C

f (z)dz
(z − z0)n+1 . (12.18)

Example 12.1 Contour integrals
Let f (z) be an analytic function within and on a simple closed curve, C, and let
z0 be a point not on C. If

I1 = ∮C

f ′(z)dz
(z − z0)

(12.19)
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and

I2 = ∮C

f (z)dz
(z − z0)2 , (12.20)

then show that I1 = I2 and evaluate I1 in terms of z0.

Solution
When z0 is within C, using the Cauchy integral theorem [Eq. (12.5)] and the
Cauchy theorem [Eq. (12.18)], we can write

f ′(z0) =
1

2𝜋i∮C

f ′(z)dz
(z − z0)

(12.21)

and
2𝜋i
n!

f (n)(z0) = ∮C

f (z)dz
(z − z0)n+1 , (12.22)

hence

I1 = I2 = 2𝜋i f ′(z0). (12.23)

When z0 is outside of C, and f ′(z)∕(z − z0) and f (z)∕(z − z0)2 are analytic within
and on C, then I1 = I2 = 0.

Example 12.2 Contour integrals
Evaluate the integral

I = ∮C
zmz∗ndz, m, n are integers, (12.24)

over the unit circle.

Solution
Over the unit circle, we write z = ei𝜃 , dz = izd𝜃, hence

I = i∫
2𝜋

0
ei(m+1−n)𝜃d𝜃 (12.25)

= i
i(m + 1 − n)

ei(m+1−n)𝜃|||2𝜋

0
(12.26)

=

{2𝜋i, m + 1 = n,

0, m + 1 ≠ n.
(12.27)
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12.2 Taylor Series

Let us expand a function f (z) about z0, where it is analytic. In addition, let z1 be
the nearest singular point of f (z) to z0. If f (z) is analytic on and inside a closed
contour, C, we can use the Cauchy integral theorem [Eq. (12.5)] to write

f (z) = 1
2𝜋i∮C

f (z′)dz′

(z′ − z)
, (12.28)

where z′ is a point on the contour and z is a point inside the contour C
(Figure 12.4). We can now write Eq. (12.28) as

f (z) = 1
2𝜋i∮C

f (z′)dz′

[(z′ − z0) − (z − z0)]
(12.29)

= 1
2𝜋i∮C

f (z′)dz′

(z′ − z0)
[

1 −
(z − z0)
(z′ − z0)

] . (12.30)

Choosing the contour, C, as the circle centered at z0 and passing through z′,
we see that the inequality |z − z0| < |z′ − z0| is satisfied. We can now use the

z

z

z1

z0

zʹ

C

Figure 12.4 Contour C for the Taylor series.
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binomial formula:

1
1 − t

= 1 + t + t2 + · · · =
∞∑

n=0
tn, |t| < 1, (12.31)

to write

f (z) = 1
2𝜋i∮C

∞∑
n=0

(z − z0)n

(z′ − z0)n+1 f (z′)dz′. (12.32)

Interchanging the integral and the summation signs, we find

f (z) = 1
2𝜋i

∞∑
n=0

(z − z0)n ∮C

f (z′)dz′

(z′ − z0)n+1 , (12.33)

which gives the Taylor series expansion of f (z) as

f (z) =
∞∑

n=0
An(z − z0)n. (12.34)

Using the Cauchy theorem [Eq. (12.18)], we can write the expansion coefficients
as

An = 1
n!

f (n)(z0) =
1

2𝜋i∮C

f (z′)dz′

(z′ − z0)n+1 . (12.35)

This expansion is unique and valid in the region |z − z0| < |z1 − z0|, where f (z)
is analytic.

12.3 Laurent Series

Sometimes f (z) is analytic inside an annular region as shown in Figure 12.5. For
a closed contour in the annular region, C, composed of the parts C1, C2, L1, and
L2, where our function is analytic within and on C, using the Cauchy integral
theorem [Eq. (12.5)], we can write

f (z) = 1
2𝜋i∮C=C1+C2+L1+L2

f (z′)dz′

(z′ − z)
. (12.36)

Here z′ is a point on C and z is a point inside C. In the limit as the straight line
segments of the contour approach each other, integrals over L1 and L2 cancel;
hence, we can also write

f (z) = 1
2𝜋i∮C1

f (z′)dz′

(z′ − z)
− 1

2𝜋i∮C2

f (z′)dz′

(z′ − z)
, (12.37)
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z

z

C1

C2

L2

L1

z0

Figure 12.5 Laurent series are defined in an annular region.

where both integrals are taken counterclockwise. Since the inequality|z′ − z0| > |z − z0| is satisfied on C1 and |z′ − z0| < |z − z0| is satisfied on C2,
we can write the above equation as

f (z) = 1
2𝜋i∮C1

f (z′)dz′

[(z′ − z0) − (z − z0)]
− 1

2𝜋i∮C2

f (z′)dz′

−[(z − z0) − (z′ − z0)]
(12.38)

= 1
2𝜋i∮C1

f (z′)dz′

(z′ − z0)
[

1 −
z − z0

z′ − z0

] + 1
2𝜋i∮C2

f (z′)dz′

(z − z0)
[

1 −
z′ − z0

z − z0

] .
(12.39)

We now use the binomial formula and interchange the integral and the sum-
mation signs to obtain the Laurent expansion valid at each point inside the
annular region as

f (z) =
∞∑

n=0
(z − z0)n

[
1

2𝜋i∮C1

f (z′)dz′

(z′ − z0)n+1

]
+

∞∑
n=0

1
(z − z0)n+1

[
1

2𝜋i∮C2

f (z′)dz′

(z′ − z0)−n

]
. (12.40)

Since f (z) is analytic inside the annular region R, for any point z inside R, we
can deform the two contours continuously into each other and use the contour
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z

z0

R

C

Figure 12.6 Another contour for the Laurent series.

in Figure 12.6 to write the Laurent series as

f (z) =
∞∑

n=−∞
an(z − z0)n, (12.41)

an = 1
2𝜋i∮C

f (z′)dz′

(z′ − z0)n+1 . (12.42)

Example 12.3 Taylor series
We find the series expansion of f (z) = 1∕

√
z2 − 1 in the interval |z| < 1 about

the origin. Since this function is analytic inside the unit circle (Figure 12.7), we
need the Taylor series

f (z) =
∞∑

n=0

an

n!
zn. (12.43)

Using

an =
[

dnf
dzn

]
z=0

, (12.44)
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+1–1

z

Figure 12.7 For the 1∕
√

z2 − 1 function, we write the Taylor series in the region |z| < 1.

we write the Taylor series as

f (z) = 1
i

[
1 + 1

2
z2 + 3

8
z4 + 5

16
z6 + · · ·

]
. (12.45)

Example 12.4 Laurent series
We now expand the same function, f (z) = 1∕

√
z2 − 1, in the region |z| > 1. We

place the cutline outside our region of interest between the points −1 and 1
(Figure 12.8). The outer boundary of the annular region in which f (z) is analytic
could be taken as a circle with infinite radius, while the inner boundary is a
circle with radius infinitesimally larger than 1. We now write the Laurent series
about z = 0 as

f (z) =
∞∑

n=−∞
anzn, (12.46)

where the expansion coefficients are given as

an = 1
2𝜋i∮C

1
z′n+1

dz′√
z′2 − 1

. (12.47)

In this integral, z′ is a point on the contour C, which could be taken as any closed
path inside the annular region where f (z) is analytic. To evaluate the coefficients
with n ≥ 0, we first deform our contour so that it hugs the outer boundary of our
annular region, which is a circle with infinite radius. For points on this contour,
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z-plane
z

R0

C0

R1

C1
l2

l1

C

ρ2 =  z + 1

ρ1 =  z – 1

Figure 12.8 For the 1∕
√

z2 − 1 function, we write the Laurent series in the region |z| > 1.

we write z′ = Rei𝜃 and evaluate the coefficients an(n ≥ 0) in the limit R → ∞ as

an(n≥0) = lim
R→∞

1
2𝜋i∮C

dz′

z′n+1
√

z′2 − 1
(12.48)

= lim
R→∞

1
2𝜋i ∫

iRei𝜃d𝜃
Rn+2ei(n+2)𝜃 (12.49)

= 0. (12.50)

To pick the coefficients with the negative values of n, we take our contour as a
circle with radius infinitesimally larger than 1. Because f (z) is analytic every-
where except the cutline, these coefficients can be evaluated by shrinking the
contour to a bone shape so that it hugs the cutline as shown in Figure 12.8; thus

an(n<0) =
1

2𝜋i ∮
↺
C1
+←

l1
+→

l2
+↺

C0

1
z′n+1

dz′√
z′2 − 1

. (12.51)

We evaluate the integrals over C0 and C1 in the limit as their radiuses go to zero.
First, let us consider the integral over C0, where z′ − 1 = R0ei𝜃0 . The contribu-
tion of this to an is zero:

lim
R0→0

1
2𝜋i∫

𝜋

−𝜋
↺
C0

(+1)|n|−1√
2

R0iei𝜃0 d𝜃0√
R0e

1
2
𝜃0

→ 0. (12.52)
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Similarly, the contribution of C1 is also zero, thus leaving us with

an(n<0) =
1

2𝜋i ∮
←
l1
+→

l2

1
z′n+1

1√
z′2 − 1

dz′. (12.53)

Integrals over l1 and l2 can be evaluated by defining the parameters

z′ − 1 = 𝜌1ei𝜃1 , 0 ≤ 𝜃1 < 2𝜋,
z′ + 1 = 𝜌2ei𝜃2 , 0 ≤ 𝜃2 < 2𝜋,

(12.54)

and writing

an(n<0) =
1

2𝜋i

[
∫L1

z′|n|−1dz′√|z′ − 1||z′ + 1|ei𝜃1 ei𝜃2

+∫L2

z′|n|−1dz′√|z′ − 1||z′ + 1|ei𝜃1 ei𝜃2

]
,

(12.55)

an(n<0) =
1

2𝜋i

[
∫

−1

1

x|n|−1dx
ei 𝜋

2
√
(1 − x)(1 + x)

+∫
1

−1

x|n|−1dx
ei 3𝜋

2
√
(1 − x)(1 + x)

]
,

(12.56)

an(n<0) = −(−1)|n|
2𝜋 ∫

1

−1

x|n|−1dx√
1 − x2

+ 1
2𝜋 ∫

1

−1

x|n|−1dx√
1 − x2

. (12.57)

We finally obtain the coefficients as

a−|n| = 1
2𝜋

[
1 − (−1)|n|]∫ 1

−1

x|n|−1dx√
1 − x2

, (12.58)

a−|n| =
⎧⎪⎨⎪⎩

0, |n| = even,

(|n| − 1)!
2|n|−1[(|n| − 1)∕2!]2

, |n| = odd.

⎫⎪⎬⎪⎭ (12.59)

This gives the Laurent expansion for the region |z| > 1 and about the
origin as

1√
z2 − 1

= 1
z
+ 1

2z3 + 3
8

1
z5 + 5

16
1
z7 + · · · . (12.60)

Example 12.5 Laurent series − a short cut
In the previous example, we found the Laurent expansion of the function
f (z) = 1∕

√
z2 − 1 about the origin and in the region |z| > 1. We used the

contour integral definition of the coefficients. However, using the uniqueness
of power series and appropriate binomial expansions, we can also evaluate the
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same series. First, we write f (z) as

f (z) = 1√
z2 − 1

(12.61)

= 1
(z + 1)

1
2

1
(z − 1)

1
2

(12.62)

= 1
z

1
2

1(
1 + 1

z

) 1
2

1
z

1
2

1(
1 − 1

z

) 1
2

(12.63)

= 1
z

(
1 + 1

z

)− 1
2
(

1 − 1
z

)− 1
2
. (12.64)

Since for the region |z| > 1 the inequality 1∕z < 1 is satisfied, we can use the

binomial formula for the factors
(

1 + 1
z

)− 1
2 and

(
1 − 1

z

)− 1
2 to write the Laurent

expansion as

f (z) = 1
z

[
1 + 1

2z
+ 3

8z2 + 5
16z3 + · · ·

] [
1 − 1

2z
+ 3

8z2 − 5
16z3 + · · ·

]
(12.65)

= 1
z
+ 1

2z3 + 3
8z3 + · · · , (12.66)

which is the same as our previous result [Eq. (12.60)].

12.4 Classification of Singular Points

Using the Laurent series, we can classify singular points of a function.

Definition 12.1 Isolated singular point If a function is not analytic at z0
but analytic at every other point in some neighborhood of z0, then z0 is called
an isolated singular point.

Definition 12.2 Singular point of order m In the Laurent series of a func-
tion:

f (z) =
∞∑

n=−∞
an(z − z0)n, (12.67)

if for n < −m, where m > 0, an = 0 but am ≠ 0, then z0 is called a singular point
of order m.

Definition 12.3 Essential singular point If m is infinity, then z0 is called
an essential singular point.
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Definition 12.4 Simple Pole In Definition 12.2, if m = 1, then z0 is called a
simple pole.

Definition 12.5 Entire function When a function is analytic in the entire
z-plane, it is called an entire function.

12.5 Residue Theorem

If a function f (z) is analytic within and on the closed contour C except for a
finite number of isolated singular points (Figure 12.9), then we can write the
integral

∮C
f (z)dz = 2𝜋i

N∑
n=0

Rn, (12.68)

where Rn is the residue of f (z) at the nth isolated singular point. The residue at
zn is defined as the coefficient of the 1∕(z − zn) term in the Laurent expansion
of f (z).

Proof : We change the contour C as shown in Figure 12.10 and use the
Cauchy–Goursat theorem [Eq. (12.1)] to write

∮C
f (z)dz =

[ N∑
n=0

[
∮cn[↻]

+ ∮ln[→]
+ ∮ln[←]

]
+ ∮C′[↺]

]
f (z)dz = 0. (12.69)

Straight line segments of the integral cancel each other. Integrals over the small
circles are evaluated clockwise and in the limit as their radius goes to zero. Since

z

C

z1

z0

zn

Figure 12.9 In the residue theorem, a
function has finite number of isolated singular
points.
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Figure 12.10 Contour for the residue
theorem.

z0
z1

c1c0

cn

Cʹ

zn

z

the integral over the closed path C′ is equal to the integral over the closed path
C, we write

∮C
f (z)dz =

N∑
n=0

∮cn[↺]
f (z)dz, (12.70)

where the integrals over cn are now evaluated counterclockwise. Using the Lau-
rent series expansion of f (z) about z0, the integral of the terms with the positive
powers of (z − z0) gives

∮c0

(z − z0)ndz = 0, n ≥ 0. (12.71)

On the other hand, for the negative powers of (z − z0), we have

∮cn

dz
(z − z0)n = lim

R0→0 ∫
2𝜋

0

iR0ei𝜃0 d𝜃0

Rn
0ein𝜃0

, n ≥ 1
(12.72)

= lim
R0→0

i
Rn−1

0
∫

2𝜋

0
e−i(n−1)𝜃0 d𝜃0

(12.73)

=

{
0, n = 2, 3,… ,

2𝜋i, n = 1.
(12.74)

We repeat this for all the other poles to get

∮C
f (z)dz =

N∑
n=0

∮cn

f (z)dz (12.75)

= 2𝜋i
N∑

n=0
Rn. (12.76)
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Example 12.6 Residue theorem
If a function has an isolated pole of order m:

f (z) =
∞∑

n=0
an(z − z0)n +

b1

(z − z0)
+ · · · +

bm

(z − z0)m , (12.77)

we first show that its residue at z0 can be given as

Res[ f (z0)] =
1

(m − 1)!
lim
z→z0

dm−1

dzm−1 [(z − z0)mf (z)] (12.78)

and then find the residues of

f (z) = z
(z + 1)2(z − 1)

. (12.79)

Next, we evaluate the integral:

I = ∮C

z dz
(z + 1)2(z − 1)

, (12.80)

over the contours, C1 and C2, shown in Figure 12.11.

Solution
If f (z) has a pole of order m, then g(z) = (z − z0)mf (z) is analytic at z0:

g(z) =
∞∑

n=0
an(z − z0)n+m + bm + bm−1(z − z0) + · · · + b1(z − z0)m−1,

(12.81)

hence

lim
z→z0

dg(z)
dz

= bm−1, (12.82)

lim
z→z0

d2g(z)
dz2 = 2!bm−2, (12.83)

⋮

lim
z→z0

dm−1g(z)
dzm−1 = (m − 1)!b1. (12.84)

C2C1
1–1

z Figure 12.11 Contours for Example 12.6.
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Since Res[ f (z0)] = b1, we can write

Res[ f (z0)] =
1

(m − 1)!
lim
z→z0

dm−1g(z)
dzm−1 , (12.85)

thus proving the desired result. The given function:

f (z) = z
(z + 1)2(z − 1)

, (12.86)

has a second-order isolated pole at z = −1 and a first-order isolated pole z = 1;
hence, we can find its residues as

Res[ f (1)] = 1
0!

lim
z→1

d1−1

dz1−1

[
(z − 1) z

(z + 1)2(z − 1)

]
= 1

4
(12.87)

and

Res[ f (−1)] = 1
(2 − 1)!

d2−1

dz2−1 lim
z→−1

[
(z + 1)2 z

(z + 1)2(z − 1)

]
= −1

4
.

(12.88)

We can now evaluate the integral for path C1 as

I = ∮C1

z dz
(z + 1)2(z − 1)

= 2𝜋i
[1

4
−

(
−1

4

)]
= 𝜋i (12.89)

and for C2 as

I = ∮C2

z dz
(z + 1)2(z − 1)

= 2𝜋i
[1

4
+

(
−1

4

)]
= 0. (12.90)

12.6 Analytic Continuation

When we discussed harmonic functions and mappings, we saw that analytic
functions have very interesting properties. It is for this reason that it is very
important to determine the region where a function is analytic and, if possible,
to extend this region to other parts of the z-plane. This process is called ana-
lytic continuation. Sometimes functions like polynomials and trigonometric
functions, which are defined on the real axis as

f (x) = a0 + a1x + a2x2 + · · · + anxn, (12.91)
f (x) = sin x, (12.92)

can be analytically continued to the entire z-plane by simply replacing the real
variable x with z as

f (z) = a0 + a1z + a2z2 + · · · + anzn, (12.93)
f (z) = sin z. (12.94)
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However, analytic continuation is not always this easy. Let us now consider dif-
ferent series expansions of the function

f (z) = 1
1 − z

+ 2
2 − z

. (12.95)

This function has two isolated singular points at z = 1 and z = 2. We first make
a Taylor series expansion about z = 0. We write

f (z) = 1
(1 − z)

+ 1(
1 − z

2

) (12.96)

and use the binomial formula:

(1 − x)−1 =
∞∑

n=0
xn (12.97)

to obtain

f (z) =
∞∑

n=0

(
1 + 1

2n

)
zn, |z| < 1. (12.98)

This expansion is naturally valid up to the nearest singular point at z = 1. Simi-
larly, we can make another expansion, this time valid in the interval 1 < |z| < 2
as

f (z) = −
(1

z

) 1(
1 − 1

z

) + 1(
1 − z

2

) (12.99)

= −1
z

∞∑
n=0

(1
z

)n
+

∞∑
n=0

( z
2

)n
(12.100)

= 1 +
∞∑

n=1

[( z
2

)n
− 1

zn

]
. (12.101)

Finally for |z| > 2, we obtain

f (z) = −1
z

(
1

1 − 1
z

)
−

(2
z

) 1(
1 − 2

z

) (12.102)

= −
∞∑

n=1

[
1
zn + 2n

zn

]
. (12.103)

These three expansions of the same function [Eq. (12.96)] are valid for the
intervals |z| < 1, 1 < |z| < 2, and |z| > 2, respectively. Naturally, it is not
practical to use these series definitions, where each one is valid in a different
part of the z-plane, when a closed expression like

f (z) = 1
1 − z

+ 2
2 − z

(12.104)
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exists for the entire z-plane. However, it is not always possible to find a closed
expression like this. Let us assume that we have a function with a finite num-
ber of isolated singular points at z1, z2,… , zn. Taylor series expansion of this
function about a regular point z0 will be valid only up to the nearest singular
point z1 (Figure 12.12). In such cases, we can accomplish analytic continua-
tion by successive Taylor series expansions, where each expansion is valid up
to the nearest singular point (Figure 12.13). We should make a note that during
this process, we are not making the function analytic at the points where it is
singular.

Figure 12.12 A function with isolated
singular points at z1, z2, and z3.

z2
z1

z0

z3

z

Figure 12.13 Analytic
continuation by successive Taylor
series expansions.

z2

z1

z0

z3
z
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12.7 Complex Techniques in Taking Some Definite
Integrals

Many of the definite integrals encountered in physics and engineering can be
evaluated by using the complex integral theorems and analytic continuation:

Type I. Integrals of the form

I = ∫
2𝜋

0
R(cos 𝜃, sin 𝜃)d𝜃, (12.105)

where R is a rational function:

R =
a1 cos 𝜃 + a2 sin 𝜃 + a3cos2𝜃 + · · ·

b1 cos 𝜃 + b2 sin 𝜃 + b3cos2𝜃 + b4sin2𝜃 + · · ·
, (12.106)

can be converted into a complex contour integral over the unit circle by the
substitutions

cos 𝜃 = 1
2

(
z + 1

z

)
, sin 𝜃 = 1

2i

(
z − 1

z

)
(12.107)

and

z = ei𝜃, d𝜃 = −i
(

dz
z

)
(12.108)

as

I = −i∮C
R
[1

2

(
z + 1

z

)
,

1
2i

(
z − 1

z

)] dz
z
. (12.109)

Example 12.7 Complex contour integration techniques
Let us evaluate the integral

I = ∫
2𝜋

0

d𝜃
a + cos 𝜃

, a > 1. (12.110)

Using Eqs. (12.107) and (12.108), we can write this integral as

I = −i∮|z|=1

dz(
a + z

2
+ 2

2z

)
z

(12.111)

= −2i∮|z|=1

dz
z2 + 2az + 1

. (12.112)

The denominator can be factorized as (z − 𝛼)(z − 𝛽), where

𝛼 = −a + (a2 − 1)
1
2 , (12.113)

𝛽 = −a − (a2 − 1)
1
2 . (12.114)
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For a > 1, we have |𝛼| < 1 and |𝛽| > 1; thus only the root z = 𝛼 is present inside
the unit circle. We can now use the Cauchy integral theorem [Eq. (12.5)] to find

I = −2i(2𝜋i) 1
𝛼 − 𝛽

= 2𝜋
(a2 − 1)

1
2

. (12.115)

Example 12.8 Complex contour integral techniques
We now consider the integral

I = 1
2𝜋 ∫

2𝜋

0
sin2l𝜃d𝜃. (12.116)

We can use Eqs. (12.107) and (12.108) to write I as a contour integral over the
unit circle as

I = (−1)l

2𝜋
(−i)
22l ∮

dz
z

(
z − 1

z

)2l
. (12.117)

We can now evaluate this integral by using the residue theorem [Eq. (12.68)] as

I = (−1)l

2𝜋
(−i)
22l

2𝜋i
[

residue of 1
z

(
z − 1

z

)2l
at z = 0

]
. (12.118)

Using the binomial formula, we can write

1
z

(
z − 1

z

)2l
= 1

z

2l∑
k=0

(2l)!
(2l − k)!k!

(z2l−k)
(
−1

z

)k
, (12.119)

where the residue we need is the coefficient of the 1∕z term. This can be
found as

(−1)l (2l)!
(l!)2 , (12.120)

and the result of the definite integral I becomes

I = (2l)!
22l(l!)2

. (12.121)

Type II. Integrals given as

I = ∫
∞

−∞
dxR(x), (12.122)

where R(x) is a rational function:

R(x) =
a0 + a1x + a2x2 + · · · + anxn

b0 + b1x + b2x2 + · · · + bmxm , (12.123)

(a) with no singular points on the real axis,
(b) |R(z)| goes to zero at least as 1∕|z2| in the limit as |z| → ∞.
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z

C
R

Figure 12.14 Contour for the
type II integrals.

Under these conditions, I has the same value with the complex contour inte-
gral

I = ∮C
R(z)dz, (12.124)

where C is a semicircle in the upper half of the z-plane considered in the limit
as the radius goes to infinity (Figure 12.14). Proof is fairly straightforward if we
write I as

I = ∮C
R(z)dz = ∫

∞

−∞
R(x)dx + ∮↶

R(z)dz (12.125)

and note that the integral over the semicircle vanishes in the limit as the radius
goes to infinity. We can now evaluate I using the residue theorem.

Example 12.9 Complex contour integral techniques
Let us evaluate the integral

I = ∫
∞

−∞

dx
(1 + x2)n , n = 1, 2,… . (12.126)

Since the conditions of the above technique are satisfied, we write

I = ∮C

dz
(z + i)n(z − i)n . (12.127)

Only the singular point z = i is inside the contour C (Figure 12.15); thus we can
write I as

I = 2𝜋i
[

residue of
(

1
(z + i)n(z − i)n

)
at z = i

]
. (12.128)

To find the residue, we write

f (z) = 1
(z + i)n =

∞∑
k=0

Ak(z − i)k (12.129)
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Figure 12.15 Contour for Example 12.9. z

C

i

–i

and extract the coefficient An−1 as

An−1 = 1
(n − 1)!

dn−1f
dzn−1

|||||z=i

(12.130)

= 1
(n − 1)!

(−1)n−1 n(n + 1)(n + 2) · · · (2n − 2)
(z + i)2n−1

||||z=i
.

This gives the value of the integral I as

I = 2𝜋i
(n − 1)!

(−1)n−1

22n−1
(2n − 2)!i

(n − 1)!(−1)n . (12.131)

Type III. Integrals of the type

I = ∫
∞

−∞
dxR(x)ei𝜅x, (12.132)

where 𝜅 is a real parameter and R(x) is a rational function with

(a) no singular points on the real axis,
(b) in the limit as |z| → ∞, |R(z)| → 0 independent of 𝜃.

Under these conditions, we can write the integral I as the contour integral:

I = ∮C
R(z)ei𝜅zdz, (12.133)

where the contour C is shown in Figure 12.16. To show that this is true, we have
to show the limit

IA = lim
R→∞∮↶

R(z)ei𝜅zdz → 0. (12.134)
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z

C

R

Figure 12.16 Contour C in the
limit R → ∞ for type III integrals.

y

x

sin (x)

2θ
π

π/2

Figure 12.17 Upper bound
calculation for type III integrals.

We start by taking the moduli of the quantities in the integrand to put an upper
limit to this integral as

|IA| ≤ ∫
𝜋

0
|R(z)| |||ei𝜅(𝜌 cos 𝜃+i𝜌 sin 𝜃)||| |𝜌iei𝜃|d𝜃. (12.135)

We now call the maximum value that R(z) takes in the interval [0, 2𝜋] as
M(𝜌) = max |R(z)| and improve this bound as

|IA| ≤ 𝜌M(𝜌)∫
𝜋

0
e−𝜅𝜌 sin 𝜃d𝜃, (12.136)

| IA| ≤ 2𝜌M(𝜌)∫
𝜋

2

0
e−𝜅𝜌 sin 𝜃d𝜃. (12.137)

Since the straight line segment shown in Figure 12.17, in the interval [0, 𝜋∕2],
is always less than the sin 𝜃 function, we can also write Eq. (12.137) as

|IA| ≤ 2𝜌M(𝜌)∫
𝜋

2

0
e−2𝜅𝜌 𝜃

𝜋 d𝜃. (12.138)
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This integral can easily be taken to yield|IA| ≤ 2𝜌M(𝜌) 𝜋

2𝜅𝜌
(1 − e−𝜅𝜌), (12.139)

|IA| ≤ M(𝜌)𝜋
𝜅
(1 − e−𝜅𝜌). (12.140)

From here, we see that in the limit as 𝜌 → ∞, the value of the integral IA goes
to zero, that is,

lim
𝜌→∞

|IA| → 0. (12.141)

This result is also called Jordan’s lemma.

Example 12.10 Complex contour integral techniques
In calculating dispersion relations, we frequently encounter integrals like

f (x) = 1√
2𝜋 ∫

∞

−∞
dkg(k)eikx. (12.142)

Let us consider a case where g(k) is given as

g(k) = ik
(k2 + 𝜇2)

. (12.143)

(i) For x > 0, we can write

f (x) = i√
2𝜋∮C

dkkeikx

(k + i𝜇)(k − i𝜇)
. (12.144)

In this integral, k is now a point in the complex k-plane. Because we have
a pole, k = i𝜇, inside our contour, we use the Cauchy integral theorem
[Eq. (12.5)] to find

f (x) = 2𝜋i i√
2𝜋

i𝜇
2i𝜇

e−𝜇x (12.145)

= −
√

𝜋

2
e−𝜇x. (12.146)

(ii) For x < 0, we complete our contour C from below to find

f (x) = i
2𝜋 ∮

ke−ik|x|dk
(k − i𝜇)(k + i𝜇)

(12.147)

= −2𝜋i i√
2𝜋

(
−i𝜇
−2i𝜇

)
e−𝜇|x| (12.148)

=
√

𝜋

2
e−𝜇|x|. (12.149)
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Type IV. Integrals of the type

I = ∫
∞

0
dxx𝜆−1R(x), (12.150)

where

(a) 𝜆 ≠ integer,
(b) R(x) is a rational function with no poles on the positive real axis and the

origin,
(c) in the limit as |z| → 0, |z𝜆R(z)| → 0,
(d) in the limit as |z| → ∞, |z𝜆R(z)| → 0.

Under these conditions, we can evaluate the integral, I, as the following contour
integral:

I = ∮C
z𝜆−1R(z)dz = 𝜋(−1)𝜆−1

sin𝜋𝜆

∑
inside C

residues of [z𝜆−1R(z)], (12.151)

where C is the closed contour shown in Figure 12.18.

Proof : Let us write the integral I as a complex contour integral:

∮C
z𝜆−1R(z)dz. (12.152)

In the limit as the radius of the small circle goes to zero, the integral over the
contour Ci goes to zero because of c. Similarly, in the limit as the radius of the

z

C0

L1

L2
Ci

Figure 12.18 Contour for the type IV
integrals.
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large circle goes to infinity, the integral over C0 goes to zero because of d. This
leaves us with

∮C
z𝜆−1R(z)dz = ∮→L1

z𝜆−1R(z)dz + ∮←L2

z𝜆−1R(z)dz. (12.153)

We can now evaluate the integrals on the left-hand side by using the residue
theorem. But first, we write the right-hand side as

∮→L1+←L2

z𝜆−1R(z)dz = ∫
∞

0
x𝜆−1R(x)dx + ∫

0

∞
x(𝜆−1)e2i𝜋(𝜆−1)R(x)dx

(12.154)

= (1 − e2𝜋i(𝜆−1))∫
∞

0
dxx𝜆−1R(x), (12.155)

which when substituted into Eq. (12.153) gives

2𝜋i
∑

inside C
residues of [z𝜆−1R(z)] = −2i sin 𝜋𝜆

e−i𝜋𝜆 ∫
∞

0
dxx𝜆−1R(x). (12.156)

After rearranging, we obtain the desired integral:

∫
∞

0
x𝜆−1R(x)dx = 𝜋(−1)𝜆−1

sin 𝜋𝜆

∑
inside C

residues of [z𝜆−1R(z)]. (12.157)

12.8 Gamma and Beta Functions

12.8.1 Gamma Function

An important application of the type IV integrals is encountered in the def-
inition of the gamma and the beta functions, which are frequently encoun-
tered in science and engineering applications. The gamma function is defined
for all x as

Γ(x) = lim
N→∞

{
N!Nx

x[x + 1][x + 2] · · · [x + N]

}
. (12.158)

The integral definition of the gamma function, even though restricted to x > 0,
is also very useful:

Γ(x) = ∫
∞

0
yx−1 exp(−y)dy. (12.159)
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Using integration by parts, we can write this as

Γ(x) = −∫
∞

0
d(e−y)yx−1 = (x − 1)∫

∞

0
dye−yyx−2, (12.160)

which gives the formula

Γ(x) = (x − 1)Γ(x − 1). (12.161)

This is one of the most important properties of the gamma function. For the
positive integer values of x, this formula gives

n = 1, (12.162)
Γ(1) = 1, (12.163)

Γ(n + 1) = n!. (12.164)

Besides, if we write

Γ(x − 1) = Γ(x)
(x − 1)

, (12.165)

we can also define the gamma function for the negative integer arguments. Even
though this expression gives infinity for the values of Γ(0), Γ(−1), and for all
the other negative integer arguments, their ratios are finite:

Γ(−n)
Γ(−N)

= [−N][−N + 1] · · · [−N − 2][−N − 1], (12.166)

Γ(−n)
Γ(−N)

= [−1]N−n N!
n!

. (12.167)

For some n values, the gamma function takes the following values:

Γ
(
−3

2

)
= 4

3
√
𝜋 Γ(1) = 1

Γ(−1) = ±∞ Γ
(3

2

)
= 1

2
√
𝜋

Γ
(
−1

2

)
= −2

√
𝜋 Γ(2) = 1

Γ(0) = ±∞ Γ
(5

2

)
= 3

4
√
𝜋

Γ
(1

2

)
=

√
𝜋 Γ(3) = 2.



12.8 Gamma and Beta Functions 401

The inverse of the gamma function, 1∕Γ(x), is single valued and always finite
with the limit

lim
x→∞

1
Γ(x)

= x
1
2
−x√
2𝜋

exp(x). (12.168)

12.8.2 Beta Function

Let us write the product of two gamma functions as

Γ(n + 1)Γ(m + 1) = ∫
∞

0
e−uundu∫

∞

0
e−𝑣𝑣md𝑣. (12.169)

Using the transformation u = x2 and 𝑣 = y2, we can write

Γ(n + 1)Γ(m + 1) =
(

2∫
∞

0
e−x2 x2n+1dx

)(
2∫

∞

0
e−y2 y2m+1dy

)
(12.170)

= 4∫
∞

0 ∫
∞

0
e−(x2+y2)x2n+1y2n+1dx dy. (12.171)

In plane polar coordinates, this becomes

Γ(n + 1)Γ(m + 1) = 4∫
∞

0
dr ∫

𝜋∕2

0
d𝜃e−r2 r2n+2m+2+1 cos2n+1𝜃 sin2m+1𝜃

(12.172)

=
[

2∫
∞

0
dre−r2 r2n+2m+2+1

] [
2∫

𝜋∕2

0
d𝜃 sin2m+1𝜃 cos2n+1𝜃

]
.

(12.173)

The first term on the right-hand side is Γ(m + n + 2) while the second term is
called the beta function B(m + 1, n + 1). Thus, the beta function is related to
the gamma function through the relation

B(m + 1, n + 1) = Γ(n + 1)Γ(m + 1)
Γ(m + n + 2)

. (12.174)

Another definition of the beta function is obtained by the substitutions
sin2𝜃 = t and t = x∕(1 − x) as

B(m + 1, n + 1) = ∫
∞

0

xmdx
(1 + x)m+n+2 . (12.175)
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Using the substitution x = y∕(1 − y), we can also write

B(p, q) = ∫
1

0
y p−1[1 − y]q−1dy, p > 0, q > 0. (12.176)

To calculate the value of B
(

1
2
,

1
2

)
, we have to evaluate the integral [Eq.

(12.175)]

B
(1

2
,

1
2

)
= ∫

∞

0
dx x

1
2
−1

(1 + x)
, (12.177)

which is type IV [Eq. (12.150)]; hence, using Eq. (12.151), we find its value as

B
(1

2
,

1
2

)
= −𝜋 (−1)−1∕2(−1)−1∕2

sin𝜋∕2
= 𝜋. (12.178)

Finally, using Eq. (12.174), we write

B
(1

2
,

1
2

)
=

[
Γ
(

1
2

)]2

Γ(1)
, (12.179)

to obtain

Γ
(1

2

)
=

√
𝜋. (12.180)

Similarly,

Γ
(1

2
+ n

)
=

(2n)!
√
𝜋

4nn!
, (12.181)

Γ
(1

2
− n

)
=

(−4)nn!
√
𝜋

(2n)!
. (12.182)

Another useful function related to the gamma function is the digamma
function, Ψ(x), which is defined as

Ψ(x) = 1
Γ(x)

dΓ(x)
dx

. (12.183)

The digamma function satisfies the recursion relation
Ψ(x + 1) = Ψ(x) + x−1, (12.184)

from which we obtain

Ψ(n + 1) = Ψ(1) +
n∑

j=1

1
j
. (12.185)

The value of Ψ(1) is given in terms of the Euler constant 𝛾 as
−Ψ(1) = 𝛾 = 0.5772157. (12.186)
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12.8.3 Useful Relations of the Gamma Functions

Among the useful relations of the gamma function, we can write

Γ(−x) = −𝜋 csc(𝜋x)
Γ(x + 1)

, (12.187)

Γ(2x) =
4xΓ(x)Γ(x + 1

2
)

2
√
𝜋

, (12.188)

Γ(nx) =
√

2𝜋
n

[
nx√
2𝜋

]n n−1∏
k=0

Γ
(

x + k
n

)
. (12.189)

In calculating ratios like

Γ( j − q)
Γ(−q)

and
Γ( j − q)
Γ( j + 1)

, (12.190)

the ratio

Γ( j − q)
Γ(−q)Γ( j + 1)

= [−1]j

j!

j∑
m=0

S(m)
j qm (12.191)

is very useful. Here S(m)
j are the Stirling numbers of the first type:

S(m)
j+1 = S(m−1)

j − jS(m)
j , S(0)

0 = 1 (12.192)

and for the others

S(m)
0 = S(0)

j = 0. (12.193)

In terms of the binomial coefficients, this ratio can also be written as

Γ( j − q)
Γ(−q)Γ( j + 1)

=
(

j − q − 1
j

)
(12.194)

= [−1]j
(

q
j

)
. (12.195)

12.8.4 Incomplete Gamma and Beta Functions

Both the beta and the gamma functions have their incomplete forms. The def-
inition of the incomplete beta function with respect to x is given as

Bx(p, q) = ∫
x

0
y p−1[1 − y]q−1dy. (12.196)
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On the other hand, the incomplete gamma function is defined by

𝛾∗(c, x) = c−x

Γ(x) ∫
c

0
y(x−1) exp(−y)dy, (12.197)

or as

𝛾∗(c, x) = exp(−x)
∞∑

j=0

xj

Γ(j + c + 1)
. (12.198)

In this equation, 𝛾∗(c, x) is a single-valued analytic function of c and x. Among
the useful relations of 𝛾∗(c, x), we can give

𝛾∗(c − 1, x) = x𝛾∗(c, x) +
exp(−x)
Γ(c)

, (12.199)

𝛾∗
(1

2
, x

)
=

erf(
√

x)√
x

. (12.200)

12.8.5 Analytic Continuation of the Gamma Function

We have seen that the gamma function with real argument is defined as
[Eq. (12.159)]

Γ(x) = ∫
∞

0
dt e−ttx−1, x > 0. (12.201)

This formula can be analytically continued to the right-hand side of the z-plane
easily as

Γ(z) = ∫
∞

0
dt e−ttz−1, Re z > 0. (12.202)

The above integral is convergent only for Re z > 0. A definition valid in the
entire z-plane exists and has been given by Hankel as

Γ(z) = 1
2i sin 𝜋z∫C

dt ettz−1, (12.203)

where the integral is now taken in the complex t-plane over the contour shown
in Figure (12.19). In this definition, the branch cut of tz−1 is located along the
negative real axis as

tz−1 = e(z−1) ln t = e(z−1)(ln|t|+i𝜃), −𝜋 ≤ 𝜃 < 𝜋. (12.204)
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Figure 12.19 Contour for the
Hankel definition of Γ(z).

t

C

As we deform the contour without touching the branch point and without
crossing over the branch cut, the integral in Eq. (12.203) reduces to two inte-
grals over straight paths; one just over the branch cut and the other just below:

∫C
dt ettz−1 = ∫C

dt ete(z−1)(ln|t|+i𝜃) (12.205)

= ∫
−∞

0
dt ete(z−1)(ln|t|+i𝜋) + ∫

0

−∞
dt ete(z−1)(ln|t|−i𝜋) (12.206)

= −∫
∞

0
dt e−te(z−1) ln|t|[ei(z−1)𝜋 − e−i(z−1)𝜋] (12.207)

= 2i sin 𝜋z ∫
∞

0
dt e−te(z−1) ln|t|. (12.208)

Substituting this into Eq. (12.203) gives Eq. (12.202), thus proving their equiv-
alence.

Equation (12.203) tells us that Γ(z) has simple poles located at z = −n,
n = 0, 1, 2,… . Near the poles, we can write

sin 𝜋z = (−1)n sin𝜋(z + n) (12.209)
≃ (−1)n𝜋(z + n). (12.210)

In addition, at z = −n, we can collapse the contour in Eq. (12.203):

∫C
dt ettz−1, (12.211)

to a closed contour about the origin. Thus, considering that near the origin t−n−1

is single valued, we obtain the integral

∫C
dt ett−n−1 = 1

n!
2𝜋i. (12.212)

In other words,

Γ(z) ≃ (−1)n

n!
1

z + n
, (12.213)

which gives the residues of Γ(z) at z = −n as (−1)n∕n!.
Finally, we use Eq. (12.174):

B(u, 𝑣) = Γ(u)Γ(𝑣)
Γ(u + 𝑣)

(12.214)
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and the definition of the beta function [Eq. (12.175)]:

B(u, 𝑣) = ∫
∞

0
dt tu−1

(1 + t)u+𝑣 , (12.215)

with the identifications

u = z, 𝑣 = 1 − z, (12.216)

to write

Γ(z)Γ(1 − z) = Γ(1)B(z, 1 − z) = ∫
∞

0
dt tz−1

1 + t
. (12.217)

Evaluating the above integral, which is type IV [Eq. (12.157)], gives the following
useful property of the gamma function [Eq. (12.187)]:

Γ(z)Γ(1 − z) = 𝜋

sin𝜋z
. (12.218)

Writing the above result as
1

Γ(z)
= sin𝜋z

𝜋
Γ(1 − z) (12.219)

and substituting Eq. (12.203) for Γ(1 − z), one obtains

1
Γ(z)

= 1
2𝜋i∫C

dt ett−z. (12.220)

12.9 Cauchy Principal Value Integral

Sometimes we encounter integrals with poles on the real axis, such as the
integral

I = ∫
∞

−∞

f (x)
(x − a)

dx, (12.221)

which is undefined (divergent) at x = a. However, because the problem is only
at x = a, we can modify this integral by first integrating up to an infinitesimally
close point to a, (a − 𝛿), and then continue integration on the other side from
an arbitrarily close point, (a + 𝛿), to infinity, that is, define the integral I as

I = lim
𝛿→0

[
∫

a−𝛿

−∞

f (x)dx
(x − a)

+ ∫
∞

a+𝛿

f (x)dx
(x − a)

]
(12.222)

= P ∫
∞

−∞

f (x)
(x − a)

dx. (12.223)
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This is called taking the Cauchy principal value of the integral, and it is
shown as

∫
∞

−∞

f (x)
(x − a)

dx → P ∫
∞

−∞

f (x)
(x − a)

dx. (12.224)

If f (z) is analytic in the upper half z-plane, that is, as |z| → ∞, f (z) → 0 for
y > 0, we can evaluate the Cauchy principal value of the integral [Eq. (12.221)]
by using the contour in Figure 12.20. In this case, we write

∮C

f (z)dz
(z − a)

=
⎡⎢⎢⎣∮cR[↶]

R→∞

dz + lim[
R→∞
𝛿→0

]∮
a−𝛿

−R
dz + ∮c𝛿 [↷]

𝛿→0

dz + lim[
R→∞
𝛿→0

]∮
R

a+𝛿
dz

⎤⎥⎥⎦
f (z)

(z − a)

(12.225)

and evaluate this integral by using the residue theorem as

∮C

f (z)
(z − a)

dz = 2𝜋i
∑

inside C
residues of

[
f (z)

z − a

]
. (12.226)

If f (z)∕(z − a) does not have any isolated singular points inside the closed con-
tour C (Figure 12.20), the left-hand side of Eq. (12.225) is zero, thus giving the
Cauchy principal value of the integral [Eq. (12.224)] as

P ∫
∞

−∞

f (x)
x − a

dx = − lim
𝛿→0 ∮c𝛿 [↷]

f (z)
(z − a)

dz − lim
R→∞∮cR[↶]

f (z)
(z − a)

dz. (12.227)

From the condition f (z) → 0 as |z| → ∞ for y > 0, the second integral over
cR on the right-hand side is zero. To evaluate the integral over the small arc

z

R

a

cδ δ

cR

Figure 12.20 Contour C for the Cauchy principal value integral.
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z

a

Figure 12.21 Another contour for the Cauchy principal value calculation.

c𝛿 , we write z − a = 𝜌ei𝜃 and dz = id𝜃𝜌ei𝜃 , and find the Cauchy principal
value as

P ∫
∞

−∞

f (x)dx
(x − a)

= −i∫
0

𝜋

d𝜃f (a), (12.228)

P ∫
∞

−∞

f (x)dx
(x − a)

= i𝜋 f (a). (12.229)

Another contour that we can use to find the Cauchy principal value is given
in Figure 12.21. In this case, the pole at x = a is inside our contour. Using the
residue theorem, we obtain

P ∫
∞

−∞

f (x)dx
(x − a)

= −i∫
2𝜋

𝜋

d𝜃 f (a) + 2𝜋i f (a) (12.230)

= −i𝜋 f (a) + 2𝜋i f (a) = i𝜋 f (a). (12.231)

As expected, the Cauchy principal value is the same for both choices of detour
about z = a.

If f (z) is analytic in the lower half of the z-plane, that is, f (z) → 0 as |z| → ∞
for y < 0, then the Cauchy principal value is given as

P ∫
∞

−∞

f (x)dx
(x − a)

= −i𝜋 f (a). (12.232)

In this case, we again have two choices for the detour around the singular
point on the real axis. Again the Cauchy principal value is −i𝜋 f (a) for both
choices.
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Example 12.11 Cauchy principal value integral
Let us now evaluate the integral

I = ∫
∞

−∞

x sin xdx
[x2 − k2r2]

. (12.233)

We write I as I = I1 + I2, where

I1 = 1
2i ∫

∞

−∞

xeixdx
(x − kr)(x + kr)

, (12.234)

I2 = − 1
2i ∫

∞

−∞

xe−ixdx
(x − kr)(x + kr)

. (12.235)

For I1, we choose our path in the z-plane as in Figure 12.22 to obtain

I1 = 1
2i

{
i𝜋
[

zeiz

z + kr

]
z=kr

+ i𝜋
[[

zeix

z − kr

]
z=−kr

]}
= 𝜋

2
cos kr. (12.236)

For the integral I2, we use the path in Figure 12.23 to obtain

I2 = − 1
2i

{
−i𝜋

[
ze−iz

z + kr

]
z=kr

− i𝜋
[[

ze−iz

z − kr

]
z=−kr

]}
= 𝜋

2
cos kr. (12.237)

Hence, the divergent integral

I = ∫
∞

−∞

x sin xdx
[x2 − k2r2]

, (12.238)

can now be replaced with its Cauchy principal value as

I = P ∫
∞

−∞

x sin xdx
[x2 − k2r2]

= 𝜋 cos kr. (12.239)

z

kr–kr

Figure 12.22 Contour for I1.
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z

kr–kr

Figure 12.23 Contour for I2.

12.10 Integral Representations of Special Functions

12.10.1 Legendre Polynomials

Let us write the Rodriguez formula for the Legendre polynomials:

Pl(x) =
1

2ll!
dl

dxl
(x2 − 1)l. (12.240)

Using the Cauchy formula [Eq. (12.18)]:
dlf (z)

dzl

|||||z0

= l!
2𝜋i ∮

f (z)dz
(z − z0)l+1 , (12.241)

with z0 = x and f (z) = (z2 − 1)l, we obtain

dl

dzl
(z2 − 1)l||||z=x

= l!
2𝜋i ∮

(z′2 − 1)ldz′

(z′ − x)l+1 . (12.242)

This gives the complex contour integral representation of the Legendre poly-
nomials:

Pl(x) =
1

2𝜋i
1
2l ∮C

(z′2 − 1)ldz′

(z′ − x)l+1 , (12.243)

which is also called the Schläfli integral formula, where the contour is given in
Figure 12.24. Using the Schläfli formula [Eq. (12.243)] and the residue theorem,
we can obtain the Legendre polynomials as

Pl (x) =
1
2l

[
residue of

[
(z2 − 1)l

(z − x)l+1

]
at x

]
. (12.244)
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Figure 12.24 Contour for the Schläfli
formula of Legendre polynomials.

z

x

C

We use the binomial formula to write (z2 − 1)l in powers of (z − x) as

(z2 − 1)l =
l∑

k=0

l!(−1)k

k!(l − k)!
z2(l−k) (12.245)

=
l∑

k=0

l!(−1)k

k!(l − k)!
[z − x + x]2l−2k (12.246)

=
l∑

k=0

l!(−1)k

k!(l − k)!

2l−2k∑
j=0

(2l − 2k)!
(2l − 2k − j)!j!

(z − x)jx2l−2k−j. (12.247)

For the residue, we need the coefficient of (z − x)l; hence, we need the j = l term
in the above series, which is

coefficient of (z − x)l =
[l∕2]∑
k=0

l!(−1)k

k!(l − k)!
(2l − 2k)!
(l − 2k)!l!

xl−2k . (12.248)

Using this in Eq. (12.244), we finally obtain Pl(x) as

Pl(x) =
[l∕2]∑
k=0

(−1)k

k!(l − k)!
(2l − 2k)!
(l − 2k)!

xl−2k

2l
. (12.249)

12.10.2 Laguerre Polynomials

The generating function, T(x, t), of the Laguerre polynomials is defined as

T(x, t) =
exp(−xt∕(1 − t))

1 − t
=

∞∑
n=0

Ln(x)tn. (12.250)

The Taylor series expansion of the generating function:

T(x, t) =
exp(−xt∕(1 − t))

1 − t
, (12.251)
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about the origin in the complex t-plane gives

T(x, t) =
∞∑

n=0

1
n!

T (n)(x, 0)tn, (12.252)

where

T (n)(x, 0) = n!
2𝜋i∮C

T(x, t)dt
tn+1

= n!
2𝜋i∮C

exp(−xt∕(1 − t))dt
(1 − t)tn+1 .

(12.253)

Since T(x, t) is analytic within and on the contour, where C is a circle with unit
radius that includes the origin but excludes t = 1, we use the above derivatives
to write

T(x, t) =
∞∑

n=0

1
n!

[
n!

2𝜋i∮C

exp(−xt∕(1 − t))dt
(1 − t)tn+1

]
tn, (12.254)

which when compared with the right-hand side of Eq. (12.250),
∑∞

n=0 Ln(x)tn,
yields

Ln(x) =
1

2𝜋i∮C

exp(−xt∕(1 − t))
(1 − t)tn+1 dt. (12.255)

Note that this is valid for a region enclosed by a circle centered at the origin
with unit radius. To obtain Ln(z) valid for the whole complex plane one might
expand T(x, t) about t = 1 in Laurent series.

Another contour integral representation of the Laguerre polynomials can be
obtained by using the Rodriguez formula:

Ln(x) =
ex

n!
dn

dxn (x
ne−x). (12.256)

Using

d(xne−x)
dxn = n!

2𝜋i∮C

f (z)dz
(z − z0)n+1 (12.257)

and taking z0 as a point on the real axis with f (z) = zne−z, we can write

2𝜋i
n!

f (n)(x) = ∮C

zne−zdz
(z − x)n+1 , (12.258)

where C is a circle centered at some point z = x, thus obtaining

Ln(x) =
1

2𝜋i∮C

znex−zdz
(z − x)n+1 . (12.259)
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12.10.3 Bessel Functions

Using the generating function definition of Jn(x) [2]:

exp
[x

2

(
t − 1

t

)]
=

∞∑
−∞

tnJn(x), (12.260)

we can write the integral definition

Jn(x) =
1

2𝜋i∮C

exp
[

x
2

(
t − 1

t

)]
tn+1 dt, (12.261)

where t is now a point on the complex t-plane and C is a closed contour enclos-
ing the origin. We can extend this definition to the complex z-plane as the
Schläfli definition:

Jn(z) =
1

2𝜋i∮C

exp
[

z
2

(
t − 1

t

)]
tn+1 dt, |arg z| < 𝜋

2
, (12.262)

where Jn(z) satisfies the differential equation [Eq. (5.17)][
z2 d2

dz2 + z d
dz

+ (z2 − n2)
]

Jn(z) = 0. (12.263)

One can check this by substituting Eq. (12.262) into Eq. (12.263). To extend
this definition to the noninteger values of n, we write the integral

gn(z) =
1

2𝜋i∫C′

exp
[

z
2

(
t − 1

t

)]
tn+1 dt, |arg z| < 𝜋

2
, (12.264)

where C′ is a path in the complex t-plane. We operate on gn(z) with the Bessel’s
differential operator to write[

z2 d2

dz2 + z d
dz

+ (z2 − n2)
]

gn(z) (12.265)

= 1
2𝜋i∫C′

dt
tn+1 exp

[ z
2

(
t − 1

t

)]{z2

4

(
t − 1

t

)2
+ z

2

(
t − 1

t

)
+ z2 − n2

}
(12.266)

= 1
2𝜋i∫C′

dt d
dt

⎧⎪⎨⎪⎩
exp

[
z
2

(
t − 1

t

)]
tn

[ z
2

(
t + 1

t

)
+ n

]⎫⎪⎬⎪⎭ (12.267)

= 1
2𝜋i

[Gn(z, t2) − Gn(z, t1)], (12.268)
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t

C1

Figure 12.25 Contour for 1

2
H(1)

n (z).

t

C2

Figure 12.26 Contour for 1

2
H(2)

n (z).

where

Gn(z, t) =
exp

[
z
2

(
t − 1

t

)]
tn

[ z
2

(
t + 1

t

)
+ n

]
(12.269)

and t1 and t2 are the end points of the path C′. Obviously, for a path that makes
the difference in Eq. (12.228) zero, we have a solution of the Bessel’s equation.
For the integer values of n, choosing C′ as a closed path that encloses the origin
does the job, which reduces to the Schläfli definition [Eq. (12.262)]. For the
noninteger values of n, we have a branch cut, which we choose to be along
the negative real axis. Along the real axis, Gn(z, t) has the limits Gn(z, t) → 0 as
t → 0+ and t → −∞. Hence, the two paths, C1 and C2, shown in Figures (12.25)
and (12.26) give two linearly independent solutions corresponding to H (1)

n (z)
and H (2)

n (z), respectively. Their sum gives

1
2

[
H (1)

n (z) + H (2)
n (z)

]
= Jn(z). (12.270)

We can now write Jn(z) for general n as

Jn(z) =
1

2𝜋i∫C

exp
[

z
2

(
t − 1

t

)]
tn+1 dt, |arg z| < 𝜋

2
, (12.271)

where the contour is given in Figure (12.27). For the integer values of n, there is
no need for a branch cut; hence, the contour can be deformed into C as shown
in Figure (12.28). Furthermore, since the integrand is now single valued, we can
also collapse the contour to one enclosing the origin (Figure 12.29).
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Figure 12.27 Jn(z) =
1

2
[H(1)

n (z) + H(2)
n (z)].

t

C

Figure 12.28 For the integer values
n, there is no need for the branch
cut; hence, the contour for the
integral definition of Jn(z) can be
deformed into C.

t

C

Figure 12.29 The contour for Jn(z), where n
takes integer values, can be taken as any
closed path enclosing the origin.

t

C

In Eq. (12.271), we now make the transformation t = 2s∕z to write

Jn(z) =
1

2𝜋i

( z
2

)n

∫C
ds

exp
[
s − z2

4s

]
sn+1 . (12.272)

Expanding e−z2∕4s:

e−z2∕4s =
∞∑

r=0

(−1)r

r!
z2r

22rsr
, (12.273)

we write

Jn(z) =
( z

2

)n ∞∑
r=0

(−1)r

r!

( z
2

)2r 1
2𝜋i∫C

ds ess−n−r−1. (12.274)

The integral is nothing but one of the integral representations of the gamma
function [Eq. (12.220)]:

1
Γ(z)

= 1
2𝜋i∫C

dt ett−z, (12.275)
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which leads to the series expression of Jn(z):

Jn(z) =
( z

2

)n ∞∑
r=0

(−1)r

r!Γ(n + r + 1)

( z
2

)2r
. (12.276)

An other useful formula can be obtained by using the contour integral repre-
sentation in Eq. (12.262) and the substitution t = ei𝜃 , which allows us to write

Jn(z) =
1

2𝜋i ∫
2𝜋

0

eiz sin 𝜃

e(n+1)i𝜃 iei𝜃d𝜃 (12.277)

= 1
2𝜋 ∫

2𝜋

0
ei(z sin 𝜃−n𝜃)d𝜃. (12.278)

This yields the Bessel’s integral [Eq. (5.60)] as

Jn(z) =
1
𝜋 ∫

𝜋

0
cos(n𝜃 − z sin 𝜃)d𝜃. (12.279)
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Problems

1 Use the contour integral representation of the Laguerre polynomials:

Ln(x) =
1

2𝜋i ∮
znex−zdz
(z − x)n+1 ,

where C is a circle centered at x, to obtain the coefficients, Ck , in the
expansion

Ln(x) =
n∑

k=0
Ckxn−k .
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y

x

C3
R

C2

C1

4
π

Figure 12.30 Contour for problem 5.

2 Establish the following contour integral representation for the Hermite
polynomials:

Hn(x) =
(−1)nn!

2𝜋i
ex2

∮C

e−z2 dz
(z − x)n+1 ,

where C encloses the point x. Use this result to derive the series expansion

Hn(x) =
[n∕2]∑
j=0

(−1)j 2n−2jxn−2jn!
(n − 2j)!j!

.

3 Using Taylor series prove the Cauchy–Goursat theorem, ∮C f (z)dz = 0,
where f (z) is an analytic function within and on the closed contour C in a
simply connected domain.

4 Find the Laurent expansions of the function

f (z) = 1
1 − z

+ 2
(2 − z)

about the origin for the regions |z| < 1, |z| > 2, and 1 < |z| < 2. Use two
different methods and show that the results agree with each other.

5 Using the path in Figure 12.30, evaluate the integral

∫
∞

0
e−ix2 dx.

6 Evaluate the following integrals:
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(i) ∫
2𝜋

0

(cos 3𝜃)d𝜃
5 − 4 cos 𝜃

,

(ii) ∫
∞

−∞

sin x dx
x2 + 4x + 5

,

(iii) ∫
∞

0

ln(x2 + 1)dx
x2 + 1

,

(iv) ∫
∞

0

dx
1 + x5 ,

(v) ∫
∞

0

sin x dx
x

,

(vi) ∫
∞

0

dx
a3 + x3 ,

(vii) ∫
∞

−∞

x2dx
(x + 1)(x2 + 2x + 2)

,

(viii) ∫
∞

−∞

x2a−1

b2 + x2 dx,

(ix) ∫
2𝜋

0

sin2𝜃 d𝜃
a + b cos 𝜃

,

(x) ∫
∞

−∞

sin x dx
x(a2 + x2)

.

7 Evaluate the following Cauchy principal value integral:

P ∫
∞

0

dx
[(x − x0)2 + a2](x − x1)

, x1 > x0.

8 Using the generating function for the polynomials Pnm(x) ∶

e−xt∕(1−t)

(1 − t)m+1 =
∞∑

n=0
Pnm(x)tn, |t| < 1, m = positive,
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establish a contour integral representation in the complex t-plane. Use
this representation to find A(n,m, k) in

Pnm(x) =
n∑

k=0
A(n,m, k)xk .

9 Use contour integral techniques to evaluate

∫
∞

−∞

sin2x dx
x2(1 + x2)

.

10 The Jacobi polynomials, P(a,b)
n (cos 𝜃), where n = positive integer and a, b

are arbitrary real numbers, are defined by the Rodriguez formula:

P(a,b)
n (x) = (−1)n

2nn!(1 − x)a(1 + x)b
dn

dxn [(1 − x)n+a(1 + x)n+b], |x| < 1.

(i) Find a contour integral representation for this polynomial valid for|x| < 1.
(ii) Use this to show that the polynomial can be expanded as

P(a,b)
n (cos 𝜃) =

n∑
k=0

A(n, a, b, k)
(

sin 𝜃

2

)2n−2k(
cos 𝜃

2

)2k
.

(iii) Determine the coefficients A(n, a, b, k) for the special case, where a
and b are both integers.

11 For a function F(z) analytic everywhere in the upper half plane and on the
real axis with the property

F(z) → b as |z| → ∞, b is a real constant,

show the following Cauchy principal value integrals:

FR(z) = b + 1
𝜋

P ∫
∞

−∞

FI(x′)dx′

x′ − x

and

FI(z) = − 1
𝜋

P ∫
∞

−∞

FR(x′)dx′

x′ − x
.

12 Given the following contour integral definition of the spherical Hankel
function of the first kind:

h(1)
l (x) = (−1)l2ll!

𝜋xl+1 ∮C

e−ixzdz
(z2 − 1)l+1 ,
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where the contour C encloses the point x = −1, show that h(1)
l (x) can be

written as

h(1)
l (x) =

∞∑
k=0

A(k, l)ei[x−𝛽(l,k)]

xk+1 ,

In addition,
(i) show that this series breaks of at the k = lth term,

(ii) by using the contour integral definition given above, find explicitly
the constants A(k, l) and 𝛽(l, k).

13 Another definition for the gamma function is given as

Γ(x) = xx− 1
2 e−x

√
2𝜋e𝜃(x)∕12x, x > 0,

where 𝜃(x) is a function satisfying 0 < 𝜃(x) < 1. Using the above defini-
tion, show the limit

lim
x→∞

Γ(x + 1)

xx+ 1
2 e−x

√
2𝜋

= 1.

When x is an integer, this gives the Stirling’s approximation to x! as
x → ∞:

x! ∼ xx+ 1
2 e−x

√
2𝜋.

14 Show that

Γ(x + 1) = xΓ(x), x > 0

and

Γ(n + 1) = n!, n = integer > 0.

15 Show that

(1 + x)1∕2 =
∞∑

n=0

(1∕2
n

)
xn = 1 + x

2
− x2

8
+ x3

16
− · · ·

= 1 + x
2
+

∞∑
n=2

(−1)n−1 (2n − 3)!!
(2n)!!

xn,

where the double factorial means

(2n + 1)!! = 1 ⋅ 3 ⋅ 5 · · · (2n + 1),
(2n)!! = 2 ⋅ 4 ⋅ 6 · · · (2n).
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16 Use the factorization method (Chapter 8) to show that the spherical Han-
kel functions of the first kind,

h(1)
l = jl + inl,

can be expressed as

h(1)
l (x) = (−1)lxl

[
1
x

d
dx

]l

h(1)
0 (x)

= (−1)lxl
[

1
x

d
dx

]l (−ieix

x

)
.

Hint: First define

ul(x) = yl(x)∕xl+1

in

y′′l +
[

1 − l(l + 1)
x2

]
yl = 0.

Using this result, define h(1)
l (x) as a contour integral in the complex

j′-plane, j′ = t′ + is′, where

d
dt

= 1
x

d
dx

.

Indicate your contour, C, by clearly showing the singularities that must be
avoided.

17 Using the integral definition of h(1)
l (x) found in the previous problem and

the transformation

z′′ = −
[2j′]1∕2

x
,

show that an even more useful integral definition can be obtained as

h(1)
l (x) = (−1)l2ll!

𝜋xl+1 ∮Cz′′

e−ixzdz′′
[(z′′ − 1)(z′′ + 1)]l+1 .

Compare the two contours, C and Cz′′ .
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18 If f (z) is analytic in the lower half of the z-plane:

f (z) → 0 as |z| → ∞ for y < 0,

then show that the following Cauchy principal value integral is true:

P ∫
∞

−∞

f (x)dx
(x − a)

= −i𝜋 f (a).

Identify your two choices for the detour around the singular point on the
real axis and show that the Cauchy principal value is −i𝜋f (a) for both
choices.
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13

Fractional Calculus

The integral form of the diffusion equation is written as

𝜕

𝜕t∫ ∫ ∫V
c
(−→r , t) d𝑣 = −∮S

−→J
(−→r , t) ⋅ d−→s , (13.1)

where c
(−→r , t) is the concentration of particles and −→J

(−→r , t) is the current den-
sity. The left-hand side of this equation gives the rate of change of the number
of particles in volume V , and the right-hand side gives the number of parti-
cles flowing past the boundary, S, of volume V , per unit time. In the absence of
sources or sinks, these terms are naturally equal. Using the Gauss theorem we
can write the above equation as

𝜕

𝜕t∫ ∫ ∫V
c
(−→r , t) d𝑣 + ∫ ∫ ∫V

−→∇ ⋅
−→J

(−→r , t) d𝑣 = 0, (13.2)

∫ ∫ ∫V

[
𝜕

𝜕t
c
(−→r , t) + −→∇ ⋅

−→J
(−→r , t)] d𝑣 = 0. (13.3)

For an arbitrary volume element, we can set the expression inside the square
brackets to zero, thus obtaining the partial differential equation to be solved for
concentration:

𝜕

𝜕t
c
(−→r , t) + −→∇ ⋅

−→J
(−→r , t) = 0. (13.4)

With a given relation between c
(−→r , t) and −→J

(−→r , t), we can now solve this
equation for c

(−→r , t). Since particles have a tendency to flow from regions of
high to low concentration, as a first approximation, we can assume a linear
relation between the current density and the gradient of concentration as
−→J = −k−→∇c

(−→r , t). The proportionality constant, k, is called the diffusion

Mathematical Methods in Science and Engineering, Second Edition. Selçuk Ş. Bayın.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.
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constant. We can now write the diffusion equation as

𝜕

𝜕t
c
(−→r , t) − k−→∇

2
c
(−→r , t) = 0, (13.5)

which is also called the Fick’s equation.
Einstein noticed that in a diffusion process concentration is also proportional

to the probability, P
(−→r , t), of finding a diffusing particle at position −→r and time

t. Thus, the probability distribution satisfies the same differential equation as
the concentration. For a particle starting its motion from the origin, probability
distribution can be found as

P
(−→r , t) = 1

(4𝜋kt)3∕2 exp
(
− r2

4kt

)
. (13.6)

This means that even though the average displacement of a particle is zero:⟨−→r ⟩ = 0, (13.7)

the mean square displacement, ⟨−→r 2⟩ = ⟨−→r 2⟩ − ⟨−→r ⟩2, is nonzero and depends
on time as

⟨−→r 2⟩ = ∫ r2P
(−→r , t) d3r = 6kt. (13.8)

In other words, the particle slowly drifts away from its initial position. What is
significant in this equation is the relation

⟨r2(t)⟩ ∝ t. (13.9)

For the particle to cover twice the distance, time must be increased by a factor
of four. This scaling property results from the diffusion equation where the time
derivative is of first order and the space derivative is of second order. However, it
has been experimentally determined that for some processes this relation goes
as

⟨r2(t)⟩ ∝ t𝛼, 𝛼 ≠ 1. (13.10)

In terms of the diffusion equation this would imply

𝜕𝛼

𝜕t𝛼
P
(−→r , t) − k𝛼

−→∇
2
P
(−→r , t) = 0, k𝛼 ≠ 1. (13.11)

However, what does this mean? Is a fractional derivative possible? If a
fractional derivative is possible, can we also have a fractional integral? Actually,
the geometric interpretation of derivative as the slope and integral as the
area are so natural that most of us have not even thought of the possibility of
fractional derivatives and integrals, let alone their meaning. On the other hand,
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the history of fractional calculus dates back as far as Leibniz (1695), and results
have been accumulated over the past years in various branches of mathematics.
The situation on the applied side of this intriguing branch of mathematics is
now changing rapidly, and there are a growing number of research areas in
science and engineering that make use of fractional calculus. Chemical analysis
of fluids, heat transfer, diffusion, Schrödinger equation, and material science
are some areas where fractional calculus is used. Interesting applications to
economy, finance, and earthquake science should also be expected. It is well
known that in the study of nonlinear situations and in the study of processes
away from equilibrium fractal curves and surfaces are encountered, where
ordinary mathematical techniques are not sufficient. In this regard, the relation
between fractional calculus and fractals is also being actively investigated.
Fractional calculus also offers us some useful mathematical techniques in
evaluating definite integrals and finding sums of infinite series. In this chapter,
we introduce some of the basic properties of fractional calculus along with
some mathematical techniques and their applications.

13.1 Unified Expression of Derivatives and Integrals

13.1.1 Notation and Definitions

In our notation we follow Oldham and Spanier [15], where a detailed treatment
of the subject along with a survey of the history and various applications can be
found. Unless otherwise specified, we use n and N for positive integers, q and
Q for any number. The nth derivative of a function, f (x), is shown as dnf

dxn . Since
an integral is the inverse of a derivative, we write

d−1f
d[x]−1 = ∫

x

0
f (x0)dx0. (13.12)

Successive integrations will be shown as
d−2f

d[x]−2 = ∫
x

0
dx1 ∫

x1

0
f (x0)dx0, (13.13)

⋮

d−nf
d[x]−n = ∫

x

0
dxn−1 ∫

xn−1

0
dxn−2 · · ·∫

x2

0
dx1 ∫

x1

0
f (x0)dx0. (13.14)

When the lower limit differs from zero, we will write
d−1f

[d(x − a)]−1 = ∫
x

a
f (x0)dx0, (13.15)

⋮
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d−nf
[d(x − a)]−n = ∫

x

a
dxn−1 ∫

xn−1

a
dxn−2 · · ·∫

x2

a
dx1 ∫

x1

a
f (x0)dx0. (13.16)

We should remember that even though the equation

dn

[d(x − a)]n = dn

[dx]n (13.17)

is true for derivatives, it is not true for integrals, that is,

d−n

[d(x − a)]−n ≠ d−n

[dx]−n . (13.18)

The nth derivative is frequently written as f (n)(x). Hence for n successive inte-
grals we will also use

f (−n) = ∫
x

an

dxn−1 ∫
xn−1

an−1

dxn−2 · · ·∫
x2

a2

dx1 ∫
x1

a1

f (x0)dx0. (13.19)

When there is no room for confusion, in general, we also write

dqf (x)
[d(x − 0)]q =

⎧⎪⎪⎨⎪⎪⎩

dqf (x)∕[dx]q,

dqf (x)∕dxq,

f (q)(x),

(13.20)

where q can take any positive or negative value. The value of a differintegral at
x = b is shown as

dqf (x)
[d(x − a)]q

||||x=b
=

dqf
[d(x − a)]q (b). (13.21)

Other commonly used expressions for differintegrals are:

dqf (x)
[d(x − a)]q =

⎧⎪⎨⎪⎩
aDq

x f (x),

Dq
a f (x).

(13.22)

13.1.2 The nth Derivative of a Function

Before we introduce the differintegral, we derive a unified expression for the
derivative and integral for integer orders. We first write the definition of a
derivative as

d1f
dx1 =

df (x)
dx

= lim
𝛿x→0

{[𝛿x]−1[ f (x) − f (x − 𝛿x)]}. (13.23)
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Similarly, the second- and third-order derivatives can be written as

d2f
dx2 = lim

𝛿x→0
{[𝛿x]−2[ f (x) − 2f (x − 𝛿x) + f (x − 2𝛿x)]}, (13.24)

d3f
dx3 = lim

𝛿x→0
{[𝛿x]−3[ f (x) − 3f (x − 𝛿x) + 3f (x − 2𝛿x) − f (x − 3𝛿x)]}.

(13.25)

Since the coefficients in these equations are the binomial coefficients, for the
nth derivative we can write

dnf
dxn = lim

𝛿x→0

{
[𝛿x]−n

n∑
j=0

[−1]j
(

n
j

)
f (x − j𝛿x)

}
. (13.26)

In these equations, we have assumed that all the derivatives exist. In addition,
we have assumed that [𝛿x] goes to zero continuously, that is, by taking all values
on its way to zero. For a unified representation with the integral, we are going
to need a restricted limit. For this we divide the interval [x − a] into N equal
segments as 𝛿N x = [x − a]∕N , N = 1, 2, 3,… . In this expression a is a number
smaller than x. Thus, Eq. (13.26) becomes

dnf
[dx]n = lim

𝛿N x→0

{
[𝛿N x]−n

n∑
j=0

[−1]j
(

n
j

)
f (x − j𝛿N x)

}
. (13.27)

Since the binomial coefficients
(

n
j

)
are zero for the j > n values, we can also

write

dnf
[dx]n = lim

𝛿N x→0

{
[𝛿N x]−n

N−1∑
j=0

[−1]j
(

n
j

)
f (x − j𝛿N x)

}
. (13.28)

Now, assuming that this limit is also valid in the continuum limit, we write the
nth derivative as

dnf
[dx]n = lim

N→∞

{[x − a
N

]−n N−1∑
j=0

[−1]j
(

n
j

)
f
(

x − j
[x − a

N

])}
. (13.29)

13.1.3 Successive Integrals

We now concentrate on the expression for n successive integrations of f (x).
Because an integral of integer order is defined as area, we express it as a
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Riemann sum:
d−1f

[d(x − a)]−1 = ∫
x

a
f (x0)dx0 (13.30)

= lim
𝛿N x→0

{𝛿N x[f (x) + f (x − 𝛿N x) + f (x − 2𝛿N x) + (13.31)

· · · + f (a + 𝛿N x)]}

= lim
𝛿N x→0

{
𝛿N x

N−1∑
j=0

f (x − j𝛿N x)

}
. (13.32)

As before, we have taken 𝛿N x = [x − a]∕N . We also write the Riemann sum for
the double integral as

d−2f
[d(x − a)]−2 = ∫

x

a
dx1 ∫

x1

a
f (x0)dx0 (13.33)

= lim
𝛿N x→0

{[𝛿N x]2[ f (x) + 2f (x − 𝛿N x) + 3f (x − 2𝛿N x) +

(13.34)
· · · + Nf (a + 𝛿N x)]}

= lim
𝛿N x→0

{
[𝛿N x]2

N−1∑
j=0

[ j + 1] f (x − j𝛿N x)

}
(13.35)

and for the triple integral as

d−3f
[d(x − a)]−3 = ∫

x

a
dx2 ∫

x2

a
dx1 ∫

x1

a
f (x0)dx0 (13.36)

= lim
𝛿N x→0

{[𝛿N x]3
N−1∑
j=0

[j + 1][j + 2]
2

f (x − j𝛿N x)}. (13.37)

Similarly for n-fold integration we write

d−nf
[d(x − a)]−n = lim

𝛿N x→0

{
[𝛿N x]n

N−1∑
j=0

(
j + n − 1

j

)
f (x − j𝛿N x)

}
, (13.38)

d−nf
[d(x − a)]−n = lim

N→∞

{[x − a
N

]n N−1∑
j=0

(
j + n − 1

j

)
f
(

x − j
[x − a

N

])}
. (13.39)

Compared to Eq. (13.29), the binomial coefficients in this equation are going as(
j + n − 1

j

)
and all the terms are positive.
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13.1.4 Unification of Derivative and Integral Operators

Using Eqs. (13.29) and (13.39) and also making use of the relation

[−1]j
(

n
j

)
=

(
j + n − 1

j

)
=

Γ(j − n)
Γ(−n)Γ(j + 1)

, (13.40)

we can write a unified expression for both the derivative and integral of order
n as

dnf
[d(x − a)]n = lim

N→∞

⎧⎪⎨⎪⎩
[

x−a
N

]−n

Γ(−n)

N−1∑
j=0

Γ(j − n)
Γ(j + 1)

f
(

x − j [x − a]
N

)⎫⎪⎬⎪⎭ . (13.41)

In this equation, n takes integer values of both signs.

13.2 Differintegrals

13.2.1 Grünwald’s Definition of Differintegrals

Considering that the gamma function in the above formula is valid for all
n, we obtain the most general and basic definition of differintegral given by
Grünwald, also called the Grünwald–Letnikov definition, as

dqf
[d(x − a)]q = lim

N→∞

⎧⎪⎨⎪⎩
[

x−a
N

]−q

Γ(−q)

N−1∑
j=0

Γ(j − q)
Γ(j + 1)

f
(

x − j
[x − a

N

])⎫⎪⎬⎪⎭ . (13.42)

In this expression q can take all values. A major advantage of this definition is
that the differintegral is found by using only the values of the function with-
out the need for its derivatives or integrals. On the other hand, evaluation of
the infinite series could pose practical problems in applications. In this formula
even though the gamma function, Γ(−q), is infinite for the positive integer val-
ues of q, their ratio, Γ(j − q)∕Γ(−q), is finite.

We now show that for a positive integer n and for all q values the following
relation is true:

dn

dxn
dqf

[d(x − a)]q =
dn+qf

[d(x − a)]n+q , n ≥ 0. (13.43)
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Using 𝛿N x = [x − a]∕N , we can write

dqf
[d(x − a)]q = lim

N→∞

{
[𝛿N x]−q

Γ(−q)

N−1∑
j=0

Γ(j − q)
Γ(j + 1)

f (x − j𝛿N x)

}
. (13.44)

If we further divide the interval a ≤ x′ ≤ x − 𝛿N x into N − 1 equal pieces we
can write

dqf
[d(x − a)]q (x − 𝛿N x)

= lim
N→∞

{
[𝛿N x]−q

Γ(−q)

N−2∑
j=0

Γ(j − q)
Γ(j + 1)

f (x − 𝛿N x − j𝛿N x)

}
(13.45)

= lim
N→∞

{
[𝛿N x]−q

Γ(−q)

N−1∑
j=1

Γ(j − q − 1)
Γ(j)

f (x − j𝛿N x)

}
. (13.46)

Taking the derivative of Eq. (13.44) and using Eq. (13.46) gives

d
dx

dqf
[d(x − a)]q

= lim
N→∞

{
[𝛿N x]−1

[
dqf

[d(x − a)]q (x) −
dqf

[d(x − a)]q (x − 𝛿N x)
]}

(13.47)

= lim
N→∞

{
[𝛿N x]−q−1

Γ(−q)

[
Γ(−q)f (x) +

N−1∑
j=1

{
Γ(j − q)
Γ(j + 1)

−
Γ(j − q − 1)

Γ(j)

}
f (x − j𝛿N x)

]}
.

(13.48)

We now use the following relation among gamma functions:

Γ(j − q)
Γ(j + 1)

−
Γ(j − q − 1)

Γ(j)
=

Γ(−q)
Γ(−q − 1)

Γ(j − q − 1)
Γ(j + 1)

, (13.49)

to write Eq. (13.48) as

d
dx

dqf
[d(x − a)]q = lim

N→∞

{
[𝛿N x]−q−1

Γ(−q − 1)

[N−1∑
j=0

Γ(j − q − 1)
Γ(j + 1)

f (x − j𝛿N x)

]}
(13.50)

=
dq+1f

[d(x − a)]q+1 . (13.51)

The general formula can be shown by assuming this to be true for (n − 1) and
then showing it for n.
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13.2.2 Riemann–Liouville Definition of Differintegrals

Another commonly used definition of the differintegral is given by Riemann
and Liouville. Assume that the following integral is given:

In(x) = ∫
x

a
(x − 𝜉)n−1f (𝜉)d𝜉, (13.52)

where n is an integer greater than zero and a is a constant. Using the formula

d
dx ∫

B(x)

A(x)
F(x, 𝜉)d𝜉 = ∫

B(x)

A(x)

𝜕F(x, 𝜉)
𝜕x

d𝜉 + F(x,B(x))dB(x)
dx

− F(x,A(x))dA(x)
dx

,

(13.53)

we find the derivative of In as
dIn

dx
= (n − 1)∫

x

a
(x − 𝜉)n−2f (𝜉)d𝜉 + [(x − 𝜉)n−1f (𝜉)]𝜉=x. (13.54)

For n > 1 this gives us
dIn

dx
= (n − 1)In−1 (13.55)

and for n = 1
dI1

dx
= f (x). (13.56)

Differentiating Eq. (13.54) k times we find

dkIn

dxk
= (n − 1)(n − 2) · · · (n − k)In−k , (13.57)

which gives us

dn−1In

dxn−1 = (n − 1)!I1(x), (13.58)

or
dnIn

dxn = (n − 1)!f (x). (13.59)

Using the fact that In(a) = 0 for n ≥ 1, from Eqs. (13.58) and (13.59) we see that
In(x) and all of its (n − 1) derivatives evaluated at x = a are zero. This gives us

I1(x) = ∫
x

a
f (x1)dx1, (13.60)

I2(x) = ∫
x

a
I1(x2)dx2 = ∫

x

a ∫
x2

a
f (x1)dx1dx2, (13.61)

⋮ (13.62)
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In(x) = (n − 1)!∫
x

a ∫
xn

a
· · ·∫

x3

a ∫
x2

a
f (x1)dx1dx2 · · · dxn−1dxn. (13.63)

From these equations, we obtain a very useful formula also known as the
Cauchy formula:

∫
x

a ∫
xn

a
· · ·∫

x3

a ∫
x2

a
f (x1)dx1 · · · dxn−1dxn = 1

(n − 1)! ∫
x

a
(x − 𝜉)n−1f (𝜉)d𝜉.

(13.64)

To obtain the Riemann–Liouville definition of the differintegral, we write the
above equation for all q < 0 as[

dqf
[d(x − a)]q

]
R−L

= 1
Γ(−q) ∫

x

a

[
x − x′]−q−1f (x′)dx′, q < 0. (13.65)

However, this formula is valid only for the q < 0 values. In this definition, [..]R−L
denotes the fact that differintegral is being evaluated by the Riemann–Liouville
definition. Later, when we show that this definition agrees with the Grünwald
definition for all q, we drop the subscript.

We first show that for q < 0 and for a finite function f (x) in the interval
a ≤ x′ ≤ x, the two definitions agree. We now calculate the difference between
the two definitions as

Δ =
dqf

[d(x − a)]q −
[

dqf
[d(x − a)]q

]
R−L

. (13.66)

Using the definitions in Eqs. (13.42) and (13.65), and changing the range of the
integral, we write Δ as

Δ = lim
N→∞

{
[𝛿N x]−q

Γ(−q)

N−1∑
j=0

Γ(j − q)
Γ(j + 1)

f (x − j𝛿N x)

}
− 1

Γ(−q) ∫
x−a

0

f (x − x′)
x′1+q dx′.

(13.67)

We write the integral in the second term as a Riemann sum to get

Δ = lim
N→∞

{
[𝛿N x]−q

Γ(−q)

N−1∑
j=0

Γ(j − q)
Γ(j + 1)

f (x − j𝛿N x)

}

− lim
N→∞

{N−1∑
j=0

f (x − j𝛿N x)𝛿N x
Γ(−q)[j𝛿N x]1+q

}
. (13.68)
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Taking 𝛿N x = (x − a)∕N , this becomes

Δ = lim
N→∞

{
[𝛿N x]−q

Γ(−q)

N−1∑
j=0

f (x − j𝛿N x)
[
Γ(j − q)
Γ(j + 1)

− j−1−q
]}

(13.69)

= [x − a]−q

Γ(−q)
lim

N→∞

N−1∑
j=0

f
(

Nx − jx + ja
N

)
Nq

[
Γ(j − q)
Γ(j + 1)

− j−1−q
]
. (13.70)

We now write the sum on the right-hand side as two terms, the first from 0 to
(j − 1) and the other from j to (n − 1). Also, assuming that j is sufficiently large
so that we can use the approximation

Γ(j − q)∕Γ(j + 1) ≃ j−1−q[1 + q(q + 1)∕2j + 0(j−2)], (13.71)
we obtain

Δ = [x − a]−q

Γ(−q)
lim

N→∞

{ J−1∑
j=0

f
(

Nx − jx + ja
N

)
Nq

[
Γ(j − q)
Γ(j + 1)

− j−1−q
]}

(13.72)

+ [x − a]−q

Γ(−q)
lim

N→∞

{
1
N

N−1∑
j=J

f
(

Nx − jx + ja
N

)[
j

N

]−2−q [q(q + 1)
2N

+
0(j−1)

N

]}
.

In the first sum, for q < −1, the quantity inside the parentheses is finite and
in the limit as N → ∞, because of the Nq factor going to zero. Similarly, for
q ≤ −2, the second term also goes to zero as N → ∞. Thus, we have shown
that in the interval a ≤ x′ ≤ x, for a finite function f (x) and for q ≤ −2, the two
definitions agree:

dqf
[d(x − a)]q =

[
dqf

[d(x − a)]q

]
R−L

, q ≤ −2. (13.73)

To see that the Riemann–Liouville definition agrees with the Grünwald def-
inition [Eq. (13.42)] for all q, as in the Grünwald definition, we require the
Riemann–Liouville definition to satisfy Eq. (13.43):[

dqf
[d(x − a)]q

]
R−L

= dn

dxn

[
dq−nf

[d(x − a)]q−n

]
R−L

. (13.74)

In the above formula, for a given q, if we choose n as q − n ≤ −2 and use
Eq. (13.73) to write[

dqf
[d(x − a)]q

]
R−L

= dn

dxn

[
dq−nf

[d(x − a)]q−n

]
, (13.75)

we see that the Grünwald definition and the Riemann–Liouville definition
agree with each other for all q values:[

dqf
[d(x − a)]q

]
R−L

=
[

dqf
[d(x − a)]q

]
. (13.76)

We can now drop the subscript R − L.
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Riemann–Liouville definition:

For q < 0, the differintegral is evaluated by using the formula[
dqf

[d(x − a)]q

]
= 1

Γ(−q) ∫
x

a
[x − x′]−q−1f (x′)dx′, q < 0. (13.77)

For q ≥ 0, we use[
dqf

[d(x − a)]q

]
= dn

dxn

[
1

Γ(n − q) ∫
x

a
[x − x′]−(q−n)−1f (x′)dx′

]
, q ≥ 0,

(13.78)

where the integer n must be chosen such that (q − n) < 0.
The Riemann–Liouville definition has found widespread application. In this

definition the integral in Eq. (13.77) is convergent only for the q < 0 values.
However, for the q ≥ 0 values the problem is circumvented by imposing
the condition n > q in Eq. (13.78). The fact that we have to evaluate an
n-fold derivative of an integral somewhat reduces the practicality of the
Riemann–Liouville definition for the q ≥ 0 values.

13.3 Other Definitions of Differintegrals

The Grünwald and Riemann–Liouville definitions are the most basic defini-
tions of differintegral, and they have been used widely. In addition to these,
we can also define differintegral via the Cauchy integral formula and also by
using integral transforms. Even though these definitions are not as useful as
the Grünwald and Riemann–Liouville definitions, they are worth discussing to
show that other definitions are possible and when they are implemented prop-
erly, they agree with the basic definitions. Sometimes fractional derivatives and
fractional integrals are treated separately. However, their unification as the “dif-
ferintegral” brings the two notions closer than one usually assumes and avoids
confusion between different definitions.

13.3.1 Cauchy Integral Formula

We have seen that for a function f (z) analytic on and inside a closed contour C,
the nth derivative is given as

dnf (z)
dzn = n!

2𝜋i∮C

f (z′)dz′

(z′ − z)n+1 , n ≥ 0 and integer, (13.79)
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z-Plane

C

z

Figure 13.1 Contour C for the Cauchy integral formula.

where z′ denotes a point on the contour C and z is a point inside C (Figure 13.1).
We rewrite this formula for an arbitrary q and take z as a point on the real axis:

dqf (x)
dxq =

Γ(q + 1)
2𝜋i ∮C

f (z′)dz′

(z′ − x)q+1 . (13.80)

For the path shown in Figure 13.1, this formula is valid only for the positive
integer values of q. For the negative integer values of q it is not defined because
Γ(q + 1) diverges. However, it can still be used to define differintegrals for the
negative but different than integer values of q. Now, x is a branch point; hence
we have to be careful with the direction of the cut line. Thus, our path is no
longer as shown in Figure 13.1. We choose our cut line along the real axis and to
the left of our branch point. We now modify the contour as shown in Figure 13.2
and write our definition of differintegral for the negative, noninteger values of
q as

dqf (x)
dxq =

Γ(q + 1)
2𝜋i ∮C

f (z′)dz′

(z′ − x)q+1 , q < 0 and ≠ integer. (13.81)

The integral is evaluated over the contour C in the limit as the radius goes to
infinity.

Evaluating the integral in Eq. (13.81), as it stands, is not easy. Thus, we modify
our contour to C′ as shown in Figure 13.3. Since the function

f (z′)
(z′ − x)q+1 (13.82)
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R

x

C

z-Plane

Figure 13.2 Contour C in the differintegral formula.

z-Plane

C0

C

L1

L2
x

Figure 13.3 Contour C′ = C + C0 + L1 + L2 in the differintegral formula.
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z-Plane
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L2
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θ

Figure 13.4 Contours for the ∮
←L1

, ∮
→L2

, and ∮C0
integrals.

is analytic within and on the closed contour C′, we can write

∮C′

f (z′)dz′

(z′ − x)q+1 = 0, (13.83)

where the contour C′ has the parts ↻ C′ =↻ C+ ↺ C0+ ← L1+ → L2. We see
that the integral we need to evaluate in Eq. (13.81) is equal to the negative of
the integral (Figure 13.4)

∮↺C0+←L1+→L2

f (z′)dz′

(z′ − x)q+1 . (13.84)

Part of the integral over C0 is taken in the limit as the radius of the contour
goes to zero. For a point on the contour, we write z′ − x = 𝛿0ei𝜃. Thus, for q < 0
and noninteger, we can write

lim
𝛿0→0 ∮C0

f (z′)
𝛿0iei𝜃d𝜃

𝛿
q+1
0 ei(q+1)𝜃

= lim
𝛿0→0

f (x)i𝛿−qi
0 ∫

𝜋

−𝜋
e−iq𝜃d𝜃, (13.85)

which goes to zero in the limit 𝛿0 → 0. For the C0 integral to be zero in the limit
𝛿0 → 0, we have taken q as negative. Using this result, we can write the integral
in Eq. (13.81) as

∮C

f (z′)dz′

(z′ − x)q+1 = −
[
∮←L1

f (z′)dz′

(z′ − x)q+1 + ∮→L2

f (z′)dz′

(z′ − x)q+1

]
(13.86)

=
[
∮→L1

f (z′)dz′

(z′ − x)q+1 − ∮→L2

f (z′)dz′

(z′ − x)q+1

]
. (13.87)
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Now we have to evaluate the integral
[∮

→L1
− ∮

→L2

]
. We first evaluate the part

for [−∞, 0], which gives zero as 𝜀 → 0:

∫
0

−∞

f (𝛿ei(𝜋−𝜀))d𝛿ei(𝜋−𝜀)

(𝛿ei(𝜋−𝜀) − x)q+1 − ∫
0

−∞

f (𝛿ei(𝜋+𝜀))d𝛿ei(𝜋+𝜀)

(𝛿ei(𝜋+𝜀) − x)q+1

=
[
ei(𝜋−𝜀) − ei(𝜋+𝜀)]∫ 0

−∞

f (𝛿ei(𝜋−𝜀))d𝛿
(−𝛿 − x)q+1 (13.88)

= lim
𝜀→0

[
ei(𝜋−𝜀) − ei(𝜋+𝜀)]∫ 0

−∞

f (𝛿ei(𝜋−𝜀))d𝛿
(−𝛿 − x)q+1 = 0. (13.89)

Writing the remaining part of the integral we get

∮C

f (z′)dz′

(z′ − x)q+1 = lim
𝛿0,𝜀→0

[
∫

x

0

f (𝛿ei𝜀)ei𝜀d𝛿
(𝛿 − x)q+1ei(q+1)𝜀 − ∫

x

0

f (𝛿ei(2𝜋−𝜀)ei(2𝜋−𝜀)d𝛿
(𝛿 − x)q+1ei(q+1)(2𝜋−𝜀)

]
.

(13.90)

After taking the limit, 𝛿0 → 0 and 𝜀 → 0, we substitute this into the definition
[Eq. (13.81)] to obtain

dqf (x)
dxq =

Γ(q + 1)
2𝜋i

[
1 − e−i(q+1)2𝜋]∫ x

0

f (𝛿)d𝛿
(𝛿 − x)q+1 , q < 0 and noninteger,

(13.91)

which after simplification becomes

dqf (x)
dxq =

Γ(q + 1)
2𝜋i

[
2i sin(𝜋q)

]
(−1)q ∫

x

0

f (𝛿)d𝛿
(𝛿 − x)q+1 (13.92)

= −
Γ(q + 1)

𝜋

[
sin(𝜋q)

]
∫

x

0

f (𝛿)d𝛿
(x − 𝛿)q+1 . (13.93)

To see that this agrees with the Riemann–Liouville definition, we use the fol-
lowing relation of the gamma function:

Γ(−q) =
−𝜋 csc(𝜋q)
Γ(q + 1)

, (13.94)

and write

dqf (x)
dxq = 1

Γ(−q) ∫
x

0

f (𝛿)d𝛿
(x − 𝛿)q+1 , q < 0 and noninteger. (13.95)

This is nothing but the Riemann–Liouville definition. Using Eq. (13.78), we can
extend this definition to positive values of q.
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13.3.2 Riemann Formula

We now evaluate the differintegral of f (x) = xp, which is very useful in writing
the differintegrals of functions with Taylor series. Using Eq. (13.92), we write

dqxp

dxq =
Γ(q + 1)

𝜋
sin(𝜋q)(−1)q ∫

x

0

𝛿p d𝛿
(𝛿 − x)q+1 , (13.96)

dqxp

dxq =
Γ(q + 1)

𝜋
sin(𝜋q)(−1)q ∫

x

0

𝛿p d𝛿
xq+1

(
𝛿

x
− 1

)q+1 . (13.97)

We define 𝛿∕x = s so that Eq. (13.97) becomes

dqxp

dxq = −
Γ(q + 1)

𝜋
sin(𝜋q)xp−q ∫

1

0

sp ds
(1 − s)q+1 . (13.98)

Remembering the definition of the beta function:

B(p, q) = ∫
1

0
y p−1[1 − y]q−1dy, p > 0, q > 0, (13.99)

we can write Eq. (13.98) as

dqxp

dxq = −
Γ(q + 1)

𝜋
sin(𝜋q)xp−qB(p + 1,−q). (13.100)

Also using Eq. (13.94) and the relation between the beta and the gamma
functions:

B(p + 1,−q) =
Γ(p + 1)Γ(−q)
Γ(p + 1 − q)

, (13.101)

we obtain the result as
dqxp

dxq =
Γ(p + 1)xp−q

Γ(p + 1 − q)
, p > −1, q < 0. (13.102)

Limits on the parameters p and q follow from the conditions of convergence
for the beta integral.

For q ≥ 0, as in the Riemann–Liouville definition, we write

dqxp

dxq = dn

dxn

[
dq−nxp

dxq−n

]
(13.103)

and choose the integer n as q − n < 0. We now evaluate the differintegral inside
the square brackets using Eq. (13.78) as

dqxp

dxq = dn

dxn

[
Γ(p + 1)xp−q+n

Γ(p − q + n + 1)

]
(13.104)

=
Γ(p + 1)xp−q

Γ(p − q + 1)
, q ≥ 0. (13.105)
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Combining this with the result in Eq. (13.102) we obtain a formula valid for all
q as

dqxp

dxq =
Γ(p + 1)xp−q

Γ(p − q + 1)
, p > −1. (13.106)

This formula is also known as the Riemann formula. It is a generalization of
the formula

dnxm

dxn = m!
(m − n)!

xm−n, (13.107)

for p > −1, where m and n are positive integers. For p ≤ −1, the beta function
is divergent, hence a generalization valid for all p values is yet to be found.

13.3.3 Differintegrals via Laplace Transforms

For q < 0, we can define differintegrals by using Laplace transforms as
dqf
dxq = £−1[sqf̃ (s)], q < 0, (13.108)

where f̃ (s) is the Laplace transform of f (x). To show that this agrees with the
Riemann–Liouville definition, we make use of the convolution theorem:

£∫
x

0
f (u)g(x − u)du = f̃ (s)g̃(s) (13.109)

and take g(x) as g(x) = 1∕xq+1, where its Laplace transform is

g̃(s) = ∫
∞

0
e−sx dx

xq+1 = Γ(−q)sq. (13.110)

Using the Laplace transform of f (x):

f̃ (s) = ∫
∞

0
e−sxf (x)dx, (13.111)

in Eq. (13.108), we write[
dqf
dxq

]
L
= £−1[sqf̃ (s)], q < 0, (13.112)[

dqf
dxq

]
L
= 1

Γ(−q) ∫
x

0

f (𝜏)d𝜏
(x − 𝜏)q+1 , (13.113)[

dqf
dxq

]
L
=

[
dqf
dxq

]
R−L

, q < 0. (13.114)

The subscripts L and R − L denote the method used in evaluating the differin-
tegral. Thus, the two methods agree for q < 0.
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For q > 0, the differintegral definition by the Laplace transforms is given as
(Section 13.6.1)[

dqf
dxq

]
L
= £−1

[
sqf̃ (s) −

n−1∑
k=0

sk dq−1−kf
dxq−1−k

(0)

]
, q > 0, (13.115)

or as [
dqf
dxq

]
L
= £−1

[
sqf̃ (s) −

dq−1f
dxq−1 (0) − · · · − sn−1 dq−nf

dxq−n (0)
]
. (13.116)

In this definition, q > 0 and the integer n must be chosen such that the inequal-
ity n − 1 < q ≤ n is satisfied. The differintegrals on the right-hand side are all
evaluated via the L method. To show that the methods agree we write

A(x) = 1
Γ(n − q) ∫

x

0

f (𝜏)d𝜏
(x − 𝜏)q−n+1 , q < n, (13.117)

and use the convolution theorem to find its Laplace transform as

Ã(s) = £
[

1
Γ(n − q) ∫

x

0

f (𝜏)d𝜏
(x − 𝜏)q−n+1

]
= sq−nf̃ (s), q − n < 0.

(13.118)

This gives us the relation sqf̃ (s) = snÃ(s). Using the Riemann–Liouville defini-
tion [Eqs. (13.77)–(13.78)], we can write

A(0) =
[

d(q−n)f
dx(q−n) (0)

]
R−L

. (13.119)

Since q − n < 0 and because of Eq. (13.114), we can write

A(0) =
[

d(q−n)f
dx(q−n) (0)

]
L
. (13.120)

From the definition of A(x), we can also write

A(x) = 1
Γ(n − q) ∫

x

0

f (𝜏)d𝜏
(x − 𝜏)q−n+1 , q − n < 0, (13.121)

=
[

d(q−n)f (x)
dx(q−n)

]
R−L

=
[

d(q−n)f (x)
dx(q−n)

]
L
. (13.122)

As in the Grünwald and Riemann–Liouville definitions we assume that the [..]L
definition also satisfies the relation [Eq. (13.43)]

dn

dxn
dqf (x)

dxq =
dn+qf (x)

dxn+q , (13.123)

where n a is positive integer and q takes all values. We can now write
dn−1A(x)

dxn−1 = dn−1

dxn−1

[
dq−nf (x)

dxq−n

]
L
=

[
dq−1f (x)

dxq−1

]
L
, (13.124)
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which gives[
dq−1f (0)

dxq−1

]
L
=

[
dn−1A(0)

dxn−1

]
. (13.125)

Similarly, we find the other terms in Eq. (13.116) to write[
dqf
dxq

]
L
= £−1

[
snÃ(s) − dn−1A

dxn−1 (0) − · · · − sn−1A(0)
]

(13.126)

= £−1
[

snÃ(s) − sn−1A(0) − · · · − dn−1A
dxn−1 (0)

]
(13.127)

= £−1
[

£
[

dnA
dxn

]
R−L

]
=

[
dnA
dxn

]
R−L

. (13.128)

Using Eq. (13.117), we can now write[
dqf
dxq

]
L
= dn

dxn

[
1

Γ(n − q) ∫
x

0

f (𝜏)d𝜏
(x − 𝜏)q−n+1

]
(13.129)

= 1
Γ(n − q)

dn

dxn ∫
x

0

f (𝜏)d𝜏
(x − 𝜏)q−n+1 , n > q, (13.130)

=
[

dqf
dxq

]
R−L

, q > 0, (13.131)

which shows that also for q > 0, both definitions agree.
In Eq. (13.116), if the function f (x) satisfies the boundary conditions

dq−1f
dxq−1 (0) = · · · =

dq−nf
dxq−n (0) = 0, q > 0, (13.132)

we can write a differintegral definition valid for all q values via the Laplace
transform as[

dqf
dxq

]
L
= £−1[sqf̃ (s)]. (13.133)

However, because the boundary conditions [Eq. (13.132)] involve fractional
derivatives, this will create problems in interpretation and application.

13.4 Properties of Differintegrals

In this section, we introduce the basic properties of differintegrals. These prop-
erties are also useful in generating new differintegrals from the known ones.
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13.4.1 Linearity

We express the linearity of differintegrals as
dq[f1 + f2]
[d(x − a)]q =

dqf1

[d(x − a)]q +
dqf2

[d(x − a)]q . (13.134)

13.4.2 Homogeneity

Homogeneity of differintegrals is expressed as
dq(C0f )

[d(x − a)]q = C0
dqf

[d(x − a)]q , C0 is any constant. (13.135)

Both of these properties could easily be seen from the Grünwald definition
[Eq. (13.42)].

13.4.3 Scale Transformations

We express the scale transformation of a function with respect to the lower
limit, a, as f (x) → f (𝛾x − 𝛾a + a), where 𝛾 is a constant scale factor. If the lower
limit is zero, this means that f (x) → f (𝛾x). If the lower limit differs from zero,
the scale change is given as

dqf (𝛾X)
[d(x − a)]q = 𝛾q dqf (𝛾X)

[d(𝛾X − a)]q , X = x + [a − a𝛾]∕𝛾. (13.136)

This formula is most useful when a is zero:
dqf (𝛾x)
[dx]q = 𝛾q dqf (𝛾x)

[d(𝛾x)]q . (13.137)

13.4.4 Differintegral of a Series

Using the linearity of the differintegral operator, we can find the differintegral
of a uniformly convergent series for all q values as

dq

[d(x − a)]q

∞∑
j=0

fj(x) =
∞∑

j=0

dqfj

[d(x − a)]q . (13.138)

Differintegrated series are also uniformly convergent in the same interval. For
functions with power series expansions, using the Riemann formula we can
write

dq

[d(x − a)]q

∞∑
j=0

ai[x − a]p+ ( j∕n) =
∞∑

j=0
aj

Γ
(

pn+ j+ n
n

)
Γ
(

pn− qn+ j+ n
n

) [x − a]p−q+ ( j∕n),

(13.139)
where q can take any value, but p + ( j∕n) > −1, a0 ≠ 0, and n is a positive
integer.
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13.4.5 Composition of Differintegrals

When working with differintegrals one always has to remember that operations
like

dqdQ = dQdq, (13.140)
dqdQ = dq+Q, (13.141)

dqf = g → f = d−qg (13.142)

are valid only under certain conditions. In these operations problems are not
just restricted to the noninteger values of q and Q.

When n and N are positive integer numbers, from the properties of deriva-
tives and integrals we can write

dn

[d(x − a)]n

{
dN f

[d(x − a)]N

}
=

dn+N f
[d(x − a)]n+N = dN

[d(x − a)]N

{
dnf

[d(x − a)]n

}
(13.143)

and
d−n

[d(x − a)]−n

{
d−N f

[d(x − a)]−N

}
=

d−n−N f
[d(x − a)]−n−N

= d−N

[d(x − a)]−N

{
d−nf

[d(x − a)]−n

}
. (13.144)

However, if we look at the operation

d±n

[d(x − a)]±n

{
d∓N f

[d(x − a)]∓N

}
, (13.145)

the result is not always

d±n∓N f
[d(x − a)]±n∓N . (13.146)

Assume that the function f (x) has continuous Nth-order derivative in the
interval [a, b] and let us take the integral of this Nth-order derivative as

∫
x

a
f (N)(x1)dx1 = f (N−1)(x)|x

a = f (N−1)(x) − f (N−1)(a). (13.147)

We integrate this once more:

∫
x

a

(
∫

x2

a
f (N)(x1)dx1

)
dx2

= ∫
x

a

[
f (N−1)(x) − f (N−1)(a)

]
dx (13.148)

= f (N−2)(x) − f (N−2)(a) − (x − a)f (N−1)(a) (13.149)
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and repeat the process n times to get

∫
x

a
· · ·∫

x

a
f (N)(x)(dx)n = f (N−n)(x) − f (N−n)(a) − (x − a)f (N−n+1)(a)

− (x − a)2

2!
f (N−n+2) (a) (13.150)

· · · − (x − a)n−1

(n − 1)!
f (N−1)(a).

Since
d−n

[d(x − a)]−n

{
dN f

[d(x − a)]N

}
= ∫

x

a
· · ·∫

x

a
f (N)(x)(dx)n, (13.151)

we write

d−n

[d(x − a)]−n

{
dN f

[d(x − a)]N

}
= f (N−n)(x) −

n−1∑
k=0

[x − a]k

k!
f (N+k−n)(a).

