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Preface

Cancer is a highly complex disease that is often characterized by vast changes in the genetic
and epigenetic landscape. Those changes result in altered protein expression levels in tumors
compared to healthy tissues. Moreover, posttranscriptional alterations lead to deregulation
of signaling processes, and altered metabolic pathways can produce aberrant metabolic
signatures in cancer cells.

A wealth of high-throughput information has emerged over the last decade, including
global measurements of genes, proteins, and metabolites, as well as many other molecular
species. Those studies provide a glimpse of the molecular makeup of cancer cells on various
levels. In order to classify tumor types and predict clinical outcomes of cancer, researchers
often employ sophisticated computational tools to extract cancer-specific events from the
excessive amounts of data that have been compiled.

This volume on “Cancer Systems Biology” comprises protocols, which describe systems
biology methodologies and computational tools, offering a variety of ways to analyze
different types of high-throughput cancer data. Those include for example network- and
pathway-based analyses. Other chapters cover descriptive and predictive mathematical mod-
els used to analyze complex cancer phenotypes and responses to anticancer drugs.

A number of chapters give an overview of data types available in large-scale data
repositories, describe state-of-the-art computational methods used, and highlight key
trends in the field of cancer systems biology.

Copenhagen, Denmark Louise von Stechow
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Systems Biology of the Cancer Genetic and Epigenetic
Landscape



Chapter 1

Detection of Combinatorial Mutational Patterns in Human
Cancer Genomes by Exclusivity Analysis

Hua Tan and Xiaobo Zhou

Abstract

Cancer genes may tend to mutate in a co-mutational or mutually exclusive manner in a tumor sample of a
specific cancer, which constitute two known combinatorial mutational patterns for a given gene set.
Previous studies have established that genes functioning in different signaling pathways can mutate in the
same sample, i.e., a tumor from one patient, while genes operating in the same pathway are rarely mutated
in the same cancer genome. Therefore, reliable identification of combinatorial mutational patterns of
candidate cancer genes has important ramifications in inferring signaling network modules in a particular
cancer type. While algorithms for discovering mutated driver pathways based on mutual exclusivity of
mutations in cancer genes have been proposed, a systematic pipeline for identifying both co-mutational and
mutually exclusive patterns with rational significance estimation is still lacking. Here, we describe a reliable
framework with detailed procedures to simultaneously explore both combinatorial mutational patterns
from public cross-sectional gene mutation data.

Key words Cancer genomics, Co-mutation,Mutual exclusivity, Signaling pathway,Hypergeometric test

1 Introduction

Genetic aberrations and deleterious environment exposure orches-
trate to govern the development of various human diseases includ-
ing cancer [1–7]. In particular, somatic driver mutations
accumulating in the human genome are largely recognized as the
culprit of human cancer initiation/progression [1, 2, 4]. While
numerous somatic mutations can be detected in a single tumor,
the mutations are distributed across the genome in a cancer-specific
and sample-specific manner [4, 5, 8, 9]. The cancer-specific prop-
erty refers to the scenario that mutational pattern varies between
different cancer tissue types, e.g., liver, lung and breast cancers;
while the sample-specific sense corresponds to the mutational vari-
ety between different patient samples with the same cancer type.
For a specified cancer type, some genes are altered commonly across
patient samples, while others exemplify apparent sample-specificity

Louise von Stechow (ed.), Cancer Systems Biology: Methods and Protocols, Methods in Molecular Biology, vol. 1711,
https://doi.org/10.1007/978-1-4939-7493-1_1, © Springer Science+Business Media, LLC 2018
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[5]. Previous experimental and statistical analyses have consistently
revealed two combinatorial mutational patterns for a given set of
genes, termed co-mutational and mutually exclusive patterns
[5, 8–10]. As shown in Fig. 1, the co-mutational pattern occurs
when a set of genes tend to mutate simultaneously in a single
tumor, while the mutually exclusive pattern refers to the scenario
in which one and only one of a set of genes is likely to be altered in a
tumor.

Mutually exclusive genes are likely to function in the same
signaling pathway, whereas co-mutational genes are likely to take
effect in different pathways [11]. Combinatorial patterns of genes
can be leveraged to infer signaling networks implicated in human
cancer development and progression. Indeed, many efforts have
been devoted to de novo discover novel driver pathways based on
mutual exclusivity of gene mutations [11–13]. Therefore, it has
essential biological relevance to identify gene pairs or gene sets with
significant combinatorial mutational patterns.

Previous work proposed a statistical method to deal with this
question and nominated a number of gene sets with significant
combinatorial patterns [10]. However, this analysis was performed
on a batch of very limited cell line data. The analysis thus lacks an
elaborate procedure to preprocess data from a giant mutation
database which consists of a large number of clinical samples of
various cancer types (e.g., the recently released Catalog of Somatic
Mutations in Cancer—COSMIC [14] and the Cancer Genome
Atlas—TCGA, https://tcga-data.nci.nih.gov/tcga/). In addition,
the analysis by Yeang et al. adopted different hypothesis tests to
estimate the significance levels of the two combinatorial mutational
patterns, which tend to yield a too conservative p-value for the
co-mutational pattern [10].

To address these issues, we here describe a systematic and reliable
pipeline to identify both combinatorial mutational patterns in cancer
genomes. Here, somatic mutations exclude the synonymous point

Tumor Samples

Gene 1

Gene 2

Gene 1

Gene 2

Co-mutational 
pattern

Mutually exclusive 
pattern

Mutant Wild type

Fig. 1 Schematic representation of two combinatorial mutational patterns studied in this protocol: the
co-mutational pattern (upper panel) refers to the scenario that a set of genes tends to mutate simultaneously
in a tumor sample, whereas the mutually exclusive pattern (lower panel) represents the opposite scenario:
genes in a given set tend to avoid mutating simultaneously in any one tumor sample

4 Hua Tan and Xiaobo Zhou
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mutations which will not change an amino acid (marked as “coding
silent” in COSMIC). Those mutations typically have little, if any,
impact on the biological function of corresponding proteins and are
uninformative for signaling pathway inference [11, 15]. Other types
of mutations, such as missense and nonsense point mutations, small
insertions and deletions, frame shifts, gene fusions, and transloca-
tions, etc., could be counted as effective mutations when performing
exclusivity analysis. Furthermore, the mutations should be detected
based on genome-wide or exome-wide screening efforts ensuring
that all protein-coding genes were covered, to minimize the statisti-
cal bias induced by incomplete sample coverage.

The step-by-step procedure for data acquisition and criteria of
data quality control, as well as the specific formulae used to calcu-
late the likelihood ratio (LR) and significance level (p-value), are
elucidated in the following sections. Figure 2 illustrates the overall
procedures of this pipeline for mutational pattern determination.

Mutat�on 
records in 
database

Quality control

Preprocessing

Calculate 
likelihood rat�o

Calculate 
signif�cance 

level

Determine 
mutat�onal pa�ern

For Inferring 
signaling 
network

Fig. 2 Schematic of the overall pipeline proposed in this protocol. The specific
steps of text processing, computation, and visualization are provided in
Subheading 3

Combinatorial Mutational Patterns in Human Cancers 5



This pipeline has been shown to be highly effective and efficient in
identifying mutational patterns of gene pairs in cancer mutation
data from COSMIC v68, as described in our earlier publication
[5]. We recently applied this pipeline to analyze the data from the
latest COSMIC release (version 76), which has been threefold
expanded since the release of v68, and well recapitulated and sig-
nificantly improved the previous results (data not shown). How-
ever, our previous efforts were mainly devoted to the biological
discoveries instead of technical details of the analysis. In this proto-
col, we address this gap by providing extensive practical details and
highlighting alterative solutions when encountering problems in
the users’ particular applications.

2 Materials

The pipeline proposed in this protocol has been successfully tested
in the Catalog of Somatic Mutations in Cancer (COSMIC, release
v68 and v76). Therefore, the procedures described in the below
section will be mainly based on the COSMIC database. However, it
is noteworthy that this protocol is applicable to other databases
such as TCGA that contain information of both gene mutation and
associated patient sample IDs. Synonymous mutations and muta-
tions that are not from a genome-wide or exome-wide study should
be excluded prior to further analysis. All the text processing,
subsequent computation, and visualization can be implemented in
Matlab (TheMathWorks, Inc.), as described previously [5], or in R
[16], another popular language for data analysis and graphics.

3 Methods

3.1 Data Quality

Control

and Preprocessing

of COSMIC Mutation

Entries

1. Extract mutations of a designated cancer type from the mixed
mutation records in COSMIC by the keyword “Primary site”
(see Note 1).

2. Remove synonymous mutations by the keyword “Substitution-
coding silent” (see Note 1).

3. Remove mutation records that are not from a genome-wide
study by the keyword “genome-wide screen” (see Note 1).

4. Generate a gene mutation pattern matrix based on the muta-
tions and sample IDs. The rows and columns of the matrix refer
to samples and genes, respectively. The entry at row i and
column j of the matrix refers to the number of mutations
occurring on gene j in tumor sample i. Figure 3 highlights an
example showing the 9th tumor sample has a mutation on gene
2 by marking the coordinate (9,2) (see Note 2).

6 Hua Tan and Xiaobo Zhou



3.2 Calculation

of Likelihood

of Co-occurrence

of Mutant Genes

1. Exclude genes (columns) that do not exceed a prescribed
threshold of sample coverage. As shown in Fig. 3a, b, if the
percentage of nonzero entries in a column is lower than a
threshold, then delete this column (see Note 3).

2. Remove samples (rows) that do not harbor any mutations
across the remaining genes, as shown in Fig. 3b, c.

3. Calculate the likelihood ratio LRcomb of co-occurrence for each
gene pair by the formula (1):

LRcomb ¼ P g1 ¼ 1; g2 ¼ 1ð Þ
P g1 ¼ 1ð ÞP g2 ¼ 1ð Þ ð1Þ

where P(g1 ¼ 1) and P(g1 ¼ 1, g2 ¼ 1) correspond to the
percentage of samples in which a single gene or both the genes
are mutated, respectively.

4. Determine the threshold of the likelihood ratio (LRcomb) for
pattern categorization based on a mixture Gaussian distribu-
tion fitting model using an Expectation-Maximization algo-
rithm [17]. Specifically, suppose m1, m2 are the means of the
low and high components of all LRcomb’s, and δ1, δ2 their
standard deviations respectively. Then the thresholds for the
co-mutational pattern (lower bound) and exclusive pattern
(upper bound) are calculated as θ1 ¼ m2 � δ2/2 and
θ2 ¼ m1 + δ1/2, respectively (see Note 4).

1       2      3      4       5       6      7       8      9     10 1       2      4       7      8      9     10 1       2      4       7      8       9     10 
12

  1
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  5
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2 

   
1

(9,2) (9,2)

A B C

Mutant Wild type

Fig. 3 Schematic depicting the mutation pattern matrix and entry filtering criteria. (a) A mutation pattern matrix
is generated to represent the mutation profiles of the tumor samples across all genes. A gray grid indicates the
corresponding sample has at least one mutation on the gene specified by the column ID. (b) Columns 3, 5, and
6 are deleted since the associated genes are mutated in only a small fraction of samples (the threshold of
fraction can be prescribed). (c) Row 11 is deleted as the corresponding sample has no mutation in the
remaining genes after the processing in (b)
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3.3 Calculation

of Significance

of Combinatorial

Mutational Patterns

1. Calculate the significance level of the co-mutational pattern Pco

by the hypergeometric test as the formula (2):

P co ¼
Xn2

k¼n12

n1

k

� �
n � n1

n2 � k

� �
=

n
n2

� �
ð2Þ

where n, n1, n2, n12 represent the numbers of total samples,
samples harboring gene 1 mutation, samples harboring gene
2 mutation, and samples harboring both gene 1 and gene
2 mutations, respectively.

2. Calculate the significance level of the mutually exclusive pattern
Pexcl by formula (3):

Pexcl ¼
Xn12

k¼0

n1

k

� �
n � n1

n2 � k

� �
=

n
n2

� �
ð3Þ

where n, n1, n2, n12 are defined as in the formula of Pco above.

4 Interpretation of the Results

Both co-mutational and mutually exclusive patterns of gene pairs
have biological meaning implicated in signaling network inference.
For the co-mutational pattern, genes are likely to function in
different signaling pathways and exert synergistic impact on
tumor progression. Therefore, multiple oncogenic pathways
driving the tumorigenesis for a particular cancer type could be
identified by analyzing these co-mutational patterns. For the exclu-
sive pattern, more insights could be obtained. In particular, affilia-
tion of genes to a signaling pathway can be inferred from a list of
gene pairs with exclusive pattern. For example, if A-B, B-C, and
C-A are all exclusive gene pairs, then it is reasonable to conclude
that genes A, B, and C are likely to operate in the same signaling
pathway for the particular cancer type in question. When the whole
list of gene pairs is visualized in one graph, as shown in the bottom
of Fig. 2 (by Cytoscape [18]), a signaling network can emerge.
However, this preliminary signaling network subjects to modifica-
tion based on prior knowledge about gene-gene/protein-protein
interactions and experimental evidence for real applications (see
Note 5). To conclude, the exclusive patterns can be used to infer
a specific cancer-associated signaling pathway, while the
co-mutational patterns can assist in exploring whether multiple
oncogenic pathways were involved, as described in our previous
work [5] and references therein.
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5 Notes

1. If combinatorial mutational pattern analysis needs to be con-
ducted on tumor subtypes instead of tissue types, the keyword
“Site subtype” can be used to further divide mutations into
smaller groups of subtypes. For TCGA data, since genomic and
epigenomic data are deposited separately for different cancer
types, the mutation data for a cancer type of interest can be
downloaded directly from the TCGAweb site by choosing level
2 MAF (Mutation Annotation Format) file. Also, the informa-
tion of amino acid change corresponding to nucleotide alter-
ation is not available in TCGA, step 2 (Subheading 3.1, which
aims at removing the coding silent mutations) can be skipped.
Since all the mutation data in TCGA are based on exome-wide
sequencing, therefore, it is no necessary to implement the
screening procedure specified in step 3 (Subheading 3.1).

2. When generating the gene mutation pattern matrix, the muta-
tions counted for each gene could be restricted to particular
mutation types such as missense point mutations or gene
fusions, depending on the biological question to be answered
and the working model hypothesis to be tested.

3. The threshold of sample coverage used to exclude the less
frequently mutated genes can be adjusted according to the
sample size and/or gene set size, to yield a reasonable number
of combinations of genes. In our previous practices, the thresh-
old sample coverage was set to 2–10%.

4. When determining the thresholds for mutational pattern cate-
gorization, the mixture Gaussian model based on the
Expectation-Maximization algorithm sometimes can produce
inconsistent outcomes over technical replicates. This is largely
due to the stochastic properties implicated in the EM (Expec-
tation Maximization) optimization procedure. A reliable alter-
native is to simply use LRcomb ¼ 1 to divide candidate gene
pairs into two groups, with LRcomb < 1 referring to exclusive
pattern and the remainder co-mutational pattern. Then rank
the pairs in each group according to P values. After that, select a
reasonable number (e.g., 20–30) of the top-ranked significant
gene pairs in respective groups.

5. Although the pipeline is applied to gene pairs, sets of genes
with particular combinatorial patterns could emerge by inte-
grating gene pairs of corresponding patterns. Thus, the pipe-
line introduced in this protocol can serve as a starting point for
inferring signaling network modules in particular cancers.

Combinatorial Mutational Patterns in Human Cancers 9
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Chapter 2

Discovering Altered Regulation and Signaling Through
Network-based Integration of Transcriptomic, Epigenomic,
and Proteomic Tumor Data

Amanda J. Kedaigle and Ernest Fraenkel

Abstract

With the extraordinary rise in available biological data, biologists and clinicians need unbiased tools for data
integration in order to reach accurate, succinct conclusions. Network biology provides one such method for
high-throughput data integration, but comes with its own set of algorithmic problems and needed
expertise. We provide a step-by-step guide for using Omics Integrator, a software package designed for
the integration of transcriptomic, epigenomic, and proteomic data. Omics Integrator can be found at
http://fraenkel.mit.edu/omicsintegrator.

Key words Data integration, Network biology, Computational biology, High-throughput data

1 Introduction

As biologists gain access to increasing amounts of data, the chal-
lenges associated with interpreting those data have increased. Biol-
ogists and clinicians can obtain high-throughput information about
a cell’s genome, transcriptome, epigenome, and proteome with
reasonable effort and constantly decreasing costs. Indeed, much
of those data are freely available to scientists through resources such
as The Cancer Genome Atlas [1] and ENCODE [2]. The challenge
remains, however, in knowing how to interpret those rich datasets.
These “omic” data can be extraordinarily valuable. However, this
value can only be extracted if data are properly analyzed using
methods that account for the relatively high error rate of high-
throughput experiments [3], and then condensed into understand-
able and actionable hypotheses about the underlying biology. This
process can be especially difficult, and especially rewarding, when
attempting to integrate several kinds of high-throughput data. Our
group and others have shown that integrating data from several
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sources can lead to novel discoveries that each assay could have
missed on its own [4–6].

Network biology is a fast-growing category of methods for this
type of analysis [7]. Network models provide a valuable resource for
biologists looking to analyze their high-throughput data in a sys-
tems context. By mapping “hits” from high-throughput assays
onto interaction networks, the mechanistic connections between
the hits become obvious, and investigators can focus on pathways,
or series of interactions in the cell that are related to a certain
function, that may be perturbed in the system.

Network methods typically involve modeling the molecules
within a cell—which can for example be DNA, mRNAs, proteins,
or metabolites—as nodes in a graph. Edges between these nodes
connect molecules that are functionally or physically connected
[7]. For example, a protein-protein interaction network (PPI)
would represent the binding of protein A to protein B by drawing
an edge between the “A” node and “B” node in the network.
Several publicly available databases have been created to translate
experimentally discovered protein interactions into PPIs, such as
iRefIndex [8], BioGRID [9], and STRING [10]. There are also
databases that store interactions of proteins with other molecules,
such as metabolites [11–13]. In other types of networks, the edges
can represent more abstract relationships. For example, in a
correlation-based network, edges between nodes might represent
probable co-regulation, rather than physical interactions, based on
covariance between the concentration of molecule A and molecule
B [14, 15].

Mapping high-throughput hits onto networks in search of
affected pathways has several advantages. Hits that are close to
each other in a network might function in the same pathway.
Focusing on subnetworks of functionally related nodes can produce
a more tractable number of targets, rather than the potentially
hundreds of individual factors identified in high-throughput
experiments. In addition, this type of pathway identification
reduces the chance of devoting resources to the analysis of false
positives from the high-throughput screen. Although the confi-
dence for each hit in a screen may be low, the confidence in a
pathway that contains many hits is much higher. Finally, pathway
analysis can help to find novel nodes that may not have appeared in
a high-throughput screen. These “hidden nodes” can be false
negatives in a screen, or true negatives that are nonetheless impor-
tant players in the investigated biological system. Our work has
shown that these hidden nodes can often be important to a system
under study, despite the lack of direct experimental evidence [4, 16,
17]. Using the PPI to discover these pathways de novo, rather than
relying on predetermined pathway databases like KEGG [18],
expands our ability to find novel information, and avoids biasing
the results toward well-studied pathways.
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However, network analysis is not as simple as just mapping
high-throughput assay hits onto PPIs and finding all possible con-
nections through them. Because of the large and highly connected
nature of most biological networks [7], this “brute force” method
results in extremely dense, uninterpretable “hairballs” rather than
clear pathways [16]. Moreover, combining several types of experi-
mental assays into a unified analysis can be complex. For example,
experiments assessing changes in mRNA levels and protein levels
are often not well correlated [19]. It is not trivial to map them onto
one protein or RNA interaction network together. This chapter will
walk you through the use of Omics Integrator, a software package
that proposes a solution to these problems [17].

Omics Integrator is a new software tool designed to help
biologists analyze and synthesize several kinds of high-throughput
omics data, and reduce it to a few important, high-confidence
pathways. Omics Integrator is designed for ease of use by biologists
with basic computer skills (comfort with using the Unix command
line is helpful). Omics Integrator first uses transcriptomic and
epigenomic data to reconstruct transcriptional regulatory net-
works, and then integrates those with proteomic data by mapping
them onto a protein interaction network [17]. It uses two mod-
ules—Garnet and Forest, which are designed to run sequentially,
but can also be run individually. Garnet mines transcriptomic and
epigenomic information in order to predict transcription factors
that may be responsible for gene expression changes in the studied
system. Forest maps these transcription factors and protein-level
experimental information onto a PPI. Forest then implements the
Prize-Collecting Steiner Forest algorithm [16] to predict high-
confidence low-density protein interaction pathways that are
important to the studied system (see Fig. 1).

2 Materials

2.1 Finding

Transcriptional

Regulators with Garnet

1. Transcriptomics data, i.e., differential gene expression between
different conditions in your study (i.e., tumor vs. control).

2. Epigenomic data from a source such as TCGA [1], ENCODE
[2], Roadmap [20], Omics Integrator example data, or experi-
mentally derived epigenomic data (in a BED formatted file).

3. Transcription factor sequence binding motif predictions, from
a source such as TRANSFAC [21], and/or Neph et al.
[22]. Omics Integrator provides a file derived from the
TRANSFAC database.

2.2 Network

Integration

with Forrest

1. Prize-collecting Steiner tree algorithm executable (msgsteiner
can be downloaded from http://areeweb.polito.it/ricerca/
cmp/code/bpsteiner).
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2. Interactome file indicating all known interactions between
proteins. Omics Integrator provides an interactome for
mouse and human proteins derived from iRefIndex [8].

3. Input prize file, indicating the proteins you would like to
include in the final solution (see Note 1).

4. (Optional) Output fromGarnet to include transcription factors
implicated by transcriptomic data in the final solution.

5. Cytoscape [25] to visualize the final network solution.

3 Methods

3.1 Installation

of Omics Integrator

1. You can run Omics Integrator as a web tool on our website:
http://fraenkel.mit.edu/omicsintegrator/or install it on your
own computer using the instructions at https://github.com/
fraenkel-lab/OmicsIntegrator. You should make sure you have
all dependencies (see Note 2) installed and that you have the
most updated version of Omics Integrator from our GitHub
page (see Note 3).

Fig. 1 Outline of the Omics Integrator workflow. Epigenomic data (open chromatin regions or histone marks)
and transcriptomic data are used to predict influential transcription factors (TFs). Transcription factors and
proteomic data are then mapped onto an interactome, and the Prize Collecting Steiner Forest algorithm is used
to produce small pathways and subnetworks predicted to be relevant to the experimental system
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3.2 Finding

Transcriptional

Regulators with Garnet

Garnet uses differentially expressed genes from your transcriptomic
assays (i.e., RNA-seq) to predict transcription factors (TFs) that are
likely to be responsible for the altered gene expression. It uses
epigenomic data to find regions of the genome to look for differ-
ential TF binding. For example, this could be ATAC-seq data that
points out accessible regions of the genome in your cell type. The
algorithm will search for transcription factor binding motifs within
regions implicated by your epigenomic data. The strength of these
motifs is then correlated with the magnitude of change of nearby
differentially expressed genes to give each TF a score.

1. Obtain epigenomic data for cell lines related to your samples
from one of the sources listed under Subheading 2.1. Alterna-
tively, if you have epigenomic data for your own samples, you
can use this as well. These data can be in the form of histone
marks ChIP-seq, or DNase-seq or ATAC-seq, all of which
indicate accessible chromatin regions where a TF might be
bound. Collect these data in a BED-formatted file.

2. Go to the Galaxy webserver [23] (see Note 4) to extract the
DNA sequences for your epigenomic regions. Upload your
BED file to Galaxy under the “Get Data” tool, specify which
genome you are using, and then use the “Fetch Alignments/
Sequences”>“Extract Genomic DNA” tool to download a
FASTA-formatted file.

3. Format your experimentally derived gene expression data in a
tab-delimited file with two columns. The first should be the
name of the gene, and the second should be the log-fold-
change of that gene in the study conditions (i.e., tumor
vs. control). We recommend only including genes with a statis-
tically significant change in expression (see Note 5).

4. Create the Garnet configuration file. For an example configu-
ration file, see the README on the Omics Integrator GitHub
page, or the comment on the top of scripts/garnet.py. Your
configuration file should be formatted similarly, but you should
replace the paths to the bedfile, fastafile, and expressionFile with
the paths to the files you created in steps 1–3 in Subheading
3.2. Make sure the annotation files referenced by genefile,
xreffile, and genome are using the correct genome for your
sample (files for mm9 and hg19 are provided with Omics
Integrator).

5. You can change the parameters to your liking (Table 1).

6. Run Garnet on the command line by navigating to the direc-
tory with garnet.py and running python garnet.py yourconfigfile.
cfg. You can also add a --outdir directoryname flag if you would
like to put the output from garnet into a different directory.
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Garnet will run through several steps, informing you on the
command line where it is in the process. These steps include:

l Mapping the genes to nearby epigenetic regions.

l Scanning those regions for TF binding motifs.

l Building a matrix of gene expression changes and binding motif
scores for each TF.

l Running a regression to check the correlation of TF binding
score with differential gene expression.

Garnet will print results into several tab-delimited files. These
files are described in the README file on the Omics Integrator
GitHub page. The file that ends in regression_results.tsv shows all
TFs, clustered by similar binding sites, along with their p- and q-
values from the regression. The file that ends in FOREST_INPUT.
tsv contains only significant results and will be used in future steps.

3.3 Network

Integration with Forest

Forest integrates proteomic data and the output from Garnet into a
network. After mapping the data onto a provided interactome
network, it uses the prize-collecting Steiner tree algorithm (solved
by the msgsteiner code that you downloaded and installed) to find
an optimal set of subnetworks. These subnetworks can then be
analyzed for pathway context.

1. If you are not using the default interactome provided with
Omics Integrator, prepare your input interactome file. An
interactome file (or “edge file”) contains the large network of
all known connections between nodes. The file should be

Table 1
An explanation of the parameters used by Garnet

windowsize This parameter determines the maximum distance in nucleotides from a gene TSS to a TF
binding motif to consider them related. Higher values will find more TFs, but their
binding may be farther away from the gene, and thus, less likely to be directly related to
expression. Values usually range from 2000 to 20,000

pvalThresh The p value of a correlation measures how likely you are to get this correlation value if the
events were not correlated. This threshold determines which transcription factors will be
passed to Forest. Only those whose correlation with expression falls below the provided
threshold will be included. Recommended values range from 0.01 to 0.05. Leave this
value blank to use a q value threshold rather than a p value

qvalThresh A q value is a False Discovery Rate adjusted p value. This measurement will result in fewer
false positives. This threshold determines which transcription factors will be passed to
Forest. Only those whose correlation with expression falls below the provided threshold
will be included. Recommended values range from 0.01 to 0.05. Leave this value blank if
a p value threshold is sufficient. (If you are going on to run Forest, a p value is generally
sufficient since the network nature of Forest make false positives less likely to appear in a
final network)
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formatted in three tab-delimited columns. Each line should
have the form “interactor1 (tab) interacter2 (tab) weight.”
The third column contains an edge weight, between 0 and
0.99, usually representing the confidence in the validity of
that edge. Optionally, you can include a fourth column indicat-
ing whether that edge is directed (“D”) or undirected (“U”).
The current default interactome for human or mouse tissue is
derived from iRefIndex (version 13) [8] and scored with the
MIScore system [24]. You can find it in the data folder, called
iref_mitab_miscore_2013_interactome.txt. You should create
your own interactome file if you are not running your experi-
ments in mouse or human cell models, or if you have a more
updated interactome for your experiments.

2. Prepare your input prize file. This file contains significant fea-
tures from your proteomic data (see Note 6). It should have
two tab-delimited columns: the protein name (matching the
interactome file exactly), and the protein prize. You should
assign higher prizes to proteins for which you have stronger
evidence that they should be in the final network.

3. Prepare your configuration file. This file contains input para-
meters for your run of Forest (Table 2). An example can be
found in the example/a549 folder, called tgfb_forest.cfg. At a
minimum this file must contain values for the parameters w, b,

Table 2
An explanation of the parameters used by Forest

w This parameter influences the number of separate trees detected, which can aid in identifying
functionally distinct processes. Higher values of w lead to more trees in the optimal forest,
while lower values force most prizes to be found in the same tree. Values usually range
from 1 to 10. See Tuncbag et al. [14] for a more detailed explanation

b This parameter linearly scales the prizes, thereby changing the relative weighting of edge
weights and node prizes. Higher values lead to larger trees, including some
low-confidence edges, while lower values force networks to be small and use only high
confidence edges, and lead to the possible exclusion of some prize terminals. Values
usually range from 1 to 20

D This parameter sets the maximum depth from the dummy node, or root of the tree, to the
leaf nodes. Higher values lead to long pathways, while lower values lead to shorter
disparate pathways. Values usually range from 5 to 15

μ This parameter controls negative prizes in Forest. Negative prizes are explained in detail in
Section 3.4.2. The default value is zero, and if you want to use negative prizes, values
usually range from 0.0001 to 0.1

garnetBeta This parameter controls the relative weighting of TF scores derived from Garnet and prize
values on proteomic nodes. Higher values will encourage the inclusion of more TF nodes
in the network, while lower values force networks to include only the most significant or
pathway-relevant TF nodes. Typically, the value for this parameter is set to the median
value of the proteomic prizes divided by the median value of the TF scores
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and D. If you are including results from Garnet, you will also
need a garnetBeta parameter. See Subheading 3.4.1 for more
information.

4. You can now run forest with the command python forest.py –p
yourprizefile.txt –e youredgefile.txt –c yourconfigfile.txt --garnet
yourgarnetoutput_FOREST_INPUT.tsv. You can also add a
--outlabel yourexperimentname flag to give your output files a
prefix and a --outpath directoryname flag if you would like to
put the output from forest into a different directory. You may
need to add a --msgpath directoryname flag to indicate where
you installed the msgsteiner code during the installation step.
There are several other optional flags you can add to this
command if wanted (see Note 7).

5. Forest will run through several steps, informing you on the
command line where it is in the process. These steps include:

l reading in your input files.

l running the msgsteiner optimization.

l writing the output files.

Output files are described in the README file on the Omics
Integrator GitHub page (see Note 8).

6. To visualize the network output, open the Forest output files in
Cytoscape [25]. Open Cytoscape and import a network. The
Forest output files that end in .sif have been formatted for this
purpose. The file ending in optimalForest.sif contains only
those edges used in the optimal Steiner forest, while augmen-
tedForest.sif contains all edges in the interactome between the
nodes in the final forest, and is recommended for final analysis.
You can then import tables to annotate those networks; the
nodeattributes.tsv file and the edgeattibutes.tsv file, to view
information about the nodes and edges in the network, such
as the edge weights and the node prizes. Node attributes also
include the node prize type: TF, proteomic, or blank to indi-
cate a hidden node which had no input prize but was chosen by
the algorithm to connect prize nodes. Cytoscape has many
useful visualization tools that you can use to better represent
these values and types [25, 26] (see Note 9).

3.4 Network Quality

Control

1. We recommend checking the robustness and specificity of your
networks. You can do this by adding flags to the forest.py
command. Add --noisyEdges 10 to test robustness of your net-
work to noise in the edge weights. This command will add
Gaussian noise to the edgeweights, re-run Forest ten (or your
input number of) times, and then merge the results into output
files with noisyEdges in the filenames. Add --randomTerminals
10 to test specificity of your network to your input terminals.
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This command will randomly redistribute your prizes among
the interactome, keeping the degree distribution of your origi-
nal prizes, re-run Forest ten times, and then merge the results
into output files with randomTerminals in the filenames. Both
of these flags will increase the runtime of forest significantly (see
Note 10).

2. Forest results include an attribute representing the fraction of
optimal forests containing each node, which indicates how
often that node appeared in the various forest runs with noise
or random inputs. A robust network will have high FractionO-
fOptimalForestsContaining values for most nodes in noi-
syEdges run, and nodes that are specific to your input data
will have low FractionOfOptimalForestsContaining values
after randomTerminals runs. These metrics can be especially
useful ways to judge the importance of hidden nodes to your
system.

3.4.1 Choosing

Parameters for Forest

The resulting network from this data integration algorithm is
highly dependent on several parameters. These include w, b, D, μ,
and garnetBeta (Table 2).

We recommend running Forest over a range of these values to
find the best set for your system. To see an example of a script for
testing parameters, see OmicsIntegrator/example/GBM/
GBM_case_study.py. Once you have several resulting networks,
we recommend choosing the best result by

1. Choosing a set of parameters that maximizes the fraction of
input prize nodes that are included in the final network and are
robust to noise (as judged by the noisyEdges runs).

2. Some parameters will lead to networks with large “hubs,” that
is, one hidden protein in the middle connected to several prize
nodes with few interactions between these “spokes.” These
hubs are usually not informative or very specific to one system.
We recommend choosing parameters that minimize this by
measuring the average degree of hidden nodes in your network
(i.e., the number of edges connecting to those nodes in the
interactome) compared to the average degree of prize nodes. A
good parameter set will minimize the distance between these
metrics. Figure 2 shows an example of this analysis using the
data in the example/a549 folder (see Fig. 2).

3. Once conditions 1 and 2 are satisfied, we prefer larger net-
works, as those provide the most opportunities for novel dis-
coveries of hidden nodes and pathways enriched in the
subnetworks.

3.4.2 Negative Prizes

in Forest

One of the more innovative aspects of Omics Integrator is its ability
to incorporate negative evidence. There are two settings in which
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negative prizes can be useful. First, if you have reason to believe
certain nodes should not show up in your optimal network you can
assign a negative prize to a node and include it in the input prizes
file along with positive prizes. Second, negative prizes can be used
to avoid bias toward “hub nodes.”

We have found that in many cases, certain nodes are overrepre-
sented in network integration solutions because they have a high
“degree,” or number of edges connecting to that node, in the
interactome. This could be because they bind with low specificity,
e.g., chaperone proteins, or because they are highly studied pro-
teins, causing more of their interactions to be discovered and
represented in the literature. Because the optimal solution to the
PCSF problem has the lowest cost method of connecting nodes, it
will tend to use these nodes regardless of the input data. Simply

Fig. 2 An analysis of several parameter sets when running Forest on the sample A549 data provided with
Omics Integrator. A good parameter set will minimize the difference between the average degree of prize
nodes and hidden nodes, and will include a large number of prize nodes. A good choice of a parameter set is
highlighted by the black arrow. The A549 dataset reflects phosphoproteomic changes in a lung cancer cell line
when stimulated with TGF-beta. The black arrow highlights a network that includes relevant nodes such as
EGFR, while networks with large average degree of hidden nodes are mostly comprised of a hub centered on
ubiquitin-C, which connects to most prize nodes in the interactome, but is not specific to the lung cancer cell
system

22 Amanda J. Kedaigle and Ernest Fraenkel



removing these nodes from the network is not desirable, as there
are settings in which they are relevant. To prevent hubs from being
over-represented in all networks, Forest adds a penalty to nodes
based on their degree. This penalty discourages solutions that
include hubs but still allows them to be present when indicated
by the data. This has been shown to improve accuracy in certain
networks [17]. A positive number of the parameter μ will cause all
nodes in the interactome to incur a penalty of μ*degree.

4 Notes

1. Problems in running Omics integrator can originate from
spaces in node names, or mismatched node names. Input files
to Garnet and Forest should have no spaces in the protein and
gene names. In addition, all node names in the input files
should match those in the interactome exactly. Forest will try
to catch this error by letting you know if a large percentage of
your input nodes were not found in the interactome. The
provided iRefIndex interactome uses Official Gene Symbols
for protein nodes, so when using this interactome, input files
should also use this nomenclature.

2. Currently, Omics Integrator requires Python 2.6 or 2.7, with the
python packages numpy, scipy, matplotlib, and Networkx. You
will need Cytoscape (http://www.cytoscape.org) [25, 26] for
viewing network results. Any updates will be reflected in the
“SystemRequirements” sectiononourGitHubpage (seeNote3).

3. GitHub is an online hosting service for repositories of code. It
lets the community contribute to improvements of open source
projects like Omics Integrator, and keeps track of changes
made and bugs reported. The latest version of Omics Integra-
tor can be found on its GitHub page: https://github.com/
fraenkel-lab/OmicsIntegrator. A new version of Omics Inte-
grator, using Python version 3, is under development
at https://github.com/fraenkel-lab/OmicsIntegrator2.

4. Galaxy is an online platform for computational biologists. In
addition to the Extract Genomic Sequences tool described
here, Galaxy provides several tools and workflows for analyzing
biological data [23].

5. Genes used in Garnet should be significantly differentially
expressed according to your transcriptomic data. For example,
RNA-seq data can be analyzed with tools such as DEseq [27]
or CuffDiff [28]. Genes that these tools report as differential
with a p value less than 0.05 should be used as the input to
Garnet.
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6. Similar to transcriptomic data, your proteomics data will indi-
cate which proteins should be used as the input to Forest. A
review of tools for differential proteomics can be found here
[29]. Many of these tools will provide a metric for determining
statistical significance of differential expression of proteins,
such as a p value. We generally use all proteins with a (modified)
p value of less than 0.05. Prizes for the proteins are then the
absolute value of the log of the fold change of protein expres-
sion. Be sure to use the absolute value, to avoid assigning a
negative prize to downregulated proteins, which would
encourage the algorithm to leave that node out of the net-
works, rather than including it.

7. There are several other flags available for advanced users, which
change the behavior of forest.py. For example, you can change
the group of nodes Forest uses to root each resulting tree
(by default, this is all nodes which have been assigned a positive
prize). There is a knockout option for doing an in silico knock-
out experiment by removing a protein from the interactome.
For details on these and other flags, run python forest.py -h or
read our GitHub repository page.

8. Many problems can lead to the final Forest output being empty
(i.e., not containing any nodes). Check the output file ending
in “info.txt” for some statistics of the run. One common
problem, once formatting and input protein name problems
have been ruled out, is a mu parameter set too high or other
Forest parameters that lead to an empty optimal solution. Try
changing your parameter values.

9. Cytoscape is a popular open source software for visualizing and
analyzing networks [25, 26]. It is highly flexible and there are
several available plug-ins for extending its use [30]. Omics
Integrator can output results formatted for import into Cytos-
cape versions 2.8 or 3 by the use of a flag for forest.py
(it defaults to version 3). Once the networks and node and
edge attributes are imported into Cytoscape, you can use
options in Cytoscape to create informative figures of your
results. For example, we often use the Style tab to change the
color of a node to represent its prize, the shape of a node to
represent its Terminal Type (TF vs. proteomic vs. hidden
node), and the edge width to represent its confidence. We
recommend playing around with Styles and Layouts to best
display your network.

10. Depending on your input data and run setup, a run of Omics
Integrator can take a few hours. We recommend running in a
screen session (https://www.gnu.org/software/screen/) or
tmux (https://tmux.github.io/), which will allow the program
to run continuously in the background, or on a computer that
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is set not to turn off or interrupt the run. You can also run
Omics Integrator on a cloud server. However, if the run is
taking more than a day, you should cancel the run and look
for errors. In particular, try running Forest without or with a
smaller input to noisyEdges or randomTerminals, as these
options can lead to large memory and time consumption.
High values for the D parameter can also increase runtime.
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Chapter 3

Analyzing DNA Methylation Patterns During Tumor Evolution

Heng Pan and Olivier Elemento

Abstract

Epigenetic modifications play a key role in cellular development and tumorigenesis. Recent large-scale
genomic studies have shown that mutations in players of the epigenetic machinery and concomitant
perturbation of epigenomic patterning are frequent events in tumors. Among epigenetic marks, DNA
methylation is one of the best studied. Hyper- and hypo-methylation events of specific regulatory elements
(such as promoters and enhancers) are sometimes thought to be correlated with expression of nearby genes.
High-throughput bisulfite converted sequencing is currently the technology of choice for studying DNA
methylation in base-pair resolution and on whole-genome scale. Such broad and high-resolution coverage
investigations of the epigenome provide unprecedented opportunities to analyze DNA methylation pat-
terns, which are correlated with tumorigenesis, tumor evolution, and tumor progression. However, few
computational pipelines are available to the public to perform systematic DNA methylation analysis.
Utilizing open source tools, we here describe a comprehensive computational methodology to thoroughly
analyze DNA methylation patterns during tumor evolution based on bisulfite converted sequencing data,
including intra-tumor methylation heterogeneity.

Key words DNA methylation, ERRBS, DMRs, Intra-tumor methylation heterogeneity

1 Introduction

Epigenetic modification plays a key role in the regulation of all
DNA-based processes including transcription, DNA repair, and
replication, which are fundamental to tumorigenesis [1]. Recent
large-scale genomic studies have shown that mutations in the epi-
genetic machinery and concomitant perturbation of epigenomic
patterning are frequent events in tumors, such as B-cell lympho-
mas, leukemia, and prostate cancers [2–5]. DNAmethylation is one
of the best-studied epigenetic markers. DNA methylation is char-
acterized by the attachment of a methyl group to carbon 5 of
cytosines, principally in the context of CpG dinucleotides. Hyper-
or hypo-methylation of genomic regions (for example promoters or
enhancers) can lead to repression or activation of the expression of
nearby genes. Several examples of promoter methylation levels that
are inversely correlated with gene expression levels have been
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identified [6]. A number of tumor suppressor genes are silenced by
promoter hypermethylation [7]. Thus, identifying differentially
methylated cytosines (DMCs) and differentially methylated regions
(DMRs), especially those perturbed in tumors, has become a cen-
tral objective in cancer methylome analysis.

The advent of high-throughput DNA sequencing technologies
has provided new opportunities to study DNA methylation, allow-
ing for fast, single-base resolution scans in targeted or enriched
regions or at whole-genome scale. Large-scale sequencing projects
have generated hundreds of methylation profiles of tumors of
different origins and at different stages. In turn, markers based on
methylation usually provide important information about cellular
phenotypes in healthy and diseased tissues. In many cases, assessing
methylation profiles enabled improved patient stratification over
other approaches based on transcriptomics or mutation profiles
[4, 8].

Enhanced reduced representation bisulfite sequencing
(ERRBS) is a powerful high-throughput sequencing platform,
which can provide high sequencing depth and coverage of millions
of CpGs in the human genome [9]. To date, few computational
pipelines for analyzing bisulfite sequencing exist, even though such
data are increasingly widely used. Here, we describe a comprehen-
sive DNAmethylation profiling analysis based on ERRBS data. This
method is also applicable to reduced representation bisulfite
sequencing (RRBS) data or whole-genome bisulfite sequencing
(WGBS) data [10].

Tumors evolve following a Darwinian process, in which cells
continuously acquire mutations that alter their fitness. The fittest
cancer cells may divide faster, and will be more likely to survive
inhibitory signals from the microenvironment than other less fit
cells. Those cells are therefore more likely to expand in abundance
within a tumor. Initiation of anti-cancer treatment can alter the
fitness landscapes within tumors and frequently leads to selection
and growth of cells that have acquired resistance mutations.
Because every tumor potentially evolves along a different trajectory
as a result of distinct environments and exposures to treatment,
tumor evolution introduces individual features into each tumor
[11]. While the contribution of genetic mechanisms to tumor
evolution is well documented, the contribution of epigenetic
mechanisms to tumor evolution has only recently begun to be
studied [4, 12]. In this chapter, we specifically focus our analyses
on capturing and analyzing DNA methylation patterns during
tumor evolution.

Following generation of an ERRBS dataset, a typical analysis
workflow consists of first identifying DMCs and DMRs, followed
by correlating those regions to biological relevant genes and path-
ways. Other analyses relevant to tumor evolution may include
quantifying intra-tumor methylation heterogeneity (MH). Indeed,
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compared to the genetic code, DNA methylation is more flexible
and cells within a cell population may have distinct methylation
patterns. Thus a tumor cell population may harbor varying levels
intra-tumor MH. Such heterogeneity is emerging as a powerful
predictor of tumor evolution, progression, and relapse [4].

The analysis of DNA methylation patterns during tumor evo-
lution requires ERRBS samples from different tumor development
stages, or diagnosis-relapse sample pairs from several patients.
ERRBS samples from normal healthy (which can be used as base-
line) can add an additional layer of information to the analysis. The
computational analysis scheme is outlined in Fig. 1. Sample prepa-
ration and high-through sequencing are described by Akalin et al.
[9]. Sequencing reads from every stage of tumor evolution are
mapped independently to a bisulfite converted reference genome,
generating separate DNA methylation profiles. DNA methylation
status for every single CpG is determined in each sample, separately.
Next, DMC and DMR calling is performed between the normal
sample and each tumor stage or between any two tumor stages.
Intra-tumor MH analysis is performed as a separate analysis on the
same samples. Finally, identified DMCs/DMRs and MH hotspots
are analyzed for enriched gene functions, in order to unravel path-
ways relevant to tumor evolution.

2 Materials

2.1 Software 1. ERRBS data quality control: FastQC (available at http://www.
bioinformatics.babraham.ac.uk/projects/fastqc/) [13].

2. Adaptive quality and adapter trimming: Trim Galore (available
at http://www.bioinformatics.babraham.ac.uk/projects/trim_
galore/) [14].

3. Bisulfite converted sequence reads mapping and cytosine
methylation states calling: Bismark (available at http://www.
bioinformatics.babraham.ac.uk/projects/bismark/) [15].

4. DMCs and DMRs calling: RRBSseeqer (available at http://icb.
med.cornell.edu/wiki/index.php/Elementolab/) [4].

5. Region annotations: ChIPseeqer (available at http://icb.med.
cornell.edu/wiki/index.php/Elementolab/) [16].

6. Pathway analysis: iPAGE (available at http://icb.med.cornell.
edu/wiki/index.php/Elementolab/) [17].

7. ERRBS data analyzing tools: Errbs-tools including methylCall_-
from_Bismark.py, regionMethyl.R and regionMH.R (available
at https://github.com/SpursHeng90/errbs-tools/) [4].
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Fig. 1 Schematic of ERRBS data analysis pipelines. This comprehensive computational pipelines start from the
ERRBS FASTQ files. The first step is to use FastQC to perform quality check of ERRBS data and make sure the
data quality is good enough to make downstream analysis. Second, Trim Galore is used to remove adapter
contaminations. Third, Bismark is used to map reads to bisulfite converted genomes and call methyl files,
which indicates methylation status for each CpG site in genomes. Next, many computational tools including
Errbs-tools, ChIPseeqer and RRBSseeqer are used to perform downstream analysis. MH hotspots can be used
to perform global MH analysis and link MH to tumor evolution and disease progression. Individual DMCs/DMRs
can be annotated to nearest genes and such gene lists can be used to perform pathway analysis. Methylation
levels for regulatory regions are good inputs for both supervised and unsupervised types of downstream
analysis
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2.2 Input Files 1. For fastqc in FastQC: FASTQ format files of normal or tumor
samples are most common inputs, BAM or SAM format files
are also acceptable.

2. For trim_galore in TrimGalore: FASTQ format files of healthy
tissue or tumor samples are required.

3. For bismark_genome_preparation in Bismark: FASTQ/
FASTA format files of genome reference are required.

4. For bismark in Bismark: FASTQ format files processed with
trim_galore are required. FASTA format files are also accept-
able but not recommended since the quality values are missing
for such types of data.

5. For bismark_methylation_extractor in Bismark: BAM files
from bismark are used as inputs.

6. For methylCall_from_Bismark.py in Errbs-tools: CpG_OT_-
sample.RRBS_trimmed.1bp.fq_bismark.txt and CpG_OB_-
sample.RRBS_trimmed.1bp.fq_bismark.txt from bismark_m
ethylation_extractor are used as input files. Reads in file set
1 (labeled with OT) reflect methylation levels of CpGs in the
forward strand. Reads in file set 2 (labeled with OB) contain m
ethylation information of CpGs in the reverse strand.

7. For epicore2calls.pl in RRBSseeqer: Methyl files frommethyl-
Call_from_Bismark.py are used as input files (see Table 1).

8. For RRBSseeqer_CG in RRBSseeqer: output files from epi-
core2calls.pl are used as inputs.

9. For RRBSidentifyUpDownDMR.pl in RRBSseeqer: output
files with DMCs information from RRBSseeqer_CG are used
as input files.

10. For ChIPseeqerAnnotate, mergeCSAnnotateGenesCol-
umns.pl, make_PAGE_input.pl and page.pl in ChIPseeqer:
files with DMR information from RRBSidentifyUp-
DownDMR.pl are used as inputs. Each tool uses the output
files from the previous one for those four sequential tools.

11. For regionMethyl.R in Errbs-tools: two kinds of input files are
required. One is the Methyl file from methylCall_from_Bis-
mark.py (see Table 1), the other one is RDS format file includ-
ing genomic region annotations in GRanges or GRangesList
objects [18, 19]. RDS is a special R based format, which can
store a single R object.

12. For regionMH.R in Errbs-tools: three types of input files are
required. The first type is the Methyl file from methylCall_-
from_Bismark.py (see Table 1). The second one is the BAM
file from bismark, which is a binary format for storing
sequence data. BAM format is a more space-saving format as
compared to SAM format data. The last one is the RDS file
format including the genomic region annotations in GRanges
or GRangesList objects [18, 19].
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Table 1
RRBSeeqer input files example

chrBase chr Base Strand Coverage freqC freqT

chr1.10542 chr1 10542 F 587 99.83 0.17

chr1.10636 chr1 10636 F 57 85.96 14.04

chr1.10617 chr1 10617 F 58 100 0

chr1.10589 chr1 10589 F 58 100 0

chr1.10631 chr1 10631 F 56 100 0

chr1.10638 chr1 10638 F 57 85.96 14.04

chr1.10609 chr1 10609 F 58 98.28 1.72

chr1.10620 chr1 10620 F 59 93.22 6.78

chr1.10525 chr1 10525 F 609 95.24 4.76

chr1.10497 chr1 10497 F 606 97.85 2.15

chr1.10633 chr1 10633 F 58 89.66 10.34

chr1.133181 chr1 133181 R 118 61.02 38.98

chr1.133218 chr1 133218 R 117 54.7 45.3

chr1.133180 chr1 133180 F 131 40.46 59.54

chr1.133165 chr1 133165 F 136 88.24 11.76

chr1.135028 chr1 135028 F 168 88.1 11.9

chr1.135203 chr1 135203 R 77 87.01 12.99

chr1.135208 chr1 135208 R 77 90.91 9.09

chr1.135173 chr1 135173 R 78 87.18 12.82

chr1.134999 chr1 134999 F 170 31.18 68.82

chr1.135191 chr1 135191 R 76 94.74 5.26

chr1.135179 chr1 135179 R 79 67.09 32.91

chr1.135031 chr1 135031 F 168 90.48 9.52

chr1.135218 chr1 135218 R 71 78.87 21.13

chr1.136911 chr1 136911 F 103 92.23 7.77

chr1.136913 chr1 136913 F 101 94.06 5.94

chr1.136895 chr1 136895 F 104 67.31 32.69

chr1.136876 chr1 136876 F 104 95.19 4.81

chr1.136925 chr1 136925 F 103 0.97 99.03

chr1.137120 chr1 137120 F 29 96.55 3.45

chr1.137157 chr1 137157 F 29 100 0

(continued)
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3 Methods

3.1 Pre-alignment

Quality Control

and Data Cleaning

Processes

Similar to other high-throughput sequencing technologies,
ERRBS is prone to systematic errors and artifacts such as PCR
duplicates, GC-content shifts, and adapter contamination. In addi-
tion to these common problems, ERRBS data can suffer more
critical problems such as erroneous methylation status of cytosine
introduced by end-repair and low bisulfite conversion rates. Thus,
it is always a good idea to perform a simple quality control analysis
to avoid any biases that may affect subsequent analyses. ERRBS
generates output in FASTQ format, like most high-throughput
sequencing assays. We have successfully used a publicly available
tool -FastQC- to perform short read quality control (see Fig. 1).
Several features are very import to pay attention to. Those include
per base sequence quality, per sequence quality scores, per base
sequences content, and adapter content. Details about how to
interpret the FastQC results are available in Andrews et al. (seeNote
1) [13].

Tools such as FastQC may reveal a variety of artifacts including
adapter contamination. Adapter contamination is one of the most
important technical issues for next-generation sequencing data, in
that it may affect read mapping, leading to low mapping efficiencies
and may even result in incorrect mapping and/or unreliable meth-
ylation calling in ERRBS. Moreover, positions filled in during
end-repair can introduce artificial methylation readouts in
ERRBS. The restriction endonuclease MspI selects relatively small
fragment sizes (usually between 40 and 220 bp, but with quite a

Table 1
(continued)

chrBase chr Base Strand Coverage freqC freqT

chr1.137169 chr1 137169 F 28 0 100

chr1.139059 chr1 139059 F 13 0 100

chr1.139029 chr1 139029 F 13 61.54 38.46

chr1.139073 chr1 139073 F 13 61.54 38.46

chr1.237094 chr1 237094 F 99 7.07 92.93

chr1.249382 chr1 249382 R 29 0 100

chr1.249429 chr1 249429 R 29 93.1 6.9

chr1.531247 chr1 531247 R 29 100 0

chr1.531265 chr1 531265 R 29 100 0
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few MspI-MspI fragments even shorter than 40 bp). This can
become a problem especially for sequencing reads with longer
lengths. If the read length is longer than the MspI-MspI fragment
size, there is a higher chance that the sequencing read would
contain the adapter sequence on the 30 end. To address this prob-
lem, adapters from longer reads need to be trimmed. We have
successfully used Trim Galore to perform adapter trimming in our
pipelines (see Fig. 1).

Altogether the pre-alignment process follows these three steps:

1. Quality check for original ERRBS reads with FastQC:

$ fastqc [-o output dir] [-f fastq|bam|sam] seqfiles1 . . . seqfilesN

-o parameter specifies the directory where all outputs from
FastQC should be stored. -f parameter indicates the input file
format, usually FASTQ format files. “seqfiles1 . . . seqfilesN”
indicates that multiple input FASTQ files can be analyzed.

2. Adapter trimming with Trim Galore:

$ trim_galore [options] <filenames>

To run this analysis, just specify optional parameters and indi-
cate your input FASTQ files after the options. The most rele-
vant options are --rrbs and --adapter. --rrbs specifies that the
data is an MspI digested library and --adapter specifies that
adapter sequences need to be trimmed from reads.

3. Quality check for adapter trimmed ERRBS reads with FastQC:
Perform the same analysis as in step 1, but use trimmed
FASTQ files instead.

Example:
Take one of our FASTQ files as an example (DLBCL_1D.

ERRBS.fq), the actual commands are:

1. $ fastqc -o. -f fastq DLBCL_1D.ERRBS.fq

2. $ trim_galore --rrbs --adapter TGAGATCGGAA-
GAGCGGTTCAGCAGGAATGCCGAGACCGATCTCG
TATGC --output_dir. DLBCL_1D.ERRBS.fq

3. $fastqc -o. -f fastq DLBCL_1D.ERRBS_trimmed.fq

In our examples, we assume all of the samples and files to be
analyzed are placed in the current working directory. If not, please
specify the exact path of the files instead of using DLBCL_1D.
ERRBS.fq directly. In step 2, the sequence we used is the standard
adapter for Illumina. If no sequence is supplied, trim_galore will
attempt to auto-detect the adapter that has been used (Illumina,
Small RNA, and Nextera platforms standard adapters would
be used).
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In general, per base sequence quality provided by FastQC should
be higher than cutoff (20 in most cases). Also, average per sequence
quality should be around 38 (Phredþ33, 0-41 scale). The other
important restriction is that there should be no overrepresented
sequences or adapter contents, which canbe an indicationof potential
adapter contamination. Ideally, your dataset should pass most quality
control steps after adapter trimming (hence step 3 above) to confirm
the data quality for downstream analysis (seeNote 1). Also, besides
the two parameters in step 2 we mentioned, there are several items
worth consideration during quality control, the details of which are
provided in Subheading 4 (seeNotes 2 and 3).

3.2 ERRBS Reads

Alignment

Mapping ERRBS reads to a bisulfite converted genome presents
many computational challenges. Alignments should allow for mis-
matches, especially for potential methylation sites. Also, alignments
should be unique considering the numerous possibilities combin-
ing all the methylation statuses in each read to avoid miscalling of
methylation levels. Among all the publicly available mapping tools
such as BSMAP, RMAP-bs, MAQ, or BS seeker, we have chosen
Bismark [15] to map ERRBS reads due to a couple of substantial
advantages (seeNote 4) [20–23].

The alignment process requires two steps:

1. Bisulfite converted genome preparation: typically no parameter
changes are required for the genome preparation process. The
only thing that absolutely needs to be specified is the directory
where genome references are located. Such files need to be in
FASTA/FASTQ format and can be downloaded from public
databases such as UCSC genome browser or Ensembl
[24, 25]. A recent genome build is recommended, e.g., hg19
or GRCh38.

$ bismark_genome_preparation [options] <path_to_genome_folder>

<path_to_genome_folder> specifies the directory of genome
reference. Using --bowtie1 will create bisulfite indexes for
Bowtie 1 instead of Bowtie 2 (Default).

2. ERRBS reads alignment: for this step, the path to the bisulfite
converted genome directory and the adapter trimmed FASTQ
files are needed and the alignment can be run with default
parameters.

$ bismark [options] <genome_folder> {-1 <mates1> -2

<mates2> | <singles>}

<genome_folder> specifies the directory of bisulfite con-
verted genome reference from the first step. When paired-end
data are used as input, -1 <mates1> -2 <mates2> is used to
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indicate each FASTQ file. If single-end data are used here,
<singles> is used to specify the ERRBS reads file in FASTQ
format. Several parameters are often used in options. For exam-
ple, --bowtie1 indicates bismark will use Bowtie 1 instead of
Bowtie 2. -l specifies the “seed length,” which is the number of
bases at the high quality end of the read to which the mis-
matches ceiling applies. Typically, the length of sequencing
reads can be used for this parameter. --multicore sets the
number of parallel instances of bismark to be run concurrently.
--output_dir specifies that all output files are written into the
specified directory in BAM format.

Example:
Using one of our trimmed FASTQ files as an example

(DLBCL_1D.ERRBS_trimmed.fq), the actual commands are:

1. $ bismark_genome_preparation --bowtie1 genome/

2. $bismark--bowtie1-l50--multicore6genome/--output_dir.
DLBCL_1D.ERRBS_trimmed.fq

In our examples, we assume that all sample files (.fq) and
reference genomes are placed in the current working directory. If
not, the exact path of the files needs to be specified instead of using
genome/ and DLBCL_1D.ERRBS_trimmed.fq directly. Addi-
tional information regarding other optional parameters in the sec-
ond step (Bismark alignment), such as usage of Bowtie 1 or Bowtie
2, as well as directional or non-directional sequencing can be found
in Subheading 4 (seeNote 5) [26, 27].

3.3 Cytosine

Methylation State

Calling

Once suitable ERRBS alignments are generated, the methylation
level for individual sites (mostly CpG sites) can be determined. To
be consistent with our alignment processes, we utilize a simple
script, named bismark_methylation_extractor from Bismark to
achieve this goal. After methylation levels are generated, we need
to perform quality checks to assess the accuracy of individual CpG
methylation levels. Then we convert the data into a user-friendlier
format for further analysis. This process consists of the following
steps:

1. Extract CpG methylation levels from BAM files: we use bis-
mark_methylation_extractor from Bismark to extract CpG
methylation levels from each read in the BAM files. This tool
is one of the most important advantages of Bismark compared
to other computational tools (seeNote 4).

$ bismark_methylation_extractor [options] <genome_folder> <filenames>

<genome_folder> specifies the directory of bisulfite con-
verted genome reference (outputs from
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bismark_genome_preparation). <filenames> specifies the
BAM files from bismark alignment (outputs from bismark
alignment). -s option indicates that single-end type sequence
read data was used. --multicore sets the number of parallel
instances to be run concurrently. --output_dir specifies the
directory to which all output files are exported. Using default
options, bismark_methylation_extractor will give six differ-
ent output files. Those include two types of possible strand-
specific methylation information, original top strand reads
(OT) and original bottom strand reads (OB), within three
different contexts (CpG, CHG, CHH). Details about those
files can be found in Subheading 4 (seeNote 6). Each file has
methylation information of a single-cytosine group, for exam-
ple, methylation information for cytosines in CpG context
from OT reads. Those files are tab delimited with 1-based
coordinates:

<seq-ID> <methylation state> <chromosome> <start posi-

tion (¼end position)> <methylation call>

Each line in these files represents single CpG site information
from a single read. The second column specifies the methyla-
tion state: “þ” and “�” indicate methylated and unmethylated
status, respectively. Also, the fifth column has methylation call
information. “Z” and “z” indicate methylated and unmethy-
lated CpGs. Meanwhile, “X” and “x” represent methylated and
unmethylated CHGs and “H” and “h” represent methylated
and unmethylated CHH context. In our analysis, we only focus
on cytosines in CpG dinucleotide context and we use --mer-
ge_non_CpG to merge non-CpG methylation (CHG context
and CHH context) results into one file. Reads in files labeled
with OT reflect methylation levels of CpGs in the forward
strand and reads in files labeled with OB contain methylation
information of CpGs in the reverse strand.

2. Quality check for CpG methylation extraction: after we extract
methylation information from each read, we need to check
several features to make sure the alignment and methylation
status are correct and ready for downstream analysis. All the
features below can be found in report files from bismark
alignment (see Table 2).

l It is important to check that all the methylation call statuses
in the OT and OB files are “Z” and “z” to make sure that all
the information is collected from the CpG context.

l One of the most important features is average conversion
rate, which detects how bisulfite treatment can successfully
convert unmethylated cytosines. This number should be
very close to 100% (see Table 2).
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l Samples should have acceptable mapping efficiency
(uniquely mapped reads out of all the input sequenced
reads after adapter trimming, should be 60% or higher),
which typically decreases with increasing sequencing read
length (see Table 2).

l Samples analyzed together should ideally have similar num-
bers of covered CpGs, similar average coverage across the
whole dataset, and similar average CpGmethylation levels in
each category/group (see Table 2).

3. Call CpG methylation level for each CpG: after quality check,
we are ready to collect and combine the methylation status of
all reads overlapping with individual CpGs into an overall

Table 2
Bismark output statistics example

ID #reads
Mapping
efficiency

Average
conversion rate

#CpGs
(10�)

Average
coverage

Average CpG
methylation levels(%)

1 73293324 64.50% 99.8979 2848900 51.82 34.40%

2 76101498 66.00% 99.8947 2933770 50.14 31.50%

3 85482964 66.50% 99.8838 2822016 56.84 39.50%

4 80272372 66.50% 99.8138 2795046 56.97 35.90%

5 64361288 66.60% 99.7396 2625874 50.8 34.50%

6 78897537 66.90% 99.8999 2782944 56.52 33.80%

7 76009876 66.00% 99.8751 2850695 52.66 38.20%

8 75431630 65.90% 99.778 2893682 52.82 38.40%

9 76653335 65.20% 99.8868 2843240 54.8 39.00%

10 78481481 65.00% 99.8859 2808703 54.04 38.50%

11 73287618 67.60% 99.8617 2733715 52.24 37.20%

12 73847281 67.50% 99.7764 2920328 50.99 36.50%

13 81504963 66.30% 99.8747 2822336 58.31 41.90%

14 96892822 62.50% 99.8899 2795175 59.89 48.80%

15 43137414 64.20% 99.8866 1609370 48.55 30.80%

16 72217478 66.50% 99.7681 2741285 54.08 45.90%

17 72922475 66.90% 99.8376 2872522 53.3 38.20%

18 75434628 66.80% 99.8349 2839250 52.93 38.30%

19 73437411 66.30% 99.8747 2767916 52.07 39.10%

20 82936367 68.00% 99.8547 2823987 52.74 36.10%
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methylation level. We created a Python script to automate this
process.

$ python methylCall_from_Bismark.py [options]

<sample_name> <input_dir> <output_dir>

<sample_name> sets the name of healthy tissue or tumor
sample to be analyzed. This script can perform methylation
calls for all the samples in the targeted directory. <input_dir>
specifies where input files are located.<output_dir> specifies a
directory into which all output Methyl files are written (see
Table 1). -c is the only parameter that the user needs to adjust
here; it specifies the minimum coverage required per CpG site.

4. Data transformation for RRBSseeqer: RRBSseeqer requires
special format for input data files. We use a Perl script to
convert Methyl files to RRBSseeqer acceptable data formats.

$ perl epicore2calls.pl <input_file> | gzip >

<output_file>

<input_file> sets the name of the Methyl files from step 3 (see
Table 1). <output_dir> specifies that all output files are writ-
ten into this directory.

Example:
Using one of our BAM files as an example (DLBCL_1D.

ERRBS_trimmed.fq_bismark.bam), the commands are as
follows:

1. $ bismark_methylation_extractor -s --output. --merge_n-
on_CpG --multicore 6 --genome_folder genome/
DLBCL_1D.ERRBS_trimmed.fq_bismark.bam

2. $ python methylCall_from_Bismark.py -c 10 DLBCL_1D
bismark_output/ cpg/

3. $ perl epicore2calls.pl cpg.DLBCL_1D.mincov10.txt | gzip
> cpg.DLBCL_1D.mincov10.txt.calls.gz

As before, all files, directories, and samples are assumed to be in
the current working directory. The full path to each file and direc-
tory needs to be specified otherwise, if the files are present in a
different location. When working with non-directional ERRBS
data, additional parameters are required as indicated in Subheading
4 (seeNotes 6 and 7). In the above example, the minimum coverage
per CpG was set to 10. Enough reads can support the reliability of
methylation levels for CpGs. For ERRBS analysis, 10 is always used
as the cutoff, which is a tradeoff value considering the available
number of CpGs and sequencing cost. Please find suggestions
about how to choose this parameter in Subheading 4 (seeNote 8).
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3.4 Patient-Specific

DMRs Analysis

(Unsupervised)

The identification of DMCs and DMRs is an important component
of DNA methylation analysis. DMCs and DMRs typically reflect
local DNA methylation changes during tumor evolution, such as
those occurring in tumors between diagnosis and relapse. Several
methods enable discovery of consistently hyper- or hypo-methylated
DMCs or DMRs across several samples. DMCs and DMRs can be
defined based on groups of samples or between two samples from
the same patient. We focus our analysis here on defining DMCs and
DMRs on a patient-specific basis. We use our in-house tool—
RRBSseeqer—to extract DMCs and DMRs from individual patient
data. This analysis is unsupervised in that any region of the genome
can be a DMR.

To investigate cancer progression and tumor evolution, one
may want to compare diagnosis and relapse samples from the
same cancer patient and analyze DMCs and DMRs between these
sample pairs. To examine the functional role of these methylation
changes, one may ask whether DMCs and DMRs are near genes
belonging to specific pathways, which might be relevant for cancer
biology. These types of analyses frequently include identification of
gene sets and pathways, which are over-represented within the
DMR-associated genes in each patient. To explore commonalities
across patients, one can perform unsupervised analyses of over-
represented pathways (Fig. 2a). In more detail, such analyses con-
sist of the following steps:

1. Identify DMCs: DMCs are identified by comparing two sam-
ples, for example healthy tissue and tumor, or diagnosis and
relapse from the same patient. We identify DMCs using Fisher
Exact or Chi-Square Tests comparing fractions of methylated
to total reads at individual CpGs. We use a default false discov-
ery rate¼ 20% for this analysis. Data formatting scripts are used
to create tab-delimited output files.

$ RRBSseeqer_CG -rrbs1 <control_file> -rrbs2

<experiment_file> | sort_column.pl | sort_column_alpnum.

pl > <output_file>

<control_file> after -rrbs1 represent the baseline sample (for
example diagnosis sample), <experiment_file> after -rrbs2
represents the second sample to compare to baseline (for exam-
ple relapse sample). These files should be in the format pro-
duced by epicore2calls.pl above.<output_file> sets the name
of the output file containing an analysis of each CpG.

2. Identify DMRs: we have defined DMRs as regions containing
at least five DMCs separated by less than 250bp, and whose
average methylation difference (including non-DMC in the
region) is more than 10%. We use a Perl script called RRBSi-
dentifyUpDownDMR.pl to identify DMRs based on DMCs.
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Fig. 2 Examples of DMRs identification and visualization. (a) Pathways overrepresented among hypermethy-
lated genes (promoters overlapped with hypermethylation DMRs) of individual patients were illustrated here.
Each row represents a single pathway and each column represents a patient pair. (b) Each row represents a
single differentially methylated regulatory element. Each column represents single diagnosis/relapsed sample
from patients. Scale bars represent z-score of methylation levels. Values were centered and scaled in row
direction
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$ perl RRBSidentifyUpDownDMR.pl --metfile¼<input_file> --

outfile¼<output_file> [options]

<input_file> is a tab-delimited file with CpG comparison from
RRBSseeqer_CG (step 1). <output_file> is a file containing
DMR information. DMRs are represented with a single DMR
per row including chromosome, start position, end position,
size, number of CpGs in DMR, and methylation difference.
Additional options can be specified. -dmax specifies the largest
distance between two DMCs (Default: 250). -minmetdx speci-
fies the minimum average DNA methylation difference for
DMRs (Default: 0.1). -minnumcg specifies the minimum num-
ber of DMCs needed to define a DMR (Default: 5).

3. Annotate DMRs with nearest genes: we use ChIPseeqerAn-
notate from the ChIPseeqer package to annotate DMRs with
the closest genes and identify genomic regions (exons, introns,
promoters, intergenic regions) where gene and DMR may
overlap.

$ ChIPseeqerAnnotate --peakfile¼<input_file> [options]

<input_file> represents a DMR file produced at the previous
step. Options include: --genome specifies what genome refer-
ence to use (hg19, etc.) and --db specifies the gene annotation
versions (RefSeq, etc.). There are several output files in this
step. We will need to use files with .genes.annotated.txt suffix.
Each row in this file indicates if this gene overlaps with DMRs
on different genomic regions like promoters, exons, introns,
etc.

4. Data transformation for iPAGE: DMR-associated genes are
converted into a format compatible with the iPAGE pathway
analysis tool. Likewise this analysis is performed using tools
from the ChIPseeqer package. First, we run the mergeCSAn-
notateGenesColumns.pl to extract specific columns from .
genes.annotated.txt file and retrieve the genes with peaks in
their promoters/exons/introns, etc. Next, a perl scriptmake_-
PAGE_input.pl is used to convert data into iPAGE acceptable
input format.

$ mergeCSAnnotateGenesColumns.pl --genefile¼<input_file>

--outfile¼<output_file> [options]

<input_file> points to the output from ChIPseeqerAnno-
tate, specifically the file that ends with .genes.annotated.txt.
<output_file> defines the output file. Options include: --
geneparts, which specifies which gene parts overlapping with
DMRs should be used for downstream analysis. P (Promoter),
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I (Intron), E (Exon) etc. and combination of these (separated
by commas) can be used here. --showORF specifies whether
gene id (1) or transcript id (0) should be used in the output.

$ make_PAGE_input.pl --geneslist¼<input_file> [options]

This tool creates an input file for iPAGE. Briefly, each gene is
labeled as “gene of interest” (a gene near a DMR) or “back-
ground”. <input_file> indicates the output files from mer-
geCSAnnotateGenesColumns.pl, which should be used as
input for this step. The --refgene parameter specifies the gene
data annotation used by ChIPseeqer and is used to create the
background gene category.

5. Pathway analysis of DMR-related genes: given a gene profile
with genes labeled either as genes of interest or as background,
iPAGE is used to run pathway analysis against known pathways
and gene sets. It uses mutual information to connect input
gene sets and published gene sets and pathways.

$ page.pl –expfile¼<input_file> [options]

<input_file> indicates the input file from last step. The --
pathways option in iPAGE defines the database of pathways
to use (Gene Ontology (GO), the Lymphoid Gene signatures
and many other databases are supported [28, 29]. It is also
feasible to use custom-defined pathways). The output of
iPAGE indicates over- or under-representation of the input
gene sets within specific gene sets or pathways with hypergeo-
metric distribution log10 enrichment p-values as pathway
enrichment scores.

6. Unsupervised analysis of over-represented pathways within
DMR-related genes: we use an R-based package pheatmap
[18, 30]. The input for this analysis is a matrix where each
row represents a pathway and each column represents a single-
sample pair (a diagnosis-relapse pair for example). Each entry in
the matrix value is 1 if a specific pathway is significantly
enriched in this patient, otherwise the value will be set to 0.

Example:
Here, we provide an example where we analyze DMCs and

DMRs between diagnosis and relapse tumor sample (DLBCL).
After the identification of DMCs and DMRs, following the strategy
outlined above we identify tumor evolution-related DMCs/
DMRs. Subsequently, we can perform downstream analysis inves-
tigating for example how those DMRs occur or disappear during
tumor progression. We use cpg.DLBCL_1D.mincov10.txt as our
< control_file>, cpg.DLBCL_1R.mincov10.txt as our <
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experiment_file>. Examples of commands for calling DMCs and
DMRs, and subsequently annotating them are:

1. $ RRBSseeqer_CG -rrbs1 cpg.DLBCL_1D.mincov10.txt.
calls.gz -rrbs2 cpg.DLBCL_1R.mincov10.txt.calls.gz -test
chi | sort_column.pl 1 | sort_column_alpnum.pl 0 >DMC.
DLBCL_1.txt

2. $ perl RRBSidentifyUpDownDMR.pl --metfile¼DMC.
DLBCL_1.txt --dmax¼250 --minmetdx¼0.1 --min-
numcg¼5 –outfile¼DMR.DLBCL_1.txt

3. $ ChIPseeqerAnnotate --peakfile¼DMR.DLBCL_1.txt --
genome¼hg19 --db¼refSeq

4. $ mergeCSAnnotateGenesColumns.pl --genefile¼DMR.
DLBCL_1.txt.refSeq.GP.genes.annotated.txt --gen-
eparts¼P --showORF¼1 --outfile¼DMR.DLBCL_1.pro.txt

$ make_PAGE_input.pl --geneslist¼DMR.DLBCL_1.pro.
txt --refgene¼/data/hg19/refSeq

5. $ page.pl –expfile¼DMR.DLBCL_1.pro.txt.ORF.txt --
pathways¼human_go_orf --cattypes¼P,C,F -suffix¼GO

6. > pheatmap(mat, . . .)

In step 3, ChIPseeqerAnnotate is used to annotate DMRs
based on hg19 human genome and RefSeq gene annotations. In
step 4, we specifically extract DMRs overlapping with promoters
(defined as �2 kb windows centered on RefSeq transcription start
site). In step 5, we run pathway analysis against known Biological
Processes (BP) in the Gene Ontology [28]. Other pathway data-
bases such as KEGG pathways or msigDB pathways can be used in
this step [31–33]. Step 6 is different from other commands we
used in this chapter. It is an R command and needs to be run in R
environment. The 1-0 matrix mat needs to be provided to retrieve
the heatmaps. Generally, several options can be used in this func-
tion to modify heatmaps in R. For example, scale option is a
character indicating if the values should be centered and scaled in
either the row or the column direction, or none. cluster_rows and
cluster_cols are boolean values determining if rows/columns
should be clustered.

3.5 Genomic Region-

Specific DMRs

Analysis (Supervised)

The analysis in Subheading 3.4 is currently limited to pairwise
sample analysis. While it can be extended tomore than two samples,
an alternative approach is to compare the methylation levels of
specific regions across two groups of samples. Groups of samples
can be defined based on clinical variables such as diagnosis and
relapse, chemo-resistant versus chemo-refractory, etc. Genomic
regions can be defined as promoters, CpG Islands, enhancers, and
binding sites for certain proteins, e.g., CTCF [34]. The proposed
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analysis identifies which of these predefined genomic regions are
differentially methylated between the two sample groups.

We created an R script to collect methylation levels for specified
regions and then perform supervised analysis between the two
groups in R [18]. The analysis applies statistical testing followed
by correction for multiple testing to assess differential methylation.
We usually need two steps to perform this analysis:

1. We use an R script named regionMethyl.R in Errbs-tools to
generate methylation levels for promoters of each patient. The
methylation level for each region in each sample is calculated by
averaging the methylation levels of all CpGs (with a threshold
of a minimum number of CpGs) inside the corresponding
regions. This script generates a matrix with methylation levels
for all the regions across all the samples.

$ R CMD BATCH --no-save --no-restore [options] region-

Methyl.R regionMethyl.log

We utilize R CMD BATCH to run the R script from the
command line. The regionMethyl.R script can be found in
Errbs-tools. regionMethyl.log stores the running log for the
script. --no-save specifies that nothing will be saved in the.
Rdata file. --no-restore specifies that R does not read the.
Rdata file in the current directory. We use those two arguments
since objects with identical names in the current R working
space could cause bugs in the program or the outputs of the
script could cause changes in the user’s working space. Several
arguments need to be specified in this step. --input_dir speci-
fies where Methyl files should be found (see Table 1). --out-
put_dir specifies where the output files should be created. --
regions specifies a RDS format file that contains genomic
region coordinates as GRanges or GRangesList objects
[18, 19].

2. Perform supervised analysis comparing methylation levels of
input regions between groups: we use paired T-tests or
Wilcoxon-tests between diagnosis and relapse sample pairs.
This analysis is followed by correction for multiple testing. A
minimum methylation difference is also often used to ensure
biological relevance of any significant change (at least 10%
methylation difference). Differentially methylated promoters
across all the patients can be visualized using a heatmap
(Fig. 2b). As before, we use the pheatmap R package [18, 30].

Example:

1. $R CMD BATCH --no-save --no-restore ’--args input_-
dir¼cpg/ output_dir¼. regions¼promoter22kb.rds
regionMethyl.R regionMethyl.log
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2. > pheatmap(mat, . . .)

In this example the, --regions parameter specifies a list of
promoters (defined as � 2kb windows centered on RefSeq tran-
scription start site) in GRanges data format [19]. Other regions
such as CpG islands and enhancers can also be used here.

3.6 Intra-tumor MH

Characterization

It is common to use DMRs or average DNA methylation levels
within a specified region to characterize DNA methylation. How-
ever, DNA methylation is generally measured on cell populations
consisting of hundreds of thousands or even millions of cells.
Bisulfite converted DNA reads may contain multiple CpGs thus
enabling a per-read analysis of DNA methylation patterns. In such
analyses, loci with identical average DNA methylation levels can
have distinct DNA methylation patterns between samples. Such
distinct patterns are the result of intra-tumor MH (see Fig. 3a).
Intra-tumor MH has been connected to gene expression levels and
to clinical outcomes in several types of tumors including chronic
lymphocytic leukemia (CLL) and Diffuse large B-cell lymphoma
(DLBCL) [4, 12]. For example, higher MH in the promoter of
certain genes was linked to lower expression of those same genes in
CLL. Patients with higher global MH levels at diagnosis stage of
DLBCL have a higher chance to relapse after chemotherapy [4].

The concept of epipolymorphism has been used to describe and
quantify methylation heterogeneity [35]. The epipolymorphism
level of a four-CpG locus (reads containing four or more contiguous
CpGs) was defined as the probability that epialleles randomly sam-
pled from the locus differ from one another. Higher epipolymorph-
ism corresponds to higher intra-tumor MH and vice-versa.
Epipolymorphism can be analyzed at individual loci based on
ERRBS data. A global epipolymorphism level can also be calculated.
We perform MH analysis using the following steps:

1. Epipolymorphism is calculated for each locus in a sample. The
epipolymorphism level of a 4-CpG locus in the cell population
is defined as the probability that epialleles randomly sampled
from the locus differ from one another. More specifically, if we
denote pi as for the fraction of each DNA methylation pattern
i in the cell population. The epipolymorphism equals 1 � Σpi2.
The higher the epipolymorphism, the higher the intra-tumor
heterogeneity is. We created a script called regionMH.R to
evaluate epipolymorphism levels (the script can be found in
Errbs-tools). We utilize R CMD BATCH to run the R script
from command line:

$R CMD BATCH --no-save --no-restore [options] regionMH.R

regionMH.log
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Several arguments need to be specified in this analysis. --
cpg_dir sets the location of CpG Methyl files (see Table 1), --
bam_dir sets the directory containing BAM files created by
Bismark. Output files are written to --output_dir. --regions
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Fig. 3 Examples of intra-tumor MH analysis. (a) Epipolymorphism levels are dependent on DNA methylation
levels. All loci are divided into different groups based on their methylation level and the median epipolymorph-
ism of each group is calculated. Genome-wide intra-tumor MH is quantified by area under the median line. (b)
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the loci located in gene promoter
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point to promoter regions (defined as�2 kb windows centered
on RefSeq transcription start site) in GRanges format [19].

2. Epipolymorphism is correlated with the methylation level,
which means a locus has lower expected epipolymorphism
values when it is fully methylated or fully unmethylated com-
pared to the locus with 50% methylation levels) (see Fig. 3b).
Therefore, global epipolymorphism must be normalized by
methylation levels. Our global analysis divides loci into differ-
ent bins depending on their methylation levels and median
epipolymorphism is calculated for each bin. The area under
the median line is defined as MH for each patient (see Fig. 3b,
c). With this analysis, we can study the correlation between
MH and tumor evolution.

Example:

1. $R CMD BATCH --no-save --no-restore ’--args sam-
ple¼DLBCL_1 cpg_dir¼cpg/ bam_dir¼bam/ out-
put_dir¼. regions¼promoter22kb.rds regionMH.R
regionMH.log

A growing number of studies have shown that intra-tumorMH
is predictive of clinical outcome and tumor evolution. Such studies
are showing that tumors with higher MH progress faster and earlier
than tumors with low methylation heterogeneity. It is however
worth noting that there are several methods for calculating intra-
tumor MH (seeNote 9).

3.7 Conclusion

and Outlook

Epigenetic modifications play a key role in cell development and
tumorigenesis. DNA methylation is one of the best studied epige-
netic modifications. High-throughput bisulfite converted sequenc-
ing technology provides great opportunities to analyze DNA
methylation patterns during various physiological and pathophysi-
ological processes. DNA methylation is relevant for cancer biology
and has been link to tumor evolution. We here describe a compre-
hensive computational methodology to analyze DNA methylation,
utilizing open source tools and our own in-house software. Our
methodology starts from pre-alignment quality control and data
cleaning processes, followed by data alignment, methylation state
calling, and multiple downstream analyses. Following our direc-
tions, users can perform supervised and unsupervised analysis to
different scales, including base pair DMCs, patient-specific DMRs,
and genomic region-specific DMRs. Utilizing the above-
mentioned tools to identify DNA methylation abnormalities can
allow linking those to cellular development, tumor progression,
and tumor evolution.

It is still unclear how DNAmethylation or epigenetic modifica-
tions contribute to genetic changes and subsequently influence
tumor evolution. Computationally, faster and more accurate
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alignment is still needed to perform larger-scale and more reliable
analyses. Moreover, it will be equally important to design new
algorithms to identify DMCs/DMRs with lower false discovery
rate. There are still a number of unanswered questions in the field
of tumor methylation analysis. For example, promoter hyper-
methylation could so far only be correlated to lower gene expres-
sion levels in a subset of genes. Global correlation between
promoter hypermethylation and gene expression is still weak,
making it difficult to draw any mechanistic conclusions from meth-
ylation patterns. Compared to successful genetic perturbation,
modifying DNA methylation for specific regions is still a big chal-
lenge both in vivo and in vitro. Long-term efforts are needed for
this intriguing but complex study in tumor evolution.

4 Notes

1. FastQC performs a series of quality control analyses including
per base sequence quality, per sequence quality scores, per base
sequences content, adapter content. Each test is flagged with a
pass (green tick), warning (orange exclamation mark), or fail
(red cross). The assigned status depends on howmuch a sample
deviates from good quality benchmark samples. Examples of
good and bad quality samples can be found at http://www.
bioinformatics.babraham.ac.uk/projects/fastqc/ [13].

2. When running trim_galore, several parameters need to be
considered. First, the default value of -q/--quality <INT> is
20, which means reads with low-quality ends (under 20) are
trimmed. This parameter is acceptable for ERRBS analysis but
can be less stringent if more reads are needed for the analysis.
Second, the sequencing platform needs to be factored in. As
default trim_galore will use ASCIIþ33 quality scores as Phred
scores (option --phred33). ASCIIþ33 quality scores are usu-
ally used by Illumina 1.8þ, which encode a Phred quality score
from 0 to 41 using ASCII 33 to 74. If the sequencer did not
use ASCIIþ33 quality scores, use --phred64 option to specify
alternative quality scores. Third, when no adapter sequence was
provided, trim_galore will analyze the first one million
sequences of the first specified file and attempt to find the
first 12 or 13 bps of the following standard adapters:

Illumina: AGATCGGAAGAGC
Small RNA: TGGAATTCTCGG
Nextera: CTGTCTCTTATA

If using other adapters, it is important to provide correct
adapter sequences in this step.
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3. One of the most important parameters for trim_galore is -s/--
stringency <INT>, which specifies the minimum number of
required overlaps with the adapter sequence. The default value
(1) is very stringent since even one overlap with the adapter
sequence would be removed. If a less stringent value is used
here, there is a higher chance of including too much adapter
contamination into the downstream analysis, thus distorting
the results. However, if one uses a very stringent cutoff (such as
the default value), it is possible that some reads are mistakenly
removed due to the first base being identical to adapters by
chance. If sequencing data does not have enough reads after
adapter trimming, CpGs coverage may be too low and down-
stream analyses such as DMCs/DMRs calling may be difficult.

4. There are several computational tools available, which the users
can employ to solve the alignment of bisulfite converted data
such as ERRBS. Before Bismark, different groups developed
analysis tools for bisulfite converted data, including BSMAP,
RMAP-bs, MAQ or BS seeker [20–23]. BS Seeker outper-
formed other mapping programs mentioned above, such as
BSMAP, RMAP-bs, or MAQ, in terms of mapping efficiency,
accuracy, and required CPU time [23]. Although the principles
underlying BS Seeker and Bismark are similar, Bismark offers a
number of advantages over BS Seeker [15]. For example, Bis-
mark can support single-end and paired-end data, variable read
length, adjustable insert size, and more adjustable mapping
parameters. Bismark is much faster than BS Seeker. Also, Bis-
mark can support non-directional library directly. The most
important advantage compared to other tools is that Bismark
not only does read mapping but, it also has tools for CpG
methylation calling, an important feature of ERRBS type data
analysis. For these reasons, Bismark is the most convenient tool
available and accordingly most widely used. However, BS
Seeker and Picard (https://broadinstitute.github.io/picard/)
are also good alternatives.

5. When mapping reads to the genome, one should be aware of
the sequencing library context. Directional sequencing libraries
are common. However, if sequencing is not directional the --
non_directional parameter should be used. Also, according to
the Bismark tutorial, Bowtie 1 instead of Bowtie 2 should be
used when trying to run alignment faster or when the sequenc-
ing reads are short [15]. Bowtie 1 usually performs equally well
as Bowtie 2 in such condition. However, when applied to
library with long fragment size (75 bp or above), Bowtie 2 is
always recommended and always shows better performance.

6. In Bismark, there are four kinds of output files storing methyl-
ation status. Those are labeled with OT, OB, CTOT, and
CTOB. Those files comprise reads, which are versions of the
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original top strand, the original bottom strand, strands com-
plementary to OT, and strands complementary to OB, respec-
tively. If a library is directional, only reads that are versions of
OT and OB will be sequenced. Forward strand CpG methyla-
tion information can be retrieved from OT files and reverse
strand CpG information can be extracted from OB files. How-
ever, if libraries are constructed in a non-directional model, all
four different strands generated will end up in the sequencing
library with roughly the same likelihood. In this case, it is
important to extract forward strand CpGmethylation informa-
tion from OT and CTOT files. OB and CTOB files collect
reverse strand DNA methylation information.

7. If the applied sequencing library is non-directional, it is important
to specify this when trying to use the bismark_methylation_
extractor.

8. Extracting methylation information from low coverage CpG is
typically considered not reliable due to potential sequencing
errors for specific base pairs in routine ERRBS data passing
process. It is recommended to remove CpGs covered by less
than ten reads in the original ERRBS method paper [9]. How-
ever, decreasing this parameter is possible when analyzing
WGBS data since WGBS is routinely low (10–15�). In fact.
considering some people use 3� as the minimum reads in
WGBS data [36], lower coverage may be acceptable.

9. Many other types of analyses can be used to characterize
MH. Those include M-scores, Eloci, and PDR [8, 12,
37]. All these features have positive correlations with MH but
they show differences in other respects. For example, M-scores
only capture MH in each CpG site, which ignores the hetero-
geneity relation between adjacent CpGs. Eloci and PDR can-
not consider hyper/hypo direction when they estimate MH
changes. It is recommended to use different methods to study
MH and explore any potential differences between methods.
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Chapter 4

MicroRNA Networks in Breast Cancer Cells

Andliena Tahiri, Miriam R. Aure, and Vessela N. Kristensen

Abstract

A variety of molecular techniques can be used in order to unravel the molecular composition of cells. In
particular, the microarray technology has been used to identify novel biomarkers that may be useful in the
diagnosis, prognosis, or treatment of cancer. The microarray technology is ideal for biomarker discovery as
it allows for the screening of a large number of molecules at once. In this review, we focus on microRNAs
(miRNAs) which are key molecules in cells and regulate gene expression post-transcriptionally. miRNAs are
small, single-stranded RNA molecules that bind to complementary mRNAs. Binding of miRNAs to
mRNAs leads either to degradation, or translational inhibition of the target mRNA. Roughly one third
of all the mRNAs are postulated to be regulated by miRNAs. miRNAs are known to be deregulated in
different types of cancer, including breast cancer, and it has been demonstrated that deregulation of several
miRNAs can be used as biological markers in cancer. miRNA expression can for example discriminate
between normal, benign and malignant breast tissue, and between different breast cancer subtypes.
In the post-genomic era, an important task of molecular biology is to understand gene regulation in the

context of biological networks. Because miRNAs have such a pronounced role in cells, it is pivotal to
understand the mechanisms that underlie their control, and to identify how miRNAs influence cancer
development and progression.

Key words Biomarkers, Breast cancer, Cancer, Microarrays, microRNA, Systems biology

1 microRNA Biology

1.1 microRNAs: A

Historical Perspective

The central dogma in molecular biology has for a long time been
“DNA makes RNA that makes protein” [1]. However, the impact
of a gene on the phenotype is highly dependent on different
mechanisms that allow a particular gene to be turned “on” or
“off” in a particular state, in a particular cell, at a particular time.
One way this type of regulation can be performed is by small RNA
regulatory units called microRNAs (miRNAs). miRNAs are small,
non-protein-coding RNA molecules that function as negative reg-
ulators of gene expression either by inhibiting translation or induc-
ing degradation of messenger RNA (mRNA). Lin-4 was the first
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miRNA that was discovered in the nematode Caenorhabditis ele-
gans (C. elegans) by Lee et al. in 1993 [2]. It took researchers
7 more years to identify another miRNA, let-7, in C. elegans
[3]. Let-7 consisted of only 21 nucleotides, and was identified to
have a significant role in nematode development. Resultantly, gene
expression studies were complemented with the studies of the novel
molecules regulating gene expression. Let-7 was thereafter identi-
fied in several organisms, including humans, with highly conserved
sequences among different species. Today, more than 2500 mature
human miRNAs have been annotated (miRBase version 21; [4]),
and more than 60% of all the genes are predicted to be regulated by
miRNAs [5].

After the initial description of miRNAs in C. elegans in 1993, it
took several years before the role of miRNAs started to be fully
appreciated. Over the last two decades, the number of papers
published on miRNAs has exploded. However, there are still
many unanswered questions regarding the detailed mechanisms
by which miRNAs exert their regulatory roles.

Part of the difficulty in studying miRNA function is due to the
complexity of miRNA biology. One miRNA may target several
genes and one mRNA transcript has putative binding sites for
various miRNAs. Thus, trying to dissect the in vivo connections
between miRNAs and target mRNAs is a complex combinatorial
challenge. Adding to the complexity of validating miRNA-mRNA
relations is the fact that miRNA expression is tissue and time-
specific, i.e., the context dependence is high.

1.2 miRNA

Biogenesis

and Function

The process of generating mature miRNAs in the cell consists of a
series of nuclear and cytoplasmic steps (see Fig. 1). miRNAs are
encoded either independently of protein-coding genes (intergenic)
or inside introns of a host gene (intronic). Transcription occurs in
the nucleus by RNA polymerase II and produces a long primary
hairpin transcript called the primary miRNA (pri-miRNA). The
pri-miRNA is long (>1 kb) and contains a local stem–loop struc-
ture, which is cleaved by the microprocessor complex (RNase III
Drosha, in combination with DiGeorge syndrome critical region
gene 8) in order to generate a precursor miRNA (pre-miRNA)
[6, 7]. The pre-miRNA is exported to the cytoplasm by Exportin-
5 and RAN-GTP, where it is further processed by RNase III endo-
nuclease Dicer, to form a double-stranded miRNA duplex (~22 nt)
[8]. The duplex is made up of two mature miRNA strands (named
-5p and -3p depending on the 50 and 30 directions of the strand),
and is subsequently loaded onto an Argonaut (AGO) protein to
form an effector complex called the RNA-induced silencing com-
plex (RISC) [7]. Usually, the RNA-strand with the unstable 50-end
is recruited into RISC, whereas the other strand (-3p) is released
and quickly degraded. However, some studies have shown that the
less abundant strand is also active in silencing, albeit usually less
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potently than the more abundant guide strand [19]. Once the
mature miRNA strand is incorporated into the RISC complex,
the miRNA sequence targets mRNA through either perfect or
imperfect complimentary binding to the 30 untranslated region
(UTR), the coding region or the 50-UTR of genes [9, 10]. Binding
of RISC to target mRNA can have different outcomes. Imperfect
complementary binding of miRNAs to their targets inhibits trans-
lation and reduces protein expression without affecting the mRNA
levels of these genes. Perfect complementary pairing between
miRNA and mRNA targets the mRNA for degradation by RISC
[11]. The exact mechanism of protein reduction is not fully under-
stood, but it is likely that it occurs through both RNA degradation
and translational repression pathways, with different miRNAs con-
tributing to each pathway in different proportions [12]. mRNA
degradation in mammals involves poly (A)-tail shortening (dead-
enylation) and other de-capping methods at the 50-end of the
mRNA strand. It is believed that miRNAs regulate a substantial
portion of all protein coding genes. The complexity of mRNA
regulation through miRNAs is remarkable as each miRNA can
potentially regulate hundreds of genes, and one gene can be

miRNA strand 
incorporated into
RISC

DNA

Pri-miRNA

Pre-miRNA

miRNA duplex Translational
inhibition

mRNA
degradation

POL II

DROSHA DGCR8

EXP5

EXP5

DICER

RISC

Nucleus

Cytoplasm

Fig. 1 The canonical miRNA biogenesis pathway and miRNA function (see the text for details). Pri-miRNA,
primary miRNA; EXP5, Exportin 5; POL II, RNA polymerase II; pre-miRNA, precursor miRNA; RISC, RNA-induced
silencing complex
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regulated by several miRNAs. Additionally, several transcription
factors have been identified that can directly influence the expres-
sion of miRNAs [13–15]. miRNAs are considered important reg-
ulators of gene expression, involved in cellular processes such as
development, cell proliferation, apoptosis, metabolism, cell differ-
entiation, and stem cell division [16]; processes that are also highly
involved in cancer pathogenesis.

1.3 miRNA–Target

Gene Interactions

and Predictions

The dominant target recognition sequence in the miRNA is termed
the “seed” sequence and is located in nucleotides 2–8 in the
miRNA from the 50-end [17]. These positions in the miRNA are
often evolutionary conserved. Other compensatory rules for
miRNA-mRNA target recognition also exist, but all of them
include some degree of sequence complementarity. miRNA target
prediction is a major task in computational biology. Several in silico
approaches exist that predict targets for a given miRNA and are
described later in more detail. Those are based on different criteria
such as complementarity to the miRNA seed region, evolutionary
conservation of the miRNA recognition elements in the mRNA,
free energy of the miRNA-mRNA hetero-duplex, and mRNA
sequence features outside the target site [18, 19].

1.4 miRNA Function

on a Cancer Systems

Level

miRNAs are able to fine-tune the protein level of thousands of
genes, either directly or indirectly, and thereby make fine-scaled
adjustments to protein output [20]. The variety and abundance of
targets offer an enormous level of combinatorial possibilities. This
high level of complexity suggests that miRNAs and their targets
form an intricate regulatory network intertwined with other cellular
networks. It is pivotal to understand how miRNAs regulate cellular
processes at the systems level, including miRNA regulation of
cellular networks, metabolic processes, protein interactions, and
gene regulatory networks. Studying different networks to assess
the influence of miRNAs on their targets will help to identify
miRNAs that have a strong influence on breast cancer development
and progression.

2 miRNAs in Cancer

2.1 Breast

Pathophysiology

Cancer is a complex disease involving abnormal growth of cells,
invasion to surrounding tissue, and migration and invasion to
distant sites. Breast cancer is the most common type of cancer and
cause of cancer-related deaths in women worldwide [21].

However, the most frequently observed abnormalities in the
breast are usually benign. Different benign conditions can take
place in the breast. Those can be divided into three groups based
on how they affect breast cancer risk [22]; (1) Non-proliferative
lesions such as cysts or fibrosis considered with almost no breast

58 Andliena Tahiri et al.



cancer risk; (2) Proliferative lesions without atypia such as breast
fibroadenoma or fibroadenomatosis which show excessive growth
of cells in the ducts or lobules of the breast tissue, and slightly
increase a woman’s risk of developing breast cancer; (3) Proliferative
lesions with atypia such as atypical ductal/lobular hyperplasia
(ADH/ALH) show an overgrowth of cells in ducts or lobules of
the breast. They have a strong effect on breast cancer risk [23–28].

Although there are many types of benign lesions in the breast,
most research is focused on malignant breast tumors. Breast cancer
types can be grouped based on the origin of tumor formation into
invasive or noninvasive types of breast cancer. These include lobular
carcinoma in situ (LCIS), ductal carcinoma in situ (DCIS), invasive
ductal carcinoma (IDC), and invasive lobular carcinoma (ILC).
DCIS and LCIS are considered pre-invasive cancer as they can in
some cases metastasize [29]. IDC is the most common type of
breast cancer which starts in a milk duct of the breast, breaks
through the wall of the duct, and grows into the fatty tissue of
the breast. At this point, it may metastasize to other parts of the
body through the lymphatic system and bloodstream. ILC on the
other hand, starts in the lobules, and like IDC, it can metastasize.
There are about 5–15% of breast cancer cases that involve ILCs, and
they are more difficult to detect than IDCs through physical exam-
ination, mammography, and even through gross pathologic
evaluation [30].

Cancer has for a long time been viewed as a genetic disease.
However, as the unraveling of the molecular biology of breast
cancer progresses, it is no longer seen as a single disease, but rather
as a complex disease involving many subtypes with different out-
comes based on differences in the genetic makeup [31, 32]. For
example, in breast cancer the expression of estrogen receptor (ER),
progesterone receptor (PR), and human epidermal growth factor
receptor 2 (HER2)/neu have implications for prognosis and ther-
apy selection that are independent of TNM staging, which
describes tumor size or depth (T), lymph node spread (N), and
presence or absence of metastases (M) [33]. Ki-67 is a prognostic
marker of breast cancer that has recently been applied in the clinics
[34]. Ki-67 is a marker of proliferation, and higher percentage of
Ki-67 in breast cancers (usually above 15%) indicates worse
prognosis.

Thanks to advances in molecular biology and the use of micro-
array technology, breast cancer can be divided into four subtypes
based on the genetic profiles, with each having a different clinical
outcome [31, 32, 35–37]. These subgroups are named; (1) luminal
A (ERþ, HER2�), (2) luminal B (ERþ, HER2þ/HER2�),
(3) HER2-enriched, and (4) basal-like, also often termed triple
negative (ER�, PR�, HER2�). The luminal A subtype has the
best prognosis compared to the other subtypes. Luminal B tumors
are characterized by high proliferation activity (Ki-67 index), may
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be positive for HER2 expression, and have a worse prognosis than
luminal A tumors [38]. However, HER2 expression in the Luminal
B subtype is lower than in HER2-enriched tumors. The HER2-
enriched subtype is often associated with nodal metastasis, whereas
the basal-like often occurs in younger patients, is more frequently
associated with visceral organ metastasis, and has a very poor prog-
nosis [39]. It is important to note that not all triple negative tumors
are identified as basal-like by gene expression, and not all basal-like
tumors are triple negative [40].

2.2 Cancer

Biomarkers

A biomarker is a biological molecule present in any biological
material (e.g., tissue, cell, or body fluid) that can be used as a
measurable indicator of normal biological processes, pathogenic
processes, or response to therapy [41]. Biomarkers in cancer can
be divided into three main subgroups providing different purposes
in the clinic; (1) Risk assessment markers; (2) Diagnostic markers;
and (3) Prognostic markers (Table 1). Medical scientists still strive
to find the best biomarkers that can provide a reliable diagnosis, tell
us which therapy is the best for a particular patient, or even better;
tell us whether a person is at risk of getting a certain disease without
reaching the diseased stage. Early cancer detection would dramati-
cally reduce mortality associated with the disease; however, early
diagnosis relies on clinically validated biomarkers with high speci-
ficity and sensitivity.

Since 1985, the TNM staging [42] has provided doctors with
the basis for the prediction of survival, choice of treatment, and
stratification of patients. At the same time, it has provided consis-
tency among healthcare providers. In some cases, tumor grade,
histological subtype, or patient age would be added to TNM
staging when such information was important for the prediction
of survival or response to therapy. Today, the findings of new

Table 1
Different types of biomarkers important in clinical settings of cancer research

Biomarker Purpose Example References

1. Risk
assessment
and screening

l Aid in cancer prevention
l Provide the earliest evidence of potential cancer
in persons not yet diagnosed with the disease

Breast and ovarian
cancer:

BRCA1/BRCA2

[42]

2. Diagnostic l Establish a diagnosis
l Assist with staging, grading, and selection of
initial therapy

TNM staging [43]

3. Prognostic
and predictive

l Estimate the aggressiveness of a condition
l Predict how well a patient will respond to a
specific treatment

Breast cancer: ER,
PR, HER2, and
Ki-67

Melanoma: BRAF
(V600E)

[31, 44,
45]
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molecular markers that can predict survival and efficacy of therapy
provide additional important information to TNM staging, and are
used in the clinics worldwide.

Next to genetic changes, post-transcriptional, posttranslational
modifications, and metabolic changes play a role in cancer forma-
tion [43–45]. Better appreciation of the complexity in carcinogen-
esis has provided us with a number of candidate biomarkers
valuable for risk assessment, screening, diagnosis, prognosis, and
selection and monitoring of therapy. Nonetheless, although several
markers are identified and used for diagnostic and prognostic pur-
poses with implications in therapy treatment, histological examina-
tion is still required for diagnosis, whereas immunohistochemistry
and genetic tests are utilized for treatment decisions and prognosis
determination.

2.3 miRNA Function

in Cancer

The first discovery of the implication of miRNAs in cancer was
observed in B-cell chronic lymphocytic leukemia (CLL) in the
search of tumor suppressors at chromosome 13q14, which is com-
monly deleted in CLL patients [46]. In this study, the authors
found that miR-15a and miR-16-1 were located in this region.
Since loss of this chromosome was frequent in CLL, it indicated
that loss of these miRNAs also occurred, raising the question
whether miRNAs could be involved in the pathogenesis of cancer.
Later, the same group identified several miRNAs located in fre-
quently deleted or amplified regions in the genome in different
tumors [47].

Iorio et al. in 2005 described the first breast cancer miRNA
signature which could discriminate tumors from normal tissues
[48]. Subsequent studies have increased our understanding of
miRNA involvement in breast cancer, and identified aberrant
miRNA expression related to survival, metastasis, stage, prolifera-
tion, molecular subtype, TP53 mutational status, hormone recep-
tor status, and response to treatment [49–53]. The studies revealed
that changes in miRNA expression profiles can serve as phenotypic
signatures of specific types of cancer. Aberrant miRNA expression
associated with tumorigenesis can be a result of various mechan-
isms. Several studies point to transcriptional deregulation, copy
number aberrations, mutations, epigenetic alterations, and defects
in the miRNA biogenesis machinery as contributors to miRNA
deregulation in cancer [54]. Some miRNAs may be causally linked
to tumorigenesis by directly modifying tumor-suppressor or onco-
genic pathways. For example, the overexpression of miRNAs can
inhibit tumor-suppressor genes in a pathway. Conversely, reduced
miRNA expression through loss-of-function mutations could result
in increased expression of oncogenes, also contributing to cancer
development and progression (see Fig. 2).
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2.4 miRNAs

as Cancer Biomarkers

Various studies provide evidence that miRNAs can be used as
biomarkers for different purposes [55, 56]. Deregulated expression
profiles of miRNAs have been discovered in a wide variety of human
cancers, including breast cancer [57], colorectal cancer [58], gli-
oma [59], lymphoma [60], and prostate cancer [61].

The survival and prognosis of a patient is highly dependent on
the stage of the tumor at the time of detection. The earlier a tumor
is detected, the better the prognosis is. Thus, a major clinical
challenge in cancer is the identification of biomarkers that can
detect cancer at an early stage. miRNAs can be reliably extracted
and detected from frozen and paraffin-embedded tissues. They can
moreover be found circulating freely in the blood or bound to
circulating exosomes, and in different body fluids like urine, saliva,
and sputum [62]. The fact that miRNAs are stable in body fluids,
and that they are easily detectable through noninvasive procedures
makes miRNAs attractive biomarker candidates. For example,
miRNA signatures in plasma had strong diagnostic and prognostic
potential detecting lung cancer before disease onset, as plasma
samples were collected 1–2 years before lung cancer was detected
by CT [63]. Another recent study by Cava et al. [64] showed that
miRNA profiling improved breast cancer classification and could
differentiate patients with breast cancer as responding or not
responding to therapy, with promising results. The correct classifi-
cation of breast cancer is a fundamental factor in determining the
appropriate treatment, and it is now evident that miRNAs have the
potential to provide new diagnostic, prognostic, and predictive

Oncogenic miRNA Tumor-suppressor gene

Tumor-suppressor miRNA Oncogene

Cancer

Fig. 2 miRNAs may have oncogenic or tumor-suppressive roles in cancer. Upregulation of oncogenic miRNAs
results in increased repression of tumor-suppressor target genes. Conversely, downregulation of tumor-
suppressor miRNAs results in decreased repression and thus increased expression of target oncogenes. Both
scenarios may lead to cancer development and progression. Figure based on Lujambio and Lowe [119]
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biomarkers for cancer, with a great impact in the clinics. However,
their use in the clinics has not been implemented yet as there still
are many hurdles to overcome.

3 Techniques for Studying miRNA Networks in Cancer

3.1 The Microarray

Principle

Oligonucleotide microarray is a high-throughput technique based
on hybridizing labeled sample material to complementary probes
that are immobilized on a solid surface. The amount of material
that has hybridized to the probes is quantified by a laser that scans
the array and excites the fluorescent dye attached to the labeled
sample. One array contains thousands of probes, each representing
a defined sequence that is complementary to an mRNA or miRNA
transcript. The microarray technology is a useful tool to study the
expression of thousands of miRNAs or mRNAs simultaneously.
Many different platforms exist with varying probe contents and
length, and labeling techniques. Figure 3 illustrate the steps of
Agilent-based miRNA/mRNA expression profiling.

P

cDNA

Labeled
cRNA

Labeled 
RNA

RT POL II

Incubation and hybridization

Washing

Scanning

Feature extraction

Isolated total RNA
miRNA 
analysis

mRNA 
analysis
mRNA 

analysis

Fig. 3 miRNA and mRNA expression profiling using Agilent microarrays. RNA is labeled with a fluorescent dye
(Cyanine 3; Cy) and transferred to the microarray where the sample material hybridizes to complementary
probes during incubation. Then follows washing and scanning of the array, and finally feature extraction where
probe hybridization intensities are quantified. The protocol deviates slightly between microRNA and mRNA
analysis. For the former RNA is treated with phosphatase to remove the 30-phosphate group (P), which is
followed by labeling. For mRNA profiling the RNA is first converted to complementary DNA (cDNA) by reverse
transcriptase (RT), and then the cDNA is further transcribed into complementary RNA (cRNA) by the use of RNA
polymerase (POL II) where labeled cytosine residues are incorporated
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3.2 Functional

Experiments

to Validate miRNA

Targets and Their

Effect on Cells

Data from functional studies of miRNAs in cell lines can be gener-
ated after identifying interesting candidates from analyses of high-
throughput data. The aim is to determine whether the candidate
miRNA is functionally involved in cancer-associated processes. This
can be done by testing the effects of silencing or overexpression of
the candidate miRNA on the viability and proliferation of cancer
cells. Knockdown of potential tumor driver miRNAs can be per-
formed using small, single-stranded anti-miRs which are miRNA
inhibitors that bind to and inhibit endogenous miRNAs [65]. Con-
versely, the effect of candidate tumor-suppressor miRNAs can be
assessed by overexpression, for example by adding miRNA mimics
and measuring the effect on cell viability. In order to effectively
study the functional role of miRNAs in cell lines, high-throughput
screens can be performed. Leivonen et al. used libraries of either
miRNA mimics or anti-miRNAs which were tested simultaneously
in large scale and used to measure the effect of miRNA overexpres-
sion or knockdown, respectively [66]. miRNAs can be spotted in
96- or 384-well formats, and incubated with cells from a cell line of
interest. The phenotypic end-points of such screens may measure
the effects that miRNAs have on cell viability, apoptosis, and prolif-
eration, as well as expression of marker proteins. Leivonen et al.
[66] performed a high-throughput screen to identify miRNAs that
were important for the growth of HER2-positive breast cancer
cells. They overexpressed miRNAs in HER2-positive cell lines and
assessed the effect on HER2 protein levels, proliferation (Ki67),
and apoptosis (cleaved PARP). Thirty-eight miRNAs were identi-
fied that inhibited HER2 signaling and cell growth. In another
study [53], miRNAs that were identified as differentially expressed
between high and low proliferative tumor samples (scored by
immunohistochemistry) were further functionally validated by
transfecting a library of pre-miR constructs into breast cancer cell
lines. The cells were lysed and the lysates printed on slides that were
then stained with an antibody against Ki67 to assess the effect of the
miRNAs on proliferation. Among the 123 identified differentially
expressed miRNAs, 13 showed a corresponding functional effect
on Ki67 protein levels [53].

The measurement of ATP using luciferase is one of the most
commonly used assays for assessing cell viability in high-
throughput screening applications [67]. The assay is fast and easy
to use, sensitive, and also less prone to artifacts than other viability
assay methods [67, 68]. However, the assay measures metabolically
active cells, which cannot be translated into viable cells in all con-
texts. Another method that is widely used is the MTT Tetrazolium
Reduction Assay. Yet, the MTT assay lacks sensitivity, is more time-
consuming and more prone to variation, due to multiple experi-
mental steps involved compared to the ATP assay [68]. Other
methods that are used to measure the effect of miRNAs on cell
viability or proliferation include the TUNEL assay, Trypan Blue
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staining assay, Tetrazolium Reduction Assays, etc. The choice of
method relies on the investigators’ preferences, and there are both
benefits and pitfalls for each assay which have to be taken into
consideration.

3.3 Databases

and Tools

Different databases exist that list miRNAs, their chromosomal
location, sequence and their putative target genes. For example,
the miRBase database contains all published miRNA sequences and
annotations [4]. The Ingenuity Pathway Analysis database (IPA,
Ingenuity Systems; www.ingenuity.com) can be used to associate
genes correlated to candidate miRNAs with pathways and for vari-
ous gene annotation purposes. The SEEK tool [69] can be used to
identify and annotate genes that are co-expressed with miRNA-
correlated genes. Different computational tools are readily available
for the analysis of miRNA target sites, such as miRanda [70–72],
TargetScan [5, 73, 74], PicTar [75–77], and DianaMicroT-CDS
[78, 79] (Table 2). Those can be used to predict potential targets of
a miRNA that has been identified (for example in cancer tissue), or
vice versa, identify candidate miRNAs predicted to bind to a gene of
interest.

Feedback from functional validation results has greatly
improved the performance of these in silico miRNA target predic-
tion algorithms. The miRanda software was initially designed to
predict miRNA target genes in Drosophila melanogaster
[70, 71]. The algorithm searches for highly overlapping basepairs
in the 30 UTRs for identifying potential binding sites [70]. A higher
score is given for sequences which are complementary to the 50 end
of the miRNA compared to the 30 end, leading to higher prediction
scores for seed regions with perfect, or nearly perfect match.

TargetScan is an algorithm developed by Lewis et al. [74], and
was the first miRNA target prediction tool for the human genome,
using a different search approach than miRanda. TargetScan
searches for perfect complementarity in the seed region and beyond
[74]. If there is complementarity outside the seed region, it will
filter out the false positives more efficiently prior to prediction.
Data from conservation analysis derived from orthologous 30

Table 2
Computational algorithms for miRNA target prediction

Algorithm Website References

TargetScan www.targetscan.org [5, 71, 72]

miRanda www.microrna.org [68–70]

PicTar pictar.mdc-berlin.de [73–75]

DianaMicroT-CDS www.microrna.gr/microT-CDS [76, 77]
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UTRs are used as input early in the process. Also, thermodynamic
stability is tested to filter predicted target sites [80].

PicTar is the first algorithm for analyzing miRNAs and target
mRNAs in co-expression at a specific time and place. The PicTar
software fully relies on data from several species to identify common
targets for miRNAs [75]. It uses conservation data from 30 UTR as
input and searches for alignment of complementary seed regions.
Binding sites are tested for thermodynamic stability and each result
is given a score [75, 80].

The DianaMicroT algorithm scans for larger complementarity
regions and focuses on coding regions of target mRNAs [79]. It
also calculates and uses the free energy of binding sites as an input
for the prediction of targets. Importantly, many miRNAs share
sequence composition and are thus grouped into families based
on sequence homology. Members of the same miRNA family are
believed to at least partly be able to target some of the same genes
due to this sequence similarity [71]. There is still a gap between in
silico predictions and knowledge of the in vivo relations, but further
advances in molecular technology will reduce this gap.

3.4 (Epi-)

Genome–Transcrip-

tome Analysis

DNA aberrations are a hallmark of cancer genomes [81], and the
phenotypic effects of such alterations are commonly investigated
through the integration of genomic and transcriptomic data. Ana-
lyzing changes in DNA copy number can be used to identify
aberrant cancer genes. The correlation between copy number and
mRNA expression can be utilized to single out genes for which
DNA aberration is manifested in the altered expression of the gene.
In a similar manner, DNA copy number and methylation status can
be used together with miRNA expression to identify miRNAs
altered on the (epi-)genomic level with effects on the transcrip-
tomic level. The rationale behind such integrative approaches is
that recurrent alterations across tumor samples may indicate func-
tionality through the effect on the transcription levels of the
corresponding miRNAs or genes. Thus, RNA expression is used
as an additional layer to the genomic or epigenetic data to further
identify potential candidate genes. If a change in DNA copy num-
ber affects the expression of a miRNA, the miRNA is more likely to
be under selection in the tumor and hence might be important for
tumorigenesis.

Studies integrating DNA copy number and mRNA expression
in breast cancer have revealed a clear dosage effect of gene copy
number on gene expression [82, 83], which also holds true for
miRNA expression [84]. Lahti et al. [85] divided implementations
for the integrative analysis of DNA copy number and expression
into four main categories of approaches; two-step approaches,
correlation-based approaches, regression-based approaches, and
latent variable models. In a two-step approach, tumor samples
and miRNAs/genes are first grouped based on altered copy
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number and/or methylation levels, and then in the second step,
differential expression is assessed between the different groups.
Both correlation and regression-based methods can be used; this
ensures a potential functional implication on the expression of the
altered miRNA/gene. For example, Aure et al. [84] investigated
the effect of DNA copy number and methylation alterations on
miRNA expression in breast cancer. First, each miRNA in each
patient was assigned to one of the two groups altered or
non-altered based on copy number or methylation status. Then,
Wilcoxon rank-sum tests were used to assess if the expression of a
given miRNA was different in the two groups considering altera-
tions on the copy number, the methylation level, or both. Using
this approach the authors identified miRNAs whose expression was
increased due to gain and/or hypomethylation. The authors fur-
ther identified miRNAs, whose expression was reduced due to loss
or hypermethylation of the miRNA gene. In this way, the study
provided evidence of the mechanisms behindmiRNA dysregulation
in breast cancer. Interestingly, it was found that miRNAs from the
same family (i.e., sharing seed sequence and are predicted to regu-
late the same target genes) were altered by different mechanisms in
different patients, but with the same net effect on miRNA expres-
sion (increased or decreased), emphasizing alteration of miRNA
expression in breast cancer through variable genomic changes.

Comparative studies of methods integrating copy number and
expression data have shown that the different methods vary in
sensitivity and specificity, as well as in their performance in small
and large samples sizes [85, 86]. The objective of a study, e.g.,
sub-classification of tumor types or the identification of prognostic
or therapeutic targets, should decide which approach should be
used, together with the end-point chosen, e.g., altered genes, gene-
sets, pathways, or genomic regions [87]. However, important can-
cer genes or miRNAs may be overlooked by such integrative
approaches that require variation across samples and which focus
on simultaneous changes in both, e.g., copy number and expression
[85]. For example, despite an observed increase in the expression of
an oncogene, the in-cis correlation may be low if the increased
expression is caused by a mixture of amplification, mutation, or
hypomethylation across the patients.

3.5 Integration

of Multi-

dimensional Data

The development of high-throughput technologies has made it pos-
sible to simultaneously profile the genome, epigenome, transcrip-
tome, and proteome of biological samples such as breast tumor
tissue taken from biopsies. These so-called multi-dimensional data
represents several molecular levels that together can be used to char-
acterize biological systems [88]. Uncovering the relations between
the biological components of these systems—DNA copy number,
methylation state, genes, mRNAs, miRNAs, and proteins—allows
approaching breast cancer at a system level. Integration of multi-
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dimensional data from various molecular levels is required to reveal
the underlying system in greater detail. Bioinformatic approaches
address these challenges by representing the system as biological
networks and pathways [89]. The ultimate goal of taking such a
systems biology approach is to go from cancer genomes with all
their aberrations to cancer models where these aberrations may be
put in a system in order to identify common denominators, and
ultimately provide mechanistic insight into the development and
progression of cancer [90].

Due to the inherent complexity of cancer biology, a further
rationale for an integrative approach is that by combining data from
different levels and across patients, one may find cancer-relevant
events that might not have been found if only single layers were
assessed. For example, if expression of a gene is increased due to
gain, activating mutations, promoter hypomethylation, or altered
miRNA expression across patients, this would indicate that the
gene is a candidate oncogene, even though each alteration itself
may be infrequent [91]. Approaching breast cancer at the systems
biology level through top-down integration of multi-level
biological data is facilitated by having an outline on how to com-
bine the available data and tools before the analysis starts, and
includes several steps (see Fig. 4). Studies in which several “omics”
levels were integrated to examine the aberrations that occur in
breast cancer were previously performed [92, 93]. In the study by
Curtis et al. [93] a new integrative classification system of breast
tumors was identified based on both genomic and transcriptomic
data [43]. The authors performed an integrated analysis of DNA
copy number and gene expression, and identified novel subgroups
with distinct clinical outcomes, named iClusts 1–10. These sub-
groups include one high-risk ER-positive 11q13/14 cis-acting
subgroup and a favorable prognosis subgroup devoid of copy num-
ber alterations (CNA). Another study performed by Dvinge et al.
[92] performed a systems-level analysis of miRNA expression in
breast tumors by analyzing miRNA expression and integrating it
with matched mRNA expression and CNA [92]. The authors reveal
that at the whole-genome level, miRNAs behave more as fine-
tuners/modulators of gene expression. This modulatory role of
miRNAs was especially evident in CNA-devoid breast tumors, in
which the immune response is prominent.

Molecular data are typically generated on different scales and
units and must be processed prior to integration. Then, individual
relations and interactions must be identified in the data, and finally
put into the context of a larger system where alterations at the
global scale may be identified from the more local findings. This
is typically achieved by assessing the alterations found in the frame-
work of biological pathways or networks. To fully complement a
systems biology approach, findings from integration of high-
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throughput data must be combined with functional experiments to
further evaluate and validate the findings [94].

Several large-scale projects have been launched that molecularly
profile human tumors at multiple levels with the aim of integrating
various data types to reveal molecular mechanisms of cancer. Some
examples are The Cancer Genome Atlas (TCGA) (http://
cancergenome.nih.gov/) [95], METABRIC (Molecular Taxon-
omy of Breast Cancer International Consortium) [93], and the
International Cancer Genome Consortium (ICGC) (http://icgc.
org/). These studies have provided a comprehensive picture of the
great genetic diversity of breast cancers. They have moreover
increased the resolution of classification suggesting the presence
of additional molecular subgroups.

The most comprehensive molecular profiling of human breast
tumors published to date has been done by TCGA [95]. By inte-
grating DNA copy number, methylation data, somatic mutations,
exome sequencing, mRNA arrays, miRNA sequencing, and
reverse-phase protein arrays, the consortium identified four major
groups of breast cancer types. To a large extent the groups recapit-
ulate the molecular subtypes [95]. Using the expression of the 25%
most variable miRNAs, the TCGA study identified seven miRNA
subtypes by consensus non-negative matrix factorization clustering.
These miRNA subtypes correlated with the mRNA subtypes, ER,
PR and HER2 clinical status, but not with mutation status. The
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TCGA study further confirmed that breast cancer is a heteroge-
neous disease; however, they suggested that most of the heteroge-
neity is found within, and not across the major subtypes.

Integrative studies aid in deciphering new subgroups and iden-
tify alterations seen across levels and patients that may ultimately
lead to interruptions at the pathway or network level. In practice,
the analyses and interpretation of multi-level high-throughput
information remain a daunting task. Challenges include data
handling, normalization and standardization, database annotation,
availability of patient clinical information, and dissection of intrinsic
tumor heterogeneity [90, 91]. To be able to exploit these large
amounts of data, further development of computational tools and
improved infrastructure is needed. From these integrative analyses,
new hypotheses can be generated that require experimental testing
and validation [91]. Succeeding in integrating multi-level data
holds the promise of a comprehensive understanding of the altera-
tions that are responsible for tumor initiation, maintenance, and
progression. Such findings may be further translated into improved
strategies for tumor sub-classification, early detection, more accu-
rate prognostication, and a tailored therapy regime, in addition to
revealing new targets for therapy.

4 miRNA Regulation in Breast Cancer

4.1 Methods to Study

miRNA Regulation

and Target Validation

miRNAs play an important role in the post-transcriptional regula-
tion of gene expression. To date, the number of experimentally
validated targets is low compared to the hundreds of putative
targets predicted by the different in silico prediction algorithms
[96]. The most common methods for the validation of miRNA
targets include the transfection of reporter vector constructs or
mimic miRNAs into cells, or the use of miRNA inhibitors. Those
are followed by assessing the effects on mRNA (by, e.g., qRT-PCR,
microarrays or sequencing) or protein levels (by, e.g., western blot)
of the putative miRNA targets. The challenge entailed in these
techniques lies in distinguishing direct from indirect effects
[96]. Alternatively, direct methods for the validation of miRNA
targets are based on the immunoprecipitation of the RISC complex
together with the bound miRNA-mRNA complex. RNA isolated
by crosslinking immunoprecipitation (HITS-CLIP) can then be
analyzed by high-throughput sequencing [97]. Yet, also for
Co-IP protocols, unspecific binding or co-isolation of secondary
binders is common.

Most analyses of miRNA crosslinking to date have not included
protein data. Indeed, the majority of studies modeling the regu-
latory impact of miRNAs have been performed on joint miRNA-
mRNA expression data. While the physical interaction takes place
between miRNA and mRNA, in order to validate a true miRNA-
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mRNA relation, an effect on the protein level is the ultimate proof
as it gives the final phenotype of miRNA regulation. Depending on
the mechanism of miRNA regulation one may anticipate different
outcomes. For example, negative correlation between miRNA and
mRNA may be expected if the miRNA regulation leads to degrada-
tion of the mRNA. However, if translational inhibition is the
mechanism of action, such negative correlation between miRNA
and mRNA may not be observed. miRNA, mRNA, and protein
expression data have been integrated in order to study potentially
direct and indirect effects of miRNA on protein expression [98]. In
a study by Aure et al., protein expression was modeled as a function
of miRNA and mRNA expression. The model considered both the
effect of one miRNA at a time, and also all miRNAs combined. The
resulting comprehensive “interactome” map of miRNAs in breast
cancer revealed extensive coordination between miRNA and pro-
tein expression with groups of miRNAs coordinately interacting
with groups of proteins, thus suggesting “block interactions”
[98]. In order to suggest possible direct regulatory interactions
between miRNAs and mRNAs, the use of intersected target predic-
tion outputs aided in proposing candidates that should be further
functionally assessed by biochemical experiments.

4.2 Dissecting

the Functional Role

of miRNAs in Breast

Cancer

Altered miRNA expression in cancer has been extensively reported;
however, there are still many unanswered questions regarding the
role of miRNAs in cancer. miRNAs, which are differentially
expressed between samples of different molecular subtypes, TP53
mutation status, and ER status have been described in breast cancer
[53]. The causes of miRNA deregulation in breast cancer have been
investigated by trying to comprehensively study the effect of DNA
methylation and copy number aberrations of miRNA loci and
couple those to miRNA expression [84]. Identifying the various
mechanisms underlying perturbation of miRNA levels will help us
to understand more about the role of miRNAs in tumor develop-
ment and also about miRNA biology in general.

Dissecting the functional role ofmiRNAs is a challenging task due
to several aspects. miRNA families have likely arisen due to gene
duplication events [99], and members of the same miRNA family
have a high degree of similarity in sequence. In some cases, members
of a miRNA family are also encoded in the same polycistronic tran-
script [100]. Sequence similarities suggest that they may target the
same genes and thus have potentially overlapping functions. From an
evolutionary perspective, the mRNA 30-UTR where the miRNA tar-
getingmost often occurs, is not constrained by coding needs and thus
has the potential to be subject to selection so that beneficial miRNA-
mRNA target interactions may evolve [101]. Moreover, miRNAs
originating from the same polycistronic transcript or encoded in
close proximity have a high chance of being co-expressed. Hence,
untangling the role of individual miRNAs is complicated.
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Several target prediction algorithms have been published [80],
as previously described. However, the false-positive rate of those
predictions has generally been high [102], and the degree of over-
lap between the algorithms differs. Each miRNA is predicted to
target hundreds of genes, including many with various functions.
Thus, as there is a lack of high-throughput methods to validate
miRNA-mRNA interactions, it can be a challenge to prioritize on
which target genes to focus [96]. miRNA expression has also been
shown to be both time- and context-dependent [103, 104] which
can potentially reduce the transferability of validated relations from,
e.g., one cell type to another. Recent studies also suggest that it is in
the very nature of miRNAs to confer only subtle effects on a
target’s protein level (typically less than 50%) rather than conferring
a total abolishment of protein expression [20, 105]. Furthermore,
the effect of miRNA-mediated regulation on mRNA can generally
result from two different mechanisms, either translational inhibi-
tion or mRNA degradation, which subsequently will confer differ-
ent results when trying to model miRNA-mRNA interactions from
high-throughput data. All these considerations should be kept in
mind when studying the role of miRNAs in cancer.

As more miRNA properties emerge, the key to understanding
the biological role of miRNAs may slowly be revealed as new
hypotheses to be tested develop from the pieces added to the
puzzle. miRNAs have many putative target genes, are expressed in
a context-dependent manner, and function as cell fate switches or
buffers. Integrating those properties with a view of cancer as a
disease, which is driven by perturbations at the signaling network
level [106], suggests that miRNAs may function as effective nodes
in protein signaling networks [101, 107]. Signaling cascades, which
transfer extracellular signals into cellular responses, depend on
dynamic and transient action, and often involve complex feed-
back and feed-forward loops. Proteins are key elements in signaling
networks, but miRNAs with their potential to regulate multiple
targets simultaneously could play a very efficient and timely role in
the tuning of signaling networks. Using mass spectrometry to
investigate the effect of miRNA regulation on proteins indicated
that miRNAs, for most interactions, act to make fine-scale adjust-
ments to protein expression levels [20]. However, with a fine-
tuning role in a normal cellular state, aberrant miRNA expression
may represent acquired signaling capabilities [106]. Aberrant
miRNA expression can have a substantial effect on pathway out-
come by disturbing the tight regulation, thus contributing to a
malignant phenotype of the cell. Studying both direct and indirect
effects of miRNAs may unveil important core miRNAs that can
further be used as markers of disease. Finally, the use of miRNA
expression together with protein expression might give a robust
proxy of a disease state as they together may constitute a “state-of-
the-network” signature.
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4.3 miRNAs

as Clinical Biomarkers

for Diagnostic

and Predictive

Purposes in Breast

Cancer

The field of miRNA biology is rather new, considering that the first
miRNA was discovered in 1993, and there are still new miRNAs
being identified today. During the past 10 years, miRNA research
has advanced rapidly, and has produced new knowledge about the
molecular basis of cancer, tools for molecular classification, and new
markers with diagnostic and prognostic relevance [62]. miRNAs
are considered suitable biomarkers for early cancer detection
because they are present and stable in human serum and plasma
[108]. miRNA alterations during breast cancer progression from
DCIS to invasive cancer have recently been identified within the
intrinsic subtypes, Luminal A, luminal B, HER2-enriched, and
basal-like [109, 110]. For immunohistochemical-based subtypes
no miRNAs are differentially expressed between DCIS and the
luminal subtypes. Six miRNAs were downregulated in ER�/
HER2þ invasive samples compared to DCIS, of which five belong
to the miR-30 family, whereas miR-139-5p was downregulated in
both ER� subtypes, while miR-887-3p was downregulated in
triple-negative breast cancer only [109]. This study found that
subtype stratification based on molecular signatures resulted in
more correct classification than stratification based on ER, PR,
and HER2 alone, indicating a better representation of the intrinsic
biology of the samples.

Although the focus has previously been on identifying molecu-
lar differences between cancerous and normal tissue, we often tend
to forget that abnormal cell growth also occurs at benign stages. As
discussed earlier in this chapter, previous studies have shown that
certain types of benign tumors can increase the risk of breast cancer
[22, 23, 25–28]. As the use of mammography has increased, the
identification of benign breast disease has become more common.
Thus, having accurate risk estimates for women who receive this
diagnosis is vital. Moreover, with the distinction between benign
tumors and malignant tumors, Tahiri et al. [111] identified that
deregulation of known cancer-related miRNAs is evident also in
fibroadenomas and fibroadenomatosis, considered as benign
lesions in the breast. These cancer-related miRNAs included
miR-21, members of the let-7 family and other miRNAs well
known to be included in malignant transformation [111]. The
level of deregulation in benign tumors was less pronounced than
that observed in malignant tumors. Nevertheless, the identification
of tumor-associated miRNAs in benign tumors hinted that similar
processes are in place already at early stages of tumor formation.
The identification of miRNAs that can be assigned to either benign
or malignant groups of tumor tissue would be important for diag-
nostic purposes, but these results need to be further strengthened
by independent confirmations.

When identifying a signature of miRNAs through expression
arrays, there are different points to take into consideration. First,
there is reported lack of consistency between different studies that
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certainly give rise to some concern of the use of miRNAs as bio-
markers for the clinics [112]. Such differences might arise from
sample selection or preparation, experimental design, and/or data
analysis. Also, the technology used is important in the search for
biomarkers. A recent study compared the expression of more than
2000 miRNAs by microarray technology and next-generation
sequencing [113]. The authors observed highly significant depen-
dency of the miRNA nucleotide composition on the expression
level. Uracil-rich miRNAs showed higher expression levels when
analyzed by next-generation sequencing. In contrast, guanine-rich
miRNAs were detected at higher levels in microarrays. While iden-
tifying subsets of miRNAs that had high correlation with both
technologies, correlation was observed only for miRNAs in the
early miRBase versions (<8). Also, one of the major problems
with both technologies was the elimination of low abundance
miRNAs that may potentially have a great impact on overall pro-
cesses. Keeping this in mind, respective bias will potentially slow
down the translational process to clinical application.

Moreover, the use of different controls for data normalization
can explain some of the observed variability across studies. Another
possibility that must be considered is the dynamic and immediate
regulation in miRNA levels in stress response and in hypoxia. As a
result, time of sample collection and sample processing could fur-
ther impact miRNA levels [62].

Despite those challenges, evidence reported up to date is
encouraging. Even though a more comprehensive validation is
still needed, the usefulness of miRNAs as biomarkers could espe-
cially be strengthened if it would be possible to identify deregulated
levels of miRNAs in the circulation of patients not yet presented
with the disease, or patients diagnosed with benign tumors.

4.4 Clinical

Implications

of miRNAs: Prospects

for Therapy

As miRNAs have been reported to act as tumor-suppressor or
oncogenic miRNAs, they have emerged as potential targets for
therapy. miRNA expression signatures have been shown to function
as classifiers for diagnosis, prognosis, and therapeutic response in
cancer [56], and were associated with breast cancer subtypes and
clinical subgroups. Notably, due to the tissue-specific expression of
miRNAs, Rosetta Genomics has commercially launched an assay
that is used to identify the tumor of origin in cancers of unknown
primary origin. This assay measures the expression of 64 miRNAs
which are further processed by an algorithm that can accurately
identify the origin of a patient’s tumor for 42 different cancer types
[114]. The algorithm uses two classifiers, a binary decision tree in
which the decision is made at each node by comparing the expres-
sion of a certain combination of miRNAs to a preset threshold, and
a k-nearest-neighbor algorithm that uses a confidence measure by
comparing the expression of the 64 miRNAs to the training
samples.
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Besides the fact that miRNAs are implicated in cancer, the
above-discussed ability of miRNAs to regulate several genes in a
pathway makes them interesting therapeutic agents as they may
coordinate the response of an entire signaling network. Thus, by
modifying miRNA activity it could be possible to restore homeo-
stasis in cancer cells by rewiring network connections, and hence
reverse a cancer phenotype [115]. Furthermore, as the absolute
number of deregulated miRNAs is lower than for protein-coding
genes, it might be easier to distinguish the drivers from the passen-
gers and targeting miRNAs therapeutically may prove more suc-
cessful than targeting single genes or proteins [115].

There are two main therapeutic strategies for modulation of
miRNA expression. The first involves the restoration of tumor-
suppressor miRNA activity, and the other is based on inhibiting
the activity of oncogenic miRNAs [116]. An alternative indirect
approach is to use drugs to modulate the miRNA expression by
targeting steps in their biogenesis such as transcription or proces-
sing [115]. Restoration of tumor-suppressor miRNA expression
can be achieved for example by introducing double-stranded
miRNA mimics that are synthetic oligonucleotides with identical
sequence as the selected tumor-suppressor miRNA [115]. There is,
however, a long way from in vitro cell line experiments to clinical
trials. The successful delivery of miRNAs to tumor cells is a major
general challenge as unmodified, synthetic oligonucleotides are
rapidly degraded by nucleases, and owing to their size and negative
charge they may be prevented to cross the cell membrane
[117]. Pharmacological blocking of oncogenic miRNAs has been
achieved by using chemically modified antisense oligonucleotides
[116]. These antisense strands function as competitive inhibitors of
miRNAs by physically annealing to the mature miRNA and inhibit-
ing its function. By introducing modifications to the chemical
structure of the oligonucleotides such as for example locked nucleic
acids (LNA), the stability, specificity, and binding affinity could be
increased [115]. As an example of this antisense technology,
miR-21 knockdown through LNA silencing was shown to inhibit
proliferation and migration in human breast cancer cell lines and
tumor growth in mice [118]. An alternative to antisense oligonu-
cleotides are miRNA sponges that are transcribed from expression
vectors and which contain multiple tandem-binding sites to a
miRNA of interest [115]. They function as miRNA decoys by
competing with the endogenous bona fide target mRNAs for
miRNA binding, thus decreasing the miRNA effect.

Though their ability to regulate many genes simultaneously
makes miRNA attractive as therapeutic candidates, this feature
also implies that targeting miRNAs could lead to potential
off-target effects. The high context dependence of miRNA action
leads to potentially different functions in different tissues, which is a
challenge in this regard. By designing effective systems that deliver
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the synthetic miRNA oligonucleotides specifically to the diseased
tissue or cancer cells, these problems could be solved
[115]. Another concern is the potential overloading of the endog-
enous miRNA processing machinery as the synthetic oligonucleo-
tides could saturate the RISC complex and displace other
endogenous miRNAs, which could potentially cause toxicity
[115, 117]. Finally, due to sequence similarities between members
of the same miRNA family, antisense miRNA therapy should be
considered to target all family members in case of functional
redundancy.

The success of miRNA-based therapy will depend on solving
technical issues such as effective and specific delivery of miRNAs.
Also, increased knowledge about miRNA function to identify
potential therapeutic niches and to foresee the downstream effects
is needed. As such, miRNA-based therapeutics could offer oppor-
tunities for a network therapy for cancer, focusing on the miRNAs
rather than the protein-coding oncogenes which may be more
difficult to target therapeutically [101]. miRNA signatures, e.g.,
from circulating miRNAs in breast cancer patients, are currently
used in human clinical trials with the majority of the studies focus-
ing on miRNA signatures as biomarkers for diagnosis, prognosis, or
therapeutic response [56]. Overall, it will be exciting to follow the
developments in novel efforts for therapeutically targeting miRNAs
and its implications for cancer therapy and personalized medicine.
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Chapter 5

Identifying Genetic Dependencies in Cancer by Analyzing
siRNA Screens in Tumor Cell Line Panels

James Campbell, Colm J. Ryan, and Christopher J. Lord

Abstract

Loss-of-function screening using RNA interference or CRISPR approaches can be used to identify genes
that specific tumor cell lines depend upon for survival. By integrating the results from screens in multiple
cell lines with molecular profiling data, it is possible to associate the dependence upon specific genes with
particular molecular features (e.g., the mutation of a cancer driver gene, or transcriptional or proteomic
signature). Here, using a panel of kinome-wide siRNA screens in osteosarcoma cell lines as an example, we
describe a computational protocol for analyzing loss-of-function screens to identify genetic dependencies
associated with particular molecular features. We describe the steps required to process the siRNA screen
data, integrate the results with genotypic information to identify genetic dependencies, and finally the
integration of protein-protein interaction data to interpret these dependencies.

Key words Cancer, siRNA screening, Synthetic lethality

1 Introduction

Recent large-scale sequencing projects and decades of small-scale
studies have led to the identification of hundreds of “driver” genes
in cancer—genes whose alteration through genetic or epigenetic
means provides a growth or survival advantage for tumor cells
[1, 2]. A key remaining challenge is to understand how these driver
mutations alter cellular states to promote tumor progression and
how this altered state may be exploited for the development of
targeted therapeutics [3]. Identifying the set of genes that are
required for growth in a given tumor cell line provides both an
insight into the cellular state and suggests genes whose products
may be targeted therapeutically. Toward this end, a number of
laboratories have used loss-of-function screening to generate
resources describing the genetic requirements of panels of tumor
cell lines [4–11]. The majority of these resources use either
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genome-scale shRNA screens carried out in a pooled format [6, 7,
10] or siRNA screens carried out in an arrayed format [4, 5, 11] to
identify genetic dependencies. In the near future CRISPR-based
approaches will likely be used for similar purposes, although to date
the number of cell lines profiled by genome-wide CRISPR libraries
remains small (e.g., five cell lines in [8]). Regardless of the experi-
mental methodology used, the goal of loss-of-function screens is
largely the same—the identification of genes required for growth in
specific cancer cell lines. By integrating the results of these screens
with genotypic data, it is possible to identify genes that appear
specifically required for growth in the presence of a particular driver
gene mutation. In some cases the driver gene mutation results in an
increased dependency upon the gene itself, a phenomenon known
as “oncogene addiction” [12]. Examples of this include an
increased sensitivity of ERBB2-amplified breast cancer cell lines to
siRNA reagents targeting ERBB2 [4], and an increased sensitivity
of KRAS mutant cell lines to shRNA reagents targeting KRAS
[7]. More frequent are instances where the driver gene and the
resulting dependency gene are different, often termed
non-oncogene addictions or synthetic lethalities [12, 13]. Examples
of non-oncogene addictions identified from loss-of-function
screens include a dependence of ARID1A mutant cell lines upon
the ARID1A paralog ARID1B [14], an increased sensitivity of
PTEN mutant breast cancer cell lines to inhibition of the mitotic
kinase TTK [4], and an increased sensitivity of MYC amplified
breast cancer cell lines to inhibition of multiple spliceosome com-
ponent coding genes [15]. Ultimately both oncogene addictions
and synthetic lethalities identified in these screens may be exploited
for the development of novel targeted therapeutics in cancer [13].

When these screens are analyzed, statistical approaches are used
to identify significant associations between the mutation of a driver
gene and an increased sensitivity to the inhibition of another gene.
The interpretation of the resulting associations remains challeng-
ing—the statistical tests provide information on which genes are
required in the presence of specific driver genes, but not the mech-
anistic explanation as to why these dependencies exist. Inspired by
approaches initially developed for the interpretation of genetic
interactions in yeast [16], we have recently used the integration of
functional interaction networks to aid the interpretation of depen-
dencies identified in loss-of-function screens in cancer cell lines
[5]. For instance in ERBB2-amplified cell lines we see an increased
dependency upon ERBB2 itself and also the ERBB2 protein-
interaction partners ERBB3 and PIK3CA [5]. This suggests that
ERBB2 amplified cell lines are frequently “addicted” to the func-
tionality of ERBB2, the binding of ERBB2 to its interaction partner
ERBB3, and the function of the downstream effector PIK3CA.

Here, we describe a protocol for the analysis of loss-of-function
screens in a panel of cancer cell lines. We use as example data a
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recent kinome-wide siRNA screen performed in a panel of osteo-
sarcoma cell lines [5]. Our analysis protocol involves three main
steps:

1. The conversion of siRNA screening results into gene-sensitivity
scores.

2. The integration of these sensitivity scores with genotypic data
to identify statistical associations between driver genes and
sensitivity to the inhibition of particular genes.

3. The integration of additional data such as protein-protein
interactions to interpret these associations.

Only the first step is specific to arrayed siRNA screens—we have
successfully applied the latter analysis scripts to data resulting from
additional screen types (e.g., pooled shRNA screens) (Fig. 1).

2 Materials

2.1 Software (See

Notes 1 and 2)

1. R (available from https://www.r-project.org/).

2. R-packages:

(a) Gplots (see Note 3).

(b) cellHTS2 (see Note 4).

3. Python programming language (available from https://www.
python.org/).

4. git repository containing the statistical analyses, code, and data
resources discussed in the text (see Note 5) https://github.
com/GeneFunctionTeam/identifying-genetic-dependencies

2.2 Input Files 1. Plate files (txt) contain the output from a loss of function
screen. These each comprise three tab-separated columns of
data containing the plate number (numeric), well position
(e.g., B07), and the response value for the cell (e.g., luminosity
readout). See the CellHTS2 documentation for further
information.

2. Plate file list. This file contains three tab-separated columns
with a header row listing “Filename,” “Plate,” and “Replicate.”
Filenames correspond to each plate file. The plate column
defines which plate in the plate configuration file the data
correspond to. The replicates column defines, which replicate
a plate represents. See the CellHTS2 documentation for fur-
ther information.

3. Plate configuration file. The first line defines the number of
wells in each plate (e.g., “Wells: 384”). The second line defines
the number of plates in the library (e.g., “Plates: 3”). The third
line is a header associated with the subsequent columns (e.g.,
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Cell Line 1 2 3 4 5 6 7 8 9

RB1 1 1 0 1 0 0 0 0 0

CDKN2A 0 0 1 0 1 1 1 0 0

Marker Target P-value

RB1 DYRK1A 0.005

CDKN2A BRAF 0.600

Marker Target P-value PPI

RB1 DYRK1A 0.005 True

CDKN2A BRAF 0.600 False

Plate Arrayed 
siRNA Screens

Process using 
CellHTS2 / R

(Step 3.1)

Cell Line 1 2 3 N

Kinase1 -3 0 0 -1

Kinase2 0 1 -2 0

Kinase N 0.5 -2 1 -5

Z-score Table (Step 3.1)

Cell Line 1 2 3 N

Kinase1 -3 0 0 -1

Kinase2 0 1 -2 0

Kinase N 0.5 -2 1 -5

A

B

+
Z-score Table

Mutations Table

Perform association 
analysis using R (Step 3.2)

Associations Table

C
Marker Target P-value

RB1 DYRK1A 0.005

CDKN2A BRAF 0.600

Associations Table

Protein-protein 
Interaction Network+

Annotated Associations Table

Annotate dependencies
using Python (Step 3.3)

Fig. 1 Analyzing siRNA screens in Tumor Cell Line Panels. (a) Luminescence values derived from pooled siRNA
screens are converted into Z-scores using CellHTS2 and custom R scripts. (b) Z-score profiles for each cell line
are integrated with mutational profiles for the same set of cell lines using R. Custom R scripts are used to
identify associations between the presence of particular mutations (e.g., in the RB1 gene) with increased
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“Plate,” “Well,” “content”). The remaining lines define the
wells containing samples and controls. An asterisk character
(*) can be used to mean “all plates or wells.” E.g., “* * sample”
indicates that the all plates and all wells are “sample” unless
otherwise stated. Subsequent more specific lines update the
contents of other wells. E.g. “* [A-P]01 empty” indicates
that on all plates (*), every row ([A-P]) of the first column
(01) is marked as “empty.” When defining wells as containing
controls, ensure the case of the text used matches that used
elsewhere. For further details on the plate configuration file,
see the cellHTS2 documentation.

4. Plate annotation file. Contains at least three columns with a
header. The first two columns list the plate and well IDs used in
the library. The third and subsequent columns list annotations
(such as the ID of the gene targeted by an siRNA). For further
details on the plate configuration file, see the cellHTS2
documentation.

5. File containing functional relationships between genes (see
Note 6).

3 Methods

3.1 Processing

siRNA Screen Data

Using CellHTS2

Typically, siRNA screens are conducted in multiwell tissue culture
plates. The process of transfecting a cancer cell line with siRNAs is
optimized prior to screening and once optimal conditions have
been selected (described in [17]), cells are dispensed into multiwell
plates containing growth media, transfection reagents, and siRNAs.
The data in the example provided represent a screen of a single
osteosarcoma tumor cell line using an siRNA library targeting
714 kinase and kinase-related genes. Positive and negative controls
are included on each plate—typically non-targeting siRNA as a
negative control and an siRNA pool targeting PLK1 as a positive
control. The full experimental protocol for this screen has been
described elsewhere [4, 5]. Briefly, following siRNA transfection,
the cells were cultured for 5 days, after which a luminescence assay
measuring cellular ATP was used to estimate cell viability. A Victor
X5 platereader was used to read luminescence values, resulting in
data files in Microsoft Excel format. Prior to the analysis in R, these
data files were converted to plain text plate files. Each plate file
contains the luminescence reading from each well in one 96 or

�

Fig. 1 (continued) sensitivity to siRNAs targeting specific genes (e.g., DYRK1A). (c) The associations table is
integrated with a data file describing known protein-protein interactions using Python. This results in a table of
annotated dependencies—indicating whether a given association occurs between a pair of genes whose
protein products are known to physically interact
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384 multiwell plate. Where an siRNA library is larger than the plate
format used in the screen, several plates are required for a single
screen. Additionally, multiple replicate screens are typically con-
ducted for a given cell line and siRNA library. The organization of
plates into segments of an siRNA library and replicate screens is
described in a plate list file. A plate list file contains the file names of
the plate files, the replicate numbers, and plate numbers in a multi-
plate screen. Annotations indicating the genes targeted by siRNAs
in the library across multiple plates as well as the positions of
control wells are provided in separate plain text files. The analysis
protocol set out below uses the cellHTS2 [18] R package devel-
oped by Huber and Boutros to combine data from the plate files,
the plate list file, the plate configuration file, and the annotation file.
The luminescence data are normalized to produce Z-scores by first
log2 transforming the values and subtracting the median log lumi-
nescence value on a plate-by-plate basis. The plate-centered data are
then scaled to the median absolute deviation (MAD) value calcu-
lated across the entire siRNA library to produce Z-scores.

An R script named “run_cellHTS.R” in the R-scripts directory
contains the following commands. The first command loads the
cellHTS2 R package that provides the functions required for the
analysis.

require(cellHTS2)

With cellHTS2 loaded, we then use the readPlateList() func-
tion to read the plate list file which in turn creates a cellHTS object
containing the luminescence data from the plate files (see Note 7).

x <- readPlateList(

filename¼" platelist_p3r3.txt",

name¼"CGDsExample"

path¼"./"

)

We next use the configure() function to add information from
the plate configuration file and (optionally) the screen log and
description file to the cellHTS object. The plate configuration
defines the locations of samples, controls and empty wells.

x <- configure(

x,

descripFile¼"screen_description.txt",

confFile¼"plateconf_384.txt",

logFile¼"Screenlog.txt",

path¼"./"

)
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We use the annotate() function to define the genes targeted by
siRNAs in each well of the plate. This information is located in the
“kinome_library.txt” file.

x <- annotate(

x,

geneIDFile¼"kinome_library.txt",

path¼"./"

)

We now process the luminescence data in the cellHTS object to
normalize data values across the plates in the screen. This is done by
log2 transforming the luminescence values and subtracting the
median value within a plate from all the values of wells in that
plate. The parameters passed to the normalizePlates() function are
described in Note 8. The original cellHTS object “x” is passed to
the normalizePlates() function and the result is saved into a new
cellHTS object called “xn.”

xn <- normalizePlates(

x,

scale¼"multiplicative",

log¼TRUE,

method¼"median",

varianceAdjust ¼ "none",

negControls¼"neg",

posControls¼"pos"

)

The normalized data stored in “xn” are then scaled by dividing
each well’s value by the median absolute deviation (MAD) calcu-
lated from the normalized values across the whole siRNA library.
Control wells are excluded from the estimation of the MAD. Scal-
ing the plate median centered normalized data by the MAD pro-
duces the robust equivalent of Studentized values or Z-scores (see
Note 9).

xsc <- scoreReplicates(

xn,

method¼"zscore",

sign¼"þ"

)

For later statistical analyses, it may be preferable to summarize
the values of replicate wells targeting a specific gene as a median or
some other summary statistic. This can be performed using the
summarizeReplicates() function in cellHTS2.

Analyzing siRNA Screens in Tumor Cell Line Panels 89



xsc <- summarizeReplicates(

xsc,

summary¼"median"

)

CellHTS2 also provides a function called getTopTable() that
writes a plain text file containing the well annotation data as well as
the luminescence data at each stage of processing. Here, we write
this information to a file called “TopTable.txt.”

summary_info <- getTopTable(

list(

"raw"¼x,

"normalized"¼xn,

"scored"¼xsc

),

file¼"TopTable.txt"

)

An HTML formatted report can also be generated describing
the screen and the processing steps applied to it using the commands
below. This HTML report provides information on the positive and
negative controls included, the distribution of the resulting scores,
and details of the quality of the screen (Z0 scores, see below).

The contents of the HTML report can be modified using the
setSettings() function. Here, we turn on the reproducibility and inten-
sities reports (producing heatmap visualizations of well values) and set
the range of heatmap colors for the screen summary scores report.

setSettings(

list(

plateList¼list(

reproducibility¼list(

include¼TRUE,

map¼TRUE

),

intensities¼list(

include¼TRUE,

map¼TRUE)

),

screenSummary¼list(

scores¼list(

range¼c(-20, 10),

map¼TRUE

)

)

)

)
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We then use the writeReport() function to generate the HTML
report.

writeReport(

raw¼x,

normalized¼xn,

scored¼xsc,

outdir¼./report,

force¼TRUE,

posControls¼"pos",

negControls¼"neg",

mainScriptFile¼"../R-scripts/run_cellHTS.R"

)

The outputs from this cellHTS2 analysis so far have been a
TopTable plain text file and a folder containing an HTML report. It
is possible to extract any data in the cellHTS objects using accessor
methods in order to produce customized outputs. Here, we extract
information on the targeted genes, the plate numbers, well num-
bers, and median Z-scores and combine this into a data frame
(“combinedz”) containing four columns (compound, plate, well,
and zscore).

genes <- geneAnno(xsc)

plates <-plate(xsc)

wells <- well(xsc)

scores <- Data(xsc)[,1,1]

combinedz <- data.frame(

compound¼compounds,

plate¼plates,

well¼wells,

zscore¼scores

)

We can then write out the “combined” data frame to a text file.
A use case for this is to enable joining data from multiple screens
into a single file for analysis.

write.table(

combinedz,

"zscore.txt",

sep¼"\t",

quote¼FALSE,

row.names¼FALSE

)

This analysis needs to be performed for each screen in the
experiment. Typically, multiple distinct screens would represent
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multiple tumor cell lines screened with a specific library of siRNAs.
Quality control steps need to be applied on a screen-by-screen
basis. We expect siRNA screen replicates to be strongly correlated
and reject screens where no pairs of replicates have a correlation
coefficient greater than 0.7 (see Note 10).