(13.152)
Writing Eq. (13.152) for N = 0 gives us

d−nf
[d(x − a)]−n = f (−n)(x) −

n−1∑
k=0

[x − a]k

k!
f (k−n)(a). (13.153)

We differentiate this to get

d
dx

{
d−nf

[d(x − a)]−n

}
= f (1−n)(x) −

n−1∑
k=1

[x − a]k−1

(k − 1)!
f (k−n)(a). (13.154)

After N-fold differentiation we obtain

dN

dxN

{
d−nf

[d(x − a)]−n

}
= f (N−n)(x) −

n−1∑
k=N

[x − a]k−N

(k − N)!
f (k−n)(a). (13.155)

For N ≥ n, remembering that differentiation does not depend on the lower limit
and also observing that in this case the summation in Eq. (13.155) is empty, we
write

dN

[d(x − a)]N

{
d−nf

[d(x − a)]−n

}
=

dN−nf
[d(x − a)]N−n = f (N−n)(x). (13.156)

On the other hand, for N < n, we use Eq. (13.153) to write

dN−nf
[d(x − a)]N−n = f (N−n)(x) −

n−N−1∑
k=0

[x − a]k

k!
f (k+N−n)(a). (13.157)

This equation also contains Eq. (13.156). In Eq. (13.155) we now make the trans-
formation

k → k + N (13.158)
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to write

dN

[d(x − a)]N

{
d−nf

[d(x − a)]−n

}
= f (N−n)(x) −

n−N−1∑
k=0

[x − a]k

k!
f (k+N−n)(a).

(13.159)

Because the right-hand sides of Eqs. (13.159) and (13.157) are identical, we
obtain the composition rule for n successive integrations followed by N dif-
ferentiations as

dN

[d(x − a)]N

{
d−nf

[d(x − a)]−n

}
=

dN−nf
[d(x − a)]N−n . (13.160)

To find the composition rule for the cases where the differentiations are per-
formed before the integrations, we turn to Eq. (13.152) and write the sum in
two pieces as

d−n

[d(x − a)]−n

{
dN f

[d(x − a)]N

}
= f (N−n)(x) −

n−N−1∑
k=0

[x − a]k

k!
f (N+k−n)(a)

−
n−1∑

k=n−N

[x − a]k

k!
f (N+k−n)(a). (13.161)

Comparing this with Eq. (13.157), we now obtain the composition rule for the
cases where N-fold differentiation is performed before n successive integra-
tions as

d−n

[d(x − a)]−n

{
dN f

[d(x − a)]N

}
=

dN−nf
[d(x − a)]N−n −

n−1∑
k=n−N

[x − a]k

k!
f (N+k−n)(a).

(13.162)

Example 13.1 Composition of differintegrals
For the function f (x) = e−3x, we first calculate the derivative

d
[dx]

{
d−3f (x)
[dx]−3

}
. (13.163)

Using Eqs. (13.160) and (13.153), we find

d
[dx]

{
d−3f (x)
[dx]−3

}
=

d−2f (x)
[dx]−2 = e−3x

9
+ x

3
− 1

9
. (13.164)
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On the other hand, for the case where the order of the operators are reversed:

d−3

[dx]−3

{
df (x)
[dx]

}
, (13.165)

we use Eq. (13.162). Since N = 1 and n = 3, k takes only the value 2, thus giving

d−3

[dx]−3

{
df (x)
[dx]

}
= e−3x

9
+ x

3
− 1

9
− x2

2
, (13.166)

which is different from Eq. (13.164)

13.4.5.1 Composition Rule for General q and Q
When q and Q take any value, composition of differintegrals as

dq

[d(x − a)]q

[
dQf

[d(x − a)]Q

]
=

dq+Qf
[d(x − a)]q+Q (13.167)

is possible only under certain conditions. It is needless to say that we assume
all the required differintegrals exist. Assuming that a series expansion for f (x)
can be given as

f (x) =
∞∑

j=0
aj[x − a]p+j, p is a noninteger such that p + j > −1,

(13.168)

it can be shown that the composition rule [Eq. (13.167)] is valid only for func-
tions satisfying the condition

f (x) − d−Q

[d(x − a)]−Q

[
dQf

[d(x − a)]Q

]
= 0. (13.169)

In general, for functions that can be expanded as in Eq. (13.168), differintegrals
are composed as [15]

dq

[d(x − a)]q

[
dQf

[d(x − a)]Q

]
=

dq+Qf
[d(x − a)]q+Q − dq+Q

[d(x − a)]q+Q

{
f − d−Q

[d(x − a)]−Q

[
dQf

[d(x − a)]Q

]}
.

(13.170)

For such functions, violation of the condition in Eq. (13.169) can be shown to
result from the fact that dQf

[d(x−a)]Q vanishes even though f (x) is different from
zero. From here we see that, even though the operators dQ

[d(x−a)]Q and d−Q

[d(x−a)]−Q

are in general inverses of each other, this is not always true.
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In practice it is difficult to apply the composition rule as given in Eq. (13.170).
Because the violation of Eq. (13.169) is equivalent to the vanishing of the deriva-
tive dQf (x)

[dx]Q , let us first write the differintegral of f (x) as

dQf (x)
[dx]Q =

∞∑
j=0

aj
dQxp+j

[dx]Q =
∞∑

j=0
aj
Γ(p + j + 1)xp+j−Q

Γ(p + j − Q + 1)
, (13.171)

where for simplicity we have set a = 0. Because the condition p + j > −1, or
p > −1, the gamma function in the numerator is always different from zero
and finite. For the Q < p + 1 values, the gamma function in the denominator is
always finite; thus the condition in Eq. (13.169) is satisfied. For the remaining
cases, the condition in Eq. (13.169) is violated. We now check the equivalent
condition dQf (x)

[dx]Q = 0, to identify the terms responsible for the violation of con-
dition in Eq. (13.169). For the derivative dQf (x)

[dx]Q to vanish, from Eq. (13.171) it is
seen that the gamma function in the denominator must diverge for all aj ≠ 0,
that is,

p + j − Q + 1 = 0,−1,−2,… . (13.172)
For a given p (> −1) and positive Q, j will eventually make (p − Q + j + 1) pos-
itive; therefore, we can write

p + j = Q − 1,Q − 2,… ,Q − m, (13.173)
where m is an integer satisfying

0 < Q < m < Q + 1. (13.174)
For the j values that make (p − Q + j + 1) positive, the gamma function in the
denominator is finite, and the corresponding terms in the series satisfy the con-
dition in Eq. (13.169). Thus, the problem is located to the terms with the j values
satisfying Eq. (13.173). Now, in general for an arbitrary diffferintegrable func-
tion we can write the expression

f (x) − d−Q

[dx]−Q

[
dQf
[dx]Q

]
= c0xQ−1 + c1xQ−2 + · · · + cmxQ−m, (13.175)

where c1, c2,… , cm are arbitrary constants. Note that the right-hand side of
Eq. (13.175) is exactly composed of the terms that vanish when dQf (x)

[dx]Q ≠ 0, that
is, when Eq. (13.169) is satisfied. This formula, which is very useful in finding
solutions of extraordinary differential equations can now be used in Eq. (13.170)
to compose differintegrals.

Another useful formula is obtained when Q takes integer values N in
Eq. (13.170). We apply the composition rule [Eq. (13.170)] with Eq. (13.152)
written for n = N , and use the generalization of the Riemann formula:

dq(x − a)p

[d(x − a)]q =
Γ(p + 1)(x − a)p−q

Γ(p − q + 1)
, p > −1, (13.176)
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to obtain
dq

[d(x − a)]q

[
dN f

[d(x − a)]N

]
=

dq+N f
[d(x − a)]q+N − dq+N

[d(x − a)]q+N

{
f − d−N

[d(x − a)]−N

[
dN f

[d(x − a)]N

]}
(13.177)

=
dq+N f

[d(x − a)]q+N −
N−1∑
k=0

[x − a]k−q−N f (k)(a)
Γ(k − q − N + 1)

. (13.178)

Example 13.2 Composition of differintegrals
We now consider the function f (x) = x−1∕2 for the values a = 0, Q = 1∕2,
q = −1∕2. Since the condition in Eq. (13.169) is not satisfied, that is,

x−1∕2 − d− 1
2

[dx]−
1
2

[
d

1
2 x−1∕2

[dx]
1
2

]
= x−1∕2 − d− 1

2

[dx]−
1
2

⎡⎢⎢⎢⎣
Γ
(

1
2

)
Γ(0)

x−1

⎤⎥⎥⎥⎦ = x−1∕2 − 0 ≠ 0,

(13.179)

we have to use Eq. (13.170):

d− 1
2

[dx]−
1
2

d
1
2 x−1∕2

[dx]
1
2

= d− 1
2
+ 1

2 x−1∕2

[dx]−
1
2
+ 1

2

− d− 1
2
+ 1

2

[dx]−
1
2
+ 1

2

{
x−1∕2 − d− 1

2

[dx]−
1
2

[
d

1
2 x−1∕2

[dx]
1
2

]}
.

(13.180)

Since

d
1
2 x−1∕2

[dx]
1
2

= 0,

we have

d− 1
2

[dx]−
1
2

{
d

1
2 x−1∕2

[dx]
1
2

}
= 0,

which leads to
d− 1

2

[dx]−
1
2

d
1
2 x−1∕2

[dx]
1
2

= d− 1
2
+ 1

2 x−1∕2

[dx]−
1
2
+ 1

2

− d− 1
2
+ 1

2

[dx]−
1
2
+ 1

2

(x−1∕2 − 0) (13.181)

= x−1∕2 − x−1∕2 = 0. (13.182)

Contrary to what we expect

d− 1
2

[dx]−
1
2
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is not the inverse of

d
1
2

[dx]
1
2

for x−1∕2.

Example 13.3 Inverse of differintegrals
Consider the function f (x) = x for the values Q = 2 and a = 0. Since

d2x
[dx]2 = 0

is true, contrary to our expectations we find

d−2

[dx]−2
d2x
[dx]2 = 0.

The problem is again that the function f (x) = x does not satisfy the condition
in Eq. (13.169).

13.4.6 Leibniz Rule

The differintegral of qth order of the multiplication of two functions, f (x) and
g(x), is given by the formula

dq[f (x)g(x)]
[d(x − a)]q =

∞∑
j=0

(
q
j

)
dq−jf (x)

[d(x − a)]q−j

djg(x)
[d(x − a)]j , (13.183)

where the binomial coefficients are to be calculated by replacing the factorials
with the corresponding gamma functions.

13.4.7 Right- and Left-Handed Differintegrals

The Riemann–Liouville definition of differintegral was given as

dqf (t)
[d(t − a)]q = 1

Γ(k − q)

(
d
dt

)k

∫
t

a
(t − 𝜏)k−q−1f (𝜏)d𝜏, (13.184)

where k is an integer satisfying

k = 0 for q < 0,
k − 1 < q < k for q ≥ 0. (13.185)

This is also called the right-handed Riemann–Liouville definition. If f (t) is a
function representing a dynamic process, in general t is a time-like variable. The
principle of causality justifies the usage of the right-handed derivative because
the present value of a differintegral is determined from the past values of f (t)
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starting from an initial time t = a. Similar to the advanced potentials, it is also
possible to define a left-handed Riemann–Liouville differintegral as

dqf (t)
[d(b − t)]q = 1

Γ(k − q)

(
− d

dt

)k

∫
b

t
(𝜏 − t)k−q−1f (𝜏)d𝜏, (13.186)

where k is again an integer satisfying Eq. (13.185). Even though for dynamic
processes it is difficult to interpret the left-handed definition, in general the
boundary or the initial conditions determine which definition is to be used.
It is also possible to give a left-handed version of the Grünwald definition. In
this chapter, unless otherwise stated, we confine ourselves to the right-handed
definition.

We also use the notation

0Iq
t [f (t)] =

1
Γ(q) ∫

t

0

f (𝜏)d𝜏
(t − 𝜏)1−q , q > 0, (13.187)

to generalize the fractional Riemann–Liouville integral as the right- and
left-handed Riemann–Liouville integrals, respectively, as

a+Iq
t [f (t)] =

1
Γ(q) ∫

t

a
(t − 𝜏)q−1f (𝜏)d𝜏, (13.188)

b−Iq
t [f (t)] =

1
Γ(q) ∫

b

t
(𝜏 − t)q−1f (𝜏)d𝜏, (13.189)

where a < t < b and q > 0. In applications we frequently encounter cases with
a = −∞ or b = ∞. Fractional integrals with either the lower or the upper limit is
taken as infinity are also called the Weyl fractional integral. Some authors may
reverse the definitions of the right- and the left-handed derivatives. Sometimes
a+Iq

t and b−Iq
t are also called progressive and regressive, respectively.

The right- and the left-handed Riemann–Liouville derivatives [Eq. (13.78)]
of order q > 0 are defined and shown [Eq. (13.22)] as

a+Dq
t f (t) = dn

dtn

(
a+In−q

t [f (t)]
)
, (13.190)

b−Dq
t f (t) = (−1)n dn

dtn

(
b−In−q

t [f (t)]
)
, (13.191)

where a < t < b and n > q.
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The following composition rules hold for the dn∕dtn and the a+In
t f (t) opera-

tors [Eqs. (13.160) and (13.161)]:

dn

dtn

[
a+In

t f (t)
]
= f (t), (13.192)

[
a+In

t
] dnf (t)

dtn = f (t) −
n−1∑
k=0

f (k)(a+)
k!

(t − a)k . (13.193)

The corresponding equations for the left-handed integrals are given as

dn

dtn

[
b−In

t f (t)
]
= (−1)nf (t), (13.194)

[
b−In

t
] dnf (t)

dtn = (−1)n

[
f (t) −

n−1∑
k=0

f (k)(b−)
k!

(b − t)k

]
. (13.195)

13.4.8 Dependence on the Lower Limit

We now discuss the dependence of the differintegral

dqf (x)
[d(x − a)]q

on the lower limit. For q < 0, using Eq. (13.184) we write the difference:

𝛿 =
dqf (x)

[d(x − a)]q −
dqf (x)

[d(x − b)]q , (13.196)

as

𝛿 = 1
Γ(−q) ∫

x

a
(x − 𝜏)−q−1f (𝜏)d𝜏 − 1

Γ(−q) ∫
x

b
(x − 𝜏)−q−1f (𝜏)d𝜏

(13.197)

= 1
Γ(−q) ∫

b

a
(x − 𝜏)−q−1f (𝜏)d𝜏 (13.198)

= 1
Γ(−q) ∫

b

a
(x − b + b − 𝜏)−q−1f (𝜏)d𝜏 (13.199)

= 1
Γ(−q) ∫

b

a

[ ∞∑
l=0

(
−l − q

l

)
(x − b)−q−1−l(b − 𝜏)l

]
f (𝜏)d𝜏. (13.200)

For the binomial coefficients we write(
−l − q

l

)
=

Γ(−q)
Γ(−q − l)Γ(l + 1)

(13.201)
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to obtain

𝛿 = ∫
b

a

[ ∞∑
l=0

(x − b)−q−1−l(b − 𝜏)
Γ(−q − l)Γ(l + 1)

l
]

f (𝜏)d𝜏 (13.202)

=
∞∑

l=0

[
(x − b)−q−1−l

Γ(−q − l)

] [
∫

b

a

(b − 𝜏)lf (𝜏)d𝜏
Γ(l + 1)

]
(13.203)

=
∞∑

l=0

dq+l+1[1]
[d(x − b)]q+l+1

d−l−1f (b)
[d(b − a)]−l−1 , (13.204)

=
∞∑

l=1

dq+l[1]
[d(x − b)]q+l

d−lf (b)
[d(b − a)]−l

. (13.205)

Even though we have obtained this expression for q < 0, it is also valid for all
q [15]. For q = 0, 1, 2,… , that is, for ordinary derivatives, we have 𝛿 = 0 as
expected. For q = −1, the above equation simplifies to

𝛿 =
d−1f (b)

[d(b − a)]−1 = ∫
b

a
f (𝜏)d𝜏. (13.206)

For all other values of q, 𝛿 not only depends on a and b but also on x. This is
due to the fact that the differintegral, except when it reduces to an ordinary
derivative, is a global operator and requires a knowledge of f (x) over the entire
space. This is apparent from the Riemann–Liouville definition [Eq. (13.184)],
which is given as an integral, ∫ x

a dx, and the Grünwald definition [Eq. (13.42)]
which is given as an infinite series that makes use of the values of the function
over the entire range [a, x].

13.5 Differintegrals of Some Functions

In this section, we discuss differintegrals of some selected functions. For an
extensive list and a discussion of the differintegrals of functions of mathemati-
cal physics we refer the reader to Oldham and Spanier [15].

13.5.1 Differintegral of a Constant

We first take the number 1 and find its differintegral using the Grünwald defi-
nition [Eq. (13.42)] as

dq[1]
[d(x − a)]q = lim

N→∞

{[ N
x − a

]q N−1∑
j=0

Γ(j − q)
Γ(j + 1)Γ(−q)

}
. (13.207)
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Using the properties of gamma functions:
N−1∑
j=0

Γ(j − q)∕Γ(−q)Γ(j + 1) = Γ(N − q)∕Γ(1 − q)Γ(N), (13.208)

and the limN→∞[NqΓ(N − q)∕Γ(N)] = 1, we find
dq[1]

[d(x − a)]q = [x − a]−q

Γ(1 − q)
. (13.209)

When q takes integer values, this reduces to the expected result. For an arbi-
trary constant C0, including zero, the differintegral is

dq[C0]
[d(x − a)]q = C0

dq[1]
[d(x − a)]q , (13.210)

dq[C0]
[d(x − a)]q = C0

[x − a]−q

Γ(1 − q)
. (13.211)

13.5.2 Differintegral of [x − a]

For the differintegral of [x − a], we again use Eq. (13.42) and write

dq[x − a]
[d(x − a)]q = lim

N→∞

{[ N
x − a

]q N−1∑
j=0

Γ(j − q)
Γ(−q)Γ(j + 1)

[
Nx − jx + ja

N
− a

]}
(13.212)

= [x − a]1−q lim
N→∞

[{
Nq

N−1∑
j=0

Γ(j − q)
Γ(−q)Γ(j + 1)

}
−

{
[N]q−1

N−1∑
j=0

jΓ(j − q)
Γ(−q)Γ(j + 1)

}]
.

(13.213)

In addition to the properties used in Section 13.5.1, we also use the following
relation between the gamma functions:

N−1∑
j=0

Γ(j − q)∕Γ(−q)Γ(j) = (−q)Γ(N − q)∕Γ(2 − q)Γ(N − 1), (13.214)

to obtain
dq[x − a]
[d(x − a)]q = [x − a]1−q

[
1

Γ(1 − q)
+

q
Γ(2 − q)

]
, (13.215)

dq[x − a]
[d(x − a)]q = [x − a]1−q

Γ(2 − q)
. (13.216)
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We now use the Riemann–Liouville formula to find the same differintegral.
We first write

dq[x − a]
[d(x − a)]q = 1

Γ(−q) ∫
x

a

[x′ − a]dx′

[x − x′]q+1 . (13.217)

For q < 0, we make the transformation y = x − x′ and write
dq[x − a]
[d(x − a)]q = 1

Γ(−q) ∫
x−a

a

[x − a − y]dy
yq+1 (13.218)

= 1
Γ(−q)

[
∫

x−a

a

[x − a]dy
yq+1 + ∫

x−a

a

dy
yq

]
(13.219)

= 1
Γ(−q)

[
[x − a]1−q

−q
+ [x − a]1−q

1 − q

]
(13.220)

= [x − a]1−q

[−q][1 − q]Γ(−q)
, (13.221)

which leads us to
dq[x − a]
[d(x − a)]q = [x − a]1−q

Γ(2 − q)
, q < 0. (13.222)

For the positive values of q, we use Eq. (13.43) to write:
dq[x − a]
[d(x − a)]q = dn

dxn

[
dq−n[x − a]
[d(x − a)]q−n

]
(13.223)

and choose n such that q − n < 0 is satisfied. Using the Riemann formula
[Eq. (13.106)] we write

dq−n[x − a]
[d(x − a)]q−n = Γ(2)[x − a]1−q+n

Γ(2 − q + n)
, (13.224)

which leads to the following result:
dq[x − a]
[d(x − a)]q = dn

[d(x − a)]n

[
[x − a]1−q+n

Γ(2 − q + n)

]
=

Γ(2 − q + n)
Γ(2 − q)

[x − a]1−q

Γ(2 − q + n)
,

(13.225)

dq[x − a]
[d(x − a)]q = [x − a]1−q

Γ(2 − q)
. (13.226)

This is now valid for all q.

13.5.3 Differintegral of [x − a]p (p > −1)

There is no restriction on p other than p > −1. We start with the
Riemann–Liouville definition and write

dq[x − a]p

[d(x − a)]q = 1
Γ(−q) ∫

x

a

[x′ − a]pdx′

[x − x′]q+1 , q < 0. (13.227)
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Using the transformation x′ − a = 𝑣, the above equation becomes

dq[x − a]p

[d(x − a)]q = 1
Γ(−q) ∫

x−a

0

𝑣pd𝑣
[x − a − 𝑣]q+1 . (13.228)

We now make another transformation, 𝑣 = (x − a)u, to write

dq[x − a]p

[d(x − a)]q = (x − a)p−q

Γ(−q) ∫
1

0
up(1 − u)−q−1du, q < 0. (13.229)

Using the definition of the beta function [Eq. (12.176)] and its relation with the
gamma functions [Eq. (12.174)], we finally obtain

dq[x − a]p

[d(x − a)]q = [x − a]p−q

Γ(−q)
B(p + 1,−q), (13.230)

dq[x − a]p

[d(x − a)]q =
Γ(p + 1)[x − a]p−q

Γ(p − q + 1)
, (13.231)

where q < 0 and p > −1. Actually, we could remove the restriction on q and
use Eq. (13.231) for all q. See the derivation of the Riemann formula with the
substitution x → x − a.

13.5.4 Differintegral of [1 − x]p

To find a formula valid for all p and q values we write 1 − x = 1 − a − (x − a)
and use the binomial formula to write

(1 − x)p =
∞∑

j=0

Γ(p + 1)
Γ( j + 1)Γ(p − j + 1)

(−1) j(1 − a) p−j(x − a) j. (13.232)

We now use Eq. (13.139) and the Riemann formula [Eq. (13.106)], along with
the properties of gamma and the beta functions to find

dq[1 − x]p

[d(x − a)]q = (1 − x) p−q

Γ(−q)
Bx(−q, q − p), |x| < 1, (13.233)

where Bx is the incomplete beta function [Eq. (12.196)].

13.5.5 Differintegral of exp(±x)

We first write the Taylor series of the exponential function as

exp(±x) =
∞∑

j=0

[±x]j

Γ(j + 1)
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and use the Riemann formula [Eq. (13.106)] to obtain

dq exp(±x)
dxq =

exp(±x)
xq 𝛾∗(−q,±x), (13.234)

where 𝛾∗ is the incomplete gamma function [Eq. (12.197)].

13.5.6 Differintegral of ln (x)

To find the differintegral of ln x,we first write the Riemann–Liouville derivative:

dq ln x
dxq = 1

Γ(−q) ∫
x

0

ln x′dx′

[x − x′]q+1 , q < 0, (13.235)

and then make the substitution y = (x − x′)∕x, to write

dq ln x
dxq = x−q ln x

Γ(−q) ∫
1

0

dy
yq+1 + x−q

Γ(−q) ∫
1

0

ln(1 − y)dy
yq+1 . (13.236)

The first integral is easily evaluated as 1∕(−q). Using integration by parts, the
second integral can be written as

∫
1

0

ln(1 − y)dy
yq+1 = 1

q ∫
1

0
ln(1 − y)d(1 − y−q) (13.237)

=
(1 − y−q) ln(1 − y)

q
||||

1

0
+ 1

q ∫
1

0

(1 − y−q)dy
1 − y

(13.238)

= 1
q ∫

1

0

1 − y−q

1 − y
dy. (13.239)

Using the integral definition of the digamma function Ψ(x):

Ψ(x + 1) = −𝛾 + ∫
1

0

1 − tx

1 − t
dt, (13.240)

where 𝛾 is the Euler constant:

𝛾 = 0.5772157,

we find

∫
1

0

ln(1 − y)dy
yq+1 = 1

q
[𝛾 + Ψ(1 − q)]. (13.241)

Using these in Eq. (13.236), we obtain
dq ln x

dxq = x−q ln x
(−q)Γ(−q)

+ x−q

(−q)Γ(−q)
[−𝛾 − Ψ(1 − q)] (13.242)

= x−q

Γ(1 − q)
[ln x − 𝛾 − Ψ(1 − q)]. (13.243)
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Even though this result is obtained for q < 0, using analyticity, we can use it for
all values of q [15]:

dq ln(x)
dxq = x−q

Γ(1 − q)
[
ln(x) − 𝛾 − 𝜓(1 − q)

]
. (13.244)

The digamma function, 𝜓(x), is defined in terms of the gamma function as

𝜓(x) = 1
Γ(x)

dΓ(x)
dx

. (13.245)

Example 13.4 Digamma function
We prove the following useful relation between the digamma function and the
gamma function:

Ψ(1 − n)
Γ(1 − n)

= (−1)nΓ(n), n = 1, 2,… . (13.246)

Proof : We start with the identity Γ(−x)Γ(x + 1) = −𝜋 csc(𝜋x), or with
Γ(x)Γ(1 − x) = 𝜋 csc(𝜋x), and differentiate to write:

dΓ(x)
dx

Γ(1 − x) + Γ(x)dΓ(1 − x)
dx

= −𝜋2 cos(𝜋x)
sin2(𝜋x)

, (13.247)

dΓ(x)
dx

Γ(1 − x) + Γ(x)dΓ(1 − x)
d(1 − x)

d(1 − x)
dx

= −𝜋2 cos(𝜋x)csc2(𝜋x),

(13.248)
dΓ(x)

dx
Γ(1 − x) − Γ(x)dΓ(1 − x)

d(1 − x)
= −𝜋2 cos(𝜋x)csc2(𝜋x).

(13.249)

Rearranging, we obtain

1
Γ(x)

dΓ(x)
dx

− 1
Γ(1 − x)

dΓ(1 − x)
d(1 − x)

= − 𝜋2 cos(𝜋x)
Γ(1 − x)Γ(x)

csc2(𝜋x) (13.250)

= − 𝜋2 cos(𝜋x)
Γ(1 − x)Γ(x)

Γ2(1 − x)Γ2(x)
𝜋2

(13.251)
= − cos(𝜋x)Γ(1 − x)Γ(x), (13.252)

which is nothing but Ψ(x) − Ψ(1 − x) = − cos(𝜋x)Γ(1 − x)Γ(x). For x = n,
where n = 1, 2, 3,…, this becomes

Ψ(n)
Γ(1 − n)

− Ψ(1 − n)
Γ(1 − n)

= −(−1)nΓ(n), n = 1, 2, 3,… . (13.253)
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Since Ψ(n) is finite for n = 1, 2, 3,… , and the gamma function with a negative
integer argument is infinite, the first term vanishes, thus proving the desired
identity:

Ψ(1 − n)
Γ(1 − n)

= (−1)nΓ(n), n = 1, 2, 3,… . (13.254)

13.5.7 Some Semiderivatives and Semi-Integrals

We conclude this section with a table of the frequently used semiderivatives
and semi-integrals of some functions:

f d
1
2 f ∕[dx]

1
2 d− 1

2 f ∕[dx]−
1
2

C C∕
√
𝜋x 2C

√
x∕𝜋

1∕
√

x 0
√
𝜋√

x
√
𝜋∕2 x

√
𝜋∕2

x 2
√

x∕𝜋 4
3

x3∕2
√
𝜋

x𝜇(𝜇 > −1) [Γ(𝜇 + 1)∕Γ(𝜇 + 1∕2)]x𝜇−1∕2 Γ(𝜇 + 1)∕Γ(𝜇 + 3∕2)]x𝜇+1∕2

exp(x) 1∕
√
𝜋x + exp(x)erf

(√
x
)

exp(x)erf
(√

x
)

ln x ln(4x)∕
√
𝜋x 2

√
𝜋∕x[ln(4x) − 2]

exp(x)erf(
√

x) exp(x) exp(x) − 1

13.6 Mathematical Techniques with Differintegrals

13.6.1 Laplace Transform of Differintegrals

The Laplace transform of a differintegral is defined as

£
{

dqf
dxq

}
= ∫

∞

0
exp(−sx)

dqf
dxq dx, s > 0. (13.255)

When q takes integer values, Laplace transform of derivatives and integrals are
given, respectively, as

£
{

dqf
dxq

}
= sq£{f } −

q−1∑
k=0

sq−1−k dqf
dxq (0), q = 1, 2, 3… , (13.256)
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£
{

dqf
dxq

}
= sq£{f }, q = 0,−1,−2,… . (13.257)

We can unify these equations as

£
{

dnf
dxn

}
= sn£{f } −

n−1∑
k=0

sk dn−1−kf
dxq−1−k

(0), n = 0,±1,±2,±3,… . (13.258)

In this equation, we can replace the upper limit in the sum by any number
greater than n − 1. We are now going to show that this expression is generalized
for all q values as

£
{

dqf
dxq

}
= sq£{f } −

n−1∑
k=0

sk dq−1−kf
dxq−1−k

(0), (13.259)

where n is an integer satisfying the inequality n − 1 < q ≤ n.
We first consider the q < 0 case. We write the Riemann–Liouville definition:

dqf
dxq = 1

Γ(−q) ∫
x

0

f (x′)dx′

[x − x′]q+1 , q < 0, (13.260)

and use the convolution theorem:

£
{
∫

∞

0
f1(x − x′)f2(x′)

}
= £{f1(x)}£{f2(x)}, (13.261)

where we take f1(x) = x−q−1 and f2(x) = f (x) to write

£
{

dqf
dxq

}
= 1

Γ(−q)
£{x−1−q}£{f } = sq£{f }. (13.262)

For the q < 0 values, the sum in Eq. (13.259) is empty. Thus, we see that the
expression in Eq. (13.259) is valid for all q < 0 values. For the q > 0 case, we
write the condition [Eq. (13.43)] that the Grünwald and Riemann–Liouville
definitions satisfy as

dn

dxn
dq−nf
dxq−n =

dqf
dxq , (13.263)

where n is positive integer, and choose n as

n − 1 < q < n. (13.264)

We now take the Laplace transform of Eq. (13.263) to find

£
{

dqf
dxq

}
= £

{
dn

dxn

[
dq−nf
dxq−n

]}
(13.265)

= sn£
{

dq−nf
dxq−n

}
−

n−1∑
k=0

sk dn−1−k

dxn−1−k

[
dq−nf
dxq−n

]
(0), q − n < 0.

(13.266)
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Since q − n < 0, from Eqs. (13.260)–(13.262) the first term on the right-hand
side becomes sq£{ f }. When n − 1 − k takes integer values, the term,

dn−1−k

dxn−1−k

[
dq−nf
dxq−n

]
(0),

under the summation sign with the q − n < 0 condition and the composition
formula [Eq. (13.263)], can be written as

dq−1−kf
dxq−1−k

(0).

This leads us to the Laplace transform of differintegrals as

£
{

dqf
dxq

}
= sq£{f } −

n−1∑
k=0

sk dq−1−kf
dxq−1−k

(0), 0 < q ≠ 1, 2, 3… . (13.267)

We could satisfy this equation for the integer values of q by taking the condition
n − 1 < q ≤ n instead of Eq. (13.264).

Example 13.5 Heat transfer equation
We consider the heat transfer equation for a semi-infinite slab:

𝜕T(x, t)
𝜕t

= K 𝜕2T(x, t)
𝜕x2 , t ∈ [0,∞], x ∈ [0,∞], (13.268)

where K is the heat transfer coefficient, which depends on conductivity, density,
and the specific heat of the slab. We take T(x, t) as the difference of the local
temperature from the ambient temperature, where t is the time and x is the
distance from the surface of interest. As the boundary conditions we take

T(x, 0) = 0 (13.269)

and
T(∞, t) = 0. (13.270)

Taking the Laplace transform of Eq. (13.268) with respect to t we get

£
{

𝜕T(x, t)
𝜕t

}
= K£

{
𝜕2T(x, t)

𝜕x2

}
, (13.271)

sT̃(x, s) − T(x, 0) = K 𝜕2T̃(x, s)
𝜕x2 , (13.272)

sT̃(x, s) = K 𝜕2T̃(x, s)
𝜕x2 . (13.273)

Using the boundary condition [Eq. (13.270)], we can immediately write the
solution, which is finite for all x as

T̃(x, s) = F(s)e−x
√

s∕K . (13.274)
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In this solution, F(s) is the Laplace transform of the boundary condition T(0, t):

F(s) = £{T(0, t)}, (13.275)

which remains unspecified. In most of the engineering applications we are
interested in the heat flux, which is given as

J(x, t) = −k 𝜕T(x, t)
𝜕x

, (13.276)

where k is the conductivity. Or, in particular, we are interested in the surface
flux:

J(0, t) = −k 𝜕T(x, t)
𝜕x

||||x=0
, (13.277)

which could be monitored quite easily. To find the surface flux we differentiate
Eq. (13.274) with respect to x:

𝜕T̃(x, s)
𝜕x

= −
√

s∕KF(s)e−x
√

s (13.278)

and eliminate F(s) by using Eq. (13.274) to get

𝜕T̃(x, s)
𝜕x

= −
√

s∕KT̃(x, s). (13.279)

We now use Eq. (13.267) with q = 1∕2 and choose n = 1:

£
{

d1∕2T(x, t)
dt1∕2

}
= s1∕2£{T(x, t)} − d−1∕2T(x, 0)

dt−1∕2 . (13.280)

Using the other boundary condition [Eq. (13.269)], the second term on the
right-hand side is zero; thus, we write

£
{

d1∕2T(x, t)
dt1∕2

}
= s1∕2£{T(x, t)} = s1∕2T̃(x, s). (13.281)

Substituting Eq. (13.279) into this equation and taking the inverse Laplace
transform we get

d1∕2T(x, t)
dt1∕2 = −

√
K 𝜕T(x, t)

𝜕x
. (13.282)

Using this in the surface heat flux expression, we finally obtain

J(0, t) = −k 𝜕T(x, t)
𝜕x

||||x=0
= k√

K

d1∕2T(0, t)
dt1∕2 . (13.283)

The importance of this result is that the surface heat flux is given in terms of
the surface temperature distribution T(0, t), which is experimentally easier to
measure.
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13.6.2 Extraordinary Differential Equations

An equation composed of the differintegrals of an unknown function is called
an extraordinary differential equation. Naturally, solutions of such equations
involve some constants and integrals. A simple example of such an equation can
be given as dqf (x)

dxq = F(x), where q is any number, F(x) is a given function, and
f (x) is the unknown function. For simplicity, we have taken the lower limit, a, as
zero. We would like to write the solution of this equation simply as f (x) = d−qF(x)

dx−q .

However, we have seen that the operators d−q

dx−q and dq

dxq are not the inverses of
each other unless the condition [Eq. (13.169)]:

f (x) − d−q

dx−q
dqf (x)

dxq = 0,

is satisfied. It is for this reason that extraordinary differential equations are in
general much more difficult to solve. One of the most frequently encountered
differential equation in science is dx(t)∕dt = −𝛼x(t)n, where for n = 1 the solu-
tion is given as an exponential function: x(t) = x0 exp(−𝛼t), while for n ≠ 1, the
solutions are given with a power dependence: x(t)1−n = 𝛼(n − 1)(t − t0). On the
other hand, the solutions of

dnx(t)
dtn = (∓𝛼)nx(t), n = 1, 2,… (13.284)

are the Mittag–Leffler functions:

x(t) = x0En[(∓𝛼t)n], (13.285)

which correspond to extrapolations between exponential and power depen-
dence. A fractional generalization of Eq. (13.284) can be written as

d−qN(t)
[d(t)]−q = −𝛼−q[N(t) − N0], q > 0, (13.286)

which is frequently encountered in kinetic theory, where its solutions are given
in terms of the Mittag–Leffler functions as N(t) = N0Eq(−𝛼qtq).

13.6.3 Mittag–Leffler Functions

Mittag–Leffler functions are encountered in many different branches of sci-
ence like biology, chemistry, kinetic theory, and Brownian motion. They are
defined by the series (Figure 13.5)

Eq(x) =
∞∑

k=0

xk

Γ(qk + 1)
, q > 0. (13.287)
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Figure 13.5 Mittag–Leffler functions.

For some integer values of q the Mittag–Leffler functions are given as

E0(x) =
1

1 − x
, (13.288)

E1(x) = exp(x), (13.289)

E2(x) = cosh
(√

x
)
, (13.290)

E3(x) =
1
3

[
exp

(
3
√

x
)
+ 2 exp

(
− 3
√

x∕2
)

cos

(√
3

2
3
√

x

)]
, (13.291)

E4(x) =
1
2

[
cos

(
4
√

x
)
+ cosh

(
4
√

x
)]

. (13.292)

A frequently encountered Mittag–Leffler function is given for q = 1∕2, which
can be written in terms of the error function as

E1∕2
(
±

√
x
)
= exp(x)[1 + erf

(
±

√
x
)
], x > 0. (13.293)

13.6.4 Semidifferential Equations

In applications we frequently encounter extraordinary differential equations
like

d3f (x)
dx3 + sin(x)

d3∕2f (x)
dx3∕2 = exp(2x), (13.294)

d−1∕2f (x)
dx−1∕2 − 4

d3∕2f (x)
dx3∕2 + 5f (x) = x, (13.295)
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which involves semiderivatives of the unknown function f (x). However, an
equation like

d4f (x)
dx4 −

d3f (x)
dx3 + 5f (x) = d3∕2F(x)

dx3∕2 , (13.296)

where F(x) is a known function is not considered to be a semidifferential
equation.

Example 13.6 Semidifferential equation solution
Consider the following semidifferential equation:

d1∕2

dx1∕2 f (x) + af (x) = 0, a = constant. (13.297)

Applying the operator d1∕2

dx1∕2 to this equation and using the composition rule
[Eq. (13.170)] with Eq. (13.175), and with m taken as 1 we get

df (x)
dx

− C1x−3∕2 + a d1∕2

dx1∕2 f (x) = 0. (13.298)

Using Eq. (13.297), again we find
df (x)

dx
− a2f (x) = C1x−3∕2. (13.299)

This is now a first-order ordinary differential equation the solution of which is
given as

f (x) = C exp(a2x) + C1 exp(a2x)∫
x

0
exp(−a2x′)x′−3∕2dx′. (13.300)

What is new here is that the solution involves two integration constants and a
divergent integral. However, this integral can be defined by using the incom-
plete gamma function 𝛾∗(c, x):

𝛾∗(c, x) = c−x

Γ(x) ∫
c

0
x′x−1 exp(−x′)dx′ = exp(−x)

∞∑
j=0

xj

Γ(j + c + 1)
,

(13.301)
where 𝛾∗(c, x) is a single-valued and an analytic function of c and x. Using the
relations

𝛾∗(c − 1, x) = x𝛾∗(c, x) +
exp(−x)
Γ(c)

and 𝛾∗
(1

2
, x

)
=

erf
(√

x
)√

x
,

(13.302)

we can evaluate the divergent integral I = ∫ x
0 exp(−a2x′)x′−3∕2dx′ as

I = −2a
√
𝜋erf

(√
a2x

)
− 2a

exp(−a2x)√
a2x

. (13.303)
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Substituting this into Eq. (13.300), we find the solution

f (x) = C exp(a2x) + C1 exp(a2x)

[
−2a

√
𝜋erf

(√
a2x

)
−

2a exp(−a2x)√
a2x

]
(13.304)

= C exp(a2x) − 2a
√
𝜋C1 exp(a2x) erf

(√
a2x

)
−

2aC1√
a2x

. (13.305)

This solution still contains two arbitrary constants. To check that it satisfies the
semidifferential Eq. (13.297), we first find its semiderivative as

d1∕2f
dx1∕2 = a

[
C√
𝜋a2x

+ C exp(a2x) erf(
√

a2x) − 2a
√
𝜋C1 exp(a2x)

]
,

where we have used the scale transformation formula [Eq. (13.137)] and the
semiderivatives given in Section 13.5.7. Substituting the above equation into
Eq. (13.297) gives

a

[
C√
𝜋a2x

+ C exp(a2x) erf
(√

a2x
)
− 2a

√
𝜋C1 exp(a2x)

]

= −a

[
−

2aC1√
a2x

− 2a
√
𝜋C1 exp(a2x) erf

(√
a2x

)
+ C exp(a2x)

]
,

(13.306)

thus, we obtain a relation between C and C1 as C∕
√
𝜋 = 2aC1. Now the final

solution is obtained as

f (x) = C exp(a2x)
[
1 − erf

(
a
√

x
)]

− C
a2

√
𝜋x

. (13.307)

13.6.5 Evaluating Definite Integrals by Differintegrals

We have seen how analytic continuation and complex integral theorems can
be used to evaluate definite integrals. Fractional calculus can also be used for
evaluating some definite integrals. Using the transformation

x′ = x − x𝜆 (13.308)

and the Riemann–Liouville definition [Eqs. (13.77)–(13.78)], we can write the
differintegral of the function xq as

dqxq

dxq = 1
Γ(−q) ∫

1

0

[1 − 𝜆]qd𝜆
𝜆q+1 = Γ(q + 1), (13.309)

where −1 < q < 0 and we have used Eq. (13.231) to write
dqxq∕dxq = Γ(q + 1). (13.310)
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Making one more transformation, t = − ln(𝜆), we obtain the following definite
integral:

∫
∞

0

dt
[exp(t) − 1]−q = Γ(−q)Γ(q + 1) = −𝜋 csc(q𝜋),−1 < q < 0.

(13.311)

We can also use the transformation [Eq. (13.308)] in the Riemann–Liouville
definition for an arbitrary function to write

∫
1

0
f (x − x𝜆)d(𝜆−q) = Γ(1 − q)xq dqf (x)

dxq , q < 0. (13.312)

If we also make the replacements 𝜆−q → t and −1∕q → p, where p is positive
but does not have to be an integer, to obtain the formula

∫
1

0
f (x − xtp)dt = Γ

(
p + 1

p

)
x−1∕p d −1∕pf (x)

dx−1∕p , p > 0, (13.313)

this is very useful in the evaluation of some definite integrals.
As a special case we may choose x = 1 to write

∫
1

0
f (1 − tp)dt = Γ

(
p + 1

p

)
d −1∕pf (x)

dx−1∕p

|||||x=1

. (13.314)

Example 13.7 Evaluation of some definite integrals by differintegrals
Using differintegrals we can evaluate the definite integral ∫ 1

0 exp(2 − 2t2∕3)dt.
Using Eq. (13.313) with x = 2 and p = 2∕3 along with Eq. (13.234) we find

∫
1

0
exp(2 − 2t2∕3)dt = Γ

(5
2

)
2−3∕2 d−3∕2(exp x)

dx−3∕2

|||||x=2

(13.315)

= Γ
(5

2

)
2−3∕2

[
exp(x)
x−3∕2 𝛾∗

(3
2
, x

)]
x=2

(13.316)

= (3
√
𝜋e2∕4)𝛾∗

(3
2
, 2

)
. (13.317)

In 1972, Osler [17] gave the integral version of the Leibniz rule [Eq. (13.183)],
which can be useful in evaluating some definite integrals as

dq[f (x)g(x)]
dxq = ∫

∞

−∞

(
q

𝜆 + 𝛾

)
dq−𝛾−𝜆f (x)

dxq−𝛾−𝜆
d𝛾+𝜆g(x)

dx𝛾+𝜆 d𝜆, (13.318)

where 𝛾 is any constant.
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Example 13.8 Evaluation of definite integrals by differintegrals
In the Osler formula [Eq. (13.318)], we may choose f (x) = x𝛼, g(x) = x𝛽 , 𝛾 = 0
to write

dq[x𝛼+𝛽]
dxq = ∫

∞

−∞

Γ(q + 1)Γ(𝛼 + 1)Γ(𝛽 + 1)x𝛼−q+𝜆+𝛽−𝜆d𝜆
Γ(q − 𝜆 + 1)Γ(𝜆 + 1)Γ(𝛼 − q + 𝜆 + 1)Γ(𝛽 − 𝜆 + 1)

.

(13.319)
Using the derivative [Eq. (13.231)]:

dq[x𝛼+𝛽]
dxq = Γ(𝛼 + 𝛽 + 1)x𝛼+𝛽−q

Γ(𝛼 + 𝛽 − q + 1)
, (13.320)

and after simplification, we obtain the definite integral
Γ(𝛼 + 𝛽 + 1)

Γ(𝛼 + 𝛽 − q + 1)
= ∫

∞

−∞

Γ(q + 1)Γ(𝛼 + 1)Γ(𝛽 + 1)d𝜆
Γ(q − 𝜆 + 1)Γ(𝜆 + 1)Γ(𝛼 − q + 𝜆 + 1)Γ(𝛽 − 𝜆 + 1)

.

(13.321)
Furthermore, if we set 𝛽 = 0 and 𝛼 = q, we can use the relation

Γ(𝜆 + 1)Γ(1 − 𝜆) = 𝜆𝜋∕ sin 𝜆𝜋, (13.322)

to obtain the following useful result:

∫
∞

−∞

sin(𝜆𝜋)d𝜆
𝜆Γ(𝜆 + 1)Γ(q − 𝜆 + 1)

= 𝜋

Γ(q + 1)
. (13.323)

13.6.6 Evaluation of Sums of Series by Differintegrals

In 1970, Osler [16] gave the summation version of the Leibniz rule, which is
very useful in finding sums of infinite series:

dq[u(x)𝑣(x)]
dxq =

∞∑
n=−∞

(
q

n + 𝛾

)
dq−n−𝛾u
dxq−n−𝛾

d𝛾+n𝑣

dx𝛾+n (13.324)

=
∞∑

n=−∞

Γ(q + 1)
Γ(q − 𝛾 − n + 1)Γ(𝛾 + n + 1)

dq−𝛾−nu(x)
dxq−𝛾−n

d𝛾+n𝑣(x)
dx𝛾+n ,

(13.325)
where 𝛾 is any constant.

Example 13.9 Evaluation of sums of series by differintegrals
In the above formula, we choose u(x) = x𝛼, 𝑣(x) = x𝛽 , 𝛾 = 0 and use Eq. (13.231)
to obtain the sum

∞∑
n=−∞

Γ(q + 1)Γ(𝛼 + 1)Γ(𝛽 + 1)
Γ(q − n + 1)Γ(n + 1)Γ(𝛼 − q + n + 1)Γ(𝛽 − n + 1)

= Γ(𝛼 + 𝛽 + 1)
Γ(𝛼 + 𝛽 − q + 1)

.

(13.326)
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Furthermore, we set 𝛼 = −1∕2, 𝛽 = 1∕2, q = −1∕2 to get the useful result
∞∑

n=0

[(2n)!]2

24n(n!)4(1 − 2n)
= 2

𝜋
. (13.327)

13.6.7 Special Functions Expressed as Differintegrals

Using Eq. (13.325), we can also express hypergeometric functions and some
special functions as differintegrals [16]:

Hypergeometric Functions : F(𝛼, 𝛽, 𝛾, x) = Γ(𝛾)x1−𝛾

Γ(𝛽)
d𝛽−𝛾

dx𝛽−𝛾

(
x𝛽−1

(1−x)𝛼

)
,

Confluent Hypergeometric Functions : M(𝛼, 𝛾, x) = Γ(𝛾)x1−𝛾

Γ(𝛼)
d𝛼−𝛾

dx𝛼−𝛾

(
exx𝛼−1) ,

Bessel Functions : J𝜈(x) =
x−𝜈

2𝜈
√
𝜋

d−𝜈−1∕2

d(x2)−𝜈−1∕2

(cos x
x

)
,

Legendre Polynomials : P𝜈(x) =
1

Γ(𝜈 + 1)2𝜈

d𝜈

d(1 − x)𝜈
(
1 − x2)𝜈 ,

Incomplete Gamma Function : 𝛾∗(𝛼, x) = Γ(𝛼)e−x d−𝛼ex

dx−𝛼 .

13.7 Caputo Derivative

In 1960s, Caputo introduced another definition of fractional derivative, which
he used to study dissipation effects in linear viscoelasticity problems. Caputo
derivative is based on a modification of the Laplace transform of differintegrals
and found widespread use in applications.

Laplace transform of a differintegral is given as [Eq. (13.267)]

£
{

dqf (t)
dtq

}
= sq f̃ (s) −

n−1∑
k=0

sk dq−1−kf
dxq−1−k

(0) (13.328)

= sq f̃ (s) − f (q−1)(0) − sf (q−2)(0) − · · · − sn−1f (q−n)(0),
(13.329)

where n is an integer satisfying n − 1 < q ≤ n. For 0 < q < 1, we take n = 1,
thus obtaining

£
{

dqf (t)
dtq

}
= sq f̃ (s) − f (q−1)(0). (13.330)

Due to the difficulty in imposing boundary conditions with fractional deriva-
tives, Caputo defined the Laplace transform for 0 < q < 1 as

£
{

dqf (t)
dtq

}
= sq f̃ (s) − sq−1f (0) = sq−1 (sf̃ (s) − f (0)), (13.331)
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the inverse of which gives
dqf (t)

dtq = £−1{sq−1 (sf̃ (s) − f (0))}. (13.332)

Using the convolution theorem, ∫ t
0 f (u)g(t − u)du = £−1{F(s)G(s)}, with the

definitions F(s) = sf̃ (s) − f (0) and G(s) = sq−1, yields the fractional derivative
known as the Caputo derivative:[

dqf (t)
dtq

]
C
= 1

Γ(1 − q) ∫
t

0

(
df (𝜏)

d𝜏

)
d𝜏

(t − 𝜏)q , 0 < q < 1, (13.333)

which was used by him to model dissipation effects in linear viscosity.

13.7.1 Caputo and the Riemann–Liouville Derivative

We now write the Riemann–Liouville derivative [Eq. (13.78)] for 0 < q < 1 as[
dq+1f (t)

dtq+1

]
R−L

= dn

dtn

[
1

Γ(n − q − 1) ∫
t

0

f (𝜏)d𝜏
(t − 𝜏)q+1−n+1

]
, (13.334)

where n is a positive integer satisfying n − q − 1 > 0. Choosing n = 2 yields[
dq+1f (t)

dtq+1

]
R−L

= d2

dt2

[
1

Γ(1 − q) ∫
t

0

f (𝜏)d𝜏
(t − 𝜏)q

]
. (13.335)

Similarly, we write[
d1+qf (t)

dt1+q

]
R−L

= dn

dtn

[
1

Γ(n − 1 − q) ∫
t

0

f (𝜏)d𝜏
(t − 𝜏)1+q−n+1

]
(13.336)

and choose n = 2:[
d1+qf (t)

dt1+q

]
R−L

= d2

dt2

[
1

Γ(1 − q) ∫
t

0

f (𝜏)d𝜏
(t − 𝜏)q

]
, (13.337)

thus verifying the relation[
dq+1f (t)

dtq+1

]
R−L

=
[

d1+qf (t)
dt1+q

]
R−L

. (13.338)

Returning to the Caputo derivative [Eq. (13.333)], we write

d
dt

[
dqf (t)

dtq

]
C
= 1

Γ(1 − q)
d
dt ∫

t

0

df (𝜏)
d𝜏

d𝜏
(t − 𝜏)q . (13.339)

As in the Riemann–Liouville and Grünwald definitions [Eqs. (13.43) and
(13.74)], we impose the condition

d
dt

[
dqf (t)

dtq

]
=

d1+qf (t)
dt1+q , (13.340)
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to get [
d1+qf (t)

dt1+q

]
C
= 1

Γ(1 − q)
d
dt ∫

t

0

df (𝜏)
d𝜏

d𝜏
(t − 𝜏)q . (13.341)

Definition of the Riemann–Liouville derivative and Eq. (13.338) allows us to
write [

d1+qf (t)
dt1+q

]
C
=

[
dq

dtq

(
df (t)

dt

)]
R−L

. (13.342)

Using the composition rule [Eq. (13.170)] of differintegrals, dqdQf = dq+Qf −
dq+Q[f − d−QdQf ], we write the right-hand side of Eq. (13.342) as[

dq

dtq

(
df (t)

dt

)]
R−L

=
[

dq+1f (t)
dtq+1

]
R−L

−
[

dq+1

dtq+1

]
R−L

[
f (t) − d−1

dt−1
d
dt

f (t)
]
.

(13.343)
Also using Eq. (13.162):

d−nf (N)(t)
[d(t − a)]−n = f (N−n)(t) −

n−1∑
k=n−N

[t − a]k

k!
f (N+k−n)(a), (13.344)

with n = 1, N = 1, and a = 0, we have d−1d1f (t) = f (t) − f (1+0−1)(0) = f (t) −
f (0). Thus,[

dq

dtq

(
df (t)

dt

)]
R−L

=
[

dq+1f (t)
dtq+1

]
R−L

−
[

dq+1

dtq+1

]
R−L

[f (t) − f (t) + f (0)]

(13.345)

=
[

dq+1f (t)
dtq+1

]
R−L

−
[

dq+1

dtq+1

]
R−L

f (0). (13.346)

Using this in Eq. (13.342) we write[
d1+qf (t)

dt1+q

]
C
=

[
dq+1f (t)

dtq+1

]
R−L

−
[

dq+1

dtq+1

]
R−L

f (0). (13.347)

Also using Eq. (13.338):[
dq+1f (t)

dtq+1

]
R−L

=
[

d1+qf (t)
dt1+q

]
R−L

, (13.348)

and the Riemann–Liouville derivative of a constant [Eq. (13.211)]:[
dq+1

dtq+1 f (0)
]

R−L
=

t−q−1f (0)
Γ(−q)

, (13.349)

we finally obtain the relation between the Riemann–Liouville derivative and
the Caputo derivative as[

dqf (t)
dtq

]
C
=

[
dqf (t)

dtq

]
R−L

−
t−qf (0)
Γ(1 − q)

, 0 < q < 1. (13.350)
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From the above equation, it is seen that the Caputo and the Riemann–Liouville
derivatives agree when f (0) = 0. Furthermore, unlike the R − L derivative the
Caputo derivative of a constant, C0, is zero:[dqC0

dtq

]
C
=

[dqC0

dtq

]
R−L

−
t−qC0

Γ(1 − q)
=

t−qC0

Γ(1 − q)
−

t−qC0

Γ(1 − q)
= 0.

(13.351)
To display the clear distinction between the two definitions of fractional

derivatives, we use the Riemann–Liouville definition of fractional integrals
[Eq. (13.77)] to introduce the fractional integral operator 0Iq

t ∶

0Iq
t [ f (t)] = 1

Γ(q) ∫
t

0

f (𝜏)d𝜏
(t − 𝜏)1−q , q > 0, (13.352)

which allows us to define the Riemann–Liouville and the Caputo derivatives
of arbitrary order, q > 0, respectively, as[

dqf (t)
dtq

]
R−L

= dn

dtn

(
0In−q

t [ f (t)]
)
, n > q, q > 0, (13.353)[

dqf (t)
dtq

]
C
= 0In−q

t

[
dn

dtn f (t)
]
, n > q, q > 0, (13.354)

where n is the smallest integer greater than q, that is, n − 1 < q < n. Notice
how the order of the dn

dtn and the 0In−q
t operators reverses. We can also write the

above equations as
R−L
0 Dq

t f (t) = dn

dtn

(
0In−q

t [ f (t)]
)
, (13.355)

C
0 Dq

t f (t) = 0In−q
t

[
dn

dtn f (t)
]
. (13.356)

Taking the Laplace transform of these derivatives yields

£
{R−L

0 Dq
t f (t)

}
= sqf̃ (s) −

n−1∑
k=0

sk
(

R−L
0 Dq−k−1

t f (t)
)|t=0, n − 1 < q ≤ n,

(13.357)

and

£
{C

0 Dq
t f (t)

}
= sqf̃ (s) −

n−1∑
k=0

sq−k−1 dkf (t)
dtk

|||||t=0

, n − 1 < q ≤ n. (13.358)

Since the Laplace transform of the Caputo derivative requires only the values
of the function and its ordinary derivatives at t = 0, it has a clear advantage
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over the Riemann–Liouville derivative when it comes to imposing the initial
conditions. Eq. (13.350) can be generalized for all q > 0 as

C
0 Dq

t f (t) =R−L
0 Dq

t f (t) −
n−1∑
k=0

tk−q

Γ(k − q + 1)
f (k)(0+), n − 1 < q < n, q > 0.

(13.359)

In other words, the two derivatives are not equal unless f (t) and its first n − 1
derivatives vanish at t = 0 [7].

13.7.2 Mittag–Leffler Function and the Caputo Derivative

The Mittag–Leffler function, Eq(x), is the generalization of the exponential
function, ex =

∑∞
n=0 tn∕n! =

∑∞
n=0 tn∕Γ(n + 1), as

Eq(x) =
∞∑

n=0

tqn

Γ(qn + 1)
, q > 0. (13.360)

We now consider the following fractional differential equation:

C
0 Dq

xy(x) = 𝜔y(x), y(0) = y0, 0 < q < 1, (13.361)

where C
0 Dq

x stands for the Caputo derivative, and write its Laplace transform,
sqỹ − sq−1y0 = 𝜔ỹ, as

ỹ(s) =
sq−1y0

sq − 𝜔
. (13.362)

Using the geometric series,
∑∞

n=0 xn = 1∕(1 − x), we can write ỹ as

ỹ(s) = y0

∞∑
n=0

𝜔n

s1+qn , (13.363)

which can be inverted easily to yield the solution:

y(x) = y0

∞∑
n=0

𝜔nxqn

Γ(qn + 1)
= y0Eq(𝜔xq). (13.364)

Another notation used in literature is

y(x) = y0Eq(𝜔; x), (13.365)

where Eq(𝜔; x) satisfies

C
0 Dq

xEq(𝜔; x) = 𝜔Eq(𝜔; x), Eq(𝜔; 0) = 1. (13.366)
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13.7.3 Right- and Left-Handed Caputo Derivatives

The right-handed Caputo derivative is defined as

C
a+Dq

r f (r) = a+In−q
r f (n)(r) = 1

Γ(n − q) ∫
r

a

f (n)(𝜏)d𝜏
(r − 𝜏)1−n+q , q > 0, (13.367)

where n is the next integer higher than q. Note that for 0 < q < 1, a = 0 and
n = 1, we obtain Eq. (13.333).

The left-handed Caputo derivative is defined as

C
b−Dq

r f (r) = (−1)n
b−In−q

r f (n)(r) = (−1)n

Γ(n − q) ∫
b

r

f (n)(𝜏)d𝜏
(𝜏 − r)1−n+q , q > 0,

(13.368)
where n is again the next integer higher than q. We reserve the letter a for the
lower limit of the integral operators and the letter b for the upper limit, hence
we will ignore the superscripts in a+ and b−.

Note the following important relation between the left-handed
Riemann–Liouville and the Caputo derivatives [5]:

R−L
b Dq

t g(t) =C
b Dq

t g(t) +
n−1∑
k=0

(−1)q−k(b − t)k−q

Γ(k − q + 1)
[Dk

t g(t)]t=b, (13.369)

where q ∈ (n − 1, n]. When g(t) satisfies the boundary conditions Dk
t g(b) = 0,

k = 0, 1,… , n − 1, Eq. (13.369) implies R−L
b Dq

t g(t) =C
b Dq

t g(t).

Example 13.10 Left-handed Caputo derivative of 1/r
The left-handed Caputo derivative of 1∕r for 0 < q < 1, k = 1 and b = ∞ is
calculated as follows:

C
∞Dq

r

(1
r

)
= −1

Γ(1 − q) ∫
∞

r

(−1∕𝜏2)d𝜏
(𝜏 − r)q (13.370)

= −1
Γ(1 − q) ∫

∞

r
(−1)𝜏−(q+2)

(
1 − r

𝜏

)−q
d𝜏. (13.371)

Defining t = r∕𝜏 we write

C
∞Dq

r

(1
r

)
= 1

Γ(1 − q) ∫
0

1

( r
t

)−(q+2)
(1 − t)−q

(
− rdt

t2

)
(13.372)

= −r−(q+1)

Γ(1 − q) ∫
0

1

(1 − t)−q

t−q dt = r−(q+1)

Γ(1 − q) ∫
1

0
tq(1 − t)−qdt.

(13.373)
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Using the definition of the beta function [Eqs. (12.174) and (12.176)] this gives

C
∞Dq

r

(1
r

)
= r−(q+1)Γ(1 + q), 0 < q < 1. (13.374)

Note that as q → 1, one does not get the expected result, that is, D1
r (1∕r) =

−1∕r2. Actually, in general, one has [5]

lim
q→n

[C
b Dq

r f (r)
]
= (−1)nf (n)(r). (13.375)

13.7.4 A Useful Relation of the Caputo Derivative

We now derive the following relation of the Caputo derivative:

C
0 D1−q

t
[C

0 Dq
t f (t)

]
=

df (t)
dt

−

[C
0 Dq

t f (t)
]

0

Γ(q)t1−q , 0 < q < 1, (13.376)

which is very useful in obtaining the effective potential for fractional quantum
mechanics.

Proof : Using the relation between the Caputo derivative and the
Riemann–Liouville derivative [Eq. (13.350)], we can write

C
0 D1−q

t
[C

0 Dq
t f (t)

]
= R−L

0 D1−q
t

[C
0 Dq

t f (t)
]
−

[C
0 Dq

t f (t)
]

0

Γ(q)t1−q . (13.377)

Using Eq. (13.350) again, the first term on the right-hand side of the above
equation becomes

R−L
0 D1−q

t
[C

0 Dq
t f (t)

]
= R−L

0 D1−q
t

[
R−L
0 Dq

t f (t) −
f (0)

Γ(1 − q)tq

]
(13.378)

= R−L
0 D1−q

t
[R−L

0 Dq
t f (t)

]
−R−L

0 D1−q
t

[
f (0)

Γ(1 − q)tq

]
(13.379)

= R−L
0 D1−q

t
[R−L

0 Dq
t f (t)

]
−R−L

0 D1−q
t

[C
tq

]
, (13.380)

where C = f (0)∕Γ(1 − q). Using Eq. (13.170) for the composition of fractional
derivatives:

R−L
0 Dq

t

[
R−L
0 DQ

t f (t)
]

= R−L
0 Dq+Q

t f (t) −R−L
0 Dq+Q

t f (t)
{

f −R−L
0 D−Q

t

[
R−L
0 DQ

t f (t)
]}

, (13.381)
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with q = 1 − q and Q = q, we write the first term on the right-hand side of
Eq. (13.380) as

R−L
0 D1−q

t
[R−L

0 Dq
t f (t)

]
=R−L

0 D1−q+q
t f (t) −R−L

0 D1−q+q
t

[
f (t) −R−L

0 D−q
t

(R−L
0 Dq

t f (t)
)]

(13.382)

=
df (t)

dt
− d

dt
[

f (t) −R−L
0 D−q

t
(R−L

0 Dq
t f (t)

)]
. (13.383)

Assuming R−L
0 Dq

t f (t) ≠ 0, we have R−L
0 D−q

t (R−L
0 Dq

t f (t)) = f (t), therefore
R−L
0 D1−q

t
[R−L

0 Dq
t f (t)

]
= df (t)

dt
. Substituting this into Eq. (13.380), we obtain

R−L
0 D1−q

t
[C

0 Dq
t f (t)

]
=

df (t)
dt

−R−L
0 D1−q

t

[C
tq

]
, C = f (0)∕Γ(1 − q).

(13.384)

For the second term on the right-hand side, we now use the Leibniz rule
[Eq. (13.183)]:

R−L
0 Dq

t [ f (t)g(t)] =
∞∑

j=0

(
q
j

)(
R−L
0 Dq−j

t f (t)
)(

R−L
0 Dj

tg(t)
)

(13.385)

and write

R−L
0 D1−q

t (Ct−q) =
∞∑

j=0

(
1 − q

j

)
R−L
0 Dq−j

t (t−q)R−L
0 Dj

tC. (13.386)

Since j is an integer and C is a constant, R−L
0 Dj

tC = djC∕dtj = 0, hence only
the j = 0 term survives. Since Γ(0) = ∞, we obtain

R−L
0 D1−q

t

(
f (0)

Γ(1 − q)tq

)
=

(
1 − q

0

)
R−L
0 Dq

t (t
−q)R−L

0 C (13.387)

=
(

f (0)
Γ(1 − q)

)(
Γ(2 − q)

Γ(1)Γ(2 − q)

)
Γ(1 − q)
Γ(0)

t−1 = 0.

(13.388)

Substituting this into Eq. (13.384) gives
R−L
0 D1−q

t
[C

0 Dq
t f (t)

]
= df (t)∕dt, (13.389)

which when substituted back into Eq. (13.377) yields the desired result:

C
0 D1−q

t
[C

0 Dq
t f (t)

]
=

df (t)
dt

−

[C
0 Dq

t f (t)
]

0

Γ(q)t1−q , 0 < q < 1. (13.390)
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13.8 Riesz Fractional Integral and Derivative

13.8.1 Riesz Fractional Integral

Another fractional derivative commonly encountered in applications is the
Riesz derivative. Unlike the Caputo derivative, which is defined in terms of
its Laplace transform, the Riesz derivative is defined in terms of its Fourier
transform. It is used to define fractional Laplacian encountered in many
different branches of science and engineering.

Since the Riesz derivative is defined through its Fourier transform, we start
with a review of the basic properties of the Fourier transforms. The Fourier
transform, F(𝜔), of an absolutely integrable function, f (t), in the interval
(−∞,∞), along with its inverse, is defined as

F(𝜔) = {f (t)} = ∫
∞

−∞
e−i𝜔t f (t) dt, 𝜔 is real, (13.391)

f (t) = −1{F(𝜔)} = 1
2𝜋 ∫

∞

−∞
ei𝜔tF(𝜔) d𝜔. (13.392)

If F(𝜔) and G(𝜔) are the Fourier transforms of f (t) and g(t), respectively, the
convolution of f (t) with g(t), f ∗ g, is defined as f ∗ g = ∫ ∞

−∞ f (t − 𝜏)g(𝜏)d𝜏 =
∫ ∞
−∞ f (𝜏)g(t − 𝜏)d𝜏. The Fourier transform of a convolution, {f ∗ g},

is equal to the product of the Fourier transforms F(𝜔) and G(𝜔) as
{f ∗ g} = F(𝜔) ⋅ G(𝜔). Granted that as t → ±∞ all the required deriva-
tives vanish, that is, f (f ), f ′(t),… , f (n−1)(t) → 0 as t → ±∞, the Fourier
transform of a derivative, {f (n)(t)}, is given as

{ f (n)(t)} = (i𝜔)nF(𝜔). (13.393)

To find the Fourier transform of the fractional Riemann–Liouville integral
[Eq. (13.77) with a = −∞.]:

−∞Iq
t g(t) = −∞D−q

t g(t) = 1
Γ(q) ∫

t

−∞
(t − 𝜏)q−1g(𝜏)d𝜏, q > 0, (13.394)

we first write the Laplace transform of the function

h(t) = tq−1

Γ(q)
, q > 0 ∶ (13.395)

£{h(t)} = 1
Γ(q) ∫

∞

0
tq−1e−stdt = s−q, (13.396)

and then substitute s = i𝜔 to obtain the Fourier transform of

h+(t) =

{
tq−1

Γ(q)
, t > 0,

0, t ≤ 0,
(13.397)



478 13 Fractional Calculus

as

{h+(t)} = H+(𝜔) = (i𝜔)−q. (13.398)

In this case the convergence of the integral in Eq. (13.396) restricts q to 0 <

q < 1. We now write the convolution of g(t) with h+(t) as

h+(t) ∗ g(t) = ∫
∞

−∞
h+(t − 𝜏)g(𝜏)d𝜏 = 1

Γ(q) ∫
t

−∞
(t − 𝜏)q−1g(𝜏)d𝜏,

(13.399)

which is nothing but −∞D−q
t g(t):

h+(t) ∗ g(t) = −∞D−q
t g(t). (13.400)

We finally use Eq. (13.398) to obtain

{−∞D−q
t g(t)} = (i𝜔)−qG(𝜔), (13.401)

where G(𝜔) is the Fourier transform of g(t).
To find the Fourier transform of

∞D−q
t g(t) = 1

Γ(q) ∫
∞

t
(𝜏 − t)q−1g(𝜏)d𝜏, 0 < q < 1, (13.402)

we again make use of the Laplace transform

£{h(t)} = 1
Γ(q) ∫

∞

0
tq−1e−stdt = s−q, q > 0, (13.403)

and substitute s = −i𝜔 to get

£{h(t)} = 1
Γ(q) ∫

∞

0
tq−1ei𝜔tdt = (−i𝜔)−q, 0 < q < 1. (13.404)

We then let t → −t in the above integral to write

£{h(t)} = 1
Γ(q) ∫

0

−∞
(−t)q−1e−i𝜔tdt = (−i𝜔)−q, 0 < q < 1. (13.405)

This is nothing but the Fourier transform of the function

h−(t) =
⎧⎪⎨⎪⎩

0, t ≥ 0,
(−t)q−1

Γ(q)
, t < 0, (13.406)
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as

{h−(t)} = H−(𝜔) = ∫
∞

−∞
h−(t)e−i𝜔tdt (13.407)

=
[
∫

0

−∞
h−(t)e−i𝜔tdt + ∫

∞

0
h−(t)e−i𝜔tdt

]
(13.408)

= 1
Γ(q) ∫

0

−∞
(−t)q−1e−i𝜔tdt (13.409)

= (−i𝜔)−q. (13.410)

We now employ the convolution theorem to write

h−(t) ∗ g(t) = ∫
∞

−∞
h−(t − 𝜏)g(𝜏)d𝜏 (13.411)

= ∫
t

−∞
h−(t − 𝜏)g(𝜏)d𝜏 + ∫

∞

t
h−(t − 𝜏)g(𝜏)d𝜏 (13.412)

= 1
Γ(q) ∫

∞

t
(𝜏 − t)q−1g(𝜏)d𝜏 (13.413)

= ∞D−q
t g(t), (13.414)

which yields the Fourier transform {∞D−q
t g(t)} as

{∞D−q
t g(t)} = H−(𝜔)G(𝜔), (13.415)

{∞D−q
t g(t)} = (−i𝜔)−qG(𝜔). (13.416)

Summary
We have obtained the following Fourier transforms of fractional integrals:

{−∞D−q
t g(t)} = (i𝜔)−qG(𝜔), (13.417)

{∞D−q
t g(t)} = (−i𝜔)−qG(𝜔). (13.418)

We can now combine these equations to write

 {[
−∞D−q

t +∞D−q
t
]

g(t)
}
=

[
(i𝜔)−q + (−i𝜔)−q]G(𝜔) (13.419)

= |𝜔|−q [i−q + (−i)−q]G(𝜔) (13.420)

=
(

2 cos
q𝜋
2

) |𝜔|−qG(𝜔), (13.421)
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hence


⎧⎪⎨⎪⎩
[
−∞D−q

t +∞D−q
t
]

2 cos
(

q𝜋
2

) g(t)
⎫⎪⎬⎪⎭ = |𝜔|−qG(𝜔). (13.422)

The combined expression:

R−q
t g(t) =

[
−∞D−q

t +∞D−q
t
]

g(t)

2 cos
(

q𝜋
2

) , q > 0, q ≠ 1, 3, 5,… , (13.423)

or

R−q
t g(t) = 1

2Γ(q) cos
(

q𝜋
2

) ∫
∞

−∞
(t − 𝜏)q−1g(𝜏)d𝜏, q > 0, q ≠ 1, 3, 5,…

(13.424)

is called the Riesz fractional integral or the Riesz potential. The Riesz frac-
tional integral for 0 < q < 1 is evaluated through its Fourier transform as

 {
R−q

t g(t)
}
= |𝜔|−qG(𝜔), 0 < q < 1. (13.425)

13.8.2 Riesz Fractional Derivative

To find the Fourier transform of fractional derivatives, we write the
Riemann–Liouville definition [Eq. (13.78)] with a = −∞ as

−∞Dq
t g(t) = 1

Γ(n − q) ∫
t

−∞
(t − 𝜏)−q−1+ng(n)(𝜏)d𝜏, q > 0, (13.426)

= −∞Dq−n
t g(n)(t), n − 1 < q < n. (13.427)

We assume reasonable behavior of g(t) and its derivatives:
g(x), g′(x),… , g(n−1)(x) → 0 as x → ±∞. (13.428)

In general, when there is no indication of the type in aDq
t g(t) we mean R − L.

However, in this case due to the boundary conditions used as x → ±∞, the
Riemann–Liouville and the Caputo definitions of the fractional derivatives
agree. Since q − n < 0, using Eq. (13.417) we can write the Fourier transform
of −∞Dq

t g(t) as

 {
−∞Dq

t g(t)
}
= (i𝜔)q−n {

g(n)(t)
}
, q > 0 (13.429)

= (i𝜔)q−n(i𝜔)nG(𝜔), (13.430)
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hence

{−∞Dq
t g(t)} = (i𝜔)qG(𝜔), (13.431)

where we have used the result in Eq. (13.393). Similarly, one can show that

{∞Dq
t g(t)} = (−i𝜔)qG(𝜔). (13.432)

We now combine the results in Eqs. (13.431) and (13.432) to write
 {[

−∞Dq
t +∞Dq

t
]

g(t)
}
=

[
(i𝜔)q + (−i𝜔)q]G(𝜔). (13.433)

For real 𝜔, this becomes

 {[
−∞Dq

t +∞Dq
t
]

g(t)
}
=

(
2 cos

q𝜋
2

) |𝜔|qG(𝜔), 𝜔 real. (13.434)

Defining the derivative Dq
t g(t) = (−∞Dq

t +∞Dq
t )g(t), we see that Dq

t g(t) does not
have the desired Fourier transform neither at q = 1 nor at q = 2, that is,

{D1
t g(t)} ≠ i𝜔G(𝜔), (13.435)

{D2
t g(t)} ≠ (i𝜔)2G(𝜔) = −|𝜔|2G(𝜔). (13.436)

For 0 < q ≤ 2, q ≠ 1, the Riesz fractional derivative is usually defined with a
minus sign as [8]

Rq
t g(t) = −

[
−∞Dq

t +∞Dq
t
]

g(t)
2 cos(q𝜋∕2)

, 0 < q ≤ 2, q ≠ 1, (13.437)

{Rq
t g(t)} = −(i𝜔)q + (−i𝜔)q

2 cos(q𝜋∕2)
G(𝜔). (13.438)

This form of the Riesz derivative allows analytic continuation and thus the
correct implementation of the complex contour integral theorems encountered
in some applications. For real 𝜔, {Rq

t g(t)} [Eq. (13.438)] can be written as

{Rq
t g(t)} = −|𝜔|qG(𝜔). (13.439)

This definition of the Riesz derivative has the desired Fourier transform for
q = 2, but still does not reproduce the standard result for q = 1. Therefore, the
above definition is generally written as valid for 0 < q ≤ 2, q ≠ 1.

The minus sign in the definition of the Riesz derivative [Eq. (13.437)] is
introduced by hand to recover the q = 2 case as [3]

R2
t g(t) = − 1

2𝜋 ∫
∞

−∞
|𝜔|2G(𝜔)ei𝜔td𝜔 = 1

2𝜋 ∫
∞

−∞
G(𝜔)

[
d2

dt2 ei𝜔t
]

d𝜔

(13.440)

= d2

dt2

[
1

2𝜋 ∫
∞

−∞
G(𝜔)ei𝜔td𝜔

]
= d2

dt2 g(t). (13.441)
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In general, the Riesz derivative is related to the power q∕2 of the positive
definite operator −D2

t g(t) = −d2g(t)∕dt2 as

−Rq
t g(t) =

(
− d2

dt2

)q∕2

g(t). (13.442)

13.8.3 Fractional Laplacian

Using the following definitions of the three-dimensional Fourier transforms:

Φ(
−→
k , t) = ∫

∞

−∞
d3−→r Ψ

(−→r , t) e−i
−→
k ⋅−→r , (13.443)

Ψ
(−→r , t) = 1

(2𝜋)3 ∫
∞

−∞
d3−→k Φ(

−→
k , t)ei

−→
k ⋅−→r , (13.444)

we can introduce the fractional Laplacian as.

Δq∕2Ψ
(−→r , t) = − 1

(2𝜋)3 ∫
∞

−∞
d3−→k Φ(

−→
k , t)|k|qei

−→
k ⋅−→r . (13.445)

13.9 Applications of Differintegrals in Science
and Engineering

13.9.1 Fractional Relaxation

Exponential relaxation is governed by the differential equation

df (t)
dt

= −
f (t)
𝜏

, 𝜏 > 0, (13.446)

where 𝜏 is a constant. For the initial condition f (0) = f0, the solution is the
exponential function, f (t) = f0e−t∕𝜏 . We now write Eq. (13.446) in integral
form as

∫ df = −1
𝜏 ∫ f (t)dt, (13.447)

f (t) − f0 = −
(1
𝜏

)
0D−1

t f (t), (13.448)

where 0D−1
t is the standard Riemann integral operator 0D−1

t = ∫ t
0 dt′. Using

the replacement 0D−1
t f (t) → 0D−𝛼

t f (t), 𝛼 > 0, where 0D−𝛼
t is the fractional

Riemann–Liouville integral [Eq. (13.394)], we can write the fractional
relaxation equation as

f (t) − f0 = −
( 1
𝜏𝛼

)
0D−𝛼

t f (t). (13.449)
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Operating on this with 0D𝛼
t gives

0D𝛼
t f (t) − 0D𝛼

t f0 = −𝜏−𝛼f (t), (13.450)

0D𝛼
t f (t) − f0

t−𝛼
Γ(1 − 𝛼)

= −𝜏−𝛼f (t), (13.451)

where we have used the fractional derivative of a constant [Eq. (13.211)]. Using
the relation between the Riemann–Liouville and the Caputo derivatives
[Eq. (13.350)], we can also write this as

C
0 D𝛼

t f (t) = −𝜏−𝛼f (t), 0 < 𝛼 < 1. (13.452)

Using Eq. (13.361) the solution is immediately written as the Mittag–Leffler
function:

f (t) = f0E𝛼(−(t∕𝜏)𝛼). (13.453)

The series expansion of this solution is

f (t) = f0

∞∑
k=0

(−1)k

Γ(1 + 𝛼k)
(t∕𝜏)𝛼k , (13.454)

which reduces to the exponential relaxation as 𝛼 → 1.

13.9.2 Continuous Time Random Walk (CTRW)

We have seen that the diffusion equation is given as

𝜕c
(−→r , t)
𝜕t

= −−→∇ ⋅
−→J

(−→r , t) , (13.455)

where −→J
(−→r , t) represents the current density and c

(−→r , t) is the concentration
of particles. As a first approximation we can assume a linear relation between
−→J and the gradient of concentration, −→∇c, as −→J = −k−→∇c, where k is the diffusion
constant. This gives the partial differential equation to be solved for c

(−→r , t) as

𝜕c
(−→r , t)
𝜕t

= k−→∇
2
c
(−→r , t) . (13.456)

To prove the molecular structure of matter, Einstein studied the random
motion of particles in suspension in a fluid. This motion is also known as
the Brownian motion and results from the random collisions of the fluid
molecules with the particles in suspension. Since diffusion is basically many
particles undergoing Brownian motion at the same time, division of the
concentration, c(r, t), by the total number of particles, N , gives the proba-
bility of finding a particle at position −→r and time t as P

(−→r , t) = c
(−→r , t)∕N .
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Thus, the probability, P
(−→r , t) , satisfies the same differential equation as the

concentration:
𝜕P

(−→r , t)
𝜕t

= k−→∇
2
P
(−→r , t) . (13.457)

In d dimensions, for a particle initially at the origin, the solution of Eq. (13.457)
is a Gaussian:

P
(−→r , t) = 1

(4𝜋kt)d∕2 exp
(
− r2

4kt

)
. (13.458)

In Brownian motion, even though the mean distance covered by the particle
is zero, ⟨r(t)⟩ = ∫ −→r P

(−→r , t) d−→r = 0, the mean square distance is given as

⟨r2(t)⟩ = ∫ r2P
(−→r , t) d−→r = 2k(d)t. (13.459)

This equation sets the scale of the process as⟨r2(t)⟩ ∝ t. (13.460)

Hence the root mean square of the distance covered by a particle is√⟨r2(t)⟩ ∝ t1∕2. (13.461)

In Figure 13.6, the first figure shows the distance covered by a Brown particle.
In Brownian motion or Einstein random walk, even though the particles are hit
by the fluid particles symmetrically, they slowly drift away from the origin with
the relation [Eq. (13.461)].

In Einstein’s theory of random walk steps are taken with equal intervals.
Recently, theories in which steps are taken according to a waiting distribution,
Ψ(t), have been developed. This distribution function essentially carries
information about the delays and the traps present in the system. Thus, in
a way, it incorporates memory effects into the random walk process. These
theories are called continuous time random walk (CTRW) theories. In
CTRW, if the integral 𝜏 = ∫ tΨ(t)dt, that gives the average waiting time of the
system is finite, we can study the problem by taking the diffusion constant in
Eq. (13.457) as a2∕2𝜏. If the average waiting time is divergent, as in

Ψ(t) ∝ 1
(1 + t∕𝜏)1+𝛼 , 0 < 𝛼 < 1, (13.462)

the situation changes dramatically. In CTRW theories ⟨r2⟩ in general grows
as ⟨r2⟩ ∝ t𝛼. Compared to Einstein’s theory, in anomalous diffusion cases
with 𝛼 < 1 are called subdiffusive and less distance is covered by the particle
(Figure 13.6b), while the 𝛼 > 1 cases are called superdiffusive and more
distance is covered. In CTRW theories, waiting times between steps varies.
This is reminiscent of stock markets or earthquakes, where there could be
long waiting times before the system makes the next move. For 𝛼 = 1∕2
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Figure 13.7 Probability distribution in random walk and CTRW.

the root mean square distance covered is
√⟨r2⟩ ∝ t1∕4 and the probability

distribution P
(−→r , t) behaves like the second curve in Figure 13.7, which has a

cusp compared to a Gaussian [13, 22].
Fractional calculus has been successfully applied to the anomalous diffu-

sion phenomenon with the time fractional form of the diffusion equation
[Eq. (13.457)]:

𝜕𝛼P
(−→r , t)

[𝜕(t)]𝛼
= k𝛼

−→∇
2
P
(−→r , t) , (13.463)

where 𝛼 is a real number.
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13.9.3 Time Fractional Diffusion Equation

The time fractional diffusion equation with the Riemann–Liouville derivative
is written as

0D𝛼
t u(x, t) = D2

𝛼

𝜕2u(x, t)
𝜕x2 , t > 0,−∞ < x < ∞, 0 < 𝛼 < 1, (13.464)

where D𝛼 is a constant with the appropriate units. Using the boundary
conditions limx→±∞u(x, t) → 0 and 0D𝛼−1

t u(x, 0) = 𝜙(x), we write the Fourier
transform [Eqs. (13.391) and (13.392)] with respect to x and its inverse,
respectively, as

 {
0D𝛼

t u(x, t)
}
= D2

𝛼
{

𝜕2u(x, t)
𝜕x2

}
, (13.465)

0D𝛼
t u(k, t) = −D2

𝛼k2u(k, t), (13.466)

where {u(x, t)} = u(k, t). We now take the Laplace transform [Eq. (13.255)]
of Eq. (13.466) with respect to t to write the Fourier–Laplace transform of the
solution as

ũ(k, s) = 𝜙(k)
s𝛼 + k2D2

𝛼

, (13.467)

where 𝜙(k) = {0D𝛼−1
t u(k, 0)}. Before we find the solution by inverting ũ(k, s),

we evaluate the following useful Laplace transform [12]:

{
x𝛽−1E𝛼,𝛽(ax𝛼)

}
= ∫

∞

0
e−sxx𝛽−1E𝛼,𝛽(ax𝛼)dx, (13.468)

where E𝛼,𝛽(x) is the generalized Mittag–Leffler function:

E𝛼,𝛽(x) =
∞∑

k=0

x𝛼k

Γ(ak + 𝛽)
. (13.469)

The Laplace transform in Eq. (13.468) can be evaluated as

{
x𝛽−1E𝛼,𝛽(ax𝛼)

}
= ∫

∞

0
e−sxx𝛽−1

[ ∞∑
k=0

akx𝛼k

Γ(ak + 𝛽)

]
dx (13.470)

=
∞∑

k=0

ak

Γ(ak + 𝛽) ∫
∞

0
e−sxx𝛼k+𝛽−1dx, (13.471)

{
x𝛽−1E𝛼,𝛽(ax𝛼)

}
= s𝛼−𝛽

s𝛼 − a
, Re 𝛼, Re 𝛽 > 0, |as−𝛼| < 1. (13.472)
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For our case, 𝛼 = 𝛽 and a = −k2D2
𝛼, hence we write the needed inverse Laplace

transform as

u(k, t) = −1
{

ũ(k, s)
}
= 𝜙(k)−1

{
1

s𝛼 + k2D2
𝛼

}
(13.473)

= 𝜙(k)t𝛼−1E𝛼,𝛼(−k2D2
𝛼t𝛼). (13.474)

Finally, we find the inverse Fourier transform:

u(x, t) = −1
{

t𝛼−1E𝛼,𝛼(−k2D2
𝛼t𝛼)𝜙(k)

}
(13.475)

= 1
2𝜋 ∫

∞

−∞
e−ikxt𝛼−1E𝛼,𝛼(−k2D2

𝛼t𝛼)𝜙(k)dk, (13.476)

and substitute 𝜙(k) = ∫ ∞
−∞ eikx′

𝜙(x′)dx′ to write

u(x, t) = 1
2𝜋 ∫

∞

−∞
e−ikxt𝛼−1E𝛼,𝛼(−k2D2

𝛼t𝛼)
[
∫

∞

−∞
eikx′

𝜙(x′)dx′
]

dk (13.477)

= 1
2𝜋 ∫

∞

−∞ ∫
∞

−∞
dkdx′t𝛼−1E𝛼,𝛼(−k2D2

𝛼t𝛼)e−ik(x−x′)𝜙(x′). (13.478)

Since for even f (k) we can use the identity

1
2𝜋 ∫

∞

−∞
e−ikxf (k)dk = 1

𝜋 ∫
∞

0
cos(kx) f (k)dk, (13.479)

we obtain the final solution as

u(x, t) = ∫
∞

−∞
dx′𝜙(x′)G(x, x′), (13.480)

where G(x, x′) is given as

G(x, x′) = 1
𝜋 ∫

∞

0
dkt𝛼−1E𝛼,𝛼(−k2D2

𝛼t𝛼) cos k(x − x′). (13.481)

13.9.4 Fractional Fokker–Planck Equations

In standard diffusion, particles move because of their random collisions with
the molecules. However, there could also exist a deterministic force due to some
external agent like gravity, external electromagnetic fields, etc. Effects of such
forces can be included by taking the current density as

−→J
(−→r , t) = −k−→∇P

(−→r , t) + 𝜇
−→F (−→r )P

(−→r , t) , (13.482)

where −→F (−→r ) = −−→∇V (−→r ) is the external force.
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Figure 13.8 Evolution of the probability distribution with position x and time t in arbitrary
units for the harmonic oscillator potential.

The diffusion equation now becomes

𝜕P
(−→r , t)
𝜕t

= −→∇ ⋅
[
k−→∇P

(−→r , t) − 𝜇
−→F (−→r )P

(−→r , t)] , (13.483)

which is called the Fokker–Planck equation. If we consider particles moving
under the influence of a harmonic oscillator potential, V (x) = 1

2
bx2, the proba-

bility distribution for particles initially concentrated at some point x0 is given as
shown in Figure 13.8 by the thin curves. When we study the same phenomenon
using the time fractional Fokker–Planck equation:

𝜕𝛼P
(−→r , t)

[𝜕(t)]𝛼
= −→∇ ⋅

[
k−→∇P

(−→r , t) − 𝜇
−→F (−→r )P

(−→r , t)] , (13.484)

with 𝛼 = 1∕2, the general behavior of the probability distribution looks like the
thick curves in Figure 13.8. Both distributions become Gaussian for large times.
However, for the fractional Fokker–Planck case, it not only takes longer but also
initially it is very different from a Gaussian and shows CTRW characteristics
[13, 22].
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For the standard diffusion case the distribution is always a Gaussian. For the
cases known as superdiffusive, 𝛼 > 1, use of the fractional derivatives in the
Fokker–Planck equation and the diffusion equation are not restricted to time
derivatives. Chaotic diffusion and Lévy processes, which relate far away points
and regions are also active areas of research. In such cases, Riesz derivative
[Eq. (13.437)] and fractional Laplacian [Eq. (13.445)] found wide spread use.
Among other applications of fractional calculus, image processing is discussed
in Sethares and Bayin [21] and applications to quantum mechanics and space
fractional diffusion equation will be discussed in Chapter 19.
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Problems

1 Show that the following differintegral is valid for all q values:

dq[x − a]p

[d(x − a)]q =
Γ(p + 1)[x − a]p−q

Γ(p − q + 1)
, p > −1.

2 Derive the following formula:

dq[1 − x]p

[d(x − a)]q = (1 − x)p−q

Γ(−q)
Bx(−q, q − p), −1 < x < 1.

3 Show that the differintegral of an exponential function is given as

dq exp(±x)
dxq =

exp(±x)
xq 𝛾∗(−q,±x).

4 Show that the upper limit (n − 1) in the summation

£
{

dnf
dxn

}
= sn£{f } −

n−1∑
k=0

sk dn−1−kf
dxn−1−k

(0), n = 0,±1,±2,±3… ,

can be replaced by any number greater than n − 1.
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5 Show that the solution of the following extraordinary differential
equation:

df
dx

+
d1∕2f
dx1∕2 − 2f = 0,

is given as

f (x) = C
3
(2 exp(4x) erfc (2

√
x) + exp(x) erfc(−

√
x)),

where erfc(x) = 1 − erf(x).

6 Show the integral

∫
1

0
sin

(√
1 − t2

)
dt = 0.69123

by using differintegrals.

7 Using both the Riemann–Liouville and the Caputo definitions of the frac-
tional derivative find the solutions of the fractional evolution equation:(

dqx(t)
dtq

)
R−L or C

= 𝛼0x(t), 0 < q ≤ 1.

8 Compare the solutions of the anomalous diffusion equation:(
𝜕qC(x, t)

𝜕tq

)
R−L or C

= −D0
𝜕2C(x, t)

𝜕x2 , 0 < q ≤ 1,

found by the Riemann–Liouville and the Caputo definitions of the frac-
tional derivative.

9 Show the following differintegral:
dq exp(c0 − c1x)

[d(x − a)]q =
exp(c0 − c1x)

[x − a]q 𝛾∗(−q,−c1(x − a)).

10 Using the relation Ψ(1 − n)∕Γ(1 − n) = (−1)nΓ(n), show that the follow-
ing differintegral of 1∕x:

dq(1∕x)
[d(x − 1)]q = x−(q+1)

Γ(−q)
[ln x − 𝛾 − Ψ(−q)]

+
∞∑

l=1
(x − 1)−(q+1+l) [𝛾 + Ψ(1 + l)]

Γ(−q − l)l!
,

reduces to the usual results for the integer values of q. For the negative
integer values of q show only for the first three values: q = −1,−2,−3.
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11 Verify the Fourier transform used in the definition of the Riesz fractional
integral: {h+(t)} = (i𝜔)−q, 0 < q < 1, where

h+(t) =
⎧⎪⎨⎪⎩

tq−1

Γ(q)
, t > 0,

0, t ≤ 0,

by using complex contour integration.

12 Using complex contour integration show that the Fourier transform of
h−(t) ∶

h−(t) =
⎧⎪⎨⎪⎩

0, t ≥ 0,
(−t)q−1

Γ(q)
, t < 0,

which is used in the definition of the Riesz fractional integral, is given as
{h−(t)} = (−i𝜔)−q, 0 < q < 1.

13 Justify equation

 {
∞Dq

t g(t)
}
= (−i𝜔)qG(𝜔), q > 0,

by using complex contour integration. Also show that the
Riemann–Liouville, Grünwald, and the Caputo definitions of the
fractional derivative agree.

14 Show that for real 𝜔 the following Fourier transform:

 {[
−∞Dq

t +∞Dq
t
]

g(t)
}
=

[
(i𝜔)q + (−i𝜔)q]G(𝜔)

can be written as

 {[
−∞Dq

t +∞Dq
t
]

g(t)
}
=

(
2 cos

q𝜋
2

) |𝜔|qG(𝜔).

15 Show that the solution of the following fractional integral equation:

N(t) − N0t𝜇−1 = 𝜏𝜈 0D−𝜈
t N(t), 𝜈, 𝜇 > 0,

with the initial condition N(0) = N0, is given in terms of the generalized
Mittag–Leffler function: E𝛼,𝛽(x) =

∑∞
n=0 xn∕Γ(𝛼n + 𝛽).

16 Show that the inverse Laplace transform

−1
{

s−1

1 − as−𝛼

}
,

where a is a constant, is the Mittag–Leffler function.
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17 Evaluate the following inverse Laplace transform:

−1
{

s−2

1 + 𝜔2s−𝛼

}
.

18 Fractional harmonic oscillator: Introducing fractional calculus into a
given branch of science is usually straight forward. One simply replaces
the time or the space derivatives in the equation of motion by their
fractional counterparts. For example, for the classical harmonic oscillator
we can replace

d2x(t)
dt2 + 𝜔2

0x(t) = 0, 𝜔2
0 = k

m0
,

with (
d𝛼x(t)

dt𝛼

)
R−L or C

+ 𝜔2
0x(t) = 0, 1 < 𝛼 ≤ 2.

i) Find the solution of the above fractional differential equation for the
R − L and the Caputo derivatives and discuss the boundary conditions.

ii) Discuss the general nature of the solution. Try plotting [4].

19 Show that a second representation of the Riesz derivative can be given as

Rq
t g(t) =

Γ(1 + q) sin q𝜋∕2
𝜋 ∫

∞

0

g(t + 𝜉) − 2g(t) + g(t − 𝜉)
𝜉1+q d𝜉,

for 0 < q < 1 [3].
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14

Infinite Series

In physics and engineering, sometimes physical properties can only be
expressed in terms of infinite sums. We also frequently encounter differential
or integral equations that can only be solved by the method of infinite series.
In working with infinite series, the first thing that needs to be checked is their
convergence. In this regard, we start by introducing the commonly used tests
of convergence for series of numbers and then extend our discussion to series
of functions and power series. We then introduce some analytic techniques
for evaluating infinite sums. We also discuss asymptotic series and the method
of steepest descent and saddle-point integrals. We also introduce the Padé
approximants, which is a very effective tool in finding sums of series whose
only a few terms are known. Infinite products, which are closely related to
infinite series, are also discussed in this chapter. In conjunction with the
Casimir effect, we show how finite and meaningful results can be obtained
from some of the divergent series in physics by the method of regularization
and renormalization.

14.1 Convergence of Infinite Series

We write an infinite series with the general term an as
∞∑

n=1
an = a1 + a2 + · · · . (14.1)

Summation of the first N terms is called the Nth partial sum of the series. If
the Nth partial sum of a series has the limit

lim
N→∞

N∑
n=1

an → S, (14.2)

Mathematical Methods in Science and Engineering, Second Edition. Selçuk Ş. Bayın.
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we say the series is convergent and write the infinite series as
∞∑

n=1
an = S. (14.3)

If S is infinity, we say the series is divergent. When a series is not convergent,
it is divergent. The nth term of a convergent series always satisfies the limit

lim
n→∞

an → 0. (14.4)

However, the converse is not true.

Example 14.1 Harmonic series
Even though the nth term of the harmonic series :

∞∑
n=1

an, an = 1
n
, (14.5)

goes to zero as n → ∞, the series diverges.

14.2 Absolute Convergence

If the series constructed by taking the absolute values of the terms of a given
series:

∞∑
n=1

|an|, (14.6)

is convergent, then we say the series is absolutely convergent. An absolutely
convergent series is also convergent, but the converse is not true. Series that are
convergent but not absolutely convergent are called conditionally convergent.
In working with series, absolute convergence is a very important property.

Example 14.2 Conditionally convergent series
The series

1 − 1
2
+ 1

3
− · · · =

∞∑
n=1

(−1)n+1 1
n

(14.7)

converges to ln 2. However, since it is not absolutely convergent, it is only con-
ditionally convergent.

14.3 Convergence Tests

There exist a number of tests for checking the convergence of a given series. In
what follows we give some of the most commonly used tests for convergence.
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The tests are ordered in increasing level of complexity. In practice, one starts
with the simplest test and, if the test fails, moves on to the next one. In the fol-
lowing tests, we either consider series with positive terms or take the absolute
value of the terms; hence we check for absolute convergence.

14.3.1 Comparison Test

The simplest test for convergence is the comparison test. We compare a given
series term by term with another series, the convergence or divergence of which
has been established. Let two series with the general terms an and bn be given.
For all n ≥ 1, if |an| ≤ |bn| is true and if the series

∑∞
n=1|bn| is convergent, then

the series
∑∞

n=1 an is also convergent. Similarly, if
∑∞

n=1 an is divergent, then the
series

∑∞
n=1|bn| is also divergent.

Example 14.3 Comparison test
Consider the series with the general term an = n−p, where p = 0.999. We com-
pare this series with the harmonic series which has the general term bn = n−1.
Since for n ≥ 1, we can write n−1 < n−0.999 and since the harmonic series is
divergent, we also conclude that the series

∑∞
n=1 n−p is divergent.

14.3.2 Ratio Test

For the series
∑∞

n=1 an, let an ≠ 0 for all n ≥ 1. When we find the limit

lim
n→∞

||||an+1

an

|||| = r, (14.8)

for r < 1, the series is convergent; for r > 1, the series is divergent; and for r = 1,
the test is inconclusive.

14.3.3 Cauchy Root Test

For the series
∑∞

n=1 an, when we find the limit

lim
n→∞

n
√|an| = l, (14.9)

for l < 1, the series is convergent; for l > 1, the series is divergent; and for l = 1,
the test is inconclusive.

14.3.4 Integral Test

Let an = f (n) be the general term of a given series with positive terms. If for
n > 1, f (n) is continuous and a monotonic decreasing function, that is, f (n +
1) < f (n), then the series converges or diverges with the integral

∫
∞

1
f (x)dx. (14.10)
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x 1 2 3 4 51 2

f(x) f(x)

f(1)

f(2)

f(3)
f(4)

f(5)

f(1)

f(2)

f(3)
f(4)

3 4 5 x

Figure 14.1 Integral test.

Proof : As shown in Figure 14.1, we can put a lower and an upper bound to the
series

∑∞
n=1 an as

∫
N+1

1
f (x)dx <

N∑
n=1

an, (14.11)

N∑
n=1

an < ∫
N

1
f (x)dx + a1. (14.12)

From here it is apparent that in the limit as N → ∞, if the integral ∫ N
1 f (x)dx

is finite, then the series
∑∞

n=1 an is convergent. If the integral diverges, then the
series also diverges.

Example 14.4 Integral test
Let us consider the Riemann zeta function

𝜉(s) = 1 + 1
2s +

1
3s + · · · . (14.13)

To use the ratio test, we make use of the binomial formula and write
an+1

an
=

( n
n + 1

)s
=

(
1 + 1

n

)−s
(14.14)

≃ 1 − s
n
+ · · · . (14.15)

In the limit as n → ∞, this gives an+1

an
→ 1; thus the ratio test fails. However,

using the integral test, we find

∫
∞

1

dx
xs = x−s+1

−s + 1
||||∞1 =

⎧⎪⎨⎪⎩
1∕(s − 1), s > 1, ⇒ series is convergent,

∞, s < 1 ⇒ series is divergent.

(14.16)
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14.3.5 Raabe Test

For a series with positive terms, an > 0, when we find the limit

lim
n→∞

n
( an

an+1
− 1

)
= m, (14.17)

for m > 1, the series is convergent and for m < 1, the series is divergent. For
m = 1, the Raabe test is inconclusive.

The Raabe test can also be expressed as follows: Let N be a positive integer
independent of n. For all n ≥ N , if

n
( an

an+1
− 1

)
≥ P > 1 (14.18)

is true, then the series is convergent and if

n
( an

an+1
− 1

)
≤ 1 (14.19)

is true, then the series is divergent.

Example 14.5 Raabe test
For the series

∑∞
n=1 1∕n2, the ratio test is inconclusive. However, using the Raabe

test, we see that it converges:

lim
n→∞

n
( an

an+1
− 1

)
= lim

n→∞
n
(
(n + 1)2

n2 − 1
)

(14.20)

= lim
n→∞

(
2 + 1

n

)
= 2 > 1. (14.21)

Example 14.6 Raabe test
The second form of the Raabe test shows that the harmonic series

∑∞
n=1 1∕n is

divergent. This follows from the fact that for all n values,

n
( an

an+1
− 1

)
= n

(n + 1
n

− 1
)
= 1. (14.22)

When the available tests fail, we can also use theorems like the Cauchy
theorem.

14.3.6 Cauchy Theorem

A given series,
∑∞

n=1 an, with positive decreasing terms, an ≥ an+1 ≥ · · · ≥ 0,
converges or diverges with the series

∞∑
n=1

cnacn = cac + c2ac2 + c3ac3 + · · · , c an integer. (14.23)
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Example 14.7 Cauchy theorem
Let us check the convergence of the series

1
2ln𝛼2

+ 1
3ln𝛼3

+ 1
4ln𝛼4

+ · · · =
∞∑

n=2

1
nln𝛼n

, (14.24)

using the Cauchy theorem for 𝛼 ≥ 0. Choosing the value of c as 2, we con-
struct the series

∑∞
n=1 2na2n = 2a2 + 4a4 + 8a8 + · · ·, where the general term is

given as

2ka2k = 2k 1
2k ln𝛼2k

=
( 1

ln𝛼2

) 1
k𝛼

. (14.25)

Since the series
1

ln𝛼2

∞∑
n=1

1
n𝛼

converges for 𝛼 > 1, our series is also convergent for 𝛼 > 1. On the other hand,
for 𝛼 ≤ 1, both series are divergent.

14.3.7 Gauss Test and Legendre Series

Legendre series are given as
∞∑

n=0
a2nx2n and

∞∑
n=0

a2n+1x2n+1, x ∈ [−1, 1], (14.26)

where both series have the same recursion relation:

an+2 = an
(n − l )(l + n + 1)
(n + 1)(n + 2)

, n = 0, 1,… . (14.27)

For |x| < 1, the convergence of both series can be established using the ratio
test. For the even series, the general term is given as un = a2nx2n; hence we
write the ratio

un+1

un
=

a2(n+1)x2(n+1)

a2nx2n = (2n − l)(2n + l + 1)x2

(2n + 1)(2n + 2)
, (14.28)

lim
n→∞

||||un+1

un

|||| = x2. (14.29)

Using the ratio test, we conclude that the Legendre series with the even terms
is convergent for the interval x ∈ (−1, 1). The argument and the conclusion for
the other series are exactly the same. However, at the end points, the ratio test
fails. For these points, we can use the Gauss test:

Gauss test:

Let
∑∞

n=0 un be a series with positive terms. If for n ≥ N , where N is a given
constant, we can write

un

un+1
≃ 1 + 𝜇

n
+ 0

( 1
ni

)
, i > 0, (14.30)
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where 0 (1∕ni) means that for a given function f (n), the limn→∞{f (n)∕(ni)} is
finite, then the series

∑∞
n=0 un converges for 𝜇 > 1 and diverges for 𝜇 ≤ 1. Note

that there is no case here where the test fails.

Example 14.8 Legendre series
We now investigate the convergence of the Legendre series at the end points,
x = ±1, using the Gauss test. We find the required ratio as

un

un+1
= (2n + 1)(2n + 2)

(2n − l)(2n + l + 1)
= 4n2 + 6n + 2

4n2 + 2n − l(l + 1)
(14.31)

≃ 1 + 1
n
+ l(l + 1)(1 + n)

[4n2 + 2n − l(l + 1)]n
. (14.32)

From the limit,

lim
n→∞

l(l + 1)(1 + n)
[4n2 + 2n − l(l + 1)]n

/( 1
n2

)
= l(l + 1)

4
, (14.33)

we see that this ratio is constant and goes as O(1∕n2). Since 𝜇 = 1 in un

un+1
, we

conclude that the Legendre series, both the even and the odd series, diverge at
the end points.