In an earlier step, we saved the output from the getTopTable()
function to a data frame called “summary_info.” We can extract the
replicate normalized luminescence values from this data frame and
calculate the Pearson correlation coefficients for each pair of repli-
cates using the following command.

cor(

summary_info[,c(

"normalized_r1_ch1",

"normalized_r2_ch1",

"normalized_r3_ch1"

)],

use¼"pairwise.complete.obs"

)

A further quality control step that is recommended is to exam-
ine the Z-prime (Z0) values for each screen [19]. Z0 scores provide a
measure of the separation of the positive and negative control
siRNAs included in a screen and so can be considered an estimate
of how much it is possible for the individual “sample” wells to vary
in Z-scores. Larger values of Z0 indicate better screens. Screens with
Z0 values�0.5 are considered excellent. Those with Z0 values�0 are
considered unusable and should be rejected and the experiments
should be repeated. CellHTS2 calculates Z0 scores for each replicate
and these can be found in the HTML report under the “plate
summaries” section.

3.2 Identification

of Kinase

Dependencies

Associated with Driver

Gene Mutation or Copy

Number Alteration

We next integrate the processed results from multiple siRNA
screens with data describing the genetic alterations present in each
sample. For this tutorial we use the siRNA data from 18 osteosar-
coma tumor cell lines and a mutations file that describes the pres-
ence or absence of genetic alterations in different members of the
Retinoblastoma (RB1) pathway. In the git repository downloaded,
there is a set of directories containing pre-formatted siRNA and
mutation datasets as well as R scripts to process the data. Open the
script R-scripts/identifying_CGDs_RB1_osteosarcoma.R and
examine its contents. The first command sets the working directory
to the top level of the git repository we cloned/downloaded earlier.
Modification of the path given to the setwd() function is required
to point to the appropriate location on your local system.

setwd("~/software/identifying-genetic-dependencies")
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The next command runs R code contained in a second file in
the R-scripts directory. The dot at the beginning of the path
indicates that the path is relative to the current working directory.
The file “identifying_CGDs_library.R” contains a set of functions
that abstract the process of loading mutation and siRNA datasets as
well as running a set of statistical tests. Readers familiar with R can
examine the code in this file to understand the individual analysis
steps in more detail.

source("./R-scripts/identifying_CGDs_library.R")

We next define the paths to the siRNA and mutation data files
used in the analysis. It is a helpful to define this kind of information
near the top of scripts so that in the future the files can be changed
without having to find the commands where these values are used.

sirna_screens_file <- "./siRNA-data/Osteosarcoma_kinome_sc-

reens.txt"

rb_pathway_func_muts_file <- "./mutation-data/combined_exo-

me_cnv_func_muts_RBpathway_160418.txt"

rb_pathway_all_muts_file <- "./mutation-data/combined_exo-

me_cnv_all_muts_RBpathway_160418.txt"

The next command reads the siRNA and mutation datasets,
identifies cell lines in common between each dataset, and returns an
R list object containing analysis-ready tables. The input files com-
prise tab-separated data where the first row and first column repre-
sent column and row names respectively. Aside from the first row
(column headings), each row contains data for a single-cell line.
Each column represents a property measured across each cell line.
In the “sirna_screens_file,” these properties are the Z-scores repre-
senting the relative viability of cells treated with siRNAs targeting
specific genes. In the case of the mutation datasets (rb_pathway_-
func_muts_file and rb_pathway_all_muts_file), these properties
represent the presence or absence of a driver gene alteration. The
file rb_pathway_func_muts_file contains a “1” where a cell line is
considered to contain a likely functional cancer driver gene alter-
ation (mutation or copy number alteration) and a “0” where such a
change is absent. Similarly, the file rb_pathway_all_muts_file con-
tains a “1” or “0” to indicate the presence of any driver gene
alteration found in a cell line irrespective of presumed functional
impact. These two files are used to identify sets of cell lines where a
driver gene is considered to be functionally altered (the mutant
group) or where alterations to the driver gene are entirely absent
(the wild-type group) (see Note 11).

kinome_rb_muts <- read_rnai_mutations(

rnai_file¼sirna_screens_file,
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func_muts_file¼rb_pathway_func_muts_file,

all_muts_file¼rb_pathway_all_muts_file

)

With the siRNA and mutation data tables organized within
kinome_rb_muts, we now run association tests between mutations
or copy number alterations in RB1 pathway genes and test depen-
dency on each gene targeted in the kinome siRNA library. The
function run_univariate_tests() performs Wilcoxon Rank Sum
tests between siRNA Z-scores of cell lines in the mutant and wild-
type groups and returns a table of these test results as well as other
information such as descriptive statistics (including the median Z-
score of the mutant and wild-type group and the difference
between those two values).

kinome_rb_mut_associations <- run_univariate_tests(

zscores¼kinome_rb_muts$rnai,

mutations¼kinome_rb_muts$func_muts,

all_variants¼kinome_rb_muts$all_muts,

alt¼"less"

)

We write out the results of the association tests to a text file that
can be opened in a spreadsheet application or used as input for
other programs such as the annotate_dependencies.py python pro-
gram described in Subheading 3.3.

write.table(

kinome_rb_mut_associations,

"./results/kinome_rb_mut_associations.txt",

sep¼"\t",

col.names¼TRUE,

row.names¼FALSE,

quote¼FALSE

)

3.3 Annotating

Molecular

Dependencies

According to Known

Functional

Relationships

In the absence of additional information, interpreting an associa-
tion between the mutation of a driver gene and sensitivity to RNAi
reagents targeting another gene can be difficult. One approach to
aiding the interpretation of these associations is the integration of
orthogonal data, including known functional relationships between
genes or their protein products. We provide a simple Python script
(annotate_dependencies.py) that can be used to integrate known
functional relationships (e.g., protein-protein, kinase-substrate, or
gene-regulatory interactions) with the associations generated by
the R scripts described in Subheading 3.2. This script adds an
additional column to the associations file indicating whether or
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not the marker-target gene pair has a known functional relationship
according to a user-supplied source of interactions.

1. Create a file containing functional relationships between genes
(see Note 6 for potential sources of these relationships). Each
line of this file should contain two gene symbols (HUGO gene
names) separated by a tab. Alternatively, files in the BioGRID
Tab 2.0 Format, such as those downloaded from the BioGRID
database [20], can be used as input.

2. Open a command prompt/terminal and run the script as
follows:

python annotate_dependencies.py -a <associations> -o <output>

-i <interactions> -n <column_name>

where <associations> is the name of the associations file cre-
ated using the R scripts above, <output> is the name of the file
where the annotated associations will be output to, <interactions>
is the name of the file containing known functional relationships,
and <column_name> is an optional name for the column where
the functional annotation will be stored. If the interactions file is in
the BioGRID Tab 2.0 format then add the optional “–b” argument
to this command. SeeNote 12 for additional parameters of this file.

3. View the resulting output in a text editor or spread sheet
application. There should be an additional column in the file
named using the <column_name> argument, with True or
False values indicating whether each marker-target association
involves a gene pair with a known functional relationships
according to the <interactions> file

4. Additional columns can be added (e.g., to annotate the asso-
ciations according to a different source of interactions) by
running the script again using the output file (<output>) of
the first run as input to a subsequent run. For this step it is
necessary to set the<column_name> parameter to avoid over-
writing previous results.

The end result of this analysis is a file containing an annotated
list of associations between a particular genomic feature (indicated
in the “marker” column) and increased sensitivity to siRNA
reagents targeting a particular gene (indicated in the “target” col-
umn). The column titled “PPI” in this file indicates whether the
marker gene and the target have a known functional relationship
(e.g., protein-protein interaction) while the column “wilcox.p”
gives an indication of the statistical significance of the association.
These p-values, together with the annotation of known functional
relationships, may be used to prioritize candidate genetic depen-
dencies (synthetic lethalities) for follow-up experiments. At a mini-
mum these follow-up experiments should involve using orthogonal
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means to test the observed association (e.g., alternative siRNA
reagents or a small molecule targeting the protein product of the
gene of interest) [21]. Ideally, the follow-up validation would test
the association in additional cell lines harboring the mutation of
interest. In the example provided, we found that RB1 mutation is
associated with increased sensitivity to siRNA targeting the kinase
DYRK1A, a knownRB1 binding partner. In Campbell et al. [5] we
validated this in a larger panel of osteosarcoma cell lines using four
distinct siRNA reagents targeting the DYRK1A gene suggesting
that the initial observation represents a real dependency.

4 Notes

1. All the analyses can be performed on a desktop computer. A
recent version of the R statistical programming environment
(available from https://www.r-project.org/) and the Python
programming language (available from https://www.python.
org/) are required. The Python scripts presented here have
been tested with Python versions 2.7 and 3.4, while R scripts
have been tested with version 3.2.5.

2. Note that we provide extensive code samples throughout this
document. In these samples the tilde character (~) is used as a
short cut to the user’s home directory on Unix-like systems.
OnMicrosoft Windows, the forward slash characters (/) separ-
ating the file paths will need to be substituted with back slashes
(\).

3. Gplots is provided on the Comprehensive R Archive Network
(CRAN) and can be installed by starting an R session and enter
the following code:

install.packages(

"gplots",

dependencies¼TRUE,

)

4. CellHTS2 [18] is an R package used to process RNAi screen
data and can be installed using the following command:

source("https://bioconductor.org/biocLite.R")

biocLite("cellHTS2")

5. This repository can be downloaded as a zip file by navigating to
the above URL and choosing “download ZIP.” Alternatively
install git (software available from https://git-scm.com), open
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a console window, change directory to a suitable path that must
exist (e.g., cd ~/software), and enter the following command:

git clone https://github.com/GeneFunctionTeam/identifying-

genetic-dependencies

This command should create a new directory (e.g., ~/soft-
ware/identifying-genetic-dependencies) containing data and
scripts. The data files include a file containing viability data
from an siRNA screen of osteosarcoma cell lines [5] and driver
gene mutation datasets compiled from publicly available com-
pendia of mutations in tumor cell lines [22].

6. BioGRID is a database of experimentally determined molecular
interactions [20]. The web interface to BioGRID allows users
to download the entire database in Tab 2.0 format, and also the
interactions associated with a specific gene. An alternative
source is PathwayCommons [23], which integrates protein-
protein, gene-regulatory, kinase-substrate, and other molecular
relationships. More specialized data sources include Phospho-
SitePlus [24] (kinase-substrate relationships) and HINT (high-
confidence protein-protein interactions) [25].

7. Detailed instructions on how to use cellHTS2 can be found in
an R vignette titled “End-to-end analysis of cell-based
screens.” Once the cellHTS2 package is installed, the com-
mand ‘browseVignettes("cellHTS2")’ can be entered into the
R console to reveal links to this and other relevant vignettes.

8. In our experience, luminescence values from multiwell siRNA
screens tend to be positively skewed and show a log-normal
distribution. It is thus preferable to log transform values prior
to normalization. Setting the “log” argument of the “normal-
izePlates” function to “TRUE” and the “scale” argument to
“multiplicative” instructs cellHTS2 to first log transform the
luminescence values and then subtract the plate median values
from each value on a plate.

9. Z-normalization in the classical sense refers to adjusting a set of
normally distributed values such that they have a mean value of
zero and a standard deviation equal to one. For idealized
normally distributed Z-scores, 95% of the values are expected
to fall between Z ¼ �2 and Z ¼ þ2 and 99.1% of the values are
expected to fall between Z¼�3 and Z¼þ3. Log-transformed
and plate-centered luminescence values from siRNA screens
often have negatively skewed distributions that are not well
described by statistics such as the mean and standard deviation.
As an alternative to standard Z-score normalization we use
robust Z-normalization where the median value is subtracted
from all log-transformed plate-centered values and these values
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are then divided by the median absolute deviation (MAD) of
the distribution. This results in approximately 95% of the values
falling between Z ¼ �2 and Z ¼ þ2. Thus, siRNAs that
produce a Z-score of <�2 (or more stringently, <�3) are
interpreted as causing a decrease in viability.

10. At least two replicates are required for each screen in order to
assess the overall reproducibility of the screen. We typically
perform screens using three replicates and take the median
value for each siRNA to further minimize noise.

11. Defining functional mutations in cancer driver genes can be
difficult. In some cases (e.g., amplification of a gene such as
ERBB2) the functional relevance of an alteration is well estab-
lished. In many cases however, especially those involving mis-
sense mutations, the functional relevance of an alteration is
uncertain. In [5] we developed a simple pipeline to classify
mutations and copy number changes as either of likely func-
tional relevance or of uncertain relevance [5]. For tumor
suppressor genes we classify homozygous deletions, muta-
tions predicted to cause a truncation (frame shift, nonsense,
or splice site alteration) or missense mutations found to occur
recurrently in tumors as functionally relevant. For oncogenes,
we classify amplification events or recurrent missense muta-
tions as functionally relevant. Mutations other than these are
classified as of uncertain relevance and cell lines harboring
these mutations are excluded from our association tests.

12. By default the “annotate_dependencies.py” script assumes
that the interactions provided in the input file are undirected
(i.e., the interaction (a, b) is the same as the interaction (b, a)).
Using the argument “-d” changes this default behavior such
that a directed network is utilized. This may be more appro-
priate for directed networks—e.g., for RB1 associated depen-
dencies it may make sense to highlight associations between
RB1 and genes that it regulates, but not associations involving
genes that regulate RB1.
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Chapter 6

Phosphoproteomics-Based Profiling of Kinase Activities
in Cancer Cells

Jakob Wirbel, Pedro Cutillas, and Julio Saez-Rodriguez

Abstract

Cellular signaling, predominantly mediated by phosphorylation through protein kinases, is found to be
deregulated in most cancers. Accordingly, protein kinases have been subject to intense investigations in
cancer research, to understand their role in oncogenesis and to discover new therapeutic targets. Despite
great advances, an understanding of kinase dysfunction in cancer is far from complete.
A powerful tool to investigate phosphorylation is mass-spectrometry (MS)-based phosphoproteomics,

which enables the identification of thousands of phosphorylated peptides in a single experiment. Since every
phosphorylation event results from the activity of a protein kinase, high-coverage phosphoproteomics data
should indirectly contain comprehensive information about the activity of protein kinases.
In this chapter, we discuss the use of computational methods to predict kinase activity scores from

MS-based phosphoproteomics data. We start with a short explanation of the fundamental features of the
phosphoproteomics data acquisition process from the perspective of the computational analysis. Next, we
briefly review the existing databases with experimentally verified kinase-substrate relationships and present a
set of bioinformatic tools to discover novel kinase targets. We then introduce different methods to infer
kinase activities from phosphoproteomics data and these kinase-substrate relationships. We illustrate their
application with a detailed protocol of one of the methods, KSEA (Kinase Substrate Enrichment Analysis).
This method is implemented in Python within the framework of the open-source Kinase Activity Toolbox
(kinact), which is freely available at http://github.com/saezlab/kinact/.

Key words Phosphoproteomics, Mass-spectrometry, Kinase activity, Computational biology, Cancer
systems biology, Signal transduction

1 Introduction

Protein kinases are major effectors of cellular signaling, in the
context of which they form a highly complex and tightly regulated
network that can sense and integrate a multitude of external stimuli
or internal cues. This kinase network exerts control over cellular
processes of fundamental importance, such as the decision between
proliferation and apoptosis [1]. Deregulation of kinase signaling
can lead to severe diseases and is observed in almost every type of
cancer [2]. For instance, a single constitutively active kinase,
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originating from the fusion of the BCR and ABL genes, can give
rise to and sustain chronic myeloid leukemia [3]. Accordingly, the
small molecule inhibitor of the BCR-ABL kinase, Imatinib, has
shown unprecedented therapeutic effectiveness in affected
patients [4].

Fueled by these promising clinical results, due to the essential
role for kinases in the patho-mechanism of cancer, and because
kinases are in general pharmacologically tractable [5], a range of
new kinase inhibitors has been approved or is in development for
different cancer types [6]. However, not all eligible patients
respond equally well, and in addition, cancers often develop resis-
tance to initially successful therapies. This calls for a deeper under-
standing of kinase signaling and opens up the possibility of
exploiting this knowledge therapeutically [7].

By definition, the activity of a kinase is reflected in the occur-
rence of phosphorylation events catalyzed by this kinase. Thus,
analysis of kinase activity was traditionally achieved by monitoring
the phosphorylation status of a limited number of sites known to be
targeted by the kinase of interest using immunochemical techni-
ques [8]. This, however, requires substantial prior-knowledge and
yields a comparably low throughput. Other approaches exist, e.g.,
protein kinase activity assays [9, 10] or attempts to measure kinase
activity with chromatographic beads functionalized with ATP or
small molecule inhibitors [11].

Mass spectrometry-based techniques to measure phosphoryla-
tion can identify thousands of phosphopeptides in a single sample
with ever-increasing coverage, throughput, and quality, nourished
by technological advances and dramatically increased performance
of MS instruments in recent years [12–14]. High-coverage phos-
phoproteomics data should indirectly contain information about
the activity of many active kinases. The high-content nature of
phosphoproteomics data, however, poses challenges for computa-
tional analysis. For example, only a small subset of the described
phosphorylation sites can be explicitly associated with functional
impact [15].

As a means to extract functional insight, methods to infer
kinase activities from phosphoproteomics data based on prior-
knowledge about kinase-substrate relationships have been put for-
ward [16–19]. The knowledge about kinase-substrate relation-
ships, compiled in databases like PhosphoSitePlus [20] or
Phospho.ELM [21], covers only a limited set of interactions. Alter-
natively, computational resources to predict kinase-substrate rela-
tionships based on kinase recognition motifs and contextual
information have been used to enrich the collections of substrates
per kinase [22, 23], but the accuracy of such kinase-substrate
relationships has not been validated experimentally for most cases.
The inferred kinase activities can in turn be used to reconstruct
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kinase network circuitry or to predict therapeutically relevant fea-
tures such as sensitivity to kinase inhibitor drugs [17].

In this chapter, we start with a brief description of phosphopro-
teomics data acquisition, highlighting challenges for the computa-
tional analysis that may arise out of the experimental process.
Subsequently, we will present different computational methods for
the estimation of kinase activities based on phosphoproteomics data,
preceded by the kinase-substrate resources these methods use. One
of these methods, namely KSEA (Kinase-Substrate Enrichment
Analysis), will be explained in more detail in the form of a guided,
stepwise protocol, which is available as part of the Python open-
source Toolbox kinact (for Kinase Activity Scoring) at http://www.
github.com/saezlab/kinact/.

2 Phosphoproteomics Data Acquisition

For a summary of technical variations or available systems for the
experimental setup of phosphoproteomics data acquisition, we
would like to refer the interested reader to dedicated publications
such as [24, 25]. We provide here a short overview about the
experimental process to facilitate the understanding of common
challenges that may arise for the data analysis that we will focus on.

Mass spectrometry-based detection of peptides with posttrans-
lational modifications (PTM) usually requires the same steps, inde-
pendent of the modification of interest: (1) cell lysis and protein
extraction with special focus on PTM preservation, (2) digestion of
proteins with an appropriate protease, (3) enrichment of peptides
bearing the modification of interest, and (4) analysis of the peptides
by LC-MS/MS [26]. After the experimental work, additional data
processing steps are required to identify the position of the modifi-
cation, e.g., the residue that is phosphorylated. For almost every
step, different protocols are available, starting from various pro-
teases for protein digestion to different data acquisition methods
for MS [24].

2.1 Phosphopeptide

Enrichment

Naturally, the enrichment of phosphopeptides is a pivotal step for
phosphoproteomics. Next to the enrichment method used, the
choice of the protease [27] or the MS ionization method [28] also
has an impact on the part of the phosphoproteome that is sampled.
For phosphopeptide enrichment, the field is dominated by immobi-
lized metal affinity chromatography (IMAC) and metal oxide affinity
chromatography (MOAC), which all exploit the affinity of the phos-
phorylation toward metal ions. Popular techniques include Fe3+-
IMAC, Ti4+-IMAC [29], or TiO2-MOAC. Alternatively, more tra-
ditional biochemical methods involving immunoaffinity purification
are also in use for enrichment of phosphopeptides, although these
are generally limited to studies of phosphotyrosine [30].
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Of note, the different enrichment methods show little overlap
in the detected phosphopeptides, although this can also be
observed for replicates of runs using the identical enrichment
method, as discussed below [31].

After enrichment, the phosphopeptides are separated chro-
matographically, usually by reversed phase liquid chromatography
(RPLC), and then enter the mass spectrometer for tandem MS
analysis (MS/MS), completing the workflow of LC-MS/MS. Var-
iations in the chromatography method used as well as the multitude
of mass spectrometry instrument types are reviewed in detail else-
where [24]. Generally, the quality of the chromatographic separa-
tion will have a big impact on the number of phosphopeptides that
can confidently be identified. Chromatography runs of higher
quality also take more time, so that a tradeoff between resolution
and throughput must be devised for each experiment.

2.2 Data Acquisition For most phosphoproteomics studies so far, the MS instrument is
operated in the data-dependent acquisition (DDA) mode. Therein,
precursor ions from a first survey scan are selected—typically based
on relative ion abundance—in order to generate fragmentation
spectra in a second MS run [32], for which a database search yields
the corresponding peptide sequences [33]. As a result, peptide
detection in DDA is on the one hand biased toward high abun-
dance species, but also considerably irreproducible due to stochas-
tic precursor ion selection [34]. This inherent under-sampling of
DDA usually leads to missing data points in LC-MS/MS datasets.
However, this problem may be solved to some extent by extracting
ion chromatograms of the peptides that are missing in some of the
runs that are being compared [35–38], by matching across samples
[39], or with the accurate mass and retention tag method [40].

In an alternative operation mode, selected reaction monitor-
ing/multiple reaction monitoring (SRM/MRM), the presence and
abundance of only a limited set of pre-specified peptides with
known fragmentation spectra is surveyed [41]. This targeted
approach overcomes many of the issues of shotgun methods, but
is usually not feasible for large-scale investigation of the complete
phosphoproteome.

Data-independent acquisition (DIA), e.g., SWATH-MS [42]
tries to address the shortcoming of both established data acquisi-
tion strategies in order to combine the throughput of DDA with
the reproducibility of SRM. In DIA, fragmentation spectra are
generated for all precursor ions in a specific window of m/z ratios,
leading to a complete map of fragmentation spectra, followed by
computational extraction of quantitative information for known
spectra. For phosphoproteomics, DIA-MS has already been applied
to investigate insulin signaling [43] or histone modifications
[44]. However, the spectra generated by DIA-MS are usually
highly complex and require intricate data extraction techniques,
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which is even more challenging for modified peptides. Recently, a
computational resource for the detection of modified peptides has
been put forward [45]. Overall, the available methods for DIA have
as yet to mature in order to challenge the use of DDA in large-scale
studies of the phosphoproteome [24].

2.3 Quantitative

Phosphoproteomics

As for regular proteomics, several experimental methods or post-
acquisition tools exist to quantitate detected phosphopeptides.
Those can roughly be divided into isotope labeling and label-free
quantitation. In general, stable isotope labeling requires more
experimental effort than label-free quantitation, but at the same
time enables multiplexing of samples with different isotopes or
combinations.

Stable isotope labeling by metabolic incorporation of amino
acids (SILAC) is mainly used for cell cultures, in the medium of
which different stable isotopes are provided that will be
incorporated into the proteins of the cells. At the point of analysis,
cell extracts are mixed and then jointly investigated with mass
spectrometry. Mass differences between peptide pairs due to the
isotopic labeling can be exploited for relative quantitation
[46]. Currently, up to three conditions (light, medium, heavy)
can be multiplexed. Further developments of SILAC even pro-
duced an in-vivo SILAC mouse model for the proteomic and
phosphoproteomic analysis of skin cancerogenesis [47] and super-
SILAC for the analysis of tissues [48], in which a metabolically
labeled, tissue-specific protein mix from several cell lines, represent-
ing the complexity of the investigated proteome, is mixed with the
tissue lysate as internal standard for quantification.

Chemical modification of peptides with tandem mass tags
(TMT) or isobaric tags for relative and absolute quantitation
(iTRAQ) are two different methods based on tags with reactive
groups that bind to peptidyl amines in the peptides after protein
digestion. Again, different samples are mixed before mass spec-
trometry analysis, whereas for TMT or iTRAQ up to eight samples
can be multiplexed. In the first MS run, the peptides with different
isobaric tags are indistinguishable, but upon fragmentation in the
second MS run, each tag generates a unique reporter ion fragmen-
tation spectrum, which can be used for relative quantitation of the
tagged peptides [49, 50].

Label-free quantitation (LFQ), on the other hand, relies mainly
on post-acquisition data analysis, so that no modification of the
essential experimental workflow needs to be implemented. Com-
parison of an—in theory—unlimited number of different samples is
therefore possible, which is associated with the downside of pro-
longed analysis time as multiplexing samples is not possible. While
label-free approaches usually provide a deeper coverage of the
proteome than label-based methods, the reproducibility and preci-
sion of quantification are inferior, so that more technical replicates
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are needed for confident quantification in LFQ [51]. Typically,
label-free quantitation is achieved by integration of peak area mea-
surements, i.e. the area under the curve, for individual peptides
[52] or spectral counting, which reflects that the probability to
sample more abundant peptides is higher [53].

For the case of phosphoproteomics, in contrast to regular
proteomics, an additional challenge for quantitation arises from
the fact that information from different peptides of the same pro-
tein cannot be integrated. While in regular proteomics the abun-
dances of every peptide in the protein can be combined, the
quantitation of a single phosphosite depends on direct measure-
ments of peptides with the specific modification. Therefore, the
sample sizes in phosphoproteomics quantitation are much smaller
and can even consist of the measurement of only a single
peptide [24].

Furthermore, different phosphosites within the same protein
will in many cases not show similar pattern of phosphorylation
dynamics. This may give rise to problems for subsequent analysis,
if this analysis is conducted on protein rather than on phosphosite
level.

2.4 Phosphosite

Assignment

Phosphopeptides in large-scale phosphoproteomics experiments
are identified from LC-MS/MS runs by interpreting MS/MS spec-
tra using a suitable search engine. Several of such search engines
now exist; popular ones include Mascot, Sequest, Protein Prospec-
tor, and Andromeda [54–57]. The process of determining peptide
sequences fromMS/MS data involves matching the mass to charge
ratios of fragment ions in MS/MS spectra to the theoretical frag-
mentation of all protein-derived peptides in protein databases.
Depending on the organism being investigated, protein databases
from UniProt or NCBI are used. Each search engine has its own
scoring system to reflect the confidence of peptide identification,
which is a function of MS and MS/MS spectral quality. The false
discovery rate (FDR) may be determined by performing parallel
searches against scrambled or reversed protein databases containing
the same number of sequences as the authentic protein database.
The FDR is then calculated as the ratio of positive peptide identi-
fications in the decoy database divided by those derived from the
forward search. An FDR of 1% at the peptide level is normally
considered adequate.

Deriving peptide sequences with these methods is a relatively
straightforward process. However, site localization can be a prob-
lem when peptide sequences contain more than one amino acid
residue that can be phosphorylated. To address this problem, sev-
eral methods to determine precise localization of phosphorylation
within a phosphopeptide have been published. Ascore uses a prob-
abilistic approach to assess correct site assignment [58] and the
algorithm has been applied alongside the Sequest search engine.
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The Mascot delta score, introduced by the Kuster group, simply
determines the differences in Mascot scores between the different
possibilities for phosphosite localization within a phosphopeptide
[59]. The larger the delta score, the greater the probability of
correct site assignment. Other similar methods have been published
[60] and some of them are now incorporated into search engines
[61]. The output of the phosphopeptide identification step gener-
ally contains scores for both the probability of correct peptide
sequence identification and phosphosite localization.

2.5 Pitfalls in the

Analysis of MS-Based

Phospho-

proteomics Data

Although the available experimental methods for MS-based phos-
phoproteomics data acquisition have evolved considerably over the
last years, leading to a steadily increasing number of detected
phosphosites, several limitations remain for the investigation of
signaling processes using phosphoproteomics data.

While it has been estimated that there are around 500,000
phosphorylation sites in the human proteome [62], the number of
phosphosites that can be identified in a single MS experiment usually
ranks around 10,000 to up to 40,000 [63]. Therefore, the sampled
phosphoproteomic picture is incomplete. It has to be taken into
account though, that, not all possible phosphorylation sites are
expected to be modified at the same time point. This is caused by
context-dependent regulation of phosphosites. For example, some
phosphosites are controlled differentially at different cell cycle stages,
while others only change under specific external stimulation such as
growth factors or other effector molecules [64, 65]. The hope is
therefore that a significantly larger portion of phosphosites could be
mapped with improving technology and by increasing the diversity
of biologically relevant conditions analyzed. So far though, in differ-
ent MS runs or replicates, usually a distinct set of phosphosites is
detected, as the selection of precursor ions is stochastic. This leads to
incomplete datasets with a high number of missing data points,
challenging computational investigation of the data such as cluster-
ing or correlation analysis. However, as discussed above, approaches
in which phosphopeptide intensities are compared across MS run
post-acquisition minimize this problem [38].

The functional impact of a phosphorylation event is known only
in the minority of cases [15]. Indeed, it has been hypothesized that a
substantial fraction of phosphorylation sites are non-functional [66],
since phosphorylation sites tend to be poorly conserved throughout
species [67]. Although approaches to studying the function of indi-
vidual phosphorylation events have been proposed [68], it may be
that a large part of the detected phosphosites serves no function at
all. Thus, non-functional sites add a substantial amount of noise to
phosphoproteomics data and complicate the computational analysis.

The inference of kinase activity from phosphoproteomics data
that will be described in the next section aims to overcome these
limitations, by the integration of the information from many
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phosphosites, along prior knowledge on kinases-substrate relation-
ships, into a single measure for the kinase activity. It is important
though to keep in mind that any bias in the experimental workflow
will affect these scores. In particular, since highly abundant precur-
sor ions are more likely to be selected for fragmentation and there-
fore detection, targets of upregulated kinases are more probably
detected. Therefore, highly active kinases will be preferentially
detected, although downregulated kinases may be identified when
comparing different conditions.

3 Computational Methods for Inference of Kinase Activity

Traditionally, biochemical methods have been common to study
kinase activities in vitro and are still broadly used [69, 70].However,
on the one hand those methods are generally limited in throughput
and time-consuming. On the other hand in vitro methods might
not accurately reflect the in vivo activities of kinases in a specific
cellular context. MS-based methods have also been applied for
assaying kinase activity [9, 10]. Here, the abundances of known
target phosphosites are monitored by MS after an in vitro enzy-
matic reaction.

Since every phosphorylation event results—by definition—
from the activity of a kinase, phosphoproteomics data should be
suitable to infer the activity of many kinases from a comparably low
experimental effort. This task requires computational analysis of the
detected phosphorylation sites (phosphosites), since thousands of
phosphosites can routinely be measured in a single experiment.
Several methods have been proposed in recent years, all of which
utilize prior knowledge about kinase-substrate interactions, either
from curated databases or from information about kinase recogni-
tion motifs.

3.1 Resources for

Kinase-Substrate

Relationships

As the large-scale detection of phosphorylation events using mass
spectrometry became routine, many freely available databases that
collect experimentally verified phosphosites have been set up,
including PhosphoSitePlus [20], Phospho.ELM [21], Signor
[71], or PHOSIDA [72], to name just a few. The databases differ
in size and aim; PHOSIDA for example provides a tool for the
prediction of putative phosphorylation sites and recently also added
acetylation and other posttranslational modification sites to its
scope. Phospho.ELM computes a score for the conservation of a
phosphosite. Signor is focused on interactions between proteins
participating in signal transduction. PhosphoNetworks [73] is ded-
icated to kinase-substrate interactions, but the information is on
the level of proteins, not phosphosites. The arguably most promi-
nent database for expert-edited and curated interactions between
kinases and individual phosphosites (that have not been derived
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from in vitro studies) is PhosphoSitePlus, currently encompassing
16,486 individual kinase-substrate relationships [04-2015]. For
Saccharomyces cerevisiae, the database PhosphoGRID provides
analogous information [74]. Specific information about targets of
phosphatases can be found in DEPOD [75]. Also in the Phospho.
ELM database, phosphosites have been associated with regulating
kinases, although this information is available for only about 10% of
the 37,145 human phosphosites in the database [04-2015].

As it has been estimated that there are between 100,000 [76]
and 500,000 [62] possible phosphosites in the human proteome,
the evident low coverage of the curated databases motivated the
development of computational tools to predict in vivo kinase-
substrate relationships. These methods identify putative new
kinase-substrate relationships based on experimentally derived
kinase recognition motifs, which was pioneered by Scansite [77]
that uses position-specific scoring matrices (PSSMs) obtained by
positional scanning of peptide libraries [78] or phage display meth-
ods [79]. Another approach, Netphorest [80] tries to classify phos-
phorylation sites according to the relevant kinase family instead of
predicting individual kinase-substrate links. However, the in vitro
specificity of kinases differs significantly from the kinase activity
inside of the cell, biasing the experimentally identified kinase rec-
ognition motifs [81]. The integration of contextual information,
for example co-expression, protein-protein interactions, or subcel-
lular colocalization, markedly improves the accuracy of the predic-
tions [69]. The software packages NetworKIN [82] (recently
extended in the context of the resource KinomeXplorer [22], cor-
recting for biases caused by over-studied proteins) and iGPS [23]
are examples for methods that combine information about kinase
recognition motifs, in vivo phosphorylation sites, and contextual
information, e.g., from the STRING database [83]. Recently,
Wagih et al. presented a method to predict kinase specificity for
kinases without any known phosphorylation sites [84]. Based on
the assumption that functional interaction partners of kinases
(derived from the STRING database) are more likely to be phos-
phorylated by the respective kinase, they should therefore contain
an amino acid motif conferring kinase specificity. This can then be
uncovered by motif enrichment.

The described methods provide predictions that are very valu-
able but not free from error, for example due to the described
differences in in vitro and in vivo kinase specificity or the influence
of subcellular localization. Thus, the predicted kinase-substrate
interactions should be considered hypotheses to be tested
experimentally [85].

We hereafter present four computational methods to infer
kinase activities from phosphoproteomics data, which use either
curated or computationally predicted kinase-substrate interactions.
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3.2 GSEA Methodologically, inference of kinase activity from phosphoproteo-
mics data is related to the inference of transcription factor activity
based on gene expression data. A plethora of different methods has
been developed for the prediction of transcription factor activity,
e.g., the classical gene set enrichment analysis [86] or elaborated
machine learning methods [87].

For example, Drake et al. [88] analyzed the kinase signaling
network in castration-resistant prostate cancer with GSEA. They
predicted the kinases responsible for each phosphosite with kinase-
substrate interactions from PhosphoSitePlus, kinase recognition
motifs from PHOSIDA, and predictions from NetworKIN. Subse-
quently, they computed the enrichment of each kinase’ targets with
the gene set enrichment algorithm after Subramanian et al. [86],
which corresponds to a Kolmogorov–Smirnov-like statistic. The
significance of the enrichment score is determined based on per-
mutation tests, whereas the p-value depends on the number of
permutations.

Alternatively, the gene set enrichment web-tool Enrichr
[89, 90] can also be used for enrichment of kinases [91]. The
authors compiled kinases-substrate interactions from different
databases and extracted additional interactions manually from the
literature in order to generate kinase-targets sets. Furthermore,
they added protein-protein interactions involving kinases from the
Human Protein Reference Database (HPRD) [92], based on the
assumption that those are highly enriched in kinase-substrate inter-
actions. Using this prior knowledge, the enrichment of the targets
of a kinase is then computed with Fisher’s exact test as described
in [89].

3.3 KAA Another approach to link phosphoproteomics data with the activity
of kinases was presented in a publication from Qi et al. [16], which
they termed kinase activity analysis (KAA).

In this study, the authors collected phosphoproteomics data
from adult mouse testis in order to investigate the process of
mammalian spermatogenesis. With the software package iGPS
[23] they predicted putative kinase-substrate relationships for the
detected phosphosites. The authors hypothesized that the number
of links for a given kinase in the predicted kinase-substrate network
can serve as proxy for the activity of this kinase in the specific cell
type. This activity was then compared to the kinase activity back-
ground which was calculated by computing the number of links in
the background kinase-substrate network based on the mouse
phosphorylation atlas by Huttlin et al. [93]. Qi and colleagues
predicted high activity of PLK kinases in adult mouse testis and
could validate this prediction experimentally.

However, there are several limitations of KAA. For once, it is
mainly based on computational predictions of kinase substrate
relationships, which are known to be susceptible to errors
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[69, 85]. Additionally, in their method the activity of a kinase is
only dependent on the number of detected, putative targets. The
abundance of the individual phosphosites or the fold change
between conditions is not taken into account.

De Graaf et al. [94] chose a comparable approach in a study of
the phosphoproteome of Jurkat T cells after stimulation with pros-
taglandin E2. However, they did not explicitly calculate kinase
activities. Instead, they grouped phosphosites into different clusters
with distinct temporal profiles and used the NetworKIN algorithm
[82] to calculate the enrichment of putative targets of a given kinase
in a specific cluster. As a result, they associated kinases with tempo-
ral activity profiles based on the enrichment in one of the detected
clusters.

3.4 CLUE Amethod designed specifically for time-course phosphoproteomics
data is the knowledge-based CLUster Evaluation approach, in
short CLUE [18]. This method is based on the assumption that
phosphosites targeted by the same kinase will show similar tempo-
ral profiles, which is utilized to guide a clustering algorithm and
infer kinases associated with these clusters. As in the study by de
Graaf et al. [94], kinases are not associated with distinct values for
activities but rather with temporal activity profiles. The notable
distinction of CLUE is that the clustering is found based on the
prior knowledge about kinase-substrate relationships, as outlined
below.

Methodologically, CLUE uses the k-means clustering algo-
rithm to group the phosphoproteomics data into clusters in which
the phosphosites show similar temporal kinetics. The performance
of k-means clustering is particularly sensitive to the parameter k,
i.e., the number of clusters. CLUE therefore tests a range of differ-
ent values for k and evaluates them based on the enrichment of
kinase-substrate relationships in the identified clusters. The method
utilizes the data from the PhosphoSitePlus database in order to
derive prior knowledge about kinase-substrate relationships. With
Fisher’s exact test the enrichment of the targets of a given kinase in
a specific cluster is tested for significance. The implemented scoring
system penalizes distribution of the targets of a single kinase
throughout several clusters, as well as the combination of unrelated
phosphosites in the same cluster.

CLUE is freely available as R package in the Comprehensive R
Archive Network CRAN under https://cran.r-project.org/web/
packages/ClueR/index.html.

A limitation of CLUE is represented by the fact that possible
‘noise’ in the prior knowledge, i.e., incorrect annotations, poten-
tially derived from cell type-specific kinase-substrate relationships,
can affect the performance of the clustering, although simulations
showed reasonable robustness. CLUE is tailored toward time-
course phosphoproteomics data and associates kinases with
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temporal activity profiles. Since the method does not provide sin-
gular activity scores for each kinase, it may be only partly applicable
to experiments in which the individual responses of kinases to
different treatments or conditions are of interest.

3.5 KSEA Casado et al. [17] presented a method for kinase activity estimation
based on kinase-substrate sets. Using kinase-substrate relationships
derived from the databases PhosphoSitePlus and Phospho.ELM, all
phosphosites that are targeted by a given kinase can be grouped
together into a substrate set (see Fig. 1 for an outline of the work-
flow). In theory, these phosphosites should show similar values,
since they are targeted by the same kinase. However, due to the
transient and therefore inherently noisy nature of phosphorylation,
Casado and colleagues proposed integrating the information from
all phosphosites in the substrate set in order to enhance the signal-
to-noise ratio by signal averaging [95].

For KSEA, log2-transformed fold change data is needed, i.e.,
the change of the abundance of a phosphosite between the initial
and treated states, initial and later time points, or between two
different cell types. Therefore, KSEA activity scores describe the
activity of a kinase in one condition relative to another.

The authors suggested three possible metrics (mean score,
alternative mean score, and delta score) that can be extracted out
of the substrate set and serve as proxy for kinase activity: (1) The
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main activity score, also used in following publications [96], is
defined as the mean of the log2 fold changes of the phosphosites
in the substrate set; (2) alternatively, only phosphosites with signifi-
cant fold changes can be considered for the calculation of the mean;
and (3) for the last approach, termed “delta count,” the occurrence
of significantly upregulated phosphosites in the substrate set is
counted, from which the number of significantly downregulated
sites is subtracted. For each method, the significance of the kinase
activity score is tested with an appropriate statistical test. In the
publication of Casado et al., all three measures were in good agree-
ment, even if spanning different numerical ranges (see Fig. 2). The
implementation of these three methods is discussed in detail in the
following section.

Like the other methods described in this section, KSEA
strongly depends on the prior knowledge kinase-substrate relation-
ships available in the freely accessible databases. These are far from
complete and therefore limit the analytical depth of the kinase
activity analysis. Additionally, databases are generally biased toward
well-studied kinases or pathways [22], so that the sizes of the
different substrate sets differ considerably. Casado et al. tried to
address these limitations by integrating information about kinase
recognition motifs and obtained comparable results.

A detailed protocol on how to use KSEA is provided in
Subheading 4.

3.6 IKAP Recently, Mischnik and colleagues introduced a machine-learning
method to estimate kinase activities and to predict putative kinase-
substrate relationships from phosphoproteomics data [19].

In their model for kinase activity, the effect e of a given kinase
j on a single phosphosite i is modeled with

eji ¼ kj � pji

as a product of the kinase activity k and the affinity p of kinase j for
phosphosite i. The abundance P of the phosphosite i is expressed as
mean of all effects acting on it, since several kinases can regulate the
same phosphosite:

Pi ¼
Xm

j¼1

eji=
Xm

j¼1

pji

The information about the kinase-substrate relationships is also
derived from the PhosphoSitePlus database. Using a nonlinear
optimization routine, IKAP estimates the described parameters
while minimizing a least square cost function between predicted
and measured phosphosite abundance throughout time points or
conditions. For this optimization, the affinity parameters are esti-
mated globally, while the kinase activities are fitted separately for
each time point.
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In a second step, putative new kinase-substrate relationships are
predicted based on the correlation of a phosphosite with the esti-
mated activity of a kinase throughout time points or conditions.
These predictions are then tested by database searches and by
comparison to kinase recognition motifs from NetworKIN.

In contrast to KSEA, which computes the kinase activity based
on the fold changes of the phosphosites in the respective substrate
set, IKAP is built on a heuristic machine learning algorithm and
tries to fit globally the described model of kinase activity and affinity
to the phosphoproteomics data. Therefore, the output of IKAP is
not only a score for the activity of a kinase, but also a value
representing the strength of a specific kinase-substrate interaction
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in the investigated cell type. On the other hand, the amount of
parameters that have to be estimated is rather large, so that a fair
number of experimental conditions or time points are needed for
unique solutions. Mischnik et al. included a function to perform an
identifiability analysis of the obtained kinase activities and could
show in the case of the two investigated example datasets that the
found solutions are indeed unique on the basis of the phosphopro-
teomics measurements.

The MATLAB code for IKAP can be found online under www.
github.com/marcel-mischnik/IKAP/, accompanied by an exten-
sive step-by-step documentation, which we recommend as addi-
tional reading to the interested reader.

4 Protocol for KSEA

In this section, we present a stepwise, guided protocol for the
KSEA approach to infer kinase activities from phosphoproteomics
data. This protocol (part of the Kinase Activity Toolbox under
https://github.com/saezlab/kinact) is accompanied by a freely
available script, written in the Python programming language
(Python version 2.7.x) that should enable the use of KSEA for
any phosphoproteomics dataset. We plan to expand Kinact to
other methods in the future. We are going to explain the performed
computations in detail in the following protocol to facilitate under-
standing and to enable a potential re-implementation into other
programming languages.

As an example application, we will use KSEA on the phospho-
proteomics dataset from de Graaf et al. [94], which was derived
from Jurkat T cells stimulated with prostaglandin E2 and is available
as supplemental information to the article online at http://www.
mcponline.org/content/13/9/2426/suppl/DC1

4.1 Quick Start As a quick start for practiced Python users, we can use the utility
functions from kinact to load the example dataset. The data should
be organized as Pandas DataFrame containing the log2-
transformed fold changes, while the columns represent different
conditions or time points and the row individual phosphosites. The
p-value of the fold change is optional, but should be organized in
the same way as the data.

import kinact

data_fc, data_p_value ¼ kinact.get_example_data()

print data_fc.head()

>>> 5min 10min 20min 30min 60min

>>> ID

>>> A0AVK6_S71 -0.319306 -0.484960 -0.798082 -0.856103

-0.928753
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>>> A0FGR8_S743 -0.856661 -0.981951 -1.500412 -1.441868

-0.861470

>>> A0FGR8_S758 -1.445386 -2.397915 -2.692994 -2.794762

-1.553398

>>> A0FGR8_S691 0.271458 0.264596 0.501685 0.461984

0.655501

>>> A0JLT2_S226 -0.080786 1.069710 0.519780 0.520883

-0.296040

The kinase-substrate relationships have to be loaded as well
with the function get_kinase_targets(). In this function call, we
can specify with the ‘sources’-parameter, from which databases we
want to integrate the information about kinase-substrate relation-
ships, e.g., PhosphoSitePlus, Phospho.ELM, or Signor. The func-
tion uses an interface to the pypath python package, which
integrates several resources for curated signaling pathways [97]
(see also Note 1).

kin_sub_interactions ¼ kinact.get_kinase_targets(sources¼
[‘all’])

An important requirement for the following analysis is that the
structure of the indices of the rows of the data and the prior
knowledge need to be the same (see below for more detail). As an
example, KSEA can be performed for the condition of 5 min after
stimulation in the de Graaf dataset using:

activities, p_values ¼ kinact.ksea.ksea_mean(data_fc[‘5min’],

kin_sub_interactions, mP¼data_fc.values.mean(),

delta¼data_fc.values.std())

print activities.head()

>>> AKT1 0.243170

>>> AKT2 0.325643

>>> ATM -0.127511

>>> ATR -0.141812

>>> AURKA 1.783135

>>> dtype: float64

Besides the data (data_fc[‘5min’]) and kinase-substrate inter-
actions (kin_sub_interactions), the variables ‘mP’ and ‘delta’ are
needed to determine the z-score of the enrichment. The z-score
builds the basis for the p-value calculation. The p-values for all
kinases are corrected for multiple testing with the Benjamini-
Hochberg procedure [98].

In Fig. 2, the different activity scores for the Casein kinase II
alpha, which de Graaf et al. had associated with increased activity
after prolonged stimulation with prostaglandin E2, are shown
together with the log2 fold change values of all phosphosites that
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are known to be targeted by this kinase. For methods, which use
the mean, the median as more robust measure can be calculated
alternatively. The qualitative changes of the kinase activities
(Fig. 2a–c) are quite similar regardless of the method, and would
not be apparent from looking at any specific substrate phosphosite
alone (Fig. 2d).

4.2 Loading the Data In the following, we walk the reader step by step through the
procedure for KSEA. First, we need to organize the data so that
the KSEA functions can interpret it.

In Python, the library Pandas [99] provides useful data struc-
tures and powerful tools for data analysis. Since the provided script
depends on many utilities from this library, we would strongly
advice the reader to have a look at the Pandas documentation,
although it will not be crucial in order to understand the presented
protocol. The library, together with the NumPy [100] package, can
be loaded with:

import pandas as pd

import numpy as np

The data accompanying the article is provided as Excel spread-
sheet and can be imported to python using the pandas ‘read_excel’
function or first be saved as csv-file, using the ‘Save As’ function in
Excel in order to use it as described below. For convenience, in the
referenced Github repository, the data is already stored as csv-file,
so that this step is not necessary. The data can be loaded with the
function ‘read_csv’, which will return a Pandas DataFrame contain-
ing the data organized in rows and columns.

data_raw ¼ pd.read_csv(‘FILEPATH’, sep¼‘,’)

In the DataFrame object ‘data_raw’, the columns represent the
different experimental conditions or additional information and the
row’s unique phosphosites. A good way to gain an overview about
the data stored in a DataFrame and to keep track of changes are the
following functions:

print data_raw.head() to show the first five rows of the Data-
Frame or print data_raw.shape in order to show the dimensions of
the DataFrame.

Phosphosites that can be matched to different proteins or
several positions within the same protein are excluded from the
analysis. In this example, ambiguous matching is indicated by the
presence of a semicolon that separates multiple possible identifiers,
and can be removed like this:

data_reduced ¼ data_raw[~data_raw[‘Proteins’].str.contains

(‘;’)]
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For more convenient data handling, we will index each phos-
phosite with an unambiguous identifier comprising the UniProt
accession number, the type of the modified residue, and the posi-
tion within the protein. For the example of a phosphorylation of
the serine 59 in the Tyrosine-protein kinase Lck, the identifier
would be P06239_S59. The identifier can be constructed by con-
catenating the information that should be provided in the dataset.
In the example of de Graaf et al., the UniProt accession number can
be found in the column ‘Proteins’, the modified residue in ‘Amino
acid’, and the position in ‘Positions within proteins’.

The index is used to access the rows in a DataFrame and will
later be needed to construct the kinase-substrate sets. After the
creation of the identifier, the DataFrame is indexed by calling the
function ‘set_index’.

data_reduced[‘ID’] ¼ data_reduced[‘Proteins’] + ‘_’ +

data_reduced[‘Amino acid’] +

data_reduced[‘Positions within proteins’]

data_indexed ¼ data_reduced.set_index(data_reduced[‘ID’])

Mass spectrometry data is usually accompanied by several col-
umns containing additional information about the phosphosite
(e.g., the sequence window) or statistics of the database search
(for example the posterior error probability), which are not neces-
sarily needed for KSEA. We therefore extract only the columns of
interest containing the processed data. In the example dataset, the
names of the crucial columns start with ‘Average’, enabling selec-
tion by a simple ‘if’ statement. Generally, more complex selection
of column names can be achieved by regular expressions with the
python module ‘re’.

data_intensity ¼ data_indexed[[x for x in data_indexed

if x.startswith(‘Average’)]] # (see Note 2)

Now, we can compute the fold change compared to the con-
trol, which is the condition of 0 min after stimulation. With log(a/
b) ¼ log(a) � log(b), we obtain the fold changes by subtracting
the column with the control values from the rest using the ‘sub’
function of Pandas (see Note 3).

data_fc ¼ data_intensity.sub(data_intensity[‘Average Log2 In-

tensity 0min’], axis¼0)

Further data cleaning (re-naming columns and removal of the
columns for the control time point) results in the final dataset:

data_fc.columns ¼ [x.split()[-1] for x in data_fc] # Rename

columns
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data_fc.drop(’0min’, axis¼1, inplace¼True) # Delete control

column

print data_fc.head()

>>> 5min 10min 20min 30min 60min

>>> ID

>>> A0AVK6_S71 -0.319306 -0.484960 -0.798082 -0.856103

-0.928753

>>> A0FGR8_S743 -0.856661 -0.981951 -1.500412 -1.441868

-0.861470

>>> A0FGR8_S758 -1.445386 -2.397915 -2.692994 -2.794762

-1.553398

>>> A0FGR8_S691 0.271458 0.264596 0.501685 0.461984

0.655501

>>> A0JLT2_S226 -0.080786 1.069710 0.519780 0.520883

-0.296040

If the experiments have been performed with several replicates,
statistical analysis enables estimation of the significance of the fold
change compared to a control expressed by a p-value. The p-value
will be needed to perform KSEA using the ‘Delta count’ approach
but may be dispensable for the mean methods. The example dataset
contains a p-value (transformed as negative logarithm with base 10)
in selected columns and can be extracted using:

data_p_value ¼ data_indexed[[x for x in data_indexed

if x.startswith(‘p value’)]]

data_p_value ¼ data_p_value.astype(‘float’) # (see Note 4)

4.3 Loading the

Kinase-Substrate

Relationships

Now, we load the prior knowledge about kinase-substrate relation-
ships. In this example, we use the information provided in the
PhosphoSitePlus database (see Note 5), which can be downloaded
from the website www.phosphosite.org. The organization of the
data from comparable databases, e.g., Phospho.ELM, does not
differ drastically from the one from PhosphoSitePlus and therefore
requires only minor modifications. Using ‘read_csv’ again, we load
the downloaded file with:

ks_rel ¼ pd.read_csv(‘FILEPATH’, sep¼’\t’) # (see Note 6)

In this file, every row corresponds to an interaction between a
kinase and a unique phosphosite. However, it must first be
restricted to the organism of interest, e.g., ‘human’ or ‘mouse’,
since the interactions of different organisms are reported together
in PhosphoSitePlus.

ks_rel_human¼ ks_rel.loc[(ks_rel[‘KIN_ORGANISM’]¼¼ ‘human’) &

(ks_rel[‘SUB_ORGANISM’] ¼¼ ‘human’)]
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Next, we again construct unique identifiers for each phospho-
site using the information provided in the dataset. The modified
residue and its position are already combined in the provided data.

ks_rel_human[‘psite’] ¼ ks_rel_human[‘SUB_ACC_ID’] +

‘_’ + ks_rel_human[‘SUB_MOD_RSD’]

Now, we construct an adjacency matrix for the phosphosites
and the kinases. In this matrix, an interaction between a kinase and
a phosphosite is denoted with a 1, all other fields are filled with a 0.
For this, the Pandas function ‘pivot_table’ can be used:

ks_rel_human[‘value’] ¼ 1 # (see Note 7)

adj_matrix ¼ pd.pivot_table(ks_rel_human, values¼‘value’,

index¼‘psite’, columns¼‘GENE’, fill_value¼0)

The result is an adjacency matrix of the form m � n with
m being the number of phosphosites and n the number of kinases.
If a kinase is known to phosphorylate a given phosphosite, the
corresponding entry in this matrix will be a 1, otherwise a 0. A
0 does not mean that there cannot be an interaction between the
kinase and the respective phosphosite, but rather that this specific
interaction has not been reported in the literature. As sanity check,
we can print the number of known kinase-substrate interactions for
each kinase saved in the adjacency matrix:

print adj_matrix.sum(axis¼0).sort_values(ascending¼False).

head()

>>> GENE

>>> CDK2 541

>>> CDK1 458

>>> PRKACA 440

>>> CSNK2A1 437

>>> SRC 391

>>> dtype: int64

4.4 KSEA In the accompanying toolbox, we provide for each method of
KSEA a custom python function that automates the analysis for
all kinases in a given condition. Here, however, we demonstrate the
principle of KSEA by computing the different activity scores for a
single kinase and a single condition. As an example, the Cyclin-
dependent kinase 1 (CDK1, see Note 8) and the condition of
60 min after prostaglandin stimulation shall be used.

data_condition ¼ data_fc[‘60min’].copy()

p_values ¼ data_p_value[‘p value_60vs0min’]

kinase ¼ ‘CDK1’
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First, we determine the overlap between the known targets of
the kinase and the detected phosphosites in this condition, because
we need it for every method of KSEA. Now, we benefit from having
the same format for the index of the dataset and the adjacency
matrix. We can use the Python function ‘intersection’ to determine
the overlap between two sets.

substrate_set ¼ adj_matrix[kinase].replace(

0, np.nan).dropna().index # (see Note 9)

detected_p_sites ¼ data_condition.index

intersect¼list(set(substrate_set).intersection(detected_p_-

sites))

print len(intersect)

>>> 114

4.4.1 KSEA Using the

“Mean” Method

For the “mean” method, the KSEA score is equal to the mean of
the fold changes in the substrate set mS.

The significance of the score is tested with a z-statistic using

z ¼ mS �mP
ffiffiffiffiffi
m

p
δ

with mP as mean of the complete dataset, m being the size of the
substrate set, and δ the standard deviation of the complete dataset,
adapted from the PAGE method for gene set enrichment
[101]. The “mean” method has established itself as the preferred
method in the Cutillas lab that developed the KSEA approach.

mS ¼ data_condition.ix[intersect].mean()

mP ¼ data_fc.values.mean()

m ¼ len(intersect)

delta ¼ data_fc.values.std()

z_score ¼ (mS - mP) * np.sqrt(m) * 1/delta

The z-score can be converted into a p-value with a function
from the SciPy [102] library:

from scipy.stats import norm

p_value_mean ¼ norm.sf(abs(z_score))

print mS, p_value_mean

>>> -0.441268760191 9.26894825183e-07

4.4.2 KSEA Using the

Alternative ‘Mean’ Method

Alternatively, only the phosphosites in the substrate set that change
significantly between conditions can be considered when comput-
ing the mean of the fold changes in the substrate set. Therefore, we
need a cutoff, determining a significant increase or decrease, respec-
tively, which can be a user-supplied parameter. Here, we use a
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standard level to define a significant change with a cutoff of 0.05.
The significance of the KSEA score is tested as before with the z-
statistic.

cut_off ¼ -np.log10(0.05)

set_alt ¼ data_condition.ix[intersect].where(

p_values.ix[intersect] > cut_off).dropna()

mS_alt ¼ set_alt.mean()

z_score_alt ¼ (mS_alt - mP) * np.sqrt(len(set_alt)) * 1/delta

p_value_mean_alt ¼ norm.sf(abs(z_score_alt))

print mS_alt, p_value_mean_alt

>>> -0.680835732551 1.26298232031e-13

4.4.3 KSEA Using the

“Delta Count” Method

In the “Delta count” method, we count the number of phospho-
sites in the substrate set that are significantly increased in the
condition versus the control and subtract the number of phospho-
sites that are significantly decreased.

cut_off ¼ -np.log10(0.05)

score_delta ¼ len(data_condition.ix[intersect].where(

(data_condition.ix[intersect] > 0) &

(p_values.ix[intersect] > cut_off)).dropna()) -

len(data_condition.ix[intersect].where(

(data_condition.ix[intersect] < 0) &

(p_values.ix[intersect] > cut_off)).dropna()) # (see Note 10)

The p-value of the score is calculated with a hypergeometric
test, since the number of significantly regulated phosphosites is a
discrete variable. To initialize the hypergeometric distribution, we
need as variables M ¼ the total number of detected phosphosites,
n ¼ the size of the substrate set, and N ¼ the total number of
phosphosites that are in an arbitrary substrate set and significantly
regulated.

from scipy.stats import hypergeom

M ¼ len(data_condition)

n ¼ len(intersect)

N ¼ len(np.where(

p_values.ix[adj_matrix.index.tolist()] > cut_off)[0])

hypergeom_dist ¼ hypergeom(M, n, N)

p_value_delta ¼ hypergeom_dist.pmf(len(

p_values.ix[intersect].where(

p_values.ix[intersect] > cut_off).dropna()))

print score_delta, p_value_delta

>>> -58 8.42823410966e-119
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5 Closing Remarks

In summary, the methods described in this review use different
approaches to calculate kinase activities or to relate kinases to
activity profiles from phosphoproteomics datasets. All of them
utilize prior knowledge about kinase-substrate relationships, either
from curated databases or from computational prediction tools.
Using these methods, the noisy and complex information from
the vast amount of detected phosphorylation sites can be
condensed into a much smaller set of kinase activities that is easier
to interpret. Modeling of signaling pathways or prediction of drug
responses can be performed in a straightforward way with these
kinase activities as shown in the study by Casado et al. [17].

The power of the described methods strongly depends on the
available prior knowledge about kinase-substrate relationships. As
our knowledge increases due to experimental methods like in vitro
kinase selectivity studies [103] or the CEASAR (Connecting
Enzymes And Substrates at Amino acid Resolution) approach
[104], the utility and applicability of methods for inference of
kinase activities will grow as well. Additionally, the computational
approaches for the prediction of possible kinase-substrate relation-
ships are under on-going development [84, 105], increasing the
reliability of the in silico predictions.

Phosphoproteomic data is not only valuable for the analysis of
kinase activities: for example, PTMfunc is a computational resource
that predicts the functional impact of posttranslational modifica-
tions based on structural and domain information [15], and PHO-
NEMeS [96, 106] combines phosphoproteomics data with prior
knowledge kinase-substrate relationships, in a similar fashion as
kinase-activity methods. However, instead of scoring kinases,
PHONEMeS derives logic models for signaling pathways at the
phosphosite level.

For the analysis of deregulated signaling in cancer, mutations in
key signaling molecules can be of crucial importance. Recently,
Creixell and colleagues presented a systematic classification of
genomic variants that can perturb signaling, either by rewiring of
the signaling network or by the destruction of phosphorylation
sites [107]. Another approach was introduced in the last update
of the PhosphoSitePlus database, in which the authors reported
with PTMVar [20] the addition of a dataset that can map missense
mutation onto the posttranslational modifications. With these
tools, the challenging task of creating an intersection between
genomic variations and signaling processes may be addressed.

It remains to be seen how the different scoring metrics for
kinase activity relate to each other, as they utilize different
approaches to extract a kinase activity score out of the data. IKAP
is based on a nonlinear optimization for the model of kinase-
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dependent phosphorylation, KSEA on statistical analysis of the
values in the substrate set of a kinase, and CLUE on the k-means
clustering algorithm together with Fisher’s exact test for enrich-
ment. In a recent publication by Hernandez-Armenta et al. [108],
the authors compiled a benchmark dataset from the literature,
consisting of phosphoproteomic experiments under perturbation.
For each experiment, specific kinases are expected to be regulated,
e.g., EGFR receptor tyrosine kinase after stimulation with EGF.
Using this “gold standard,” the authors assessed how well different
methods for the inference of kinase activities could recapitulate the
expected kinase regulation in the different conditions. All of the
assessed methods performed comparably strongly, but the authors
observed a strong dependency on the prior knowledge about
kinase-substrate relationships. This is a first effort to assess the
applicability, performance, and drawbacks of the different methods,
thereby guiding the use of phosphoproteomics data to infer kinase
activities, from which to derive insights into molecular cancer biol-
ogy and many other processes controlled by signal transduction.

6 Notes

1. To the sources parameter in the function get_kinase_targets,
either a list of kinase-substrate interaction sources that are avail-
able in pypath or ‘all’ in order to include all sources can be
passed. If no source is specified, only the interactions from
PhosphoSitePlus and Signor will be used. The available sources
in pypath are “ARN” (Autophagy Regulatory Network) [109],
“CA1” (Human Hippocampal CA1 Region Neurons Signaling
Network) [110], “dbPTM” [111], “DEPOD” [75], “HPRD”
(Human Protein Reference Database) [92], “MIMP” (Muta-
tion IMpact on Phosphorylation) [112], “Macrophage” (Mac-
rophage pathways) [113], “NRF2ome” [114], “phosphoELM”
[21], “PhosphoSite” [20], “SPIKE” (Signaling Pathway
Integrated Knowledge Engine) [115], “SignaLink3” [116],
“Signor” [71], and “TRIP” (Mammalian Transient Receptor
Potential Channel-Interacting Protein Database) [117].

2. The provided code is equivalent to:

intensity_columns ¼ []

for x in data_indexed:

...if x.starstwith(‘Average’):

... ...intensity_columns.append(x)

data_intensity ¼ data_indexed[intensity_columns]
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3. In our example, it is not necessary to transform the data to log2
intensities, since the data is already provided after log2-
transformation. But for raw intensity values, the following func-
tion from the NumPy module can be used:

data_log2 ¼ np.log2(data_intensity)

4. Due to a compatibility problem with the output of Excel,
Python recognizes the p-values as string variables, not as floating
point numbers. Therefore, this line is needed to convert the type
of the p-values.

5. The adjacency matrix can also be constructed based on kinase
recognition motifs or kinase prediction scores and the amino
acid sequence surrounding the phosphosite. To use NetworKIN
scores for the creation of the adjacency matrix, kinact will pro-
vide dedicated functions. In the presented example, however, we
focus on the curated kinase-substrate relationships from
PhosphoSitePlus.

6. The file from PhosphoSitePlus is provided as text file in which a
tab (‘\t’) delimits the individual fields, not a comma. The file
contains a disclaimer at the top, which has to be removed first.
Alternatively, the option ‘skiprows’ in the function ‘read_csv’
can be set in order to ignore the disclaimer.

7. This column is needed, so that in the matrix resulting from pd.
pivot_table the value from this column will be entered.

8. If necessary, mapping between protein names, gene names, and
UniProt-Accession numbers can easily be performed with the
Python module ‘bioservices’, to the documentation of which we
want the refer the reader [118].

9. In this statement, we first select the relevant columns of the
kinase from the connectivity matrix (adj_matrix[kinase]). In
this column, we replace all 0 values with NAs (replace(0, np.
nan)), which are then deleted with dropna(). Therefore, only
those interactions remain, for which a 1 had been entered in the
matrix. Of these interactions, we extract the index, which is a list
of the phosphosites known to be targeted by the kinase of
interest.

10. The where method will return a copy of the DataFrame, in
which for cases where the condition is not true, NA is returned.
dropna will therefore delete all those occurrences, so that len
will count how often the condition is true.
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Chapter 7

Perseus: A Bioinformatics Platform for Integrative Analysis
of Proteomics Data in Cancer Research

Stefka Tyanova and Juergen Cox

Abstract

Mass spectrometry-based proteomics is a continuously growing field marked by technological and meth-
odological improvements. Cancer proteomics is aimed at pursuing goals such as accurate diagnosis, patient
stratification, and biomarker discovery, relying on the richness of information of quantitative proteome
profiles. Translating these high-dimensional data into biological findings of clinical importance necessitates
the use of robust and powerful computational tools and methods. In this chapter, we provide a detailed
description of standard analysis steps for a clinical proteomics dataset performed in Perseus, a software for
functional analysis of large-scale quantitative omics data.

Key words Perseus, Software, Omics data analysis, Translational bioinformatics, Cancer proteomics

1 Introduction

High-resolution mass spectrometry-based proteomics, aided by
computational sciences, is continuously pushing the boundaries of
systems biology. Obtaining highly accurate quantitative proteomes
on a genome-wide scale is becoming feasible within realistic mea-
surement times [1]. Similar to the clinical goals of genomics and
transcriptomics to provide a deeper understanding of a certain
disease that goes beyond the standard clinical parameters of cancer
diagnosis, proteomics offers a comprehensive view of the molecular
players in a cell at a particular moment and in a specific state
[1]. The maturation of the technology together with the develop-
ment of suitable methods for quantification of human tissue pro-
teomes [2–4] has opened new doors for employing proteomics in
medical applications and is shaping the growing field of clinical
proteomics [5, 6]. Following these advances, proteomic approaches
have been used to address multiple clinical questions in the context
of various cancer types. The major area of application is the
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profiling of cancer-relevant tissues—including the proteomes of
colorectal cancer [7, 8] and prostate cancer [9], as well as the
subtyping of lymphoma [10] and breast cancer [11, 12] patients.
Although proteomics has become an extremely powerful approach
for studying biomedical questions, offering unique advantages
compared to other omics techniques, the functional interpretation
of the vast amounts of data of a typical proteomics experiment often
poses analytical challenges to the biological domain experts.

The aim of data analysis is to translate large amounts of pro-
teomic data that cover numerous samples, conditions and time
points into structured, domain-specific knowledge that can guide
clinical decisions (Fig. 1). Prior to any statistical analysis, data

Sam
ple1

Expression data table

difference

-lo
g 

p
 v

al
ue

0
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Statistical analysis Functional analysis

maxmin x

Data integration Knowledge generation

∫

Fig. 1 Outline of a typical analysis workflow in Perseus. The workflow shows the process of converting data
into information and knowledge. Statistical analysis can be used to guide the identification of biologically
relevant hits and drive hypotheses generation. Various external databases, annotation sources, and multiple
omics types can be loaded and matched within the software and together with powerful enrichment
techniques allow for smooth data integration
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cleansing is usually performed which includes normalization, to
ensure that different samples are comparable, and missing value
handling to enable the use of methods that require all data points
to be present. A plethora of imputation methods developed for
microarray data [13] can be applied to proteomics as well
[14]. Among these, methods with the underlying assumption that
missing values result from protein expression that lies under the
detection limit of modern mass spectrometers are frequently used.
A typical task of clinical proteomics studies is to identify proteins
that show differential expression between healthy and diseased
states or between different subtypes of a disease. Although com-
monly established statistical methods, which achieve this task exist,
distinguishing between expression differences due to technical
variability, genetic heterogeneity, or even intra-sample variability
and true disease-related changes require deep knowledge of statis-
tical tools and good understanding of the underlying problems in
the analysis of omics data.

For instance, testing thousands of proteins for differential
expression is hampered by the multiple hypothesis-testing prob-
lem, which results in an increased probability of calling a protein a
significant hit when there is no actual difference in expression.
This necessitates the use of correction methods to increase the
confidence of the identified hits. The choice of the appropriate
correction method depends on the balance between wrongly
accepted hits (error type I) and wrongly rejected hits (error type
II) that an experimentalist is willing to accept. For instance,
permutation-based FDR [15] has a reduced error type II rate
compared to the Benjamini-Hochberg correction [16]. Once the
initial list of quantified proteins is narrowed down to only the
significantly changing hits the question of their functional rele-
vance arises. Enrichment analysis of protein annotations is the
preferred method for deriving functional implications of sets of
proteins and is applicable to both categorical (Fisher’s exact test
[17]) and expression/numerical data (1D enrichment test [18]).
The outcome of such an analysis often offers a comprehensive
view of the biological roles of the selected proteins through high-
lighting key pathways and cellular processes in which they are
involved.

In this chapter, we provide a step-by-step workflow of bioin-
formatic analysis of proteomics data of luminal-type breast cancer
progression. Commonly used analytical practices are described
including data cleansing and preprocessing, exploratory
analysis, statistical methods and guidelines, as well as functional
enrichment techniques. All the steps are implemented as processes
in Perseus [19], a comprehensive software for functional analysis of
omics data.
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2 Materials

2.1 Software

Download and

Installation

Written in C#, Perseus achieves optimal performance when run on
Windows operating systems. The latest versions require 64 bit
system and .NET Framework 4.5 to be installed on the same
computer. To use the software on MacOS set up BootCamp and
optionally in addition Parallels. Registration and acceptance of the
Software License Agreement are required prior to downloading
Perseus from the official website: http://www.coxdocs.org/doku.
php?id¼perseus:start . Once the download has finished, decom-
press the folder, locate the Perseus.exe file, and double-click it to
start the program.

2.2 Data Files In the subsequent analysis, we used a subset of the data measured
by Pozniak et al. [20]. The authors provide a genome-wide pro-
teomic analysis of progression of breast cancer in patients by study-
ing major differences at the proteome level between healthy,
primary tumor, and metastatic tissues. The data were measured as
ratios between an optimized heavy-labeled mix of cell lines repre-
senting different breast cancer stages and the patient proteome
[2]. This constitutes an accurate relative quantification approach
used especially in the analysis of clinical samples. Peptide and pro-
tein identification and quantification was performed using the
MaxQuant suite for the analysis of raw mass spectrometry data
[21] at peptide spectrum match and protein false discovery rate of
1%. The subset used in this protocol contains proteome profiles of
22 healthy, 21 lymph node negative, and 25 lymph node metastatic
tissue samples and spans over 10,000 protein groups and can be
found in the proteinGroups.txt file provided as supplementary
material to the Pozniak et al. study (see Note 1).

3 Methods

The Methods section contains several modules covering the most
frequently performed steps in the analysis of proteomics data.
Often, a proteomics study benefits from a global overview of the
data, which usually includes the total number of identified and
quantified proteins, dynamic range, coverage of specific pathways,
and groups of proteins. A good practice in data analysis is to start
with exploratory statistics in order to check for biases in the data,
undesirable outliers, and experiments with poor quality data and to
make sure that all requirements for performing the subsequent
statistical tests are met. Once the data are filtered and normalized
appropriately, statistical and bioinformatic analyses are performed
in order to identify proteins that are likely to be functionally-
important. When the list of such proteins is small enough and direct
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links to the question of interest can be inferred using prior knowl-
edge, follow-up experiments can be performed after this step to
confirm the results of the statistical analysis. However, one of the
advantages of mass spectrometry-based proteomics is the ability to
unravel new discoveries in an unbiased way, for instance, through
functional analysis. This analysis is often based on enrichment tests,
which can highlight guiding biological processes and mechanisms.

3.1 Loading the Data 1. Go to the “Load” section in Perseus and click the “Generic
matrix upload” button.

2. In the pop-up window, navigate to the file to be loaded (see
Note 2).

3. Select all the expression columns and transfer them to theMain
columns window (see Note 3). Select all additional numerical
data that may be needed in the analysis and transfer them to the
Numerical columns window. Make sure that the columns con-
taining identifiers (e.g., protein IDs) are selected as Text col-
umns. Click ok.

3.2 Summary

Statistics

Get familiar with the Software and its five main sections: Load,
Processing, Analysis, Multi-processing, and Export (see Fig. 2).

1. In the workflow panel, change the name of the data matrix from
matrix 1 to InitialData by right-clicking the node and changing
the Alternative name box. Close the pop-up window. Explore
the right-most panel of Perseus, which contains useful informa-
tion such as number of main columns and number of rows.

2. Go to “Processing ! Filter rows ! Filter rows based on
categorical column” to exclude proteins identified by site,
matching to the reverse database or contaminants (seeNote 4).

3. Transform the data to a logarithmic scale by going to “Proces-
sing ! Basic ! Transform” and specifying the transformation
function (e.g., log2(x)).

4. In the “Processing” section, select the “Basic” menu and click
on the “Summary statistics (columns)” button. Select all
expression columns by transferring them to the right-hand
side. Click ok and explore the new matrix.

3.3 Filtering 1. Use the workflow window to select the InitialDatamatrix data
by clicking on it (see Note 5).

2. In the “Processing” section, go to the “Filter rows” menu and
select “Filter rows based on valid values.” Change the Min.
valids parameter to Percentage and keep the default value of
70% for the Min. percentage of values parameter. Click ok.
Check how many protein groups were retained after the filter-
ing (see Note 6).
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3.4 Exploratory

Analysis

1. To visually inspect the data, go to “Analysis! Visualization!
Histograms.” Select all the samples of interest by transferring
them to the right-hand side. Click ok.

2. Explore the visualization options in the Histogram panel by
testing the functionality of each of the buttons (e.g., Properties,
Fit width, Fit height).

LOAD
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Annotation data
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Result matrix
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Enrichment
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Fig. 2 Interfaces of Perseus and the augmented data matrix format. (a) Perseus extends over five interfaces,
each of which includes various analysis and transformation functionalities and visualization possibilities. (b)
Experimental design is specified as annotation (e.g., treatment vs. control groups) or numerical rows (e.g.,
variable concentration). Multiple annotation rows can be specified that allow biological and technical
replicates to be analyzed together. (c) The data is organized in a matrix format where typically all samples
are displayed as columns and all proteins as rows. (d) Additional protein information can be added in the form
of Numerical, Categorical, or Text annotations
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3. Click on the pdf button to export the plot (see Note 7).

4. Switch the view to the “Data” tab.

5. Go to “Analysis ! Visualization ! Multi scatter plot.” Select
the desired samples by transferring them to the right-hand side.
Click ok (see Fig. 3).

6. Adjust the plot using the Fit width and Fit height options and
resizing the plot window.

7. In the drop-down menu “Display in plots” in the plot window,
select Pearson correlation.

8. Select a scatter plot by clicking on it. The selected plot will be
shown in an enlarged view.

9. Select a number of proteins from the “Point” table on the right
of the multi scatter plot and examine their position in all pair-
wise sample comparisons.

10. Switch back to the “Data” tab to continue with the analysis.

11. “Go to Processing! Basic!Column correlation.”Make sure
that the Type is set to Pearson correlation. The output table
contains all pairwise correlations between the selected
columns.

12. To visualize the sample correlations, go to “Analysis ! Clus-
tering/PCA ! Hierarchical clustering.” Use the Change color
gradient to set a continuous gradient similar to the one in
Fig. 3a.

13. Export the plot by clicking on the pdf button.

14. Navigate back to the previous data matrix by clicking on it in
the workflow panel.

15. Principal component analysis requires all values to be valid. To
remove all protein groups with missing values, repeat Subhead-
ing 3.3, step 2 setting the percentage parameter to 100 (see
Note 8).

16. Go to “Analysis ! Clustering/PCA ! Principal component
analysis” and click ok. Explore the sample separation (dot plot
in the upper panel) and the corresponding loadings (dot plot in
the lower panel).

17. In the table on the right of the PCA plot, select a set of samples
(e.g., all samples that belong to one experimental condition)
and change their color by clicking on the Symbol color button
and selecting the desired color.

18. Check the contribution of other components by substituting
Component 1 and 2 with other components from the drop-
down menu. Find the components that show sample separa-
tion according to the experimental conditions (see Fig. 3c).
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19. Explore the proteins driving this separation. In the loadings
plot beneath the PCA, change the selection Mode to rectangu-
lar selection. Hold the left mouse key down and draw a rectan-
gle around the dots in the upper right corner and then release
the mouse. The selected proteins are highlighted in the table to
the right and their labels are displayed in the plot.
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Fig. 3 Exploratory analysis outputs in Perseus. (a) Hierarchical clustering of all the samples based on the
correlation coefficients between them reveals higher similarity between primary and metastatic tumors versus
healthy tissue samples. (b) Multi-scatter plot of averaged profiles among the three main groups clearly
represents the disease progression by highlighting strong similarities between subsequent stages, e.g.,
healthy tissue samples are more similar to primary tumors than to metastasis (correlation coefficient 0.76
vs 0.69), whereas primary tumors are most similar to metastasis (R ¼ 0.94). The category Cell division is
highlighted in bright green in all pairwise comparison plots. (c) Principal component analysis (PCA) attributes
the largest variance to the difference between healthy (blue dots) and cancer tissues (pink and red dots)
(Component 1, 21.1%) and shows that primary and metastatic tumors (pink and red dots respectively) are
difficult to distinguish
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3.5 Normalization 1. Navigate back to the data matrix before filtering for 100% valid
values (Subheading 3.3, step 2).

2. Go to “Processing ! Normalization ! Z-score.” Change the
Matrix access parameter to Columns and select the Use median
option. In the new data table, plot histograms for the same
subset of samples as in Subheading 3.4, step 1 (see Note 9).

3.6 Experimental

Design

1. Go to “Processing ! Annot. rows ! Categorical annotation
rows.” Use the Create action option to manually specify the
experimental condition to which a sample belongs (i.e., indi-
cate control versus stimulus, or different stages of a disease). All
the samples belonging to one condition should have the same
annotation. A new row will be added under the column names
in the newly generated data matrix (see Note 10).

3.7 Loading

Annotations

1. Go to the drop-down menu indicated with a white arrow at the
top left corner of Perseus and select “Annotation download.”

2. Click on the link in the pop-up window. Select the appropriate
annotation file (e.g., “PerseusAnnotaion! FrequentlyUsed!
mainAnnot.homo_sapiens.txt.gz,” if the organism of interest is
homo sapiens).

3. Download the file to the Perseus/conf/annotations folder.

4. Go to “Processing ! Annot. columns ! Add annotation.”
Select the file from the previous step as a Source.

5. Set the UniProt column parameter to the column that
contains UniProt identifiers. These identifiers will be used for
overlaying the annotation data with the expression matrix (e.g.,
Protein IDs).

6. Select several categories of interest to be overlaid with the main
matrix and move them to the right-hand side. Click ok.

3.8 Differential

Expression Analysis

1. Go to “Processing ! Tests.” From the menu select the appro-
priate test. For the data set used in this chapter, the Multiple-
sample tests option should be chosen, as there are more than
two conditions that are compared. The default parameters do
not have to be changed (see Note 11).

2. Specify the categorical row that contains information about the
experimental conditions of the samples that will be used in the
differential analysis in the Grouping parameter.

3. Keep the default value of 0 for the S0 parameter, to use the
standard t-test statistic. Change the parameter to use the mod-
ified test statistic approach described by Tusher et al. [15].

4. Select the multiple hypothesis testing correction method to
be used by specifying the Use for truncation parameter (see
Note 12, Fig. 4a).
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5. Specify if a suffix should be added to the output columns
produced by Perseus. This option is relevant when multiple
tests are conducted, e.g., with different parameter settings, as it
helps to distinguish between them in the output table.

6. Inspect the output table. It contains three new columns:
ANOVA significant, �Log ANOVA p-value, and ANOVA
q-value (see Note 13).

7. Go to “Processing ! Filter rows ! Filter rows based on
categorical column.” Set the Column parameter to ANOVA
Significant and the Mode parameter to Keep matching rows to
retain all differentially expressed proteins.

8. Go to “Processing ! Tests ! Post-hoc tests.” Set the Group-
ing parameter to the same grouping that was used for the
ANOVA test (see Subheading 3.6, step 1) and the FDR to

A
Randomize, r
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q-vali <= FDR threshold 

B

******

******
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Compute p-valsobserved Compute p-valsrandom

Protein SignificantGroup 1 Group 2 Group 3 Group 1 Group 2 Group 3

|m1 - m3| >= THSD |m2 - m3| >= THSD
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D
F

Protein |m1 - m2| >= THSD
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Sign.Sign.Sign.

Fig. 4 Differential expression and multiple hypothesis testing. (a) Multiple hypothesis testing correction using a
permutation-based false discovery rate approach is shown. Labels are randomly swapped between the three
groups (blue, yellow, and red). The Randomization is repeated r times. ANOVA p-values are computed both on
the measured and the permutated data and local FDR values (q-values) are computed as the fraction of
accepted hits from the permuted data over accepted hits from the measured data normalized by the total
number of randomizations r. All hits with a q-value smaller than a threshold are considered significant. (b) To
determine the exact pairwise differences of protein expression Tukey’s Honest Significant Difference (THSD)
test is used on the ANOVA significant hits. If the mean difference between two groups is greater than or equal
to the corresponding THSD, the difference is considered significant between the compared groups. q: constant
depending on the number of treatments and the degrees of freedom that can be found in a Studentized range q
table; MSE: mean squared error; n1, n2, number of data points in each group
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the desired threshold. Tukey’s honestly significant difference
(THSD) is computed for all proteins and all pairwise compar-
isons and the significant hits within the corresponding pairs are
marked (see Note 14, Fig. 4b).

3.9 Clustering and

Profile Plots

1. Go to “Analysis ! Clustering/PCA ! Hierarchical cluster-
ing.” Keep the default parameters and click ok.

2. Inspect the resulting heatmap and the relationship between the
groups and the proteins.

3. Click on theChange color gradient button in the button ribbon
above the heatmap to examine the color scale usage (red means
high and green low expression) and to modify them.

4. Click on several node junctions in the protein tree that repre-
sent potentially interesting clusters of proteins (i.e., upregula-
tion in a certain experimental condition). The selected clusters
are highlighted and appear in the “Row clusters” table dis-
played to the right of the heatmap (see Note 15).

5. Inspect the different profile plots as you navigate through the
different clusters in the table. Change the color by modifying
the Color scale and export the profile plots by clicking on the
Export image button (see Fig. 5).

6. From the ribbon menu in the heat map view, click on the
Export row clustering button to add the cluster information to
a new data matrix.

3.10 Functional

Analysis

1. Go to “Multi-proc. ! Matching rows by name.” Both Base
and Other matrices point to the last matrix.

2. Click on Base matrix and then in the workflow window select
the data matrix that was generated before filtering for ANOVA
significant hits (Subheading 3.9, step 6).

3. In the pop-up window set Matching column in matrix 1 and
2 to a common identifier (e.g., Protein IDs).

4. In the categorical columns section, transfer the category Clus-
ter to the right hand-side. Click ok (see Note 16).

5. Go to “Processing ! Annot. columns ! Fisher exact test.”
Change the Column parameter to Cluster and click ok. The
resulting table contains information about all annotation cate-
gories that were found to be significantly enriched or depleted
using a Fisher’s exact test and multiple hypotheses correction
(see Note 17).

In summary, this chapter provides a complete protocol for
fundamental analysis of proteomic data, starting from data
upload and transformation and ending with identification of
proteins, characteristic of the specific disease progression stage,
and the underlying processes in which they are involved. The
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described analytical methods and visualization tools are
integrated in Perseus, a freely available platform for analysis of
omics data, which provides a comprehensive portfolio of analy-
sis tools with a user-friendly interface [19]. A special emphasis
is placed on employing statistically sound methods in the anal-
ysis of large data, avoiding wrong interpretation and extracting
maximum information. More advanced computational techni-
ques such as supervised learning are also supported and are
often instrumental for the analysis of complex data where
genetic and intra-tumor variability may pose challenges. More-
over, Perseus is being continuously developed to integrate
analysis of various data types, including posttranslation mod-
ifications, sequence information, as well as to allow deeper
functional interpretation through network and pathways
analysis.
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Fig. 5 Enrichment analysis highlighting important pathways and processes. (a) Hierarchical clustering of
proteins found to have differential expression between pairs of disease states. High and low expression are
shown in red and blue respectively. Various clusters of protein groups are highlighted in the dendrogram. (b)
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3 decreased expression in tumor samples. (c) Functional analysis of protein annotation terms resulted in
multiple categories that were enriched in the three selected clusters. The enriched terms and the
corresponding enrichment factor and p-value are shown
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4 Notes

1. Proteins with shared peptides that cannot be distinguished
based on the peptides identified in a bottom-up proteomics
approach are often reported together as a protein group [21].

2. The input file format of Perseus is a tab-delimited txt file that
contains a header row with the names of all columns. The type
of data is specified during file loading. Make sure that the
“Regional and Language Options” are set to English to avoid
errors while reading numerical data such as decimal separators
being wrongly interpreted.

3. Different expression and meta data can be imported in Perseus
and used for subsequent analysis. Common expression data are
in one of the following formats: normalized intensities (e.g.,
LFQ intensity as described in [4], iBAQ as described in [22])
or ratios between heavy standard and light/non-labeled sam-
ple. Other data types that can be analyzed with Perseus are
shown in Fig. 2.

4. Reverse, identified by site and contaminant proteins have to be
marked in a categorical column before these filters can be
applied. These are automatically set when MaxQuant output
tables are used for analysis in Perseus. Additional filtering
options can be used to remove proteins based on a quantitative
measure such as a minimum number of quantified peptides or a
maximum q-value.

5. Different activities have different output results including a
data matrix with the same expression values and additional
columns containing the results of the analysis or a new data
matrix containing only the output of an analysis activity. An
activity is always performed on the data matrix and specific tab
for that matrix that is active at the moment.

6. Depending on the nature of missing values, different filtering
strategies may be employed and are supported in Perseus. For
example, if large differences between groups are expected with
proteins having very low expression level in one of the groups,
filtering based on a minimum number of valid values in at least
one group would be a more suitable approach than filtering for
a minimum number of valid values in the complete matrix.

7. All the plots can be exported in figure-ready formats such as
pdf, tiff, or png.

8. Very stringent filtering is usually not recommended, as a large
amount of the data will be lost. Instead milder filtering com-
bined with imputation may be more appropriate.

9. Data normalization is not always necessary. Different types of
normalization can be applied on the data to correct for system-
atic shifts or skewness and to make samples comparable.
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10. Regular expressions can be used to derive the experimental
design from the sample names (“Action ! Create from exper-
iment name”). Additionally, a template txt file can be written
out, edited in an external editor program, and read in to
indicate the experimental design.

11. Analysis of differentially expressed proteins depends on the
number of compared conditions, the underlying distribution
properties, and the availability of biological replicates. For
example, data sets with one condition with replicates should
be analyzed with One-sample tests, with two conditions—with
Two-sample tests, and with more than two conditions—Multi-
ple-sample tests. Paired samples test and tests abolishing the
requirement for equal variance are also available.

12. The method with largest power Permutation-based FDR is
recommended and at least 250 repetitions are suggested. In
case of technical replicates, these have to be specified as a
separate grouping (see Subheading 3.7, step 1) and selected
with the “Preserve grouping in randomizations” option. Fail-
ure to specify technical replicates will result in wrong FDR
calculation. The more conservative Benjamini-Hochberg cor-
rection can also be used when a lower number of Type I errors
at the cost of lower sensitivity are desired.

13. The “Significant” column contains a “+” if a protein met the
selected significance threshold (usually q-value). Additionally,
p-values (probability of type I error) and the corresponding
q-values (corrected p-value) are provided in the output table.

14. Tukey’s honestly significant difference (THSD) is a post-hoc
test that when performed on ANOVA significant hits deter-
mines in exactly which pairwise group comparisons a given
protein is differentially expressed.

15. Clusters can be defined by clicking on the respective nodes in
the protein tree or based on the precise distance measure used
to compute the tree. To use the latter option, click on the
“Define row clusters” button and specify the desired number
of clusters, which will then be automatically defined.

16. The matching step is necessary in order to define the correct
background against which enrichment will be computed. Too
small (only significant hits) or too large (the complete prote-
ome, even if not detected with MS analysis) introduces bias in
the enrichment results.

17. The enrichment output table contains information about the
values used to compute the contingency table for the Fisher’s
exact test (e.g., category and intersection size), the enrichment
factor, and the statistical significance of the hit indicated by a p-
value and the associated false discovery rate.
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Chapter 8

Quantitative Analysis of Tyrosine Kinase Signaling Across
Differentially Embedded Human Glioblastoma Tumors

Hannah Johnson and Forest M. White

Abstract

Glioblastoma is the most aggressive primary brain tumor with a poor mean survival even with the current
standard of care. Kinase signaling analyses of clinical glioblastoma samples provide a physiologically relevant
view of oncogenic signaling networks. Here, we describe the methods that enable the quantification of
protein expression profiles and phosphotyrosine signaling across flash frozen and optimal cutting tempera-
ture (OCT) compound embedded tumor specimens. The data derived from these experiments can be used
to identify the intra- and inter-patient heterogeneity present in these tumors. Correlation and functional
analyses on the quantitative protein expression and phosphotyrosine signaling data obtained from clinical
samples can be used to identify tyrosine kinase signaling networks present in these tumors and reveal the
differential expression of functionally related proteins. This chapter provides the quantitative mass spec-
trometry methods required for the identification of in vivo oncogenic signaling networks from human
tumor specimens.

Key words Glioblastoma, iTRAQ labeling, Heterogeneity, Phosphorylation, Mass spectrometry

1 Introduction

Glioblastoma (GBM) is the most common primary brain tumor
with the current standard of care consisting of surgical removal,
radiotherapy, and chemotherapy [1]. Despite these invasive inter-
ventions the median survival time remains at approximately
15 months following diagnosis [2]. Molecular classification of
GBM tumors has led to the identification of four sub-classes of
GBM, based largely on differences in transcriptional profiles: classi-
cal, mesenchymal, neural, and proneural. While each subtype is
associated with the mutation/dysregulation of selected molecular
drivers, the intra-tumoral heterogeneity is such that different
tumors within each sub-type may still have different oncogenic
drivers [3–6]. Intriguingly, activation of receptor tyrosine kinase
(RTK) signaling, through overexpression or mutation, is a com-
mon feature in >80% of all glioblastomas, thereby implicating
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kinase signaling in the pathogenesis of glioblastoma [6]. Moreover,
most RTKs are attractive targets for therapeutic intervention, as
their activation potentiates survival through MAPK and PI3K/
AKT signaling [7]. Unfortunately, it is often difficult to determine
which RTK(s) are activated in a given tumor from genomic
profiling alone, as RTK activation is typically regulated at the
protein posttranslational modification level rather than at the tran-
scriptional level. Therefore, in order to directly identify RTK activ-
ity and thereby select potential RTK-targeted therapeutic strategies
for a given patient tumor, we have recently developed an approach
to quantifying protein tyrosine phosphorylation and protein
expression profiles in human tumor tissue specimens [8].

Using this approach, it is possible to quantify phosphorylation
events across patient samples with high sensitivity and throughput.
Profiling tyrosine phosphorylation by mass spectrometry has been
demonstrated to identify activated tyrosine kinase signaling path-
ways across a number of tumor types [9, 10]. Accurate characteri-
zation of dynamic phosphorylation signaling can prove challenging
due to the limited availability of clinical samples for proteomic
analysis. Differential embedding of human tumors before storage
often compounds the limited availability of clinical samples
[8]. Embedding tissues using formalin-fixed paraffin (FFPE) and
optimal cutting temperature (OCT) compound is routine in
pathology labs to allow sectioning histopathologic analysis
[11]. Evaluation of the ability to quantify activated signaling net-
works and protein expression profiles across these differentially
embedded tumors will allow the utlization of available tissue sam-
ples [8, 12]. Furthermore, these analyses allow the identification of
(i) signaling changes that can occur in the tumor between resection
and freezing [13], and (ii) the presence of intra-tumoral heteroge-
neity [14–16]. We have previously quantified phosphotyrosine sig-
naling across a panel of glioblastoma patient-derived xenograft
(PDX) tumors with differing expression of the epidermal growth
factor (EGFR) variant vIII [17], a panel of differentially embedded
human glioblastoma tumors [8], and across a panel of colorectal
and ovarian tumors [13]. Throughout these analyses we have iden-
tified inter and intra-tumoral heterogeneity at the tyrosine kinase
signaling level.

In this chapter, we describe the quantification of tyrosine kinase
signaling using iTRAQ labeling of human glioblastoma tumors.
The methodology described here can be readily applied to other
tumor types. To investigate the effect of alternate storage methods
on protein stability or protein posttranslational modifications, we
have quantified activated phosphotyrosine networks and profiled
global protein expression across pairs of human glioblastoma tumor
sections that have been either embedded in OCT compound fol-
lowed by flash freezing in liquid nitrogen (LN2) or immediately
flash frozen in LN2. Samples were labeled with iTRAQ8plex
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followed by phosphotyrosine peptide enrichment and protein
expression profiling across the panel of human glioblastoma tumors
(Fig. 1) [8]. A quantitative proteomic analysis of these clinical
samples allows the identification of the effects of sample storage
on tyrosine kinase signaling and protein expression profiles and
enables the identification of oncogenic kinase signaling. To identify
activated phosphotyrosine signaling related to glioblastoma biol-
ogy, we describe correlation analysis and functional analysis of the
quantitative proteomic data to highlight groups of related proteins
that are co-expressed in glioblastoma tumors. Ultimately, the meth-
ods described here allow the identification of activated tyrosine
kinases and downstream signaling in vivo in the context of inter-
and intra-tumoral heterogeneity.

2 Materials

Prepare all the solutions using HPLC grade solvents unless indi-
cated otherwise. Prepare and store all the reagents at room temper-
ature unless indicated otherwise. Follow waste disposal regulations
when disposing of chemicals.

Fig. 1 Quantification of tyrosine phosphorylation signaling and protein expression profiles across human
glioblastoma tumors. Experimental mass spectrometry workflow. Human glioblastoma tumor sections are
homogenized, reduced, alkylated, and digested with trypsin and peptides labeled with iTRAQ8plex.
Phosphotyrosine peptide enrichment was carried out by immunoprecipitation using anti-phosphotyrosine
antibodies and analyzed by LC-MS/MS. For protein expression profiling, peptides are fractionated by
isoelectric focusing and analyzed by LC-MS/MS
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2.1 Tumor

Homogenization

1. Polytron hand held homogenizer.

2. Timer.

3. Phosphate-buffered saline (PBS).

4. Protein phosphotyrosyl phosphatase inhibitor: 200 mM
sodium orthovanadate (Na3VO4) stock, make 100 μL aliquots
and store at �20 �C until ready to use.

5. Complete protease and phosphatase inhibitors.

6. Mass spectrometry lysis buffer: 8 M urea. Add urea to MilliQ
water and vortex to dissolve. Supplement with 1 mM sodium
orthovanadate, 0.1% NP-40, and protease and phosphatase
inhibitor cocktail tablets.

7. Immunoblotting lysis buffer: Radioimmunoprecipitation assay
(RIPA) buffer supplemented with 1 mM sodium orthovana-
date, 0.1% NP-40, and protease and phosphatase inhibitor
cocktail tablets.

8. Bicinchoninic acid (BCA) assay.

9. Methanol.

10. Liquid nitrogen.

11. Scales.

12. Dry ice.

2.2 Immunoblotting 1. 7.5% polyacrylamide gels.

2. Nitrocellulose.

3. Quantitative Tyrosine Kinase Signaling in GlioblastomaBlock-
ing buffer: 5% BSA in Tris-buffered saline with tween (TBS-T)
(150 mM NaCl, 0.1% Tween 20, 50 mM Tris–HCl, pH 8.0).

4. Primary antibodies: anti-phosphotyrosine (4G10,Millipore), anti-
EGFR (BD Biosciences), anti-Her3/ErbB3 (CST), anti-
PDGFRα (CST), anti-PDGFRβ (CST), anti-Met (CST),
anti-AKT (CST), anti-AKT pS473 (CST), anti-p53 (CST), and
anti-β-tubulin (CST).

5. Secondary antibodies: goat anti-rabbit or goat anti-mouse con-
jugated to horseradish peroxidase.

6. Enhanced chemiluminescence (ECL) detection kit.

2.3 Reduction,

Alkylation, and Tryptic

Digestion

1. 100 mM ammonium acetate in water, pH 8.9.

2. Reducing solution: 1 M dithiothreitol (DTT) in 100 mM
ammonium acetate pH 8.9.Store at �20 �C in aliquots.

3. Alkylation solution: 1 M iodoacetamide (IAA) in 100 mM
ammonium acetate pH 8.9.

4. Sequencing grade trypsin.

5. Formic acid.
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6. C18 cartridges.

7. Acetonitrile.

2.4 iTRAQ 8plex

Labeling

1. iTRAQ reagents.

2. Dissolution buffer: 500 mM triethylammonium bicarbonate
(TEAB), pH 8.5.

3. Isopropanol.

4. 0.1% acetic acid.

5. Vacuum centrifuge.

2.5 Phosphotyrosine

Peptide

Immunoprecipitation

1. Protein G agarose.

2. Immunoprecipitation (IP) buffer: 100 mM Tris–HCl, 1%
NP-40, pH 7.4.

3. Tris buffer: 500 mM Tris–HCl, pH 8.5.

4. Phosphotyrosine antibodies: 4G10 (Millipore), PY100 (CST),
and PT66 (Sigma).

5. Rinse buffer: 100 mM Tris–HCl, pH 7.4.

6. Elution buffer: 100 mM glycine, pH 2–2.5.

7. pH paper.

2.6 Phosphopeptide

Enrichment by IMAC

1. Self-packed IMAC columns (15 cm in length): Pack columns
with Poros 20MC beads. Capillary type: OD 360 μm: ID
200 μm.

2. Easy-nLC 1000 Nano HPLC.

3. 100 mM iron(III) chloride.

4. MilliQ water.

5. 100 mM EDTA pH 8.0.

6. 0.1% acetic acid.

7. 250 mM sodium phosphate pH 8.0.

2.7 Peptide

Isoelectric Focusing

and Protein Expression

Profiling

1. MilliQ water.

2. Formic acid.

3. Acetonitrile.

4. ZOOM isoelectric focusing (IEF) fractionator.

5. Six ZOOM disks: pH 3.0, pH 4.6, pH 5.4, pH 6.2, pH 7.0,
and pH 10.0.

6. Anode buffer: 7 M urea, 2 M thiourea, Novex IEF anode
buffer, pH 3.0.

7. Cathode buffer: 7 M urea, 2 M thiourea, Novex IEF cathode
buffer, pH 10.4.

8. ZOOM carrier ampholytes.
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9. C18 cartridges.

10. Acetic acid.

2.8 Mass

Spectrometric

Analyses

1. Self-packed pre-columns (15 cm in length): Pack pre-columns
with 10 μm YMC gel, ODS-A, 12 nm beads. Capillary type:
OD 360 μm: ID 50 μm.

2. Self-packed analytical columns (15 cm in length): Pack analyti-
cal columns with 5 μm beads (YMC gel, ODS-AQ, 12 nm,
S-5 μm, AQ12S05). (Capillary type: OD 360 μm: ID 100 μm).

3. Easy-nLC 1000 Nano HPLC.

4. Mass Spectrometer, e.g., Orbitrap QExactive Plus mass spec-
trometer (Thermo Fisher Scientific).

5. Buffer A: 200 mM acetic acid.

6. Buffer B: 70% Acetonitrile, 200 mM acetic acid.

2.9 Protein

Expression Data

Analysis

and Functional Data

Analysis

1. Proteome Discoverer can be obtained from Thermo scientific.

2. MASCOT search engine software can be obtained from Matrix
Science; http://www.matrixscience.com/

3. Human protein sequence database, downloadable from NCBI.

4. CAMV. CAMV is open source software that can be down-
loaded from http://white-lab.mit.edu/software/camv

5. GENE-E. GENE-E is open source software that can be down-
loaded from http://www.broadinstitute.org/cancer/soft
ware/GENE-E/

6. PANTHER. is an online gene ontology tool that can be
accessed here: http://www.pantherdb.org/

7. STRING protein-protein interaction functional database can
be accessed here; http://string-db.org/

8. Phosphosite online database for phosphorylation sites can be
accessed here; http://www.phosphosite.org/

3 Methods

3.1 Tumor

Homogenization

and Removal

of Optimal Cutting

Temperature

It is essential that tumors are flash frozen immediately following
resection as cold ischemia can lead to significant changes in the
tyrosine kinase signaling network [13]. Perform steps 3–8 in the
chemical hood on ice.

1. Immediately flash freeze tumor samples in liquid nitrogen
following resection or embed in OCT compound and flash
freeze in liquid nitrogen as soon as possible (ideally within
5 min).

2. Take tissue out of the tube using tweezers and deposit it in a
weighting tray that has been previously tared. Record the
weight of the tumor, the size, and the shape (see Note 1).
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3. Rinse OCT compound embedded tumors in ice-cold PBS to
remove the OCT compound surrounding the tissue prior to
homogenization. Work on ice and minimize the time taken to
carry out this step. Place the samples on dry ice once they have
been thoroughly rinsed.

4. Homogenize tumors in ice-cold MS lysis buffer or RIPA buffer
for immunoblotting, on ice, with 6 � 10 s pulses (full speed),
separated by 10 s intervals. Homogenize tumors weighing
approximately 50–200 mg in 3 mL of lysis buffer. Carefully
assess the tube to identify any visible tissue left in the lysis buffer
at the end of this procedure. Apply additional 10 s pulses if
necessary.

5. Centrifuge tissue homogenate at 1070 � g for 5 min at 4 �C.

6. Take a 50 μL aliquot for BCA assay and place the rest of the
lysate immediately on dry ice and store at �80 �C.

7. Quantify protein concentrations using BCA.

8. Rinse the polytron homogenizer thoroughly with PBS and
methanol between samples.

3.2 Immunoblotting The RTK status of the tumors can be used to help understand the
tyrosine phosphorylation results (e.g., to help define the relative
stoichiometry of phosphorylation between samples). RTK expres-
sion can be assessed using standard immunoblotting (see Note 2).

1. Separate tissue homogenates on 7.5% polyacrylamide gels and
electrophoretically transfer to nitrocellulose.

2. Block nitrocellulose with blocking buffer for 1 h.

3. Dilute primary antibodies in blocking buffer and incubate with
nitrocellulose overnight at 4 �C.

4. Dilute secondary antibodies (either goat anti-rabbit or goat
anti-mouse conjugated to horseradish peroxidase) in TBS-T
at a 1:10,000 ratio and incubate at room temperature for 1 h.

5. Wash nitrocellulose 3� 10 min with TBS-T.

6. Detect antibody binding with ECL, film, and a standard
developer.

3.3 Reduction,

Alkylation, and Tryptic

Digestion

1. Dilute tissue homogenates 1:10 with 100 mM ammonium
acetate pH 8.9 to reduce the urea concentration to less than
800 mM.

2. Reduce protein disulfide bridges by adding 10 mM DTT to
each tumor homogenate to be analyzed and incubate at 56 �C
for 45 min.

3. Alkylate reduced cysteines with 50 mM IAA at room tempera-
ture in the dark for 1 h.
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4. Digest proteins with sequencing grade trypsin at an enzyme/
substrate ratio of 1:100, on rotator at room temperature
overnight.

5. Quench trypsin activity by adding formic acid to a final con-
centration of 5%.

6. Remove urea from the samples by reverse phase desalting using
a C18 cartridge. Elute the peptides from the C18 cartridge into
80% acetonitrile, 0.1% formic acid.

7. Lyophilize the peptides in 400 μg aliquots and store at�80 �C.

3.4 iTRAQ 8plex

Labeling

iTRAQ labeling currently allows the multiplexed quantification
across up to eight different samples. Multiple iTRAQ8plex experi-
ments can be combined to quantify across multiples of eight
tumors. This multiplexing strategy requires the presence of a com-
mon sample in each experiment in order to compare across differ-
ent experiments. This multiplex labeling strategy can also be
performed with TMT reagents, available in 6-plex or 10-plex.

1. Label 400 μg peptide (quantified by BCA before C18 desalt-
ing) from each of the tumors with one tube of iTRAQ 8plex
reagent (see Note 3).

2. Dissolve 400 μg lyophilized peptides in 30 μL dissolution
buffer. Vortex each sample for 1 min and spin at 12,000 � g
for 1 min.

3. Dissolve each tube of iTRAQ reagent in 70 μL of isopropanol.
Vortex each tube for 1 min and spin at 12,000 � g for 1 min.

4. Add the isopropanol and iTRAQ 8plex reagent to the 400 μg
peptide in dissolution buffer and vortex. Incubate at room
temperature for 2 h.

5. Concentrate the eight tubes of peptide/iTRAQ mix to 40 μL
using a vacuum centrifuge (speed-vac).

6. Combine the eight differentially labeled samples into a
single tube.

7. Sequentially rinse out all the tubes with 3� 60 μL 0.1% acetic
acid and add to the sample.

8. Concentrate the combined iTRAQ sample using a vacuum
centrifuge (spin to dryness) and store at �80 �C. At this
point the sample is stable for long-term storage (see Note 4).

3.5 Phosphotyrosine

Profiling

Due to the low abundance of phosphotyrosine in the cell, it is
necessary to carry out a series of steps to selectively enrich peptides
that contain a phosphotyrosine residue. All the steps should be
carried out at 4 �C unless otherwise stated.
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1. Wash 60 μL protein G agarose with 300 μL IP buffer. Centri-
fuge for 5 min at 2850 � g and remove the supernatant to
waste.

2. To the washed protein G agarose add 12 μg 4G10, 12 μg
PY100, and 12 μg PT66.

3. Allow the antibody to conjugate to the protein G agarose at
4 �C for 6–8 h with rotation.

4. Spin down the mixture at 2850 � g for 5 min. Remove the
supernatant and discard.

5. Wash the beads with 400 μL IP buffer, for 5 min on the rotor.
Spin the beads down in the centrifuge at 2850 � g for 5 min.

6. Resuspend the iTRAQ 8plex labeled peptides in 400 μL IP
buffer, vortex until the sample is completely dissolved and
adjust the pH to 7.4 using Tris buffer (500 mM, pH 8.5) (see
Note 5).

7. Remove the supernatant from the beads and replace it with the
sample.

8. Incubate the sample with the beads on the rotor at 4 �C
overnight.

9. The next day, centrifuge in the cold room at 2850 � g for
5 min.

10. Save the supernatant in a new tube and store it at �80 �C until
carrying out protein expression profiling (see Note 6).

11. Wash the beads with 1� 400 μL IP buffer and then 3� 400 μL
rinse buffer. Place the tube on the rotator for 5 min, spin down
at 2850 � g for 5 min, and remove the supernatant in between
each wash step. Discard the supernatant.

12. Add 70 μL of elution buffer and incubate at room temperature
on the rotor for 30 min.

13. Load the eluate onto an immobilized metal affinity chroma-
tography (IMAC) column.

3.6 Phosphopeptide

Enrichment by IMAC

IMAC columns are packed and used according to the previously
described protocol [18]. The steps required to enrich for phospho-
peptides are briefly highlighted here.

1. Rinse the IMAC column with 100 mM EDTA pH 8.0 for
10 min at 10 μL/min.

2. Rinse the IMAC column with MilliQ water for 10 min at
10 μL/min.

3. Load 100 mM iron(III) chloride onto the column for 30 min
at 10 μL/min (see Note 7).

4. Rinse the IMAC column with 0.1% acetic acid for 10 min at
10 μL/min.
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5. Load iTRAQ 8plex labeled phosphotyrosine immunoprecipita-
tion eluate to the IMAC column at a rate of 1–2 μL/min.

6. Rinse with 0.1% acetic acid at 10–12 μL/min for 10 min.

7. Elute peptides retained on the IMAC column onto a C18
reverse-phase pre-column with 250 mM sodium phosphate
pH 8.0.

8. Rinse pre-column with 0.1% acetic acid to remove excess phos-
phate buffer and analyze by MS.

3.7 Analysis

of Tyrosine

Phosphorylation by MS

1. After rinsing with 0.1% acetic acid, attach the pre-column to a
C18 reverse-phase analytical column with integrated electro-
spray emitter tip.

2. Chromatographically separate peptides by reverse phase HPLC
over a 140 min gradient, with the eluent ionized by nanoelec-
trospray into an Orbitrap QExactive Plus instrument.

3. Operate the instrument in positive ion mode. Record full scans
in the Orbitrap mass analyzer (resolution- FWHM 60,000) at a
mass/charge (m/z) range of 350–2000 in profile mode. Select
the top 15 most intense ions per scan for higher-energy C-trap
dissociation (HCD)-based MS/MS analysis for peptide frag-
mentation and for iTRAQ reporter ion quantification, record-
ing MS/MS scans in the Orbitrap mass analyzer (resolution-
FWHM 60,000) at a mass/charge (m/z) range of 100–2000 in
profile mode.

3.8 Peptide

Isoelectric Focusing

and Protein Expression

Profiling

Understanding the protein expression profile within heterogeneous
tumors can provide additional biological insight to accompany
phosphorylation changes. Additionally, protein expression profiling
can often provide a molecular basis for the observed phosphoryla-
tion changes, due to the dramatically different genetic backgrounds
of each tumor.

1. Fractionate iTRAQ labeled peptides into five fractions using
the ZOOM IEF fractionator with a set of 6 ZOOM disks
(pH 3.0, pH 4.6, pH 5.4, pH 6.2, pH 7.0, and pH 10).

2. Use anode buffers and cathode buffers as per the manufac-
turer’s instructions.

3. Add MilliQ water to the iTRAQ 8plex labeled peptide sample
to a final volume of 3.35 mL.

4. Add ZOOM carrier ampholytes to each diluted sample at
1:100 and DTT to a final concentration of 20 mM.

5. Perform fractionation using the following parameters: 2 mA
current limit, 2 W power limit, with 100 V for 20 min, 200 V
for 80 min, and 600 V for 80 min.
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6. Following fractionation, rinse each chamber with 500 μL
water, and add the wash to the appropriate fraction.

7. Acidify each fraction with formic acid to 0.2% and desalt using
C18 Cartridges. Elute peptides into 90% acetronitrile in 0.1%
acetic acid.

8. Concentrate fractions to near dryness in a vacuum centrifuge.

9. Resuspend each fraction in 200 μL 0.1% acetic acid.

10. Dilute each resuspended fraction 1:100 with 0.1% acetic acid
and load 20 μL (approximately 600 ng protein) onto an acid-
ified pre-column.

3.9 Proteome

Analysis by MS

1. Attach the peptide loaded pre-column to a C18 reverse-phase
analytical column with integrated electrospray emitter tip.

2. Chromatographically separate each fraction by reverse phase
HPLC over a 240 min gradient with the eluent ionized by
nanoelectrospray into an Orbitrap QExactive Plus mass
spectrometer.

3. Operate the instrument in positive ion mode. Record full scans
in the Orbitrap mass analyzer (resolution- FWHM 60,000) at a
mass/charge (m/z) range of 350–2000 in profile mode. Select
the top 15 most intense ions per scan for HCD-based MS/MS
analysis for peptide fragmentation and for iTRAQ reporter ion
quantification, recording MS/MS scans in the Orbitrap mass
analyzer (resolution-FWHM 60,000) at a mass/charge (m/z)
range of 100–2000 in profile mode.

3.10 Protein

Expression Data

Analysis

1. Relative quantification and protein identification can be per-
formed using Proteome Discoverer with MASCOT as the
search engine.

2. Search MS/MS spectra against the human protein sequence
database, downloadable from NCBI.

3. Search parameters should be set to “carbamidomethylation of
cysteines” by IAA as a static modification, with “oxidation of
methionine” and “iTRAQ 8plex labeling” as additional
dynamic modifications.

4. Relative quantitation of protein expression can be performed
by selecting for proteins containing a minimum of at least two
peptides with MASCOT score above 20. Only peptides unique
for a given protein should be considered for relative quantita-
tion, those common to other isoforms or proteins of the same
family should be excluded. Identified peptides should be
excluded from quantitative analyses if (1) the peaks
corresponding to the iTRAQ labels are not detected, (2) the
same peptide sequence is shared by multiple proteins, or (3) the
peptide sequence is discordant.
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5. A decoy database search strategy can be used to estimate the
false discovery rate (FDR), defined as the percentage of decoy
proteins identified against the total protein identification. In
this case, the MASCOT score threshold for peptide or protein
identification can be established by setting the FDR to 1%
following a search of the spectra against the NCBI non redun-
dant Homo sapiens decoy database.

3.11

Phosphotyrosine Data

Analysis

Understanding the tyrosine kinase signaling within heterogeneous
tumors is critical to define the activated networks responsible for
tumor cell proliferation, migration, and invasion.

1. Relative quantification and phosphotyrosine peptide identifica-
tion can be performed using Proteome Discoverer with MAS-
COT software as the search engine.

2. Search MS/MS spectra against human protein sequence data-
base, downloadable from NCBI.

3. Search parameters should be set to “carbamidomethylation of
cysteines by IAA” as a static modification, with additional
dynamic modifications; “oxidation of methionine,” “iTRAQ
8plex labeling” and “phosphorylation of serine, threonine, and
tyrosine” (see Note 8).

4. Peptides identified by MASCOT with an ion score >25 should
be considered for further manual validation and quantification
using CAMV (see Note 9) [19].

3.12 Functional Data

Analysis

1. To identify groups of similarly expressed proteins and phos-
phorylation sites, perform unsupervised hierarchical clustering.

(a) Clustering of the mean normalized and log2 transformed
phosphotyrosine and protein expression quantitative
iTRAQ data (using one minus Pearson correlation as a
distance metric) can be performed using GENE-E (see
Note 10).

2. To visualize quantitative phosphotyrosine and protein expres-
sion profiles across tumors, generate heat maps of mean nor-
malized and log2 transformed phosphotyrosine and protein
expression quantitative iTRAQ data (see Note 11).

(a) When using GENE-E, upload an excel file with mean
normalized and log2 transformed phosphotyrosine and
protein expression quantitative iTRAQ data with the
quantitative information specified in a data matrix, where
phosphorylation sites are row metadata and
corresponding iTRAQ labels are column.

(b) Heat maps can be aesthetically modified under
“preferences.”
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3. To identify differences between differentially embedded
tumors (inter-tumoral heterogeneity) and between different
patients tumors (intra-tumoral heterogeneity) carry out Pear-
son’s correlation analysis of the quantitative phosphotyrosine
or protein expression profiles using Excel. P-values can be
calculated using t approximation (see Note 12).

(a) Pearson’s correlation (r) can be calculated in Excel using
the PEARSON function.

(b) To calculate the p-value for any value of r, calculate the
associated t-value (t) using the following formula:

t ¼ r� ffiffiffiffiffiffiffi

n�2
p
ffiffiffiffiffiffiffiffi

1�r2
p

(c) Once the t-value is calculated, use the TDIST function in
Excel to find the associated p-value. This function requires
the value of t, the degrees of freedom (i.e., n�2) and the
number of tails.

4. Gene ontology (GO) annotations can be identified by upload-
ing gene lists to the Protein Analysis Through Evolutionary
Relationships (PANTHER) online classification system (see
Note 13).

(a) Protein names acquired from MS data output can be con-
verted to Gene names and symbols using the online phos-
phorylation site database Phosphosite.

5. The Search Tool for the Retrieval of Interacting Genes/Pro-
teins (STRING) database can be queried to identify known and
predicted protein-protein interactions within clusters of
co-expressed proteins and phosphotyrosine sites.

4 Notes

1. Recording the weight and morphology of each tumor before
sectioning allows the assessment of intratumoral heterogeneity
at the cellular level. Further sectioning of the tumor prior to
the analysis of proteins and phosphorylation sites enables a
complete understanding of the tumor origin (i.e., was the
tumor section derived from the center of the tumor? the edge
of the tumor?). Assessing the tumor content of each tumor
section enables accurate assessment of the protein and phos-
photyrosine level across multiple samples of the same tumor.

2. Due to the low abundance of tyrosine kinases in tissue samples
it is common to not detect these proteins in whole proteome
mass spectrometry profiling analyses. Immunoblotting pre-
sents a simple and effective method of identifying the relative
levels of tyrosine kinases present within tissues.
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3. Depending on the level of tyrosine phosphorylation in the
sample and the sensitivity of the LC-MS/MS system, it may
be necessary to label 800 μg peptide with two tubes of
iTRAQ8plex reagent.

4. Due to the stability of peptides in a dry state peptides can be
stored long term (> a year) at �80 �C. Repeated freeze-thaw
cycles should be avoided, if peptide samples need to be period-
ically taken from the stock, make a series of aliquots from the
stock prior to drying and store at �80 �C.

5. Add low volumes of the Tris buffer pH 8.5 (i.e., 1–5 μL incre-
ments) and measure pH using pH paper.

6. Peptide solutions are prone to degradation. To minimize this,
aliquot peptide solutions and store at �80 �C. Avoid repeated
freeze-thaw cycles, as this can lead to peptide degradation.

7. Iron(III) chloride should be kept dry due to the exothermic
reaction that takes place when iron(III) chloride undergoes
hydrolysis.

8. Phosphorylation of tyrosine needs to be a dynamic modification,
as many of the tyrosines in the sample are not phosphorylated.

9. Given the importance of site identification, manual validation is
critical to properly localize the phosphorylation site within the
peptide.

10. Hierarchical clustering can be used to identify groups of phos-
photyrosine sites and proteins that are similarly and differen-
tially expressed across the different tumor samples.
Alternatively, the quantitative data can be clustered using affin-
ity propagation clustering [17].

11. Heat maps can be generated using software packages such as
GENE-E, MATLAB (www.mathworks.com/), or R (https://
www.r-project.org/).

12. Pearson’s correlation analysis can alternatively be carried out
using software packages such as MATLAB (www.mathworks.
com/) or R (https://www.r-project.org/).

13. Functional grouping of proteins and/or phosphorylation sites
can also be assessed using DAVID functional annotation
(https://david.ncifcrf.gov) or Cytoscape (www.cytoscape.org/).

Acknowledgments

This work was supported in part by a generous gift from the James
S. McDonnell Foundation and by NIH grants P30 CA014051 and
R01 CA184320. The authors would like to thank Ms. Marcela
White at the brain tumor bank (www.Braintumourbank.com) for
access to patient materials.

162 Hannah Johnson and Forest M. White

http://www.mathworks.com/
https://www.r-project.org/
https://www.r-project.org/
http://www.mathworks.com/
http://www.mathworks.com/
https://www.r-project.org/
https://david.ncifcrf.gov
http://www.cytoscape.org/
http://www.braintumourbank.com


References

1. Stupp R, Mason WP, van den Bent MJ,
Weller M, Fisher B, Taphoorn MJ,
Belanger K, Brandes AA, Marosi C,
Bogdahn U, Curschmann J, Janzer RC, Lud-
win SK, Gorlia T, Allgeier A, Lacombe D,
Cairncross JG, Eisenhauer E, Mirimanoff RO
(2005) Radiotherapy plus concomitant and
adjuvant temozolomide for glioblastoma. N
Engl J Med 352(10):987–996. https://doi.
org/10.1056/NEJMoa043330

2. Stupp R, Hegi ME, Mason WP, van den Bent
MJ, Taphoorn MJ, Janzer RC, Ludwin SK,
Allgeier A, Fisher B, Belanger K, Hau P,
Brandes AA, Gijtenbeek J, Marosi C, Vecht
CJ, Mokhtari K, Wesseling P, Villa S,
Eisenhauer E, Gorlia T, Weller M,
Lacombe D, Cairncross JG, Mirimanoff RO
(2009) Effects of radiotherapy with concomi-
tant and adjuvant temozolomide versus radio-
therapy alone on survival in glioblastoma in a
randomised phase III study: 5-year analysis of
the EORTC-NCIC trial. Lancet Oncol 10
(5):459–466. https://doi.org/10.1016/
S1470-2045(09)70025-7

3. Verhaak RG, Hoadley KA, Purdom E, Wang V,
Qi Y, Wilkerson MD, Miller CR, Ding L,
Golub T, Mesirov JP, Alexe G, Lawrence M,
O’Kelly M, Tamayo P, Weir BA, Gabriel S,
Winckler W, Gupta S, Jakkula L, Feiler HS,
Hodgson JG, James CD, Sarkaria JN,
Brennan C, Kahn A, Spellman PT, Wilson
RK, Speed TP, Gray JW, Meyerson M,
Getz G, Perou CM, Hayes DN (2006)
Integrated genomic analysis identifies clinically
relevant subtypes of glioblastoma characterized
by abnormalities in PDGFRA, IDH1, EGFR,
and NF1. Cancer Cell 17(1):98–110. https://
doi.org/10.1016/j.ccr.2009.12.020

4. Brennan C, Momota H, Hambardzumyan D,
Ozawa T, Tandon A, Pedraza A, Holland E
(2009) Glioblastoma subclasses can be defined
by activity among signal transduction pathways
and associated genomic alterations. PLoS One
4(11):e7752. https://doi.org/10.1371/jour
nal.pone.0007752

5. Phillips HS, Kharbanda S, Chen R, Forrest WF,
Soriano RH, TD W, Misra A, Nigro JM,
Colman H, Soroceanu L, Williams PM,
Modrusan Z, Feuerstein BG, Aldape K
(2006) Molecular subclasses of high-grade gli-
oma predict prognosis, delineate a pattern of
disease progression, and resemble stages in
neurogenesis. Cancer Cell 9(3):157–173.
https://doi.org/10.1016/j.ccr.2006.02.019

6. Network TCGAR (2008) Comprehensive
genomic characterization defines human

glioblastoma genes and core pathways. Nature
455(7216):1061–1068

7. Krakstad C, Chekenya M (2010) Survival sig-
nalling and apoptosis resistance in glioblasto-
mas: opportunities for targeted therapeutics.
Mol Cancer 9:135. https://doi.org/10.
1186/1476-4598-9-135

8. Johnson H, White FM (2014) Quantitative
analysis of signaling networks across differen-
tially embedded tumors highlights interpatient
heterogeneity in human glioblastoma. J Prote-
ome Res 13(11):4581–4593. https://doi.org/
10.1021/pr500418w

9. Rikova K, Guo A, Zeng Q, Possemato A, Yu J,
Haack H, Nardone J, Lee K, Reeves C, Li Y,
Hu Y, Tan Z, Stokes M, Sullivan L, Mitchell J,
Wetzel R, Macneill J, Ren JM, Yuan J, Baka-
larski CE, Villen J, Kornhauser JM, Smith B,
Li D, Zhou X, Gygi SP, TL G, Polakiewicz RD,
Rush J, Comb MJ (2007) Global survey of
phosphotyrosine signaling identifies oncogenic
kinases in lung cancer. Cell 131
(6):1190–1203. https://doi.org/10.1016/j.
cell.2007.11.025

10. Drake JM, Graham NA, Lee JK, Stoyanova T,
Faltermeier CM, Sud S, Titz B, Huang J,
Pienta KJ, Graeber TG, Witte ON (2013)Met-
astatic castration-resistant prostate cancer
reveals intrapatient similarity and interpatient
heterogeneity of therapeutic kinase targets.
Proc Natl Acad Sci U S A 110(49):
E4762–E4769. https://doi.org/10.1073/
pnas.1319948110

11. Steu S, Baucamp M, von Dach G, Bawohl M,
Dettwiler S, Storz M, Moch H, Schraml P
(2008) A procedure for tissue freezing and
processing applicable to both intra-operative
frozen section diagnosis and tissue banking in
surgical pathology. Virchows Arch 452
(3):305–312. https://doi.org/10.1007/
s00428-008-0584-y

12. Loken SD, Demetrick DJ (2005) A novel
method for freezing and storing research tissue
bank specimens. Hum Pathol 36(9):977–980.
https://doi.org/10.1016/j.humpath.2005.
06.016

13. Gajadhar AS, Johnson H, Slebos RJ,
Shaddox K, Wiles K, Washington MK, Herline
AJ, Levine DA, Liebler DC, White FM (2015)
Phosphotyrosine signaling analysis in human
tumors is confounded by systemic ischemia-
driven artifacts and intra-specimen heterogene-
ity. Cancer Res 75(7):1495–1503. https://doi.
org/10.1158/0008-5472.CAN-14-2309

14. Snuderl M, Fazlollahi L, Le LP, Nitta M, Zhe-
lyazkova BH, Davidson CJ, Akhavanfard S,

Quantitative Tyrosine Kinase Signaling in Glioblastoma 163

https://doi.org/10.1056/NEJMoa043330
https://doi.org/10.1056/NEJMoa043330
https://doi.org/10.1016/S1470-2045(09)70025-7
https://doi.org/10.1016/S1470-2045(09)70025-7
https://doi.org/10.1016/j.ccr.2009.12.020
https://doi.org/10.1016/j.ccr.2009.12.020
https://doi.org/10.1371/journal.pone.0007752
https://doi.org/10.1371/journal.pone.0007752
https://doi.org/10.1016/j.ccr.2006.02.019
https://doi.org/10.1186/1476-4598-9-135
https://doi.org/10.1186/1476-4598-9-135
https://doi.org/10.1021/pr500418w
https://doi.org/10.1021/pr500418w
https://doi.org/10.1016/j.cell.2007.11.025
https://doi.org/10.1016/j.cell.2007.11.025
https://doi.org/10.1073/pnas.1319948110
https://doi.org/10.1073/pnas.1319948110
https://doi.org/10.1007/s00428-008-0584-y
https://doi.org/10.1007/s00428-008-0584-y
https://doi.org/10.1016/j.humpath.2005.06.016
https://doi.org/10.1016/j.humpath.2005.06.016
https://doi.org/10.1158/0008-5472.CAN-14-2309
https://doi.org/10.1158/0008-5472.CAN-14-2309


Cahill DP, Aldape KD, Betensky RA, Louis
DN, Iafrate AJ (2011) Mosaic amplification of
multiple receptor tyrosine kinase genes in glio-
blastoma. Cancer Cell 20(6):810–817.
https://doi.org/10.1016/j.ccr.2011.11.005

15. Szerlip NJ, Pedraza A, Chakravarty D,
Azim M, McGuire J, Fang Y, Ozawa T, Hol-
land EC, Huse JT, Jhanwar S, Leversha MA,
Mikkelsen T, Brennan CW (2012) Intratu-
moral heterogeneity of receptor tyrosine
kinases EGFR and PDGFRA amplification in
glioblastoma defines subpopulations with dis-
tinct growth factor response. Proc Natl Acad
Sci U S A 109(8):3041–3046. https://doi.
org/10.1073/pnas.1114033109

16. Sottoriva A, Spiteri I, Piccirillo SG,
Touloumis A, Collins VP, Marioni JC,
Curtis C, Watts C, Tavare S (2013) Intratumor
heterogeneity in human glioblastoma reflects
cancer evolutionary dynamics. Proc Natl Acad
Sci U S A 110(10):4009–4014. https://doi.
org/10.1073/pnas.1219747110

17. Johnson H, Del Rosario AM, Bryson BD,
Schroeder MA, Sarkaria JN, White FM (2012)
Molecular characterization of EGFR and
EGFRvIII signaling networks in human glio-
blastoma tumor xenografts. Mol Cell Proteo-
mics 11(12):1724–1740. https://doi.org/10.
1074/mcp.M112.019984

18. Zhang Y, Wolf-Yadlin A, Ross PL, Pappin DJ,
Rush J, Lauffenburger DA, White FM (2005)
Time-resolved mass spectrometry of tyrosine
phosphorylation sites in the epidermal growth
factor receptor signaling network reveals
dynamic modules. Mol Cell Proteomics 4
(9):1240–1250. https://doi.org/10.1074/
mcp.M500089-MCP200

19. Curran TG, Bryson BD, Reigelhaupt M,
Johnson H, White FM (2013) Computer
aided manual validation of mass spectrometry-
based proteomic data. Methods 61
(3):219–226. https://doi.org/10.1016/j.
ymeth.2013.03.004

164 Hannah Johnson and Forest M. White

https://doi.org/10.1016/j.ccr.2011.11.005
https://doi.org/10.1073/pnas.1114033109
https://doi.org/10.1073/pnas.1114033109
https://doi.org/10.1073/pnas.1219747110
https://doi.org/10.1073/pnas.1219747110
https://doi.org/10.1074/mcp.M112.019984
https://doi.org/10.1074/mcp.M112.019984
https://doi.org/10.1074/mcp.M500089-MCP200
https://doi.org/10.1074/mcp.M500089-MCP200
https://doi.org/10.1016/j.ymeth.2013.03.004
https://doi.org/10.1016/j.ymeth.2013.03.004


Part III

Systems Analysis of Cancer Cell Metabolism



Chapter 9

Prediction of Clinical Endpoints in Breast Cancer Using NMR
Metabolic Profiles

Leslie R. Euceda, Tonje H. Haukaas, Tone F. Bathen,
and Guro F. Giskeødegård

Abstract

Metabolic profiles reflect biological conditions as a result of biochemical changes within a living system. It is
therefore possible to associate metabolic signatures with clinical endpoints of diseases, such as breast cancer.
Nuclear magnetic resonance (NMR) spectroscopy is one of the most common techniques used for
metabolic profiling, and produces high dimensional datasets from which meaningful biological information
can be extracted. Here, we present an overview of data analysis techniques used to achieve this, describing
key steps in the procedure. Moreover, examples of clinical endpoints of interest are provided. Although
these are specific for breast cancer, the procedures for the analysis of NMR spectra as described here are
applicable to any type of cancer and to other diseases.

Key words Breast cancer, Cross validation, Hierarchical clustering, Hypothesis testing, Metabolites,
Model diagnostic statistics, Multivariate analysis, NMR spectroscopy, Partial least squares, Principle
component analysis, Permutation testing

1 Introduction

Metabolic profiling refers to the large-scale measurement of low
molecular weight metabolites and their intermediates generated
within a living system at a given moment. Those metabolites reflect
a biological condition as a result of biochemical changes caused by
genetic modification and physiological or pathophysiological sti-
muli [1]. Metabolites include substances such as carbohydrates,
amino acids, nucleotides, fatty acids, and vitamins. The complete
set of metabolites in a living system is termed the metabolome,
comparable to the terms genome, transcriptome, and proteome.
These four molecular levels interact with each other, generating an
information exchange flow known as the omics cascade
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[2]. Metabolites are downstream products affected by the omics
signaling cascade (DNA, RNA, and proteins), but can also affect
upstream signaling processes, such as gene expression. They are
representative for the functional phenotype observed and provide
information of the active biological pathways.

Nuclear magnetic resonance (NMR) spectroscopy is one of the
most commonly used techniques for metabolic profiling, and can
be applied to both biofluids and intact tissue samples. For details on
the NMR theory, we refer to [3]. Briefly, NMR spectroscopy is
based on the intrinsic property of spin possessed by certain atomic
nuclei, such as protons (1H), which gives rise to a small magnetic
field. This magnetic field is called the magnetic moment of a
nucleus, and can be thought of as a vector with direction and
magnitude. When a sample is subjected to an external magnetic
field, the magnetic moments will align either in the direction of that
field or opposite to it, bringing the nuclei to a low or high energy
spin state, respectively. Energies from opposite spin states counter-
balance each other. However, the low energy spin state is slightly
more energetically favorable, and thus a higher population of nuclei
in a system will exist in this state. This generates a residual magne-
tization component parallel to the external magnetic field. In addi-
tion to nuclear spin, nuclei precess, i.e., rotate, about the external
magnetic field axis. The rate of precession, also known as the
resonance frequency or Larmor frequency, corresponds to the
energy difference between the energy spin states. By applying a
radio frequency (RF) pulse that matches the Larmor frequency of
the nuclei of interest, the nuclei will absorb the energy and transi-
tion to a higher energy state. When the RF pulse is switched off, the
nuclei recover to their original energy state, and the released energy
can be measured by receiver coils. The observed signal can be
mathematically converted to an NMR spectrum, which is a plot of
the intensity of emission as a function of the resonance frequency
(see Fig. 1).

Atomic nuclei of the same isotope experience small variations
or shifts in their resonance frequencies depending on the chemical
environment of each nucleus. This will cause the signals to appear at
different positions in the NMR spectrum; this position is termed
the chemical shift. In addition, the signals can be split in different
ways as an effect of the chemical bonds of the nuclei. Therefore, an
NMR spectrum can provide detailed information about molecular
structure of the metabolites to which the observed nuclei belong.
Moreover, the observed signal intensity is proportional to the
number of nuclei giving rise to that signal [4], and can be exploited
for quantification purposes.

Because the resonance frequency of a nucleus is proportional to
the external magnetic field, it can be calibrated relative to the
resonance frequency of a signal from a reference at the applied
magnetic field. This makes NMR spectra comparable independent
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of the strength of the magnet employed. Since differences in reso-
nance frequencies are very small, the chemical shift scale is
expressed in parts per million (ppm). Trimethylsilyl propionic acid
(TSP) is a common reference compound that is typically calibrated
to 0 ppm [5].

Sample preparation of both liquid and solid state NMR is
simple and non-destructive. High resolution (HR) magnetic reso-
nance spectroscopy (MRS) of biofluids, cell extracts, and culture
media is suited for high-throughput analysis and can typically
detect 20–70 metabolites. For a description of procedures for
recording metabolic profiles of liquid solutions using 1H NMR,
we refer to [6].

In NMR, anisotropic interactions between nuclei are those that
are dependent on the direction of molecules with respect to the
external magnetic field. In solution NMR, these interactions are
averaged out due to high molecular mobility. In solids and semi-
solids, such as tissue samples, molecular motion is restricted and so
anisotropic interactions can give rise to peak broadening that may
ultimately lead to signal overlap. It is possible to overcome this by
rapidly spinning the sample at an angle of 54.7�, known as the
magic angle, which imitates molecular motion in liquid solution.
This method, called high resolution (HR) magic angle spinning
(MAS) MRS, yields highly resolved spectra of tissue comparable
with those obtained for biofluids using conventional MRS. For a
detailed protocol describing HR MAS MRS of intact tissue, we
refer to [7].

Fig. 1 Example 1H NMR spectrum of breast tumor tissue. Observable metabolite peaks include glucose (Glc),
ascorbate (Asc), lactate (Lac), myo-inositol (mI), creatine (Cr), glutamate (Glu), glycine (Gly), taurine (Tau),
glycerophosphocholine (GPC), phosphocholine (PCho), choline (Cho), glutathione (GSH), glutamine (Gln),
succinate (Succ), and alanine (Ala)
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NMR acquisition of metabolic profiles results in complex, high
dimensional datasets. Prior to statistical analysis, biologically irrele-
vant differences caused for example by instrumental or experimen-
tal artifacts must be removed from the raw data. This is known as
data preprocessing and involves different computational proce-
dures to convert the acquired data into a format that is usable to
extract meaningful information. Because high intensity lipid peaks
arising from normal breast adipose cells are often present in spectra
from breast tumor tissue, spectral preprocessing may be challeng-
ing and is seldom straightforward [8]. Careful inspection of the
preprocessed spectra is therefore essential to evaluate each individ-
ual preprocessing step. Modifications to the original preprocessing
strategy are often required. For an overview of frequently used
preprocessing tools and a general metabolomics workflow, we
refer to [9], and for a description of specific preprocessing methods
we refer to [10].

In this chapter, we provide an overview of data analysis strate-
gies used to associate metabolic signatures with clinical endpoints
of diseases, with a focus on breast cancer. Additionally, key steps in
those data analysis strategies are described. We furthermore provide
guidance for the interpretation of results.

2 Materials

2.1 Data Input Choosing the optimal approach for statistical analysis is dependent
on the type and structure of the data input as well as the hypothesis
of interest. The NMR spectral data should, prior to statistical
analysis, have been through proper preprocessing procedures. For
multivariate analysis, the preprocessed data forms the X-matrix,
where each row represents one sample and each column represents
one variable or point in an NMR spectrum. Alternatively, metabo-
lites can be quantified to make the data applicable for both multi-
variate and univariate analysis. In such cases, quantified metabolites
from the same sample can be combined so that each variable of the
X-matrix used for multivariate analysis represents one individual
metabolite.

The Y-matrix or vector, used in supervised analysis, contains
information about the clinical endpoint that should be predicted.
The clinical endpoint is defined as the relevant patient information
of interest to test for correlation with metabolic signature. Exam-
ples of clinical outcome variables of interest in breast cancer are
patient 5-year survival, tumor size, tumor cell percentage, lymph
node status, metastatic status, pathological response to treatment,
and hormone (estrogen or progesterone) receptor status. These can
either be categorical (e.g., lymph node status) or continuous vari-
ables (e.g., tumor cell percentage) (see Note 1).
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In summary, the different data input structures are:
X-matrix:

– Preprocessed NMR spectra.

– Relative or absolute metabolite concentrations.

Y-matrix/vector:

– Prediction analysis: Categorical clinical endpoint.

– Regression analysis: Continuous clinical endpoint.

2.2 Software There are several different softwares available for univariate or
multivariate analysis of metabolomics data, differing in their flexi-
bility and user-friendliness (see Table 1). Software such as Matlab
and R can be used for all types of data analysis, but require that the
user has knowledge on programming.

3 Methods

3.1 Multivariate

Analysis

3.1.1 Unsupervised

Methods

Unsupervised methods are exploratory and useful tools for getting
to know your dataset in terms of possible groupings, patterns, and
outliers, without taking a response variable into account. Examples
of common methods are principal component analysis (PCA) and
hierarchical cluster analysis (HCA).

Principal Component

Analysis (PCA)

PCA is a method that through linear combinations of the original
independent variables X, constructs a new lower dimension coor-
dinate system made up by latent variables (LVs), which in PCA are
called principal components (PCs) [11]. These variables explain
variance within the dataset with the aim of capturing the main
trends in the data. The position of each sample in the new coordi-
nate system is reflected by the scores matrix (T), while the influence
of the original variables on the PCs is defined by the loadings matrix
(P) such that:

X ¼ TPT þ E ð1Þ
where E is the residual matrix of variance not explained by the

model, and T indicates the transpose of a matrix. The results can
thus be visualized in scores and loadings plots (see Fig. 2).

Protocol for PCA 1. Additional preprocessing of variables. Although the spectral data
was preprocessed prior to data analysis, PCA is sensitive to the
scaling of the variables.

Spectral data: Mean center the data by subtracting the variable
mean from each variable value to make the mean zero. Mean
centering of spectral data removes the offset from each variable
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so that PC1 will not capture the mean of the data but the
direction of maximum variance.
Quantified metabolites: Autoscale the metabolite concentrations
by normalizing each value to the variable standard deviation
after mean centering. Autoscaling allows each variable to have
the same influence on themodel, and the resulting variables have
mean zero and standard deviation of one (see Note 2).

2. Perform PCA using the software of choice (see Table 1).

3. Select number of components to include in the model. There are
two alternative approaches:

Cumulative variance plot: Evaluate the cumulative variance
explained by the model with increasing number of PCs. Choose
the number of PCs that explain a certain predetermined amount
of variance (see Note 3).

Table 1
Examples of available software and interfaces to perform multivariate and/or univariate
metabolomics analyses described here

Software/
Interface Reference/URL

Methods
Implemented

Amix https://www.bruker.com/products/mr/nmr/nmr-software/
software/amix/overview.html

Multivariate

Knimea https://www.knime.org/knime Univariate and
multivariate

Matlab http://www.mathworks.com/products/matlab/ Univariate and
multivariate

MetaboAnalysta http://www.metaboanalyst.ca/faces/docs/Format.xhtml Univariate and
multivariate

PLS toolboxb http://www.eigenvector.com/software/pls_toolbox.htm Multivariate

R https://www.r-project.org/ Univariate and
multivariate

SIMCA http://umetrics.com/products/simca Multivariate

SIRIUS http://www.prs.no/Sirius/Sirius.html Multivariate

SPSS http://www-01.ibm.com/software/analytics/spss/products/
statistics/

Univariate

STATA http://www.stata.com/ Univariate and
multivariate

The
Unscrambler

http://www.camo.com/rt/Products/Unscrambler/
unscrambler.html

Univariate and
multivariate

aUses R packages
bRequires Matlab
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Scree plot: Plot the variance explained by each PC (see Note 4).
The variance will decrease for each PC. Choose the PC repre-
senting the “knee” in the curve (see Fig. 3).

Fig. 2 Result from principal component analysis of breast cancer tissue from two different groups. The two
classes are perfectly separated in the second principal component (PC2). Samples from class 2 have high PC2
scores compared to class 1, thus they have higher levels of the metabolite phosphocholine (PCho) and lower
levels of glycerophosphocholine (GPC) compared to the class 1 samples. The first principal component (PC1)
shows that the largest variation in the dataset is due to differences in lipid concentrations between the
samples, as the samples to the right in the scores plot, having high scores on PC1, have high lipid levels
compared to the remaining samples

Fig. 3 Scree plot example. Two “knees,” marked by red arrows, are observed, suggesting two or four principal
components (PCs) to be the optimal number. In this case, the cumulative variance plot can aid in the
determination of the best “knee,” selecting the one that represents the number of PCs that explains a
certain predetermined amount of variance
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4. Review the scores plot to look for possible groupings, e.g., of
clinical outcome, or outliers in your dataset.

Hierarchical Cluster

Analysis (HCA)

HCA aims to find natural clusters among samples using a hierar-
chical approach where samples are grouped according to calculated
similarities and dissimilarities. The result is visualized as a dendro-
gram (see Fig. 4). At the bottom of the dendrogram, all objects
represent individual clusters. For each level, the two closest objects
are joined into one cluster. This continues until all clusters are
joined by one branch. There are different measures for determining
the distance between individual samples or between clusters of
samples. Common measures for individual samples include Euclid-
ean distance, Manhattan distance, and sample correlations. Com-
mon measures for distance between clusters include single linkage,
average linkage, complete linkage, and Ward’s method. The

Fig. 4 Dendogram example. Samples, whose ID numbers are specified in the x-axis, are divided into six
clusters, shown in different colors, by manually setting a cutoff at height 150
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procedure is done automatically by most software. The steps for the
HCA algorithm are listed below.

Protocol for HCA 1. Calculate the distance between all possible pairs of clusters using
the chosen distance measure for individual samples.

2. Merge the two clusters with the smallest distance.

3. Calculate the new clusters’ distance to other clusters using a
chosen distance measure for clusters.

4. Repeat steps 2–3 until all samples are merged into one cluster.

Alternatively, a top down approach can be used where all
objects are considered one cluster initially and subsequently divided
into smaller clusters depending on their dissimilarities.

To decide which matrices are optimal for distance measure-
ments and assessing how well the dendrogram reflects your data,
the cophenetic correlation coefficient [12] can be used. This coeffi-
cient calculates the correlation of the original pairwise distance
between two objects and the level/height at which the two objects
were joined in one cluster.

The resulting dendrogram can be used to divide the samples
into clusters. The number of resulting clusters can be defined
beforehand or a cutoff can be set at a decided level of the dendo-
gram, either manually or using for instance Gap statistics [13]. All
the samples joined by branches below the cutoff are considered one
cluster. The resulting clusters can be evaluated in terms of clinical
endpoints of interest. Prediction of cluster labels for new samples
can be achieved based on the shortest distance to each of the cluster
centroids or using validated supervised models (e.g., PLS-DA, see
Subheading 3.1.2).

3.1.2 Supervised

Methods

Supervised multivariate methods are used to identify correlations
and build models that can predict characteristics of new data. These
methods model the relationship between the independent variables
or X-matrix (e.g., spectral data or quantified metabolites), and a
response variable(s) or Y-matrix/vector (e.g., clinical endpoints) by
identifying patterns in the input data and making decision rules that
can be applied to new data. Several supervised analysis methods
exist, some of which build models by linear combinations of the
input variables (e.g., partial least squares methods), while others
model more complex, nonlinear relationships (e.g., neural net-
works and support vector machines). An advantage of linear models
is that biological interpretation is more easily achievable.

1. In case of continuous response variables such as blood pressure
or tumor size, a supervised regression method that predicts a
response value should be used.
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2. For categorical response variables (e.g., treatment and control
groups), a classification method that can assign samples to two
or more groups should be used.

A common feature of supervised analysis methods is that these
methods are prone to overfitting to the input data [14]. This would
result in a model that makes good predictions for the data used, but
predicts badly for new data. To avoid overfitted models and over-
optimistic results, validation is a crucial step for supervised analysis
methods. Validation procedures are described in Subheading 3.1.4.

Partial Least Squares (PLS)

Methods

Partial least squares (PLS) is commonly used both for regression
and for classification problems. PLS defines underlying structures
that maximize the covariance between the independent variables
and the response variable [15]. Instead of only modeling the inde-
pendent variablesX, as is the case for PCA, the dependent response
variables Y are also modeled:

X ¼ TPT þ E ð2Þ
Y ¼ UQT þ F ð3Þ

where T and U are the score matrices, P and Q are the loading
matrices, and E and F are the residuals for X and Y, respectively. T

indicates the transpose of a matrix. The X-scores, T, are predictors
of Y and will also model X, thus both X and Y are assumed to be
modeled by the same latent variables. Hence, Y can be written as

Y ¼ TGQT þ F ð4Þ
where G is the diagonal matrix resulting from U ¼ TG.

There are several algorithms that can be used to estimate these
parameters, all of which provide more or less similar results [16] .

The covariance between X and Y is optimized by defining PLS
LVs, which are linear combinations of the original X variables, and
the dimensionality of the resulting PLS model is equal to the
number of LVs used in the model. The optimal number of LVs to
use is chosen based on different model diagnostic terms used to
evaluate the overall quality of the model for different numbers of
LVs. For PLSR, the Q2 statistic (Eq. 5) and the root mean square
error (RMSE) (Eq. 6) are typically used. These statistics reflect the
differences between the predicted value ( y

^
) and the known y:

Q 2 ¼ 1�
P

i yi � y
^

i

� �2

P
i yi � �y
� �2 ð5Þ
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RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i yi � y

^

i

� �2

m

vuut
ð6Þ

where i¼ 1,2,. . .,m form included samples and �y is the mean of all y
values. If RMSE is to be compared between datasets, the value
should be normalized (NRMSE) to make it independent of scale
(Eq. 7):

NRMSE ¼ RMSE

ymax � ymin

ð7Þ
AQ2 of 1 corresponds to perfect prediction, while a very low or

negative Q2 indicates a poor prediction. A NRMSE value of 0 cor-
responds to perfect prediction, while a value close to 1 indicates
poor prediction.

For PLS-DA, commonly used diagnostic statistics include the
classification error, sensitivity, and specificity. The number of cor-
rectly classified samples, i.e., true positives (TP) and true negatives
(TN), and the number of incorrectly classified samples, i.e., false
negatives (FN) and false positives (FP), is subsequently recorded.
The prediction error (see Note 5) relates the number of incorrectly
classified samples with the total number of samples (Eq. 8). The
model accuracy equals one minus the classification error.

Error ¼ Number of incorrectly classifed samples

Total number of samples

¼ FNþ FP

TPþ TNþ FNþ FP
ð8Þ

Sensitivity measures the ability to correctly predict the case
class, or true positive samples (Eq. 9). A highly sensitive model is
one that generates few false negatives.

Sensitivity ¼ Number of correctly classified cases

Total number of cases

¼ TP

TPþ FN
ð9Þ

Specificity measures the ability to correctly classify the control
class, or true negative samples (Eq. 10). A highly specific model is
one that generates few false positives.

Specificity ¼ Number of correctly classified controls

Total number of controls

¼ TN

TNþ FP
ð10Þ

The scores and loadings are calculated from the LVs, and are
used for biological interpretation of the data in similar manners as
for PCA.

NMR Metabolic Profiles of Breast Cancer 177



Partial Least Squares

Regression (PLSR)

PLSR is used for regression problems where the intention is to
model correlations and/or make prediction on a continuous
response variable.

Protocol for PLSR 1. Perform additional scaling of variables as described in the proto-
col for PCA, step 1.

2. Perform PLSR using the spectral data or quantified metabolites
as independent variables X and the sample characteristic to be
modeled as a continuous response variable Y. Depending on the
number of samples in your dataset, choose the type of cross-
validation that suits your dataset (see Subheading 3.1.4). Make
PLSR models for a restricted number of LVs (see Note 6).

3. Examine the cross-validated RMSE or Q2 for the different num-
bers of LVs.

4. Choose the number of LVs giving the first minimum in cross-
validated RMSE or the first maximum in Q2 (see Note 7).

5. If you have an independent validation set, make predictions of
the independent test set using the model obtained in step 4.

Partial Least Squares

Discriminant Analysis

(PLS-DA)

PLS-DA is used for classification problems where the intention is to
model correlations and/or make prediction between two or more
groups of samples.

Protocol for PLS-DA 1. Perform additional scaling of variables as described in the Pro-
tocol for PCA, step 1.

2. Perform PLS-DA using the spectral data or quantified metabo-
lites as independent variables X and the sample characteristic to
be modeled as a categorical response variable Y, with discrete
numbers representing each class (e.g., 1 for treatment group and
2 for control group). Depending on the number of samples in
your dataset, choose the type of cross-validation that suits your
dataset (see Subheading 3.1.4). Make PLS-DA models for a
restricted number of LVs (see Note 6).

3. Examine the cross-validated classification error for the different
numbers of LVs.

4. Choose the number of LVs giving the first minimum in cross-
validated classification error (see Note 7).

5. If you have an independent validation set, make predictions of
the independent test set using the model obtained in step 4.

Orthogonal PLS (OPLS) In orthogonal PLSR (OPLSR) and OPLS-DA, the response
orthogonal variations in X are separated out before the model is
built. Orthogonalizing the model gives identical model perfor-
mance to that of original PLS as the OPLS components are
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rotations of the original ones. However, interpretations are easier as
all relevant information will be present in the first LV, hence only
the first score and loading vector will be used for interpretations.

Multilevel PLS-DA For longitudinal or cross-over studies, where each individual serves
as its own control, multilevel PLS-DA can be used to separate the
within-patient variation from the between-patient variation
[17]. By focusing on the within-patient variation, representing
metabolic changes due to the intervention (e.g., samples before
and after treatment), metabolic changes that would otherwise be
masked by the often much larger between-patient variation can be
revealed. In the example of samples of the same individuals before
and after intervention, the within-patient variation would be sepa-
rated according to:

Control ¼ A � B ð11Þ
Intervention ¼ B �A ð12Þ

where A is the metabolic data before intervention and B is the
metabolic data after intervention. These new matrices from
Eqs. 11 and 12 are concatenated and used as independent variables
in PLS-DA with a categorical variable representing control and
intervention as the Y vector.

Other Multivariate Analysis

Methods

In addition to PLS-based methods, several other multivariate anal-
ysis methods are suitable for the analysis of breast cancer metabo-
lomics data. Neural networks (NNs) can model complex, nonlinear
relationships between the input variables and the problem to be
solved, and can be used for both regression and classification pro-
blems [18]. NNs consist of three or more layers: an input layer, one
or several hidden layers, and an output layer. The nodes of each
layer are connected through weights, and the weights and hidden
layer(s) will be adapted to the input data through learning. Another
suitable method is support vector machines (SVMs) [19]. SVMs do
not learn like NNs, but instead aim to find boundaries that separate
different groups. The boundary determined by SVMs will be a line
in 2D, a plane in 3D, or a hyperplane in n dimensions. By choosing
different kernel functions, SVMs can be applied to nonlinear pro-
blems by transformation of the input space into a higher dimension
where the classes are linearly separable. Although these methods
can be powerful for making predictions, a main drawback of NNs
and SVMs is the difficulty in interpreting the resulting models.

3.1.3 Variable Selection Metabolic datasets are made up of several variables, or columns,
each one representing a point in a spectrum or an individual metab-
olite. Variables that are biologically irrelevant add noise to the
model and can impair model performance. A variable selection
procedure is therefore often performed when analyzing
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metabolomics data. Although variable selection can be carried out
using several methods that evaluate individual variables or subsets
of them at a time, all of them use information obtained from
statistical modeling (e.g., variable importance in projection [20],
prediction error [21], selectivity ratio [22]) as a variable importance
measure. It is therefore important to perform suitable validation of
the selected variables (see Subheading 3.1.4).

Protocol for Variable

Selection

1. Define the variable selection method to use. For an overview of
available methods, see Ref. 23.

2. Perform variable selection using the algorithm or script defined.

3. Build models using only the selected variables.

It is worth mentioning that if many variables provide the same
information, only one (or very few) of these will be selected to
minimize redundancy. Highly correlated metabolites involved in
the same pathway could thus be discarded while still being biologi-
cally important.

3.1.4 Validation Supervised multivariate models (see Subheading 3.1.2) tend to
overfit the data, which means they may capture even the noise of
the dataset used for building, or training, the model. If this occurs,
the model will perform well only for the training samples, and not
be applicable to new, similar samples [14]. Proper validation is
therefore essential to assess model quality and robustness. A second
purpose for validation is to optimize model parameters, such as
optimal dimensionality, e.g., the number of LVs in PLS or the
number of hidden layers in neural networks.