Example 14.9 Chebyshev series
The Chebyshev equation is given as

(1 − x2)
d2y
dx2 − x

dy
dx

+ n2y = 0. (14.34)

Let us find finite solutions of this equation in the interval x ∈ [−1, 1] using
the Frobenius method. We substitute the following series and its derivatives
into the Chebyshev equation:

y =
∞∑

k=0
akxk+𝛼, (14.35)

y′ =
∞∑

k=0
ak(k + 𝛼)xk+𝛼−1, (14.36)

y′′ =
∞∑

k=0
ak(k + 𝛼)(k + 𝛼 − 1)xk+𝛼−2, (14.37)

to get
∞∑

k=0
ak(k + 𝛼)(k + 𝛼 − 1)xk+𝛼−2 −

∞∑
k=0

ak(k + 𝛼)(k + 𝛼 − 1)xk+𝛼

−
∞∑

k=0
ak(k + 𝛼)xk+𝛼 + n2

∞∑
k=0

akxk+𝛼 = 0. (14.38)
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After rearranging, we first get

a0𝛼(𝛼 − 1)x𝛼−2 + a1𝛼(𝛼 + 1)x𝛼−1 +
∞∑

k=2
ak(k + 𝛼)(k + 𝛼 − 1)xk+𝛼−2

+
∞∑

k=0
akxk+𝛼[n2 − (k + 𝛼)2] = 0 (14.39)

and then

a0𝛼(𝛼 − 1)x𝛼−2 + a1𝛼(𝛼 + 1)x𝛼−1 +
∞∑

k=0
ak+2(k + 𝛼 + 2)(k + 𝛼 + 1)xk+𝛼

+
∞∑

k=0
akxk+𝛼[n2 − (k + 𝛼)2] = 0. (14.40)

This gives the indicial equation as
a0𝛼(𝛼 − 1) = 0, a0 ≠ 0. (14.41)

The remaining coefficients are determined by
a1𝛼(𝛼 + 1) = 0 (14.42)

and the recursion relation:

ak+2 = (k + 𝛼)2 − n2

(k + 𝛼 + 2)(k + 𝛼 + 1)
ak , k = 0, 1, 2,… . (14.43)

Since a0 ≠ 0, roots of the indicial equation are 0 and 1. Choosing the smaller
root gives the general solution with the recursion relation

ak+2 = k2 − n2

(k + 2)(k + 1)
ak (14.44)

and the series solution of the Chebyshev equation is obtained as

y(x) = a0

(
1 − n2

2
x2 − n2(22 − n2)

4 ⋅ 3 ⋅ 2
x4 − · · ·

)
+ a1

(
x + (1 − n2)

3 ⋅ 2
x3 + (32 − n2)(1 − n2)

5 ⋅ 4 ⋅ 3 ⋅ 2
x5 + · · ·

)
. (14.45)

We now investigate the convergence of these series. Since the argument for
both series is the same, we study the series with the general term uk = a2kx2k

and write||||uk+1

uk

|||| = |||||a2k+2x2k+2

a2kx2k

||||| = ||||a2k+2

a2k

|||| x2. (14.46)

This gives the limit

lim
k→∞

||||a2k+2

a2k

|||| x2 = x2. (14.47)
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Using the ratio test, it is clear that this series converges for the interval (−1, 1).
However, at the end points, the ratio test fails, where we now use the Raabe test.
We first evaluate the ratio

lim
k→∞

k
[ a2k

a2k+2
− 1

]
= lim

k→∞
k
[
(2k + 2)(2k + 1)

(2k)2 − n2 − 1
]

(14.48)

= lim
k→∞

k
[

6k + 2 + n2

(2k)2 − n2

]
= 3

2
> 1, (14.49)

which indicates that the series is convergent at the end points as well. This
means that for the polynomial solutions of the Chebyshev equation, restrict-
ing n to integer values is an additional assumption, which is not required by the
finite solution condition at the end points. The same conclusion is also valid for
the series with the odd powers.

14.3.8 Alternating Series

For a given series of the form
∑∞

n=1 (−1)n+1an, if an is positive for all n, then
the series is called an alternating series. In an alternating series for sufficiently
large values of n, if an is monotonic decreasing or constant and the limit as
n → ∞, an → 0 is true, then the series is convergent. This is also known as the
Leibniz rule.

Example 14.10 Leibniz rule
In the alternating series,

∞∑
n=1

(−1)n+1 1
n
= 1 − 1

2
+ 1

3
− 1

4
+ · · · , (14.50)

since 1
n
> 0 and 1

n
→ 0 as n → ∞, the series is convergent.

14.4 Algebra of Series

Absolute convergence is very important in working with series. It is only for
absolutely convergent series that ordinary algebraic manipulations like addi-
tion, subtraction, multiplication, etc., can be done without problems:

1. An absolutely convergent series can be rearranged without affecting the
sum.

2. Two absolutely convergent series can be multiplied. The result is another
absolutely convergent series, which converges to the product of the individ-
ual series sums.

All these operations that look very natural, when applied to conditionally
convergent series may lead to erroneous results.
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Example 14.11 Conditionally convergent series
The following conditionally convergent series:

∞∑
n=1

(−1)n+1 1
n
= 1 − 1

2
+ 1

3
− 1

4
+ · · · (14.51)

= 1 −
(

1
2
− 1

3

)
−
(

1
4
− 1

5

)
− · · · (14.52)

= 1 − 0.167 − 0.05 − · · · , (14.53)

obviously converges to some number less than one, actually to ln 2 or 0.693. We
now rearrange this sum as(

1 + 1
3
+ 1

5

)
−
(1

2

)
+
(1

7
+ 1

9
+ 1

11
+ 1

13
+ 1

15

)
−
(1

4

)
+
( 1

17
+ · · · + 1

25

)
−
(1

6

)
+
( 1

27
+ · · · + 1

35

)
−
(1

8

)
+ · · · , (14.54)

and consider each term in parenthesis as the terms of a new series. Partial sums
of this new series are

s1 = 1.5333, s2 = 1.0333,
s3 = 1.5218, s4 = 1.2718,
s5 = 1.5143, s6 = 1.3476,
s7 = 1.5103, s8 = 1.3853,
s9 = 1.5078, s10 = 1.4078,

· · · . (14.55)

It is now seen that this alternating series added in this order converges to 3∕2.
What we have done is very simple. First, we added positive terms until the par-
tial sum was equal or just above 3∕2 and then subtracted negative terms until
the partial sum fell just below 3∕2. In this process, we have neither added nor
subtracted anything from the series; we have simply added its terms in a dif-
ferent order. By a suitable arrangement of its terms, a conditionally convergent
series can be made to converge to any desired value or even to diverge. This
result is also known as the Riemann theorem.

14.4.1 Rearrangement of Series

Let us write the partial sum of a double series as
∑n

i=1
∑m

j=1 aij = snm. If the
limit snm → s as (n,m) → ∞ exists, then we can write

∑∞
i=1

∑∞
j=1 aij = s and

say that the double series,
∑∞

i,j=1 aij, is convergent and converges to s. When a
double series,

∑∞
i=0

∑∞
j=0 aij, converges absolutely, that is, when

∑∞
i=0

∑∞
j=0|aij|

is convergent, then we can rearrange its terms without affecting the sum.
For example, consider the double series

∑∞
i=0

∑∞
j=0 aij and define new dummy
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variables q and p as i = q ≥ 0 and j = p − q ≥ 0. Now the sum becomes
∞∑

i=0

∞∑
j=0

aij =
∞∑

p=0

p∑
q=0

aq(p−q), (14.56)

a00 + a01 + a02 + · · ·
+ a10 + a11 + a12 + · · ·
+ a20 + a21 + a22 + · · ·
⋮

= a00 (14.57)
+ a01 + a10

+ a02 + a11 + a20

+ a03 + a12 + a21 + a30

⋮

Another rearrangement can be obtained by the definitions i = s ≥ 0 and
j = r − 2s ≥ 0, s ≤ r

2
, as

∞∑
i=0

∞∑
j=0

aij =
∞∑

r=0

[r∕2]∑
s=0

as,r−2s = (a00) + (a01) + (a02 + a10) + (a03 + a11) + · · · .

(14.58)

14.5 Useful Inequalities About Series

For the following useful inequalities about series, we take 1
p
+ 1

q
= 1 ∶

Hölder’s Inequality: If an ≥ 0, bn ≥ 0, p > 1, then
∞∑

n=1
anbn ≤

( ∞∑
n=1

ap
n

)1∕p

.

( ∞∑
n=1

bq
n

)1∕q

. (14.59)

Minkowski’s Inequality: If an ≥ 0, bn ≥ 0, and p ≥ 1, then[ ∞∑
n=1

(an + bn) p

]1∕p

≤
( ∞∑

n=1
ap

n

)1∕p

+

( ∞∑
n=1

bp
n

)1∕p

. (14.60)

Schwarz–Cauchy Inequality: If an ≥ 0 and bn ≥ 0, then( ∞∑
n=1

anbn

)2

≤
( ∞∑

n=1
a2

n

)
⋅

( ∞∑
n=1

b2
n

)
. (14.61)

Thus, if the series
∑∞

n=1 a2
n and

∑∞
n=1 b2

n converges, then the series
∑∞

n=1 anbn
also converges.
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14.6 Series of Functions

We can also define series of functions with the general term un = un(x). In this
case, partial sums, Sn, are also functions of x ∶

Sn(x) = u1(x) + u2(x) + · · · + un(x). (14.62)

If the limit Sn(x) → S(x) as n → ∞ is true, then we can write
∑∞

n=1 un(x) = S(x).
In studying the properties of series of functions, we need a new concept called
the uniform convergence.

14.6.1 Uniform Convergence

For a given positive small number 𝜀, if there exists a number N independent of
x for x ∈ [a, b], and if for all n ≥ N , we can say the inequality

|s(x) − sn(x)| < 𝜀 (14.63)

is true, then the series with the general term un(x) is uniformly convergent in
the interval [a, b]. This also means that for a uniformly convergent series, for a
given error margin, 𝜀, we can always find a number N independent of x such
that the remainder of the series: ||∑∞

i=N+1 ui(x)||, is always less than 𝜀 for all x in
the interval [a, b]. Uniform convergence can also be shown as in Figure 14.2.

s(x)

a b

s(x) + ε

s(x) – ε

s(x)

sn(x)

x

Figure 14.2 Uniform convergence is very important.
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14.6.2 Weierstrass M-Test

For uniform convergence, the most commonly used test is the Weierstrass
M-test or in short the M-test: Let us say that we found a series of numbers∑∞

i=1 Mi, such that for all x in [a, b] the inequality Mi ≥ |ui(x)| is true. Then
the uniform convergence of the series of functions

∑∞
i=1 ui(x), in the interval

[a, b], follows from the convergence of the series of numbers
∑∞

i=1 Mi.Note that
because the absolute values of ui(x) are taken, the M-test also checks absolute
convergence. However, it should be noted that absolute convergence and uni-
form convergence are two independent concepts and neither of them implies
the other.

Example 14.12 M-test
The following series are uniformly convergent, but not absolutely convergent:

∞∑
n=1

(−1)n

n + x4 , −∞ < x < ∞, (14.64)

∞∑
n=1

(−1)n−1 xn

n
= ln(1 + x), 0 ≤ x ≤ 1, (14.65)

while the series, the so-called Riemann zeta function:

𝜁 (x) = 1
1x + 1

2x + · · · + 1
nx + · · · (14.66)

converges uniformly and absolutely in the interval [a,∞), where a is any
number greater than 1. Because the M-test checks for uniform and absolute
convergence together, for conditionally convergent series, we can use the
Abel test.

14.6.3 Abel Test

Let a series with the general term un(x) = anfn(x) be given. If the series of num-
bers

∑
an = A is convergent and if the functions fn(x) are bounded, 0 ≤ fn(x) ≤

M, and monotonic decreasing, fn+1(x) ≤ fn(x), in the interval [a, b], then the
series

∑
un(x) is uniformly convergent in [a, b].

Example 14.13 Uniform convergence
The series

∞∑
n=0

(1 − x)xn =
{

1, 0 ≤ x < 1,
0, x = 1, (14.67)

is absolutely convergent but not uniformly convergent in [0, 1].
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From the definition of uniform convergence, it is clear that any series f (x) =∑∞
n=1 un(x), where all un(x) are continuous functions, cannot be uniformly con-

vergent in any interval containing a discontinuity of f (x).

14.6.4 Properties of Uniformly Convergent Series

For a uniformly convergent series, the following are true:

1. If un(x) for all n are continuous, then the series f (x) =
∑∞

n=1 un(x) is also
continuous.

2. Provided un(x) are continuous for all n in [a, b], then the series can be
integrated as

∫
b

a
f (x)dx = ∫

b

a
dx

[ ∞∑
n=1

un(x)

]
=

∞∑
n=1

∫
b

a
un(x)dx, (14.68)

where the integral sign can be interchanged with the summation sign.
3. If for all n in the interval [a, b], un(x) and d

dx
un(x) are continuous, and the

series
∑∞

n=1
d

dx
un(x) is uniformly convergent, then we can differentiate the

series term by term as

d
dx

f (x) = d
dx

[ ∞∑
n=1

un(x)

]
=

∞∑
n=1

d
dx

un(x). (14.69)

14.7 Taylor Series

Let us assume that a function has a continuous nth derivative, f (n)(x), in the
interval [a, b]. Integrating this derivative, we get

∫
x

a
f (n)(x1)dx1 = f (n−1)(x1)

|||x

a
= f (n−1)(x) − f (n−1)(a). (14.70)

Integrating again gives

∫
x

a

(
∫

x2

a
f (n)(x1)dx1

)
dx2 = ∫

x

a

[
f (n−1)(x2) − f (n−1)(a)

]
dx2

= f (n−2)(x) − f (n−2)(a) − (x − a)f (n−1)(a) (14.71)

and after n-fold integrations, we get

∫
x

a
· · ·∫

x

a
f (n)(x)(dx)n = f (x) − f (a) − (x − a) f ′ (a)

− (x − a)2

2!
f ′′ (a)

· · · − (x − a)n−1

(n − 1)!
f (n−1)(a). (14.72)
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We now solve this equation for f (x) to write

f (x) = f (a) + (x − a)f ′ (a) + (x − a)2

2!
f ′′ (a) + · · ·

+ (x − a)n−1

(n − 1)!
f (n−1)(a) + ∫

x

a
· · ·∫

x

a
f (n)(x)(dx)n. (14.73)

In this equation, Rn = ∫ x
a · · · ∫ x

a f (n)(x)(dx)n is called the remainder, which can
also be written as

Rn = (x − a)n

n!
f (n)(𝜉), a ≤ 𝜉 ≤ x. (14.74)

Note that Eq. (14.73) is exact. If Rn → 0 as n → ∞, we have a series expansion
of the function f (x) in terms of the positive powers of (x − a) as

f (x) =
∞∑

n=0

f (n)(a)
n!

(x − a)n. (14.75)

This is called the Taylor series expansion of f (x) about the point x = a.

14.7.1 Maclaurin Theorem

In the Taylor series, if we take the point of expansion as the origin, we obtain
the Maclaurin series:

f (x) =
∞∑

n=0

f (n)(0)
n!

xn. (14.76)

14.7.2 Binomial Theorem

We now write the Taylor series for the function f (x) = (1 + x)m about x = 0 as

(1 + x)m = 1 + mx + m(m − 1)
2!

x2 + · · · + Rn, (14.77)

Rn = xn

n!
(1 + 𝜉)m−nm(m − 1) · · · (m − n + 1), (14.78)

where m can be negative and noninteger and 𝜉 is a point such that 0 ≤ 𝜉 < x.
Since for n > m, the function (1 + 𝜉)m−n takes its maximum value for 𝜉 = 0, we
can write the following upper bound for the remainder term:

Rn ≤ xn

n!
m(m − 1) · · · (m − n + 1). (14.79)

From Eq. (14.79), it is seen that in the interval 0 ≤ x < 1 the remainder goes to
zero as n → ∞; thus we obtain the binomial formula as

(1 + x)m =
∞∑

n=0

m!
n!(m − n)!

xn =
∞∑

n=0

(m
n

)
xn. (14.80)
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It can easily be shown that this series is convergent in the interval −1 < x < 1.
Note that for m = n (integer), the sum automatically terminates after a finite
number of terms, where the quantity(m

n

)
= m!

n!(m − n)!
(14.81)

is called the binomial coefficient.

Example 14.14 Relativistic kinetic energy
The binomial formula is probably one of the most widely used formulas in sci-
ence and engineering. An important application of the binomial formula was
given by Einstein in his celebrated paper where he announced his famous for-
mula for the energy of a freely moving particle of mass m as E = mc2. In this
equation, c is the speed of light and m is the mass of the moving particle, which
is related to the rest mass m0 by

m = m0

/(
1 − 𝑣2

c2

)1∕2

, (14.82)

where 𝑣 is the velocity. Relativistic kinetic energy can be defined by subtracting
the rest energy from the energy in motion as

K.E. = mc2 − m0c2. (14.83)

Since 𝑣 < c, we can use the binomial formula to write the kinetic energy as

K.E. = m0c2 + 1
2

m0𝑣
2 + 3

8
m0𝑣

2
(
𝑣2

c2

)
+ 5

16
m0𝑣

2
(
𝑣2

c2

)2

+ · · · − m0c2

(14.84)

and after simplifying we obtain

K.E. = 1
2

m0𝑣
2 + 3

8
m0𝑣

2
(
𝑣2

c2

)
+ 5

16
m0𝑣

2
(
𝑣2

c2

)2

+ · · · . (14.85)

From here, we see that in the nonrelativistic limit, that is, 𝑣∕c ≪ 1 or when
c → ∞, the above formula reduces to the well-known classical expression for
the kinetic energy as K.E. ≅ 1

2
m0𝑣

2.

14.7.3 Taylor Series with Multiple Variables

For a function with two independent variables, f (x, y), the Taylor series is
given as

f (x, y) = f (a, b) + (x − a)
𝜕f
𝜕x

+ (x − b)
𝜕f
𝜕y

+ 1
2!

[
(x − a)2 𝜕

2f
𝜕x2 + 2(x − a)( y − b)

𝜕2f
𝜕x𝜕y

+ ( y − b)2 𝜕
2f

𝜕y2

]
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+ 1
3!

[
(x − a)3 𝜕

3f
𝜕x3 + 3(x − a)2(y − b)

𝜕3f
𝜕x2𝜕y

+ 3(x − a)(y − b)2 𝜕3f
𝜕x𝜕y2 + (y − b)3 𝜕

3f
𝜕y3

]
+ · · · . (14.86)

All the derivatives are evaluated at the point (a, b). In the presence of m inde-
pendent variables, Taylor series becomes

f (x1, x2,… , xm) =
∞∑

n=0

1
n!

{[ m∑
i=1

(xj − xj0)
𝜕

𝜕xi

]n

f (x1, x2,… , xm)

}
x10, x20,…, xm0

.

(14.87)

14.8 Power Series

Series with their general term given as un(x) = anxn are called power series:

f (x) = a0 + a1x + a2x2 + · · · =
∞∑

n=0
anxn, (14.88)

where the coefficients, an, are independent of x. To use the ratio test, we write||||un+1

un

|||| = |||||an+1xn+1

anxn

||||| = ||||an+1

an

|||| |x| (14.89)

and find lim
n→∞

||| an+1

an

||| = 1
R
. Hence the condition for the convergence of a power

series is obtained as |x| < R ⇒ −R < x < R, where R is called the radius of
convergence. At the end points, the ratio test fails; hence these points must
be analyzed separately.

Example 14.15 Power series
For the power series,

1 + x + x2

2
+ x3

3
+ · · · + xn

n
+ · · · , (14.90)

the radius of convergence R is 1; thus the series converges in the interval −1 <

x < 1 . On the other hand, at the end point, x = 1, it is divergent while at the
other end point, x = −1, it is convergent.

Example 14.16 Power series
The radius of convergence can also be zero. For the series,

1 + x + 2!x2 + 3!x3 + · · · + n!xn + · · · , (14.91)
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the ratio
an+1

an
= (n + 1)!

n!
= n + 1 (14.92)

gives

lim
n→∞

(n + 1) = 1
R
→ ∞, (14.93)

hence the radius of convergence is zero. Note that this series converges only for
x = 0.

Example 14.17 Power series
For the power series

1 + x + x2

2!
+ x3

3!
+ · · · + xn

n!
+ · · · , (14.94)

we find
an+1

an
= n!

(n + 1)!
= 1

n + 1
(14.95)

and

lim
n→∞

1
n + 1

= 1
R
→ 0. (14.96)

Hence the radius of convergence is infinity. This series converges for all x values.

14.8.1 Convergence of Power Series

If a power series is convergent in the interval −R < x < R, then it is uniformly
and absolutely convergent in any subinterval S:

−S ≤ x ≤ S, where 0 < S < R. (14.97)

This can be seen by taking Mi = |ai|Si in the M-test.

14.8.2 Continuity

In a power series, since every term, un(x) = anxn, is a continuous function and
since in the interval −S ≤ x ≤ S, the series f (x) =

∑
anxn is uniformly conver-

gent, f (x) is also a continuous function. Considering that in Fourier series, even
though the un(x) functions are Continuous, we expand discontinuous functions
shaped like a saw tooth, this is an important property.

14.8.3 Differentiation and Integration of Power Series

In the interval of uniform convergence, a power series can be differentiated
and integrated as often as desired. These operations do not change the radius
of convergence.
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14.8.4 Uniqueness Theorem

Let us assume that a function has two power series expansions about the origin
with overlapping radii of convergence, that is,

f (x) =
∞∑

n=0
anxn ⇛ −Ra < x < Ra (14.98)

=
∞∑

n=0
bnxn ⇛ −Rb < x < Rb, (14.99)

then bn = an is true for all n. Hence the power series is unique.

Proof : Let us write
∞∑

n=0
anxn =

∞∑
n=0

bnxn ⇛ −R < x < R, (14.100)

where R is equal to the smaller of the two radii Ra and Rb. If we set x = 0 in this
equation, we find a0 = b0. Using the fact that a power series can be differenti-
ated as often as desired, we differentiate the above equation once to write

∞∑
n=1

annxn−1 =
∞∑

n=1
bnnxn−1. (14.101)

We again set x = 0, this time to find a1 = b1. Similarly, by repeating this pro-
cess, we show that an = bn for all n.

14.8.5 Inversion of Power Series

Consider the power series expansion of the function y(x) − y0 in powers of
(x − x0) as

y − y0 = a1(x − x0) + a2(x − x0)2 + · · · , (14.102)

that is,

y − y0 =
∞∑

n=1
an(x − x0)n. (14.103)

Sometimes it is desirable to express this series as

x − x0 =
∞∑

n=1
bn(y − y0)n. (14.104)

For this, we can substitute Eq. (14.104) into Eq. (14.103) and compare equal
powers of (y − y0) to get the new coefficients, bn, as
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b1 = 1
a1

, (14.105)

b2 = −
a2

a3
1
, (14.106)

b3 = 1
a5

1

(
2a2

2 − a1a3
)
, (14.107)

b4 = 1
a7

1

(
5a1a2a3 − a2

1a4 − 5a3
2
)
, (14.108)

⋮

A closed expression for these coefficients can be found using the residue
theorem as

bn = 1
n!

[
dn−1

dtn−1

(
t

𝑤(t)

)n]
t=0

, (14.109)

where 𝑤(t) =
∑∞

n=1 antn.

14.9 Summation of Infinite Series

After we conclude that a given series is convergent, the next and most
important thing we need in applications is the value or the function that it
converges. For uniformly convergent series, it is sometimes possible to identify
an unknown series as the derivative or the integral of a known series. In this
section, we introduce some analytic techniques to evaluate the sums of infinite
series. We start with the Euler–Maclaurin sum formula, which has important
applications in quantum field theory and Green’s function calculations.
Next, we discuss how some infinite series can be summed using the residue
theorem. Finally, we show that differintegrals can also be used to sum infinite
series.

14.9.1 Bernoulli Polynomials and their Properties

In deriving the Euler–Maclaurin sum formula, we make use of the properties of
the Bernoulli polynomials, Bs(x), where their generating function definition
is given as

text

et − 1
=

∞∑
s=0

Bs(x)
ts

s!
, |t| < 2𝜋. (14.110)
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Some of the Bernoulli polynomials are given as follows:

Bernoulli Polynomials
B0(x) = 1,

B1(x) = x − 1
2
,

B2(x) = x2 − x + 1
6
,

B3(x) = x
(

x − 1
2

)
(x − 1),

B4(x) = x4 − 2x3 + x2 − 1
30

,

B5(x) = x
(

x − 1
2

)
(x − 1)

(
x2 − x − 1

3

)
.

(14.111)

Values of the Bernoulli polynomials at x = 0 are known as the Bernoulli
numbers:

Bs = Bs(0), (14.112)

where the first nine of them are given below:

Bernoulli numbers
B0 = 1, B1 = −1

2
, B2 = 1

6
, B3 = 0, B4 = − 1

30
,

B5 = 0, B6 = 1
42

, B7 = 0, B8 = − 1
30

, … .

(14.113)

Some of the important properties of the Bernoulli polynomials can be listed as
follows:

1.
Bs(x) =

s∑
j=0

(
s
j

)
Bs−jxj. (14.114)

2.

B′
s(x) = sBs−1(x), ∫ 1

0 Bs(x)dx = 0, s ≥ 1. (14.115)

3.

Bs(1 − x) = (−1)sBs(x). (14.116)

Note that when we write Bs(1 − x), we mean the Bernoulli polynomial with
the argument (1 − x). The Bernoulli numbers are shown as Bs.
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4.
n∑

j=1
js = 1

(s + 1)
{

Bs+1(n + 1) − Bs+1
}
, s ≥ 1. (14.117)

5.
∞∑

j=1

1
j2s = (−1)s−1(2𝜋)2s B2s

2(2s)!
, s ≥ 1. (14.118)

6.

∫
∞

0

x2s−1

e2𝜋x − 1
dx = (−1)s−1 B2s

4s
, s ≥ 1. (14.119)

7. In the interval [0, 1] and for s ≥ 1, the only zeroes of B2s+1(x) are 0, 1
2
, and 1.

In the same interval, 0 and 1 are the only zeroes of (B2s(x) − B2s). Bernoulli
polynomials also satisfy the inequality|B2s(x)| ≤ |B2s|, 0 ≤ x ≤ 1. (14.120)

8. The Bernoulli periodic function, which is continuous and has the period 1,
is defined as

Ps(x) = Bs(x − [x]), (14.121)

where [x] means the greatest integer in the interval (x − 1, x]. The Bernoulli
periodic function also satisfies the relations

P′
s(x) = sPs−1(x), s = 1, 2, 3,… (14.122)

and
Ps(1) = (−1)sPs(0), s = 0, 1, 2, 3,… . (14.123)

14.9.2 Euler–Maclaurin Sum Formula

Using the fact that B0(x) = 1, we write the integral ∫ 1
0 f (x)dx as

∫
1

0
f (x)dx = ∫

1

0
f (x)B0(x)dx. (14.124)

After using the relation B′
1(x) = B0(x) = 1, Eq. (14.124) becomes

∫
1

0
f (x)dx = ∫

1

0
f (x)B0(x)dx = ∫

1

0
f (x)B′

1(x)dx, (14.125)

which can be integrated by parts to give

∫
1

0
f (x)dx = f (x)B1(x)|1

0 − ∫
1

0
f ′(x)B1(x)dx (14.126)

= 1
2
[ f (1) + f (0)] − ∫

1

0
f ′ (x)B1(x)dx, (14.127)
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where we used B1(1) =
1
2
, and B1(0) = − 1

2
. In the above integral [Eq. (14.127)],

we now use B1(x) =
1
2
B′

2(x) and integrate by parts again to obtain

∫
1

0
f (x)dx = 1

2
[f (1) + f (0)] − 1

2!
[ f ′(1)B2(1) − f ′(0)B2(0)]

+ 1
2! ∫

1

0
f ′′ (x)B2(x)dx. (14.128)

Using the values,

B2n(1) = B2n(0) = B2n n = 0, 1, 2,… ,

B2n+1(1) = B2n+1(0) = 0 n = 1, 2, 3,… ,

(14.129)

and continuing like this, we obtain

∫
1

0
f (x)dx = 1

2
[f (1) + f (0)] −

q∑
p=1

B2p

(2p)!
[

f (2p−1)(1) − f (2p−1)(0)
]

+ 1
(2q)! ∫

1

0
f (2q)(x)B2q(x)dx. (14.130)

This equation is called the Euler–Maclaurin sum formula. We have assumed
that all the necessary derivatives of f (x) exist and q is an integer greater
than one.

We now change the limits of the integral from ∫ 1
0 to ∫ 2

1 :

∫
2

1
f (x)dx = ∫

1

0
f (y + 1)dy (14.131)

and repeat the above steps for f (y + 1) to obtain

∫
1

0
f (y + 1)dy = 1

2
[ f (2) + f (1)]

−
q∑

p=1

B2p

(2p)!
[

f (2p−1)(2) − f (2p−1)(1)
]

+ 1
(2q)! ∫

1

0
f (2q)(y + 1)P2q(y)dy, (14.132)

where we used the Bernoulli periodic function [Eq. (14.121)]. Making the trans-
formation y + 1 = x, we write

∫
2

1
f (x)dx = ∫

1

0
f (y + 1)dy, (14.133)

= 1
2
[f (2) + f (1)]
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−
q∑

p=1

B2p

(2p)!
[

f (2p−1)(2) − f (2p−1)(1)
]

+ 1
(2q)! ∫

1

0
f (2q)(x)P2q(x − 1)dx. (14.134)

Repeating this for the interval [2, 3], we write

∫
3

2
f (x)dx = 1

2
[f (3) + f (2)]

−
q∑

p=1

B2p

(2p)!
[

f (2p−1)(3) − f (2p−1)(2)
]

+ 1
(2q)! ∫

3

2
f (2q)(x)P2q(x − 2)dx. (14.135)

Integrals for the other intervals can be written similarly. Since the integral for
the interval [0, n] can be written as

∫
n

0
f (x)dx = ∫

1

0
f (x)dx + ∫

2

1
f (x)dx + · · · + ∫

n

n−1
f (x)dx, (14.136)

we substitute the formulas found above in the right-hand side to obtain

∫
n

0
f (x)dx = 1

2
f (0) + f (1) + f (2) + · · · + 1

2
f (n)

−
q∑

p=1

B2p

(2p)!
[

f (2p−1)(n) − f (2p−1)(0)
]

+ 1
(2q)! ∫

n

0
f (2q)(x)P2q(x)dx. (14.137)

We used the fact that the function P2q(x) is periodic with the period 1. Rear-
ranging this, we write

n∑
j=0

f (j) = ∫
n

0
f (x)dx + 1

2
[f (0) + f (n)]

+
q−1∑
p=1

B2p

(2p)!
[

f (2p−1)(n) − f (2p−1)(0)
]

(14.138)

+
B2q

(2q)!
[

f (2q−1)(n) − f (2q−1)(0)
]
− 1

(2q)! ∫
n

0
f (2q)(x)P2q(x)dx.
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The last two terms on the right-hand side can be written under the same integral
sign, which gives us the final form of the Euler–Maclaurin sum formula as

n∑
j=0

f (j) = ∫
n

0
f (x)dx + 1

2
[f (0) + f (n)]

+
q−1∑
p=1

B2p

(2p)!
[

f (2p−1)(n) − f (2p−1)(0)
]

+ ∫
n

0

[
B2q − B2q(x − [x])

]
(2q)!

f (2q)(x)dx. (14.139)

In this derivation, we assumed that f (x) is continuous and has all the required
derivatives. This is a very versatile formula that can be used in several ways.
When q is chosen as a finite number, it allows us to evaluate a given series as
an integral plus some correction terms. When q is chosen as infinity, it could
allow us to replace a slowly converging series with a rapidly converging one. If
we take the integral to the left-hand side, it can be used for numerical evaluation
of integrals.

14.9.3 Using Residue Theorem to Sum Infinite Series

Some of the infinite series can be summed using the residue theorem. First,
we take a rectangular contour CN in the z-plane with the corners as shown in
Figure 14.3. We now prove a property that will be useful to us shortly.

Lemma 14.1 On the contour CN , the inequality |cot 𝜋z| < A is always satis-
fied, where A is a constant independent of N .

We prove this by considering the parts of CN with y >
1
2
, − 1

2
≤ y ≤ 1

2
, and

y < − 1
2
, separately.

1. Case for y >
1
2
:

We write a complex number as z = x + iy; thus

|cot 𝜋z| = ||||ei𝜋z + e−i𝜋z

ei𝜋z − e−i𝜋z

|||| = ||||ei𝜋x−𝜋y + e−i𝜋x+𝜋y

ei𝜋x−𝜋y − e−i𝜋x+𝜋y

|||| . (14.140)

Using the triangle inequality:

|z1| − |z2| ≤ |z1 + z2| ≤ |z1| + |z2|, (14.141)
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–2–N–N –1 N + 1

(N + 1/2) (1 + i)(N + 1/2) (–1 + i)

(N + 1/2) (1 – i)(N + 1/2) (–1 – i)

CN

y

N x
–1 1 2

Figure 14.3 Contour for finding series sums using the residue theorem.

and considering that y >
1
2
, we find

|cot 𝜋z| ≤ |ei𝜋x−𝜋y| + |e−i𝜋x+𝜋y||e−i𝜋x+𝜋y| − |ei𝜋x−𝜋y| (14.142)

≤ e−𝜋y + e𝜋y

e𝜋y − e−𝜋y = 1 + e−2𝜋y

1 − e−2𝜋y (14.143)

≤ 1 + e−𝜋
1 − e−𝜋

= A1. (14.144)

2. Case for y < − 1
2
: Following the procedure of the first case, we find

|cot 𝜋z| ≤ |ei𝜋x−𝜋y| + |e−i𝜋x+𝜋y||ei𝜋x−𝜋y| − |e−i𝜋x+𝜋y| = e−𝜋y + e𝜋y

e−𝜋y − e𝜋y (14.145)

≤ 1 + e2𝜋y

1 − e 2𝜋y ≤ 1 + e−𝜋
1 − e−𝜋

= A1. (14.146)

3. Case for − 1
2
≤ y ≤ 1

2
: A point on the right-hand side of CN can be written as

z = N + 1
2
+ iy; thus for − 1

2
≤ y ≤ 1

2
, we obtain

|cot 𝜋z| = ||||cot 𝜋
(

N + 1
2
+ iy

)|||| = ||||cot
(
𝜋

2
+ i𝜋y

)|||| (14.147)

= |tanh𝜋y| ≤ tanh
(
𝜋

2

)
= A2. (14.148)

Similarly, a point on the left-hand side of CN is written as z = −N − 1
2
+ iy,

which gives us

|cot 𝜋z| = ||||cot 𝜋
(
−N − 1

2
+ iy

)|||| = ||||cot
(
𝜋

2
+ i𝜋y

)|||| (14.149)

= |tanh𝜋y| ≤ tanh
(
𝜋

2

)
= A2. (14.150)
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Choosing the greater of the A1 and A2 and calling it A proves that on CN the
inequality |cot𝜋z| < A is satisfied. We also note that A is a constant indepen-
dent of N . Actually, since A2 < A1,we could also write |cot 𝜋z| ≤ A1 = cot 𝜋

2
.

We now state the following useful theorem:

Theorem 14.1 If a function f (z) satisfies the inequality | f (z)| ≤ M|z|k on the
contour CN , where k > 1 and M is a constant independent of N , then the sum
of the series

∑∞
j=−∞ f (j) is given as

∞∑
j=−∞

f (j) = −
[

Sum of the Residues of (𝜋 cot 𝜋zf (z))
at the isolated singular points of f (z)

]
. (14.151)

Proof :
1. Case: Let us assume that f (z) has a finite number of isolated singular

points. In this case, we choose the number N such that the closed contour
CN encloses all of the singular points of f (z). On the other hand, cot 𝜋z
has poles at the points z = n, n = 0,±1,±2,… , where the residues of the
function 𝜋 cot𝜋zf (z) at these points are given as

lim
z→n

(z − n)𝜋 cot𝜋zf (z) = lim
z→n

𝜋
(z − n)f (z) cos𝜋z

sin z𝜋
= f (n). (14.152)

For this result, we used the L’Hopital’s rule and assumed that f (z) has no
poles at the points z = n. Using the residue theorem, we can now write

∮CN

𝜋 cot 𝜋zf (z)dz =
N∑

n=−N
f (n) + S, (14.153)

where S represents the sum of the finite number of residues of 𝜋 cot 𝜋zf (z)
at the poles of f (z). We can put an upper bound to the integral on the left as

∮CN

𝜋 cot 𝜋zf (z)dz ≤ |||||∮CN

𝜋 cot𝜋zf (z)dz
||||| ≤ ∮CN

𝜋|cot 𝜋z||f (z)||dz|.
(14.154)

Since on the contour f (z) satisfies |f (z)| ≤ M∕|z|k , this becomes|||||∮CN

𝜋 cot𝜋zf (z)dz
||||| ≤ 𝜋AM

Nk
(8N + 4), (14.155)

where (8N + 4) is the length of CN . From here, we see that as N → ∞, the
value of the integral in Eq. (14.153) goes to zero:

lim
N→∞∮CN

𝜋 cot 𝜋zf (z)dz = 0, (14.156)
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hence we can write
∞∑

n=−∞
f (n) = −S. (14.157)

2. Case: If f (z) has infinitely many singular points, the result can be obtained
similarly by an appropriate limiting process.

Example 14.18 Series sum by the residue theorem
In quantum field theory and in Green’s function calculations, we occasionally
encounter series like

∞∑
n=0

1
n2 + a2 , a > 0, (14.158)

where f (z) = 1∕(z2 + a2) has two isolated singular points located at z = ±ia and
satisfies the conditions of the above theorem. The residue of 𝜋 cot𝜋z∕(z2 + a2)
at z = ia is found as

lim
z→𝚤a

(z − ia) 𝜋 cot 𝜋z
(z + ia)(z − ia)

= 𝜋 cot 𝜋ia
2ia

= − 𝜋

2a
coth 𝜋a. (14.159)

Similarly, the residue at z = −ia is − 𝜋

2a
coth 𝜋a; thus using the conclusion of

the above theorem [Eq. (14.151)], we can write
∞∑

n=−∞

1
n2 + a2 = 𝜋

a
coth 𝜋a. (14.160)

From this result, we obtain the needed sum,
∑∞

n=0
1

n2+a2 , as follows:
∞∑

n=−∞

1
n2 + a2 =

−1∑
n=−∞

1
n2 + a2 + 1

a2 +
∞∑

n=1

1
n2 + a2 , (14.161)

2
∞∑

n=1

1
n2 + a2 + 1

a2 = 𝜋

a
coth 𝜋a, (14.162)

∞∑
n=0

1
n2 + a2 = 𝜋

2a
coth 𝜋a + 1

2a2 . (14.163)

14.9.4 Evaluating Sums of Series by Differintegrals

Using differintegrals (Chapter 13), in 1970, Osler [5] gave the following summa-
tion version of the Leibniz rule, which is very useful in finding sums of infinite
series:

dq[u(x)𝑣(x)]
dxq =

∞∑
n=−∞

(
q

n + 𝛾

)
dq−𝛾−nu
dxq−𝛾−n

d𝛾+n𝑣

dx𝛾+n (14.164)

=
∞∑

n=−∞

Γ(q + 1)
Γ(q − 𝛾 − n + 1)Γ(𝛾 + n + 1)

dq−𝛾−nu
dxq−𝛾−n

d𝛾+n𝑣

dx𝛾+n , (14.165)

where 𝛾 is any constant.
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Example 14.19 Evaluating sums of series by differintegrals
In the above formula, if we choose u = xa, 𝑣 = xb, and 𝛾 = 0, and use the dif-
ferintegral

dqxp

dxq =
Γ(p + 1)xp−q

Γ(p − q + 1)
, (14.166)

where p > −1, we find the sum

Γ(a + b + 1)
Γ(a + b − q + 1)

=
∞∑

n=0

Γ(q + 1)Γ(a + 1)Γ(b + 1)
Γ(q − n + 1)Γ(n + 1)Γ(a − q + n + 1)Γ(b − n + 1)

.

14.10 Asymptotic Series

Asymptotic series are frequently encountered in applications. They are gen-
erally used in numerical evaluation of certain functions approximately. Two
typical functions, I1(x) and I2(x), where asymptotic series are used for their
evaluation are given as

I1(x) = ∫
∞

x
e−uf (u)du, (14.167)

I2(x) = ∫
∞

0
e−uf

(u
x

)
du. (14.168)

In astrophysics, we frequently work on gasses obeying the Maxwell–
Boltzman distribution, where we encounter gamma functions defined as

I(x, p) = ∫
∞

x
e−uu−pdu = Γ(1 − p, x), x, p > 0. (14.169)

We now calculate I(x, p) for large values of x. We first start by integrating the
above integral by parts twice to get

I(x, p) = e−x

xp − p∫
∞

x
e−uu−p−1du (14.170)

and then

I(x, p) = e−x

xp −
pe−x

xp+1 + p(p + 1)∫
∞

x
e−uu−p−2du. (14.171)

We keep on integrating by parts to obtain the series

I(x, p) = e−x
[

1
xp −

p
xp+1 +

p(p + 1)
xp+2 − · · · + (−1)n−1 (p + n − 2)!

(p − 1)!xp+n−1

]
(14.172)

+ (−1)n (p + n − 1)!
(p − 1)! ∫

∞

x
e−uu−p−ndu.
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This is a rather interesting series, where the ratio test gives

lim
n→∞

|un+1||un| = lim
n→∞

(p + n)!
(P + n − 1)!

1
x
= lim

n→∞

p + n
x

→ ∞. (14.173)

Thus the series diverges for all finite values of x. Before we discard this series as
useless in calculating the values of the function I(x, p), let us write the absolute
value of the difference of I(x, p) and the nth partial sum, Sn, as

|I(x, p) − Sn(x, p)| ≤ ||||(−1)n+1 (p + n)!
(p − 1)! ∫

∞

x
e−uu−p−n−1du

|||| = |Rn(x, p)|.
(14.174)

Using the transformation u = 𝑣 + x, we can write the above integral as

∫
∞

x
e−uu−p−u−1du = e−x ∫

∞

0
e−𝑣(𝑣 + x)−p−n−1d𝑣 (14.175)

= e−x

xp+n+1 ∫
∞

0
e−𝑣

(
1 + 𝑣

x
)−p−n−1d𝑣. (14.176)

For the large values of x, using the limit

lim
x→∞∫

∞

0
e−𝑣

(
1 + 𝑣

x
)−p−n−1d𝑣 → 1, (14.177)

we find

|Rn| = |I(x, p) − Sn(x, p)| ≈ (p + n)!
(p − 1)!

e−x

xp+n+1 , (14.178)

which shows that for sufficiently large values of x, we can use Sn [Eq. (14.172)]
for evaluating the values of the function I(x, p) to sufficient accuracy. Naturally,
the Rn value of the partial sum depends on the desired accuracy. For this reason,
such series are sometimes called asymptotic or semi-convergent series.

Example 14.20 Asymptotic expansions
We now consider the integral I = ∫ x

0 e−t2 dt and use the expansion

e−t2 = 1 − t2

1!
+ t4

2!
− t6

3!
+ · · · , r = ∞, (14.179)

to write

I = ∫
x

0
e−t2 dt = x − x3

3 ⋅ 1!
+ x5

5 ⋅ 2!
− x7

7 ⋅ 3!
+ · · · , r = ∞, (14.180)

where r is the radius of convergence. For small values of x, this series can be
used to evaluate I to any desired level of accuracy. However, even though this
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series is convergent for all x, it is not practical to use for large x. For the large
values of x, we can use the method of asymptotic expansions. Writing

I = ∫
x

0
e−t2 dt = ∫

∞

0
e−t2 dt − ∫

∞

x
e−t2 dt (14.181)

=
√
𝜋

2
−
[
∫

∞

x

(
− 1

2t

)
d(e−t2)

]
(14.182)

and integrating by parts, we obtain

I =
√
𝜋

2
−
[

e−x2

2x
− 1

2 ∫
∞

x

e−t2

t2 dt
]
. (14.183)

Repeated application of integration by parts, after n times, yields

∫
∞

x
e−t2 dt (14.184)

= e−x2

2x

[
1 − 1

2x2 + 1 ⋅ 3
(2x2)2 − · · · + (−1)n−1 1 ⋅ 3 ⋅ 5 · · · (2n − 3)

(2x2)n−1

]
+ Rn,

where

Rn = (−1)n 1 ⋅ 3 ⋅ 5 · · · (2n − 1)
2n ∫

∞

x

e−t2

t2n dt. (14.185)

As n → ∞, this series diverges for all x. However, using the inequalities

∫
∞

x

e−t2

t2n dt < 1
x2n ∫

∞

x
e−t2 dt, (14.186)

∫
∞

x
e−t2 dt < e−x2

2x
, (14.187)

we see that the remainder satisfies|Rn| < 1 ⋅ 3 ⋅ 5 · · · (2n − 1)
2n+1x2n+1

e−x2
. (14.188)

Hence |Rn| can be made sufficiently small by choosing n sufficiently large,
thus the series in Eq. (14.184) can be used to evaluate I as

I =
√
𝜋

2
− e−x2

2x

[
1 − 1

2x2 + 1 ⋅ 3
(2x2)2 − · · · + (−1)n−1 1 ⋅ 3 ⋅ 5 · · · (2n − 3)

(2x2)n−1

]
− Rn.

(14.189)

For x = 5, if we choose n = 13, we have |Rn| < 10−20.

14.11 Method of Steepest Descent

Frequently, we encounter integrals that cannot be evaluated exactly. Even
though nowadays modern computers can be used to evaluate almost any
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integral numerically, methods for obtaining approximate expressions of
various types of integrals remain extremely useful. Having an approximate yet
an analytic expression for a given integral, not only allows us to push further
with the analytic approach, but also helps us to understand and interpret the
results better. In this regard, in the previous section, we have introduced the
asymptotic series. We now introduce two more useful methods for obtaining
approximate values of integrals, that is, the method of steepest descent and
the saddle-point integrals. They are both closely related to the asymptotic
series.

Consider the integral

I = ∫
x2

x1

dx F(x), (14.190)

where the range could be infinite. We now write I as

I = ∫
x2

x1

dx ef (x), (14.191)

where f (x) is defined as f (x) = ln[F(x)]. If f (x)has a steep maximum at x0, where

f ′(x0) =
1

F(x0)
F ′(x0) = 0 (14.192)

and F ′′(x0) < 0, we can approximate f (x) in the neighborhood of x0 by taking
only the first two nonzero terms of the Taylor series:

f (x) = f (x0) + f ′(x0)(x − x0) +
1
2!

f ′′(x0)(x − x0)2 + · · · , (14.193)

as

f (x) ≃ f (x0) +
1
2!

f ′′(x0)(x − x0)2. (14.194)

If the range includes the point x0, we can write I as

I = ∫
x2

x1

dx F(x) (14.195)

= ∫
x2

x1

dx ef (x) (14.196)

≃ ∫
x2

x1

dx exp
[

f (x0) +
1
2

f ′′(x0)(x − x0)2
]

(14.197)

≃ F(x0)∫
x2

x1

dx e−
1
2 | f ′′(x0)|(x−x0)2

. (14.198)

If the end points do not contribute to the integral significantly, we can replace
I with

I ≃ F(x0)∫
∞

−∞
dx e−

1
2 | f ′′(x0)|(x−x0)2

, (14.199)
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x0

Δ

x1 x2 x

Figure 14.4 In one dimension, the method of steepest descent allows us to approximate
the integrand in Eq. (14.190), F(x), that has a high maximum at x0 with a Gaussian,

F(x0)e
− 1

2
| f ′′ (x0)|(x−x0)2

, where the width, Δ, is Δ ∝ 1∕
√| f ′′(x0)| and f (x) = ln[F(x)].

where the integrand:

e−
1
2 | f ′′(x0)|(x−x0)2

, (14.200)

is a Gaussian as shown in Figure 14.4.
We can now evaluate the integral in Eq. (14.199) to obtain the approximate

expression

I ≃
√

2𝜋| f ′′(x0)| F(x0). (14.201)

Example 14.21 Method of steepest descent
Evaluate the integral

Γ(x + 1) = ∫
∞

0
txe−tdt (14.202)

for large x.
Solution: We first rewrite the integrand as

F(x; t) = ef (x;t) = txe−t = ex ln t−t, (14.203)

hence determine f (x; t) as

f (x; t) = x ln t − t. (14.204)

Evaluating the first two derivatives with respect to t:

f ′(x; t) = x
t
− 1, (14.205)

f ′′(x; t) = − x
t2 , (14.206)
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we see that the maximum of f (x; t) is located at t = x. Finally, using Eq. (14.201),
we obtain the approximate value of Γ(x + 1) as

Γ(x + 1) ≃
√

2𝜋xxxe−x, (14.207)

which is good for large x. When x is an integer, n, this is nothing but the Stir-
ling’s approximation of the factorial n!.

Important:
(i) Note that the large x condition assures us that the coefficient of the third

order term in the Taylor series expansion about t = x:

f (x; t) = f (x; x) + 1
2!

f ′′(x; x)(t − x)2 + 1
3!

f ′′(x; x)(t − x)3 + · · · ,
(14.208)

is negligible for t values near x. That is,|||| 1
3!

f ′′(x; x)(t − x)3
/ 1

2!
f ′′(x; x)(t − x)2|||| = 2

3
|||| t − x

x
|||| ≪ 1. (14.209)

(ii) The approximate formula we have obtained in Eq. (14.207) is nothing but
the first term in the asymptotic expansion of Γ(x + 1) ∶

n! =
√

2𝜋nnne−n
(

1 + 1
12n

+ 1
288n2 + · · ·

)
. (14.210)

(iii) A Series expansion of the integrand in Eq. (14.202) would not be useful.

14.12 Saddle-Point Integrals

In general, the method of steepest descent is applicable to contour integrals of
the form

I(𝛼) = ∫C
F(z) dz (14.211)

= ∫C
e𝛼f (z) dz, (14.212)

where 𝛼 is large and positive and C is a path in the complex plane where the
end points do not contribute significantly to the integral. The method of steep-
est descent works if the function f (z) has a maximum at some point z0 on the
contour. However, if the function is analytic, we can always deform the con-
tour so that it passes through the point z0 without altering the value of the
integral.
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From the theory of complex functions (Chapter 11), we know that the real
and the imaginary parts, u and 𝑣, of an analytic function:

f (z) = u(x, y) + i𝑣(x, y), (14.213)
satisfy the Laplace equation:

∇2u(x, y) = 0, (14.214)
and

∇2𝑣(x, y) = 0. (14.215)

From Eq. (14.214), it is seen that if 𝜕2u
𝜕x2 < 0, then 𝜕2u

𝜕y2 > 0. The same conclusion
also holds for 𝑣(x, y).Using Theorem 1.4 in [2, p. 18], we conclude that the point
z0, where

𝜕u
𝜕x

||||z0

= 𝜕u
𝜕y

||||z0

= 0, (14.216)

must be a saddle point of the surface u(x, y). At z0 the surface looks like a saddle
or a mountain pass (Figure 14.5).

By the Cauchy–Riemann conditions, we also infer that
𝜕𝑣

𝜕x
||||z0

= 𝜕𝑣

𝜕y
||||z0

= 0, (14.217)

z0

A

Aʹ

B

y

x

u

Figure 14.5 The path AA′ is the path that follows the steepest descent. The path B is
perpendicular to AA′, hence it follows the ridges.



530 14 Infinite Series

hence df (z0)
dz

= 0. In other words, a saddle point of u(x, y) is also a saddle point
of 𝑣(x, y).

About the saddle point, we can write the Taylor series

f (z) = f (z0) +
1
2!

f ′′(z0)(z − z0)2 + 1
3!

f ′′′(z0)(z − z0)2 + · · · (14.218)

and for points on the contour near the saddle point, we can use the
approximation

f (z) ≃ f (z0) +
1
2

f ′′(z0)(z − z0)2. (14.219)

Using polar representations of f ′′(z0) and (z − z0):

f ′′(z0) = 𝜌0ei𝜙0 , (14.220)
(z − z0) = rei𝜃, (14.221)

where z is a point on the contour, we can approximate the integral I(𝛼)
[Eq. (14.212)] by

I(𝛼) ≃ ∫C′
dz e𝛼

[
f (z0)+

1
2

f ′′(z0)(z−z0)2
]

(14.222)

≃ ∫C′
dr ei𝜃e𝛼

[
f (z0)+

1
2
𝜌0ei𝜙0 r2ei2𝜃

]
(14.223)

≃ e𝛼f (z0)∫C′
dr ei𝜃e𝛼

1
2
𝜌0r2ei(𝜙0+2𝜃) (14.224)

≃ e𝛼f (z0)∫C′
dr ei𝜃e𝛼

1
2
𝜌0r2[cos(𝜙0+2𝜃)+i sin(𝜙0+2𝜃)]

, (14.225)

where C′ is now a contour that passes through the saddle point z0. We are now
looking for directions, that is, the 𝜃 values, that allow us to approximate the
value of this integral only using the values of f (z) in the neighborhood of z0.

Note that for points near the saddle Point, the surface is nearly flat, hence 𝜃

varies very slowly, hence we have written

dz ≃ dr ei𝜃. (14.226)

We can also take ei𝜃 outside the integral sign to write

I(𝛼) ≃ e𝛼f (z0) ei𝜃∫C′
dr e𝛼

1
2
𝜌0r2[cos(𝜙0+2𝜃)+i sin(𝜙0+2𝜃)]

. (14.227)

The integrand has two factors:

e𝛼
1
2
𝜌0r2[cos(𝜙0+2𝜃) ] (14.228)

and

ei𝛼 1
2
𝜌0r2[sin(𝜙0+2𝜃) ]

. (14.229)
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The first factor is an exponential, which could be decaying or growing depend-
ing on the sign of the cosine, while the second factor oscillates wildly for large 𝛼.
For this method to work effectively, we have to pick a direction that makes the
exponential decay in the fastest possible way, thus justifying the name steepest
descent, while suppressing the effect of the wildly fluctuating second factor.
From the following table, we see that the paths that follow the steepest descent
from the saddle point, z0, are the ones that follow the directions that make

cos(𝜙0 + 2𝜃) = −1. (14.230)

Since for these paths
sin(𝜙0 + 2𝜃) = 0, (14.231)

they also eliminate the concerns caused by the wildly fluctuating second factor.
If we take

(𝜙0 + 2𝜃) = 𝜋, (14.232)

the direction that we have to follow becomes

𝜃 = −
𝜙0

2
+ 𝜋

2
, (14.233)

where 𝜙0 is determined from Eq. (14.220).
Choice of angles in the saddle-point method:

(ϕ0 + 2θ ) [cos(ϕ0 + 2θ ) + i sin(ϕ0 + 2θ )] θ

0 +1 − ϕ0
2

π − 1 − ϕ0
2 + π

2

2π +1 − ϕ0
2 + π

3π − 1 − ϕ0
2 + 3π

2

4π +1 − ϕ 0
2 + 2π

Every time we change 𝜃, that is, the direction that we start moving at z0, by 𝜋∕2,
the quantity

[cos(𝜙0 + 2𝜃) + i sin(𝜙0 + 2𝜃)] (14.234)

changes its value from +1 to −1. Depending on which direction we are passing
through the saddle point, the directions that correspond to the steepest descent
are given as

𝜃 = −
𝜙0

2
± 𝜋

2
. (14.235)

For these directions, the integrand in Eq. (14.227) is a Gaussian, hence for large
positive 𝛼, only the points very close to z0 contribute to the integral. The direc-
tions perpendicular to these follow the ridges and give rise to exponentially
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z0

z0

B

θ = π/4
θ = –3π/4

B

A A

dz

dz

Figure 14.6 Two possible mountain ranges: For the one on the left, we use + and for the one
on the right, we use − in Eq. (14.235).

increasing functions in Eq. (14.227). Any direction in between will compromise
the advantages of this method. Keep in mind that usually this method gives the
first term in the asymptotic expansion of I(𝛼) for large 𝛼. To choose the correct
sign in Eq. (14.235), we need to look at the topography more carefully and see
which way to deform the contour. For example, for 𝜙0 = 𝜋∕2, in Figure 14.6, we
show two possible topographies that require the+ and the− signs, respectively.
In these figures, dz is a tangent vector to the path at z0 pointing in the direction
we move.

In the light of these, we now write an approximate expression for I(𝛼) as

I(𝛼) ≃ e𝛼f (z0) ∫
∞

−∞
e−𝛼

1
2
𝜌0r2 ei𝜃 dr (14.236)

≃
√

2𝜋
𝛼𝜌0

e𝛼f (z0)ei𝜃, (14.237)

where 𝜃 takes one of the values

𝜃 = −
𝜙0

2
± 𝜋

2
(14.238)

and

𝜙0 = tan−1
[ Im f ′′(z0)

Re f ′′(z0)

]
. (14.239)

Note that since for large 𝛼, only points near z0 contribute to the integral, we
have taken the limits in Eq. (14.236) as ±∞.

Example 14.22 Saddle-point integrals
Let us evaluate Γ(z + 1) using the definition

Γ(z) = ∫
∞

0
e−ttz−1dt, Rez > 0, (14.240)
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via the saddle-point method. We start by writing

Γ(z + 1) = ∫
∞

0
e−ttzdt (14.241)

= ∫
∞

0
e−t+z ln tdt. (14.242)

Using the polar representation of z as z = 𝛼ei𝛽 , we rewrite Eq. (14.242):

Γ(z + 1) = ∫
∞

0
exp

[
𝛼

(
ln t − t

z

)
ei𝛽

]
dt, (14.243)

and compare with Γ(z + 1) = ∫ ∞
0 e𝛼f (t)dt to obtain

f (t) =
(

ln t − t
z

)
ei𝛽 . (14.244)

The first two derivatives of f (t) are easily found as

f ′(t) =
(1

t
− 1

z

)
ei𝛽 , (14.245)

f ′′(t) = − 1
t2 ei𝛽 . (14.246)

Setting the first derivative to zero, we obtain the saddle point, t0, as f ′(t0) = 0 ⇒
t0 = z. This gives f (t0) = (ln z − 1)ei𝛽 and

f ′′(t0) = −ei𝛽

z2 = − 1
𝛼2 e−i𝛽 . (14.247)

Using the polar representation, f ′′(t0) = 𝜌0ei𝜙0 ,we obtain 𝜌0 = 1∕𝛼2, 𝜙0 = 𝜋 − 𝛽.

We now have to decide between the two possibilities for 𝜃∶

𝜃 = −𝜋 − 𝛽

2
+ 𝜋

2
= 𝛽

2
(14.248)

and

𝜃 = −𝜋 − 𝛽

2
− 𝜋

2
= −𝜋 + 𝛽

2
. (14.249)

In our previous example, where z was real, 𝛽 = 0 and 𝜃 = 0, it seems that
𝜃 = 𝛽∕2 is the right choice. This gives the steepest descent approximation of
Γ(z + 1) as

Γ(z + 1) ≃
√

2𝜋𝛼 ez ln z−z ei𝛽∕2, (14.250)

Γ(z + 1) ≃
√

2𝜋zz+ 1
2 e−z. (14.251)

Even though the integral definition [Eq. (14.241)] is valid for Re z > 0, the above
result is good for |z| ≫ 1, provided that we stay away from the negative real axis
where we have a branch cut.
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Example 14.23 Saddle-point integrals
We now show that the approximate expression for Γ(z + 1) obtained via the
saddle-point method:

Γ(z + 1) ≃
√

2𝜋 zz+ 1
2 e−z, (14.252)

is only the first term in the asymptotic expansion of Γ(z + 1).
We first write Eq. (14.240):

Γ(z) = ∫
∞

0
e−ttz−1dt, Re z > 0, (14.253)

as

Γ(z + 1) = ∫
∞

0
dt e f (t), (14.254)

where
f (t) = −t + z ln t. (14.255)

The saddle point,
f ′(t0) = 0, (14.256)

of f (t) is located at t0 = z. We now expand f (t) about the saddle point to write
f (t) = f (z) + A1(t − z) + A2(t − z)2 + A3(t − z)3 + · · · , (14.257)

where

Ak = 1
k!

dkf (z)
dtk

.

Substituting f (t) [Eq. (14.255)] into Eq. (14.257), we obtain

f (t) = [−z + z ln z] − (t − z)2

2z
+ (t − z)3

3z2 − (t − z)4

4z3 + · · · , (14.258)

which when substituted into Eq. (14.254) gives

Γ(z + 1) = zze−z ∫
∞

0
dt exp

[
−(t − z)2

2z
+ (t − z)3

3z2 − (t − z)4

4z3 + · · ·
]
.

(14.259)

To simplify, we use the substitution s = (t − z)∕
√

2z to get

Γ(z + 1) =
√

2z zze−z ∫
∞

−
√

z∕2
ds exp

[
−s2 + s3

3

√
8
z
− s4

z
+ · · ·

]
.

(14.260)
We now write this as

Γ(z + 1) ≃
√

2z zze−z ∫
∞

−
√

z∕2
ds e−s2 exp

(
s3

3

√
8
z
− s4

z

)
(14.261)
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and then expand the exponential to get

Γ(z + 1) ≃
√

2z zze−z ∫
∞

−
√

z∕2
ds e−s2

[
1 +

(
s3

3

√
8
z
− s4

z

)

+ 1
2!

(
s3

3

√
8
z
− s4

z

)2

+ · · ·
⎤⎥⎥⎦ , (14.262)

which when the integrals are evaluated yields the series

Γ(z + 1) ≃
√

2𝜋 zz+1∕2e−z
[
1 + 1

12z
+ 1

288z2 + · · ·
]
. (14.263)

For integers, z = n, this gives the asymptotic expansion of the factorial:

n! ≃
√

2𝜋nn+1∕2e−n
[
1 + 1

12n
+ 1

288n2 + · · ·
]
, (14.264)

the first term of which is the well-known Stirling’s formula valid for large n:

n! ≃
√

2𝜋nn+1∕2e−n. (14.265)

Keep in mind that the several steps of this derivation lacks the desired rigor,
but nevertheless produces the right answer [Eq. (14.210)].

14.13 Padé Approximants

We have seen how to use contour integrals and Euler–Maclaurin sum formula
to sum series. Both techniques required that the general term of the series be
known. In applications, we frequently encounter situations where only the first
few terms of the series can be determined. Furthermore, these terms may not be
sufficient to reveal the general term of the series. We are now going to introduce
an intriguing technique that will allow us to evaluate series sums to very high
levels of accuracy.

As an example, consider the series

f (x) = 1 + x − 5
2

x2 + 13
2

x3 − 141
8

x4 + · · · , (14.266)

where only the first five terms are known. Let us first introduce the general
method.

Consider a series whose first M terms are given:

f (x;M) =
M∑

i=0
aixi. (14.267)



536 14 Infinite Series

We write f (x;M) as the ratio of two polynomials:

f (x;M) = P(x;N)
Q(x; L)

, (14.268)

where

P(x;N) =
N∑

j=0
pjxj, (14.269)

Q(x; L) =
L∑

k=0
qkxk , (14.270)

and M = N + L. We have (N + L + 2) = M + 2 unknowns, where (N + 1) pj’s
and (L + 1) qk ’s, are to be determined from the known M + 1 values of ai. We
now write Eq. (14.268) as

f (x;M)

( L∑
k=0

qkxk

)
=

( N∑
j=0

pjxj

)
, (14.271)( M∑

i=0
aixi

)( L∑
k=0

qkxk

)
=

( N∑
j=0

pjxj

)
, (14.272)

(a0 + a1x + · · · + aMxM)(q0 + q1x + · · · + qLxL) = (p0 + p1x + · · · + aN xN ).
(14.273)

Since when P(x;N) and Q(x; L) are multiplied with the same constant, f (x;M)
does not change, hence we can set q0 = 1, thus obtaining

(a0 + a1x + · · · + aMxM)(1 + q1x + · · · + qLxL) = (p0 + p1x + · · · + pN xN ).
(14.274)

We now have N + L + 1 = M + 1 unknowns, p0, p1,… , pN ; q1,… , qL, to be
determined from the N + 1 values of ai, i = 0, 1,… ,M. Expanding Eq. (14.274)
and equating the coefficients of the equal powers of x gives the following M + 1
equations:

a0 = p0,

a1 + a0q1 = p1,

a2 + a1q1 + a0q2 = p2,

⋮

aN + aN−1q1 + · · · + a0qN = pN , (14.275)
aN+1 + aN q1 + · · · + aN−L+1qL = 0,

⋮

aN+L + aN+L−1q1 + · · · + aN qL = 0,
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for the M + 1 unknowns, where we have taken
ai = 0 when i > M, (14.276)
pj = 0 when j > N , (14.277)
qk = 0 when k > L. (14.278)

The first N + 1 equations can be written as⎛⎜⎜⎜⎝
p0
p1
⋮

pN

⎞⎟⎟⎟⎠ =
⎛⎜⎜⎜⎝

a0 0 · · · 0
a1 a0 · · · 0
⋮ ⋮ ⋮ ⋮

aN aN−1 · · · a0

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

1
q1
⋮

qN

⎞⎟⎟⎟⎠ , (14.279)

while the remaining equations become⎛⎜⎜⎜⎝
aN aN−1 · · · aN−L+1

aN+1 aN · · · aN−L+2
⋮ ⋮ ⋮ ⋮

aM aM−1 · · · aN

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
q1
q2
⋮
qL

⎞⎟⎟⎟⎠ = −
⎛⎜⎜⎜⎝
aN+1
aN+2
⋮

aM

⎞⎟⎟⎟⎠ . (14.280)

These are two sets of linear equations. Since ai’s are known, we can solve the
second set for the qk values, which when substituted into the first set will yield
the pj values. For a review of linear algebra and techniques on solving systems
of linear equations, we recommend Bayin [2].

Let us now return to the series in Eq. (14.266), where M = 4 and choose
N = L = 2. Using the values

a0 = 1, a1 = 1, a2 = −5
2
, a3 = 13

2
, a4 = −141

8
, (14.281)

the two linear systems to be solved becomes:(
a2 a1

a3 a2

)(
q1

q2

)
= −

(
a3

a4

)
, (14.282)

⎛⎜⎜⎜⎝
−5

2
1

13
2

−5
2

⎞⎟⎟⎟⎠
(

q1

q2

)
= −

⎛⎜⎜⎜⎝
13
2

−141
8

⎞⎟⎟⎟⎠ (14.283)

and ⎛⎜⎜⎜⎝
p0

p1

p2

⎞⎟⎟⎟⎠ =
⎛⎜⎜⎜⎝
a0 0 · · ·
a1 a0 · · ·
a2 a1 a0

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

1
q1

q2

⎞⎟⎟⎟⎠ , (14.284)

⎛⎜⎜⎜⎝
p0

p1

p2

⎞⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎝

1 0 · · ·
1 1 · · ·

−5
2

1 1

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝

1
q1

q2

⎞⎟⎟⎟⎠ . (14.285)
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The first set yields the values of qk as

(
q1

q2

)
=

⎛⎜⎜⎜⎝
11
2

29
4

⎞⎟⎟⎟⎠ . (14.286)

Using these values in the second set, we obtain

⎛⎜⎜⎜⎝
p0

p1

p2

⎞⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎝

1
13
2

41
4

⎞⎟⎟⎟⎟⎠
. (14.287)

Thus, we obtain the Padé approximant, f (2,2)(x), as

f (2,2)(x) =
1 + 13

2
x + 41

4
x2

1 + 11
2

x + 29
4

x2
. (14.288)

To interpret this result, it is time to reveal the truth about the five terms we
have in Eq. (14.266). They are just the first five terms of the Taylor series expan-
sion of

F(x) =
√

1 + 4x
1 + 2x

. (14.289)

This function has a pole at x = − 1
2

and a branch point at x = − 1
4
. In other words,

the Taylor series:

f (x) = 1 + x − 5
2

x2 + 13
2

x3 − 141
8

x4 + · · · , (14.290)

converges only for |x| ≤ 1
4
. We now construct the following table to compare

F(x), f (x), and f (2,2)(x) for various values of x∶

x 0 1/4 1/2 1 3.0 7.0

F(x)

f (x)

f (2,2)(x)

f (1,3)(x)

f (1,1)(x)

1 1.1547 1.22474 1.29099 1.36277 1.39044

1 1.12646 0.585938 –11.625 –1270.63 –40202.6

1 1.1547 1.22472 1.29091 1.36254 1.39012

1 1.15426 1.2196 1.24966 0.89702 0.316838

1 1.15428 1.2199 1.2513 0.712632 –2.91771
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The last two rows are the other two Padé approximants corresponding to the
choices (N , L) = (1, 3) and (N , L) = (3, 1), respectively:

f (1,3)(x) =
1 + 363

100
x

1 + 263
100

x − 13
100

x2 + 41
200

x3
(14.291)

and

f (3,1)(x) =
1 + 193

52
x + 11

52
x2 − 29

104
x3

1 + 141
52

x
. (14.292)

From this table, it is seen that the Padé approximant, f (2,2)(x), approximates
the function F(x) much better than the Taylor series, f (x), truncated after the
fifth term. It is also interesting that f (2,2)(x) remains to be an excellent approx-
imation even outside the domain, |x| > 1∕4, where the Taylor series ceases to
be valid. In this case, the symmetric Padé approximant; f (2,2)(x), gives a much
better approximation than its antisymmetric counterparts.

Definition 14.1 For a given function, f (x), the Padé approximant RN∕L(x) ≡
[N , L], of order (N , L) is defined as the rational function

RN∕L(x) =
p0 + p1x + p2x2 + · · · + pN xN

1 + q1x + q2x2 + · · · + qLxL , (14.293)

where RN∕L(x) agrees with f (x) to the highest possible order, that is,

f (x) − RN∕L(x) = cN+L+1xN+L+1 + cN+L+2xN+L+2 + · · · . (14.294)

In other words, the first (N + L) terms of the Taylor series expansion of RN∕L(x)
exactly cancel the first (N + L + 1) terms of the Taylor series of f (x). For a given
(N , L), the Padé approximant is unique. Padé approximants will often be a
superior approximation to a function, compared to the one obtained by trun-
cating the Taylor series. As in the above example, it may even work where the
Taylor series do not.

14.14 Divergent Series in Physics

So far, we have seen how to test a series for convergence and introduced
some techniques for evaluating infinite sums. In quantum field theory, we
occasionally encounter divergent series corresponding to physical prop-
erties like energy and mass. These divergences are naturally due to some
pathologies in our theory, which are expected to disappear in the next
generation of field theories. However, even within the existing theories,
it is sometimes possible to obtain meaningful results that agree with the
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experiments to an incredibly high degree of accuracy. The process of obtaining
finite and meaningful results from divergent series is accomplished in
two steps. The first step is called the regularization, where the divergent
pieces are written out explicitly. The second step is the renormalization,
where the divergent pieces identified in the first part are subtracted by
suitable physical arguments. Whether a given theory is renormalizable
or not is very important. In 1999, Gerardus’t Hooft and J. G. Martinus
Veltman received the Nobel Prize for showing that Salam and Weinberg’s
theory of unified electromagnetic and weak interactions is renormalizable.
On the other hand, quantum gravity is nonrenormalizable because it contains
infinitely many divergent pieces.

14.14.1 Casimir Effect and Renormalization

To demonstrate the regularization and the renormalization procedure, we con-
sider massless conformal scalar field in one-dimensional box with length L.
Using the periodic boundary conditions, we find the eigenfrequencies as

𝜔n = 2𝜋cn
L

, n = 0, 1, 2,… , (14.295)

where each frequency is twofold degenerate. In quantum field theory, vacuum
energy is a divergent expression given by the infinite sum

E0 =
∑

n
gn
ℏ𝜔n

2
, (14.296)

where gn stands for the degeneracy of the nth eigenstate. For the one-
dimensional box problem, E0 becomes

E0 = 2𝜋cℏ
L

∞∑
n=0

n, (14.297)

which diverges. Because the high frequencies are the reason for the divergence
of the vacuum energy, we have to suppress them for a finite result. Let us mul-
tiply Eq. (14.297) with a cutoff function like e−𝛼𝜔n and write

E0 = 2𝜋cℏ
L

∞∑
n=0

ne−2𝜋cn𝛼∕L, (14.298)

where 𝛼 is the cutoff parameter. This sum is now convergent and can be
evaluated easily using the geometric series as

E0 = 2𝜋
L

e−2𝜋𝛼∕L[1 − e−2𝜋𝛼∕L]−2
, we set ℏ = c = 1. (14.299)

The final and the finite result is naturally going to be obtained in the limit where
the effects of the cutoff function disappear, that is, when 𝛼 → 0. We now expand
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Eq. (14.299) in terms of the cutoff parameter, 𝛼, to write

E0 = L
2𝜋𝛼2 − 𝜋

6L
+ (terms in positive powers of 𝛼). (14.300)

Note that in the limit as 𝛼 → 0, the vacuum energy is still divergent; however,
the cutoff function has helped us to regularize the divergent expression so that
the divergent piece can be identified explicitly as L∕2𝜋𝛼2. The second term in
E0 is finite and independent of 𝛼,while the remaining terms are all proportional
to the positive powers of 𝛼, which disappear in the limit 𝛼 → 0.

The second part of the process is renormalization, which is subtracting the
divergent piece by a physical argument. We now look at the case where the walls
are absent, or taken to infinity. In this case, the eigenfrequencies are continuous;
hence we write the vacuum energy in terms of an integral as

E0 → Ẽ0 = L
2𝜋 ∫

∞

0
𝜔d𝜔. (14.301)

This integral is also divergent. We regularize it with the same cutoff function
and evaluate its value as

Ẽ0 = L
2𝜋 ∫

∞

0
𝜔e−𝛼𝜔d𝜔 (14.302)

= L
2𝜋𝛼2 , (14.303)

which is identical to the divergent term in the series [Eq. (14.300)].
To be consistent with our expectations, we now argue that in the absence of

walls, or as L → ∞, the quantum vacuum energy should be zero. Thus we define
the renormalized quantum vacuum energy, E0, by subtracting the divergent
piece [Eq. (14.303)] from the unrenormalized energy, E0, and then by taking
the limit 𝛼 → 0 as

E0 = lim
𝛼→0

[E0 − Ẽ0]. (14.304)

For the renormalized quantum vacuum energy between the walls, this prescrip-
tion gives

E0 = lim
𝛼→0

[ L
2𝜋𝛼2 − 𝜋

6L
+ (terms in positive powers of 𝛼) − L

2𝜋𝛼2

]
(14.305)

= − 𝜋

6L
. (14.306)

The minus sign means that the force between the walls is attractive. In three
dimensions, this method gives the renormalized electromagnetic vacuum
energy between two perfectly conducting neutral plates held at absolute zero
and separated by a distance L as

E0 = − cℏ𝜋2

720L3 S, (14.307)
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where S is the surface area of the plates and we have inserted c and ℏ. This gives
the attractive force per unit area between the plates as

F0 = −
𝜕E0

𝜕L
= − 𝜋2cℏ

240L4 . (14.308)

In quantum field theory, this interesting effect is known as the Casimir effect
and it has been verified experimentally. The Casimir effect has also been cal-
culated for plates with different geometries and also in curved background
spacetimes. More powerful and covariant techniques like the point splitting
method, which are independent of cutoff functions, have confirmed the results
obtained by the simple mode sum method used here. Since in the classical limit,
ℏ → 0, the Casimir effect disappears, it is a pure quantum effect.

One should keep in mind that in the regularization and renormalization pro-
cess we have not cured the divergence problem of the quantum vacuum energy.
In the absence of gravity only the energy differences are observable; hence all we
have done is to define the renormalized quantum vacuum energy in the absence
of plates as zero and then scaled all the other energies with respect to it.

14.14.2 Casimir Effect and MEMS

The Casimir force between two neutral metal plates is very small and goes as
A∕d4. For plates with a surface area of 1 cm2 and a separation of 1 𝜇m, the
Casimir force is around 10−7N . This is roughly the weight of a water drop.
When we reduce the separation to 1 nm, roughly 100 times the size of a
typical atom, pressure on the plates becomes 1 atm. The Casimir effect plays
an important role in microelectromechanical devices (MEMS). These are
systems with moving mechanical parts embedded in silicon chips at micro-
and submicroscales. Examples of MEMS are microrefrigerators, actuators,
sensors, and switches. In the production of MEMS, the Casimir effect can
sometimes produce unwanted effects like sticking between parts, but it can
also be used to produce mechanical effects like bending and twisting. A
practical use for the Casimir effect in our everyday lives is the pressure sensors
of airbags in cars. Casimir energy is bound to make significant changes in our
concept of vacuum.

14.15 Infinite Products

Infinite products are closely related to infinite series. Most of the known func-
tions can be written as infinite products, which are also useful in calculating
some of the transcendental numbers. We define the Nth partial product of an
infinite product of positive terms as

PN = f1 ⋅ f2 ⋅ f3 · · · fN =
N∏

n=1
fn. (14.309)
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If the limit

lim
N→∞

N∏
n=1

fn → P (14.310)

exists, then we say the infinite product converges and write
∞∏

n=1
fn = P. (14.311)

Infinite products satisfying the condition lim
n→∞

fn > 1 are divergent. When the
condition 0 < lim

n→∞
fn < 1 is satisfied, it is advantageous to write the product as

∞∏
n=1

(1 + an). (14.312)

The condition an → 0 as n → ∞ is necessary, but not sufficient, for conver-
gence. Using the ln function, we can write an infinite product as an infinite
sum as

ln
∞∏

n=1
(1 + an) =

∞∑
n=1

ln(1 + an). (14.313)

Theorem 14.2 When the inequality 0 ≤ an < 1 is true, then the infinite
products

∞∏
n=1

(1 + an) and
∞∏

n=1
(1 − an) (14.314)

converge or diverge with the infinite series
∑∞

n=1 an.

Proof : Since 1 + an ≤ ean , we write

ean = 1 + an +
a2

n

2!
+ · · · , (14.315)

which means the inequality

PN =
N∏

n=1
(1 + an) ≤

N∏
n=1

ean = exp

{ N∑
n=1

an

}
= eSN (14.316)

is true. Since in the limit as N → ∞ we can write
∞∏

n=1
(1 + an) ≤ exp

{ ∞∑
n=1

an

}
, (14.317)
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we obtain an upper bound to the infinite product. For a lower bound, we write
the Nth partial sum as

PN = 1 +
N∑

i=1
ai +

N∑
i=1

N∑
j=1

aiaj + · · · (14.318)

and since ai ≥ 0, we obtain the lower bound as
∞∏

n=1
(1 + an) ≥

∞∑
n=1

an. (14.319)

Both the upper and the lower bounds to the infinite product Π∞
n=1(1 + an)

depend on the series
∑∞

n=1 an; thus both of them converge or diverge together.
Proof for the product Π∞

n=1(1 − an) is done similarly.

14.15.1 Sine, Cosine, and the Gamma Functions

An nth-order polynomial with n real roots can be written as a product:

Pn(x) = (x − x1)(x − x2) · · · (x − xn) =
n∏

i=1
(x − xi). (14.320)

Naturally, a function with infinitely many roots can be expressed as an infinite
product. We can find the infinite product representations of the sine and cosine
functions using complex analysis:

In the z-plane a function, h(z), with simple poles at z = an, 0 < |a1| < |a2|
< · · · , can be written as

h(z) = h(0) +
∞∑

n=1
bn

[
1

(z − an)
+ 1

an

]
, (14.321)

where bn is the residue of the function at the pole an. This is also known as the
Mittag-Leffler theorem. We have seen that a function analytic on the entire
z-plane is called an entire function. For such a function its logarithmic deriva-
tive, f ′∕f , has poles and its Laurent expansion must be given about the poles. If
an entire function f (z) has a simple zero at z = an, then we can write

f (z) = (z − an)g(z), (14.322)
where g(z) is again an analytic function satisfying g(z) ≠ g(an). Using the above
equation, we can write

f ′

f
= 1

(z − an)
+

g′(z)
g(z)

. (14.323)

Since an is a simple pole of f ′∕f , we can take bn = 1 and h(z) = f ′∕f in
Eq. (14.321) to write

f ′(z)
f (z)

=
f ′(0)
f (0)

+
∞∑

n=1

[
1

(z − an)
+ 1

an

]
. (14.324)
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Integrating Eq. (14.324) gives

ln
f (z)
f (0)

= z
f ′(0)
f (0)

+
∞∑

n=1

[
ln(z − an) − ln(−an) +

z
an

]
, (14.325)

and finally the general expression is obtained as

f (z) = f (0) exp
[

z
f ′(0)
f (0)

] ∞∏
n=1

(
1 − z

an

)
exp

(
z

an

)
. (14.326)

Applying this formula with z = x to the sine and cosine functions, we obtain

sin x = x
∞∏

n=1

(
1 − x2

n2𝜋2

)
(14.327)

and

cos x =
∞∏

n=1

(
1 − 4x2

(2n − 1)2𝜋2

)
. (14.328)

These products are finite for all the finite values of x. For sin x, this can easily be
seen by taking an = x2∕n2𝜋2. Since the series

∑∞
n=1 an is convergent, the infinite

product is also convergent:
∞∑

n=1
an = x2

𝜋2

∞∑
n=1

1
n2 = x2

𝜋2 𝜁 (2) =
x2

6
. (14.329)

In the sin x expression, if we take x = 𝜋

2
, we obtain

1 = 𝜋

2

∞∏
n=1

(
1 − 1

(2n)2

)
= 𝜋

2

∞∏
n=1

(
(2n)2 − 1
(2n)2

)
.

Writing this as

𝜋

2
=

∞∏
n=1

(
(2n)2

(2n − 1)(2n + 1)

)
= 2 ⋅ 2

1 ⋅ 3
⋅

4 ⋅ 4
3 ⋅ 5

⋅
6 ⋅ 6
5 ⋅ 7

· · · , (14.330)

we obtain the Wallis’ formula for 𝜋∕2.
Infinite products can also be used to write the Γ function as

Γ(x) =

[
xe𝛾x

∞∏
r=1

(1 + x
r
)e−x∕r

]−1

, (14.331)

where 𝛾 is the Euler–Masheroni constant:

𝛾 = 0.577216… . (14.332)
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Using Eq. (14.331), we can write

Γ(−x)Γ(x) =

[
−xe−𝛾x

∞∏
r=1

(
1 − x

r

)
ex∕r

]−1

.

[
xe𝛾x

∞∏
r=1

(
1 + x

r

)
e−x∕r

]−1

(14.333)

= −

[
x2

∞∏
r=1

(
1 − x2

r2

)]−1

, (14.334)

which is also equal to

Γ(x)Γ(−x) = − 𝜋

x sin 𝜋x
. (14.335)
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Problems

1 Show that the sum of the series

E0 = 2𝜋
L

∞∑
n=0

ne−2𝜋n𝛼∕L

is given as

E0 = 2𝜋
L

e−2𝜋𝛼∕L[1 − e−2𝜋𝛼∕L]−2.

Expand the result in powers of 𝛼 to obtain

E0 = L
2𝜋𝛼2 − 𝜋

6L
+ (terms in positive powers of 𝛼).
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2 Using the Euler–Maclaurin sum formula, find the sum of the series given
in Problem 1:

E0 = 2𝜋
L

∞∑
n=0

ne−2𝜋n𝛼∕L,

and then show that it agrees with the expansion given in the same
problem.

3 Find the Casimir energy for the massless conformal scalar field on the
surface of a sphere (S-2) with constant radius R0. The divergent vacuum
energy is given as (we set c = ℏ = 1)

E0 = 1
2

∞∑
l=0

gl𝜔l,

where the degeneracy, gn, and the eigenfrequencies, 𝜔n, are given as

gl = (2l + 1), 𝜔l =
(l + 1

2
)

R0
.

Note: Interested students can obtain the eigenfrequencies and the degen-
eracy by solving the wave equation for the massless conformal scalar field:

◽Φ(r⃗, t) + 1
4
(n − 2)
(n − 1)

RΦ(r⃗, t) = 0,

where n is the dimension of spacetime, R is the scalar curvature, and ◽ is
the d’Alembert (wave) operator:

◽ = g𝜇𝜈𝜕𝜇𝜕𝜈,

where 𝜕𝜈 stands for the covariant derivative. Use the separation of vari-
ables method and impose the boundary condition

Φ = finite

on the sphere. For this problem, spacetime dimension n is 3 and for a
sphere of constant radius, R0, the curvature scalar is 2∕R2

0.

4 Using asymptotic series, evaluate the logarithmic integral

I = ∫
x

0

dt
ln t

, 0 < x < 1.
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Hint: Use the substitutions, t = e−u and a = − ln x, a > 0, and integrate by
parts successively to write the series

I = −x
[

1
a
− 1!

a2 + 2!
a3 − · · · + (−1)n−1 (n − 1)!

an

]
+ Rn,

where

Rn = (−1)n+1n!∫
∞

a

e−t

tn+1 dt,

so that|Rn| < n!e−a

an+1 .

5 In a closed Einstein universe, the renormalized energy density of a mass-
less conformal scalar field with thermal spectrum can be written as

⟨𝜌⟩ren. =
1

2𝜋2R3
0

⎡⎢⎢⎢⎢⎣
ℏc
R0

∞∑
n=1

n3

exp
(

nℏc
kR0T

)
− 1

+ ℏc
240R0

⎤⎥⎥⎥⎥⎦
,

where R0 is the constant radius of the universe, T is the temperature of
the radiation, and (2𝜋2R3

0) is the volume of the universe. The second term:
ℏc

240R0
,

inside the square brackets is the well-known renormalized quantum vac-
uum energy, that is, the Casimir energy for the Einstein universe.
First, find the high and low temperature limits of ⟨𝜌⟩ren. and then obtain
the flat spacetime limit R0 → ∞.

6 Without using a calculator evaluate the following sum to five decimal
places:

∞∑
n=6

1
n2 .

How many terms did you have to add?
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7 Check the convergence of the following series:

(a)
∑∞

n=1
(ln n)2

n
,

(b)
∑∞

n=1 n2 exp(−n2),

(c)
∑∞

n=1 ln
(

1 + 1
n

)
,

(d)
∑∞

n=1
(−1)nn2

(2n + 1)2 ,

(e)
∑∞

n=1

√
n√

n4 + 1
,

(f )
∑∞

n=1
sin2(nx)

n4 .

8 Find the interval of convergence for the series
(a)

∑∞
n=1

xn

ln(n +2)
,

(b)
∑∞

n=1
(x +1)n√

n
.

9 Evaluate the following sums:
(a)

∑∞
n=0 an cos n𝜃,

(b)
∑∞

n=0 an sin n𝜃, a is a constant.
Hint: Try using complex variables.

10 Verify the following Taylor series:

ex =
∞∑

n=0

xn

n!
for all x,

and
1

1 + x2 = 1 − x2 + · · · + (−1)nx2n + · · · for |x| < 1.

11 Find the first three nonzero terms of the following Taylor series:
(a) f (x) = x3 + 2x + 2 about x = 2,
(b) f (x) = e2x cos x about x = 0.

12 Another important consequence of the Lorentz transformation is the for-
mula for the addition of velocities, where the velocities measured in the
K and K frames are related by the formula

u1 = u1 + 𝑣

1 + u1
𝑣∕c2

,
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where

u1 = dx1

dt
and u1 = d x1

dt
are the velocities measured in the K and K frames, respectively, and K is
moving with respect to K with velocity 𝑣 along the common direction of
the x- and x-axes. Using the binomial formula, find an appropriate expan-
sion of the above formula and show that in the limit of small velocities this
formula reduces to the well-known Galilean result

u1 = u1 + 𝑣.

13 In Chapter 9, we have obtained the formulas for the Doppler shift as
𝜔 = 𝛾𝜔′(1 − 𝛽 cos 𝜃),

tan 𝜃′ = sin 𝜃∕𝛾(cos 𝜃 − 𝛽),

where 𝜃, 𝜃′ are the angles of the wave vectors k⃗ and ⃗k with respect to the
relative velocity 𝑣 of the source and the observer. Find the nonrelativistic
limit of these equations and interpret your results.

14 Given a power series

g(x) =
∞∑

n=0
anxn, |x| < R,

show that the differentiated and integrated series will have the same radius
of convergence.

15 Expand

h(x) = tanh x − 1
x

as a power series of x.

16 Find the sum

g(x) = 1
1 ⋅ 2

+ x
2 ⋅ 3

+ x2

3 ⋅ 4
+ x4

4 ⋅ 5
+ · · ·

Hint: First try to convert into geometric series.
Answer:

[
g(x) = 1

x
+ 1 − x

x2 ln(1 − x)
]
.

17 Using the geometric series, evaluate the sum
∞∑

n=1
n3xn

exactly for the interval |x| < 1, then expand your answer in powers of x.
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18 Using the Euler–Maclaurin sum formula, evaluate the sum
∞∑

n=1
n3xn.

Show that it agrees with the expansion found in Problem 14.17.
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15

Integral Transforms

Integral transforms are among the most versatile mathematical tools. Their
applications range from solutions of differential and integral equations to evalu-
ation of definite integrals. They can even be used to define fractional derivatives
and integrals. In this chapter, after a general introduction, we discuss the two of
the most frequently used integral transforms, the Fourier and the Laplace trans-
forms and introduce their properties and techniques. We also discuss discrete
Fourier transforms and the fast Fourier transform in detail. We finally introduce
the Mellin and the Radon transforms, where the latter has some interesting
applications to medical technology and CAT scanning.

15.1 Some Commonly Encountered Integral
Transforms

Commonly encountered integral transforms allow us to relate two functions
through the integral

g(𝛼) = ∫
b

a
𝜅(𝛼, t) f (t)dt, (15.1)

where g(𝛼) is called the integral transform of f (t) with respect to the kernel
𝜅(𝛼, t). These transformations are linear, that is, if the transforms g1(𝛼) and
g2(𝛼):

g1(𝛼) = ∫
b

a
f1(t)𝜅(𝛼, t)dt, g2(𝛼) = ∫

b

a
f2(t)𝜅(𝛼, t)dt (15.2)

exist, then one can write

g1(𝛼) + g2(𝛼) = ∫
b

a
[ f1(t) + f2(t)]𝜅(𝛼, t)dt (15.3)

Mathematical Methods in Science and Engineering, Second Edition. Selçuk Ş. Bayın.
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and

cg1(𝛼) = ∫
b

a
[cf1(t)]𝜅(𝛼, t)dt, (15.4)

where c is a constant. Integral transforms can also be shown as an operator:
g(𝛼) = £(𝛼, t)f (t), (15.5)

where the operator £(𝛼, t) is defined as

£(𝛼, t) = ∫
b

a
dt 𝜅(𝛼, t). (15.6)

We can now show the inverse transform as
f (t) = £−1(t, 𝛼)g(𝛼). (15.7)

Fourier transforms are among the most commonly encountered integral
transforms. The Fourier transform, g(𝛼), of a function, f (x), is defined as

g(𝛼) = 1√
2𝜋 ∫

∞

−∞
f (t)ei𝛼tdt. (15.8)

Since the kernel of the Fourier transform is also used in defining waves, they
are generally used in the study of wave phenomena. Scattering of X-rays from
atoms is a typical example, where the Fourier transform of the amplitude of
the scattered waves gives the electron distribution. The Fourier-cosine and the
Fourier-sine transforms are defined, respectively, as

g(𝛼) =
√

2
𝜋 ∫

∞

0
f (t) cos(𝛼t)dt, (15.9)

g(𝛼) =
√

2
𝜋 ∫

∞

0
f (t) sin(𝛼t)dt. (15.10)

Other frequently used kernels are e−𝛼t , tJn(𝛼t), and t𝛼−1. The Laplace transform
is defined as

g(𝛼) = ∫
∞

0
f (t)e−𝛼tdt (15.11)

and it is very useful in finding solutions of systems of ordinary differential
equations by converting them into a system of algebraic equations. Hankel or
Fourier–Bessel transform is defined as

g(𝛼) = ∫
∞

0
f (t)tJn(𝛼t)dt, (15.12)
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which is usually encountered in potential energy calculations in cylindrical
coordinates. Another useful integral transform is the Mellin transform:

g(𝛼) = ∫
∞

0
f (t)t𝛼−1dt. (15.13)

The Mellin transform is useful in the reconstruction of “Weierstrass-type” func-
tions from power series expansions. The Weierstrass function is defined as

fW (x) =
∞∑

n=0
bn cos[an𝜋x], (15.14)

where a and b are constants. It has been proven that, provided 0 < b < 1,
a > 1, and ab > 1, the Weierstrass function has the interesting property of
being continuous everywhere but nowhere differentiable. These interesting
functions have found widespread use in the study of earthquakes, rupture, and
financial crashes.

15.2 Derivation of the Fourier Integral

15.2.1 Fourier Series

Fourier series are very useful in representing a function in a finite interval like
[0, 2𝜋] or [−L, L], or a periodic function in the infinite interval (−∞,∞). We
now consider a nonperiodic function in the infinite interval (−∞,∞). Physically
this corresponds to expressing an arbitrary signal in terms of sine and cosine
waves. We first consider the trigonometric Fourier expansion of a sufficiently
smooth function in the finite interval [−L, L] as

f (x) = 1
2L ∫

L

−L
f (t)dt +

∞∑
n=1

an cos n𝜋x
L

+
∞∑

n=1
bn sin n𝜋x

L
, (15.15)

where the expansion coefficients, an and bn, are given as

an = 1
L ∫

L

−L
f (t) cos n𝜋t

L
dt, (15.16)

bn = 1
L ∫

L

−L
f (t) sin n𝜋t

L
dt. (15.17)
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Substituting an and bn explicitly into the Fourier series and using the trigono-
metric identity cos(a − b) = cos a cos b + sin a sin b, we get

f (x) = 1
2L ∫

L

−L
f (t)dt + 1

L

∞∑
n=1

∫
L

−L
f (t) cos

[n𝜋
L
(t − x)

]
dt. (15.18)

Since the eigenfrequencies are given as

𝜔 = n𝜋
L
, n = 0, 1, 2,… , (15.19)

the difference between two neighboring eigenfrequencies is ▵ 𝜔 = 𝜋

L
. Using

this, we can write f (x) as

f (x) = 1
2L ∫

L

−L
f (t)dt + 1

𝜋

∞∑
n=1

▵ 𝜔∫
∞

−∞
f (t) cos𝜔(t − x)dt. (15.20)

We now take the continuum limit, L → ∞, and make the replacement
∞∑

n=1
▵ 𝜔 → ∫

∞

0
d𝜔, (15.21)

to obtain the Fourier integral:

f (x) = 1
𝜋 ∫

∞

0
d𝜔∫

∞

−∞
f (t) cos𝜔(t − x)dt, (15.22)

where we have assumed the existence of the integral ∫ ∞
−∞ f (t)dt. For the Fourier

integral of a function to exist, it is sufficient for the integral ∫ ∞
−∞|f (t)|dt to be

convergent.
We can also write the Fourier integral in exponential form. Using the fact that

sin𝜔(t − x) is an odd function with respect to 𝜔, we have

1
2𝜋 ∫

∞

−∞
d𝜔∫

∞

−∞
f (t) sin𝜔(t − x)dt = 0. (15.23)

Since cos𝜔(t − x) is an even function with respect to𝜔, we can extend the range
of the 𝜔 integral in the Fourier integral to (−∞,∞):

f (x) = 1
2𝜋 ∫

∞

−∞
d𝜔∫

∞

−∞
f (t) cos𝜔(t − x)dt. (15.24)

We now multiply Eq. (15.23) by i and then add Eq. (15.24) to obtain the expo-
nential form of the Fourier integral as

f (x) = 1
2𝜋 ∫

∞

−∞
d𝜔e−i𝜔x ∫

∞

−∞
f (t)ei𝜔tdt. (15.25)



15.3 Fourier and Inverse Fourier Transforms 557

15.2.2 Dirac-Delta Function

Let us now write the Fourier integral as

f (x) = ∫
∞

−∞
f (t)

{
1

2𝜋 ∫
∞

−∞
ei𝜔(t−x)d𝜔

}
dt, (15.26)

where we have interchanged the order of integration. The expression inside the
curly brackets is nothing but the Dirac-delta function:

𝛿(t − x) = 1
2𝜋 ∫

∞

−∞
ei𝜔(t−x)d𝜔, (15.27)

which has the following properties:

𝛿(x − a) = 0, x ≠ a, (15.28)

∫
∞

−∞
𝛿(x − a)dx = 1, (15.29)

∫
∞

−∞
𝛿(x − a)f (x)dx = f (a), (15.30)

where f (x) is continuous at x = a.

15.3 Fourier and Inverse Fourier Transforms

We write the Fourier integral theorem [Eq. (15.25)] as

f (t) = 1√
2𝜋 ∫

∞

−∞
d𝜔e−i𝜔t

[
1√
2𝜋 ∫

∞

−∞
f (t′)ei𝜔t′dt′

]
(15.31)

and define the Fourier transform, g(𝜔), of f (t) as

g(𝜔) = 1√
2𝜋 ∫

∞

−∞
f (t)ei𝜔tdt, (15.32)

where the inverse transform is written as

f (t) = 1√
2𝜋 ∫

∞

−∞
g(𝜔)e−i𝜔td𝜔. (15.33)
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15.3.1 Fourier-Sine and Fourier-Cosine Transforms

For an even function, fc(−t) = fc(t), using the identity ei𝜔t = cos𝜔t + i sin𝜔t,
we write

gc(𝜔) =
1√
2𝜋 ∫

∞

−∞
fc(t)(cos𝜔t + i sin𝜔t)dt. (15.34)

Since sin𝜔t is an odd function with respect to t, we have the Fourier-cosine
transform:

gc(𝜔) =
√

2
𝜋 ∫

∞

0
fc(t) cos𝜔tdt, (15.35)

fc(t) =
√

2
𝜋 ∫

∞

0
gc(𝜔) cos𝜔td𝜔. (15.36)

Similarly, for an odd function, fs(−x) = −fs(x), we have the Fourier-sine
transform:

gs(𝜔) =
√

2
𝜋 ∫

∞

0
fs(t) sin𝜔tdt, (15.37)

fs(x) =
√

2
𝜋 ∫

∞

0
gs(𝜔) sin𝜔xd𝜔. (15.38)

Example 15.1 Fourier-sine and Fourier-cosine transform
Show that the Fourier-sine and the Fourier-cosine transforms satisfy

c{f ′(t)} = 𝜔s{f (t)} −
√

2
𝜋

f (0), (15.39)

s{f ′(t)} = −𝜔c{f (t)}, (15.40)

where

s{f (t)} =
√

2
𝜋 ∫

∞

0
f (t) sin𝜔t dt, (15.41)

c{f (t)} =
√

2
𝜋 ∫

∞

0
f (t) cos𝜔t dt (15.42)

and f (t) → 0 as t → ±∞. Using these results also find

c{f ′′(t)} and s{f ′′(t)}. (15.43)
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Solution
Using integration by parts, we obtain the first relation:

c{f ′(t)} =
√

2
𝜋 ∫

∞

0

df (t)
dt

cos𝜔t dt (15.44)

=
√

2
𝜋

[
f (t) cos𝜔t|∞0 − ∫

∞

0
f (t)d cos𝜔t

dt
dt
]

(15.45)

=
√

2
𝜋

[
−f (0) + 𝜔∫

∞

0
f (t) sin𝜔t dt

]
(15.46)

= 𝜔s{f (t)} −
√

2
𝜋

f (0). (15.47)

For the second relation, we follow similar steps. For the remaining two relations,
we obtain

c{f ′′(t)} = −𝜔2c{f (t)} −
√

2
𝜋

f ′(0), (15.48)

s{f ′′(t)} = −𝜔2s{f (t)} + 𝜔

√
2
𝜋

f (0). (15.49)

Example 15.2 Fourier-sine and Fourier-cosine transform
Using the results established in the above example, evaluate the Fourier-sine
transform s{e−at}.

Solution
Since

f (t) = e−at, f ′(t) = −af (t), f ′′(t) = a2f (t), (15.50)

we write

s{f ′′(t)} = s{a2f (t)} = a2s{f (t)}. (15.51)

We now write the Fourier-sine transform of the second derivative of f (t)
[Eq. (15.49)] as

s{f ′′(t)} = −𝜔2s{f (t)} + 𝜔

√
2
𝜋

f (0), (15.52)

which when combined with equation (15.51) gives

s{e−at} =
√

2
𝜋

𝜔

a2 + 𝜔2 . (15.53)
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15.4 Conventions and Properties of the Fourier
Transforms

We have defined the Fourier transform as

g(𝜔) = {f (t)} = 1
(2𝜋)1∕2 ∫

∞

−∞
f (t)ei𝜔tdt, (15.54)

where the inverse Fourier transform is defined as

f (t) = −1{g(𝜔)} = 1
(2𝜋)1∕2 ∫

∞

−∞
g(𝜔)e−i𝜔td𝜔. (15.55)

In some books, the sign of i𝜔t in the exponential is reversed. However, in appli-
cations the final result is not affected. For the coefficients of the integrals, some-
times the following asymmetric convention is adopted:

g(𝜔) = {f (t)} = 1
2𝜋 ∫

∞

−∞
f (t)ei𝜔tdt, (15.56)

f (t) = −1{g(𝜔)} = ∫
∞

−∞
g(𝜔)e−i𝜔td𝜔, (15.57)

where the factor of 1∕2𝜋 can also be taken to be in front of the second integral
[Eq. (15.57)]:

g(𝜔) = {f (t)} = ∫
∞

−∞
f (t)ei𝜔tdt, (15.58)

f (t) = −1{g(𝜔)} = 1
2𝜋 ∫

∞

−∞
g(𝜔)e−i𝜔td𝜔. (15.59)

In spectral analysis, instead of the angular frequency, 𝜔, we usually prefer to
use the frequency, 𝜈 = 𝜔∕2𝜋, to write

g(𝜈) = {f (t)} = ∫
∞

−∞
f (t)e2𝜋i𝜈tdt, (15.60)

f (t) = −1{g(𝜈)} = ∫
∞

−∞
g(𝜈)e−2𝜋i𝜈td𝜈. (15.61)

Note that the factors in front of the integrals have disappeared all together.
We have already mentioned that both the Fourier transform and its inverse

are linear:

{c1f1(t) + c2f2(t)} = c1{f1(t)} + c2{f2(t)}, (15.62)

−1{c1g1(𝜔) + c2g2(𝜔)} = c1−1{g1(𝜔)} + c2−1{g2(𝜔)}, (15.63)

where c1 and c2 are in general complex constants. In addition to linearity, the
following properties, which can be proven by direct substitution, are very
useful.
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15.4.1 Shifting

If the time parameter t is shifted by a positive real constant, a, we get
{f (t − a)} = ei𝜔ag(𝜔). (15.64)

Note that shifting changes only the phase, not the magnitude of the transfor-
mation. Similarly, if the frequency is shifted by a, we obtain

−1{g(𝜔 − a)} = e−iatf (t). (15.65)

15.4.2 Scaling

If we rescale the time variable as t → at, a > 0, we get

{f (at)} = 1
a

g
(
𝜔

a

)
. (15.66)

Rescaling 𝜔 as 𝜔 → a𝜔 gives

−1{g(a𝜔)} = 1
a

f
( t

a

)
. (15.67)

15.4.3 Transform of an Integral

Given the integral ∫ t
−∞ f (t′)dt′, we can write its Fourier transform as


{
∫

t

−∞
f (t′)dt′

}
= − 1

i𝜔
{f (t)}. (15.68)

15.4.4 Modulation

For a given real number, 𝜔0, we have [Eq. (15.65)]
{f (t)e−i𝜔0t} = g(𝜔 − 𝜔0), (15.69)
{f (t)ei𝜔0t} = g(𝜔 + 𝜔0), (15.70)

which allows us to write

{f (t) cos(𝜔0t)} = 1
2

g(𝜔 − 𝜔0) +
1
2

g(𝜔 + 𝜔0), (15.71)

{f (t) sin(𝜔0t)} = 1
2i

g(𝜔 + 𝜔0) −
1
2i

g(𝜔 − 𝜔0). (15.72)

These are called the modulation relations.

Example 15.3 Fourier analysis of finite wave train
We now find the Fourier transform of a finite wave train, which is given as

f (t) =
⎧⎪⎨⎪⎩

sin𝜔0t, |t| < N𝜋

𝜔0
,

0, |t| > N𝜋

𝜔0
.

(15.73)

For N = 5, this wave train is shown in Figure 15.1.
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f (t)

t

Figure 15.1 Wave train with N = 5.

Since f (t) is an odd function, we find its Fourier sine transform as

gs(𝜔) =
√

2
𝜋

⎡⎢⎢⎢⎣
sin(𝜔0 − 𝜔)N𝜋

𝜔0

2(𝜔0 − 𝜔)
−

sin(𝜔0 + 𝜔)N𝜋

𝜔0

2(𝜔0 + 𝜔)

⎤⎥⎥⎥⎦ . (15.74)

For frequencies 𝜔 ∼ 𝜔0, only the first term in Eq. (15.74) dominates. Thus gs(𝜔)
is given as in Figure 15.2. This is the diffraction pattern for a single slit, which
has zeroes at

𝜔0 − 𝜔

𝜔0
= △𝜔

𝜔0
= ± 1

N
,± 2

N
,… . (15.75)

Because the contribution coming from the central maximum dominates the
others, to form the wave train [Eq. (15.73)] it is sufficient to take waves with
the spread in their frequency distribution as △𝜔 = 𝜔0

N
. For a longer wave train,

naturally the spread in frequency is less.