Cross Validation Multivariate model validation is typically performed using training
and test data. The test set is a group of samples with known
independent and dependent variable values not used for model
building, while the remaining data constitutes the training set
used for modeling. The training and test set should be representa-
tive of each other, i.e., sampled from a similar population and
handled identically. The resampling procedure known as cross vali-
dation [24] is commonly used for defining training and test data,
building models, and if applicable, optimizing model parameters.
Using the test sets generated with cross validation (CV) to simulta-
neously assess the quality of the model and to determine the
optimal dimensionality (e.g., number of LVs for PLS) is prone to
produce an over-optimistic error as the validation for both purposes
should be independent of each other. It is therefore preferable to
use a completely independent validation set comprised of a large
group of new samples for final validation. However, due to, e.g.,
budget, technical, or time constraints, the number of available
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samples is often not sufficient to do this, and the model perfor-
mance will be based on the cross-validation results.

Protocol for Cross

Validation

1. Divide your data into k subsets.

2. Exclude the first subset as a test set, and make a multivariate
model of the remaining data (the training data).

3. Test the performance of the resulting model on the test set.

4. Repeat steps 2–3 for all k subsets.

5. Assess the mean model diagnostic statistic (e.g., RMSE or pre-
diction error) for all k test sets. If applicable determine the
correct dimensionality or other parameters of the model as
described in the Protocols for PLSR and PLS-DA, steps 2–4.

6. If an independent validation set is present, build a model on all
data from step 1, using the dimensionality or parameters deter-
mined in step 5, and test the model using the independent
validation set.

The above procedure is designated k-fold CV, according to the
number of subsets, or folds (k) defined. Defining k to be the total
number of samples results in leave-one-out (LOO) CV. This pro-
cedure is particularly useful for datasets with low sample number
(see Note 8).

Alternative to defining a number of folds to divide the data
into, a fixed number or percentage of samples to be left out from
model building for each n validation can be defined. By using
random sampling, a different total error will be obtained if the
CV procedure is repeated, since the test sets will vary at random
with each repetition. This provides a less biased validation result.

Alternative to using an independent validation set, a double CV
procedure should be employed when there are a sufficient number
of samples. The procedure includes an inner loop nested in an outer
loop for separate model parameter optimization and model quality
assessment (see Fig. 5) and is carried out as follows:

Protocol for Double CV 1. Divide your data into k subsets.

2. Exclude the first subset as a validation set, and use the remaining
data as input for the inner CV loop.

3. Perform the inner CV loop as steps 1 through 5 described for a
typical single-layered k-fold CV above (see Note 9).

4. Build a model on all data inputted in the inner CV loop, using
the dimensionality or parameters determined in step 3, and test
the model using the excluded validation set in step 2.

5. Repeat steps 2–4 for all k subsets.

6. Assess the mean model diagnostic statistic (e.g., RMSE or pre-
diction error) for all k validation sets.
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Model quality assessment employing the described double CV
procedure is thus performed using validation samples completely
unseen during LV optimization, reducing the risk of overfitting.
Double CV is usually not available for direct implementation in
data analysis software without the creation of in-house scripts being
required. In most multivariate analysis software, however, the typi-
cal single-layered k-fold CV previously described can be performed
using ready-made scripts or graphical user interphases (GUIs)
which provide the option to use an independent validation set to
assess the quality of the cross-validated model. It is important to
emphasize that when optimizing model parameters using single-
layered CV, unless model quality is assessed using new samples,
diagnostic statistics obtained cannot be considered reliable.

Permutation Testing To ensure that obtained model diagnostic statistics are significantly
better than those that would be obtained by chance, permutation
testing can be performed. By rearranging the y response variable in
a random order, the y continuous values or classes are no longer
associated with their true corresponding metabolic information
(X); thus, any relationships between X and y are lost [24]. The
procedure can be performed to evaluate a double CV procedure as
follows.

Protocol for Permutation

Testing

1. Permute or rearrange the values in the original y variable in a
random order to obtain ypermuted. Replace the original y variable
with ypermuted.

Fig. 5 Illustration of data splitting for a four-fold double cross validation procedure through which the number
of latent variables (LVs) is optimized in the inner loop and model quality is assessed in the outer loop. Samples
are divided into four different outer loop groups or folds (k ¼ 1–4). At each outer loop repetition, three folds
comprise the data input for the inner loop, while one is left out as a validation set. The inner loop is then
partitioned into four inner loop folds (k2 ¼ 1–4), which at each inner loop repetition alternate the role of test
set while the remaining folds comprise the training set. The samples comprising the validation set in the outer
loop are therefore unseen to the latent variable optimization procedure, reducing the risk of over optimistic
results when using them to assess the model built with the inner loop data. A classical, single-layered CV
procedure consists only of the outer loop, with the inner loop data being the training set
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2. Perform steps 1 through 5 described for a typical single-layered
k-fold CV above using the optimized parameter value deter-
mined for the model being tested.

3. Repeat steps 1–2 a defined number of times (nperm) (see Note
10). A total of nperm errors from different permuted models will
be obtained.

4. Count the number of permuted models achieving an equal or
better diagnostic statistic than the unpermuted model being
tested and define it as a (e.g., errornonperm � errorperm).

5. Calculate a p-value as: a/nperm (see Note 11).

3.2 Univariate

Analysis

Univariate analysis can be performed to search for statistically sig-
nificant differences in individual metabolites between groups.

3.2.1 Selection Criteria

for Univariate Tests

Prior to univariate analysis, it should be decided whether the data is
prone to parametric or nonparametric tests. This is decided based
on at least three check points: normality (seeNote 12), homogene-
ity of variances, i.e., homoscedasticity (in case of heteroscedasticity,
see Note 13), and independency of samples (for dependent sam-
ples, e.g., repeated measurements, samples from the same hospital,
etc., linear mixed-effects models can be used (see Subheading
3.2.2)). Figure 6 shows a simplified overview of tests to select
according to data distribution and number of groups to test. For
more extensive details regarding selection criteria for univariate
tests, refer to [25].

3.2.2 Linear Mixed-

Effects Model

Linear mixed-effects models (LMM) are an extension of general
linear models taking into account both fixed and random effects,
where fixed effects often are those of primary interest, e.g., effect of
treatment type, while random effects are results of random selec-
tion, e.g., age, hospital, or individual. The modeling of random
effects enables inclusion of repeated measurements. An additional
advantage is that LMM can handle missing values, thus improving
the power in multilevel analysis where some observations are
missing.

In longitudinal studies, where samples have been collected
from individuals over time, LMM can be used to evaluate which
metabolites are significantly different with respect to one or more
outcomes of interest. In such cases, metabolite levels are set as
individual response variables, clinical outcome as a fixed effect,
and patient number as a random effect.

To perform LMM, first define the fixed and random effects.
Categorical fixed effects are set as factors. To decide whether or not
to model interactions between the fixed effects, a likelihood ratio
test comparing the reduced model (without interactions) to the full
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model (with interactions) can be performed. The resulting p-value
will reflect the significance of the interaction.

1. Perform LMM using the software of choice.

2. Check that residuals are normally distributed. If not: try trans-
forming the data to achieve normally distributed residuals.

The resulting p-values from LMM indicate the significance of
the fixed effects after the correction of the random effect(s). Fur-
thermore, LMM estimates show metabolite increasing or decreas-
ing trends for continuous fixed effects or whether metabolites are
higher or lower in one level or group compared to another for
categorical fixed effects.

3.2.3 Multiple Testing

Correction

When performing tests to associate a p-value to each individual
metabolite separately, such as those described in Subheadings
3.2.1 and 3.2.2, the same test is repeated for all metabolites. The
likelihood of significant p-values being achieved by chance will
increase with the number of tests performed. Hence, the number
of false positives (i.e., type I errors) should be controlled for. Here
lies the purpose of multiple testing corrections, which can be
achieved via different approaches. A widely used approach is the
Bonferroni adjustment [26].

Protocol for Bonferroni

Adjustment

1. Generate p-values for all n metabolites using a suitable
statistical test.

2. Multiply each p-value by n.

The Bonferroni method controls for the family-wise error rate
(FWER), which is the probability of producing at least one false
positive. Although simple, the Bonferroni adjustment is generally
unnecessarily strict for the purposes of metabolic analyses. Alterna-
tively, one can implement less stringent correction methods that
control for the false discovery rate (FDR), which is the expected
proportion of false positives to be generated. One such method is

Fig. 6 Examples of univariate tests that can be used for evaluating group differences in the level of quantified
metabolites
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the Benjamini-Hochberg adjustment [27, 28], whose procedure is
as follows.

Protocol for Benjamini-

Hochberg Adjustment:

1. Input p-values and record their order, referred to as the “original
order.”

2. Rank and sort the inputted p-values in an ascending order, such
that the rank i of the smallest p-value is 1, the second smallest has
an i ¼ 2, etc.

3. Calculate an intermediate q-value (qint) for each sorted p-value
(pval): qint ¼ ( pval/i)�n, where n is the number of inputted p-
values.

4. Sort the qint in an ascending order, recording their
corresponding p-value ranks.

5. The sorted qint values will now be adjusted according to their p-
value rank. The first qint value (qint0) remains the same. If the
rank of the second sorted qint value (qint1) is lower than that of
the previous value (qint0), overwrite qint1with qint0. Next, look to
the rank of qint2. If its rank is lower than qint1 then replace qint2
with the new value of qint1, if the rank is higher, then qint2
remains unchanged. Next, compare the rank of qint2 with qint3
and repeat the previous steps until all qint values have been
adjusted. The result is a list of the final q-values (see Note 14).

6. Reorder the final q-values so that they correspond to the original
order of the inputted p-values recorded in step 1.

The adjusted p-value (q-value) represents the smallest FDR at
which the corresponding test will be significant. So for a q-value of
0.02, the test would be considered significant (null hypothesis
rejected) when allowing a maximum of 2% of all significant tests
to be false positives (i.e., FDR threshold is 2%). As for all statistical
tests, the desired FDR threshold value to base significance on
should be defined prior to testing.

3.3 Multivariate

Versus Univariate

Analysis

An overview of the key steps to analyze metabolic profiles in breast
cancer using both multivariate and univariate methods has been
provided. To conclude, a comparison of these methods regarding
their advantages and disadvantages is presented in Table 2.

4 Notes

1. Refer to the following for example studies where metabolic
signature was related to specific clinical endpoints in breast
cancer: hormone receptor status and axillary lymph node status
[29] and treatment response and 5-year survival [30] studying
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tissue; early recurrence [31, 32] and weight change [33] study-
ing serum; risk of disease development [34] studying plasma.

2. Autoscaling should not be performed on spectral data, as this
will scale up the noise regions between metabolite signals.

3. Choosing a number of PCs explaining 80–90% of the data
variation will usually be sufficient to get a good overview of
the data.

4. Alternatively, scree plots can be plotted as the eigenvalue versus
the corresponding principal component (PC). An eigenvalue
describes the amount of variance accounted for by its associated
PC [35].

5. For unbalanced datasets, i.e., those with very few samples of
one class and many of the other, the prediction error may be
misleading. For example, if 90% of samples in a dataset are of
class A, a model that predicts every sample as class A will achieve

Table 2
Advantages and disadvantages of univariate and multivariate methods

Advantages Disadvantages

Univariate
methods

l Widely used/known in all scientific fields.
l Usually simple and straightforward to
perform and interpret.

l Useful for targeted approaches when one
or a few metabolites have been defined to
be tested.

l Variables (i.e., metabolites) do not affect
the outcome of each other’s tests (with the
exception of multiple testing procedures).

l Accurate measure of absolute or relative
concentrations is essential.

l Untargeted approaches present
challenges, particularly the risk of false
discoveries increasing with increasing
number of univariate paralleled tests
performed. Although this can be
addressed by applying multiple testing
corrections, these in turn may be too
strict, thereby risking to miss a true
discovery.

l Does not account for variable correlation.

Multivariate
methods

l Useful for exploratory purposes, such as
outlier detection.

l Applicable for untargeted approaches as
they can handle large numbers of variables
and evaluate their importance, i.e.,
relevance to the scientific problem at hand.

l Takes proper account of the correlation
between spectral points/metabolites.

l No need to correct for multiple testing, as
all variables are analyzed simultaneously.

l Evidence of individual metabolites can
accumulate to reveal findings that would
not be detected separately with univariate
methods.

l Quantification not necessary

l Not widely known in clinical fields
l Computationally intensive, time-
consuming algorithms

l Interpretation might not be
straightforward

l Unimportant variables that are mainly
noise can obscure information from
important variables that would be
detected using univariate tests.

l When using the metabolic profile as
input, scaling will increase the influence of
the noise and might not be optimal.
Thus, differences in metabolites of lower
abundance may be obscured by those of
higher abundance.
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an error of 0.1. In these cases, the sensitivity and specificity
provide a more correct assessment.

6. A maximum of 20 LVs is sufficient for most datasets.

7. In certain cases, outlying samples might give a small increase in
RMSE/classification error or a decrease in Q2 before the
RMSE/classification error continues to decrease or the Q2

continues to increase. If a sample appears to be an outlier in a
score plot, try to remove this sample and see if that changes the
results.

8. Typically n < 20 samples is too few to perform a cross valida-
tion other than LOOCV.

9. Data inputted in the inner loop is partitioned into a training set
to build models and a test set to assess the models built at each
iteration.

10. nperm is usually at least 1000 so that the obtained p-values are in
the thousandth order of magnitude (10�3).

11. If a ¼ 0, i.e., no permuted model performed better than the
unpermuted model, report the p-value as lower than 1/nperm.

For example, for nperm ¼ 1000, p < 1/1000, p < 0.001.

12. Statistical tests or graphical visualization can be used to evalu-
ate data distribution. Examples of statistical tests used to check
normality are Shapiro-Wilk or Kolmogorov-Smirnov
[36]. Graphical visualization can be performed by plotting
histograms (symmetrical and bell-shaped indicates normal dis-
tribution) or normal probability plots (q-q plot) (a line at y ¼ x
indicates normal distribution). For non-normally distributed
data, see Note 13.

13. Transformation of the data (e.g., log transformation) can be
applied to allow for parametric testing. Alternatively, nonpara-
metric tests can be chosen.

14. Due to the overwriting of q-values based on rank, it is typical
for one or more q-values to be repeated when adjusting using
this method.
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29. Giskeødegård GF, Grinde MT, Sitter B, Axel-
son DE, Lundgren S, Fjøsne HE et al (2010)
Multivariate modeling and prediction of breast
cancer prognostic factors using MR metabolo-
mics. J Proteome Res 9(2):972–979. https://
doi.org/10.1021/pr9008783

30. Cao MD, Giskeødegård GF, Bathen TF,
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Part IV

Systems Biology of Metastasis and Tumor/Microenvironment
Interactions



Chapter 10

Stochastic and Deterministic Models for the Metastatic
Emission Process: Formalisms and Crosslinks

Christophe Gomez and Niklas Hartung

Abstract

Although the detection of metastases radically changes prognosis of and treatment decisions for a cancer
patient, clinically undetectable micrometastases hamper a consistent classification into localized or meta-
static disease. This chapter discusses mathematical modeling efforts that could help to estimate the
metastatic risk in such a situation. We focus on two approaches: (1) a stochastic framework describing
metastatic emission events at random times, formalized via Poisson processes, and (2) a deterministic
framework describing the micrometastatic state through a size-structured density function in a partial
differential equation model. Three aspects are addressed in this chapter. First, a motivation for the Poisson
process framework is presented and modeling hypotheses and mechanisms are introduced. Second, we
extend the Poisson model to account for secondary metastatic emission. Third, we highlight an inherent
crosslink between the stochastic and deterministic frameworks and discuss its implications. For increased
accessibility the chapter is split into an informal presentation of the results using a minimum of mathemati-
cal formalism and a rigorous mathematical treatment for more theoretically interested readers.

Key words Poisson process, Structured population equation, Metastasis, Mathematical modeling

1 Introduction

Metastasis is the spread of cancer cells to distant tissues broadly
divided into two steps, physical dissemination and tissue-specific
colonization [1]. While the first part is facilitated by a reversible
phenotypic change of cancer cells [2], successful colonization
involves complex tumor–microenvironment interactions and is
still not well understood [3, 4].

Being responsible for most cancer-related deaths, metastasis is a
pivotal point in disease history [5]. However, since metastases
smaller than approximately 107 cells remain undetectable by medi-
cal imaging or other diagnostic tools, the clinical appearance of
nonmetastatic disease may not reflect the true metastatic state of a
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patient. Therefore, estimating the metastatic risk in cancer patients
without visible metastases is of major clinical importance [6]. In
this respect, mathematical and statistical techniques have the poten-
tial to derive risk scores from clinical data.

Today, there is a large body of mathematical oncology litera-
ture; a recent review specifically focuses on the metastatic process
[7]. Here, we will briefly summarize modeling efforts focusing on
analyzing metastatic risk.

The emergence of a metastatic phenotype is governed by a
number of key mutations [8, 9]. In [10] and [11] this assumption
is translated into mathematical models, thereby deriving a meta-
static risk score from evolutionary principles. In an opinion paper,
approaches explaining emergent behavior through lower-level
mechanisms were qualified as “the essence of integrated mathemat-
ical oncology” [12]. While acknowledging the importance of such
approaches for improving our understanding of cancer biology, we
will focus here on more data-driven models featuring simpler prin-
ciples and thereby better matching the limited amount of informa-
tion available in a clinical situation.

In an early work, a link between primary tumor size at surgery
and risk of recurrence was established from a large cohort of breast
cancer patients [13]. Later, these and other data were explained
heuristically [14] (see also Subheading 2.1). In addition to such
phenotypic characteristics, specific genetic signatures of the primary
tumor have been found to be associated with increased metastatic
risk [15]. These risk prediction models are static; they do not aim at
representing the time evolution of the disease.

In contrast, dynamic models allow to predict the modeled
system at different times, and more easily integrate data obtained
at different observation times. To represent the dependency of the
metastatic process on the primary tumor, a dynamic description of
primary tumor growth is also integrated into metastatic models.
The simplest dynamic model for tumor growth is the exponential
model, which adequately describes growth under no restrictions
(e.g., in vitro). In many cases of interest however, especially in vivo,
sigmoidal (s-shaped) models with an initial exponential phase and
subsequent deceleration are better suited to describe growth
dynamics. The Gompertz model is a classical example that has
been commonly used [16–18]. Power growth models have also
been used for the description of clinical [19] and preclinical
tumor growth data [20]. Although much more complicated mod-
els have been developed, e.g. describing the spacial evolution of a
tumor. Here we restrict our discussion of primary tumor growth to
the simple models introduced above.

A stochastic dynamic model for metastasis was proposed in
[21]. Their approach described the emission times of metastases
as random events, formalized through a so-called non-homoge-
neous Poisson process with an emission rate increasing with
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primary tumor size (see Subheading 2.2). A variant of this model
successfully described data on bone lesions from a metastatic breast
cancer case [22]. The Poisson distribution allows for an interpreta-
tion of the emission process as being “memoryless” and many of its
properties can be analyzed mathematically.

Dynamic models for metastasis can also be used to infer parts of
the process that cannot be observed experimentally or clinically. In
this respect, a partial differential equation (PDE) model was pro-
posed to describe the size distribution of metastatic colonies [23]
(see Subheading 3.1). Thereby, they characterized the micrometa-
static state of a hepatocellular carcinoma patient from clinical infor-
mation on visible metastatic colonies. Later, this size-structured
model was also successfully incorporated into mixed-effects models
to predict the size evolution of metastases in animal models without
[24] and with [25] surgical removal of the primary tumor. A unique
feature of this approach is that it allows to integrate secondary
metastatic emission into the model. Indirect evidence on the capac-
ity of metastases to spread further was given both through cancer
network models [26–28] and through the discovery of self-seeding
mechanisms [29, 30].

In this chapter, we focus on the two dynamical frameworks for
metastasis described above, the Poisson process and the size-
structured model. Three aspects are covered:

l an accessible introduction to the Poisson process framework
with an example motivating the approach,

l an extension of the Poisson model to account for secondary
metastatic emission,

l the inherent link between the (extended) Poisson model and the
size-structured model.

Finally, we exploit the crosslink between the two frameworks in
order to evaluate the adequacy of the modeling assumptions in the
deterministic model and to realize simulations using both frame-
works together.

We restrict our discussion to models describing the natural
history of metastatic progression. While surgery of the primary
tumor can be represented in these models, to incorporate the effect
of systemic treatments a more general formalism would be
required. For the ease of presentation, we will not include this
layer of complexity here, although we point out that both frame-
works have been extended to cover much more general cases,
including systemic treatment [31, 32] and more complex interac-
tions between primary tumor and metastases [33].

For increased accessibility for readers with a non-mathematical
background, the present work is split into two parts. First, the
concepts behind these approaches are presented informally in Sub-
headings 2 and 3 breaking down the mathematical formalism as

Stochastic and Deterministic Metastatic Emission Models 195



much as possible. Subheading 5 contains rigorous definitions of all
mathematical objects and the precise statement of the mathematical
results; detailed proofs of these results are provided in Appendix.

2 A Probabilistic Framework for Metastatic Emission

2.1 Metastatic Risk Predicting the probability of metastatic disease at diagnosis of the
primary tumor is of major clinical importance since it is strongly
linked to survival expectancy. One possibility to build such a pre-
diction model is by using large databases to correlate information
on the presence of metastases to primary tumor characteristics at
diagnosis or surgery. As an example, we show a relationship estab-
lished in [14] between primary tumor size at surgery and probabil-
ity of metastasis based on clinical data on breast cancer:

ℙðno metastasesÞ ¼ expð�c dzÞ, ð1Þ
where d is the largest diameter of the primary tumor at surgery, and
c, z > 0 are parameters which were determined from the cohort
data. At first view, these parameters are merely empirical and cannot
be associated to any mechanism. However, a mechanistic interpre-
tation as the combined effect of growth and emission dynamics is
possible, and is based on the following premises:

Power growth. The growth of the largest primary tumor
diameter d follows a power law, i.e. it is the
solution of the ordinary differential equa-
tion d0(t) ¼ aPG d(t)α. In this equation,
aPG determines the growth speed and α
allows to describe different growth shapes:
exponential growth (α ¼ 1), linear growth
(α ¼ 0), and a spectrum of sigmoidal
growth patterns in between (0 < α < 1).

Power law of emission. During each (infinitesimal) time interval,
there is a chance that the primary tumor
emits a metastasis. The emission intensity λ
depends on the current size of the primary
tumor through a power law: λ(t) ¼ b d(t)β.
In this context, the parameter b can be inter-
preted as themetastatic aggressiveness of the
emitting tumor. In [23], β was linked to the
mode of vascularization of the primary
tumor: a uniform vascularization would cor-
respond to β ¼ 3 (dimension of space) and a
surficial vascularization to β ¼ 2 (dimension
of a surface) (seeNote 1).

Memorylessness. The probability of emission of a metastasis
is independent of the previous emission
history.
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A typical model allowing a mathematical formalization of the
above premises is the Poisson process. In principle, randomness of
the metastatic emission process could also be represented through
different probability laws, thereby dropping the memorylessness
property as done, e.g., by Bethge et al. [34]. However, the Poisson
model has several advantages. It does not require any additional
statistical parameters, it has a high degree of analytical tractability
(i.e., many of its properties can be investigated through mathemat-
ical analysis and not only by simulations), and there are efficient
numerical routines such as thinning to simulate the process (see,
e.g., [35]). The detailed derivation of the empirical relationship is
presented in Subheading 5.2.

2.2 Poisson

Processes

A Poisson process (PP) is a model for counting a series of events
occurring at random times. The precise definition of this process is
given in Subheading 5, but its basic properties are the two follow-
ing ones (see Fig. 1 for an illustration):

1. The number of events in disjoint time intervals is independent.
This translates the memorylessness property since given some
time t, the number of future events (those happening at any time
tfuture > t) does not depend on the past events (those happening
at any time tpast < t), but only depend on the present state of the
system at time t. For example, in Fig. 1 the time elapsed between
t and T(4) is independent of when exactly T(3) occurred. In other
words, the system forgot what happened up to time t.

2. The number of events Nt that occurred by time t has a Poisson
distribution with parameter

ΛðtÞ ¼
Zt
0

λðsÞds,

i.e., the integral over each emission intensity λ(s) for s in the time
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Fig. 1 Schematic trajectory of a Poisson process. Here, T(1), . . ., T(4) are the
times at which events occur, and by time t we have 3 events, i.e. Nt ¼ 3
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interval [0, t]. This means that the probability of having observed
exactly k events until time t is given by

ℙ Nt ¼ kð Þ ¼ ΛðtÞk
k!

e�ΛðtÞ:

These two properties characterize the PP, and can even serve as
a definition in addition to N0 ¼ 0. From these two properties, one
can show that the probability that the next event time lies between
times t and t þ Δt is approximately λðtÞΔt. Hence, λ determines the
event frequency, and this is the reason why it is called the intensity
function.

In the setting of this chapter, we are interested in describing the
inception times of new metastatic lesions via PPs. This means that
Nt is the number of metastases emitted until time t in our context.
Following [21, 22], we will first suppose that only the primary
tumor has the capacity of seeding metastases.

A constant emission intensity λ (called a homogeneous PP)
would mean that a tumor consisting of a few cells is equally likely
to shed a metastasis as a large tumor of several grams. Since such a
model is not realistic, we need to consider time-varying intensities λ
(called non-homogeneous PPs). We will consider an emission
intensity λ that depends on some measure of primary tumor size
Xp(t) (diameter, volume, number of cells, etc.). The relationship
between primary tumor size and emission intensity is given by a
size-dependent emission law γ, i.e. λ(t) ¼ γ(Xp(t)).

Before going into more detail, let us introduce a set of clinical
parameters (summarized in Table 1), which will be used through-
out this chapter to further illustrate those concepts. These para-
meters were estimated in [23] from clinical data on a hepatocellular
carcinoma with multiple liver metastases. Although derived
within the deterministic framework of the size-structured model

Table 1
Growth and emission laws derived in [23] from clinical data of a hepatocellular carcinoma case with
multiple liver metastases

Model Parameter Symbol Value Unit

Growth (Gompertz law) Initial size x0 1 Cells

g(x) ¼ aGompxlog(xp
1/x) Growth rate aGomp 0.00286 Days�1

Maximum size xp
1 7. 3 � 1010 Cells

Emission (power law) Rate constant b 5. 3 � 10�8 Days�1 cells�1

γ(x) ¼ bxβ Emission power β 0.663 –

Primary tumor size is given byXp

0 ¼ g(Xp), Xp(0)¼ x0, and primary tumor emission rate is given by λ(t)¼ γ(Xp(t)). This
set of parameters is used throughout the chapter; when used in the PP framework the emission rate λ is taken as the

emission intensity
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(see Subheading 3.1 for more details), the inherent link with the PP
framework described in Subheading 3.2 ensures that these para-
meters are also relevant in the PP model; we will therefore use the
same set of parameters in both frameworks. Also, we will make use
of a slight modification of this clinical setting to predict the risk of
distant metastasis after surgery. To represent the impact of a surgery
at time tsurgery, the emission intensity will be set to zero for all times
larger than tsurgery. Randomness of emission means that each emis-
sion time can be represented via its probability density function; this
is illustrated for the emission time of the first metastasis T(1) in
Fig. 2.

The number of metastasesNt is itself random in this model, but
relevant deterministic quantities can be derived fromNt, such as the
expected number of metastases ½Nt � or the probability of meta-
static disease ℙðNt > 0Þ. Exploiting the memorylessness property
of PPs, these quantities can be computed without any need to
simulate the process (all the following formulas are proven in
Appendix:

½Nt � ¼
Zt
0

λðsÞds ð2Þ

and

ℙðNt > 0Þ ¼ 1� expð�
Zt
0

λðsÞdsÞ:

Also, a formula for the variance of Nt is obtained readily:
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Fig. 2 Probability density function (pdf) for the emission time of the first
metastasis T(1), using the clinical parameters in Table 1. The analytical
formula of the pdf is f T ð1Þ ðt Þ ¼ λðtÞe�Λðt Þ

Stochastic and Deterministic Metastatic Emission Models 199



var½Nt � ¼
Zt
0

λðsÞds : ð3Þ

The concepts Nt, ½Nt � and var[Nt] are illustrated in Fig. 3.

If a metastatic growth law is added to the model, the total
metastatic mass (or total cell count, sum of lesion volumes) Mt—
again a random quantity—can be represented via the emission times
of the PP. Mt can be compared to quantitative measures of total
metastatic biomass, obtainable, e.g., via bioluminescence imaging
[24]. We will assume that all metastases follow the same determin-
istic growth law Xm, but which can be different from the primary
tumor growth law. Therefore, the size difference among metastases
is entirely explained by differences in metastatic inception times,
and Mt can be written as

Mt ¼
XNt

k¼1

Xmðt � T ðkÞÞ,

where Xm(0) ¼ xm
0 is the initial size of a metastasis. Expectation

and variance of the metastatic burden can also be calculated
analytically:
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Fig. 3 Illustration of the non-homogeneous Poisson process Nt, representing the
number of metastases emitted by the primary tumor (clinical parameters,
Table 1). To simulate the process, a set of random times is simulated, which
then yields a random trajectory. Repeated simulations would lead to different
trajectories, and for a large number of random trajectories the “average
trajectory” is approximately given by the expectation of the process ½Nt �,
which can be directly computed via Eq. 2. Variability around ½Nt � can be
computed as ½Nt �p\pm2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
var½Nt �

p
, where var[Nt] is the variance of Nt,

computed via Eq. 3
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½Mt � ¼
Zt
0

λðsÞXmðt � sÞds : ð4Þ

var½Mt � ¼
Zt
0

λðsÞðXmðt � sÞÞ2ds : ð5Þ

The assumption of equal growth law for the metastases greatly
simplifies the model, which is both an advantage (for identifiability
from clinical data) and drawback (for correct representation of
cancer biology). Beyond the scope of this chapter, it could be
replaced by a less restrictive assumption, e.g. by supposing that
individual growth parameters are drawn randomly from a given
probability distribution. However, even if easily integrated into
numerical algorithms, such a feature would be prohibitive for any
characterization of the model through mathematical analysis.

2.3 Secondary

Emission

In the model described above, metastases do not have the capacity
to emit metastases themselves. However, it is easy to think of a case
in which such a property would make a difference in the model. For
example, suppose that only a single metastasis is emitted prior to
surgery of the primary tumor (seeNote 2). If this metastasis cannot
emit further metastases, its successful removal cures the patient but
the second surgery may fail if the metastasis is able to seed as well.
Of course, there are other mechanisms potentially leading to treat-
ment failure (e.g., local recurrence, surgery impossible, etc., see,
e.g., [36, 37]), but for simplicity these are not considered here.

In this section, we extend the previously shown PP model to
account for secondary metastatic emission using PPs as building
blocks. Many of the advantages and limitations of the PP model
carry over to the extended model, and we do not claim that a
comprehensive framework for cancer metastasis is built in that
way. The model is, however, simple enough to have a chance to
be parametrized reasonably from clinical data.

Conceptually, the extension is straightforward: as before, the
primary tumor grows according to Xp and metastatic emission by
the primary tumor is represented by a PP with intensity λp. In
addition, any emitted metastasis has the same capacities as the
primary tumor, but possibly with different growth and emission
rates (Xm instead of Xp, and λm instead of λp). If we consider a
metastasis emitted at time s, this means that at a later time t it
reaches the size Xm(t � s) and emits metastases with intensity
λm(t � s). Every newly emitted metastasis starts a new PP. Also,
each metastasis has a precursor (either the primary tumor or
another metastasis). The whole model then consists of the meta-
static emission times from all of these PPs. Since each PP can start
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other PPs, we call this model a PP cascade. We then need to make a
hypothesis on how the different emission processes play together.

Independence of Emissions: We assume that each metastasis emits
independently of any other metastasis, and also independently of
the primary tumor. In other words, all the PPs involved in the
dynamics are independent.

Such an assumption is very important to be able to characterize
the properties of the PP cascade with mathematical techniques. Note
that simply ordering all emission events including secondary emissions
by increasing emission time would not allow to use the above made
independence assumption since the inception time of each metastasis
depends on its level in the generational hierarchy (primary tumor,
metastases emitted from the primary tumor, metastases emitted from
the metastases emitted from the primary tumor, etc.). Therefore, in
our model we have to account for the filiation of each metastasis. For
example, the emission time of the first metastasis emitted by the
primary tumor is denoted by T(1), and the emission time of the first
metastasis emitted by the first metastasis emitted by the primary tumor
is denoted by T(1,1), which depends on T(1). More precisely,

T ð1,1Þ ¼ T ð1Þ þ ~T
ð1,1Þ

where ~T
ð1,1Þ

is the first emission time for the
PP generated at time T(1). Filiation in the cascaded model is further
illustrated in Fig. 4, and a rigorous definition is provided in
Subheading 5.4.

T (3) T (4)

T (1,1) T (1,2) T (1,3)

T (2,1) T (2,2) T (2,3)

T (2)

T (1,1,1) T (1,1,2)

PP(λp; 0)

PP (λm ;T (1,1))

PP (λm ;T (1))

PP (λm ;T (2))

T (1)

Fig. 4 Illustration of the first three generations for a Poisson process (PP) cascade. Each long horizontal arrow
represents a PP (from top to bottom: primary tumor, first metastasis of first generation, second metastasis of
first generation, first metastasis of second generation emitted by first metastasis of first generation). Each
short vertical arrow represents an emission by the PP it points towards. This starts a new PP, connected by a
dashed line. In the notation PP(λ; T ), λ is the intensity of the PP and T is its starting time for the new PP
(emission times are counted from the start of the respective PP and not from zero)
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3 Crosslink to a Structured Population Model

3.1 Size-Structured

Model

Let us consider a different framework for the description of metas-
tasis, which also represents the metastatic process purely as growth
and emission dynamics. To describe the micrometastatic state of
cancer patients a size-structured model was developed [23]. The
model describes the time evolution of a density function ρ(x, t)
representing the size distribution of metastatic colonies: the inte-

gral
R x2
x1

ρðx, tÞdx represents the number of metastases at time t with

size between x1 and x2. Therefore, ρ is like a smoothed histogram of
the number of metastases within different size ranges.

To better understand why a size density is considered, it is
instructive to draw an analogy to Lagrangian and Eulerian descrip-
tion of a fluid flow (see, e.g., [38] for a comprehensive discussion).
In a Lagrangian description, the observer follows individual parti-
cles through the flow field. In contrast, for the Eulerian point of
view the observer considers the flow density through fixed refer-
ence points. These two frames of reference are illustrated in Fig. 5.
In this picture, metastatic growth becomes “flow through size
space.” In the PP model this is represented in a Lagrangian fashion:
a growth function is associated to each individual metastasis. In the
size-structured model an Eulerian frame of reference is used: the
entire population of metastatic tumors is described through a den-
sity function moving through size space at a “speed” g(x) (i.e., the
growth rate), in other words a size-structured density.

Formalizing metastatic growth from an Eulerian perspective
leads to a PDE model. Metastatic emission is the boundary

t

Time

s

Size
Xm(t – s)

Time

Size

Fig. 5 Representation of the Lagrangian (left) and Eulerian (right) frames of reference for describing a
population of growing metastases. Left: the observer (the eye symbol) follows the growth curves of individual
metastases; time and size coordinates determine the observer’s position. Right: a static observer looks from
the outside at the growth speed g in fixed time-size areas. The relationship Xm

0
(t) ¼ g(Xm(t)) holds
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condition of the PDE, which means that it describes the “arrival of
new particles into size space” (see Eq. 9). In contrast to the PP
cascade model, where metastatic emission was a stochastic process,
in the size-structured model (the PDE model) emission is deter-
ministic. The emission dynamics consists of a primary tumor con-
tribution and a contribution of the metastases themselves, both
depending on the size of the emitting tumor. The size-dependency
of the metastatic emission rate entwines metastatic growth with
metastatic emission dynamics, which requires special attention dur-
ing mathematical analysis of the model [39] as well as for designing
an efficient numerical resolution scheme [40].

To illustrate the model dynamics, the clinical parameters of
Table 1 were used to simulate the metastatic density function at
different times (see Fig. 6). The model equations, together with
relevant properties of the size-structured model, are presented in
Subheading 5.3.
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Fig. 6 Time evolution of the metastatic density in the size-structured model for metastasis. Each solid line
represents a snapshot of the metastatic density ρ at a particular point in time (1/2/3 years after inception of
the primary tumor). Due to the growth dynamics, the density is transported to the right. Several quantities
computable from the density are represented in the legend: Nmicro, number of metastases smaller than 108

cells; Nmacro, number of metastases larger than 108 cells; M, total metastatic mass (number of cells of all
metastases together)

204 Christophe Gomez and Niklas Hartung



3.2 Bridging the Gap:

Model Observables

We now describe how the size-structured model and the PP cascade
model are related. At first view, the two frameworks describe quite
different objects. While the PP cascade is concerned with a collec-
tion of emission times with a generational hierarchy, the size-
structured model features a density function. Nevertheless, as we
will see, the latter can be seen as the expectation of the PP cascade
model. To describe precisely the relationship between the models,
we need to introducemodel observables as a common theme. In fact,
we have already introduced some model observables without nam-
ing them so. The model observables include the number of metas-
tases, the number of micro-/macro-metastases, and the total
metastatic mass.

Let us start with the size-structured model. For each function f,
a model observable (MO) is defined by

MOf ðtÞ :¼
Zx1m
x0m

f ðxÞρðx, tÞdx, ð6Þ

where xm
0 is the size of a newly emitted metastasis and xm

1 denotes
the theoretical upper boundary, i.e. it is integrated over all possible
sizes of metastases. Different choices for f are possible, and each of
them corresponds to one observable (this dependency is made
explicit through the subscriptf in MOf). The definition includes
the above-mentioned quantities:

l The number of metastases is obtained for f ¼ 1, i.e. the function

that equals 1 for all x: MO1ðtÞ ¼
R x1m
x0m

1 � ρðx, tÞdx ¼ N ðtÞ.
l Similarly, the number of macrometastases is obtained with

f macroðxÞ ¼
1 if x � c
0 if x < c,

�

and the number of micrometastases with

f microðxÞ ¼
0 if x � c
1 if x < c:

�

Here c stands for the detectability threshold, which depends on
the imaging modality.

l The total metastatic mass M is obtained with the identity func-
tion fId(x) ¼ x for all x:

MOf IdðtÞ ¼
Zx1m
x0m

xρðx, tÞdx ¼ M ðtÞ:
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Apart from allowing us to consider all these model-derived quan-
tities at once, it is important for the mathematical proofs in Sub-
heading 5 to consider such a general notion of observable.

Writing down the model observables in the PP cascade model is
slightly more complicated and it will be easier to illustrate it with an
observable in the PP model without secondary emission. There, a
stochastic model observable (SMO) is defined by

SMOf ðtÞ :¼
XNt

k¼1

f ðXmðt � T ðkÞÞÞ: ð7Þ

The observables are defined in such a way that their interpretation is
the same in both frameworks. For example, f¼ 1 yields the number
of metastases Nt

SMO1ðtÞ ¼
XNt

k¼1

1 ¼ Nt ,

and fId yields the metastatic mass Mt

SMOf IdðtÞ ¼
XNt

k¼1

Xmðt � T ðkÞÞ ¼ Mt : ð8Þ

If we ordered all emission events including secondary emissions by
increasing emission time (and still called these times T(1), T(2),
etc.), this could also be used as the definition of a stochastic
model observable in the PP cascade. However, in order to carry
out the calculations required for bridging the gap between the two
frameworks, we need to account for the filiation of a metastasis,
i.e. its level in the generational hierarchy. An explicit definition of
the SMO using filiation is provided by Eq. 13 in Subheading 5.4.

Similarly to Eq. 2, where the expected number of metastases
½Nt �was computed in the PP model without secondary emission,
an expression for the expectation and variance of each SMO can be
derived in the PP cascade model. These computations are more
complicated and are presented in detail in Appendix. It is then
shown that the expected value of each SMO is equal to the
corresponding MO in the size-structured model; in this sense, the
size-structured model describes the mean behavior of the PP cas-
cade model:

MOf ðtÞ ¼ ½SMOf ðtÞ�:
A rigorous mathematical statement of these results is given in
Subheading 5.4.

The relationship between model observables in the two frame-
works is a consequence of a relationship betweenmore fundamental
mathematical objects (a random measure in the PP cascade and an
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absolutely continuous measure in the size-structured model). For
the sake of simplicity, we do not present this additional layer here
and refer to Subheading 5.4 for more details.

3.3 Implications In physics, a density is usually derived on the hypothesis of a large
number of constituting particles. In their derivation of the size-
structured model, these principles were applied to metastasis
[23]. However, this density notion is challengeable during the
early phase of metastasis where the number of metastases is low:
what is one single metastasis spread over the whole size range? The
alternative interpretation as the expected value of a cascade of PPs
provides a more flexible framework. For any model observable
(e.g., the number of metastases), the adequacy of the size-
structured model can be evaluated by quantifying the variance of
the corresponding PP cascade.

Let us illustrate this approach by an example. When parame-
trizing the size-structured model from clinical data on the size
distribution of metastatic colonies, the model authors did not
represent randomness inherent in the emission process [23]. To
account for this neglected source of variability, we use the crosslink
between size-structured and PP cascade models. By simulating the
PP cascade model with the same parameters (Table 1), standard
deviation as well as typical trajectories of the stochastic model can
be taken as a measure of variability around the prediction by the
size-structured model. We choose the observables used in [23] to
parametrize the model, i.e. the number of metastases exceeding
certain size thresholds c (i.e., fmacro with different thresholds).
Simulation results are shown in Fig. 7.

The average deviation of the data from the size-structured
model prediction is much smaller than the stochastic fluctuation
of the PP cascade model, and we can interpret this from two
different perspectives. On the one hand, since these deviations are
consistent with typical trajectories, the data are in principle explain-
able by stochasticity of emission. On the other hand, since the
range of plausible trajectories is relatively wide using the estimated
model parameters, different sets of model parameters would also be
compatible with the same observed trajectory. To put it differently,
the precision of the parameters of the size-structured model is
probably overestimated since the variability by randomness of emis-
sion is not taken into account.

Parameter estimation is much easier in deterministic than in
stochastic models. In special cases, such as in a PP model without
secondary emission [22], it is possible to estimate model para-
meters in a stochastic model. However, if the statistical model
becomes more complicated, e.g. a mixed-effects model to deal
with population data [41], the computational and even methodo-
logical feasibility limit is quickly reached with a stochastic structural
model [42]. In this case, the crosslink described in Subheading 3.2
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can be exploited to derive reasonable parameters for simulations
from the PP cascade model by estimating the parameters of its
mean, i.e. the size-structured model.

We applied this reasoning already in Fig. 7, in which the varia-
bility due to stochasticity of emission was discussed. To give an
example using the stochastic nature of the PP cascade model more
explicitly, we now use the stochastic framework to assess the impact
of secondary metastatic emission following surgery of the primary
tumor. Using the clinical parameters stated above, we assume that
the primary tumor is surgically removed 500 days after its incep-
tion, where it has reached a tumor mass of 180 g, and assess the
number of metastases another 500 days later (Fig. 8). Since every
secondary emission is preceded by at least one primary emission,
the probability of metastatic disease is the same in both models
(with and without secondary emission). However, on average a
much larger number of metastases is predicted from the model
with secondary emission (½Nt � ¼ 4:7 with secondary emission
vs. ½Nt � ¼ 1:2 without).

4 Summary and Outlook

This chapter focuses on Poisson processes as possible frameworks
describing metastatic emission, usable to predict metastatic risk or
micrometastatic dynamics. Although representing randomness in a
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Fig. 7 Comparison of residual variability from the size-structured model fit and stochastic variability of the PP
cascade model. Expectation (bold solid line) is the size-structured model prediction Nmacro(t), which was used
to fit the clinical data from [23] (computed via Eq. 10). Variability of the corresponding PP cascade model is
displayed in two ways: through stochastic trajectories (thin lines) and½Nmacro, t �p\pm2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var½Nmacro, t �

p
, with

var[Nmacro,t] computed via Eq. 15 (Variability, bold dashed line). As in [23], we count time from inception of the
first primary tumor cell, which was back-calculated from primary tumor data assuming Gompertzian growth
(hence the first CT scan with metastatic disease is approximately 3 years post-inception)

208 Christophe Gomez and Niklas Hartung



relatively simple way, PPs have appealing properties that have been
illustrated here. They can be easily included as building blocks in
larger models, which has been shown with the PP cascade model,
but which applies in a muchmore general way. Also, they allow for a
high degree of analytical tractability, which was exploited here to
characterize the mean behavior of the PP cascade model.

Without doubt, further improvements of these techniques are
required. In particular, to make individualized risk predictions with
the model we have to match patient characteristics to model para-
meters. In this respect, circulating biomarkers, such as circulating
tumor cells or circulating tumor DNA can be a useful source of
information, especially since quantification methods are rapidly
getting more reliable [43, 44, 2]. Both frameworks presented
here allow for such an extension. Once validated, a mathematical
model can serve as a powerful tool for informed treatment decisions
for cancer patients by integrating case-specific information into a
consistent quantitative framework.

While this chapter has focused on the natural metastatic emis-
sion kinetics, it is possible to extend the formalism to cover systemic
treatments such as chemotherapy (represented as a size function
Xm(t; tincept) depending on inception time in the stochastic context
of Subheading 2.2, or a time-varying growth rate g(x, t) in the
deterministic context of Subheading 3.1). However, although
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Fig. 8 Probability of metastatic disease after surgery with (top panel) or without (bottom panel) secondary
metastatic emission (each based on 10.000 simulations). In addition to the clinical parameters derived in [23],
it is assumed that the primary tumor is surgically removed 500 days after its inception, and that the number of
metastases is evaluated another 500 days later
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both the deterministic and stochastic settings can be extended in
this way, a direct link between these two extended frameworks (as in
Subheading 3.2) has not been established yet.

5 Mathematical Formalism and Results

This section is devoted to the mathematical formalism and the
derivations of the results of Subheadings 2 and 3. We provide
here precise definitions of the mathematical objets and rigorous
computations and results. We start by introducing the
non-homogeneous Poisson process and derive formula (Eq. 1)
from the Poisson assumption. Next, we summarize key results for
the size-structured model, we introduce the probabilistic frame-
work for secondary emissions, and then derive rigorously the link
between these two models.

Throughout this section ðΩ,F ,ℙÞ is a probability space on
which all the random variables we consider are defined.

5.1 Definition of a

Poisson Process

and Basic Properties

The Poisson distribution is a standard way to count the occurrences
of some events.

Definition 5.1 (Poisson Distribution).: Let μ � 0. A random vari-
able Y with values in  is said to have a Poisson distribution with
parameter μ, that we denote by Y � PðμÞ, if for all k∈

ℙ Y ¼ kð Þ ¼ e�μ μ
k

k!
for μ > 0, and if ℙðY ¼ 0Þ ¼ 1 in the case μ ¼ 0.

The parameter μ∈ℝþ can be interpreted as the expected num-
ber of occurrences since

½Y � ¼ μ with Y � PðμÞ:
In our context, it counts the number of metastases. However, at
this level, we have no information on the event times we are
counting, nor how this number evolves with respect to time. To
handle the random nature of these times, let us introduce the
Poisson processes.

Definition 5.2 (Non-homogeneous Poisson Process).: Let

λ : ℝþ ! ℝþ be a continuous function. We say that (Nt)t � 0 is a
non-homogeneous Poisson process with intensity λ if:

1. N0 ¼ 0;

2. the number of occurrences in disjoint time intervals is indepen-
dent, i.e. for t0 < . . . < tn, the random variables N tk �Ntk�1

, k ¼
1, . . ., n are independent;

3. For all t > 0, Nt has a Poisson distribution with parameter ΛðtÞ,
given by
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ΛðtÞ ¼
Zt
0

λðuÞdu:

The terminology non-homogeneous results from the fact that the
intensity function λ can vary in time, as opposed to a homogeneous
Poisson process for which λ is constant. Also, there are several
equivalent definitions for a non-homogenous Poisson process.
For instance, the third item above can be replaced by the following
properties:

ℙðNtþΔt �Nt ¼ 1Þ ¼ λðtÞΔt þ oðΔtÞ
and ℙðNtþΔt �Nt � 2Þ ¼ oðΔtÞ,

where oðΔtÞ stands for a function satisfying oðΔtÞ=Δt ! 0 as
Δt ! 0. In the previous definition, we chose λ as a continuous
function since we would not expect any discontinuities in rate of
metastatic emission. Nevertheless, mathematically this assumption
can be relaxed to more general nonnegative functions.

Finally, from a Poisson process (Nt)t � 0, one can define the
event times recursively as

T ðkÞ ¼ inf ðt > T ðk�1Þ, Nt ¼ Nt� þ 1Þ fork ¼ 1, 2, . . .

with T(0) ¼ 0. We refer to Fig. 1 for an illustration of the relation
between (Nt)t � 0 and the event times. From these times, one can
consider the following (random) measure on ℝþ:

PðduÞ :¼
Xþ1

k¼1

δT ðkÞ ,

where δx stands for the Dirac distribution at point x. This measure is
called the Poisson random measure associated to (Nt)t � 0. From
this definition of P, it is direct to see that for any t � 0,

Nt ¼ Pð½0, t �Þ ¼
Xþ1

k¼1

1 T ðkÞ�tð Þ:

Here, 1A is the indicator function of A, that is it takes the value 1 if
A is true and 0 otherwise. In the same way, the total metastatic
biomass (Eq. 8), for instance, can be rewritten as

Mt ¼
Xþ1

k¼1

1 T ðkÞ�tð ÞXmðt � T ðkÞÞ ¼
Zt
0

Xmðt � uÞPðduÞ:

Expressions involving an integral with respect to the Poisson mea-
sure allow convenient manipulations as we will see in Appendix
using Proposition A.1.
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5.2 Derivation

of Empirical Formula

from Poisson

Assumptions

Let us assume that the primary tumor diameter d(t) follows a power
law:

d0ðtÞ ¼ a dðtÞα, dð0Þ ¼ d0, 0 < α < 1:

Power growth of volume with a power between 2/3 and 1 has been
described in the literature, leading to the above model if we assume
a spherical shape of the tumor.

Furthermore, let us assume that metastatic emission is gov-
erned by a Poisson process with intensity λ(t) ¼ b d(t)β. We will
require β > 0, since the emission rate should increase with primary
tumor size. Then, the number of metastasesNt by time t is Poisson
distributed with parameter ΛðtÞ ¼ R t

0 λðsÞds and the probability of
metastasis-free disease at time t is given by

ℙðno metastasesÞ ¼ ℙðNt ¼ 0Þ ¼ expð � b

Zt
0

dðsÞβdsÞ:

Here, we have

b

Zt
0

dβ sð Þds ¼ b

a

Zt
0

d0 sð ÞdðsÞβ�αds ¼ b

a

Zt
0

d

dt
ð dðsÞβ�αþ1

β � αþ 1
:ds

¼ b

aðβ � αþ 1Þ ðdðtÞ
β�αþ1 � dβ�αþ1

0 Þ,

and assuming that the tumor is initiated with a negligible size (d0	
d(t)), one obtains

b

Zt
0

dðsÞβds 
 b

aðβ � αþ 1Þ dðtÞ
β�αþ1:

This then yields the empirical formula

ℙðno metastasesÞ ¼ expð � c dðtÞzÞ,

with c ¼ b
aðβ�αþ1Þ, and z¼ β �αþ 1. Since β > 0 and α� 1, we have

z > 0, and the above manipulation is justified.

It should be noted that although c and z can be determined
unambiguously from information on metastatic status and primary
tumor size at surgery if the patient cohort is large enough, this does
not apply for the growth and emission parameters of the underlying
Poisson process. To distinguish the growth and emission processes
additional information is required, such as repeated tumor size
measurements over time.
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5.3 Summary of Key

Results on the Size-

Structured Model

The framework proposed in [23] focuses on the evolution of a size-
structured metastatic density ρ. Originally, it was assumed that
primary and secondary tumors have the same growth and emission
patterns. Here, we present an extended version, described, e.g., in
[40], where primary and secondary growth and emission dynamics
can be different.

As before, Xp denotes the size of the primary tumor and γp the
primary tumor emission law. The size of a metastasis is given byXm,
which is the solution of an autonomous ordinary differential
equation

X 0
mðtÞ ¼ gðXmðtÞÞ, Xmð0Þ ¼ x0m:

The emission law of the metastases is γm. Then, the metastatic
density function ρ solves the following equation:

∂tρðx,tÞþ∂x ½gðxÞρðx, tÞ� ¼0, ðx,tÞ∈ðx0m,x1m Þ�ð0, þ1Þ,

gðx0mÞρðx0m, tÞ¼ γpðXpðtÞÞþ
Zx1m
x0m

γmðxÞρðx,tÞdx, t∈ð0, þ1Þ,

ρðx,0Þ¼0, x∈½x0m,x1m �:

8>>>>>>><
>>>>>>>:

ð9Þ
We also introduce the emission rates of the primary tumor and the
metastases, respectively:

λpðtÞ :¼ γpðXpðtÞÞ and λmðtÞ :¼ γmðXmðtÞÞ:
Existence of a unique weak solution ρ to this model has been

shown under general conditions in [39]. For the purpose of this
chapter, it is sufficient to assume that λp, γm, and g are continuously
differentiable nonnegative functions, and that limt ! þ1λp(t) &lt;
þ1 and g(xm

1) ¼ 0.

Model observables for the size-structured model have been
introduced in Eq. 6. As shown in [40], they can be characterized
as the solutions of a Volterra convolution equation:

Theorem 5.1.: For any f ∈L1 ½x0m, x1m �� �
, MOfis the unique solution

of the following renewal equation:

MOf ðtÞ ¼
Zt
0

λpðsÞf ðXmðt � sÞÞds þ
Zt
0

λmðsÞMOf ðt � sÞds : ð10Þ

This alternative formulation will be important to bridge the gap
between the stochastic and deterministic frameworks. Of note, it is
also the basis of an efficient numerical resolution algorithm [40].
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5.4 Probabilistic

Framework

for Secondary

Emission

Let us first remind the reader that we assume all emissions of the
primary tumor and of the metastases to be independent. To exploit
this property in calculations, we have to take care of the filiation of
each metastasis, i.e. the generational hierarchy (the primary tumor,
the metastases emitted from the primary tumor, the metastases
emitted from the metastases emitted from the primary tumor,
etc.). We will therefore introduce a cascade of independent PPs,
and define recursively the emission times with respect to the gener-
ational hierarchy.

l The emission times for the first generation of metastases, that is,
the ones emitted by the primary tumor, are the event times of a
PP (Nt

(1))t � 0 with intensity λp; we will write Πð1Þ :¼ ðT ðjÞÞj�1

for the set of random emission times.

The emission times for the next generations of metastases are
defined recursively.

l Let k� 2 and n1, . . ., nk�1 � 1. The jth emission time for the kth
generation of metastasis with filiation n1, . . ., nk�1 is defined by

T ðn1, ...,nk�1, jÞ :¼ T ðn1, ...,nk�1Þ þ ~T
ðn1, ...,nk�1, jÞ ð11Þ

This is the time it takes for the offspring with filiation n1, . . .,
nk�1 to give birth to its jth offspring. Here, the family

~T
ðn1, ...,nk�1, jÞ� �

j�1
is formed by the event times of a PP

N ðn1, ...,nk�1Þ� �
t�0

with intensity λm.

We refer to Fig. 4 for an illustration of these emission times,
but for instance, T (2,3,4) is the inception time of the fourth off-
spring produced by the third offspring of the second offspring of
the primary tumor. Using biologically relevant parameters, the
expected emission times for all but the first few generations are
larger than any reasonable observation timeframe. However, even if
the contribution of late generations is very small, we need to
consider the whole cascade of emission times to bridge the gap to
the size-structured model.

Finally, assuming that

f N
ðn1, ...,nkÞ
t

� �
t�0

, k � 1, n1, . . . ,nk � 1g
is a family of independent PPs implies the biological assumption we
made, which is that the primary tumors and all the metastases emit
independently from each other.

In the PP model without secondary emission, model observa-
bles were defined in Eq. 7. With the PP cascade defined above, we
are now able to extend this concept to secondary emission con-
structively. For f ∈ L1([xm

0, xm
1]), the SMO for the kth genera-

tion can be expressed by
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SMO
ðkÞ
f ðtÞ :¼

X
n1, ...,nk�1

1 T ðn1, ...,nk Þ�tð Þf ðXmðt � T ðn1, ...,nkÞÞÞ, ð12Þ

and we have the following definition.

Definition 5.3 (Model Observables with Secondary Emission).:
The SMOs with secondary emission are given by

SMOf ðtÞ :¼
Xþ1

k¼1

SMO
ðkÞ
f ðtÞ: ð13Þ

In this definition, SMOf
(k) describes the contribution of the kth

generation to the SMO.

The following proposition links the MOs from the stochastic
and deterministic frameworks.

Proposition 5.1 (Link to the Model Observables).: Let

f ∈L1 ½x0m, x1m �� �
. The SMO (Eq. 13) is well defined in the sense

that

ℙð8t � 0, 0 � SMOf ðtÞ < þ1: ¼ 1:

Moreover, the expected value

ef ðtÞ :¼ ½SMOf ðtÞ�
is finite for all t � 0 and satisfies (Eq. 10), so that

ef ðtÞ ¼ MOf ðtÞ:
Let us remark that the SMO (Eq. 13) may also be seen as

integrals w.r.t. a random measure

SMOf ðtÞ ¼
Z

f ðxÞMt ðdxÞ,
for any t � 0, with

Mt :¼
X
k�1

X
n1, ...,nk�1

δXm t�T ðn1, ...,nk Þð Þ: ð14Þ

This description is the key point to bridge the gap to the description
of metastasis via a structured population equation.

Theorem 5.2 (Link to the Structured Population Model).: For all
t � 0, the measure

μt :¼ ½Mt �
is σ-finite, absolutely continuous with respect to the Lebesgue
measure, and its Radon–Nikodýn density is given by ρ(� , t),

dμt
dx

¼ ρ �, tð Þ,
where ρ is the solution of the structured population
equation (Eq. 9).
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The last result we present here concerns the variability of the
SMO (Eq. 13) with respect to its mean MOf.

Proposition 5.2 (Variance of Observables).: Let f ∈L1 ½x0m, x1m �� �
.

The variance of the SMO

vf ðtÞ :¼ var½SMOf ðtÞ�
is finite for any t � 0, and satisfies a renewal equation:

vf ðtÞ ¼
Zt
0

λpðsÞðf ðXmðt � sÞÞ þ em, f ðt � sÞÞ2

þ
Zt
0

λmðsÞvf ðt � sÞ: ð15Þ

Here,

em, f ðtÞ :¼ ½SMOm, f ðtÞ�,
and where SMOm, fis defined as (Eq. 13), but for a different cascade
of PPs, which has only λmfor intensity (both for the first and
subsequent generations).

This result is of great interest to design confidence intervals as
illustrated in Subheading 3.3. In fact, the renewal equation (Eq. 15)
allows the use of an efficient numerical resolution algorithm [40].

6 Notes

1. The interpretation of β depends on the unit of the primary
tumor measure. As an example, a surficial vascularization
would correspond to β ¼ 2 if size is measured in diameter, but
to β ¼ 2/3 (the fractal dimension of a surface in space) if size is
measured in volume.

2. We remind the reader that a surgery at time tsurgery is represented
by setting the emission intensity λ to zero for all times larger
than tsurgery.
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A Appendix: Proofs of Results of Section 5.4

The proofs provided in this section are based on the following
classical result on Poisson random measures. We refer to [45,
Chap. 6, pp. 251] for further details. Also, note that this result
directly yields Eqs. 2 through 5.

Proposition A.1.: Let (Nt)t � 0be a PP with intensity λ and P the
corresponding Poisson random measure. We have for

ϕ,ψ∈L1ðℝþ, λðuÞduÞ \ L2ðℝþ, λðuÞduÞ


Z

ϕðuÞPðduÞ
� 	

¼
Z

ϕðuÞλðuÞdu,
and


R
ϕðu1ÞPðdu1Þ

R
ϕðu2ÞPðdu2Þ


 � ¼ R
ϕðu1Þλðu1Þdu1

R
ψðu2Þλðu2Þdu2

þ R
ϕðuÞψðuÞλðuÞdu:

In other words, we can write the first order moment of the
Poisson random measure P in a more compact form

½PðduÞ� ¼ λðuÞdu,
as well as its second order moment

½Pðdu1ÞPðdu2Þ� ¼ λðu1Þλðu2Þdu1du2 þ δðu1 � u2Þλðu1Þdu1du2:

Moreover, to simplify notations in the forthcoming computations,
we introduce the following convolution-like notation: for functions
ϕ, ψ

ϕ∗ψðtÞ :¼
Zt
0

ϕðt � uÞψðuÞdu: ð16Þ

A.1 Proof

of Proposition 5.1

We first need to establish the following lemma, which is proven
further below.

Lemma A.1.: We have

ef ¼ λp∗ðf ðXmÞ þ em, f Þ, ð17Þ
where em, fhas been introduced in Proposition 5.2.

This is not exactly the renewal equation we want. To derive the
desired equation (Eq. 10) we just have to make the following
remark. Taking λp ¼ λm, Lemma A.1 gives that em, f satisfies

em, f ¼ λm∗ðf ðXmÞ þ em, f Þ:
Hence, from (Eq. 17), we have
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ef ¼ λp∗f ðXmÞ þ λp∗ðλm∗f ðXmÞ þ λm∗em, f Þ
¼ λp∗f ðXmÞ þ λm∗ðλp∗f ðXmÞ þ λp∗em, f Þ
¼ λp∗f ðXmÞ þ λm∗ef :

ð18Þ

Now, let T> 0, we have from the last line of (Eq. 18) that for all t∈
[0, T],

ef ðtÞ � f L1 ½x0m,x1m �ð ÞλpL1 ½0,T �ð ÞT þ λmL1 ½0,T �ð Þ

Zt
0

ef ðuÞdu,

which gives using Gronwall’s inequality

sup
t∈½0,T �

ef ðtÞ � CT , f ,λp,λm f L1 ½x0m ,x1m �ð Þ < þ1: ð19Þ

As a result, ef(t) &lt; þ1 for all t � 0 since T is arbitrary, and also

ℙðSMOf ðT Þ < þ1: ¼ 1:

Finally, using that t ↦ SMOf(t) is an increasing non-negative
function, we have

ℙð8t∈½0,T �, SMOf ðtÞ < þ1: ¼ 1,

and then

ℙð8t � 0, SMOf ðtÞ < þ1: ¼ lim
n!þ1ℙð8t∈½0,n�, SMOf ðtÞ < þ1: ¼ 1:

Proof (of Lemma A.1).: Let us start with the following remark.
According to the recursive definition (Eq. 11) of our PP cascade, one
has

T ðn1, ...,nkÞ ¼ T ðn1Þ þ T
ðn1, ...,nkÞ, ð20Þ

where all the times

fT ðn1, ...,nkÞ, k � 2, n1, . . . ,nk � 1g
are independent of Πð1Þ :¼ ðT ðn1ÞÞn1�1.

Now, from this consideration, by taking apart the first generation of
metastasis, we can rewrite SMOf as follows:

SMOf ðtÞ ¼
X
n1�1

1 T ðn1Þ�tð Þf ðXmðt � T ðn1ÞÞÞ

þ
X
n1�1

1 T ðn1Þ�tð ÞSMOn1, f t � T ðn1Þ� �
:¼ I þ J ,

ð21Þ

218 Christophe Gomez and Niklas Hartung



with

SMOn1, f ðtÞ :¼
X
k�2

X
n2, ...,nk�1

1
T

ðn1, ...,nk Þ�t
� �f ðXmðt � T

ðn1, ...,nkÞÞÞ,

which are independent of Πð1Þ. Note that all the times

Πn1
:¼ fT ðn1, ...,nkÞ, k � 2, n2, . . . ,nk � 1g,

can be defined following (Eq. 11), but with λm as intensity for all the
PPs since we consider all the times from the second generation. There-
fore, ðSMOn1, f Þn1�1 are all independent. Moreover, the shape of all the
SMOn1, f is similar to SMOf except that the PPs in the cascade have all
λm for intensity. Hence, all the SMOn1, f have the same law as SMOm, f.

Using Proposition A.1 with the Poisson random measure P(1)(du)
associated to (Nt

(1))t � 0 (with intensity λp), it is direct to see that

½I � ¼ 
Zt
0

f ðXmðt � uÞÞP ð1ÞðduÞ
2
4

3
5 ¼

Zt
0

λpðuÞf ðXmðt � uÞÞdu

¼ λp∗f ðXmÞðtÞ:
For the second term, using standard properties of the conditional
expectation (especially ½X � ¼ ½½X jY ��), one has

½I I � ¼ ½X
n1�1

1 T ðn1Þ�tð Þ½SMOn1, f t � T ðn1Þ
� �

jΠð1Þ��

with

½SMOf ,n1
t � T ðn1Þ� �jΠð1Þ: ¼ ½SMOn1, f ðt � uÞ�ju¼T

ð1Þ
n1

¼ ½SMOm, f ðt � uÞ�ju¼T ðn1Þ

¼ em, f t � T ðn1Þ
� �

, ð22Þ
and then

X
n1�1

1 T ðn1Þ�tð Þ½SMOn1, f t � T ðn1Þ
� �

jΠð1Þ� ¼
Zt
0

em, f ðt � uÞP ð1ÞðduÞ:

This, together with Proposition A.1, yields

½I I � ¼ ½ Z
t

0

em, f ðt � uÞP ð1ÞðduÞ: ¼
Zt
0

λpðuÞem, f ðt � uÞdu

¼ λp∗em, f ðtÞ,
which concludes the proof of (Eq. 17). □

A.2 Proof

of Proposition 5.2

Using the same strategy as for (Eq. 18), the proof of (Eq. 15)
consists only in proving the following relation:
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vf ¼ λp∗ðf ðXmÞ þ em, f :
2 þ λp∗vm, f , ð23Þ

with vm, f(t): ¼ var[SMOm, f(t)]. Knowing Proposition 5.1 and the
formula of the variance, one can focus on the term

e
ð2Þ
f ðtÞ :¼ ½SMO2

f ðtÞ�. Using (Eq. 21), we have to compute three

terms

e
ð2Þ
f ðtÞ ¼ ½I 2� þ 2½I J � þ ½J 2�:

The Term ½I 2�: Reminding that I ¼ R t
0 f ðXsðt � uÞ:P ð1ÞðduÞ, and

using Proposition A.1, it is direct that

½I 2� ¼ ð Z
t

0

λpðuÞf ðXmðt � uÞÞduÞ2 þ
Zt
0

λpðuÞf 2ðXmðt � uÞÞdu:

The Term ½I J �: Using standard properties of the conditional expec-
tation, and that for all n1 � 1

em, f ðtÞ ¼ ½SMOn1, f ðtÞ�,
we have using (Eq. 22)

½I J � ¼ 
X

n1
1
,n2

1
�1

1
ðT n1

1ð Þ�tÞ
1
ðT n2

1ð Þ�tÞ
f ðXmðt � T n1

1ð ÞÞÞ½SMOn2
1
, f ðt � T n2

1ð ÞÞjπð1Þi
2
4

3
5

¼ 
X

n1
1
,n2

1
�1

1
ðT n1

1ð Þ�tÞ
1
ðT n2

1ð Þ�tÞ
f ðXmðt � T n1

1ð ÞÞÞem, f ðt � T n2
1ð ÞÞ

2
4

3
5:

As result, according to Proposition A.1, we have

½I J � ¼ 
Zt
0

f ðXmðt � uÞ:P ð1ÞðduÞ
Zt
0

em, f ðt � uÞ
2
4 P ð1ÞðduÞ�

¼
Zt
0

λpðu1Þf ðXmðt � u1Þ:du1

Zt
0

λpðu2Þem, f ðt � u2Þdu2

þ
Zt
0

λpðuÞf ðXmðt � uÞ:em, f ðt � uÞdu:

The Term ½J 2�: To compute this term we have to consider two cases
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J 2 ¼
X
n1�1

1 T ðn1Þ�tð ÞSMO2
n1, f

t � T ðn1Þ� �

þ
X

n1
1,n

2
1 � 1

n1
1 6¼ n2

1

1
T

n1
1ð Þ�t

� �1
T

n2
1ð Þ�t

� �SMOn1
1
, f t � T n1

1ð Þ� �
SMOn2

1
, f t � T n2

1ð Þ� �

:¼ J 1 þ J 2:

Following (Eq. 22), but with SMOn, f
2 instead, we have

½J 1� ¼ 
X
n1�1

1
ðT n1

1ð Þ�tÞ
½SMO2

n1, f
ðt � T ðn1ÞÞjΠð1Þ

i" #

¼ ½Z
t

0

e
ð2Þ
m, f ðt � uÞP ð1ÞðduÞ

i

¼
Zt
0

λpðuÞeð2Þm, f ðt � uÞdu,

where e
ð2Þ
m, f ðtÞ :¼ ½SMO2

m, f ðtÞ�. Now using that SMOn1
1
, f and

SMOn2
1
, f are independent for n1

1 6¼ n1
2, we have, using (Eq. 22)

and Proposition A.1 one more time,

½J 2�
¼½X

n1
1
6¼n2

1

1
T

n1
1ð Þ�t

� �1
T

n2
1ð Þ�t

� �½SMOn1
1
,f t�T n1

1ð Þ� �
jΠð1Þ

i
½SMOn2

1
,f t�T n2

1ð Þ� �
jΠð1Þ

ii

¼½ðX
n1�1

1 T ðn1Þ�tð Þem,f t�T ðn1Þ� �Þ2i�½X
n1�1

1 T ðn1Þ�tð Þe2m,f t�T ðn1Þ� �i

¼½ðZ
t

0

em,f ðt�uÞP ð1ÞðduÞÞ2
i
�½Z

t

0

e2m,f ðt�uÞP ð1ÞðduÞ
i

¼ðZ
t

0

λpðuÞem,f ðt�uÞduÞ2:

Combining the three previous computations, we obtain

e
ð2Þ
f ¼ ðλp∗ðf ðXmÞ þ em, f ÞÞ2 þ λp∗f 2ðXmÞ þ 2λp∗ðf ðXmÞem, f Þ þ λp∗e

ð2Þ
m, f : ð24Þ

Considering this equation for λp ¼ λm, we obtain as for the expecta-
tion a renewal equation for em, f

(2), which yields for all t > 0

e
ð2Þ
m, f ðtÞ � C1 þ C2

Zt
0

e
ð2Þ
m, f ðuÞdu,

and then for all T > 0,
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sup
t∈½0,T �

e
ð2Þ
m, f ðtÞ � C1,T þ C2,T sup

t∈½0,T �
e2m, f < þ1,

using Gronwall’s inequality and Proposition 5.1. This proves that

½SMO2
m, f ðtÞ� < þ1 for all t � 0, and then ½SMO2

f ðtÞ� < þ1 by

going back to (Eq. 24). Now, rewriting (Eq. 24), we obtain

e
ð2Þ
f ¼ e2f þ λp∗ðf ðXmÞ þ em, f Þ2 þ λp∗vm, f ,

which is (Eq. 23).

A.3 Proof

of Theorem 5.2

Using that Xm(s) ∈ [xm
0, xm

1] for all s∈ℝþ, the σ-finiteness and
absolute continuity of μt (for any t � 0) are direct consequences
of (Eq. 19). Denoting by ~ρ t its Radon–Nikodým density, Proposi-
tion 5.1 and Theorem 5.1 then yield

Zx1m
x0m

f ðxÞμtðdxÞ ¼
Zx1m
x0m

f ðxÞ~ρ tðxÞdx ¼
Zx1m
x0m

f ðxÞρðt , xÞdx,

for all f ∈C ½x0m, x1m �� � \ L1 ½x0m, x1m �� �
, which concludes the proof.
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Chapter 11

Mechanically Coupled Reaction-Diffusion Model to Predict
Glioma Growth: Methodological Details

David A. Hormuth II, Stephanie L. Eldridge, Jared A. Weis, Michael I. Miga,
and Thomas E. Yankeelov

Abstract

Biophysical models designed to predict the growth and response of tumors to treatment have the potential
to become a valuable tool for clinicians in care of cancer patients. Specifically, individualized tumor forecasts
could be used to predict response or resistance early in the course of treatment, thereby providing an
opportunity for treatment selection or adaption. This chapter discusses an experimental and modeling
framework in which noninvasive imaging data is used to initialize and parameterize a subject-specific model
of tumor growth. This modeling approach is applied to an analysis of murine models of glioma growth.

Key words Cancer, Biophysical stress, Diffusion, Invasion, MRI, Finite difference method

1 Introduction

Biophysical models of tumor growth and treatment response have
the potential to fundamentally change the clinical care for cancer
patients by providing clinicians with accurate and precise patient-
specific predictive models. Through the use of noninvasive imaging
data, these biophysical models can be parameterized by the unique
characteristics of an individual’s tumor to provide a “forecast” of
future tumor growth and treatment response [1]. We [2–6] and
others [7–11] have begun investigating the development of
patient-specific mathematical models of cancer. In this work, we
provide a detailed guide to the implementation of a mechanically
coupled reaction-diffusion model [4, 6, 12] applied to glioma
growth in rats.

The standard reaction-diffusion equation, Eq. 1, is commonly
used to model glioma growth [5, 7] and describes the spatial-
temporal evolution of tumor cell number due to the randommove-
ment of tumor cells (diffusion, first term on the right-hand side)

Louise von Stechow (ed.), Cancer Systems Biology: Methods and Protocols, Methods in Molecular Biology, vol. 1711,
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and the proliferation of cells (reaction, second term on the right-
hand side):

∂N x; y; z; tð Þ
∂t

¼ ∇ � D x; y; zð Þ∇N �x; y; z; t�� �
þ k x; y; zð ÞN x; y; z; tð Þ 1�N x; y; z; tð Þ

θ

� �
, ð1Þ

where N(x, y, z, t) is the number of tumor cells at the three-
dimensional position (x, y, z) and time t, D(x, y, z) is the tumor
cell diffusion coefficient, k(x, y, z) is the net tumor cell prolifera-
tion, and θ is the tumor cell carrying capacity. One important
limitation of the standard reaction-diffusion equation is that
tumor growth is only restricted by the boundaries of the simulation
domain (i.e., the skull for gliomas). In reality, as the tumor expands
it interacts with the healthy brain tissue causing increased mechani-
cal stress and the displacement of surrounding tissue, a phenomena
termed the “mass effect” [13] and observed in several types of brain
tumors [14]. The increased stress experienced by the tumor can
impede further growth as demonstrated in the seminal work by
Helmlinger et al. [15]. In Helmlinger et al.’s [15] contribution
multi-cellular spheroids were grown in agar gel concentrations
ranging from 0% to 1%. Increasing the agar concentration resulted
in inhibited expansion of the spheroid as the substrate stiffness
increased. More specifically, similar spheroid interactions with the
surrounding environment would require increased force at elevated
levels of stiffness. This phenomenon can also result in the preferen-
tial growth of tumors in areas of increasing mechanical compliance.
To incorporate this effect, we first describe the mechanical equilib-
rium, Eq. 2:

∇ � σ � λf � ∇N ¼ 0, ð2Þ
where σ is the stress tensor and λf is tumor cell-force coupling
constant. For implementation, Eq. 2 is rewritten in terms of the
tissue displacement (u

⇀
) under a linear elastic isotropic material

assumption in Eq. 3:

∇ � G∇u⇀ þ ∇
G

1� 2ν
� ∇ � u⇀
� �

� λf∇N ¼ 0, ð3Þ
where G is the shear modulus (a material property that represents
the constant of proportionality between shear stress to shear strain)
and ν is Poisson’s ratio (a material property that is a ratio relating
lateral to longitudinal strain). The first two terms on the left-hand
side in Eq. 3 represent the linear-elastic description of tissue dis-
placement, while the third term represents a local body force gen-
erated by the invading tumor. u

⇀
is then used to calculate the local

normal (εxx, εyy, εzz) and shear strains (εxy, εxz, εyz). For small
deformations, strain εi,j is defined as the total deformation in the
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direction i divided by the original length in direction j and is
calculated using Eq. 4:

εxx
εyy
εzz
εxy
εxz
εyz

2
6666664

3
7777775
¼

∂u=∂x
∂v=∂y
∂w=∂z
∂u=∂y
∂u=∂z
∂v=∂z

2
6666664

3
7777775
, ð4Þ

where u, v, and w represent the deformation in the x-, y-, and z-
directions, respectively. The normal and shear strains are then used
to calculate the normal and shear stresses using Hooke’s law, Eq. 5:

σxx
σyy
σzz
σxy
σxz
σyz

2
6666664

3
7777775
¼ 2G

1� 2ν

1� ν ν ν 0 0 0
ν 1� ν ν 0 0 0
ν ν 1� ν 0 0 0
0 0 0 1� 2νð Þ 0 0
0 0 0 0 1� 2νð Þ 0
0 0 0 0 0 1� 2νð Þ

2
6666664

3
7777775

εxx
εyy
εzz
εxy
εxz
εyz

2
6666664

3
7777775
: ð5Þ

The normal and shear stresses for a given voxel are then
incorporated into a single term called the Von Mises stress, σvm(x,
y, z, t), in Eq. 6:

σvm x;y;z; tð Þ¼ 1

2

σxx x;y;z;tð Þ�σyy
�
x;y;z;t

�� �2þ σxx x;y;z; tð Þ�σzz
�
x;y;z;t

�� �2
þ σzz x;y;z; tð Þ�σyy

�
x;y;z; t

�� �2
þ6 σxy x;y;z;tð Þ2þσxz

�
x;y;z;t

�
2þσyz

�
x;y;z;t

�
2

� �
0
BB@

1
CCA

2
664

3
775
1=2

:

ð6Þ
The VonMises stress is a term that reflects the total experienced

stress for a given section of tissue, and is often used within failure
criterion strategies in materials. We use the Von Mises stress to
reflect the interaction between the growing tumor and its environ-
ment, that is, in our approach we use the Von Mises stress to
spatially and temporally restrict tumor cell diffusion [4, 6, 12]
using Eq. 7:

D x; y; z; tð Þ ¼ D0e
�λD�σvm x;y;z;tð Þ, ð7Þ

where D0 represents the diffusion coefficient of tumor cells in the
absence of mechanical restrictions and λD is a stress-tumor cell
diffusion coupling constant.

In this chapter, we will discuss how to implement this model
system using the finite difference method as well as how to individ-
ualize this model using an individual patient’s imaging data. Non-
invasive imaging measurements from diffusion-weighted magnetic
resonance imaging (DW-MRI [16]) and contrast enhanced MRI
(CE-MRI, [17]) are used to estimate the spatial distribution of
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tumor cell number in a murine model of glioma at several experi-
mental time points. The in vivo estimated cell number then pro-
vides the initial tumor cell distribution and is also used to solve an
inverse problem to return estimates of the model parameters. The
estimated model parameters can then be used to simulate future
tumor growth.

2 Materials

2.1 Dataset The numerical methods presented in this chapter use an in vivo
dataset acquired in rats with intracranially inoculated glioma cells
[5, 18, 19]. Alternatively, an in silico dataset can also be used
[5]. For both approaches the dataset should contain:

1. Three-dimensional estimates of the distribution of tumor cells
at several time points.

2. Three-dimensional map of k (or initial guess).

3. Single value for D0 (or initial guess).

4. Values forG, ν, λD, λf, and θ (based on literature, calculation, or
assignment, see Note 1).

For use in Matlab this dataset should be saved as a “.mat” file
consisting of a 4D array of tissue cellularity, a 3D array of k values,
and one-element arrays of D0, G, ν, λD, λf, and θ all with double
precision.

2.2 Software/

Hardware

Requirements

The forward evaluation and parameter optimization of the mechan-
ically coupled model was ran on a Dell PowerEdge R820 server
consisting of four Intel Xenon E5–4610 2.3 GHz processors with a
total of 256 GB of memory using Matlab 2015b. The forward
evaluation is relatively less computationally intensive and takes less
than 16 s for a 10 day simulation on a laptop with 8 GB of memory
and an Intel i5-2550 M 2.5 GHz processor. The parameter optimi-
zation computation time, however, depends on both the number of
parameters being estimated and the number of iterations of the
optimization algorithm until stopping criteria are met. Paralleliza-
tion of the parameter perturbation code can reduce computation
time by a factor approximately equal to the number of parallel
threads. (For example parameter perturbation for 100 parameters
takes 13.1 min with 1 thread, 3.1 min with 4 threads, 1.7 min with
8 threads, 0.9 min with 16 threads, and 0.7 min with 32 threads.)

3 Methods

3.1 Animal

Experiments

While details are presented in [5], we here discuss the salient
features of the experimental procedure (see Fig. 1). The in vivo
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dataset described in this section was acquired in female Wistar rats
inoculated intracranially with C6 Glioma cells (1 � 105) via stereo-
taxic injection on day 0 (Fig. 1a). On day 8, permanent jugular
catheters were placed in each rat (Fig. 1b). Beginning on day
10, rats are imaged (Fig. 1c), with a 3D gradient echo, DW-MRI
and CE-MRI (see Note 2 for remarks on the experiment timeline
and measurement frequency). The 3D gradient echo data was
collected with a larger field of view (45 mm � 45 mm � 45 mm)
and larger sampling matrix (256 � 256 � 128) for image registra-
tion purposes. The DW-MRI and CE-MRI data was acquired with
a 32 mm � 32 mm � 16 mm field of view and a 128 � 128 � 16
sampling matrix. During the CE-MRI acquisition, a 200 μL bolus
(0.05 mmol/kg) of gadolinium-diethylenetriamine pentaacetic
acid, an MRI contrast agent, is injected to identify tumor regions

Fig. 1 Experimental timeline and estimation of in vivo cell number from DW-MRI data. (a) On day 0, rats are
injected intracranially with 105 C6 glioma cells. (b) Jugular catheters are then inserted on day 8. (c) On days
10 through 20, rats are imaged with MRI with 3D gradient echo, DW-MRI, and CE-MRI. (d) CE-MRI is used to
identify tumor tissue by subtracting pre-contrast image from the post-contrast image. (e) ADC(x, y, z, t ) is
then estimated from DW-MRI data. Finally, N(x, y, z, t ) is estimated (f) within the tumor tissue using Eq. 9 and
ADC(x, y, z, t )
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(Fig. 1d). Areas of signal enhancement in the post-contrast
CE-MRI data were used to identify tumor regions of interest
(ROI). Tumor cellularity (N(x, y, z, t)) was estimated from
DW-MRI. Briefly, DW-MRI is an imaging method that is sensitive
to the diffusion of water within tissue, and several groups have
observed an inverse relationship between the apparent diffusion
coefficient (ADC) and cellularity [20–24]. The ADC is estimated
voxel-wise from DW-MRI (Fig. 1e) data acquired at several b-
values by fitting Eq. 8 to the acquired signal at each b-value:

S x; y; z; bð Þ ¼ S0 x; y; zð Þ � e�b�ADC x;y;zð Þ, ð8Þ
where S(x, y, z, b) is the acquired signal at three-dimensional posi-
tion (x,y,z) and b-value b, S0(x, y, z) is the intrinsic signal, and ADC
(x, y, z) is the apparent diffusion coefficient. The tumor ROI iden-
tified from CE-MRI is then applied as a mask to ADC(x, y, z)
(Fig. 1f), to estimate cellularity only within the tumor using Eq. 9:

N x; y; zð Þ ¼ θ
ADCw � ADC x; y; zð Þ
ADCw � ADCmin

� �
, ð9Þ

where θ is the maximum tumor cell carrying capacity, ADCw is the
ADC of water at 37 �C (2.5 � 10�3 mm2/s) [25], ADC(x, y, z) is
the ADC value at position (x,y,z), and ADCmin is the minimum
ADC value which corresponds to the voxel with the largest number
of cells [2]. θ can be calculated using the imaging voxel dimensions
(0.25 mm � 0.25 mm � 1.00 mm), and assuming spherical tumor
cells with a packing density of 0.7405 [26] and an average cell
volume of 908 μm3 [27] (seeNote 3 for further remarks on packing
density and cell volume).

A voxel-wise k and a global D0 are estimated from serial mea-
surements of N(x, y, z, t) in a parameter optimization procedure
[5]. G is assigned from literature values to anatomical regions
identified in imaging data (e.g., cortex, corpus callosum, hippo-
campus, thalamus, putamen) [28, 29], while ν is set to 0.45 (as we
assume that tissue is nearly incompressible). λD can be assigned or a
range of values can be evaluated to apply different degrees of
mechanical coupling, while λf is set to 1.

3.2 Modeling We now discuss the details of the finite difference simulation for
Eqs. 1 and 2, the forward evaluation of the model system, and the
parameter optimization and the tumor growth prediction
approach. Figure 2 shows an overview of the data collection,
parameter optimization, and prediction approach. Briefly, data is
acquired from ti to tf. A subset of the total data (days ti to tn, where
tn is less than tf) are first used to determine the optimal model
parameters. Once the stopping criteria are met for the parameter
optimization approach, the optimized model parameters are then
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used in a forward evaluation of the model to simulate future tumor
growth. The measured data is then compared to the model pre-
dicted growth on days tn+1 to tf. With respect to the clinical con-
text, tn would represent the time point at which early-course of
therapy data could be collected, and calibrated to the patient. Once
complete, assessments on efficacy of therapy would be forecasted in
silico for future time point tf and perhaps lead to changes to therapy
regimen or alternate therapies.

3.2.1 Finite Difference

Simulation Setup

As an illustrative example for clarity, we show the derivation of the
finite difference model for a 1D implementation, followed by
extending the model to the full 3D implementation. ATaylor series
expansion is used to derive the finite difference approximation of
the tumor cell model (Eq. 1) as shown for the 1D implementation
in Eq. 10:

N x; t þ htð Þ �N x; tð Þ
ht

¼ δN x; tð Þ
2hx

� δD xð Þ
2hx

� �
þD xð Þ

� δ2N x; tð Þ
h2x

 !
þ k xð Þ �N x; tð Þ

� 1�N x; tð Þ
θ

� �
, ð10Þ

where ht is the time step, and hx is the grid spacing in the x-
direction, and δ represents the central difference operator, defined
below in Eqs. 11 and 12. Finite difference approximations are
derived using a full grid approach to take advantage of the natural,
voxelized gridding from the experimental imaging data

Fig. 2 Tumor growth modeling and prediction flow chart. DW-MRI and CE-MRI data is first acquired in rats at
days ti to tf. A subset of the total data (ti to tn) is used to first estimate model parameters using an iterative
optimization algorithm. The optimized model parameters are then used in a forward evaluation of the model
system to predict tumor growth at the remaining data points (tn + 1 to tf). The error is then assessed between
the model and measured values of N(x, y, z, t )
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measurements. The central difference approximation of the first
derivative in (for example) the x-direction is shown in Eq. 11:

∂N x; tð Þ
∂x

� δN x; tð Þ
2hx

¼ N x þ hx ; tð Þ �N x � hx ; tð Þ
2hx

: ð11Þ
Similarly, the central difference approximation of the second

derivative in (for example) the x-direction is shown in Eq. 12:

∂2N x; tð Þ
∂x2

� δ2N x; tð Þ
h2x

¼ N x þ hx ; tð Þ � 2 �N x; tð Þ þN x � hx ; tð Þ
h2x

: ð12Þ

In the case of a mesh boundary, where the node at either (x + 1)
or (x ��1) does not exist, the zero flux boundary condition (∂N/
∂x ¼ 0) can be used to relateN(x + hx, t) to N(x � hx, t) (or vice
versa) as shown in Eq. 13:

N x þ hx ; tð Þ �N x � hx ; tð Þ
2hx

¼ 0 ) N x þ hx ; tð Þ

¼ N x � hx ; tð Þ: ð13Þ
The 3D implementation of Eq. 1 is shown below in Eq. 14:

N x;y;z;t þhtð Þ�N x;y;z;tð Þ
ht

¼ δN x;y;z; tð Þ
2hx

�δD x;y;zð Þ
2hx

� �
þD x;y;zð Þ � δ2N x;y;z;tð Þ

h2x

 !

þ δN x;y;z;tð Þ
2hy

�δD x;y;zð Þ
2hy

� �
þD x;y;zð Þ � δ2N x;y;z;tð Þ

h2y

 !

þ δN x;y;z;tð Þ
2hz

�δD x;y;zð Þ
2hz

� �
þD x;y;zð Þ � δ2N x;y;z;tð Þ

h2z

 !

þk x;y;zð Þ �N x;y;z; tð Þ � 1�N x;y;z;tð Þ
θ

� �
:

ð14Þ
The derivation of the finite difference approximation of Eq. 2 is

shown for the 1D implementation in Eqs. 15–17. Equation 2 is first
rewritten in terms of the 1D stress in the x-direction (σx) in Eq. 15:

∇ � σx xð Þ � λf∇N x; tð Þ ¼ 0: ð15Þ
σx is then replaced with Hooke’s law for a linear elastic isotropic

material (σx ¼ E εx) in Eq. 16:

∇ � Eεx xð Þð Þ ¼ λf∇N x; tð Þ, ð16Þ
where E is Young’s Modulus, and εx is equal to∂u/∂x. The diver-
gence is then evaluated and the finite difference approximations are
applied in Eq. 17:
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δE xð Þ
2hx

δu xð Þ
2hx

þ E xð Þ δ
2u xð Þ
h2x

 !
¼ λf

δN x; tð Þ
2hx

: ð17Þ

A similar approach as shown in Eqs. 15–17 can be followed to
obtain the full 3D implementation of Eq. 2. Equations 18–20 show
the finite difference approximation for the 3D implementation of
Eq. 2. Equation 18 shows the x-direction component of Eq. 2:

2 1�vð Þ
1�2v

� �
δG

2hx

δu

2hx
þG

δ2u

hx
2

� �
þ 2v

1�2v

� �
δG

2hx

δv

2hy
þG

δ

2hx

δv

2hy

� �� �

þ 2v

1�2v

� �
δG

2hx

δw

2hz
þG

δ

2hx

δw

2hz

� �� �
þ2

δG

2hx

δu

2hy
þG

δ

2hx

δu

2hy

� �� �

þ2
δG

2hx

δu

2hz
þG

δ

2hx

δu

2hz

� �� �
¼ λf

δN

2hx

� �
,

ð18Þ
where u, v, and w represent tissue displacement in the x-, y-, and z-
directions, respectively. Eq. 19 shows the y-direction component of
Eq. 2:

2 1�vð Þ
1�2v

� �
δG

2hy

δv

2hy
þG

δ2v

hy
2

 !
þ 2v

1�2v

� �
δG

2hy

δu

2hx
þG

δ

2hy

δu

2hx

� �� �

þ 2v

1�2v

� �
δG

2hy

δw

2hz
þG

δ

2hy

δw

2hz

� �� �
þ2

δG

2hy

δv

2hx
þG

δ

2hy

δv

2hx

� �� �

þ2
δG

2hy

δv

2hz
þG

δ

2hy

δv

2hz

� �� �
¼ λf

δN

2hy

� �
:

ð19Þ
Equation 20 shows the z-direction component of Eq. 2:

2 1�vð Þ
1�2v

� �
δG

2hz

δw

2hz
þG

δ2w

hz
2

� �
þ 2v

1�2v

� �
δG

2hz

δu

2hx
þG

δ

2hz

δu

2hx

� �� �

þ 2v

1�2v

� �
δG

2hz

δv

2hy
þG

δ

2hz

δv

2hy

� �� �
þ2

δG

2hz

δw

2hx
þG

δ

2hz

δw

2hx

� �� �

þ2
δG

2hz

δw

2hy
þG

δ

2hz

δw

2hy

� �� �
¼ λf

δN

2hz

� �
:

ð20Þ
The unknown tissue displacements u, v, and w are solved by

rewriting Eqs. 18–20 into a matrix system shown in Eq. 21:

M½ � Uf g ¼ λf ∇Nf g, ð21Þ
where M½ � is a square 3n � 3n matrix of the finite difference
coefficients, Uf g is equal to {u1, � � �un, v1, � � �vn, w1, � � �wn}

T,
where ui, vi, and wi represent the displacement at the ith node in
the x-, y-, and z-direction, respectively. ∇Nf g is equal to {∂N1/
∂x, � � �∂Nn/∂x, ∂N1/∂y, � � �∂Nn/∂y, ∂N1/∂z, � � �∂Nn/∂z}

T,
where ∂Ni/∂x, ∂Ni/∂y, and ∂Ni/∂z represent the gradient at the

Methods for a Mechanically Coupled Reaction-Diffusion Glioma Model 233



ith node in the x-,y-, and z-direction, respectively. Rows 1 through
n of M½ �represent coefficients for Eq. 18, rows n + 1 through 2n of
M½ �represent the coefficients for Eq. 19, and 2n + 1 through 3n of
M½ �represent the coefficients for Eq. 20. Rows 1 through n of Uf g
and ∇Nf g represent the x-direction components (u and ∂N/∂x,
respectively), rows n + 1 through 2n of Uf g and ∇Nf g represent the
y-direction components (v and ∂N/∂y, respectively), and rows
2n + 1 through 3n of Uf g and ∇Nf g represent the z-direction
components (w and ∂N/∂z, respectively). M½ � is built only once
and can be factorized into lower and upper triangular matrices
(refer toNote 4 for further details on the construction and solving
of Eq. 21). Equations 1 and 2 are solved using a three dimension in
space (grid spacing: 250 � 250 � 1000 μm), fully explicit in time
(for Eq. 1, time step ¼ 0.01 days) finite difference simulation.
(Refer to Note 5 for details on selecting an appropriate time
step.) Equation 1 has no diffusive flux at the brain tissue boundaries
(Neumann boundary condition [30]). Equation 2 has no tissue
displacement in the Cartesian direction of the boundary (Dirichlet
boundary condition), while displacement in the other Cartesian
directions is unknown (slip condition [31]).

3.2.2 Forward Evaluation A summary and example of the forward evaluation algorithm is
presented in Fig. 3. The forward evaluation begins with solving the
mechanical model (steps 1 through 4 in Fig. 3). At the beginning
of each iteration, the gradient of the current distribution of tumor
cells, ∇N(x, y, z, t), is calculated and is assigned to ∇Nf g (step 1 in
Fig. 3). Uf g is then solved for in Eq. 21 (step 2 in Fig. 3). The
strains (Eq. 4) and stresses (Eqs. 5 and 6) are calculated (step 3 in
Fig. 3). σvm(x, y, z, t) is then used to update D(x, y, z, t) (Eq. 7,
step 4 in Fig. 3). Finally, D(x, y, z, t) is used in the evaluation of
Eq. 1 to determineN(x, y, z, t + 1) (step 5 in Fig. 3). The forward
evaluation of the model system is then repeated at each simulation
time step.

3.3 Parameter

Optimization and

Tumor Growth

Prediction

The optimal model parameters are determined using an iterative
Levenberg-Marquardt [32, 33] weighted least squares
optimization:

J TWJ þ α �DJTWJ

h i
� Δβf g ¼ J TW Nmeas �Nmodel βð Þf g, ð22Þ

where J is the Jacobian matrix, W is a diagonal weighting matrix, α
is a damping parameter,DJTWJ is a diagonal matrix consisting of the
diagonal elements of JTWJ, {Δβ}is as vector of updates to model
parameters, {Nmeas} is a vector of the measured cell number, and
{Nmodel(β)} is a vector of the model described cell number using the
current best set of parameters β. J is a (n (number of voxels) � nt
(number of time points)) by p (the number of model parameters)
matrix, W is a (n � nt) � (n � nt) matrix, has p components, and
{Nmeas} has (n � nt) components. J can be estimated using

234 David A. Hormuth II et al.



numerical differentiation (refer toNote 6 for further comments on
J). For example, the J element at row i and column j, Eq. 23,
represents the partial derivative of the model cell number at node
i with respect to the jth model parameter and is calculated by
individually perturbing model parameters as described below:

J i, j ¼
∂Ni

∂βj
¼ Nmodel i; βaltð Þ �Nmodel i; βð Þ

βalt, j � βj
, ð23Þ

where Nmodel(i, βalt) is the model cell number at the ith index of
{Nmodel} using parameters βalt, Nmodel(i, β) is the model cell num-
ber at the ith index of {Nmodel} using parameters β. βalt is equal to β
at all indices except for the jth index which is perturbed by a factor
f (i.e., βalt , j ¼ f � βj). (Note f should be a number close to but not
equal to 1. In this work, we assign f ¼ 1.001.) W is a square matrix

Fig. 3 Algorithm and example forward evaluation of mechanical and tumor cell model. The mechanical model
is first solved to calculate the tissue displacement vector {U} due to N(x, y, z, t ), Eq. 21. {U} is then used to
calculate strain, stress, and σvm(x, y, z, t ). The new value of D(x, y, z, t )is calculated using Eq. 2 and
σvm(x, y, z, t ). Finally, D(x, y, z, t ) is used in Eq. 6 to calculate the value of N(x, y, z, t + 1)
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with n � nt rows and columns. W weights the elements of J by the
reciprocal of the total number of cells at each time point. This
weighting is included to balance the influence of later time points
to the earlier time points (which often have much fewer nonzero
voxel measurements compared to the later time points). For nt¼ 2,
Wi,i is calculated using Eq. 24:

Wi, i ¼
i � n

Xj¼n

j¼1

Nmeas j ; t ¼ 1ð Þð Þ
 !�1

i > n and i � 2n
Xj¼n

j¼1

Nmeas j ; t ¼ 2ð Þð Þ
 !�1

8>>>>><
>>>>>:

: ð24Þ

Figure 4 summarizes the parameter optimization approach
used to estimate model parameters k x, y, zð Þ and D0. The model is
initially evaluated with a guess of the model parameters (step 1 in

Fig. 4 Iterative parameter optimization approach. A schematic is shown above
for the iterative parameter optimization algorithm using the Levenberg-
Marquardt method [32, 33]. The model is first evaluated with an initial guess
of model parameters, line 1. The objective function is then evaluated with the
current set of model parameters, line 2. The optimal model parameters are then
determined in an iterative “while-loop” which ceases when stopping criteria are
met. At the beginning of each iteration, the Jacobian is built, line 3, and is used
to solve for the new guess of model parameters, line 4. The model is then
re-evaluated with the new model parameters, line 5, and the objective function
is calculated, line 6. Finally, the error is compared to the previously observed
lowest error to determine if the new parameter values are acceptable. The
optimization ceases when the stopping criteria are met
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Fig. 4). A guess of β is used to evaluate the objective function
described in Eq. 25 (step 2 in Fig. 4):

Error¼
Xtn
t¼t1

Xi¼n

i¼1

Nmeas i; tð Þð Þ
 !�1

�
Xi¼n

i¼1

Nmodel i;t ;βð Þ�Nmeas i; tð Þð Þ2
 !0

@
1
A:

ð25Þ

The initial evaluation of Eq. 25 sets the current minimum error
or Error(β). J, W, and DJTWJ are then built (step 3 in Fig. 4). The
parameter update vector {Δβ} is then calculated using Eq. 22 and
then added to {β} for the current guess of model parameters {βtest}
(step 4 in Fig. 4). The forward evaluation of the model is per-
formed using model parameters {βtest} (step 5 in Fig. 4). Equation
25 is then re-calculated using {βtest} (step 6 in Fig. 4). The error
evaluated using {βtest} or Error(βtest) is compared to Error(β). If
Error(βtest) is less than Error(β), {βtest} is accepted (i.e., {β} ¼ {
βtest}) and α decreased by a factor of 12. If Error(βtest) is greater
than Error(β), {βtest} is rejected and α increased by a factor of
3. (Note, the factors that α is increased or decreased by (3 and
12 in this work) are often problem-specific and need to be empiri-
cally determined to improve convergence.) At this point, the stop-
ping criteria are also evaluated. The stopping criterion can be a
maximum number of iterations, a minimal threshold of error, or a
minimal relative change in model error between successful itera-
tions, or a minimal relative change in model [34] between success-
ful iterations. In general, error will never reach zero for this type of
system so selecting a stopping criteria that is sensitive to the relative
change in error or parameter values will indicate convergence. The
parameter optimization process continues by returning to step 3
until the stopping criteria are met.

At the conclusion of the parameter optimization process, the
optimized model parameters are used in a final forward evaluation
of the model from ti to tf. The error between Nmodel(x, y, z, t) and
Nmeas(x, y, z, t)is assessed at the time points not used in the param-
eter optimization tn + 1 to tf.

3.4 Summary and

Outlook

In this chapter, a modeling and experimental framework was
described which can be used to individualize a predictive biophysi-
cal model from an individual patient’s imaging data. Clinically
available imaging measurements from CE-MRI and DW-MRI
were used to provide serial estimates of tumor cell number that
were then used in an inverse problem to optimize model parameters
for the measured tumor. These individually optimized model para-
meters could then be used to predict future growth or response.
For example, acquiring data early in the course of a patient’s ther-
apy could be used to calibrate a patient-specific model that could
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then be used to predict the efficacy of the current treatment weeks
or months before response is identifiable through standard criteria
(e.g., the Response Evaluation Criteria in Solid Tumors [34]). For
predicted non-responders, the calibrated model could potentially
be used to evaluate other treatment regimens to adapt clinical care
to improve the outcome on an individual patient basis. While this is
a promising avenue for the future of clinical cancer care, further
development of predictive biophysical models is needed to charac-
terize patient response to a variety of available patient
treatments [35].

4 Notes

1. When collecting a new dataset or evaluating this model in a
different disease setting, model parameters should be measured
or estimated on an individual basis. When this is not the case,
however, model parameters should be assigned (or calculated)
from literature values (e.g., G, ν, θ) obtained from experiments
that most closely match the tumor or tumor location that is
currently under investigation. For model parameters that can-
not be measured experimentally or assigned from literature
(e.g., λD, λf) can be assigned empirically based on results
observed in a cohort. Sensitivity analysis (e.g., [36]) of the
model system can also be used to help determine which
model parameters require assignment on an individual basis
and which model parameters may be assigned for the cohort.

2. The experimental time line may change depending on the
particular cancer under investigation, its growth rate, and the
initial size of the tumor. We selected day 10 to start our
imaging experiments, as the tumors are approximately
20–40 mm3 and typically extend over multiple imaging slices.

3. To calculate the physical carrying capacity (i.e., the maximum
number of cells a space can contain) assumptions will need to
be made about the overall tissue structure and cellular shape
which can be verified through histological observations of the
tissue. For the C6 line, we assumed that the tumor cell tissue
was predominately composed of spherical tumor cells with a
packing density and an average cell volume obtained from the
literature [26, 27]. When comparing between the DW-MRI
estimate of cellularity and the model predicted cellularity the
precise values for packing density and average cell volume are
not critical as long as the same carrying capacity is used in both
the model and the ADC to cellularity calculation. However,
when comparing to histological data, more care is required to
match the average size, shape, and packing density of the tumor
cells to what is observed in vivo. Packing density can be
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calculated from Hematoxylin and Eosin (H&E) stained tissue
sections by calculating the fraction of the H&E stained area
over the total tumor ROI. The average cell area can then be
calculated as the total occupied area (packing density multi-
plied by total ROI area) divided by the number of positive
stained Hematoxylin cells. The average cell area can then be
used to calculate an average cell radius and volume. In H&E
stained sections obtained in one rat we calculated an average
packing density of 0.764 	 0.054% (mean 	 95% confidence
interval) and an average volume of 982 	 247 μm3.

4. The coefficient matrix M½ �is a sparse and potentially very large
(3n � 3n) matrix. To conserve memory and accelerate compu-
tational time, M½ � can be represented by a sparse matrix

Mcompact

� 	
which is an nz � 3 matrix, where nz is the number

of nonzero elements of M½ �, and the three columns represent
the matrix nonzero entry, the entry’s matrix row, and entry’s
matrix column entry, respectively. While many sparse matrix
data formats exist, in this realization we used the format native
to MATLAB. With respect to solution methods associated with
sparse matrices, standardly some form of iterative approach
would be adopted with an accompanying matrix precondition
method to increase speed of calculation. In this realization, we
employed one of the available MATLAB methods, namely, the
bi-conjugate gradient stabilized method with an incomplete
LU factorization as a preconditioner.

5. The simulation time step, ht, is selected to maintain numerical
stability for a range of diffusion coefficients for the parameter
optimization process. To be stable, the product

D � ht 1=h2x þ 1=h2y þ 1=h2z

� �
must be less than 1/2, or for iso-

tropic dimensions the productD � ht/h2must be less than 1/6.
To be monotonic and stable, the product

D � ht 1=h2x þ 1=h2y þ 1=h2z

� �
must be less than 1/4, or for iso-

tropic dimensions the productD � ht/h2must be less than 1/12.

6. Building or updating the Jacobian matrix, J, can be time inten-
sive as the number of model parameters increases as Eq. 23
(and thus a full model evaluation) needs to be evaluated for
each model parameter perturbation. Parallelized code can be
used to simultaneously build several columns of J at a time,
dramatically decreasing the computation time. For example,
non-parallelized code takes approximately 13.1 min per
100 parameters, while parallelized code divided among
32 threads takes 0.7 min per 100 parameters. Alternatively,
approaches such as Broyden’s method [37] can be used to
update J at each iteration while only building the full J matrix
in the first iteration. Briefly, Broyden’s method is a secant
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method update that estimates J at the nth iteration based on
the previous J, the difference between the model evaluation at
the (n � 1) and (n ��2) iterations, and the difference between
model parameters at the (n � 1) and (n � 2) iterations.
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Chapter 12

Profiling Tumor Infiltrating Immune Cells with CIBERSORT

Binbin Chen, Michael S. Khodadoust, Chih Long Liu, Aaron M. Newman,
and Ash A. Alizadeh

Abstract

Tumor infiltrating leukocytes (TILs) are an integral component of the tumor microenvironment and have
been found to correlate with prognosis and response to therapy. Methods to enumerate immune subsets
such as immunohistochemistry or flow cytometry suffer from limitations in phenotypic markers and can be
challenging to practically implement and standardize. An alternative approach is to acquire aggregative high
dimensional data from cellular mixtures and to subsequently infer the cellular components computationally.
We recently described CIBERSORT, a versatile computational method for quantifying cell fractions from
bulk tissue gene expression profiles (GEPs). Combining support vector regression with prior knowledge of
expression profiles from purified leukocyte subsets, CIBERSORT can accurately estimate the immune
composition of a tumor biopsy. In this chapter, we provide a primer on the CIBERSORT method and
illustrate its use for characterizing TILs in tumor samples profiled by microarray or RNA-Seq.

Key words Cancer immunology, Deconvolution, Support vector regression (SVR), Tumor infiltrat-
ing leukocytes (TILs), Tumor microenvironment, Tumor heterogeneity, Gene expression, Microarray,
RNA-Seq, TCGA

1 Introduction

Neoplastic cells reside within a complex tumor microenvironment
necessary for tumor growth and survival. Numerous
non-neoplastic cell types including tumor-infiltrating leukocytes
(TILs) comprise the tumor stroma. This immune infiltrate is
often a heterogeneous mixture of immune cells that includes both
innate and adaptive immune populations, and cell types associated
with active (e.g., cytotoxic T lymphocytes) and suppressive (e.g.,
regulatory T cells, myeloid-derived suppressor cells) immune func-
tions. The significance of TILs varies by cancer histology, with the
presence of certain immune subsets often exhibiting a beneficial
prognostic effect in one malignancy but a detrimental effect in
another cancer type [1, 2]. The importance of TIL assessment
continues to grow with the development of novel
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immunotherapeutic agents designed to target these cells. Recent
studies have found that T lymphocyte subsets (e.g., CD8+) may
predict response to existing and emerging immunotherapies, high-
lighting the importance of investigating tumor-associated immune
cells as potential predictive biomarkers [3–5].

Measurement of the tumor immune infiltrate has traditionally
been evaluated by histology on tissue sections and immune subsets
have been inferred by immunohistochemistry of individual mar-
kers. However, immunophenotyping typically requires multiple
parameters to accurately subset populations, and thus immunohis-
tochemistry is unable to identify many immune populations and
performs poorly at capturing functional phenotypes (e.g., activated
vs. resting lymphocytes) [6]. Flow cytometry is an alternative
method of quantifying immune infiltrates that enables simulta-
neous measurement of multiple parameters. However, this method
requires prompt and careful processing of samples as well as tissue
disaggregation, which may result in the loss of fragile cell types and
the distortion of gene expression profiles. While flow cytometry can
assess multiple markers, this number is still limited, potentially
excluding markers that may better discriminate closely related cell
populations [7].

In contrast, gene expression profiling of bulk tissues does not
depend on surface markers and does not suffer from artifacts
related to cellular dissociation. Samples can be readily processed
and stored in a standardized fashion, mitigating issues that may
confound data collected at different times and from different loca-
tions. Although previous studies of bulk tumor samples revealed a
number of immune-enriched gene signatures with prognostic sig-
nificance [8, 9], linking these signatures to specific TIL phenotypes
has been challenging [10–14]. Methods for mathematically separ-
ating the bulk tumor gene expression profiles (GEP) into its com-
ponent cell types can overcome this issue.

Several computational tools, including linear least-square
regression (LLSR) [7], microarray microdissection with analysis
of differences (MMAD) [15], and digital sorting algorithm
(DSA) [16], have been applied to the deconvolution of complex
GEP mixtures to infer cellular composition. Although these
approaches are effective for enumerating highly distinct cell types
in mixtures with minimal unknown content (e.g., lymphocytes,
monocytes, and neutrophils in whole blood), they are sensitive to
experimental noise, high unknown mixture content, and closely
related cell types, limiting their utility for TIL assessment [17, 18].

CIBERSORT, a computational approach developed by our
group, aims to address these challenges (see Fig. 1) [17]. Like
other methods, CIBERSORT requires a specialized knowledgebase
of gene expression signatures, termed a “signature matrix,” for the
deconvolution of cell types of interest. However, in contrast to
previous efforts, CIBERSORT implements a machine learning
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approach, called support vector regression (SVR), that improves
deconvolution performance through a combination of feature
selection and robust mathematical optimization techniques (see
Subheading 1.1 for details). In benchmarking experiments,
CIBERSORT was more accurate than other methods in resolving
closely related cell subsets and in mixtures with unknown cell types
(e.g., solid tissues) [17]. Thus, CIBERSORT is a useful approach
for high-throughput characterization of diverse cell types, such as
TILs, from complex tissues. Here, we provide users with a practical
roadmap for dissecting leukocyte content in tumor gene expression
datasets with CIBERSORT.

1.1 CIBERSORT

Model

A common objective of gene expression deconvolution algorithms
is to solve the following system of linear equations for f:

m ¼ f � B.
m: a vector consisting of a mixture GEP (input requirement).
f: a vector consisting of the fraction of each cell type in the

signature matrix (unknown).
B: a “signature matrix” containing signature genes for cell

subsets of interest (input requirement).
CIBERSORT differs from previous deconvolution methods in

its application of a machine learning technique, ν-support vector
regression (ν-SVR), to solve for f [19]. Briefly, SVR defines a
hyperplane that captures as many data points as possible, given

Purify
RNA

profile

tissue/
tumor

Cell proportions

CIBERSORT

RNA
profile

Blood
draw

OR

Significance
analysis

Signature matrix

Bulk

Fig. 1 Overview of CIBERSORT. As input, CIBERSORT requires a “signature matrix” comprised of barcode
genes that are enriched in each cell type of interest. Once a suitable knowledgebase is created and validated,
CIBERSORT can be applied to characterize cell type proportions in bulk tissue expression profiles. Although
originally validated using a signature matrix containing 22 functionally defined human immune subsets (LM22)
profiled by microarrays, CIBERSORT is a general framework that can be applied to diverse cell phenotypes and
genomic data types, including RNA-Seq. To quantitatively capture deconvolution confidence, CIBERSORT
calculates several quality control metrics, including a deconvolution p-value
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defined constraints, and reduces overfitting by only penalizing data
points outside a certain error radius (termed support vectors) using
a linear “epsilon-insensitive” loss function. The orientation of the
hyperplane determines f. In the original description of CIBER-
SORT, the support vectors were genes selected from a signature
matrix; however, the CIBERSORT algorithm is completely gener-
alizable and can be applied to diverse genomic features [20]. The
parameter ν determines the lower bound of support vectors and the
upper bound of training errors. CIBERSORT uses a set of ν values
(0.25, 0.5, 0.75) and chooses the value producing the best perfor-
mance (i.e., the lowest root mean square between m and the
deconvolution result f � B). In addition, ν-SVR incorporates L2-
norm regularization, which minimizes the variance in the weights
assigned to highly correlated cell types, thereby mitigating issues
owing to multicollinearity.

CIBERSORT also allows users to create a custom signature
matrix. Differentially expressed genes between cell types of interest
are identified by a two-sided unequal variance t-test corrected for
multiple hypothesis testing. A feature selection step is then per-
formed to minimize the condition number, a matrix property that
captures how well the linear system tolerates input variation and
noise. For signature matrices comprised exclusively of immune cell
types, there is an option to filter non-hematopoietic and cancer-
specific genes to reduce the influence of non-immune cells on
deconvolution results. By choosing features that minimize the
condition number, CIBERSORT improves the stability of the sig-
nature matrix and further reduces the impact of multicollinearity.
Additional details of the CIBERSORT method can be found in the
original publication [17].

2 Materials

The general workflow for analyzing RNA admixtures with CIBER-
SORT consists of two key input files (see Fig. 1):

1. The “mixture file” is a single tab-delimited text file containing
1 or more GEPs of biological mixture samples (see Table 1). The
first column contains gene names and should have “Name”
(or similar) as a column header (i.e., in the space occupying
column 1, row 1). Multiple samples may be analyzed in parallel,
with the remaining columns (2, 3, etc.) dedicated to mixture
GEPs, where each row represents the expression value for a
given gene and the column header is the name of the mixture
sample. Note that the mixture file and the signature matrix must
share the same naming scheme for gene identifiers.

2. The “signature matrix” is a tab-delimited text file consisting of
sets of “barcode genes” whose expression values collectively
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define unique gene expression signatures for each cell subset of
interest. The file format is similar to the mixture file, with gene
names in column 1. The remaining columns consist of signature
GEPs from individual cell subsets. A validated leukocyte gene
signature matrix (LM22) is available for the deconvolution of
22 functionally defined human hematopoietic subsets. LM22
was generated using Affymetrix HGU133A microarray data
[17] and has been rigorously tested on Affymetrix HGU133
and Illumina Beadchip platforms. For the application of LM22
to RNA-Seq data, see Note 1.

Importantly, all expression data should be non-negative,
devoid of missing values, and represented in non-log linear space.
For Affymetrix microarrays, a custom chip definition file (CDF) is
recommended (see Subheading 3.2.2) and should be normalized
with MAS5 or RMA. Illumina Beadchip and single color Agilent
arrays should be processed as described in the limma package.
Standard RNA-Seq expression quantification metrics, such as frag-
ments per kilobase per million (FPKM) and transcripts per kilobase
million (TPM), are suitable for use with CIBERSORT.

In the sections below, we illustrate how CIBERSORT can be
used to analyze complex tissues, whether profiled by microarray
(Subheading 3.2) or RNA-Seq (Subheadings 3.3 and 4). We also
provide instructions for custom signature matrix creation (Subhead-
ing 3.3). Although this protocol focuses on the deconvolution of
gene expression data, CIBERSORTcan be applied to other genomic
data types, such as ATAC-Seq, provided that data from purified
components are available on the same platform. Public genomic
data repositories include the NIH Gene Expression Omnibus data-
base (GEO, http://www.ncbi.nlm.nih.gov/geo/) and the NIH
Genomic Data Commons (https://gdc.cancer.gov/). See Subhead-
ings 3.3 and Note 1 for more details.

All files necessary for this protocol, including R and Java imple-
mentations of CIBERSORT, can be downloaded through the links
provided herein or from the CIBERSORT website (http://
cibersort.stanford.edu). The following packages are required for
the standalone R version: “e1071,” “parallel,” and “preproces-
sCore.” The Java version additionally requires the following R

Table 1
Format of input mixture files (tab separated plain text)

Gene_symbol (required) Mixture 1 Mixture 2 . . .

Gene1

Gene2

. . .
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packages: “Rserve” and “colorRamps.” The “affy,” “annotate,”
and “org.Hs.eg.db” R packages are required only if using the R
script from the CIBERSORT website to process Affymetrix CEL
files, as described in Subheading 3.2.2.

3 Methods

3.1 Installation CIBERSORT can be run online (http://cibersort.stanford.edu/)
or downloaded for local use, and is freely available for academic
non-profit research. While the current R script can be used to run
the CIBERSORT deconvolution engine, users wishing to create a
custom signature matrix will need to use the website or the Java
executable. To download and install the R dependencies described
in Materials, run the following commands from an R terminal:

Within R

> install.packages(‘e1071’) #R and Java versions.

> source(http://bioconductor.org/biocLite.R).

> biocLite(‘parallel’) #R and Java versions.

> biocLite(‘preprocessCore’) #R and Java versions.

> biocLite(‘Rserve’) #Java version only.

> biocLite(‘colorRamps’) #Java version only.

> biocLite(‘affy’) # used to normalize Affymetrix CEL files (Sub-
heading 3.2.2).

> biocLite(‘annotate’) # used to annotate Affymetrix CEL files
(Subheading 3.2.2).

> biocLite(‘org.Hs.eg.db’) # used annotate human Affymetrix
CEL files (Subheading 3.2.2).

3.2 Enumerating TIL

Subsets with LM22

LM22 is a signature matrix file consisting of 547 genes that accu-
rately distinguish 22 mature human hematopoietic populations
isolated from peripheral blood or in vitro culture conditions,
including seven T cell types, naive and memory B cells, plasma
cells, NK cells, and myeloid subsets. LM22 was designed and
extensively validated using gene expression microarray data, but is
also applicable to RNA-Seq data for hypothesis generation (see
Note 1). Here, we illustrate how to prepare Affymetrix microarray
data for use with LM22, and how to run CIBERSORT with LM22
to characterize the leukocyte composition of prostate biopsies
obtained from patients with prostate cancer and from healthy sub-
jects. To follow the examples in this section, download GSE55945
CEL files from GEO (https://www.ncbi.nlm.nih.gov/geo/down
load/?acc¼GSE55945&format¼file). Processed data for
GSE55945 can be downloaded from the CIBERSORT website.
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3.2.1 General Tips for

Mixture File Preparation

Gene expression data must be preprocessed as specified in Subhead-
ings 2 and 3.2.2. Because LM22 uses HUGO gene symbols (e.g.,
CD8A, MS4A1, CTLA4, etc.), all mixture files need to possess
matching HUGO identifiers. See Note 2 for using non-HUGO
gene symbols. Importantly, all expression values should be in
non-log (i.e., linear) space with positive numerical values and no
missing data. Not all signature matrix genes need to be present in
the mixture expression data, but performance will improve with the
presence of more signature genes.

3.2.2 Preparation of

Affymetrix CEL Files

The CIBERSORT website provides an R script to convert Affyme-
trix CEL files, the raw data format for Affymetrix microarray experi-
ments, into a tabular format that is ready for analysis with
CIBERSORT (Menu>Download). All packages specified in the
Installation section will need to be downloaded, along with a
custom CDF from BrainArray (http://brainarray.mbni.med.
umich.edu/Brainarray/Database/CustomCDF/20.0.0/entrezg.
asp). The custom CDF must be compatible with the microarray
platform used to profile the mixtures (e.g., for HGU133 Plus 2.0,
download hgu133plus2hsentrezgcdf_20.0.0.tar.gz); the latest
entrezg version is always recommended. Download the custom
CDF and run the following terminal command to install the R
library:

sudo R CMD INSTALL downloaded_customCDF_filename.tar.gz

The user is advised to run this step on a machine with root
access or a self-contained R environment like RGui. Next, navigate
to the directory containing raw Affymetrix CEL files (GSE55945 in
this example) and run CEL_to_mixture.R, an R script that should
be placed in the same folder as the CEL files. The script will output
a correctly formatted CIBERSORT mixture file named: Normal-
izedExpressionArray.customCDF.txt. For this example, rename to
“prostate_cancer.txt.”

3.2.3 Running

CIBERSORT

Before running CIBERSORT, all mixture files need to be uploaded
(Menu > “Upload Files”). The user needs to select “Mixture”
when uploading mixture files. After uploading the correctly for-
matted mixture file (e.g., prostate_cancer.txt) to the website, go to
“Run CIBERSORT” under Menu (see Fig. 2). Select “LM22
(22 immune cell types)” for “Signature gene file.” When clicking
“Mixture file,” the uploaded mixture file will be one of the options.
Select “Run” after choosing both the mixture file of interest and a
permutation number. At least 100 permutations are recommended
to achieve statistical rigor.

To run CIBERSORT locally in R, navigate to the directory
containing the CIBERSORT.R script, and run the following com-
mands within the R terminal:
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> source(‘CIBERSORT.R’)

> results <- CIBERSORT(‘sig_matrix_file.txt’,‘mixture_file.txt’,
perm¼100, QN¼TRUE)

Deconvolution output will be saved to a results object in R and
written to disk as CIBERSORT-results.txt in the same directory.

In this example, sig_matrix_file.txt should be “LM22.txt”
(obtain under Menu>Download); mixture_file.txt should be
“prostate_cancer.txt”; perm is an integer number for the number
of permutations; and QN is a Boolean value (TRUE or FALSE) for
performing quantile normalization. QN is set to TRUE by default
and recommended when the gene signature matrix is derived from
several different studies or sample batches.

3.2.4 Interpretation of

Results

Once the online analysis is complete, the website will output a
stacked bar plot (see Fig. 3) and a heat map (see Fig. 4). The output

Fig. 2 CIBERSORT web interface. All the files except the LM22 gene signature need to be uploaded to the
CIBERSORT website before proceeding to this page. When using LM22, the user will need to select the
uploaded mixture file and specify “LM22 (22 immune cell types)” for the signature gene file. When creating
custom gene signatures, a reference sample file and a phenotype classes file are required, and need to be
uploaded to the webserver. For CIBERSORT to generate a meaningful p-value, we recommend at least
100 permutations; however, this parameter can be set to a small number for exploratory analyses
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Fig. 3 Inferred composition of 22 immune cell subsets in malignant and normal prostate biopsies (related to
Subheading 3.2). The results were generated using CIBERSORT and the built-in LM22 immune cell gene
signature, and the stacked bar plot display was automatically generated by the CIBERSORT webserver

Fig. 4 Estimated proportions of six major leukocyte subsets (B cells, CD8 T cells, CD4 T cells, NK cells,
monocytes/macrophages, neutrophils) in skin cutaneous melanoma tumor biopsies profiled by The Cancer
Genome Atlas (TCGA). The results were determined using a custom RNA-Seq leukocyte signature matrix
(“LM6,” Subheading 3.3.3), and the heat map figure was generated by the CIBERSORT webserver
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includes a p-value for the global deconvolution of each sample. A p-
value threshold <0.05 is recommended. By default, deconvolution
results are expressed as relative fractions normalized to 1 (e.g., frac-
tions of total leukocyte content). Researchers interested in studying
absolute levels of immune cells should refer to Subheading 3.6.

3.3 TIL

Characterization with

a Custom Signature

Matrix

3.3.1 Generation of

Expression Profiles for

Custom Gene Signature

Matrix Creation

A custom signature matrix can be created using data from purified
cell populations. While the process to generate a custom matrix
from expression profiles is straightforward, the performance of a
custom matrix will depend on the quality of the data used to
generate it. Immunophenotyping of leukocytes is a dynamic field
with new immune populations continuing to be identified. Care
should be taken in determining which immune “cell types” should
be included in the signature matrix and which canonical markers
should be used to isolate these populations. For example, it is clear
that the population of “CD4-expressing T lymphocytes” encom-
passes heterogeneous populations with diverse functional pheno-
types including naive, memory, Th1, Th2, Th17, T-regulatory
cells, and T follicular helper cells. Replicates for each purified
immune cell type are required to gauge variance in the expression
profile (see Note 4 for further details). The platform and methods
used to generate data for the signature matrix ideally should be
identical to that applied to the analysis of the mixture samples.
See Note 3 for analyzing murine data. While SVR is robust to
unknown cell populations, performance can be adversely affected
by genes that are highly expressed in a relevant unknown cell
population (e.g., in the malignant cells) but not by any immune
components present in the signature matrix. A simple option imple-
mented in CIBERSORT to limit this effect is to remove genes
highly expressed in non-hematopoietic cells or tumor cells. If
expression data is available from purified tumor cells for the malig-
nancy to be studied, this can be used as a guideline to filter other
confounding genes from the signature matrix.

3.3.2 Input Data

Preparation

The mixture input data format for custom signature gene matrix
option is identical to the analysis with the LM22 signature gene
matrix (Subheading 3.2.1). To generate the custom signature gene
matrix, the user needs to provide a reference sample file containing
the GEPs for each purified immune population of interest, and a
phenotype class file assigning the profiles to each phenotypic type of
immune cell to be included in the signature matrix. The expression
data in the reference sample file should be in non-log (i.e., linear)
space with genes listed in the rows and reference populations listed
in columns. The phenotype class file lists the desired cell popula-
tions in the signature matrix listed in rows and the purified refer-
ence samples contained in the reference sample file listed in
columns (refer to the CIBSERORT website manual for more
details). These must be listed in the exact same order as the refer-
ence sample file. The cells are used to assign phenotypic classes to
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each purified reference sample. Importantly, all cell types should be
represented by at least two replicates in order to identify genes with
significantly differential expression (see Note 4).

For ease of use, we have created an R script to generate both
intermediate files (the script is available from the CIBERSORT
website). Gene expression data for each purified sample should be
formatted similarly to the mixture input data (see Table 2) and each
replicate of the same cell type must be labeled with the identical
phenotypic class name. To run the script, execute the following
command:

Rscript generate_ref_and_class.R your_input_mixture_file.txt

The script will produce two output files, both of which are
required to build a signature matrix: class_file.input.txt (i.e., phe-
notype class file) and reference_file.input.txt (i.e., reference
sample file).

3.3.3 Creating the

Signature Matrix

In the following two sections, we describe how to create a custom
leukocyte signature matrix and apply it to study cellular heteroge-
neity and TIL survival associations in melanoma tumors profiled by
The Cancer Genome Atlas (TCGA). Readers can follow along by
creating “LM6,” a leukocyte RNA-Seq signature matrix comprised
of six peripheral blood immune subsets (B cells, CD8 T cells, CD4
T cells, NK cells, monocytes/macrophages, neutrophils;
GSE60424 [21]). Key input files are provided on the CIBERSORT
website (“Menu>Download”).

A custom signature file can be created by uploading the Refer-
ence sample file and the Phenotype classes file (Subheading 3.3.2)
to the online CIBERSORTapplication (see Fig. 2) or can be created
using the downloadable Java package. To build a custom gene
signature matrix with the latter, the user should download the
Java package from the CIBERSORT website and place all relevant
files under the package folder. To link Java with R, run the follow-
ing in R:

Within R:

> library(Rserve)

Table 2
Format of input files to generate reference files and class files necessary for custom gene signatures
(tab separated plain text)

Gene symbol
(required)

Cell type
Name1

Cell type
Name1

Cell type
Name1

Cell type
Name2

Cell type
Name2

Cell type
Name2 . . .

Gene1

Gene2

. . .
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> Rserve(args¼"--no-save")

Command line:

> java -Xmx3g -Xms3g -jar CIBERSORT.jar -M Mixture_file -P
Reference_sample_file -c phenotype_class_file -f

The last argument (-f) will eliminate non-hematopoietic genes
from the signature matrix and is generally recommended for signa-
ture matrices tailored to leukocyte deconvolution. The user can also
run this step on the website by choosing the corresponding refer-
ence sample file and phenotype class file (see Fig. 2). The CIBER-
SORT website will generate a gene signature matrix located under
“Uploaded Files” for future download.

Following signature matrix creation, quality control measures
should be taken to ensure robust performance (see “Calibration of
in silico TIL profiling methods” in Newman et al.) [18]. Factors
that can adversely affect signature matrix performance include poor
input data quality, significant deviations in gene expression between
cell types that reside in different tissue compartments (e.g., blood
versus tissue), and cell populations with statistically indistinguish-
able expression patterns. Manual filtering of poorly performing
genes in the signature matrix (e.g., genes expressed highly in the
tumor of interest) may improve performance.

To benchmark our custom leukocyte matrix (LM6), we com-
pared it to LM22 using a set of TCGA lung squamous cell carci-
noma tumors profiled by RNA-Seq and microarray (n¼ 130 pairs).
Deconvolution results were significantly correlated for all cell sub-
sets shared between the two signature matrices ( p < 0.0001).
Notably, since LM6 was derived from leukocytes isolated from
peripheral blood [21, 22], we restricted the CD4 T cell comparison
to naive and resting memory CD4 Tcells in LM22. Once validation
is complete, a CIBERSORT signature matrix can be broadly
applied to mixture samples as described in Subheading 3.3 (e.g.,
see Fig. 4).

3.4 Correlating TIL

Levels with Clinical

Outcomes

Associations with clinical indices and outcomes are commonly
assessed using a log-rank test for binary variables and Cox propor-
tional hazards regression for continuous variables. There are a
number of freely available tools for such analyses. We typically use
the R “survival” package or the python “lifelines” package. To
illustrate TIL survival analysis in primary tumor samples, we applied
LM6 (Subheading 3.3.3) to 473 TCGA skin cutaneous melanoma
tumor samples profiled by RNA-Seq (see Fig. 4). We then analyzed
the influence of estimated CD8 T cell levels on overall survival.
Higher levels of CD8 T lymphocytes were associated with favorable
overall survival in both dichotomous (Fig. 5) and continuous mod-
els (p ¼ 0.013, Cox regression), consistent with previous studies
[1, 2].
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3.5 Use of

CIBERSORT to Infer

Absolute TIL Levels

By default, CIBERSORT estimates the relative fraction of each cell
type in the signature matrix, such that the sum of all fractions is
equal to 1 for a given mixture sample. CIBERSORT can also be
used to produce a score that quantitatively measures the overall
abundance of each cell type (as described in “Analysis of deconvo-
lution consistency” in Newman et al.) [17]. Briefly, the absolute
immune fraction score is estimated by the median expression level
of all genes in the signature matrix divided by the median expres-
sion level of all genes in the mixture. Using this metric coupled with
LM22, we have found that CIBERSORT effectively captures over-
all immune content in RNA-Seq and microarray datasets when
benchmarked against other methods. These include H&E staining
and computational inference by ESTIMATE [23], a previously
published method for determining overall immune content in
tumor expression profiles.

Absolute results can be easily accessed from the CIBERSORT
website by toggling the output between relative and absolute
modes in the Results page (see online manual for details). When
using the R script (Subheading 3.2.3), the user should download
the latest version of the script and set “absolute¼TRUE.” For
example:

results <- CIBERSORT(’sig_matrix_file.txt’,’mixture_file.txt’,
perm¼100, absolute¼TRUE)
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Fig. 5 Association between inferred tumor-infiltrating CD8 T cell content and
overall survival in patients with skin cutaneous melanoma profiled by TCGA
(related to Subheading 4). Estimated CD8 T cell levels were stratified by a
median split, and the separation between survival curves was evaluated using
a log-rank test. Only patients with available survival data and with a significant
CIBERSORT p-value (<0.05) were considered for this analysis (n ¼ 364). HR,
hazard ratio. 95% confidence intervals for the hazard ratio are shown in brackets
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3.6 Conclusion CIBERSORT is an in silico approach for characterizing cell subsets
of interest in high-dimensional genomic data derived from bulk
tissue samples. Given a validated signature matrix, CIBERSORT
can profile compositional differences in a standardized manner,
facilitating robust and reproducible analyses of cellular heterogene-
ity in both newly measured and archived genomic datasets, fresh/
frozen tissue biopsies, and fixed clinical specimens. Since CIBER-
SORT is platform agnostic, it can be applied to diverse genomic
data types other than mRNA, including DNA methylation, micro-
RNA, proteomic, and chromatin accessibility profiles. CIBER-
SORT is therefore a versatile framework for tissue
characterization, with applications for identifying predictive and
prognostic cellular biomarkers, and novel therapeutic targets.

4 Notes

1. CIBERSORT is platform agnostic and can be applied to any
genomic admixture that satisfies its mathematical model (Sub-
heading 1.2), including mixtures profiled by RNA-Seq.
Although LM22 was derived and originally validated using
microarray data, we have observed significant correlations for
most of LM22 populations on paired microarray/RNA-Seq
TCGA datasets, suggesting that it is reasonable to apply LM22
to RNA-Seq data for hypothesis generation. Nevertheless, if
significant subsets of genes within LM22 are not present in the
RNA-Seq summarization, the deconvolution of the
corresponding cell types may be adversely affected. To avoid
such potential degradation of deconvolution, we strongly rec-
ommend including as many genes as possible within LM22
(e.g., components of BCR and TCR genes). Separately, it has
been noted that the RNA-Seq mixture samples analyzed by the
LM22 matrix will have a higher frequency of samples with
p-values above 0.05. This is largely due to the differing dynamic
range of RNA-Seq and microarray data, and may not accurately
reflect the quality of the deconvolution results. Users should
therefore exercise caution in interpreting cross-platform p-
values. An RNA-Seq derived signature matrix analogous to
LM22 is currently being developed with an expanded set of
immune populations by the authors.

2. HUGO gene symbols are required as input when the LM22
signature matrix is used. However, CIBERSORT is not
restricted to HUGO gene symbols, and users working with
custom gene signatures can employ any set of unique alphanu-
meric identifiers, provided they are consistent between the sig-
nature matrix and the mixture file. When a user is not using
HUGO gene symbols, the non-hematopoietic gene filtering
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functions will not work since these lists are represented in
HUGO format.

3. Applying the LM22 matrix to a murine tumor may be unreliable
due to cross-species differences in immune biology. A user
working with murine data should consider building a custom
signature matrix with either publicly available data (e.g., Imm-
Gen; https://www.immgen.org/) or in-house data.

4. The CIBERSORT model builds a gene signature matrix by
minimizing gene expression variance within the same cell type
and by maximizing variance between cell types; it is therefore
important to use data replicates. Cell types should be isolated
from the same tissue type or culture conditions, and biological
replicates are recommended to help the model capture donor-
to-donor variations. To increase statistical power, we recom-
mend using three or more replicates for each cell subset.
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Chapter 13

Systems Biology Approaches in Cancer Pathology

Aaron DeWard and Rebecca J. Critchley-Thorne

Abstract

The complex network of the tissue system, in both pre-neoplastic tissues and tumors, demonstrates the
need for a systems biology approach to cancer pathology, in which quantification of key tissue system
processes is combined with informatics tools to produce actionable scores to aid clinical decision-making. A
systems biology approach to cancer pathology enables integration of key system features that are relevant to
diagnoses, patient outcomes, and responses to therapies. Key tissue system features relevant to cancer
pathology include molecular and morphologic abnormalities in epithelia, cellular changes in the stroma
such as immune infiltrates, and relationships between components of the system, such as interactions and
spatial relationships between epithelial and stromal components, and also between specific immune cell
subsets. Here, we describe a method for objective quantification of multiple epithelial and stromal bio-
markers in the context of tissue architecture to generate a high dimensional tissue profile that can be used to
build multivariable predictive models for cancer pathology.

Key words Biomarkers, Multiplexed immunofluorescence, Whole slide fluorescence imaging, Digital
pathology, Quantitative image analysis, Cancer systems biology

1 Introduction

Current pathology methods for the assessment of pre-neoplastic
and neoplastic tissues have been valuable for many decades, but are
limited by subjectivity and observer variability. Digital slide scan-
ning and algorithms for automated scoring of biomarkers stained
by immunohistochemistry are gaining traction in clinical labora-
tories, which will improve workflows and reduce variability
[1, 2]. However, the majority of current biomarkers used in cancer
pathology testing are markers of epithelial cell processes and
abnormalities. The complexity of the tissue system and the impor-
tant roles of stromal components in the development and progres-
sion of cancer, and in the responses of cancer to therapies, highlight
the need for a systems biology approach to cancer pathology
[3, 4]. Assessment of key tissue system biomarkers can improve
on the current diagnostic tools by creating multivariate profiles that
capture key molecular and cellular features of the tissue

Louise von Stechow (ed.), Cancer Systems Biology: Methods and Protocols, Methods in Molecular Biology, vol. 1711,
https://doi.org/10.1007/978-1-4939-7493-1_13, © Springer Science+Business Media, LLC 2018

261



environment, including relationships between biomarkers
[3, 5]. Objective, reproducible measurement of multiple biomar-
kers per slide can be achieved via automated multiplexed immuno-
fluorescence labeling of four or more biomarkers per slide coupled
with standardized whole slide fluorescence scanning. Quantitative
image analysis can be used to automatically extract an array of
quantitative biomarker and morphologic features from whole
slide tissue images, resulting in a multivariate tissue profile. Such
profiles can be mined in samples from patient cohorts with clinic-
pathologic data to identify clinically relevant signatures, and to
build diagnostic, prognostic, and predictive models. Here we
describe methods for automated immunofluorescent labeling of
multiple biomarkers in tissue slides, and standardized whole slide
fluorescence imaging to produce tissue images with multiple
registered channels of biomarker signal and morphology data.
These composite images can be analyzed by tissue image analysis
platforms to generate quantitative data on key tissue system features
and processes. A systems biology approach to assess multiple epi-
thelial and stromal biomarkers in Barrett’s esophagus biopsies is
discussed as an application of the method.

2 Materials

2.1 Multiplexed

Immunofluorescence

Slide Labeling

Procedure

1. Slides prepared with 5 μm sections of formalin-fixed paraffin-
embedded (FFPE) tissue (see Note 1).

2. BondRX autostainer (Leica BioSystems).

3. Bond Dewax Solution (Leica BioSystems).

4. 100% ethanol (reagent grade).

5. Bond Epitope Retrieval (ER) Solution 2 (Leica BioSystems).

6. Bond Wash Solution 10� (Leica BioSystems).

7. Image-iT® FX Signal Enhancer (Thermo Fisher).

8. Blocking buffer: Tris-buffered saline, 5% goat serum, 1% glyc-
erol, 0.1% bovine serum albumin, 0.1% cold water fish skin
gelatin, 0.04% sodium azide (see Note 2).

9. Primary antibody cocktails: primary antibodies in blocking
buffer at a dilution predetermined by titration to produce
optimal signal:noise (see Notes 3 and 4).

10. Secondary antibody cocktails: Alexa Fluor®-conjugated sec-
ondary antibodies raised in goat, specific to the species and
species isotypes of the primary antibody cocktail (see Notes 5
and 6).

11. Hoechst 33342 or equivalent label that emits blue fluorescence
when bound to double-stranded DNA.
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12. Deionized water.

13. Prolong Gold Antifade Mountant (Thermo Fisher), or similar
aqueous mounting medium containing components to protect
against photobleaching.

14. Glass coverslips (#1.5).

15. Lens cleaner.

16. Clear nail polish.

2.2 Whole Slide

Fluorescence

Scanning

1. ScanScope® FL (Leica BioSystems) equipped with:

(a) BrightLine® Pinkel quadband filter set optimized for
DAPI, FITC, TRITC, & Cy5 (FF01-440/521/607/
700-25).

(b) BrightLine® single-band bandpass excitation filters FF01-
387/11-25, FF01-485/20-25, FF01-560/25-25 and
FF01-650/13-25 (Semrock).

(c) X-Cite® exacte light source (Lumen Dynamics/Excelitas
Technologies Corp.).

(d) Light source calibration device (see Note 7) (Lumen
Dynamics/Excelitas Technologies Corp.).

2. TetraSpeck Fluorescent Microspheres.

3. FocalCheck Fluorescent Microsphere.

4. ImageScope software (Leica BioSystems).

2.3 Quantitative

Image Analysis

1. TissueCypher® Image Analysis Platform (Cernostics).

2. Image Processing Toolbox™ (MathWorks [6]).

3. ImageScope software (Leica BioSystems).

3 Methods

3.1 Multiplexed

Immunofluorescence

Slide Labeling

Procedure

Program the BondRX autostainer to perform the following steps
(application volume is 150 μL for all the reagent steps):

1. Bake slides (no reagent), incubation time 30 min, 60 �C.

2. Apply Bond Dewax solution, incubation time 30 min, 72 �C.

3. Reapply Bond Dewax solution, incubation time 0 s, 72 �C.

4. Reapply Bond Dewax solution, incubation time 0 s, ambient
temperature (see Note 8).

5. Apply ethanol, incubation time 0 s, ambient temperature,
repeat twice for total of three ethanol washes.

6. Apply Bond Wash (diluted to 1� with deionized water), incu-
bation time 0 s, ambient temperature, repeat for total of three
washes with Bond Wash.
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7. Apply Bond ER Solution 2, incubation time 0 s, ambient
temperature, repeat once.

8. Apply Bond ER Solution 2, incubation time 30 min,
98–100 �C (see Note 9).

9. Apply Bond ER Solution 2, incubation time 0 s, ambient
temperature.

10. Apply Bond Wash, incubation time 0 s, ambient temperature,
repeat for total of four washes with Bond Wash.

11. Apply Bond Wash, incubation time 0 s, ambient temperature.

12. Apply Image-iT FX, incubation time 30 min ambient
temperature.

13. Apply Bond Wash, incubation time 0 s, ambient temperature,
repeat for total of three washes with Bond Wash.

14. Apply blocking buffer, incubation time 30 min, ambient
temperature.

15. Apply Bond Wash, incubation time 0 s, ambient temperature,
repeat for a total of three washes.

16. Apply primary antibody cocktail, incubation time 60 min,
ambient temperature.

17. Apply Bond Wash, incubation time 0 s–1 min, ambient tem-
perature, repeat for total of 3–10 washes with Bond Wash (see
Note 10).

18. Apply secondary antibody cocktail, incubation time 60 min,
ambient temperature.

19. Apply Bond Wash, incubation time 0 s–1 min, ambient tem-
perature, repeat for total of 3–10 washes with Bond Wash (see
Note 10).

20. Apply Hoechst 33342, incubation time 3 min, ambient
temperature.

21. Apply deionized water, incubation time 0 s, ambient tempera-
ture, repeat for a total of three washes.

22. Remove the slides immediately, wipe excess water from slides,
allow sections to air dry at ambient temperature protected from
light. Once dry mount the slides with aqueous mounting
medium and allow curing for at least 12 h at room temperature
protected from light (see Note 11).

3.2 Whole Slide

Fluorescence

Scanning

1. Calibrate the light source to steady absolute output using the
X-Cite® XR2100 Power Meter. An output of 2.2 W will ensure
adequate illumination for most imaging applications that can
be maintained for 1500–2500 h of scanning depending on the
initial attainable wattage of the bulb.
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2. Follow the manufacturer’s procedure for producing whole
slide scans with four registered channels of image data,
including:

(a) Image Hoechst (or equivalent) in the FF01-387/11-25
(or equivalent) channel, Alexa Fluor 488 in the FF01-
485/20-25 channel, Alexa Fluor 555 in the FF01-560/
25-25 channel and Alexa Fluor 647 in the FF01-650/13-
25 channel (seeNote 12). The example images of the p16,
AMACR, p53 biomarker panel and HIF-1alpha,
CD45RO, CD1a biomarker panel in Barrett’s esophagus
biopsies are shown in Fig. 1.

(b) Optimize exposure times on a test set of known negative,
intermediate and high controls for each biomarker. Main-
tain consistent exposure times for all channels on all
patient samples (see Note 11).

(c) Review images for quality including focus, even illumina-
tion across imaging stripes/seams, artifacts, etc., and
rescan if necessary to produce high-quality tissue images
for quantitative image analysis.

(d) Verify channel registration periodically using slides mounted
with FocalCheck Fluorescent Microspheres (see Note 13).

(e) Verify scanner precision periodically, after bulb calibra-
tion, and after the replacement of the bulb or light
guide, using slides mounted with TetraSpeck Fluorescent
Microspheres (see Note 14).

3.3 Quantitative

Image Analysis

We utilize the TissueCypher® Image Analysis Platform, which
includes a high performance file reading mechanism based on
BigTiff format to decode raw image data, MatLab algorithms for
segmenting low level tissue objects such as nuclei, cytoplasm,
plasma membrane, and whole cells to allow feature collection at
the cellular and subcellular level. It further contains higher order
computer vision models for spatial quantification of biomarkers in
tissue compartments, such as epithelium and lamina propria, as
described by Prichard et al. [4]. There are multiple commercially
available tools for quantitative analysis of digital tissue slide images,
such as the Image Processing Toolbox™ that provides algorithms
and functions for image processing, image analysis and develop-
ment of algorithms for application-specific features.

Image analysis to create a multivariable tissue systems profile
should include:

1. Handling of image artifacts. Artifacts such as bubbles, folds,
fibers, and out of focus regions can be removed via manual
annotation of images or algorithms [7, 8] (see Note 15).
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Fig. 1 Representative images of multiplexed panels of tissue system biomarkers in Barrett’s esophagus pinch
biopsies. Sections of Barrett’s esophagus pinch biopsies were fluorescently immunolabeled for the multi-
plexed panels of biomarkers described in Notes 4 and 6. Whole slide images were acquired at 20�
magnification using the ScanScope FL. (Panels a–d) (a) HIF-1α-green (b) CD45RO-red, (c) CD1a-yellow,
(d) HIF-1α-green, CD1a-yellow overlay demonstrating infiltration of the lamina propria by cells expressing
HIF-1α, which indicates stromal angiogenesis, and also memory lymphocytes and dendritic cells. (Panels
e–h) (e) HIF-1α-green (f) CD45RO-red, (g) CD1a-yellow, (h) HIF-1α-green, CD45RO-red, CD1a-yellow overlay,
providing an additional example of infiltration of the lamina propria by cells expressing HIF-1α, memory
lymphocytes and dendritic cells. (Panels i–l) (i) p16-green, (j) AMACR-red, (k) p53-yellow, (l) p16-green,
AMACR-red, p53-yellow overlay showing loss of p16, focal overexpression of AMACR and overexpression of
p53. (Panels m–p) (m) p16-green, (n) AMACR-red, (o) p53-yellow, (p) p16-green, AMACR-red, p53-yellow
overlay showing normal/positive expression of p16, multi-focal overexpression of AMACR and loss of p53.
Hoechst shown in blue in all panels
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2. Segmentation of low level objects such as nuclei (based on
Hoechst signal), cytoplasm, plasma membrane, and whole
cells. Examples of object segmentation masks are shown in
Fig. 2. Object segmentation allows collection of quantitative
biomarker feature data at the cellular and subcellular levels,
which in turn allows calculation of basic intensity measure-
ments on biomarkers (mean, sum, standard deviation,
moment, etc.), co-expression of multiple biomarkers, ratios of
biomarkers between subcellular compartments, gating on sub-
populations of cells with overexpression/lack of expression of
multiple biomarkers, spatial arrangements of cells expressing
1 or more biomarkers, texture, nuclear morphology, etc. [4]
(see Note 16). Examples of cell object-based features extracted
from the biomarker panels described in this method include
p53 mean intensity in nuclei objects, and nuclear area in cell
objects with p16-loss and p53-overexpression. Both the fea-
tures have been shown to have diagnostic significance in

Fig. 2 Cellular object segmentation and tissue structure segmentation to enable quantitative, contextual
feature measurements. The TissueCypher® Image Analysis Platform was used to detect a Barrett’s esophagus
biopsy and segment subcellular compartments and tissue objects. (a) Barrett’s esophagus biopsy labeled for
p16 (green), AMACR (red), p53 (yellow), and Hoechst (blue). (b) Segmentation of nuclei objects based on the
Hoechst channel. (c) Segmentation of cell objects containing nuclei by first creating a distance map to which
the watershed operation was applied, and then performing connected components labeling, as previously
described [4]. (d) Segmentation of cytoplasm by subtracting the nuclei mask shown in Panel b from the cell
mask shown in Panel c. (e) A nuclei cluster mask was produced via Gaussian smoothing of the Hoechst signal,
rank order filter, image thresholding, morphological operations, and connected components labeling, as
previously described [4]. (f) p53 signal (yellow) was measured within the segmented nuclei clusters
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distinguishing between Barrett’s esophagus biopsies with high
grade dysplasia versus non-dysplastic reactive atypia. This sepa-
ration has prognostic significance in predicting risk of future
progression in patients with Barrett’s esophagus [4, 5]. Addi-
tional examples include CD45RO sum intensity in plasma
membrane structures, using two-dimensional anisotropic dif-
fusion, histogram equalization, and conversion to binary using
the CD45RO signal [4], which has prognostic significance in
Barrett’s esophagus [5].

3. Computer vision models for segmentation of tissue struc-
tures and components, such as epithelium, lamina propria,
tumor nests, etc. Computer vision models allow localization of
biomarker signals to specific compartments and collection of
feature data in the context of tissue architecture [4]. Examples
of computer vision model/tissue structure-based features with
diagnostic and/or prognostic significance in Barrett’s esophagus
include mean intensity of p53 in nuclei clusters. A nuclei cluster
mask can be developed using the Hoechst (or equivalent dye)
signal as we have previously described in detail [4]. An example
nuclei cluster mask is shown in Fig. 2. Features derived from cell-
based objects can also be localized to rectangular regions of
tissue images to create microenvironment-based features that
capture localized or focal biomarker abnormalities. Such features
collected across whole slides can be summarized to quantify the
cell-object biomarker features in, for example, the top scoring
5% of microenvironments on each slide. The size of the rectan-
gular regions should be optimized to the specific application; we
used regions of 161� 161 pixels to capture focal overexpression
of AMACR, and to detect clusters of stromal cells expressing
HIF-1alpha in Barrett’s esophagus biopsies, both of which have
diagnostic and prognostic significance [4, 5].

4. Statistical analysis of image-derived features. Image analysis
as described above generates multiple measurements per bio-
marker and when applied to multiplexed panels of biomarkers
will generate a high dimensional feature data set. When per-
formed on samples from an appropriately designed patient
cohort with corresponding clinicopathologic data, the high
dimensional data can be mined with the aid of bioinformatics
to identify quantitative features relevant to diagnosis, progno-
sis, and responses to therapies. Combinations of relevant fea-
tures can be used to build multivariable diagnostic, prognostic,
and predictive models that integrate data on key tissue system
processes to produce clinically actionable information. We have
previously described an application of this approach in detail
[5], in which 13,538 quantitative image analysis features
extracted from 14 candidate protein-based biomarkers and
Hoechst were mined in a training cohort of Barrett’s esopha-
gus patients with clinical outcome data in order to identify

268 Aaron DeWard and Rebecca J. Critchley-Thorne



prognostic features. A risk prediction model was built that
integrated 15 of the prognostic features, which were derived
from nine of the candidate protein biomarkers and Hoechst,
into an individualized risk score that is correlated with risk of
future progression to high grade dysplasia or esophageal ade-
nocarcinoma. The pre-specified risk prediction model was vali-
dated on an independent, multi-institutional cohort of patients
with Barrett’s esophagus, demonstrating significant risk strati-
fication of patients who progressed and patients who did not
progress to high-grade dysplasia or EAC, and showing prog-
nostic power that was independent of current clinical variables,
including pathologic diagnosis provided by a gastrointestinal
subspecialist [5].

Sample workflow to generate and apply quantitative feature
data from AMACR, one of several representative biomarkers used
for risk stratification in Barrett’s Esophagus:

1. Open ImageScope software to view the digital image of a slide
containing fluorescently labeled AMACR. Author annotations
to remove artifacts and/or select regions of interest using the
pen tool available within the software. For example, dust fibers
brightly autofluoresce, and have the potential to be interpreted
as positive signal. Annotating out a dust fiber will prevent its
incorporation into subsequent image analysis.

2. Focal overexpression of AMACR in Barrett’s Esophagus tissue
is correlated with an increased risk of disease progression,
whereas no/low expression is associated with a low risk of
progression. An example image containing focal AMACR
expression is shown in Fig. 1. The TissueCypher® Image Anal-
ysis Platform reads the annotated digital slide image, detects
tissue fragments, and segments cell-based objects (Fig. 2). To
quantify focal AMACR expression the software separates the
whole image into 161 � 161 pixel tiles/microenvironments.
The TissueCypher® Image Analysis software quantifies the
fluorescence intensity of AMACR in the cell-based objects,
e.g., plasma membrane objects, in each tile. The fluorescence
intensity can be quantified as mean, sum, standard deviation,
nth percentile, etc. The top five tiles, or top 5% of tiles based on
highest AMACR intensity, are averaged to generate a feature
value for AMACR.

3. The feature derived from AMACR can be evaluated in a patient
cohort with corresponding clinicopathologic data, e.g., a
cohort including patients whose Barrett’s esophagus pro-
gressed to esophageal adenocarcinoma (cases) and patients
who Barrett’s esophagus did not progress during surveillance
(controls). Conditional logistic regression or Cox regression
can be used to compare the feature in cases versus controls, and
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to return a coefficient to weigh the feature in a univariate risk
prediction analysis. The feature can also be entered into multi-
variable model building along with features derived from other
biomarkers, as described above.