1 Nπ

gs(ω)

ω

ω = ω0

2π ω0

Figure 15.2 gs(𝜔) function.
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15.4.5 Fourier Transform of a Derivative

First we write the Fourier transform of df (t)
dt

:

g1(𝜔) =
1√
2𝜋 ∫

∞

−∞

df (t)
dt

ei𝜔tdt, (15.76)

and then integrate by parts to obtain

g1(𝜔) =
ei𝜔t√

2𝜋
f (t)|∞−∞ − i𝜔√

2𝜋 ∫
∞

−∞
f (t)ei𝜔tdt. (15.77)

Assuming that

f (t) → 0 as t → ±∞, (15.78)

we obtain the Fourier transform of the first derivative as

g1(𝜔) = −i𝜔g(𝜔). (15.79)

Assuming that all the derivatives

f n−1(t), f n−2(t), f n−3(t),… , f (t) (15.80)

go to zero as t → ±∞, we write the Fourier transform of the nth derivative as

gn(𝜔) = (−i𝜔)ng(𝜔). (15.81)

Example 15.4 Partial differential equations and Fourier transforms
One of the many uses of integral transforms is solving partial differential
equations. Consider vibrations of an infinitely long wire. The equation to be
solved is the wave equation:

𝜕2y(x, t)
𝜕x2 = 1

𝑣2
𝜕2y(x, t)

𝜕t2 , (15.82)

where 𝑣 is the velocity of the wave and y(x, t) is the displacement of the wire
from its equilibrium position as a function of position and time. As the initial
condition, we take the shape of the wire at t = 0:

y(x, 0) = f (x). (15.83)

We now take the Fourier transform of the wave equation with respect to x:

∫
∞

−∞

d2y(x, t)
dx2 ei𝛼xdx = 1

𝑣2 ∫
∞

−∞

d2y(x, t)
dt2 ei𝛼xdx, (15.84)

(−i𝛼)2Y (𝛼, t) = 1
𝑣2

d2Y (𝛼, t)
dt2 , (15.85)
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where Y (𝛼, t) represents the Fourier transform of y(x, t):

Y (𝛼, t) = 1√
2𝜋 ∫

∞

−∞
y(x, t)ei𝛼xdx. (15.86)

From Eq. (15.85), we see that the effect of the integral transform on the partial
differential equation is to reduce the number of independent variables. Thus
the differential equation to be solved for Y (a, t) is now an ordinary differential
equation, the solution of which can be written easily as

Y (𝛼, t) = F(𝛼)e±i𝜐𝛼t, (15.87)

where F(𝛼) is the Fourier transform of the initial condition:

F(𝛼) = Y (𝛼, 0) (15.88)

= 1√
2𝜋 ∫

∞

−∞
f (x)ei𝛼xdx. (15.89)

To be able to interpret this solution, we must go back to y(x, t) by taking the
inverse Fourier transform of Y (a, t) as

y(x, t) = 1√
2𝜋 ∫

∞

−∞
Y (𝛼, t)e−i𝛼xd𝛼 (15.90)

= 1√
2𝜋 ∫

∞

−∞
F(𝛼)e−i𝛼(x∓𝑣t)d𝛼. (15.91)

Because the last expression is nothing but the inverse Fourier transform of F(𝛼),
we can write the final solution as

y(x, t) = f (x ∓ 𝑣t). (15.92)

This represents a wave moving to the right or left with the velocity 𝑣 and with
its shape unchanged.

15.4.6 Convolution Theorem

Let F(𝜔) and G(𝜔) be the Fourier transforms of two functions, f (t) and g(t),
respectively. The convolution f ∗ g is defined as

f ∗ g = 1√
2𝜋 ∫

∞

−∞
dt′g(t′)f (t − t′). (15.93)
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Using the shifting property of the Fourier transform [Eq. (15.64)], we can write

∫
∞

−∞
dt′g(t′)f (t − t′) = ∫

∞

−∞
dt′g(t′)

[
1√
2𝜋 ∫

∞

−∞
F(𝜔)e−i𝜔(t−t′)d𝜔

]
(15.94)

= ∫
∞

−∞
d𝜔e−i𝜔tF(𝜔)

[
1√
2𝜋 ∫

∞

−∞
dt′g(t′)ei𝜔t′

]
,

(15.95)
which is

∫
∞

−∞
g(t′)f (t − t′)dt′ = ∫

∞

−∞
d𝜔F(𝜔)G(𝜔)e−i𝜔t′ . (15.96)

In other words, the convolution of f (t) and g(t) is nothing but the inverse
Fourier transform of the product of their Fourier transforms:

f ∗ g = 1√
2𝜋 ∫

∞

−∞
d𝜔F(𝜔)G(𝜔)e−i𝜔t. (15.97)

For the special case with t = 0, we get

∫
∞

−∞
F(𝜔)G(𝜔)d𝜔 = ∫

∞

−∞
g(t′)f (−t′)dt′. (15.98)

15.4.7 Existence of Fourier Transforms

We can show the Fourier transform of f (t) in terms of an integral operator ℑ as
F(𝜔) = ℑ{f (t)}, (15.99)

ℑ = ∫
+∞

−∞
dtei𝜔t. (15.100)

For the existence of the Fourier transform of f (t), a sufficient but not necessary
condition [2] is the convergence of the integral ∫ ∞

−∞|f (t)|dt.

15.4.8 Fourier Transforms in Three Dimensions

Fourier transform can also be defined in three dimensions as

𝜙(
−→
k ) = 1

3
√

2𝜋 ∫
∞

−∞ ∫
∞

−∞ ∫
∞

−∞
d3−→r f (−→r )ei

−→
k ⋅−→r , (15.101)

f (−→r ) = 1
3
√

2𝜋 ∫
∞

−∞ ∫
∞

−∞ ∫
∞

−∞
d3k𝜙(

−→
k )e−i

−→
k ⋅−→r . (15.102)
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Substituting Eq. (15.101) back in Eq. (15.102) and interchanging the order of
integration, we obtain the three-dimensional Dirac-delta function:

𝛿(−→r − −→r ′) = 1
(2𝜋)3 ∫

∞

−∞ ∫
∞

−∞ ∫
∞

−∞
d3kei

−→
k ⋅ (−→r −−→r ′). (15.103)

These formulas can easily be extended to n dimensions.

15.4.9 Parseval Theorems

Parseval Theorem I

∫
∞

−∞
|F(k)|2dk = ∫

∞

−∞
|f (x)|2dx, (15.104)

Parseval Theorem II

∫
∞

−∞
F(k)G(−k)dk = ∫

∞

−∞
g(x)f (x)dx. (15.105)

Here, F(k) and G(k) are the Fourier transforms of f (x) and g(x), respectively.

Proof : To prove these theorems, we make the k → −k change in the Fourier
transform of g(x):

G(−k) = 1√
2𝜋 ∫

∞

−∞
g(x)e−ikxdx. (15.106)

Multiplying the integral in Eq. (15.106) with F(k) and integrating over k in
the interval (−∞,∞), we get

∫
∞

−∞
dkF(k)G(−k) = ∫

∞

−∞
dkF(k) 1√

2𝜋 ∫
∞

−∞
dxg(x)e−ikx. (15.107)

Assuming that the integrals

∫
∞

−∞
|f (x)|dx and ∫

∞

−∞
|g(x)|dx (15.108)

converge, we can change the order of the k and x integrals as

∫
∞

−∞
F(k)G(−k)dk = ∫

∞

−∞
dxg(x) 1√

2𝜋 ∫
∞

−∞
dkF(k)e−ikx. (15.109)

In addition, assuming that the inverse Fourier transform of F(k) exists, the
second Parceval theorem is proven.
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If we take f (x) = g(x) in Eq. (15.105) and remembering that G(−k) = G(k)∗,
we can write

∫
∞

−∞
|G(k)|2dk = ∫

∞

−∞
|g(x)|2dx, (15.110)

which is the first Parceval theorem. From this proof, it is seen that pointwise
existence of the inverse Fourier transform is not necessary; that is, as long as the
value of the integral ∫ ∞

−∞ g(x)f (x)dx does not change, the value of the integral
(1∕

√
2𝜋) ∫ ∞

−∞ dkF(k)e−ikx can be different from the value of f (x) at some iso-
lated singular points. In quantum mechanics, wave functions in position and
momentum spaces are Fourier transforms of each other. The significance of
Parseval’s theorems is that normalization in one space ensures normalization
in the other.

Example 15.5 Diffusion problem in one dimension
Let us consider a long, thin pipe with cross section A, filled with water and

with M amount of salt put at x = x0. We would like to find the concentration
of salt as a function of position and time. Because we have a thin pipe, we can
neglect the change in concentration across the width of the pipe. The density,
𝜌 = 𝜌(x, t) g/cm3 (concentration × mass) satisfies the diffusion equation:

𝜕𝜌(x, t)
𝜕t

= D𝜕2𝜌(x, t)
𝜕x2 . (15.111)

At t = 0, the density is zero everywhere except at x0; hence, we write our initial
condition as

𝜌(x, 0) =
(M

A

)
𝛿(x − x0). (15.112)

In addition, for all times, the density satisfies limx→±∞𝜌(x, t) = 0. Because we
have an infinite pipe and the density vanishes at the end points, we have to use
the Fourier transforms rather than the Fourier series. Since the total amount of
salt is conserved, we have

∫
∞

−∞
𝜌(x, t)Adx = M, (15.113)

which is sufficient for the existence of the Fourier transform. Taking the Fourier
transform of the diffusion equation with respect to x, we get

dR(k, t)
dt

= −Dk2R(k, t). (15.114)

This is an ordinary differential equation, where R(k, t) is the Fourier transform
of the density. The initial condition for R(k, t) is the Fourier transform of the
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initial condition for the density:

R(k, 0) =  {(M
A

)
𝛿(x − x0)

}
(15.115)

= M
A

1√
2𝜋

eikx0 . (15.116)

Eq. (15.114) can be solved immediately as

R(k, t) = R(k, 0)e−Dk2t , (15.117)

= 1√
2𝜋

M
A

eikx0 e−Dk2t. (15.118)

For the density, we have to find the inverse Fourier transform of R(k, t):

𝜌(x, t) = M
A2𝜋 ∫

∞

−∞
eikx0 e−Dk2te−ikxdk (15.119)

= M
A2𝜋 ∫

∞

−∞
e−Dk2t−ik(x−x0)dk (15.120)

= M
A2𝜋 ∫

∞

−∞
e−Dt(k2+ik (x−x0 )

Dt
)dk. (15.121)

Completing the square and integrating, we get

𝜌(x, t) = M
A2𝜋 ∫

∞

−∞
e
−Dt

[
k2 + ik (x − x0 )

Dt
−
(

(x−x0 )
2Dt

)2
+

(
(x−x0 )

2Dt

)2
]
dk (15.122)

= M
A2𝜋 ∫

∞

−∞
e−Dt

[
k+ i(x−x0 )

2Dt

]2

e−
(x−x0 )

4Dt

2

dk (15.123)

= M
A2𝜋

e−
(x−x0 )

4Dt

2

∫
∞

−∞
e−Dt

[
k + i(x−x0 )

2Dt

]2

dk (15.124)

= M
A2𝜋

e−
(x−x0 )

4Dt

2

∫
∞

−∞
e−Dtu2 du (15.125)

= M
A2𝜋

e−
(x−x0 )

4Dt

2
√

𝜋

Dt
. (15.126)

Finally, we write the density as

𝜌(x, t) = M
A

1√
4𝜋Dt

e−
(x−x0 )

4Dt

2

. (15.127)

Check that this solution satisfies the diffusion equation with the initial
condition

lim
t→0

𝜌(x, t) =
(M

A

)
𝛿(x − x0). (15.128)
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Example 15.6 Fourier transform of a spherically symmetric function
Fourier transformation in three dimensions is defined as [Eqs. (15.101) and
(15.102)]:

Φ(
−→
k ) = 1

3
√

2𝜋 ∫
∞

−∞ ∫
∞

−∞ ∫
∞

−∞
d3−→r f (−→r ) ei

−→
k ⋅−→r , (15.129)

f (−→r ) = 1
3
√

2𝜋 ∫
∞

−∞ ∫
∞

−∞ ∫
∞

−∞
d3−→k Φ(

−→
k ) e−i

−→
k ⋅−→r . (15.130)

We now write the Fourier transform of a spherically symmetric function,
f (−→r ) = f (r). In the presence of spherical symmetry, we write

−→
k ⋅ −→r = kr cos 𝜃

and use the volume element d3−→r = r2 sin 𝜃 drd𝜃d𝜙, to obtain the Fourier
transform {f (−→r )} as

{f (−→r )} = 1
(2𝜋)3∕2 ∫

2𝜋

0
d𝜙∫

∞

0
f (r)

[
∫

𝜋

0
e−ikr cos 𝜃 sin 𝜃 d𝜃

]
r2dr

(15.131)

= 1
(2𝜋)3∕2 ∫

∞

0
f (r)

[
∫

𝜋

0

1
ikr

e−ikr cos 𝜃
]𝜋

0
r2dr (15.132)

=
√

2
𝜋

1
k ∫

∞

0
f (r)r sin kr dr, (15.133)

which is now a one-dimensional integral.

Example 15.7 Fourier transforms and definite integrals
To evaluate the integral

I = ∫
∞

−∞

sin2x
x2 dx, (15.134)

we first write the Fourier transform of a square wave:

Π(t) =

{
1, |t| ≤ 1,

0, |t| > 1,
(15.135)

as

g(𝜔) = {Π(t)} = 1√
2𝜋 ∫

∞

−∞
Π(t)ei𝜔tdt (15.136)

= 1√
2𝜋 ∫

1

−1
ei𝜔tdt (15.137)

= 1√
2𝜋

2 sin𝜔

𝜔
. (15.138)
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Since ∫ ∞
−∞ |Π(t)|2dt = 2, we now write

∫
∞

−∞
|g(𝜔)|2d𝜔 = 4

2𝜋 ∫
∞

−∞

sin2𝜔

𝜔2 d𝜔 (15.139)

and use Parceval’s first theorem (15.104):

∫
∞

−∞
|Π(t)|2dt = ∫

∞

−∞
|g(𝜔)|2d𝜔, (15.140)

to obtain

2 = 4
2𝜋 ∫

∞

−∞

sin2𝜔

𝜔2 d𝜔, (15.141)

which yields the desired result as

∫
∞

−∞

sin2𝜔

𝜔2 d𝜔 = 𝜋. (15.142)

Example 15.8 Fourier transforms and differential equations
Solve the inhomogeneous Helmholtz equation,

y′′ − k2
0y′(t) = f (t), (15.143)

with the following boundary conditions:

y(t) → 0 and f (t) → 0 as t → ±∞. (15.144)

Solution
We first take the Fourier transform of the differential equation:

{y′′ − k2
0y′(t)} = {f (t)}, (15.145)

{y′′(t)} − k2
0{y(t)} = {f (t)}. (15.146)

Utilizing the formula [Eq. (15.81)], which gives the transformation of a deriva-
tive, we write

−(𝜔2 + k2
0){y(t)} = {f (t)}. (15.147)

Assuming that the Fourier transforms, ŷ(𝜔) and f̂ (𝜔), of y(t) and f (t), respec-
tively, exist, we obtain

ŷ(𝜔) = −
f̂ (𝜔)

(𝜔2 + k2
0)
. (15.148)
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This is the Fourier transform of the needed solution. For the solution, we need
to find the inverse transform:

y(t) = −1{ŷ(𝜔)} (15.149)

= 1√
2𝜋 ∫

∞

−∞
ŷ(𝜔)e−i𝜔td𝜔 (15.150)

= 1√
2𝜋 ∫

∞

−∞
−

f̂ (𝜔)
(𝜔2 + k2

0)
e−i𝜔td𝜔. (15.151)

In the above expression, the inverse Fourier transforms of f̂ (𝜔) and
−1∕(𝜔2 + k2

0) can be written immediately as

−1{f̂ (𝜔)} = f (t) (15.152)

and

−1

{
− 1
(𝜔2 + k2

0)

}
= −

√
2𝜋

2k0
e−k0|t|. (15.153)

To find the inverse Fourier transform of their product, we utilize the convolu-
tion Theorem [Eq. (15.93)] as

∫
∞

−∞
a(t′)b(t − t′)dt′ = ∫

∞

−∞
A(𝜔)B(𝜔)e−i𝜔td𝜔, (15.154)

where A(𝜔) and B(𝜔) are the Fourier transforms of a(t) and b(t), respectively,
and take

B(𝜔) = − 1
(𝜔2 + k2

0)
, (15.155)

A(𝜔) = f̂ (𝜔), (15.156)

along with their inverses:

b(t) = −
√

2𝜋
2k0

e−k0|t|, (15.157)

a(t) = f (t), (15.158)

to write

−
√

2𝜋
2k0 ∫

∞

−∞
f (t′)e−k0|t−t′|dt′ = ∫

∞

−∞
−

f̂ (𝜔)
(𝜔2 + k2

0)
e−i𝜔td𝜔. (15.159)

Finally, using Eq. (15.151), we write the solution in terms of an integral which
can be evaluated for a given f (t) as

y(t) = − 1
2k0 ∫

∞

−∞
f (t′)e−k0|t−t′|dt′. (15.160)
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15.5 Discrete Fourier Transform

The Fourier series, also called the trigonometric Fourier series, are extremely
useful in analyzing a given signal, f (x), in terms of sinusoidal waves. In expo-
nential form, the Fourier series are written as

f (x) =
∞∑

n=−∞
cne2𝜋inx∕l, 0 < x < l, (15.161)

where the expansion coefficients, cn, also called the Fourier coefficients, are
given as

cn = 1
l ∫

l

0
f (x)e−2𝜋inx∕ldx. (15.162)

This series can be used to represent either a piecewise continuous function in
the bounded interval [0, l] or a periodic function with the period l. From the
above equations, everything looks straight forward. Given a signal, f = f (x), we
first evaluate the definite integral in Eq. (15.162) to find the Fourier coefficients,
cn, which are then used to construct the Fourier series in Eq. (15.161). This
gives us the composition of the signal in terms of its sinusoidal components.
However, in realistic situations there are many difficulties. First of all, in most
cases, the input signal, f (x), can only be given as a finite sequence of numbers
with N terms,

f = {f1, f2,… , fN}, (15.163)

which may not always be possible to express in terms of a smooth function.
Besides, even if we could find a smooth function, f (x), to represent the data,
the definite integral in Eq. (15.162) may not be possible to evaluate analytically.
In any case, to crunch out a solution, we need to develop a numerical theory of
Fourier analysis so that we can feed the problem into a digital computer.

We now divide the interval [0, l] by introducing N evenly spaced points, xk , as

xk = kl
N
, 0 ≤ k ≤ N − 1, (15.164)

where each subinterval has the length

Δxk = l
N
Δk (15.165)

= l
N
. (15.166)
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We approximate the integral in Eq. (15.162) by the Riemann sum:

f̃n = 1
l

N−1∑
k=0

f (xk)e−2𝜋inxk∕lΔxk (15.167)

= 1
l

N−1∑
k=0

f
(

kl
N

)
e−2𝜋ikn∕NΔxk , (15.168)

where we have written the left-hand side as f̃n. In general, we can define the
discrete Fourier transform of any sequence of N terms,

f = {fj}, j = 0, 1,… ,N − 1 (15.169)
= {f0, f1,… , fN−1}, (15.170)

as the set

f̃ = {f̃j}, j = 0, 1,… ,N − 1 (15.171)
= {f̃0, f̃1,… , f̃N−1}, (15.172)

where

f̃j =
1
N

N−1∑
k=0

fke−2𝜋ikj∕N , j = 0, 1,… ,N − 1. (15.173)

The inverse discrete Fourier transform can be written similarly as

fk =
N−1∑
j=0

f̃je2𝜋ikj∕N , k = 0, 1,… ,N − 1. (15.174)

To prove the inverse discrete Fourier transform, we substitute f̃j [Eq. (15.173)]
into Eq. (15.174):

fk =
N−1∑
j=0

[
1
N

N−1∑
l=0

fle−2𝜋ilj∕N

]
e2𝜋ikj∕N (15.175)

= 1
N

N−1∑
j=0

N−1∑
l=0

fle2𝜋i(k−l)j∕N (15.176)

= 1
N

N−1∑
l=0

fl

[N−1∑
j=0

(
e2𝜋i(k−l)∕N)j

]
. (15.177)
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For the inverse discrete transform to be true, we need

fk =
N−1∑
l=0

fl

[
1
N

N−1∑
j=0

(e2𝜋i(k−l)∕N )j

]
(15.178)

=
N−1∑
k=0

fl𝛿lk , (15.179)

where

𝛿lk = 1
N

N−1∑
j=0

(e2𝜋i(k−l)∕N )j. (15.180)

When l = k, we have

𝛿kk = 1
N

N−1∑
j=0

(1)j. (15.181)

Since the sum in the above equation is the sum of N 1’s, we obtain the desired
result, that is, 𝛿lk = 1, l = k. When k ≠ l, since k and l are integers, k − l is also
an integer satisfying |k − l| < 1, hence |e2𝜋i(k−l)∕N | < 1, thus we can use the geo-
metric sum formula:

M∑
n=0

xn = xM+1 − 1
x − 1

, |x| < 1, (15.182)

to write

𝛿lk = 1
N

N−1∑
j=0

e2𝜋i(k−l)N∕N − 1
e2𝜋i(k−l)∕N − 1

, l ≠ k, (15.183)

= 1
N

N−1∑
j=0

e2𝜋i(k−l) − 1
e2𝜋i(k−l)∕N − 1

(15.184)

= 0, (15.185)

thus proving the inverse discrete Fourier transform formula.
In the discrete Fourier transform, the set {f0, f1,… , fN−1} defines a function,

f (x), whose domain is the set of integers {0, 1, 2,… ,N − 1}, and the range
of which is {f (0) = f0, f (1) = f1,… , f (N − 1) = fN−1}. In other words, in the
discrete Fourier transform, we either describe a function in terms of its
discretization:

f (x) =
{

f
(

0 ⋅
l

N

)
, f

(
1 ⋅

l
N

)
,… , f

(
(N − 1) ⋅ l

N

)}
, (15.186)

or deal with phenomena that can only be described by a sequence of numbers:

f (j) = {fj} = {f0, f1,… , fN−1}. (15.187)
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The discrete Fourier transform can also be viewed as an operation that maps
the set of numbers, {f0, f1,… , fN−1}, onto the set {f̃0, f̃1,… , f̃N−1}, which is com-
posed of the transformed variables.

For example, consider the set composed of two numbers (N = 2):

f (i) = {3, 1}, i = 0, 1. (15.188)

The discrete Fourier transform of this set can be found as

f̃ (0) = 1
2
[f (0)e−2𝜋i0.0∕2 + f (1)e−2𝜋i1.0∕2] = 2, (15.189)

f̃ (1) = 1
2
[f (0)e−2𝜋i0.1∕2 + f (1)e−2𝜋i1.1∕2] = 1, (15.190)

that is,

f̃ (j) = {2, 1}, j = 0, 1. (15.191)

Using the inverse discrete Fourier transform [Eq. (15.174)], we can recover the
original set as

f (0) = [f̃ (0)e2𝜋i0.0∕2 + f̃ (1)e2𝜋i0.1∕2] = 3, (15.192)
f (1) = [f̃ (0)e2𝜋i1.0∕2 + f̃ (1)e2𝜋i1.1∕2] = 1. (15.193)

This result is true in general for arbitrary N and it is usually quoted as the reci-
procity theorem. In other words, the discrete Fourier transform possesses a
unique inverse.

With the discrete Fourier transform, we now have an algorithm that can be
handled by a computer. If we store the numbers

f (j), j = 0, 1,… ,N − 1, (15.194)

and

e−2𝜋ikj∕N , k = 0, 1,… ,N − 1, (15.195)

into two separate registrars, R1 and R2, as

R1 = | f0 | f1 | · · · | fN−1 | (15.196)

and

R2 = ||e−2𝜋i0j∕N || e−2𝜋i1j∕N || · · · ||e−2𝜋i(N−1)j∕N || , (15.197)

so that they can be recalled as needed, we can find how many basic operations,
such as additions, multiplications, and divisions, that a computer has to do to
compute a discrete Fourier transform, that is, to completely fill a third register
R3 with the Fourier transformed values:

R3 = | f̃0 | f̃1 | · · · | f̃N−1 | . (15.198)
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From Eq. (15.173), it is seen that to find the jth element, f̃j, we recall the kth
entry, fk , of R1 and then multiply it with the kth entry, e−2𝜋ikj∕N , of the second
registrar R2. This establishes only one of the terms in the sum [Eq. (15.173)].
This means one multiplication for each term in the sum. Since there are N
terms in the sum, the computer performs N multiplications. Then we add these
N terms, which requires N − 1 additions. Finally, we divide the result by N ,
that is, one more operation. All together, to evaluate the jth term, we need
N + (N − 1) + 1 = 2N basic operations. There are N such terms to be calcu-
lated, hence the computer has to perform 2N2 basic operations to find the
discrete Fourier transform of a set with N terms. Since each basic operation
takes a certain amount of time for a given computer, this is also a measure of
how fast the computation will be carried out.

15.6 Fast Fourier Transform

We start with a sequence of N terms, {f (j)}, with the discrete Fourier transform,
{f̃ (j)}, where j = 0, 1,… ,N − 1. Let us assume that N is even so that we can
write N

2
= M, where M is an integer. We now split {f (j)} into two new sequences

{f1(j)} = {f (2j)}, (15.199)
{f2(j)} = {f (2j + 1)}, (15.200)

where j = 0, 1,… ,M − 1. Note that both {f1(j)} and {f2(j)} are periodic
sequences with the period M. We can now use Eq. (15.173) to write their
discrete Fourier transforms as

{f̃1(j)} = 1
M

M−1∑
k=0

f1(k)e−2𝜋ikj∕M, j = 0, 1,… ,M − 1, (15.201)

{f̃2(j)} = 1
M

M−1∑
k=0

f2(k)e−2𝜋ikj∕M, j = 0, 1,… ,M − 1. (15.202)

We now return to the discrete Fourier transform of the full set {f (j)} and write

{f̃ (j)} = 1
N

N−1∑
k=0

f (k)e−2𝜋ikj∕N , (15.203)

which can be rearranged as

{f̃ (j)} = 1
N

M−1∑
k=0

f (2k)e−2𝜋i(2k)j∕N + 1
N

M−1∑
k=0

f (2k + 1)e−2𝜋i(2k+1)j∕N . (15.204)
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Using the relations

e−2𝜋i(2k)j∕N = e−2𝜋ikj∕M, (15.205)
e−2𝜋i(2k+1)j∕N = e−2𝜋ikj∕Me−2𝜋ij∕N , (15.206)

we write Eq. (15.204) as

{f̃ (j)} = 1
N

M−1∑
k=0

f1(k)e−2𝜋ikj∕M + e−2𝜋ij∕N

N

M−1∑
k=0

f2(k)e−2𝜋ikj∕M, (15.207)

where j = 0, 1,… ,N − 1. This is nothing but

{f̃ (j)} =
{f̃1(j)}

2
+

e−2𝜋ij∕N{f̃2(j)}
2

, j = 0, 1,… ,N − 1. (15.208)

Since both {f̃1(j)} and {f̃2(j)} are periodic with the period M, that is,

{f̃1 or 2(j + M)} = {f̃1 or 2(j)}, (15.209)

we have extended the range of the index j to N − 1.
We have seen that the sum in Eq. (15.173) requires 2N2 basic operations to

yield the discrete Fourier transform {f̃ (j)}. All we have done in Eq. (15.208)
is to split the original sum into two parts. Let us see what advantage comes
out of this. In order to compute the discrete Fourier transform, {f̃ (j)}, via the
rearranged expression [Eq. (15.208)], we first have to construct the transforms
{f̃1(j)} and {f̃2(j)}, each of which requires 2M2 basic operations. Next, we
need N multiplications to establish the product of the elements of {f̃2(j)} with
e−2𝜋ij∕N , which will be followed by the N − 1 additions of the elements of the
sets {f̃1(j)} and e−2𝜋ij∕N{f̃2(j)}, each of which has N elements. Finally, the sum

{f̃1(j)} + e−2𝜋ij∕N{f̃2(j)} (15.210)

has to be divided by 2, that is, 1 division to yield the final result:

{f̃ (j)} = 1
2
[
{f̃1(j)} + e−2𝜋ij∕N{f̃2(j)}

]
, j = 0, 1,… ,N − 1. (15.211)

All together, this means

2M2 + 2M2 + N + (N − 1) + 1 = N2 + 2N (15.212)

operations, where we have substituted N = M∕2 in the last step.
In summary, calculating {f̃ (j)}, j = 0, 1,… ,N − 1, directly requires 2N2 basic

operations, while the new approach, granted that N is even, requires N2 + 2N
operations. The fractional reduction in the number of operations is

N2 + 2N
2N2 = 1

2
+ 1

N
, (15.213)

which approaches to 1∕2 as N gets very large. Since each operation takes a
certain time in a computer, a reduction in the number of operations by half
implies a significant reduction in the overall operation time of the computer.
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Wait! we can do even better with this divide and conquer strategy. If N is
divisible by 4, we can further subdivide the sequences {f1(j)} and {f2(j)} into
four new sequences with M∕2 terms each. Furthermore, if N = 2p, p > 0 inte-
ger, which is the case of complete reduction, it can be shown that for large N we
can achieve a reduction factor of log2 p∕N . Compared to 2N2, this is remark-
ably small and will result in significant reduction of the running time of our
computer. We should also add that the actual execution speed of a computer is
only proportional to the number of operations and depends also on a number
of other critical technical parameters. Note that in cases where our sequence
does not have the desired number of terms, we can always add sufficient num-
ber of zeros to match the required number. This procedure which tremendously
shortens the number of operations needed to compute a discrete Fourier trans-
form was first introduced by Tukey and Cooley in 1965. It is now called the
fast Fourier transform, and it is considered to be one of the most significant
contributions to the field of numerical analysis.

15.7 Radon Transform

Radon transforms were introduced by an Austrian mathematician Johann
Radon in 1917. They are extremely useful in medical technology and establish
the mathematical foundations of computational axial tomography, that is,
CAT scanning. Radon transforms are also very useful in electron microscopy
and reflection seismology.

Δs

I0

I

l

Figure 15.3 A narrow
beam going through a
homogeneous material
of thickness Δs.

To introduce the basic properties of the
two-dimensional Radon transforms, consider a
narrow beam of X-ray travelling along a straight line
(Figure 15.3). As the beam passes through a homoge-
neous material of length Δs, the initial intensity I0 will
decrease exponentially according to the formula

I = I0e−𝛼𝜌Δs, (15.214)

where 𝜌 is the linear density along the direction of prop-
agation and 𝛼 is a positive constant depending on other
physical parameters of the medium. If the beam is going
through a series of parallel layers described by 𝛼i, 𝜌i, and
Δsi, where the index i = 1, 2,… , n, denotes the ith layer,
we can write the final intensity as

I = I0e−[𝛼1𝜌1Δs1+𝛼2𝜌2Δs2+···+𝛼n𝜌nΔsn]. (15.215)

In the continuum limit, we can write this as
I = I0e−∫l𝛼(

−→x )𝜌(−→x )ds(x,y) , (15.216)
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where (x, y) is a point on the ray l, and

∫l
𝛼(−→x )𝜌(−→x )ds(x,y) (15.217)

is a line integral taken over a straight line representing the path of the X-ray.
We usually write

f (x, y) = 𝛼(−→x )𝜌(−→x ), (15.218)

where f (x, y) represents the attenuation coefficient of the object, hence Eq.
(15.216) becomes

− ln
(

I
I0

)
= ∫l

f (x, y)dsl. (15.219)

The line integral on the right-hand side is called the Radon transform of
f (x, y). Along the path of the X-ray, which is a straight line with the equation
yl = yl(x), f (x, yl(x)) represents the attenuation coefficient along the path of the
X-ray.

The method used in the first scanners was to use a system of parallel lines that
represents the X rays that scan a certain slice of a three-dimensional object,
where f (x, y) represents the attenuation coefficient of the slice. For a mathe-
matical description of the problem, we parametrize the parallel rays in terms
of their perpendicular distances to a reference line s and the projection angle 𝜃
(Figure 15.4). Now the scanning data consists of a series of Radon transforms
of the attenuation coefficient, f (x, y), projected onto the plane of the detector
(Figure 15.5). The projection-slice theorem says that given an infinite number
of one-dimensional projections of an object taken from infinitely many direc-
tions, one could perfectly reconstruct the original object, that is, f (x, y).

The Radon transform for a family of parallel lines, l, is shown as

R2[f ](l) = ∫l
f (x, yl)dsl, (15.220)

Figure 15.4 Reference axes s and r,
projection angle 𝜃 and the detector plane d.
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Figure 15.5 Projection of f (x, y) onto the detector surface d.

where the subscript 2 indicates that this is a two-dimensional Radon transform
and R2[f ] is a function of lines. In general, f (x, y) is a continuous function on
the plane that vanishes outside a finite region. For a given ray, l, we parametrize
a point P on the ray as (Figure 15.5)

x = s cos(𝜋∕2 + 𝜃) + r cos(𝜋 + 𝜃), (15.221)
y = s sin(𝜋∕2 + 𝜃) + r sin(𝜋 + 𝜃), (15.222)

or as
x = −s sin 𝜃 − r cos 𝜃, (15.223)
y = s cos 𝜃 − r sin 𝜃. (15.224)

Hence, we can write Eq. (15.220) as

R2[f ](𝜃, r) = ∫
∞

−∞
f (−s sin 𝜃 − r cos 𝜃, s cos 𝜃 − r sin 𝜃)ds. (15.225)

Note that on a given ray, that is, a straight line in the family of parallel lines,
r is fixed and s is the variable.

To find the desired quantity that represents the physical characteristics of the
object, f (x, y), we need to find the inverse Radon transform. This corresponds
to integrating the Radon transform at (x, y) for all angles:

f (x, y) = ∫
2𝜋

0
R2[f ](𝜃,−x cos 𝜃 + y sin 𝜃)d𝜃, (15.226)

where using Figure 15.5, we have substituted r = −x cos 𝜃 + y sin 𝜃. This
method of inversion is proven to be rather unstable with respect to noisy
data; hence in applications, an efficient algorithm in terms of its discretized
version, called the filtered back-projection, is preferred. A lot of research
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has been done in improving the performance of CAT scanners and improving
the practical means of inverting Radon transforms. Radon transforms can
also be defined in dimensions higher than two [6]. Besides medicine, electron
microscopy of small objects like viruses, and reflection seismography, Radon
transforms have also interesting applications in nondestructive testing, stress
analysis, astronomy, nuclear magnetic resonance, and optics.

15.8 Laplace Transforms

The Laplace transform of a function is defined as the limit

lim
a→∞∫

a

0
e−stF(t)dt, s > 0, (15.227)

where s is real. When the limit exists, we simply write

f (s) = £ {F(t)} = ∫
∞

0
e−stF(t)dt, s > 0. (15.228)

For this transformation to exist, we do not need the existence of the integral
∫ ∞

0 F(t)dt. In other words, F(t), could diverge exponentially for large values of
t. However, if there exists a constant s0 and a positive constant C, such that for
sufficiently large t, that is, t > t0, the inequality|e−s0tF(t)| ≤ C (15.229)

is satisfied, then the Laplace transform of this function exists for s > s0. An
example is F(t) = e2t2 . For this function, we cannot find a suitable s0 and a C
value that satisfies Eq. (15.229); hence, its Laplace transform does not exist.
The Laplace transform may also fail to exist if the function F(t) has a sufficiently
strong singularity as t → 0. The Laplace transform of tn:

£{tn} = ∫
∞

0
e−sttndt, (15.230)

does not exist for n ≤ −1, because it has a singular point at the origin. On the
other hand, for s > 0 and n > −1, the Laplace transform is given as

£{tn} = n!
sn+1 . (15.231)

15.9 Inverse Laplace Transforms

Using operator language, we can show the Laplace transform of a function as

f (s) = £{F(t)}. (15.232)
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The inverse transform of f (s) is now shown with £−1 as

£−1{f (s)} = F(t). (15.233)

In principle, the inverse transform is not unique. Two functions, F1(t) and F2(t),
could have the same Laplace transform; however, in such cases the difference
of these functions is

F1(t) − F2(t) = N(t), (15.234)

where for all t0 values N(t) satisfies

∫
t0

0
N(t)dt = 0. (15.235)

In other words, N(t) is a null function. This result is also known as the Lerch
theorem. In practice, we can take N(t) as zero, thus making the inverse Laplace
transform unique. In Figure 15.6, we show a null function.

15.9.1 Bromwich Integral

A formal expression for the inverse Laplace transform is given in terms of the
Bromwich integral:

F(t) = lim
𝛼→∞

1
2𝜋i ∫

𝛾+i𝛼

𝛾−i𝛼
estf (s)ds, (15.236)

where 𝛾 is real and s is a complex variable. The contour for the above integral is
an infinite straight line passing through the point 𝛾 and parallel to the imaginary
axis in the complex s-plane. Here, 𝛾 is chosen such that all the singularities of
estf (s) are to the left of the straight line. For t > 0, we can close the contour
with an infinite semicircle to the left-hand side of the line. The above integral

N(t)

t

Single point

Figure 15.6 Null function.
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a

1

U(x–a)

x

Figure 15.7 Heaviside step function.

can now be evaluated by using the residue theorem to find the inverse Laplace
transform.

The Bromwich integral is a powerful tool for inverting complicated Laplace
transforms when other means prove inadequate. However, in practice using
the fact that Laplace transforms are linear, and with the help of some basic
theorems, we can generate many of the inverses needed from a list of elemen-
tary Laplace transforms.

15.9.2 Elementary Laplace Transforms

1. Many of the discontinuous functions can be expressed in terms of the Heav-
iside step function (Figure 15.7):

U(t − a) =
{

0 t < a
1 t > a , (15.237)

the Laplace transform of which is given as

£ {U(t − a)} = e−as

s
, s > 0. (15.238)

2. For F(t) = 1, the Laplace transform is given as

£{1} = ∫
∞

0
e−stdt = 1

s
, s > 0. (15.239)

3. The Laplace transform of F(t) = ekt for t > 0 is

£{ekt} = ∫
∞

0
ekte−stdt = 1

s − k
, s > k. (15.240)

4. Laplace transforms of hyperbolic functions:

F(t) = cosh kt = 1
2
(ekt + e−kt), (15.241)

F(t) = sinh kt = 1
2
(ekt − e−kt), (15.242)
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can be found by using the fact that £ is a linear operator as

£{cosh kt} = 1
2

( 1
s − k

+ 1
s + k

)
= s

s2 − k2 , s > k, (15.243)

£{sinh kt} = k
s2 − k2 , s > k. (15.244)

5. Using the relations

cos kt = cosh ikt and sin kt = −i sinh kt,

we can find the Laplace transforms of the cos and the sin functions as

£{cos kt} = s
s2 + k2 , s > 0, (15.245)

£{sin kt} = k
s2 + k2 , s > 0. (15.246)

6. For F(t) = tn, we have

£{tn} = n!
sn+1 , s > 0, n > −1. (15.247)

15.9.3 Theorems About Laplace Transforms

By using the entries in a list of transforms, the following theorems are very
useful in finding inverses of unknown transforms:

Theorem 15.1 First Translation Theorem If the function f (t) has the
Laplace transform

£{f (t)} = F(s), (15.248)

then the Laplace transform of eatf (t) is given as

£{eatf (t)} = F(s − a). (15.249)

Similarly, if £−1{F(s)} = f (t) is true, then we can write

£−1{F(s − a)} = eatf (t). (15.250)

Proof :

£{eatf (t)} = ∫
∞

0
eatf (t)e−stdt (15.251)

= ∫
∞

0
e−(s−a)t f (t)dt (15.252)

= F(s − a). (15.253)
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Theorem 15.2 Second Translation Theorem If F(s) is the Laplace trans-
form of f (t) and the Heaviside step function is shown as U(t − a), we can write

£{U(t − a)f (t − a)} = e−asF(s). (15.254)

Similarly, if £−1{F(s)} = f (t) is true, then we can write

£−1{e−asF(s)} = U(t − a)f (t − a). (15.255)

Proof : Since the Heaviside step function is defined as

U(t − a) =
{

0 t < a
1 t > a , (15.256)

we can write

£{U(t − a)f (t − a)} = ∫
∞

0
e−stU(t − a)f (t − a)dt (15.257)

= ∫
∞

a
e−stf (t − a)dt. (15.258)

Changing the integration variable to 𝑣 = t − a, we obtain

£{U(t − a)f (t − a)} = ∫
∞

0
e−s(𝑣+a)f (𝑣)d𝑣 (15.259)

= e−as ∫
∞

0
e−s𝑣f (𝑣)d𝑣 (15.260)

= e−asF(s). (15.261)

Theorem 15.3 If £{f (t)} = F(s) is true, then we can write

£{f (at)} = 1
a

F
( s

a

)
. (15.262)

If £−1{F(s)} = f (t) is true, then we can write the inverse as

£−1
{

F
( s

a

)}
= af (at). (15.263)

Proof : Using the definition of the Laplace transform, we write

£{f (at)} = ∫
∞

0
e−stf (at)dt. (15.264)

Changing the integration variable to 𝑣 = at, we find

£{f (at)} = 1
a ∫

∞

0
e−s𝑣∕af (𝑣)d𝑣 (15.265)

= 1
a

F
( s

a

)
. (15.266)
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Theorem 15.4 Derivative of a Laplace Transform If the Laplace trans-
form of f (t) is F(s), then the Laplace transform of tnf (t) is given as

£{tnf (t)} = (−1)n dnF(s)
dtn = (−1)nF (n)(s), (15.267)

where n = 0, 1, 2, 3… .

Similarly, if £−1{F(s)} = f (t) is true, then we can write

£−1{F (n)(s)} = (−1)ntnf (t). (15.268)

Proof : Since £{f (t)} = F(s), we write

F(s) = ∫
∞

0
e−stf (t)dt. (15.269)

Taking the derivative of both sides with respect to s, we get

∫
∞

0
e−sttf (t)dt = −F ′(s). (15.270)

If we keep on differentiating, we find

∫
∞

0
e−stt2f (t)dt = F ′′(s), (15.271)

∫
∞

0
e−stt3f (t)dt = −F ′′′(s), (15.272)

and eventually the nth derivative as

∫
∞

0
e−sttnf (t)dt = (−1)nF (n)(s). (15.273)

Theorem 15.5 Laplace Transform of Periodic Functions If f (t) is a peri-
odic function with the period p > 0, that is, f (t + p) = f (t), then we can write

£{f (t)} =
∫ p

0 e−stf (t)dt
1 − e−sp . (15.274)

On the other hand, if £−1{F(s)} = f (t) is true, then we can write

£−1

{ ∫ p
0 e−stf (t)dt

1 − e−sp

}
= f (t). (15.275)
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Proof : We first write

£{f (t)} = ∫
∞

0
e−stf (t)dt (15.276)

= ∫
p

0
e−stf (t)dt + ∫

2p

p
e−stf (t)dt + ∫

3p

2p
e−stf (t)dt + · · ·

(15.277)

= ∫
p

0
e−stf (t)dt + ∫

p

0
e−s(𝑣+p)f (𝑣 + p)d𝑣 (15.278)

+ ∫
p

0
e−s(𝑣+2p)f (𝑣 + 2p)d𝑣 + · · · .

Making the variable change 𝑣 → t and using the fact that f (t) is periodic we
get

∫
∞

0
e−stf (t)dt = ∫

p

0
e−stf (t)dt + e−sp ∫

p

0
e−stf (t)dt (15.279)

+ e−s2p ∫
p

0
e−stf (t)dt + · · ·

= (1 + e−sp + e−s2p + e−s3p + · · · )∫
p

0
e−stf (t)dt (15.280)

=
∫ p

0 e−stf (t)dt
1 − e−sp , s > 0. (15.281)

Theorem 15.6 Laplace Transform of an Integral If the Laplace transform
of f (t) is F(s), then we can write

£
{
∫

t

0
f (u)du

}
= F(s)

s
. (15.282)

Similarly, if £−1{F(s)} = f (t) is true, then the inverse will be given as

£−1
{

F(s)
s

}
= ∫

t

0
f (u)du. (15.283)

Proof : Let us define the G(t) function as

G(t) = ∫
t

0
f (u)du. (15.284)

Now we have G′(t) = f (t) and G(0) = 0; thus we can write

£{G′(t)} = s£{G(t)} − G(0) (15.285)
= s£{G(t)}, (15.286)
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which gives

£{G(t)} = £
{
∫

t

0
f (u)du

}
= 1

s
£{f (t)} = F(s)

s
. (15.287)

Theorem 15.7 If the limit lim
t→0

f (t)
t

exists and if the Laplace transform of f (t) is
F(s), then we can write

£
{

f (t)
t

}
= ∫

∞

s
F(u)du. (15.288)

Similarly, if £−1{F(s)} = f (t) is true, then we can write

£−1
{
∫

∞

s
F(u)du

}
=

f (t)
t

. (15.289)

Proof : If we write g(t) = f (t)
t

, we can take f (t) = tg(t). Hence, we can write

F(s) = £{f (t)} (15.290)

= £{tg(t)} = − d
ds

£{g(t)} = −dG(s)
ds

, (15.291)

where we have used Theorem 15.6. Thus we can write

G(s) = −∫
s

c
F(u)du. (15.292)

From the limit lims→∞G(s) = 0, we conclude that c = ∞. Hence, we obtain

G(s) = £
{

f (t)
t

}
= ∫

∞

s
F(u)du. (15.293)

Theorem 15.8 Convolution Theorem If the Laplace transforms of f (t) and
g(t) are given as F(s) and G(s), respectively, we can write

£
{
∫

t

0
f (u)g(t − u)du

}
= F(s)G(s). (15.294)

Similarly, if the inverses £−1{F(s)} = f (t) and £−1{G(s)} = g(t) exist, then we
can write

£−1{F(s)G(s)} = ∫
t

0
f (u)g(t − u)du. (15.295)

The above integral is called the convolution of f (t) and g(t), and it is shown as
f ∗ g:

f ∗ g = ∫
t

0
f (u)g(t − u)du. (15.296)



15.9 Inverse Laplace Transforms 589

The convolution operation has the following properties:
f ∗ g = g ∗ f ,

f ∗ (g + h) = f ∗ g + f ∗ h, (15.297)
f ∗ (g ∗ h) = (f ∗ g) ∗ h.

Proof : We first write the product of F(s) and G(s):

F(s)G(s) =
[
∫

∞

0
e−suf (u)du

] [
∫

∞

0
e−s𝑣g(𝑣)d𝑣

]
(15.298)

= ∫
∞

0 ∫
∞

0
e−s(𝑣+u)g(𝑣) f (u)dud𝑣. (15.299)

Using the transformation 𝑣 = t − u, we obtain

F(s)G(s) = ∫
∞

t=0 ∫
t

u=0
e−stg(t − u)f (u)dudt (15.300)

= ∫
∞

t=0
e−st

[
∫

t

u=0
g(t − u)f (u)du

]
dt (15.301)

= £
{
∫

t

0
f (u)g(t − u)du

}
. (15.302)

Note that with the t = u + 𝑣 transformation, we have gone from the u𝑣-plane
to the ut-plane.

Example 15.9 Inverse Laplace transforms
1. We now find the function with the Laplace transform

se−2s

s2 + 16
. (15.303)

Since
£
{ s

s2 + 16

}
= cos 4t, (15.304)

we can use Theorem 15.2, which says
£{U(t − a)f (t − a)} = e−asF(s). (15.305)

Using the inverse
£−1{e−asF(s} = U(t − a)f (t − a), (15.306)

we find
£−1

{
e−2s

( s
s2 + 16

)}
= U(t − 2) cos 4 (t − 2) (15.307)

=
{

0, t < 2,
cos 4 (t − 2) , t > 2. (15.308)
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2. To find the inverse Laplace transform of

F(s) = ln
(

1 + 1
s

)
, (15.309)

we first write its derivative:

F ′(s) = 1
s + 1

− 1
s
, (15.310)

and then using Theorem 15.4:

£−1{F (n)(s)} = (−1)ntnf (t), (15.311)

we write

£−1{F ′ (s)} = −t£−1
{

ln
(

1 + 1
s

)}
,

which yields the inverse as

£−1
{

ln
(

1 + 1
s

)}
= −1

t
£−1

{ 1
s + 1

− 1
s

}
(15.312)

= 1 − e−t

t
. (15.313)

3. The inverse Laplace transform of 1∕s
√

s + 1 can be found by making use of
Theorem 15.6. Since

£−1

{
1√

s + 1

}
= t−

1
2 e−t√
𝜋

, (15.314)

Theorem 15.6 allows us to write

£−1
{

F(s)
s

}
= ∫

t

0
f (u)du, (15.315)

hence

£−1

{
1

s
√

s + 1

}
= ∫

t

0

u− 1
2 e−u√
𝜋

du, (15.316)

= 2√
𝜋 ∫

√
t

0
e−𝑣2 d𝑣. (15.317)

We now make the transformation u = 𝑣2 to write the result in terms of the
error function as

£−1

{
1

s
√

s + 1

}
= erf(

√
t). (15.318)
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15.9.4 Method of Partial Fractions

We frequently encounter Laplace transforms that are expressed in terms of
rational functions as

f (s) = g(s)∕h(s), (15.319)

where g(s) and h(s) are two polynomials with no common factor, and the order
of g(s) is less than h(s).

We have the following cases:
(i) When all the factors of h(s) are linear and distinct, we can write f (s) as

f (s) =
c1

s − a1
+

c2

s − a2
+ · · · +

cn

s − an
, (15.320)

where ci are constants independent of s.
(ii) When one of the roots of h(s) is mth order, we write f (s) as

f (s) =
c1,m

(s − a1)m +
c1,m−1

(s − a1)m−1 + · · · +
c1,1

(s − a1)
+

n∑
i=2

ci

s − ai
. (15.321)

(iii) When one of the factors of h(s) is quadratic like (s2 + ps + q), we add a
term to the partial fractions with two constants as

as + b
(s2 + ps + q)

. (15.322)

To find the constants, we usually compare equal powers of s. In the first case,
we can also use the limit

lim
s→ai

(s − ai) f (s) = ci (15.323)

to evaluate the constants.

Example 15.10 Method of partial fractions
We can use the method of partial fractions to find the inverse Laplace transform
of

f (s) = k2

(s + 2)(s2 + 2k2)
. (15.324)

We write f (s) as

f (s) = c
s + 2

+ as + b
s2 + 2k2 (15.325)

and equate both expressions:

k2

(s + 2)(s2 + 2k2)
=

c
(
s2 + 2k2) + (s + 2)(as + b)

(s + 2)(s2 + 2k2)
. (15.326)
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Comparing the equal powers of s, we obtain three equations to be solved for
a, b, and c as

c + a = 0

b + 2a = 0

2b + 2ck2 = k2

⎫⎪⎪⎬⎪⎪⎭

coefficient of s2,

coefficient of s,

coefficient of s0,

(15.327)

which gives
c = −a, b = −2a, a = −k2∕(2k2 + 4). (15.328)

We now have

f (s) = − 2
(s + 2)

+ a(s − 2)
s2 + 2k2 , (15.329)

the inverse Laplace transform of which can be found easily as

£−1{f (s)} = −a

[
e−2t + cos

√
2kt −

√
2

k
sin

√
2kt

]
, a = −k2∕((2k2 + 4).

(15.330)

Example 15.11 Definite integrals and Laplace transforms
We can also use integral transforms to evaluate some definite integrals. Let us
consider

F(t) = ∫
∞

0

sin tx
x

dx. (15.331)

Taking the Laplace transform of F(t), we write

£
{
∫

∞

0

sin tx
x

dx
}

= ∫
∞

0
e−st ∫

∞

0

sin tx
x

dxdt (15.332)

= ∫
∞

0

1
x

[
∫

∞

0
dte−st sin(tx)

]
dx. (15.333)

The quantity inside the square brackets is the Laplace transform of sin tx. Thus
we find

£
{
∫

∞

0

sin tx
x

dx
}

= ∫
∞

0

1
s2 + x2 dx (15.334)

= 1
s

tan−1
(x

s

)||||∞0 (15.335)

= 𝜋

2s
. (15.336)

Finding the inverse Laplace transform gives the value of the definite integral as

F(t) = 𝜋

2
, t > 0. (15.337)
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15.10 Laplace Transform of a Derivative

One of the main applications of Laplace transforms is to differential equations.
In particular, systems of ordinary linear differential equations with constant
coefficients can be converted into systems of linear algebraic equations, which
are a lot easier to solve both analytically and numerically. The Laplace transform
of a derivative is found as

£{F ′(t)} = ∫
∞

0
e−st dF(t)

dt
dt (15.338)

= e−stF(t)|∞0 + s∫
∞

0
e−stF(t)dt, (15.339)

hence

£{F ′(t)} = s£{F(t)} − F(0). (15.340)

To be precise, we mean that F(0) = F(+0) and dF(t)∕dt is piecewise continuous
in the interval 0 ≤ t < ∞. Similarly, the Laplace transform of a second-order
derivative is given as

£{F (2)(t)} = s2£{F(t)} − sF(+0) − F ′(+0). (15.341)

In general, we can write

£{F (n)(t)} = sn£{F(t)} − sn−1F(+0) − sn−2F ′ (+0) − · · · − F (n−1)(+0).

(15.342)

Example 15.12 Laplace transforms and differential equations
We start with a simple case; the simple harmonic oscillator equation of motion:

m d2x(t)
dt2 + kx(t) = 0, (15.343)

with the following initial conditions:

x(0) = x0 and dx
dt

||||0
= 0. (15.344)

We take the Laplace transform of the equation of motion, which yields the
Laplace transform of the solution, X(s), as

m£
{

d2x(t)
dt2

}
+ k£{x(t)} = 0, (15.345)

ms2X(s) − msx0 + kX(s) = 0, (15.346)

X(s) = x0
s

s2 + 𝜔2
0
, 𝜔2

0 = k∕m. (15.347)
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Next, we find the inverse Laplace transform of X(s) to obtain the solution as

x(t) = £−1

{
x0

s
s2 + 𝜔2

0

}
= x0£−1

{
s

s2 + 𝜔2
0

}
= x0 cos𝜔0t. (15.348)

Example 15.13 Nutation of Earth
For the force-free rotation of Earth (Figure 15.8), Euler equations are given as⎧⎪⎪⎨⎪⎪⎩

dX
dt

= −aY ,

dY
dt

= aX.

(15.349)

This is a system of two coupled linear ordinary differential equations with
constant coefficients, where

a =
[ Iz − Ix

Iz

]
𝜔z (15.350)

and

X = 𝜔x, Y = 𝜔y. (15.351)

Here, Iz is the moment of inertia about the z-axis; and because of axial
symmetry, we have set Ix = Iy. Taking the Laplace transform of this system, we
obtain a set of two coupled linear algebraic equations:

sx(s) − X(0) = −ay(s), (15.352)
sy(s) − Y (0) = ax(s), (15.353)

which can be decoupled easily to yield x(s) as

x(s) = X(0) s
s2 + a2 − Y (0) a

s2 + a2 . (15.354)

ω

ωy

ωx y

x

z Figure 15.8 Nutation of Earth.
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Taking the inverse Laplace transform, we find the solution:

X(t) = X(0) cos at − Y (0) sin at. (15.355)

Similarly, the Y (t) solution is found as

Y (t) = X(0) sin at + Y (0) cos at. (15.356)

Example 15.14 Damped harmonic oscillator
Equation of motion for the damped harmonic oscillator is given as

mẍ(t) + bẋ(t) + kx(t) = 0. (15.357)

Let us solve this equation with the initial conditions x(0) = x0, ẋ(0) = 0. Taking
the Laplace transform of the equation of motion:

m[s2X(s) − sx0] + b[sX(s) − x0] + kX(s) = 0, (15.358)

we obtain the Laplace transform of the solution as

X(s) = x0
ms + b

ms2 + bs + k
. (15.359)

Completing the square in the denominator, we write

s2 + b
m

s + k
m

=
(

s + b
2m

)2

+
(

k
m

− b2

4m2

)
. (15.360)

For weak damping, b2 < 4km, the last term is positive. Calling this 𝜔2
1, we find

X(s) = x0

s + b
m(

s + b
2m

)2

+ 𝜔2
1

(15.361)

= x0

s + b
2m

+ b
2m(

s + b
2m

)2

+ 𝜔2
1

(15.362)

= x0

s + b
2m(

s + b
2m

)2

+ 𝜔2
1

+ x0

b𝜔1

2m𝜔1(
s + b

2m

)2

+ 𝜔2
1

. (15.363)

Taking the inverse Laplace transform of X(s), we find the final solution as

x(t) = x0e−
(

b
2m

)
t
[

cos𝜔1t + b
2m𝜔1

sin𝜔1t
]
. (15.364)

Check that this solution satisfies the given initial conditions.
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Example 15.15 Laplace transform of the tekt function
Using the elementary Laplace transform

£{ekt} = ∫
∞

0
e−stektdt = 1

s − k
, s > k, (15.365)

and Theorem 15.4, we can obtain the desired transform by differentiation with
respect to s as

£{tekt} = 1
(s − k)2 , s > k. (15.366)

Example 15.16 Electromagnetic waves
For a transverse electromagnetic wave propagating along the x-axis, E = Ex or
Ey, satisfies the wave equation

𝜕2E(x, t)
𝜕x2 − 1

𝑣2
𝜕2E(x, t)

𝜕t2 = 0. (15.367)

We take the initial conditions as

E(x, 0) = 0 and 𝜕E(x, t)
𝜕t

||||t=0
= 0. (15.368)

Taking the Laplace transform of the wave equation with respect to t, we obtain
𝜕2

𝜕x2 £{E(x, t)} − s2

𝑣2 £{E(x, t)} + s
𝑣2 E(x, 0) + 1

𝑣2
𝜕E(x, t)

𝜕t
||||t=0

= 0.

(15.369)

Using the initial conditions, this becomes
d2

dx2 £{E(x, t)} = s2

𝑣2 £{E(x, t)}, (15.370)

which is an ordinary differential equation for £{E(x, t)} and can be solved
immediately as

£{E(x, t)} = c1e−(s∕𝑣)x + c2e(s∕𝑣)x, (15.371)

where c1 and c2 are constants independent of x but could depend on s. In the
limit as x → ∞, we expect the wave to be finite; hence, we choose c2 as zero. If
we are also given the initial shape of the wave as E(0, t) = F(t), we determine
c1 as

£{E(0, t)} = c1 = f (s). (15.372)

Thus, with the given initial conditions, the Laplace transform of the solution is
given as

£{E(x, t)} = e−(s∕𝑣)xf (s). (15.373)
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Using Theorem 15.2 we can find the inverse Laplace transform, and the final
solution is obtained as

E(x, t) =

{
F
(

t − x
𝑣

)
, t ≥ x∕𝑣,

0, t < x∕𝑣.
(15.374)

This is a wave moving along the positive x-axis with velocity 𝑣 without distor-
tion. Note that the wave still has not reached the region x > 𝑣t.

Example 15.17 Bessel’s equation
We now consider Bessel’s equation, which is an ordinary differential equation

with variable coefficients:
x2y′′(x) + xy′(x) + x2y(x) = 0. (15.375)

Dividing this by x, we get
xy′′(x) + y′(x) + xy(x) = 0. (15.376)

Using Laplace transforms, we can find a solution satisfying the boundary con-
dition y(0) = 1. From Eq. (15.376), this also means that y′(+0) = 0. Assuming
that the Laplace and the inverse Laplace transforms of the unknown function
exist:

£{y(x)} = f (s), £−1{f (s)} = y(x), (15.377)

we write the Laplace transform of Eq. (15.376) as

− d
ds

[s2f (s) − s] + sf (s) − 1 − d
ds

f (s) = 0 (15.378)

(s2 + 1)f ′(s) + sf (s) = 0 (15.379)
df
f

= − s
s2 + 1

ds. (15.380)

After integration, we find f (s) as

ln
f (s)

c
= −1

2
ln(s2 + 1), (15.381)

f (s) = c√
s2 + 1

. (15.382)

To find the inverse, we write the binomial expansion of f (s):

f (s) = c

s
√

1 + 1
s2

, (15.383)

= c
s

[
1 − 1

2s2 + 1.3
222!s4

− · · ·

· · · + (−1)n(2n)!
(2nn!)2s2n + · · ·

]
. (15.384)



598 15 Integral Transforms

Since Laplace transforms are linear, we find the inverse as

y(x) = c
∞∑

n=0

(−1)nx2n

(2nn!)2 . (15.385)

Using the condition y(0) = 1, we determine the constant c as 1. This solution is
nothing but the zeroth-order Bessel function J0(x). Thus, we have determined
the Laplace transform of J0(x) as

£{J0(x)} = 1√
s2 + 1

. (15.386)

In general, one can show

£{Jn(ax)} =
a−n(

√
s2 + a2 − s)n√
s2 + a2

. (15.387)

In this example, we see that the Laplace transform can also be used for finding
solutions of ordinary differential equations with variable coefficients; however,
there is no guarantee that it will work in general.

Example 15.18 Solution of y′′ + (1∕2)y = (a0∕2) sin t − (1∕2)y(i𝑣)
This could be interpreted as a harmonic oscillator with a driving force depend-
ing on the fourth derivative of displacement as

(a0∕2) sin t − (1∕2)y(i𝑣). (15.388)

We rewrite this equation as

y(i𝑣) + 2y′′ + y = a0 sin t, (15.389)

where a0 is a constant, and use the following boundary conditions:

y(0) = 1, y′(0) = −2, y′′(0) = 3, y′′′(0) = 0.

Taking the Laplace transform and using partial fractions, we write

[s4Y − s3(1) − s2(−2) − s(3) − 0] (15.390)

+ 2[s2Y (s) − s(1) − (−2)] + Y (s) =
a0

s2 + 1
,

where Y (s) is the Laplace transform of y(x). We first write this as

(s4 + 2s2 + 1)Y (s) =
a0

s2 + 1
+ s3 − 2s2 + 5s − 4, (15.391)
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and then solve for Y (s) to obtain

Y (s) =
a0

(s2 + 1)3 + s3 − 2s2 + 5s − 4
(s2 + 1)2 , (15.392)

=
a0

(s2 + 1)3 + (s3 + s) − 2(s2 + 1) + 4s − 2
(s2 + 1)2 , (15.393)

=
a0

(s2 + 1)3 + s
(s2 + 1)

− 2
(s2 + 1)

+ 4s − 2
(s2 + 1)2 . (15.394)

Using the Theorems, we have introduced, the following inverses can be found:

£−1
{ a0

(s2 + 1)3

}
= a0

[
3
8

sin t − 3
8

t cos t − t2

8
sin t

]
, (15.395)

£−1
{

4s − 2
(s2 + 1)2

}
= 2t sin t − sin t + t cos t. (15.396)

Finally, the solution is obtained as

y(t) =
[
t
(

1 − 3
8

a0

)
+ 1

]
cos t +

[a0

8
(3 − t2) − 3 + 2t

]
sin t. (15.397)

Note that the solution is still oscillatory but the amplitude changes with time.

Example 15.19 Two Pendlums interacting through a spring
Consider two pendulums connected by a spring as shown in Figure 15.9. We
investigate small oscillations of this system.

As our initial conditions, we take

x1(0) = x2(0) = 0, ẋ1|0 = 𝑣, ẋ1|0 = 0. (15.398)

ll

k

x1 x2

Figure 15.9 Pendulums connected by a spring.
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For this system and for small oscillations, equations of motion are written as

mẍ1 = −
mg

l
x1 + k(x2 − x1), (15.399)

mẍ2 = −
mg

l
x2 + k(x1 − x2). (15.400)

Showing the Laplace transforms of x1(t) and x2(t) as

£{xi(t)} = Xi(s), i = 1, 2, (15.401)

we take the Laplace transform of both equations:

m(s2X1(s) − 𝑣) = −
mg

l
X1(s) + k(X2(s) − X1(s)), (15.402)

ms2X2(s) = −
mg

l
X2(s) + k(X1(s) − X2(s)). (15.403)

This gives two coupled linear algebraic equations. We first solve them for X1(s)
to get

X1(s) =
𝑣

2
[(s2 + g∕l + 2k∕m)−1 + (s2 + g∕l)−1]. (15.404)

Taking the inverse Laplace transform of X1(s) gives x1(t) as

x1(t) =
𝑣

2

⎡⎢⎢⎢⎢⎢⎣
sin

√(
g
l
+ 2 k

m

)
t√(

g
l
+ 2 k

m

) +
sin

√(g
l

)
t√(g

l

)
⎤⎥⎥⎥⎥⎥⎦
. (15.405)

In this solution√(
g
l
+ 2 k

m

)
and

√(g
l

)
(15.406)

are the normal modes of the system. The solution for x2(t) can be obtained
similarly.

15.10.1 Laplace Transforms in n Dimensions

Laplace transforms are defined in two dimensions as

F(u, 𝑣) = ∫
∞

0 ∫
∞

0
f (x, y)e−ux−𝑣ydxdy. (15.407)

This can also be generalized to n dimensions:

F(u1,u2,… ,un) (15.408)

= ∫
∞

0 ∫
∞

0
· · ·∫

∞

0
f (x1, x2,… , xn)e−u1x1−u2x2−···−unxn dx1dx2 … dxn.
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15.11 Relation Between Laplace and Fourier
Transforms

The Laplace transform of a function is defined as

F(p) = £{f (x)} = ∫
∞

0
f (x)e−pxdx. (15.409)

We now use f (x) to define another function:

f+(x) =

{
f (x), x > 0,

0, x < 0.
(15.410)

The Fourier transform of this function is given as

F+(k) =
1√
2𝜋 ∫

∞

0
f (x)eikxdx. (15.411)

Thus we can write the relation between the Fourier and Laplace transforms
as

F(p) =
√

2𝜋F+(ip). (15.412)

15.12 Mellin Transforms

Another frequently encountered integral transform is the Mellin transform:

Fm(s) = ∫
∞

0
f (x)xs−1dx. (15.413)

The Mellin transform of exp(−x) is the gamma function. We write x = ez in the
Mellin transform to get

Fm(s) = ∫
∞

−∞
f (ez) esz dz (15.414)

= ∫
∞

−∞
g(z) esz dz, g(z) = f (ez). (15.415)

Comparing this with

G(k) = 1√
2𝜋 ∫

∞

−∞
g(z)eikzdz, (15.416)
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we get the relation between the Fourier and Mellin transforms as

Fm(s) =
√

2𝜋G(−is). (15.417)

Now all the properties we have discussed for the Fourier transforms can also
be adopted to the Mellin transforms.
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Problems

1 Show that the Fourier transform of a Gaussian:

f (−→r ) =
( 2
𝜋a2

)3∕4
e−r2∕a2

,

is again a Gaussian.

2 Show that the Fourier transform of

f (t) =

⎧⎪⎪⎨⎪⎪⎩
sin𝜔0t, |t| < N𝜋

𝜔0
,

0, |t| > N𝜋

𝜔0
,

is given as

gs(𝜔) =
√

2
𝜋

⎡⎢⎢⎢⎣
N𝜋

𝜔0
sin(𝜔0 − 𝜔)

2(𝜔0 − 𝜔)
−

N𝜋

𝜔0
sin(𝜔0 + 𝜔)

2(𝜔0 + 𝜔)

⎤⎥⎥⎥⎦ .
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3 Show the following integral by using Fourier transforms:

∫
∞

0

sin3x
x

dx = 𝜋

4
.

4 Using the Laplace transform technique, find the solution of the following
second-order inhomogeneous differential equation:

y′′ − 3y′ + 2y = 2e−t,

with the following boundary conditions:

y(0) = 2 and y′(0) = −1.

5 Solve the following system of differential equations:

2x(t) − y(t) − y′(t) = 4(1 − exp(−t)),
2x′(t) + y(t) = 2(1 + 3 exp(−2t)),

with the boundary conditions

x(0) = y(0) = 0.

6 One end of an insulated semi-infinite rod is held at temperature

T(t, 0) = T0

with the initial conditions

T(0, x) = 0 and T(t,∞) = 0.

Solve the heat transfer equation:

𝜕T(t, x)
𝜕t

= (k∕c𝜌)𝜕
2T(t, x)
𝜕x2 , k > 0,

where k is the thermal conductivity, c is the heat capacity, and 𝜌 is the
density.
Hint: The solution is given in terms of erfc as

T(t, x) = T0 erf c

[
x
2

√
c𝜌∕k√

t

]
,

where the erfc is defined in terms of erf as

erfc(x) = 1 − erf x

= 1 − 2√
𝜋 ∫

x

0
e−u2 du = 2√

𝜋 ∫
∞

x
e−u2 du.
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7 Find the current, I, for the IR circuit represented by the differential
equation

L dI
dt

+ RI = E

with the initial condition

I(0) = 0.

E is the electromotive force and L,R, and E are constants.

8 Using Laplace transforms, find the solution of the following system of dif-
ferential equations

dx
dt

+ y = 3e2t ,

dy
dt

+ x = 0,

subject to the initial conditions

x(0) = 2, y(0) = 0.

9 Using the Fourier-sine transform, show the integral

e−x cos x = 2
𝜋 ∫

∞

0

s3 sin sx
s4 + 4

ds, x > 0.

10 Using the Fourier-cosine transform, show the integral

e−x cos x = 2
𝜋 ∫

∞

0

s2 + 2
s4 + 4

(cos sx)ds, x ≥ 0.

11 Let a semi-infinite string be extended along the positive x-axis with the
end at the origin fixed. The shape of the string at t = 0 is given as

y(x, 0) = f (x),

where y(x, t) represents the displacement of the string perpendicular to
the x-axis and satisfies the wave equation

𝜕2y
𝜕t2 = a2 𝜕

2y
𝜕x2 , a is a constant.

Show that the solution is given as

y(x, t) = 2
𝜋 ∫

∞

0
ds cos(sat) sin(sx)∫

∞

0
d𝜉 f (𝜉) sin(s𝜉).
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12 Establish the Fourier-sine integral representation
x

x2 + k2 = 2
𝜋 ∫

∞

0
dy sin(xy)∫

∞

0
dz

z sin(yz)
z2 + k2 .

Hint: First show that

e−ky = 2
𝜋 ∫

∞

0

z sin(yz)
z2 + k2 dz, x > 0, k > 0.

13 Show that the Fourier-sine transform of
xe−ax

is given as√
2
𝜋

a2 − k2

(a2 + k2)2 .

14 Establish the result

£
{1 − cos at

t

}
= 1

2
log

(
1 + a2

s2

)
.

15 Use the convolution theorem to show that

£−1
{

s2

(s2 + b2)2

}
= t

2
cos bt + 1

2b
sin bt.

16 Use Laplace transforms to find the solution of the following system of
differential equations:

dy1

dx
= −𝛼1y1,

dy2

dx
= −𝛼1y1 − 𝛼2y2,

dy3

dx
= −𝛼2y2 − 𝛼3y3,

with the boundary conditions
y1(0) = C0, y2(0) = y3(0) = 0.

17 Laguerre polynomials satisfy
xL′′

n + (1 − t)L′
n + nLn(x) = 0.

Show that
£{Ln(ax)} = (s − a)n∕sn+1, s > 0.
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16

Variational Analysis

The variational analysis is basically the study of changes. We are often inter-
ested in how a system will react to small changes in its parameters. Variational
analysis constitutes a powerful tool for determining in which direction a
process will go. It is for this reason that it has found a wide range of appli-
cations not just in physics and engineering but also in financial mathematics
and economics. In applications, we frequently encounter cases where the
desired quantity is the one that extremizes a certain integral. Compared to
ordinary calculus, where one deals with functions of numbers, these integrals
are functions of some unknown function and its derivatives, hence they are
called functionals. Search for the extremum of a function yields the points at
which the function takes its extremum values. In the case of functionals, the
variational analysis gives a differential equation that needs to be solved for
the desired function that makes the functional an extremum. After Newton’s
formulation of mechanics, Lagrange developed a new formalism where the
equations of motion are obtained from a variational integral called the action.
This new formulation made applications of Newton’s theory to many-body
problems and continuous systems possible. Today, in making the transition to
quantum mechanics and to quantum field theories, a Lagrangian formulation
is a must. Geodesics are the shortest paths between two points in a given
space and constitute one of the main applications of variational analysis. In
Einstein’s theory of gravitation, geodesics play a central role as the paths of
freely moving particles in curved spacetime. Variational techniques also form
the mathematical basis for the finite elements method, which constitutes
a powerful tool for solving complex boundary value problems in stability
analysis. Variational analysis and the Rayleigh–Ritz method allows us to find
approximate eigenvalues and eigenfunctions of a Sturm–Liouville system.
A special section of this chapter is on optimum control theory, where we
discuss the basics of controlled dynamics and its connections with variational
dynamics.

Mathematical Methods in Science and Engineering, Second Edition. Selçuk Ş. Bayın.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.
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16.1 Presence of One Dependent and One
Independent Variable

16.1.1 Euler Equation

Majority of the variational problems encountered in physics and engineering
are expressed in terms of an integral:

J[ y(x)] = ∫
x2

x1

f ( y, yx, x)dx, (16.1)

where y(x) is the desired function and f ( y, yx, x) is a known function of y(x)
and its derivative yx and x. Because the unknown of this problem is a function,
y(x), J is called a functional, hence we write it as J[ y(x)]. Usually, the purpose of
these problems is to find a function, which is a path in the xy-plane between the
points (x1, y1) and (x2, y2), which makes the functional J[ y(x)] an extremum. In
Figure 16.1, we show potentially possible paths that connects the points (x1, y1)
and (x2, y2). The difference of these paths from the desired path is called the
variation, 𝛿y, of y. Because 𝛿y depends on position, we use 𝜂(x) for its position
dependence and use a scalar parameter 𝛼 as a measure of its magnitude. Paths
close to the desired path can now be parameterized in terms of 𝛼 as

y(x, 𝛼) = y(x, 0) + 𝛼𝜂(x) + 0(𝛼2), (16.2)

where y(x, 𝛼 = 0) is the desired path, which extremizes the functional J[ y(x)].
We can now express 𝛿y as

𝛿y = y(x, 𝛼) − y(x, 0) = 𝛼𝜂(x) (16.3)

δy

y

x

(x1, y1)

(x2, y2)

y(x, 0)

y(x,α) = y(x,0) + αη (x) 

Figure 16.1 Variation of paths.
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and write J[ y(x)] as a function of 𝛼:

J(𝛼) = ∫
x2

x1

f [ y(x, 𝛼), yx(x, 𝛼), x]dx. (16.4)

Now the extremum of J[ y(x)] can be found as in ordinary calculus by imposing
the condition||||𝜕J(𝛼)

𝜕𝛼

||||𝛼=0
= 0. (16.5)

In this analysis, we assume that 𝜂(x) is a differentiable function and take the
variations at the end points as zero:

𝜂(x1) = 𝜂(x2) = 0. (16.6)

Now the derivative of J(𝛼) with respect to 𝛼 is
𝜕J(𝛼)
𝜕𝛼

= ∫
x2

x1

[
𝜕f
𝜕y

𝜕y
𝜕𝛼

+
𝜕f
𝜕yx

𝜕yx

𝜕𝛼

]
dx. (16.7)

Using Eq. (16.2), we can write
𝜕y(x, 𝛼)

𝜕𝛼
= 𝜂(x), (16.8)

𝜕yx(x, 𝛼)
𝜕𝛼

= d𝜂(x)
dx

, (16.9)

which when substituted in Eq. (16.7) gives
𝜕J(𝛼)
𝜕𝛼

||||𝛼=0
= ∫

x2

x1

[
𝜕f
𝜕y

𝜂(x) +
𝜕f
𝜕yx

d𝜂(x)
dx

]
dx. (16.10)

Integrating the second term by parts:

∫
x2

x1

𝜕f
𝜕yx

d𝜂(x)
dx

dx =
|||| 𝜕f
𝜕yx

𝜂(x)
||||

x2

x1

− ∫
x2

x1

𝜂(x)
(

d
dx

𝜕f
𝜕yx

)
dx, (16.11)

and using the fact that the variation at the end points are zero, we can write
Eq. (16.10) as

∫
x2

x1

(
𝜕f
𝜕y

− d
dx

𝜕f
𝜕yx

)
𝜂(x)dx = 0. (16.12)

Because the variation 𝜂(x) is arbitrary, the only way to satisfy this equation is
by setting the expression inside the brackets to zero:

𝜕f
𝜕y

− d
dx

𝜕f
𝜕yx

= 0. (16.13)

In conclusion, variational analysis has given us a second-order differential
equation to be solved for the path that extremizes the functional J[ y(x)]. This
differential equation is called the Euler equation.
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16.1.2 Another Form of the Euler Equation

To find another version of the Euler equation, we write the total derivative of
the function f ( y, yx, x) as

df
dx

=
𝜕f
𝜕y

yx +
𝜕f
𝜕yx

dyx

dx
+

𝜕f
𝜕x

. (16.14)

Using the Euler equation [Eq. (16.13)], we write 𝜕f
𝜕y

= d
dx

𝜕f
𝜕yx

and substitute in
Eq. (16.14) to get

df
dx

= yx
d

dx
𝜕f
𝜕yx

+
𝜕f
𝜕yx

dyx

dx
+

𝜕f
𝜕x

. (16.15)

This can also be written as

𝜕f
𝜕x

− d
dx

[
f − yx

𝜕f
𝜕yx

]
= 0. (16.16)

This is another version of the Euler equation, which is extremely useful when
f ( y, yx, x) does not depend on the independent variable, x, explicitly. In such
cases, we can immediately write the first integral as

f − yx
𝜕f
𝜕yx

= constant, (16.17)

which reduces the problem to the solution of a first-order differential equation.

16.1.3 Applications of the Euler Equation

Example 16.1 Shortest path between two points
To find the shortest path between two points on a plane, we write the line ele-
ment as

ds = [(dx)2 + (dy)2]
1
2 = dx[1 + y2

x]
1
2 . (16.18)

The distance between two points is now given as a functional of the path and
in terms of the integral

J[ y(x)] = ∫
(x2,y2)

(x1,y1)
ds = ∫

x2

x1

[1 + y2
x]

1
2 dx. (16.19)

To find the shortest path, we must solve the Euler equation for

f ( y, yx, x) = [1 + y2
x]

1
2 .

Since f ( y, yx, x) does not depend on the independent variable explicitly, we
use the second form of the Euler equation [Eq. (16.17)] to write

1
[1 + y2

x]
1
2

= c, (16.20)
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where c is a constant. This is a first-order differential equation for y(x) and its
solution can be found as y = ax + b.This is the equation of a straight line, where
the integration constants a and b are to be determined from the coordinates of
the end points. The shortest paths between two points in a given geometry are
called geodesics. Geodesics in spacetime play a crucial role in Einstein’s theory
of gravitation as the paths of free particles in curved spacetime.

Example 16.2 Shape of a soap film between two rings
Let us find the shape of a soap film between two rings separated by a distance of
2x0. Rings pass through the points (x1, y1) and (x2, y2) as shown in Figure 16.2.
Ignoring gravitation, the shape of the film is a surface of revolution; thus, it is
sufficient to find the equation of a curve, y(x), between two points (x1, y1) and
(x2, y2). Because the energy of a soap film is proportional to its surface area, y(x)
should be the one that makes the area a minimum. We write the infinitesimal
area element of the soap film as

dA = 2𝜋yds = 2𝜋y[1 + y2
x]

1
2 dx. (16.21)

The area, aside from a factor of 2𝜋, is given by the integral

J = ∫
x2

x1

y[1 + y2
x]

1
2 dx. (16.22)

Since f ( y, yx, x) is given as

f ( y, yx, x) = y[1 + y2
x]

1
2 , (16.23)

(x1, y1)
(x,y)

(x2, y2)

y

x

ds

Figure 16.2 Soap film between two rings.
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which does not depend on x explicitly, we write the Euler equation as

y∕[1 + y2
x]

1
2 = c1, (16.24)

where c1 is a constant. Taking the square of both sides, we write y2∕[1 + y2
x] =

c2
1. This leads us to a first-order differential equation:

( yx)−1 = dx
dy

=
c1√

y2 − c2
1

, c2
1 ≤ y2

min, (16.25)

which up on integration gives x = c1cosh−1 y
c1
+ c2. Thus, the function y(x) is

determined as

y(x) = c1 cosh
(x − c2

c1

)
. (16.26)

Integration constants c1 and c2 are to be determined so that y(x) passes
through the points (x1, y1) and (x2, y2). Symmetry of the problem gives c2 = 0.
For two rings with unit radius and x0 = 1∕2, we obtain

1 = c1 cosh
(

1
2c1

)
(16.27)

as the equation to be solved for c1.This equation has two solutions: c1 = 0.2350,
which is known as the deep curve and c1 = 0.8483, which is known as the flat
curve. To find the correct shape, we have to check which one of these makes
the area, and hence the energy, a minimum. Using Eqs. (16.22) and (16.24), we
write the surface area as

A = 4𝜋
c1 ∫

x0

0
y2(x)dx. (16.28)

Substituting the solution in Eq. (16.26) in Eq. (16.28) we get

A = 𝜋c2
1

[
sinh

(2x0

c1

)
+

2x0

c1

]
. (16.29)

For x0 = 1
2

this gives

c1 = 0.2350
c1 = 0.8483

}
→

{
A = 6.8456,
A = 5.9917, (16.30)

This means that the correct value of c1 is 0.8483. If we increase the separation
between the rings beyond a certain point, we expect the film to break. In fact,
the transcendental equation

1 = c1 cosh
(x0

c1

)
(16.31)

does not have a solution for x0 ≥ 1.
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Example 16.3 Newton’s bucket experiment
In Principia (1689) Newton describes a simple experiment with a bucket
half-filled with water and suspended with a rope from a fixed point in space.
In this experiment, first the rope is twisted tightly and after the water has
settled with a flat surface, the rope is released. Initially the bucket spins rapidly
with the water remaining at rest with its surface flat. Eventually, the friction
between the water and the bucket communicates the motion of the bucket
to the water and the water begins to rotate. As the water rotates, it also rises
along the sides of the bucket. Slowly the relative motion between the bucket
and the water ceases and the surface of the water assumes a concave shape.
Finally, the rope unwinds completely and begins to twist in the other direction,
thus slowing and eventually stopping the bucket. Shortly after the bucket has
stopped, the water continues its rotation with its surface still concave. The
question is; what causes this concave shape of the surface of the water?

At first, the bucket is spinning but the water is at rest and its surface is flat.
Eventually, when there is no relative motion between the bucket and the water,
the surface is concave. Finally, when the water is spinning but the bucket is at
rest, the surface is still concave. From these it is clear that the relative rotation
of the water and the bucket is not what determines the shape of the surface.

The crucial question is; what is spinning and with respect to what? Let us
try to understand the shape of the surface in terms of interactions. Since the
bucket and the water, and the rest of the universe are on the average neu-
tral, electromagnetic forces cannot be the reason. The gravitational interaction
between the bucket and the water is surely negligible, hence it cannot be the
reason either. Besides, in Newton’s theory gravity is a scalar interaction, thus
the force between two masses depends only on their separation and not on their
relative motion. In this regard, Newton could not have used the gravitational
interaction of water with other matter. This lead Newton reluctantly to explain
the concave shape as due to rotation with respect to absolute space. In other
words, the surface of the water is flat when the water is not rotating with respect
to absolute space and when there is rotation with respect to absolute space, the
surface is concave.

A satisfactory solution to this problem comes only with Einstein’s general the-
ory of relativity, where the gravitational force between two masses depends not
just on their separation but also on their relative velocity as well. This is analo-
gous to Maxwell’s theory, where the electromagnetic interactions are described
by a vector potential. Hence, the force between two charged particles has a
velocity dependent part aside from the usual Coulomb force. In the general
theory of relativity, gravity is described by a tensor potential; the metric tensor.
Therefore in Einstein’s theory, the velocity dependence is even more compli-
cated. In this regard, in Einstein’s theory not just the shape of the surface of
the water in the Newton’s bucket experiment but also all fictitious forces in
Newton’s dynamic theory, in principle, can be explained as the gravitational
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z(r)
r

RO

ω

(x, y)

z Figure 16.3 Newton’s bucket experiment with
a cylindrical container.

interaction of matter with other matter, that is, the mean matter distribution of
the universe.

Let us now find the equation of the concave shape that the surface of the
water assumes. For simplicity, we assume a cylindrical container (Figure 16.3)
with the radius R and rotating with uniform angular velocity 𝜔 about its axis.
We determine the surface height, z(r), of the water by minimizing the potential
energy. For a given mass element of the water, we can write the infinitesimal
potential energy as

dE =
(
𝜌gz − 1

2
𝜌𝜔2r2

)
d𝑣, (16.32)

where 𝜌 is the uniform density of the water and g is the acceleration of gravity.
We now write the functional, I[z(r)], that needs to be minimized for z(r) as

I[z(r)] = ∫ ∫ ∫V
dE = ∫

2𝜋

0 ∫
R

0 ∫
z(r)

0

(
𝜌gz − 1

2
𝜌𝜔2r2

)
r

× dz dr d𝜃 (16.33)

= 𝜋𝜌∫
R

0
(gz2 − 𝜔2r2z)rdr. (16.34)

Note that the integrand in the above functional does not involve any deriva-
tives of z(r), hence the boundary conditions z(0) and z(R) are not needed in the
derivation of the Euler equation [Eq. (16.13)], which becomes:

𝜕[( gz2 − 𝜔2r2z)r]
dz

= 0, (16.35)

thus, yielding the surface of revolution, z(r), representing the free surface of the
water as

z(r) = 𝜔2r2

2g
. (16.36)
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One final remark that needs to be made is that this result is only partially
true, since we have not defined the optimization problem correctly. For a proper
description of the problem we have to take into account the fact that water is
incompressible, that is, its volume is fixed. Now the functional in Eq. (16.34)
has to be extremized subject to the constraint

J[z(r)] = ∫ ∫ ∫V
d𝑣 = ∫

2𝜋

0 ∫
R

0 ∫
z(r)

0
r dz dr d𝜃 (16.37)

= 2𝜋 ∫
R

0
z(r)dr = V0, (16.38)

thus, making the problem one of isoperimetric type and can be solved by using
the method discussed in Section 16.6.

Example 16.4 Drag force on a surface of revolution
Consider an axially symmetric object moving in a perfect incompressible fluid
with constant velocity. Assuming that at any point on the surface the drag force
per unit area is proportional to the square of the normal component of the
velocity, find the shape that minimizes the drag force on the object.

Solution
Since the object is axially symmetric, we consider the surface of revolution
shown in Figure 16.4, where 𝜃 is the angle that the tangent at point P makes
with the plane perpendicular to the z-axis. Since the normal component of the
velocity at P is

𝑣⟂ = 𝑣0 cos(𝜋 − 𝜃) = −𝑣0 cos 𝜃, (16.39)

Figure 16.4 Drag force on a surface of
revolution.
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we write the drag force on the infinitesimal strip with the area 2𝜋rds and pro-
jected along the z-axis as (Figure 16.4)

𝛼(𝑣2
0cos2𝜃) cos 𝜃 2𝜋rds, (16.40)

where 𝛼 is the drag coefficient. Since ds = dr∕ cos 𝜃, the total drag on the body
is the integral

J = 2𝜋𝛼𝑣2
0 ∫

R

0
r cos2𝜃 dr. (16.41)

Using the definition of the surface of revolution, z(r), we can write dz
dr

= tan 𝜃,

hence

cos 𝜃 = 1
[1 + z′2]1∕2 . (16.42)

Now the functional to be minimized for z(r) becomes

J[z(r)] = 2𝜋𝛼𝑣2
0 ∫

R

0

r dr
1 + z′2

, (16.43)

which yields the Euler equation
rz′

[1 + z′2]2 = c0, (16.44)

where c0 is an integration constant. Note that since the integrand does not
depend on z explicitly, we have written the first integral [Eq. (16.13)] imme-
diately. For the solution we call z′ = p and solve the above equation for r to
write

r =
c0

p
(1 + p2)2, (16.45)

which when differentiated gives

dr = c0

(
− 1

p2 + 2 + 3p2
)

dp. (16.46)

Using dz∕dr = p, we also obtain

∫ dz = ∫ p dr = c0 ∫ p
(
− 1

p2 + 2 + 3p2
)

dp, (16.47)

z = c0

(
− ln p + p2 +

3p4

4

)
+ c1. (16.48)

Equations (16.45) and (16.48) represent the parametric expression of the
needed surface of revolution. To determine the integration constants, we
can use the values z(a∕2) = z1 and z(R) = z2. For a complete treatment of
this problem, which was originally discussed by Newton and which still has
engineering interest, see Bryson and Ho [2].
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16.2 Presence of More than One Dependent Variable

In the variational integral [Eq. (16.1)], if the function f depends on more than
one dependent variable:

y1(x), y2(x), y3(x),… , yn(x), (16.49)

and one independent variable, x, then the functional J is written as

J = ∫
x2

x1

f [ y1(x), y2(x),… , yn(x), y1x(x), y2x(x),… , ynx(x), x] dx, (16.50)

where yix = 𝜕yi∕𝜕x, i = 1, 2,… , n. We can now write small deviations from the
desired paths, yi(x, 0), which make the functional J an extremum as

yi(x, 𝛼) = yi(x, 0) + 𝛼𝜂i(x) + 0(𝛼2), i = 1, 2,… , n, (16.51)

where 𝛼 is again a small parameter and the functions 𝜂i(x) are independent of
each other. We again take the variation at the end points as zero:

𝜂i(x1) = 𝜂i(x2) = 0. (16.52)

Taking the derivative of J(𝛼) with respect to 𝛼 and setting 𝛼 to zero we get

∫
x2

x1

∑
i

(
𝜕f
𝜕yi

𝜂i(x) +
𝜕f
𝜕yix

d𝜂i(x)
dx

)
dx = 0. (16.53)

Integrating the second term by parts and using the fact that at the end points
variations are zero, we write Eq. (16.53) as

∫
x2

x1

∑
i

(
𝜕f
𝜕yi

− d
dx

𝜕f
𝜕yix

)
𝜂i(x)dx = 0. (16.54)

Because the variations 𝜂i(x) are independent, this equation can only be satisfied
if all the coefficients of 𝜂i(x) vanish simultaneously, that is,

𝜕f
𝜕yi

− d
dx

𝜕f
𝜕yix

= 0, i = 1, 2,… , n. (16.55)

We now have a system of n Euler equations to be solved simultaneously for
the n dependent variables. An important example for this type of variational
problems is the Lagrangian formulation of classical mechanics.

16.3 Presence of More than One Independent Variable

Sometimes the unknown functions u and f in the functional J depend on more
than one independent variable. For example, in three-dimensional problems J
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may be given as

J = ∫ ∫ ∫V
f [u,ux,uy,uz, x, y, z] dxdydz, (16.56)

where u = u(x, y, z) and ux,uy, and uz are the partial derivatives with respect
to x, y, and z, respectively. We now have to find a function u(x, y, z) such that J
is an extremum. We again let u(x, y, z, 𝛼 = 0) be the function that extremizes J
and write the variation about this function as

u(x, y, z, 𝛼) = u(x, y, z, 𝛼 = 0) + 𝛼𝜂(x, y, z) + O(𝛼2), (16.57)

where 𝜂(x, y, z) is a differentiable function. We take the derivative of Eq. (16.56)
with respect to 𝛼 and set 𝛼 = 0:

(
𝜕J
𝜕𝛼

)
𝛼=0

= 0. We then integrate terms like 𝜕f
𝜕ux

𝜂x

by parts and use the fact that variation at the end points are zero to write

∫ ∫ ∫
(
𝜕f
𝜕u

− 𝜕

𝜕x
𝜕f
𝜕ux

− 𝜕

𝜕y
𝜕f
𝜕uy

− 𝜕

𝜕z
𝜕f
𝜕uz

)
𝜂(x, y, z)dxdydz = 0.

(16.58)

Because the variation 𝜂(x, y, z) is arbitrary, the expression inside the parenthe-
ses must be zero; thus, yielding

𝜕f
𝜕u

− 𝜕

𝜕x
𝜕f
𝜕ux

− 𝜕

𝜕y
𝜕f
𝜕uy

− 𝜕

𝜕z
𝜕f
𝜕uz

= 0. (16.59)

This is the Euler equation for one dependent and three independent variables.

Example 16.5 Laplace equation
In electrostatics energy density is given as 𝜌 = 1

2
𝜀E2, where E is the magnitude

of the electric field. Because the electric field can be obtained from a scalar
potential, Φ, as E⃗ = −∇⃗Φ, we can also write 𝜌 = 1

2
𝜀(∇⃗Φ)2. Ignoring the 𝜀∕2

factor, let us find the Euler equation for the functional

J = ∫ ∫ ∫V
(∇⃗Φ)2 dxdydz. (16.60)

Since (∇⃗Φ)2 = Φ2
x + Φ2

y + Φ2
z , f is given as

f [Φ,Φx,Φy,Φz, x, y, z] = Φ2
x + Φ2

y + Φ2
z . (16.61)

Writing the Euler equation [Eq. (16.59)] for this f , we obtain

−2(Φxx + Φyy + Φzz) = 0, (16.62)

which is the Laplace equation ∇⃗2Φ(x, y, z) = 0. A detailed investigation will
show that this extremum is actually a minimum.
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16.4 Presence of Multiple Dependent
and Independent Variables

In general, if the f function depends on three dependent (p, q, r) and three inde-
pendent variables (x, y, z) as

f = f [p, px, py, pz, q, qx, qy, qz, r, rx, ry, rz, x, y, z], (16.63)

we can parameterize the variation in terms of three scalar parameters 𝛼, 𝛽, and
𝛾 as

p(x, y, z; 𝛼) = p(x, y, z, 𝛼 = 0) + 𝛼𝜉(x, y, z) + 0(𝛼2), (16.64)
q(x, y, z; 𝛽) = q(x, y, z, 𝛽 = 0) + 𝛽𝜂(x, y, z) + 0(𝛽2), (16.65)
r(x, y, z; 𝛾) = r(x, y, z, 𝛾 = 0) + 𝛾𝜓(x, y, z) + 0(𝛾2). (16.66)

Now, the p, q, and the r functions that extremize

J = ∫ ∫ ∫ fdxdydz (16.67)

will be obtained from the solutions of the following system of three Euler
equations:

𝜕f
𝜕p

− 𝜕

𝜕x
𝜕f
𝜕px

− 𝜕

𝜕y
𝜕f
𝜕py

− 𝜕

𝜕z
𝜕f
𝜕pz

= 0, (16.68)

𝜕f
𝜕q

− 𝜕

𝜕x
𝜕f
𝜕qx

− 𝜕

𝜕y
𝜕f
𝜕qy

− 𝜕

𝜕z
𝜕f
𝜕qz

= 0, (16.69)

𝜕f
𝜕r

− 𝜕

𝜕x
𝜕f
𝜕rx

− 𝜕

𝜕y
𝜕f
𝜕ry

− 𝜕

𝜕z
𝜕f
𝜕rz

= 0. (16.70)

If we have m dependent and n independent variables, then we can use yi to
denote the dependent variables and xj for the independent variables and write
the Euler equations as

𝜕f
𝜕yi

−
n∑

j=1

𝜕

𝜕xj

𝜕f
𝜕yij

= 0, i = 1, 2,… ,m, (16.71)

where yij =
𝜕yi

𝜕xj
, j = 1, 2,… , n.

16.5 Presence of Higher-Order Derivatives

Sometimes in engineering problems, we encounter functionals given as

J[ y(x)] = ∫
b

a
F(x, y, y′,… , y(n)) dx, (16.72)



620 16 Variational Analysis

where y(n) stands for the nth-order derivative, the independent variable x takes
values in the closed interval [a, b] and the dependent variable y(x) satisfies the
boundary conditions

y(a) = y0, y′(a) = y′0, … , y(n−1)(a) = y(n−1)
0 ,

y(b) = y1, y′(b) = y′1, … , y(n−1)(b) = y(n−1)
1 . (16.73)

Using the same method that we have used for the other cases, we can show that
the Euler equation that y(x) satisfies is

Fy −
d

dx
Fy′ +

d2

dx2 Fy′′ − · · · + (−1)n dn

dxn Fy(n) = 0, Fy(n) =
𝜕F
𝜕y(n)

.

(16.74)

This equation is also known as the Euler–Poisson equation.

Example 16.6 Deformation of an elastic beam
Let us consider a homogeneous elastic beam supported from its end points at
(−l1, 0) and (0, l1) as shown in Figure 16.5. Let us find the shape of the centerline
of this beam. From the elasticity theory, the potential energy, E, of the beam is
given as

E = ∫
l1

−l1

[
1
2
𝜇

(y′′)2

(1 + y′2)
+ 𝜌y

√
1 + y′2

]
dx, (16.75)

where 𝜇 and 𝜌 are parameters that characterize the physical properties of the
beam. Assuming that the deformation is small, we can take 1 + y′2 ≈ 1. Now
the energy becomes

E = ∫
l1

−l1

[1
2
𝜇(y′′)2 + 𝜌y

]
dx. (16.76)

For stable equilibrium, the energy of the beam must be a minimum, hence we
have to minimize the energy integral with the conditions

y(l1) = y(−l1) = 0 and y′(l1) = y′(−l1) = 0. (16.77)

Using

F(x, y, y′, y′′) = 1
2
𝜇(y′′)2 + 𝜌y, (16.78)

we write the Euler–Poisson equation as

𝜇y(4) + 𝜌 = 0, (16.79)
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Figure 16.5 Deformation of an elastic beam.

the solution of which is easily obtained as

y = 𝛼x3 + 𝛽x2 + 𝛾x + 𝛿 − 𝜌

24𝜇
x4. (16.80)

Using the boundary conditions given in Eq. (16.77), we can determine
𝛼, 𝛽, 𝛾, 𝛿 and find y(x) as

y = 𝜌

24𝜇
[−x4 + 2l2

1x2 − l4
1]. (16.81)

For the cases where there are m dependent variables, we can generalize the
variational problem in Eq. (16.74) as

I( y1,… , ym, x) = ∫ F
(

x, y1, y′1,… , y(n1)
1 , y2, y′2,… , y(n2)

2 ,

… , ym, y′m,… , y(nm)
m

)
dx. (16.82)

The boundary conditions are now given as

y(k)i (a) = y(k)i0 , y(k)i (b) = y(k)i1 ,

k = 0, 1,… , ni − 1, i = 1, 2,… ,m, (16.83)

and the Euler–Poisson equations become

ni∑
k=0

(−1)k dk

dxk
Fyi

(k) = 0, i = 1, 2,… ,m. (16.84)
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16.6 Isoperimetric Problems and the Presence
of Constraints

In some applications we search for a function that not only extremizes a given
functional:

I = ∫
xB

xA

f (x, y, y′) dx, (16.85)

but also keeps another functional:

J = ∫
xB

xA

g(x, y, y′) dx, (16.86)

at a fixed value. To find the Euler equation for such a function satisfying the
boundary conditions

y(xA) = yA, y(xB) = yB, (16.87)

we parameterize the possible paths in terms of two parameters 𝜀1 and 𝜀2 as
y(x, 𝜀1, 𝜀2). These paths also have the following properties:

(i) For all values of 𝜀1 and 𝜀2, they satisfy the boundary conditions
y(xA, 𝜀1, 𝜀2) = yA and y(xB, 𝜀1, 𝜀2) = yB.

(ii) y(x, 0, 0) = y(x) is the desired path.
(iii) y(x, 𝜀1, 𝜀2) has continuous derivatives with respect to all variables to sec-

ond order.

We now substitute these paths into Eqs. (16.85) and (16.86) to get two inte-
grals depending on two parameters 𝜀1 and 𝜀2 as

I(𝜀1, 𝜀2) = ∫
xB

xA

f (x, y, y′) dx, (16.88)

J(𝜀1, 𝜀2) = ∫
xB

xA

g(x, y, y′) dx. (16.89)

While we are extremizing I(𝜀1, 𝜀2)with respect to 𝜀1 and 𝜀2,we are also going to
ensure that J(𝜀1, 𝜀2) takes a fixed value; thus, 𝜀1 and 𝜀2 cannot be independent.
Using Lagrange undetermined multiplier 𝜆, we introduce K(𝜀1, 𝜀2):

K(𝜀1, 𝜀2) = I(𝜀1, 𝜀2) + 𝜆J(𝜀1, 𝜀2). (16.90)

The condition for K(𝜀1, 𝜀2) to be an extremum is now written as[
𝜕K
𝜕𝜀1

]
𝜀1=0
𝜀2=0

=
[
𝜕K
𝜕𝜀2

]
𝜀1=0
𝜀2=0

= 0. (16.91)
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In integral form this becomes

K(𝜀1, 𝜀2) = ∫
xB

xA

h(x, y, y′) dx, (16.92)

where the h function is defined as

h = f + 𝜆g. (16.93)

Differentiating with respect to these parameters and integrating by parts, and
using the boundary conditions we get[

𝜕K
𝜕𝜀j

]
= ∫

xB

xA

[
𝜕h
𝜕y

− d
dx

𝜕h
𝜕y′

]
𝜕y
𝜕𝜀j

dx, j = 1, 2. (16.94)

Taking the variations as

𝜂j(x) =
(

𝜕y
𝜕𝜀j

)
𝜀1=0
𝜀2=0

(16.95)

and using Eq. (16.91), we write

∫
xB

xA

[
𝜕h
𝜕y

− d
dx

𝜕h
𝜕y′

]
𝜂j(x) dx = 0, j = 1, 2. (16.96)

Because the variations, 𝜂j, are arbitrary, we set the quantity inside the square
brackets to zero and obtain the differential equation

𝜕h
𝜕y

− d
dx

𝜕h
𝜕y′

= 0. (16.97)

Solutions of this differential equation contain two integration constants and a
Lagrange undetermined multiplier 𝜆. The two integration constants come from
the boundary conditions [Eq. (16.87)], and 𝜆 comes from the constraint that
fixes the value of J , thus completing the solution of the problem.

Another way to reach this conclusion is to consider the variation of the two
functionals [Eqs. (16.85) and (16.86)] as

𝛿I = ∫
𝛿f
𝛿y

𝛿ydx, (16.98)

𝛿J = ∫
𝛿g
𝛿y

𝛿ydx. (16.99)

We now require that for all 𝛿y that makes 𝛿J = 0, 𝛿I should also vanish. This is
possible if and only if 𝛿f

𝛿y
and 𝛿g

𝛿y
are constants independent of x, that is,(

𝛿f
𝛿y

)/(
𝛿g
𝛿y

)
= −𝜆(constant). (16.100)
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This is naturally equivalent to extremizing the functional ∫ ( f + 𝜆g)dx with
respect to arbitrary variations 𝛿y.

When we have m constraints like J1,… , Jm, the above method is easily gen-
eralized by taking h as

h = f +
m∑

i=1
𝜆igi (16.101)

with m Lagrange undetermined multipliers. Constraining integrals now
become

Ji = ∫
xB

xA

gi(x, y, y′) dx = cj, i = 1, 2,… ,m. (16.102)

If we also have n dependent variables, we have a system of n Euler equations
given as

𝜕h
𝜕yj

− d
dx

𝜕h
𝜕y′j

= 0, j = 1,… , n, (16.103)

where h is given by Eq. (16.93).

Example 16.7 Isoperimetric problems
Let us find the maximum area that can be enclosed by a closed curve of fixed
perimeter L on a plane. We can define a curve on a plane in terms of a parameter
t by giving a pair of functions as (x(t), y(t)). Now the enclosed area becomes

A = 1
2 ∫

tB

tA

(xy′ − x′y) dt (16.104)

while the fixed perimeter condition is expressed as

L = ∫
B

A
ds = ∫

tB

tA

√
x′2 + y′2 dt. (16.105)

where the prime denotes differentiation with respect to the independent vari-
able t, and x and y are the two dependent variables. Our only constraint is given
by Eq. (16.105); thus, we have a single Lagrange undetermined multiplier and
the h function is written as

h = 1
2
(xy′ − x′y) + 𝜆

√
x′2 + y′2. (16.106)
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Writing the Euler equation for x(t) we get

𝜕h
𝜕x

− d
dt

𝜕h
𝜕x′ = 0, (16.107)

1
2

y′ − d
dt

(
−1

2
y + 𝜆

x′√
x′2 + y′2

)
= 0, (16.108)

y′ − d
dt

(
𝜆

x′√
x′2 + y′2

)
= 0 (16.109)

and similarly for y(t) ∶

x′ + d
dt

(
𝜆

y′√
x′2 + y′2

)
= 0. (16.110)

The first integral of this system of equations [Eqs. (16.109) and (16.110)] can
easily be obtained as

y − 𝜆
x′√

x′2 + y′2
= y0, x + 𝜆

y′√
x′2 + y′2

= x0. (16.111)

Solutions of these are given as

y − y0 = 𝜆
x′√

x′2 + y′2
, x − x0 = −𝜆

y′√
x′2 + y′2

, (16.112)

which can be combined to obtain the equation of the closed curve as (x − x0)2 +
( y − y0)2 = 𝜆2.This is the equation of a circle with its center at (x0, y0) and radius
𝜆. Because the circumference is L, we determine 𝜆 as 𝜆 = L

2𝜋
.

Example 16.8 Shape of a freely hanging wire with fixed length
We now find the shape of a wire with length L and fixed at both ends at (xA, yA)
and (xB, yB). The potential energy of the wire is

I = 𝜌g ∫
xB

xA

yds = 𝜌g ∫
xB

xA

y
√

1 + y′2dx. (16.113)

Because we take its length as fixed, we take our constraint as

L = ∫
xB

xA

√
1 + y′2dx. (16.114)

For simplicity, we use a Lagrange undetermined multiplier defined as
𝜆 = −𝜌gy0 and write the h function:

h = 𝜌g( y − y0)
√

1 + y′2, (16.115)
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where g is the acceleration of gravity and 𝜌 is the density of the wire. We change
our dependent variable to y → 𝜂 = y − y0, which changes our h function to

h = 𝜌g𝜂(x)
√

1 + 𝜂′2. (16.116)

After we write the Euler equation, we find the solution as

y = y0 + b cosh
(x − x0

b

)
. (16.117)

Using the fact that the length of the wire is L and the end points are at (xA, yA)
and (xB, yB), we can determine the Lagrange multiplier y0 and the other con-
stants x0 and b.

16.7 Applications to Classical Mechanics

With the mathematical techniques developed in the previous sections, we can
conveniently express a fairly large part of classical mechanics as a variational
problem. If a classical system is described by the generalized coordinates qi(t),
i = 1, 2,… , n and has a potential V (qi, t), then its Lagrangian can be written
as

L(qi, q̇i, t) = T(qi, q̇i) − V (qi, t), (16.118)

where T is the kinetic energy and a dot denotes differentiation with respect to
time. We now show that Newton’s equations of motion follow from Hamilton’s
principle:

16.7.1 Hamilton’s Principle

As a system moves from some initial time t1 to t2, with prescribed initial values
qi(t1) and qi(t2), the actual path followed by the system is the one that makes
the integral

I = ∫
t2

t1

L(qi, q̇i, t)dt (16.119)

an extremum. I is called the action.
From the conclusions of Section 16.1, the desired path comes from the solu-

tions of

𝜕L
𝜕qi

− d
dt

(
𝜕L
𝜕q̇i

)
= 0, i = 1, 2,… , n, (16.120)
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which are now called the Lagrange equations or the Euler–Lagrange
equations. They are n simultaneous second-order differential equations to be
solved simultaneously for qi(t), where the 2n arbitrary integration constants
are determined from the initial conditions qi(t1) and qi(t2).

For a particle of mass m and moving in an arbitrary potential V (x1, x2, x3) the
Lagrangian is written as

L = 1
2

m
(
ẋ2

1 + ẋ2
2 + ẋ2

3
)
− V (x1, x2, x3) (16.121)

and the Lagrange equations become

mẋi = −𝜕V
𝜕xi

, i = 1, 2, 3, (16.122)

which are nothing but Newton’s equations of motion.
The main advantage of the Lagrangian formulation of classical mechanics is

that it makes applications to many particle systems and continuous systems
possible. It is also a must in making the transition to quantum mechanics
and quantum field theories. For continuous systems we define a Lagrangian
density, £, as

L = ∫V
£d3r⃗, (16.123)

where V is the volume. Now the action in Hamilton’s principle becomes

I = ∫
t2

t1

Ldt = ∫
t2

t1

[
∫V

£ d3r⃗
]

dt. (16.124)

For a continuous time-dependent system with n independent fields, 𝜙i(r⃗, t),
i = 1, 2,… , n, the Lagrangian density is given as

£(𝜙i, 𝜙it , 𝜙ix, 𝜙iy, 𝜙iz, r⃗, t), (16.125)

where 𝜙it =
𝜕𝜙i

𝜕t
, 𝜙ix =

𝜕𝜙i

𝜕x
, 𝜙iy =

𝜕𝜙i

𝜕y
, 𝜙iz =

𝜕𝜙i

𝜕z
. We can now use the conclusions

of Section 16.4 to write the n Lagrange equations as

𝜕£
𝜕𝜙i

− 𝜕

𝜕t
𝜕£
𝜕𝜙it

− 𝜕

𝜕x
𝜕£
𝜕𝜙ix

− 𝜕

𝜕y
𝜕£
𝜕𝜙iy

− 𝜕

𝜕z
𝜕£
𝜕𝜙iz

= 0. (16.126)

For time-independent fields, 𝜙i(r⃗), i = 1, 2,… , n, the Lagrange equations
become

𝜕£
𝜕𝜙i

−
3∑

j=1

𝜕

𝜕xj

𝜕£
(𝜕𝜙i∕𝜕xj)

= 0, i = 1, 2,… , n. (16.127)
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As an example, consider the Lagrange density

£ = 1
2
∇⃗𝜙(r⃗) ⋅ ∇⃗𝜙(r⃗) + 1

2
m2𝜙(r⃗)2 (16.128)

= 1
2

[(
𝜕𝜙

𝜕x

)2

+
(
𝜕𝜙

𝜕y

)2

+
(
𝜕𝜙

𝜕y

)2
]
+ 1

2
m2𝜙2, (16.129)

where the corresponding Lagrange equation is

∇⃗2𝜙(r⃗) = m2𝜙(r⃗). (16.130)

16.8 Eigenvalue Problems and Variational Analysis

For the variational problems, we have considered the end product that was a
differential equation to be solved for the desired function. We are now going to
approach the problem from the other direction and ask the question: Given a
differential equation, is it always possible to obtain it as the Euler equation of a
variational integral such as

𝛿J = 𝛿 ∫
b

a
f dt = 0 ? (16.131)

When the differential equation is an equation of motion, then this question
becomes: Can we drive it from a Lagrangian? This is a rather subtle point. Even
though it is possible to write theories that do not follow from a variational prin-
ciple, they eventually run into problems.

We have seen that solving the Laplace equation within a volume V is equiv-
alent to extremizing the functional

I[𝜙(r⃗)] = 1
2∫V

(∇⃗𝜙)2d3r⃗ (16.132)

with the appropriate boundary conditions. Another frequently encountered
differential equation in science and engineering is the Sturm–Liouville
equation:

d
dx

[
p(x)du(x)

dx

]
− q(x)u(x) + 𝜆𝜌(x)u(x) = 0, x ∈ [a, b], (16.133)

which can be obtained by extremizing the functional

I[u(x)] = ∫
b

a
[pu′2 + (q − 𝜆𝜌)u2] dx. (16.134)
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However, because the eigenvalues 𝜆 are not known a priori, this form is not
very useful. It is better to extremize

I[u(x)] = ∫
b

a
[pu′2 + qu2]dx, (16.135)

subject to the constraint

J[u(x)] = ∫
b

a
𝜌u2dx = constant. (16.136)

In this formulation, eigenvalues appear as the Lagrange multipliers. Note that
the constraint [Eq. (16.136)] is the normalization condition of u(x); thus, we
can also extremize

K[u(x)] = I[u(x)]
J[u(x)]

. (16.137)

If we multiply the Sturm–Liouville equation by u(x) and then integrate by parts
from a to b, we see that the extremums of K[u(x)] correspond to the eigenvalues
𝜆. In a Sturm–Liouville problem [7, Section 6.3]

1) There exists a minimum eigenvalue.
2) 𝜆n → ∞ as n → ∞.

3) To be precise, 𝜆n ∼ n2 as n → ∞.

Thus, the minimums of Eq. (16.137) give the eigenvalues 𝜆n. In fact, from the
first property, the absolute minimum of K is the lowest eigenvalue 𝜆0. This is
very useful in putting an upper bound to the lowest eigenvalue. To estimate the
lowest eigenvalue we choose a trial function, u(x), and expand in terms of the
exact eigenfunctions, ui(x), which are not known:

u(x) = u0(x) + c1u1(x) + c2u2(x) + · · · . (16.138)

Depending on how close our trial function is to the exact eigenfunction, the
coefficients c1, c2,… will be small numbers. Before we evaluate K[u(x)], let us
substitute our trial function into Eq. (16.135):

∫
b

a
[p(x)(u′

0 + c1u′
1 + c2u′

2 + · · · )2 + q(x)(u0 + c1u1 + c2u2 + · · · )2] dx.

(16.139)
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y

y = x

y = x(1–x)

y = 1–x

(1,0)

(0,1)

x

Figure 16.6 sin(𝜋x) could
be approximated by
x(1 − x).

Since the set {ui} is orthonormal, using the following relations:

∫
b

a
[pu′2

i + qu2
i ] dx = 𝜆i, (16.140)

∫
b

a
[pu′

iu
′
j + quiuj] dx = 0, i ≠ j, (16.141)

we can write

K[u(x)] =
∫ b

a [pu′2 + qu2] dx

∫ b
a 𝜌u2dx

(16.142)

≃
𝜆0 + c2

1𝜆1 + c2
2𝜆2 + · · ·

1 + c2
1 + c2

2 + · · ·
. (16.143)

Because c1, c2,… are small numbers, K gives us the approximate value of the
lowest eigenvalue as

K ≃ 𝜆0 + c2
1(𝜆1 − 𝜆0) + c2

2(𝜆2 − 𝜆0) + · · · . (16.144)

What is significant here is that even though our trial function is good to the
first order, our estimate of the lowest eigenvalue is good to the second order.
This is also called the Hylleraas–Undheim theorem. Because the eigenvalues
are monotonic increasing, this estimate is also an upper bound to the lowest
eigenvalue.

Example 16.9 How to estimate lowest eigenvalue
Let us estimate the lowest eigenvalue of

d2u
dx2 + 𝜆u = 0 (16.145)
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with the boundary conditions u(0) = 0, u(1) = 0. As shown in Figure 16.6 we
can take our trial function as

u = x(1 − x). (16.146)

This gives

𝜆0 ≤ ∫ 1
0 u′2dx

∫ 1
0 u2dx

=
1
3
1

30

= 10. (16.147)

This is already close to the exact eigenvalue 𝜋2. For a better upper bound we
can improve our trial function as

u = x(1 − x)(1 + c1x + · · · ) (16.148)

and determine ci by extremizing K . For this method to work, our trial function:

1. must satisfy the boundary conditions.
2. should reflect the general features of the exact eigenfunction.
3. should be sufficiently simple to allow analytic calculations.

Example 16.10 Vibrations of a drumhead
We now consider the wave equation:

∇⃗2u + k2u = 0, k2 = 𝜔2

c2 , (16.149)

in two dimensions and in spherical polar coordinates. We take the radius as a
and use u(a) = 0 as our boundary condition. This suggests the trial function

u = 1 − r
a
. (16.150)

Now the upper bound for the lowest eigenvalue, k2
0 , is obtained from

k2
0 ≤ ∫ a

0 ∫ 2𝜋
0 (∇⃗u)2 rdrd𝜃

∫ a
0 ∫ 2𝜋

0 u2rdrd𝜃
(16.151)

as

k2
0 ≤ 𝜋

𝜋a2∕6
= 6

a2 . (16.152)

Compare this with the exact eigenvalue k2
0 = 5.78∕a2.

Example 16.11 Harmonic oscillator problem
The Schrödinger equation can be driven from the functional

Ψ ⋅ HΨ
Ψ ⋅Ψ

, (16.153)



632 16 Variational Analysis

where Ψ1 ⋅Ψ2 = ∫ ∞
−∞ Ψ∗

1Ψ2dx. For the harmonic oscillator problem the
Schrödinger equation is written as

HΨ = −d2Ψ
dx2 + x2Ψ = EΨ, x ∈ (−∞,∞). (16.154)

For the lowest eigenvalue we take our trial function as

Ψ = (1 + 𝛼x2)e−x2
. (16.155)

For an upper bound this gives

E0 ≤ Ψ ⋅ HΨ
Ψ ⋅Ψ

=

5
4
− 𝛼

8
+ 43𝛼2

64

1 + 𝛼

2
+ 3𝛼2

16

. (16.156)

To find its minimum, we solve

23𝛼2 + 56𝛼 − 48 = 0 (16.157)

and find 𝛼 = 0.6718. Thus, the upper bound to the lowest energy is obtained as
E0 ≤ 1.034, where the exact eigenvalue is 1.0. This method can also be used for
the higher-order eigenvalues. However, one must make sure that the chosen
trial function is orthogonal to the eigenfunctions corresponding to the lower
eigenvalues.

16.9 Rayleigh–Ritz Method

In this method we aim to find an approximate solution to a differential equation
satisfying certain boundary conditions. We first write the solution in terms of
suitably chosen functions, 𝜙i(x), i = 0,… , n, as

y(x) ≃ 𝜙0(x) + c1𝜙1(x) + c2𝜙2(x) + c3𝜙3(x) + · · · + cn𝜙n(x), (16.158)

where c1, c2,… , cn are constants to be determined. Here, 𝜙i(x), i = 0,… , n, are
chosen functions so that y(x) satisfies the boundary conditions for any choice of
the c values. In general, 𝜙0(x) is chosen such that it satisfies the boundary con-
ditions at the end points of our interval and 𝜙1(x), 𝜙2(x),… , 𝜙n(x) are chosen
such that they vanish at the end points.

Example 16.12 Loaded cable fixed between two points
We consider a cable fixed between the points (0, 0) and (l, h). The cable carries
a load along the y-axis distributed as f (x) = −q0

x
l
.

To find the shape of this cable, we have to solve the variational problem

𝛿 ∫
l

0

(1
2

T0y′2 + q0
x
l

y
)

dx = 0 (16.159)
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with the boundary conditions y(0) = 0 and y(l) = h, where T0 and q0 are con-
stants. Using the Rayleigh–Ritz method, we choose 𝜙0(x) such that it satisfies
the above boundary conditions and choose 𝜙1,… , 𝜙n such that they vanish at
both end points:

𝜙0 =
h
l

x, (16.160)

𝜙1 = x(x − l), (16.161)
𝜙2 = x2(x − l), (16.162)
⋮

𝜙n = xn(x − l). (16.163)

Now the approximate solution y(x) becomes

y(x) ≃ h
l

x + x(x − l)(c1 + c2x + · · · + cnxn−1). (16.164)

For simplicity, we choose n = 1 so that y(x) becomes

y(x) ≃ h
l

x + x(x − l)c1. (16.165)

Substituting this into the variational integral we get

𝛿 ∫
l

0

[
1
2

T0

(
h
l
+ (2x − l)c1

)2

+ q0
x
l

(
h
l

x + x(x − l)c1

)]
dx = 0,

(16.166)

𝛿

[
1
2

T0

(
h2

l
+ 1

3
l3c2

1

)
+ q0

(1
3

hl − 1
12

c1l3
)]

= 0, (16.167)

1
3

T0l3c1𝛿c1 −
1

12
q0l3𝛿c1 = 0, (16.168)

1
3

T0l3
(

c1 −
q0

4T0

)
𝛿c1 = 0. (16.169)

Because the variation 𝛿c1 is arbitrary, the quantity inside the brackets must
vanish, thus giving c1 = q0∕4T0 and

y(x) ≃ h
l

x +
q0

4T0
x(x − l). (16.170)

The Euler equation for the variational problem [Eq. (16.159)] can easily be
written as

T0y′′ −
q0x

l
= 0, (16.171)

where the exact solution of this problem is

y(x) = h
l

x +
q0

6T0l
x(x2 − l2). (16.172)
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As we will see in the next example, an equivalent approach is to start with the
Euler equation (16.171), which results from the variational integral

∫
l

0

[
T0y′′ −

q0x
l

]
𝛿ydx = 0. (16.173)

Substituting Eq. (16.165) into the above equation, we write

∫
l

0

[
2c1T0 −

q0x
l

]
x(x − l)𝛿c1dx = 0, (16.174)

which after integration yields[
−1

3
c1T0l3 + 1

12
q0l3

]
𝛿c1 = 0. (16.175)

Since 𝛿c1 is arbitrary, we again obtain c1 = q0∕4T0.

Example 16.13 Rayleigh–Ritz Method
We now find the solution of the differential equation

d2y
dx2 + xy = −x, (16.176)

with the boundary conditions y(0) = 0 and y(1) = 0 by using the Rayleigh–Ritz
method. The variational problem corresponding to this differential equation
can be written as

∫
1

0
(y′′ + xy + x)𝛿ydx = 0. (16.177)

We take the approximate solution as

y(x) ≃ x(1 − x)(c1 + c2x + · · · ), (16.178)

and substitute this in Eq. (16.177) to obtain

∫
1

0
[(−2 + x2 − x3) c1 + (2 − 6x + x3 − x4) c2 + · · · + x]

× [𝛿c1(x − x2) + 𝛿c2(x2 − x3) + · · · ] dx = 0. (16.179)

Solution with one term is given as

y(1) = c1x(1 − x), c1 = 5
19

, (16.180)

while the solution with two terms is given as

y(2) = c1x(1 − x) + c2x2(1 − x), (16.181)

where c1 = 0.177 and c2 = 0.173.
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Example 16.14 Rayleigh–Ritz method (first order)
Consider the differential equation

y′′ + 𝜆a(x)y(x) = 0, y(0) = y(1) = 0, (16.182)

which could represent the vibrations of a rod with nonuniform cross-section
given by a(x). By choosing a suitable trial function, estimate the lowest eigen-
value for a(x) = x.

Solution
Using the trial functions

y(x) = sin𝜋x and y(x) = x(1 − x), (16.183)

we can estimate the lowest eigenvalue, 𝜆0, by

𝜆0 ≤ ∫ 1
0 |y′(x)|2dx

∫ 1
0 a(x)| y(x)|2 dx

. (16.184)

For the two trial functions, this yields the 𝜆0 values, respectively, as

𝜆0 ≤ 19.74, 𝜆0 ≤ 20.0. (16.185)

One can show that for a(x) = 𝛼 + 𝛽x, Eq. (16.182) can be reduced to Bessel’s
equation, where for 𝛼 = 0, 𝛽 = 1, the exact lowest eigenvalue is given as 𝜆0 =
18.956. We can improve our approximation by choosing the trial function as

y(x) = sin𝜋x + c sin 2𝜋x, (16.186)

which leads to the inequality

𝜆0 ≤ 2𝜋2(1 + 4c2)
1 + c2 − 64c∕9𝜋2 . (16.187)

Minimizing the right-hand side gives c = −0.11386 and the improved estimate
becomes 𝜆0 ≤ 18.961.

Example 16.15 Rayleigh–Ritz method (second order)
For the previous problem, we now find an upper bound to the second-order
eigenvalue. In Example 16.11, we have said that the method we use to estimate
the lowest eigenvalue can also be used for the higher-order eigenvalues, granted
that the trial function is chosen orthogonal to the lower eigenfunctions. In the
previous problem, we have estimated the lowest eigenvalue via the test function
[Eq. (16.186)]

y0 = sin𝜋x − 0.11386 sin 2𝜋x. (16.188)
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For the second-order trial function we can use

y1 = sin𝜋x + d sin 2𝜋x, (16.189)

where d is determined such that y0 and y1 are orthogonal. A simple calculation
yields

d = 9𝜋2(−0.11386) − 32
32(−0.11386) − 9𝜋2 = 2.1957, (16.190)

which gives the estimate 𝜆1 ≤ 94.45. An exact calculation in terms of Bessel
functions gives 𝜆1 = 81.89. Note and also show that the estimates for 𝜆0 and 𝜆1
are both upper bounds to the exact eigenvalues.

Example 16.16 Variational analysis
If y(x) extremizes J[ y(x)], then regardless of the prescribed end conditions,
show that the first variation must vanish:

𝛿J[ y(x)] = 0. (16.191)

Solution
Using the variational notation, we write the variation of the functional

J[ y(x)] = ∫
2

1
F( y, y′, x)dx (16.192)

as

J[ y(x) + 𝛿y] − J[ y(x)] = 𝛿J + 𝛿2J + 𝛿3J + · · · , (16.193)

where the second variation is given as

𝛿2J = 1
2! ∫

2

1
[Fyy𝛿y2 + 2Fyy′𝛿y𝛿y′ + Fy′y′𝛿y′2] dx. (16.194)

Since [Eq. (16.3)] 𝛿y = 𝜀𝜂(x), 𝛿y′ = 𝜀𝜂′(x),… , where 𝜀 is a small parameter,
𝛿2J is smaller in magnitude by at least one power of 𝜀 than 𝛿J and so are the
higher-order variations. On the other hand, 𝛿J[𝛿y] can be written as

𝛿J[𝛿y] = 𝜀∫
2

1
[Fy𝜂(x) + Fy′𝜂

′(x)] dx, (16.195)

which can be made to be positive or negative for the positive or the negative
choices of the small parameter 𝜀, respectively, hence 𝛿J[ y(x)] must vanish for
any y(x) that extremizes the functional in Eq. (16.192).
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16.10 Optimum Control Theory

Let us now discuss a slightly different problem, where we have to produce a cer-
tain amount, say by weight, of goods to meet a certain order at time t = T . The
problem is to determine the best strategy to follow so that our cost is minimum.
One obvious strategy is to produce at a constant rate determined by the amount
of goods to be delivered at time T . To see whether this actually minimizes our
cost or not, let us formulate this as a variational problem. We first let x(t) be the
total amount of goods accumulated at t ≥ 0, hence its derivative, x′(t), gives the
production rate. For the cost there are mainly two sources, one of which is
the production cost per unit item, cP, which can be taken as proportional to
the production rate:

cP = k1x′(t), (16.196)

Naturally, producing faster while maintaining the quality of the product
increases the cost per item. Besides, producing the goods faster will increase
our inventory unnecessarily before the delivery time, thus increasing the
holding cost, cH , which is defined as the cost per unit item per unit time. As
a first approximation, we can take cH to be proportional to x(t) ∶

cH = k2x(t). (16.197)

We can now write the total cost of production over the time interval

(t, t + Δt) (16.198)

as

𝛿J = cP𝛿x + cH𝛿t (16.199)
= [cPx′(t) + cH] 𝛿t (16.200)
= [k1x′(t)2 + k2x(t)] 𝛿t. (16.201)

We also assume that production starts at t = 0 with zero inventory:

x(0) = x0 = 0, (16.202)

and we need

x(T) = xT , (16.203)

where xT is the amount of goods to be delivered at t = T . We can know write
the total cost of the entire process as the functional

J[x(t)] = ∫
T

0
[k1x′(t)2 + k2x(t)] dt. (16.204)
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The problem is to find a production strategy, x(t), that minimizes the functional
J[x(t)], subject to the initial conditions

x(0) = 0, x(T) = xT . (16.205)

An acceptable solution should also satisfy the conditions

x(t) ≥ 0 and x′(t) ≥ 0. (16.206)

Solution of the unconstrained problem with the given initial equations
[Eq. (16.205)] is

x(t) =
(

xT −
k2

4k1
T
)

t
T

+
k2

4k1
t2. (16.207)

The uniform rate of production,

x(t) =
xT t
T

, (16.208)

even though satisfies the end conditions [Eq. (16.205)] and the inequalities in
Eq. (16.206), does not minimize J[x(t)] for k2 ≠ 0. Besides, for realistic prob-
lems due to finite capacity we also have an upper and a lower bound for the
production rate, hence we also need to satisfy the inequalities

x′
M ≥ x′(t) ≥ x′

m ≥ 0, (16.209)

where x′
M and x′

M represent the possible maximum and the minimum produc-
tion rates, respectively. The unconstrained solution is valid only for the times
that the inequalities in Eqs. (16.206) and (16.209) are satisfied. Variational prob-
lems with constraints on x(t) and/or x′(t), expressed either as equalities, or
inequalities, are handled by the optimal control theory, which is a deriva-
tive of the variational analysis. In the minimum cost production schedule, to
obtain the desired result we need to control the production rate, x′(t), hence
the optimal control theory is needed to determine the correct strategy.

16.11 Basic Theory: Dynamics versus Controlled
Dynamics

In physics a dynamic system is described by the second law of Newton as

F⃗ = ma⃗, (16.210)

where F⃗ represents the net force acting on the mass, m, and a⃗ is the accelera-
tion. For example, for the one-dimensional motion of a mass falling in uniform



16.11 Basic Theory: Dynamics versus Controlled Dynamics 639

gravity, g, under the influence of a restoring force, −kx, and a friction force,
−𝜇ẋ, the second law of Newton becomes

mẍ = −𝜇ẋ − kx − mg, (16.211)

where k and 𝜇 are constants. With the appropriate initial conditions, x(0) and
ẋ(0), we can solve this differential equation to find the position, x(t), at a later
time. If we also attach a thrust mechanism that allows us to apply force, f (t),
to the mass m, then we can control its dynamics so that it arrives at a specific
point at a specific time and with a predetermined velocity. Equation (16.211) is
now written as

ẍ = − 𝜇

m
ẋ − k

m
x − g +

f (t)
m

. (16.212)

We now define two new variables, y1 and y2, that define the state of the system:

y1(t) = x(t), y2(t) = ẋ(t), (16.213)

and introduce u1 and u2, called the control variables or parameters as

u1(t) = 0, u2(t) =
f (t)
m

. (16.214)

We can write them as the column vectors

y =
(

y1
y2

)
and u =

(
u1
u2

)
. (16.215)

Controlled dynamics of this system is now governed by the differential equation

ẏ = f(y,u, t), (16.216)

where f(y,u, t) is given as

f(y,u, t) =

(
y2

− k
m

y1 −
𝜇

m
y2 − g + u2

)
(16.217)

=

(
0 1

− k
m

− 𝜇

m

)
y +

(
0 0
0 1

)
u+

(
0
−g

)
. (16.218)

Introducing the matrices

A =

(
0 1

− k
m

− 𝜇

m

)
, (16.219)

B =
(

0 0
0 1

)
, (16.220)

f0 =
(

0
−g

)
. (16.221)
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we can write the above equation as

f(y,u, t) = Ay +Bu+ f0. (16.222)

Note that Eq. (16.216) gives two differential equations:

ẏ1 = y2 (16.223)

and

ẏ2 = − k
m

y1 −
𝜇

m
y2 − g + u2, (16.224)

to be solved simultaneously, which are coupled and linear. However, in gen-
eral they are nonlinear and cannot be decoupled. For a realistic solution of the
fuel-optimal horizontal motion of a rocket problem, one also has to consider
the loss of mass due to thrusting [4].

General Statement of a Controlled Dynamics Problem
A general optimal control problem involves the following features:

(I) State variables and Controls:
State of the system is described by the state variable, y, written as the
column (n × 1) vector

y(t)=
⎛⎜⎜⎝
y1
⋮
yn

⎞⎟⎟⎠ (16.225)

while all the admissible controls are described by the (m × 1) column
vector

u(t)=
⎛⎜⎜⎝

u1
⋮

um

⎞⎟⎟⎠ . (16.226)

(II) Vector differential equation of state:
Dynamical evolution of the system is described by the ordinary differen-
tial equation

ẏ = f(y,u, t), (16.227)

also called the equation of state, where f(y,u, t) is a known (n × 1) con-
tinuously differentiable column vector, with the usual initial condition

y(t0)= y0. (16.228)

Depending on the problem, the terminal state, y(T), is either fixed or
left free.
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(III) Constraints:

(a) Some constraints on the controls, which are of the form

u(t1)=u1, (16.229)

for some t1 in the time domain.
(b) Some constraints on the controls in the form of inequalities, such as

um≤u≤uM. (16.230)

(c) Some constraints on the state variables, which are either expressed as
equality:

Φ(y, t) = 0, (16.231)

or as inequality:

Θ(y, t) ≥ 0. (16.232)

(d) One could also have constraints mixing the state variables and the
controls and expressed in various forms.

(IV) Solution:
For a given choice of an admissible control, u(t), we solve the initial value
problem [Eq. (16.227)] for y(t). In other cases, we seek for an admissible
u(t) that steers y(t) to a target value y(T) at some terminal time T . In
optimal control problems, we look for the admissible control variables,
u(t), such that the functional,

J[u(t)] = ∫
T

t0

F(y,u, t)dt + Ψ(T , y(T)),m (16.233)

where F(y(t),u(t), t) andΨ(T , y(T)) are known functions, is minimized or
maximized. Note that F(y,u, t) in Eq. (16.233) is different from f (y,u, t)
in Eq. (16.227). In certain type of problems we look for the maximum
of J[u(t)], where it is called the payoff functional, while F(y,u, t) is the
running payoff and Ψ(T , y(T)) is called the terminal payoff. In certain
other problems, the minimum of J[u(t)] is desired, where it is called the
cost functional.

16.11.1 Connection with Variational Analysis

There is a definite connection between optimal control theory and variational
analysis. If we set ẋ = u in the action:

J[x(t)] = ∫
2

1
£(x, ẋ, t)dt, (16.234)
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and write

J[x(t)] = ∫
2

1
£(x,u, t)dt, (16.235)

and take the constraint as the entire real axis for u, we transform a variational
problem to an optimal control one with

ẋ = u (16.236)

representing the equation of state [Eq. (16.227)]. Similarly, if we solve the
equation of state [Eq. (16.227)] for u in terms of ẏ, y, and t, and substitute the
result into the payoff functional in Eq. (16.233), we can convert an optimal
control problem into a variational problem.

However, it should be kept in mind that there is a philosophical difference
between the two approaches. In Lagrangian mechanics nature does the opti-
mization and hence controls the entire process. All we can do is to adjust the
initial conditions. For example, when firing a cannon ball controlling the sys-
tem through initial conditions helps to achieve a simple goal like having the ball
drop to a specific point. However, if we are sending astronauts to the moon, to
assure that they land on the moon safely we have to steer the process all the way.
Among other things, we have to assure that the fuel is used efficiently, that is,
we have to make sure that the accelerations involved and the cabin conditions
stay within certain limits and the rocket lands softly on the moon with enough
fuel left to return. Optimum control theory basically allows us to develop the
most advantageous strategy to achieve the desired result through some con-
trol variables that we build into the system, like the thrust system. In optimal
control theory, we are basically steering the system to achieve a certain goal.

16.11.2 Controllability of a System

A major concern in optimal control theory is the controllability of a given sys-
tem. Landing a rocket safely on the moon is a difficult problem, but if we insist
on landing it at a specific point at a specific time, that is, if we also fix the termi-
nal state, it becomes a much more difficult problem. In general, it is not clear
that a system can be steered from an initial state to a predetermined final state
with an admissible choice of the control variables. To demonstrate some of the
basic ideas, we confine ourselves to linear systems where the equation of state
can be written as

ẏ = F(y,u, t) (16.237)
= Ay +Bu. (16.238)

Here, A and B are (n × n) and (n × m) matrices, respectively. To simplify the
matter further, consider time-invariant, that is, autonomous, systems. For such
systems the A and B matrices are constant matrices, hence the controllability
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of such a system does not depend on the initial time. Let us now consider that
A has a complete set of eigenvectors and let M be the matrix, columns of which
are composed of the eigenvectors of A. We also define the column vector z as

z=M−1y, (16.239)

and write Eq. (16.239) as

ż = M−1ẏ (16.240)
= M−1[Ay +Bu] (16.241)
= M−1AMM−1y +M−1Bu (16.242)
= (M−1AM)M−1y +M−1Bu (16.243)
= (M−1AM)z+(M−1B)u, (16.244)

where M−1AM is a diagonal (n × n) matrix, 𝛌, with its diagonal terms being the
eigenvalues:

M−1AM=𝛌=
⎛⎜⎜⎜⎝
𝜆1 0 · · · 0
0 𝜆2 · · · 0
⋮ ⋮ ⋱ ⋮
0 0 · · · 𝜆n

⎞⎟⎟⎟⎠ . (16.245)

From here it is seen that if the matrix M−1B has a zero row, say, the kth row,
then the kth component of ż satisfies

żk = 𝜆kzk . (16.246)

That is, zk(t) is determined entirely by the initial conditions at t0. In general,
for a linear autonomous system, if A has a complete set of eigenfunctions, a
necessary and sufficient condition for its controllability is that M−1B has no
zero rows. For linear autonomous systems, where the constant matrix A does
not necessarily has a complete set of eigenvectors, then the following theorem
is more useful:

Theorem 16.1 A linear autonomous system is controllable, if and only if the
(n × m) matrix

C=[B,AB,A2B,…,An−1B] (16.247)

is of rank n. Proof of this theorem can be found in Wan [8]. There exists a set
of conditions that the optimal solution of an optimal control theory problem
should satisfy. This set of conditions is called the Pontryagin’s Minimum Prin-
ciple, which can also be used to solve several optimal control problems. For
a formulation of the optimal control problem via the Pontryagin’s minimum
principal see Geering [4].
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Example 16.17 Inventory control model
A firm has an inventory of y1 amount (by weight) of goods produced at the rate
of u1 = u(t). If the rate of sales, which could be taken from the past records is
y2, we can write the rate of change of the inventory as

ẏ1 = u − y2. (16.248)

It is natural to think that the firm will try harder to sell when the inventory
increases, hence we can take ẏ2 as proportional to the inventory:

ẏ2 = 𝛼2y1, (16.249)

where 𝛼, real and positive, is a known number. If CP is the price per unit sale, cp
is the cost per unit produced, and ch is the holding cost per unit item per unit
time, we can write the total revenue over a period of time T as the integral

J[u] = ∫
T

0
F(y,u, t)dt (16.250)

= ∫
T

0
[CPy2 − cpu − chy1]dt. (16.251)

Note that we have only one control variable, hence we take

u2 = 0 (16.252)

in this problem. We now look for the control variable, u(t), that maximizes the
revenue, J[u], subject to the initial conditions:

y1(0) = y10, (16.253)
y2(0) = y20. (16.254)

We now write the two conditions [Eqs. (16.248) and (16.249)] as

ẏ1 − u + y2 = 0, (16.255)
ẏ2 − 𝛼2y1 = 0 (16.256)

and incorporate them into the problem through two Lagrange multipliers,
𝜆1(t), 𝜆2(t), by defining a new Lagrangian, H, as

H = F − 𝜆1[ẏ1 − u + y2] − 𝜆2[ẏ2 − 𝛼2y1] (16.257)

and consider the variation of

I[u] = ∫
T

0
Hdt (16.258)

= ∫
T

0
[F − 𝜆1(ẏ1 − u + y2) − 𝜆2(ẏ2 − 𝛼2y1)]dt (16.259)

= −[𝜆1y1 + 𝜆2y2]T
0
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+∫
T

0
[(CPy2 − cpu − chy1)

+ (�̇�1 + 𝛼2𝜆2)y1 + (�̇�2 − 𝜆1)y2 + 𝜆1u]dt. (16.260)

Note that the stationary values of J[u] are also the stationary values of I[u]
[8, p. 345]. However, we also have to take into account that in any realistic busi-
ness the rate of production is always limited, that is,

0 ≤ um ≤ u ≤ uM, (16.261)

where um and uM represent the possible minimum and the maximum produc-
tion rates possible. In this regard, we cannot insist on the optimal strategy to be
a stationary value of J[u]. We can at most ask for 𝛿I[u] be nonincreasing, that
is, 𝛿I[u] ≤ 0, for a maximum of J[u]:

𝛿I[u] = −[𝜆1(T)𝛿y1(T) + 𝜆2(T)𝛿y2(T)]

+∫
T

0
[(�̇�1 + 𝛼2𝜆2 − ch)𝛿y1 + (�̇�2 − 𝜆1 + CP)𝛿y2

+ (𝜆1 − cp)𝛿u]dt ≤ 0. (16.262)

Since we have fixed the initial conditions [Eqs. (16.253) and (16.254)], we have
taken

𝛿y1(0) = 𝛿y2(0) = 0. (16.263)

For simplicity, we also choose the Lagrange multipliers such that

𝜆1(T) = 0, (16.264)
𝜆2(T) = 0, (16.265)

�̇�1(t) + 𝛼2𝜆2(t) − ch = 0, (16.266)
�̇�2(t) − 𝜆1(t) + CP = 0. (16.267)

The first two terms eliminate the surface term in Eq. (16.262), which is
needed, since we are not given the terminal values y1(T) and y2(T), and the
last two equations are needed to avoid the need for a relation between 𝛿y1 and
𝛿y2 in the integrand, thus reducing Eq. (16.262) to

𝛿I[u] = ∫
T

0
(𝜆1 − cp)𝛿udt ≤ 0. (16.268)

The two coupled linear equations for 𝜆1(t) and 𝜆2(t) [Eqs. (16.266) and
(16.267)] can be solved immediately. After incorporating the end conditions
[Eqs. (16.264) and (16.265)] we obtain

𝜆1(t) = CP{1 − cos(𝛼[T − t])} −
ch

𝛼
sin(𝛼[T − t]), (16.269)

𝜆2(t) =
ch

𝛼2 {1 − cos(𝛼[T − t])} +
Cp

𝛼
sin(𝛼[T − t]). (16.270)
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With 𝜆1(t) determined as in Eq. (16.269), we cannot in general have

𝜆1(t) − cp = 0, (16.271)

obviously not when cp is a constant, hence we cannot use

𝛿I = 0. (16.272)

We now turn to I[u] in Eq. (16.260) and substitute the expressions found for
𝜆1(t) and 𝜆2(t) to get

I[u] = −[𝜆1(0)y10 + 𝜆2(0)y20] + ∫
T

0
(𝜆1 − cp)u dt. (16.273)

In conclusion, for a maximum of J[u] we need to pick the largest possible
value of u that makes the above integral a maximum. In other words, we need

u(t) =
⎧⎪⎨⎪⎩

uM when (𝜆1(t) − cp) > 0,

um when (𝜆1(t) − cp) < 0.
(16.274)

We now check the inequality in Eq. (16.268). Since 𝜆1(T) = 0, we have

𝜆1(T) − cp = −cp ≤ 0, (16.275)

and by continuity

𝜆1(t) ≤ cp, t′ ≤ t ≤ T , (16.276)

for some t′ ≥ 0, hence it is also satisfied. In practice, during the course of
time the sign of (𝜆1(t) − cp) could alternate. Optimum control models, where
the control variables alternate between two extreme values are called the
bang-bang models. For the limitations of this simple control model see Wan
[8]. What is depicted here is a very brief introduction to the interesting field
of optimal control theory. For the interested reader who wants to explore this
subject further, we recommend the books in our references.
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Problems

1 For the variational problem

𝛿 ∫
b

a
F(x, y, y′,… , y(n)) dx = 0,

show that the Euler equation is given as

Fy −
d

dx
Fy′ +

d2

dx2 Fy′′ − · · · + (−1)n dn

dxn Fy(n) = 0.

Assume that the variation at the end points is zero.

2 For the Sturm–Liouville system

y′′(x) = −𝜆y(x), y(0) = y(1) = 0,

find the approximate eigenvalues to first and second order.
Compare your results with the exact eigenvalues.

3 Given the variational problem for the massive scalar field with the poten-
tial V (r⃗) as

𝛿 ∫ £d3r⃗ dt = 0,

where

£(r⃗, t) = 1
2
(Φ̇2 − (∇⃗Φ)2 − m2Φ2) − V (r⃗).

Find the equation of motion for

Φ(r⃗, t).
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4 Treat Ψ(r⃗, t) and Ψ∗(r⃗, t) as independent fields in the Lagrangian density:

£ = ℏ2

2m
∇⃗Ψ∇⃗Ψ∗ + VΨΨ∗ − iℏ

2

(
Ψ∗ 𝜕Ψ

𝜕t
− Ψ𝜕Ψ∗

𝜕t

)
,

where

∫ £d3r⃗ dt = 0.

Show that the corresponding Euler equations are the Schrödinger
equations:

HΨ =
(
− ℏ2

2m
∇⃗2 + V

)
Ψ = iℏ 𝜕Ψ

𝜕t
and

HΨ∗ =
(
− ℏ2

2m
∇⃗2 + V

)
Ψ∗ = −iℏ𝜕Ψ

∗

𝜕t
.

5 Consider a cable fixed at the points (0, 0) and (l, h). It carries a load along
the y-axis distributed as

f (x) = −q x
l
.

To find the shape of this cable we have to solve the variational problem

𝛿 ∫
l

0

(1
2

T0y′2 + q x
l

y
)

dx = 0

with the boundary conditions

y(0) = 0 and y(l) = h.

Find the shape of the wire accurate to second order.

6 Show that the exact solution in Problem 5 is given as

y(x) = h
l

x +
q

6T0l
x(x2 − l2).

7 Find an upper bound for the lowest eigenvalue of the differential equation
d2y
dx2 + 𝜆xy = 0

with the boundary conditions

y(0) = y(1) = 0.
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8 For a flexible elastic string with constant tension and fixed at the end
points:

y(0, t) = y(L, t) = 0,

Show that the Lagrangian density is given as

£ = 1
2
𝜌(x)

[
𝜕y(x, t)

𝜕t

]2

− 1
2
𝜏

[
𝜕y(x, t)
𝜕x

]2

,

where 𝜌 is the density and 𝜏 is the tension. Show that the Lagrange
equation is

𝜕2y(x, t)
𝜕x2 − 𝜌

𝜏

𝜕2y(x, t)
𝜕t2 = 0.

9 For a given Lagrangian representing a system with n degrees of freedom,
show that adding a total time derivative to the Lagrangian does not effect
the equations of motion, that is, L and L′ related by

L′ = L +
dF(q1, q2, ..., qn, t)

dt
,

where F is an arbitrary function, have the same Lagrange equations.

10 For a given Lagrangian L(qi, q̇i, t), where i = 1, 2,… , n, show that

d
dt

[ n∑
i=1

q̇i
𝜕L
𝜕q̇i

− L

]
+ 𝜕L

𝜕t
= 0.

This means that if the Lagrangian does not depend on time explicitly, then
the quantity, H, defined as

H
(

qi,
𝜕L
𝜕q̇i

, t
)

=
n∑

i=1
q̇i
𝜕L
𝜕q̇i

− L

is conserved. Using Cartesian coordinates, interpret H.

11 The brachistochrone problem: Find the shape of the curve joining two
points, along which a particle, initially at rest, falls freely under the influ-
ence of gravity from the higher point to the lower point in the least amount
of time.

12 In an expanding flat universe the metric is given as

ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2)
= −dt2 + a2(t)𝛿ijdxidxj,
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where i = 1, 2, 3, and a(t) is the scale factor. Given this metric, consider
the following variational integral for the geodesics:

𝛿I = 1
2 ∫

[
−
(

dt
d𝜏

)2

+ a2(t)𝛿ij
dxi

d𝜏
dxj

d𝜏

]
d𝜏,

where 𝜏 is the proper time. For the dependent variables, t(𝜏) and xi(𝜏),
show that the Euler equations for the geodesics are:

d2t
d𝜏2 + aȧ𝛿ij

dxi

d𝜏
dxj

d𝜏
= 0

and
d2xi

d𝜏2 + 2 ȧ
a

dt
d𝜏

dxi

d𝜏
= 0,

where ȧ = 𝜕a∕𝜕t.

13 Using cylindrical coordinates, find the geodesics on a cone.

14 Write the Lagrangian and the Lagrange equations of motion for a double
pendulum in uniform gravitational field.

15 Consider the following Lagrangian density for the massive scalar field in
curved background spacetimes:

£(x) = 1
2
[g(x)]

1
2 {g𝜇𝜈(x)𝜕𝜇Φ(x)𝜕𝜈Φ(x) − [m2 + 𝜉R(x)]Φ2(x)},

where Φ(x) is the scalar field, m is the mass of the field quanta, x stands for
(x0, x1, x2, x3), and

g(x) = |det g𝛼𝛽|.
Coupling between the scalar field and the background geometry is
represented by the term

𝜉R(x)Φ2(x),

where 𝜉 is called the coupling constant and R(x) is the Ricci curvature
scalar. The corresponding action is

S = ∫ £(x)d4x, d4x = dx0dx1dx2dx3.

By setting the variation of the action with respect to Φ(x) to zero, show
that the scalar field equation is given as

[◽ + m2 + 𝜉R(x)]Φ(x) = 0,

where ◽ = 𝜕𝜇𝜕
𝜇 is the d’Alembert wave operator, 𝜕𝜇 stands for the covari-

ant derivative. Take the signature of the metric as (+ − −−).
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16 Find the extremals of the problem

𝛿 ∫
x2

x1

[a(x)y′′2 − p(x)y′2 + q(x)y2]dx = 0

subject to the constraint

∫
x2

x1

r(x)y2(x)dx = 1,

where y(x1), y′(x1), y(x2), and y′(x2) are prescribed.
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17

Integral Equations

Differential equations have been extremely useful in describing physical
processes. They are composed of the derivatives of the unknown function.
Since derivatives are defined in terms of the ratios of differences in the
neighborhood of a point, differential equations are local equations. In our
mathematical toolbox, there are also integral equations, where the unknown
function appears under an integral sign. Since the integral equations involve
integrals of the unknown function over a domain, they are global or nonlocal
equations. In general, integral equations are much more difficult to solve. An
important property of the differential equations is that to describe a physical
process completely, they must be supplemented with boundary conditions.
Integral equations, on the other hand, constitute a complete description of
a given problem where extra conditions are neither needed nor could be
imposed. Because the boundary conditions can be viewed as a convenient way
of including global effects into a system, a connection between differential and
integral equations is to be expected. In fact, under certain conditions integral
and differential equations can be transformed into each other. Whether an
integral or a differential equation is more suitable for expressing laws of nature
is still an interesting problem, with some philosophical overtones that Einstein
himself once investigated. Sometimes the integral equation formulation of a
given problem may offer advantages over its differential equation description.
At other times, when the physical processes involve nonlocal effects or the
system has memory, we may have no choice but to use integral equations. In
this chapter, we discuss the basic properties of linear integral equations and
introduce some techniques for obtaining their solutions. We also discuss the
Hilbert–Schmidt theory, where an eigenvalue problem is defined in terms of
linear integral operators.

Mathematical Methods in Science and Engineering, Second Edition. Selçuk Ş. Bayın.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.
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17.1 Classification of Integral Equations

Linear integral equations are classified under two general categories. Equations
that can be written as

𝛼(x)y(x) = F(x) + 𝜆∫
b

a
𝜅(x, 𝜉) y(𝜉) d𝜉 (17.1)

are called Fredholm equations. Here, 𝛼(x), F(x), and 𝜅(x, 𝜉) are known func-
tions, y(x) is the unknown function and 𝜆, a, and b are known constants. 𝜅(x, 𝜉)
is called the kernel, which is closely related to Green’s functions. When the
upper limit of the integral is variable, we have the Volterra equation:

𝛼(x)y(x) = F(x) + 𝜆∫
x

a
𝜅(x, 𝜉) y(𝜉) d𝜉. (17.2)

The Fredholm and Volterra equations also have the following kinds:

𝛼 ≠ 0 kind I
𝛼 = 1 kind II
𝛼 = 𝛼(x) kind III

When F(x) is zero, the integral equation is called homogeneous. Integral
equations can also be defined in higher dimensions. For example, in two
dimensions we can write a linear integral equation as

𝛼(x, y)𝜔(x, y) = F(x, y) + 𝜆∫ ∫R
𝜅(x, y; 𝜉, 𝜂)𝜔(𝜉, 𝜂)d𝜉 d𝜂. (17.3)

17.2 Integral and Differential Equations

Some integral equations can be obtained from differential equations. To see
this connection we derive a useful formula. First consider the integral

In(x) = ∫
x

a
(x − 𝜉)n−1f (𝜉)d𝜉, (17.4)

where n > 0 integer and a is a constant. Using the formula:

d
dx ∫

B(x)

A(x)
F(x, 𝜉)d𝜉 = ∫

B(x)

A(x)

𝜕F(x, 𝜉)
𝜕x

d𝜉 + F(x,B(x))dB(x)
dx

− F(x,A(x))dA(x)
dx

, (17.5)
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we take the derivative of In(x) as

dIn

dx
= (n − 1)∫

x

a
(x − 𝜉)n−2f (𝜉) d𝜉 + [(x − 𝜉)n−1f (𝜉)]𝜉=x, (17.6)

which for n > 1 gives

dIn

dx
= (n − 1)In−1. (17.7)

For n = 1, Eq. (17.4) can be used to write
dI1

dx
= f (x). K-fold differentiation of

In(x) gives

dkIn

dxk
= (n − 1)(n − 2) · · · (n − k)In−k , (17.8)

which can be written as

dn−1In

dxn−1 = (n − 1)! I1(x), (17.9)

or as

dnIn

dxn = (n − 1)! f (x). (17.10)

Since In(a) = 0 for n ≥ 1, Eq. (17.9) implies that In(x) and all of its derivatives
up to order (n − 1) are zero at x = a. Thus,

I1(x) = ∫
x

a
f (x1) dx1, (17.11)

I2(x) = ∫
x

a
I1(x2) dx2 = ∫

x

a ∫
x2

a
f (x1) dx1dx2, (17.12)

⋮

In(x) = (n − 1)!∫
x

a ∫
xn

a
· · ·∫

x3

a ∫
x2

a
f (x1) dx1 dx2 … dxn−1dxn. (17.13)

Using Eq. (17.13), we can now write the following useful formula, which is also
known as the Cauchy formula:

∫
x

a ∫
xn

a
· · ·∫

x3

a ∫
x2

a
f (x1) dx1 dx2 … dxn−1 dxn = 1

(n − 1)! ∫
x

a
(x − 𝜉)n−1f (𝜉) d𝜉.

(17.14)
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17.2.1 Converting Differential Equations into Integral Equations

We now consider the following second-order ordinary differential equation
with variable coefficients:

d2y
dx2 + A(x)

dy
dx

+ B(x)y = f (x), (17.15)

which is frequently encountered in physics and engineering applications. Let
the boundary conditions be given as y(a) = y0, y′(a) = y′0. Integrating this
differential equation once gives

y′(x) − y′0 = −∫
x

a
A(x1) y′(x1) dx1 − ∫

x

a
B(x1) y(x1) dx1 + ∫

x

a
f (x1) dx1.

We integrate the first term on the right-hand side by parts and then solve for
y′(x) to write

y′(x) = −A(x)y(x) − ∫
x

a
[B(x1) − A′(x1)]y(x1)dx1 + ∫

x

a
f (x1)dx1 + A(a)y0 + y′0.

(17.16)
We integrate again to obtain

y(x) − y0 = −∫
x

a
A(x1)y(x1) dx1 − ∫

x

a ∫
x2

a
[B(x1) − A′(x1)] y(x1) dx1dx2

+ ∫
x

a ∫
x2

a
f (x1) dx1dx2 + [A(a)y0 + y′0](x − a). (17.17)

Using the Cauchy formula [Eq. (17.14)], we can write this as

y(x) = −∫
x

a
{A(𝜉) + (x − 𝜉)[B(𝜉) − A′(𝜉)]}y(𝜉)d𝜉

+ ∫
x

a
(x − 𝜉)f (𝜉) d𝜉 + [A(a)y0 + y′0](x − a) + y0, (17.18)

or as

y(x) = ∫
x

a
𝜅(x, 𝜉)y(𝜉)d𝜉 + F(x), (17.19)

where 𝜅(x, 𝜉) and F(x) are given as
𝜅(x, 𝜉) = −(x − 𝜉)[B(𝜉) − A′(𝜉)] − A(𝜉), (17.20)

F(x) = ∫
x

a
(x − 𝜉) f (𝜉) d𝜉 + [A(a)y0 + y′0](x − a) + y0. (17.21)

This is an inhomogeneous Volterra equation of the second kind. This integral
equation [Eqs. (17.19)–(17.21)] is equivalent to the differential equation
[Eq. (17.15)] plus the boundary conditions y(a) = y0 and y′(a) = y′0.
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Example 17.1 Converting differential into integral equations
Using Eqs. (17.15), (17.19)–(17.21), we can convert the differential equation

d2y
dx2 + 𝜆y = f (x) (17.22)

and the boundary conditions y(0) = 1 and y′(0) = 0, into an integral equation
as

y(x) = 𝜆∫
x

0
(𝜉 − x)y(𝜉) d𝜉 − ∫

x

0
(𝜉 − x)f (𝜉) d𝜉 + 1. (17.23)

Example 17.2 Converting differential into integral equations
In the previous example we had a single-point boundary condition. We now
consider the differential equation

d2y
dx2 + 𝜆y = 0 (17.24)

with a two-point boundary condition y(0) = 0 and y(l) = 0. Integrating
equation [Eq. (17.24)] between (0, x) we get

dy
dx

= −𝜆∫
x

0
y(𝜉) d𝜉 + C, (17.25)

where C is an integration constant that is equal to y′(0), which is not given. A
second integration gives

y(x) = −𝜆∫
x

0
(x − 𝜉)y(𝜉) d𝜉 + Cx, (17.26)

where we have used the Cauchy formula [Eq. (17.14)] and the boundary con-
dition at x = 0. We now use the remaining boundary condition, y(l) = 0, to
determine C as

C = 𝜆

l ∫
l

0
(l − 𝜉)y(𝜉) d𝜉. (17.27)

Substituting this back in Eq. (17.26) we write the result as

y(x) = −𝜆∫
x

0
(x − 𝜉)y(𝜉) d𝜉 + x𝜆

l ∫
l

0
(l − 𝜉)y(𝜉) d𝜉, (17.28)

or as

y(x) = 𝜆∫
x

0

𝜉

l
(l − x)y(𝜉) d𝜉 + 𝜆∫

l

x

x
l
(l − 𝜉)y(𝜉) d𝜉. (17.29)

This is a homogeneous Fredholm equation of the second kind:

y(x) = 𝜆∫
l

0
𝜅(x, 𝜉)y(𝜉)d𝜉, (17.30)
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where the kernel is given as

𝜅(x, 𝜉) =
⎧⎪⎨⎪⎩
𝜉

l
(l − x), 𝜉 < x,

x
l
(l − 𝜉), 𝜉 > x.

(17.31)

17.2.2 Converting Integral Equations into Differential Equations

Volterra equations can sometimes be converted into differential equations.
Consider the following integral equation:

y(x) = x2 − 2∫
x

0
ty(t) dt. (17.32)

We define f (x) as f (x) = ∫ x
0 ty(t)dt, where the derivative of f (x) is

df (x)
dx

= xy(x). (17.33)

Using f (x) in Eq. (17.32), we can also write y(x) = x2 − 2f (x), which when sub-
stituted back into Eq. (17.33) gives a differential equation to be solved for f (x):

df (x)
dx

= x3 − 2xf (x), (17.34)

the solution of which is

f (x) = 1
2
(Ce−x2 + x2 − 1). (17.35)

Finally, substituting this into Eq. (17.33) gives us the solution for the integral
equation:

y(x) = 1 − Ce−x2
. (17.36)

Because an integral equation also contains the boundary conditions, the con-
stant of integration, C, is found by substituting this solution into the integral
equation [Eq. (17.32)] as 1.

We now consider the Volterra equation:

y(x) = g(x) + 𝜆∫
x

0
ex−ty(t)dt (17.37)

and differentiate it with respect to x as

y′(x) = g′(x) + 𝜆y(x) + 𝜆∫
x

0
ex−ty(t)dt, (17.38)

where we have used Eq. (17.5). Eliminating the integral between these two
formulas we obtain

y′(x) − (𝜆 + 1)y(x) = g′(x) − g(x). (17.39)
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The boundary condition to be imposed on this differential equation follows
from integral equation [Eq. (17.37)] as y(0) = g(0).

17.3 Solution of Integral Equations

Because the unknown function appears under an integral sign, integral
equations are in general more difficult to solve than differential equations.
However, there are also quite a few techniques that one can use in finding
their solutions. In this section, we introduce some of the most commonly used
techniques.

17.3.1 Method of Successive Iterations: Neumann Series

Consider a Fredholm equation given as

f (x) = g(x) + 𝜆∫
b

a
K(x, t) f (t) dt. (17.40)

We start the Neumann sequence by taking the first term as f0(x) = g(x). Using
this as the approximate solution of Eq. (17.40), we write

f1(x) = g(x) + ∫
b

a
K(x, t) f0(t) dt. (17.41)

We keep iterating like this to construct the Neumann sequence as

f0(x) = g(x), (17.42)

f1(x) = g(x) + 𝜆∫
b

a
K(x, t) f0(t) dt, (17.43)

f2(x) = g(x) + 𝜆∫
b

a
K(x, t) f1(t) dt, (17.44)

⋮

fn+1(x) = g(x) + 𝜆∫
b

a
K(x, t) fn(t) dt, (17.45)

⋮

This gives the Neumann series solution as

f (x) = g(x) + 𝜆∫
b

a
K(x, x′)g(x′)dx′

+ 𝜆2 ∫
b

a
dx′ ∫

b

a
dx′′K(x, x′)K(x′, x′′ )g(x′′ ) + · · · . (17.46)



660 17 Integral Equations

If we take

∫
b

a ∫
b

a
|K(x, t)|2dx dt = B2, B > 0, (17.47)

and if the inequality

∫
b

a
|K(x, t)|2dt ≤ C (17.48)

is true, where 𝜆 <
1
B
, and if C is a constant the same for all x in the interval [a, b],

then the following sequence is uniformly convergent in the interval [a, b]:

{ fi} = f0, f1, f2,… , fn,… → f (x). (17.49)

The limit of this sequence, that is, f (x), is the solution of Eq. (17.40) and it is
unique.

Example 17.3 Neumann sequence
For the integral equation

f (x) = x2 + 1
2 ∫

1

−1
(t − x) f (t) dt, (17.50)

we start the Neumann sequence by taking f0(x) = x2 and continue to write:

f1(x) = x2 + 1
2 ∫

1

−1
(t − x)t2dt = x2 − x

3
, (17.51)

f2(x) = x2 + 1
2 ∫

1

−1
(t − x)

(
t2 − t

3

)
dt = x2 − x

3
− 1

9
, (17.52)

f3(x) = x2 + 1
2 ∫

1

−1
(t − x)

(
t2 − t

3
− 1

9

)
dt = x2 − 2x

9
− 1

9
(17.53)

⋮

Obviously, in this case the solution is of the form

f (x) = x2 + C1x + C2. (17.54)

Substituting this [Eq. (17.54)] into Eq. (17.50) and comparing the coefficients
of equal powers of x, we obtain C1 = − 1

4
and C2 = − 1

12
; thus, the exact solution

in this case is given as

f (x) = x2 − 1
4

x − 1
12

. (17.55)

17.3.2 Error Calculation in Neumann Series

By using the nth term of the Neumann sequence as our solution, we will have
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committed ourselves to the error given by

|f (x) − fn(x)| < D
√

C Bn|𝜆|n+1

1 − B|𝜆| , D =

√
∫

b

a
|g2(x)|dx. (17.56)

Example 17.4 Error calculation in Neumann series
For the integral equation:

f (x) = 1 + 1
10 ∫

1

0
K(x, t) f (t) dt, (17.57)

K(x, t) =
{

x, 0 ≤ x ≤ t,
t, t ≤ x ≤ 1, (17.58)

since

B = 1√
6
, C = 1

3
, D = 1, 𝜆 = 0.1, (17.59)

Eqs. (17.46–17.49) tell us that the Neumann sequence is convergent. Taking
f0(x) = 1, we find the first three terms as

f0(x) = 1, (17.60)
f1(x) = 1 + (1∕10) x − (1∕20) x2, (17.61)
f2(x) = 1 + (31∕300) x − (1∕20) x2 − (1∕600) x3 + (1∕2400) x4. (17.62)

If we take the solution as f (x) ≃ f2(x), the error in the entire interval will be
less than

1.
√

1
3

(1∕6)(0.1)3

[1 − (0.1∕
√

6)]
= 0.0001. (17.63)

17.3.3 Solution for the Case of Separable Kernels

When the kernel is given in the form

K(x, t) =
n∑

j=1
Mj(x)Nj(t), n is a finite number, (17.64)

it is called separable or degenerate. In such cases, we can reduce the solution
of an integral equation to the solution of a linear system of equations. Let us
write a Fredholm equation with a separable kernel as

y(x) = f (x) + 𝜆

n∑
j=1

Mj(x)
[
∫

b

a
Nj(t) y(t) dt

]
. (17.65)
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If we define the quantity inside the square brackets as ∫ b
a Nj(t) y(t) dt = cj, Eq.

(17.65) becomes

y(x) = f (x) + 𝜆

n∑
j=1

cjMj(x) . (17.66)

After the coefficients, cj, are evaluated, this will give us the solution y(x). To find
these constants, we multiply Eq. (17.66) with Ni(x) and integrate to get

ci = bi + 𝜆

n∑
j=1

aijcj, (17.67)

bi = ∫
b

a
Ni(x) f (x) dx, (17.68)

aij = ∫
b

a
Ni(x)Mj(x) dx. (17.69)

We now write Eq. (17.67) as a matrix equation:
b = c− 𝜆Ac , A = aij, (17.70)
b = (I− 𝜆A)c . (17.71)

This gives us a system of n linear equations to be solved for the n coefficients cj
as

(1 − 𝜆a11)c1 − 𝜆a12c2 − 𝜆a13c3 − · · · − 𝜆a1ncn = b1,

−𝜆a21c1 + (1 − 𝜆a22)c2 − 𝜆a23c3 − · · · − 𝜆a2ncn = b2,

⋮
−𝜆an1c1 − 𝜆an2c2 − 𝜆an3c3 − · · · + (1 − 𝜆ann)cn = bn.

(17.72)

When the Fredholm equation is homogeneous, that is, when f (x) = 0, then all
bi are zero; thus, for the solution to exist we must have

det[I− 𝜆A] = 0. (17.73)

Solutions of this equation give the eigenvalues𝜆i. Substituting these eigenvalues
into Eq. (17.72) we can solve for the values of ci.

Example 17.5 The case of separable kernels
Consider the homogeneous Fredholm equation given as

y(x) = 𝜆∫
1

−1
(2t + x)y(t) dt, (17.74)

where
M1(x) = 1, M2(x) = x,
N1(t) = 2t, N2(t) = 1

(17.75)
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and with A written as

A =
[

0 4∕3
2 0

]
. (17.76)

Using Eq. (17.73), we write

det
|||||| 1 −4𝜆

3
−2𝜆 1

|||||| = 0, (17.77)

and find the eigenvalues as 𝜆1,2 = ±1
2
√

3∕2. Substituting these into Eq. (17.72)
we find two relations between c1 and c2:

c1 ∓ c2

√
2
3
= 0. (17.78)

As in the eigenvalue problems in linear algebra, we have only obtained the
ratio, c1∕c2, of these constants. Because Eq. (17.74) is homogeneous, normal-
ization is arbitrary. Choosing c1 as 1, we can write the solutions of Eq. (17.74)
as

y1(x) =
1
2

√
3
2

(
1 +

√
3
2

x

)
for 𝜆1 = 1

2

√
3
2
, (17.79)

y2(x) = −1
2

√
3
2

(
1 −

√
3
2

x

)
for 𝜆2 = −1

2

√
3
2
. (17.80)

When the equations in Eq. (17.72) are inhomogeneous, then the solution can
still be found by using the techniques of linear algebra [1]. We will come back
to the subject of integral equations and eigenvalue problems shortly.

17.3.4 Solution by Integral Transforms

Sometimes using integral transforms it may be possible to free the unknown
function under the integral sign, thus making the solution possible.

17.3.4.1 Fourier Transform Method
When the kernel is a function of (x − t) and the range of the integral is from
−∞ to +∞, we can use the Fourier transform method. For example, consider
the integral equation

y(x) = 𝜙(x) + 𝜆∫
∞

−∞
K(x − t)y(t) dt. (17.81)

We take the Fourier transform of this equation to write

ỹ(k) = 𝜙(k) + 𝜆K̃(k)̃y(k). (17.82)
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Aside from constant scale factors, Fourier transform is defined as

ỹ(k) = ∫
∞

−∞
y(x)eikxdx. (17.83)

In writing Eq. (17.82), we have also used the convolution theorem:

f ∗ g = ∫
∞

−∞
g(y) f (x − y)dy = ∫

∞

−∞
f̃ (k)g̃(k)e−ikxdk,

which indicates that the Fourier transform of the convolution of two functions,
f ∗ g, is the product of their Fourier transforms. We now solve Eq. (17.82) for
ỹ(k) to find

ỹ(k) = 𝜙(k)
1 − 𝜆K̃(k)

, (17.84)

which after taking the inverse transform will give the solution in terms of a
definite integral:

y(x) = ∫
∞

−∞

𝜙(k)e−ikxdk
1 − 𝜆K̃(k)

. (17.85)

17.3.4.2 Laplace Transform Method
The Laplace transform method is useful when the kernel is a function of (x − t)
and the range of the integral is from 0 to x. For example, consider the integral
equation

y(x) = 1 + ∫
x

0
y(u) sin(x − u)du. (17.86)

We take the Laplace transform of this equation to write

£[y(x)] = £[1] + £
[
∫

x

0
y(u) sin(x − u)du

]
. (17.87)

After using the convolution theorem:

F(s)G(s) = £
[
∫

x

0
f (u)g(x − u)du

]
, (17.88)

where F(s) and G(s) indicate the Laplace transforms of f (x) and g(x), respec-
tively, we obtain the Laplace transform of the solution as

Y (s) = 1
s
+ Y (s)

s2 + 1
, (17.89)

Y (s) = 1 + s2

s3 . (17.90)

Taking the inverse Laplace transform, we obtain the solution:

y(x) = 1 + x2

2
. (17.91)
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17.4 Hilbert–Schmidt Theory

In the Sturm–Liouville theory, we have defined eigenvalue problems using lin-
ear differential operators. We are now going to introduce the Hilbert–Schmidt
theory, where an eigenvalue problem is defined in terms of linear integral
operators.

17.4.1 Eigenvalues for Hermitian Operators

Using the Fredholm equation of the second kind, we can define an eigenvalue
problem as

y(x) = 𝜆∫
b

a
K(x, t)y(t) dt, (17.92)

where for the ith eigenvalue 𝜆i, and the eigenfunction yi(t), we can write

yi(x) = 𝜆i ∫
b

a
K(x, t)yi(t) dt, (17.93)

Similarly, we write Eq. (17.92) for another eigenvalue, 𝜆j, and take its complex
conjugate as

y∗j (x) = 𝜆∗j∫
b

a
K∗(x, t)y∗j (t) dt. (17.94)

Multiplying Eq. (17.93) by 𝜆∗j y∗j (x) and Eq. (17.94) by 𝜆iyi(x), and integrating
over x in the interval [a, b] we obtain two equations:

𝜆∗j∫
b

a
y∗j (x)yi(x) dx = 𝜆i𝜆

∗
j∫

b

a ∫
b

a
K(x, t)y∗j (x)yi(t) dt dx (17.95)

and

𝜆i ∫
b

a
y∗j (x)yi(x) dx = 𝜆i𝜆

∗
j∫

b

a ∫
b

a
K∗(x, t)y∗j (t)yi(x) dt dx. (17.96)

If the kernel satisfies the relation

K∗(x, t) = K(t, x), (17.97)

Eq. (17.96) becomes

𝜆i ∫
b

a
y∗j (x)yi(x) dx = 𝜆i𝜆

∗
j∫

b

a ∫
b

a
K(t, x)y∗j (t)yi(x) dt dx. (17.98)

Subtracting Eqs. (17.95) and (17.98), we obtain

(𝜆∗j − 𝜆i)∫
b

a
y∗j (x)yi(x) dx = 0. (17.99)
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Kernels satisfying relation (17.97) are called Hermitian.
For i = j Eq. (17.99) becomes

(𝜆∗i − 𝜆i)∫
b

a
|yi(x)|2dx = 0. (17.100)

Since ∫ b
a |yi(x)|2dx ≠ 0, we conclude that Hermitian operators have real

eigenvalues.

17.4.2 Orthogonality of Eigenfunctions

Using the fact that eigenvalues are real, for i ≠ j Eq. (17.99) becomes

(𝜆j − 𝜆i)∫
b

a
y∗j (x)yi(x) dx = 0. (17.101)

For distinct (nondegenerate) eigenvalues this gives

∫
b

a
y∗j (x)yi(x) dx = 0, 𝜆j ≠ 𝜆i. (17.102)

This means that the eigenfunctions for the distinct eigenvalues are orthogonal.
In the case of degenerate eigenvalues, using the Gram–Schmidt orthogonaliza-
tion method we can always choose the eigenvectors as orthogonal. Thus, we can
write

∫
b

a
y∗j (x)yi(x) dx = 0, i ≠ j. (17.103)

Summary: For a linear integral operator

£ = ∫
b

a
dtK(x, t), (17.104)

we can define an eigenvalue problem as

yi(x) = 𝜆i ∫
b

a
K(x, t)yi(t) dt. (17.105)

For Hermitian kernels satisfying K∗(x, t) = K(t, x), eigenvalues are real and the
eigenfunctions are orthogonal; hence after a suitable normalization we can
write:

∫
b

a
y∗i (x)yj(x) dx = 𝛿ij. (17.106)

17.4.3 Completeness of the Eigenfunction Set

Proof of the completeness of the eigenfunction set is rather technical for our
purposes and can be found in Courant and Hilbert [2, Chapter 3, vol. 1, p. 136].
We simply quote the following theorem:
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Expansion theorem: Every continuous function, F(x), which can be repre-
sented as the integral transform of a piecewise continuous function, G(x),
and with respect to the real and symmetric kernel K(x, x′) as

F(x) = ∫ K(x, x′)G(x′)dx′, (17.107)

can be expanded in a series in the eigenfunctions of K(x, x′); this series con-
verges uniformly and absolutely.

This conclusion is also true for Hermitian kernels. We can now write

F(x) =
∞∑

m=0
amym(x), (17.108)

where the coefficients, am, are found by using the orthogonality relation:

∫
b

a
F(x)y∗m(x)dx =

∑
n
∫

b

a
anyn(x)y∗m(x)dx

=
∑

n
an ∫

b

a
yn(x)y∗m(x)dx

=
∑

n
an𝛿nm

= am.

(17.109)

Substituting these coefficients back into Eq. (17.108), we get

F(x) =
∑∞

m=0∫
b

a
F(x′)y∗m(x′)ym(x)dx′, (17.110)

= ∫
b

a
F(x′)

[∑∞

m=0
y∗m(x′)ym(x)

]
dx′. (17.111)

This gives us a formal expression for the completeness of {ym(x)} as

∞∑
m=0

y∗m(x′)ym(x) = 𝛿(x′ − x). (17.112)

Keep in mind that in general {yi(x)} do not form a complete set. Not just any
function, but only the functions that can be generated by the integral transform
[Eq. (17.107)] can be expanded in terms of them.

Let us now assume that a given Hermitian kernel can be expanded in terms
of the eigenfunction set {yi(x)} as

K(x, x′) =
∑

i
ci(x)yi(x′), (17.113)
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where the expansion coefficients, ci, carry the x dependence. Using Eq. (17.109),
ci(x) are written as

ci(x) = ∫ K(x, x′)y∗i (x
′)dx′, (17.114)

which after multiplying by 𝜆i becomes

𝜆ici(x) = 𝜆i ∫ K(x, x′)y∗i (x
′)dx′. (17.115)

We now take the Hermitian conjugate of the eigenvalue equation:

yi(x) = 𝜆i ∫ K(x, x′)yi(x′)dx′, (17.116)

to write

y∗i (x) = 𝜆i ∫ y∗i (x
′)K∗(x′, x)dx′ (17.117)

= 𝜆i ∫ y∗i (x
′)K(x, x′)dx′ (17.118)

= 𝜆i ∫ K(x, x′)y∗i (x
′)dx′. (17.119)

Substituting Eq. (17.119) to Eq. (17.115) we solve for ci(x):

ci(x) =
y∗i (x)
𝜆i

. (17.120)

Finally, substituting Eq. (17.120) to Eq. (17.113) we obtain an elegant expression
for the Hermitian kernels in terms of the eigenfunctions as

K(x, x′) =
∑

i

y∗i (x)yi(x′)
𝜆i

. (17.121)

17.5 Neumann Series and the Sturm–Liouville
Problem

We often encounter cases where a given second-order linear differential oper-
ator

£ = d
dx

[
p(x) d

dx

]
+ q(0)(x) + q(1)(x), x ∈ [a, b], (17.122)

differs from an exactly solvable Sturm–Liouville operator

£0 = d
dx

[
p(x) d

dx

]
+ q(0)(x), (17.123)



17.5 Neumann Series and the Sturm–Liouville Problem 669

by a small term q(1)(x) compared to q(0)(x). Since the eigenvalue problem for £0
is exactly solvable, it yields a complete and orthonormal set of eigenfunctions,
ui, which satisfy the eigenvalue equation

£0ui + 𝜆iui = 0, (17.124)

where 𝜆i are the eigenvalues. We now consider the eigenvalue equation for the
general operator £:

£Ψ(x) + 𝜆Ψ(x) = 0, (17.125)

and write it as

£0Ψ(x) + 𝜆Ψ(x) = −q(1)Ψ(x). (17.126)

In general, the above equation is given as

£0Ψ(x) + 𝜆Ψ(x) = f (x,Ψ(x)), (17.127)

where the inhomogeneous term usually corresponds to sources or interactions.
We confine our discussion to cases where f (x,Ψ) is separable:

f (x,Ψ(x)) = h(x)Ψ(x). (17.128)

This covers a wide range of physically interesting cases. For example, in scat-
tering problems the time independent Schrödinger equation is written as

−→∇
2
Ψ(−→r ) + 2mE

ℏ2 Ψ(−→r ) = 2m
ℏ2 V (−→r )Ψ(−→r ), (17.129)

where V (−→r ) is the scattering potential.
The general solution of Eq. (17.127) with Eq. (17.128) can be written as

Ψ(x) = Ψ(0)(x) + ∫ dx′G(x, x′)h(x′)Ψ(x′) (17.130)

= Ψ(0)(x) + ∫ dx′K(x, x′)Ψ(x′), (17.131)

where G(x, x′) is the Green’s function, while

K(x, x′) = G(x, x′)h(x′) (17.132)

is the kernel of the integral equation and Ψ(0)(x) is the known solution of the
homogeneous equation:

£0Ψ(x) + 𝜆Ψ(x) = 0. (17.133)

Introducing the linear integral operator 𝕂:

𝕂 = ∫
b

a
dx′K(x, x′), (17.134)

𝕂(𝛼Ψ1 + 𝛽Ψ2) = 𝛼𝕂Ψ1 + 𝛽𝕂Ψ2, (17.135)
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where 𝛼, 𝛽 are constants, we can write Eq. (17.131) as

(I − 𝕂)Ψ(x) = Ψ(0)(x), (17.136)

where I is the identity operator. Assuming that K(x, x′) is small, we can write

Ψ(x) = Ψ(0)(x)
(I − 𝕂)

(17.137)

= (I + 𝕂 + 𝕂2 + · · ·)Ψ(0)(x). (17.138)

A similar expansion can be written for Ψ(x) as

Ψ(x) = Ψ(0)(x) + Ψ(1)(x) + · · · , (17.139)

which when substituted into Eq. (17.138) yields the zeroth-order term of the
approximation as Ψ(x) ≃ Ψ(0)(x), and the subsequent terms of the expansion as

Ψ(1)(x) = ∫ dx′K(x, x′)Ψ(0)(x), (17.140)

Ψ(2)(x) = 𝕂Ψ(1)(x) = 𝕂2Ψ(0)(x) = ∫ dx′′K(x, x′′)∫ dx′K(x′′, x′)Ψ(0)(x′),

(17.141)
⋮

We can now write the following Neumann series [Eq. (17.46)]:

Ψ(x) = Ψ(0)(x) + ∫ dx′K(x, x′)Ψ(0)(x′) + ∫ dx′K(x, x′)Ψ(1)(x′) + · · · ,

(17.142)

that is,

Ψ(x) = Ψ(0)(x)

+∫ dx′K(x, x′)Ψ(0)(x′)

+∫ dx′K(x, x′)∫ dx′′K(x′, x′′)Ψ(0)(x′′) (17.143)

+∫ dx′K(x, x′)∫ dx′′K(x′, x′′)∫ dx′′K(x′′ , x′′)Ψ(0)(x′′)

+ · · · .

If we approximate Ψ(x) with the first N terms,

Ψ(x) ≃ Ψ(0)(x) + Ψ(1)(x) + · · · + Ψ(N)(x), (17.144)

we can write Eq. (17.136) as

(I − 𝕂)(Ψ(0) + Ψ(1) + · · · + Ψ(N)) ≃ Ψ(0), (17.145)
Ψ(0) − Ψ(N+1) ≃ Ψ(0). (17.146)
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For the convergence of Neumann series, for a given small positive number,
𝜀0, we should be able to find a number, N0, independent of x, such that for
N + 1 > N0, we have |Ψ(N+1)| < 𝜀0. To obtain the sufficient condition for con-
vergence let max|K(x, x′)| = M for x, x′ ∈ [a, b] and take ∫ b

a dx′|Ψ(0)(x)| = C.

We can now write the inequality|||Ψ(n+1)(x)||| < CMN+1(b − a)N = CM[M(b − a)]N , (17.147)

which yields the error committed by approximating Ψ(x) with the first N + 1
terms of the Neumann series [Eq. (17.19)] as||||||Ψ(x) −

N∑
n=0

Ψ(n)(x)
|||||| ≤ |ΨN+1(x)| + |ΨN+2(x)| + · · · (17.148)

≤ CM[M(b − a)]N{1 + M(b − a) + M2(b − a)2 + · · · }.
(17.149)

If M(b − a) < 1, which is sufficient but not necessary, we can write

||||||Ψ(x) −
N∑

n=0
Ψ(n)(x)

|||||| ≤
CM[M(b − a)]N

[1 − M(b − a)]
< 𝜀0, (17.150)

which is true for all N > N0 independent of x.
In scattering problems, Schrödinger equation:

−→∇Ψ(−→r ) + k2Ψ(−→r ) = 2m
ℏ2 V (−→r )Ψ(−→r ), (17.151)

can be written as the integral equation [Eq. (17.131)]:

Ψ(−→r ) = ei
−→
k 0⋅

−→r − 2m
4𝜋ℏ2 ∫ d3−→r eik|−→r −−→r ′||−→r − −→r ′|V (−→r ′)Ψ(−→r ′), (17.152)

where ei
−→
k 0⋅

−→r is the solution of the homogeneous equation representing the
incident plane wave and k2 = k2

0 = 2mE∕ℏ2. Wave vector of the incident wave
is
−→
k 0 while

−→
k is the wave vector of the outgoing wave as −→r → ∞. The first two

terms of Eq. (17.143) already gives the important result

Ψ(−→r ) ≃ ei
−→
k 0⋅

−→r − 2m
4𝜋ℏ2 ∫ d3−→r eik|−→r −−→r ′||−→r − −→r ′|V (−→r ′)ei

−→
k 0⋅

−→r , (17.153)

which is called the Born approximation.
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17.6 Eigenvalue Problem for the Non-Hermitian
Kernels

In most of the important cases a non-Hermitian kernel, K(x, t), in Eq. (17.93)
can be written as

yi(x) = 𝜆i ∫
b

a
[K(x, t)𝑤(t)]yi(t) dt, (17.154)

where K(x, t) satisfies the relation K(x, t) = K
∗
(t, x). We multiply Eq. (17.92)

by
√
𝑤(x) and define√

𝑤(x)y(x) = 𝜓(x), (17.155)

to write

𝜓i(x) = 𝜆i ∫
b

a
[K(x, t)

√
𝑤(x)𝑤(t)]𝜓i(t) dt. (17.156)

Now the kernel, K(x, t)
√
𝑤(x)𝑤(t), in this equation is Hermitian and the eigen-

functions, 𝜓i(x), are orthogonal with respect to the weight function 𝑤(x) as

∫
b

a
𝑤(x)𝜓∗

i (x)𝜓i(x) dx = 𝛿ij. (17.157)
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Problems

1 Find the solution of the following integral equation:

y(t) = 1 + ∫
t

0
y(u) sin(t − u)du.

Check your answer by substituting into the above integral equation.

2 Show that the following differential equation and boundary conditions:

y′′ (x) − y(x) = 0,
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y(0) = 0 and y′(0) = 1,

are equivalent to the integral equation

y(x) = x + ∫
x

0
(x − x′)y(x′)dx′.

3 Write the following differential equation and boundary conditions as an
integral equation:

y′′ (x) − y(x) = 0,
y(1) = 0 and y(−1) = 1.

4 Using the Neumann series method solve the integral equation

y(x) = x + ∫
x

0
(x′ − x)y(x′) dx.

5 For the following integral equation find the eigenvalues and the eigen-
functions:

y(x) = 𝜆∫
2𝜋

0
cos(x − x′)y(x′)dx′.

6 To show that the solution of the integral equation

y(x) = 1 + 𝜆2 ∫
x

0
(x − x′)y(x′)dx′

is given as

y(x) = cosh 𝜆x.

(i) First convert the integral equation into a differential equation and
then solve.

(ii) Solve by using Neumann series.
(iii) Solve by using the integral transform method.

7 By using different methods of your choice find the solution of the integral
equation

y(x) = x + 𝜆∫
1

0
xx′y(x′)dx′.

Answer: y(x) = 3x∕(3 − 𝜆).
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8 Consider the damped harmonic oscillator problem, where the equation
of motion is given as

d2x(t)
dt2 + 2𝜀dx(t)

dt
+ 𝜔2

0x(t) = 0.

(i) Using the boundary conditions

x(0) = x0 and ẋ(0) = 0

show that x(t) satisfies the integral equation

x(t) = x0 cos𝜔0t +
2x0𝜀

𝜔0
sin𝜔0t + 2𝜀∫

t

0
x(t′) cos𝜔0(t − t′)dt′.

(ii) Iterate this equation several times and show that it agrees with the
exact solution expanded to the appropriate order.

9 Obtain an integral equation for the anharmonic oscillator, where the
equation of motion and the boundary conditions are given as

d2x(t)
dt2 + 𝜔2

0x(t) = −bx3(t),

x(0) = x0 and ẋ(0) = 0.

10 Consider the integral equation

y(x) = x + 2∫
1

0
[x𝜃(x′ − x) + x′𝜃(x − x′)]y(x′)dx′.

First show that a Neumann series solution exists and then find it.

11 Using the Neumann series method find the solution of

y(x) = x2 + 6∫
1

0
(x + t)y(t) dt.
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Green’s Functions

Green’s functions are among the most versatile tools in applied mathematics.
They provide a powerful alternative to solving differential equations. They are
also very useful in transforming differential equations into integral equations,
which are preferred in certain cases like the scattering problems. Propagator
interpretation of the Green’s functions is also very useful in quantum field the-
ory, and with their path integral representation, they are the starting point of
modern perturbation theory. In this chapter, we introduce the basic features of
both the time-dependent and the time-independent Green’s functions, which
have found a wide range of applications in science and engineering. We also
introduce the time-independent perturbation theory.

18.1 Time-Independent Green’s Functions in One
Dimension

We start with the differential equation

£y(x) = 𝜙(x), (18.1)

where £ is the Sturm–Liouville operator:

£ = d
dx

(
p(x) d

dx

)
+ q(x), (18.2)

with p(x) and q(x) as continuous functions defined in the interval [a, b].
Along with this differential equation, we use the homogeneous boundary
conditions:

𝛼y(x) + 𝛽
dy(x)

dx
||||x=a

= 0,

𝛼y(x) + 𝛽
dy(x)

dx
||||x=b

= 0,
(18.3)
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© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.
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where 𝛼 and 𝛽 are constants. Because 𝜙(x) could also depend on the unknown
function explicitly, we will also write

𝜙(x, y(x)).

Note that even though the differential operator £ is linear, the differential
equation [Eq. (18.1)] could be nonlinear.

We now define a function G(x, 𝜉), which for a given 𝜉 ∈ [a, b] reduces
to G1(x) when x < 𝜉 and to G2(x) when x > 𝜉, and also has the following
properties:

i) Both G1(x) and G2(x), in their intervals of definition, satisfy £G(x) = 0:

£G1(x) = 0, x < 𝜉,

£G2(x) = 0, x > 𝜉.
(18.4)

ii) G1(x) satisfies the boundary condition at x = a and G2(x) satisfies the
boundary condition at x = b.

iii) G(x, 𝜉) is continuous at x = 𝜉:

G2(𝜉) = G1(𝜉). (18.5)

iv) G′(x, 𝜉) is discontinuous by the amount 1∕p(𝜉) at x = 𝜉:

G′
2(𝜉) − G′

1(𝜉) = 1∕p(𝜉). (18.6)

We also assume that p(x) is finite in the interval (a, b); thus the discontinuity is
of finite order.

We are now going to prove that if such a function can be found, then the
problem defined by the differential equation plus the boundary conditions
[Eqs. (18.1–18.3)] is equivalent to the equation

y(x) = ∫
b

a
G(x, 𝜉)𝜙(𝜉, y(𝜉)) d𝜉, (18.7)

where G(x, 𝜉) is called the Green’s function. If 𝜙(x, y(𝜉)) does not depend
on y(x) explicitly, then finding the Green’s function is tantamount to solving
the problem. For the cases where 𝜙(x, y(𝜉)) depends explicitly on y(x), then
Eq. (18.7) becomes the integral equation version of the problem defined
by the differential equation plus the homogeneous boundary conditions
[Eqs. (18.1–18.3)]. Before we prove the equivalence of Eq. (18.7) and the
Eqs. (18.1–18.3), we show how a Green’s function can be constructed. We first
drive a useful result called Abel’s formula.
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18.1.1 Abel’s Formula

Let u(x) and 𝑣(x) be two linearly independent solutions of £y(x) = 0, so that we
can write, respectively,

d
dx

(
p(x) d

dx

)
u(x) + q(x)u(x) = 0, (18.8)

d
dx

(
p(x) d

dx

)
𝑣(x) + q(x)𝑣(x) = 0, (18.9)

Multiplying the first equation by 𝑣 and the second by u and then subtracting
gives

𝑣(x) d
dx

(
p(x) d

dx

)
u(x) − u(x) d

dx

(
p(x) d

dx

)
𝑣(x) = 0. (18.10)

After expanding and rearranging, we can write d
dx
[p(x)(u𝑣′ − 𝑣u′)] = 0, which

implies

(u𝑣′ − 𝑣u′) = A
p(x)

, (18.11)

where A is a constant. This result is known as Abel’s formula.

18.1.2 Constructing the Green’s Function

Let y = u(x) be a nontrivial solution of £y = 0 satisfying the boundary condition
at x = a and let y = 𝑣(x) be another nontrivial solution of £y = 0 satisfying the
boundary condition at x = b. We now define a Green’s function as

G(x, 𝜉) =

{
c1u(x), x < 𝜉,

c2𝑣(x), x > 𝜉.
(18.12)

This Green’s function satisfies conditions (i) and (ii). For conditions (iii) and
(iv), we require c1 and c2 to satisfy the following equations:

c2𝑣(𝜉) − c1u(𝜉) = 0, (18.13)
c2𝑣

′(𝜉) − c1u′(𝜉) = 1∕p(𝜉). (18.14)

For a unique solution of these equations, we have to satisfy the condition

W [u, 𝑣] =
||||||
u(𝜉) 𝑣(𝜉)
u′(𝜉) 𝑣′(𝜉)

|||||| = u(𝜉)𝑣′(𝜉) − 𝑣(𝜉)u′(𝜉) ≠ 0, (18.15)

where W [u, 𝑣] is called the Wronskian of the solutions u(x) and 𝑣(x). When
these solutions are linearly independent, W [u, 𝑣] is different from zero and
according to Abel’s formula, W [u, 𝑣] is equal to A∕p(𝜉), where A is a constant
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independent of 𝜉. Eqs. (18.13) and (18.14) can now be solved for c1 and c2 to
yield c1 = 𝑣(𝜉)∕A and c2 = u(𝜉)∕A. Now the Green’s function becomes

G(x, 𝜉) =

{
(1∕A)u(x)𝑣(𝜉), x < 𝜉,

(1∕A)u(𝜉)𝑣(x), x > 𝜉.
(18.16)

Evidently, this Green’s function is symmetric and unique. We now show that
the integral

y(x) = ∫
b

a
G(x, 𝜉)𝜙(𝜉) d𝜉 (18.17)

is equivalent to the differential equation [Eq. (18.1)] plus the boundary condi-
tions [Eq. (18.3)]. We first write equation Eq. (18.17) explicitly as

y(x) = 1
A

[
∫

x

a
𝑣(x)u(𝜉)𝜙(𝜉)d𝜉 + ∫

b

x
𝑣(𝜉)u(x)𝜙(𝜉)d𝜉

]
(18.18)

and evaluate its first- and second-order derivatives:

y′(x) = 1
A

[
∫

x

a
𝑣′(x)u(𝜉)𝜙(𝜉) d𝜉 + ∫

b

x
𝑣(𝜉)u′(x)𝜙(𝜉) d𝜉

]
, (18.19)

y′′(x) = 1
A

[
∫

x

a
𝑣′′(x)u(𝜉)𝜙(𝜉) d𝜉 + ∫

b

x
𝑣(𝜉)u′′(x)𝜙(𝜉) d𝜉

]
(18.20)

+ 1
A
[𝑣′(x)u(x) − 𝑣(x)u′(x)]𝜙(x),

where we have used the formula
d

dx ∫
B(x)

A(x)
F(x, 𝜉) d𝜉 = ∫

B(x)

A(x)

𝜕F(x, 𝜉)
𝜕x

d𝜉 + F(x,B(x))dB(x)
dx

− F(x,A(x))dA(x)
dx

. (18.21)

Substituting these derivatives into £y(x) = p(x)y′′(x) + p′(x)y′(x) + q(x)y(x), we
get

£y(x) = 1
A

{
∫

x

a
[£𝑣(x)]u(𝜉)𝜙(𝜉) d𝜉 + ∫

b

x
𝑣(𝜉)[£u(x)]𝜙(𝜉) d𝜉

}
+ 1

A

[
p(x) A

p(x)
𝜙(x)

]
. (18.22)

Since u(x) and 𝑣(x) satisfy £u(x) = 0 and £𝑣(x) = 0, respectively, we obtain
£y(x) = 𝜙(x). To see which boundary conditions y(x) satisfies, we write⎧⎪⎨⎪⎩

y(a) = (1∕A)u(a)∫
b

a
𝑣(𝜉)𝜙(𝜉) d𝜉

y′(a) = (1∕A)u′(a)∫
b

a
𝑣(𝜉)𝜙(𝜉) d𝜉

⎫⎪⎬⎪⎭ , (18.23)
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⎧⎪⎨⎪⎩
y(b) = (1∕A)𝑣(b)∫

b

a
u(𝜉)𝜙(𝜉) d𝜉

y′(b) = (1∕A)𝑣′(b)∫
b

a
u(𝜉)𝜙(𝜉) d𝜉

⎫⎪⎬⎪⎭ . (18.24)

It is easily seen that y(x) satisfies the same boundary condition with u(x) at x = a
and with 𝑣(x) at x = b.

In some cases, it is convenient to write 𝜙(x) as 𝜙(x) = 𝜆r(x)y(x) + f (x), thus
Eq. (18.1) becomes £y(x) − 𝜆r(x)y(x) = f (x). With the homogeneous boundary
conditions, this is equivalent to the integral equation

y(x) = 𝜆∫
b

a
G(x, 𝜉)r(𝜉)y(𝜉) d𝜉 + ∫

b

a
G(x, 𝜉)f (𝜉) d𝜉. (18.25)

18.1.3 Differential Equation for the Green’s Function

To find the differential equation that the Green’s function satisfies, we operate
on y(x) in Eq. (18.17) with £ to write £y(x) = ∫ b

a £G(x, 𝜉)𝜙(𝜉) d𝜉. Because the
operator £ [Eq. (18.2)] acts only on x, we can write this as

𝜙(x) = ∫
b

a
[£G(x, 𝜉)]𝜙(𝜉) d𝜉, (18.26)

which is the defining equation for the Dirac-delta function 𝛿(x − 𝜉). Hence, we
obtain the differential equation for the Green’s function as

£G(x, 𝜉) = 𝛿(x − 𝜉). (18.27)

Along with the homogeneous boundary conditions:

𝛼G(x, 𝜉) + 𝛽
dG(x, 𝜉)

dx
||||x=a

= 0,

𝛼G(x, 𝜉) + 𝛽
dG(x, 𝜉)

dx
||||x=b

= 0,

(18.28)

Equation (18.27) is the defining equation for G(x, 𝜉).

18.1.4 Single-Point Boundary Conditions

We have so far used the boundary conditions in Eq. (18.3), which are
also called the two-point boundary conditions. In mechanics, we usually
encounter single-point boundary conditions, where the position and the
velocity are given at some initial time. We now write the Green’s function
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satisfying the homogeneous single-point boundary conditions, G(x0, x′) = 0
and G′(x0, x′) = 0, as

G(x, x′) = c1y1(x) + c2y2(x), x > x′,

G(x, x′) = 0, x < x′,
(18.29)

where y1(x) and y2(x) are two linearly independent solutions of £y(x) = 0.
Following the steps of the method used for two-point boundary conditions
(see Problem 4), we can find the constants c1 and c2, and construct the Green’s
function as

G(x, x′) = −
y1(x)y2(x′) − y2(x)y1(x′)

p(x′)W [y1(x′), y2(x′)]
𝜃(x − x′), (18.30)

where W [y1(x′), y2(x′)] is the Wronskian.
Now the differential equation £y(x) = 𝜙(x) with the given single-point

boundary conditions, y(x0) = y0 and y′(x0) = y′0, is equivalent to the integral
equation

y(x) = C1y1(x) + C2y2(x) + ∫
x

x0

G(x, x′)𝜙(x′) dx′. (18.31)

The first two terms come from the solutions of the homogeneous equation.
Because the integral term and its derivative vanish at x = x0, we use C1 and C2
to satisfy the single-point boundary conditions.

18.1.5 Green’s Function for the Operator d2∕dx2

Consider the following differential equation:

d2y
dx2 = −k2

0y, (18.32)

where k0 is a constant. Using the homogeneous boundary conditions, y(0) = 0
and y(L) = 0, we integrate Eq. (18.32) between (0, x) to write

dy
dx

= −k2
0 ∫

x

0
y(𝜉) d𝜉 + C, (18.33)

where C is an integration constant corresponding to the unknown value of the
derivative at x = 0. A second integration yields

y(x) = −k2
0 ∫

x

0
(x − 𝜉)y(𝜉) d𝜉 + Cx, (18.34)

where we have used one of the boundary conditions, that is, y(0) = 0. Using the
second boundary condition, we can now evaluate C as

C =
k2

0

L ∫
L

0
(L − 𝜉)y(𝜉) d𝜉. (18.35)
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This leads us to the following integral equation for y(x):

y(x) = −k2
0 ∫

x

0
(x − 𝜉)y(𝜉) d𝜉 +

xk2
0

L ∫
L

0
(L − 𝜉)y(𝜉) d𝜉. (18.36)

To identify the Green’s function for the operator £ = d2∕dx2, we rewrite this as

y(x) = −k2
0 ∫

x

0
(x − 𝜉)y(𝜉) d𝜉 +

xk2
0

L ∫
x

0
(L − 𝜉)y(𝜉) d𝜉

+
xk2

0

L ∫
L

x
(L − 𝜉)y(𝜉) d𝜉, (18.37)

= k2
0 ∫

x

0

𝜉

L
(L − x)y(𝜉) d𝜉 + k2

0 ∫
L

x

x
L
(L − 𝜉)y(𝜉) d𝜉. (18.38)

Comparing with

y(x) = ∫
L

0
G(x, 𝜉)[−k2

0y(𝜉)] d𝜉, (18.39)

we obtain the Green’s function for the £ = d2∕dx2 operator as

G(x, 𝜉) =

{
−(x∕L)(L − 𝜉), x < 𝜉,

−(x∕L)(L − x), x > 𝜉.
(18.40)

Now the integral equation (18.39) is equivalent to the differential equation
d2y(x)∕dx2 = −k2

0y(x) with the boundary conditions y(0) = y(L) = 0. As long
as the boundary conditions remain the same, we can use this Green’s function
to express the solution of the differential equation d2y(x)∕dx2 = 𝜙(x, y) as

y(x) = ∫
L

0
G(x, 𝜉)𝜙(𝜉, y(𝜉)) d𝜉. (18.41)

For a different set of boundary conditions, one must construct a new Green’s
function.

Example 18.1 Green’s function for the £ = d2∕dx2 operator
We have obtained the Green’s function [Eq. (18.40)] for the operator £ = d2∕dx2

with the boundary conditions y(0) = y(L) = 0. Transverse waves on a uniform
string of fixed length L with both ends clamped rigidly are described by

d2

dx2 y(x) + k2
0y(x) = f (x, y), (18.42)

where f (x, y) represents external forces acting on the string. Using the Green’s
function for the d2∕dx2 operator, we can convert this into an integral equation:

y(x) = −k2
0 ∫

L

0
G(x, 𝜉)y(𝜉) d𝜉 + ∫

L

0
G(x, 𝜉)f (𝜉, y(𝜉)) d𝜉. (18.43)
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18.1.6 Inhomogeneous Boundary Conditions

In the presence of inhomogeneous boundary conditions, we can still use the
Green’s function obtained for the homogeneous boundary conditions and
modify the solution [Eq. (18.7)] as

y(x) = P(x) + ∫
b

a
G(x, 𝜉)𝜙(𝜉) d𝜉, (18.44)

where y(x) now satisfies £y(x) = 𝜙(x) with the inhomogeneous boundary con-
ditions. Operating on Eq. (18.44) with £ and using the relation between the
Green’s functions and the Dirac-delta function [Eq. (18.27)], we obtain a differ-
ential equation to be solved for P(x):

𝜙(x) = £[P(x)] + ∫
b

a
[£G(x, 𝜉)]𝜙(𝜉) d𝜉, (18.45)

𝜙(x) = £P(x) + 𝜙(x), (18.46)

£P(x) = 0. (18.47)

Because the second term in Eq. (18.44) satisfies the homogeneous boundary
conditions, P(x) must satisfy the inhomogeneous boundary conditions.
Existence of P(x) is guaranteed by the existence of G(x, 𝜉). The equivalence
of this approach with our previous method can easily be seen by defining a
new unknown function y(x) = y(x) − P(x), which satisfies the homogeneous
boundary conditions.

Example 18.2 Inhomogeneous boundary conditions
Equation of motion of a simple plane pendulum of length l is given as

d2𝜃(t)
dt2 = −𝜔2

0 sin 𝜃, 𝜔2
0 = g∕l, (18.48)

where g is the acceleration of gravity and 𝜃 represents the angle from the equi-
librium position. We use the inhomogeneous boundary conditions:

𝜃(0) = 0 and 𝜃(t1) = 𝜃1. (18.49)
We have already obtained the Green’s function for the d2∕dx2 operator for the
homogeneous boundary conditions [Eq. (18.40)]. We now solve d2P(t)∕dt2 = 0
with the inhomogeneous boundary conditions P(0) = 0 and P(t1) = 𝜃1, to
find P(t) = 𝜃1t∕t1. Because 𝜙(t) is 𝜙(t) = −𝜔2

0 sin 𝜃(t), we can write the dif-
ferential equation [Eq. (18.48)] plus the inhomogeneous boundary conditions
[Eq. (18.49)] as an integral equation:

𝜃(t) =
𝜃1t
t1

+ 𝜔2
0

[
(t1 − t)

t1 ∫
t

0
𝜉 sin 𝜃(𝜉) d𝜉 + t

t1 ∫
t1

t
(t1 − 𝜉) sin 𝜃(𝜉) d𝜉

]
.

(18.50)
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Example 18.3 Green’s function
We now consider the differential equation

x2 d2y
dx2 + x

dy
dx

+ (k2x2 − 1)y = 0 (18.51)

with the following homogeneous boundary conditions:

y(0) = 0, y(L) = 0. (18.52)

We write this differential equation in the form[
d

dx

(
x

dy
dx

)
−

y
x

]
= −k2xy(x) (18.53)

and define the £ operator as

£ = d
dx

(
x d

dx

)
− 1

x
, (18.54)

where p(x) = x, q(x) = −1∕x, and r(x) = x. The general solution of £y = 0
is given as y = c1x + c2x−1. Using the first boundary condition y(0) = 0, we
find u(x) as y(x) = u(x) = x. Similarly, using the second boundary condition
y(L) = 0, we find 𝑣(x) as 𝑣(x) = L2

x
− x. We now evaluate the Wronskian of the

u and the 𝑣 solutions as

W [u, 𝑣] = u(x)𝑣′(x) − 𝑣(x)u′(x) = −2L2

x
(18.55)

= A
p(x)

= A
x
, (18.56)

which determines A as −2L2. Putting all these together, we obtain the Green’s
function as

G(x, 𝜉) =
⎧⎪⎨⎪⎩
− x

2L2𝜉
(L2 − 𝜉2), x < 𝜉,

− 𝜉

2L2x
(L2 − x2), x > 𝜉.

(18.57)

Using this Green’s function, we can now write the integral equation

y(x) = −k2 ∫
L

0
G(x, 𝜉)𝜉y(𝜉) d𝜉, (18.58)

which is equivalent to the differential equation plus the boundary conditions in
Eqs. (18.51) and (18.52).

Note that the differential equation in this example is the Bessel equation
and the only useful solutions are those with the eigenvalues, kn, satisfying the
characteristic equation J1(knL) = 0. In this case, the solution is given as y(x) =
CJ1(knx), where C is a constant. The same conclusion is valid for the integral
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equation (18.58). In addition, note that we could have arranged the differential
equation (18.51) as[

d
dx

(
x

dy
dx

)]
=

( y
x
− k2xy

)
, (18.59)

where the operator £ is now defined as

£ = d
dx

(
x d

dx

)
. (18.60)

If the new operator, £, and the corresponding Green’s function are compatible
with the boundary conditions, then the final answer, y(x, kn), will be the same.
In the above example, Green’s function for the new operator [Eq. (18.60)] has a
logarithmic singularity at the origin. We will explore these points in Problems
11 and 12. In physical applications, the form of the operator £ is usually dictated
by the physics of the problem. For example, in quantum mechanics £ repre-
sents physical properties with well-defined expressions with their eigenvalues
corresponding to observables like angular momentum and energy.

18.1.7 Green’s Functions and Eigenvalue Problems

Consider the differential equation

£y(x) = f (x), x ∈ [a, b], (18.61)

with the appropriate boundary conditions, where £ is the Sturm–Liouville
operator:

£ = d
dx

(
p(x) d

dx

)
− q(x). (18.62)

We have seen that the £ operator has a complete set of eigenfunctions defined
by the equation

£𝜙n(x) = 𝜆n𝜙n(x), (18.63)

where 𝜆n are the eigenvalues. Eigenfunctions satisfy the orthogonality rela-
tion, ∫ 𝜙∗

n(x)𝜙m(x)dx = 𝛿nm, and the completeness relation,
∑

n𝜙
∗
n(x)𝜙n(x′)dx =

𝛿(x − x′). In the interval x ∈ [a, b], we can expand y(x) and f (x) in terms of the
set {𝜙n(x)} as

y(x) =
∞∑
n
𝛼n𝜙n(x),

f (x) =
∞∑
n
𝛽n𝜙n(x),

(18.64)
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where 𝛼n and 𝛽n are the expansion coefficients:

𝛼n = ∫
b

a
𝜙∗

n(x)y(x) dx,

𝛽n = ∫
b

a
𝜙∗

n(x)f (x) dx.
(18.65)

Operating on y(x) with £, we get

£y(x) = £
∞∑
n
𝛼n𝜙n(x) =

∞∑
n
𝛼n£𝜙n(x). (18.66)

Using Eq. (18.66) with the eigenvalue equation [Eq. (18.63)] and Eq. (18.64),
we can write £y(x) = f (x) as

∑∞
n [𝛼n𝜆n − 𝛽n]𝜙n(x) = 0. Because 𝜙n are linearly

independent, the only way to satisfy this equation for all n is to set the expres-
sion inside the square brackets to zero, thus obtaining 𝛼n = 𝛽n∕𝜆n. We use this
in Eq. (18.64) to write

y(x) =
∞∑
n

𝛽n

𝜆n
𝜙n(x). (18.67)

After substituting the 𝛽n given in Eq. (18.65), this becomes

y(x) = ∫
∞∑
n

𝜙n(x)𝜙∗
n(x′)

𝜆n
f (x′) dx′. (18.68)

Using the definition of the Green’s function, that is, y(x) = ∫ G(x, x′)f (x′) dx′,
we obtain

G(x, x′) =
∞∑
n

𝜙n(x)𝜙∗
n(x′)

𝜆n
. (18.69)

Usually, we encounter differential equations given as

£y(x) − 𝜆y(x) = f (x), (18.70)

where the Green’s function for the operator (£ − 𝜆) can be written as

G(x, x′) =
∞∑
n

𝜙n(x)𝜙∗
n(x′)

𝜆n − 𝜆
. (18.71)

Note that in complex spaces Green’s function is Hermitian:

G(x, x′) = G∗(x′, x). (18.72)
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18.1.8 Green’s Functions and the Dirac-Delta Function

Let us operate on the Green’s function [Eq. (18.69)] with the £ operator:

£G(x, x′) = £
∞∑
n

𝜙n(x)𝜙∗
n(x′)

𝜆n
. (18.73)

Because £ is a linear operator acting on the variable x, we can write

£G(x, x′) =
∞∑
n

𝜙∗
n(x′)[£𝜙n(x)]

𝜆n
. (18.74)

Using the eigenvalue equation, £𝜙n(x) = 𝜆n𝜙n(x), we obtain

£G(x, x′) =
∞∑
n
𝜙∗

n(x′)𝜙n(x) = I(x, x′). (18.75)

For a given function, f (x), we write the integral

∫ I(x, x′)f (x′) dx′ =
∞∑
n
𝜙n(x)∫ 𝜙∗

n(x′)f (x′) dx′ =
∞∑
n
𝜙n(x)(𝜙n, f ).

(18.76)

For a complete and orthonormal set, the right-hand side is the generalized
Fourier expansion of f (x); thus we can write ∫ I(x, x′)f (x′) dx′ = f (x). Hence,
I(x, x′) is nothing but the Dirac-delta function:

I(x, x′) = £G(x, x′) = 𝛿(x − x′). (18.77)

Summary: A differential equation:

£y(x) = f (x, y),

defined with the Sturm–Liouville operator £ [Eq. (18.2)] and with the homoge-
neous boundary conditions [Eq. (18.3)] is equivalent to the integral equation

y(x) = ∫ G(x, x′)f (x′, y(x′)) dx′,

where G(x, x′) is the Green’s function satisfying

£G(x, x′) = 𝛿(x − x′)

with the same boundary conditions.

Example 18.4 Eigenfunctions and the Green’s function for £ = d2∕dx2

Let us reconsider the £ = d2∕dx2 operator in the interval [0, L]. The cor-
responding eigenvalue equation is d2𝜙n∕dx2 = −k2

n𝜙n. Using the boundary
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conditions 𝜙n(0) = 0 and 𝜙n(L) = 0, we find the eigenfunctions and the
eigenvalues as

⎧⎪⎪⎨⎪⎪⎩
𝜙n(x) =

√
2
L

sin(knx),

−𝜆n = k2
n = n2𝜋2

L2 , n = 1, 2, 3,… .