4 Notes

1. 5 μm is the optimal section thickness for tissue image object
segmentation since it is thick enough to include an optimal
number of whole nuclei, yet thin enough to avoid toomany 3D
overlaps. Prior to labeling store slides at 2–10 �C under vac-
uum to protect epitopes.

2. The serum type in the blocking buffer should match the species
in which the secondary antibodies were generated. We use
secondary antibodies raised in goat and thus use blocking
buffer containing goat serum. The concentrations of blocking
buffer components such as BSA, glycerol, cold water fish skin
gelatin, and sodium azide can be titrated to minimize nonspe-
cific labeling, depending on the antibodies and tissue-
type used.

3. A range of primary antibody dilutions should be tested on
tissues or cell line controls with known negative, intermediate,
and high expression of the target biomarker. Fluorescence
signal should be quantified in tissue areas/cells with positive
expression (signal) and tissue areas/cells with negative/back-
ground or nonspecific labeling (noise). The signal:noise should
be calculated for each dilution to determine the appropriate
dilution for the specific application, which in our experience is
the dilution that results in signal:noise �5. Use of in vitro
diagnostic (IVD)-labeled antibodies will ensure lot-to-lot
reproducibility. Even with IVD-labeled antibodies, new lots
should be validated to ensure that the antibody specificity and
signal:noise are equivalent between lots. We recommend using
sections of FFPE cell lines on slides with at least 1 negative,
1 intermediate, and 1 high expressing cell line for each bio-
marker assessed. FFPE cell lines can also be utilized as batch
controls in each run of patient slides being labeled, imaged, and
analyzed. A method for the preparation of FFPE cell line con-
trols has been previously described [9].

4. Primary antibodies within a single cocktail must be raised in
different species or different species isotypes. For example:
(a) Mouse IgG2a anti-p16 antibody, rabbit IgG anti-AMACR
antibody, and mouse IgG2b anti-p53 antibody can be multi-
plexed within a cocktail to assess p16, AMACR, and p53
expression on a slide. (b) Rabbit IgG anti-HIF-1alpha
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antibody, mouse IgG2a anti-CD45RO antibody, and mouse
IgG1 anti-CD1a antibody can be multiplexed within a cocktail
to assess CD1a, CD45RO, and HIF-1alpha on a slide.

5. Refer to the manufacturer’s product information to ensure that
the secondary antibodies have been highly cross-adsorbed to
minimize cross-reactivity. Protein aggregates may form in the
secondary antibody solutions. Therefore, the cocktail of fluo-
rescently conjugated secondary antibodies should be centri-
fuged at high speed for 3 s prior to use. Only the supernatant
should be applied to slides in order to minimize nonspecific
labeling.

6. Alexa Fluor 488-conjugated goat anti-mouse IgG2a antibody,
Alexa Fluor 555-conjugated goat anti-rabbit IgG, and Alexa
Fluor 647-conjugated goat anti-mouse IgG2b can be prepared
in a cocktail to detect the p16, AMACR, p53 antibody panel
described in Note 4a. Alexa Fluor 488-conjugated goat anti-
rabbit IgG, Alexa Fluor 555-conjugated goat anti-mouse
IgG2a, and Alexa Fluor 647-conjugated goat anti-mouse
IgG1 can be prepared in a cocktail to detect the HIF-1alpha,
CD45RO, and CD1a antibody Note 4b. The fluorescently
conjugated antibodies should be used at a dilution
pre-determined by titration to produce optimal signal:noise.
Dilutions ranging from 1:200–1:400 are used for the second-
ary antibody cocktails described here.

7. The light source should be equipped with a calibration device
to ensure the consistent illumination necessary for quantitative
image analysis of biomarkers and morphology.

8. Ambient laboratory temperature and humidity should be mon-
itored and maintained within an established range. Variations
in these environmental conditions will affect tissue processing
and labeling steps that are performed under ambient condi-
tions, which may increase intra- and inter-run imprecision.

9. The epitope retrieval temperature should be optimized for the
specific panel of primary antibodies used. We use 100 �C for
the panel containing p16, AMACR, p53 panel, and 98 �C for
the HIF-1a, CD45RO, CD1a panel.

10. Longer washing incubation times and/or increased numbers
of washes can be used to minimize nonspecific labeling where
necessary. We use three 0 s washes post-primary antibody
incubation for the p16, AMACR, p53 biomarker panel and
ten 1 min washes for the HIF-1a, CD45RO, CD1a panel
described here, and three 0 s washes post-secondary antibody
incubation.

11. Proper mounting is essential to generation of high-quality
tissue images suitable for image analysis. Mounting medium
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such as Prolong Gold Antifade Mountant should be at room
temperature prior to use. Care should be taken to avoid bub-
bles, fibers, and particulate matter in the mounting medium as
these will result in image artifacts that will interfere with quan-
titative image analysis. Artifacts in tissue images should be
removed via image annotation or algorithms prior to image
analysis. Following mounting store slides horizontally at room
temperature protected from light for at least 12 h to ensure
proper curing of the mounting medium. Seal edges of cover-
slips with clear nail polish. Thoroughly clean the back of the
slide and the outside of the coverslip with lens cleaner prior to
slide scanning. Store fluorescently immunolabeled slides at
2–10 �C protected from light.

12. The quadband filter set and single-band bandpass excitation
filters (described under Subheading 2.2) are calibrated to sepa-
rate the DAPI, FITC, TRITC, Cy5, or equivalent fluorophores
as recommended in this protocol (Hoechst 33342, Alexa
Fluors 488, 555, and 647).

13. Correct image registration is necessary for quantitative image
analysis involving measurement of biomarkers across different
fluorescent channels, which is required to generate a systems
profile of a tissue, which may include co-expression of biomar-
kers and spatial relationships between biomarkers that are
imaged and quantified in different fluorescent channels.

14. Scanner precision should be monitored to ensure consistent
excitation within imaging runs and between imaging runs. This
is particularly important for clinical studies that can involve
imaging of hundreds of patients over many months.

15. Whole slide digital images generated on the ScanScope FL
scanner can be annotated to remove artifacts or select regions
of interest using ImageScope software prior to reading into
image analysis software.

16. Image analysis features should be normalized (centered or
standardized) to correct for intra- and inter-run variability.

Acknowledgments

National Cancer Institute of the National Institutes of Health
under Award Number R44CA192416. We thank Lia Reese,
Bruce Campbell, and Kathleen Repa for technical assistance in the
development and validation of the TissueCypher® methodology
described in this chapter.

272 Aaron DeWard and Rebecca J. Critchley-Thorne



References

1. Pantanowitz L, Valenstein PN, Evans AJ, Kaplan
KJ, Pfeifer JD, Wilbur DC, Collins LC, Colgan
TJ (2011) Review of the current state of whole
slide imaging in pathology. J Pathol Inf 2:36

2. Dennis J, Parsa R, Chau D, Koduru P, Peng Y,
Fang Y, Sarode VR (2015) Quantification of
human epidermal growth factor receptor
2 immunohistochemistry using the Ventana
image analysis system: correlation with gene
amplification by fluorescence in situ hybridiza-
tion: the importance of instrument validation for
achieving high (>95%) concordance rate. Am J
Surg Pathol 39(5):624–631

3. Gough A, Lezon T, Faeder J, Chennubhotla C,
Murphy R, Critchley-Thorne R, Taylor DL
(2014) High content analysis and cellular and
tissue systems biology: a bridge between cancer
cell biology and tissue-based diagnostics. In:
Mendelsohn J, Howley PM, Israel MA, Gray
JW, Thompson CB (eds) The molecular basis
of cancer 4th edition, 4th edn. Elsevier,
New York

4. Prichard JW, Davison JM, Campbell BB, Repa
KA, Reese LM, Nguyen XM, Li J, Foxwell T,
Taylor DL, Critchley-Thorne RJ (2015) Tissue-
Cypher: a systems biology approach to anatomic
pathology. J Pathol Inf 6:48

5. Critchley-Thorne RJ, Duits LC, Prichard JW,
Davison JM, Jobe BA, Campbell BB, Repa KA,
Reese LM, Li J, Diehl DL, Jhala NC, Ginsberg
GG, DeMarshall M, Foxwell T, Zaidi AH, Tay-
lor DL, Rustgi AK, Bergman JJ, Falk GW
(2016) A novel tissue systems pathology test
predicts progression in Barrett’s esophagus
patients. Cancer Epidemiol Biomark Prev 25
(6):958–968

6. MathWorks image processing toolbox. https://
www.mathworks.com/products/image

7. Kothari S, Phan JH,WangMD (2013) Eliminat-
ing tissue-fold artifacts in histopathological
whole-slide images for improved image-based
prediction of cancer grade. J Pathol Inf 4:22

8. Hang W, Phan JH, Bhatia AK, Cundiff CA,
Shehata BM, Wang MD (2015) Detection of
blur artifacts in histopathological whole-slide
images of endomyocardial biopsies. Conf Proc
IEEE Eng Med Biol Soc 2015:727–730

9. Dolled-Filhart M, McCabe A, Giltnane J,
Cregger M, Camp RL, Rimm DL (2006) Quan-
titative in situ analysis of beta-catenin expression
in breast cancer shows decreased expression is
associated with poor outcome. Cancer Res 66
(10):5487–5494

Tissue Systems Pathology 273

https://www.mathworks.com/products/image
https://www.mathworks.com/products/image


Part V

Modeling Drug Responses in Cancer Cells



Chapter 14

Bioinformatics Approaches to Predict Drug Responses from
Genomic Sequencing

Neel S. Madhukar and Olivier Elemento

Abstract

Fulfilling the promises of precision medicine will depend on our ability to create patient-specific treatment
regimens. Therefore, being able to translate genomic sequencing into predicting how a patient will respond
to a given drug is critical. In this chapter, we review common bioinformatics approaches that aim to use
sequencing data to predict sample-specific drug susceptibility. First, we explain the importance of custo-
mized drug regimens to the future of medical care. Second, we discuss the different public databases and
community efforts that can be leveraged to develop new methods for identifying new predictive biomar-
kers. Third, we cover the basic methods that are currently used to identify markers or signatures of drug
response, without any prior knowledge of the drug’s mechanism of action. We further discuss how one can
integrate knowledge about drug targets, mechanisms, and predictive markers to better estimate drug
response in a diverse set of samples. We begin this section with a primer on popular methods to identify
targets and mechanism of action for new small molecules. This discussion also includes a set of computa-
tional methods that incorporate other drug features, which do not relate to drug-induced genetic changes
or sequencing data such as drug structures, side-effects, and efficacy profiles. Those additional drug
properties can aid in gaining higher accuracy for the identification of drug target and mechanism of action.
We then progress to discuss using these targets in combination with disease-specific expression patterns,
known pathways, and genetic interaction networks to aid drug choice. Finally, we conclude this chapter
with a general overview of machine learning methods that can integrate multiple pieces of sequencing data
along with prior drug or biological knowledge to drastically improve response prediction.

Key words Bioinformatics, Precision medicine, Drug response, Machine learning, Biomarkers

1 Introduction

One of the greatest challenges in the current paradigm of medicine
is how to deal with patient heterogeneity—both across different
diseases and even within patients diagnosed with the same disease.
Over the past 50 years there have been many studies showing that
patients with the same disease have completely different responses
when treated with the same drug [1–3]. The prevailing hypothesis
to explain the heterogeneous response is each patient’s specific
genetic profile. Precision medicine involves using this patient-
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specific genomic information to guide drug treatment, with the
expectation that this will ultimately improve clinical outcomes
[4]. With the decrease in sequencing costs over the past decade, it
is now possible to obtain genomic information for patients prior to
determining a specific treatment regimen. In addition, there has
been an emergence of bioinformatics methods to interpret this
sequencing data and come up with actionable strategies for precise
drug choices. These methods not only allow for the identification
of specific genetic traits that confer susceptibility or resistance to
drug treatment, but can also combine genetic markers with gene
ontologies and biological networks to predict precise response
levels. In this chapter, we provide an overview of these bioinfor-
matics methods, review the basic premises for each type of method,
and discuss some of the current problems and future challenges that
need to be solved. While we tend to focus on cancer, the databases
and methods we described are often applicable to other diseases,
as well.

2 Databases

In recent years, there have been a number of community efforts to
generate and publicly release datasets that could be used to improve
drug response prediction. Table 1 lists some of these datasets. In
this review we will cover what we believe to currently be the best-
suited and most popular public resources for aiding drug response
prediction.

2.1 NCI60 Drug

Sensitivity Database

The National Cancer Institute’s (NCI) 60 cell line drug screen is a
database of in vitro drug efficacies (either in terms of GI50, LD50,
or TGI) for over 50,000 compounds screened against the NCI60
panel of cancer cell lines [5]. With 60 cancer cell lines from nine
distinct tumor types—leukemia, colon, lung, central nervous sys-
tem, renal, melanoma, ovarian, breast, and prostate—the NCI60
collection aims to provide information on a broad set of genetic
conditions and tumor types. The NCI60 panel has itself been
profiled using a variety of assays from genomic to gene expression
and proteomics [6–9]. The profiling data can be used in conjunc-
tion with the Developmental Therapeutics Program’s (DTP) drug
screening database to identify genetic signatures indicative of a
certain response pattern.

2.2 Cancer Cell Line

Encyclopedia

The Cancer Cell Line Encyclopedia (CCLE) [10, 11] is a database
of 947 different human cancer cell lines encompassing 36 different
tumor types that have been genetically profiled—gene expression,
copy number, mutations, etc. Furthermore, 24 known anticancer
drugs were profiled against approximately 500 of these cell lines.
Though the number of compounds profiled is smaller than the
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NCI60 drug screen, the greater number of cell lines tested allows
for more precise identification of genetic predictors of sensitivity for
the drugs measured.

2.3 Genomics of

Drug Sensitivity in

Cancer

Hosted by the Wellcome Trust Sanger Institute, the Genomics of
Drug Sensitivity in Cancer (GDSC) database is a massive drug
screen project similar to the NCI60 and CCLE. In their initial
release, investigators screened a set of 138 known anti-cancer com-
pounds against over 1000 different cancer cell lines (on average
525 cell lines tested per compound). Each cell line also was sub-
jected to thorough expression and copy number profiling along
with targeted mutation data for a set of 75 cancer genes. This
dataset constitutes another great resource for the identification of
genomic markers of drug responses.

Table 1
List of databases and abbreviations that are mentioned throughout the text of the chapter

Abbreviation Full description Website

GI50 Concentration of a compound that leads to a 50% inhibition of
cell proliferation

IC50 Concentration of a compound that leads to a 50% decrease in
the desired activity

LD50 Concentration of a compound that leads to 50% cell death

TGI Total growth inhibition

GWAS Genome-Wide Association Study

SNP Single-nucleotide polymorphism

DREAM Dialogue on reverse engineering assessment and methods

NCI60-DTP Drug screen of 60 cancer cell lines by the National Cancer
Institute’s (NCI) Developmental Therapeutics Program
(DTP)

https://dtp.cancer.gov

CCLE Cancer cell line encyclopedia http://www.
broadinstitute.org/
ccle/home

CMap Connectivity map http://www.
broadinstitute.org/
cmap

GDSC Genomics of drug sensitivity in cancer http://www.
cancerrxgene.org

TCGA The Cancer Genome Atlas http://cancergenome.
nih.gov

GTEx Genotype-tissue expression http://www.gtexportal.
org/home/
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2.4 Connectivity

Map/LINCS

Released by the Broad Institute, the Connectivity Map (CMap)
seeks to find connections between small molecules, physiological
processes, and disease states [12]. Using mRNA expression
(measured by DNA microarrays) as the “language” of cellular
response, the CMap measures how a panel of cancer cell lines
responds transcriptionally to a variety of different drug treatments.
This approach had previously been successful in identifying drug
mechanisms in yeast but had never been applied to cancer cells
[13]. The investigators profiled four different cancer cell lines
before and after treatment with a panel of more than 1000 small
molecules. The LINCS database is an updated version of this
profiling system with a much larger number of drugs and cell
lines. This database makes use of the LINC1000 expression
profiling system where the expression of 1000 key genes is
measured and used to infer the global gene expression profile.
From these transcriptional changes it is possible to explore a
drug’s mechanisms of action. These could be used to successfully
repurpose drugs for specific diseases or genetic states [14, 15].

3 Identification of Genomic Markers of Drug Response

A key first step to any drug response prediction effort involves the
identification of genomic markers that can impact efficacy. Identify-
ing those markers makes response prediction a much simpler task.
Once a polymorphism, gene expression pattern, or pathway has
been identified, all new samples can simply be screened for that
marker and, using known correlations with drug response, a pre-
diction of drug susceptibility can be made. Here, we focus on a
variety of approaches that can be used to identify genomic markers
indicative of drug response.

3.1 Using Genome-

Wide Associate

Studies to Identify

Polymorphisms

Related to Drug

Response

Genome-Wide Associate Studies (GWAS) have classically been used
to detect genetic variations associated with specific disease pheno-
types. However, in recent years, the use of GWAS has proved to be a
powerful method to identify polymorphisms that can affect drug
efficacy and toxicity [16]. Unlike approaches focusing on known
drug targets or candidate gene lists, GWAS provides a hypothesis-
free method that can systematically test a large number of variants
[17, 18]. In order to run a GWAS one must provide a measure of
response or toxicity for a large number of samples, as well as a
thorough genotyping of each sample.

GWA studies typically fall into two main categories depending
on whether the provided response measure is categorical (such as
case/control, responder/non-responder, adverse reaction/no
reactions, etc.) or quantitative (such as IC50 or a measure of side
effect severity). Recently, there have been a series of developments
improving the traditional GWAS, such as taking into account a
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gene’s functional information [19], epistasis [20], or missing data
[21]. Here, we review the basic premise of the categorical and
quantitative GWA studies:

1. Categorical—The goal of a categorical GWAS is to identify SNPs
that are highly predictive of which category a given sample will
be assigned to. To begin with, samples are assigned to one of the
two categories based on either their response to a given drug or
the observation of a given adverse effect. For each observed
SNP, we count the number of samples where that SNP is present
(or absent). This data is then used to populate what is known as a
contingency table. For instance, if in a dataset with 100 respon-
ders and 500 non-responders we observe 90 responders with a
certain SNP and 15 non-responders with that same SNP, the
resulting contingency table is shown in Table 2. A statistical test
is then run on each contingency table to measure the deviation
from the null-hypothesis, which assumes that there is no associ-
ation between the SNP and categorical classes. The most com-
mon test used is either the chi-squared test (or the related
Fishers exact test). This approach has successfully identified
variants related to interferon beta [22] and anti-TNF treatment
efficacy [23] as well as variants predictive of statin-induced
myopathy [24].

2. Quantitative: Instead of using a contingency table test to detect
significantly associated SNPs, a quantitative GWAS traditionally
uses a generalized linear model (GLM), such as an Analysis of
Variance (ANOVA)—a variant of a linear regression analysis—to
identify SNPs that are highly correlated to the variable of interest
(such as drug IC50) [25]. Though more complicated than the
categorical case, there exist a number of public bioinformatics
software packages such as PLINK [26] or SNPTEST [27] that
can run quantitative GWAS and output a p-value for each poly-
morphism. While these analyses are less common for drug
response prediction because of the difficulty in measuring quan-
titative response values, various groups have successfully used
them to identify SNPs associated with susceptibility to chemo-
therapeutic drugs [28] or ACE inhibitors [29].

Table 2
Sample contingency table showing how we can use the number of responders with a certain SNP to
test whether it is related to drug efficacy

Responders Non-responders

SNP present 90 15

SNP absent 10 485
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Regardless of the type of GWAS used, the output is a set of p-
values, one for each polymorphism tested. One important caveat is
that all p-values must be corrected for multiple hypothesis testing
(MHT) to account for the large number of statistical tests being
performed. The most commonly used methods for MHT are the
Bonferroni or Benjamini-Hochberg corrections. Adjusted p-values
are then visualized using a Manhattan plot where the genomic
position of each SNP is plotted against the negative log of its p-
value (see Fig. 1). Using the Manhattan plot one can visually iden-
tify genomic regions or particular SNPs that are significantly asso-
ciated with the given response feature.

3.2 Using Gene

Expression to Find

Response Signatures

and Predict Response

While GWA studies aim to find a set of mutations or polymorph-
isms that are predictive of how a patient will respond to a drug,
another popular approach is using gene expression data to find an
expression signature associated with a positive (or negative)
response. Different transcriptional profiles can often lead to differ-
ent levels of drug efficacy, and differential expression analyses can
help pinpoint the specific genes or pathways that drive the hetero-
geneous drug response and can be used to predict response levels.

The classic approach involves treating a cohort of mice or
patients, or patient samples or cell lines with a given drug and
measuring the degree of response in each sample. Similar to a
GWAS, the response rate can be measured either categorically
(responder/non-responder) or as a continuous variable. Using
either sequencing data from before treatment or differential gene
expression (comparing pre and post-treatment samples) one can
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Fig. 1 Sample Manhattan plot showcasing how one can use the output of GWAS calculation to find SNPs
related to drug efficacy. Boxed hits represent those that pass the significant p value cutoff and thus may be
relevant to treatment response
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search for gene expression patterns that seemsmore prevalent in the
samples that are susceptible (or resistant) to treatment (see Fig. 2).
For instance, one would expect to see genes that confer drug
resistance to be more highly expressed in samples where drug
treatment shows a limited effect.

A number of methods exist for detecting differential expression
across a set of samples. For microarray data oftentimes statistical
tests such as an ANOVA would suffice, but packages such as limma
[30] (see also Chapter 6 for an application of the limma package on
phosphoproteomics data) use linear models that can help deal with
more complicated experimental designs. For RNA-seq data the
most popular methods include a limma-voom [31], DESeq2
[32], edgeR [33], and cufflinks (cuffdiff) [34]. DESeq2 and
edgeR are currently considered the standard for differential expres-
sion analysis and both use similar underlying models (however with
different dispersion estimates). However, in our experience we have
found DESeq2 to be more conservative. One key difference
between DESeq2/edgeR and limma-voom is that voom does not
employ a negative binomial distribution and instead estimates the
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Fig. 2 Diagram on how gene expression patterns from responders and non-responders can be used to identify
signatures related to response and how these can be used to better select new patients likely to respond
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mean variance relationship. Therefore, voommay be a better choice
if the input data differs strongly from a negative binomial distribu-
tion. Finally, one major difference between the cuffdiff pipeline and
DESeq2 is that cuffdiff acts on the level of transcripts while
DESeq2 uses gene counts as inputs. Additionally, Wright et al.
[35] used a Bayesian predictor to automatically separate samples
into subtypes based on their respective gene expression profiles,
and used the output p-values to find the set of genes most predictive
of subtype. This type of approach is useful for pooled sets of
samples without knowledge of their subtype—for instance when
one would like to determine if well-responding patients all fall into
a certain disease subtype [36]. While initially tested on microarray
data, this approach can be easily adapted to RNA-seq data and
could generally be adapted to all types of predictive models.

3.3 Using Pathway

Annotations and GSEA

to Identify Differential

Biological States

Often a differential gene expression analysis will have a set of genes
as output, which has no obvious pattern or relevance to the type of
drug being investigated. Additionally, it is quite common for a set
of genes to be marked as significant in a differential gene expression
analysis, but when experiments are done to perturb individual
genes they seem to have little to no effect on drug response. In
cases like these it is often helpful to translate the differentially
expressed genes into a set of enriched biological pathways or gene
sets. These can provide a broader explanation of a drug’s mecha-
nism of action and a clearer understanding on how to predict
efficacy. This approach has previously been successful not only in
drug response prediction, but also in the development of highly
effective drugs. Overexpression of the mTOR pathway in lym-
phoma led to the development of inhibitors to specifically target
genes in that pathway [37], and global activation of the epidermal
growth factor receptor pathway was found to be predictive of
erlotinib susceptibility in pancreatic cancer xenografts [38].

The basic technique to finding enriched pathways or canonical
gene sets is to first annotate each gene based on the pathways/sets
it falls into. A few popular resources for pathway and gene set
annotation include: the Molecular Signatures Database (MSigDB)
[39], Reactome [40, 41], the Kyoto Encyclopedia of Genes and
Genomes (KEGG) [42], Gene Ontologies [43], and InnateDB
[44, 45]. Reactome, KEGG, and InnateDB group genes based on
their biochemical pathways (with InnateDB focusing on pathways
relating to immunity), Gene Ontologies group genes based on their
biological/molecular function or cellular localization, and
MSigDB is a combination of all the aforementioned databases
with custom sets of “hallmark” gene sets, or important genes
involved in certain processes. Following annotation, a statistical
test (such as the Fishers exact test) can be used to test whether a
certain pathway is enriched for up (or down) regulated genes
compared to what would be expected by random chance.
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Another popular method for testing pathway enrichment is
Gene Set Enrichment Analysis (GSEA) [46]. GSEA tests whether
genes of a certain pathway/set are differentially expressed between
the cases. It does this by computing an enrichment score for each
gene set—increase in score if genes in set are differentially
expressed, decrease in score if not—and using a number of permu-
tations (number can be set by the user) it tests whether that
enrichment score is significantly different than what would be
expected by chance. Packaged with the MSigDB gene sets, GSEA
has demonstrated success at identifying common biological path-
ways in independent lung cancer datasets while single-gene differ-
ential analyses could not [46].

4 Identifying Drug Targets and Mechanisms and Using Them to Improving
Response

4.1 Computational

Techniques to Identify

Drug Targets and

Mechanisms

For a small molecule in development the mechanisms of action and
binding targets are often not fully understood. A number of
computational methods exist that seek to predict targets for these
orphan small molecules, based either on chemical structure or on its
down-stream effects. These methods can broadly be divided into
three categories:

1. Molecular dynamics: Using intricate mathematical models,
molecular dynamics methods computationally simulate a
drug’s interaction with a given protein. To predict targets, an
orphan small molecule is tested against a series of proteins to
identify any with favorable binding results [47, 48]. However,
this approach requires significant computation power, complex
mathematical models, and full 3D structures for each queried
protein—data that is often unavailable.

2. Ligand-based [49, 50]: Using a set of known protein binding
partners for a given small molecule, ligand-based approaches
apply machine learning techniques to find other proteins with
high enough similarity to the known targets. The proteins with
high degrees of similarity are predicted to be novel binding
targets. However ligand-based methods often require a large
number of known binding partners for each tested small mole-
cule, and thus can mostly be used on drugs far enough in the
drug development phase.

3. Downstream effect based: Recently, a number of methods
emerged, which use the downstream effects of a small molecule
(such as induced gene expression change [51] or side-effects
[52]) to predict targets for orphan small molecules. The basic
premise of these methods is to compare the effects of an orphan
small molecule to the effects of drugs with known targets. If the
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orphan molecule has an effect very similar to a drug with a
known target, one would predict this known target to also be a
target of the orphan small molecule. However, most current
methods only utilize a small number of the available data sources
and are thus not broadly applicable to all drug types. Our lab
recently developed BANDIT, a novel computational method
that integrates multiple different pieces of data on small mole-
cules to predict specific binding targets and mechanisms
[53]. When tested on a set of diverse drugs, BANDIT achieved
an accuracy of approximately 90% at identifying known targets
(validated using a standard cross validation setup), much higher
than expected from other target prediction methods.

Another popular option is to focus on a drug’s broad mecha-
nism of action rather than its specific binding targets. One way to
accomplish this is to observe how a given drug changes the tran-
scriptional profile in a sample. For example, using gene expression
data following cisplatin treatment, this type of analysis identified
the p53 response and other pathways to be involved in cisplatin
response [54]. This approach has become more practical with the
emergence of public databases such as the Connectivity Map
(CMap) [55]. From the CMap database, one can calculate fold
change values for each gene after drug treatment. Using GSEA or
other pathway enrichment methods, the fold change values can be
converted into a set of pathway scores that reveal which pathways
were enriched or mobilized. Though far less precise than specific
target identification, this information is easier to obtain and could
provide additional information on the context in which a given
drug could be used.

4.2 Using Known

Drug Targets To

Predict Response

Assuming one can determine the mechanisms of action of a drug—
either in terms of specific binding targets or broad knowledge on
the biological pathways mobilized—the task of predicting efficacies
is often much simpler. For example, if a drug’s main mechanism of
action is to target Protein A, then one would expect different
efficacies in samples based on whether there is an amplification or
deletion of Protein A. This type of reasoning also applies when
there are mutations in a known drug target. Examples of this are
treatments involving Gefitinib or Herceptin. Gefitinib is an anti-
cancer small molecule known to target the EGFR kinase, and
mutations in EGFR were found to predict sensitivity of samples
to gefitinib treatment [56]. Herceptin, an antibody that targets
HER2, was found to improve the outcomes of cancer patients
withHER2amplifications or activatingmutations [57, 58].Another
example of this concept is vemurafenib—a small molecule that
targets V600E BRAF mutation—that has been found to be selec-
tively effective in cancer patients with this exact mutation, while
having no beneficial effect on normal BRAF samples
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[59–61]. These are just a few of the many examples showing how
combining known drug targets with targeted sequencing can help
detect instances of differential response.

However, it is also important to note that while the alterations
of a drug’s target are often predictive of efficacy, this is not always
the case, even if the target itself serves as a biomarker [62]. More-
over, there are often cases where the predictive biomarker for a
given drug is not the actual target, but rather another gene or set of
genes involved in the same pathway or biological processes as
drug’s target. In cases like these sequencing could still prove to
be a valuable tool, and we advise utilizing some of the other
methods mentioned in this chapter. Drug target information
could be used in combination with these methods to refine predic-
tions and gain greater biological insights.

Sequencing-based approaches also can be very successful in
positioning drugs for specific disease conditions—especially differ-
ent cancer types. Using resources like the Cancer Genome Atlas
(TCGA) [63] and Genotype-Tissue Expression (GTEx) project
[64], one can find genes or pathways that are significantly upregu-
lated in certain cancers or cancer types compared to either normal
tissue samples or other cancer subtypes. Identifying such cancer-
subtype-specific, upregulated signatures could highlight drugs
known to target these signatures as particularly viable candidates
for treatment. For instance, it was recently discovered that dopa-
mine receptors were selectively upregulated in neoplastic stem cells
in breast cancer. It was observed that thioridazine (a compound
known to target dopamine receptors) was particularly effective
against these cell populations [65].

4.3 Exploiting

Genetic Interactions

(SL/SDL)

One approach that has become increasingly popular is exploiting
networks of synthetic lethality (SL) and synthetic dosage lethality
(SDL) to predict drug efficacy. SL describes a specific type of
genetic interactions involving two or more genes, where the loss
of either gene individually is non-fatal, but the combined loss of all
SL partner genes leads to a severe decrease in fitness or cell death.
SDL describes a related genetic interaction where lethality is
observed when one gene is lost while its SDL partner is overex-
pressed [66, 67]. Both SL and SDL interactions are highly relevant
to cancer biology, as most cancers have both widespread losses and
gains of certain genes. Exploiting these could drastically improve
patient prognosis. For instance, if Gene A and Gene B are in an SL
pair and Gene A is lost in a given cancer sample, then one would
expect compounds targeting Gene B to have better responses in
this sample (see Fig. 3).

To this end there have recently been many efforts to uncover
underlying SL and SDL networks in cancer. Among the most
successful efforts was the data mining synthetic lethality identifica-
tion pipeline DAISY [68]. DAISY uses three distinct hypotheses to
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detect SL pairs (with the inverse hypotheses being used for SDL
pair detection):

1. Genes in an SL pair will have significantly lower raters of
co-mutation or co-loss.

2. Knockout/knockdown of a given gene will be more fatal in
samples with under-expression or loss of its SL partner.

3. Genes in an SL pair are more likely to be co-expressed.

By scanning for gene pairs that fulfill all three hypotheses,
DAISY predicted networks of SL and SDL interactions. It achieved
an accuracy level of approximately 77% (measured by Area Under
the Receiver Operating Curve) when compared to known SL inter-
actions, demonstrating that DAISY could accurately infer SL and
SDL genetic interactions. To translate this into predicting drug
responses, the authors identified sample-specific exploitable inter-
actions, or SDL interactions where one gene was overexpressed and
SL interactions where one gene was lost. DAISY then identified
drugs known to target the other gene in each exploitable interac-
tion. For each drug DAISY ranked the most sensitive samples based
on the number of exploitable interactions being targeted by each
drug. They found that specific drugs were significantly more effec-
tive in cell lines predicted to be sensitive than those predicted to be
resistant. Furthermore, the authors used a similar approach to
predict the exact IC50 value for each drug across a set of cancer
cell lines and observed a strong correlation between the predicted
and observed values (R ¼ 0.721). Taken together these results
show how known genetic interactions (particularly SL and SDL
interactions) can be combined with sequencing data to better
predict drug sensitivities and inform treatment.

Fig. 3 (a) Diagram highlighting the concept of synthetic lethality and how known synthetic lethal relationships
can be combined with genomic information to better predict drug response. (b) Using synthetic lethality to
predict differential response
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5 Machine Learning Approaches

In cases where identification of response biomarkers is too complex
or the identified biomarkers do not reveal any underlying biological
insight, machine learning approaches, which can combine sequenc-
ing data with information such as biological networks, are very
powerful. The idea for employing machine learning approaches
for drug response prediction is for the computational algorithm
to learn how to combine a set of distinct features into a prediction
of sensitivity. Most machine learning methods for drug sensitivity
prediction are classified as supervised methods. Those supervised
methods use a set of sequenced samples with known drug sensitiv-
ities to “train” the algorithm and determine how to combine
features based on their predictive power (see Fig. 4). While the
linear regression model discussed earlier can be considered the
oldest form of machine learning, most popular methods currently
utilize more advanced modeling to account for the complexity in
genetic sequencing data. In fact, machine learning methods can
often detect higher order genomic markers of drug response that
other methods may have missed. One example is the use of machine
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learning to identify the EWS-FL11 translocation in Ewing’s sar-
coma as a marker of sensitivity to PARP inhibitors [69].

Many methods seek to improve their performance by including
additional information on known biological networks, genetic
interactions, or drug chemical properties. For instance, Menden
et al. [70] found that including drug chemical information (such as
weight and lipophilicity) with sequencing data improved the per-
formance of both a neural network and random forest for sensitivity
prediction. In collaboration with the NCI, the Dialogue on Reverse
Engineering Assessment and methods (DREAM) project led a
community effort to improve drug sensitivity predictions
[71]. Through this effort, the NCI-DREAM consortium publicly
released drug sensitivity data for a set of breast cancer cell lines
along with thorough genetic, epigenetic, and proteomic sequenc-
ing data. Individual groups each submitted different sensitivity
prediction methods and the NCI-DREAM consortium analyzed
each method to identify any particular method features that led to
higher accuracies. Interestingly, they found that the inclusion of
annotated biological pathways was one of the two variables that
significantly boosted performance [71]. Additionally, the consor-
tium found that the top performing methods all utilized nonlinear
modeling, indicating that in many cases the connections between
individual genetic features and drug response are too complex to be
understood using a strictly linear approach. Finally, they observed
that though sensitivity to proteasome inhibitors tended to be pre-
dicted with the most accuracy, there was a predictive signal for most
of the drugs in their test set. This further indicated that machine
learning methods have the potential to significantly improve
sequencing-based drug response prediction.

6 Conclusion and Outlook

In the past two decades, there have been significant advances in
using genomic data and bioinformatics to better understand the
heterogeneous nature of drug response. By combining data on
genomic alterations and drug response with thorough statistical
methods we can identify specific predictive markers. Moreover,
through post-treatment genomic profiling we can gain a better
understanding of the mechanism and effect of a given drug. This
knowledge can then be used to better select patients or diseases
where that mechanism will provide the most therapeutic benefit.
Additionally, there has recently been an emergence of computa-
tional methods to identify drug targets when conventional
approaches fail. However, as the amount of data generated con-
tinues to increase and drugs targeting new pathways are developed,
we imagine that no single approach or method will provide high
enough accuracy. Therefore, we expect the field to move toward
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using machine learning strategies that are able to integrate a variety
of different data-types into a single predictive output. We are
already seeing the creation of sophisticated methods for this pur-
pose and anticipate this to only improve over the coming years. All
together though we believe that the adoption of the methodology
described in this chapter not only has the power to expand our
understanding of pharmacology but can also significantly improve
the current schema of patient treatment.
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Chapter 15

A Robust Optimization Approach to Cancer Treatment under
Toxicity Uncertainty

Junfeng Zhu, Hamidreza Badri, and Kevin Leder

Abstract

The design of optimal protocols plays an important role in cancer treatment. However, in clinical applica-
tions, the outcomes under the optimal protocols are sensitive to variations of parameter settings such as
drug effects and the attributes of age, weight, and health conditions in human subjects. One approach to
overcoming this challenge is to formulate the problem of finding an optimal treatment protocol as a robust
optimization problem (ROP) that takes parameter uncertainty into account. In this chapter, we describe a
method to model toxicity uncertainty. We then apply a mixed integer ROP to derive the optimal protocols
that minimize the cumulative tumor size. While our method may be applied to other cancers, in this work
we focus on the treatment of chronic myeloid leukemia (CML) with tyrosine kinase inhibitors (TKI). For
simplicity, we focus on one particular mode of toxicity arising from TKI therapy, low blood cell counts, in
particular low absolute neutrophil count (ANC). We develop optimization methods for locating optimal
treatment protocols assuming that the rate of decrease of ANC varies within a given interval. We further
investigated the relationship between parameter uncertainty and optimal protocols. Our results suggest
that the dosing schedule can significantly reduce tumor size without recurrence in 360 weeks while insuring
that toxicity constraints are satisfied for all realizations of uncertain parameters.

Key words Robust optimization, Mixed integer optimization, Cancer treatment, Toxicity uncertainty

1 Introduction

An important problem in the study of cancer is the development of
resistance to anti-cancer therapies. In particular, resistance-
mediated treatment failure has been a problem for several block-
buster anti-cancer therapies [1, 2]. The problem of therapy resis-
tance has been extensively studied from the perspective of
evolutionary biology [3]. For example, in [4], the authors devel-
oped a stochastic model with experimental data to study the likeli-
hood, composition, and diversity of pre-existing resistance. Their
results show that there is at most one resistant clone present at the
time of diagnosis for most patients. In another work [5], the
authors constructed a stochastic model to study the timing of
resistance-mediated treatment failure. They found that in the
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setting of treatment of non-small cell lung cancer with the targeted
therapy Tarceva it is possible that treatment is discontinued too
early.

Mathematical models of cancer evolution during treatment
have the potential to be very useful in the creation of optimal
treatment schedules. If one can construct computationally tractable
mathematical models of cancer evolution under treatment, then it
is possible to compare various treatment regimens and thereby
search for the most effective regimen. A significant hurdle in the
use of such models is parameter variability and uncertainty. In
particular, one may have a computationally tractable mathematical
model for tumor evolution during treatment, but finding an opti-
mal treatment regimen for a patient requires knowing the model
parameters for that patient. One possible solution to this problem is
to estimate model parameters for a specific patient [6]. However,
this approach is often hindered by a lack of sequential tumor size
data for individual patients. An alternative approach is developing
optimal treatment schedules that are robust to uncertainty in model
parameters. In [7] we developed an approach for optimizing radia-
tion therapy schedules in the presence of uncertain model
parameters.

An exciting development of the past 15 years of cancer medi-
cine is the development of new small molecule pharmaceutical
agents that specifically target cancer cells [8, 9]. One stunning
success has been in the treatment of chronic myeloid leukemia
(CML) with the tyrosine kinase inhibitor (TKI) imatinib
[10]. Since the launch of imatinib several other TKIs have been
developed that are effective in the treatment of CML, e.g., dasati-
nib and nilotinib [11, 12]. In general, these drugs target the fusion
protein BCR-ABL which results in the unchecked proliferation of
CML cells [43]. While TKI therapy has been largely successful, a
fraction of patients’ experience treatment failure due to the evolu-
tion of mutated cancer cells that are resistant to the TKI they have
been treated with. For example, in [13] researchers reported that
the failure rate at 60 months for patients receiving imatinib was
17%. One possible method for reducing the risk of this evolved
resistance is to treat patients with a variety of TKIs thereby reducing
the risk of treatment failure due to a cell that is resistant to a
specific TKI.

This leads to a challenging optimization problem where the
goal is to decide on a sequence of TKI therapies that maximize
patient outcomes. In our earlier work [14] we considered this
problem, and worked with a mathematical model to study the
evolution of CML and normal blood cells under treatment with a
variety of TKIs. A potential roadblock for clinical implementation
of our prior work is that model parameters are difficult to estimate
accurately. Therefore, in the current work we consider an extension
of [14] by allowing for uncertainty in model parameters.
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The structure of the chapter is the following. In Subheading 2,
we review general literature on optimization of cancer therapy in
continuous time. In Subheading 3, we present our methodology
for solving cancer treatment optimization problems with uncertain
toxicity response. This is done in the context of treatment of CML
with multiple TKI. In Subheading 4, we present numerical results
in the setting of CML. We conclude the Chapter by summarizing
our innovative methodology and providing insight into clinical
management.

2 General Models

The general statement of an optimization problem in cancer ther-
apy consists of the objective function, the control system of cell
dynamics, and the toxicity constraints. Optimal control theory is
widely used in the design of treatment protocol problems. The
general form for a continuous-time cancer optimization problem
can be described as follows:

minJ ð1aÞ
s:t: _x tð Þ ¼ f x; yð Þ ð1bÞ

_y tð Þ ¼ g x; yð Þ ð1cÞbf x tð Þ; y tð Þð Þ � 0 ð1dÞ
~f x tð Þ; y tð Þð Þ ¼ 0 ð1eÞ
xmin � x tð Þ � xmax ð1f Þ
ymin � y tð Þ � ymax ð1gÞ

where J is the objective function and is determined by the intended
outcome of the therapy, x(t) ¼ (x1(t), x2(t), . . . , xn � 1(t),
xn(t)) is the state vector which represents the population of
n different types of cells at time t, e.g., normal, wild type, or mutant
cells, and y(t) ¼ (y1(t), y2(t), . . . , yl � 1(t), yl(t)) is the control
vector which represents the l control types such as drug dosages,
treatment methods (i.e., chemotherapy, radiation therapy, TKIs) or
which drug will be applied during the treatment. The equation
_x tð Þ ¼ f x; yð Þ is a differential equation governing the cell dynamics.
The equation _y tð Þ ¼ g x; yð Þ is a differential equation that governs
the drug levels in the system as a function of cell population, i.e.,
the relationship between drug dosage and tumor sizes with respect
to time t. Equations 1d and 1e indicate that the x(t) and y(t) may be
constrained by inequality and equality constraints, and Eqs. 1f and
1g indicate the lower and upper bounds for x(t) and y(t),
respectively.
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2.1 Objective

Functions

The role of the objective function in Eq. 1 is to specify the desired
outcome of the course of anti-cancer therapy. The simplest form of
an objective function is to minimize the tumor population at the
end of treatment [15], i.e.,

J ¼ C Tð Þ ð2Þ
where C(T) is the tumor cell population at time t and T is a given
constant parameter indicating the length of treatment period.
Although objective functions of the form (Eq. 2) are easy to imple-
ment, they suffer from the drawback that they allow for large tumor
populations during treatment. To deal with this shortcoming,
Murray et al. [16] minimized the total tumor cell population over
the interval [0, T] while limiting the side effects of therapy. In
particular, they consider the objective function

J ¼
ðT
0

α1C tð Þ þ α2Se tð Þð Þdt

where Se(t) is a function modeling side effects. It can be a function
of dosage [17], or loss of body weight [18], and α1 and α2 are
weighting values for the cumulative tumor population and normal
tissues toxicity, respectively. Note that if one chooses parameter
α2 as zero, then the goal is to minimize the cumulative tumor
population over the time frame [0, T].

2.2 Tumor Growth

Models

Most optimization models of cancer therapy assume that tumor
growth can be accurately modeled by a set of differential equations
(usually ordinary differential equations). Some important questions
to consider when building these kinds of models are how the tumor
cells grow, how they interact, and how they are affected by anti-
cancer therapy. The simplest tumor growth model assumes that all
tumor cells proliferate with constant cell cycle duration which
results in an exponential growth model:

_x tð Þ ¼ λx tð Þ
where x(t) is the tumor size at time t, and λ is a constant related to
the net-growth rate of the tumor. By using a single parameter, an
exponential growth model can capture some key features of the
beginning phase of tumor growth. However, the prediction of
tumor size based on the exponential growth model does not
match well with clinical datasets, since the exponential model will
give unreasonably large values over a long time. In particular,
limited nutrient availability for large tumors makes the exponential
growth an inappropriate model for tumor growth [19]. To over-
come this drawback researchers often use models such as logistic or
Gompertz models, where the growth rate decays as the tumor
population increases [19]. Thus, as t increases, tumor size
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converges to a maximal volume, the so-called carrying capacity,
denoted by K. The logistic growth model is defined based on a
linear reduction in the tumor growth which is proportional to the
tumor size [20]:

_x tð Þ ¼ λx tð Þ 1� x tð Þ
K

� �
Like the logistic growth model, the Gompertz growth model

assumes that decreasing growth rate is due to competition for the
nutrients in a more densely populated tumor

_x tð Þ ¼ λx tð Þ ln K

x tð Þ ð3Þ

In [20, 21], the authors propose a modified Gompertz model,
which incorporates drug concentration. The dynamics of drug
concentration are modeled by the following equation:

_v tð Þ ¼ u tð Þ � βv tð Þ
where v(t) is the drug concentration at time t and u(t) is a piecewise
continuous function in time that indicates the rate of drug infusion.
Drug concentration falls by a fraction of βv(t) over the time dt. The
authors assume that the net-growth of a tumor cell population
comes from two sources: tumor growth due to cell proliferation
and tumor shrinkage due to drug administration. The tumor
growth is modeled by a general Gompertz model, i.e., Eq. 3. For
modeling cell death, they make two more assumptions: the tumor
size linearly decreases x(t), and tumor killing stops if drug concen-
tration drops below vth. In summary, the tumor cell kill is given by
the function:

L x tð Þ; v tð Þð Þ ¼ k v tð Þ � vthð ÞH v tð Þ � vthð Þx tð Þ
where k is the proportion of tumor cells killed per unit time per unit
drug concentration, andH is the Heaviside step function which is a
discontinuous function whose value is zero for negative argument
and one for positive argument [22]:

H v tð Þ � vthð Þ ¼ 0; if v tð Þ < vth
1; if v tð Þ � vth

�
The cell dynamics are described as

_x tð Þ ¼ γx tð Þ ln K

x tð Þ
� �

� L x tð Þ; v tð Þð Þx tð Þ

In [23], the authors propose a model to describe the dynamics
of acute myeloblastic leukemia (AML). The two cell types
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considered in this model are normal and leukemic hematopoietic
cells. The authors assume that the leukemic population inhibits the
growth of normal cells, and that drug treatment can kill both
leukemic and normal cells. The models are described in the
following:

_L tð Þ ¼ g log
LA

L

� �
L � fL �Kv tð ÞL

_N tð Þ ¼ a log
NA

N

� �
N � bN � cNL � hu tð ÞN þ G tð Þ

where L(t) and N(t) denote the population of leukemic and
normal cells at time t, respectively. Parameters g and a represent the
birth rates of leukemic and normal cells, respectively, f and b are the
death rates of leukemic and normal cells, respectively. The parame-
ter c is the degree of inhibition exercised by the leukemic cells over
the normal cells, while LA and NA are the carrying capacities of
leukemic cells and normal cells, respectively. Parameters k and
h represent the drug’s effect on killing of both leukemic and normal
cells. Finally, G(t) is the regrowth rate of normal cells due to the
infusion and action of recombinant hemolytic growth factors.

A four-compartment model is proposed to explain the kinetics
of the molecular response to imatinib [24]. There are three differ-
ent cell types in the model: normal cells, wild-type leukemic cells,
and mutant leukemic cells. For each cell type, the authors consid-
ered four layers: stem cells (SC), progenitor cells (PC), differen-
tiated cells (DC), and terminally differentiated cells (TC). Wild-
type leukemic cells can acquire mutations that confer resistance to
imatinib at rate μ. The authors assume that imatinib only decreases
the birth rates of mutant PC and DC. The basic model is given by

SC : _x0 ¼ λ x0ð Þ � d0½ �x0 _y0 ¼ ry 1� μð Þ � d0

h i
y0 _z0 ¼ rz � d0ð Þz0 þ ry y0μ

PC : _x1 ¼ axx0 � d1x1 _y 1 ¼ ayy0 � d1y1 _z1 ¼ azz0 � d1z1

DC : _x2 ¼ bxx1 � d2x2 _y 2 ¼ byy1 � d2y2 _z2 ¼ bzz1 � d2z2

TC : _x3 ¼ cxx2 � d3x3 y ˙3 ¼ cyy2 � d3y3 _z3 ¼ czz2 � d3z3

where x0, x1, x2, and x3 indicate the populations of normal SC, PC,
DC, and TC, respectively. y0, y1, y2, and y3 indicate the populations
of wild-type leukemic SC, PC, DC, and TC, respectively. z0, z1, z2,
and z3 indicate the populations of mutant leukemic SC, PC, DC,
and TC, respectively. The rate constants are given by a, b, and cwith
appropriate indices between normal, wild type, and mutant leuke-
mic cells. d0, d1, d2, and d3 indicate the death rates of SC, PC, DC,
and TC, respectively. λ is a decreasing function describing the
homeostasis of normal SC. ry and rz are the birth rates of sensitive
leukemic and resistant leukemic SC, respectively. In our previous
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work [14] an optimization problem was designed based on an
extension of this model that considered multiple possible drugs
(imatinib, dasatinib, and nilotinib). The goal of the optimization
problem was to identify a sequence of drug exposures that led to a
minimal leukemic cell burden at the end of a fixed time interval.

2.3 Toxicity

Modeling

In cancer therapy, the goal is to achieve a maximal reduction in
tumor burden while keeping toxic side effects within acceptable
levels. Mathematical modeling can be used to understand the rela-
tionship between toxic side effects and treatment administration.
The control variables may be drug dosages or selections during the
course of therapy. Some existing models ignore the toxicity effects
by assuming that patients can tolerate the side effects during treat-
ment [25, 26]. However, it is often the case that patients are
required to go off drug for a period (drug holiday) due to severe
side effects such as grade 3–4 neutropenia [27]. Taking toxicity into
account brings an important phenomenon into the model and
allows for greater confidence when proposing treatment schedules
for the clinical setting.

One approach for modeling toxicity of cancer therapy is a
statistical approach that takes into account patient factors such as
immune system performance, loss of body weight, and side effects
experienced by patients [27–29]. For example, Sokal et al. [28]
developed a model to calculate the risk of drug toxicity during
treatment as a function of patient’s age and the number of platelet
and blast cells:

r ¼ exp(0.0116� (age � 43.4) þ (spln� 7.51) þ 0.188
� [(pc/700)2� 0.563] þ 0.0887� (bc � 2.10))

where spln represents the spleen size, pc is the platelet count, and bc
is the number of blast cells. If r < 0.8, patient is in a low risk
protocol. If 0.8 � r � 1.2, patient is in an intermediate risk
protocol, and if r > 1.2, patient is in a high-risk protocol.

In [20], the authors proposed a mathematical model for the
prevention of excessive side effects in cancer chemotherapy. First,
the drug concentration at the cancer site at any time should be less
than a positive constant value vmax

0 � v tð Þ � vmax

second, the total cumulative toxicity obtained by taking the integral
of drug concentration over the course of treatment should be less
than a positive constant value vcum
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ðT
0

v sð Þds � vcum

and third, it is also possible to limit the cumulative toxicity over a
window of time which is shorter than the total treatment time
T under threshold vdi

ðtþdt

0

v sð Þds � vdi

The above toxicity constraints are widely applied in cancer
optimization problems.

In our previous work [14], we propose a discrete optimization
model for studying optimal treatment regimens of CML. We
defined cytotoxic regimens as schedules resulting in low absolute
neutrophil count (ANC) values in patients at any time during the
therapy. We have built a simple mathematical model for the evolu-
tion of ANC levels under a variety of therapies and then used this
model to monitor the dynamics of the patient’s ANC in response to
each therapy protocol to ensure that the resulting toxicity in the
patient falls within acceptable ranges.

3 Robust Optimization for Patients with CML

In this section, we introduce our original work that develops a
dynamical model to study the optimal treatment protocol under
toxicity uncertainty in the context of a specific cancer type, CML.
CML is a cancer of the blood and bone marrow that is normally
caused by the oncogene BCR-ABL [30]. The treatment of CML
was transformed by the development of imatinib which is a selective
inhibitor of the chimeric protein Bcr-Abl (product of the oncogene
BCR-ABL). Initial clinical trials showed that the use of imatinib for
the treatment of CML resulted in rapid response in the majority of
patients [9, 31]. Despite a positive effect, around 20% of patients
who were treated with imatinib do not achieve a complete cyto-
genetic response (CCR) [44]. One possible cause of this is the
presence of imatinib resistant CML cells. In another study of
BCR-ABL mutations in CML patients, researchers report that
mutations were detected in 195/467 (41%) patients [32]. Several
new inhibitors, such as nilotinib and dasatinib, have been developed
to obtain an increased potency and a broader range of activity
against the known imatinib-resistant mutants [33]. Nilotinib has a
20–30-fold increase in potency over imatinib, while dasatinib
shows 100–300-fold higher potency than imatinib in vitro
[34]. Overall, these three drugs are promising in the treatment of
CML. An important issue that also needs to be considered is that
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side effects arise due to drug toxicity, including low blood cell
count, fever, heart problems, as well as a number of other adverse
events [35–37]. Different patients may suffer different side effects
and even for the same patient, due to the change in health condi-
tion over time, side effects may vary over the course of treatment.
This complexity of the side effects induced by TKI therapy makes
the scheduling of treatment for CML challenging.

3.1 Nominal Problem

Formulation

In this section, we first introduce a series of ordinary differential
equations (ODE) that describes the dynamics of normal stem cells,
wild-type CML cells, and mutant CML cells in response to combi-
nation therapy. Then we explain how the toxicity associated with
treatment protocols quantified by monitoring ANC values during
treatment. Next, we propose a deterministic optimization problem
to find the best schedule of multiple therapies based on the evolution
of CML cells according to our ordinary differential equation model.
The resulting optimization problem is nontrivial due to the presence
of ordinary different equation constraints and integer variables. We
explain how the nominal problem can be solved efficiently.

3.1.1 CML Dynamics We use ODEs to describe the dynamics of stem cells for CML
patients over a given time period of M weeks. There are three
different types of stem cells: normal stem cells (NSC), wild-type
stem cells (WSC), and mutant stem cells (MSC). Let I ¼ { 1, 2, 3,
. . . , n} be the set of stem cell types, where types 1, 2, and i denote

NSC, WSC, and type (i � 2) MSC (3 � i � n), respectively. Let
J ¼ {0, 1, 2, 3} be the set of drugs used to treat CML, where drug
0, 1, 2, and 3 denote a drug holiday, nilotinib, dasatinib, and
imatinib, respectively. Let M ¼ {1, 2, 3, . . . , M} be the set of
treatment periods and xi(t) the abundance of NSC, WSC, and
MSC at time t for i ∈ I, respectively. In this project, we assume
that Δt ¼ 7 days. If drug j ∈ J is taken for week m, the cell
dynamics are modeled as below:

_x1 tð Þ ¼ b
j
1ψx1 � d

� �
x1, t∈ mΔt ; m þ 1ð ÞΔt½ �,m∈M \ Mf g, ð4aÞ

_x2 tð Þ ¼ b
j
2
1� n � 2ð Þμð Þψx2 � d

� �
x2, t∈ mΔt ; m þ 1ð ÞΔt½ �,m∈M \ Mf g, ð4bÞ

_xi tð Þ¼ b
j
i
ψx2 �d

� �
xiþμb

j
2
ψx2x2

� �
, t∈ mΔt ; mþ1ð ÞΔt½ �,m∈M \ Mf g,3� i�n, ð4cÞ

Here, we assume that the birth rates of the NSC, WSC, and
MSC are drug specific, but drugs do not affect the death rates of
stem cells and all the stem cells have the same death rate d. The
division rates of NSC, WSC, and MSC under drug j are b

j
1
, b j

2
, and

b
j
i

per week, respectively. MSC are mutated from WSC with a

mutation rate μ. The competition between normal and leukemic
stem cells is modeled by the density dependence function ψxi ,
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where ψxi ¼ 1= 1þpi
Pn
k¼1

xk tð Þ
 !

. These functions ensure that the total

number of normal and leukemic stem cells remains constant once
the system reaches a steady state [38]. We set the constants

p1¼ b01
d1

�1

� �
=K1 and p2¼ b02

d1
�1

� �
=K2, where K1 and K2 are the

equilibrium abundance of NSC and WSC. In the equilibrium sys-
tem of NSC, we further assume only NSC is present. In the equi-
librium system of WSC, we assume only WSC is present. We also
assume that p2 ¼ pi (3 � i � n).

Note that in this model we focus solely on the stem cell layer
since our earlier work [14] thoroughly investigated the structure of
optimal schedules in a hierarchical population model, i.e., model
with multiple layers.

3.1.2 Toxicity Modeling

in Nominal Optimization

Problem

In our previous work [14], we developed a model to quantify the
ANC levels in patients during the course of therapy. Here we review
this model. We assume the patient’s ANC level decreases at rate
danc , j per week taking drug j, for j ¼ 1 , 2 , 3. During drug holi-
day, ANC increases at rate �danc , 0 per week but never exceeds the
normal level ANCnormal. At the same time, ANC should stay above
an acceptable threshold level Lanc. The ANC levels are modeled as:

ymþ1 ¼ min ym �
X
j∈J

danc, j z
m, j ; ANCnormal

 !

ym � Lanc

where ym is the ANC value at week m. zm , j, the binary decision
variables, indicate whether drug j is taken in weekm or not, for each
j ¼ 0 , 1 , 2 , 3 and m ¼ 0 , 1 , . . . , M � 1.

3.1.3 Nominal

Optimization Problem

Assume that the initial population for each cell type is known. The
goal of the nominal problem is to develop a treatment protocol to
minimize the cumulative leukemic cell number over a given
planning period subject to the toxicity constraints. The drug used
in each treatment cycle is determined by the weekly treatment
decision. Within each week, the dosing regimen stays identical on
a day-to-day basis. The cumulative leukemic cell numbers at time
t are modeled by the total number of WSC and MSC which isP
m∈M , i∈I \ 1f g

xi,m, where xi , m ¼ xi(mΔt).

The nominal optimization problem can be formulated as a
mixed-integer optimization problem with ODE constraints: details
are provided in Appendix 1.

3.2 Robust Problem

Formulation

A challenge of utilizing this optimization procedure in the clinical
setting is that parameters such as birth rates, death rates, and
toxicity decreasing rates in model (Eq. 7) may vary among patients.
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Even for the same patient, due to changes in health status, these
parameters may vary over time. By modeling the uncertainty in
(Eq. 7), we investigate how parametric uncertainty affects the
optimal solution. Specifically, we consider the uncertainty of drug
toxicity in the model. The problem is formulated as a mixed integer
robust optimization problem. Our objective function is to mini-
mize the cumulative leukemic cell number over a fixed period. The
goal of the study is to investigate how the parameter uncertainty
affects the optimal solution.

3.2.1 Toxicity

Uncertainty

We primarily focus on uncertainty in the rate at which the ANC
level decreases under the different treatment options. In particular,
we assume

dm
anc, j ¼ Lj þ bCjηm, j ð5Þ

where Lj is the lower bound of ANC decrease rates under drug j; bCj

a positive constant value and ηm , j is an unknown random variable
between 0 and 1, which is used to capture the uncertainty of drug
toxicity. First note that we can relax constraint (Eq. 8g) with the
following inequality:

ymþ1 � bym �
X
j∈J

Lj þ bCjηm, j
� �

zm, j ¼ bym �
X
j∈J

Lj zm, j �
X
j∈J

bCjηm, j zm, j :

In robust optimization, we are interested in finding the best
solution that is feasible for all realizations of uncertain parameters
and we do not allow any violation of the toxicity constraint for any
parameters taking values in the sets (Eq. 5). Therefore, the robust
counterpart of the nominal problem associated with uncertainty
sets defined in Eq. 5 is found by solving

min
X

m∈M , i∈I \ 1f g
xi,m ð6aÞ

s:t: sup ymþ1�bymX
j∈J

Lj zm,j þ
X
j∈J

bCjηm,j zm,j jηm,j∈ 0;1½ �
( )

�0 ð6bÞ

ð8bÞ, ð8cÞ, ð8dÞ, ð8eÞ, ð8f Þ, ð8hÞ,
ð8iÞ, ð8jÞ, ð8kÞ, ð8lÞ, ð8mÞ, ð8nÞ ð6cÞ

Further mathematical details on the solution and derivation of
the robust optimization problem can be found in Appendix 2.

4 Example of Applying Modeling Methodology to CML Treatment

In this section, first we will describe the dataset and parameters that
were used in our numerical experiments, then the dynamics of the
CML cells under three mono-therapies will be simulated. Next, the
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solution to the nominal and robust optimum drug schedule under
toxicity constraints will be explored. At the end of this section the
sensitivity of the optimal solution to model parameters and the
effect of the robust optimization on treatment outcome are
studied.

4.1 Parameter

Selection

For our model, we assume there are two BCR-ABL-mutant cell types
that are Y253F and F317L. We consider patients harboring three
different levels of the BCR-ABL mutant cells before the start of
therapy: low, medium, and high. The corresponding initial cell
populations are given in Table 1. The parameter settings for birth
rates and death rates in our model (Eq. 7) are given below. Based on
[38], we set death rate d to be 0.003. The net-growth rate of NSC is
assumed to be 0.005. The net-growth rates ofWSC b j

2

� �
under drug

holiday and mono-therapies are 0.008 and 0.002, respectively. We
assume that the net-growth rates of MSC under holiday

b0i ; i ¼ 3; 4
� �

are the same as b02 which is 0.008. b j
i for i ¼ 3 , 4

and j � 1 are estimated based on the work presented in [39] which
studied the in vivo mutational selectivity profile for mono-therapies.
We consider two mutant cell types in the model, i.e., Y 253F and
F317L. For Y 253F, the estimated values of b j

3 are 0.0088,�0.0097,
and 0.0101 under nilotinib, dasatinib, and imatinib, respectively. For
F317L, the estimated values of b

j
4 are �0.0228, 0.0509, and

�0.0079 under nilotinib, dasatinib, and imatinib, respectively. The
mutation rate of WSC is 10�7 [24]. We assume the equilibrium
abundance of NSC (K1) and WSC (K2) are 107 and 2 � 107,
respectively.

For toxicity constraints, we assume the patient’s normal ANC
level is Uanc ¼ 3000/mm3ANC and its ANC cannot fall below
Lanc ¼ 1000/mm3. We assume that the patient’s initial ANC is
3000/mm3. Based on the median time of grade 3 or 4 episode of
neutropenia, we estimated the weekly decrease rates of ANC as
danc , 1 ¼ � 145.8333/mm3 under nilotinib [40], danc , 2 ¼
� 125/mm3 under dasatinib [41], and danc , 3 ¼ � 56.4516/
mm3 under imatinib [10]. We assume that the ANC of a patient
increases by danc , 0 ¼ 500/mm3 during a drug holiday, before it
reaches the normal level 3000/mm3. In this project, we consider
two types of uncertainties: bCj ¼ 0:2� Lj and bCj ¼ 0:3� Lj .

Table 1
Initial cell population conditions

NSC WSC Y253F F317L

Low 9.00 � 106 9.00 � 105 1.00 � 104 1.00 � 104

Medium 9.00 � 106 9.00 � 105 1.00 � 105 1.00 � 105

High 9.00 � 106 9.00 � 105 3.00 � 106 3.00 � 106
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4.2 Cell Dynamics

Simulations

In this part, we present the dynamics of stem cells with the preex-
isting BCR-ABL mutation Y 253F and F317L under mono-
therapies. As reported, Y 253F is highly resistant to imatinib, lightly
resistant to nilotinib and sensitive to dasatinib; F317L is highly
resistant to dasatinib, and sensitive to imatinib and nilotinib. For
this simulation pattern, we expect that all monotherapies will fail
eventually because of the presence of the mutant cells and their
differentiated responses to drugs. The initial levels of NSC, WSC, Y
253F, and F317L are 9E þ 06, 9E þ 05, 1E þ 05, and 1E þ 05,
respectively.

Figure 1 plots the cell dynamics over 420 weeks (around
8 years) for six treatment protocols: nilotinib, dasatinib, and ima-
tinb mono-therapy, all of which are performed with and without
drug holiday. As F317L is resistant to dasatinib, the population of
F317L explodes around week 50 when administering dasatinib
[42]. On the other hand, we note that the population of Y 253F
is well controlled. In Fig. 2, we only look at the performances of
imatinb and nilotinib mono-therapy. The population of Y
253 increases over time, but the population size of F317L decreases
in both the cases. Those results indicate that drug combination may
be more effective for treating patients with multiple mutant cell
types.

Next, we discuss the results for nominal and robust optimiza-
tion problems. We first report the recurrence time of the optimal
schedule and mono therapies assuming that the toxicity parameters
are known, i.e., the nominal problem. In addition, we investigate
the recurrence time of the resulting optimal schedule when

Fig. 1 (a–e) Cell dynamics under mono-therapies for 420 weeks (mutant cell types: Y 253F and F317L)
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perturbing model parameters. Finally, we solve the robust optimi-
zation problem under different uncertainty settings and initial
conditions.

4.3 Nominal Optimal

Treatment Plans

In this section, we are interested in the recurrence time for the two
scenarios: mono-therapy and the nominal optimized therapies that
are achieved by solving the model presented in Appendix 1 for
360 weeks. The recurrence time is defined as the time at which
the tumor cell population returns to its size at the start of treat-
ment. The initial conditions for NSC,WSC, Y 253F, and F317L are
9E þ 06, 5E þ 05, 3E þ 05, and 3E þ 05, respectively. The
nominal optimal treatment plans are given in Fig. 3. The cell
growth is shown in Fig. 4. Since F317L is highly resistant to
dasatinib, we show the dynamics of tumor growth under dasatinib
only for 50 weeks. The results are summarized in Table 2. Under
the optimal schedule, the tumor size keeps decreasing, and thus
there is no recurrence time. We thus denote recurrence time by
NA. Under nilotinib, the tumor size reaches its minimal size at
week 88, then reaches the initial population size at week 183, and
doubles its size at week 261. Under imatinib, the tumor size
reaches the minimal size at week 63, reaches the initial population
size at week 130, and doubles its size at week 185. Under dasatinib,
the tumor size keeps increasing.

We also performed a sensitivity analysis on the nominal optimal
solution (shown in Fig. 3) with respect to the birth rates of mutant

Fig. 2 (a–e) Cell dynamics under mono-therapies (without dasatinib) for 420 weeks (mutant cell types: Y 253F
and F317L)
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cells (b j
i for i ¼ 3 , 4 and j ¼ 1 , 2 , 3). We are interested in how

the recurrence time under schedule (shown in Fig. 3) changes as we
vary the birth rates of mutant cells. A 360-week simulation is run to
study the behavior of recurrence time. We consider two scenarios.

Fig. 3 Optimal solution of the nominal problem for 360 weeks (mutant cell types: Y 253F and F317L). Digits
0, 1, 2, and 3 represent drug holiday, nilotinib, dasatinib, and imatinib

Fig. 4 Cell dynamics under mono-therapies and Optimal solution of the nominal problem for 360 weeks
(mutant cell types: Y 253F and F317L)

Table 2
Recurrence time for multiple mutants

To minimal Recurrence time Double the size

Nilotinib 88 183 261

Dasatinib 1 1 20

Imatinib 63 130 185

Drug combination NA NA NA
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Scenario one is that the birth rates of both mutant cells types vary
under only one drug, while the birth rates of mutant cells stay
constant under the other two drugs, i.e., if the drug affecting
birth rates is nilotinib, then b13 and b14 are set to be uniformly
distributed on [0.7, 1.3], while b23, b

2
4, b

3
3, and b34 are fixed. The

other scenario is that the birth rates of one mutant cell type change
under all drugs, whereas the birth rates of the second mutant cell
type stay constant, i.e., the birth rates of Y 253F change under all
three drugs, while the birth rates of F317L stay the same under all
three drugs.

Figure 5 shows the results for scenario one. The colors indicate
different recurrence time as indicated by the colorbar, i.e., blue,
green, and red corresponding to a recurrence time of 0, 150, and
360, respectively. The original birth rate of type (i � 2) mutant cell
under drug j, b j

i

� �
o
, is given in Subheading 4.1. The varied birth

rates of type (i � 2) cell under drug j are represented by b
j
i . The

ratio, b
j
i = b

j
i

� �
o
is set to be uniformly distributed on [0.7, 1.3]. The

Fig. 5 The recurrence time with respect to the birth rate changes of Y253F and F317L under one drug when
the treatment protocols are fixed as the nominal optimal solution. (a–c) show the recurrence time when birth
rates of Y253F and F317L vary under nilotinib, dasatinib, and imatinib, respectively
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results in Fig. 5a, c indicate that the tumor size is below the initial
tumor size after 360 weeks using the proposed method. The results
in Fig. 5b show that ifb24= b24

� �
o
is>1.27, recurrence happens before

the end of treatment. Recall that b24
� �

o
, a positive value, is the

original net growth rate of F317L under dasatinib. As we increase

b24= b24
� �

o
, b24 increases which causes F317L grows faster under

dasatinib. However, overall we see that the optimal schedule
(shown in Fig. 3) is largely robust to changes in the birth rates of
the mutant cells.

Figure 6 shows the results for scenario two where birth rates of
F317L vary. For better visualization purposes, we fix the birth rates
under one drug while varying the birth rates under the other two,
and show the results of the recurrence time. Figure 6a indicates that
the ratio of F317L birth rate under nilotinib (drug 1) is fixed at

b14= b14
� �

o
¼ 0:7 and the ranges of b24= b24

� �
o

and b34= b34
� �

o
are

uniformly distributed on [0.7, 1.3]. Columns 1, 2, and 3 show

the recurrence time of tumor for fixed ratio of b
j
4= b j

4

� �
o
set at 0.7,

1.0, and 1.3, respectively. Figures in rows 1 (a, b, c), 2 (d, e, f), and
3 (g, h, i) correspond to j ¼ 1 , 2 , 3, respectively. The figures in
the first row show that the increase in b14= b14

� �
o
is less likely to cause

the tumor reaching the initial size at the end of treatment. The
reason is that F317L is highly sensitive to drug 1 which is nilotinib.
As we increase the ratio of b14= b14

� �
o
, the growth rate of F317L is

reduced. From Fig. 6a, we can see that under the extreme case�
b14= b14
� �

o
¼ 0:7, b24= b24

� �
o
¼ 1:3, and b34= b34

� �
o
¼ 0:7

�
, recurrences

happen around week 150. The result is consistent with the recur-
rence time reported in Fig. 6f, g. There is no recurrence when

b24= b24
� �

o
� 1, but if b24= b24

� �
o
¼ 1:3, recurrence happens in almost

half of the cases. Since F317L is sensitive to both nilotinib and
imatinib, the results in Fig. 6g–i are similar to the ones in Fig. 6a–c.
The difference is that there is still a chance for tumor recurrence
when b34= b34

� �
o
¼ 1:3, because nilotinib is applied more often com-

pared to imatinib in the nominal optimal solution.

4.4 Robust Optimal

Treatment Plans

As we discuss in Appendix 2, protection levels (Γm) adjust the
robustness of the proposed model against the conservation level
of the solution. In this part, we first compare the robust optimal
solutions under different protection levels, which are provided in
Appendix 3 for two monotherapies (imatnib and nilotinib). Fig-
ure 7 shows the dynamics of tumor growth for 30 weeks under
nilotinib, imtinib, and optimal solutions with different protection
levels (Fig. 8). For this simulation, we assume bCj ¼ 0:2� Lj , and
initial population sizes are 9E þ 06, 9E þ 05, 1E þ 05, and
1E þ 05, for NSC, WSC, Y 253F, and F317L, respectively. It is
interesting to note that the tumor sizes under the proposed meth-
ods at week 30 are lower than those predicted for either of the

Robust Optimization with Toxicity Uncertainty 313



Fig. 6 (a–i) The recurrence time with respect to the varied birth rates of F317L under three drugs when the
treatment protocols are fixed as the nominal optimal solution. Rows: constant birth rate set under nilotnib,
dasatnib, and imatinib, respectively. Columns: constant birth rate ratio set at 0.7, 1.0 and 1.3, respectively
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mono-therapies even though our objective function aims to mini-
mize the cumulative tumor sizes.

Table 3 shows the robust optimal solutions underbCj ¼ 0:2� Lj for patients with initial tumor sizes at low, medium,
and high levels (Table 3). For example, if we take bCj ¼ 0:2� Lj ,
for patients with an initial tumor size at low level, under zero
protection level, Γ ¼ 0, the optimal value is 2.41632 � 107. How-
ever, with full protection, Γ ¼ 3, the optimal value is increased by
0.541% to 2.42939 � 107. For patients with an initial tumor size at
medium level, under zero protection level, the optimal value is
2.9189 � 107. With full protection, the optimal value is increased
by 0.7044% to 2.9395 � 107. For patients with an initial tumor
size at high level, under zero protection level, the optimal value is
2.7933 � 107. With full protection, the optimal value is increased
by 1.3519% to 2.8311 � 107.

Figure 9 shows the increments of optimal values under differ-
ent protection levels for patients with initial tumor sizes at low,
medium, and high levels when assuming bCj ¼ 0:2� Lj . The

Fig. 6 (continued)
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increments are calculated by:
Y ∗

Γ �Y ∗
0

Y ∗
0

, where Y ∗
0 and Y ∗

Γ are the

optimal values of the nominal and robust optimization problems
under different protection levels, respectively. It is interesting to
note that the optimal value of the objective function increases as we
increase the protection level of robust solutions.

Next, we consider how the optimal treatment protocols are
affected by protection levels Γ and initial conditions of tumor
size. Figure 10a–c show the optimal treatment protocols forbCj ¼ 0:2� Lj and initial tumor size at low (a), medium (b), and
high (c) levels. For initial tumor size at low level, as wild-type cells
dominate the total tumor size at the beginning of treatment, it is
efficient to reduce tumor size by taking the drug with the lowest
toxicity, which is drug 3. Recall that drug 0, 1, 2, and 3 represent
drug holiday, nilotinib, dasatinib, and imatinib. At the end of
treatment, as the number of mutant cells increases, it is necessary
to switch to dasatinib, which can reduce the number of Y 253F cells
efficiently. As we increase the protection level, more drug holidays
are needed, i.e., for unprotected optimal solutions (Γ ¼ 0), the
third break happens at the end of treatment, week 30, however for

Fig. 7 Cell dynamics under mono-therapies (without dasatinib) and optimal solutions for 30 weeks (mutant cell
types: Y 253F and F317L)
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conservative solutions (Γ¼ 3), it happens at week 25. Furthermore,
as the protection level increases, nilotinib and dasatinib are more
frequently used in the treatment to guarantee that optimal solu-
tions do not violate the toxicity constraint under different realiza-
tions of model parameters.

For patients with an initial tumor size at medium level, as the
mutant cell population increases, nilotinib and dasatinib appear

Fig. 8 Robust optimal solutions under bC j ¼ 0:2� Lj for 30 weeks. The initial conditions for NSC, WSC,
Y 253F, and F317L are 9E þ 06, 9E þ 05, 1E þ 05, and 1E þ 05, respectively.

Table 3
Robust solution for bCj ¼ 0:2� Lj : Multiple mutants

(a): Low level (b): Medium level (c): High level

Γ
Optimal value
(�107)

Increment
(%)

Optimal value
(�107)

Increment
(%)

Optimal value
(�107)

Increment
(%)

0 2.41632 0 2.9166 0 2.7933 0

0.05 2.41632 0 2.9192 0.0877 2.7957 0.0842

0.1 2.41750 0.049 2.9203 0.1250 2.7957 0.0842

0.2 2.41900 0.110 2.9261 0.3240 2.8004 0.2542

0.3 2.41948 0.131 2.9262 0.3287 2.8035 0.3626

0.4 2.42093 0.191 2.9265 0.3379 2.8061 0.4560

0.5 2.42367 0.304 2.9311 0.4940 2.8084 0.5386

1 2.42939 0.541 2.9403 0.8098 2.8288 1.2707
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more often in the optimal solution during the course of therapy.
Similarly, patients with an initial tumor size at medium level also
need to take longer breaks as we increase the protection level of the
toxicity constraint.