⎫⎪⎪⎬⎪⎪⎭
(18.78)

We now construct the Green’s function as

G(x, x′) = 2
L

∞∑
n

sin
(

n𝜋
L

x
)

sin
(

n𝜋
L

x′
)

−n2𝜋2∕L2 . (18.79)

For the same operator, using the Green’s function in Eq. (18.40), we have seen
that the inhomogeneous equation d2y∕dx2 = F(x, y), and the boundary condi-
tions y(0) = y(L) = 0, can be written as an integral equation:

y(x) = ∫
x

0
(x − x′)F(x′) dx′ − x

L ∫
L

0
(L − x′)F(x′) dx′. (18.80)

Using the step function, 𝜃(x − x′), we can write this as

y(x) = ∫
L

0
(x − x′)𝜃(x − x′)F(x′) dx′ − x

L ∫
L

0
(L − x′)F(x′) dx′, (18.81)

or as

y(x) = ∫
L

0

[
(x − x′)𝜃(x − x′) − x

L
(L − x′)

]
F(x′) dx′. (18.82)

This also gives the Green’s function for the £ = d2∕dx2 operator as

G(x, x′) =
[
(x − x′)𝜃(x − x′) − x

L
(L − x′)

]
. (18.83)

One can easily show that the Green’s function given in Eq. (18.79) is the general-
ized Fourier expansion of Eq. (18.83) in terms of the complete and orthonormal
set [Eq. (18.78)].

18.1.9 Helmholtz Equation with Discrete Spectrum

Let us now consider the inhomogeneous Helmholtz equation:

d2y(x)
dx2 + k2

0y(x) = f (x), (18.84)
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with the boundary conditions y(0) = 0 and y(L) = 0. Using Eqs. (18.70) and
(18.71), we can write the Green’s function as

G(x, x′) = 2
L

∑
n

sin knx sin knx′

k2
0 − k2

n
. (18.85)

Using this Green’s function, solution of the inhomogeneous Helmholtz
equation [Eq. (18.84)] is written as y(x) = ∫ L

0 G(x, x′)f (x′) dx′, where f (x)
represents the driving force in the wave motion. Note that in this case the
operator is defined as £ = d2∕dx2 + k2

0 . Green’s function for this operator can
also be obtained by direct construction, that is, by determining the u and the
𝑣 solutions in Eq. (18.16) as sin k0x and sin k0(x − L), respectively. We can now
obtain a closed expression for G(x, x′) as

G(x, x′) =

⎧⎪⎪⎨⎪⎪⎩

sin k0 x sin k0(x′ − L)
k0 sin k0L

, x < x′,

sin k0 x′ sin k0(x − L)
k0 sin k0L

, x > x′.

(18.86)

18.1.10 Helmholtz Equation in the Continuum Limit

We now consider the operator £ = d2∕dx2 + k2
0 in the continuum limit with

d2y
dx2 + k2

0y = f (x), x ∈ (−∞,∞). (18.87)

Because the eigenvalues are continuous, we use the Fourier transforms of y(x)
and f (x) as

f (x) = 1√
2𝜋 ∫

∞

−∞
dk′g(k′)eik′x, (18.88)

y(x) = 1√
2𝜋 ∫

∞

−∞
dk′𝜂(k′)eik′x. (18.89)

Their inverse Fourier transforms are

g(k) = 1√
2𝜋 ∫

∞

−∞
dx′f (x′)e−ikx′

, (18.90)

𝜂(k) = 1√
2𝜋 ∫

∞

−∞
dx′y(x′)e−ikx′

. (18.91)
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Using these in Eq. (18.87), we get

1√
2𝜋 ∫

∞

−∞
dk′{[−k′2 + k2

0]𝜂(k
′) − g(k′)}eik′x = 0, (18.92)

which gives us

𝜂(k′) = −
g(k′)

(k′2 − k2
0)
. (18.93)

Substituting this in Eq. (18.89), we obtain

y(x) = − 1√
2𝜋 ∫

∞

−∞
dk′ g(k′)

(k′2 − k2
0)

eik′x. (18.94)

Writing g(k′) explicitly, this becomes

y(x) = − 1
2𝜋 ∫

∞

−∞
dx′f (x′)∫

∞

−∞
dk′ eik′(x−x′)

(k′ − k0)(k′ + k0)
, (18.95)

which allows us to define the Green’s function as y(x) = ∫ ∞
−∞ dx′f (x′) G(x, x′),

where

G(x, x′) = − 1
2𝜋 ∫

∞

−∞
dk′ eik′(x−x′)

(k′ − k0)(k′ + k0)
. (18.96)

Using one of the representations of the Dirac-delta function:

1
2𝜋 ∫

∞

−∞
eik(x−x′)dk = 𝛿(x − x′), (18.97)

it is easy to see that G(x, x′) satisfies the equation £G(x, x′) = 𝛿(x − x′).
The integral in Eq. (18.96) is undefined at k′ = ±k0. However, we can use the

Cauchy principal value, P ∫ ∞
−∞ dx f (x)

(x−a)
= ±i𝜋f (a), to make it well defined. The

+ or − signs depend on whether the contour is closed in the upper or the lower
z-planes, respectively. There are also other ways to treat these singular points in
the complex plane, thus giving us a collection of Green’s functions each satis-
fying a different boundary condition, which we study in the following example.

Example 18.5 Helmholtz equation in the continuum limit
We now evaluate the Green’s function given in Eq. (18.96) by using the Cauchy
principal value and the complex contour integral techniques.

Case I. Using the contours in Figures 18.1 and 18.2, we can evaluate the inte-
gral

G(x, x′) = − 1
2𝜋

P ∫
∞

−∞
dk′ eik′(x−x′)

(k′ − k0)(k′ + k0)
. (18.98)
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–k0 k0

kʹ-plane

Figure 18.1 Contour for Case I: (x − x′) > 0.

For (x − x′) > 0, we use the contour in Figure 18.1 to find

G(x, x′) = − i𝜋
2𝜋

[
eik0(x−x′)

2k0
− e−ik0(x−x′)

2k0

]
= 1

2k0
sin k0(x − x′).

(18.99)

For (x − x′) < 0, we use the contour in Figure 18.2 to find

G(x, x′) = − 1
2k0

sin k0(x − x′) = 1
2k0

sin k0(x′ − x). (18.100)

Note that for the (x − x′) < 0 case, the Cauchy principal value is
−i𝜋f (a), where a is the pole on the real axis. In the following cases,
we add small imaginary pieces, ±i𝜀, to the two roots, +k0 and −k0,
of the denominator in Eq. (18.96), thus moving them away from the
real axis. We can now use the Cauchy integral theorems to evaluate
the integral (18.96) and then obtain the Green’s function in the limit
𝜀 → 0.

Case II: Using the contours shown in Figure 18.3, we obtain the following
Green’s function:
For (x − x′) > 0, we use the contour in the upper half complex
k′-plane to find

G(x, x′) = − lim
𝜀→0

1
2𝜋 ∫

∞

−∞
dk′ eik′(x−x′)

(k′ − k0 + i𝜀)(k′ + k0 − i𝜀)
(18.101)

= − lim
𝜀→0

2𝜋i
2𝜋

ei(−k0+i𝜀)(x−x′)

2(−k0 + i𝜀)
= −e−ik0(x−x′)

2k0i
. (18.102)
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–k0 k0

kʹ-plane

Figure 18.2 Contour for Case I: (x − x′) < 0.

k0 – iε

–k0 + iε

kʹ-plane

Figure 18.3 Contours for Case II.

For (x − x′) < 0, we use the contour in the lower half-plane to get

G(x, x′) = −eik0(x−x′)

2k0i
. (18.103)

Note that there is an extra minus sign coming from the fact that the
contour for the (x − x′) < 0 case is clockwise; thus we obtain the
Green’s function as

G(x, x′) = −e−ik0(x−x′)

2k0i
𝜃(x − x′) − eik0(x−x′)

2k0i
𝜃(x′ − x). (18.104)
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–k0 – iε

k0 + iε

kʹ-plane

Figure 18.4 Contours for Case III.

Case III: Using the contours shown in Figure 18.4, the Green’s function is now
given as the integral

G(x, x′) = − lim
𝜀→0

1
2𝜋 ∫

∞

−∞
dk′ eik′(x−x′)

(k′ − k0 − i𝜀)(k′ + k0 + i𝜀)
.

(18.105)

For (x − x′) > 0, we use the upper contour in Figure 18.4 to find

G(x, x′) = − 1
2𝜋

2𝜋i lim
𝜀→0

[
ei(k0+i𝜀)(x−x′)

2(k0 + i𝜀)

]
= eik0(x−x′)

2k0i
(18.106)

and for (x − x′) < 0, we use the lower contour to find

G(x, x′) = −(−)2𝜋i
2𝜋

e−ik0(x−x′)

−2k0
= e−ik0(x−x′)

2k0i
. (18.107)

Combining these, we write the Green’s function as

G(x, x′) = eik0(x−x′)

2k0i
𝜃(x − x′) + e−ik0(x−x′)

2k0i
𝜃(x′ − x). (18.108)

Case IV: Green’s function for the contours in Figure 18.5:
For (x − x′) > 0, we use the upper contour to find

G(x, x′) = 0. (18.109)
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–k0 – iε k0 – iε

kʹ-plane

Figure 18.5 Contours for Case IV.

Similarly, for (x − x′) < 0, we use the lower contour to obtain

G(x, x′) = − 1
2𝜋

(−)2𝜋i lim
𝜀→0

[
ei(k0−i𝜀)(x−x′)

2(k0 − i𝜀)
+ ei(−k0−i𝜀)(x−x′)

2(−k0 − i𝜀)

]
(18.110)

= i
[

eik0(x−x′)

2k0
+ e−ik0(x−x′)

2k0

]
= −

sin k0(x − x′)
k0

. (18.111)

The combined result becomes

G(x, x′) = −
sin k0(x − x′)

k0
𝜃(x′ − x). (18.112)

This Green’s function is good for the boundary conditions given as

lim
x→∞

{
G(x, x′) → 0
G′(x, x′) → 0

}
. (18.113)

Case V: Green’s function using the contours in Figure 18.6:
For (x − x′) > 0, we use the upper contour to find

G(x, x′) = 1
i

[
eik0(x−x′)

2k0
− e−ik0(x−x′)

2k0

]
=

sin k0(x − x′)
k0

. (18.114)

For (x − x′) < 0, we use the lower contour to find G(x, x′) = 0. The
combined result becomes

G(x, x′) =
sin k0(x − x′)

k0
𝜃(x − x′), (18.115)
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–k0 + iε k0 + iε

kʹ-plane

Figure 18.6 Contours for Case V.

which is useful for the cases where

lim
x→−∞

{
G(x, x′) → 0
G′(x, x′) → 0

}
. (18.116)

Example 18.6 Green’s function for the harmonic oscillator
For the damped driven harmonic oscillator, the equation of motion is
written as

d2x
dt2 + 2𝜀dx

dt
+ 𝜔2

0x(t) = f (t), 𝜀 > 0. (18.117)

In terms of a Green’s function, the solution can be written as

x(t) = C1x1(t) + C2x2(t) + ∫
∞

−∞
G(x, x′)f (t′) dt′, (18.118)

where x1(t) and x2(t) are the solutions of the homogeneous equation. Assuming
that all the necessary Fourier transforms and their inverses exist, we take the
Fourier transform of the equation of motion to write the Green’s function as

G(t, t′) = − 1
2𝜋 ∫

∞

−∞
d𝜔′ ei𝜔′(t−t′)

(𝜔′2 − 2i𝜀𝜔′ − 𝜔2
0)
. (18.119)

Since the denominator has zeroes at

𝜔′
1,2 =

2i𝜀 ∓
√

−4𝜀2 + 4𝜔2
0

2
= ∓

√
𝜔2

0 − 𝜀2 + i𝜀, (18.120)
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we can write G(t, t′) as

G(t, t′) = − 1
2𝜋 ∫

∞

−∞
d𝜔′ ei𝜔′(t−t′)

(𝜔′ − 𝜔′
1)(𝜔′ − 𝜔′

2)
. (18.121)

We can evaluate this integral by going to the complex 𝜔-plane. For (t − t′) > 0,
we use the upper contour in Figure 18.7 to write the Green’s function as

G(t, t′) = −2𝜋i
2𝜋

[
ei𝜔′

1(t−t′)

(𝜔′
1 − 𝜔′

2)
+ ei𝜔′

2(t−t′)

(𝜔′
2 − 𝜔′

1)

]
(18.122)

= 1
i

⎡⎢⎢⎢⎣
e−𝜀(t−t′)

2
√

𝜔2
0 − 𝜀2

(
ei
√

𝜔2
0−𝜀2(t−t′) − e−i

√
𝜔2

0−𝜀2(t−t′)
)⎤⎥⎥⎥⎦ (18.123)

= 1
i

⎡⎢⎢⎢⎣
e−𝜀(t−t′)

2
√

𝜔2
0 − 𝜀2

2i sin
(√

𝜔2
0 − 𝜀2(t − t′)

)⎤⎥⎥⎥⎦ . (18.124)

For (t − t′) < 0, we use the lower contour in Figure 18.7. Because there are no
singularities inside the contour, Green’s function is now given as G(t, t′) = 0.
Combining these results, we write the Green’s function as

G(t, t′) =
⎧⎪⎨⎪⎩

e−𝜀(t−t′)√
𝜔2

0 − 𝜀2
sin

√
𝜔2

0 − 𝜀2(t − t′), t − t′ > 0,

0, t − t′ < 0,

⎫⎪⎬⎪⎭ (18.125)

ω-plane

ω1ω2

ω0
2 

– ε2 ω0
2 

– ε2

iε

–

Figure 18.7 Contours for the harmonic oscillator.
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or as

G(t, t′) = e−𝜀(t−t′)√
𝜔2

0 − 𝜀2

[
sin

√
𝜔2

0 − 𝜀2(t − t′)
]
𝜃(t − t′). (18.126)

It is easy to check that this Green’s function satisfies the equation[
d2

dt2 + 2𝜀 d
dt

+ 𝜔2
0

]
G(t, t′) = 𝛿(t − t′). (18.127)

Example 18.7 Damped driven harmonic oscillator
In the previous example, let us take the driving force as f (t) = F0e−𝛼t , where 𝛼 is
a constant. For sinosoidal driving forces, we could take 𝛼 as i𝜔1, where 𝜔1 is the
frequency of the driving force. If we start the system with the initial conditions
x(0) = ẋ(0) = 0, C1 and C2 in Eq. (18.118) are zero; hence, the solution will be
written as

x(t) = F0e−𝜀t ∫
t

0

dt′√
𝜔2

0 − 𝜀2
sin

[√
𝜔2

0 − 𝜀2(t − t′)
]

e(𝜀−𝛼)t′ (18.128)

=
F0√

𝜔2
0 − 𝜀2

sin
[√

𝜔2
0 − 𝜀2t − 𝜂

]
√

𝜔2
0 + 𝛼2 − 2𝛼𝜀

e−𝜀t +
F0

𝜔2
0 + 𝛼2 − 2𝛼𝜀

e−𝛼t,

(18.129)

where we have defined tan 𝜂 =
√

𝜔2
0 − 𝜀2∕(𝛼 − 𝜀). One can easily check that

x(t) satisfies the differential equation

d2x(t)
dt2 + 2𝜀dx(t)

dt
+ 𝜔2

0x(t) = F0e−𝛼t. (18.130)

For weak damping, the solution reduces to

x(t) =
F0

𝜔0

sin[𝜔0t − 𝜂]√
𝜔2

0 + 𝛼2
+

F0

𝜔2
0 + 𝛼2

e−𝛼t. (18.131)

As expected, in the t → ∞ limit, this becomes

x(t) =
(

F0∕𝜔0

√
𝜔2

0 + 𝛼2
)

sin [𝜔0t − 𝜂]. (18.132)
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18.1.11 Another Approach for the Green’s function

Let us start with the most general second-order differential equation:

£y(x) = f (x, y(x)), x ∈ [a, b], (18.133)

£ = p0(x)
d2

dx2 + p1(x)
d

dx
+ p2(x), (18.134)

where for self-adjoint operators p1(x) = p′
0(x). Green’s function, G(x, x′), allows

us to convert the differential equation [Eq. (18.133)] into an integral equation:

y(x) = ∫
b

a
dx′G(x, x′)f (x′, y(x′)), (18.135)

where the Green’s function satisfies the differential equation £G(x, x′) =
𝛿(x − x′) with the same boundary conditions that y(x) is required to satisfy.
These boundary conditions are usually one of the following two types:

(1) Single point boundary condition:

G(a, x′) = 0, (18.136)
𝜕G(a, x′)

𝜕x
= 0. (18.137)

(2) Two point boundary condition:

G(a, x′) = 0, (18.138)
G(b, x′) = 0. (18.139)

From the differential equation that the Green’s function satisfies:

p0(x)
d2G(x, x′)

dx2 + p1(x)
dG(x, x′)

dx
+ p2(x)G(x, x′) = 𝛿(x − x′), (18.140)

we can deduce that G(x, x′) must be continuous at x = x′. Otherwise, G(x, x′)
would be proportional to the unit step function and since the derivative of the
unit step function is a Dirac-delta function, the first term on the left would be
proportional to the derivative of the Dirac-delta function, which would make it
incompatible with the Dirac-delta function on the right-hand side. Let us now
integrate the differential equation [Eq. (18.140)] between x′ ∈ (x′ − 𝜖, x′ + 𝜖)
and take the limit 𝜖 → 0:

∫
x′+𝜖

x′−𝜖
dx′ p0(x′)d2G(x, x′)

dx′2 + ∫
x′+𝜖

x′−𝜖
dx′ p1(x′)dG(x, x′)

dx′

+ ∫
x′+𝜖

x′−𝜖
dx′ p2(x′)G(x, x′) = ∫

x′+𝜖

x′−𝜖
dx′ 𝛿(x − x′). (18.141)

We now analyze this equation term by term. From the definition of the
Dirac-delta function, the term on the right-hand side is ∫ x′+𝜖

x′−𝜖 dx′ 𝛿(x − x′) = 1.
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In the integrals on the left-hand side, since p0, p1, p2 are continuous functions,
in the limit as 𝜖 → 0, we can replace them with their values at x = x′:

p0(x′) lim
𝜖→0 ∫

x′+𝜖

x′−𝜖
dx′ d2G(x, x′)

dx′2 + p1(x′) lim
𝜖→0 ∫

x′+𝜖

x′−𝜖
dx′ dG(x, x′)

dx′

+ p2(x′) lim
𝜖→0 ∫

x′+𝜖

x′−𝜖
dx′G(x, x′) = 1. (18.142)

Since G(x, x′) is continuous at x = x′, in the limit as 𝜖 → 0, the last term on the
left-hand side vanishes, lim𝜖→0 ∫ x′+𝜖

x′−𝜖 dx′G(x, x′) = 0, thus leaving

p0(x′) lim
𝜖→0 ∫

x′+𝜖

x′−𝜖
dx′ d2G(x, x′)

dx′2 + p1(x′) lim
𝜖→0 ∫

x′+𝜖

x′−𝜖
dG(x, x′) = 1 (18.143)

or

p0(x′) lim
𝜖→0

[
dG(x, x′ + 𝜖)

dx′ − dG(x, x′ − 𝜖)
dx′

]
+ p1(x′) lim

𝜖→0
[G(x, x′ + 𝜖) − G(x, x′ − 𝜖)] = 1. (18.144)

From the continuity of G(x, x′), in the limit as 𝜖 → 0, the second term on the
left-hand side vanishes, thus leaving us with the fact that the derivative of
G(x, x′) has a finite discontinuity by the amount 1∕p0(x′) at x = x′.

Using these results, we now construct the Green’s function under more gen-
eral conditions than used in Section 18.1.2. Let the general solution of £y(x) = 0
be given as y(x) = ay1(x) + by2(x), where £y1(x) = 0 and £y2(x) = 0. We write
the general form of the Green’s function as

G(x, x′) = Ay1(x) + By2(x), x − x′ > 0,
G(x, x′) = Cy1(x) + Dy2(x), x − x′ < 0.

(18.145)

At x = x′, the two functions must match and their derivatives differ by 1∕p0(x):

Ay1(x′) + By2(x′) = Cy1(x′) + Dy2(x′), (18.146)

Ay′1(x
′) + By′2(x

′) = Cy′1(x
′) + Dy′2(x

′) + 1
p0(x′)

. (18.147)

We first write these equations as

(A − C)y1(x′) + (B − D)y2(x′) = 0, (18.148)

(A − C)y′1(x
′) + (B − D)y′2(x

′) = 1
p0(x′)

, (18.149)
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so that

(A − C) =

||||||
0 y2(x′)

1∕p0(x′) y′2(x
′)

||||||||||||
y1(x′) y2(x′)
y′1(x

′) y′2(x
′)

||||||
= −

y2(x′)
p0(x′)W (x′)

, (18.150)

where the Wronskian, W (y1, y2), is defined as

W (x′) = y1(x′)y′2(x
′) − y2(x′)y′1(x

′). (18.151)

Similarly,

(B − D) =
y1(x′)

p0(x′)W (x′)
. (18.152)

We can now write the Green’s function as

G(x′, x) = Cy1(x) + Dy2(x) −
[y1(x)y2(x′) − y2(x)y1(x′)]

p0(x′)W (x′)
, x − x′ > 0,

(18.153)
G(x − x′) = Cy1(x) + Dy2(x), x − x′ < 0. (18.154)

Let us now impose the boundary conditions.

Type I. Using

G(a, x′) = 0, (18.155)
𝜕G(a, x′)

𝜕x′ = 0, (18.156)

we write

Cy1(a) + Dy2(a) = 0, (18.157)
Cy′1(a) + Dy′2(a) = 0. (18.158)

Since W (x′) ≠ 0, we get C = D = 0, thus the Green’s function becomes

G(x′, x) = −Θ(x − x′)
[y1(x)y2(x′) − y2(x)y1(x′)]

p0(x′)W (x′)
, (18.159)

where Θ(x − x′) is the unit step function.
As an example, consider

d2y
dx2 + k2

0y(x) = f (x), y(0) = y′(0) = 0. (18.160)
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The two linearly independent solutions are y1(x) = cos(k0x) and y2(x) =
sin(k0x). With the Wronskian determined as W (x) = k0, Eq. (18.159) allows us
to write the Green’s function as

G(x′, x) = Θ(x − x′)
sin[k0(x − x′)]

k0
, (18.161)

which agrees with our earlier result [Eq. (18.115)].

Type II. We now use the two point boundary condition:
G(a, x′) = 0, (18.162)
G(b, x′) = 0 (18.163)

to write
Cy1(a) + Dy2(a) = 0, (18.164)

Cy1(b) + Dy2(b) −
[y1(b)y2(x′) − y2(b)y1(x′)]

p0(x′)W (x′)
= 0. (18.165)

Simultaneous solution of these yield the Green’s function

G(x, x′) =
[y1(x′)y2(a) − y1(a)y2(x′)][y1(b)y2(x) − y2(b)y1(x)]

[y1(b)y2(a) − y1(a)y2(b)]p0(x′)W (x′)
, x − x′ > 0,

(18.166)

G(x, x′) =
[y1(x)y2(a) − y1(a)y2(x)][y1(b)y2(x′) − y2(b)y1(x′)]

[y1(b)y2(a) − y1(a)y2(b)]p0(x′)W (x′)
, x − x′ < 0.

(18.167)

The second solution: In constructing Green’s functions by using the above
formulas, we naturally need two linearly independent solutions and also the
Wronskian of the solutions. The nice thing about the Wronskian in these cases
is that it can be obtained from the differential operator:

£ = p0(x)
d2

dx2 + p1(x)
d

dx
+ p2(x), x ∈ [a, b]. (18.168)

Let us now write the derivative of the Wronskian:
dW (x)

dx
= d

dx
[y1(x)y′2(x) − y2(x)y′1(x)] = y1(x)y′′2 (x) − y′′1 (x)y2(x),

(18.169)
where [

p0(x)
d2

dx2 + p1(x)
d

dx
+ p2(x)

]
yi(x) = 0, i = 1 or 2. (18.170)

We rewrite the differential equation, £y(x) = 0, as
d2yi

dx2 + P(x)
dyi

dx
+ Q(x)yi(x) = 0, i = 1 or 2, (18.171)
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to get

y1y′′2 − y′′1 y2 = −P(x)[y1y′2 − y2y′1] = −P(x)W (x), (18.172)

thus dW∕dx = −P(x)W (x). Hence, the Wronskian can be obtained from the
differential operator, £, by the integral

W (x) = e− ∫ x
a dx′P(x′). (18.173)

Furthermore, by using the Wronskian and a special solution, we can also obtain
a second solution. If we write W (x) as

W (x) = y1y′2 − y2y′1 = y2
1

d
dx

(y2

y1

)
, (18.174)

we obtain

y2(x) = y1(x)∫
x

a

W (x′)
y2

1(x′)
dx′. (18.175)

In other words, a second solution, y2, can be obtained from a given solution, y1,
and the Wronskian, W .

18.2 Time-Independent Green’s Functions in Three
Dimensions

18.2.1 Helmholtz Equation in Three Dimensions

The Helmholtz equation in three dimensions is given as

(−→∇
2
+ k2

0)𝜓(−→r ) = F(−→r ). (18.176)

We now look for a Green’s function satisfying

(−→∇
2
+ k2

0)G(−→r ,−→r ′) = 𝛿(−→r − −→r ′). (18.177)

We multiply the first equation by G(−→r ,−→r ′) and the second by 𝜓(−→r ) and then
subtract, and integrate the result over the volume V to get

−𝜓(−→r ′) = ∫ ∫ ∫V
[G(−→r ,−→r ′)−→∇

2
𝜓(−→r ) − 𝜓(−→r )−→∇

2
G(−→r ,−→r ′)] d3−→r

− ∫ ∫ ∫V
F(−→r )G(−→r ,−→r ′) d3−→r . (18.178)

Using the Green’s theorem:

∫ ∫ ∫V
(F−→∇

2
G − G−→∇

2
F) d3r⃗ = ∫ ∫S

(F−→∇G − G−→∇F) ⋅ n̂ ds, (18.179)
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where S is a closed surface enclosing the volume V with the outward unit nor-
mal n̂, we obtain

𝜓(−→r ′) = ∫ ∫ ∫V
F(−→r )G(−→r ,−→r ′) d3−→r (18.180)

+ ∫ ∫S
[𝜓(−→r )−→∇G(−→r ,−→r ′) − G(−→r ,−→r ′)−→∇𝜓(−→r )] ⋅ n̂ds.

Interchanging the primed and the unprimed variables and assuming that the
Green’s function is symmetric in anticipation of the corresponding boundary
conditions to be imposed later, we obtain the following remarkable formula:

𝜓(−→r ) = ∫ ∫ ∫V ′
G(−→r ,−→r ′)F(−→r ′) d3−→r ′

+∫ ∫S′
[−→∇

′
G(−→r ,−→r ′)𝜓(−→r ′)] ⋅ n̂ds′

−∫ ∫S′
G(−→r ,−→r ′)−→∇

′
𝜓(−→r ′) ⋅ n̂ds′.

(18.181)

Boundary conditions: The most frequently used boundary conditions are:

i) Dirichlet boundary conditions, where G is zero on the boundary.
ii) Neumann boundary conditions, where the normal gradient of G on the sur-

face is zero:
−→∇G ⋅ n̂|boundary = 0. (18.182)

iii) General boundary conditions:
−→∇G + −→

𝑣 (−→r ′)G|boundary = 0, (18.183)

where −→
𝑣 (−→r ′) is a function of the boundary point −→r ′.

For any one of these cases, the Green’s function is symmetric and the surface
term in the above equation vanishes, thus giving

𝜓(−→r ) = ∫ ∫ ∫V
G(−→r ,−→r ′)F(−→r ′) d3−→r ′

. (18.184)

18.2.2 Green’s Functions in Three Dimensions

Consider the inhomogeneous equation

H𝜓(−→r ) = F(−→r ), (18.185)
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where H is a linear differential operator. H has a complete set {𝛟𝜆(
−→r )} of

orthonormal eigenfunctions, which are determined by the eigenvalue equation
H𝜙𝜆(

−→r ) = 𝜆𝛟𝜆(
−→r ), where 𝜆 stands for the eigenvalues and the eigenfunctions

satisfy the homogeneous boundary conditions given in the previous section.
We need a Green’s function satisfying the equation HG(−→r ,−→r ′) = 𝛿(−→r − −→r ′).
Expanding Ψ(−→r ) and F(−→r ) in terms of this complete set of eigenfunctions, we
write

Ψ(−→r ) =
∑
𝜆

a𝜆𝛟𝜆(
−→r ), a𝜆 = ∫ ∫ ∫V

𝛟∗
𝜆
(−→r )Ψ(−→r ) d3−→r , (18.186)

F(−→r ) =
∑
𝜆

c𝜆𝛟𝜆(
−→r ), c𝜆 = ∫ ∫ ∫V

𝛟∗
𝜆
(−→r )F(−→r ) d3−→r . (18.187)

Substituting these into Eq. (18.185), we obtain a𝜆 = c𝜆∕𝜆. Using a𝜆 and the
explicit form of c𝜆 [Eqs. (18.186) and (18.187)], we can write Ψ(−→r ) as

Ψ(−→r ) = ∫ ∫ ∫V

[∑
𝛌

𝛟𝛌(
−→r )𝛟∗

𝛌(
−→r ′)

𝜆

]
F(−→r ′) d3−→r ′

, (18.188)

which gives the Green’s function

G(−→r ,−→r ′) =
∑
𝛌

𝛟𝛌(
−→r )𝛟∗

𝛌(
−→r ′)

𝜆
. (18.189)

This Green’s function can easily be generalized to the equation

(H − 𝜆0)Ψ(
−→r ) = F(−→r ), (18.190)

for the operator (H − 𝜆0) as

G(−→r ,−→r ′) =
∑
𝛌

𝛟𝛌(
−→r )𝛟∗

𝛌(
−→r ′)

𝜆 − 𝜆0
. (18.191)

As an example, we find the Green’s function for the three-dimensional
Helmholtz equation

(−→∇
2
+ k2

0)𝜓(−→r ) = F(−→r ) (18.192)

in a rectangular region bounded by six planes:

⎧⎪⎨⎪⎩
x = 0, x = a,
y = 0, y = b,
z = 0, z = c

⎫⎪⎬⎪⎭ (18.193)



704 18 Green’s Functions

and with the homogeneous Dirichlet boundary conditions. The corresponding
eigenvalue equation is −→∇

2
𝛟lmn(

−→r ) + k2
lmn𝛟lmn(

−→r ) = 0. The normalized eigen-
functions are easily obtained as

𝛟lmn(
−→r ) = 8

abc
sin

(
l𝜋x
a

)
sin

(m𝜋y
b

)
sin

(n𝜋z
c

)
, (18.194)

where the eigenvalues are

k2
lmn = l2𝜋2

a2 + m2𝜋2

b2 + n2𝜋2

c2 , l,m, n = positive integer. (18.195)

Using these eigenfunctions [Eq. (18.194)], we can now write the Green’s func-
tion as

G(−→r ,−→r ′) =
∑
lmn

𝛟lmn(
−→r )𝛟∗

lmn(
−→r ′)

k2
0 − k2

lmn

. (18.196)

18.2.3 Green’s Function for the Laplace Operator

Green’s function for the Laplace operator, −→∇
2
, satisfies the differential equation

−→∇
2
G(−→r ,−→r ′) = 𝛿(−→r ,−→r ′). Using spherical polar coordinates, this can be written

as
−→∇

2
G(−→r ,−→r ′) = 𝛿(r − r′)

r′2
𝛿(cos 𝜃 − cos 𝜃′)𝛿(𝜙 − 𝜙′) (18.197)

= 𝛿(r − r′)
r′2

∞∑
l=0

m=l∑
m=−l

Y ∗m
l (𝜃′, 𝜙′)Y m

l (𝜃, 𝜙), (18.198)

where we have used the completeness relation of the spherical harmonics.
For the Green’s function inside a sphere, we use the boundary conditions
G(0,−→r ′) = finite and G(a,−→r ′) = 0. In spherical polar coordinates, we can
separate the radial and the angular parts of the Green’s function as

G(−→r ,−→r ′) =
∞∑

l=0

m=l∑
m=−l

gl(r, r′)Y ∗m
l (𝜃′, 𝜙′)Y m

l (𝜃, 𝜙). (18.199)

We now substitute Eq. (18.199) into Eq. (18.198) to find the differential equation
that gl(r, r′) satisfies:

1
r

d2

dr2 [rgl(r, r′)] −
l(l + 1)

r2 gl(r, r′) =
1

r′2
𝛿(r − r′). (18.200)

A general solution of the homogeneous equation:
1
r

d2

dr2 [rgl(r, r′)] −
l(l + 1)

r2 gl(r, r′) = 0, (18.201)
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can be obtained by trying a solution as c0rl + c1r−(l+1). We can now construct
the radial part of the Green’s function for the inside of a sphere by finding the
appropriate u and the 𝑣 solutions [Eq. (18.16)] as

gl(r, r′) =
rlr′l

(2l + 1)a2l+1

{
[1 − (a∕r′)2l+1], r < r′,
[1 − (a∕r)2l+1], r > r′.

(18.202)

Now the complete Green’s function can be written by substituting this result
to Eq. (18.199).

18.2.4 Green’s Functions for the Helmholtz Equation

We now consider the operator H0 = −→∇
2
+ 𝜆 in the continuum limit. Using H0,

we can write the following differential equation:

H0Ψ(
−→r ) = F(−→r ). (18.203)

Let us assume that the Fourier transforms of Ψ(−→r ) and F(r⃗) exist:

F̂(
−→
k ) = 1

(2𝜋)3∕2 ∫ ∫ ∫V
e−i

−→
k ⋅−→r F(−→r ) d3−→r , (18.204)

Ψ̂(
−→
k ) = 1

(2𝜋)3∕2 ∫ ∫ ∫V
e−i

−→
k ⋅−→r Ψ(−→r ) d3−→r . (18.205)

Taking the Fourier transform of Eq. (18.203), we get

1
(2𝜋)3∕2 ∫ ∫ ∫V

e−i
−→
k ⋅−→r −→∇

2
Ψ(−→r ) d3−→r + 𝜆Ψ̂(

−→
k ) = F̂(

−→
k ). (18.206)

Using the Green’s theorem [Eq. (18.179)], we can write the first term in Eq.
(18.206) as

1
(2𝜋)3∕2 ∫ ∫ ∫V

e−i
−→
k ⋅−→r −→∇

2
Ψ(−→r ) d3−→r = 1

(2𝜋)3∕2 ∫ ∫ ∫V
Ψ(−→r )−→∇

2
e−i

−→
k ⋅−→r d3−→r

(18.207)

+ 1
(2𝜋)3∕2 ∫ ∫S

(e−i
−→
k ⋅−→r −→∇Ψ(−→r ) − Ψ(−→r )−→∇e−i

−→
k ⋅−→r ) ⋅ n̂ ds,

where S is a surface with an outward unit normal n̂ enclosing the volume V .
We now take our region of integration as a sphere of radius R and consider the
limit R → ∞. In this limit, the surface term becomes

1
(2𝜋)3∕2 lim

R→∞∫ ∫S
(e−i

−→
k ⋅−→r −→∇Ψ(−→r ) − Ψ(−→r )−→∇e−i

−→
k ⋅−→r ) ⋅ n̂ ds (18.208)

= 1
(2𝜋)3∕2 lim

R→∞
R2

{
∫ ∫S

[
e−i

−→
k ⋅−→r dΨ

dr
− Ψd (e−i

−→
k ⋅−→r )

dr

]
dΩ

}
r=R

,



706 18 Green’s Functions

where n̂ = êr and dΩ = sin 𝜃d𝜃d𝜙. If the functionΨ(−→r ) goes to zero sufficiently
rapidly as |r⃗| → ∞, that is, when Ψ(−→r ) goes to zero faster than 1∕r, the surface
term vanishes, thus Eq. (18.207) reduces to

1
(2𝜋)3∕2 ∫ ∫ ∫V

e−i
−→
k ⋅−→r −→∇

2
Ψ(−→r ) d3−→r = −k2Ψ̂(

−→
k ). (18.209)

Consequently, Eq. (18.206) becomes

Ψ̂(
−→
k ) = F̂(

−→
k )

(−k2 + 𝜆)
. (18.210)

In this equation, we have to treat the cases 𝜆 > 0 and 𝜆 ≤ 0 separately.

Case I. 𝜆 ≤ 0:
In this case, we can write 𝜆 = −𝜅2; thus the denominator in

Ψ̂(
−→
k ) = − F̂(

−→
k )

k2 + 𝜅2 (18.211)

never vanishes. Taking the inverse Fourier transform of this, we write the gen-
eral solution of Eq. (18.203) as

Ψ(−→r ) = 𝜉(−→r ) − 1
(2𝜋)3∕2 ∫ ∫ ∫

F̂(
−→
k )

k2 + 𝜅2 ei
−→
k ⋅−→r d3−→k , (18.212)

where 𝜉(−→r ) denotes the solution of the homogeneous equation, H0𝜉(
−→r ) =

(−→∇
2
− 𝜅2)𝜉(−→r ) = 0. Defining a Green’s function G(−→r ,−→r ′) as

G(−→r ,−→r ′) = − 1
(2𝜋)3 ∫ ∫ ∫

ei
−→
k ⋅(−→r −−→r ′)

k2 + 𝜅2 d3−→k , (18.213)

we can express the general solution of Eq. (18.203) as

Ψ(−→r ) = 𝜉(−→r ) + ∫ ∫ ∫V
G(−→r ,−→r ′)F(−→r ′) d3−→r , (18.214)

The integral in the Green’s function can be evaluated by using complex contour
integral techniques. Taking the

−→
k vector as

−→
k = kr̂, r̂ =

−→r − −→r ′

|−→r − −→r ′| , (18.215)

we write

I = ∫ ∫ ∫
ei
−→
k ⋅(−→r −−→r ′)

k2 + 𝜅2 d3−→k , (18.216)
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where d3−→k = k2 sin 𝜃dkd𝜃d𝜙. We can take the 𝜙 and the 𝜃 integrals immedi-
ately, thus obtaining

I = 2𝜋 ∫
∞

0

kdk
k2 + 𝜅2 .

[
eik|−→r −−→r ′| − e−ik|−→r −−→r ′|

i|−→r − −→r ′|
]

(18.217)

= 2𝜋
i|−→r − −→r ′| ∫

∞

−∞
dk keik|−→r −−→r ′|

k2 + 𝜅2 . (18.218)

Using Jordan’s lemma (Section 12.7), we can show that the integral over the cir-
cle in the upper half complex k-plane goes to zero as the radius goes to infinity;
thus we obtain I as

I = 2𝜋
i|−→r − −→r ′|2𝜋i

∑
k>0

residues of

{
keik|−→r −−→r ′|
k2 + 𝜅2

}
(18.219)

= 4𝜋2|−→r − −→r ′| . i𝜅e−𝜅|−→r −−→r ′|
2i𝜅

= 2𝜋2|−→r − −→r ′|e−𝜅|−→r −−→r ′|. (18.220)

Using this in Eq. (18.213), we obtain the Green’s function as

G(−→r ,−→r ′) = − 1
4𝜋

e−𝜅|−→r −−→r ′||−→r − −→r ′| . (18.221)

To complete the solution [Eq. (18.214)], we also need 𝜉(−→r ), which is easily
obtained as

𝜉(−→r ) = C0e±𝜅1xe±𝜅2ye±𝜅3z, 𝜅2 = 𝜅2
1 + 𝜅2

2 + 𝜅2
3 . (18.222)

Because this solution diverges for |r| → ∞, for a finite solution everywhere we
set C0 = 0 and write the general solution as

Ψ(−→r ) = − 1
4𝜋∫ ∫ ∫V

e−𝜅|−→r −−→r ′||−→r − −→r ′|F(−→r ′) d3−→r ′
. (18.223)

In this solution, if F(−→r ′) goes to zero sufficiently rapidly as |r′| → ∞, or if F(−→r ′)
is zero beyond some |r′| = r0, we see that for large r, Ψ(−→r ) decreases exponen-
tially as

Ψ(−→r ) → C e−𝜅r

r
. (18.224)

This is consistent with the neglect of the surface term in our derivation in
Eq. (18.208).
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Example 18.8 Green’s function for the Poisson equation
Using the above Green’s function [Eq. (18.221)] with 𝜅 = 0, we can now convert
the Poisson equation, −→∇

2
𝜙(−→r ) = −4𝜋𝜌(−→r ), into an integral equation. In this

case, 𝜆 = 0; thus the solution is given as

𝜙(−→r ) = −4𝜋∫ ∫ ∫V
G(−→r ,−→r ′)𝜌(−→r ′) d3−→r ′

, (18.225)

where

G(−→r ,−→r ′) = 1
4𝜋

1|−→r − −→r ′| . (18.226)

Example 18.9 Green’s function for the Schrödinger equation – −E < 0
Another application for Green’s functions [Eq. (18.221)] is the time-
independent Schrödinger equation:(

−→∇
2
+ 2mE

ℏ2

)
Ψ(−→r ) = 2m

ℏ2 V (−→r )Ψ(−→r ). (18.227)

For central potentials and bound states, (E < 0) 𝜅2 is given as 𝜅2 = −2m|E|∕ℏ2.
Thus the solution of Eq. (18.227) can be written as

Ψ(−→r ) = − m
2𝜋ℏ2 ∫ ∫ ∫V

e−𝜅|−→r −−→r ′||−→r − −→r ′|V (−→r ′)Ψ(−→r ′) d3−→r ′
. (18.228)

This is also the integral equation version of the time-independent Schrödinger
equation for bound states.

Case II. 𝜆 > 0 In this case, the denominator in the definition [Eq. (18.210)]
of Ψ̂(k⃗) has zeroes at k = ±

√
𝜆. To eliminate this problem, we add a small imag-

inary piece, i𝜀, to 𝜆 as 𝜆 = (q ± i𝜀), 𝜀 > 0. Substituting this in Eq. (18.210), we
get

Ψ̂±(
−→
k ) = − F̂(

−→
k )

k2 − (q ± i𝜀)2 , (18.229)

which is now well defined everywhere on the real k-axis. Taking the inverse
Fourier transform of this, we get

Ψ(−→r ) = 𝜉(−→r ) + ∫ ∫ ∫V
G±(

−→r ,−→r ′)F(−→r ′) d3−→r ′
, (18.230)

G±(
−→r ,−→r ′) = − 1

(2𝜋)3 ∫ ∫ ∫
ei
−→
k ⋅(−→r −−→r ′)

k2 − (q ± i𝜀)2 d3−→k . (18.231)

We can now evaluate this integral in the complex k-plane using the complex
contour integral theorems and take the limit 𝜀 → 0 to obtain the final result.
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Because our integrand has two isolated simple poles at k = (q ± i𝜀), we use the
Cauchy integral theorem (Chapter 12). However, as before, we first take the 𝜃

and the 𝜙 integrals to write

G±(
−→r ,−→r ′) = − 1

8𝜋2i|−→r − −→r ′| ∫
∞

−∞
k dk

[
eik|−→r −−→r ′|

(k − q ∓ i𝜀)(k + q ± i𝜀)

− e−ik|−→r −−→r ′|
(k − q ∓ i𝜀)(k + q ± i𝜀)

]
. (18.232)

For the first integral, we close the contour in the upper half complex k-plane
and get

∫
∞

−∞
k dk eik|−→r −−→r ′|

(k − q ∓ i𝜀)(k + q ± i𝜀)
= 𝜋ie±iq|−→r −−→r ′|−𝜀|−→r −−→r ′|. (18.233)

Similarly, for the second integral, we close our contour in the lower half complex
k-plane to get

∫
∞

−∞
k dk e−ik|−→r −−→r ′|

(k − q ∓ i𝜀)(k + q ± i𝜀)
= −𝜋ie±iq|−→r −−→r ′|−𝜀|−→r −−→r ′|. (18.234)

Combining these, we obtain the Green’s function:

G±(
−→r ,−→r ′) = − 1

4𝜋
e±iq|−→r −−→r ′||−→r − −→r ′|e−𝜀|−→r −−→r ′|, (18.235)

and the solution as

Ψ±(
−→r ) = 𝜉(−→r ) − 1

4𝜋∫ ∫ ∫V

ei(±q+i𝜖)|−→r −−→r ′||−→r − −→r ′| F(−→r ′) d3−→r ′
. (18.236)

The choice of the± sign is very important. In the limit as |−→r | → ∞, this solution
behaves as

Ψ±(
−→r ) → 𝜉(−→r ) + C e±iqr

r
, (18.237)

where C is a constant independent of r, but it could depend on 𝜃 and 𝜙. The
± signs physically correspond to the incoming and outgoing waves. We now
look at the solutions of the homogeneous equation (−→∇

2
+ q2)𝜉(−→r ) = 0, which

are now given as plane waves, ei−→q ⋅−→r ; thus the general solution becomes

Ψ±(
−→r ) = A

(2𝜋)3∕2 ei−→q ⋅−→r − 1
4𝜋∫ ∫ ∫V

ei(±q+i𝜀)|−→r −−→r ′||−→r − −→r ′| F(−→r ′) d3−→r ′
. (18.238)

The constant A and the direction of the −→q vector come from the initial
conditions.
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Example 18.10 Green’s function for the Schrödinger equation – −E ≥ 0
An important application of the 𝜆 > 0 case is the Schrödinger equation for the
scattering problems, that is, for states with E ≥ 0. Using the Green’s function,
we have found [Eq. (18.235)] and we can write the Schrödinger equation,(

−→∇
2
+ 2mE

ℏ2

)
Ψ(−→r ) = 2m

ℏ2 V (−→r )Ψ(−→r ), (18.239)

as an integral equation for the scattering states as

Ψ±(
−→r ) = A

(2𝜋)3∕2 ei−→q i ⋅
−→r − m

2𝜋ℏ2 ∫ ∫ ∫V

e±iqi|−→r −−→r ′||−→r − −→r ′| V (−→r ′)Ψ±(
−→r ′) d3−→r ′

.

(18.240)

The magnitude of −→q i is given as qi =
√

2mE∕ℏ2. Equation (18.240) is known as
the Lippmann–Schwinger equation. For bound state problems, it is easier to
work with the differential equation version of the Schrödinger equation; hence,
it is preferred. However, for the scattering problems, the Lippmann–Schwinger
equation is the starting point of modern quantum mechanics. Note that we
have written the result free of 𝜀 in anticipation that the 𝜀 → 0 limit will not
cause any problems.

18.2.5 General Boundary Conditions and Electrostatics

In the problems we have discussed so far, the Green’s function and the
solution were required to satisfy the same homogeneous boundary conditions
(Section 18.2.2). However, in electrostatics we usually deal with cases in
which we are interested in finding the potential of a charge distribution in the
presence of conducting surfaces held at constant potentials. The question we
now ask is: Can we still use the Green’s function found from the solution of

£G(−→r ,−→r ′) = 𝛿(−→r − −→r ′) (18.241)

with the homogeneous boundary conditions? To answer this question, we start
with a general second-order linear operator of the form

£ = −→∇ ⋅ [p(−→r )−→∇] + q(r), (18.242)

which covers a wide range of interesting cases. The corresponding inhomoge-
neous differential equation is now given as

£Φ(−→r ) = F(−→r ), (18.243)

where the solution, Φ(−→r ), is required to satisfy more complex boundary condi-
tions than the usual homogeneous boundary conditions that the Green’s func-
tion is required to satisfy. Let us first multiply Eq. (18.243) with G(−→r ,−→r ′) and
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Eq. (18.241) with Φ(−→r ), and then subtract and integrate the result over V to
write

Φ(−→r ′) = ∫ ∫ ∫V
F(−→r )G(−→r ,−→r ′)d3−→r (18.244)

+ ∫ ∫ ∫V
[Φ(−→r )£G(−→r ,−→r ′) − G(−→r ,−→r ′)£Φ(−→r )] d3−→r .

We now write £ explicitly and use the following property of the −→∇ operator:

−→∇ ⋅ [f (−→r )−→𝑣 (−→r )] = −→∇f (−→r ) ⋅ −→𝑣 (−→r ) + f (−→r )−→∇ ⋅ −→𝑣 (−→r ), (18.245)

to write

Φ(−→r ′) = ∫ ∫ ∫V
F(−→r )G(−→r ,−→r ′) d3−→r (18.246)

+ ∫ ∫ ∫V

−→∇ ⋅ [p(−→r )Φ(−→r )−→∇G(−→r ,−→r ′) − G(−→r ,−→r ′)p(−→r )−→∇Φ(−→r )]d3−→r .

Using the fact that for homogeneous boundary conditions the Green’s function
is symmetric, we interchange −→r ′ and −→r :

Φ(−→r ) = ∫ ∫ ∫V
F(−→r ′)G(−→r ,−→r ′) d3−→r ′ (18.247)

+ ∫ ∫ ∫V

−→∇
′
⋅ [p(−→r ′)Φ(−→r ′)−→∇

′
G(−→r ,−→r ′) − G(−→r ,−→r ′)p(−→r ′)−→∇

′
Φ(−→r ′)] d3−→r .

We finally use the Gauss theorem to write

Φ(−→r ) = ∫ ∫ ∫V
F(−→r ′)G(−→r ,−→r ′) d3−→r ′ (18.248)

+ ∫ ∫S
p(−→r ′)[Φ(−→r ′)−→∇

′
G(−→r ,−→r ′) − G(−→r ,−→r ′)−→∇

′
Φ(−→r ′)] ⋅ n̂ds′,

where n̂ is the outward unit normal to the surface S bounding the volume
V . If we impose the same homogeneous boundary conditions on Φ(−→r )
and G(−→r ,−→r ′), the surface term vanishes and we reach the conclusions of
Section 18.2.2.

In general, in order to evaluate the surface integral, we have to know the func-
tionΦ(−→r ) and its normal derivative on the surface. As boundary conditions, we
can fix the value ofΦ(−→r ), its normal derivative, or even their linear combination
on the surface S, but not Φ(−→r ) and its normal derivative at the same time. In
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practice, this difficulty is circumvented by choosing the Green’s function such
that it vanishes on the surface. In such cases, the solution becomes

Φ(−→r ) = ∫ ∫ ∫V
F(−→r ′)G(−→r ,−→r ′)d3−→r + ∫ ∫S

[p(−→r ′)Φ(−→r ′)−→∇
′
G(−→r ,−→r ′)] ⋅ n̂ds′.

(18.249)
As an example, consider electrostatics problems where we have⎧⎪⎪⎨⎪⎪⎩

F(−→r ) = −4𝜋𝜌(−→r ),

p(−→r ) = 1,

q(−→r ) = 0.

⎫⎪⎪⎬⎪⎪⎭
(18.250)

The potential inside a region bounded by a conducting surface held at constant
potential V0 is now given as

Φ(−→r ) = −∫V
4𝜋𝜌(−→r )G(−→r ,−→r ′) d3−→r ′ + V0∮S

−→∇
′
G(−→r ,−→r ′) ⋅ n̂ ds′,

(18.251)

where G(−→r ,−→r ′) comes from the solution of Eq. (18.241) subject to the (homo-
geneous) boundary condition, which requires it to vanish on the surface. The
geometry of the surface bounding the volume V could in principle be rather
complicated and Φ(−→r ′) in the surface integral does not have to be a constant.

Similarly, if we fix the value of the normal derivative −→∇Φ(−→r ) ⋅ n̂ on the sur-
face, then we use a Green’s function with a normal derivative vanishing on the
surface. Now the solution becomes

Φ(−→r ) = ∫ ∫ ∫V
F(−→r ′)G(−→r ,−→r ′) d3−→r ′

− ∫ ∫S
p(−→r ′)[G(−→r ,−→r ′)−→∇

′
Φ(−→r ′)] ⋅ n̂ ds′. (18.252)

18.2.6 Helmholtz Equation in Spherical Coordinates

We now consider the open problem for the Helmholtz equation in spherical
coordinates with an inhomogeneous term:

−→∇
2
Ψ(r, 𝜃, 𝜙) + k2Ψ(r, 𝜃, 𝜙) = F(r), r ∈ [0,∞]. (18.253)
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In terms of spherical harmonics, the general solution can be written as
Ψ(r, 𝜃, 𝜙) =

∑
lmRl(kr)Ylm(𝜃, 𝜙). Substituting this into the homogeneous

Helmholtz equation, we obtain the differential equation that Rl(kr) satisfies as

d2Rl

dr2 + 2
r

dRl

dr
+

[
k2 − l(l + 1)

r2

]
Rl(kr) = 0. (18.254)

Substituting Rl(kr) = yl(kr)∕kr, we obtain

y′′l (x) +
[

1 − l(l + 1)
x2

]
yl(x) = 0, (18.255)

where x = kr. The two linearly independent solutions can be written in terms
of Bessel functions, Jn,Nn, as

Rl(kr) =
yl(kr)

kr
=

⎧⎪⎪⎨⎪⎪⎩
jl(kr) =

√
𝜋

2
Jl+1∕2(kr)√

kr
,

nl(kr) =
√

𝜋

2
Nl+1∕2(kr)√

kr
.

(18.256)

For large r, these solutions behave as

Rl(kr) = lim
r→∞

⎧⎪⎪⎨⎪⎪⎩
jl(kr)

r→∞
−−−−→

cos(kr − (l + 1) 𝜋
2
)

kr
,

nl(kr)
r→∞
−−−−→

sin(kr − (l + 1) 𝜋
2
)

kr
.

(18.257)

Using Eqs. (18.153) and (18.154), we can now construct the radial Green’s
function as

gl(r, r′) = Cjl(kr) + Dnl(kr) −
jl(kr)nl(kr′) − nl(kr)jl(kr′)

p0(r)W (r′)
, r − r′ > 0,

(18.258)
gl(r, r′) = Cjl(kr) + Dnl(kr), r − r′ < 0. (18.259)

For a regular solution at the origin, we set D = 0. We evaluate the Wronskian,
W (r), by using Eq. (18.173) as dW∕W = −P(r) dr = −(2∕r) dr, which yields
W (r) = constant ∕r2. To evaluate the constant, we use the asymptotic forms of
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the Bessel functions:

lim
r→∞

W (kr) = lim
r→∞

||||||
jl(kr) nl(kr)
j′l(kr) n′

l(kr)

|||||| (18.260)

=

|||||||||
cos(kr − (l + 1) 𝜋

2
)

kr
sin(kr − (l + 1) 𝜋

2
)

kr
−k sin(kr − (l + 1) 𝜋

2
)

kr
k cos(kr − (l + 1) 𝜋

2
)

kr

|||||||||
(18.261)

= k
(kr)2 = 1

kr2 , (18.262)

thus W (r) = 1∕kr2. Since p0(x) = 1 [Eq. (18.254)], we write

gl(r, r′) = Cjl(kr) + Dnl(kr) −
jl(kr)nl(kr′) − nl(kr)jl(kr′)

(1∕kr′2)
, r − r′ > 0,

(18.263)
gl(r, r′) = Cjl(kr) + Dnl(kr), r − r′ < 0. (18.264)

For a solution regular at the origin, we set D = 0:

gl(r, r′) = Cjl(kr) −
jl(kr)nl(kr′) − nl(kr)jl(kr′)

(1∕kr′2)
, r − r′ > 0, (18.265)

gl(r, r′) = Cjl(kr), r − r′ < 0. (18.266)

To determine the remaining constant, we demand that as r → ∞, we have a
spherically outgoing wave, that is,

lim
r→∞

gl(r, r′) →
eikr

r
. (18.267)

This implies the relation
kr′2jl(kr′)

[C − kr′2nl(kr′)]
= i, (18.268)

which gives C = −ikr′2h(1)(kr′). Substituting this into the expression for the
Green’s function [Eqs. (18.265) and (18.266)], we obtain, after some algebra,

gl(r, r′) = −ikr′2h(1)
l (kr)jl(kr′), r − r′ > 0, (18.269)

gl(r, r′) = −ikr′2h(1)
l (kr′)jl(kr), r − r′ < 0. (18.270)

We usually write this as

gl(r, r′) = −ikr′2h(1)
l (kr>)jl(kr<). (18.271)

In Section 18.2.4, using Fourier transforms, we have solved the Helmholtz
equation:

−→∇
2
Ψ(−→r ) + k2Ψ(−→r ) = F(−→r ), r ∈ [0,∞] (18.272)
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as

Ψ(−→r ) = 𝜉(−→r ) + ∫ d−→r G(−→r ,−→r ′)F(−→r ′), (18.273)

where 𝜉(−→r ) is the solution of the homogeneous equation−→∇
2
Ψ(−→r ) + k2Ψ(−→r ) = 0

and the Green’s function G(−→r ,−→r ′) is given as

G(−→r ,−→r ′) = − 1
4𝜋

eik|−→r −−→r ′|
|−→r −−→r ′| . (18.274)

We now expand F(−→r ′) as F(−→r ′) =
∑

l,mFl(r′)Ylm(𝜃′, 𝜙′), where the angular part
is separated and then expanded in terms of spherical harmonics. Since G(−→r ,−→r ′)
depends only on |−→r − −→r ′|, we can write its expansion as

G(−→r ,−→r ′) =
∞∑

l′′=0
Cl′′ (r, r′)Pl′′ (cos 𝜃12), (18.275)

where 𝜃12 is the angle between −→r and −→r ′. Using the addition theorem of spher-
ical harmonics [Eq. (10.360)]:

m=l∑
m=−l

Y ∗
lm(𝜃1, 𝜙1)Ylm(𝜃2, 𝜙2) =

2l + 1
4𝜋

Pl(cos 𝜃12), (18.276)

we can write this as

G(−→r ,−→r ′) =
∞∑

l′′=0
Cl′′ (r, r′)

l′′∑
m′′=−l′′

4𝜋
(2l′′ + 1)

Y ∗
l′′m′′ (𝜃′, 𝜙′)Yl′′m′′ (𝜃, 𝜙),

(18.277)

which allows us to write the solution as

Ψ(−→r ) = 𝜉(−→r ) +
[
∫

2𝜋

0 ∫
𝜋

0
dΩ′ ∫

∞

0
dr′ r′2 (18.278)

×
∑

l′′ ,m′′,l,m

4𝜋
(2l′′ + 1)

Cl′′ (r, r′)Y ∗
l′′m′′ (𝜃′, 𝜙′)Fl(r′)Ylm(𝜃′, 𝜙′)

]
Yl′′m′′ (𝜃, 𝜙).

We can also expand the solution Ψ(−→r ) and 𝜉(−→r ) to write∑
l,m

Rl(kr)Ylm(𝜃, 𝜙) =
∑
l,m

𝜉(r)Ylm(𝜃, 𝜙) (18.279)

+
∑
l,m

[
4𝜋

(2l + 1) ∫
∞

0
dr′ r′2Cl(r, r′)Fl(r′)

]
Ylm(𝜃, 𝜙),

where the orthogonality relation, ∫ 2𝜋
0 d𝜑 ∫ 𝜋

0 d𝜃 sin 𝜃Y m′∗
l′ (𝜃, 𝜙)Y m

l (𝜃, 𝜙) =
𝛿m′

m 𝛿l′
l , of spherical harmonics [Eq. (1.201)] have been used. Comparing both
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sides of Eq. (18.279) gives

Rl(kr) = 𝜉(r) + 4𝜋
(2l + 1) ∫

∞

0
dr′ r′2Cl(r, r′)Fl(r′). (18.280)

To get the relation between Cl(r, r′) and gl(r, r′), we now compare this with

Rl(kr) = 𝜉(r) + ∫
∞

0
dr′gl(r, r′)Fl(r′) (18.281)

to get

4𝜋
(2l + 1)

r′2Cl(r, r′) = gl(r, r′). (18.282)

Using Eq. (18.271), this becomes

4𝜋
(2l + 1)

r′2Cl(r, r′) = −ikr′2h(1)
l (kr>)jl(kr<). (18.283)

Finally, substituting this into Eq. (18.280) and with Eqs. (18.274) and (18.277),
we obtain a formula extremely useful in applications:

− 1
4𝜋

eik|−→r −−→r ′|
|−→r −−→r ′| = −ik

∞∑
l=0

h(1)
l (kr>)jl(kr<)

l∑
m=−l

Y ∗
lm(𝜃

′, 𝜙′)Ylm(𝜃, 𝜙).

(18.284)

18.2.7 Diffraction from a Circular Aperture

In the previous problems, we have considered the entire space. If there are
some black surfaces that restrict the region available to us, we use the formula
[Eq. (18.248)]:

Ψ(−→r ) = ∫V
d−→r ′G(−→r ,−→r ′)F(−→r ′) (18.285)

+
k∑

i=1
∫ ds′i n̂′

i ⋅ [Ψ(
−→r ′)−→∇

′
G(−→r ,−→r ′) − G(−→r ,−→r ′)−→∇

′
Ψ(−→r ′)].

Let us now apply this formula to diffraction from a circular aperture, where a
plane wave, Ψ(−→r ) = Aeikz, moving in the z-direction is incident upon a screen
lying in the xy-plane with a circular aperture. Our region of integration is the
inside of the hemisphere as the radius R goes to infinity (Figure 18.8). The sur-
faces that bound our region are the screen S which lies in the xy-plane and
which has a circular aperture of radius a, and the surface of the hemisphere
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Figure 18.8 Diffraction from a circular aperture.

as R → ∞. Inside the hemisphere, there are no sources, F(−→r ′) = 0; hence, the
Green’s function in this region is

G(−→r ,
−→
r′ ) = − 1

4𝜋
eik|−→r −−→r ′|

|−→r −−→r ′| . (18.286)

The solution is now written entirely in terms of surface integrals as

Ψ(−→r ) = ∫xy-plane
ds′ êz ⋅ [Ψ(

−→r ′)−→∇
′
G(−→r ,−→r ′) − G(−→r ,−→r ′)−→∇

′
Ψ(−→r ′)]

+ ∫R→∞
ds′ êr ⋅ [Ψ(

−→r ′)−→∇
′
G(−→r ,−→r ′) − G(−→r ,−→r ′)−→∇

′
Ψ(−→r ′)],

(18.287)

where −→r ′ is a vector on the aperture. We use
−→
k i to denote wave vector of the

incident plane wave moving in the direction of êz, and use
−→
k f for the diffracted

wave propagating in the direction of −→r . Both vectors have the same magnitude:|−→k i| = |−→k f | = k. We impose the following boundary conditions: On the hemi-
sphere and in the limit as R goes to infinity, we have an outgoing spherical wave,
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Ψ(−→r ) →r→∞ f (𝜃, 𝜙) eikr

r
. On the screen, we have

Ψ(−→r )|z=0 = 0, (18.288)
−→∇Ψ(−→r )|z=0 = 0, (18.289)

and on the aperture:

Ψ = Aeikz′ |z′=0 = A, (18.290)
dΨ
dz′

= Aikeikz′ |z′=0 = Aik. (18.291)

Let us first look at the integral over the hemisphere, which we can write as

∫ ∫R→∞
r′2 dΩ′f (𝜃′, 𝜙′)

[
eikr′

r′
𝜕

𝜕r′

(
− 1

4𝜋
eik|−→r −−→r ′|

|−→r −−→r ′|
)

+ 1
4𝜋

eik|−→r −−→r ′|
|−→r −−→r ′| 𝜕

𝜕r′

(
eikr′

r′

)]
. (18.292)

In the limit as R → ∞, the quantity inside the square brackets goes to zero as
1∕r′3; hence, the above integral goes to zero as 1∕r′. This leaves us with the first
term in Eq. (18.287):

Ψ(−→r ) = ∫xy-plane
ds′ ên ⋅ [Ψ(

−→r ′)−→∇
′
G(−→r ,−→r ′) − G(−→r ,−→r ′)−→∇

′
Ψ(−→r ′)].

(18.293)

From the boundary conditions on the screen [Eqs. (18.288) and (18.289)],
we see that the only contribution to this integral comes from the aperture,
where the boundary conditions are given by Eqs. (18.290) and (18.291); hence,
we write

Ψ(−→r ) = −∫Aperture
ds′ A

[
𝜕

𝜕z′

(
− 1

4𝜋
eik|−→r −−→r ′|

|−→r −−→r ′|
)

− ik

(
− 1

4𝜋
eik|−→r −−→r ′|

|−→r −−→r ′|
)]

. (18.294)

The extra minus sign in front of the integral comes from the fact that the out-
ward normal to the aperture is in the negative z direction. Let

−→R = −→r − −→r ′ = (X,Y ,Z); X = x − x′, Y = y − y′, Z = z − z′,
(18.295)
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thus

Ψ(−→r ) = − A
4𝜋∫Aperture

ds′
[
− 𝜕

𝜕z′

(
eikR

R

)
+ ik eikR

R

]
(18.296)

= − A
4𝜋∫Aperture

ds′
[
− d

dR

(
eikR

R

)
𝜕R
𝜕z′

+ ik eikR

R

]
(18.297)

= − A
4𝜋∫Aperture

ds′
[
−

(
ikeikR

R
− eikR

R2

) (
−Z

R

)
+ ik eikR

R

]
. (18.298)

We now write |−→r − −→r ′| as|−→r − −→r ′|2 = (−→r − −→r ′) ⋅ (−→r − −→r ′) = r2 + r′2 − 2−→r ⋅ −→r ′ (18.299)

= r2

(
1 − 2

−→r
r
⋅
−→r ′

r
+ r′2

r2

)
, (18.300)

hence

R = |−→r − −→r ′| = r

(
1 − 2

−→r
r
⋅
−→r ′

r
+ r′2

r2

)1∕2

. (18.301)

For r′

r
≪ 1, we use the approximation |−→r − −→r ′| ≃ 1 − n̂ ⋅

−→r ′

r
+ 0(1∕r2), where n̂

is a unit vector in the direction of −→r . For large r, we also use the approximation
Z
R
≃ z

R
= cos 𝜃, to write the solution as

Ψ(−→r ) ≃ −Aik
4𝜋 ∫Aperture

ds′
⎡⎢⎢⎣(cos 𝜃 + 1)eikr

(
1−n̂⋅

−→r ′

r

)
r

+ 0
( 1

r2

)⎤⎥⎥⎦ (18.302)

≃ −Aik
4𝜋 ∫Aperture

ds′
[
(cos 𝜃 + 1)eikr

r
e−ikn̂⋅−→r ′

]
(18.303)

≃ −Aik
4𝜋 ∫Aperture

ds′
[
(cos 𝜃 + 1)eikr

r
e−i

−→
k f ⋅

−→r ′
]
, (18.304)

where
−→
k f is in the direction of −→r . For a circular aperture, we can write this

integral as

Ψ(−→r ) ≃ − ikA
4𝜋

(cos 𝜃 + 1)eikr

r

[
∫

2𝜋

0
d𝜙′ ∫

a

0
dr′ r′e−i

−→
k f ⋅

−→r ′
]
. (18.305)

To evaluate this integral, we have to find the cosine of the angle between
−→
k f and −→r ′. The angular coordinates of −→r and −→r ′ are given by (𝜃, 𝜙) and
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(𝜃′, 𝜙′), respectively. Using the trigonometric relation cos 𝛾 = cos 𝜃 cos 𝜃′ +
sin 𝜃 sin 𝜃′ cos(𝜙 − 𝜙′), where 𝛾 is the angle between the two vectors,
−→r and −→r ′, and since −→r ′ is a vector on the aperture, 𝜃′ = 𝜋∕2, we get
cos 𝛾 = sin 𝜃 cos(𝜙 − 𝜙′). Equation (18.305) now becomes

Ψ(−→r ) ≃ − ikA
4𝜋

eikr

r
(cos 𝜃 + 1)

[
∫

2𝜋

0
d𝜙′ ∫

a

0
dr′ r′e−ikr′ cos 𝛾

]
(18.306)

≃ − ikA
4𝜋

eikr

r
(cos 𝜃 + 1)

[
∫

2𝜋

0
d𝜙′ ∫

a

0
dr′ r′e−ikr′ sin 𝜃 cos(𝜙−𝜙′)

]
.

(18.307)

We define two new variables, x = kr′ sin 𝜃 and 𝛽 = 𝜙 − 𝜙′, to write the above
integrals as

Ψ(−→r ) ≃ − ikA
2

(
eikr

r

)
(cos 𝜃 + 1)

k2sin2𝜃

[
1

2𝜋 ∫
ka sin 𝜃

0
dx x∫

2𝜋

0
d𝛽 e−ix cos 𝛽

]
.

(18.308)

We now concentrate on the integral:

I = ∫
ka sin 𝜃

0
dx x

[
1

2𝜋 ∫
2𝜋

0
d𝛽 e−ix cos 𝛽

]
. (18.309)

Using the integral definition of Bessel functions [Eq. (5.61)]:

Jn(x) =
(x∕2)n√

𝜋Γ(n + 1∕2) ∫
1

−1
(1 − t2)n− 1

2 cos xtdt, n > −1
2
, (18.310)

we can show that the expression inside the square brackets [Eq. (18.309)] is
nothing but J0(x), hence I = ∫ ka sin 𝜃

0 dx xJ0(x). Using the recursion relation
[Eq. (5.64)], Jm−1(x) =

m
x

Jm(x) + J ′m(x), we write xJ0(x) =
d

dx
[xJ1(x)] and evaluate

the final integral in I to get I = ka sin 𝜃J1(ka sin 𝜃). Substituting this into
Eq. (18.308) gives us the solution as

Ψ(−→r ) ≃ − iAa
2

(
eikr

r

)
(cos 𝜃 + 1)

sin 𝜃
J1(ka sin 𝜃). (18.311)

Since the intensity is |Ψ(r)|2r2, we obtain

Intensity = A2a2(cos 𝜃 + 1)2

4r2sin2𝜃
J2
1 (ka sin 𝜃). (18.312)

Problems in diffraction theory are usually very difficult and exact solutions
are quite rare. For a detailed treatment of the subject, we refer the reader to
Classical Electrodynamics by Jackson [4].
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18.3 Time-Independent Perturbation Theory

18.3.1 Nondegenerate Perturbation Theory

We now consider the following problem:

{£0 + 𝜆}Ψ(x) = 𝜀h(x)Ψ(x), (18.313)

where £0 is an exactly solvable Sturm–Liouville operator and 𝜀 is a small param-
eter that allows us to keep track of the order of the terms in our equations. In
the limit as 𝜀 → 0 and assuming that h(x) is bounded, the solution Ψ(x) and the
parameter 𝜆 reduce to the exact eigenfunctionsΦn(x) and the exact eigenvalues
𝜆n of the unperturbed operator £0:

{£0 + 𝜆n}Φn(x) = 0. (18.314)

As 𝜀 → 0,

Ψ(x) → Ψ(0)(x) = Φn(x), (18.315)
𝜆 → 𝜆n. (18.316)

We now write the perturbed eigenvalues as 𝜆 = 𝜆n + Δ𝜆, thus Eq. (18.313)
becomes

{£0 + 𝜆n}Ψ(x) = [𝜀h(x) − Δ𝜆]Ψ(x) = f (x,Ψ(x)), (18.317)

Since the eigenfunctions of the unperturbed operator £0 form a complete and
orthonormal set, ∫ b

a dx Φn(x)Φm(x) = 𝛿nm, we can write the expansions

f (x) =
∑

k
ckΦk(x), ck = ∫

b

a
dx′Φ∗

k(x
′)f (x′), (18.318)

and

Ψ(x) =
∑

k
akΦk(x), ak = ∫

b

a
dx′Φ∗

k(x
′)Ψ(x′). (18.319)

Using these in Eq. (18.317):∑
k

ak(𝜆n − 𝜆k)Φk =
∑

k
ckΦk , (18.320)

we obtain

ak =
ck

(𝜆n − 𝜆k)
. (18.321)

When n = k, we insist that ck = 0. We now substitute ak [Eq. (18.321)] and ck
[Eq. (18.318)] into the expansion of Ψ(x) [Eq. (18.319)] to get

Ψ(x) =
∑

k

1
(𝜆n − 𝜆k) ∫

b

a
dx′Φ∗

k(x
′)Φk(x)f (x′), (18.322)
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which after rearranging becomes

Ψ(x) = ∫
b

a
dx′

[∑
k

Φk(x)Φ∗
k(x

′)
(𝜆n − 𝜆k)

]
[𝜀h(x′) − Δ𝜆]Ψ(x′). (18.323)

The quantity inside the square brackets is the Green’s function:

G(x, x′) =

[∑
k

Φk(x)Φ∗
k(x

′)
(𝜆n − 𝜆k)

]
. (18.324)

For the general solution of the differential equation [Eq. (18.317)], we also add
the solution of the homogeneous equation, that is, the unperturbed solution,
to write

Ψ(x) = Φn(x) + ∫
b

a
dx′

[∑
k

Φk(x)Φ∗
k(x

′)
(𝜆n − 𝜆k)

]
[𝜀h(x′) − Δ𝜆]Ψ(x′).

(18.325)

Comparing with

Ψ(x) = Φn(x) + ∫
b

a
dx′K(x, x′)Ψ(x′), (18.326)

we obtain the kernel as

K(x, x′) = G(x, x′)[𝜀h(x′) − Δ𝜆]. (18.327)

This is an integral equation, where the unknown Ψ(x) appears on both sides of
the equation. To obtain the perturbed solution in terms of known quantities,
we expand Ψ(x) and Δ𝜆 in terms of the small parameter 𝜀 as

Ψ(x) = Φn(x) + 𝜀Ψ(1)(x) + 𝜀2Ψ(2)(x) + · · · , (18.328)
𝜆 = 𝜆n + 𝜀[Δ𝜆(1) + 𝜀Δ𝜆(2) + 𝜀2Δ𝜆(3) + · · · ], (18.329)

which gives

Δ𝜆 = 𝜀[Δ𝜆(1) + 𝜀Δ𝜆(2) + 𝜀2Δ𝜆(3) + · · · ]. (18.330)
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We now substitute these expansions into Eq. (18.325) and simplify:

Ψ(x) = Φn(x) + ∫
b

a
dx′

[∑
k

Φk(x)Φ∗
k(x

′)
(𝜆n − 𝜆k)

]
×

[
(𝜀h(x′) − 𝜀Δ𝜆(1)) − 𝜀2Δ𝜆(2) + · · ·

]
×

[
Φn(x′) + 𝜀Ψ(1)(x′) + 𝜀2Ψ(2)(x′) + · · ·

]
, (18.331)

Ψ(x) = Φn(x) + 𝜀∫
b

a
dx′

[∑
k

Φk(x)Φ∗
k(x

′)
(𝜆n − 𝜆k)

]
×

[
(h(x′) − Δ𝜆(1)) − 𝜀Δ𝜆(2) + · · ·

]
×

[
Φn(x′) + 𝜀Ψ(1)(x′) + 𝜀2Ψ(2)(x′) + · · ·

]
, (18.332)

Ψ(x) = Φn(x) + 𝜀∫
b

a
dx′

[∑
k

Φk(x)Φ∗
k(x

′)
(𝜆n − 𝜆k)

]
[h(x′) − Δ𝜆(1)]Φn(x′)

+ 𝜀∫
b

a
dx′

[∑
j

Φj(x)Φ∗
j (x

′)

(𝜆n − 𝜆j)

]
× [−𝜀Δ𝜆(2)Φn(x′) + (h(x′) − Δ𝜆(1))𝜀Ψ(1)(x′)] + 0(𝜀3). (18.333)

Collecting terms with equal powers of 𝜀, we get

Ψ(x) = Φn(x) + 𝜀∫
b

a
dx′

[∑
k

Φk(x)Φ∗
k(x

′)
(𝜆n − 𝜆k)

]
[h(x′) − Δ𝜆(1)]Φn(x′)

+ 𝜀2 ∫
b

a
dx′

[∑
j

Φj(x)Φ∗
j (x

′)

(𝜆n − 𝜆j)

]
× [−Δ𝜆(2)Φn(x′) + (h(x′) − Δ𝜆(1))Ψ(1)(x′)] + 0(𝜀3). (18.334)

Comparing the right-hand side with the expansion of the left-hand side,Ψ(x) =
Ψ(0)(x) + 𝜀Ψ(1)(x) + 𝜀2Ψ(2)(x) + · · · , we obtain

Ψ(0)(x) = Φn(x), (18.335)

Ψ(1)(x) = ∫
b

a
dx′

[∑
k

Φk(x)Φ∗
k(x

′)
(𝜆n − 𝜆k)

]
[h(x′) − Δ𝜆(1)]Φn(x′), (18.336)

Ψ(2)(x) = ∫
b

a
dx′

∑
j

[
Φj(x)Φ∗

j (x
′)

(𝜆n − 𝜆j)

]
(18.337)

× [−Δ𝜆(2)Φn(x′) + (h(x′) − Δ𝜆(1))Ψ(1)(x′)],
⋮
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In the first-order term [Eq. (18.336)], the numerator has to vanish for k = n,
thus

Φn(x)∫
b

a
dx′Φ∗

n(x′)[h(x′) − Δ𝜆(1)]Φn(x′) = 0, (18.338)

Φn(x)∫
b

a
dx′Φ∗

n(x′)h(x′)Φn(x′) = Φn(x)Δ𝜆(1) ∫
b

a
dx′Φ∗

n(x′)Φn(x′),

(18.339)

∫
b

a
dx′Φ∗

n(x′)h(x′)Φn(x′) = Δ𝜆(1) ∫
b

a
dx′Φ∗

n(x′)Φn(x′).

(18.340)

Using the orthogonality relation:

∫
b

a
dx′Φ∗

k(x
′)Φn(x′) = 𝛿kn, (18.341)

we obtain the first-order correction to the nth eigenvalue 𝜆n as

Δ𝜆(1) = hnn = ∫
b

a
dx′Φ∗

n(x′)h(x′)Φn(x′). (18.342)

We can now write the first-order correction to the eigenfunction as

Ψ(1)(x) =
∑
k≠n

∫
b

a
dx′

Φk(x)Φ∗
k(x

′)
(𝜆n − 𝜆k)

[
h(x′) − Δ𝜆(1)

]
Φn(x′) (18.343)

=
∑
k≠n

Φk(x)
(𝜆n − 𝜆k)

(18.344)

×
[
∫

b

a
dx′Φ∗

k(x
′)h(x′)Φn(x′) − Δ𝜆(1) ∫

b

a
dx′Φ∗

k(x
′)Φn(x′)

]
.

We again use the orthogonality relation [Eq. (18.341)] to write

Ψ(1)(x) =
∑
k≠n

Φk(x) hkn

(𝜆n − 𝜆k)
, (18.345)

where hkn is the Hermitian matrix

hkn = ∫
b

a
dx′Φ∗

k(x
′)h(x′)Φn(x′). (18.346)
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Let us now turn to the second-order term. Substituting Ψ(1)(x) [Eq. (18.345)]
into Ψ(2)(x) [Eq. (18.337)]:

Ψ(2)(x) = ∫
b

a
dx′

[∑
j

Φj(x)Φ∗
j (x

′)

(𝜆n − 𝜆j)

]
× [−Δ𝜆(2)Φn(x′) + (h(x′) − Δ𝜆(1))Ψ(1)(x′)], (18.347)

we obtain

Ψ(2)(x) = ∫
b

a
dx′

[∑
j

Φj(x)Φ∗
j (x

′)

(𝜆n − 𝜆j)

]

×

[
−Δ𝜆(2)Φn(x′) + (h(x′) − Δ𝜆(1))

∑
k≠n

Φk(x′) hkn

(𝜆n − 𝜆k)

]
, (18.348)

which also becomes

Ψ(2)(x) =
∑

j

Φj(x)
(𝜆n − 𝜆j)

[
∫

b

a
dx′Φ∗

j (x
′)(−Δ𝜆(2))Φn(x′)

+∫
b

a
dx′Φ∗

j (x
′)[h(x′) − Δ𝜆(1)]

∑
k≠n

Φk(x′)hkn

(𝜆n − 𝜆k)

]
, (18.349)

where hkn = ∫ b
a dx′′Φ∗

k(x
′′)h(x′′)Φn(x′′). For j = n, we again set the numerator

to zero:

∫
b

a
dx′Φ∗

n(x′)Δ𝜆(2)Φn(x′) = ∫
b

a
dx′Φ∗

n(x′)[h(x′) − Δ𝜆(1)]
∑
k≠n

Φk(x′)hkn

(𝜆n − 𝜆k)
,

(18.350)

Δ𝜆(2) ∫
b

a
dx′Φ∗

n(x′)Φn(x′) =
∑
k≠n

⎡⎢⎢⎢⎣
[∫ b

a dx′Φ∗
n(x′)h(x′)Φk(x′)

]
hkn

(𝜆n − 𝜆k)

−Δ𝜆(1)

[∫ b
a dx′Φ∗

n(x′)Φk(x′)
]

hkn

(𝜆n − 𝜆k)

⎤⎥⎥⎥⎦ .
(18.351)

Using the orthogonality relation [Eq. (18.341)], we obtain

Δ𝜆(2) =
∑
k≠n

hnkhkn

(𝜆n − 𝜆k)
. (18.352)
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Substituting this in Eq. (18.337), we obtain Ψ(2)(x) as

Ψ(2)(x) =
∑
j≠n

Φj(x)
(𝜆n − 𝜆j)

[
(−Δ𝜆(2))∫

b

a
dx′Φ∗

j (x
′) Φn(x′)

+
∑
k≠n

[∫ b
a dx′Φ∗

j (x
′)h(x′)Φk(x′)

]
hkn

(𝜆n − 𝜆k)

−(Δ𝜆(1))∫
b

a
dx′Φ∗

j (x
′)Φk(x′)

∑
k≠n

hkn

(𝜆n − 𝜆k)

]
. (18.353)

Using the orthogonality relation [Eq. (18.341)], this also becomes

Ψ(2)(x) =
∑
j≠n

Φj(x)
(𝜆n − 𝜆j)

[(−Δ𝜆(2))𝛿jn

+
∑
k≠n

hjk hkn

(𝜆n − 𝜆k)
− (Δ𝜆(1))𝛿jk

∑
k≠n

hkn

(𝜆n − 𝜆k)

]
. (18.354)

Finally, using Δ𝜆(1) = hnn, we obtain

Ψ(2)(x) =
∑
j≠n

Φj(x)

[∑
k≠n

[hjk − 𝛿jkhnn] hkn

(𝜆n − 𝜆j)(𝜆n − 𝜆k)

]
. (18.355)

18.3.2 Slightly Anharmonic Oscillator in One Dimension

We now consider the slightly anharmonic oscillator problem in quantum
mechanics with the potential

V (x) = 1
2

k2x2 − k3x3, (18.356)

where k2 and k3 are constants such that k3 ≪ k1. We have already solved the
Schrödinger equation for the harmonic oscillator potential, V (x) = 1

2
k2x2, in

Chapter 3 that leads to the eigenvalue equation d2Ψn∕dx2 − x2Ψn + 𝜖Ψn(x) = 0,
where x = xphysical∕

√
ℏ∕m𝜔, 𝜖 = E∕ℏ𝜔∕2. We rewrite the exactly solvable case

as

£0Φn + 𝜖nΦn(x) = 0, £0 = d2

dx2 − x2, (18.357)

where the solution is given in terms of the Hermite polynomials [Eq. (3.35)]:

Φn(x) =
e−x2∕2Hn(x)√

2nn!
√
𝜋

, n = 0, 1,… . (18.358)
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We are now looking for the solution of the slightly anharmonic oscillator that
satisfies the equation

(£0 + 𝜆)Ψ(x) = 𝛼x3Ψ, (18.359)

where 𝛼 ≪ 1. The perturbed energy eigenvalues are written as

𝜆 = 𝜖n + 𝛼Δ𝜆(1) + 𝛼2Δ𝜆(2) + · · · , (18.360)

where 𝜖n = 2n + 1 are the exact eigenvalues. We can easily verify that

Δ𝜆(1) = hnn = ∫
∞

−∞
dx′Φ2

n(x′)x′3 = 0. (18.361)

For Ψ(1)(x), we need to evaluate the integral

hkn = ∫
∞

−∞
dx′ e−x′2 Hn(x′)x′3Hk(x′)√

2nn!
√

2kk!
√
𝜋

. (18.362)

Using the recursion relation [Eq. (3.27)] xHn = 1
2
Hn+1 + nHn−1, we write

x2Hn = 1
2

(1
2

Hn+2 + (n + 1)Hn

)
+ n

(1
2

Hn + (n − 1)Hn−2

)
, (18.363)

= 1
4

Hn+2 +
2n + 1

2
Hn + n(n − 1)Hn−2. (18.364)

Similarly,

x3Hn = 1
8

Hn+3 +
3
4
(n + 1)Hn+1 +

3
2

n2Hn−1 + n(n − 1)(n − 2)Hn−3.

(18.365)

Using Eq. (18.365) in Eq. (18.362), along with the orthogonality relation
∫ ∞
−∞ dxe−x2∕2Hn(x)Hk(x) = 0, n ≠ k, we obtain hkn = 0, unless k = (n + 3),
(n + 1), (n − 1), (n − 3). We evaluate the component hn(n+3) as

hn(n+3) = h(n+3)n = 1
8 ∫

∞

−∞
dx′e−x′2∕2 Hn+3(x′)√

2nn!

Hn+3(x′)√
2n+3(n + 3)!

√
𝜋

(18.366)

= 1
8

√
2n+3(n + 3)!√

2nn!

⎧⎪⎨⎪⎩∫
∞

−∞
dx′ e−x′2H2

n+3(x
′)

[
√

2n+3(n + 1)!
√
𝜋]2

⎫⎪⎬⎪⎭ (18.367)

= 1
8
√

8
√

(n + 3)!
n!

=
√

(n + 3)(n + 2)(n + 1)
8

. (18.368)
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Similarly, we evaluate the other nonzero components:

h(n−3)n =
√

n(n − 1)(n − 2)
8

, (18.369)

hn(n+1) = 3(n + 1)
√

n + 1
8

, (18.370)

hn(n−1) = 3n
√

n
8
. (18.371)

Using these results, we now write

Δ𝜆(2) =
∑

k

hnkhkn

2(n − k)
(18.372)

=
1
8
(n + 3)(n + 2)(n + 1)

−6
(18.373)

+
1
8
n(n − 1)(n − 2)

6
+ 9(n + 1)2(n + 1)

−2(8)
+ 9n2n

2(8)
,

to obtain 𝜆 as

𝜆 = (2n + 1) − 𝛼2 [30n2 + 30n + 11]
16

+ 0(𝛼3). (18.374)

Similarly, we evaluate the first nonzero term of the perturbed wave function as

Ψ(x) = Φn(x) + 𝛼

[√
n(n − 1)(n − 2)

12
√

2
Φn−3(x)

−
√
(n + 3)(n + 2)(n + 1)

12
√

2
Φn+3(x)

+
3n

√
n

4
√

2
Φn−1(x) −

3(n + 1)
√

n + 1

4
√

2
Φn+1(x)

]
+ 0(𝛼2). (18.375)

18.3.3 Degenerate Perturbation Theory

The preceding formalism works fine as long as the eigenvalues are distinct, that
is, 𝜆i ≠ 𝜆j when i ≠ j. In the event that multiple eigenvalues turn out to be equal,
the method can still be rescued with a simple procedure. We first remember
that the first-order correction to Ψ(x) [Eq. (18.345)] is written as

Ψ(1)(x) =
∑
k≠n

Φk(x)
[ hkn(x)
(𝜆n − 𝜆k)

]
. (18.376)

In the above series, the expansion coefficients, [hkn∕(𝜆n − 𝜆k)], diverge for the
degenerate eigenvalues, where 𝜆n = 𝜆k for n ≠ k. This would be okay, if some-
how the corresponding matrix elements, hkn, k ≠ n, also vanished. In other
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words, if the submatrix hkn corresponding to the degenerate eigenvalues is diag-
onal. From the Sturm–Liouville theory, we know that for Hermitian operators
and for distinct eigenvalues, the corresponding eigenfunctions are mutually
orthogonal. However, for the degenerate eigenvalues, there is an ambiguity. All
vectors that are perpendicular to the eigenvectors corresponding to the dis-
tinct eigenvalues are legitimate eigenvectors for the degenerate eigenvalues. For
example, if 𝜆1 = 𝜆2 ≠ 𝜆3, then all vectors that lie on a plane perpendicular to the
third eigenvector for𝜆3 are good eigenvectors for𝜆1 and𝜆2. Normally, we would
pick any two perpendicular vectors on this plane as the eigenvectors of 𝜆1 and
𝜆2, thus obtaining a mutually orthogonal eigenvector set for (𝜆1, 𝜆2, 𝜆3). In the
presence of a perturbation, we use this freedom to find an appropriate orien-
tation for the eigenvectors of 𝜆1 and 𝜆2, such that the 2 × 2 submatrix, hkn =
∫ b

a dx′Φ∗
k(x

′)h(x′)Φn(x′), corresponding to the degenerate eigenvalues is diago-
nal. In other words, perturbation removes the degeneracy and picks a particular
orientation for the orthogonal eigenvectors of 𝜆1 and 𝜆2 on the plane perpen-
dicular to the third eigenvector corresponding to the distinct eigenvalue. This
procedure is called diagonalization. For an l-fold degenerate eigenvalue, the
corresponding submatrix to be diagonalized is an l × l square matrix. This pro-
cedure, albeit being cumbersome, can be extended to higher order terms in the
perturbation expansion and to any number of multiply degenerate eigenvalues.

18.4 First-Order Time-Dependent Green’s Functions

We now consider differential equations that could be written as

HΨ(−→r , 𝜏) + 𝜕Ψ(−→r , 𝜏)
𝜕𝜏

= 0, (18.377)

where 𝜏 is a timelike variable and H is a linear differential operator independent
of 𝜏 with a complete set of orthonormal eigenfunctions. In applications, we
frequently encounter differential equations of this type. For the heat transfer
equation: −→∇

2
T(−→r , t) = (c∕k) 𝜕T(−→r ,t)

𝜕t
, where T is temperature, c is specific heat

per unit volume, and k is conductivity, we have

H = −−→∇
2
, 𝜏 = kt

c
. (18.378)

In quantum mechanics, the Schrödinger equation is written as HΨ(−→r , t) =
iℏ𝜕Ψ(−→r ,t)

𝜕t
, where H is the Hamiltonian operator. For a particle moving under

the influence of a central potential V (−→r ), the Hamiltonian operator becomes
H = −(ℏ2∕2m)−→∇

2
+ V (−→r ), hence in Eq. (18.377)

H = −−→∇
2
+ 2m

ℏ2 V (−→r ), 𝜏 =
( iℏ

2m

)
t. (18.379)



730 18 Green’s Functions

In the diffusion equation: −→∇
2
𝜌 = (1∕a2) 𝜕𝜌

𝜕t
, where 𝜌 is the density, or concentra-

tion, and a is the diffusion coefficient, we have

H = −−→∇
2
, 𝜏 = a2t. (18.380)

Since H has a complete and orthonormal set of eigenfunctions, we can write
the corresponding eigenvalue equation as

H𝜙m = 𝜆m𝜙m, (18.381)

where 𝜆m are the eigenvalues and 𝜙m are the eigenfunctions. We now write the
solution of Eq. (18.377) as

Ψ(−→r , 𝜏) =
∑

m
Am(𝜏)𝜙m(

−→r ), (18.382)

where the time dependence is carried in the expansion coefficients, Am(𝜏).
Operating on Ψ(−→r , 𝜏) with H and remembering that H is independent of 𝜏 , we
obtain

HΨ = H

[∑
m

Am(𝜏)𝜙m(
−→r )

]
(18.383)

=
∑

m
Am(𝜏)H𝜙m(

−→r ) (18.384)

=
∑

m
𝜆mAm(𝜏)𝜙m(

−→r ). (18.385)

Using Eq. (18.385) and the time derivative of Eq. (18.382) in Eq. (18.377), we get∑
m

[
𝜆mAm(𝜏) +

dAm(𝜏)
d𝜏

]
𝜙m(

−→r ) = 0. (18.386)

Because {𝜙m} is a set of linearly independent functions, this equation
cannot be satisfied unless all the coefficients of 𝜙m vanish simultaneously,
that is,

dAm(𝜏)
d𝜏

+ 𝜆mAm(𝜏) = 0, for all m. (18.387)

Solution of this differential equation can be written immediately:

Am(𝜏) = Am(0)e−𝜆m𝜏 , (18.388)
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thus giving Ψ(−→r , 𝜏) as

Ψ(−→r , 𝜏) =
∑

m
Am(0)𝜙m(

−→r )e−𝜆m𝜏 . (18.389)

To complete the solution, we need an initial condition. Assuming that the solu-
tion at 𝜏 = 0 is given as Ψ(−→r , 0), we write

Ψ(−→r , 0) =
∑

m
Am(0)𝜙m(

−→r ). (18.390)

Because the eigenfunctions satisfy the orthogonality relation:

∫ ∫ ∫V
𝜙∗

m(
−→r )𝜙n(

−→r ) d3−→r = 𝛿mn (18.391)

and the completeness relation:∑
m

𝜙∗
m(
−→r ′)𝜙m(

−→r ) = 𝛿(−→r − −→r ′), (18.392)

we can solve Eq. (18.389) for Am(0) as

Am(0) = ∫ ∫ ∫V
𝜙∗

m(
−→r ′)Ψ(−→r ′

, 0) d3−→r ′
. (18.393)

Substituting these Am(0) functions back to Eq. (18.389), we obtain

Ψ(−→r , 𝜏) =
∑

m
e−𝜆m𝜏𝜙m(

−→r )∫ ∫ ∫V
𝜙∗

m(
−→r ′)Ψ(−→r ′

, 0) d3−→r ′
. (18.394)

Rearranging this expression as

Ψ(−→r , 𝜏) = ∫ ∫ ∫V
G1(

−→r ,−→r ′
, 𝜏)Ψ(−→r ′

, 0) d3−→r ′
, (18.395)

we obtain a function

G1(
−→r ,−→r ′

, 𝜏) =
∑

m
e−𝜆m𝜏𝜙m(

−→r )𝜙∗
m(
−→r ′), (18.396)

where the subscript 1 denotes the fact that we have first-order time dependence.
Note that G1(

−→r ,−→r ′
, 𝜏) satisfies the relation

G1(
−→r ,−→r ′

, 0) =
∑

m
𝜙m(

−→r )𝜙∗
m(
−→r ′) = 𝛿3(−→r − −→r ′) (18.397)

and the differential equation(
H + 𝜕

𝜕𝜏

)
G1(

−→r ,−→r ′
, 𝜏) = 0. (18.398)
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Because G1(
−→r ,−→r ′

, 𝜏) does not satisfy the basic equation,(
H + 𝜕

𝜕𝜏

)
G(−→r ,−→r ′

, 𝜏) = 𝛿3(−→r − −→r ′)𝛿(𝜏), (18.399)

for the Green’s functions, it is not yet the Green’s function for this problem.
However, as we shall see shortly, it is very closely related to it. Note that if we
take the initial condition as Ψ(−→r , 0) = 𝛿3(−→r − −→r 0), which is called the point
source initial condition, G1 becomes the solution of Eq. (18.377): Ψ(−→r , 𝜏) =
G1(

−→r ,−→r0 , 𝜏), 𝜏 ≥ 0.

18.4.1 Propagators

Because our choice of initial time as 𝜏 ′ = 0 was arbitrary, for a general initial
time 𝜏 ′, the Ψ(−→r , 𝜏) and the G1 functions become

Ψ(−→r , 𝜏) = ∫ ∫ ∫ G1(
−→r ,−→r ′

, 𝜏, 𝜏 ′)Ψ(−→r ′
, 𝜏 ′) d3−→r ′

, (18.400)

G1(
−→r ,−→r ′

, 𝜏, 𝜏 ′) =
∑

m
e−𝜆m(𝜏−𝜏 ′)𝜙m(

−→r )𝜙∗
m(
−→r ′). (18.401)

From Eq. (18.400), it is seen that, given the solution at (−→r ′
, 𝜏 ′) as Ψ(−→r ′

, 𝜏 ′), we
can find the solution at a later time, Ψ(−→r , 𝜏 > 𝜏 ′), by using G1(

−→r ,−→r ′
, 𝜏, 𝜏 ′). It is

for this reason that G1(
−→r ,−→r ′

, 𝜏, 𝜏 ′) is also called the propagator. In quantum
field theory and perturbation calculations, propagator interpretation of G1 is
very useful in the interpretation of Feynman diagrams.

18.4.2 Compounding Propagators

Given a solution at 𝜏0, let us propagate it first to 𝜏1 > 𝜏0 and then to 𝜏2 > 𝜏1:

Ψ(−→r , 𝜏1) = ∫ G1(
−→r ,−→r ′′

, 𝜏1, 𝜏0)Ψ(
−→r ′′

, 𝜏0) d3−→r ′′
, (18.402)

Ψ(−→r , 𝜏2) = ∫ G1(
−→r ,−→r ′

, 𝜏2, 𝜏1)Ψ(
−→r ′

, 𝜏1) d3−→r ′
, (18.403)

where we used ∫ d3−→r instead of ∫∫∫ d3−→r . Using Eq. (18.402), we can write the
second equation as

Ψ(−→r , 𝜏2) = ∫ ∫ G1(
−→r ,−→r ′

, 𝜏2, 𝜏1)G1(
−→r ′

,
−→r ′′

, 𝜏1, 𝜏0)Ψ(
−→r ′′

, 𝜏0) d3−→r ′ d3−→r ′′
.

(18.404)
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Using the definition of propagator [Eq. (18.401)], we can also write

∫ G1(
−→r ,−→r ′

, 𝜏2, 𝜏1)G1(
−→r ′

,
−→r ′′

, 𝜏1, 𝜏0) d3−→r ′ (18.405)

= ∫
∑

m
e−𝜆m(𝜏2−𝜏1)𝜙m(

−→r )𝜙∗
m(
−→r ′)

∑
n

e−𝜆n(𝜏1−𝜏0)𝜙n(
−→r ′)𝜙∗

n(
−→r ′′) d3−→r ′

=
∑

m
e−𝜆m(𝜏2−𝜏1)𝜙m(

−→r )
[
∫ 𝜙∗

m(
−→r ′)𝜙n(

−→r ′)d3−→r ′
] ∑

n
e−𝜆n(𝜏1−𝜏0) 𝜙∗

n(
−→r ′′).

(18.406)

Using the orthogonality relation, ∫ 𝜙∗
m(
−→r ′)𝜙n(

−→r ′) d3−→r ′ = 𝛿nm, Eq. (18.406)
becomes

∫ G1(
−→r ,−→r ′

, 𝜏2, 𝜏1)G1(
−→r ′

,
−→r ′′

, 𝜏1, 𝜏0) d3−→r ′ (18.407)

=
∑

m
e−𝜆m(𝜏2−𝜏1)𝜙m(

−→r )𝜙∗
m(
−→r ′′)e−𝜆m(𝜏1−𝜏0) (18.408)

=
∑

m
𝜙m(

−→r )𝜙∗
m(
−→r ′′)e−𝜆m(𝜏2−𝜏0) (18.409)

= G1(
−→r ,−→r ′′

, 𝜏2, 𝜏0). (18.410)

Using this in Eq. (18.404), we obtain the propagator, G1(
−→r ,−→r ′′

, 𝜏2, 𝜏0), that takes
us from 𝜏0 to 𝜏2 in a single step in terms of the propagators that take us from 𝜏0
to 𝜏1 and then from 𝜏1 to 𝜏2 as

Ψ(−→r , 𝜏2) = ∫ G1(
−→r ,−→r ′′

, 𝜏2, 𝜏0)Ψ(
−→r ′′

, 𝜏0)d3−→r ′′
, (18.411)

G1(
−→r ,−→r ′′

, 𝜏2, 𝜏0) = ∫ G1(
−→r ,−→r ′

, 𝜏2, 𝜏1)G1(
−→r ′

,
−→r ′′

, 𝜏1, 𝜏0) d3−→r ′
,

(18.412)

18.4.3 Diffusion Equation with Discrete Spectrum

As an important example of the first-order time-dependent equations, we now
consider the diffusion or the heat transfer equations, which are both in the form

−→∇
2
Ψ(−→x , 𝜏) = 𝜕Ψ(−→x , 𝜏)

𝜕𝜏
. (18.413)

To simplify the problem, we consider only one dimension with − L
2
≤ x ≤ L

2

and use the periodic boundary condition Ψ
(
− L

2
, 𝜏

)
= Ψ

(
L
2
, 𝜏

)
. Because the
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H operator for this problem is H = −d2∕dx2, we easily write the eigenvalues
and the eigenfunctions as

−
d2𝜙m

dx2 = 𝜆m𝜙m, (18.414)

𝜙m(x) =
1√
L

ei
√
𝜆mx, 𝜆m =

(2𝜋m
L

)2
, m = ±integer. (18.415)

If we define km = 2𝜋m∕L, we obtain G1(x, x′, 𝜏) as

G1(x, x′, 𝜏) =
∞∑

m=−∞

1
L

eikm(x−x′)e−k2
m𝜏 . (18.416)

18.4.4 Diffusion Equation in the Continuum Limit

We now consider the continuum limit of the propagator [Eq. (18.416)]. Because
the difference of two neighboring eigenvalues is Δkm = 2𝜋∕L, we can write
G1(x, x′, 𝜏) as

G1(x, x′, 𝜏) = 1
2𝜋

∞∑
m=−∞

Δkmeikm(x−x′)e−k2
m𝜏 . (18.417)

In the continuum limit, L → ∞, the difference between two neighboring eigen-
values becomes infinitesimally small; thus we may replace the summation with
an integral as

lim
L→∞

∑
m

Δkmf (km) → ∫ f (k) dk. (18.418)

This gives us the propagator as

G1(x, x′, 𝜏) = 1
2𝜋 ∫

∞

−∞
dkeik(x−x′)e−k2𝜏 . (18.419)

Completing the square:

ik(x − x′) − k2𝜏 = −𝜏
(

k − i(x − x′)
2𝜏

)2

− (x − x′)2

4𝜏
(18.420)

and defining 𝛿 = (x − x′)∕2𝜏 , we can write G1(x, x′, 𝜏) as

G1(x, x′, 𝜏) = 1
2𝜋

e−(x−x′)2∕4𝜏 ∫
∞

−∞
dke−𝜏(k−i𝛿)2

. (18.421)

This integral can be taken easily, thus yielding the propagator

G1(x, x′, 𝜏) = 1√
4𝜋𝜏

e−(x−x′)2∕4𝜏 . (18.422)
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Note that G1 is symmetric with respect to x and x′. In the limit 𝜏 → 0, it
becomes

lim
𝜏→0

G1(x, x′, 𝜏) = lim
𝜏→0

1√
4𝜋𝜏

e−(x−x′)2∕4𝜏 = I(x, x′), (18.423)

which is one of the definitions of the Dirac-delta function, hence I(x, x′) =
𝛿(x − x′). Plotting Equation (18.422), we see that it is a Gaussian (Figure 18.9).

Because the area under a Gaussian is constant:

∫
∞

−∞
G1(x, x′) dx = 1√

4𝜋𝜏 ∫
∞

−∞
e−(x−x′)2∕4𝜏 dx = 1, (18.424)

the total amount of the diffusing material is conserved. Using G1(x, x′, 𝜏) and
given the initial concentration, Ψ(x′, 0), we can find the concentration at sub-
sequent times as Ψ(x, 𝜏) = ∫ ∞

−∞ G1(x, x′, 𝜏)Ψ(x′, 0) dx′:

Ψ(x, 𝜏) = 1√
4𝜋𝜏 ∫

∞

−∞
e−(x−x′)2∕4𝜏Ψ(x′, 0) dx′. (18.425)

Note that our solution satisfies the relation ∫ ∞
−∞ Ψ(x, 𝜏)dx = ∫ ∞

−∞ Ψ(x′, 0)dx′.
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Figure 18.9 Gaussian.
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18.4.5 Presence of Sources or Interactions

First-order time-dependent equations frequently appear with an inhomoge-
neous term:

HΨ(−→r , 𝜏) + 𝜕Ψ(−→r , 𝜏)
𝜕𝜏

= F(−→r , 𝜏), (18.426)

where F(−→r , 𝜏) represents sources or interactions in the system; thus we need a
Green’s function which allows us to express the solution as

Ψ(−→r , 𝜏) = Ψ0(
−→r , 𝜏) + ∫ G(−→r ,−→r ′

, 𝜏, 𝜏 ′)F(−→r ′
, 𝜏 ′) d3−→r ′ d𝜏 ′, (18.427)

where Ψ0(
−→r , 𝜏) represents the solution of the homogeneous part of Eq.

(18.426). We have seen that the propagator G1(
−→r ,−→r ′

, 𝜏, 𝜏 ′) satisfies the
equation(

H + 𝜕

𝜕𝜏

)
G1(

−→r ,−→r ′
, 𝜏, 𝜏 ′) = 0. (18.428)

However, the Green’s function that we need in Eq. (18.427) satisfies(
H + 𝜕

𝜕𝜏

)
G(−→r ,−→r ′

, 𝜏, 𝜏 ′) = 𝛿3(−→r − −→r ′)𝛿(𝜏 − 𝜏 ′). (18.429)

It is clear that even though G1(
−→r ,−→r ′

, 𝜏, 𝜏 ′) is not the Green’s function, it
is closely related to it. After all, except for the point −→r = −→r ′, it satisfies
the differential Eq. (18.429). Considering that G1(

−→r ,−→r ′
, 𝜏, 𝜏 ′) satisfies the

relation

lim
𝜏→𝜏 ′

G1(
−→r ,−→r ′

, 𝜏, 𝜏 ′) = 𝛿3(−→r − −→r ′), (18.430)

we can expect to satisfy Eq. (18.429) by introducing a discontinuity at 𝜏 = 𝜏 ′.
Let us start with

G(−→r ,−→r ′
, 𝜏, 𝜏 ′) = G1(

−→r ,−→r ′
, 𝜏, 𝜏 ′)𝜃(𝜏 − 𝜏 ′), (18.431)

so that{
G = G1, 𝜏 > 𝜏 ′,

G = 0, 𝜏 < 𝜏 ′.

}
(18.432)
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Substituting this in Eq. (18.429), we get(
H + 𝜕

𝜕𝜏

)
G(−→r ,−→r ′

, 𝜏, 𝜏 ′)

= HG1(
−→r ,−→r ′

, 𝜏, 𝜏 ′)𝜃(𝜏 − 𝜏 ′) + 𝜕

𝜕𝜏
[G1(

−→r ,−→r ′
, 𝜏, 𝜏 ′)𝜃(𝜏 − 𝜏 ′)]

(18.433)

= 𝜃(𝜏 − 𝜏 ′)HG1(
−→r ,−→r ′

, 𝜏, 𝜏 ′) + 𝜃(𝜏 − 𝜏 ′) 𝜕
𝜕𝜏

G1(
−→r ,−→r ′

, 𝜏, 𝜏 ′) (18.434)

+ G1(
−→r ,−→r ′

, 𝜏, 𝜏 ′) 𝜕
𝜕𝜏

𝜃(𝜏 − 𝜏 ′)

= 𝜃(𝜏 − 𝜏 ′)
(

H + 𝜕

𝜕𝜏

)
G1(

−→r ,−→r ′
, 𝜏, 𝜏 ′) + G1(

−→r ,−→r ′
, 𝜏, 𝜏 ′)𝛿(𝜏 − 𝜏 ′).

(18.435)

We have used the relation d
d𝜏
𝜃(𝜏 − 𝜏 ′) = 𝛿(𝜏 − 𝜏 ′). Considering the fact that G1

satisfies Eq. (18.428), we obtain(
H + 𝜕

𝜕𝜏

)
G(−→r ,−→r ′

, 𝜏, 𝜏 ′) = G1(
−→r ,−→r ′

, 𝜏, 𝜏 ′)𝛿(𝜏 − 𝜏 ′). (18.436)

Because the Dirac-delta function is zero except at 𝜏 = 𝜏 ′, we only need the value
of G1 at 𝜏 = 𝜏 ′, which is equal to 𝛿3( −→r − −→r ′) [Eq. (18.430)]; thus we can write
Eq. (18.436) as(

H + 𝜕

𝜕𝜏

)
G(−→r ,−→r ′

, 𝜏, 𝜏 ′) = 𝛿3(−→r − −→r ′)𝛿(𝜏 − 𝜏 ′). (18.437)

From here, we see that the Green’s function for Eq. (18.426) is

G(−→r ,−→r ′
, 𝜏, 𝜏 ′) = G1(

−→r ,−→r ′
, 𝜏, 𝜏 ′)𝜃(𝜏 − 𝜏 ′) (18.438)

and the general solution of Eq. (18.426) can now be written as

Ψ(−→r , 𝜏) = Ψ0(
−→r , 𝜏) + ∫ d3−→r ′

∫ d𝜏 ′G(−→r ,−→r ′
, 𝜏, 𝜏 ′)F(−→r ′

, 𝜏 ′) (18.439)

= Ψ0(
−→r , 𝜏) + ∫ d3−→r ′

∫
𝜏

−∞
d𝜏 ′G1(

−→r ,−→r ′
, 𝜏, 𝜏 ′)F(−→r ′

, 𝜏 ′).

(18.440)

18.4.6 Schrödinger Equation for Free Particles

To write the Green’s function for the Schrödinger equation for a free particle,
we can use the similarity between the Schrödinger and the diffusion equations.
Making the replacement 𝜏 → iℏt∕2m in Eq. (18.422) gives us the propagator
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for a free particle as

G1(x, x′, t) = 1√
2𝜋iℏt∕m

e−m(x−x′)2∕2iℏt. (18.441)

Now the solution of the Schrödinger equation,

− ℏ2

2m
𝜕2

𝜕x2 Ψ(x, t) = iℏ 𝜕

𝜕t
Ψ(x, t), (18.442)

with the initial condition Ψ(x′, 0), can be written as

Ψ(x, t) = ∫ G1(x, x′, t)Ψ(x′, 0) dx′. (18.443)

18.4.7 Schrödinger Equation with Interactions

When a particle is moving under the influence of a potential, V (x), the
Schrödinger equation becomes

− 𝜕2

𝜕x2 Ψ(x, t) +
2m
iℏ

𝜕

𝜕t
Ψ(x, t) = −2m

ℏ2 V (x)Ψ(x, t), (18.444)

For an arbitrary initial time, t′, Green’s function is given as G(x, x′, t, t′) =
G1(x, x′, t, t′)𝜃(t − t′) and the solution becomes

Ψ(x, t) = Ψ0(x, t) −
i
ℏ ∫ dx′ ∫

t

−∞
dt′G(x, x′, t, t′)V (x′)Ψ(x′, t′). (18.445)

18.5 Second-Order Time-Dependent Green’s
Functions

Most of the frequently encountered time-dependent equations with
second-order time dependence can be written as[

H + 𝜕2

𝜕𝜏2

]
Ψ(−→r , 𝜏) = 0, (18.446)

where 𝜏 is a timelike variable and H is a linear differential operator independent
of 𝜏 . We again assume that H has a complete set of orthonormal eigenfunc-
tions satisfying H𝜙n(

−→r ) = 𝜆n𝜙n(
−→r ), where 𝜆n are the eigenvalues. We expand

Ψ(−→r , 𝜏) in terms of this complete and orthonormal set as

Ψ(−→r , 𝜏) =
∑

n
An(𝜏)𝜙n(

−→r ), (18.447)
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where the coefficients, An(𝜏), carry the 𝜏 dependence. Substituting this in Eq.
(18.446), we obtain∑

n
[Än(𝜏) + 𝜆nAn(𝜏)]𝜙n(

−→r ) = 0. (18.448)

Since𝜙n are linearly independent, we set the quantity inside the square brackets
to zero and obtain the differential equation that the coefficients, An(𝜏), satisfy
as

Än(𝜏) + 𝜆nAn(𝜏) = 0. (18.449)

The solution of this equation can be written immediately:

An(𝜏) = anei
√
𝜆n𝜏 + bne−i

√
𝜆n𝜏 , (18.450)

which when substituted in Eq. (18.447) gives Ψ(−→r , 𝜏):

Ψ(−→r , 𝜏) =
∑

n
[anei

√
𝜆n𝜏 + bne−i

√
𝜆n𝜏]𝜙n(

−→r ). (18.451)

Integration constants, an and bn, are to be determined from the initial condi-
tions. Assuming that Ψ(−→r , 0) and Ψ̇(−→r , 0) are given, we write

Ψ(−→r , 0) =
∑

n
[an + bn]𝜙n(

−→r ), (18.452)

Ψ̇(−→r , 0) = i
∑

n

√
𝜆n[an − bn]𝜙n(

−→r ). (18.453)

Using the orthogonality relation of𝜙n(
−→r ) [Eq. (18.391)], we obtain two relations

between an and bn:

[an + bn] = ∫ 𝜙∗
n(
−→r ′)Ψ(−→r ′

, 0) d3−→r ′
, (18.454)

[an − bn] =
−i√
𝜆n

∫ 𝜙∗
n(
−→r ′)Ψ̇(−→r ′

, 0) d3−→r ′
. (18.455)

These equations can be solved easily for an and bn to yield

an = 1
2

[
∫ 𝜙∗

n(
−→r ′)Ψ(−→r ′

, 0) d3−→r ′ + 1
i
√
𝜆n

∫ 𝜙∗
n(
−→r ′)Ψ̇(−→r ′

, 0) d3−→r ′
]
,

(18.456)

bn = 1
2

[
∫ 𝜙∗

n(
−→r ′)Ψ(−→r ′

, 0) d3−→r ′ − 1
i
√
𝜆n

∫ 𝜙∗
n(
−→r ′)Ψ̇(−→r ′

, 0) d3−→r ′
]
.

(18.457)
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Substituting the above an and bn into Ψ(−→r , 𝜏) gives

Ψ(−→r , 𝜏) = ∫
∑

n
cos(

√
𝜆n𝜏)𝜙n(

−→r )𝜙∗
n(
−→r ′)Ψ(−→r ′

, 0) d3−→r ′ (18.458)

+ ∫
∑

n
sin(

√
𝜆n𝜏)

1√
𝜆n

𝜙n(
−→r )𝜙∗

n(
−→r ′)Ψ̇(−→r ′

, 0) d3−→r ′
.

We now rewrite Ψ(−→r , 𝜏) as

Ψ(−→r , 𝜏) = ∫ G2(
−→r ,−→r ′

, 𝜏)Ψ(−→r ′
, 0) d3−→r ′ + ∫ G̃2(

−→r ,−→r ′
, 𝜏)Ψ̇(−→r ′

, 0) d3−→r ′

(18.459)

and define two new functions, G2 and G̃2:

G2(
−→r ,−→r ′

, 𝜏) =
∑

n
cos(

√
𝜆n𝜏)𝜙n(

−→r )𝜙∗
n(
−→r ′), (18.460)

G̃2(
−→r ,−→r ′

, 𝜏) =
∑

n

sin(
√
𝜆n𝜏)√
𝜆n

𝜙n(
−→r )𝜙∗

n(
−→r ′). (18.461)

Among these functions, G2 acts on Ψ(−→r ′
, 0) and G̃2 acts on Ψ̇(−→r ′

, 0). They both
satisfy the homogeneous equation[

H + 𝜕2

𝜕𝜏2

] {
G2(

−→r ,−→r ′
, 𝜏)

G̃2(
−→r ,−→r ′

, 𝜏)

}
= 0. (18.462)

Thus, Ψ(−→r , 𝜏) is a solution of the differential Eq. (18.446). Note that G2 and G̃2
are related by

G2(
−→r ,−→r ′

, 𝜏) = d
d𝜏

G̃2(
−→r ,−→r ′

, 𝜏), (18.463)

hence, we can obtain G2(
−→r ,−→r ′

, 𝜏) from G̃2(
−→r ,−→r ′

, 𝜏) by differentiation with
respect to 𝜏 . Using Eq. (18.460) and the completeness relation, we can write

G2(
−→r ,−→r ′

, 0) =
∑

n
𝜙n(

−→r )𝜙∗
n(
−→r ′) = 𝛿3(−→r − −→r ′). (18.464)

Using the completeness relation (18.392) in Eq. (18.458), one can easily check
that Ψ(−→r , 𝜏) satisfies the initial conditions.
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For an arbitrary initial time, 𝜏 ′, we write Ψ(−→r , 𝜏), G̃2(
−→r ,−→r ′

, 𝜏, 𝜏 ′), and
G2(

−→r ,−→r ′
, 𝜏, 𝜏 ′) as

Ψ(−→r , 𝜏) =∫ G2(
−→r ,−→r ′

, 𝜏, 𝜏 ′)Ψ(−→r ′
, 𝜏 ′) d3−→r ′

+∫ G̃2(
−→r ,−→r ′

, 𝜏, 𝜏 ′)Ψ̇(−→r ′
, 𝜏 ′) d3−→r ′

, (18.465)

G̃2(
−→r ,−→r ′

, 𝜏, 𝜏 ′) =
∑

n

sin[
√
𝜆n(𝜏 − 𝜏 ′)]√
𝜆n

𝜙n(
−→r )𝜙∗

n(
−→r ′), (18.466)

G2(
−→r ,−→r ′

, 𝜏, 𝜏 ′) = d
dt

G̃2(
−→r ,−→r ′

, 𝜏, 𝜏 ′)

=
∑

n
cos[

√
𝜆n(𝜏 − 𝜏 ′)]𝜙n(

−→r )𝜙∗
n(
−→r ′). (18.467)

18.5.1 Propagators for the Scalar Wave Equation

An important example of the second-order time-dependent equations is the
scalar wave equation, ◽Ψ(−→r , t) = 0, where the wave, or the d’Alembert, opera-
tor is defined as ◽ = −−→∇

2
+ 1

c2

𝜕2

𝜕t2 . Comparing with Eq. (18.446), we have H =

−−→∇
2
, 𝜏 = ct. Considering a rectangular region with the dimensions

(
L1, L2, L3

)
and using periodic boundary conditions, eigenfunctions and the eigenvalues of
the H operator are written as

H𝜙n1,n2,n3
(−→r ) = 𝜆n1,n2,n3

𝜙n1,n2,n3
(−→r ), (18.468)

𝜙n1,n2,n3
(−→r ) = 1√

L1L2L3

eikxxeikyyeikzz, (18.469)

kx =
2𝜋n1

L1
, ky =

2𝜋n2

L2
, kz =

2𝜋n3

L3
, (18.470)

where ni = ± integer and ≠ 0. Eigenvalues satisfy the relation

𝜆n1,n2,n3
= k2

x + k2
y + k2

z . (18.471)

Using these eigenfunctions, we can construct G̃2(
−→r ,−→r ′

, 𝜏) as

G̃2(
−→r ,−→r ′

, 𝜏) = 1
L1L2L3

∞∑
n1,n2,n3

sin
(√

k2
x + k2

y + k2
z

)
𝜏√

k2
x + k2

y + k2
z

eikx(x−x′)eiky(y−y′)eikz(z−z′).

(18.472)
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We now consider the continuum limit, where we make the replacements

lim
L1→∞

1
L1

∞∑
n1=−∞

→
1

2𝜋 ∫
∞

−∞
dkx, (18.473)

lim
L2→∞

1
L2

∞∑
n2=−∞

→
1

2𝜋 ∫
∞

−∞
dky, (18.474)

lim
L3→∞

1
L3

∞∑
n3=−∞

→
1

2𝜋 ∫
∞

−∞
dkz. (18.475)

Thus G̃2(
−→r ,−→r ′

, 𝜏) becomes

G̃2(
−→r ,−→r ′

, 𝜏) = 1
(2𝜋)3 ∫

∞

−∞
dkx ∫

∞

−∞
dky ∫

∞

−∞
dkz

sin k𝜏
k

ei
−→
k ⋅−→𝜌 , (18.476)

where −→
𝜌 = (−→r − −→r ′). Defining a wave vector,

−→
k = (kx, ky, kz), and using polar

coordinates, we can write

G̃2(
−→r ,−→r ′

, 𝜏) = 1
(2𝜋)3 ∫

∞

0
dkk2 sin k𝜏

k ∫
2𝜋

0
d𝜙k ∫

1

−1
d(cos 𝜃k)ei

−→
k ⋅−→𝜌 .

(18.477)

Choosing the direction of the −→
𝜌 vector along the z-axis, we write

−→
k ⋅ −→𝜌 =

k𝜌 cos 𝜃k and define x as x = cos 𝜃k . After taking the 𝜃k and 𝜙k integrals,
G̃2(

−→r ,−→r ′
, 𝜏) becomes

G̃2(
−→r ,−→r ′

, 𝜏) = 2𝜋
(2𝜋)3 ∫

∞

0
dkk2 sin k𝜏

k ∫
1

−1
d(cos 𝜃k)eik𝜌 cos 𝜃k (18.478)

= 1
2𝜋2𝜌 ∫

∞

0
dk sin k𝜏 ⋅ sin k𝜌 (18.479)

= 1
4𝜋2𝜌 ∫

∞

−∞
dk sin k𝜏 ⋅ sin k𝜌 (18.480)

= 1
8𝜋2𝜌 ∫

∞

−∞
dk[cos k(𝜌 − 𝜏) − cos k(𝜌 + 𝜏)]. (18.481)

Using one of the definitions of the Dirac-delta function:

𝛿(x − x′) = 1
2𝜋 ∫

∞

−∞
dkeik(x−x′) = 1

2𝜋 ∫
∞

−∞
dk cos k(x − x′), (18.482)

we can write G̃2(
−→r ,−→r ′

, 𝜏) as

G̃2(
−→r ,−→r ′

, 𝜏) = 1
4𝜋𝜌

[𝛿(𝜌 − 𝜏) − 𝛿(𝜌 + 𝜏)]. (18.483)
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Going back to our original variables, G̃2(
−→r ,−→r ′

, t) becomes

G̃2(
−→r ,−→r ′

, t) = 1
4𝜋|−→r − −→r ′| [𝛿(|−→r − −→r ′| − ct) − 𝛿(|−→r − −→r ′| + ct)].

(18.484)
We write this for an arbitrary initial time t′ to obtain the final form of the prop-
agator as

G̃2(
−→r ,−→r ′

, t, t′) (18.485)

= 1
4𝜋|−→r − −→r ′| [𝛿(|−→r − −→r ′| − c(t − t′)) − 𝛿(|−→r − −→r ′| + c(t − t′))].

18.5.2 Advanced and Retarded Green’s Functions

In the presence of a source, 𝜌(−→r , 𝜏), Eq. (18.446) becomes

HΨ(−→r , 𝜏) + 𝜕2Ψ(−→r , 𝜏)
𝜕𝜏2 = 𝜌(−→r , 𝜏). (18.486)

To solve this equation, we need a Green’s function satisfying the equation(
H + 𝜕2

𝜕𝜏2

)
G(−→r ,−→r ′

, 𝜏, 𝜏 ′) = 𝛿3(−→r − −→r )𝛿(𝜏 − 𝜏 ′). (18.487)

However, the propagators G2(
−→r ,−→r ′

, 𝜏, 𝜏 ′) and G̃2(
−→r ,−→r ′

, 𝜏, 𝜏 ′) both satisfy[
H + 𝜕2

𝜕𝜏2

] (
G2
G̃2

)
= 0. (18.488)

Guided by our experience in G1, to find the Green’s function, we start by intro-
ducing a discontinuity in either G2 or G̃2 as

GR(
−→r ,−→r ′

, 𝜏, 𝜏 ′) = G𝜁 (
−→r ,−→r ′

, 𝜏, 𝜏 ′)𝜃(𝜏 − 𝜏 ′). (18.489)

G𝜁 stands for G2 or G̃2, while the subscript R will be explained later. Operating
on GR(

−→r ,−→r ′
, 𝜏, 𝜏 ′) with H + 𝜕2

𝜕𝜏2 , we get[
H + 𝜕2

𝜕𝜏2

]
GR(

−→r ,−→r ′
, 𝜏, 𝜏 ′) (18.490)

= 𝜃(𝜏 − 𝜏 ′)HG𝜁 +
𝜕2

𝜕𝜏2 [G𝜁 (
−→r ,−→r ′

, 𝜏, 𝜏 ′)𝜃(𝜏 − 𝜏 ′)] (18.491)

= 𝜃(𝜏 − 𝜏 ′)
[

H + 𝜕2

𝜕𝜏2

]
G𝜁 + 2

[
𝜕

𝜕𝜏
𝜃(𝜏 − 𝜏 ′)

]
𝜕

𝜕𝜏
G𝜁 + G𝜁

𝜕2

𝜕𝜏2 𝜃(𝜏 − 𝜏 ′).

(18.492)

Since G2(
−→r ,−→r ′

, 𝜏, 𝜏 ′) and G̃2(
−→r ,−→r ′

, 𝜏, 𝜏 ′) both satisfy[
H + 𝜕2

𝜕𝜏2

]
G𝜁 = 0, (18.493)
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this becomes[
H + 𝜕2

𝜕𝜏2

]
GR = 2

[
𝜕

𝜕𝜏
𝜃(𝜏 − 𝜏 ′)

]
𝜕

𝜕𝜏
G𝜁 + G𝜁

𝜕2

𝜕𝜏2 𝜃(𝜏 − 𝜏 ′). (18.494)

Using the fact that the derivative of a step function is a Dirac-delta function, we
can write[

H + 𝜕2

𝜕𝜏2

]
GR(

−→r ,−→r ′
, 𝜏, 𝜏 ′) (18.495)

= 2𝛿(𝜏 − 𝜏 ′) 𝜕
𝜕𝜏

G𝜁 (
−→r , −→r ′

, 𝜏, 𝜏 ′) +
[
𝜕

𝜕𝜏
𝛿(𝜏 − 𝜏 ′)

]
G𝜁 (

−→r ,−→r ′
, 𝜏, 𝜏 ′).

Using the following properties of the Dirac-delta function:

𝛿(𝜏 − 𝜏 ′) 𝜕
𝜕𝜏

G𝜁 (
−→r ,−→r ′

, 𝜏, 𝜏 ′) =
[
𝜕

𝜕𝜏
G𝜁 (

−→r ,−→r ′
, 𝜏, 𝜏 ′)

]
𝜏=𝜏 ′

𝛿(𝜏 − 𝜏 ′),

(18.496)[
𝜕

𝜕𝜏
𝛿(𝜏 − 𝜏 ′)

]
G𝜁 (

−→r ,−→r ′
, 𝜏, 𝜏 ′) = −

[
𝜕

𝜕𝜏
G𝜁 (

−→r ,−→r ′
, 𝜏, 𝜏 ′)

]
𝜏=𝜏 ′

𝛿(𝜏 − 𝜏 ′),

(18.497)

we can write Eq. (18.495) as[
H + 𝜕2

𝜕𝜏2

]
GR(

−→r ,−→r ′
, 𝜏, 𝜏 ′) = 𝛿(𝜏 − 𝜏 ′)

[
𝜕

𝜕𝜏
G𝜁 (

−→r ,−→r ′
, 𝜏, 𝜏 ′)

]
𝜏=𝜏 ′

.

(18.498)

If we take G2 as G𝜁 , the right-hand side becomes zero; thus it is not useful for
our purposes. However, taking G̃2, we find[

H + 𝜕2

𝜕𝜏2

]
GR(

−→r ,−→r ′
, 𝜏, 𝜏 ′) = 𝛿(𝜏 − 𝜏 ′)𝛿3(−→r − −→r ′), (18.499)

which means that the Green’s function that we need is

GR(
−→r ,−→r ′

, 𝜏, 𝜏 ′) = G̃2(
−→r ,−→r ′

, 𝜏, 𝜏 ′)𝜃(𝜏 − 𝜏 ′). (18.500)

The general solution can now be expressed as

ΨR(
−→r , 𝜏) = Ψ0(

−→r , 𝜏) + ∫ d3−→r ′

∫
𝜏

−∞
d𝜏 ′G̃2(

−→r ,−→r ′
, 𝜏, 𝜏 ′)𝜌(−→r ′

, 𝜏 ′).

(18.501)

There is also another choice for the Green’s function, which is given as

GA(
−→r ,−→r ′

, 𝜏, 𝜏 ′) = −G̃2(
−→r ,−→r ′

, 𝜏, 𝜏 ′)𝜃(𝜏 ′ − 𝜏). (18.502)
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Following similar steps:[
H + 𝜕2

𝜕𝜏2

]
GA

= −𝜃(𝜏 ′ − 𝜏)HG̃2 −
𝜕2

𝜕𝜏2 [G̃2(
−→r ,−→r ′

, 𝜏, 𝜏 ′)𝜃(𝜏 ′ − 𝜏)] (18.503)

= −𝜃(𝜏 ′ − 𝜏)
[

H + 𝜕2

𝜕𝜏2

]
G̃2 − 2 𝜕

𝜕𝜏
𝜃(𝜏 ′ − 𝜏) 𝜕

𝜕𝜏
G̃2 − G̃2

𝜕2

𝜕𝜏2 𝜃(𝜏
′ − 𝜏)

(18.504)

= −
[
𝜕

𝜕𝜏
G̃2

]
𝜕

𝜕𝜏
𝜃(𝜏 ′ − 𝜏) =

[
𝜕

𝜕𝜏
G̃2

]
𝜕

𝜕𝜏 ′
𝜃(𝜏 ′ − 𝜏) (18.505)

=
[
𝜕

𝜕𝜏
G̃2(

−→r ,−→r ′
, 𝜏, 𝜏 ′)

]
𝛿(𝜏 ′ − 𝜏) (18.506)

=
[
𝜕

𝜕𝜏
G̃2(

−→r ,−→r ′
, 𝜏, 𝜏 ′)

]
𝜏 ′=𝜏

𝛿(𝜏 ′ − 𝜏), (18.507)

we see that GA(
−→r ,−→r ′

, 𝜏, 𝜏 ′) also satisfies the defining equation for the Green’s
function as[

H + 𝜕2

𝜕𝜏2

]
GA(

−→r ,−→r ′
, 𝜏, 𝜏 ′) = 𝛿(𝜏 − 𝜏 ′)𝛿3(−→r − −→r ′). (18.508)

Now the general solution of Eq. (18.486) can be written as

ΨA(
−→r , 𝜏) = Ψ0(

−→r , 𝜏) − ∫ d3−→r ′

∫
∞

𝜏

d𝜏 ′G̃2(
−→r ,−→r ′

, 𝜏, 𝜏 ′)𝜌(−→r ′
, 𝜏 ′). (18.509)

From Eq. (18.501), it is seen that the solution ΨR(
−→r , 𝜏) is determined by the

past behavior of the source, that is, with source times 𝜏 ′ < 𝜏 , while ΨA(
−→r , 𝜏) is

determined by the behavior of the source in the future, that is, with source times
𝜏 ′ > 𝜏 . We borrowed the subscripts from relativity, where R and A stand for
the “retarded” and the “advanced” solutions, respectively. These terms acquire
their true meaning with the relativistic wave equation discussed in the next
section.

18.5.3 Scalar Wave Equation

In the presence of sources or sinks, the scalar wave equation is given as

−→∇
2
Ψ(−→r , t) − 1

c2
𝜕2Ψ(−→r , t)

𝜕t2 = 𝜌(−→r , t). (18.510)
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We have already found the propagator G̃2 for the scalar wave equation
[Eq. (18.485)]:

G̃2(
−→r ,−→r ′

, t, t′) (18.511)

= 1
4𝜋|−→r − −→r ′| [𝛿(|−→r − −→r ′| − c(t − t′)) − 𝛿(|−→r − −→r ′| + c(t − t′))].

Using Eq. (18.500), we now write the Green’s function for t > t′ as

GR(
−→r ,−→r ′

, t, t′) = [𝛿(|−→r − −→r ′| − c(t − t′)) − 𝛿(|−→r − −→r ′| + c(t − t′))]
4𝜋|−→r − −→r ′| 𝜃(t − t′).

(18.512)

For t < t′, the Green’s function is GR = 0. For t > t′, the argument of the second
Dirac-delta function never vanishes; thus the Green’s function becomes

GR(
−→r ,−→r ′

, t, t′) = 1
4𝜋|−→r − −→r ′|𝛿[|−→r − −→r ′| − c(t − t′)]. (18.513)

Now the general solution with this Green’s function is expressed as

ΨR(
−→r , t) = Ψ0(

−→r , t) + 1
4𝜋 ∫ d3−→r ′

∫
∞

−∞
dt′ 𝛿[|−→r − −→r ′| − c(t − t′)]|−→r − −→r ′| 𝜌(−→r ′

, t′),

(18.514)

whereΨ0(
−→r , 𝜏) is the solution of the homogeneous equation. Taking the t′ inte-

gral, we find

ΨR(
−→r , t) = Ψ0(

−→r , t) + 1
4𝜋 ∫ d3−→r ′ [𝜌(−→r ′

, t′)]R|−→r − −→r ′| , (18.515)

where [𝜌(−→r ′
, t′)]R means that the solution ΨR at (−→r , t) is found by using the

values of the source 𝜌(−→r ′
, t′) evaluated at retarded times t′ = t − |−→r − −→r ′|∕c.

We show the source at retarded times as [𝜌(−→r ′
, t′)]R = 𝜌(−→r ′

, t − |−→r − −→r ′|∕c),
and the solution found by using [𝜌(−→r ′

, t′)]R is shown as ΨR(
−→r , t). The physi-

cal interpretation of this solution is that whatever happens at the source point
shows its effect at the field point later by the amount of time that signals (light)
take to travel from the source to the field point. In other words, causes precede
their effects.

Retarded solutions are of basic importance in electrodynamics, where the
scalar potential Φ(−→r , t) and the vector potential −→A(−→r , t) satisfy the following
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equations:[
−→∇

2
− 1

c2
𝜕2

𝜕t2

]
Φ(−→r , t) = −4𝜋𝜌(−→r , t), (18.516)[

−→∇
2
− 1

c2
𝜕2

𝜕t2

]
−→A(−→r , t) = −4𝜋

c
−→J (−→r , t). (18.517)

Here, 𝜌(−→r , t) and−→J (−→r , t) stand for the charge and the current densities, respec-
tively.

In search of a Green’s function for Eq. (18.510), we have added a discontinuity
to G̃2 as G̃2(

−→r ,−→r ′
, 𝜏, 𝜏 ′)𝜃(𝜏 − 𝜏 ′). However, there is also another alternative,

where we take
GA(

−→r ,−→r ′
, 𝜏, 𝜏 ′) = −G̃2(

−→r ,−→r ′
, 𝜏, 𝜏 ′)𝜃(𝜏 ′ − 𝜏). (18.518)

Solution of the wave equation with this Green’s function is now given as

ΨA(
−→r , t) = Ψ0(

−→r , t) + 1
4𝜋 ∫ d3−→r ′ [𝜌(−→r ′

, t′)]A|−→r − −→r ′| . (18.519)

In this solution, A stands for advanced times, that is, t′ = t + |−→r − −→r ′|∕c. In
other words, whatever “ happens” at the source point shows its effect at the
field point before its happening by the amount of time |−→r − −→r ′|∕c, which is
again equal to the amount of time that light takes to travel from the source to
the field point. In summary, in advanced solutions, effects precede their causes.

We conclude this section by saying that the wave equation (18.510) is covari-
ant with c standing for the speed of light; hence, the two solutions ΨR(

−→r , t) and
ΨA(

−→r , t) are both legitimate solutions of the relativistic wave equation. Thus
the general solution is in principle their linear combination:

Ψ(−→r , t) = c1ΨA(
−→r , t) + c2ΨR(

−→r , t). (18.520)

However, because we have no evidence of a case where causes precede their
effects, as a boundary condition we set c1 to zero, and take the retarded solu-
tion as the physically meaningful solution. This is also called the principle of
causality [3].

Bibliography

1 Bayin, S.S. (2008) Essentials of Mathematical Methods in Science and Engi-
neering, John Wiley & Sons.

2 Doniach, S. and Sondheimer, E.H. (1998) Green’s Functions for Solid State
Physics, World Scientific.

3 Feynman, R., Leighton, R.B., and Sands, M. (1966) The Feynman Lectures on
Physics, vol. 2, Addison-Wesley, Reading, MA.



748 18 Green’s Functions

4 Jackson, J.D. (1999) Classical Electrodynamics, 3rd edn, John Wiley & Sons,
Inc., New York.

5 Merzbacher, E. (1998) Quantum Mechanics, 3rd edn, John Wiley & Sons,
Inc., New York.

6 Roach, G.F. (1982) Green’s Functions, 2nd edn, Cambridge University Press,
Cambridge.

Problems

1 Given the Bessel equation

d
dx

[
x

dy
dx

]
+

(
kx − m2

x

)
y(x) = 0

and its general solution, y(x) = A0Jm(x) + B0Nm(x), find the Green’s func-
tion satisfying the boundary conditions y(0) = 0 and y′(a) = 0.

2 For the operator £ = d2∕dx2 and the boundary conditions y(0) = y(L) = 0,
we have found the Green’s function as

G(x, x′) =
[
(x − x′)𝜃(x − x′) − x

L
(L − x′)

]
.

Show that the trigonometric Fourier expansion of this is

G(x, x′) = −2
L

∑
n

sin knx sin knx′

k2
n

.

3 Show that the Green’s function for the differential operator £ = d2

dx2 + k2
0

with the boundary conditions y(0) = 0 and y(L) = 0 is given as

G(x, x′) = 1
k0 sin k0L

⎧⎪⎨⎪⎩
sin k0x sin k0(x′ − L), x < x′,

sin k0x′ sin k0(x − L), x > x′.

Show that this is equivalent to the eigenvalue expansion

G(x, x′) = 2
L

∞∑
n=1

sin n𝜋x
L

sin n𝜋x′

L

k2
0 − (n𝜋∕L)2

.

4 Single-point boundary condition: Consider the differential equation
£y(x) = 𝜙(x), where £ is the Sturm–Liouville operator, £ = d

dx

(
p(x) d

dx

)
+

q(x). Construct the Green’s function satisfying the single-point boundary
conditions y(x0) = y0 and y′(x0) = y′0.
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Hint: First write the Green’s function as

G(x, x′) = Ay1(x) + By2(x), x > x′,

G(x, x′) = Cy1(x) + Dy2(x), x < x′,

where y1(x) and y2(x) are two linearly independent solutions of £y(x) = 0.
Because the Green’s function is continuous at x = x′ and its derivative has
a discontinuity of magnitude 1∕p(x) at x = x′, find the constants A,B,C,
and D, thus obtaining the Green’s function as

G(x, x′) = Cy1(x) + Dy2(x) −
[y1(x)y2(x′) − y2(x)y1(x′)]

p(x′)W [y1(x′), y2(x′)]
, x > x′,

G(x, x′) = Cy1(x) + Dy2(x), x < x′,

where W [y1(x), y2(x)] is the Wronskian defined as W [y1, y2] = y1y′2 − y2y′1.
Now impose the single-point boundary conditions G(x0, x′) = 0 and
G′(x0, x′) = 0 to show that C = D = 0. Finally show that the differen-
tial equation £y(x) = 𝜙(x) with the single-point boundary conditions
y(x0) = y0 and y′(x0) = y′0 is equivalent to the integral equation

y(x) = C1y1(x) + C2y2(x) + ∫
x

x0

G(x, x′)𝜙(x′) dx′.

5 Consider the differential operator £ = d2

dt2 + 𝜔2
0 with the single-point

boundary conditions x(0) = x0 and ẋ(0) = 0. Show that the Green’s
function is given as

G(t, t′) =
sin𝜔0(t − t′)

𝜔0
𝜃(t − t′)

and write the solution for ẍ(t) + 𝜔2
0x2(t) = F(t).

6 Find the Green’s function for the Sturm–Liouville operator:

£ = a3(x)
d3

dx3 + a2(x)
d2

dx2 + a1(x)
d

dx
+ a0(x),

satisfying the boundary conditions

G(x, x′)|x=a = 0 dG(x, x′)
dx

|x=a = 0 d2G(x, x′)
dx2 |x=a = 0,

in the interval [a, b].

7 Find the Green’s function for the differential equation d4y
dx4 = 𝜙(x, y), with

the boundary conditions y(0) = y′(0) = y(1) = y′(1) = 0.
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8 For the scalar wave equation:

−→∇
2
Ψ(−→r , t) − 1

c2
𝜕2Ψ(−→r , t)

𝜕t2 = 𝜌(−→r , t),

take the Green’s function as

GA(
−→r ,−→r ′

, 𝜏, 𝜏 ′) = −G̃2(
−→r ,−→r ′

, 𝜏, 𝜏 ′)𝜃(𝜏 ′ − 𝜏)

and show that the solution is given as

ΨA(
−→r , t) = Ψ0(

−→r , t) + 1
4𝜋 ∫ d3−→r ′ [𝜌(−→r ′

, t′)]A|−→r − −→r ′| .

What does [𝜌(−→r ′
, t′)]A stand for? Discuss your answer. (Read chapter 28

of The Feynman Lectures on Physics [3].)

9 Consider the partial differential equation
(

𝜕2

𝜕x2 − 𝜕

𝜕t

)
y(x, t) = 0 with the

boundary conditions y(0, t) = 0 and y(L, t) = y0. If y(x, 0) represents the
initial solution, find the solution at subsequent times.

10 Using the Green’s function technique, solve the differential equation
£y(x) = −𝜆xy(x), x ∈ [0, L], where

£y(x) =
[

d
dx

(
x d

dx

)
− n2

x

]
y(x), n = constant,

with the boundary conditions y(0) = 0, y(L) = 0.
What is the solution of £y = −𝜆xn with the above boundary conditions?

11 Find the Green’s function for the problem £y(x) = F(x), x ∈ [0, L], where

£ = d
dx

(
x d

dx

)
. Use the boundary conditions y(0) = finite, y(L) = 0.

Write Green’s theorem [Eq. (18.179)] in one dimension. Does the surface
term in (18.181) vanish?

12 Given the differential equation y′′(t) − 3y′(t) + 2y(t) = 2e−t and the
boundary conditions y(0) = 2, y′(0) = −1.

i) Defining the operator in £y(x) = 𝜙(x) as

£ = d2

dx2 − 3 d
dx

+ 2

find the solution by using the Green’s function method.
ii) Confirm your answer by solving the above problem using the Laplace

transform technique.
iii) Using a different definition for £, show that you get the same answer.
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13 Consider the wave equation ◽y(x, t) = F(x, t) with the boundary condi-
tions y(0, t) = y(L, t) = 0. Find the Green’s functions satisfying◽G(x, x′) =
𝛿(x − x′)𝛿(t − t′) and the initial conditions:

i) y(x, 0) = y0(x),
𝜕y(x, 0)

𝜕t
= 0,

ii) y(x, 0) = 0,
𝜕y(x, 0)

𝜕t
= 𝑣0(x).

14 Consider the partial differential equation −→∇
2
Ψ(−→r ) = F

−→
(r). Show that the

Green’s function for the inside of a sphere satisfying the boundary condi-
tions that G(−→r ,−→r ′) be finite at the origin and zero on the surface, r = a,
is given as

G(−→r ,−→r ′) =
∞∑

l=0

m=l∑
m=−l

gl(r, r′)Y ∗m
l (𝜃′, 𝜙′)Y m

l (𝜃, 𝜙),

where

gl(r, r′) =
rlr′l

(2l + 1)a2l+1

{
[1 − (a∕r′)2l+1], r < r′,
[1 − (a∕r)2l+1], r > r′.

15 Consider the Helmholtz equation −→∇
2
Ψ(−→r ) + k2

0Ψ(
−→r ) = F

−→
(r), for the

forced oscillations of a two-dimensional circular membrane (drum-
head) with radius a and with the boundary conditions Ψ(0) = finite
and Ψ(a) = 0. Show that the Green’s function obeying −→∇

2
G(−→r ,−→r ′) +

k2
0G(−→r ,−→r ′) = 𝛿(−→r − −→r ′) is given as

G(−→r ,−→r ′) =
∞∑

m=0
cos m(𝜃 − 𝜃′)

×

⎧⎪⎪⎨⎪⎪⎩

Jm(ka)Nm(kr′) − Nm(ka)Jm(kr′)
2𝜖mJm(ka)

Jm(kr), r < r′,

Jm(ka)Nm(kr) − Nm(ka)Jm(kr)
2𝜖mJm(ka)

Jm(kr′), r > r′,

where

𝜖m =

{
2 , m = 0,
1 , m = 1, 2, 3,… .

Hint: use

𝛿(−→r − −→r ′) = 𝛿(r − r′)
r

𝛿(𝜃 − 𝜃′) = 𝛿(r − r′)
r

1
2𝜋

m=∞∑
m=−∞

eim(𝜃−𝜃′)
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and separate the Green’s function as

G(−→r ,−→r ′) = 1
2𝜋

m=∞∑
m=−∞

gm(r, r′)eim(𝜃−𝜃′).

One also needs the identity Jm(r)N ′
m(r) − J ′m(r)Nm(r) = 2∕𝜋r, and 𝜖m is

introduced when we combined the ±m terms to get cos m(𝜃 − 𝜃′).

16 In the previous forced drumhead problem (Problem 15), first find the
appropriate eigenfunctions and then show that the Green’s function can
also be written as

G(−→r ,−→r ′) =
∞∑

m=0

∞∑
n=1

N2
mnJm(kmnr)Jm(kmnr′) cos m(𝜃 − 𝜃′)

k2 − k2
mn

,

where the normalization constant Nmn is given as

Nmn =
[√

𝜋𝜖m

2
aJ ′m(kmna)

]−1
. Compare the two results.

17 Consider the differential equation £Φ(−→r ) = F(−→r ) with the operator
£ = −→∇ ⋅ [p(−→r )−→∇] + q(r). Show that the solution

Φ(−→r ′) = ∫ ∫ ∫V
F(−→r )G(−→r ,−→r ′) d3−→r

+ ∫ ∫ ∫V
[Φ(−→r )£G(−→r ,−→r ′) − G(−→r ,−→r ′)£Φ(−→r ′)] d3−→r

can be expressed as

Φ(−→r ) = ∫V
F(−→r ′)G(−→r ,−→r ′) d3−→r ′

+ ∮S
p(−→r ′)[Φ(−→r ′)−→∇G(−→r ,−→r ′) − G(−→r ,−→r ′)−→∇Φ(−→r ′)] ⋅ n̂ ds′,

where n̂ is the outward normal to the surface S bounding V .

18 Find the Green’s function, G(𝜌, 𝜙, 𝜌′, 𝜙′), for the two-dimensional
Helmholtz equation [−→∇

2
+ 𝜅2]Ψ(𝜌, 𝜙) = 0, for the full region outside

a cylindrical surface, 𝜌 = a, which is appropriate for the following
boundary conditions:

i) Ψ is specified everywhere on 𝜌 = a.
ii) As 𝜌 → ∞, Ψ → ei𝜅𝜌√

𝜌
f (𝜙); outgoing cylindrical wave. Note that Ψ is

independent of z.

19 Find the solution of the following eigenvalue problem:
d2Ψ
d𝜃2 + cot 𝜃dΨ

d𝜃
+ 𝜆Ψ = 𝛼cos2𝜃Ψ,
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where Ψ = Ψ(𝜃) is defined over the interval 0 ≤ 𝜃 ≤ 𝜋 and must be
square-integrable with the weight function sin 𝜃. The parameter 𝛼 is
≪ 1; hence, the solution can be expanded in terms of the positive
powers of 𝛼. Find the solution, which in the limit as 𝛼 → 0, has the
eigenvalue 𝜆(0) = l(l + 2) with l = 2. In addition, for this eigenvalue,
find the eigenvalue correct to order 𝛼2 and the solution Ψ(𝜃) correct to
order 𝛼.

20 Find the Green’s function for the three-dimensional Helmholtz equation
[−→∇

2
+ 𝜅2]Ψ(−→r ) = 0, for the region bounded by two spheres of radii a and b

(a > b) and which is appropriate for the boundary condition where Ψ(−→r )
is specified on the spheres of radius r = a and r = b.

21 Find the Green’s function for the Helmholtz equation outside a spherical
boundary with the radius a and satisfying the boundary conditions R(a) =
finite and R(r)

r→∞
−−−−→ eikr∕kr.

22 Find the Green’s function for the operator

£ = d
dx

(
x d

dx

)
− n2

x
, n = integer,

with the boundary conditions y(0) = 0 and y(L) = yL.

23 In Example 18.2, show that the solution for small oscillations is
𝜃 = 𝜃1 sin𝜔0t∕ sin𝜔0t1. Show that this result satisfies the integral
Eq. (18.50) in the small oscillations limit.
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19

Green’s Functions and Path Integrals

In 1827, Brown investigates the random motions of pollen suspended in water
under a microscope. The irregular movements of the pollen particles are
due to their random collisions with the water molecules. Later, it becomes
clear that many small objects interacting randomly with their environment
behave the same way. Today, this motion is known as the Brownian motion
and forms the prototype of many different phenomena in diffusion, colloid
chemistry, polymer physics, quantum mechanics, and finance. During the
years 1920−1930, Wiener approaches Brownian motion in terms of path
integrals. This opens up a whole new avenue in the study of many classical
systems. In 1948, Feynman gives a new formulation of quantum mechanics in
terms of path integrals. In addition to the existing Schrödinger and Heisenberg
formulations, this new approach not only makes the connection between
quantum and classical physics clearer but also leads to many interesting
applications in field theory. In this chapter, we introduce the basic features of
this intriguing technique, which not only has many interesting existing appli-
cations but also has tremendous potential for future uses. In conjunction with
the anomalous diffusion phenomena and the path integrals over Lévy paths, we
also introduce the Fox’s H-functions; a versatile and an elegant tool of applied
mathematics.

19.1 Brownian Motion and the Diffusion Problem

Starting with the principle of conservation of matter, we write the diffusion
equation as

𝜕𝜌(−→r , t)
𝜕t

= D−→∇2𝜌(−→r , t), (19.1)

where 𝜌(−→r , t) is the density of the diffusing material and D is the diffusion
constant depending on the characteristics of the medium. Because the diffu-
sion process is also many particles undergoing Brownian motion at the same

Mathematical Methods in Science and Engineering, Second Edition. Selçuk Ş. Bayın.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.
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time, division of 𝜌(−→r , t) by the total number of particles gives the probability,
𝑤(−→r , t), of finding a particle at −→r and t as 𝑤(−→r , t) = 𝜌(−→r , t)∕N . Naturally,
𝑤(−→r , t) also satisfies the diffusion equation:

𝜕𝑤(−→r , t)
𝜕t

= D−→∇2𝑤(−→r , t). (19.2)

For a particle starting its motion from −→r = 0, we have to solve Eq. (19.2) with
the initial condition limt→0𝑤(−→r , t) → 𝛿(−→r ). In one dimension, Eq. (19.2):

𝜕𝑤(x, t)
𝜕t

= D𝜕2𝑤(x, t)
𝜕x2 , (19.3)

can be solved using the Fourier transform technique as

𝑤(x, t) = 1√
4𝜋Dt

exp
{
− x2

4Dt

}
. (19.4)

This is consistent with the probability interpretation of 𝑤(x, t), which is always
positive. Because it is certain that the particle is somewhere in the interval
(−∞,∞), 𝑤(x, t) also satisfies the normalization condition

∫
∞

−∞
dx𝑤(x, t) = ∫

∞

−∞
dx 1√

4𝜋Dt
exp

{
− x2

4Dt

}
= 1. (19.5)

For a particle starting its motion from an arbitrary point (x0, t0), we write the
probability distribution as

W (x, t, x0, t0) =
1√

4𝜋D(t − t0)
exp

{
−

(x − x0)2

4D(t − t0)

}
, (19.6)

where W (x, t, x0, t0) is the solution of
𝜕W (x, t, x0, t0)

𝜕t
= D

𝜕2W (x, t, x0, t0)
𝜕x2 (19.7)

satisfying the initial condition limt→t0
W (x, t, x0, t0) → 𝛿(x − x0) and the

normalization condition ∫ ∞
−∞ dxW (x, t, x0, t0) = 1.

From our discussion of Green’s functions in Chapter 18, we recall that
W (x, t, x0, t0) is also the propagator of the operator

£ = 𝜕

𝜕t
− D 𝜕2

𝜕x2 . (19.8)

Thus, given the probability at some initial point and time, 𝑤(x0, t0), we can find
the probability at subsequent times, 𝑤(x, t), using W (x, t, x0, t0) as

𝑤(x, t) = ∫
∞

−∞
dx0W (x, t, x0, t0)𝑤(x0, t0), t > t0. (19.9)
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Combination of propagators gives us the Einstein-Smoluchowski-
Kolmogorov–Chapman equation (ESKC):

W (x, t, x0, t0) = ∫
∞

−∞
dx′W (x, t, x′, t′)W (x′, t′, x0, t0), t > t′ > t0.

(19.10)

The significance of this equation is that it gives the causal connection of events
in Brownian motion as in the Huygens–Fresnel equation.

19.1.1 Wiener Path Integral and Brownian Motion

In Eq. (19.9), we have seen how to find the probability of finding a particle at
(x, t) from the probability at (x0, t0) using the propagator W (x, t, x0, t0). We now
divide the interval between t0 and t into N + 1 equal segments:

Δti = ti − ti−1 =
t − t0

N + 1
, (19.11)

which is covered by the particle in N steps. The propagator of each step is
given as

W (xi, ti, xi−1, ti−1) =
1√

4𝜋D(ti − ti−1)
exp

{
−

(xi − xi−1)2

4D(ti − ti−1)

}
. (19.12)

Assuming that each step is taken independently, we combine propagators N
times using the ESKC relation to get the propagator that takes us from (x0, t0)
to (x, t) in a single step as

W (x, t, x0, t0) = ∫ · · ·∫ exp

{
−

N+1∑
i=1

(xi − xi−1)2

4D(ti − ti−1)

} N∏
i=1

dxi√
4𝜋D(ti − ti−1)

.

(19.13)

This equation is valid for N > 0. Assuming that it is also valid in the limit as
N → ∞, that is, as Δti → 0, we write

W (x, t, x0, t0) = lim
N→∞,
Δti→0

∫ · · ·∫ exp

{
− 1

4D

N+1∑
i=1

(xi − xi−1

ti − ti−1

)2

Δti

} N∏
i=1

dxi(𝜏)√
4𝜋DΔti

,

(19.14)

W (x, t, x0, t0) = ∫ · · ·∫ exp
{
− 1

4D ∫
t

t0

ẋ2(𝜏) d𝜏
} t∏

𝜏=t0

dx(𝜏)√
4𝜋Dd𝜏

. (19.15)
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x

(x, t)

(x0, t0)
τ

Figure 19.1 Paths C[x0, t0; x, t] for the pinned Wiener measure.

Here, 𝜏 is a time parameter (Figure 19.1) introduced to parametrize the paths
as x(𝜏). We can also write W (x, t, x0, t0) in short as

W (x, t, x0, t0) = Ň ∫ exp
{
− 1

4D ∫
t

t0

ẋ2(𝜏) d𝜏
}

Ďx(𝜏), (19.16)

where Ň is a normalization constant and Ďx(𝜏) indicates that the integral
should be taken over all paths starting from (x0, t0) and end at (x, t). This
expression can also be written as

W (x, t, x0, t0) = ∫C[x0,t0;x,t]
d𝑤x(𝜏), (19.17)

where d𝑤x(𝜏) is called the Wiener measure. Because d𝑤x(𝜏) is the measure
for all paths starting from (x0, t0) and ending at (x, t), it is called the pinned
or conditional Wiener measure (Figure 19.1). It is important to note that for
N + 1 segments, when N is finite, there are N + 1 propagators connected by
N variables xi, hence there is one more factor of the square root in Eq. (19.14)
[see Eqs. (19.168) and (19.169)].

Summary: For a particle starting its motion from (x0, t0) and ending at (x, t)
the propagator, W (x, t, x0, t0), is given as

W (x, t, x0, t0) =
1√

4𝜋D(t − t0)
exp

{
−

(x − x0)2

4D(t − t0)

}
. (19.18)
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This satisfies the differential equation

𝜕W (x, t, x0, t0)
𝜕t

= D 𝜕2

𝜕x2 W (x, t, x0, t0) (19.19)

with the initial condition limt→t0
W (x, t, x0, t0) → 𝛿(x − x0).

In terms of the Wiener path integral, the propagator W (x, t, x0, t0) is also
expressed as

W (x, t, x0, t0) = ∫C[x0,t0;x,t]
d𝑤x(𝜏), (19.20)

whereas N → ∞, the measure of this integral is

d𝑤x(𝜏) = exp
{
− 1

4D ∫
t

t0

ẋ2(𝜏)d𝜏
} N∏

i=1

dxi√
4𝜋D d𝜏

. (19.21)

Because the integral is taken over all continuous paths from (x0, t0) to (x, t),
which are shown as C[x0, t0; x, t], this measure is also called the pinned Wiener
measure (Figure 19.1).

For a particle starting from (x0, t0), the probability of finding it in the interval
Δx at time t is given by

Δx∫C[x0,t0;t]
d𝑤x(𝜏). (19.22)

In this integral, because the position of the particle at time t is not fixed, d𝑤x(𝜏)
is called the unpinned, or unconditional Wiener measure. At time t, because
it is certain that the particle is somewhere in the interval x ∈ [−∞,∞],we write
(Figure 19.2)

∫C[x0,t0;t]
d𝑤x(𝜏) = ∫

∞

−∞
dx∫C[x0,t0;x,t]

d𝑤x(𝜏) = 1. (19.23)

The average of a functional, F[x(t)], found over all paths C[x0, t0; t] at time t
is given by the formula

⟨F[x(t)]⟩C = ∫C[x0,t0;t]
d𝑤x(𝜏)F[x(𝜏)] (19.24)

= ∫
∞

−∞
dx∫C[x0,t0;x,t]

d𝑤x(𝜏)F[x(𝜏)]. (19.25)
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x

t

(x0, t0)
τ

Figure 19.2 Paths C[x0, t0; t]
for the unpinned Wiener
measure.

In terms of the Wiener measure, we can express the ESKC relation as

∫C[x0,t0;x,t]
d𝑤x(𝜏) = ∫

∞

−∞
dx′∫C[x0,t0;x′,t′]

d𝑤x(𝜏)∫C[x′,t′;x,t]
d𝑤x(𝜏). (19.26)

19.1.2 Perturbative Solution of the Bloch Equation

We have seen that the propagator of the diffusion equation:

𝜕𝑤(x, t)
𝜕t

− D𝜕2𝑤(x, t)
𝜕x2 = 0, (19.27)

can be expressed as a path integral [Eq. (19.20)]. However, when we have a
closed expression as in Eq. (19.18), it is not clear what advantage this new
representation has. In this section, we study the diffusion equation in the
presence of interactions, where the advantages of the path integral approach
begin to appear. In the presence of a potential, V (x), the diffusion equation
can be written as

𝜕𝑤(x, t)
𝜕t

− D𝜕2𝑤(x, t)
𝜕x2 = −V (x, t)𝑤(x, t), (19.28)

which is also known as the Bloch equation. We now need a Green’s function,
WD(x, t, x′, t′), that satisfies the inhomogeneous equation:

𝜕WD(x, t, x′, t′)
𝜕t

− D
𝜕2WD(x, t, x′, t′)

𝜕x2 = 𝛿(x − x′)𝛿(t − t′), (19.29)
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so that we can express the general solution of Eq. (19.28) as

𝑤(x, t) = 𝑤0(x, t) − ∫ ∫ WD(x, t, x′, t′)V (x′, t′)𝑤(x′, t′) dx′dt′, (19.30)

where 𝑤0(x, t) is the solution of the homogeneous part of Eq. (19.28), that is,
Eq. (19.3).

We can construct WD(x, t, x′, t′) using the propagator, W (x, t, x′, t′), that
satisfies the homogeneous equation (Chapter 18)

𝜕W (x, t, x′, t′)
𝜕t

− D𝜕2W (x, t, x′, t′)
𝜕x2 = 0, (19.31)

as

WD(x, t, x′, t′) = W (x, t, x′, t′)𝜃(t − t′). (19.32)

Because the unknown function also appears under the integral sign, Eq. (19.30)
is still not the solution, that is, it is just the integral equation version of Eq.
(19.28). On the other hand WB(x, t, x′, t′), which satisfies the Bloch equation:

𝜕WB(x, t, x′, t′)
𝜕t

− D
𝜕2WB(x, t, x′, t′)

𝜕x2 = −V (x, t)WB(x, t, x′, t′), (19.33)

is given as

WB(x, t, x0, t0) = WD(x, t, x0, t0)

− ∫
∞

−∞
dx′ ∫

∞

−∞
dt′WD(x, t, x′, t′)V (x′, t′)WB(x′, t′, x0, t0).

(19.34)

The first term on the right-hand side is the solution, W (x, t, x′, t′), of the
homogeneous equation [Eq. (19.31)]. However, since t > t0, Eq. (19.32) allows
us to write it as WD(x, t, x0, t0).

A very useful formula called the Feynman–Kac formula, or theorem, is
given as

WB(x, t, x0, 0) = ∫C[x0,0;x,t]
d𝑤x(𝜏) exp

{
−∫

t

0
d𝜏V [x(𝜏), 𝜏]

}
. (19.35)

This is a solution of Eq. (19.33) with the initial condition

lim
t→t′

WB(x, t, x′, t′) = 𝛿(x − x′). (19.36)

The Feynman-Kac theorem constitutes a very important step in the develop-
ment of path integrals. We leave its proof to the next section and continue by
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writing the path integral in Eq. (19.35) as a Riemann sum:

WB(x, t, x0, 0) = lim
N→∞,
𝜀→0

(4𝜋D𝜀)−(N+1)∕2 ∫
∞

−∞
dx1 ∫

∞

−∞
dx2 · · ·∫

∞

−∞
dxN

× exp

{
− 1

4D𝜀

N+1∑
j=1

(xj − xj−1)2 − 𝜀

N∑
j=1

V (xj, tj)

}
, (19.37)

where we have taken

𝜀 = ti − ti−1 =
t − t0

N + 1
. (19.38)

The first exponential factor in Eq. (19.37) is the solution [Eq. (19.13)] of the
homogeneous equation. After expanding the second exponential factor as

exp

{
−𝜀

N∑
j=1

V (xj, tj)

}
(19.39)

= 1 − 𝜀

N∑
j=1

V (xj, tj) +
1
2
𝜀2

N∑
j=1

N∑
k=1

V (xj, tj)V (xk , tk) − · · · ,

we integrate over the intermediate x variables and rearrange to obtain

WB(x, t, x0, t0) = W (x, t, x0, t0) (19.40)

− 𝜀

N∑
j=1

∫
∞

−∞
dxjW (x, t, xj, tj)V (xj, tj)W (xj, tj, x0, t0)

+ 1
2!
𝜀2

N∑
j=1

N∑
k=1

∫
∞

−∞
dxj ∫

∞

−∞
dxkW (x, t, xj, tj)V (xj, tj)W (xj, tj, xk , tk)

× V (xk , tk)W (xk , tk , x0, t0) + · · · .

In the limit as 𝜀 → 0, we now make the replacement 𝜀
∑

j → ∫ t
t0

dtj and
suppress the factors of factorials, 1∕n!, since they are multiplied by 𝜀n, which
also goes to zero as 𝜀 → 0. Besides, because the times in Eq. (19.40) are ordered
as t0 < t1 < t2 < · · · < t, we replace W with WD and write WB as

WB(x, t, x0, t0) = WD(x, t, x0, t0) (19.41)

− ∫
∞

−∞
dx′ ∫

t

t0

dt′WD(x, t, x′, t′)V (x′, t′)WD(x′, t′, x0, t0)

+ ∫
∞

−∞
dx′ ∫

t

t0

dt′ ∫
∞

−∞
dx′′ ∫

t′

t′0
dt′′WD(x, t, x′, t′)V (x′, t′)WD(x′, t′, x′′, t′′)

× V (x′′, t′′)WD(x′′, t′′, x0, t0) + · · · .
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Now WB(x, t, x0, t0) no longer appears on the right-hand side of this equation.
Thus, it is the perturbative solution of Eq. (19.34) by the iteration method.
Note that WB(x, t, x0, t0) satisfies the initial condition given in Eq. (19.36).

19.1.3 Derivation of the Feynman–Kac Formula

We now show that the Feynman–Kac formula:

WB(x, t, x0, 0) = ∫C[x0,0;x,t]
d𝑤x(𝜏) exp

{
−∫

t

0
d𝜏V [x(𝜏), 𝜏]

}
, (19.42)

is identical to the iterative solution to all orders of the following integral
equation:

WB(x, t, x0, t0) = WD(x, t, x0, t0)

− ∫
∞

−∞
dx′ ∫

t

0
dt′WD(x, t, x′, t′)V (x′, t′)WB(x′, t′, x0, t0),

(19.43)

which is equivalent to the differential equation
𝜕WB(x, t, x′, t′)

𝜕t
− D

𝜕2WB(x, t, x′, t′)
𝜕x2 = −V (x, t)WB(x, t, x′, t′) (19.44)

with the initial condition given in Eq. (19.36).
We first show that the Feynman-Kac formula satisfies the ESKC [Eq. (19.10)]

relation. Note that we write V [x(𝜏)] instead of V [x(𝜏), 𝜏] when there is no room
for confusion:

∫
∞

−∞
dxsWB(x, t, xs, ts)WB(xs, ts, x0, 0) (19.45)

= ∫
∞

−∞
dxs∫C[x0,0;xs,ts]

d𝑤x(𝜏) exp
{
−∫

s

0
d𝜏V [x(𝜏)]

}
× ∫C[xs,ts;x,t]

d𝑤x(𝜏 ′) exp
{
−∫

t

ts

d𝜏 ′V [x(𝜏 ′)]
}

.

In this equation, xs denotes the position at ts, and x denotes the position at
t. Because C[x0, 0; x𝜏 , t𝜏 ; x, t] denotes all paths starting from (x0, 0), passing
through (x𝜏 , t𝜏) and then ending up at (x, t), we can write the right-hand side
of the above equation as

∫
∞

−∞
dxs∫C[x0,0;xs,ts;x,t]

d𝑤x(𝜏) exp
{
−∫

ts

0
d𝜏V [x(𝜏)]

}
= ∫C[x0,0;x,t]

d𝑤x(𝜏) exp
{
−∫

t

0
d𝜏V [x(𝜏)]

}
(19.46)

= WB(x, t, x0, 0), (19.47)
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which shows that the Feynman–Kac formula satisfies the ESKC relation:

∫
∞

−∞
dxsWB(x, t, xs, ts)WB(xs, ts, x0, 0) = WB(x, t, x0, 0). (19.48)

Using Eqs. (19.17) and (19.18), we also see that the Feynman–Kac formula
satisfies the initial condition:

lim
t→0

WB(x, t, x0, 0) → 𝛿(x − x0). (19.49)

The functional in the Feynman–Kac formula satisfies the equality

exp
{
−∫

t

0
d𝜏V [x(𝜏)]

}
= 1 − ∫

t

0
d𝜏
(

V [x(𝜏)] exp
{
−∫

𝜏

0
dsV [x(s)]

})
,

(19.50)
which we can easily show by taking the derivative of both sides. Because this
equality holds for all continuous paths, x(s), we take the integral of both sides
over the paths C[x0, 0; x, t] via the Wiener measure to get

∫C[x0,0;x,t]
d𝑤x(𝜏) exp

{
−∫

t

0
d𝜏V [x(𝜏)]

}
= ∫C[x0,0;x,t]

d𝑤x(𝜏) (19.51)

− ∫C[x0,0;x,t]
d𝑤x(𝜏)∫

t

0
d𝜏
(

V [x(𝜏)] exp
{
−∫

𝜏

0
dsV [x(s)]

})
.

The first term on the right-hand side is the solution of the homogeneous part of
Eq. (19.33). Also for t > 0, Eq. (19.32) allows us to write WD(x0, 0, x, t) instead
of W (x0, 0, x, t). Since the integral in the second term involves exponentially
decaying terms, it converges. Hence, we can interchange the order of the
integrals to write

∫C[x0,0;x,t]
d𝑤x(s)∫

t

0
ds
(

V [x(s)] exp
{
−∫

s

0
d𝜏V [x(𝜏)]

})
= ∫

t

0
ds∫C[x0,0;x,t]

d𝑤x(s)
[

V [x(s)] exp
{
−∫

s

0
d𝜏V [x(𝜏)]

}]
(19.52)

= ∫
t

0
ds∫

∞

−∞
dxs∫C[x0,0;xs,ts;x,t]

d𝑤x(s)
[

V [x(s)] exp
{
−∫

s

0
d𝜏V [x(𝜏)]

}]
(19.53)

= ∫
t

0
ds∫

∞

−∞
dxsV [x(s)]∫C[x0,0;xs,ts]

d𝑤x(𝜏)
[

exp
{
−∫

s

0
d𝜏V [x(𝜏)]

}]
(19.54)

× ∫C[xs,ts;x,t]
d𝑤x(𝜏)

= ∫
t

0
ds∫

∞

−∞
dxsV [x(s)]WB(xs, ts, x0, 0)WD(x, t, xs, ts), (19.55)
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where we have used the ESKC relation. We now substitute this to Eq. (19.51)
and use the result in Eq. (19.42) to obtain

WB(x, t, x0, 0) = ∫C[x0,0;x,t]
d𝑤x(𝜏) exp

{
−∫

t

0
d𝜏V [x(𝜏), 𝜏]

}
(19.56)

= WD(x, t, x0, 0) (19.57)

− ∫
∞

−∞
dx′ ∫

t

0
dt′WD(x, t, x′, t′)V (x′, t′)WB(x′, t′, x0, 0).

This is nothing but Eq. (19.34), thus proving the Feynman–Kac formula.
Generalization to arbitrary initial time t0 is obvious.

19.1.4 Interpretation of V(x) in the Bloch Equation

We have seen that the solution of the Bloch equation:
𝜕WB(x, t, x0,t0)

𝜕t
− D

𝜕2WB(x, t, x0,t0)
𝜕x2 = −V (x, t)WB(x, t, x0,t0), (19.58)

with the initial condition

WB(x, t, x0,t0)|t=t0
= 𝛿(x − x0), (19.59)

is given by the Feynman-Kac formula:

WB(x, t; x0, t0) = ∫C[x0,t0;x,t]
d𝑤x(𝜏) exp

{
−∫

t

t0

V [x(𝜏), 𝜏]d𝜏
}

. (19.60)

In these equations, even though V (x) is not exactly a potential, it is closely
related to the external forces acting on the system.

In fluid mechanics, the probability distribution of a particle undergoing
Brownian motion and under the influence of an external force satisfies the
differential equation

𝜕W (x, t; x0, t0)
𝜕t

− D
𝜕2W (x, t; x0, t0)

𝜕x2 = −1
𝜂

𝜕

𝜕x
[F(x)W (x, t; x0, t0)],

(19.61)

where 𝜂 is the friction coefficient in the drag force, which is proportional to the
velocity. In Eq. (19.61), if we try a solution of the form

W (x, t; x0, t0) = exp
{

1
2𝜂D ∫

x

x0

dxF(x)
}

W̃ (x, t; x0, t0), (19.62)

we obtain a differential equation to be solved for W̃ (x, t; x0, t0):

𝜕W̃ (x, t; x0, t0)
𝜕t

− D
𝜕2W̃ (x, t; x0, t0)

𝜕x2 = −V (x)W̃ (x, t; x0, t0), (19.63)
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where we have defined V (x) as

V (x) = 1
4𝜂2D

F2(x) + 1
2𝜂

dF(x)
dx

. (19.64)

Using the Feynman–Kac formula as the solution of Eq. (19.63), we can write
the solution of Eq. (19.61) as

W (x, t; x0, t0) = exp
{

1
2𝜂D ∫

x

x0

dxF(x)
}

∫C[x0,t0;x,t]
d𝑤x(𝜏)

× exp
{
−∫

t

t0

V [x(𝜏)]d𝜏
}

. (19.65)

With the Wiener measure [Eq. (19.21)], we rewrite this equation as

W (x, t; x0, t0) = ∫C[x0,t0;x,t]

t∏
𝜏=t0

dx(𝜏)√
4𝜋Dd𝜏

(19.66)

× exp
{

1
2𝜂D ∫

x

x0

dxF(x) − 1
4D ∫

t

t0

d𝜏x2(𝜏) − ∫
t

t0

d𝜏V [x(𝜏)]
}

.

Finally, using the equality ∫ x
x0

dxF(x) = ∫ t
t0

d𝜏ẋF(x), we write

W (x, t; x0, t0) = ∫C[x0,t0;x,t]

t∏
𝜏=t0

dx(𝜏)√
4𝜋Dd𝜏

× exp
{

1
2𝜂D ∫

t

t0

d𝜏ẋF(x) − 1
4D ∫

t

t0

d𝜏ẋ2(𝜏) − ∫
t

t0

d𝜏V [x(𝜏)]
}

(19.67)

= ∫C[x0,t0;x,t]
exp

{
− 1

4D ∫
t

t0

d𝜏L[x(𝜏)]
} t∏

𝜏=t0

dx(𝜏)√
4𝜋Dd𝜏

, (19.68)

where we have defined

L[x(𝜏)] =
(

ẋ − F
𝜂

)2

+ 2 D
𝜂

dF
dx

(19.69)

and used Eq. (19.64).
As we see from here, V (x) is not quite the potential, nor is L[x(𝜏)] the

Lagrangian. In the limit as D → 0, fluctuations in the Brownian motion
disappear and the argument of the exponential function goes to infinity. Thus,
only the path satisfying the condition

∫
t

t0

d𝜏
(

ẋ − F
𝜂

)2

= 0, (19.70)
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or
dx
d𝜏

− F
𝜂
= 0, (19.71)

contributes to the path integral in Eq. (19.68). Comparing this with

mx = −𝜂ẋ + F(x), (19.72)

we see that it is the deterministic equation of motion of a particle with negligible
mass, moving under the influence of an external force, F(x), and a friction force
−𝜂ẋ [12, p. 463].

When the diffusion constant differs from zero, the solution is given as the
path integral

W (x, t, x0, t0) = ∫C[x0,t0;x,t]
exp

{
− 1

4D ∫
t

t0

d𝜏L[x(𝜏)]
} t∏

𝜏=t0

dx(𝜏)√
4𝜋Dd𝜏

.

(19.73)
In this case, all the continuous paths between (x0, t0) and (x, t) will contribute
to the integral. It is seen from Eq. (19.73) that each path contributes to the
propagator W (x, t, x0, t0) with the weight factor

exp
{
− 1

4D ∫
t

t0

d𝜏L[x(𝜏)]
}

. (19.74)

Naturally, majority of the contribution comes from places where the paths with
comparable weights cluster. These paths are the ones that make the functional
in the exponential an extremum, that is,

𝛿 ∫
t

t0

d𝜏L[x(𝜏)] = 0. (19.75)

These paths are the solutions of the Euler–Lagrange equation:
𝜕L
𝜕x

− d
d𝜏

[
𝜕L

𝜕(dx∕d𝜏)

]
= 0. (19.76)

At this point, we remind the reader that L[x(𝜏)] is not quite the Lagrangian
of the particle undergoing Brownian motion. It is intriguing that V (x) and
L[x(𝜏)] gain their true meaning only when we consider the applications of path
integrals to quantum mechanics.

19.2 Methods of Calculating Path Integrals

We have obtained the solution of Eq. (19.28):
𝜕𝑤(x, t)

𝜕t
− D𝜕2𝑤(x, t)

𝜕x2 = −V (x, t)𝑤(x, t), (19.77)
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as

W (x, t; x0, t0)

= Ň∫C[x0,t0;x,t]
exp

{
− 1

4D ∫
t

t0

ẋ2(𝜏) d𝜏 − ∫
t

t0

V [x(𝜏)] d𝜏
}

Ďx(𝜏).

(19.78)
In term of the Wiener measure, this can also be written as [Eq. (19.35)]

W (x, t; x0, t0) = Ň∫C[x0,t0;x,t]
exp

{
−∫

t

t0

V [x(𝜏)] d𝜏
}

d𝑤x(𝜏), (19.79)

where d𝑤x(𝜏) is defined as

d𝑤x(𝜏) = exp
{
− 1

4D ∫
t

t0

ẋ2(𝜏) d𝜏
} t∏

𝜏=t0

dx(𝜏)√
4𝜋Ddt

. (19.80)

The average of a functional F[x(𝜏)] over the paths C[x0, t0; x, t] is defined as

⟨F[x(𝜏)]⟩C = ∫C[x0,t0;x,t]
F[x(𝜏)] exp

{
−∫

t

t0

V [x(𝜏)] d𝜏
}

d𝑤x(𝜏), (19.81)

where C[x0, t0; x, t] denotes all continuous paths starting from (x0, t0) and
ending at (x, t). Before we discuss techniques of evaluating path integrals,
we should talk about a technical problem that exists in Eq. (19.79). In this
expression, even though all the paths in C[x0, t0; x, t] are continuous, because
of the nature of the Brownian motion they zig zag. The average distance
squared covered by a Brown particle is given as

⟨x2⟩ = ∫
∞

−∞
𝑤(x, t)x2 dx ∝ t. (19.82)

From here, we find the average distance covered during time t as
√⟨x2⟩ ∝√t,

which gives the velocity of the particle at any point as limt→0

√
t∕t → ∞. Thus,

ẋ appearing in the propagator [Eq. (19.78)] is actually undefined for all t values.
However, the integrals in Eqs. (19.79) and (19.80) are convergent for V (x) ≥ c,
where c is some constant. In Eq. (19.79), W (x, t, x0, t0) is always positive,
thus consistent with its probability interpretation and satisfies the ESKC
relation [Eq. (19.10)], and the normalization condition ∫C[x0,t0;x,t]

d𝑤x(𝜏) = 1. In
summary, if we look at Eq. (19.79) as a probability distribution, it is basically
Eq. (19.78) written as a path integral evaluated over all Brown paths with a
suitable weight factor depending on the potential V (x).

The zig zag motion of the particles in Brownian motion is essential in the
fluid exchange process of living cells. In fractal theory, paths of Brown particles
are two-dimensional fractal curves. The possible connections between fractals,
path integrals, and differintegrals are active areas of research.
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19.2.1 Method of Time Slices

Let us evaluate the path integral of the functional F[x(𝜏)] with the Wiener mea-
sure. We slice a given path x(𝜏) into N equal time intervals and approximate the
path in each slice with a straight line lN (𝜏) as

lN (ti) = x(ti) = xi, i = 1, 2, 3,… ,N . (19.83)

This means that for a given path, x(𝜏), and a small number 𝜀, we can always
find a number N = N(𝜀) independent of 𝜏 such that |x(𝜏) − lN (𝜏)| < 𝜀 is true.
Under these conditions, for smooth functionals (Figure 19.3), the inequality|F[x(𝜏)] − F[lN (𝜏)]| < 𝛿(𝜀) is satisfied such that in the limit as 𝜀 → 0, the limit
𝛿(𝜀) → 0 is true. Because all the information about lN (𝜏) is contained in the set

x1 = x(t1),… , xN = x(tN ), (19.84)

we can also describe the functional F[lN (𝜏)] by

F[lN (𝜏)] = FN (x1, x2,… , xN ), (19.85)

which means that|||||∫C[0,0;t]
d𝑤x(𝜏)F[x(𝜏)] − ∫C[0,0;t]

d𝑤x(𝜏)FN (x1, x2, ..., xN )
|||||

≤ ∫C[0,0;t]
d𝑤x(𝜏)|F[x(𝜏)] − FN (x1, x2, · · · , xN )| (19.86)

≤ ∫C[0,0;t]
d𝑤x(𝜏)𝛿(𝜀) (19.87)

≤ 𝛿(𝜀)∫C[0,0;t]
d𝑤x(𝜏) (19.88)

≤ 𝛿(𝜀). (19.89)

Figure 19.3 Paths for the time
slice method.

τ

x

t1 t2 tN0
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Because for N = 1, 2, 3,… , the function set FN (x1, x2,… , xN ) forms a Cauchy
set approaching F[x(𝜏)], for a suitably chosen N , we can use the integral

∫C[0,0;t]
d𝑤x(𝜏)FN (x1, x2,… , xN ) (19.90)

= ∫
∞

−∞

dx1√
4𝜋Dt1

· · ·
dxN√

4𝜋D(tN − tN−1)
FN (x1, x2,… , xN )

× exp

{
− 1

4D

N∑
i=1

(xi − xi−1)2

ti − ti−1

}
to evaluate the path integral

∫C[0,0;t]
d𝑤x(𝜏)F[x(𝜏)] (19.91)

= lim
N→∞∫

∞

−∞

dx1√
4𝜋Dt1

· · ·
dxN√

4𝜋D(tN − tN−1)
FN (x1, x2,… , xN )

× exp

{
− 1

4D

N∑
i=1

(xi − xi−1)2

ti − ti−1

}
.

For a given 𝜀, the difference between the two approaches can always be kept
less than a small number, 𝛿(𝜀), by choosing a suitable N(𝜀). In this approach, a
Wiener path integral:

∫C[0,0;t]
d𝑤x(𝜏)F[x(𝜏)], (19.92)

will be converted to an N-dimensional integral [Eq. (19.90)].

19.2.2 Path Integrals With the ESKC Relation

We introduce this method by evaluating the path integral of a functional
F[x(𝜏)] = x(𝜏), (19.93)

in the interval [0, t] via the unpinned Wiener measure. Let 𝜏 be any time in the
interval [0, t]. Using Eq. (19.24) and the ESKC relation, we can write the path
integral

∫C[x0,0;t]
d𝑤x(𝜏) x(𝜏) (19.94)

as

∫C[x0,0;t]
d𝑤x(𝜏)x(𝜏)

= ∫
∞

−∞
dx∫

∞

−∞
dx𝜏x𝜏∫C[x0,0;x𝜏 ,𝜏]

d𝑤x(𝜏)∫C[x𝜏 ,𝜏;x,t]
d𝑤x(𝜏) (19.95)
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= ∫
∞

−∞
dx𝜏x𝜏∫C[x0,0;x𝜏 ,𝜏]

d𝑤x(𝜏)∫
∞

−∞
dx∫C[x𝜏 ,𝜏;x,t]

d𝑤x(𝜏) (19.96)

= ∫
∞

−∞
dx𝜏x𝜏∫C[x0,0;x𝜏 ,𝜏]

d𝑤x(𝜏)∫C[x𝜏 ,𝜏;t]
d𝑤x(𝜏). (19.97)

From Eq. (19.23), the value of the last integral is 1. Finally, using Eqs. (19.20)
and (19.18), we obtain

∫C[x0,0;t]
d𝑤x(𝜏)x(𝜏)

= ∫
∞

−∞
dx𝜏x𝜏W (x𝜏 , 𝜏, x0, 0) (19.98)

= ∫
∞

−∞
dx𝜏x𝜏

1√
4𝜋D𝜏

exp
{
−
(x𝜏 − x0)2

4D𝜏

}
(19.99)

= x0. (19.100)

19.2.3 Path Integrals by the Method of Finite Elements

We now evaluate the path integral we have found above for the functional
F[x(𝜏)] = x(𝜏) using the formula [Eq. (19.90)]:

∫C[x0,0;t]
d𝑤x(𝜏)x(𝜏) = ∫ dx∫C[x0,0;x,t]

d𝑤x(𝜏)x(𝜏) (19.101)

= ∫
∞

−∞

N∏
i=1

dxi√
4𝜋DΔti

exp

{
−

N∑
i=1

(xi − xi−1)2

4D(ti − ti−1)

}
xk (19.102)

= ∫
∞

−∞

dxkxk√
4𝜋DΔtk

∫
∞

−∞

k−1∏
i=1

dxi√
4𝜋DΔti

exp

{
−

k∑
i=1

(xi − xi−1)2

4D(ti − ti−1)

}

× ∫
∞

−∞

N∏
i=k+1

dxi√
4𝜋DΔti

exp

{
−

N∑
i=k+1

(xi − xi−1)2

4D(ti − ti−1)

}
(19.103)

= ∫
∞

−∞

dxkxk√
4𝜋DΔtk

exp
{
−
(xk − x0)2

4DΔtk

}
(19.104)

= x0. (19.105)

In this calculation, we have assumed that 𝜏 lies in the kth time slice, hence
x(tk) = xk . Complicated functionals can be handled by Eq. (19.90).
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19.2.4 Path Integrals by the “Semiclassical” Method

We have seen that the solution of the Bloch equation in the presence of a
nonzero diffusion constant is given as

W (x, t, x0, t0) = ∫C[x0,t0;x,t]
exp

{
− 1

4D ∫
t

t0

d𝜏L[x(𝜏)]
} t∏

𝜏=t0

dx(𝜏)√
4𝜋Dd𝜏

.

(19.106)
Naturally, the major contribution to this integral comes from the paths that
satisfy the Euler–Lagrange equation

𝜕L
𝜕x

− d
d𝜏

[
𝜕L

𝜕(dx∕d𝜏)

]
= 0. (19.107)

We show these “classical” paths by xc(𝜏). These paths also make the integral
∫ L d𝜏 an extremum, that is,

𝛿 ∫ Ld𝜏 = 0. (19.108)

However, we should also remember that in the Bloch equation V (x) is not quite
the potential and L is not the Lagrangian. Similarly, ∫ L d𝜏 in Eq. (19.108) is not
the action, S[x(𝜏)], of classical physics. These expressions gain their conven-
tional meanings only when we apply path integrals to the Schrödinger equation.
It is for this reason that we have used the term “semiclassical.”

When the diffusion constant is much smaller than the functional S, that is,
D∕S << 1, we write an approximate solution to Eq. (19.106) as

W (x, t; x0, t0) ≃ 𝜙(t − t0) exp
{
− 1

4D ∫
t

t0

d𝜏L[xc(𝜏)]
}

, (19.109)

where 𝜙(t − t0) is called the fluctuation factor. Even though methods of
finding the fluctuation factor are beyond our scope, we give two examples for
its appearance and evaluation [3, 6, 13].

Example 19.1 Evaluation of ∫C[x0,0;x,t]
d𝑤x(𝜏)

To find the propagator W (x, t, x0, 0):

W (x, t, x0, 0) = ∫C[x0,0;x,t]
exp

{
− 1

4D ∫
t

0
d𝜏ẋ2

} t∏
𝜏=0

dx(𝜏)√
4𝜋Dd𝜏

, (19.110)

we write the Euler–Lagrange equation

xc(𝜏) = 0, xc(0) = x0, x(t) = x (19.111)

with the solution

xc(𝜏) = x0 +
𝜏

t
(x − x0). (19.112)
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x

t

xc (τ)

η (τ)

η

(x0, 0)

τ τ

(x,t)

0

Figure 19.4 Path and deviation in the “semiclassical” method.

We show the deviation from the classical path xc(𝜏) as 𝜂(𝜏) so that we write

x(𝜏) = xc(𝜏) + 𝜂(𝜏). (19.113)

At the end points (Figure 19.4), 𝜂(𝜏) satisfies 𝜂(0) = 𝜂(t) = 0. In terms of 𝜂(𝜏),
W (x, t, x0, 0) is given as

W (x, t, x0, 0) = exp
{
− 1

4D ∫
t

0
d𝜏ẋ2

c

}
(19.114)

× ∫C[0,0;0,t]
exp

{
− 1

4D ∫
t

0
d𝜏(�̇�2 + 2 ẋc�̇�)

} t∏
𝜏=0

d𝜂(𝜏)√
4𝜋Dd𝜏

.

We have to remember that the paths x(𝜏) do not have to satisfy the
Euler–Lagrange equation. Since we can write

∫
t

0
d𝜏ẋc�̇� =

(x − x0)
t

𝜂(𝜏)
||||

t

0
= 0, (19.115)

Eq. (19.114) becomes

W (x, t, x0, 0) = exp
{
− 1

4D ∫
t

0
d𝜏ẋ2

c

}
(19.116)

× ∫C[0,0;0,t]
exp

{
− 1

4D ∫
t

0
d𝜏�̇�2

} t∏
𝜏=0

d𝜂(𝜏)√
4𝜋Dd𝜏

.

Since ẋc = (x − x0)∕t is independent of 𝜏, we can evaluate the factor in front of
the integral on the right-hand side as

exp
{
− 1

4D ∫
t

0
d𝜏ẋ2

c

}
= exp

{
− 1

4D
(x − x0)2

t

}
. (19.117)
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Because the integral

∫C[0,0;0,t]
exp

{
− 1

4D ∫
t

t0

d𝜏�̇�2
} t∏

𝜏=0

d𝜂(𝜏)√
4𝜋Dd𝜏

(19.118)

only depends on t, we show it as 𝜙(t) and write the propagator as

W (x, t, x0, 0) = 𝜙(t) exp
{
−
(x − x0)2

4Dt

}
. (19.119)

The probability density interpretation of the propagator gives us the condition
∫ ∞
−∞ dxW (x, t, x0, 0) = 1, which leads us to the 𝜙(t) function as

𝜙(t) = 1√
4𝜋Dt

. (19.120)

Finally, the propagator is obtained as

W (x, t, x0, 0) =
1√

4𝜋Dt
exp

{
−
(x − x0)2

4Dt

}
. (19.121)

In this case, the “semiclassical” method has given us the exact result. For more
complicated cases, we could use the method of time slices to find the factor
𝜙(t − t0). In this example, we have also given an explicit derivation of Eq. (19.18)
for t0 = 0, from Eq. (19.20).

Example 19.2 Evaluation of 𝜑(t) by the method of time slices
Because our previous example is the prototype of many path integral
applications, we also evaluate the integral

𝜙(t) = ∫C[0,0;0,t]
exp

{
− 1

4D ∫
t

0
d𝜏�̇�2

} t∏
𝜏=0

d𝜂(𝜏)√
4𝜋Dd𝜏

(19.122)

using the method of time slices. We divide the interval [0, t] into (N + 1) equal
segments:

ti − ti−1 = 𝜀 = t
(N + 1)

, i = 1, 2,… , (N + 1). (19.123)

Now the integral (19.122) becomes

𝜙(t) = lim
N→∞,𝜀→0

1
[
√

4𝜋D𝜀]N+1
(19.124)

× ∫ d𝜂1 ∫ d𝜂2 · · ·∫ d𝜂N exp

{
− 1

4D𝜖

N∑
i=0

(𝜂i+1 − 𝜂i)2

}
.
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The argument of the exponential function, aside from a minus sign, is a
quadratic of the form

1
4D𝜀

N∑
i=0

(𝜂i+1 − 𝜂i)2 =
N∑

k=1

N∑
l=1

𝜂kAkl𝜂l. (19.125)

We can write Akl as an N × N matrix (𝜂0 = 𝜂N+1 = 0):

A = 1
4D𝜀

⎛⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 0 · · · · · · 0
−1 2 −1 0 · · · · · · 0
0 −1 2 −1 0 ... 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 · · · 0 −1 2 −1 0
0 · · · · · · 0 −1 2 −1
0 · · · · · · · · · 0 −1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (19.126)

Using the techniques of linear algebra, we can evaluate the integral

∫ d𝜂1 ∫ d𝜂2 · · ·∫ d𝜂N exp

{
−

N∑
k=1

N∑
l=1

𝜂kAkl𝜂l

}
(19.127)

as (Problem 7)

∫ d𝜂1 ∫ d𝜂2 · · ·∫ d𝜂N exp

{
−

N∑
k=1

N∑
l=1

𝜂kAkl𝜂l

}

=

(√
4𝜋D𝜀

)N

√
det AN

. (19.128)

Using the last column of A, we find a recursion relation that det AN satisfies:
det AN = 2 det AN−1 − det AN−2. (19.129)

For the first two values of N , det AN is found as det A1 = 2 and det A2 = 3.
This can be generalized to N − 1 as det AN−1 = N . Using the recursion relation
[Eq. (19.129)], this gives det AN = N + 1, which leads us to the 𝜙(t) function:

𝜙(t) =

(√
4𝜋D𝜀

)N

(√
4𝜋D𝜀

)N+1√
N + 1

= 1√
4𝜋Dt

. (19.130)

Another way to calculate the integral in Eq. (19.122) is to evaluate the 𝜂

integrals one by one using the formula

∫
∞

−∞
d𝜂 exp

{
−a(𝜂 − 𝜂′)2 − b(𝜂 − 𝜂′′)2}

=
[

𝜋

a + b

]1∕2
exp

{
− ab

a + b
(𝜂′ − 𝜂′′)2

}
. (19.131)
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19.3 Path Integral Formulation of Quantum Mechanics

19.3.1 Schrödinger Equation For a Free Particle

We have seen that the propagator for a particle undergoing Brownian motion
with its initial position at (x0, t0) is given as

W (x, t, x0, t0) =
1√

4𝜋D(t − t0)
exp

{
−

(x − x0)2

4D(t − t0)

}
. (19.132)

This satisfies the diffusion equation:

𝜕W (x, t, x0, t0)
𝜕t

= D
𝜕2W (x, t, x0, t0)

𝜕x2 (19.133)

with the initial condition limt→t0
W (x, t, x0, t0) → 𝛿(x − x0). We have also seen

that this propagator can also be written as a Wiener path integral:

W (x, t, x0, t0) = ∫C[x0,t0;x,t]
d𝑤x(𝜏). (19.134)

In this integral, C[x0, t0; x, t] denotes all continuous paths starting from (x0, t0)
and ending at (x, t), where d𝑤x(𝜏) is called the Wiener measure and is given as

d𝑤x(𝜏) = exp
{
− 1

4D ∫
t

t0

ẋ2(𝜏) d𝜏
} N∏

i=1

dxi√
4𝜋Dd𝜏

. (19.135)

In quantum mechanics, for a free particle of mass m, the Schrödinger
equation is given as

𝜕Ψ(x, t)
𝜕t

= iℏ
2m

𝜕2Ψ(x, t)
𝜕x2 . (19.136)

The propagator for the Schrödinger equation, K(x, t, x′, t′), satisfies the
equation

𝜕K(x, t, x′, t′)
𝜕t

= iℏ
2m

𝜕2K(x, t, x′, t′)
𝜕x2 . (19.137)

Using this propagator, given the solution at (x′, t′), we can find the solution at
another point (x, t) as

Ψ(x, t) = ∫ K(x, t, x′, t′)Ψ(x′, t′)dx′, t > t′. (19.138)

Since the diffusion equation becomes the Schrödinger equation by the replace-
ment D → iℏ

2m
, we can immediately write the propagator of the Schrödinger
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equation by making the same replacement in Eq. (19.132):

K(x, t, x′, t′) = 1√
2𝜋iℏ

m
(t − t0)

exp
{
−

m(x − x0)2

2iℏ(t − t0)

}
. (19.139)

Even though this expression is mathematically correct, at this point, we begin
to encounter problems and differences between the two cases. For the diffusion
phenomena, we have said that the solution of the diffusion equation gives the
probability of finding a Brown particle at (x, t). Thus the propagator:

W (x, t, x0, t0) =
1√

4𝜋D(t − t0)
exp

{
−

(x − x0)2

4D(t − t0)

}
, (19.140)

is always positive with the normalization condition ∫ ∞
−∞ dxW (x, t, x0, t0) = 1.

For the Schrödinger equation, the argument of the exponential function
is proportional to i, which makes K(x, t, x′, t′) oscillate violently; hence
K(x, t, x′, t′) cannot be normalized. This is not too surprising, since the
solutions of the Schrödinger equation are the probability amplitudes, which
are more fundamental, and thus carry more information than the probability
density. In quantum mechanics, the probability density, 𝜌(x, t), is obtained
from the solutions of the Schrödinger equation, Ψ(x, t), as

𝜌(x, t) = Ψ(x, t)Ψ∗(x, t) = |Ψ(x, t)|2, (19.141)

where 𝜌(x, t) is now positive definite and normalizable.
Can we also write the propagator of the Schrödinger equation as a path

integral? Making the replacement D → iℏ
2m

in Eq. (19.134), we get

K(x, t, x′, t′) = ∫C[x′,t′;x,t]
dF x(𝜏), (19.142)

where

dF x(𝜏) = exp
{

i
ℏ ∫

t

t0

1
2

mẋ2(𝜏) d𝜏
} N∏

i=1

dxi√
2𝜋iℏ

m
d𝜏

. (19.143)

This definition was given first by Feynman, and dF x(𝜏) is known as the Feynman
measure. The problem in this definition is again the fact that the argument
of the exponential, which is responsible for the convergence of the integral, is
proportional to i, and thus the exponential factor oscillates. An elegant solution
to this problem comes from noting that the Schrödinger equation is analytic
in the lower half complex t-plane. Thus we make a rotation by −𝜋∕2 and write
−it instead of t in the Schrödinger equation (Figure 19.5). This reduces the
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t

Complex t-plane

–it

Figure 19.5 Rotation by − 𝜋

2
in the complex-t plane.

Schrödinger equation to the diffusion equation with the diffusion constant
D = ℏ∕2m. Now the path integral in Eq. (19.142) can be taken as a Wiener
path integral, and then going back to real time, we can obtain the propagator
of the Schrödinger equation as Eq. (19.139).

19.3.2 Schrödinger Equation with a Potential

In the presence of interactions, the Schrödinger equation is given as

𝜕Ψ(x, t)
𝜕t

= iℏ
2m

𝜕2Ψ(x, t)
𝜕x2 − i

ℏ
V (x)Ψ(x, t), (19.144)

where V (x) is the potential. Making the transformation t → −it, we obtain the
Bloch equation:

𝜕Ψ(x, t)
𝜕t

= ℏ

2m
𝜕2Ψ(x, t)

𝜕x2 − 1
ℏ

V (x)Ψ(x, t). (19.145)

Using the Feynman–Kac theorem, we write the propagator and then
transforming back to real time gives

K(x, t, x0, t0) = ∫C[x0,t0;x,t]
dF x(𝜏) exp

{
− i
ℏ ∫

t

t0

d𝜏V [x(𝜏)]
}

, (19.146)

or

K(x, t, x0, t0) = ∫C[x0,t0;x,t]

N∏
i=1

dxi√
2iℏ
m
𝜋d𝜏

× exp
{

i
ℏ ∫

t

t0

[1
2

mẋ2(𝜏) − V (x)
]

d𝜏
}

. (19.147)
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This propagator was first given by Feynman. Using the Feynman propagator,
we can write the solution of the Schrödinger equation as

Ψ(x, t) = ∫ K(x, t, x′, t′)Ψ(x′, t′) dx′. (19.148)

Today the path integral formulation of quantum mechanics, after the
Schrödinger and the Heisenberg formulations, has become the foundation of
modern quantum mechanics. Writing the propagator [Eq. (19.147)] as

K(x, t, x0, t0) = ∫C[x0,t0;x,t]

N∏
i=1

dxi√
2iℏ
m
𝜋d𝜏

exp
{ i
ℏ

S[x(𝜏)]
}
, (19.149)

we see that, in contrast to the Bloch equation, S[x(𝜏)] in the propagator is the
classical action:

S[x(𝜏)] = ∫
t

t0

L[x(𝜏)] d𝜏, (19.150)

where L[x(𝜏)] is the classical Lagrangian:

L[x(𝜏)] =
[1

2
mẋ2(𝜏) − V (x)

]
. (19.151)

In the Feynman propagator [Eq. (19.149)], we should note that C[x0, t0; x, t]
includes not only the paths that satisfy the Euler–Lagrange equation, but also
all the continuous paths that start from (x0, t0) and end at (x, t). In the classical
limit, that is, ℏ → 0, the exponential term, exp

{
i
ℏ

S[x(𝜏)]
}
, in the propagator

oscillates violently. In this case, the major contribution to the integral comes
from the paths with comparable weights bunched together. These paths are
naturally the ones that make S[x] an extremum, that is, the paths that satisfy
the Euler–Lagrange equation:

d
dt

(
𝜕L
𝜕ẋ

)
− 𝜕L

𝜕x
= 0. (19.152)

In most cases, this extremum is a minimum [12, p. 281].
As in the applications of path integrals to neural networks, sometimes a

system can have more than one extremum. In such cases, a system could find
itself in a local maximum or minimum. Is it then possible for such systems to
reach the desired global minimum? If possible, how is this achieved and how
long will it take? These are all very interesting questions and potential research
topics, indicating that path integral formalism still has a long way to go.
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19.3.3 Feynman Phase Space Path Integral

The propagator of the Schrödinger equation expressed as a path integral:

K(x, t, x0, t0) = ∫C[x0,t0;x,t]

N∏
i=1

dxi√
2𝜋iℏ

m
d𝜏

× exp
{

i
ℏ ∫

t

t0

[1
2

mẋ2(𝜏) − V (x)
]

d𝜏
}

, (19.153)

is useful if the Lagrangian can be expressed as T − V . However, as in the case
of the free relativistic particle, where L(x) = −m0c2

√
1 − (ẋ2∕c2), sometimes the

Lagrangian cannot be written as T − V . In such cases, Eq. (19.153) is not much
of a help. It is for this reason that in 1951, Feynman introduced the phase space
version of the path integral:

K(q′′, t′′, q′, t′) = Ň ∫ exp

{
i
ℏ ∫

t′′

t′
dt[pq̇ − H(p, q̇)]

}
ĎpĎq. (19.154)

This integral is to be taken over t,where t ∈ [t′, t′′]. Ďq means that the integral is
taken over the paths, q(t), fixed between q′′(t′′) = q′′ and q′(t′) = q′ and which
make S[x] an extremum. The integral over momentum p is taken over the
same time interval but without any restrictions.

To bring this integral into a form that can be evaluated in practice, we intro-
duce the phase space lattice by dividing the time interval t ∈ [t′, t′′] into N + 1
slices as

𝜀 = t′′ − t′
(N + 1)

. (19.155)

Now the propagator becomes

K(q′′, t′′, q′, t′) = lim
𝜀→0 ∫ · · ·∫

× exp

{( i
ℏ

) N∑
l=0

[
pl+1∕2(ql+1 − ql) − 𝜀H

(
pl+1∕2,

1
2
(ql+1 + ql)

)]}

×
N∏

l=0

dpl+1∕2

2𝜋ℏ

N∏
l=1

dql. (19.156)

In this expression, except for the points at qN+1 = q′′ and q0 = q′, we have to
integrate over all q and p. Because the Heisenberg uncertainty principle forbids
us from determining the momentum and position simultaneously at the same
point, we have taken the momentum values at the center of the time slices as
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pl+1∕2. In this equation, one extra integral is taken over p. It is easily seen that
this propagator satisfies the ESKC relation:

K(q′′′, t′′′, q′, t′) = ∫ K(q′′′, t′′′, q′′, t′′)K(q′′, t′′, q′, t′) dq′′. (19.157)

19.3.4 The Case of Quadratic Dependence on Momentum

In phase space, the exponential function in the Feynman propagator
[Eq. (19.156)] is written as

exp

{( i
ℏ

) N∑
l=0

[
pl+1∕2(ql+1 − ql) − 𝜀H

(
pl+1∕2,

1
2
(ql+1 + ql)

)]}
.

When the Hamiltonian has quadratic dependence on p as in

H(q, p) =
p2

2m
+ V (q, t), (19.158)

this exponential function becomes

exp

{( i
ℏ

) N∑
l=0

𝜀

[
pl+1∕2(ql+1 − ql)

𝜀
−

p2
l+1∕2

2m
− V

(1
2
(ql + ql+1), tl

)]}
.

(19.159)

Completing the square in the expression inside the brackets, we can write

exp

{( i
ℏ

) N∑
l=0

𝜀 ×

[
− 1

2m

(
pl+1∕2 −

(ql+1 − ql)
𝜀

m
)2

+ m
2

(ql+1 − ql

𝜀

)2
− V

(ql + ql+1

2
, tl

)]}
. (19.160)

Substituting this in Eq. (19.156) and taking the momentum integral, we find the
propagator as

K(q′′, t′′, q′, t′) = lim
N→∞
𝜀→0

1√
2𝜋iℏ 𝜀

m

N∏
l=0

∫
∞

−∞

⎡⎢⎢⎢⎣
dql√
2𝜋iℏ 𝜀

m

⎤⎥⎥⎥⎦ exp
{ i
ℏ

S
}
, (19.161)

where S is given as

S =
N∑

l=0
𝜀

[
m
2

( (ql+1 − ql)
𝜀

)2

− V
(1

2
(ql + ql+1), tl

)]
. (19.162)
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In the continuum limit, this becomes

S[q] = lim
N→∞
𝜀→0

N∑
l=0

𝜀

[
m
2

(ql+1 − ql

𝜀

)2
− V

(1
2
(ql + ql+1), tl

)]
= ∫

t′′

t′
dtL[q, q̇, t],

(19.163)
where

L[q, q̇, t] = 1
2

mq̇2 − V (q, t) (19.164)

is the classical action. In other words, the phase space path integral reduces to
the standard Feynman path integral.

We can write the free particle propagator in terms of the phase space path
integral as

K(x, t, x0, t0) = Ň∫C[x0,t0;x,t]
ĎpĎx exp

{
i
ℏ ∫

t

t0

d𝜏
[

pẋ −
p2

2m

]}
. (19.165)

After we take the momentum integral and after putting all the new constants
coming into Ď, Eq. (19.165) becomes

K(x, t, x0, t0) = Ň∫C[x0,t0;x,t]
Ďx exp

{
i
ℏ ∫

t

t0

d𝜏
(1

2
mẋ2

)}
. (19.166)

We can convert this into a Wiener path integral by the t → −it rotation, and
after evaluating it, we return to real time to obtain the propagator as

K(x, t, x0, t0) =
1√

2𝜋iℏ(t − t0)∕m
exp i

ℏ

m(x − x0)2

2(t − t0)
. (19.167)

We conclude by giving the following useful rules for Wiener path integrals
with N + 1 segments [Eq. (19.11)]:

For the pinned Wiener measure:

∫ d𝑤x(𝜏) = 1
(4𝜋D𝜀)(N+1)∕2 ∫

∞

−∞
dx1 · · ·∫

∞

−∞
dxN exp

{
− 1

4D𝜀

N+1∑
i=1

(xi − xi−1)2

}

× ∫
t∏

𝜏=0

dx(𝜏)√
4𝜋Dd𝜏

= 1
(4𝜋D𝜀)(N+1)∕2 ∫

∞

−∞
dx1 · · ·∫

∞

−∞
dxN .

(19.168)
For the unpinned Wiener measure:

∫ d𝑤x(𝜏) = 1
(4𝜋D𝜀)(N+1)∕2 ∫

∞

−∞
dx1 · · ·∫

∞

−∞
dxN+1 exp

{
− 1

4D𝜀

N+1∑
i=1

(xi − xi−1)2

}

× ∫
t∏

𝜏=0

dx(𝜏)√
4𝜋Dd𝜏

= 1
(4𝜋D𝜀)(N+1)∕2 ∫

∞

−∞
dx1 · · ·∫

∞

−∞
dxN+1.

(19.169)
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Also,

∫
t

0
d𝜏ẋ2(𝜏) = 1

𝜀

N+1∑
i=1

(xi − xi−1)2, (19.170)

∫
t

0
d𝜏V (𝜏) = 𝜀

N+1∑
i=1

V
(1

2
(xi + xi−1), ti

) or
= 𝜀

N+1∑
i=1

V (xi, ti). (19.171)

19.4 Path Integrals Over Lévy Paths and Anomalous
Diffusion

Wiener path integral approach to Brownian motion can be used to represent a
wide range of stochastic processes, where the probability density, W (x, t, x0, t0),
of finding a random variable at the value x at time t is given by the Gaussian
distribution [Eq. (19.6)]:

W (x, t, x0, t0) =
1√

4𝜋D(t − t0)
exp

{
−

(x − x0)2

4D(t − t0)

}
, t > t0, (19.172)

which satisfies the diffusion equation [Eq. (19.3)]:
𝜕W (x, t, x0, t0)

𝜕t
= D

𝜕2W (x, t, x0, t0)
𝜕x2 (19.173)

with the initial condition limt→t0
W (x, t, x0, t0) → 𝛿(x − x0). An important

feature of the Wiener process is that at all times the scaling relation
(x − x0)2 ∝ (t − t0), (19.174)

where x0 and t0 are the initial values of x and t, respectively, are satisfied. To find
the fractal dimension of the Brownian motion, we divide the time interval,
T , into N slices, T = NΔt, which gives the length of the diffusion path as

L = NΔx = T
Δt

Δx. (19.175)

Using the scaling property [Eq. (19.174)], we write

L ∝ 1
Δx

. (19.176)

When the spatial increment Δx goes to zero, the fractal dimension, dfractal, is
defined as [8]

L ∝ (Δx)1−dfractal . (19.177)

In the limit as Δx → 0, Eqs. (19.176) and (19.177) give the fractal dimension of
the Brownian motion as

dBrownian
fractal = 2. (19.178)
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In terms of Wiener path integrals, W (x, t, x0, t0) is expressed as [Eq. (19.20)]

W (x, t, x0, t0) = ∫C[x0,t0;x,t]
d𝑤x(𝜏), (19.179)

where the Wiener measure, d𝑤x(𝜏), is written as

d𝑤x(𝜏) = exp
{
− 1

4D ∫
t

t0

ẋ2(𝜏)d𝜏
} N∏

i=1

dxi√
4𝜋Dd𝜏

(19.180)

and the integral is evaluated over all continuous paths from (x0, t0) to (x, t)
[Eqs. (19.20) and (19.21)].

In the presence of a potential, V (x, t), the diffusion equation is written as

𝜕WB(x, t, x0, t0)
𝜕t

− D
𝜕2WB(x, t, x0, t0)

𝜕x2 = −V (x, t)WB(x, t, x0, t0), (19.181)

which is also called the Bloch equation. Using the Feynman–Kac formula
[Eq. (19.35)]:

WB(x, t, x0, 0) = ∫C[x0,0;x,t]
d𝑤x(𝜏) exp

{
−∫

t

0
d𝜏V (x(𝜏), 𝜏)

}
, (19.182)

a perturbative solution of the Bloch equation can be given as [Eq. (19.41)]

WB(x, t, x0, t0) = WD(x, t, x0, t0)

− ∫
∞

−∞
dx′ ∫

t

t0

dt′WD(x, t, x′, t′)V (x′, t′)WD(x′, t′, x0, t0)

+ ∫
∞

−∞
dx′ ∫

t

t0

dt′ ∫
∞

−∞
dx′′ ∫

t′

t′0
dt′′WD(x, t, x′, t′)V (x′, t′)WD(x′, t′, x′′, t′′)

× V (x′′, t′′)WD(x′′, t′′, x0, t0) + · · · , (19.183)

where the Green’s function WD(x, t, x′, t′) [Eq. (19.32)]:

WD(x, t, x′, t′) = W (x, t, x′, t′)𝜃(t − t′), (19.184)

satisfies
𝜕WD(x, t, x′, t′)

𝜕t
− D

𝜕2WD(x, t, x′, t′)
𝜕x2 = 𝛿(x − x′)𝛿(t − t′) (19.185)

and W (x, t, x′, t′) is the solution of the homogeneous equation:

𝜕WD(x, t, x′, t′)
𝜕t

− D
𝜕2WD(x, t, x′, t′)

𝜕x2 = 0. (19.186)

Even though the Wiener’s mathematical theory of the Brownian motion can
be used to describe a wide range of stochastic processes in nature, there also
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exist a lot of interesting phenomenon where the scaling law in Eq. (19.174) is
violated. The processes that obey the scaling rule

(x − x0)2 ∝ (t − t0)q, q ≠ 1, (19.187)

are in general called anomalous diffusion, where the cases with q < 1 are
called subdiffusive and the cases with q > 1 are called superdiffusive.