For patients with initial tumor size at high level, the popula-
tions of mutant cells dominate the tumor sizes. For the first
15 weeks, nilotinib is delivered to reduce the population size of
F317L. Note that the population size of Y 253F keeps increasing
during the first 15 weeks due to its resistance to nilotinib. To
control the size of Y 253F, dasatinib is administrated during the
last 15 weeks.

To investigate the effects of the size of the uncertainty ranges
on the optimal solutions, we perform simulation studies to see how
the structure of optimal schedules changes in the context of various
uncertainty ranges. Table 4 shows the robust optimal values underbCj ¼ 0:3� Lj for patients with an initial tumor size at low,
medium, and high levels. Figure 11 shows the optimal solutions

Fig. 10 Optimal solutions under bC j ¼ 0:2� Lj with three different initial conditions: (a) initial tumor size at low
level; (b) initial tumor size at medium level; (c) initial tumor size at high level

Fig. 9 Tumor size increments of optimal values under Γ with three different initial conditions
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for patients with an initial tumor size at low, medium, and high
levels, respectively. These results are similar to those ofbCj ¼ 0:2� Lj . Hence, we can conclude that the structure of the
optimal solution is only mildly sensitive to the size of the uncer-
tainty range.

Next, we focus on comparing the differences that resulted from
the uncertainty ranges

� bCj ¼ 0:3� Lj and bCj ¼ 0:3� Lj
�
. From

Fig. 12, we observe that: for patients with an initial tumor size at
low, medium, and high levels, the larger the toxicity uncertainty
ranges, the larger the optimal value.

The idea of imposing protection levels on robust optimization
is to use conservative constraints that guarantee no toxic side effects
occur. Here, we compare the performance of nominal solutions
versus robust optimization solutions in terms of objective function
and toxic side effects. We do this by randomly generating ANC

Fig. 11 Optimal solutions under bC j ¼ 0:3� Lj with three different initial conditions: (a) initial tumor size at low
level; (b) initial tumor size at medium level; (c) initial tumor size at high level

Table 4
Robust solution for bCj ¼ 0:3� Lj: Multiple mutants

(a): Low level (b): Medium level (c): High level

Γ
Optimal value
(�107)

Increment
(%)

Optimal value
(�107)

Increment
(%)

Optimal value
(�107)

Increment
(%)

0 2.4163 0 2.9167 0 2.7933 0

0.05 2.4178 0.0604 2.9197 0.1036 2.7957 0.0842

0.1 2.4178 0.0604 2.9220 0.1840 2.8000 0.2397

0.2 2.4221 0.2386 2.9251 0.2913 2.8050 0.4176

0.3 2.4222 0.2448 2.9281 0.3912 2.8102 0.6044

0.4 2.4260 0.4018 2.9313 0.5033 2.8107 0.6217

0.5 2.4289 0.5223 2.9341 0.5980 2.8219 1.0237

1 2.4366 0.8394 2.9524 1.2242 2.8443 1.8250
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decay rates and comparing performance of robust and nominal
optimal solutions for the generated decay rates. We do this repeat-
edly and look at the average increase in leukemic cell burden that
results when using the robust optimal schedule, we also look at the
fraction of times we have toxic side effects when using the nominal
optimal solution. This process of repeatedly generating random
variables and averaging results is known as Monte-Carlo simula-
tion. To summarize, we use Monte-Carlo simulation to understand
how much greater the cumulative tumor size is under robust
optimization to guarantee that patients will not show toxic side
effects, and how much more toxicity (in terms of decreasing ANC)
patients will suffer if they are treated with the nominal therapy. Two
sets of simulations are conducted, corresponding to different
uncertainty ranges ( bCj ¼ 0:2� Lj and bCj ¼ 0:3� Lj ). For both
simulations, the initial populations for NSC, WSC, Y 253F, and
F317L are 9E þ 06, 5E þ 05, 3E þ 05, and 3E þ 05, respectively.
The ANC decrease rate dm

anc, j under drug j atmth week is randomly
generated by assuming ηm , j is uniformly distributed on [0, 1]. If

Fig. 12 The effects of uncertainty ranges under three different initial conditions: (a) initial tumor size at low
level; (b) initial tumor size at medium level; (c) initial tumor size at high level
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the ANC value is <Lanc during the simulation, then the patient
received a toxic side effect and the simulation is considered infeasi-
ble. The fraction of cases that are infeasible due to toxic side effects
is calculated by the total number of infeasible cases divided by the
total number of cases (106). The results are shown in Table 5.
Recall that Γ ¼ 0 is equivalent to the nominal problem. For both
simulations, as we increase Γ the objective value increases, while the
probability of toxicity violation decreases. The optimal solution
obtained by ROP seems to yield an interesting tradeoff between
the two objectives of minimizing cumulative tumor population and
the infeasibility of toxicity constraints beyond which allowing for
more risky regimens, i.e., using smaller Γ, does not lead to any
significant gain in objective function. In particular, ifbCj ¼ 0:2� Lj , then it appears that around Γ ¼ 0.2 there is a
sharp change in the fraction of runs that lead to toxic side effects
and a significant increase in objective value.

5 Conclusion

The major focus of this chapter was to introduce a mathematical
model for identifying optimal anti-cancer treatment strategies in the
presence of parameter uncertainty. These methods have great poten-
tial for designing and understanding optimal anti-cancer treatments.
Our general framework is to build a differential equation model for
the relevant cancer and normal cell populations undergoing a partic-
ular treatment. For many differential equations, it is necessary to
develop a linear approximation via a linear regression model. We next
develop a mathematical model for the most relevant toxicities in the

Table 5
Price of robust optimization

bCj ¼ 0:2� Lj bCj ¼ 0:3� Lj

Γ
Increments in OBJ
(%)

Toxicity invalidation
(%)

Increments in OBJ
(%)

Toxicity invalidation
(%)

1 1.2707 0 1.8250 0

0.5 0.5386 49.98 1.0237 48.64

0.4 0.4560 61.80 0.6217 61.89

0.3 0.3626 69.18 0.6044 72.31

0.2 0.2542 79.07 0.4176 82.67

0.1 0.0842 94.08 0.2397 96.53

0.05 0.0842 94.08 0.0842 97.38

0 0 100 0 100
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treatment we are studying. With these mathematical models in place
we are able to build a mathematical optimization model for identify-
ing optimal treatment schedules. In order to account for patient
variability, we make our model robust to inter-patient heterogeneity
in the rate at which side effects develop. We can then use software
solvers to identify treatment schedules that are optimal and robust.
In this chapter, we applied this methodology to study the treatment
of chronic myeloid leukemia (CML) with a variety of possible tyro-
sine kinase inhibitors (TKI).

There are several areas for improvement in our method. First,
we assume the drug dosages are constant, and therefore ignore the
possible benefits or risks of varying doses. Second, we assume that
there is no drug present in the patient from the previous treatment
when we switch to a new drug. In order to better characterize this
residual term detailed analysis of drug-drug interaction would be
necessary. Third our method only accounts for inter-patient varia-
bility in toxicity terms and not in cancer cell growth or death rates.
This is an important aspect of inter-patient variability that we plan
to further pursue. Finally, our method requires that we approxi-
mate the governing differential equations with a model that is linear
in the state. This prevents us from finding the true optimal solution;
furthermore, this approximation can be problematic in systems that
exhibit strongly nonlinear behaviors.
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Appendix 1: Nominal Optimization Problem

The nominal optimization problem can be formulated as a MIOP
as below:

min
X

m∈M , i∈I \ 1f g
xi,m ð7aÞ

s:t: _x1 tð Þ ¼
X3
j¼0

zm, j b
j
1ψx1 � d

� �
x1, t∈ mΔt ; m þ 1ð ÞΔt½ �,m∈M \ Mf g ð7bÞ

_x2 tð Þ ¼
X3
j¼0

zm, j b
j
2 1� n � 2ð Þμð Þψx2 � d

� �
x2, t∈ mΔt ; m þ 1ð ÞΔt½ �,m∈M \ Mf g ð7cÞ

_xi tð Þ¼
X3
j¼0

zm,j b j
i ψx2�d

� �
xiþμb j

2ψx2x2
� �

, t∈ mΔt ; mþ1ð ÞΔt½ �,m∈M \ Mf g,3� i�n ð7dÞ
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X
j∈J

zm, j ¼ 1, m∈M \ Mf g, ð7eÞ

ymþ1 ¼ bym �
X
j∈J

danc, j z
m, j , m∈M \ Mf g, ð7f Þ

bym ¼ min ym;ANCnormalð Þ, m∈M , ð7gÞ
Lanc � bym, m∈M , ð7hÞ

zm, j∈ 0; 1f g, m∈M \ Mf g, j∈J ð7iÞ
where x(0) , y0 are given. In Eqs. 7b, 7c, and 7d, the dynamics of
NSC, WSC, and MSC are described, respectively. Equations 7e,
and 7i indicate that during each week, only one type of drug or no
drug is allowed. Equations 7f, 7g, and 7h describe the toxicity
constraints.

As discussed in the previous work [26], the ODEs can be
approximated by linear functions:

min
X

m∈M , i∈I \ 1f g
xi,m

s:t: xi,mþ1 ¼
X3
j¼0

zm, j C
j
i,0 þ

Xn
k¼1

C
j
i,kxk,m

 !
, t∈ mΔt ; m þ 1ð ÞΔt½ �,m∈M \ Mf g

X
j∈J

zm, j ¼ 1, m∈M \ Mf g

ymþ1 ¼ bym �
X
j∈J

danc, j z
m, j , m∈M \ Mf g

bym ¼ min ym;ANCnormalð Þ, m∈M

Lanc � bym, m∈M

zm, j∈ 0; 1f g, m∈M \ Mf g, j∈J

where x(0) , y0 are given.

There are two types of nonlinear terms here: zm , jxi , m andbym ¼ min ym;ANCnormalð Þ.
To linearize zm , jxi , m, we introduce a new variable

0 � vm, j
i � U iz

m, j

�Ui 1� zm, j
� � � vm, j

i � xi,m � U i 1� zm, j
� �

To linearize bym ¼ min ym;ANCnormalð Þ, we introduce a binary
variable pm
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bym � ANCnormal �Uy 1� pmð Þ,
bym � ym �Uyp

m,

bym � ym,bym � ANCnormal,

pm∈ 0; 1f g:
The nominal problem can be transformed into a MILP as

min
X

m∈M , i∈I \ 1f g
xi,m ð8aÞ

s:t: xi,mþ1 ¼
X3
j¼0

zm, jC
j
i,0 þ

Xn
k¼1

C
j
i,kv

m, j
k

 !
, t∈ mΔt ; m þ 1ð ÞΔt½ �,m∈M \ Mf g, ð8bÞ

0 � v
m, j
i � Uiz

m, j , ð8cÞ
�Ui 1� zm, j

� � � v
m, j
i � xi,m, ð8dÞ

vm, j
i � xi,m � Ui 1� zm, j

� �
, ð8eÞX

j∈J

zm, j ¼ 1, m∈M \ Mf g, ð8f Þ

ymþ1 ¼ bym �
X
j∈J

danc, j z
m, j , m∈M \ Mf g, ð8gÞ

bym � ANCnormal �Uy 1� pmð Þ, ð8hÞ
bym � ym �Uyp

m, ð8iÞ
bym � ym, ð8jÞbym � ANCnormal, ð8kÞ
pm∈ 0; 1f g, ð8lÞ

Lanc � bym, m∈M , ð8mÞ
zm, j∈ 0;1f g, m∈M \ Mf g, j∈J , ð8nÞ

where x(0) , y0 are given.

Appendix 2: ROP Model

In this section, we describe the mathematical details of the robust
problem. We introduce parameters Γm that take values in the
bounded intervals [0,|Vm|], where Vm is the index sets of para-
meters with uncertainty. Γm is not necessarily an integer. The role
of parameters Γm is to adjust the robustness of the proposed model
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against the conservation level of solution, thus it is called protection
level. The motivation of Γm is that it is unlikely that all the para-
meters with uncertainty vary at the same time and reach the maxi-
mal uncertainty. In other words, the model assumes that there
exists only a subset of the parameter drift that influence the solu-
tion. More specifically, it assumes that there are up to ⌊Γmc of
uncertainty parameters which are allowed to deviate from their
nominal values, and the toxicity decreasing rate dm

anc, j changes by
at most Γm � Γmb cð ÞbCj , where ⌊Γmc is the greatest integer �Γm.
Note that, if we choose Γm ¼ 0, we completely ignore the influence
of parameter uncertainty and are using the nominal values of the
uncertain parameters, and if we choose Γm ¼ Vm, then all the
uncertain parameters are subjected to deviate from their nominal
values. In this project, the maximum value of Γm is 3 since there are
three parameters with uncertainty. Note however that only one
drug is chosen for each period, parameter uncertainty of the other
two drugs will not affect the robust optimal solution. Thus, the
robust optimal solution under Γm ¼ 1 is exactly the same as the
ones under Γm > 1. The proposed robust counterpart of problem
(Eq. 6) is as follows:

min
X

m∈M , i∈I \ 1f g
xi,m ð9aÞ

s:t: ymþ1 � bym þ
X
j∈J

Lj zm, j

þmax
C RO

m

X
j∈Sm

bCjzm, j þ Γm � Γmb cð ÞbCtmzm, tm

8<:
9=;, ð9bÞ

ð8bÞ, ð8cÞ, ð8dÞ, ð8eÞ, ð8f Þ, ð8hÞ,
ð8iÞ, ð8jÞ, ð8kÞ, ð8lÞ, ð8mÞ, ð8nÞ ð9cÞ

where C RO
m ¼ Sm [ tmf gjSm � Vm; Smj j � Γmb c; tm∈Vm\ Smf g,

Sm is the index sets of uncertain parameters which are allowed to
deviate from their nominal values. According to the method devel-
oped in [20], the maximization problem in Eq. 9b is equivalent to
the following auxiliary problem:

max
X
j∈J

bCjηm, j zm, j ð10aÞ

s:t: 0 � ηm, j � 1, j∈J , ð10bÞX
j∈J

ηm, j � Γm, ð10cÞ

Equation 10c indicates that the total variation of the parameters
cannot exceed some threshold Γm. Notice that problem (Eq. 11) is
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bounded. It is clear that ηm , j ¼ 0 is a feasible solution of (Eq. 11).
By strong duality, the optimal objective value of problem (Eq. 11) is
the same as the optimal objective value of its dual problem. It is easy
to check that the dual problem can be written as

max qmΓm þ
X
j∈J

pm, j ð11aÞ

s:t: � bCjzm, j þ qm þ pm, j � 0, ð11bÞ
qm � 0, ð11cÞ
pm, j � 0, ð11dÞ

Thus, the optimal solution of our robust problem can be
obtained by solving the MILP:

min
X

m∈M , i∈I \ 1f g
xi,m ð12aÞ

s :t : xi,mþ1 ¼
X3
j¼0

zm, jC
j
i,0 þ

Xn
k¼1

C
j
i,kv

m, j
k

 !
, t∈ mΔt ; m þ 1ð ÞΔt½ �,m∈M \ Mf g, ð12bÞ

0 � v
m, j
i � Uiz

m, j , ð12cÞ
�Ui 1� zm, j

� � � v
m, j
i � xi,m, ð12dÞ

v
m, j
i � xi,m � Ui 1� zm, j

� �
, ð12eÞX

j∈J

zm, j ¼ 1, m∈M \ Mf g, ð12f Þ

ymþ1 � bym �
X
j∈J

Lj zm, j � qmΓm

�
X
j∈J

pm, j , m∈M \ Mf g, ð12gÞ

bym � ANCnormal �Uy 1� pmð Þ, ð12hÞ
bym � ym �Uyp

m, ð12iÞ
bym � ym, ð12jÞbym � ANCnormal, ð12kÞ
pm∈ 0; 1f g, ð12lÞ

Lanc � bym, m∈M , ð12mÞ

326 Junfeng Zhu et al.



zm, j∈ 0;1f g, m∈M \ Mf g, j∈J , ð12nÞ
�bCjzm, j þ qm þ pm, j � 0, ð12oÞ

qm � 0, ð12pÞ
pm, j � 0, ð12qÞ

x 0ð Þ, y1,by 1 are given, p1 ¼ 0 ð12rÞ

Appendix 3: Robust Optimal Solutions for 30 Weeks

In this section, we summarize all the robust optimal solutions
discussed in Subheading. 4.4 (see Figs. 13, 14, 15, 16, and 17).

Fig. 13 Robust optimal solutions under bC j ¼ 0:2� Lj for 30 weeks. The initial conditions for NSC, WSC,
Y 253F, and F317L are 9E þ 06, 9E þ 05, 1E þ 04, and 1E þ 04, respectively
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Fig. 14 Robust optimal solutions under bC j ¼ 0:2� Lj for 30 weeks. The initial conditions for NSC, WSC,
Y 253F, and F317L are 9E þ 06, 5E þ 05, 3E þ 05, and 3E þ 05, respectively

Fig. 15 Robust optimal solutions under bC j ¼ 0:3� Lj for 30 weeks. The initial conditions for NSC, WSC,
Y 253F, and F317L are 9E þ 06, 9E þ 05, 1E þ 04, and 1E þ 04, respectively
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Fig. 16 Robust optimal solutions under bC j ¼ 0:3� Lj for 30 weeks. The initial conditions for NSC, WSC,
Y 253F, and F317L are 9E þ 06, 9E þ 05, 1E þ 05, and 1E þ 05, respectively

Fig. 17 Robust optimal solutions under bC j ¼ 0:3� Lj for 30 weeks. The initial conditions for NSC, WSC,
Y 253F, and F317L are 9E þ 06, 5E þ 05, 3E þ 05, and 3E þ 05, respectively

Robust Optimization with Toxicity Uncertainty 329



References

1. Shi Z, Peng XX, Kim IW et al (2007) Erlotinib
(Tarceva, OSI-774) antagonizes ATP-binding
cassette subfamily B member 1 and
ATP-binding cassette subfamily G member
2-mediated drug resistance. Cancer Res
67:1101220

2. Paraiso KH, Xiang Y, Rebecca VW et al (2011)
PTEN loss confers BRAF inhibitor resistance
to melanoma cells through the suppression of
BIM expression. Cancer Res 71:27502760

3. Foo J, Michor F (2014) Evolution of acquired
resistance to anti-cancer therapy. J Theor Biol
355:10

4. Leder K, Foo J, Skaggs B et al (2011) Fitness
conferred by BCR-ABL kinase domain muta-
tions determines the risk of pre-existing resis-
tance in chronic myeloid leukemia. PLoS One
6(11):e27682. https://doi.org/10.1371/jour
nal.pone.0027682

5. Foo J, Leder K (2013) Dynamics of cancer
recurrence. Annals Appl Probab 23
(4):1437–1468

6. Swanson KR, Bridge C,Murray JD et al (2003)
Virtual and real brain tumors: using mathemat-
ical modeling to quantify glioma growth and
invasion. J Neurol Sci 216(1):1–10

7. Badri H, Watanabe Y, Leder K (2015) Optimal
radiotherapy dose schedules under parametric
uncertainty. Phys Med Biol 61(1):338

8. Zhou C, Wu YL, Chen G et al (2011) Erlotinib
versus chemotherapy as first-line treatment for
patients with advanced EGFR mutation-
positive non-small-cell lung cancer (OPTI-
MAL, CTONG-0802): a multicentre, open-
label, randomised, phase 3 study. Lancet
Oncol 12(8):735–742

9. Druker BJ, Talpaz M, Resta DJ et al (2001)
Efficacy and safety of a specific inhibitor of the
BCR-ABL tyrosine kinase in chronic myeloid
leukemia. N Engl J Med 344:1031–1037

10. Kantarjian H, Sawyers C, Hochhaus A et al
(2002) Hematologic and cytogenetic
responses to imatinib mesylate in chronic mye-
logenous leukemia. N Engl J Med
346:645–652

11. Cortes JE, Jones D, O’Brien S et al (2010)
Results of dasatinib in patients with early
chronic-phase chronic myeloid leukemia. J
Clin Oncol 28(3):398–404

12. Giles FJ, Abruzzese E, Rosti G et al (2010)
Nilotinib is active in chronic and accelerated
phase chronic myeloid leukemia following fail-
ure of imatinib and dasatinib therapy. Leuke-
mia 24:1299–1301

13. O’Hare T, Eide CA, Deininger MWN (2007)
Bcr-Abl kinase domain mutations, drug resis-
tance, and the road to a cure for chronic mye-
loid leukemia. Blood 110:2242–2249

14. He Q, Zhu JF, Dingli D et al (2016) Opti-
mized treatment schedules for chronic myeloid
leukemia. PLoS Comput Biol 12:e1005129

15. Harrold JM, Parker RS (2009) Clinically rele-
vant cancer chemotherapy dose scheduling via
mixedinteger optimization. Comput Chem
Eng 33(12):2042–2054

16. Murray JM (1990) Some optimal control pro-
blems in cancer chemotherapy with a toxicity
limit. Math Biosci 100(1):49–67

17. Murray JM (1990) Optimal control for a can-
cer chemotherapy problem with general
growth and loss functions. Math Biosci
98:273–287

18. Hadjiandreou MM, Mitsis GG (2014) Mathe-
matical modeling of tumor growth, drug-
resistance, toxicity, and optimal therapy design.
IEEE Trans Biomed Eng 61(2):415–425

19. Laird AK (1964) Dynamics of tumour growth.
Br J Cancer 18(3):490–502

20. Martin RB (1992) Optimal control drug
scheduling of cancer chemotherapy. Automa-
tica 28:11131123

21. Floares A Neural networks control of drug
dosage regimens in cancer chemotherapy.
SAIA, Cluj-Napoca, Transilvania

22. Weisstein, Eric W. Heaviside step function.
MathWorld

23. Afenya EK (2001) Recovery of normal hemo-
poiesis in disseminated cancer therapy-a model.
Math Biosci 172

24. Michor F, Hughes TP, Iwasa Y et al (2005)
Dynamics of chronic myeloid leukaemia.
Nature 435:1267–1270

25. Bozic I, Reiter JG, Allen B et al (2013) Evolu-
tionary dynamics of cancer in response to tar-
geted combination therapy. Elife 2:e00747

26. Nanda S, Moore H, Lenhart S (2007) Optimal
control of treatment in a mathematical model
of chronic myelogenous leukemia. Math Biosci
210:143

27. O’Brien S, Berman E, Borghaei H et al (2009)
NCCN clinical practice guidelines in oncology:
chronic myelogenous leukemia. J Natl Compr
Canc Netw 7(9):984–1023

28. Sokal JE, Cox EB, Baccarani M et al (1984)
Prognostic discrimination in “good-risk”
chronic granulocytic leukemia. Blood
63:789–799

330 Junfeng Zhu et al.

https://doi.org/10.1371/journal.pone.0027682
https://doi.org/10.1371/journal.pone.0027682


29. Hasford J, Pfirrmann M, Hehlmann R et al
(1998) A new prognostic score for survival of
patients with chronic myeloid leukemia treated
with interferon alfa. Writing Committee for the
Collaborative CML Prognostic Factors Project
Group. J Natl Cancer Inst 90:850–858

30. Scheijen B, Griffin JD (2002) Tyrosine kinase
oncogenes in normal hematopoiesis and hema-
tological disease. Oncogene 21:3314

31. Deininger MW, O’Brien S, Ford JM et al
(2003) Practical management of patients with
chronic myeloid leukemia receiving imatinib. J
Clin Oncol 21(8):1637–1647

32. Katia BBP, Israel B, Carla B et al (2015)
BCR-ABL mutations in Chronic Myeloid Leu-
kemia treated with tyrosine kinase inhibitors
and impact on survival. Cancer Invest
33:451–458

33. Ravin JG, Hagop K, Susan O et al (2009) The
use of nilotinib or dasatinib after failure to
2 prior tyrosine kinase inhibitors: long-term
follow-up. Blood 114(20):4361

34. Wei G, Rafiyath S, Liu D (2010) First-line
treatment for chronic myeloid leukemia: dasa-
tinib, nilotinib, or imatinib. J Hematol Oncol
3:47

35. Cornelison M, Jabbour EJ, Welch MA (2012)
Managing side effects of tyrosine kinase inhibi-
tor therapy to optimize adherence in patients
with chronic myeloid leukemia: the role of the
midlevel practitioner. J Support Oncol 10
(1):14–24

36. Conchon M, Freitas CM, Rego MA et al
(2011) Dasatinib - clinical trials and manage-
ment of adverse events in imatinib resistant/
intolerant chronic myeloid leukemia. Rev Bras
Hematol Hemoter 33(2):131–139

37. Marin D (2012) Initial choice of therapy
among plenty for newly diagnosed chronic
myeloid leukemia. Hematology Am Soc
Hematol Educ Program 1:115–121

38. Foo J, Drummond MW, Clarkson B et al
(2009) Eradication of chronic myeloid leuke-
mia stem cells: a novel mathematical model
predicts no therapeutic benefit of adding
G-CSF to imatinib. PLoS Comput Biol 5(9):
e1000503

39. Gruber FX, Ernst T, Porkka K et al (2012)
Dynamics of the emergence of dasatinib and
nilotinib resistance in imatinib-resistant CML
patients. Leukemia 26:172–177

40. Cortes JE, Jones D, O’Brien S et al (2010)
Nilotinib as front-line treatment for patients
with chronic myeloid leukemia in early chronic
phase. J Clin Oncol 28(3):392–397

41. Radich JP, Kopecky KJ, Appelbaum FR et al
(2012) A randomized trial of dasatinib 100 mg
versus imatinib 400 mg in newly diagnosed
chronic-phase chronic myeloid leukemia.
Blood 120(19):3898–3905

42. Deininger M, Mauro M, Matloub Y et al
(2008) Prevalence of T315I, dasatinib-specific
resistant mutations (F317L, V299L, and
T315A), and nilotinib-specific resistant muta-
tions (P-loop and F359) at the time of imatinib
resistance in chronic-phase chronic myeloid
leukemia (CP-CML). Blood 112:3236

43. Sawyers C (2004) Targeted cancer therapy.
Nature 432:294–297

44. Cortes J, Talpaz M, O’Brien S et al (2005)
Molecular responses in patients with chronic
myelogenous leukemia in chronic phase treated
with imatinib mesylate. Clin Cancer Res
11:3425

Robust Optimization with Toxicity Uncertainty 331



Chapter 16

Modeling of Interactions between Cancer Stem Cells
and their Microenvironment: Predicting Clinical Response

Mary E. Sehl and Max S. Wicha

Abstract

Mathematical models of cancer stem cells are useful in translational cancer research for facilitating the
understanding of tumor growth dynamics and for predicting treatment response and resistance to com-
bined targeted therapies. In this chapter, we describe appealing aspects of different methods used in
mathematical oncology and discuss compelling questions in oncology that can be addressed with these
modeling techniques. We describe a simplified version of a model of the breast cancer stem cell niche,
illustrate the visualization of the model, and apply stochastic simulation to generate full distributions and
average trajectories of cell type populations over time. We further discuss the advent of single-cell data in
studying cancer stem cell heterogeneity and how these data can be integrated with modeling to advance
understanding of the dynamics of invasive and proliferative populations during cancer progression and
response to therapy.

Key words Breast cancer, Cancer stem cell, Mathematical model, Optimal therapy design

1 Introduction

Mathematical modeling of cancer stem cells has proven useful in
several important areas of translational cancer research. Those
include, for example: understanding evolutionary dynamics of
clonal populations and prediction of therapeutic resistance [1–3];
understanding tumor growth dynamics [4]; inferring the evolu-
tionary dynamics that occur during cancer initiation and progres-
sion [5]; understanding the dynamics of stem cell state transitions
and estimation of dedifferentiation rates [6, 7]; understanding the
complex regulatory pathways that modulate stem cell behavior; and
predicting clinical responses to combination therapies targeting the
cancer stem cell niche [7].

Based on predictions from modeling, clinical oncologists are
able to optimize dosing, frequency, and duration of therapies (e.g.,
dose dense treatments in adjuvant breast cancer therapies), which
increase efficacy and minimize side effects, leading to improved
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outcomes [8–10]. Statistical modeling has also proven valuable in
selecting prognostic and predictive markers in clinical trials in
translational oncology [11]. There are many opportunities where
modeling can expand its contribution to translational oncology. As
single-cell transcriptomics and epigenetic data becomemore readily
available and methods of simulation become more sophisticated,
multiscale modeling will permit the integration of data that will
inform models and improve predictions, which will ultimately lead
to more effective therapies. In this chapter, we will review the
methods that are currently being used in mathematical oncology,
and suggest areas where modeling could further be applied in
cancer stem cell systems biology research.

2 Compelling Research Questions in (Cancer) Stem Cell Research That Can Be
Addressed with Mathematical Modeling

2.1 Single-Cell Gene

Expression and

Epigenetic Data: How

to Extract Information

to Best Inform

Models?

Single-cell sequencing and transcriptomics on a genome-wide level
has advanced greatly in recent years. Statistical methods have been
developed to analyze single-cell data in order to characterize tumor
heterogeneity [12, 13], demonstrate clonal evolution [14], and
infer phylogenetic relationships and ordering of mutations [15].

Genetic and epigenetic patterns that emerge during the pro-
cesses of stem cell quiescence, activation, and differentiation can be
captured using single-cell analysis. Intra-tumoral heterogeneity
creates a challenge for the study of the interconnecting molecular
events that guide these processes. Single-cell gene expression anal-
ysis has been used to explore cell heterogeneity in breast cancer and
unravel gene expression variation in both cell line and patient-
derived xenograft samples [16, 17]. By examining expression levels
of 96 genes from pathways involved in cell self-renewal, adhesion,
and differentiation, three different patterns of expression in these
genes were observed in single cells obtained from cell lines and
from patient-derived xenograft samples. These patterns correspond
to three distinct cell populations: epithelial Breast cancer stem cells
(BCSCs), mesenchymal BCSCs, and non-stem cancer cells. Apply-
ing these methods to populations of circulating tumor cells will
allow for the characterization of cell types within a patient at
diagnosis and in response to treatment.

Whole transcriptome RNA-sequencing is used to transcrip-
tional events that are continuously changing within a cell over
time. Changes that are observed using this technology include
alternative gene spliced transcripts, post-transcriptional modifica-
tions, gene fusion, mutations, and alterations in gene expression.
Additionally, whole genome bisulfite sequencing is used to gener-
ate genome-wide analysis of DNA methylation. As these technolo-
gies become available within single-cell studies, sophisticated
methods will need to be developed to analyze these data and
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distinguish relevant patterns from inherent noise that is anticipated
within a single cell over time. Signaling pathways can be recon-
structed from genome, transcriptome, and proteome data
[18, 19]. While statistical inference has been successful in studying
these components individually, combining information from each
level is essential for understanding the system as a whole [20]. As
our understanding of cellular networks improves, these results can
be integrated with dynamic modeling approaches to estimate rates
of stem cell state transitions and to identify regulatory nodes. As
samples from circulating tumor cells from patients exposed to
therapeutic combinations become available, these methods could
be used to sort cell populations and track responses of each popu-
lation to therapy.

2.2 Modeling Cell-

Cell Interactions

Between Cancer Stem

Cells and Their

Microenvironment

Because tumors consist of many cell types that interact with each
other, as well as with the numerous cell types that are present in the
tumor microenvironment, models that account for these interac-
tions are required. Evolutionary game theory has been useful in
modeling these interactions [1]. Models based on evolutionary
game theory have been employed to examine mechanisms of
growth control under conditions of competing resources [21],
and have predicted the evolution of cooperation among tumor
cells [22].

The breast cancer stem cell microenvironment consists of a
number of diverse cell types including more differentiated tumor
cells, stromal cells, endothelial cells, and immune cells. These cells
interact with each other through a number of signaling mechanisms
involving cytokines, growth factors, and other signaling molecules,
such as miRNAs [23–29].

Under normal conditions, the stem cell niche regulates how
stem cells participate in tissue generation, maintenance, and repair,
preventing stem cell depletion and overpopulation. The interaction
between these normal, tissue-specific stem cells and their niche is
required for balanced tissue maintenance, and aberrant function of
the niche may contribute to malignant transformation.

The cancer stem cell niche plays an important role in the
regulation of tumor growth, and metastasis as well as in modulating
therapeutic response. Here, we will describe the cellular elements of
the breast cancer stem cell niche.

Breast cancer stem cells, exist in either a proliferative, epithelial
state characterized by expression of ALDH as well as epithelial
markers such as E-cadherin, or in a quiescent, invasive, mesenchymal
state, characterized by expression of CD44 as well as additional
mesenchymal markers such as vimentin, N-cadherin, Twist, and
Slug and Snail [30]. When a BCSC is in the proliferative state, it
can undergo symmetric self-renewal, or asymmetric self-renewal,
giving rise to one identical copy of itself and one bipotent progeni-
tor cell [31, 32]. Alternatively, it can undergo symmetric
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differentiation generating two bipotent progenitors (see Fig. 1).
Mathematical modeling has shown that slight disruption in the
balance between symmetric self-renewal, asymmetric self-renewal,
and symmetric differentiation can lead to Gompertzian growth
kinetics in tumors [7]. The bipotent progenitors give rise to either
luminal cells or basal cells. These differentiated cancer cells com-
prise the bulk of the tumor, and currently most cancer treatment
modalities are focused on this population. Other cells that are pres-
ent in the stem cell microenvironment include mesenchymal stem
cells that give rise to and maintain the stroma, endothelial cells that
reside in the tumor vasculature and various elements of the immune
system. In fact, recent studies have indicated that myeloid-derived
suppressor cells (MDSCs) are able to directly stimulate BCSC self-
renewal through the activation of the Notch pathway [33].

All of these cell types, as well as the microenvironmental signal-
ing pathways that guide their interaction, need to be considered in a
multiscale model of the breast cancer stem cell niche. These models
may be helpful in predicting patient responses to combinatorial
therapies targeting angiogenesis, for promoting activation of cancer
stem cells that are quiescent, and the prevention of invasion.

2.3 Relevance of

Spatial Factors?

Spatial organization is a key factor for growth and tissue renewal
during development and regeneration of healthy tissues [34]. It
was first observed in the germ stem cell niche of Drosophila mela-
nogaster that during cell division, the mitotic spindle is aligned with
support cells of the niche so that the daughter cell that remains
within the niche retains stem cell identity, whereas the daughter cell
that is displaced outside the niche (away from self-renewal signals)
initiates differentiation [35]. These oriented divisions have also
been observed in mammalian epithelia. For example, the position
of a stem cell within a hair follicle predicts whether it is likely to

SC SC SC

SC

Symmetric self-renewal Symmetric differentiationAsymmetric self-renewal

SC SC
P P P

Fig. 1 Types of stem cell division. A stem cell or stem-like cell can undergo symmetric self-renewal, giving
rise two identical copies of themselves, or asymmetric self-renewal, giving rise to one identical copy of itself
and one partially differentiated progenitor cell. It can also undergo symmetric differentiation, in which it gives
rise to two partially differentiated daughter cells
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remain committed, generate precursors, or progress to a different
fate [34]. Another example is that of stratified epithelial cells.
Alignment of the stem cell niche along rigid basal lamina leads to
regular morphologies, whereas alignment along a freely moving
basal lamina leads to distorted epithelial morphologies [36].

The dynamics of the stem cell niche have been well described in
the hematopoietic system.

Mathematical models designed to explore the mechanisms by
which stem cells communicate with the niche, as well as the fact that
cancer arises as a results of failure of this communication, have shown
that coupled lineages allow for more controlled regulation of total
blood cell numbers than uncoupled lineages and respond better to
random perturbation to maintain homeostatic equilibrium [37].

In a model of the breast cancer stem cell niche, it would be ideal
to also consider spatial effects. Spatial stochastic models have been
used to study cancer initiation and progression [38] as well as
mutational heterogeneity [39]. Spatial models have the potential
to be helpful for the optimization of therapies targeting the stem
cell niche.

2.4 Do Hypoxic

Microenvironments

Promote Late

Recurrence?

The vasculature of tumors is very important in determining how
nutrients and drugs are delivered to tumor cells. Recent evidence
frommouse xenograft studies demonstrates that hypoxia, mediated
by hypoxia-inducible factor 1α, drives the stem/progenitor cell
enrichment, and activates the Akt/β-catenin cancer stem cell regu-
latory pathway [40]. Hypoxia stimulates ALDH+ epithelial BCSCs,
located in the interior hypoxic zones of breast tumors, while the
invasive mesenchymal cells are located on the leading edge of the
tumor. Models that take into consideration the fractal geometric
properties of tumor vascular networks, as well as the spatial gradi-
ents in resources and metabolic states, have been used to predict
metabolic rates of tumors and derive universal growth curves to
predict growth dynamics in response to targeted treatments
[41]. Extensions of these growth equations including necrotic,
quiescent, and proliferative states have been used to understand
growth trajectories across tumor types. This type of modeling may
be ideally suited to answer questions related to the growth of stem
cell compartments in response to hypoxia, and for the selection of
combined, targeted treatments for the eradication of both quies-
cent and proliferative BCSCs. Another potential option would be
to use recent updates to stochastic simulation methods that include
spatial effects. Introducing the spatial aspects of the stem cell niche
into simulation is required to answer questions related to hypoxic
regulation of BCSC behavior.
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2.5 Integration of

Immunotherapy with

Molecularly Targeted

and Cytotoxic

Therapies

The advent of immunotherapy has led to a dramatic shift in the
treatment and survival of several tumors, such as melanoma, renal
cell carcinoma, lung cancer, and Hodgkin lymphoma
[42–49]. Approximately one-quarter of patients with triple negative
breast cancer respond to immunotherapy [50]. Immunotherapy is
particularly successful in aggressive malignancies, where the percent-
age of tumor-initiating cells is high. For example, in melanoma the
majority of tumor cells have capacity for self-renewal [51]. These
tumors were the first where immunotherapy was shown to be suc-
cessful. Immunotherapy, informed by mathematical modeling, may
have a greater chance of leading to durable remissions [52].

Successful immunotherapy should target stem-like cells as well
as bulk tumor cells. Mathematical modeling can be helpful in pre-
dicting the variable response to immunotherapy based on different
proportions of cell types comprising a tumor. These models are
especially relevant in the adjuvant setting, where tumor growth and
invasion are driven by a small number of cells on a longer time scale,
and where considerably more time and resources are required to
directly observe survival outcomes in relation to therapy. If immu-
notherapy is successful in activating the immune system to target
the stem cell compartment, it should eventually lead to eradication
of the tumor. However, the required duration of therapy required
to observe an appreciable change in bulk tumor size is unknown.
Stochastic models can be used to predict extinction times of the cell
populations comprising the tumor, allowing the estimation of the
treatment duration required to eradicate cancer cells [53]. Models
should also take into account the potential costs of immunotherapy,
including autoimmune side effects. These models would allow
selection of the optimal treatment dosing and duration that
would have the best the chance of tumor eradication while mini-
mizing the risk of side effects.

Another area in immunotherapy where mathematical modeling
may prove useful is in determining optimal combinations of thera-
pies. A branching process model has been used to predict success of
combination therapy under assumptions of mutations conferring
resistance [54]. In models combining cytotoxic chemotherapy,
vaccine therapy, CTLA4 and PD-1 inhibitors, and drugs targeting
the BRAF and MEK pathways and other molecular pathways
[55, 56], it will be important to model dosing and effectiveness in
order to address the need to minimize potentially debilitating side
effects, including autoimmune processes as well as the development
of secondary malignancies.

3 Mathematical Modeling and Simulation Tools in Translational Oncology

In silico experiments can be used in concert with cell line experi-
ments, animal xenograft model studies, and patient-oriented
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translational studies to complement and improve cancer stem cell
research. Signaling networks in the cancer stem cell microenviron-
ment are complex and much work is needed to understand the
regulatory dynamics of this system. While gene knock-out experi-
ments allow the delineation of the importance of each individual
molecular component of the cancer stem cell microenvironment,
the combination of mathematical modeling with laboratory
research allows studying of the emergent properties and provides
a framework for elucidating the integrative dynamics of this com-
plex system [57–60].

Given the levels of complexity of the cancer stem cell niche,
selection of the most appropriate mathematical model remains
challenging. We will describe a variety of mathematical modeling
approaches and situations where specific methods can address this
challenge by providing important biological insights.

3.1 Defining the

Model

The breast cancer stem cell niche is a complex system comprised of
cancer stem cells, and the surrounding cells and molecular signals
that govern the behavior of the stem cells. Multiple overlapping
feedback loops regulate whether a cancer stem cell undergoes self-
renewal, quiescence, differentiation, or apoptosis. The niche also
regulates the rare event of partially differentiated breast epithelial
cancer cells undergoing dedifferentiation into a stem-like state.

The scope of a model is defined by the reactant species involved,
and by the reactions or events that take place. Examples of species
involved in the breast cancer stem cell niche include cancer stem
cells (quiescent and invasive versus proliferative), progenitor cells,
differentiated luminal and basal cells, endothelial cells, mesenchy-
mal cells, immune cells as well as the elements of signaling path-
ways, which regulate the transitions and interactions between these
cell types [26, 61]. Those signaling pathway elements include
cytokines (e.g., IL-6, IL-8, TGF-β, BMPs), receptors (e.g., HER2
and CXCR1), and intracellular signals, including protein kinases
(e.g., Akt), transcription factor proteins (e.g., Lin28, IκB, Stat3),
microRNA precursors (e.g., let-7), and microRNAs (e.g., mir-93)
[23–29]. The reactions of a model describe the important events
that change the abundance of reactant species. Examples of reac-
tions in the breast cancer stem cell niche include stem cell self-
renewal, quiescence, differentiation, and apoptosis. In general, a
model should be kept as simple as possible, adding sufficient com-
plexity to address the biological principles involved.

Figure 2 shows a simplified model of the state transitions that
occur between the proliferative epithelial (MET) state of breast
cancer stem cells (BCSCs) and their invasive quiescent mesenchy-
mal (EMT) state (for illustration, a small number of species and
reactions have been included here). The species include cell types
(EMT and MET states of the BCSCs) and the factors (cytokines
and intracellular signaling molecules) that regulate transitions
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between these two states. Reaction types include receptor binding
and dissociation, as well as the state transitions. A more biologically
complete model also includes the regulatory feedback loops that
exist within this system, such as IL-6 activation of the Akt/Stat/
NFκB pathway leading to increased transcription of IL-6, and the
interaction of Lin-28/Let-7 and HER2 leading to activation of
β-catenin driving self-renewal of epithelial BCSCs. The inclusion
of such regulatory feedback loops thus enables the model to more
closely simulate responses to environmentally stressful conditions.

3.2 Deterministic

Versus Stochastic

Models

Deterministic models can provide insight into many important
aspects of microenvironmental signaling, including the under-
standing of dynamic control (as revealed by time-course studies),
the impact of cellular cross-talk and identification of control points,

Species: epithelial BCSC, mesenchymal BCSC, IL-6 and its receptor (gp130), TGF-

and its receptor (TGF- R2), mir-93, BMP, HER2 and its receptor (EGFR).

Reactions:

Receptor binding and dissociation

IL-6 + gp130 IL-6 gp130 IL-6 gp130 IL-6 + gp130

TGF-  + TGF- R2 TGF- TGF- R2 TGF- TGF- R2 TGF-  + 

TGF- R2 

HER2 + EGFR HER2 EGFR HER2 EGFR HER2 + EGFR

Stem cell state transitions

MET + IL-6 gp130 EMT + IL-6 gp130

MET + TGF- TGF- R2 EMT + TGF- TGF- R2

EMT + HER2 EGFR MET + HER2 EGFR

EMT + mir-93 MET + mir-93

EMT + BMP MET + BMP

Epithelial
BCSC

Mesenchymal
BCSC

HER2  EGFR

IL-6  gp130,

mir-93, BMPs,

TGF-β  TGF-βR2

Fig. 2 Schematic of microenvironmental signals governing BCSC state transitions. In this simplified model of
the BCSC niche, we identify the species involved, including cell types (the proliferative epithelial BCSCs and
the quiescent mesenchymal BCSC populations) and cytokines and intracellular signals that regulate transition
between these two states. The reactions included in our model directly or indirectly play a role in regulating
the BCSC state transitions
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and an indication of possible target points for treatment, as well as
the exploration of dose-response relationships [62, 63]. There are
several software packages inMatlab® andMathematica® that enable
investigators to explore nonlinear dynamics of complex systems
based on a series of reaction rate equations. Examples of these
include the Systems Biology Toolbox [40] in Matlab®, and Reac-
tionKinetics [64] in Mathematica®.

An example of a reaction rate equation, applied to our simpli-
fied model of stem cell state transitions, describes the rate of change
in E over time, the concentration of epithelial BCSCs and the rate
of change in M over time, the concentration of mesenchymal
BCSCs:

dE

dt
¼ � k1y1 þ k2y2ð Þ E þ k3y3 þ k4y4 þ k5y5

� � ð1Þ

dM

dt
¼ � k3y3 þ k4y4 þ k5y5

� �
M þ k1y1 þ k2y2ð Þ E ð2Þ

where y1 through y5 are the concentrations of the microenviron-
mental factors (IL-6 l gp130, TGF-β l TGF-βR2, mir-93, BMP,
and HER) that interact with the two cellular species, and k1
through k5 are rate constants describing the impact of the interac-
tion of sets of species. In this simple model, we note that the rates of
change over time for E and M are related as follows:

dE

dt
¼ �dM

dt
: ð3Þ

If symmetric self-renewal, a process that results in an increase in
the number of BCSCs was to be added into this mathematical
model, as well as apoptosis, which decreases the number of
BCSCs the system of equations would be:

dE

dt
¼ � k1y1 þ k2y2ð Þ E þ β � δþ k3y3 þ k4y4 þ k5y5

� �
M ð4Þ

dM

dt
¼ � k3y3 þ k4y4 þ k5y5

� �
M þ k1y1 þ k2y2ð ÞE ð5Þ

where β and δ are the rates of symmetric self-renewal and apoptosis,
respectively. In this case, the rate of change in epithelial and mesen-
chymal BCSCs would be equal only when β ¼ δ.

3.3 Visualizing the

Model

Petri nets are diagrams that are used in systems biology to describe
transitions and interactions that occur in complex systems [65]. In
these graphs, boxes represent the occurrence of transitions, ovals
represent species, and directed arcs delineate which reactant species
enter the reaction (i.e., arrow flows from species to reaction) and
products that are produced during the reaction (i.e., arrow flows
from the reaction to the species). Figure 3 shows the petri net
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generated by our simplified model, which describes the state transi-
tions between the quiescent and proliferative BCSC states. While
Petri nets are based on strong mathematical foundation, they are
also helpful for use as a visual communication aid to understand
system behavior. The Petri net graphs in Fig. 3 were made using the
GraphViz package in the Julia language.

3.4 Stochastic

Simulation

In certain situations, stochastic models provide additional informa-
tion when approaching scientific questions in mathematical oncol-
ogy. Rare events, such as mutation and extinction, can be
accounted for with stochastic models, as can random fluctuations
in species counts that may greatly impact the population dynamics
of the system. Using probabilistic models, one is able to calculate
how frequently a population would become extinct under a given
condition or treatment, as well as the required duration of therapy
that would be needed to eradicate a stem cell population [58].

As the system gains increasing layers of complexity, more
sophisticated models are required and these models become diffi-
cult to solve analytically. In this scenario, stochastic simulation
techniques are helpful in studying niche dynamics where there can

EM_Trans1

IL-6*gp130 EMT

IL-6_Binding

IL-6*gp130_Unbinding

IL-6 gp130

HER2_Dimerization

HER2*EGFR

HER2_Dissociation

HER2EGFR

IL-6_Translation

HER2mRNA_Translation

ME_Trans

MET mir93

MET_Death

ME_Trans2

Fig. 3 Petri net generated by the simplified model of factors regulating transitions between proliferative and
quiescent BCSC states. The Petri net demonstrates the interconnectivity of the model, defining its reactant
species (ovals) and the transitions and events (boxes) that relate them to each other
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be large numbers of species and reactions and multiple overlapping
feedback loops. In the stochastic reaction kinetics framework, a
propensity must be specified for each reaction, as well as the net
change in count of each species. For our simplified example of the
stem cell state transitions, the species counts for epithelial BCSCs,
mesenchymal BCSC, IL-6 l gp130, andHER2 l EGFRwould be x1
to x4, respectively, allowing the calculation of the propensity of each
reaction as well as the stoichiometric change in each species for each
reaction. Table 1 shows the propensity and stoichiometric change
for two example reactions.

Stochastic simulation algorithms proceed by updating the state
vector, which consists of particle counts for each of the reactant
species, after each reaction (or set of reactions) is allowed to fire. In
the stochastic simulation algorithm [66] the counts are updated
after each reaction fire. As a result, this algorithm is the most
accurate, but also the slowest. Approximate algorithms, such as
the τ-leaping algorithm, leap over a set of reactions, in which the
mean number of times a given reaction fires during the interval is
given by the product of its propensity and the length of the leap
interval [44]. While these methods increase computational speed,
they can compromise accuracy in situations where the propensity is
abruptly changing. An update to the τ-leaping algorithm, the step-
anticipation τ-leaping algorithm, allows the user to anticipate the
change in propensity during the leap and leads to improved accu-
racy without compromising speed [67]. Outputs from stochastic
simulation include full distributions of cell counts, as well as trajec-
tories of cell counts over time. Figure 4 shows the full distributions
(panel A) and mean trajectories (panel B) for epithelial BCSCs
while varying the rate of symmetric self-renewal of epithelial
BCSCs. Full distributions may be advantageous over the mean
trajectory when one is interested in the frequency with which a
population of cancer stem cells falls below a threshold of detectabil-
ity or when investigating how frequently that population is eradi-
cated in response to therapy.

3.5 3D Simulation

and Agent-Based

Modeling

Agent-based modeling is a microscale approach that combines
elements of game theory, complex systems, emergence, and evolu-
tionary programming to simulate the actions and interactions of
individual cells and collective groups of cells to assess their effects

Table 1
Propensity and stoichiometric change for two example reactions

Reaction Propensity Stoichiometric matrix

MET + IL-6 l gp130 ! EMT + IL-6 l gp130 c1*x1*x2 ν11 ¼ �1, ν12 ¼ 0, ν13 ¼ +1

EMT + HER2 l EGFR ! MET + HER2 l EGFR c2*x3*x4 ν21 ¼ +1, ν23 ¼ �1, ν24 ¼ 0
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Epithelial BCSC frequency distributions

Epithelial BCSC Trajectories

Fig. 4 Sample output from stochastic simulation of stem cell state transitions. The first panel shows the full
distribution of epithelial BCSC cell counts over 1000 simulations for a fixed period of time. For slower birth
rates, BCSC cell populations reach smaller final counts. In the second panel, the average trajectories of
epithelial-like BCSC populations are shown. When the birth rate is faster, BCSC cell counts initially diminish in
response to therapy but later increase over time
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on the system. They are particularly useful in accounting for details
of smaller levels of systems and the prediction of the appearance of
complex phenomena that occur at a higher level. Open source
simulation packages have recently become available that allow sim-
ulation of the behavior of millions of cells in three-dimensional
tissues. These methods have been applied to patient-calibrated
models of ductal carcinoma in situ to predict clinical progression
[68]. While these methods currently do not distinguish stem cell
states, it would be a useful extension of this approach to predict
bulk tumor response when cancer stem cells are therapeutically
targeted.

3.6 How to Integrate

Models with Data

Mathematical modeling combined with experimental techniques in
single-cell expression and epigenetic analysis represent a powerful
combination to understand the dynamics of the cancer stem cell
niche. An iterative approach is employed, where experimental data
are used to validate models and further inform mathematical mod-
eling parameters, and modeling predictions are used to guide
experiments and suggest new ones [69]. In situations where
known molecular mechanisms represented in the model are suffi-
cient to account for physiologic or cell biological phenomena, the
model can be used to explore the emergent system properties.
When there are additional phenomena not explained by molecular
mechanisms, the model could suggest new experiments to identify
additional molecular mechanisms to explain these phenomena.

We anticipate that single-cell genomic and transcriptomic
profiling will advance our understanding of intra-tumoral hetero-
geneity of cancer stem cells, the role of circulating CSC populations
during cancer development and tumor progression and in the
response to treatment. As our understanding of cellular interactions
within the tumor and its tissue microenvironment advances, we will
be able to design novel therapies that will more effectively target the
tumor microenvironment. The ability to track the evolution of the
cancer stem cell compartments in circulating tumor cells in
response to therapy will be particularly helpful in the adjuvant
setting where eradication of cancer stem cells is most critical.
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Chapter 17

Methods for High-throughput Drug Combination Screening
and Synergy Scoring

Liye He, Evgeny Kulesskiy, Jani Saarela, Laura Turunen,
Krister Wennerberg, Tero Aittokallio, and Jing Tang

Abstract

Gene products or pathways that are aberrantly activated in cancer but not in normal tissue hold great
promises for being effective and safe anticancer therapeutic targets. Many targeted drugs have entered
clinical trials but so far showed limited efficacy mostly due to variability in treatment responses and often
rapidly emerging resistance. Toward more effective treatment options, we will need multi-targeted drugs or
drug combinations, which selectively inhibit the viability and growth of cancer cells and block distinct
escape mechanisms for the cells to become resistant. Functional profiling of drug combinations requires
careful experimental design and robust data analysis approaches. At the Institute for Molecular Medicine
Finland (FIMM), we have developed an experimental-computational pipeline for high-throughput screen-
ing of drug combination effects in cancer cells. The integration of automated screening techniques with
advanced synergy scoring tools allows for efficient and reliable detection of synergistic drug interactions
within a specific window of concentrations, hence accelerating the identification of potential drug combi-
nations for further confirmatory studies.

Key words Drug combinations, High-throughput screening, Experimental design, Synergy scoring,
Computational modeling

1 Introduction

A pressing challenge in the development of personalized cancer
medicine is to understand how to make the most out of genomic
information from a patient when evaluating treatment options.
Over the past decade, there has been an extensive effort to
sequence cancer genomes in large patient cohorts, sparking expec-
tations to identify novel targets for more effective and selective
treatment opportunities. These sequencing efforts have revealed a
remarkable degree of genetic heterogeneity between and within
tumors, which partly explains why the traditional “one-size-fits-
all” anticancer treatment strategies have often produced disap-
pointing outcomes in clinical trials [1]. On the other hand,
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functional studies using high-throughput drug screening allowed
linking cancer genomic vulnerabilities to targeted drug responses
[2–4]. However, complex genetic and epigenetic changes may lead
to re-activation of multiple compensatory pathways and to emer-
gence of treatment-resistant subpopulations (so-called cancer
clonal evolution).

Therefore, to reach effective and sustained clinical responses,
one often needs multi-targeted drugs or drug combinations, which
selectively inhibit multiple pathways in cancer cells [5, 6]. To facili-
tate discovery of effective drug combinations, preclinical studies
often rely on drug combination screening in cancer cell models.
Those serve as a starting point to prioritize the most promising hits
for further experimental investigation and therapy optimization.
Many of the existing drug combination studies, however, focus
on conventional chemotherapeutic drugs tested in a panel of cell
lines, for which the drug combination effects might not easily
translate into treatment options in the clinic (see (7)). In contrast,
primary cell cultures that are derived from patients have shown
tremendous potential that could enable the rapid assessment of
novel drugs or drug combinations at the individual level [8]. To
facilitate clinical translation, we have established at FIMM an Indi-
vidualized Systems Medicine (ISM) drug combination platform.
The ISM platform combines genomics, drug testing, and compu-
tational tools to predict drug responses for individual cancer
patients. The ISM platform has successfully been used to function-
ally profile primary leukemia, ovarian cancer, and prostate cancer
patient samples ex vivo so that the drug responses can be translated
to the in vivo setting [9–12].

The advances in high-throughput drug combination screening
have enabled the assaying of a large collection of chemical com-
pounds, generating dynamic dose-response profiles that allow us to
quantify the effect of drug combinations at an unprecedented level.
A drug combination is usually classified as synergistic, antagonistic,
or non-interactive. This classification is based on the deviation of
the observed drug combination response from the expected effect
of non-interaction (the null hypothesis). To quantify the degree of
drug synergy, several models have been proposed, such as those
based on the Highest single agent model (HSA) [13], the Loewe
additivity model (Loewe) [14], and the Bliss independence model
(Bliss) [15]. These existing drug synergy scoring models, together
with their software implementations, were initially proposed for
low-throughput experiments. In those experiments a limited num-
ber of drugs were combined with a fixed level of response, e.g., at
their IC50 concentrations. For example, CompuSyn has become a
popular tool to calculate a combination index (CI) using the Loewe
additivity model [16]. However, CompuSyn allows only for manual
input of one drug combination at a time, which makes it less
efficient for analyzing multiple drug combinations, particularly
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when the drug combinations are tested under various concentra-
tions, in a so-called dose-response matrix design.

To facilitate the data analysis of high-throughput drug combi-
nation screens, more recent tools have been made available as R
implementations (https://www.R-project.org). For example, mix-
low is an R package which utilizes a nonlinear mixed-effects model
to calculate the CI [17]. However, mixlow works only for an
experimental design where the ratio of two drugs in a combination
is fixed over all tested concentrations. Therefore, it may not be
directly applicable for a dose-response matrix design, where the
ratios of two drugs vary. Another R package, called drc, provides
an URSA (universal response surface approach) model, which is
more suitable for dose-response matrix data [18]. URSA extends
the Loewe model by considering the response surfaces over all the
tested concentrations. In contrast to the CI, which is defined at a
fixed response level, the URSA model provides a summarized drug
interaction score from the whole dose-response matrix. However,
the URSA implementation in the drc package often leads to fitting
errors when the dose responses fail to comply with the model
assumptions. To evaluate the appropriateness of URSA, one needs
to trace back to its underlying theoretical paper [19]. The Bliss
model has also been extended recently by incorporating the
response surface concept, similar as in the URSA model, based on
which a contour plot of a Bliss interaction index can be constructed
[20]. We have recently developed a response surface model, called
Zero Interaction Potency (ZIP), which combines the Loewe and
the Bliss models, and proposed a delta score to characterize the
synergy landscape over the full dose-response matrix [21].

Here, we describe an experimental-computational drug com-
bination analysis pipeline that has been widely used in Finland and
elsewhere to test and score effects of drug combinations in cancer
cells [22–24]. The pipeline includes both an experimental protocol
for dose-response matrix drug combination assays, as well as
computational tools to facilitate the plate design and synergy mod-
eling. The pipeline is applicable not only to cancer cell lines but also
to patient-derived cancer samples for individualized drug combina-
tion optimization. With the increasing size of our compound
library, including compounds that target all the known cancer
survival pathways, the drug combination discovery can now be
targeted toward more personalized anticancer treatment. We first
describe the experimental protocol including a computer program,
called FIMMcherry, which enables efficient production and visuali-
zation of combination assay plates, the output of which can be
directly exported to the robotic system for automated dispensing.
To address the lack of tailored software tools for high-throughput
drug combination scoring, we here report a new R-package, Syner-
gyFinder, which provides efficient implementations for all the pop-
ular synergy scoring models, includingHSA, Loewe, Bliss, and ZIP.
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This implementation provides the lab users with more flexibility to
explore their drug combination data. We expect that the use of
SynergyFinder will greatly improve the interpretation of the drug
combination results and may eventually lead to the standardization
of preclinical drug combination studies.

2 Materials

2.1 Cell Culture 1. Established cancer cell lines can be purchased from multiple
vendors (see Note 1).

2. Patient-derived samples are obtained with permission from
Finnish biobanks, hospitals, and clinical collaborators [2].

3. Cell media, serum and supplements recommended by cell line
providers.

4. Trypsin-EDTA.

5. HyQTase.

6. CellTox Green Cytotoxicity reagent (Promega).

7. CellTiter-Glo or CellTiter-Glo 2.0 reagent (Promega).

8. 384-well tissue culture treated sterile assay plates.

9. MicroClime Environmental Lids.

10. Beckman Coulter Biomek FXP for dispensing primary cells,
which tend to grow as aggregates.

11. Plate reader.

2.2 Drug

Combination Plate

Design

1. FIMMcherry software (see Note 2).

2. Source plate file in text format.

3. Drug combination file in text format.

4. Compound library (see Note 3, Fig. 1).

5. Labcyte Echo 550 acoustic dispenser for dispensing compounds
in precise volume with high accuracy (2.5 nL).

6. Storage pods.

2.3 Phenotypic

Readouts

1. CellTox Green Cytotoxicity Assay.

2. CellTiter-Glo or CellTiter-Glo 2.0 Assay.

3. MultiFlo FX Multi-Mode Dispenser with RAD module or Mul-
tidrop Combi Reagent Dispenser for dispensing growth media,
CellTiter-Glo reagents and seeding cells.

4. Plate shaker.

5. PHERAstar FS or Cytation 5 Cell Imaging Multi-Mode plate
readers for CellTox Green (fluorescence) and CellTiter-Glo
(luminescence) detection on 384-well plates.
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2.4 Software Tools

for Data Analysis

1. R.

2. Bioconductor.

3. SynergyFinder package (see Notes 4–6).

4. csv file that describes a drug combination dataset.

3 Methods

The drug combination analysis pipeline starts from sample prepara-
tion and compound selection, based on which an automated plate
design program called FIMMCherry is utilized. The drug sensitiv-
ity and resistance is then profiled in the plate by cell viability,
cytotoxicity, and other readouts. The resulting dose-response
matrix data is analyzed with the SynergyFinder R package for the
detection of synergistic drug combinations (see Fig. 2).

3.1 Cell Culture 1. Dissociate cells by adding 0.05% trypsin-EDTA or HyQTase to
achieve a single-cell suspension.

2. Titrate cells to define optimal density within exponential growth
(log phase). Seed cells in twofold serial dilution starting from
16,000 cells/well on 384-well plates. For most cell lines, the
optimal cell number is in the range of 500–2000 cells/well.

A) Compound class B) Clinical stage

Conv. Chemo (n=74) Kinase inhibitor (n=262)

Rapalog (n=5) Immunomodulatory (n=14)

Differentiating/ epigenetic modifier (n=61) Hormone therapy (n=22)

Apoptotic modulator (n=22) Metabolic modifier (n=17)

Kinesin inhibitor (n=3) Nonsteroidal anti-inflammatory drug (n=2)

HSP inhibitor (n=9) Other (n=34)

Approved (n=156) Investigational (n=279) Probe (n=90)

Fig. 1 An overview of the FIMM oncology compound collection. The drug combination platform enables the
testing of pairwise drug combinations from 525 small-molecular anticancer compounds that cover mainly
kinase inhibitors and other signal transduction modulators. About half of the compounds comprised in the
library are either FDA-approved or being evaluated in clinical trials at different stages
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3. Cell toxicity and viability detection after 72 h of incubation
using CellTox Green and CellTiter-Glo reagents. Add 5 μL of
culture medium to pre-drugged 384-well assay plates using
MultiFlo FX Multi-Mode Dispenser with RAD module or Mul-
tidrop Combi Reagent Dispenser and shake the plates for
15 min. If toxicity measurement is performed, include 1:2000
dilution of CellTox Green reagent. Seed cells at optimal density
to pre-drugged assay plates using MultiFlo FX Multi-Mode
Dispenser with RAD module or Multidrop Combi Reagent
Dispenser in 20 μL of culture medium. Culture cells for 72 h
at 37 �C in the presence of 5% CO2. Measure the amount of
dead cells, stained by the CellTox Green reagent, using a plate
reader with fluorescence mode. For viability measurement, add
25 μL of CellTiter-Glo reagent to assay plates using MultiFlo FX
Multi-Mode Dispenser with RAD module or Multidrop Combi
Reagent Dispenser. Shake the plates for 5 min and subsequently
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Fig. 2 An overview of the drug combination data analysis. (a) A typical high-throughput drug combination
screen utilizes a dose-response matrix design where all possible dose combinations for a drug pair can be
tested. Colors in the dose-response matrices show different levels of phenotypic responses of the cancer cell
with red indicating stronger inhibition and green indicating lower inhibition. (b) Depending on the interaction
pattern models derived from the dose-response matrices, a drug combination can be classified as
non-interactive, antagonistic, or synergistic
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spin the plates at 218 � g for 5 min. Measure the CTG signal in
the assay wells using a plate reader with luminescence mode.

4. MicroClime Environmental Lids are used to minimize edge
effect and to keep concentrations of solutions constant.

3.2 Drug

Combination Plate

Design

We utilize a combination plate layout where six compound pairs can
be accommodated on one 384-well plate. A given pair of drugs is
combined in a series of one blank and seven half-log dilution
concentrations, resulting in an 8 � 8 dose matrix. To be able to
transfer the compounds according to this matrix format, a pick list
defining the source and destination plate locations and transfer
volumes for the compounds is needed. An in-house program, called
FIMMCherry, has been developed to automatically generate these
rather complex pick lists effortlessly (see Note 7).

Two tab-delimited text files are needed as input:

1. A source plate file provides information of the compound stocks
(compound identification, available concentration ranges,
source plate identification, and well identification).

2. A drug combination file containing the selected compound
pairs.

After loading the input files, FIMMCherry will show the layout
of the plates accordingly (Fig. 3). A pick list that is compatible with
the Labcyte Echo dispenser is then created by the program for
compound dispensing. The Labcyte Echo 550 acoustic dispenser
transfers liquid from source wells to destination wells in a
non-contact fashion in 2.5 nL droplets. The pick list generated
above is compatible with the Echo Cherry Pick software without
further modifications to produce the pre-drugged assay plates [10].

1. The compounds are dissolved in DMSO except for 19 drugs
(e.g., platinum drugs) with poor DMSO solubility or stability
that are instead dissolved in water. All 525 compounds are
transferred in five doses on eight 384-well plates.

2. The pre-dosed plates are stored in Storage Pods under nitrogen
gas at room temperature for up to 1 month.

3. For quality control, a regular quality check-up of our compound
library is performed which includes the testing of the com-
pounds with four assay-ready cell lines (DU4475, HDQ-P1,
IGROV-1, and MOLM-13) every 2 months. Following the
time-dependent reproducibility of the drug responses allows us
to precisely detect any changes in the compound stability and
activity.

3.3 Viability

Readouts

1. Transfer 5 μL of media with CellTox Green Cytotoxicity reagent
into a 384-well containing the pre-diluted compound library (see
Note 8).
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2. Shake the plate on the plate shaker at 450 rpm for 5 min for
proper drug dissolving.

3. Transfer a single-cell suspension in 20 μL of media to a 384-well
plate. Final dilution of CellTox Green reagent should be 1:2000
in 25 μL.

4. Incubate the cells in the plates for 72 h.

5. Shake the plates on the plate shaker at 500 rpm for 30 s. Read
fluorescence in the plates using a plate reader for CellTox Green
Cytotoxicity detection.

6. Transfer 25 μL of CellTiter-Glo reagent to the plate.

7. Shake the plates on the plate shaker at 450 rpm for 5 min and
spin the plate at 218 � g for 5 min.

8. Read luminescence in the plates for detecting cell viability using
a plate reader.

Fig. 3 Drug combination plate design using FIMMCherry. The graphical user interface contains a virtual plate
enabling an interactive way of designing the plate. After loading the input files including the source, the
control, and drug pair information (the black inset boxes), the selected drug combinations and their dose
ranges will be listed in the “Drug Pair” tab, for which an echo file will be generated for acoustic dispensing.
Each plate can be visualized in a separate tab and will be named by its plate identifier (the red inset box). The
“Info” tab shows the liquids consumption in the source plates (the yellow inset box)
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3.4 Synergy Scoring:

Installation of the

SynergyFinder

R-package

1. Download and install R (https://www.R-project.org).

2. Download and install Bioconductor (https://www.bio
conductor.org/).

3. Install the SynergyFinder package by typing in the R console as
below:

> source(“https://www.bioconductor.org/biocLite.R”)

> biocLite(“synergyfinder”)

4. Load the package:

> library(synergyfinder)

3.5 Synergy Scoring:

Input Data

1. A single csv file that describes a drug combination dataset is
provided as input. The csv file is in a list format and must contain
the following columns:

l BlockID: the identifier for a drug combination. If multiple
drug combinations are present, e.g., in the standard 384-well
plate where six drug combinations are fitted, then the identi-
fiers for each of them must be unique.

l Row and Col: the row and column indexes for each well in
the plate.

l DrugCol: the name of the drug on the columns in a dose-
response matrix.

l DrugRow: the name of the drug on the rows in a dose-
response matrix.

l ConcCol and ConcRow: the concentrations of the column
drugs and row drugs in combination.

l ConcUnit: the unit of concentrations. It is typically nM or
μM.

l Response: the effect of drug combinations at the concentra-
tions specified by ConcCol and ConcRow. The effect must be
normalized to %inhibition of cell viability or proliferation
based on the positive and negative controls. For a well-
controlled experiment, the range of the response values is
expected from 0 to 100. However, missing values or extreme
values are allowed. For input data where the drug effect is
represented as %viability, the program will internally convert
it to %inhibition value by 100-%viability.

2. We provide example input data in the R package, which is
extracted from a recent drug combination screen for treatment
of diffuse large B-cell lymphoma (DLBCL) [7]. The example
input data contains two representative drug combinations
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(ibrutinib and ispinesib and ibrutinib and canertinib) for which
the %viability of a cell line TMD8 was assayed using a 6 by 6 dose
matrix design. The example data in the required list format can
be loaded and reshaped to a dose-response matrix format for
further analysis by typing:

> data(“mathews_screening_data”)

> dose.response.mat <- ReshapeData(mathews_screening_data,

data.type ¼ “viability”)

3. The “data.type” parameter specifies the type of drug response,
which can be either “viability” or “inhibition.” We will use these
example data to illustrate the main functions of SynergyFinder
below. More documentation of the input and output parameters
for each function can be accessed by typing:

> help(‘ReshapeData’)

3.6 Synergy Scoring:

Input Data

Visualization

1. The input data can be visualized using the function PlotDoseR-
esponse by typing:

> PlotDoseResponse(dose.response.mat)

2. The function fits a four-parameter log-logistic model to generate
the dose-response curves for the single drugs based on the first
row and first column of the dose-response matrix. The drug
combination responses are also plotted as heatmaps. From
those, one can assess the therapeutic significance of the combi-
nation, e.g., by identifying the concentrations at which the drug
combination can lead to a maximal effect on the inhibition of
cancer cell survival/proliferation (see Fig. 4). The PlotDoseRe-
sponse function also provides a high-resolution pdf file by add-
ing the “save.file” parameter:

> PlotDoseResponse(dose.response.mat, save.file ¼ TRUE)

3. The pdf file will be saved under the current work directory with
the syntax: “drug1.drug2.dose.response.blockID.pdf.”

3.7 Synergy Scoring:

Drug Synergy Scoring

(See Notes 9 and 10)

1. The current SynergyFinder package provides the synergy scores
of four major reference models, including HSA, Loewe, Bliss,
and ZIP. In a drug combination experiment where drug 1 at
dose x1 is combined with drug 2 at dose x2, the effect of such a
combination is yc as compared to the monotherapy effect y1(x1)
and y2(x2). To be able to quantify the degree of drug interac-
tions, one needs to determine the deviation of yc from the
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expected effect ye of non-interaction, which is calculated in
different ways with the individual reference models.

l HSA: ye is the effect of the highest monotherapy effect, i.e.,
ye ¼ max(y1, y2).

l Loewe: ye is the effect that would be achieved if a drug was
combined with itself, i.e., ye ¼ y1(x1 + x2) ¼ y2(x1 + x2).
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l Bliss: ye is the effect that would be achieved if the two drugs are
acting independently of the phenotype, i.e., ye ¼ y1 + y2 � y1y2.

l ZIP: ye is the effect that would be achieved if the two drugs
do not potentiate each other, i.e., both the assumptions of
the Loewe model and the Bliss model are met.

2. Once ye can be determined, the synergy score can be calculated
as the difference between the observed effect yc and the expected
effect ye. Depending on whether yc > ye or yc < ye the drug
combination can be classified as synergistic or antagonist,
respectively. Furthermore, as the input data has been normalized
as %inhibition, the synergy score can be directly interpreted as
the proportion of cellular responses that can be attributed to the
drug interactions.

3. For a given dose-response matrix, one needs to first choose
which reference model to use and then apply the CalculateSy-
nergy function to calculate the corresponding synergy score at
each dose combination. For example, the ZIP-based synergy
score for the example data can be obtained by typing:

> synergy.score <- CalculateSynergy(data ¼ dose.response.

mat, method ¼ “ZIP”, correction ¼ TRUE)

4. For assessing the synergy scores with the other reference models,
one needs to change the “method” parameter to “HSA,”
“Loewe,” or “Bliss.” The “correction” parameter specifies if a
baseline correction is applied on the raw dose-response data or
not. The baseline correction utilizes the average of the minimum
responses of the two single drugs as a baseline response to
correct the negative response values. The output “synergy.
score” contains a score matrix of the same size to facilitate a
dose-level evaluation of drug synergy as well as a direct compar-
ison of the synergy scores between two reference models.

3.8 Synergy Scoring:

The Drug Interaction

Landscape

1. The synergy scores are calculated across all the tested concentra-
tion combinations, which can be visualized as either a
two-dimensional or a three-dimensional interaction surface
over the dose matrix. The landscape of such a drug interaction
scoring is very informative when identifying the specific dose
regions where a synergistic or antagonistic drug interaction
occurs. The height of the 3D drug interaction landscape is
normalized as the % inhibition effect to facilitate a direct com-
parison of the degrees of interaction among multiple drug com-
binations. In addition, a summarized synergy score is provided
by averaging over the whole dose-response matrix. To visualize
the drug interaction landscape, one can utilize the PlotSynergy
function as below (see Fig. 5):
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> PlotSynergy(synergy.score, type ¼ “all”, save.file ¼ TRUE)

2. The “type” parameter specifies the visualization type of the
interaction surface as 2D, 3D, or both.
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Fig. 5 The drug interaction landscapes based on the ZIP model. (a) The ibrutinib and ispinesib combination. (b)
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4 Notes

1. Examples of cell lines include four cell lines that are used for
quality check of the compound library: DU4475 (breast can-
cer), HDQ-P1 (breast cancer), IGROV-1 (ovarian cancer), and
MOLM-13 (acute monocytic leukemia).

2. Specific software tools are needed in the experimental design
stage and in the data analysis stage. For the 384-well plate
design, once the drugs and the concentration ranges are
selected, we use the in-house cherry-picking program, FIMM-
cherry, to automatically generate the echo files needed for the
Labcyte Access system.

3. The FIMM oncology collection contains both FDA/EMA-
approved drugs and investigational compounds (see Fig. 1).
The collection is constantly evolving and the current FO4B
version contains 525 compounds with concentrations ranging
typically between 1 and 10,000 nM. For some compounds, the
concentration range is adjusted upward (e.g., platinum drugs,
100,000 nM) or downward (e.g., rapalogs, 100 nM) to better
match their relevant concentrations of bioactivity. The full list
of the FIMM oncology compounds can be found in
Supplementary Table 1.

4. When the drug combination dose-response matrix data is
ready, we then use the SynergyFinder R-package to score and
visualize the drug interactions. The SynergyFinder is also avail-
able as a web-application without the need to install the R
environment.

5. The SynergyFinder package will be continuously updated for
including more rigorous analyses such as statistical significance,
effect size, and noise detection.

6. Availability: The source code for the FIMMCherry program is
available at github (https://github.com/hly89/FIMM-
Cherry). The SynergyFinder R package for drug combination
data analysis is available at CRAN and Bioconductor.

7. FIMMCherry is a desktop GUI application, which is developed
using Python (https://www.python.org/) and Qt application
development framework (https://www.qt.io/). The integra-
tion of Python and Qt allows FIMMCherry to run on all the
major computer platforms including Windows, Linux, and
Mac OS X.

8. We have not seen problems in cell proliferation rate or other
major effects when using the reagent. The reagent is stable at
least 72 h in the cell culture and the cells dying at the beginning
of the 72 h incubation are still stained after 72 h.
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9. We provide an R-package SynergyFinder to calculate the drug
synergy scores using four different reference models, acknowl-
edging the fact that the optimal method for standardization of
drug combination data analysis remains an open question (28).
The users are therefore advised to apply all the models for their
data and report a drug combination that can show a detectable
level of synergy scores irrespective of the model in selection.

10. A strong synergy in a drug combination, as revealed using the
synergy landscape analysis, might not be sufficient to warrant
the next level confirmatory analysis if the synergy does not lead
to sufficient overall responses. Therefore, the synergy scoring is
always advised to be combined with the raw dose-response
matrix data visualized in Fig. 4 to provide an overview of the
extra benefits of drug combinations compared to single drugs.
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