One of the ways to study anomalous diffusion is to use the space fractional
diffusion equation:

𝜕WL(x, t, x0, t0)
𝜕t

= Dq∇qWL(x, t, x0, t0), q < 2, (19.188)

where ∇q is the Riesz derivative. We will also use the notation

∇q = 𝜕q

𝜕xq = Rq
x. (19.189)

In Eq. (19.188) Dq stands for the fractional diffusion constant, which has
the dimension [Dq] = cmqs−1. In Chapter 13, we have seen how the Riesz
derivative is defined. However, in this chapter, all we need is that it is defined
with respect to its Fourier transform as

∇qWL(x, t) = − 1
2𝜋 ∫

∞

−∞
dkeikx|k|qW L(k, t), (19.190)

where WL(x, t) and its Fourier transform, W L(k, t), are related by the equations

WL(x, t) =
1

2𝜋 ∫
∞

−∞
dkeikxW L(k, t), (19.191)

W L(k, t) = ∫
∞

−∞
dxe−ikxWL(x, t). (19.192)

Solution of the fractional diffusion equation [Eq. (19.188)] with the initial
condition

lim
t→t0

WL(x, t, x0, t0) = 𝛿(x − x0), (19.193)

yields the probability density

WL(x, t, x0, t0) =
1

2𝜋 ∫
∞

−∞
dk eik(x−x0) exp{−Dq|k|q(t − t0)}. (19.194)

To obtain this solution [Eq. (19.194)], we first take the Fourier transform of the
fractional diffusion equation:

𝜕W L(x, t, x0, t0)
𝜕t

= −Dq|k|qW L(x, t, x0, t0), (19.195)
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which with the initial condition W L(k, 0) = 1 can be integrated to yield the
solution in the transform space as

W L(k, t) = exp(−Dqt|k|q). (19.196)

For simplicity, we have set x0 = t0 = 0. Using Fox’s H-functions, we can also
write W L(k, t) as

W L(k, t) =
1
q

H1,0
0,1

(
(Dqt)1∕q|k||(0, 1

q

)) . (19.197)

At this point, for our purposes, it is sufficient to say that this rather strange
looking mathematical object:

Ha,b
c,d

(
x|(g,h)(e,f )

)
,

is a just a symbolic expression of a function of x in terms of eight parameters,
a, b, c, d, e, f , g, h. It is somewhat like the hypergeometric function, F(a, b, c; x),
but with more parameters. In the following section, we will give a detailed
account of this extremely versatile tool of mathematical physics.

Finally, using the properties of the H-functions, we find the inverse Fourier
transform of W L(k, t) to write the solution of the fractional diffusion equation
[Eq. (19.188)] in closed form as [7, 16]

WL(x, t) =
𝜋

q|x|H1,1
2,2

( |x|
(Dqt)1∕q

|||||
(1,1∕q),(1,1∕2)

(1,1),(1,1∕2)

)
. (19.198)

For large arguments, |x|∕(Dqt)1∕q ≫ 1, we can write the following series expan-
sion:

WL(x, t) =
∞∑

l=1
(−1)l+1 Γ(1 + lq)

l!
sin
(

l𝜋q
2

) (Dqt)l|x|lq+1 . (19.199)

For q = 2, WL(x, t) reduces to the Gaussian distribution [Eq. (19.172)] and for
0 < q < 2, WL(x, t) is called the q -stable Lévy distribution, which possesses
finite moments of order up to m < q, where all higher order moments diverge.
Lévy processes obey the scaling rule

(x − x0) ∝ (t − t0)1∕q, 1 < q ≤ 2, (19.200)

where (x − x0) is the length of the Lévy path for the time interval (t − t0). Divid-
ing a given time interval T into N slices, T = NΔt, we write

L = NΔx = T
Δt

Δx, (19.201)

where L is the length of the Lévy path and Δx is the length increment for Δt.
Substituting the scaling rule [Eq. (19.200)] into the above equation gives L ∝
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(Δx)1−q. Considered in the limit as Δx → 0, this yields the fractal dimension
of the Lévy path as

dLévy
fractal = q, 1 < q ≤ 2. (19.202)

For a Lévy process obeying the fractional Bloch equation:

𝜕WL

𝜕t
− Dq∇qWL = −V (x, t)WL, (19.203)

where V (x, t) is the potential, we write the corresponding Feynman–Kac
formula as [Eq. (19.35)]

WL(x, t, x0, 0) = ∫C[x0,0;x,t]
dLx(𝜏) exp

{
−∫

t

0
d𝜏V (x(𝜏), 𝜏)

}
, (19.204)

where the Wiener measure, d𝑤x(𝜏), is replaced by the Lévy measure, dLx(𝜏),
defined as

dLx(𝜏) = lim
N→∞

[
dx1 · · · dxN

(
1

DqΔ𝜏

) N+1
q

×
N+1∏
i=1

Lq

{(
1

DqΔ𝜏

) 1
q |xi − xi−1|}]

. (19.205)

We have divided the interval [t − 0] into N + 1 segments [Eq. (19.11)]:

Δ𝜏 = t − 0
N + 1

, (19.206)

covered in N steps and comparing with Eq. (19.18), we have introduced the
function Lq(x, t) such that the Lévy distribution function, WL(x, t), is expressed
in terms of the Fox’s H-functions as

WL(x, t) = (Dqt)−1∕qLq

{(
1

Dqt

)1∕q|x|} (19.207)

= 𝜋

q|x|H1,1
2,2

( |x|
(Dqt)1∕q

|||||
(1,1∕q),(1,1∕2)

(1,1),(1,1∕2)

)
. (19.208)

Note that i = 1 marks the initial point, while t = N + 1 is the end point of the
path. Since the particle is certain to be somewhere in the internal x ∈ [−∞,∞],
we have

∫
∞

−∞
dx∫[x0,t0;x,t]

dLx(𝜏) = 1. (19.209)
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In this regard, the dimension of dLx(𝜏) and the propagator

WL(x, t) = ∫[x0,t0;x,t]
dLx(𝜏) (19.210)

is 1∕cm, a point that will be needed shortly.

19.5 Fox’s H-Functions

In 1961, Fox introduced the H -function, which is a special function of very
general nature. It represents an elegant and an efficient formalism of mathe-
matical physics that has proven to be very effective in a wide range of physics
and engineering problems like anomalous diffusion. H-functions offer an alter-
nate way of expressing a large class of functions in terms of certain parameters.
They are generally expressed in one of the following forms:

Hm,n
p,q (z) = Hm,n

p,q

(
z|(ap,Ap)

(bq ,Bq)

)
= Hm,n

p,q

(
z|(a1,A1),…,(ap,Ap)

(b1,B1),…,(bq ,Bq)

)
. (19.211)

Definition 19.1 H-function is a generalization of the Meijer’s G-function and
is defined with respect to a Mellin–Barnes type integral as [4, 9, 14, 16]

Hm,n
p,q (z) = 1

2𝜋i∫C
h(s)z−s ds, (19.212)

where

h(s) =
∏m

j=1 Γ(bj + Bjs)
∏n

j=1 Γ(1 − aj − Ajs)∏p
j=n+1 Γ(aj + Ajs)

∏q
j=m+1 Γ(1 − bj − Bjs)

, (19.213)

m, n, p, q are positive integers satisfying

0 ≤ n ≤ p, 1 ≤ m ≤ q, (19.214)

and empty products are taken as 1. Also, Aj, j = 1,… , p, and Bj, j = 1,… , q, are
positive numbers, and aj, j = 1,… , p, and bj, j = 1,… , q, are in general complex
numbers satisfying

Aj(bh + 𝜈) ≠ Bh(aj − 𝜆 − 1); 𝜈, 𝜆 = 0, 1,…; h = 1,… ,m, j = 1,… , n.
(19.215)

C is a suitable contour in the complex plane so that the poles of Γ(bj + Bjs),
j = 1,… ,m, are separated from the poles of Γ(1 − aj − Ajs), j = 1,… , n, such
that the poles of Γ(bj + Bjs) lie to the left of C and the poles of Γ(1 − aj − Ajs)
lie to the right of C. The poles of the integrand are assumed to be simple.
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The H-function is an analytic function of z for all |z| ≠ 0, when 𝜇 > 0;

𝜇 > 0; 0 < |z| < ∞ (19.216)

and analytic for 0 < |z| < 1∕𝛽 when 𝜇 = 0;

𝜇 = 0; 0 < |z| < 1∕𝛽, (19.217)

where

𝜇 =
q∑

j=1
Bj −

p∑
j=1

Aj (19.218)

and

𝛽 =
p∏

j=1
AAj

j

q∏
j=1

B−Bj

j . (19.219)

Important. In literature, sometimes the H-function is defined with the sign of s
reversed in the integrand [Eq. (19.212)], h(s)z−s, and in h(s) [Eq. (19.213)] along
with an appropriate orientation of the contour. However, the final expression
as Hm,n

p,q

(
z|(ap,Ap)

(bq ,Bq)

)
is the same in both conventions.

19.5.1 Properties of the H-Functions

Some of the frequently used properties of the H-functions are listed below.
These are extremely useful in solving fractional differential equations. More
can be found in the book by Mathai et al. [9]:

1. Fractional derivative and integral:
Remembering the definitions of the Riemann–Liouville fractional integral
(Chapter 13):

0D−q
t [ f (t)] = 0Iq

t [ f (t)] = 1
Γ(q) ∫

t

0

f (𝜏)d𝜏
(t − 𝜏)1−q , q > 0, (19.220)

and the Riemann–Liouville fractional derivative as

0Dq
t [f (t)] =

dn

dtn (0In−q
t [f (t)]), n > q, q > 0, (19.221)

we can write the following useful differintegral of the H-function for
arbitrary 𝛼 [5]:

0D𝛼
z

[
zaHm,n

p,q

(
(cz)b|||(ap,Ap)

(bq ,Bq)

)]
= za−𝛼Hm,n+1

p+1,q+1

(
(cz)b|||(−a,b),(ap,Ap)

(bq ,Bq),(𝛼−a,b)

)
,

(19.222)
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where c, b > 0 and

a + bmin(bj∕Bj) > −1, 1 ≤ j ≤ m. (19.223)

Solutions of the fractional diffusion equation can be obtained by formally
manipulating the parameters in the above formula.

2. Laplace transform:
Laplace transform of the H-function is very useful in solving fractional
differential equations. They can be obtained using the formula

£
{

x𝜌−1Hm,n
p,q+1

(
ax𝜎|(ap,Ap)

(bq ,Bq),(1−𝜌,𝜎)

)}
= s−𝜌Hm,n

p,q

(
as−𝜎|(ap,Ap)

(bq ,Bq)

)
, (19.224)

where the inverse transform is given as

£−1
{

s−𝜌Hm,n
p,q

(
as𝜎|(ap,Ap)

(bq ,Bq)

)}
= x𝜌−1Hm,n

p+1,q

(
ax−𝜎|(ap,Ap),(𝜌,𝜎)

(bq ,Bq)

)
, (19.225)

where

𝜌, 𝛼, s ∈ ℂ, Re(s) > 0, 𝜎 > 0 (19.226)

and

Re(𝜌) + 𝜎 max
1≤i≤n

[
1
Ai

+
Re(ai)

Ai

]
> 0, |arg a| < 𝜋𝜃

2
, 𝜃 = 𝛼 − 𝜎. (19.227)

3. Fourier-sine transform:

∫
∞

0
x𝜌−1 sin(ax)Hm,n

p,q

(
bx𝜎|(ap,Ap)

(bq ,Bq)

)
dx

=
2𝜌−1√𝜋

a𝜌
Hm,n+1

p+2,q

(
b
(2

a

)𝜎||||((1−𝜌)∕2,𝜎∕2),(ap,Ap),((2−𝜌)∕2,𝜎∕2)

(bq ,Bq)

)
, (19.228)

where

a, 𝛼, 𝜎 > 0, 𝜌, b ∈ ℂ; |arg b| < (1∕2)𝜋𝜎, (19.229)

and

Re𝜌 + 𝜎 min
1≤j≤m

Re(bj∕Bj) > −1; Re𝜌 + 𝜎 max
1≤j≤n

((aj − 1)∕Aj) < 1. (19.230)

4. Fourier-cosine transform:

∫
∞

0
x𝜌−1 cos(ax)Hm,n

p,q

(
bx𝜎|(ap,Ap)

(bq ,Bq)

)
dx

=
2𝜌−1√𝜋

a𝜌
Hm,n+1

p+2,q

(
b
(2

a

)𝜎||||((2−𝜌)∕2,𝜎∕2),(ap,Ap),((1−𝜌)∕2,𝜎∕2)

(bq ,Bq)

)
, (19.231)
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where

a, 𝛼, 𝜎 > 0, 𝜌, b ∈ ℂ; |arg b| < (1∕2)𝜋𝛼, (19.232)

and

Re 𝜌 + 𝜎 min
1≤j≤m

Re (bj∕Bj) > 0; Re 𝜌 + 𝜎 max
1≤j≤n

((aj − 1)∕Aj) < 1.

(19.233)

19.5.2 Useful Relations of the H-Functions

The following relations are extremely useful in manipulations with the param-
eters of the H-functions and showing the equivalence of solutions expressed
in different forms in literature.

1.

Hm,n
p,q

(
z|(ap,Ap)

(bq ,Bq)

)
= Hn,m

q,p

(
1
z
||||(1−bq ,Bq)

(1−ap,Ap)

)
. (19.234)

2.

1
k

Hm,n
p,q

(
z|(ap,Ap)

(bq ,Bq)

)
= Hm,n

p,q

(
zk|||(ap,kAp)

(bq ,kBq)

)
, (19.235)

where k > 0.
3.

z𝜎Hm,n
p,q

(
z|(ap,Ap)

(bq ,Bq)

)
= Hm,n

p,q

(
z|(ap+𝜎Ap,Ap)

(bq+𝜎Bq ,Bq)

)
, (19.236)

where 𝜎 ∈ ℂ.
4.

Hm,n
p,q

(
z|(a1,A1),…,(ap,Ap)

(b1,B1),…,(bq−1,Bq−1),(a1,A1)

)
= Hm,n−1

p−1,q−1

(
z|(a2,A2),…,(ap,Ap)

(b1,B1),…,(bq−1,Bq−1)

)
, (19.237)

where n ≥ 1, q > m.

5.

Hm,n
p,q

(
z|(a1,A1),…,(ap−1,Ap−1),(b1,B1)

(b1,B1),…,(bq ,Bq)

)
= Hm−1,n

p−1,q−1

(
z|(a1,A1),…,(ap−1,Ap−1)

(b2,B2),…,(bq ,Bq)

)
, (19.238)

where m ≥ 1, p > n.
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6.

Hm,n
p,q

(
z|(a1,A1),…,(ap−1,Ap−1),(a,0)

(b1,B1),…,(bq ,Bq)

)
= 1

Γ(a)
Hm,n

p−1,q

(
z|(a1,A1),…,(ap−1,Ap−1)

(b1,B1),…,(bq ,Bq)

)
, (19.239)

where a, b ∈ ℂ, Re a > 0 and p > n.
7.

Hm,n
p,q

(
z|(a,0),(a2,A2),…,(ap,Ap)

(bq ,Bq)

)
= Γ(1 − a)Hm,n−1

p−1,q

(
z|(a2,A2),…,(ap,Ap)

(bq ,Bq)

)
, (19.240)

where a, b ∈ ℂ, Re a < 1 and n ≥ 1.
8.

Hm,n
p,q

(
z|(a1,A1),…,(ap,Ap)

(b,0),(b2,B2),…,(bq ,Bq)

)
= Γ(b)Hm−1,n

p,q−1

(
z|(a1,A1),…,(ap,Ap)

(b2,B2),…,(bq ,Bq)

)
, (19.241)

where a, b ∈ ℂ, Re b > 0 and m ≥ 1.
9.

Hm,n
p,q

(
z|(a1,A1),…,(ap,Ap)

(b1,B1),…,(bq−1,Bq−1),(b,0)

)
= 1

Γ(1 − b)
Hm,n

p,q−1

(
z|(a1,A1),…,(ap,Ap)

(b1,B1),…,(bq−1,Bq−1)

)
,

(19.242)
where a, b ∈ ℂ, Re b < 1 and q > m.

19.5.3 Examples of H-Functions

1. Exponential Function:
Consider the integral

f (z) = 1
2𝜋i ∫

𝛾+i∞

𝛾−i∞
Γ(s)z−sds, |arg z| < 𝜋∕2, z ≠ 0, 𝛾 ∈ ℝ and > 0,

(19.243)

where the contour is a straight line, Res = 𝛾, such that all the poles of Γ(s):

s = −𝜈, 𝜈 = 0, 1, 2,… , (19.244)

lie to the left of the straight line. Using the residue theorem, we can evaluate
this integral:

f (z) = 2𝜋i
∑

n
Residues of

[
Γ(s)z−s

2𝜋i

]
Poles of Γ(s)

(19.245)

=
∞∑

n=0
lim

s→−n
(s + n)Γ(s)z−s (19.246)
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=
∞∑

n=0
lim

s→−n
Γ(s) (s + n)(s + n − 1) · · · s

(s + n − 1) · · · s
z−s, (19.247)

which we rewrite as

f (z) =
∞∑

n=0
lim

s→−n

Γ(s + n + 1)
(s + n − 1) · · · s

z−s (19.248)

=
∞∑

n=0
lim

s→−n

(−1)n

n!
z−s. (19.249)

Thus,

f (z) = e−z. (19.250)

We now compare the integral [Eq. (19.243)] with the definition of the
H-function [Eqs. (19.212) and (19.213)] and identify the parameters of the
H-function as

m = 1, n = 0, p = 0, q = 1, (19.251)
b1 = 0, B1 = 1, (19.252)

Now, the H-function representation of the exponential function is
written as

e−z = H1,0
0,1 (z|(0,1)). (19.253)

2. The H-function representation of z𝛼e−z can be written as

z𝛼e−z = H1,0
0,1 (z|(𝛼,1)). (19.254)

3. Mittag-Leffler function:
Consider the following Mellin–Barnes integral:

f (z) = 1
2𝜋i ∫

𝛾+i∞

𝛾−i∞

Γ(s)Γ(1 − s)
Γ(1 − 𝛼s)

(−z)−s ds, |arg z| < 𝜋, (19.255)

where 𝛼 is positive and real. Using the residue theorem, this integral can
be shown to be the integral representation of the Mittag–Leffler function
E𝛼(z) ∶

f (z) =
∞∑

n=0
lim

s→−n

{
(s + n)Γ(s)Γ(1 − s)

Γ(1 − 𝛼s)
(−z)−s

}
(19.256)

=
∞∑

n=0

zn

Γ(𝛼n + 1)
(19.257)

= E𝛼(z). (19.258)
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Comparing the integral in Eq. (19.255) with the definition of the H-function
[Eqs. (19.212) and (19.213)], we determine the parameters as

m = 1, n = 1, p = 1, q = 2, (19.259)
a1 = 0, A1 = 1, (19.260)
b1 = 0, B1 = 1, (19.261)
b2 = 0, B2 = 𝛼. (19.262)

Thus, the H-function representation of the Mittag–Leffler function is
obtained as

E𝛼(z) = H1,1
1,2

(
−z|(0,1)(0,1),(0,𝛼)

)
. (19.263)

4. Generalized Mittag–Leffler function:
Consider the following integral representation of the generalized
Mittag-Leffler function:

E𝛼,𝛽(z) =
1

2𝜋i ∫
𝛾+i∞

𝛾−i∞

Γ(s)Γ(1 − s)
Γ(𝛽 − 𝛼s)

(−z)−s ds, |arg z| < 𝜋, (19.264)

where 𝛼 is real and positive and 𝛽 is in general complex. We can evaluate
this integral as

E𝛼,𝛽(z) =
∞∑

n=0
lim

s→−n

{
(s + n)Γ(s)Γ(1 − s)

Γ(𝛽 − 𝛼s)
(−z)−s

}
(19.265)

=
∞∑

n=0

zn

Γ(𝛼n + 𝛽)
. (19.266)

The parameters of the H-function are determined by direct comparison with
Eqs. (19.212) and (19.213) as

m = 1, n = 1, p = 1, q = 2, (19.267)
a1 = 0, A1 = 1, (19.268)
b1 = 0, B1 = 1, (19.269)
b2 = 1 − 𝛽, B2 = 𝛼, (19.270)

thus yielding

E𝛼,𝛽(z) = H1,1
1,2

(
−z|(0,1)(0,1),(1−𝛽,𝛼)

)
. (19.271)
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5. H-function representation of 1∕(1 − z)a, |z| < 1 ∶
Let us now consider the integral

f (z) = 1
2𝜋iΓ(a) ∫

𝛾+i∞

𝛾−i∞
Γ(s)Γ(−s + a)(−z)−s ds, (19.272)

where |arg(−z)| < 𝜋, Re a > Re 𝛾 > 0 and the contour is the straight line
Re s = 𝛾 that separates the poles of

Γ(s), s = −n, n = 0, 1,… (19.273)

and the poles of

Γ(−s + a), s = a + n, n = 0, 1,… . (19.274)

Using the residue theorem, we evaluate the above integral:

f (z) = 2𝜋i
∞∑

n=0
Residues

[
Γ(s)Γ(−s + a)(−z)−s

2𝜋iΓ(a)

]
poles of Γ(s)

(19.275)

=
∞∑

n=0
Residues

[
Γ(s)Γ(−s + a)(−z)−s

Γ(a)

]
poles of Γ(s)

(19.276)

=
∞∑

n=0
lim

s→−n

⎧⎪⎪⎨⎪⎪⎩
(s + n) (s + n − 1)(s + n − 2) · · · sΓ(s)

(s + n − 1)(s + n − 2) · · · s

×
[
Γ(−s + a)

Γ(a)
(−z)−s

]
⎫⎪⎪⎬⎪⎪⎭
, (19.277)

which we write as

f (z) =
∞∑

n=0
lim

s→−n

{
Γ(s + n + 1)

(s + n − 1)(s + n − 2) · · · s

[
Γ(−s + a)

Γ(a)
(−z)−s

]}
, (19.278)

=
∞∑

n=0
lim

s→−n

{
1

(−1)s(−s − n + 1)(−s − n + 2) · · · (−s)
Γ(−s + a)

Γ(a)
(−z)−s

}
,

(19.279)

=
∞∑

n=0

Γ(n + a)
Γ(a)

zn

n!
. (19.280)

This is nothing but 1∕(1 − z)a, thus
∞∑

n=0

Γ(n + a)
Γ(a)

zn

n!
= 1

(1 − z)a , |z| < 1. (19.281)

In other words, Eq. (19.272) is nothing but an integral representation of
1∕(1 − z)a. Comparing with the definition of the H-function [Eqs. (19.212)
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and (19.213)], we identify the parameters as
m = 1, n = 1, p = 1, q = 1, (19.282)
a1 = 1 − a, A1 = 1, (19.283)
b1 = 0, B1 = 1. (19.284)

Thus, obtaining the desired H-function representation as

1
(1 − z)a = H1,1

1,1

(
−z|(1−a,1)

(0,1)

)
. (19.285)

6. H-function representation of z𝛽
1 + az𝛼

∶

Following similar steps, one can also show the following useful result:

z𝛽
1 + az𝛼

= a−𝛽∕𝛼H1,1
1,1

(
az𝛼|(𝛽∕𝛼,1)(𝛽∕𝛼,1)

)
. (19.286)

19.5.4 Computable Form of the H-Function

Given an H-function, we can compute, plot, and also study its asymptotic forms
using the following series expressions [2, 5, 9, 14]:

(I) If the poles of
m∏

j=1
Γ(bj + sBj) (19.287)

are simple, that is, if
Bh(bj + 𝜆) ≠ Bj(bh + 𝜈), j ≠ h, j, h = 1,… ,m, 𝜆, 𝜈 = 0, 1, 2,… ,

(19.288)
then the following expansion can be used:

Hm,n
p,q (z) =

m∑
h=1

∞∑
𝜈=0

(−1)𝜈 z(bh+𝜈)∕Bh

𝜈!Bh

×

[ ′m∏
j=1

Γ(bj − Bj(bh + 𝜈)∕Bh)

][ n∏
j=1

Γ(1 − aj + Aj(bh + 𝜈)∕Bh)

]
[ q∏

j=m+1
Γ(1 − bj + Bj(bh + 𝜈)∕Bh)

][ p∏
j=n+1

Γ(aj − Aj(bh + 𝜈)∕Bh)

] ,

(19.289)
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where a prime in the product means j ≠ h. This series converges for all
z ≠ 0 if 𝜇 > 0 and for 0 < |z| < 1∕𝛽 if 𝜇 = 0, where 𝜇 and 𝛽 are defined as

𝜇 =
q∑

j=1
Bj −

p∑
j=1

Aj, (19.290)

𝛽 =
p∏

j=1
AAj

j

q∏
j=1

B−Bj

j . (19.291)

(II) If the poles of
m∏

j=1
Γ(1 − aj − sAj) (19.292)

are simple:

Ah(1 − aj + 𝜈) ≠ Aj(1 − ah + 𝜆), j ≠ h, j, h = 1,… , n, 𝜆, 𝜈 = 0, 1, 2,… ,

(19.293)

then the following expansion can be used:

Hm,n
p,q (z) =

n∑
h=1

∞∑
𝜈=0

(−1)𝜈
(1∕z)(1−ah+𝜈)∕Ah

𝜈!Ah

×

[ ′n∏
j=1

Γ(1 − aj − Aj(1 − ah + 𝜈)∕Ah)

][ m∏
j=1

Γ(bj + Bj(1 − ah + 𝜈)∕Ah)

]
[ q∏

j=m+1
Γ(1 − bj − Bj(1 − ah + 𝜈)∕Ah)

][ p∏
j=n+1

Γ(aj + Aj(1 − ah + 𝜈)∕Ah)

] ,

(19.294)

where a prime in the product means j ≠ h. This series converges for
all z ≠ 0 if 𝜇 < 0 and for |z| > 1∕𝛽 if 𝜇 = 0, where 𝜇 and 𝛽 are defined
as above.

19.6 Applications of H-Functions

Before we discuss the applications of H-functions to relaxation and anomalous
diffusion phenomena, for the sake of completeness, we review the basic def-
initions and properties of fractional calculus, where additional details can be
found in Chapter 13.
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19.6.1 Riemann–Liouville Definition of Differintegral

The basic definition of fractional derivative and integral, that is, differintegral,
is the Riemann–Liouville (R-L) definition [Eqs. (13.77) and (13.78)]:

For q < 0, the R–L fractional integral is evaluated using the formula[
dqf

[d(t − a)]q

]
= 1

Γ(−q) ∫
t

a
[t − t′]−q−1f (t′) dt′, q < 0. (19.295)

For the R–L fractional derivatives, q ≥ 0, the above integral is divergent,
hence the R–L formula is modified as[

dqf
[d(t − a)]q

]
= dn

dtn

[
1

Γ(n − q) ∫
t

a
[t − t′]−(q−n)−1f (t′)dt′

]
, q ≥ 0, n > q,

(19.296)

where the integer n must be chosen as the smallest integer satisfying (q − n)< 0.
For 0 < q < 1 and a = 0, the Riemann–Liouville fractional derivative

becomes[
dqf (t)

dtq

]
R−L

= 1
Γ(1 − q)

d
dx ∫

t

0

f (t′) d𝜏
(t − t′)q , 0 < q < 1. (19.297)

19.6.2 Caputo Fractional Derivative

In 1960s, Caputo introduced a new definition of fractional derivative:[
dqf (t)

dtq

]
C
= 1

Γ(1 − q) ∫
t

0

(
df (𝜏)

d𝜏

)
d𝜏

(t − 𝜏)q , 0 < q < 1, (19.298)

which was used by him to model dissipation effects in linear viscosity. The two
derivatives are related by[

dqf (t)
dtq

]
C
=
[

dqf (t)
dtq

]
R−L

−
t−qf (0)
Γ(1 − q)

, 0 < q < 1. (19.299)

Laplace transforms of the Riemann–Liouville and the Caputo derivatives
are given, respectively, as

£{R−L
0 Dq

t f (t)} = sqf̃ (s) −
n−1∑
k=0

sk
(

R−L
0 Dq−k−1

t f (t)
)|t=0, n − 1 < q ≤ n,

(19.300)

£{C
0 Dq

t f (t)} = sqf̃ (s) −
n−1∑
k=0

sq−k−1 dkf (t)
dtk

|||||t=0

, n − 1 < q ≤ n, (19.301)

where 0Dq
t f (t) ≡ dqf

dtq . Whenever there is need for distinction, we use the abbre-
viation “R–L” or “C.” When there is no abbreviation, it means R–L. Since the
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Caputo derivative allows us to impose boundary conditions in terms of the
ordinary derivatives, it has found widespread use.

For 0 < q < 1, the Laplace transform of the Caputo derivative becomes

£
{C

0 Dq
t f (t)

}
= sqf̃ (s) − sq−1f (0), (19.302)

while the R–L derivative has the Laplace transform

£
{

0Dq
t f (t)

}
= sqf̃ (s) − 0Dq−1

t f (0). (19.303)

19.6.3 Fractional Relaxation

The fractional relaxation equation in terms of the Caputo derivative is
written as

C
0 D𝛼

t f (t) = − 1
𝜏𝛼

f (t), 0 < 𝛼 < 1, t > 0, (19.304)

where 𝜏 is a positive constant with the appropriate units. With the initial condi-
tion f (0) = f0, the Laplace transform [Eq. (19.302)] of the fractional relaxation
equation becomes:

s𝛼 f̃ (s) − s𝛼−1f0 = − 1
𝜏𝛼

f̃ (s). (19.305)

This gives the solution in the transform space as

f̃ (s) =
f0s𝛼−1

s𝛼 + (1∕𝜏𝛼)
= f0

s−1

1 + (s𝜏)−𝛼
. (19.306)

Using Eq. (19.286), we can write this in terms of H-functions as

f̃ (s) =
f0

𝜏
H1,1

1,1

(
1

(𝜏s)𝛼
||||(1∕𝛼,1)(1∕𝛼,1)

)
. (19.307)

Using the relations in Eq. (19.234) and (19.235), we rewrite this as

f̃ (s) = f0

(
𝜏

𝛼

)
H1,1

1,1

(
𝜏s|(1−1∕𝛼,1∕𝛼)

(1−1∕𝛼,1∕𝛼)

)
(19.308)

and take its inverse Laplace transform [Eq. (19.225)] to obtain

f (t) =
f0

𝛼

(
𝜏

t

)
H1,1

2,1

(
(𝜏∕t)|(1−1∕𝛼,1∕𝛼),(0,1)

(1−1∕𝛼,1∕𝛼),

)
. (19.309)

This can also be written as

f (t) =
f0

𝛼
H1,1

1,2

(
(t∕𝜏)|(0,1∕𝛼)(0,1∕𝛼),(0,1)

)
, (19.310)

or as

f (t) = f0H1,1
1,2

(
(t∕𝜏)𝛼|(0,1)(0,1),(0,𝛼)

)
, (19.311)
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which is nothing but the Mittag–Leffler function [Eq. (19.263)]:

f (t) = f0E𝛼(−(t∕𝜏)𝛼). (19.312)

The Mittag–Leffler function gives relaxation between a power law and
an exponential. Naturally, as 𝛼 → 1, the solution becomes an exponential:
f (t) = f0 exp(−(t∕𝜏)).

19.6.4 Time Fractional Diffusion via R–L Derivative

The time fractional diffusion equation with the Riemann–Liouville derivative
is written as

0D𝛼
t u(x, t) = D2

𝛼

𝜕2u(x, t)
𝜕x2 , t > 0, −∞ < x < ∞, 0 < 𝛼 < 1,

(19.313)

where D𝛼 is a constant with the appropriate units. Using the following boundary
conditions:

lim
x→±∞

u(x, t) → 0, (19.314)

0D𝛼−1
t u(x, 0) = 𝜙(x), (19.315)

we first take the Fourier transform with respect to x and then the Laplace trans-
form with respect to t of Eq. (19.313) to obtain

ũ(k, s) =
𝜙(k)∕k2D2

𝛼

1 + s2∕k2D2
𝛼

, (19.316)

where ũ(k, s) = ∫ ∞
0 ∫ ∞

−∞ e−st+ikxu(x, t) dxdt and 𝜙(k) = {0D𝛼−1
t u(k, 0)}. Note

that “− ” denotes the Fourier and “∼” the Laplace transform. Using Eq. (19.286),
we can express ũ(k, s) in terms of H-functions as

ũ(k, s) = 𝜙(k)
k2D2

𝛼

H1,1
1,1

(
s𝛼

k2D2
𝛼

|||||
(0,1)

(0,1)

)
. (19.317)

Inverting the Laplace transform [Eq. (19.225)]:

u(k, t) = 𝜙(k)
k2D2

𝛼

(1
t

)
H1,1

2,1

(
t−𝛼

k2D2
𝛼

|||||
(0,1),(0,𝛼)

(0,1)

)
. (19.318)

Using Eqs. (19.234) and then (19.236), we rewrite this as

u(k, t) = 𝜙(k)t𝛼−1H1,1
1,2

(
k2D2

𝛼t𝛼|(0,1)(0,1),(1−𝛼,𝛼)

)
. (19.319)
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Finally, taking the inverse Fourier transform:

u(x, t) = 1
2𝜋 ∫

∞

−∞
dke−ikx𝜙(k)t𝛼−1H1,1

1,2

(
k2D2

𝛼t𝛼|(0,1)(0,1),(1−𝛼,𝛼)

)
(19.320)

and substituting 𝜙(k) = ∫ ∞
−∞ eikx′

𝜙(x′) dx′, we write

u(x, t) = 1
2𝜋 ∫

∞

−∞ ∫
∞

−∞
t𝛼−1H1,1

1,2

(
D2

𝛼k2t𝛼|(0,1)(0,1),(1−𝛼,𝛼)

)
e−ik(x−x′)𝜙(x′) dx′dk.

(19.321)

Using symmetry, we can also write this as

u(x, t) = ∫
∞

−∞
dx′𝜙(x′)G(x − x′), (19.322)

where

G(x − x′) = 1
𝜋 ∫

∞

0
dkt𝛼−1H1,1

1,2

(
D2

𝛼k2t𝛼|(0,1)(0,1),(1−𝛼,𝛼)

)
cos k(x − x′).

(19.323)

We now use the Fourier-cosine transform of the H-function in Eq. (19.231) to
write the following closed expression for G(x − x′):

G(x − x′) = t𝛼−1√
𝜋|x − x′|H1,2

3,2

(
4D2

𝛼t𝛼|x − x′|2 |||||
(1∕2,1),(0,1),(0,1)

(0,1),(1−𝛼,𝛼)

)
. (19.324)

19.6.5 Time Fractional Diffusion via Caputo Derivative

We now consider the time fractional diffusion equation in terms of the Caputo
derivative:

C
0 D𝛼

t u(x, t) = D2
𝛼

𝜕2u(x, t)
𝜕x2 , t > 0, −∞ < x < ∞, 0 < 𝛼 < 1,

(19.325)

with the following boundary conditions:

u(x, 0) = 𝛿(x), (19.326)
lim

x→±∞
u(x, t) → 0. (19.327)
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Taking the Laplace–Fourier transform:

ũ(k, s) = ∫
∞

0 ∫
∞

−∞
e−st+ikxu(x, t) dxdt, (19.328)

and using the fact that

{u(x, 0)} = ∫
∞

−∞
eikx𝛿(x) = 1, (19.329)

we write

s𝛼ũ(k, s) − s𝛼−1 = −D𝛼k2ũ(k, s), (19.330)

hence

ũ(k, s) = s𝛼−1

s𝛼 + D𝛼k2 . (19.331)

As in the previous case, first by inverting the Laplace transform and then by
finding the inverse Fourier transform, we obtain the solution as

u(x, t) = 1|x|H1,0
1,1

( |x|2
D𝛼t𝛼

||||
(1,𝛼)

(1,2)

)
. (19.332)

The 𝛼 → 1 Limit:
For the 𝛼 → 1 limit, we first write the solution as

u(x, t) = 1|x|H1,0
1,1

( |x|2
Dt
||||
(1,1)

(1,2)

)
, (19.333)

where we have substituted D1 = D and then express it as a Mellin–Barnes type
integral:

u(x, t) = 1|x| 1
2𝜋i∫C

Γ(1 − 2s)
Γ(1 − s)

(|x|2
Dt

)s

ds. (19.334)

Using the duplicationformula of the gamma functions:

Γ(2x) =
4xΓ(x)Γ(x + 1∕2)

2
√
𝜋

, (19.335)

we write

Γ(1 − 2s) = Γ(2(1∕2 − s)) (19.336)

=
4(1∕2−s)Γ(1∕2 − s)Γ(1∕2 − s + 1∕2)

2
√
𝜋

(19.337)

= 2−2s𝜋−1∕2Γ(1∕2 − s)Γ(1 − s). (19.338)
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Now the solution [Eq. (19.334)] becomes

u(x, t) = 1|x| 1
2𝜋i∫C

2−2s𝜋−1∕2Γ(1∕2 − s)
(|x|2

Dt

)s

ds, (19.339)

where the contour is the straight line
s = 𝛾, 𝛾 ∈ ℝ, (19.340)

that is,

u(x, t) = 1|x| 1
2𝜋i ∫

𝛾+i∞

𝛾−i∞
𝜋−1∕2Γ(1∕2 − s)

( |x|2
4Dt

)s

ds. (19.341)

We evaluate the integral using the residue theorem:

u(x, t) = 1|x| 1
2𝜋i

2𝜋i
[
−
∑

Residues
(
Γ(1∕2 − s)

( |x|2
4Dt

)s)]
, (19.342)

where the residues are at the poles of the gamma function Γ(1∕2 − s) ∶
s𝜈 = 1∕2 + 𝜈, 𝜈 = 0, 1, 2,… (19.343)

and lies to the right of the contour. Using the relation
Γ(−n)
Γ(−N)

= (−1)N−n N!
n!

, (19.344)

for N = 0, we write

Γ(−n) = (−1)n 1
n!
Γ(0). (19.345)

In other words, each pole acts like Γ(0), thus allowing us to write

u(x, t) = 1|x|√𝜋

[ ∞∑
𝜈=0

(−1)𝜈 1
𝜈!

( |x|2
4Dt

)1∕2+𝜈
]

(19.346)

= 1√
𝜋

1√
4Dt

∞∑
𝜈=0

(−1)𝜈

𝜈!

( |x|2
4Dt

)𝜈

, (19.347)

which is the Gaussian

u(x, t) = 1√
4𝜋D𝛼t

e−(|x|2∕4D𝛼 t). (19.348)

19.6.6 Derivation of the Lévy Distribution

We are now ready to give the derivation of the Lévy distribution [Eq. (19.198)]:

WL(x, t) =
𝜋

q|x|H1,1
2,2

( |x|
(Dqt)1∕q

|||||
(1,1∕q),(1,1∕2)

(1,1),(1,1∕2)

)
, (19.349)
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in terms of H-functions. The Lévy distribution, WL(x, t), satisfies the space
fractional diffusion equation

𝜕WL(x, t)
𝜕t

= DqRq
xWL(x, t), (19.350)

where Rq
x is the fractional Riesz derivative operator and Dq is the fractional

diffusion constant. The boundary conditions are given as
lim
t→t0

WL(x, t, x0, t0) = 𝛿(x − x0), (19.351)

lim
t→∞

WL(x, t, x0, t0) = 0. (19.352)

Taking the Fourier transform of Eq. (19.350), we obtain the Fourier transform
of the solution [Eq. (19.196)]:

W L(k, t) = exp(−Dqt|k|q), (19.353)

where for simplicity, we have set x0 = t0 = 0. Using the H-function representa-
tion of the exponential function [Eq. (19.253)], we write

W L(k, t) = H1,0
0,1
(
Dqt|k|q|(0,1)) (19.354)

and after using Eq. (19.235), we rewrite this as

W L(k, t) =
1
q

H1,0
0,1
(
(Dqt)1∕q|k||(0,1∕q)

)
. (19.355)

To find the solution, we need the inverse Fourier transform:

WL(x, t) =
1

2𝜋 ∫
∞

−∞
dkeikxW L(k, t) (19.356)

= 1
2𝜋 ∫

∞

−∞
dkeikx 1

q
H1,0

0,1
(
(Dqt)1∕q|k||(0,1∕q)

)
, (19.357)

which can also be written as

WL(x, t) =
1

q𝜋 ∫
∞

0
dk cos kxH1,0

0,1
(
(Dqt)1∕q|k||(0,1∕q)

)
. (19.358)

We now make use of the Fourier–cosine transform formula [ Eq. (19.231)] with
the substitutions

𝜌 = 1, a = |x|, x = |k|, (19.359)
b = (Dqt)1∕q, 𝜎 = 1, (19.360)

m = 1, n = 0, p = 0, q = 1, (19.361)
b1 = 0, B1 = 1∕q, (19.362)

to write the solution as

WL(x, t) =
1

q𝜋

√
𝜋|x| H1,1

2,1

(
(Dqt)1∕q 2|x| ||||(1∕2,1∕2),(0,1∕2)

(0,1∕q)

)
. (19.363)
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Using Eq. (19.234), we rewrite this as

WL(x, t) =
1√
𝜋q|x|H1,1

1,2

( |x|
2(Dqt)1∕q

|||||
(0,1∕q)

(1∕2,1∕2),(1,1∕2)

)
. (19.364)

To show the equivalence of this with the expression in Eq. (19.349), we first
write it as a Mellin–Barnes type integral:

WL(x, t) =
1√
𝜋q|x| 1

2𝜋i∫C

Γ
(1

2
− s

2

)
Γ
(

s
q

)
Γ(s∕2)

( |x|
2(Dqt)1∕q

)s

ds.

(19.365)

Similarly, we also convert [Eq. (19.349)]:

WL(x, t) =
𝜋

q|x|H1,1
2,2

( |x|
(Dqt)1∕q

|||||
(1,1∕q),(1,1∕2)

(1,1),(1,1∕2)

)
, (19.366)

into a Mellin–Barnes type integral as

WL(x, t) =
𝜋

q|x| 1
2𝜋i∫C

Γ(b1 − B1s)Γ(1 − a1 + A1s)
Γ(a2 − A2s)Γ(1 − b2 + B2s)

( |x|
(Dqt)1∕q

)s

ds,

(19.367)

where

m = 1, n = 1, p = 2, q = 2, (19.368)
b1 = 1, B1 = 1, b2 = 1, B2 = 1∕2, (19.369)
a1 = 1, A1 = 1∕q, a2 = 1, A2 = 1∕2. (19.370)

Using these values in Eq. (19.367), we write

WL(x, t) =
𝜋

q|x| 1
2𝜋i∫C

Γ(1 − s)Γ(s∕q)
Γ(1 − s∕2)Γ(s∕2)

( |x|
(Dqt)1∕q

)s

ds, (19.371)

= 𝜋

q|x| 1
2𝜋i∫C

Γ(2(1∕2 − s∕2)Γ(s∕q)
Γ(1 − s∕2)Γ(s∕2)

( |x|
(Dqt)1∕q

)s

ds. (19.372)

Using the duplication formula:

Γ(2x) =
4xΓ(x)Γ(x + 1∕2)

2
√
𝜋

, (19.373)
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along with the substitution x = (1∕2 − s∕2), we get

WL(x, t) =
𝜋

q|x| 1
2𝜋i∫C

21−sΓ(1∕2 − s∕2)Γ(1∕2 − s∕2 + 1∕2)Γ(s∕q)
2
√
𝜋Γ(1 − s∕2)Γ(s∕2)

( |x|
(Dqt)1∕q

)s

ds,

(19.374)

= 1√
𝜋q|x| 1

2𝜋i∫C

Γ(1∕2 − s∕2)Γ(s∕q)
Γ(s∕2)

( |x|
2(Dqt)1∕q

)s

ds, (19.375)

which is identical to Eq. (19.365).

19.6.7 Lévy Distributions in Nature

The Gaussian, or the normal distribution, describes many important phe-
nomena in nature like the thermal motion of atoms, Brownian motion, and
diffusion. Recent experimental results indicate that there are also other inter-
esting phenomena that are better described by the Lévy distribution intro-
duced by the, French mathematician, Paul Lévy, in 1937. In Brownian motion,
the distribution function is a Gaussian, where the mean distance, <x>, is zero
but the variance, <x2>, is finite and changes linearly with time as <x2>∝ t.
In Brownian motion, particles always take small steps about their initial posi-
tions but they slowly drift away with time. This basically follows from the fact
that Gaussian distribution decays rapidly as 1∕x3. On the other hand, the Lévy
distribution decays as 1∕x1+𝛼 , 0 < 𝛼 < 2, thus making much larger steps pos-
sible. An interesting example is that researchers from Boston University and
the British Antarctic Survey in 1996 found that albatrosses foraging behavior
follow the Lévy distribution. That is, first they search for food in their neigh-
borhood with small steps but every now and then they fly off to large distances
and continue feeding in a new location before flying off again. This can be
understood by the fact that looking for food in the same neighborhood for
too long will not only be inefficient but also risk being spotted by predators.
Besides anomalous diffusion, there are other interesting examples of Lévy dis-
tribution. Among these, we could name the leaky faucet and the erratic heart
beats of healthy subjects, which can be described by the Lévy distribution with
𝛼 = 1.7.Data from patients with severe heart failure turns out to be much closer
to a Gaussian. Lévy distributions have also found interesting applications to
stock markets, where stock prices may stall for a while before making a big
move [15].

19.6.8 Time and Space Fractional Schrödinger Equation

To write the most general fractional Schrödinger equation, we use the fact that
the Schrödinger equation is analytic in the lower half of the complex t-plane
and perform a Wick rotation, t → −it, on the one-dimensional Schrödinger
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equation:

iℏ𝜕Ψ(x, t)
𝜕t

= − ℏ2

2m
𝜕2Ψ(x, t)

𝜕x2 + V (x)Ψ(x, t), (19.376)

to obtain

−ℏ𝜕Ψ(x, t)
𝜕t

= − 1
2m

(
ℏ
𝜕

𝜕x

)2
Ψ(x, t) + V (x)Ψ(x, t). (19.377)

This is nothing but the Bloch equation [Eq. (19.33)]:

𝜕Ψ(x, t)
𝜕t

= Ď𝜕2Ψ(x, t)
𝜕x2 − 1

ℏ
V (x)Ψ(x, t), Ď > 0, (19.378)

where Ď = ℏ∕2m is the quantum diffusion constant and V (x) is the potential.
We now write the time and space fractional Bloch equation as

C
0 D𝛼

t Ψ(x, t) =
1
ℏ

Ď𝛼,𝛽ℏ
𝛽R𝛽

xΨ(x, t) −
1
ℏ

V (x)Ψ(x, t), 0 < 𝛼 < 1, 1 < 𝛽 < 2,

(19.379)

where C
0 D𝛼

t is the Caputo derivative [Eq. (19.298)]:

C
0 D𝛼

t Ψ(x, t) =
1

Γ(1 − 𝛼) ∫
t

0

(
dΨ(x, 𝜏)

d𝜏

)
d𝜏

(t − 𝜏)𝛼
, 0 < 𝛼 < 1, (19.380)

and R𝛽
x is the Riesz derivative [Eqs. (19.189) and (19.190)]:

R𝛽
xΨ(x, t) = − 1

2𝜋 ∫
∞

−∞
dkeikx|k|𝛽Ψ(k, t), (19.381)

where Ψ(k, t) is the Fourier transform of Ψ(x, t). When there is no room for
confusion, we will also write

C
0 D𝛼

t = 𝜕𝛼

𝜕t𝛼
and R𝛽

x = ∇𝛽 = 𝜕𝛽

𝜕x𝛽
. (19.382)

In Eq. (19.379), we have introduced a new quantum diffusion constant with
the appropriate units as Ď𝛼,𝛽 . Performing an inverse Wick rotation, t → it, we
obtain the time and space fractional Schrödinger equation:

C
0 D𝛼

t Ψ(x, t) =
i𝛼
ℏ

Ď𝛼,𝛽

(
ℏ
𝜕

𝜕x

)𝛽

Ψ(x, t) − i𝛼
ℏ

V (x)Ψ(x, t). (19.383)
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19.6.8.1 Free Particle Solution
We now consider the free Schrödinger equation with both time and space frac-
tional derivatives [Eq. (19.383)]:

C
0 D𝛼

t Ψ(x, t) =
i𝛼
ℏ

Ď𝛼,𝛽

(
ℏ
𝜕

𝜕x

)𝛽

Ψ(x, t), 0 < 𝛼 < 1, 1 < 𝛽 < 2, (19.384)

Performing a Wick rotation, t → −it, this becomes:
𝜕𝛼

𝜕t𝛼
Ψ(x, t) = 1

ℏ
Ď𝛼,𝛽ℏ

𝛽∇𝛽
xΨ(x, t), 0 < 𝛼 < 1, 1 < 𝛽 < 2, (19.385)

where Ď1,2 = 1∕2m. Using the boundary conditions as Ψ(x, 0) = 𝛿(x) and
limx→±∞Ψ(x, t) → 0, we first take the Fourier transform with respect to
space and then the Laplace transform with respect to time to obtain the
Fourier-Laplace transform of the solution. Finding the inverse transforms and
then performing an inverse Wick rotation, yields the wave function in integral
form as

Ψ(x, t) =
Ψ0

2𝜋 ∫
+∞

−∞
e−ikx E𝛼

(
− i𝛼
ℏ

Ď𝛼,𝛽ℏ
𝛽k𝛽t𝛼

)
dk, (19.386)

where E𝛼(z) is the Mittag–Leffler function. We can also write Ψ(x, t) as

Ψ(x, t) =
Ψ0

𝜋 ∫
+∞

0
cos kx E𝛼

(
− i𝛼
ℏ

Ď𝛼,𝛽ℏ
𝛽k𝛽t𝛼

)
dk. (19.387)

This wave function satisfies both the time and space fractional Schrödinger
equation [Eq. (19.384)]

In terms of H-functions, Eq. (19.387) can be written as [Eq. (19.271)]

Ψ(x, t) =
Ψ0

𝜋 ∫
+∞

0
cos kx H1,1

1,2

(
i𝛼
ℏ

Ď𝛼,𝛽ℏ
𝛽k𝛽t𝛼

||||(0,1)(0,1),(0,𝛼)

)
dk, (19.388)

which can be integrated using the properties of the H-functions as
[Eq. (19.231)]

Ψ(x, t) =
Ψ0√
𝜋|x|H1,2

3,2

(
i𝛼
ℏ

Ď𝛼,𝛽ℏ
𝛽t𝛼
(

2|x|
)𝛽|||||

(1∕2,𝛽∕2),(0,1),(0,𝛽∕2)

(0,1),(0,𝛼)

)
. (19.389)

To determineΨ0, the wave function has to be normalized as ∫ |Ψ(x, 0)|2 dx = 1.
Solution with 𝜷 = 2: This solution becomes the free particle solution of the

time fractional Schrödinger equation as

Ψ(x, t) =
Ψ0√
𝜋|x|H1,2

3,2

(
4i𝛼D𝛼t𝛼|x|2 ||||

(1∕2,1),(0,1),(0,1)

(0,1),(0,𝛼)

)
, D𝛼 = Ď𝛼,2ℏ. (19.390)

This can also be shown to be equal to

Ψ(x, t) =
Ψ0√
𝜋|x|H2,0

1,2

( |x|2
4i𝛼D𝛼t𝛼

||||
(1,𝛼)

(1∕2,1),(1,1)

)
, (19.391)
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or to

Ψ(x, t) =
Ψ0|x|H1,0

1,1

( |x|2
i𝛼D𝛼t𝛼

||||
(1,𝛼)

(1,2)

)
. (19.392)

In the limit as 𝛼 → 1, this becomes the well-known solution of the Schrödinger
equation:

Ψ(x, t) =
Ψ0

(4𝜋iD1t)1∕2 exp
(
− |x|2

4iD1t

)
, (19.393)

where D1 = ℏ∕2m.

Solution with 𝜶 = 1:
We now obtain the wave function as

Ψ(x, t) =
Ψ0√
𝜋|x|H1,2

3,2

(
i
ℏ

D𝛽ℏ
𝛽t
(

2|x|
)𝛽|||||

(1∕2,𝛽∕2),(0,1),(0,𝛽∕2)

(0,1),(0,1)

)
, (19.394)

which satisfies

iℏ 𝜕

𝜕t
Ψ(x, t) = −D𝛽ℏ

𝛽R𝛽
xΨ(x, t), 1 < 𝛽 < 2, (19.395)

where Ď1,𝛽 = D𝛽 . This solution can also be written in the form:

Ψ(x, t) =
𝜋Ψ0

𝛽|x|H1,1
2,2

(
1
ℏ

(
ℏ

iD𝛽t

)1∕𝛽|x||||||
(1,1∕𝛽),(1,1∕2)

(1,1),(1,1∕2)

)
. (19.396)

19.7 Space Fractional Schrödinger Equation

For 𝛼 = 1, Eq. (19.383) reduces to the space fractional Schrödinger equation:

𝜕

𝜕t
Ψ(x, t) = i

ℏ
Ď1,𝛽

(
ℏ
𝜕

𝜕x

)𝛽

Ψ(x, t) − i
ℏ

V (x)Ψ(x, t), 1 < 𝛽 < 2,
(19.397)

which Laskin [7] wrote as

iℏ 𝜕

𝜕t
Ψ(x, t) = −D𝛽[ℏ∇]𝛽Ψ(x, t) + V (x)Ψ(x, t). (19.398)

Here, [ℏ∇]𝛽 is called the quantum Riesz derivative and D𝛽 is the quantum
diffusion constant, where D𝛽 → 1∕2m as 𝛽 → 2.
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19.7.1 Feynman Path Integrals Over Lévy Paths

In the presence of interactions, the space fractional version of the Schrödinger
equation:

𝜕Ψ(x, t)
𝜕t

= i
2m

𝜕2Ψ(x, t)
𝜕x2 − iV (x)Ψ(x, t), (19.399)

is written as [Eq. (19.398)]

𝜕Ψ(x, t)
𝜕t

= iD̃q∇qΨ(x, t) − iV (x)Ψ(x, t), 1 < q < 2, (19.400)

where for time being, we have set ℏ = 1 for simplicity. After a Wick rotation,
t → −it, this becomes the space fractional Bloch equation:

𝜕Ψ(x, t)
𝜕t

= D̃q∇qΨ(x, t) − V (x)Ψ(x, t). (19.401)

When q = 2, the generalized fractional quantum diffusion constant, D̃2,

becomes

D̃2 = 1∕2m. (19.402)

We now follow the steps described in Section 19.3 that lead to the Feynman
path integral formulation of quantum mechanics and replace Dq with iD̃q in
dLx(𝜏) [Eq. (19.205)] to write the Feynman measure over Lévy paths as

dFeynman
L x(𝜏) = lim

N→∞

⎡⎢⎢⎣dx1 · · · dxN

(
1

iD̃qΔ𝜏

)−(N+1)∕q

×
N+1∏
i=1

Lq

⎧⎪⎨⎪⎩
(

1
iD̃qΔ𝜏

)1∕q|xi − xi−1|⎫⎪⎬⎪⎭
⎤⎥⎥⎥⎦ . (19.403)

Since the path integrals are to be evaluated over Lévy paths, we replace the
Feynman measure, dF x(𝜏), in Eq. (19.143) with the Feynman measure over Lévy
paths, dFeynman

L x(𝜏), where D̃q is the generalized fractional diffusion constant of
the space fractional quantum mechanics.

To convert these equations into proper physical dimensions, we have to
introduce suitable powers of ℏ into dFeynman

L x(𝜏). We first note that the physical
dimension of (1∕iD̃qΔ𝜏)1∕q is 1∕cm, hence the dimension of (iD̃qΔ𝜏)−(N+1)∕q

must be cmN−1. We now consider the following expression:

ℏa

(
ℏb

iD̃qΔ𝜏

)1∕q

, (19.404)



19.7 Space Fractional Schrödinger Equation 811

where a and b are to be determined. Using [ℏ] = ergs.s, [Δ𝜏] = s, and the fact
that ⎡⎢⎢⎣ℏa

(
ℏb

iD̃qΔ𝜏

)1∕q⎤⎥⎥⎦ = 1
cm

, (19.405)

we get,

[D̃q]1∕q = ergaq+1cmqsaq+b−1, (19.406)
= gmaq+bcm2aq+q+2bs−aq−b−1. (19.407)

Since when q = 2, the dimension of D̃2 is [D̃2] =
[

1
2m

]
= gm−1 [Eq. (19.402)],

we require the following set of equations to be true at q = 2:

aq + b = −1,
2aq + q + 2b = 0,
−aq − b − 1 = 0,

||||||q=2

, (19.408)

which yields the values a = −1 and b = 1. The physical dimension of D̃q is now
obtained as [D̃q] = ergs1−qcmqs−q and the Feynman measure over the Lévy
paths with the physical dimensions becomes

dFeynman
L x(𝜏) = lim

N→∞

⎡⎢⎢⎣dx1 · · · dxN
1

ℏN+1

(
ℏ

iD̃qΔ𝜏

)(N+1)∕q

×
N+1∏
i=1

Lq

⎧⎪⎨⎪⎩
1
ℏ

(
ℏ

iD̃qΔ𝜏

)1∕q|xi − xi−1|⎫⎪⎬⎪⎭
⎤⎥⎥⎥⎦ . (19.409)

Note that the physical dimension of dFeynman
L x(𝜏) is 1∕cm.

We now modify the Feynman–Kac formula [Eq. (19.35)]:

WB(x, t, x0, 0) = ∫C[x0,0;x,t]
d𝑤x(𝜏) exp

{
−∫

t

0
d𝜏V [x(𝜏), 𝜏]

}
, (19.410)

where the path integral is now to be taken over the Lévy paths. This gives the
new propagator:

K(x, t, x0, t0) = ∫[x0,t0,x,t]
dFeynman

L x(𝜏) exp
{
− i
ℏ ∫

t

t0

d𝜏V [x(𝜏)]
}

,

(19.411)
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which can be used to write the solution of the space fractional Schrödinger
equation [Eq. (19.400)] as

Ψ(x, t) = ∫ K(x, t, x′, t′)Ψ(x′, t′) dx′. (19.412)

With the proper factors of ℏ introduced, the space fractional Schrödinger
equation in physical dimensions becomes

iℏ𝜕Ψ(x, t)
𝜕t

= −D̃q(ℏ∇)qΨ(x, t) + V (x)Ψ(x, t). (19.413)

19.8 Time Fractional Schrödinger Equation

Substituting 𝛽 = 2 in Eq. (19.383), we get

C
0 D𝛼

t Ψ(x, t) =
i𝛼
ℏ

Ď𝛼,2

(
ℏ
𝜕

𝜕x

)2
Ψ(x, t) − i𝛼

ℏ
V (x)Ψ(x, t) (19.414)

or,
C
0 D𝛼

t Ψ(x, t) = i𝛼Ď𝛼,2ℏ
𝜕2

𝜕x2 Ψ(x, t) −
i𝛼
ℏ

V (x)Ψ(x, t). (19.415)

By defining a new quantum diffusion constant, D𝛼 = Ď𝛼,2ℏ, we write the time
fractional Schrödinger equation as

C
0 D𝛼

t Ψ(x, t) = i𝛼D𝛼

𝜕2

𝜕x2 Ψ(x, t) −
i𝛼
ℏ

V (x)Ψ(x, t), 0 < 𝛼 < 1, (19.416)

where D𝛼 → ℏ∕2m as 𝛼 → 1.

19.8.1 Separable Solutions

We now consider the separable solutions of the time fractional Schrödinger
equation [1, 11]. Substituting

Ψ(x, t) = X(x)T(t), (19.417)

we obtain the equations to be solved for X(x) and T(t), respectively, as

D𝛼

d2X(x)
dx2 − V (x)

ℏ
X(x) = 𝜆nX(x), (19.418)

C
0 D𝛼

t T(t) = i𝛼𝜆nT(t), 0 < 𝛼 < 1, (19.419)

where the spatial equation [Eq. (19.418)] has to be solved with the appropriate
boundary conditions and 𝜆n is the separation constant. At this point, the index
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n is superfluous but we keep it for the cases where 𝜆 is discrete. Since in the
limit as 𝛼 → 1, D𝛼 → ℏ∕2m, and 𝜆n → −En∕ℏ, for physically interesting cases
𝜆n < 0.

19.8.2 Time Dependence

Taking the Laplace transform of Eq. (19.419):

£
{C

0 D𝛼
t T(t)

}
= i𝛼𝜆n£{T(t)}, (19.420)

we write

s𝛼T̃(s) − s𝛼−1T(0) = i𝛼𝜆nT̃(s), (19.421)

where T̃(s) = £{T(t)}. This gives the Laplace transform of the time depen-
dence of the wave function as

T̃(s) = T(0) s𝛼−1

s𝛼 − i𝛼𝜆n
. (19.422)

We rewrite this as

T̃(s) = T(0) s−1

1 − i𝛼𝜆ns−𝛼
. (19.423)

Using the geometric series,
∑∞

n=0 sn = 1∕(1 − s), we obtain

T̃(s) = T(0)
∞∑

m=0
(i𝛼𝜆ns−𝛼)ms−1 = T(0)

∞∑
m=0

i𝛼m𝜆m
n s−m𝛼−1, (19.424)

which converges for |i𝛼𝜆ns−𝛼| < 1. The inverse Laplace transform of T̃(s) can
be found easily as

T(t) = T(0)
∞∑

m=0

i𝛼m𝜆m
n t𝛼m

Γ(1 + 𝛼m)
= T(0)

∞∑
m=0

(i𝛼𝜆nt𝛼)m

Γ(1 + 𝛼m)
, (19.425)

which yields the time dependence of the wave function:

T(t) = T(0)E𝛼(i𝛼𝜆nt𝛼), (19.426)

where E𝛼(i𝛼𝜆nt𝛼) is the Mittag–Leffler function with an imaginary argument.
To develop an alternate expression for T(t), in the following two sections, we

introduce the fractional differential equation that the Mittag–Leffler function
satisfies and the Euler equation for the Mittag–Leffler function.
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19.8.3 Mittag–Leffler Function and the Caputo Derivative

Consider the following fractional differential equation:

C
0 D𝛼

t y(t) = 𝜔y(t), y(0) = 1, 0 < 𝛼 < 1. (19.427)

Taking its Laplace transform:

s𝛼 ỹ(s) − s𝛼−1 = 𝜔ỹ(s), (19.428)

we obtain the solution in the transform space as

ỹ(s) = s𝛼−1

s𝛼 − 𝜔
= s−1

1 − 𝜔s−𝛼
. (19.429)

Using the geometric series, we write

ỹ(s) =
∞∑

n=0

𝜔n

s1+𝛼n (19.430)

and find the inverse to obtain the solution as

y(t) =
∞∑

n=0

(𝜔t𝛼)n

Γ(𝛼n + 1)
. (19.431)

This is nothing but the Mittag–Leffler function with the argument 𝜔t𝛼 :

y(t) = E𝛼(𝜔t𝛼), (19.432)

which is a generalization of the exponential function, et =
∑∞

n=0 tn∕n! Note that
we will also use the notation

y(t) = E𝛼(𝜔; t) = E𝛼(𝜔t𝛼), (19.433)

C
0 D𝛼

t E𝛼(𝜔; t) = 𝜔E𝛼(𝜔; t), E𝛼(𝜔; 0) = 1. (19.434)

19.8.4 Euler Equation for the Mittag–Leffler Function

Euler equation for the trigonometric functions is given as

y(t) = ei𝜔t = cos𝜔t + i sin𝜔t, (19.435)

where y(t) satisfies the differential equation
dy
dt

= i𝜔y(t), y(0) = 1. (19.436)
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We now consider the following fractional differential equation:
C
0 D𝛼

t y(t) = 𝜔i𝛼y(t), y(0) = y0, 0 < 𝛼 < 1, (19.437)

where the solution is written as y(t) = y0E𝛼(𝜔i𝛼; t), or as y(t) = y0E𝛼(𝜔i𝛼t𝛼). For
an alternate expression, we write the Laplace transform of Eq. (19.437):

ỹ(s) =
s𝛼−1y0

s𝛼 − 𝜔i𝛼
, (19.438)

which when inverted yields the solution:

y(t) = 1
2𝜋i ∫

𝛾+i∞

𝛾−i∞

[ests𝛼−1y0

s𝛼 − 𝜔i𝛼

]
ds. (19.439)

Since the integrand has a branch point at s = 0, the Bromwich contour has to
be modified as in Figure 19.6. We have located the branch cut along the negative
real axis and the contour around the branch cut is called the Hankel contour.
There are two contributions to this integral, one of which is due to the pole
at s = 𝜔1∕𝛼i and the other one comes from the straight line segments of the
contour above and below the branch cut. We can now write

y(t) = [residue at s = 𝜔1∕𝛼i] +
y0

2𝜋i∫Hankel

[
ests𝛼−1

s𝛼 − 𝜔i𝛼

]
ds. (19.440)

The residue is evaluated easily as

residue = lim
s→s0

(s − s0)y0ests𝛼−1

s𝛼 − 𝜔i𝛼
= ei𝜔1∕𝛼 t

𝛼
, s0 = 𝜔1∕𝛼i, (19.441)

and the remaining integral over the Hankel contour can be written as

−
y0𝜔i𝛼

𝜋 ∫
∞

0

(sin 𝛼𝜋)e−xtx𝛼−1 dx
x2𝛼 − 2𝜔i𝛼(cos 𝛼𝜋)x𝛼 + (𝜔i𝛼)2 . (19.442)

Figure 19.6 Modified Bromwich
contour.

C

Re s

Im s

γ

ω1/α
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Putting these together, the final expression for the solution becomes

y(t) = y0

[
ei𝜔1∕𝛼 t

𝛼
− 𝜔i𝛼(sin 𝛼𝜋)

𝜋 ∫
∞

0

e−xtx𝛼−1 dx
x2𝛼 − 2𝜔i𝛼(cos 𝛼𝜋)x𝛼 + (𝜔i𝛼)2

]
.

(19.443)

The first term on the right-hand side is oscillatory. As 𝛼 → 1, the above expres-
sion reduces to the Euler equation.

Defining the function F𝛼(𝜎; t) ∶

F𝛼(𝜎; t) = 𝜎(sin 𝛼𝜋)
𝜋 ∫

∞

0

e−xtx𝛼−1 dx
x2𝛼 − 2𝜎(cos 𝛼𝜋)x𝛼 + 𝜎2 , (19.444)

where

𝜎 = 𝜔i𝛼, (19.445)
F𝛼(0; t) = 0, (19.446)
F1(𝜎; t) = 0, (19.447)

F𝛼(𝜎; 0) = 1 − 𝛼

𝛼
, (19.448)

0 ≤ F𝛼(𝜎; t) ≤ 1 − 𝛼

𝛼
, (19.449)

we can write the solution of the differential equation:
C
0 D𝛼

t y(t) = 𝜔i𝛼y(t), y(0) = y0, 0 < 𝛼 < 1, (19.450)

as

y(t) = y0

[ 1
𝛼

ei𝜔1∕𝛼 t − F𝛼(𝜔i𝛼; t)
]
, (19.451)

We now write the fractional analogue of the Euler equation as

E𝛼(𝜔i𝛼; t) = 1
𝛼

ei𝜔1∕𝛼 t − F𝛼(𝜔i𝛼; t), 0 < 𝛼 < 1, (19.452)

which satisfies the differential equation

C
0 D𝛼

t E𝛼(𝜔i𝛼; t) = 𝜔i𝛼E𝛼(𝜔i𝛼; t), 0 < 𝛼 < 1. (19.453)

For 𝛼 = 1, as expected, E𝛼(𝜔i𝛼; t) reduces to the Euler equation:

E1(i𝜔; t) = ei𝜔t. (19.454)
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Note that Eq. (19.439) gives an integral representation of the Mittag-Leffler
function as

E𝛼(𝜔i𝛼; t) = 1
2𝜋i ∫

𝛾+i∞

𝛾−i∞

[
ests𝛼−1

s𝛼 − 𝜔i𝛼

]
ds, (19.455)

which with the substitution x = 𝜔i𝛼 , t = 1, becomes

E𝛼(x) =
1

2𝜋i ∫
𝛾+i∞

𝛾−i∞

[
ess𝛼−1

s𝛼 − x

]
ds, 𝛼 > 0. (19.456)

In applications, we frequently need the asymptotic forms:

E𝛼(x) ∼
1
𝛼

ex1∕𝛼 −
∞∑

k=1

x−k

Γ(1 − 𝛼k)
, |x| → ∞, 0 < 𝛼 < 2, (19.457)

E𝛼(x) ∼ −
∞∑

k=1

x−k

Γ(1 − 𝛼k)
, |x| → ∞, 𝛼 < 0, (19.458)

E𝛼(x) ∼
1
𝛼

∑
m

e(x1∕2e2𝜋im∕𝛼 ) −
∞∑

k=1

x−k

Γ(1 − 𝛼k)
, |x|→ ∞, 𝛼 ≥ 2, (19.459)

where m takes all the integer values such that −𝛼𝜋∕2 < 2𝜋m < 𝛼𝜋∕2, x > 0.
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Problems

1 Show that

W (x, t, x0, t0) =
1√

4𝜋D(t − t0)
exp

{
−

(x − x0)2

4D(t − t0)

}
satisfies the normalization condition ∫ ∞

−∞ dxW (x, t, x0, t0) = 1.

2 By differentiating both sides with respect to t show that the following
equation is true:

exp
{
−∫

t

0
d𝜏V [x(𝜏)]

}
= 1 −∫

t

0
d𝜏
(

V [x(𝜏)] exp
{
−∫

𝜏

0
dsV [x(s)]

})
.

3 Show that V (x) in Eq. (19.63):

𝜕W̃ (x, t; x0, t0)
𝜕t

− D
𝜕2W̃ (x, t; x0, t0)

𝜕x2 = V (x)W̃ (x, t; x0, t0),

is defined as

V (x) = 1
4𝜂2D

F2(x) + 1
2𝜂

dF(x)
dx

.

4 Show that the following propagator:

W (x, t, x0, t0) =
1√

4𝜋D(t − t0)
exp

{
−

(x − x0)2

4D(t − t0)

}
,

satisfies the ESKC relation [Eq. (19.10)].
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5 Derive equation

WB(x, t, x0, t0) = W (x, t, x0, t0)

−𝜀
N∑

j=1
∫

∞

−∞
dxjW (x, t, xj, tj)V (xj, tj)W (xj, tj, x0, t0)

+ 1
2!
𝜀2

N∑
j=1

N∑
k=1

∫
∞

−∞
dxj ∫

∞

−∞
dxkW (x, t, xj, tj)V (xj, tj)W (xj, tj, xk , tk)

×V (xk , tk)W (xk , tk , x0, t0) + · · · .

given in Section 19.1.2 [Eq. (19.40)].

6 Using the semiclassical method, show that the result of the Wiener
integral:

W (x, t, x0, t0) = ∫C[x0,0;x,t]
d𝑤x(𝜏) exp

{
−k2 ∫

t

t0

d𝜏x2
}

,

is given as

W (x, t, x0, t0) =

[
k

2𝜋
√

D sinh(2k
√

D(t − t0)

](1∕2)

× exp

{
−k

(x2 + x2
0) cosh(2k

√
D(t − t0)) − 2x0x

2
√

D sinh(2k
√

D(t − t0))

}
.

7 By diagonalizing the real symmetric matrix, A [Eq. (19.126)], show that

∫ d𝜂1 ∫ d𝜂2 · · ·∫ d𝜂N exp

{
−

N∑
k=1

N∑
l=1

𝜂kAkl𝜂l

}
=

(
√
𝜋)N√

det A
.

8 Use the formula,

∫
∞

−∞
d𝜂 exp{−a(𝜂 − 𝜂′)2 − b(𝜂 − 𝜂′′)2}

=
[

𝜋

a + b

]1∕2
exp

{
− ab

a + b
(𝜂′ − 𝜂′′)2

}
to evaluate the integral

𝜙(t) = ∫C[0,0;0,t]
exp

{
− 1

4D ∫
t

0
d𝜏�̇�2

} t∏
𝜏=0

d𝜂(𝜏)√
4𝜋Dd𝜏

.
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9 By taking the momentum integral in Eq. (19.156), derive the propagator
in Eq. (19.161):

K(q′′, t′′, q′, t′) = lim
N→∞
𝜀→0

1√
2𝜋iℏ 𝜀

m

N∏
l=1

∫
∞

−∞

⎡⎢⎢⎢⎣
dql√
2𝜋iℏ 𝜀

m

⎤⎥⎥⎥⎦ exp
{ i
ℏ

S
}
,

where S is given as

S =
N∑

l=0
𝜀

[
m
2

( (ql+1 − ql)
𝜀

)2

− V
(1

2
(ql + ql+1), tl

)]
.

10 Show that z𝛼e−z can be represented in terms of H-functions as

z𝛼e−z = H1,0
0,1
(
z|(𝛼,1)) .

11 Prove the following H-function representation:

z𝛽
1 + az𝛼

= a−𝛽∕𝛼H1,1
1,1

(
az𝛼|(𝛽∕𝛼,1)(𝛽∕𝛼,1)

)
.

12 By evaluating the corresponding Mellin–Barnes type integral, show that
the q → 2 limit of the Lévy distribution:

WL(x, t) =
1√
𝜋q|x|H1,1

1,2

( |x|
2(Dqt)1∕q

|||||
(0,1∕q)

(1∕2,1∕2),(0,1∕2)

)
,

is a Gaussian.

13 Using the computable form of the H-functions, verify that for large argu-
ments:|x|∕(Dqt)1∕q ≫ 1,

one can write the following series expansion [16]:

WL(x, t) =
∞∑

l=1
(−1)l+1 Γ(1 + lq)

l!
sin
(

l𝜋q
2

) (Dqt)l|x|lq+1 ,

for

WL(x, t) =
𝜋

q|x|H1,1
2,2

( |x|
(Dqt)1∕q

|||||
(1,1∕q),(1,1∕2)

(1,1),(1,1∕2)

)
.
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14 Using H-functions, solve the following fractional differential equation
given in terms of the R−L derivative:

R−L
0 D𝛼

t f (t) − f0
t−𝛼

Γ(1 − 𝛼)
= −𝜏−𝛼f (t), f (0) = f0,

where 𝜏 is a positive constant. Write the solution you obtained as an
H-function in computable form.

15 Using the computable form of the H-function, show that the solution:

f (t) =
f0

𝛼
H1,1

1,2

(
(t∕𝜏)|(0,1∕𝛼)(0,1∕𝛼),(0,1)

)
,

of the fractional relaxation equation:
C
0 D𝛼

t f (t) = − 1
𝜏𝛼

f (t), 0 < 𝛼 < 1, t > 0,

is the Mittag–Leffler function f (t) = f0E𝛼(−(t∕𝜏)𝛼).

16 Find the solution of the following fractional integral equation:

u(t) = u0t𝛼−1 − c𝜈0D−𝜈
t u(t), 𝜈 > 0, 𝜇 > 0.

17 Solution of the time fractional diffusion equation:

0D𝛼
t u(x, t) = D2

𝛼

𝜕2u(x, t)
𝜕x2 , t > 0, −∞ < x < ∞, 0 < 𝛼 < 1,

with the boundary conditions

lim
x→±∞

u(x, t) → 0 and 0D𝛼−1
t u(x, 0) = 𝜙(x),

can be written as

u(x, t) = ∫
∞

−∞
dx′𝜙(x′)G(x − x′),

where

G(x − x′) = 1
𝜋 ∫

∞

0
dkt𝛼−1H1,1

1,2

(
D2

𝛼k2t𝛼|(0,1)(0,1),(1−𝛼,𝛼)

)
cos k(x − x′).

Also show that

G(x − x′) = t𝛼−1√
𝜋|x − x′|H1,2

3,2

(
4D2

𝛼t𝛼|x − x′|2 |||||
(1∕2,1),(0,1),(0,1)

(0,1),(1−𝛼,𝛼)

)
.

18 Show that the solution of the time fractional diffusion equation:

C
0 D𝛼

t u(x, t) = D2
𝛼

𝜕2u(x, t)
𝜕x2 , t > 0, −∞ < x < ∞, 0 < 𝛼 < 1,
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with the boundary conditions

u(x, 0) = 𝛿(x) and lim
x→±∞

u(x, t) → 0,

can be given as

u(x, t) = 1
𝜋 ∫

∞

0
dk cos(kx)E𝛼(−D𝛼k2t2).

Also show that for 𝛼 = 1, this solution reduces to a Gaussian:

u(x, t) = 1√
4𝜋D𝛼t

e−(|x|2∕4D𝛼 t).

19 Both time and space fractional diffusion equation can be written as
C
0 D𝛼

t u(x, t) = D𝛼,qR𝛽
x u(x, t), 𝛼 ∈ (0, 1], 𝛽 ∈ (1, 2],

where Rq
x is the fractional Riesz derivative operator and D𝛼,q is the

fractional diffusion constant. Using the boundary conditions

u(x, 0) = 𝛿(x) and lim
x→±∞

u(x, t) = 0,

show that the general solution is given as

u(x, t) = 1√
𝜋|x|H1,2

3,2

(
D𝛼,qt𝛼

(
2|x|
)𝛽|||||

(1∕2,𝛽∕2),(0,1),(0,𝛽∕2)

(0,1),(0,𝛼)

)
.

20 Show that the following solution for the time and space fractional diffu-
sion equation:

u(x, t) = 1√
𝜋|x|H1,2

3,2

(
D𝛼,qt𝛼

(
2|x|
)𝛽|||||

(1∕2,𝛽∕2),(0,1),(0,𝛽∕2)

(0,1),(0,𝛼)

)
,

reproduces the expected results in the limits as 𝛼 → 1 and 𝛽 → 2.

21 (i) Verify the following solution given in Section 19.6.6 as the free par-
ticle solution of the time and space fractional Schrödinger equation:

Ψ(x, t) =
Ψ0

𝜋 ∫
+∞

0
cos kx H1,1

1,2

(
i𝛼
ℏ

Ď𝛼,𝛽ℏ
𝛽k𝛽t𝛼

||||(0,1)(0,1),(0,𝛼)

)
dk.

(ii) Evaluate the above integral to obtain

Ψ(x, t) =
Ψ0√
𝜋|x|H1,2

3,2

(
i𝛼
ℏ

Ď𝛼,𝛽ℏ
𝛽t𝛼
(

2|x|
)𝛽|||||

(1∕2,𝛽∕2),(0,1),(0,𝛽∕2)

(0,1),(0,𝛼)

)
and write the 𝛼 → 1 and 𝛽 → 2 limits of Ψ(x, t).
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(iii) Show that the 𝛼 → 1 limit of Ψ(x, t) could be expressed as

Ψ(x, t) =
𝜋Ψ0

𝛽|x|H1,1
2,2

(
1
ℏ

(
ℏ

iD𝛽t

)1∕𝛽|x||||||
(1,1∕𝛽),(1,1∕2)

(1,1),(1,1∕2)

)
.

22 Derive the following formula for the Caputo derivative:

dT(t)
dt

=C
0 D1−𝛼

t [C
0 D𝛼

t T(t)] +
[C

0 D𝛼
t T(t)

]
t=0

Γ(𝛼)t1−𝛼 .

23 Find the q → 2 limit of Eq. (19.208):

WL(x, t) = (Dqt)−1∕qLq

{(
1

Dqt

)1∕q|x|}

= 𝜋

q|x|H1,1
2,2

( |x|
(Dqt)1∕q

|||||
(1,1∕q),(1,1∕2)

(1,1),(1,1∕2)

)
.
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Index

a
Abel test 507
Abel’s formula 677
Abelian 259
Absolute convergence 496
Active and passive views 185
Active view 263
Addition of velocities 234
Addition theorem

spherical harmonics 296
Advanced Green’s functions 745
Algebra of vectors 176
Alternating series

Leibniz rule 503
Analytic continuation 389
Analytic functions

Cauchy–Riemann conditions 330
Anamolous diffusion

time fractional 800, 801
Angular momentum 127

factorization method 153
ladder operators 153
quantum mechanics 281

Angular momentum operator
matrix elements 289

Angular momentum operators
eigenvalues 287

Anomalous diffusion 785
Argument 328
Associated Laguerre polynomials 41,

46

generating function 48
harmonic oscillator 47
orthogonality and completeness 49
recursion relations 49
Rodriguez formula 49
weight function 49

Associated Legendre equation 4, 18,
20

Condon–Shortley phase 151
factorization method 148
ladder operators 151
recursion relation 19
second canonical form 148

Associated Legendre polynomials 20
integral representation 24
negative values of m 26
orthogonality and completeness 21
recursion relations 22

Associative rule 258
Asymptotic series 523

b
Bernoulli numbers 515
Bernoulli periodic function 516
Bernoulli polynomials

generating function 514
Bessel functions 83

linear independence 84
asymptotic forms 84
boundary conditions 91
channel waves
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Bessel functions (contd.)
tsunamis 92

factorization method 164
first kind 84
flexible chain 91
generating functions 88
integral definitions 89
integral represantation 413
modified Bessel functions 86
orthogonality and completeness 90
oscillating rod 96
recursion relations 89
roots 90
Schläfli definition 413
second kind 84
spherical 87
third kind 84
transformations 95
Wronskians 94

Bessel’s equation
Laplace transform 597

Beta function 401
gamma function 401

Binomial coefficients 403, 510
Binomial formula

relativistic energy 510
Binomial theorem 509
Bloch equation 761, 784

fractional 787
space fractional 810

Bohr energy levels 40
Boosts

Lorentz transformation 277
Boundary conditions

Dirichlet 121
general unmixed 121
Green’s functions 679, 702
Hermitian operators 122
inhomogeneous

Green’s functions 682
Neumann 121
single point

Green’s functions 680

Sturm–Liouville system 120
unmixed 121

Branch cut
Riemann sheet 339

Branch line 339
Branch point 339
Bromwich integral

inverse Laplace transform
Laplace transform 582

Brownian motion 483
diffusion equation 755
fractal dimension 783

Bulk modulus 198

c
Caputo derivative 469, 472

a useful relation 475
Laplace transform 472
Mittag–Leffler function 473
Riemann–Liouville 470
right- and left-handed 474

Cartesian coordinates 175
Cartesian tensors 189

contraction 190
pseudotensor

tensor density 191
rank 190
theory of elasticity 192
trace 190

Casimir effect 540
MEMS 542

Cauchy formula 432
Cauchy integral formula

fractional derivative 434
Cauchy integral theorem 374
Cauchy principal value 406
Cauchy root test 497
Cauchy theorem 376

convergence tests 499
Cauchy–Goursat theorem 373
Cauchy–Riemann conditions 330
Channel waves

Bessel functions 92
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Chebyshev equation 73
second kind 73

Chebyshev polynomials
first kind 73
Gegenbauer polynomials 73
generating function 74
orthogonality and completeness

75
second kind 73

another definition 75
Chebyshev series

Raabe test 501
Christoffel symbols

first kind 217
second kind 217

Commutation relations
angular momentum 282

Commutators 260
Completeness of eigenfunctions

309
Complex conjugate 328
Complex derivative 330
Complex functions 329
Complex numbers

argument 328
conjugate 328
modulus 328

Complex plane 328
Complex techniques

definite integrals 392
Component

contravariant 202
covariant 202

Composition rule 258
Compounding propogators 732
Conditional convergence 496

Abel test 507
Condon–Shortley phase 151

spherical harmonics 27
Confluent hypergeometric equation

108
Confluent hypergeometric functions

108, 109, 111

integral representation 109
Conformal mappings 348

electrostatics 349
fluid mechanics 352

Conjugate harmonic functions 332
Continuous groups

generators 312
Lie groups 258, 311

Continuous random walk
fractional derivatives 483

Contour integral
complex 373

Contour integral techniques 392
Contour integrals

special functions 410
Contraction of indices 214
Contravariant component 202

geometric interpretation 206
Controlled dynamics 638

control variables 639
controllability of a system 643
cost functional 641
general statement 640
inventory control model 644
payoff functional 641
Pontryagin’s minimum principle

643
rocket-problem 640
running payoff 641
state of the system 639
variational analysis 641

Convergence
absolute

conditional 496
Sturm–Liouville series 124

Convergence tests
Cauchy root test 497
comparison test 497
Gauss test 500
integral test 497
Raabe test 499
ratio test 497
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Convolution theorem
Fourier transforms 564
Laplace transforms 588

Covariance 229
Covariant component 202

geometric interpretation 206
Covariant divergence 219
Curl 219
Cut line 339
Cutoff function 540

d
d’Alembert operator 241, 247, 547,

741
wave operator 66

De Moivre’s formula 329
Derivative

n-fold 426
Derivative and integral

unification for integer orders 429
Diffaction

circular aperture 716
Differential equations

conversion to integral equations
656

extraordinary 463
Differentiation of vectors 178
Differintegrals

composition 444
CTRW

Brownian motion 483
dependence on the lower limit 452
differential equations 463
evaluation of definite integrals 466
examples 453
Fokker–Planck equation 487
heat transfer equation 461
homogeneity 443
Leibniz rule 450
linearity 443
properties 442
right and left-handed 450
scale transformation 443

semidifferential equations 464
series 443
special functions 469
techniques 459

Diffusion equation 423
Brownian motion

path integrals 755
Feynman-Kac formula 760
Fourier transforms 567
propagator

continuum case 734
discrete case 733

Digamma function 402, 457
gamma function 459

Dirac-Delta function 557
Direction cosines 179
Discrete Fourier transform

conventions 572
inverse 573
reciprocity theorem 575
uniqueness 575

Divergence 219
Divergent series 540

Casimir effect 540
cutoff function 540
quantum vacuum energy 542
regularization 541
renormalization 541

Doppler shift 240
Dot product 176
Double factorial 420
Drag force 615
Drichlet condition

Bessel functions 91
Dual field strength tensor 245

e
Eigenvalue problems

Green’s functions 684
Einstein model 66
Einstein summation convention 214
Elastic beam

deformation 620
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Electrostatics
Green’s functions 710

Entire function 331, 386
Equivalent representations 279
ESKC relation 757
Essential singular point 385
Euler angles 183
Euler constant 402

digamma function 457
Euler equation 608

another form 610
Euler’s theorem 261
Euler-Maclaurin sum formula 516
Euler-Masheroni constant 545
Expansion theorem 124

eigenfunctions 310
Extension

prolongation
generators 316

f
Factorization method

associated Legendre equation
148

Bessel functions 164
Gegenbauer polynomials 162
harmonic oscillator 165
rotation matrix 166
single electron atom 160
solutions 141
spherical harmonics 151
Sturm–Liouville equation 135
symmetric top problem 163
technique and categories 143
theory 136

Fast Fourier transform 576
Feynman path integral

momentum space 780
quadratic momentum 781
Schrödinger equation 776

Feynman path integrals
Lévy paths 810

Feynman propagator 779

Feynman–Kac formula 761, 784
derivation 763

Feynman-Kac theorem 778
Fick’s equation 424
Field strength tensor 244
First canonical form

self-adjoint differential operator
120

Flexible chain
Bessel’s equation 81

flexible chain
Bessel functions 91

Flow around an obstacle
conformal mappings 353

Fokker–Planck equation
fractional derivatives 487

Four-momentum
conservation 238

Four-scalars 236
Four-tensors 234
Four-vector space 307
Four-vectors 236
Four-velocity 237
Fourier integral 555
Fourier transform

Riesz derivative 785
Fourier transforms 554, 557

asymetric convention 560
conventions 560
convolution theorem 564
cosine transform 558
diffusion equation 567
existence 565
linearity 560
modulation 561
Parceval theorems 566
partial differential equations 563
scaling 561
shifting 561
sine transform 558
three dimensions 565
transform of a derivative 563
transform of an integral 561
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Fourier–Bessel transform 554
Fourier-cosine transform 554, 558
Fourier-sine transform 554, 558
Fox’s H-function 786

applications 797
computable form 796
definition 788
differintegral 789
examples 792
Fourier-cosine transform 791
Fourier-sine transform 790
fractional relaxation 799
Laplace transform 790
Leévy distribution 787
Mittag-Leffler function 793
properties 789
time fractional diffusion

Caputo derivative 801
R-L derivative 800

useful relations 791
Fractal dimension

Brownian motion 783
Lévy distribution 787

Fractional derivatives
Cauchy integral formula 434
Grünwald definition

differintegrals 429
Laplace transforms 440
Riemann formula 439
Riemann–Liouville definition 431

Fractional diffusion constant 785
Fractional diffusion equation 785

Bloch equation 787
Feynman-Kac formula 787
Lévy distribution 786
Lévy process 787
Riesz derivative 785

Fractional Euler equation 814
Fractional Laplacian 482
Fractional relaxation 482, 799
Fractional Schrödinger equation 807

free particle solution 808
Fredholm equation 654

Frobenius method 7
inditial equation 7

Function spaces
Hilbert space 308

Fundamental tensor 204

g
Galilean transformation 247
Gamma function 399, 523

analytic continuation 404
binomial coefficients 403
infinite product 545
integral represantation 415
inverse 401
residues 405

Gauss equation
special functions 107

Gauss test 500
Gaussian curvature 228
Gegenbauer equation

another representation 69
cosmology 65
factorization method 162
polynomial solutions 68
second solution 70
series solution 67

Gegenbauer polynomials 68
Chebyshev polynomials 73
generating function 69
normalization constant 72
orthogonality and completeness 68

Generalized Fourier series
completeness 125

Generalized Mittag–Leffler function
H-function representation 794

Generating function
associated Laguerre polynomials

48
Bessel functions 88
Chebyshev polynomials 74
Gegenbauer polynomials 69
Hermite polynomials 56
Laguerre polynomials 42



Index 833

Legendre polynomials 10
Generators

commutation relations 261
continuous groups

Lie groups 312
extension

prolongation 316
normal form 314
R(3) 261, 263
transformations 312

Geodesics 229
Grünwald 429
Gradient 219
Gram–Schmidt orthogonalization

Sturm–Liouville operator 123
Green’s functions 2, 705

advanced and retarded 743
anharmonic oscillator 726
another approach 697
boundary conditions 675, 679

single point 680
compounding propagators 732
construction 677
continuum limit 705
defining equation 679
degenerate perturbation theory

time independent 728
differential equation 679

integral equations 676
diffraction problem 716
diffusion problem

discrete case 733
Dirac-delta function 686
eigenfunction expansions 684
first-order time dependent 729
general boundary conditions 710
harmonic oscillator 694
Helmholtz equation 687, 705

all space 688
spherical coordinates 712
three-dimensional 701

inhomogeneous boundary
conditions 682

Laplace operator 704
Lippmann–Schwinger equation

710
one-dimensional 675
point source 732
propagators 732
Schrödinger’s equation 708
second solution 700
second-order time dependent 738
three-dimensional

continuum limit 702
time independent perturbation

721
Group

definition 258
terminology 258

Group invariants 264
Group representations 279

R(3) 281
SU(2) 302

Group spaces 306
Group theory

group character 280
invariants 264
Lorentz group 266, 274
Poincare group 275

h
Hölder inequality 505
Hamilton’s principle 626
Hankel functions 84
Hankel transform 554
Harmonic functions 332
Harmonic oscillator

factorization method 165
Green’s functions 694
Laplace transforms 595
quantum mechanical

Hermite polynomials 53
three dimensional 47, 52

Harmonic series 496
Heat transfer equation

differintegrals 461
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Helmholtz equation 2
continuum limit 688
Green’s functions 687
three dimensions 701

Hermite equation 54, 55
essential singularity 54

Hermite polynomials 55
contour integral 417
dipoles 59
generating function 56
harmonic oscillator 53
orthogonality and completeness

57
recursion relations 57
Rodriguez formula 56

Hermitian operators
boundary conditions 122
eigenfunctions 122
eigenvalues 122
orthogonality and completeness

123
quantum mechanics 127
Sturm–Liouville operator 121

Hilbert space
function spaces 308
inner product 129
quantum mechanics 310

Hilbert–Schmidt theory 665
completeness of eigenfunctions

667
eigenvalues 665
nonhermitian operators 672
orthogonality 666

Homogeneous Lorentz group 274
Hook’s law

theory of elasticity 200
Hypergeometric equation 103

Euler transformations 107
Kummer solutions 107
series solution 103

Hypergeometric functions 103, 110
integral representation 107
reduction of parameters 113

special functions 107
hypergeometric functions

Pochhammer symbols 109

i
Improper transformations 182
Incomplete beta function 403
Incomplete gamma function 403
Indicial equation 7

double root 41
roots 7

Infinite products 542
cosine function 545
gamma function 545
sine function 544

Infinite series
convergence 495

Infinitesimal ring
Lie algebra 259

Infinitesimal transformations
orthogonal transformations 186

Inhomogeneous Lorentz group 274
Inner product

Hilbert space 129
Inner product space 307
Integral

n-fold 427
Integral equations

Born approximation 671
Cauchy formula 655
classification 654
differential equations 654
eigenvalue problems

Hilbert–Schmidt theory 665
Fourier transform method 663
Fredholm equation 654
Green’s functions 676
homogeneous 654
Laplace transform method 664
methods of solution

Neumann series 659
separable kernels 661
via integral transforms 663
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Neumann sequence 659
Neumann series 659, 668
nonhermitian kernels 672
Volterra equation 654

Integral test 497
Integral transforms 2, 553

Fourier transforms 554
Fourier-cosine 554
Fourier-sine 554
Hankel transform

Fourier–Bessel transform 554
integral equations 663
kernel 553
Laplace transforms 554
Mellin transform 555
relations 601

Invariance 229
Inventory control model 644
Inverse element 258
Inverse Fourier transform 557
Inverse Laplace transform

Bromwich integral 582
Lerch theorem 582

Inversion of power series 513
Irreducible representation 279
Isolated singular point 331, 385
Isomorphism 271
Isoperimetric problems 622

j
Jacobi polynomials 38

contour integral 419
rotation matrix 300

Jacobian of transformation 215
Jordan’s lemma 397

k
Kronecker delta 191
Kummer formula 115
Kummer solutions

hypergeometric equation 107

l
Lévy distribution 786

derivation 803
Fox’s H-function 786

Lévy measure 787
Lévy paths

Feynman path integrals 810
Ladder operators

angular momentum 153
rotation matrix 166
spherical harmonics 159
step-up/-down operators 136

Lagrangian
Euler–Lagrange equations 626

Lagrangian density 627
Laguerre equation 41

indicial equation 41
series solution 41

Laguerre polynomials 42
contour integral 411
generating function 42
integral represantation 411
orthogonality and completeness 44
recursion relations 45
Rodriguez formula 43
special values 46
weight function 45

Laguerre series 41
Lame coefficients 197
Laplace equation 1

cylindrical coordinates 83
variational analysis 618

Laplace transforms 554, 581
basic 583
Bessel’s equation 597
convolution theorem 588
damped oscillator 595
definite integrals 592
derivatives 593
differintegrals 459
electromagnetic waves 596
Fourier transforms

Mellin transforms 601
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Laplace transforms (contd.)
fractional derivatives 440
inverse 581

Bromwich integral 582
n dimensions 600
partial fractions 591
theorems 584

Laplacian
covariant 220

Laurent series 379
short cut 385

Legendre equation 4
factorization method 148
indicial equation 5
recursion relation 5
series solution 5

Legendre polynomials 9
asymptotic forms 17
dipoles 13
generating function 10
integral represantation 410
normalization 15
orthogonality and completeness

14, 16
recursion relation 12
Rodriguez formula 10
Schläfli definition 410
special integrals 13
special values 12

Legendre series 6
convergence

Gauss test 500
Leibnitz rule 70
Leibniz formula 15
Leibniz rule 450, 467, 468

integral form 467
summation form 468

Letnikov 429
Levi-Civita symbol 191
Lie algebra

generators of SU(2)
differential 273

group

differential operators 263
infinitesimal ring 259
rotation group R(3) 260
SU(2) 270

Lie groups
continuous groups 258

Line element 204, 231
Linear differential operators 119
Linear independence

Wronskian 37
Loaded cable 632
Lorentz contraction

length contraction 233
Lorentz group

commutation relations 277
generators 277
homogeneous

inhomogeneous 274
Lorentz transformation 231

boost 277
group invariants 266
orientation of axis 241

m
M-test

Weierstrass M-test 507
Maclaurin series 509
Mappings 334

conformal 348
inversion 335, 336
many-to-one 338
one-to-one 337
one-to-two 339
rotation 334
Schwarz–Christoffel 358
translation 334
two-to-one 337

Maxwell’s equations 244
potentials 246
transformations 246

Mean square displacement 424
Mellin transforms 601
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MEMS
Casimir effect 542

Metric tensor 204
covariant derivative 219

Minkowski metric 235
Minkowski spacetime 230
Minkowski’s inequality 505
Mittag–Leffler function 463

Caputo derivative 473, 814
generalized 486
H-function representation 793
Laplace transform 486

Mittag-Leffler theorem
infinite products 544

Modified Bessel functions 86
asymptotic forms 86

Modulus 328
Multipole expansion 299

n
Neumann condition

Bessel functions 91
Neumann function 84
Neumann sequence 659
Neumann series

convergence 659
error calculation 661
Sturm–Liouville system 668

Newton’s bucket
Euler equation 614

Newton’s equations
covariant 248

Non-Hermitian kernels
Hilbert–Schmidt theory 672

Nondegenerate perturbation theory
time independent 721

Normal form
generators 314

o
Optimum control theory 637

controlled dynamics 638

Orthogonal transformations 179,
182, 258

Orthogonality and completeness
associated Laguerre polynomials

49
associated Legendre polynomials

21
Bessel functions 90
Chebyshev polynomials 74
Gegenbauer polynomials 68
Hermite polynomials 57
Hermitian operators 123
Laguerre polynomials 44
Legendre polynomials 14

Oscillating rod
Bessel functions 96

Outer product 190, 214

p
Padé approximants 535
Parallel transport 222
Parceval theorems 566
Partial fractions

Laplace transforms 591
Partial sum 495
Path integrals

Bloch formula 761
interpretation 765

ESKC relation 757, 770
Feynman path integral 776
Feynman phase space integral 780
Feynman-Kac formula 760
finite elements method 771
methods of calculation 767
Schrödinger equation 778
semiclassical method 772
time slice method 769
Wiener path integral 757

Pauli spin matrices 269
Permutation symbol 215
Pinned Wiener measure 758
Pochhammer symbol 109
Poincare group 274
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Point groups 311
Point source initial condition

Green’s functions 732
Poisson equation 1

Green’s functions 708
Poisson’s ratio 199
Pontryagin’s minimum principle

643
Power series 511

continuity 512
convergence 512
differentiation 512
integration 512
inversion 513
uniqueness 513

Prolongation
extension

generators 316
Propagators 732
Proper time 237, 238
Proper transformations 182
Pseudo-Euclidean 231
Pseudotensor 191

q
Quantum mechanics

Hermitian operators 127
Quantum Riesz derivative 809
Quotient theorem 215

r
R(3) and SU(2) 303
Raabe test 499
Radius of convergence 511
Radon transform 578

filtered back projection 581
projection-slice theorem 579

Rank 190
Ratio test 497
Rayleigh–Ritz method

variational integrals 632
Real spherical harmonics 33
Recursion relation

associated Laguerre polynomials
49

Bessel functions 89
Hermite polynomials 57
Laguerre polynomials 45
Legendre polynomials 12

Reducible representation 279
Regular singular point

Frobenius method 7
Regularization

renormalization 540
Relativistic energy

binomial formula 510
Relativistic mass 240
Renormalization 540
Representation space 279
Residue theorem 386
Rest mass 238
Retarded Green’s functions 745
Ricci tensor 226
Riemann curvature scalar 221, 228
Riemann curvature tensor 220, 222,

225
n dimensions 227

Riemann formula 439, 440
Riemann sheets

branch cuts 339
Riemann theorem 504
Riemann zeta function 498
Riemann–Liouville derivative 431,

472
Laplace transform 472

Riesz derivative 481, 785
fractional Laplacian 482

Riesz fractional integral 477, 480
Riesz potential 480
Right-/left-handed differintegrals 450
Rodriguez formula

associated Laguerre polynomials
49

Hermite polynomials 56
Laguerre polynomials 43
Legendre polynomials 10
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Rotation group 258
representation 281

spherical harmonics 281
Rotation matrix

differential equation 166, 293
evaluation 292
inverse 292
Jacobi polynomials 300
ladder operators 166
orthogonal transformations 183
spherical harmonics 290

Rotation operator
Euler angles 283

s
Saddle-point integrals 528
Scalar wave equation 741
Schläfli definition 410

Bessel functions 413
Legendre polynomials 410

Schrödinger equation 2, 39
Bohr energy levels 40
bound states 708
factorization method

single electron atom 160
Feynman path integral 778
Green’s function 738
harmonic oscillator

Hermite polynomials 53
propagator

free particle 738
separation of variables 3
single-electron atom models 40

Schur’s lemma 279
Schwartz inequality 129
Schwarz–Cauchy inequality 505
Schwarz–Christoffel transformations

358, 360
fringe effects 361

Second canonical form
Sturm–Liouville operator 134

Sectoral harmonics 33
Self-adjoint differential operator 119

Semi-infinite parallel plate capacitor
fringe effects 361

Semi-integrals 459
Semiderivatives 459
Semidifferential equations 464
Separation constant 3
Separation of variables 2, 4
Series

algebra 503
inequalities 505
rearrangement 505

Series of functions 506
Sheer 196
Similarity transformations 186
Simple pole 386
Singular points

classification 385
entire function 386
essential 385
isolated 385
order 385
simple pole 386

Soap film 611
Space fractional Schrödinger equation

809
Spacetime 230

derivatives 241
Special functions

contour integrals 410
differintegral representations 469
hypergeometric functions 107

Special Linear group 259
Special orthogonal group 259
Special relativity

postulates 232
Special unitary group 259

SU(2) 269
Spherical Bessel functions 87

asymptotic forms 88
Spherical Hankel functions 421

contour integral 419
Spherical harmonics 27, 281

addition theorem 30, 296
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Spherical harmonics (contd.)
Condon-Shortley phase 27
expansions 287
factorization method 151
Gegenbauer polynomials 66
ladder operators 151, 159
orthogonality 28
sectoral harmonics 33
sum rule 32
tesseral 33
zonal harmonics 33

Spinor space
SU(2) 306

Steepest descent 526
Step-up/-down operators

ladder operators 136
Stirling numbers 403
Stirling’s approximation 420
Strain 196
Strain tensor 192, 196
Stress

hydrostatic pressure 196
Stress tensor 193, 196, 197

force 193
torque 194

Stress–strain relation 194
Structure constants 260
Sturm–Liouville operator

completeness 124
expansion theorem 124
first canonical form 120

Sturm–Liouville equation 120
generalized Fourier series 125
Gram–Schmidt orthogonalization

123
Green’s functions 675
Hermitian operators 121
second canonical form 134
weight function 123

Sturm–Liouville series
convergence 124

Sturm–Liouville system
boundary conditions 120

variational integral 628
SU(2)

generators 270, 271
commutation relations 271
differential 273

irreducible representation 302
relation to R(3) 303
spinor space 306

Summation convention
Einstein 214

Summation of series 514
Euler-Maclaurin sum formula 516
using differintegrals 468, 523
using the residue theorem 519

Symmetric top
factorization method 163

Symmetries
differential equations 318

t
Taylor series 378

remainder 509
with multiple variables 510
with the remainder 508

Tensor density 191, 215
pseudotensor 191

Tensors
Cartesian 189
covariant divergence 219
covariant gradiant 219
curl 219
differentiation 216
equality 215
general 201
Laplacian 220
some covariant derivatives 219

Tesseral harmonics 33
Theory of elasticity

bulk modulus 198
Hook’s law 200
Lame coefficients 197
Poisso’s ratio 199
sheer modulus 198
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strain tensor 192
stress tensor 193
stress–strain relation 194
thermodynamics 194
Young modulus 198

Thermodynamics
Theory of elasticity 194

Time dilation 233
Time fractional diffusion 486
Time fractional Schrödinger equation

812
separable solutions 812

Trace 190
Triangle inequality 129
Trigonometric Fourier series 555

generalized Fourier series 126

u
Uniform convergence 506

M-test 507
properties 508

Unit element 258
Unitary group 259

Hermitian conjugate 268
inner product 267
U(2) 267

Unitary representations 280
Unpinned Wiener measure 759

v
Variational integrals

drag force 615
eigenvalue problems 628
elastic beam 620
Euler equation 608
Euler–Poisson equation 621
freely hanging wire 625
geodesics 610
Hamilton’s principle 626
Lagrangian 626
Lagrangian density 627
Laplace equation 618
loaded cable 632

Newton’s bucket 614
presence of constraints 622
several dependent variables 617,

619
several independent variables 618
soap film 611
Sturm–Liouville equation 628
upper bound to eigenvalues 630
with higher-order derivatives 619

Vector product 177
Vector spaces

complex 308
inner product 307
Minkowski 307
real 306

Volterra equation 654

w
Wallis’ formula 545
Wave four-vector 240
Weierstrass function 555
Weierstrass M-test 507
Weierstrass-type function 555
Weight function

Laguerre polynomials 45, 49
Weight of a tensor 215
Weyl fractional integral 451
Wiener measure

pinned 758
unpinned 759

Wiener path integral
Brownian motion 757

Worldline 237
Wronskian 70

Bessel functions 94
linear independence 37

x
Young modulus 198

z
Zonal harmonics 33


